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This thesis focuses on exploiting the dynamics and correlations of preferences over social net-

works for developing efficient group decision making systems. One of the main challenges

in any group decision problem is learning the individual preferences upon which decisions are

based. It is the position of this thesis that social networks—by capturing preference correlations

across individuals induced by social interactions—provide a natural and informative platform

for preference learning. By mathematical modelling of preference dynamics and correlations

over social networks, we focus on developing efficient algorithms for group decision making and

recommendations, with less required user data, and lower cognitive and communication burden.

We introduce empathetic frameworks in which individuals derive utility based on both their

own intrinsic preferences (or happiness) and empathetic preferences, determined by the satisfac-

tion of their acquaintances. After theoretically analysing this framework, we develop a scalable

algorithm for group recommendation, and empirically demonstrate its performance.

To capture the correlation of preference rankings on social networks, we introduce a network

formation model called ranking networks in which the similarity of two individuals’ rankings

determines the chance they are connected to each other. After a thorough theoretical analysis,

we use a special instance that we call preference-oriented social networks, for group decision

making when faced with missing preferences. We develop algorithms to predict unknown indi-

vidual preferences given known preferences of others in the social network and to make effective

group decisions with partial preferences. Our empirical results demonstrate that incorporating

social ties can significantly improve predictions and group decision making.
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Chapter 1

Introduction

Recent advances in computational networked systems (e.g., Internet, Web, email, online so-

cial network, and social media) have revolutionized our daily lives and interactions, where

information and people are united over the globe. Due to these high-impact technological de-

velopments, a new class of socio-computational challenges has emerged, requiring new models

of computation designed around the social, informational, psychological, and even economic

needs of people.

With the explosive growth of choices and information, we have more freedom to choose at

the expense of dealing with many overwhelming (minor or major) decisions in our day-to-day

lives, thus resulting in more frustration and less satisfaction for us—“more is less” [316]. As

such, the crucial role of decision-support systems (e.g., recommender systems) and navigational

tools (e.g., search engines) is inevitable in the near future, helping to inform us of and navigate

decisions and information space.

Of practical import and aligned with my research interests are social choice (or group

decision) problems, which address the problem of choosing an outcome or a decision, from a set

of alternatives, for a group of individuals (or agents) who have their own personal preferences

over the set of alternatives. Social choice problems in the physical and online worlds are

prevalent: for instance, when a group of friends chooses a movie to watch, a resort at which to

vacation, or a restaurant at which to eat; when a company (e.g., Facebook) decides on assigning

various advertisements to its users based on the relevance of ads and user preferences; selecting

a policy for an online system or a nation given individuals’ preferences, etc.

Social choice theory has its root in political science and economics. Of special interest to

these fields is the study of voting rules that take individual preferences as input, and output

a recommended option or a decision, which reflects some notion of consensus. However, nowa-

days, addressing the computational challenges in social choice is indispensable for computer

scientists, since many applications which deal with user preferences to make a decision (e.g.,

recommender systems, search engines, advertisement and marketing mechanisms, etc.) have

some sort of social choice problem at their core.

1



Chapter 1. Introduction 2

One of the main endeavours in any social choice problem is understanding individual pref-

erences upon which decisions are made or recommended. This understanding might be gained

by preference learning from historical user interaction data, or by preference elicitation via

asking relevant queries which result in revealing user preferences. In addition to understanding

user preferences, preference learning and elicitation have another common objective of reducing

the cognitive and communication burden imposed on users, by requiring as little information

as possible to make (close to) optimal decisions. The latter is essential to the practicality of

decision-support systems with the goal of filtering out irrelevant options and information.

1.1 Thesis Vision and Statement

It is the position of this thesis that social networks provide a natural and informative platform

for preference learning and elicitation and consequently social choice problems. Social networks

play a crucial role in facilitating a variety of social and economic interactions [187, 88], including

discovery of job opportunities [171] and the products we consume [154], how we vote [54], and

how we cooperate [136]. It is widely recognized that the behaviors of individuals in a network

are correlated with those of their friends or other social connections. These correlations are

usually explained by two sociological phenomena: homophily or social selection—the tendency

of people to associate with others whom they perceive to be similar to themselves—and social

influence—in which people tend to adopt the properties and attitudes of those to whom they

are connected. Because of this, and the increasing availability of user behavioral data, it is

essential to study the interplay of social network structure and individual behaviour, attitudes

and preferences.

In this light, specific questions direct the research in this thesis on social choice problems

in social networks: (i) What dynamics dictate how individual preference become correlated in

a social network over time (see Chapter 3)? (ii) How should one mathematically model such

correlations and dynamics (see Chapter 3 and Chapter 4)? (iii) Can such correlations and

dynamics be harnessed for more efficient preference learning and elicitation, and consequently

more effective group decision making? (see Chapter 3 and Chapter 5)

Thesis Statement. This thesis intends to advance the understanding and mathematical mod-

elling of preference dynamics and correlations over social networks and to exploit the computa-

tional and predictive power of these models to develop efficient algorithms for decision making

and recommendations, while requiring less user data, and imposing lower cognitive and commu-

nication burden on users.

1.2 Thesis Organization and Contributions

After reviewing the related work and background in Chapter 2, three chapters follow containing

the primary contributions of the thesis. Respectively, these chapters present models and algo-
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rithms for empathetic preferences, ranking networks, and preference-oriented social networks.

The contributions of these chapters are outlined below. Finally, Chapter 6 concludes the thesis

and present possible future research directions.

Chapter 3: Empathetic Social Choice on Social Networks. In Chapter 3, we introduce

the empathetic social choice framework [312] in which agents derive utility (or benefit) based on

both their own intrinsic preferences (or happiness) and empathetic preferences, determined by

the satisfaction of their acquaintances (e.g., friends voting for a vacation spot or a movie) while

considering both their own and others’ satisfaction. Empathetic utility in this sense reflects the

fact that a person’s happiness may be influenced by the happiness of others with whom they are

connected [135]. We study the theoretical conditions under which such empathetic preferences

are well-defined (i.e., converge to a fixed-point). We show that consensus decision making

(or group recommendation) problems with empathetic preferences can be recast as a weighted

preference aggregation over intrinsic preferences alone, when weights are determined by social

network structure. We develop two scalable iterative algorithms for consensus decision making.

We also generalize our empathetic framework to accommodate other social choice problems (e.g.,

constrained resource allocation, etc.) and show how some of our theoretical results (e.g., fixed-

point convergence) still hold. We also demonstrate that, in the general empathetic framework,

these other social choice problems can be viewed as using weighted preference aggregation. We

develop a scalable iterative method for estimating those societal weights, which serves as a

building block for solving other social choice problems. Through our empirical experiments, we

demonstrate the value of accounting for empathetic preferences in group decisions as well as

the performance of our algorithms. Our results confirm that neglecting empathy usually yields

sub-optimal group decisions which degrade the well-being of the group members.

Chapter 4: Ranking Networks. To capture the correlation of ranking preferences (or gen-

eral rank data) on social networks, in Chapter 4 we introduce a network formation model called

ranking networks [311], in which the similarity of two entities’ rankings over a set of options

determines the chance they are connected to each other. We theoretically analyze general

topological properties of this model, demonstrating that it exhibits some commonly observed

properties of real-work networks such as a small diameter, the existence of a giant connected

component, and shrinking diameter. We also derive closed-form formulae for estimating degree

distribution, edge density, and clustering coefficients under this model, but show that their com-

putations are very expensive. To counteract this, we develop easy-to-compute approximations

for the special class of distance-based ranking models, while studying properties that emerge

among networks in this class. We show how our approximations can be used for efficient model

learning when faced with missing data. Through empirical experiments, we demonstrate the

effectiveness of our approximation and learning methods.

Chapter 5: Group Recommendation on Preference-Oriented Social Networks. In

Chapter 5, we address how to use social network structure to support more accurate infer-
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ence of preference rankings and to make group decisions when some individual preferences are

unknown. To this end, we introduce the preference-oriented social networks (POSN) model

[313]—an instance of ranking networks—to capture and exploit the correlation of preferences

over social networks. We exploit this model to infer unobserved individual preferences given

observed preferences of others in the social network. Intuitively, if we know something about the

preferences of your friends, family or colleagues—or their friends, etc.— we should be able to

more accurately predict your preferences if any degree of homophily or social influence is present

in the underlying social network. We develop a Markov chain Monte Carlo method for inferring

unobserved preferences and evaluate the ability of our methods to predict unobserved prefer-

ences and support effective group decision making with partial preferences. We also propose

some enhancements to our inference and group decision making methods which improve both

the speed and efficacy of of our original methods. These enhancements build upon on a sim-

ple and seemingly natural assumption that not everyone has the opportunity to be acquainted

with everyone else in a society. Using various datasets (e.g., Flixster, Irish election, etc.), we

compare our group recommendation methods to different benchmarks which neglect the infor-

mation contained in the social network. Our empirical results demonstrate that accounting for

social ties can significantly improve predictions and group decision making/recommendation.

1.3 Bibliographic Notes

As Chapters 3–5 are based on the work coauthored with my thesis advisor Prof. Craig Boutilier

[312, 311, 313], I would like to acknowledge that I have borrowed some text from our original

papers, jointly written with him.



Chapter 2

Background and Related Work

This chapter is organized as follows. Social choice, and related computational problems and

models, are reviewed in Sec. 2.1. Probabilistic models of preferences, and their related learning

and inference problems, are discussed in Sec. 2.2. Topological properties, dynamics and for-

mation models of social networks, along with related computational problems, are outlined in

Sec 2.3.

2.1 Social Choice

People frequently have to arrive at joint (or collective) decisions, despite the fact that they might

possess conflicting preferences or attitudes. In our day-to-day lives, we regularly participate in

collective decision making processes, ranging from low-stakes or routine decisions (e.g., which

movies to watch, at which restaurant to eat dinner, etc.) to high-stakes decisions (e.g., which

president to elect, which economic policy to pass, etc.). Our participation in making a collective

decision might be in the form of either an informal negotiation process (e.g., discussing with

our friends to watch a specific movie) or a carefully specified protocol (e.g., vote for a preferred

political candidate in an election). Social choice theory—a sub-field of economics and political

science—provides a mathematical framework to study and develop mechanisms for collective

decision making. Using this framework, one can thoroughly analyse decision making processes

or protocols and their efficiency for making the “right” decision.

Generally speaking, social choice addresses the problem of choosing an outcome or a decision,

from a set of outcomes or alternatives, for a group of individuals (or agents) who have their own

personal preferences over the set of alternatives.. We present a formal definition of preferences

and then explain a variety of social choice problems and applications.

2.1.1 Preferences

Agent preferences over alternatives can be encoded as either rankings or utilities, called ordinal

preferences and cardinal preferences, respectively. We consider a set of alternatives, options, or

5
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items A = {a1, . . . , am} and a set of individuals (or agents) N = {1, . . . , n}. A strict preference

relation � over A is a binary, transitive, complete, asymmetric relation. A weak preference

relation % allows individuals to have ties in their preferences. However, we focus on strict

preferences and note that most of our results can be readily extended to weak preferences.

Given a strict preference relation, one can linearly order alternatives in A with respect

to �. In this sense, the preference of individual i over A can be presented in the form of a

strict preference ordering �i (i.e., a permutation of A). Let Ω(A) denote the set of all possible

permutations or preferences over A. Strict preferences can also be viewed as a ranking, that

is, a bijection r : A → {1, · · · ,m} mapping each alternative to its rank. The ranking indicates

the “place” an alternative holds in the preference ordering (i.e., rank 1 is the most preferred,

rank 2 is second most, and so on). Consequently, r−1(i) denotes the ith ranked alternative in

ranking r. The collection of agent preferences P = {r1, · · · , rm} is referred to as preference

profile. Similarly, the set of all possible preference profiles is denoted by Ω(A)n.

Agent preferences can also be represented as utilities or cardinal preferences in which an

agent’s preference is specified by a utility function u : A → R. Utilities are numerical values

associated with the alternatives. For any preference ordering, one always can find a set of

consistent utilities which do not violate the underlying ordering. Cardinal or ordinal prefer-

ences each offer certain advantages over the other. A utility function encodes more information

about individuals’ preferences (i.e., it is more expressive), including the intensity of preferences

and representing preferences in the form of a probability distribution; nonetheless, in the ab-

sence of common numeric value such as money, interpersonal comparison between utilities is

quite problematic and controversial [177, 42, 41]. This—together with the fact that much of

the social choice literature deals with rankings rather than utilities—motivates us to focus on

ordering/ranking preferences in this thesis.

2.1.2 Preference Aggregation

Preference aggregation, the problem of aggregating individual preferences into one collective

social preference relation, is arguably the most fundamental question in social choice theory.

Preference aggregation has a variety of applications in the social sciences, economics, political

science, and even computer science.

When there are only two alternatives, majority rule—built upon common sense and several

axiomatic characterizations [263]—suggests that society prefer a to b if and only if there are

more individuals who strictly prefer a to b than b to a. In order to generate a social preference

relation, one can naturally extend majority rule to more than two alternatives by considering

the majority rule for all possible pairs of alternatives. However, Condorcet noted that the

concept of social preference can be problematic for more than two alternatives by demonstrating

that majority rule can result in a cycle—known as the Condorcet paradox. Arrow [13] studied

the problem of preference aggregation in-depth and in a systematic manner. Arrow’s famous

impossibility theorem states that there is no general rule which can aggregate preferences over
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more than two alternatives while three natural, sensible properties are met simultaneously.

While this impossibility result seem discouraging at the first glance, it has provided a valuable

road map for further research.

One practical aggregation rule is Kemeny’s rule which finds a collective social ranking (some-

times referred to as the Kemeny consensus) with the minimum total number of disagreements

of voters on relative ranking of any pairs of alternatives. In other words, it minimizes the total

Kendall’s τ distance to all individuals’ preferences. Kendall’s τ distance of two rankings r and

r′ is the number of pairwise disagreement of alternatives in those two rankings:

dτ (r, r′) =
∑
k 6=l

I[r(ak) > r′(al) and r(al) < r′(ak)]. (2.1)

Kemeny’s rule is widely used in practical settings such as rank aggregation for information

retrieval applications (see Section 2.2.3 for details).

There are many interpretations of Kemeny’s rule: one can characterize it using maximum

likelihood estimation [364, 366] assuming that there exists a “correct” reference ranking of

the alternative while individuals’ preferences (or ranking) are noisy estimates of this reference

ranking. Kemeny’s rule has attracted considerable amount attention in computational social

choice literature. It is NP-hard to compute the Kemeny consensus [28, 117]. Despite this

computational difficulty, heuristic optimization techniques have been developed to effectively

approximate it. Local Kemenization [117] starts with a randomly chosen ranking, then itera-

tively swapping the order of adjacent alternatives in order to decrease the Kemeny cost ; this

process continues until no more improvements are possible.

Preference aggregation methods are not only limited to Kemeny’s rule. There is a class

of preference aggregation methods using positional scoring rule to rank the alternatives based

on their accumulated scores over all rankings (or preferences). Positional scoring rules will be

discussed in-depth in Sec. 2.1.3.

2.1.3 Voting

A natural and common approach for deciding among a pool of options is to vote over them and

then choose the winning option using some voting rule.

Voting Rules

The voting rule takes as input preference profiles (i.e., the collection of agent preferences) and

returns the winning alternative. Condorcet [107] proposed that a voting rule should always

select the winner which is preferred by majority of voters in any possible pairwise comparison,

if such an alternative exists. Such an alternative is called Condorcet winner and a voting rule

which selects the Condorcet winner, if one exists, is called Condorcet consistent. We now discuss

a variety class of voting rules adopting the taxonomy presented in [63].
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Positional Scoring Rules. Under a positional scoring rule, an alternative in each preference

(or ranking) is assigned a score based on its position in the ranking. The scores of each

alternative over all rankings are then added to form its cumulative score. The winner is the

alternative with the highest cumulative score. Generally speaking, any non-increasing function

f : {1, · · · ,m} → R, mapping possible rank positions into numerical scores, can be positional

scoring rule as long as f(1) > f(m). Under this definition of scoring rules, Fishburn [130] has

shown that no positional scoring rule is Condorcet consistent. Nonetheless, positional scoring

rules are widely-deployed due to their simplicity, computational tractability, and effectiveness in

practice. We here review several common positional scoring rules: plurality, Borda, k-approval,

and veto.

Plurality scoring assigns 1 to the first ranked alternative and 0 to all other alternatives.

Thus, using plurality, the winning alternative is the one ranked first most often. Note that

voters need not specify their entire ranking for the plurality rule to be used. A common

criticism of plurality is that it fails to assign partial credit for being ranked second, third, etc.

The Borda rule [106] addresses this issue by assigning a score of m− i to the alternative ranked

ith in a ranking. The Borda rule selects the alternative with highest total Borda score as the

winner. Due to its simplicity and advantageous axiomatic characterizations (for example see

[363]), this rule has been widely deployed in a range of applications from university council

elections to sport team rankings to political elections.

Under the anti-plurality or veto rule, the last ranked alternative in a ranking receives 0 while

the other alternatives are assigned 1; therefore, the winner is the alternative that appears least

often as the least-preferred alternative in the individual rankings. k-approval is a generalization

of plurality where the alternatives in the first k positions of a ranking receive 1 whereas the

other alternatives get 0.

Condorcet Extensions. We here review several Condorcet consistent voting rules, which

select the Condorcet winner if there is one. As mentioned earlier, the Condorcet winner is

that alternative which beats all other alternative in pairwise majority comparisons. Dodgson’s

rule chooses a candidate that is “closest” to being the Condorcet winner, where the notion

of distance for each alternative is defined based on the minimum number of swaps one must

perform on adjacent alternatives (in a given preference profile) to make that alternative a Con-

dorcet winner. The alternative with the smallest score (i.e., minimum number of swaps) is

the consensus winner. Deciding if an alternative is a consensus winner under Dodgson’s rule is

computationally intractable [28, 180]. Moreover, some other computational properties of Dodg-

son’s rule such as approximability [78] and fixed-parameter tractability [34] have been studied.

Young’s rule shares some similarity with Dodgson’s rule, but uses a different notion of distance

to the Condorcet winner.

Other Voting Rules. We here review some other voting rules that have some practical
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importance.

Single Transferable Vote (STV) is a popular runoff voting procedure which starts by search-

ing for the alternative that is ranked least often as the first-ranked alternative, then removes it

from all rankings in the preference profile. STV continues this elimination process until only one

alternative is left (the consensus winner). STV has been deployed in various elections around

the world including parliamentary elections in Australia and municipal elections in Cambridge,

MA.

The Bucklin Rule starts by looking at first-ranked alternatives in the preference profile to

determine whether an alternative has appeared more than n
2 times; if so, that alternative is the

winner. If not, it extends its pool by considering the alternatives in first and second place in

the preference profiles; if there is an alternative with more than n
2 appearances, it is the winner.

Otherwise, it continues expanding the pool in the same manner until one alternative appears

more than n
2 times. If two or more alternatives cross the threshold of n

2 in the same round, ties

are usually broken by the margin with which they have passed the threshold.

Approval voting [61, 62] is closely related to positional scoring rules (especially to k-approval).

In approval voting, every individuals can approve any number of alternatives and consequently

the alternative with the highest number of approval is selected as the consensus winner.

Manipulation

Real-world applications of social choice (e.g., elections) require individuals to report their prefer-

ences over a set of alternatives. One practical problem is that individuals might be incentivized

to misreport their true preference in order to induce the selection of a more desirable alter-

native. This behaviour is called strategic manipulation. One fundamental question is whether

there exist voting rules resistant to manipulation; this property is usually referred as strategy-

proofness. The answer is “no” as proven by Gibbard and Satterthwaite [153, 315] who show

that any strategy-proof voting rule with some sensible properties, which deals with at least

three alternatives, has to be dictatorship. In other words, assuming some sensible conditions

for desirable voting rules, any voting rule is manipulable for some preference profile when there

are at least three alternatives. However, this theorem does not hold, if one considers certain

restrictions on preference profiles. For example, one very specific restriction on the allowable

preferences, called single peakedness [275], is enough to guarantee the existence of strategy-proof

rules.

As it is theoretically impossible to prevent manipulation in general, one possible remedy is

to make manipulation difficult. This difficulty can take the form of computational difficulty

for finding the “correct” manipulation strategy. Following the work of Bartholdi et al. [30],

computer scientists have investigated how to exploit computational hardness as a barrier against

manipulation [93, 97, 124]. Computing manipulations is known to be NP-hard for several

rules, including STV [29]. The computational complexity of coalitional manipulation [294],

in which group of agents collaborate to change the outcome of voting in their favor, is NP-
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hard for maxmin [358] and Borda [35, 105] and Copland [128]. State-of-the-art research on

harnessing computational hardness in preventing manipulation is surveyed in [129]. However,

these computational complexity results should be interpreted cautiously as the hardness comes

from worst-case scenarios. This means that there are some settings (e.g., preference profiles)

under which manipulation of a specific voting rule is computationally intractable whereas for

most (common) settings, the manipulator might be able to efficiently compute a beneficial

manipulation strategy. Much recent research on manipulation has shown that some common

voting rules in the average case given certain preference distributions are manipulable [95, 300,

141, 346]. Also, some recent studies have relaxed the common assumption that manipulators

have full knowledge of other voters (for example, see [250]).

2.1.4 Resource Allocation

Many practical applications in social choice require mechanisms to allocate a collection of

resources (or tasks) to the individuals (or agents) under some notion of fairness. The huge

literature on welfare economics is dedicated to determining the efficient and fair allocation of

resources in society. However, we here very briefly review main fundamental concepts of this

field mostly from an algorithmic perspective.

Generally speaking, resource allocation of indivisible goods involves in assigning items from

a fixed finite set to the agents in a society or group. The set of items assigned to an agent is called

that agent’s bundle. An allocation is a specific distribution of resources amongst individuals

(i.e., the collection of agent bundles). In resource allocation problems, an agent’s preference

is usually abstracted by a valuation function (or utility function), mapping each bundle to a

numerical value. Under the no-externalities assumption, an agent only has preferences over

its own assigned bundle and does not care about bundles that other agents have received.

However, it is possible that agents care about other individuals’ assignments in addition to

their own bundle. This type of preference is usually referred as an allocative externality.1

Another common assumption for valuation functions is monotonicity or free disposal : for any

two sets of goods S
′

and S, in the case that S ⊂ S
′
, the value of S

′
is at least that of S.

Resource allocation can be made in either a centralized or decentralized fashion. In centralized

problems, a central authority is in charge of allocating resources to the agents. In distributed

settings, agents iteratively communicate their preferences, negotiate, and exchange goods with

each other.

The quality of an allocation is usually evaluated based on its fairness and/or efficiency.

1Recently, the settings with externalities have attracted considerable attention in computational social choice
literature [223, 21, 96, 110, 64, 332]. Conitzer and Sandholm introduced a general representation for settings with
externalities and studied the complexity of efficient computation of optimal outcomes under various restrictions
with the presence of externalities [96]. Externalities are studied widely in advertisements [21] and recently in
sponsored-search auctions of web advertisements [6, 202, 151, 152, 162]. The main idea here is that the attention
that users give to an ad depends on which other ads are displayed simultaneously. Spiteful bidding in auctions
[64, 332] in which a spiteful agent benefits by degrading other competitors’ profits or utilities is another example
of externalities.
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Pareto optimality or Pareto efficiency is one widely-recognized efficiency criteria. An allocation

is Pareto optimal if there is no other allocation that is preferred by some agents and leave no

other agents worse off. Deciding if an allocation is Pareto optimal is coNP-complete [84]. The

most common condition for fairness is envy-freeness. An allocation is envy-free if no agent

prefers any other agent’s bundle over its own bundle.

A class of quality metrics are defined based on the concept of a collective utility function or

social welfare function, mapping the set of individual valuations into a numerical value which

represents overall societal satisfaction. The most commonly deployed collective utility function

is utilitarian social welfare, simply summing up all individuals’ utilities. In this setting, the

efficiency of an allocation is usually measured/judged by the extent to which utilitarian social

welfare is maximized. This collective utility function favors efficiency of allocations at the

cost of neglecting fairness. A more fairness-oriented cumulative utility function is egalitarian

social welfare, which is given by the lowest (i.e., minimum) utility of any individual under

the current allocation. The Nash product is another cumulative utility function, multiplying

all agents’ utilities together, and provide a compromise between egalitarian and utilitarian

functions. This function favors both increases in overall utility (i.e, efficiency) and decreases in

utility inequalities. An overview of resource allocation for indivisible goods can be found in the

survey by Chevaleyre et al. [83].

Assignment problems [70], widely studied in computer science and operations research,

are closely related to the resource allocation of indivisible goods. In the classical assignment

problem, there are a set of agents and a set of items with the same size. Agents have preferences

or valuations over items. The goal is to match each person with each item so as to maximize the

total commutative valuations. An assignment problem, actually, can be viewed as special case

of resource allocation with some extra constraints: the set of resources and the set of agents

have the same cardinality, each agent bundle must have only one item.

2.1.5 Stable Matching

At the intersection of game theory and social choice, matching problems have drawn an enor-

mous amount of attention due to its prevalent applications in our day-to-day lives [307, 215];

e.g., matching students to colleges [145], matching medical students to residency programs

[308, 309], or matching kidney donors to recipients [1, 17]. In the stable marriage problem,

there are two sets of agents (colloquially, men and women) where each agent in one set has

preferences over the agents in the other set. The goal is to find a stable matching between

agents of two sets. The stability concept usually reflects the lack of incentive for agents to

change their matched partners.

The existence of stable matchings no longer holds in general if one considers externalities

in preferences, for example, if individuals not only have preferences over the possible partners

but also have preferences over who is matched to whom. Recently, the literature on stable

matchings with externalities has been growing rapidly [174, 353, 46, 210, 209, 314, 120].
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2.1.6 Multi-winner Elections and Segmentation Problems

Motivated by the application of selecting members for a committee (e.g., electing parliament

members or selecting board of directors for a company), multi-winner problems focus on se-

lecting a subset of alternatives (or candidates) given a preference profile. Indeed, one can view

a multi-winner election problem as a voting problem with combinatorial alternatives, corre-

sponding to any feasible subset of candidates (or items) in the multi-winner problem. This

perspective results in huge combinatorial choice space, thus complicating both decision making

and the expression of preferences. As such, specialized methods and algorithms for solving the

multi-winner elections have been developed, which operate on preferences expressed over the

original alternatives (rather than the subsets of alternatives).

Multi-winner problems can be solved in less principled ways using preference aggregation

methods. The general idea here is to use preference aggregation methods—for example those

relying on positional scoring rule—to compute a social preference ranking and then select the

top k alternatives as the winners of the original multi-winner election problem. However, this ad

hoc approach might output non-optimal solutions. A more principled approach to multi-winner

elections are those built upon the concept of proportional representation. Roughly speaking,

the goal is to select an alternative or candidate for a winner committee based on the fraction

of individuals (or voters) who have highly supported that alternative. In this sense, when

electing k members as political representatives, the number of elected candidates who belong

to a particular political party must be proportional to the number of individuals who voted for

that party.

One formulation of proportional representation is given by Chamberlin and Courant [80] in

which each individual receives satisfaction or utility only from her most preferred alternative

amongst selected candidates (or alternatives) on the slate. Potthoff and Brams [299] generalized

the Chamberlin-Courant model, allowing an agent to be represented by several candidates in

the winning slate. Lu and Boutilier [245] introduced budgeted social choice—a more general

framework built upon the Chamberlin-Courant model—in which there is a unique cost for

adding each alternative to the slate and also a unit cost for the association of an alternative with

an agent. They show that the multi-winner elections problem is NP-hard in their framework

and develop approximate (greedy) algorithms.

The class of segmentation problems [211] is closely related to multi-winner election problems.

Each alternative is modelled as a real-valued vector of l attributes and each agent possesses

a l-vector of attribute weights. Each agent utility for an alternative is the dot product of its

weight vector and the alternative’s attribute vector. The objective is to select k alternatives

so as to maximize utilitarian social welfare when each agent’s utility comes only from its most

preferred alternative on the slate.
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2.1.7 Preference Elicitation

Eliciting individual preferences for making optimal group decisions presents certain practical

difficulties. By operating on all individuals’ complete preferences, social choice methods usually

elicit or access more information than required to determine a consensus option or make an

optimal decision. Eliciting less information from individuals not only reduces the imposed

communication and cognitive burden but also mitigates privacy concerns. Although, for many

voting schemes, winners cannot be determined without (almost) full preference information

in the worst case [92, 94], the development of preference elicitation methods for social choice

problems has recently drawn considerable attention due to its promising practical importance

[193, 247, 248, 115, 288, 249].

Kalech et al. [193] developed several heuristic methods for preference elicitation using the

concept of possible and necessary winners and evaluate their performance thorough empirical

experiments. Both the possible winner and necessary winner problems [217, 224, 357] take

a partial preference profile (i.e., the collection of incomplete preferences) and alternative a

as inputs. The possible winner problem determines whether there exists a completion of the

partial preference profile under which a is the winner; whereas the necessary winner problem

determines whether a is the winner under all possible completions of the partial preference

profile. Applying the notion of minimax regret for vote elicitation, Lu and Boutilier [247]

propose incremental vote elicitation mechanisms which not only guide the elicitation process,

but also compute worst case bounds on the quality of approximate winners given partially

elicited preferences. Minimax regret is adopted for incremental preference elicitation in other

social choice problems such as stable matching problems [115] and multi-winner elections [249].

2.2 Ranking and Preference Learning

Understanding and modelling individual preferences is a fundamental component of many prac-

tical applications including recommender systems, computational advertising, and decision sup-

port systems. Focusing on rank data for representing user preferences, we first review several

distributional ranking models which are popular in psychology and psychometrics, and then

briefly discuss machine learning methods for rankings.

