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Abstract

Division of available resources among interested agents by taking into account and
consolidating their individual choices has been a fundamental aspect of human survival
mechanisms from the very beginning. In the current times also, world harmony hinges on the
fact that the land is divided fairly across countries and each of the participating countries
perceive the division to be fair to themselves. If this perception of fairness is absent, it often
results in devastating wars and widespread chaos. From routine events like splitting the
dinner bill to more crucial setting like matching organ donors to patients, algorithms for
computing desirable allocations are highly solicited. This thesis discusses two dimensions of
desirability among allocations—fairness and efficiency. The contribution of this thesis can be
broadly divided into the following three parts:

1. First, we study the computational complexity of finding fair (approximately
envy-free/equitable) allocations in various settings and for each of them, identify the
domain restrictions where computational tractability holds. We also study the existence
and complexity of these fairness notions in conjunction with efficiency notions.

2. Second, we quantify the loss in the various welfare measures due to the fairness
constraints (approximately envy-free or equitable) and present tight bounds on the
price of minimizing envy and the price of equitability. Rather than focussing on a single
welfare measure, we give tight bounds for generalized p-mean welfares. We also
identify structured instances where no price has to be paid in terms of welfare.

3. Third, we propose novel concepts of Secure and Abundant allocations, which in
addition to being a relaxation of Consensus Allocations (Simmons and Su, 2003), also
capture elements of human psychology molded and influenced by the perspectives of
others.
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Chapter 1

Introduction

“Can the values which individual members of society attach to different

alternatives be aggregated into values for society as a whole, in a way that is both

fair and theoretically sound?"

- Amartya Sen, Collective Choice and Social Welfare

“Mirror, mirror on the wall, who is the fairest of them all?"

- The Queen, Snow White and the Seven Dwarfs

1.1 Resource Allocation

Division of available resources among interested parties by taking into account and
consolidating their individual choices has been a fundamental aspect of human survival
mechanisms from the very beginning. In the current times also, world harmony hinges on the
fact that the land is divided fairly across countries and each of the participating countries
perceive the division to be fair to themselves. If this perception of fairness is absent, it often
results in devastating wars and widespread chaos.

From routine events and logistics like splitting dinner bills among a group of friends, deciding
rent among flatmates (Gal et al., 2016; Velez, 2018; Edward Su, 1999), matching medical
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1. Introduction

graduates to hospitals (Roth and Peranson, 1999), assigning students to public schools,
splitting assets in bankruptcy, divorces or inheritance, allocating computational resources
such as CPU, memory, storage among users and applications – to more critical life or death
situations like – matching organ donors to patients, conducting kidney-exchanges (Freedman
et al., 2020), dividing vaccines among states (Bertsimas et al., 2020), and dispute resolutions or
land division among countries (recall the dramatic division of Indian subcontinent into India
and Pakistan) – in all of the above problems, the aim is to arrive at a collective social decision
by aggregating individual preferences and hence fair and efficient ways to do the same are
highly solicited.

What is to be allocated? The set of resources could be of two types—one that can be
assigned in fractions and the other that can not be assigned in fractions. The former are called
divisible resources (like cake, rent, time-slots, land) and the latter indivisible resources (like
organs, houses, university seats etc).

Figure 1.1: A subset of real-world settings (house allocations [114], splitting dinner
bills [89], inheritance division [116], organ transplantation [145], among others) where
fair division algorithms are solitcited.

What is a good way to consolidate different and probably orthogonal opinions into a
collective decision that is acceptable by all the parties and agents involved is a burning
question that social choice theory asks. There are two kinds of issues to be addressed here:
one qualitative, which entails analyzing what constitutes a ‘desirable’ allocation, and another
algorithmic, which entails how to find such an allocation. This study comes under what is
called the interdisciplinary field of computational social choice, which aggregates individual
preferences and opinions into a collective outcome such as an allocation. Due to the
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involvement of several rational agents, it is sometimes referred to as Multi-Agent Resource
Allocation (MARA). This thesis takes a step forward in providing answers to some of the
intriguing questions revolving around resource allocations, mainly revolving around
indivisible resources.

What constitutes a desirable allocation? The two pillars of the desirability of an allocation
are (a) Fairness (b) Efficiency (Social Welfare). The former entails that an individual feels that
justice is being done to her while the latter ensures that the collective welfare of the society
as a whole is maximized. We elaborate on these aspects in Section 1.2.1 and Section 1.2.2 and
before that, we formalize the problem setting.

Figure 1.2: Desirable Allocations (Image Credits: [74])

1.2 Preliminaries

An instance of the fair division problem is specified by a tuple ⟨N, M,V⟩, where
N = {1, 2, . . . . , n} is a set of n ∈ N agents, M = {g1, . . . , gm} is a set of m indivisible items,
and V := {v1, v2, . . . , vn} is the valuation profile consisting of each agent’s valuation
function. For any agent i ∈ N, her valuation function vi : 2M → N ∪ {0} specifies her
numerical value (or utility) for every subset of items in M. Further, an instance is normalized

if for some constant W, vi(M) = W for all agents i. Normalization is a standard assumption
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in fair division literature which ensures that utility functions or resources are on a common
scale, making it easier to compare the fairness of different allocations.

Valuation functions. A valuation function v is said to be:

• monotone if agents prefer more number of items, that is, for any two subsets of items S
and T such that S ⊆ T, we have v(S) ⩽ v(T),

• monotone submodular (or simply submodular) if it is monotone and for any two subsets of
items S and T such that S ⊆ T and any item g ∈ M \ T, we have v(S ∪ {g})− v(S) ⩾
v(T ∪ {g})− v(T),

• additive if for any subset of items S ⊆ M, we have v(S) = ∑g∈S v(g),

• binary submodular (or matroid rank) if it is submodular and for any subset S ⊆ M and
any item g ∈ M \ S, we have v(S ∪ {g})− v(S) ∈ {0, 1}, and

• binary additive if it is additive and for any item g ∈ M, v({g}) ∈ {0, 1}.

The containment relation between these classes is as follows:

Figure 1.3: Containment of valuation functions.

Allocation. A bundle refers to any (possibly empty) subset of goods. An allocation Φ :=
(Φ1, . . . , Φn) is a partition of the set of items M into n bundles; here, Φi denotes the bundle
assigned to agent i.

1.2.1 Fair Allocations

Envy-Freenes. Given an allocation, one basic thing to desire is that every agent is happy with
her own share and does not wish to swap what she got with someone else. This is captured
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by the notion of envy-freeness (Gamow and Stern, 1958; Foley, 1967), wherein, no agent envies
anyone else. In other words, everyone deems their own bundle of greater value than anyone
else’s bundle. The formal definition follows.

Definition 1.1. (Envy-Freeness.) An allocation Φ = (Φ1, . . . , Φn) is said to be envy-free (EF)
if for any pair of agents i, k ∈ N, we have vi(Φi) ⩾ vi(Φk).

Envy-freeness, as a fairness concept, is too much to ask for, in the sense that it is
non-existential. There are instances where no allocation is EF. Given that the resources can be
scarce and a substantial number of agents may compete for the same resource, hence, it is not
always possible to achieve perfect envy-freeness. This has led to several workarounds in
terms of relaxations (See Section 1.3). One such popular relaxation is envy-freeness up to one

item (EF1) (Lipton et al., 2004; Budish, 2011) where an envious agent is no longer envious
upon a hypothetical removal of some item from the envied agent’s bundle. That is, the envy is
there but it is bounded up to the removal of at most one item from each envied bundle. While
EF1 surpasses the non-existence of EF and always exists, it can be argued that it is a fairly
weak fairness notion in the sense it considers it fair to hypothetically remove a highly-valued
item (like a diamond or a car) from the envied agent’s bundle. This may not really serve the
purpose since that item is the main cause of envy and it is unfair to ignore it. A stricter
relaxation of envy-freeness up to any good (EFX) is thus considered. (Gourvès et al., 2014;
Caragiannis et al., 2019b). An allocation is said to be EFX if the envy of an agent towards
another agent can be eliminated by the hypothetical removal of any good in j’s bundle.
Formally,

Definition 1.2. (Relaxations of Envy-Freeness.) An allocation is said to be envy-free up to
one good (EF1) if for any pair of agents i, k ∈ N such that Φk ̸= ∅, there is an item g ∈ Φk such

that vi(Φi) ⩾ vi(Φk \ {g}). Further, an allocation is envy-free up to any good (EFX) if for any
pair of agents i, k ∈ N such that Φk ̸= ∅, vi(Φi) ⩾ vi(Φk \ {g}) for any item g ∈ Φk.

Example 1.3. Below is an instance of a fair division problem where every agent values an item at

either 0 or 1. The highlighted allocation Φ corresponds to allocating {g1, g2, g3} to Alice, {g4, g5}
to Bob and the remaining item g3 to Carol. Note that Φ satisfies EF1 but it is not EF. Indeed, Carol
does not envy Alice, but she envies Bob. However, if she chooses to ignore the item g5 from Bob’s

bundle hypothetically, then she is no longer envious. Therefore, the envy in the system is subject to

removing at most one item from the envied bundle. Moving to EFX, as long as the valuations are
binary, and EF1 allocation also satisfies EFX property. So Φ is EFX. But this is not true in general.
Suppose Carol valued g5 at 2, then the same allocation no longer remains EFX. Indeed, the removal

5



1. Introduction

of g4 from Bob’s bundle does not get rid of the envy experienced by Carol.

g1 g2 g3 g4 g5 g6

Alice 1 1 1 0 0 0
Bob 0 0 0 1 1 1
Carol 0 0 0 1 1 1

Equitability. Another interpretation of fairness is that of equitability (Dubins and Spanier,
1961). This entails that no agent is discriminated and consequently, everyone derives equal
value from what they have received. Unlike envy-freeness, here, agents are not concerned if
they value the other bundle more, as long as the envied agent also derives the same amount of
utility as they do. Formally,

Definition 1.4. (Equitability.) An allocation Φ = (Φ1, . . . , Φn) is said to be equitable (EQ) if
for any pair of agents i, k ∈ N, we have vi(Φi) = vk(Φk).

Similar to EF allocations, an EQ allocation may not always exist. Likewise, the following
relaxations are proposed in the literature.

Definition 1.5. (Relaxations of Equitability.) An allocation is said to be equitable up to one
good (EQ1) if for any pair of agents i, k ∈ N such that Φk ̸= ∅, there is an item g ∈ Φk such

that vi(Φi) ⩾ vk(Φk \ {g}) (Gourvès et al., 2014; Freeman et al., 2019). Further, an allocation is

equitable up to any good (EQX) if for any pair of agents i, k ∈ N such that Φk ̸= ∅, vi(Φi) ⩾

vK(Φk \ {g}) for any item g ∈ Φk.

Note that the highlighted allocation in Example 1.3 neither satisfies EQ nor does it satisfy EQ1
(hence, EQX). Indeed, Carol’s utility falls behind Alice’s, even if she chooses to ignore an item
from the latter’s bundle. We remark here that EQ allocation may or may not exist but an EQ1
allocation always exists (under monotone valuations) and can be found efficiently by allocating
the least happy agent her most favorite remaining item.

1.2.2 Efficient Allocations

A canonical example of a perfectly envy-free and equitable allocation is to not allocate anything
at all. All the items are wasted. Indeed, no one is envious of anyone else as nobody owns
anything. In addition, everyone derives zero value from this trivial allocation, which although
makes it equitable but keeps it far from being an interesting allocation. This forces some sort
of efficiency notions to be introduced in order to avoid the wastage of resources.

Completeness andNon-wastefulness. One basic notion is that of completeness, which forces
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that every item must be allocated to somebody. Along similar lines, we would want to avoid
a situation where an item is allocated to an agent who does not value it. An allocation that
satisfies this property is called a non-wasteful allocation. The allocation in Example 1.3 satisfies
both completeness and non-wastefulness.

Utilitarian Social Welfare. Assuming that individual agents model their preferences using
valuation functions that map subsets of resources to numbers, Utilitarian Social Welfare is
defined as the sum of individual valuations. This is one way of measuring the quality of an
allocation from the viewpoint of the system as a whole. Although it seems attractive, it might
happen that there is one agent who values everything at a large number and hence, gets away
with all the items thereby maximizing utilitarian welfare. This forces everyone else to end up
with an empty bundle. Consider the allocation Φ in Example 1.3. For binary valuations, any
non-wasteful allocation also maximizes the utilitarian welfare. Therefore, Φ is optimal in that
sense. Consider a scenario where Alice valued all items at 1 each. Then, an equally optimal
allocation would be to give all the items to Alice. This implies that a utilitarian maximal
allocation alone does not distinguish how items are partitioned among the agents.

Egalitarian Social Welfare. An egalitarian society may want that to maximize what the
poorest person can get. This is captured by Egalitarian Social Welfare, defined as the utility
derived by the least happy agent. The allocation Φ in Example 1.3 is indeed an egalitarian
optimal allocation since at least one of the agents, Bob or Carol, must end up with a utility of
at most 1 under any allocation, hence, the egalitarian welfare is 1. Going beyond binary
utilities, it may happen that insisting on egalitarian maximality leads to a decrease in the
overall average utility. Suppose Alice had a value of 2 each for g4, g5, and g6, then allocating
any item to Bob or Carol will decrease the utilitarian welfare while not allocating any item to
either of them will decrease the egalitarian welfare.

Nash Social Welfare. Covering the sweet spot between average utility and minimum utility,
a widely acknowledged welfare notion is that of Nash Welfare (Nash Jr, 1950; Eisenberg and
Gale, 1959). It is defined as the geometric mean of the individual utilities. Again, note that
Φ in Example 1.3 maximizes Nash welfare as well. Observe that the Nash can only provide a
meaningful metric of social welfare if all individual utilities are non-negative.

Generalized p-meanwelfares. Onemay view all of the above welfare notions as special cases
of the p-mean welfare (where p ≤ 1), which is defined as the generalized p-mean of utilities
of agents under an allocation. Note that p-mean of a set of numbers v1, v2, . . . vn is defined as(

1
n ∑i∈N vp

i

)1/p
. Note that for p > 1, the p-mean optimal allocation tends to concentrate the
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distribution among fewer agents. Consider the simple case of two identical agents with additive
valuations who value each of two goods at 1. Then for p = 2, an allocation that gives both
items to a single agent is optimal, which is contrary to the spirit of desirable allocations. Hence,
we focus on p ⩽ 1. Moreover, p-mean welfare functions with p ≤ 1 correspond to functions
characterized by a set of natural axioms like the Pigou-Dalton transfer principle (Moulin, 2004).
Hence, they are an axiomatically relevant set of welfare functions.

Below, we present the formal definitions of the above discussed welfare notion

Definition 1.6. (Welfare measures.) Given an allocation Φ,

• Utilitarian social welfare is the sum of utilities of agents under Φ, i.e.,

Wutil(Φ) := ∑i∈N vi(Φi).

• Egalitarian social welfare is the utility of the least-happy agent under Φ, i.e.,Wegal(Φ) :=
mini∈N vi(Φi).

• Nash social welfare is the geometric mean of utilities of agents under Φ, i.e.,WNash(Φ) :=
(Πi∈Nvi(Φi))

1/n
, and

• for any p ∈ R, the p-mean welfare is the generalized p-mean of utilities of agents under

Φ, i.e.,Wp(Φ) :=
(

1
n ∑i∈N vp

i (Φi)
)1/p

.

1.2.3 Trade-offs Between Fairness and Efficiency

Figure 1.4: If there is an allocation in the intersection, the price of fairness is said to
be one. If there no allocation in the intersection, the price is strictly greater than one.

Price of Fairness. Trade-offs are inevitable when we pursue multiple optimization objectives
that are typically not simultaneously achievable. Quantifying such trade-offs is a fundamental
problem in computation. How much Utilitarian welfare is lost when we insist on having
envy-free allocations? How much Nash welfare is lost when we insist on having equitable
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allocations? For any welfare notion W and fairness notion F , it is an imperative
consideration to address the loss in W because of the constraint F . This is captured by the
price of fairness, as the “worst-case ratio” of the maximum welfare (measured byW ) that can
be obtained by any allocation, to the maximum welfare that can be obtained among
allocations that are fair according to F . Formally,

Definition 1.7. Let In,m denote the set of all fair division instances with n agents and m items.

LetA(I) denote the set of all allocations in the instance I, and further letAF (I) denote the set of
all allocations in the instance I that satisfy the fairness notion F . Then, the price of fairness (PoF)
of the fairness notion F with respect to the welfare measureW is defined as:

PoF(F ,W) := sup
I∈In,m

maxΦ∗∈A(I)W(Φ∗)
maxΦ∈AF (I)Wp(Φ)

.

For instance, consider Example 1.3. The highlighted allocation maximizes the utilitarian
welfare. But this is clearly not EQ1 as Carol violates EQ1 with respect to Alice. In order to
arrive at an EQ1 allocation, at least one item from Alice’s bundle must be allocated wastefully
to either Bob or Carol. Therefore, the maximum possible welfare under any EQ1 allocation in
this instance is 5 while there is an allocation that achieves maximum welfare of 6. Therefore,
for this instance, the price of EQ1 is 6/5.

It is known from the work of Caragiannis et al. (2019b) that under additive valuations, any
allocation that maximizes the Nash social welfare satisfies EF1. Thus, the price of fairness of
EF1 with respect to Nash social welfare is 1. Further, Barman et al. (2020b) shows that the price
of EF1 with respect to utilitarian welfare is O(

√
n) for normalized sub-additive valuations. We

elaborate on price of fairness in Section 1.3.

1.3 Recent Progress

The fair division of indivisible items has garnered substantial attention in the past two decades.
Unlike the divisible setting, where an EF allocation always exists, the indivisible items may
not admit EF allocations under very simple settings like more agents and fewer items. Not
only that, deciding whether an instance admits an EF allocation is computationally intractable
even for very special and structured instances. In particular, it is NP-Complete even for binary
valuations (Aziz et al., 2015) and weakly NP-Complete for two agents and identical valuations
(Lipton et al., 2004).
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Envy-Freeness and its Relaxations. The story does not end here with non-existence and
intractability, but it paves way for a host of approximation algorithms and work-arounds.

• Hypothetical Removal of an item. Recall that if an envied agent can get rid of her
envy by a hypothetical removal of any item from the envied bundle, then such
allocations are EFX. This is a strong way to approximate EF, as also remarked by Plaut
and Roughgarden (2020) that “Arguably, EFX is the best fairness analog of envy-freeness
of indivisible items.” There has been a significant amount of effort to explore the EFX
landscape, gradually understanding the simpler setting of the small number of agents.
Plaut and Roughgarden (2020) first showed that EFX exists for two agents and general
valuations. Chaudhury et al. (2020a) extended this to three agents but additive
valuations. For an arbitrary number of agents, Babaioff et al. (2021) showed that EFX
exists for binary submodular valuations while Bu et al. (2023) extended it to general
binary valuations.

Although the intriguing question of whether an EFX allocation exists for additive
valuations stands open, there have been natural relaxations of EFX, discussed as follows.

– Partial EFX Allocations (EFX with Charity). Caragiannis et al. (2019a) initiated
the study of donating items to charity. Here, the property of completeness of
allocations is relaxed in order to achieve EFX and the set of unallocated items are
said to be donated to charity. Chaudhury et al. (2020b) showed that there always
exists an EFX allocation with at most n− 1 unallocated items. Berger et al. (2022)
strengthened it to at most n− 2 unallocated items for arbitrary agents and at most
1 unallocated item for 4 agents. Follow-up works contributed to decreasing the
number of unallocated items and simplifying the previous algorithms (Akrami
et al., 2022; Chaudhury et al., 2021; Berendsohn et al., 2022).

– Approximate EFX Allocations. Plaut and Roughgarden (2020) showed that
1/2-EFX allocations always exist for sub-additive valuations but it may require
exponential time (in the number of items) to compute one. Chan et al. (2019)
strengthened the above result by giving a polynomial time algorithm for the same.
Amanatidis et al. (2020) improved the approximation guaranttee from 0.5 to 0.618.
Barman et al. (2024b) further imporved upon the approximation ratio in terms of
an instance-dependent parameter that upper bounds, for each indivisible good in
the given instance, the multiplicative range of nonzero values for the good across
the agents.
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– Epistemic EFX Allocations. Caragiannis et al. (2023) defined and proved the
existence and polynomial-time computability of epistemic EFX for additive
valuations where for every agent, there exists a way to shuffle the goods of the
other agents such that she does not envy any other agent up to any good. Akrami
and Rathi (2024) extended the existence to general monotone valuations.

EF1, the other relaxation of envy-freeness, weaker than EFX, comes with both
existential and computational guarantees. An EF1 allocation can be found in
polynomial-time by simple algorithms like Envy-Cycle Elimination and Round-robin.
The former was proposed by Lipton et al. (2004) long before EF1 was formally defined
by Budish (2011), and works for monotone valuations. Here, at every step, an
unallocated item is given to an unenvied agent. Intially, every agent is unenvied, so the
choice is arbitrary. At any point, if all the agents are envious, then there must be a
directed cycle in associated envy graph, which is a directed graph in which each agent
points to everyone it envies. The algorithm then breaks the cycles by a cyclic exchange
of bundles and once all cycles are removed, the envy graph must have a source node
with any outgoing edges. The agent corresponding to this node represents an unenvied
agent, who can now receive the next unallocated item. Notice that the allocation is EF1
by construction, as every envious agent can choose to ignore the last added item in the
envied bundle. Round-robin is a simpler algorithm that finds an EF1 allocation for
additive valuations. It first fixes an ordering of the agents and, according to this
ordering, it lets one agent at a time choose their favorite available item until all items
have been allocated. To see why it is EF1, consider an agent i who comes before another
agent j in the ordering. Then, i never envies j since it gets a chance to pick first in every
round and stays ahead of j. On the other hand, j might be envious towards i but note
that once i picks her first item say g, from that point onwards, j becomes the agent who
gets to pick first. Therefore, j can choose to remove g and be envy-free. Therefore, the
allocation is indeed EF1.

• Minimizing the envy. Apart from the relaxation in terms of the hypothetical removal
of some items from the envied bundle, minimizing the degree of envy when envy-free
allocations do not exist is also of interest. The degree of envy can be captured by
various measures, for instance, the number of envious agents, the aggregate amount of
envy experienced by all the agents, and so on. Chevaleyre et al. (2007) proposed a
framework for defining the degree of envy of an allocation based on the degree of envy
among individual agents, where the envy of agent i against j is
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max(0, vi(Φj) − vi(Φi)), while Nguyen and Rothe (2013) defined the amount of envy
as max

(
1,

vi(Φj)

vi(Φi)

)
. Shams et al. (2021) focussed on choosing the allocation that is fair in

the sense of the distribution of the envy among agents and used ordered weighted
average of the envy vector as the measure of envy.

• Subsidy. The use of money for the fair division of indivisible items is well-studied
(Svensson, 1983; Tadenuma and Thomson, 1993; Maskin and Feiwel, 1987; Edward Su,
1999; Klijn, 2000). Recently, Halpern and Shah (2019) showed that envy-freeness can be
achieved with a small amount of money (divisible good) and gave a strongly polynomial
time algorithm to compute the minimum subsidy. Brustle et al. (2020) strengthened the
above result by showing that a subsidy of at most one dollar per agent is sufficient to
guarantee the existence of an envy-free allocation (where the marginal value of each
item is at most one dollar). Choo et al. (2024) looked at house allocations with minimum
subsidy.

• Sharing items. Finding envy-free allocations with a bounded number of shared items
was first studied by Brams and Taylor (1996) with two agents, additive utilities and at
most 1 sharing. Sandomirskiy and Segal-Halevi (2019) showed that such an envy-free and
fractionally Pareto optimal allocation with the smallest possible number of shared items
can be found in polynomial time. Recently, Goldberg et al. (2022) considered consensus
splitting (a partition of items into k subsets such that every subset is valued at same value
by all the agents) and showed that computing a partition with at most (k− 1)n sharings
can be done in polynomial time. Bismuth et al. (2024) provided bounds on number of
sharings for various special cases. They showed that given the number of agents n and
shared items s, for binary valuations, the existence of a fair allocation for n agents with
s shared objects can be decided in polynomial time by a mixed integer linear program
with a fixed number of variables. They also showed the hardness of finding envy-free
allocations for non-degenerate instances.

• Hiding items. Hosseini et al. (2020) defined the notion of information withholding
(envy-freeness upto k hidden items (HEF-k)) where an agent can choose to reveal only
partial information about her allocated bundle. An agent can hide (or withhold) some of
the goods in her bundle and reveal the remaining goods to the other agents. They show
that deciding the existence of HEF-k is NP-Complete even for identical valuations, but
in practice, envy-freeness can be achieved by hiding only a small number of items.
Hosseini et al. (2023a) empirically demonstrated through crowd-sourcing experiments
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that allocations achieved by withholding information are perceived to be fairer than
EF1. Recently, Bliznets et al. (2024) considered the problem of finding the largest
number of items to allocate to the agents in the given social network so that each agent
hides at most one item and overall at most k items are hidden such that no one envies
her neighbors. They showed that the problem admits an XP algorithm and is W[1]-hard
parameterized by k.

Equitability and its Relaxations. Unlike EFX, it is known that EQX always exists for
additive valuations and can be computed in polynomial time as well. It boils down to giving
the least happy agent her most favorite remaining item (Gourvès et al., 2014). (They used the
term near-jealousy freeness). As far as practicality, empirical relevance, and perceived fairness
are considered, experiments suggest that equitability (or inequality aversion) is a preferable
criterion over envy-freeness (Herreiner and Puppe, 2009, 2010; Gal et al., 2016). Freeman et al.
(2019) explored EQX in conjunction with efficiency notions. They showed that an EQX and
PO allocation always exists for strictly positive valuations but may fail to exist in the presence
of 0-valued items. They gave a pseudo-polynomial time algorithm that always returns an
EQ1+PO allocation for strictly positive valuations. They showed the (strong) hardness of
finding an EQ+PO/EQX+PO/EQ1+PO allocation.

Freeman et al. (2020) did a similar analysis in the setting of chores (where agents derive
negative value from the items). They demonstrate a set of differences between the goods and
chores settings in the context of equitability. They showed that in the chores setting, Leximin
does not even guarantee equitability up to one chore while in goods setting, leximin
simultaneously satisfies EQX and PO. While they provide a pseudo-polynomial time
algorithm for EQ1+PO, they showed that EQX+PO may no longer exist for chores. Given this
non-existence, they defined equitability up to one/any duplicated chore (DEQ1/DEQX)
properties. These entail that pairwise equitability can be restored by duplicating a chore from
a poor agents’s bundle and adding it to the rich agent’s bundle, rather than only removing a
chore from the less happy agent’s bundle. They showed that the “duplicate” relaxations in
conjunction with PO are satisfied by the Leximin allocation. Note that this is an existential
result and the computational complexity of DEQX+PO allocations remains open.

Sun et al. (2023b) studied equitability for both goods and chores in conjunction with
utilitarian and egalitarian welfare. They studied the computational complexity of deciding the
existence of an EQX/EQ1 and welfare-maximizing allocation and computing a welfare
maximizer among all EQX/EQ1 allocations. Recently, Barman et al. (2024a) considered EQX
for the mixed instances with both goods and chores and showed that computing an EQX
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allocation (even without any efficiency requirement) in the mixed setting is weakly NP-Hard
even for two agents and strongly NP-hard for more agents. They also extended the existence
of EQX allocations to monotone valuations (not necessarily additive) and gave a
pseudo-polynomial time algorithm for the same.

Fairness, Efficiency and Price of Fairness. Given the existence of EF1 allocations, a natural
question is to find EF1 allocations in conjunction with efficiency notions. Caragiannis et al.
(2019b) showed that any allocation that has the maximum Nash welfare is guaranteed to be
EF1 and PO. However, maximizing the Nash social welfare over integral allocations is an
NP-hard problem (Nguyen and Rothe, 2014). Additionally, the problem is known to be
APX-hard Lee (2017). Therefore, although Nash guarantees EF1 and PO, it does not provide a
tractable algorithm to find such an allocation. To that end, (Barman et al., 2018a) gave a
pseudo-polynomial algorithm to find an allocation that is both EF1 and Pareto-optimal. It
constructs integral Fisher markets wherein specific equilibria are not only efficient, but also
fair. They also present a polynomial-time 1.45-approximation algorithm for the Nash social
welfare maximization problem. Aziz et al. (2023b) looked at EF1 in conjunction with
maximizing utilitarian welfare. They showed that among the utilitarian-maximal allocations,
deciding whether there exists one that is also EF1 and among the EF1 allocations, computing
one that maximizes the utilitarian welfare are both strongly NP-hard problems when the
number of agents is variable. They design pseudo-polynomial time algorithms when the
number of agents is fixed.

The study of efficiency loss due to fairness constraints in the fair division setting was initiated
by Bertsimas et al. (2011) and Caragiannis et al. (2012), who studied the notion of
envy-freeness, proportionality, and equitability in divisible and indivisible goods and chores.
Later, Bei et al. (2021) considered fairness notions whose existences are guaranteed and
presented lower-bounds of O(

√
n) and upper-bound of O(n) on the price of EF1, which was

then closed by Barman et al. (2020b) who showed that the price of envy-free up to one item
and of (1/2)-approximate maximin share are both O(

√
n). Sun et al. (2023a) studied the

efficiency loss of EF and its relaxations for chores. Sun et al. (2023b) studied the price of
equitability with respect to both utilitarian and egalitarian welfare for indivisible goods and
chores. Nicosia et al. (2017) studied efficiency loss due to maximin, Kalai–Smorodinski, and
proportional fairness. Kurz (2016) highlighted the impact of the number of items on the price
of fairness.
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1.4 Our Contributions

The contribution of this thesis can be broadly divided into three parts:

1. First, we study the computational complexity of finding fair (approximately envy-free
or equitable) allocations in various settings and for each of them, identify the domain
restrictions where computational tractability holds. We analyse the tractability of EF
allocations on graphical valuations and also present parameterized algorithms for the
same. We analyze minimizing three different measures of envy in the context of house
allocations and give algorithms for extremal instances, single-peaked and single-dipped
instances. We study approximately equitable allocations for the setting of mixtures of
goods and chores. We also study envy-freeness and equitability coupled with efficiency
notions for each of the above areas.

2. Second, we quantify the loss in the various welfare measures due to the fairness
constraints (approximately envy-free or equitable) and present bounds, tight up to a
constant factor, on the price of minimizing envy and the price of equitability. We
analyze the price of fairness from the perspective of agents-types—a smaller parameter
than the number of agents. Rather than focussing on a single welfare measure, we give
tight bounds for generalized p-mean welfares. We also identify structured instances
where no price has to be paid in terms of welfare.

3. Third, we propose novel concepts of Secure and Abundant allocations, which in
addition to being a relaxation of consensus allocations (Simmons and Su, 2003), also
capture elements of human psychology molded and influenced by the perspectives of
others.

We now highlight the main results below.

1. Computational Complexity of finding (approximately) Envy-free or Equitable

allocations.

• Envy-Free Allocations: Chapter 2 deals with allocation instances with graphical
valuations. We show that, for graphical valuations, when agents have binary utilities
over the items, the existence of EF allocations can be determined in polynomial time.
In contrast, we show that allowing for even slightly more general utilities leads to
intractability even for graphical valuations. In particular, we show that it is NP-
complete to determine if an instance admits an EF allocation even when all agents
value every item at either 0, 1, or d. This motivates other approaches to tractability,
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1. Introduction

and to that end, we show that the problem is FPT when parameterized by the vertex
cover number of the graph associated with the utilities when the number of distinct
utilities is bounded.

Chapter 3 focusses on instances with low degeneracy (which is a property of the
valuation matrix that captures the degree of similarity in the valuations). We show
that for an arbitrary number of agents, finding an EF and fractionally Pareto optimal
allocation remains hard even for instances with low degeneracy, establishing the
limitation of degeneracy as a parameter.

Chapter 4 focuses on minimizing envy in the context of house allocations. We give
a comprehensive picture of finding an allocation that minimizes the number of
envious agents, the maximum envy experienced by any agent, and the total envy
experienced by all the agents together. We give efficient algorithms for all the
above three measures for extremal instances (Elkind and Lackner, 2015). Beyond
extremal instances, we show the hardness of the first two measures even when
every agent values at most two houses. Towards parameterized complexity, we
formulate ILPs that lead to fixed-parameter tractability with respect to the
parameter number of agent-types/house-types. We also show that all three
measures admit linear kernel when parameterized by the number of agents, using
the expansion lemma. We also give efficient algorithms for minimizing the number
of envious agents for single-peaked and single-dipped preferences.

• Equitable Allocations: Chapter 6 focusses on equitability as the fairness measure
in the context of mixed items. That is, agents could derive either positive or
negative utility from a subset of items. Equitability for scenarios involving only
goods (Freeman et al., 2019) and only chores (Freeman et al., 2020) had been
previously explored, but its implications in a mixed setting remained unknown. To
that end, for mixed items, we exhibit the hardness of finding an EQ1 allocation
with non-normalized valuations. We complement the hardness by identifying
some tractable restricted domains (objective valuations, {−w, 0, w}-valuations
and such).

2. Bounds on Price of EFX, Price of Minimizing Envy and Price of Equitability.

• Price of EFX: Section 2.3 discusses the price of EFX (for graphical instances) with
respect to Utilitarian, Egalitarian, andNashwelfare. For binary graphical valuations,
the "price of EF" relative to utilitarian social welfare is 1. Since EFX allocations are
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possibly wasteful, we also address the question of determining the price of fairness
of EFX allocations in the context of graphical valuations. We show that the price
of EFX with respect to utilitarian welfare in the context of graphical valuations is
one for binary utilities, but can be arbitrarily large for instances where all items are
valued at 0, 1, or d. We also show the hardness of deciding the existence of an EFX
allocation which is also welfare-maximizing and of finding a welfare-maximizing
allocation within the set of EFX allocations.

• Price of Minimizing Envy: Section 4.9 discusses the price of minimizing envy
(in three different ways) with respect to Utilitarian welfare in the context of house
allocations. We show that the price of minimizing envy is one for m = n and binary
valuations. Also, for such instances, there is an allocation (efficiently computable)
that simultaneously minimizes the number of envious agents, the maximum and
total envy, while maximizing Utilitarian welfare. Moreover, we show that for m >

n, the price of fairness is Θ(n) for all the three envy optimization objectives.

• Price of Equitability: Chapter 5 discusses the price one has to pay in terms of
welfare in order to arrive at approximately equitable allocations. We give tight
bounds on the ‘price of equitability’ with respect to generalized p-mean welfare.
We also identify instances for which no price has to be paid for any p-mean
welfare measure (like doubly normalized binary valuations and identical binary
submodular valuations).

3. New notions of Secure and Abundant allocations

• Generalized Consensus Allocations: In the context of divisible items, the
existence and complexity of “exact divisions” (where all agents agree on the value
of the division) has been well-studied, usually referred to as consensus halving
(Simmons and Su, 2003). In practice, a perfect consensus may, in general, be too
much to ask for. A natural relaxation to ask for an approximate consensus: where
all agents agree that all bundles have a value in some specified range, say [p, q]. In
Chapter 7, we show that even in the setting of additive binary valuations, the
problem of dividing m items into a collection of k bundles so that all k bundles are
valued at either 0 or 1 is NP-complete. Moreover, even “almost” exact equitable
divisions, where all but some c bundles are valued in the range [p, q] is hard.
Therefore, we consider other ways of relaxing the demands we make from a
perfectly equitable consensus allocation. Here, we treat a common valuation as a
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1. Introduction

target lower or upper bound, instead of an exact goal. Now we consider allocations
where all external valuations of any bundle are: (a) at least the base value; and (b)
at most the base value. The former is called a Secure allocation while the latter is
called an Abundant allocation. These concepts relate also to the quality of the
valuations from a “user experience” perspective. Secure allocation captures the
fact that everyone wants to feel validated/secure by the opinions of others. That is,
the sense of security for an individual is linked to how much other agents
appreciate her possessions. If an agent owns a bundle that she values highly but
that everyone else deems worthless, then it is natural for the agent to be unhappy
about the situation, or at any rate, be suspect about their own judgment. Likewise,
we also want to avoid situations where agents underestimate their own bundles,
which are captured by abundant allocations.

We show that both secure and abundant allocations always exist, but are not very
interesting on their own. For instance, allocating all the items to one agent who
values the entire bundle at the least values is trivially a secure but unfair
allocation. So, we couple these notions with capacity and welfare constraints. We
give efficient algorithms for extremal instances but show hardness for the general
binary valuations.
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Chapter 2

Envy-Free and Efficient Allocations for Graphical

Valuations

“If we can’t be certain of mathematical truths, can we be certain of anything?”

- Chris Bernhardt, The Birth of Computer Science

2.1 Introduction

As discussed in the Chapter 1, finding allocations that are envy-free is one of the gold standards
in allocation problems. This entails that no agent should feel envious of any other agent under
the allocation. That is, every agent should value her own allocated bundle at least as much
as it values anyone else’s bundle. The problem with such envy-free allocations is two-fold:
existential and computational. That is, they might not exist for many instances (say, when there
are more agents than items), and deciding whether they exist is computationally intractable
even for very special and structured instances. In particular, it is NP-complete even for binary
valuations (where agents value items at either 0 or 1) (Aziz et al., 2015) andweakly NP-Complete
for two agents and identical valuations (Lipton et al., 2004).

Motivated by these issues, in this work, we focus on envy-freeness in the context of graphical
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2. Envy-Free and Efficient Allocations for Graphical Instances

valuations. These are a recently introduced (Christodoulou et al., 2023) class of structured
valuations which are interesting because they admit EFX allocations even for any number of
agents. These are valuations where every item is valued by exactly two agents, lending a
(simple) graph structure to the utilities, where the agents are associated with vertices and
items with edges. Two agent-vertices are adjacent if and only if they value a (unique) common
edge-item, represented by the edge between them. These kind of valuations capture scenarios
where the number of agents with interest in any specific item is limited. Such valuations may
arise in situations where agents only value the items that are geographically closer to them.
For instance, in real estate allocation, potential buyers might only be interested in properties
within a certain distance from their workplace or amenities; employees might value office
spaces closer to their teams and likewise (Christodoulou et al., 2023).

Related Work.

Several special cases and approximations have been extensively studied in the fair division
literature to understand the extent of tractability of EFX allocations: binary valuations (Bu
et al., 2023); bounded number of agents (Plaut and Roughgarden, 2020; Chaudhury et al.,
2020a; Akrami et al., 2023); and bounded number of unallocated items (Caragiannis et al.,
2019a; Berger et al., 2022). Graphs have also been associated with fair division in various
contexts and models. Allocations, where items allocated to each agent form a connected
subgraph in a provided item graph, have been studied (Bouveret et al., 2017; Deligkas et al.,
2021a; Bilò et al., 2022). In a different model, Payan et al. (2023) looked at graph-EFX which
requires that an agent, represented by a vertex, satisfy EFX only against her adjacent vertices.
Our work is closely aligned with that of Christodoulou et al. (Christodoulou et al., 2023) who
introduced graphical valuations and showed the hardness of deciding the existence of an EFX
orientation. Following this, Zeng and Mehta (Zeng and Mehta, 2024) characterized that graphs
with chromatic number at most 2 admit EFX orientations for any given valuations, while
graphs with chromatic number strictly greater than 3 may not admit such orientations for all
valuations. They also characterized EFX orientability for binary valuations.

The quantification of welfare loss that is inevitable due to the fairness constraint has also been
of interest in the literature. To capture this, the notion of price of fairness was proposed in the
works of Bertsimas et al. (2011) and Caragiannis et al. (2012). Since then, various works have
given bounds for the price of proportionality, envy-freeness, EF1, EFX, equitability, EQ1,
maximum Nash welfare, and more (Aumann and Dombb, 2015; Bei et al., 2021; Sun et al.,
2023a,b; Bhaskar et al., 2023).
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2.1 Introduction

Our Contributions.

We highlight our main contributions below and put them in context with the already-known
results.

• We show that an EF allocation if it exists, can be found efficiently for graphical valuations
where agents have binary ({0, 1}) valuations over the items (Theorem 2.5). This is in
contrast to the intractability of EF allocation for binary utilities in general.

• We show that if we allow for even slightly more general valuations than binary, for
instance, {0, 1, d}-valuations for some constant d, the problem again becomes
intractable (Theorem 2.6).

• The above hardness motivates a parameterized approach towards tractability and
towards that, we present a fixed-parameter tractable

1 algorithm for finding EF
allocations for graphical instances with bounded number of distinct utilities, where the
parameterization is in terms of the minimum vertex cover of the associated graph G
(Theorem 2.8).

• We show that if there is an EF allocation for any graphical instance, then there is also an
EF allocation that does not ‘waste’ any item, that is, it does not assign an item to an agent
who derives 0 value from it. This shows that if there is an EF allocation, then there is
an EF orientation of the graph G (Theorem 2.1). This result stands in contrast to the fact
that an EFX allocation always exists but an EFX orientation may not exist (Christodoulou
et al., 2023). In terms of the price of EF, this implies that for {0, 1}-graphical valuations,
there is no loss in the welfare while achieving EF allocations, whenever they exist.

• Christodoulou et al. (2023) showed that EFX allocations not only always exist but can
be found efficiently for graphical valuations. But this comes with a sacrifice in terms
of welfare. In particular, there are cases where any EFX allocation must assign items
to agents for which they are irrelevant (0-valued). In this work, we quantify the loss of
welfare while achieving EFX allocations and show that for {0, 1}-graphical instances, the
price of EFX for Utilitarian (sum of agents’ utilities) welfare is 1 (Theorem 2.9). That is,
restricted to binary graphical valuations, there is no loss in any of the welfare notions
and an EFX allocation that maximizes the respective welfare can be found efficiently.
On the other hand, we show that for slightly general valuations than binary, that is, for
{0, 1, d}-valuations, there are instances with a huge loss in the utilitarian welfare and

1An algorithm that runs in time f (k)poly(n, m) where f is some computable function of the parameter k.
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2. Envy-Free and Efficient Allocations for Graphical Instances

consequently, price of EFX shoots up to ∞ (Theorem 2.10).

• On the computational side, we show that for general graphical valuations, finding EFX
allocations that also maximize utilitarian welfare is NP-Hard (Theorem 2.11). It follows
that finding awelfare-maximizing allocationwithin the set of EFX allocations is also hard.

Graphical Allocation Instance.

For standard fair allocation terminologies, we refer to Section 1.2. A graphical fair allocation
instance I = {G = (V, E),V} takes as input an undirected, simple graph G and a valuation
function V . The set of vertices V in G corresponds to n agents and the set of edges E in G
corresponds to m items to be allocated. We will often use the terms “items” and “edges”
interchangeably because of this correspondence. Every agent only values a subset of the
incident edge-items. In addition, since an edge is incident on exactly two vertices, an
edge-item is valued by exactly two agents. Note that every pair of agents value at most one
edge together, the one which is incident on both of them. A {0, 1}-graphical instance is one
such that vi ∈ {0, 1} ∀ i ∈ N. Given a graph G, an orientation OG is an allocation with the
additional property that every edge is assigned to one of the two endpoints. A directed graph
that directs the edges of G towards the vertex that receives the edges is called an orientation

graph of G. Note that every orientation corresponds to a complete allocation. An allocation is
an orientation if it assigns the edges to the incident vertices. We say that an orientation
satisfies a property if the corresponding allocation satisfies that property.

2.2 Envy Free Allocations

Although it is known that EFX allocations always exist on graphical valuations Christodoulou
et al. (2023), an EF allocation may not exist on graphical instances as well, as illustrated by a
simple example of a graph consisting of only one edge. Whichever incident vertex receives the
edge, the other one is bound to be envious. We show that it is possible to determine if an EF
allocation exists in polynomial time for {0, 1}-graphical valuations, and in the event that the
instance admits an EF allocation, such an allocation can be found in polynomial time. Before
that, we present a series of structural results. The following result is in contrast to the EFX
fairness, where the existence of an EFX allocation does not guarantee an EFX orientation but
any EF allocation does guarantee an EF orientation.

Theorem 2.1. Given a graphical allocation instance, there is an EF allocation if and only if there
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2.2 Envy Free Allocations

is an EF orientation.

Proof. An orientation is EF if the corresponding allocation is EF, so the reverse direction holds.
We argue the forward direction.

Suppose there is an EF allocation Φ for the given instance, which does not correspond to any
EF orientation. We assume that everyone values at least one item, otherwise the agent can be
removed from the instance. Since Φ is not an orientation, there must be some edges allocated to
vertices that are not incident on them. All such edges are allocated wastefully as an agent does
not value an edge that is not incident on itself. Consider the re-allocation Φ′ such that all such
wastefully allocated edges are re-allocated to one of their incident vertices, chosen arbitrarily.
Say, edge e = (ij) which was previously wastefully allocated to vertex k is now re-allocated to
i, WLOG.

Under Φ′, an agent who loses an item can not envy anyone, except possibly its neighbors, as
its utility does not decrease. Any agent can potentially be envious of only those agents that are
incident on it. Indeed, if i is not incident to k, then vi(Φ′k) = 0 as k only receives the edges
incident on itself, none of which are valued by i.

Moreover, suppose j is envious of i under Φ′ as i receives the edge e = (ij) that is also valued
by j. Notice that e is the only item that is valued by j in the bundle Φi since it is the unique
item valued by both i and j. Therefore, if j is envious of i, we have vj(Φ′i) = vj(e) > vj(Φ′j) ≥
vj(Φj). The last inequality holds as no agent’s utility decreases under the re-allocation Φ′.
This implies that j valued e more than the bundle it got under the EF allocation Φ. But then,
vj(Φj) < vj(e) ≤ vj(Φk), where k is the recipient of e under Φ. This implies that j was
envious of k in the allocation Φ, which is a contradiction to the fact that Φ was EF. Therefore,
all the agents are EF under Φ′, and Φ′ assigns edges to only incident vertices. Therefore, Φ′

corresponds to an EF orientation.

Lemma 2.2. Given any graphical allocation instance with general additive valuations, suppose

vmax
i is the maximum value any agent i has for any item. Then, a non-wasteful allocation is EF if

and only if i gets a utility of at least vmax
i ∀ i ∈ [n].

Proof. Let Φ be any EF allocation. Let vmax
i be the maximum value an agent i has for an edge

e. Suppose vi(Φi) < vmax
i , then clearly, e /∈ Φi. Let e ∈ Φj for some agent j. Then vi(Φi) <

vi(e) = vi(Φj). Therefore, i is envious of j which is a contradiction to the fact that Φ is EF.
Therefore, every agent i must get a utility of at least vmax

i under an EF allocation Φ. Conversely,
suppose every agent gets a utility of at least vmax

i under a non-wasteful allocation Φ. Since Φ
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2. Envy-Free and Efficient Allocations for Graphical Instances

g1 g2 g3 g4

a1 1 0 1 1
a2 0 1 0 0
a3 1 0 1 1

Table 2.1: An EF allocation that allocates an item wastefully.

is a non-wasteful allocation, it corresponds to an orientation in G. So every agent receives a
subset of edges that are incident on it. Consider an agent i. We have vi(Φi) ≥ vmax

i . Consider
any other agent j incident on i. If the edge e = (ij) ∈ Φj, then vi(Φj) = vi(e) ≤ vmax

i ,
else vi(Φj) = 0, as i does not value any edge incident on j except e. Also, for any agent j not
incident on i, vi(Φj) = 0 as i does not value any edge which is not incident on itself. Therefore,
we have that vi(Φi) ≥ vi(Φj) for all 1 ≤ i ̸= j ≤ n and hence the orientation is EF.

This gives us the following corollary.

Corollary 2.3. For graphical instances, if an agent i gets a utility of at least vmax
i under a partial

orientation OP, then i remains EF under any extension of OP.

In particular, for binary valuations, there is an EF allocation where every item is allocated to an
agent who values it at 1, therefore, we have the following result.

Corollary 2.4. For {0, 1}-graphical instances, the price of EF with respect to utilitarian social

welfare is 1.

Note that the above result is not true for binary valuations in general. Consider the instance in
Table 2.1. It is not a graphical instance as a1 and a3 value 3 items positively. An EF allocation
must allocate at least one item from {g1, g3, g4} wastefully. Indeed, if all of them are allocated
non-wastefully, then the agent who ends up receiving two of them is envied by the other one.
The highlighted allocation is one of the EF allocations.

We are now ready to present the algorithm for binary graphical instances.

Theorem 2.5. For {0, 1}-graphical instances, an EF allocation can be found efficiently, if it exists.

Proof. Consider an instance I of {0, 1}-graphical valuations. Since an EF allocation exists if
and only if there is an EF orientation (Theorem 2.1), we will construct an EF orientation if it
exists. For all asymmetric edges e = (ij), we orient them towards the incident agent who values
e at 1, say i. This does not create any envy in the graph as the only agent who values e is i.
We call such vertices i as special vertices since they remain envy-free under any completion of
the allocation and are not envied by anyone else. Once we orient all the asymmetric edges, we
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remove them from the graph. The edges which are valued at 0 by both end-points are oriented
arbitrarily and removed from the graph. This gives us a collection of connected subgraphs
H = {H1, H2, . . . Hk} such that all edges in H are symmetric and valued at 1 by both the
end-points. For each Hi ∈ H, we consider the following cases:

1. Hi is a tree. Then, V(Hi) = E(Hi) + 1. By pigeonholing, at least one agent, say i,
does not receive any edge item from E(Hi). Such a vertex i is always envious under any
allocation unless i is already a special vertex. In the former case, there is no complete
EF allocation. Otherwise, if there is a special agent i, then we root Hi either on i and
construct an orientation such that every vertex gets an edge item from her parent. This
way, everyone except i receives a utility of at least 1 from the edges in Hi and hence is
EF in any complete orientation. Also, i is EF since it is a special vertex.

2. Hi contains a cycle, say C = {u1, u2, . . . uc, u1}. We orient the edges (ui, ui+1) towards
ui and (uc, u1) towards uc. Then, every vertex in the cycle is EF as vi(Φi) ≥ 1 and
remains EF in any completion of this orientation (Corollary 2.3). Therefore, the edges
inside the cycle can be oriented arbitrarily. We now remove the cycle C from Hi, replace
it with a vertex c, and construct a spanning tree of Hi rooted at c. We then construct an
orientation that allocates every vertex in the spanning tree, except c, an edge from her
parent. This implies that every agent in the spanning tree except the root c ends up with
a utility of at least 1. All agents corresponding to the root c already had a utility of at
least 1. Since all the agents in Hi now have utility at least 1, therefore everyone is EF in
any completion of the partial orientation. Therefore, the remaining edges in Hi can be
oriented arbitrarily, and hence we get an EF allocation for Hi.

The algorithm loops over every Hi in H and if there is an EF allocation for every Hi, it
corresponds to a complete EF allocation (since vertices across components do not envy each
other). Else, if there is at least one Hi for which there is no EF allocation, then the algorithm
outputs that no complete EF allocation exists. This is true because an envious agent in Hi can
not be made EF by any of the edges in the other components, as it does not value them. This
settles our claim.

We now show in the following result that if we slightly generalize from binary to {0, 1, d}
graphical valuations, it becomes hard to decide if the graphical instance admits an EF allocation.

Theorem 2.6. Deciding whether an EF allocation exists is NP-Hard even for symmetric {0, 1, d}-
graphical valuations.
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2. Envy-Free and Efficient Allocations for Graphical Instances

Figure 2.1: A schematic of reduced instance in the proof of Theorem 2.6.

Proof. We present a reduction from Multi-Colored Independent Set (MCIS) (Fellows et al.,
2009), where given a regular graph G = (V1 ⊎ · · · ⊎ Vk, E), the problem is to decide if there
exists a subset S ⊆ V(G) such that G[S] is an independent set and |Vi ∩ S| = 1 for all i ∈ [k].
We construct the graphical instance as follows. All vertices in V(G) correspond to agents and
all edges in E(G) to items. Every agent v ∈ V(G) values her incident edges at 1. That is, all
edges in G are symmetric with a weight of 1. For every vertex partition Vi, we add a vertex-
agent wi adjacent to all the vertices in Vi. Every edge {(wi, v) : v ∈ Vi} is a symmetric edge
such that wi and v value it at d, where d is the degree of any vertex in the (regular) graph G.
This completes the construction. A schematic of this construction is shown in Figure 2.1. We
now argue the equivalence.

Forward Direction.

Suppose MCIS is a Yes-instance and there is an independent set S = {s1, s2, . . . sk} ⊆ V(G)

such that G[S] is an independent set and |Vi ∩ S| = 1 ∀i ∈ [k]. Then, we do the following
orientation of E(G) to get an EF allocation.

• {(si, wi) : i ∈ [k]} are oriented towards wi.

• {(v, wi) : v ∈ Vi \ {si}} are oriented towards v.

• {(si, v) : v ∈ N(si) \ {wi}} are oriented towards si.

• All the remaining edges are oriented arbitrarily.

Let Φ be the allocation corresponding to the above orientation. Then, uwi(Φwi) = d. Note
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that since all the other edge-items valued at d by wi are allocated to distinct agents in Vi, hence
uwi(Φj) ≤ d for any j ∈ V(G), so all agents {wi : i ∈ [k]} are envy-free. Similarly all
v ∈ Vi \ {si} have a utility of d each for Φv and a utility of at most d for any other bundle.
So, all such agents are envy-free. The remaining agents {si : i ∈ [k]} get a utility of d from
the d distinct edge-items (|N(si) \ wi| = d) valued at 1 each in their respective bundles. Note
that all si also value any other bundle at atmost d and hence {si : i ∈ [k]} are envy-free. This
implies that Φ is an EF allocation.

Reverse Direction.

Suppose there is an EF allocation Φ in the reduced instance. Under Φ, each of the w′is must get
at least one incident edge-item to be envy-free. Otherwise, uwi(Φi) = 0 but wi values every
bundle that ends up with any edge-item {(wi, v) : v ∈ V(G)} at d, and hence is envious.
Also, since there are only |Vi| − 1 edge-items valued at d by all the |Vi| agents in Vi, so by
pigeon-holing, there is at least one agent in every partition Vi, say si ∈ Vi, which does not end
up with a d-valued item. Since usi(Φwi) = d, therefore, si must get a utility of at least d from
the remaining items in order to be envy-free. This is feasible only if all the agents {si : i ∈ [k]}
get the respective d edge-items incident on them in the original graph G. This implies that
{s1, s2, . . . sk} must form an independent set in the original graph G. This settles the reverse
direction.

Given the hardness of finding EF allocation for {0, 1, d}-graphical valuations, we consider the
parameterized tractability in this context. On a positive note, we show that the problem admits
an FPT algorithm parameterized by the vertex cover number of the associated graph, which
is the size of the smallest vertex cover (a set of vertices that includes at least one endpoint of
every edge) of the graph. We will use the following classical result by Lenstra.

Theorem 2.7 (Lenstra (1983)). An integer linear programming (ILP) instance of size L with p
variables can be solved usingO

(
p2.5p+o(p) · (L + log Mx) log (Mx Mc)

)
arithmetic operations

and space polynomial in L+ log Mx, where Mx is an upper bound on the absolute value a variable

can take in a solution, and Mc is the largest absolute value of a coefficient in the vector c.

Theorem 2.8. Given a graphical allocation instance with a ‘bounded number of distinct utilities,

the problem of finding an EF allocation admits an FPT algorithm parameterized by the Vertex Cover

Number of the associated graph G.

Proof. We formulate an ILP where the number of variables is bounded by a function of the
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size of the minimum vertex cover of G. We will show that the ILP is feasible if and only if
there is an EF orientation in the allocation instance. Then, we invoke Theorem 2.7 to get a
feasible solution of the ILP, if it exists, and hence, get the desired FPT algorithm parameterized
by minimum vertex cover number.

Let B be the (bounded) set of distinct utilities. Let S be a minimum Vertex Cover of G and
|S| = k. We have that I = V(G) \ S is an independent set. We say that two vertices in I are of
the ‘same class’ Ci if they are incident to the same subset of vertices in S. This partitions I into
at most 2k classes, corresponding to the subsets of S. That is, I = {C1, C2, . . . C2k}. Further, for
each class Ci, we say that two vertices have the ‘same signature’ σi if they value the subset in
S in the same manner. That is, {u1, u2, . . . us} ∈ Ci have the same signature if their common
neighborhood {s1, s2, . . . st} ∈ S is valued by all of them at {v1, v2, . . . vt} such that vi ∈ B.
Since the degree of every vertex in I is at most k, this gives us at most |B|k many signatures
for every class. All vertices of the same signature in a class are said to be of the same type. In
aggregate, we have at most 2k · |B|k many types of vertices in I.

For each vertex u in a type T, there are 2d possible orientations of the edges incident on u,
where d is the degree of u in G. Note that d ≤ k, so there are at most 2k such orientations. We
say that an orientation is ‘good’ for the vertex u if it orients at least one of the highest-valued
edges of u towards it. We denote the set of good orientations as O.

Towards formulating the ILP, for every type T and a good orientation o, we create the variables
x(T, o), which denote the number of vertices in the type T that are oriented according to the
orientation o. Note that these are f (k) = (2k · |B|k) · 2k = 4k · |B|k many variables.

We first describe the constraints to ensure the envy-freeness of the vertices in the independent
set I. Let nT be the number of vertices in the type T. Any vertex is EF if and only if it gets
her highest valued edge oriented towards it (Corollary 2.3). Therefore, if the vertex u of type
T ends up in a good orientation, it is EF. To ensure this, we add the constraints as described in
Equation (2.1). Note that LHS of Equation (2.1) equals nT only when every vertex in the type T
is oriented according to some good orientation o. Indeed, if any vertex fails to end up in a good
orientation, then it is not counted in the sum and hence RHS is strictly less than nT , which then
violates the constraint.

Now consider a vertex i in S. Let v(i, T, o) denote the utility that an agent i ∈ S gets when
a vertex in type T is oriented according to the orientation o. Note that for a fixed orientation,
v(i, T, o) is a constant. If x(T, o) many vertices in type T are oriented according to o, then
the utility that agent i derives from the edge items across S and I from type T is precisely
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2.2 Envy Free Allocations

x(T, o) · v(i, T, o). To capture the utility that i gets from edges in E(S), we can do a brute-
force search on which edges are allocated to i (since there are at most (k

2) edges in E(S)). To
that end, we create binary variables xie which take value 1 if the edge e ∈ E(S) is allocated to i,
otherwise 0. These are at most g(k) = k · k2 many variables. And, the utility that i derives from
E(S) is precisely ∑e∈E(S) vi(e)xie. Equation (2.2) ensures that every edge in S is allocated to
at most 1 agent in S, while Equation (2.3) ensures that every edge in E(S) is allocated. Finally,
for i to be EF, it must get at least vmax

i utility under any allocation. This is captured by the
constraints in Equation (2.4).

∑
o∈O

x(T, o) = nT ∀ T (2.1)

∑
i∈S

xie = 1 ∀ e ∈ E(S) (2.2)

∑
i∈S

∑
e∈E(S)

xie = |E(S)| (2.3)

∑
e∈E(S)

vi(e)xie + ∑
T,o

x(T, o) · v(i, T, o) ≥ vmax
i ∀ i ∈ S (2.4)

x(T, o) ≥ 0 ∀ T & o ∈ O (2.5)

xie ∈ {0, 1} ∀ i ∈ S & e ∈ E(S) (2.6)

In aggregate, the number of variables created is f (k) + g(k).

We now argue the correctness of the ILP. LetO be the orientation that corresponds to the values
that x(T, o) takes in some feasible solution of the ILP. For every vertex in the independent set I,
Equation (2.1) ensures that it ends up in a good orientation, and therefore gets one of her highest
valued edges oriented towards itself under O. This ensures the envy-freeness of vertices in I.
The envy-freeness of vertices in S is ensured in Equation (2.4) via a brute-force search of an
orientation that gives every vertex in S her highest valued edge. Therefore, a feasible solution
to the ILP corresponds to an envy-free allocation of the original instance.

Conversely, suppose there is an EF allocation Φ in the original instance. Then, by Theorem 2.1,
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2. Envy-Free and Efficient Allocations for Graphical Instances

there is an EF orientation O. Let OI and OS be the restrictions of O for vertices in I and S
respectively. Since O is EF, we have that both OI and OS are good orientations. This implies
that there exist orientations under which every vertex ends up being in a good orientation.
Hence, the constraints 2.1 and 2.4, which loop over all the good orientations, are satisfied when
the variables x(T, o) and xie correspond to the orientationsOI andOS respectively. This implies
that the ILP is feasible and this settles our claim.

2.3 EFX and Welfare-Maximization

In this section, we discuss the price of EFX on graphical instances. Every graph may not admit
an EFX orientation but does admit an EFX allocation, so it must be the case that some welfare
is lost in the process of achieving EFX. We quantify this loss with respect to Utilitarian welfare.

Theorem 2.9. For {0, 1}-graphical instances, a non-wasteful EFX allocation always exists and

can be found in polynomial time. Therefore, the Price of EFX with respect to Utilitarian welfare is

1.

Proof. Consider an instance I of {0, 1}-graphical allocations. For all the asymmetric edges
e = (ij), we orient them towards the incident agent who values e at 1, say i. We call i a
special vertex, since i is now envy-free in any completion of this partial allocation and is also
not envied by anyone else. Once we orient all the asymmetric edges, we remove them from the
graph. The edges that are valued at 0 by both end-points can be allocated to the non-envied
agents arbitrarily at the end of the algorithm, so for now, we remove them from the graph and
consider a collection of connected subgraphs H = {H1, H2, . . . Hk} such that all edges in H
are symmetric and valued at 1 by both the end-points. For each Hi ∈ H, we consider the
following cases:

1. Hi is a Tree. Then, we claim that there is always a non-wasteful EFX allocation where
there is at most one envious agent. Since Hi is a tree, we have V(Hi) = E(Hi) + 1.
By pigeonholing, at least one agent, say i, does not receive any edge item from E(Hi).
Suppose there is a special agent i, then we root Hi on i and construct an orientation such
that every vertex gets an edge item from her parent. This way, everyone except i receives
a utility of at least 1 from the edges in Hi and hence is EF in any complete orientation.
Also, i is EF since it is a special vertex. This gives us a non-wasteful EF (hence EFX)
allocation such that every agent gets a utility of at least 1.

