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Abstract

For at least two thousand years, voting has been used as one of the most effective

ways to aggregate people’s ordinal preferences. In the last 50 years, the rapid devel-

opment of Computer Science has revolutionize every aspect of the world, including

voting. This motivates us to study (1) conceptually, how computational think-

ing changes the traditional theory of voting, and (2) methodologically, how

to better use voting for preference/information aggregation with the help

of Computer Science.

My Ph.D. work seeks to investigate and foster the interplay between Computer

Science and Voting Theory. In this thesis, I will discuss two specific research di-

rections pursued in my Ph.D. work, one for each question asked above. The first

focuses on investigating how computational thinking affects the game-theoretic as-

pects of voting. More precisely, I will discuss the rationale and possibility of using

computational complexity to protect voting from a type of strategic behavior of the

voters, called manipulation. The second studies a voting setting called Combinatorial

Voting, where the set of alternatives is exponentially large and has a combinatorial

structure. I will focus on the design and analysis of novel voting rules for combina-

torial voting that balance computational efficiency and the expressivity of the voting

language, in light of some recent developments in Artificial Intelligence.
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1

Introduction

People hold different opinions and preferences over almost everything. Yet in many

situations a common decision must be made. For example, sometimes people need

to select a leader, or decide whether or not to provide a public good such as national

defense. The best-known way to achieve these goals is by voting, which has been a

critical component of democracy since ancient time. As early as around 350 B.C.,

Plato (424/423 B.C.–348/347 B.C.), in spite of being famous for his objection against

democracy, proposed several multi-stage voting processes to elect the “guardians” of

the law and officeholders, etc., in his unfinished book “The Law”. Obviously Plato

was not the first person who thought about voting. In fact, Socrates (469 B.C.–

399 B.C.), Plato’s teacher, was sentenced to death by a majority voting. Plato

thus had good reasons to object to democracy. After Plato, the first well-known

voting system that is not based on majority voting was proposed by Ramon Llull

(1232–1315). Then, the systematic study of the theory of voting prospered with the

French Revolution in the 18th century. During that time, two of the most famous

philosophers who made significant contributions to the theory of voting are Marie

Jean Antoine Nicolas de Caritat, marquis de Condorcet (1743–1794, also known as

1



Nicolas de Condorcet, who proposed the Condorcet criterion), and Jean-Charles,

chevalier de Borda (1733–1799, who proposed the Borda voting rule). More recently,

Kenneth Arrow (a co-recipient of the Nobel Memorial Prize in Economics in 1972)

showed that it is impossible to design a voting rule that satisfies some very natural

properties (Arrow, 1950). This seminal work is thus named Arrow’s impossibility

theorem, and is broadly regarded as the beginning of modern Social Choice Theory,

which is an active research direction in Economics.

In recent years, rapid developments in computers and networks have brought big

changes to human society. Computers not only have helped us solve problems faster,

but also have brought revolutions to the ideology of the human society. For exam-

ple, the ultimate goal of Artificial Intelligence (AI) is to build computers that are as

“intelligent” as, if not more intelligent than, human beings. These changes have led

to many new interdisciplinary areas. In particular, the interdisciplinary area lying

in the intersection of Computer Science and Economics has attracted huge atten-

tion, partly due to the emerging electronic commerce of the Internet era. One place

where Computer Science meets Economics is the new subarea of AI called Multi-

Agent Systems, which studies interactions and collaborations in systems that consist

of multiple intelligent agents (Wooldridge, 2009). Similar as for human beings, vot-

ing could help intelligent agents to make a joint decision in many situations. For

example, in the system developed by Ephrati and Rosenschein (1991), agents use

voting to decide the next step in their joint plan. There are also many applications

of voting in electronic commerce, for example, Ghosh et al. (1999) proposed to use

voting to help build recommendation systems; Pennock et al. (2000) adopted the

core method in traditional Voting Theory—the axiomatic approach—to analyze col-

laborative filtering algorithms in recommendation systems; and Dwork et al. (2001)

proposed to treat web-search engines as agents, and use voting to decide the best

matching website.

2



In many new applications of voting, we encounter an extremely large number

of alternatives or an overwhelming amount of information, which leads to signifi-

cant computational challenges. To handle these situations, we need to design faster

algorithms or build faster computers. On the other hand, higher computational ca-

pability makes it easier for voters to figure out beneficial strategic behavior, which

might lead to undesirable outcomes. In order to reap the benefits of these potential

applications and overcome the emerging problems, we need to develop new algo-

rithms and methodologies. A burgeoning area—Computational Social Choice—aims

to address problems in computational aspects of information/preference representa-

tion and aggregation in multi-agent scenarios (Chevaleyre et al., 2007).

A first question that should be asked is: why it is voting that people or intel-

ligent agents should want to use to aggregate their preferences? Certainly in some

situations people use other mechanisms. For example, sometimes auctions are used

to determine an allocation of resources or tasks. A key feature in the situations

where people or agents use voting is that they only have, or are limited to express,

ordinal preferences, in contrast to cardinal preferences measured by real numbers

that represent utilities and allow for monetary transfers. In this dissertation, I put

aside the discussion of many important topics, including the comparison between

voting and other mechanisms, cardinal vs. ordinal preferences, rationale behind the

utility theory, etc. An interested reader may refer to Conitzer (2010) for discus-

sions on such topics. Instead, I will focus on the situations where voting is used.

It should be kept in mind that voting is a good option for preference/information

aggregation in many, but not all situations. My research seeks to investigate and

foster the interplay between Computer Science and Voting Theory. In particular, my

research focuses the conceptual and methodological aspects of the interplay: (1) how

computational thinking (Wing, 2006) changes the traditional voting theory

conceptually, and (2) methodologically how can we better use voting for

3



preference/information aggregation with the help of Computer Science.

1.1 Structure of This Dissertation

The structure of my dissertation is illustrated in Figure 1.1. Most of my research

focuses on Computational Voting Theory, which is the most active branch of Compu-

tational Social Choice (Node 1 in Figure 1.1). To make the dissertation coherent and

to keep it at a reasonable length, I will discuss two research directions that belongs

to the two high-level aspects mentioned in the end of the last section. The first direc-

tion focuses on investigating how computational thinking affects the game-theoretic

aspects of voting (Node 2 in Figure 1.1). The second direction studies the design and

analysis of novel voting rules when the set of alternatives is exponentially large and

has a combinatorial structure, with the help of some recent developments in Artificial

Intelligence (Node 3 in Figure 1.1). These two research directions converge to the

study of the game-theoretic aspects of combinatorial voting (Node 4 in Figure 1.1).

1 Computational Voting Theory

2 Game-theoretic aspects
(Chapter 3–7)

3 Combinatorial voting
(Chapter 8–10)

4 Game-theoretic aspects of combinatorial voting
(Chapter 11,12)

5 Other topics
Briefly discussed in Section 1.5

Figure 1.1: Structure of my dissertation.

In the remainder of this chapter, I will slightly expand on the nodes in Figure 1.1.

4



1.2 Computational Voting Theory

Computational Voting Theory, which studies computational issues in voting, is the

most active branch of Computational Social choice. Throughout the dissertation, a

vote is a linear order1 over the set of alternatives (candidates), we ask each voter

(agents) to cast one vote. These votes constitute a profile. Then, we apply a voting

rule to the profile to determine the winning alternative (the winner).

Example 1.2.1. Suppose three candidates {Clinton, Obama, McCain} are competing

for a presidential position. We use the plurality rule to select the winner. That is, the

candidate who is ranked at the top the most time in the votes wins, and suppose ties

are broken alphabetically. Suppose there are five voters whose votes are as follows:

Voter 1 : Clinton¡Obama¡McCain
Voter 2,3: Obama¡McCain¡Clinton
Voter 4,5: McCain¡Clinton¡Obama

Then, the winner is McCain, because he is ranked in the top position for two times

(tied with Obama), and the tie is broken in favor of McCain.

The formal definition of voting systems and some popular voting rules can be

found in Chapter 2. In Computational Voting Theory, researchers have extensively

investigated at least the following questions.

• How can we compute the winner or ranking more efficiently?

• How can we communicate and elicit voters’ preferences more efficiently?

• How can we use computational complexity to protect elections from bribery

and control?

1 However, see Pini et al. (2007), for a discussion of voting where preferences over the candidates
are represented by a partial order.
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• How can we prevent voters from misreporting their preferences?

• How can we analyze voters’ incentive and strategic behavior?

• How can we design novel voting rules when the set of alternatives has a com-

binatorial structure, and is exponentially large?

Nodes 2–4 correspond to the last three questions. More detailed discussions as well

as references can be found in Chapter 2.

1.3 Node 2: Game-theoretic Aspects

An important yet always implicit assumption when most popular voting rules were

designed is that all voters report their preferences truthfully. However, in many

real world voting systems, a voter may well lie to make herself better off. This

phenomenon is call a manipulation. For example, let us recall Example 1.2.1, and

suppose that the votes described in the example are the voters’ true preferences. We

have already seen that if all five voters report truthfully, then McCain is the win-

ner. However, if the first voter reports that her vote is Obama¡Clinton¡McCain,

while the other voters all report truthfully, then Obama is the winner. Note that

the first voter prefers Obama to MaCain, which means that she has an incentive

to misreport her preferences to make herself better off. This kind of strategic be-

havior makes the outcome of the voting process unpredictable, and can sometimes

hurt the voters, including the manipulators themselves, when there is more than one

manipulator. Therefore, it is important to investigate the strategic behavior of the

voters. This falls under Game Theory (Fudenberg and Tirole, 1991). First of all, it

would be great if we can use a voting rule for which there is never any opportunity

for manipulation, i.e., a strategy-proof voting rule. This objective might seem to

be too ambitious at first glance, but in fact, there are many strategy-proof mecha-

nisms in other settings where voters are allowed to express their cardinal preferences,
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their preferences are quasi-linear, and monetary transfers are allowed. For example,

the well-known VCG mechanisms are strategy-proof (Vickrey, 1961; Clarke, 1971;

Groves, 1973). Unfortunately, in voting settings where no monetary transfers are

allowed, due to the celebrated Gibbard-Satterthwaite theorem (Gibbard, 1973; Sat-

terthwaite, 1975), when there are three or more alternatives, no strategy-proof voting

rule satisfies the following two desired properties: (1) non-imposition (i.e., each al-

ternative wins for some profile) and (2) non-dictatorship (i.e., there is no dictator, a

voter whose first-ranked alternative is always the winner). To circumvent this very

negative result, economists have proposed to restrict the domain of preferences to

obtain strategy-proofness. That is, we assume that voters’ preferences always lie in a

restricted set of linear orders. One example of such a class is the set of single-peaked

preferences (Black, 1948). For single-peaked preferences, desirable strategy-proof

rules exist, such as the median rule (Moulin, 1980). More details can be found in

Chapter 12, where I will discuss our own results along this line as well.

Besides this, my research on the game-theoretic aspects of Voting Theory di-

verges into two directions, illustrated in Figure 1.1. The first direction (the left

branch) focuses on exploring the idea of using computational complexity to prevent

manipulation. The second direction (the right branch) focuses on analyzing the

equilibrium outcome in a type of voting games.

7



Manipulation is inevitable
(Gibbard-Satterthwaite Theorem)

Yes
(Chapter 4)

No
(Chapter 5)

Information constraints (Chapter 6)
Domain restrictions (Chapter 12)

May lead to very undesirable
outcomes (Chapter 7,11)

Seems not very often
(experiments in Chapter 7)

2 Game-theoretic aspects

Can we use computational complexity
as a barrier against manipulation?

Is it a strong barrier?

Other barriers?

Why prevent manipulations?

How often?

Figure 1.2: Two directions in game-theoretic aspects of voting.

1.3.1 First Direction: Computational Complexity of Manipulation

Even though a manipulation is guaranteed to exist, if we can prove that finding a

manipulation is computationally hard for some common voting rules, then a ma-

nipulation might not occur simply because the manipulator(s) cannot find it in a

reasonable amount of time, or it is computationally too costly to do so. This idea

was first explored by Bartholdi et al. (1989a), which, together with Bartholdi et al.

(1989b, 1992), have been broadly considered the starting point of Computational

Social Choice. After that, a number of results have been obtained on the computa-

tional complexity of manipulation in various settings. See Faliszewski et al. (2010b);

Faliszewski and Procaccia (2010) for recent surveys. More details will also be given

in Chapter 4.

8



Chapter 4 focuses on the most natural setting where voters are equally weighted,

and there are multiple manipulators who want to cast their votes collaboratively to

make a favored alternative win. I will show that for some common voting rules,

finding a manipulation is NP-hard, while for some other voting rules, there exist

polynomial-time algorithms to find a manipulation. Therefore, at least for some

common voting rules, the answer to the question “Can we use computational com-

plexity as a barrier against manipulation?” is “Yes”. This answer is quite positive,

because it implies that at least for these voting rules, even if the potential manipula-

tors use the fastest computer in the world, they are unlikely to find an algorithm that

can always tell them the answer quickly even for large instances (assuming P� NP).

Consequently, these potential manipulators might have less incentive to misreport

their preferences.

Proving the NP-hardness of finding a manipulation is only a first step. Even

though it is NP-hard to find a manipulation, the manipulators may still not always

report their true preferences. For example, they can certainly run a heuristic algo-

rithm for a certain amount of time, say one minute, and if the algorithm returns

a successful manipulation, then they will cast the votes returned by the algorithm;

otherwise, if the algorithm fails to compute an answer in one minute, they may

then report their true preferences. Technically, this problem is due to the fact that

NP-hardness is a worst-case concept. Therefore, it is natural to ask, informally,

whether manipulations are computationally hard to find in “most” cases. Some pre-

vious work gave partial answers to this question. Again, more details and discussion

can be found in Faliszewski et al. (2010b); Faliszewski and Procaccia (2010) and/or

Chapter 4. We will see in Chapter 5 that, for a very general class of voting rules

called generalized scoring rules, which include many common voting rules, the cases

where manipulations are hard to find are exceptions rather than the rule. There-

fore, computational complexity does not seem to be a very strong barrier against
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strategic behavior, so that we need to seek other barriers. For example, we may

try to limit the manipulators’ information about the preferences of the other voters

(Chapter 6), or only allow the voters to pick a vote from a restricted set of linear

orders (Chapter 12).2

1.3.2 Second Direction: Equilibrium Outcomes in Voting Games

In fact, the very first question that should be asked is, is it ever desirable to prevent

the voters’ strategic behavior? After all, the ultimate objective of voting is to select

a “good” alternative. So if somehow the strategic behavior of the voters leads to the

same, or an even better, outcome, then there is no reason to even try to prevent the

voters from being strategic. Moreover, in such cases, maybe the strategic behavior

should actually be encouraged! Surprisingly, this question was not answered before.

To analyze the outcome when voters are strategic, the most natural way is to use

Game Theory to model the voting process as a game, and then focus on the winner in

the outcome of the game in terms of some solution concept, e.g., Nash equilibrium.3

However, in general a voting game has too many (Nash) equilibria. This makes it

very hard to draw any useful conclusions on the impact of strategic behavior on the

outcome of voting.

In Chapter 7, we study a type of voting games where voters cast their votes one

after another sequentially. We call such games Stackelberg voting games. We will fo-

cus on a finer solution concept called subgame-perfect Nash equilibrium. Fortunately,

in any Stackelberg voting game, the outcome is unique in all subgame-perfect Nash

equilibria. One might expect that the strategic behavior would sometimes harm the

voters, but there are two main difficulties in drawing such a conclusion, which come

2 As mentioned earlier, this idea has been approached mainly by economists. I will further explore
it in the setting of combinatorial voting.

3 In general simultaneous-move voting games, a Nash equilibrium is a profile where no voter can
benefit from casting a different vote. The formal definition of voting games, Nash equilibrium, and
its refinement subgame-perfect Nash equilibrium can be found in Chapter 7.
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from the following two natural questions.

1. To what extent can the strategic behavior harm the voters? The main difficulty

here is that voting aims at aggregating voters’ ordinal preferences, which means

that generally it is nontrivial to measure how good/bad an alternative is.4

2. How often does the strategic behavior harm the voters?

Chapter 7 answers the above two questions. The first question is answered by show-

ing some paradoxes, which state that sometimes the (unique) equilibrium winner is

ranked in extremely low positions in almost all voters’ true preferences. Without

doubt this is an extremely undesirable outcome. Therefore, these paradoxes illus-

trate the cost of strategic behavior of the voters, and suggest that at least in some

cases, strategic behavior should be prevented. The second question is partly an-

swered by simulations. Surprisingly, for most common voting rules, the winner in

the equilibrium outcome is slightly “better” for the voters on average, compared to

the winner when they vote truthfully.

1.4 Node 3: Combinatorial Voting

So far we have been discussing voting over unstructured sets of alternatives. In many

real-life situations, there are multiple issues (attributes, or characteristics), and each

alternative can be uniquely characterized by a vector of the values these issues take.

Such settings are called combinatorial voting (or voting in combinatorial domain).

For instance, when agents vote to select a president and a treasurer, each position

corresponds to an issue whose value corresponds to the person selected to hold the

4 This is in sharp contrast to the settings where there is a well-defined social welfare function,
especially in the settings where the agents have quasilinear utility functions, and are allowed to
express their cardinal preferences, for example in auctions. In those situations, the cost of strategic
behavior can be measured by the price of anarchy (Koutsoupias and Papadimitriou, 1999), that is,
the ratio of the optimal social welfare over the worst social welfare in equilibrium outcomes.
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position. In combinatorial voting, selecting a winner amounts to making a public

choice for each of the issues. The main difficulty resides in the exponentially large

number of alternatives. Therefore, it is computationally impractical to directly apply

a common voting rule designed for unstructured sets of alternatives in the setting of

combinatorial voting.5 For combinatorial voting, we need to design new voting rules

that are computationally tractable.

In the literature, researchers in Economics and Political Science have extensively

studied voting processes where the agents vote over issues separately in parallel. This

method works well when agents’ preferences over one issue do not depend on any

other issues. However, in general agents’ preferences over one issue may depend on

the value of other issues. For example, if a Democrat is selected to be the president,

then a voter may prefer selecting a Republican to be the treasurer; but if a Republican

is selected to be the president, then the voter may prefer selecting a Democrat to be

the treasurer. There are two main challenges for combinatorial voting: Language-

wise we need a more natural way for the agents to truthfully report their preferences.

Methodology-wise we also need a more general theory of computational tractable

combinatorial voting.

My research in combinatorial voting can be roughly categorized into two direc-

tions, illustrated in Figure 1.3. The first direction focuses on designing computation-

ally tractable voting rules for combinatorial voting. The second direction (Node 4 in

Figure 1.1) focuses on game-theoretic aspects of combinatorial voting, where we aim

at analyzing and preventing voters’ strategic behavior in combinatorial voting.

5 Some voting rules that only use a very small portion of the voters preferences to select the
winner, for example the plurality rule, do not have significant computational issues when they are
used in combinatorial voting. However, in general these rules will not select a “good” outcome in
combinatorial voting. More discussions will be given in Chapter 8.
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3 Combinatorial Voting

Designing new rules for
combinatorial voting

A framework based on
local rules (Chapter 9)

An MLE approach
(Chapter 10)

Strategy-proof voting rules over
restricted domains (Chapter 12)

4
Game-theoretic aspects of

combinatorial voting
Strategic sequential voting

(Chapter 11)

Work on sequential voting
(done before joining Duke)

Figure 1.3: Two directions in combinatorial voting.

1.4.1 Designing New Rules for Combinatorial Voting

One attempt to design computationally tractable voting rules consists of sequential

voting rules, where agents vote sequentially, in the sense that they vote to make

the choice for the first issue by a “local” voting rule, then move on to the second

issue and vote to make the choice by another local voting rule, etc., given an order

over the issues (Lang, 2007). Much of my work was built on the idea of sequential

voting, which allows the agents’ preferences over one issue to depend on some (but

not necessarily all) other issues. Formally, the voters are advised to use a compact

voting language called CP-nets (Boutilier et al., 2004), which was recently proposed

in the Artificial Intelligence community as a preferential counterpart of Bayesian

networks (Pearl, 1988).

However, in order for sequential voting to work well, there are two levels of

technical constraints. First, each voter’s preferences must be represented by an
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acyclic CP-net. In other words, for each voter, there exists at least one linear ordering

over the issues, such that the voter’s preferences over later issues in this order only

depend on the values of all previous issues. That is, the voter’s preferences are

compatible with that ordering over issues. The second is that all voters’ preferences

must be compatible with a common (linear) ordering over the issues. For example,

consider a combinatorial voting setting where there are two issues: an issue for

“main dish”, which can be either fish or beef, and another issue for “wine”, which

can be either red wine or white wine. The two constraints state that there exists

an ordering over the two issues, w.l.o.g. main dish¡wine, with which all voters’

preferences are compatible. That is, each voter’ preferences over wine depends on the

value of main dish. From a high-level point of view, these two constraints imply that

sequential voting rules have high computational efficiency, but the voting language

(i.e., acyclic CP-nets that are compatible with a common ordering over issues) is

too restrictive. On the other hand, common voting rules designed for unstructured

sets of alternatives have low computational efficiency in the setting of combinatorial

voting, but the voters have more flexibility in expressing their preferences.

Designing a good voting rule with high computational efficiency and a fully ex-

pressive language seems to be a mission impossible. Therefore, my work in com-

binatorial voting aims to design voting rules that tradeoff computational efficiency

and expressiveness of the voting language. We will start designing such voting rules

by assuming all voters vote truthfully (Chapter 9, 10). Complications caused by

the strategic behavior of the voters will be examined later (Chapter 11, 12). In

Chapter 9, we will see a framework that first considers a directed graph over all

alternatives by applying local voting rules, then uses a choice set function to select

the winner from this graph. This framework allows a voter to use any CP-net (even

an acyclic one) to represent her preferences. We will also see that whether or not

the voting rule defined by this framework satisfies some desired properties for voting
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rules, e.g., anonymity, neutrality, etc., depends on both the choice set function and

whether the local voting rules satisfy these properties. In general, computing the

winners in this framework is hard. However, we will see an algorithm that could save

significant amounts of time when the (possibly cyclic) CP-nets that represent voters’

preferences share some common structure.

Chapter 10 takes a different approach towards defining new rules for combina-

torial voting. Suppose there is a “correct” winner and the voters’ preferences are

noisy perceptions of it. If we have a probabilistic model that generates voters’ pref-

erences given the “correct” winner, and a probability distribution for an alternative

to be the “correct” winner, then having seen the voters vote, we can compute the

posterior probability for each alternative to be the “correct” winner via standard

Bayesian reasoning. In other words, the voting rule defined by this process can be

viewed as the maximum likelihood estimator (MLE) of the probabilistic model. This

idea was actually introduced two hundred years ago by Condorcet (1785) to design

a voting rule for unstructured sets of alternatives. The main question is, how should

we define the probabilistic model? In Chapter 10, we will see a natural probabilistic

model for sets of alternatives composed of binary issues, called distance-based noise

models, where the conditional probability given the “correct” winner is decomposed

into local distributions, one for each issue i. More precisely, the local distribution

over any issue i under some setting of the other issues depends only on the Hamming

distance from this setting to the restriction of the “correct” winner to the issues other

than i. Some results on the computational complexity of winner computation will

be presented, followed by discussions about the relation between the MLE approach

and sequential voting rules.
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1.5 Node 4: Game-Theoretical Aspects of Combinatorial Voting

The formulation of a voting game largely depends on the voting rule used in the

voting process. As I argued in the last section, in combinatorial voting it is generally

computationally costly to use common voting rules designed for unstructured sets

of alternatives. Therefore, the arguments and results in Section 1.3, which were

made for common voting rules designed for unstructured sets of alternatives, do

not directly apply to combinatorial voting. Since sequential voting is one of the

most natural approaches in combinatorial voting, this suggests to study a voting

game where voters cast votes strategically on one issue after another, following some

ordering over the issues. Indeed, strategic voting is arguably more likely in such a

sequential game than in “one shot” voting. We call this type of voting games strategic

sequential voting, which is the main topic of Chapter 11.6 Compared to (truthful)

sequential voting mentioned in the previous subsection, for strategic sequential voting

the focus is on different aspects. In truthful sequential voting, a major concern is

how expressive the voting language is. In strategic sequential voting, however, the

expressivity of the voting language is not the most important issue. Instead, what

really matters is how a strategic voter’s preferences and knowledge about the other

voters’ preferences determine her behavior in the voting game, and thus influence the

outcome of the game. Therefore, in the game-theoretic part on combinatorial voting,

we are interested in the following two questions. The first question is exactly the

same as question 1 asked in Section 1.3.2, but here it is asked for strategic sequential

voting.

1. To what extent can the strategic behavior harm the voters in strategic sequen-

6 We note that strategic sequential voting is different from the Stackelberg voting games mentioned
in Section 1.3.2. In Stackelberg voting games voters cast their votes one after another, while in
strategic sequential voting, voters cast votes simultaneously on individual issues, one issue after
another.

16



tial voting?

2. If the strategic behavior of the voters can harm the voters badly, how can we

prevent it?

The first question is answered by three types of multiple-election paradoxes: there

exists a profile for which (1) the winner under strategic sequential voting is ranked

nearly at the bottom in all voters’ true preferences, (2) the winner is Pareto-dominated

by almost every other alternative, and as a consequence, (3) the winner is an almost

Condorcet loser.7 Even worse, changing the ordering over the issues on which the

voters vote cannot completely prevent these paradoxes. Hence, the outcome of strate-

gic sequential voting can be extremely undesirable to all voters. Similar paradoxes

have been shown for other models of behavior in combinatorial voting in the liter-

ature (Scarsini, 1998; Brams et al., 1998), but as far as we know, we were the first

to discover these paradoxes in a strategic environment, to illustrate the cost of the

strategic behavior of the voters. See Chapter 11 for more references and discussion.

One approach to addressing the concern raised by the second question is restrict-

ing the voters’ preferences. We will see in Chapter 11 that by restricting the voters’

preferences to be separable or lexicographic, all three types of multiple-election para-

doxes mentioned earlier disappear. In fact, by putting more constraints on the voters’

preferences, we can obtain strategy-proof sequential voting rules for combinatorial

voting. We can further show that if the domain restriction satisfies some mild condi-

tions, then a voting rule is strategy-proof if and only if it is a sequential voting rule,

where each local rule is strategy-proof over its respective local domain. This will be

discussed in Chapter 12.

7 The definitions for Pareto-domination and Condorcet loser will be found in Chapter 11.
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1.6 Node 5: Work Excluded from My Dissertation

During my Ph.D. studies, I also have worked on some other important topics in

preference/information representation and aggregation. These works will not be

discussed in detail in the dissertation due to considerations of length and coherence

of the dissertation. In this section, I will briefly describe these works, illustrated in

Figure 1.4. An interested reader may also refer to Xia (2010).

5 Other work excluded from the thesis

Possible/Necessary winners
(Xia and Conitzer, 2008, 2011a;

Chevaleyre et al., 2010b; Xia et al., 2011)

MLE approach
(Conitzer et al., 2009;

Xia and Conitzer 2011b)

Compilation complexity
(Xia and Conitzer, 2010)

An efficient pricing algorithm
(Xia and Pennock, 2011)

Pricing with Bayesian Networks
(Pennock and Xia, 2011)

Combinatorial prediction markets

Computational voting theory

Figure 1.4: Topics excluded from my dissertation.

1.6.1 My Other Work in Computational Voting Theory

In addition to the topics discussed in Section 1.3, 1.4, and 1.5, I have also worked on

the following three topics.

• Computing possible/necessary winners. In practice, we may not need to

know the voters’ full preferences to compute the winner. That is, information

elicited at an early stage might suffice to conclude who the winner is. For this

purpose, it is important to know the answers to the following two computa-

tional questions when only part of the voters’ preferences are elicited: (1) Is it
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still possible for a given alternative to win? (2) Has the winner already been

determined, so that we may terminate the elicitation process and announce the

winner? These two problems are known as the possible/necessary winner prob-

lems, respectively (Conitzer and Sandholm, 2002; Konczak and Lang, 2005). I

investigated the computational complexity of these possible/necessary winner

problems for many common voting rules (Xia and Conitzer, 2008a, 2011a), as

well as in the special case where the alternatives do not arrive at the same

time (Chevaleyre et al., 2010b,a; Xia et al., 2011).

• Compilation complexity. One closely related topic to possible/neccessary

winner determination is the compilation complexity of common voting rules.

Here the agents do not arrive at the same time, and we are asked in the mid-

dle of the election, what is the lowest number of bits required to store enough

information about the votes cast so far to determine the winer (Chevaleyre

et al., 2009). In recent work (Xia and Conitzer, 2010a), we proved asymp-

totically matching upper and lower bounds on the compilation complexity for

many common voting rules. We also devised polynomial-time algorithms to

“compress” and store the votes in the middle of an election. These algorithms

can significantly speedup the algorithm used to compute the subgame-perfect

Nash equilibrium in Stackelberg voting games (Chapter 7).

• A maximum-likelihood estimator approach towards general voting.

As I discussed in Section 1.4.1, one principled way to design a reasonable vot-

ing rule is by setting up a probabilistic model, and then define the voting rule

to be the maximum-likelihood estimator of this model. Of course this idea

is not limited to multi-issue domains, as the idea of using it for unstructured

sets of alternatives dates back to Condorcet (1785). In recent work (Conitzer

et al., 2009b), we showed that the MLE approach gives us a group of ag-
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gregation functions called ranking scoring rules, which are used to output an

aggregated linear order over all alternatives. The MLE approach can also be

used to systematically extend common voting rules that aggregate linear orders

to aggregate partial orders (Xia and Conitzer, 2011b).

In addition to the above three topics, I also did some work on sequential voting in

combinatorial domains before starting my Ph.D. studies at Duke. This work will be

mentioned in Chapter 8 as a part of the literature in combinatorial voting.

1.6.2 Combinatorial Prediction Markets

Prediction markets are financial markets that aggregate agents’ probabilistic beliefs

about the outcome of a random event. The Iowa Electronic Markets and Intrade

are two examples of real prediction markets with a long history of tested results.

See Chen and Pennock (2010) for a recent survey of prediction mechanisms. Un-

fortunately, if the space has a combinatorial structure, then the central problem of

computing the prices for securities is #P-hard (Chen et al., 2008a). For example, in

the NCAA mens basketball tournament, there are 64 teams and therefore 63 matches

in total to predict, where each match can be seen as a binary variable. Such settings

are known as combinatorial prediction markets.

Recently, I revealed two natural relationships: the first (Xia and Pennock, 2011)

bridges combinatorial prediction markets and the weighted model counting problem, a

central problem in AI; and the second (Pennock and Xia, 2011) bridges combinatorial

prediction markets and probabilistic belief aggregation, a well-studied problem in both

Statistics and AI. Inspired by the first relationship, I designed an efficient novel

Monte Carlo sampling technique based on importance sampling that has a good

theoretical guarantee, for combinatorial prediction markets for tournaments (Xia

and Pennock, 2011). The second relationship helped us further explore the idea of

using a compact representation scheme (formally, a Bayesian network) to represent
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the prices of securities (Chen et al., 2008b), and completely characterize all structure-

preserving securities (meaning that these securities can be computationally efficiently

priced) (Pennock and Xia, 2011).

1.7 Summary

In this chapter, I categorized some of my Ph.D. work in Computational Voting

Theory into two lines of research directions: the game-theoretic aspects and combi-

natorial voting. I briefly discussed the motivating questions in both lines of research

and their intersection, and the results that will be presented in later chapters. To

make the dissertation coherent and to keep it at a reasonable length, some of my

work that are not included in this dissertation. Some of them were briefly discussed

in Section 1.6.

21



2

Preliminaries

In this chapter, I first give definitions of voting, some common voting rules, and some

desired properties. In the end of this chapter, I will give a brief introduction to some

other major topics in Computational Social Choice not covered in this dissertation.

Let C � tc1, . . . , cmu denote the set of alternatives (or candidates). Each voter

uses a linear order on C to represent his/her preferences. A linear order is a transitive,

antisymmetric, and total relation on C. The set of all linear orders on C is denoted

by LpCq. For any natural number n, an n-voter profile P on C is a vector consisting

of n linear orders on C, one from each voter. That is, P � pV1, . . . , Vnq, where for

every j ¤ n, Vj P LpCq. The set of all n-profiles is denoted by Fn. Throughout the

dissertation, we let n denote the number of voters, and let m denote the number of

alternatives.

For any linear order V P LpCq and any i ¤ m, we let AltpV, iq denote the al-

ternative that is ranked in the ith position in V . A voting rule r is a function

that maps any profile on C to a unique winning alternative (the winner), that is,

r : F1 YF2 Y . . .Ñ C. A voting correspondence rc can select more than one winner,

that is, rc : F1YF2Y . . .Ñ 2CztHu. Mathematically, a voting rule is a special voting
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correspondence that always selects a unique winner.

2.1 Common Voting Rules

In this section we give definitions of some common voting rules. In fact, most of them

are defined to be the maximizer/minimizer of some type of “scores”.1 Therefore,

these voting rules are actually defined to be voting correspondences plus some tie-

breaking mechanisms. In this paper, if not mentioned specifically, ties are broken in

the fixed order c1 ¡ c2 ¡ � � � ¡ cm.2 Below is a list of common voting rules that will

be studied in this thesis. (Positional) scoring rules: Given a scoring vector ~sm � p~smp1q, . . . , ~smpmqq
of m integers, for any vote V P LpCq and any c P C, let ~smpV, cq � ~smpjq, where j is

the rank of c in V . For any profile P � pV1, . . . , Vnq, let ~smpP, cq � °n

j�1 ~smpVj, cq.
The rule will select c P C so that ~smpP, cq is maximized. We assume scores are

integers and nonincreasing. Some examples of positional scoring rules are Borda,

for which the scoring vector is pm� 1, m� 2, . . . , 0q; plurality, for which the scoring

vector is p1, 0, . . . , 0q; and veto, for which the scoring vector is p1, . . . , 1, 0q. When

there are only two alternatives, Borda, plurality, and veto (as well as all other voting

rules introduced below) are called majority.

The definition of positional scoring rules naturally extends to the case in which

voters are weighted; the weights are represented by a vector ~w � pw1, . . . , wnq P Rn�,

where for any i ¤ n, wi is the weight of voter i. In particular, we let

~smpP, ~w, c1q � ņ

i�1

wi � ~smpVi, c
1q,

and again, the rule will select c P C so that ~smpP, cq is maximized.

1 This idea will be generalized to define a class of voting rules called generalized scoring rules. See
Section 5.1.

2 Tie-breaking can have important impact on the properties of voting rules, e.g, the computational
complexity of manipulation (Obraztsova et al., 2011; Obraztsova and Elkind, 2011).
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 Copelandα (0 ¤ α ¤ 1): For any two alternatives ci and cj , we can simulate

a pairwise election between them, by seeing how many votes prefer ci to cj , and how

many prefer cj to ci; the winner of the pairwise election is the one preferred more

often. Then, an alternative receives one point for each win in a pairwise election, α

points for each tie, and zero point for each loss. The winner is an alternative that

maximizes the score. Maximin: Let DP pci, cjq denote the number of votes that rank ci ahead of cj

minus the number of votes that rank cj ahead of ci in the profile P . The winner is

the alternative c that maximizes mintDP pc, c1q : c1 P C, c1 � cu. Ranked pairs: This rule first creates an entire ranking of all the alternatives.

In each step, we will consider a pair of alternatives ci, cj that we have not previously

considered; specifically, we choose the remaining pair with the highest DP pci, cjq.
We then fix the order ci ¡ cj , unless this contradicts previous orders that we fixed

(that is, it violates transitivity). We continue until we have considered all pairs of

alternatives (hence we have a full ranking). The alternative at the top of the ranking

wins.3 Voting trees: A voting tree is a binary tree with m leaves, where each leaf is

associated with an alternative. In each round, there is a pairwise election between

an alternative ci and its sibling cj; if the majority of voters prefer ci to cj, then cj is

eliminated, and ci is associated with the parent of these two nodes. The alternative

that is associated with the root of the tree (i.e., wins all its rounds) is the winner. Bucklin: The Bucklin score of an alternative c, denoted by BP pcq, is the

smallest number t such that more than half of the votes rank c somewhere in the top

3 We note that at any stage there could be two or more edges whose weights are the highest. In
this dissertation, we first use parallel-universe tie-breaking (Conitzer et al., 2009b) to select multiple
winners, that is, an alternative is a winner if there exists a way to break ties among the edges such
that the alternative is ranked in the top position in the ranking created by ranked pairs. After
obtaining all “parallel-universe” winners, we use a fixed-order tie-breaking mechanism to select a
unique winner from them.
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t positions. A Bucklin winner minimizes the lowest Bucklin score, and ties are broken

by the number of times that the alternative is ranked within top BP pcq positions.Plurality with runoff: The rule has two steps. In the first step, all alternatives

except the two that are ranked in the top position the most often are eliminated; in

the second round, the plurality rule (a.k.a. majority rule in case of two alternatives)

is used to select the winner. Single transferable vote (STV), a.k.a. instant-runoff or alternative

vote: The election has m rounds. In each round, the alternative that gets the lowest

plurality score (the number of times that the alternative is ranked in the top position)

drops out, and is removed from all of the votes (so that votes for this alternative

transfer to another alternative in the next round). The last-remaining alternative is

the winner.4 Baldwin’s rule: This is a multi-round voting rule similar to STV. The election

has m rounds. In each round, the alternative that gets the lowest Borda score drops

out. The last-remaining alternative is the winner. Nanson’s rule: This is another multi-round voting rule similar to STV. The

election has multiple rounds. In each round, all alternatives with less than the

average Borda score are eliminated. This process then repeated with the reduced set

of alternatives until there is a single alternative left. Nanson’s rule and Baldwin’s

rule are closely related, and indeed are sometimes confused (Niou, 1987).

2.2 Axiomatic Properties for Voting Rules

As we discussed in the introduction, since in the voting setting the voters’ preferences

are ordinal, it is hard to measure how “good” an alternative is to all voters. Therefore,

it does not seem to be obvious how can we argue that a voting rule is “good” or

4 In this dissertation we use fixed-order tie-breaking at all stages. Conitzer et al. (2009b) investi-
gated the STV rule using parallel-universe tie-breaking.
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not. To overcome this difficulty, economists have proposed some desired properties

(or, axioms) that a good voting rule should satisfy, and have investigated how to

characterize voting rules by which properties they satisfy. Below, we include a list

of such properties. We say a voting rule r satisfies:

• anonymity, if the output of the rule is insensitive to the names of the voters;

• neutrality, if the output of the rule is insensitive to the names of the alterna-

tives;

• homogeneity, if for any profile P and any n P N, n ¡ 0, rpP q � rpnP q, where

nP is the profile composed of n copies of P ;

• non-imposition, if any alternative is the winner under some profile. That is,

for any alternative c and any n P N, there exists an n-profile P such that that

rpP q � c;

• unanimity, if AltpV, 1q � c for all V P P implies rpP q � c; (strong) monotonicity, if for any profile P � pV1, . . . , Vnq and another profile

P 1 � pV 1
1 , . . . , V

1
nq such that each V 1

i is obtained from Vi by raising only rpP q,
we have rpP 1q � rpP q; consistency, if, whenever we have two disjoint profiles P1, P2 with rpP1q �
rpP2q, we must have rpP1 Y P2q � rpP1q � rpP2q; participation, if for any profile P and any vote V , rpP Y tV uq ©V rpP q; Pareto efficiency, if for any profile P , there is no alternative c that is preferred

to rpP q by all the voters;
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 the Condorcet criterion, if, whenever there exists a Condorcet winner in

a voting profile P , we must have that rpP q is the Condorcet winner. Here a

Condorcet winner is the alternative that wins each pairwise elections; the majority criterion, if, whenever the majority of voters rank an alterna-

tive in the top position, that alternative must be the winner under r.

Table 2.1 summarizes whether some common voting rules mentioned above satisfy

these axiomatic properties. The Wikipidea entry for “voting system”

(http://en.wikipedia.org/wiki/Voting_system) is a good place for the defini-

tions of more voting rules and axiomatic properties.

Table 2.1: Some common voting rules and their axiomatic properties.

Pos. scoring Copeland Maximin Ranked pairs STV Bucklin
Plurality
w{ runoff

Anonymity
Neutrality

Homogeneity
Pareto efficiency

Y Y Y Y Y Y Y

Monotonicity Y Y Y Y N Y N
Consistency

Participation
Y N N N N N N

Condorcet N Y Y Y Y N N
Majority N Y Y Y Y Y Y

Each of these axiomatic properties evaluates voting rules from a specific view-

point. For example, anonymity measures how “fair” a voting rule is to the voters,

while neutrality measures how “fair” a voting rule is to the alternatives. We next

consider some other important concepts in voting.

Definition 2.2.1. For any profile P , we let WMGpP q denote the weighted majority

graph of P , defined as follows. WMGpP q is a directed graph whose vertices are the

alternatives. For i � j, if DP pci, cjq ¥ 0, then there is an edge pci, cjq with weight

wij � DP pci, cjq.
27
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Example 2.2.2. Let P denote the profile defined in Example 1.2.1. The weighted

majority graph of P is illustrated in Figure 2.1.

Clinton

McCain Obama

3 1

1

Figure 2.1: The weighted majority graph of the profile define in Example 1.2.1.

We say that a voting rule r is based on the weighted majority graph (WMG), if

the winner for r only depends on the weighted majority graph of the input profile.

More precisely, for any pair of profiles P1, P2 such that WMGpP1q � WMGpP2q, we

have rpP1q � rpP2q.
The following lemma will be frequently used in this dissertation. Informally, the

lemma states that for any weighted directed graph G where the weights have the same

parity, there exists a polynomially large profile whose WMG is G. This lemma allows

us to focus on constructing a WMG that satisfies some desired properties, rather than

constructing the profile directly. The lemma was first proved by McGarvey (1953),

and there is also some subsequent work studying how to use as few votes as possible

to obtain the desired WMG (Erdös and Moser, 1964). In this dissertation, we only

need the polynomiality guaranteed by McGarvey’s original result.

Lemma 2.2.3. (McGarvey, 1953) Given a function F : C � C Ñ Z such that

1. for all c1, c2 P C, c1 � c2, F pc1, c2q � �F pc2, c1q, and

2. either for all pairs of candidates c1, c2 P C (with c1 � c2), F pc1, c2q is even, or

for all pairs of candidates c1, c2 P C (with c1 � c2), F pc1, c2q is odd,
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there exists a profile P such that for all c1, c2 P C, c1 � c2, DP pc1, c2q � F pc1, c2q and|P | ¤ 1

2

¸
c1,c2: c1�c2

|F pc1, c2q � F pc2, c1q| .

2.3 A Brief Overview of Computational Social Choice

In this section, I will give a more detailed overview of some major topics in Com-

putational Social Choice, which is an emerging interdisciplinary area at the inter-

section of Computer Science and Economics. Despite being young, Computational

Social Choice has already found its place as a major topic in a number of Ph.D. dis-

sertations since 2006, for example, Conitzer (2006a), Estivie (2007), Pini (2007),

Altman (2007), Bouveret (2007), LeGrand (2008), Procaccia (2008), Faliszewski

(2008), Aziz (2009), Uckelman (2009), Guo (2010), and Betzler (2010). An ever-

increasing list of Ph.D. dissertations related to Computational Social Choice can

be found at http://www.illc.uva.nl/COMSOC/theses.html. The Computational

Social Choice workshop (COMSOC) has been held every other year since 2006. Com-

putational Voting Theory is by far the most active research direction in Computa-

tional Social Choice. Below I will describe some major research topics in Compu-

tational Voting Theory, followed by some other research topics in Computational

Social Choice.

2.3.1 Major Topics in Computational Voting Theory

Researchers in Computational Voting Theory have extensively studied the following

topics. How can we compute the winner or ranking more efficiently? In

traditional Social Choice Theory, voting rules are designed for aggregating voters’

preferences over a generally small set of alternatives, where determining the winner

is not a significant computational issue. In fact, computing the winner for many
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common voting rules can be done in polynomial time. However, for some voting

rules that have a long history, it has been shown that computing the winner is hard.

For example, computing the winner for Kemeny’s rule was shown to be NP-hard

by Bartholdi et al. (1989b) and was later shown to be complete for parallel access

to NP (Hemaspaandra et al., 2005); similar results have been obtained for Dodg-

son’s rule—computing the winner for Dodgson’s rule is NP-hard (Bartholdi et al.,

1989b) and is also complete for parallel access to NP (Hemaspaandra et al., 1997).

A third example is Slater’s rule, for which computing the winner is NP-hard (Ailon

et al., 2005; Alon, 2006; Conitzer, 2006b). For these voting rules, efficient approxi-

mation/heuristic algorithms have been proposed (Ailon et al., 2005; Conitzer, 2006b;

Conitzer et al., 2006; Charon and Hudry, 2000; Hudry, 2006; Betzler et al., 2009a;

Caragiannis et al., 2009, 2010). However, if the voters’ preferences are restricted to be

single-peaked, then a Condorcet winner always exists, which means that computing

winners for both Kemeny’s and Dodgson’s rules are in P (Brandt et al., 2010a).

Kemeny’s, Dodgson’s, and Slater’s rules are all defined by first computing the

(weighted) majority graph, then applying a tournament solution (also called choice

set function in Chapter 9) to the graph to select the winner. The computational

complexity of computing some important tournament solutions has been investi-

gated (Brandt et al., 2009, 2010b, 2011). How can we communicate the voters’ preferences more efficiently?

When the number of alternatives is extremely large, it is computationally inefficient

for the agents to communicate their full preferences to the center. Preference elic-

itation studies how to query the agents iteratively to elicit enough information for

computing the winner (Conitzer and Sandholm, 2002). The lowest number of bits of

communication required to compute the winner, called communication complexity,

was investigated for some common voting rules (Conitzer and Sandholm, 2005b).

Eliciting single-peaked preferences were studied in Conitzer (2009) and Farfel and
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Conitzer (2011)

Communication complexity provides a worst-case guarantee about the informa-

tion that must be transmitted in order to compute the winner. However, it is quite

likely that in practice, the elicitation process can usually end earlier. As I mentioned

in Section 1.6, in these situations one important problem is how to compute the

possible/necessary winners (Konczak and Lang, 2005). Besides the works discussed

in Section 1.6 (i.e., Chevaleyre et al. (2010b), Chevaleyre et al. (2010a), Xia and

Conitzer (2011a), and Xia et al. (2011)), there are a number of other works studying

computing possible/necessary winners in different settings (Pini et al., 2007; Walsh,

2007; Betzler et al., 2009b; Betzler and Dorn, 2010; Baumeister and Rothe, 2010;

Bachrach et al., 2010; Baumeister and Rothe, 2010; Baumeister et al., 2011). How can we prevent voters from misreporting their preferences? In

this line of research, we investigate the possibility of using computational complexity

to prevent manipulation. Therefore, we need computational problem (for a manip-

ulator to compute a manipulation) to be as hard as possible. This topic will be

discussed in Section 3.1. How can we use computational complexity to protect elections from

bribery and control? Bribery and control are two ways for someone (not nec-

essarily a voter) to influence the outcome of the election. In general, bribery is

the behavior where the briber makes her favored alternative win by paying money

to some voters to change their votes. Control in voting is more complicated than

bribery in some sense—there are many different types of control, for example, intro-

ducing new voters/alternatives, removing existing voters/alternatives, or partition

the voters/alternatives. Bartholdi et al. (1992) first studied several types of control

in voting systems. Recently, more computational complexity results for bribery and

control problems have been obtained. In the bribery problem setting of Faliszewski

et al. (2009a), every voter has a cost, and we are asked whether there is a way to

31



bribe some voters to make a given candidate win, subject to a total budget con-

straint. Elkind et al. (2009b) considered an even finer setting called swap-bribery,

where the voters are paid to “swap” adjacent alternatives in their votes. Faliszewski

et al. (2009b) showed that the Copeland rules (for different α parameters) broadly

resist known types of bribery and control. We (Conitzer et al., 2009a) studied the

computational complexity of agenda control in sequential voting systems. A special

type of control that introduces clones of alternatives was studied by Elkind et al.

(2010a). The setting where the briber can use multiple types of bribery/control

simultaneously was studied by Faliszewski et al. (2011a). On the negative side, Fal-

iszewski et al. (2011b) showed that if the voters’ preferences are single-peaked, then

for many common voting rules the manipulation and control problems are in P. How can we analyze voters’ incentives and strategic behavior? This

topic will be discussed in Section 3.2. How can we design novel voting rules when the set of alternatives

has a combinatorial structure, and is exponentially large? This topic will

be discussed in Chapter 8.

2.3.2 Other Major Topics in Computational Social Choice

Besides Computational Voting Theory, researchers in Computational Social Choice

have also studied the following topics. Fair division, a.k.a. cake cutting (Steinhaus, 1948), aims at providing a good

allocation of resources that satisfies some desired properties. The most desired prop-

erty is envy-freeness, which states that in the allocation, no agent would prefer the

resources allocated to any other agent. Fair division is closely related to Multiagent

Resource Allocation (Chevaleyre et al., 2006). For indivisible goods, Lipton et al.

(2004) obtained approximability and inapproximability results for envy-free alloca-

tions. For one heterogeneous divisible good, Procaccia (2009) proved a lower bound
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on the number of steps that must be used in any envy-free cake-cutting algorithm.

Chen et al. (2010), and Mossel and Tamuz (2010) introduced truthfulness in cake-

cutting, and proposed several cake-cutting algorithms that are truthful, envy-free,

and also satisfy some other desired properties. Caragiannis et al. (2011) studied the

cake-cutting setting where agents’ valuation functions are piecewise uniform with

minimum length. In such settings envy-freeness does not imply proportionality, and

Caragiannis et al. proposed allocation algorithms that approximate the proportional-

ity. Cohler et al. (2011) proposed an algorithm that computes the “optimal” envy-free

allocation, that is, an envy-free allocation that has the highest social welfare among

all envy-free allocations. Judgement aggregation. In judgement aggregation, a group of agents (judges)

need to aggregate their opinions over several interrelated binary propositions. Re-

cently, judgement aggregation has attracted much attention in Economics and Polit-

ical Science (List and Puppe, 2009). It differs from combinatorial voting in the sense

that in judgement aggregation, the aggregated values of the propositions must be con-

sistent, while in combinatorial voting there is no such requirement. The best-known

motivating example for the study of judgement aggregation is called the “doctrinal

paradox” (Chapman, 1998), which is illustrated in the following example.

Example 2.3.1. Suppose there are three judges who want to decide whether a de-

fendant is liable. They use the majority rule to aggregate their opinions over three

binary propositions: (1) P, which is true if and only if the defendant did the action

X, (2) Q, which is true if and only if the defendant intended to do X, and finally (3)

R, which is true if and only if the judge thinks that the defendant is liable. Suppose

all judges agree that the defendant is liable if and only if he did X and intended to

do X (that is, R Ø pP ^Qq). Consider the following three judges’ judgments and

the majority aggregation for each proposition.
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Table 2.2: The doctrinal paradox.

P Q RØ pP ^Qq R
Judge 1 T T T T
Judge 2 T F T F
Judge 3 F T T F
Majority T T T F

All judges’ valuation over these propositions are consistent. However, the proposition-

wise aggregations of the judges are not consistent (P �T, Q �T, and RØ P ^Q �T

imply that R �T). The message behind the example is that: under the majority rule,

the judges come to the conclusion that the defendant did X and intended to do X,

but they also agree that he is not liable, which contradicts the rule “anyone who did

X and intended to do X is liable”.

One of the first papers that considers computational aspects of judgement aggre-

gation is Endriss et al. (2010a). They investigated the computational complexity of

checking whether the set of propositions (called the agenda) satisfies some axioms,

and showed that if these axioms are satisfied, then any judgement aggregation rule

that satisfies some desired properties will never produce an inconsistent outcome.

Later, Endriss et al. (2010b) investigated the computational complexity of comput-

ing the collective judgement as well as deciding whether an agent can influence the

outcome by misreporting her valuation of the propositions. The latest work in this

line of research is by Grandi and Endriss (2011), who proposed a general framework

for aggregating binary variables under constraints, and obtained a general definition

of paradoxes in this framework. This framework includes combinatorial voting and

judgement aggregation as special cases.

34



2.4 Summary

In this Chapter we recalled the voting setting, notation that is used throughout this

dissertation, and definitions of some common voting rules and axiomatic properties.

We also gave a very brief introduction to some other major research directions in

Computational Social Choice.
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3

Introduction to Game-theoretic Aspects of Voting

In this dissertation I will discuss two directions for the game-theoretic aspects of

voting. The first direction (Section 1.3.1, the left branch in Figure 1.2) aims at

investigating possibilities of using computational complexity as a barrier against

manipulation. The second direction (Section 1.3.2, the right branch in Figure 1.2)

aims at analyzing voting games and their equilibrium outcomes. The following two

sections are devoted to these two directions, respectively.

3.1 Coalitional Manipulation Problems

How to use computational complexity to escape from the Gibbard-Satterthwaite

theorem (Gibbard, 1973; Satterthwaite, 1975) has attracted a lot of attention from

researchers in both the Artificial Intelligence and Theoretical Computer Science com-

munities. We recall that the main idea is, even though a manipulation ubiquitously

exists, it might be computationally costly for a potential manipulator to find it.

Hence, if we can prove that finding a manipulation is hard, then a potential manip-

ulator might have less incentive to even try to look for the manipulation, and even

if she does, she may not find it. In the agenda of using computational complexity as
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a barrier against manipulation, the main questions are the following.

1. For which voting rules can computational complexity serve as a barrier?

2. Is computational complexity a strong barrier?

To answer the first question, early work (Bartholdi et al., 1989a; Bartholdi and Orlin,

1991) has shown that when the number of candidates is not bounded, the second-

order Copeland and STV rules are NP-hard to manipulate, even by a single voter.

More recent research has studied how to modify other existing rules to make them

hard to manipulate by a single voter (Conitzer and Sandholm, 2003; Elkind and

Lipmaa, 2005).

A more general manipulation setting is that of weighted coalitional manipulation

(WCM). In this setting, multiple manipulators have formed a coalition, with the goal

of making an agreed-upon alternative win the election. Furthermore, the voters in

this setting are weighted, that is, a voter with weight k is equivalent to k unweighted

voters that cast identical ballots. Weights are common, e.g., in corporate elections,

where voters are weighted according to the amount of stock they hold, or Electoral

College. All common voting rules studied in this paper can be easily extended to the

setting where voters are weighted. (We have already seen the definition for positional

scoring rules in Section 2.1.)

Definition 3.1.1. The Weighted Coalitional Manipulation (WCM) problem is de-

fined as follows. An instance is a tuple pr, P NM , ~wNM , c, k, ~wMq, where r is a voting

rule, P NM is the non-manipulators’ profile, ~wNM represents the weights of P NM ,

c is the alternative preferred by the manipulators, k is the number of manipula-

tors, and ~wM � pw1, . . . , wkq represents the weights of the manipulators. We are

asked whether there exists a profile P M of votes for the manipulators such that

rppP NM , P Mq, p~wNM , ~wMqq � c.
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Conitzer et al. (2007) showed that the WCM problem is computationally hard for

a variety of prominent voting rules, even when the number of alternatives is constant.

Subsequent work by Hemaspaandra and Hemaspaandra (2007) dealt with positional

scoring rules. They established a dichotomy theorem for the weighted coalitional

manipulation problem in scoring rules: it is either NP-complete or in P, which can

be easily told from the score vector ~sm (see Section 2.1 for the definition of positional

scoring rules). Coleman and Teague (2007) showed that WCM for the Baldwin rule

is NP-hard.

A special case of weighted coalitional manipulation is its unweighted version—

unweighted coalitional manipulation (UCM), which is perhaps more natural in most

settings (e.g., political elections). Chapter 4 studies the computational complexity

of UCM for some common voting rules.

Definition 3.1.2. The Unweighted Coalitional Manipulation (UCM) problem is de-

fined as follows. An instance is a tuple pr, PNM, c, n1q, where r is a voting rule, PNM

is the non-manipulators’ profile, c is the candidate preferred by the manipulators,

and n1 is the number of manipulators. We are asked whether there exists a profile

P M for the manipulators such that |P M | � n1 and rpP NM Y P Mq � c.

Progress on the UCM problem has been significantly slower than on other varia-

tions, but many of the questions have recently been resolved. The exact complexity of

the problem has been investigated for some common voting rules (Faliszewski et al.,

2008; Zuckerman et al., 2009; Faliszewski et al., 2010a; Narodytska et al., 2011). We

will see in Chapter 4 that UCM is an NP-complete problem for some other common

voting rules, i.e., maximin and ranked pairs, but is in P for Bucklin.1 In (Xia et al.,

2010), we showed that UCM is an NP-complete problem for a class of positional

1 These results were published in Xia et al. (2009).
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scoring rules (not including Borda).2 Subsequent work (Davies et al., 2011; Betzler

et al., 2011) proved that UCM is also NP-complete for Borda. Obraztsova et al.

(2011); Obraztsova and Elkind (2011) investigated the computational complexity of

UCM with one manipulator, for common voting rules with randomized tie-breaking.

Table 3.1: Computational complexity of UCM for common voting rules.

Voting rule One manipulator At least two manipulators

Copeland P Bartholdi et al. (1989a) NP-C
Faliszewski et al. (2008)
Faliszewski et al. (2010a)

STV NP-C Bartholdi and Orlin (1991) NP-C Bartholdi and Orlin (1991)
Veto P Bartholdi et al. (1989a) P Zuckerman et al. (2009)

Plurality w{ Runoff P Zuckerman et al. (2009) P Zuckerman et al. (2009)
Cup P Conitzer et al. (2007) P Conitzer et al. (2007)

Maximin P Bartholdi et al. (1989a) NP-C Section 4.1
Ranked pairs NP-C Section 4.2 NP-C Section 4.2

Bucklin P Section 4.3 P Section 4.3

Borda P Bartholdi et al. (1989a) NP-C
Davies et al. (2011)
Betzler et al. (2011)

Nanson’s rule NP-C Narodytska et al. (2011) NP-C
Same technique as in
Narodytska et al. (2011)

Baldwin’s rule NP-C Narodytska et al. (2011) NP-C
Same technique as in
Narodytska et al. (2011)

However, all of these hardness results are worst-case results. That is, they sug-

gest that any algorithm will require superpolynomial time to solve some instances.

Therefore, it is natural to ask the second question: is computational complexity a

strong barrier in “typical” elections? Unfortunately, several recent results seem to

suggest that indeed, in various senses, hard instances of the manipulation problem

are the exception rather than the rule. One type of evidence consists of “quantita-

tive” versions of the Gibbard-Satterthwaite theorem (Friedgut et al., 2008; Dobzinski

and Procaccia, 2008; Xia and Conitzer, 2008c; Isaksson et al., 2010), which state that

(informally) for many voting rules, the proportion of the profiles that are manipu-

lable is non-negligible. These results imply that there the trivial algorithm that

first chooses a profile uniformly at random and then chooses a manipulator and her

2 This result will not be further discussed in this dissertation.
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false vote uniformly at random will find a manipulation instance with non-negligible

probability.

Procaccia and Rosenschein (2007b) took a different perspective. They showed

that for positional scoring rules, manipulation is always easy to find w.r.t. a spe-

cific junta distribution over the profile, which means that for many other plausible

distributions, manipulation are always easy to find. Conitzer and Sandholm (2006)

showed that it is impossible to design a voting rule for which manipulation is usually

hard to find, if the voting rule satisfies some natural properties.

Peleg (1979), Baharad and Neeman (2002), Slinko (2002), and Slinko (2004) stud-

ied the asymptotic value of the frequency of manipulability, that is, the probability

that a coalition of manipulators can succeed. They showed that for positional scor-

ing rules and WMG-based voting rules, when the votes are drawn i.i.d. uniformly

at random from the set of all linear orders, then the probability that a coalition of

op?nq manipulators, where n is the number of voters, can change the outcome of the

election goes to 0 as n goes to infinity. More recently, Procaccia and Rosenschein

(2007a) showed that for positional scoring rules, when the non-manipulators’ votes

are drawn i.i.d. according to some distribution that satisfies some conditions, if the

number of manipulators is op?nq, then the probability that the manipulators can

succeed goes to 0 as n goes to infinity; if the number of manipulator is ωp?nq, then

the probability that the manipulators can succeed goes to 1.

The “dichotomy” theorem proved by Procaccia and Rosenschein (2007a) will be

significantly generalized in Chapter 5. We will introduce a notion called generalized

scoring rules, which is a type of voting rules that include almost all common vot-

ing rules.3 In Section 5.3 we give a concise axiomatization of generalized scoring

rules to show how general this class is.4 We will show that the “dichotomy” theo-

3 Published in Xia and Conitzer (2008b).

4 Published in Xia and Conitzer (2009).
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rem proved by Procaccia and Rosenschein (2007a) actually holds for all generalized

scoring rules. Therefore, it leaves only a knife-edge case open—the case where the

number of manipulators is Θp?nq. For these cases, Walsh (2009) conducted simula-

tion studies for the veto rule with weighted voters, and showed an interesting smooth

phase-transition phenomenon. The manipulability of STV has been also studied by

simulations (Walsh, 2010).