2.2.1 Distance Metrics on Rankings

When one is interested in measuring to what extent two rankings are similar (or close) to each

other, a variety of well-known distance metrics for rankings or permutations can be applied

[111]. We briefly describe several of the more common distance metrics. A natural set of

(spatial) distances are “dp distances”, where

dp(r, r
′
) =

m∑
i=1

|r(ai)− r
′
(ai)|p
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for p ∈ [1,∞). The well-known footrule (p = 1) and Spearman distances (p = 2) are instances

of this. Hamming distance can be defined as the number of disagreement between ranking

vectors:

dH(r, r
′
) = |{a|r(a) 6= r

′
(a), a ∈ Ω(A)}|.

Kendall’s τ distance dτ (r, r
′
) is used in a variety of contexts, including psychometric [259] and

social choice settings (e.g., Kemeny’s aggregation rule discussed in Sec.2.1.2) , where it measures

the number of pairwise swaps needed to transform r to r′ (see Eq. 2.1 for its formal definition).

2.2.2 Ranking Distribution Models

Distributional models of rankings were originally developed in psychometrics and statistics, and

are now widely used in machine learning and information retrieval [242] due to their practical

applications in web search, recommender systems, etc. Some commonly used examples are Mal-

lows [258], Plackett-Luce [251], Bradley-Terry [59], and many others (see [259] for an overview).

Generally speaking, ranking models take two different forms. Process approaches mathemati-

cally model the behavioural, physical, psychological, or neurological process that occurs when

a person ranks a set of objects (e.g., Thurnstone’s discriminal process [335], or Placket-Luce’s

choice process [251]). An alternative is a more data-driven approach which parametrically

describes the distribution of rankings (e.g., φ-Mallows [258]).

Thurstone Model

Thurstone [335] was a pioneer of process modelling, introducing the discriminal process. Each

object i has tangible and measurable physical feature zi; then the ranking over objects is

generated based on the order of the zis’ magnitudes. Here, the probability of a ranking is

the probability of those zis’ magnitudes which result in the corresponding ranking. Thus, the

model parameters are those parameters required for describing the distribution of features z.

Thurstone [335] originally proposed using a multivariate Gaussian distribution over z. Later,

Daniels [104] considered another variant of this model by allowing the zis in z to be independent

of each other. Henry [181] and Starn [330] employ a Gamma distribution. Sometimes, the

Thurstone model and its variants are referred to as random utility models in the economics and

marketing literature (see, for example, [345, 265]).

Distance-Based Models

Distance-based ranking distributions [131, 259] have ranking probabilities that decrease with

increasing distance from a “modal” or “reference” ranking σ ∈ Ω(A). This is sometimes based

on the assumption that there is a “correct” or “popular” ranking (i.e., the modal ranking) and

other rankings are expected to be more or less close to this modal ranking. As these models
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are usually exponential family models, the probability of ranking r is given by

P(r|σ, ω) =
1

ψ(ω)
exp(−ωd(r, σ)), (2.2)

where ω ∈ [0,∞) is a dispersion parameter, ψ(ω) is a normalizing constant, and d(r, σ) is the

distance between r and σ. As ω → ∞, P becomes concentrated at the reference ranking σ,

whereas for ω = 0, P is the uniform distribution over Ω(A). Distance-based ranking models

differ in the choice of distance metrics. The widely-used Mallows φ-model is an example of

such a model with d being Kendall’s τ distance dτ . Letting the dispersion parameter φ = e−ω,

P(r|φ, σ) = 1
Z(φ)φ

dτ (r,σ) where Z(φ) =
∏m−1
i=0

∑i
k=0 φ

k.

Paired Comparison Models

Several models use as their building blocks pairwise comparisons rather than rankings. As each

ranking can be presented in the form of a set of pairwise comparison, these comparison models

have been widely deployed for modelling rankings. The most general pairwise comparison

model is due to Babington-Smith [328], which is parametrized by a
(
m
2

)
-vector p with indices

ij, i < j where pij represents the probability that item i is preferred to the item j. Given

these probabilities, the model samples independently from all
(
m
2

)
possible comparisons. If the

comparisons are consistent (i.e., transitivity holds), they form the sampled ranking; otherwise

they are discarded and the process is repeated. As the Babington-Smith model has many

parameters especially for large m, Bradley-Terry [59] introduce a variant with m parameters

by setting, pij = vi
vi+vj

where vi is the positive constant weight associated with object i. The φ-

Mallows model (mentioned above) is also a special case of Babington-Smith with pij = e−ωI[i>j]

1+e−ω .

Multistage Models

The general idea behind the multistage models (sometimes referred as “choice processes”) is

simple: the “best” object is ranked first, then the best from the remaining object ranks second

and so on. Plackett [296] and Luce [251] proposed a multistage model of rankings, motivated

by horse races. Each horse (or object) i is associated with a positive weight vi capturing the

probability i wins the race. The ranking process successively selects an item (proportional to

its corresponding weight) to place it in the highest available position. The general model is

given by

P(r|v) =

m∏
i=1

vr−1(i)∑m
j=i vr−1(j)

,

where r−1(i) represents the item ranked ith in ranking r. Luce [251] established a choice-

based axiomatic foundation for this model. It is clear that the most probable ranking under

this model is the one which sorts the items in descending order of their associated weights.

Different multistage models have been proposed (e.g., Flinger and Verducci [132]) in which the
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probability of selecting the winner in each stage is different that those of Plackett-Luce model.

Mixture Models

One common way to extend the simpler models (e.g., φ-Mallows or Placket-Luce) is to assume

that there are some types/groups of individuals where each is modelled by a simple ranking

model. Most often, each group uses a same parametric family of simple models but with various

parameters. More specifically, mixture models assume that rankings come from l distinct latent

groups, where each group i generates a ranking with probability πi. The probability of observing

ranking r under a mixture model is given by

P(r|π) =
l∑

i=1

πiPi(r),

where Pi(r) denotes the probability distribution of rankings within group i. For example,

one can consider the mixture of φ-Mallows model by defining the number components l, the

probability of each component πi, and the reference ranking σi and dispersion parameter ωi of

each component.

Spatial Models

Spatial models [297, 123, 47, 182, 336, 298] or unfolding models [98, 31, 339, 340], developed

originally in social psychology and psychometrics, are widely deployed in political science, eco-

nomics, and consumer choice to capture the relationship between voters (or consumers) and

candidates (or products). These models encapsulate individuals, objects, and their relations in

a joint multidimensional (usually Euclidean) space.2 More precisely, m objects are placed in

unidimensional or multidimensional scale. Each individual is assumed to possess an ideal-point

in this common joint space. The ranking of objects for each individual is formed deterministi-

cally (or stochastically) by taking objects inversely proportional to their distance; that is, the

closer an individual is to an object, more likely the object is to be preferred by the individual.

Blokland-Vogelesang [339, 340] pioneered the use of φ-Mallows models for capturing error in

unfolding models. In this model, each individual has a modal ranking in the admissible set but

her preferences arise from the φ-Mallows model with the corresponding modal ranking. The

overall ranking distribution can be presented as a mixture of φ-Mallows models. Gormley and

Murphy [166] employ the Placket-Luce choice model for accommodating error in spatial model.

2.2.3 Learning and Inference Problems

There has been growing body of research in modelling and learning of user preferences in

machine learning literature, especially in the context of recommender systems [325]. In parallel,

2Unfolding models were originally developed for the unidimensional scaling space by Coombs [98]; later,
Bennett and Hays [31] generalized it to the multidimensional space.
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the literature on learning-to-rank—at the intersection of information retrieval and machine

learning—focuses on how to learn ranking models to successfully rank relevant information

(e.g., web pages) given users’ queries. We briefly review these related works while focusing on

those algorithms and methods that deal with rankings.

Preference Learning

Recently, researchers in machine learning and statistics have exploited distributional models of

rankings for modelling and learning of preferences in a society [276, 166, 267, 73, 246, 227]. We

here briefly review several of these approaches.

Murphy and Martin [276] employ a mixture of distance-based ranking models to describe

individual preferences (in the form of full rankings) from a heterogeneous population. They use

the expectation maximization (EM) algorithm with maximum likelihood estimation (MLE) in

the M-step for learning the model parameters; moreover, they study the problem of selecting

the optimal number of mixture components. Similarly, Busse et al. [73] use EM to learn

a mixture of ranking models for partial preferences of the top-t type (i.e., individuals have

ranked their t favourites out of m items). Focusing on top-t partial preferences and using a

Dirichlet process mixture, Meila and Chen present the non-parametric Bayesian treatment of

mixture of φ-Mallows models [267]. They also study two variants of Gibbs sampling inference

techniques for estimating the posterior distribution. Lu and Boutilier [246] relax the restriction

on t-type partial rankings by representing partial rankings as pairwise comparisons; they also

developed algorithms for learning a mixture of Mallows models using pairwise comparisons

while introducing new sampling mechanisms, called generalized repeated insertion sampling

model (GRIM). More recently, the learning of the mixtures of distance-based ranking models

with the generalized weighted distance metric has been studied [227].

Gormley and Murphy [167] develop learning algorithms for mixtures of both Placket-Luce

models and Benter models [32] (i.e., a dampening variant of Placket-Luce model) while focusing

on top-t preferences. Their algorithms are applied to explore rank data from two Irish elections.

A spatial model combined with Placket-Luce model is deployed for exploring voting data [166].

In this model, both voters and candidates are located in the same multidimensional space

where the votes (i.e., rankings) are derived from a Plackett-Luce model. Gormley and Murphy

[166] also discuss methods for choosing the dimensionality of the spatial space and learning

algorithms. Guiver and Snelson [173] introduced a message-passing algorithm using expectation

propagation for inferring parameters of a Plackett-Luce ranking distribution. More recently,

Azari et al. [18] studied conditions on exponential families of random utility models (e.g.,

Thurstone and its variants) under which fast inference within a Bayesian framework is possible.

Rank Aggregation and Learning-To-Rank

The problem of finding the most “correct” ranking or best objective ranking is sometimes re-

ferred to as rank aggregation (e.g., ranking basketball teams according to their championship
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chance). Dwork et al. [117] study the problem of aggregating a set of web page rankings into

a higher quality ranking, motivated by meta-search engine applications. Using the Kemeny

objective cost, they show that rank aggregation is NP-hard. They introduce local search al-

gorithms for approximating aggregate rankings. Cohen et al. [91] study a rank aggregation

problem in which a set of items (e.g., web pages) and a set of noisy rankings over items (e.g.,

ranking of experts on web pages) is given and the “correct” ranking of items is desired as

an output. They first formulate a supervised learning problem to learn a preference function,

capturing the probability that each item beats another item in a pairwise comparison. They

introduce an online weight learning algorithms, similar in spirit to the weighted majority al-

gorithm [240]. More recently, Volkovs and Zemel [344] developed a learning algorithm to find

“correct” or “consensus” rankings from partial pairwise comparisons while introducing their

own multinomial distributional model over pairwise comparisons.

The literature on rank aggregation is related to learning-to-rank problems. The learning-to-

rank problem is a supervised learning problem with various practical applications ranging from

information retrieval to natural language processing (see [235, 236] for an overview). In the

context of information retrieval, the primary goal is to learn a feature-based ranking function

which ranks the relevant information (e.g., documents or web pages) given a user’s query. The

training data consists of a set of queries where each query is accompanied by a set of retrieved

documents and their corresponding “relevant” labels or scores, indicating the relevant degree

of document to a given query. One can categorize the learning-to-rank algorithms to point-

wise, pairwise, and listwise. Ignoring the group structure of documents and queries, pointwise

methods (e.g., PRank [100]) transform the learning-to-rank problem to standard classification

or regression learning to directly find a scoring function whose scores are utilized for ranking

documents. In contrast, pairwise methods (e.g., RankNet [69] and RankBoost [140]) convert

the learning-to-rank problem to (comparison) pairwise classification and regression while mini-

mizing the relative pairwise misclassification errors. Listwise approaches (e.g., AdaRank [360],

SoftRank [334] and BoltzRank [343]) treat the learning-to-rank problem in more natural way

by taking each query and its retrieved documents with their relevance scores as an instance

during training and learn a ranking function by minimizing some evaluation metrics.

Collaborative Ranking

Collaborative filtering (CF) [68, 220, 239], widely deployed in recommendation systems such as

Amazon, Youtube, and Netflix, is a mechanism for making predictions about a user’s prefer-

ence using the preferences of many other “similar” users. Most recommender systems employ

collaborative filtering methods to recommend a (small) set of ranked items to a user (e.g., rec-

ommending a set of books in Amazon or a set of movies in Netflix). Recently, in the machine

learning literature, considerable attention is given to a new generation of these methods, re-

ferred to as collaborative ranking [352, 241, 23, 342]. As opposed to the traditional collaborative

filtering methods which focus on predicting ratings of items for a given user, these methods
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predict the rankings of items (usually top-t preferences) for a given user. The most common

technique in this work is to transform the collaborative ranking problem into a learning-to-rank

problem by extracting [342] or learning [23] some user-item features. Balakrishnan and Chopra

[23] use learning-to-rank algorithms on user-item features created by concatenating the latent

representations of each user and each item. They learn the latent representations of users

and items by using probabilistic matrix factorization (PMF) [270]. Volkovs and Zemel [342]

extract some user-item features for each pair of users and items from the ratings of “similar”

users. Then they deploy these user-item features in classical learning-to-rank algorithms to

learn rankings of each user over the items.

Label Ranking

Traditional classification problems can be generalized as the problem of label ranking when the

complete “relevance” ranking of all predefined class labels is requested as a prediction rather

than only one single class label. In other words, the label ranking is the problem of learning

a function, mapping instances to a complete ranking over some predefined class labels (see

[341] for a survey on the topic). Recently, considerable attention is given to label ranking

methods, built upon the distributional models of rankings (e.g., the use of φ-Mallows [81] and

Plackett-Luce [82]).

2.3 Social Networks

Social networks pervade our day-to-day lives. They play a central role in wide variety of

social, economical, and political interactions [187, 118, 88] including which job opportunities

are provided to us [171], how diseases spread [283, 127], which products we consume [154], how

we vote [277, 329, 54], how cooperative we are [136], or even how much weight we gain or lose

[87].

In the remainder of this section, we first explain various metrics and representations of

social networks while reviewing some topological properties of networks. We then present

several statistical models that have been proposed to study how networks form. Afterwards, we

look into the dynamics of networks which explain the dissemination of information, the choice

of behaviour by people, and how disease spreads in the social networks. Finally, we review some

computational problems in social networks.

2.3.1 Structural Metrics and Properties

A social network is composed of a set of individuals and their relationships/interactions with

each other. A network can reflect variety of different types of relationships; for example, who is

friend with whom, who communicates with whom, who trusts whom, who interacts with whom,

etc. We usually represent a social network as a graph G = (V,E), where V is a set of nodes (or
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individuals) and E is a set of edges that captures a specific relationship (e.g., friendship, co-

authorship, etc.) between the nodes. The edges in a graph can be directed or undirected based

on whether the order of nodes are important on the underlying relationship; for example, who-

trusts-whom networks are directed but co-authership networks are undirected. A social network

can also be represented by its adjacency matrix A = [aij ] where aij represents the weight (or

presence) of the edge between nodes i and j (or from i to j for directed graphs). To clas-

sify, compare, and characterize different large-scale networks, various statistical measures and

metrics have been developed for capturing the structural properties of networks and providing

meaningful insight into network structures. These structural metrics—some of which have been

originally developed in the social network analysis literature [317, 347]—have established the

quantitative foundation for the study of networks in network science [279, 26, 280, 284, 7, 45].

One can divide structural metrics into two categories. Micro-level measures (e.g., centrality) de-

scribe how a node relates to the network whereas macro-level measures (e.g., degree distribution

and diameter) provide a more holistic perspective on networks.

Centrality Measures

A large body of literature deals with the concept of centrality, addressing the question of which

nodes are the most “important” or “central” in a network. Of course, centrality or importance

can be defined in various ways, consequently many centrality metrics have been proposed (see,

[279, 187, 118] for an overview). Degree centrality is probably the simplest centrality metric in

which the degree of a node (in-degree or out-degree of a node for directed networks) represents

its level of importance or centrality. However, degree centrality ignores many interesting aspects

of the network.

Closeness centrality measures how close a given node is to other nodes in the network. A

simplest form of closeness centrality is the inverse of the average geodesic distance (i.e., the

average shortest path length) of a given node to all other nodes. The other variants can be

defined using the harmonic mean distance (i.e., the average of inverse distances) or using decay

parameters which penalize longer paths.

Betweenness centrality, originally proposed by Freeman [138], measures the number of times

that a node i acts as a bridge on the shortest paths between all other nodes (i.e., the number of

times that the shortest paths between all other pairs of nodes pass through node i). When there

is some sort of flow in the network (e.g., passing messages, spreading diseases, trading between

individuals, etc.), this measure is of interest when addressing the question of the importance of

nodes in facilitating that flow. Random-walk betweenness [286] is based on the number of times

that random walks pass a given node rather than counting all shortest paths passing through

a given node.

The class of prestige-based and eigenvector-based centrality measures is built upon the

premise that a node’s importance is determined by the extent to which its neighbours are

important. Using this self-referential concept of “importance,” Bonacich [53] proposed eigen-
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vector centrality in which a node’s centrality score is its corresponding element in the network

eigenvector which has the highest eigenvalue (right eigenvector with the highest eigenvalue for

directed graphs). In a similar spirit, in Katz centrality [197], each node receives a small constant

centrality score and a fraction of its neighbours centrality scores. Google’s PageRank [289, 225]

is a variant of both eigenvector centrality and Katz centrality, where each node’s pagerank con-

sists an equally shared fraction of the total pagerank and the summation of its neighbours’

pagerank divided by their degree. For directed networks, Kleinberg [213] put forward the idea

of authority centrality and hub centrality which quantify the importance of nodes in two distinct

roles, being an authority and a hub, respectively. In the context of information networks (e.g.,

world wide web), authorities are those documents (or web pages), containing the information

on a topic of interest whereas hubs point to these authorities.

Edge Density and Degree Distribution

The Edge density (sometimes referred to as network density) of a network is the relative fraction

of existing edges in the network to all possible edges (or equivalently, the average degree divided

by n − 1). Given this definition, a full-connected network has edge density one. Generally

speaking, when the edge density is close to zero, the network is very sparse, as opposed to

dense networks with edge density close to one. Real-world social and biological networks are

usually sparse, with low edge density [187, 284, 7].

One of the most fundamental topological properties of a network is its degree distribu-

tion, describing the relative frequency of node degrees. More precisely, P(d) is the fraction

of nodes that have degree d (or the probability that a randomly selected node has degree d)

under distribution P . It has been observed that many real-world networks (e.g., transporta-

tion networks, computer networks, world wide web, etc.) have degree distributions that obey

a power-law distribution [25, 7, 284] with various exponents. In contrast, social networks are

not well-explained by power-law distributions, especially acquaintance social networks [10, 338].

However, one might consider collaboration networks, in which an edge represents the collabora-

tion of two individuals in an activity (e.g., being co-actor in a movie, or co-auther of a paper), as

a type of social network with power-law distribution [303, 25] (sometimes, with an exponential

cutoff [281]).

Giant Component, Diameter, and Average Path Length

One can use various measures to quantify and understand the connectivity of a network. We

here briefly review some of these.

A (strongly-connected) component in a network is a maximal subset of nodes which are

strongly-connected to each other (i.e., each node in the component is accessible by some path

from any other). Real-world social networks often include a large component, referred to as

the giant component, which usually contains more than half of the nodes in the network. The
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giant component is observed in many real-world social, economical, biological, and technological

networks (see, e.g., [284, 7]).

One of the mostly celebrated phenomena in social networks is the small-world effect, the

discovery that the geodesic distance (path length) between nodes tends to be relatively small.

Diameter—the length of the longest shortest path between any pair of nodes—and the average

shortest path length (ASPL) are common metrics for capturing the path lengths in a network.

Milgram [269] was a pioneer in experimenting with small world effects by discovering that the

diameter of real-world social networks is around 6, thus resulting in popularizing the concept

of “six degrees of separation”. The small world effect is observed in the collaboration networks

of actors [350] (with mean path length of 3.7) and co-authorship networks of mathematicians

[172], physicists [285], and economists [170] (with average path length of 7.5, 5.9, and 9.5

respectively). Facebook possessed an average path length of 4.74 over 721 million users in 2011

[19]. Many real-world networks’ diameters tend to shrink over the time as the network grows

[232].

Transitivity and Clustering Coefficient

One of the predominant properties of social networks is transitivity. Treating connectivity in

social networks as a transitive relation, if u is connected to v and v is connected to w, then u

must be connected w. In common jargon, this means that “the friend of my friend is also my

friend.” While perfect transitivity yields a fully-connected graph or a network with components

of cliques, it is rarely observed in real-world (social) networks. However, partial transitivity

can be very useful: the fact that u is acquainted with v, and v knows w makes it much more

probable that u knows w. To quantify the extent of transitivity of a network, one can use the

clustering coefficient, defined as the fraction of the number of triangles over the total number

of length-two paths. In social network jargon, a closed triad or triangle is a triple of mutually

connected nodes. Social networks demonstrate a high clustering coefficient (e.g., 0.2 for an actor

collaboration network [284], 0.09 for a biologist co-authorship collaboration network [281], and

0.16 for a university email network [119]). The high clustering coefficient in social networks can

be partially explained by triadic closure [302], indicating that two people with a common friend

are more likely to be acquainted with each other than two individuals without any common

friend.3

Watts [349] defines the local clustering coefficient of a node to be the fraction of the pairs of

neighbouring nodes that are themselves connected. Watts and Strogatz [350] suggest computing

the clustering coefficient of a network as the mean of the local clustering coefficients over nodes

3One should be cautious in judging the transitivity of networks from their clustering coefficients. A large
clustering coefficient is not necessarily an indication of the presence of transitivity or a “triadic closure” process,
especially when the edge density is high. Because of this, the literature has chosen to compare the clustering
coefficient with edge density to understand the significance of its value. The choice of edge density as a benchmark
is not arbitrary and mainly motivated by the fact that the edge density and clustering coefficient is the same in
purely random graphs. As such, comparing edge density with clustering coefficient tells us whether some special
process (e.g., triadic closure) is taking place in the network.
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rather than as defined above. The local clustering coefficient is a good indicator of structural

holes in a network, which help explain on how information diffuses and how innovations arise

and propagate over social networks [71]. When a node’s neighbours are missing many edges

between themselves, the missing edges are referred as structural holes. In this sense, structural

holes lie mainly around nodes with low local clustering coefficient.

Correlations: Homophily and Assortativity

Correlations of nodes’ attributes over networks can be taken into account in various ways;

however, we here mainly focus on homophily or heterophily which captures the similarity or

dissimilarity of connected nodes’ internal attributes (e.g., race, gender, religion, preference, etc.)

and assortativity which captures correlation patterns over the degrees of connected nodes.4

Homophily and Heterophily. The term homophily refers to the fact that people are more

prone to associate with others whom they perceive to be similar to themselves in some way

(e.g., age, race, education, language, etc.). While Burton [72] first noted the homophily ef-

fect and coined the well-known phrase birds of a feather in the network context, research on

homophily has been widely studied in the social sciences (see McPherson et al. [266] for an

overview). The impact of homophily in information diffusion [188, 74] and opinion formation

[60, 160, 161] in social networks is also well studied. The opposite of homophily is heterophily in

which individuals have strong tendency to interact with those who are different than them. The

most apparent examples of heterophilous social networks are sexual contact networks, where

the majority of sexual relationships are between people of opposite sex.

Assortativity. In networks with positive assortativity, nodes with relatively high degrees have

a tendency to be connected to other high-degree nodes. Newman [282, 284] put forth the

hypothesis that positive assortativity is a property of social networks by examining the degree

correlation of nodes in some social networks. In constrast, technological and biological networks

(e.g., Internet, power grid, neural networks) often exhibit negative assortativity, in which high-

degree nodes are be linked to lower-degree nodes [282, 284]. Similarly, some economic networks

exhibit negative assortativity (e.g., trading networks [323]). A related concept to positive

assortativity is the presence of core-periphery structure in social networks, with a core of highly

connected nodes and a periphery of less connected nodes [67].

2.3.2 Dynamics, Processes, and Learning

In most social and economic networks, there are dynamical processes where topological prop-

erties of the network play a role in dynamic behaviour of social and economic systems. These

4The terminology adopted here is more consistent with that of Jackson [187] as opposed to that of Newman
[279] which refers to homophily by assortative mixing and to our “assortativity” by “assortative mixing by
degree.”
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dynamics take various forms ranging from propagation of fads, fashion, technologies (see [154])

to formation of cultural and ideological opinions and beliefs, to movement synchronization in

the crowds. The rough (and overlapping) categorization of such processes follows.

Contagion, Diffusion, and Epidemics

Social contagion (or sometimes, emotional contagion [179]) usually refers to the tendency of

individuals to follow or mimic others’ ideas, emotions, or habits [89, 88]. Information diffusion

[306, 331] or rumor spreading processes [271, 102] are also considered as special type of social

contagion, which captures the tendency of individuals to propagate knowledge, innovations, or

rumours.5 The use of the term of contagion is not arbitrary and of course evokes the concept of

contagious diseases and their spreading patterns over social networks [221, 272, 292, 291, 293,

26]. The literature on information diffusion and social contagion also recognizes the similarities

between social contagion processes and epidemiological processes [101, 102, 257], thus usually

adopting epidemiological models as a basis for information diffusion models.6 The interplay

between network structure and diffusion is of practical import [326, 229]. As an example,

network structure is observed to play a central role in “world-of-mouth” advertisement [326]

and “viral marketing” [229].

Cascading Behaviour and Network Games

An individual’s behaviour is enormously impacted by that of one’s peers [88, 154]. Psychol-

ogists, socialists, and economists have attempted to understand and model how individuals’

decisions and behaviour are influenced by those of their friends. Models of human behaviour

on social network can be categorized into stochastic and game-theoretic models (see [187] for

an overview). The stochastic approach considers the probability of an individual choosing an

action (or behaviour) conditional on her neighbors’ actions. One technique is to use Markov

chains to model human behaviour, defining a state space of all possible combinations of individ-

ual actions while a weighted social network captures the probability of imitation of behaviour

of their neighbors (self-loops represent the probability of taking action independently).7 Given

this behavioural Markov model, one can use steady-state probabilities to characterize individual

behaviours. In addition to the intractability of finding the joint distribution, the other criticisms

of this approach is that individuals are “backward looking” into the actions of their neighbors

in the previous state. These shortcomings have motivated the development of game-theoretic

models.

Network games capture the interdependency between the actions, decisions, and behaviours

of individuals and those of their neighbours by modelling each interaction as a game [147, 190,

5The terms information diffusion or diffusion of innovations have used interchangeably in the literature.
6Recent research has questioned the validity of epidemic-like model of diffusion [155]. Unlike epidemic pro-

cesses, most of cascades of information or adoption are observed to be small and terminate within one degree of
the initial influencer or adopter [155].

7Ignoring the social network structure, Markov models of human behaviour are used in [207].
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189, 362, 187, 168, 75, 365]. The games between individuals can be represented by graphi-

cal games [198], with an agent’s payoff depending on its own and neighbours’ actions.8 As

such, a player’s behaviour is related to that of its neighbors, which depends on that of their

neighbours’ neighbours, and so on, thus resulting in cascading behaviour over the social net-

work. Two classes of games have been studied in network games settings [187]. In a game with

strategic complementaries, an agent’s incentive for taking a specific action increases when more

friends choose that action (e.g., choosing compatible operating systems, deciding whether to

attend a party, etc). In contrast, a player’s incentive decreases as more friends take similar

actions in games with strategic substitutes (e.g., public good services). Usually with some ad-

ditional assumptions, optimal strategies (e.g., Nash equilibrium strategies) in network games

with strategic complementaries translate to simple threshold rules, determining whether a player

adopts a behaviour given that a weighted fraction of its neighbors have adopted that behaviour

(see [118] for an example how the Nash equilibrium strategy of a coordination game translates

into a simple threshold rule, which has been studied for computational problems on technology

adoption [200]). Different analyses of behaviour on network games can be conducted when the

underlying games are precisely defined. One can predict an individual’s behaviour by examining

(Nash) equilibrium behaviour [187]. The relationship between equilibria and network structure

can also be analysed [187, 168]. To understand cascading behaviour and diffusion dynamics, the

best-response behaviour of individuals over time has been studied [44, 125, 273]. Jackson and

Yariv [190] studied behaviour cascades and the stability of equilibria in more realistic models

by introducing heterogeneity among agents.

Opinion Formation and Social Learning

Our friends, family, and acquaintances play a central role in the formation of our opinions and

attitudes. Real-life examples are ubiquitous, ranging from our cultural attitudes to religious

belief to judgements. Early work [226, 196] studies the formation of opinion in voting (and

other decisions) and provides the foundation for identification of opinion leaders. Nowadays,

the literature on opinion formation and social learning in social networks is rich (see, e.g.,

[187, 3]). This work mainly focuses on: (a) whether and how individuals with different opinions

converge to a consensus; (b) how quickly individuals learn from each other; (c) which individuals

have the greatest impact on the opinions of others or on the emerging consensus; and (d)

whether social learning processes converge to “correct” beliefs. Two modelling approaches are

common. Bayesian learning models provide firm normative foundations; however they are

usually intractable and complicated to analyse when addressing questions of type (b) and (c).

The alternative is more tractable näıve learning rules (e.g., weighted average updating [108])

which usually lack a firm theoretical foundation.