Suppose there is no special vertex in the tree Hi. Then there is no complete EF allocation.
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To find an EFX allocation, we root Hi on any vertex, say the least degree vertex i, and
construct an orientation such that every vertex gets an edge item from her parent. Note
that i leaves empty-handed and is envious of her neighbors in Hi. Since every envied
agent (precisely, the children of i in the tree Hi) gets exactly one edge item (precisely the
edge from i), the allocation is EFX.

2. Hi contains a cycle, say C = {u1, u2, . . . uc, u1}. This case is the same as Case 2 in the
proof of Theorem 2.5 and therefore a non-wasteful EF (hence EFX allocation exists) such
that every agent receives a utility of at least 1.

Therefore, we get a non-wasteful EFX allocation Φ. For {0, 1}-valuations, a non-wasteful
allocation is also utilitarian optimal, and hence Φ is also utilitarian optimal. Therefore, the
price of EFX is 1 in this case.

Theorem 2.10. The price of EFX with respect to Utilitarian welfare is unbounded even for

{0, 1, d}-graphical valuations.

Proof. We construct an instance where the price of fairness is a function of the highest degree of
a vertex in the graph. Consider a star graph G rooted at the vertex r which is incident to d many
leaf vertices. The root vertex r values each of the d incident edges at d. All the leaf vertices
value their incident edge at 1. A utilitarian welfare maximizing allocation gives all the edges
to r, generating a welfare of d2. Clearly, this allocation is not EFX since the envied agent r has
multiple items and every leaf agent violates EFX. Under any EFX allocation, r can not receive
more than 1 item, otherwise, the corresponding leaf vertex whose incident edge is allocated
to r, violates EFX. Therefore, the maximum welfare under an EFX allocation is d + (d − 1),
where one d-valued edge is allocated to r and the rest all (d− 1) edges are allocated to their
corresponding leaf vertices, valued at 1 by each of them. Therefore, PoFUM = d2

d+(d−1) >
d2

2d ≈
d. This implies that welfare loss can be as high as possible, and hence PoF is unbounded.

Theorem 2.11. Given an instance of graphical valuations, deciding the existence of a utilitarian

welfare-maximizing and EFX allocation (UM+EFX) is NP-Hard.

Proof. We present a reduction fromMulti-Colored Independent Set (MCIS), where given a
regular graph G = (V1 ⊎ · · · ⊎ Vk, E) with degree d, the problem is to decide if there exists a
subset S ⊆ V(G) such that G[S] is an independent set and |Vi ∩ S| = 1 for all i ∈ [k]. We
construct the graphical instance as follows. All vertices in V(G) correspond to agents and all
edges in E(G) to items. Every agent v ∈ V(G) values her incident edges at 1. That is, all edges
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2. Envy-Free and Efficient Allocations for Graphical Instances

Figure 2.2: A schematic of reduced instance in the proof of Theorem 2.11

in G are symmetric with a weight of 1. For every vertex partition Vi, we add a path of three
edges and four vertex-agents {w1

i , w2
i , w3

i , w4
i } such that wi

2 is adjacent to all the vertices in Vi.
All edges from w2

i to Vi are valued symmetrically at d by both end-points. The edge (w1
i , w2

i ) is
valued at 0 by w1

i and at 1 by w2
i . The edge (w

2
i , w3

i ) is valued at d by both w2
i and w3

i . Finally,
the edge (w3

i , w4
i ) is valued at d by w3

i and at 0 by w4
i . This completes the construction. A

schematic of this construction is shown in Figure 2.2. We now argue the equivalence.

Forward Direction.

Suppose MCIS is a Yes-instance and there is an independent set S = {s1, s2, . . . sk} ⊆ V(G)

such that |Vi ∩ S| = 1. Then, we do the following orientation of E(G) to get an allocation that
is welfare-maximizing and EFX.

• {(si, w2
i )} are oriented towards wi ∀ i ∈ [k].

• {(v, wi) : v ∈ Vi \ {si}} are oriented towards v ∀ i ∈ [k].

• {(si, v) : v ∈ N(si) \ {wi}} are oriented towards si ∀ i ∈ [k].

• {w1
i , w2

i } are oriented towards w2
i ∀ i ∈ [k].

• {w2
i , w3

i } & {w3
i , w4

i } are oriented towards w3
i ∀ i ∈ [k].
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2.3 EFX and Welfare-Maximization

Let Φ be the allocation corresponding to the above orientation. Then, by construction, every
edge is allocated to an agent who values it the most. Therefore, Φ is a (utilitarian) welfare-
maximizing allocation. We now argue that Φ also satisfies EFX. The agents w1

i and w4
i do not

value any item, so even though they are empty-handed under Φ, they do not envy any agent.
All the agents in Vi except si get a utility of d each and they value every other bundle at most
d, hence are envy-free. Likewise, w2

i is envy-free as it gets a utility of d + 1 and values every
other bundle no more than d. Also, w3

i gets all the edges it values, so there is no envy on her
part. Lastly, each si gets d of her incident edges valued at 1 each, deriving a value of d, and
hence they are envy-free. This implies that Φ is EF and hence, EFX.

Reverse Direction.

Suppose there is a welfare-maximizing allocation Φ which also satisfies EFX. Then because
Φ maximizes welfare, it must satisfy the following partial allocation: w3

i must receive both
her incident edges {w2

i , w3
i } & {w3

i , w4
i } as it values them highly at d, and {w1

i , w2
i } must be

allocated to w2
i as a utilitarian welfare maximizing allocation is also non-wasteful. This forces

w2
i to be envious of w3

i even after one item is removed from the envied bundle. Therefore, w2
i

must receive at least one item that it values at d incident to the partition Vi. This in turn forces
at least one vertex from Vi to violate EFX with respect to w2

i , hence it must receive at least d
utility from the remaining items. This is feasible only when it is allocated all her d incident
edges. Since this is true for at least one vertex in all Vi such that i ∈ [k], it must be the case
that all these k vertices form an independent set in G. This implies that MCIS is a yes-instance.
This concludes the argument.

We now present a polynomial-time reduction from deciding the existence of a
welfare-maximizing and EFX allocation (UM+EFX) to finding a welfare-maximizing allocation
within the set of EFX allocations (UM/EFX). Let w⋆ be the maximum utilitarian welfare (w⋆

can be computed in linear time by giving each item to an agent who values it the most). Now
suppose the latter problem can be solved in polynomial time. Then, let w be the maximum
welfare within EFX allocations. If w = w⋆, we have a “yes” instance of UM+EFX; else if
w ̸= w⋆, we have a “no” instance. Therefore, we get the following result.

Corollary 2.12. Given an instance of graphical valuations, finding a utilitarian welfare

maximizing allocation within the set of EFX allocations (UM/EFX) is NP-Hard.

We now discuss the complexity and the loss in the egalitarian welfare due to the EFX constraint.
The egalitarian welfare of an allocation Φ is defined as the minimum utility of any agent under
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2. Envy-Free and Efficient Allocations for Graphical Instances

Φ. We say that an allocation is Egalitarian Maximal (EM) if it maximizes the minimum utility of
any agent. In the following result, we exhibit the hardness of finding an egalitarian maximizing
allocation within the set of EFX allocations (EM/EFX).

Theorem 2.13. Given an instance of graphical valuations, finding an egalitarian welfare

maximizing allocation within the set of EFX allocations (EM/EFX) is NP-Hard.

Proof. We show that given a welfare threshold d, deciding the existence of an EFX allocation
with egalitarian welfare at least d is NP-hard. To that end, we exhibit a reduction fromMulti-
Colored Independent Set (MCIS). The construction is similar as in the proof of Theorem 2.6.

Forward Direction.

Suppose MCIS is a Yes-instance and there is an independent set S = {s1, s2, . . . sk} ⊆ V(G)

such that G[S] is an independent set and |Vi ∩ S| = 1. Then, we do the following orientation
of E(G) to get an EF allocation.

• {(si, wi) : i ∈ [k]} are oriented towards wi.

• {(v, wi) : v ∈ Vi \ {si}} are oriented towards v.

• {(si, v) : v ∈ N(si) \ {wi}} are oriented towards si.

• All the remaining edges are oriented arbitrarily.

Let Φ be the allocation corresponding to the above orientation. Then, for all agents a, we have
va(Φa) = d. By Lemma 2.2, Φ is an EF (hence, EFX) allocation. Therefore, there is an EFX
allocation with egalitarian welfare of at least d.

Reverse Direction.

Suppose there is EFX allocation with egalitarian welfare at least d. Then, every wi must receive
at least one of her incident edges to derive a utility of at least d. This implies that there is at least
one vertex v in every Vi does not get the edge (v, wi). In order to get a utility of at least d, each
of such vertices v must get all of her d incident edges in G. This is feasible if and only if they
form an independent set in G. Therefore, if there is EFX allocation with egalitarian welfare at
least d, then MCIS is a yes-instance and this settles the claim.

Corollary 2.14. For {0, 1}-graphical instances, the Price of EFX with respect to Egalitarian

welfare is 1.
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2.3 EFX and Welfare-Maximization

Proof. If the optimal egalitarian welfare is 0, then there is nothing to prove. Otherwise, consider
the case when the optimal egalitarian welfare is k > 0 and is achieved by the allocation Φ. We
have vi(Φi) ≥ k ∀ i ∈ [n]. If Φ is a wasteful allocation, then consider the re-allocation of all
wastefully allocated edges to one of her incident vertices, arbitrarily. Since this re-allocation
does not bring down the utility of any agent, it remains egalitarian optimal but now corresponds
to a non-wasteful allocation and hence, an orientation. By Lemma 2.2, we get that that this
orientation is EF, since vi(Φi) = k ≥ 1 = vmax

i ∀ i ∈ [n]. Therefore, we get an egalitarian
optimal EF (hence, EFX) allocation and this settles our claim.

Nash welfare is defined as the geometric mean of the utilities of the agents. We show below
that for binary graphical valuations, there is no loss in the Nash welfare as well.

Corollary 2.15. For {0, 1}-graphical instances, the Price of EFX with respect to Nash welfare is

1.

Proof. If the optimal Nash welfare is 0, then there is nothing to prove. Otherwise, consider the
case when the optimal Nash welfare is k > 0 and is achieved by the allocation Φ. Then, we
must have vi(Φi) ≥ 1 ∀ i ∈ [n]. Since every Nash optimal allocation is non-wasteful therefore,
Φ is a non-wasteful allocation and hence, an orientation. By Lemma 2.2, we get that that this
orientation is EF, since vi(Φi) ≥ 1 = vmax

i ∀ i ∈ [n]. Therefore, we get a Nash optimal EF
(hence, EFX) allocation and this settles our claim.

Since Nash optimal allocations can be found in polynomial time for general binary additive
valuations (Darmann and Schauer, 2015), we can find an EFX and Nash welfare maximizing
allocation in polynomial time.

We say that an allocation is a leximin allocation if, among all allocations, it lexicographically
maximizes the utility profile, that is, maximizes the minimum utility, subject to that
maximizes the second minimum, and so on. Clearly, leximin allocations are also egalitarian
maximal allocations. Moreover, for general binary additive valuations, the set of leximin and
Nash optimal allocations coincide Halpern et al. (2020), and hence a Nash optimal allocation is
also maximizes egalitarian welfare. Since Nash optimal allocations are also non-wasteful, they
also maximize the utilitarian welfare. This gives us the following result.

Corollary 2.16. For {0, 1}-graphical instances, an EFX allocation that maximizes Utilitarian,

Egalitarian, and Nash welfare always exists and can be found in polynomial time.
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2. Envy-Free and Efficient Allocations for Graphical Instances

2.4 Concluding Remarks.

We studied the complexity of finding envy-free allocations for graphical valuation and
quantified the loss of welfare in the process of achieving approximate (i.e, EFX) envy-freeness,
which was the original motivation for the study of the class of graphical valuations. We
believe there are several directions of interest for future work that build on our preliminary
line of inquiry here. For instance, for parameterized results, one could consider structural
parameters that are smaller than vertex cover. Extending the PoF discussion beyond binary
setting for other welfare notions would also be of interest. Finally, one might also generalize
the class of graphical valuations in many ways. One generalization is to allow graphs with
multiedges which then corresponds to instances where an item is liked by at most two agents
but a pair of agents together can derive positive value from more than one item. The
restricted setting of hypergraphs where every edge corresponds to multiple but same number
of vertices is also an interesting direction to pursue.
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Chapter 3

Fair and Efficient Allocations for Degenerate

Instances

“Mathematics leaves no room for argument. If you made a mistake, that was all

there was to it.”

- Malcolm X, The Autobiography of Malcolm X

3.1 Introduction

The non-existence of envy-free allocations has led to several notions of “workarounds”:
approximate envy-freeness (e.g, requiring allocations to be envy-free up to the removal of one
good (Budish, 2011; Lipton et al., 2004), or any good (Caragiannis et al., 2019b), or using
hidden goods (Hosseini et al., 2020)), subsidy (introducing money to compensate for
envy (Brustle et al., 2020)), donating items (this involves giving up on completeness, but to a
limited extent (Chaudhury et al., 2020b)), and sharing (wherein we allow for some goods to be
shared between agents (Bismuth et al., 2024; Sandomirskiy and Segal-Halevi, 2019)).

In this chapter, our focus is on the settings where introducing money is not feasible and
hypothetical removal or actual donation of goods is not desirable, which typically turns out to
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be the case when several high-valued goods are involved. In such scenarios, sharing goods
between agents appears to be the most reasonable of all workarounds, and the question of
interest is to find allocations that meet our goals of fairness and efficiency with minimum
sharing. We recall that finding complete envy-free allocations is hard already for the special
case of no sharing even with just two agents with identical valuations: indeed, the problem is
easily seen to be equivalent to Partition, a weakly NP-hard problem which asks if a set of
numbers can be split into two parts of equal sum.

In a recent development, Sandomirskiy and Segal-Halevi (2019) show that there is a sense in
which the case of identical valuations are in fact the “hardest” — they propose a notion of
degeneracy which captures the degree of similarity across agent valuations and argue that the
intractable cases are those that have a rather high degree of similarity. In retrospect, one might
argue that similar valuations signal high conflict, and this possibly contributes to making this
a hard scenario. We informally describe the notion of degeneracy here and refer the reader to
Section 3.2 for the formal definitions. We say that a set of goods are valued similarly by two
agents if the ratios of their values for all goods are the same (for example, two goods valued
at 10 and 500 by agent A and at 20 and 1000 by agent B would be considered similar). The
degree of similarity between two agents is one less than the largest number of goods that are
valued similarly by them. The degeneracy of an instance with n agents is the highest degree of
similarity across all pairs of agents. In particular, the degeneracy of an instance with identical
valuations is m− 1, and this is one extreme example. On the other end of the spectrum, the
degeneracy can be as small as zero, when all agents view all goods differently (more precisely,
no pair of goods is valued similarly by any two agents).

Informally speaking, we refer to the setting of low degeneracy, the ones where agent
valuations over goods are generally dissimilar, as a scenario involving amicable agents. Unlike
the case of identical valuations, we expect such valuations to invoke relatively “less conflict”.
One of the key results in Sandomirskiy and Segal-Halevi (2019) is that while finding EF
allocations remains hard even with two amicable agents, finding allocations that are both fPO
and EF is tractable for a constant number of amicable agents. In particular, the time to
compute such allocations was shown to be O(3

n(n−1)
2 dm

n(n−1)
2 +2), where d is the degeneracy

of the valuation matrix. We note that this running time is 3O(d)mO(1) for a constant number
of agents, and O(mO(1))1 for a constant number of agents and valuations of degeneracy at
most O(log m). In contrast, it was shown that the problem remains NP-hard for instances
that have high degeneracy (informally, those that are closer to having the structure of

1We remark that this is a strongly polynomial running time.
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instances with identical valuations) — specifically, if d is allowed to grow as a polynomial
function of m, then it is hard to check if there exists a fPO and EF allocation with zero
sharings even for instances with two agents.

Our Contributions.

The results of Sandomirskiy and Segal-Halevi (2019) nicely illustrate the influence of
degeneracy on the complexity of finding fPO and EF allocations. Building on this line of work,
we investigate the complexity from the perspective of the number of agents. For example, can
this running time be improved to (n + m)O(d), which would increase the realm of tractability
to scenarios with any number of agents and constant degeneracy, or more ambitiously,
O(2O(d) · (m + n)O(1)), which would make the problem tractable for instances with any
number of agents and degeneracy logarithmic in (n + m)? Our main contribution here is to
show that even the former goal is unlikely to be achievable: when the number of agents is
unbounded, the problem of finding allocations that are fPO and EF remains strongly

NP-complete for instances with degeneracy one, even for the specific question of allocations
with no sharings.

Our result also has consequences for the problem of finding EF allocations. We recall that the
problem of finding EF allocations is weakly NP-complete by a reduction from
Partition (Sandomirskiy and Segal-Halevi, 2019). It turns out that the arguments in the
reverse direction of our reduction do not require the allocation in question to be fPO. Since
the valuation matrix of our reduced instance happens to only have values that are bounded by
a polynomial function of n and m, we obtain a stronger hardness result for the problem of
finding complete EF allocations for instances with constant degeneracy.

We also revisit the algorithm for finding fPO+EF allocations from Sandomirskiy and Segal-
Halevi (2019). The algorithm relies on enumerating certain consumption graphs corresponding
to fPO allocations that fix the sharing structure of a potential solution, after which the task of
determining the exact proportions of sharingwhile respecting fairness constraints is outsourced
to an ILP formulation. It is shown (Sandomirskiy and Segal-Halevi, 2019, Lemma 2.5) that there
always exists a fPO allocation with at most (n− 1) sharings. We propose an alternate method
for generating the relevant consumption graphs that takes advantage of the upper bound on
the number of sharings upfront. This leads to a slightly different bound that leads to a better
exponential term at the cost of a worse polynomial factor. Although the difference in the bound
is not significant, we believe our approach lends additional understanding to the structure of

39



3. Envy-Free and Efficient Allocations for Degenerate Instances

class of graphs based on fPO allocations.

3.2 Preliminaries

Allocations and Sharing.

For standard fair allocation terminologies, we refer to Section 1.2. We elaborate on the ones we
use in this chapter as follows.

A bundle of objects is a vector b = (bj)j∈[m] ∈ [0, 1]m, where the component bj represents the
portion of gj in the bundle. The total amount of each object is normalized to one. An allocation

Φ, as previously, is a collection of bundles (Φi)i∈[n], one for each agent, with the condition
that all the objects are fully allocated. Note that an allocation can be identified with the matrix
Φ := (Φi,j)i∈[n],j∈[m] such that:

all Φi,j ≥ 0 and ∑
i∈[n]

Φi,j = 1 for each j ∈ [m].

Let j ∈ [m] be arbitrary but fixed. If for some i ∈ [n], Φi,j = 1, then the object gj is not shared
— it is fully allocated to agent ai. Otherwise, object gj is shared between two or more agents.
There are two natural measures quantifying the amount of sharing in an allocation Φ:

• The number of shared objects is given by the number of items that are shared:

#s†(Φ) =
∣∣ {j ∈ [m] : Φi,j ∈ (0, 1) for some i ∈ [n]

} ∣∣.
• The total number of sharings accounts for the number of times that an object is shared,
i.e:

#s⋆(Φ) = ∑
j∈[m]

(∣∣{i ∈ [n] : Φi,j > 0}
∣∣− 1

)
.

For allocations with no shared objects, both measures are zero, but they can differ by as much
as n− 2 in general. Note that the number of sharings is at least the number of shared objects,
since each shared object is shared at least once by definition. Unless mentioned otherwise, our
measure for “extent of sharing” in the computational questions that we will shortly define will
be the notion of the total number of sharings.
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Value and Utility.

For every i ∈ [n], j ∈ [m], vi,j denotes agent ai’s value for the entire object gj. In the setting of
additive utilities, the valuations naturally lead us to an utility function over bundles defined as
follows:

ui(b) = ∑
j∈[m]

vi,j · bj.

The matrix v = (vi,j)i∈[n],j∈[m] is called the valuation matrix; it encodes the information about
the preferences of agents and is used as the input of fair division algorithms. We use v⋆ to
denote the largest value in a valuation matrix v. We say that a class of inputs C has bounded
valuations if there exists a polynomial p(n, m) such that v⋆ ≤ p(n, m) for all instances in C .

We recall the notion of degeneracy that was proposed in (Sandomirskiy and Segal-Halevi, 2019).
To this end, we say that two goods gp, gq are valued similarly by a pair of agents i, j if there
exists a constant r such that:

vi,p · vj,q = vi,q · vj,p = r.

If all valuations in consideration are non-zero, then this is equivalent to the requirement that:

vi,p

vj,p
=

vi,q

vj,q
= r.

Note that any collection of goods valued identically by a pair of agentswould be pairwise similar
with respect to the agents in question, but this definition generalizes the notion of “identical”
to, roughly speaking, “identical up to a scaling factor”.

Now, let us define the similarity between a pair of agents i and j as:

sv(i, j) = max
r>0

∣∣{k ∈ [m] : vi,k = r · vj,k
}∣∣− 1.

Note that the similarity of a pair of agents captures the notion of the largest number of goods
that the agents value similarly when considered pairwise. This finally leads us the the notion
of degeneracy, which is defined as:
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3. Envy-Free and Efficient Allocations for Degenerate Instances

d(v) = max
i,j∈[n],i ̸=j

sv(i, j).

Valuations for which d(v) = 0 are called non-degenerate. Also, note that if any two agents
have the same valuations for all goods, then d(v) = m− 1.

Efficiency.

We now turn to notions of efficiency that will be relevant to our discussion. An allocation Φ is
Pareto-dominated by an allocation y if y gives at least the same utility to all agents and strictly
more to at least one of them. An allocation Φ is fractionally Pareto-optimal (fPO) if no feasible
y dominates it. The following lemma provides a complete characterization of fPO allocations.

Lemma 3.1 (Sandomirskiy and Segal-Halevi (2019), Lemma 2.3). An allocation Φ is fractionally

Pareto Optimal if and only if there exists a vector of weights λ = (λi)i∈[n] with λi > 0, such that

for all agents i ∈ [n] and goods p ∈ [m], if Φi,p > 0 then for any agent j ∈ [n],

λi · vi,p ≥ λj · vj,p

Also, we mention here a related and weaker notion of efficiency: an allocation Φ is discrete
Pareto-optimal if it is not dominated by any feasible y with yi,j ∈ {0, 1}.

ComputationalQuestions.

We conclude this section with the computational questions that we address in this chapter.
Our main focus is on the problem of determining a fair and efficient allocation that minimizes
sharing.

Formally, for a fairness concept α ∈ {EF, EQ, Prop} and an efficiency concept β ∈ {fPO, dPO},
the (α, β)-Minimal Sharing problem is the following. Given (A,G, v, t ∈ N) as input, the
question is if there exists an α, β allocation where the total number of sharings is at most t.

3.3 EF+fPO Allocations and Degeneracy

To prove Theorem 3.2, we will show a reduction from a structured version of Satisfiability
problem called Linear Near-Exact Satisfiability (LNES) which is known to be
NP-complete Dayal and Misra (2019). An instance of LNES consists of 5p clauses (where
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p ∈N) denoted as follows:

C = {U1, V1, U′1, V′1, · · · , Up, Vp, U′p, V′p} ∪ {C1, · · · , Cp}.

Wewill refer to the first 4p clauses as the core clauses, and the remaining clauses as the auxiliary
clauses. The set of variables consists of p main variables x1, . . . , xp and 4p shadow variables

y1, . . . , y4p. Each core clause consists of two literals and has the following structure:

∀ i ∈ [p], Ui ∩Vi = {xi} and U′i ∩V′i = {x̄i}.

Each main variable xi occurs exactly twice as a positive literal and exactly twice as a negative
literal. The main variables only occur in the core clauses. Each shadow variable makes two
appearances: as a positive literal in an auxiliary clause and as a negative literal in a core clause.
Each auxiliary clause consists of four literals, each corresponding to a positive occurrence of
a shadow variable. We will use ui, vi, u′i, and v′i to refer to the shadow variables in the main
clauses Ui, Vi, U′i , and V′i , respectively.

The LNES problem asks whether, given a set of clauses with the aforementioned structure, there
exists an assignment τ of truth values to the variables such that exactly one literal in every core
clause and exactly two literals in every auxiliary clause evaluate to true under τ. The main
result of this section is the following, and is established by a reduction from LNES.

Theorem3.2. (EF,fPO)-Minimal Sharing is NP-hard even when restricted to inputs with bounded

valuations, degeneracy one, and no sharing.

Proof. We reduce from LNES. Let

C = {U1, V1, U′1, V′1, · · · , Up, Vp, U′p, V′p} ∪ {C1, · · · , Cp}.

be an instance of LNES as described above.

We begin with a description of the construction of the reduced instance. For each main variable
xi we introduce three agents: {ai, āi, di}, and the goods {gi, ḡi, hi}. We refer to di as the dummy

agent associated with xi and ai and āi as the key agents associated with xi. Also, we refer to hi

as the trigger good and gi and ḡi as consolation goods.

For the shadow variables ui, vi, u′i, v′i, we introduce four agents: bi, ci, b′i , c′i which we simply
refer to as shadow agents and four goods: ri, si, r′i, s′i, which we refer to as the essential goods.
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3. Envy-Free and Efficient Allocations for Degenerate Instances

Finally, for each auxiliary clause Cj, we introduce the good f 1
j and f 2

j . These goods are called
backup goods.

Note that our instance consists of n = 7p agents and m = 9p goods. Thus the size of the
valuation matrix is N := 63 · p2. We let L = 4000 · p5. We will use A and G to refer to the set
of agents and goods that we have defined here.

Let w = (wi,j)i∈[n],j∈[m] denote the (7p× 9p) matrix whose entries are given by wi,j = (i−
1) ·m + j. Intuitively, we can think of these values as being small enough to be negligible, and
we will obtain our final valuation matrix by starting from w and “overwriting” some entries to
reflect the fact that certain goods are valued highly by certain agents. This is done to ensure
that the final valuation matrix has low degeneracy. We now describe the specific modifications
that we have to make to w.

Figure 3.1: The overall schematic of the construction in the proof of Theorem 1. The
entries depicted by a ⋆ indicate small values. In this example, the literal corresponding
to the agent bi, i.e., ui, belongs to the auxiliary clause Cj corresponding to the backup
goods f 1

j and f 2
j .

To this end, let us define another set of values given by w⋆ = (w⋆
i,j)i∈[n],j∈[m]. Let π : A → [n]

and σ : G → [m] be arbitrary but fixed orderings of the agents and goods, respectively.

• For i ∈ [p], we have that the dummy agent corresponding to the main variable xi has a
high value for the consolation goods gi and ḡi.
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w⋆
π(di),j

=

L if σ−1(j) ∈ {gi, ḡi},

0 otherwise.

• For i ∈ [p], we have that the first key agent corresponding to the main variable xi has a
somewhat high value for the consolation good gi and the essential goods ri and si, and a
high value for the trigger good hi.

w⋆
π(ai),j

=


L/3 if σ−1(j) ∈ {gi, ri, si},

L if σ−1(j) = hi,

0 otherwise.

• For i ∈ [p], we have that the second key agent corresponding to the main variable xi has
a somewhat high value for the consolation good ḡi and the essential goods r′i and s′i, and
also has a high value for the trigger good hi.

w⋆
π(āi),j

=


L/3 if σ−1(j) ∈ {ḡi, r′i, s′i},

L if σ−1(j) = hi,

0 otherwise.

• For i ∈ [p] the shadow agents have a high value for their associated essential goods and
the backup good which represents an auxiliary clause that contains the shadow variable
associated with the shadow agent. Formally, we have:

w⋆
π(bi),j

=

L if σ−1(j) ∈ {ri, f 1
ℓ , f 2

ℓ },

0 otherwise.

where ℓ is such that Cℓ is the unique clause that contains the shadow variable ui. The
valuations for wπ(ci),j, wπ(b′i),j

and wπ(c′i),j
are analogously defined, with ri being replaced

by si, r′i, and s′i, respectively, and ℓwould be such thatCℓ is the unique clause that contains
vi, u′i, and v′i, respectively.

The final valuations that we will work with are obtained by taking a point-wise max of the two
valuation matrices defined above with the following exceptions:

• Dummy agents continue to value the four essential goods associated with them at zero.
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• The shadow agent bi (respectively, ci) values continues to value the consolation good gi

and the essential good si (respectively, ri) at zero.

• The shadow agent b′i (respectively, c′i) values continues to value the consolation good ḡi

and the essential good s′i (respectively, r′i) at zero.

In particular, we propose the final valuation matrix v = (vi,j)i∈[n],j∈[m] as follows:

vi,j =



min(wi,j, w⋆
i,j) if π−1(i) = dk and σ−1(j) ∈ {rk, sk, r′k, s′k},

or π−1(i) = bk and σ−1(j) ∈ {gk, sk},

or π−1(i) = ck and σ−1(j) ∈ {gk, rk},

or π−1(i) = b′k and σ−1(j) ∈ {ḡk, s′k},

or π−1(i) = c′k and σ−1(j) ∈ {ḡk, r′k},

for any k ∈ [p]

max(wi,j, w⋆
i,j) otherwise.

For convenience, we say an entry of v is large if it is at least L/3 and is small otherwise. For
(i, j) which are such that vi,j is small, we introduce the notation εi,j to denote vi,j.

We ask if this instance admits an allocation with zero sharing. This completes the description
of the construction. From here, we first argue the equivalence of the instances and then turn to
demonstrating that the instance has degeneracy one. Note that the valuation matrix is clearly
bounded.

Forward Direction.

Let τ be a boolean assignment for the variables of the LNES instance that we start with. Based
on this, we will now propose an allocation Φ := (Φi,j)i∈[n],j∈[m]. For the formal expression of
the allocation, we introduce a set of compatible indices I which is initialized to ϕ and will be
developed further below. For all i ∈ p, we have the following:

• If τ(xi) = 1, then the first key agent ai gets {gi, ri, si}, the second key agent āi gets the
trigger good hi and the dummy agent di gets the consolation good {ḡi}. Based on this,
we let:

I = I ∪ {(π(ai), σ(gi)), (π(ai), σ(ri)), (π(ai), σ(si)),
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(π(āi), σ(hi)), (π(di), σ(ḡi))}.

• If τ(xi) = 0, then the first key agent ai gets the trigger good {hi}, the second key agent
āi gets {ḡi, r′i, s′i} and the dummy agent gets the consolation good {gi}. Based on this,
we let:

I = I ∪ {(π(āi), σ(ḡi)), (π(āi), σ(r′i)), (π(āi), σ(s′i)),

(π(ai), σ(hi)), (π(di), σ(gi))}.

• If τ(xi) = 1, then the shadow agents b′i and c′i get the essential goods that they value
highly, i.e, r′i and s′i. Based on this, we let:

I = I ∪ {(π(b′i), σ(r′i)), (π(c′i), σ(s′i))}.

• If τ(xi) = 0, then the shadow agents bi and ci get the essential goods that they value
highly, i.e, ri and si. Based on this, we let:

I = I ∪ {(π(bi), σ(ri)), (π(ci), σ(si))}.

Note that there are 2p shadow agents who have not been allocated any goods so far. It is easy to
check that these shadow agents correspond exactly to shadow variables x for which τ(x) = 1.
Since τ is a satisfying assignment for the LNES instance, we know that each auxiliary clause Cℓ

contains exactly two shadow variables that which evaluate to true under τ. Let µ(Cℓ) denote
the shadow agents corresponding to these shadow variables. Then, for each j ∈ [p], the goods
f 1
j and f 2

j are allocated arbitrarily, one each, to the two shadow agents in µ(Cj). In particular,
if µ(Cj) = {t1

j , t2
j } we let:

I = I ∪
{
(π(t1

j ), σ( f 1
j )) | j ∈ [p]

}
∪
{
(π(t2

j ), σ( f 2
j )) | j ∈ [p]

}
Thus, our final allocation is given by:

Φi,j =

1 if (i, j) ∈ I,

0 otherwise.
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We now argue that the allocation has the desired efficiency and fairness properties. We first
argue that the allocation is fPO.

Claim 3.3. The allocation Φ defined above is an fPO allocation.

Proof. By Lemma 1, the allocation will be fPO if there exists a vector of weights λ = (λi)i∈[n]
with λi > 0, such that for all agents i ∈ [n] and goods p ∈ [m], if Φi,p > 0 then for any agent
j ∈ [n],

λi · vi,p ≥ λj · vj,p

We propose the following weight vector:

λi =

3 if π−1(i) is a key agent,

1 otherwise.

Consider a key agent ai. Suppose ai gets the trigger good, that is, Φπ(ai),σ(hi)
= 1. In this case,

recall that hi is the only good allocated to the agent ai, in other words, for any j ̸= σ(hi), we
have Φπ(ai),j = 0. Then, since any other agent j ∈ [n] values hi at L or less, we have that for
any agent j who is not a key agent:

λπ(ai)
· vπ(ai),σ(hi)

= 3× L ≥ ε j,σ(hi)
= λj · vj,σ(hi)

.

Further, for the “partner” key agent, we have:

λπ(ai)
· vπ(ai),σ(hi)

= 3× L ≥ 3× L = λπ(āi)
· vπ(āi),σ(hi)

,

and for any other key agent j, we have:

λπ(ai)
· vπ(ai),σ(hi)

= 3× L ≥ 3× ε j,σ(hi)
= λj · vj,σ(hi)

.

On the other hand, suppose ai gets the bundle with a consolation good and two essential goods,
that is, suppose:

Φπ(ai),σ(gi)
= 1, Φπ(ai),σ(ri)

= 1, and Φπ(ai),σ(si)
= 1.

As before, recall that in this case, the only goods allocated to ai are {gi, ri, si}. Note that the
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dummy agent di is the only other agent who has a large value for gi and likewise, the shadow
agents bi and ci are the only other agents who have a large value for the goods ri and si,
respectively. Since these values are all at most L, we have, for any x ∈ {π(di), π(bi), π(ci)}
and y ∈ {σ(gi), σ(ri), σ(si)}:

λπ(ai)
· vπ(ai),y = 3× L

3
= L ≥ 1× L ≥ λx · vx,y,

and for any other agent j not accounted for above and any y ∈ {σ(gi), σ(ri), σ(si)}, we have:

λπ(ai)
· vπ(ai),y = 3× L

3
= L ≥ max(1, 3)× ε j,y = λx · vx,y.

The case of the key agent āi is symmetric to the discussion above. Now, consider the allocation
of goods for all the other agents:

• Every dummy agent gets a consolation good, which is valued at L by the dummy agent,
at L/3 by a key agent, and at a small number by any other agent.

• Every shadow agent either gets an essential good (which is valued at L by the shadow
agent, at L/3 by a key agent, and at a small number by any other agent), or a backup
good (which is valued at 2L by the shadow agent and three other shadow agents, and at
a small number by any other agent).

Since the weights λi are one for any i ∈ [n] who is not a key agent, it suffices to demonstrate
that these agents have been allocated a good that they value at least as much as any other agent
who is not a key agent, and at least three times as much the value ascribed by the key agent.
However, note that this is evidently true from the description above.

Therefore, by Lemma 1, the allocation is indeed fPO.

Next, we argue that Φ is an envy-free allocation.

Claim 3.4. The allocation Φ defined above is an EF allocation.

Proof. Recall that the instance has 2p key agents, p dummy agents, and 4p shadow agents. Note
that everyone values their own bundle at L, which is a large value. We argue that the allocation
is EF by case analysis.
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Between key agents.

Recall that, depending onwhether τ(xi) = 1 or 0, either Φ(π(āi),σ(hi))
= 1 or Φ(π(ai),σ(hi))

= 1,
that is, one of the two key agents ai or āi gets the trigger good hi. The bundle of the agent who
gets hi, is valued at L by the other key agent. But, she also values her own bundle (which
consists of two essential goods and one consolation good valued at L/3 each) also at L, so
there is no envy between them. Also, note that any two key agents ai and aj, corresponding
to two different main variables xi and xj do not envy each other, as the utility that they derive
from their own bundle is large, while their valuation of the other bundle would be small.

Between dummy agents.

Any two dummy agents di and dj get one of the consolation goods {gi, ḡi} and {gj, ḡj}
respectively, which they highly value. Since:

udi(bdi) = L≫ επ(di),⋆ = udi(bdj),

where ⋆ ∈ {gj, ḡj}, and:

udj(bdj) = L≫ επ(dj),⋆ = udj(bdi),

where ⋆ ∈ {gi, ḡi}, we conclude that they have little value for each others’ bundle, and so there
is no envy.

Between shadow agents.

The pair of shadow agents getting any essential good do not envy each other because of low
utility for each others’ bundle and high utility for their own. The pair of shadow agents getting
backup goods value their partner’s bundle either at L or at a small number. In any case, there
is no envy. Finally between a shadow agent i getting an essential good, and j getting a backup
good, note that the utility of i for j’s bundle is at most L, and the utility of j for i’s bundle is
small, and therefore there is no envy.
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Between key agents and dummy agents.

The dummy agent gets one of the consolation goods. Any key agent value these goods either
at L

3 or at a small value. In any case, di is not envied. On the other hand, di values the bundle of
the key agents either at L, which is equal to his value for his own bundle (when the key agent
ai gets a bundle of two essential goods and a consolation good — recall that the dummy agent
has a zero value for these specific essential goods) or at a small value (when the key agent ai

gets the trigger good or if the agents under consideration are either aj or āj for some j ̸= i).
Therefore, the key agents are also not envied by di.

Between key agents and shadow agents.

We claim that any shadow agent values the key bundles allocated to key agents at at most L.
Indeed, they have negligible value for trigger goods. Further, we claim that they have a total
value of at most L for bundles comprising of three goods. Indeed, there are only two possible
scenarios: either all goods have a negligible value for the shadow agent in question or the
bundle contains an essential good that the shadow agent values at L, in which case the value
that the agent would have for the other two goods is zero (by construction). Since all shadow
agents derive a utility L from their own bundle, these agents are not envious of any key agents.

On the other hand, the key agents clearly do not envy the shadow agents who get the backup
goods, as they have negligible value for all the backup goods. As for shadow agents whose
bundle contains essential goods, recall that a key agent values any essential good at at most
L/3, and her own bundle at L, so there is no envy between a key agent and shadow agents
whose bundles comprise of essential goods.

Between shadow agents and dummy agents.

All the dummy agents get a subset of the consolation goods, which carry negligible value for
the shadow agents. Likewise, all the shadow agents get a subset of the essential goods and the
backup goods, both of little value to the dummy agents. So they do not envy each other.

Reverse Direction.

For the discussion in the reverse direction, we say that an allocation is valid if it is EF and fPO
and involves no sharing. Let Φ := (Φi,j)i∈[n],j∈[m] be a valid allocation. First, we argue that Φ
must have a certain structure.
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We first claim that in the allocation Φ, any trigger good hi must be allocated to one of the
corresponding key agents {ai, āi}.

Claim 3.5. If Φ is a valid allocation, then:

max(Φπ(ai),σ(hi)
, Φπ(āi),σ(hi)

) = 1,

Proof. Suppose that the trigger good hi is not allocated to either ai or āi, who are the only two
agents who value it highly2. To compensate for the envy generated against the recipient of hi,
both of these agents must be given3 their associated bundle of consolation and essential goods,
i.e, ai gets {gi, ri, si} and āi gets {ḡi, r′i, s′i}. This makes the dummy agent di envious of both ai

and āi. Now there is no way to satisfy di, since the goods valued by her, gi and ḡi, are already
taken. This contradicts the fact that the allocation Φ is EF.

Next, we claim that every consolation good gi is allocated to either to the key agent ai or to
the dummy agent di. Likewise, the good ḡi is allocated to either to the key agent āi or to the
dummy agent di.

Claim 3.6. If Φ is a valid allocation, then:

max(Φπ(ai),σ(gi)
, Φπ(di),σ(gi)

) = 1 and max(Φπ(āi),σ(ḡi)
, Φπ(di),σ(ḡi)

) = 1.

Proof. We know from the previous claim that hi is allocated to one of the key agents, say ai. To
cater to now envious agent āi, she must be given the corresponding bundle {ḡi, r′i, s′i}. Now, if
the dummy agent di’s bundle does not contain the remaining consolation good gi, di will envy
āi, since all the other available goods carry a negligible value for di. Therefore, di’s bundle
must contain the good gi. The argument is analogous when hi is allocated to āi, and the claim
follows.

We now show that the consolation good gi is allocated to a key agent ai, then the shadow agents
bi and ci must be allocated backup goods.

2Notice that if all other agents had a zero value for the trigger good then it would be straightforward to obtain
a Pareto improvement here. However, recall that the other agents carry a small but non-zero value for the trigger
good. Our argument, therefore, relies on the fact that v is EF.

3Note that the choice of L ensures that even the sum of utilities of all goods that carry a small utility would be
significantly lower than L/3, and we use this fact implicitly in several arguments to say that certain allocations
are forced.
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Claim 3.7. Let Φ be a valid allocation where Φπ(ai),σ(gi)
= 1. Let Cx be the auxiliary clause

containing ui, and Cy be the auxiliary clause containing vi. Then, there exists ⋆ ∈ {1, 2} and
† ∈ {1, 2} such that:

Φπ(bi),σ( f ⋆x ) = 1 and Φπ(ci),σ( f †
y )

= 1,

Proof. If the key agent ai’s bundle contains gi, then from the proof of the previous claim we
know that her entire bundle consists of the goods {gi, ri, si}. Clearly, the shadow agents bi and
ci now envy ai. If bi is not allocated one of f 1

x or f 2
x then bi derives a utility of less than L from

her bundle, and therefore continues to envy ai. The argument for the claim that ci’s bundle
contains one of f 1

y or f 2
y is analogous, and the claim follows.

By symmetry, we also have that if the consolation good ḡi is allocated to a key agent āi, then
the shadow agents b′i and c′i must be allocated backup goods. We state the following without
proof since the argument is analogous.

Claim 3.8. Let Φ be a valid allocation where Φπ(āi),σ(ḡi)
= 1. Let Cx be the auxiliary clause

containing u′i, and Cy be the auxiliary clause containing v′i. Then, there exists ⋆ ∈ {1, 2} and
† ∈ {1, 2} such that:

Φπ(b′i),σ( f ⋆x ) = 1 and Φπ(c′i),σ( f †
y )

= 1.

Now observe that the two claims above account for the allocation of 2p backup goods among
2p distinct shadow agents. Let us call these shadow agents happy and the remaining shadow
agents unhappy. We claim that the bundle of every unhappy shadow agent must contain an
essential good — this is because these are the only highly valued goods left in the pool and are
the only way to eliminate the envy that the unhappy agents feel for the happy ones. Note that
every unhappy agent values the bundle of exactly two happy shadow agents.

Claim 3.9. Let Φ be a valid allocation. If Φπ(āi),σ(ḡi)
, then:

Φπ(bi),σ(ri)
= 1 and Φπ(ci),σ(si)

= 1.

On the other hand, if Φπ(ai),σ(gi)
= 1:

Φπ(b′i),σ(r
′
i)
= 1 and Φπ(c′i),σ(s

′
i)
= 1.
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Proof. This follows from the fact that in the first case, bi and ci are unhappy agents, and in
the second case, b′i and c′i are unhappy agents. For example, let Cz be the auxiliary clause that
contains ui. If the bundle of bi does not contain the essential good ri, then bi envies the happy
agents who have received the goods f 1

z and f 2
z . Observe that there is no fix for this envy since

all other goods carry negligible value for bi. The argument is analogous for the remaining three
cases.

Based on this, we propose the following assignment of truth values to the variables of the LNES
instance:

τ(xi) =

1 Φπ(ai),σ(gi)
= 1,

0 otherwise.

We extend this assignment to shadow variables in the natural way: if τ(xi) = 1, then τ(ui) =

τ(vi) = 1 and τ(u′i) = τ(v′i) = 0, while if τ(xi) = 0, then τ(ui) = τ(vi) = 0 and τ(u′i) =
τ(v′i) = 1. We now argue that τ is a satisfying assignment for the original LNES instance.

Suppose gi is allocated to ai, that is Φπ(ai),σ(gi)
= 1. We set τ(xi) = 1. This satisfies all

the clauses containing the literal xi, namely, Ui and Vi. Further, note that these clauses are
satisfied exactly once, since we also set τ(ui) = τ(vi) = 1 (recall that ui and vi appear in
these clauses with negative polarity). The other main clauses U′i and V′i are satisfied since we
set τ(u′i) = τ(v′i) = 0, and these clauses are satisfied exactly once as well, since xi appears in
themwith a negative polarity and we are in the case when τ(xi) = 1. The case when τ(xi) = 0
is analogous, and we see that all core clauses are satisfied exactly once by τ, as desired.

We now turn to the auxiliary clauses. Observe that τ(xi) = 1 if and only if Φπ(ai),σ(gi)
= 1,

that is, the key agent ai gets the consolation good gi. This implies that bi and ci are happy
agents. On the other hand, recall that we also set τ(ui) and τ(vi) to one. Similarly, it can be
argued that if τ(xi) = 0, then b′i and c′i are happy agents, and in this case, we had also set τ(u′i)
and τ(v′i) to one. So we conclude that all happy agents correspond to variables that evaluate
to one under τ. Along similar lines, it is easy to check that all unhappy agents who receive
essential goods as explained in the last claim correspond to variables that are set to zero under
τ.

Now consider an auxiliary clause Cℓ. Notice that f 1
ℓ and f 2

ℓ have been allocated to happy agents
that value these goods highly, so we know that Cℓ contains at least two variables that evaluates
to true. Now suppose there is some auxiliary clause that contains more than two variables that
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evaluate to true. This would imply the existence of more than 2p happy agents, which is a
contradiction.

Constant Degeneracy.

We now argue that the valuation matrix v of the reduced instance has degeneracy one. We
proceed by sketching the possible configurations of numbers that arise in 2× 2 submatrices of
the valuation matrix in a manner that draws attention to the case which witness a similarity
value of two. A more tedious case analysis that accounts for every pair of agents and every pair
of goods, but we omit that version of the argument for the sake of brevity. We first make some
observations:

• Note that for shadow variables that appear together in a single auxiliary clause, we have
two backup goods that are valued identically by the corresponding shadow agents. It is
easy to verify that there is no other pair of goods that these agents value similarly.

• Between a shadow agent bi and a dummy agent di, there is one good, namely si, that is
zero-valued for both these agents. It is also easy to check that there is no pair of goods
not involving si that these agents value similarly. This claim is analogous for agents ci,
b′i , and c′i considered along with di.

• Let εi,j, εi′,j, εi,j′ , εi′,j′ denote four small values from the matrix w. It is straightforward to
verify, by the structure of w, that εi,j × εi′,j′ ̸= εi′,j × εi,j′ .

It is easy to check that backup goods ( f 1
j , f 2

j ) constitutes amaximal pair of similar goods for the
pairs of shadow agents corresponding to shadow variables that appear in Cj. Also, between di

and bi (respectively, ci), we have that si (respectively, ri) along with any other good constitutes
a maximal pair of similar goods for these agents. Similarly, between di and b′i (respectively,
c′i), we have that s′i (respectively, r′i) along with any other good constitutes a maximal pair of
similar goods for these agents.

Now, we claim that other than the scenarios considered above, any pair of agents do not value
more than one good similarly. It is straightforward to verify that once the cases above are
excluded, for any agents i, j ∈ [n] and goods p, q ∈ [m], it holds that at least one of the entries
among vi,p, vi,q, vj,p, and vj,q is small and non-zero. We first deal with the case when all four
values are positive. Without loss of generality, let’s say that vi,p = εi,p is small. If this is the
only small value then the term vi,q · vj,p dominates. If there are two small values, then they are
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either distributed on either side of the cross product and it is easy to see4 that since the small
numbers are distinct then the cross products are not equal, and in the other case again the term
vi,q · vj,p dominates. If there are three small values then one term will clearly dominate the
other. Finally, if there are four small values then the claim follows from the properties of small
numbers as stated above.

It remains to discuss the case when some of the values can be zero, when considered to the
exclusion of the cases that have already been accounted for. In particular, note that we may
assume that no good is zero-valued for two agents, since the only situation in which this
happens is if we have a dummy agent and a shadow agent, a case that has already been
considered above. If there is exactly one zero value then it is easy to see that the cross product
in question is not equal. On the other hand, the only way to have two zero-valued goods is if
one agent values a pair of goods at zero each. Then, the other agent must have non-zero
values for both goods, and while the cross products are equal to zero, such goods are not
considered similar according to our definition. Finally, it is not possible for us to have three
zero-valued goods since this will force a situation where one good is zero-valued by two
agents, which has been ruled out already. This concludes our argument.

3.4 Consumption Graphs

In this section, we discuss bounds on the number of consumption graphs that can be associated
with a valuation v. For an allocation Φ, the allocation graph captures the structure of how the
goods are shared among agents. More formally, for any allocation Φ, the consumption graph

(CGz) associated with it is a bipartite graph with agents in one part and goods in another and
there is an edge between an agent i and a good j if and only if i gets a share of j under Φ, that
is, Φi,j > 0. These graphs are useful in the context of algorithms for the (α, fPO)-Minimal
Sharing problem for the following reason. If we can afford to “guess” the consumption graph
of the valuation that we are looking for, then it is possible to express the fairness constraints
usually as a ILP — indeed, the consumption graph already tells us how the goods are shared
between agents, and what remains to be addressed is the actual proportions, which can be
captured by variables which can then be subjected to whatever fairness constraints we are

4We remark that there is one edge case here for the situation when the large values in question are L/3 and L
and the small values are such that one is three times the other, but it is easy to check that even if these cases arise,
they contribute a maximal pair of similar goods and do not affect the degeneracy argument. It is also possible to
avoid the situation altogether by a careful ordering of the agents, but we omit the details here.
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interested in. It turns out that the number of variables that are required is bounded by 2(n− 1),
so this gives us an efficient algorithm when the number of agents is fixed.

Therefore, for a valuation v, it is useful to bound the number of fPO allocations with distinct
consumption graphs as a function of its degeneracy and n, m. This will control the expense of
the guess that we make before delegating the task of finding a specific allocation to an ILP. We
mention that this is the overall approach followed by Sandomirskiy and Segal-Halevi (2019),
and in this section, we only focus on the bound on the number of consumption graphs that
need to be enumerated: any improvement here automatically improves the running time of the
algorithm for computing EF+fPO allocations. While we obtain a slightly different bound (which
is tighter than the one in Sandomirskiy and Segal-Halevi (2019) under some circumstances), in
our discussion here our goal is to emphasize a slightly different way of looking at the set of
consumption graphs: our approach is a direct brute-force enumeration of all relevant structures,
as opposed to being recursive.

To this end, we first introduce some terminology. An object gk is called a good for agent ai if
vi,k > 0, and is called a bad if vi,k < 0. Further, following the definitions of Sandomirskiy
and Segal-Halevi (2019), we say that an object is a good if it is a good for at least one agent,
and is a bad if it is a bad for every agent. It is also called a pure good if it is a good for every
agent. Further, we say that an object gk is contentious for agents ai and aj if vi,k · vj,k > 0, i.e.,
both agents agree whether gk is a good or a bad. On the other hand, we say that an object is
non-controversial for agents ai and aj if vi,k · vj,k < 0 and useless if vi,k = vj,k = 0. Finally, for
an arbitrary but fixed “threshold” ti,j > 0, we say that:

• ai values gk strongly relative to the threshold ti,j if
|vi,k|
|vj,k|

> ti,j,

• ai is ambivalent about gk relative to the threshold ti,j if
|vi,k|
|vj,k|

= ti,j,

• ai values gk weakly relative to the threshold ti,j if
|vi,k|
|vj,k|

< ti,j.

Building on Lemma 3.1, we recall the following useful thresholding property characterizing fPO
allocations developed in Sandomirskiy and Segal-Halevi (2019). The following lemma basically
says that if there is a fPO allocation, then there is a choice of thresholds ti,j for every pair of
agents ai and aj which is such that:

• among the contentious objects gk which are goods, if ai values gk strongly relative to ti,j

then no part of gk is allocated to aj, while if ai values gk weakly relative to ti,j then no
part of gk is allocated to ai, and

• among the contentious objects gk which are bads, if ai values gk strongly relative to ti,j
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then no part of gk is allocated to ai, while if ai values gk weakly relative to ti,j then no
part of gk is allocated to aj.

This is formalized below.

Lemma 3.10 (Sandomirskiy and Segal-Halevi (2019), Corollary 2.4). For a fractionally Pareto-

optimal allocation Φ and any pair of agents ai ̸= aj, there is a threshold ti,j > 0 (ti,j =
λj
λi

from

Lemma 3.1) such that for any object gk:

• if gk is contentious for ai and aj (i.e, vi,k · vj,k > 0), then:

– if ai values gk strongly relative to ti,j, i.e,
|vi,k|
|vj,k|

> ti,j, we have Φj,k = 0 in case of a

good and Φi,k = 0 in case of a bad,

– if ai values gk weakly relative to ti,j, i.e, for for
|vi,k|
|vj,k|

< ti,j, we have Φi,k = 0 in case

of a good and Φj,k = 0 in case of a bad,

• if gk is non-controversial for ai and aj (i.e, vi,k · vj,k < 0), then an agent with negative value
cannot consume k.

In particular, ai and aj can share only objects gk that are useless or that both agents are ambivalent

about, that is,
vi,k
vj,k

= ti,j.

Based on this, we will now obtain the following alternate version of Proposition 3.8
in Sandomirskiy and Segal-Halevi (2019) for the number of consumption graphs associated
with fPO allocations that have at most (n− 1) sharings.

Proposition 3.11. For every fixed number of agents n ≥ 2, the number of all fPO graphs

CG(v) := {CG(Φ) | Φ is fPO for v with at most n− 1 sharings}

satisfies the upper bound:

∣∣CG(v)
∣∣ ≤ 2(1+d(v)) n(n−1)

2 ·m
n(n−1)

2 +cn, (3.1)

where c is a constant.

For comparison, we recall that the bound obtained in Sandomirskiy and Segal-Halevi (2019)
was:

3(1+d(v)) n(n−1)
2 ·m

n(n−1)
2 ,
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and our bound can be viewed as a minor improvement in some scenarios (in particular, for any
fixed n, we obtain an improvement in the exponential term at a cost of introducing a larger
polynomial factor). The approach used in Sandomirskiy and Segal-Halevi (2019) started with
building all possible consumption graphs for instances with two agents and then followed an
iterative process to build the collection of consumption graphs for a larger number of agents.
We describe a process that generates all the graphs for instances with n agents directly instead,
which allows us to take advantage of the fact that the number of sharings is small.

We now turn to a description of our process.

Proof of Proposition 3.11. Our task here is to enumerate all consumption graphs associated
with fPO allocations Φ. Recalling the property of fPO allocations from Lemma 3.10, we first
guess the thresholds ti,j for all pairs5 of agents (ai, aj) with i < j. Note that it suffices to
consider threshold values that emerge from ratios in the valuation matrix, thus for any fixed
pair of agents we may reasonably restrict our attention to at most m possible values of
possible thresholds. Therefore, this guess requires us to examine at most m(n

2) possibilities.

Since we are only interested in allocations with at most (n− 1) sharings, we guess the set of
edges in the consumption graph that are incident to shared goods. If there are s sharings, then
it is easy to see that there are at most 2s such edges, and we have (mn

2s ) ≤ mO(n) choices.

Now, let τ = (ti,j)1≤i<j≤n be an arbitrary but fixed guess of thresholds. We now describe a
procedure for generating all possible graphs G for which there exists an allocationΦ compatible
with the thresholds τ as specified by Lemma 3.10 and whose consumption graph is given by G.
The vertex set of our graphs will always be given by {wi | i ∈ [n]} ∪ {uk | k ∈ [m]}. For each
uk, we will maintain a set Fk, which denotes the set of agents which do not share the object
gk, and a set Ek, which denotes the set of agents which do share the object gk. To begin with,
Fk = ϕ for all k ∈ [m], and Ek is populated based on the guessed sharings in the first step
above. Now, for every pair of agents ai and aj, we have the following:

• among the contentious objects gk which are goods, if ai values gk strongly relative to ti,j

then aj is added to Fk, while if ai values gk weakly relative to ti,j then ai is added to Fk,
and

• among the contentious objects gk which are bads, if ai values gk strongly relative to ti,j

then ai is added to Fk, while if ai values gk weakly relative to ti,j then aj is added to Fk,
and

5It is easy to check that the conclusions derived from Lemma 3.10 are identical when applied to (ai, aj) and
(aj, ai), so it suffices to consider only ordered pairs.
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3. Envy-Free and Efficient Allocations for Degenerate Instances

• for any non-controversial object gk, we add to Fk the agent who values gk negatively.

Now, observe that the number of useless goods and the goods that the agents ai and aj are
ambivalent about combined is at most (1 + d(v)), by the definition of degeneracy. For these
goods, we would like to try all possible combinations of allocations, namely: whether both
agents get a share of the good under consideration, or whether the good is not shared by ai

or the good is not shared by aj. Notice that we have 2(
n
2)·(1+d(v)) possibilities to consider,

because for a fixed pair of agents and a good, the upfront guess of the “shared edges” indicates
if the good is to be shared between the said agents or not — if it is, then the choice is already
predetermined, and if not, then we have only two possibilities to consider: denoting the good
under consideration by gk, in one scenario we add ai to Fk and in the other we add aj to Fk.

At the end of this process, goods for which Fk ∪ Ek = A, then the adjacencies of gk in the
consumption graph are fully determined. Now let us consider goods for which this is not the
case. In particular, let i be the smallest index for which ai /∈ Fk ∪ Ek. We claim that aj ∈ Fk for
all j ̸= i. Indeed, fix any j ̸= i. Suppose, for the sake of contradiction, that aj /∈ Fk. If ai and aj

are both ambivalent about gk, or gk is useless to both of them, then aj /∈ Fk implies that either
aj and ai are both in Ek or ai ∈ Fk, both of which contradict the assumption that ai /∈ Fk ∪ Ek.
If gk is non-controversial or contentious for ai and aj, then at least one of ai or aj belongs to Fk,
which is again a contradiction. Therefore, aj ∈ Fk for all j ̸= i. Since an allocation has to be
complete, we know that it must be the case that gk is allocated entirely to ai now that all other
agents are forbidden from consuming gk according to our choices so far. So we add aj to Ek in
this situation.

It is straightforward to verify that the choices made so far completely determine the structure
of a consumption graph, and that our guesses have accounted for all fPO allocations with at
most (n− 1) sharings. That the number of possibilities is as desired follows from the fact that
we have m(k

2) choices of thresholds, mO(n) choices for the shared edges, and 2(
k
2)(1+d(v)) choices

for how goods that are ambivalent or useless for agent pairs are distributed between them.

We note here that for additive valuations, EF1+fPO allocations always exist and an EF1+PO
allocation can be computed in pseudo-polynomial time (Barman et al., 2018a). The proof relies
on constructing Fisher markets along with an underlying integral equilibrium. In the process,
bipartite graphs called Maximum bang per buck (MBB) graphs of a Fisher market instance are
constructed and goods are exchanged only along the edges in the MBB graphs, which ensures
that the allocation remains an equilibrium allocation. The first welfare theorem ensures that
for a Fisher market with additive valuations, any equilibrium outcome is fPO (Mas-Colell et al.,
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1995), consequently, themodified allocation at every step remains fPO. Sandomirskiy and Segal-
Halevi (2019) also characterizes fPO allocations and show that an allocation is fPO if and only if
the associated consumption graphs satisfy certain properties. The interesting aspect is that the
undirected consumption graphs of fPO allocations correspond to the maximal bang per buck
(MBB) graphs of a Fishermarket. Consequently, the algorithm for enumerating all consumption
graphs can be used to find all MBB graphs.

3.5 The Case of Bounded Valuations

In this section, we obtain a bound on the size of the fair division instance in the case when
valuation matrix has a certain structure. We argue that if the values that agents assign to the
objects comprise of a small number of distinct non-zero values, then it can not be the case
that we have arbitrarily large number of agents and objects when the valuation matrix also has
bounded degeneracy. Formally, we have the following.

Proposition 3.12. If the valuation matrix is such that all the entries are non-zero, number of

distinct entries is at most t, and degeneracy d(v) < m − 1, then number of goods m and the

number of agents n is bounded as a function of t and d(v), and in particular, m ≤ d(v) · t2
and

n ≤ td(v)·t2
.

Proof. Let i ̸= j ∈ [n] be arbitrary but fixed. Observe that:

∣∣∣ {vi,k

vj,k

∣∣∣ k ∈ [m]

} ∣∣∣ ≤ t2

If m > t2 · d(v), then by the pigeon-hole principle, there exist more than d(v) choices of k for
which the ratios vi,k

vj,k
are equal, which would contradict our assumption that the instance has

degeneracy d(v).

We say that any pair of agents i and j have same type if they value all the goods in the same
way, that is, vi,k = vj,k for all k ∈ [m]. Note that since d(v) < m− 1, no two agents i and j
can have same type. Since the number of distinct entries is t, every agent has t many choices
for assigning the value to any good p ∈ [m]. Every agent can assign t possible distinct values
to each one of the m goods. This implies the number of types of agents is at most tm, therefore,
n ≤ td(v)·t2 .

We briefly justify the assumption that requires all entries to be non-zero. Indeed, even for
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binary values, i.e, when all entries in the valuation matrix are either 0 or 1, there may exist
instances with small degeneracy and an arbitrary number of goods. For example, consider the
example where one agent values all the goods at 1 and the other values all the goods at 0 except
for one good which is valued at one. The degeneracy here is zero, and the number of goods
can clearly be arbitrarily large. It would be intersting to explore if the bounds demonstrated by
Proposition 3.12 are tight.

3.6 Concluding Remarks

We demonstrated the hardness of finding fPO+EF and EF allocations even for instances with
constant degeneracy for instances with an unbounded number of agents. We note that
running times of the form dO(n) · poly(m, n) are “weakly ruled out” because of the hardness
result in Sandomirskiy and Segal-Halevi (2019) which is based on a reduction from Partition.
However, all the hardness results combined so far do not rule out the possibility of an
algorithm with a running time of cO(d+n) · mO(1), which would imply strongly polynomial
running times for instances where (d + n) is bounded by O(log m). One framework to rule
out such a possibility would be parameterized complexity, where one might attempt
demonstrating W-hardness in the combined parameter (n, d).

62



Chapter 4

Minimizing Envy in House Allocation

I think perfect objectivity is an unrealistic goal; fairness, however, is not.