Viewing the question from yet another angle, Zuckerman et al. (2009) observed

that the unweighted coalitional manipulation setting admits an optimization problem

which they called unweighted coalitional optimization (UCO). The goal is to find

the minimum number of manipulators required to make a given candidate win the

election.

Definition 3.1.3. The Unweighted Coalitional Optimization (UCO) problem is de-

fined as follows. An instance is a tuple pr, P NM , cq, where r is a voting rule, P NM is

the non-manipulators’ profile, and c is the candidate preferred by the manipulators.

We must find the minimum k such that there exists a set of manipulators M with|M | � k, and a profile P M , that satisfies rpP NM Y P Mq � tcu.
Zuckerman et al. (2009) gave a 2-approximation algorithm for this problem under

maximin (even though this problem was not previously known to be NP-hard), and

an algorithm for Borda that finds an optimal solution up to an additive term of one.

More recently, Zuckerman et al. (2011) proposed an approximation algorithm for

UCO for maximin.

In Chapter 5, we will present an approximation algorithm for UCO for all po-

sitional scoring rules, with an additive error bounded by m (the number of alter-

natives).5 The algorithm exploits a novel connection between UCO and a specific

scheduling problem. We first convert the UCO instance to a scheduling instance, then

5 Published in Xia et al. (2010).
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apply an algorithm for scheduling problems, and finally use a rounding technique to

obtain a solution to the UCO instance.

All of this suggests that computational complexity may not be a very strong

barrier against manipulation. Therefore, the next step is to investigate other ap-

proaches to prevent manipulation. In this dissertation I will discuss two promising

ideas. In Chapter 6, we show that restricting the manipulators’ information about

the other voters can make a natural type of manipulation (which we call dominating

manipulation) computationally hard, or even make such manipulations impossible.6

In Chapter 12 we aim at obtaining and characterizing strategy-proof voting rules for

combinatorial voting, by restricting the voters’ preferences, which, as we discussed

in the introduction, is a method that has traditionally been pursued by economists.7

3.2 Game Theory and Voting

Game Theory is a useful tool to model strategic situations (for an overview, see (Fu-

denberg and Tirole, 1991)). Game Theory has been extensively used in many disci-

plines, including Economics, Political Science, Computer Science, Statistics, and even

Biology. In particular, Game Theory is often used in Multi-Agent Systems (Shoham

and Leyton-Brown, 2009). The most basic type of games, called a normal-form game,

consists of the following parts.

1. There is a finite set of n players (agents).

2. For each agent i, there is a finite set of actions Ai. A vector in A1 � � � � � An

is called an action profile.

3. For each agent i, there is a real-valued utility function ui that maps each action

profile to a real number. This utility function models the agent’s preferences

6 Published in Conitzer et al. (2011a).

7 Published in Xia and Conitzer (2010c).
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over all action profiles.

Example 3.2.1 (Prisoner’s dilemma). There are two players (prisoners) who can

choose to either cooperate (C) with each other or defect (D). If both of them cooper-

ate, then both will stay in prison for one month; if both of them defect, then both will

stay in prison for five months; if one cooperate and the other defect, then the player

who cooperates will stay in prison for 10 months, and the player who defects will be

released immediately. The utility functions of the players are depicted in Table 3.2.

Table 3.2: The prisoner’s dilemma.

C D
C (-1,-1) (-10,0)
D (0,-10) (-5,-5)

In a vector pa, bq in the table, a is the utility of the row player and b is the utility

of the column player. In this game we model a player’s utility by the negation of the

number of months he will be imprisoned.

Having set up the game, we can predict the outcome of the game by investigating

some solution concepts. (Pure) Nash Equilibrium (NE) is one of the most famous

solution concepts. A pure Nash equilibrium is defined to be an action profile where

no player can benefit from deviating to another action, assuming that all of the other

players do not change their actions. For example, the only pure NE of the game in

Example 3.2.1 is the action profile where both players defect. When both of them

defect, the row player has no incentive to change his action to cooperate, because

this would only lower his utility from �5 to �10. Similarly, in this case the column

player also has no incentive to deviate. Therefore, the action profile where both

players defect is an NE. To show that this is the only NE of the game, we observe

that (1) if both of them cooperate, then either player has an incentive to change his

action to D, because this will raise his utility from �1 to 0, and (2) if one player
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cooperates and the other player defects, then the former has an incentive to change

his action to D, because this will raise his utility from �10 to �5. Hence, there is

no other NE except the action profile where both players defect.

In a game, if for a player the following two conditions hold: (1) choosing an action

a never gives her a lower utility than choosing another action b, no matter what the

other players’ action are, and (2) sometimes choosing a gives her a strictly higher

utility than choosing b, then we say that a (weakly) dominates b for that player. Here

b is said to be (weakly) dominated. If choosing a always gives the player a strictly

higher utility than choosing b, then we say that a strictly dominates b. For example,

in the prisoner’s dilemma (Example 3.2.1), C is strictly dominated by D. A strictly

dominated action will never be played in an NE.

In a voting setting we use linear orders over alternatives to model voters prefer-

ences, instead of utility functions. Hence, the simultaneous-move voting games are

defined as follows.

Definition 3.2.2. A simultaneous-move voting game consists of the following com-

ponents.

• There is a set of m alternatives C and a set of n voters (players).

• For each voter, the set of actions is LpCq, which is the set of all linear orders

over C.

• There is a voting rule r that selects a unique winner for each profile.

• For each voter, there is a linear order over C that represents her true prefer-

ences.

The concept of pure NE naturally carries over to simultaneous-move voting games.

In such games, a pure NE is a profile where no single voter can improve the winner
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by casting a different vote, assuming that the other voters do not change their votes.

Unlike in the prisoner’s dilemma, where there is only one NE, for almost all common

voting rules there are many trivial NE. In fact, for all common voting rules, if the

number of voters is large enough, then there are many profiles where no single voter

can even change the winner by voting differently. For example, suppose there are

three voters whose true preferences are Obama¡Clinton¡McCain, and the plurality

rule with lexicographic tie-breaking is used to select the winner. In the profile where

all three voters vote for McCain¡Clinton¡Obama, no single voter can change the

winner by voting differently. Therefore, this profile is an NE, in which the winner is

the least preferred alternative in all voters’ true preferences. It is easy to see that,

generally, any alternative is the winner in some NE of simultaneous-move voting

games. This observation suggests that pure Nash equilibrium, as a solution concept,

is too coarse for analyzing voting games. One refinement was proposed by Farquhar-

son (1969), who proposed to focus on Nash equilibria in a reduced voting game, where

all iteratively dominated votes are eliminated. However, after iteratively removing

all dominated votes, in general there still too many Nash equilibria.

A solution concept that will play an important role in this dissertation is subgame-

perfect Nash Equilibrium (SPNE). SPNE are defined for extensive-form games, which

consist of multiple stages. For simplicity, here we only define extensive-form games

with perfect information.

Definition 3.2.3. An extensive-form game with perfect information is represented

by a tree and the following components.

• Each (decision) vertex of the tree is labeled by a player, who chooses an action

at the vertex. Each action corresponds to an edge going deeper towards the

leaves.

• Each leaf node is associated with an outcome vector that assigns a real value to
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each player.

Example 3.2.4. Consider the two prisoners in Example 3.2.1. Now suppose that

in the first stage the row player (player 1) chooses to cooperate or defect. Then in

the second stage, the column player (player 2) chooses his action. Furthermore, we

suppose that player 2 can observe player 1’s action (that is, he has perfect information

about player 1’s move). This situation can be modeled by the extensive-form game

depicted in Figure 3.1.

1

2 2

(-1,-1) (-10,0) (0,-10) (-5,-5)

C D

C D C D

Figure 3.1: An extensive-form game.

In extensive-form games, a player must choose an action for each of her decision

vertices. All these actions together constitute a strategy of the player. A strategy pro-

file constitutes a strategy for each player. A (pure) subgame-perfect Nash equilibrium

is not only a Nash equilibrium, but is also a Nash equilibrium of the extensive-form

game represented by any sub-tree of the original extensive-form game. For example,

the only SPNE of the game in Example 3.2.4 is the strategy profile where player

1 chooses to defect, and player 2 chooses to defect at both of his decision vertices.

SPNE can be computed by a technique called backward induction, which starts with

the bottom decision vertices, and computes the optimal actions for the players at

these decision vertices. Then, we move up to the layer above it. Since we can predict

the outcome at each decision vertex in the lower layer, we can then compute the

optimal actions for the players at the decision vertices in the current layer. And
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after this, we move up to the next layer above, etc., until the optimal action for the

root vertex has been computed.

It is straightforward to define an extensive-form game for voting. In Chapter 7,

we will study an extensive-form voting game where voters vote one after another.

We call such games Stackelberg voting games. One nice property about Stackelberg

voting games is that, for each Stackelberg voting game, the winner is the same in all

SPNE. This allows us to focus on analyzing the quality of the winner, rather than

analyzing which NE should be the outcome (this problem is known as the equilibrium

selection problem). In Chapter 11, we will see another extensive-form game defined

specifically for combinatorial voting, where the voters vote simultaneously, but they

vote over one issue after another. We call such games strategic sequential voting

processes (SSP). For SSP we will focus on a solution concept that is similar to

SPNE. Under this solution concept, the winner in any such SSP is unique, and can

be computed by a technique that is similar to backward induction.

3.3 Summary

In this chapter, we reviewed some literature on game-theoretic aspects of voting. In

Section 3.1, I gave a brief overview of previous work on using computational com-

plexity as a barrier against manipulation. In Section 3.2, we recalled basic definitions

of normal-form and extensive-form games, and solution concepts such as (pure) Nash

equilibrium and (pure) subgame-perfect Nash equilibrium. We also pointed out that

the biggest challenge in analyzing simultaneous-move voting games is the equilibrium

selection problem, which, as we will see, is alleviated in extensive-form voting games.
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4

Computational Complexity of Unweighted

Coalitional Manipulation

In this chapter, we will study the computational complexity of manipuation for three

common voting rules. We will prove that the unweighted coalitional manipulation

problem (Definition 3.1.2) is NP-complete for maximin (Section 4.1) and ranked pairs

(Section 4.2), and we will give a polynomial-time algorithm for UCM for Bucklin

(Section 4.3).

4.1 Manipulation for Maximin is NP-complete

In this section, we prove that the UCM problem for maximin is NP-complete. The

proof uses a reduction from the two vertex disjoint paths in directed an-

tisymmetric graph problem, which is known to be NP-complete (Fortune et al.,

1980).

Definition 4.1.1. The two vertex disjoint paths in directed graph problem

is defined as follows. We are given a directed graph G and two disjoint pairs of

vertices pu, u1q and pv, v1q, where u, u1, v, v1 are all different from each other. We
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are asked whether there exist two directed paths u Ñ u1 Ñ . . . Ñ uk1
Ñ u1 and

v Ñ v1 Ñ . . . Ñ vk2
Ñ v1 such that u, u1, u1, . . . , uk1

, v, v1, v1, . . . , vk2
are all different

from each other.

Theorem 4.1.2. The UCM problem for maximin is NP-complete, for any fixed

number of manipulators n1 ¥ 2.

Proof. It is easy to verify that the UCM problem for maximin is in NP. We now show

that UCM is NP-hard, by giving a reduction from two vertex disjoint paths

in directed graph.

Let the instance of two vertex disjoint paths in directed graph be

denoted by G � pV, Eq, pu, u1q and pv, v1q where V � tu, u1, v, v1, c1, . . . , cm�5u.
Without loss of generality, we assume that every vertex is reachable from u or v

(otherwise, we can remove the vertex from the instance). We also assume thatpu, v1q R E and pv, u1q R E (since such edges cannot be used in a solution). Let

G1 � pV, E Y tpv1, uq, pu1, vquq, that is, G1 is the graph obtained from G by addingpv1, uq and pu1, vq.
We construct a UCM instance as follows.

Set of alternatives: C � tc, u, u1, v, v1, c1, . . . , cm�5u.
Alternative preferred by the manipulators: c.

Number of unweighted manipulators: any fixed number n1 ¥ 2.

Non-manipulators’ profile: P NM satisfying the following conditions:

1. For any c1 � c, DP NM pc, c1q � �4n1.
2. DP NM pu, v1q � DP NM pv, u1q � �4n1.
3. For any ps, tq P E such that DP NM pt, sq is not defined above, we let DP NM pt, sq ��2n1 � 2.
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4. For any s, t P C such that DP NM pt, sq is not defined above, we let |DP NM pt, sq| �
0.

The existence of such a P NM , whose size is polynomial in m, is guaranteed by

Lemma 2.2.3.

We can assume without loss of generality that each manipulator ranks c first.

Therefore, for any c1 � c,

DP NMYP M pc, c1q � �3n1 (4.1)

We are now ready to show that there exists P M such that MaximinpP NMYP Mq �
c if and only if there exist two vertex disjoint paths from u to u1 and from v to v1 in

G. First, we prove that if there exist such paths in G, then there exists a profile P M

for the manipulators such that MaximinpP NM Y P Mq � c.

Let u Ñ u1 Ñ � � � Ñ uk1
Ñ u1 and v Ñ v1 Ñ � � � Ñ vk2

Ñ v1 be two vertex

disjoint paths. Further, let

V 1 � tu, u1, v, v1, u1, . . . , uk1
, v1, . . . , vk2

u .

Then, because any vertex is reachable from u or v in G, there exists a connected

subgraph G� of G1 (which still includes all the vertices) in which u Ñ u1 Ñ � � � Ñ
uk1

Ñ u1 Ñ v Ñ v1 Ñ � � � Ñ vk2
Ñ v1 Ñ u is the only cycle. In other words, such a

subgraph G� can obtained by possibly removing some of the edges of G1. Therefore,

by arranging the vertices of VzV 1 according to the direction of the edges of G�, we

can obtain a linear order O over VzV 1 with the following property: for any t P VzV 1,
it holds that either

1. there exists s P VzV 1 such that s ¡O t and ps, tq P E, or

2. there exists s P V 1 such that ps, tq P E.

We define P M by letting n1 � 1 manipulators vote the following.

c ¡ u ¡ u1 ¡ � � � ¡ uk1
¡ u1 ¡ v ¡ v1 ¡ . . . ¡ vk2

¡ v1 ¡ O
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We also let the remaining manipulator vote the following.

c ¡ v ¡ v1 ¡ � � � ¡ vk2
¡ v1 ¡ u ¡ u1 ¡ . . . ¡ uk1

¡ u1 ¡ O

Then, we have the following calculations:

DP NMYP M pu, v1q � �4n1 � pn1 � 1q � 1� �3n1 � 2   �3n1 ,

and DP NMYP M pv, u1q � �4n1 � 1� pn1 � 1q� �5n1 � 2   �3n1 .

Moreover, for any t P Cztc, u, vu, there exists s P Cztcu such that ps, tq P E and

DP M pt, sq � �n1, which means that

DP NMYP M pt, sq � �2n1 � 2� n1 � �3n1 � 2  �3n1
It now follows from Equation (4.1) thatMaximinpP NM Y P Mq � c.

Next, we prove that if there exists a profile P M for the manipulators such that

MaximinpP NM Y P Mq � c, then there exist two vertex disjoint paths from u to u1
and from v to v1.

We define a function f : V Ñ V such that DP NMYP M pt, fptqq   �3n1. Indeed,

such a function exists since MaximinpP NM Y P Mq � c. Hence, for any t � c there

must exist s such that

DP NMYP M pt, sq   �3n1
Moreover, s must be a parent of t in G1. If there exists more than one such s, define

fptq to be any one of them.

It follows that if pt, fptqq is neither pu, v1q or pv, u1q, then pfptq, tq P E and

DP M pt, fptqq � �n1, which means that fptq ¡ t in each vote of P M ; otherwise,

if pt, fptqq is pu, v1q or pv, u1q, then DP M pt, fptqq ¤ n1 � 2, which means that fptq ¡ t

in at least one vote of P M .
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Now, since |V| � m� 1 is finite, there must exist l1   l2 ¤ m such that f l1puq �
f l2puq. That is,

f l1puq Ñ f l1�1puq Ñ � � � Ñ f l2�1puq Ñ f l2puq
is a cycle in G1. We assume that for any l1 ¤ l11   l12   l2, f l1

1puq � f l1
2puq. Now we

claim that pv1, uq and pu1, vq must be both in the cycle, because

1. if neither of them is in the cycle, then in each vote of P M , we must have

f l2puq ¡ f l2�1puq ¡ f l1puq � f l2puq ,

which contradicts the assumption that each vote is a linear order;

2. if exactly one of them is in the cycle—without loss of generality, f l1puq �
v, f l1�1puq � u1—then in at least one of the votes of P M , we must have

f l2puq ¡ f l2�1puq ¡ . . . ¡ f l1puq � f l2puq ,

which contradicts the assumption that each vote is a linear order.

Without loss of generality, let us assume that f l1puq � u, f l1�1puq � v1, f l3puq �
v, f l3�1puq � u1, where l3 ¤ l2� 2. We immediately obtain two vertex disjoint paths:

u � f l1puq � f l2puq Ñ f l2�1puq Ñ . . .Ñ f l3�1puq � u1 ,

and v � f l3puq Ñ f l3�1puq Ñ . . . Ñ f l1�1puq � v1. Therefore, UCM for maximin is

NP-complete.

Notice that the NP-completeness of UCM implies the NP-hardness of UCO for

maximin.
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4.2 Manipulation for Ranked Pairs is NP-complete

In this section, we prove that UCM for ranked pairs is NP-complete (even for a single

manipulator) by giving a reduction from 3SAT.

Definition 4.2.1. The 3SAT problem is defined as follows: Given a set of variables

X � tx1, . . . , xqu and a formula Q � Q1 ^ . . .^Qt such that

1. for all 1 ¤ i ¤ t, Qi � li,1 _ li,2 _ li,3, and

2. for all 1 ¤ i ¤ t and 1 ¤ j ¤ 3, li,j is either a variable x P X, or the negation

of a variable (i.e., x where x P X),

we are asked whether the variables can be set to true or false so that Q is true.

Theorem 4.2.2. The UCM problem for ranked pairs is NP-complete, even when

there is only one manipulator.

Proof. It is easy to verify that UCM for ranked pairs are in NP. We first prove that

UCM is NP-complete. Given an instance of 3SAT, we construct a UCM instance

as follows. Without loss of generality, we assume that for any variable x, x and  x

appears in at least one clause, and none of the clauses contain both x and  x.

Set of alternatives: C � tc, Q1, . . . , Qt, Q
1
1, . . . , Q

1
tu�tx1, . . . , xq, x1, . . . , xqu�tQl1,1

, Ql1,2
, Ql1,3

, . . . , Qlt,1 , Qlt,2, Qlt,3u�tQ l1,1
, Q l1,2

, Q l1,3
, . . . , Q lt,1, Q lt,2, Q lt,3u.

Alternative preferred by the manipulator: c.

Number of unweighted manipulators: n1 � 1.

Tie-breaking mechanism: We recall that in ranked pairs, we first use the parallel-

universe tie-breaking to select multiple winners, then use a fixed-order tie-breaking

mechanism the select the unique winner. In the fixed-order tie-breaking, c is ranked

in the bottom position.

Non-manipulators’ profile: P NM satisfying the following conditions.
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1. For any i ¤ t, DP NM pc, Qiq � 30,DP NM pQ1i, cq � 20; for any x P CztQi, Q
1
i : 1 ¤

i ¤ tu, DP NM pc, xq � 10.

2. For any j ¤ q, DP NM pxj , xjq � 20.

3. For any i ¤ t, j ¤ 3,

– if li,j � xk for some k ¤ q, then DP NM pQi, Q
i
xk
q � 30, DP NM pQi

xk
, xkq �

30, DP NM p xk, Q
i xk
q � 30, DP NM pQi xk

, Q1iq � 30;

– if li,j �  xk for some k ¤ q, then DP NM pQi, Q
i xk
q � 30, DP NM pQi

xk
, xkq �

30, DP NM p xk, Q
i xk
q � 30, DP NM pQi

xk
, Q1iq � 30, DP NM pQi xk

, Qi
xk
q �

20.

4. For any x, y P C, if DP NM px, yq is not defined in the above steps, then DP NM px, yq �
0.

For example, when Q1 � x1 _ x2 _ x3, DP NM is illustrated in Figure 4.1.

x1

¬x1

Q1

x1

Q1

¬x1

x2

¬x2

Q1

x2

Q1

¬x2

x3

¬x3

Q1

x3

Q1

¬x3

c

Q1

Q′

1

Figure 4.1: DP NM for Q1 � x1 _ x2 _ x3.

In Figure 4.1, for any vertices v1, v2, if there is a solid edge from v1 to v2, then

DP NM pv1, v2q � 30; if there is a dashed edge from v1 to v2, then DP NM pv1, v2q � 20;
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if there is no edge between v1 and v2 and v1 � c, v2 � c, then DP NM pv1, v2q � 0; for

any x such that there is no edge between c and x, DP NM pc, xq � 10.

The existence of such a P NM is guaranteed by Lemma 2.2.3, and the size of P NM

is in polynomial in t and q.

First, we prove that if there exists an assignment v of truth values to X so that

Q is satisfied, then there exists a vote RM for the manipulator such that RPpP NM YtRMuq � c. We construct RM as follows.

• Let c be on the top of RM .

• For any k ¤ q, if vpxkq � J (that is, xk is true), then xk ¡RM
 xk, and for any

i ¤ t, j ¤ 3 such that li,j �  xk, let Qi
xk
¡RM

Qi xk
.

• For any k ¤ q, if vpxkq � K (that is, xk is false), then  xk ¡RM
xk, and for

any i ¤ t, j ¤ 3 such that li,j �  xk, let Qi xk
¡RM

Qi
xk

.

• The remaining pairs of alternatives are ranked arbitrarily.

If xk � J, then DP NMYtRM upxk, xkq � 21, and for any i ¤ t, j ¤ 3 such that

li,j �  xk, DP NMYtRM upQi xk
, Qi

xk
q � 19. It follows that no matter how ties are

broken when applying ranked pairs to P NM Y tRMu, if xk � J, then xk ¡  xk in

the final ranking. This is because for any li,j �  xk, DP NMYtRM upQi xk
, Qi

xk
q � 19  

21 � DP NMYtRM upxk, xkq, which means that before trying to fix xk ¡  xk, there is

no directed path from  xk to xk.

Similarly if xk � K, then DP NMYtRM upxk, xkq � 19, and for any i ¤ t, j ¤ 3

such that li,j �  xk, DP NMYtRMupQi xk
, Qi

xk
q � 21. It follows that if xk � K, then xk ¡ xk, and for any i ¤ t, j ¤ 3 such that li,j �  xk, Qi xk

¡ Qi
xk

in the final

ranking. This is because Qi xk
¡ Qi

xk
will be fixed before xk ¡  xk.

Because Q is satisfied under v, for each clause Qi, at least one of its three literals

is true under v. Without loss of generality, we assume vpli,1q � J. If li,1 � xk, then
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before trying to add Q1i ¡ c, the directed path c Ñ Qi Ñ Qxk
Ñ xk Ñ  xk Ñ

Q xk
Ñ Q1i has already been fixed. Therefore, c ¡ Q1i in the final ranking, which

means that for any alternatives x in Cztc, Q1, . . . , Qt, Q
1
1, . . . , Q

1
tu, c ¡ x in the final

ranking because DP NMYtRM upc, xq ¡ 0. Hence, c is the unique winner of P NMYtRMu
under ranked pairs.

Next, we prove that if there exists a vote RM for the manipulator such that

RPpP NM Y tRMuq � c, then there exists an assignment v of truth values to X

such that Q is satisfied. We construct the assignment v so that vpxkq � J if and

only if xk ¡RM
 xk, and vpxkq � K if and only if  xk ¡RM

xk. We claim that

vpQq � J. If, on the contrary, vpQq � K, then there exists a clause (Q1, without

loss of generality) such that vpQ1q � K. We now construct a way to fix the pairwise

rankings such that c is not the winner for ranked pairs, as follows. For any j ¤ 3,

if there exists k ¤ q such that li,j �  xk, then xk ¡RM
 xk because vp xkq � K.

Therefore, DP NMYRM
pxk, xkq � 21. Then, after trying to add all pairs x ¡ x1

such that DP NMYRM
px, x1q ¡ 21 (that is, all solid directed edges in Figure 4.1),

it follows that xk ¡  xk can be added to the final ranking. We choose to add

xk ¡  xk first, which means that Q1
xk

¡ Q1 xk
in the final ranking (otherwise, we

have Q1 xk
¡ Q1

xk
¡ xk ¡  xk ¡ Q1 xk

, which is a contradiction).

For any j ¤ 3, if there exists k ¤ q such that li,j � xk, then  xk ¡RM
xk because

vpxkq � K. Therefore, DP NMYRM
pxk, xkq � 19. We note that after trying to add

all pairs x ¡ x1 such that DP NMYRM
px, x1q ¡ 19, Q1

xk
£ Q1 xk

. We recall that for

any j ¤ 3, if there exists k ¤ q such that li,j �  xk, then Q1 xk
£ Q1

xk
. Hence,

it follows that Q11 ¡ c is consistent with all pairwise rankings added so far. Then,

since DP NMYRM
pQ11, cq ¥ 19, if Q11 ¡ c has not been added, we choose to add it

first of all pairwise rankings of alternatives x ¡ x1 such that DP NMYRM
px, x1q � 19,

which means that Q11 ¡ c in the final ranking—in other words, c is not at the top

in the final ranking. Therefore, c is not the unique winner, which contradicts the
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assumption that RPpP NM Y tRMuq � c.

Similarly, we can prove that when k is a constant greater than one, UCM for

ranked pairs remain NP-complete.

Theorem 4.2.3. The UCM problem for ranked pairs is NP-complete, for any fixed

number of manipulators n1 ¥ 2.

Proof. The proof is similar to that of Theorem 4.2.2. We let P NM satisfy the follow-

ing conditions.

1. For any i ¤ t, DP NM pc, Qiq � 30n1,DP NM pQ1i, cq � 22n1 � 2; for any x P
CztQi, Q

1
i : 1 ¤ i ¤ tu, DP NM pc, xq � 10n1.

2. For any j ¤ q, DP NM pxj , xjq � 22n1 � 2.

3. For any i ¤ t, j ¤ 3, if li,j � x, then DP NM pQi, Q
i
xq � 30n1, DP NM pQi

x, xq �
30n1, DP NM p x, Qi xq � 30n1, DP NM pQi x, Q

1
iq � 30n1; if li,j �  x, then

DP NM pQi, Q
i xq � 30n1, DP NM pQi

x, xq � 30n1, DP NM p x, Qi xq � 30n1,
DP NM pQi

x, Q
1
iq � 30n1, DP NM pQi x, Q

i
xq � 20n1.

4. For any y, y1 P C, if DP NM py, y1q is not defined in the above steps, then

DP NM py, y1q � 0.

First, if there exists an assignment v of truth values to X so that Q is satisfied, then

we let RM be defined as in the proof for Theorem 4.2.2. It follows that RPpP NM Ytn1RMuq � c (all the manipulators can vote RM).

Next, if there exists a profile P M for the manipulators such that RPpP NMYP Mq �
c, then we construct the assignment v so that vpxq � J if x ¡V  x for all V P P M ,

and vpxq � K if  x ¡V x for all V P P M ; the values of all the other variables are

assigned arbitrarily. Then by similar reasoning as in the proof for Theorem 4.2.2, we

know that Q is satisfied under v.
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4.3 A Polynomial-time Algorithm for Manipulation for Bucklin

In this section, we present a polynomial-time algorithm for the UCM problem for

Bucklin.

For any alternative x P C, any natural number d P N, and any profile P , let

Bpx, d, P q denote the number of times that x is ranked among the top d alternatives

in P . The idea behind the algorithm is as follows. Let dmin denote the Bucklin score

of x in P , that is, dmin is the minimal depth so that the favorite alternative c is

ranked among the top dmin alternatives in more than half of the votes (when all of

the manipulators rank c first). Then, we simply check if there is a way to assign

the manipulators’ votes so that none of the other alternatives is ranked among the

top dmin alternatives in more than half of the votes. In other words, the order of

the alternatives is not crucial, only their membership in the set of dmin top-ranked

alternatives is relevant.

Algorithm 1.

Input. A UCM instance pBucklin, P NM , c, n1q, where C � tc, c1, . . . , cm�1u.1
Stage 0.

0.1 Calculate the Bucklin score dmin such that

Bpc, dmin, P
NMq � n1 ¡ 1

2
p|P NM | � n1q

0.2 If there exists c1 P C, c1 � c such that

Bpc1, dmin, P
NMq ¡ 1

2
p|P NM | � n1q , (4.2)

then output that there is no successful manipulation.

1 This algorithm works for the fixed-order tie-breaking mechanism where c is ranked in the bottom
position. Similar algorithms can be designed for other fixed-order tie-breaking mechanisms.
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Aside. Notice that dmin is defined under the assumption that all the manipulators

rank c first. Consider an alternative c1 � c that satisfies the condition in Equa-

tion (4.2). Such an alternative is ranked in the top dmin positions of half the votes

P NM Y P M , regardless of P M . Hence, c cannot be a unique winner.

Stage 1.

1.1 For every c1 P Cztcu, let

dc1 � Z1

2
p|P NM | � n1q^�Bpc1, dmin, P

NMq ,

and let kc1 � mintdc1, n1u.
1.2 If

ç1�c

kc1   pdmin � 1qn1 , (4.3)

then output that there is no successful manipulation.

Aside. kc1 is the number of times that we can place c1 in the first dmin positions of

the votes of P M , without compromising the victory of c. In particular, kc1 cannot be

greater than n1.
Notice that there are exactly pdmin � 1qn1 problematic positions to fill, since c

is ranked first by all the manipulators. Now, if the condition in Equation (4.3) is

satisfied, for any P M there must be an alternative c1 that appears too many times

in the first dmin positions, that is, kc1   Bpc1, dmin, P
Mq. Since Bpc1, dmin, P

Mq ¤ n1,
we have in particular that kc1   n1, hence it must hold that kc1 � dc1. It follows that

Bpc1, dmin, P
NM Y P Mq�Bpc1, dmin, P
NMq �Bpc1, dmin, P

Mq¡Bpc1, dmin, P
NMq � dc1� Z1

2
p|P NM | � n1q

5̂9



Therefore, c cannot be a unique winner.

Stage 2. Construct P M by assigning the alternatives to the first dmin positions of

the votes in a way that for every t � 1, . . . , m� 1,

Bpct, dmin, P
Mq ¤ kct (4.4)

Complete the rest of the votes arbitrarily. Return P M as a successful manipulation.

Aside. Given that (4.3) does not hold, it is clearly possible to construct P M such

that (4.4) holds for every c1 � c. Moreover, this can be done in polynomial time, e.g.,

by enumerating the alternatives and placing each alternative in the next position in

kc1 of the votes of the manipulators, until the crucial positions are filled.

Now, for every t � 1, . . . , m� 1 it holds that

Bpct, dmin, P
NM Y P Mq ¤ Bpct, dmin, P

NMq � kct¤ 1

2
p|NM | � n1q ,

which implies that BucklinpP NM Y P Mq � c.

We have obtained the following result.

Theorem 4.3.1. Algorithm 1 correctly decides the UCM problem in polynomial time.

It is easy to see that the tractability of UCM for Bucklin implies that UCO can

be solved in polynomial time as well.

4.4 Summary

In this chapter, we investigated the computational complexity of the UCM and UCO

problems for the maximin, ranked pairs, and Bucklin rules. The UCM problem is NP-

complete under the maximin rule for any fixed number (at least two) of manipulators.

The UCM problem is also NP-complete under the ranked pairs rule; in this case, the
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hardness holds even if there is only a single manipulator, similarly to second-order

Copeland (Bartholdi et al., 1989a) and STV (Bartholdi and Orlin, 1991). Finally,

we gave a polynomial-time algorithm for the UCM problem under the Bucklin rule.

It should be noted that all of our NP-hardness results, as well as the ones men-

tioned in the introduction, are worst-case results. Hence, there may still be an

efficient algorithm that can find a beneficial manipulation for most instances. In-

deed, nearly a dozen recent papers suggest that finding manipulations is easy with

respect to some typical distributions on preference profiles. We will see some of them

in the next chapter.
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5

Computing Manipulations is “Usually” Easy

We have seen in the last chapter that computing a manipulation is NP-complete

for maximin and ranked pairs. In particular, the coalitional manipulation problem

is NP-complete for ranked pairs even for one manipulator. This property was only

shown previously for STV and second-order Copeland. In Table 3.1 we observe that

computational complexity can serve as a barrier for many common voting rules when

there are two or more manipulators. In this chapter, we will prove that computa-

tional complexity is not a strong barrier against manipulation for almost all common

voting rules. This argument will be supported by two approaches. In Section 5.2 we

pursue the “frequency of manipulability” approach, that is, the votes are randomly

generated i.i.d. according to some distribution over all linear orders. We will show

that with a high probability the UCM problem (Definition 3.1.2) is computationally

trivial. In Section 5.4 we pursue an approximation approach. More precisely, we fo-

cus on approximating the UCO problem (Definition 3.1.3), and propose an algorithm

that approximates UCO with an additive error that only depends on the number of

alternatives (but not on the number of voters) for all positional scoring rules.

Instead of proving the results one by one for common voting rules, we take unified
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approaches. In Section 5.1 we introduce a general framework called generalized scor-

ing rules, and then characterize the frequency of manipulability for any generalized

scoring rule in Section 5.2. To show how general this class of voting rules is, we

give a concise axiomatic axiomatization in Section 5.3. In Section 5.4 we will design

an approximation algorithm that works for any positional scoring rule, in light of a

novel relationship between UCO and a scheduling problem.

5.1 Generalized Scoring Rules

A generalized scoring rule (GSR) associates a vector of k real numbers with every

vote, for some k that depends on (but is not necessarily equal to) m. The decision

that the rule makes is based only on the sum of these vectors. Even more specifically,

the decision is based only on comparisons among the components in this sum. That

is, if we know, for every i, j P t1, . . . , ku, whether the ith component in the sum is

larger than the jth component, the jth is larger than the ith, or they are the same,

then we know enough to determine the winner. Sometimes, the components can be

partitioned so that the decision only depends on comparisons within elements of the

partition, which will be helpful.

Let k P N, and let K � tK1, . . . , Kqu be a partition of K � t1, . . . , ku. That is,

for any i ¤ q, Ki � K, K � �q

l�1 Kl, and for any i, j ¤ q, i � j, Ki XKj � H. We

say that two vectors of length k are equivalent with respect to a partition if, within

each element of the partition, they agree on which components are larger.

Definition 5.1.1. Let K be a partition of K. For any a, b P Rk, we say that a and b

are equivalent with respect to K , denoted by a �K b, if for any l ¤ q, any i, j P Kl,

ai ¥ aj � bi ¥ bj (where ai denotes the ith component of the vector a, etc.).

For two partitions K � tK1, . . . , Kqu and K 1 � tK 1
1, . . . , K

1
pu, K 1 is a refine-

ment of K if for any l ¤ q, any l1 ¤ p, K 1
l1 X Kl is either K 1

l1 or H. That is, K 1
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is obtained from K by partitioning the sets in K . In this case, we say that K is

coarser than K 1, and K 1 is finer than K .

Proposition 5.1.2. For any partitions K , K 1 such that K 1 is a refinement of K ,

and any a, b P Rk, if a �K b, then a �K 1 b.

We note that tKu (the partition that only contains K itself) is the coarsest

partition.

Definition 5.1.3. Let K be a partition of K. A function g : Rk Ñ C is compatible

with K if for any a, b P Rk, a �K b ñ gpaq � gpbq.
That is, for any mapping g that is compatible with K , gpaq is determined (only)

by comparisons within each Kl, l ¤ q. Namely, we do not need to compare compo-

nents across different elements of the partition.

Now we are ready to define generalized scoring rules.

Definition 5.1.4. Let k P N, f : LpCq Ñ Rk and g : Rk Ñ C, where g is compatible

with K . f and g determine the generalized scoring rule GSpf, gq as follows. For

any profile of votes V1, . . . , Vn P LpCq, GSpf, gqpV1, . . . , Vnq � gp°n

i�1 fpViqq. We say

that GSpf, gq is of order k, and compatible with K .

From Proposition 5.1.2 we know that for any partitions K , K 1 such that K 1 is

a refinement of K , GSpf, gq is compatible with K 1, then GSpf, gq is also compat-

ible with K . Given a profile P of votes, we use fpP q as shorthand for
°

V PP fpV q.
We will call fpP q the total generalized score vector. By definition, any unweighted

generalized scoring rule satisfies anonymity (that is, every voter is treated equally)

and homogeneity (that is, if we add any number of copies of the profile to the pro-

file, the winner does not change). Any generalized scoring rule is compatible with

the partition tKu. Nevertheless, being compatible with tKu is not vacuous: if we
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modified the definition so that g is not required to be compatible with any partition,

then any anonymous voting rule would belong to the resulting class of rules. If a

generalized scoring rule is compatible with a partition, this effectively means that,

within each element of the partition, the scores are of the same “type,” so that we

can compare them.

We now illustrate how general the class of generalized voting rules is by showing

how some standard rules belong to the class. Many other rules can also be shown to

belong to the class.

Proposition 5.1.5. All positional scoring rules, Copeland, STV, maximin, ranked

pairs, and Bucklin are generalized scoring rules.

Proof of Proposition 5.1.5: We explicitly give k, f, g, K for each of these rules.

In the remainder of the proof, the number of alternatives is fixed to be m. Let

V P LpCq be a vote, and let P be a profile of votes. To simplify the construction,

we will not specify how ties are broken when we describe these rules as generalized

scoring rules. It is easy to incorporate the tie-breaking mechanism to define the g

function for all these voting rules.

Positional scoring rules: Suppose the scoring vector for the rule is

~sm � psmp1q, . . . , smpmqq. The total generalized score vector will simply consist of

the total scores of the individual alternatives. Let

• k~sm � m.

• f~smpV q � p~smpV, c1q, . . . , ~smpV, cmqq.
• g~smpf~vpP qq � arg maxipf~vpP qqi.
• K~sm � tKu.

Copeland: For Copeland, the total generalized score vector will consist of the scores

in the pairwise elections. Let
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• kCopeland � mpm � 1q; the components are indexed by pairs pi, jq such that

i, j ¤ m, i � j.

• pfCopelandpV qqpi,jq � " 1 if ci ¡V cj

0 otherwise

• gCopeland selects the winner based on fCopelandpP q as follows. For each pair i � j,

if pfCopelandpP qqpi,jq ¡ pfCopelandpP qqpj,iq, then add 1 point to i’s Copeland score;

if pfCopelandpP qqpj,iq ¡ pfCopelandpP qqpi,jq, then add 1 point to j’s Copeland score;

if tied, then add 0.5 to both i’s and j’s Copeland scores. The winner is the

alternative that gets the highest Copeland score.

• qCopeland � mpm�1q
2

(we recall that q is the number of elements in the partition).

The elements of the partition are indexed by pi, jq, i   j. For any l � pi, jq,
i   j, let Kl � tpi, jq, pj, iqu. Let KCopeland � tKl : l � pi, jq, i   ju.

STV: For STV, we will use a total generalized score vector with many components.

For every proper subset S of alternatives, for every alternative c outside of S, there

is a component in the vector that contains the number of times that c is ranked first

if all of the alternatives in S are removed. Let

• kSTV � °m�1
i�0

�
m

i

�pm� iq; the components are indexed by pS, jq, where S is a

proper subset of C and j ¤ m, cj R S.

• pfSTV pV qqpS,jq � 1, if after removing S from V , cj is at the top; otherwise, letpfSTV pV qqpS,jq � 0.

• gSTV selects the winner based on fSTV pP q as follows. In the first round,

find j1 � arg minjppfSTV pP qqpH,jqq. Let S1 � tcj1u. Then, for any 2 ¤
i ¤ m � 1, define Si recursively as follows: Si � Si�1 Y tjiu, where ji �
arg minjpfSTV pP qpSi�1,jqq; finally, the winner is the unique alternative in C �
Sm�1.
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• qSTV � 2m � 1. The elements of the partition are indexed by the S � C. For

any S � C, let KS � tpS, jq : cj R Su. Let KSTV � tKS : S � Cu.
Maximin: For maximin, we use the same total generalized score vector as for

Copeland, that is, the vector of all scores in pairwise elections. Let

• kmaximin � mpm� 1q; the components are indexed by pairs pi, jq such that

i, j ¤ m, i � j.

• pfmaximinpV qqpi,jq � " 1 if ci ¡V cj

0 otherwise

• gmaximinpfmaximinpP qq is the ci such that for any i1 ¤ m, i1 � i, there exists

j1   m, j1 � i1 such that for any j ¤ m, j � i, we have fmaximinpP qpi,jq ¡pfmaximinpP qqpi1,j1q.
• Kmaximin � tKu.

Ranked pairs: We use the same total generalized score vector as for Copeland and

maximin, that is, the vector of all scores in pairwise elections. Let

• krp � mpm� 1q; the components are indexed by pairs pi, jq such that i, j ¤ m,

i � j.

• pfrppV qqpi,jq � " 1 if ci ¡V cj

0 otherwise

• grp selects the winner based on frppP q as follows. In each step, we consider a

pair of alternatives ci, cj that we have not previously considered; specifically, we

choose the remaining pair with the highest pfrppP qqpi,jq. We then fix the order

ci ¡ cj , unless this contradicts previous orders that we fixed (that is, it violates

transitivity). We continue until we have considered all pairs of alternatives.

The alternative at the top of the ranking wins.
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• Krp � tKu.
Bucklin: For Bucklin, the total generalized score vector will have one component

for every combination of an alternative and a position; this component contains the

number of times that that alternative is ranked either in that position or in a higher

position. We only need to consider positions from 1 through m� 1. Let

• kBucklin � 2mpm � 1q; the components are indexed by pi, jq1 and pi, jq2, i ¤
m� 1, j ¤ m.

• fBucklinpV qpi,jq1 � 1 and fBucklinpV qpi,jq2 � 0 if cj is ranked among the top i

alternatives in V ; otherwise fBucklinpV qpi,jq1 � 0 and fBucklinpV qpi,jq2 � 1.

• gBucklinpfBucklinpP qq is the cj such that there exists i ¤ m, pi, jq1 ¡ pi, jq2, and

for any j1 � j, pi, j1q2 ¥ pi, jq1.
• qBucklin � m � 1. For any l ¤ m � 1, let Kl � tpl, jq1, pl, jq2 : j ¤ mu. Let

KBucklin � tKl : l ¤ mu. l
We have shown that STV is a generalized scoring rule in the proof. In fact, we can

generalize this and show that any multiround run-off process where in each round,

alternatives are eliminated according to a generalized scoring rule (to be precise, a

correspondence) must itself be a generalized scoring rule. For example, for STV,

the voting rule that only eliminates one alternative (the alternative that has the

lowest plurality score among all remaining alternatives) is used in every round. As

another example, for Baldwin’s rule, a reverse version of Borda that only eliminates

one alternative (the alternative that has the lowest Borda score among all remaining

alternatives) is used in every round. The proof can be found in the appendix of Xia

and Conitzer (2008b), and is omitted here.
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5.2 Frequency of Manipulability for Generalized Scoring Rules

Let π be a probability distribution over LpCq that is positive everywhere. For any

n� P N, let φπ,n� be the distribution over profiles of n� voters in which each vote is

drawn i.i.d. according to π. Given a manipulation instance pr, P NM , c, n1q, if there

is only one possible winner, then we say that this manipulation instance is closed;

otherwise we say this manipulation instance is open (Procaccia and Rosenschein,

2007a).

Definition 5.2.1. A manipulation instance pr, P NM , c, n1q is closed if for any profiles

P M
1 , P M

2 for the manipulators, rpP NM YP M
1 q � rpP NM YP M

2 q. An instance is open

if it is not closed.

We note that in the above definition, whether a UCM instance is open or closed

does not depend on the choice of c. That is, for any c, c1 P C, pr, P NM , c, n1q is

open (respectively, closed) if and only if pr, P NM , c1, n1q is open (respectively, closed).

Procaccia and Rosenschein (2007a) have shown that, suppose the following four

conditions are satisfied.

1. The rule is a positional scoring rule,

2. the number of manipulators |M | is op?nq,
3. the votes are drawn independently, and

4. there exists d ¡ 0 such that for each vote’s distribution, the variance of the

difference in scores for any pair of alternatives is at least d.

Then, when n Ñ 8, the probability that a weighted manipulation instance is

open is 0. In this section, we generalize this result to generalized scoring rules; in

addition, we characterize the rate of convergence to 0. However, unlike Procaccia and
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Rosenschein, we do assume that votes are drawn i.i.d.; this is needed to obtain the

convergence rate. Hence, strictly speaking, our result is not a generalization of their

result. We can also obtain a strict generalization of Procaccia and Rosenschein’s

results to generalized scoring rules, but without proving a convergence rate; we will

not do so in this paper.

5.2.1 Conditions under Which Coalitional Manipulability is Rare

In this section, we study the probability that a manipulation instance is open when

there are Opnαq (0 ¤ α   1
2
) manipulators, and the nonmanipulator votes are drawn

i.i.d. Let n� � |P NM | denote the number of nonmanipulators. Then, n is the total

number of voters, n� � n1 (nonmanipulators and manipulators). We will prove that

for any generalized scoring rule, this probability is Op 1?
n
q. Let T pr, m, n, π, n1q denote

this probability. That is, let c be an arbitrary alternative,

T pr, m, n, π, n1q � PrP NM�φπ,n� tpr, P NM , c, n1q is openu
Lemma 5.2.2. Let N P N. Let Y1, . . . , YN be i.i.d. random variables with EpY1q   8,

EppY1�EpY1qq2q ¡ 0, and Ep|Y1�EpY1q|3q   8. Let Y � °N

ζ�1 Yζ. For any constant

0 ¤ p   1
2

that does not depend on N , and any function fpNq that is Ωp1q, we have

that Prp|Y | ¤ fpNqq is OpfpNq?
N
q.

Proof of Lemma 5.2.2: Let Φpxq be the cumulative distribution function of the

standard normal distribution Np0, 1q. Let σ2 � EppY1 � EpY1qq2q, ρ � Ep|Y1 �
EpY1q|3q. Then we have:

Prp|Y |   fpNqq�Prp�EpY1qN
σ
?

N
� fpNq

σ
?

N
  Y � EpY1qN

σ
?

N
  �EpY1qN

σ
?

N
� fpNq

σ
?

N
q
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Then by the Berry-Esséen theorem (Durrett, 1991),

Prp|Y |   fpNqq Φp�EpY1qN
σ
?

N
� fpNq

σ
?

N
q � Φp�EpY1qN

σ
?

N
� fpNq

σ
?

N
q � Cρ

σ3
?

N� » �EpY1qN
σ
?

N
� fpNq

σ
?

N�EpY1qN
σ
?

N
� fpNq

σ
?

N

Np0, 1qpxqdx� Cρ

σ3
?

N 2fpNq
σ
?

N
� 1?

2π
� Cρ

σ3
?

N

which is OpfpNq?
N
q, because C is a constant that does not depend on N and fpNq �

Ωp1q. l
Theorem 5.2.3. Let r � GSpf, gq be a generalized scoring rule of order k. For any

m P N, any constant 0 ¤ α   1
2
, and any constant h (where both m and h do not

depend on n), there exists a constant tm,α,h ¡ 0 (that does not depend on n) such

that if n1 ¤ hnα, then

T pr, m, n, π, n1q ¤ tm,α,hn
α� 1

2

Proof of Theorem 5.2.3: We recall that each vote is drawn i.i.d. according to π.

For any pair i1, i2 ¤ k, i1 � j2, and any t ¡ 0, let

Rpi1, i2, t, π, n1q � Prt|pfpP NMqqi1 � pfpP NMqqi2| ¤ tu
We recall that pfpP NMqqi is the ith component of fpP NMq. In other words,

Rpi1, i2, t, π, n1q is the probability of profiles of nonmanipulators’ votes P NM such

that the difference between the i1th component and the i2th component of fpP NMq
is no more than t, when each vote is drawn i.i.d. according to π. We also recall

that n� � |P NM |. Let Y
i1,i2
1 , . . . , Y

i1,i2
n� be n� i.i.d. random variables, where the

distribution for each Y
i1,i2
ζ is the same as the distribution for pfpV qqi1 � pfpV qqi2 ,
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where V is drawn according to π. That is, for any V P LpCq, with probability πpV q,
Y

i1,i2
1 takes value pfpV qqi1 � pfpV qqi2. Let Y i1,i2 � °n�

ζ�1 Yζ.

Let vmax � max
i¤k,V PLpCqpfpV qqi. That is, vmax is the maximum component of all score

vectors corresponding to a single vote. We note that vmax is a constant that does not

depend on n. We also note that since n1 is Opnαq and α   1
2
, it must be that n� is

Ωpnq, so that n is Opn�q, vmaxhnα is Oppn�qαq. Therefore, by Lemma 5.2.2 (in which

we let N � n�), we know that Prp|Y i1,i2| ¤ vmaxhnαq is Opvmaxhnα?
n� q � Oppn�qα� 1

2 q,
so it is Opnα� 1

2 q. Hence, there exists a constant ti1,i2 such that

Prp|Y i1,i2| ¤ vmaxhnαq   ti1,i2n
α� 1

2

We let tmax � maxi,j¤k,i�j ti,j. If a manipulation instance is open, then there exists a

profile P M for the manipulators such that GSpf, gqpP M Y P NMq � GSpf, gqpP NMq,
which means that fpP M YP NMq � fpP NMq. In this case there must exist i, j, i � j,

such that Prp|pfpP NMqqi � pfpP NMqqj| ¤ vmaxn
�q ¤ vmaxhnα. Therefore,

T pGSpf, gq, m, n, π, n1q ¤ ¸
1¤i j¤m

Rpi, j, vmaxhnα, π, n1q
We note that Rpi, j, vmaxhnα, π, n1q � Prp|Y i,j| ¤ vmaxhnαq. Therefore, we have

T pGSpf, gq, m, n, π, n1q ¤
i̧�j

Rpi, j, vmaxhnα, π, n1q¤
i̧�j

ti,jn
α�1 ¤ kpk � 1q

2
tmaxn

α� 1

2

Let tm,α,h � kpk�1q
2

tmax. We know that tm,α,h is a constant that does not depend on

n.

(End of the proof for Theorem 5.2.3.) l
From Proposition 5.1.5 and Theorem 5.2.3, we obtain the following corollary.
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Corollary 5.2.4. Let r be any positional scoring rule, Copeland, STV, maximin,

ranked pairs, or Bucklin. For any m P N, any constant 0 ¤ α   1
2
, and any constant

h (where m, α, and h do not depend on n), there exists a constant tm,α,h ¡ 0 (that

does not depend on n) such that if n1 ¤ hnα, then

T pr, m, n, π, n1q ¤ tm,α,hn
α� 1

2

A profile is said to be tied if a single additional voter can change the outcome. By

letting α � 0 and h � 1 in Theorem 5.2.3, we have that for any generalized scoring

rule and any fixed m, the number of tied profiles is Op 1?
n
q.

5.2.2 Conditions under which Coalitions of Manipulators are All-Powerful

Let us consider a positional scoring rule and a distribution over nonmanipulator

votes. Furthermore, let us consider each alternative’s expected score; let Cmax be

the set of alternatives with the highest expected score. Procaccia and Rosenschein

(2007a) have shown that, suppose the following conditions hold.

1. The number of manipulators is in both ωp?nq and opnq, and

2. votes are drawn i.i.d.

Then, the probability that the manipulators can make any alternative in Cmax

win converges to 1 as n Ñ 8. Hence, assuming |Cmax| ¡ 1, the probability that the

instance is open converges to 1 (however, if |Cmax| � 1, it converges to 0).

In this section, we prove a similar result for generalized scoring rules; in addition,

we characterize the rate of convergence to 0. (In fact, in this case, Procaccia and

Rosenschein also characterize this rate—for positional scoring rules.)

Specifically, in this section, we study the case where the number of manipulators

is Ωpnαq (1
2
  α   1) and opnq, the votes are drawn i.i.d. according to π, and a

generalized scoring rule is used. We provide a sufficient condition under which the
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manipulators can make any alternative in a particular set of alternatives win with

probability 1�Ope�Ωpn2α�1qq. (We need the opnq assumption for a technical reason.

If n1 � Θpnq, then obviously the probability that the manipulators are all-powerful

is higher.)

Definition 5.2.5. π is compatible with K w.r.t. f , if, for V � π, for any l ¤ q,

any i, j P Kl (i � j), EppfpV qqiq � EppfpV qqjq.
That is, π is compatible with K w.r.t. f if within each element of the partition

K , the expectation of the components of fpV q are the same (where V is drawn

according to π).

Given GSpf, gq, it will be useful to have a profile P such that for some partition

K that GSpf, gq is compatible with, the components of fpP q within each Kl (l ¤ q)

are all different. The next definition makes this precise.

Definition 5.2.6. For any GSpf, gq compatible with K , a profile P is said to be

distinctive w.r.t. GSpf, gq and K if for each l ¤ q and each pair i, j P Kl, i � j,pfpP qqi � pfpP qqj.
The next definition concerns the set of alternatives that can be made to win using

a distinctive profile.

Definition 5.2.7. For any GSpf, gq compatible with K , let WK pf, gq be a subset of

the alternatives defined as follows.

WK pf, gq � tGSpf, gqpP q : P is distinctive w.r.t. GSpf, gq and K u
For any profile P M of manipulators and any alternative c, we define T pm, n, π, c, P Mq �

PrpGSpf, gqpP MYP NMq � cq. That is, given a profile of votes P M of the manipula-

tors, T pm, n, π, c, P Mq is the probability that the winner of the profile P M YP NM is
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c, when the number of alternatives is m, the number of voters is n, and the nonma-

nipulators’ votes P NM are drawn i.i.d. according to π. Now we are ready to present

the theorem.

Theorem 5.2.8. Let GSpf, gq be a generalized scoring rule that is compatible with

K . Let πK be a distribution over LpCq such that πK is compatible with K w.r.t. f .

For any m ¡ 0, there exist constants tm ¡ 0 and um ¡ 0 (neither of which depend on

n) such that for any constant h ¡ 0 (that does not depend on n) and any alternative

c P WK pf, gq, if the number of manipulators is at least hnα (
1

2
  α   1) (as well as

opnq), then there exists a coalitional manipulation P M such that

T pm, n, πK , c, P Mq ¡ 1� tme�umn2α�1

Theorem 5.2.8 states that when the number of alternatives is held fixed, if the

number of manipulators is large (Ωpnαq for α ¡ 1
2
, as well as opnq) then for any

alternative c P WK pf, gq, there exists a manipulation P M such that when the non-

manipulators’ votes are drawn i.i.d. according to πK , then c is the winner with a

probability of 1�Ope�Ωpn2α�1qq.
Proof of Theorem 5.2.8: Let n1 ¥ hnα. If WK pf, gq � H, then Theorem 5.2.8

vacuously holds. So we assume that WK pf, gq � H. For each c P WK pf, gq, we

associate c with a distinctive profile (w.r.t. f and K ), denoted by P �c , such that

c � GSpf, gqpP �c q. We recall that P �c is distinctive if and only if for each l ¤ q and

each pair i, j P Kl, i � j, pfpP �c qqi � pfpP �c qqj . Let

dmin � min
l¤q,i,jPKl,i�j,cPWK pf,gqp|pfpP �c qqi � pfpP �c qqj|q

That is, dmin is the minimal difference between any two components within the

same element of K of fpP �c q, taken over all c P WK pf, gq. Since |WK pf, gq|   m

(which does not depend on n), and P �c is distinctive, we know that dmin ¡ 0 and
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does not depend on n. Let pmax � maxcPC |P �c |. That is, for all c P WK pf, gq, the

number of votes in P �c is no more than pmax. We note that pmax does not depend on

n.

For any c P C, define a profile of the manipulator votes P M
c as follows. P M

c

consists of two parts:

1. t n1|P �c |uP �c , and

2. an arbitrary profile for the remaining n1 � t n1|P �c |u|P �c | votes.

That is, P M
c consists mostly of t n1|P �c |u copies of P �c ; the remaining votes (at most|P �c |) are chosen arbitrarily. We note that |P �c | is a constant that does not depend

on n, so that the second part becomes negligible when n Ñ8.

The next claim provides a lower bound on the difference between any two com-

ponents of fpP M
c q.

Claim 5.2.1. There exists a constant dc that does not depend on n such that the

minimum difference between components of fpP M
c q is at least dcn

α.

Proof of Claim 5.2.1: Since the minimal difference between any two components

of P �c is at least dmin, the minimal difference between any two components of fpP M
c q

is at least t n1|P �c |udmin. We note that the number of arbitrarily assigned votes in P M
c

is no more than |P �c |, and the difference between any two components in a vote is no

more than vmax. Therefore the minimal difference between any two components of

fpP Mq is at leastt n1|P �c |udmin � vmax|P �c | ¥ p n1
pmax

� 1qdmin � vmaxpmax
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Note that this number is Ωpnαq because pmax, dmin, and vmax are constants that

do not depend on n, and n1 is Ωpnαq. Therefore, there exists a dc that does not depend

on n such that the minimal difference between any two components of fpP M
c q is at

least dcn
α.

(End of the proof for Claim 5.2.1.) l
The next lemma is known as Chernoff’s inequality (Chernoff, 1952).

Lemma 5.2.9 (Chernoff’s inequality). Let N P N. Let Y1, . . . , YN be N i.i.d. random

variables with variance σ2. Let Y � °N

ζ�1 Yζ. For any 0 ¤ l ¤ 2
?

Nσ, Prp|Y �
EpY q| ¥ l

?
Nσq ¤ 2e�l2{4.

For any profile P NM for the nonmanipulators, any i1, i2 ¤ k, i1 � i2, let

DpP NM , i1, i2q � |pfpP NMqqi1 � pfpP NMqqi2|. The next claim states that if each

vote of P NM is drawn i.i.d. according to πK , then for any different i1, i2 within the

same element Kl of the partition K , the probability that the difference between the

i1th and the i2th component of fpP NMq is larger than dcn
α is Ope�Ωpn2α�1qq.

Claim 5.2.2. For any l ¤ q and any i1, i2 P Kl (i1 � i2), there exists a constant

dc,i1,i2 ¡ 0 that does not depend on n such that

PrpDpP NM , i1, i2q ¡ dcn
αq ¤ 2e�dc,i1,i2

n2α�1

Proof of Claim 5.2.2: Let Y
i1,i2
1 , . . . , Y

i1,i2
n� be n� i.i.d. random variables such that

the distribution for each Y
i1,i2
ζ is the same as the distribution for pfpV qqi1�pfpV qqi2 ,

where V is drawn according to π. That is, for any V P LpCq, with probabil-

ity πpV q, Y
i1,i2
1 takes value pfpV qqi1 � pfpV qqi2 . Let Y i1,i2 � °|NM |

ζ�1 Y
i1,i2
ζ . Then,

PrpDpP NM , i1, i2q ¡ dcn
αq � PrpY i1,i2 ¡ dcn

αq.
Since πK is compatible with K , for any l ¤ q, i1, i2 P Kl, we know that

EppfpV qqi1q � EppfpV qqi2q, where V is drawn according to π. Therefore, EpY i1,i2
1 q �
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0. Let σ2
i1,i2

be the variance of Y
i1,i2
1 . We note that σi1,i2 does not depend on n. If

σ2
i1,i2

� 0, then for any V P LpCq, pfpV qqi1 � pfpV qqi2 (because for any V P LpCq,
πK pV q ¡ 0), which means that WK pf, gq � H. This contradicts the assumption

that WK pf, gq � H. Hence σ2
i1,i2

¡ 0. Since n1 � opnq, n� � Ωpnq, and for suffi-

ciently large n we have dcnα

σi1,i2

?
n� ¤ 2σi1,i2

?
n�. Therefore, we can use Lemma 5.2.9

(in which we let N � n�) to bound PrpDpP NM , i1, i2q ¡ dcn
αq above as follows.

PrpDpP NM , i1, i2q ¡ dcn
αq�Prp|Y i1,i2| ¡ dcn

αq�Prp|Y i1,i2| ¡ dcn
α� 1

2

σi1,i2

?
n� � σi1,i2

?
n�q¤2e

�p dcn
α�1

2

σi1,i2

?
n� q2{4 (Lemma 5.2.9)¤2e

� d2
c

4σ2
i1,i2

n2α�1 pn� ¤ nq
We note that d2

c

4σ2
i1,i2

is a constant that does not depend on n. Therefore, there

exists uc,i1,i2 ¡ 0 such that PrpDpP NM , i1, i2q ¡ dcn
αq ¤ 2e�uc,i1,i2

n2α�1

.