Observational Bayesian learning studies (see, e.g., [22, 146, 2]) usually investigate whether

agents collectively learn and converge to the action with highest payoff by observing their

8Network games are closely related to the concept of externalities [121] discussed in Sec.2.1.4
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neighbours’ outcomes and actions when all are faced with the same type of uncertainty. The

main premise is that an agent doing worse than one of its neighbours should realize this and

switch to the neighbours’ action with a better payoff. The main drawback of observational

learning is that network structure does not come into play in analysing these models; thus, the

impact of network structure on opinion formation process or identification of opinion leader

cannot be fully understood.

The most celebrated weighted updating model of opinion formation is due to DeGroot

[108]. Equipped with a real-valued opinion variable, each node iteratively updates its opinion

by weighted averaging its neighbours’ current opinions, with weights arising from underlying

weighted directed social network. Different variations of DeGroot’s model include a model with

time-varying weights [109], a model with self-loops [142] (for always mixing some portion of

initial opinion in updates), and others [143, 176, 139]. To guarantee the convergence of the

updating process, Markov chain conditions of aperiodicity (i.e., the greatest common divisor of

all directed cycle lengths is 1) and irreducibility (i.e., any node is reachable from any other node

with non-zero probability) are usually assumed [199, 268]. Golub and Jackson [157] studied

a slightly weaker set of assumptions for convergence of opinion formation processes; they also

characterized the conditions under which a society converges to a “correct” opinion. The speed

of convergence to consensus opinion is slower with increased homophily, where homophily is

measured by proposed spectral homophily measure [160, 161]. More recently, Lobel and Sadler

[243] discovered that network density is a factor in determining how homophily/hetrophily

impacts the speed of convergence. They showed that for sparse networks, homophily is actually

beneficial for social learning whereas hetrophily (i.e., diversity of preferences) is beneficial for

dense networks.

2.3.3 Stochastic Network (Formation) Models

Of particular interest in network science [279, 26, 280, 284, 7, 45] is the development of network

formation models that explain the emergence of common structural properties of real-world

networks (e.g., [25, 350]). These mathematical network models also provide a theoretical and

empirical framework for further investigation and understanding of the interplay between pro-

cesses in complex systems and the structure of interacting entities. Generally speaking, network

formation models can be divided into strategic network models and random network models.

The former, mostly popularized in the economics literature, studies how networks form in some

game-theoretic setting by understanding the incentive of individuals in making connections

to each other [186, 187]. We here focus on the random network models which consider some

stochastic process in the formation of edges between nodes.

Random Graphs: The Erdős-Rényi Model

Erdős and Rènyi [126] were among the pioneers of random network models. Their random

graph model G(n, p) assumes each edge between any pair of nodes occurs with independent
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probability p. The random graph theory literature is rich [52, 116], where various structural

properties of the Erdős-Rènyi model and its variants are studied. Under G(n, p), node degrees

exhibit a binomial distribution. Keeping mean degree constant and letting n grows, the degree

distribution transforms to a Poisson distribution. The diameter can be approximated by lnn
ln c

where c = p(n − 1) is the expected degree. The clustering coefficient is p, as is edge density.

This, in addition to several other properties (e.g., a lack of community structure and a Poisson

degree distribution), distinguish G(n, p) from real-world social networks, which tend to have

a high clustering coefficient. In spite of its implausibility in representing real-world network,

G(n, p) is a very useful benchmark for understanding real-world networks and their underlying

formation processes.

The Small-World Model and Its Variants

The small-world model [350] addresses the low clustering coefficient issue of random graphs in an

elegant way. The model starts with a highly regular and clustered graph, then rewires each edge

with probability p by uniformly random choosing a node as a new end point. The main point

here is that by rewiring a few links in a highly clustered graph, we can create a network with

short diameter but still maintain a high clustering coefficient. A more mathematically tractable

variant, for each edge, adds a new edge between two randomly selected nodes, with probability

p [287]. Many other variants have been proposed and studied (see, e.g., [11, 192, 214]).

Preferential Attachment and Its Variants

Of special interest are growing network models, capturing mechanisms by which networks grow.

One popular model in this class is the preferential attachment (PA) model for scale-free networks

[25]. It starts with n0 initial nodes, then adds nodes in turn, with a new node connected to

k ≤ n0 existing nodes. With probability proportional to its degree, each node is selected as a

neighbour of recently added node. The emergent network has a power-law degree distribution (a

fat-tailed distribution). The clustering coefficient is not sufficiently large in these networks for

modelling real-world social networks. To address this, an extension is proposed by Holme and

Kim [185] to incorporate a triadic closure process in preferential attachment. Other variants of

PA include preferential attachment by fitness and popularity [39], and models in which nodes

optimize certain trade-offs between popularity and similarity [290].

Spatial and Latent Space Models

In the class of spatial (or latent space) networks [27, 183], nodes have a set of real-valued,

binary, or integer-valued latent variables, with the probability of an edge forming between two

nodes determined by their attributes. In other words, it is the value of nodes’ attributes which

control the degree distribution, clustering, or small-world property of the observed network.

The Waxman random graph model [351]—predominantly used to model the internet and
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other computer networks—distributes n nodes uniformly at random on the plane; then two

nodes are connected with a probability decreasing exponentially with Euclidean distance be-

tween them. Hoff et al. [183] develop a similar model where nodes are points in a d-dimensional

Euclidean “social space.” The random dot product model [367] is somewhat distinct in that

the distance between nodes is given by the inner product of their position vectors. The hidden

variable model [48, 49] is a generalization of the Waxman model: nodes are equipped with a hid-

den (real-valued or integer) random variable drawn independently from a specified distribution.

Two nodes are connected according to a symmetric probability function over node attributes.

Serrano et al. [322] slightly modify this approach to introduce a general class of models based

on a hidden metric space where nodes—located at a specific point in this space—are connected

with a probability determined by a connection probability function over node distances.

The random geometric graph (RGG) model [295, 103] places n nodes uniformly at random in

the d-dimensional unit cube, then connects nodes that are closer than some threshold parameter.

Recently, geometric graphs in hyperbolic space have been studied [222]. The multiplicative

attribute graphs (MAG) model [203, 206] generalizes the Kronecker graph model [230, 256],

assigning each node a vector of categorical (integer-valued) attributes, and using a link-affinity

matrix to capture connection probabilities based on attribute interactions.

Exponential Random Graph Models

A generalization of the Erdős-Rènyi model—mostly used for statistical analysis of observed

social networks [165, 305]—is exponential random graph model [184], also known as Markov

graphs [137], or p∗networks [348, 165, 305]. This model defines a probability distribution P(G)

over all possible graphs with n vertices in the exponential form of P(G) = 1
Z e

H(G), where Z is

a normalizing constant and H(G) =
∑

i βixi(G) is the graph Hamiltonian. Here, βi represents

a free model parameter associated with the particular measure of interest xi(G). Measures of

interest can be any combination of topological measures (e.g., edge density, degree distribution,

etc) or even a probability distribution of attributes.

2.3.4 Computational and Learning Problems

There has been growing interest in computational, learning, and inference problems on social

networks ranging from social choice problems to optimization of contagion processes to inferring

and predicting network structure.

Social Choice and Networks

Decision making on social networks in the presence of externalities has recently attracted con-

siderable attention. The literature has tackled to various computational social choice problems

such as stable matching [46], coalition formation [65, 66], voting [50, 51, 8, 337], auction design

[175], and resource allocation [36] on social networks in the presence of allocative network ex-
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ternalities.

Stable Matching and Coalition Formation. Bodine-Baron et al. [46] study stable match-

ings (e.g., of students to residences) with peer effects: these local social network externalities

reflect the fact that students prefer to be assigned to the same residence as their friends.

Brânzei and Larson address coalition formation on social networks where agent utility for a

coalition depends on either her affinity weights with others in the coalition [65]; or her close-

ness centrality measure [66], as explained in Sec. 2.3.1.

Voting. Boldi et al. [50, 51] study delegative democracy on social networks, where an individual

can either express her preferences directly, or delegate her vote to a neighbor. The weights of

delegated votes are exponentially dampened by an attenuation factor that reduces the weight

of a vote as it passes from one person to another. In a game-theoretic framework, Alon et

al. [8] studied the “herding effect” in sequential voting procedure over only two alternatives,

with agents having private preferences over alternatives and experiencing disutility if the win-

ner is not the one that they vote for. Mechanism design for approval voting in social network

has been studied in [9], where an edge in the underlying social network represents “who ap-

proves of whom.” Recently, Tsang and Larson [337] study strategic voting on social networks

with the presence of homophily. By observing their direct neighbours’ ballots, voters can strate-

gize their votes. The analyses suggest that homophily reduces the frequency of strategic voting.

Resource Allocation. Bhalgat et al. [36] focus on utilitarian social welfare maximization in

unit-demand resource allocation problem with the the presence of positive externalities arising

from social networks. In their model, each agent’s overall utility is the multiplication of its

intrinsic valuation function—mapping each alternative to a utility value—and its externalities

function. Their externalities functions map the number of an agent’s neighbours with the same

assigned alternative to a numerical value.9

Optimization Problems and Social Dynamical Processes

There has been growing interest in optimization problems that exploit the underlying dynamics

within social networks. Of special interest is the influence maximization problem, which finds

a small subset of individuals who could maximize the spread of a fad, fashion, information,

or particular behaviour (such as adopting a novel technology) [200, 274, 37, 79, 56, 169, 86].

Another interesting and relevant problem is that of outbreak detection [233] with the goal of

“efficiently” and in a timely manner detecting the spread of disease, news, etc. on social net-

works.

9There has been growing interest in price setting [16, 76, 77] or strategic marketing [178, 38] over social
networks, which can be viewed as decision making problems over social networks.
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Influence or Cascade Maximization. In influence maximization, first formalized by Domin-

gos and Richardson [113, 304], the goal is to find k optimal “seeds” or initial adopters, that

yield the maximum possible cascade of behaviour (e.g., adoptation of a technology) over a social

network. Assuming either the independent cascade model (similar to the models in Sec. 2.3.2)

or the linear threshold model (as explained in Sec. 2.3.2), Kempe et al. [200, 201] show that the

influence maximization problem is NP-Hard. They propose a natural greedy algorithm with a

guaranteed (1− 1/e) approximation bound. Different variations of influence maximization are

studied, including those in a competitive setting where multiple technologies compete to initiate

a large cascade by targeting different sets of individuals [37, 79, 56, 169], and those which tar-

get influential groups of individuals [122]. In a competitive variant of influence maximization,

Borodin et al. [55] study the strategic behaviour and incentive of companies to misreport their

budget constraints in a mechanism design problem. They propose polynomial-time approximate

strategy-proof mechanisms to address this problem.

Recently, Chierichetti et al. [86] studied the scheduling problem for cascade maximization

in social networks. Assuming that individuals make decisions sequentially over a given social

network with the presence of positive externalities, the goal is to find the “optimal” ordering of

individuals whose sequential decision making induces the maximum cascade (i.e., the maximum

spread of a technology). Assuming an Erdős-Rènyi model and considering a society with two

agent types, namely “imitators” (blindly imitating friends’ decisions according to their internal

policy), and “informed adopters” (making a informed decision to adopt a technology), Zhang

and Marbach [369] show that an imitator agent’s “optimal” policy is to adopt a technology as

soon as two neighbours have already adopted it.

Learning and Inference on Social Networks

The literature on inference and learning problems on social network is rapidly growing. Various

learning and inference problems on structures and dynamical processes of social networks are

being studied, dealing with both complete and missing data settings.

Link Prediction. The inference problem of predicting which future interactions between

members of a society are likely to happen is the link prediction problem [244, 237]. A tightly

related problem in complex networks is link mining, with the goal of inferring which link exist

but are not observed [244, 150, 90]. Indeed, there is no clear-cut difference between these two

literatures as both attempt to predict the edge occurrence between a pair of nodes using some

proximity concept, arising from their local structural information [237, 370] or internal asso-

ciated attributes [333]. Recently, Backstrom and Leskovec [20] proposed a supervised random

walk algorithm for link prediction that exploits a node’s attribute and structural information.

An interesting variation of the original problem is predicting the signs of the social relationship

in addition to predicting link occurrence [231], where the sign captures either being “friend” or

“foe.” See surveys by Lü and Zhou [244] and Getoor and Diehl [150] for an introduction to this
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literature. A related problem is community detection in social networks [134, 279], where a com-

munity or cluster is a collection of nodes highly connected to each other but loosely connected

to the other nodes. Another problem related to link prediction problem is the perfect network

formation problem in the peer-to-peer literature (see, for example, [354, 355, 356]) where each

node has a noisy observation of “optimal” edges in a “ground truth” network. The goal is to

design a distributed (or sometimes, centralized) algorithm for discovering nodes’ optimal links.

Inferring Diffusion Networks and Cascade Paths. Generally speaking, it is more straight-

forward to observe an individual’s state (e.g., whether it is infected, has purchased a product,

or has received some information) than the causal effect involved in the change of individual’s

state (e.g., who infects whom, who influences whom to buy a product, who listens to whom).

As such, the social networks over which diffusion or propagation occur might be unobserved

or unknown. The main problem here is to infer and discover the underlying hidden network

of diffusion [5, 164, 163, 278]. Researchers have used various machine learning approaches to

tackle this problem. One approach is to formulate the problem as a supervised classification

problem [5]. The more statistically sound approach is to infer latent social network using some

generative probabilistic models, capturing the correlation of individuals’ state changes over

time [164, 163, 278]. This approach is related to the structure learning in directed probabilistic

graphical models [144, 216, 149].

A closely related problem to inferring diffusion networks is the problem of inferring cascade

paths, with the goal of reconstructing (or sometimes characterizing) the tree structure of a par-

tially observed cascade [238, 85, 159, 4, 114]. In contrast to inferring diffusion networks, the

focus here is on understanding and reconstructing a large-scale cascade’s pathway (e.g. chain

petition letters [238]) rather than understanding who influences or infects whom.

Latent Nodal Attribute Inference. By adopting spatial network formation models (see

Sec. 2.3.3), a body of research has focused on inferring latent attributes of nodes when so-

cial network structure is (fully) observed [183, 204, 205].10 Hoff et al. [183] study inference

and learning techniques on a spatial latent network model in which nodes are characterized

by points in a fixed d-dimensional Euclidean “social space”. Using maximum likelihood esti-

mation (MLE) and Markov Chain Monte Carlo (MCMC), the main objective is to infer the

positional attributes of individuals in the latent space given fully observed social structure. By

adopting the multiplicative attribute graph (MAG) model [206] (as explained in sec. 2.3.3), Kim

and Leskovec [204] model a social network with nodes possessing categorical attributes. They

develop a scalable variational expectation maximization method for (a) learning the model’s

parameters when the network structure and node attribute are given, and (b) inferring a node’s

latent variables and model parameters when the network structure is observed. In other work

10Less attention, it seems, is given to partially observed networks. Indeed, this is an appealing, practical
direction for further exploration but may pose considerable computational challenges.
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with similar aims, Kim and Leskovec [205] consider each node as belonging to multiple (possibly

overlapping) latent groups which govern the social network structure and the nodes’ categorical

attributes; the MAG model is employed to capture the interplay of individuals’ latent groups

in network formation. In addition to learning model parameters and inferring a node’s latent

groups, they investigate the performance of their model for three applications: missing feature

prediction, link prediction, and supervised node classification.

In the machine learning literature, there are related research areas, closely related to node’s

attribute learning and inference problems in social network, but not explicitly explored for this

purpose. In collective classification of networked data [321], the goal is to collectively predict the

labels of nodes (e.g, documents) in a graph (e.g. citation networks, or the web) while exploiting

correlations between internal features of nodes and their connectivity to each other.11 In active

learning in graphs or network data [40, 255, 371, 324], the general goal is to minimize the cost

of node labelling (usually, by selecting the minimum number of nodes required to be labelled)

in order to have acceptably “accurate” collective classification of network data.

Collaborative Filtering and Social Networks. Collaborative Filtering (CF) methods

which exploit social networks for rating prediction have recently become popular (see for ex-

ample, [252, 191, 253, 361, 156, 260, 219] and [359] for a recent survey). These methods—along

with traditional CF methods—fall into two broad categories, memory-based [156, 260, 219] and

model-based [252, 191, 253, 361] approaches. In memory-based approaches, the social network

structure is usually taken into account when computing the pairwise similarity scores (or trust

values) between users [156, 260]. These scores are then used for prediction of missing ratings.

Model-based approaches focus largely on latent space probabilistic models in which users and

items are embedded in a low-dimensional latent feature space, and ratings are generated by

combining these feature vectors while accounting for social network structure.

11One can readily observe the similarity of collective classification and the latent group membership problem
[205] explained above; however, this connection has not yet been noted in the literature.
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Empathetic Social Choice on Social

Networks

This chapter focuses on the problem of consensus decision making (or group recommendation)

on social networks in the presence of empathy. Specifically, the goal is to select a single option

from a set of options for some group connected by a social network, e.g., a local constituency

electing a political representative, or friends selecting a vacation spot or a movie. While in-

dividuals have personal intrinsic utility over the options, we also incorporate a novel form of

empathetic utility on social networks: the utility (or satisfaction) of an individual with an al-

ternative a is a function of both her intrinsic utility for a and her empathetic utility for the

“happiness” of her neighbours with the selected option. Empathetic utility in this sense reflects

the fact that a person’s happiness may be influenced by the happiness of others with whom

they are connected [135]. This inherent interdependency of agent utilities is captured in related

models in the economic literature, including those that deal with empathy, envy, and other

forms of “other regarding” preferences [254, 208, 41]

We consider two varieties of empathetic preference. In our local empathetic model, the

utility of individual i for alternative a combines her intrinsic preference for a with the intrinsic

preference of i’s neighbours for a, where the weight given to j’s preference depends on the

strength of the relationship of i with j (and also the intrinsic/extrinsic tradeoff made by i). For

instance, i may be willing to sacrifice some of her intrinsic preference for a restaurant if her

colleagues are happier with the cuisine; and she defers more to her closer friends. In our global

empathetic model, i’s utility for a depends on her intrinsic preference and the total utility of her

neighbours for a (not just their intrinsic preference): she wants her neighbours not only to be

satisfied with a, but to have high utility, which depends on the utility of their neighbours, and

so on. For example, in political voting, i may have a mild preference for a over b, but if b is

strongly preferred by her closest neighbours and also by their neighbours and many others in

the community, she might prefer to see b elected so she won’t have grumpy neighbours for the

next five years. Companies linked in complex supply chain may care about the success of their

33
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suppliers and customers, and hence consider adopting industry-specific or economic policies in

that light.

We describe methods for computing optimal options under the local and global models

where by an optimal option, we mean an option that maximize social welfare (see details below).

The former, unsurprisingly, corresponds to a simple form of weighted preference aggregation,

or voting in which each agent implicitly “delegates” a portion of her vote to her neighbors.

The latter, because individual utilities are interdependent—indeed, utility spreads much like

PageRank values [289]—requires the solution of a linear system to determine the optimal op-

tion. We describe (mild) conditions under which such fixed points exist, and show that it too

results in a form of weighted voting. We develop two scalable iterative algorithms for consensus

decision making. We also generalize our empathetic framework to accommodate other social

choice problems (e.g., constrained resource allocation, matching, etc.) and show how some of

our theoretical results (e.g., fixed-point convergence) still hold. We also demonstrate that, in

the general empathetic framework, these other social choice problems can be viewed as using

weighted preference aggregation, and that our general empathetic model is not be subsumed

by allocative externalities models. Our experiments show that the algorithm converges quickly

in practice. Experiments also demonstrate the effectiveness of our algorithms and show that,

in some settings, ignoring empathetic preferences results in incorrect decisions and high social

welfare loss.1

3.1 Social Empathetic Models

This section outlines our basic social choice model, then describes our model of empathetic

preference on social networks, and discusses related work.

3.1.1 The Social Choice Setting

Apart from empathetic preferences on a network, the social choice framework we adopt is

standard. We assume a set of alternatives or options A = {a1, . . . , am} and a set of agents

N = {1, . . . , n}. Each agent j has intrinsic preferences over A in the form of either a (strict)

preference ranking �Ij or a (cardinal) utility function uIj (see Section 2.1.1). We describe

preferences in terms of utility functions, but discuss below how to interpret voting procedures

within our model.

Our goal is to select a consensus option a∗ ∈ A that implements some social choice function

f relative to the preferences of N . For example, if agent utilities are dictated solely by intrinsic

1Computational models of empathy may prove relevant in online social applications, to address a recently
observed decline in empathy among young adults in which online social networks and media may have a role
[218].
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preference and f is (utilitarian) social welfare maximization (SWM), we select

a∗ = arg max
∑
j

uIj (a). (3.1)

We assume that only one social welfare maximizing alternative exits for ease of exposition. If

multiple winning alternatives exist, the tie can be broken based on some predefined policy (e.g.,

some lexicographic order). If preferences are given by preference rankings, f might correspond

to some voting rule.2

3.1.2 Empathetic Preference on Social Networks

We depart from standard social choice by considering empathetic preferences, in which the

preferences of one agent are dependent on those of other agents. We consider the specific case

in which these influences are induced by connections in a social network (though the notion need

not be confined to networks). We focus on utility functions rather than preference rankings,

since these allow the direct expression of quantitative tradeoffs between intrinsic and empathetic

preference.

We assume a directed weighted graph G = (N , E) over agents, with an edge jk indicating

that j’s utility is dependent on its neighbor k’s utility, with the strength of dependence given

by edge weight wjk. A loop jj indicates that j’s utility depends on her own intrinsic preferences

(at certain points below we assume that all such loops exist). We assume wjk ≥ 0 for any edge

jk, and refer to this as the nonnegativity assumption. The implication of the nonnegativity

assumption is that an individual’s overall utility cannot degrade when others’ utilities increase,

and cannot increase when other utilities decrease. This rules out the possibility of “jealousy”

or “envy.” For any individual j ∈ N , we assume j’s out-going edge weights are normalized :∑
k wjk = 1. We usually refer to this as the normalization assumption. This mild assumption

is mainly to facilitate our theoretical analyses. In practice, as long as weights are bounded

above, they can be always normalized when the positive self-loop assumption (explained below)

is present. We treat missing edges as having weight 0, thus represent G with a weight matrix

W = [wij ]. We generally think of these edges as corresponding to some relationship in a social

network; see Fig. 3.1(a) for an illustration. For example, the edge between individuals 2 and 3

has weight 0.7, thus 2’s overall utility heavily depends on the 3’s utility (or satisfaction). We

further note that all edge weights are positive and the normalization assumption holds for all

nodes in this example.

We first consider pure consensus social choice scenarios in which a single option a is selected

but will later generalize our framework to accommodate combinatorial domains. We take j’s

utility for a to be a linear combination of its own intrinsic preference for a and the empathetic

preference derived from each of its neighbors j ∈ N where weights determine the relative

2Our model applies directly to more general social choice problems, such as assignment problems with network
externalities, matching, etc., without difficulty.
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importance of each neighbor. (General non-linear models are possible also.) Letting ejk(a)

denote the empathetic utility derived by j from k, define j’s utility uj(a) to be

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkejk(a). (3.2)

The ratio of wjj to
∑

k 6=j wjk captures the relative importance of intrinsic and empathetic utility

to j. Our framework does not impose empathetic preference: fully self-interested agents are

represented by self-loops of weight 1.

We consider two ways of defining empathetic preferences. In the local empathetic model, we

define ejk(a) = uIk(a); i.e., j’s utility for a combines the intrinsic utilities of each of its neighbors

(including itself if wjj > 0):

uj(a) =
∑
k

wjku
I
k(a). (3.3)

This model reflects agents j who are concerned about the “direct” preference of their neighbors k

for a; but the fact that k’s utility may depend on k’s own neighbors does not impact j. Consider

a family deciding on a movie: the preferences of certain family members (e.g., parents) for a

film may depend on the preferences of others (e.g., children, whom they want to ensure are

entertained).

In the global empathetic model, we define ejk(a) = uk(a), so that k’s total utility for a—which

may depend on k’s neighbors—influences j’s utility for a, giving rise to

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkuk(a). (3.4)

Here j’s utility for a depends on the utility, not just intrinsic preferences, of its neighbors. For

example, a voter may care about the overall satisfaction of her neighbors when voting for a

political representative, but recognize that their satisfaction also depends on their neighbors,

etc. Companies linked in complex supply chain may care about the success of their suppliers

and customers, and consider adopting industry-specific or economic policies in that light. In

the global model, the circular dependence of utilities requires a fixed point solution to the linear

system of equations in Eq.3.6, defined using Eq. 3.4 for all j ∈ N .

Correlations of behavior and/or preferences among agents connected in social network is

widely accepted, and can be explained by a variety of mechanisms [118, 187] information dif-

fusion, network externalities, or homophily (see Section 2.3 for details). Our empathetic model

is somewhat different in that a person’s intrinsic preferences over options A are not presumed

to be correlated with their neighbors, but their revealed preferences might be: their choices (or

stated utilities) reflect some consideration, however determined, of their neighbors’ preferences.
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Figure 3.1: A social network with ranked preferences, with weights under the local and global
empathetic model. Using Borda or plurality-based utility, the consensus winner is different in
each model: a under intrinsic; b under local empathetic; c under global empathetic.

3.1.3 Weighting Agent Intrinsic Utilities

In realistic social choice situations, agents with empathetic preferences must often perform

sophisticated reasoning about not only their own intrinsic preferences, but also those of their

neighbors. Even in the local setting, expressing preferences (e.g., voting) is difficult since

agents usually have incomplete (and in some cases, no) information about the preferences of

their friends, neighbors, or colleagues. For instance, consider a group of friends who plans to

decide on a movie to watch, from a list of twenty movies available in a theatre and assume

each agent has on average 5 friends. In addition to reasoning about her own preferences over

those 20 movies, an agent is required to understand and learn her friends’ preferences over all

of those movies (5 × 20 = 100 cases, on average). This learning or reasoning might involve a

considerable amount of communication and deliberation, even if an agent has few friends. The

global empathetic setting is even more complex, since an agent is required to reason about her

neighbors’ connections as well as their intrinsic/empathetic tradeoffs.

In our models, preference aggregation and optimization are simpler: agents need only specify

their intrinsic preferences, as is standard in social choice, and the empathetic weights they

assign to their acquaintances. In social scenarios, this can remove a considerable informational

and cognitive burden from agents who might otherwise be required to explicitly compute or

otherwise determine their total utility for alternatives. In other settings, agents might not

wish to reveal their preferences to their neighbors, but still want their neighbors to obtain a

favorable result (e.g., companies voting on economic policy who are linked together in supply

chain relationships which correlate their stability or profitability). Fortunately, given a network

G, consensus decision making with empathetic preferences can be recast as a weighted preference

aggregation problem over intrinsic preferences alone. This eases the burden on agents, and also

allows one to recast the problem as simple weighted voting, or weighted (utilitarian) SWM,

rendering the decision making process fully transparent. We present the model using SWM
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(but draw connections to weighted voting later.)

In the local model, determining the weights associated with each agent’s intrinsic preference

is straightforward. Assume network weights W. Let u(a) be the n-vector of agent utilities to

be computed as a function of the corresponding vector uI(a) of intrinsic utilities for a fixed

alternative a. By Eq. 3.3, u(a) = WuI(a). Letting ω = e>W (where e is a vector of ones), the

(local) social welfare of a is:

sw l(a,u
I) = ω>uI(a). (3.5)

Thus SWM under the local model is simply the weighted maximization of intrinsic preferences,

where the weight of j’s intrinsic utility ωj is the sum of its incoming edge weights. Fig. 3.1(b)

shows the weights derived for each agent under the local model. For example, ω3 = 1.5 which

derives from the summation of incoming edge weights for node 3: ω3 = 0.2+0.4+0.7+0.2 = 1.5.

Note that ω2 is the smallest and ω3 is the largest among the societal weights in this example.

This implies that the agent 3’s intrinsic utility and agent 2’s intrinsic utility have the most and

least impact on social welfare, respectively, under the local model.

When intrinsic preferences are represented by rankings, one can adopt any scoring rule

(e.g., Borda, plurality, k-approval, etc.) to transform intrinsic ranking preferences to intrinsic

utilities. Indeed, using score-based voting rules, we can readily interpret this model as a form of

empathetic voting, where the weight one assigns to a neighbor can be interpreted as the extent

to which one would trade off one’s own preferences with that neighbor’s intrinsic satisfaction

with the winning alternative.

We note that the optimal decision may be different in the local model than when only

intrinsic preferences are used. Referring to Fig.3.1(a) and (b), we show how the decision is

different for the intrinsic model and local model under two different scoring rules plurality

and Borda. In the intrinsic model, the social welfare values for alternatives a , b, c under

plurality are sw i(a) = 1 + 1 + 0 + 0 = 2, sw i(b) = 1, and sw i(c) = 1, respectively. Under

Borda, the social welfares in the intrinsic model is sw i(a) = 2 + 2 + 1 + 0 = 5, sw i(b) =

1+0+2+1 = 4, and sw i(c) = 0+1+0+2 = 3. Thus, a wins in the intrinsic model under both

plurality and Borda scoring. However, b wins in the local model for both scoring rules. One

can compute the social welfares for the local model as follows: for plurality, social welfares are

sw l(a) = ω1 + ω2 = 0.7 + 0.4 = 1.1, sw l(b) = ω3 = 1.5, and sw l(c) = ω4 = 1.4; and for Borda,

sw l(a) = 2ω1 +2ω2 +ω3 = 3.3, sw l(b) = ω1 +2ω3 +ω4 = 5.1, and sw l(c) = 0+ω2 +0+2ω4 = 3.2.

