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1
Introduction

Collective decision making is a part of everyday life of the modern society,
the earliest mention of voting dates back to antiquity. Since then, people not
only invented a variety of voting procedures, or social choice rules, but also
studied them formally with the help of mathematical and computer modelling.
One of the problems with aggregating individual preferences into a collective
choice is that people can misrepresent their preferences in order to achieve a
more preferable voting result. This phenomenon is called manipulation and
considered as negative, since due to manipulation the voting result becomes
biased.

K. Arrow (Arrow, 1951) was the founder of an axiomatic approach to study-
ing voting procedures proving that some set of reasonable properties of social
choice rules is incompatible. Using this approach, A. Gibbard (Gibbard, 1973)
and M. Satterthwaite (Satterthwaite, 1975) independently proved incompati-
bility of strategy-proofness and unanimity with non-dictatorship in case there
are at least three alternatives. This fundamental result gave rise to a number of
studies on manipulability of rules. Among them, there are works that reveal
the degree of manipulability of rules depending on the number of voters and
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Chapter 1. Introduction

alternatives taking part. The degree of manipulability is defined as a propor-
tion of voters’ preference profiles with at least one voter having an incentive
to manipulate.

The following thesis continues this line of research. Our aim was to enrich
the basic model of manipulation (where only one voter manipulates, knowing
all other voters’ preferences and not thinking about their strategic actions).
The model for manipulation under incomplete information was presented in
(Reijngoud and Endriss, 2012) and studied in (Veselova, 2020). Suppose,
that all individual preferences are collected before voting for an opinion poll.
After that, information about preferences becomes available to voters, but in
an aggregated form. For example, information about a ranking of alternatives
according to a given rule. Having this information, a voter decides which pref-
erence order to declare, sincere or strategic. In Chapter 2 we present the exten-
sion of this model allowing coalitions of voters to manipulate. Thus, keeping
the assumption of incomplete information we suggest a voter thinking of her
allies and their actions. Then we answer the question how manipulability
of rules changes when we switch from individual to coalitional manipulation
and how different types of information affect incentives to manipulation in a
society.

There is no doubt that groups of voters have more possibilities to influence the
voting result than separate individuals. However, there exists a problem with
coordinating their actions. Suppose, under complete information a group of
individuals with identical preferences has an incentive to manipulate and they
could achieve a better voting result. For example, all voters know what is the
number of their allies and that by acting together they could make their best
possible alternative the winner. Thus, they have an incentive to manipulate
within a group. But what if some of them do not actually manipulate? If a
voting result could become even worse for manipulating voters, than it was
initially, then such manipulation is considered as unsafe. Thus, the next ques-
tion under consideration is the following: which rules and conditions allow
for an unsafe manipulation? If a voting rule is always safely manipulable, it
means that it is easier to manipulate the result, since voters do not need to
carefully coordinate their actions. This question is extensively answered in
Chapter 3 of this thesis.
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Having considered the problem of interaction of voters with identical prefer-
ences in manipulation, we need to mention though that there could be more
than one group having an incentive to manipulate. Regardless of whether
their preferences are similar or opposite to each other, their simultaneous ma-
nipulation could lead to a fail for some (or even all) of them. The model of
manipulation under incomplete information is extended for allowing not only
co-minded people to manipulate, but all voters having such an incentive. If
manipulating voters take into account all other voters’ manipulation, not only
of their type, this leads to another level of uncertainty. Adding an assumption
of incomplete information, we increase uncertainty even more. Thus, it is of
interest to know how the combination of these two kinds of uncertainty influ-
ences voters’ willingness to manipulate. Chapter 4 is devoted to the study of
this question. In some cases rules become immune to manipulation and we
find such cases.

Overview

This dissertation is organized as follows.

Chapter 2 considers the problem of coalitional manipulation in collective de-
cision making and a probabilistic approach for solving it. We conduct compu-
tational experiments for calculating the degree of coalitional manipulability
for various types of public information and compare it with individual ma-
niulation. In a theoretical study we prove that under incomplete information
individual and coalitional manipulability can be equal and consider asymp-
totic behavior of manipulability for plurality and Borda rule.

We address the issue of the safety of group manipulation in Chapter 3. For
several voting rules we study conditions on the numbers of voters and alter-
natives which allow for an unsafe manipulation or which make manipulation
always safe.

Chapter 4 is devoted to individual manipulability of social choice rules under
incomplete information and for different assumptions about voters’ behavior
which constitute a behavioral model. With the help of computations we reveal
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Chapter 1. Introduction

how the type of information and behavioral model influence the relative ma-
nipulability of 12 social choice rules. It is formally proved that under certain
conditions manipulability equals zero for scoring rules.
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Manipulation by coalitions in voting

with incomplete information

Adapted from: Y. A. Veselova Manipulation by coalitions in voting with
incomplete information. In: Data Analysis and Optimization, Springer,
2023.
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2.1 Introduction
We consider the problem of manipulation in collective decision making. It is
well-known that voters can misrepresent their preferences in order to achieve
a more preferable result. Of course, it is better when all voters want to declare
their sincere preferences, otherwise, a collective decision would be biased and,
consequently, would not reflect the preference of a society. Unfortunately,
all social choice rules which have at least three possible outcomes are either
manipulable or dictatorial. This result is called Gibbard-Satterthwaite theorem
(Gibbard, 1973; Satterthwaite, 1975; Gärdenfors, 1976).

However, for a social choice rule to be vulnerable to manipulation it is enough
to have only one situation and at least one voter having an incentive to misrep-
resent her preferences. Thus, different rules may be manipulable to a different
extent. For this reason the most used approach to comparing the degree of ma-
nipulability of rules is measuring the share of situations (preference profiles)
that admit manipulation by voters. This approach was first used by Nitzan
(1985) and Kelly (1988) and further applied to the analysis of a big variety of
rules in different models (Aleskerov and Kurbanov, 1999; Lepelley and Val-
ognes, 2003; Pritchard and Wilson, 2007; Aleskerov et al, 2009; Aleskerov et
al, 2011; Aleskerov et al, 2012; Maus et al, 2007, Peters et al, 2012; Slinko,
2006, Aleskerov et al, 2017).

The common assumption in publications of this line of research is that voters
know each others’ sincere preference, i.e. public information is reliable and
complete. This is a rather strong assumption, but helps to simplify the compar-
ative analysis of manipulability of social choice rules. Intuitively, incomplete
information would make manipulation more difficult and rare.

A more realistic assumption is that voters have some information from opinion
polls held before voting. This information could be represented, for example,
by preferences of a subset of voters, or a list of candidate scores, or the winner
of the election. A mathematical model for manipulation under poll informa-
tion is presented by Reijngoud and Endriss (2012).

In the current research we apply this model to studying coalitional manipu-
lability of social choice rules under different types of poll information. We
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consider the probability that in a randomly chosen preference profile there ex-
ists a coalition which has an incentive to manipulate under a given type of poll
information. The formalization of coalitional manipulation in voting includes
some assumptions: 1) voters form a coalition if they have the same preference;
2) all members of a coalition manipulate in the same way; 3) a coalition has
an incentive to manipulate, if there exists an insincere strategy such that the
coalition cannot become worse off and there is a chance of becoming better
off with this strategy.

In our study the analysis of manipulation probability has three directions:

1) We analyze the power of a coalition: how coalitional manipulability differs
from individual. Could coalitional manipulability be less than individual?

2) We compare manipulability of different social choice rules (we consider
six popular rules which have polynomial complexity of calculating a winner:
plurality rule, Borda rule, veto rule, runoff procedure, STV rule, and Copeland
rule).

3) We study the role of information available to voters. How do different types
of poll information affect coalitional manipulability?

We answer these questions via both theoretical investigation and computa-
tional experiments. We prove that for scoring rules (plurality, Borda, and veto
rule in our analysis) the probability of coalitional manipulation is equal to
the probability of individual manipulation if the only information available to
voters is the information about the election winner after tie-breaking. Com-
putational experiments are conducted in MatLab for all six rules and five poll
information types for 3 alternatives and the number of voters from 3 to 15. It is
shown that the probability of coalitional manipulation is almost always higher
than individual manipulation and in many cases is very close to 1. The excep-
tions are the Borda rule and veto rule: for these the probability of coalitional
manipulation could be less than the probability of individual manipulation
for some public information types. This observation shows that manipulat-
ing with the same strategy is not optimal for coalition members in these cases.
The veto rule even becomes almost immune to manipulation under incomplete
information if there are more than 10 voters.
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2.2 The Model

2.2.1 Definitions and Notations

There is a finite set of voters N = {1, ...,n} and a finite set of m alternatives
X , m ≥ 3. Each voter i has a strict preference Pi, which is a linear order, i.e.
irreflexive, weakly complete and transitive binary relation on X . If voter i
prefers an alternative a to an alternative b, we write aPib. The set of all linear
orders is denoted by L(X). A preference can also be represented in a form
Pi = (a,b, ...c), which is equivalent to aPibPi...Pic. An upper contour set of
an alternative a in a preference order Pi is Pia = {b ∈ X : bPia}. Similarly, a
lower contour set of a in Pi is aPi = {b ∈ X : aPib}.

An ordered set of individual preferences, P = (P1, ...,Pn) ∈ L(X)N , is called a
preference profile. A contraction of a preference profile onto the set A ⊆ X is
P/A = (P1/A, ...,Pn/A), where Pi/A = Pi ∩ (A×A). A coalition is a subset of
voters, K ⊆N, K ̸= /0. A preference profile of coalition members is denoted by
PK , and P−K is preference profile of all other voters, N \K. P = (PK ,P−K).

A vector of positions for alternative a is v(a,P) = (v1(a,P), ...,vm(a,P)),
where v j(a,P) denotes the number of voters having a on the j-th position in a
preference order, i.e. j = 1+ |Pia|.

An m×m matrix of a weighted majority graph for a profile P is denoted by
WMG(P) and consists of elements

WMG(P)kl = |{i ∈ N : akPial}|. (2.1)

By µ we denote majority relation: akµal if WMG(P)kl > WMG(P)lk.

A matrix of a majority graph is MG(P), where

MG(P)kl =


1, if akµal,

−1, if alµak,

0, otherwise.

(2.2)
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A social choice correspondence (SCC) is a mapping C:L(X)N → 2X \ { /0}.
A social choice rule or simply rule is a mapping F :L(X) → X . A rule can
be obtained from SCC by using a tie-breaking rule T : 2X \ { /0} → X . We
consider an alphabetic tie-breaking rule: assume some linear order on X to
be predefined, aPT bPT c..., and when alternatives are tied, we choose the one
which dominates all others by PT (has a higher priority). Thus, a rule F is
derived from SCC C, if T (C(P)) = F(P). A social ordering is denoted by a
weak order R (irreflexive, transitive, and negatively transitive binary relation),
an element of the set of all weak orders on X , W (X).

2.2.2 Poll Information Functions

It is assumed that an opinion poll is held before voting and it reveals voters’
sincere preferences, P. However, for some reasons not all information be-
comes available to voters. Instead of P, voters get to know just π(P), function
π is called a poll information function (PIF). We consider the following types
of PIF.

1. Profile: π(P) = P.

2. Score: π(P)= S(P)= (S(a1,P), ...,S(am,P)) assigns to each alternative
its score (to be explained further) according to a given SWF F . For
multi-stage procedures it is defined as a vector of vectors of scores for
each stage.

3. Rank: π(P) = R, returns a social ordering.

4. Winner: π(P) =C(P).

5. Unique winner (1Winner): π(P) = F(P)

2.2.3 Individual manipulation

Thus, a voter i has information π(P) about a preference profile P and knows
her own preference order. A set of preference profiles of N \ {i} consistent
with her knowledge is called information set and defined as follows
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W π(P)
i = {P′

−i ∈ L(X)N\{i} : π(Pi,P′
−i) = π(P)}. (2.3)

Given two PIFs π and π ′, if ∀P ∈ L(X)N ∀i ∈ N W π(P)
i ⊆W π ′(P)

i , then π is at
least as informative as π ′. Of course, the most informative is Profile-PIF.

Then, when is a voter willing to manipulate, i.e. misrepresent her preference
in order to achieve a more preferable result? It is assumed that if there is at
least one possible situation in which manipulation makes her better off and
nothing changes in all other possible situations, then a voter has an incentive
to manipulate under PIF π (Reijngoud and Endriss, 2012).

Definition 2.1. Given a rule F and a preference profile P, we say, that voter i
has an incentive to π-manipulate under F, if there exists P̃i ∈ L(X) s.t.
i) there is no P′

−i ∈W π(P)
i , s.t. F(P)Pi F(P̃i,P′

−i);

ii) there exists P′
−i ∈W π(P)

i , s.t. F(P̃i,P′
−i)Pi F(P).

Thus, if a voter has an incentive to π-manipulate in P, is does not mean that
her manipulation will be successful in this very profile.

Example 2.1. Consider a case with 3 alternatives, 3 voters and among them
voter 1 with preference aP1bP1c. PIF is 1Winner and π(P) = c. Tie breaking
rule is such that T ({a,b,c}) = c. A rule is plurality, which means that we
choose alternatives that are ranked first by maximum number of voters.

W π(P)
i =


P2 P3
c c
a a
b b

,

P2 P3
c c
b b
a a

,

P2 P3
c c
a b
b a

,

P2 P3
c c
b a
a b

,


⋃

(2.4)

⋃


P2 P3
b c
c a
a b

,

P2 P3
c b
a c
b a

,

P2 P3
b c
c b
a a

,

P2 P3
c b
b c
a a

,

P2 P3
b c
a a
c b

,

P2 P3
c b
a a
b c

,

P2 P3
b c
a b
c a

,

P2 P3
c b
b a
a c

 (2.5)

For all P′
−1 ∈ W π(P)

1 when added to P1 the winner after tie-breaking is the
same, c. There are two groups of profiles in W π(P)

1 : 1) profiles that lead to
the unique winner c and 2) profiles that lead to a tie C(P1,P′

−1) = {a,b,c}. If
voter 1 changes her preference to bP̃1aP̃1c, then with profiles of the first group
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voter 1 cannot change anything, but with profiles of the second group the
result becomes b, which is more preferable for voter 1 than c. Thus, in every
preference profile (P1,P′

−1), such that P′
−1 ∈ W π(P)

1 voter 1 has an incentive
to 1Winner-manipulate.

Definition 2.2. A rule F is called susceptible to individual π-manipulation
if there exists a profile P ∈ L(X)N and a voter i ∈ N who has an incentive
to π-manipulate in P under F. If a rule F is not susceptible to individual
π-manipulation, it is immune to individual π-manipulation.

Let Iind(m,n,π,F) be the probability that in a preference profile, randomly
chosen from L(X)N there exists at least one voter who has an incentive to
π-manipulate under F .

2.2.4 Coalitional manipulation

We assume that voters form a manipulating coalition if they have identical
preferences. A coalition of voter i is denoted by K and it consists of all voters
having the same preference as voter i. However, π is the only information
available to voters, each voter does not know exactly who is in her coalition.
In each preference profile P′ of voter i’s information set there is a set K of her
coalition members (allies).

Then, a voter is willing to manipulate within a coalition when there is a strat-
egy P̃ (insincere preference), such that the voting result is not less preferable
in all profiles and is more preferable in at least one profile of her information
set assuming that all members of her coalition vote P̃ (denoted by P̃′

K) in each
possible preference profile P′. More formally,

Definition 2.3. Given a rule F and a preference profile P, we say, that voter i
has an incentive to π-manipulate within a coalition1, if there exists P̃ ∈ L(X)

1The definition of coalitional manipulation differs from a standard one due to simplifica-
tion we made: voters have identical preferences and manipulate in the same way. In a general
framework, voters may have different preferences and manipulate differently.

12



s.t.
i) there is no P′ = (Pi,P′

−i), P′
−i ∈W π(P)

i s.t. F(P)Pi F(P̃′
K ,P′

−K);

ii) there exists P′ = (Pi,P′
−i), P′

−i ∈W π(P)
i s.t. F(P̃′

K ,P′
−K)Pi F(P), where K =

{ j ∈ N : P′
j = Pi} and P̃′

K is a preference profile of a coalition K, s.t. for all
k ∈ K Pk = P̃.

If voter i has an incentive to π-manipulate within a coalition, then we similarly
say that the whole coalition has an incentive to π-manipulate.

Definition 2.4. A rule F is called susceptible to coalitional π-manipulation if
there exists a profile P ∈ L(X)N and a voter i ∈ N who has an incentive to π-
manipulate within a coalition in P. If a rule F is not susceptible to coalitional
π-manipulation, it is immune to coalitional π-manipulation.

Denote by Icoal(m,n,π,F) the probability that in a preference profile, ran-
domly chosen from L(X)N there exists at least one voter who has an incentive
to π-manipulate within a coalition under F .

If in a preference profile there exists a voter having an incentive to
π-manipulate (individually or within a coalition), then it is also called
π-manipulable (or manipulable under π). Otherwise, a preference profile is
called non-manipulable under π .

2.2.5 Social choice correspondences

Here we give the definition of social choice correspondences that we focus
on in this chapter. For each of them we need to specify how a ranking R and
scores are computed to use them in Rank-PIF and Score-PIF. For each rule,
c ∈C(P) iff there is no a such that aRc, i.e. C(P) consists of all undominated
alternatives in R.

• Scoring rules. A scoring rule is defined by a scoring vector
s = (s1, ...,sm), where s j denotes the score assigned to an alternative
for the j-th position in individual preferences. The total score of each
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alternative a j ∈ X is calculated as S(a j,P) = ∑
m
h=1 sh · vh(a j,P). Then,

R is defined as follows: ∀ak,al ∈ X akRal ⇔ S(ak,P)> S(al,P).

– Plurality: sPl = (1,0, ...,0).

– Veto (Antiplurality): sV = (1, ...,1,0).

– Borda: sB = (m−1,m−2, ...,1,0).

• Run-off procedure. It has two stages:
1) The plurality score is calculated for each alternative. A first-stage
vector of scores

S1(P) = (S1(a1,P), ...,S1(am,P)),

where S1(a j,P) = ⟨sPl,v(a j,P)⟩. If ∃ ak ∈ X s.t. S1(ak) > n/2, then
social ordering is akRa j ∀a j ∈ X \ {ak} and procedure terminates.
Otherwise, procedure moves on to the stage two.
2) Two alternatives with maximal number of scores are chosen:
ak = argmaxa j∈X(S1(a j,P)), al = argmaxa j∈X\{ak}(S

1(a j,P)).
If there are ties, they are broken according to the alphabetical
tie-breaking rule T . Then a second-stage vector of scores is calculated:
S2(P) = (S2(ak,P),S2(al,P)), where

S2(ak,P) = ⟨sPl,v(ak,P/{ak,al})⟩,

S2(al,P) = ⟨sPl,v(al,P/{ak,al})⟩.

In a social ordering an alternative with a higher score is considered bet-
ter, akRal if S2(ak,P) > S2(al,P) and alRak if S2(al,P) > S2(ak,P).
Both of them are better than all other alternatives, ∀a j ∈ X \ {ak,al}
alRa j,akRa j. The output of Score-PIF is S(P) = (S1(P),S2(P)).

• Single Transferable vote (STV). This is a multi-stage procedure, which
we define in an iterative form.
0) t := 1, X t := X , Pt := P.
1) ∀a j ∈ X t St(a j,P) := ⟨sPl,v(a j,Pt)⟩.
2) If ∃a j ∈ X t s.t. St(a j,P) > n/2, then ∀ah ∈ X t \ {a j} a jRah, the

14



procedure terminates. Else A := argmina∈X t (St(a,P)).
3) If A = X t , then the procedure terminates. Otherwise, alternatives of
A are eliminated, t := t + 1, X t := X t−1 \A, Pt := P/X t ; for all x ∈ X t

and a ∈ A it holds xRa; go to step 1. The output of Score-PIF is a vector
of vectors S(P) = (S1(P), ...,St∗(P)), where t∗ is the number of cycles
done by procedure.

• Copeland. A majority graph is computed. Then scores of alternatives
are computed as follows

S(ak,P) =
m

∑
l=1

MG(P)kl.

A social ordering R is defined as usual: ∀ak,al ∈ X
akRal ⇔ S(ak,P)> S(al,P).

2.3 Theoretical results
In this section we prove some statements about the probability of individual
and coalitional manipulation under incomplete information for any number of
voters and alternatives. Before proving theorems, let us introduce some nota-
tions and consider an auxiliary statement, Lemma 1. Let d denote the number
of preference profiles for n voters and m alternatives, i.e. d =(m!)n, and dF(a)
is the number of profiles in L(X)N where alternative a wins according to a rule
F . Further, let z(a) be the number of preference profiles in L(X)N where no
voter has alternative a on the last position in a preference order and let zF(a)
denote the number of preference profiles where alternative a wins according
to a rule F and does not take the last position in any preference order.

Lemma 2.1. For any alternative a and any rule F, s.t. for every x ∈ X
limn→∞ dF(x)/d = 1/m, limn→∞ zF(a)/dF(a) = 0.

Proof. The total number of preference profiles for n voters and m alternatives
is d = (m!)n. The number of preference profiles where no voter has alternative
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a on the last place in a preference order does not depend on a rule or alternative
and equals z(a) = (m!−(m− 1)!)n. Thus, the share of preference profiles
where no voter has alternative a on the last place in a preference order:

z(a)
d

=
(m!−(m−1)!)n

(m!)n =

(
m!−(m−1)!

m!