(End of the proof for Claim 5.2.2.) l
Let uc � min

l¤q,i,jPKl,i�j
uc,i,j. Then uc ¡ 0 and is a constant (that does not depend

on n). We note that for any P NM , if pP NM Y P M
c q �K P M

c , then there exists l ¤ q,

i, j P Kl, i � j, such that |pfpP NMqqi�pfpP NMqqj| ¡ |pfpP M
c qqi�pfpP M

c qqj| ¡ dcn
α.
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Therefore, we can bound the probability of pP NM Y P M
c q �K P M

c below as follows.

PrppP NM Y P M
c q �K P M

c q�1� PrppP NM Y P M
c q �K P M

c q¥1� PrppDl ¤ qqpDi, j P KlqDpP NM , i, jq ¡ dcn
αq¥1�

ļ¤q

¸
i,jPKl,i�j

PrpDpP NM , i, jq ¡ dcn
αq¥1�

ļ¤q

¸
i,jPKl,i�j

2e�uc,i,jn2α�1¥1�
ļ¤q

¸
i,jPKl,i�j

2e�ucn2α�1 ¥ 1� mpm� 1q
2

� 2e�ucn2α�1

When n is sufficiently large, P M
c �K P �c . Therefore, we know that there exists a

constant tc ¡ 0 (that does not depend on n) such that PrppP NM Y P M
c q �K P �c q ¥

1� tce
�ucn2α�1

. Hence

T pm, n, πK , c, P Mq¥PrppP NM Y P M
c q �K P �c q¥1� tce

�ucn2α�1

(End of the proof for Theorem 5.2.8.) l
5.2.3 All-Powerful Manipulators in Common Rules

We already showed how Theorem 5.2.3, which states a condition under which manip-

ulability is rare, can be applied to common voting rules in Corollary 5.2.4. We have

not yet done so for Theorem 5.2.8, and we will do so in this section.1 Specifically,

we prove that if the number of alternatives is fixed, then for any positional scoring

rule, Copeland, STV, ranked pairs, and maximin, if the number of manipulators is

1 Except for Bucklin.
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Ωpnαq (α ¡ 1
2
) and opnq, and the nonmanipulators’ votes are drawn i.i.d. accord-

ing to the uniform distribution, then for any alternative c, there exists a coalitional

manipulation that will make c win with a probability of 1�Ope�Ωpn2α�1qq.
The next theorem provides a necessary and sufficient condition for WK pf, gq to

be nonempty.

Theorem 5.2.10. Let Gpf, gq be compatible with K . WK pf, gq � H if and only

if for any l ¤ q, any i, j P Kl, i � j, there exists a vote V P LpCq such thatpfpV qqi � pfpV qqj
Proof of Theorem 5.2.10: First we prove the “if” part. Suppose that for any

l ¤ q, any i, j P Kl, i � j, there exists a vote V P LpCq such that pfpV qqi � pfpV qqj .
For any l ¤ q, let

hl,max � max
i,jPKl,V PLpCqt|pfpV qqi � pfpV qqj|u,

hl,min � min
i,jPKl,V PLpCqt|pfpV qqi � pfpV qqj| : |pfpV qqi � pfpV qqj| ¡ 0u

That is, hl,max is the maximum difference between any two components within Kl,

for any fpV q; hl,min is the minimum positive difference between any two components

within Kl, for any fpV q. Then, for any l ¤ q, hl,max ¥ hl,min ¡ 0. Let h be a natural

number such that for any l ¤ q, h ¡ hl,max

hl,min
� 1. Suppose LpX q � tL1, . . . , Lm!u.

Then, let P � °m!
s�1 hm!�sLs. We now show that P is distinctive w.r.t. GSpf, gq and

K .

For any l ¤ q, any i, j P Kl, let t be the minimum natural number such that
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pfpLtqqi � pfpLtqqj . W.l.o.g. let pfpLtqqi ¡ pfpLtqqj . ThenpfpP qqi � pfpP qqj� m!̧

s�1

hm!�sppfpLsqqi � pfpLsqqjq�hm!�tppfpLtqqi � pfpLtqqjq � m!̧

s�t�1

h�sppfpLsqqi � pfpLsqqjq¥hm!�thl,min � m!̧

s�t�1

hm!�shl,max�hm!�tphl,min � 1

h

1� 1
hm!�t

1� 1
h

hl,maxq¡hm!�tphl,min � 1

h� 1
hl,maxq¡0

The last inequality holds because h ¡ hl,max

hl,min
� 1. Therefore, we know that for any

l ¤ q, any i, j P Kl, i � j, pfpP qqi � pfpP qqj. Hence, P is distinctive w.r.t. GSpf, gq
and K , completing the proof of the “if” part.

Now we prove the “only if” part. Suppose there exist l ¤ q, i, j P Kl such that for

any V P LpCq, pfpV qqi � pfpV qqj . Then, for any profile P , pfpP qqi � pfpP qqj, which

means that P is not distinctive w.r.t. GSpf, gq and K . Therefore WK pf, gq � H,

completing the proof of the “only if” part.

(End of the proof for Theorem 5.2.10.) l
Now we show how the conditions in Theorem 5.2.8 are satisfied for any positional

scoring rule, STV, Copeland, maximin, and ranked pairs, when the nonmanipulator

votes are drawn from the uniform distribution.

Proposition 5.2.11. Let πu be the uniform distribution. For any rule r that is a

positional scoring rule, Copeland, STV, maximin, or ranked pairs, let kr, GSpfr, grq
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and Kr be defined as in Proposition 5.1.5. Then, πu is compatible with Kr, and

for any l ¤ qr and any i, j ¤ Kl (i � j), there exists a vote V P LpCq such thatpfrpV qqi � pfrpV qqj.
Proof of Proposition 5.2.11: We verify the condition in Theorem 5.2.10 for the

common voting rules mentioned in the proposition by simple calculation, w.r.t. the

GSR-formulation mentioned in the proof of Proposition 5.1.5.

positional scoring rule with scoring vector ~v: for any i ¤ m,

EV�πuppf~vpV qqiq � °m

j�1 vpjq
m

Copeland, maximin, or ranked pairs: for any i ¤ m, j ¤ m, i � j,

EV�πuppfrpV qqpi,jqq � 1

2

STV: for any pS, jq such that S � C, |S| � i, cj R S,

EV�πuppfSTV pV qqpS,jqq � 1

m� i

It left us to show, for each of these voting rules, and for any two given components

(that lie within the same element of the partition), the vote that makes these two

components different.

positional scoring rule with scoring vector ~v: for any i, j ¤ m, i � j, let V be the

vote that ranks ci at the top and cj at the bottom; then, pf~vpV qqi � vp1q � vpmq �pf~vpV qqj .
Copeland, maximin, or ranked pairs: for any i1, i2 ¤ m, j1, j2 ¤ m, i1 � j1,

i2 � j2, and pi1, j1q � pi2, j2q, let V be any vote in which ci1 ¡V cj1 and cj2 ¡V ci2 .

Because pi1, j1q � pi2, j2q, such a V exists. Then,pfrpV qqpi1,j1q � 1 � 0 � pfrpV qqpi2,j2q
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STV: for any S � C, j1 � j2 such that cj1 R S, cj2 R S, let V be the vote in which

cj1 is at the top. Then pfSTV pV qqpS,j1q � 1 � 0 � pfSTV pV qqpS,j2q.
(End of the proof for Proposition 5.2.11.) l
By combining Proposition 5.2.11 and Theorem 5.2.10, we know that for any of

the rules in Proposition 5.2.11, there exists a distinctive profile; hence, WKrpf, gq is

nonempty (some alternative will win under the distinctive profile, without any tie).

Also, all of these rules are neutral (they treat every alternative in the same way)

when restricted to profiles that do not cause a tie, so if WKrpf, gq is nonempty, it

must be that WKrpf, gq � C.

Corollary 5.2.12. Let πu be the uniform distribution over LpCq. For any rule r that

is a positional scoring rule, Copeland, STV, maximin, or ranked pairs, if the number

of manipulators is Ωpnαq (
1

2
  α ¤ 1) as well as opnq, then for any c P C, there

exists a coalitional manipulation P M such that the probability that rpP MYP NMq � c

is 1�Ope�Ωpn2α�1qq.
5.3 An Axiomatic Characterization for Generalized Scoring Rules

We have explicitly shown in the proof of Proposition 5.1.5 that a variety of common

rules fall into the category of GSRs. However, we did not give any formal result about

the generality of this class of rules. The apparent wide applicability of GSRs makes

this class potentially interesting from the perspective of other problems in compu-

tational social choice. Indeed, some such uses are quite obvious. GSRs map every

vote to a vector of scores (which are not necessarily associated with alternatives),

and the outcome of the rule is based strictly on the sum of these vectors. As a result,

the votes of a subset of the electorate can be summarized completely by the sum of

their score vectors.2 In fact, the definition of GSRs is even more restrictive: the final

2 The problem of summarizing the votes of a subelectorate was introduced and studied (Chevaleyre
et al., 2009; Xia and Conitzer, 2010a).
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outcome only depends on direct comparisons among the components of the summed

score vector. For example, the outcome may depend on a comparison between the

first component and the third component of the summed vector; then, it does not

matter (for this comparison) whether these components are 42 and 50, respectively,

or 101 and 967, because in both cases component 1 is smaller. Because of this, the

GSR framework is also useful for preference elicitation, specifically, for determining

whether enough information has been elicited from the voters to declare the winner.

In particular, if it becomes clear that the remaining (not yet elicited) information

about the voters’ preferences can no longer change any of the comparisons in scores,

then we can terminate elicitation.

In Social Choice, axiomatic characterizations of voting rules are important be-

cause they give us deeper insight into rules, and can often be used to prove im-

portant results about rules. For GSRs, having an axiomatic characterization is

especially important in order to know how the frequency-of-manipulability result

for large number of manipulators (Theorem 5.2.8), which are negative results for

the agenda of making manipulation computationally hard, might be circumvented.

Axiomatic characterization of voting rules is a common topic in the social choice

literature. For two alternatives, the majority rule has been characterized in May

(1952). Young (1975) characterized positional scoring correspondences (that is, the

voting correspondences that select all alternatives that have the highest total scores)

by consistency, neutrality, and anonymity. Here we say that a voting correspondence

rc satisfies consistency, if for any pair of profiles P1, P2, if rcpP1q X rcpP2q � H, then

rcpP1 Y P2q � rcpP1q X rcpP2q. When r1 is a voting rule, that is, it always select a

unique winner, this consistency coincides with the consistency defined in Section 2.2.

In this section we will only consider voting rules.

In this section, we introduce a new axiomatic property for voting rules, which we

call finite local consistency. A voting rule satisfies finite local consistency if the set
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of all profiles can be partitioned into finitely many parts, such that the voting rule is

consistent within each part. The minimum number of parts for a rule is the degree

of consistency for the rule. For example, a consistent rule has degree of consistency

1. We then characterize generalized scoring rules by anonymity, homogeneity, and

finite local consistency, and show that the order of a GSR (that is, the dimension of

the score vector) is related to the degree of consistency of the rule. It follows that

Dodgson’s rule is not a GSR, because it does not satisfy homogeneity (Brandt, 2009).

5.3.1 Finite Local Consistency

In this subsection, we formally define finite local consistency.

Definition 5.3.1. Let S be a set of profiles. r is locally consistent on S if for any

P1, P2 P S with rpP1q � rpP2q, we have P1Y P2 P S and rpP1Y P2q � rpP1q � rpP2q.
Definition 5.3.2. For any natural number t, a voting rule r is t-consistent if there

exists a partition tS1, . . . , Stu of all profiles such that for all i ¤ t, r is locally con-

sistent within Si. A voting rule r is finitely locally consistent if it is t-consistent for

some natural number t.

We emphasize that in this definition, a rule is defined for a fixed number m of

alternatives, but for profiles of arbitrarily many voters. Later, we will show that

some common rules are finitely locally consistent for every m P N; however, in those

cases, t depends on m, which is allowed, as long as t is finite. We note that this

finiteness condition is important: for any voting rule, there exists a partition that

has infinitely many elements such that the voting rule is locally consistent, simply

by letting each profile be an element by itself.

The degree of consistency of a voting rule r (for a particular m) is the smallest

number of elements in a locally consistent partition of profiles. That is, the degree of

consistency of r is t if r is t-consistent, and for any t1   t, r is not t1-consistent. (We
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note that the partition corresponding to this lowest t is not necessarily unique.) The

degree of consistency can be seen as an approximation to consistency: the lower the

degree of consistency of a voting rule, the more “consistent” it is, and 1-consistency

is equivalent to the standard definition of consistency. We will be interested in the

exact degree of consistency (rather than just whether it is finite or not), because,

as we will show, this degree is related to the order of a GSR equivalent to the rule,

which in turn is important for the summarization and elicitation problems that we

mentioned in the introduction.

5.3.2 Finite local consistency characterizes generalized scoring rules

We now present our main result of this section. Let Ppkq be the number of total

preorders over k elements, that is, the total number of ways to rank k elements,

allowing for ties.

Theorem 5.3.3. r is a generalized scoring rule if and only if r is anonymous, ho-

mogenous, and finitely locally consistent. Moreover, for any t-consistent voting rule

r, there exists a GSR of order p tpt�1qmpm�1q
4

qm!�1 that is equivalent to r; conversely,

for any GSR GSpf, gq of order k, there exists a Ppkq-consistent voting rule r that is

equivalent to GSpf, gq.3
Proof of Theorem 5.3.3: We prove the “if” part by a geometrical representation

of a voting rule that is anonymous and homogenous, similarly to Young (1975). Let

LpCq � tl1, . . . , lm!u be the set of all linear orders over C. Let r be an anonymous and

homogenous voting rule, so that profiles can be represented as multisets of votes.

Hence, there is a one-to-one correspondence between the set of all profiles and the

set of all points in Nm!: any profile P � °m!
x�1 wxlx, wx P N is associated with the

point ~p � pw1, . . . , wm!q, that is, ~p P Nm!, and for any j ¤ m!, the jth component

3 The Ppkq bound can be improved if more information about the structure of the GSR is taken
into account. For the sake of simplicity, we omit further discussions of it.
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of ~p is exactly the number of voters whose preferences are lj in P . Therefore, r

can also be seen as a mapping from Nm! to C, defined as follows: for any ~p P Nm!,

rp~pq � rpP q, where P is the profile that ~p corresponds to. In the remainder of the

proof, we will not distinguish between the point ~p and the profile P . Also, because

r is homogenous, the domain of r can be extended to Q¥0
m! (vectors of nonnegative

rationales) in the following way. For any ~p P Q¥0
m!, let h P N be such that h~p P Nm!;

then, let rp~pq � rph~pq. (This is well defined because by homogeneity, the choice of h

does not matter.)

Because r is t-consistent, there exists a partition pS1, . . . , Stq of Nm! such that r

is locally consistent within each Si. We note that ~p P Si implies h~p P Si for each

h P N, because each Si must be closed under the union of vectors that produce the

same result, and we can take the union of h vectors ~p. Now, for any i ¤ t, we define

SQ
i � tq~p : q P Q¥0, ~p P Siu. It follows that Q¥0

m! � �t

i�1 SQ
i , and for any i1 � i2,

SQ
i1
X SQ

i2
� t0u. For any i ¤ t, any j ¤ m, we define S

j
i � SQ

i X r�1pcjq. That is, S
j
i

is the set of points (equivalently, profiles) in SQ
i whose winner is cj. It follows that

for any ~p1, ~p2 P S
j
i XNm!, we have ~p1� ~p2 P S

j
i ; for any ~p P S

j
i , any q P Q¥0, we must

have q~p P S
j
i . For any S � R¥0

m!, we say that S is Q-convex if for any λ P QXr0, 1s,
any ~p1, ~p2 P S, we have λ~p1 � p1� λq~p2 P S. We say a Q-convex set S is a Q-convex

cone, if for any q P Q¥0, any ~p P S, we have q~p P S.

Claim 5.3.1. For any i ¤ t, any j ¤ m, S
j
i is a Q-convex cone.

Proof. For any q1, q2 P Q¥0, any ~p1, ~p2 P S
j
i , there exists T P N such that Tq1~p1, T q2~p2 P

Nm!. We note that Tq1~p1, T q2~p2 P S
j
i , which implies that Tq1~p1�Tq2~p2 is also in S

j
i .

It follows that q1~p1 � q2~p2 � 1

T
pTq1~p1 � Tq2~p2q P S

j
i . l

For any S � R¥0
m!, we let convpSq be the convex hull of S in R¥0

m!. That is,

convpSq � t°h

i�1 αi~pi : h � 1, 2, . . . ,
°h

i�1 αi � 1, p�i ¤ hq αi ¡ 0, αi P R, ~pi P Su.
87



Lemma 5.3.4 (proved in Young (1975)). S � Qm! is Q-convex if and only if S �
convpSq XQm!.

Let d P N, S1, S2 � Rd, and for any x P R, let δpxq � 1 if x ¡ 0, δpxq � �1

if x   0, and δp0q � 0. We say that S1 and S2 are separated by a finite set of

vectors I � t~p1, . . . , ~pou, in which ~pi P Rl for all i ¤ o, if there exist two sets

O1, O2 � t�1, 0, 1uI such that O1 X O2 � t0u, and for any ~p P S1 (~p � 0), we

have δp~p, Iq � pδp~p � ~p1q, . . . , δp~p � ~poqq P O1; for any ~p P S2 (~p � 0), we havepδp~p � ~p1q, . . . , δp~p � ~poqq P O2. In this case we also say that I separates S1 from S2 via

O1, O2.

S � Rd is called an affine space if for any ~p1, ~p2 P S, any q1, q2 P R, we have

q1~p1 � q2~p2 P S. For any S 1 � Rd, we let affpS 1q denote the affine extension of S 1 as

follows: affpS 1q � t°h

i�1 αi~pi : h � 1, 2, . . . , p�i ¤ hq αi P R, ~pi P S 1u. That is, affpS 1q
is the smallest affine space in Rd that contains S 1. We let relintpconvpSqq denote

the relative interior of convpSq, defined as follows. relintpconvpSqq is the set of all

vectors ~p P Rd such that there exists ǫ ¡ 0 such that Bp~p, ǫq X affpSq � convpSq,
where Bp~p, ǫq is the ball centered on ~p with radius ǫ.

Lemma 5.3.5. Let S � Rm! be an affine space, and let S1, S2 � S X Q¥0
m! be two

Q-convex cones such that S1 � S2, S1XS2 � t0u. There exists a finite set of vectors

I � Rm! that separates S1 from S2, and |I| ¤ dimpSq.
Proof. We prove the claim by induction on dimpSq. When dimpSq � 1, it must be

the case that one of S1 and S2 is t0u, and the other has an element ~p1 � 0. Without

loss of generality, we let S1 � t0u, S2 � t0u. In this case, we let I � t~p1u, O1 � t0u,
and O2 � t0, 1u.

Suppose Lemma 5.3.5 holds for dimpSq ¤ d. Without loss of generality, we

assume dimpaffpS1qq ¥ dimpaffpS2qq. When dimpSq � d� 1, there are two cases.
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Case 1: dimpaffpS1qq � dimpaffpS2qq � d� 1. In this case S � affpS1q � affpS2q.
First we prove that relintpconvpS1qq X relintpconvpS2qq � H. If not, suppose ~p P
relintpconvpS1qq X relintpconvpS2qq. Let ~p � °h

j�1 αj~pj , where
°h

j�1 αj � 1, for all

j ¤ h, ~pj P S1 and αj ¥ 0, and Bp~p, ǫqXS � convpS1q, Bp~p, ǫqXS � convpS2q. There

exist βj P Q¥0 (j ¤ h) such that ~p� � °h

j�1 βj~pj � 0, and the distance between ~p�
and ~p is less than ǫ (by setting the βj sufficiently close to the αj). We note that

S1 is Q-convex, which means that ~p� P S1. It follows that ~p� P convpS2q, because

~p� P Bp~p, ǫqXS. From Lemma 5.3.4 we have that S2 � convpS2qXQ¥0
m!. Therefore,

~p� P convpS2q XQ¥0
m! � S2. This contradicts the assumption that S1 X S2 � t0u.

Because relintpconvpS1qqX relintpconvpS2qq � H, we apply the separating hyper-

plane theorem: there exists a hyperplane H~p� characterized by ~p� P Rm!, such that

for any ~p1 P S1, ~p1 � ~p� ¤ 0; for any ~p2 P S2, ~p2 � ~p� ¥ 0; and at least one of S1 and

S2 is not contained in H~p�. We let S 1 � S XH~p�, and S 11 � S1 X S 1, S 12 � S2 X S 1.
H~p� does not contain S, so it follows that dimpS 1q   dimpSq � d � 1. Applying

Lemma 5.3.5 on S 1, S 11, S 12 (using the induction assumption), there exists a set of

vectors I 1 that separates S 11 from S 12 via O1
1, O

1
2, |I 1| ¤ d. Let I � t~p�u Y I 1 and

O1 � t~a P t�1, 0, 1uI : ~a|t~p�u � �1 _ p~a|t~p�u � 0 ^ ~a|I 1 P O1
1qu (here, for J � I, let

~a|J be the components of ~a corresponding to the vectors in J). This works because

for any ~p P S1, either ~p is in the open halfspace t~p1 : ~p1 � ~p�   0u, or ~p is in S1 XH~p�.
Similarly, let O2 � t~a P t�1, 0, 1uI : ~a|tp�u � 1 _ p~a|tp�u � 0 ^ ~a|I 1 P O1

2qu. It follows

that I separates S1 from S2 via O1, O2, and |I| � |I 1| � 1 ¤ d� 1.

Case 2: dimpaffpS2qq   d � 1. If affpS1q � affpS2q, then let S 1 � affpS1q, |S 1|  
d � 1. Applying Lemma 5.3.5 on S 1, S1, S2 (by the induction assumption), we can

conclude that there exists I 1 � Q¥0
m! that separates S1 from S2, and |I 1| ¤ d   d�1.

If affpS1q � affpS2q, then there exists a hyperplane H~p� (orthogonal to ~p�) such that

0 P H~p�, S2 � H~p�, and S1 � H~p� (because the intersection of all hyperplanes that
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contains S2 is S2). Let S 1 � affpS2q, and S 11 � S1 X S 1. S 1 is an affine space whose

dimension is dimpaffpS2qq   d � 1. For any ~p1, ~p2 P S 11, any λ P Q¥0, we have that

λ~p1 � p1� λq~p2 P S1 (because S1 is Q-convex), and λ~p1 � p1� λq~p2 P S 1 (because S 1
is an affine space); hence, λ~p1 � p1� λq~p2 P S 11. Therefore, S 11 is a Q-convex cone.

By applying Lemma 5.3.5 on S 1, S 11, S2 (using the induction assumption), there

exists I 1 � Q¥0
m! (|I 1| ¤ d) that separates S 11 from S2 via O1

1, O
1
2. We let I �

I 1 Y t~p�u; O1 � t~a P t�1, 0, 1uI : ~a|t~p�u � 0 _ p~a|t~p�u � 0 ^ ~a|I 1 P O1
1qu. This

works because for any ~p P S1, either ~p � ~p� � 0 (meaning that ~p is not in S 1), or

~p � ~p� � 0, and δp~p, I 1q P O1
1 (meaning that ~p is in S1 X S 1). Similarly we define

O2 � t~a P t�1, 0, 1uI : ~a|t~p�u � 0^ a|I 1 P O1
2u. It follows that I separates S1 from S2,

and |I| � |I 1| � 1 ¤ d� 1. This completes the proof of Lemma 5.3.5. l
For any i1, i2 ¤ t, j1, j2 ¤ m, where either i1 � i2 or j1 � j2, S

j1
i1
XS

j2
i2
� t0u. (We

recall that S
j
i is the set of points in SQ

i whose winner is cj .) From Lemma 5.3.5, there

exists a finite set Ii1j1,i2j2 of vectors that separates S
j1
i1

from S
j2
i2

via O1
i1j1,i2j2

, O2
i1j1,i2j2

,

where |Ii1j1,i2j2| ¤ m!. Now we can define a corresponding generalized scoring rule,

as follows. k � |�pi1,j1q�pi2,j2q Ii1j1,i2j2|�1, and the components are indexed by vectors in some

Ii1j1,i2j2, and a 0 component (which is always 0). Because |Ii1j1,i2j2| ¤ m!, we have

k ¤ p tpt�1qmpm�1q
4

qm!� 1. For any pi1, j1q � pi2, j2q, any ~p � pp1, . . . , pm!q P Ii1j1,i2j2, any b ¤ m!, the ~p

component of the generalized score vector given vote (ranking) lb is fplbq � pb. We

note that for any profile ~p � pw1, . . . , wm!q, any ~p� � pp�1 , . . . , p�m!q P Ii1j1,i2j2, the ~p�
component of fp~pq is

°m!
x�1 wxp

�
x � ~p � ~p�. For any ~a P Q¥0

k with ~a � 0, gp~aq � cj if and only if there exists i ¤ t such

that for any i1 ¤ t, j1 ¤ m, there exists o P O1
ij,i1j1 such that for any ~p� P Iij,i1j1, the

following three conditions hold: (1) ~a|~p� is strictly larger than 0 (the value of the 0
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component), if and only if o|~p� � 1; (2) ~a|~p� is equal to 0, if and only if o|~p� � 0; and

(3) ~a|~p� is strictly smaller than 0, if and only if o|~p� � �1. That is, gp~aq � cj if and

only if there exists i ¤ t such that for any i1, j1, we always have ~a R S
j1
i1 by using the

set of separation vectors Iij,i1j1. (That g is well defined will follow from the following

argument.)

Next, we prove that GSpf, gq � r. For any profile ~p P Q¥0
m!, suppose ~p P S

j
i .

For any pi, jq � pi1, j1q, since ~p P S
j
i , by using the separation vectors Iij,i1j1 and

O1
ij,i1j1, O2

ij,i1j1, ~p should be classified as “not in S
j1
i1 ”. That is, there exists o P O1

ij,i1j1
such that for any ~p� P Iij,i1j1, o|~p� � δp~p � ~p�q; and for any o1 P O2

ij,i1j1, there exists

~p� P Iij,i1j1 such that o1|~p� � δp~p � ~p�q. It follows that GSpf, gqp~pq � cj .

The “only if” part is straightforward. For any total preorder O over t1, . . . , ku, we

let SO � t~p P Q¥0
m! : fp~pq � Ou. For any ~p1, ~p2 P SO, fp~p1�~p2q � fp~p1q�fp~p2q � O,

so that GSpf, gqp~p1q � GSpf, gqp~p2q � GSpf, gqp~p1 � ~p2q. Hence, GSpf, gq is locally

consistent within SO. It follows that tSOu is a finitely locally consistent partition for

the rule, of size Ppkq. l
We are not aware of any closed-form formula for Ppkq, though there exist recursive

formulas. We now give a simple upper bound on Ppkq. Any total preorder V can be

represented by a strict order pci1 ¡ ci2 ¡ . . . ¡ cimq and a string ~s � ps1, . . . , sm�1q Pt0, 1um�1, as follows: if sl � 0 then cil ¡V cil�1
, and if sl � 1 then cil �V cil�1

. This

implies Ppkq ¤ k!2k�1.

5.4 A Scheduling Approach for Positional Scoring Rules

So far in this chapter we have been focusing on characterizing the frequency of ma-

nipulability for common voting rules, in order to show that computational complexity

is not a strong barrier against manipulation. In this section, we argue that compu-

tational complexity is not a strong barrier against manipulation from the viewpoint
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of approximation. The optimization problem we will look at in this section asks for

the smallest total number (weight) of the manipulators that can make a given alter-

native win. This optimization problem severs as our basis for approximation, and

has two dimensions: the first dimension concerns whether the votes are weighted or

unweighted, and the second dimension concerns whether the manipulators’ votes are

divisible (that is, each manipulator can cast a convex combination of linear orders as

her vote) or not. For example, when the voters are unweighted and are not allowed

cast divisible votes, the problem is the UCO problem (Definition 3.1.3).

Our main contribution is the exploration of a surprising and fruitful connection

between coalitional manipulation for positional scoring rules and scheduling. We

demonstrate that some of work on the latter problem can be leveraged to obtain

nontrivial algorithmic results for the former problem.

The intuition behind the reduction is as follows. The scheduling problem to which

we reduce is that of scheduling on parallel machines where the goal is to minimize

makespan. In the coalitional manipulation problem for a positional scoring rule

with scoring vector ~sm, each manipulator j always ranks the coalition’s preferred

alternative c first, but must award ~smpiq � wj points to the alternative it ranks ith,

where wj is the manipulator’s weight. For any i ¥ 2, we define a machine for ~smpiq;
the larger ~smpiq is in relation to ~smp1q, the slower the machine is. Furthermore, each

alternative besides c is a job; the larger the gap between the score of this alternative

and the score of c, the larger the job is. When a manipulator with weight wj ranks

an alternative in the ith position, it decreases the gap between c and this alternative

by p~smp1q � ~smpiqqwj points, which, under the detailed reduction, is equivalent to

processing the corresponding job on the pi� 1qth slowest machine for wj time units.

In addition to WCM (Definition 3.1.1), UCM (Definition 3.1.2), and UCO (Def-

inition 3.1.3). In this section we also study the following problem for positional

scoring rules.
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Definition 5.4.1. The Coalitional Optimization for divisible votes (COd) problem

is defined as follows. An instance is a tuple pr, P NM , ~wNM , cq, where r is a voting

rule, P NM is the non-manipulators’ profile, ~wNM represents the weights of P NM , and

c is the alternative preferred by the manipulators. We are asked to find the minimum

W M such that there exist a divisible vote V M for one manipulator with weight W M ,

such that

rppP NM , tV Muq, p~wNM , W Mqq � c

In the remainder of this section, we assume that c is ranked in the top position in

the fixed-order tie-breaking mechanism. We let WCMd, UCMd, UCOd denote the

variants of WCM, UCM, UCO, respectively, in which votes are divisible.4 We note

that it is irrelevant whether the votes of the non-manipulators are divisible or not;

what matters is whether the manipulators’ votes are divisible.

In Section 5.4.1, we consider WCMd, which may be interesting in its own right,

but mainly serves to prepare the ground for our results regarding WCM. We give

a polynomial-time algorithm for WCMd under any positional scoring rule by re-

ducing it to the well-studied scheduling problem known as Q|pmtn|Cmax (in which

preemptions are allowed). This algorithm also solves COd.

In Section 5.4.2 we deal with the indivisible case (WCM), and augment the

WCMd algorithm with a rounding technique. Based on existing results from the

scheduling literature, we can assume that the scheduling solutions use relatively few

preemptive break points. We then show that in the coalitional manipulation prob-

lem, we need at most one additional voter per preemptive break point. We obtain

the following theorem, which is a somewhat weaker but far more generally applicable

version of the main result of Zuckerman et al. regarding Borda (Zuckerman et al.,

4 We do not need to define similar variant for COd, because it is not hard to see that any solution
to a COd instance where the votes are divisible can be converted in polynomial time to a solution
to the same instance where the votes are indivisible.
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2009, Theorem 3.4).

Theorem 5.4.10. Algorithm 2 runs in polynomial time and

1. if the algorithm returns false, then there is no successful manipulation (even

for the WCMd version of the instance);

2. otherwise, the algorithm returns a successful manipulation for a modified set of

manipulators, consisting of the original manipulators plus at most m� 2 addi-

tional manipulators, each with weight at most W {2, where W is the maximum

weight of the manipulators.

Crucially, in most settings of interest (e.g., political elections), the number of

alternatives m is small compared to the number of voters, or even the number of

manipulators. Moreover, WCM is NP-complete under scoring rules such as Borda and

Veto, even when there are only three alternatives (Conitzer et al., 2007). Therefore,

in many important scenarios, m� 2 additional manipulators constitute a very small

fraction of the total number of manipulators, that is, the algorithm gives a good

“approximation” to WCM.

A direct implication of Theorem 5.4.10 is that in the unweighted case (UCM)

our approximation algorithm always finds a manipulation with at most m� 2 addi-

tional manipulators, if there exists one for the given instance. Put another way, the

algorithm approximates UCO to an additive term of m� 2.

In Section 5.5, we establish an “integrality gap,” in the following sense: the opti-

mal solution to UCO can require m�2 more manipulators than the optimal solution

to UCOd (Theorem 5.5.3). Moreover, we show that there is a family of instances

of UCO such that any algorithm that is based on rounding an optimal solution for

COd requires m � 2 more votes than the optimal UCO solution (Theorem 5.5.4).

These results suggest that the analysis of the guarantees provided by our technique

is tight.
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5.4.1 Algorithms for WCMd and COd

In this section we present algorithms for WCMd and COd. We devise a polynomial-

time algorithm that solves WCMd by reducing it to the scheduling problem known

as Q|pmtn|Cmax. This algorithm also solves COd exactly. In the next subsection

(Section 5.4.2), we augment the algorithm for WCMd with a rounding technique,

and obtain an approximation algorithm for WCM as a result. While our solution for

WCMd may be interesting in its own right, its main purpose is to provide intuitions

and techniques that are subsequently leveraged for approximating WCM.

We will show how to reduce WCMd/COd to the scheduling problem of paral-

lel uniform machines with preemption, categorized as Q|pmtn|Cmax (see, for exam-

ple, Brucker (2007) for the meaning of the notation). In an instance of Q|pmtn|Cmax,

we are given n̄ jobs J � tJ1, . . . Jn̄u and m̄ machines M � tM1, . . . , Mm̄u; each job

Ji has a workload pi P R�, and the processing speed of machine Mi is si P R�, that is,

it will finish si amount of work in one unit of time. A preemption is an interruption

of the job that is being processed on one machine (the job may be resumed later, not

necessarily on the same machine). Preemptions are allowed in Q|pmtn|Cmax. We

are asked for the minimum makespan, i.e., the minimum time to complete all jobs,

and an optimal schedule.

We first draw a natural connection between WCMd/COd under positional scor-

ing rules and Q|pmtn|Cmax. After counting the non-manipulators’ votes only, each

alternative will have a total non-manipulator score. For any i ¤ m � 1, we let pi

denote the gap between the non-manipulator score of ci and the non-manipulator

score of c (which is positive if the former is larger; the case where the gap is negative

is trivial). In particular, the pi’s can be seen as the workload of m � 1 jobs. We

note that, without loss of generality, the manipulators will always rank c in the top

position. Therefore, a manipulator vote (of weight 1) in which cj is ranked in the
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ith position decreases the gap between cj and c by ~smp1q � ~smpiq points.

We consider a set of m � 1 machines M1, . . . , Mm�1 whose speeds are ~smp1q �
~smp2q, . . . , ~smp1q � ~smpmq, respectively. A ranking (a vote) is equivalent to an al-

location of the m � 1 jobs to machines: an alternative ranked i positions below c

corresponds to a job allocated to the ith slowest machine. We can now see that the

minimum makespan of the scheduling problem is the minimum total weight of the

manipulators required to make c a winner, that is, the optimal solution to COd.

For WCMd, the goal is to compute the votes for
°k

i�1 wi “amount” of manipulators

(since the votes are divisible, a problem instance with k manipulators with weights

~w is equivalent to a problem instance with a single manipulator whose weight is°k

i�1 wi), such that the final total score of c is at least the final total score of any

other alternative. This is equivalent to computing a schedule that completes all jobs

within time at most
°k

i�1 wi.

Formally, for a WCMd instance p~sm � p~smp1q, . . . , ~smpmqq, P NM , wNM ,

c, k, pw1, . . . , wkqq, we construct an instance of Q|pmtn|Cmax with m � 1 jobs and

m � 1 machines (that is, m̄ � n̄ � m � 1) as follows. For any i ¤ m � 1, we let

si � ~smp1q � ~smpi� 1q, pi � maxt~smpP NM , wNM , ciq � ~smpP NM , wNM , cq, 0u. We do

not distinguish between alternative ci and job Ji. This reduction is illustrated in the

following example.

Example 5.4.2. Let m � 4, C � tc, c1, c2, c3u. The positional scoring rule is Borda

(which corresponds to the scoring vector p3, 2, 1, 0q). The non-manipulators are un-

weighted (that is, their weights are 1), and their profile is

P NM � pV NM
1 , V NM

2 , V NM
3 , V NM

4 q, defined as follows.

V NM
1 � rc1 ¡ c ¡ c2 ¡ c3s, V NM

2 � rc2 ¡ c1 ¡ c ¡ c3s
V NM

3 � rc3 ¡ c2 ¡ c1 ¡ cs, V NM
4 � rc1 ¡ c2 ¡ c3 ¡ cs

We have that spP NM , cq � 3, spP NM , c1q � 9, spP NM , c2q � 8, spP NM , c3q � 4.
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Therefore, we construct a Q|pmtn|Cmax instance in which there are 3 machines

M1, M2, M3 whose speeds are s1 � 1, s2 � 2, s3 � 3, corresponding to the 2nd, 3rd,

and 4th position in the votes, respectively, and 3 jobs J1, J2, J3, whose workloads are

p1 � 6 � p9� 3q, p2 � 5 � p8� 3q, p3 � 1 � p4� 3q, respectively. l
Let W0 � 0, W � maxj¤k wj, and for any 1 ¤ i ¤ k, Wi � °i

j�1 wj. A schedule

is usually represented by a Gantt chart, as illustrated in Figure 5.1. (We note that

Figure 5.1 is not the solution to Example 5.4.2.)

J1 J2 J3

J1 J3 J2

J2 J3 J1

M1

M2

M3

0 T1 T2 T3 T4
w

Figure 5.1: An example schedule. The machines are idle in shaded areas.

Let w be the minimum makespan for the Q|pmtn|Cmax instance constructed

above, and let f� : M� r0, ws ÑJ Y tIu be an optimal solution to Q|pmtn|Cmax,

where I means that the machine is idle. If w ¡ Wk, then there is no successful

manipulation that makes c a winner. If w ¤Wk, we first extend the optimal solution

f� to make it fully occupy the whole time interval r0, Wks; any way of allocating jobs

to machines in the added time would suffice. Let f be the solution obtained in this

way.

Given f , for any time t P r0, Wks, we say that t is a preemptive break point if

there is a preemption at t—formally, there exists a machine Mi such that for some

ǫ1 ¡ 0, we have that for all ǫ P r0, ǫ1s, fpMi, t � ǫq � fpMi, t � ǫq, that is, the job

being processed at time t� ǫ on Mi is different from the job being processed at time

t � ǫ. We let Bf � tT1, . . . , Tlu denote the preemptive break points of f , where

0   T1   T2   . . .   Tl   Wk. For example, the set of preemptive break points of
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the schedule in Figure 5.1 is Bf � tT1, T2, T3, T4u.
Example 5.4.3. The minimum makespan of the scheduling problem instance in

Example 5.4.2 is p6� 5q{5 � 11{5. An optimal schedule f is as follows.

M1 : For any 0 ¤ t ¤ 11{5, fpM1, tq � J3.

M2 : For any 0 ¤ t ¤ 8{5, fpM2, tq � J2; for any 8{5   t ¤ 11{5, fpM2, tq � J1.

M3 : For any 0 ¤ t ¤ 8{5, fpM3, tq � J1; for any 8{5   t ¤ 11{5, fpM3, tq � J2.

t � 8{5 is the only preemptive break point in this schedule. l
Any solution to the Q|pmtn|Cmax instance obtained from the reduction can be

converted to a solution to WCMd in the following way. First, we assign jobs to all

idle machines arbitrarily to ensure that at any time between 0 and Wk, no machines

are idle and all jobs are allocated. Formally, we define f 1 : M � r0, Wks Ñ J such

that tf 1pM1, tq, . . . , f 1pMm�1, tqu � tJ1, . . . , Jm�1u for all t, and for any M PM and

t P r0, Wks, we have that if fpM, tq P J , then f 1pM, tq � fpM, tq. For example, we

can assign jobs to the shaded areas (which represent idle time) in the schedule in

Figure 5.1 in the way illustrated in Figure 5.2.

J1 J1 J2 J3

J1 J3 J2

J2 J3 J1J3 J3

J2 J2

J1

M1

M2

M3

J3 J2

J1

W0 T1 T2 T3 T4 W2W1

α1

1
α1

2
α1

3
α2

1
α2

2
α2

3{ { { { { {

{ {

w1 w2

Figure 5.2: Conversion of an optimal schedule to a solution for WCMd.

Next, for any 1 ¤ i ¤ k, we convert the schedule to the manipulators’ votes in

the natural way:
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• If there are no preemption break points in pWi�1, Wiq, we let manipulator i

vote for c ¡ f 1pM1, Wi�1 � ǫq ¡ f 1pM2, Wi�1 � ǫq ¡ . . . ¡ f 1pMm�1, Wi�1 � ǫq,
where ǫ ¡ 0 is sufficiently small.

• If there are preemptive break points in pWi�1, Wiq, denoted by Ta, Ta�1, . . . , Ta�b�1,

then we let V i
1 , . . . , V i

b�1 denote the orders that correspond to the schedule

at times Wi�1 � ǫ, Ta � ǫ, . . . , Ta�b�1 � ǫ, respectively. Let αi
1 � Ta �Wi�1,

αi
2 � Ta�1 � Ta, . . . , α

i
b�1 � Wi � Ta�b�1. We let manipulator i vote for°b�1

j�1rαi
j{pWi �Wi�1qs � V i

j .

Example 5.4.4. Suppose there are two manipulators whose weights w1 and w2 are

illustrated in Figure 5.2. Manipulator 1 votes rp1{4qpc ¡ c1 ¡ c3 ¡ c2q � p1{4qpc ¡
c1 ¡ c2 ¡ c3q � p1{2qpc ¡ c2 ¡ c1 ¡ c3qs; manipulator 2 votes rp1{3qpc ¡ c2 ¡ c1 ¡
c3q � p1{3qpc ¡ c2 ¡ c3 ¡ c1q � p1{3qpc ¡ c3 ¡ c2 ¡ c1qs. l

On the basis of the exposition above we now refer the reader to Algorithm 1.

The algorithm solves WCMd in three steps: 1. convert the WCMd instance to a

Q|pmtn|Cmax instance; 2. apply a polynomial-time algorithm that solves Q|pmtn|Cmax

(for example, the algorithm in Gonzalez and Sahni (1978)); 3. convert the solution

to the scheduling instance to a solution to the WCMd instance. Algorithm 1 also

solves COd, because the makespan w computed in Line 3 is the optimal solution to

COd. It is easy to verify that the algorithm runs in polynomial time. To conclude,

we have the following result.

Theorem 5.4.5. Algorithm 1 solves WCMd and COd (exactly) in polynomial time.

5.4.2 Algorithm for WCM

We now move on to the more difficult indivisible case. We first note that Algorithm 1

cannot be directly applied to WCM, because the manipulators’ votes constructed in
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Algorithm 1: compWCMd�i ¤ m� 1, si � ~smp1q � si�11 �i ¤ m� 1, pi � maxtspP NM , wNM , ciq � spP NM , wNM , cq, 0u
2

Solve the Q|pmtn|Cmax instance (e.g., by the algorithm in Gonzalez and Sahni
3

(1978)). Let w and f denote the minimum makespan and an extended
optimal schedule; let T1, . . . , Tl denote the preemptive break points.
if w ¡ Wk then

4

return false.
5

end
6

Let f 1 : M� r0, Wks ÑJ be such that
7 tf 1pM1, tq, . . . , f 1pMm�1, tqu � tJ1, . . . , Jm�1u, and for any M PM, any

t P r0, Wks, we have that if fpM, tq P J , then f 1pM, tq � fpM, tq.
for i � 1 to k do

8

Let V i
1 � rc ¡ f 1pM1, Wi�1 � ǫq ¡ . . . ¡ f 1pMm�1, Wi�1 � ǫqs

9

j � 2
10

for each preemptive break point T P pWi�1, Wiq (in order) do
11

Let V i
j � rc ¡ f 1pM1, T � ǫq ¡ . . . ¡ f 1pMm�1, T � ǫqs

12

j � j � 1
13

end
14

For any j, let αi
j be the length of the jth interval in rWi�1, Wis induced by

15

the preemptive break points.
Let manipulator i vote

°
jrαi

j{pWi �Wi�1qs � V i
j , and add this vote to P M

16

end
17

return P M
18

Line 16 can be divisible. For any positional scoring rule, if there is a successful

manipulation (in which all manipulators rank c in the top position), and we increase

the weights of the manipulators, then c still wins the election. This property is

known as monotonicity in weights (see Zuckerman et al. (2009) for a formal definition

and the proof). Therefore, instead of having manipulator i cast the divisible vote°
jrαi

j{pWi � Wi�1qs � V i
j , we let her cast the indivisible vote V i

j�, which is one of

the V i
j with the highest weight among all the V i

j ’s constructed for manipulator i.

In addition, for any j � j�, we add one extra manipulator whose weight is αi
j , and

let the new manipulator vote V i
j . It turns out that if we use a particular algorithm

for the scheduling problem, then the solution will not require too many additional
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manipulators. This gives us Algorithm 2 for WCM.

Algorithm 2: compWCM

This algorithm is the same as Algorithm 1, except for the following two lines:
3 Use the algorithm in Gonzalez and Sahni (1978) to solve the scheduling
problem

16 Let manipulator i vote for V i
j�, where for any j � j�, αi

j� ¥ αi
j ; and for any

j � j�, we add a new manipulator whose weight is αi
j , and let her vote V i

j

Example 5.4.6. Let the coalitional manipulation problem instance be the same as

in Example 5.4.2. Suppose we have two manipulators whose weights are both 1;

then, because the minimum makespan is 11{5 ¡ 2 (as observed in Example 5.4.3),

there is no solution to the WCMd and WCM problem instances. The solution to the

COd problem instance is 11{5.

Now suppose we have two manipulators, whose weights are w1 � 1 and w2 � 6{5,

respectively. Let f be the optimal schedule defined in Example 5.4.3. A solution to

the WCMd problem instance is obtained as follows. Manipulator 1 votes rc ¡ c3 ¡
c2 ¡ c1s, and manipulator 2 votes rp1{2qpc ¡ c3 ¡ c2 ¡ c1q�p1{2qpc ¡ c3 ¡ c1 ¡ c2qs.
For WCM, the vote of manipulator 1 is the same, the vote of manipulator 2 isrc ¡ c3 ¡ c2 ¡ c1s, and there is one additional manipulator, whose weight is 3{5 and

whose vote is rc ¡ c3 ¡ c1 ¡ c2s. l
Example 5.4.7. Suppose there are two manipulators whose weights are illustrated

in Figure 5.2. The vote of manipulator 1 is c ¡ c2 ¡ c1 ¡ c3, and we introduce

two new manipulators with weight w1{4 whose votes are c ¡ c1 ¡ c3 ¡ c2 and

c ¡ c1 ¡ c2 ¡ c3. The vote of manipulator 2 is c ¡ c2 ¡ c1 ¡ c3, and we introduce

two new manipulators with weight w2{3 whose votes are c ¡ c2 ¡ c3 ¡ c1 and

c ¡ c3 ¡ c2 ¡ c1. Since |Bf | (the number of preemptive break points) is 4, there are

in total four additional manipulators. l
For any j � j�, we must have αi

j ¤ pWi � Wi�1q{2 ¤ W {2 (recall that W �
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maxj¤k wj). Moreover, for any preemptive break point we introduce at most one

extra manipulator. Therefore, we immediately have the following lemma that relates

the number of the new manipulators to the number of preemptive break points.

Lemma 5.4.8. If w ¥ Wk, then there is no successful manipulation for WCMd

(nor for WCM); otherwise, Algorithm 2 returns a manipulation with at most |Bf |
additional manipulators, each with weight at most W {2.

Therefore, the smaller |Bf | is, the fewer new manipulators are introduced by

Algorithm 2. |Bf | depends on which algorithm we use to solve Q|pmtn|Cmax in Line 3.

In fact, there are many efficient algorithms that solve Q|pmtn|Cmax. For example,

Q|pmtn|Cmax can be solved in time Opn̄2m̄q by a greedy algorithm (Brucker, 2007).

At each time point t, the algorithm (called the level algorithm) assigns jobs to the

machines in a way such that the greater the remaining workload of a job, the faster

the machine it is assigned to.5 However, this algorithm in some cases generates a

schedule that has as many as m̄pm̄�1q{2 preemptive break points. Therefore, we turn

to the algorithm by Gonzalez and Sahni (1978), which runs in time Opn̄ � m̄ log n̄q
using at most 2pm̄ � 1q preemptions. Gonzalez and Sahni also showed that this

bound is tight. We note that one preemptive break point corresponds to at least two

preemptions, and in the instances that were used to show that the 2pm̄�1q bound is

tight, m̄� 1 preemptive break points are required. Therefore, we immediately have

the following lemma.

Lemma 5.4.9. The number of preemptive break points in the solution obtained by

the algorithm of Gonzalez and Sahni (1978) is at most m̄ � 1. Furthermore, this

bound is tight.

We note that m̄ � m� 1. Hence, combining Lemma 5.4.8 and Lemma 5.4.9, we

5 The greedy algorithm of Zuckerman et al. (2009) is effectively a discrete-time version of the level
algorithm.
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have the following theorem, which is our main result.

Theorem 5.4.10. Algorithm 2 runs in polynomial time and

1. if the algorithm returns false, then there is no successful manipulation (even

for the WCMd version of the instance);

2. otherwise, the algorithm returns a successful manipulation for a modified set

of manipulators, consisting of the original manipulators plus at most m � 2

additional manipulators, each with weight at most W {2.
5.5 Algorithms for UCM and UCO

We now consider the case where votes are unweighted. UCMd and UCOd can be

solved using Algorithm 1. As for UCM/UCO, every manipulator’s weight is one (so

that W � 1), and we are only allowed to add new manipulators whose weight is also

1. We recall that increasing the weights of the manipulators never prevents c from

winning. Therefore, in the context of UCM/UCO we use a slight modification of

Algorithm 2, by adding one unweighted manipulator whenever Algorithm 2 proposes

adding a weighted manipulator (whose weight can be at most 1{2).

Algorithm 3: compWCM

This algorithm is the same as Algorithm 1, except for the following two lines:
3 Use the algorithm in Gonzalez and Sahni (1978) to solve the scheduling
problem.

16 Let manipulator i vote for V i
1 ; for any j ¡ 1, we add a new manipulator who

votes for V i
j .

The following corollary immediately follows from Theorem 5.4.10.

Corollary 5.5.1. For UCM, if Algorithm 3 returns false, then there is no successful

manipulation; otherwise, Algorithm 3 returns a successful manipulation with at most

m� 2 additional manipulators.
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Recall that Lines 1-3 of Algorithm 3 compute the minimum makespan w (the

solution to COd) of the scheduling problem that is obtained from the UCM instance.

It is easy to see that if votes are divisible then rws is the minimum number of

unweighted manipulators required to make c win the election, that is, rws is the

optimal solution to UCOd. Therefore, Algorithm 1 can easily be modified to yield an

algorithm that solves UCOd. We further note that Algorithm 3 is an approximation

algorithm for UCO, as the number of manipulators returned by Algorithm 3 is no

more than rws�m�2. Put another way, Algorithm 3 returns a solution to UCO (with

indivisible votes) that approximates the optimal solution to UCOd (with divisible

votes) to an additive term of m� 2.

Generally, if there exists a successful manipulation, then Algorithm 3 returns a

manipulation with additional manipulators. However, there are some special po-

sitional scoring voting rules under which UCM can always be solved exactly by

Algorithm 1. Given l P t1, . . . , m� 1u, the l-approval rule is the scoring rule where

~smp1q � . . . � ~smplq � 1 and ~smpl � 1q � . . . � ~smpmq � 0. For example, Plu-

rality (with scoring vector p1, 0, . . . , 0q) and Veto (with scoring vector p1, . . . , 1, 0q)
are 1-approval and pm � 1q-approval, respectively. We note that UCM under any

l-approval rule reduces to the scheduling problem in which all machines have the

same speed. This corresponds exactly to the scheduling problem P |pmtn|Cmax in

discrete time (that is, the preemptions are allowed only at integer time points),

which has a polynomial-time algorithm: Longest Remaining Processing Time first

(LRPT) Pinedo (2008). Therefore, if we modify Algorithm 3 by solving the reduced

scheduling instance with LRPT, then we can solve UCM under any k-approval voting

rule in polynomial time.6 To summarize:

Corollary 5.5.2. Let l P t1, . . . , m� 1u. UCM/UCO for l-approval is in P.

6 The simple observation that UCM is in P for approval voting rules was also recently made by
Andrew Lin (via personal communication), who employed a completely different (greedy) approach.
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5.5.1 On The Tightness of The Results

We presently wish to argue that we have made the most of our technique. The next

theorem states that the m� 2 bound is tight in terms of the difference between the

optimal solution to UCO and the optimal solution to UCOd under the same input.

It also implies that Algorithm 3 is optimal in the sense that for any q   m� 2, there

is no approximation algorithm for UCO that always outputs a manipulation with at

most q manipulators more than the optimal solution to UCOd. This result can be

seen as a new type of integrality gap, which applies to our special flavor of rounding.

Theorem 5.5.3. For any m ¥ 3, there exists a UCO instance such that the (additive)

gap between the optimal solution to UCOd and the optimal solution to UCO is m�2.

Proof. For any m ¥ 3, we let the scoring vector be pmpm�1qpm�2q�1, . . . , mpm�
1qpm � 2q � 1, mpm � 1qpm � 2q � 2, 0q. Let V � rc1 ¡ . . . ¡ cm�1 ¡ cs, and let

π be the cyclic permutation on Cztcu, that is, π : c1 Ñ . . . Ñ cm�1 Ñ c1. For

any i ¤ m � 1, let Vi be the linear order over C in which c is ranked in positionpm � 1q, and πipc1q ¡Vi
πipc2q ¡Vi

. . . ¡Vi
πipcm�1q. Let P � pV, V1, . . . , Vm�1q,

P NM � P Y πpP q Y . . .Y πm�2pP q. It follows that for any i ¤ m� 1, spP NM , ciq �
spP NM , cq � pm � 1q2 � 1. Let V 1 � rc ¡ c1 . . . ¡ cm�1s; it can be verified that the

divisible vote

1

m� 1
pV 1, πpV 1q, π2pV 1q, . . . , πm�2pV 1qq

is sufficient to make c win, hence the optimal solution to UCOd is 1.

We next prove that the solution to UCO is m � 1. Clearly the following profile

is a successful manipulation.pV 1, πpV 1q, π2pV 1q, . . . , πm�1pV 1qq
Hence, it remains to show that the solution is at least m � 1. For the sake of

contradiction we assume that the solution is m � 2, and P M is the corresponding
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successful manipulation. Therefore, there must exist i ¤ m � 1 such that ci is not

ranked at the bottom of any of the votes of P M . Therefore,

spP M , cq � spP M , ciq ¤ m� 2   pm� 1q2 � 1,

which means that spP NM Y P M , cq � spP NM Y P M , ciq   0. This contradicts the

assumption that P M is a successful manipulation.

We next ask the following natural question: is it possible to improve the rounding

technique so that the algorithm achieves a better bound, relative to the optimal

solution for the indivisible case? This is not ruled out by Theorem 5.5.3, since

that theorem compares to the optimal UCOd solution rather than the optimal UCO

solution. Nevertheless, the answer is negative, as long as all linear orders in an

optimal solution to the COd problem appear in the output of the algorithm. We

say that an approximation algorithm I for UCO is based on COd if for any UCO

instance, there exists an optimal solution to COd such that every linear order that

appears in that solution also appears in the output of I (as a fraction of the vote of

a manipulator).

Theorem 5.5.4. Let I be an approximation algorithm based on COd. For any

m ¥ 3, there exists a UCO instance such that the gap between the optimal solution

to UCO and the output of I is m� 2.

Proof. For any m ¥ 3, we construct an instance such that the solution to the UCO

problem is 1, but at least m� 1 linear orders appear in any optimal solution to the

COd problem (so the gap is m� 2).

We let the scoring vector be pm� 2, 1, 0, . . . , 0q. Let

V � rc ¡ c1 ¡ . . . ¡ cm�1s,
and

V 1 � rcm�1 ¡ c1 ¡ c ¡ c2 ¡ . . . ¡ cm�2s.
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Furthermore, let

π : c1 Ñ c2 Ñ . . .Ñ cm�1 Ñ c1,

and

π� : c Ñ c1 Ñ . . . Ñ cm�1 Ñ c.

We define preference profiles by letting

P � pV 1, V, π�pV q, pπ�q2pV q, . . . , pπ�qm�2pV qq
and P NM � P Y πpP q Y . . .Y πm�2pP q.

We have that spP, cq � m � 2, spP, c1q � m � 4, and for any 2 ¤ i ¤ m � 1,

spP, ciq � m� 3. Therefore, spP NM , cq � pm� 2qpm� 1q and for any 2 ¤ i ¤ m� 1,

spP NM , ciq � pm � 3qpm � 1q � 1. Therefore, for any i ¤ m � 1, spP NM , ciq �
spP NM , cq � m. It follows that one manipulator suffices to make c the winner (by

voting c ¡ c1 ¡ . . . ¡ cm�1).

On the other hand, the minimum weight for COd is pm� 1q{m, for example,

V M � m� 1

m
p 1

m� 1
V � 1

m� 1
πpV q � . . .� 1

m� 1
πm�2pV qq.

In any manipulator’s vote corresponding to the minimum total weight, every alterna-

tive except c must appear in the second position for a fraction of the vote. Therefore,

any algorithm based on COd must output at least m� 1 linear orders.

5.6 Summary

In this chapter, we extensively examined how strong computational complexity is

as a barrier against manipulation. Most results in this chapter are negative. In

Section 5.1 we showed that (roughly) for all generalized scoring rules, if the number of

manipulators is opnαq for some α   1{2, then the probability that these manipulators

can succeed goes to 0 as n goes to infinity; however, if the number of manipulators is
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ωpnαq for some α ¡ 1{2, then the probability that these manipulators are all-powerful

goes to 1 as n goes to infinity (except they cannot make alternatives against which

the nonmanipulators are systematically biased win). We note that as n goes to

infinity,
?

n{n goes to zero.

This “dichotomy” result implies that when the total number of voters is large,

even if the number of manipulators is very small compared to the number of nonma-

nipulators, the manipulators can still manipulate the winner with a high probability.

We further gave an axiomatization in Section 5.3, which tells us how general the class

of GSRs is—it is the class of all voting rules that satisfies anonymity, homogeneity,

and finite local consistency.

Section 5.4 aimed at directly designing (approximation) algorithms for a number

of coalitional manipulation problems for positional scoring rules. Built on top of a

novel connection between coalitional manipulation problems and scheduling prob-

lems, we proposed polynomial-time algorithms that solve WCMd and COd. We also

used these algorithms plus a rounding technique to obtain approximation algorithms

for WCM, UCM, and UCO, with an additive error bound of m� 2, which is tight in

a sense.

Therefore, it seems that computational complexity is not a very strong barrier

against manipulation. An obvious next step is to look for other ways to prevent

manipulation. Note that one assumption made in all previous manipulation settings

is that the manipulators have full information about the votes of the nonmanipu-

lators. Therefore, a natural question to ask is: What if the manipulators do not

have full information about the other voters’ votes? The work in the next chapter is

motivated by this question. We will study the case of one manipulator with limited

information about other voters’ votes. We will prove that restricting the information

of the manipulator can effectively make a certain type of manipulation, which we

call dominating manipulation, NP-hard. At one extreme, if the manipulator knows
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nothing, many voting rules are immune to dominating manipulations. These results

seem very natural at a high level, but to obtain them, we need a formal model to

analyze voters’ strategic behavior.
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6

Preventing Manipulation by Restricting

Information

It was shown in the last chapter that computational complexity does not seem to be

a very strong barrier against manipulation. Consequently, we need to look for new

barriers. In this chapter we examine some preliminary ideas to prevent manipula-

tion for the cases where there is one manipulator, by restricting the manipulator’s

information about the other voters’ votes. We recall that in all previously studied

manipulation problems, it is normally assumed that the manipulator has full infor-

mation about the votes of the non-manipulators. The argument often given is that

if it is NP-hard with full information, then it only can be at least as computationally

difficult with partial information. However, when there is only one manipulator,

computing a manipulation is in P for most common voting rules, including all posi-

tional scoring rules, Copeland, maximin, and voting trees (see Table 3.1). The only

known exceptions are STV (Bartholdi and Orlin, 1991), ranked pairs (Xia et al.,

2009), and Nanson’s and Baldwin’s rules (Narodytska et al., 2011). It is not clear

whether it is computationally easy for a single manipulator to find a manipulation

when she only has partial information for other rules.
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In this chapter, we first model how one manipulator computes a manipulation

based on partial information about the other votes. For example, the manipulator

may know that some voters prefer one alternative to another, but might not be able

to know all pairwise comparisons for all voters. We suppose the knowledge of the

manipulator is described by an information set E. This is some subset of possible

profiles of the non-manipulators which is known to contain the true profile. Given an

information set and a pair of votes U and V , if for every profile in E, the manipulator

is not worse off voting U than voting V , and there exists a profile in E such that

the manipulator is strictly better off voting U , then we say that U dominates V . If

there exists a vote U that dominates the true preferences of the manipulator then

the manipulator has an incentive to vote untruthfully. We call this a dominating

manipulation. If there is no such vote, then a cautious manipulator might have little

incentive to vote strategically.