- Michael Pollan, The Omnivore’s Dilemma

4.1 Introduction

The house allocation problem consists of n agents and m houses, where the agents have
preferences over the houses, and we have to allocate the houses to the agents so that each
agent receives exactly one house and each house is allocated to at most one agent.1 The
problem captures scenarios such as assigning clients to servers, employees to offices, families
to government housing, and so on. Several variants of house allocation have been studied in
the matching-under-preferences literature (Manlove, 2013; Hylland and Zeckhauser, 1979;
Zhou, 1990), where the typical objectives have been economic efficiency requirements such as
Pareto-optimality (Hylland and Zeckhauser, 1979; Abraham et al., 2004), rank maximality
(Irving et al., 2006) or strategyproofness (Krysta et al., 2019). Another useful and desirable
objective in any resource allocation setting is fairness, and we may equally well think of the
house allocation problem as a special case of the fair division of indivisible goods setting, with

1Notice that these requirements immediately imply that we must have m ≥ n, and under any allocation,
exactly n houses are allocated and the remaining m− n houses remain unallocated.
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the additional requirement that each agent be allocated exactly one good. Given an allocation,
say ϕ : A → H, an agent a envies a′ if she values ϕ(a′) more than ϕ(a). Finding “envy-free”
allocations, i.e., ones where no agent envies another, is one of the main goals in fair division.
Fairness in house allocation, in particular, has been a topic of interest in recent years (Gan
et al., 2019; Kamiyama et al., 2021; Hosseini et al., 2023c, 2024b).

In the context of the house allocation problem, note that if n = m, an envy-free allocation exists
if and only if there is a perfect matching in the following bipartite graph: introduce a vertex
for every agent and every house, and let the vertex corresponding to an agent be adjacent to all
the houses that she values no less than any other house. Since every house must be assigned
when n = m, when an agent is assigned anything short of her best option, she will be envious.
Therefore, the existence of an envy-free allocation can be determined efficiently in this situation
using standard algorithms for checking if a perfect matching exists.

The question is less obvious when n < m, i.e., when there are more houses than agents.
Indeed, one could work with the same bipartite graph, but it is possible for the house
allocation instance to admit an envy-free allocation even though the bipartite graph does not
have a perfect matching. Consider a situation with three houses and two agents, where both
agents value one house above all else, and the other two equally. While the graph only
captures the contention on the highly valued house, it does not lead us directly to the
envy-free allocation that can be obtained by giving both agents the houses that they value
relatively less (but equally). It turns out that the question of whether an envy-free allocation
exists can be determined in polynomial time even when n < m, by an algorithm of Gan et al.
(2019) that involves iteratively removing subsets of contentious houses.

When an envy-free allocation does not exist at all, the natural objective is to resort to a
relaxation of the fairness objective. However, house allocation differs from the typical fair
division setting, with an additional constraint that every agent receive exactly one item. This
constraint renders the well-studied relaxed notions of fairness like envy-freeness up to ‘some’
good (where an agent chooses to hypothetically ignore one good from the envied bundle)
futile. Hence we resort to a different kind of relaxation of envy-freeness: We quantify the
envy involved in an allocation using different aggregate measures such as the number of
envious agents, the maximum number of agents any agent envies, and look for allocations
that minimize these “measures of envy.” We note that Nguyen and Rothe (2013) and Shams
et al. (2021) previously studied minimizing aggregate measures of envy in resource allocation
problems. In the context of house allocation, Kamiyama et al. (2021) studied the problem of
minimizing the number of envious agents. They showed that it is NP-complete to find
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allocations that minimize the number of envious agents, even for binary utilities, and this
quantity is hard to approximate for general utilities. In this paper, we explore envy
minimization in house allocation from a broader perspective and prove algorithmic results not
only for minimizing the number of envious agents but for two other measures of envy as
well—minimizing the amount of maximum envy experienced by any agent and minimizing
the amount of total envy experienced by all the agents put together. We say that the amount

of envy experienced by an agent a is the number of agents she is envious of.

We remark here that minimizing the number of envious agents may lead to a sub-optimal
allocation in terms of maximum envy and vice-versa. For instance, consider an instance with
4 agents a, b, c, d and 4 houses h1, h2, h3, h4 with the following rankings:

a : h1 ≻ h2 ≻ h3 ≻ h4

b : h1 ≻ h2 ≻ h3 ≻ h4

c : h2 ≻ h3 ≻ h4 ≻ h1

d : h3 ≻ h4 ≻ h1 ≻ h2

Consider the highlighted allocation, denoted as ϕ. Only agent b experiences envy under ϕ. This
allocation effectively minimizes the number of envious agents. However, the envy experienced
by the sole envious agent is substantial, as she envies all the other agents. Alternatively, the
envy of agent b could have been reduced to just 1 under the allocation ϕ′, where agent b receives
house h2 and agents c and d are allocated houses h3 and h4 respectively. While both ϕ and ϕ′

are optimal in terms of minimizing overall total envy, ϕ falls short when it comes to addressing
maximum envy, whereas ϕ′ is not ideal for minimizing the number of agents who experience
envy. This suggests that the three notions of envy minimization are not directly comparable in
general and, therefore demand individual scrutiny and analysis.

When our focus is on minimizing the envy, there can be a trade-off with regards to social

welfare, which is essentially the collective measure of individual agent utilities within any
allocation. The method for aggregating these utilities can vary, including options such as the
geometric mean (known as Nash), the summation of utilities, or the minimum utility of any
agent, among others. We restrict our attention to the sum of the individual agent utilities as
our measure of social welfare for this work. For this measure, the trade-off between welfare
and envy-minimization is illustrated as follows. Consider an instance with 2n − 1 houses
such that each of the n agents like only the first n − 1 houses. Then the only envy-free
allocation is to allocate the last n houses to everyone, resulting in zero social welfare. On the
contrast, if we allow for envious agents, the above instance can achieve a social welfare of at
least n − 1. This potential loss in welfare due to fairness guarantees is captured by price of

65



4. Minimizing Envy in House Allocation

fairness, which is the worst-case ratio of the maximum social welfare in any allocation to that
in a fair allocation. This notion was first proposed by Bertsimas et al. (2011), following which
there has been substantial progress towards finding the bounds for the price for various
combinations of fairness and welfare notions, specifically in resource allocation setting
(Caragiannis et al., 2012; Bei et al., 2021; Barman et al., 2020b; Sun et al., 2023b; Bhaskar et al.,
2023). To the best of our knowledge, this fairness-welfare trade-off has not been looked at in
the house allocation setting previously. In this work, we give tight bounds for the price of
fairness. Our investigation into PoF inspired us to look at simultaneously minimizing all three
envy-minimization objectives while maximizing welfare. We show that we can indeed do this
for m = n and binary valuations. In this setting, we establish that there is an allocation that
simultaneously maximizes welfare and minimizes the number of envious agents, maximum
envy, and total envy.

Our Contributions.

We propose to study the issue of “minimizing envy” from a broader perspective, and to this end
we consider three natural measures of the “amount of envy” created by an allocation: a) the
total number of agents who experience envy (discussed above), b) the envy experienced by the
most envious agent, where the amount of envy experienced by an agent is simply the number of
agents that she is envious of, and c) the total amount of envy experienced by all agents. We refer
to the questions of finding allocations that minimize these three measures of envy theOptimal
House Allocation (OHA), Egalitarian House Allocation (EHA), and Utilitarian House
Allocation (UHA) problems, respectively. A summary of our main results is in Table 4.1 and
Table 4.6.

Hardness Results. We show the (parameterized) hardness of OHA and EHA even under
highly restricted input settings. We show that OHA is NP-complete even on instances where
every agent values at most two houses. Further, it is W[1]-hard when parameterized by k, the
number of agents who are allowed to be envious (which implies that it is unlikely to admit a
f (k)(n + m)O(1) time algorithm). As for EHA, we show that it is NP-complete, even on
instances where every agent values at most two houses and every house is approved by a
constant number of agents. In fact, we achieve this hardness even when the maximum
allowed envy is just one, establishing that the problem is para-NP-hard when parameterized
by k, the maximum envy (which implies that it is NP-hard even for a constant value of the
parameter). The (parameterized) complexity of UHA, however, remains open.
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Algorithmic and Experimental Results. Despite the hardness results even under the
restricted input settings mentioned above, we explore tractable scenarios and prove a number
of positive results. Observe that in a given instance, the number of houses(m) could be much
larger than the number of agents(n). But we show that all three problems admit
polynomial-time pre-processing algorithms that reduce the number of houses; in particular,
after this pre-processing, we will have the guarantee that m ≤ 2(n − 1). This result, in
parameterized complexity parlance, means that all three problems admit polynomial kernels

when parameterized by the number of agents. To prove this, we use a popular tool called the
expansion lemma. While the kernels are interesting in their own right, we also leverage them
to design polynomial-time algorithms for all three problems on binary extremal instances. An
instance of OHA/EHA/UHA is extremal if the houses can be ordered in such a way that every
agent values either the first few houses or the last few houses in the ordering; that is, there is
an ordering (h1, h2, . . . , hm) of the houses such that for every agent a, there is an index i(a)
with 0 ≤ i(a) ≤ m such that a either values the houses {h1, h2, . . . , hi(a)} or
{hm, hm−1, . . . , hm−i(a)}. We note here that extremal instances, although restrictive, form a
non-trivial subclass for demonstrating tractability and have been studied in the
literature (Elkind and Lackner, 2015). The hardness of the optimization problem even in the
binary setting motivates to look at the structured binary preferences in the quest of
tractability. In the context of house allocations, extremal instances appear where agents
approvals are, for example, influenced by the distance of a house to either a hospital or a
school, and the preferences decrease as the distance increases. In fact, despite the relatively
simple structure of the preference profile, the obvious greedy approaches do not work and the
three problems require three different lines of arguments.

Finally, we show that both OHA and EHA are fixed-parameter tractable (FPT)2 when
parameterized by the total number of house types or agent types; two agents are of the same
type if they both like the same set of houses, and two houses are of the same type if they are
both liked by the same set of agents. Notice that the number of (house or agent) types could
potentially be much smaller than m or n. The FPT algorithms are obtained using ILP
formulations with a bounded number of variables and constraints (for UHA, we obtain an
integer quadratic program). The ILPs may also be of independent practical value. We
implemented our ILPs for OHA and EHA over synthetic datasets of house allocation,
generated uniformly at random. For a fixed number of houses and agents, the results show

2FPT w.r.t a parameter ℓmeans the instance can be decided in time f (ℓ) · (n + m)O(1), where f is an arbitrary
computable function.
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that the number of envious agents and the maximum envy decreases as the number of agent
types (the maximum number of agents with distinct valuations) increases. Instances with
identical valuations seem to admit more envy, attributed to the contention on the specific
subset of houses. Also, when we increase the number of houses, for a constant number of
agents and agent-types, the envy decreases, which is as expected, because of the increase in
the number of choices and the fact that some houses (the more contentious ones) remain
unallocated.

Price of Fairness. Along with different measures of envy, we also focus on the social welfare
of an allocation, as captured by the sum of the individual agent utilities. Minimizing the
measures of envy can lead to economically inefficient allocations with poor social welfare. For
example, an allocation that only allocates the “dummy houses” (i.e., houses that no agent
values) is trivially envy-free, but has zero social welfare. Quantifying this welfare loss,
incurred as the cost of minimizing envy is, therefore, an imperative consideration. We
quantify this trade-off between welfare and envy minimization using a metric called the price
of fairness (PoF); each measure of envy leads to its corresponding PoF, and we defer a formal
definition of PoF to Section 4.9. We prove several tight bounds for PoF for binary valuations.
In particular, we show that when m > n, PoF can be as large as the number of agents and that
the bound is tight, for all the three envy measures of envy. We also identify the instances
where no welfare has to be sacrificed in order to minimize envy, and hence no price has to be
paid. In particular, we show that the price of fairness is 1 for m = n and binary valuations and
also for m > n and binary doubly normalized valuations. We show in particular that when
m = n, there is an allocation that simultaneously minimizes the number of envious agents,
the maximum envy, and total envy while maximizing social welfare. Moreover, we can
compute such an allocation in polynomial time.

Related Work.

Shapley and Scarf (1974) studied the house allocation model with existing tenants, which holds
crucial applications in domains like kidney exchanges. Scenarios encompassing entirely new
applicants, as well as mixed scenarios with a few existing tenants have also been studied in
the literature (Hylland and Zeckhauser, 1979; Abdulkadiroğlu and Sönmez, 1999), and their
practical implementations span diverse areas such as public housing and college dormitory
assignments, among others.

The notion of fairness in house allocation setting was initiated by Beynier et al. (2019a) who
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studied a local variant for an equal number of agents and houses, where an agent can envy
only those who are connected to her in a given social network. Gan et al. (2019) studied
envy-freeness when the number of houses can be more than that of agents and gave an
efficient algorithm that returns an envy-free solution if it exists. When such solutions do not
exist, Kamiyama et al. (2021) initiated the study of finding allocations that minimize the
number of agents who experience envy and showed that it is NP-complete to find allocations
that minimize the number of envious agents, even for binary utilities, and this quantity is hard
to approximate for general utilities. Further, Aigner-Horev and Segal-Halevi (2021) studied the
relaxed variant of assigning at most one house to every agent and give an O(m

√
n) algorithm

for finding an envy-free matching of maximum cardinality in the setting of binary utilities.
Shende and Purohit (2020) studied envy-freeness in conjunction with strategy-proofness. In
more recent work, Hosseini et al. (2023c, 2024b) have considered minimizing the sum of all
pairwise envy values over all edges in a social network. They proved structural and
computational results for various classes of underlying graphs on agents. Hosseini et al.
(2024a) looked at the degree of fairness while maximizing the social welfare and the size of an
envy-free allocation. Choo et al. (2024) discussed house allocations in the context of subsidies
and showed that finding envy-free allocations with minimum subsidy is hard in general but
tractable if agents have identical utilities or m differs from n by an additive constant.

The price of fairness was first proposed by Bertsimas et al. (2011), following which there has
been substantial progress towards finding the bounds for the price for various combinations
of fairness and welfare notions, specifically in resource allocation setting (Caragiannis et al.,
2012; Bei et al., 2021; Barman et al., 2020b; Sun et al., 2023b; Bhaskar et al., 2023). Hosseini et al.
(2024a) recently looked at the degree of fairness while maximizing the social welfare and the
size of an envy-free allocation.

Organization of the paper.

We discuss the results for OHA, EHA, and UHA in Section 4.4, Section 4.5, and Section 4.6
respectively. We discuss the experiments in Section 4.7. Finally, we discuss the price of fairness
in Section 4.9, which is largely independent of all the other sections.

4.2 Preliminaries

Let [k] denote the set {1, 2, . . . , k} for any positive integer k.
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Cardinal

General Binary

General Extremal Intervals d = 1 d = 2

Rankings

OHA

NP-Complete

(by implication)

NP-Complete (†)

from Cliqe

(Theorem 4.20)

P

(Theorem 4.15)

P

(Theorem 4.17)

NP-Complete

from Cliqe

(Theorem 4.21)

NP-Complete

(Theorem 4.20)

EHA

NP-Complete

(by implication)

P

(Theorem 4.37)

P

(Theorem 4.38)

NP-Complete (⋆)

from Independent Set

(Theorem 4.39)

NP-Complete (⋆)

from Multi-Colored Independent Set

(Theorem 4.40)

UHA ?

P

(Theorem 4.50)

P

(Corollary 4.54)
?

Table 4.1: A partial summary of our results. Here, d denotes the maximum number
of houses approved by any agent. The results marked with a ⋆ refer to reductions that
imply hardness evenwhen the standard parameter is a constant, while the result marked
with a † is a FPT reduction and also impliesW[1]-hardness in the standard parameter.

An instance I of the House Allocation problem (HA) comprises a set A = {a1, a2, . . . , an}
of agents, a set H = {h1, h2, . . . , hm} of houses and a preference profile (rankings or cardinal
utilities) that capture the preference of all agents over the houses. An assignment or house
allocation is an injection Φ : A→ H. Throughout this section, let Φ be an arbitrary but fixed
allocation. While wemake all our notation explicit with respect to Φ, during future discussions,
the subscript Φ may be dropped if the allocation is clear from the context. There are a few
different ways in which agents may express their preferences over houses, and we focus here
on both linear orders as well as cardinal utilities.

Rankings

In this setting, each agent a ∈ A has a linear order ≻a over the set of houses H. We will
typically use≻i to denote3 the preferences of agent ai. The rank of a house h in the order≻a is
one plus the number of houses h′ such that h′ ≻a h. For example, if m = 3 and ≻a is given by
h2 ≻ h3 ≻ h1, then the houses h2, h3 and h1 have ranks 1, 2, and 3 respectively. We denote the
rank of a house h in an order≻ by rk(h,≻). A ranking is said to have ties (rk(h,⪰)) if there is
an agent who ranks some pair of houses equally.

An agent a ∈ A envies an agent b ∈ A under the allocation Φ if Φ(a) ≺a Φ(b), which is to
say that a perceives Φ to have allocated a house to b that she ranks more than the one allocated

3In some of the reductions, the indices of the agents in A are different from [n], and we continue to adopt the
convention that ≻◦ is used to describe the preferences of the agent a◦.
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to her. We use EΦ(a) to denote the set of agents b such that a envies b in the allocation Φ.

An agent a is envy-free with respect to Φ if there is no agent b such that a envies b. In other
words, EΦ(a) = ∅. An allocation Φ is said to be envy-free if all agents a are envy-free with
respect to Φ. The amount of envy experienced by an agent a is the number of agents she is
envious of, that is, |EΦ(a)| and is denoted by κΦ(a). Note that if an agent is envy-free, then
the amount of envy experienced by her is zero.

Binary Preferences

The utility that an agent a derives from a house h is denoted by ua(h). Preferences are said to
be binary if ua(h) ∈ {0, 1} for all a ∈ A and h ∈ H. We note here that binary utilities are a
crucial subclass with simple elicitation and several works in fair division and voting literature
have paid special attention to this case (Halpern et al., 2020; Barman et al., 2018b; Lackner and
Skowron, 2023). A house h is called a dummy house if the utility of every agent for it is zero,
that is, ua(h) = 0 for all a ∈ A. The set of dummy houses is denoted by D. An agent a is called
a dummy agent if it values every house at zero, that is, ua(h) = 0 for all h ∈ H. The set of
dummy agents is denoted by D′.

As previously, an agent a ∈ A envies an agent b ∈ A under the allocation Φ if ua(Φ(a)) <

ua(Φ(b)), which is to say that a perceives Φ to have allocated a house to b that she values
more than the one allocated to her. That is, ua(Φ(a)) = 0 but ua(Φ(b)) = 1. The definition of
EΦ(a) and the notion of envy-freeness is the same as before. The amount of envy experienced
by an agent is |EΦ(a)| and is denoted by κΦ(a). Just as with rankings, if an agent is envy-free,
then the amount of envy experienced by her is zero.

Let P be a profile of binary utilities of agents A over houses H. For an agent a ∈ A, use P(a)
to denote the set of houses h for which ua(h) = 1. We say that these are houses that are valued
by the agent a. For a subset S ⊆ A, we use P(S) to denote ∪a∈SP(a). Similarly, for a house
h, we use T (h) to refer to the set of agents who value h, and for a subset S ⊆ H, we use T (S)
to denote ∪h∈ST (h).

Two agents ap and aq are said to be of the same type if P(ap) = P(aq) and two houses hp

and hq are said to be of the same type if T (hp) = T (hq). For an instance with n agents and
m houses, we use n⋆ and m⋆ to denote the number of distinct types of agents and houses,
respectively.

The preference graph G based on P is a bipartite graph defined as follows: the vertex set of G
consists of one vertex va corresponding to every agent a ∈ A and one vertex vh corresponding
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4. Minimizing Envy in House Allocation

to every house h ∈ H; and (va, vh) is an edge in G if and only if a values h.

Extremal Interval Structure. We say that P has an extremal interval structure with respect

to houses if there exists an ordering σ of the houses such that for every agent a, P(a) forms a
prefix or suffix of σ (Elkind and Lackner, 2015). Further, we say that P has a left (respectively,

right) extremal interval structure with respect to houses if there exists an ordering σ of the
houses such that for every agent a, P(a) forms a prefix (respectively, suffix) of σ.
Analogously, P has an extremal interval structure with respect to agents if there exists an
ordering π of the agents such that for every house h, the set of agents who value h forms a
prefix or suffix of π. The notions of left and right extremal interval structures here are also
defined as before. In our discussions, whenever we speak of an extremal interval structure

without explicit qualification, it is with respect to houses unless mentioned otherwise.

Optimization Objectives

We focus on the following optimization objectives.

1. The number of envious agents in an allocation Φ is the number of agents a ∈ A for which
κΦ(a) ≥ 1 and will be denoted by κ#(Φ). Further, given an instance I of the house
allocation problem, we use κ#(I) to denote the number of envious agents in an optimal
allocation, that is, κ#(I) := minΦ(κ

#(Φ)).

2. The maximum envy generated by Φ is maxa∈A κΦ(a) and is denoted by κ†(Φ). As
before, given an instance I of the house allocation problem, we use κ†(I) to denote the
maximum envy in an optimal allocation, that is, κ†(I) := minΦ(κ

†(Φ)).

3. The total envy generated by Φ is ∑a∈A κΦ(a) and will be denoted by κ⋆(Φ). Again, given
an instance I of the house allocation problem, we use κ⋆(I) to denote the total envy in
an optimal allocation, that is, κ⋆(I) := minΦ(κ

⋆(Φ)).

ComputationalQuestions

We now formulate the computational problems that we would like to address.
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Optimal House Allocation
Input: A set A = {a1, a2, . . . , an} of agents and a set H = {h1, h2, . . . , hm} of houses, a
preference profile describing the preferences of all agents over houses, and a non-negative
integer k ∈ Z+.
Question: Determine if there is an allocation Φ with number of envious agents at most k, i.e,
κ#(Φ) ≤ k.

Egalitarian House Allocation
Input: A set A = {a1, a2, . . . , an} of agents and a set H = {h1, h2, . . . , hm} of houses, a
preference profile describing the preferences of all agents over houses, and a non-negative
integer k ∈ Z+.
Question: Determine if there is an allocation Φ with maximum envy at most k, i.e, κ†(Φ) ≤ k.

Utilitarian House Allocation
Input: A set A = {a1, a2, . . . , an} of agents and a set H = {h1, h2, . . . , hm} of houses, a
preference profile describing the preferences of all agents over houses, and a non-negative
integer k ∈ Z+.
Question: Determine if there is an allocation Φ with total envy at most k, i.e, κ⋆(Φ) ≤ k.

We use [≻]-OHA, [⪰]-OHA, and [0/1]-OHA to denote the versions of the OHA problem when
the preferences are given, respectively, by linear orders, rankings with ties, and binary utilities,
respectively. We adopt this convention for EHA and UHA as well.

We note that for all three problems, the question of finding an envy-free allocation, i.e., one for
which the optimization objective attains the value zero, is a natural special case. This amounts
to finding an allocation where no agent has any envy for another and is therefore resolved
(for both binary valuations and rankings) by the algorithm of Gan et al. (2019) which uses an
approach based on iteratively eliminating subsets that violate Hall’s condition in the preference
graph.

We also observe here that all three problems are tractable for the special case when m = n.
We assume without loss of generality, that every agent values at least one house. Observe that
since n = m, all valid allocations have no unallocated houses.

Proposition 4.1 (folklore). [0/1]-Optimal House Allocation and [⪰]-Optimal House

Allocation can be solved in polynomial time if m = n.

Proof. Let I := (A, H,P ; k) be an instance of [0/1]-OHA and let G = (A ∪ H; E) be the
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associated preference graph. We obtain an optimal allocation in polynomial time, and we return
an appropriate output based on how the value of the optimum compares with k.

Let M be a maximum matching in G. We claim that any optimal allocation for I has |M|
envy-free agents. To see that there exists an allocation that has at least |M| envy-free agents,
consider the allocation that gives the house M(a) to every agent a saturated by M, and allocates
the remaining houses arbitrarily among the agents not saturated by M. It is easy to see that this
allocation has at least |M| envy-free agents, namely the ones corresponding to those saturated
by the matching M. On the other hand, suppose there is an allocation Φ with k envy-free
agents, then the envy-free agents must have received houses that they value—indeed, consider
any agent a, and let h be any house that a values. If a does not value the house Φ(a), then a
envies the agent who received the house h. Therefore, the set:

M := {(a, Φ(a)) | a is envy-free with respect to Φ}

corresponds to a matching with k edges in G, and this concludes the argument. Notice that
this argument extends to weak orders by the natural extension of the notion of a preference
graph: we have that an agent a is adjacent to all houses h that she prefers over all other houses.
Therefore, we have the claim [⪰]-OHA as well.

Proposition 4.2. [0/1]-Egalitarian House Allocation and [≻]-Egalitarian House

Allocation can be solved in polynomial time if m = n.

Proof. Let I := (A, H,P ; k) be an instance of [0/1]-EHA. We show that this problem reduces
to finding a perfect matching among high-degree agents in the preference graph, based on the
following observations.

1. Suppose a is an agent who values at most k houses. Then, the amount of envy experienced
by a is at most k in any allocation.

2. Suppose a is an agent who values at least k + 1 houses. Then, if Φ is a valid solution,
then a must value the house Φ(a).

It follows that I is a Yes-instance if and only if the projection of the preference graph G on
(A⋆ ∪ H) admits a perfect matching, where A⋆ is the subset of agents whose degree in G is at
least k + 1.

Now, let I := (A, H,≻; k) be an instance of [≻]-EHA. Consider the bipartite graph G =

(A ∪ H; E⋆), where (a, h) is an edge if and only if the rank of h is at most k + 1 in ≻a. We
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claim that I is a Yes-instance if and only if G has a perfect matching.

Indeed, observe that the amount of envy experienced by any agent a with respect to an
allocation Φ is exactly one less than the rank of Φ(a) in ≻a. Therefore, if Φ is an allocation
whose maximum envy is k, then the rank of Φ(a) in ≻a must be at most k + 1 for all agents a.
It is easy to check that such allocations are in one-to-one correspondence with perfect
matchings in the graph G.

Proposition 4.3. [0/1]Utilitarian House Allocation and [≻]-Utilitarian House

Allocation can be solved in polynomial time if m = n.

Proof. Let I := (A, H,P ; k) be an instance of [0/1]-UHA. To begin with, let d(a) denote the
degree of a in the preference graph G of I . Now consider a complete bipartite graph G⋆ with
bi-partition (A ⊎ H) and a cost function c on the edges defined as follows:

c((a, h)) =

d(a) if a does not value h,

0 otherwise.

Let M be a minimum cost perfect matching in G with total cost t. We claim that I is a Yes-
instance if and only if t ≤ k. In the forward direction, if Φ is an allocation with total envy at
most κ⋆, then consider the following perfect matching in G:

M := {(a, Φ(a)) | a ∈ A}

Notice that the cost of M corresponds exactly to κ⋆(Φ), the total amount of envy in Φ. This
shows that there is a perfect matching in G⋆ with cost at most k.

On the other hand, let M be a perfect matching in G⋆ with the cost at most k, and let M(a)
denote the house h such that (a, h) ∈ M. Then consider the allocation Φ given by Φ(a) =

M(a) for all agents a. Notice that every zero-cost edge in M corresponds to an envy-free agent
with respect to Φ, and every other edge e = (a, h) corresponds to an agent in Φ who was
allocated a house she did not value. Observe that the amount of envy experienced by a in Φ is
the number of houses she values, in other words, d(a); however, this is also exactly the cost of
the edge e. Therefore, it follows that the amount of envy in Φ is exactly equal to the cost of the
matching M, and this concludes the proof of our claim.

Now, let I := (A, H,≻; k) be an instance of [≻]-UHA. As before, consider a complete bipartite
graph G⋆ with bipartition (A⊎H). This time, we have the cost function c on the edges defined
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as c((a, h)) = rk(h,≻a)− 1. This cost reflects the envy experienced by the agent a if she were
to be allocated the house h. Using arguments similar to the setting of binary valuations, it is
easily checked that I is a Yes-instance if and only if there is a perfect matching in G⋆ whose
cost is at most k.

Parameterized Complexity

Parameterized algorithms or multi-variate analysis is a popular perspective in the context of
“coping with computational hardness”. The key idea here is to segregate the running time of
our algorithms into two parts: one that is polynomially bounded in the size of the entire input
so that it is efficient on a quantity that is expected to be large in practice and the other, a
computable function of a carefully chosen parameter—and this component of the running time
remains feasible in practice because the parameter is expected to be small. The parameterized
perspective also allows us to formalize ideas about efficient preprocessing, and this is now an
active subfield in its own right. We refer the readers to the books Cygan et al. (2015) andDowney
and Fellows (2013) for additional background on this algorithmic paradigm, while recalling here
only the key definitions relevant to our discussions.

Formally, a parameterized problem L is a subset of Σ∗ ×N for some finite alphabet Σ. An
instance of a parameterized problem consists of (x, k), where k is called the parameter. A
central notion in parameterized complexity is fixed-parameter tractability (FPT), which means
for a given instance (x, k) solvability in time f (k) · p(|x|), where f is an arbitrary function of
k and p is a polynomial in the input size. The notion of kernelization is defined as follows.

Definition 4.4. A kernelization algorithm, or in short, a kernel for a parameterized problem

Q ⊆ Σ∗ ×N is an algorithm that, given (x, k) ∈ Σ∗ ×N, outputs in time polynomial in

|x| + k a pair (x′, k′) ∈ Σ∗ ×N such that (a) (x, k) ∈ Q if and only if (x′, k′) ∈ Q and (b)

|x′|+ k′ ≤ g(k), where g is an arbitrary computable function. The function g is referred to as the

size of the kernel. If g is a polynomial function then we say that Q admits a polynomial kernel.

On the other hand, we also have a well-developed theory of parameterized hardness. We call a
problem para-NP-hard if it is NP-hard even for a constant value of the parameter. Further, we
have the notion of parameterized reductions, defined as follows.

Definition 4.5 (Parameterized reduction). Let A, B ⊆ Σ∗ ×N be two parameterized problems,

A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs

an instance (x′, k′) of B such that:

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B.
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2. k′ ≤ g(k) for some computable function g, and

3. the running time is f (k) · |x|O(1)
for some computable function f .

A parameterized reduction from a problem known to be W[1]-hard is considered to be strong
evidence that the target problem is not FPT. The formal definition of W[1]-hardness is beyond
the scope of this discussion, but we state in this section the known W[1]-hard problems from
which we will perform parameterized reductions to obtain our results.

We also note that an instance of integer linear programming is FPT in the number of variables.

Theorem 4.6. (Lenstra, 1983) An integer linear programming instance of size L with p variables

can be solved usingO
(

p2.5p+o(p) · (L + log Mx) log (Mx Mc)
)
arithmetic operations and space

polynomial in L + log Mx, where Mx is an upper bound on the absolute value a variable can take

in a solution, and Mc is the largest absolute value of a coefficient in the vector c.

Finally, we state the problems that we will use in the reductions. We note that all the problems
below areW[1]-hard when parameterized by k (Garey and Johnson, 1990; Fellows et al., 2009).

Cliqe (respectively, Independent Set)
Input: A graph G and an integer k.
Question: Does there exist a subset S ⊆ V(G) such that G[S] is a clique (respectively,
independent set) and |S| ≥ k?

Maximum Balanced Bicliqe
Input: A graph G = (L ∪ R, E) and an integer k.
Question: Does there exist a subset S ⊆ L and T ⊆ R such that G[S∪ T] is a biclique and
|S| = |T| = k?

Multi-Colored Independent Set
Input: A graph G = (V1 ⊎ · · · ⊎Vk, E).
Question: Does there exist a subset S ⊆ V(G) such that G[S] is an independent set and
|Vi ∩ S| = 1 for all i ∈ [k]?
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4.3 Pre-processing using Expansion Lemma

In this section, we introduce the expansion lemma, a powerful and popular tool for
kernelization, which we will use later to design our algorithms. Let G be a bipartite graph
with vertex bi-partitions (A, B). A set of edges M ⊆ E(G) is called an expansion of A into B
if:

• every vertex of A is incident to exactly one edge of M;

• M saturates exactly |A| vertices in B.

Note that an expansion saturates all vertices of A.

Lemma 4.7 (Expansion lemma (Cygan et al., 2015)). Let G be a bipartite graph with vertex

bi-partitions (A, B) such that

1. |B| ≥ |A|, and

2. there are no isolated vertices in B.

Then there exist non-empty vertex sets X ⊆ A and Y ⊆ B such that

• there is an expansion of X into Y, and

• no vertex in Y has a neighbor outside X, that is, N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G (Thomassé (2010)).

We now consider an instance I = (A, H,P) of HA with binary valuations parameterized
by k, where k is one of κ#, κ† or κ⋆. We introduce the following reduction rules here whose
implementation is parameter-agnostic.

Let G = (A∪ H; E) denote the preference graph of I . Note that we may assume that we have
at most (n− 1) dummy houses in the instance I , since instances with at least n dummy houses
admit trivial envy-free allocations, where every agent is given a dummy house. We make this
explicit in the following reduction rule:

Reduction Rule 1. If I has at least as many dummy houses as agents, then return a trivial Yes-

instance. The parameter k is unchanged.

Let G⋆ denote the preference graph induced by (A \ D′) ∪ (H \ D), where D denotes the
vertices corresponding to dummy houses in I and D′ denotes the vertices corresponding to
the dummy agents in I . We now propose the following reduction rule based on the expansion
lemma. The safety of the following reduction rule is argued separately for the three parameters
in Theorems 4.23, 4.43 and 4.55, respectively.
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4.3 Pre-processing using Expansion Lemma

Reduction Rule 2. In I , if |H \ D| ≥ |A \ D′|, then let (X, Y) be as given by Lemma 4.7

applied to G⋆
, and let M ⊆ E(G⋆) be the associated expansion. Proceed by eliminating all agents

and houses saturated by M. The parameter k is unchanged.

Note that once Reduction Rules 1 and 2 are applied exhaustively, we have that:

|H| = |H \ D|+ |D| ≤ |A \ D′|+ |D| ≤ |A|+ |A| − 1 ≤ 2 · (|A| − 1),

where we are slightly abusing notation and using H and A to denote the houses and agents in
the reduced instance. Thus, once the safety of these reduction rules is established, we
conclude that all the three problems under consideration—OHA, EHA and UHA—admit
polynomial kernels with O(|A|) houses when parameterized by the number of agents.

After the above two reduction rules have been applied, we have |H| ≥ |A| and |H \ D| ≤
|A \ D′|, we get |H| − |H \ D| ≥ |A| − |A \ D′| and hence |D| ≥ |D′|. Therefore, the
number of dummy houses are at least as much as the number of dummy agents. We then apply
the following reduction rule.

Reduction Rule 3. In a reduced instance I with respect to Reduction Rules 1 and 2, proceed by

allocating a dummy house to each of the dummy agents and eliminate |D′| dummy agents and

|D′| dummy houses. The parameter k is unchanged.

Towards establishing the safety of the above reduction rule, we argue that in the reduced
instance, there is an optimal allocation where all the dummy agents receive a dummy house
each. Indeed, if not, say a dummy agent ad receives a house h ∈ H \ D in an optimal
allocation. Since |A \ D′| > |H \ D|, there is an agent a ∈ A \ D′ who received a dummy
house hd. We re-allocate hd to ad and allocate all the houses in |H \ D| to agents in |A \ D|
by finding a maximum matching in the associated preference graph G, restricted to these
houses and agents. This re-allocation either does not create any new envy (ad is indifferent
and no one else if worse-off) or makes an additional agent in A \ D envy-free (because of the
allocation of h to an agent who values it). Hence, either we get the desired optimal allocation
under which all the dummy agents receive a dummy house or we contradict the fact that we
started with an optimal allocation. So we can allocate dummy houses to the dummy agents
and assume going forward that there are no dummy agents. That is, |D′| = ϕ.

We now make a claim here that will be useful in the arguments that we make later about the
safety of Reduction Rule 2.

Definition 4.8. Let (A, H,P) and X, Y and M be as in the premise of Reduction Rule 2. An
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allocation Φ is said to be good if Φ(a) = M(a) for all a ∈ X, where M(a) denotes the unique
vertex h ∈ Y such that (a, h) ∈ M.

Claim 4.9. Let (A, H,P) and X, Y and M be as in the premise of Reduction Rule 2. There is a

good allocation that minimizes the number of envious agents.

Proof. Let Φ be an allocation that minimizes the number of envious agents. If Φ is already
good then there is nothing to prove. Otherwise, suppose Φ(a) ̸= M(a) for some a ∈ X. If
Φ does not assign the house corresponding to M(a) to any agent, then consider the modified
allocation Φ′ where we assign M(a) to a while letting Φ(a) become an unassigned house, that
is:

Φ′(c) =

M(a) if c = a,

Φ(c) otherwise.

On the other hand, suppose b is such that Φ(b) = M(a). Then consider the modified allocation
Φ′ where we swap the houses of a and b, that is:

Φ′(c) =


M(a) if c = a,

Φ(a) if c = b,

Φ(c) otherwise.

We keep modifying the original allocation Φ in the manner described above until we arrive at
a good allocation. Let Φ⋆ denote this final allocation.

Now consider an agent c /∈ X. We claim that the amount of envy experienced by c does not
increase at any step of the process of morphing Φ to Φ⋆. Consider the following cases that arise
at any step, where a ∈ X and by a slight abuse of notation, we use Φ to denote the allocation
that is being modified:

1. Suppose M(a) is assigned to a and Φ(a) is unassigned. We know that c does not value
M(a) since c /∈ X. If c valued Φ(a), then her envy with respect to the new allocation
will be one less than her envy with respect to the previous allocation.

2. Suppose M(a) and Φ(a) are swapped between agents a and b; and c ̸= b. Then the
amount of envy experienced by c does not change.

3. Suppose M(a) and Φ(a) are swapped between agents a and b; and c = b. If c valued
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Φ(a), then her envy with respect to the new allocation will be less than her envy with
respect to the previous allocation. On the other hand, if c does not value Φ(a) then the
amount of envy experienced by c does not change.

Also, in the final allocation Φ⋆, all agents in X are envy-free, since they are assigned houses
that they value via the expansion M. Therefore, the total number of envious agents in the final
allocation Φ⋆ is the same as the number of envious agents in the original allocation Φ—recall
that Φ minimized the number of envious agents.

The following claims can be shown by the same argument that was used for Claim 4.9, since
for any agent a, the amount of envy experienced by a respect to in Φ⋆ is at most the amount
of envy experienced by a with respect to Φ.

Claim 4.10. Let (A, H,P) and X, Y and M be as in the premise of Reduction Rule 2. There is a

good allocation that minimizes the maximum envy.

Claim 4.11. Let (A, H,P) and X, Y and M be as in the premise of Reduction Rule 2. There is a

good allocation that minimizes total envy.

Applications to Extremal Instances

We observe several properties of instances I = (A, H,P ; k) of [0/1]-HA, where P has an
extremal interval structure (with respect to the houses). The properties are parameter-agnostic,
and therefore, hold for instances of [0/1]-OHA, [0/1]-EHA and [0/1]-UHA. As a shorthand, we
say that I = (A, H,P ; k) is an extremal instance (or simply extremal) if P has the extremal
interval structure.

Consider an extremal instance I = (A, H,P ; k) of [0/1]-HA. That is, there is an ordering σ of
the houses, say, σ = (h1, . . . , hm) such that for every agent a ∈ A, either P(a) = ϕ or there
exists an index i(a) such that 1 ≤ i(a) ≤ m and either P(a) =

{
h1, h2, . . . , hi(a)

}
or

P(a) =
{

hm, hm−1, . . . , hi(a)

}
. (See Table 4.2 for an example.) If

P(a) = ϕ or
{

h1, h2, . . . , hi(a)

}
for every a ∈ A, then we say that the instance I is

left-extremal. If P(a) = ϕ or
{

hm, hm−1, . . . , hi(a)

}
for every a ∈ A, then we say that I is

right-extremal.

We can check in polynomial time whether a given instance is (left/right)-extremal, and if so,
then find the ordering σ on the houses. Also, note that removing a subset of houses and agents
from an extremal instance does not destroy the extremal property. That is, if I = (A, H,P , k)

81



4. Minimizing Envy in House Allocation

Left-houses (HL) Dummy houses (D) Right-houses (HR)

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

Left-agents
(AL)

a1 1 0 0 0 0 0 0 0 0 0
a2 1 1 0 0 0 0 0 0 0 0
a3 1 1 0 0 0 0 0 0 0 0
a4 1 1 1 0 0 0 0 0 0 0
a5 1 1 1 0 0 0 0 0 0 0

Right-agents
(AR)

a6 0 0 0 0 0 0 0 1 1 1
a7 0 0 0 0 0 0 0 1 1 1
a8 0 0 0 0 0 0 0 0 1 1
a9 0 0 0 0 0 0 0 0 0 1

Table 4.2: An example of an extremal instance I = (A, H,P ; k), where D ⊆ H
denotes the dummy houses. Once Reduction Rules 1, 2 and 3 are no longer applicable,
then there are no dummy agents, but dummy houses must necessarily exist, i.e., D ̸= ∅;
and we must have |HL| < |AL| and |HR| < |AR|.

is extremal, then so is I ′ = (A′, H′,P ′), where A′ = A \ X and H′ = H \ Y and P ′ is the
restriction of P to (A∪ H) \ (X ∪Y). So, in particular, we can safely apply Reduction Rules 2
and 3 to extremal instances.

Now, consider an extremal instance I = (A, H,P ; k), which is irreducible with respect to
Reduction Rules 1, 2 and 3. Let σ = (h1, h2, . . . , hm) be an extremal ordering on the houses.
Let D′ be the set of dummy agents. Due to Reduction Rule 3, we have |D′| = ϕ in the I . Let D
be the set of dummy houses in I . Then, we have seen that |H \ D| ≤ n− 1. Therefore, D ̸= ∅.
Let hd, hd′ ∈ D be such that hd is the first dummy house and hd′ is the last dummy house in the
ordering σ. It may be the case that d = d′. Then, for every i, where d ≤ i ≤ d′, the house hi is
a dummy house. Let HL = {h1, h2, . . . , hd−1} and HR = {hd′+1, hd′+2, . . . , hm}. We call the
houses in HL the left-houses and the houses in HR the right-houses. Assume that the reduced
instance contains both left and right houses, that is, |HL| > 0 and HR > 0. For every agent
a ∈ A, either P(a) ⊆ HL, in which case we call the agent a a left-agent, or P(a) ⊆ HR, in
which case we call the agent a a right-agent. Let AL and AR respectively denote the set of left
and right agents. See Table 4.2. Thus, we have a partition of A into AL and AR and a partition of
H into HL, HR and D. Notice now that if |HL| ≥ |AL| or |HR| ≥ |AR|, then Reduction Rule 2
would apply. We thus have |AL| > |HL| and |AR| > |HR|. For an allocation Φ : A→ H
and an agent a ∈ A, we say that a is extremality-respecting under Φ if either (a) a ∈ AL and
Φ(a) ∈ HL ∪ D or (b) a ∈ AR and Φ(a) ∈ HR ∪ D. We say that Φ is extremality-respecting
if every agent in AL ∪ AR is extremality-respecting under Φ. We now claim that there exists

82



4.3 Pre-processing using Expansion Lemma

an extremality-respecting optimal allocation, irrespective of whether we are dealing with an
instance of [0/1]-OHA, [0/1]-EHA or [0/1]-UHA.

Claim 4.12. There exists an extremality-respecting optimal allocation for any instance irreducible

with respect to the Reduction Rules 1, 2 and 3.

Proof. Let Φ : A→ H be an optimal allocation that maximizes the number of extremality-
respecting agents. If Φ is extremality-respecting, then the claim trivially holds. So, assume not.
Then, assume without loss of generality that there exists a ∈ AL with Φ(a) ∈ HR. (The case
when a ∈ AR with Φ(a) ∈ HL is symmetric.)

Since |HR| < |AR|, there exists an agent a′ ∈ AR such that Φ(a′) /∈ HR. Then, Φ(a′) ∈
HL ∪ D. Let Φ′ be the allocation obtained by swapping the houses of a and a′. This house-
swapping between a and a′ does not cause any increase in the number of envious agents or
the envy experienced by any agent. So we have κ#(Φ′) ≤ κ#(Φ), κ†(Φ′) ≤ κ†(Φ) and
κ⋆(Φ′) ≤ κ⋆(Φ). Therefore, Φ′ is optimal. In addition, note that Φ′(a) = Φ(a′) ∈ HL ∪ D,
and Φ′(a′) = Φ(a) ∈ HR, and hence, both a and a′ are extremality-respecting under Φ. That
is, the number of extremality-respecting agents under Φ′ is strictly greater than that in Φ, a
contradiction.

Remark 4.13. Claim 4.12 shows that whenever dealing with an instance I = (A, H,P , k) of
[0/1]-HA, where I is extremal, we only need to look for an extremality-respecting optimal

allocation, say Φ. Note that there are no dummy agents in the reduced instance (Reduction

Rule 3). Now suppose nL dummy houses get allocated to left-agents under Φ, and nR dummy

houses get allocated to right-agents under Φ. Hence, we can guess the pair (nL, nR) and split I
into two instances, IL and IR, where IL consists of the left-agents, the left-houses and nL

dummy houses, and IR consists of the right-agents, the right-houses and nR dummy houses.

Thus, IL is left-extremal and IR is right-extremal. We only need to solve the problem separately

on IL and IR. Notice that the number of guesses for the pair (nL, nR) is at most n2
. By reversing

the ordering on the houses in the instance IR, we can turn IR into a left-extremal instance as

well. So, it suffices to solve the problem for left-extremal instances. Hence, whenever dealing with

an extremal instance I , we assume without loss of generality that I is left-extremal.

Remark 4.14. Consider a left-extremal instance I = (A, h,P , k). Let σ = (h1, h2, . . . , hm)

be a left-extremal ordering on the houses. So for every agent a ∈ A, there exists i(a) ∈ [n]
such that P(a) =

{
h1, h2, . . . , hi(a)

}
. Notice that σ imposes an ordering on the agents, say

σA = (a1, a2, . . . , an) so that P(a1) ⊆ P(a2) ⊆ · · · ⊆ P(an). Notice also that we can check
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in polynomial time if a given instance is left-extremal, and if so, find a left-extremal ordering σ

on the houses and then the ordering σA on the agents. So, whenever dealing with a left-extremal

instance I , we assume without loss of generality that σ and σA are given. Whenever we talk about,

for example, the “first/last house,” we always mean the first/last house with respect to the ordering

σ. Same with the ordering σA and the “first/last agent.”

4.4 Optimal House Allocation

In this section, we deal with the Optimal House Allocation problems, where the goal is to
minimize the number of envious agents. We start by discussing the cases for which we have
polynomial time algorithms for Optimal House Allocation.

4.4.1 Polynomial Time Algorithms for OHA

We first prove that [0/1]-Optimal House Allocation is polynomial-time solvable on instances
with an extremal structure.

Theorem 4.15. There is a polynomial-time algorithm for [0/1]-Optimal House Allocation

when the agent valuations have an extremal interval structure.

Proof. In light of Remark 4.13, it suffices to prove for the case when agent valuations are left
extremal. Let I := (A, H,P ; k) denote an instance of HA with left extremal valuations, which
is irreducible with respect to Reduction Rule 1, 2 and 3.

We first make the following claim:

Claim 4.16. Given an instance of [0/1]- Optimal House Allocation when the agent valuations

are left extremal, there exists an optimal allocation where the set of allocated houses form an

interval.

Proof. Suppose we start with an optimal allocation Φ under which the set of allocated houses
does not form an interval. Let hu be an unallocated house such that hl and hr are allocated,
where l < u < r. We will show that we can allocate hu instead of hr without any increase in
the envy, and hence iteratively convert Φ to another optimal allocation Φ′ under which the set
of allocated houses do form an interval.

Suppose no agent is envious of the allocation of hr. Then, we can allocate hu to the recipient
of hr without increasing the envy. Indeed, everyone who values hr also values hu because of
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the interval structure, so the envy of the recipient does not increase. Since no one envies the
allocation of hr, no one should become newly envious of the allocation of hu as well, since it
lies to the left of hr. If any agent is envious in this re-allocation because of hu, it must be already
envious due to the allocation of hl which lies to the left of hu. So, whoever gets hr can get hu

without any increase in the envy.

On the other hand, suppose we have an agent a who is envious due to the allocation of hr. Since
a values hr, due to the interval structure, she must value hu as u < r. If we swap Φ(a) with hu,
then a ceases to be envious. Also, note that allocation of hu does not create any new envious
agent—indeed if an agent a′ was not envious before hu was allocated, it means either she got a
house she likes or her interval ended before hl . In either case, the allocation of hu can not be a
cause of envy to her. This contradicts the fact that we started with an optimal allocation. Also,
notice that all the dummy houses (if any), in the reduced instance, lie to the extreme right of
all the houses that are valued. The allocation of a dummy house can always be done respecting
the interval property, as agents do not distinguish between any two dummy houses.

Based on the above claim, our algorithm Alg works as follows. It enumerates over all
possibilities of the first allocated house in the optimal allocation where the set of allocated
houses forms an interval. There are at most m− n such choices, in particular, the first m− n
houses. For each such hi, Alg chooses the next consecutive n houses to be allocated. This
reduces the instance to the one where m = n and by Proposition 4.1, this can be done in
polynomial time.

To see the correctness, in one direction, if under any iteration i, the allocation Φ constructed
by Alg has at most k envious agents, then it returns Yes, and the allocation is the witness that
I is a Yes instance. In the other direction, if I is a Yes instance, then there exists an optimal
allocation Opt such that κ#(Opt) ≤ k and it allocates the consecutive houses, say [hi, hi+n].
The algorithm captures this optimal allocation when it iterates over the house hi, and hence
returns Yes.

We now present our algorithms for the cases when (a)every agent approves exactly one house
and (b)every house is approved by almost two agents. To that end, we first present a reduction
rule that will be helpful in the following two results.

Reduction Rule 4. For every house h such that d(h) = 1, we allocate h to N(h).

The above reduction is safe.4 Indeed, if d(h) = 1, then no one except exactly one agent a values
4This rule is subsumed by Reduction Rule 2 when |H \ D| ≥ |A|.
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the house h, and so allocating h to a does not generate any envy.

Theorem 4.17. There is a polynomial-time algorithm for [0/1]-Optimal House Allocation

when every agent approves exactly one house.

Proof. Let I := (A, H,P ; k) denote an instance of HA such that every agent approves exactly
one house. Consider the associated preference graph G = (A ∪ H, E). We first apply the
reduction rules 1, 2 and 4. In the reduced instance, we have |A| ≤ |H| ≤ 2(|A| − 1) and the
degree of any house h in G is strictly greater than 1, that is, d(h) > 1.

We order the houses in the reduced instance in H \ D as {h1, h2, . . . ht} such that d(h1) ≥
d(h2) ≥ . . . d(ht), where t denotes the number of houses in H \ D. (Note that t ≥ 1, since
|D| ≤ n− 1.) The last |A| − |D| of these houses are then allocated to their neighbors (chosen
arbitrarily). The remaining |D| agents get the |D| dummy houses.

We argue the correctness of the above algorithm Alg. We show that the number of envious
agents under the allocation Φ returned by Alg is equal to the number of envious agents under
some optimal allocation. We first claim that in any optimal allocation Opt, all the dummy
houses must be allocated. Suppose h⋆ ∈ D is unallocated. Consider a house hi allocated to
some agent a who approves it. This causes d(hi)− 1 agents to have envy, and since every agent
likes exactly one house, there is no way these d(hi)− 1 agents can become envy-free once hi

is allocated. Since h⋆ is available, we can allocate it to a and add hi to the set of unallocated
houses. This decreases the number of envious agents by d(hi)− 1, without adding to the envy
of anyone else. This contradicts the fact that we started with an optimal allocation. Therefore
all the dummy houses must be allocated.
Now, consider the set S of houses in H \ D that are allocated by Opt. Let T be the set of such
houses allocated under Φ. S and T both contain exactly |A| − |D| many houses from H \ D.
Consider any two house hi and hj in H \ D such that d(hi) > d(hj). Note that the allocation
of hi creates d(hi)− 1 many envious agents, strictly greater than the number of envious agents
created by the allocation of hj, which is d(hj)− 1. Therefore, S contains |A| − |D| houses of
the least degree from among the set of H \D houses. Since T also contain the |A| − |D| houses
of the least degree, therefore κ#(Φ) = κ#(Opt).

We now state the algorithm when the house degree is bounded, while the agent degree is not.

Theorem 4.18. There is a polynomial-time algorithm for [0/1]-Optimal House Allocation

when every house is approved by at most two agents.

Proof. Consider the agent-house bipartite preference graph G. We first apply the reduction
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rules 1, 2, 3 and 4. Then, we apply the following reduction rule.

Reduction Rule 5. For every cycle C = (h1, a1, h2, a2, . . . ai, h1) in G, allocate hi to the agent

ai.

The above reduction is safe. Indeed, since d(h) ≤ 2 ∀ h ∈ G, a house that participates in a
cycle C is valued only by the agents participating in the same cycle. Since G is a bipartite graph,
all cycles are of even length, so the number of agents in C(= |AC|), is equal to the number of
houses in C (= |HC|). This implies that every agent in C can get a house she values from C.
This does not make any agent outside C envious.

Consider the remaining graph G after the application of reduction rules. Note that G is a
collection of trees, that is, G = T1, T2, . . . Tr. Let D be the set of dummy houses in G. We
now describe the algorithm Alg. First, sort the trees in increasing order of sizes, that is, |T1| ≤
|T2|, . . . ≤ |Tr|. For each tree Ti, we root Ti at some leaf agent aj such that d(aj) = 1. (After
Reduction Rule 4, such a leaf agent in Ti always exists, since every leaf house is allocated to the
parent agent by the above reduction rule.) Let n1, n2, . . . nr be the number of agents in the trees
T1, T2, . . . Tr respectively. Let j be the first index such that (n1 + n2 . . . + nj) + (r− j) > |D|.
Then, (n1 + n2 . . . + nj−1) + (r− (j− 1)) ≤ |D|. We allocate all the agents in T1, T2, . . . Tj−1

a dummy house. Then, the number of dummy houses that remain is |D| − (n1 + n2 + . . . +
nj−1) ≥ (r − (j − 1)). For the remaining trees, Tj, . . . Tr, we match the non-root agents to
their parent house and allocate the root agent a dummy house. There are r− j + 1 root agents
and there are at least so many dummy houses.

Note that only the root agents in the tree Tj, Tj+1, . . . Tr are the envious ones — indeed, such a
root agent gets a dummy house but a house valued by her is allocated. Notice that every
non-root agent in the above trees got a house she valued, and all the agents in the trees
T1, T2, . . . Tj−1 got a dummy house, and none of the houses they valued got allocated.

Therefore, under Alg, the number of envious agents = r− j + 1 = total amount of envy.

Claim 4.19. Alg returns an allocation that minimizes the number of envious agents.

Proof. Let G be the reduced graph after the reduction rules. Note that |HTi | = |ATi | − 1 for
any Ti ∈ G. Indeed, root Ti at a house say h1. Let N(h1) = a1 and a2. Since there is no leaf
house, and d(h) = 2 ∀ h, every h ̸= h1 is a parent to a unique agent a ̸= a1, a2. This gives a
bijection from Hi \ h1 to Ai \ {a1, a2}.

Let Opt be the allocation that minimizes the number of envious agents in the reduced graph
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G. Let l and l′ be the number of envious agents under Opt and the allocation returned by Alg
respectively.

If l = l′, we are done. We will now show that l ≮ l′. Suppose, l < l′. Notice that every tree
Ti has either no envious agents (in the case when every agent in Ti gets a dummy house) or
exactly one envious agent (in the case when houses from Ti are allocated). Indeed, every tree
is rooted at a house vertex which is of degree at most two. Also, if any of the leaf vertex in
the tree Ti is a house h, then by the structure of the tree, there is only one agent a (namely,
the parent of h in the tree Ti) that values the house h. Therefore, h can be safely assigned to a,
without causing envy to anyone else. Therefore, we can assume that every leaf vertex in the
tree is an agent. This implies that in any tree, there are more agents than houses. That is why,
in case, any of the house from Ti is allocated, then at least one agent will be envious. The only
case where no agent from Ti is envious is when none of the houses from Ti are allocated and
every agent in Ti gets a dummy house.

Now consider that there are at least two envious agents in a tree Ti under OPT. Then, houses
from Ti must have been allocated. But if so, then consider the following re-allocation where
every agent vertex receives its parent house vertex and one agent from the two that are incident
to the root house h, say a, receives a dummy house. Note that a is now the only envious agent
in Ti. The agents, say in Tj, ( ̸= Ti) who previously received houses from Ti are re-allocated
houses from Tj. If Tj has more houses than agents, then everyone is allocated a house they
value from Tj. Otherwise, agents receive their respective parent houses, and either one of the
two agents incident to the root vertex ends up with a dummy house.

The agents not in Ti who might have previously received houses from Ti under OPT are now
allocated their respective parent houses, and either one of the two agents incident to the root
vertex ends up with a dummy house. Note that such agents who are not in Ti do not value the
houses in Ti and therefore do not differentiate between them and dummy houses. This implies
that there is an allocation where at most one agent is envious in every tree. Therefore, if there
are at least two envious agents in a tree Ti in the OPT, then one of them can be made envy-free
without an increase in the envy of any other agent. This would contradict the fact that the
allocation was OPT to begin with.

So, underOpt, there are exactly l trees that have exactly one envious agent. Since these l agents
did not get what they value, they must have got a dummy house because of the reduction rules
4, 5, and the fact that every tree has one agent more than the number of houses. Also, since
there are no envious agents in the remaining r − l trees (say, Ti1 , Ti2 , . . . Tir−l), all the agents
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in these trees must have got dummy houses each. Therefore the number of dummy houses
allocated under Opt are:

(ni1 + ni2 + . . . nir−l) + l ≥ (n1 + n2 + . . . + nr−l) + l (4.1)

Note that l′ = r − j + 1 where j is the first index such that n1 + n2 . . . + nj + r − j > |D|.
Now since l < l′, therefore,

(r− l) > (r− l′)⇒ (r− l) ≥ (r− l′ + 1) = j⇒ (r− l) ≥ j (4.2)

This implies that there are at least j envy-free trees underOpt. SupposeWLOG there are exactly
j envy-free trees under Opt. Then the number of dummy houses allocated under Opt:

(ni1 + ni2 + . . . nij)+ (r− j) ≥ (n1 + n2 + . . .+ nj)+ (r− j) > |D|which is a contradiction.

This concludes the argument.

4.4.2 Hardness Results for OHA

In this section, we design three different reductions that will establish the hardness of Optimal
House Allocation (both 0/1-OHA and [⪰]-OHA), including in restricted settings. The first is
a parameterized reduction from Cliqe to 0/1-OHA.

Theorem 4.20. [0/1]-Optimal House Allocation is NP-complete when every house is approved

by at most three agents.

Proof. We sketch a reduction from Cliqe. Let I := (G = (V, E); k) be an instance of Cliqe.
Let |V| = n′ and |E| = m′. We first describe the construction of an instance of OHA based on
G:

• We introduce a house he for every edge e ∈ E. We call these the edge houses.

• We also introduce m′ + n′ − (k
2) dummy houses.

• We introduce an agent av for every vertex v ∈ V and an agent ae for every edge e ∈ E.
We refer to these as the vertex and edge agents, respectively.

• Every edge agent ae values the house he.

• For every vertex v ∈ V, the vertex agent av values the edge house he if and only if e is
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incident to v in G.

Note that in this instance of OHA, there are m′ + n′ agents, m′ edge houses and m′ + n′ − (k
2)

dummy houses, and every house is approved by at most three agents. We let k be the target
number of envious agents. This completes the construction of the reduced instance. We now
turn to a proof of equivalence.

The forward direction.

Let S ⊆ V be a clique of size k. Then consider the allocation Φ that assigns he to ae for all
e ∈ E(G[S]) and dummy houses to all other agents. Note that no edge agent is envious in this
allocation, and the only vertex agents who are envious are those that correspond to vertices of
S. Since |S| = k, this establishes the claim in the forward direction.

The reverse direction.

Let Φ be an allocation that has at most k envious agents. We say that Φ is nice if every edge
house is either unallocated by Φ or allocated to an edge agent who values it. If Φ is not nice
to begin with, notice that it can be converted to a nice allocation by a sequence of exchanges
that does not increase the number of envious agents. In particular, suppose he is allocated to an
agent a ̸= ae. Then we obtain a new allocation by swapping the houses he and Φ(ae) between
agents a and ae. This causes at least one envious agent to become envy-free (i.e., ae) and at most
one envy-free agent to become envious (i.e., a), and therefore the number of envious agents does
not increase. Based on this, we assume without loss of generality, that Φ is a nice allocation.

Now note that any nice allocation Φ is compelled to assign n dummy houses among the n′

vertex agents, and this leaves us with m′ − (k
2) dummy houses that can be allocated among m′

edge agents. Therefore, at least (k
2) edge agents are assigned edge houses.

Let F ⊆ E be the subset of edges corresponding to edge agents who were assigned edge houses
by Φ. Let S ⊆ V be the set of vertices in the span of F, that is:

S :=
⋃

e=(u,v)∈F

{u, v}.

Note that for all v ∈ S, av is envious with respect to Φ, since—by the definitions we have so
far—av valued an assigned house and was assigned a dummy house. Since Φ admits at most k
envious agents, we have that |S| ≤ k. However, S is also the span of at least (k

2) distinct edges,
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so it is also true5 that |S| ≥ k. Therefore, we conclude that |S| = k, and since every edge in F
belongs to G[S] and F has (k

2) edges, it follows that S is a clique of size k in G. This concludes
the argument in the reverse direction.

Theorem 4.21. [0/1]-Optimal House Allocation is NP-complete even when every agent

approves at most two houses.

Proof. Let I := (G = (V, E); k) be an instance of Cliqe where G is a d-regular graph. Let
|V| = n′ and |E| = m′. (The problem of finding a clique restricted to regular graphs is also
NP-complete (Mathieson and Szeider, 2012).) We first describe the construction of an instance
of OHA based on G:

• We introduce a house hv for every vertex v ∈ V. We call these the vertex houses.

• We also introduce m′ + n′ − k dummy houses.

• We introduce an agent av for every vertex v ∈ V and an agent ae for every edge e ∈ E.
We refer to these as the vertex and edge agents, respectively.

• Every vertex agent av values the house hv.