)n

=

(
1− 1

m

)n

. (2.6)

z(a)
dF(a)

=
z(a)

d
· d

dF(a)
. (2.7)

Since the rule is such that for any x ∈ X limn→∞ dF(x)/d = 1/m,
limn→∞ d/dF(x) = m. Using this and equation (2.5), we have

lim
n→∞

z(a)
dF(a)

= 0. (2.8)

As zF(a)/dF(a)< z(a)/dF(a), zF(a)/dF(a) also tends to 0 as n goes to infin-
ity.

To introduce the following lemma, we need two new notations. Let g(a,b)
denote the number of preference profiles with no voters having a on the last
position and any alternative but b on the first position. And let gF(a,b) denote
the number of preference profiles with the same property and where a wins
according to F .

Lemma 2.2. For any two alternatives a and b and any rule F, s.t. for every
x ∈ X limn→∞ dF(x)/d = 1/m, limn→∞ gF(a,b)/dF(a) = 0.

Proof. Let us denote the set of preference orders with a on the last position
by A, and the set of preference orders with b on the first position by B. Then,
|A|= (m−1)! and |AB|= (m−2)!. Thus, |A∩ B̄|= (m−1)!−(m−2)!= (m−
2)!(m−2). Finally, |A∩ B̄|= |Ā∪B|= m!−(m−2)!(m−2). The number of
preference profiles of n voters with preferences only of Ā∪B, i.e. g(a,b), is
(m!−(m−2)!(m−2))n.
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g(a,b)
d

=
(m!−(m−2)!(m−2))n

(m!)n =

(
1− m−2

m(m−1)

)n

. (2.9)

g(a,b)
dF(a)

=
g(a,b)

d
· d

dF(a)
. (2.10)

Since for any x ∈ X limn→∞ dF(x)/d = 1/m, limn→∞ d/dF(x) = m. Thus,

lim
n→∞

g(a,b)
dF(a)

= 0. (2.11)

As gF(a,b)/dF(a) < g(a,b)/dF(a), gF(a,b)/dF(a) also tends to 0 as n goes
to infinity.

Now let us introduce some simplifying notations. Let S(a) be the initial
scores of a, i.e. S(a,P), and S̃(a) be the scores of a after manipulation of
an individual or a group (depending on the context), i.e. S(a,(P̃i,P−i)) or
S(a,(P̃K ,P−K)). The first result concerns individual manipulation under
Winner-PIF for plurality rule.

Theorem 2.1. For any m ≥ 3 limn→∞ Iind(m,n,Winner,Plurality) = 1− 1/m
with alphabetic tie-breaking.

Proof. (1) Let X = {a1,a2, ...,am} and a1PT a2PT ...PT am. The PIF is π(P) =
C(P). The result C(P) could consist of one alternative, i.e. C(P) = {ak},
k ∈ {1,2, ...,m}, or there can be a draw.

(2) First, consider the case C(P) = {a1}. Then S(a1) ≥ S(a j) + 1 ∀ j ̸= 1.
If any voter manipulates in favor of some other alternative ah, it could not
win, since S̃(a1) ≥ S̃(ah) and a1PT ah. Thus, in case of a tie, S̃(a1) = S̃(ah),
a1 wins. So, all profiles with the unique winner a1 are not susceptible to
individual manipulation under π(P) =C(P).
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(3) If C(P) = {ak}, k ∈ {3,4, ...,m}, then S(ak)≥ S(a j)+1 ∀ j ̸= k. Suppose
there is a voter i who thinks that ak is the worst alternative. Let ah be the best
alternative for voter i among alternatives that tie-break against ak. Now prove
that this voter has an incentive to Winner-manipulate in favor of ah. Take Pi =
(al, ...,ah, ...,ak), where ah ̸= al , and P̃i = (ah, ...,al, ...,ak). Then, S̃(ah) =
S(ah)+1, and S̃(al) = S(al)−1. Thus, S̃(ak)≥ S̃(ah) and F(P̃i,P′

−i) = ak or
F(P̃i,P′

−i) = ah. So, condition i) from Definition 2.1 is satisfied.

To prove that condition ii) is also satisfied, we construct a preference profile
P′
−i ∈ W π(P)

i for n ≥ 6, such that F(P̃i,P′
−i)Pi F(P), i.e. F(P̃i,P′

−i) = ah. Let
S(ak,(Pi,P′

−i)) = ⌊n/2⌋, S(ah,(Pi,P′
−i)) = ⌊n/2⌋ − 1, and S(al,(Pi,P′

−i)) =
n− 2⌊n/2⌋+ 1, where ⌊x⌋ is an integer part of x. Thus, F(Pi,P′

−i) = ak and
F(P̃i,P′

−i) = ah.

So, if C(P) = {ak}, k ∈ {3,4, ...,m}, n ≥ 6 and there is at least one voter that
has ak one the lowest position in a preference order, then a preference profile
P is susceptible to individual manipulation under π(P) =C(P).

(4) If C(P) = {a2}, then S(a2) ≥ S(a j)+ 1 ∀ j ̸= k and we prove that a voter
with preferences Pi = (al, ...,ah, ...,a2) has an incentive to Winner-manipulate
in favor of ah in the same way as in (3), but with the only difference that
al ̸= a1. If a voter having ak on the last position also has a1 on the first position,
she does not have an incentive to Winner-manipulate, since the only alternative
that tie-breaks against a2 is a1.

(5) The proportion of profiles with a single-valued outcome for plurality rule
tends to 1 as n goes to infinity.2 Since the rule is neutral (it means, it treats
all the alternatives equally), the chance of winning for each of them tends to
1/m.

(a) As we derived earlier, when the winner is F(P) = ak, k ∈ {3,4, ...,m}, then
manipulation is possible in profiles with at least one voter having ak on the last
place. The number of such profiles is dF(a3)−zF(a3)+ ...+dF(am)−zF(am).

2We refer to Gehrlein and Fishburn (1981). It is shown that the probability of a tie between
any pair of alternatives with plurality rule tends to 0 as the number of voters goes to infinity
(by Central Limit Theorem).
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(b) If F(P) = a2, then manipulation is possible in profiles with at least one
voter having a2 on the last place and any alternative but a1 on the first place.
The number of such profile is dF(a2)−gF(a,b).

(c) If F(P) = a1, then individual manipulation is impossible.

Summing up, the number of preference profiles manipulable under
Winner-PIF is not less than dF(a2) − gF(a,b) + dF(a3) − zF(a3) +
... + dF(am) − zF(am) and not greater than dF(a2) + ... + dF(am). By
Lemma 2.1, for all a ∈ X , limn→∞(dF(a) − zF(a))/dF(a) = 1 and by
Lemma 2.2, limn→∞(dF(a2) − gF(a2,a1))/dF(a2) = 1. Therefore,
limn→∞(dF(a2)−gF(a2,a1)+dF(a3)− zF(a3)+ ...+dF(am)− zF(am))/d =
1−1/m and limn→∞ Iind(m,n,Winner,Plurality) = 1−1/m.

Thus, with infinite n only 1/m of profiles will be non-manipulable
under Winner-PIF. In (Veselova, 2020) there is an asymptotic result for
Iind(m,n,1Winner,Plurality) which tends to 1 with n going to infinity. If a
voter manipulates within a coalition under Winner-PIF, then again asymptotic
probability equals 1.

Theorem 2.2. For any m ≥ 3 limn→∞ Icoal(m,n,Winner,Plurality) = 1 with
alphabetic tie-breaking.

Proof. Let X = {a1,a2, ...,am} and a1PT a2PT ...PT am. The PIF is π(P) =
C(P).

Let us prove that all preference profiles with a single winner and a voter having
the winning alternative on the last position in a preference order are Winner-
manipulable within a coalition. If C(P) = {ak}, k ∈ {1,2, ...,m}, then S(ak)≥
S(a j)+1 ∀ j ̸= k.

Consider voter i with preference Pi = (al,ah, ...,ak). Let us prove that this
voter has an incentive to Winner-manipulate within a coalition. Take P̃ =
(ah,al, ...,ak), where only two alternatives, al and ah are switched compar-
ing to Pi. Thus, S̃(ak) = S(ak), S̃(al) = S(al)−|K|, and S̃(ah) = S(ah)+ |K|.
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If S(ak)− S(ah) > |K|, then F(P̃′
K ,P′

−K) = ak. If S(ak)− S(ah) < |K|, then
F(P̃′

K ,P′
−K) = ah. If S(ak)− S(ah) = |K|, then either F(P̃′

K ,P′
−K) = ah or

F(P) = ak depending on a tie-breaking order. Thus, condition i) from Defini-
tion 2.3 is satisfied.

Let us show that condition ii) is also satisfied. We need to prove that there
exists P′ = (Pi,P′

−i), P′
−i ∈W π(P)

i s.t. F(P̃′
K ,P′

−K)Pi F(P), where K = { j ∈ N :
P′

j =Pi} and P̃′
K is a preference profile of a coalition K, s.t. for all k∈K Pk = P̃.

Let us construct P′
−i ∈W π(P)

i for n ≥ 10, such that S(ak,(Pi,P′
−i)) = ⌊n/2⌋−1,

S(al,(Pi,P′
−i)) = ⌊n/2⌋−2, and S(ah,(Pi,P′

−i)) = |K|= 2⌊n/2⌋+3. The result
after manipulation of the coalition K is F(P̃′

K ,P′
−K) = ah. Thus, for n ≥ 10

such profile exists.

As a consequence of Lemma 1, the share of profiles with at least one voter
having the winning alternative on the last place in a preference order tends to
1. Furthermore, the share of profiles that result in a tie tends to zero. Thus,
limn→∞ Icoal(m,n,Winner,Plurality) = 1.

Theorem 2.3. For any m ≥ 3 limn→∞ Icoal(m,n,Winner,Borda) = 1 with al-
phabetic tie-breaking.

Proof. (1) Again, we prove that if the winner is unique, C(P) = {ak}, then
a voter having ak on the last place in a preference order has an incentive
to Winner-manipulate within a coalition in Borda rule. Let us fix the tie-
breaking order a1PT a2PT ...PT am and assume that voter i’s preference is Pi =
(ah,al, ...,ak). If C(P) = {ak}, then for all j ∈ {1,2, ...,m}, j ̸= k, S(ak) ≥
S(a j)+1.

(2) Consider a preference order P̃ = (al,ah, ...,ak) (switch the best and the
second-best alternatives in Pi). If a coalition K of voter i manipulates with
P̃, then S̃(ah) = S(ah)− |K|, S̃(al) = S(al)+ |K|, S̃(a j) = S(a j) for all a j ∈
X \{ah,al}. Preference profiles P′ = (Pi,P′

−i), where P′
−i ∈W π(P)

i , are divided
into three groups. The first one consists of profiles P′, s.t. |K|> S(ak)−
S(al). For these profiles F(P̃′

K ,P′
−K) = al . For the second group it holds

|K|< S(ak)−S(al), so, F(P̃′
K ,P′

−K) = ak in this case. In the third group there
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are profiles where |K|= S(ak)−S(al), in this case C(P̃′
K ,P′

−K) = {al,ak}, so
the result is either ak or al depending on a tie-breaking. So, condition i) from
Definition 2.3 is satisfied.

(3) Let us show that condition ii) is also satisfied by constructing a prefer-
ence profile P′ = (Pi,P′

−i), P′
−i ∈ W π(P)

i from the first group. Consider the
following preferences: P1 = (ah,al, ...,ak) (preference of voter i and her coali-
tion members), P2 = (ah,ak, ...,al), P3 = (ak,ah, ...,al), P4 = (ak,al, ...,ah),
P5 = (al,ak, ...,ah), all other alternatives of X \{ak,al,ah} can be distributed
in any way in P1, P2, P3, P4, P5.

(3.1) Then, for n being even we construct a preference profile
P′ = (2P1,P2,P3,qP4,qP5), which means that a preference order P1 is
replicated twice in P′, P2 - once, etc., and q is a positive integer. In
this profile, S(ak) = q(2m − 3) + 2m − 3, S(al) = q(2m − 3) + 2m − 4,
S(ah) = 4m − 5, for all other alternatives a j ∈ X \ {ak,al,ah} it holds
S(a j)≤ (m−3)(4+2q). Thus, S(ak)−S(al) = 1, |K|= 2, and S(ak)> S(ah).
An inequality S(ak)> S(a j) for all a j ∈ X \{ak,al,ah} holds if q > 2m/3−3
and S(ak)> S(ah) holds for q > (2m−2)/(2m−3).

(3.2) For n being odd we construct a profile P′ = (2P1,2P2,(q+ 1)P4,qP5),
where q is a positive integer. For this profile, S(ak) = q(2m− 3)+ 3m− 5,
S(al) = q(2m−3)+3m−6, S(ah) = 4m−4, for all other alternatives a j ∈ X \
{ak,al,ah} it holds S(a j)≤ (m−3)(5+2q). Thus, S(ak)−S(al) = 1, |K|= 2,
and S(ak) > S(ah). An inequality S(ak) > S(a j) for all a j ∈ X \ {ak,al,ah}
holds if q > (2m−10)/3 and S(ak)> S(ah) holds for q > (m+1)/(2m−3).

Thus, the condition ii) is satisfied for all n > n∗, where n∗ = 4+ 2q∗, and q∗

is the maximal number of 2m/3− 3, (2m− 2)/(2m− 3), (2m− 10)/3, and
(m+ 1)/(2m− 3). Therefore, for all n > n∗, if in a preference profile there
is a voter with ak on the last place, this voter has an incentive to manipulate
within a coalition in P.

(4) Borda rule also satisfies the requirement of Lemma 1, i.e. for any x ∈ X
we have limn→∞ dF(x)/d = 1/m by neutrality and zero ties probability
(Marchant, 2001)). Thus, the share of profiles with at least one voter
having the winning alternative on the last place tends to 1 as n goes to
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infinity. Since all these profiles are Winner-manipulable within a coalition,
limn→∞ Icoal(m,n,Winner,Borda) = 1.

The next theorem shows that the probability of manipulation for scoring rules
is the same when we consider individual or coalitional manipulation under
1Winner-PIF. Let us introduce some more notations for the proof.

For a scoring vector s=(s1,s2, ...,sm), a jump is a non-zero difference between
two adjacent scoring values. If s has r jumps, then this means that there are
distinct k1, . . . ,kr ∈ {1, . . . ,m−1} such that sk1 > sk1+1, . . . ,skr > skr+1, while
all other differences are zero. We use the notation ∆ j = sk j − sk j+1 for j =
1, . . . ,r to denote the non-zero differences between scoring values.

Theorem 2.4. For any number of voters n and any number of alternatives m
Iind(m,n,1Winner,F) = Icoal(m,n,1Winner,F) for scoring rules.

Proof. Let X = {a1, ...,am}. Consider a scoring rule with a a scoring
vector s = (s1,s2, ...,sm), the first jump in s goes after k1, and a voter
voter i with a preference a1Pia2Pi...Piam. Let us consider two cases:
F(P) ∈ {a1,a2, ...,ak1+1} and F(P) ∈ {ak1+2, ...,am}.

1) We prove that if F(P) ∈ {a1,a2, ...,ak1+1}, then voter i has no incentive to
1Winner-manipulate under F individually and within a coalition.

1.1) First, if F(P) = a1, then voter i has no incentive to 1Winner-manipulate
since there is no alternative better than a1 and condition ii) of Definitions 2.1
and 2.3 cannot be satisfied.

1.2) Suppose that F(P) = b, b ∈ {a2,a3, ...,ak1+1} and i manipulates in fa-
vor of some a, s.t. aPb. If i puts alternative a higher (if a is not a1), then
nothing changes for a since s1 = ... = sk1 and again condition ii) of Defi-
nition 2.1 is violated. Thus, i could only put b lower in P̃i, but then some
alternative c ∈ {ak1+2, ...,am} goes higher in a preference order. If there
are no jumps in s after k1 + 1, then nothing changes for b and c and condi-
tion ii) is violated. If there are other jumps after k1 + 1, then c gets plus A
scores. Since the only information is F(P) = b, i.e. S(b,P)≥ S(x,P) ∀x ∈ X ,
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there exists P′
−i ∈ W π(P)

i , s.t. S(c,(P̃i,P′
−i)) = S(c,P′) +A > S(x,(P̃i,P′

−i))
∀x ∈ X \{c}. The same is true for manipulation within a coalition. If for some
P′ ∈ W π(P)

i holds S(c,(P̃i,P′
−i)) = S(c,P′)+A > S(x,(P̃i,P′

−i)) ∀x ∈ X \ {c},
then S(c,(P̃K ,P′

−K)) = S(c,P′)+ |K|A > S(x,(P̃K ,P′
−K)) ∀x ∈ X \{c}. There-

fore, condition i) of Definitions 2.1 and 2.3 is not satisfied and i does not
have an incentive to 1Winner-manipulate under a scoring rule when F(P) ∈
{a1,a2, ...,ak1+1} either individually or within a coalition.

2) Now suppose that F(P) = c and c ∈ {ak1+2, ...,am}. Voter i cannot give al-
ternatives from {a1,a2, ...,ak1} more scores, but can increase the score of ak1+1
by ∆1. So, let P̃i be obtained from Pi but ak1+1 and a ∈ {a1,a2, ...,ak1} are
switched. Thus, S(ak1+1,(P̃i,P′

−i)) = S(ak1+1,P′)+∆1 and S(a,(P̃i,P′
−i)) =

S(a,P′)−∆1 and S(x,(P̃i,P′
−i)) = S(x,P′) for all x ∈ X \{a,ak1+1}. So, either

S(ak1+1,(P̃i,P′
−i)) > S(x,(P̃i,P′

−i)) for all x ∈ X \ {ak1+1} and ak1+1 wins or
S(c,(P̃i,P′

−i)) > S(ak1+1,(P̃i,P′
−i)) and c wins. In case of a tie the result is

again either ak1+1 or c depending on a tie-breaking order. The same holds for
coalitional manipulation, but S(ak1+1,(P̃K ,P′

−K)) = S(ak1+1,P′)+ |K|∆1 and
S(a,(P̃K ,P′

−K)) = S(a,P′)−|K|∆1. Thus, for all P′ ∈ W π(P)
i the result is not

worse then F(P) after manipulation of i or K and better for some P′ ∈W π(P)
i .

Therefore, if F(P) ∈ {ak1+2, ...,am}, voters with a preference a1Pia2Pi...Piam

have an incentive to 1Winner-manipulate both individually and within a coali-
tion under F .

3) Thus, for any voter having an incentive to manipulate individually there is
also an incentive to manipulate within a coalition under 1Winner-PIF. At the
same time, if a voter does not have an incentive to manipulate individually
under 1Winner-PIF, then there she has no incentive to manipulate within a
coalition. It means that the set of individually manipulable profiles is the
same as the set of profiles manipulable within a coalition. So, for scoring
rules Iind(m,n,1Winner,F) = Icoal(m,n,1Winner,F).

As shown by Veselova (2020), the probability of manipulation
for plurality rule under 1Winner-PIF tends to 1. By Theorem 4,
Icoal(m,n,1Winner,Plurality) also tends to 1. On the other hand, it was
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proved that Iind(m,n,1Winner,Veto) = 0 by Reijngoud and Endriss (2012),
and by Theorem 4 Icoal(m,n,1Winner,Veto) = 0.

2.4 Computational experiments
This Section shows computed values of Icoal(m,n,π,F) for all PIFs from Sec-
tion 2.2 and all rules listed in Section 2.5. Moreover, we compare these values
with Iind(m,n,π,F) computed in the work of Veselova (2020). We consider
m = 3 and n from 3 to 15. All computations were done in MatLab (a code
of the main program can be seen in Appendix A) . Results are represented in
Figures 1.1-1.12.

We make the following observations.

• Except for veto rule and only one case with Borda rule, coalitional ma-
nipulability is not less than individual. Particularly, we observe a clear
going-to-1 tendency not only for 1Winner-PIF, but also for Winner-PIF
(all rules except for veto) and Rank-PIF in some cases (plurality, Borda,
runoff, STV).

• In all cases with non-zero individual manipulability of veto rule the
values of coalitional manipulability are strictly lower than individual.

• Individual and coalitional manipulability under 1Winner-PIF coincide
not only for scoring rules, but for all rules under consideration. More-
over, for runoff and Copeland rule these values coincide under Winner-
PIF.

• The observation ‘less information - equal or higher manipulability’ is
still true in the coalition case for plurality rule, runoff, and STV. With
little exceptions it holds for Copeland and with only one exception case
for Borda rule. For veto rule the opposite is true: ‘less information -
equal or less manipulability’.

• A rule is called strongly computable from π-images if a voter knowing
π(P) can compute the result of the rule for any way of her misrepresent-
ing preference. One of results of the work by Veselova (2020) is that
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Figure 2.1: Plurality rule, individual
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Figure 2.2: Plurality rule, coalitional
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Figure 2.3: Borda rule, individual
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Figure 2.4: Borda rule, coalitional
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individual manipulability under π does not change compared to a com-
plete information case if the rule is strongly computable from π-images.
The same does not hold for coalitional manipulation.