We are interested in whether a voting rule r is immune to dominating manipula-

tions, meaning that a voter’s true preferences are never dominated by another vote.

If r is not immune to dominating manipulations, we are interested in whether r is

resistant, meaning that computing whether a voter’s true preferences are dominated

by another vote U is NP-hard, or vulnerable, meaning that this problem is in P. These

properties depend on both the voting rule and the form of the partial information.

Interestingly, it is not hard to see that most voting rules are immune to manipu-

lation when the partial information is just the current winner. For instance, with

any majority consistent rule (for example, plurality), a risk averse manipulator will

still want to vote for her most preferred alternative. This means that the chairman

does not need to keep the current winner secret to prevent such manipulations. On

the other hand, if the chairman lets slip more information, many rules stop being

immune. With most scoring rules, if the manipulator knows the current scores, then

the rule is no longer immune to such manipulation. For instance, when her most
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preferred alternative is too far behind to win, the manipulator might vote instead

for a less preferred candidate who can win.

In this chapter, we focus on the case where the partial information is represented

by a profile Ppo of partial orders, and the information set E consists of all linear

orders that extend Ppo. The dominating manipulation problem is related to the pos-

sible/necessary winner problems, which I have briefly talked about in Section 1.6 and

Section 2.3. We recall that in possible/necessary winner problems, we are given an

alternative c and a profile of partial orders Ppo that represents the partial information

of the voters’ preferences. We are asked whether c is the winner for some extension of

Ppo (that is, c is a possible winner), or whether c is the winner for every extension of

Ppo (that is, c is a necessary winner). We note that in the possible/necessary winner

problems, there is no manipulator and Ppo represents the chair’s partial information

about the votes. In dominating manipulation problems, Ppo represents the partial

information of the manipulator about the non-manipulators.

In the following sections, we start with the special case where the manipulator

has complete information. In this setting the dominating manipulation problem

reduces to the standard manipulation problem, and many common voting rules are

vulnerable to dominating manipulation (from known results). When the manipulator

has no information, we show that a wide range of common voting rules are immune to

dominating manipulation. When the manipulator’s partial information is represented

by partial orders, our results are summarized in Table 6.1.

Our results are encouraging. For most voting rules r we study in this paper

(except plurality and veto), hiding even a little information makes r resistant to

dominating manipulation. If we hide all information, then r is immune to dominat-

ing manipulation. Therefore, limiting the information available to the manipulator

1 All hardness results hold even when the number of undetermined pairs in each partial order is
no more than a constant.
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Table 6.1: Computational complexity of the dominating manipulation problems with
partial orders, for common voting rules.

dominating manipulation
STV Resistant (Proposition 6.2.2)

Ranked pairs Resistant (Proposition 6.2.2)
Borda Resistant (Theorem 6.3.1)

Copeland Resistant (Corollary 6.3.7)
Voting trees Resistant (Corollary 6.3.7)

Maximin Resistant (Theorem 6.3.8)
Plurality Vulnerable (Algorithm 5)

Veto Vulnerable (Similar to plurality)

appears to be a promising way to prevent strategic voting.

6.1 Framework for Manipulation with Partial Information

We now introduce the framework of this paper. In this chapter, we suppose there

are n � 1 ¥ 1 non-manipulators and one manipulator to make notion easier. The

information the manipulator has about the votes of the non-manipulators is repre-

sented by an information set E. The manipulator knows for sure that the profile

of the non-manipulators is in E. However, the manipulator does not know exactly

which profile in E it is. Usually E is represented in a compact way. Let I denote

the set of all possible information sets in which the manipulator may find herself.

Example 6.1.1. Suppose the voting rule is r. If the manipulator has no information, then the only information set is E �
Fn�1. Therefore I � tFn�1u. Here we recall that Fn�1 is the set of all pn�1q-profiles If the manipulator has complete information, then I � ttP u : P P Fn�1u. If the manipulator knows the current winner (before the manipulator votes),

then the set of all information sets the manipulator might know is I � tE1, E2, . . . , Emu,
where for any i ¤ m, Ei � tP P Fn�1 : rpP q � ciu.

Let VM denote the true preferences of the manipulator. Given a voting rule r
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and an information set E, we say that a vote U dominates another vote V , if for

every profile P P E, we have rpP Y tUuq ©VM
rpP Y tV uq, and there exists P 1 P E

such that rpP 1Y tUuq ¡VM
rpP 1Y tV uq. In other words, when the manipulator only

knows the voting rule r and the fact that the profile of the non-manipulators is in

E (and no other information), voting U is a strategy that dominates voting V . We

define the following two decision problems.

Definition 6.1.2. Given a voting rule r, an information set E, the true preferences

VM of the manipulator, and two votes V and U , we are asked the following two ques-

tions. Does U dominate V ? This is the domination problem. Does there exist a vote V 1 that dominates VM? This is the dominating manipu-

lation problem.

We stress that usually E is represented in a compact way, otherwise the input

size would already be exponentially large, which would trivialize the computational

problems. Given a set I of information sets, we say a voting rule r is immune to

dominating manipulation, if for every E P I and every VM that represents the ma-

nipulator’s preferences, VM is not dominated; r is resistant to dominating manipula-

tion, if dominating manipulation is NP-hard (which means that r is not immune

to dominating manipulation, assuming P�NP); and r is vulnerable to dominating

manipulation, if r is not immune to dominating manipulation, and dominating

manipulation is in P.

6.2 Manipulation with Complete/No Information

In this section we focus on the following two special cases: (1) the manipulator has

complete information, and (2) the manipulator has no information. It is not hard to

see that when the manipulator has complete information, dominating manipula-
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tion coincides with the standard manipulation problem. Therefore, our framework

of dominating manipulation is an extension of the traditional manipulation problem,

and we immediately obtain the following proposition from the Gibbard-Satterthwaite

theorem (Gibbard, 1973; Satterthwaite, 1975).

Proposition 6.2.1. When m ¥ 3 and the manipulator has full information, a voting

rule satisfies non-imposition and is immune to dominating manipulation if and only

if it is a dictatorship.

The following proposition directly follows from the computational complexity of

the manipulation problems for some common voting rules (Bartholdi et al., 1989a;

Bartholdi and Orlin, 1991; Conitzer et al., 2007; Zuckerman et al., 2009; Xia et al.,

2009).

Proposition 6.2.2. When the manipulator has complete information, STV, ranked

pairs, Nanson’s and Baldwin’s rules are resistant to dominating manipulation;

all positional scoring rules, Copeland, voting trees, and maximin are vulnerable to

dominating manipulation.

Next, we investigate the case where the manipulator has no information. We

obtain the following positive results.

Theorem 6.2.3. When the manipulator has no information, any Condorcet consis-

tent voting rule r is immune to dominating manipulation.

Proof. For the sake of contradiction, let U dominates VM . Because U � VM , there

exist two alternatives a and b such that a ¡VM
b and b ¡U a. We prove the theorem

in the following two cases.

Case 1: n � 1 is even. For any j such that 1 ¤ j ¤ pn � 1q{2, we let V2j�1 �ra ¡ b ¡ pCzta, buqs, where the alternatives in Czta, bu are ranked according to
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the ascending order of their subscripts; let V2j � rb ¡ a ¡ RevpCzta, buqs. Here

RevpCzta, buq is the reverse of Czta, bu. Let P � pV1, . . . , Vn�1xq. It follows that a

is the Condorcet winner for P Y tVMu and b is the Condorcet winner for P Y tUu.
Because a ¡VM

b, VM is not dominated by U , which contradicts the assumption.

Case 2: n� 1 is odd. For any j such that 1 ¤ j ¤ pn� 2q{2, we let V2j�1 � ra ¡
b ¡ pCzta, buqs and V2j � rb ¡ a ¡ RevpCzta, buqs. Suppose a � ci1 and b � ci2 . Let

Vn�1 � " V1 if i1 ¡ i2
V2 if i1   i2

. Let P � pV1, . . . , Vn�1q. It follows that a is the Condorcet

winner for P Y tVMu and b is the Condorcet winner for P Y tUu, which contradicts

the assumption.

Theorem 6.2.4. When the manipulator has no information, Borda is immune to

dominating manipulation.

Proof. For the sake of contradiction, let U dominates VM . Because U � VM , there

exists i� ¤ m such that AltpVM , i�q � AltpU, i�q and for every i   i�, AltpVM , iq �
AltpU, iq. That is, i� is the first position from the top where the alternatives in VM

and U are different. Let ci1 � AltpVM , i�q and ci2 � AltpUM , i�q. We prove the

theorem in the following three cases.

Case 1: n � 1 is even. For any i   i1 ¤ m, let V
ri,i1s
M denote the sub-linear-order

of VM that starts at the ith position of VM and ends at the i1th position of VM .

For any j such that 1 ¤ j ¤ pn � 1q{2, we let V2j�1 � rV ri�,ms
M ¡ RevpV r1,i��1sq

M s
and V2j � rRevpV ri�,ms

M q ¡ RevpV r1,i��1sq
M s. Let P � pV1, . . . , Vn�1q. It follows that

BordapP Y tVMuq � ci1 and BordapP Y tUuq � ci2. We note that ci1 ¡VM
ci2 , which

contradicts the assumption.

Case 2: n � 1 is odd and c1 is ranked within top i� positions in VM . For

any j such that 1 ¤ j ¤ pn � 2q{2, we let V2j�1 � rc1 ¡ c2 ¡ � � � ¡ cms and

V2j � rcm ¡ cm�1 ¡ � � � ¡ c1s. Let Vn�1 � RevpV q and P � pV1, . . . , Vn�1q. It
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follows that BordapP Y tV uq � c1 and BordapP Y tUuq � c1, which contradicts the

assumption.

Case 3: n � 1 is odd and c1 is not ranked within top i� positions in VM . Let

V1, . . . , Vn�2 be defined the same as in Case 2. Let V 1 � rV ri�,ms
M ¡ RevpV r1,i��1s

M qs.
Let U 1 � rU ri�,ms ¡ RevpU r1,i��1sqs. It follows that BordapV 1, VMq � ci1 . Let

a � BordapV 1, Uq. If a � ci1 , then ci1 ¡VM
a. This is because the alternatives

ranked within top i� � 1 positions in VM gets exactly the average score in tV 1, Uu,
which means that in order for any of them to win, the scores of all alternative

in tV 1, Uu must be the same. However, due to the tie-breaking mechanism, the

winner is c1, which contradicts the assumption that c1 is not ranked within top i�
positions in VM . Let P 1 � pV1, . . . , Vn�2, V

1q, we have that BordapP 1 Y tVMuq �
ci1 ¡VM

a � BordapP 1 Y tUuq, which contradicts the assumption. If a � ci1, then

BordapU 1, VMq � BordapV 1, Uq � a � ci1 . Let P � � pV1, . . . , Vn�2, U
1q. We have

BordapP � Y tVMuq � ci1 ¡VM
ci2 � BordapP � Y tUuq, which is a contradiction.

Therefore, the theorem is proved.

Theorem 6.2.5. When the manipulator has no information and n ¥ 6pm� 2q � 1,

any positional scoring rule is immune to dominating manipulation.

Proof. For the sake of contradiction, let U dominates VM . Let c � arg maxc�t~smpVM , c�q :

~smpVM , c�q ¡ ~smpU, c�qu. It follows that there exists an alternative c1 such that

~smpVM , c1q   ~smpVM , cq and ~smpU, c1q � ~smpVM , cq. It follows that smpVM , cq ¡
~smpVM , c1q and ~smpU, c1q � ~smpVM , cq ¡ ~smpU, cq.

We prove the theorem for the case where c � c1 and c1 � c2. The other cases

can be proved similarly. Let Mm�2 denote the cyclic permutation such that c3 Ñ
c4 Ñ � � � Ñ cm Ñ c3. For any k P N and any c P Cztc1, c2u, we let M0

m�2pcq � c and

Mk
m�2pcq � MpMk�1

m�2pcqq. Let W � rc1 ¡ c2 ¡ c3 ¡ � � � ¡ cms and W 1 � rc2 ¡ c1 ¡
c3 ¡ � � � ¡ cms. Let P1 denote the 6pm� 2q-profile that is composed of three copies
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of tW, W 1, Mm�2pW q, Mm�2pW 1q, . . . , Mm�3
m�2 pW q, Mm�3

m�2 pW qu.
If n � 1 is even, then let P be composed of P1 plus pn � 1q{2 � 3pm� 2q copies

of tW, W 1u. If n � 1 is odd, then let W � denote the a vote obtained from VM by

exchanging the positions of c and c1 and let P be composed of P1 Y tW �u plustpn � 1q{2u � 3pm � 2q copies of tW, W 1u. Because ~smp1q ¡ ~smpmq, we have that

rpP Y tVMuq � c1 and rpP Y tUuq � c2. We note that c1 ¡VM
c2. Therefore, we

obtain a contradiction, which means that VM is not dominated.

These results demonstrate that the information that the manipulator has about

the votes of the non-manipulators plays an important role in determining strategic

behavior. When the manipulator has complete information, many common vot-

ing rules are vulnerable to dominating manipulation, but if the manipulator has no

information, then many common voting rules become immune to dominating manip-

ulation.

6.3 Manipulation with Partial Orders

In this section, we study the case where the manipulator has partial information

about the votes of the non-manipulators. We suppose the information is repre-

sented by a profile Ppo composed of partial orders. That is, the information set is

E � tP P Fn : P extends Ppou. We note that the two cases discussed in the previous

section (complete information and no information) are special cases of manipulation

with partial orders. Consequently, by Proposition 6.2.1, when the manipulator’s in-

formation is represented by partial orders and m ¥ 3, no voting rule that satisfies

non-imposition and non-dictatorship is immune to dominating manipulation. It also

follows from Theorem 6.2.4 that STV and ranked pairs are resistant to dominat-

ing manipulation. The next theorem states that even when the manipulator only

misses a tiny portion of the information, Borda becomes resistant to dominating
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manipulation.

Theorem 6.3.1. domination and dominating manipulation with partial orders

are NP-hard for Borda, even when the number of unknown pairs in each vote is no

more than 4.

Proof. We only prove that domination is NP-hard, via a reduction from Exact

Cover by 3-Sets (x3c). The proof for dominating manipulation is similar

to the proof of the NP-hardness of the possible winner problems under positional

scoring rules in Xia and Conitzer (2011a).

In an x3c instance, we are given two sets V � tv1, . . . , vqu, S � tS1, . . . , Stu,
where for any j ¤ t, Sj � V and |Sj| � 3. We are asked whether there exists a

subset S 1 of S such that each element in V is in exactly one of the 3-sets in S 1. We

construct a domination instance as follows.

Alternatives: C � tc, w, du Y V, where d is an auxiliary alternative. Therefore,

m � |C| � q � 3. Ties are broken in the following order: c ¡ w ¡ V ¡ d.

Manipulator’s preferences and possible manipulation: VM � rw ¡ c ¡ d ¡
Vs. We are asked whether V � VM is dominated by U � rw ¡ d ¡ c ¡ Vs.
The profile of partial orders: Let Ppo � P1 Y P2, defined as follows.

First part (P1) of the profile: For each j ¤ t, We define a partial order Oj as

follows.

Oj � rw ¡ Sj ¡ d ¡ Othersszrtwu � pSj Y tduqs
That is, Oj is a partial order that agrees with w ¡ Sj ¡ d ¡ Others, except that

the pairwise relations between pw, Sjq and pw, dq are not determined (and these are

the only 4 unknown relations). Let P1 � tO1, . . . , Otu.
Second part (P2) of the profile: We first give the properties that we need P2

to satisfy, then show how to construct P2 in polynomial time. All votes in P2 are

linear orders that are used to adjust the score differences between alternatives. Let
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P 11 � tw ¡ Si ¡ d ¡ Others : i ¤ tu. That is, P 11 (|P 11| � t) is an extension of P1 (in

fact, P 11 is the set of linear orders that we started with to obtain P1, before removing

some of the pairwise relations). Let ~sm � pm� 1, . . . , 0q. P2 is a set of linear orders

such that the following holds for Q � P 11 Y P2 Y tV u:
(1) For any i ¤ q, ~smpQ, cq � ~smpQ, viq � 1, ~smpQ, wq � ~smpQ, cq � 4q{3.

(2) For any i ¤ q, the scores of vi and w, c are higher than the score of d in any

extension of P1 Y P2 Y tV u and in any extension of P1 Y P2 Y tUu.
(3) The size of P2 is polynomial in t� q.

We now show how to construct P2 in polynomial time. For any alternative a � d,

we define the following two votes: Wa � tra ¡ d ¡ Otherss, rRevpOthersq ¡ a ¡ dsu,
where RevpOthersq is the reversed order of the alternatives in Czta, du. We note that

for any alternative a1 P Czta, du, ~smpW, aq�~smpW, a1q � 1 and ~smpW, a1q�~smpW, dq �
1. Let Q1 � P 11 Y tV u. P2 is composed of the following parts:

(1) tm� ~smpQ1, cq copies of Wc.

(2) tm� 4q{3� ~smpQ1, wq copies of Ww.

(2) For each i ¤ q, there are tm� 1� ~smpQ1, viq copies of Wvi
.

We next prove that V is dominated by U if and only if c is the winner in at least

one extension of Ppo Y tV u. We note that for any v P V Y twu, the score of v in V

is the same as the score of v in U . The score of c in U is lower than the score of

c in V . Therefore, for any extension P � of Ppo, if rpP � Y tV uq P ptwu Y Vq, then

rpP � Y tV uq � rpP � Y tUuq (because d cannot win). Hence, for any extension P � of

Ppo, voting U can result in a different outcome than voting V only if rpP �Y V q � c.

If there exists an extension P � of Ppo such that rpP � Y tV uq � c, then we claim

that the manipulator is strictly better off voting U than voting V . Let P �1 denote

the extension of P1 in P �. Then, because the total score of w is no more than the

total score of c, w is ranked lower than d at least q

3
times in P �1 . Meanwhile, for each

i ¤ q, vi is not ranked higher than w more than one time in P �1 , because otherwise
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the total score of vi will be strictly higher than the total score of c. That is, the

votes in P �1 where d ¡ w make up a solution to the x3c instance. Therefore, the

only possibility for c to win is for the scores of c, w, and all alternatives in V to be

the same (so that c wins according to the tie-breaking mechanism). Now, we have

w � rpP � Y tUuq. Because w ¡VM
c, the manipulator is better off voting U . It

follows that V is dominated by U if and only if there exists an extension of PpoYtV u
where c is the winner.

The above reasoning also shows that V is dominated by U if and only if the x3c

instance has a solution. Therefore, domination is NP-hard. For the dominating

manipulation problem, we add to Ppo a profile PE defined as follows. For each

e P V Y twu and each i ¤ l � 1, we obtain a vote Ve,i from VM by exchanging the

alternative ranked in the pi�1qth position and e, and then exchanging the alternative

ranked in the ith position and d; let Oe,i denote the partial order obtained from Ve,i

by removing d ¡ e. Let M denote the following cyclic permutation c Ñ w Ñ d Ñ
V Ñ A Ñ c. Let PE denote q copies of tOe,i, MpVe,iq, MpVe,iq2, . . . , M l�1pVe,iq : e P
V Y twu, i ¤ l � 1u. We note that in an extension P �E of PE where the extension of

Oe,i is Ve,i, then the scores of the alternatives in P �E are the same.

For any vote W where there exists v P V such that the score difference between w

and v is different from the score difference between w and v in VM , there must exists

v1 P V such that the score difference between w and v1 in W is strictly smaller than

their score difference in VM . Then, it is not hard to find an extension of Ppo such that

if the manipulator votes VM , then w wins, and if the manipulator votes W , then v1
wins, which means that VM is not dominated by W . Therefore, if VM is dominated

by another W , then the score differences between w and the alternatives in V are

the same across VM and W . Following the same reasoning as for the domination

problem, we conclude that dominating manipulation is NP-hard.
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Theorem 6.3.1 can be generalized to a class of scoring rules similar to the class of

rules in Theorem 1 in Xia and Conitzer (2011a), which does not include plurality or

veto. In fact, as we will show later, plurality and veto are vulnerable to dominating

manipulation.

We now investigate the relationship to the possible winner problem in more depth.

In a possible winner problem pr, Ppo, cq, we are given a voting rule r, a profile Ppo

composed of n partial orders, and an alternative c. We are asked whether there

exists an extension P of Ppo such that c � rpP q. Intuitively, both domination and

dominating manipulation seem to be harder than the possible winner problem

under the same rule. Next, we present two theorems, which show that for any

WMG-based rule, domination and dominating manipulation are harder than

two special possible winner problems, respectively.

We first define a notion that will be used in defining the two special possible

winner problems. For any instance of the possible winner problem pr, Ppo, cq, we

define its WMG partition R � tRc1 : c1 P Cu as follows. For any c1 P C, let Rc1 �tWMGpP q : P extends Ppo and rpP q � c1u. That is, Rc1 is composed of all WMGs

of the extensions of Ppo, where the winner is c1. It is possible that for some c1 P C,

Rc1 is empty. For any subset C1 � Cztcu, we let GC1 denote the weighted majority

graph where for each c1 P C1, there is an edge c1 Ñ c with weight 2, and these are the

only edges in GC1 . We are ready to define the two special possible winner problems

for WMG-based voting rules.

Definition 6.3.2. Let d� be an alternative and let C1 be a nonempty subset of

Cztc, d�u. For any WMG-based voting rule r, we let PW1pd�, C1q denote the set

of possible winner problems pr, Ppo, cq satisfying the following conditions:

1. For any G P Rc, rpG�GC1q � d�.
2. For any c1 � c and any G P Rc1, rpG�GC1q � rpGq.
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3. For any c1 P C1, Rc1 � H.

We recall that Rc and Rc1 are elements in the WMG partition of the possible

winner problem.

Definition 6.3.3. Let d� be an alternative and let C1 be a nonempty subset of

Cztc, d�u. For any WMG-based voting rule r, we let PW2pd�, C1q denote the problem

instances pr, Ppo, cq of PW1pd�, C1q, where for any c1 P Cztc, d�u, Rc1 � H.

Theorem 6.3.4. Let r be a WMG-based voting rule. There is a polynomial time

reduction from PW1pd�, C1q to domination with partial orders, both under r.

Proof. Let pr, Ppo, cq be a PW1pd�, C1q instance. We construct the following domi-

nation instance. Let the profile of partial orders be Qpo � Ppo Y tRevpd� ¡ c ¡
C1 ¡ Othersqu, V � VM � rd� ¡ c ¡ C1 ¡ Otherss, and U � rd� ¡ C1 ¡ c ¡ Otherss.
Let P be an extension of Ppo. It follows that WMGpP Y tRevpd� ¡ c ¡ C1 ¡
Othersq, V uq � WMGpP q, and WMGpP Y tRevpd� ¡ c ¡ C1 ¡ Othersq, Uuq �
WMGpP q � GC1. Therefore, the manipulator can change the winner if and only if

WMGpP q P Rc, which is equivalent to c being a possible winner. We recall that by

the definition of PW1pd�, C1q, for any G P Rc, rpG � GC1q � d�; for any c1 � c and

any G P Rc1, rpG � GC1q � c1; and d� ¡V c. It follows that V (=VM) is dominated

by U if and only if the PW1pd�, C1q instance has a solution.

Theorem 6.3.4 can be used to prove that domination is NP-hard for Copeland,

maximin, and voting trees, even when the number of undetermined pairs in each

partial order is bounded above by a constant. It suffices to show that for each

of these rules, there exist d� and C1 such that PW1pd�, C1q is NP-hard. To prove

this, we can modify the NP-completeness proofs of the possible winner problems for

Copeland, maximin, and voting trees by Xia and Conitzer Xia and Conitzer (2011a).
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Corollary 6.3.5. domination with partial orders is NP-hard for Copeland, max-

imin, and voting trees, even when the number of unknown pairs in each vote is

bounded above by a constant.

Proof. Copeland: We tweak the reduction in the NP-completeness proof of PW

w.r.t. Copeland (Xia and Conitzer, 2011a, Theorem 3) by letting Dpc, vq � 1 for any

alternative v P V and use the tie-breaking mechanism where w ¡ c ¡ Others. Let

d� � w, C1 � B, V � U � rw ¡ c ¡ C1 ¡ Otherss and W � rw ¡ C1 ¡ c ¡ Otherss.
It follows that the alternatives in B never wins the elections, and if c wins the election

in an extension P of Ppo, then the Copeland score of c is 8t � 1 and the Copeland

score of w � 8t. However, in the weighted majority graph WMGpP q � GC1, c loses

to all alternatives in C1 in their pairwise elections, which means that the Copeland

score of c is t � 1. Consequently w is the winner. On the other hand, for any

extension P where c is not the winner, w is the winner, and w is also the winner

in the weighted majority graph WMGpP q � GC1. Therefore, the PW instance is a

PW1pd�, C1q instance.

Maximin: We tweak the reduction in the NP-completeness proof of PW w.r.t. max-

imin (Xia and Conitzer, 2011a, Theorem 5) by letting Dpw1, wq � t. Let d� � w,

C1 � tw1u, V � U � rw ¡ c ¡ w1 ¡ Vs and W � rw ¡ w1 ¡ c ¡ Vs. We adopt the

tie-breaking mechanism where w ¡ c ¡ V ¡ w1. It is easy to check that w1 never

wins the elections. If c wins the election in an extension P of Ppo, then the minimum

pairwise score of c is �t�2, and the minimum pairwise score of w and the alternatives

in V are �t. We note that in the majority graph WMGpP q�GC1, the minimum pair-

wise score of c is �t (against w1), which means that rpWMGpP q�GC1q � w. For any

extension P of Ppo such that rpP q � c, it easy to check that the winner is in twuYV,

and the minimum pairwise scores of them are the same as in the weighted majority

graph WMGpP q �GC1. Therefore, the PW instance is a PW1pd�, C1q instance.
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Voting trees: We tweak the reduction in the NP-completeness proof of PW

w.r.t. voting trees (Xia and Conitzer, 2011a, Theorem 7) by letting Dpc, dq � 1. Let

d� � w, C1 � tdu, V � U � rw ¡ c ¡ d ¡ Otherss and W � rw ¡ d ¡ c ¡ Otherss.
For any extension P of Ppo where c wins, the winner for the weighted majority

graph WMGpP q �GC1 is w, because c loses to d in the first round, and w beats any

other alternatives (except c) in their pairwise elections. For any extension P of Ppo

where c does not win, the winner is w. Therefore, the PW instance is a PW1pd�, C1q
instance.

Theorem 6.3.6. Let r be a WMG-based voting rule. There is a polynomial-time

reduction from PW2pd�, C1q to dominating manipulation with partial orders, both

under r.

Proof. The proof is similar to the proof for Theorem 6.3.4. We note that d� is the

manipulator’s top-ranked alternative. Therefore, if c is not a possible winner, then

V (� VM) is not dominated by any other vote; if c is a possible winner, then V is

dominated by U � rw ¡ C1 ¡ c ¡ Otherss.
Similarly, we have the following corollary.

Corollary 6.3.7. dominating manipulation with partial orders is NP-hard for

Copeland and voting trees, even when the number of unknown pairs in each vote is

bounded above by a constant.

It is an open question if PW2pd�, C1q with partial orders is NP-hard for maximin.

However, we can directly prove that dominating manipulation is NP-hard for

maximin by a reduction from x3c.

Theorem 6.3.8. dominating manipulation with partial orders is NP-hard for

maximin, even when the number of unknown pairs in each vote is no more than 4.
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Proof. We prove the hardness result by a reduction from x3c. Given an x3c instance

V � tv1, . . . , vqu, S � tS1, . . . , Stu, where q � t ¡ 3, we construct a dominating

manipulation instance as follows.

Alternatives: V Y tc, w, w1u. Ties are broken in the order w ¡ V ¡ c ¡ w1.
First part P1 of the profile: for each i ¤ t, we start with the linear order Vi �rw ¡ Si ¡ c ¡ pVzSiq ¡ w1s, and subsequently obtain a partial order Oi by removing

the relations in twu�pSiYtcuq. For each i ¤ t, we let O1
i be a partial order obtained

from V 1
i � rw ¡ vi ¡ Otherss by removing w ¡ vi. We let O1 be a partial order

obtained from V 1 � rw1 ¡ w ¡ Otherss by removing w1 ¡ w. Let P1 be the profile

composed of tO1, . . . , Otu, 2 copies of tO1
1, . . . , O

1
tu, and 3 copies of O1. Let P 11 denote

the extension of P1 that consists of V1, . . . , Vt, 2 copies of tV 1
1 , . . . , V

1
t u, and 3 copies

of V 1.
Second part P2 of the profile: P2 is defined to be a a set of linear orders such

that the pairwise score differences of P 11 Y P2 Y tV u satisfy:

(1) Dpw, cq � 2t � 2q

3
, Dpw1, wq � 2t � 6, Dpw1, cq � 2t, and for all i ¤ q,

Dpw, viq � 2t� 4 and Dpvi, w
1q � 4pt� qq.

(2) Dpl, rq ¤ 1 for all other pairwise scores not defined in (1).

Manipulator’s preferences: VM � rw ¡ V ¡ c ¡ w1s.
We note that in any extension of P1YP2, after the manipulator changes her vote

from VM to rw ¡ V ¡ w1 ¡ cs, the only change made to the weighted majority graph

is that the weight on w Ñ c increases by 2. Since w1 never wins in any extension, if

c does not win when the manipulator votes for VM , then the winner does not change

after the manipulator changes her vote to rw ¡ V ¡ w1 ¡ cs. It follows from the proof

of Theorem 6.3.4, Corollary 6.3.5, and Theorem 5 in Xia and Conitzer (2011a) that

if the x3c instance has a solution, then VM is dominated by U � rw ¡ V ¡ w1 ¡ cs.
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Suppose that the x3c instance does not have a solution, we next show that VM is

not dominated by any vote.

For the sake of contradiction, suppose the x3c instance does not have a solution

and VM is dominated by a vote U . There are following cases.

Case 1: There exist vi P V such that w ¡V vi and vi ¡U w. We let P � be the

extension of P1YP2 obtained from P 11YP2 as follows. (1) Let w ¡ w1 in 3 extensions

of O1 (we recall that there are q ¡ 3 copies of O1 in P1). (2) Let vi ¡ w in 2

extensions of O1
i. It is easy to check that in P �, the minimum pairwise score of w is�2t (via w1) and the minimum pairwise score of vi is �2t (via w). Therefore, due to

the tie-breaking mechanism, w wins. However, if the manipulator changes her vote

from VM to U , then the minimum pairwise score of w at most �2t and the minimum

pairwise score of vi is at least �2t � 2, which means that vi wins. We note that

w ¡V vi. This contradicts the assumption that U dominates VM .

Case 2: w ¡W vi for each vi P V. By changing her vote from VM to U , the

manipulator might reduce the minimum score of U by 2, increase the minimum score

of c by 2, or increase the minimum score of w1 by 2. Therefore, by changing her vote

to U , the manipulator would either make no changes, make w lose, or make c win (we

note that w1 is not winning anyway). In each of these three cases the manipulator

is not better off, which means that U does not dominate VM . This contradicts the

assumption.

For plurality and veto, there exist polynomial-time algorithms for both domina-

tion and dominating manipulation. Given an instance of domination, denoted

by pr, Ppo, VM , V, Uq, we say that U is a possible improvement of V , if there exists

an extension P of Ppo such that rpP Y tUuq ¡VM
rpP Y tV uq. It follows that U

dominates V if and only if U is a possible improvement of V , and V is not a pos-

sible improvement of U . We first introduce an algorithm (Algorithm 4) that checks
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whether U is a possible improvement of V for plurality.

Let ci� (resp., cj�) denote the top-ranked alternative in V (resp., U). We will

check whether there exists 0 ¤ l ¤ n, d, d1 P C with d1 ¡VM
d, and an extension P � of

Ppo, such that if the manipulator votes for V , then the winner is d, whose plurality

score in P � is l, and if the manipulator votes for U , then the winner is d1. We note

that if such d, d1 exist, then either d � ci� or d1 � cj� (or both hold). To this end,

we solve multiple maximum-flow problems defined as follows.

Let C1 � C denote a set of alternatives. Let ~e � pe1, . . . , emq P Nm be an arbitrary

vector composed of m natural numbers such that
°m

i�1 ei ¥ n. We define a maximum-

flow problem F ~e
C1 as follows.

Vertices: ts, O1, . . . , On, c1, . . . , cm, y, tu.
Edges:

• For any Oi, there is an edge from s to Oi with capacity 1.

• For any Oi and cj, there is an edge Oi Ñ cj with capacity 1 if and only if cj

can be ranked in the top position in at least one extension of Oi.

• For any ci P C1, there is an edge ci Ñ t with capacity ei.

• For any ci P CzC1, there is an edge ci Ñ y with capacity ei.

• There is an edge y Ñ t with capacity n �°ciPC1 ei.

For example, F ~etc1,c2u is illustrated in Figure 6.1.

It is not hard to see that F ~e
C1 has a solution whose value is n if and only if there

exists an extension P � of Ppo, such that (1) for each ci P C1, the plurality of ci is

exactly ei, and (2) for each ci1 R C1, the plurality of ci1 is no more than ei1 . Now,

for any pair of alternatives d � ci, d
1 � cj such that d1 ¡VM

d and either d � ci� or

d1 � cj�, we define the set of admissible maximum-flow problems Al
Plu to be the set
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Figure 6.1: F ~etc1,c2u.
of maximum flow problems F ~e

ci,cj
where ei � l, and if F ~e

ci,cj
has a solution, then the

manipulator can improve the winner by voting for U . More precisely, we define Al
Plu

as follows.

• If i � i� and j � j�, then let ei � l, ej � l � 1 � δpcj, ciq, and ej� �
minpl � 1 � δpj�, iq, ej � 1 � δpj�, jqq. For any ci1 P Cztci, cj, cj�u, we let ei1 �
minpl � 1� δpi1, iq, ej � δpi1, jqq. Let Al

Plu � tF ~etci,cjuu.
• If i � i� and j � j�, then let ei � l, ej � l � δpcj , ciq, and ei� � minpl �

1 � δpi�, iq, ej � 1 � δpi�, jqq. For any ci1 P Cztci, cj, ci�u, we let ei1 � minpl �
δpi1, iq, ej � 1� δpi1, jqq. Let Al

Plu � tF ~etci,cjuu.
• If i � i� and j � j�, then we define Al

Plu as follows.

– Let ei � l, ej � l � 1 � 2δpcj, ciq. For any ci1 P Cztci, cju, we let ei1 �
minpl � 1� δpi1, iq, ej � 1� δpi1, jqq.

– Let e1i � e1j � l. For any ci1 P Cztci, cju, we let e1i1 � minpl�1�δpi1, iq, ej�
1� δpi1, jqq. Let ~e1 � pe11, . . . , e1mq.

– Let Al
Plu � tF ~etci,cju, F ~e1tci,cjuu.

Algorithm 4 solves all maximum-flow problems in Al
Plu to check whether U is a

possible improvement of V .
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Algorithm 4: PossibleImprovement(V ,U)

Let ci� � AltpV, 1q and cj� � AltpU, 1q.
for any 0 ¤ l ¤ n and any pair of alternatives d � ci, d

1 � cj such that
d1 ¡VM

d and either d � ci� or d1 � cj� do
Compute Al

Plu.
for each maximum-flow problem F ~e

C1 in Al
Plu

do
if
°

ciPC1 ei ¤ n and the value of maximum flow in F ~e
C1 is n then

Output that the U is a possible improvement of V , terminate the
algorithm.

end

end

end
Output that U is not a possible improvement of V .

Al
Plu The algorithm for domination (Algorithm 5) runs Algorithm 4 twice to

check whether U is a possible improvement of V , and whether V is a possible im-

provement of U .

Algorithm 5: Domination

if PossibleImprovement(V ,U)=“yes” and PossibleImprovement(U ,V )=“no”
then

Output that V is dominated by U .
end

else
Output that V is not dominated by U .

end

The algorithm for dominating manipulation for plurality simply runs Algo-

rithm 5 m � 1 times. In the input we always have that V � VM , and for each

alternative in CztAltpV, 1qu, we solve an instance where that alternative is ranked

first in U . If in any step V is dominated by U , then there is a dominating ma-

nipulation; otherwise V is not dominated by any other vote. The algorithms for

domination and dominating manipulation for veto are similar.
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6.4 Summary

We have shown in this chapter that for many common voting rules, restricting the

manipulator’s information about the other voters’ votes is an effective way to make

dominating manipulation computationally hard, or even impossible. Analysis of

manipulation with partial information provides insight into what needs to be kept

confidential in an election. For instance, in a plurality or veto election, revealing

(perhaps unintentionally) part of the preferences of non-manipulators may open the

door to strategic voting.

In Chapter 4, 5, and 6 we have seen some recent work and discussions on us-

ing computational complexity as a barrier against manipulation. However, a more

important question that should be asked is: Why should we even try to prevent ma-

nipulation and other types of strategic behavior? In the next chapter, we will show

that indeed, the strategic behavior of the voters can lead to extremely undesirable

outcomes, in a type of voting games which we call Stackelberg voting games.
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7

Stackelberg Voting Games

Using computational complexity to protect elections from manipulation, bribery,

control, and other types of strategic behavior is one of the major topics of Compu-

tational Social Choice. This raises the following fundamental question: Why should

we prevent voters’ strategic behavior? Of course we may answer this question by

arguing that people should be sincere in voting due to ethical, sociological, political,

or even divine reasons. However, after all, the most important objective of voting

is to select a “good” alternative, especially in multi-agent systems. Therefore, we

would prefer to give an answer that is similar to the following: we want to prevent

voters’ strategic behavior because it might lead to undesirable outcomes.

Showing evidence for this answer in the voting setting is not as simple as it may

seem to be. One approach is to consider the game where all voters vote at the

same time, and study the equilibria of this simultaneous-move voting game. Un-

fortunately, even in a complete-information setting where all voters’ preferences are

common knowledge, this leads to an extremely large number of equilibria, many of

them bizarre. For example, as we have seen in an example in Section 3.2, in a plural-

ity election with the lexicographic tie-breaking mechanism, it may be the case that
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all voters’ true preferences are Obama¡Clinton¡McCain. Nevertheless, the profile

where all three voters vote for McCain¡Clinton¡Obama is a Nash equilibrium. This

equilibrium is quite robust, because voting for Obama is a waste, given that nobody

else is expected to vote for Obama and some votes went to Clinton. There has

been some work exploring different solution concepts in simultaneous-move voting

games—e.g., Farquharson (1969) and Moulin (1979)—but in some sense, the equi-

librium selection issue in the above example is inherent in settings where voters vote

simultaneously.

In many practical situations, the voters vote one after another, and the later vot-

ers know the votes cast by the earlier voters. For example, consider online systems

that allow users to rate movies or other products. We consider the setting where the

voters vote one after another in this chapter to overcome the equilibrium selection

problem. We assume that voters’ preferences over the alternatives are strict; we also

make a complete-information assumption that the voters’ preferences are common

knowledge (among the voters themselves, though not necessarily to the election or-

ganizer).1 This results in an extensive-form game of perfect information that can be

solved by backward induction. In sharp contrast to the simultaneous-move setting,

this results in a unique outcome (winning alternative). We refer to this game as a

Stackelberg voting game.

Our main theoretical results will be shown in Section 7.2. As a corollary to our

main theorem, which is quite technical but very general, we will show that for any

voting rule r that satisfies the majority criterion (see Section 2.2 for the definition),

no matter how many voters there are, there always exists a profile such that the

backward-induction winner (i.e., the unique winner in all SPNE) of the Stackelberg

1 While this is clearly a simplifying assumption, it approximates the truth in many settings, and
with this assumption we do not need to specify prior distributions over preferences. Also, naturally,
our negative results still apply to more general models, including models allowing for incomplete
information, so long as the complete-information setting is a special case.
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voting game that uses r is ranked within the bottom two positions in all voters’ true

preferences, with only two exceptions. This result is quite negative, because it says

that if we allow voters to vote strategically, then sometimes the outcome is almost

the worst outcome for all but two voters. Therefore, to some extent we are showing

an ordinal price-of-anarchy (PoA) (Koutsoupias and Papadimitriou, 1999). The PoA

is the ratio of the optimal social welfare over the worst social welfare in equilibrium

outcomes. In fact, in the settings where social welfare is not well-defined, it is even

not clear how the PoA should be defined. Fortunately, the paradoxes we will show

are clearly very negative results.

Similar to the “worst case vs. typical case” debate about the results on hardness

of manipulation, here again we can ask how often the paradoxes happen. To answer

this question, we will pursue an empirical approach in Section 7.4. We will use the

techniques developed in Section 7.3 to run simulations to compare the backward-

induction winner to a benchmark outcome—namely, the alternative that would win

if all voters voted truthfully. Our experimental results show that, surprisingly, more

voters prefer the backward-induction outcome over the truthful outcome on aver-

age. Therefore, it seems that on average the backward-induction outcome is not too

undesirable.

The idea of modeling a voting process in which voters vote one after another as

an extensive-form game is not new. Sloth (1993) studied elections with two alterna-

tives, as well as settings with more alternatives where a pairwise decision between

two options is made at every stage. She relates the outcomes of this process to the

multistage sophisticated outcomes of the game (McKelvey and Niemi, 1978; Moulin,

1979). In the extensive-form games studied by Dekel and Piccione (2000), multi-

ple voters can vote simultaneously in each stage. They compare the equilibrium

outcomes of these games to the outcomes of the symmetric equilibria of their simul-

taneous counterparts. Battaglini (2005) studies how these results are affected by the
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possibility of abstention and a small cost of voting.

Our approach is significantly different from the previous approaches in several

aspects. First, the prior work focuses mostly on the case of two alternatives or, in

the case of multiple alternatives, on particular voting procedures; in contrast, we

consider general (anonymous) voting rules with any number of alternatives, and cor-

respondingly derive very general paradoxes. Second, we show some paradoxes to

illustrate that the strategic behavior of the voters sometimes leads to very undesir-

able outcomes. Third, we also study how the backward-induction outcome can be

efficiently computed, and we use these algorithmic insights in simulations to evaluate

the quality of the Stackelberg voting game’s outcome “on average.”

Desmedt and Elkind (2010) simultaneously and independently studied a similar

setting in which voters vote sequentially under the plurality rule, and showed several

different types of paradoxes. In their model, voters are allowed to abstain, and

voting comes at a small cost. They assume random tie-breaking and therefore need

to consider expected utilities, while in our model studied in this chapter, voters’

preferences are ordinal.

7.1 Stackelberg Voting Game

We now consider the strategic Stackelberg voting game. We use a complete-information

assumption: all the voters’ preferences are common knowledge. Given this assump-

tion, for any voting rule r, the process where voters vote in sequence can be modeled

as an extensive-form game of perfect information. In Section 3.2 we gave the formal

definition of simultaneous-move voting games, and mentioned that extensive-form

voting games can be defined similarly. Here I will be more specific. The game has

n stages. In stage j (j ¤ n), voter j chooses an action from LpCq. Each leaf of the

tree is associated with an outcome, which is the winner for the profile consisting of

the votes that were cast to reach this leaf.
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Because the voters’ preferences are linear orders (which implies that there are

no ties), we can solve the game by backward induction, which results in a unique

outcome. We note that this requires only ordinal preferences, that is, we do not

need to define utilities. The backward-induction process works as follows. First, for

any subprofile of votes by the voters 1 through n � 1 (that is, any node that is the

parent of leaves), there will be a nonempty subset of alternatives that n can make

win by casting some vote. She will pick her most preferred one. Now, because we can

predict what voter n will do, we take voter pn�1q’s perspective: for any subprofile of

votes by the voters 1 through n� 2, there will be a nonempty subset of alternatives

that voter n� 1 can make win by casting some vote (taking into account how voter

n will act). She will pick her most preferred one; etc. We continue this process all

the way to the root of the tree; the outcome there is called the backward-induction

outcome.

As noted above, only the ordinal preferences of the voters matter; that is, a voter’s

preferences correspond to a member of LpCq. While votes and preferences both lie in

the same set LpCq, we must be careful to distinguish between them, because in this

context, a voter will sometimes cast a vote that is different from her true preferences.

Nevertheless, we can use P P Fn to denote a profile of preferences, as well as a profile

of votes. For a given voting rule r, let rpP q be the outcome if the votes are P ; let

SGrpP q be the backward-induction outcome if the true preferences are P .2

7.2 Paradoxes

In this section, we investigate whether the strategic behavior described above will

lead to undesirable outcomes. It turns out that it can. Our main theorem is a

2 Of course, because it is a function from profiles of linear orders to alternatives, SGr can also
be interpreted as a voting rule, though there is a significant risk of confusion in doing so. We note
that even if r is anonymous, SGr (as a voting rule) is not necessarily anonymous (the order of the
voters matters).
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general result that applies to many common voting rules. We will show that, for

such a rule, there exists a profile that has two types of paradox associated with it in

the backward-induction outcome: first, the winner loses all but one of its pairwise

elections; second, the winner is ranked somewhere in the bottom two positions in

almost every voter’s true preferences. For the second type of paradox, we will show

that the number of exceptions (voters who rank the winner higher) is closely related

to a parameter called the domination index. The domination index of a voting rule

r that satisfies non-imposition is the smallest number q such that any coalition oftn{2u � q voters can make any given alternative win (no matter how the remaining

voters vote) under r. We note that the domination index is always well defined for

any rule that satisfies non-imposition, and is at least 1.

Definition 7.2.1. For any voting rule r that satisfies non-imposition, and any n P
N, we let the domination index DIrpnq be the smallest number q such that for any

alternative c, and for any subset of tn{2u� q voters, there exists a profile P for these

voters, such that for any profile P 1 for the remaining voters, rpP Y P 1q � c.

The domination index DIr is closely related to the anonymous veto function

VFr : t1, . . . , nu Ñ t0, . . . , mu (Definition 10.4 in Moulin (1991)), defined as follows.

VFrpiq is the largest number j ¤ m � 1 such that any coalition of i voters can veto

any subset (that is, make sure that none of the alternatives in the set is the winner)

of no more than j alternatives. We note that the domination index DIrpnq for a

voting rule r is the smallest number q such that VFrptn{2u � qq � m � 1 (that is,

any coalition of size tn{2u � q can veto any set of m� 1 alternatives).

The next proposition gives bounds on the domination index for some common

voting rules.

Proposition 7.2.2. For any positional scoring rule r, DIr ¤ tn{2u�tn{mu. DIrpnq �
1 for any voting rule r that satisfies the majority criterion (Section 2.2), including

137



any rule that satisfies the Condorcet criterion (Section 2.2), plurality, plurality with

runoff, Bucklin, and STV.

The next lemma provides a sufficient condition for an alternative not to be the

backward-induction winner. It says that if there is a coalition of size k ¥ tn{2u �
DIrpnq who all prefer c to d, and another condition holds, then d cannot win.3 For any

alternative c P C and any V P LpCq, we let Uppc, V q denote the set of all alternatives

that are ranked higher than c in V .

Lemma 7.2.3. Let P be a profile. An alternative d is not the winner SGrpP q if there

exists another alternative c and a sub-profile Pk � pVi1 , . . . , Vikq of P that satisfies

the following conditions: 1. k ¥ tn{2u �DIrpnq, 2. c ¡ d in each vote in Pk, 3. for

any 1 ¤ j1   j2 ¤ k, Uppc, Vij1
q � Uppc, Vij2

q.
Proof. Let Dk � ti1, . . . , iku. Since k ¥ tn{2u � DIrpnq, this coalition of voters can

guarantee that any given alternative be the winner under r, if they work together.

Let P �k � pV �
i1
, . . . , V �

ik
q be a profile that can guarantee that c be the winner under r.

That is, for any profile P 1 for the other voters (t1, . . . , nuzDk), we have rpP �k , P 1q � c.

For any j ¤ k, we let D1
ij
� t1, . . . , ijuzDk—that is, the first ij voters, except those

in the coalition Dk. For any j ¤ k, we let P �j � pV �
i1
, . . . , V �

ij
q. That is, P �j consists

of the first j votes in P �k . For any i ¤ n� 1 and any pair of profiles P1 (consisting of

i votes) and P2 (consisting of n� i votes), we let SGrpP2 : P1q denote the backward-

induction winner of the subgame of the Stackelberg voting game in which voters 1

through i have already cast their votes P1, and the true preferences of voters i � 1

through n are as in P2. We prove the following claim by induction.

3 This may seem trivial because the coalition can guarantee that c wins if they work together.
However, we have to keep in mind that the members of the coalition each pursue their own interest.
For example, it may be the case that whenever the second-to-last voter in the coalition votes in a
way that enables the last voter in the coalition to make c the winner, it also enables this last voter
to make e the winner, which this last voter prefers—but the second-to-last voter actually prefers
d to e, and therefore votes to make d win instead. We need the extra condition to rule out such
examples.
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Claim 7.2.1. For any j ¤ k and any profile P 1ij for the voters in D1
ij
,

SGrppVij , Vij�1, . . . , Vnq : P 1ij , P �j�1q ©Vij
c

Claim 7.2.1 states that for any j ¤ k, if voters i1, . . . , ij�1 have already voted

as in P �j , and voter ij will vote next, then the backward-induction outcome of the

corresponding subgame must be (weakly) preferred to c by voter ij .

Proof of Claim 7.2.1: The proof is by (reverse) induction on j. First, we consider

the base case where j � k. If voter ik casts V �
ik

, then the winner is c, because the

subprofile P �k will guarantee that c wins. Voter ik will only vote differently if it

results in at least as good an outcome for her as c. Therefore, the claim holds for

j � k.

Now, suppose that for some j1, the claim holds for j1 ¤ j ¤ k. We will now show

that it also holds for j � j1 � 1. Let c1 be the backward-induction outcome when

voter ij1�1 submits V �
ij1�1

. By the induction hypothesis, we have that c1 ©Vi
j1 c. That

is, voter ij1 (weakly) prefers c1 to c. We recall that Uppc, Vij1�1
q � Uppc, Vij1 q, which

means that c1 is also (weakly) preferred to c by voter ij1�1. This means that voter

ij1�1 can guarantee that the outcome be at least as good as c for her. She will only

vote differently from V �
ij1�1

if it results in at least as good an outcome for her as c1
(which is at least as good as c already). Therefore, the claim also holds for j1 � 1,

and Claim 7.2.1 follows by induction. l
Letting j � 1 in Claim 7.2.1, we have that SGrpP q ©Vi1

c. Therefore, d � SGrpP q
(because c ¡Vi1

d). This completes the proof of Lemma 7.2.3.

We are now ready to present our main theorem. We note that this theorem does

not depend on the tie-breaking mechanism used in the rule.

Theorem 7.2.4. For any voting rule r that satisfies non-imposition, and any n P N,

there exists a profile P such that SGrpP q is ranked somewhere in the bottom two
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positions in n� 2DIrpnq of the votes, and, if DIrpnq   n{4, then SGrpP q loses to all

but one alternative in pairwise elections.

Proof. The proof is constructive. Let P � pV1, . . . , Vnq be the profile (the voters’

true preferences) defined as follows.

V1 � � � � � Vtn{2u�DIrpnq � rc3 ¡ . . . ¡ cm ¡ c1 ¡ c2s
Vtn{2u�DIrpnq�1 � � � � � Vtn{2u�DIrpnq � rc1 ¡ c2 ¡ c3 ¡ � � � ¡ cms

Vtn{2u�DIrpnq�1 � � � � � Vn � rc2 ¡ c3 ¡ � � � ¡ cm ¡ c1s
We now use Lemma 7.2.3 to prove that SGrpP q � c1. First, we let k � tn{2u �

DIrpnq, and let Pk be the first k votes. It follows from Lemma 7.2.3 (letting c � c1

and d � c2) that c2 � SGrpP q. Next, for any c1 P Cztc1, c2u, we let k � rn{2s�DIrpnq
and let Pk be the last k votes, that is, Pk � pVtn{2u�DIrpnq�1, . . . , Vnq. By Lemma 7.2.3

(letting c � c2 and d � c1), we have that c1 � SGrpP q. It follows that SGrpP q � c.

In P , c1 is ranked somewhere in the bottom two positions in n � 2DIrpnq votes

(the first tn{2u � DIrpnq votes and the last rn{2s � DIrpnq votes). If DIrpnq   n{4,

then 2DIrpnq   n{2, which means that c1 will lose to any other alternative (except

c2) in pairwise elections.

Combining Proposition 7.2.2 and Theorem 7.2.4, we obtain the following corollary

for common voting rules.

Corollary 7.2.5. Let r be any rule that satisfies non-imposition and majority crite-

rion, and let n ¥ 5. There exists a profile P such that SGrpP q is ranked somewhere

in the bottom two positions in n � 2 votes; moreover, SGrpP q loses to all but one

alternative in pairwise elections. (This holds regardless of how ties are broken.)

While this is a strong paradox already, it is sometimes possible to obtain even

stronger paradoxes if we restrict attention to individual rules. We have illustrated
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this on some voting rules including plurality, which can be found in Xia and Conitzer

(2010b).

7.3 Computing the Backward-Induction Outcome

We have shown in the last section that the backward-induction solution to the Stack-

elberg voting game is socially undesirable for some profiles. We may ask ourselves

whether such profiles are common, or just isolated instances that are not very likely

to happen in practice. For this purpose, we would like to compare the backward-

induction winner to the truthful winner by running simulations. For this purpose,

we should be able to compute the backward-induction winners reasonably fast. How-

ever, even if the outcome of the rule r is easy to compute, it does not follow that

the outcome of SGr is easy to compute. The straightforward backward-induction

process described above is very inefficient, because the game tree has pm!qn leaves.

In this section, we first propose a general dynamic-programming algorithm to

compute SGrpP q, for any anonymous voting rule r. Then, we show how to use com-

pilation functions (Chevaleyre et al., 2009) (see also Section 1.6) to further reduce the

time/space-complexity of the dynamic-programming algorithm. These techniques

are crucial for obtaining our later experimental results.

The dynamic-programming algorithm still solves the game tree in a bottom-up

fashion, but does not need to consider all the different profiles separately. Because

r is anonymous, at any stage j of the game, the state (the profile of votes 1 through

j� 1) can be summarized by a vector composed of m! natural numbers, one for each

linear order: each number in the vector represents the number of times that the

corresponding linear order appears in the pj�1q-profile. Formally, for any j ¤ n, we

let the set of these vectors (states) be Sj � tps1, . . . , sm!q P N¥0
m! :

°m!
i�1 si � j � 1u.

For any anonymous voting rule r and any ~s P Sn�1, let rp~sq be the winner for any

profile that corresponds to ~s (because r is anonymous, the winner only depends on
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the vector ~s). More generally, for arbitrary Sj, the algorithm computes a labeling

function g that maps each state ~s P Sj to the alternative representing the backward-

induction outcome of the subgame whose root corresponds to ~s.

Algorithm 7.3.1.

Input. P � pV1, . . . , Vnq and an anonymous voting rule r.

Output. SGrpP q.
1. For j from n� 1 to 1, do Step 2.

2. For any state ~s P Sj , do

2.1 If j � n � 1, then let gp~sq � rp~sq.
2.2 If j   n�1, then let ~e� P arg min~ePE rankpVj , gp~s�~eqqq, where E consists of

all vectors that are composed of m!�1 zeroes and only one 1, and rankpVj, gp~s�
~eqq is the position of gp~s� ~eq in Vj. (Thus, e� corresponds to an optimal vote

for j.) Then, let gp~sq � gp~s� ~e�q.
3. Output gpp0, . . . , 0qq.
Analysis. For any j ¤ n, |Sj| � �j�m!�2

m!�1

�
(this is a basic combinatorial result, see

e.g. Bender and Williamson (2006)). To analyze the runtime of the algorithm, we

note that the total number of states considered is
°n�1

j�1

�
j�m!�2
m!�1

�
, which is Oppn �

1qm!�1q; in each state, we need to consider m! vectors ~e, resulting in a total bound

of Opm!pn � 1qm!�1q. To analyze the space requirements of the algorithm, we note

that we only need to keep the last stage j � 1 and the current stage j in memory,

so that the maximum number of states in memory is
�

n�m!�1
m!�1

� � �n�m!�2
m!�1

�
, which is

Oppn � 1qm!q. Therefore, when m is bounded above by a constant, Algorithm 7.3.1

runs in polynomial time (using polynomial space).

However, when there is no upper bound on m, Algorithm 7.3.1 runs in exponential

time and uses exponential space. We conjecture that for many common voting rules
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(e.g., plurality), computing SGr is PSPACE-hard, but we have not managed to

obtain any such result yet.4

Compilation. In the step corresponding to stage j in Algorithm 7.3.1, a very large

set Sj is used to keep track of all possible m!-dimensional vectors whose entries sum

to exactly j � 1, representing the possible states. While it may be necessary to have

this many states for anonymous rules in general, it turns out that for specific rules

like plurality or veto, we need far fewer states to represent the profiles, because many

of the states in Algorithm 7.3.1 will be equivalent for the specific rule. For example,

if we have so far received only a single vote a ¡ b ¡ c, this in general is not equivalent

to having received only a single vote a ¡ c ¡ b. However, if the rule is plurality,

these states are equivalent.

Pursuing this idea, for any anonymous voting rule r, we can ask the following

questions. (1) What is the smallest set of states needed for stage j? (2) How can we

incorporate smaller sets of states into Algorithm 7.3.1?

The answer to question (1) corresponds to the compilation complexity of r, a

concept introduced by Chevaleyre et al. (2009). For any k, u P N with k � u � n,

the compilation complexity Cm,k,uprq is defined to be the smallest number of bits

needed to represent all “effectively different” k-profiles, when there are u remaining

votes and the winner is chosen by using r. (Two k-profiles are “effectively the same”

if, for any profile of u votes that we may add to them, they result in the same

outcome.) It follows that, if we tailor Algorithm 7.3.1 to a specific rule r, the size

of the smallest possible set of states for stage j is between 2Cm,j�1,n�j�1prq�1 and

2Cm,j�1,n�j�1prq. Chevaleyre et al. (2009) also studied the compilation complexity for

some common voting rules.

Now we turn to address question (2). Suppose that we have already determined

4 We have obtained a PSPACE-hardness result for a not-so-common rule with a different type
of voter preferences, which thus falls somewhat outside of the setting described so far. We omit it
due to the space constraint.
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that we can use a smaller set of states. In order to modify the dynamic-programming

algorithm to use this smaller set of states, for step (2.2) we must have a function that

takes a state in Sj and a vote V as inputs, and outputs a state in Sj�1; moreover, this

function must be easy to compute. Fortunately, the compilation functions designed

for some common voting rules in Chevaleyre et al. (2009) and Xia and Conitzer

(2010a), which map each profile to a string (state), can serve as such functions.

For example, the compilation function for plurality simply counts how often each

alternative has been ranked first, and this is easy to update. More generally, we can

modify Algorithm 7.3.1 for any specific rule r as follows. Let f r
m,k,u be a compilation

function for r. For any j ¤ n, we let Sj � f r
m,k,upFj�1q, that is, the set of all

“compressed” pj � 1q-profiles. Then, in step (2.2), for each given state ~s P Sj and

each5 given vote V P LpCq, the next state (which lies in Sj�1) is computed by applying

the compilation function f r
m,k,u to the combination of ~s and V . Among these resulting

states, we again find voter j’s most-preferred outcome.

Illustration. Let us illustrate how the use of compilation functions helps reduce

the time and space requirements of Algorithm 7.3.1 for the nomination rule, which

selects the alternative that is ranked in the first position in at least one vote, where

ties are broken in the order c1 ¡ � � � ¡ cm. In this case, for any j ¤ n, let Sj � C, and

let fNom be the following compilation function. For any profile P , let fNompP q be

the first alternative (according to the order c1 ¡ � � � ¡ cm) that has been nominated

(is ranked first in some vote in P ). For any profile P and any vote V , fNompP YtV uq
can be easily computed from fNompP q and V , by determining which of fNompP q and

the alternative ranked in the top position in V is earlier in the order. (As in the

case of plurality, we do not need to consider every vote V : we only need to consider

which alternative is ranked first.) Because |Sj| � m for all j in this case, it follows

5 For some rules, we do not need to consider every vote: for example, under plurality, we do not
need to consider both a ¡ b ¡ c and a ¡ c ¡ b.
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that Algorithm 7.3.1 (using fNom) runs in polynomial time for the nomination rule.

Proposition 7.3.1. SGNom can be computed in polynomial time (and space) by

Algorithm 7.3.1 (using fNom).

For other, more common voting rules, the runtime of the dynamic-programming

algorithm is also significantly reduced by using compilation functions, though it

remains exponential. For example, for plurality and veto, the time/space complexity

of our approach is Opnmq, which allows us to conduct the simulation experiments in

the next section much more efficiently.