Things are more subtle in the global empathetic model. Computing the utility vector u(a)

for alternative a requires solving a linear system of equations defined by:

u(a) = (W −D)u(a) + DuI(a), (3.6)

where D is the n × n diagonal matrix with djj = wjj . Each equation of this linear system

corresponds to an individual (and is simply Eq. 3.4). A unique solution of this system is not
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guaranteed to exist;3 however, in addition to our assumptions above of non-negativity (i.e.,

W ≥ 0) and normalization (i.e.,
∑

k wjk = 1 for all j), a third mild condition on the social

network W is sufficient to ensure a unique fixed point solution, namely, positive self-loop:

wjj > 0 for all j. This assumption implies that each individual is not completely “selfless”. In

other words, each agent cares, at least to some extent, about his/her own intrinsic preferences.

Proposition 3.1.1 (Fixed-point Utility). Assuming nonnegativity, normalizaton, and positive

self-loop, Eq. 3.6 has a unique fixed-point solution u(a) = (I−W + D)−1DuI(a).

(Proofs of all theoretical results of this chapter are included in Appendix A.) As in the local

model, SWM in the global model can be seen as weighted maximization of intrinsic preference:

Corollary 3.1.1. In the global empathetic model, (global) social welfare of alternative a is given

by swg(a,u
I) = ω>uI where ω> = e>(I−W + D)−1D.

Once again, in (scoring-rule based) voting contexts one can view the global empathetic model

as trading off one’s own satisfaction for a winning alternative with the “overall” satisfaction of

one’s neighbors (not merely their intrinsic preference). Fig. 3.1(c) illustrates the distinctions:

when either Borda or plurality is used as scoring rule in this example, alternative c wins under

the global model but a wins in the intrinsic model and b wins in the local model as discussed

above. One can compute social welfares to verify why c is the winner under the global model.

For plurality, social welfares are swg(a) = ω1 + ω2 = 0.7147 + 0.2715 = 0.9962, swg(b) =

ω3 = 0.6511, and swg(c) = ω4 = 2.3627. For Borda, swg(a) = 2ω1 + 2ω2 + ω3 = 2.6235,

swg(b) = ω1 + 2ω3 + ω4 = 4.3796, and swg(c) = 0 + ω2 + 0 + 2ω4 = 4.9969. We discuss weight

computation for the global model in Sec. 3.2.

Nonnegativity, normalization, and positive self-loop are not the only (collective) conditions

under which fixed-point utilities are guaranteed to exist. Viewing the network as a Markov

chain, if one assumes the chain is aperiodic (i.e., the greatest common divisor of all directed

cycle lengths is 1) and irreducible (i.e., any node is reachable from any other node with non-zero

probability) [199, 268], fixed point solutions are also guaranteed to exist. One might also adopt

a weaker variation of our assumptions by imposing positive self-loop only on a subset of agents:

this would suffice if all closed strongly-connected partitions of the network have at least one

node with positive self-loop [158]. However, we believe our assumptions—and in particular,

positive self-loop over all individuals—are appropriate in most social choice settings.

3.1.4 Related Models and Concepts

The term empathy is used in several different ways in the literature [133]. Sometimes it refers

to “seeing the world through the eyes of others” without being affected by this view, and such

preferences [41] or “extended sympathy” [319, 15] is used to frame interpersonal comparison of

3Consider two individuals j and k, with wjj = wkk = 0, wjk = wkj = 1, uIj (a) = 0.1, and uIk(a) = 1. The
induced system does not have a unique fixed-point solution.
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utilities [177, 41]. However, our model is more consistent with an affective understanding of

another, and having concern for that person’s welfare [228], or having “other-regarding” pref-

erences [208]. Empathy has recently drawn attention in neuroeconomics and social neurosience

[327] to study the extent people can place themselves in the position of others and share an-

other’s feelings. This further motivates computational study of empathy and its application to

social choice.

The impact of others’ actions and utilities is considered in some economic models (see, e.g.,

accounts of envy, sympathy/empathy in various contexts [254, 208, 41]). Most closely related

to our work is the model of Maccheroni et al. [254], who establish the axiomatic foundations

of interdependent “other-regarding” preferences in which the outcome experienced by others

affects the utility of an agent. In their general formulation, the utility of an agent for an

act incorporates both its subjective expected utility for that act and an expected externalities

function over the agent’s perceived social value of its own act and others’ acts. While the general

form of these externalities can model our notion of empathy, the specific axioms proposed for the

application of their model (e.g., their anonymity axiom prevents the agent from distinguishing

which of its peers attains a specific outcome) preclude its direct application to our setting.

Our work bears some connection to models of opinion formation and social learning in social

networks (see Section 2.3.2 for a review). Our empathetic model can be viewed mathematically

as a special case of a general model due to Friedkin and Johnson [142] (other special cases include

[108, 139]). However, our goal in empathetic social choice is of course different: we capture

preference interdependence in our model as a form of empathy, and focus on algorithms and

mechanisms to implement a social choice function, not propagate beliefs.

Empathetic utilities can also be viewed as a form of network externality in an agent’s utility

function, though unlike typical models of externalities, an agent’s utility depends on the utility

of her neighbors for the chosen alternative rather than the behavior of, or the (direct) allocation

made to, her neighbors (see Section 2.3.4 for a review of related work on this topic). We discuss

these distinctions further in Sec. 3.3.

Our empathetic model bears some resemblance to certain centrality measures in social and

information networks, which use (self-referential) notions of node importance. Some well-known

examples include eigenvector centrality [53], hubs and authorities [213] and PageRank [289]

(see Section 2.3.1 for details). Apart from conceptual differences and the fact that we address

decision (social choice) problems, a key technical distinction is the use of self-loops in our

empathetic model, which allows each node to contribute intrinsic utility to its fixed-point value.

3.2 Computing Winners

To compute the social welfare maximizing alternative, in both the local and global empathetic

models, recall that social welfare can be expressed as sw(a,uI) = ω>uI(a) for a suitable weight
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vector ω. Given vectors uI(a) for any a ∈ A, we can compute the optimal option

a∗ = arg max
a∈A

ω>uI(a),

in O(nm) time where n comes from the computation of social welfare for each option and m

comes from iterating over all options. So we focus on: (i) computation of ω in each model; and

(ii) for the global model, a method for computing a∗ without full computation of ω.

In the local model, ω> requires only a single vector-matrix multiplication, ω> = e>W,

taking O(n2) time. However, social networks are generally extremely sparse, with the number

of incoming edges to any node j bounded by some small constant. In such sparse networks, ω

can be computed in O(n) time since ωj is simply the sum of j’s incoming edge-weights; and

a∗ can be determined as above in O(nm) time. Thus the complexity of computing optimal

alternatives in the local empathetic model is no different than that of straightforward SWM or

(weighted) voting.

In the global model, ω> has a more complicated expression: ω> = e>A−1D where A =

I−W+D (see Cor. 3.1.1). The difficulty lies largely in matrix inversion: A−1 can be computed

via Gauss-Jordan elimination, which has complexity O(n3). This implies that straightforward

computation of a∗ requires O(n3 + nm) time. In general, matrix inversion is no harder than

matrix multiplication [99, Thm. 28.2], but its complexity cannot be less than O(n2) since all n2

entries must be computed. Therefore, straightforward computation of a∗ in the global model

cannot have complexity less than O(n2 + nm).

For large n (e.g., voting in large cities, Facebook, Twitter), algorithms that scale linearly

(or better) in n are needed. Many iterative methods have been proposed for matrix inversion

and solving linear systems (e.g., Jacobi, Gauss-Siedel, etc.) which have O(n) complexity (in

sparse systems) per iteration and tend to converge very quickly in practice. We now describe

our technique that exploits a standard Jacobi method for computing a∗ in the global model.

We consider a simple iterative method for computing u(a). Let u(t)(a) be the vector of the

estimated utilities of a after t iterations.

Theorem 3.2.1. Consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a). (3.7)

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to u(a),

the solution to Eq. 3.6.

For each j ∈ N , the method computes:

u
(t+1)
j (a) = wjju

I
j (a) +

∑
k 6=j

wjku
(t)
k (a), (3.8)

where u
(t)
j (a) is agent j’s estimated utility for a after t iterations. This scheme has a natural
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interpretation in terms of agent behavior: suppose that each agent repeatedly observes her

friends’ revealed utilities, and updates her own utility for various options in response. This

process will converge—even if the updates are “asynchronous.” Under this iterative process,

the local empathetic model provides a first-order approximation to the global model if we

simply let u
(0)
k (a) = uIk(a). In other words, for this initialization, after the first iteration, we

have computed the utilities for the local model. Critically, the error in the estimated utilities

at the tth iteration can also be bounded:

Theorem 3.2.2. In the iterative scheme above,∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞
,

where w̃ = min1≤i≤nwii.

Hence, societies in which individuals have self-loops with relatively large weight (i.e., less

empathy) converge to fixed-point utilities faster than societies with greater empathy (our em-

pirical results below support this).

This error bound allows one to bound the error in estimated social welfare if the utilities of

all options are estimated this way. Let sw (t)(a) =
∑

j u
(t)
j (a).

Theorem 3.2.3. Assume uIj (a), u
(0)
j (a) ∈ [c, d], for all j where c ≤ d are constants. Then∣∣sw(a)− sw (t)(a)

∣∣ ≤ n(d − c) (1− w̃)t, for all t, under the conditions above, where w̃ =

min1≤i≤nwii.

As a result, we know that (under the same assumptions):

Proposition 3.2.4. If sw (t)(b)− sw (t)(a) ≥ 2n(d− c) (1− w̃)t then sw(b) > sw(a).

We exploit Prop. 3.2.4 in a simple algorithm, that we call iterated candidate elimination

(ICE), for computing a∗. The intuition is simple: we iteratively update the estimated utilities

of the subset C ⊂ A of options that are non-dominated, and gradually prune away any options

that are dominated by another until only one, a∗, remains. ICE first initializes C = A and

u
(0)
j (a) = c for all j ∈ N , a ∈ A. An iteration of ICE consists of: (1) updating estimated utilities

using Eq. 3.8 for all j and a ∈ C; (2) computing estimated social welfare of each a ∈ C; (3)

determining the maximum estimated social welfare ŝw (t); (4) testing each a ∈ C for domination,

i.e., ŝw (t) − sw (t)(a) ≥ 2n(d − c) (1− w̃)t; and (5) eliminating all dominated options from C.

The algorithm terminates when one option a∗ remains in C. The pseudo-code for the algorithm

is provided in Algorithm 1. ICE runs in O(tm|E|) time, where t is the number of iterations

required; and if the number of outgoing edges is bounded, O(tmn). As we demonstrate below

in our experiments, ICE converges quickly in practice.
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Algorithm 1: Iterated Candidate Elimination (ICE)

input : Social graph G, intrinsic utilities uIi (a) ∈ [c, d], ∀i ∈ N and ∀a ∈ A.
output: Consensus winner a∗.

Initialize u
(0)
i (a)← c, ∀i ∈ N and ∀a ∈ A;

// C is the possible winner candidate set

C ← A;
w̃ = min1≤i≤nwii;
t← 0;
while size(C) > 1 do

t← t+ 1;
foreach a ∈ C do

sw (t)(a)← 0;
foreach j ∈ N do

u
(t)
j (a)← wjju

I
j (a) +

∑
k:ejk∈E,j 6=k wjku

(t−1)
k (a);

sw (t)(a)← sw (t)(a) + u
(t)
j (a);

ŝw (t) ← maxa∈C sw (t)(a);
foreach a ∈ C do

if ŝw (t) − sw (t)(a) ≥ 2n(d− c) (1− w̃)t then
C ← C − {a}

return a∗ ∈ C

3.3 A Generalized Empathetic Framework

Our empathetic model and its theoretical results applies directly to more general social choice

problems (e.g., assignment, allocation, segmentation, etc.) problems. We present a reformula-

tion of our model for these applications in this section. We let xi ∈ A represent the assignment

(or label) of individual i. This xi is the alternative (or option) that is assigned (or matched)

to an individual i. Let x = (x1, · · · , xn) be the vector of all assignments. To demonstrate that

generalized empathetic model can accommodate combinatorial problems (such as assignment,

allocation, segmentation, or matching), we first show how utilitarian social welfare over the

assignment vector can be decomposed as a weighted summation of intrinsic utilities under both

the local and global models. Various social choice problems can be modelled by maximizing

utilitarian social welfare under an appropriate set of constraints.

Letting ejk(xk) denote the empathetic utility derived by j from k when xk is assigned to k,

define j’s utility uj(xj |x−j) to be

uj(xj |x−j) = wjju
I
j (xi) +

∑
k 6=j

wjkejk(xk), (3.9)

where x−j denotes the vector of assignments for all individuals except j. In the local empathetic

model, we define ejk(xk) = uIk(xk); i.e., j’s utility combines the intrinsic utilities of each of its
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neighbors (including itself if wjj > 0):

uj(xj |x−j) =
∑
k

wjku
I
k(xk), (3.10)

In the global empathetic model, we define ejk(xk) = uk(xk|x−k), so that k’s total utility for

xk—which may depend on k’s neighbors—influences j’s utility for xj , giving rise to

uj(xj |x−j) = wjju
I
j (xj) +

∑
k 6=j

wjkuk(xk|x−k). (3.11)

One can retrieve our empathetic model in Sec. 3.1 by posing the constraints xi = xj for all

i, j ∈ N . Let D be the n× n diagonal matrix with djj = wjj , We can write Eq. 3.11 as:

u(x) = (W −D)u(x) + DuI(x). (3.12)

We note that our proof for Prop. 3.1.1 directly apply for this equation and nonnegativity, nor-

malizaton, and positive self-loop assumptions induce a unique fixed-point solution for utilities:

Proposition 3.3.1 (Generalized Fixed-point Utility). Assuming nonnegativity, normalizaton,

and positive self-loop, Eq. 3.12 has a unique fixed-point solution u(x) = (I−W +D)−1DuI(x).

Social welfare for societal assignment x in the generalized local and global empathetic mod-

els, respectively, is given by

sw l(x,u
I) = ω>l uI(x),

swg(x,u
I) = ω>g uI(x),

where ωl = e>W and ω>g = e>(I−W+D)−1D. This observation is the key to solve many social

choice problems (e.g., assignments, matching, etc.) in our empathetic models. In this light, each

social choice problem can be recast as its corresponding weighted version, with weights coming

from the underlying social network. As an example, we show how the allocation (or assignment)

problem with capacity constraints in the global empathetic model can be formulated. We first

start with standard version of this problem:

maximize
x∈D(A)n

sw(x)

subject to:
n∑
i=1

I[xi = aj ] ≤ qj , ∀ 1 ≤ j ≤ m (3.13)

Here, the utilitarian social welfare is sw(x) =
∑

i u
I(xi), D(A) = A ∪ {∅}, I[.] is the

indicator function, and qj ∈ N is the quota (or capacity) for alternative aj . D(A) = A ∪ {∅}
encodes all possible outcomes for each agent in our assignment problem (i.e, being assigned
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to any of alternatives in A or none of them represented by ∅). Thus, D(A)n is the set of all

possible assignments. We can obtain the the allocation (or assignment) problem with capacity

constraints under global model simply by replacing social welfare to its corresponding weighted

version:

maximize
x∈D(A)n

ω>g uI(x)

subject to:

n∑
i=1

I[xi = aj ] ≤ qj , ∀ 1 ≤ j ≤ m (3.14)

Here, D(A)n, again, is the set of all possible assignments (as discussed above). By replacing

ωg with ωl, we obtain the resource allocation under the local empathetic model. The standard

non-empathetic setting is recovered by setting all ωs to 1 (or any positive constant value). This

weighted maximization problem, in the general case, can be viewed as a maximum weighted

matching problem on a bipartite graph, where individuals are on one side and alternatives—

with repetitions determined by their quotas—are on the other side (dummy nodes can be added,

if necessary). The weight on the edge between an individual i and alternative aj is given by

ωiu
I
i (aj).

As another example, we demonstrate how multi-winner elections can be accommodated in

the empathetic model. We consider slates S ⊆ A and let k be the fixed size of allowable slates.

We start with non-empathetic, standard problem:

maximize
S⊆A,x∈Sn

sw(x)

subject to: uIi (xi) ≥ uIi (y), ∀ y ∈ S, i ∈ N
|S| = k (3.15)

Here, the utilitarian social welfare is sw(x) =
∑

i u
I(xi). The goal is to select slate S ∈ A with

cardinality K such that it maximizes utilitarian social welfare defined based on the utilities

that agents derive from their most preferred item on the slate. We can obtain the the multi-

winner election problem under the global model simply by replacing social welfare with its

corresponding weighted version:

maximize
S⊆A,x∈Sn

ω>g uI(x)

subject to: uIi (xi) ≥ uIi (y), ∀ y ∈ S, i ∈ N
|S| = k (3.16)

We have initially changed uIi () to ωiu
I
i () in the constraints. However, ωi on both side of

the inequalities are cancelled out, thus making the inequality constraints only on intrinsic
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utilities. By replacing ωg with ωl, we obtain the multi-winner election problem under the local

empathetic model. The standard non-empathetic setting is recovered by setting all ωs to 1 (or

any positive constant value).

Some other social choice problems which focus on maximizing social welfare in presence

of some constrains (e.g., segmentation, stable matching with utilities, etc.) can similarly be

accommodated in our generalized empathetic model.

3.3.1 Iterative Methods for Societal Weight Computation

As noted, other social choice problems (e.g., assignment, multi-winner elections, matching, etc.)

can be viewed as their corresponding weighted versions under our empathetic models when

weights come from the underlying social network structure. We here discuss various methods

for computation of these societal weights. The broad use of societal weights for various social

choice problems motivate us to propose a scalable iterative method for estimating weights and

their theoretical bounds. This iterative method is a building block for algorithms to solve other

social choice problems in empathetic settings.

The problem of weight computation can be viewed as a linear system of equation:

Corollary 3.3.1. ω is the unique solution to the linear system of Aω = e where A = (I −
W> + D)D−1.

We now briefly describe the use of a standard Jacobi iterative method for estimating weights

ω in the global model.4 Let ω(t) be the estimated weights after t iterations.

Theorem 3.3.2. Consider the following update:

ω(t+1) = D(W> −D)D−1ω(t) + De

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to ω, the

solution to linear system stated in Cor. 3.3.1.

For each j ∈ N , this iterative method computes

ω
(t+1)
j = wjj +

∑
k 6=j

wjj
wkk

wkjω
(t)
k (a). (3.17)

where ω
(t)
j is the agent j’s estimated societal weight after t iterations. One can readily bound

the error of estimated weights after t iterations:

Theorem 3.3.3. Assume ω(0) = (w11, w22, . . . , wnn)>. In the iterative scheme above,∥∥∥ω − ω(t)
∥∥∥

1
≤ nŵ

w̃
(1− w̃)t (1− w̄),

4Recall that for the local model, ω can be efficiently computed in O(|E|) time as explained in Sec. 3.2.
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where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

Hence, this iterative method converges faster for societies in which individuals have self-loops

with relatively larger weight (i.e., less empathy) compared to societies with greater empathy.

The error bound on ω allows one to bound the error in estimated social welfare

sw (t)(x) =
∑
j

ω
(t)
j uIj (xj),

for the assignment vector x.

Theorem 3.3.4. Assume ω(0) = (w11, w22, . . . , wnn)>. Under normalization, nonnegativity,

and self-positive loop, for any t:

|sw(x)− sw (t)(x)| ≤ nŵ
w̃

(1− w̃)t (1− w̄)
∥∥uI(x)

∥∥
2
,

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

This bounds the error in our estimated social welfare at iteration t. As t grows, the error

shrinks since 1−w̃ < 1. Due to having n and
∥∥uI(x)

∥∥
2

on the right side, for larger n, we require

a greater number of iterations to obtain reasonable approximations. As a result of Theorem

3.3.4, we know that (under the same assumptions):

Proposition 3.3.5. If sw (t)(x) − sw (t)(y) ≥ n ŵw̃ (1− w̃)t (1 − w̄)
(∥∥uI(x)

∥∥
2

+
∥∥uI(y)

∥∥
2

)
then

sw(x) > sw(y).

Using this proposition, by comparing the estimated social welfares of two options, one can

assess the relative magnitude of their actual social welfares. We exploit this below.

To demonstrate the practical impact of these theoretical results, in our experiments below

we show how these results can be deployed for solving a simplified allocation problem as an

example. Moreover, we can use these weight approximation methods to develop another iter-

ative algorithm for solving consensus decision making problems which are the main focus of

this chapter. We call this new algorithm weight-based iterated candidate elimination (WICE).

For the ease of presentation, we present and explain WICE using our earlier notations in this

chapter for the specific problem of consensus decision making. The intuition behind WICE is

to iteratively update the estimated weights ω(t) and accordingly calculate the estimated social

welfare of the subset C ⊂ A of candidates that are non-dominated, and gradually prune away

any candidate that is dominated by another until only one, a∗, remains.

More precisely, WICE first initializes C = A and ω
(0)
j = wjj for all j ∈ N . An iteration

of WICE consists of: (1) updating estimated weights using Eq. 3.17 for all j ∈ N ; (2) com-

puting estimated social welfare of each a ∈ C; (3) determining the maximum estimated social

welfare ŝw (t) and its corresponding alternative â; (4) testing each a ∈ C for domination, i.e.,

ŝw (t)−sw (t)(a) ≥ n ŵw̃ (1− w̃)t (1−w̄)
(∥∥uI(â)

∥∥
2

+
∥∥uI(a)

∥∥
2

)
; and (5) eliminating all dominated
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Algorithm 2: Weight-based Iterated Candidate Elimination (WICE)

input : Social graph G, intrinsic utilities uIi (a) ∈ [c, d], ∀i ∈ N and ∀a ∈ A.
output: Consensus winner a∗.

Initialize ω
(0)
j ← wjj , ∀j ∈ N ;

// C is the possible winner candidate set

C ← A;
w̃ = min1≤j≤nwjj ;
ŵ = max1≤j≤nwjj ;
w̄ = 1

n

∑
j wjj ;

t← 0;
while size(C) > 1 do

t← t+ 1;
foreach j ∈ N do

ω
(t)
j ← wjj +

∑
k 6=j:ejk∈E

wjj
wkk

wkjω
(t−1)
k ;

foreach a ∈ C do

sw (t)(a) =
(
ω(t)

)>
uI(a)

â = arg maxa∈C sw (t)(a);

ŝw (t) ← sw (t)(â) ;
foreach a ∈ C do

if ŝw (t) − sw (t)(a) ≥ n ŵw̃ (1− w̃)t (1− w̄)
(∥∥uI(â)

∥∥
2

+
∥∥uI(a)

∥∥
2

)
then

C ← C − {a}

return a∗ ∈ C

candidates from C. The algorithm terminates when only one candidate (i.e., a∗) remains in C

(the pseudo-code is presented in Algorithm 2). The running time for each iteration of WICE

is O(|E|+mn), where |E| is the number of edges.

Comparison of ICE and WICE algorithms. The running time comparison of ICE vs. that

of WICE is not straightforward. Each iteration of WICE runs faster than ICE: O(|E| + mn)

vs. O(|E|m). But, we expect ICE to converge much faster (in fewer iterations) than WICE

by comparing their domination conditions (see Prop. 3.2.4 and Prop. 3.3.5). If so, ICE is more

efficient for small number of alternatives and large scale networks while WICE is well-designed

for large scale network and high number of alternatives. We study this in our experiments

below.

3.3.2 Generalized Empathetic Model vs. Allocative Externalities Models

Empathetic utilities can be viewed as a form of network externality in an agent’s utility function.

But unlike typical models of allocative externalities (see Section 2.3.4 for a review), an agent’s

utility depends on the utility of her neighbors for the chosen alternative rather than the behavior

of, or the (direct) allocation made to, her neighbors. More specifically, individual i’s extrinsic

utility in our empathetic model derives from i’s neighbours’ utilities, whereas in the allocative
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Figure 3.2: The social network of our counter example for demonstrating that the empathetic
model is not subsumed by the metric labelling model.

externalities model, extrinsic utilities are determined by similarity/dissimilarity (or distance)

between i’s assignment and each of its neighbours’ assignments.

To crystallize this distinction, we here show that the generalized empathetic model cannot

be subsumed by the general allocative externalities model where we adopt the model of metric

labelling [212] as a general model for allocative externalities.5 The utility of individual i under

the metric labelling model can be written as:

ui(xi|x−i) = wiiu
I
i (xi) +

∑
j

wiju
′(xi, xj)

where xi represents the assignment (or label) of individual i, uIi (.) is i’s intrinsic utility function,

wij is the weight of the edge between i and j, and u′(xi, xj) is extrinsic utility. Letting β0 ∈ R
and β1 ∈ R+ be constants, we consider the extrinsic utility u′(xi, xj) = β0 − β1d(xi, xj), which

is the linear function of the distance between xi and xj , denoted by d(xi, xj). This implies that

the closer xi and xj are according the distance function d, the corresponding extrinsic utility

is higher and increase linearly with the distance. We assume that d(., .) is a valid distance

function satisfying non-negativity d(x, y) ≥ 0, identity of indiscernibles d(x, y) = 0 ⇔ x = y,

and symmetry d(x, y) = d(y, x). It is straightforward to see that

ui(xi|x−i) = wiiU
I
i (xi) + β0

∑
j

wij − β1

∑
j

wijd(xi, xj).

We now present a counter example to show that the empathetic model is not subsumed

by the metric labelling model. Consider the simple social network depicted in Fig. 3.2. We

assume there are two options a and b where agents 1 and 2 have following intrinsic utilities over

them: uI1(a) = 1, uI2(a) = 0, uI1(b) = 0, uI2(b) = 1. We now focus on agent 1’s overall utility

u1(.|x2 = b) assuming agent 2 is assigned to item b (i.e., x2 = b).

Let uL1 (.|x2 = b) be the overall utility of individual 1 given x2 = b under the labelling

framework. Then, we have uL1 (x1|x2 = b) = 0.25×uI(x1) + 0.75β0−0.75×d(x1, b). Given this,

uL1 (a|x2 = b) = 0.25+0.75β0−0.75β1×d(a, b). Similarly, uL1 (b|x2 = b) = 0.75β0−0.75β1×d(b, b).

As d(b, b) = 0 for a valid distance function due to identity of indiscernibles, we have uL1 (b|x2 =

5The metric labelling problem is typically formulated based on a node’s costs and pairwise disagreement
penalties/costs. However, we can represent this model equivalently using the concept of utility.
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b) = 0.75β0.

Let uE1 (.|x2 = b) be the overall utility of individual 1 given x2 = b under empathetic

framework. Then, we have uE1 (a|x2 = b) = 0.25 × uI1(a) + 0.75 × uE2 (b|x2 = b). As uE2 (b|x2 =

b) = 1.0×uI2(b) and given intrinsic utilities above, we have uE1 (a|x2 = b) = 0.25×1+0.75×1 = 1.

Similarly, uE1 (b|x2 = b) = 0.75.

Now we check whether there are valid values for β0, β1 and d(., .) which map the empathetic

model to the labelling model. By letting uL1 (b|x2 = b) = uE1 (b|x2 = b), we have β0 = 1. Now

we let uL1 (a|x2 = b) = uE1 (a|x2 = b) and use β0 = 1, we find that 1 − 0.75β1d(a, b) = 1, thus

d(a, b) = 0 or β1 = 0. However, β1 > 0 (as stated above) and also d(a, b) can not be zero for

a valid distance function (due to identity of indiscernibles). So, the empathetic model can not

be subsumed by the labeling model.

3.4 Empirical Results

We describe experiments on randomly generated networks and intrinsic preferences to analyze

our algorithms, and to contrast the decisions that result under standard non-empathetic, local

empathetic, and global empathetic models.

Experimental Setup. We assume that individual intrinsic utilities arise from an underlying

preference ordering overA. In all experiments, we draw a random ordering for each agent j using

either: the impartial culture model, in which all rankings are equally likely; or the Irish voting

data set, which we explain in detail below. To draw connections to voting methods, j’s utility

for a is given by the Borda or plurality score of a in its ranking. As utilities, these embody very

different assumptions: Borda treats utility differences as smooth and linear, whereas plurality

utility is “all or nothing.” We generate random social networks using a preferential attachment

model for scale-free networks [25]:6 starting with n0 initial nodes, we add n nodes in turn,

with a new node connected to k ≤ n0 existing nodes, where node i is selected as a neighbor

with probability deg(i)/
∑

j deg(j). We set n0 = 2 and k = 1 in all experiments. We “direct”

the graph by replacing each undirected edge with the two corresponding directed edges; add

a self-loop to each node with weight α; then distribute weight 1 − α equally to all other out-

going edges. Parameter α ∈ (0, 1] represents the degree of self-interest, and 1−α the degree of

empathy. Unless noted, all experiments have n = 1000 agents (nodes), α = 0.25, and are run

over 50 random preference profiles on each of 50 random networks (2500 instances).

Performance Metrics. To examine the importance of modeling empathy in social choice, we

distinguish actual user preferences—referred to as the true model—from how preferences are

modeled in a group decision-support system—namely, the assumed model. Specifically, we let

the true and assumed models be any of our intrinsic (non-empathetic), local or global models (9

possible combinations). We are interested in the extent to which these models disagree in their

6This is only one of many models that can be used. Results are similar for other types of networks.
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decisions, and the loss in social welfare that results from such disgareement. If these measures

are large, it indicates that, in situations where empathetic preferences exist, ignoring them by

using classical preference aggregation techniques will lead to poor decisions. Specifically, we

measure the percentage of decision disgareement (DD) (over 2500 instances for a fixed setting)

in which the the true and assumed models propose different optimal decisions. We also measure

the average loss in social welfare arising from making decisions using an assumed model that

differs from the true model. Let sw t(·) and swa(·) be social welfare under the true and assumed

models, respectively, and at and aa be the corresponding optimal options (or winners). Rather

than directly comparing social welfare under various models, we define relative social welfare

loss (RSWL) to be

RSWL =
sw t(at)− sw t(aa)

sw t(at)
.