• With n growing coalitional manipulation of veto rule quickly becomes
zero for any kind of incomplete information. It could be explained by
the following argument. Manipulation in veto rule means switching the
least preferred alternative and some other. The larger is the number of
voters, the larger is the cardinality of the maximal possible coalition of
voter i. The larger is the coalition, the bigger is the chance of making
the least preferred alternative the winner by adding scores to it.

• Periodicity of manipulability index for Copeland rule is rather strong for
Winner-PIF and 1Winner-PIF, its amplitude is around 0.4-0.6. So, slight
changes in the number of voters may lead to a considerable reduction
in manipulation possibilities.
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Figure 2.5: Veto rule, individual
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Figure 2.6: Veto rule, coalitional
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Figure 2.7: Runoff, individual
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Figure 2.8: Runoff, coalitional
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Figure 2.9: STV, individual
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Figure 2.10: STV, coalitional
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Figure 2.11: Copeland rule, individual
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Figure 2.12: Copeland rule, coalitional
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2.5 Conclusion

Studying individual manipulation is convenient for modeling and revealing
incentives of separate voters. However, other voters might also take part in
manipulation and this assumption can change voters’ incentives. Every voter
has a group of co-minded people and she can take them into account even if
she does not know their exact number. For a single voter it is easier to predict
actions of voters of her type. Having the same preference, they also have the
same incentives. So, the aim of this work was to consider group actions of
co-minded people in manipulation model under incomplete information and
compare results with individual manipulation.

In the theoretical part, we considered asymptotic behavior of individual and
coalitional manipulation probability for plurality rule and coalitional manip-
ulation probability for Borda rule under Winner-PIF. Finally, we proved that
individual and coalitional manipulation are equal for scoring rules under un-
der 1Winner-PIF. The computational part of the research illustrates theoretical
findings for the case of 3 alternatives and, additionally, allows to observe the
behavior of manipulation probabilities for other rules and PIFs.

This work is just the first attempt to combine informational aspect and ma-
nipulation by groups in one model. It sheds some light on the problem of
their joint influence. Thus, we showed that incomplete information of the
types that allow to compute the winner increases manipulability for plurality,
Borda, runoff, STV, and Copeland rules. The effect of coalitional manipula-
tion is the same. On the contrary, for veto rule manipulability decreases under
incomplete information and considering also coalitional manipulation makes
this effect stronger.

The question that we did not touch here is that some coalition members may
decide not to manipulate and that is related to the question of the safety of
coalitional manipulation, which the proceeding Chapter 3 is devoted to. Ad-
ditionally, a more significant influence on incentives to manipulation may be
expected from voters with a different preference, because they can also manip-
ulate, counter-manipulate, etc. If we add such uncertainty about the actions
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of other manipulators and consider it together with incomplete information,
results may be difficult to predict.
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3
On the safety of group manipulation

Adapted from: H. Peters. and Y. Veselova On the safety of group manipula-
tion. Social Choice and Welfare, 2023.
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Obviously, groups of voters have even more opportunities to influence the re-
sult: they can unite in coalitions and coordinate their manipulation. In many
applications, however, this coordination cannot and does not actually take
place explicitly. Rather, a voter who aims to manipulate, may take into ac-
count that other voters with the same preference may also manipulate in the
same way. In fact, this is what we assume in this paper. Given a (sincere)
preference within a profile of preferences, we will use the word ‘group’ to
indicate all voters who have this preference. We then say that a(ny) voter in
this group has an incentive to manipulate if there is a(n insincere) preference
such that, if all voters in this group report this preference, then the election
result is better for them according to the true, sincere preference. In that case,
a problem may arise if not all voters in the group participate in the manipu-
lation, because if this happens the result may actually be worse than without
manipulation. In other words, due to lack of or poor communication within a
group of like-minded voters, manipulation may be harmful.

We will call manipulation ‘safe’ if this does not happen: even if not all voters
in a group participate in the manipulation, the result is not worse than with-
out manipulation. Otherwise, manipulation is ‘unsafe’. We now provide an
example of such an unsafe manipulation for the well-known Borda rule.

Example 3.1. Suppose that there are five alternatives, a,b,c,d,e. A prefer-
ence profile with seven voters is given in the following table. The first line of
the table shows the number of voters for each preference order occurring in
the profile.

3 2 1 1
a d d e
b c c d
c b e a
e e a c
d a b b

The Borda rule assigns 4 points to the top alternatives, 3 points to the second-
ranked alternatives, etc., until 0 points to the last ranked alternatives, and these
points are then added up to obtain the total scores. For the given preference
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profile, total scores are S(a) = 15, S(b) = 13, S(c) = 16, S(d) = 15, S(e) = 11.
Thus, with sincere preferences, alternative c wins. For the group of three vot-
ers K = {1,2,3} each one having preference (a,b,c,e,d) (i.e., a is preferred
to b, b to c, etc.), there is no way to make a win, but they have an incentive to
manipulate by reporting preference (b,a,e,c,d). If all voters in K report this
preference, then the scores will be S(a) = 12, S(b) = 16, S(c) = 13, S(d) = 15,
S(e) = 14, so that b is the winner of the election, and b is preferred over c by
the members of K according to their sincere preference.

Now suppose that only one voter of K decides to manipulate. In this case, the
scores are: S(a) = 14, S(b) = 14, S(c) = 15, S(d) = 15, S(e) = 12. Alter-
natives c and d have maximal scores. If we assume that d wins against c by
tie-breaking, then the final outcome is d, but for the members of K outcome d
is worse than c. Therefore, this group manipulation is unsafe. ◁

If manipulation is unsafe, then this fact may prevent voters from voting strate-
gically. However, the possibility of an unsafe manipulation depends on the
rule, the number of voters and the number of alternatives. In this paper we
consider a collection of well-known rules and investigate for which of these
rules group manipulation can be unsafe, and which rules are only safely ma-
nipulable.

The concept of (un)safe manipulation has already been considered by Slinko
and White (2014). However, their model differs from the one considered in
this paper. In their approach, a voter i in a group K has an incentive to manipu-
late if there is some subset of K, including voter i, such that the election result
improves for i if exactly the voters in this subset report a (the same) insin-
cere preference. They call manipulation ‘unsafe’ if the result can get worse if
some other subset, including i, deviates. The main result in Slinko and White
(2014) is an extension of the Gibbard-Satterthwaite theorem: for each rule
with at least three alternatives in its range, there is a preference profile and a
voter who can safely individually manipulate – that is, this voter is not worse
off if also some other voters with the same preference manipulate in the same
way. We postpone a more elaborate comparison between our paper and Slinko
and White (2014) until Section 3.6.1.
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Following up on the model of Slinko and White (2014), several papers fo-
cus on different aspects of safe manipulation. Computational complexity of
finding a safe strategic vote under k-approval and Bucklin rules was studied
in Hazon and Elkind (2010). The same question for Borda rule and some
classes of scoring rules was considered in Ianovski et al (2011). The asymp-
totic probability of a safe manipulation under the IAC assumption (all voting
profiles are equally likely) for scoring rules is computed in Wilson and Rey-
hani Shokat Abad (2010). In an extension of the aforementioned model each
manipulator thinks not only about his/her allies, but about all voters having an
incentive to manipulate (they are called Gibbard-Satterthwaite-manipulators,
or GS-manipulators). Then, a strategy is considered as ‘safe’ if for any ma-
nipulating subset of GS-manipulators, using this strategy is not worse than
sincere voting. This kind of model was considered in Elkind et al (2015) and
Grandi et al (2019). These references are just a few from the strand of liter-
ature on voting manipulation games. For a more detailed survey we refer the
reader to Slinko (2019).

The rest of the paper is organized as follows. Section 3.1 presents the for-
mal model and the rules that we consider: scoring rules, in particular Borda;
run-off; Copeland; and single transferable vote. Section 3.2 considers scoring
rules in general and Borda in particular, Section 3.3 considers the run-off rule,
Section 3.4 the Copeland rule, and Section 3.5 single transferable vote. Sec-
tion 3.6 concludes, in particular with a comparison between Slinko and White
(2014) and our approach.

3.1 Definitions and notations
3.1.1 The framework

A society of n ≥ 3 voters, N = {1, . . . ,n}, decides which of m alternatives
from the set X , |X |= m ≥ 3, to choose.1 Each voter has a preference, i.e., a
linear order2 on X . We denote the set of all preferences by L(X). For a,b ∈ X

1The cases n < 3 or m < 3 are uninteresting for the purpose of this paper, as can easily be
verified in the sequel.

2That is, an irreflexive, asymmetric, transitive and complete binary relation.
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and P ∈ L(X) we write aPb instead of (a,b) ∈ P. Also, we often write P =
(a1, . . . ,am), meaning that a1P . . .Pam, where X = {a1, . . . ,am}. A preference
profile is a vector P = (P1, . . . ,Pn) ∈ L(X)N of individual preferences.

A social choice correspondence (SCC) is a map C:L(X)N → 2X \{ /0} (where
2X denotes the set of all subsets of X). A social choice rule or simply rule is a
map F :L(X)N → X . Thus, a rule can be identified with a single-valued SCC.
In this paper we will mainly consider social choice rules derived from social
choice correspondences by tie-breaking according to a fixed linear order on X
– we will be precise about this whenever this is needed.

For a preference profile P, a preference P ∈ L(X), and a subset K ⊆ N such
that Pi = P ∈ L(X) for all i ∈ K, we also write (PK ,P−K) instead of P. If, in
particular, K = {k ∈ N : Pk = P}, then we call K the group of (any) voter i ∈ K
at P. Thus, a group collects all voters with the same preference, for some
preference in a preference profile.

The following definition captures the situation where a(ny) voter in a group
prefers the alternative which results if all voters in that group vote insincerely
using the same preference.

Definition 3.1. Voter i ∈ N has an incentive to manipulate rule F at profile
P ∈ L(X)N if there is a P̃ ∈ L(X) such that F(P̃K ,P−K) P F(P), where K is the
group of i at P (i.e., all voters who have common preference P = Pi at P).

Clearly, this definition implies that if voter i has an incentive to manipulate,
then all members of i’s group have an incentive to manipulate – using the
same preference P̃. Therefore, we also say that group K has an incentive to
manipulate.

We introduce some further terminology. A preference profile P ∈ L(X)N is
manipulable under rule F if there is a voter who has an incentive to manipulate
at P. A rule F is manipulable if there is a manipulable preference profile under
F .
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3.1.2 Safe and unsafe manipulations

Let F be a rule, and let P ∈ L(X)N be a preference profile. Suppose that voter
i belonging to group K has an incentive to manipulate F at P by preference
P̃. We say that manipulation with P̃ is unsafe for i at P if there exists M ⊊ K
such that i ∈ M and F(P)Pi F(P̃M,P−M). If such an M does not exist, then
manipulation with P̃ is safe for i at P. In words, a manipulation is safe if it
never results in a worse alternative if not all members of the group join in the
manipulation. Clearly, if K = {i} then every manipulation is safe.

A preference profile P ∈ L(X)N is safely manipulable (given F) if there is a
voter for whom manipulation is safe with P̃ for some P̃ ∈ L(X). It is unsafely
manipulable if there is a voter for whom manipulation with P̃ is unsafe for
some P̃ ∈ L(X). A preference profile can be both safely and unsafely manip-
ulable, even by the same voter.

The rule F is safely manipulable if there is a safely manipulable preference
profile, and unsafely manipulable (UM) if there is an unsafely manipulable
preference profile. Again, F can be both safely and unsafely manipulable.
Rule F is only safely manipulable (OSM) if for every manipulable profile
P ∈ L(X)N , P is not unsafely manipulable. Hence, F is OSM if it is not
UM.

3.1.3 Social choice correspondences

In this subsection we introduce the social choice correspondences from which
the rules to be studied in this paper, will be derived by tie-breaking.

Scoring correspondences

A scoring vector is a vector s = (s1, . . . ,sm) ∈ Rm such that s1 ≥ ·· · ≥ sm ≥ 0
and s1 > sm. For a preference profile P and an alternative a, let v j(a,P) denote
the number of voters having a at the j-th position (where voter i has a at the j-
th position if |{b∈X : bPia}|= j−1). Then S(a,P) =∑

m
j=1 s jv j(a,P) is the to-

tal score of a at P. The scoring correspondence F with scoring vector s assigns
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to each preference profile P the set {a ∈ X : S(a,P)≥ S(a′,P) for all a′ ∈ X},
i.e., the set of alternatives with maximal total score. Well-known examples
are:

• q-approval: s1 = · · · = sq = 1, sq+1 = · · · = sm = 0, where
q ∈ {1, . . . ,m − 1}; for q = 1 this is also called plurality, and for
q = m−1 this is also called veto or antiplurality,

• Borda: s = (m−1,m−2, . . . ,1,0).

Run-off

For a preference profile P, two alternatives with maximal plurality scores (see
Section 3.1.3) are chosen, if necessary using a tie-breaking rule. Among these
two, say a and b, we choose the alternative(s) which win in a pairwise contest,
that is, a is chosen if |{i ∈ N : aPib}|≥ |{i ∈ N : bPia}| and b is chosen if
|{i ∈ N : bPia}|≥ |{i ∈ N : aPib}|.

Copeland

For a preference profile P, the Copeland score of an alternative a is the num-
ber

|
{

b ∈ X : |{i ∈ N : aPib}|>
n
2

}
|−|

{
b ∈ X : |{i ∈ N : bPia}|>

n
2

}
|.

Hence, the Copeland score of an alternative a is the number of alternatives
beaten by a minus the number of alternatives that beat a, where x beats y if
a strict majority of the voters prefers x over y. The Copeland correspondence
chooses the alternatives with maximal Copeland score.
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Single-transferable-vote, STV

For a preference profile P, for each alternative a determine the number of
voters who have a at top position, i.e., determine its plurality score S(a,P)
for scoring vector (1,0, . . . ,0). If all nonzero plurality scores are equal, then
STV assigns the set of all alternatives that occur at top, i.e., that have nonzero
plurality score. If not all these nonzero plurality scores are equal then: if
there is an alternative a with plurality score strictly higher than n/2, then
STV assigns {a}; otherwise, leave out those alternatives that have minimal
(possibly zero) plurality score. This results in a restricted preference profile
with fewer alternatives. Now repeat this procedure until no more alternatives
can be left out: STV assigns the remaining alternatives to P. As an illustration,
consider the following two profiles:

a b b c c
b · · · ·
...

...
...

...
...

and

a b b c c c
b · · · · ·
...

...
...

...
...

...

In the left profile, after eliminating alternatives with zero plurality score (if
any), a is eliminated: this results in a profile where b has plurality score 3, so
that STV assigns {b}. In the right profile, again after eliminating alternatives
with zero plurality score (if any), also a is eliminated, so that STV assigns
{b,c}.

3.2 (Un)safe manipulability of scoring rules
In this section we investigate the (un)safe manipulability of rules derived from
scoring correspondences, so-called scoring rules. Our first main result con-
cerns these rules in general, and our second result focuses on Borda (cf. Sec-
tion 3.1.3).

As already mentioned, we need to apply tie-breaking in order to derive rules
from social choice correspondences. We do this by fixing a linear order on the
set of alternatives X and taking the maximal element according to this order
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from a set assigned by the correspondence. In what follows we will be more
precise whenever this is needed.

For a scoring vector s, a jump is a non-zero difference between two adja-
cent scoring values. If s has r jumps, then this means that there are distinct
k1, . . . ,kr ∈ {1, . . . ,m−1} such that sk1 > sk1+1, . . . ,skr > skr+1, while all other
differences are zero. We use the notation ∆ j = sk j − sk j+1 for j = 1, . . . ,r to
denote the non-zero differences between scoring values.

Our first result concerns unsafe and only safe manipulability of scoring rules
in general.

Theorem 3.1. Let s be a scoring vector with r jumps, and let F be a scoring
rule derived from the scoring correspondence associated with scoring vector
s by tie-breaking. If r = 1, then F is only safely manipulable. If r ≥ 2, then
the results are as in the following table:

2 jumps 3 or more jumps
∆1 > ∆2 ∆1 ≤ ∆2

k1 = 2,
k2 = 4

otherwise
∆1 > ∆3
or ∆2 > ∆3

otherwise

m = 3 ∀n : OSM ∀n : OSM (not applicable)
m = 4 ∃n : UM ∀n : OSM ∃n : UM ∀n : OSM
m = 5 ∃n : UM ∀n : OSM ∃n : UM ∃n : UM
m ≥ 6 ∃n : UM ∃n : UM ∃n : UM

Table 1

Proof. (i) In this first part of the proof, we assume that there is an unsafe
manipulation and derive conditions implied by this assumption. Let P be a
preference profile and let a,b,c ∈ X such that for voter i in group K (and,
consequently, for all voters in K) we have aPibPic. Suppose that group K
has an incentive to manipulate and manipulation is unsafe with F(P) = b,
F(P̃K ,P−K) = a, and F(P̃M,P−M) = c for some P̃ ∈ L(X) and M ⊊ K. In
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words, b is the alternative chosen at P, group K can achieve a by manipulating
via P̃, but if only the voters in M deviate, the worse alternative c results.

For every alternative x ∈ X , let εx denote the change in score when a voter
i ∈ K changes from Pi to P̃, hence εx|G|= S(x,(P̃G,P−G))− S(x,P) for every
G ⊆ K. Since F(P) = b we have

S(b,P)≥ S(c,P), (3.1)

and since F(P̃M,P−M) = c we have S(c,(P̃M,P−M)) ≥ S(b,(P̃M,P−M)),
hence

S(c,P)+ εc|M|≥ S(b,P)+ εb|M|. (3.2)

If εb ≥ εc, then by (3.1) and (3.2), S(c,P) = S(b,P) and εb = εc, which by
tie-breaking implies b = F(P̃M,P−M), a contradiction. Therefore, εb < εc.
Similarly, εc < εa. Consequently, εb < εc < εa. The five possible (sign) cases
are given in the following table:
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Case εb εc εa

1 − − 0
2 − −,0,+ +

3 0 + +

4 − − −
5 + + +

Table 2

In the remainder of the proof, based on Table 2, we derive necessary condi-
tions for an unsafe manipulation as in Part (i) to exist. In the last part, we
show that when these conditions are not fulfilled, there can be an unsafe ma-
nipulation.

(ii) Suppose that r = 1, ∆1 = sk −sk+1. Then, for all x ∈ X , εx = 0 or εx =−∆1
or εx = ∆1. This and εb < εc < εa imply that in Table 2 the only possible case
is Case 2. Hence, εa = ∆1 and εb =−∆1 but this is not possible: indeed, if the
score of a increases by ∆1, then a moves from the bottom m− k alternatives
in Pi to the top k alternatives in P̃, but aPib, so, b is also among the bottom
m−k alternatives in Pi and therefore cannot decrease in score when going to P̃.
Thus, in case of precisely one jump a scoring rule is only safely manipulable,
and the first claim in the theorem is proved.

(iii) Suppose that r = 2, ∆1 = sk1 − sk1+1, ∆2 = sk2 − sk2+1. We go through
all cases in Table 2 and consider all possible combinations of jumps for each
εx, x ∈ {a,b,c} in each case. Of course, throughout we use that initially b is
chosen, then c, and at the end a, but we do not always spell out the details.

First, note that Cases 4 and 5 in Table 2 are not possible since these cases
require at least three jumps to occur.

In Case 1, εb < εc < 0 = εa, there are two possibilities:

1.1 From Pi to P̃, b goes down one jump and c goes down one jump: this
is only possible if ∆1 > ∆2, and then εb = −∆1, εc = −∆2, and εa = 0.
This can be summarized as follows: ab|c|◦ → ◦,a|b|c. [Here, | denotes
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a jump, ab|c|◦ contains the relevant information about Pi, and ◦,a|b|c
contains the relevant information about P̃. The small circles ◦ indicate
other alternatives that are minimally available.]

1.2 b goes down two jumps and c goes down one jump. Then either
abc|◦|◦ → ◦,◦,a|c|b, hence εb = −∆1 −∆2, εc = −∆1, and εa = 0; or
ab|c|◦◦ → ◦,a|◦|b,c, hence εb =−∆1 −∆2, εc =−∆2, and εa = 0.

In Case 2, εb < 0 and εa > 0. Then εb = −∆2 and εa = ∆1, For εc there are
two possibilities:

2.1 εc = ∆2 and ◦|ab|c → a|◦,c|b. This is only possible if ∆1 > ∆2.

2.2 εc = 0, and ◦|abc|◦ → a|◦◦,c|b or ◦|ab|◦,c → a|◦ ◦ |b,c.

Finally, in Case 3, εb = 0 and εa,εc > 0. There are again two possibilities:

3.1 εa = ∆1, εc = ∆2, and ◦|ab|c → a|b,c|◦ or ◦|a|bc → a|c|◦,b. This is
only possible if ∆1 > ∆2.

3.2 εa = ∆1 +∆2 , εc = ∆2, and ◦|◦|abc → a|c|◦◦,b.

Based on these six possibilities, we can now examine the r = 2 cases in Ta-
ble 1.

• If m = 3, then Pi = a|b|c, and therefore none of the Cases 1.1–3.2 ap-
plies. Hence, any manipulation in this case is safe.

• If m = 4 and ∆1 > ∆2, then Cases 1.1, 2.1, and 3.1 apply, and so there
can be unsafe manipulations.