• For every edge e = (u, v) in E, the edge agent ae values the houses hu and hv.

Note that in this instance of OHA, there are n′ vertex houses, m′ + n′ − k dummy houses, and
every agent approves at most two houses. We let kd − (k

2) be the target number of envious
agents. This completes the construction of the reduced instance. We now turn to a proof of
equivalence.

The forward direction.

Let S ⊆ V be a clique of size k. Then consider the allocation Φ that assigns hv to av for all v ∈ S
and dummy houses to all other agents. Note that no vertex agent is envious in this allocation,
and the only edge agents that are envious are those that correspond to edges in G that have at
least one of their endpoints in S. The total number of distinct edges incident on S is at most kd,
but since G[S] induces a clique, the exact number of distinct edges incident on S is kd− (k

2),
and this establishes the claim in the forward direction.

5Intuitively, a smaller set of vertices would not be able to accommodate as many edges; and specifically a subset
of at most k− 1 vertices can account for at most (k−1

2 ) < (k
2) edges.
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The reverse direction.

Let Φ be an allocation that has at most kd− (k
2) envious agents. We say that Φ is nice if every

vertex house is either unallocated by Φ or allocated to a vertex agent who values it. If Φ is
not nice to begin with, notice that it can be converted to a nice allocation by a sequence of
exchanges that does not increase the number of envious agents. In particular, suppose hv is
allocated to an agent a ̸= av. Then we obtain a new allocation by swapping the houses hv and
Φ(av) between agents a and av. This causes at least one envious agent to become envy-free
(i.e., av) and at most one envy-free agent to become envious (i.e., a), and therefore the number
of envious agents does not increase. Based on this, we assume without loss of generality, that
Φ is a nice allocation.

Now note that any nice allocation Φ is compelled to assign m′ dummy houses among the m′

edge agents, and this leaves us with n′ − k dummy houses that can be allocated among n′

vertex agents. Therefore, at least k vertex agents are assigned vertex houses. We may assume
that exactly k vertex agents are assigned vertex houses—indeed if more than k vertex agents are
assigned vertex houses, these houses can be swapped with dummy houses without increasing
the number of envious agents, and we perform these swaps until we run out of dummy houses
to swap with. Finally, observe that the set of k vertex agents (say, S) who are assigned vertex
houses induce a clique of size k in G. Indeed, if not:

# of edges incident on S = kd− |E(G[S])| > kd−
(

k
2

)
.

The claim follows from the fact that every edge incident on S in G corresponds to a distinct edge
agent who experiences envy in the reduced instance, and this would contradict our assumption
that the number of agents envious with respect to Φ was at most kd− (k

2).

We now exhibit the hardness of approximation of finding the maximum number of envy-free
agents. Computing a maximum balanced biclique is known to be hard to approximate within a
factor of n(1−γ) for any constant γ > 0, where n is the number of vertices (Manurangsi, 2018),
assuming the Small Set Expansion Hypothesis (Raghavendra and Steurer, 2010). The reduction
below shows that any f (n) approximation to the maximum number of envy-free agents (where
n is the number of agents) implies a 2(1+ ϵ) · f (|L|) approximation to the maximum balanced
bicliquewhere |L| is the size of the left bi-partition. The argument is similar to that of Kamiyama
et al. (2021), but we produce here for the sake of completeness.
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Theorem 4.22. If the Small Set Expansion Hypothesis holds, then finding the maximum number

of envy-free agents for instances with weak rankings is hard to approximate within a factor of

n1−γ
for any constant γ > 0.

Proof. We will first show that there is a polynomial-time reduction that takes an instance G =

(L, R, E) of maximum balanced biclique and produces an allocation instance such that if there
is a bi-clique of size at least k in G, then there exists an allocation Φ in the reduced allocation
instance such that Φ admits at least k envy-free agents. On the other hand, given any allocation
Φ with at least k envy-free agents in the reduced instance, then there is a bi-clique of size k/2 in
G, which can be found in polynomial time. Additionally, the number of agents n in the reduced
instance is exactly |L|.

Consider an instance G = (L, R, E) of maximum balanced biclique such that L = {b1, . . . , bn′}
and R = {c1, . . . , cm′}, we create an allocation instance as follows: an agent ai for each bi ∈ L
and a house hj for each cj ∈ R. We also have n′ additional starred houses {h⋆1 , . . . , h⋆n′}. This
amounts to a total of n′ agents and m′ + n′ houses. An agent ai ranks the houses as follows:

⪰ai=



hj ≻ hl, if j > l; (bi, cj) /∈ E and (bi, cl) /∈ E

hj ≻ hl, if (bi, cj) /∈ E and (bi, cl) ∈ E

hj = hl, if (bi, cj) ∈ E and (bi, cl) ∈ E

h⋆j ≻ h⋆l , if j > l

hi ≻ h⋆j , ∀ i ∈ [m′], j ∈ [n′]

Essentially, every agent ranks his non-neighbor houses first in a fixed strict order, then ranks all
his neighbors equally, and at last, ranks all the additional starred houses, again, in some fixed
strict order.

We now establish the correctness of the above reduction. In the forward direction, suppose
there is a k-sized balanced biclique in G, consisting of vertices {bi1 , bi2 , . . . bik} from L and
{ci′1

, . . . ci′k
} from R. Then consider the following assignment:

Φ(ai) =

hi′l
if i = il for some l ∈ [k]

hi⋆ otherwise

That is, the agents corresponding to the clique vertices get one of their adjacent houses, again
corresponding to the clique vertices. Note that each of the {ai1 , . . . aik} rank the houses
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{hi′1
, . . . hi′k

} equally, so they do not envy each other. Also, they do not envy the remaining
agents who get h⋆j , as they all have the ranking hil ≻ h⋆j for all i and j.

For the reverse direction, suppose there exists an assignment Φ of houses such that there are k
envy-free agents. We claim that there is a balanced biclique of size k

2 in G. Let AEF denote the
set of envy-free agents with respect to Φ. Notice that none of the agents in AEF owns a starred
house under Φ. If not, suppose some a ∈ AEF gets h⋆j . Consider another agent a′ in AEF such
that a′ ̸= a. In case a′ gets a house hj for some j ∈ [m′], then a would be envious as she ranks
all hj better than the starred houses. Else, if a′ gets a starred house, say h⋆l , then depending
on whether j > l or not, one of these two agents experiences envy, as they both rank all the
starred houses in the same manner. Hence, Φ(AEF) ⊆ {h1, . . . , hm′}.

Now, let the k houses under Φ(AEF) be {hj1 , . . . hjk} such that j1 < j2 < . . . < jk. Let
ail = Φ−1(hjl). Then consider the set S, consisting of the vertices in L corresponding to the
first half agents in Φ−1(AEF) and the set T, consisting of the vertices in R, corresponding to
the remaining half house vertices in Φ(AEF). Precisely, S = {bi1 , . . . bi k

2
} and

T = {cj k
2+1

, . . . , cjk}. We claim that S and T together induce a biclique of size k
2 in G. Suppose

(bil , cjl′ ) /∈ E for some bil ∈ S and some cjl′ ∈ T. By the choice of S and T, notice that l < l′.
This means that ail ranks the house hjl′ strictly better that hjl , therefore envies ail′ , who is
assigned the house hjl′ . In order for ail to not envy the owner of hjl′ , it must be the case that
(bil , cjl′ ) ∈ E. Therefore, S and T form a biclique of size k

2 . This completes the correctness of
the reduction.

With this reduction in hand, we will now argue that a polynomial time f (n)-approximation
to finding the maximum number of envy-free agents gives a 2(1 + ϵ) f (|L|)-approximation
algorithm for maximum balanced biclique. But assuming the Small Set Expansion Hypothesis,
this contradicts the inapproximability result for maximum balanced biclique by Manurangsi
(2018).

Consider an instance G of maximum balanced biclique. We first construct the reduced
allocation instance I . Suppose there is a polynomial time f (n)-approximation to finding the
maximum number of envy-free agents that outputs an allocation Φ for I . We first find the
biclique (S, T) corresponding to Φ in G. Let β = 2(1 + 1

ϵ ). We enumerate all subsets of size
2β in G and consider the largest biclique (S′, T′) (of size at most 2β). We then output the
largest of the two bicliques (S, T) and (S′, T′). Let Opt be the size of optimal biclique in G. If
Opt ≤ β · f (|L|), then we have that the brute force biclique (S′, T′) has size at least Opt

f (|L|)
and we are done. Otherwise, suppose Opt > β · f (|L|). By the reduction and
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f (n)-approximation, we have that the number of envy-free agents under Φ is at least
Opt
f (n) =

Opt
f (|L|) . Then we have the size of the biclique (S, T) as

|S| = |T| = ⌊ Opt
2 f (|L|)⌋ >

Opt
2 f (|L|) − 1 >

Opt
2 f (|L|) −

Opt
β f (|L|) =

(β− 1)Opt
β(2 f (|L|)) =

Opt
2 f (|L|)(1 + ϵ)

Therefore, we get an approximation ratio of 2 f (|L|)(1 + ϵ). This settles the claim.

Note that [⪰]-OHA remains NP-Complete from as a corollary to Theorem 4.20, which
establishes the hardness for binary valuations, a specific case of rankings with ties. We
mention here that the complexity of [≻]-OHA remains open.

4.4.3 Parameterized Results for OHA

We now turn to the parameterized complexity of OHA and first present a linear kernel
parameterized by the number of agents.

Theorem 4.23. [0/1]-Optimal House Allocation admits a linear kernel parameterized by the

number of agents. In particular, given an instance of [0/1]-Optimal House Allocation, there is

a polynomial time algorithm that returns an equivalent instance of [0/1]-Optimal House

Allocation with at most twice as many houses as agents.

Proof. It suffices to prove the safety of Reduction Rule 2. Let I := (A, H,P ; k) denote an
instance of HA with parameter k. Further, let I ′ = (H′ := H \ X, A′ := A \ Y,P ′; k) denote
the reduced instance corresponding to I . Note that the parameter for the reduced instance is k
as well.

If I is a Yes-instance of OHA, then there is an allocation Φ : A → H with at most k envious
agents. By Claim 4.9, we may assume that Φ is a good allocation. This implies that the
projection of Φ on H′ ∪ A′ is well-defined, and it is easily checked that this gives an
allocation with at most k envious agents in I ′.

On the other hand, if I ′ is a Yes-instance of OHA, then there is an allocation Φ′ : A′ → H′

with at most k envious agents. We may extend this allocation to Φ : A→ H by allocating the
houses in Y to agents in X along the expansion M, that is:

Φ(a) =

Φ′(a) if a /∈ X,

M(a) if a ∈ X.
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Since all the newly allocated houses are not valued by any of the agents outside X and all
agents in X are envy-free with respect to Φ, it is easily checked that Φ also has at most k
envious agents.

The following results follow from using the algorithm described in Proposition 4.1 after
guessing the allocated houses, which adds a multiplicative overhead of (m

n) ≤ 2m to the
running time.

Corollary 4.24. [0/1]-Optimal House Allocation is fixed-parameter tractable when

parameterized either by the number of houses or the number of agents. In particular,

[0/1]-Optimal House Allocation can be solved in time O⋆(2m).

Corollary 4.25. [≻]-Optimal House Allocation is fixed-parameter tractable when

parameterized by the number of houses and can be solved in time O⋆(2m).

The next two results follow from Theorem 4.20.

Corollary 4.26. [0/1]-Optimal House Allocation is W[1]-hard when parameterized by the

solution size, i.e, the number of envious agents, even when every house is approved by at most

three agents.

Corollary 4.27. [⪰]-Optimal House Allocation is W[1]-hard when parameterized by the

solution size, i.e., the number of envious agents.

We now show that [0/1]-OHA is fixed-parameter tractable when parameterized by the number
of types of houses or the number of types of agents. To that end, we formulate [0/1]-OHA as
an integer linear program and then invoke Theorem 4.6.

Theorem 4.28. [0/1]-Optimal House Allocation is fixed-parameter tractable when

parameterized by either the number of houses types or the number of agents types.

Consider an instance I = (A, h,P , k) of [0/1]-OHA. Recall that we use n∗ to denote the number
of types of agents in I and the m∗ to denote the number of types of houses in I . With a slight
abuse of notation, for i ∈ [n∗], we use P(i)(⊆ [m∗]) to denote the set of types of houses that
each agent of type i values. Also, for i ∈ [n∗], j ∈ [m∗] and an allocation Φ : A→ H, let
A(Φ, i, j) ⊆ A be the set of agents of type i who receive a house of type j under Φ.

Observation 4.29. Consider an instance I = (A, h,P , k) of [0/1]-OHA. Then, (1) n∗ ≤ 2m∗
and

(2) m∗ ≤ 2n∗
. To see (1), for each i ∈ [n∗], the agents of type i are uniquely identified by the types

of houses they prefer, and the number of distinct choices for the types of houses is at most 2m∗
.

Similarly, to see (2), observe that for each j ∈ [m∗], the houses of type j are uniquely identified by
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the types of agents who prefer houses of type j; and the number of distinct choices for the types of

agents is at most 2n∗
.

Lemma 4.30. Consider an instance I = (A, h,P , k) of [0/1]-OHA and an allocation

Φ : A→ H. Consider any fixed pair (i, j), where i ∈ [n∗] and j ∈ [m∗]. Then, for every a ∈ A
and for every a′, a′′ ∈ A(Φ, i, j), either both a′ and a′′ envy a, or neither a′ nor a′′ envies a.

Proof. Consider a ∈ A and a′, a′′ ∈ A(Φ, i, j). First, if j ∈ P(i), then neither a′ nor a′′ envies
any agent. So, assume that j /∈ P(i). Let Φ(a) be of type ℓ, for some ℓ ∈ [m∗]. If ℓ /∈ P(i),
then, neither a′ nor a′′ envies a. If ℓ ∈ P(i), then both a′ and a′′ envy a.

We now move to formulate the [0/1]-OHA problem as an integer linear program (ILP). The
number of variables in our ILP will be O(n∗ · m∗). By Observation 4.29, the number of
variables will be bounded separately by both O(n∗ · 2n∗) and O(m∗ · 2m∗). That is, the
number of variables will be bounded separately by both the number of house types and the
number of agent types. The result will then follow from Theorem 4.6.

Consider an instance I = (A, h,P , k) of [0/1]-Optimal House Allocation. For each i ∈ [n∗]
and j ∈ [m∗], let ni be the number of agents of type i and mj the houses of type j. To define
our ILP, we introduce the following variables. For each i ∈ [n∗], j ∈ [m∗], we introduce four
variables: xij, zij, dij and d′ij. Here, xij and zij are integer variables, and dij and d′ij are binary
variables. The semantics of the variables are as follows. (1) We want xij to be the number of
agents of type i who receive houses of type j. Equivalently, we want xij to be the number of
houses of type j that are allocated to agents of type i. (2) And we want zij to be the number of
envious agents of type i who receive houses of type j. By Lemma 4.30, either all type i agents
who receive type j houses are envious, or none of them is envious. That is, we must have either
zij = xij or zij = 0. Notice that type i agents who receive type j houses are envious if and only
if j /∈ P(i), and for some j′ ∈ P(i), at least one house of type j′ has been allocated (to, say,
an agent of type i′ for some i′ ∈ [n∗]). That is, we must have zij > 0 if and only if j /∈ P(i),
xij > 0 and xi′,j′ > 0 for some i′ ∈ [n∗] and j′ ∈ P(i). Hence, for j /∈ P(i), either xij = 0 or
zij > 0 if ∑i′∈[n] ∑j′∈P(i) xi′ j′ > 0. (3) The variables dij, d′ij are only dummy variables that we
use to enforce the “either or” constraints.

We now formally describe our ILP. Minimize ∑i∈[n∗] ∑j∈[m∗] zij subject to the constraints
in Table 4.3.

For convenience, we name this ILP P1(I), and denote the set of variables of P1(I) by
Var(P1(I)) and the optimum value of P1(I) by opt(P1(I)). Constraint C1.i ensures that for

97



4. Minimizing Envy in House Allocation

(C1.i). ∑j∈[m∗] xij = ni ∀i ∈ [n∗]

(C2.j). ∑i∈[n∗] xij ≤ mj ∀j ∈ [m∗]

(C3.a.i.j). xij ≤ nd′ij
∀i ∈ [n∗], j ∈ [m∗] \ P(i)(C3.b.i.j). ∑i′∈[n∗] ∑j′∈P(i) xi′ j′ ≤ nmzij + nm(1− d′ij)

(C3.c.i.j). zij ≤ ni ∑i′∈[n∗] ∑j′∈P(i) xi′ j′

(C4.a.i.j). zij ≤ nidij
∀i ∈ [n∗], j ∈ [m∗](C4.b.i.j). xij − zij ≤ ni(1− dij)

(C4.c.i.j). zij ≤ xij

(C5.i.j). zij = 0 ∀i ∈ [n∗], j ∈ P(i)

(C6.a.i.j). xij ≥ 0

∀i ∈ [n∗], j ∈ [m∗](C6.b.i.j). zij ≥ 0
(C6.c.i.j). dij ∈ {0, 1}
(C6.d.i.j). d′ij ∈ {0, 1}

Table 4.3: The constraints of the ILP P1(I).

each i ∈ [n∗], the number of houses allocated to agents of type i is exactly ni. In other words,
all agents of type i receive houses. Constraint C2.j ensures that for each j ∈ [m∗], the number
of houses of type j that are allocated does not exceed mj. For i ∈ [n∗] and j ∈ [m] \ P(i),
constraints C3.a.i.j and C3.b.i.j together ensure that depending on whether d′ij = 0 or d′ij = 1,
we have either xij = 0 or zij > 0 if ∑i′∈[n∗] ∑j′∈[P(i)] xi′ j′ > 0. Constraint C3.c.i.j ensures that
if xi′ j′ = 0 for every i′ ∈ [n∗], j′ ∈ [m] \ P(i), then zij = 0. Constraints C4.a.i.j-C4.c.i.j
together ensure that depending on dij = 0 or dij = 1, we have either zij = 0 or zij = xij.

To establish the correctness of P1(I), we prove the following two claims.

Claim 4.31. For any allocation Φ : A→ H, there exists a feasible solution

fΦ : Var(P1(I))→ Z for P1(I) such that κ#(Φ) = ∑i∈[n∗] ∑j∈[m∗] fΦ(zij).

Claim4.32. For every optimal solution f : Var(P1(I))→ Z for P1(I), there exists an allocation
Φ f : A→ H such that κ#(Φ f ) = ∑i∈[n∗] ∑j∈[m∗] f (zij).

Remark 4.33. Notice that Claim 4.31, in fact, proves that ILP P1(I) is always feasible as there
is always an allocation. Moreover, for an allocation Φ, since 0 ≤ κ#(Φ) ≤ n, and since

κ#(Φ) = ∑i∈[n∗] ∑j∈[m∗] fΦ(zij), we can conclude that P1(I) has a bounded solution.

Therefore, opt(P1(I)) is well-defined.
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Assuming Claims 4.31 and 4.32 hold, we now prove the following claim.

Claim 4.34. We have κ#(I) = opt(P1(I)).

Proof. To prove the claim, we will prove that (1) κ#(I) ≥ opt(P1(I)) and (2) opt(P1(I)) ≥
κ#(I).

To prove (1), consider an optimal allocation Φ : A→ H. That is, κ#(I) = κ#(Φ).
By Claim 4.31, we have κ#(Φ) = ∑i∈[n∗] ∑j∈[m∗] fΦ(zij) ≥ opt(P1(I)), where fΦ is as
defined in Claim 4.31. We thus have κ#(I) ≥ opt(P1(I)).

Now, to prove (2), consider an optimal solution f for P1(I). That is,

opt(P1(I)) = ∑i∈[n∗] ∑j∈[m∗] f (zij). By Claim 4.32, we have

opt(P1(I)) = ∑i∈[n∗] ∑j∈[m∗] f (zij) = κ#(Φ f ) ≥ κ#(I), where Φ f is as defined in Claim 4.32.
We thus have opt(P1(I)) ≥ κ#(I).

We are now ready to prove Theorem 4.28.

Proof of Theorem 4.28. Given an instance I of [0/1]-OHA, observe that we can construct the
ILP P1(I)in polynomial time. The number of variables in P1(I) is bounded by 4n∗m∗. The
number of constraints in P1(I) is also bounded by O(n∗m∗). The maximum value of any
coefficient or constant term in P1(I) is bounded by nm. So, P1(I) can be encoded using
poly(n∗, m∗) · O(log(nm)) bits. The result then follows from Theorem 4.6 and Claim 4.34.

We now only have to prove Claims 4.31 and 4.32.

Proof of Claim 4.31. Consider any allocation Φ : A→ H. Recall that A(Φ, i, j) is the set of
agents of type i who receive houses to type j under Φ.

We define a solution fΦ : Var(P1(I))→ Z for P1(I) as follows. For each i ∈ [n∗], j ∈ [m∗],
we set (1) fΦ(xij) = |A(Φ, i, j)|; (2) fΦ(zij) = fΦ(xij) if there exists an envious agent a ∈
A(Φ, i, j) and fΦ(zij) = 0 otherwise; (3) fΦ(dij) = 0 if fΦ(zij) = 0 and fΦ(dij) = 1 otherwise;
and (4) fΦ(d′ij) = 0 if fΦ(xij) = 0 and fΦ(d′ij) = 1 otherwise.

To see that fΦ satisfies all the constraints of P1(I), observe first that |A(Φ, i, j)| is the
number of agents of type i who receive houses of type j under Φ; equivalently, |A(Φ, i, j)| is
the number of houses of type j that have been allocated to agents of type i under Φ.
Therefore, ∑j∈[m∗] |A(Φ, i, j)| = ni and ∑i∈[n∗] |A(Φ, i, j)| ≤ mj. Hence, (1)
∑j∈[m∗] fΦ(xij) = ∑j∈[m∗] |A(Φ, i, j)| = ni and ∑i∈[n∗] fΦ(xij) = ∑i∈[n∗] |A(Φ, i, j)| ≤ mj.
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Thus fΦ satisfies constraints C1.i and C2.j for every i ∈ [n∗] and j ∈ [m∗]. Also, note that
∑i′∈[n∗] ∑j′∈P(i) fΦ(xi′ j′) ≤ ∑i′∈[n∗] ∑j′∈[m∗] |A(Φ, i, j)| ≤ n.

Now, consider i ∈ [n∗], j ∈ [m∗]. Suppose first that fΦ(xij) = 0. Then, by the definition
of fΦ, we have |A(Φ, i, j)| = 0, and hence fΦ(zij) = 0, which implies fΦ(dij) = 0; and
fΦ(xij) = 0 implies that fΦ(d′ij) = 0. Note that in this case, fΦ satisfies all the constraints. In
particular, constraint C3.b.i.j is satisfied because fΦ(zij) = fΦ(d′ij) = 0 implies that the right
side of constraint C3.b.i.j is exactly equal to nm, and the left side of the constraint is at most n.
Since fΦ(xij) = fΦ(zij) = 0, all the other constraints corresponding to the pair (i, j) are also
satisfied.

Suppose now that fΦ(xij) > 0. Then by the definition of fΦ, we have fΦ(d′ij) = 1. There are
two possibilities: (1) fΦ(zij) = 0 and (2) fΦ(zij) > 0.

Assume first that fΦ(zij) = 0. Again, by the definition of fΦ, we have fΦ(dij) = 0. Notice that
this choice of values satisfies all the constraints corresponding to the pair (i, j), except possibly
C3.b.i.j. To see that C3.c.i.j is also satisfied, assume that j ∈ [m∗] \ P(i). Since fΦ(zij) = 0, the
definition of fΦ implies that the agents of type i who receive houses of type j are not envious.
Hence we can conclude that none of the houses of type j′ have been allocated under Φ, for any
j′ ∈ P(i). That is, A(Φ, i′, j′) = ∅ for every i′ ∈ [n∗] and [j′] ∈ P(i). Thus the left side of
constraint C3.b.i.j is 0; and the right side is 0 as well, as fΦ(zij) = 1 and fΦ(d′ij) = 1.

Finally, assume that fΦ(zij) > 0. Then, by the definition of fΦ, we have
fΦ(zij) = fΦ(xij) = |A(Φ, i, j)| ≤ ni and fΦ(dij) = 1. Notice that this choice of values
satisfies constraints C4.a.i.j-C4.c.i.j. From the definition of fΦ, we can also conclude that the
agents of type i who receive houses of type j under Φ are envious, which implies that
j /∈ P(i) and |A(Φ, i′, j′)| = fΦ(xi′ j′) > 0 for some i′ ∈ [n∗], j′ ∈ P(i). Thus the right side
of constraint C3.c.i.j is strictly positive; and since fΦ(zij) ≤ ni, constraint C3.c.i.j is satisfied.
Since fΦ(d′ij) = 1 and fΦ(xij) ≤ n, constraint C3.a.i.j is satisfied. Finally, constraint C3.b.i.j is
satisfied because its left side is at most n, and the right side is at least nm as fΦ(zij) > 0.
Notice also that in this case P1(I) does not contain constraint C5.i.j as j /∈ P(i).

We have thus shown that fΦ satisfies all the constraints of P1(I).

Consider i ∈ [n∗], j ∈ [m∗]. Suppose that A(Φ, i, j) ̸= ∅. By Lemma 4.30, either all agents
in A(Φ, i, j) are envious or none of them are. By the definition of fΦ, we have fΦ(zij) =

fΦ(xij) = |A(Φ, i, j)| if and only if the agents in A(Φ, i, j) are envious; and fΦ(zij) = 0
otherwise. Therefore, the number of envious agents under Φ, κ#(Φ) = ∑i∈[n∗] ∑j∈[m∗] fΦ(zij).
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To prove Claim 4.32, we first prove two preparatory claims below. In both these claims,
f : Var(P1(I))→ Z is a feasible solution for P1(I).

Claim 4.35. For every i ∈ [n∗], j ∈ [m∗], either f (zij) = 0 or f (zij) = f (xij).

Proof. Fix i ∈ [n∗], j ∈ [m∗]. Since constraint C6.c.i.j is satisfied, we have f (dij) ∈ {0, 1}. If
f (dij) = 0, then constraints C4.a.i.j implies that f (zij) ≤ 0 and then constraint C6.b.i.j implies
that zij = 0. Instead, if f (dij) = 1, then, constraint C4.b.i.j implies that f (xij)− f (zij) ≤ 0,
which implies that f (xij) ≤ f (zij). But then constraint C4.c.i.j implies that f (zij) = f (xij).

Claim 4.36. For every i ∈ [n∗], j ∈ [m∗], f (zij) > 0 if and only if j /∈ P(i), f (xij) > 0 and

f (xi′ j′) > 0 for some i′ ∈ [n∗] and j′ ∈ P(i).

Proof. Fix i ∈ [n∗], j ∈ [m∗]. Assume first that f (zij) > 0. Then, constraint C5.i.j implies that
j /∈ P(i). Constraint C4.c.i.j implies that f (xij) ≥ f (zij) > 0. Now, if f (xi′ j′) = 0 for every
i′ ∈ [n], j′ ∈ P(i), then constraint C3.c.i.j would imply that f (zij) ≤ 0, which is not possible.
Hence, we have f (xi′ j′) > 0 for some i′ ∈ [n], j′ ∈ P(i).

Assume now that j /∈ P(i), f (xij) > 0, and f (xi′ j′) > 0 for some i′ ∈ [n∗] and j′ ∈ P(i).
Since f (xij) > 0, constraint C3.a.i.j implies that f (d′ij) > 0. By constraint C6.d.i.j, we then
have f (d′ij) = 1. Then, constraint C3.b.i.j ,along with the fact that f (xi′ j′) > 0 for some
i′ ∈ [n∗] and j′ ∈ P(i), implies that 0 < ∑i′∈[n∗] ∑j′∈P(i) f (xi′ j′) ≤ nm f (zij), which, then
implies that f (zij) > 0.

Proof of Claim 4.32. Given f : Var(P1(I))→ Z, we define Φ f : A→ H as follows. For each
i ∈ [n∗], j ∈ [m∗], we allocate f (xij) houses of type j to agents of type i (one house per agent).
Thus, we have |A(Φ f , i, j)| = f (xij). Notice that as f satisfies constraints C1.i and C2.j, the
allocation Φ f is valid.

To complete the proof of the claim, we only need to prove that for every i ∈ [n∗], j ∈ [m∗], the
number of envious agents of type i who received houses of type j under Φ f is exactly equal to
f (zij). Fix i ∈ [n∗], j ∈ [m∗]. By Lemma 4.30, either all agents in A(Φ f , i, j) are envious or
none of them is envious. Notice that the agents in A(Φ f , i, j) (if they exist) are envious if and
only if |A(Φ f , i, j)| > 0, j /∈ P(i) and A(Φ f , i′, j′) ̸= ∅ for some i′ ∈ [n∗], j′ ∈ [m∗] \ P(i).
That is, the agents in A(Φ f , i, j) are envious if and only if f (xij) = |A(Φ f , i, j)| > 0, j /∈ P(i)
and f (xi′ j′) = |A(Φ f , i′, j′)| > 0 for some i′ ∈ [n∗], j′ ∈ [m∗] \ P(i). On the other hand,
by Claim 4.36, f (zij) > 0 if and only if f (xij) > 0, j /∈ P(i) and f (xi′ j′) > 0 for some
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i′ ∈ [n∗], j′ ∈ [m∗] \ P(i). We can thus conclude that the agents in A(Φ f , i, j) are envious if
and only if f (zij) > 0. By Claim 4.35, we also have f (zij) = 0 or f (zij) = f (xij). This implies
that the agents in A(Φ f , i, j) are envious if and only if f (zij) = f (xij) > 0. By Lemma 4.30,
if the agents in A(Φ f , i, j) are envious, then the number of envious agents in A(Φ f , i, j) is
exactly |A(Φ f , i, j)| = f (xij) = f (zij). We thus have κ#(Φ f ) = ∑i∈[n∗] ∑j∈[m∗] f (zij).

4.5 Egalitarian House Allocation

In this section, we deal with the EHA problems, where the goal is to minimize the maximum
envy experienced by any agent. We first discuss the polynomial time algorithms for EHA.

4.5.1 Polynomial Time Algorithms for EHA

Theorem 4.37. There is a polynomial-time algorithm for [0/1]-Egalitarian House Allocation

when the agent valuations have an extremal interval structure.

Proof. In light of Remark 4.13, it suffices to prove for the case when agent valuations are
left-extremal. Let I := (A, H,P ; k) be an instance of EHA with left-extremal valuations.
Consider an envious agent al in the allocation, who approves the interval [h1, hi]. Note that if
I is a Yes instance, no more than k houses can be allocated from [h1, hi], else the envy
experienced by al will be more than k.

Based on this observation, the algorithmworks as follows. We order the agents in the increasing
order of the length of their intervals, that is, a appears before a′ if P(a) ⊆ P(a′). We guess the
last envious agent al . There are at most n such guesses. Suppose the interval that al approves is
[h1, hj] for some j ∈ [m]. Since any valid allocation is bound to allocate at most k houses from
[h1, hj], we iterate over the number of houses i allocated from [h1, hj]. (Note that i ≤ k.) For
each such i, we construct the associated preference graph Gi = (A≥l+i+1 ∪ H≥j+1; E) where
A≥l+i+1 = {al+i+1, al+i+2, . . . an} and H≥j+1 = {hj+1, . . . hm}. We then find a matching in
Gi that saturates A≥l+i+1, and if it does not exist, then the iteration is discarded. The algorithm
then constructs the allocation Φi as follows. The matched houses under Mi are allocated to
the matched agents. The first i houses from [h1, hj] are allocated to the first i agents whose
interval ends after hj, particularly, to {al+1, al+2, . . . , al+i}. The remaining unmatched houses
are assigned arbitrarily to the unmatched agents. If the number of remaining houses is less
than the remaining agents, then the iteration is discarded and the algorithm moves to the next
iteration. The algorithm returns Yes if for some iteration i, Φi is a complete allocation, that is,
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every agent gets a house under Φi. Else, it returns No.

To argue the correctness of the above algorithm, we show that if I is a Yes instance, if and only
if for some iteration i, there exists a complete allocation Φi. In the forward direction, suppose
I is a Yes instance. There must exist some optimal allocationOpt such that the maximum envy
under Opt is at most k. Among all the envious agents under Opt, consider the agent a whose
interval [h1, h] is longest, that is, for all envious agents a′,P(a′) ⊆ P(a). SupposeOpt allocates
k′ houses from [h1, h]. Then consider the iteration in A that iterates over the agent al = a and
i = k′. (This implies [h1, hj] = [h1, h].) Note that under Opt, all the agents whose interval ends
after h must get a house that they like. This implies that for all the agents {al+1, al+2, . . . an},
there exists a house that they like and that can be allocated to them. As Opt allocates exactly
k′(= i) houses from [h1, hj], at most i of the agents among {al+1, al+2, . . . an} can get a house
they like from [h1, hj]. For the remaining ones, theremust exist at least one house [hj+1, hm] that
they like and can be allocated to them, which implies that theremust exist amatching saturating
the said agents under the said iteration i. Therefore all the agents {al+1, al+2, . . . an} get a house
that they like under Φi. Also, sinceOPT is a complete allocation, so there are enough remaining
houses for the agents {a1, . . . al} that can be allocated to them, once {al+1, al+2, . . . an} get
what they value. This implies that there are enough houses remaining under Φi as well to be
allocated to the remaining agents. (Note that even if all the agents {a1, . . . al} are envious,
their envy is bounded by at most i ≤ k.) This implies that the allocation Φi constructed in the
iteration i is indeed complete, and the algorithm returns Yes.

In the reverse direction, suppose there exists a complete allocation Φi. Note that all the envious
agents under Φi do not value any house outside [h1, hj] and exactly i(≤ k) houses are allocated
from {h1, hj}. Therefore themaximum envy is atmost k, and I is a Yes instance. This concludes
the proof.

We now state the algorithm for the restricted setting when every agent approves exactly one
house.

Theorem 4.38. There is a polynomial-time algorithm for [0/1]-Egalitarian House Allocation

when every agent approves exactly one house.

Proof. Notice that when every agent approves exactly one house, then in any allocation, the
maximum envy κ†(Φ) is bounded by 1. Given an instance I := (A, H,P ; k) of HA, we invoke
the Hall’s Violators Algorithm by Gan et al. (2019). The above algorithm checks whether there
is an envy-free allocation and returns one if it exists. Therefore, if it returns an allocation, then
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κ†(Φ) = 0, else it has to be at least 1 under any allocation.

4.5.2 Hardness Results for EHA

In this section, we establish the hardness of EHA for both binary and linear orders, even under
restricted settings.

Theorem 4.39. There is a polynomial-time reduction from Independent Set

to [0/1]-Egalitarian House Allocation, where every agent approves at most two houses and

every house is approved by at most ten agents. This reduction shows that [0/1]-Egalitarian

House Allocation is NP-complete even when the target value of the maximum envy is one.

Proof. Let I := (G = (V, E); k) be an instance of Independent Set. Let |V| = n′ and
|E| = m′. Since Independent Set is known to be NP-complete even on subcubic graphs, we
assume that G is subcubic, i.e, that the degree of every vertex in G is at most three. We construct
an instance of [0/1]-EHA as follows.

• We introduce a house hv for every vertex v in V. We call these the vertex houses.

• We also introduce (3m′ + n′)− k dummy houses.

• We introduce an agent av for every vertex v ∈ V and three agents a1
e , a2

e , a3
e for every

edge e ∈ E. We refer to these as the vertex and edge agents, respectively. We refer to the
three agents corresponding to a single edge as the cohort around e.

• All three edge agents corresponding to the edge e = (u, v) value the houses hu and hv.

• A vertex agent av values the house hv.

Note that in this instance of EHA, there are 3m′+ n′ agents, n′ vertex houses, and 3m′+ n′− k
dummy houses, and every agent approves at most two houses. We set the maximum allowed
envy at one, that is, the reduced instance asks for an allocation where every agent envies at
most one other agent. This completes the construction of the reduced instance. We now turn
to a proof of equivalence.

The forward direction.

Let S ⊆ V be an independent set of size k. Consider the allocation Φ that assigns hv to av for
all v ∈ S and dummy houses to all remaining agents. Note that all vertex agents are envy-
free under this allocation. If an edge agent envies two other agents, it must be two agents who
received vertex houses, since recipients of dummyhouses are never a cause for envy. So suppose
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an edge agent a◦e who approves, say, the houses hu and hv is envious, then it implies that both
au and av belong to S while it is also true that (u, v) ∈ E; contradicting our assumption that
G[S] induces an independent set. This completes the argument in the forward direction.

The reverse direction.

Let Φ be an allocation with respect to which every agent envies at most one other agent. First,
note that if e = (u, v) is an edge in G, then note that Φ can allocate at most one of the houses
hu and hv. Suppose not. Then notice that at least one of the agents among the cohort of edge
agents corresponding to e, i.e, a1

e , a2
e and a3

e envy the two agents who were assigned the houses
hu and hv.

We say that Φ is nice if every vertex house is either unallocated by Φ or allocated to a vertex
agent who values it. If Φ is not nice to begin with, notice that it can be converted to a nice
allocation by a sequence of exchanges that does not increase the maximum envy of the
allocation without changing the set of allocated houses. In particular, suppose hv is allocated
to an agent a ̸= av. Then we obtain a new allocation by swapping the houses hv and Φ(av)

between agents a and av. This causes av to become envy-free. If a is a vertex agent, then she
experiences the same envy as before. If a is an edge agent, then we have two possible
scenarios. Suppose a did not value hv: then the amount of envy experienced by a is either the
same or less than, the amount of envy she had in the original allocation. On the other hand, if
a did value hv, then a envies av in the new allocation but nobody else, since hu is unallocated
in Φ.

Based on this, we assume without loss of generality, that Φ is a nice allocation. Now note
that any nice allocation Φ is compelled to assign 3m′ dummy houses among the 3m′ edge
agents, and this leaves us with n′ − k dummy houses that can be allocated among n′ vertex
agents. Therefore, at least k vertex agents are assigned vertex houses. Finally, observe that the
corresponding vertices induce an independent set in G of size at least k. Indeed, this follows
from a fact that we have already argued: any two houses corresponding to vertices that are
endpoints of an edge cannot be both allocated by Φ. This concludes the argument in the reverse
direction.

Theorem 4.40. There is a polynomial-time reduction from Multi-Colored Independent Set

to [≻]-Egalitarian House Allocation. This reduction shows that [≻]-Egalitarian House

Allocation is NP-complete even when the target value of the maximum envy is one.
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Proof. Let I := (G = (V, E); k) be an instance of Multi-Colored Independent Set with
color classes V1, . . . , Vk. By adding dummy global vertices if required, we assume that |Vi| =
n ≥ 3 for all i ∈ [k], and denote the vertices in Vi by {ui

1, . . . , ui
n}. The global dummy vertices

added in any partition Vi are adjacent to all the other vertices not in Vi.

We now construct an instance of [≻]-EHA as follows.

• We introduce a house for every vertex v in V. We call these the vertex houses and they
are denoted by:

HV := {h1
1, . . . , h1

n} ⊎ · · · ⊎ {hk
1, . . . , hk

n}.

• We introduce a house he for every edge e in E. We call these the edge houses and denote
this set of houses by HE.

• For each 1 ≤ i ≤ k, and for every 1 ≤ p ̸= q ≤ n, we introduce three houses h1
[i;p,q],

h2
[i;p,q] and h3

[i;p,q]. We call them special houses.

• We also introduce k · (n− 1) additional houses, denoted by:

HD := {d1
1, . . . , d1

n−1} ⊎ · · · ⊎ {dk
1, . . . , dk

n−1}.

• We introduce an agent for every vertex v ∈ V, denoted by a[1,i], . . . , a[n,i] for 1 ≤ i ≤ k.
We call them vertex agents.

• We introduce an agent ae for every e ∈ E. We call them edge agents.

• For each 1 ≤ i ≤ k, and for every 1 ≤ p ̸= q ≤ n, we introduce three agents a[i;p,q,1],
a[i;p,q,2] and a[i;p,q,3]. We call them guards.

For a set X, we use X to denote an arbitrary order on the set X. Also, for a fixed order, say σ,
we use [[σ]]i to denote the order σ rotated i times. For example, [[x ≻ y ≻ z]]2 = z ≻ x ≻ y.
Note that σ is an order over n elements, then [[σ]]n = σ. We also use H to denote the set of
houses in the reduced instance. We are now ready to describe the preferences of the agents.

• An edge agent corresponding to an edge e = (ui
p, uj

q) that has endpoints in Vi and Vj

(with i < j) ranks the houses as follows:

≻e: hi
p ≻ hj

q ≻ he ≻ H \ {hi
p, hj

q, he}

• For each 1 ≤ i ≤ k, for every 1 ≤ p ̸= q ≤ n, and ℓ ∈ {1, 2, 3} the guard agent a[i;p,q,ℓ]

has the following preference:
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≻[i;p,q,ℓ]: hi
p ≻ hi

q ≻ hℓ[i;p,q] ≻ H \ {hi
p, hi

q, hℓ
[i;p,q]}.

• For 1 ≤ i ≤ k, the vertex agents a[1,i], . . . , a[n,i] rank the houses as follows

≻[1,i] : hi
1 ≻ [[di

1 ≻ di
2 ≻ di

3 ≻ · · · ≻ di
n−1]]0 ≻ H \ {hi

1, di
1, di

2, di
3, . . . , di

n−1}

≻[2,i] : hi
2 ≻ [[di

1 ≻ di
2 ≻ di

3 ≻ · · · ≻ di
n−1]]0 ≻ H \ {hi

2, di
1, di

2, di
3, . . . , di

n−1}
...

≻[j,i] : hi
j ≻ [[di

1 ≻ di
2 ≻ di

3 ≻ · · · ≻ di
n−1]]j−2 ≻ H \ {hi

j, di
1, di

2, di
3, . . . , di

n−1}
...

≻[n−1,i] : hi
n−1 ≻ [[di

1 ≻ di
2 ≻ di

3 ≻ · · · ≻ di
n−1]]n−3 ≻ H \ {hi

n−1, di
1, di

2, di
3, . . . , di

n−1}

≻[n,i] : hi
n ≻ [[di

1 ≻ di
2 ≻ di

3 ≻ · · · ≻ di
n−1]]n−2 ≻ H \ {hi

n, di
1, di

2, di
3, . . . , di

n−1}

Note that in this instance of EHA, there are k · (n − 1) extra houses. We set the maximum
allowed envy at one, that is, the reduced instance asks for an allocation where every agent
envies at most one other agent. This completes the construction of the reduced instance. We
now turn to a proof of equivalence.

The forward direction.

Let S ⊆ V be a multicolored independent set. Let s : [k]→ [n] be such that:

S = {u1
s(1), u2

s(2), . . . , uk
s(k)}.

We now describe an allocation Φ based on S. First, we let Φ(ae) = he for all e ∈ E. Also, for
each 1 ≤ i ≤ k, and for every 1 ≤ p ̸= q ≤ n, we have Φ(a[i;p,q,1]) = h1

[i;p,q], Φ(a[i;p,q,2]) =

h2
[i;p,q] and Φ(a[i;p,q,3]) = h3

[i;p,q].

Now, for the vertex agents corresponding to the vertices ofVi, we have the following if s(i) ≥ 2:
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Φ(a[j,i]) =


di

j if 1 ≤ j < s(i),

hi
j if j = s(i),

di
j−1 if s(i) < j ≤ n,

and if s(i) = 1, then we proceed as follows instead:

Φ(a[j,i]) =

hi
1 if j = 1,

di
j−1 if j > 1,

Note that every house corresponding to a vertex not in S remains unallocated in Φ, implying,
in particular, that exactly one vertex from each color class corresponds to an allocated vertex
house in Φ. We now argue that every agent envies at most one other agent with respect to this
allocation.

First, consider an edge agent ae corresponding to an edge e = (ui
p, uj

q) that has endpoints in Vi

and Vj (with i < j). Recall that ae gets her third-ranked house with respect to Φ. Since at most
one of hi

p or hj
q is allocated with respect to Φ, we have that ae envies at most one agent.

Similarly, every guard agent receives the special house that she ranks third, and at most one of
the two top-ranked houses is allocated in Φ, since both of the top-ranked houses belong to the
same color class by construction.

Now we turn to the vertex agents. It is easily verified that every vertex agent gets a house that
they rank first (if they correspond to a vertex from S), second, or third. Thus, vertex agents
corresponding to vertices in S are envy-free, and all other vertex agents envy at most one other
agent. (If an agent a[j,i] receives its third-ranked house di

j, then notice that the first-ranked
house hi

j remains unallocated. Therefore, a[j,i] envies at most one other agent who might have
received di

j−1, its second-ranked house.) This concludes the proof in the forward direction.

The reverse direction.

Let Φ be an allocation for the reduced instance where every agent envies at most one other
agent. We make a series of claims about the allocation Φ that allows us to observe that Φ has
the following properties: it allocates exactly one vertex house from the houses corresponding
to vertices in a common color class, and further, it allocates such a house to a vertex agent.
Such vertex houses are then easily seen to correspond to a multi-colored independent set in
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G: indeed, if not, then the pair of adjacent vertices would correspond to an edge agent who is
envious of at least two vertex agents, contradicting our assumption about Φ.

We first observe that we cannot allocate more than one house from among vertex houses
corresponding to vertices from a common color class of G.

Claim 4.41. Let i ∈ [k] be arbitrary but fixed. Among the vertex houses {hi
1, . . . , hi

n}, Φ leaves

at least (n − 1) houses unallocated; in other words, Φ allocates at most one house from among

these houses.

Proof. Suppose not, and in particular, suppose Φ allocates the houses hi
p and hi

q for some 1 ≤
p ̸= q ≤ n. Then at least one of the three guard agents ai;p,q,ℓ for ℓ ∈ {1, 2, 3} will envy the
two agents who receive these two houses, which contradicts the assumption that every agent
envies at most one other agent in the allocation Φ.

The total number of houses are nk vertex houses, (n− 1)k dummy houses, m edge houses and
3k(n

2) special houses. The total number of agents are nk vertex agents, m edge agents, and 3k(n
2)

guards. Now since at least (n− 1)k vertex houses remain unallocated by Claim 4.41, to ensure
that every agent gets a house, at least one vertex house from each of the n vertex partitions
must be allocated. This implies that exactly one house is allocated from one color class.

Since (n− 1)k vertex houses are unallocated, all the remaining houses must be allocated by Φ.
In particular, all additional houses are allocated, and we use this fact in our next claim.

Claim 4.42. If a vertex house is allocated in Φ, then it is assigned to a vertex agent.

Proof. Suppose not. Let i be such that the vertex house under consideration corresponds to a
vertex from Vi. Note that the additional houses {di

1, . . . , di
n−1} can be allocated among at most

(n− 1) of the agents corresponding to the vertices in Vi. Therefore, there is at least one agent a
among the agents a[j,i], j ∈ [n]who does not receive any of the houses among her top n-ranked
houses. Further, she was also not assigned her top-ranked house, by the assumption we made
for the sake of contradiction. Since Φ allocates all the houses in {di

1, . . . , di
n−1}, the agent a

envies at least (n− 1) ≥ 2 agents, and this is the desired contradiction.

The previous two claims imply the desired structure on Φ, and as argued earlier, the subset of
vertices corresponding to allocated vertex houses induces a multicolored independent set in G,
and this concludes the argument in the reverse direction.
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4.5.3 Parameterized Results for EHA

In this section, we present a linear kernel for [0/1]-EHA and discuss the tractable and the hard
cases in the parameterized setting.

Theorem 4.43. [0/1]-Egalitarian House Allocation admits a linear kernel parameterized by

the number of agents. In particular, given an instance of [0/1]-Egalitarian House Allocation,

there is a polynomial time algorithm that returns an equivalent instance of [0/1]-Egalitarian

House Allocation with at most twice as many houses as agents.

Proof. It suffices to prove the safety of Reduction Rule 2. Let I := (A, H,P ; k) denote an
instance of HA with parameter k. Further, let I ′ = (H′ := H \ X, A′ := A \ Y,P ′; k) denote
the reduced instance corresponding to I . Recall that the parameter for the reduced instance is
k as well.

If I is a Yes-instance of EHA, then there is an allocation Φ : A → H with maximum envy
at most k. By Claim 4.10, we may assume that Φ is a good allocation. This implies that the
projection of Φ on H′ ∪ A′ is well-defined, and it is easily checked that this gives an allocation
with maximum envy at most k

On the other hand, if I ′ is a Yes-instance of EHA, then there is an allocation Φ′ : A′ → H′

with maximum envy k. We may extend this allocation to Φ : A→ H by allocating the houses
in Y to agents in X along the expansion M, that is:

Φ(a) =

Φ′(a) if a /∈ X,

M(a) if a ∈ X.

Since all the newly allocated houses are not valued by any of the agents outside X and all agents
in X are envy-free with respect to Φ, it is easily checked that Φ also has maximum envy k.

The following results follow from using the algorithm described in Proposition 4.2 after
guessing the allocated houses, which adds a multiplicative overhead of (m

n) ≤ 2m to the
running time.

Corollary 4.44. [0/1]-Egalitarian House Allocation is fixed-parameter tractable when

parameterized either by the number of houses or the number of agents. In particular,

[0/1]-Egalitarian House Allocation can be solved in time O⋆(2m).

Corollary 4.45. [≻]-Egalitarian House Allocation is fixed-parameter tractable when
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parameterized by the number of houses and can be solved in time O⋆(2m).

The next two results follow respectively from Theorem 4.39 and Theorem 4.40 respectively.

Corollary 4.46. [0/1]-Egalitarian House Allocation is para-NP-hard when parameterized by

the solution size, i.e, the maximum envy, even when every agent approves at most two houses.

Corollary 4.47. [≻]-Egalitarian House Allocation is para-NP-hard when parameterized by

the solution size, i.e., the maximum envy.

We now formulate EHA as an integer linear program, as in the case of [0/1]-OHA and establish
the fixed-parameter traceability parameterized by the number of house types or agent types.
The number of variables in our ILP will be O(n∗ · m∗), where n∗ is the number of types of
agents and m∗ the number of types of houses. Again, by Observation 4.29, the number of
variables will then be bounded separately by 2O(m

∗) and 2O(n
∗).

Theorem 4.48. [0/1]-Egalitarian House Allocation is fixed-parameter tractable when

parameterized either by the number of house types or the number of agent types.

Given an instance I = (A, h,P , k) of [0/1]-Egalitarian House Allocation, we define an
ILP P2(I) that encodes the instance I . The ILP P2(I) is very similar to P1(I) with exactly
two distinctions. (1) The ILP P2(I) has all the variables of P1(I). In addition, P2(I) has an
integer variable w that encodes the maximum envy experienced by an agent. (2) In P2(I), the
variable zij for i ∈ [n∗], j ∈ [m∗] encodes the envy experienced by each agent of type i who
receives a house of type j. Note that the envy experienced by such an agent is always either 0,
or ∑i′∈[n∗] ∑j′∈P(i) xi′ j′ . Since w is the maximum envy experienced by an agent, we must also
have zij ≤ w for every i ∈ [n∗], j ∈ [m∗].

We now formally describe the ILP. Minimize w subject to the constraints in Table 4.4.

Proof Outline of Theorem 4.48. Observe that P2(I)differs from P1(I)in constraints C4.a.i.j,
C4.b.i.j and C4.c.i.j. These three constraints together now ensure that for any feasible solution
f for P2(I), we either have f (zij) = 0 or f (zij) = ∑i′∈[n∗] ∑j′∈P(i) f (xi′ j′). (Also, constraint
C4.c.i.j subsumes the constraint C3.ci.j in P1(I).) The only other difference is the addition of
constraints C7 and C8.i.j. We can show that appropriate counterparts of Claims 4.35 and 4.36
hold for P2(I). So do appropriate counterparts of Claims 4.31, 4.32 and 4.34. In particular, we
have κ†(I) = opt(P2(I)). Theorem 4.48 will then follow from Theorem 4.6.

Remark 4.49. Bymodifying P2(I), we can formulate an integer program for [0/1]-UHA.We only

need to remove the variable w and the constraints C7 and C8.i.j for i ∈ [n∗], j ∈ [m∗] and replace
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(C1.i). ∑j∈[m∗] xij = ni for every i ∈ [n∗]

(C2.j). ∑i∈[n∗] xij ≤ mj for every j ∈ [m∗]

(C3.a.i.j). xij ≤ nd′ij for every i ∈ [n∗], j ∈ [m∗] \ P(i)
(C3.b.i.j). ∑i′∈[n∗] ∑j′∈[P(i)] xi′ j′ ≤ nmzij + nm(1− d′ij)

(C4.a.i.j). zij ≤ ndij
for every i ∈ [n∗], j ∈ [m∗](C4.b.i.j).

(
∑i′∈[n∗] ∑j′∈P(i) xi′ j′

)
− zij ≤ n(1− dij)

(C4.c.i.j). zij ≤ n ∑i′∈[n∗] ∑j′∈P(i) xi′ j′

(C5.i.j). zij = 0 for every i ∈ [n∗], j ∈ P(i)

(C6.a.i.j). xij ≥ 0

for every i ∈ [n∗], j ∈ [m∗](C6.b.i.j). zij ≥ 0
(C6.c.i.j). dij ∈ {0, 1}
(C6.d.i.j). d′ij ∈ {0, 1}

(C7). w ≥ 0

(C8.i.j). zij ≤ w for every i ∈ [n∗], j ∈ [m∗]

Table 4.4: The constraints of the ILP P2(I).
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the objective function with∑i∈[n∗] ∑j∈[m∗] xijzij. Notice that while all the constraints in this integer

program are linear, the objective function is quadratic. We thus have an integer quadratic program

(IQP). The value of the largest coefficient in the constraints and the objective function is nm. It is

known that IQP is fixed-parameter tractable when parameterized by the number of variables plus

the value of the largest coefficient (Lokshtanov, 2015). Fixed-parameter tractability results for IQP

w.r.t. other parameters are also known (Eiben et al., 2019).

4.6 Utilitarian House Allocation

We now deal with the UHA problems, where the goal is to minimize total envy. We first discuss
the polynomial time algorithms for Utilitarian House Allocation.

4.6.1 Polynomial Time Algorithms for UHA

Theorem 4.50. There is a polynomial-time algorithm for [0/1]-Utilitarian House Allocation

when the agent valuations have an extremal interval structure.

Proof. Consider an instance I = (H, A,P ; k) of [0/1]-UHA. In light of Remark 4.13, assume
that the valuations have a left-extremal structure. Consider the ordering on the agents such
that i < j if P(ai) ⊆ P(aj). Our algorithm relies on the existence of an optimal allocation
with some desirable properties. To that end, consider an allocation Φ : A→ H. We say that
an ordered pair of agents (ai, aj) ∈ A × A is rogue under Φ if i < j, Φ(ai) ∈ P(ai) and
Φ(aj) /∈ P(aj). That is, for i < j, (ai, aj) is a rogue pair if the ai values the house that she
receives and aj does not value that she receives. Consider a rogue pair (ai, aj). Recall that we
are in the left-extremal setting, and hence P(ai) ⊆ P(aj), which implies that Φ(ai) ∈ P(aj).
Thus aj is envious under Φ.

We say that Φ is rogue-free if there does not exist any rogue pair under Φ. Notice that if Φ is
rogue-free, then there exists t(Φ) ∈ [n] ∪ {0} such that for every i ∈ [n] with i > t(Φ), we
have Φ(ai) ∈ P(ai), and hence the agent ai is envy-free. For i ≤ t(Φ), the agent ai may or
may not be envy-free.

Claim 4.51. There exists a rogue-free optimal allocation.

Proof. Consider an optimal allocation Φ : A→ H that minimizes the number of rogue pairs.
By optimal, we mean that κ⋆(I) = κ⋆(Φ). If Φ is rogue-free, then the claim trivially holds.
So, assume that Φ is not rogue-free. Then there exists a rogue pair under Φ. We fix a rogue
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pair (ai, aj) as follows. Let ai be the first agent such that (ai, ap) is a rogue pair for some
p ∈ [n]. Then choose j such that aj is the last agent such that (ai, aj) is a rouge pair. Since
(ai, aj) is a rogue pair, we have i < j, Φ(ai) ∈ P(ai) and Φ(aj) /∈ P(aj). Since i < j,
we have P(ai) ⊆ P(aj), which implies that Φ(A) ∩ P(ai) ⊆ Φ(A) ∩ P(aj). Notice first
that aj is envious as Φ(ai) ∈ P(ai) ⊆ P(aj). Also, the number of agents that aj envies,
EΦ(aj) = |Φ(A) ∩ P(aj)|.

Let Φ′ be the allocation obtained from Φ by swapping the houses of ai and aj. That is, Φ′(ai) =

Φ(aj), Φ′(aj) = Φ(ai) and Φ′(ar) = Φ(ar) for every r ∈ [n] \ {i, j}. Then, ai is envious
under Φ′ as Φ′(ai) = Φ(aj) /∈ P(aj) ⊇ P(ai). The number of agents ai envies, |EΦ′(ai)| =
|Φ′(A) ∩ P(ai)|. Now, aj is not envious under Φ′ as Φ′(aj) = Φ(ai) ∈ P(ai) ⊆ P(aj).

Notice that Φ(A) = Φ(A′). We thus have
|EΦ′(ai)| = |Φ′(A) ∩ P(ai)| ≤ |Φ(A) ∩ P(aj)| = |EΦ(aj)|. Therefore,
κ⋆(Φ′) = κ⋆(Φ)− |EΦ(aj)|+ |EΦ′(ai)| ≤ κ⋆(Φ). Since Φ is optimal, we can conclude that
Φ′ is optimal as well.

Now, we claim that the number of rogue pairs under Φ′ is strictly less than that under Φ, which
will contradict the definition of Φ. Notice first that (ai, aj) is a rogue-pair under Φ but not under
Φ′. Consider p, q ∈ [n] such that (ap, aq) is a rogue pair under Φ′, but not under Φ. Then,
either q = i or p = j. If q = i, then p < q = i < j and (ap, aj) is a rogue pair under Φ,
which contradicts our choice of i. If p = j, then j = p < q, then (ai, aq) is a rogue pair, which
contradicts our choice of j. Thus the number of rogue pairs under Φ′ is strictly less than that
under Φ, a contradiction. Hence, we conclude that Φ is rogue-free.

For an allocation Φ : A→ H, let SΦ = {a ∈ A | Φ(a) /∈ P(a)} and TΦ = {a ∈ A | Φ(a) ∈
P(a)}. Note that {SΦ, TΦ} is a partition of A (with one of the parts possibly being empty).
We say that Φ is nice if no agent in SΦ envies any other agent in SΦ. Equivalently, Φ is nice if
Φ(SΦ) ∩ P(SΦ) = ∅.

Claim 4.52. There exists an optimal rogue-free allocation that is also nice.

Proof. Let Φ be an optimal (i.e., κ⋆(I) = κ⋆(Φ)) rogue-free allocation that minimizes |SΦ|.
Then, there exists tΦ ∈ [n] ∪ {0} such that SΦ =

{
a1, . . . , at(Φ)

}
and

TΦ =
{

at(Φ)+1, . . . , an

}
. Note that SΦ is indeed contiguous. If not, then there exists indices i

and j such that i < j− 1 and ai, aj ∈ SΦ and ap /∈ SΦ for every index p with i < p < j. Then
(aj−1, aj) is a rogue-pair.
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If |SΦ| ≤ 1, then the claim trivially holds. So, assume that |SΦ| ≥ 2. Suppose that there
exist ai, aj ∈ SΦ such that aj envies ai. Then, as P(aj) ⊆ P(at(Φ)), at(Φ) envies ai as well.
Let Φ′ be the allocation obtained from Φ by swapping the houses of ai and at(Φ). Then we
have SΦ′ = SΦ \

{
at(Φ)

}
and TΦ′ = TΦ ∪

{
at(Φ)

}
. Thus, |SΦ′ | < |SΦ|. Note that we

constructed Φ′ from Φ without introducing any new rogue-pairs. Additionally, we converted
an envious agent under Φ (in particular, at(Φ)) to an envy-free agent under Φ′. This contradicts
the optimality of Φ and the fact that Φ minimizes |SΦ|.

Claim 4.53. Let Φ be a nice rogue-free allocation. Consider a house h ∈ Φ(TΦ). Then, (1) the

number of agents who envy Φ−1(h) is exactly |{a′ ∈ SΦ | h ∈ P(a′)}|, and (2) κ⋆(Φ) =

∑h∈TΦ
|{a′ ∈ SΦ | h ∈ P(a′)}|.

Proof. By the definition of TΦ, no agent in TΦ envies Φ−1(h). Hence the number of agents
who envy Φ−1(h) is exactly equal to the number of agents in SΦ who value h. This is precisely
what assertion (1) says. Now, to compute κ⋆(Φ), for all h ∈ Φ(TΦ), we only need to sum the
number of agents in S′ value h. This is precisely what assertion (2) says.

Informal description of our algorithm: Based on Claims 4.51-4.53, we are now ready to
describe our algorithm. Informally, our algorithm works as follows. We are given an instance
I = (A, H,P ; k). Suppose that Φ is the optimal allocation that we are looking for. By
Claim 4.52, we can assume that Φ is rogue-free and nice. We guess tΦ. There are at most
n + 1 guesses. For the correct guess, we correctly identify SΦ and TΦ. Then, Φ must allocate
to each a ∈ TΦ a house that a values. To each agent a′ ∈ SΦ, Φ must allocate a house that no
agent in SΦ values. For a house h ∈ H, the envy generated by allocating h is precisely the
number of agents in SΦ who value h. We can thus reduce the problem to a minimum cost
maximum matching problem, where the cost of matching each h ∈ H to (1) an agent a ∈ TΦ

who values h is precisely |{a′ ∈ SΦ | a′ values h}|; (2) an agent a ∈ TΦ who does not value h
is prohibitively high; (3) an agent a′ ∈ SΦ is 0 if no agent in SΦ values h, and prohibitively
high otherwise. We can compute a minimum cost maximum matching in polynomial time.

Algorithm: We are given an instance I = (A, H,P ; k) as input. For each fixed t ∈ [n]∪ {0},
we do as follows. We partition A into two sets S and T as follows: S = {a1, . . . , at} and
T = {at+1, . . . , an}. We construct a complete bipartite graph G⋆

t , with vertex bipartition A⊎H
and a cost function ct on the edges defined as follows:
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ct((a, h)) =


|{a′ ∈ S | h ∈ P(a′)}| if a ∈ T and a values h,

0 if a ∈ S and no agent a′ ∈ S values h,

k + 1 otherwise.