7.4 Experimental Results

Using the algorithmic techniques developed in the last section, we are able to run

simulations to compare the backward-induction winner SGrpP q to a benchmark

outcome—namely, the alternative rpP q that would win under r if all voters vote

truthfully. This may seem like a difficult benchmark to achieve, because often

strategic behavior comes at a cost (cf. price of anarchy, first-best vs. second-best

in mechanism design, etc.) Nevertheless, in the experiments that we describe in this

section, it turns out that in randomly chosen profiles, in fact, slightly more voters

prefer the backward-induction outcome SGrpP q to the truthful outcome rpP q than

vice versa!

The setup of our experiment is as follows. We study the plurality and veto rules

(these are the easiest to scale to large numbers of voters, because they have low

compilation complexity).6

For any m, n, and r P tPlurality, Vetou, our experiment has 25,000 iterations. In

each iteration, we perform the following three steps.

6 We also investigated other rules. It appears that they may lead to similar results, though it
is difficult to say this with high confidence because we can only solve for the backward-induction
outcome for small numbers of voters.
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1. In iteration j, an n-profile Pj is chosen uniformly at random from Fn.

2. We calculate SGrpPjq using Algorithm 7.3.1 (with a compilation function to

reduce time/space-complexity), and we calculate rpPjq.
3. We then count the number of voters in this profile P that prefer SGrpP q to

rpP q (according to their true preferences in P ), denoted by n1, and vice versa,

denoted by n2. If SGrpP q � rpP q, then n1 � n2 � 0.

For each m, n, r, we calculate the total percentage (across all 25,000 iterations)

of voters that prefer the backward-induction winner for their profile to the winner

under truthful voting for their profile, that is, p1 � °25000
j�1 n

j
1{p25000nq. We also

compute p2 � °25000
j�1 n

j
2{p25000nq. We note that it is not necessarily the case that

p1 � p2 � 1, because if SGrpP q � rpP q, then n1 � n2 � 0. Let p3 � 1 � p1 � p2 be

the percentage of profiles for which the backward-induction (SGr) winner coincides

with the truthful (r) winner. We are primarily interested in p1 � p2.

The results are summarized in Figure 7.1.
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Figure 7.1: Simulation results for plurality and veto

In Figure 7.1, the x-axis gives the number of voters (n); the y-axis gives the

percentage of voters. In each case we consider various numbers of alternatives (m).

(a) The percentage of voters who prefer the SGr winner to the r winner minus the

other way around, under plurality. (b) The percentage of profiles for which the SGr

winner and the r winner are the same, under plurality. (c) The percentage of voters

who prefer the SGr winner to the r winner minus the other way around, under veto.

(d) The percentage of profiles for which the SGr winner and the truthful r winner

are the same, under veto. Please note the different scales on the y-axis for (a) and
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(c).

First, from (a) and (c) it can be observed that for plurality and veto, perhaps

surprisingly, on average, more voters prefer the backward-induction winner to the

winner under truthful voting than vice versa. Generally, the difference becomes

smaller when n increases; the difference is larger when m is larger; and the percentage

seems to converge to some limit as n Ñ 8. Second, from (b) and (d) it can be

observed that the percentage of profiles for which the two winners coincide is smaller

for larger values of m; the percentage is decreasing in the number of voters n for

plurality, but increasing for veto.

7.5 Summary

In this chapter we studied the voting game where voters cast votes one after an-

other and the later voters can observe all previous voters’ votes. We proved some

paradoxes, which state that sometimes the strategic behavior of the voters can be

harmful in Stackelberg voting games. To some extent, these paradoxes justify the

line of research in which people seek to use computational complexity to prevent

strategic behavior. We also developed algorithmic techniques to run simulations.

Our simulation results show that, surprisingly, the strategic behavior of the voters

does not seem as harmful as we might have expected.
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8

Introduction to Combinatorial Voting

We recall from Section 2.3 that one major direction in Computational Social Choice

is to investigate the computational complexity of winner determination for some

common voting rules, and then design heuristic, fixed-parameter tractable, or ap-

proximation algorithms for voting rules for which the winner is hard to compute.

In those situations, the computational complexity mainly comes from the choice of

voting rule.

However, in many real life group decision making problems, the computational

complexity comes from the extremely large number of alternatives. In such cases

it may take an unbearably long time to compute the winner even for simple voting

methods such as Borda. Perhaps the most natural and prominent voting setting

in real-life with an extremely large number of alternatives is combinatorial voting,

a.k.a. voting in multi-issue domains. In combinatorial voting, the set of alternatives

has a combinatorial (namely, multi-issue) structure. That is, there are multiple issues

(or attributes, or characteristics) and each alternative can be uniquely characterized

by a vector of the values these issues take. For example, consider a situation where

the inhabitants of a county vote to determine a government plan. The plan is com-
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posed of multiple sub-plans for several interrelated issues, such as transportation,

environment, and health (Brams et al., 1998). Another example is voting by com-

mittees, in which the voters select a subset of objects (Barbera et al., 1991), where

each object can be seen as a binary issue. In such situations, a voters’ preferences

over one issue may well depend on the values of other issues. For example, a voter

may prefer creating a natural reserve if a highway is built, but if the highway is not

built, she may prefer not creating a reserve.

In the remainder of this dissertation (Chapter 8–12), we will focus on the design

and analysis of voting rules when the set of alternatives has a multi-issue structure. In

this chapter, we give the formal definitions and notation that will be used throughout

these chapters.

Definition 8.0.1 (Combinatorial voting). Let I � tX1, . . . , Xpu denote a set of p ¥
2 issues, where for each i ¤ p, Xi takes a value in a local domain Di, where |Di| ¥ 2.1

Combinatorial voting refers to the voting setting where the set of alternatives is

X � D1 � � � � �Dp. X is called a multi-issue domain or combinatorial domain.

Example 8.0.2. A group of people must make a joint decision on the menu for

dinner (the caterer can only serve a single menu to everyone). The menu is composed

of two issues: the main course (M) and the wine (W). There are three choices for

the main course: beef (b), fish (f), or salad (s). The wine can be either red wine (r),

white wine (w), or pink wine (p). The set of alternatives is a multi-issue domain:

X � tb, f, su � tr, w, pu.
We call that the set of alternatives C studied in previous chapters constitutes an

unstructured domain, because it does not need to have a multi-issue structure. In the

above definition, we use X (instead of C) to emphasize that the set of alternatives

1 This is the standard assumption for studying voting in multi-issue domains, because otherwise
either the domain can be simplified (by removing issues that can only take one value), or it has no
multi-issue structure (when there is only one issue).
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has a multi-issue structure. Following convention, for any i ¤ p we let D�i �
D1 � � � � �Di�1 �Di�1 � � � � �Dp.

A special case of multi-issue domains consists of the domains where all variables

are binary, that is, for all i ¤ p, Di � t0i, 1iu. Such multi-issue domains are called

multi-binary-issue domains. Even in multi-binary-issue domains, the number of al-

ternatives is 2p, which is already exponentially large. Moreover, we recall that the

voting setting we defined in Chapter 2 requires a voter to submit a linear order over

the set of alternatives. This requirement causes the major problem in combinato-

rial voting, which is that it is infeasible for a voter to give a full ranking over an

exponentially large number of alternatives. Therefore, in combinatorial voting, the

voters need to use another voting language to represent their preferences, and then

we can design novel voting rules to aggregate voters’ preferences represented by such

a voting language.

An obvious solution is the following: we can simply ask voters to report only

a (small) part of their preference relation and apply a voting rule that needs this

information only. For example, we can ask the voters to report their most-preferred

alternatives, and then apply the plurality rule. The voting language used in this case

is the set of all alternatives instead of the set of all linear orders over the alternatives.

One problem with this type of solution is the following: as soon as the number of

alternative is large (2p " n), the voters are likely to be unhappy about only expressing

a small portion of their preferences. Moreover, the result of voting is likely to be

completely insignificant or even catastrophic. For instance, with 5 voters and 6

binary issues, it is very likely that all 5 voters vote for different alternatives (since

there are 26 � 64 alternatives), and the winner under the plurality rule might be

disliked by all but one voter. In fact, this phenomenon is a type of multiple-election

paradox, which we will discuss in more detail in the next section.

Even though the above (plurality) solution itself does not work very well, it
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reveals the following two important high-level criteria for voting rules in multi-issue

domains.

The first criterion: The quality of the voting language, which includes compactness

and expressiveness.

The second criterion: The quality of the voting rule after the votes have been

collected. Here the quality is measured by computational efficiency, satisfia-

bility of axiomatic properties (see Section 2.2), resistance to multiple-election

paradoxes, etc.

The compactness of a voting language can be measured by the number of bits that

is used to represent a voter’s preferences. For example, Θpp � 2pq bits are necessary

and sufficient to represent the voting language that consists of all linear orders over

X , because logpp2pq!q is Θpp � 2pq. Measuring the expressiveness of a voting language

is more complicated. We consider the following two dimensions.

The first dimension of expressiveness: the general usability of the language.

That is, the percentage of voters who are comfortable using this language to

express their preferences. For example, if we only ask the voters to report their

top-ranked alternative, no voter will feel ill at ease to do so. However, as we

will see in the next section, voters are not always comfortable expressing their

preferences in issue-by-issue voting and sequential voting.

The second dimension of expressiveness: the informativeness of the language.

That is, how much of the voters’ preferences are expressed by the language. For

example, the top-ranked alternative only represents a tiny portion of the voter’s

preferences. The languages used in issue-by-issue voting rules and sequential

voting rules both allow voters to express much more of their preferences.
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8.1 Multiple-Election Paradoxes

Combinatorial voting has been extensively studied by economists. Most of previous

work has focused on letting voters vote on the issues separately, in the following way.

For each issue (simultaneously, not sequentially), each voter reports her preferences

for that issue, and then, a local rule is used to select the winning value that the

issue will take. This voting process is called issue-by-issue or seat-by-seat voting.2

Recently, Ahn and Oliveros (2011) studied a Bayesian game of combinatorial voting,

and showed the existence equilibrium under some conditions. We will not discuss

the Bayesian setting in this dissertation.

Issue-by-issue voting has some drawbacks. First, a voter may feel uncomfortable

expressing her preferences over one issue independently of the values that the other

issues take. This means that, even though the voting language used in issue-by-issue

voting can express more of a voter’s preferences than the voting language that is used

in plurality, it lack usability. That is, only voters whose preferences are separable

(that is, for any issue i, regardless of the values for the other issues, the voter’s pref-

erences over issue i are always the same) are comfortable expressing their preferences

in issue-by-issue voting (Kadane, 1972; Schwartz, 1977). Second, multiple-election

paradoxes arise in issue-by-issue voting (Brams et al., 1998; Scarsini, 1998; Lacy and

Niou, 2000), which we will discuss below in more detail.

Brams et al. (1998) showed that for multi-binary-issue domains, there exists a

profile where the winner under issue-by-issue voting (where all local voting rules are

majority rules) receives zero votes (that is, it is never ranked in the top position by

any voter). Scarsini (1998) showed an even stronger paradox: there exists a profile

2 The names “issue-by-issue” and “seat-by-seat” are a little bit misleading. It may sound like
there is an ordering over issues, according to which the voters vote over issues sequentially. Even
though the election can be organized in this sequential way, effectively these issue-wise elections
are conducted in parallel in issue-by-issue voting, because the voters do not learn the outcomes of
other issues before deciding on an issue.
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where any alternative that is “close” to the winner in terms of Hamming distance

under issue-by-issue voting receives zero votes. These paradoxes exist even when the

voters’ preferences are separable.

We are more interested in the paradoxes demonstrated by Lacy and Niou (2000)

for issue-by-issue voting when the voters’ preferences are non-separable. Of course

in such cases the voters may feel ill at ease reporting their preferences over a single

issue without knowing the values of the other issues. In Lacy and Niou (2000), it is

assumed that voters vote according to their top-ranked alternative. That is, when

a voter is asked to report her preferences over issue Xi, she will report the value

of the Xi component in her top-ranked alternative. This behavior in some sense

corresponds to very optimistic voters, and Lacy and Niou argued that when a voter

does not know the votes of the other voters, she is likely to vote in this way. They

illustrated the paradoxes in the following example.

Example 8.1.1. Suppose there are three voters and the multi-issue domain is com-

posed of three binary issues. The top-ranked alternatives of the three voters are 110,

101, and 011, respectively; and all voters rank 111 in their bottom positions. Now,

by voting over each issue separately in parallel using the majority rule, the winner is

111, which is the least-preferred alternative for all voters.

The above example illustrates the following three types of multiple-election para-

doxes for issue-by-issue voting:

First type of paradox: the winner is a Condorcet loser (who loses to all the

other alternatives in their pairwise elections).

Second type of paradox: the winner is Pareto-dominated by another alter-

native (that is, that alternative is preferred to the winner by all voters).

154



Third type of paradox: the winner is ranked in a very low position in all

voters’ true preferences.

8.2 CP-nets

We have seen so far that none of the approaches mentioned above works well. One

common deficiency of them is that the voting languages are not expressive enough.

We have seen that the voting language used by plurality has a high usability (meaning

that all voters are comfortable using it), but it lacks informativeness (meaning that

it only represents a tiny portion of the voters’ preferences). The language used by

issue-by-issue voting is much less usable, because only voters whose preferences are

separable are comfortable with reporting their preferences in issue-by-issue voting,

and only a tiny fraction of the linear orders are separable (Hodge, 2006). But in gen-

eral it is much more informative when the voters’ preferences are separable. However,

none of these languages model the preferential dependence among the issues.

Fortunately, a new language for preference representation in multi-issue domains,

called conditional preference networks, or CP-nets, that captures the dependence

of voters’ preferences among individual issues, was recently proposed in Artificial

Intelligence (Boutilier et al., 2004). Next, we first give the formal definition of CP-

nets, then discuss how to use them as the voting language for sequential voting.

The definition of a CP-net is similar to that of a Bayesian network (Pearl, 1988).

We first give the formal definitions, and the present an example.

Definition 8.2.1. A CP-net N over X consists of two parts:

(a) A directed graph G � pI, Eq.
(b) A set of conditional linear preferences ¡i

~d
over Di, for each setting ~d of the

parents of Xi in G. Let CPT pXiq be the set of the conditional preferences of a

voter on Di; this is called a conditional preference table (CPT).
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A CP-net N captures dependencies across issues in the following sense. N induces

a partial preorder ¡N over the alternatives X , representing the voter’s preferences,

as follows: for any ai, bi P Di, any setting ~d of the set of parents of Xi (denoted by

ParGpXiq), and any setting ~z of IzpParGpXiq Y tXiuq, pai, ~d, ~zq ¡N pbi, ~d, ~zq if and

only if ai ¡i
~d
bi. In words, the preferences over issue Xi only depend on the setting

of the parents of Xi (but not on any other issues). For any 1 ¤ i ¤ p, CPTpXiq
specifies conditional preferences over Xi. Now, if we obtain an alternative ~d1 from ~d

by only changing the value of the ith issue of ~d, we can look up CPTpXiq to conclude

whether the voter prefers ~d1 to ~d, or vice versa. In general, however, from the CP-net,

we will not always be able to conclude which of two alternatives a voter prefers, if

the alternatives differ on two or more issues. This is why N usually induces a partial

preorder rather than a linear order.

When the graph of N is acyclic, ¡N is transitive and asymmetric, that is, a strict

partial order (Boutilier et al., 2004). Let O � X1 ¡ � � � ¡ Xp. We say that a CP-net

N is compatible with (or, follows) O, if the following is true: if Xi is a parent of Xj

in the graph, then this implies that i   j. That is, preferences over any issue only

depend on the values of earlier issues in O. A CP-net is separable if there are no

edges in its graph, which means that there are no preferential dependencies among

issues.

Example 8.2.2. Let X be the multi-issue domain defined in Example 8.0.2. We

define a CP-net N as follows: M (the main course) is the parent of W (the wine),

and the CPTs consist of the following conditional preferences: CPT pMq � tb ¡ f ¡
su, CPT pWq � tb : r ¡ p ¡ w, f : w ¡ p ¡ r, s : p ¡ w ¡ ru, where b : r ¡ p ¡ w

is interpreted as follows: “when M is b, then, r is the most preferred value for W,

p is the second most preferred value, and w is the least preferred value.” N and its

induced partial order ¡N are illustrated in Figure 8.1. N is compatible with M ¡W.
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N is not separable.

M W

CPT pMq
b ¡ f ¡ s

CPT pWq
b : r ¡ p ¡ w

f : w ¡ p ¡ r

s : p ¡ w ¡ r

br bp bw

fw fp fr

sp sw sr

(a) A CP-net N . (b) The partial order induced by N .

Figure 8.1: A CP-net N and its induced partial order.

When all issues are binary, a CP-net N can be visualized as a hypercube with

directed edges in p-dimensional space (Domshlak and Brafman, 2002), in the follow-

ing way. Each vertex is an alternative, each dimension corresponds to an issue, and

any two adjacent vertices differ in only one component (issue). That is, for any i ¤ p

and any ~d�i P D�i, there is a directed edge connecting p0i, ~d�iq and p1i, ~d�iq, and the

direction of the edge is from p0i, ~d�iq to p1i, ~d�iq if and only if p0i, ~d�iq ¡N p1i, ~d�iq.
Example 8.2.3. Let p � 3 and let N be a CP-net defined as follows: the directed

graph of N has an edge from X1 to X2 and an edge from X2 to X3; the CPTs are

CPT pX1q � t01 ¡ 11u, CPT pX2q � t01 : 02 ¡ 12, 11 : 12 ¡ 02u, CPT pX3q � t02 :

03 ¡ 13, 12 : 13 ¡ 03u. N is illustrated as a hypercube in Figure 8.2 (for simplicity,

in the figure, a vertex abc represents the alternative a1b2c3, for example, the vertex

000 represents the alternative 010203).

A linear order V over X extends a CP-net N , denoted by V � N , if it extends

the partial order that N induces. (This is merely saying that V is consistent with

the preferences implied by the CP-net N .) V is separable if it extends a separable
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X1 X2 X3

000 001

010 011

100 101

110 111

Figure 8.2: The hypercube representation of the CP-net in Example 8.2.3.

CP-net. Given an ordering O over issues, V is O-legal if it extends a CP-net that is

compatible with O. The set of all O-legal linear orders is denoted by LegalpOq.
To present our results, we will frequently use notations that represent the projec-

tion of a vote/CP-net/profile to an issue Xi (that is, the voter’s local preferences over

Xi), given the setting of all parents of Xi. These notations are defined as follows.

For any issue Xi, any setting ~d of ParGpXiq, and any linear order V that extends

N , we let V |Xi:~d
and N |Xi:~d

denote the the projection of V (or, equivalently N ) to

Xi, given ~d. That is, each of these notations evaluates to the linear order ¡i
~d

in

the CPT associated with Xi. For example, let N be the CP-net defined in Exam-

ple 8.2.2. N |W:b � r ¡ p ¡ w. For any O-legal profile P , P |
Xi:~d

is the profile over

Di that is composed of the projections of each vote in P on Xi, given ~d. That is,

P |
Xi:~d

� pV1|Xi:~d
, . . . , Vn|Xi:~d

q � pN1|Xi:~d
, . . . ,Nn|Xi:~d

q, where P � pV1, . . . , Vnq, and

for any 1 ¤ i ¤ p, Vi extends Ni.

Let O � X1 ¡ � � � ¡ Xp. The lexicographic extension of an O-compatible CP-net

N w.r.t. O, denoted by LexOpN q, is an O-legal linear order V over X such that for

any 1 ¤ i ¤ p, any ~di P D1�� � ��Di�1, any ai, bi P Di, and any ~y, ~z P Di�1�� � ��Dp, if

ai ¡N |
Xi:

~di

bi, then p~di, ai, ~yq ¡V p~di, bi, ~zq. Intuitively, in the lexicographic extension

of N , X1 is the most important issue, X2 is the next-most important issue, and
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so on; a desirable change to an earlier issue always outweighs any changes to later

issues. We note that the lexicographic extension of any CP-net is unique w.r.t. the

order O. Again, the subscript “O” is sometimes omitted when there is no risk of

confusion. We say that V P LpX q is lexicographic if it is the lexicographic extension

of a CP-net N . For example, let N be the CP-net defined in Example 8.2.2. We

have LexpN q � br ¡ bp ¡ bw ¡ fw ¡ fp ¡ fr ¡ sp ¡ sw ¡ sr. A profile P is

O-legal/separable/lexicographic, if each of its votes is in LegalpOq/ is separable/ is

lexicographic.

8.3 Sequential Voting

One natural approach to combinatorial voting is sequential voting. Let O denote be

an ordering over the issues. W.l.o.g. O � X1 ¡ X2 ¡ � � � ¡ Xp. Sequential voting

selects the winner in p rounds. In round i, the voters report their preferences over the

ith issue in O, based on which the winning value is selected by applying a local voting

rule, and this winning value is then announced to all the voters. The idea of sequential

voting is not new. For example, Lacy and Niou (2000) suggested to use sequential

voting to circumvent multiple-election paradoxes. But, again, in the sequential voting

process they proposed, voters are sometimes ill at ease reporting their preferences

over issues, and the voters are still assumed to behave optimistically.3 Moreover,

Lacy and Niou argued that the sequential voting process “takes too long,” because

the voters must wait for the results of previous issues to be announced before moving

to the subsequent issues. They argued that “the cost to voters of going to the polls

and the cost to governments of keeping polls open for several days will likely prevent

the use of sequential voting schemes” (Lacy and Niou, 2000).

In fact, the voters do not need to go to voting booths multiple times. It suffices

3 Lacy and Niou (2000) also suggested to let voters vote strategically and sequentially, and showed
that the outcome will always be the Condorcet winner whenever one exists. This is the strategic
sequential voting procedure that will be discussed in Chapter 11.
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for them to report in one shot all their local preferences over single issues, given

all (relevant) valuations of the previous issues. That is, to apply sequential voting

w.r.t. the order O over issues, it suffices for the voters to use an O-compatible CP-

net to represent their preferences. Of course the voters need to report more of their

preferences, and some of them are not used for the voting rule to decide the winner.

This is not a big problem as long as the language is compact (as we will see later

in this section). Similarly to the situation in issue-by-issue voting (where only the

voters with separable preferences are comfortable with reporting their preferences), in

sequential voting we have a similar criterion: if a voter’s preferences are O-legal, then

she is comfortable with reporting their preferences; otherwise she is not comfortable

with reporting her preferences.

The ground-breaking systematic method for analyzing sequential voting was pro-

posed by Lang (2007), who focused on the profiles where voters are comfortable

reporting their preferences (that is, O-legal profiles), and defined sequential voting

rules on top of these profiles.

Definition 8.3.1. (Lang, 2007) Given a vector of local rules pr1, . . . , rpq, where

for each 1 ¤ i ¤ p, ri is a voting rule on Di, the sequential composition of

r1, . . . , rp w.r.t. O, denoted by SeqOpr1, . . . , rpq, is defined for all O-legal profiles

as follows: SeqOpr1, . . . , rpqpP q � pd1, . . . , dpq P X , so that for any 1 ¤ i ¤ p,

di � ripP |Xi:d1���di�1
q.

The sequential composition of local correspondences rc
1, . . . , r

c
p, denoted by

SeqOprc
1, . . . , r

c
pq, is defined in a similar way: for any O-legal profile P ,

~d P SeqOprc
1, . . . , r

c
pqpP q if and only if for each i ¤ p, we have that di P rc

i pP |Xi:d1...di�1
q.

The subscript “O” in SeqO is sometimes omitted when there is no risk of confu-

sion. We note that when a voter’s preferences are O-legal, she only needs to submit

an O-compatible CP-net instead of reporting the entire O-legal linear order. Hence,
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the voting language used by a sequential rule is essentially the set of all O-compatible

CP-nets. Similarly, the voting language used in issue-by-issue voting is essentially

the set of all separable CP-nets (where there are no edges in the graph). We note that

if the voters’ profile is separable, then sequential voting rules become issue-by-issue

voting rules. In that sense, sequential voting rules are extensions of issue-by-issue

voting rules.

To examine the compactness of the set of all O-compatible CP-nets as a voting

language, let us calculate the size of an O-compatible CP-net (which is the sum of

the sizes of all CPTs). It is easy to see that the size of a CP-net largely depends on

how many parents each issue has in the graph. In fact, the size of a CP-net is

p̧

i�1

¹
XjPParGpXiq |Dj| logp|Di|!q

Therefore, if both the number of members in each local domain and the number

of parents for each issue are small, then the size of the CP-net is polynomial in

the number of issues (for comparison, we recall that in multi-issue domains we need

Θpp � 2pq bits to represent a linear order, which is exponential in the number of

issues); on the other hand, in the worst case the size of an O-compatible CP-net

is exponentially large in the number of issues. However, in practice it is reasonable

to expect that all local domains are small, and the voters’ preferences over each

issue only depends on a few other issues. Hence, we can expect in practice that

O-compatible CP-nets are a compact language. Obviously O-compatible CP-nets,

as a voting language, are more expressive than the language used by issue-by-issue

voting (that is, separable CP-nets), simply because separable CP-nets are special

cases of O-compatible CP-nets. In fact, it has been shown that the ratio between

the number of O-legal linear orders and the number of separable linear orders is
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Ωp 2p?
πp
q (Lang and Xia, 2009), which in some sense shows quantitatively how much

more usable O-compatible CP-nets are, compared to separable CP-nets. Table 8.1

provides a comparison of plurality, common voting rules that require voters to report

linear orders (e.g., Borda), issue-by-issue voting rules, sequential voting rules, the

framework introduced in Chapter 9, and the MLE approach taken in Chapter 10, in

terms of the following three aspects: (1) computational efficiency of computing the

winner, (2) compactness of the voting language, and (3) expressiveness of the voting

language, which includes general usability and informativeness.

Table 8.1: Comparing voting rules and languages for combinatorial voting.

Voting method
Computational

efficiency
Compactness

Expressiveness
General usability Informativeness

Plurality High High High Low

Borda, etc. Low Low High High

Issue-by-issue High High Low Medium

Sequential voting High Usually high Medium Medium

H-composition
in Chapter 9

Low–High
(depends on the voters’

common preference

structure)

Usually high High Medium

MLE approach
in Chapter 10

Low–High
(depends on the

probabilistic model)

Usually high High Medium

For (truthful) sequential voting, multiple-election paradoxes are alleviated (Lacy

and Niou, 2000; Lang and Xia, 2009), though they return when voters vote strategi-

cally, as we will see in Chapter 11. One natural question to ask is whether sequential

voting rules satisfy some other desired axiomatic properties for voting rules (see Sec-

tion 2.2). Not surprisingly, the answer depends on whether the local voting rules

satisfy these axiomatic properties. Lang and Xia (2009) asked the following two

questions for any axiomatic property Y .
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1. If the sequential voting rule satisfies Y , is it true that all its local voting rules

also satisfy Y ? This corresponds to the “Global to local” column in Table 8.2.

2. If all local voting rules satisfy Y , is it true that their sequential composition

also satisfies Y ? This corresponds to the “Local to global” column in Table 8.2.

The answers for some of the axiomatic properties described in Section 2.2 are sum-

marized in Table 8.2.4

Table 8.2: Local vs. global for sequential rules (Lang and Xia, 2009).

Criteria Global to local Local to global
Anonymity Y Y
Neutrality Y N

Consistency Y Y
Participation Y N

Pareto efficiency Y N
(Strong) monotonicity Y Y

For neutrality and Pareto efficiency, Xia and Lang (2009) showed that the ex-

istence of voting correspondences that satisfy neutrality (respectively, Pareto ef-

ficiency) can be characterized by the structure of the multi-issue domain: if the

multi-issue domain is composed of two binary variables, then there exists a voting

correspondence that satisfies neutrality (respectively, Pareto efficiency); otherwise

no voting correspondence satisfies neutrality (respectively, Pareto efficiency).5

Nevertheless, we may still argue that in order for voters to feel comfortable ex-

pressing their preferences, sequential voting is quite restrictive at two levels: first,

at the individual voters’ level, sequential voting requires that a voter’s preferences

must be represented by an acyclic CP-net. Second, at the profile level, it requires

4 Since sequential voting rules are defined for O-legal profiles, the definitions of neutrality, Pareto
efficiency, and monotonicity are slightly different. See Lang and Xia (2009).

5 Again, here the definitions of neutrality and efficiency are slightly different from the definitions
in Section 2.2.
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that all voters’ preferences are compatible with the same ordering O. To overcome

these restrictions, we need to consider even more expressive voting languages. One

option is the set of all (possibly cyclic) CP-nets. Obviously it is more expressive,

because it is a superset of the set of all acyclic CP-nets. Chapters 9 and 10 aim at

designing new voting rules for combinatorial voting where the voters use (possibly

cyclic) CP-nets to represent their preferences. In Chapter 9, we will further show

how much more general (possibly cyclic) CP-nets are, by showing the ratio between

the number of O-legal votes and the number of all linear orders over X (note that

any voter should be comfortable with using a possibly cyclic CP-net to represent

her preferences, in the sense that for any linear order, a possibly cyclic CP-net can

be constructed such that the linear order extends this CP-net). Then, we propose

an extension of sequential voting rules to aggregate (possibly cyclic) CP-nets, which

we call hypercubewise composition (H-composition). We will analyze its normative

and computational aspects. This framework was further studied by Li et al. (2011)

and Conitzer et al. (2011b). In Chapter 10, we extend Condorcet’s MLE model to

combinatorial voting.

Chapters 11 and 12 investigate game-theoretic aspects of combinatorial voting.

In Chapter 11 we study the sequential voting game mentioned by Lacy and Niou

(2000), that is, the game where voters cast votes strategically on one issue after

another, following some ordering over the issues. We call this type of voting games

the strategic sequential voting procedure (SSP). Lacy and Niou (2000) proved that

strategic sequential voting6 always selects the Condorcet winner whenever one exists,

but they did not examine whether there are any multiple-election paradoxes for

SSP. In Chapter 11 we show that all three types of multiple-election paradoxes still

arise in strategic sequential voting. Moreover, changing the ordering of the issues

according to which the voters vote on them cannot avoid at least the first and the

6 They called it sophisticated sequential voting, following the convention of Farquharson (1969).
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third paradoxes. Then, in Chapter 12, we will see how to restrict voters’ preferences

over multi-issue domains to obtain strategy-proof voting rules.

At the end of this chapter, let me briefly mention some other work in preference

aggregation over multi-issue domains. Rossi et al. (2004) studied aggregating voters’

preferences represented by partial CP-nets, which allows voters to be “indifferent”

with between the values of some issues. Gonzales et al. (2008) studied aggregating

preferences represented by another compact language called GAI-networks. Xia et al.

(2007a) slightly extended sequential voting rules by removing the constraint that

the order O is fixed before the voting process. However, the above two levels of

restrictions for sequential voting rules still exist. Recently, Conitzer et al. (2009a)

studied the agenda control problem in sequential voting—that is, the chair gets to

choose the over in which the issues are voted on, and investigated its computational

complexity.

8.4 Summary

In this chapter, we introduced the notation used in this dissertation for combinatorial

voting, multiple-election paradoxes, CP-nets, sequential voting rules, and important

criteria for designing new voting rules in combinatorial domains. We also evaluated

voting rules proposed in previous work by these criteria, and the result is summarized

in Table 8.1. We observed that all previous approach either used voting languages

that lack expressivity, or is computationally intractable.
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9

A Framework for Aggregating CP-nets

In this chapter, we define a new family of voting rules for combinatorial voting that

allows voters to use any CP-nets (even cyclic ones) to represent their preferences. The

set of all CP-nets, as a language, is compact and is much more expressive than acyclic

CP-nets or separable CP-nets, which are used in sequential voting and issue-by-issue

voting, respectively.1 The voting rules we define are parameterized by: (1) the local

voting rules that are used on individual attributes—we will use these to define a

particular graph on the set of alternatives; and (2) a choice set function T that selects

the winners based on this induced graph.2 We show that if T satisfies a very natural

assumption, then the voting rules induced by T extend the sequential voting rules

(and therefore, also issue-by-issue voting rules) and the order-independent sequential

composition of local rules from Xia et al. (2007b). We study whether properties of the

local rules transfer to the global rule, and vice versa. Then, we focus on a particular

choice set function, namely the Schwartz set (Schwartz, 1970), which has been argued

1 Earlier work has also considered social choice for potentially cyclic CP-nets (Purrington and
Durfee, 2007). However, that approach does not apply to all possible (cyclic) CP-nets.

2 In principle, T could select multiple winners from the graph. We can use any tie-breaking
mechanism to select the unique winner.
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to be the largest reasonable choice set for tournament graphs (Laslier, 1997). For

the Schwartz set, we study how to compute the winners under this methodology.

9.1 Acyclic CP-nets Are Restrictive

In this section, we show quantitatively that the set of all acyclic CP-nets lacks general

usability as a voting language. We will show that even when each local domain is bi-

nary, the number of legal linear orders—the set of all linear orders ¡ for which there is

some acyclic CP-net that ¡ extends—is exponentially smaller than the number of all

linear orders. Let CP pX q � tV P LpX q : There exists a CP-net N such that V �
N u. That is, CP pX q � �

O
LegalpOq.

Theorem 9.1.1. If X � t0, 1up, then
|CP pX q||LpX q| ¤ p!

22p�2
.

Proof. We prove the theorem by constructing a set of exponentially many permu-

tations on the set of alternatives, and we prove that for any two different linear

orders compatible with the same order over attributes, for any two (not necessarily

different) permutations in the set, if we apply the first permutation to the first linear

order and the second permutation to the second linear order, the results are different.

That is, for any linear order compatible with a given order O, we can find a large

set of corresponding linear orders by applying the set of permutations to it; and the

sets of linear orders corresponding to different GO-legal linear orders are disjoint.

More precisely, we define a set of permutations on X , denoted by KpX q, and

show that it satisfies the following two properties:

1. |KpX q| � 22p�2

.

2. For any V1, V2 P LegalpX1 ¡ � � � ¡ Xpq and any M1, M2 P KpX q, if M1 � M2,

then M1pV1q �M2pV2q.
Now we show how to construct KpX q. Given any setting ÝÝÑxp�2 of pX1, . . . , Xp�2q,

let MÝÝÑxp�2
be the permutation that only exchanges pÝÝÑxp�2, 0, 0q and p ~xp�2, 0, 1q. Then,
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for any Ep�2 � t0, 1up�2, let MEp�2
� �ÝÝÑxp�2PEp�2

MÝÝÑxp�2
, where � is the composition of

two permutations. This notion is well-defined because for any ÝÝÑxp�2,
ÝÝÑxp�2

1 P t0, 1up�2,

MÝÝÑxp�2
and MÝÝÑxp�2

1 are exchangeable, that is, MÝÝÑxp�2
�MÝÝÑxp�2

1 �MÝÝÑxp�2
1 �MÝÝÑxp�2

.

Let KpX q � tMEp�2
: Ep�2 � t0, 1up�2u. Then, |KpX q| � |t0, 1ut0,1up�2 | �

22p�2

. For any V1, V2 P LegalpX1 ¡ � � � ¡ Xpq any ME1
p�2

, ME2
p�2
P KpX q such that

ME1
p�2
� ME2

p�2
, since E1

p�2 � E2
p�2, w.l.o.g. there exists ÝÝÑxp�2 such that ÝÝÑxp�2 P E1

p�2

but ÝÝÑxp�2 R E2
p�2. Then, V1|tXp�1,Xpu:ÝÝÑxp�2

extends a CP-net on t0, 1u2, and the CP-

net is compatible with Xp�1 ¡ Xp. Here, V1|tXp�1,Xpu:ÝÝÑxp�2
is the restriction of V1 totXp�1, Xpu, given that pX1, . . . , Xp�2q � ÝÝÑxp�2. However, MÝÝÑxp�2

pV2q|tXp�1,Xpu:ÝÝÑxp�2
is

not compatible with Xp�1 ¡ Xp—it either does not extend a CP-net, or extends a

CP-net that is not compatible with Xp�1 ¡ Xp. We note that

ME1
p�2
pV1q|tXp�1,Xpu:ÝÝÑxp�2

� V1|tXp�1,Xpu:ÝÝÑxp�2
,

ME2
p�2
pV2q|tXp�1,Xpu:ÝÝÑxp�2

�MÝÝÑxp�2
pV2q|tXp�1,Xpu:ÝÝÑxp�2

Hence, ME1
p�2
pV1q � ME2

p�2
pV2q, which means that KpX q satisfies the two properties

mentioned above.

Therefore, from the two properties of KpX q, we know that |KpX qpLegalpX1 ¡
. . . ¡ Xpqq| � 22p�2|LegalpX1 ¡ . . . ¡ Xpq|. Since KpX qpLegalpX1 ¡ . . . ¡ Xpqq �
LpX q, and |CP pX q|   p!|LpX1 ¡ . . . ¡ Xpq| (because there are p! linear orders

over tx1, . . . , xpu, and a CP-net must be compatible with some order), we have|CP pX q||LpX q| ¤ p!

22p�2
.

We note that |X | � 2p. Theorem 9.1.1 implies that the expressivity ratio of legal

linear orders (
|CP pX q||LpX q| ) is Opp20.2q�|X |q, which is exponentially small even in the
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number of alternatives.

9.2 H-Composition of Local Voting Rules

In this section, we introduce a new framework for composing local voting rules. We

call this hypercubewise composition (H-composition) of local voting rules. The reason

is that the outcome only depends on preferences between alternatives that differ on

only one attribute. We can visualize the set of all alternatives as a hypercube, and

alternatives that differ on only one attribute are neighbors on this hypercube, as

discussed in Section 8.2. An H-composition of local rules is defined for all profiles in

which for each vote, there exists a (possibly cyclic) CP-net that it extends. In fact,

for any linear order V on X , there exists a CP-net N such that V extends N , so we

can apply this to any linear orders (but also some partial orders). By Theorem 9.1.1,

this means that the voting language used by these H-compositions (i.e., possibly

cyclic CP-nets) is much more general than the voting language used by sequential

voting rules (i.e., O-compatible CP-nets for some ordering O over I, in the sense we

have discussed in Section 8.3.

An H-composition of local rules is defined in two steps. In the first step, an

induced graph is generated by applying local rules to the input profile. Then, in the

second step, a choice set function is selected based on the induced graph as the set of

winners (the definition and examples of some major choice set functions are deferred

to Definition 9.2.4 and the text below it). We first define the induced graph of P

w.r.t. local rules (or correspondences) r1, . . . , rp.

Definition 9.2.1. Given a profile P � pV1, . . . , Vnq and local rules (or correspon-

dences) r1, . . . , rp, the induced graph of P w.r.t. r1, . . . , rp, denoted by IGpr1, . . . , rpqpP q �pX , Eq, is defined by the following edges between alternatives. For any i ¤ p, any

setting ÝÑx�i, let Ci � ripP |Xi:
ÝÑx�i
q; for any ci P Ci, any di P Di, let there be an edge
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pci,
ÝÑx�iq Ñ pdi,

ÝÑx�iq.
Example 9.2.2. Suppose the multi-issue domain consists of two binary attributes: S

ranging over tS, S̄u and T ranging over tT, T̄ u. The local rules are both the majority

rule. Two votes V1, V2 and their induced graph IGpMaj, MajqpV1, V2q are illustrated

in Figure 9.2.2, where Maj denotes the majority correspondence. We note that V1

is compatible with S ¡ T, V2 is compatible with T ¡ S.

V1 : S ¡ T
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

V2 : T ¡ S
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

Induced graph
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

Figure 9.1: Two votes and their induced graph.

Next, we define the dominance relation in a directed graph.

Definition 9.2.3. Given a directed graph G � pV, Eq, for any v1, v2 P V, v1 is said

to dominate v2, denoted by v1 ¡G v2, if and only if:

1. there is a directed path from v1 to v2, and

2. there is no directed path from v2 to v1.

Let ©G be the transitive closure of E, that is, ©G is the minimum preorder such

that if pv1, v2q P E, then v1 ©G v2. Then, another equivalent way to define the

dominance relation is: ¡G is the strict order induced by ©G, that is, v1 ¡G v2 if and

only if v1 ©G v2 and v2 «G v1.

We further define two kinds of special vertices in a directed graph G as follows.

The first is a vertex that dominates all the other vertices, and the second is a vertex

that dominates all its neighbors. We call the former the global Condorcet winner

(which must be unique), and the latter a local Condorcet winner.
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Now, we are ready to define the choice set function, which specifies a choice set

for each graph.

Definition 9.2.4. A choice set function T is a mapping from any graph to a subset

of its vertices.

We now recall the definitions of some major choice sets in a graph G � pV, Eq.
• The Schwartz set is the union of all maximal mutually connected subsets. A

maximal mutually connected subset is a subset of vertices such that there is a

path between any two vertices in the set, but there is no path from a vertex

outside the set to a vertex inside the set.

• The Smith set is the smallest set of vertices such that every vertex in the set

dominates all the vertices outside the set.

• The Copeland set: A vertex c’s Copeland score is the number of vertices that

are dominated by c minus the number of vertices that dominate c. The vertices

with the highest Copeland score are the winners.

Choice sets were originally introduced to make group decisions for tournament

graphs. However, the definitions are easily extended to general graphs, as we did

above. See Laffond et al. (1995) and Brandt et al. (2007) for more discussion.

We say a choice set function T always chooses the global Condorcet winner, if for

any graph G � pV, Eq in which c is the global Condorcet winner, we have T pGq � tcu.
We say that T always chooses local Condorcet winners, if every local Condorcet

winner is always in T pGq. We emphasize that here, the meaning of a Condorcet

winner is different from traditional meaning of a Condorcet winner, which refers to

an alternative that wins every pairwise election. We say that T is monotonic, if for

any graph pV, Eq, any c P T pV, Eq, and any pV, E 1q that is obtained from pV, Eq by

only flipping some of the incoming edges of c, we have c P T pV, E 1q.
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Theorem 9.2.5 (known/easy). The Schwartz set, Smith set, and Copeland set

are monotonic and always choose the global Condorcet winner; the Smith set and

Schwartz set always choose local Condorcet winners.

We are now ready to define the H-composition of local rules (correspondences).

Definition 9.2.6. Let T be a choice set function. The Hypercubewise-T (H-T ) com-

position of local rules r1, . . . , rp, denoted by HT pr1, . . . , rpq, is defined as follows. For

any profile P of linear orders on X ,

HT pr1, . . . , rpqpP q � T pIGpr1, . . . , rpqpP qq
That is, for any profile P , HT pr1, . . . , rpq computes the winner in the following

two steps. First, the induced graph IGpr1, . . . , rpqpP q is generated by applying local

rules r1, . . . , rp to the restrictions of P to all the local domains. Then, in the second

step, the set of winners is selected by the choice set function T from the induced

graph IGpr1, . . . , rpqpP q.
From Theorem 9.1.1, the fact that all linear orders are consistent with some CP-

net, and all CP-nets can be used under H-composition, we know that the domain

of H-composition of local rules is exponentially larger than the domain of order-

independent sequential composition. We note that to build the induced graph, only

the preferences between adjacent alternatives are necessary. We note that the H-

composition of local rules is a correspondence, and we can use any tie-breaking

mechanism to select a unique winner.

One interesting question is how H-compositions are related to (order-independent)

composition of local rules. Because the H-compositions are defined by both local

rules and the choice set, the relationship should also depend on local rules and the

properties of the choice set. The next theorem states that if a choice set function T

always chooses the global Condorcet winner, then H-T composition of local rules is
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an extension of order-independent sequential composition of the same local rules (Xia

et al., 2007b). The order-independent sequential composition of local rules, denoted

by SeqOIpr1, . . . , rpq, extends the domain of sequential composition of local rules to

the set of all legal profiles P , which means that the order O is not held fixed in

the definition. For any permutation σ on t1, . . . , pu, let O � Xσp1q ¡ . . . ¡ Xσppq.
Then, for any O-legal profile P , SeqOIpr1, . . . , rpqpP q � SeqOprσp1q, . . . , rσppqqpP q.
The order-independent sequential composition of local correspondences is defined

similarly. This voting rule is well-defined because it has been shown in Lang (2007)

that the winner does not depend on which ordering O that is used in the definition,

as long as the profile is O-legal.

Theorem 9.2.7. Let T be a choice set function that always chooses the global Con-

dorcet winner. Then, for all legal profiles P , HT pr1, . . . , rpqpP q � SeqOIpr1, . . . , rpqpP q.
The proof is quite straightforward and is thus omitted.

Corollary 9.2.8. If T is the Schwartz set, Smith set, or Copeland set, then HT pr1, . . . , rpq
is an extension of SeqOIpr1, . . . , rpq.
9.3 Local vs. Global Properties

In this section we examine the “quality” of the H-compositions of local rules in

terms of whether they satisfy some common voting axioms described in Section 2.2.

We recall that in Section 8.3 we have asked a similar question for sequential voting

rules, and whether sequential voting rule satisfies some desired axiomatic properties

depends on whether the local voting rules satisfy these axiomatic properties. Lang

and Xia (2009) asked the following two questions for any axiomatic property Y , and

the answers are summarized in Table 8.2.

1. If the sequential voting rule satisfies Y , is it true that all its local voting rules

satisfy Y ?
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2. If the sequential voting rule satisfies Y , is it true that all its local voting rules

satisfy Y ?

For H-composition of local rules, we can ask the same question. From Theo-

rem 9.2.7 we know that if T always chooses the global Condorcet winner, then HT is

an extension of SeqOI . We can use this observation to carry over some of the results

in Lang (2007); Xia et al. (2007a,b) to HT . Specifically, if T always chooses the global

Condorcet winner, and if a criterion transfers from the order-independent sequential

composition of local rules to each local rule, then it also transfers for H-T compo-

sition; if a criterion does not transfer from local rules to their order-independent

sequential composition, then it also does not transfer for H-T composition. Given

the results in Xia et al. (2007b), these observations allow us to resolve everything ex-

cept how anonymity, homogeneity, monotonicity, and consistency transfer from local

rules to their H-T composition. It is easy to see that anonymity and homogeneity

always transfer. The next example shows that if T always chooses local Condorcet

winners, then consistency does not transfer, even when the votes in the profile extend

(possibly different) acyclic CP-nets.

Example 9.3.1. Let X � t01, 11u � t02, 12u � t03, 13u, and let all the local rules be

the majority rule. Consider the following three CP-nets (the non-specified parts of

the CPTs do not matter):

N1: compatible with X1 ¡ X2 ¡ X3, and 11 ¡ 01, 11 : 12 ¡ 02, 1112 : 13 ¡ 03,

01 : 02 ¡ 12, 0102 : 03 ¡ 13.

N2: compatible with X2 ¡ X3 ¡ X1, and 12 ¡ 02, 12 : 13 ¡ 03, 1213 : 11 ¡ 01,

02 : 03 ¡ 13, 0203 : 01 ¡ 11.

N1: compatible with X3 ¡ X1 ¡ X2, and 13 ¡ 03, 13 : 11 ¡ 01, 1311 : 12 ¡ 02,

03 : 01 ¡ 11, 0301 : 02 ¡ 12.
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For any V1, V2, V3 extending N1,N2,N3, respectively, let P � pV1, V2, V3q. Let

HT pMq � HT pMaj, Maj, Majq. Suppose ties are broken in favor of 010203. Because

010203 is a local Condorcet winner, so HT pMqpP q � 010203. However, HT pMqpV1q �
HT pMqpV2q � HT pMqpV3q � 111213, so HT pMq does not satisfy consistency (because

otherwise, we must have HT pMq � 111213, which we know is not the case).

The next proposition states that for any monotonic choice set function T , the

monotonicity is transferred from local rules to their H-T composition. The proof is

quite straightforward and is omitted.

Proposition 9.3.2. Let T be a monotonic choice set function. If all local rulestr1, . . . , rpu satisfy monotonicity, then HT pr1, . . . , rpq also satisfies monotonicity.

For choice sets T that always choose the global Condorcet winner, whether prop-

erties of local rules transfer to their H-T composition and vice versa is summarized

in Table 9.1.

Table 9.1: Local vs. global for H-compositions.

Criteria Global to local Local to global

Anonymity Y Y

Homogeneity Y Y

Neutrality Y N

Monotonicity Y Y for monotonic T

Consistency Y N if T always chooses
local Condorcet winner

Participation Y N

Pareto efficiency Y N

9.4 Computing H-Schwartz Winners

Among all choice sets, we are most interested in the Schwartz set, because first,

it has been argued that the Schwartz set is the “largest” reasonable choice set for

tournaments (Laslier, 1997), and second, it corresponds to the nondominated set pre-

viously considered in the context of CP-nets (Boutilier et al., 2004). In this section,
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we investigate the computational complexity of computing H-Schwartz winners. We

note that in this section H-Schwartz is a voting correspondence. Recent work on the

complexity of computing dominance relations in CP-nets shows that the dominance

problem in a CP-net is hard (Goldsmith et al., 2008). More precisely, given a CP-net

N and two alternatives a and b, it is PSPACE-complete to compute whether or not

a ¡N b. This can be used to show that checking membership in the Schwartz set is

PSPACE-complete (Goldsmith et al., 2008).

Although computing the Schwartz set is hard in general, if the preferences are

more structured it can be easy. As an extreme example, if the voters’ preferences

extend an acyclic CP-net N , then H-Schwartz is equivalent to order-independent

sequential composition of local rules, under which computing the winner is easy. In

this section, we introduce a technique to exploit more limited independence infor-

mation in the submitted votes for the purpose of computing the set of H-Schwartz

winners.

Definition 9.4.1. Let tI1, . . . , Iqu (q ¤ p) be a partition of the set of issues I. We

say a CP-net N whose graph is G is compatible with the ordering I1 ¡ � � � ¡ Iq

if for any l ¤ q and any X P Il, ParGpXq � I1 Y . . . Y Il. A linear order V is

compatible with I1 ¡ . . . ¡ Iq if there exists a CP-net N such that V extends N and

N is compatible with I1 ¡ . . . ¡ Iq.

Let O � X1 ¡ . . . ¡ Xp. One special case is the following: if the input profile

is O-legal, then we can use the partition I1 � tX1u, . . . , Ip � tXpu. We can use the

following algorithm to find a partition with which the input profile P is compatible.

Suppose that we already know the graphs of the CP-nets that the votes in P extend.

Algorithm 1

1. Let GP be the union of all the graphs of the CP-nets that the votes in P extend.

2. Let q � 0; repeat step 3 until GP � H.
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3. Let q � q � 1. Find a maximal mutually connected subset of GP , and call it Iq.

Remove Iq and all edges connecting it to GP .

4. Output the partition I1 Y . . .Y Iq.

This algorithm runs in time Opp3q. Now we are ready to present the technique

for computing the set of H-Schwartz winners more efficiently. Suppose the set of

attributes can be partitioned into I1 Y I2 so that P is compatible with I1 ¡ I2. Let

rI1
denote the sub-vector of pr1, . . . , rpq that contains the local rules ri if and only if

Xi P I1.

Process 1

1. Compute the Schwartz set HSchwartzprI1
qpP |I1

q � W 1
1 Y . . .YW k

1 , where the W i
1

are the maximal mutually connected subsets in IGprI1
qpP |I1

q.
2. For each i ¤ k, let IGprI2

qpP |I2:W i
1
q � �~wPW i

1

IGprI2
qpP |I2:~wq; then, compute the

Schwartz set W i
2 for IGprI2

qpP |I2:W i
1
q.

3. Output Wp � �k

i�1 W i
1 �W i

2.

The next theorem states that we can compute the winners of HSchwartzpr1, . . . , rpqpP q
by Process 1.

Theorem 9.4.2. WP � HSchwartzpr1, . . . , rpqpP q.
Proof. Let ~w2 be a setting of I2 and ~w1, ~w11 be settings of I1 such that ~w1 and ~w11
differ only on one attribute. Since P is compatible with I1 ¡ I2, we have that there

is an edge from p~w1, ~w2q to p~w11, ~w2q in IGprIqpP q if and only if there is an edge from

~w1 to ~w11 in IGprI1
qpP |I1

q. This implies the following claim.

Claim 9.4.1. If there is a path from p~w1, ~w2q to p~w11, ~w12q in IGprIqpP q, then its

projection on I1 is a path from ~w1 to ~w11 in IGprI1
qpP |I1

q.
Proof of Claim 9.4.1: W.l.o.g. we only need to prove the case where there is an

edge from p~w1, ~w2q to p~w11, ~w12q in IGprIqpP q. Because only neighboring alternatives
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are connected in IGprIqpP q, either ~w1 � ~w11 or ~w2 � ~w12. If ~w1 � ~w11 then the

claim is automatically proved, because the projections of the two alternatives in

IGprI1
qpP |I1

q are the same (that is, ~w1). If ~w2 � ~w12, then by definition there is an

from ~w1 to ~w11 in IGprI1
qpP |I1

q. This proves the claim. l
We note that for any i ¤ k, any ~w1, ~w11 P W i

1 such that there is a path from ~w1 to

~w11, and any ~w2 P DI2
, there is a path from p~w1, ~w2q to p~w11, ~w2q. Therefore, we have

the following claim.

Claim 9.4.2. For any i ¤ k, any p~w1, ~w2q, p~w11, ~w12q P W i
1�DI2

, there is a path fromp~w1, ~w2q to p~w11, ~w12q if and only if there is a path from ~w2 to ~w12 in IGprI2
qpP |I2:W i

1
q.

Proof of Claim 9.4.2: We first prove the “only if” part. W.l.o.g. we only need

to prove the case where there is an edge from p~w1, ~w2q to p~w11, ~w12q in IGprIqpP q.
In this case either ~w1 � ~w11 or ~w2 � ~w12. If ~w1 � ~w11, then there is an edge from

~w2 to ~w12 in IGprI2
qpP |I2:~w1

q, which means that there is an edge from ~w2 to ~w12 in

IGprI2
qpP |I2:W i

1
q. If ~w2 � ~w12, then the claim is automatically proved.

Now we prove the “if” part. W.l.o.g. we only need to prove the case where there

is an edge from ~w2 to ~w12 in IGprI2
qpP |I2:W i

1
q. By definition of IGprI2

qpP |I2:W i
1
q, there

exists ~w�1 P W i
1 such that there is an edge from ~w2 to ~w12 in IGprI2

qpP |I2:~w
�
1
q, which

means that there is an edge from p~w�1 , ~w2q to p~w�1 , ~w12q in IGprIqpP q. Because W i
1 is a

maximum mutually connected set, there exist a path from ~w1 to ~w�1 and another path

from ~w�1 to ~w11 in IGprI1
qpP |I1

q. Because P is compatible with I1 ¡ I2, there exist

two paths in IGprIqpP q, one from p~w1, ~w2q to p~w�1 , ~w2q and the other from p~w�1 , ~w12q
to p~w11, ~w12q. These two paths can be connected by the edge from p~w�1 , ~w2q to p~w�1 , ~w12q
to form a path from p~w1, ~w2q to p~w11, ~w12q. l

Based on Claim 9.4.1 and Claim 9.4.1 we are now ready to prove that WP �
HSchwartzprIqpP q and HSchwartzprIqpP q �WP , which mean that WP � HSchwartzprIqpP q.

We first prove that WP � HSchwartzprIqpP q. Equivalently, we need to prove that
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for any p~w1, ~w2q P WP , there is no alternative p~w11, ~w12q P X such that (1) there is a

path from p~w11, ~w12q to p~w1, ~w2q, (2) there is no path from p~w1, ~w2q to p~w11, ~w12q. We

prove this by contradiction. Suppose there exists p~w11, ~w12q that satisfies the above

two conditions. Suppose ~w1 P W i
1. By Claim 9.4.1, there is a path from ~w11 to ~w1

in IGprI1
qpP |I1

q. Because W i
1 is a maximum mutually connected set, ~w11 P W i

1. By

Claim 9.4.2 there exists a path from ~w12 to ~w2 in IGprI2
qpP |I2:W i

1
q. Because ~w2 P W i

2,

there must exist a path from ~w2 to ~w12 in IGprI2
qpP |I2:W i

1
q. Now, by Claim 9.4.2 there

exists a path from p~w1, ~w2q to p~w11, ~w12q, which contradicts the condition (2) above.

Next, we prove that HSchwartzprIqpP q � WP . Let p~w1, ~w2q P HSchwartzprIqpP q.
We first show that ~w1 P HSchwartzprI1

qpP |I1
q. Suppose for the sake of contradic-

tion ~w1 R HSchwartzprI1
qpP |I1

q, then there exists ~w11 P DI1
such that (1) there is a

path from ~w11 to ~w1 in IGprI1
qpP |I1

q, and (2) there is no path from ~w1 to ~w11 in

IGprI1
qpP |I1

q. From (1) we know that there is a path from p~w11, ~w2q to p~w1, ~w2q.
From (2) we know that there is no path from p~w1, ~w2q to p~w11, ~w2q, because other-

wise by Claim 9.4.1 there is a path from ~w1 to ~w11, which is a contradiction. It

follows that p~w1, ~w2q is dominated by p~w11, ~w2q, which contradicts the assumption

that p~w1, ~w2q P HSchwartzprIqpP q. Therefore, ~w1 P HSchwartzprI1
qpP |I1

q.
Now, suppose ~w1 P W i

1. If ~w2 R W i
2, then there exists ~w12 P W i

2 that dominates ~w2.

However, it follows from Claim 9.4.2 that p~w1, ~w12q dominates p~w1, ~w2q in IGprIqpP q,
which contradicts the assumption that p~w1, ~w2q P HSchwartzprIqpP q. It follows that

~w2 P W i
2, which means that p~w1, ~w2q P WP .

Therefore, WP � HSchwartzprIqpP q, which completes the proof.

If the decomposition is I1 ¡ . . . ¡ Iq with q ¡ 2, then Process 1 can be applied

recursively to find the Schwartz set, as follows. First, compute the Schwartz set

over I1 � I2 by Process 1, then use this result to compute the Schwartz set overpI1 � I2q � I3, etc. up to pI1 � . . .� Iq�1q � Iq.
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The next example shows how Process 1 works.

Example 9.4.3. Let X � t0, 1u3, and let three votes V1, V2, V3 extend three CP-nets

such that V1 is pX1 ¡ X2 ¡ X3q-legal, V2 is pX2 ¡ X1 ¡ X3q-legal, and V3 is sep-

arable. Let the partition be I1 � tX1, X2u, I2 � tX3u. Then, for all i � 1, 2, 3,

Vi is compatible with I1 ¡ I2. Suppose that t~w1, ~w11u � HSchwartzpr1, r2qpP |tX1,X2uq,
so that there is no path from ~w1 to ~w11, and vise versa. Also suppose that t~w2u �
HSchwartzpr3qpP |X3:X�3�~w1

q and t~w12u � HSchwartzpr3qpP |X3:X�3�~w1
1
q. Then, the win-

ners are p~w1, ~w2q and p~w11, ~w12q.
The next theorem states that if P is compatible with I1 ¡ . . . ¡ Iq, then the

time required to compute the set of Schwartz winners by applying Process 1 is a

polynomial function of the number of winners, the longest time it takes to apply

local rules, p, n, and max |DIi
|.

Theorem 9.4.4. Suppose an n-vote profile P is compatible with I1 ¡ . . . ¡ Iq. Let

dmax � maxi¤q |DIq |. Let tmaxpnq be the longest time it takes to apply local rules on

n inputs. Then, the running time of Process 1 is Opapdmaxpnp� tmaxpnqp� dmaxqq,
where a is the number of H-Schwartz winners.

Usually tmaxpnq is polynomial. Therefore, the computational complexity of Pro-

cess 1 mainly comes from the number of H-Schwartz winners, and the size of the

largest partition dmax.

9.5 Summary

Sequential voting rules require the voters’ preferences to extend acyclic CP-nets

compatible with a common order on the attributes. We showed that this requirement

is very restrictive, by proving that the number of linear orders extending an acyclic

CP-net is exponentially smaller than the number of all linear orders. This means
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that the voting language used in sequential voting rules lacks general usability. To

overcome this, in this chapter we introduced a very general methodology that allows

us to aggregate preferences when voters express CP-nets that can be cyclic. There

does not need to be any common structure among the submitted CP-nets. We

studied whether properties of the local rules transfer to the global rule, and vice

versa. We also addressed how to compute the winning alternatives.
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10

A Maximum-Likelihood Approach

In voting, the joint decision is made based on the agents’ preferences. Therefore,

in some sense, this means that the agents’ preferences are the “causes” of the joint

decision. However, there is a different (and almost reversed) point of view: there is

a “correct” joint decision, but the agents may have different perceptions (estimates)

of what this correct decision is. Thus, the agents’ preferences can be viewed as noisy

reports on the correct joint decision. Even in this framework, the agents still need to

make a joint decision based on their preferences, and it makes sense to choose their

best estimate of the correct decision. Given a noise model, one natural approach is

to choose the maximum likelihood estimate of the correct decision. The maximum

likelihood estimator is a function from profiles to alternatives (more accurately, sub-

sets of alternatives, since there may be ties), and as such is a voting rule (more

accurately, a correspondence).