• If m = 4 and ∆1 ≤ ∆2, then none of the Cases 1.1–3.2 applies. Hence,
any manipulation in this case is safe.

• If m = 5 and ∆1 ≤ ∆2, then from Cases 1.2, 2.2, and 3.2, it follows
that unsafe manipulation may be possible for the following five jump
combinations: k1 = 1,k2 = 2 (3.2); k1 = 1,k2 = 3 (2.2); k1 = 1,k2 = 4
(2.2); k1 = 2,k2 = 3 (1.2); k1 = 3,k2 = 4 (1.2). In the remaining case,
k1 = 2,k2 = 4, no unsafe manipulation is possible.

43



Chapter 3. On the safety of group manipulation

• If m = 5 and ∆1 > ∆2, then all Cases 1.1–3.2 may apply and therefore
all six jump combinations are possible, so that unsafe manipulation is
possible for any of these combinations.

• If, finally, m ≥ 6, then it is sufficient to consider the Cases 1.2, 2.2, and
3.2, to conclude that for any jump combination unsafe manipulation is
possible.

(iv) We next consider the case r = 3. Then there must be at least four alterna-
tives.

• If m ≥ 5, then for each combination of three (or more) jumps it is possi-
ble to manipulate unsafely by using only two jumps as in Cases 1.2 and
2.2 Thus, unsafe manipulation may be possible for any jump combina-
tion.

• Now let m = 4. We consider the five cases in the Table 2.

– Case 1 implies Pi = a|b|c|◦ and P̃ = a|◦|b|c. Since εb < εc < εa,
this implies ∆2 > ∆3. In this case, unsafe manipulation may be
possible.

– Case 2 implies Pi = ◦|a|b|c and P̃ = a|◦|c|b or P̃ = a|c|◦|b. Since
εb < εc < εa, this implies ∆1 > ∆3 or ∆1 > ∆2 +∆3. In turn, this
implies that unsafe manipulation may be possible if ∆1 > ∆3.

– Case 3 implies Pi = ◦|a|b|c and P̃ = a|c|b|◦. Since εb < εc < εa,
this implies ∆1 > ∆2 +∆3. Under this condition, unsafe manipu-
lation may be possible in this case.

– Case 4 implies Pi = a|b|c|◦ and P̃ = ◦|a|b|c. Since εb < εc < εa,
this implies ∆2 > ∆3 > ∆1. In this case therefore, an unsafe ma-
nipulation may exist, but by Case 1, ∆2 > ∆3 is already sufficient
for this.
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– Case 5 implies Pi = ◦|a|b|c and P̃ = a|b|c◦. Since εb < εc < εa,
this implies ∆2 < ∆3 < ∆1. In this case therefore, an unsafe ma-
nipulation may exist, but by Case 2, ∆1 > ∆3 is already sufficient
for this.

Summarizing, an unsafe manipulation may exist if and only if ∆1 > ∆3
or ∆2 > ∆3.

(v) The OSM cases in Table 1 have now been proved. We complete the proof
of the theorem by providing a procedure to construct a preference profile for
any kind of unsafe manipulation.

Assume that we have a particular number of alternatives m, a given scoring
vector s, and a group K of voters with preferences P s.t. aPbPc. Take any
way of unsafe manipulation, P̃, corresponding to the given m and s from the
previous part of the proof. Then, the chosen way of unsafe manipulation de-
fines score differences for alternatives a, b, and c when one voter manipulates
(switches from P to P̃). These score differences are: εa = ∑

r
j=1 α j∆ j, εb =

∑
r
j=1 β j∆ j, and εc = ∑

r
j=1 γ j∆ j, where the α j,β j,γ j are elements of {−1,0,1}.

We need to prove that there exists a preference profile for some n such that
members of K have an incentive to manipulate with P̃ and this manipulation
is unsafe.

First, without loss of generality we assume tie-breaking according to aPtc,
bPtc. Let the scores of alternatives be such that S(b,P) = S(c,P) and
S(c,(P̃K , P−K)) = S(a,(P̃K ,P−K)). This, together with εb < εc < εa, implies
that F(P) = b, F(P̃K ,P−K) = a, and F(P̃M,P−M) = c for some M ⊆ K.

For the difference in scores for alternatives a and c before and
after manipulation, we have S(a,(P̃K ,P−K)) − S(a,P) = εa|K| and
S(c,(P̃K ,P−K))− S(c,P) = εc|K|. Since S(c,(P̃K ,P−K)) = S(a,(P̃K ,P−K))
we have S(a,P) + εa|K|= S(c,P) + εc|K| and, finally,
S(c,P)− S(a,P) = εa|K|−εc|K|. So, S(c,P)− S(a,P) = ∑

r
j=1 µ j∆ j for some

integers µ j.

Summing up, in the required profile P it is needed that: (a) the score differ-
ences between a, b, and c are fixed, S(b,P)−S(c,P) = 0, S(c,P)−S(a,P) =
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∑
r
j=1 µ j∆ j for some integers µ j; (b) other alternatives do not affect the result;

(c) there are exactly |K| voters with preferences Pi.

We now describe a procedure to generate a profile P with these properties. We
first fix a preference profile for some set of voters K, where every member of
K has the same preference P, say, aPbPcPa1Pa2P...Pam−3. Take any number
of voters in K and include their preferences, PK , in the profile P that we are
constructing. Then we have condition (c) satisfied.

For the voters outside K we consider the following basic profile B(a):

am−3 am−4 · · · a
a am−3 · · · c
c a · · · b
b c · · · a1
a1 b · · · a2
...

...
...

...
am−4 am−5 · · · am−3

Observe that in B(a) the scores of all alternatives are equal, and that P does
not occur. Suppose that we need to increase the score of alternative a by the
amount ∆l , which is the size of the l-th jump, following position kl . Then we
replace column (preference) kl in B(a) by R̃, where R̃ is obtained by switching
positions kl and kl +1 in column kl . This results in a profile B′(a) where the
scores of all alternatives except a and am−3 are still equal (and equal to the
scores in B(a)), the score of a has increased by ∆l , and the score of am−3 has
decreased by ∆l . Note that P̃ ̸= P and, thus, P does not occur in B′(a). So,
we include B′(a) in P. If it is needed to increase the score of a by the size of
another jump, we include B′′(a) constructed similarly, etc.

Similar constructions can be made for b and c, if we need to increase their
scores, by starting from the most left columns (am−3,b,a,c,a1, . . . ,am−4) and
(am−3,c,a,b,a1, . . . ,am−4) respectively. Doing this as many times as needed
to satisfy conditions (a) and (b), in the end we obtain the required preference
profile. Moreover, notice that we can choose any number of voters in K. So,
if an unsafe manipulation exists for some m then it is always possible to find
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a profile with a group of only two voters having an incentive to manipulate
unsafely. □

Observe that, although Theorem 3.1 identifies all scoring rules where an un-
safe manipulation exists, it is silent about how many voters are needed to have
such a manipulation. It is difficult to derive general results about this for (all)
scoring rules and therefore, in the next theorem, we focus on the arguably
most famous rules with at least two jumps, namely Borda rules (cf. Section
3.1.3). Note that, since all jumps at a Borda rule have equal size, the cases
with less than 5 alternatives are covered by Theorem 3.1.

Theorem 3.2. Let F be a Borda rule. If m = 5, then an unsafely manipulable
profile exists if and only if n ≥ 4. If m ≥ 6, then an unsafely manipulable
profile exists if and only if n ≥ 3.

Proof. (a) First let m = 5, X = {a,b,c,d,e}, and consider the following pro-
files P′ and P′′ for n = 4 and n = 5, respectively:

P′
1 P′

2 P′
3 P′

4
a a e e
b b c d
c c d c
d d b a
e e a b

P′′
1 P′′

2 P′′
3 P′′

4 P′′
5

a a e e d
b b c c e
c c b d c
d d a b b
e e d a a

.

Suppose that tie-breaking is done according to the ordering T = (e,c,a,b,d).
Then F(P′) = c. If group K = {1,2} changes their preferences to
P̃ = (b,a,d,c,e), then F(P̃K ,P′

−K) = b, which is preferred by the members of
K to c. However, F(P̃{1},P′

−{1}) = e, so that this manipulation is unsafe.

As to P′′, note that also F(P′′) = c and K = {1,2} can manipulate again by
P̃ = (b,a,d,c,e). If only voter 1 manipulates, then again e results, so that also
this manipulation is unsafe.

Thus, if m = 5 and n = 4 or n = 5, there exists an unsafe manipulation.
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(b) We next show that no unsafe manipulation exists if m= 5 and n= 3. In this
case, a possibly unsafely manipulating group can only consist of 2 members,
say K = {1,2}. Suppose, indeed, that for some a,b,c ∈ X , aPibPic for all
i ∈ K, and that there is a preference P3 for voter 3 and a preference P̃ such
that F(P) = b, F(P̃{1,2},P3) = a, and F(P̃{1},P{2,3}) = c. Note that, at P, the
Borda score of c must be strictly larger than the Borda score of a: if not, then
the score of c should increase more than the score of a after manipulation by
just one member of K, but then c would still win after manipulation by both
members of K, a contradiction. Further, the score of a contributed by P1 and
P2 is at least 4 more than the the score of c contributed by P1 and P2, since
aPibPic for i = 1,2. In turn, these facts imply that the score of c contributed
by P3 is at least five more than the score of a contributed by P3, which is
impossible with five alternatives.

(c) Consider the case m = 6, X = {a,b,c,d,e, f}, and n = 3, and the
profile P with P1 = P2 = (a,b,c,d,e, f ) and P3 = (c,b, f ,d,e,a). Let
P̃ = (a,e,d,c,b, f ). Then F(P) = b, F(P̃{1,2},P3) = a, and (assuming that c
beats a by tie-breaking) F(P̃{1},P{2,3}) = c, so that an unsafe manipulation
exists in this case.

(d) Finally, the hitherto constructed profiles where an unsafe manipulation ex-
ists, can be extended with any number of alternatives, simply by adding those
alternatives at the bottom of the preferences. Also, each of the manipulable
profiles can be extended by any even number of agents 2ℓ: add ℓ times the pair
of preferences (a1, . . . ,am) and (am, . . . ,a1), where X = {a1, . . . ,am}, and note
that this just adds equal scores for all alternatives. The proof of the theorem is
now complete. □

3.3 (Un)safe manipulability of run-off

For the definition of the run-off correspondence, see Section 3.1.3.

We start by observing that at a run-off rule it is impossible to manipulate in
favor of the most preferable alternative.
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Lemma 3.1. Let F be a run-off rule, let P be a preference profile, let i ∈ N
and a ∈ X such that aPix for all x ∈ X \ {a} and a ̸= F(P), and let K be the
group of i. Then there is no P̃ ∈ L(X) such that a = F(P̃K ,P−K).

Proof. If a does not survive the first stage of the run-off procedure at P, then it
will also not survive the first stage at any (P̃K ,P−K). If a survives the first stage
but not the second stage of the run-off procedure at P, then for any P̃ ∈ L(X),
either a does not survive the first stage at (P̃K ,P−K), or it does. In the latter
case, since for every x ∈ X we have |{ j ∈ K : aPjx}|≥ |{ j ∈ K : aP̃jx}|, it
follows that a does not survive the second stage at (P̃K ,P−K). □

Our results for run-off rules are as follows.

Theorem 3.3. Let F be a run-off rule.

(a) If m = 3, then F is only safely manipulable.

(b) If m = 4, then F is only safely manipulable if and only if n ≤ 5.

(c) If m ≥ 5, then F is only safely manipulable if and only if n ≤ 4.

Proof. We will prove the theorem for seven specific cases, depending on the
numbers m and n of alternatives and voters, and then summarize how the
theorem follows from these cases.

(1) Let m = 3, X = {a,b,c}, P ∈ L(X)N , and let K be a group with common
preference aPibPic for every i∈K. If K can manipulate unsafely by P̃, then we
must have F(P) = b, F(P̃K ,P−K) = a, and F(P̃M,P−M) = c for some M ⊆ K.
Such a manipulation, however, is excluded by Lemma 3.1. This proves Part
(a) of the theorem.

(2) If n = 3 then for an unsafe manipulation a group of at least two members
is required, but then their common top alternative is chosen by F . So F is only
safely manipulable.

From now on, we assume that m,n ≥ 4, a,b,c,d ∈ X , and the members of
group K have a preference P with top alternative a and with bPc, cPd.
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(3) Let n= 4. Assume, contrary to what we want to prove, that K has an unsafe
manipulation at P via P̃. Then by Lemma 3.1 we may assume that F(P) = c,
F(P̃K ,P−K) = b, and F(P̃M,P−M) = d for some M ⊆ K. Since |K|= 2, the
plurality score of a at P is 2, and the plurality score of c at P is 1 or 2. In
the latter case, the plurality score of d at P is 0, but then F(P̃M,P−M) ̸= d
since |M|= 1, a is the top alternative of P, and b is the top alternative of
P̃, and so d does not survive the first stage at (P̃M,P−M), contradicting that
F(P̃M,P−M) = d. Therefore, we have that the plurality score of c at P is 1.

If the plurality score of d at P is 0, then as before, F(P̃M,P−M) ̸= d, a con-
tradiction. Thus, the plurality score of d at P is 1. Since F(P) = c, a and c
survive the first stage at P, which implies that the tie-breaking order Pt satisfies
cPtd and cPta. Since the top alternative of P̃ is b, at (P̃M,P−M) the alternatives
a,b,c,d all have equal plurality score 1, and since cPtd and cPta, we have that
b and c survive the first round, contradicting again that F(P̃M,P−M) = d.

Hence, we have proved that for m ≥ 4 and n = 4 there is no unsafe manipula-
tion.

(4) Let n = 5 and m = 4. As in Part (3), assume that K has an unsafe manip-
ulation at P via P̃, with F(P) = c, F(P̃K ,P−K) = b, and F(P̃M,P−M) = d for
some M ⊆ K. Clearly, the plurality score of a at P cannot be larger than 2, and
therefore is equal to 2. In particular, |K|= 2, say K = {1,2}. Since F(P) = c
and F(P̃K ,P−K) = b, the plurality score of c at P is 1 or 2.

In the latter case, say that P3 and P4 have top alternative c. Since F(P̃{1},
P−{1}) = d and the top alternative of P̃ is b, we have that a, b, and d each have
plurality score 1 at (P̃{1},P−{1}), and c and d survive the first stage. However,
cPjd for j = 2,3,4, so that c finally wins, a contradiction.

Hence, the plurality score of c at P is 1. Since F(P̃{1},P−{1}) = d, the plurality
score of d at P is at least 1, and since F(P) = c, it is exactly 1. It follows that
the plurality score of b at P is also 1. In turn, for the tie-breaking order Pt ,
this implies that cPtd. But then, at (P̃{1},P−{1}), d does not survive the first
round, contradicting that F(P̃{1},P−{1}) = d.
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Hence, we have proved that for m = 4 and n = 5 there is no unsafe manipula-
tion.

(5) Let n = 5 and m = 5, X = {a,b,c,d,e}. We show that there is an unsafe
manipulation. Let K = {1,2}, and let P be a preference profile with P1 = P2 =
(a,b,c,d,e), and such that c, d, and e each have plurality score of 1 at P, cPja
for j = 3,4,5, and bP5dP5c. Let the tie-breaking order be Pt = (c,d,e,a,b).
Then F(P) = c. If P̃ has top alternative b and dP̃c, then F(P̃{1,2},P−{1,2}) = b,
and F(P̃{1},P−{1}) = d. So K has an unsafe manipulation.

(6) For n ≥ 6 and m = 4 we construct unsafely manipulable profiles based on
the following preferences: P1 = (a,b,c,d), P2 = (c,a,b,d), P3 = (d,b,c,a),
P4 = (b,a,d,c). Let Pn denote a preference profile with n voters. For j =
0,1,2, . . . let P6+3 j such that it contains P1, P2, and P3 each 2 + j times:
P6+3 j = ((2+ j)P1,(2+ j)P2,(2+ j)P3). Assume that the tie-breaking or-
der is Pt = (b,d,c,a). Then F(P6+3 j) = c. If the voters with preference P1

change to P4, then b wins. If only one voter manipulates, then d wins.

Similarly, we consider preference profiles P7+3 j =
((2 + j)P1,(2 + j)P2,(3 + j)P3) for j = 0,1,2, . . .; with the same
tie-breaking rule, the same kind of unsafe manipulation exists. Finally, we
consider profiles P8+3 j = ((2+ j)P1,(2+ j)P2,(4+ j)P3) for j = 0,1,2, . . .,
and tie-breaking order Pt = (b,c,d,a): again the same kind of unsafe
manipulation exists.

(7) Finally, we observe that for any unsafely manipulable profile we obtain
an unsafely manipulable profile for more alternatives by simply adding those
additional alternatives at the bottom of the preferences in the given profile.

The following table summarizes how the theorem follows from the seven parts
of the proof.
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n = 3 n = 4 n = 5 n ≥ 6

m = 3
OSM
Part 1

OSM
Part 1

OSM
Part 1

OSM
Part 1

m = 4
OSM
Part 2

OSM
Part 3

OSM
Part 4

UM
Part 6

m ≥ 5
OSM
Part 2

OSM
Part 3

UM
Parts 5, 7

UM
Parts 6, 7

□

3.4 (Un)safe manipulability of Copeland
Recall (Section 3.1.3) that the Copeland correspondence chooses
the alternatives with maximal Copeland score, where the Copeland
score of an alternative a at a preference profile P is the number
|
{

b ∈ X : |{i ∈ N : aPib}|> n
2

}
|−|

{
b ∈ X : |{i ∈ N : bPia}|> n

2

}
|.

Theorem 3.4. Let F be a Copeland rule. Then F is only safely manipulable
if and only if m = 3 or n = 3.

Proof. The proof proceeds in five parts.

(1) Suppose n = 3. Since |K|≥ 2 is required for an unsafe manipulation, but in
that case the top alternative of the voters in K is chosen, there exists no unsafe
manipulation.

(2) Suppose m = 3, X = {a,b,c}, let P be a preference profile, and let the
voters in a group K have preferences aPbPc. For an unsafe manipulation by
K we must have F(P) = b, F(P̃K ,P−K) = a, and F(P̃M,P−M) = c for some
M ⊆ K and P̃ ∈ L(X). We show that this is impossible. For alternative x
denote by S(x), S̃(x), and S̄(x) the Copeland scores of x at P, (P̃K ,P−K), and
(P̃M,P−M), respectively. Clearly we have S(a) ≥ S̄(a) ≥ S̃(a) and S(c) ≤
S̄(c)≤ S̃(c). Since F(P̃K ,P−K) = a and F(P̃M,P−M) = c we have S̄(c)≥ S̄(a)
and S̃(a) ≥ S̃(c). Hence S̃(a) ≥ S̃(c) ≥ S̄(c) ≥ S̄(a) ≥ S̃(a), and therefore
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S̃(a) = S̃(c) = S̄(c) = S̄(a). This, however, is inconsistent with (any order of)
tie-breaking. Thus, for m = 3 there exists no unsafe manipulation.

(3) We exhibit an unsafely manipulable preference profile for m= 4 and n= 4.
Consider the profile P given by

P1 P2 P3 P4

c c b b
a a a a
b b c c
d d d d

The Copeland scores of a,b,c,d at P are, respectively, 1,1,1,−3. With
tie-breaking order Pt = (a,b,c,d) we have F(P) = a. If K = {3,4}
changes preferences to P̃ = (b,d,c,a), then the scores are −1,1,1,−1, so
that F(P̃K ,P−K) = b. If M = {3}, then the scores are 0,1,2,−3, so that
F(P̃M,P−M) = c. Hence, P is an unsafely manipulable preference profile.

(4) We exhibit an unsafely manipulable preference profile for m= 4 and n= 5.
Consider the profile P given by

P1 P2 P3 P4 P5

c c a b b
b a d a a
a b c c c
d d b d d

In this case, it is easy to verify that, with the same tie-breaking as in Part (3),
K = {4,5} can unsafely manipulate by P̃ = (b,d,c,a).

(5) Finally, if there are more than five agents then these agents can be added in
pairs with opposite preferences to the unsafely manipulable profiles in Parts
(3) and (4), to obtain such profiles with more than five agents. If there are
more than four alternatives, then the additional alternatives can be added at
the bottom of the unsafely manipulable profiles for four alternatives. This
concludes the proof of the theorem. □
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3.5 (Un)safe manipulability of
Single-Transferable-Vote

For the definition of the Single-Transferable-Vote (STV) correspondence, see
Section 3.1.3.

As for all the previous rules, group manipulation for STV with m= 3 is always
safe:

Lemma 3.2. Let F be the STV rule, and let m = 3. Then F is only safely
manipulable.

Proof. Let X = {a,b,c}, let P be a preference profile, and suppose there is
an unsafe manipulation by group K, who have preference P = (a,b,c), via
P̃ ∈ L(X). Then we have F(P) = b, F(P̃K ,P−K) = a, and F(P̃M,P−M) = c for
some M ⊆ K. Then the top alternative of P̃ cannot be a, since this would not
change the outcome, nor b, since this would either not change the outcome or
lead to the elimination of a. Hence, the top alternative of P̃ is c. Denote by
S(x) the plurality score (i.e., number of top positions) of x ∈ X at P, and by
S̃(x) the plurality score of x at (P̃K ,P−K)). Then S(a)> S̃(a), S(c)< S̃(c), and
S(b) = S̃(b).