If G⋆
t contains a matching of size n and cost at most k for any t ∈ [n] ∪ {0}, then we return

that I is a yes-instance of [0/1]-UHA. If G⋆
t does not contain such a matching for any choice of

t ∈ [n] ∪ {0}, then we return that I is a no-instance of [0/1]-UHA.

Correctness: To see the correctness of our algorithm, assume first that there exists
t ∈ [n] ∪ {0} for which G⋆

t contains a matching, say M, of size n and cost at most k. Then,
since |M| = n, M saturates A. Consider an allocation ΦM : A→ H defined as follows: for
each (a, h) ∈ M, ΦM allocates h to a. We claim that κ⋆(ΦM) = ct(M) ≤ k. First, each a ∈ T
values ΦM(a), for otherwise, ct((a, ΦM(a))) = k + 1, which is not possible. So, a ∈ T does
not envy any agent. Similarly, each a′ ∈ S does not value ΦM(a′′) for any a′′ ∈ S, for
otherwise, ct((a′′, ΦM(a′′))) = k + 1, which is not possible. So, for a′, a′′ ∈ S, a′ does not
envy a′′. Also, for (a′, h) ∈ M with a′ ∈ S, we have ct((a′, h)) = 0. Now, an agent a′ ∈ S
may envy an agent a ∈ T. But note that every h ∈ ΦM(T) contributes exactly
|{a′ ∈ S | h ∈ P(a′)}| = ct((a, h)) , where ΦM(a) = h, to κ⋆(ΦM). Hence,
κ⋆(ΦM) = ∑h∈ΦM(T)

(a,h)∈M
ct((a, h)) = ∑(a,h)∈M

a∈T
ct((a, h)) ≤ k.

Conversely, assume that I = (A, H,P ; k) is a yes-instance. Let Φ : A→ H be an optimal
allocation. By Claim 4.52, we assume without loss of generality that Φ is rogue-free and nice.
Consider the iteration of our algorithm for which t = tΦ. Consider the matching MΦ in G⋆

t

defined as MΦ = {(a, Φ(a)) | a ∈ A}. We claim that ct(MΦ) = κ⋆(Φ) ≤ k. First, consider
a ∈ S. Since Φ is nice, no a′ ∈ S values Φ(a), which implies that ct(a, Φ(a)) = 0. Now,
consider a ∈ T. Since Φ is rogue-free, a values Φ(a). By Claim 4.53, Φ(a) contributes exactly
|{a′ ∈ S | a′ values Φ(a)}| = ct(a, Φ(a)) to κ⋆(Φ). Thus,
ct(MΦ) = ∑(a,Φ(a))∈MΦ

ct(a, Φ(a)) = ∑(a,Φ(a))∈MΦ
a∈T

ct((a, Φ(a))) =

∑a∈T |{a′ ∈ S | a′ values Φ(a)}| = κ⋆(Φ) ≤ k.

We now turn to the restricted setting where every agent likes exactly one house. In this case, the
total envy is equal to the number of envious agents, that is, κ⋆(Φ) = κ#(Φ), so the following
result follows from Theorem 4.17.

Corollary 4.54. There is a polynomial-time algorithm for [0/1]-Utilitarian House Allocation
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when every agent approves exactly one house.

4.6.2 Parameterized Results

In this section, we discuss the parameterized results for UHA. First, we design a linear kernel
for [0/1]-UHA.

Theorem 4.55. [0/1]-Utilitarian House Allocation admits a linear kernel parameterized by

the number of agents. In particular, given an instance of [0/1]-Utilitarian House Allocation,

there is a polynomial time algorithm that returns an equivalent instance of [0/1]-Utilitarian

House Allocation with at most twice as many houses as agents.

Proof. It suffices to prove the safety of Reduction Rule 2. Let I := (A, H,P ; k) denote an
instance of HA. Further, let I ′ = (H′ := H \ X, A′ := A \ Y,P ′; k) denote the reduced
instance corresponding to I . Note that the parameter for the reduced instance is k as well.

If I is a Yes-instance of UHA, then there is an allocation Φ : A → H with total envy at most
k. By Claim 4.11, we may assume that Φ is a good allocation. This implies that the projection
of Φ on H′ ∪ A′ is well-defined, and it is easily checked that this gives an allocation with total
envy at most k.

On the other hand, if I ′ is a Yes-instance of UHA, then there is an allocation Φ′ : A′ → H′

with total envy at most k. We may extend this allocation to Φ : A → H by allocating the
houses in Y to agents in X along the expansion M, that is:

Φ(a) =

Φ′(a) if a /∈ X,

M(a) if a ∈ X.

Since all the newly allocated houses are not valued by any of the agents outside X and all agents
in X are envy-free with respect to Φ, it is easily checked that Φ also has total envy at most
k.

The following results follow from the algorithm described in Proposition 4.3 after guessing the
allocated houses, which adds a multiplicative overhead of (m

n) ≤ 2m to the running time.

Corollary 4.56. [0/1]-Utilitarian House Allocation is fixed-parameter tractable when

parameterized either by the number of houses or the number of agents. In particular,

[0/1]-Utilitarian House Allocation can be solved in time O⋆(2m).

117



4. Minimizing Envy in House Allocation

(n, m, n⋆) OHA EHA
Time/Instance
OHA, EHA
(in sec.)

Env.
Agents
(κ⋆(Φ))

Max
Envy

Total
Envy

Env.
Agents

Max
Envy

(κ†(Φ))

Total
Envy

(30, 30, 1) 15.11 14.89 216.71 15.11 14.89 216.71 0.003, 0.002
(30, 30, 5) 0.95 8.78 12.33 9.07 7.56 11.29 0.19, 0.10
(30, 30, 15) 0 0 0 0 0 0 0.20, 0.33
(30, 40, 1) 10.18 19.82 191.76 20.18 9.82 188.16 0.01, 0.003
(60, 60, 1) 30.36 29.64 888.08 30.36 29.64 888.08 0.006, 0.002
(60, 60, 15) 0.01 0.31 0.31 0.21 0.21 0.21 0.57, 0.10
(60, 60, 30) 0 0 0 0 0 0 2.00, 4.21
(120, 120, 1) 59.45 60.55 3567.8 59.45 60.55 3567.8 0.01, 0.002
(120, 120, 5) 3.83 57.07 218.79 66.62 51.07 200.63 0.11, 0.20
(120, 120, 15) 0 0 0 0 0 0 1.98, 4.26
(120, 130, 5 ) 0 0 0 0 0 0 0.11, 0.10

Table 4.5: A summary of the results, averaged over 100 instances of each type.
The OHA column corresponds to the solution from OHA ILP and the max-envy and
total envy in that column shows those values when the number of envious agents is
minimized. Similarly for the EHA column.

Corollary 4.57. [≻]-Utilitarian House Allocation is fixed-parameter tractable when

parameterized by the number of houses and can be solved in time O⋆(2m).

4.7 Experiments

We implemented the ILP for OHA and EHAover synthetic datasets of house allocation problems
generated uniformly at random. We used Gurobi Optimizer version 9.5.16. The average was
taken over 100 trials for each instance. A summary is recorded in Table 4.5. For a fixed number
of houses and agents, notice that as the number of agent types, n⋆ increases, the number of
envious agents and the maximum envy decreases. Instances with identical valuations (where
n⋆ = 1) seem to admit more envy than the other extreme (where n⋆ = n). This is due to the fact
when valuations are identical, there is more contention on the specific subset of goods. On the
contrary, for instances with m⋆ = 1, envy-free allocations always exist. Indeed, when m⋆ = 1,
all houses are of the same type, which means that an agent either likes all the houses or dislikes
all of them and in either case, she is envy-free no matter which house she gets. Also note that,

6The code can be accessed at https://github.com/anonymous1203/House-Allocation
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when we increase the number of houses, for a constant number of agents and agent types, the
envy decreases, which is as expected, because of the increase in the number of choices and the
fact that some houses (the more contentious ones) remain unallocated.

4.8 House Allocation on Single-Peaked/Dipped Rankings

Single-peaked preferences, first formalized by Black (1948), constitute an important domain
restriction in the collective decision-making problems, which not only model many real-world
settings but also serve as a tractable realm for many of the otherwise hard problems. They
have been extensively considered in various contexts including house allocations and
matching markets (Bade, 2019), voting and electorates (Conitzer, 2007; Faliszewski et al., 2009;
Sprumont, 1991) among others. A significant literature has also focused on characterizing
these preferences (Ballester and Haeringer, 2011; Elkind et al., 2020; Puppe, 2018). For more
details, we refer the reader to the survey of preference restrictions in social choice by Elkind
et al. (2022).

For a positive integer t, we write [t] to denote the set {1, . . . , t}.

Let I = (A, H,≻) be an instance of house allocation problem, with A := {a1, a2, . . . an}
being the set of n ∈ N agents, H := {h1, h2, . . . , hm} be the set of m ∈ N houses and ≻ be
the set of ranking profile of all the agents. Let ≻a be the ranking of agent a over the houses H.
If h ≻a h′, we say that agent a strictly prefers the house h over h′. If h ≻a h′ ∀ h′ ̸= h, then
we say that h is a peak house for a, denoted as peak(a). We say that ranka(h) = j for j ∈ [m]

if the house h appears at the jth position in the ranking ≻a. We denote the set of agents who
prefer a house h to all other houses as base(h). That is, base(h) = {a | ranka(h) = 1}.

Let ▷ be an ordering on the houses. We say that ≻a is single-peaked with respect to the
ordering ▷ if for every pair of houses h, h′ ∈ H, we have that if h ▷ h′ ▷ peak(≻a) or
peak(≻a)▷ h′ ▷ h, then h′ ≻a h. Equivalently, the definition requires that for each agent a, it
holds that the favorite t houses of a with respect to ≻a form a consecutive segment within ▷.
That is, as an agent moves away from his favorite house peak(a) in any direction, left or right,
the houses become less and less preferable for her. A preference profile ≻ is single-peaked
with respect to ▷ if for every agent a, ≻a is single-peaked with respect to ▷ and it is
single-peaked if there exists some ▷ over H such that it is single-peaked with respect to ▷

(see Figure 4.1).

A closely related domain is single-dipped preferences. A ranking ≻a is said to be single-dipped
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with respect to an ordering ▷ if the reverse of ≻a is single-peaked. That is, there is a least
preferred house h and the agent likes the houses better as she moves away from h. As before,
a preference profile ≻ is single-dipped with respect to ▷ if for every agent a, ≻a is single-
dipped with respect to ▷ and it is single-dipped if there exists some ▷ over H such that it is
single-dipped with respect to ▷.

4.8.1 Single-Peaked Preferences

Suppose that the set of rankings ≻ are single-peaked with respect to the ordering ▷ over the
houses (h1 ▷ h2 ▷ . . . ▷ hm). We say that a house hi is a shared peak or a shared house if
it is the most preferred house of more than one agent, that is, |base(hi)| > 1. Otherwise, if
base(hi) = 1, we say it is a individual peak or a individual house. We say that a house h is
non-wastefully allocated if it is allocated to an agent a such that ranka(h) = 1, otherwise, it is
wastefully allocated.

We define the span of a peak house h, denoted by span(h), as the number of houses that are
identically ranked by all the agents in base(h), starting from their common first ranked house. If
hi is an individual peak, then we say span(hi) = 0 as there is only one agent in the set base(hi).
Consider the rankings in the Figure 4.1 explicitly depicted below. Here, span(h7) = 0 and
span(h1) = 2. If at least two agents from {a2, a3, a4} were to be envy-free in any allocation,
then not only the peak house h1 has to remain unallocated, but all the houses in the set span(h1)
must also remain unassigned under any complete allocation. The allocation of h7, h5, h4, and
h3 to the four agents, respectively, makes two agents from base(h1) envy-free.

Figure 4.1: Single-peaked preferences with respect to the ordering ▷ := h7 ▷ h5 ▷
h3 ▷ h1 ▷ h2 ▷ h4 ▷ h6. The house h1 is a shared peak and h7 is an individual peak.
Notice that peak(a1) = h7 and peak(a2) = peak(a3) = peak(a4) = h1. Also, base(h1) =
{a2, a3, a4}. And, span(h1) = 2, which contains the houses h1 and h2 as these are the top
2 houses identically ranked by all the agents in base(h1).
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a1 : h7 ≻ h5 ≻ h3 ≻ h1 ≻ h2 ≻ h4 ≻ h6
a2 : h1 ≻ h2 ≻ h3 ≻ h5 ≻ h4 ≻ h6 ≻ h7
a3 : h1 ≻ h2 ≻ h4 ≻ h3 ≻ h5 ≻ h7 ≻ h6
a4 : h1 ≻ h2 ≻ h3 ≻ h4 ≻ h5 ≻ h6 ≻ h7

We now present a series of structural results. If a shared peak h is assigned to one agent, it
leads to envy among the other agents, with at least |base(h) − 1| envious agents. The only
agent who receives h is the one without envy among the base(h) agents. On the other hand,
we show by the following claim that even if h is not assigned, at least |base(h)− 2| agents are
bound to be envious under any allocation.

Lemma 4.58. Let h be a shared peak. Then, at most 2 agents from the set base(h) can be envy-free
under any allocation. In other words, at least base(h)− 2 agents are envious under any allocation.

Proof. Consider an allocation Φ. If house h is allocated under Φ, then it can be allocated either
wastefully or non-wastefully. We show that in both cases there are at most two agents from
base(h) that are envy-free. If it is allocated wastefully, then all the base(h) agents are envious,
no matter which house they receive in Φ. If h is allocated non-wastefully to an agent, say a,
then a is always envy-free in any completion of this allocation, as she receives her first ranked
house. But, all other |base(h)− 1| agents experience envy on account of the allocation of h to
a.

If house h is not allocated under Φ, then we will prove the statement by contradiction. Suppose
that at least three agents from the set base(h) are envy-free under Φ. Let agents a1, a2, and a3

denote three agents from base(h) that are envy-free under Φ. Then, at least 2 of these envy-
free agents are allocated to houses from either [h1, h) or (h, hm] where the interval of houses
are from the single peak axis▷. WLOG, we assume that Φ(a1) = hi and Φ(a2) = hj such that
{hi, hj} ∈ [h1, h). Then since h is a peak for both a1 and a2, by the structure of the rankings,
it must be the case that both of them have the (partial) rankings as either h1 < hi < hj < h or
h1 < hj < hi < h. In either case, at least one of them is envious of the other, which contradicts
the assumption that all three agents {a1, a2, a3} were envy-free. Therefore, at most two agents
can be envy-free from the set base(h), potentially, the ones that get allocated houses lying on
either side of h.

We now proceed to show another interesting structural claim that is used for allocating the
individual peaks.

Lemma 4.59. There exists an optimal allocation where all individual peaks are allocated, and
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they are allocated non-wastefully.

Proof. Let house h be an individual peak. Suppose that h remains unallocated under an
allocation Φ⋆. Consider the following cases:

1. h ∈ span(hi) for some shared peak hi. Then h remains unallocated and at most two
agents from the set of agents base(hi), say a1 and a2, are envy-free under Φ⋆ (this forces
span(hi) and hence, h to remain unallocated under Φ⋆ ). Now consider the reallocation
where a gets h and a1 gets hi (where a1 ∈ base(hi)). Then both a and a1 are envy-free
under this reallocation. The number of envy-free agents under this reallocation remains
the same as in Φ⋆. Indeed, at most two out of {a, a1, a2} can be made envy-free under
any allocation (by Lemma 4.58). This settles our claim in this case.

2. h /∈ span(hi) for any other peak hi. First, suppose that a is an envy-free agent under
Φ⋆. This implies that every house that a ranks better than Φ⋆(a) (including h) remains
unallocated under Φ⋆. We claim that on the re-allocation of h to a, no new envious
agent is created. Suppose not. Say a′ is an agent who was previously envy-free but
becomes envious on the allocation of h. Since a′ was envy-free previously, we can say
that Φ⋆(a′) >a′ Φ⋆(a). If Φ⋆(a′) lies to the left of Φ⋆(a), then by structure of the
valuations, Φ⋆(a′) >a′ h and therefore, a′ can’t be envious of the allocation of h. On
the other hand, if Φ⋆(a′) lies to the right of Φ⋆(a), then it must be that Φ⋆(a′) also lies
to the right of h. Else, a will prefer Φ⋆(a′) more than Φ⋆(a), leading her to be envious.
Therefore, it must be the case that Φ⋆(a′) is to the right of h and hence by structure of
the valuations, Φ⋆(a) <a′ h <a′ Φ⋆(a′). Therefore, a′ can’t be envious of the allocation
of h.

Now suppose that a was envious under Φ⋆. Reallocating h to a makes her envy-free. We
will first argue that there are at most two agents, say a1 and a2 who become newly
envious of the allocation of h. Suppose the peaks of a1 and a2 lie to the left and right
side of h respectively. Since both a1 and a2 have become newly envious, so Φ⋆(a1) and
Φ⋆(a2) can not be their respective peak houses. Since a1 and a2 are envy-free under Φ⋆,
therefore, peak(a1) >a1 h >a1 Φ⋆(a1) >a1 Φ⋆(a) and
peak(a2) >a2 h >a2 Φ⋆(a2) >a2 Φ⋆(a). And all houses between Φ⋆(a1) and peak(a1)

are unallocated. Similarly, all houses between Φ⋆(a2) and peak(a2) are unallocated.
Since h is a common house that lies both between Φ⋆(a1) and peak(a1) and between
Φ⋆(a2) and peak(a2), we have that all the houses between Φ⋆(a1) and Φ⋆(a2) are
unallocated (see Figure 4.2). Now, consider any other agent a3 who is envy-free under
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Figure 4.2: A schematic of Case 2 in the proof of Lemma 4.59.

Φ⋆. We claim that she can’t be envious of the allocation of h. First suppose that Φ⋆(a3)

lies to the left of Φ⋆(a1). Then it must be the case that peak(a3) also lies to the left of
Φ⋆(a1) because a3 is envy-free under Φ⋆. This means that if a3 is envy-free of the
allocation of Φ⋆(a1), she remains envy-free of the allocation of h as well (by the
structure of the valuations). Second, if Φ⋆(a3) lies to the right of Φ⋆(a2). Then it must
be the case that peak(a3) also lies to the right of Φ⋆(a2) which means that if a3 is
envy-free of the allocation of a2, she remains envy-free of the allocation of h as well
(again by the structure of the valuations).

So now we have that a1 and a2 are the only two agents that can potentially become
envious of the allocation of h. Note that peak(a1) and/or peak(a2) can not be a resolved
shared peak under Φ⋆. Otherwise, h must be in one of the spans, which contradicts the
assumption of this case. Therefore, in the optimal allocation Φ⋆, at most one agent from
base(a1) and at most one agent from base(a2) is envy-free.

Based on this, we can now propose the following re-allocation: h to a, peak(a1) to a1

and peak(a2) to a2. It is easy to see that {a, a1, a2} become newly envy-free as each of
them now gets her peak house. Also, no other agent becomes newly envious of this
re-allocation. Indeed, if there is such an agent, say a′, then Φ⋆(a′) must lie to either left
of Φ⋆(a1) or to the right of Φ⋆(a2). Since they are envy-free under Φ⋆, their respective
peaks must also be on the same side as their allocated houses. This means that if they
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are envy-free of the allocation of Φ⋆(a1) and Φ⋆(a2) respectively, they do not become
envious of the allocation of peak(a1), peak(a2) and h, again by the structure of the
valuations. Therefore, {a, a1, a2} are newly envy-free in the re-allocation, without
creating any other envious agents. But under Φ⋆, only {a1, a2} were envy-free. This
implies that Φ⋆ was not optimal to begin with. This settles our claim.

Now suppose that the individual peak, say h is allocated wastefully to some agent a′ under
Φ⋆. Let a be the unique agent in the set base(h). Then, a is definitely envious. If a′ is also
an envious agent, then we can re-allocate h to a, which reduces the number of envious agents
and contradicts the optimality of Φ⋆. Therefore, a′ must be an envy-free agent. Then, all the
houses that a′ values more than h must have remained unallocated. In particular, the peak
house of a′, say h′, (h′ ̸= h) must have been unallocated. If h′ was a shared peak, then it must
have been a resolved shared peak (since h′ remains unallocated) and hence at most two agents
would be envy-free from base(h′). Notice that a′ is one of them and, say a′′ is the other. Then,
reallocating h′ to a′ and h to a converts a to an envy-free agent and makes a′′ envious, and does
not generate any new envy. Otherwise, if h′ was an individual peak, then again the re-allocation
of h to a and h′ to a′ gives us our desired allocation. This settles our claim.

Let the number of individual and shared peak houses be pI and pS respectively. Then any
allocation can have at least pI + pS many envy-free agents, just by allocating the peaks non-
wastefully and completing the allocation in an arbitrary manner. Moreover, by Lemma 4.58,
no allocation can have more than 2 · pS + pI envy-free agents. This establishes the following
result.

Lemma 4.60. Let k be the number of envy-free agents under any allocation. Then,

pS + pI ≤ k ≤ 2 · pS + pI .

The following is a generalization of Lemma 4.58.

Lemma 4.61. Consider the set of k shared peaks {h1, h2, . . . hk} such that

span(hi) ∩ span(hj) ̸= ∅ for any i, j ∈ [k]. Then there is an allocation where at least k and at

most k + 1 agents from the set

⋃
i∈k base(hi) are envy-free.

Proof. Consider a non-wasteful allocation of the k shared peaks among k agents in the set⋃
i∈k base(hi). Clearly, these k agents are envy-free in any complete allocation, as each of

them receives their favorite house. This allocation makes at least k agents envy-free. Now
consider an allocation where at least one span is resolved, say span(h1). This means that h1

and span(h1) remain unallocated and consequently, 2 agents from base(h1) are made
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envy-free by the allocation of the houses, say h1
1 and h2

1. Now consider any other overlapping
span, say span(hi). Then span(hi) ∩ span(h1) ̸= ∅. Then, by the structure of the rankings,
either h1

1 or h2
1 must belong to the span(hi). This implies that once span(h1) is resolved (that is,

h1
1 and h2

1 are allocated), then span(hi) can not be resolved (at most one agent from base(hi)

can be made envy-free). Since the choice of hi was arbitrary, this holds for every other
overlapping span with span(h1). Therefore, at most k + 1 agent can be envy-free from the set⋃

i∈k base(hi).

We are now ready to present the main result of this section.

Theorem 4.62. Given an instance of house allocation with single-peaked preferences, minimizing

the number of envious agents admits a polynomial time algorithm.

Proof. Wefirst describe the algorithm. A shared peak h is said to be resolved under an allocation
Φ if h and span(h) remain unallocated and exactly two agents from the set base(h) are envy-
free under Φ.

Algorithm 1 Minimize the number of envious agents
Require: {N, H,≻,▷}
Ensure: An allocation Φ
1: ∀ h ∈ pI :

Φ(base(h)) = h (Allocate all the individual peaks non-wastefully).
2: ∀ hi, hj such that hi ∈ span(hj) and hj ∈ span(hi)

Φ(a) = hi for some a ∈ base(hi) and Φ(a′) = hj for some a′ ∈ base(hj) (Allocate
both hi and hj non-wastefully).

3: ∀ hi, hj such that hi ∈ span(hj) but hj /∈ span(hi)
Φ(a) = hj for some a ∈ base(hj)

4: pS ← Set of remaining, unallocated shared peaks.
5: Order the peak houses in pS as hi ≤ hj if span(hi) ≤ span(hj). Say, {h1, h2, . . . hS} is the

ordering.
6: For i ∈ S:

m′, n′ = number of unallocated houses and agents under Φ
If m′ − span(hi) ≥ n′: Resolve hi and U ← span(hi). Else, allocate {hi, hi+1, . . . hS}

non-wastefully.
7: Allocate the remaining agents to any house, except U.
8: Output Φ.

We now describe the correctness of Algorithm 1. Let Φ be the output of the above algorithm and
let EF(Φ) denote the number of envy-free agents in Φ. Suppose Φ⋆ is the optimal allocation
that minimizes the number of envious agents. Clearly, EF(Φ⋆) ≥ EF(Φ). The aim is to show
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that EF(Φ⋆) = EF(Φ). To this end, we will show that |EF(Φ⋆) \ EF(Φ)| = |EF(Φ) \
EF(Φ⋆)|.

Suppose a ∈ EF(Φ⋆) \ EF(Φ). We will show that corresponding to a, there is a unique agent
a′ such that a′ ∈ EF(Φ) \ EF(Φ⋆). Note that the first ranked house by a, say h must be a
shared peak, else Φ(a) = h and a ∈ EF(Φ), which is not the case. We now consider the
following cases:

1. Φ⋆(a) = h. Since a /∈ EF(Φ), there is an agent a′ who gets a house h′ under Φ such
that Φ(a′) = h′ >a Φ(a).

(a) If h′ = h, then, since Φ(a′) = h, we have that the first ranked house of a′ is also
h. (Since Φ always allocates the peaks non-wastefully and h is a peak for a). This
implies that if a is envy-free under Φ⋆, then a′ must have been envious of a under
Φ⋆. But, as Φ(a′) = h, a′ is envy-free under Φ. So, a′ ∈ EF(Φ) \ EF(Φ⋆).

(b) Else, if h′ ̸= h, and h remains unallocated under Φ, then h is definitely a resolved
peak under Φ. Suppose there are k overlapping spans with span(h). Then, we must
have exactly k + 1 agents, who are envy-free corresponding to the k overlapping
spans (which is the only case when a shared peak is resolved). Note that Φ⋆ also
can have at most k + 1 envy-free agents corresponding to the above overlapping
spans (by Lemma 4.61). Since a ∈ EF(Φ⋆) \ EF(Φ), we must have some agent a′

among the above k + 1 agents under Φ such that a′ ∈ EF(Φ) \ EF(Φ⋆).

2. Φ⋆(a) ̸= h. This implies that h remains unallocated under Φ⋆. All houses that a ranks
better that Φ⋆(a) remain unallocated (as a ∈ EF(Φ⋆)). Consider all the overlapping
spans with span(h). If there are k of them, then there are at most k + 1 envy-free agents
corresponding to these spans under Φ⋆. Since a /∈ EF(Φ), there is an agent a′ who gets
a house h′ under Φ such that Φ(a′) = h′ >a Φ(a).

(a) If h′ = h, then the peak h is allocated and hence, not resolved under Φ.

Suppose h was not resolved because it is a house that is considered in Case 2. This
implies that h lies in the span(hj) for some shared peak hj and hj lies in the span
of h. Then, there can be at most 2 envy-free agents corresponding to the span(h)
and span(hj) in any allocation. Under Φ, there are exactly 2 envy-free agents, say
{a1, a2}, corresponding to the spans since both hj and h are allocated non-wastefully
to say, a1 and a2 respectively. Since hj is in the span(h) and h is in the span(hj), it is
easy to see that under Φ⋆, at most 2 of the three agents {a, a1, a2} can be envy-free.
Therefore, this implies that a2 ∈ EF(Φ) \ EF(Φ⋆) and we are done for this case.
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Figure 4.3: A schematic of Case 2(a) in Theorem 4.62

Now suppose h was not resolved because it is considered in Case 3. This implies
that there is a shared peak hj which lies in the span(h) (so, resolving h forces hj

to remain unallocated). Now by Lemma 4.61, we know that there can be at most
3 envy-free agents corresponding to the span(h) and span(hj) in any allocation. In
particular, two agents, say {a1, a2} could be envy-free if span(hj) was resolved and
a3 is envy-free who is the recipient of h (which is allocated non-wastefully). If hj

was resolved under Φ, then Φ has exactly 3 envy-free agents, namely {a1, a2, a3}
(see Figure 4.3). Now, at most 3 agents from {a, a1, a2, a3} can be envy-free under
Φ⋆. But, as span(h) is resolved under Φ⋆ and hj ∈ span(h), so hj would not have
been resolved and is also unallocated under Φ⋆. This implies that only two agents,
namely a and a3 are envy-free under Φ⋆. If hj is resolved under Φ, then we have
three agents {a1, a2, a3} envy-free under Φ, contradicting the optimality of Φ⋆.
And, if hj is not resolved under Φ, then we have two agents envy-free under Φ,
namely a1 (recipient of hj) and a3 (recipient of h) (WLOG). Therefore, we get an
agent a2, such that a2 ∈ EF(Φ) \ EF(Φ⋆).

Otherwise, the only reason that h was not resolved under Φ was the fact that the
number of unallocated houses at this point minus span(h) would have been strictly
less than the number of unallocated agents, say n′. Since Φ resolves the spans in the
increasing order of their sizes, let {hr1 , hr2 , . . . hri} be the set of resolved spans and
{hri+1 . . . h . . . hrt} be the set of unresolved spans under Φ, as considered in Case 4.
Suppose m′ and n′ are the remaining houses and agents at the beginning of Case 4.
Note that we have m′ − span(hj)− ∑i∈[ri]

span(hi) < n′ for all j ∈ [ri+1, rt]. In
particular, m′ − span(h)−∑i∈[ri]

span(hi) < n′.
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We now argue that if span(h) was resolved under Φ⋆, then there must exist at
least one span in the set of resolved spans under Φ, {hr1 , hr2 , . . . hri}, which is not
resolved under Φ⋆. If not, and all the resolved spans under Φ are also resolved
under Φ⋆, then it must be that m′ − span(h) − ∑i∈[ri]

span(hi) ≥ n′. This
contradicts the fact that m′ − span(hri+1) − ∑i∈[ri]

span(hi) < n′ since
span(hri+1) < span(h) according to the ordering in Case 4. Therefore, we have a
span which is resolved in Φ (say, a1 and a2 are two corresponding envy-free
agents) but not in Φ⋆. Therefore, at most one of {a1, a2} is envy-free under Φ⋆

and WLOG, we have a2 ∈ EF(Φ) \ EF(Φ⋆).

(b) Else, if h′ ̸= h, then the peak h remains unallocated under Φ. Then h is definitely
a resolved peak. There are two envy-free agents a1 and a2 under Φ who receive
the resolved peaks and span(h) remains unallocated. Now consider the set of agents
{a, a1, a2} under Φ⋆. Since a ∈ EF(Φ⋆), at most one of a1 and a2, say a1, can be
envy-free under Φ⋆ (by Lemma 4.58). Therefore, a2 ∈ EF(Φ) \ EF(Φ⋆).

This concludes the argument.

4.8.2 Single-Dipped Preferences

We begin with an interesting structural claim.

Lemma 4.63. When the preferences are single-dipped, at most two agents can be envy-free under

any complete allocation.

Proof. Suppose {h1, h2, . . . hm} is the ordering of the houses with respect to which the
preferences are single-dipped. Notice that for every agent, either h1 or hm is the first ranked
house. If both these houses are allocated under an allocation Φ, say to agents i1 and i2, such
that ranki1(h1) = 1 and ranki2(hm) = 1, then it is easy to see that both i1 and i2 are
envy-free. Notice that these are the only envy-free agents since any other agent i is already
envious of the allocation of either h1 or hm. This settles our claim in this case. Now suppose
hj is the first house in the ordering that is allocated (to i1) and hl is the last one, allocated to i2,
such that both i1 and i2 are envy-free. Consider any other agent i. If the dip of i lies to the left
of hj, then since Φ(i) ∈ (hj, hl), i is envious of the allocation of hl . If the dip of i lies to
between hj and hl , then again Φ(i) ∈ (hj, hl), and i would be envious of both hj and hl .
Lastly, if the dip of i lies to the right of hl , then i is envious of the allocation of hj. This settles
the claim.
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Algorithm 2 Minimize #envy for Single-Dipped Preferences
Require: {N, H,≻} and a single dipped axis ▷
Ensure: Allocation Φ that minimizes the number of envious agents
1: S1 := {h ∈ H|h is first ranked house of some agent i}
2: if |S1| > 1 then

3: Φ(i1) = h1 for some h1 ∈ S1 & i1 ∈ base(h1)
4: Φ(i2) = h2 for some h2 ∈ S1 & i2 ∈ base(h2), h2 ̸= h1
5: Order the remaining agents and let each agent choose its highest ranked house among

the remaining houses.
6: else |S1| = 1, say S1 = {h}
7: if m− span(h) ≥ n then

8: Sspan(h)+1 := {h′|h′ is ranked span(h) + 1 by some agent i}
9: Let h1, h2 ∈ Sspan(h)+1, h1 ̸= h2
10: Φ(i1) = h1 such that ranki1(h1) = span(h) + 1
11: Φ(i2) = h2 such that ranki2(h) = span(h) + 1
12: U ← span(h) and repeat Step 5 on the houses in M \U
13: else m− |span(h)| < n
14: Φ(i) = h for some i ∈ base(h) and repeat Step 5

return Φ

Overview of Algorithm 2. Based on Lemma 4.63, the aim is to find two houses such that their
allocation creates two envy-free agents. To that end, Algorithm 2 works as follows. Consider
the set S1 of all the houses that are ranked first by any agent. If there are two distinct houses h1

and h2 in S1, then the algorithm allocates these two houses to the agentswho like them themost.
Notice that the agents who receive h1 and h2 are indeed envy-free, and all the remaining agents
will be envious by Lemma 4.63. Otherwise, if |S1| = 1 then everyone likes the same house,
say h as their first ranked house. If m− span(h) ≥ n, then we keep span(h) unallocated and
construct the set Sspan(h)+1 that contains all the houses ranked at span(h) + 1 by any agent.
By the definition of span(h), this set must contain at least two distinct houses, say h1 and h2.
We allocate these to agents i1 and i2 such that they rank h1 and h2 respectively at span(h) + 1.
This gives us two envy-free agents (since span(h) is unallocated). The remaining agents are
then ordered in an arbitrary manner and allocated their best available house from m− span(h)
houses. Otherwise, if m− span(h) < n, then we claim that at most one agent can be made
envy-free under any allocation and hence, we allocate h non-wastefully.

Theorem 4.64. Given an instance I = (A, H,≻,▷) of house allocation with single-dipped

preferences, minimizing the number of envious agents admits a polynomial time algorithm.

Proof. We show that Algorithm 2 correctly outputs an allocation Φ with minimum #envy. If
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EF(Φ) = 2, then we are done by Lemma 4.63. Else, EF(Φ) = 1. This implies that m −
span(h) < n. Suppose, for contradiction, there is a complete allocation Φ∗ such that EF(Φ∗) =
2. Then, none of the houses from span(h) could have been allocated under Φ∗. Indeed, all the
agents have identical ranking for the houses in span(h), and allocating any of them creates
n− 1 envious agents. Therefore, span(h)must remain unallocated. But then, we have that Φ∗

is not a complete allocation since m− |span(h)| < n. This contradicts our assumption.

When there are ties at the dip, we can have more than 2 envy-free agents but we can still
minimize #envy in polynomial time.

Theorem 4.65. Given an instance of house allocation with single-dipped preferences with ties at

the dip, minimizing the number of envious agents admits a polynomial time algorithm.

Proof. We first prove the following claim:

Lemma 4.66. When the preferences are single-dipped with ties at the dip, either all the n agents

are envy-free or at most 2 agents are envy-free.

Proof. If there are n houses that are all tied and ranked last by all the agents, then arbitrarily
allocating these n houses creates n envy-free agents. Else, if there are less than n, say n− 1
houses that are all tied and ranked last by all the agents, then even if all of them are allocated
among any n − 1 agents, all such n − 1 agents will envy the other agent who gets a house
outside of the ties. Therefore, if there are less than n houses in the ties, then by Lemma 4.63,
there can be at most 2 envy-free agents.

If there aren’t enough houses (at least n) in the ties, then we proceed similarly as in the proof of
Theorem 4.64 to arrive at an allocation with two envy-free agents. This settles our claim.

4.9 Price of Fairness

In this section, in addition to the envy-minimization, we will focus on the social welfare of an
allocation, as captured by the sum of the individual agent utilities. An allocation is considered
more efficient when it results in a higher level of social welfare. Minimizing the envy objectives
can lead to inefficient allocations with poor social welfare. Indeed, our algorithms for OHA,
EHA and UHA first check if there are enough (more than n) dummy houses and if so, allocate
these dummy houses to everyone, potentially leading to an envy-free solution, but with no
social welfare gain. Quantifying this welfare loss, incurred as the cost of minimizing envy is,
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m = n m > n
Non

Normalized

Doubly

Normalized

Normalized

OHA / EHA /

UHA

1 1 n
2 ≤ PoF ≤ n

Table 4.6: Price of minimizing the number of envious agents, the maximum envy, and
the total envy for binary valuations.

therefore, an imperative consideration. In particular, we discuss the worst-case welfare loss
under different scenarios when any of the envy objectives is supposed to be minimized, and
give tight bounds for the same.

We first define the Price of Fairness in the house allocation setting as follows. We use the
notation PoFOHA to denote the fact that the fairness notion under consideration is theminimum
number of envious agents. PoFEHA and PoFUHA are defined analogously. When the meaning
is clear from the context, we drop the subscript and simply write PoF.

Definition 4.67. For a house allocation instance I := (A, H,P) with n agents and m houses,

consider an allocation Φ⋆
that maximizes the social welfare, denoted by SW(Φ⋆). Let Φ be the

allocation that minimizes the number of envious agents and SW(Φ) be the social welfare of Φ.

Then, the price of fairness PoFOHA is defined as

PoFOHA = sup
I

SW(Φ⋆)

SW(Φ)
= sup

I

∑i∈A ui(Φ⋆(i))
∑i∈A ui(Φ(i))

,

where the supremum is taken over all instances with n agents and m houses.

We say that an instance with binary valuations is normalized if every agent likes an equal
number of houses. Moreover, if every house is also liked by an equal number of agents, then
we say that the instance is doubly normalized. We now present the bounds for PoF. We show
that if m = n, then PoF = 1 for all the three envy minimization objectives. When m > n,
if the instance is doubly normalized, then PoF = 1 but it can be as large as n if we drop the
double normalization assumption. The results are summarized in Table 4.6.

Towards proving our results for the case when m = n, we first present the following lemma
based on the characterization that a matching M in a graph G is maximum if and only if G
has no M-augmenting path. An M-augmenting path is a path in G that starts and ends at
unmatched vertices (vertices not included in M) and alternates between edges in the matching
M and edges that are not in M.
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Proposition 4.68 (folklore). Let G be a graph. For any A′ ⊆ V(G), if G contains a matching

that saturates A′, then G contains a maximum matching that saturates A′.

Proof. Let M′ be the matching that saturates A′ in G. If M′ is itself a maximum matching,
then we are done. Suppose not. Then there exists an M′-augmenting path P in G which starts
and ends at a vertex in A \ A′. Replacing the edges of M in P by the other edges in P gives
a strictly larger matching M (with exactly one more edge) which saturates A′ and in addition,
saturates two vertices from A \ A′. For every such augmentation, the set of saturated vertices
increases by two, keeping the original set of saturated vertices intact. When no augmenting
path exists, then by the characterization of maximum matchings, the resulting matching M
must be a maximum matching that saturates A′.

We now consider the case when the number of houses is equal to the number of agents, and
show that PoF = 1 in this case. Recall that we are under the assumption that every agent
values at least one house. Hence, when m = n (and the valuations are binary), in any
allocation, an agent either receives a house she values or she is envious; in particular, if agent
a is envious, then she envies exactly d(a) other agents, where d(a) is the degree of a in the
associated preference graph. We will crucially rely on this fact to prove that PoF = 1. Our
arguments will also use the correspondence between matchings in the preference graph and
allocations: For a matching M in the preference graph, we denote the allocation
corresponding to M by ΦM, which allocates the house M(a) to the agent a and allocates
houses to the remaining unmatched agents arbitrarily. Notice that the allocation ΦM need not
be unique.

Lemma 4.69. For an instance of house allocation with m = n and binary valuations, there

exists an allocation that simultaneously maximizes the social welfare and minimizes the number

of envious agents.

Proof. By Proposition 4.1, we know that any allocation that minimizes the number of envious
agents has exactly |M| envy-free agents, where M is the maximum matching in the associated
preference graph G. It is easy to see that the maximum social welfare of the instance is also
exactly |M|, hence any allocation, say ΦM, corresponding to a maximum matching M in G
maximizes the welfare and minimizes the number of envious agents.

Lemma 4.70. For an instance of house allocation with m = n and binary valuations, there exists

an allocation that simultaneously maximizes social welfare and minimizes the maximum envy.
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Proof. Let M be a maximum matching in the associated preference graph G. Since m = n,
all the agents that are unmatched under M are envious under ΦM. This implies that at least
n− |M| agents are envious. In particular, if |M| = n, then under the allocation ΦM, all agents
are envy-free, and ΦM simultaneously maximizes welfare and minimizes the maximum envy,
and thus the lemma trivially holds. So, assume that |M| < n. As M is a maximum matching,
we can conclude that there is no matching that saturates all the agents.

Let us now order the agents in the non-increasing order of their degrees, that is, a1, a2, . . . , an

such that d(a1) ≥ d(a2) ≥ · · · ≥ d(an). Let p1 ∈ [n] be the least index such that there is no
matching that saturates all of a1, a2, ..., ap1 . This implies that there is a matching that saturates
a1, a2, . . . ap1−1 but none that saturates the agents a1, a2, ..., ap1 . That is, in any allocation, at
least one agent among a1, . . . ap1 is envious. Thus, the maximum envy of the instance is at
least d(ap1). But there is a matching that saturates a1, a2, . . . , ap1−1, which can be extended to
a corresponding allocation; and under such an allocation, ap1 would be the first envious agent
(first in the ordering a1, a2, . . . , an). Therefore, we can conclude that the maximum envy of
the instance is precisely equal to d(ap1). Now, we only have to prove that there is indeed a
maximum matching that saturates a1, a2, . . . , ap1−1; and Proposition 4.68 guarantees that G
does contain such a maximum matching (we simply need to apply Proposition 4.68 with
A′ =

{
a1, a2, . . . , ap1−1

}
). This implies that there is a welfare-maximizing allocation that also

minimizes the maximum envy.

Lemma 4.71. For an instance of house allocation with m = n and binary valuations, there exists

an allocation that simultaneously maximizes social welfare and minimizes total envy.

Proof. Consider an allocation, say Φ, that minimizes the total envy. We claim that the matching
M corresponding to Φ in the associated preference graph G is a maximum matching. If M
is not a maximum matching, then we have an augmenting path, and we get a strictly larger
matching M′ such that the vertices saturated by M are also saturated under M′. Now consider
the allocation corresponding to M′, say ΦM′ . Since |M| < |M′|, the number of envious agents
under ΦM′ is strictly less than those under Φ; also all envy-free agents under Φ remain envy-
free under ΦM′ . These arguments imply that the total envy under ΦM′ is less than the total
envy under Φ. This is a contradiction to the fact that Φ minimizes the total envy.

The following result now follows from Lemma 4.69, Lemma 4.70 and Lemma 4.71.

Theorem 4.72. For an instance of house allocation with m = n and binary valuations, PoF = 1
for all the three envy-minimization objectives.
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Theorem 4.72 tells us that when m = n, there is an allocation that simultaneously maximizes
welfare and minimizes any one of the three measures of envy. This does raise the following
question: Can we simultaneously maximize welfare and minimize all three measures of envy?
We show that we can indeed do this; that is, there is an allocation that simultaneouslyminimizes
the number of envious agents, the maximum and total envy while maximizing social welfare.

Theorem 4.73. For an instance of house allocation with m = n and binary valuations, there is an

allocation that simultaneously minimizes the number of envious agents, the maximum and total

envy, while maximizing social welfare. Moreover, we can compute such an allocation in polynomial

time.

Proof. Let M be a maximum matching in the associated preference graph G. First, the
corresponding allocation ΦM maximizes social welfare. Since m = n, all the agents that
remain unmatched under M are envious under ΦM. This implies that at least n− |M| agents
are envious under any allocation. Thus, if |M| = n, then every agent is envy-free under ΦM,
and thus, the theorem trivially holds. So, assume from now on that |M| < n.

We first order the agents in the non-increasing order of their degrees, that is, a1, a2, . . . , an

such that d(a1) ≥ d(a2) ≥ · · · ≥ d(an). Let p1 ∈ [n] be the least index such that G does not
contain a matching that saturates {a1, a2, ..., ap1}. That is, there is a matching that saturates
all of a1, a2, . . . ap1−1 but none that saturates all of a1, a2, ..., ap1 . Now, let p2 ∈ [n] be the least
index such that p2 > p1 and G does not contain a matching that saturates
{a1, a2, . . . ap2} \ {ap1} (if such an index p2 exists); In general, having defined
p1, p2, . . . , pi−1, we define pi to be the least index in [n] such that pi > pi−1 and G does not
contain a matching that saturates {a1, a2, . . . api} \ {ap1 , ap2 , . . . , api−1}. Let p1, p2, . . . , pk

(for some k ≥ 1), be the indices defined this way. By their definition, G contains a matching,
say M′, that saturates {a1, a2, . . . an} \ {ap1 , ap2 , . . . apk}. Consider the corresponding
allocation ΦM′ ; recall that ΦM′ allocates houses along the edges of M′ and the remaining
agents, i.e., ap1 . . . apk , receive the remaining houses in an arbitrary manner.

Before we proceed further, let us observe that we can indeed compute M′ and hence the
corresponding allocation ΦM′ in polynomial time. The arguments we have used so far are
constructive. To compute M′, we only need to identify the indices p1, p2, . . . , pk and find a
matching that saturates {a1, a2, . . . , an} \

{
ap1 , ap2 , . . . , apk

}
. Notice that to find each pi, we

only need to check if G contains a matching that saturates{
a1, a2, . . . , aj

}
\
{

ap1 , ap2 , . . . , api−1

}
for each j > pi−1, which we can do in polynomial

time.
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We will now show that the allocation ΦM′ satisfies all the properties required by the
statement of the theorem; that is, ΦM′ maximizes welfare and minimizes the number of
envious agents, the maximum envy and the total envy. To that end, observe first that M′ does
not saturate any of the agents ap1 , ap2 , . . . , apk . Otherwise, let pi be the least index in
{p1, p2, . . . , pk} such that M′ saturates api . In particular, M′ is a matching that saturates{

a1, a2, . . . , api

}
\
{

ap1 , ap2 , . . . , api−1

}
, which contradicts the definition of pi. By the same

reasoning, we can also conclude that that M′ is indeed a maximum matching. If not, then
there is a larger matching, say M′′, which also saturates at least one of the api in addition to
saturating {a1, a2, . . . an} \ {ap1 , ap2 , . . . apk} (by Proposition 4.68), which again will lead to a
contradiction.

Now, the fact that M′ is a maximum matching immediately implies that the corresponding
allocation ΦM′ maximizes social welfare and minimizes the number of envious agents. We will
now use the same arguments we used in the proof of Lemma 4.70 to show that ΦM′ minimizes
the maximum envy. Notice that the set of agents that are not saturated by M′ is precisely{

ap1 , ap2 , . . . , apk

}
. This fact, along with the fact that M′ is a maximum matching, implies that

the set of envious agents under ΦM′ is precisely
{

ap1 , ap2 , . . . , apk

}
. In particular, ap1 is the

first envious agent under ΦM′ (again, first in the ordering a1, a2, . . . , an). Thus, the maximum
envy of the allocation ΦM′ is d(api). By the definition of p1, in any allocation, at least one
agent among a1, . . . ap1 is envious, and hence the maximum envy in any allocation is at least
d(api) (because d(a1) ≥ d(a2) ≥ · · · ≥ d(an)). From these arguments, we can conclude that
ΦM′ minimizes the maximum envy.

To complete the proof, now we only need to argue that ΦM′ minimizes the total envy. To that
end, we first prove the following claim.

Claim 4.74. For every i ∈ [k], every matching in G does not saturate at least i agents from the set{
a1, a2, . . . , api

}
. Or equivalently, for every i ∈ [k], at least i agents from the set

{
a1, a2, . . . , api

}
are envious under every allocation.

Proof. Suppose for a contradiction that G contains a matching M′′′ such that the number of
agents from

{
a1, a2, . . . , api

}
that are not saturated by M′′′ is strictly less than i. Therefore,

M′′′ saturates at least one agent from the set
{

ap1 , ap2 , . . . , api

}
; let pj be the least such index

such that M′′′ saturates apj . But then M′′′ saturates
{

a1, a2, . . . , apj

}
\
{

ap1 , ap2 , . . . , apj−1

}
,

which contradicts the definition of pj. Notice that the second sentence in the statement of the
claim is merely a restatement of the first, because of the correspondence between matchings
and allocations: Under any allocation, the envy-free agents and the houses they received form
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a matching in G.

Now, to complete the proof of the theorem, recall that the set of envious agents under ΦM′

is precisely
{

ap1 , ap2 , . . . , apk

}
, and thus the total envy under ΦM′ is precisely ∑k

i=1 d(api).
Also, as we have already argued, ΦM′ minimizes the number of envious agents, and hence
we can conclude that at least k agents are envious under every allocation. Assume now for a
contradiction that ΦM′ does not minimize the total envy. Let Φ be an allocation that minimizes
the total envy. Again, at least k agents are envious under Φ; let 1 ≤ q1 < q2 < · · · < qk ≤ n be
such that the agents aq1 , aq2 , . . . , aqk are the first k envious agents under Φ (first in the ordering
a1, a2, . . . , an). Thus the total envy under Φ is at least ∑k

i=1 d(aqi). Now, by our assumption,
ΦM′ does not minimize the total envy and Φ does, and thus ∑k

i=1 d(api) > ∑k
i=1 d(aqi); we

will derive a contradiction from this. Since ∑k
i=1 d(api) > ∑k

i=1 d(aqi), there exists an index
i ∈ [k] such that d(api) > d(aqi); let i ∈ [k] be the least index such that d(api) > d(aqi).
Hence pi < qi, which implies that the set

{
a1, a2, . . . , api

}
contains at most i− 1 of the agents

aq1 , aq2 , . . . , aqi . But by the definition of the qjs, the agents aq1 , aq2 , . . . , aqk are the first k envious
agents under Φ. We can thus conclude that the set

{
a1, a2, . . . , api

}
contains at most i − 1

agents who are envious under Φ, which contradicts Claim 4.74.

We have thus shown that ΦM′ minimizes the total envy, and this completes the proof of the
theorem.

We now consider the case when m > n and the setting of the doubly normalized valuations.
The following result follows from the proof of Theorem 5 in Bhaskar et al. (2023), where they
show that for such structured valuations, every good can be assigned non-wastefully such that
every agent derives the value of at least one. In our setting, we can find an envy-free allocation
that is non-wasteful and hence, welfare maximizing as well, proving the following result.

Corollary 4.75. For m > n and doubly normalized binary valuations, PoF = 1 for all three

envy-minimization objectives.

It is easy to see that when there are dummy houses, then there can be instances where the fair
allocation can be highly inefficient. Consider the case when number of dummy houses is at
least the number of agents. Then, irrespective of the individual valuations, every agent can get
a dummy house and be envy-free, leading to no social welfare at all. But, the following result
suggests that even when there aren’t any dummy houses, there are instances where the price
of fairness can be high.

Theorem 4.76. For m > n and binary normalized valuations, PoF = Θ(n), for all the three
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envy optimization objectives, even when there are no dummy houses to begin with.

Proof. We first show that PoF ≥ n/2. We say that a house is allocated non-wastefully if the
receiving agent values it at 1. Consider an instance with 2n agents and 3n houses, such that
n > 2. Agent 1 likes the first n houses, 2 likes the next n houses, and all of the remaining 2n− 2
agents collectively like the last n houses. The instance does not have any dummy houses.
Note that any welfare-maximizing allocation Φ⋆ allocates n + 2 houses non-wastefully. So
SW(Φ⋆) ≥ n + 2. But in this instance, there exists an envy-free allocation Φ that allocates
exactly 2 houses non-wastefully to the first two agents. The last n houses remain unallocated
under Φ, as they create Hall’s violator for the set of last 2n− 2 agents. Therefore, the last 2n− 2
agents receive the houses they don’t like, and the set of their liked houses remains unallocated.
This implies that SW(Φ) ≤ 2. The PoF for this particular instance is, therefore, (n+2)/2 ≈ n.
Since the instance had 2n agents to begin with, we have that in general, PoF ≥ n/2.

We now show that PoF ≤ n. Under any arbitrary instance with n agents and binary valuations,
themaximumpossible social welfare under any allocation is n. Consider an envy-free allocation
Φ, if it exists. We claim that there is at least one house that is allocated non-wastefully under Φ.
Suppose not. Then every house is allocated wastefully, and hence, SW(Φ) = 0. But since there
are no dummy houses, there is at least one agent a who likes (a subset of) the allocated houses.
But since welfare is zero, a is an envious agent, which contradicts the fact that we started with
an envy-free allocation. Therefore, SW(Φ) ≥ 1. This implies that PoF ≤ n.

If an envy-free allocation does not exist, consider Φ to be an allocation that minimizes the
number of envious agents. Suppose the number of envious agents under Φ is k and let a be
one such envious agent. If SW(Φ) = 0, then everyone, including a receives a house that they
do not like. Now a is envious because one of his liked houses, say h is allocated to some agent
Φ′ and that too wastefully. Consider the re-allocation of the house h to a and the house Φ(a)
to a′. Then a becomes envy-free, and no agent (including a′) becomes newly envious of this
re-allocation, since the set of allocated houses is exactly the same and SW(Φ) = 0. This re-
allocation has k− 1 envious agents, which contradicts the fact that we started with an optimal
allocation. Therefore, SW(Φ) ≥ 1. This implies that PoF ≤ n. The argument for EHA and
UHA is analogous. This settles our claim.

In the proof of Theorem 4.76, although the number of agent types in the lower bound instance
is 3, the PoF is linear in the number of agents. This implies that we do not expect better bounds
for instances with few agent types.
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4.10 Conclusion

We studied three kinds of natural quantifications of envy to be minimized in the setting of
house allocation: OHA, EHA, and UHA. Most of our results are summarized in Table 4.1. We
also show that both OHA and EHA are FPT when parameterized by the total number of house
types or agent types. We also look at the price of fairness in the context of house allocation and
give tight bounds for the same.

We leave several questions related to UHA open. The complexity of EHA and UHA is open for
single-peaked preferences. It will be interesting to see how ties play a role in the complexity of
OHA and settle the complexity of OHA on single-plateaued preferences.
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Chapter 5

Price of Equitability

“For everything you have missed, you have gained something else, and for

everything you gain, you lose something else.”

- Ralph Waldo Emerson, Compensation (Essays, First Series)

5.1 Introduction

Tradeoffs are inevitable when we pursue multiple optimization objectives that are typically
not simultaneously achievable. Quantifying such tradeoffs is a fundamental problem in
computation, game theory, and economics. Our focus in this work is on the “price of fairness”
in the context of fair division problems, which is a notion that captures tradeoffs between
fairness and welfare.

Recall that a fair division instance in the discrete setting involves a set of n agents

N = {1, 2, . . . , n}, m indivisible goods M = {g1, . . . , gm}, and V := {v1, v2, . . . , vn}, a
valuation profile consisting of each agent’s valuation of the goods. For any agent i ∈ N, her
valuation function vi : 2M → N ∪ {0} specifies her numerical value (or utility) for every
subset of goods in M. We will assume that the valuations are normalized, that is, for all i ∈ N,
vi(M) = W, where W is the normalization constant. Our goal is to devise an allocation of
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goods to agents; defined as an ordered partition1 of the m goods into n “bundles”, where the
bundles are (possibly empty) subsets of M, and the convention is that the ith bundle in the
partition is the set of goods assigned to the agent i.

The welfare of an allocation is a measure of the utility that the agents derive from the
allocation. For additive valuations, the individual utility that an agent i derives from their
bundle Φi is simply the sum of the values that they have for the goods in Φi. The overall
welfare of an allocation Φ is typically defined by aggregating individual utilities in various
ways. Not surprisingly, there are several notions of welfare corresponding to different
approaches to consolidating the individual utilities. For instance, the utilitarian social welfare

is the sum of utilities of agents under Φ; the egalitarian social welfare is the lowest utility
achieved by any agent with respect to Φ; and the Nash social welfare is the geometric mean of
utilities of agents under Φ. One may view all of these welfare notions as special cases of the
p-mean welfare (where p ∈ (−∞, 0) ∪ (0, 1]), which is defined as the generalized p-mean of

utilities of agents under Φ, i.e., Wp(Φ) :=
(

1
n ∑i∈N

(
vi(Φi)

)p
)1/p

. Note that for p > 1, the
p-mean optimal allocation tends to concentrate the distribution among fewer agents (consider
the simple case of two identical agents with additive valuations who value each of two goods
at 1), which is contrary to the spirit of fairness. Hence we focus on p ⩽ 1.

A natural goal for a fair division problem is to obtain an allocation that maximizes the overall
welfare. However, observe that optimizing exclusively for welfare can lead to undesirable
allocations. To see this, consider an instance with additive valuations where all the valuation
functions are the same, i.e., the utility of any good g is the same for all agents in N. In this
case, every allocation has the same utilitarian welfare. So, when we only optimize for—in this
example, utilitarian—welfare, we have no way of distinguishing between, say, the allocation
that allocates all goods to one agent and one that distributes the goods more evenly among
the agents. To remedy this, one is typically interested in allocations that not only maximize
welfare, but are also “fair”.

The price of fairness is informally the cost of achieving a specific fairness notion, where the cost
is viewed through the lens of a particular welfare concept. For a fairness notionF (such as EQ1
or EF1) and a welfare notionW (such as egalitarian or utilitarian welfare), the price of fairness
is the “worst-case ratio” of the maximum welfare (measured by W ) that can be obtained by
any allocation, to the maximum welfare that can be obtained among allocations that are fair
according toF . For example, it is known from the work of Caragiannis et al. (2019b) that under

1Unless otherwise specified, we implicitly assume that allocations are complete, i.e., every good is assigned to
some agent.
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additive valuations, any allocation that maximizes the Nash social welfare satisfies EF1. Thus,
the price of fairness of EF1 with respect to Nash social welfare is 1. Further, Barman et al.
(2020b) show that the price of EF1 with respect to utilitarian welfare is O(

√
n) for normalized

subadditive valuations.

In this contribution, we focus on bounds for the price of fairness in the context of EQ1, a notion
that we will henceforth refer to as the price of equity (PoE) when there is no ambiguity. Much
of the existing literature on the price of fairness analysis focuses on specific welfare measures
(e.g., utilitarian, egalitarian, and Nash social welfare). Our work deviates from this trend by
analyzing the entire family of generalized p-mean welfare measures (i.e., for all p ⩽ 1); recall
that this captures the notions of egalitarian, utilitarian, and Nash welfare as special cases. Our
results therefore address the behavior of the price of equity for a wide spectrum of welfare
notions.

Further, we obtain bounds in terms of the number of agent types — which we denote by r —
rather than the total number of agents. The number of agent types of a fair division instance is
the largest number of agents whose valuations are mutually distinct: in other words, it is the
number of distinct valuation functions in the instance. Note that the number of agent types
is potentially much smaller than the total number of agents. The notion of agent types has
been popular in the fair division literature for the reason that it is a natural quantification of
the “simplicity” of the structure of the instance as given by the valuations. Note that the well-
studied special case of identical valuations is equivalent to the class of instances for which
r = 1, and therefore one might interpret parameterizing by r as a smooth generalization of
the case of identical valuations. For a representative selection of studies that focus on instances
with a bounded number of agent types, we refer the reader to (Bliem et al., 2016; Bouveret et al.,
2017; Garg et al., 2021; Brânzei et al., 2016).

We restrict ourselves to the setting of binary submodular (also known as matroid rank)
valuations. A valuation function vi is submodular if for any subsets of goods S, S′ ⊆ M such
that S ⊆ S′, and for any good g ̸∈ S′, vi(S ∪ g)− vi(S) ⩾ vi(S′ ∪ g)− vi(S′). That is, the
marginal value of adding g to S is at least that of adding g to a superset of S. Valuation vi is
binary submodular if for any subset of goods S ⊆ M and any good g, the marginal value
vi(S ∪ g) − vi(S) ∈ {0, 1}. Binary submodular valuations are frequently studied in fair
division and are considered to be a useful special case such as in allocating items under a
budget, or with exogenous quotas (Benabbou et al., 2021; Viswanathan and Zick, 2023). It also
provides algorithmic leverage: many computational questions of interest that are hard in
general turn out to be tractable once we restrict our attention to binary submodular
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valuations. As an example, while it is NP-hard to compute a Nash social welfare maximizing
allocation even for identical additive valuations (Roos and Rothe, 2010), such an allocation can
be computed in polynomial time under binary submodular valuations in conjunction with
other desirable properties such as strategyproofness, envy-freeness up to any good, and
ex-ante envy-freeness (Babaioff et al., 2021).

A strict subset of binary submodular valuations is the class of binary additive valuations—this
is a subclass of additive valuations wherein each value vi(g) is either 0 or 1. Binary additive
valuations provide a simple way for agents to express their preferences as they naturally align
with the idea of agents “approving” or “rejecting” goods. These are also widely studied in the
literature on fair division, for example, see (Ortega, 2020; Kyropoulou et al., 2020; Babaioff et al.,
2021; Amanatidis et al., 2021; Aleksandrov and Walsh, 2020; Aziz and Rey, 2021). In the case
of voting too, binary additive valuations play a role. Darmann and Schauer (2015) consider
the complexity of maximizing Nash social welfare when scores inherent in classical voting
procedures are used to associate utilities with the agents’ preferences, and find that the case of
approval ballots —which happen to lead to binary additive valuations — are a tractable subclass.

Our Contributions and Techniques

Wenow turn to a discussion of our findings (see Table 5.1 for a summary of our results for binary
additive valuations). Given an instance of fair division with binary submodular valuations, let
Φ⋆ be an allocation that maximizes the Nash social welfare. It is implicit from the results
of Benabbou et al. (2021) that Φ⋆ also has maximum p-mean welfare for all p ⩽ 1 (for details,
refer to Section 5.3). We show an analogous result for EQ1 allocations, by demonstrating that
there exists an EQ1 allocation (which we call ΦT , or the truncated allocation) that maximizes
the p-mean welfare for all p. To this end, in allocation Φ⋆, let i be an agent with minimum
value, and let ℓ = vi(Φ⋆

i ). If the allocation is not already EQ1, then we reallocate “excess”
goods from the bundles of agents who value their bundles at more than ℓ+ 1 and give them
to agent i. Notice that agent i must have marginal value 0 for all these excess goods, otherwise
this reallocation would improve the Nash welfare. It turns out that this allocation ΦT is EQ1
and also has — among EQ1 allocations — the highest p-mean welfare.