This maximum likelihood approach was first studied by Condorcet (1785) for the

cases of two and three alternatives. Much later, Young (1995) and Young (1988)

showed that for arbitrary numbers of alternatives, the MLE rule derived from Con-

dorcet’s noise model coincides with Kemeny’s rule (Kemeny, 1959). The approach
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was further pursued by Drissi-Bakhkhat and Truchon (2004). More recently, Conitzer

and Sandholm (2005a) studied whether and how common voting correspondences can

be represented as maximum likelihood estimators. Truchon (2008) studied a differ-

ent way of viewing Borda as an MLE. We studied the relationship between MLEs

and ranking scoring rules (Conitzer et al., 2009b). Conitzer (2011) took an MLE

approach towards voting in social networks. We studied an MLE approach towards

voting with partial orders Xia and Conitzer (2011b). The related notion of dis-

tance rationalizability has also received attention in the computational social choice

community recently (Elkind et al., 2009a).

All of the above work does not assume any structure on the set of alternatives.

In this chapter, we take an MLE approach to preference aggregation in multi-issue

domains, when the voters’ preferences are represented by (not necessarily acyclic)

CP-nets. Considering the structure of CP-nets, we focus on probabilistic models

that are very weakly decomposable. That is, given the “correct” winner, a voter’s

local preferences over an issue are independent from her local preferences over other

issues, and as well as from her local preferences over the same issue given a different

setting of (at least some of) the other issues.

After reviewing some background, we start with the general case in which the

issues are not necessarily binary. The goal here is to investigate when issue-by-

issue or sequential voting rules can be modeled as maximum likelihood estimators.

When the input profile is separable, we completely characterize the set of all voting

correspondences that can be modeled as an MLE for a noise model satisfying a weak

decomposability (respectively, strong decomposability) property. Then, when the

input profile of CP-nets is compatible with a common order over issues, we prove

that no sequential voting rule satisfying unanimity can be represented by an MLE,

provided the noise model satisfies very weak decomposability. We show that this

impossibility result no longer holds if the number of voters is bounded above by a
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constant.

Then, we move to the special case in which each issue has only two possible

values. For such domains, we introduce distance-based noise models, in which the

local distribution over any issue i under some setting of the other issues depends only

on the Hamming distance from this setting to the restriction of the “correct” winner

to the issues other than i. We characterize distance-based noise models axiomatically.

Then we focus on distance-based threshold noise models in which there is a threshold

such that if the distance is smaller than the threshold, then a fixed nonuniform local

distribution is used, whereas if the distance is at least as large as the threshold, then

a uniform local distribution is used. We show that when the threshold is one, it is

NP-hard to compute the winner, but that when it is equal to the number of issues,

the winner can be computed in polynomial time.

10.1 Maximum-Likelihood Approach to Voting in Unstructured Do-
mains

In the maximum likelihood approach to voting, it is assumed that there is a correct

winner d P C, and each vote V is drawn conditionally independently given d, accord-

ing to a conditional probability distribution πpV |dq. The independence structure of

the noise model is illustrated in Figure 10.1. The use of this independence structure

is standard. Moreover, if conditional independence among votes is not required, then

any voting rule can be represented by an MLE for some noise model (Conitzer and

Sandholm, 2005a), which trivializes the question.

Under this independence assumption, the probability of a profile P � pV1, . . . , Vnq
given the correct winner d is πpP |dq �±n

i�1 πpVi|dq. Then, the maximum likelihood

estimate of the correct winner is MLEπpP q � arg maxdPC πpP |dq.
MLEπ is a voting correspondence, as there may be several alternatives d that

maximize πpP |dq. Of course we can turn it into a voting rule by using a tie-breaking
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“correct” outcome

Voter 1 Voter 2 Voter n. . .

Figure 10.1: The noise model.

mechanism, but for most part of this chapter, we will study the properties of MLE

correspondences. Another model that has been studied assumes that there is a

correct ranking of the alternatives. Here, the model is defined similarly: given the

correct linear order V �, each vote V is drawn conditionally independently according

to πpV |V �q. The maximum likelihood estimate is defined as follows.

MLEπpP q � arg max
V �PLpCq¹

V PP πpV |V �q
In this chapter, we require that all such conditional probabilities to be positive

for technical reasons.

Definition 10.1.1. (Conitzer and Sandholm, 2005a). A voting rule (correspon-

dence) r is a maximum likelihood estimator for winners under i.i.d. votes (MLEWIV)

if there exists a noise model π such that for any profile P , we have that MLEπpP q �
rpP q.

Conitzer and Sandholm (2005a) studied which common voting rules/correspondences

are MLEWIVs.

10.2 Multi-Issue Domain Noise Models

In this section, we extend the maximum-likelihood estimation approach to multi-

issue domains (where X � D1 � . . . � Dp). For now, we consider the case where

there is a correct winner, ~d P X . We let the voting language to be the set of all
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(possibly cyclic) CP-nets, that is, votes are given by CP-nets and are conditionally

independent, given ~d. Let CPnetpX q denote the set of all (possibly cyclic) CP-nets

over X . The probability of drawing CP-net N given that the correct winner is ~d is

πpN |~dq, where π is some noise model. We note that π is a conditional probability

distribution over all CP-nets (in contrast to all linear orders in previous studies).

Given this noise model, for any profile of CP-nets PCP � pN1, . . . ,Nnq, the maximum

likelihood estimate of the correct winner is

MLEπpP q � arg max
~dPX n¹

j�1

πpNj|~dq
Again, MLEπ is a voting correspondence.

Even if for all i, |Di| � 2, the number of CP-nets (including cyclic ones) is 2p�2p�1

(2 options for each entry of each CPT, and the CPT of any issue i has 2p�1 entries,

one for each setting of the issues other than i). Hence, to specify a probability

distribution over CP-nets, we will assume some structure in this distribution so that

it can be compactly represented. Throughout the chapter, we will assume that the

local preferences for individual issues (given the setting of the other issues) are drawn

conditionally independently, both across issues and across settings of the other issues,

given the correct winner. More precisely:

Definition 10.2.1. A noise model is very weakly decomposable if for every ~d P X ,

every i ¤ p, and every ~a�i P D�i, there is a probability distribution π
~a�i

~d
over LpDiq,

so that for every ~d P X and every N P CPnetpX q, πpN |~dq �±i¤p,~a�iPD�i
π

~a�i

~d
pN |Xi:~a�i

q
For instance, if Di � t0i, 1i, 2iu, π

~a�i

~d
p0i ¡ 2i ¡ 1iq is the probability that the

CP-net of a given voter contains ~a�i : 0i ¡ 2i ¡ 1i, given that the correct winner is ~d.

Then, the probability of CP-net N is the product of the probabilities of all its local

preferences N |Xi:~a�i
over specific Xi given specific ~a�i (which contains the setting
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for Xi’s parents as a sub-vector), when the correct winner is ~d. (We will introduce

stronger decomposability notions soon.)

Assuming very weak decomposability is reasonable in the sense that a voter’s

preferences for one issue are not directly linked to her preferences for another issue.

We note that this is completely different from saying that the voter’s preferences

for an issue do not depend on the values of the other issues. Indeed, the voter’s

preferences for an issue can, at least in principle, change drastically depending on

the values of the other issues. For instance, in Example 8.2.2, the event “the voter

prefers white to pink to red wine when the main course is fish” is probabilistically

independent (conditional on the correct outcome) of the event “the voter prefers beef

to salad to fish when the wine is red.”

However, we do not want to argue that such a distribution always generates

realistic preferences. In fact, with some probability, such a distribution generates

cyclic preferences. This is not a problem, in the sense that the purpose of the

maximum likelihood approach is to find a natural voting rule that maps profiles to

outcomes. The fact that this rule is also defined for cyclic preferences does not hinder

its application to acyclic preferences. Similarly, Condorcet’s original noise model for

the single-issue setting also generates cyclic preferences with some probability, but

this does not prevent us from applying the corresponding (Kemeny) rule (Kemeny,

1959) to acyclic preferences.

Even assuming very weak decomposability, we still need to define exponentially

many probabilities. We will now introduce some successive strengthenings of the

decomposability notion. First, we introduce weak decomposability, which removes

the dependence of an issue’s local distribution on the settings of the other issues in

the correct winner.

Definition 10.2.2. A very weakly decomposable noise model π is weakly decompos-
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able if for any i ¤ p, any ~d1, ~d2 P X such that ~d1|Xi
� ~d2|Xi

, we must have that for

any ~a�i P D�i, π
~a�i

~d1

� π
~a�i

~d2

. Here ~d1|Xi
is the Xi-component of ~d1.

Next, we introduce an even stronger notion, namely strong decomposability, which

removes all dependence of an issue’s distribution on the settings of the other issues.

That is, the local distribution only depends on the value of that issue in the correct

winner.

Definition 10.2.3. A very weakly decomposable noise model π is strongly decom-

posable if it is weakly decomposable, and for any i ¤ p, any ~a�i,~b�i P D�i, any

~d P X , we must have that π
~a�i

~d
� π

~b�i

~d
.

10.3 Characterizations of MLE correspondences

It seems that the MLE approaches are quite different from the voting rules that

have previously been studied in the context of multi-issue domains, such as issue-

by-issue voting and sequential voting. This may imply that the maximum likelihood

approach can generate sensible new rules for multi-issue domains. Nevertheless, we

may wonder whether previously studied rules also fit under the MLE framework.

In this section, we study whether or not issue-by-issue and sequential voting

correspondences can be modeled as the MLEs for very weakly decomposable noise

models. We note that even though MLEs for very weakly decomposable noise models

are defined over profiles of CP-nets, they can be easily extended to deal with profiles

of linear orders in the following way. For each linear order Vj in the input profile P ,

let Nj denote the CP-net (possibly cyclic) that Vj extends. Then, we apply the MLE

rule to select winner(s) from pN1, . . . ,Nnq. We recall that voting rules (which always

output a unique winner) are a special case of voting correspondences. Therefore,

our results easily extend to the case of voting rules. First, we restrict the domain

to separable profiles, and characterize the set of all correspondences that can be
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modeled as the MLEs for strongly/weakly decomposable noise models.

Theorem 10.3.1. Over the domain of separable profiles, a voting correspondence rc

can be modeled as the MLE for a strongly decomposable noise model if and only if rc

is an issue-by-issue voting correspondence composed of MLEWIVs.

Proof of Theorem 10.3.1: First we prove the “if” part. Let rc be an issue-by-

issue voting correspondence that is composed of rc
1, . . . , r

c
p, in which for any i ¤ p, rc

i

is an MLEWIV over Di of the noise model PrpV i|diq, where V i P LpDiq and di P Di.

Let π be a noise model over X defined as follows: for any i ¤ p, any ~d P X , any

~a�i P D�i and any V i P LpDiq, we have that π~a
~d
pViq � PrpV i|diq. We next prove that

for any separable profile P , we must have that MLEπpP q � rcpP q.
MLEπpP q � arg max

~d

¹
i¤p,~a�iPD�i

n¹
j�1

π
~a�i

~d
pVjq� arg max

~d

¹
i¤p

n¹
j�1

PrppVi|Xi
q|diq|D�i|

Therefore, ~b P MLEπpP q if and only if for any i ¤ p, we have

bi P arg max
di

n¹
j�1

PrppVi|Xi
q|biq

We note that for any ~d1 P rpP q, we must have that d1i � arg max
di

±n

j�1 PrppVi|Xi
q|diq.

Therefore, ~d1 P MLEπpP q.
Next, we prove the “only if” part. For any MLEπ where π is strongly decom-

posable, we define an issue-by-issue voting rule as follows: for any i ¤ p, let rc
i be

the MLEWIV that corresponds to the noise model in which for any di P Di, we have

that PrpV i|diq � π
~a�i

~d
pV iq. Similar to the proof for the “if” part, we have that rc

and MLEπ are equivalent over the domain of separable profiles. l
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A candidate scoring correspondence c is a correspondence defined by a scoring

function s : LpX q � X Ñ R in the following way: for any profile P , cpP q �
arg maxdPX °V PP spV, dq.
Theorem 10.3.2. Over the domain of separable profiles, a voting correspondence rc

can be modeled as the MLE for a weakly decomposable noise model if and only if rc

is an issue-by-issue voting correspondence composed of candidate scoring correspon-

dences.

Proof of Theorem 10.3.2: First we prove the “if” part. Let rc be an issue-by-

issue voting correspondence in which the issue-wise correspondence over Di is rc
si
,

which has scoring function si. Let π
~a�i

di
denote π

~a�i

~d
, where the ith component of ~d is

di. Because r is strongly decomposable, π
~a�i

di
is well-defined. For any i ¤ p, we claim

that there exists a set of probability distributions π
~a�i

~d
, ~d P X ,~a�i P D�i over LpDiq

such that for any di P Di, di P arg maxbiPDi

±n

j�1

±
~a�iPD�i

π
~a�i

bi
pVj |Xi

q if and only if

di P rc
si
pP |Xi

q.
We note that for any scoring function s and any constant t, the ranking scoring

rule that corresponds to s is equivalent to the ranking scoring rule that corresponds

to s� t. Therefore, without loss of generality we let sipV i, diq   0 for any i ¤ p, any

V i P LpDiq, and any di P Di. Let Ki � |Di|, LpDiq � tl1, . . . , lKi!u.
Claim 10.3.1. There exist ki, ti P R with ki ¡ 0, such that for any V i P LpDiq and

any di P Di, we have that lnp±~d�iPD�i
π

~d�i

di
pV iqq � kisipV i, diq � ti.

Proof of Claim 10.3.1: We let ki be a real number such that for any di P Di, we

have that
°Ki!

j�1pexppsiplj, diqqqki   1; let p̂
j
di
� exppsiplj, diqq. For any di P Di, any
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1 ¤ α   Ki!

Ki!� 1
, we let

fdi
pαq � lnpp1� Ki!�1

j̧�1

p̂
j
di

α
qp1� pKi � 1q α

Ki!
qq

Because
°Ki!

j�1 p̂
j
di
  1, we have that lnp1 � °Ki!�1

j�1 p̂
j
di
q ¡ ln p̂Ki!

di
� kisiplKi!, diq.

Therefore, fdi
p1q ¥ kisiplKi!, diq � lnpKi!q. We note that lim

αÑ Ki!

Ki!�1

fdi
pαq � �8. It

follows that there exists 1 ¤ αdi
¤ Ki!

Ki!� 1
such that fdi

pαdi
q � kisiplKi!, diq�lnpKi!q.

For any i ¤ p, any di P Di, we let ~a1�i,~a
��i P D�i such that ~a1�i �~~a��i. We define

π
~d�i

di
as follows.

• for any j ¤ Ki!� 1, π
~a1�i

di
pljq � 1

αdi

pexppsiplj , diqqqki, π
~a��i

di
pljq � αdi

Ki!
.

• for any j ¤ Ki!, any ~d�i P D�i such that ~d�i � ~a1�i and ~d�i � ~a��i, we have

that π
~d�i

di
pljq � 1

Ki!
.

For any ~di P Di and any j ¤ Ki!� 1, we have that

lnp ¹
~d�iPD�i

π
~d�i

di
pljqq� lnpπ~a1�i

di
pljq � π~a��i

di
pljqq � p|D�i| � 2q lnp 1

Ki!
q� lnp 1

αdi

pexppsiplj, diqqqki � αdi

Ki!
q � p|D�i| � 2q lnpKi!q�kisiplj , diq � p|D�i| � 1q lnpKi!q
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For j � Ki!, we have the following calculation.

lnp ¹
~d�iPD�i

π
~d�i

di
plKi!qq� lnpπ~a1�i

di
plKi!q � π~a��i

di
plKi!qq � p|D�i| � 2q lnp 1

Ki!
q�fdi

pαiq � p|D�i| � 2q lnpKi!q�kisiplKi!, diq � p|D�i| � 1q lnpKi!q
Therefore, let ti � �p|D�i| � 1q lnpKi!q. It follows that for any V i P LpDiq, and any

di P Di, we must have that lnp±~d�iPD�i
π

~d�i

di
pV iqq � kisipV i, diq � ti. l

Next, we show that for any separable profile P , rcpP q � MLEπpP q. Simi-

lar to in the proof of Theorem 10.3.1, it suffices to prove that for any i ¤ p,

arg maxdiPDi

±
j¤n

±
~d�iPD�i

π
~d�i

di
pVj |Xi

q � rc
si
pP |Xi

q.
arg max

diPDi

¹
j¤n

¹
~d�iPD�i

π
~d�i

di
pVj |Xi

q� arg max
diPDi

lnp¹
j¤n

¹
~d�iPD�i

π
~d�i

di
pVj |Xi

qq� arg max
diPDi

j̧¤n

¸
~d�iPD�i

lnpπ ~d�i

di
pVj |Xi

qq� arg max
diPDi

j̧¤n

¸
~d�iPD�i

pkisipVj |Xi
, diq � tiq� arg max

diPDi
j̧¤n

¸
~d�iPD�i

sipVj|Xi
, diq�rc

si
pP |Xi

q
Next, we prove the “only if” part. Let π be a weakly decomposable noise

model. For any i ¤ p, any di P Di, and any V i P LpDiq, we let sipV i, diq �
ln
±

~a�iPD�i
π

~a�i

di
pV iq. Then, we have that di maximizes sipP |Xi

, diq if and only if di
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maximizes
±

NPP ±~a�iPD�i
π

~a�i

di
pN |Xi

q, which means that rcpP q �MLEπpP q.
(End of the proof of Theorem 10.3.2). l
However, for sequential voting correspondences, we have the following negative

result. A voting correspondence rc satisfies unanimity if for any profile P in which

each vote ranks an alternative ~d first, we have rpP q � t~du. In the remainder of this

section, w.l.o.g. we let O � X1 ¡ � � � ¡ Xp.

Theorem 10.3.3. Let Seqprc
1, . . . , r

c
pq be a sequential voting correspondence that sat-

isfies unanimity. Over the domain of O-legal profiles, there is no very weakly decom-

posable noise model such that Seqprc
1, . . . , r

c
pq is the MLE.

This theorem tells us that even assuming the weakest conditional independence

of the noise model, the voting correspondence defined by the MLE of that noise

model is different from any sequential voting correspondence satisfying unanimity.

This suggests that the MLE approach gives us new voting rules/correspondences.

Proof of Theorem 10.3.3: For the sake of contradiction, we let Seqprc
1, . . . , r

c
pq

be a sequential voting correspondence and MLEπ be an MLE model equivalent

to it. A voting correspondence c satisfies consistency, if for any profiles P1, P2, if

rcpP1q � rcpP2q, then rcpP1 Y P2q � rcpP1q; c satisfies anonymity, if it is indifferent

with the name of the voters. Because MLEπ satisfies consistency and anonymity,

we have the following claim.

Claim 10.3.2. For any i ¤ p, rc
i satisfies consistency, anonymity (see Lang and Xia

(2009)) and unanimity.

For any ~d P X , any O-legal CP-net N , we let

πX1

~d
pN q � ¹

~a�1PD�1

π
~a�1

~d
pN |X1

q
π

X�1

~d
pN q � ¹

2¤i¤p,~a�iPD�i

π
~a�i

~d
pN |Xi:a1...ai�1

q
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Let N1,N2 be CP-nets. We note that if N1|X1
� N2|X1

, then πX1

~d
pN1q � πX1

~d
pN2q;

if for any d1 P D1, N1|X�1:d1
� N2|X�1:d1

, then we must have that π
X�1

~d
pN1q �

π
X�1

~d
pN2q, where N1|X�1:d1

is the sub-CP-net of N1 given X1 � d1. For any O-

legal vote V that extends a CP-net N , we write πX1

~d
pV q � πX1

~d
pN q and π

X�1

~d
pV q �

π
X�1

~d
pN q; for any O-legal profile P , we write πX1

~d
pP q �±V PP πX1

~d
pV q and π

X�1

~d
pP q �±

V PP π
X�1

~d
pV q. It follows that for any O-legal profile P , we have that

MLEπpP q � arg max
~dPX rπX1

~d
pP q � πX�1

~d
pP qs

For any linear order V , let toppV q � AltpV, 1q. That is, toppV q is the alternative

that is ranked in the top position of V . For any V 1
1 , V 1

2 P LpD1q with toppV 1
1 q �

toppV 1
2 q, and any n P N, we let P 1

1,n be the profile that is composed of n copies of

V 1
1 ; let P 1

2,n be the profile that is composed of n copies of V 1
2 . Because rc

1 satisfies

unanimity, we must have that rc
1pP 1

1,nq � ttoppV 1
1 qu and rc

1pP 1
2,nq � ttoppV 1

2 qu. For

any j ¤ n, we let Qj,n be the profile in which the preferences of the first j voters

are V 1
1 , and the preferences of the remaining n � j voters are V 1

2 . We have that

Q1,n � P 1
1,n and Qn,n � P 1

2,n. Therefore, there exists j ¤ n � 1 and b1 P D1 with

b1 � toppV 1
1 q, such that toppV 1

1 q P rc
1pQj,nq and b1 P rc

1pQj�1,nq. For any n P N, we

let Cn denote the set of pairs pa1, b1q such that

• a1, b1 P D1, a1 � b1.

• There exists two profiles W 1
1 , W 1

2 over D1 such that a1 P rc
1pW 1

1 q, b1 P rc
1pW 1

2 q,
and W 1

1 differs from W 1
2 only on one vote.

That is, Cn is composed of the pairs pa1, b1q such that there exists a profile Q over D1

that consists of n votes, a1 P rc
1pQq, and by changing one vote of Q, there is another

alternative b1 who is one of the winners. We note that for any n P N, pa1, b1q P Cn if

and only if pb1, a1q P Cn. It follows that for any n P N, Cn � H. Because |D1|   8,
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there exists pa1, b1q P pD1q2 such that for any k P N, there exists n ¥ k such thatpa1, b1q P Cn.

Claim 10.3.3. For any ~a�1,~b�1 P D�1, and any pair of CP-nets N 1,N �, we must

have that
π

X�1

~a pN 1q
π

X�1

~b
pN 1q � π

X�1

~a pN �q
π

X�1

~b
pN �q , where ~a � pa1,~a�1q, ~b � pb1,~b�1q.

Proof of Claim 10.3.3: Suppose for the sake of contradiction there exist ~a�1,~b�1,

and N 1,N � so that
π

X�1

~a pN 1q
π

X�1

~b
pN 1q � π

X�1

~a pN �q
π

X�1

~b
pN �q . Without loss of generality we let

π
X�1

~a pN 1q
π

X�1

~b
pN 1q ¡ π

X�1

~a pN �q
π

X�1

~b
pN �q . We next claim that there exits a natural number k such

that for any i ¤ p and any profile P i composed of k votes, if at least k � 1 votes in

P i rank the same alternative di in the top position, then rc
i pP iq � tdiu.

Claim 10.3.4. There exists k P N such that for any i ¤ p, any di P Di, and

any profile P i � pV i
1 , . . . , V i

k q with di � toppV i
1 q � . . . � toppV i

k�1q, we have that

rc
i pP q � tdiu.

Proof of Claim 10.3.4: Let U � max
~d1,~d2,N

PrpN |~d1q
PrpN |~d2q . Let u � min

~d1�~d2,N :toppN q�~d1

PrpN |~d1q
PrpN |~d2q .

Because MLEπpN q satisfies unanimity, for any ~d1 and N such that toppN q � ~d1,

we must have that MLEπpN q � t~d1u, which means that u ¡ 1. Let k be a natural

number such that uk�1 ¡ U . We arbitrarily choose ~d�i P D�i, and let ~d � pdi, ~d�iq.
We define k CP-nets N1, . . . ,Nk as follows.

• For any j ¤ k, toppNjq � p~d�i, toppV iqq.
• For any j ¤ k, Nj|Xi:d1,...,di�1

� V i.

• Other conditional preferences are defined arbitrarily.
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Because Seqprc
1, . . . , r

c
pq satisfies unanimity, we have that Seqprc

1, . . . , r
c
pqpN1, . . . ,Nk�1q �t~du. Therefore, for any ~d1 P X and any CP-net N , we have the following calculation:

PrppN1, . . . ,Nkq|~dq
PrppN1, . . . ,Nkq|~d1q �±k�1

j�1 PrpNj|~dq±k�1
j�1 PrpNj|~d1q � PrpNk|~dq

PrpNk|~d1q¥upk�1q 1

U
¡ 1

Therefore rc
i pV 1, . . . , V kq � tdiu.

(End of proof of Claim 10.3.4.) l
Let N~a be a CP-net such that toppN~aq � ~a and toppN |X�1:b1q � ~b�1. That

is, N~a is a CP-net in which ~a is ranked in the top position, and given X1 �
b1, ~b�1 is ranked in the top position. Next, we show that for any CP-net N ,

π
X�1

~a pN q
π

X�1

~b
pN q � π

X�1

~a pN~aq
π

X�1

~b
pN~aq . Suppose for the sake of contradiction, there exists N such

that
π

X�1

~a pN q
π

X�1

~b
pN q � π

X�1

~a pN~aq
π

X�1

~b
pN~aq . We next show contradiction in the case

π
X�1

~a pN q
π

X�1

~b
pN q ¡

π
X�1

~a pN~aq
π

X�1

~b
pN~aq . Let UX1

� max
~d1,~d2,N

πX1

~d1

pN q
πX1

~d2

pN q . Let K be a natural number such thatpπX�1

~a pN q
π

X�1

~b
pN q{πX�1

~a pN~aq
π

X�1

~b
pN~aqqK ¡ U2

X1
. Let n P N be such that n ¡ kK and pa1, b1q P Cn. It

follows that there exist pV 1
1 , . . . , V 1

n q and W 1
1 such that a1 P rc

1pV 1
1 , . . . , V 1

n q and b1 P
rc
1pW 1

1 , V 1
2 , . . . , V 1

n q. We define 2n� 1 CP-nets N 1
1,N1,N2, . . . ,Nn, N̂1, N̂2, . . . , N̂n as

follows.

• For any j ¤ n, Nj|X1
� N̂j |X1

� V 1
j ; N 1

1|X1
�W 1

1 .

• For any j1 ¤ K, 1 ¤ j2 ¤ k�1, and any d1 P D1, Npj1�1qk�j2|X�1:d1
� N~a|X�1:d1

and Nj1k|X�1:d1
� N |X�1:d1

; for any j ¤ n and any d1 P D1, Nj|X�1:d1
�

N~a|X�1:d1
.
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• For any kK � 1 ¤ j ¤ n, Nj � N̂j � N~a.

• For any d1 P D1, N 1
1|X�1:d1

� N~a|X�1:d1
.

For any j ¤ n, we let Vj (V̂j) be an arbitrary linear order that extends Nj (N̂j);

let V 1
1 be an arbitrary linear order that extends N 1

1; let P � pV1, . . . , Vnq, P 1 �pV 1
1 , V2, . . . , Vnq, P̂ � pV̂1, . . . , V̂nq, P̂ 1 � pV̂ 1

1 , V̂2, . . . , V̂nq. We make the following

observations.

• a1 P rc
1pP |X1

q, a1 P rc
1pP̂ |X1

q, b1 P rc
1pP 1|X1

q, b1 P rc
1pP̂ 1|X1

q.
• For any 1 ¤ i ¤ p� 1, P |Xi:a1...ai�1

� Kppk � 1qN~a|Xi:a1...ai�1
YN 1|Xi:a1...ai�1

q Ypn�kKqN~a|Xi:a1...ai�1
. From Claim 10.3.4 we have that rc

i ppk�1qN~a|Xi:a1...ai�1
Y

N 1|Xi:a1...ai�1
q � taiu. Because rc

i satisfies unanimity and consistency, and for

any i ¤ p, toppN~a|Xi:a1...ai�1
q � ai, we have that for any i ¤ p, rc

i pP |Xi:a1...ai�1
q �taiu. Similarly for any i ¤ p, rc

i pP̂ |Xi:a1...ai�1
q � taiu.

• For any 1 ¤ i ¤ p�1, P |Xi:b1...bi�1
� Kppk�1qN~a|Xi:b1...bi�1

YN 1|Xi:b1...bi�1
qYpn�

kKqN~a|Xi:b1...bi�1
. Similarly, we have that for any 1 ¤ i ¤ p, rc

i pP 1|Xi:b1...bi�1
q �

rc
i pP̂ 1|Xi:b1...bi�1

q � tbiu.
Therefore, we have that ~a P Seqprc

1, . . . , r
c
pqpP q,~a P Seqprc

1, . . . , r
c
pqpP̂ q, and ~b P

Seqprc
1, . . . , r

c
pqpP 1q,~b P Seqprc

1, . . . , r
c
pqpP̂ 1q. That is,

PrpP 1|~bq
PrpP 1|~aq ¥ 1,

PrpP̂ 1|~bq
PrpP̂ 1|~aq ¥ 1.

We note that P and P 1 differ only on the first vote. Therefore, we have the following
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calculation.

1 ¤PrpP 1|~bq
PrpP 1|~aq�πX1

~b
pV 1

1q � πX�1

~b
pV 1

1q±2¤j¤npπX1

~b
pVjq � πX�1

~b
pVjqq

πX1

~a pV 1
1q � πX�1

~a pV 1
1q±2¤j¤npπX1

~a pVjq � πX�1

~a pVjqq�πX1

~b
pV 1

1q
πX1

~a pV 1
1q � πX1

~a pV1q
πX1

~b
pV1q � PrpP |~bq

PrpP |~aq¤U2
X1

PrpP |~bq
PrpP |~aq

Therefore,
PrpP |~aq
PrpP |~bq ¤ U2

X1
. We note that P and P 1 differ on K votes.pPrpP |~aq

PrpP |~bq q{pPrpP̂ |~aq
PrpP̂ |~bq q�p K¹

j�1

πX1

~a pVjkq � πX�1

~a pVjkq
πX1

~b
pVjkq � πX�1

~b
pVjkqq{p K¹

j�1

πX1

~a pV̂jkq � πX�1

~a pV̂jkq
πX1

~b
pV̂jkq � πX�1

~b
pV̂jkqq�pπX�1

~a pN q
π

X�1

~b
pN q{πX�1

~a pN~aq
π

X�1

~b
pN~aqqK¡U2

X1

We note that pPrpP̂ |~aq
PrpP̂ |~bq q ¥ 1. Therefore,

PrpP |~aq
PrpP |~bq ¡ U2

X1
, which is a contradiction.

Similarly, for the case of
π

X�1

~a pN q
π

X�1

~b
pN q   π

X�1

~a pN~aq
π

X�1

~b
pN~aq we still have a contradiction.

Hence,
π

X�1

~a pN q
π

X�1

~b
pN q � π

X�1

~a pN~aq
π

X�1

~b
pN~aq for all N , which means that for any N 1 and N �, we

must have that
π

X�1

~a pN 1q
π

X�1

~b
pN 1q � π

X�1

~a pN �q
π

X�1

~b
pN �q .

(End of proof of Claim 10.3.3.) l
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By Claim 10.3.3, for any CP-net N , any ~b�1,~b
1�1 P D�1, we must have that

π
X�1pb1,~b�1qpN q

π
X�1pb1,~b�1qpN~aq � π

X�1

~a pN q
π

X�1

~a pN~aq � π
X�1pb1,~b1�1

qpN q
π

X�1pb1,~b1�1
qpN~aq , which means that

π
X�1pb1,~b�1qpN q

π
X�1pb1,~b1�1

qpN q � π
X�1pb1,~b�1qpN~aq

π
X�1pb1,~b1�1

qpN~aq .
Let N1 be a CP-net such that toppN1q � pb1,~b

1�1q, N2 be a CP-net such that

toppN2q � pb1,~b�1q and N1|X1
� N2|X1

. Because Seqprc
1, . . . , r

c
pq satisfies unanim-

ity, we have that
PrpN1|pb1,~b

1�1qq
PrpN1|pb1,~b�1qq ¡ 1 and

PrpN2|pb1,~b
1�1qq

PrpN2|pb1,~b�1qq   1. However, we have

the following calculation.

1  PrpN1|pb1,~b
1�1qq

PrpN1|pb1,~b�1qq�πX1pb1,~b1�1
qpN1q � πX�1pb1,~b1�1

qpN1q
πX1pb1,~b�1qpN1q � πX�1pb1,~b�1qpN1q�πX1pb1,~b1�1

qpN2q � πX�1pb1,~b1�1
qpN~aq

πX1pb1,~b�1qpN2q � πX�1pb1,~b�1qpN~aq pBecause N1|X1
� N2|X1

q�πX1pb1,~b1�1
qpN2q � πX�1pb1,~b1�1

qpN2q
πX1pb1,~b�1qpN2q � πX�1pb1,~b�1qpN2q�PrpN2|pb1,~b

1�1qq
PrpN2|pb1,~b�1qq 1

Therefore, we have a contradiction. (End of proof of Theorem 10.3.3.) l
However, a connection between MLEs for very weakly decomposable noise models

and sequential voting correspondences can be obtained if there is an upper bound on

the number of voters. The next theorem states that for any natural number n and any

sequential composition of MLEWIVs, there exists a very weakly decomposable noise

model such that for any profile of no more than n O-legal votes, the set of winners
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under the MLE for that noise model is always a subset of the set of winners under

the sequential correspondence. That is, if the local correspondences can be justified

by a noise model, then, to some extent, so can the sequential voting correspondence

that uses these local rules.

Theorem 10.3.4. For any n P N and any sequential voting correspondence Seqprc
1, . . . , r

c
pq

where for each i ¤ p, rc
i is an MLEWIV, there exists a very weakly decomposable

noise model π such that for any O-legal profile P composed of no more than n votes,

we have that MLEπpP q � Seqprc
1, . . . , r

c
pqpP q.

Proof of Theorem 10.3.4: Let ri be the MLEWIV with the conditional probability

distribution PripV i|diq, where V i P LpDiq, di P Di. For any i ¤ p, we let Ri,n
max �

maxPi,P
1
i ,di,d

1
i

"
PripPi|diq
PripP 1i |d1iq*, where di, d

1
i P Di, and Pi and P 1i are profiles with the

same number (but no more than n) of linear orders over Di. We let R
i,n
min � 1 if

ri is the trivial correspondence that always outputs the whole domain; and R
i,n
min �

minPi,~di,~d
1
i

"
PripPi|diq
PripPi|d1iq :

PripPi|diq
PripPi|d1iq ¡ 1

*
, where di, d

1
i P Di, and Pi is a profile of no

more than n linear orders over Di. We note that for any i ¤ p, any n P N, we have

that Ri,n
max ¥ R

i,n
min ¥ 1.

For any V i P LpDiq, any ~d P X , and any ~a�i P D�1, we let

π
~a�i

~d
pV iq � $&% PripV i|diqki{Zi if ~a�i � ~d�i

1|Di|! otherwise
,

where Zi � °V iPLpDiq PripV i|diqki is a normalizing factor, and 1 � k1 ¡ k2 ¡ � � � ¡
kp ¡ 0 are chosen in the following way: for any i1   i ¤ p, any V i, W i P LpDiq, and

any di, d
1
i P Di, if R

i,n
min ¡ 1, then we must have that pRi,n

maxqki   pRi1,n
minqki1{2i�i1

.

We next prove that for any profile PCP of no more than n CP-nets, we must have

that MLEπpPCP q � Seqprc
1, . . . , r

c
pqpPCP q. For the sake of contradiction, let PCP be a

profile of no more than n CP-nets with MLEπpPCP q � Seqprc
1, . . . , r

c
pqpPCP q. Let ~d P
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MLEπpPCP q, and i� be the number such that there exists ~d� P Seqprc
1, . . . , r

c
pqpPCP q

such that for all i1   i�, di1 � d�i1, and di� R rc
i�pPCP |Xi� :d1...di��1

q. Because

rc
i�pPCP |Xi� :d1...di��1

q � Di� , we must have that R
i�,n
min ¡ 1. Because ~d P MLEπpPCP q,

we must have that
πpPCP |~dq
πpPCP |~d�q ¥ 1. However, we have the following calculation that

leads to a contradiction.

1 ¤ πpPCP |~dq
πpPCP |~d�q � ±p

i�1 PripPCP |Xi:d1...di�1
|diq±p

i�1 PripPCP |Xi:d
�
1
...d�i�1

|d�i q�±p

i�i� PripPCP |Xi:d1...di�1
|diq±p

i�i� PripPCP |Xi:d
�
1
...d�i�1

|d�i q¤ 1pRi�,n
minqki� � p¹

i�i��1

pRi,n
maxqki  1pRi�,n

minqki� � p¹
i�i��1

pRi�,n
minqki�{2i�i�   1

Therefore, we must have that MLEπpP q � Seqprc
1, . . . , r

c
pqpP q for all profiles P that

consist of no more than n CP-nets. l
10.4 Distance-Based Models

We have shown in the previous section that the MLE approach may give us new

voting rules in multi-issue domains. However, assuming very weak decomposability,

there are too many (exponentially many) parameters in the noise model, which makes

it very hard to implement a rule based on the MLE approach. In this section, we

focus on a family of maximum likelihood estimators that are based on noise models

defined over multi-binary-issue domains (domains composed of binary issues), and

that need only a few parameters to be specified. We recall that a CP-net on a

multi-binary-issue domain corresponds to a directed hypercube in which each edge

has a direction representing the local preference. A very weakly decomposable noise
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model π can be represented by a collection of weighted directed hypercubes, one for

each correct winner, in which the weight of each directed edge is the probability of

the local preference represented by the directed edge. For any outcome ~d P X , any

issue Xi, any ~e�i P D�i, and any di � d1i P Di, the weight on the directed edgepp~e�i, diq, p~e�i, d
1
iqq of the weighted hypercube corresponding to the correct winner

~d is denoted by π
~e�i

~d
pdi ¡ d1iq, and represents the probability that a given voter

reports the preference ~e�i : di ¡ d1i in her CP-net, given that the correct winner is

~d.1 For example, when the correct winner is 010203, the weight on the directed edgep011203, 011213q is the probability π0112

010203
p03 ¡ 13q. We now propose and study very

weakly decomposable noise models in which the weight of each edge depends only

on the Hamming distance between the edge and the correct winner.

For any pair of alternatives ~d, ~d1 P X , the Hamming distance between ~d and ~d1,
denoted by |~d� ~d1|, is the number of components in which ~d is different from ~d1, that

is, |~d� ~d1| � #ti ¤ p : di � d1iu. Let e � p~d1, ~d2q be a pair of alternatives such that|~d1 � ~d2| � 1 (equivalently, an edge in the hypercube). The distance between e and

an alternative ~d P X , denoted by |e� ~d|, is the smaller Hamming distance between

~d and the two ends of e, that is, |e � ~d| � mint|~d1 � ~d|, |~d2 � ~d|u. For example,|011203 � 010203| � 1, |011213 � 010203| � 2, and |p011203, 011213q � 010203| � 1.

We next introduce distance-based noise models in which the probability distri-

bution π
~a�i

~d
only depends on di and the Hamming distance between ~a�i and ~d�i.

Definition 10.4.1. Let X be a multi-binary-issue domain. For any ~q � pq0, . . . , qp�1q
such that 1 ¡ q0, . . . , qp�1 ¡ 0, a distance-based (noise) model π~q is a very weakly

decomposable noise model such that for any ~d P X , any i ¤ p, and any ~a�i P D�i

1 For every pair of alternatives differing on exactly one issue, there is exactly one weighted edge between them; the
direction of the edge only says that we are going further from the correct winner. This will be made more precise
after Definition 10.4.1.
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with |~a�i � ~d�i| � k ¤ p� 1, we have that π
~a�i

~d
pdi ¡ d̄iq � qk.

The intuition behind the notion of a distance-based model is as follows. First, it is

plausible to assume that the “closer” two alternatives are to the correct alternative,

the more likely a given voter will order them in the “correct” way, that is, will prefer

the one which is closer to the correct alternative. The family of distance-based voting

rules is actually more general than this, because we do not impose q1 ¥ . . . ¥ qp�1,

but we may of course add this restriction if we wish to. Moreover, the choice of the

Hamming distance is not necessary, and other intuitive distance-based models can be

defined, using other distances – for instance, domain-dependent distances. But, the

Hamming distance is a natural starting point (most works in distance-based belief

base merging and distance-based belief revision also focus on the Hamming distance).

Given the correct winner ~d, a distance-based model π~q can be visualized by the

following weighted directed graph built on the hypercube:

• For any undirected edge e � p~d1, ~d2q in the hypercube, where ~d1, ~d2 differ only

on the value assigned to Xi for some i ¤ p, if ~d1|Xi
� di, then the direction of e

is from ~d1 to ~d2; if ~d2|Xi
� di, then the direction of e is from ~d2 to ~d1. That is,

the direction of the edge is always from the alternative whose Xi component

is the same as the Xi component of the correct winner to the other end of the

edge.

• For any edge e with |e� ~d| � l, the weight of e is ql.

For example, given that 010203 is the correct winner, the distance-based model is

illustrated in Figure 10.2.
We are especially interested in a special type of distance-based models in which

there exists a threshold 1 ¤ k ¤ p and q ¡ 1
2
, such that for any i   k, we have that

qi � q, and for any k ¤ i ¤ p � 1, we have that qi � 1
2
. Such a model is denoted
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q0

q0

q1

q1

q1

q1

q1

q1

q2

q2

q2

Figure 10.2: The distance-based model πpq0,q1,q2q when the correct winner is 000.

by πk,q. We call πk,q a distance-based threshold noise model with threshold k. We

say that a noise model π has threshold k ¤ p if and only if there exists q ¡ 1
2

such

that π � πk,q. The MLE for a distance-based threshold model πk,q is denoted by

MLEπk,q
.

Example 10.4.2. Let p � 3. π1,q and π2,q are illustrated in Figure 10.3 (when the

correct winner is 000).

000 001

010 011

100 101

110 111

q

q

q

000 001

010 011

100 101

110 111

q

q

q

q

q

q

q

q

q

(a) The threshold is 1. (b) The threshold is 2.

Figure 10.3: Distance-based threshold models. The weight of the bold edges is
q ¡ 1

2
; the weight of all other edges is 1

2
.

We next present a direct method for computing winners under the MLE corre-

spondences of distance-based threshold models. For any 1 ¤ k ¤ p, any ~d P X , and
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any CP-net N , we define the consistency of degree k between ~d and N , denoted by

Nkp~d,N q, as follows. Nkp~d,N q is the number of triples p~a,~b, iq such that ~a�i � ~b�i,

ai � di, bi � d̄i, |pai, biq� ~d| ¤ k�1, and N contains a�i : di ¡ d̄i. That is, Nkp~d,N q
is the number of local preferences (over any issue Xi, given any ~a�i P D�i) in N that

are di ¡ d̄i, where the distance between ~d and the edge ppdi,~a�iq, pd̄i,~a�iqq is at most

k � 1. For any profile PCP of CP-nets, we let Nkp~d, PCP q � °NPPCP
Nkp~d,N q.

Theorem 10.4.3. For any k ¤ p, any q ¡ 1
2
, and any profile PCP of CP-nets, we

have that MLEπk,q
pPCP q � arg max~d

Nkp~d, PCP q.
That is, the winner for any profile of CP-nets under any MLE for a distance-based

threshold model πk,q maximizes the sum of the consistencies of degree k between the

winning alternative and all CP-nets in the profile.

Proof of Theorem 10.4.3: For any k ¤ p, any ~d P X , we let Lk � #te : |e� ~d| ¤
k � 1u. That is, Lk is the number of edges in the hypercube whose distance from a

given alternative ~d is no more than k � 1. For any ~d P X and any CP-net N , we

have that
ln πpPCP |~dq� ¸
NPPCP

ln
¹

i,~a�iPD�i

π
~a�i

di
pN |Xi:~a�i

q� ¸
NPPCP

pNkp~d,N q ln q � pLk �Nkp~d,N qq lnp1� qqq� ¸
NPPCP

pNkp~d,N q ln q

1� q
� Lk lnp1� qqq

Therefore, MLEπk,q
pPCP q � arg max~d

πpPCP |~dq� arg max~d

°
NPPCP

pNkp~d,N q ln q

1�q
� Lk lnp1� qqq� arg max~d

Nkp~d, PCP q. l
Therefore, we have the following corollary, which states that the winners for any

profile under MLEπk,q
do not depend on q, provided that q ¡ 1

2
.
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Corollary 10.4.4. For any k ¤ p, any q1 ¡ 1
2
, q2 ¡ 1

2
, and any profile PCP of

CP-nets, we have MLEπk,q1
pPCP q � MLEπk,q2

pPCP q.
Example 10.4.5. Consider two binary issues X1, X2, and three voters, who report

the following CP-nets: N1 has an edge from X1 to X2, and the following local preferences: t01 ¡ 11, 01 :

02 ¡ 12, 11 : 12 ¡ 02u. N2 has an edge from X1 to X2 and an edge from X2 to X1, and the following

local preferences: t02 : 11 ¡ 01, 12 : 01 ¡ 11, 01 : 12 ¡ 02, 11 : 02 ¡ 12u. N3 has no edge, and the following local preferences: t11 ¡ 01, 12 ¡ 02u.
Let PCP � pN1,N2,N3q.

First, consider k � 1. Let us compute N1p1112,N1q. There are two edges whose

distance to 1112 is 0: one from 1112 to 1102 and one from 1112 to 0112. The first

one is in the preference relation induced from N1; the second one is not. There-

fore, N1p1112,N1q � 1. Similarly, we get N1p1112,N2q � 0 and N1p1112,N3q � 2,

henceforth, N1p1112, PCP q � 3. Similar calculations lead to N1p1102, PCP q � 3,

N1p0112, PCP q � 4 and N1p0102, PCP q � 2, hence MLEπ1,q
pPCP q � t0112u (for any

value of q ¡ 1
2
).

Now, consider k � 2. Let us compute N1p1112,N1q. Now, we have to consider all

four edges, since all of them are at a distance 0 or 1 to 1112. The two edges not

considered for the case k � 1 are the edge from 0112 to 0102 and one from 1102 to

0112. In both cases, voter 1 prefers the alternative which is further from 1112, there-

fore, N2p1112,N1q � 1. Similarly, we get N2p1112,N2q � 2 and N2p1112,N3q � 4,

henceforth, N2p1112, PCP q � 7. Similar calculations lead to N2p1102, PCP q � 5,

N2p0112, PCP q � 7 and N1p0102, PCP q � 5, hence MLEπ2,q
pPCP q � t0112, 1112u.

We next investigate the computational complexity of applying MLE rules with

distance-based threshold models. First, we present a polynomial-time algorithm that
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computes the winners and outputs the winners in a compact way, under MLEπp,q ,

where p is the number of issues. This algorithm computes the correct value(s) of

each issue separately: for any issue Xi, the algorithm counts the number of tuplesp~a�i,N q, where ~a�i P D�i and N is a CP-net in the input profile PCP , such that

N contains a�i : 0i ¡ 1i. If there are more tuples p~a�i,N q in which N contains

a�i : 0i ¡ 1i than there are tuples in which N contains a�i : 1i ¡ 0i, then we select

0i to be the ith component of the winning alternative, and vice versa. We note that

the time required to count tuples p~a�i,N q depends on the size of N . Therefore, even

though computing the value for Xi takes time that is exponential in |ParGpXiq| (the

number of parents of Xi in the directed graph of N ), the CPT of Xi in N itself is

also exponential in |ParGpXiq| (for each setting of ParGpXiq, there is an entry in

CPT pXiq). This explains why the algorithm runs in polynomial time.

Algorithm 10.4.1. INPUT: p P N, 1
2
  q   1, and a profile of CP-nets PCP over

a binary domain consisting of p issues.

1. For each i ¤ p:

1a. Let Si � 0, Wi � H.

1b. For each CP-net N P PCP : let ParGpXiq � tXi1 , . . . , Xip1u be the parents of Xi

in the directed graph of N . Let l be the number of settings ~y of ParGpXiq for which

N |Xi:~y � 0i ¡ 1i. Let Si � Si � l2p�p1 � 2p�1. Here, p1 is the number of parents of

Xi, and l2p�p1 � 2p�1 is the number of edges in the CP-net where 0i ¡ 1i, minus the

number of edges where 1i ¡ 0i.

1c. At this point, let Wi � $&% t0iu if Si ¡ 0t1iu if Si   0t0i, 1iu if Si � 0

2.Output W1 � . . .�Wp.

Proposition 10.4.6. The output of Algorithm 10.4.1 is MLEπp,qpPCP q, and the

algorithm runs in polynomial time.

207



Proof of Proposition 10.4.6: First we prove that the output of Algorithm 10.4.1

is MLEπp,qpPCP q. For any ~d P X , Npp~d, PCP q � °
i¤p, #t~a�1 P D�1 : pdi,~a�iq ¡Npd̄i,~a�iq,N P PCP u. We note that di P Wi if and only if #t~a�1 P D�1 : pdi,~a�iq ¡Npd̄i,~a�iq,N P PCP u ¡ #t~a�1 P D�1 : pd̄i,~a�iq ¡N pdi,~a�iq,N P PCP u. Therefore,

~d P MLEπp,qpPCP q if and only if for all i ¤ p, we have that di P Wi.

Next we prove that the algorithm runs in polynomial time. We note that in step

1b, the complexity of computing l is Op2|ParGpXiq|q, and CPT pXiq of the CP-net N

has exactly 2|ParGpXiq| entries, which means that the complexity of computing l is in

polynomial of the size of CPT pXiq of the input. Therefore, Algorithm 10.4.1 is a

polynomial-time algorithm. l
The next example shows how to compute the winners under MLEπp,q for the

profile defined in Example 10.4.5.

Example 10.4.5, continued Let us first compute S1. In N1 (respectively, N1 and

N3), the table for x1 contributes to 2 edges (respectively, one edge and no edge)

from 01 to 11, and to no edge (respectively, one edge and two edge) from 11 to 01,

therefore S1 � p�2q � 0� p�2q � 0. Similarly, S2 � 0� 0� p�2q � �2. Therefore,

W1 � t01, 11u and W2 � t12u, which gives us MLEπ2,q
pPCP q � t0112, 1112u.

However, when the threshold is one, computing the winners is NP-hard, and the

associated decision problem, namely checking whether there exists an alternative ~d

such that N1p~d, PCP q ¥ T , is NP-complete.

Theorem 10.4.7. It is NP-complete to find a winner under MLEπ1,q
. More pre-

cisely, it is NP-complete to decide whether there exists an alternative ~d such that

N1p~d, PCP q ¥ T .

Proof of Theorem 10.4.7: By Theorem 10.4.3, the decision problem of finding

a winner under MLEπ1,q
is the following: for any profile P that consists of n CP-

nets, and any T ¤ pn, we are asked whether or not there exists ~d P X such that
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N1p~d, P q ¥ T .

We prove the NP-hardness by reduction from the decision problem of max2sat.

The inputs of an instance of the decision problem of max2sat consists of (1) a set

of t atomic propositions x1, . . . , xt; (2) a formula F � C1 ^ . . . ^ Cm represented in

conjunctive normal form, in which for any i ¤ m, Ci � li1 _ li2 , and there exists

j1, j2 ¤ t such that li1 is xj1 or  xj1, and li2 is xj2 or  xj2; (3) T ¤ m. We are asked

whether or not there exists a valuation ~x for the atomic propositions x1, . . . , xt such

that at least T clauses are satisfied under ~x.

Given any instance of max2sat, we construct a decision problem instance of

computing a winner under MLEπ1,q
as follows. Let X be composed of t issues X1, . . . , Xt. Let T 1 � 16T � 12m. For any i ¤ m, we let vi1 be the valuation of xi1 under which li1 is true; let vi2 be

the valuation of xi2 under which li2 is true. For any j ¤ t, we let 0j corresponds to Xj

being false, and 1j corresponds to Xj being true. Then, any valuation of the atomic

propositions is uniquely identified by an alternative. We next define six CP-nets as

follows:

– Ni,1: the DAG of Ni,1 has only one directed edge pXi1 , Xi2q. In Ni,1, vi1 ¡ v̄i1 ,

vi1 : vi2 ¡ v̄i2 , v̄i1 : vi2 ¡ v̄i2 , and for any j � i1 and j � i2, we have that 0j ¡ 1j.

– Ni,2: the DAG of Ni,2 has only one directed edge pXi1 , Xi2q. In Ni,2, vi1 ¡ v̄i1 ,

vi1 : v̄i2 ¡ vi2 , v̄i1 : vi2 ¡ v̄i2 , and for any j � i1 and j � i2, we have that 0j ¡ 1j.

– Ni,3: the DAG of Ni,3 has only one directed edge pXi2 , Xi1q. In Ni,1, vi2 ¡ v̄i2 ,

vi2 : v̄i1 ¡ vi1 , v̄i2 : vi1 ¡ v̄i1 , and for any j � i1 and j � i2, we have that 0j ¡ 1j.

We next obtain N 1
i,1, N

1
i,2, and N 1

i,3 from Ni,1, Ni,2, and Ni,3, respectively, by let-

ting 1j ¡ 0j for any j with j � i1 and j � i2. Let ~Ni � pNi,1,N 1
i,1,Ni,2,N 1

i,2,Ni,3,N 1
i,3q.

We let the profile of CP-nets be PCP � p ~N1, . . . , ~Nmq.
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We make the following claim about the number of consistent edges between an

alternative ~d and ~Ni.

Claim 10.4.1. For any ~d P X and any i ¤ m,

N1p~d, ~Niq � # 4 if ~di1 � vi1 or di2 � vi2�12 if ~di1 � v̄i1 and di2 � v̄i2

Claim 10.4.1 states that the number of consistent edges between ~d and ~Ni within

distance 1 is 4 if the clause Ci is true under the valuation represented by ~d; otherwise

it is �12. For any ~d P X , we let T~d
denote the number of clauses in C1, . . . , Cm

that are true under ~d. Then, we have that N1p~d, PCP q � 4T~d
� 12pm � T~d

q �
16T~d

� 12m. It follows from Theorem 10.4.3 that for any q ¡ 1
2
, MLEπ1,q

pPCP q �
arg max~d

N1p~d, PCP q � arg max~d
T~d

. Therefore, a winner of PCP under MLEπ1,q

corresponds to a valuation under which the number of satisfied clauses is maximized;

and any valuation that maximizes the number of satisfied clauses corresponds to a

winner of PCP under MLEπ1,q
. We note that the size of PCP is Opmtq. It follows

that computing a winner under MLEπ1,q
is NP-hard.

Clearly the decision problem is in NP. Therefore, the decision problem is NP-

complete to compute a winner under MLEπ1,q
. l

As we have seen (cf. Corollary 10.4.4), for a given multi-issue domain composed

of p binary issues, there are exactly p voting correspondences defined by distance-

based threshold models. As far as we know, these voting correspondences are entirely

novel, and are tailored especially for multi-issue domains. Now, among these p voting

correspondences, two are even more natural and interesting: MLEπ1,q
and MLEπp,q .

MLEπ1,q
proceeds by electing the alternatives which maximize the sum, over all

voters, of the number of neighboring alternatives in the voter’s hypercube to which

she prefers ~x. Now, recall that the Borda correspondence can be characterized as
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the correspondence where candidate x is a winner if it maximizes the sum, over all

voters, of the number of candidates the voter prefers to x. Therefore, MLEπ1,q
is

somewhat reminiscent of Borda—except, of course, that we do not count all alter-

natives defeated by ~x but only defeated alternatives that are one of its neighbors in

the hypercube. MLEπp,q is even more intuitive: for each issue Xi, the winning value

maximizes the number of edges (summing over all voters) that are in favor of it, that

is, it is somewhat reminiscent of Kemeny.

So, MLEπ1,q
and MLEπp,q are genuinely new voting correspondences for multi-

issue binary domains, which can be characterized in terms of maximum likelihood

estimators and are quite intuitive; lastly, MLEπp,q can be computed in polynomial

time. We conjecture that for any 2 ¤ k ¤ p � 1, winner determination for MLEπk,q

is NP-hard.

10.5 Summary

In this chapter, we considered the maximum likelihood estimation (MLE) approach

to voting, and generalized it to multi-issue domains, assuming that the voters’ pref-

erences are expressed by CP-nets. We first studied whether issue-by-issue voting

rules and sequential voting rules can be represented by the MLE of some noise

model. For separable input profiles, we characterized MLEs of strongly/weakly

decomposable models as issue-by-issue voting correspondences composed of local

MLEWIVs/candidate scoring correspondences. Although we showed that no se-

quential voting correspondence can be represented as the MLE for a very weakly

decomposable model, we did obtain a positive result here under the assumption that

the number of voters is bounded above by a constant.

In the case where all issues are binary, we proposed a class of distance-based noise

models; then, we focused on a specific subclass of such models, parameterized by a

threshold. We identified the computational complexity of winner determination for
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the two most relevant values of the threshold.

We note that, whereas Section 10.3 has a non-constructive flavor because we stud-

ied existing voting mechanisms and Theorem 10.3.3 is an impossibility theorem, quite

the opposite is the case for Section 10.4. Indeed, the MLE principle led us to define

genuinely new families of voting rules and correspondences for multi-issue domains.

These rules are radically different from the rules that had previously been proposed

and studied for these domains. Unlike sequential or issue-by-issue rules, they do not

require any domain restriction, and yet their computational complexity is not that

bad (the decision problem is NP-complete at worst, and sometimes polynomial in

the size of the CP-nets). We believe that these new rules are promising.
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11

Strategic Sequential Voting

In previous two chapters we have been focusing on designing “good” voting rules

for combinatorial voting. In most of the previous work on combinatorial voting, it

was assumed that the voters report their true preferences using the voting language

we provide to them, when the voting language is expressive enough to do so. Now,

if the voters vote on issues sequentially, one issue after another according to some

ordering over issues, and are assumed to know the preferences of other voters well

enough, then we can expect them to vote strategically at each step, forecasting the

outcome at later steps conditional on the outcomes at earlier steps. Let us consider

the following motivating example (a similar example was shown in Lacy and Niou

(2000)).

Example 11.0.1. Three residents want to vote to decide whether they should build

a swimming pool and/or a tennis court. There are two issue S and T. S can take

the value of s (meaning “to build the swimming pool”) or s̄ (meaning “not to build

the swimming pool”). Similarly, T takes a value in tt, t̄u. Suppose the preferences

of the three voters are, respectively, st ¡ s̄t ¡ st̄ ¡ s̄t̄, st̄ ¡ st ¡ s̄t ¡ s̄t̄ and
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s̄t ¡ s̄t̄ ¡ st̄ ¡ st. Voter 2 and 3 do not rank st as their first choices, because they

thought that the money could be spent on something else. Suppose the voters first

vote on issue S then on issue T. Since both issues are binary, the local rule used at

each step is majority (there will be no ties, because the number of voters is odd).

Voter 1 is likely to reason in the following way: if the outcome of the first step is

s, then voters 2 and 3 will vote for t̄, since they both prefer st̄ to st, and the final

outcome will be st̄; but if the outcome of the first step is s̄, then voters 2 and 3 will

vote for t, and the final outcome will be s̄t; because I prefer s̄t to st̄, I am better off

voting for s̄, since either it will not make any difference, or it will lead to a final

outcome of s̄t instead of st̄. If voters 2 and 3 reason in the same way, then 2 will

vote for s and 3 for s̄; hence, the result of the first step is s̄, and then, since two

voters out of three prefer s̄t to s̄t̄, the final outcome will be s̄t. Note that the result

is fully determined, provided that (1) it is common knowledge that voters behave

strategically according to the principle we have stated informally, (2) the order in

which the issues are decided, as well as the local voting rules used in all steps, are also

common knowledge, and (3) voters’ preferences are common knowledge. Therefore,

these three assumptions allow the voters and the modeler (provided he knows as

much as the voters) to predict the final outcome.

Let us take a closer look at voter 1 in Example 11.0.1. Her preferences are

separable: she prefers s to s̄ whatever the value of T is, and t to t̄ whatever the

value of S is. And yet she strategically votes for s̄, because the outcome for S affects

the outcome for T. Moreover, while voters 2 and 3 have nonseparable preferences,

still, all three voters’ preferences enjoy the following property: their preferences over

the value of S are independent of the value of T. That is, the profile is pS ¡ Tq-
legal. Hence, we can apply the sequential voting rule w.r.t. the order S ¡ T, using

majority rules for S and T. For the profile given in Example 11.0.1, the outcome of
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the first step under the sequential voting rule will be s (since two voters out of three

prefer s to s̄, unconditionally), and the final outcome will be st̄. This outcome is

different from the outcome we obtain if voters behave strategically. The reason for

this discrepancy is that in Lang and Xia (2009), voters are not assumed to know the

others’ preferences and are assumed to vote truthfully.

We have seen that even if the voters’ preferences are O-legal, voters may in

fact have no incentive to vote truthfully. Consequently, existing results on multiple-

election paradoxes are not directly applicable to situations where voters vote strate-

gically.

Overview of this chapter

In this chapter, we analyze the complete-information game-theoretic model of se-

quential voting that we illustrated in Example 11.0.1. This model applies to any

preferences that the voters may have (not just O-legal ones), though they must be

strict orders on the set of all alternatives.