We claim that S̃(a) ≥ S̃(b). Suppose not, i.e., S̃(a) < S̃(b). Then, if
S̃(c) ≥ S̃(a), alternative a will be eliminated at (P̃K ,P−K)), contradicting
F(P̃K ,P−K) = a. If S̃(c) < S̃(a), then S(c) < S(a) and S(c) < S(b), and
S̃(c) < S̃(a) < S̃(b). This means that c is eliminated first, both at P and at
(P̃K ,P−K)); since, however, F(P) = F(PK ,P−K) = b, this implies that also
F(P̃K ,P−K) = b as P = (a,b,c) and P̃ = (c, ·, ·). This is a contradiction, and
thus the claim is proved.

We next consider S̃(c). If S̃(a) = S̃(b), then S̃(c) = S̃(a) = S̃(b), otherwise
a ̸= F(P̃K ,P−K). If S̃(a) > S̃(b), then S̃(c) ≥ S̃(b), because otherwise again
a ̸= F(P̃K ,P−K) by a similar argument as in the second case of the preceding
paragraph.

Finally, if S̃(c) = S̃(a) = S̃(b), then for all M ⊆ K, c is eliminated in
(P̃M,P−M), a contradiction. If S̃(c) > S̃(b), then there is some M′ ⊆ K, such
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that S(c)+ |M′|−1 < S(b) and S(c)+ |M′|≥ S(b). For all G with |G|< |M′|, c
is eliminated; and for all G with |G|≥ |M′| the winner is a. This is again a
contradiction, which concludes the proof of the lemma. □

Theorem 3.5. Let F be the STV rule. Then F is only safely manipulable if
and only if m = 3 or n ≤ 7.

Proof. The proof proceeds in several parts.

(1) By Lemma 3.2, if m = 3 then F is only safely manipulable.

(2) For n ≥ 8 and m = 4, X = {a,b,c,d}, we construct unsafely manip-
ulable profiles based on the following preferences: P1 = (a,b,c,d), P2 =
(a,b,d,c), P3 = (b,a,c,d), P4 = (b,a,d,c), P5 = (b,c,d,a), P6 = (c,a,b,d),
P7 = (d,b,c,a), and P8 = (d,c,a,b). Let Pn denote a preference profile of n
voters.

(2.1) For j = 0,1,2, . . . consider a profile P8+4 j =
(2P1,(1 + j)P2,(1 + j)P5,(2 + j)P6,(2 + j)P8), meaning that
preference P1 occurs 2 times etc. The plurality scores (of the first round)
are: S1(a) = 3 + j, S1(b) = 1 + j, S1(c) = 2 + j, S1(d) = 2 + j. Since
b has minimal score, it is deleted. At the second round: S2(a) = 3 + j,
S2(c) = 2 j + 3, S2(d) = 2 + j, so that d is deleted. At the third round:
S3(a) = 3 + j, S3(c) = 3 j + 5, so that c wins. Suppose that the group of
voters with preferences P1 switch to P3. Then S1(a) = 1+ j, S1(b) = 3+ j,
S1(c) = 2 + j, S1(d) = 2 + j, so that a is deleted; S2(b) = 2 j + 4,
S2(c) = 2+ j, S2(d) = 2+ j, so that c and d are deleted, and thus b wins. If
only one voter of the group manipulates, then the scores are: S1(a) = 2+ j,
S1(b) = 2+ j, S1(c) = 2+ j, S1(d) = 2+ j, so, there is a complete tie and d
wins provided that the tie-breaking order satisfies dPta, dPtb, dPtc.

(2.2) In a profile P9+4 j = (2P1,(1+ j)P2,(1+ j)P5,(2+ j)P6,(3+ j)P8) with
j = 0,1,2, . . . the same kind of manipulation by the same group leads to the
same results, for any tie-breaking order.
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(2.3) In a profile P14+4 j = (2P1,(2+ j)P2,P4,(1+ j)P5,(4+ j)P6,(4+ j)P8)
with j = 0,1,2, . . . the result is c. Switching to P3 for the group of voters
having P1 leads to b. When only one voter manipulates, d wins provided that
dPtc.

(2.4) For a profile P15+4 j = (2P1,(2+ j)P2,P4,(1+ jP5,(4+ j)P6,(5+ j)P8)
with j = 0,1,2, . . . the result is c if cPtd and cPta. Switching to P3 for the
group of voters having P1 leads to b and manipulation of only one member
leads to d.

(2.5) Only two cases are left: n = 10 and n = 11. Let P10 = (2P1,P2,P5,3P6,
3P8) and P11 = (2P1,P2,P4,4P6,3P7). In these profiles, the result is c, but
if the voters having preferences P1 switch to P4, then the result changes to b,
and in case of manipulation of one voter it changes to d.

Summing up, for m = 4 and n ≥ 8 there exist unsafely manipulable profiles.
This result also holds for m > 4: additional alternatives can be added at the
bottom of all preferences and will not change the result.

(3) In this part of the proof we show that for m≥ 4 and n≤ 7 unsafely manipu-
lable profiles do not exist. Let P be a preference profile. Take four alternatives
a,b,c,d ∈ X , and let there be a group K with preference aPbPcPd restricted to
these alternatives, and with a their top alternative. Let M ⊆ K and P̃ ∈ L(X).
We use the notation S(x) for the plurality score of x at P, S̃(x) for the plurality
score of x at (P̃K ,P−K), and S̄(x) for the plurality score of x at (P̃M,P−M).
Assume that K has a manipulation via P̃.

(3.1) Since |K|≥ 2, S(a) ≥ 2. Let c = F(P). Then S(c) ≥ 2. Hence n > 3.
Consider the case n = 4, S(a) = 2 and S(c) = 2. Members of K cannot manip-
ulate in favor of a (since voting for another alternative will lead to elimination
of a), but they can make b winning by voting for b, which is better than c. This
manipulation is safe, since S̄(a) = 1, S̄(b) = 1, and S̄(c) = 2 and d cannot win
in (P̃M,P−M).

(3.2) Consider the case n = 5. The first-round scores are S(a) = 2, S(c) = 2,
and there is some x ∈ X , x ̸= a, x ̸= c, s.t. S(x) = 1. Manipulation in favor
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of a is also impossible, so members of K vote for b. Again, d cannot be the
winner at (P̃M,P−M), even if x = d, since S̄(a) = S̄(b) = S̄(d) = 1 and all these
alternatives are eliminated in the first round.

(3.3) Consider the case n= 6. Again we have S(a)= 2, S(c)= 2, and members
of K manipulating by voting for b. If S(d) = 1, then again d will be eliminated
at (P̃M,P−M). So, S(d) = 2. Let c be the STV winner at P. Since S(a) =
S(c) = S(d) = 2 it follows that cPtd (where Pt is the tie-breaking order). So,
S̄(a) = 1, S̄(b) = 1, S̄(c) = 2, and S̄(d) = 2. Therefore in round 1 at (P̃M,P−M)
alternatives a and b are eliminated. But as aPbPcPd, the score of c in round 2
at (P̃M,P−M) is at least 3. By cPtd, it follows that d cannot be the STV winner
at (P̃M,P−M).

(3.4) Finally, consider the case n= 7. Since c is the STV winner at P, S(a) ̸= 3
and S(d) ̸= 3. Otherwise c would be eliminated in the first round at P. If
S(c) = 3, then S̃(a) = 0, S̃(b) = S̃(d) = 2 and S̃(c) = 3. So, b is eliminated at
(P̃K ,P−K) in the first round. Therefore, S(a) = S(c) = S(d) = 2 and S(b) = 1.
Also, |M|= 1. Hence, S̄(a) = 1 and S̄(b) = S̄(c) = S̄(d) = 2. therefore, in
round 1 at (P̃M,P−M) alternative a is eliminated. Since all agents in K have
preference aPbPcPd it follows that in round two (after eliminating a) the score
of b has increased by one to 3 whereas the scores of c and d are unchanged.
Therefore, in round 2 at (P̃M,P−M) alternatives c and d are eliminated. This
contradicts that d is the STV winner in profile (P̃M,P−M).

Thus, if m ≥ 4 and n ≤ 7, then there are no unsafe manipulations. This con-
cludes the proof of the theorem. □

3.6 Concluding remarks
3.6.1 Relation with Slinko and White (2014)

In this subsection we compare our work with Slinko and White (2014) –
henceforth SW.

For a rule F and a preference profile P, according to SW a voter i with group K
has an incentive to manipulate if there is a preference P̃ ∈ L(X) and a set G ⊆
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K with i ∈ G such that F(P̃G,P−G)PiF(P). Observe that SW do not require
that all voters in K deviate to P̃. Clearly, if i has an incentive to manipulate in
our sense (Definition 3.1), then i has an incentive to manipulate according to
SW (simply take G = K), but the converse is not necessarily true.

Next, SW call such a manipulation by P̃ unsafe if there exists M ⊆ K with
i ∈ M such that all members of M have an incentive to manipulate by P̃,
but F(P)PiF(P̃M,P−M); and safe if for all U ⊆ K with i ∈ U , we have
F(P̃U ,P−U)PiF(P) or F(P̃U ,P−U) = F(P). Hence, if i has an incentive to
manipulate by P̃ in our sense, so that, by the preceding paragraph, i also has
an incentive to manipulate by P̃ according to SW, then if this manipulation
is (un)safe in our sense (see Section 3.1.2), it is also (un)safe according to
SW.

The definitions of (un)safely manipulable preference profiles and rules in SW
are similar to ours (Section 3.1.2), so that we obtain the following corollary.

Corollary 3.1. If a rule is safely (unsafely) manipulable for some m and n,
then is is also safely (unsafely) manipulable according to SW.

Thus, results about the (un)safety of manipulation in our sense are applicable
to the model of SW. Unfortunately, we cannot directly adapt results in our pa-
per about cases where we have only safe manipulations, to the model of SW
in the same way. Indeed, in preference profiles where there is no manipula-
tion in our sense there could still be voters having an incentive to manipulate
according to SW, and this manipulation could be unsafe.

The main result in SW, their Theorem 2, says that for every onto and non-
dictatorial rule F with range at least three there is a preference profile P, a
voter i, and a preference P̃, such that i has an incentive to manipulate and this
manipulation is safe.

In the SW model, if voter i has an incentive to manipulate safely by P̃ in P, this
does not necessarily imply that the same voter has an incentive to manipulate
in our model, since this safe manipulation according to SW still allows for
F(P̃K ,P−K) = F(P). Thus, if a rule is safely manipulable according to SW, it
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does not follow directly from the definitions that the same holds in our model
and for this reason Theorem 2 of SW does not carry over directly to our model.
However, we can prove that if a rule F is manipulable in our model, then a
safe manipulation also exists.

Theorem 3.6. If a rule is manipulable, then it is also safely manipulable in
our model.

Proof. Let P be a manipulable profile, hence there are P̃ ∈ L(X) and i ∈ N
such that F(P̃K ,P−K)PiF(P). If this manipulation is safe, then we are done.
If this manipulation is unsafe, then there is an M ⊂ K with i ∈ M such that
F(P)PiF(P̃M,P−M) and, consequently, F(P̃K ,P−K)PiF(P̃M,P−M). Consider
the profile P′ = (PK\M, P̃M,P−K). Now K′ = K \M is a group and members
of K′ have an incentive to manipulate with P̃. Again, if this manipulation is
safe, we are done. Otherwise, by the same reasoning there is M′ ⊂ K′ that
F(P′)PiF(P̃M′ ,P′

−M′); and so on. This way we either find a safe manipulation
or end up with a group of size one, and the single member of this group has a
trivially safe manipulation. □

3.6.2 Further remarks

We have considered the safety of group manipulation for several rules, and es-
tablished conditions for the existence of safe and unsafe manipulations. The-
orem 3.6 says that if a rule is manipulable (by a group), then it is safely ma-
nipulable. The situation is different for unsafe manipulation. For instance,
scoring rules with one jump in a scoring vector turn out to be only safely ma-
nipulable, which means that they do not allow for unsafe manipulations at all.
The other rules that we considered, are manipulable in an unsafe way. A more
detailed analysis, however, shows that even for unsafely manipulable rules the
existence of an unsafe manipulation depends on the number of voters and al-
ternatives. For the rules under consideration in this paper, we have established
exact bounds for these values. Moreover, even if we know that for the given
values of m and n a social choice rule allows for an unsafe manipulation, this
does not mean that any group manipulation is unsafe and, thus, risky. It only
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means that in some preference profile unsafe manipulation is possible. We do
not have a general picture of how often unsafe manipulations occur.
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4
Simultaneous manipulation under

incomplete information

Adapted from: Veselova Y. and D. Karabekyan. Simultaneous manipulation
under incomplete information. Working paper.
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4.1 Introduction

In the majority of publications considering the probability of manipulation
there are two important simplifying assumptions made: a) when deciding
whether to manipulate or not voters do not take into account possible actions
of other voters (so-called "naive" behavior) ; b) voters possess all informa-
tion about preferences of each other. Although these assumptions are helpful
when modeling and conducting experiments on manipulation, some important
issues may be ignored by them.

The aim of this research is to combine these two aspects in one model and
obtain exact results on manipulability of social choice rules. To deal with
the first one we use a version of "safe" strategy used by Slinko and White
(2014) and developed by Elkind et al (2015) and Grandi et al (2019). A
voter having an incentive to manipulate individually with some strategy is
called a Gibbard-Satterthwaite manipulator, or GS-manipulator. This strategy
is considered as "safe" if for any possible action of other GS-manipulators
this strategy does not lead to a worse result. Apart from the basic model with
naive voters (Model 1) we consider two non-naive models of voters’ beliefs.
In Model 2 each GS-manipulator considers what the result of manipulation
will be if all other GS-manipulators act strategically. If it occurs that voting
sincerely is better than manipulation for a voter (provided that all other GS-
manipulators do manipulate), then manipulation becomes risky and the voter
looses an incentive to manipulate. In Model 3 voters believe that some poten-
tial manipulators may manipulate and others may not. This creates a higher
level of uncertainty. And again if there is a risk of getting worse off by using
a manipulation strategy instead of voting sincerely, a voter loses an incentive
to manipulate.

Moreover, we add an assumption of incomplete information in the form that
was considered in Chapter 2 and first presented by Reijngoud and Endriss
(2012). It is assumed that all voters report their sincere preferences to an
opinion poll held before voting. Then results of the opinion poll are made
public. Since they are represented in an aggregated form (a result of a poll
information function, PIF), voters do not know exactly each others’ prefer-
ences. Thus, a voter has an incentive to manipulate under a given PIF if there
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is a strategy such that a voter has a chance of getting better off and has no
chance of getting worse off with this strategy. We consider three types of PIF.
The first one is the unique winner, the result of a rule after tie-breaking. The
second one is the set of winners according to a social choice rule. And the
third is the ranking of alternatives (a weak order) produced by a rule.

Thus, combining the uncertainty from incomplete information with the uncer-
tainty about other manipulators’ actions we get a serious obstacle for a poten-
tially manipulating voter. However, if a voter has an incentive to manipulate
despite all these difficulties, this adds to manipulability of a rule. Comparing
manipulability of rules in this model is not the same as if voters possess all
information and do not consider incentives of others (naive behavior). More-
over, in the literature there are not many papers studying the probability of
manipulation with non-naive voters and with incomplete information sepa-
rately (see Section 2). This work is the first one (to the best of our knowledge)
considering both and their mutual influence. We conduct computational ex-
periments calculating exact manipulability indexes for different combination
of information types and voters’ beliefs about others. Moreover, we prove that
for any number of alternatives there is a specific number of voters such that for
any greater number of voters manipulation is impossible for any scoring rule
when voters have information about a unique winner of an election if voters
take into account other manipulators’ actions.

The chapter is organized as follows. Section 4.2 contains a literature review.
In Section 4.3 we give formal definitions and notations including the descrip-
tion of rules. The next three sections describe and provide results for different
behavioral models. Section 4.4 is devoted to Model 1, with naive voters’ be-
havior. Sections 4.5 and 4.6 describe Models 2 and 3 with non-naive behavior
of voters and their comparison with Model 1. Section 4.7 concludes.

4.2 Related literature
In the previous section we have considered a strand of literature on manipu-
lability of rules when voters manipulate without thinking of others. Here we
aim to consider more thoroughly the body of research devoted to interaction
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of voters, voting games, and informational aspects of voting for better under-
standing the place of our work in the literature.

If there is only one GS-manipulator among voters, then she is a pivotal voter
and has an opportunity to influence a voting result on her own. If in a so-
ciety there are several GS-manipulators, the voting result is difficult to pre-
dict due to the problem of their interaction. If a voter knows that other GS-
manipulators may also decide to act strategically, can this affect her incentives
to manipulation? This question was first considered in (Slinko and White,
2014) where each GS-manipulator considers the possibility that other voters
with the same preferences (and, consequently, also being GS-manipulators)
may strategise. These authors define a strategy to be "safe" if regardless of
what subset of other co-minded agents manipulates there is no possibility for
a voter to become worse off and for at least one subset she becomes better off.
This direction was followed by Hazon and Elkind (2010) and Ianovski et al
(2011) who studied computational complexity of finding a safe manipulative
vote. The asymptotic probability of a safely manipulable profile for scoring
rules was considered by Wilson and Reyhani Shokat Abad (2010).

The next step for a voter is to think not only about her allies, but also about
other people who have an incentive to manipulate. So, an extension of this
model considers all GS-manipulators as players in a voting game. Then a
strategy chosen by a manipulating voter can be called "safe" if it is at least
as good as sincere voting for any possible actions of other GS-manipulators.
For simplicity it is usually assumed that each manipulator chooses between
truth-telling and one strategy chosen according to some optimality principle.
This kind of model was considered in (Elkind et al, 2015) and (Grandi et al,
2019). In these publications the existence of pure strategy Nash equilibria is
studied for plurality and k-Approval rule with k = 2,3,4. Thus, this model of
voters’ behavior is the closest to Model 3 in our study. We also consider only
GS-manipulators who choose between sincere voting and one manipulation
strategy.

However, the set of players may not be restricted to the set of
GS-manipulators. Voters which do not have an incentive to manipulate on
their own may also be considered as players and pose a counter-threat to
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manipulators’ actions. Pattanaik (1976b), Pattanaik (1976a) and Barberà
(1980) study how coalitions of voters could counter-manipulate in response
to individual manipulations and influence incentives of GS-manipulator, and
the game between manipulator and counter-manipulator was considered by
Grandi et al (2019).

And what if the set of players is the whole set of voters and the set of their
strategies is not restricted? This framework is the most general and was con-
sidered many times, for example, by Moulin (1981), Myerson and Weber
(1993) among the first. Both papers used Nash equilibrium as a solution con-
cept, but faced the problem of a great multiplicity of equilibria. Since lots
of these equilibria are weird, there appeared many papers suggesting differ-
ent ways to eliminate them (see surveys by Meir, 2018 or Slinko, 2019). For
example, one way is to assume that voters prefer to abstain or to vote sin-
cerely when they are not pivotal (Desmedt and Elkind, 2010; Obraztsova et
al, 2013). Another one is to refine the set of Nash equilibria (e.g. De Sinopoli,
2000; Sertel and Sanver, 2004; Desmedt and Elkind, 2010; Xia and Conitzer,
2010; Obraztsova et al, 2016). Moreover, it is possible to assume bounded ra-
tionality of voters, who may not think of other voters being strategic - and we
come again to the aforementioned works of Slinko and White (2014), Elkind
et al (2015) and Grandi et al (2019).

A topic which follows directly from the previous one is modeling voter levels
of rationality. In the structural level-k models of Nagel (1995), Stahl and Wil-
son (1994) voters of level k of rationality believe that other voters are of level
k− 1. Thus, voters of level 0 do not strategize, voters of level 1 choose their
best strategy in assumption that all other voters are of level 0, level 2 voters
choose the best response believing that other voters are of level 1. A cognitive
hierarchy (CH) model of Camerer et al (2004) has a difference that level-k
voters believe that others can have any level from 0 to k− 1. The CH-model
was used in the work by Elkind et al (2020) which focuses on computational
complexity of deciding whether a manipulation strategy weakly dominates a
sincere vote for a level-2 voter. The CH-model is also applicable in our work.
As in the work by Elkind et al (2020), we consider only the first three levels
and assume that all voters not being GS-manipulators are of level 0.
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A situation when voters do not know anything about actions of other voters,
i.e. any voter can potentially submit any preference order, is equivalent to
the zero-information case. Can a voter choose a strategy weakly dominating
sincere voting in such a situation? Intuitively, no. Indeed, Moulin (1981)
mentioned that for voters having no information about other voters’ prefer-
ences the best strategy is to vote sincerely. For Condorcet-consistent rules
and Borda rule it was formally proved by Conitzer et al (2011), and for non-
manipulability of scoring rules authors give the bound which was strengthened
in the work by Reijngoud and Endriss (2012). However, this is an extreme
case and it seems more natural to assume that voters can predict actions of
others to some extent (if they know their true preferences, like in the models
mentioned above) or know something about preferences of a society (incom-
plete information).