Theorem 5.1. For any p ∈ R ∪ {−∞} and binary submodular valuations, the p-mean welfare

of the truncated allocation ΦT
is at least that of any other EQ1 allocation.

Notice that together with the result of Benabbou et al. (2021), Theorem 5.1 allows us to focus
only on the maximum Nash social welfare allocation Φ⋆ and the truncated allocation ΦT to
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PoE

Agent types (r)

Lower bound Upper bound

Utilitarian welfare (p = 1) r− 1 r

Nash welfare (p = 0) (r−1)/e
ln(r−1)

(r−1)
ln(r−1)/e

Egalitarian welfare (p→ −∞) 1 1 (Sun et al., 2023b)

p ∈ (0, 1) p(r− 1)/e 2r− 1

p ∈ (−1, 0) 21/p(r− 1)1/(1−p) 2−1/p(−p)1/p(1−p)(r− 1)1/(1−p)

p ⩽ −1 21/p(r− 1)1/(1−p) 2(r− 1)1/(1−p)

Table 5.1: Summary of results for the price of equity (PoE). Each cell indicates either
the lower or the upper bound (columns) on PoE for a specific welfare measure (rows) as
a function of the number of agent types r. Our contributions are highlighted by shaded
boxes. The lower bounds are from Theorem 5.2, while the upper bounds are shown
in Theorem 5.3 and Theorem 5.4. Section 5.8 presents the upper and lower bounds
graphically as a function of r, for p = 1, p = 0, p = −1, and p = −10.

obtain upper bounds on the PoE for all p ⩽ 1 simultaneously.

We now describe our bounds on the PoE for binary additive valuations. Our lower bounds are
based on varying parameters in a single basic instance. The parameters are r, the number of
agent types, and W, the normalization constant for the agents. Given r and W, the instance has
m = rW goods, divided into r groups of W goods each. The groups are M1, M2, . . ., Mr. There
are W + 1 agents who value all the goods in M1 at 1 each and everything else at 0. Further, for
each 2 ⩽ i ⩽ r, we have exactly one agent who values the goods in Mi and nothing else.

To summarize, we haveW + 1 agents of the first type, who have a common interest inW goods.
Any allocation must leave one of these agents with zero value. Beyond these coveted goods,
each of the remaining goods is valued by exactly one agent. A welfare maximizing allocation
will allocate each good in M2 ∪ · · · ∪Mr to the unique agent who values it; however, an EQ1
allocation is constrained by the fact that an agent of the first type must get value 0.2 It turns

2For p ⩽ 0, we use the standard convention that allocation Φ is a p-mean optimal allocation if (a) it maximizes
number of agents with positive value, and (b) among all allocations that satisfy (a), maximizes the p-mean welfare
when restricted to agents with positive value.
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out that using this family of instances, we can obtain the following bounds. We note here that
we rely on normalization as a crucial assumption for deriving both the lower bounds and the
upper bounds. This puts equitability in contrast with envy-freeness—the compatibility between
EF1 and p-mean welfares hold even without normalization for binary submodular valuations
(Barman et al., 2020a).

Theorem 5.2 (PoE lower bounds). Let s := r − 1. The price of equity for binary additive

valuations is at least:

1. s, for p = 1,

2.
p
e s, for p ∈ (0, 1),

3.
s

e ln s , for p = 0,

4. 21/ps1/(1−p)
, for p < 0.

We now turn to the upper bounds for binary additive valuations. It turns out that the PoE for
utilitarian welfare is bounded by the rank of the instance, where the rank is simply the rank of
the n×m matrix {vi(gj)}1⩽i⩽n;1⩽j⩽m. Observe that the rank is a lower bound for the number
of agent types, so this result also implies an upper bound of r on the PoE. In fact, the rank could
be logarithmic in the number of agent types, and hence this is a significantly tighter bound than
the number of agent types.

To obtain this upper bound, in allocation ΦT (which, as shown in Theorem 5.1, maximizes the
utilitarian welfare among EQ1 allocations) we show that the number of wasted goods is at most
m(1− 1

k ), where k is the rank of the instance. This implies the theorem.

Theorem5.3 (Utilitarian PoEupper bound). Under binary additive valuations and utilitarian
welfare as the objective, the price of equity is at most the rank of the instance.

For other values of p, we obtain the following upper bounds.

Theorem 5.4 (PoE upper bounds). Let s := r − 1. The price of equity for binary additive

valuations is at most

1. 1 + s for p = 1

2. 1 + 2s for p ∈ (0, 1)

3.
s

ln(s/e) for p = 0 (i.e., the Nash social welfare)

4. s1/(1−p)2−1/p(−1/p)1/p(p−1)
for p ∈ (−1, 0)

5. 2s1/(1−p)
for p ⩽ −1
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We note that for any fixed p, the lower bounds (Theorem 5.2) and upper bounds (Theorem 5.4)
are within a constant factor of each other.

Conceptually, for the proof of the upper bounds, we show that the worst case for the PoE is in
fact the family of instances used for showing our lower bounds in Theorem 5.2. In particular,
any instance can be transformed into one belonging to the lower bound family, without
improving the PoE. Note that for the PoE, we can focus on the allocations Φ⋆ and ΦT

irrespective of the p-mean welfare measure, since these maximize the p-mean welfare for all
p ⩽ 1 simultaneously. For a given instance, let l be the minimum value of any agent in Φ⋆.
We divide the agent types into two groups: types for which every agent has value at most
l + 1 in Φ⋆, and types for which an agent has value > l + 1. Note that for a type in the first
group, each agent of this type retains her value in ΦT , while for a type in the second group,
the value of each agent of this type is truncated to l + 1. Our proof shows that agents in the
first group must have total value at least W, as in the lower bound example. We also use W as
an upper bound for the total value of each agent type in the second group. Then letting α be
the fraction of agents in the first group, and optimizing over α, gives us the required upper
bounds.

We then consider the PoE for binary additive valuations with the additional structure that both
the rows and the columns are normalized. That is, each agent values exactly W goods, and each
good is valued by exactly Wc agents. For such doubly normalized instances, we show the PoE
is 1.

Theorem 5.5. For doubly normalized instances under binary additive valuations, the PoE for the

p-mean welfare is 1 for all p ⩽ 1.

Finally, we obtain bounds on the PoE for binary submodular valuations. For identical valuations,
it follows from similar results for EF1 that the PoE is 1.

Proposition 5.6. When all agents have identical binary submodular valuations, the PoE is 1 for

p-mean welfare measure for all p ⩽ 1.

However, this is the best that can be obtained, in the sense that even with just two agent types,
the PoE for utilitarian welfare is at least n/6, where n is the number of agents. Hence we
cannot obtain bounds on the PoE that depend on the number of agent types, as we did for
binary additive valuations.

Theorem 5.7. The PoE for utilitarian welfare when agents have binary submodular valuations is

at least n/6 (where n is the number of agents), even when there are just two types of agents.
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Nonetheless, we do obtain an upper bound of 2n on the PoE for binary submodular valuations.

Theorem 5.8. For binary submodular valuations and any p ⩽ 1, the PoE for p-mean welfare is

at most 2n.

Related Work

The notion of price of fairness was proposed in the works of Bertsimas et al. (2011)
and Caragiannis et al. (2012). These formulations were inspired from similar notions in game
theory—specifically, price of stability and price of anarchy—that capture the loss in social
welfare due to strategic behavior.3 Caragiannis et al. (2012) studied the price of fairness for
divisible and indivisible resources under three fairness notions: proportionality (Steinhaus,
1948), envy-freeness (Gamow and Stern, 1958; Foley, 1967), and equitability (Dubins and
Spanier, 1961). For indivisible resources, they defined price of fairness only with respect to
those instances that admit some allocation satisfying the fairness criterion.

Recently, Bei et al. (2021) studied price of fairness for indivisible goods for fairness notions
whose existence is guaranteed; in particular, they studied envy-freeness up to one good (EF1)
and maximum Nash welfare allocations.4 In a similar vein, Sun et al. (2023a) studied price of
fairness for allocating indivisible chores for different relaxations of envy-freeness and maximin
share. Perhaps closest to our work is a recent paper by Sun et al. (2023b). This work studies
price of equitability for EQX for indivisible goods as well as indivisible chores under utilitarian
and egalitarian welfare. The valuations are assumed to be additive but not necessarily binary.
For indivisible goods, the price of equity is shown to be between n− 1 and 3n, where n is the
number of agents, while for egalitarian welfare, a tight bound of 1 is provided.

5.2 Preliminaries

In this chapter, we restrict our attention to equitability and its approximations as our fairness
criteria, coupled with p-mean welfare notions. We refer the reader to Section 1.2 for the
definitions of the input instance, fairness, and welfare notions.

3Price of anarchywas defined by Koutsoupias and Papadimitriou (2009) and subsequently studied in the notable
work of Roughgarden and Tardos (2002), while price of stability was defined by Anshelevich et al. (2008).

4The EF1 notion was formulated by Budish (2011) although subsequently it was observed that an algorithm
of Lipton et al. (2004) achieves this guarantee for monotone valuations. The Nash social welfare function was
originally proposed in the context of the bargaining problem (Nash Jr, 1950) and subsequently studied for resource
allocation problems by Eisenberg and Gale (1959).
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We will primarily focus on binary submodular valuations in Section 5.3 and 5.7, and on binary
additive valuations in Section 5.4, 5.5, and 5.6.

Agents i and j are said to be of the same type if their valuation functions are identical, i.e.,
if for every subset of goods S ⊆ M, vi(s) = vj(S). We will use r to denote the number of
distinct agent types in an instance. Further, an instance is normalized if for some constant W,
vi(M) = W for all agents i. Our work focuses on instances with normalized valuations since
there are trivial instances where the price of equity for any p-mean welfare for p ∈ R is large
without this assumption (e.g., the simple instance with 2 agents and k goods, where agent 1 has
value 1 for the first good and zero for the others, and agent 2 has value 1 for all goods, has price
of equity k/3 for the utilitarian welfare).

Price of fairness.

Given a fairness notion F (e.g., EQ1) and a p-mean welfare measure, the price of fairness of F
with respect to a welfare measureWp is the supremum over all fair division instances with n
agents and m goods of the ratio of the maximum welfare (according toWp) of any allocation
and the maximum welfare of any allocation that satisfies F .

Formally, let In,m denote the set of all fair division instances with n agents and m items. Let
A(I) denote the set of all allocations in the instance I, and further let AF (I) denote the set of
all allocations in the instance I that satisfy the fairness notion F .

Then, the price of fairness (PoF) of the fairness notion F with respect to the welfare measure
Wp is defined as:

PoF(F ,Wp) := sup
I∈In,m

maxΦ∗∈A(I)Wp(Φ∗)
maxΦ∈AF (I)Wp(Φ)

.

As indicated earlier, throughout this chapter we will focus on equitability up to one good (EQ1)
as the fairness notion of choice (i.e., F is EQ1). For notational simplicity, we will just write
PoF instead of PoF(F ,W) whenever the welfare measureW is clear from context, and we will
refer to this ratio as the price of equity (PoE) whenever the fairness notion in question is EQ1.

Some properties of p-mean welfare

We state here some basic properties of the p-mean welfare that will be useful in due course.

Claim 5.9. For all p < 1, the p-mean welfare is a concave function of the agent valuations.

This proof was shown by Ahle (2020). We reproduce it here for completeness.
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Proof. Consider f (x) =
(
Σix

p
i
)1/p. The Hessian matrix H is then given by:

Hij = (1− p) f 1−2p A where Aij =

−xp−2
i Σk ̸=ix

p
k if i = j

xp−1
i xp−1

j if i ̸= j

For p ⩽ 1, the matrix H is negative semidefinite, since the initial coefficient (1− p) f 1−2p ⩾ 0,
and for any vector v,

vT Av =

(
n

∑
i=1

vix
p−1
i

)2

−
n

∑
i=1

v2
i xp−2

i ∑
j

xp
i ⩽ 0

where the last inequality follows by applying the Cauchy-Schwarz inequality5 to
(
vixp/2−1) ·(

xp/2
i

)
. Hence, the function f is concave.

Corollary 5.10. Given a vector of values for n agents x ∈ Rn
+ and a subset S ⊆ N of agents, let

x′ be the vector where x′i = xi if i ̸∈ S, and x′i = ∑j∈S xj/|S| if i ∈ S. Then for all p ⩽ 1,

(
1
n

n

∑
i=1

(xi)
p

)1/p

⩽

(
1
n

n

∑
i=1

(x′i)
p

)1/p

,

i.e., averaging out the value for a subset of agents weakly increases the p-mean welfare.

Claim 5.11. Given l ∈N, and a vector (x1, . . . , xl) ∈ Rl
+, for p ∈ [0, 1],

1
l

l

∑
i=1

x1−p
i ⩽

(
1
l

l

∑
i=1

xi

)1−p

,

while for p < 0, the opposite inequality holds.

Proof. For p ∈ {0, 1}, the claim can be seen by simply substituting these values. For p ∈ (0, 1),
the function f (x) = x1−p is concave, hence an application of Jensen’s inequality gives us the
claim. For p < 0, the function f (x) = x1−p is convex, hence again, Jensen’s inequality gives
us the claim.

5For any vectors a, b, (∑i Φibi)
2 ⩽ (∑i Φ2

i )× (∑i b2
i )
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5.3 Optimal Allocations for Binary Submodular
Valuations

Wefirst show that for obtaining bounds on the price of equity for the class of binary submodular
valuations (and hence, for binary additive valuations), we can focus on two allocations: the
first is the Nash welfare optimal allocation Φ⋆, which obtains the optimal p-mean welfare for
all p ⩽ 1, and the second is the truncated allocation ΦT , which obtains the optimal p-mean
welfare among all EQ1 allocations for all p ∈ R∪ {−∞}.

Benabbou et al. (2021) show the following results.

Proposition 5.12 (Benabbou et al., 2021, Theorem 3.14). Let Λ : Zn → R be a symmetric

strictly convex function, and let Ψ : Zn → R be a symmetric strictly concave function. Let Φ be

some allocation. For binary submodular valuations, the following statements are equivalent:

1. Φ is a minimizer of Λ over all the utilitarian optimal allocations,

2. Φ is a maximizer of Ψ over all the utilitarian optimal allocations,

3. Φ is a leximin allocation, and

4. Φ maximizes Nash social welfare.

Proposition 5.13 (Benabbou et al., 2021, Theorem 3.11). For binary submodular valuations, any

Pareto optimal allocation is utilitarian optimal.

For p ⩽ 1, if the p-mean welfare function was strictly concave, then it would follow
immediately that the Nash welfare optimal allocation Φ⋆ in fact simultaneously maximizes
the p-mean welfare for all p ⩽ 1. However, in general the p-mean welfare is concave
(Claim 5.9), but not strictly concave. E.g., for any p ⩽ 1 and any vector of values
v = (v1, . . . , vn) with vi > 0 for all agents i, let us overload notation slightly and define

Wp(v) =
(

1
n ∑n

i=1 vp
i

)1/p
. Then Wp(2v) = (Wp(v) + Wp(3v))/2, violating strict

concavity. However, we can slightly modify the proof of Theorem 3.14 from Benabbou et al.
(2021), to obtain the following result6

Proposition 5.14. For binary submodular valuations, any Nash welfare maximizing allocation

(and hence, leximin allocation) simultaneously maximizes the p-mean welfare for all p ⩽ 1.

Proof. The following property of leximin allocations is useful in the proof.
6Babaioff et al. (2021) also show that when agents are truthful, their prioritized egalitarian mechanism

guarantees an allocation that is Lorenz-dominating, leximin and also maximizes Nash welfare.
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Proposition 5.15. For agents with binary submodular valuations, let Φ be a utilitarian optimal

allocation so that maxi vi(Φi) ⩽ mini vi(Φi) + 1. Then Φ is a leximin allocation.

Proof. (of Proposition 5.15) Assume without loss of generality that vi(Φi) ⩽ vi+1(Φi+1) for
i ∈ [n − 1]. If Φ is not a leximin allocation, let Φ′ be a leximin allocation. Let permutation
π ∈ Sn be such that vπ(i)(Φ′π(i)) ⩽ vπ(i+1)(Φ′π(i+1)) for i ∈ [n − 1]. Then there exists
k ∈ [n], so that vi(Φi) = vπ(i)(Φ′π(i)) for i < k, and vk(Φk) < vπ(k)(Φ′π(k)). Note that for
i > k,

vi(Φi) ⩽ vk(Φk) + 1 ⩽ vπ(k)(Φ
′
π(k)) ⩽ vπ(i)(Φ

′
π(i)) .

But then ∑n
i=1 vπ(i)(Φ′π(i)) > ∑n

i=1 vi(Φi), and allocation Φ cannot be utilitarian optimal.

The following results are shown by Benabbou et al. (2021).

Proposition 5.16 (Benabbou et al., 2021, Lemma 3.12). For agents with binary submodular

valuations, let Φ be a utilitarian optimal allocation that is not a leximin allocation. Let agents i, j
be such that vj(Φj) ⩾ vi(Φi) + 2.7 Then there is another allocation Φ′ that is utilitarian

optimal and satisfies (i) vj(Φ′j) = vj(Φj)− 1, (ii) vi(Φ′i) = vi(Φi) + 1, and (iii) the values for

other agents are unchanged.

Note that in the above proposition, the allocation Φ′ is a lexicographic improvement on Φ.

Proposition 5.17 (Benabbou et al., 2021, Lemma 3.13). Let Ψ be a symmetric concave function,

and Φ be a utilitarian optimal allocation with agents i, j such that vj(Φj) ⩾ vi(Φi) + 2. Let
Φ′ be another utilitarian optimal allocation that satisfies (i) vj(Φ′j) = vj(Φj)− 1, (ii) vi(Φ′i) =
vi(Φi) + 1, and (iii) the values for other agents are unchanged. Then Ψ(Φ′) ⩾ Ψ(Φ).

We can now prove Proposition 5.14. Firstly, note that the Nash welfare maximizing allocation
is also leximin from Proposition 5.12, and hence maximizes the egalitarian welfare (in other
words, maximizes p-mean welfare for p → −∞). For any fixed p ⩽ 1, let Φ be an allocation
that maximizes the p-mean welfare. Since the p-mean welfare is strictly increasing, allocation
Φ is Pareto optimal, and hence from Proposition 5.13 is also utilitarian optimal. We will show
that there exists an allocation ΦT so thatWp(B) =Wp(Φ), and ΦT is a leximin allocation. If
Φ is not leximin, then by Propositions 5.16 and 5.17, there is an allocation Φ′ so thatWp(Φ′) ⩾
Wp(Φ), and Φ′ lexicographically dominates Φ. Then either Φ′ is a leximin allocation, or we
can continue in this manner until we get a leximin allocation ΦT withWp(B) ⩾ Wp(Φ), as

7By Proposition 5.15, such agents must exist.
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required. Finally, by Proposition 5.13, an allocation is leximin if and only if it maximizes the
Nash social welfare, hence if allocation Φ∗ maximizes the Nash social welfare, it also maximizes
the p-mean welfare for all p ⩽ 1.

We now show that similarly, there exists an EQ1 allocation ΦT that maximizes the p-mean
welfare for all p. Given Φ⋆, allocation ΦT is obtained as follows, which we call the truncated
allocation. Let l = mini vi(Φ⋆

i ) be the smallest value that any agent obtains in Φ⋆, and let
il be an agent that has this minimum value. Note that for any agent i, if vi(Φ⋆

i ) ⩾ l + 2,
then all goods allocated to i must have marginal value 0 for the agent il , i.e., for all g ∈ Φ⋆

i ,
vil(Φ

⋆
il
∪ {g}) = vil(Φ

⋆
il
) (else we can increase the Nash social welfare by re-allocating any

good that violates this to agent il).

For the EQ1 allocation that we would like to construct, for any agent i with vi(Φ⋆
i ) ⩾ l + 2,

we remove goods from Φ⋆
i until i’s value for the remaining bundle is l + 1. We allocate the

removed goods to agent il (that has marginal value 0 for these goods). Let ΦT be the resulting
allocation. Then clearly, if vi(Φ⋆

i ) ∈ {l, l + 1}, then vi(ΦT
i ) = vi(Φ⋆

i ), else vi(ΦT
i ) = l + 1.

Thus, allocation ΦT , our truncated NSW allocation, is EQ1.

Theorem 5.1. For any p ∈ R ∪ {−∞} and binary submodular valuations, the p-mean welfare

of the truncated allocation ΦT
is at least that of any other EQ1 allocation.

Proof. Let n1 be the number of agents that have value l in allocation ΦT , and n2 be the number
of agents with value l + 1. Clearly, n = n1 + n2. Consider any other allocation C. We will
show that the following statement is true: either (i) there exists an agent i with vi(Ci) ⩽ l− 1,
or (ii) if all agents have value vi(Ci) ⩾ l, then at most n2 agents have value⩾ l + 1 (and hence
at least n1 agents have value ⩽ l).

Assuming the statement is true, if C is an EQ1 allocation, either (i) every agent has value ⩽ l,
or (ii) at most n2 agents have value l + 1, and at least n1 agents have value ⩽ l. It follows that
allocation ΦT maximizes any symmetric non-decreasing function of agent valuations in the
set of EQ1 allocations, and hence ΦT maximizes the p-mean welfare among all EQ1
allocations for all p ∈ R. Since the minimum agent valuation in ΦT is the same as in Φ⋆,
which by Proposition 5.12 also maximizes the egalitarian welfare, allocation ΦT maximizes
the p-mean welfare for p = −∞ as well.

Lastly, to prove the statement, by the truncation procedure that yields allocation ΦT , the
number of agents |{i : vi(Φ⋆

i ) ⩾ l + 1}| that have value at least l + 1 in allocation Φ⋆ is also
n2. Further, by Proposition 5.12, Φ⋆ is also a leximin allocation, and hence no allocation in
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which every agent has value at least l, can have more than n2 agents with value at least l + 1.
The statement follows.

5.4 Lower Bounds on the PoE for Binary Additive
Valuations

Theorem 5.2 (PoE lower bounds). Let s := r − 1. The price of equity for binary additive

valuations is at least:

1. s, for p = 1,

2.
p
e s, for p ∈ (0, 1),

3.
s

e ln s , for p = 0,

4. 21/ps1/(1−p)
, for p < 0.

Note that as p→ −∞, 21/ps1/(1−p) → 1.

Proof. All our lower bounds are based on varying parameters in a single instance. The
parameters are r, the number of agent types, and W, the normalization constant for the
agents. Given r, W, the instance has m = rW goods, divided into r groups of W goods each.
The groups are M1, M2, . . ., Mr. There are W + 1 agents of the first agent type, and 1 agent
each of the remaining r − 1 types (thus, n = W + r). Agents of type t have value 1 for the
goods in group Mt, and value 0 for all other goods. The instance is thus disjoint; no good has
positive value for agents of two different types.

We note the following properties of our lower-bound instance:

1. For any p ⩽ 1, an optimal p-mean welfare allocation has value 1 for W agents of the first
type, and value W for each of the remaining r− 1 agents.

2. For any p ⩽ 1, the EQ1 allocation with maximum p-mean welfare gives value 1 to all
agents except for one agent of the first type (since there are W + 1 agents of the first
type, and only W goods for which they have positive value).

We use Λp to denote the PoE for this instance. Then Λp is exactly
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Λp =

(
1

W+r−1 (W × 1p + (r− 1)×Wp)
1

W+r−1 (W × 1p + (r− 1)× 1p)

)1/p

=

(
W + s×Wp

W + s

)1/p
.

Note that although there areW + r agents, in any allocation one agent must have value 0, hence
the p-mean average is taken over W + r− 1 agents. For each of the cases in the theorem, we
will now show how to choose W, s to obtain the bound claimed.

For p = 1, choose W = s2. Then

Λp ⩾
W + sW
W + s

=
s2 + s3

s2 + s
= s ,

giving the required bound.

For p ∈ (0, 1), choose W = ps. Then

Λp ⩾
(

W + s×Wp

W + s

)1/p

=

(
ps + s× (ps)p

ps + s

)1/p

=

(
p + (ps)p

p + 1

)1/p

⩾ ps(p + 1)−1/p ⩾ ps/e , since 1 + x ⩽ ex .

For p = 0, the p-mean welfare is the Nash social welfare. Note that in the EQ1 allocation, each
of W + s agents has value 1, hence the NSW is 1. In the optimal Nash social welfare allocation,
W agents have value 1, and s agents have value W, hence the NSW is Ws/W+s, which is also
the PoE for this instance. Now choose W = s/ ln s. Then

Λp ⩾ exp
s ln W
s + W

= exp
s(ln s− ln ln s)

s + s/ ln s
= exp

ln s− ln ln s
1 + 1/ ln s

⩾ exp
ln s− ln ln s

1 + 1/(ln s− ln ln s− 1)

= exp (ln s− ln ln s− 1) =
s

e ln s
.
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Lastly, for p < 0, choose W so that W = sWp, or W = s1/(1−p). Then

Λp =

(
W + s×Wp

W + s

)1/p

=

(
2W

W + s

)1/p

= 21/p
(

Wp

1 + Wp

)1/p

⩾ 21/ps1/(1−p) ,

where the last inequality is because p < 0.

5.5 Upper Bounds on the PoE for Binary Additive
Valuations

We first consider the case of utilitarian welfare, and then present our results for p < 1.

5.5.1 Upper bounds on the PoE for p=1

We assume that each good has value 1 for at least one agent, else the good can be removed
without consequence. Given an instance with binary additive valuations for the agents, for an
agent i, we overload notation and let vi := (vi(g))g∈M denote the vector of values for the
individual goods. Define V to be the matrix whose ith row is given by vi.

We say that an instance has rank k if the matrix V has rank k (equivalently, there are k linearly
independent valuation vectors among the agents). Note that the rank is a lower bound on both
the number of agent types, as well as the number of good types. Finally, since the rank is k,
we assume the agents are ordered so that the vectors v1, . . ., vk are linearly independent; the
corresponding agents are called basis agents.

Theorem5.3 (Utilitarian PoEupper bound). Under binary additive valuations and utilitarian
welfare as the objective, the price of equity is at most the rank of the instance.

Proof. Let k denote the rank of the instance, and consider allocation ΦT that maximizes the
utilitarian welfare among all EQ1 allocations. Recall that a good g is wasted if it is assigned
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to agent i such that vi(g) = 0. We will show that the number of wasted goods is at most
m(1− 1

k ). Thus, allocation Φ has social welfare at least m/k. Since the optimal social welfare
is at most m, this would be sufficient to prove the theorem.

Since allocation Φ is EQ1, there exists a utility level ℓ such that for each agent i, vi(Φi) ∈
{ℓ, ℓ+ 1}. We say an agent i is poor if vi(Φi) = ℓ, else agent i is rich. If vi(Φi) = ℓ for all
agents, then all agents are poor.

Suppose for a contradiction that strictly more than m(1− 1
k ) goods are wasted. Consider a

wasted good g and a poor agent i. It must be true that vi(g) = 0, else we could assign g to
i and increase the utilitarian welfare while maintaining EQ1. Hence if agent i is poor, then
vi(g) = 0 for each wasted good g. Hence, vi(g) = 1 for strictly less than m/k goods. Then
due to normalization, every agent has value 1 for strictly less than m/k goods. In particular,
the k basis agents have value 1 for strictly less than m/k goods each. Thus, there is a good —
say g∗ — for which each basis agent has value 0.

By definition, the value of each agent for g∗ is a linear combination of the values of the basis
agents for g∗. Since the basis agents have value 0 for g∗, it follows that every agent must have
value 0 for g∗, yielding the required contradiction.

It follows immediately from the theorem that the price of equity is also bounded by the number
of agent types.

Corollary 5.18. Under binary additive valuations and utilitarian welfare as the objective, the

price of equity is at most r, the number of agent types.

5.5.2 Upper bounds on the PoE for p < 1

From Proposition 5.12 and Theorem 5.1, to bound the PoE for any p < 1, it suffices to obtain an
upper bound on the ratio of the p-mean welfare for the two allocations Φ⋆ (which maximizes
the Nash welfare) and ΦT (the truncated allocation).

We will use various properties of the allocations Φ⋆ and ΦT in the following proofs. To state
these, define Tk as the set of agents of type k, and let Sk be the set of goods allocated to agents
in Tk by Φ⋆. That is, Sk := ∪i∈Tk Φ⋆

i . Let mk := |Sk|, and nk := |Tk|. Then note that for each
agent i ∈ Tk,

vi(Φ⋆
i ) = |Φ⋆

i | ∈
{⌊mk

nk

⌋
,
⌈

mk
nk

⌉}
.

155



5. Price of Eqitability

We reindex the types in increasing order of the averaged number of goods assigned by Φ⋆, so
that mi/ni ⩽ mi+1/ni+1. Now define

λ :=

⌈
m1
n1
⌉ if m1/n1 is fractional

1 + m1
n1

if m1/n1 is integral .

Thus λ is integral, λ > m1/n1, and λ ⩾ 2 (since the p-mean welfare is only taken over
agents with positive valuation, m1 ⩾ n1). Note that in Φ⋆, the smallest value of any agent is
⌊m1/n1⌋, and λ ⩽ 1 + ⌊m1/n1⌋. Hence agents with value at most λ in Φ⋆ will retain their
value in allocation ΦT , by definition of ΦT , while other agents will have their values truncated
to λ.

Now let ρ be the highest index so that λ ⩾ mρ/nρ. Thus,

λ ⩾
∑

ρ
i=1 mi

∑
ρ
i=1 ni

. (5.1)

As stated above, any agent of type k ⩽ ρ will retain their value, i.e., vi(ΦT
i ) = vi(Φ⋆

i ) for an
agent i of type k ⩽ ρ.

We claim that agents of the first ρ types must have at least W goods assigned to them in Φ⋆.

Claim 5.19. ∑
ρ
i=1 mi ⩾ W.

Proof. For a contradiction, let ∑
ρ
i=1 mi < W. Since λ > m1/n1, there is an agent i⋆ of type 1

with value vi(Φ⋆
i ) = λ− 1. Since ∑

ρ
i=1 mi < W, a good g that has value 1 for agents of type 1

is allocated in Φ⋆ to an agent i′ of type k > ρ. Since mk/nk > λ by definition of ρ, there is an
agent i′′ of type k with value vi′′(Φ⋆

i′′) ⩾ λ + 1. Since Φ⋆ maximizes the Nash social welfare,
any good h ∈ Φ⋆

i′′ has value 1 for both agents i′′ and i′. Then it is easy to see that transferring
any good from i′′ to i′, and then transferring good g from i′ to i⋆, will increase the Nash social
welfare. Since Φ⋆ maximizes the Nash social welfare, we have a contradiction.

Then from (5.1) and Claim 5.19, we obtain

λ ⩾ W/
ρ

∑
i=1

ni . (5.2)

We now obtain a general expression for bounding the PoE for all p ⩽ 1. We will then optimize
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this expression for different ranges of p, to obtain upper bounds on the PoE.

Lemma 5.20. The price of equity for p-mean welfare for instances with r types is at most

1. supα∈[0,1]
(
α + αpsp(1− α)1−p)1/p

for p < 0

2. supα∈[0,1]
( sα

1−α

)(1−α)
for p = 0,

3. supα∈[0,1]
(
α + 2pαpsp(1− α)1−p)1/p

for p ∈ (0, 1).

where as before, s = r− 1.

Proof. The p-mean welfare for the NSW optimal allocation Φ⋆ is

Wp(Φ⋆) =

(
1
n

n

∑
i=1

vi(Φ⋆
i )

p

)1/p

=

(
1
n

r

∑
k=1

∑
i∈Tk

vi(Φ⋆
i )

p

)1/p

,

where in the last expression, we partition the agents by their respective types.

We now consider the agent types k ⩽ ρ and k > ρ separately. For agents of type k > ρ, we
average out the values and replace their individual values by the average value mk/nk, and
use Corollary 5.10 to obtain

Wp(Φ⋆) ⩽

(
1
n

(
ρ

∑
k=1

∑
i∈Tk

vi(Φ⋆
i )

p +
r

∑
k=ρ+1

nk

(
mk
nk

)p
))1/p

.

The truncated allocation ΦT is an EQ1 allocation, and we will consider the ratio
Wp(Φ⋆)/Wp(B). This is clearly an upper bound on the price of equity. For allocation ΦT ,
recall that for agents i of type k ⩽ ρ, vi(ΦT

i ) = vi(Φ⋆
i ) since these are not truncated, while

for agents i of type k > ρ, vi(ΦT
i ) = λ. Hence the PoE is

Wp(Φ⋆)

Wp(B)
⩽

∑
ρ
k=1 ∑i∈Tk

vi(Φ⋆
i )

p + ∑r
k=ρ+1 nk

(
mk
nk

)p

∑
ρ
k=1 ∑i∈Tk

vi(Φ⋆
i )

p + λp ∑r
k=ρ+1 nk


1/p

. (5.3)

We will split the rest of the analysis into three cases: (1) p < 0, (2) p > 0, and (3) p = 0.

Case I: p < 0

Noting that the first term in the numerator and the denominator in (5.3) is the same, to simplify
this further, wewill use Proposition 5.21. The proposition is easily verified, andwe skip a formal
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proof.

Proposition 5.21. Consider non-negative real numbers x, y, a, b such that x ⩾ y, b ⩾ a, and
y + a > 0. Then for any fixed p < 0,

(
x + a
x + b

)1/p
⩽
(

y + a
y + b

)1/p
.

In (5.3) we then let x = ∑
ρ
k=1 ∑i∈Tk

vi(Φ⋆
i )

p, y = λp ∑
ρ
k=1 nk, a = ∑r

k=ρ+1 nk

(
mk
nk

)p
, and

ΦT = λp ∑r
k=ρ+1 nk. Then since x ⩾ y, b ⩾ a, and y + a > 0, from Proposition 5.21 we get

Wp(Φ⋆)

Wp(B)
⩽

λp ∑
ρ
k=1 nk + ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

=

∑
ρ
k=1 nk

n
+

∑r
k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.

We define α := ∑
ρ
k=1 nk/n, i.e., the ratio of number of types that retain their values in ΦT .

Replacing in the above expression, and using that λ ⩾ W/ ∑
ρ
i=1 ni from (5.2),

Wp(Φ⋆)

Wp(B)
⩽

α +
∑r

k=ρ+1 nk

(
mk
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

.

For each type k, mk ⩽ W, since for agents of each type at most W goods have positive value.
Hence

Wp(Φ⋆)

Wp(B)
⩽

α +
∑r

k=ρ+1 nk

(
W
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

=

α +
∑r

k=ρ+1 n1−p
k

n/
(
∑

ρ
i=1 ni

)p

1/p

=

(
α + αp

r

∑
k=ρ+1

(nk
n

)1−p
)1/p

.
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We now use Claim 5.11, choosing xk = nk/n, which gives us

Wp(Φ⋆)

Wp(B)
⩽

α + αp(r− ρ)

(
∑r

k=ρ+1 nk

n(r− ρ)

)1−p
1/p

=

α + αp(r− ρ)p

(
n−∑

ρ
k=1 nk

n

)1−p
1/p

=
(

α + αp(r− ρ)p(1− α)1−p
)1/p

.

Finally, since ρ ⩾ 1, r− ρ ⩽ s (where we defined s = r− 1), hence we get the claim.

Case II: p > 0

Noting that the first term in the numerator and the denominator in (5.3) is the same, to simplify
this further, wewill use Proposition 5.22. The proposition is easily verified, andwe skip a formal
proof.

Proposition 5.22. Consider non-negative real numbers x, y, a, b such that x ⩾ y, a ⩾ b and

y + b > 0. Then for any fixed p > 0,

(
x + a
x + b

)1/p
⩽
(

y + a
y + b

)1/p

Observe that for any agent i ∈ [n] such that vi(Φ∗i ) > 0, we have that λ ⩽ 2 · vi(Φ∗i ).
Indeed, if λ > 2 · vi(Φ∗i ), then from the discussion in Section 5.5.2, it follows that 2 · vi(Φ∗i ) <
1 + vi(Φ∗i ), which, for integral valuations, implies that vi(Φ∗i ) = 0.

In (5.3) we then let x = 2p ∑
ρ
k=1 ∑i∈Tk

vi(Φ⋆
i )

p, y = λp ∑
ρ
k=1 nk, a = 2p ∑r

k=ρ+1 nk

(
mk
nk

)p
,

and ΦT = 2pλp ∑r
k=ρ+1 nk. Then since x ⩾ y, a ⩾ b, and y + b > 0, from Proposition 5.22 we
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get∑
ρ
k=1 ∑i∈Tk

2pvi(Φ⋆
i )

p + 2p ∑r
k=ρ+1 nk

(
mk
nk

)p

∑
ρ
k=1 ∑i∈Tk

2pvi(Φ⋆
i )

p + 2pλp ∑r
k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

λp ∑
ρ
k=1 nk + 2pλp ∑r

k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

λp ∑
ρ
k=1 nk + λp ∑r

k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.

(5.4)

The LHS in (5.4) is equal to the RHS in (5.3). Thus, we get that

Wp(Φ⋆)

Wp(B)
⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

=

∑
ρ
k=1 nk

n
+

2p ∑r
k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.

We define α := ∑
ρ
k=1 nk/n, i.e., the ratio of number of types that retain their values in ΦT .

Replacing in the above expression, and using that λ ⩾ W/ ∑
ρ
i=1 ni from (5.2)

Wp(Φ⋆)

Wp(B)
⩽

α +
2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

For each type k, mk ⩽ W, since for agents of each type at most W goods have positive value.
Hence

Wp(Φ⋆)

Wp(B)
⩽

α +
2p ∑r

k=ρ+1 nk

(
W
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

=

α +
2p ∑r

k=ρ+1 n1−p
k

n/
(
∑

ρ
i=1 ni

)p

1/p

=

(
α + 2pαp

r

∑
k=ρ+1

(nk
n

)1−p
)1/p
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We now use Claim 5.11, choosing xk = nk/n, which gives us

Wp(Φ⋆)

Wp(B)
⩽

α + 2pαp(r− ρ)

(
∑r

k=ρ+1 nk

n(r− ρ)

)1−p
1/p

=

α + 2pαp(r− ρ)p

(
n−∑

ρ
k=1 nk

n

)1−p
1/p

=
(

α + 2pαp(r− ρ)p(1− α)1−p
)1/p

Finally, since ρ ⩾ 1, r− ρ ⩽ s (where we defined s = r− 1), hence we get the claim.

Case III: p = 0. In this case, the Nash welfare of an allocation is the geometric mean of the
values of the agents. By definition of the truncated allocation ΦT , agents of the first ρ types
have the same value in Φ∗ and ΦT , hence

W0(Φ⋆)

W0(B)
=

(
Πn

i=1vi(Φ∗i )
Πn

i=1vi(ΦT
i )

)1/n

=

(
Πρ

k=1Πi∈Tk vi(Φ∗i ) ·Πr
k=ρ+1Πi∈Tk vi(As∗i)

Πρ
k=1Πi∈Tk vi(ΦT

i ) ·Πr
k=ρ+1Πi∈Tk vi(ΦT

i )

)1/n

=

(
Πr

k=ρ+1Πi∈Tk vi(Φ∗i )

Πr
k=ρ+1Πi∈Tk vi(ΦT

i )

)1/n

In Φ∗, by Corollary 5.10, for a fixed type k, we can bound Πi∈Tk vi(Φ∗i ) from above by
(mk/nk)

nk ⩽ (W/nk)
nk . Further, each agent of type > ρ has vi(ΦT

i ) = λ, and from (5.2),
λ ≥W/ ∑

ρ
i=1 ni.

Let n′ := ∑
ρ
i=1 ni be the number of agents of the first ρ types. Then substituting these values,

we get
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W0(Φ⋆)

W0(B)
⩽

(
Πr

k=ρ+1(W/nk)
nk

Πr
k=ρ+1(W/n′)nk

)1/n

=

(
(n′)n−n′

Πr
k=ρ+1(nk)nk

)1/n

Noting that ∑r
k=ρ+1 nk = n− n′, and each nk ⩾ 1, the product Πr

k=ρ+1(nk)
nk is maximized

when the nk’s are equal, hence each nk = (n− n′)/(r− ρ). With this substitution,

W0(Φ⋆)

W0(B)
⩽
(

n′

(n− n′)/(r− ρ)

)(n−n′)/n

Recalling that α = n′/n, and further s = r− 1 ⩾ r− ρ,

W0(Φ⋆)

W0(B)
⩽
(

s α

(1− α)

)1−α

which is the required expression.

We are now ready to present our upper bounds.

Theorem 5.4 (PoE upper bounds). Let s := r − 1. The price of equity for binary additive

valuations is at most

1. 1 + s for p = 1

2. 1 + 2s for p ∈ (0, 1)

3.
s

ln(s/e) for p = 0 (i.e., the Nash social welfare)

4. s1/(1−p)2−1/p(−1/p)1/p(p−1)
for p ∈ (−1, 0)

5. 2s1/(1−p)
for p ⩽ −1
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Proof. Our starting point is Lemma 5.20. For p → 0, the PoE is at most supα∈[0,1](sα/(1−
α))(1−α). Let β := α/(1− α), then 1− α = 1/(1 + β), and hence the upper bound on the
PoE is supβ⩾0(sβ)1/(β+1).

Some calculus shows that the maximum value of this function is exp (W(s/e)), where W(·)
is the Lambert W function, which is the inverse of the function f (x) = xex. Further, W(x) ⩽
ln x − ln ln x + e ln ln x

(e−1) ln x for x ⩾ e. The last term e ln ln x
(e−1) ln x ⩽ 1 for x ⩾ e. Hence for s ⩾ e2,

we get that the PoE is bounded by

exp (W(s/e)) ⩽ exp (ln(s/e)− ln ln(s/e) + 1) =
s

ln(s/e)

giving the required bound on the PoE.

For p ∈ (0, 1), again from Lemma 5.20, the upper bound on the PoE can be written as

sup
α∈[0,1]

(α× 1 + (1− α)× (2sα/(1− α))p)1/p

Since p ∈ (0, 1), f (x) = x1/p is a convex function, and hence by Jensen’s inequality this is at
most

sup
α∈[0,1]

(
α× 11/p + (1− α)× (2sα/(1− α))

)
= sup

α∈[0,1]
(α + 2sα) = 1 + 2s

which is the upper bound claimed, for p ∈ (0, 1).

For p < 0, we separate the two cases α ⩾ 1/2 and α ⩽ 1/2. If α ⩾ 1/2, then the expression
from Lemma 5.20 evaluates to(

α + αpsp(1− α)1−p
)1/p

⩽ α1/p ⩽ (1/2)1/p . (5.5)

If α ⩽ 1/2, then (1− α) ⩾ 1/2, and hence,

(
α + αpsp(1− α)1−p

)1/p
⩽
(

α + αpsp2−1+p
)1/p

.
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Let z := α+ αp(2s)p/2 be the parenthesized expression; our goal is to minimize this (since the
exponent 1/p is negative, this will give us an upper bound on the PoE). Differentiating w.r.t. α

gives us

dz
dα

= 1 +
p
2
(2s)pαp−1 .

Since p is negative, this increases with α, and hence the derivative is a convex function with a
unique minima, obtained at

αΦ∗ =
(−2/p)1/(p−1)

(2s)p/(p−1)

or (αΦ∗2s)p = −2αΦ∗/p. Replacing this value gives us

(
α + αpsp(1− α)1−p

)1/p
⩽ α∗

1/p
(1− 1/p)1/p

For p < 0 , 1− 1/p ⩾ 1, and hence (1− 1/p)1/p ⩽ 1. Hence

(
α + αpsp(1− α)1−p

)1/p
⩽ α∗

1/p
= (2s)1/(1−p)(−2/p)1/p(p−1)

= s1/(1−p)2−1/p(−1/p)1/p(p−1) .

This is greater than 2−1/p, the expression we obtain for α ⩾ 1/2 in Equation (5.5), and hence
this is a bound on the PoE for p < 0.

Finally for p ⩽ −1, let us consider the coefficient of s1/(1−p) obtained previously, namely
2−1/p(−1/p)1/p(p−1). This is an increasing function of p, and hence the maximum value
obtained is 2, at p = −1. Hence for p ⩽ −1, the PoE is at most 2s1/(1−p).

5.6 PoE Bounds for Doubly Normalized Instances

So far, we have considered instances with binary additive normalized valuations, where each
agent values the same number W of goods. In this case, for the utilitarian welfare, we have
seen that the PoE can be as bad as r, the number of types of agents. In this section, we consider
instances with further structure. In doubly normalized instances, each good g is valued by the
same numberWc of agents. Thus, vi(M) = W for all i ∈ N, and additionally, ∑i∈N vi(g) = Wc

for every good g ∈ M. The valuation matrix V is thus both row and column normalized. Such
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5.6 PoE Bounds for Doubly Normalized Instances

instances are intuitively “balanced,” and we ask if this balance is reflected in the PoE for such
instances. This indeed turns out to be the case.

Theorem 5.5. For doubly normalized instances under binary additive valuations, the PoE for the

p-mean welfare is 1 for all p ⩽ 1.

For an undirected graph, the edge-incident matrix X has entry Xi,e = 1 if edge e is incident
on vertex i, and Xi,e = 0 otherwise. We will use the following well-known property of edge-
incidence matrices for bipartite graphs.

Proposition 5.23 (e.g., Schrijver, 1998). If G is a bipartite graph, then the edge-incidence matrix

of G is totally unimodular.

Proof of Theorem 5.5. Let V be the valuation matrix for a doubly normalized instance, where
each row sums to W and each column sums to Wc. Divide each entry by Wc. Let V f be the
resulting matrix. Then V f satisfies: (i) each entry is either 0 or 1/Wc, (ii) each column sums to
1, and (iii) each row sums to W/Wc. We will show that the matrix V f can be represented as the
convex combination of nonnegative integer matrices X1, . . ., Xt so that for any matrix Xk in
this decomposition, each column sums to 1 and each row sums to either ⌈W/Wc⌉ or ⌊W/Wc⌋.
Assuming such a decomposition, fix any such matrix Xk in this decomposition. Clearly, due
to (ii) and nonnegativity, each entry of Xk is either 1 or 0. Further if the entry Xk

i,g = 1, then
V f

i,g = 1/Wc since V f is a convex combination of the M-matrices, and hence Vi,g = 1,

Consider then the allocation Φ that assigns good g to agent i if Xk
i,g = 1. In this allocation,

following the properties of Xk, each good is assigned to an agent that has value 1 for it, and
each agent is assigned either ⌈W/Wc⌉ or ⌊W/Wc⌋ goods. The allocation is thus EQ1 and
maximizes the utilitarian welfare. Further by Proposition 5.15 this is also a leximin allocation,
and hence by Proposition 5.14 and Proposition 5.12 this maximizes the p-mean welfare for all
p ⩽ 1, proving the theorem.

It remains to show thatV can be decomposed as stated. To see this, consider a complete bipartite
graph G = (A ∪ B, E) with |A| = n and |B| = m. To each edge {i, g} with i ∈ A, g ∈ B, we
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associate a variable xig. Consider now the set of linear constraints:

∀i ∈ A, ∑g∈B xig ⩾ ⌊W/Wc⌋

∀i ∈ A, ∑g∈B xig ⩽ ⌈W/Wc⌉

∀g ∈ B, ∑i∈A xig = 1

∀i ∈ A, g ∈ B, xig ⩾ 0

Together, these linear constraints ask for a fractional set of edges that have degree 1 for each
vertex in ΦT and degree between ⌊W/Wc⌋ and ⌈W/Wc⌉ for each vertex in Φ.

Consider the polytope obtained by these inequalities. Taking xig = V f
ig satisfies these

constraints. Further, it can be seen that the constraint matrix is equal to the edge-incidence
matrix for the bipartite graph G (with the rows corresponding to vertices i ∈ A repeated, and
the identity matrix appended for nonnegativity of the variables). Hence, the constraint matrix
is totally unimodular by Proposition 5.23, and thus the extreme points of the polytope are
integral. Since V f is a point in the polytope, V f can be represented as the convex
combination of nonnegative integral matrices X1, . . ., Xt corresponding to the vertices of the
polytope, as required.

We make two remarks. Firstly, note that since each matrix Xk in the convex decomposition of
V f gives us an EQ1 allocation with maximum utilitarian welfare, the convex combination gives
us a randomized allocation that is ex ante EQ, and ex post EQ1 and welfare optimal. Secondly,
the doubly normalized constraint is sufficient, but not necessary, for the price of equity to be
1. Consider an instance with 3 agents {a1, a2, a3} and 4 goods {g1, g2, g3, g4} such that a1

values {g1, g2} while a2 and a3 both value {g3, g4}. This instance is not column normalized,
but admits an EQ1 allocation with optimal welfare.

We now turn to an alternate proof of Theorem 5.5, based on a so-called “eating argument” and
an extension of Hall’s theorem. We first state some results that we will use. Consider a bipartite
graph G with bipartition A and B. A set of edges T ⊆ E(G) is said to be a q-expansion from A
to B if every vertex of A is incident to exactly q edges in T and exactly q|A| vertices in B are
incident on T. A perfect matching, for instance, is a 1-expansion, and a star with q leaves is a
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q-expansion.

Lemma 5.24 (Cygan et al., 2015, Lemma 2.17). Let G be a bipartite graph with bipartition A
and B. There is a q-expansion from A to B if and only if |N(X)| ≥ q|X| for every X ⊆ A.

Furthermore, if there is no q-expansion from A to B, then a set X ⊆ A such that |N(X)| < q|X|
can be found in polynomial time.

A non-negative, square (m× m) matrix Y is said to be doubly stochastic if the sum of entries
in each row and each column is 1, that is, ∑i∈[m] Y[i][j] = 1 ∀ j ∈ [m] and ∑j∈[m] Y[i][j] = 1
∀ i ∈ [m]. A permutation matrix is a doubly stochastic matrix such that all the entries are either
0 or 1. The following result, known as the Birkhoff-von Neumann Theorem, states that a doubly
stochastic matrix can be represented as a convex combination of permutation matrices.

Theorem 5.25 (Birkhoff, 1946; von Neumann, 1953). Let Y be a doubly stochastic matrix.

Then, there exist positive weights w1, w2, . . . wk and permutation matrices P1, P2, . . . Pk such

that ∑i∈[k] wi = 1 and Y = ∑i∈[k] wiPi.

In other words, the convex hull of the set of all permutation matrices is the set of doubly-stochastic

matrices.

We are now ready to prove that doubly normalized instances have PoE 1.

Proof. (of Theorem 5.5) Let I = ⟨N, M,V⟩ be a doubly normalized instance. Let G = (N, M)

be the corresponding (W, Wc)-regular bipartite graph with agents and goods as bi-partitions
and (i, g) ∈ E(G) if and only if agent i values the good g. Note that the number of edges in
G is nW, as exactly W edges are incident on each agent. Likewise, as exactly Wc edges are
incident on each of the m goods, therefore, |E(G)| = nW = mWc.

We first consider the case when n/m = W/Wc = p for some integer p. That is, the number of
agents is an integer multiple of the number of goods, and show the existence of a non-wasteful
EQ allocation that allocates a utility of p to every agent.

Consider any subset S ⊆ N. The number of edges from S to its neighborhood N(S) is exactly
W|S|. The number of edges incident on N(S) in G is exactly Wc|N(S)|. Then Wc|N(S)| ⩾
W|S|, and hence |N(S)| ⩾ p|S|.

By Lemma 5.24, G must have a p-expansion, say T, from N to M. Now consider the allocation
Φ that allocates along the edges of T. Precisely, if (i, g) ∈ T, then good g is allocated to
the agent i under Φ. Then by definition of p-expansion, Φ is an indeed an EQ allocation as
it allocates exactly p goods to every agent. Since Φ is non-wasteful, it achieves the optimal
utilitarian welfare m.
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Now suppose W is not an integer multiple of Wc. We propose the following version of the
probabilistic serial algorithm that constructs a non-wasteful EQ1 allocation.8

Let W = pWc + q for some constant p and q ̸= 0. We create p + 1 copies of every agent, say
{a1

i , a2
i , . . . ap+1

i }. We also add t = (p + 1) n−m many dummy goods to the instance which
are valued at zero by everyone. Note that the new instance has an equal number of agents and
goods, precisely (p + 1)n. Now each good is represented as food, and the agent copies start
eating away all the available goods that they like, all at once. By the structure of the instance,
exactly Wc agent copies eat the same W goods at the same time, and the same speed – at the
rate of one good per unit time. In particular, at the tth timestep, 1/(W−(t−1)Wc) fraction of the
remaining good is consumed by the tth copy of the agent. This gives us a square matrix Y with
(p + 1) n columns as goods and (p + 1) n rows as copies of the agents. The entry Y[aj

i ][g]
corresponds to the fraction of good g eaten by jth copy of agent i at timestep j.

In particular, in the first timestep, W goods are consumed by all the first copies (a1
i ) of Wc

agents (who like them) simultaneously, each of whom eats 1/W fraction of W goods each. At
second timestep, (1−Wc/W) fraction of these r goods remain, out of which 1/(W−Wc) fraction
is consumed by the second copy of all the Wc agents and so on. That is, assuming Ng be the
set of Wc agents who like g, we have:

∑
i∈Ng

vi(Φ1
i ) =

Wc

W

∑
i∈Ng

vi(Φ2
i ) = Wc

(
1

W −Wc

(
1− Wc

W

))
=

Wc

W

∑
i∈Ng

vi(Φ3
i ) = Wc

(
1

W − 2Wc

(
1− 2Wc

W

))
=

Wc

W

...

∑
i∈Ng

vi(Φ
p
i ) = Wc

(
1

W − (p− 1)Wc

(
1− (p− 1)Wc

W

))
=

Wc

W

8The probabilistic serial algorithm was proposed by Bogomolnaia and Moulin (2001) in the context of the
assignment problem where the number of goods and agents is the same. Subsequently, Aziz et al. (2023a) used this
algorithm (in combinationwith the Birkhoff-vonNeumann decomposition) to study fair allocationwith an unequal
number of goods and agents. The work of Aziz et al. (2023a) focuses on computing a randomized allocation with
desirable ex-ante and ex-post envy-freeness guarantees. By contrast, our work uses the technique of Aziz et al.
(2023a) to achieve an equitability guarantee.
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For the last agent copy ap+1
i , the fraction of each of the W goods that remain is 1− pWc/W =

(W−pWc)/W = q/W. This is divided equally among the last copy of all the Wc agents, each of
them getting q/WWc fraction.

Also, ap+1
i eats q/WWc of W goods, thereby summing to q/Wc. Now q/Wc < 1, and we have t

dummy goods remaining to be consumed. Therefore, at this timestep, ap+1
i for i ∈ [n], start

eating
(

1−q/Wc
t

)
fraction of each of the dummy goods, thereby consuming one unit of good, in

aggregate.

We now claim that Y is a doubly stochastic matrix. To this end, we first show that the fractions
in every column ofY adds up to 1. For a column c corresponding to an original good g, summing
over the p + 1 copies of s agents who like g, we get:

p+1

∑
j=1

∑
i∈Ng

vi(Φ
j
i) =

p

∑
j=1

∑
i∈Ng

vi(Φ
j
i) + vi(ap+1

i ) = p
(

Wc

W

)
+ Wc

(
q

WWc

)
=

pWc + q
W

= 1

Now for a column c corresponding to a dummy good g, each of the agent copies eat
(

1−q/Wc
t

)
fraction of the dummy goods. Since there are n such agents, the sum of the fractions in column
c is

n
(

1− q/Wc

t

)
=

n(Wc − q)
Wc(p + 1)n−mWc

=
n(Wc − q)

npWc + nWc − nW
=

Wc − q
Wc − q

= 1

Also, it is easy to see that rows in Y add up to 1. For j ∈ [1, p], aj
i starts eating at jth timestep,

when (1− (j−1)Wc/W) fraction of any good g remains. She eats 1/(W−(j−1)Wc) fraction of W
such goods, that adds to W( 1

W−(j−1)Wc
)(1− (j−1)Wc

W ) = 1. As for the row corresponding to

ap+1
i , it adds up to 1 by construction.

This establishes the following claim.

Claim 5.26. Y is a doubly stochastic matrix.

By Theorem 5.25, Y can be represented as a convex combination of permutation matrices. An
illustration of this is shown in Example 5.28. For the final allocation, one of these permutation
matrices, say P, is selected with probability equal to the corresponding weight. A good is
allocated to aj

i if and only if P[aj
i ][g] = 1. Finally, all the goods allocated to the copies of agent

i are said to be allocated to agent i.
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We now claim that the resulting allocation is EQ1 with optimal utilitarian welfare.

Claim 5.27. Every integral allocation returned by the above algorithm satisfies EQ1.

Proof. (of Claim 5.27) Since the matrices in the decomposition are permutation matrices and
the number of goods is equal to the number of agents, each of the agent-copies gets exactly one
good. This implies that all the agents end up with an equal number of goods, precisely, p + 1.
Since the dummy goods are consumed by only the last agent copy, therefore, every agent gets
at most one dummy good in the final allocation. Also, all the original goods are allocated non-
wastefully, as except for the dummy goods, agents eat only the goods that they like. Therefore,
whoever ends up with a dummy good has a utility of p and the remaining agents have a utility
of p + 1, resulting in an EQ1 allocation with optimal utilitarian welfare.

Therefore the price of equity for doubly normalized instances is 1. This finishes the proof of
Theorem 5.5.

Example 5.28. Consider an instance with 4 agents, {a1, . . . a4} and 6 goods, {1, 2, . . . 6}. We set

W = 3 and Wc = 2. a1 likes {1, 2, 3}, a2 likes {4, 5, 6}, a3 likes {2, 3, 4} and a4 likes {1, 5, 6}.
Here, since p = 1, we create p + 1 = 2 copies of every agent, and introduce (p + 1)n− m =

2 · 4− 6 = 2 dummy goods. The corresponding matrix Y and its decomposition is as follows.



1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4

1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4

1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4

1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4


= 0.16


1

1
1

1
1

1
1

1

+ 0.08


1

1
1

1
1

1
1

1



+0.08


1

1
1

1
1

1
1

1

+ 0.08


1

1
1

1
1

1
1

1

+ 0.16


1

1
1

1
1

1
1

1



+0.16


1

1
1

1
1

1
1

1

+ 0.08


1

1
1

1
1

1
1

1

+ 0.16


1

1
1

1
1

1
1

1
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5.7 PoE Bounds for Binary Submodular Valuations

We now consider the more general case of binary submodular valuations. Here we focus on the
utilitarian welfare, and show that our results for binary additive valuations that bound the PoE
by the number of types of agents do not extend to binary submodular valuations. We first show
that from prior work (see Proposition 5.29 below), it follows that if the agents have identical
valuations, then PoE is 1 for the p-mean welfare objective for all p ⩽ 1.

Proposition 5.6. When all agents have identical binary submodular valuations, the PoE is 1 for

p-mean welfare measure for all p ⩽ 1.

As earlier, an allocation Φ = (Φ1, . . . , Φn) is clean if for all agents i, vi(Φi) = |Ai|, that is,
no good is wastefully allocated. We note that, given any allocation Φ, we can obtain a clean
(possibly partial) allocation Φ̂ so that vi(Φi) = vi(Φ̂i) for all agents i by repeatedly removing
wasted items from the allocation Φ. We will use the following result due to Benabbou et al.
(2021).

Proposition 5.29 (Benabbou et al., 2021, Corollary 3.8). For binary submodular valuations, any

clean, utilitarian optimal (partial) allocation Φ that minimizes ∑i vi(Φi)
2
among all utilitarian

optimal allocations is EF1.

Proof of Proposition 5.6. Let Φ⋆ be a Nash welfare maximizing allocation for the given instance.
We will show that under identical binary submodular valuations, Φ∗ can be transformed into
an EQ1 allocation without any change in the Nash welfare objective, thus implying that PoE
is 1 for Nash welfare. Furthermore, from Proposition 5.14, we know that any allocation that
maximizes Nash welfare also simultaneously maximizes p-mean welfare for all p ⩽ 1. This
would imply that PoE is 1 for p-mean welfare objective for all p ⩽ 1.

First, we will transform Φ∗ into a clean partial allocation via the following procedure: For each
agent i with vi(Φ∗i ) > |Φ∗i |, there must be a wasted good in Φ∗i ; we simply remove such
wasted goods until we get a clean partial allocation Φ̂. Next, we will add back the removed
goods arbitrarily to obtain a complete allocation Φ (in particular, adding back the removed
goods may get back the original allocation Φ∗).

Note that Φ̂ is a partial allocation with vi(Φ̂i) = vi(Φ∗i ) for each agent i; in other words, Φ∗

and Φ̂ have the same p-mean welfare for all p ⩽ 1. We know from Proposition 5.14 that, for
all p ⩽ 1, Φ∗ maximizes the p-mean welfare. The same holds true for Φ̂.

By adding the removed goods back to Φ̂, the utility of any agent cannot decrease; that is, for
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every agent i, vi(Φi) = vi(Φ̂i). This means that Φ is a complete allocation that simultaneously
maximizes the p-mean welfare for all p ⩽ 1.

By Proposition 5.12, allocation Φ minimizes the strictly convex function ∑i vi(Φi)
2 among all

utilitarian allocations, and the same holds for the partial allocation Φ̂. Then, by Proposition 5.29,
we get that Φ̂ is EF1. By the identical valuations assumption, Φ̂ is also EQ1.

In going from Φ̂ to Φ, each good that is added back has zero marginal value for the agent it
is assigned to under Φ. Thus, the allocation Φ is also EQ1, which readily implies that for all
p ⩽ 1, the PoE for p-mean welfare is 1, as desired.

The bound in Proposition 5.6 is, in a certain sense, the best that can be obtained. We will now
show that with more than one type of agent under binary submodular valuations, the PoE is at
least n/6 for utilitarian welfare. Hence we cannot obtain bounds on the PoE that depend on
the number of agent types for all p ⩽ 1, as we did for binary additive valuations.

Theorem 5.7. The PoE for utilitarian welfare when agents have binary submodular valuations is

at least n/6 (where n is the number of agents), even when there are just two types of agents.

Proof. In our example for the lower bound, we represent goods as vectors (i.e., elements of a
linear matroid). Then the value of an agent for a bundle is just the number of linearly
independent vectors in the bundle. Fix k ∈ N. Our example will have 2k agents and k2 + k
goods.