We often report RSWL as a percentage. RSWL, by scaling differences in social welfare, helps

calibrate the comparison between experiments. We can normalize RSWL by considering the

range of possible social welfare values actually attainable. Let alternative a− have minimum

social welfare under the true model (so it is no better than the decision under the assumed

model). Normalized social welfare loss (NSWL) is

NSWL =
sw t(at)− sw t(aa)

sw t(at)− sw t(a−)
.

This offers a more realistic picture of loss caused by using an inconsistent assumed utility model

(by comparing it to the loss of the worst possible decision under the true model).

Impartial Culture. We first consider RSWL and NSWL for all nine combinations of assumed

and true utility models. We fix m = 5 options and use Borda scoring. Average (maximum)

losses are reported in Table 3.1 while the decision disagreement percentage is shown in Ta-

ble 3.2. While RSWL is relatively small on average (though maximum losses are quite large),

this is largely due to the uniformity of preferences generated by impartial culture (all options

have the same expected score). By normalizing, we obtain a more accurate picture of the loss

incurred by using non-empathetic voting: average normalized loss shows that the “controllable”

error is quite large, especially when comparing the “standard” intrinsic model to either of the

empathetic models. Moreover, the intrinsic model chooses the incorrect alternative in over half

of all instances in both cases. Interestingly, assuming either the local model or global model

when the true model is the other gives reasonable results: this means that the local model offers

a good first-order approximation to the global model (see Sec. 3.2).

Irish Voting Data. Impartial culture is often viewed as an unrealistic model of real-world

preferences. For this reason, we tested our methods using preferences drawn from the 2002

Irish General Election, using electoral data from the Dublin West constituency, which has 9
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true model
assumed model

intrinsic local global

intrinsic
— 1.4(9.9) 1.1(8.0)
— 28.4(100) 22.6(100)

local
2.9(19.3) — 0.1(3.2)
28.5(100) — 1.2(86.9)

global
1.8(12.7) 0.1(2.7) —
22.3(100) 1.1(97.0) —

Table 3.1: Avg. (max.) RSWL (1st rows) and NSWL (2nd rows): Borda, m = 5.

true model
assumed model

intrinsic local global

intrinsic — 57.76 50.48

local 58.12 — 11.72

global 50.84 11.72 —

Table 3.2: Percentage decision disagreement: Borda, m = 5.

candidates and 29, 989 ballots of top-t form, of which 3800 are complete rankings.7 We assign

full rankings, drawn randomly from the set of 3800 complete rankings to nodes in our network.

Decision disagreement under both plurality and Borda scoring (Table 3.3) is quite high, ranging

from 22-46%. Average NSWL (shown in Table 3.4) is not as high as with impartial culture

(from 1-3%, with maximum loss around 40%).

The effect of m. Fig. 3.3 shows the average RSWL and decision disagreement (DD) for three

“true vs. assumed” models as we increase the number of alternatives m using plurality scoring.

We observe that average RSWL increases with m and approaches 70% when m = 200, while

the optimal decision is rarely made. NSWL for the instrinsic model (shown in Fig. 3.4), even at

m = 5, averages 20–30%. With Borda scoring, the effect of m is much less pronounced because

of relatively small utility differences (or smoothing) between adjacent candidates (intrinsic loss

ranges from 20-30% across all values of m), but the pattern decision disagreement is almost

identical to plurality.

The effect of scoring rule (from Plurality to Borda). So far, we have experimented with

both Borda (as a representative for smooth scoring rule) and Plurality (as a representative for

sharp, one-or-nothing scoring rule). We now explore how RSWL changes when the scoring rule

transitions from plurality to Borda. We consider the τ−scoring rule

sτ (aj , r) = τ r(aj)−1(m− r(aj)),

where r(aj) represents the rank of alternative aj in ranking r and τ ∈ [0, 1]. Note that when

τ = 1, the τ -scoring rule is equivalent to Borda whereas with τ = 0, the τ -scoring rule is

7We have obtained the original data sets from www.dublincountyreturningofficer.com.
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true model
assumed model

intrinsic local global

intrinsic — 27.3 / 46.1 22.3 / 39.0

local 28.0 / 46.3 — 5.6 / 8.6

global 22.9 / 39.3 5.5 / 8.6 —

Table 3.3: Percentage decision disagreement, plurality/Borda: West Dublin, m = 9.

true model
assumed model

intrinsic local global

intrinsic — 1.9(34.8) 1.3(19.9)

local 2.7(39.6) — 0.1(7.1)

global 1.6(31.7) 0.1(8.8) —

Table 3.4: Average (maximum) NSWL: 2500 runs, Plurality, West Dublin dataset, m = 9,
n = 1000, α = 0.25.

plurality.

We set m = 10 and vary τ over {0, 0.2, 0.4, 0.6, 0.8, 1}. Fig. 3.5 shows average (maximum,

minimum) RSWL for three actual, assumed model combinations for various τ values. We

observe that plurality is more susceptible to RSWL than Borda (compare τ = 0 with τ = 1).

The change in RSWL is almost linear when moving from plurality to Borda. This implies that

amongst the wide variety of scoring rules which exist between Borda and plurality, those scoring

rules which are closer to plurality yield to higher RSWL when compared to those are closer to

Borda. These results suggest that the sharpness or smoothness of scoring rule plays a role in

RSWL; i.e., the sharper the scoring rule is, the higher RSWL is.

Self-loop weight α. Varying the self-loop weight α has a significant effect on NSWL and

decision disagreement when true utility is global but intrinsic utility is assumed. Table 3.5 shows

that, for both Borda and plurality, increasing α (i.e., decreasing overall degree of empathy)

decreases both NWSL and DD, which is not surprising, as by increasing α the empathetic

model gets closer to the intrinsic model. Similar trends hold for the local model. We also

used a model in which nodes have different self-loop weights, drawing each node’s α from a

(truncated) Gaussian. As we vary the mean µ, we see a similar trend in Table 3.6.

The impact of directionality. The results above use networks with bi-directional edges

(by replacing each undirected edge with two directed edges). To explore how directionality

impacts NSWL, we consider networks with a hierarchical orientation, as often found in eco-

nomic (e.g., supply chain), organizational (management/employee structure), and even some

social networks (e.g., forms of status, following, etc.). We replace each undirected edge in the

preferential attachment network with a directed edge from the “younger” node to the “older.”

The older node reciprocates with a directed edge to the younger with probability γ. If γ = 1,

our standard bidirectional network results (as above); when γ = 0 we obtain a completely
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Figure 3.3: RSWL and decision disgreement (DD), plurality.

α 0.05 0.1 0.25 0.5 0.75

Borda 26.0 / 58.7 25.0 / 55.8 22.2 / 53.0 15.1 / 42.5 7.3 / 28.8

Plurality 28.8 / 59.8 26.7 / 58.1 22.7 / 53.8 16.9 / 46.9 7.8 / 31.3

Table 3.5: Average NSWL/decision disgreement: global vs. intrinsic, varying α.

hierarchical network.

Fixing m = 10, Fig. 3.6 depicts NSWL for both Borda and plurality as γ varies. Networks

that are more hierarchical have higher NSWL for the global vs. intrinsic models, independent

of the scoring rule, while NSWL for local vs. intrinsic is almost constant. However, plurality

seems more susceptible to increasing loss due to hierarchical structure than Borda for all three

combinations. Unlike earlier results, when the network is very hierarchical (e.g., γ = 0), the

global and local models do not approximate each other well.

Number of Iterations of ICE. We examine how the self-loop weight α affects the expected

number of iterations required by the ICE algorithm. We fix m = 5, and vary α. Fig. 3.7

illustrates estimated social welfare for each alternative in one representative run (α = 0.25,

Borda scoring): this instance of ICE converges in 24 iterations, with computation time under 2

ms., despite the large number of voters. Alternative a4 is eliminated at iteration 16, a5 at 17,

a1 at 20, and a2 at 24, leaving a3 as optimal. Note that the relative order of the alternatives is

unchanged after 6 iterations, suggesting early termination as a robust means of approximation.

Table 3.7 shows the average number of iterations for various α, for Borda and plurality. In

all cases, the number of iterations is small relative to network size. ICE is quite insensitive to
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Figure 3.4: Average NSWL, impartial culture, and varying the number of alternatives m.

µ 0.05 0.1 0.25 0.5 0.75

Borda 27.6 / 59.2 24.3 / 54.9 21.3 / 52.3 15.6 / 42.5 8.1 / 31.1

Plurality 27.2 / 58.6 24.5 / 55.5 23.3 / 54.7 16.5 / 46.1 8.0 / 31.5

Table 3.6: Average NSWL/decision disgreement: global vs. intrinsic, α drawn from truncated
Gaussian with mean µ and std. dev. 0.1.

the scoring rule, and termination time declines dramatically with increasing α, as is typical for

iterative algorithms (e.g., for Markov chains).

Number of Iterations of WICE. We examine how the self-loop weight α affects the expected

number of iterations required by the WICE algorithm. We fix m = 5, and vary α. Table 3.8

shows the average number of iterations for various α, for both Borda and plurality. The number

of iterations is small relative to network size, but is almost twice that of ICE (see Table 3.7).

WICE, similar to ICE, is quite insensitive to the scoring rule, and termination time declines

dramatically with increasing α, as expected.

Performance Comparison of ICE vs. WICE. The experiment above shows that WICE

requires a greater number of iterations on average when compared to ICE. We here examine

how the running time of ICE compares to that of WICE. We fix α = 0.25 and n = 1000 but vary

m. Table 3.9 shows the ratio of average running time for ICE over the average running time of

WICE (over 2500 common instances). WICE seems to be faster than ICE despite its greater

number of iterations. The speed ratio generally increases with m. Given this performance, we

suggest the use of WICE over ICE for applications with relatively large m.
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Figure 3.5: Avg. (maximum, minimum) RSWL (2500 runs): n = 1000, m = 10, τ -scoring rule.

α 0.05 0.1 0.25 0.5 0.75

Borda 104.1 51.4 19.5 8.7 4.7

Plurality 98.7 48.6 18.6 8.3 4.6

Table 3.7: Average number of iterations for ICE, varying α.

Empathetic Resource Allocation. We briefly demonstrate the value of accounting for

empathetic utilities in a simple resource allocation problem. We use the plurality scoring rule,

and fix n = 1000 agents and m = 5 alternatives. Each agent’s ranking is drawn from a φ-

Mallows model. For each alternative j, we let its quota be qj = n
cm , where the constant c is set

to 2, unless noted. Under plurality, the weighted constrained resource allocation (outlined in

Eq 3.14) can be solved by greedily allocating each alternative aj (given its quota qj) to those

agents who ranked aj first and have high societal weight ω. In other words, for each alternative

aj , we first find those set of agents Nj = {i ∈ N|ri(aj) = 1} who ranked aj first. Then, we sort

the agents in Nj based on their societal weights ω in the a descending order. We start allocating

aj from top of the list as far as the quota qj allows us. After iterating over all alternatives, we

can arbitrary assign remaining alternatives to unmatched agents (due to plurality, the agents

are indifferent to items below their first-ranked items). Note that there might be many possible

optimal solutions given the distribution of rankings, quotas, and societal weights.

We define relative social welfare loss (RSWL) in a similar fashion to voting above:

RSWL =
sw t(xt)− sw t(xa)

sw t(xt)
,
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α 0.05 0.1 0.25 0.5 0.75

Borda 219.4 101.1 33.6 12.9 6.1

Plurality 208.1 94.6 31.5 12.1 5.7

Table 3.8: Average number of iterations for WICE, varying α.

m 5 10 20 50 100 200 500 1000

Borda 1.592 1.737 1.882 1.817 1.829 2.316 2.715 2.574

Plurality 1.691 1.923 1.930 1.957 2.227 3.105 4.209 4.330

Table 3.9: The ratio of the average of running time for ICE over the average of running time
for WICE (2500 common instances).

where sw t(·) and swa(·) are social welfare under the true and assumed models, respectively,

and xt and xa are the corresponding optimal options.

Fig. 3.8 demonstrates the average RSWL (over 2500 instances) for three “true vs. assumed”

models as we increase φ. RSWL seems to be high for both “global vs. non-empathetic” and

“local vs. non-empathetic” but it is very low for “local vs. global”. RSWL decreases with φ,

meaning that the more homogeneous the society is, the higher relative social welfare loss is.

This is partially due to the constraints or quotas imposed: when there are more agents with

the same first-rank alternative and limited capacity, the allocation mechanisms are required to

consider societal weights (due to empathy) more seriously in their allocations.8

We also examine the effect of resource scarcity on RSWL. We set φ = 0.8 and vary c.

The higher c is, the higher the scarcity of resources. Fig. 3.9 shows the average RSWL (over

2500 instances) for various c. RSWL increases with c, suggesting that with higher scarcity, the

allocation mechanism should be more cautious in assigning the resources to individuals. The

general goal should be to first satisfy individuals with the higher empathetic influence (i.e.,

higher societal weights).

Iterative Weight Computation for Resource Allocation Finally, we examine the perfor-

mance/accuracy of the weight updating scheme presented in Eq. 3.17. We assume that the true

model is the global empathetic model. After each iteration, we consider the estimated weights

as an assumed model and we compute RSWL for that specific iteration. This process allows

us to monitor how RSWL evolves over iterations of our updating scheme. For this experiment,

we set c = 2 and φ = 0.8 while varying m. Table 3.10 demonstrates the average of RSWL

(over 2500 instances) for various m over 10 iterations. The higher m is, the average RSWL is

higher at iteration 0. However, only after 2 iterations, the average RSWL is close to zero for

all m (with the maximum of almost 0.02). The average RSWL after 10 iterations (for all m) is

8This pattern is not observed for consensus decision making in our experiments. In contrast, our experi-
ments suggest that homogeneity affects RSWL in the opposite way for consensus decision making: the higher
homogeneity is, the lower RSWL is.
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Figure 3.8: RSWL for allocation problem, plurality, n=1000, m=5, qj = 100, varying φ

m/iter. 0 1 2 3 4 5 6 7 8 9 10

5 7.8503 0.2459 0.0135 0.0131 0.0035 0.0045 0.0010 0.0012 0.0003 0.0003 0.0001
10 8.8486 0.2033 0.0179 0.0129 0.0040 0.0034 0.0011 0.0009 0.0003 0.0002 0.0001
20 11.5266 0.2458 0.0193 0.0203 0.0042 0.0038 0.0011 0.0009 0.0003 0.0002 0.0001
40 15.1015 0.3120 0.0187 0.0344 0.0050 0.0068 0.0014 0.0016 0.0004 0.0004 0.0001
80 17.5271 0.3521 0.0171 0.0474 0.0045 0.0092 0.0013 0.0022 0.0004 0.0006 0.0001

Table 3.10: Average RSWL (estimated weights vs. global) for allocation problem over iterations,
plurality, n=1000, φ = 0.8, qj = n

2m for all j ∈ A.

0.0001.

3.5 Summary and Future Work

This chapter presents a novel model for social choice, combining intrinsic and empathetic prefer-

ences, the latter reflecting one’s desire to see others satisfied with a chosen alternative. Using a

social network to measure degree of empathy, our proposed algorithms, for local and global em-

pathetic settings, allow efficient computation of optimal decisions by weighting the contribution

of each agent, and have a natural interpretation as empathetic voting when scoring rules are

used. Critically, individuals need only specify their intrinsic preferences (and network weights):

they need not reason explicitly about the preferences of others.

Our empathetic model is a starting point for the broader investigation of empathetic prefer-

ences in social choice and group decision making. One can explore more realistic processes for

simultaneous generation of networks and preferences that better explain preference correlation

(see, e.g., our work on ranking network framework [311] which is presented in the next chapter).
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Figure 3.9: RSWL for allocation problem, plurality, n = 1000, m = 5, φ = 0.8, qj = 200
c for all

j ∈ A , varying c.

Methods to assess the prevalence of empathetic preferences, the extent to which social network

structure reflects such preferences, and how they can be discovered effectively, are critical. Test-

ing our model, and these extensions, on large data sets is of course critical to validating the

existence of empathy of this form.

Although we show in Sec. 3.3 how to extend our empathetic social choice framework to

accommodate other social choice problems (such as matching, assignment, and multi-winner

election problems), each of these applications requires its own algorithmic developments. Other

important directions include: voting schemes where agents specify tradeoffs between intrinsic

and empathetic preference in a qualitative fashion; and analysis of manipulation in the context

of such externalities in voting. We elaborate on future work in Sec. 6.3.



Chapter 4

Ranking Networks

Network formalisms offer a powerful tool for studying the interactions of entities in complex

systems. Of special interest in network science is the development of network formation models

that explain the emergence of common structural properties of real-world networks. Recent

work has focused on modelling the role of both known and hidden attributes of nodes in forming

networks—the intuition being that each node possesses attributes (e.g., geographical location

[351] or social position [183, 49]) that determine the chance that any pair of nodes become

connected. Examples of such models include spatial networks [27], random geometric graphs

[295, 103], latent space models [183, 49], and multiplicative attribute graphs [203, 206]. We

discussed latent and spatial networks in Sec. 2.3.3.

Most of these models take attributes to be binary, real-valued, or integral. Surprisingly

little work has studied attribute-based network formation in which the underlying attributes

correspond to rankings over some space of options. Such rankings may represent the preferences

of agents over some set of alternatives (e.g., products or services, political candidates, jobs) or

their subjective opinions about the quality or relevance of certain items (web pages, sports

teams). Because of the increasing availability of ranked data brought about by e-commerce,

recommender systems, web search, online/interactive polling and surveying, and numerous

other applications, a deeper understanding of the possible interactions between ranked data

and network formation seems imperative.

In Chapter 3, we analysed empathetic models for capturing the interdependency of prefer-

ences over social networks. We observed how empathy can induce correlation of preferences.

However, correlation of preferences can also be due to homophily as discussed in Sec. 2.3.1.

This chapter focuses on developing a generative model for ranking preferences (or, in general,

rankings) based on homophily.

In this chapter, we introduce and formulate a model for the formation of ranking networks

[311], in which each entity possesses a ranking over a set of m alternatives. The similarity

of their rankings determines the probability with which two individuals will connect in the

network. Such networks can be used for a variety of purposes, but we are especially interested

in models where rankings reflect agent preferences over some space of options. We discuss the

61
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extent to which we can leverage the inherent structure of ranking networks to address important

computational and algorithmic questions that arise in the analysis of networks. For instance,

what topological network properties emerge under such a model? How do model parameters—

including the underlying ranking distribution and similarity metric—influence these properties?

And can such structural properties be predicted efficiently?

Ranking network models can be deployed in a variety of contexts. It is widely acknowledged

that the behaviours of individuals are correlated over the social networks [88, 118, 187]; and

correlated preferences offer one possible explanation of this phenomenon. With suitable models

such as ranking networks, one can more readily predict or elicit the preferences of specific

individuals to develop more efficient recommender, social choice and advertising mechanisms

(e.g., to make better decisions with less data or less elicitation). We will focus on this application

of ranking networks in Chapter 5. Ranking networks may also have application in information

retrieval and topic modelling over the web (or other information networks): given some common

set of attributes (e.g., topics, tags), each node (e.g., web page, photo) may have a “relevance

ranking” over those attributes. A ranking network can capture the correlation of such relevance

rankings given the structure of underlying information network (and may help improve the

efficiency of recently developed comparison-based interactive search methods [194, 195]). The

predictive power of ranking networks might be also harnessed for link prediction [244, 237]—

to help predict future interactions between entities—or link mining—to help infer unobserved

links between entities [150].

We analyse some general topological properties of ranking networks (e.g., connectivity con-

ditions, graph diameter, degree distribution, edge density, clustering coefficient). We show that

ranking networks exhibit the small world effect—a commonly observed real-world social net-

works’ property—by possessing short diameter and average path length. We demonstrate how

the diameter can be approximated using random graph theory. Ranking networks also pos-

sess the diameter-shrinking property of real-world networks [232], where diameter (and average

shortest path) shrinks as the network grows.

We observe that the structural properties of ranking networks (e.g., edge density and degree

distribution) can be computed readily if model parameters are given. However, computation

can be extremely intensive even for relatively small m due to the combinatorial size of ranking

space. This motivates us to develop easy-to-compute approximations for the special class of

distance-based ranking models, while studying properties that emerge among networks in this

class.

Distance-based ranking networks are built upon distance-based distributions of rankings in

which ranking probabilities decrease with increasing distance from some “modal” or “reference”

ranking (see Sec. 2.2.2 for review). We bound the minimum and maximum probability that

a node with a given ranking is connected to another randomly chosen node. Our theoretical

bound has a natural interpretation: individuals that possess more likely or more “popular”

rankings have greater odds of connecting with others (hence have higher expected degree) than
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those with less likely or less “popular” rankings. This is not surprising given the nature of

distance-based ranking models. In the context of social networks, this is one possible con-

tributing factor to the intuition that people with more “popular” preferences tend to have more

friends and social interactions than those with uncommon preferences, i.e., the intuition that

preference popularity governs social popularity. From a different perspective, one can use ob-

served node degree to make inferences about that node’s ranking: higher degree is predictive

of more “common” preferences (i.e., closer to the modal ranking). This can be exploited to

support efficient estimation/learning of both the reference ranking, the ranking distribution,

and the preferences of specific individuals. Using these theoretical bounds, we develop some

approximation methods for predicting edge density and degree distribution under ranking mod-

els. We also show how these approximation methods can be used for learning model parameters

when one is interested in maximum likelihood estimation of the parameters and dealing with

missing data.

We perform some empirical experiments using the Mallows’ φ-model [258]. We compare

various structural properties (e.g., degree distribution, edge density, diameter) of the randomly-

generated networks under a ranking network model with the predictions of our approximation

methods. Our results confirm the efficiency and predictive accuracy of our computational

approximations.

The remainder of this chapter is organized as follows. After reviewing the related work

in Sec. 4.1, we first provide background on latent space models for network formation 4.2.

We then define ranking networks by building upon these models and discuss some general

theoretical properties in Sec. 4.3. In Sec. 4.4, we examine the special case of distance-based

ranking networks, analysing some of its theoretical properties and developing computational

approximations to estimate these properties. In Sec. 4.5, we show how our approximation

methods can be used for efficient model learning. The results of some empirical experiments

conducted on ranking network model are reported in Sec. 4.6. Finally, we highlight some future

work in Sec. 4.7.

4.1 Related Work and Concepts

Network formation models have drawn considerable attention, with a variety of models proposed

to capture structural properties of real-world networks [279, 26, 280].One can roughly divide

these model into two categories. Static models (e.g., Erdős-Rènyi, small world) specify the

network using simple static properties (e.g., probability of edge occurrence), whereas dynamic

models (e.g., preferential attachment) involve some dynamic “growth” process by which nodes

and edges are added to a network (see the review of network formation in Sec. 2.3.3).

Our ranking network model is a random, static model. It is also falls within the class of

spatial (or latent space) networks [27, 183] in which nodes have a set of real-valued, binary,

or integer-valued latent variables, with the probability of an edge forming between two nodes
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determined by their attributes (see Sec. 2.3.3 for a review of latent and spatial models). Within

spatial network formation models, recent research has addressed inference and learning of latent

attributes and social network structure (for example, see[183, 204, 205] and the review in

Sec. 2.3.4).

4.2 Latent Space Network Models Properties

Latent space or hidden variable network models [48] generally assume a set n nodes, where each

node i is associated with a latent variable hi. This represents some feature (or feature vector)

of the node or individual in question. The parameters of such a model are given by a parameter

vector θ = (λ,η) (we define model parameters λ and θ below). A random undirected graph is

generated by assuming: (1) a parameterized distribution ρ(h|η) specifying the probability that

an arbitrary node takes on value h (vector η is parameter vector of distribution ρ); and (2) a

symmetric connection probability function, c(h, h
′ |λ), where c(hi, hjλ) denotes the probability

that edge eij forms between nodes i and j given their variable values. The vector λ denotes those

model parameters governing the connection probability function c(·|λ). A common variant of

this model defines the connection probability using the relative distance dij between the values

hi and hj in some metric space. In this case, we assume a function c(d) : [0,∞) → [0, 1] that

maps distances into connection probabilities. We generally assume distance-based connection

functions below. A canonical example of such a connection probability is Waxman’s [351]

function c(d) = βe
− d
d0 , widely used for modeling computer network topologies, where β controls

edge density and d0 represents a “typical” distance between nodes. Another is c(d) = (1+ d
β )−α,

used for modeling social networks [49]. Here β controls the average node degree while α > 1

determines the degree of homophily (higher value for α, higher amount of homophily).

We now describe certain structural properties that emerge (e.g., edge density, clustering

coefficient, etc.) under latent space models. Because we will deal with discrete ranking spaces

below, we assume latent variables are discrete (e.g., marginalizations are given by summations

rather than integrals). First, note that edge density, i.e., the probability of an edge occurring

between two arbitrary nodes, is given by:

E(θ) =
∑
h,h′

ρ(h|η)ρ(h
′ |η)c

(
d(h

′
, h)|λ

)
. (4.1)

As a result, the expected number of edges of a randomly chosen node is given by
(
n
2

)
E(θ). The

probability of an edge occurring between a node i with observed value hi and a random node

j is:

D(hi,θ) =
∑
h′

ρ(h
′ |η)c

(
d(h

′
, hi)|λ

)
, (4.2)

where θ is the model parameter vector, ρ(.) is latent variable distribution, and c(.) is the

connection probability function. Thus, the expected degree of a node with value hi is given by
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(n− 1)D(hi,θ). Note that E(θ) can be rewritten as:

E(θ) =
∑
h

ρ(h|η)D(h,θ). (4.3)

The exact degree distribution P (k,θ) is:

P (k,θ) =
∑
h

ρ(h|η)G(h, k|θ), (4.4)

where G(h, k|θ) is the probability that a node with value h has k neighbours and is given by

the binomial distribution of

G(h, k|θ) =

(
n− 1

k

)
D(h,θ)k (1−D(h,θ))n−1−k . (4.5)

The clustering coefficient of a node i is the fraction of the pairs of neighboring nodes that are

themselves connected. The expected clustering coefficient for a node i with value hi is:

C(hi,θ) =
1

D(hi,θ)2

∑
h′ ,h′′

ρ(h
′
)ρ(h

′′
)c(d(hi, h

′
))c(d(hi, h

′′
))c(d(h

′
, h
′′
)) (4.6)

One can compute the average clustering coefficient by

〈C(θ)〉 =
∑
h

ρ(h,η)C(h,θ).

4.3 Ranking Networks: A General Model

We adapt the general latent space network model to the setting where the latent attributes are

rankings over some set of alternatives. For instance, nodes might represent individuals with

attributes reflecting their preferences over some set of products, services, political candidates,

etc. We assume a finite set of alternatives (or options) A = {a1, . . . , am} and a set of nodes

N = {1, . . . , n}. Each node i has a ranking (or strict total order) over A, denoted by �i
(weaker notions, e.g., preorders, partial orders, can be accommodated, though some details of

our model require modification). Let Ω(A) denote the set of all m! rankings over A. Our latent

variables are rankings r drawn from Ω(A). We assume that each node i’s ranking ri is drawn

independently from some (parameterized) distribution ρ(r|η) over Ω(A). We also assume a

ranking distance metric d : Ω(A)2 → R which measures similarity between rankings. Finally, a

connection probability function c : [0,∞)→ [0, 1] determines the probability that two nodes i, j

are connected given the distance d(ri, rj) between their rankings. We now detail each of these

three components of our model.

Distance Metric on Rankings. We use the “similarity” of two rankings to determine their

distance, which will be used below to determine connection probabilities. A variety of well-
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known distance metrics for rankings can be used [111] (see Sec. 2.2.1 for more details). We

again briefly describe several common distance metrics. A natural set of distances are “dp

distances”, where dp(r, r
′
) =

∑m
i=1 |r(ai) − r

′
(ai)|p for p ∈ [1,∞). The well-known footrule

(p = 1) and Spearman (p = 2) distances are instances of this. Hamming distance is another

natural model, while Kendall’s τ distance is used, where

dτ (r, r
′
) =

∑
k 6=l

I[r(ak) > r(al) and r
′
(ak) < r

′
(al)]. (4.7)

Here dτ measures the number of pairwise swaps needed to transform r to r′. As the ranking

space Ω(A) is discrete with finite size m!, there are finitely many realizable distances. It is easy

to see that, for any r, r
′

: dτ (r, r
′
) ∈ {0, 1, · · · ,

(
m
2

)
}.

Ranking Distributions. The ρ(r|η) component of our ranking network model accommodates

arbitrary ranking distributions. Distributional models of rankings developed in psychometrics

and statistics, and now widely used in machine learning and information retrieval [242], include

Mallows, Plackett-Luce, Bradley-Terry, and many others (see Sec. 2.2.2 for an overview). We

use the Mallows’ φ-model in our empirical experiments. It is characterized by a “modal”

reference ranking σ and a dispersion parameter φ ∈ [0, 1), with the probability of a ranking r

given by ρ(r|σ, φ) ∝ φdτ (r,σ).