Models of manipulation under incomplete information attract more attention
in recent years. One of the first formal models for strategic voting with partial
information was introduced by Conitzer et al (2011). The main focus of the
paper was complexity of manipulation. A similar model was introduced by
Reijngoud and Endriss (2012), but instead of partial orders, authors consider
results of preelection opinion polls. This model was used for the analysis of
manipulability of rules under various public information types by Veselova
(2020). However, the main application sphere of opinion polls models is it-
erative voting, where they serve as a coordination device for voters (Myerson
and Weber, 1993; Reijngoud and Endriss, 2012; Endriss et al, 2016; Meir et
al, 2017). More complex models of information may include not only knowl-
edge of other voters’ preferences, but also knowledge about knowledge. For
this purpose epistemic logic is used (Ditmarsch et al, 2012; Smaal, 2019).

Thus, the current work considers the model of individual manipulation by
voters with bounded rationality under incomplete information. Each possi-
ble preference profile creates a game with GS-manipulators as players. As
level 2 players in the work by Nagel (1995) and Stahl and Wilson (1994),
in our behavioral Model 2 each manipulating agent thinks about others GS-
manipulators as being level 1. And in Model 3 they admit that other GS-
manipulators may be level 1 or 0 as in CH-models (Camerer et al, 2004;
Elkind et al, 2020). In contrast to the mentioned works level 2 voters do not
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search for the best reply, but check whether their strategy for GS-manipulation
under uncertainty still works when we add uncertainty about other voters’ ac-
tions.

4.3 The Framework

4.3.1 The Model

Let N = {1, ...,n} be a set of voters which have preferences over a set of
alternatives X , |X |= m. Pi ⊆ X ×X is a preference order of agent i and it is
assumed to be a linear order, i.e. irreflexive, weakly complete and transitive
binary relation on X . The set of all linear orders on X is denoted by L(X).
A preference profile of all voters is denoted by P = (P1, ...,Pi, ...,Pn) and a
preference profile of all voters except i is P−i. A contraction of a preference
profile onto the set A ⊆ X is P/A = (P1/A, ...,Pn/A), where Pi/A = Pi ∩ (A×
A). The set of all preference profiles is L(X)N and includes (m!)n elements.

A mapping C : L(X)N → 2X \ /0 is called a social choice correspondence
(SCC). If the result of a SCC contains more than one alternative, then
a tie-breaking rule (TBR) is used, T : 2X \ /0 → X . We use alphabetic
tie-breaking: let some linear order on X to be predefined, and when
alternatives are tied, we choose the one which dominates all others by PT , i.e
T (A) = {a ∈ A|∀x ∈ A,x ̸= a (a,x) ∈ PT}. The composition of functions C
and T , i.e. T ◦C is denoted by F and is called a social choice rule or simply
rule.

By v j(a,P) we denote the number of voters having a on the j-th position
in preferences (the most preferred alternative gets the 1st position). A vec-
tor of positions for an alternative a is v(a,P) = (v1(a,P), ...,vm(a,P)). For a
contracted preference profile dimensions of v(a,P) are the same, but the last
m−|A| elements of this vector are zeros.

By µ we denote majority relation: akµal if |{i ∈ N : akPial}|> |{i ∈ N :
alPiak}|.
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A matrix of a majority graph is MG(P), where

MG(P)kl =


1, if akµal,

−1, if alµak,

0, otherwise.

(4.1)

Although a result of a SCC is a set of alternatives which are considered as the
best ones, we could also define a ranking of alternatives, or a social ordering,
based on this rule. For some rules this ranking is embedded in the procedure,
e.g. rules with a scoring function. For other rules such ranking of alterna-
tives could be defined explicitly (see Section 2.2). Thus, a social ordering
is denoted by a weak order R (irreflexive, transitive, and negatively transitive
binary relation), an element of the set of all weak orders on X , W (X).

Similar to Reijngoud and Endriss (2012), Veselova (2020), Endriss et al
(2016), we use the poll information function π(P) (PIF) that shows what kind
of information is known by a voter about P. In this paper, we consider 4
types of PIFs.

1. 1Winner. Information only about the unique winner after the TBR,
π1Winner(P) = F(P)

2. Winner. Information only about the winner(s) before tie-breaking,
πWinner(P) =C(P)

3. Rank. Information about the ranking of alternatives, πRank(P) = R.

4. Profile. Information about a full profile is known. It is the classic case
of complete information. πProfile(P) = P.

Let W π(P)
i be the information set of voter i, the set of all possible preference

profiles of other voters that are consistent with information π(P) of voter i.

W π(P)
i = {P′

−i ∈ L(X)N\{i} : π(Pi,P′
−i) = π(P)}. (4.2)
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We say that π is at least as informative as π ′ if for all P ∈ L(X)N and for
all i ∈ N we have W π(P)

i ⊆ W π ′(P)
i . In our list of PIFs, they go from the least

informative (1Winners-PIF) to the most informative (Profile-PIF).

We define manipulation as follows.

Definition 4.1. We say that a voter has an incentive to π-manipulate in a
preference profile P under a rule F if there exists some preference P̃i such that
i) either F(P̃i,P′

−i) = F(P) or F(P̃i,P′
−i)PiF(P) for all P′

−i in W π(P)
i and ii)

F(P̃i,P′
−i)PiF(P) for at least one P′

−i in W π(P)
i .

In other words, a voter will manipulate if for every possible profile of her
information set she gets at least the same result and for at least one profile
she gets a more preferable alternative, on the condition that all others vote
sincerely.1

If at least one voter has an incentive to π-manipulate in P under F , then pref-
erence profile P is π-manipulable under F . A voter having an incentive to
π-manipulate is called a π-manipulator. The set of all π-manipulators in pro-
file P is denoted by Π(P).

Definition 4.2. A rule F is called susceptible to individual π-manipulation
if there exists a profile P ∈ L(X)N and a voter i ∈ N who has an incentive
to π-manipulate in P under F. If a rule F is not susceptible to individual
π-manipulation, it is immune to individual π-manipulation.

4.3.2 Social choice correspondences

Here we give formal descriptions of social choice correspondences, how the
set of winners and the social ranking are determined. Scoring rules, run-off

1One can imagine an alternative definition of manipulation with only successful outcomes:
a voter manipulates only if her manipulation leads to a success for all preference profiles of
her information set. However, in this case manipulation becomes a very rare event and even
impossible for some settings.
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procedure, STV, and Copeland rule are defined the same way as in Chapter
2.

• Maximin. For each alternative x ∈ X the number of scores is com-
puted as follows S(x,P) = mina∈X |{i ∈ N : xPia}|. Then alternatives are
ranked according to the number of scores: for all a,b ∈ X i) aRb ⇔
S(a,P) > S(b,P). Alternatives with maximum score win, i.e. x ∈
C(P)⇔ x ∈ argmaxa∈X S(a,P).

• Baldwin’s rule. Multistage procedure.
0) t := 1, X t := X , Pt := P.
1) For all a ∈ X t count Borda score St(a,Pt) := sB · v(a,Pt).
2) Find alternatives with minimum score A := argmina∈X t (St(a,P)).
3) If A = X t , then C(P) = X t and the procedure terminates. Otherwise,
alternatives of A are eliminated, t := t +1, X t := X t−1 \A, Pt := P/X t ;
for all x ∈ X t and a ∈ A it holds xRa; go to step 1.

• Nanson’s rule. For each alternative
0) t := 1, X t := X , Pt := P.
1) For all a ∈ X t St(a,Pt) := sB · v(a,Pt).
2) Compute the average score

r̄t = ∑
a∈X t

St(a,Pt)/|X t |. (4.3)

3) Find alternatives that have the score lower than r̄t :
A := {a ∈ X t |St(a,P)< r̄t}.
4) If A is empty, then C(P) = X t and the procedure terminates.
Otherwise, alternatives of A are eliminated, t := t + 1, X t := X t−1 \A,
Pt := P/X t ; for all x ∈ X t and a ∈ A it holds xRa; go to step 1.

• Black’s procedure. Procedure chooses a Condorcet winner CW (P) =
[a|¬∃x ∈ X ,xµa] if it exists, and then for all x ∈ X CW (P)Rx. Other-
wise, the Borda rule is applied.

• Kemeny’s rule. Let the distance between linear orders be a function
d(Pi,Pj) = |(Pi \Pj)∪ (Pj \Pi)|. then R is an ordering such that R =
argminR′∈L(X) ∑i∈N d(R′,Pi). The top alternative of R is the winner.
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• Threshold rule. Alternatives are ordered on the basis of their position
vectors: aRb if vm(a,P) < vm(b,P), or if there exist k ≤ m such that
vi(a,P) = vi(a,P), i = k− 1, ...,m, and vk(a,P) < vk(b,P). In words,
we compare the number of worst positions of alternatives. If they are
equal, then we compare the number of second-worst positions, and so
on. Undominated alternatives are winners: x ∈C(P)⇔ ¬∃a ∈ X , such
that aRx.

4.4 Model 1: naive manipulation

In the Definition 4.1 proposed by Reijngoud and Endriss (2012) a voter does
not think about possible actions of others. We would like to consider other
assumptions on voters’ behavior and formalize this in the term "behavioral
model". We consider three behavioral models: Model 1 suggests that vot-
ers behavior is naive, they do not think about actions of others (definition of
manipulation is the same as the basic one); in Model 2 voters check whether
their manipulation strategy still works when all other π-manipulators manip-
ulate as well; in Model 3 voters think that there could be some other voters
manipulating. In this section we discuss the basic model of individual ma-
nipulation under incomplete information, which assumes that a voter does not
think about incentives of other voters. Let us define it formally.

Definition 4.3. A voter has an incentive to π-manipulate in Model 1 (M1) in
P under F if and only if she has an incentive to π-manipulate in P under F.

To compare the degree of manipulability of social choice rules one needs some
measure. Although in the case of complete information there exist differ-
ent manipulability measures (Veselova, 2020), we will use the simplest one,
which is the proportion of preference profiles where manipulation is possi-
ble.

IM(m,n,π,F) – the share of preference profiles where at least one voter has
an incentive to π-manipulate in model M under a rule F .
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We computed the values of IM1(m,n,Pro f ile,F) in MATLAB for m = 3, and
n from 3 to 20 changing the rule and the type of PIF. A code of the main pro-
gram calculating indices for this chapter can be seen in Appendix B. First we
provide computational results for the simplest model, individual naive manip-
ulation with complete information. Probability of individual naive manipula-
tion for plurality, Borda, veto, runoff, STV, and Copeland rule for n= 3, . . . ,15
and different PIFs has already appeared in Chapter 2 where we compared it
with coalitional manipulation. Here we extend the number of voters and the
set of rules and aim to compare these computations with further observations
on Model 2 and 3. In order not to overload figures with graphs we illustrate
them on two pictures for each figure (see Fig.4.1).
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Figure 4.1: The values of IM1(3,n,Pro f ile,F)

As can be seen, all the computed values of IM1 are not greater than 0.4. For
most rules the trend is slowly decreasing and among the least manipulable
rules are runoff procedure, STV and Baldwin rule. Now change information
type to Rank-PIF.

Lets us consider IM1 for Rank-PIF, Fig.4.2. The less information is available
to voters, the larger are voters’ information sets. Profiles of the information
set of voter i, W π(P)

i , all give the same ranking when voter i does not manipu-
late. However, for all rules under consideration the result after manipulation is
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Figure 4.2: The values of IM1(3,n,Rank,F)

not always the same for all profiles of voter’s information set W π(P)
i . In other

words, information about ranks of alternatives does not allow a voter to com-
pute the result of manipulation for any strategy she chooses (using the term
from Reijngoud and Endriss, 2012, these rules are not strongly computable
from Rank-images).

According to the definition, using a manipulation strategy must lead to a better
result in some profiles of W π(P)

i and must not lead to a worse in others. The
voter cannot distinguish between different profiles of her information set. So,
if voter i has an incentive to manipulate in P, then all profiles of W π(P)

i are
manipulable, even those where voter i cannot really change anything. A reader
can find a more detailed explanation of this effect in (Veselova, 2020).

For most cases the values of IM1 for Rank-PIF are greater than for Profile-
PIF. And the general trend of IM1(3,n,Winner,F) is increasing for most rules.
Moreover, for STV, Baldwin, and Nanson rules this index is very close to 1
when n > 12.

For Winner-PIF (Fig.4.3) even more rules show graphs going to 1 with grow-
ing n. These are the same as for Rank-PIF plus Black’s procedure, maximin,
and runoff. Except for Copeland and veto rule, all other rules demonstrate
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Figure 4.3: The values of IM1(3,n,Winner,F) with naive model of manipulation

values of IM1 for Winner-PIF greater than for Rank-PIF for almost all n. The
graph for Copeland rule has a higher amplitude and manipulability of veto
rule decreased considerably for all n.

For the least informative PIF, 1Winner-PIF (Fig.4.4), all rules except for
Copeland and veto, merge near 1 for n > 6. Peaks of the graph for Copeland
rule also approach 1, and veto rule disappears from the figure due to the
zero-manipulability for 1Winner-PIF (Reijngoud and Endriss, 2012).
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Figure 4.4: The values of IM1(3,n,1Winner,F)

4.5 Model 2: manipulation with respect to all other
π-manipulators

In this section we investigate what will change if a manipulating voter takes
into account manipulations of others. In general, each π-manipulator has a set
of strategies with that she has an incentive to π-manipulate. For simplicity,
for each π-manipulator j in Π(P)\{i} we fix one strategy P̂j that she may use
or not, which we will refer to as π-manipulation strategy.2 In other words,
voter i thinks that another voter j can π-manipulate only with a strategy P̂j.
A π-manipulation strategy P̂j is chosen by the principle of the best winning
alternative and in case of equality we choose it alphabetically.

We denote by P̂ a preference profile obtained from P with the difference that
all voters from Π(P) use their π-manipulation strategy.

Definition 4.4. We say that a voter i has an incentive to π-manipulate in
Model 2 (M2) in a preference profile P under a rule F if there is a strategy P̃i

2Otherwise, we should have considered all combinations of strategies for π-manipulators.
This is not only computationally hard, but also not very interesting. For the 3-alternatives case
if there are several manipulation strategies, then most likely they are equivalent (always give
the same result).
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such that:
i) voter i has an incentive to π-manipulate with P̃i in P under F;
ii) it is either F(P̃i, P̂

′
−i) = F(Pi, P̂

′
−i) or F(P̃i, P̂

′
−i)PiF(Pi, P̂

′
−i) for all P′

−i in
W π(P)

i .

In words, condition ii) requires that a strategy P̃i is still not worse than truth-
telling provided that all other π-manipulators decide to manipulate. Thus, if
some strategy P̃i for voter i fails to dominate truth-telling, we need to check
another strategy, and so on. If none of them is dominant, then voter i does
not have an incentive to π-manipulate in Model 2. So, although we fix ma-
nipulation strategies for other π-manipulators, we still need to consider all
manipulation strategies for voter i. However, for the 3-alternatives case this
occurs to be excessive, since different manipulation strategies do not differ in
terms of the result.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .06 .04 .03 .04 .03 .02 .03 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01
Veto .06 .07 .08 .09 .09 .08 .08 .08 .07 .07 .07 .06 .06 .06 .05 .05 .05 .04
Borda .00 .04 .03 .03 .02 .02 .01 .01 .01 .01 .01 .01 .01 .00 .00 .00 .00 .00
Run-off .00 .00 .00 .00 .00 .01 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00
STV .06 .04 .00 .01 .01 .00 .03 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00
Copeland .00 .04 .00 .03 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Maximin .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Baldwin .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Nanson .00 .00 .07 .01 .06 .03 .04 .03 .03 .02 .02 .02 .01 .01 .01 .01 .01 .01
Black .00 .00 .02 .00 .03 .01 .03 .01 .04 .01 .03 .01 .03 .01 .03 .01 .02 .01
Kemeny .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Threshold .17 .04 .02 .12 .05 .05 .04 .05 .07 .04 .05 .06 .04 .04 .05 .04 .03 .04

Table 4.1: IM1(3,n,Pro f ile,F)− IM2(3,n,Pro f ile,F)

The first series of experiments refers to the complete information case.
However, instead of values IM2(3,n,Pro f ile,F) we show results for
IM1(3,n,Pro f ile,F) − IM2(3,n,Pro f ile,F), which is more illustrative.
Particularly, it shows in which proportion of naively manipulable preference
profiles (manipulable in M1) a threat of having something bad as the result in
case of simultaneous manipulation destroys all incentives to manipulate. As
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can be seen from Table 4.1, this situation occurs most often under veto and
threshold rule. There is almost no difference between Model 1 and Model 2
for runoff procedure, maximin, Baldwin and Kemeny rules under Profile-PIF.
Except for veto and threshold rules, all other values do not exceed 0.07 and
most of them are very close to 0. This suggests that having a threat to loose
when all other manipulators do manipulate cannot be a serious obstacle to
strategic voting, simply because it is quite rare.

Then we change information type to less and less informative and two oppo-
site effects start to work together. On the one hand, the probability to meet
a π-manipulable profile grows (see Tables.4.2-4.4) in general for many rules.
On the other hand, the risk to result with something worse than initially due
to simultaneous manipulation combined with uncertainty about preferences of
others makes many profiles non-manipulable.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13
Run-off .11 .35 .28 .52 .29 .42 .36 .54 .27 .42 .24 .26 .10 .21 .00 .09 .00 .00
STV .00 .07 .52 .24 .00 .72 .23 .36 .74 .37 .00 .58 .27 .00 .00 .21 .00 .00
Copeland .19 .25 .21 .21 .25 .22 .27 .22 .29 .23 .29 .23 .30 .23 .30 .23 .30 .24
Maximin .06 .21 .02 .16 .17 .15 .08 .09 .08 .00 .08 .00 .08 .00 .08 .00 .08 .00
Baldwin .19 .19 .30 .32 .19 .40 .31 .27 .30 .32 .29 .33 .28 .34 .29 .32 .29 .32
Nanson .28 .17 .23 .30 .00 .28 .29 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .02 .13 .03 .32 .04 .31 .03 .41 .04 .41 .04 .41 .04 .33 .04 .33
Kemeny .19 .16 .15 .21 .37 .32 .42 .29 .45 .31 .48 .33 .49 .34 .50 .35 .51 .36
Threshold .06 .17 .11 .19 .24 .23 .30 .34 .33 .37 .40 .39 .42 .44 .43 .45 .46 .45

Table 4.2: IM2(3,n,Rank,F)

We list the most important observations and put them into groups.

Rank-PIF:

• Veto rule is non-manipulable for n ≥ 4 and Nanson’s is
non-manipulable for n ≥ 11;

• Borda and Maximin rules are the least manipulable;
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29
Run-off .22 .38 .71 .70 .65 .59 .55 .59 .25 .50 .35 .20 .30 .26 .00 .24 .00 .00
STV .00 .10 .71 .29 .00 .60 .28 .14 .00 .38 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .06 .37 .00 .29 .00 .32 .00 .35 .00 .36 .00 .38 .00 .38 .00 .39 .00 .39
Maximin .06 .22 .02 .13 .44 .12 .21 .09 .24 .00 .27 .00 .28 .00 .30 .00 .31 .00
Baldwin .06 .22 .64 .13 .17 .42 .00 .09 .00 .08 .00 .08 .00 .08 .00 .07 .00 .07
Nanson .22 .22 .25 .25 .00 .21 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .64 .13 .00 .32 .00 .45 .00 .17 .00 .16 .00 .15 .00 .07 .00 .07
Kemeny .06 .22 .02 .13 .44 .12 .21 .09 .24 .00 .27 .00 .28 .00 .30 .00 .31 .00
Threshold .06 .22 .32 .14 .19 .18 .23 .25 .24 .27 .29 .28 .30 .31 .30 .32 .32 .31

Table 4.3: IM2(3,n,Winner,F)

• Plurality, Kemeny, and threshold rules are the most manipulable.

Winner-PIF:

• STV rule is non-manipulable for n ≥ 13;

• For Copeland, maximin, Baldwin, Black’s and Kemeny’s rules there is
an alternation of zero and non-zero values of manipulability index;

• Plurality, Borda, and threshold rules are the most manipulable.

1Winner-PIF:

• For all rules except for Copeland rule there is a value n′ such that all
values of IM2(m,n,π,F) are zeros for all n ≥ n′.

We also need to mention that the computed values for Kemeny and maximin
rules coincide for all PIFs except Rank-PIF. The coincidence is explained by
the same results these rules give for the 3-alternative case. And the difference
for Rank-PIF is caused by the different ways the Rank-PIF is constructed for
these rules.
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Run-off .22 .52 .71 .71 .65 .32 .55 .45 .25 .26 .35 .00 .30 .00 .00 .00 .00 .00
STV .00 .15 .71 .29 .00 .62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .17 .21 .00 .15 .00 .20 .00 .23 .00 .26 .00 .28 .00 .29 .00 .30 .00 .31
Maximin .17 .18 .21 .57 .26 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Baldwin .17 .18 .43 .57 .17 .50 .00 .24 .00 .26 .00 .28 .00 .00 .00 .00 .00 .00
Nanson .31 .18 .00 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .17 .18 .43 .57 .00 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .17 .18 .21 .57 .26 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Threshold .11 .44 .62 .13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 4.4: IM2(3,n,1Winner,F)

From the tables it can be seen that if we get zero manipulability in some case
and increase the level of uncertainty, then zero manipulability is preserved.
For example, we fix a PIF and go from Model 1 to Model 2.