We focus on voting in multi-binary-issue domains, that is, for any i ¤ p, Xi

must take a value in t0i, 1iu. This has the advantage that for each issue, we can use

the majority rule as the local rule for that issue. We use a game-theoretic model

to analyze outcomes that result from sequential voting. Specifically, we model the

sequential voting process as a p-stage complete-information game as follows. There is

an order O over all issues (without loss of generality, let O � X1 ¡ X2 ¡ � � � ¡ Xp),

which indicates the order in which these issues will be voted on. For any 1 ¤ i ¤ p,

in stage i, the voters vote on issue Xi simultaneously, and the majority rule is used to

choose the winning value for Xi. We make the following game-theoretic assumptions:

it is common knowledge that all voters are perfectly rational; the order O and the

fact that in each step, the majority rule is used to determine the winner are common

knowledge; all voters’ preferences are common knowledge.
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We can solve this game by a type of backward induction already illustrated in

Example 11.0.1: in the last (pth) stage, only two alternatives remain (corresponding

to the two possible settings of the last issue), so at this point it is a weakly dominant

strategy for each voter to vote for her more preferred alternative of the two. Then,

in the second-to-last (pp� 1qth) stage, there are two possible local outcomes for thepp� 1qth issue; for each of them, the voters can predict which alternative will finally

be chosen, because they can predict what will happen in the pth stage. Thus, thepp � 1qth stage is effectively a majority election between two alternatives, and each

voter will vote for her more preferred alternative; etc. We call this procedure the

strategic sequential voting procedure (SSP).1

Given exogenously the order O over the issues, this game-theoretic analysis maps

every profile of strict ordinal preferences to a unique outcome. Since any function

from profiles of preferences to alternatives can be interpreted as a voting rule, the

voting rule that corresponds to SSP is denoted by SSPO.

Lacy and Niou (2000) showed that whenever there exists a Condorcet winner, it

must be the SSP winner. That is, SSP is Condorcet consistent. We will show that,

unfortunately, all three major types of multiple-election paradoxes (see Section 8.1)

also arise under SSP. To better present our results, we introduce a parameter which

we call the minimax satisfaction index (MSI). For an election with m alternatives

and n voters, it is defined in the following way. For each profile, consider the highest

position that the winner obtains across all input rankings of the alternatives (the

ranking where this position is obtained corresponds to the most-satisfied voter); this

is the maximum satisfaction index for this profile. Then, the minimax satisfaction

index is obtained by taking the minimum over all profiles of the maximum satisfaction

index. A low minimax satisfaction index means that there exists a profile in which

1 Lacy and Niou (2000) called such a procedure sophisticated voting following the convention
of Farquharson (1969).
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the winner is ranked in low positions in all votes, thus indicating a multiple-election

paradox. Our main theorem is the following.

Theorem 11.3.1 For any p P N and any n ¥ 2p2 � 1, the minimax satisfaction

index of SSP when there are m � 2p alternatives and n voters is tp{2�2u. Moreover,

in the profile P that we use to prove the upper bound, the winner SSPOpP q is Pareto-

dominated by 2p � pp� 1qp{2 alternatives.

We note that an alternative c Pareto-dominates another alternative c1 implies

that c beats c1 in their pairwise election. Therefore, Theorem 11.3.1 implies that the

winner for SSP is an almost Condorcet loser. It follows from this theorem that SSP

exhibits all three types of multiple-election paradoxes: the winner is ranked almost

in the bottom in every vote, the winner is an almost Condorcet loser, and the winner

is Pareto-dominated by almost every other alternative. We further show a paradox

(Theorem 11.3.6) that states that there exists a profile such that for any order O over

the issues, for every voter, the SSP winner w.r.t. O is ranked almost in the bottom

position. We also show that even when the voters’ preferences can be represented by

CP-nets that are compatible with a common order, multiple-election paradoxes still

arise.

Related work and discussion

The setting of SSP has been considered by Lacy and Niou (2000). But at a high

level, our motivation, results, and conclusion are quite different from those of Lacy

and Niou. We focus on the game-theoretic aspects of SSP, and we aim at examining

the equilibrium outcomes in voting games. They viewed SSP as a voting rule (see

Section 11.1.3 for more discussion on this point of view), and aimed at proposing

solutions to aggregate non-separable profiles in combinatorial voting. They showed

that SSP satisfies Condorcet consistency, but did not mention whether the other

types of multiple-election paradoxes can be avoided. We, on the other hand, show
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that the other three types of multiple-election paradoxes still arise in SSP.2 In terms

of their conclusion, Lacy and Niou argued that SSP might not be a good solution

as a voting rule, because it requires the voters to have complete information about

the other voters’ true preferences. The paradoxes that will be shown in this chapter,

like the paradoxes we showed for Stackelberg voting games in Chapter 7, are an

ordinal version of price-of-anarchy results. Consequently, these paradoxes provide

more evidence that strategic behavior of the voters should be prevented, and therefore

motivate the study in the next chapter, where the objective is to design strategy-proof

voting rules that are computationally tractable for combinatorial domains.

More generally, SSP is closely related to multi-stage sophisticated voting, studied

by McKelvey and Niemi (1978), Moulin (1979), and Gretlei (1983). They investi-

gated the model where the backward induction outcomes correspond to the truthful

outcomes of voting trees. Therefore, SSP is a special case of multi-stage sophisti-

cated voting. However, their work focused on the characterization of the outcomes

as the outcomes in sophisticated voting (Farquharson, 1969), and therefore did not

shed much light on the quality of the equilibrium outcome. We, on the other hand,

are primarily interested in the strategic outcome of the natural procedure of voting

sequentially over multiple issues. Also, the relationship between sequential voting

and voting trees takes a particularly natural form in the context of domains with

multiple binary issues, as we will show. More importantly, we illustrate several

multiple-election paradoxes for SSP, indicating that the equilibrium outcome could

be extremely undesirable.

Another paper that is closely related to part of this work was written by

Dutta and Sen (1993). They showed that social choice rules corresponding to bi-

nary voting trees can be implemented via backward induction via a sequential vot-

2 In fact, those paradoxes were also discovered by Lacy and Niou in the same paper (Lacy and
Niou, 2000), but they did not discuss whether they arise in SSP. See Section 8.1.
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ing mechanism. This is closely related to the relationship revealed for multi-stage

sophisticated voting and will also be mentioned later in this chapter, that is, an

equivalence between the outcome of strategic behavior in sequential voting over mul-

tiple binary issues, and a particular type of voting tree. It should be pointed out

that the sequential mechanism that Dutta and Sen consider is somewhat different

from sequential voting as we consider it—in particular, in the Dutta-Sen mechanism,

one voter moves at a time, and a move consists not of a vote, but rather of choosing

the next player to move (or in some states, choosing the winner).

Nevertheless, the approach by Dutta and Sen and our approach are related at a

high level, though they are motivated quite differently: Dutta and Sen are interested

in social choice rules corresponding to voting trees, and are trying to create sequential

mechanisms that implement them via backward induction. We, on the other hand

again, are primarily interested in the strategic outcome of the natural mechanism for

voting sequentially over multiple issues, and use voting trees merely as a useful tool

for analyzing the outcome of this process.

11.1 Strategic Sequential Voting

11.1.1 Formal Definition

In this chapter, we focus on multi-binary-issue domains. That is, the multi-issue

domain is composed of multiple binary issues. Sequential voting on multi-binary-

issue domains can be seen as a game where in each step, the voters decide whether

to vote for or against the issue under consideration after reasoning about what will

happen next. We make the following assumptions.

1. All voters act strategically (in an optimal manner that will be explained later),

and this is common knowledge.

2. The order in which the issues will be voted upon, as well as the local voting rules
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used at the different steps (namely, majority rules), are common knowledge.

3. All voters’ preferences on the set of alternatives are common knowledge.

Assumption 1 is standard in game theory. Assumption 2 merely means that

the rule has been announced. Assumption 3 (complete information) is the most

significant assumption. It may be interesting to consider more general settings with

incomplete information, resulting in a Bayesian game. Nevertheless, because the

complete-information setting is a special case of the incomplete-information setting

(where the prior distribution is degenerate), in that sense, all the worst-case negative

results obtained for the complete-information setting also apply to the incomplete-

information setting. That is, the restriction to complete information only strengthens

negative results. Of course, for incomplete information setting in general, we need a

more elaborate model to reason about voters’ strategic behavior.

Given these assumptions, the voting process can be modeled as a game that is

composed of p stages where in each stage, the voters vote simultaneously on one

issue. Let O be the order over the set of issues, which without loss of generality we

assume to be X1 ¡ � � � ¡ Xp. Let P be the profile of preferences over X . The game

is defined as follows: for each i ¤ p, in stage i the voters vote simultaneously on

issue i; then, the value of Xi is determined by the majority rule (plus, in the case of

an even number of voters, some tie-breaking mechanism), and this local outcome is

broadcast to all voters.

We now show how to solve the game. Because of assumptions 1 to 3, at step i the

voters vote strategically, by recursively figuring out what the final outcome will be if

the local outcome for Xi is 0i, and what it will be if it is 1i. More concretely, suppose

that steps 1 to i�1 resulted in issues X1, . . . , Xi�1 taking the values d1, . . . , di�1, and

let ~d � pd1, . . . , di�1q. Suppose also that if Xi takes the value 0i (respectively, 1i),

then, recursively, the remaining issues will take the tuple of values ~a (respectively,
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~b). Then, Xi is determined by a pairwise comparison between p~d, 0i,~aq and p~d, 1i,~bq
in the following way: if the majority of voters prefer p~d, 0i,~aq over p~d, 1i,~bq, then Xi

takes the value 0i; in the opposite case, Xi takes the value 1i. This process, which

corresponds to the strategic behavior in the sequential election, is what we call the

strategic sequential voting (SSP) procedure, and for any profile P , the winner with

respect to the order O is denoted by SSPOpP q.
As we shall see later, SSP can not only be thought of as the strategic outcome of

sequential voting, but also as a voting rule in its own right. The following definition

and two propositions merely serve to make the game-theoretic solution concept that

we use precise; a reader who is not interested in this may safely skip them.

Definition 11.1.1. Consider a finite extensive-form game which transitions among

states. In each nonterminal state s, all players simultaneously take an action; this

joint local action profile pas
1, . . . , a

s
nq determines the next state s1.3 Terminal states t

are associated with payoffs for the players (alternatively, players have ordinal pref-

erences over the terminal states). The current state is always common knowledge

among the players.4

Suppose that in every final nonterminal state s (that is, every state that has

only terminal states as successors), every player i has a (weakly) dominant action

as
i . At each final nonterminal state, its local profile of dominant actions pas

1, . . . , a
s
nq

results in a terminal state tpsq and associated payoffs. We then replace each final

nonterminal state s with the terminal state tpsq that its dominant-strategy profile

leads to. Furthermore suppose that in the resulting smaller tree, again, in every final

nonterminal state, every player has a (weakly) dominant strategy. Then, we can

repeat this procedure, etc. If we can repeat this all the way to the root of the tree,

3 In the extensive-form representation of the game, each state is associated with multiple nodes,
because in the extensive form only one player can move at a node.

4 Hence, the only imperfect information in the extensive form of the game is due to simultaneous
moves within states.
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then we say that the game is solvable by within-state dominant-strategy backward

induction (WSDSBI).

We note that the backward induction in perfect-information extensive-form games

is just the special case of WSDSBI where in each state only one player acts.

Proposition 11.1.2. If a game is solvable by WSDSBI, then the solution is unique.

Proposition 11.1.3. The complete-information sequential voting game with binary

issues (with majority as the local rule everywhere) is solvable by WSDSBI when voters

have strict preferences over the alternatives.

Both propositions are straightforward to prove and have been mentioned implic-

itly in Lacy and Niou (2000). We note that SSP corresponds to a particular balanced

voting tree, as illustrated in Figure 11.1 for the case p � 3. In this voting tree, in the

first round, each alternative is paired up against the alternative that differs only on

the pth issue; each alternative that wins the first round is then paired up with the

unique other remaining alternative that differs only on the pp � 1qth and possibly

the pth issue; etc. This bottom-up procedure corresponds exactly to the backward

induction (WSDSBI) process.

Of course, there are many voting trees that do not correspond to an SSP election;

this is easily seen by observing that there are only p! different SSP elections (cor-

responding to the different orders of the issues), but many more voting trees. The

voting tree corresponding to the order O � X1 ¡ � � � ¡ Xp is defined by the property

that for any node v whose depth is i (where the root has depth 1), the alternative

associated with any leaf in the left (respectively, right) subtree of v gives the value

0i (respectively, 1i) to Xi.
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000 001 010 011 110 111101100

Figure 11.1: A voting tree that is equivalent to the strategic sequential voting
procedure (p � 3). 000 is the abbreviation for 010203, etc.

11.1.2 Strategic Sequential Voting vs. Truthful Sequential Voting

We have seen on Example 11.0.1 that even when the profile P is O-legal, SSPOpP q
can be different from SeqOpMaj, . . . , MajqpP q. This means that even if the profile

is O-legal, voters may be better off voting strategically than truthfully. However,

SSPOpP q and SeqOpMaj, . . . , MajqpP q are guaranteed to coincide under the further

restriction that P is O-lexicographic.

Proposition 11.1.4. For any O-lexicographic profile P ,

SSPOpP q � SeqOpMaj, . . . , MajqpP q
The intuition for Proposition 11.1.4 is as follows: if P is O-lexicographic, then,

as is shown in the proof of the proposition, when voters vote strategically under

sequential voting (the Seq process), they are best off voting according to their

true preferences in each round (their preferences in each round are well-defined

because voters have O-legal preferences in this case). When voters with O-legal

preferences vote truthfully in each round under sequential voting, the outcome is

SeqOpMaj, . . . , MajqpP q; when they vote strategically, the outcome is SSPOpP q;
and so, these must be the same when preferences are O-lexicographic.

Now, there is another interesting domain restriction under which SSPOpP q and

SeqpMaj, . . . , MajqpP q coincide, namely when P is invpOq- legal, where invpOq �
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pXp ¡ . . . ¡ X1q.
Proposition 11.1.5. Let invpOq � Xp ¡ . . . ¡ X1. For any invpOq-legal profile P ,

SSPOpP q � SeqinvpOqpMaj, . . . , MajqpP q.
As a consequence, when P is separable, it is a fortiori invpOq-legal, and therefore,

SSPOpP q � SeqinvpOqpMaj, . . . , MajqpP q, which in turn is equal to

SeqOpMaj, . . . , MajqpP q and coincides with issue-by-issue voting.

Corollary 11.1.6. If P is separable, then SSPOpP q � SeqOpMaj, . . . , MajqpP q.
11.1.3 A Second Interpretation of SSP

The first interpretation of SSP (that we follow in this chapter) is the one we have

discussed so far, namely, SSP consists in modeling sequential voting as a complete-

information game, which allows us to analyze sequential voting on multi-issue do-

mains from a game-theoretic point of view. For this, assumptions 1, 2, and 3 above

are crucial. Under this interpretation, SSPOpP q is a (specific kind of) equilibrium

for sequential voting.

However, there is a second interpretation of SSP. It consists in seeing SSPO

as a new voting rule on multi-issue domains (which is implementable in complete-

information contexts by using sequential voting).5 This seems to be the point of view

of Lacy and Niou (2000). This defines a family of voting rules (one for each order over

issues), which can be applied to any profile. The family of voting rules thus defined is

a distinguished subset of the family of voting trees. This interpretation does not say

anything about how preferences are to be elicited; unlike in the game-theoretic inter-

pretation, the p-step protocol does not apply here. The communication complexity

of finding the outcome of SSPO (without any complete-information assumption, of

5 Of course, by Gibbard-Satterthwaite (Gibbard, 1973; Satterthwaite, 1975), SSP is not strategy-
proof.
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course)6 is given as follows.

Proposition 11.1.7. When the voters’ preferences over alternatives are unrestricted,

the communication complexity of SSPO is Θp2p � nq.
Proof of Proposition 11.1.7: This now follows immediately from a result in

Conitzer and Sandholm (2005b), where it is established that the communication

complexity for balanced voting trees is Θpm � nq for m alternatives and n voters.

Since we do not place any restrictions on the preferences in the multi-issue domain

in the statement of the proposition, the communication complexity is identical, and

m � 2p. l
The upper bound in this proposition is obtained simply by eliciting the voters’

preferences for every pair of alternatives that face each other in the voting tree.

Now, Propositions 11.1.4 and 11.1.5 immediately give us conditions under which

this communication complexity can be reduced. Indeed, these Propositions say that

when P is O-lexicographic or invpOq-legal, then the SSP winner coincides with the

sequential election winner in the sense of Lang and Xia (2009). Now, the sequential

election winner in the sense of Lang and Xia (2009) can be found with Oppnq com-

munication, simply by having each agent vote for a value for the issue at each round.

This leads immediately to the following two corollaries (to Propositions 11.1.4 and

11.1.5, respectively).

Corollary 11.1.8. When the voters’ preferences over alternatives are O-lexicographic,

the communication complexity of SSPO is Oppnq.
Corollary 11.1.9. When the voters’ preferences over alternatives are

invpOq-legal, the communication complexity of SSPO is Oppnq.
6 The communication complexity of a voting rule is the smallest number of bits that must be trans-

mitted to compute the winner of that rule (i.e., taking the minimum across all correct protocols).
See Conitzer and Sandholm (2005b).
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11.1.4 The Winner is Sensitive to The Order over The Issues

In the definition of SSP, we simply fixed the order O to be X1 ¡ X2 ¡ � � � ¡ Xp.

A question worth addressing is, to what extent is the outcome of SSP sensitive

to the variation of the order O? More precisely, given a profile P , let PWpP q �|t~d P X | ~d � SSPO1pP q for some order O1u|. PWpP q is the number of different

alternatives that can be made SSP winners by choosing a particular order O1. Then,

for a given number of binary issues p, we look for the maximal value of PWpP q, for

all profiles P on X � D1 � . . .�Dp; we denote this number by MWppq.
A first observation is that there are p! different choices for O1. Therefore, a trivial

upper bound on MWppq is p!. Since there are 2p alternatives, the p! upper bound

is only interesting when p!   2p, that is, p ¤ 3. Example 11.1.10 shows that when

p � 2 or p � 3, this trivial upper bound is actually tight, i.e. MWp2q � 2! and

MWp3q � 3!: there exists a profile such that by changing the order over the issues,

all p! different alternatives can be made winners. Due to McGarvey’s Theorem (see

Lemma 2.2.3), any complete and asymmetric directed graph G over the alternatives

corresponds to the majority graph of some profile (we recall that the majority graph

of a profile P is the directed graph whose vertices are the alternatives and containing

an edge from c to c1 if and only if a majority of voters in P prefer c to c1). Therefore,

in the example, we only show the majority graph instead of explicitly constructing

the whole profile.

Example 11.1.10. The majority graphs for p � 2 and p � 3 are shown in Fig-

ure 11.2. Let P (respectively, P 1) denote an arbitrary profile whose majority graph

is the same as Figure 11.2(a) (respectively, Figure 11.2(b)). It is not hard to verify

that SSPX1¡X2
pP q � 00 and SSPX2¡X1

pP q � 01. For P 1, the value of SSPO1pP 1q
for the six possible orders is shown on Table 11.1. Note that 2! � 2 and 3! � 6. It

follows that when p � 2 or p � 3, there exists a profile for which the SSP winners
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w.r.t. different orders over the issues are all different from each other.

Table 11.1: The SSP winners for P 1 w.r.t. different orders over the issues.

The order X1 ¡ X2 ¡ X3 X1 ¡ X3 ¡ X2 X2 ¡ X1 ¡ X3

SSP winner 010 011 001
The order X2 ¡ X3 ¡ X1 X3 ¡ X1 ¡ X2 X3 ¡ X2 ¡ X1

SSP winner 100 110 101

00 01

10 11

000 001

010 011100 101

110 111

(a) (b)

Figure 11.2: The majority graphs for p � 2 and p � 3.

In Figure 11.2, (a) is the majority graph for p � 2. (b) is the majority graph

for p � 3, where four edges are not shown in the graph: 100 Ñ 000, 101 Ñ 001,

110Ñ 010, and 111Ñ 011. The directions of the other edges are defined arbitrarily.

000 is the abbreviation for 010203, etc.

When p ¥ 4, p! ¡ 2p. However, it is not immediately clear whether MWppq � 2p

or not, i.e., whether each of the 2p alternatives can be made a winner by changing

the order over the issues. The next theorem shows that this can actually be done,

that is, MWppq � 2p.

Theorem 11.1.11. For any p ¥ 4 and any n ¥ 142 � 4p, there exists an n-

profile P such that for every alternative ~d, there exists an order O1 over I such

that SSPO1pP q � ~d.
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Proof. We prove the theorem by induction on the number of issues p. Surprisingly,

the hardest part in the inductive proof is the base case: when we first show how to

construct a desirable majority graph M for p � 4, then we show how to construct a

n-profile that corresponds to M.

To define M when p � 4, we first define a majority graph M3 over X3 � D2 �
D3�D4. Let M1 denote the majority graph defined in Example 11.1.10 when p � 3.

We note that M1 is defined over D1 �D2 �D3. The structure of M3 is exactly the

same as M1, except that M3 is defined over D2�D3�D4. Formally, let h1 : D1 Ñ D2

be a mapping such that h1p01q � 02 and h1p11q � 12; let h2 : D2 Ñ D3 be a mapping

such that h2p02q � 03 and h2p12q � 13; and let h3 : D3 Ñ D4 be a mapping such

that h3p03q � 04 and h3p13q � 14. Let h : D1 � D2 � D3 Ñ D2 � D3 � D4 be a

mapping such that for any pa2, a3, a4q P t0, 1u, hpa1, a2, a3q � ph1pa1q, h2pa2q, h3pa3qq.
For example, hp011203q � 021304. Then, we let M3 � hpM1q.

For any ~a � pa2, a3, a4q P X3, let fp~aq � p11,~aq and let gp~aq � p01, a2, a3, a4q.
That is, f concatenates 11 and ~a, and g flips the first two components of fp~aq. For

example, fp020304q � 11020304 and gp020304q � 11120304. We define M as follows.

(1) The subgraph of M over t11u � X3 is fpM3q. That is, for any ~a,~b P X3, if

~a Ñ ~b in M1, then fp~aq Ñ fp~bq in M.

(2) The subgraph of M over t01u � X3 is gpM3q.
(3) For any ~a P X3, we have p11,~aq Ñ p01,~aq. For any ~a P X3 and ~a � 111, we have

gp~aq Ñ fp~aq.
(4) We then add the following edges to M. 0100 Ñ 1110, 1000 Ñ 0010, 1101 Ñ

0111, 0001 Ñ 1011, 1101 Ñ 0100, 1000 Ñ 0001, 0001 Ñ 1101, 0100 Ñ 1000,

1111 Ñ 0110, 1100 Ñ 0101, 0011 Ñ 1010, 1001 Ñ 0000, 1111 Ñ 0011,

0011Ñ 1100, 0011Ñ 1001, 1111Ñ 0000.
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(5) Any other edge that is not defined above is defined arbitrarily.

Let P be an arbitrary profile whose majority graph satisfies conditions (1) through

(4) above. We make the following observations.

• If X1 is the first issue in O1, then the first component of SSPO1pP q is 11.

Moreover, every alternative whose first component is 11 (except 1111 and 1000)

can be made to win by changing the order of X2, X3, X4.

• If X1 is the last issue in O1, then the first component of SSPO1pP q is 01. More-

over, every alternative whose first component is 01 (except 0011 and 0100) can

be made to win by changing the order of X2, X3, X4.

• Let O1 � X3 ¡ X1 ¡ X2 ¡ X4, we have SSPO1pP q � 0100; let O1 � X3 ¡ X1 ¡
X4 ¡ X2, we have SSPO1pP q � 1000; let O1 � X4 ¡ X1 ¡ X3 ¡ X2, we have

SSPO1pP q � 0011; let O1 � X2 ¡ X4 ¡ X1 ¡ X3, we have SSPO1pP q � 1111.

In summary, every alternative is a winner of SSP w.r.t. at least one order over the

issues. The reader can also check out the java program online at

http://www.cs.duke.edu/~lxia/Files/SSP.zip, to verify the correctness of such

a construction. We notice that conditions (1) through (4) impose 79 constraints on

pairwise comparisons. Therefore, using McGarvey’s trick (Lemma 2.2.3), for any

n ¥ 2 � 79 � 158, we can construct an n-profile whose majority graph satisfies

conditions (1) through (4). This means that the theorem holds for p � 4.

Now, suppose that the theorem holds for p � p1. Let P � pV1, . . . , Vnq be an

n-profile over X 1 � D2 � . . . � Dp1�1 such that n ¥ 142 � 4p1 and each alternative

in X 1 can be made to win in SSP by changing the order over X2, . . . , Xp1�1. Let

X � D1 � � � � � Dp1�1. Let f : X 1 Ñ X be the mapping defined as follows. For

any ~a P X 1, fp~aq � p11,~aq. That is, for any ~a P X 1, f concatenates 11 and ~a. Let

g : X 1 Ñ X be the mapping defined as follows. For any ~a � pa2, . . . , ap1�1q P X 1,
229
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gp~aq � p01, a2, a3, . . . , ap1�1q. That is, for any ~a P X 1, g flips the first two components

of fp~aq. Next, we define an pn� 4q-profile P 1 � pV 1
1 , . . . , V

1
n�4q as follows.

For any i ¤ 2tpn � 1q{2u, we let V 1
i � "

fpViq ¡ gpViq if i is odd
gpViq ¡ fpViq if i is even

. For any

2tpn� 1q{2u � 1 ¤ i ¤ n, we let V 1
i � rfpViq ¡ gpViqs. For any j ¤ 4, we let

V 1
n�j � $''&''% gp02 . . . 0p�1q ¡ fp02 . . . 0p�1q ¡ gp02 . . . 0p1p�1q¡ fp02 . . . 0p1p�1q ¡ gp12 . . . 1p�1q ¡ fp12 . . . 1p�1q if j is odd

gp12 . . . 1p�1q ¡ fp12 . . . 1p�1q ¡ gp12 . . . 1p0p�1q¡ fp12 . . . 1p0p�1q ¡ gp02 . . . 0p�1q ¡ fp02 . . . 0p�1q if j is even

For any pair of alternatives c, c1, and any profile P �, we let DP�pc, c1q denote the

number of times that c is preferred to c1, minus the number of times c1 is preferred

to c, both in the profile P �. That is, DP�pc, c1q ¡ 0 if and only if c beats c1 in their

pairwise election. We make the following observations on P 1.
• For any ~a P X 1, DP 1pfp~aq, gp~aqq ¡ 0 and DP 1pp11,~aq, p01,~aqq ¡ 0.

• For any ~a,~b P X 1 (with ~a � ~b), DP 1pfp~aq, fp~bqq ¡ 0 if and only if DP p~a,~bq ¡ 0;

DP 1pgp~aq, gp~bqq ¡ 0 if and only if DP p~a,~bq ¡ 0.

It follows that for any order O1 over tX2, . . . , Xp�1u, we have SSPrX1¡O1spP 1q �
fpSSPO1pP qq (because after voting on issue X1, all alternatives whose first com-

ponent is 01 are eliminated, then it reduces to SSP over X 1); we also have that

SSPrO1¡X1spP 1q � gpSSPO1pP qq (because in the last round, the two competing al-

ternatives are considering are fpSSPO1pP qq and gpSSPO1pP qq, and the majority of

voters prefer the latter). We recall that each alternative in X 1 can be made to win

w.r.t. an order O1 over tX2, . . . , Xp1�1u. It follows that each alternative in X can also

be made to win w.r.t. an order over tX1, . . . , Xp1�1u, which means that the theorem

holds for p � p1 � 1. Therefore, the theorem holds for any p ¥ 4.
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11.2 Minimax Satisfaction Index

In the rest of this chapter, we will show that strategic sequential voting on multi-

issue domains is prone to paradoxes that are almost as severe as previously studied

multiple-election paradoxes under models that are not game-theoretic (Brams et al.,

1998; Lacy and Niou, 2000).7 To facilitate the presentation of these results, we define

an index that is intended to measure one aspect of the quality of a voting rule, called

the minimax satisfaction index.

Definition 11.2.1. For any voting rule r, the minimax satisfaction index (MSI) of

r is defined as

MSIrpm, nq � min
PPLpX qn max

V PP �m� 1� rankV prpP qq�
where m is the number of alternatives, n is the number of voters, and rankV prpP qq
is the position of rpP q in vote V .

We note that in this chapter m � 2p, where p is the number of issues. The MSI

of a voting rule is not the final word on it. For example, the MSI for dictatorships is

m, the maximum possible value, which is not to say that dictatorships are desirable.

However, if the MSI of a voting rule is low, then this implies the existence of a paradox

for it, namely, a profile that results in a winner that makes all voters unhappy.

The third type of multiple-election paradoxes (see Section 8.1) implicitly refer

to such an index. We recall that the third type of multiple-election paradoxes state

that if voters vote on issues separately and optimistically, then there exists a profile

such that in each vote, the winner is ranked near the bottom; therefore this rule has

a very low MSI.

7 Even though Lacy and Niou (2000) have studied SSP, they actually did not examine whether
there are any multiple-election paradoxes in SSP.
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11.3 Multiple-Election Paradoxes for Strategic Sequential Voting

In this section, we show that over multi-binary-issue domains, for any natural number

n that is sufficiently large (we will specify the number in our theorems), there exists

an n-profile P such that SSPOpP q is ranked almost in the bottom position in each

vote in P . That is, the minimax satisfaction index is extremely low for the strategic

sequential voting procedure.

We first calculate the MSI for SSPO when the winner does not depend on the

tie-breaking mechanism. That is, either n is odd, or n is even and there is never a tie

in any stage of running the election sequentially. This is our main multiple-election

paradox result.

Theorem 11.3.1. For any p P N (p ¥ 2) and any n ¥ 2p2 � 1, MSISSPO
pm, nq �tp{2 � 2u.8 Moreover, in the profile P that we use to prove the upper bound, the

winner SSPOpP q is Pareto-dominated by 2p � pp� 1qp{2 alternatives.

Proof of Theorem 11.3.1: The upper bound on MSISSPO
pm, nq is constructive,

that is, we explicitly construct a paradox.

For any n-profile P � pV1, . . . , Vnq, we define the mapping fP : X Ñ Nn as

follows: for any c P X , fP pcq � ph1, . . . , hnq such that for any i ¤ n, hi is the

number of alternatives that are ranked below c in Vi. For any l ¤ p, we denote

Xl � Dl� � � ��Dp and Ol � Xl ¡ Xl�1 ¡ � � � ¡ Xp. For any vector ~h � ph1, . . . , hnq
and any l ¤ p, we say that ~h is realizable over Xl (through a balanced binary tree)

if there exists a profile Pl � pV1, . . . , Vnq over Xl such that fPl
pSSPOl

pPlqq � ~h. We

first prove the following lemma.

8 If n is even, then to prove MSISSPO pm, nq ¥ tp{2� 2u, we restrict attention to profiles without
ties.
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Lemma 11.3.2. For any l such that 1 ¤ l   p,

~h� � p0, . . . , 0loomoontn{2u�p�l

, 1, . . . , 1loomoon
p�l�1

, 2p�l�1 � 1, . . . , 2p�l�1 � 1looooooooooooooomooooooooooooooonrn{2s�1

q
is realizable over Xl.

Proof of Lemma 11.3.2: We prove that there exists an n-profile Pl over Xl such

that SSPOl
pPlq � 1l � � � 1p and ~h� is realized by Pl. For any 1 ¤ i ¤ p� l � 1, we let

~bi � 1l � � � 1p�i0p�1�i1p�2�i � � � 1p. That is, ~bi is obtained from 1l � � � 1p by flipping the

value of Xp�1�i. We obtain Pl � pV1, . . . , Vnq in the following steps.

1. Let W1, . . . , Wn be null partial orders over Xl. That is, for any i ¤ n, the

preference relation Wi is empty.

2. For any j ¤ tn{2u � p � l, we put 1l � � � 1p in the bottom position in Wj ; we

put t~b1, . . . ,~bp�l�1u in the top positions in Wj.

3. For any j with tn{2u � 2 ¤ j ¤ n, we put 1l � � � 1p in the top position of Wj ,

and we put t~b1, . . . ,~bp�l�1u in the positions directly below the top.

4. For j with tn{2u � p� l � 1 ¤ j ¤ tn{2u � 1, we define preferences as follows.

For any i ¤ p � l � 1, in Wtn{2u�p�l�i, we put ~bi in the bottom position, 1l � � � 1p in

the second position from the bottom, and all the remaining bj (with j � i) at the

very top.

5. Finally, we complete the profile arbitrarily: for any j ¤ n, we let Vj be an

arbitrary extension of Wj .

Let Pl � pV1, . . . , Vnq. We note that for any i ¤ p� l� 1, ~bi beats any alternative

in Xlzt1l � � � 1p,~b1, . . . ,~bp�l�1u in pairwise elections. Therefore, for any i ¤ p� l � 1,

the ith alternative that meets 1l � � � 1p is ~bi, which loses to 1l � � � 1p (just barely). It

follows that 1l � � � 1p is the winner, and it is easy to check that fPl
p1l � � � 1pq � ~h�.

This completes the proof of the lemma. l
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Because the majority rule is anonymous, for any permutation π over 1, . . . , n and

any l   p, if ph1, . . . , hnq is realizable over Xl, then phπp1q, . . . , hπpnqq is also realizable

over Xl. For any k P N, we define Hk � t~h P t0, 1un :
°

j¤n hj ¥ ku. That is, Hk is

composed of all n-dimensional binary vectors in each of which at least k components

are 1. We next show a lemma to derive a realizable vector over Xl�1 from two

realizable vectors over Xl.

Lemma 11.3.3. Let l   p, and let ~h1, ~h2 be vectors that are realizable over Xl. For

any ~h P Htn{2u�1, ~h1 � p~h2 � ~1q � ~h is realizable over Xl�1, where ~1 � p1, . . . , 1q, and

for any ~a � pa1, . . . , anq and any ~b � pb1, . . . , bnq, we have ~a �~b � pa1b1, . . . , anbnq.
Proof of Lemma 11.3.3: Without loss of generality, we prove the lemma for

~h � p0, . . . , 0loomoonrn{2s�1

, 1, . . . , 1loomoontn{2u�1

q. Let P1, P2 be two profiles over Xl, each of which is composed

of n votes, such that fpP1q � ~h1 and fpP2q � ~h2. Let P1 � pV 1
1 , . . . , V 1

n q, P2 �pV 2
1 , . . . , V 2

n q, ~a � SSPOl
pP1q, ~b � SSPOl

pP2q. We define a profile P � pV1, . . . , Vnq
over Xl�1 as follows.

1. Let W1, . . . , Wn be n null partial orders over Xl�1.

2. For any j ¤ n and any ~e1, ~e2 P Xl, we let p1l�1, ~e1q ¡Wj
p1l�1, ~e2q if ~e1 ¡V 1

j
~e2;

and we let p0l�1, ~e1q ¡Wj
p0l�1, ~e2q if ~e1 ¡V 2

j
~e2.

3. For any rn{2s ¤ j ¤ n, we let p1l�1,~aq ¡Wj
p0l�1,~bq.

4. Finally, we complete the profile arbitrarily: for any j ¤ n, we let Vj be an

(arbitrary) extension of Wj such that p1l�1,~aq is ranked as low as possible.

We note that p1l�1,~aq is the winner of the subtree in which Xl�1 � 1l�1, p0l�1,~bq
is the winner of the subtree in which Xl�1 � 0l1 , and p1l�1,~aq beats p0l�1,~bq in their

pairwise election (because the votes from rn{2s to n rank p1l�1,~aq above p0l�1,~bq).
Therefore, SSPOl�1

pP q � p1l�1,~aq.
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Finally, we have that fP pp1l�1,~aqq � ~h1 � p~h2 �~1q �~h. This is because p1l�1,~aq is

ranked just as low as in the profile P1 for voters 1 through rn{2s� 1; for any voter j

with rn{2s ¤ j ¤ n, additionally, p0l�1,~bq needs to be placed below p1l�1,~aq, which

implies that also, all the alternatives p0l�1,~b
1q for which j ranked ~b1 below ~b in P2

must be below p1l�1,~aq in j’s new vote in P . This completes the proof of the lemma.l
Now we are ready to prove the main part of the theorem. It suffices to prove that

for any n ¥ 2p2 � 1, there exists a vector ~hp P Nn such that each component of ~hp is

no more than tp{2 � 1u, and ~hp is realizable over X . We first prove the theorem for

the case in which n is odd. We show the construction by induction in the proof of

the following lemma.

Lemma 11.3.4. Let n be odd. For any l1   p (such that l1 is odd),

~hl1 � ptl1{2u, . . . , tl1{2uloooooooomoooooooonrn{2s�pl12�1q{2 , rl1{2s, . . . , rl1{2sloooooooomoooooooontn{2u�pl12�1q{2 q
is realizable over Xp�l1�1, and if l1   p, then

~hl1�1 �ptl1{2u, . . . , tl1{2uloooooooomoooooooon
l1�1

, rl1{2s, . . . , rl1{2sloooooooomoooooooon
n�pl1�5qpl1�1q{2 , rl1{2s� 1, . . . , rl1{2s� 1loooooooooooooomoooooooooooooonpl1�3qpl1�1q{2 q

is realizable over Xp�l1.
Proof of Lemma 11.3.4: The base case in which l1 � 1 corresponds to a single-

issue majority election over two alternatives, where rn{2s � 1 voters vote for one

alternative, and tn{2u�1 vote for the other, so that only the latter get their preferred

alternative.

Now, suppose the claim holds for some l1 ¤ p � 2; we next show that the claim

also holds for l1 � 2. To this end, we apply Lemma 11.3.3 twice. Let l � p� l1 � 1.

First, let ~h� � p1, . . . , 1loomoon
l1 , 2l1 � 1, . . . , 2l1 � 1loooooooooomoooooooooon

l1�1

, 0, . . . , 0loomoontn{2u�l1�1

, 2l1 � 1, . . . , 2l1 � 1loooooooooomoooooooooonrn{2s�l1�2

q
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By Lemma 11.3.2, ~h� is realizable over Xl (via a permutation of the voters). Let

~h � p1, . . . , 1loomoon
l1 , 0, . . . , 0loomoon

l1�1

, 1, . . . , 1loomoontn{2u�l1�1

, 0, . . . , 0loomoonrn{2s�l1�2

q.
Then, by Lemma 11.3.3, ~hl1 � p~h� � ~1q � ~h is realizable over Xl�1. We have the

following calculation.

~hl1 � p~h� �~1q � ~h�prl1{2s� 1, . . . , rl1{2s � 1loooooooooooooomoooooooooooooon
l1 ,tl1{2u, . . . , tl1{2uloooooooomoooooooon

l1�1

, rl1{2s, . . . , rl1{2sloooooooomoooooooonrn{2s�pl1�3qpl1�1q{2,rl1{2s � 1, . . . , rl1{2s � 1loooooooooooooomoooooooooooooonpl1�1q2{2�1

, rl1{2s, . . . , rl1{2sloooooooomoooooooontn{2u�l1�1

q
The partition of the set of voters into these five groups uses the fact that n ¥

2p2 � 1 implies rn{2s � pl1 � 3qpl1 � 1q{2 ¥ 0. After permuting the voters in this

vector, we obtain the following vector which is realizable over Xl�1:

~hl1�1 �ptl1{2u, . . . , tl1{2uloooooooomoooooooon
l1�1

, rl1{2s, . . . , rl1{2sloooooooomoooooooon
n�pl1�5qpl1�1q{2 , rl1{2s� 1, . . . , rl1{2s� 1loooooooooooooomoooooooooooooonpl1�3qpl1�1q{2 q

We next let ~h1 � p1, . . . , 1loomoontn{2u�1

, 0, . . . , 0loomoonrn{2s�1

q and

~h1� � p1, . . . , 1loomoon
l1�1

, 0, . . . , 0loomoontn{2u�l1 , 2l1�1 � 1, . . . , 2l1�1 � 1looooooooooooomooooooooooooonrn{2s�1

q
By Lemma 11.3.2, the latter is realizable over Xl�1. Thus, by Lemma 11.3.3, ~hl1�1�p~h1��~1q �~h1 is realizable over Xl�2. Through a permutation over the voters, we obtain

the desired vector:

~hl1�2 � ptl1{2u � 1, . . . , tl1{2u � 1loooooooooooooomoooooooooooooonrn{2s�pl1�2qpl1�1q{2�1

, rl1{2s � 1, . . . , rl1{2s� 1loooooooooooooomoooooooooooooontn{2u�pl1�2qpl1�1q{2�1

q
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which is realizable over Xl�2. Therefore, the claim holds for l1 � 2. This completes

the proof of the lemma. l
If p is odd, from Lemma 11.3.4 we know that the theorem is true, by setting

l1 � p. If p is even, then we first set l1 � p � 1; then, the maximum component of

~hl1�1 is rl1{2s� 1 � rpp� 1q{2s� 1 � p{2� 1. Thus we have proved the upper bound

in the theorem when n is odd.

When n is even, we have the following lemma (the proof is similar to the proof

of Lemma 11.3.4, so we omitted its proof).

Lemma 11.3.5. Let n be even. For any l1   p (such that l1 is odd),

~hl1 � ptl1{2u, . . . , tl1{2uloooooooomoooooooon
n{2�pl12�l1�1q{2 , rl1{2s, . . . , rl1{2sloooooooomoooooooon

n{2�pl12�l1�1q{2 q
is realizable over Xp�l1�1, and if l1 � 1 ¤ p, then

~hl1�1 �ptl1{2u, . . . , tl1{2uloooooooomoooooooon
l1�1

, rl1{2s, . . . , rl1{2sloooooooomoooooooon
n�1�pl1�4qpl1�1q{2 , rl1{2s� 1, . . . , rl1{2s� 1loooooooooooooomoooooooooooooonpl1�2qpl1�1q{2�1

q
is realizable over Xp�l1.

The upper bound in the theorem when n is even follows from Lemma 11.3.5.

Moreover, we note that in the step from l1 to l1 � 1 (respectively, from l1 � 1 to

l1 � 2), no more than l1 new alternatives are ranked lower than the winner in the

profile that realizes ~hl1�1 (respectively, ~hl1�2). It follows that in the profile that

realizes ~hl1�1 (respectively, ~hl1�2) in Lemma 11.3.4 or Lemma 11.3.5, the number of

alternatives that are ranked lower than the winner by at least one voter is no more

than pl1�1ql1{2� l1�1 � pl1�1qpl1�2q{2 (respectively, pl1�2qpl1�3q{2), which equalspp� 1qp{2 if l1� 1 � p (respectively, pp� 1qp{2 if l1� 2 � p). Therefore, in the profile

that we use to obtain the upper bound, the winner under SSPO is Pareto-dominated

by 2p � pp� 1qp{2 alternatives.
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Finally, we show that tp{2 � 2u is a lower bound on MSISSPO
pm, nq. Let P be

an n-profile; let SSPOpP q � ~a, and let ~b1, . . . ,~bp be the alternatives that ~a defeats

in pairwise elections in rounds 1, . . . , p. It follows that in round j, more than half of

the voters prefer ~a to ~bj , because we assume that there are no ties in the election.

Therefore, summing over all votes, there are at least p� ptn{2u� 1q occasions where

~a is preferred to one of ~b1, . . . ,~bp. It follows that there exists some V P P in which

~a is ranked higher than at least rp � ptn{2u � 1q{ns ¥ tp{2 � 1u of the alternatives

~b1, . . . ,~bp. Thus MSISSPO
pm, nq ¥ tp{2 � 2u.

(End of proof for Theorem 11.3.1.) l
We note that the number of alternatives is m � 2p. Therefore, tp{2 � 2u is

exponentially smaller than the number of alternatives, which means that there exists

a profile for which every voter ranks the winner very close to the bottom. Moreover,pp � 1qp{2 is still exponentially smaller than 2p, which means that the winner is

Pareto-dominated by almost every other alternative.

Naturally, we wish to avoid such paradoxes. One may wonder whether the para-

dox occurs only if the ordering of the issues is particularly unfortunate with respect

to the preferences of the voters. If not, then, for example, perhaps a good approach is

to randomly choose the ordering of the issues.9 Unfortunately, our next result shows

that we can construct a single profile that results in a paradox for all orderings of the

issues. While it works for all orders, the result is otherwise somewhat weaker than

Theorem 11.3.1: it does not show a Pareto-dominance result, it requires a number

of voters that is at least twice the number of alternatives, the upper bound shown

on the MSI is slightly higher than in Theorem 11.3.1, and unlike Theorem 11.3.1, no

matching lower bound is shown.

9 Of course, for any ordering of the issues, there exists a profile that results in the paradoxes in
Theorem 11.3.1; but this does not directly imply that there exists a single profile that works for all
orderings over the issues.
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Theorem 11.3.6. For any p, n P N (with p ¥ 2 and n ¥ 2p�1), there exists an

n-profile P such that for any order O over tX1, . . . , Xpu, SSPOpP q � 11 � � � 1p, and

any V P P ranks 11 � � � 1p somewhere in the bottom p� 2 positions.

Proof of Theorem 11.3.6: We first prove a lemma.

Lemma 11.3.7. For any c P X , X 1 � X such that c R X 1, and any n P N (n ¥
2m � 2p�1), there exists an n-profile that satisfies the following conditions. Let

F � X zpX 1 Y tcuq. For any c1 P X 1, c defeats c1 in their pairwise election. For any c1 P X 1 and d P F , c1 defeats d in their pairwise election. For any V P P , c is ranked somewhere in the bottom |X 1| � 2 positions.

Proof of Lemma 11.3.7: We let P � pV1, . . . , Vnq be the profile defined as follows.

Let F1, . . . , Ftn{2u�1 be a partition of F such that for any j ¤ tn{2u � 1, |Fj| ¤r2m{ns � 1. For any j ¤ tn{2u � 1, we let Vj � rpF zFjq ¡ c ¡ X 1 ¡ Fjs. For anytn{2u � 2 ¤ j ¤ n, we let Vj � rX 1 ¡ F ¡ cs. It is easy to check that P satisfies all

conditions in the lemma. l
Now, let c � 11 � � � 1p and X 1 � t0112 � � � 1p, 110213 � � � 1p, . . . , 11 � � � 1p�10pu. By

Lemma 11.3.7, there exists a profile P such that c beats any alternative in X 1 in

pairwise elections, any alternative in X 1 beats any alternative in X zpX 1 Y tcuq in

pairwise elections, and c is ranked somewhere in the bottom p� 2 positions. This is

the profile that we will use to prove the paradox.

Without loss of generality , we assume that O � X1 ¡ X2 ¡ � � � ¡ Xp. (This is

without loss of generality because all issues have been treated symmetrically so far.) c

beats 11 � � � 1p�10p in the first round; c will meet 11 � � � 1p�20p�11p in the next pairwise

election, because 11 � � � 1p�20p�11p beats every other alternative in that branch (they

are all in F ), and c will win; and so on. It follows that c � SSPOpP q. Moreover, all
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voters rank c in the bottom p� 2 positions.

(End of proof for Theorem 11.3.6.) l
11.4 Multiple-Election Paradoxes for SSP with Restrictions on Pref-

erences

The paradoxes exhibited so far placed no restriction on the voters’ preferences. While

SSP is perfectly well defined for any preferences that the voters may have over the

alternatives, we may yet wonder what happens if the voters’ preferences over al-

ternatives are restricted in a way that is natural with respect to the multi-issue

structure of the setting. In particular, we may wonder if paradoxes are avoided by

such restrictions. It is well known that natural restrictions on preferences sometimes

lead to much more positive results in social choice and mechanism design—for ex-

ample, single-peaked preferences allow for good strategy-proof mechanisms (Black,

1948; Moulin, 1980). In the next chapter we will see that we can characterize all

strategy-proof voting rules when the voters’ preferences are lexicographic, and their

local preferences over issues are restricted.

In this section, we study the MSI for SSPO for the following three cases: (1)

voters’ preferences are separable; (2) voters’ preferences are O-lexicographic; and

(3) voters’ preferences are O-legal. For case (1), we show a mild paradox (and

that this is effectively the strongest paradox that can be obtained); for case (2), we

show a positive result; for case (3), we show a paradox that is nearly as bad as the

unrestricted case.

Theorem 11.4.1. For any n ¥ 2p, when the profile is separable, the MSI for SSPO

is between 2rp{2s and 2tp{2u�1.

That is, the MSI of SSPO when votes are separable is Θp?mq. We still have

that limmÑ8Θp?mq{m � 0, so in that sense this is still a paradox. However, its
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convergence rate to 0 is much slower than for Θplog mq{m, which corresponds to the

convergence rate for the earlier paradoxes.

Proof of Theorem 11.4.1: Let P � pV1, . . . , Vnq. For any i ¤ p, we let di �
majpP |Xi

q. That is, di is the majority winner for the projection of the profile to

the ith issue. Because any separable profile is compatible with any order over the

issues, P is an O�1-legal profile. It follows from Corollary 11.1.6 that SSPOpP q �pd1, . . . , dpq. Without loss of generality pd1, . . . , dpq � p11, . . . , 1pq.
First, we prove the lower bound. Because for any i ¤ p, at least half of the voters

prefer 1i to 0i, the total number of times that a voter prefers 1 to 0 for an issue,

counted across all voters and issues, is at least p � pn{2q. Therefore, there exists j ¤ n

such that voter j prefers 1 to 0 on at least p{2 issues, otherwise the total number of

times that a voter prefers 1 to 0 for an issue, counted across all voters and issues, is

no more than n � pp{2q � 1   p � pn{2q, which is a contradiction. Formally put, there

exists j ¤ n such that |ti ¤ p : 1i ¡Vj
0iu| ¥ p{2. Without loss of generality for

every i ¤ rp{2s, 1i ¡Vj
0i. It follows that for any ~a P D1 � � � �Drp{2s, we have thatp11, . . . , 1pq ¡Vj

p~a, 1rp{2s�1, . . . , 1pq. Therefore, the minimax satisfaction index is at

least 2rp{2s.
Next, we prove the upper bound. We first show that there exists a set of n

CP-nets N1, . . . ,Nn that satisfies the following two conditions.

1. For each j ¤ n, the number of issues on which Nj prefers 1 to 0 is exactlytp{2u � 1.

2. For each i ¤ p, majpN1|Xi
, . . . ,Nn|Xi

q � 1i.

The proof is by explicitly constructing the profile through the following n-step pro-

cess. Informally, we will allocate pptn{2u � 1q CPT entries “1 is preferred to 0”,tn{2u � 1 entries per issue, to n CP-nets as even as possible. Let k1 � � � � � kp �tn{2u � 1. In the jth step, we let Ij � ti1, . . . , itp{2u�1u be the set of indices of the
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highest k’s. Then, for any i P Ij , we let Nj|Xi
� r1i ¡ 0is and ki � ki � 1; for any

i R Ij , we let Nj|Xi
� r0i ¡ 1is. Because of the assumption that n ¥ 2p, we have

that nptp{2u�1q ¥ pptn{2u�1q, which means that after n steps, for all i ¤ p, ki ¤ 0.

It left to show that there exist extensions of N1, . . . ,Nn such that in each of these

extensions, 11 � � � 1p is ranked within bottom 2tp{2u�1 positions. To show this, we use

the following lemma.

Lemma 11.4.2. For any partial order W and any alternative c, we let |DownW pcq| �tc1 : c ©W c1u, that is, |DownW pcq| is the set of all alternatives (including c) that are

less preferred to c in W . There exists a linear order V such that V extends W and

c is ranked in the |DownW pcq|th position from the bottom.

The proof of Lemma 11.4.2 is quite straightforward: for every alternative d such

that d R DownW pcq, we put d ¡ c in the partial order. This does not violate

transitivity, which means that the ordering relation obtained in this way is a partial

order, denoted by W 1. Then, let V be an arbitrary linear order that extends W 1. It

follows that c is ranked at the DownW pcqth position from the bottom in V .

We note that for any j ¤ n, the number of entries in Nj where 1 ¡ 0 is no

more than tp{2 � 1u. Therefore, for any j ¤ n, |Down¡Nj
p11 � � � 1pq| ¤ 2tp{2�1u (we

recall that ¡Nj
is the partial order that Nj encodes). Let V1, . . . , Vn be extensions

of N1, . . . ,Nn, respectively, where for all j ¤ n, 11 � � � 1p is ranked as low as possible

in any Vj. It follows from Lemma 11.4.2 that for any j ¤ n, 11 � � � 1p is ranked in the

2tp{2�1uth position from the bottom in Vj. This proves the upper bound.

(End of proof for Theorem 11.4.1.) l
Theorem 11.4.3. For any p P N (p ¥ 2) and any n ¥ 5, when the profile is O-

lexicographic, MSIpSSPOq � 3 � 2p�2� 1. Moreover, SSPOpP q is ranked somewhere

in the top 2p�1 positions in at least n{2 votes.
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Naturally limmÑ8p3m{4�1q{m � 3{4, so in that sense there is no paradox when

votes are O-lexicographic.

Proof of Theorem 11.4.3: The proof is for profiles without ties. The other cases

can be proved similarly. Without loss of generality SSPOpP q � 11 � � � 1p and for

every j ¤ tn{2u�1, 11 ¡Vj |X1
01. It follows that in V1, . . . , Vtn{2u�1, 11 � � � 1p is ranked

within top 2p�1 � m{2 positions. Because in at least tn{2u � 1 votes 11 : 12 ¡ 02,

there exists a vote V P P such that 11 ¡V |X1
01 and 11 : 12 ¡V |X2:11

02. It follows

that 11 � � � 1p is ranked in the p3 � 2p�2 � 1qth position from the bottom. This proves

that when the profile is O-lexicographic, MSIpSSPOq ¥ 3 � 2p�2 � 1.

We next prove that 3 � 2p�2 � 1 is also an upper bound. Consider the profile

P � pV1, . . . , Vnq defined as follows. For any j ¤ tn{2u � 1, 11 ¡Vj |X1
01; for anytn{2u � 2 ¤ j ¤ n, 12 ¡Vj |X2:11

02; for j � 1, 2, 12 ¡Vj |X2:11
02; for any 3 ¤ j ¤ n and

any 3 ¤ i ¤ p, 1i ¡Vj |Xi:11���1i�1
0j; for any local preferences of any voter that is not

defined above, let 0 be preferred to 1.

We note that for any i ¤ p, more than n{2 votes in P |Xi:11���1i�1
prefer 1i to 0i,

which means that SSPOpP q � 11 � � � 1p. It is easy to check that in any vote, 11 � � � 1p

is ranked somewhere within the bottom 3 � 2p�2 � 1 positions.

(End of proof for Theorem 11.4.3.) l
Under the previous two restrictions (separability and O-lexicographicity), SSPO

coincides with SeqpMaj, . . . , Majq (by Corollary 11.1.6 and Proposition 11.1.4, re-

spectively). Therefore, Theorems 11.4.1 and 11.4.3 also apply to sequential voting

rules as well as issue-by-issue voting rules.

Finally, we study the MSI for SSPO when the profile is O-legal. Theorem 11.4.6

shows that it is nearly as bad as the unrestricted case (Theorem 11.3.1). The proof

of Theorem 11.4.6 is the most involved proof in this chapter. The idea of the

proof is similar to that of the proof for Theorem 11.3.1, but now we cannot ap-
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ply Lemma 11.3.3, because O-legality must be preserved. We start with a simpler

result that shows the idea of the construction.

Theorem 11.4.4. There exists a way to break ties in SSPO such that the following

is true. Let SSP 1O be the rule corresponding to SSPO plus the tiebreaking mechanism.

For any p P N, there exists an O-legal profile that consists of two votes, such that

in one of the two votes, no more than rp{2s alternatives are ranked lower than the

winner SSP 1OpP q; and in the other vote, no more than tp{2u alternatives are ranked

lower than SSP 1OpP q.
Proof of Theorem 11.4.4: The proof is by induction on p. When p � 2, let

the CPT of N1 be 01 ¡ 11, 01 : 12 ¡ 02, 11 : 12 ¡ 02; let the CPT of N2 be

11 ¡ 01, 01 : 02 ¡ 12, 11 : 02 ¡ 12; V1 � r0112 ¡ 0102 ¡ 1112 ¡ 1102s; V2 � r1102 ¡
0102 ¡ 1112 ¡ 0112s. In the first step, ties are broken in favor of 1112. Given 11, ties

are broken in favor of 12; given 01, ties are broken in favor of 12.

Suppose the claim is true for p � l. Next we construct N1 and N2 for p � l � 1.

Let N 1
1, N

1
2, V 1

1 , V 1
2 be the CP-nets and the votes for the case of p � l, where the multi-

issue domain is D2 � � � � �Dl�1. Without loss of generality |DownV1
p12 � � � 1l�1q| ¤rl{2s and |DownV2

p12 � � � 1l�1q| ¤ tl{2u. We recall that for any vote V and any al-

ternative c, DownV pcq (defined in Lemma 11.4.2) is the set of all alternatives that

are ranked below c in V , including c. Let ~e P D2 � � � � � Dl�1 be an arbitrary

alternative such that 12 � � � 1l�1 ¡V2
~e. Such an ~e always exists, because if on the

contrary 12 � � � 1l�1 is in the bottom of V2, it must be ranked higher than at least l

other alternatives in V1 to win the election, which contradicts the assumption that|DownV1
p12 � � � 1l�1q| ¤ rl{2s. We will explain later why we choose ~e in such a way.

Let N �
1 (respectively, N �

2 ) be the separable CP-net (we recall that a CP-net

is separable if its graph has no edges) D2 � � � � � Dl�1 in which ~e is in the top

(respectively, bottom) position. For i � 1, 2, we let Ni be a CP-net over D1 � � � � �
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Dl�1, defined as follows:

• 01 ¡Ni
11.

• The sub-CP-net of Ni restricted on X1 � 11 is N 1
i ;

• The sub-CP-net of Ni restricted on X1 � 01 is N �
i ;

Let V1, V2 be the extension of N1 and N2 respectively, that satisfy the following

conditions:

• For any ~b, ~d P D2 � � � � � Dl�1 such that ~b � ~e, and any i � 1, 2, we havep01,~bq ¡Vi
p11, ~dq. This condition can be satisfied, because we have 01 ¡Ni

11.

• For any ~b, ~d P D2� � � � �Dl�1, and any i � 1, 2, we have that p11,~bq ¡Vi
p11, ~dq

if and only if ~b ¡V 1
i

~d. This condition says that if we focus on the order of the

alternatives whose X1 component is 11 in Vi, then it is the same as in V 1
i .

• For any ~d P D2 � � � � �Dl�1, we have that p01, ~eq ¡V1
p11, ~dq.

• p11, . . . , 1l�1q ¡V2
p01, ~eq ¡V2

p11, ~eq.
We let the tie-breaking mechanism be defined as follows: in the first step, ties are

broken in favor of 11; in the subgame in which X1 � 11, ties are broken in the same

way as for the profile pV 1
1 , V

1
2q (such that 12 � � � 1l1 is the winner for the profile); in

the subgame in which X1 � 01, ties are broken in such a way that ~e is the winner

(because ~e is ranked in the top position in one vote, and in the bottom position in

the other, there exists a tie-breaking mechanism under which ~e is the winner).

We note that 11 � � � 1p ¡V1

~d if and only if ~d � p11, ~d1q for some ~d1 P D2�� � ��Dl�1

such that 12 � � � 1p ¡V 1
1

~d1. It follows that |DownV1
p11 � � � 1l�1q| � |DownV 1

1
p12 � � � 1l�1q|.

We also note that 11 � � � 1l�1 ¡V2

~b if and only if ~b � p01, ~eq or ~b � p11,~b
1q for some
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~b1 P D2 � � � � �Dl�1 such that 12 � � � 1p ¡V 1
2

~b1. It follows that |DownV2
p11 � � � 1l�1q| �|DownV 1

2
p12 � � � 1l�1q| � 1. Therefore, we have the following inequalities.|DownV1

p11 � � � 1l�1q| ¤ tpl � 1q{2u|DownV2
p11 � � � 1pq| ¤ tl{2u � 1 ¤ rpl � 1q{2s

Here the trick to choose ~e such that 12 � � � 1l�1 ¡V 1
2

~e is crucial, because we force

01 ¡N2
11 and 11 � � � 1l�1 ¡V2

p01, ~eq, which implies that 11 � � � 1l�1 ¡V2
p01, ~eq ¡V2p11, ~eq (since V2 extends N2). If we chose ~e such that ~e ¡V 1

2
12 � � � 1l�1, then we would

have that |DownV2
p11 � � � 1l�1q| � |DownV 1

2
p12 � � � 1l�1q| � 2, which does not prove the

claim for p � l � 1.

Next, we verify that SSPOpV1, V2q � 11 � � � 1l�1. We note that p01, ~eq ¡V1
11 � � � 1l�1.

Therefore, in the first step voter 1 will vote for 01. Meanwhile, 11 � � � 1l�1 ¡V2
p01, ~eq,

which means that in the first step voter 2 will vote for 11. Because ties are broken

in favor of 11 in the first step, we will fix X1 � 11. Then, in the following steps (step

2, . . . , l � 1), 12, . . . , 1l�1 will be the winners by induction hypothesis, which means

that SSPOpV1, V2q � 11 � � � 1l�1.