Connection Probability Function. With ranking-based distance metrics in hand, we adopt stan-

dard connection functions for latent-space models (see above). We assume c is integrable and

strictly decreasing.1

We now study several topological properties of general ranking networks. We can derive

sufficient conditions for the connectivity of a ranking network:

Theorem 4.3.1. Assume a ranking model (ρ(r|η), c(d|λ)) over m alternatives. The induced

ranking network is connected with high probability (i.e., with probability 1−o(1) where o(1)→ 0

as n→∞) if

dM (m) < c−1

(
log n

n

∣∣∣λ) ,
where dM (m) is the maximum possible distance under d given m alternatives.2

All proofs and theoretical details of this chapter can be found in Appendix B. This result

can be used to derive suitable conditions for the connectivity of specific models. For instance,

using the τ distance metric and Waxman connection function c(x|α, d0) = αe
x
d0 , the emerging

ranking network will be connected with high probability if
(
m
2

)
< −d0 ln logn

αn .

1The decreasing assumption results in homophilous network in which similar nodes are more likely to be
acquainted than dissimilar nodes; when hetrophily is in effect in the network, some other set of assumptions
(e.g., increasing) must be taken into consideration for the connection probability function.

2We assume that m is fixed and independent of the number n of individuals. This is consistent with the
applications we have in mind (e.g., social choice, recommender systems, interactive search, etc.).
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The small world effect is a commonly observed property of real-world networks: the diameter

(or longest shortest path between any pair of nodes) is small, as is the average shortest path

length [7]. Ranking networks exhibit these properties: the diameter D(θ) and the average

shortest path 〈l(θ)〉 can be approximated and bounded by:

D(θ) ≤
⌈

log(n)

log(n− 1) + log c(dM (m)|λ)

⌉
; 〈l(θ)〉 ≤ log(n)

log(n− 1) + log c(dM (m)|λ)
. (4.8)

The derivation of these approximations are detailed in Appendix B. Our empirical results

in Sec. 4.6 confirm these properties and the tightness of these bounds. Ranking networks

also possess the diameter-shrinking property of real-world networks [232], where diameter (and

average shortest path) shrinks as the network grows:

Theorem 4.3.2. Fix m and assume ρ(r|η) distributes probability mass on more than one

ranking. The asymptotic diameter of any ranking network over m options is 2 (as n→∞).

These and other structural properties of ranking networks can be computed readily if model

parameters are given. However, computation can be extremely intensive, even for relatively

small m, due to the combinatorial size of ranking space (recall, the number of possible rank-

ings is m!). Consequently, it would be computationally prohibitive for one to benefit from the

predictive power of these mathematical expressions (stated above) to predict the topological

properties of the emerging network. This motivates the development of easy-to-compute ap-

proximations for the special class of distance-based ranking models, while studying properties

that emerge among networks in this class. We will also show how our approximation methods

can be applied for efficient learning of model parameters.

4.4 Distance-Based Ranking Models

Distance-based ranking distributions [131, 259] have ranking probabilities that decrease expo-

nentially with increasing distance from some modal or reference ranking σ ∈ Ω(A):

ρ(r|σ, ω) =
1

ψ(ω)
exp(−ωd(r, σ)), (4.9)

where ω ∈ [0,∞) is a dispersion parameter and ψ(ω) is a normalizing constant. As ω →
∞, ρ becomes concentrated at the reference ranking σ, whereas for ω = 0, ρ is the uniform

distribution. The Mallows φ-model above is an example of such a model (with dispersion

φ = e−ω and distance dτ ). While we focus on unimodal models, mixtures of such models offer

additional modeling flexibility [246].

In this section, we assume that ρ (our distance-based ranking distribution) and c (our

distance-based connection function) use the same distance metric to measure similarity of

rankings. For instance, when using dτ as our distance measure, the ranking distribution is
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the Mallows φ-model and the probability of connection between two nodes is determined based

on this same distance.

We first observe that, as ω →∞, all nodes’ rankings will become more similar and converge

to σ. Consequently, the ranking networks model converges to the well-studied Erdős-Rènyi ran-

dom graph model G(n, p) with p = c(0|λ). We can also bound the probability D(r|θ) that a

node with a ranking r is connected to a randomly chosen node:

Theorem 4.4.1. Given reference ranking σ and a distance-based ranking model, for any fixed

θ and any r ∈ Ω(A):

D(σM ,θ) ≤ D(r,θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.3

This theoretical observation has a natural interpretation: individuals that possess more

probable or more “popular” rankings have greater odds of connecting with others (hence have

higher expected degree). This is not surprising given the nature of distance-based ranking mod-

els. In the context of social networks, this is one possible contributing factor to the intuition that

people with more “popular” preferences tend to have more friends and social interactions than

those with uncommon preferences, i.e., preference popularity governs social popularity. From a

different perspective, one can use observed node degree to draw inferences about its ranking:

higher degree is predictive of more common preferences. (i.e., close to the modal ranking). This

can be exploited to support efficient estimation/learning of the reference ranking, the ranking

distribution, and preferences of specific individuals. Using Thm. 4.4.1, it is straightforward to

bound the edge probability E(θ).

Proposition 4.4.2. Given a distance-based ranking network, E(θ) is bounded by

D(σM ,θ) ≤ E(θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.

The upper bound D(σ,θ) can be computed efficiently by:

D(σ,θ) = D̂(m,ω,η) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkc(k|λ), (4.10)

where dM (m) is the maximum possible distance for given d when there are m alternatives (e.g.,

for Kendall-τ , dM (m) =
(
m
2

)
) and ni is the number of rankings of distance i from an arbitrary

fixed ranking (we present an algorithm for computing ni below). When ni is computed for

all i ∈ {0, 1, · · · dM (m)}, Eq. 4.10 can be computed in O(dM (m)) time. For Kendall-τ , the

running time is O(m2). If d is symmetric in the sense that ni = ndM (m)−i for all i ≤ dM (m)

3If more than one ranking has maximum distance, one such ranking minimizes D.
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(e.g., Kendall-τ has this symmetric property but Hamming distance lacks this), a lower bound

D(σM ,θ) can be computed by

D(σM ,θ) = Ď(m,ω,λ) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkc(dM (m)− k|λ) (4.11)

For precomputed ni, Eq. 4.11 can be computed in O(dM (m)) time (e.g., for Kendall-τ , the

running time is O(m2)). In general, we can efficiently compute ni for any d either in closed

form or using dynamic programming.

Dynamic Programming for Computing The Number of Rankings

We here present a dynamic programming algorithm for computing ni for the Kendall-τ distance,

where ni is the number of rankings of distance i from an arbitrary fixed ranking.

We let T (j, k) denote the number of rankings that have distance k from some reference

ranking with j alternatives. We note that T (j, 0) = 1 for any j ≥ 1 and T (j, k) = 0 for any

k >
(
j
2

)
. We focus on the fact that distance between two permutations measures the minimum

number of swaps or inversions required to transform one permutation to the other. We observe

that when there are j−1 alternatives, the jth alternative can be inserted in j possible positions,

thus causing between 0 and j−1 inversions or swaps (i.e., increasing distance by at most j−1).

This implies that when k ≥ j−1, the jth alternative can cause 0, 1, . . . ,or j−1 inversions while

the other preceding j−1 alternatives involve in k−0, k−1, . . . ,or k−j+1 inversions. Similarly,

when k < j−1, the jth alternative can be part of either 0, 1, . . . , or k inversions while the other

preceding j − 1 alternatives contribute to k, k− 1, . . . ,or 0 inversions. Hence, we can write this

recursive equation:

T (j, k) =

min(k,j−1)∑
i=0

T (j − 1, k − i) (4.12)

Since k ∈ [0,
(
m
2

)
] and j ∈ [1,m], T can be viewed as a m× m(m−1)

2 matrix. For calculating each

element of this matrix, at most m − 1 summation operations are required. Thus, the running

time of this dynamic programming method is O(m4). However, this time complexity can be

improved by slight change of the recursive formula in Eq. 4.12. From Eq. 4.12, we note that

for k ≤ j − 1, T (j, k) − T (j, k − 1) = T (j − 1, k) and for k > j − 1, T (j, k) − T (j, k − 1) =

T (j − 1, k)− T (j − 1, j − k). Hence, the recursive formula in Eq. 4.12 is equivalent to:

T (j, k) =

T (j, k − 1) + T (j − 1, k), k ≤ j − 1

T (j, k − 1) + T (j − 1, k)− T (j − 1, k − j), k > j − 1
(4.13)

Using this recursion, each element in matrix T can be calculated in O(1), thus yielding in

overall time complexity of O(m3). Note that, as we are interested in those values located in

the mth row of matrix T (i.e., T (m, k) for 0 ≤ k ≤
(
m
2

)
), thus using the notation nk instead of
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T (m, k).

Approximations

In this section, we present efficient methods for approximating D(r,θ) and E(θ) which exploit

Eq. 4.10, Eq. 4.11, and the dynamic programming algorithm introduced above. We have em-

pirically observed that D(r,θ) (usually) decreases as d(r, σ) increases. In other words, the

distance of an individual’s ranking to the reference ranking is negatively correlated with its

degree. Define the linear function

D̃(d,θ) =

(
1− d

dM (m)

)
D(σ,θ) +

(
d

dM (m)

)
D(σM ,θ). (4.14)

We can approximate D(r,θ) by D̃(d(r, σ),θ), which can be used to effectively approximate

other structural network properties. For example, the edge density E and degree distribution

P , respectively, can be approximated by:

Ẽ(θ) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkD̃(k,θ), and (4.15)

P̃ (k,θ) =

(
n−1
k

)
ψ(ω)

dM (m)∑
i=0

nie
−ωiD̃(i,θ)k

(
1− D̃(i,θ)

)n−1−k
. (4.16)

By pre-computing ni values, these functions can be computed in O(m2) time for Kendall-τ as

dM (m) =
(
m
2

)
(cf. the O(m!) time required for naive exact computation of E , which needs two

nested loops each of which iterates over a ranking space with size of m!). For large m, even

this might be problematic; but if c(·|λ) is convex, one can (loosely) approximate D and edge

density E in O(1) time by:

˜̃D(x,θ) =

(
1− x

dM (m)

)
c

(
dM (m)e−ω

1 + e−ω

)
+

x

dM (m)
c

(
dM (m)

1 + e−ω

)
, and (4.17)

˜̃E(θ) =
1

1 + e−ω
c

(
dM (m)e−ω

1 + e−ω

)
+

e−ω

1 + e−ω
c

(
dM (m)

1 + e−ω

)
. (4.18)

(The derivations of these loose approximations can be found in Appendix B.) Our approxi-

mations Ẽ(θ) and D̃(d(r, σ),θ) can also be exploited for efficient model learning as we discuss

in Section 4.5. Exact evaluation of the likelihood function of a ranking network when dealing

with missing data (i.e., when some node rankings are unobserved) has computation of edge

density E(θ) and average connection probability D(r,θ) as its main bottlenecks. Of course,

one can learn model parameters using iterative methods such as EM, but direct evaluation of

(an approximation of) the likelihood function using these approximations may be support more

efficient learning and inference.
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4.5 Model Learning for Distance-Based Ranking Models

We now show how our approximations can be exploited for efficient parameter learning of

distance-based ranking models when dealing with missing rankings. Learning model parameters

is necessary for predicting missing rankings (we discuss this in Chapter 5) or missing edges in

ranking networks.

The basic learning problem is as follows. We first assume that individuals are partitioned

into two sets: O ⊆ N , whose complete preference rankings are observed (e.g., elicited or

otherwise revealed); and U = N \ O, whose preferences are unknown or “missing.” Let RO =

{ri|i ∈ O} be the set of observed rankings and RU = {ri|i ∈ U} be the set of random variables

associated with unknown preferences. The likelihood function for the observed social network

G and observed individual preferences RO is given by

P(RO, G|θ) = P(G|RO,θ)P(RO|θ), (4.19)

where

P(G|RO,θ) =
∏

i,j∈U ; i<j

E(θ)eij (1− E(θ))1−eij ×
∏

i∈O,j∈U
D(ri,θ)eij (1−D(ri,θ))1−eij ×

∏
i,j∈O; i<j

c(ri, rj |λ)eij (1− c(ri, rj |λ))1−eij , (4.20)

and

P(RO|θ) =
∏
r∈O

ρ(r|σ, ω). (4.21)

To learn a maximum likelihood estimate θ̂ of the ranking network parameters θ, one can

maximize the log likelihood function

L(θ) = logP(RO, G|θ)

=
∑

i,j∈U ; i<j

eij log E(θ) + (1− eij) log (1− E(θ))

+
∑

i∈O,j∈U
eij logD(ri,θ) + (1− eij) (1−D(ri,θ))

+
∑

i,j∈O; i<j

eij log c(ri, rj |λ) + (1− eij) log (1− c(ri, rj |λ))

+
∑
r∈O

ρ(r|σ, ω). (4.22)

which can be computed in O((m!)2 + nonu + n2
o) where no and nu represent the number of

observed and unobserved preferences respectively (assuming nu ≥ 1). Here, the (m!)2 term
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arises from exact computation of E and nonu arises from the second summation in Eq. 4.22,

assuming that D(r, θ) values are already stored when E is computed and can be accessed in

O(1). Finally, n2
o corresponds to the last summation in Eq. 4.22. The exact computation of the

function in Eq. 4.22, and thus its direct maximization, is computationally very expensive even

for relatively small m. So, we resort to approximating log likelihood L by

L̃(θ) =
∑

i,j∈U ; i<j

eij log Ẽ(θ) + (1− eij) log
(

1− Ẽ(θ)
)

+
∑

i∈O,j∈U
eij log D̃(ri,θ) + (1− eij)

(
1− D̃(ri,θ)

)
+

∑
i,j∈O; i<j

eij log c(ri, rj |λ) + (1− eij) log (1− c(ri, rj |λ))

+
∑
r∈O

ρ(r|σ, ω), (4.23)

which can be computed in O(m3 + nonu + n2
o) time, where O(m3) is the running time of the

dynamic programming discussed in Sec 4.4. The terms nonu and n2
o correspond to second

and third summations, respectively, in Eq. 4.23. This approximation is obtained by replacing

the E and D terms in L with their corresponding approximations Ẽ and D̃ that we developed

in Sec. 4.4. We can find approximate maximum likelihood estimates θ̃ by maximizing L̃. In

our experiments below, we show that these approximate estimates can not only be computed

efficiently in practice but also explain the observed data well by maximizing the actual log

likelihood function reasonably accurately.

4.6 Empirical Analyses

We describe experiments on a version of our ranking network model, using the Mallows φ-

model under various parameter settings. We compare various structural properties (e.g., de-

gree distribution, edge density, diameter) of the resulting networks with the predictions of our

approximation methods.

Experimental Setup. For the distance-based ranking model with Kendall-τ distance, the

normalizing constant is

ψ(ω) = 1 · (1 + e−ω) · (1 + e−ω + e−2ω) · · · (1 + · · ·+ e−(m−1)ω). (4.24)

We use a variant of the connection probability of Serrano et al. [322]:

c(d|λ) = γ

(
1 +

d

β

)−α
. (4.25)

Here β controls average degree and α > 1 determines the extent of homophily (higher values
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Figure 4.1: Mean and std. dev. of observed diameters (30 instances) for various ω and n, and
its approximation D̃ (m = 3, α = 2, γ = 0.8, and β = 2).

of α give greater homophily). We introduce γ ∈ (0, 1] to control the probability of connecting

nodes with the same ranking (to account for the discrete nature of ranking space). Unless noted,

all experiments are run on networks with n = 1000 nodes, α = 2, β = 2 and γ = 0.8, while

varying m. For each parameter setting, we report results over 30 random ranking networks.

Error bars in our figures represent one sample standard deviation.

Diameter. We first examine the effect of n and ω on the diameter of the emergent ranking

networks, and compare the true observed diameter to our approximation D̃ (see Eq. 4.8). We

fix m = 5. Fig. 4.1 confirms that diameter shrinks as n increases. Unsurprisingly, diameter

decreases with increasing ω (i.e., more uniform distributions give larger diameter), largely due

to the increased edge density caused by increasing ω (see below). D̃ provides a reasonable

upper bound of diameter for any value of ω, with bounds that are very tight when n reaches

500. This is encouraging since for smaller networks, exact computation of diameter is viable,

while the approximation is need for larger networks.

Edge Density. The effect of m and ω on edge density is illustrated in Fig. 4.2 and Fig. 4.3.

Fig. 4.2 demonstrates that edge density increases with ω but decreases with m (compare boxes

on the solid lines). Error bars are very tight (and barely observable, with a maximum standard

deviation 0.0105 for ω = 2 and m = 5). Our approximation Ẽ (Eq. 4.15) is relatively close to

the observed edge density, especially when ω is relatively small (ω ≤ 0.5) or large (ω ≥ 4).

To better quantify the accuracy of our approximation, we compute the mean squared error
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Ẽ : m=4
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number of options m, dispersion ω (n = 1000, α = 2, β = 2, γ = 0.8).
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(MSE) between the actual edge density and our approximation over 30 randomly generated

ranking networks. Fig. 4.3 shows that MSE is relatively low with a maximum of roughly 0.014

for m = 6, ω = 2. MSE first increases and then decreases with ω. Moreover, MSE increases

with m especially for ω = 1, 2. This suggests that, for large m and small ω, our edge density

approximation should be used cautiously. Refined approximations that account for the value

of ω should be explored.

Degree Distribution. Fig. 4.4 shows the impact of ω on the degree distribution of ranking

networks under the Mallows model, as well as the effectiveness of our approximation P̃ of

the degree distribution (Eq. 4.16). The figure shows cumulative degree distribution to reduce

noise in the plots: given degree distribution P (k, n), the cumulative degree distribution is

Pc(k, n) =
∑n

l=k P (l, n) (i.e., probability that a node n has the degree d ≥ k). The mean

cumulative degree distribution is shown for various values of ω with m = 5 and n = 1000. The

expected degree increases with ω; e.g., with ω = 0, most of nodes have degree around 100,

whereas for ω = 4, most nodes have degree around 800 (since mean degrees is nE). However,

variance in the degree distribution initially increases as ω increases from 0 but then decreases.

For example, variance is low at ω = 0 and ω = 4, but high for ω = 1 and ω = 2. Interestingly,

with ω = 1 and ω = 2, the the cumulative degree distribution shows several distinct modes.

The relation between these modes and community structure in ranking networks is something

that remains to be explored.

Fig. 4.4 also shows that the approximate degree distribution P̃ is reasonably close to actual

observed degree distribution when ω ≤ 0.5 and ω ≥ 4, though it fails to account for the distinct

modes, especially for ω = 1, 2. Once again, more accurate approximations (sensitive to ω) may

be possible.

Model Learning. We examine the efficiency of our proposed approximated likelihood function

for learning model parameters. We compare the learned model parameters under exact and

approximated log likelihood functions. To avoid invariant issues in comparison of likelihood

estimates—rather than direct comparison of approximated MLE θ̃ and exact MLE θ̂—we com-

pare L(θ̃) with L(θ̂), where L is the exact likelihood function. The closer these two values are,

the better the approximated likelihood function is at preserving the structure of actual like-

lihood function. We specially measure the log likelihood approximation ratio (LLAR) defined

by

LLAR =
L(θ̂)

L(θ̃)
,

where θ̂ = minθ L(θ) and θ̃ = minθ L̃(θ). We note that LLAR ∈ [0, 1]. The higher LLAR is,

the more accurate our approximated parameters are.

We set (α, β, γ) = (2, 2, 0.8) and n = 200 while varying ω and m. After each network

generation, each node’s ranking is observed or unobserved with probability 0.5 will be consid-

ered observed or unobserved. We assume that σ is known but intend to learn α, β, γ, ω. For
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optimization, we deploy gradient ascent where the step length in each iteration is determined

by the inexact backtracking line search (BLS) algorithm [58]. We terminate each optimization

procedure after 30 iterations. We set the initial parameters to (φ, α, β, γ, ω) = (0.7, 2, 1, 0.5).

Fig. 4.5 shows the LLAR for various m and ω. LLAR is relatively very high with a minimum

of roughly 0.97 for m = 6, ω = 2. This suggests that our approximate likelihood function can be

a reliable surrogate for exact likelihood function. LLAR first decreases and then increases with

ω. Moreover, LLAR decreases with m especially for ω = 1, 2. This might indicate that for large

m and medium-range ω, our likelihood approximation should be used cautiously. These results

are very consistent with those of Fig. 4.3, as LLAR is lower when the edge density approximation

error is higher. Fig. 4.6 shows the running time ratio of learning with exact likelihood function

over learning with approximation likelihood function. For m = 3, the running time for both

methods are very close. But, for large m, the approximation method is much faster (e.g., for

m = 6 approximation methods 200-280 times faster). Not surprisingly, the running time ratio

increases with m but is less sensitive to ω.

4.7 Summary and Future Work

We have introduced ranking networks, a class of attribute-based (or latent-space) network

formation models in which node attributes are rankings over a set of options, and connections

are formed between nodes based on the similarity of their underlying rankings. We studied

some structural properties (e.g., diameter, connectivity, edge density) of these networks, and

showed that our model possesses some characteristics of real-world networks (e.g., shrinking

diameter). We developed easy-to-compute approximations for the special class of distance-

based ranking models, while studying properties that emerge among networks in this class.

We also showed how these approximation methods can be used for learning model parameters

when one is interested in maximum likelihood estimation with missing data. Empirically, we

compared various structural properties (e.g., degree distribution, edge density, diameter) of

the randomly-generated networks under a ranking network model with the predictions of our

approximation methods. Our results confirm the efficiency and predictive accuracy of our

computational approximations.

The ranking network model is a starting point for the broader investigation of the impact

of rankings, and preferences in particular, on network formation. Future directions will be

discussed in detail in Section 6.3, but briefly include: the analysis of more realistic ranking

distributions (e.g., mixture models); generalization to partial rankings or pairwise comparisons;

extensions of our model that account for heterogeneity/heterophily; modeling the dynamics

and mutability of the underlying rankings themselves in response to network connections; and

a simpler descriptive model which lacks a generative process but still can capture ranking

correlations over a ranking network. Another practical extension is to incorporate the other

nodal attributes in addition to rankings in the process of network formation. This may prove
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to be useful in fitting model to real-world data when the rankings over a set of alternatives are

not the only factors in the formation of the network.

Of practical importance is studying the extent to which rankings, such as preferences, play a

role in shaping connections in real-world networks, and how the induced correlations can be best

exploited in applications such as recommender systems, advertising, social choice and voting,

web search and information retrieval; this last direction is partially addressed and discussed in

the next chapter.



Chapter 5

Group Recommendation on

Preference-Oriented Social Networks

It is widely recognized that individuals’ behaviors and preferences are correlated [88, 118, 187],

with those of their friends or connections (e.g., correlations of music tastes [234]). This has lead

to research focused on inferring individual attributes and behaviour using social connections,

e.g., inference of ratings over items [252, 253, 191], latent group membership [205], categorical

attributes [204], or latent “social positions” [183]. Yet surprisingly, using social networks to infer

individual preferences—in the form of rankings of alternatives—has received little attention.

Methods for inference and learning of preference rankings have been extensively studied in

econometrics, psychometrics, statistics, and machine learning and data mining; in the latter

case, they find application to recommender systems, collaborative filtering, information retrieval

and group decision/recommendation problems (i.e., social choice), especially when faced with

partial information. In contrast to cardinal utilities, preference rankings (or ordinal preferences)

are of special interest in social choice and group recommendation, since they help circumvent,

to some extent, the problem of interpersonal comparisons of utilities [14, 320].

In this chapter, we address how to use social network structure to support more accurate in-

ference of preference rankings and to make group decisions when some individual preferences are

unknown [313]. Specifically, we exploit the fact that homophily or social selection—association

with similar individuals—and social influence—adoption of properties and attitudes of those

to whom one is connected—can be used to infer individual preferences more efficiently and

with less data. This can in turn support more accurate group decision making with partial

preferences. To capture correlations of preference rankings over social networks, we introduce

preference-oriented social networks (POSNs), a particular form of the ranking network model

(introduced in Chapter 4), in which the similarity of the preference rankings of two individuals

determines the odds with which they are connected. We exploit this model to infer unobserved

individual preferences given observed preferences of others in the network. Intuitively, if we

know something about the preferences of an individual’s friends, family or colleagues—or their

79
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friends, etc.—we should be able to more accurately predict their preference ranking if homophily

or social influence shapes network dynamics. Moreover, we demonstrate how network structure,

by allowing such predictions, can be used to support effective group recommendations/decisions

with incomplete preferences.

This chapter is organized as follows. We introduce the POSN model in Sec. 5.1. In Sec. 5.2,

we describe the inference and social choice problems on POSNs and discuss related work. In

Secs. 5.3 and 5.4 we characterize probabilistic properties of the model and develop an MCMC

method for inferring unobserved preferences. In Sec.5.6, we evaluate the ability of our methods

to predict unobserved preferences and make accurate group decisions with partial preferences.

Finally, we conclude and outline some future directions in Sec. 5.7

5.1 Preference-oriented Social Networks

We start by outlining our basic model (we contrast it with existing network generation models in

Sec. 5.2.3). A preference-oriented social network (POSN) includes: (i) a social network, where

nodes represent individuals, and edges represent some social relationship; and (ii) a finite set

of options over which individuals have preferences, where these preferences take the form of an

ordering or ranking. The model also includes a probabilistic generative process used to generate

individual preferences and connections. This process captures the correlation of individuals’

preferences across the social network.

The network in a POSN is an undirected graph G = (N , E) over individuals N = {1, . . . , n}.
We can specify G using a binary adjacency matrix [eij ] where eij = 1 iff (i, j) ∈ E. We

generally think of these edges as corresponding directly to some relationship in a social network.

We assume a finite set of alternatives (or options) A = {a1, . . . , am}, e.g., a set of products,

political candidates, policies, genre of movies, etc. over which individuals have preferences. The

preference of node (or individual) i is a ranking (or strict total order) ri over A. Let Ω(A)

denote the set of all m! rankings over A.

The generative process for POSNs has two stages as in a standard ranking network: first,

individual preferences are drawn from a ranking distribution; then individuals form connections

with a probability increasing with the similarity of their preferences. Each node i’s preference

ranking ri is drawn independently from some (parametrized) distribution ρ(r|η) over Ω(A) with

parameters η. Many ranking distributions can be used, e.g., Plackett-Luce, Bradley-Terry, etc.

(see Section 2.2.2 for an overview). Here, we focus on the Mallows φ-model, characterized by

a “modal” reference ranking σ and a dispersion parameter φ ∈ [0, 1), with the probability of a

ranking r decreasing exponentially with its τ -distance from σ (see Section 2.2.2 for the formal

definition and details).

To compute connection probabilities, we define the similarity of two rankings using the

τ distance metric (see Section 2.2.1). Intuitively, dτ (ri, rj) measures the number of pairwise
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Figure 5.1: A randomly generated POSN for n = 100 individuals and m = 3 alternatives. The
individuals’ rankings are drawn from a φ-Mallows model with φ = 0.7 and reference ranking
σ = (1, 2, 3). The connection probability function in Eq 5.1 is used with (α = 2; γ = 0.5;β =
0.5).

swaps needed to transform ri to rj .
1 A strictly decreasing connection probability function

c(d) : [0,∞)→ [0, 1] specifies the probability that two nodes i, j are connected given the distance

dτ (ri, rj) between their corresponding rankings. We use the following connection function [322]:

c(d|λ) = γ

(
1 +

d

β

)−α
. (5.1)

Here β controls average node degree and α > 1 determines the extent of homophily (greater α

implies more homophily). We use γ ∈ (0, 1] to control the odds of connecting nodes with the

same ranking (accounting for the discrete nature of ranking space). We sometimes write the

connection probability as c(ri, rj). Denote the parameters of c by λ = (α, β, γ); the parameters

of the ranking distribution by η = (σ, φ); and all POSN parameters by θ = (λ,η). Fig.5.1

illustrates a small POSN, where individuals have preferences over three options. Nodes with

similar preferences are more densely connected.

Our POSN model is an instance of a more general notion of a ranking network, introduced in

Chapter 4, in which latent attributes are generic rankings over options. We analyzed the general

topological properties of this model in Chapter 4. In this chapter, we focus on its application

on preference inference and group recommendation when faced with missing preferences.

1Other distance metrics for rankings can be used as well, e.g., Spearman’s rho or footrule, or Hamming
distance.
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5.2 Inference and Social Choice

We now address two tightly connected problems, preference inference and single-option group

recommendation (or consensus decision making). While preference inference is interesting in

its own right, it plays a vital role in group recommendation when preferences of some group

members are unobserved.

5.2.1 Preference Inference

We assume that individuals are partitioned into two sets: O ⊆ N is the set of individuals, whose

complete preference rankings are observed (e.g., elicited or otherwise revealed); and U = N \O
are those whose preferences are unobserved or “missing.” Let RO = {ri|i ∈ O} be the set of

observed rankings and RU = {ri|i ∈ U} be the set of random variables associated with unknown

preferences. Our inference goal, at the high level, is to infer unobserved preferences RU from

the observed preferences RO and social network. This setting captures scenarios in which a

decision maker has access to the complete preferences of a part of some society/group but can’t

gain access to the preference of the other part. For example, a company may have access to

the preferences of existing customers, and want to market to new prospects without knowing

their preferences.2

In this chapter, we assume that the network G and model parameters θ are known. Learn-

ing model parameters given observed preferences is an important problem which is partially

addressed in Sec. 4.5; but other learning methods can exploit our solution to the inference

problem (e.g., when using EM).