Goods: There are k(k + 1) goods, consisting of k + 1 groups of k goods each. The groups are
G1, G2, . . ., Gk+1.

Agents: There are 2k agents, with k agents of type 1 and k agents of type 2. Agents of type 1
see goods in G1 as the standard basis vectors for Rk, and goods in Gj for j ̸= 1 as zero vectors.
Thus, for an agent i of type 1, vi(G1) = vi(M) = k, and vi(Gj) = 0 for j > 1.

Agents of type 2 see the goods in each group Gi as the standard basis vectors for Rk, and hence
for an agent i of type 2, vi(Gj) = vi(M) = k, for all j ∈ [k + 1]. Thus, the valuations are
normalized.

In an EQ1 allocation, each agent of type 1 has value at most 1, and hence the social welfare is
at most 3k. In the optimal allocation, each agent of type 1 gets a single vector from G1. Each
agent of group 2 gets assigned an entire group Gj of vectors, and hence has value k. The optimal
social welfare is thus k + k2, and hence the PoE is at least k/3, or n/6, where n is the number
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of agents.

Note that for the example in the proof of Theorem 5.7, for any p ∈ (0, 1], the PoE is

Λp =

(
1
2k (k× 1 + k× kp)
1
2k (k× 1 + k× 2p)

)1/p

=

(
1 + kp

1 + 2p

)1/p
⩾

k
31/p ,

and hence the PoE depends on the number of agents, even with two types. Similarly, for the
Nash social welfare, one obtains the PoE as

√
k/2 =

√
n/4.

For p < 0, for this example, the PoE is a constant that depends on p (for example, for p = −1,
the PoE for this example is 1.5). It is possible that for p < 0 the PoE may depend on the agent
types, rather than number of agents. We leave this as an open question.

Despite this, we show that 2n is an upper bound on the PoE for all p ⩽ 1. For an allocation
A = (A1, . . . , An) of the goods, we say good g is valuable for i if vi(Φi ∪ g) > vi(Φi) (and i
values g in this case).

Theorem 5.8. For binary submodular valuations and any p ⩽ 1, the PoE for p-mean welfare is

at most 2n.

Proof. As before, let Φ⋆ be an allocation with optimal Nash welfare. If Φ⋆ is an EQ1 allocation,
we are done, since from Proposition 5.14, Φ⋆ simultaneously maximizes the p-mean welfare
for all p ⩽ 1. Otherwise, we construct the truncated allocation ΦT as described in Section 5.3.
We will show that for every agent i with non-zero value in ΦT , vi(ΦT

i ) ⩾ W/(2n), where W
is the normalization constant. It follows that the PoE is bounded by 2n for all p ⩽ 1.

Consider the allocation Φ⋆. Let il be aminimumpositive value agent in Φ⋆. Note that Φ∗il = Bil .
Let ν be the value of agent il under Φ∗. Since vil(M) = W, there are W− ν goods that il values
that are allocated to other agents. Further, any agent i ̸= il is allocated at most ν+ 1 goods that
il values, since otherwise, we can transfer a good that il values from i to il and increase the Nash
social welfare of allocation Φ∗. Hence, W − ν ⩽ (n− 1)(ν + 1), or W ⩽ nν + n− 1 ⩽ 2nν

for ν ⩾ 1. Thus for any agent i, vi(ΦT
i ) ⩾ vi(Bil) = ν ⩾ W/(2n), as required.

5.8 Visualizing the PoE Bounds

To help in visualising our upper and lower bounds on the PoE (as presented in Table 5.1), we
also present the PoE bounds graphically below (see Figures 5.1 to 5.4). Each graph shows the
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lower and upper bounds obtained as a function of r, the number of agent types. In each figure,
the upper line in blue represents the upper bound, and the lower line in orange represents the
lower bound. We provide the plots for four values of p, namely p = 1 (the utilitarian welfare),
p = 0 (the Nash social welfare), p = −1, and p = −10 (recall that for p→ −∞, the egalitarian
welfare, the PoE is 1).

Figure 5.1: PoE as a function of
r for p = 1

Figure 5.2: PoE as a function of
r for p = 0

Figure 5.3: PoE as a function of
r for p = −1

Figure 5.4: PoE as a function of
r for p = −10

5.9 Some Concluding Remarks on Chores

Our focus in the paper has been on goods, where agents have non-negative marginal utility
for all items. We briefly remark on the case of bads or chores, where all marginal utilities are
non-positive. Consider any instance with binary additive valuations, i.e., the value of each item
is either 0 or−1. It is not hard to see that in these instances, there is always a utilitarian optimal
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EQ1 allocation: if chore c has value 0 for an agent i, assign c to i. The remaining chores have
value −1 for all agents, and can be assigned using the round robin procedure. This allocation
is clearly EQ1 and also achieves the best possible utilitarian welfare.

For more general additive instances with chores, we now show that the PoE is unbounded, even
in very simple cases.9 To this end, consider the following example involving 2n items and n+ 1
agents. The first n agents mildly dislike the first n chores and severely dislike the last n, while
it is the opposite for the (n + 1)th agent, who strongly dislikes the first n items and mildly
dislikes the last n.

c1, · · · , cn cn+1, · · · , c2n

a1, . . ., an −ϵ −1

an+1 −1 −ϵ

In this example, the maximum utility is −2nϵ: assign the first n chores to the first agent and
the last n chores to the last agent. On the other hand, in any EQ1 allocation, the last agent can
get at most 2 chores, and hence some agent gets a chore that they value at −1. The PoE is thus
at least 1/(2nϵ), which can be made arbitrarily large by choosing ϵ appropriately. Note that
this instance has two item types, two agent types, and only two distinct entries in the valuation
matrix. Relaxing any of these conditions implies identical valuations, where the PoE is 1; so, in
some sense, this is a “minimally complex” example that already exhibits unbounded PoE. There
is thus a sharp change in the PoE between instances where the values are in {0,−1} and those
where the values are in {−ϵ,−1}. While the PoE is unbounded as ϵ approaches 0, it “snaps
back” to 1 at ϵ = 0.

To conclude, we obtain nearly tight bounds on the price of equity in terms of agent types for the
p-mean welfare spectrum. This captures, as special cases, the notions of utilitarian, egalitarian,
and Nash welfare. Our bounds are in terms of agent types (r) rather than the number of agents.
Overall, our results provide a fine-grained perspective on the behavior of the price of equity
parameterized by p and r.

In future work, it would be interesting to extend the insights that we obtain in this work beyond

9For chores, we adopt the natural definition of PoE: the ratio of the utilitarian welfare of the best EQ1 allocation,
to the maximum utilitarian welfare obtainable in any allocation. Note that if the denominator is 0, then so is the
numerator (and this can be identified in polynomial time).
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the domain of binary valuations. We also propose obtaining bounds on the PoE parameterized
by other structural parameters, such as the number of item types. We note that for additive
valuations, the rank of the valuation matrix is a lower bound on the number of item types, and
hence Theorem 5.3 bounds the PoE in this case by the number of item types as well.
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Chapter 6

Equitable and Efficient Allocations for Mixtures

of Goods and Bads

“Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth Symphony

beautiful. If you don’t see why, someone can’t tell you. I know numbers are beautiful.

If they aren’t beautiful, nothing is.”

- Paul Erdos, Quoted in The Man Who Loved Only Numbers by Paul Hoffman

6.1 Introduction

Consider fairly allocating courses to students where some of them enjoy courses with
mathematical rigor while others find them daunting. Consider a fair assignment of research
papers among the reviewers who may have subjective opinions about the papers depending
on the domain. Further, consider a group of friends narrowing down upon a common activity
to pursue. Some of them may find window shopping enjoyable while it may be a chore for
others. Likewise, a host of real-world problems have this flavor where a single item/event
could be a ‘good’ for one agent (valued positively) but a ‘chore’ for another (valued
negatively). All these scenarios can be modeled as allocation problems of indivisible items
among rational and opinionated agents and in this chapter, we study the computational
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landscape of finding fair (equitable) allocations for the mixtures of goods and chores.

Envy-freeness has been a prominent and well-studied criterion and has also been looked at for
the mixture of goods and chores (see Aziz et al. (2022); Aleksandrov andWalsh (2020); Aziz and
Rey (2021); Bérczi et al. (2020)). Equitability in the context of this mixed setting is relatively
less studied. In this work, we try to reduce this gap and present a fair and comprehensive
understanding of equitability for mixed items.

The choice of fairness notion also depends upon the context and both these notions have their
own mutually exclusive desirable properties. As far as practicality, empirical relevance, and
perceived fairness are considered, experiments suggest that equitability (or inequality aversion)
is a preferable criterion over envy-freeness (Herreiner and Puppe, 2009, 2010; Gal et al., 2016).

Gourvès et al. (2014) showed that when all items are goods (additive valuations), an EQX
(hence, EQ1) allocation always exists and is efficiently computable. Freeman et al. (2019) and
Freeman et al. (2020) studied EQ1 in conjunction with Pareto optimality and envy-freeness
when all items are goods and chores respectively. Recently, Barman et al. (2024a) considered
EQX for the mixed instances with both goods and chores and showed that computing an EQX
allocation (even without any efficiency requirement) in the mixed setting is weakly NP-Hard
even for two agents and strongly NP-hard for more agents. They showed that some restricted
scenarios are tractable, such as when the items are objective goods and chores and the
number of agents is two. The hardness for EQX motivates to look at the weaker requirement
of EQ1 and in this context, we answer both the existential and computational questions for
finding approximately equitable allocations in the setting of mixed items, standalone and
coupled with efficiency guarantees as well.

Our Contributions

Our work provide a deep dive into the existence and computational boundaries of EQ1
allocations for mixtures of goods and chores with and without economic efficiency notions
(e.g. Pareto optimality and utilitarian/egalitarian social welfare). We first show that unlike the
goods-only and chores-only settings, an EQ1 allocation may not exist for mixed items
(Example 6.1). Moreover, deciding the existence of an EQ1 allocation is weakly NP-Hard
(Theorem 6.2).

Upon further scrutiny, we observe that the non-existence of EQ1 is primarily due to the sharp
contrast between how agents subjectively evaluate the entire set of items. This observation
motivates the study of normalized valuations where the value of the entire set of items is
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constant (positive, negative, or zero) for all agents. Normalization is a common assumption in
the cake-cutting literature1, and has been studied in the context of online fair division
(Beynier et al., 2019b) or studying the price of fairness to derive positive results (Bhaskar
et al., 2023). Lange et al. (2020) showed that normalization is crucial for tractability. Table 6.1
provides a summary of our algorithmic results. We highlight the following results:

EQ1 for objective valuations.

For objective valuations, but not necessarily normalized, we show that an EQ1 allocation
always exists and can be computed efficiently (Theorem 6.3). Our analysis gives rise to a
lemma (Lemma 6.5) which enables the design of new algorithms along with efficiency. It
states that if there exists a partial EQ1 allocation of subjective items, it can be completed by
allocating the remaining objective items in an EQ1 manner.

EQ1 for normalized valuations.

Under normalized valuations, when instances are trivalued in the form of {−w, 0, w}, we
show that an EQ1 allocation always exists and can be computed in polynomial time for any
number of agents (Theorem 6.9). These instances (i.e. {−w, 0, w} valuations) generalize both
binary and bivalued preferences and capture realistic scenarios involving
approvals/dis-approvals/neutrality. Our algorithmic techniques involve carefully transferring
items among ‘rich’ and ‘poor’ agents.

Furthermore, we show when valuations are in addition type-normalized (i.e. the sum of chores
and the sum of goods are independently constant), an EQ1 allocation can be computed
efficiently for two agents (Theorem 6.10). Along the way, we highlight several challenges in
achieving EQ1 for any normalized valuation.

EQ1+PO for normalized valuations.

In Section 6.4, we show an EQ1+PO allocation may fail to exist even for {−1, 1} normalized
valuations. The corresponding computational problem remains intractable even for the special
class of type-normalized valuations (Theorem 6.16). Nonetheless, we develop a polynomial-
time algorithm for {−w, 0, w} normalized valuations that computes an EQ1+PO allocation,
when one exists (Theorem 6.18). We note here that the presence of zeros has been a source of

1In fair cake-cutting, the common assumption is that each agent values the entire cake as 1 (or −1 for burnt
cakes)
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computational challenge for EQ1+PO allocations even in the only goods setting Freeman et al.
(2019); Garg and Murhekar (2024). Our algorithmic technique involves reducing the instance to
a partial instance such that every item is non-negatively valued by at least one agent, computing
a Nash optimal solution, and invoking Lemma 6.5 to assign any remaining chore.

In Section 6.6, we look into the compatibility of EQ with EF and show that every EQ+PO
allocation is EF for {1, 0,−1} valuations (Proposition 6.21). Also, for such valuations, an
EF1+EQ1+PO allocation can be computed in polynomial time, whenever it exists
(Corollary 6.24). On the other hand, for general type-normalized valuations, deciding the
existence of EF (or EF1) + EQ1 + PO is strongly NP-Hard (Corollary 6.23), while deciding the
existence of EF (or EF1)+EQ1 allocations is weakly NP-Hard (Corollary 6.22).

EQX+Welfare.

In Section 6.5, we develop a pseudo-polynomial time algorithms (for a fixed number of agents)
for finding EQX allocations that maximize utilitarian or egalitarian welfare (Theorem 6.20).
Note that maximizing welfare along with approximate equitability is already known to be
weakly NP-Hard, even when all the items are goods Sun et al. (2023b). Table 6.1 gives a partial
summary of our results.

Additional Related Work

Equitability as a fairness notion was first studied in the context of divisible items, where it is
possible to assign a fraction of an item to any agent (Dubins and Spanier, 1961). It is known
that equitable allocations always exist for divisible items (Cechlárová et al., 2013; Chèze,
2017). There is a computational limitation to finding such an allocation Procaccia and Wang
(2017) but approximate equitable allocations admit efficient algorithms (Cechlárová and
Pillárová, 2012a,b). In the setting of indivisible items, Freeman et al. (2019, 2020) studied
equitability along with efficiency guarantees but in the context of only goods and only chores.
Perhaps closest to our work is that of Barman et al. (2024a), who study EQX allocations for
mixtures. Recently, the price of equitability in terms of welfare loss has also been looked at
(Caragiannis et al., 2012; Aumann and Dombb, 2015; Sun et al., 2023b; Bhaskar et al., 2023).

The mixtures and chores-only setting differs substantially from the goods counterpart. Many
of the existing algorithmic techniques from the latter fail to work in the former (Aziz et al.,
2022; Bhaskar et al., 2020; Bogomolnaia et al., 2017) and hence, the mixed setting demands
independent analysis and scrutiny. For the goods-only case, maximizing Nash welfare gives
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Non-Normalized Normalized Type-Normalized
Objective

Items

EQ1

× (6.1)

Pseudo-Poly (6.20)

(weakly) NP-Complete (6.2)

✓, {−w, 0, w}, P (6.9)

Pseudo-Poly (6.20)

✓, n = 2, P (6.10)

✓, n > 2, {−w, 0, w}, P, (6.9)

Pseudo-Poly (6.20)

✓, P (6.3)

EQ1+PO
×, {1, 0,−1}, P (6.18)

(strongly) NP-Hard (6.16)

×, {1, 0,−1}, P (6.18)

(strongly) NP-Hard (6.16)

✓, n = 2, {−w, 0, w}, P, (6.17)

×, {1, 0,−1}, P, (6.18)

(strongly) NP-Hard (6.16)

×

(strongly)

NP-Hard⋆

SW×EQX

SW/EQX

×

Pseudo-Poly (6.20)

(weakly) NP-Hard†

Table 6.1: A partial summary of our results. Each cell contains existence/computation
results with✓ implying existence, and × implying non-existence. The table entry, say
‘✓, {−w, 0, w}, P′ conveys that the corresponding fair and efficient allocation always
exists for {−w, 0, w} valuations and admits a polynomial time algorithm. The results
marked ‘⋆′ and ‘†′ follow from Freeman et al. (2019) and Sun et al. (2023b) respectively.
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both fairness (EF1) and efficiency (PO) guarantees (Caragiannis et al., 2019b; Barman et al.,
2018a) but due to the presence of negative utilities, Nash looses its guarantees in the mixed
setting. In addition, for mixtures, EF1+PO is known to exist only for 2 agents and the case
of arbitrary agents stands as a major open problem (Aziz et al., 2022). The existence of EFX
for only goods and only chores is known to exist only for certain special cases (Chaudhury
et al., 2020a; Plaut and Roughgarden, 2020) but is open in general. On the other hand, for
mixtures, Bérczi et al. (2020) shows the non-existence of EFX under non-monotone non-additive
valuations while Hosseini et al. (2023d) establishes the non-existence of EFX allocations under
additive valuations. Hosseini et al. (2023b) identify a class of lexicographic preferences where
EFX + PO allocations exist. Other fairness notions like maximin share and PO (Kulkarni et al.,
2021a,b), and competitive equilibrium (Bogomolnaia et al., 2017) have also been looked at for
mixtures.

6.2 Preliminaries

Setting.

A fair division ([n], [m],V ) instance consists of n ∈ N agents, m ∈ N items and valuations
V = {v1, v2, . . . vn} where vi : 2[m] → Z, that captures the value that an agent i derives
from a subset of items. We restrict our attention to additive valuations where for any subset
S ⊆ [m], we have vi(S) = ∑o∈S vi{o}. Also, {−w, w} valuations denote that every item is
either valued at a constant w or −w by every agent.

Allocations and Equitability.

An allocation Φ = {Φ1, Φ2, . . . Φn} is a partition of m items into n bundles, one for each agent.
The utility that an agent i derives from her bundle is vi(Φi) = ∑o∈Ai

vi{o}. An allocation Φ
is said to be equitable (EQ) if all the agents derive equal utility from their respective bundles,
that is, for every pair of agents i and j, we have vi(Φi) = vj(Φi). An allocation Φ is said to
be equitable up to one item (EQ1) if for any pair of agents i and j such that vi(Φi) < vj(Φi),
either there exists some good g in Aj such that vi(Φi) ≥ vj(Φj \ {g}) or there exists some
chore c in Φi such that vi(Φi \ {c}) ≥ vj(Φi). Further, an allocation Φ is said to be equitable
up to any item (EQX) if for any pair of agents i and j such that vi(Φi) < vj(Φi), we have
vi(Φi) ≥ vj(Φj \ {g}) for all goods g in Φj, and vi(Φi \ {c}) ≥ vj(Φi) for all chores c in Φi.
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Efficiency.

An allocation Φ is said to be Pareto dominated by another allocation Φ′ if vi(Φ′i) ≥ vi(Φi)

for all agents i and there exists at least one agent j such that vj(Φ′j) > vj(Φi). If an allocation
is not Pareto dominated by any other allocation, then it is said to be Pareto optimal (PO). The
welfare of an allocation is an aggregation of individual utilities in various ways. The utilitarian
welfare of an allocation Φ is the arithmetic mean of individual utilities under Φ, denoted by
UW(Φ) = 1/n ∑i∈[n] vi(Φi). The egalitarian welfare is the minimum utility among all the
individual utilities, denoted by EW(Φ) = min vi(Φi). Further, we say that an agent i is poor
under an allocation Φ if vi(Φi) ≤ vj(Φi) ∀ j ∈ [n] and it is rich if vi(Φi) > vj(Φi) ∀ j ∈ [n].

Normalization(s).

LetO be the set of all items. We say that an item is an objective good if it is valued non-negatively
by all the agents. That is, o ∈ O, such that vi(o) ≥ 0 ∀ i ∈ N and denote the set of all objective
goods as O+. Similarly, all items o ∈ O such that vi(o) ≤ 0 are called objective chores, denoted
by O−. The remaining objects are called subjective items, denoted by O±. We now discuss
the two types of normalizations that we consider. If in an instance, all agents value the entire
bundle at a constant, that is, vi(O) is a constant for all i, then we say it is normalized instance.
If for all agents i, all the goods sum up to a constant, say g′, and all the chores sum up to a
constant, say c′, that is, ∑o∈G vi(o) = g′ and ∑o∈C vi(o) = c′, then we call it type-normalized

instance. An instance is not normalized unless otherwise stated. Note that type-normalization
implies normalization (but not converse).

6.3 EQ1 Allocations

When the input instance has subjective items, an EQ1 allocation may not exist, even for 2
agents. The following example illustrates this.

Example 6.1. Consider an instance with two agents Alice and Bob such that Alice values all three

items at −1 while Bob values all the three items at 1. In any allocation, Alice always values her

bundle less than Bob’s valuation of her own bundle, even after the hypothetical removal of some

item from any of the bundles. Therefore, no allocation in this instance is EQ1.

Moreover, we show in the following result that deciding if there is an EQ1 allocation is weakly
NP-Hard. This is in contrast to the only goods or only chores setting where even for non-
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normalized instances, computing an EQ1 allocation admits efficient algorithms.

Theorem 6.2. For any allocation instance with mixed items, deciding the existence of an EQ1

allocation is NP-complete.

Proof. We exhibit a reduction from 2-partition, where given a multiset U = {b1, b2 . . . bm}
of integers with sum 2T, the task is to decide if there is a partition into two subsets S and
U \ S such that sum of the numbers in both the partitions equals T. We construct the reduced
allocation instance as follows. We create 4 agents, m set-items {o1, . . . , om}, and 4 dummy
items {d1, . . . d4}. The first two agents value the set-items at {b1, . . . bm} and all the dummy
items at −3T. The last two agents value the set items at 0 and the dummy items at T. This
completes the construction. We now argue the equivalence, where we show that if there is an
EQ1 allocation in the reduced instance, then 2-partition is a yes instance and vice-versa.

Forward Direction.

Suppose that the 2-partition instance is a yes-instance. Let S and U \ S be the said partitions.
Then the allocation where agent Φ1 gets S, Φ2 gets U \ S, a3 gets {d1, d2} and a4 gets {d3, d4}
is clearly an EQ1 allocation.

o1 o2 . . . om d1 d2 d3 d4

a1 b1 b2 . . . bm −3T −3T −3T −3T

a2 b1 b2 . . . bm −3T −3T −3T −3T

a3 0 0 . . . 0 T T T T

a4 0 0 . . . 0 T T T T

Table 6.2: Reduced instance as in the proof of Theorem 6.2.

Reverse Direction.

Suppose there is an EQ1 allocation, say Φ, under the reduced instance. Then, note that Φ
assigns at most one dummy item to the agents a1 and a2, each. If not, say WLOG, a1 receives
{d1, d2} under Φ, then the maximum utility a1 can derive is−4T (where it gets all the set items
as well). But, a1 violates EQ1 with respect to a3 and a4, whose minimum utility is 0 each and
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a1 derives negative utility even if it removes the item d1 from its bundle. Therefore, a1 and a2

can get at most one dummy item each. We now consider the following cases:

• a1 and a2 do not receive any dummy item. Note that since Φ is EQ1, anyone from a3 and
a4 cannot get three dummy items, else either one of a1 or a2 violates EQ1. Therefore, a3

and a4 both get two dummy items each. This forces a1 and a2 to receive a utility of at
least T, thereby corresponding to a partition.

• a1 receives d1 and a2 receives d2. Note that if the remaining two dummy items are
allocated to any one agent, say a3, then EQ1 is violated. Indeed, the maximum utility of
a1 and a2 is negative, and even if they choose to ignore any item, they fall short of the
utility derived by a3 (which is 2T). Therefore, a3 receives d3 and a4 receives d4 under Φ.
This forces a1 and a2 to receive a utility of T each from the set items, thereby forcing a
partition.

• a1 receives d1 and a2 does not receive any dummy item. Then,WLOG, a3 gets one dummy
item and a4 gets two dummy items. To be consistent with EQ1 against a4, agent a1 must
get all the set items, thereby deriving a utility of−3T + 2T. This leaves a2 empty-handed
and hence, it violates EQ1 with respect to a4. Therefore, since Φ is EQ1, this case does
not arise.

This concludes the argument.

This non-existence and hardness motivate us to explore the tractable scenarios in this context.
Below we show some positive results for some restricted settings. We first present a few
tractable cases when an EQ1 allocation always exists and can be found efficiently, without any
assumption on normalization(s).

Theorem6.3. For any allocation instance withmixed items containing objective goods and chores,

an EQ1 allocation always exists and can be computed in polynomial time.

Proof. The algorithm iteratively picks the least happy agent (agent with the least
utility)—breaking ties arbitrarily—and allocates her most valuable good among the remaining
items in O+ according to her preference. Once O+ is exhausted, it picks the happiest agent
who then receives her most disliked chore from O−. The correctness of the above algorithm is
as follows. In the beginning, when no one is allocated any item, EQ1 is satisfied vacuously.
We argue that if the allocation is EQ1 before the assignment of an item, it remains EQ1 after
that assignment as well. Let i be the least happy agent (vi(Φi) ≤ vj(Φj) ∀ j ̸= i) at iteration
t. Let g be the good most valued by i among the remaining goods in O+, which is added to Φi
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in the iteration t + 1. Now either i continues to be the least happy agent in which case, the
allocation continues to be EQ1. Otherwise, consider an agent j such that
vi(Φi ∪ {g}) > vj(Φj). Then, since g was the last added good in Φi, it is also the least
favorite item of i in her entire bundle Φi (note that nothing has been allocated from O− till
this iteration). This implies that vi(Φi ∪ {g} \ g) = vi(Φi) < vj(Φj). Hence, any other agent
violates EQ with respect to agent i only up to the recent addition of g into Φi. Since the empty
allocation in the beginning is vacuously EQ1, this settles the claim that the allocation is EQ1,
until O+ is exhausted. Now consider when everything from O+ has been allocated. The
instance now reduces to the one with only chores. Suppose agent i is the happiest agent at
this point, that is, vi(Φi) ≥ vj(Φj) ∀ j ∈ [n]. The algorithm picks i and allocates it a chore c
that it dislikes the most. If vi(Φi ∪ c) ≥ vj(Φj) ∀ j ∈ [n], then the allocation continues to be
EQ1. Else, vi(Φi ∪ c) < vj(Φj) for some agent j. Since i was the happiest agent previously
and hence became a potential recipient of c, therefore, i can choose to hypothetically remove c
from his bundle in order to value her own bundle more than j. That is,
vi(Φi ∪ c \ {c}) = vi(Φi) ≥ vj(Φj). This implies that the allocation remains EQ1 after the
allocation of c. This settles the claim.

We note here that Theorem 6.3 does not guarantee the existence of EQX allocations even for
identical objective valuations, as illustrated in the following example.

Example 6.4. Consider the following instance with identical objective valuations. The output of

the algorithm in Theorem 6.3 is highlighted, which fails EQX. Indeed, to satisfy EQX, the poor

agent Alice should have at least as much utility as Bob upon the hypothetical removal of any good

from Bob’s bundle or any chore from her own bundle. But if Alice chooses to ignore the item o2

from Bob’s bundle and reduce her utility from 1 to −1, then also it remains a poor agent. But this

allocation is EQ1, since it can ignore the chore o7 from her bundle, thereby deriving equal utility

as Bob, that is, 1.

o1 o2 o3 o4 o5 o6 o7

Alice 2 2 2 2 −3 −3 −3

Bob 2 2 2 2 −3 −3 −3

We now show that if there exists a partial EQ1 allocation that allocates O± entirely, then it can
always be extended to a complete EQ1 allocation.
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Lemma 6.5 (Completion Lemma). Consider a partial EQ1 allocation Φ that allocates a subset

of items, say S ⊂ [m]. Then, Φ can be completed while preserving EQ1 if O± ⊆ S.

Proof. Let Φ be the partial EQ1 allocation that allocates S such that O± ⊆ S ⊂ [m]. Since the
remaining items in the instance are all objective items, we allocate a poor agent under Φ its
most liked item from O+. Once O+ is exhausted, we allocate a rich agent its most disliked item
from O−. The correctness follows by a similar argument as in Theorem 6.3.

The above algorithm(s) output an EQ1 allocation even for instances that are not normalized.
We now turn our attention to the normalized and type-normalized instances.

Theorem 6.6. For any allocation instance with {w,−w} normalized valuations, an EQ1

allocation always exists and can be computed in polynomial time.

Proof. We show that Algorithm 3 returns an EQ1 allocation when the instance has {−w, w}
normalized valuations. First note that since the instance is normalized, the reduced instance
restricted to items in only O± is also normalized. That is, every agent assigns a value of w to
exactly k1 items from O± and a value of −w to exactly k2 items from O±, where k1 and k2 are
constants. The idea is to first allocate all the items in O± in an almost equitable way and then
to extend the partial EQ1 allocation to a complete allocation using Lemma 6.5. To that end, we
first show that there exists a partial EQ1 allocation that allocates all items in O±.

Claim 6.7. There exists a partial EQ1 allocation restricted to the items in O± such that it exhausts

O±. Also, such an allocation can be computed in polynomial time.

Proof. We iteratively pick a poor agent and allocate it an item it values at w (a good) from O±.
If there are no such items in O±, then we iteratively pick one of the rich agents and allocate
it an item it values at −w (a chore) from O±. At this point, it is easy to see that the partial
allocation is EQ1. We denote the set of agents with minimum utility as poor agents (P) and
those with maximum utility as rich agents (R). Now suppose that the remaining items in O±

are all chores for the poor agents and goods for the rich agents and if they are allocated to
any of them, they increase the amount of inequity and hence may violate EQ1. Therefore, in
order to move towards an EQ1 allocation that allocates all the items in O±, we now aim to
convert a poor (rich) agent to rich (poor) by re-allocating one of the allocated items, so that the
converted agent can now be a potential owner of one of the remaining unallocated items while
maintaining EQ1. We do so by executing one of the following transfers at a time.
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Algorithm 3 n agents, {w,−w} Normalized Valuations
Require: n agents, m items, {−w, w} Normalized Valuations
Ensure: An EQ1 allocation Φ
1: Φ← An empty allocation
2: P = {p1, p2, . . . ps} ← Set of all poor agents under Φ
3: R = {r1, r2, . . . rt} ← Set of all rich agents under Φ
4: while O± ̸= ∅ do

5: while Any p values an unallocated item o in O± at w do

6: Φp = Φp ∪ {o}

7: while Any r values an unallocated item o in O± at −w do

8: Φr = Φr ∪ {o}
9: if Any p values a good o in any Φr at w then

10: Φr = Φr \ {o}; Φp = Φp ∪ {o} (Rich-Poor Transfer)
11: Repeat from Step 5

12: if Any r values a chore o in any Φp at −w then

13: Φp = Φp \ {o}; Φr = Φr ∪ {o} (Poor-Rich Transfer)
14: Repeat from Step 5

15: if Any r′ values a good o in any Φr at −w then

16: Φr = Φr \ {o}; Φr′ = Φr′ ∪ {o} (Rich-Rich Transfer)
17: Repeat from Step 5

18: if Any p′ values a chore o in any Φp at w then

19: Φp = Φp \ {o}; Φp′ = Φp′ ∪ {o} (Poor-Poor Transfer)
20: Repeat from Step 5

21: if |P| > |R| then
22: for j ∈ [t] do
23: Φrj = Φrj \ {o : vrj(o) = w}
24: Φpj = Φpj ∪ {o}

25: Repeat from Step 5

26: Use Completion Algorithm of Lemma 6.5
27: return Φ

1. Transfers. Consider a pair of agents p ∈ P and r ∈ R such that there is an item o in Φr

and vr(o) = w = vp(o). Then, we re-allocate o to p, consequently converting p to a rich
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agent and r to a poor agent. We call it a rich-poor transfer. Likewise, if there is a pair of
agents p ∈ P and r ∈ R such that there is an item o in Φr and vr(o) = −w = vp(o), we
re-allocate o to r, again converting p to a rich agent and r to a poor agent (see Table 6.3).
We call it a poor-rich transfer. If there is a pair of rich agents, say r and r′ such that there
is a good o in Φr′ which is valued at −w by r, then we can re-allocate o to r, thereby
decreasing the utility of both r and r′ by −w (rich-rich transfer). Likewise, we do a poor-
poor transfer for a pair of poor agents p, p′ such that there is a −w-valued item o in Φp′ ,
vp(o) = w and re-allocate o to p.

We execute one of the transfers at a time, thereby converting at least one poor (rich)
agent to rich (poor). Now, the remaining item o which was earlier a chore for all the poor
agents and a good for all the rich agents, has a potential owner. We continue this until
we find a poor agent who can be converted to a rich one by such a transfer and can be
allocated one of the remaining items, or until O± is exhausted.

Φr Φp

r w w −w

p w w w −w

Table 6.3: Rich-poor and poor-rich transfers. In one step, only one of these transfers
is executed, not both.

2. Suppose there is no such transfer feasible. Then, we consider the following cases.

(2a) Firstly, suppose |P| > |R|. Then we take a w-valued item from Φr and allocate it
to p who necessarily values it at −w (else, we would have executed a rich-poor
transfer). We do this for |R| disjoint pairs of a rich and a poor agent, thereby
decreasing the utility of all these pairs by −w. But since |P| > |R|, we have a poor
agent p′ whose value remains intact, which in turn, makes him one of the rich
agents after the above transfers. Now, the remaining unallocated item which was a
chore for p′ can be allocated to it without violating EQ1.

(2b) Second, suppose |P| ≤ |R|. In this case, we have that all the rich agents value all
the goods in every other rich bundle at w (else, we would have executed a transfer).
Now suppose vr(Φr) = (k + 1)w and vp(Φp) = kw where k is some constant.
Then there are |R|(k+ 1)many allocated items valued at w by a rich agent r. Also, it
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values all the remaining unallocated itemsO± atw, so there are at least |R|(k+ 1)+
1 many valuable items for r. Since all the remaining unallocated items in O± are
chores for p, there must be at least |R|(k + 1) + 1 many items among the allocated
ones which are valued at w by p (by normalization). Even if p values every good in
every other poor agent’s bundle at w, then also only |P|k out of |R|(k + 1) + 1 such
items are accounted for. Also, note that p cannot value any of the |R|(k + 1) items
allocated to the rich agents at w, otherwise, we are done by appropriate transfers).
This implies that there must be (|R| − |P|)k + |R|+ 1 many extra items valued at
w by p, outside of the |R|(k + 1) and |P|k items allocated as goods to the rich and
poor agents respectively. Let’s call this set of extra goods for p as Eg. Note that no
item from Eg adds any value to any of the agents it is allocated to. (If it is allocated
to a rich agent and adds value to its bundle, then its bundle will be at (k + 2)w.
If it is allocated to a poor agent and adds value to her, then its bundle will be at
(k + 1)w). Therefore, they must have been allocated in pairs with chores. Hence
there are |Eg| more extra items valued at −w by p. We call them Ec (see Table 4 in
the appendix). Now if any of the rich agents values any o ∈ Ec at w, then p again
falls short of good items and it violates normalization. Otherwise, if r values all Ec

at−w, then Ec /∈ O±, which is a contradiction to the fact that the partial allocation
only allocates items from O± at this point. Therefore, this case does not arise and
this settles our claim.

Once O± is exhausted, we end up with a partial EQ1 allocation Φ. Now we can allocate the
items from O+ to a poor agent iteratively and once O+ is exhausted, we allocate the item from
O− to a rich agent iteratively (Lemma 6.5). This ensures that Φ is EQ1 at every step of the
algorithm. Consequently, the complete allocation Φ is EQ1.

If the instances are allowed to have 0-valued items, then the approach of assigning O± first
and then completing the allocation fails even for type-normalized valuations, as illustrated in
Example 6.8.

Example 6.8. In the following instance, there is no (partial) allocation Φ of O± = {o1, o2, o3}
such that Φ is EQ1.
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O±

Allocated

Items

Unallocated

Items

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 Eg Ec o o

r1 w w w w w w −w ... −w w w

r2 w w w w w w −w ... −w w w

p1 −w −w −w −w −w −w w w w w w ... w −w ... −w −w −w

p2 −w −w −w −w −w −w w w w w w ... w −w ... −w −w −w

Table 6.4: A schematic of Case 2(a) of the proof of Claim 6.7. r1 and r2 are two rich
agents with utility 3c each and p1 and p2 are two poor agents with utility 2c each. The
values in gray are forced, otherwise, we are done by Case 1. The values in red depict
the contradiction that Ec ∈ O−.

o1 o2 o3 o4 o5 o6 o7 o8 o9

Alice 1 1 1 0 0 0 −1 −1 −1

Bob −1 −1 −1 1 1 1 0 0 0

Therefore, when we have {w, 0,−w} valuations, we need a slightly different approach of
allocating items from the entire bundle rather than exhausting a subset of items first. Using
this approach, we give an efficient algorithm for this case as follows.

Theorem 6.9. For any allocation instance with {−w, 0, w} normalized valuations, an EQ1

allocation always exists and can be computed in polynomial time.

Proof. The idea is similar to Theorem 6.6 except here, we do not aim to exhaustO± first, instead,
allocate the items from the entire bundle. This is so because a partial allocation restricted to
O± may not satisfy EQ1 (see Example 6.8).

We iteratively pick a poor agent p and allocate it an item valued at w or 0. If there is no such
item for p, then we iteratively pick one of the rich agents and allocate it an item valued at −w
or 0. At this point, it is easy to see that the partial allocation Φ is EQ1. We denote the set
of agents with minimum utility under Φ as poor agents (P) and those with maximum utility
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under Φ as rich agents (R). Either we arrive at a complete EQ1 allocation by continuing in
the above manner or there are unallocated items which are chores for agents in P and goods
for agents in R. Allocating any of the remaining items only increases the inequity and hence
violates EQ1. Therefore, in order to move towards a complete EQ1 allocation, we now aim to
convert a poor (rich) agent to rich (poor) by re-allocating one of the allocated items, so that the
converted agent can now be a potential owner of one of the remaining unallocated items while
maintaining EQ1. We do so by executing one of the following transfers at a time.

Transfers.

Consider a pair of agents p ∈ P and r ∈ R such that there is a w-valued good g in Φr and
vp(g) ∈ {0, w}. Then, we re-allocate g to p. We call it a rich-poor transfer. Likewise, if
there is a pair of agents p ∈ P and r ∈ R such that there is a −w-valued chore w in Φp and
vr(c) ∈ {−w, 0}, we re-allocate w to r (poor-rich transfer). If there is a pair of two rich agents
r and r′ such that there is a w-valued good g in Φr′ and vr(g) ∈ {−w, 0}, we do a rich-rich

transfer and allocate g to r. Likewise, we do a poor-poor transfer for a pair of poor agents p, p′

such that there is a −w-valued chore w in Φp′ and vp(c) ∈ {0, w} and re-allocate w to p.

Note that each of the above transfers convert at least one poor (rich) agent to rich (poor).
Suppose none of the above transfers is possible. Then we consider the following two cases. If
|P| > |R|. Then we take a w-valued item from Φr and allocate it to p who necessarily values
it at −w (else, we would have executed a rich-poor transfer). We do this for |R| disjoint pairs
of a rich and a poor agent, thereby decreasing the utility of all the agents involved by −w. But
since |P| > |R|, we have a poor agent p′ whose value remains intact, which in turn, makes
him one of the new rich agents after the above transfers. Now, the remaining unallocated item
which was a chore for p′ can be allocated to it without violating EQ1.

We now argue the remaining case of |P| ≤ |R|. If there are no transfers feasible, then we
have that all the rich agents value the w-valued goods in every other rich agent bundle at w.
WLOG, we assume the normalization constant to be positive. Suppose vr(Φr) = (k + 1)w
and vp(Φp) = kw, where k is some constant integer. Then there are at least |R|(k + 1) many
allocated items valued at w by a rich agent r. Also, it values all the remaining unallocated
items at w, so there are at least |R|(k + 1) + 1 many valuable items for r. Also, note that p
cannot value any of the |R|(k + 1) many w-valued items allocated to the rich agents at w or
0, else we have our desired transfer. This implies that every p values the |R|(k + 1) allocated
goods to the rich agents as well as the remaining unallocated items at −w. Because p has a
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significant number of −w-valued items, normalization then forces p to value at least |R|(k +
1) + 1 allocated items at w (as the normalization constant is assumed to be positive). Even if it
values all the |P|k many w-valued items allocated to all the poor agents, |R|(k+ 1)+ 1 > |P|k,
and hence, there are at least |R|(k+ 1)+ 1− |P|k extra items in the allocated set that are valued
at w by p. We call this set Eg. Note that no item from Eg adds any value to any of the agents it
is allocated to. (If it is allocated to a rich agent and adds value to her bundle, then her bundle
will be at (k + 2)w. If it is allocated to a poor agent and adds value to her, then her bundle will
be at (k + 1)w). Therefore, they must have been allocated in pairs with chores. Hence there
are |Eg| more extra items valued at −w by p. We call them Ec. Consider such a pair (og, oc) is
allocated to p such that og ∈ Eg and oc ∈ Ec. Now if r values oc at 0 or −w, we have a desired
transfer (re-allocate oc to r). Otherwise, it is the case that every r values the items in Ec at
w. But this implies p again falls short of the w-valued items and hence violates normalization.
Consider the other case when a pair (og, oc) is allocated to r such that exactly one of them is
w-valued for r. This again implies that p again falls short of the w-valued items and hence
violates normalization. This settles our claim.

We now consider general valuation beyond {w, 0,−w} valuations and present some tractable
cases for two agents and type-normalized valuations as follows.

Theorem 6.10. For any allocation instance with type-normalized valuations and two agents, an

EQ1 allocation always exists and can be computed in polynomial time.

Proof. The algorithm starts by allocating items from O±. For every o ∈ O±, o is allocated to
the agent who values it positively. (Since o ∈ O± and n = 2, exactly one of the agents values it
positively). OnceO± is allocated entirely, let v1 and v2 be the utilities derived by the two agents
respectively, and say v1 > v2. Then by type-normalization, there must be enough items in O+

such that agent 2 derives at least v1 − v2 utility. The algorithm then allocates all such items
to agent 2, starting from her favorite good from the remaining items, until her utility becomes
at least as much as agent 1. Indeed, this partial allocation is EQ1. The remaining instance is
the one that contains objective goods and chores. Using Lemma 6.5, we get a complete EQ1
allocation, as desired.

Theorem 6.11. For any allocation instance with type-normalized valuations, two agents, and

only subjective items, every PO allocation is EQ. Hence, an EQ allocation always exists and can be

computed in polynomial time.

Proof. Since O+ = O− = ∅ and n = 2, an item that is positively valued by one agent is
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negatively valued by the other. Consider a PO allocation Φ = {Φ1, Φ2}. Under Φ, agent 1
gets all the items that it values positively, and agent 2 gets the remaining items (which are
all positively valued by her, by the structure of the instance). Because of type-normalization
(∑o∈G vi(o) = g), we have v1(Φ1) = g = v2(Φ2), hence Φ is EQ.

We note here that in the presence of both subjective and objective itemswith general valuations,
even with type-normalized instances, the intuitive idea of allocating the least happy agent her
most favorite item, if it exists, else allocating the happiest agent her most disliked chore does
not work. Consider the following instance.

o1 o2 o3 o4 o5 o6 o7 o8

Alice 10 3 2 2 −2 −2 −2 −1

Bob 17 −1 −1 −1 −1 −1 −1 −1

The above instance is a type-normalized instant with the normalization constant 10. If Alice is
chosen as the least happy agent (the choice is arbitrary in the first step), it gets o1. Now it is
easy to verify that no completion of this partial allocation can be EQ1 as now, the poor agent,
Bob does not have any item that it values positively.

In addition, a leximin++ allocation (defined below), which is known to satisfy not only EQ1
but stronger EQX property for certain restricted instances, fails to achieve EQ1 for mixed
instances, that too normalized and with few agents and items. A leximin allocation is the one
that maximizes the minimum utility of an agent, subject to that maximizes the
second-minimum utility, and so forth. Although there can be many leximin optimal
allocations, they all induce a unique utility vector. Leximin++ allocation is an allocation that
maximizes the minimum utility, and then maximizes the size of the bundle of the agent with
minimum utility and so on. It is known that a leximin++ allocation is also EQX, for objective
instances with identical chores (Barman et al., 2024a). When we go beyond objective instances
to look for EQ1 allocations, the Example 6.12 suggests that leximin++ may not be EQ1, even
for a normalized instance with two agents and two items.

Example 6.12. Leximin++ is not EQ1 even for a normalized instance with two agent {Φ1, Φ2}
and two items {o1, o2}. Φ1 values the items at {10,−15} while Φ′2s valuation is {−2,−3}.
There are at most 4 possible allocations in this instance with utility vectors

{0,−5}, {−5, 0}, {10,−3}, {−15,−2} for {Φ1, Φ2} respectively. The only leximin++
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allocation is the one with utility vector {10,−3} but it is not EQ1. Even if we restrict the

valuations to {1,−1}, the Example 6.13 suggests that leximin++ may not be EQ1.

Example 6.13. Leximin++ is not EQ1 even with {1,−1}-normalized valuations. The example

in Table 6.5 illustrates this. The highlighted allocation is leximin++ with the utility vector as

{3, 1, 1, 1, 1}. This is not EQ1 since even if the last 5 agents choose to hypothetically ignore a

good from Φ′1s bundle, they still fall short of the equitable utility.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o12 o13

Φ1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

Φ2 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

a3 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

a4 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

a5 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

a6 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

Table 6.5: Leximin++ is not EQ1 even with {1, -1} normalized valuation. The
highlighted allocation is leximin++ with the utility vector as {3, 1, 1, 1, 1}. This is not
EQ1 since even if the last 5 agents choose to hypothetically ignore a good from Φ′1s
bundle, they still fall short of the equitable utility.

6.4 EQ1+PO Allocations

Theorem 6.14. For any allocation instance with identical (even non-normalized) valuations, an

EQ1+PO allocation always exists and admits a polynomial time algorithm.

Proof. Notice that for identical valuations, any complete allocation is PO. Consider any
complete allocation Φ′ which allocates a good g allocated to an agent i. Under any
re-allocation of g, i becomes strictly worse off. On the other hand, consider any chore c
allocated to some agent. Then under any re-allocation of c to any agent j, the receiving agent
j becomes strictly worse off. Therefore, every complete allocation is PO. Now to compute an
EQ1+PO allocation, since identical valuations are a subset of objective instances, we can use
Theorem 6.3 to compute an EQ1 allocation, Φ. Then, because Φ is a complete allocation, it is
also PO. This settles our claim.
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Consider a non-normalized instance with two agents, Alice, and Bob, and four items. Alice
values the first 3 items at −1 and the last item at 1 while Bob values the first 3 items at 1 and
the last item at−1. Here, the only PO allocation is the one under which Bob receives the first 3
items but this unique allocation is easily verified to be not EQ1. Further, the following instance
illustrates that EQ1+PO may not exist even with type-normalized valuations.

Example 6.15. Consider the following instance. The highlighted allocation is PO (unique) but

not EQ1. Therefore, an EQ1+PO allocation may not exists even with type-normalized {1,−1}
valuations.

o1 o2 o3 o4 o5 o6

Φ1 1 1 1 −1 −1 −1

Φ2 −1 −1 −1 1 1 1

a3 −1 −1 −1 1 1 1

We show below that deciding the existence of EQ1+PO allocations is hard even when the
valuations are type-normalized.

Theorem 6.16. For any allocation instance with type-normalized valuations, deciding the

existence of an EQ1+PO allocation is strongly NP-Hard.

Proof. We present a reduction from 3-Partition, known to be strongly NP-hard, where the
problem is to decide if a multiset of integers can be partitioned into triplets such that all of
them add up to a constant. Formally, the input is a set S = {b1, b2, . . . b3r}; r ∈ N; and the
output is a partition of S into r subsets {S1, S2, . . . Sr} such that ∑bi∈Si

bi = T = 1
r ∑bi∈S bi.

Given any instance of 3-Partition, we construct an instance of allocation problem as follows.
We create r set-agents namely {a1, a2, . . . ar} and one dummy agent, ar+1. We create 3r set-
items namely {o1, o2, . . . o3r} and two dummy items {o3r+1, o3r+2}. All the set agents value
the set items identically at bi and the two dummy items at−T and−(r− 3)T respectively. The
dummy agent values the set-items {o1, . . . o3r−1} at 0, o3r at −(r − 2)T and the two dummy
items at T and (r − 1)T respectively. Note that this is a type-normalized instance such that
every agent values all the items together at 2T. This completes the construction (see Table 6.6).
We now argue the equivalence.
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Forward Direction.

Suppose 3-Partition is a yes-instance and {S1, S2, . . . Sr} is the desired solution. Then, the
corresponding EQ1+PO allocation, Φ, can be constructed as follows. For ai : i ∈ [r], we set
Φ(ai) = {oj : oj ∈ Si}. Finally, Φ(ar+1) = {o3r+1, o3r+2}. It is easy to see that Φ is an EQ1
allocation since vi(Φi)) = T for all ai : i ∈ [r] and vi(Φi) ≥ vr+1(Φ(ar+1) \ {o3r+2}) = T.
Also, Φ is PO since it is a welfare-maximizing allocation where each item is assigned to an
agent who values it the most.

Reverse Direction.

Suppose that Φ is an EQ1+PO allocation. Then, both the dummy items {o3r+1, o3r+2} must be
allocated to the dummy agent ar+1, who is the only agent who values both the items positively.
(Since any set-agent derives a negative utility from these items, allocating them to her violates
PO). Since Φ is also EQ1, this forces every set-agent to derive the utility of at least T under Φ
so that when it removes the item {o3r+2} from Φ(ar+1), EQ1 is preserved.

o1 . . . o3r−1 o3r o3r+1 o3r+2

a1 b1 . . . b3r−1 b3r −T −(r− 3)T

a2 b1 . . . b3r−1 b3r −T −(r− 3)T

...
...

...
...

...

ar b1 . . . b3r−1 b3r −T −(r− 3)T

ar+1 0 . . . 0 −r + 2T T (r− 1)T

Table 6.6: Reduced instance as in the proof of Theorem 6.16

Given the non-existence and hardness even for the type-normalized valuations, we now present
some tractable cases.

Theorem6.17. For n = 2 and type-normalized {w, 0,−w} valuations, an EQ1+PO always exists

and can be computed efficiently.

Proof. We will show that the allocation Φ as returned by the Algorithm 4 is EQ1+PO. Notice
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that Φ allocates all items from O± ∪O+ non-wastefully. Also, o ∈ O− is allocated to an agent
who values it at 0, otherwise, if both the agents value it at−w, then PO is satisfied irrespective
of which agent ends up receiving that item. Therefore, Φ satisfies PO. We now argue that it
also satisfies EQ1. Suppose i is the least happy agent by the end of Step 6. Say, the utility of i at
this point is k1 · c and that of agent j is k2 · c. Since i is the poor agent, therefore, k1 < k2. Then,
there must be at least k2 − k1 items in O+ valued at {w, 0} by {i, j} (by type normalization).
By construction, all these k2 − k1 items are allocated to i under Φ. This compensates for the
inequity experienced by i so far. Now the allocation is extended by iteratively allocating the
least happy agent her most valuable item, which maintains EQ1 till O+ is exhausted. For the
items inO− which are valued at−w by both the agents, the happiest agent gets that item, which
thereby maintains EQ1. For the remaining chores in O−, at least one of the agents values them
at 0 and ends up receiving the same. This does not violate EQ1 as it does not change the utility
of the agents. This settles the claim.

When we increase the number of agents from 2 to 3, an EQ1+PO allocation may not exist even
with binary valuations. Consider 3 agents and 6 items such that two of them value the items
at {1, 1, 1, 0, 0, 0} and the last agents values at {0, 0, 0, 1, 1, 1}. Then any PO allocation gives a
utility of 3 to the last agent, but at least one of the first two agents gets a maximum utility of 1,
violating EQ1. Given this non-existence, we present the following algorithm that computes an
EQ1+PO allocation for {1, 0,−1} instances, whenever it exists.

Theorem 6.18. For {1, 0,−1} valuations (even non-normalized), an EQ1+PO allocation can be

found efficiently if it exists.

Proof. We show that Algorithm 5 returns an EQ1+PO allocation, whenever it exists. Towards
correctness, we first establish the following result.

Lemma 6.19. There is an EQ1+PO allocation for the partial instance I := O± ∪O+
if and only

if the Nash optimal allocation Φ′ for the instance IG is EQ1.

Proof. Suppose the Nash optimal allocation Φ′ for instance IG is EQ1. We will show that Φ′

is EQ1+PO for I as well. Note that Φ′ is EQ1+PO for IG (since Nash satisfies PO). Since Φ′ is
PO for IG , it never allocates an item to an agent who values it at 0. Therefore, in the instance,
I , Φ′ never allocates any item from O± ∪O+ to an agent who values it at −1 or 0. Therefore,
all items are allocated to agents who value them the most, at 1, and hence Φ′ is PO (and EQ1)
for I .
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Algorithm 4 EQ1+PO, n=2 and {w, 0,−w} Type-Normalized Valuations
Input: An instance with 2 agents, m items and {1, 0,−1}-type-normalized valuation function.
Output: An EQ1+PO allocation Φ.
1: O+ : {o : vi(o) ≥ 0 for i ∈ [1, 2]}
2: O− : {o : vi(o) ≤ 0 for i ∈ [1, 2]}
3: O± : O \ {O+ ∪O−}
4: Φ← An empty allocation
5: while O± ̸= ∅ do

6: Φi = Φi ∪ {o}, where o ∈ O± such that vi(o) ≥ 0

7: if ∃ o ∈ O+ such that vi(o) = 0 for some i then
8: Φ(j) = Φ(j) ∪ {o} such that j ̸= i

9: while O+ ̸= ∅ do

10: i← least happy agent
11: Φi = Φi ∪ {o} where o is the most valuable good from O+ for i

12: if ∃ o ∈ O− such that vi(o) = 0 for some i then
13: Φi = Φi ∪ {o}
14: while O− ̸= ∅ do

15: i← happiest agent
16: Φi = Φi ∪ {o} where o is the most disliked chore from O− for i

return Φ

On the other hand, suppose there is an EQ1+PO allocation Φ for instance I . If the Nash optimal
allocation for IG is EQ1, we are done. Otherwise, suppose that the Nash optimal allocation for
IG is not EQ1. We will now argue by contradiction that this is not possible.

Since Φ is PO for the instance I , any item o ∈ O± must have been allocated to an agent a who
values it at 1. Indeed if not, then there is a Pareto improvement by allocating o to a whichmakes
a strictly better off without making any other agent worse off. Likewise, all items o ∈ O+ are
allocated to respective agents who value them at 1. So, we have ∑i∈N vi(Φi) = m′ where
m′ = |O± ∪ O+|. Therefore, Φ is not only PO but also achieves the maximum utilitarian
welfare in I . Consider the same allocation Φ in the instance IG. Since the only modification
from I to IG is that for the agentswho valued items inO± at−1 in I , now value them at 0 in IG

and everything else remains the same. So, we have ∑i∈N vi(Φi) = m′ in IG as well. Hence,
Φ maximizes the utilitarian welfare in IG and hence, is PO. Also, Φ is EQ1 by assumption.
therefore, for the instance IG , Φ is an EQ1+PO allocation. But, Lemma 22 of Freeman et al.
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(2019) shows that if an instance with binary valuations admits some EQ1 and PO allocation,
then every Nash optimal allocation must satisfy EQ1. Therefore, the Nash optimal allocation
in IG satisfies EQ1, which is a contradiction to our assumption.

If Φ is EQ1+PO for I , then we show that the allocation of O− as mentioned above maintains
EQ1+PO. If Φ is not EQ1+PO, then we show that if the EQ1 violators under Φ can not be
resolved by using the remaining chores, then there is no EQ1+PO allocation for the original
instance.

We now show that if Φ is not EQ1, then there is no EQ1+PO allocation for the instance. If the
EQ1 violators in Φ′ (the Nash allocation on the reduced instance) cannot be resolved by using
the remaining chores, then there is no EQ1+PO allocation. We argue this claim by contradiction.
Suppose there is a complete EQ1+PO allocation, say Φ⋆. Let t be the number of items in O−

that are valued at −1 by all the agents (they are ‘universal’ chores). Under the Nash optimal
partial allocation Φ′, let vp = mini vi(Φ′i) be the utility of the poorest agent, vr = vp + 1 be
the utility of rich agents, and the remaining agents are EQ1 violators with utility strictly greater
than vr. We denote the set of violators as S. It is easy to see that if ∑s∈S(vs− vr) ≤ t, then the
t many −1’s from O− could have been used to bring down the utility of all the violators to vr,
ensuring that the completion of Φ′ into Φ is EQ1. Therefore, we have ∑s∈S(vs − vr) > t.

Now consider the EQ1+PO allocation Φ⋆. Let Φ̄⋆ denote the restriction of Φ⋆ to O± ∪O+.
Then, Φ̄⋆ must be a PO allocation but is not EQ1, otherwise the Nash optimal allocation must
have been EQ1. Let v⋆p, v⋆r , v⋆s denote the utilities of poor, rich, and violators in Φ̄⋆ and S⋆ be
the set of violators. It must be the case that ∑v∈V⋆(v⋆v − v⋆r ) ≤ t, since the completion Φ⋆ is an
EQ1 allocation. Also, notice that since both Φ̄⋆ and Φ′ are Pareto optimal, they both allocate
the items in O± ∪O+ non-wastefully. Therefore, the sum of the utilities under both the partial
allocations is exactly m′, where m′ := |O± ∪O+|. We now consider the following cases.

• vp ≥ v⋆p. Then,

∑
p, r, s

(vp + vr + vs) > ∑
p, r

(vp + vr) + (t + vr|S|)

≥ ∑
p, r

(v⋆p + v⋆r ) + (t + v⋆r |S|)

≥ ∑
p, r, v

(v⋆p + v⋆r + v⋆v)

which is a contradiction as the first and the last term is equal to m′.
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• vp < v⋆p. Then we will show that A′ is not a Nash optimal allocation. We have vr =

vp + 1 < v⋆p + 1 = v⋆r . Consider the nash welfare

NW(A′) = (∏
p,r,s

vpvrvs)
1
n < (∏

v,r,s
v⋆pv⋆r vs)

1
n

< (∏
p,r,s

v⋆pv⋆r v⋆s )
1
n

= NW(Ā⋆)

The last but one inequality follows from the fact that
∑p, r, s(vp + vr + vs) = ∑p, r, s(v⋆p + v⋆r + v⋆s ) = m′ and the product of a set of
numbers with a constant sum has the highest outcome if they are closer/equal to each
other rather than being further away (∑s∈V⋆(v⋆s − v⋆r ) ≤ t < ∑v∈V(vs − vr) ensures
that v⋆r and v⋆s are closer to each other than vs and vr).

This settles the claim.

Algorithm 5 EQ1+PO
Input: n agents, m items and {1, 0,−1} valuations
Output: An EQ1+PO allocation Φ, if it exists, else, the most equitable allocation Φ within the
set of PO allocations.
1: O+ : {o : vi(o) ≥ 0 ∀ i ∈ [n]}
2: O− : {o : vi(o) ≤ 0 ∀ i ∈ [n]}
3: O± : O \ {O+ ∪O−}
4: Φ← An empty allocation
5: while ∃o ∈ O− : vi(o) = 0 for some agent i do
6: Φi ← Φi ∪ {o}
7: For o ∈ O± such that vi(o) = −1, set vi(o) = 0.
8: Let Φ′ be the Nash optimal allocation on the set of goods O± ∪O+.
9: Φi ← Φi ∪ A′i
10: while ∃o ∈ O− do

11: Let i be the agent with maximum utility under Φi

12: Φi ← Φi ∪ {o}
return Φ
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6.5 EQX and Social Welfare

In this section, we discuss the computational complexity of finding allocations that maximize
the utilitarian welfare (UW) or egalitarian welfare (EW) within the set of EQX allocations for
mixtures. Even in the case when all the underlying items are goods, finding a UW or EW
allocation within the set of EQ1 allocations (UW/EQ1 or EW/EQ1), for a fixed number of
agents, is weakly NP-Hard (Sun et al., 2023b). This rules out the possibility of a
polynomial-time algorithm for mixed instances. Nonetheless, we present pseudo-polynomial
time algorithms for finding such allocations in mixed instances with a constant number of
agents. Our algorithmic technique extends those developed by Aziz et al. (2023b) to the mixed
setting, and relies on dynamic programming.

Theorem 6.20. For anymixed fair division instance with a constant number of agents, computing

a Utilitarian or Egalitarian maximal allocation within the set of EQX allocations admits a pseudo-

polynomial time algorithm.

Proof. We present a dynamic programming algorithm that keeps a set of states representing the
set of possible allocations. At each state, it considers allocating the item ok to one of the n agents.
Finally, it chooses the state that optimizes for social welfare and respects EQX. We denote
∑o∈O maxi vi(o) = Vg and ∑o∈O mini vi(o) = −Vc. The states are of the form (k, v, g, c)
where k ∈ [m], vi ∈ [−Vc, Vg], gi, ci ∈ [m] ∀i ∈ [n]. The items gi and ci refer to the least
valuable good and the least disliked chore in the bundle of agent i. The state (k, v, g, c) :=
True if and only if there is an allocation of objects {o1, . . . ok} the value of agent i is at least
vi and the bundle of i contains gi and ci as the least valuable good and the least disliked chore
respectively. The initial state (0; 0, 0 . . . 0; 0, 0) refers to the empty allocation and is vacuously
true. Consider the case when o1, which is a good for agent i is allocated to i. Then, the state
(1, 0, . . . vi(o1), . . . 0; ∅, . . . o1, . . . ∅; ∅ . . . ∅) is True and every other state is False. The state
that corresponds to the allocation of ok to some agent, say i is given as follows: If gi ̸= ok and
ci ̸= ok ∀i ∈ [n], then

(k, v1, . . . , vi, . . . vn; g1, . . . , gn; c1, . . . , cn) =

∨i∈[n](k− 1, v1, . . . , vi − vi(ok), . . . vn;

g1, . . . gn; c1, . . . , cn) (6.1)

where if ok is a good for agent i then vi(gi) ≤ vi(ok) else, vi(ci) ≥ vi(ok). Else, if gi = ok,
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then,

(k, v1, . . . vn; g1, . . . , gi = ok, . . . gn; c1, . . . , cn) =

∨g∈[o1,ok−1]
(k− 1, v1, . . . , vi − vi(ok), . . . vn;

g1, . . . , g, . . . gn; c1, . . . , cn) (6.2)

where g ∈ ∪r∈[k−1]or and vi(ok) ≤ vi(g).