Therefore, the claim is true for p � l � 1. This means that the claim is true for

any p P N.

Example 11.4.5. Let us show an example of the above construction from p � 2 to

p � 3. In N1, we have 01 ¡ 11, 11 : N �
1 , and 01 : N 1

1, where N 1
1 is 02 ¡ 12, 02 : 13 ¡

03, 12 : 13 ¡ 03. (We note that N 1
1 is defined over D2 � D3.) V1 restricted to 11 is

V 1
1 � r0213 ¡ 0203 ¡ 1213 ¡ 1203s (which is, again, over D2 � D3). Let ~e � 0213.

Therefore, we have the following construction:

V1 � 010213 ¡ 011213 ¡ 010203 ¡ 011203 ¡ 110213 ¡ 110203 ¡ 111213 ¡ 111203

V2 � 011203 ¡ 010203 ¡ 011213 ¡ 111203 ¡ 110203 ¡ 111213 ¡ 010213 ¡ 110213

Ties are broken in a way such that if we are in the branch in which X1 � 11,

then 1213 is the winner; and if we are in the branch in which X1 � 01, then ~e � 0213
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is the winner. In the first step, ties are broken in favor of 11. Then, the sub-game

winners are 111213 and 010213. Since exactly one vote (V1) prefers 010213 to 111213,

and the other vote V2 prefers 111213 to 010213, the winner is 111213.

(End of proof for Theorem 11.4.4.) l
We emphasize that, unlike any of our other results, Theorem 11.4.4 is based on

a specific tie-breaking mechanism. The next theorem concerns the more general and

complicated case in which n can be either odd or even, and the winner does not

depend on the tie-breaking mechanism. That is, there are no ties in the election.

The situation is almost the same as in Theorem 11.3.1.

Theorem 11.4.6. For any p, n P N with n ¥ 2p2 � 2p � 1, there exists an O-

legal profile such that in each vote, no more than rp{2s � 4 alternatives are ranked

lower than SSPOpP q. Moreover, SSPOpP q is Pareto-dominated by at least 2p � 4p2

alternatives.

Of course, the lower bound on the MSI from Theorem 11.3.1 still applies when

the profile is O-legal, so together with Theorem 11.4.6 this proves that the MSI for

SSPO when the profile is O-legal is Θplog mq, just as in the unrestricted case.

Proof of Theorem 11.4.6: For simplicity, we prove the theorem for the case

in which n � 2p2 � 2p � 1. The proof for the case in which n ¡ 2p2 � 2p � 1

is similar. For any l ¤ p, we let Xl � t0l, 1lu � t0l�1, 1l�1u � � � � � t0p, 1pu; let

Ol � Xl ¡ Xl�1 ¡ � � � ¡ Xp. We first prove the following claim by induction.

Claim 11.4.1. For any l ¤ p, there exists a Ol-legal profile Pl � Al Y Bl Y Âl Y
B̂l Y tclu over Xl, where Al � tal

1, . . . , a
l
p2u, Bl � tbl

1, . . . , b
l
p2u, Âl � tâl

1, . . . , â
l
pu,

B̂l � tb̂l
1, . . . , b̂

l
pu, that satisfies the following conditions.

• SSPOl
pPlq � 1l � � � 1p.

• For any V P Pl, |DownV p1l � � � 1pq| ¤ rpp� l � 1q{2s � 5.
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• For any pp�lqp ¤ j ¤ p2, |Downal
j
p1l � � � 1pq| ¤ rpp�l�1q{2s�3, |Downbl

j
p1l � � � 1pq| ¤rpp� l � 1q{2s� 3.

• For any p�l ¤ j ¤ p, |Downâl
j
p1l � � � 1pq| ¤ rpp�l�1q{2s�3, |Downb̂l

j
p1l � � � 1pq| ¤rpp� l � 1q{2s� 3.

• If p� l � 1 is odd, then

– for any VB P B, |DownVB
p1l � � � 1pq| ¤ rpp � l � 1q{2s� 4;

– for any pp� lqp ¤ j ¤ p2, |Downbl
j
p1l � � � 1pq| ¤ rpp� l � 1q{2s � 2;

– and for any p� l ¤ j ¤ p, |Downb̂l
j
p1l � � � 1pq| ¤ rpp� l � 1q{2s � 2.

• 1l � � � 1p is ranked higher than 1l � � � 1p�20p�10p in all votes in Pl.

Proof of Claim 11.4.1: We prove the claim by induction on l. When l � p�1, we

let all votes in Pp�1 be 1p�11p ¡ 1p�10p ¡ 0p�11p ¡ 0p�10p. It is easy to check that

Pp�1 satisfies all the conditions in the claim. Suppose the claim is true for l ¤ p, we

next prove that the claim is also true for l � 1. We show the existence of Pl�1 by

construction for the following two cases.

Case 1: p� l � 1 is even.

We let N l
1, . . . ,N

l
p�l�1,N

l
A,N l

B be separable CP-nets over Xl, defined as follows.

• Let 1l � � � 1p�20p�10p be in the bottom position of N l
A; let 1l � � � 1p�20p�10p be in

the top position of N l
B.

• For any 1 ¤ i ¤ p � l � 1, let 1l � � � 1l�i�20l�i�11l�i � � � 1p�20p�10p be in the

top position of N l
i ; let 1l � � � 1p�21p�10p be in the top position of N l

p�l; let

1l � � � 1p�20p�11p be in the top position of N l
p�l�1.

For any linear order V over Xl, we let the composition of V and N (where N PtN l
1, . . . ,N

l
p�l�1,N

l
A,N l

Bu) be a partial order Ol�1 over Xl�1, defined as follows.
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• The restriction of Ol�1 on Xl�1 � 1l�1 is V . That is, for any ~d1, ~d2 P Xl such

that ~d1 ¡V
~d2, we let p1l�1, ~d1q ¡Ol�1 p1l�1, ~d2q.

• The restriction of Ol�1 on Xl�1 � 0l�1 is the partial order encoded by N . That

is, for any ~d1, ~d2 P Xl such that ~d1 ¡N
~d2, we let p0l�1, ~d1q ¡Ol�1 p0l�1, ~d2q.

• For any ~d P Xl, we let p0l�1, ~dq ¡Ol�1 p1l�1, ~dq.
• If N P tN l

1, . . . ,N
l
p�l�1,N

l
Au, we let 1l�11l � � � 1p ¡Ol�1 0l�11l � � � 1p�20p�10p.

We are now ready to define Pl�1. Any V P Pl�1 has a counterpart in Pl. For

example, the counterpart of âl�1
1 is âl

1. For any V P Pl�1, V is defined to be the

extension of the composition of V ’s counterpart in Pl and some N (where N PtN l
1, . . . ,N

l
p�l�1,N

l
A,N l

Bu), in which 1l�1 � � � 1p is ranked as low as possible. Next we

specify which N that each V P Pl�1 corresponds to in the following table.

Table 11.2: From Pl to Pl�1.

for all votes in Pl�1 is composed of

1 ¤ j ¤ p âl�1
j âl

j N l
A

j ¤ pp� lqp al�1
j al

j N l
App� lqp � 1 ¤ j ¤ pp� l � 1qp al�1

j al
j N l

j�pp�lqppp� l � 1qp� 1 ¤ j ¤ p2 al�1
j al

j N l
A

b̂l�1
p�l�2 b̂l

p�l�2 N l
A

j � p� l � 2 b̂l�1
j b̂l

j N l
B

j ¤ p2 bl�1
j bl

j N l
B

cl�1 cl N l
B

It follows that Pl�1 is Ol�1-legal. By Lemma 11.4.2, we have the following calcu-

lation.

• For any 1 ¤ j ¤ p, |Downâl�1

j
p1l�1 � � � 1pq| � |Downâl

j
p1l � � � 1pq| � 1. This is

because for any ~d P Xl such that ~d P Downâl
j
p1l � � � 1pq, 1l�1 � � � 1p is ranked
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higher than p1l�1, ~dq in âl�1
j ; and moreover, 1l�1 � � � 1p is ranked higher than

0l�11l � � � 1p�20p�10p in âl�1
j .

• For any 1 ¤ j ¤ p, |Downal�1pp�lqp�j
p1l�1 � � � 1pq| � |Downalpp�lqp�j

p1l � � � 1pq| � 3.

This is because for any ~d P Xl such that ~d P Downapp�lqp�j
p1l � � � 1pq, 1l�1 � � � 1p

is ranked higher than p1l�1, ~dq in app�lqp�j; and moreover, 1l�1 � � � 1p is ranked

higher than 0l�11l � � � 1p�20p�10p in app�lqp�j.

• For any j ¤ pp � lqp or pp � l � 1qp � 1 ¤ j ¤ p2, |Down
al�1

j
p1l�1 � � � 1pq| �|Downal

j
p1l � � � 1pq| � 1.

• |Downb̂l�1

p�l�2

p1l�1 � � � 1pq| � |Downb̂l
p�l�2

p1l � � � 1pq| � 1.

• For any VB P pBl�1 Y B̂l�1 Y tcuqztb̂p�l�2u,|DownVB
p1l�1 � � � 1pq| � |DownV l

B
p1l � � � 1pq|,

where V l
B is the counterpart of VB in Pl.

We next prove that SSPOl�1
pPl�1q � 1l�1 � � � lp. We note that Pl�1|Xl�1�1l�1

� Pl.

Therefore, if in the first step 1l�1 is chosen, then the winner is 1l�1 � � � 1p. We also

note that Pl�1|Xl�1�0l�1
is separable (and the CP-nets are N l

1, . . . ,N
l
p�l�1, p2 � p

copies of N l
A and p2 � p copies of N l

B). Therefore, if in the first step 0l�1 is

chosen, then the winner is 0l�11l � � � 1p�21p�11p. Because exactly p2 � p � 1 votes

in Pl�1 prefer 0l�11l � � � 1p�21p�11p to 1l�1 � � � 1p (those votes corresponds to N l
B in

the construction), we have that 1l�1 is the winner in the first step. Therefore,

SSPOl�1
pPl�1q � 1l�1 � � � lp. It is also easy to verify that Pl�1 satisfies all condi-

tions in the claim.

Case 2: p� l�1 is odd. The construction is similar as in the even case. The only

difference is that we switch the role of Al and Bl (also Âl and B̂l). l
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The theorem follows from Claim 11.4.1 by letting l � 1, and it is easy to check

that in P1 in Claim 11.4.1 (l � 1), no more than 4p2 alternatives have been ranked

lower than SSPOpP1q in any vote, which means that SSPOpP1q is Pareto-dominated

by at least 2p � 4p2 alternatives.

(End of proof for Theorem 11.4.6.) l
11.5 Summary

In this chapter, we considered a complete-information game-theoretic analysis of se-

quential voting on binary issues, which we called strategic sequential voting. Specifi-

cally, given that voters have complete information about each other’s preferences and

their preferences are strict, the game can be solved by a natural backward induction

process (WSDSBI), which leads to a unique solution. We showed that under some

conditions on the preferences, this process leads to the same outcome as the truthful

sequential voting, but in general it can result in very different outcomes. We ana-

lyzed the effect of changing the order over the issues that voters vote on and showed

that, in some elections, every alternative can be made a winner by voting according

to an appropriate order over the issues.

Most significantly, we showed that strategic sequential voting is prone to multiple-

election paradoxes; to do so, we introduced a concept called minimax satisfaction

index, which measures the degree to which at least one voter is made happy by the

outcome of the election. We showed that the minimax satisfaction index for strategic

sequential voting is exponentially small, which means that there exists a profile for

which the winner is ranked almost in the bottom positions in all votes; even worse,

the winner is Pareto-dominated by almost every other alternative. We showed that

changing the order of the issues in sequential voting cannot completely avoid the

paradoxes. These negative results indicate that the solution of the sequential game

can be extremely undesirable for every voter. We also showed that multiple-election
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paradoxes can be avoided to some extent by restricting voters’ preferences to be

separable or lexicographic, but the paradoxes still exist when the voters’ preferences

are O-legal.
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12

Strategy-Proof Voting Rules over Restricted

Domains

We have seen in Chapter 7 and Chapter 11 that in some voting games, strategic

behavior sometimes leads to extremely undesirable outcomes. Therefore, we may

want to prevent voters’ strategic behavior. However, the Gibbard-Satterthwaite the-

orem tells us that for any voting rule that satisfies some natural properties, there

must exist at least one voter who has an incentive to misreport her preferences, if

the voters are allowed to use any linear order to represent their preferences. To

circumvent the Gibbard-Satterthwaite theorem, researchers in Computational So-

cial Choice have investigated the possibility of using computational complexity to

prevent voters’ strategic behavior. Chapter 4 showed that for some common vot-

ing rules computational complexity can provide some protection from manipulation,

while Chapter 5 gave some evidence that computational complexity does not seem

to be a very strong barrier against manipulation.

In fact, there is another, older, line of research on circumventing the Gibbard-

Satterthwaite theorem. This line, which has been pursued mainly by economists, is

to restrict the domain of preferences. That is, we assume that voters’ preferences
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always lie in a restricted class. An example of such a class is that of single-peaked

preferences (Black, 1948). For single-peaked preferences, desirable strategy-proof

rules exist, such as the median rule. Other strategy-proof rules are also possible in

this preference domain: for example, it is possible to add some artificial (phantom)

votes before running the median rule. In fact, this characterizes all strategy-proof

rules for single-peaked preferences (Moulin, 1980). On the other hand, preferences

have to be significantly restricted to obtain such positive results: Aswal et al. (2003)

extend the Gibbard-Satterthwaite theorem, showing that if the preference domain is

linked, then with three or more alternatives the only strategy-proof voting rule that

satisfies non-imposition is a dictatorship.

In this chapter we will focus on exploring the possibility of using domain restric-

tion to circumvent the Gibbard-Satterthwaite theorem in multi-issue domains. The

problem of characterizing strategy-proof voting rules in multi-issue domains has al-

ready received significant attention. Strategy-proof voting rules for high-dimensional

single-peaked preferences (where each dimension can be seen as an issue) have been

characterized (Border and Jordan, 1983; Barbera et al., 1993, 1997; Nehring and

Puppe, 2007). Barbera et al. (1991) characterized strategy-proof voting rules when

the voters’ preferences are separable, and each issue is binary (that is, the domain for

each issue has two elements). Ju (2003) studied multi-issue domains where each issue

can take three values: “good”, “bad”, and “null”, and characterized all strategy-proof

voting rules that satisfy null-independence, that is, if a voter votes “null” on an issue

i, then her preferences over other issues do not affect the value of issue i.

The prior research that is closest to ours was performed by Le Breton and Sen

(1999). They proved that if the voters’ preferences are separable, and the restricted

preference domain of the voters satisfies a richness condition, then, a voting rule is

strategy-proof if and only if it is an issue-by-issue voting rule, in which each issue-wise

voting rule is strategy-proof over its respective domain.
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Despite its elegance, the work by Le Breton and Sen is limited by the restrictive-

ness of separable preferences: as we have argued in Chapter 8, in general, a voter’s

preferences on one issue depend on the decision taken on other issues. On the other

hand, one would not necessarily expect the preferences for one issue to depend on

every other issue. Therefore, it seems that sequential voting (Section 8.3) is better

than issue-by-issue voting. While the assumption of sequential voting that there

exists an ordering O over issues such that all voters’ preferences are O-legal is still

restrictive, it is much less restrictive than assuming that preferences are separable.

Chapter 9 and Chapter 10 concerned how to design new voting rules when voters

use a much more expressive voting language (i.e., possibly cyclic CP-nets), but in

this chapter, we only study the setting where all voters’ preferences are O-legal, and

w.l.o.g. we fix O � X1 ¡ X2 ¡ � � � ¡ Xp.

The main theorem of this chapter is the following: over lexicographic preference

domains (where earlier issues dominate later issues in terms of importance to the

voters), the class of strategy-proof voting rules that satisfy non-imposition is exactly

the class of voting rules that can be decomposed into multiple strategy-proof local

rules, one for each issue and each setting of the issues preceding it. Technically, it is

exactly the class of all conditional rule nets (CR-nets), defined later in this chapter

but analogous to CP-nets, whose local (issue-wise) entries are strategy-proof voting

rules. CR-nets represent how the voting rule’s behavior on one issue depends on the

decisions made on all issues preceding it. Conceptually, this is similar to how acyclic

CP-nets represent how a voter’s preferences on one issue depend on the decisions

made on all issues preceding it.

12.1 Conditional Rule Nets (CR-Nets)

In this section, we give the motivation and formal definition of CR-nets. In a se-

quential voting rule, the local voting rule that is used for a given issue is always the
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same, that is, the local voting rule does not depend on the decisions made on earlier

issues (though, of course, the voters’ preferences for this issue do depend on those

decisions).

However, in many cases, it makes sense to let the local voting rules depend on

the values of preceding issues. For example, let us consider again the setting in

Example 8.0.2, where a group of people must make a joint decision on the menu

for dinner, and the menu is composed of two issues: the main course (M) and the

wine (W). Let us suppose that the caterer is collecting the votes and making the

decision based on some rule. Suppose the order of voting is M ¡ W. Suppose the

main course is determined to be beef. One would expect that, conditioning on beef

being selected, most voters prefer red wine (e.g., r ¡ p ¡ w). Still, it can happen

that even conditioned on beef being selected, surprisingly, slightly more than half

the voters vote for white wine (w ¡ p ¡ r), and slightly less than half vote for red

(r ¡ p ¡ w). In this case, the caterer, who knows that in the general population

most people prefer red to white given a meal of beef, may “overrule” the preference

for white wine among the slight majority of the voters, and select red wine anyway.

While this may appear somewhat snobbish on the part of the caterer, in fact she

may be acting in the best interest of social welfare if we take the non-voting agents

(who are likely to prefer red given beef) into account.

To model voting rules where the local rules depend on the values chosen for earlier

issues, we introduce conditional rule nets (CR-nets). A CR-net is defined similarly

to a CP-net—the difference is that CPTs are replaced by conditional rule tables

(CRTs), which specify a local voting rule over Di for each issue Xi and each setting

of the parents of Xi.
1

Definition 12.1.1. An (acyclic) conditional rule net (CR-net) M over X is com-

posed of the following two parts.

1 It is not clear how a cyclic CR-net could be useful, so we only define acyclic CR-nets.
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1. A directed acyclic graph G over tX1, . . . , Xpu.
2. A set of conditional rule tables (CRTs) in which, for any variable Xi and any

setting ~d of ParGpXiq, there is a local conditional voting rule M|
X:~d over Di.

A CR-net encodes a voting rule over all O-legal profiles (we recall that we fix

O � X1 ¡ � � � ¡ Xp in this chapter). For any 1 ¤ i ¤ p, in the ith step, the value

di is determined by applying M|Xi:d1���di�1
(the local rule specified by the CR-net for

the ith issue given that the earlier issues take the values d1 � � � di�1) to P |Xi:d1���di�1

(the profile of preferences over the ith issue, given that the earlier issues take the

values d1 � � � di�1). Formally, for any O-legal profile P , MpP q � pd1, . . . , dpq is

defined as follows: d1 � M|X1
pP |X1

q, d2 � M|X2:d1
pP |X2:d1

q, etc. Finally, dp �
M|Xp:d1���dp�1

pP |Xp:d1���dp�1
q.

A CR-net M is separable if there are no edges in the graph of M. That is, the

local voting rule for any issue is independent of the values of all other issues (which

corresponds to a sequential voting rule).

12.2 Restricting Voters’ Preferences

We now consider restrictions on preferences. A restriction on preferences (for a

single voter) rules out some of the possible preferences in LpX q. Following the

convention of Le Breton and Sen (1999), a preference domain is a set of all admissible

profiles, which represents the restricted preferences of the voters. Usually a preference

domain is the Cartesian product of the sets of restricted preferences for individual

voters. A natural way to restrict preferences in a multi-issue domain is to restrict

the preferences on individual issues. For example, we may decide that r ¡ w ¡ p

is not a reasonable preference for wine (regardless of the choice of main course),

and therefore rule it out (assume it away). More generally, which preferences are

considered reasonable for one issue may depend on the decisions for the other issues.

Hence, in general, for each i, for each setting ~di of the issues before issue Xi, there
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is a set of “reasonable” (or: possible, admissible) preferences over Xi, which we call

L|
Xi:~di

. Formally, admissible conditional preference sets, which encode all possible

conditional preferences of voters, are defined as follows.

Definition 12.2.1. An admissible conditional preference set L over X is composed

of multiple local conditional preference sets, denoted by L|
Xi:~di

, such that for any

1 ¤ i ¤ p and any ~di P D1� � � � �Di�1, L|Xi:~di
is a set of (not necessarily all) linear

orders over Di.

That is, for any 1 ¤ i ¤ p and any ~di P D1 � � � � � Di�1, L|
Xi:~di

encodes the

voter’s local language over issue i, given the preceding issues taking values ~di. In

other words, if L is the admissible conditional preference set for a voter, then we

require the voter’s preferences over Xi given ~di to be in L|
Xi:~di

.

An admissible conditional preference set restricts the possible CP-nets, prefer-

ences, and lexicographic preferences. We note that Le Breton and Sen (1999) defined

a similar structure, which works specifically for separable votes.

Now we are ready to define the restricted preferences of a voter over X . Let L

be the admissible conditional preference set for the voter. A voter’s admissible vote

can be generated in the following two steps: first, a CP-net N is constructed such

that for any 1 ¤ i ¤ p and any ~di P D1 � � � � � Di�1, the restriction of N on Xi

given ~di is chosen from L|
Xi:~di

; second, an extension of N is chosen as the voter’s

vote. By restricting the freedom in either of the two steps (or both), we obtain a set

of restricted preferences for the voter. Hence, we have the following definitions.

Definition 12.2.2. Let L be an admissible conditional preference set over X . CPnetspLq � tN : N is a CP-net overX , and �i, �~di P D1�� � ��Di�1,N |Xi:~di
P

L|
Xi:~di

u. PrefpLq � tV : V � N ,N P CPnetspLqu. LDpLq � tLexpN q : N P CPnetspLqu.
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That is, CPnetspLq is the set of all CP-nets over X corresponding to preferences

that are consistent with the admissible conditional preference set L. PrefpLq is the

set of all linear orders that are consistent with the admissible conditional preference

set L. LDpLq, which we call the lexicographic preference domain, is the subset of

linear orders in PrefpLq that are lexicographic. For any L � PrefpLq, we say that L

extends L if for any CP-net in CPnetspLq, there exists at least one linear order in

L consistent with that CP-net. It follows that LDpLq extends L; in this case, for

any CP-net N in CPnetspLq, there exists exactly one linear order in LDpLq that

extends N . Lexicographic preference domains are natural extensions of admissible

conditional preference sets, but they are also quite restrictive, since any CP-net only

has one lexicographic extension.

We now define a notion of richness for admissible conditional preference sets.

This notion says that for any issue, given any setting of the earlier issues, each value

of the current issue can be the most-preferred one.2

Definition 12.2.3. An admissible conditional preference set L is rich if for each

1 ¤ i ¤ p, each valuation ~di of the preceding issues, and each ai P Di, there exists

V i P L|
Xi:~di

such that ai is ranked in the top position of V i.

We remark that richness is a natural requirement, and it is also a very weak

restriction in the following sense. It only requires that when a voter is asked about

her (local) preferences over Xi given ~di, she should have the freedom to at least

specify her most preferred local alternative in Di at will. We note that |L|
Xi:~di

| can

be as small as |Di| (by letting each alternative in Di be ranked in the top position

exactly once), which is in sharp contrast to |LpDiq| � |Di|! (when all local orders are

allowed).

A CR-net M is locally strategy-proof if all its local conditional rules are strategy-

2 This is not the same richness notion as the one proposed by Le Breton and Sen, which applies
to preferences over all alternatives rather than to admissible conditional preference sets.
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proof over their respective local domains (we recall that the voters’ local preferences

must be in the corresponding local conditional preference set). That is, for any

1 ¤ i ¤ p, ~di P D1 � � � � �Di�1, M|
Xi:~di

is strategy-proof over
±n

j�1 Lj|Xi:~di
.

12.3 Strategy-Proof Voting Rules in Lexicographic Preference Do-
mains

In this section, we present our main theorem, which characterizes strategy-proof

voting rules that satisfy non-imposition, when the voters’ preferences are restricted

to lexicographic preference domains. Our main theorem states the following: if

each voter’s preferences are restricted to the lexicographic preference domain for

a rich admissible conditional preference set, then a voting rule that satisfies non-

imposition is strategy-proof if and only if it is a locally strategy-proof CR-net. We

recall that there are at least two issues with at least two possible values each, and

the lexicographic preference domain for a rich admissible conditional preference set

L is composed of all lexicographic extensions of the CP-nets that are constructed

from L.

Theorem 12.3.1. For any 1 ¤ j ¤ n, suppose Lj is a rich admissible conditional

preference set, and voter j’s preferences are restricted to the lexicographic preference

domain of Lj. Then, a voting rule r that satisfies non-imposition is strategy-proof if

and only if r is a locally strategy-proof CR-net.

Proof of Theorem 12.3.1: In this proof, for any 1 ¤ i ¤ p, we let X�i denote

IztXiu. For any 1 ¤ j ¤ n, any profile P of n votes, we let P�j denote the profile

that consists of all votes in P except the vote by voter j.

Before formally proving the theorem, let us first sketch the idea behind the proof.

The “if” part is easy. The “only if” part is proved by induction on p (the number of

issues). More precisely, suppose the theorem holds for p issues. For p� 1 issues, let

r be a strategy-proof voting rule that satisfies non-imposition. We first prove that r
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can be decomposed in the following way: there exists a local rule r1 over D1 and a

voting rule rX�1:a1
over D2 � � � � �Dp�1 for each a1 P D1 that satisfy the following

two conditions.

1. For any profile P , the first component of rpP q is determined by applying r1 to

the projection of P on X1, and

2. the remaining components are determined by applying rX�1:a1
to the restriction

of P on the remaining issues given X1 � a1, where a1 is the first component of

rpP q, which is just determined by r1.

Moreover, we prove that r1 and rX�1:a1
(for all a1 P D1) satisfy non-imposition

and strategy-proofness. Therefore, by the induction hypothesis, for each a1 P D1,

rX�1:a1
is a locally strategy-proof CR-net over D2 � � � � �Dp�1. It follows that r is

a locally strategy-proof CR-net over D1 � � � � �Dp�1, in which the (unconditional)

rule for X1 is r1, and given any a1 P D1, the sub-CR-net conditioned on X1 � a1 is

rX�1:a1
.

We now formally prove the theorem. We will use Lemma 12.3.2, which states

that any strategy-proof rule r satisfies monotonicity, that is, for any profile P , if

each voter changes her vote by ranking rpP q higher, then the winner is still rpP q.
Lemma 12.3.2 (Known). Any strategy-proof voting rule satisfies monotonicity.

Proof of Lemma 12.3.2: Suppose for the sake of contradiction r is strategy-proof

but does not satisfy monotonicity. It follows that there exists a profile P , i, and

V 1
i such that V 1

i is obtained from Vi by raising rpP q, and rpP�i, V
1
i q � rpP q. If

rpP�i, V
1
i q ¡V 1

i
rpP q, then we must have that rpP�i, V

1
i q ¡Vi

rpP q, which means that

voter i has incentive to falsely report that her true preferences are V 1
i ; if rpP q ¡V 1

i

rpP�i, V
1
i q, then when voter i’s true preferences are V 1

i and the other voters’ profile

is P�i, she has incentive to falsely report that her preferences are Vi. In either case
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there is a manipulation, which contradicts the assumption that r is strategy-proof.l
First, we prove the “only if ” part by induction on p. When p � 1, the theorem

is immediate. Now, suppose that the theorem holds when p � k. When p � k � 1,

for any strategy-proof rule r that satisfies non-imposition, over Xk�1 � D1 � � � � �
Dk�1, we prove that this rule can be decomposed into two parts: first, it applies

a local voting rule r1 for X1, and subsequently, it applies a rule r|X�1:a1
for X�1,

which depends on the outcome of r1. Thus, we have the property that for any

P P ±n

j�1 LDpLjq, we have rpP q � pr1pP |X1
q, r|X�1:r1pP |X1

qpP |X�1:r1pP |X1
qqq. Then,

we will show that the induction assumption can be applied to the second part.

To prove these, we claim that for any strategy-proof voting rule r satisfying non-

imposition, and any P P ±n

j�1 LDpLjq, the value of issue X1 for the winning alter-

native only depends on the restriction of the profile to X1. That is, we show that for

any pair of profiles P, Q P±n

j�1 LDpLjq, where P � pV1, . . . , Vnq, Q � pW1, . . . , Wnq
and P |X1

� Q|X1
, we must have rpP q|X1

� rpQq|X1
. Suppose on the contrary that

rpP q|X1
� rpQq|X1

. For any 0 ¤ j ¤ n, we define Pj � pW1, . . . , Wj, Vj�1, . . . , Vnq.
It follows that P0 � P and Pn � Q. We claim that for any 0 ¤ j ¤ n � 1,

rpPjq|X1
� rpPj�1q|X1

. For the sake of contradiction, suppose rpPjq|X1
� rpPj�1q|X1

for some j ¤ n � 1. Let a1 � rpPjq|X1
and b1 � rpPj�1q|X1

. If a1 ¡Vj�1|X1
b1, then,

because Vj�1|X1
� Wj�1|X1

, pPj�1, Vj�1q is a successful manipulation; on the other

hand, if b1 ¡Vj�1|X1
a1, then, pPj , Wj�1q is a successful manipulation. This contra-

dicts the strategy-proofness of r. Thus, we have shown that the value of issue X1 for

the winning alternative only depends on the restriction of the profile to X1.

Therefore, we can define a voting rule r1 over D1 as follows. For any P 1 P±n

j�1 Lj|X1
, r1pP 1q � rpP q|X1

, where P P ±n

j�1 LDpLjq and P |X1
� P 1. Such a P

exists because LDpLjq extends Lj for all j, and this is well-defined by the observation

from the previous paragraph. r1 satisfies non-imposition because r satisfies non-
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imposition.

Next, we prove that r1 is strategy-proof. If we assume for the sake of contradiction

that r1 is not strategy-proof, then there exists a successful manipulation pP 1, V̂ 1
l q over

D1, where voter l is the manipulator, and P 1 � pV 1
1 , . . . , V 1

n q. Let N1, . . . ,Nn, N̂l be

n� 1 CP-nets satisfying the following conditions. For any 1 ¤ j ¤ n, Nj|X1
� V 1

j ; N̂l|X1
� V̂ 1

l . For any 1 ¤ j ¤ n, Nj P CPnetspLjq, N̂l P CPnetspLlq.
For 1 ¤ j ¤ n, let Vj be the lexicographic extension of Nj . Let V̂l be the

lexicographic extension of N̂l. Let P � pV1, . . . , Vnq. We note that the X1 component

of rpP�l, V̂lq is r1pP 1�l, V̂
1
l q ¡V 1

l
r1pP 1q, which is the X1 component of rpP q. Because

Vl is the lexicographic extension of Nl, and Nl|X1
� V 1

l , we have that rpP�l, V̂lq ¡Vl

rpP q, which means that pP, V̂lq is a successful manipulation. This contradicts the

strategy-proofness of r. So, we have shown that r1 is strategy-proof.

We next show that the second part of r can be written as r|X�1:r1pP |X1
qpP |X�1:r1pP |X1

qq.
That is, the rule for the remaining issues X�1 only depends on the outcome for X1.

For any V P LegalpOq and any a1 P D1, we let V |X�1:a1
denote the linear preference

over D�1 that is compatible with the restriction of V to the set of alternatives whose

X1 component is a1, that is, for any ~a�1,~b�1 P D�1, ~a�1 ©V |X�1:a1

~b�1 if and only ifpa1,~a�1q ©V pa1,~b�1q. For any O-legal profile P , P |X�1:a1
is composed of V |X�1:a1

for all V P P . For any CP-net N , we let N |X�1:a1
denote the sub-CP-net of N

conditioned on X1 � a1. It follows that if V � N , then, V |X�1:a1
� N |X�1:a1

.

Now, we claim that for any pair of profiles P1, P2 P±n

j�1 LDpLjq, P1 � pV1, . . . , Vnq
and P2 � pW1, . . . , Wnq, such that a1 � r1pP1q � r1pP2q and P1|X�1:a1

� P2|X�1:a1
, we

must have rpP1q � rpP2q. To prove this, we construct a profile P such that rpP1q �
rpP q � rpP2q. For any 1 ¤ j ¤ n, we let V a1

j P Lj|X1
be an arbitrary linear order

over D1 in which a1 is in the top position. Let P � pQ1, . . . , Qnq P ±n

j�1 LDpLjq
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be the profile in which for any 1 ¤ j ¤ n, Qj is the lexicographic extension of the

CP-net Nj that satisfies the following conditions. Nj|X1
� V a1

j . Nj|X�1:a1
� N̂j|X�1:a1

, where N̂j is the CP-net that Vj extends.

Let ~a � pa1,~a�1q � rpP1q. For any 1 ¤ j ¤ n and any~b P X with~b ¡Qj
~a, we have

that the X1 component of ~b must be a1, because Qj is lexicographic, and a1 is in the

top position of Qj|X1
. We let~b � pa1,~b�1q. It follows that~b�1 ¡Qj |X�1:a1

~a�1. We note

that Qj |X�1:a1
is the lexicographic extension of Nj|X�1:a1

, Vj|X�1:a1
is the lexicographic

extension of N̂j|X�1:a1
, and Nj|X�1:a1

� N̂j|X�1:a1
. Therefore, Qj |X�1:a1

� Vj |X�1:a1
,

which means that ~b�1 ¡Vj |X�1:a1
~a�1. Hence, we have ~b ¡Vj

~a. By Lemma 12.3.2,

we have rpP q � rpP1q. By similar reasoning, rpP q � rpP2q, which means that

rpP1q � rpP q � rpP2q. It follows that for any a1 P D1, there exists a voting rule

r|X�1:a1
over D2 � � � � �Dp such that for any P P±n

j�1 LDpLjq,
rpP q � pr1pP |X1

q, r|X�1:r1pP |X1
qpP |X�1:r1pP |X1

qqq
At this point, we have shown that r can be decomposed as desired. We next show

that for any a1 P D1, r|X�1:a1
is strategy-proof over

±n

j�1 LDpLj |X�1:a1
q. Suppose

for the sake of contradiction that there exists a successful manipulation pP�1, V̂ �1
l q,

where voter l is the manipulator, and P�1 � pV �1
1 , . . . , V �1

n q. Let N1, . . . ,Nn, N̂l be

n� 1 CP-nets satisfying the following conditions. For any 1 ¤ j ¤ n, toppNj |X1
q � a1. That is, a1 is ranked in the top position

in the restriction of Nj to X1. Also, toppN̂l|X1
q � a1. For any 1 ¤ j ¤ n, Nj|X�1:a1

is the CP-net over D�1 that V �1
j extends; N̂l|X�1:a1

is the CP-net over D�1 that V̂ �1
l extends. For any 1 ¤ j ¤ n, Nj P CPnetspLjq; N̂l P CPnetspLlq.

The existence of these CP-nets is guaranteed by the richness of Lj for any 1 ¤
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j ¤ n. For any 1 ¤ j ¤ n, let Vj be the lexicographic extension of Nj. Let V̂l be the

lexicographic extension of N̂l. Let P � pV1, . . . , Vnq. We note that

rpP q � pr1pP |X1
q, r|X�1:r1pP |X1

qpP |X�1:r1pP |X1
qqq� pa1, r|X�1:a1

pP |X�1:a1
qq � pa1, r|X�1:a1

pP�1qq Vl
pa1, r|X�1:a1

pP�1�l , V̂lqq � rpP�l, V̂lq
This contradicts the strategy-proofness of r. Hence, we have shown that for any

a1 P D1, r|X�1:a1
is strategy-proof over

±n

j�1 LDpLj |X�1:a1
q.

Moreover, because r satisfies non-imposition, for any a1 P D1, r|X�1:a1
satisfies

non-imposition. Hence, for any a1 P D1, we can apply the induction assumption to

r|X�1:a1
and conclude that it is a locally strategy-proof CR-net over D�1. It follows

that r is a locally strategy-proof CR-net over X , completing the first part of the

proof.

We next prove the “if” part. If the proposition does not hold, then there exists a

locally strategy-proof CR-net M for which there is a successful manipulation pP, V̂lq.
Let i ¤ p be the smallest natural number such that MpP q|Xi

� MpP�l, V̂lq|Xi
.

Let ~di be the first i � 1 components of MpP q and MpP�l, V̂lq. Because M|
Xi:~di

is

strategy-proof, we have the following calculation.

MpP q|Xi
�M|

Xi:~di
pP |

Xi:~di
q¡Vl|Xi:

~di

M|
Xi:~di

pP�1, V̂l|Xi:~di
q�MpP�l, V̂lq|Xi

Because Vl is lexicographic, for any ~y, ~z P Di�1 � � � � �Dp, we havep~di,M|
Xi:~di

pP q, ~yq ¡Vl
p~di,M|

Xi:~di
pP�1, V̂lq, ~zq

Therefore, MpP q ¡Vl
MpP�1, V̂lq, which contradicts the assumption that pP, V̂lq is

a successful manipulation. Hence, locally strategy-proof CR-nets are strategy-proof

for lexicographic preferences. l
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It follows from Theorem 12.3.1 that any sequential voting rule that is composed

of locally strategy-proof voting rules is strategy-proof over lexicographic preference

domains, because a sequential voting rule is a separable CR-net. Specifically, when

the multi-issue domain is binary (that is, for any 1 ¤ i ¤ p, |Di| � 2), the sequential

composition of majority rules is strategy-proof when the profiles are lexicographic. It

is interesting to view this in the context of previous works on the strategy-proofness

of sequential composition of majority rules: Lacy and Niou (2000) and Le Breton

and Sen (1999) showed that the sequential composition of majority rules is strategy-

proof when the profile is restricted to the set of all separable profiles; on the other

hand, Lang and Xia (2009) showed that this rule is not strategy-proof when the

profile is restricted to the set of all O-legal profiles.

The restriction to lexicographic preferences is still limiting. Next, we investigate

whether there is any other preference domain for the voters on which the set of

strategy-proof voting rules that satisfy non-imposition is equivalent to the set of all

locally strategy-proof CR-nets. The answer to this question is “No,” as shown in

the next result. More precisely, over any preference domain that extends an admis-

sible conditional preference set, the set of strategy-proof voting rules satisfying non-

imposition and the set of locally strategy-proof CR-nets satisfying non-imposition

are identical if and only if the preference domain is lexicographic.

Theorem 12.3.3. For any 1 ¤ j ¤ n, suppose Lj is a rich admissible conditional

preference set, Lj � PrefpLjq, and Lj extends Lj. If there exists 1 ¤ j ¤ n such

that Lj is not the lexicographic preference domain of Lj, then there exists a locally

strategy-proof CR-net M that satisfies non-imposition and is not strategy-proof over±n

j�1 Lj.

Proof of Theorem 12.3.3: If, for some j ¤ n, there is a V 1
j P LDpLjq that is not in

Lj , then there must also be a Vj P Lj that is not in LDpLjq, because some vote in Lj
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must extend the CP-net that V 1
j extends. Hence, if

±n

j�1 LDpLjq � ±n

j�1 LDpLjq,
there must exist some j ¤ n, Vj P Lj such that Vj is not in LDpLjq. For this Vj ,

there must exist i ¤ p, ~ai�1 P D1� � � ��Di�1, ai, bi P Di, ~ai�1,~bi�1 P Di�1� � � ��Dp

such that ai ¡Vj |Xi:~ai�1
bi, and p~ai�1, bi,~bi�1q ¡Vj

p~ai�1, ai,~ai�1q. Now, let us define a

CR-net M as follows.

• M|Xi:~ai�1
is the plurality rule that only counts voter 1 and voter j’s votes; ties

are broken in the order bi ¡ ai ¡ Di � tai, biu.
• Any other local conditional voting rule is a dictatorship by voter 1.

Now, let N1 P CPnetspL1q be a CP-net such that toppN1q � p~ai�1, ai,~ai�1q,
and for any k ¥ i � 1, toppN1|Xk:~ai�1bibi�1���bk�1

q � bk. Here toppN1q is the top-

ranked alternative in N1. Let N 1
j P CPnetspLjq be a CP-net such that toppN 1

jq �p~ai�1, bi,~bi�1q. Let V1 P L1 be such that V1 � N1, and let V 1
j P Lj be such that

V 1
j � N 1

j . Such V1 and V 1
j must exist, because L1 extends L1, and Lj extends Lj.

For any profile P � pV1, . . . , Vj, . . . , Vnq P ±n

j�1 LDpLjq (that is, for any l � 1, j,

Vl is chosen arbitrarily, because MpP q does not depend on them), it follows that

MpP q � p~ai�1, ai,~ai�1q, and MpP�j, V
1
j q � p~ai�1, bi,~bi�1q, which means that pP, V 1

j q
is a successful manipulation for voter j. So, M is not strategy-proof (and it satisfies

non-imposition). l
12.4 Summary

In this chapter, we studied strategy-proof voting rules when the voters’ preferences

are represented by acyclic CP-nets that follow a common order over issues. We

showed that if each voter’s preferences are restricted to a lexicographic preference

domain, then a voting rule satisfying non-imposition is strategy-proof if and only if
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it is a locally strategy-proof CR-net. We then proved that this characterization only

works for lexicographic domains.

Our characterization is quite positive; however, beyond that, it is still not clear

how much we can hope for desirable strategy-proof voting rules in multi-issue do-

mains.3 Of course, it is well known that it is difficult to obtain strategy-proofness

in voting settings in general, and this does not mean that we should abandon vot-

ing as a general method. Similarly, difficulties in obtaining desirable strategy-proof

voting rules in multi-issue domains should not prevent us from studying voting rules

for multi-issue domains altogether. From a mechanism design perspective, strategy-

proofness is a very strong criterion, which corresponds to implementation in dominant

strategies. It may well be the case that rules that are not strategy-proof still result

in good outcomes in practice—or, more formally, in (say) Bayes-Nash equilibrium.

3 In fact, we also proved two impossibility theorems, which (informally) both state that as soon
as we go beyond lexicographic domains, there are no strategy-proof voting rules, except CR-nets
where local rules are dictatorships. These results are omitted due to their heavy technicality and
notation. They can be found on my homepage.
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13

Conclusion and Future Directions

In recent years, rapid developments in computers and networks have brought big

changes to human society. These changes have led to many new interdisciplinary

areas among which the interdisciplinary area lying in the intersection of Computer

Science and Economics has attracted much attention. Computational Social Choice

is a burgeoning subarea in this intersection. This dissertation includes my Ph.D. re-

search on two aspects of Computational Voting Theory, which is the most active and

major branch of Computational Social Choice. The novel research contributions are

as follows.

1. Game-theoretic aspects (Chapter 4–Chapter 7). In this part I examined the

motivation and possibility to circumvent the Gibbard-Satterthwaite theorem by

using computational complexity as a barrier against voters’ strategic behavior.

2. Combinatorial aspects (Chapter 9–Chapter 12). In this part I focused on

the design and analysis of computationally tractable voting rules for multi-issue

domains to overcome the computational difficulties in preference representation

and aggregation caused by the exponential blowup in the number of alterna-
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tives.

13.1 Summary of Chapters

Chapter 1 served as a general and high-level introduction to the work included in

this dissertation, where I briefly described the motivating questions for my research,

the methodology we have developed and the results we have obtained, and how

these results answered the motivating questions. Chapter 2 introduced notation

used throughout the dissertation, definitions of some common voting rules and some

axiomatic properties for voting, and gave a brief introduction to other major research

directions in Computational Social Choice. Chapter 3 is a mixture of introduction

and preliminaries for the game-theoretic aspects of my work, which are covered in

Chapter 4 through Chapter 7.

In Chapter 4, we characterized the computational complexity for the unweighted

coalitional manipulation problem for three common voting rules. We showed that

UCM is NP-complete for maximin (Section 4.1) and ranked pairs (Section 4.2), and in

P for Bucklin (Section 4.3). These worst-case hardness results imply that at least for

maximin and ranked pairs, computational complexity can provide some protection

against manipulation. Therefore, for these results, it gives an affirmative answer to

the question “Can we use computational complexity to prevent manipulation?”

In Chapter 5, we continued investigating the possibility of using computational

complexity as a barrier against manipulation. We focused on the question “Is com-

putational complexity a strong barrier against manipulation?” Unfortunately, the

answer was quite negative, as illustrated by our research in two directions. In Sec-

tion 5.2, we pursued the “frequency of manipulability” approach, and showed that

for most common voting rules, with a high probability the UCM problem is compu-

tationally trivial. To prove this result, we introduced generalized scoring rules, and

then characterized the frequency of manipulability for all generalized scoring rules.

270



To show how general this class of voting rules is, we gave a concise axiomatic charac-

terization of it in Section 5.3. In Section 5.4, we pursued an approximation approach.

We devised an efficient polynomial-time algorithm that approximately computes the

smallest number of manipulators that are needed to make a given alternative win,

for all positional scoring rules.

Since computational complexity does not seem to be a strong barrier against

manipulation, we need to look for other ways to circumvent Gibbard-Satterthwaite.

In Chapter 6, we examined some preliminary ideas about preventing manipulations

by restricting the manipulator’s information about the other voters’ votes. Our

results are encouraging: restricting the manipulator’s preferences can make a certain

type of manipulation, which we called “dominating manipulation”, computationally

hard or even impossible.

In fact, the very first question that should be asked is probably not “How can we

circumvent Gibbard-Satterthwaite?”, but is rather, “Is the strategic behavior unde-

sirable?” Surprisingly, in the literature little work attempted to answer this question.

The difficulty mainly comes from the fact that there are too many (trivial) equilibria

in voting games. In Chapter 7, we partly answered this question by showing that in

any Stackelberg voting game, there is a unique winner across all equilibria, and it

is sometimes ranked within the bottom two positions in all voters’ true preferences,

with only a few exceptions. Therefore, the main theoretical results of Chapter 7 (the

paradoxes) are extremely negative. Their high-level message is what we may have

expected to see: sometimes the strategic behavior of the voters leads to extremely

undesirable outcomes. This justifies the previous line of research of using compu-

tational complexity to prevent manipulation. We also devised some techniques to

speed up the computation of the equilibrium outcome. These techniques were used

in our simulations, which showed that, surprisingly, on average the equilibrium out-

come is preferred by slightly more voters compared to the winner where the voters
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vote truthfully.

The combinatorial voting part of this thesis started in Chapter 8, where we intro-

duced the notation for combinatorial voting, multiple-election paradoxes, CP-nets,

sequential voting rules, and important criteria for designing new voting rules. We

also evaluated voting rules proposed in previous work by these criteria (Table 8.1).

We observed that all previous approaches either used voting languages that lack ex-

pressivity, or are computationally intractable. This motivated my work in Chapter 9

and Chapter 10.

Chapter 9 and Chapter 10 both focused on designing new voting methods for

combinatorial voting. We first showed quantitatively in Chapter 9 that (possibly

cyclic) CP-nets are much more usable than the voting languages used in sequential

voting and issue-by-issue voting. The voting methods we proposed in Chapter 9 and

Chapter 10 both allow voters to use (possibly cyclic) CP-nets to represent their pref-

erences. In the framework we proposed in Chapter 9, which we called H-compositions,

we first consider an induced graph over all alternatives by applying local voting rules,

then apply a choice set function to select the winner. We showed that H-compositions

are an extension of sequential voting rules, and then examined whether they satisfy

some common axiomatic properties. We also studied how to compute the winners

for the H-compositions for a common choice set function called the Schwartz set.

In Chapter 10, we took an MLE approach by extending Condorcet’s MLE model

to multi-issue domains. We studied the relationship between the voting correspon-

dences defined by the MLE approach and sequential voting correspondences, and

showed that the MLE approach gives us genuinely new correspondences. We then

focused on multi-issue domains composed of binary issues; for these, we proposed a

general family of distance-based noise models that are parameterized by a threshold.

We identified the complexity of winner determination for the corresponding MLE

voting rules in the two most important subcases of this framework.
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Chapter 11 and Chapter 12 were both devoted to studying game-theoretic as-

pects of combinatorial voting. Chapter 11 in some sense told us the same high-level

message as Chapter 7, which is: strategic behavior of the voters sometimes leads

to extremely undesirable outcomes. More precisely, we studied strategic sequential

voting, which is a complete-information extensive-form game of sequential voting in

multi-issue domains. We focused on domains characterized by multiple binary issues,

and illustrated three types of multiple-election paradoxes in strategic sequential vot-

ing. We showed that changing the order of the issues cannot completely prevent

such paradoxes. We also investigated the possibility of avoiding the paradoxes for

strategic sequential voting by imposing some constraints on the profile.

Finally, Chapter 12 pursued an older line of research to circumvent Gibbard-

Satterthwaite, which has typically been pursued by economists. We studied how to

restrict voters’ preferences over multi-issue domains to obtain strategy-proof voting

rules. Our main result is a simple full characterization of strategy-proof voting rules

over restricted sets of lexicographic profiles. This result is a counterpart of a well-

known previous characterization of strategy-proof voting rules over restricted sets of

separable profiles by Le Breton and Sen (1999).

13.2 Future Directions

Computational Social Choice is still in its infancy. There are many promising theo-

retical and practical directions for future research. On the one hand, I plan to further

explore the conceptual changes in Social Choice brought by computational thinking.

On the other hand, I plan to work on designing and employing new voting systems for

preference representation and aggregation in Multi-Agent Systems, which is one of

the best application fields for Computational Social Choice. In what follows, I will

point out some future/on-going research directions for the game-theoretic aspects

and combinatorial aspects of Computational Voting Theory, respectively.
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13.2.1 Game-Theoretic Aspects

The computational complexity of UCM has been resolved for many common voting

rules (see Table 3.1). It can be easily observed from the table that multi-stage

voting rules seem to be harder to manipulate. In fact, as far as we know, the only

four voting rules for which UCM is hard for only one manipulator are all composed

of multiple stages (STV, ranked pairs, Nanson’s and Baldwin’s rules). Among them,

STV, Nanson’s and Baldwin’s rules are defined in a very similar way: in each round, a

voting correspondence is used to eliminate some alternatives based on some “scores”

(plurality score for STV, Borda score for Nanson’s and Baldwin’s rules). We note that

for plurality and Borda, manipulation is easy for one manipulator. Hence, it seems

that the multi-stage-elimination pattern used in STV, Nanson’s and Baldwin’s rules

is an effective way to make manipulation computationally hard. Therefore, we may

ask the following open question: Can we characterize the computational complexity

of UCM for the voting rules that are defined similar by STV, Nanson’s and Baldwin’s

rules? For example, we can study the computational complexity for UCM under the

voting rules where a positional scoring rule that is different from plurality and Borda

is applied in each round, and the alternatives whose scores are the lowest (or below

the average score) are eliminated.

There are also some open questions about the “typical-case” complexity of ma-

nipulation. Recall that our characterization of the frequency of manipulability for

generalized scoring rules (Section 5.2) leaves a knife-edge case open, which is the case

where the number of manipulators is Θp?nq. Thus, the “typical-case” complexity of

manipulation is an open question for such cases. Another important assumption we

made in our characterization is that the voters’ votes are i.i.d. However, in real life

the voters’ votes are generally correlated. Therefore, it is interesting to investigate

the frequency of manipulability with correlated voters. We note that Walsh (2009)
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studied both questions by simulations.

Open questions along the research direction of approximating the UCO prob-

lem include extending our scheduling approach to other common voting rules, for

example, generalized scoring rules. Recently, Zuckerman et al. (2011) proposed ap5
2
q-approximation algorithm for UCO under maximin. It would be nice to see a

unified approach for a large class of voting rules.

In Chapter 6, we took a first step in the research direction of using information

constraints to make manipulations computationally hard or even impossible. There

are many interesting open questions left for future research. Our results showed that

by restricting the manipulator’s information, sometimes we can increase the hardness

of computing dominating manipulations from in P to NP-hard. One open question

here is to characterize the exact computational complexity of computing dominating

manipulations under information constraints. We could analyze the “typical-case”

complexity, or it might be possible to prove completeness results for higher levels

of the polynomial hierarchy. Since we only studied manipulation with one manip-

ulator in Chapter 6, we may also consider using information constraints to prevent

other types of strategic behavior in our framework, including coalitional manipula-

tion, bribery, and control, or even more generally, to prevent strategic behavior in

other mechanism design or game-theoretic settings. Also, the notion of dominating

manipulation might be too strong, in the sense that it corresponds to a very cautious

manipulator who always wants to make sure that whatever the possible world is, she

is never worse-off (and sometimes better-off). This does not model some real-life

situations, where manipulators may want to take some risk to obtain higher pay-

offs. One important next step is to investigate other types of manipulation when the

manipulators have incomplete information.

In addition to coalitional manipulation, bribery and control, some other mod-
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els of voters’ strategic behavior have been studied in Computational Social Choice.

For example, false-name manipulation (Yokoo et al., 2004) refers to the strategic

behavior of an agent who creates multiple false identities to participate in auctions

or elections, to make the outcome more preferable to her. See (Conitzer and Yokoo,

2010) for an overview. In this voting setting, this problem is related to a special

control type called “control by adding new voters” (Bartholdi et al., 1992). Because

traditional manipulation is a special case of false-name manipulation, it is not sur-

prising to see negative results in the voting setting. In fact, Conitzer (2008) gave

a complete characterization of randomized false-name-proof voting rules that sat-

isfy voluntary participation. The characterization is significantly more negative than

the characterization of randomized strategy-proof voting rules obtained by Gibbard

(1977). Some positive results have also been obtained to prevent false-name manip-

ulations. Wagman and Conitzer (2008) modeled the cost of creating false identities,

and designed optimal false-name-proof voting rules for two alternatives. Conitzer

et al. (2010) proposed a voting rule that uses the social-network structure of the

voters to detect potential false identities, and then block them from casting votes. I

believe that designing new ways to protect elections from false-name-manipulations

deserves more attention, and again, we may consider using information constraints

to prevent false-name manipulation.

Another example of voters’ strategic behavior is safe manipulation (Slinko and

White, 2008). In the safe-manipulation model, a manipulator (the leader) can send

a message to all voters who have the same preferences as her (the followers), asking

them to cast the same vote V which is not necessarily the same as their true pref-

erences. If there exists such a vote V that (1) no matter how many followers follow

the suggestion of the leader, they are never worse off, meaning that the winner is

at least as preferred as the winner when all voters report their preferences truth-

fully, and (2) sometimes they are strictly better-off, then this is a safe manipulation.
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Slinko and White (2008) extended the Gibbard-Satterthwaite result to the notion

of safe manipulation. Therefore, we can ask the question “Is computational com-

plexity a barrier against safe manipulation?” In fact, the computational complexity

of safe manipulation has been investigated for some common voting rules (Hazon

and Elkind, 2010; Ianovski et al., 2011), but it is still open for some other common

voting rules, for example, positional scoring rules in general. Once again, we can

ask the “worst-case” vs. “typical-case” question, and see to what extent restricting

manipulators’ information about the preferences of the other voters (for example, the

maximum number of followers) can help prevent safe manipulations. At a high level,

it is still not clear how well the safe-manipulation model captures the voters’ strategic

behavior in coalition formation. In this dissertation we only studied the case where

there is only one group of manipulators. In real life, sometimes there are multiple

groups of manipulators aiming at making different alternatives win. Also, the group

of manipulators were given exogenously. Therefore, it would be nice to have some

justifications or improvements of the coalitional manipulation model. For example,

Bachrach et al. (2011) modeled the coalition formation process of the manipulators

as a coalitional game, and investigated its computational aspects.

Modeling a voting process as a game and analyzing its equilibrium outcomes is

an old yet fascinating topic. In the Stackelberg voting games studied in Chapter 7,

we assumed that the voters vote according to an exogenously-given order, and every

voter cast exactly one vote. However, in many online rating systems, a voter is free to

decide when she cast the vote, or simply not casting any vote. Desmedt and Elkind

(2010) allowed voter to absent, but if a voter decides to absent, then she cannot come

back to vote later. Therefore, the equilibrium analysis of voting games where voters

can decide when to cast votes is an interesting line of research. For Stackelberg

voting games, we still do not how to characterize the computational complexity of

computing the SPNE outcome. We conjecture that it is PSPACE-complete (Desmedt
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and Elkind (2010) also proposed the same conjecture for their model). We recall that

our simulation results showed that the equilibrium outcome seems to be preferred by

more voters than the truthful outcome when the voters’ preferences are generated

i.i.d. uniformly. One open question here is: Can we obtain a theoretical result? It

is also very interesting to know which voters in Stackelberg voting games have more

power to control the outcome: the voters who vote early, late, or in the middle?

13.2.2 Combinatorial Aspects

Combinatorial voting settings, in which the space of all alternatives is exponential in

size, constitute an important area in which techniques from Computer Science can be

fruitfully applied. As we summarized in Table 8.1, none of the previous approaches

to combinatorial voting (including ours) are perfect. Designing a “good” voting

rule over combinatorial domains that uses a very expressive and compact language

seems too ambitious to be possible. Therefore, I believe that the future design of

voting rules for combinatorial domains should focus on achieving a balance among

the criteria we proposed in Chapter 8, that is, the compactness and expressiveness

of the voting language, and the quality (including computational efficiency) of the

voting rule. Such a balance can be envisioned in the following three directions.

1. Exploring richer connections between combinatorial voting and com-

binatorial auctions. Combinatorial voting and combinatorial auctions share

many common high-level characteristics: (1) Mathematically, the objectives

are to decide the value of multiple variables based on participants’ (cardinal or

ordinal) preferences. In combinatorial auctions, one item corresponds to one

variable, whose value determines which participant obtains the item. (2) The

main difficulty comes from the exponential blow-up of the problem size. (3) So

far, the main research agendas are proposing compact and expressive languages

for the participants to express their preferences, and designing computation-
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ally tractable mechanisms to select the outcome thereafter. For example, the

popular XOR-language used in combinatorial auctions has a close relation-

ship with a language that has been investigated in combinatorial voting called

GAI-networks (Gonzales et al., 2008). See also Conitzer (2010). Therefore,

exploring richer connections between combinatorial voting and combinatorial

auctions can help in designing good voting/auction rules for both of them.

2. Designing voting rules based on “local” voting rules. Our H-composition

framework leaves several computational challenges. Some of them have been

resolved in Conitzer et al. (2011b), where we proved that for several choice

set functions, the winner under H-composition is NP-hard to compute. Future

work includes designing heuristic, approximation, or fixed-parameter tractable

algorithms that would work well under certain natural assumptions, for exam-

ple, when the voters’ preferences share some common structure.

3. Other principled approaches. We have shown that the MLE approach

taken in Chapter 10 allowed us to define genuinely new families of voting cor-

respondences for multi-issue domains. However, the computational aspects of

determining the winners under MLE correspondences are still not completely

clear. For example, we only characterized the complexity of computing win-

ners under MLEs of distance-based threshold models with thresholds 1 and p

(the number of issues). It would be interesting to identify the complexity for

other thresholds (however, we conjecture that it is at least NP-hard). Another

promising principled approach that has not yet been applied to combinato-

rial voting is distance-rationalizable voting rules (Meskanen and Hannu, 2008;

Elkind et al., 2009a, 2010b,c, 2011). To define a voting rule in the distance-

rationalizability framework, a distance (metric) is defined for any pair of pro-

files, and a winner is associated to some profiles where the voters reach a
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consensus (for some notion of consensus, for example, profiles with a Con-

dorcet winner). Then, a voting rule can be viewed as the function that selects

the winner in the closest consensus profile. The distance-based rationalizable

framework can be easily adopted to design new rules for combinatorial vot-

ing: we only need to define a natural distance between profiles represented

by some compact language (for example, some distance that is based on the

Hamming distance between CP-nets over multi-binary-issue domains), and a

set of profiles where voters reach a consensus. The main question here is the

quality of the voting rule that is distance-rationalized in this way, especially

the computational complexity.

There are also many interesting topics for future research about the game-theoretic

aspects of combinatorial voting. For example, is there any criterion for the selection

of the order over the issues in sequential voting games? Perhaps more importantly,

how can we get around the multiple-election paradoxes in sequential voting games?

For example, Theorem 11.4.3 shows that if the voters’ preferences are lexicographic,

then we can avoid the paradoxes. It is not clear if there are other ways to avoid the

paradoxes (paradoxes occur even if we restrict voters’ preferences to be separable or

O-legal, as shown in Theorem 11.4.1 and Theorem 11.4.6). Another approach is to

consider other, non-sequential voting procedures for multi-issue domains. What are

good examples of such procedures? Will these avoid paradoxes? What is the effect of

strategic behavior for such procedures? How should we even define “strategic behav-

ior” for such procedures, or for sequential voting with non-binary issues, or for voting

rules in general? How can we extend these results to incomplete-information settings?

Also, beyond proving paradoxes for individual rules, is it possible to show a general

impossibility result that shows that under certain minimal conditions, paradoxes

cannot be avoided? Can we find other domain restrictions to obtain strategy-proof
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voting rules in multi-issue domains?
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