Our goal in preference inference is to compute the posterior distribution over unobserved

preferences P(RU |G,RO,θ) given observed preferences RO. We discuss sampling methods for

approximating the posterior distribution in Sec. 5.4. Other inference problems include the most

probable explanation (MPE), i.e., finding the instantiation of RU which maximizes the posterior:

RMPE = arg max
RU

P(RU |G,RO,θ). (5.2)

We may also be interested in the posterior over the preferences of a single individual i ∈ U :

P(ri|G,RO,θ) =
∑

RU\{ri}

P(RU |G,RO,θ) (5.3)

2Our model extends to observations of partial preferences. To accommodate this, one can adopt paired-
compared distributions (see Section 2.2.2) rather than ranking distributions. The same τ -distance metric and
connection probability function can be used. Our inference and decision making algorithms can accommodate
such changes with some minor modifications (e.g., an appropriate paired-compared proposal distribution should
be adopted in our inference algorithm).
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and as well as the “individual MPE:”

rMPE
i = arg max

r∈Ω(A)
P(ri = r|G,RO,θ). (5.4)

5.2.2 Group Recommendation

A key goal in this work is to exploit social network structure to make higher quality group

decisions with incomplete preference information. Suppose we need to select an option from A
for a group or “subpopulation” S ⊆ N using some preference aggregation method (i.e., a social

choice function, for example, a voting rule). We distinguish the subsegment S (e.g., friends

planning an activity, the electorate in a small district) from the larger society N (e.g., users of

an online social network, eligible voters in a country): while many group decisions are local,

they can be supported by knowledge of the preferences of individuals outside that group. We

focus on the choice of a single option using the notion of “social welfare maximization” relative

to a scoring rule g : (N,N)→ R+. Here, g(k,m) is the positional score of an option ranked kth

relative to m options (the Borda and plurality score are common examples). Define the social

welfare of a ∈ A:

sw(a,S) =
∑
i∈S

g(ri(a),m), (5.5)

with the goal of selecting a∗ ∈ A that maximizes sw(.,S).

In general, we will not know the preferences of all individuals in S, requiring that we infer

the social welfare of an option a given the observations at hand. Define sw(a,S|RO, G,θ) to

be this inferred social welfare, which varies depending on the method of inference (we some-

times omit mention of G and θ). Assuming each individual’s contribution to social welfare is

independent, it can be decomposed into revealed social welfare sw rev (a,ROS ) (corresponding to

observed preferences) and inferred social welfare sw inf (a,RUS |RO) (for unobserved preferences):

sw(a,S|RO) = sw rev (a,ROS ) + sw inf (a,RUS |RO). (5.6)

Revealed social welfare is straightforward:

sw rev (a,ROS ) =
∑
r∈ROS

g(r(a),m). (5.7)

But there are various ways to define inferred social welfare. We define several forms of inferred

social welfare. We briefly discuss the computational demands of each such form, and in Sec. 5.6

study the extent to which the final decisions of each form coincide.

Expected Score (ES). One might be interested in expected social welfare under the posterior

distribution P(RUS |G,RO). For this purpose, a natural way to define inferred social welfare is
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the expected score:

swE
inf

(
a,RUS |G,RO

)
=
∑
RUS

P(RUS |G,RO)
∑
i∈US

g(ri(a),m), (5.8)

which can be computed in O(m!|US ||US |) time (where US are those individuals with unobserved

preferences). Since there are m! possible rankings for each unobserved preference, the car-

dinality of RUS is m!|US | where |US | is the number of unobserved preferences in group S. If

P(ri|G,RO) is pre-computed for each i ∈ US , we can write

swE
inf

(
a,RUS |G,RO

)
=
∑
i∈US

∑
ri

P(ri|G,RO)g(ri(a),m), (5.9)

which can be computed in O(m!|US |) time. The term m! again arises because of the size of

ranking space.

Joint Most Probable Explanation Score (JMPES). One might consider the most proba-

ble rankings for RMPE as the inferred rankings for the missing preferences. JMPES uses the in-

stantiation of unobserved preferences, RMPE , which maximizes the joint posterior P(RU |G,RO,θ):

swJM
inf (a,S, RMPE ) =

∑
iS
g(rMPE

i (a),m). (5.10)

If RMPE is given, this can be computed in O(|US |) time , which is the number of iterations

needed for the summation in Eq. 5.10.

Individual Most Probable Explanation Score (IMPES). One might consider an in-

ferred preference for individual i as the post probable ranking under i’s posterior distribution

P(ri|RO, G). We can define and compute inferred social welfare using these instantiations.

More specifically, we use the instantiation rMPE
j for each j ∈ U that maximizes the posterior

P(rj |G,RO,θ), and define IMPES as

sw IM
inf (a, {rMPE

j }) =
∑
j∈US

g(rMPE
j (a),m). (5.11)

If the rMPE
j for all j ∈ S are given, this is computable in O(|US |) time, which is the number of

iterations that required in the summation of Eq. 5.11.

5.2.3 Related Work and Models

We review the related work on group recommendation in data mining and recommender sys-

tems. Then, we highlight the related work in network formation models, nodal attribute in-

ference, preference ranking learning, collaborative filtering methods using social networks, and

decision making on social networks.
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Group Recommendation. Group recommendation can be broadly categorized as follows:

(i) Virtual/artificial profile methods (see, e.g., [264]), where joint artificial user profiles for each

group of users are created to keep track of their joint revealed/elicited preferences; (ii) Profile-

merging methods (see, e.g., [368, 33]), which merge group member profiles to form a group

profile, based on which recommendations are made; (iii) Recommendation/scoring aggregation

methods (see, e.g., [261, 24, 12, 318, 148]), which aggregate the recommendations (or inferred

preferences) for each group member into single group recommendation list (or recommended

option). This aggregation is usually conducted by a group consensus function (or social choice

function). Our method falls into this third category.

Group Recommendation using Social Factors. Group recommendations based on social

factors or interaction patterns have recently drawn a fair amount of attention. Masthoff and

Gatt [262] analyse the effect of group member relationship types on their emotional conformity

and contagion in a group recommendation task. Social relationship strength has been considered

in a group collaborative filtering context [301].

Network Formation Models. Our POSN model lies in the class of random, static network

formation models [279]. It is also a spatial (or latent space) networks [183, 27], where nodes

possess latent attributes and are connected (see Section 2.3.3).

Nodal Attribute Inference. Inference of nodal attributes, given social network structure,

has also received attention (See Section 2.3.4). However, the inference of rankings as nodal

attribute has largely been unaddressed in this work.

Learning Preference Rankings. Distributional models of rankings are widely studied in

statistics, psychometrics and machine learning (see Section 2.2 for details), though accounting

for social network structure has been unaddressed. Our model is distinct from those above as

it models preference correlations induced by social ties, requiring new sampling and inference

methods.

Collaborative Filtering and Social Networks. Collaborative Filtering (CF) methods

which exploit social networks for rating prediction have recently become popular (see for ex-

ample, [252, 191, 253, 361, 156, 260, 219] and [359] for a recent survey). See Section 2.3.4. Our

model differs in that it considers preference ranking correlations rather than ratings correlations

over social networks, and in its focus on group rather than individual recommendation.

5.3 Target Joint Posterior Distributions

In this section, we explain how the joint posterior distribution P(RU |RO, G) can be computed in

the POSN model. The computation of this posterior distribution is necessary for our inference

and group decision making tasks.

We observe that, using Bayes rule, the posterior over RU given observed preferences RO
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and network G is given by:

P(RU |G,RO,θ) =
P(G|RU , RO)P(RU |η)

P(G|RO,θ)
, (5.12)

We now describe each of the components of Eq. 5.12, P(RU |η), P(G|RO,θ), and P(G|RU , RO)

in turn.

Assuming that the preference distribution parameters η are given, the joint prior distribu-

tion over RU (due to being independent and identical distribution) is:

P(RU |η) =
∏
r∈RU

ρ(r|η), (5.13)

where ρ(r|η) is the preference distribution.

We now describe the form and structure of the joint distribution P(G|RO,θ) induced by

POSNs. We first focus on the probability P(eij = 1) with which an edge occurs between two

nodes i and j in G. We define it under three conditions: (1) the preferences of both i and

j are unobserved (and drawn independently from ρ(r|η)); (2) one is observed and the other

unobserved; and (3) both are observed.

Unobserved preferences for both nodes. In this case, P(eij = 1|θ) is the chance of an

edge between two nodes whose preferences are drawn independently from ρ(r|η):

E(θ) =
∑

r∈Ω(A)

∑
r′∈Ω(A)

ρ(r|η)ρ(r
′ |η)c

(
dτ (r

′
, r)|λ

)
, (5.14)

(The expected number of edges in a POSN is
(
n
2

)
E(θ).)

Unobserved preference for one node. When only one node’s preference is observed (say

i), one can compute P(eij = 1|ri,θ) by

D(ri,θ) =
∑

r′∈Ω(A)

ρ(r
′ |η)c

(
dτ (r

′
, ri)|λ

)
. (5.15)

D(ri,θ) also determines the expected degree of a node with ranking ri, which is simply (n −
1)D(ri,θ).

Observed preferences for both nodes. The edge probability between i and j when both

ri and rj are observed is P(eij = 1|ri, rj ,θ) = c(dτ (ri, rj)|λ).

Using these edge probabilities, the probability P(G|RO,θ) of graph structure G given ob-
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served preferences RO is:

P(G|RO,θ) =
∏

i,j∈U ; i<j

E(θ)eij (1− E(θ))1−eij ×
∏

i∈O,j∈U
D(ri,θ)eij (1−D(ri,θ))1−eij ×

∏
i,j∈O; i<j

c(ri, rj |λ)eij (1− c(ri, rj |λ))1−eij . (5.16)

We formulate P(G|RU , RO) by focusing on the probability P(eij |ri, rj) of an edge between i

and j. Since P(eij |ri, rj) = c(ri, rj)
eij (1− c(ri, rj)1−eij , we have:

P(G|RO, RU ) =
∏
i,j∈N
i<j

c(ri, rj)
eij (1− c (ri, rj))

1−eij (5.17)

As noted earlier, using Bayes rule, the posterior over RU given observed preferences RO and

network G is given by:

P(RU |G,RO,θ) =
P(G|RU , RO)P(RU |η)

P(G|RO,θ)
, (5.18)

where one can use Eq. 5.13, Eq. 5.16, and Eq. 5.17 for computation of P(RU |η), P(G|RO,θ),

and P(G|RU , RO), respectively. We exploit this joint posterior distribution in our inference and

group decision making tasks.

5.4 Sampling Methods

For both preference inference and group recommendation, we must compute the joint posterior

distribution P(RU |G,RO,θ). Exact computation is, not surprisingly, computationally expen-

sive. The main computational bottle neck comes from the partition function (i.e., normalizing

constant) P(G|Ro,θ) (refer to Eq. 5.12). The exact computation of P(G|Ro,θ) (see Eq. 5.16)

requires evaluation of E(θ) and D(ri,θ) which need O(m!2) and O(m!) time, respectively. So

we develop sampling methods to approximate the posterior. At a high level, we sample L

preference profiles R(1), . . . , R(L) from the posterior, where each profile consists of a preference

ranking for each individual i ∈ U , whose preferences are unobserved. Let R
(t)
i denote the sam-

pled preference ranking of individual i ∈ U in the tth profile. We approximate the posterior

preference of any individual i ∈ U , P(ri = l|G,RO,θ), ∀ l ∈ Ω(A), and the expected score of
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the inferred component of social welfare swE
inf

(
a,G,RO, O

)
as follows:

P(ri = l|G,RO,θ) ≈ 1

L

L∑
t=1

I[R
(t)
i = l], and (5.19)

swE
inf

(
a,G,RO

)
≈ 1

L

L∑
t=1

∑
i∈U

g(R
(t)
i (a),m) (5.20)

Here g(R
(t)
i (a),m) is the positional score of option a in i’s preference ranking for the tth sample.

L must be sufficiently large to ensure a good approximation. More critically, we need the ability

to draw independent samples from the (unknown) posterior. To do this, we use an Markov Chain

Monte Carlo (MCMC) algorithm, specifically, Gibbs sampling, where individual variables are

in turn sampled using Metropolis sampling [43].

We use iterative Gibbs sampling to sample unobserved preferences RU . The process begins

with an initial preference profile R(0), completing the rankings for all unobserved preferences

by sampling independently from a φ-Mallows model. At each iteration l, we sample R
(l)
i for

each i ∈ U from the conditional distribution

P(ri|R(l)
1 , . . . , R

(l)
i−1, R

(l−1)
i+1 , . . . , R

(l−1)
|U | , RO). (5.21)

The order in which preferences are sampled can impact the efficiency of the method. The order

can be deterministic or stochastic, and may be based on node degree or the number of observed

preferences of their neighbors. In our experiments, we use a fixed arbitrary ordering.

Let R−i be the set of all rankings except i’s ranking. To sample ri from the distribution

P(ri|R−i) we use Metropolis sampling. By Eqs. 5.16–5.12 and 5.13, the probability of ri given

all other individual preferences is P(ri|R−i) ∝ p̃(ri), where

p̃(ri) =
∏
j∈U

P(eij |ri, rj)
∏
j∈O

P(eij |ri, rj)φdτ (σ,ri) (5.22)

which can be computed in O(n) time. To sample ri at iteration l of Gibbs, we sample r∗ from

a conditional proposal distribution

q(r∗|R(l−1)
i ) =

1

z(φ̂i)
φ̂i
dτ (r∗,R

(l−1)
i )

, (5.23)

which is a Mallows distribution that uses the previous sample of i’s preference R
(l−1)
i as its

reference ranking and a dispersion parameter φ̂i (in our experiments, we fix φ̂i = φ; i.e., fixed to

be identical to the POSN model preference dispersion parameter). In this proposal distribution,

the new proposed sample will be relatively close the previous sample. The dispersion parameter

φ̂i can control the extent of exploration. A small φi results in less exploration as the proposed

sample will be closer to the previous sample. We accept proposal r∗ as R
(l)
i (i.e., set R

(l)
i = r∗)
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with probability

A(r∗, R
(l−1)
i ) = min

(
1,

p̃(r∗)

p̃(R
(l−1)
i )

)
; (5.24)

otherwise, we set R
(l)
i = R

(l−1)
i . To sample from the Mallows model q(.), we use the repeated

insertion model [112]. One can sample L preference profiles given |RU | unobserved preferences

in O(L|RU |nm) time using our proposed method. Assuming |RU | is a constant fraction of

n, our sampling methods runs in O(Ln2m) time, which may prove intractable for very large

networks. Designing more scalable sampling methods is an important future direction, but we

partially address this in next section.

5.5 Speeding Up Sampling Methods

We here relax some dependency assumptions in our original POSN models to speed up our

sampling methods. The intent is to (possibly) make our predictions more accurate by removing

unrealistic dependence assumptions and retaining more realistic dependence. We first observe

that P(G|RO,θ) in Eq. 5.16 and P(G|RO, RU ,θ) in Eq. 5.17 are defined over all pairs of nodes.

This not only renders learning model parameters and inference computationally costly, but also

imposes a strong assumption on negative examples as we treat lack of an edge as a negative

example. To address both of these issues, we allows only a subset of all possible node pairs

to contribute the definition of the network probabilities, thus simultaneously reducing number

of negative examples and speeding up our sampling methods. By pruning negative examples,

we make our model more realistic in the sense that not all absent edges should be treated as

negative examples as some people/nodes might not have a chance to interact with each other.

We define the opportunity network H = (N , EH), where the set of edges EH determines

which pairs of nodes should participate in the probability computation of the observed network

G. The opportunity network H captures the idea that not all pairs have opportunities to make

connection to each other. For the computation of network probability, one should account for

such opportunities. For example, when two nodes have common neighbours, they are more likely

to have opportunity to connect to each other than when they don’t have common neighbours.

We usually select EH in a way that covers all observed edges in G (as the existence of a social

tie is an evidence for presence of interaction opportunity) but it includes small subset of non-

edge pairs (i.e., negative examples). For example, in our experiments below, we stochastically

create the opportunity network H by setting the edge eHij = 1 with the probability dG(i, j)−ξ

where eHij is a binary variable for edge between i and j in network H, dG(i, j) is the geodesic

distance between i and j in the observed network G, and ξ ∈ (0,∞) is a parameter (described

below).3 Doing so, the edges in G surely appear in H (i.e., G is a sub-graph of H). Moreover,

the closer two nodes are in G, they are are more likely to have opportunity in interacting with

3More complicated ways for creating H can be built using other network properties such as node degree,
clustering coefficient, common number of neighbours, etc.
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each other (i.e., to have an edge in opportunity network H). The parameter ξ controls the

effect of distances on the edge probabilities in H. For ξ = 0, one can retrieve the original POSN

models when the opportunity network H is a fully-connected network. The larger ξ is, the more

sparse network H becomes. As ξ goes to infinity, H converges to G.

Once the opportunity network H is given (or created), we can compute the probability

P(G|RO, H,θ) of graph structureG, given observed preferencesRO and the opportunity network

H by

P(G|H,RO,θ) =
∏

i,j∈U ; i<j

(
E(θ)eij (1− E(θ))1−eij

)eHij ×
∏

i∈O; j∈U

(
D(ri,θ)eij (1−D(ri,θ))1−eij

)eHij ×
∏

i,j∈O; i<j

(
c(ri, rj |λ)eij (1− c(ri, rj |λ))1−eij

)eHij
, (5.25)

where eHij = 1 if and only if there is an edge between i and j in opportunity network H.

Similarly, we formulate P(G|RU , RO, H) by

P(G|RO, RU , H) =
∏
i,j∈N
i<j

(
c(ri, rj)

eij (1− c (ri, rj))
1−eij

)eHij
(5.26)

Using Bayes rule, the posterior over RU given observed preferences RO and network G is given

by:

P(RU |G,RO, H,θ) =
P(G|H,RU , RO)P(RU |η)

P(G|H,RO,θ)
, (5.27)

Though this probabilistic framework is well-defined, it is not a generative probabilistic model

as opposed to the original POSN. This is mainly because we have derived H from G.4 However,

we can still apply the sampling machinery that we developed in Sec. 5.4 by replacing Eq. 5.22

with

p̃(ri) =
∏
j∈U

P(eij |ri, rj)e
H
ij

∏
j∈O

P(eij |ri, rj)e
H
ijφdτ (σ,ri). (5.28)

We study the performance and accuracy of this sampling method with its original form in our

experiments below.

4One can extend this model to a generative process by assuming that first the opportunity network H is formed
based on some latent variables (excluding rankings), then G is formed based on H and the nodal rankings in a
similar fashion to POSN.
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5.6 Empirical Analysis

We conduct experiments to assess the effectiveness of our inference and group recommendation

algorithms. We measure the accuracy of preference inference, and more importantly, assess the

quality of the group decisions reached when exploiting network structure to better deal with

missing preferences of certain group members.

Experimental Setup. We experiment on three types of data sets: two-sided synthetic data

in which both preferences and networks are randomly generated; one-sided real-world data

in which preferences are derived from Irish electoral data5, but networks are synthetically

generated; and two-sided real-world data in which both preferences and network structure are

derived from Flixster [191]. We assume the model parameters θ are known (e.g., learned from a

similar population). Unless otherwise noted, we set (α, γ, β) = (2, 0.7, 1) and n = 200. We use

Borda as our scoring rule where g(r(a),m) = m− r(a). While other rules can be used, Borda is

a useful surrogate for random utility models [57] and serves to illustrate the value of the POSN

model.

We vary the degree to which preferences are observed with parameter ψ ∈ [0, 1], the proba-

bility that any node’s ranking is observed.6 By varying ψ, we can assess the impact of preference

observability on the efficiency of our methods. We select the decision making group S ⊆ N (with

ns members), for whom a group recommendation is to be made, using one of three methods.

RSA (Random Selection from All) selects ns individuals uniformly at random from N . RSU

(Random Selection from Unobserved) select ns individuals uniformly at random from U (e.g.,

reflecting a company with access to a social network and the preferences of existing customers,

and wanting to market to new prospects without knowing their preferences). RSC (Random

Selection from Community) selects a connected community: it first selects a “seed” individual

at random, then extends the group by selecting ns− 1 friends of this seed at random; if this set

is smaller than ns − 1, friends of these friends are selected at random to complete the group.

Performance Metrics. To measure prediction accuracy made by our sampling algorithm, we

determine how close inferred preferences are to the true unobserved preferences from a held out

test set. We measure closeness using mean scaled expected Kendall-τ (MSEK):

MSEK =
1(

m
2

)
|U |

∑
i∈U

∑
r∈Ω(A)

P(r|G,RO,θ)dτ (r, r̂i), (5.29)

where r̂i is the true preference of i, |U | is number of individuals with unobserved preferences,

and
(
m
2

)
is maximum τ -distance between two rankings over m options. MSEK lies in [0, 1], with

MSEK = 0 if all preferences are inferred correctly. In contrast, MSEK = 1 implies maximum

5We have obtained the original preference data sets from www.dublincountyreturningofficer.com.
6More sophisticated mechanisms for preference observability can be taken into account. For instance, one

can consider the probability of observing an individual’s preference depends on the structural properties of that
individual in the underlying social network (e.g., degree or some other centrality measures)



Chapter 5. Group Recommendation on Preference-Oriented Social Networks92

“inaccuracy,” meaning that all predicted rankings have the maximum possible distance to their

true counterparts. By multiplying MSEK by the number of alternatives m, one can retrieve

the expected number of “swaps” required to transform an inferred ranking to a true ranking.

MSEK measures inference error in ranking space and is analogous to expected mean squared

error (MSE) in Euclidean space.

To examine the decision/recommendation quality using inferred preferences, we compare

its social welfare with that of the decision that would be made had actual preferences been

observed. We measure the loss in social welfare that results from using inferred preferences.

Let sw(·) denote social welfare with true preferences, and a∗ and a∗inf be the optimal options

under given actual and inferred preferences. Rather than directly comparing social welfare, we

define relative social welfare loss (RSWL) to be

[sw(a∗)− sw(a∗inf )]/sw(a∗)

(we report it as a percentage). RSWL, by scaling the difference in social welfare, makes the

comparison across results of experiments easier especially when two experiments with various

parameters impacting social welfare (e.g., m, or n) are compared.

Benchmarks. We consider several other ways of dealing with missing preferences in decision

making, and use these as benchmarks. In φ-Mallows inference (PM), we assume that all unob-

served preferences are independent and are drawn from a φ-Mallows model (with parameters

identical to those in the POSN model). We calculate the same inferred social welfare functions

as in our model, namely, ES, JMPES, IMPES. Note that ES will be the same for all unobserved

preferences and can be computed once by iterating over all permutations of alternatives. More-

over, JMPES and IMPES must be the same as the reference ranking σ. Another approach to

missing preferences, dubbed Discard Unobserved (DU), is to ignore them and make a decision

using only observed preferences within decision making group as if some individuals “refused

to vote.”

For each fixed setting, we generate 10 partially observed POSNs. For each network, we burn-

in 1000 samples, then collect 1000 samples using our Gibbs-Metropolis method (see Sec. 5.4).

We report MSEK averaged over the 10 instances. For each instance, we also randomly select

40 decision making groups of fixed sizes {3, 5, 10, 15, 20} using RSA, RSU, or RSC, giving 400

social choice instances per an experimental setting. RSWL is reported as the average over these

400 instances.

Two-sided synthetic data. For this set of experiments, we draw rankings independently

from a φ-Mallows model and form the social network based on POSN model. Though this

may not be an especially realistic approach to assess the ability of our prediction and decision

making methods in real world settings, it plays important rule in checking the validity of our

implemented algorithms. We set φ = 0.85, σ = (1, . . . ,m), and λ as stated above. Table 5.1

shows average MSEK for various ψ and m. Unsurprisingly, MSEK increases with m and
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m/ψ ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8

m = 3 0.000 0.000 0.000 0.000

m = 4 0.009 0.008 0.007 0.006

m = 5 0.168 0.158 0.152 0.148

m = 6 0.378 0.367 0.349 0.335

Table 5.1: Avg. MSEK (10 instances) for two-sided synthetic data, various m, ψ, but fixed
n = 200, (α, β, γ) = (2, 0.7, 1).

n 200 400 600 800 1000

MSEK 0.335 0.2474 0.185 0.141 0.106

Table 5.2: Avg. MSEK (10 instances), ψ = 0.8, m = 6.

decreases with ψ. As m increases, the number of rankings increases factorially, as does the

support of the ranking distribution. In such cases, lower MSEK requires more information for

accurate prediction. When m = 3, n = 200 is sufficient to push MSEK to almost 0. With

m = 4, it remains very low. To examine the effect of n on MSEK, we fix m = 6 and ψ = 0.8

but vary n: Table 5.2 shows that MSEK decreases with n as expected.

We now discuss decision quality of our methods. Fig. 5.2 shows average RSWL (over 400

instances) for various m, group selection methods, and inference methods. We set ψ = 0.5,

which implies that, in expectation, half of all individual preferences are unobserved. Our POSN-

ES and POSN-IMPES methods outperform the other benchmarks in most settings, including

all situations in which no group member preferences are observed at all (see Fig. 5.2(b), 5.2(e),

5.2(h)), or even for m = 6 (see Fig. 5.2(g)-5.2(i)) with relatively high MSEK (see Table 5.1).

RSWL in all of the benchmark methods, PM-ES, PM-JMPES, and DU, is very sensitive to

group size, dramatically increasing as group size decreases (see Fig. 5.2(a)-(i)). However, our

POSN-ES and POSN-IMPES methods are more robust to changes in group sizes, especially

for m = 4, 5 (see Fig. 5.2(a)-(f)) with relatively low MSEK (ref. Table 5.1). POSN-IMPES

approximates POSN-ES reasonably well, while POSN-JMPES is a reasonable approximation

for m = 4, 5, but fails for m = 6; once again this might be due to its relatively high MSEK in

our setting. In short, our ES and IMPES methods outperform the other benchmark methods

in most settings, including over all group sizes, group selection methods, and various m (even

for m = 6 with relatively high MSEK).

Irish data. We test our methods using real-world preferences from the 2002 Irish Election,

Dublin West Constituency, with 9 candidates and 29, 989 ballots of the top-t form, of which

3800 are complete rankings. We created preference data sets with various values m from

these complete preferences, by choosing m candidates with highest aggregate Borda score, and

limiting each individual’s preferences to these m options.

For each m, we learn φ and σ from its corresponding data set and used those parameters

in our methods (e.g. for m = 4, φ = 0.94 and σ = [4, 1, 2, 3]; for m = 5, φ = 0.96 and
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(b):RSU, m=4, ψ=0.5
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(c):RSC, m=4, ψ=0.5
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Figure 5.2: Avg. RSWL (over 400 instances) for various group sizes ns, group selection methods,
and m. POSN-ES, POSN-JMPES, and POSN-IMPES represent ES, JMPES, IMPES inferred
social welfare under the POSN model, respectively. PM-ES and PM-JMPES correspond to ES
and JMPES inferred social welfare under the φ-Mallows model. DU corresponds to our Discard
Unobserved benchmark.

σ = [5, 1, 2, 3, 4]). Hence, we have a rough prior over preferences, but not a precise prior for

specific group. For each experimental setting, we generate 10 partially observed POSNs with

ψ = 0.5 and 200 individuals with preferences drawn from the filtered Irish data set. We then

generate the POSN using our model, but with additional noise: we randomly change the parity

of each eij (i.e., delete or add an edge) with probability ε. Though we create a synthetic social

network using our POSN model, adding noise in this fashion reflects scenarios in which the

social network is not generated using our specific model, or when learned model parameters

provide a less-than-ideal fit to the underlying data. This tests the robustness of our methods

when POSN parameters are inaccurate.

Table 5.3 reports average MSEK when ε varies (m = 4, 5). Unsurprisingly, MSEK increases

with both m and ε when n and ψ are fixed. MSEK is very low when m = 4, even with high
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Figure 5.3: Avg. RSWL (over 400 instances) for one-sided synthetic data, various group sizes
ns, group selection methods, and m but fixed ψ = 0.5, ε = 0.2. POSN-ES, POSN-JMPES, and
POSN-IMPES represent ES, JMPES, IMPES inferred social welfare under the POSN model,
respectively. PM-ES and PM-JMPES correspond to ES and JMPES inferred social welfare
methods under the φ-Mallows model. DU corresponds to our Discard Unobserved benchmark.
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m / ε ε = 0.0 ε = 0.01 ε = 0.02 ε = 0.05

m = 4 0.007 0.009 0.009 0.022

m = 5 0.172 0.198 0.214 0.274

Table 5.3: Avg. MSEK, ψ = 0.5, n = 200, Irish data set.

ε = 0.05 (10 edge flips per node in expectation). Tables 5.1 and 5.3 show comparable MSEK

values for m = 4, 5, suggesting that that even in scenarios where the preference distribution ρ(.)

is not known a priori, but is a learned φ-Mallows model, POSNs support effective inference.

Fig. 5.3 shows average RSWL (over 400 instances) with ψ = 0.5 and ε = 0.02 (400 expected

edge flips in the network). We vary m, the group selection method and the inference method.

Our POSN-ES and POSN-IMPES approaches outperform the other benchmarks in most set-

tings, including: all situations in which no group preferences are observed (see Fig. 5.3(b) and

5.3(e)); and even with m = 5 (see Fig. 5.3(d)-5.3(f)) despite its relatively high MSEK (see

Table 5.3). RSWL in all benchmark methods (PM-ES, PM-JMPES, DU) is very sensitive

to group size, increasing dramatically as group size decreases (see Fig. 5.3(a)-(f)). However,

POSN-ES and POSN-IMPES are more robust to group size (see Fig. 5.3(a)-(f)). POSN-IMPES

approximates POSN-ES reasonably well, while POSN-JMPES also performs well. These results

suggest that social network structure can serve as vital evidence in social choice and group de-

cision problems with partial preferences.