Proposition 4.1. For any PIF π , for any rule F, the number of voters n, and
the number of alternatives m if IM1(m,n,π,F) = 0, then IM2(m,n,π,F) = 0.

Proof. The proof follows directly from the definitions of manipulation in
Model 1 and Model 2. To have an incentive to manipulate in Model 2, a voter
needs to have an incentive to manipulate in Model 1. If IM1(m,n,π,F) = 0,
then no voter has in incentive to manipulate in Model 1, and, consequently,
also not in Model 2. So, IM2(m,n,π,F) = 0.

The main observation for Model 2 and 1Winner-PIF is that for all rules ex-
cept Copeland manipulability indexes become 0 when the number of voters
exceeds a certain value. It turns out that the same holds for any given number
of alternatives for any scoring rule. First we prove Lemma 4.1 and then use it
in Theorem 11 stating this.

For a scoring vector s, a jump is a non-zero difference between two adja-
cent scoring values. If s has r jumps, then this means that there are distinct
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k1, . . . ,kr ∈ {1, . . . ,m−1} such that sk1 − sk1+1 > 0, . . . ,skr − skr+1 > 0, while
all other differences are zero. Let ∆ j = sk j − sk j+1 for j = 1, . . . ,r denote the
j-th jump.

Lemma 4.1. For any scoring rule F, any number of alternatives m, any voter
i, any jump ∆ j, and any two distinct alternatives ah and al there is a number
of voters n∗, such that for all n > n∗ there exists P ∈ L(X)N such that
1) Pi = (a1,a2, ...,am);
2) for all ag ∈ X \{ah,al} S(ah,P)> S(ag,P);
3) S(ah,P)−S(al,P) = ∆ j (S(ah,P)−S(al,P) = 0).

Proof. 1) For simplicity, let voter i be the first with a preference order P1 =
(a1, ...,ah, ...,al, ...,am) (which means a1P1ahP1alP1am, dots mean there can
be other alternatives). First, we consider the case when h < l. Then we denote
P2 = (al, ...,a1, ...,ah, ...), P3 = (ah, ...,al, ...,a1, ...) (alternatives a1, ah, and
al are on the same places, but cycled according to a permutation (a1 al ah)),
P4 = (a1, ...,al, ...,ah, ...,am) (the same as P1, but ah and al switched), P5 =
(ah,al, ...), P6 = (al,ah, ...), P7 = (...,ah|al, ...) (the line | denotes the position
of j-th jump, ∆ j).

2) Let us prove by construction that there exists a profile with S(ah,P)−
S(al,P) = ∆ j. For an odd n: P′ = (P1,P4,qP5,qP6,P7). For an even n: P′′ =
(P1,P2,P3,qP5,qP6,P7). A profile with S(ah,P) = S(al,P) is constructed the
same way by leaning out P7.

3) Now we prove that the condition ∀ag ∈ X \ {ah,al} S(ah,P) > S(ag,P)
could be satisfied for the constructed profiles. First, in preferences of type P5

and P6 let all other m−2 alternatives be cycled. The number of scores got by
ah and al in (qP5,qP6) is qs1+qs2. Let h= [2q/(m−2)], which is the number
of whole cycles in (qP5,qP6). The number of scores got by any alternative
from X \ {ah,al} is not greater than h(s3 + ...+ sm) + (2q− h(m− 2))s3 ≤
hsm + (2q − h)s3. Since s1 ≥ s2 ≥ s3 ≥ ... ≥ sm and s1 > sm, qs1 + qs2 >
hsm +(2q−h)s3 and the difference is not less then min(h,q)(s1 − sm) (so, for
this difference to be positive for all alternatives in X \ {ah,al}, there should
be at least one cycle of m− 2 alternatives, i.e. m− 2 < 2q). Thus, by taking
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q big enough we can make scores of ah in P be higher than scores of any
other alternative in each type of P constructed in 2). If the condition ∀ag ∈
X \{ah,al} S(ah,P)> S(ag,P) is satisfied for some q, then for q′ = q+1 it is
also satisfied.

n′ = 3+min{q : ∀ag ∈ X \{ah,al}S(ah,P′)> S(a j,P′)},

n′′ = 4+min{q : ∀ag ∈ X \{ah,al}S(ah,P′′)> S(ag,P′′)},

n∗ = max(n′,n′′).

Therefore, for all n > n∗ there exists a preference profile with
Pi = (a1,a2, ...,am), ∀ag ∈ X \ {ah,al} S(ah,P) > S(ag,P) and
S(ah,P)−S(al,P) = ∆ j.

4) If h > l, i.e. ah is less preferred than al by voter i, then we switch alterna-
tives ah and al in P1, P2, P3, and P4 with all other parts of the proof staying
the same.

Theorem 4.1. For any scoring rule F and any number of alternatives
m there is a finite number of voters n∗, such that for all n > n∗ it holds
IM2(m,n,1Winner,F) = 0.

Proof. Let X = {a1, ...,am}. Consider a scoring rule with a scoring vector
s = (s1,s2, ...,sm), the first jump in s goes after sk, sk − sk+1 = ∆1.

1) We prove that voter i with preferences a1Pia2Pi...Piam has no incentive to
manipulate (in Model 1) under 1Winner-PIF if F(P) ∈ {a1,a2, ...,ak+1}.

1.1) If F(P) = a1, then there is no need for voter i to misrepresent preferences,
since it is the best alternative for i.

1.2) Suppose that F(P) = b, b ∈ {a2,a3, ...,ak+1} and i manipulates in favor
of some a, such that aPb. If i puts alternative a higher (if a is not a1), then
nothing changes for a since s1 = ...= sk. Thus, i could only put b lower in P̃i,
but then some alternative c ∈ {ak+2, ...,am} goes higher. If b = ak+1 and there
are no jumps in s after k+1, then putting b lower will not change the scores of
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b and c and no manipulation is possible in this case. In other cases b gets −A
scores and c gets +A scores, where A = α1∆1 +α2∆2 + ... and α j ∈ {0,1}.

Thus, if there exists P′ = (Pi,P′
−i), P′

−i ∈ W π(P)
i , such that

S(b,P′) − S(c,P′) = min(∆1,∆2), then c wins in (P̃i,P′
−i), since it gets

+A scores and b gets −A scores. By Lemma 4.1 such preference profile
exists for all n > n̂. It means that there is a chance of getting c as a result
which is worse than b for i. Therefore, i does not have an incentive to
1Winner-manipulate when F(P) ∈ {a1,a2, ...,ak+1}.

2) Now prove that if F(P) ∈ {ak+2, ...,am}, then voter i with preferences
a1Pia2Pi...Piam has an incentive to 1Winner-manipulate. Suppose, F(P) = c
and c is on k + t-th place in Pi, where t ∈ {2, ...,m}. Then manipulation in
favor of some b ∈ {ak+1, ...,ak+t−1} is possible: voter i switches alternatives
a∈ {a1, ...,ak} and b. Since it does not matter which a∈ {a1, ...,ak} to choose
for switching with b, we can assume that it is ak. By the principle of the best
winning alternative b must be ak+1. After this manipulation b gets +∆1 scores
and a gets −∆1 scores, while scores of other alternatives do not change. Thus,
if there exists P′ = (Pi,P′

−i), P′
−i ∈ W π(P)

i , such that S(c,P′)− S(b,P′) = ∆1,
then b wins in (P̃i,P′

−i) provided that bPT c. If cPT b, then we need a profile
P′′ = (Pi,P′′

−i), P′′
−i ∈ W π(P)

i , such that S(c,P′′) = S(b,P′′) for b to win after
getting +∆1 scores. By Lemma 4.1, such profiles exist for all n > n̆. There-
fore, in some preference profiles of i’s information set b wins, and there is
no risk of getting a worse alternative as a result, so, i has an incentive to ma-
nipulate in Model 1 under 1Winner-PIF when F(P) ∈ {ak+2, ...,am} for all
n > n̆.

3) Take a voter i with preferences a1Pia2Pi...Piam having an incentive to ma-
nipulate (in Model 1). If in W π(P)

i there is at least one preference profile
such that F(Pi, P̂

′
−i)PiF(P̃i, P̂

′
−i), then voter i has no incentive to manipulate in

Model 2. We prove the existence of such a profile P′ by construction.

For simplicity, denote c = ak+t , b = ak+1, a = ak.
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We construct P′ with the following preference orders: preferences of voter i
P1 = (...a|b...c...), P2 = (...b|a...c...), P3 = (...|c...a...), P4 = (...c|...a...) (in
P1 and P2 c on k+t-th place, in P3 and P4 a on k+t-th place), P5 = (ca...|...),
P6 = (a c...|...), P7 = (c|a...). Thus, we have voter i with a preference order
P1, having an incentive to manipulate in Model 1. Voters with preference
order P2 are also GS-manipulators, but their manipulation is an opposite one
(putting b on k+1-th place and a on k-th). Voters with preference orders P3,
P4, P5, and P6 do not have an incentive to manipulate in Model 1 since the
winning alternative is not lower than k+1 place.

The way of construction depends on a tie-breaking between c and a. Consider
two cases: aPT c and cPT a. For all the following cases we assume that the
condition ∀x ∈ X \{a,c} S(c)> S(x) is satisfied. Later (in part 6 of the proof)
we will show that there is a finite number of voters n∗, such that for all n > n∗

this is true.

4) If aPT c, then S(c)> S(a).
4.1) n is even, k ∈ {1, . . . ,m − 2}, P′ = (P1,2P2,2P3,P4,qP5,qP6,2P7).
For this profile, S(c,P′)− S(a,P′) = 2∆1 and F(P′) = c. If all voters from
Π(P′) manipulate, then S(c,(P̃i, P̂

′
−i))− S(a,(P̃i, P̂

′
−i)) = ∆1. If i does not

manipulate, and Π(P′) \ {i} does, then S(c,(P′
i , P̂

′
−i)) = S(a,(P′

i , P̂
′
−i)) and

F(P′
i , P̂

′
−i) = a.

4.2) n is odd, k ∈ {1, . . . ,m − 2}, P′ = (P1,P2,P3,P4,qP5,qP6,P7). For
this profile, S(c,P′) − S(a,P′) = ∆1 and F(P′) = c. If all voters from
Π(P′) manipulate, then S(c,(P̃i, P̂

′
−i))− S(a,(P̃i, P̂

′
−i)) = ∆1. If i does not

manipulate, and Π(P′) \ {i} does, then S(c,(P′
i , P̂

′
−i)) = S(a,(P′

i , P̂
′
−i)) and

F(P′
i , P̂

′
−i) = a.

5) If cPT a, then S(a)≥ S(c).
5.1) n is even, k ∈ {1, . . . ,m− 2}, P′ = (P1,P2,P3,P4,qP5,qP6). For this
profile, S(a,P′) = S(c,P′) and F(P′) = c. If all voters from Π(P′) manipulate,
then S(c,(P̃i, P̂

′
−i)) = S(a,(P̃i, P̂

′
−i)) and again F(P̃i, P̂

′
−i) = c. If i does not

manipulate and Π(P′) \ {i} (which is only one voter with preferences P2 in
this case) does, then S(c,(P′

i , P̂
′
−i)) < S(a,(P′

i , P̂
′
−i)) = S(a,P′) + ∆1 and
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F(P′
i , P̂

′
−i) = a.

5.2) n is odd, k = 1, P′ = (P1,2P2,2P3,P4,(q + 1),qP6). For
this profile, S(c,P′) − S(a,P′) = ∆1 and F(P′) = c. If all voters
from Π(P′) manipulate, then S(a,(P̃i, P̂

′
−i)) = S(a,P′) + 2∆1 − ∆1,

S(c,(P̃i, P̂
′
−i)) = S(a,(P̃i, P̂

′
−i)) and again F(P̃i, P̂

′
−i) = c. If i does

not manipulate, S(c,(P′
i , P̂

′
−i)) < S(a,(P′

i , P̂
′
−i)) = S(a,P′) + 2∆1 and

F(P′
i , P̂

′
−i) = a.

5.3) n is odd, k ∈ {2, . . . ,m− 2}, P′ = (P1,P2,P3,P4,(q+ 1)P5,qP6). All
relations between scores of c and a are the same as in 5.1).

6) Now we need to show that it is possible to have the condition ∀x ∈ X \
{a,c} S(c) > S(x) satisfied and find out when it is possible. We assume that
in preferences of type P5 and P6 all other m− 2 alternatives are cycled, i.e.
(a c x1 x2 ...xm−1), (a c xm−1 x1 x2...xm−2), etc. Let h = [2q/(m− 2)], which is
the number of whole cycles in (qP5,qP6).

The number of scores got by c in (qP5,qP6) is qs1 + qs2. The number of
scores got by any alternative from X \ {a,c} is not greater than h(s3 + ...+
sm) + (2q− h(m− 2))s3 ≤ hsm + (2q− h)s3. Since s1 ≥ s2 ≥ s3 ≥ ... ≥ sm

and s1 > sm, qs1 + qs2 > hsm +(2q− h)s3 and the difference is not less then
min(h,q)(s1 − sm). Thus, by taking q big enough we can make scores of c in
P be higher than scores of any other alternative.

Let such number of voters that the condition ∀x ∈ X \ {a,c} S(c) > S(x) is
satisfied for all cases 4.1), 4.2), 5.1), 5.2) be denoted by ǹ. Summing up,
having a fixed number of alternatives, voter i with preferences a1Pia2Pi...Piam

has no incentive to manipulate (in Model 1) under a scoring rule and 1Winner-
PIF if F(P)∈{a1,a2, ...,ak+1} for all n> n̂, but has an incentive to manipulate
if F(P) ∈ {ak+2, ...,am} for all n > n̆. However, voter i does not have an
incentive to manipulate under the same conditions in Model 2 for all n > ǹ.
Thus, IM2(m,n,1Winner,F) = 0 for all n > n∗ = max(n̂, n̆, ǹ).
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4.6 Model 3: manipulating subsets of
GS-manipulators

In this model, a voter assumes that each of the other π-manipulators may
manipulate or not. Thus, it is necessary to consider all possible subsets K of
Π(P)\{i}. Then voter i compares the result with using strategy P̃i and voting
sincerely provided that voters from K manipulate and others do not.

It is quite natural to assume that not all potential manipulators will actually
manipulate. The problem is that for a voter it is computationally hard to think
about actions of all possible subsets of π-manipulators. We show, however,
that Model 3 does not differ very much from the previous one. Results are
certainly strengthened, but not essentially different. Let us give a formal defi-
nition of manipulation in Model 3.

Definition 4.5. We say that a voter i has an incentive to π-manipulate in
Model 3 (M3) in a preference profile P under a rule F if there is a strategy P̃i

such that:
i) voter i has an incentive to π-manipulate with P̃i in P under F;
ii) it is either F(P̃i,(P̂

′
K ,P

′
−K−i)) = F(Pi,(P̂

′
K ,P

′
−K−i)) or

F(P̃i,(P̂
′
K ,P

′
−K−i))PiF(Pi,(P̂

′
K ,P

′
−K−i)) for all P′

−i in W π
i and for all K ⊆

Π(P′
−i), K ̸= /0.

Analogously, condition ii) requires that a strategy P̃i is still not worse than
truth-telling if some of π-manipulators also decide to manipulate.

Again, we first consider the difference of manipulability indexes in Model 2
and Model 3 for the complete information case. On average, this difference
has higher values than the difference between Model 1 and Model 2. This
shows that the number of profiles where a subset of manipulators can spoil
the result by their strategic actions is larger than the number of profiles where
this can be done by all manipulators.

High values are more likely for bigger numbers of voters, since the number of
GS-manipulators is greater in this case. The highest values of difference cor-
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .00 .02 .03 .02 .03 .04 .03 .04 .04 .03 .04 .04 .03 .03 .03 .03 .03
Veto .00 .01 .02 .03 .03 .05 .06 .07 .08 .09 .09 .10 .11 .11 .12 .12 .13 .13
Borda .00 .00 .01 .03 .03 .05 .05 .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08
Run-off .00 .00 .00 .00 .01 .03 .02 .01 .01 .02 .02 .03 .02 .02 .02 .02 .03 .04
STV .00 .00 .00 .00 .01 .00 .04 .07 .00 .02 .05 .02 .04 .07 .01 .03 .05 .03
Copeland .00 .00 .00 .03 .00 .04 .00 .04 .00 .04 .01 .03 .01 .03 .01 .03 .01 .03
Maximin .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01
Baldwin .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .01 .01 .02 .01 .02 .01 .02 .02
Nanson .00 .00 .01 .01 .08 .02 .12 .04 .14 .06 .16 .08 .16 .09 .17 .09 .17 .10
Black .00 .00 .01 .00 .02 .00 .03 .01 .04 .01 .04 .02 .05 .02 .05 .03 .06 .03
Kemeny .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01
Threshold .00 .02 .00 .06 .05 .03 .11 .07 .05 .11 .09 .08 .12 .11 .10 .13 .12 .12

Table 4.5: IM2(3,n,Pro f ile,F)− IM3(3,n,Pro f ile,F)

respond to veto, Borda, Nanson’s and threshold rules. And the least difference
show maximin, Kemeny (which are the same again), and Baldwin rules.

Rank 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13
Run-off .11 .35 .28 .52 .29 .42 .36 .54 .27 .42 .24 .26 .10 .21 .00 .09 .00 .00
STV .00 .07 .52 .24 .00 .72 .23 .22 .74 .37 .00 .58 .27 .00 .00 .21 .00 .00
Copeland .19 .25 .21 .21 .25 .22 .27 .22 .29 .23 .29 .23 .30 .23 .30 .23 .30 .24
Maximin .06 .21 .02 .16 .17 .11 .07 .00 .07 .00 .07 .00 .07 .00 .07 .00 .06 .00
Baldwin .19 .19 .30 .32 .19 .28 .31 .18 .15 .23 .13 .22 .14 .23 .14 .24 .15 .25
Nanson .28 .17 .19 .30 .00 .18 .25 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .02 .13 .02 .09 .03 .09 .03 .09 .03 .01 .04 .01 .04 .01 .04 .01
Kemeny .19 .16 .15 .21 .36 .31 .42 .28 .45 .31 .48 .33 .49 .34 .50 .35 .51 .36
Threshold .06 .17 .11 .19 .24 .22 .30 .34 .32 .37 .40 .38 .42 .44 .42 .45 .46 .45

Table 4.6: IM3(3,n,Rank,F)

Since Model 3 assumes even higher level of uncertainty for voters than Model
2, zero-manipulability obtained for Model 2 is inherited by Model 3. We
formulate this inheritance in the following two propositions.

Proposition 4.2. For any PIF π , for any rule F, number of voters n, and
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Winner 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29
Run-off .22 .38 .71 .70 .37 .59 .00 .37 .00 .08 .00 .00 .00 .00 .00 .00 .00 .00
STV .00 .10 .71 .29 .00 .60 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .06 .37 .00 .29 .00 .32 .00 .35 .00 .36 .00 .38 .00 .38 .00 .39 .00 .39
Maximin .06 .22 .02 .13 .43 .09 .20 .00 .23 .00 .25 .00 .27 .00 .28 .00 .29 .00
Baldwin .06 .22 .64 .13 .00 .30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Nanson .22 .22 .21 .25 .00 .18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .64 .13 .00 .09 .00 .09 .00 .08 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .06 .22 .02 .13 .43 .09 .20 .00 .23 .00 .25 .00 .27 .00 .28 .00 .29 .00
Threshold .06 .22 .32 .14 .19 .18 .22 .25 .23 .27 .29 .27 .30 .31 .29 .32 .32 .31

Table 4.7: IM3(3,n,Winner,F)

number of alternatives m if IM1(m,n,F,π) = 0, then IM3(m,n,F,π) = 0.

Proof. The proof is the same as for Proposition 1, but with respect to Model
3.

Proposition 4.3. For any PIF π , for any rule F, number of voters n, and
number of alternatives m if IM2(m,n,F,π) = 0, then IM3(m,n,F,π) = 0.

Proof. If IM2(m,n,F,π) = 0, then in any preference profile P no voter i has an
incentive to manipulate in Model 2. There are two cases. In the first case voter
i does not have an incentive to manipulate in Model 1. Then, by Definition 4,
she does not have an incentive to manipulate in Model 3. In the second case,
voter i has an incentive to manipulate in Model 1, but there is P′

−i in W π
i such

that F(Pi, P̂
′
−i)PiF(P̃i, P̂

′
−i) for all P̃i. Thus, condition ii) from Definition 4 is

not satisfied, and voter i does not have an incentive to manipulate in Model 3.
Consequently, IM3(m,n,F,π) = 0.