Else, if ci = ok, then,

(k, v1, . . . , vi, . . . vn; g1, . . . , gn; c1, . . . ci = ok, . . . cn) =

∨c∈[o1,ok−1]
(k− 1, v1, . . . , vi + vi(ok), . . . vn;

g1, . . . , gi, . . . gn; c1, . . . c, . . . cn) (6.3)

where c ∈ ∪r∈[k−1]or and vi(ok) ≥ vi(c). The states (m, v, g, c) correspond to the final
allocation. An allocation corresponding to one of the final states is EQX if and only if
vi ≥ vj − vj(gj) and vi − vi(ci) ≥ vj for every pair of agents i, j ∈ [n].

We now argue that every entry in the DP table is indeed computed correctly. To that end, we do
an induction on the number of items allocated. For the base case, when one item is allocated,
to say agent i, then only i derives the value of vi(o1), and the rest of the agents get a value
0. Depending on whether o1 is a good or a chore for agent i, either gi = o1 or ci = o1 and
everything else is ∅. This is correctly captured in the base case. By induction hypothesis,
suppose all the table entries that allocate the first k− 1 items are computed correctly. Consider
the allocation of kth item as captured by the table entry (k, v, g, c).

First consider the case when gi ̸= ok and ci ̸= ok ∀i ∈ [n] in the entry (k, v, g, c). Suppose
RHS of Equation (6.1) is True. Suppose ok is a good for some agent i such that vi(gi) ≤ vi(ok)

(the case of chores can be argued similarly) and RHS of Equation (6.1) is True for the index i.
That is, (k − 1, v1, . . . , vi − vi(ok), . . . vn; g1, . . . gi, . . . gn; c1, . . . ci, . . . cn) is True. It means
that there is allocation of k − 1 items such that everyone gets a utility of
(v1 . . . vi − vi(ok), . . . vn) and (g1 . . . gn) and (c1, . . . cn) are the least valued goods and the
least disliked chores in the respective bundles. Then allocating ok to ith agent gives an
allocation with utilities (v1, . . . vi, . . . vn) such that the set of the least valued goods and least
disliked chores remain the same for all the agents (because vi(gi) ≤ vi(ok)). Therefore, LHS
of Equation (6.1) is True.
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On the other hand, suppose the LHS of Equation (6.1) is True. Suppose ok is a good and belongs
to agent i′s bundle. Then since gi ̸= ok, it means that gi is the least valued item in agent i′s
bundle. Consider the allocation after removing ok from i′s bundle. Then, it corresponds to
an allocation of k − 1 items such that each agent gets a utility of (v1, . . . vi − vi(ok), . . . vn)

such that (g1, . . . gn) and (c1, . . . cn) are the least valued goods and the least valued chores in
the respective bundles. Therefore, (k, v1, . . . vi− vi(ok), . . . vn, g1, . . . gn, c1, . . . cn) is True and
hence RHS of Equation (6.1) is True.

If ok is a good for agent i such that vi(gi) > vi(ok), RHS of Equation (6.1) is False by definition,
and LHS of Equation (6.1) is False since gi was the least valuable item in i′s bundle but gi ̸= ok.

Now consider the case when gi = ok for some i ∈ [n] in the table entry (k, v, g, c). This means
that (k, v, g, c) corresponds to a state where ok is allocated to i who considers it to be a good.
Now suppose RHS of Equation (6.2) is True. Then, adding ok to i′s bundle increases its utility
to vi from vi − vi(ok) and since vi(ok) < vi(g), ok is the new least valued item in i′s bundle,
which is captured in the LHS and hence LHS is True. On the other hand, if LHS of Equation (6.2)
is True, then consider the allocation post removing the item ok from i′s bundle. Then, RHS of
Equation (6.2) is True for a least valued item g in i′s bundle from {o1, . . . ok−1}. The case when
ci = ok for some i ∈ [n] is argued similarly. This settles the claim that the table entries are
correctly computed at every step.

The states (m, v, g, c) correspond to the final allocation. An allocation corresponding to one
of the final states is EQX if and only if vi ≥ vj − vj(gj) and vi − vi(ci) ≥ vj for every pair of
agents i, j ∈ [n].

Among the states that correspond to EQX allocations, the algorithm selects the one that
maximizes UW, that is, ∑i∈[n] vi or EW, that is, mini∈[n] vi. The total number of possible states
is O(m2n+1 ·Vn), where V = Vg + |Vc|. Computing one state requires look-ups of at most n
previously computed states. Therefore, the time required to compute all the states is
O(n · m2n+1 · Vn). Finding the UW of an EQX allocation (corresponding to every final state
that returns True) takes O(n) time and computing EW takes atmost O(n2) time. The final
step is to compute the maxima of these values. This takes a quadratic overhead in the number
of final states that corresponds to True. Hence, the total runtime is bounded by
O(n3 ·m4n+2 ·V2n).

Note that when valuations are {1, 0,−1}, we have V ≤ 2m and, hence, the algorithm runs in
polynomial time for a fixed number of agents.
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6.6 EF+EQ+PO Allocations

Proposition 6.21. For {w, 0,−w}-valuations, an EQ+PO allocation is also envy-free (EF).

Proof. Suppose Φ is an EQ+PO allocation for the given instance. EQ implies that we have
vi(Φi) = vi(Φj) = k · c and PO ensures that if an agent receives an item o with value −w,
then everyone else values o at −w. (Else, if there is an agent i such that vi(o) = 0 or c,
then allocating o to i is a Pareto improvement). Likewise, if an agent receives an item that it
values at 0, then everyone else values that item at either 0 or −w, again for the same reason.
Now suppose Φ is not EF. Then, there is a pair of agents i and j such that vi(Φi) = k · c but
vi(Φj) > k · c = vj(Φj). This implies that there is an item o in j′s bundle that is valued at 0
(or −w) by j but valued at w (or 0) by i. Allocating o to i is a Pareto improvement, which is a
contradiction. Therefore, Φ is EF.

Since the allocations constructed in the proof of Theorem 6.2 and Theorem 6.16 is EF, therefore,
we get the following results.

Corollary 6.22. Deciding whether an instance admits an allocation that is simultaneously

EF+EQ1 or EF1+EQ1 is (weakly) NP-complete.

Corollary 6.23. Deciding whether a type-normalized instance admits an allocation that is

simultaneously EF+EQ1+PO or EF1+EQ1+PO is (strongly) NP-hard.

Notice that for {1, 0,−1} valuations, a Pareto optimal allocation is EF1 if and only if it is EFx,
and is EQ1 if and only if it is EQX. Therefore, the above two results hold for all combinations of X
+ Y + PO, where X∈ {EFx, EF1} and Y∈ {EQX, EQ1}. The allocation constructed in Theorem 6.18
can be easily verified to be EF1, thereby confirming the following result.

Corollary 6.24. For {1, 0,−1} valuations, an EF1+EQ1+PO allocation can be computed in

polynomial time, whenever such an allocation exists.

6.7 Concluding Remarks

We present a comprehensive picture of the existence and computational complexity of
approximate equitable allocations for mixed items, coupled with efficiency and welfare
notions. We show that finding an EQ1 allocation for instances with mixed items is NP-Hard,
unlike the ‘only goods’ and ‘only chores’ settings where the problem admits efficient
algorithms. We also present several tractable cases that can be solved efficiently by careful
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transfers of items among agents. Further, we show that deciding the existence of EQ1+PO
allocation is strongly NP-Hard even for type-normalized valuations. We settle the complexity
of finding welfare-maximizing EQ1 allocations by presenting a pseudo-polynomial time
algorithm. A polynomial time algorithm is ruled out because of the known (weak) hardness
result for the same. The question of deciding the existence of EQ1 allocations under
normalized valuations stands open.
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Chapter 7

Generalized Consesus Allocations- Valuing the

Perspectives of Others

“If people do not believe that mathematics is simple, it is only because they do not

realize how complicated life is."

- John von Neumann, Archaeology of Computers–Reminiscences, 1945-1947

7.1 Introduction

The question at the heart of resource allocation is to find a good allocation — and as the reader
may anticipate, this further prompts the issue of what makes one allocation better than another,
and also if there is an absolute sense in which an allocation can be thought of as a “good”
allocation.

In the context of cake cutting, the existence and complexity of “exact divisions”(where all
agents agree on the value of the division) has been well-studied, usually referred to as
consensus halving (Simmons and Su, 2003; Deligkas et al., 2021b; Filos-Ratsikas and Goldberg,
2019). In this problem, a homogenous resource is to be divided into two parts such that every
agent values the two parts equally. Formally, there are n agents with valuation functions over
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the interval say I = [0, 1]. The goal is to divide the interval into pieces using at most n cuts
and assign a label from {+,−} to each piece, such that every agent values the total amount of
I labeled ‘+′ and the total amount of I labeled ‘−′ equally. Prior results have shown that
consensus halving and its approximate versions (in which there is a small discrepancy
between the values of the two portions), are hard even for agents with simple restricted
valuation functions (Filos-Ratsikas et al., 2020; Filos-Ratsikas and Goldberg, 2018, 2019).
Generalizations of consensus halving where instead of two parts, the homogenous resource is
to be divided into k parts of equal value to all the agents have also been explored (Simmons
and Su, 2003; Filos-Ratsikas et al., 2020).

In a similar vein, in the context of indivisible items, we pose the “exact-and-equitable” division
question. In contrast to the consensus halving scenario, in our setting, the items can not be
fractionally assigned and there is no underlying geometry. In particular, suppose agent i values
item j at uij: we would like to divide the m items into n bundles in such a way that every agent
values every bundle at ν, for some common value ν. Note that this is already weakly NP-hard
to determine between two agents and m items with identical valuations1. Our first result is to
show that the problem is NP-complete even in the setting of additive binary valuations (which
is to say that all utilities uij are either 0 or 1, and the value that an agent has for a bundle is the
number of items in it that it values at 1). In particular, we show hardness when the problem is
to determine if m items can be divided into n bundles so that every agent values every bundle
at 1, a constant independent of the number of items.

Technical Motivation.

In practice, a perfectly equitable consensus may, in general, be too much to ask for. A natural
relaxation to ask for an approximate consensus: where all agents agree that all bundles have a
value in some specified range, say [p, q]. We show that even in the setting of additive binary
valuations, the problem of dividing m items into a collection of k bundles so that all k bundles
are valued at either 0 or 1 is NP-complete, evenwhen each agent values two items and each item
is valued by at most four agents. From an algorithmic standpoint, note that iterating over all
possible ways of dividing m items into any number of bundles requires 2O(m log m) · nO(1) time.
This can be used to determine the existence of an allocation with any desired set of properties
with an overhead in running time proportional to the time required to validate the properties

1This can be shown by a standard reduction from the Partition problem involving k numbers {n1, . . . , nk}:
introduce k items and have both agents value the jth item at nj: this instance admits an exact and equitable
allocation if and only if the k numbers can be partitioned into two subsets whose sums are equal.
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Strong Security Weak Security Strong Abundance Weak Abundance

Capacitated
NP-complete

(Theorem 7.4 and Corollary 7.6) NP-complete
(Theorem 7.16 and Corollary 7.17)

Open
Egalitarian

NP-complete
(Theorem 7.7 and Corollary 7.8)

Utilitarian
NP-Complete
(Corollary 7.9)

(Left) Extremal
Valuations

P P P P

Table 7.1: A partial summary of our results. The egalitarian version of the problem
asks if every agent’s utility is at least a given target, while the utilitarian version asks if
the total utility derived by all agents meets a given target. For (left) extremal instances,
we give efficient algorithms for all the capacitated problems.

sought. Assuming ETH, we show that there is no 2o(m log m) · nO(1) algorithm for the following
closely related question: given n agents valuations of m items and a number k, and parameters
p, q and c, is it possible to divide m items into k bundles so that every agent values all but c of
the k bundles in the range [p, q]? We show this hardness result for p = 1, q = 5, and c = 1.
We note that in our setting of approximate division, it is possible that k < n, and the final
allocation of bundles to agents associated with this division would implicitly allocate empty
bundles to some agents.

Given the hardness of finding even “almost” exact equitable divisions, we consider other ways
of relaxing the demands we make from a perfectly equitable consensus allocation. Here, we
treat a common valuation as a target lower or upper bound, instead of an exact goal. Given an
allocation (Φ1, ..., Φn), we think of the base value of a bundle Φi as being vi(Φi): the value
that the agent the bundle has been assigned to has for it. Nowwe consider allocations where all
external valuations of any bundle are: (a) at least the base value; and (b) at most the base value.
These concepts relate also to the quality of the valuations from a “user experience” perspective,
and we motivate this with the following concrete examples.

Real-World Motivation.

Our first notion aims to find an allocationwhere the agents feel validated/secure by the opinions
of others. An agent feels secure if the other agents value the items she owns highly – the sense
of security for an individual is linked to how much other agents appreciate her possessions. If
an agent owns a bundle that she values highly but that everyone else deems worthless, then it
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is natural for the agent to be unhappy about the situation, or at any rate, be suspect about their
own judgement. For instance, consider that a piece of land may be valued very highly by an
agent, whom we call a, based on its virtues as explained by a real estate agent. However, it is
possible that the said piece of land is not resourceful in the traditional sense: so the other agents
would not value it as much. The valuations of the other agents may alert a to the possibility
that their choice is sub-optimal. Overall, in any situation where goods or resources are being
allocated, people often want to be recognized or appreciated for what they own or contribute.

The opposite situation is also something that one might want to avoid: when the agents feel
that their bundle is useless, even as other agents disagree. That is, the agents underestimate
the worth of their bundles. For example, say a company has announced a collection of goods
as bonuses for their employees. If an employee, say e, ends up with a good they already have,
she may not value it very much, while another employee may value it much more. Note that e
may not be envious of any other employees in this situation, and may not even trigger envy
among other agents. It is plausible that e values all goods similarly, and all other agents value
their bundles at least as much as they value e’s bundle. However, we propose that e may still
be unhappy because of their bundle being perceived as being valuable by other employees while
they feel they know better. The dissatisfaction is from a sense of being misunderstood for
having more than what (they feel) they actually have. In a housing market, a tenant may be
given a smaller unit than she expected (contrary to others who consider the unit rich enough),
leading her to underestimate the value of her living space and potentially feel dissatisfied with
the living situation.

In recent work, Hosseini (2023) argues that the current fairness criteria fall short of
encompassing the intricacies of human decision judgment and psyche. The author says that
human value judgment is rarely self-reflective and is often influenced by various individual,
social, and cognitive factors. The author explicitly asks the question “What (and how)

cognitive and behavioral factors influence individuals’ perception of fairness, and how should

these human judgments form new fairness concepts and inform the design of new algorithms?".
We believe that our work takes a step forward in answering the above question as we
introduce novel concepts that capture elements of human psychology molded and influenced
by the perspectives of others.

We defer the formal definitions to Section 7.2, but introduce the main ideas here, which are
easily stated. Fix an allocation Φ of a set of m goods among n agents, and let a and b be an
arbitrary but fixed pair of agents. Let’s say that a’s value for his bundle happens to be u, while
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b values that bundle at w. The key notions we explore are the following. The agent b makes a
insecure if b does not value a′s possessions as much, that is, w < u. And the agent a is modest

with respect to b if a herself does not value her bundle as much, that is, w > u. If an allocation
has no insecure agents, we call it a strongly secure allocation, and if an allocation has nomodest
agents, we call it a strongly abundant allocation. We also suggest that it is irrational for agent a
to be rattled by agents who it perceives as being not as well-off as herself. Therefore, if we insist
that a’s value for b’s bundle being at least u is a pre-requisite for triggering the emotions above,
we say that the agent’s behavior is rational. An allocation that satisfies the weaker requirement
of not having rationally insecure agents is called a weakly secure allocation, and analogously,
an allocation that does not have rationally modest agents is called a weakly abundant allocation.

Allocations that are both strongly secure and strongly abundant is called an exact division or a
consensus allocation. In particular, a complete allocation Φ is said to be an exact division with
ratios (w1, . . . , wm) if all agents “agree” that the value of bundle i is wi for all i ∈ [m]. Our
notion of an exact-and-equitable allocation extends the notion of a consensus allocation further
by requiring that all the ratios are the same.

Despite the desire for traditional fairness objectives such as envy-freeness (where each agent
prefers their own bundle over others’) and proportionality (ensuring each agent receives a
proportional share), it’s important to note that these goals may not always be guaranteed in a
complete allocation scenario. The definitions we propose overcome this non-existence.
Strongly secure (respectively, abundant) allocations always exist. They can be obtained, for
example, by giving all goods to the agent who values the entire bundle the least (respectively,
the most). However, these allocations are evidently not desirable, so to pose a more reasonable
question, we impose cardinality and welfare constraints on the bundles, requiring that no
agent receives more than k items. Our main results are summarized in Table 7.1. We show
that finding good allocations in the sense of security and abundance is intractable in
conjunction with cardinality constraints and welfare goals in general. To complement the
hardness, we give efficient algorithms for the cases when agent preferences are “extremal”
(Elkind and Lackner, 2015), demonstrating a non-trivial tractable subclass of instances. We
note that the practical applicability of the extremal preference model extends to situations
with location constraints. For example, in scenarios related to land allocation, areas in close
proximity to amenities may emerge as the preferred choice among agents.

We note here that the goals we present here may be at loggerheads with the traditional fairness
goals. For instance, consider an example with two goods ga and gb and two agents a and b,
where a approves only ga and b approves only gb. It is easy to verify that all secure allocations
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have an envious agent and the only envy-free allocation, which allocates ga to a and gb to b is
indeed insecure for both the agents! This is precisely because the goal here is to shift the focus
from envy (which an agent feels towards others) to validation (which an agent expects from
others).

Related Work.

One of the widely used notions of judging the quality of an allocation is the extent of envy.
Given an allocation, an agent envies another if she perceives the bundle of the other agent to
be more valuable than her own. An allocation is envy-free if no agent envies any other agent
(Gamow and Stern, 1958; Foley, 1967; Budish, 2011; Lipton et al., 2004). Another compelling
notion is equitability, in which agents derive equal utilities from their assigned shares (Dubins
and Spanier, 1961; Gourvès et al., 2014; Freeman et al., 2019). Note that the trivial allocation
that leaves every agent empty-handed is vacuously envy-free and equitable. Therefore, in the
interest of a non-trivial pursuit, one is typically interested in fair allocations that also satisfy
some criteria of economic efficiency. Completeness (every good should be allocated to some
agent), Non-wastefulness (no agent receives a good that is worth nothing to her and worth
something to another agent), and Pareto-efficiency (there is no other allocation that would
make at least one agent strictly better off while not making any of the others worse off) are
a few standard notions of efficiency in the literature. Allocations are also judged by welfare,
which is a measure of the utility that the agents derive from their respective bundles. There
are several notions of welfare corresponding to the way individual utilities are aggregated –
egalitarian welfare is the lowest utility achieved by any agent; utilitarian and Nash welfare are
the sum and the geometric mean of individual utilities respectively (Caragiannis et al., 2019b;
Freeman et al., 2019; Barman et al., 2018a; Aziz et al., 2023b).

Recent works have also considered consensus halving when the resource is a set of
homogenous items but without a linear ordering (Goldberg et al., 2022). As a discrete
counterpart to consensus halving, a well-studied problem is Necklace Splitting (Filos-Ratsikas
and Goldberg, 2019). Here, the input is an open necklace with kai beads of color i, for
1 ≤ i ≤ n. The task is to cut the necklace in (k − 1) · n places and partition the resulting
substrings into k collections, each containing precisely ai beads of color i, 1 ≤ i ≤ n. An
“open necklace” means that the beads do not form a cycle, but a string. Here, it is implicitly
assumed that the beads are valued identically by everyone.

Towards incorporating the perspectives of others, Shams et al. (2022) proposed the notion of

212



7.2 Preliminaries

approval envy, where an agent a experiences approval envy towards b if she is envious of b,
and sufficiently many agents agree that this should be the case, from their own perspectives.
Our work resembles this line of thought that takes into account the others’ perspectives but
demands that the other agents should agree on a certain valuation of the bundle in question.

Unlike envy-freeness, our notions involve an interpersonal utility comparison, which is well
substantiated by Herreiner and Puppe (2009). Here, the author asserts, with empirical
evidence, that human perceptions of fairness are seldom aligned with theoretical properties
like envy-freeness and, instead, are often shaped by interpersonal comparisons, a facet deeply
rooted in human behavior. The author further argues that interpersonal comparisons are
dominant and envy-freeness plays a secondary role in situations in which Pareto optimality
and inequality aversion (again, an interpersonal utility comparison) are not sufficient to
determine a fair allocation.

7.2 Preliminaries

In this chapter, we focus entirely on binary valuations, which is the special case when vi,j ∈
{0, 1} for all i ∈ [n], j ∈ [m]. We note here that binary valuations are a crucial subclass
with simple elicitation and several works in computational social choice literature (Brams and
Fishburn, 1978; Lackner and Skowron, 2023; Halpern et al., 2020; Barman et al., 2018b) have
paid special attention to the binary case. An instance I = {A, O, v} of the allocation problem
is said to have an extremal interval structure with respect to goods if there exists an ordering σ of
the goods such that the goods liked (valued at 1) by any agent a, denoted byP(a), forms a prefix
or suffix of σ (Elkind and Lackner, 2015). Further, we say that I has a left (respectively, right)
extremal interval structure with respect to goods if there exists an ordering σ of the goods such
that for every agent a, the set of goods P(a) forms a prefix (respectively, suffix) of σ. We note
here that the practical applicability of the extremal preference model extends to situations with
location constraints, for instance, in scenarios related to land allocation, areas near amenities
may emerge as the preferred choice among agents.

We now turn to the definitions that, to the best of our knowledge, are introduced in this work.
First, we say that an allocation is an exact and equitable allocation if every agent values every
bundle at a common value; in other words, there exists a value ν such that for all i, j ∈ [n]
ui(Φj) = ν. An (k, p, q, c)-approximate exact and equitable allocation is a division of m items
into k bundles where every agent has an “almost identical” valuation of all but c bundles; that
is, for all i ∈ [n] and for at least k − c values of j ∈ [k], it is true that ui(Φj) ∈ [p, q]. For
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the remaining definitions, we let a and b be an arbitrary but fixed pair of agents, Φ be a fixed
allocation. Say a values her bundle at u.

Strongly Secure Allocation.

Agent a is insecure with respect to b if b’s valuation of a’s bundle is less than u. That is,
ub(Φa) < ua(Φa). An allocation is strongly secure if no agent is insecure with respect to
another. That is, ∀a, b : ub(Φa) ≥ ua(Φa).

Strongly Abundant Allocation.

Agent a is modest with respect to b if b’s valuation of a’s bundle is more than u. That is,
ub(Φa) > ua(Φa). An allocation is strongly abundant if no agent is modest with respect to
another. That is, ∀a, b : ub(Φa) ≤ ua(Φa).

Weakly Secure/Abundant Allocation.

Agent a cares for b if a’s valuation of b’s bundle is at least u. That is, ua(Φb) ≥ ua(Φa). Else, a
does not care for b. An allocation is weakly secure if for every pair of agents a, b; it holds that if
a is insecure with respect to b, then a does not care for b. That is, if ∃a, b : ub(Φa) < ua(Φa),
then ua(Φb) < ua(Φa). Likewise, an allocation is weakly abundant if for every pair of agents
a, b; it holds that if a is modest with respect to b, then a does not care for b. That is, if ∃a, b :
ub(Φa) > ua(Φa), then ua(Φb) < ua(Φa)

Note that an allocation is a consensus allocation if it is both strongly secure and strongly
abundant. Also, observe that every strongly secure (abundant) allocation is also weakly secure
(abundant), but the converse is not necessarily true.

Existence and ComputationalQuestions.

Consider the following allocations: Φ assigns the grand bundle to the agent who values it the
least and assigns the empty bundle to all other agents; while Φ′ assigns every good to the agent
who values it the least. It is easy to verify that both Φ and Φ′ are strongly secure allocations.
This implies that a strongly (and hence, weakly) secure allocation always exists, contrary to
the fact that their fairness counterparts, i.e. envy-free or equitable allocations may not exist.
However, note that neither of the above allocations are satisfying, in an intuitive sense of the
phrase. The first one is problematic since it is rather skewed, and the second one seems to be
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optimizing for theworst possiblewelfare. It is also straightforward to come upwith analogously
trivial allocations that are strongly abundant, and equally unremarkable. We therefore propose
and study the following computational questions, where we add capacity constraints so as to
obtain secure (and abundant) allocations with better welfare guarantees than Φ and Φ′.

ComputationalQuestions.

We conclude this section with the computational questions that we address in this paper. We
focus on allocations with cardinality constraints, wherein we require the number of goods in
all bundles to be at most k, and k is a part of the input. Specifically, we consider the following
variations of consensus-based division and one-sided consensus problems:

Exact Eqitable Allocations
Input: A set A of n agents, a set O of m goods, a valuation matrix v ∈ {N}m×n, and p ∈N.
Question: Does there exist a partition of the m goods into n bundles such that each agent
values each bundle at p?

Approximate Exact Eqitable Allocations
Input: A set A of n agents, a setO of m goods, a valuationmatrix v ∈ {N}m×n, and k, p, q, c ∈
N.
Question: Does there exist a (k, p, q, c)-approximate exact and equitable allocation?

Strongly Secure Capacitated Allocation
Input: A set A of n agents, a set O of m goods, a valuation matrix v ∈ {0, 1}m×n, and k ∈N.
Question: Does there exist a strongly secure allocationwhere each bundle has at most k goods?

Strongly Secure Capacitated Allocation

(Egalitarian)
Input: A set A of n agents, a set O of m goods, a valuation matrix v ∈ {0, 1}m×n,
and k, ℓ ∈N, ℓ ̸= 0.
Question: Does there exist a strongly secure allocation where each bundle has at
most k goods and each agent has a utility of at least ℓ?
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Strongly Secure Capacitated Allocation

(Utilitarian)
Input: A set A of n agents, a set O of m goods, a valuation matrix v ∈ {0, 1}m×n,
and k, ℓ ∈N, ℓ ̸= 0.
Question: Does there exist a strongly secure allocation where each bundle has at
most k goods and total utility is at least ℓ?

The problems for weakly secure, strongly abundant, and weakly abundant allocations are
defined analogously.

7.3 Exact Equitable Allocations

We begin by showing that finding an exact allocation that is equitable is hard even in the setting
of additive binary valuations, for a constant target valuation.

Theorem 7.1. The Exact Equitable Allocation problem is NP-complete by a reduction from

3-Coloring.

Proof. Let G = (V, E) be an instance of 3-coloring, where V = {v1, . . . , vp} and
E = {e1, . . . , eq}. Recall that G is a YES-instance of 3-coloring if and only if V can be
partitioned into three parts so that every edge has at most one endpoint in each part. We
assume WLOG that G is connected. We describe now an instance of Exact Eqitable
Allocation based on G as follows. We have m := p + 2q + 3 items overall, one
corresponding to each vertex and two corresponding to each edge, and three “special” items.
The vertex items are denoted gv

i for 1 ⩽ i ⩽ n and are called “vertex items”. We use ge
i for

1 ⩽ i ⩽ n to denote one set of items corresponding to edges, and these are called “ID” items,
and we use gd

i for 1 ⩽ i ⩽ n to denote the other set of items corresponding to edges, and
these are called “dummy” items. Finally, the special items are denoted {α, β, γ}. We also have
n := q + 3 agents, denoted {a1, . . . , aq}, one for each edge, and {b1, b2, b3}, who we refer to
as the forcing agents. The agent corresponding to the edge ej = (va, vb) likes the vertex items
gv

a and gv
b , and the ID item ge

j corresponding to the edge ej, and all the dummy goods. The
three forcing agents approve all the dummy goods and the special items. Overall, now we
want a partition of p + 2q items into q + 3 parts so that each agent values each part at 1. We
now argue the equivalence of these instances.
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Forward direction.

Let A, B, and C be a partition of V into three independent sets.. We can then construct an
allocation as follows. For the set A, create a bundle that contains all the vertex items gv

i
corresponding to vertices in A, along with the ID items ge

i corresponding to edges whose
endpoints lie in B and C, and the special item α. Let this bundle be denoted by BA. Define the
bundles BB and BC analogously (with the special items β and γ respectively). Further, assign
every dummy item gd

j to its own individual bundle, denoted Bj. With this allocation, it is easy
to verify that every agent values all parts at 1.

Reverse direction.

Suppose we have an exact equitable allocation for the instance as described above, then every
agent values each of the n bundles in the allocation at exactly 1. Indeed, the common value
cannot be less than one since there are items that are valued non-trivially, and it cannot be
more than 1 since all agents value the set of all items at n. Observe that all dummy goods must
be assigned to separate singleton parts, since the dummy items are universally valued and all
other items are valued by at least one agent — in particular, every vertex good is valued by at
least one agent corresponding to an edge because of our assumption that G is connected. The
remaining vertex and ID items must then be split up into three sets in such a way that no edge
agent assigns a value of more than 1 to each set. Given these constraints, the only possible way
to achieve this is if the vertex items in each of these remaining sets form an independent set in
G. Thus, any exact equitable allocation of our transformed instance implies a valid 3-coloring
of the original graph G.

Theorem 7.2. The Approximate Exact Equitable Allocation problem is NP-complete when

p = 0, q = 1, c = 0, and k = 3 by a reduction from 3-Coloring.

Proof Sketch. Let G = (V, E) be an instance of 3-coloring, where V = {v1, . . . , vp} and E =

{e1, . . . , eq}. We describe now an instance of Approximate Exact Eqitable Allocation
based on G as follows. We have p items, one corresponding to each vertex. The vertex items
are denoted gv

i for 1 ⩽ i ⩽ n. We also have q agents, denoted {a1, . . . , aq}, one for each edge.
The agent corresponding to the edge ej = (va, vb) approves exactly two items: gv

a and gv
b . Set

p = 0, q = 1, c = 0, and k = 3. The proof of equivalence is self-evident. This result holds
even when each agent values two items and each item is valued by at most four agents since
the 3-coloring problem is hard even for graphs where the maximum degree is four (Garey et al.,
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1976).

Theorem 7.3. Assuming ETH, Approximate Exact Equitable Allocation cannot be solved

in time 2o(m log m) · nO(1)
, even when p = 2, q = 3, and c = 1 by a reduction from (ℓ × ℓ)-

Permutation Clique.

Proof. The (ℓ× ℓ)-Permutation Cliqe problem is the following. The input is an integer ℓ
and a graph G with a vertex set [ℓ]× [ℓ], and the question is to determine if there exists a set
X ⊆ V(G) that is a clique in G and that induces a permutation of [ℓ]. It is known that unless
ETH fails, (ℓ× ℓ)-Permutation Cliqe cannot be solved in time O∗

(
2o(ℓ log ℓ)

)
Lokshtanov

et al. (2018).

We assume, without loss of generality, that there are no edges between any pair of vertices that
have a common value for the first coordinate (i.e, vertices of the form (i, ⋆) for any 1 ⩽ i ⩽ k);
and no edges between any pair of vertices that have a common value for the second coordinate
(i.e, vertices of the form (⋆, j) for any 1 ⩽ j ⩽ k). We show a polynomial-time reduction
from (ℓ× ℓ)-Permutation Cliqe to Approximate Exact Eqitable Allocationwhere the
reduced instance has p = 2, q = 3, c = 1, k = ℓ. We note that in the reduced instance, we will
have that m = O(ℓ).

First, introduce 2ℓ items: denote these by {p1, . . . , pℓ} ∪ {q1, . . . , qℓ}. We have two agents P
and Q. The agent P values the items {p1, . . . , pℓ} at 2 and {q1, . . . , qℓ} at 0, while Q values
the items {p1, . . . , pℓ} at 0 and {q1, . . . , qℓ} at 2. For every 1 ⩽ i, j, a, b ⩽ k such that (i, a)
and (j, b) are not adjacent, we introduce an agent Ci,j,a,b who values the items pi and qb at 1.5,
qa and pj at 2.5, and all other items at 1. This completes the construction: we now show the
equivalence of the instances.

Forward Direction.

Let σ be a permutation of k such that (1, σ(1)), · · · (k, σ(k)) forms a clique in G. Then consider
the following k bundles: {p1, qσ(1)}, · · · , {pk, qσ(k)}. Note that P and Q value each bundle at
2. For an agent Ci,j,a,b, each bundle has value either 2 (if both items have value 1), 3 (if both
items have value 1.5), 4 (if one item has value 1.5 and the other has value 2.5), or 5 (if both
items have value 2.5). Note that there cannot be two bundles that have value 4, since the only
way for this to happen is if {pi, qa} and {pj, qb} are bundles, but this will not be the case since
this would imply that the vertices (i, a) and (j, b) chosen for the clique are non-adjacent — a
contradiction. Based on this, it is easy to verify that there is at most one bundle whose value
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exceeds 3 for the agent Ci,j,a,b, and all bundles have a value of at least two since all bundles
have exactly two items.

Reverse Direction

Let B1, . . . , Bk be k bundles such that every agent values all but at most one bundle at either 2
or 3. Note that Bi ∩ {p1, . . . , pℓ} = 1 and Bi ∩ {q1, . . . , qℓ} = 1, for all 1 ⩽ i ⩽ k. Indeed, if
this is not the case, then some bundle has more than one p-item (or q-item) and therefore also
some bundle that has no p-items (respectively, q-items), leading to more than one bundle for
the agent P (respectively, Q) that they value differently from 2 or 3, which is a contradiction.
By renaming the bundles, we can ensure that pi ∈ Bi for all 1 ⩽ i ⩽ k. Denoting by σ(i)
the index j for which we have qj ∈ Bi, we claim that {(i, σ(i)) | 1 ⩽ i ⩽ k} forms a clique
in G. Indeed, suppose not: let us say that there is no edge between (i, a) and (j, b), where
a := σ(i) and b := σ(j). Then the agent Ci,j,a,b values the bundles {pi, qa} and {pj, qb} at
1.5 + 2.5 = 4, leading to two bundles for which the agent’s value is neither 2 nor 3, again a
contradiction. Because of this, also observe that σ is a permutation since no two vertices that
share a coordinate in common have an edge between them. This concludes the proof.

7.4 Secure Allocations

7.4.1 Hardness Results for Secure Allocations

Theorem 7.4. The Weakly Secure Capacitated Allocation problem is NP-complete by a

reduction from Equitable 3-Coloring.

Proof. Let I := (G = (V, E)) be an instance of Equitable 3-Coloring, where G is a connected
graph on n = 3k vertices and m edges. I is a yes instance only if G can be partitioned into 3
independent sets of size k each. We construct the reduced instance I ′ := (A, O, v; k + 1) of
the allocation problem as follows:

We introduce an edge agent ae for every edge e ∈ E and three special agents x, y, and z. We
introduce a vertex good gv for every vertex v ∈ V. We also introduce (k + 1)m copies of an
ordinary ⋆ good and three special goods, namely, ⋆x, ⋆y and ⋆z.

An edge agent ae corresponding to the edge e = (uv) likes all the special star goods and all the
vertex goods except those corresponding to its points. That is, ae likes
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⋆ . . . ⋆ ⋆x ⋆y ⋆z g1 g2 g3 g4 g5 g6

a12 0 . . . 0 1 1 1 0 0 1 1 1 1

a23 0 . . . 0 1 1 1 1 0 0 1 1 1

a34 0 . . . 0 1 1 1 1 1 0 0 1 1

a45 0 . . . 0 1 1 1 1 1 1 0 0 1

a56 0 . . . 0 1 1 1 1 1 1 1 0 0

a61 0 . . . 0 1 1 1 0 1 1 1 1 0

x 1 . . . 1 0 1 1 1 1 1 1 1 1

y 1 . . . 1 1 0 1 1 1 1 1 1 1

z 1 . . . 1 1 1 0 1 1 1 1 1 1

Table 7.2: Reduced Allocation Instance from Equitable 3-Coloring (Theorem 7.4),
where G in the original instance is a cycle on 6 vertices with the edge set
{(12), (23), (34), (45), (56), (61)}

.

{⋆x, ⋆y, ⋆z, g1, . . . gn} \ {gu, gv}. The special agents x, y and z like all the goods except ⋆x, ⋆y

and ⋆z respectively.

Note that there are m + 3 agents and (k + 1)m + 3 + 3k = (m + 3)(k + 1) goods. This
completes the construction. Table 7.2 shows an example of the above construction when the
graph G in the original instance is a cycle in 6 vertices. We now argue the equivalence.

The forward direction.

Suppose G has a 3-coloring given by vertex partitions X, Y and Z, such that |X| = |Y| =
|Z| = k. Then consider the allocation Φ under which an edge agent ae gets k + 1 ordinary ⋆

goods, x gets ⋆x ∪ X, y gets ⋆y ∪ Y and z gets ⋆z ∪ Z. Notice that every agent gets at most
k + 1 goods. We claim that every agent is strongly (and hence, weakly) secure with respect to
the allocation Φ. Indeed, note that an edge agent values his bundle at 0, and hence is secure
trivially. The special agents x, y, and z are secure with respect to each other, as they value
each others’ bundle at the maximum value k + 1. Further, an edge agent a value all but at
most one good from any of the special agent’s bundle. This is true as the special agents get an
independent set, any edge agent dislikes only her endpoints and at most one of the endpoints
of an edge can appear in any independent set. Therefore ua(Φx) ≥ k = ux(Φx), and so, all
the special agents are secure with respect to the edge agents.
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The reverse direction.

Suppose there exists weakly secure capacitated allocation Φ for the reduced instance I ′.

Claim 7.5. Under the allocation Φ, the special agents x, y and z must get the special goods ⋆x, ⋆y

and ⋆z respectively.

Proof. We prove the above claim for the agent x. It follows for y and z analogously. Notice
that by pigeonholing and cardinality constraint, every agent receives exactly (k + 1) goods.
Suppose x does not get ⋆x under Φ, which is the only good she dislikes. Then she derives the
utility of k + 1 from her bundle Φx. Now for x to be weakly secure, everyone else (except for
the one who gets ⋆x) must value Φx at no less than k + 1. Observe that x can not get any
ordinary ⋆ good. Otherwise, as ⋆ goods are not liked by any edge agent, therefore, x is made
insecure by the edge agent a who did not receive ⋆x. Indeed, x cares about a′s valuation of her
bundle, but ua(Φx) < k + 1. So, Φx ⊆ {⋆y, ⋆z, gv:v∈V(G)}. Consider the following cases.

• x gets at least 2 vertex items. Choose a good gv ∈ Φx such that the edge agent av

corresponding to v did not receive ⋆x. Such an agent exists as the graph is connected.
Note that x cares for av but is made insecure by her as uav(Φx) < k + 1.

• x gets at most one vertex good gv. If x gets gv and there is a corresponding edge agent av

who did not get ⋆x, then x is insecure and we are done. Suppose the only edge agent av

corresponding to gv gets ⋆x. Then x does not care for av and hence is secure at least with
respect to av. But, as everyone gets exactly k+ 1 ≥ 2 goods, so x must receive at least one
of the ⋆y or ⋆z, say ⋆y. Then, consider the agent y who now values Φy at k + 1. Observe
that y must get at least one vertex item, say gu again because of the cardinality constraint.
Then y cares for the edge agent au incident on the vertex u but is made insecure by au as
uau(Φy) < k + 1. We get a similar contradiction when x gets none of the vertex goods.

This establishes the claim.

Now notice that since x gets ⋆x, she values her bundle at exactly k and everyone else’s bundle at
k + 1, hence cares for everyone else’s opinion. Notice that the remaining k goods in x′s bundle
can not be all ⋆ goods, as then edge agents, who do not like them, will make x insecure. So, x
must get some vertex goods. Also, note that x can not get any of the ⋆ goods. Else, consider the
vertex good gv from x′s bundle and the corresponding edge agent av. Then uav(Φx) ≤ k− 1
(as av dislikes ⋆ good, and gv). Therefore, x must get k vertex goods, say X ⊆ V. Moreover, X
must form an independent set in G. If not, then say e ∈ E(X). Consider the agent ae who now
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dislikes 2 goods from x′s bundle, corresponding to her two end-points and hence values Φx at
at most k− 1, again making x insecure. A similar argument shows that y and z must also get
⋆y ∪ Y and ⋆z ∪ Z respectively, where Y and Z are vertex goods corresponding to the k-sized
independent sets in G. This shows the existence of 3 independent sets of equal size in G and
hence, concludes the argument in the reverse direction.

Corollary 7.6. The Strongly Secure Capacitated Allocation problem is NP-complete.

Proof. Notice that in the proof of Theorem 7.4, the allocation Φ in the forward direction is a
strongly secure allocation, and the reverse direction relies on the strictly weaker notions of
security. Therefore, the equivalence of the reduction from Equitable 3-Coloring also holds for
Strongly Secure Capacitated Allocation.

For our next result, we observe that deciding whether there exists a vertex cover of size n
2 in a

graph on n vertices isNP-complete. This can be seen by a reduction from vertex cover. Consider
an instance I := (G, k) of vertex cover. Suppose G has n vertices. Then we construct a graph
G′ from G by adding a clique of size (n− k + 1) and an independent set of size (k− 1) to G.
The number of vertices in G′ is n + (n− k + 1) + (k − 1) = 2n. We claim that (G′, n) is a
yes-instance if and only if (G, k) is a yes-instance. In the forward direction, if there is a k-sized
vertex cover S in G then, S along with the (n− k) vertices from the clique form a vertex cover
of size n in G′. In the reverse direction, any vertex cover S′ of G′ must have (n− k) vertices
from the clique. Then, S′ ∩V(G) is a vertex cover of size k in G.

Theorem 7.7. The Weakly Secure Capacitated Allocation (Egalitarian) problem is NP-

complete by a reduction from Vertex Cover.

Proof. Let I := (G = (V, E); k) be an instance of Vertex Cover where G is a simple graph on
n vertices and m edges and k = n

2 . We construct the reduced instance I ′ := (A, O, v; k + 1, 1)
of the allocation problem as follows:

• We introduce an edge agent ae for every edge e ∈ E and two special agents s and t. We
introduce an edge good ge for every edge e ∈ E and a vertex good gv for every vertex
v ∈ V. We also introduce two special goods gs and gt.

• An edge agent ae corresponding to the edge e = (uv) likes all the edge goods and
{gt, gu, gv}. The special agents s and t like all the edge goods and {gs, gt}.

Note that there are m + 2 agents and m + n + 2 goods. All the edge goods and gt are
universal goods, in the sense that they are liked by all the agents. This completes the
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gs gt g12 g23 g34 g14 g1 g2 g3 g4

a12 0 1 1 1 1 1 1 1 0 0

a23 0 1 1 1 1 1 0 1 1 0

a34 0 1 1 1 1 1 0 0 1 1

a41 0 1 1 1 1 1 1 0 0 1

s 1 1 1 1 1 1 0 0 0 0

t 1 1 1 1 1 1 0 0 0 0

Table 7.3: Reduced Allocation Instance from Vertex Cover (Theorem 7.7), where G in
the original instance is a cycle on 4 vertices with the edge set {(12), (23), (34), (41)}.

construction. Table 7.3 shows an example of the construction when the graph G in the
original instance is a cycle on 4 vertices. We now argue the equivalence.

The forward direction.

Suppose S ⊆ V be a vertex cover of size n
2 . Then consider the allocation Φ under which

the edge agent ae gets corresponding edge good ge, s gets {gs, gu:u∈S} and t gets {gt, gu:u/∈S}.
Notice that the above allocation Φ gives the utility of 1 to every agent, and the number of goods
in any bundle is at most n

2 + 1. Also, Φ is strongly (and hence, weakly) secure. Indeed,

• s is secure with respect to any edge agent. As s gets the goods corresponding to vertex
cover S, every edge agent values s′s bundle at at least 1, which is at least us(Φs). s and t
are secure with respect to each other, as they value each others bundle identically.

• Any edge agent ae and t are secure with respect to any other agent as they get a good
that is liked by everyone.

The reverse direction.

Let Φ be the capacitated allocation which is weakly secure and gives the utility of at least 1 to
every agent. Since the agents s and t like the goods {gs, gt, ge:e∈E}, they must get one of them
under Φ in order to derive the utility of at least 1. Suppose

• Φ allocates gs and gt to s and t respectively. Then, any edge agent ae cares for t and
therefore must get a good liked by t. This implies that every edge agent a must get some
edge good g. This forces s to care for all the edge agents and hence get a vertex cover

223



7. Generalized Consesus Allocations: Valuing the Perspectives of Others

of size at most n
2 in order to be secure. The case when Φ allocates gs to t and gt to s is

analogous.

• Φ allocates some edge goods ge and ge′ to s and t respectively. Then, if there is any edge
agent who derives utility from vertex goods only, then she is weakly insecure with respect
to s and t, so every edge agent must get exactly one good from {gs, gt, ge:e∈E} \ {ge, ge′}.
Consider the edge agent a who gets gs. Since a does not like gs, she must get a vertex
cover of size at most n

2 in order to derive the minimum utility of 1 and be secure against
every other edge agent. (Note that a cares for every other edge agent). The case when Φ
allocates gt to s and some edge good ge to t is analogous.

• Φ allocates gs to s and some edge good ge to t. By a similar argument as above, every
edge agent must get exactly one good from {gt, ge:e∈E} \ {ge}. Then, for s to be secure
with respect to all the edge agents, she must get a vertex cover of size at most n

2 . The case
when Φ allocates gs to t and some edge good ge to s is analogous.

In all the cases, at least one agent must get a vertex cover S of size at most n
2 in order to be either

secure with respect to other agents or to derive the minimum utility of 1. Since any super-set
of S is also a vertex cover, therefore I is a yes-instance and this completes the argument in the
reverse direction.

Corollary 7.8. The Strongly Secure Capacitated Allocation (Egalitarian) problem is NP-

complete.

Proof. Notice that in the proof of Theorem 7.7, the allocation Φ in the forward direction is
a strongly secure allocation, and the reverse direction relies on the strictly weaker notions of
security. Therefore, the equivalence of the reduction fromVertex Cover also holds for Strongly
Secure Capacitated Allocation (Egalitarian).

Corollary 7.9. The Strongly Secure Capacitated Allocation (Utilitarian) and Weakly

Secure Capacitated Allocation (Utilitarian) problems are NP-complete.

Proof. Notice that in the proof of Theorem 7.4, the allocation Φ constructed in the reduced
instance has a total utility of 3k. Therefore, setting l = 3k in both the Strongly and Weakly
Secure Capacitated Allocation (Utilitarian) problems establishes the hardness.
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7.4.2 Algorithms for Secure Allocations

We say that a good is universal if it is liked by all the agents. A good is said to be wastefully
allocated if it is allocated to an agent who does not derive any utility from that good.

Theorem 7.10. For left extremal instances, the Strongly Secure Capacitated Allocation

problem admits a polynomial time algorithm.

Proof. Consider a left-extremal instance I := (A, O, v; k) of Strongly Secure Capacitated
Allocation problem. The right-extremal setting is analogous. We first arrange the agents
{a1, a2, . . . an} in the increasing order of the number of goods liked by them (that is, in the
increasing order of the length of their intervals). Note that ai values all the goods valued by
a1, . . . ai−1 and all the goods valued by a1 are universal goods. We say that the goods liked by
the agent ai form the interval Ii. We now make the following claim.

Claim 7.11. For left-extremal instances, under any secure allocation, all the non-universal goods

must be allocated wastefully.

Proof. Suppose a non-universal good g is allocated non-wastefully to an agent a. By
assumption, since g is not a universal good, therefore, a ̸= a1. Also, a1 does not like g and so,
can be a potential cause of insecurity to a. To compensate, the agent a must be allocated a
good that is not liked by him but valued by a1. But due to the left extremal structure of the
valuations, there is no such good – all the goods liked by a1 are liked by a. Therefore, g must
be allocated wastefully.

The algorithm works as follows. Consider a bipartite graph G = (A, O, E) where the left and
right bi-partitions consist of goods and agents respectively. There is an edge (with capacity 1)
between an agent a and a good g is a does not like g. Add a source vertex s adjacent to all
the goods with a capacity of 1. Add a sink node t adjacent to all the agents with a capacity of
k. If G has a flow of value at least w, where w is the number of non-universal goods in the
instance, then the algorithm returns that I is a yes instance with the following allocation Φ. It
allocates all the non-universal goods corresponding to the flow edges. Now for the remaining
universal goods, they are allocated to agents, respecting the capacity constraints. That is, they
are allocated to agents whose bundle size is less than k. If there is no such agent then there
were more than nk goods to begin with, in which case, no allocation can respect the cardinality
constraint. Otherwise, at the end, all the goods are allocated and every agent gets at most k
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of them. If there is no flow of value at least w in G, then the algorithm returns that I is a no
instance.

To see the correctness of the above algorithm, we will show that it returns yes is and only if I
is a yes instance. Indeed if it returns yes, then it returns Φ, and G must have had the flow value
of at least w. Since there are only w non-wasteful goods, this implies that all the non-universal
goods are allocated wastefully under Φ along the flow edges, which does not cause any agent
to be insecure. Also note that every agent derives utility only from the universal goods, and
therefore any other agent also value their bundle at exactly the number of universal goods in
the said bundle. Therefore, Φ is the required capacitated secure allocation, and hence, I is a
yes instance.
On the other hand, suppose I is a yes-instance, with a witness allocation Φ′ Then by Claim 7.11,
all non-universal goods must be allocated wastefully under Φ′. This implies at least w goods
are allocated wastefully and therefore there is a flow corresponding to these goods has a value
of at least w. Then, the algorithm would have constructed the allocation Φ according to the
flow edges and returned yes based on the number of remaining goods and the capacities. If it
returned no, then the number of goods to begin with must have been greater than nk, which
would contradict the existence of Φ′. This settles the claim.

Theorem 7.12. For extremal instances, the Strongly Secure Capacitated Allocation problem

admits a polynomial time algorithm.

Proof. Consider an instance I := (A, O, v, k) of Strongly Secure Capacitated Allocation
problem. Let AL := (l1, l2, . . . lp) be the agents who prefer the left extremal goods and AR :=
(r1, r2, . . . rq) be the ones who prefer the right extremal goods, arranged in the increasing order
of their respective interval lengths. Let UL and UR be the set of items liked by everyone in AL

and AR respectively. We first make the following claim.

Claim 7.13. Under any secure allocation on extremal instances, any good g such that g /∈ UL ∪
UR must be allocated wastefully.

Proof. Consider a good g /∈ UL ∪UR. Then agents l1 and r1 do not value g. Suppose under
some secure allocation Φ, g is allocated non-wastefully to a left agent li. Note that li ̸= l1 as
g /∈ UL and l1 only values goods in UL. Since l1 does not value g, it can be a potential cause of
insecurity to li. To compensate, li must receive a good valued by l1 but not valued by herself.
But there is no such good due to the interval structure – all the goods liked by a1 are liked by
a. Similarly, if g is allocated non-wastefully to a right agent ri, then r1, who does not value g,
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will be a potential cause of insecurity to the agent ri. Therefore, g must be allocated wastefully
under any secure allocation.

Claim 7.14. Under any secure allocation, if any left (right) agent receives t goods from UL (UR),

she must also receive at least t goods from UR (UL).

Proof. Suppose not. Consider an agent a ∈ AL who gets t goods from UL, but at most t− 1
goods from UR under a secure allocation Φ. Then vr1(Φ(a)) ≤ t− 1 < t ≤ va(Φ(a)). This
implies that a is insecure with respect to r1.

The algorithm works as follows. Suppose without loss of generality |UL| < |UR|. Let P :=
{(g, g′) : g ∈ UL and g′ ∈ UR}. Then, P has exactly |UL| many pairs of goods. It first guesses
the number of agents in AL and AR who receive the pairs from P. Say, p1 agents from AL and
p2 agents from AR receive these pairs. Then it chooses the last p1 agents from AL (lp, lp−1, . . .)
and the last p2 agents from AR (rq, rq−1, . . .) and exhaust the pairs from P by allocating them
to the said agents. Call this partial allocation Φ. Now for all the remaining goods, we construct
a bipartite graph G = (A, O′, E) where the left and right bi-partitions consist of unallocated
goods and agents respectively. There is an edge (with capacity 1) between an agent a and a
good g if a does not like g. Add a source vertex s adjacent to all the goods with a capacity of
1. Add a sink node t adjacent to all the agents. The capacity of the edge from an agent a to
the sink t is k− 2Pa, where Pa is the number of pairs that a gets from P. If G admits a flow of
value at least m− 2|UL|, then the algorithm outputs Φ by allocating the remaining m− 2|UL|
goods wastefully according to the flow edges. Else, if G does not admit a flow of value at least
m− 2|UL|, the algorithm returns that I is a no instance.

To see the correctness of the above algorithm, we will show that it returns yes if and only if
I is a yes instance. Indeed, if it returns yes, it returns the above-described allocation Φ. It is
easy to see that Φ is a capacitated allocation by construction. Also, every agent derives utility
only from UL (or UR) and not both. Say agent a derives utility from UL. Then she is secure
with respect to all the left agents as UL is valued by all of them. Also, by Claim 7.14, a must
also receive goods from UR, which would imply that all the right agents also value her bundle
sufficiently. Hence, a is secure with respect to everyone. This concludes that Φ is a capacitated
secure allocation.
On the other hand, suppose I is a yes instance. LetΦ′ be the capacitated secure allocation. Then
by Claim 7.13, under Φ′, all the goods g /∈ UL ∪UR must be allocated wastefully. Suppose p′1
many agents from AL received goods from P and p′2 from AR received these pairs under Φ′. We
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modify Φ′ to an allocation Φ, wherein, the pairs from P are allocated only to the last contiguous
chunk of agents, that is, to {lp, lp−1 . . .} from AL and to {rq, rq−1, . . .} from AR. We will show
that Φ is also capacitated secure allocation. Suppose a pair from P, say (g, g′), is allocated to
li. Suppose lj such that j > i, does not get any such pair. Then lj must have received wasteful
goods that she does not value. By extremal structure, li also does not value any of the Φ′(li).
We can then swap a pair of goods from Φ′(lj) and (g, g′). It is easy to see that this does not
cause either li or lj to be insecure. Indeed, lj receives an equal number of goods from UL and
UR, so she is secure with respect to both left and right agents. Also, li receives a pair of goods
she does not value, and so is secure. We repeat the swaps for every such pair of agents and call
the final allocation Φ. Now when the algorithm guesses p1 = p′1, and p2 = p′2, it outputs the
partial allocation that overlaps with Φ when restricted to the pairs in P. Now the existence of
Φ itself guarantees that the remaining goods can be allocated wastefully and hence there must
be a flow of value at least m− 2|UL| in G. This implies that the algorithm finally returns yes
and this settles our claim.

Since every strongly secure allocation is also weakly secure, therefore, from Theorem 7.12, we
immediately have the following corollary.

Corollary 7.15. For extremal instances, theWeakly Secure Capacitated Allocation problem

admits a polynomial time algorithm.

7.5 Abundant Allocations

7.5.1 Hardness Results for Abundant Allocations

Theorem 7.16. The Strongly Abundant Capacitated Allocation problem is NP-complete by

a reduction from Vertex Cover.

Proof. Let I := (G = (V, E); k) be an instance of Vertex Cover, where G is a simple graph on
n vertices and m edges and k = n

2 . We construct the reduced instance I ′ := (A, O, v; k + 1)
of the allocation problem as follows:

• We introduce an edge agent ae for every edge e ∈ E and two special agents s and t. We
introduce a vertex good gv for every vertex v ∈ V. We also introduce m(k + 1) + 1 many
copies of a special ⋆ good.

• An edge agent ae corresponding to the edge e = (uv) likes all the goods except those
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corresponding to her endpoints. That is, ae likes {⋆, g1, g2, . . . gn} \ {gu, gv}. The special
agents s and t like all vertex goods.

Note that there are m+ 2 agents and m(k+ 1)+ 1+ n goods. This completes the construction.
Table 7.4 shows an example of the construction when the graph G in the original instance is a
cycle on 4 vertices. We now argue the equivalence of the reduction.

⋆ . . . ⋆ g1 g2 g3 g4

a12 1 . . . 1 0 0 1 1
a23 1 . . . 1 1 0 0 1
a34 1 . . . 1 1 1 0 0
a41 1 . . . 1 0 1 1 0
s 0 . . . 0 1 1 1 1
t 0 . . . 0 1 1 1 1

Table 7.4: Reduced Allocation Instance from Vertex Cover (Theorem 7.16), where G in
the original instance is a cycle on 4 vertices with the edge set {(12), (23), (34), (41)}.

The forward direction.

Suppose there exist a vertex cover S of size k in the original instance I . Then, consider the
allocation Φ that allocates (k + 1) copies of the ⋆ good to every edge agent, ⋆ ∪ S to the agent
s and V \ S to t. Note that as k = n

2 , every agent gets at most k + 1 goods under Φ. Also, Φ is
a strongly abundant allocation, as described below:

• s and t value their bundle at |S| = k. They both are abundant with respect to each other,
as they both value the same goods. Also, any edge agent a, dislikes at least 1 but at most
2 goods (corresponding to her endpoints) from S and hence value s′s bundle at either
(k− 2) + 1 or (k− 1) + 1. Therefore ua(Φs) ≤ k ≤ us(Φs), making s abundant with
respect to the edge agents. The argument for abundance of t with respect to ae is similar.

• Any edge agent values her bundle at the maximum possible value, which is the bundle
size, k + 1, and hence is always abundant with respect to any agent.

The reverse direction.

Suppose there exist a strongly abundant capacitated allocation Φ for the reduced instance I ′.
Notice that under Φ, because of the cardinality constraint, either s or t must get at least 1
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⋆ good, which she does not like. Say, s gets ⋆. Since every edge agent ae likes the ⋆ good,
therefore, for s to be abundant with respect to all of them, she must have at least 1 good in her
bundle disliked by all the edge agents. This forces s to get a vertex cover S of size at most k.
Indeed, if there is an edge agent a who is not covered by the vertices corresponding to what
s gets, then a likes the entire zs. That is, ua(Φs) = k + 1 > k = us(Φs), thereby making s
modest. Since any superset of S is also a vertex cover, therefore, I is a yes-instance.

Corollary 7.17. Strongly Abundant Capacitated Allocation (Egalitarian) and Strongly

Abundant Capacitated Allocation (Utilitarian) are NP-complete.

Proof. Notice that in the proof of Theorem 7.16, the allocation Φ constructed in the forward
direction, allocates a utility of at least k to every agent. Therefore, setting l = k and l = 3k + 1
establishes the hardness of the Egalitarian and Utilitarian versions of the problem respectively.

7.5.2 Algorithms for Abundant Allocations

Theorem 7.18. For left extremal instances, the Strongly Abundant Capacitated Allocation

problem admits a polynomial time algorithm.

Proof. Consider a left-extremal instance I := (A, O, v; k) of Strongly Abundant
Capacitated Allocation problem. We first arrange the agents {a1, a2, . . . an} in the
increasing order of the number of goods liked by them (that is, in the increasing order of the
length of their intervals). Note that ai values all the goods valued by a1, . . . ai−1 and all the
goods valued by a1 are universal goods. We first make the following claim.

Claim 7.19. For left-extremal instances, under any abundant allocation, no good can be allocated

wastefully.

Proof. Let Φ be an abundant allocation under which g is allocated wastefully to an agent ai.
Note that ai can not be the last agent in the ordering, as every good is liked by at least one
agent. Then, the last agent an who values g and the entire bundle of ai as well (by the extremal
structure), violates the abundance of ai. Hence, no good can be wastefully allocated under any
abundant allocation.

The algorithm works as follows. Consider a bipartite graph G = (A, O, E) where the left and
right bi-partitions consist of goods and agents respectively. There is an edge (with capacity 1)
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between an agent a and a good g if a likes g. Add a source vertex s adjacent to all the goods
with a capacity of 1. Add a sink node t adjacent to all the agents with a capacity of k. If G
admits a flow of value at least m, where m is the number of goods, then the algorithm returns
yes and the allocation Φ that allocates the goods according to the flow edges. Else, if G does
not admit a flow of value at least m, then the algorithm returns that I is a no instance.
To see the correctness of the algorithm, we will show that it returns yes if and only if I is a yes
instance. Suppose it returns yes and the allocation Φ. Note that Φ is an abundant allocation,
as it is non-wasteful and every agent values their bundle at her size which is the maximum
possible utility and hence they are abundant with respect to any other agent. It is easy to see
that Φ is capacitated by construction, hence I is a yes instance. On the other hand, suppose I
is a yes instance. Then there is a capacitated abundant allocation Φ′. By Claim 7.19, all goods
must have been allocated non-wastefully under Φ′. Therefore, the flow in G corresponding to
the allocation Φ′ has a value of at least m. Hence the algorithm returns yes.

Since strongly abundant allocations are also weakly abundant, so, Theorem 7.18 gives us the
following corollary.

Corollary 7.20. For left-extremal instances, the Weakly Abundant Capacitated Allocation

problem admits a polynomial time algorithm.

7.6 Experiments

We randomly generated 100 instances of fair division with binary valuations and conducted 10
iterations to explore the presence of exact equitable, approximate exact equitable, capacitated
strongly secure/abundant allocations. The instances generated had a small number of agents
(2− 4) and items (5− 8). In every iteration, less than 5% of the instances had exact equitable
allocations, while approximately 55%− 65% exhibited approximate exact equitable allocations.
Notably, capacitated secure and abundant allocations were present in over 80% of the instances.

7.7 Concluding Remarks

We introduced the notions of exact equitable allocations, secure allocations, and abundant
allocations. After establishing the hardness of finding exact equitable allocations and
approximate variations, we further studied the problems of finding secure and abundant
allocations in conjunction with cardinality constraints and utility goals from a computational
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perspective. The additional constraints are well-motivated, since it is easy to come up with
“lazy” allocations that meets the said criteria but are not interesting. The goals we present
here may be at loggerheads with the traditional fairness goals. For instance, consider an
example with two goods ga and gb and two agents a and b, where a approves only ga and b
approves only gb. It is easy to verify that all secure allocations have an envious agent and the
only envy-free allocation also happens to be insecure! This motivates the question of
determining the “price of” one of these goals relative to another, after fixing appropriate
quantifications of these criteria.

We leave open the question of the complexity of finding strongly andweakly secure or abundant
allocations without cardinality constraints in the presence of utility targets, either egalitarian or
utilitarian. Wewere also inconclusive about the problem of findingweakly abundant allocations
with cardinality constraints. It seems natural to use a round-robin approach to allocate goods
in such a way that achieves weak abundance, but it turns out that most variations of a round-
robin theme fail to produce weakly abundant allocations. Extending the realm of tractability
from extremal intervals is another open direction in this
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