Finally, if we fix the behavioral model and go from a more informative PIF π ′

to a less informative PIF π ′′, then 0-manipulability obtained for π ′ is preserved
for π ′′.
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Run-off .22 .52 .71 .57 .37 .32 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
STV .00 .15 .71 .29 .00 .22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .17 .21 .00 .15 .00 .20 .00 .23 .00 .26 .00 .28 .00 .29 .00 .30 .00 .31
Maximin .17 .18 .21 .57 .26 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Baldwin .17 .18 .43 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Nanson .31 .18 .00 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .17 .18 .43 .57 .00 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .17 .18 .21 .57 .26 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Threshold .11 .44 .62 .13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 4.8: IM3(3,n,1Winner,F)

Proposition 4.4. Suppose, π ′ is at least as informative as π ′′. Then for any
M ∈ {M1,M2,M3}, for any rule F, number of voters n, and number of alter-
natives m if IM(m,n,F,π ′) = 0, then IM(m,n,F,π ′′) = 0.

Proof. Let us introduce a notation specially for this proof: every voter has her
own information set W π

i , but in accordance with a behavioral model M voters
may change their preferences (as in Model 2 and 3) or not (Model 1), so let
W π

i,M be an information set of voter i with respect to the behavioral model
M. Thus, W π

i,M2 = {P̂′
−i ∈ L(X)N\{i}|P′

−i ∈ W π
i }, W π

i,M3 = {(P̂′
K ,P′

−K−i) ∈
L(X)N\{i}|P′

−i ∈ W π
i ,K ⊆ Π(P′

−i),K ̸= /0}. Now let Ŵ π
i,M1 = W π

i , Ŵ π
i,M2 =

W π
i ∪W π

i,M2, and Ŵ π
i,M3 =W π

i ∪W π
i,M3.

If IM(m,n,F,π ′) = 0, then for any voter i in every profile P and any strategy
P̃i ̸= Pi it is either i) F(Pi,P′

−i) = F(P̃i,P′
−i) for all P′

−i in W π ′(P)
i ; or ii) there

exists P′
−i in Ŵ π ′(P)

i,M such that F(Pi,P′
−i)PiF(P̃i,P′

−i).

Consider case i). Since π ′ is at least as informative as π ′′, then for all P ∈
L(X)N and for all i ∈ N we have W π ′(P)

i ⊆ W π ′′(P)
i . Thus, if for any voter

i in every profile P and any strategy P̃i ̸= Pi there is no such P′
−i in W π ′(P)

i
that F(Pi,P′

−i)PiF(P̃i,P′
−i) or F(P̃i,P′

−i)PiF(Pi,P′
−i), then there will not be
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such profiles in W π ′′(P)
i . Indeed, if there is a profile P′

−i in W π ′′(P)
i such that

F(Pi,P′
−i)PiF(P̃i,P′

−i) or F(P̃i,P′
−i)PiF(Pi,P′

−i), and this profile does not be-
long to W π ′(P)

i , then P′
−i is in another information set of i (for another pref-

erence profile P). But this contradicts to the statement that for any voter i in
every profile P and any strategy P̃i ̸= Pi it is F(Pi,P′

−i) = F(P̃i,P′
−i) for all P′

−i

in W π ′(P)
i .

Consider case ii). Since π ′ is at least as informative as π ′′, we have that for
all P ∈ L(X)N and for all i ∈ N, W π ′

i ⊆ W π ′′
i , and, consequently, Ŵ π ′

i ⊆ Ŵ π ′′
i .

If there exists P′
−i in Ŵ π

i,M, such that F(Pi,P′
−i)PiF(P̃i,P′

−i), then P′
−i belongs

to Ŵ π ′′
i as well. Thus, voter i does not have an incentive to manipulate under

PIF π ′′ in model M. Since that holds for any voter i in any preference profile
P and any strategy P̃i ̸= Pi, we get IM(m,n,F,π ′′) = 0.

In Tables 4.6-4.8 zero values obtained for Model 2 are highlighted with a
darker grey, and those for Model 3 with a lighter grey. First, let us look at
Table 4.6, which shows the manipulability index for Rank-PIF and behavioral
Model 3. It can be seen that only veto and Nanson’s rule demonstrate clear
zero-tending dynamics of IM3(m,n,F,π), and values for maximin rule and
Black’s procedure are quite low. Zero-manipulability occurs in some cases for
runoff, STV, and maximin. However, most of zero values are inherited from
Model 2. Plurality, Kemeny, and threshold rules are the most manipulable.

Now move on to Table 4.7, corresponding to Winner-PIF. For plurality,
Borda, and threshold rules if voters know information about winners before
tie-breaking, they still can manipulate, even when they think that others may
also manipulate. We view this as an important observation, since it puts these
rules in contrast with the remaining ones, which give non-manipulability or
zero manipulability alternating with non-zero manipulability from certain
number of voters.

A slight difference in the quality of public information, i.e. voters do not
know which alternatives were tied (in case there is a tie) and know only a fi-
nal winner – this difference makes almost all rules impossible to manipulate
from a certain value of n. Periodicity is preserved for Copeland rule, and the
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amplitude seems to be growing. It means that Copeland rules provides an op-
portunity to manipulate even under uncertainty of preferences and intentions
of others when the number of voters is even. However, other rules give us a
hope that manipulation actually does not make much sense when you know
little.

4.7 Conclusion
We have reviewed many works devoted to the problem of manipulability of
social choice rules. They considered the problem from probabilistic, computa-
tional, informational points of view. These aspects were considered separately
and results are often unfavorable: rules turn out to be manipulable (Gibbard-
Satterthwaite theorem type), and, moreover, highly manipulable (computed
probabilities) or efficiently manipulable. The current study is the first one
combining informational and behavioral aspects of manipulation and apply-
ing a probabilistic approach to it. Indeed, what does it mean to manipulate
when you do not know exactly what others prefer and what they will actually
do? If we were aimed to answer the question whether these rules are sus-
ceptible to manipulation, for example, under 1Winner-PIF and Model 3, the
answer would be positive for all rules except for veto rule. But this answer
would not show us the influence of uncertainty which can be clearly seen only
with a studying probabilities. Due to excessive computations we are able to
observe the fact that manipulation becomes impossible in many cases when
we want to take these uncertainties into account.

One may argue that computing all possible situations consistent with public
information and predicting other manipulators’ actions is too hard for a voter.
Of course, it is, and this adds to the immunity of rules to manipulation in
reality. However, the goal of this research was not to show that manipulation
is hard, but to demonstrate that it does not make much sense.

Another possible objection is that there are still many cases when manipu-
lation is probable. The answer here is following: we considered only the
probability of that a voter will have an incentive to manipulate, but did not
compute the probability of a successful manipulation. As shown by Veselova
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(2020), this probability turns out to be rather small. So, even if we have ma-
nipulability around 0.3, the proportion of successfully manipulable profiles
could be much smaller than 0.3.

The deeper analysis of the manipulation models from this study may also
include computation and comparison of the probability of success and failure
for each voter. This could help to understand whether a voter is assumed to
be too risk-averse when she does not manipulate in a view of one unfavorable
situation. However, considering only strategies that do not spoil the result
whatever other voters do seems quite natural for modeling voters behavior.
It guarantees that a voter will not loose. The fact revealed by this study that
under very natural conditions it is impossible to find such strategy in a vast
number of cases is definitely good news.
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Appendix A

1 Main program for Chapter 2

ICNK=zeros(1,13);
for n=3:15
m=3;

%Enumerating all preference types
p=transpose(perms(1:m));

% Generating AECs
A=1:(factorial(m)-1)+n;
C=nchoosek(A,factorial(m)-1);
K=nchoosek(factorial(m)-1+n,factorial(m)-1);
AEC=zeros(K,factorial(m));

AEC(:,1)=C(:,1)-1;
for i=2:(factorial(m)-1)

AEC(:,i)=C(:,i)-C(:,i-1)-1;
end
AEC(:,factorial(m))=factorial(m)+n-C(:,factorial(m)-1)-1;

% Transforming into representative preference profiles
P=zeros(3,n,K);
for i=1:K

h=1;
for j=1:6

for k=1:AEC(i,j)
P(:,h,i)=p(:,j);
h=h+1;

end
end

end

%Computing Positions-information function
v=zeros(3,3,K);
for i=1:K

for ia=1:3
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for k=1:3
for l=1:n

if P(k,l,i)==ia
v(ia,k,i)=v(ia,k,i)+1;
end

end
end

end
end

%Computing Weighted Majority graph
WMG=zeros(3,3,K);
MG=zeros(3,3,K);
for i=1:K

[WMG(:,:,i),MG(:,:,i)]=majority(P(:,:,i));
end

% Computing Score-Rank-Winners
ScorePlur=zeros(1,3,K);
RankPlur=zeros(1,3,K);
WinnerPlur=zeros(1,3,K);

ScoreBorda=zeros(1,3,K);
RankBorda=zeros(1,3,K);
WinnerBorda=zeros(1,3,K);

ScoreVeto=zeros(1,3,K);
RankVeto=zeros(1,3,K);
WinnerVeto=zeros(1,3,K);

ScoreRunoff=zeros(2,3,K);
RankRunoff=zeros(1,3,K);
WinnerRunoff=zeros(1,3,K);

ScoreStv=zeros(3,3,K);
RankStv=zeros(1,3,K);
WinnerStv=zeros(1,3,K);

ScoreCopeland=zeros(1,3,K);
RankCopeland=zeros(1,3,K);
WinnerCopeland=zeros(1,3,K);

for i=1:K
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[WinnerPlur(:,:,i),RankPlur(:,:,i),ScorePlur(:,:,i)]=
plurality(P(:,:,i),n);
[WinnerBorda(:,:,i),RankBorda(:,:,i),ScoreBorda(:,:,i)]=
borda(P(:,:,i),n);
[WinnerVeto(:,:,i),RankVeto(:,:,i),ScoreVeto(:,:,i)]=
veto(P(:,:,i),n);
[WinnerRunoff(:,:,i),RankRunoff(:,:,i),ScoreRunoff(:,:,i)]=
runoff(P(:,:,i));
[WinnerStv(:,:,i),RankStv(:,:,i),ScoreStv(:,:,i)]=
stv(P(:,:,i));
[WinnerCopeland(:,:,i),RankCopeland(:,:,i),
ScoreCopeland(:,:,i)]=copeland(P(:,:,i));

end

% Manipulation check
MP=zeros(K,1);
Check=zeros(K,1);
CheckVoter=zeros(K,n);
VotersCoalitions=zeros(K,n,n);
Flag=zeros(K,1);
f=0;
for i=1:K

if Check(i,1)==0
j=0;
while MP(i,1)==0 && j<n

j=j+1;
if CheckVoter(i,j)~=1
f=f+1;
pe=[1,1,1,1,1,1];
pb=[0,0,0,0,0,0];
for ii=1:K

if isequal(P(:,:,i),P(:,:,ii))
Coalition=zeros(1,n);
for jc=1:n

if P(:,j,i)==P(:,jc,ii)
CheckVoter(ii,jc)=1;
Coalition(1,jc)=1;

end
end
for jc=1:n

if P(:,j,i)==P(:,jc,ii)
VotersCoalitions(ii,jc,:)=Coalition(1,:);

end
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end
c=sum(Coalition(1,:));
if c~=0

ManipP=P(:,:,ii);
for jm=1:6

if pe(1,jm)==1
for jj=1:n

if Coalition(1,jj)==1
ManipP(:,jj)=p(:,jm);

end
end
if lexTie(borda(ManipP(:,:),n),P(:,j,i))>
lexTie(borda(P(:,:,ii),n),P(:,j,i))

pe(1,jm)=0;
pb(1,jm)=0;

end
if lexTie(borda(ManipP(:,:),n),P(:,j,i))
<lexTie(borda(P(:,:,ii),n),P(:,j,i))

pb(1,jm)=1;
end

end
end
Flag(ii,1)=f;

end
end

end
if sum(pb)~=0

for ii=1:K
if Flag(ii,1)==f

MP(ii,1)=1;
Check(ii,1)=1;

end
end

end
if j==n

Check(i,1)=1;
end
end

end
end

end

ICM=zeros(K,1);
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for i=1:K
if MP(i,1)==1

ICM(i,1)=factorial(n)/(factorial(AEC(i,1))*
factorial(AEC(i,2))*factorial(AEC(i,3))*
factorial(AEC(i,4))*factorial(AEC(i,5))*
factorial(AEC(i,6)));

end
end

ICNK(n-2)=sum(ICM)/(6)^n;
end
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1 Main program for Chapter 4

global m n p rule PIF;
m=3;
p=transpose(perms(1:m));

IND1=zeros(12,28,3);
IND2=zeros(12,18,3);
IND3=zeros(12,18,3);

for pif_ind=1:1
if pif_ind==1

PIF = @ winner;
end
if pif_ind==2

PIF = @ winners;
end
if pif_ind==3

PIF = @ rank;
end

for rule_ind=1:1
if rule_ind==1

rule = @ plurality;
end
if rule_ind==2

rule = @ veto;
end
if rule_ind==3

rule = @ borda;
end
if rule_ind==4

rule = @ runoff;
end
if rule_ind==5

rule = @ stv;
end
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if rule_ind==6
rule = @ copeland;

end
if rule_ind==7

rule = @ maximin;
end
if rule_ind==8

rule = @ bolduin;
end
if rule_ind==9

rule = @ nanson;
end
if rule_ind==10

rule = @ black;
end
if rule_ind==11

rule = @ kemeni;
end
if rule_ind==12

rule = @ threshold;
end

for n=6:6

A=1:(factorial(m)-1)+n;
C=nchoosek(A,factorial(m)-1);
K=nchoosek(factorial(m)-1+n,factorial(m)-1);
AEC=zeros(K,factorial(m));
CardinalityAEC=zeros(K,1);

AEC(:,1)=C(:,1)-1;
for i=2:(factorial(m)-1)

AEC(:,i)=C(:,i)-C(:,i-1)-1;
end
AEC(:,factorial(m))=factorial(m)+n-C(:,factorial(m)-1)-1;

for i=1:K
Multip=1;
for l=1:factorial(m)

Multip=Multip*factorial(AEC(i,l));
end
CardinalityAEC(i)=factorial(n)/Multip;

end
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P=zeros(m,n,K);
for i=1:K

P(:,:,i)=tranform(AEC(i,:));
end

CheckVoter=zeros(K,n);
Groups_Eq_Voters=zeros(K,n);
NG=0;
man=zeros(K,n);
manStr=zeros(K,n);
ManG=zeros(K,1);
ManS=zeros(K,1);

for i=1:K
for j=1:n

if CheckVoter(i,j)==0
Eq_voters=zeros(K,n);
man_strategies=zeros(K,factorial(m));

for ii=1:K
eq_voters=is_equivalent(P(:,:,i),j,P(:,:,ii));
Eq_voters(ii,:)=eq_voters;
CheckVoter(ii,:)=CheckVoter(ii,:)+eq_voters;

[man_strategies(ii,:)]=manipulation(P(:,:,ii),
eq_voters);

end
end
eff_man_inf_set=min(man_strategies)+
max(man_strategies);
max_eff=0;
str_max_eff=0;
for h=1:factorial(m)

if eff_man_inf_set(h)>=1
if sum(man_strategies(:,h))>max_eff

max_eff=sum(man_strategies(:,h));
str_max_eff=h;

end
end

end
if str_max_eff>0

manStr=manStr+str_max_eff*Eq_voters;
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NG=NG+1;
Groups_Eq_Voters=Groups_Eq_Voters+Eq_voters*NG;
ManS=max(ManS,man_strategies(:,str_max_eff));

end
end

end
end

for i=1:K
for j=1:n

if Groups_Eq_Voters(i,j)~=0
man2=man(i,:);
man2(1,j)=0;
ManGroups=subsets(man2(1,:));
groupN=sum(man(i,:));
ResGV=zeros(2^(groupN-1)-1,1);
ResG=zeros(2^(groupN-1)-1,1);
NResGV=zeros(2^(groupN-1)-1,1);
NResG=zeros(2^(groupN-1)-1,1);
for l=1:2^(groupN-1)-1

manG=ManGroups(l,:);
manGV=manG;
manGV(1,j)=1;
manStrGV=manStr(i,:).*manGV;
manStrG=manStr(i,:).*manG;
ResG(l,1)=sim_man_result(P(:,:,i), manStrG);
ResGV(l,1)=sim_man_result(P(:,:,i), manStrGV);
for h=1:m

if P(h,j,i)==ResG(l,1)
NResG(l,1)=h;

end
if P(h,j,i)==ResGV(l,1)

NResGV(l,1)=h; %
end

end
if min(NResGV<=NResG)==0

GEV=Groups_Eq_Voters(i,j);
for ii=1:K

for jj=1:n
if Groups_Eq_Voters(ii,jj)==GEV

Groups_Eq_Voters(ii,jj)=0;
end

end
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end
end

end
end

end
end
ManSM=max(Groups_Eq_Voters,[],2);
for i=1:K

if ManSM(i)>0
ManSM(i)=1;

end
end

Man=max(man,[],2);
for i=1:K

if Man(i)>0
Man(i)=1;

end
end

IND1(rule_ind,n-2,pif_ind)=sum(Man.*CardinalityAEC)/
(factorial(m))^n;
IND2(rule_ind,n-2,pif_ind)=sum(ManS.*CardinalityAEC)/
(factorial(m))^n;
IND3(rule_ind,n-2,pif_ind)=sum(ManSM.*CardinalityAEC)/
(factorial(m))^n;
end
end
end
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Impact of the thesis

This thesis contributes to the area of manipulability of social choice rules.
The problem of manipulation is well-known in social choice theory, since
A.Gibbard and M.Satterthwaite many authors studied this question from the-
oretical, experimental and computational perspective. However, classical ap-
proaches to modelling strategic behavior of voters in voting are quite static.
The goal of our research is to make models which are more flexible, i.e. can
take into account various parameters, and, as a consequence, which are more
realistic.

We argue that information available to voters and their view of other voters’
behavior are the crucial aspects that affect individual manipulation incentives.
For example, we show that for many rules voters that have an incentive to
manipulate exist almost in every possible situation if they have positive ex-
pectations about their coalition members and possess information only about
the winners from an opinion poll. On the other hand, some rules do not guar-
antee that a voting result will not get worse if some of your allies do not
support group manipulation. This fact constitutes an obstacle for collective
manipulation of these rules. Other rules, as revealed by our research, do not
pose such a threat to the manipulator, so they can be considered as more easily
manipulable.

Finally, in addition to the uncertainty about the true preference profile (due
to the incompleteness of information), we consider the uncertainty about all
other manipulators’ actions. We study how restrictive the combination of
these two types of uncertainty is for manipulation - a question which has not
been considered before. It turns out that for certain conditions rules do not
allow for manipulation anymore.

All these results can be helpful when choosing a social choice mechanism for
a given collection of parameters, such as the type of public information, the
number of voters and alternatives, opportunities for communication for vot-
ers. Or, alternatively, they can show how to restrict the parameters if a social
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choice rule is fixed. The area of application of social choice theory has been
widening in recent years due to the spread of information technologies. The
problem of preference aggregation arises not only in human voting, but also
in decision making with autonomous software agents, whose computational
ability is much stronger. For this reason, it becomes especially important to
know the formal restrictions existing in aggregation methods for their best
use.
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Summary

This thesis is devoted to the problem of strategic behavior in voting and de-
velops mathematical models of manipulation in several directions, each con-
sidered by a separate chapter. We reveal how the type of public information
and voters’ view of incentives of others influences manipulability of rules and
studied the question of the safety of group manipulation.

The first question under consideration is coalitional manipulability under in-
complete information. Coalition members are assumed to have identical pref-
erences and all voters possess some information about a real preference profile
from an opinion poll held before voting. We consider 5 different types of poll
information functions. Manipulability is defined as the probability that in a
randomly chosen preference profile there exists a coalition which has an in-
centive to manipulate under a given type of poll information. We calculate
the degree of coalitional manipulability for 3 alternatives and the number of
voters from 3 to 15 for different types of information and compare it with indi-
vidual manipulability values. We study asymptotic behavior of manipulability
for plurality and Borda rule under 1Winner and Winner-PIFs theoretically and
prove that for 1Winner-PIF coalitional and individual manipulability of scor-
ing rules coincide.

Suppose that manipulation is done by a group of voters who have the same
preferences. If a voting result is more preferable for voters of this group pro-
vided that they all use the same strategy (report the same insincere preference),
then each of them has an incentive to manipulate. However, due to the lack of
information or communication some of group members may not manipulate.
If there is a chance that they will become worse off in case only a subset of
the whole group manipulates, then manipulation is unsafe. For several voting
rules we find necessary and sufficient conditions on the numbers of voters and
alternatives which allow for an unsafe manipulation or which make manipu-
lation always safe.

Finally, we study individual manipulation under incomplete information and
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different assumptions about voters’ beliefs about behavior of others. Since
voters do not know preferences of others exactly, there is an uncertainty about
the situation they are in. As earlier, incomplete information is modelled by
poll information functions (PIFs). Voters that have an incentive to manipulate
under PIF π are called π-manipulators. We consider three behavioral models.
In the first model incentives to manipulation do not depend on other voters’
incentives. In the second model each π-manipulator takes into account that
all other π-manipulators strategise, and in the third model that only a subset
of them do so. Therefore, the uncertainty about a situation is combined with
uncertainty about other voters’ actions. With the help of computations we
reveal how the type of information and behavioral model influence the relative
manipulability of 12 social choice rules. In theoretical results, we state and
prove some propositions about the inheritance of zero manipulability from
one model to another. And, finally, we prove that there is a certain number of
voters starting from which manipulability of a scoring rule is zero with public
information about a winner after tie-breaking.
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