Flixster data. The Flixster dataset [191] consists of a social network of movie watchers and

their ratings of movies, and allows a test of our methods using both real-world network and

preference data. Because movie ratings are sparse, we aggregate them into preferences over

movie genres (genres were determined automatically using the Rotten Tomatoes and IMDB

web sites). Let r̃um be the rating of user u for movie m where r̃um ∈ {0.5, 1, · · · , 5} if u has

rated m, and is otherwise 0 (for missing ratings). For each user u and genre g, we define a

user-genre score

SCug =
1

Îu

∑
m

1(r̃um > 0)Amg, (5.30)

where Îu =
∑

m 1(r̃um > 0) is the number of movies rated by u, and Amg = 1 if movie m has

genre g (and Amg = 0 otherwise). This score reflects the relative number of movies of each

genre watched by a specific user. This is converted into a ranking of genres for each user u by

ordering genres according to their scores SCug. We also consider another method for extracting

genre ranking by taking into account the actual values of movie ratings. For each user u and

genre g, we define a user-genre-rating score

SRug =
1

Īu

∑
m

r̃umAmg, (5.31)

where Īu =
∑

m 1(r̃um > 0)Amg, and Amg = 1 if movie m has genre g (and Amg = 0 otherwise).
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Figure 5.4: Avg. RSWL (400 instances), Flixster, RSC, user-genre-rating scores, ψ : 0.5, 0.3.
POSN-ES, POSN-JMPES, and POSN-IMPES represent ES, JMPES, IMPES inferred social
welfare under the POSN model, respectively. PM-ES and PM-JMPES correspond to ES and
JMPES inferred social welfare under the φ-Mallows model. DU corresponds to our Discard
Unobserved benchmark.

This score reflects the average ratings of each genre watched by a specific user. This is converted

into a ranking of genres for each user u by ordering genres according to their scores SRug.

We limit our focus to four diverse genres—Kids/Family, Mystery/Suspense, Comedy, and

Drama.7 We run our methods on a 272-node subgraph of the Flixster data set, with 924

edges. We estimate a φ-Mallows model and POSN model parameters using maximum likelihood

methods on this sub-network; the learned parameters are (α, β, γ, φ) = (2.05, 1.06, 0.07, 0.33)

for user-genre scores and (α, β, γ, φ) = (1.30, 1.55, 0.07, 0.61) for user-genre-rating scores. For

each run, we test our methods on 10 instances of a partially observed network, censoring each

individual’s genre preference with probability ψ = 0.5 or ψ = 0.3.

For user-genre-rating scores, the average MSEK is 0.416 and 0.415 for ψ = 0.5 and ψ = 0.3

(resp.). This suggests that genre-rating preferences are not reasonably predictable using the

POSN model. Fig. 5.4 shows decision making performance, i.e., average RSWL, for the various

methods described above using RSC to select groups for user-genre-rating scores and ψ = 0.5

or ψ = 0.3. Each of our POSN-sensitive methods—ES, IMPES, and JMPS—fail to outperform

the φ-Mallows benchmark for all group sizes, but outperform DU.

The results for user-genre scores are by far more promising. The average MSEK is 0.242

and 0.256 for ψ = 0.5 and ψ = 0.3 (resp.). This suggests that genre preferences are reasonably

predictable using the POSN model. Fig. 5.5 shows decision making performance, i.e., average

RSWL, for the various methods described above using RSC to select groups. Each of our

POSN-sensitive methods—ES, IMPES, and JMPS—outperform the φ-Mallows benchmark for

all group sizes, and outperform DU significantly for small groups. DU performs comparably

7We focus on these four genres in part to increase data “density.” Our choice of these genres may impact the
results below; future investigation is needed to assess this impact.
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Figure 5.5: Avg. RSWL (400 instances), Flixster, RSC, user-genre scores, ψ = 0.5. POSN-
ES, POSN-JMPES, and POSN-IMPES represent ES, JMPES, IMPES inferred social welfare
under the POSN model, respectively. PM-ES and PM-JMPES correspond to ES and JMPES
inferred social welfare under the φ-Mallows model. DU corresponds to our Discard Unobserved
benchmark.

ns=3 ns=5 ns=10 ns=15 ns=20

POSN-ES 7.34 5.04 2.86 2.57 2.66

POSN-JMPES 9.89 7.67 4.33 3.69 3.29

POSN-IMPES 9.59 7.09 4.34 3.89 3.77

PM-ES 9.36 8.07 7.56 6.76 6.73

PM-JMPES 9.72 8.54 8.63 7.84 7.48

DU 20.61 12.07 5.31 2.92 2.12

Table 5.4: Std. RSWL in percentage (Flixster, ψ=0.5, user-genre scores)

to methods that account for network structure when groups are larger (15 or 20 individuals)

since, in expectation, the preferences of 7–10 group members are observed: this is sufficient to

make a good decision without estimating missing preferences explicitly due to normal sampling

bounds from the underlying Mallows model. This, in addition to the fact that homophily across

a large group makes it likely that the missing preferences are similar to those observed, means

that making a group decision based only on observed preferences usually results in near-optimal

decisions. Table 5.4 reports the std. dev. for these results when ψ = 0.5. ES has the smallest

variance in RSWL in general, implying more robustness in the decisions made. Overall, ES is

the most reliable method of those analyzed here. (Results for ψ = 0.3 are qualitatively similar

as illustrated in Fig. 5.6.)

By comparing the results of user-genre-rating scores with those of user-genre scores, there are

some interesting observations. Surprisingly, the POSN methods outperform the benchmarks for
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Figure 5.6: Avg. RSWL (400 instances), Flixster, RSC, user-genre scores, ψ = 0.3. POSN-
ES, POSN-JMPES, and POSN-IMPES represent ES, JMPES, IMPES inferred social welfare
under the POSN model, respectively. PM-ES and PM-JMPES correspond to ES and JMPES
inferred social welfare under the φ-Mallows model. DU corresponds to our Discard Unobserved
benchmark.

user-genre scores but not for user-genre-rating scores. This might suggest the user preferences

are more correlated when the frequencies of genres are considered rather than ratings associated

with those genres. This, in turn, might be indicative of behaviors in watching movies being

more correlated than actual preferences are. In other words, the frequency with which a genre

is watched by users might be more correlated over a social network than the extent to which the

genre is preferred. Also, the failure of POSN for user-genre-rating scores suggests that further

research is required to modify POSN model such that it can perform as well as benchmarks in

the case of not ideal-fit to the data.

Speeding up Inference by Opportunity Networks. We examine the efficacy and perfor-

mance of our group decision making using our sampling methods with opportunity networks

discussed in Sec. 5.5. We use Flixster data with user-genre scores for our experiments and set

preference observability ψ = 0.5. We vary opportunity network parameter ξ to study how the

density of network opportunity affects the running time and the quality of group decisions. For

ξ = 0, we recover our original POSN, sampling and decision making methods.

To compare the speed of our sampling methods for various ξ, we define the relative running

time improvement (RRTI) for ξ to be the ratio of the average running time of original POSN

model to the average running time using network opportunity with ξ. RRTI shows the magni-

tude that specific ξ make sampling and group decision making faster than that of the original

model. Table 5.5 shows RRTI for various ξ. Unsurprisingly, RRTI increases with ξ. Now, the

important question is to understand the effect of ξ on the quality of group decisions. Fig. 5.7

shows the average relative social welfare loss for various ξ. We can observe that by increasing
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ξ 0 0.5 1 2 3 5

RRTI 1.000 1.744 2.620 6.348 9.549 15.981

Table 5.5: Running time ratio (10 instances) with opportunity network, ψ = 0.5, Flixster Data,
user-genre score, n = 272, and m = 4.

ξ, RSWL (specifically for POSN-ES and POSN-IMPES and large group sizes) first decreases

(e.g. compare ξ = 0–2) and then increases (e.g., compare ξ = 2–5). RSWL for ξ = 2 are lowest.

Not only does ξ = 2 result in better group decisions, but also it is 6.5 times faster than the

original model for this network.8 These results have an important message: the quality of group

decisions can be improved by sub-sampling negative examples but the number of sub-samples

should not be too large or too small to maximize prediction accuracy.

Through these experiments, we observe that our proposed opportunity network methods

not only have made our inference tasks very faster but also help improving the quality of our

group decisions. This approach seems to be a win-win approach but further explorations are

required for a definitive conclusion.

5.7 Summary and Future Work

This chapter introduced preference-oriented social networks (POSNs) to capture the correlation

of preference rankings between individuals who interact in social networks. We developed ef-

fective inference methods to predict an individual’s preferences by exploiting these correlations.

We also developed methods for group recommendation when the preferences of some (or even

all) group members are unobserved. Our experiments showed the value of accounting for social

ties in inference and group recommendation when faced with missing preferences.

This work is a starting point for the deeper modeling of preferences in a social network

context. Interesting future directions include: more efficient sampling methods based on net-

work topology; studying other aggregation functions (e.g., other social choice functions, voting

rules, bargaining solution concepts, etc.), and extensions to other social choice problems (e.g.,

matchings, assignments). We elaborate more about these future directions in Sec. 6.3.

Of practical importance is investigating the extent to which preference rankings are corre-

lated and play a role in shaping connections in real-world social networks. Developing scalable

methods for learning model parameters is essential; such learning techniques can exploit our

inference methods as important building block (e.g., in EM-based algorithms). Our model can

provide the basis for more effective preference elicitation.

As decision making using MPE seems to provide a reasonable approximation to optimal

decisions, studying how MPE can be computed or approximated without the use of sampling

remains of interest. Similar to active learning methods [40], the tighter integration of inference

8The speed gain would be much higher for larger social networks.
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Figure 5.7: Avg. RSWL (over 400 instances) for various group sizes ns, various ξ, the RSC
group selection method, Flixster data ψ = 0.5. POSN-ES, POSN-JMPES, and POSN-IMPES
represent ES, JMPES, IMPES inferred social welfare under the POSN model, respectively. PM-
ES and PM-JMPES correspond to ES and JMPES inferred social welfare under the φ-Mallows
model. DU corresponds to our Discard Unobserved benchmark.
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and decision making methods would also be of value.

There are a number of potential extension to our POSN model. This includes accommo-

dating partial information about the preferences of specific users (e.g., a small set of pairwise

comparisons); and incorporating both the strength and types of relationships between individ-

uals. Such generalizations may offer greater performance in certain preference inference and

group recommendation settings. We discuss in detail some of these future directions in Sec. 6.3.



Chapter 6

Conclusion and Future Work

Group decision making (social choice) problems are prevalent in our day-to-day lives. Many

applications that deal with user preferences (e.g., recommender systems, advertisement and

marketing mechanisms, etc.) have some sort of social choice problem at their core. One of the

main endeavours in any group decision making problem is learning the individual preferences

upon which decisions or recommendations are made.

This thesis hypothesised that social networks–by capturing preference correlations over indi-

viduals induced by social interactions–provide a natural and informative platform for preference

learning. Some specific questions addressed through this thesis: i) What dynamics dictate how

individual preference become correlated in a social network over time (see Chapter 3)? (ii)

How should one mathematically model such correlations and dynamics (see Chapter 3 and

Chapter 4)? (iii) Can such correlations and dynamics be harnessed for more efficient preference

learning and elicitation, and consequently more effective group decision making? (see Chapter 3

and Chapter 5).

Our theoretical and empirical analyses confirmed our hypothesis (discussed above) and

suggest that social networks can play important role in group decision making by capturing

the interdependency of individual preferences. The thesis advanced the understanding and

mathematical modelling of preference dynamics and correlations over social networks and to

exploit the computational and predictive power of these models to develop efficient algorithms

for decision making and recommendations, while requiring less user data, and imposing lower

cognitive and communication burden on users. We review the summary of main results, specific

contributions of each chapter, and the future directions below.

6.1 Summary of Main Results

We summarize the main results of each chapter.

Chapter 3: Empathetic Social Choice on Social Networks. We have introduced em-

pathetic social choice frameworks in which individuals derive utility based on both their own

103
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intrinsic preferences and empathetic preferences, determined by the satisfaction of their acquain-

tances (e.g., friends voting for a vacation spot or a movie, while considering both their own

and others’ satisfaction). We first studied the theoretical conditions under which empathetic

preferences are well-defined (i.e., converge to a fixed-point). We described (mild) conditions—

normalization, non-negativity, and positive self-loop—under which such fixed points exist. We

demonstrated that group decision making in the empathetic framework can be recast as a form

of weighted voting. We then developed two scalable algorithms for consensus decision making

(or group recommendation). We also generalized our empathetic framework to accommodate

other social choice problems (e.g., assignment, matching, etc.) and showed how some of our

theoretical results (e.g., fixed-point convergence) still hold. We also demonstrated that, in our

general empathetic framework, certain other social choice problems can be viewed as their cor-

responding weighted versions, when weights are determined from social network structure. We

developed a scalable iterative method for estimating those societal weights, which can serve as a

building block for solving other social choice problems. We empirically demonstrated the value

of accounting for empathetic preferences and the performance of our algorithms. Our theoreti-

cal and empirical results shed light on how individual preferences become correlated due to the

presence of empathy. The results also confirmed that neglecting empathic preferences yields

sub-optimal group decisions.

Chapter 4: Ranking Networks. To capture the correlation of preference rankings (or in

general rank data) on social networks, we have introduced a network formation model called

ranking networks in which the similarity of two individuals’ rankings determines the chance they

are connected to each other. We theoretically analysed general topological properties of this

model, demonstrating that it exhibits some observed properties of real-work social networks such

as a small diameter and the existence of a giant connected component. We also derived some

closed-form formulas for estimating degree distribution, edge density, and clustering coefficients

under this model, and showed that their computations are expensive. Thus, we developed

easy-to-compute approximations for the special class of distance-based ranking models, while

studying properties that emerge among networks in this class. We also demonstrated how these

approximations can be exploited for efficient model learning. Through empirical experiments,

we demonstrated the effectiveness of our approximation and learning methods.

Chapter 5: Group Recommendation on Preference-Oriented Social Networks. We

introduced a special instance of ranking networks, that we call preference-oriented social net-

works (POSNs), for capturing the correlation of preferences over social networks. We charac-

terized important probabilistic properties of the model such as, the joint posterior distribution

of unobserved preferences given observed networks structure and some individuals’ observed

preferences. We then formulated the social choice/group decision making problem with missing

preferences in a social network. We assumed that we need to select an option that implements

a social choice function for a group or “subpopulation”. We distinguished a subpopulation

(e.g., a group of friends planning an activity, or electorate in a small district) from the larger
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society (e.g., the users of an online social network in a university, or the eligible voters in

a country) to reflect the fact that many group decisions are local, but can be supported by

knowledge of the preferences of individuals outside that group. We developed a Markov Chain

Monte Carlo (MCMC) method for inferring unobserved preferences and making social choices

for sub-populations. We also proposed some enhancements to our inference and group decision

making methods which improve both the speed and efficacy of our original methods. These

enhancements build upon on a simple and seemingly natural assumption that not everyone has

the opportunity to be acquainted with everyone else in a society. We studied various types of

group selection strategies ranging from uniformly randomly selected subsets of individuals to

those which choose a subset of individuals using network structure. In our experiments, we

evaluated the ability of our methods to predict unobserved preferences and to support effective

group decision making with partial preferences (or even in cases where preferences of group

members are completely unknown). Using various datasets (e.g., Flixster, Irish election, etc.),

we compared our group recommendation methods to different benchmarks which neglect the

information contained in the social network. Our empirical results demonstrate that accounting

for social ties can significantly improve predictions and group recommendation when faced with

missing preferences.

6.2 Thesis Contributions

We summarize this thesis’s contributions in point form below.

Chapter 3:

• Introduce and mathematically model the empathetic framework.

• Theoretically analyse the empathetic framework:

– Prove conditions under which utilities are well-defined.

– Prove that social choice in the empathetic framework can be viewed as a weighted

voting where weights come from underlying social network.

• Propose two scalable iterative algorithms (ICE and WICE) for consensus decision making:

– Prove their correctness, termination, and convergence rates.

• Generalize our empathetic framework to accommodate other social choice problems.

• Develop an iterative method for approximating societal weights, which can serve as build-

ing blocks of algorithms for solving other social choice problems.

• Prove the distinction between empathetic models and allocative externalities models.

• Run empirical experiments:
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– Demonstrate the importance of considering empathy in group decision making prob-

lems.

– Evaluate the performance of the proposed algorithms.

Chapter 4:

• Introduce and mathematically model the generative ranking network model.

• Theoretically analyze general topological properties of this model, demonstrating that it

exhibits some observed properties of real-work networks:

– Prove the existence of the small-world phenomena.

– Prove the existence of a giant connected component.

– Prove the shrinking diameters property.

• Derive closed-form formulae for estimating degree distribution, edge density, and cluster-

ing coefficients.

– Analyze the running time of these exact estimations and shown that their computa-

tions are expensive.

• Analyze and studied the special class of distance-based ranking models.

– Develop easy-to-compute approximations for edge density and degree distribution.

– Study specific properties that emerge among networks in this class; e.g., the relation

of social popularity and preference popularity.

• Formulate maximum likelihood estimation in distance-based ranking models and propose

efficient approximation methods for its computation.

• Empirically demonstrate the effectiveness of our approximation methods.

Chapter 5:

• Introduce Preference-Oriented Social Network (POSN) model a special instance of ranking

networks.

• Exploit POSN to infer unobserved individual preferences given observed preferences of

others in the social network.

• Formulate the target posterior distributions.

• Develop a Markov Chain Monte Carlo (MCMC) method for inferring unobserved prefer-

ences.

• Develop various group decision making processes under inferred preferences.
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• Introduce the concept of “opportunity network” for speeding up the inference and group

decision making.

• Run empirical experiments on various datasets:

– Evaluate the ability of our methods to predict unobserved preferences.

– Demonstrate that accounting for social ties can significantly improve predictions and

group decision making/recommendation.

6.3 Future Directions

We highlight the possible directions of future research, mostly built on or continuation of this

thesis with the focus of exploiting social ties for more efficient and effective group decision

making, recommendation, and preference learning.

Empathetic Framework and Other Social Choice Problems One can apply our empa-

thetic social choice framework to other social choice problems, such as matching, assignment,

and multi-winner election problems. We have shown in Chapter 3 that social welfare can be

written as weighted intrinsic utilities under both global and local empathetic models; this ob-

servation can be starting point for applying our framework to other social choice problems. Of

special interest is exploiting empathetic framework for multi-winner elections problems. Exam-

ples of multi-winner elections with empathetic preferences are prevalent in real-world: when a

city council decides to implement, say, two of a number of proposals for the use of vacant land,

or when a social networking site decides to implement, say, three new functionalities from many

possible additions.

Qualitative Preference Formation and Aggregation on Social Networks. One can

generalize the empathetic social choice framework in Chapter 3 by considering scenarios in

which individuals repeatedly update their own preference rankings by aggregating their own

and their neighbours’ preferences (any aggregation mechanism is applicable as long as it min-

imizes some notion of distance between aggregated preference and local preference profiles).

This local aggregation process of preferences might capture various psychological dynamics on

social networks including empathy, confrontation, influence, imitation, etc. Nonetheless, we

believe that local aggregation is in heart of all these phenomena, since all require individual

preferences become more similar to that of (a subset of) their friends over time. Similarly, a

local aggregation process that iteratively minimizes the distance of an individual’s ranking to

those of her friends makes an individual’s ranking more similar to those of her friends. As such,

it is essential to study local aggregation by abstracting away other minor differences. Under this

framework, one can study ranking preference formation and its interplay with social structure

on social networks. Of special interest is how social structure impacts the formation of corre-

lated preference rankings on social networks, when preferences converge, and how community

structures diversify the resulting preferences.
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Extensions to Ranking Networks. There are a number of potential extensions to our rank-

ing network model of Chapter 4. This includes accommodating partial information about the

preferences of specific users (e.g., a small set of pairwise comparisons); incorporating both the

strength and types of relationships between individuals; considering heterogeneity/heterophily;

and incorporating the other nodal attributes in addition to rankings in the process of network

formation. Such generalizations may offer greater performance in certain preference inference

and group recommendation settings.

Correlations of Rankings in Social Networks. In Chapter 5, we evaluated the perfor-

mance of POSN using real-world data from Flixster, where movie ratings were mapped to some

rankings over genres. However, it is interesting to explore the performance of POSN on pref-

erence rankings collected/elicited directly from users over a social network. (Unfortunately, a

social network data set which includes elicited preference rankings from users was not been

available when this thesis research conducted.) There are some scientifically interesting ques-

tions that one can explore in this regard. For example, to what extent and for which contexts

are ranking preferences correlated in social networks? Which ranking distance metrics are most

suitable to be used in POSNs? Is it possible that ranking preferences demonstrate various levels

of correlation, determined by the strength of social ties (e.g., preferences are more correlated

between couples or siblings than between classmates)?

Scalable Learning Methods for POSN. Of practical importance are scalable methods for

learning POSN parameters. We developed efficient methods for model learning by optimiz-

ing the approximate likelihood function, drawing upon the approximation methods that we

developed for estimating topological properties of ranking networks in Chapter 4. One can

take another direction for learning model parameter by deploying our MCMC sampling meth-

ods developed in Chapter 5 within an EM algorithm. However, this approach requires some

modifications to our sampling methods to make it more efficient and scalable.

Efficient Sampling Methods for POSN. One interesting direction is to design more effi-

cient sampling methods by relaxing (or neglecting) some dependencies in the joint posterior

distribution of POSNs. In Chapter 5, the original POSN model considers the absence and

presence of all possible edges when computing the joint posterior distribution, thus yielding a

sampling method that is very intensive for large social networks. To make computation more

efficient, we proposed the concept “opportunity network” which takes into account the presence

and absence of a subset of possible edges. However, we empirically studied only a very spe-

cific instance of opportunity networks which relies on geodesic distances in observed networks.

There are more interesting variations of opportunity networks can be studied in future work

in which other network properties (e.g., the degree distribution, clustering coefficient, etc.) are

taken into account for its creation. The goal should be to produce sparser opportunity networks

which can scale well for large-scale social networks but still result in high quality predictions

and group decisions.
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Appendix A

Theoretical Background and Proofs

of Chapter 3

This appendix first reviews the relevant definitions and results used for our theoretical analyses

in Chapter 3. We then discuss the relevant lemmas and proofs.

A.1 Linear Algebra Background

We first provide relevant definitions and results used in our proofs.

Definition (Spectrum σ(A)). The set of eigenvalues of an n × n matrix A is called its

spectrum σ(A).

Definition (Spectral Radius ρ(A)). Let A be an n× n matrix with real or complex eigen-

values σ(A). Then the spectral radius of A is

ρ(A) = max
λ∈σ(A)

|λ|

.

Definition (M-matrix). A matrix A in the form of A = sI−B is an M-matrix if s ≥ ρ(B)

and B ≥ 0.

Proposition A.1.1 (Nonsingular M-matrix [268]). If s > ρ(B) in an M-matrix A = sI−B,

then A is nonsingular and A−1 ≥ 0

Note that an M-matrix can be either singular or non-singular. Therefore, the condition

s > ρ(B) in Prop. A.1.1 is necessary to guarantee the nonsingularity of an M-matrix.1

1In some references (e.g.,[268]), an M-matrix is defined with s > ρ(B). By this definition, an M-matrix is
non-singular.
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Theorem A.1.2 (Gerschgorin Circles [268]). The eigenvalues of matrix A ∈ Cn×n are con-

tained in ∪ni=1Gi, where Gi is the Gerschgorin circle defined by:

Gi =
{
c ∈ C

∣∣|c− aii| ≤ Ri} where Ri =
∑

0≤j≤n
j 6=i

|aij |

We exploit induced matrix norms in our analysis of convergence rate of our iterative method

for fixed-point utilities. For a given vector norm ‖.‖, the induced norm for n × m matrix

A ∈ Cn×m is:

‖A‖ = max {‖Ax‖ : x ∈ Cm and ‖x‖ = 1}

= max

{‖Ax‖
‖x‖ : x ∈ Cm and x 6= 0

}
We here focus on the p-norm ‖.‖p which is induced by the p-norm in vector spaces. More

precisely, the p-norm of matrix A is

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

where the p-norm ‖x‖p of vector x ∈ Cn is:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

p-norms have several important properties: (1) they are submultiplicative: ‖AB‖p ≤ ‖A‖p‖B‖p.
A consequence of this consistency property is that, for any square matrix A, ‖Ak‖p ≤ ‖A‖kp.
(2) By definition, they are compatible: ‖Ax‖p ≤ ‖A‖p‖x‖p where A ∈ Cn×m and x ∈ Cm.

For the cases where p = 1 or p = ∞, the matrix p-norm can be computed easily. The

1-norm for matrix A is simply the maximum absolute column sum of A:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | (A.1)

The ∞-norm for matrix A is simply the maximum absolute row sum of A:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |. (A.2)

We review the Jacobi iterative method and its convergence criteria and rate. Iterative

methods offer practical advantages for solving linear systems [310]. A linear system is formally

defined as follows: Given an n× n real-valued matrix A and a real n-vector b, the problem is

to find n-vector x ∈ Rn such that Ax = b.
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The Jacobi method [310] is an iterative method for solving linear systems. Consider this

decomposition A = Λ − E − F where Λ is the diagonal matrix of A, E is the strictly lower

triangular matrix of −A, and F is the strictly upper triangular matrix of −A. Note that we

assume that the diagonal entries of A are all non-zero (this corresponds to our positive self-loop

assumption below). Each iteration of the Jacobi method takes the form of:

x(t+1) = Λ−1(E + F)x(t) + Λ−1b (A.3)

Theorem A.1.3 (Convergence of Iterative Methods [310]). Let an iterative method take the

form of xt+1 = Gxt+ f where G is an n×n iteration matrix and f is an n-vector. It converges

if and only if ρ(G) < 1.

Corollary A.1.1 (Jacobi Convergence). The Jacobi iterative method converges to the solution

of linear system Ax = b if ρ(G) < 1 where G = Λ−1(E + F).

Proof The proof of convergence is trivial and immediately follows form the Theorem A.1.3 by

letting G = Λ−1(E + F) and f = Λb. Now, we prove that the Jacobi method converges to the

solution of the linear system. Since it converges, let x∗ = limt→∞ x(t). From Equation A.3, we

have:

lim
t→∞

x(t+1) = lim
t→∞

Λ−1(E + F)x(t) + Λ−1b

=⇒ lim
t→∞

x(t+1) = Λ−1(E + F)
(

lim
t→∞

x(t)
)

+ Λ−1b

=⇒ x∗ = Λ−1(E + F)x∗ + Λ−1b

=⇒ Λx∗ = (E + F)x∗ + b

=⇒ (Λ−E− F)x∗ = b

=⇒ Ax∗ = b

So x∗ is the solution of the linear system.

A.2 Proofs

Recall that the adjacency matrix is denoted by W = [wij ] and D is n×n diagonal matrix with

djj = wjj . To prove Prop. 3.1.1, we first show

Lemma A.2.1. Assuming nonnegativity, normalizaton, and positive self-loop, ρ(B) < 1 where

B = W −D.

Proof By the definition of W and D, it can be seen that B = W−D is a matrix with bii = 0

and bij = wij for all i, j ∈ N and i 6= j. Using the Gerschgorin Circle Theorem (Thm. A.1.2),

we have σ(B) ⊂ ∪ni=1Gi where
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Gi =
{
c ∈ C

∣∣|c− bii| ≤ Ri} and Ri =
∑

0≤j≤n
j 6=i

|bij |.

As bii = 0 and bij = wij for i 6= j, we have:

Gi =
{
c ∈ C

∣∣|c| ≤ Ri} where Ri =
∑

0≤j≤n
j 6=i

|wij |.

Note that each Gi is a closed disk in C which is centered at 0. So ∪ni=1Gi is the union of closed

disks of various radii but the same center 0. Since the number of these disks is finite, we can cover

all these closed disks with a closed covering disk defined by
{
c ∈ C

∣∣|c| ≤ Rmax} where Rmax =

maxni=1Ri. Without loss of generality, let l = arg maxiRi. So, we have

σ(B) ⊂ ∪ni=1

{
c ∈ C

∣∣|c| ≤ Ri} ⊆ {c ∈ C∣∣|c| ≤ Rl}
From this, it follows that:

|λ| ≤ Rl, ∀λ ∈ σ(B) =⇒ max
λ∈σ(B)

|λ| ≤ Rl =⇒ ρ(B) ≤ Rl.

Using Rl =
∑

j 6=l |wlj | and the normalization assumption
∑

j wlj = 1, we have ρ(B) ≤ 1− wll.
Since wll > 0 by self-loop positivity, we have ρ(B) ≤ 1− wll < 1.

Proposition 3.1.1. Assuming nonnegativity, normalizaton, and positive self-loop, Eq. 3.6 has

a unique fixed-point solution u(a) = (I−W + D)−1DuI(a).

Proof of Prop. 3.1.1 Using Eq. 3.4, we can write:

u(a) = (W −D)u(a) + DuI(a)

=⇒ u(a)− (W −D)u(a) = DuI(a)

=⇒ (I− (W −D))u(a) = DuI(a)

So it is sufficient to show that (I−(W−D))−1 exists to prove that u(a) = (I−W+D)−1Du(a)

exists and is unique. We need to show that I−(W−D) is nonsingular to guarantee the existence

of (I− (W −D))−1.

Let B = W −D. By definitions of W and D, the matrix B has bii = 0 and bij = wij for

all i, j ∈ N and i 6= j. By nonnegativity assumption, we have wij ≥ 0, so B ≥ 0. By setting

s = 1, (I − (W −D)) = (sI − B) which is an M-matrix (See Definition A.1). Using Lemma

A.2.1, we have ρ(B) < 1. Since s = 1, then ρ(B) < s. By Proposition A.1.1, it follows that

(I− (W −D)) is nonsingular and (I− (W −D))−1 ≥ 0.

Corollary 3.1.1. In the global empathetic model, (global) social welfare of alternative a is given

by swg(a,u
I) = ω>uI where ω> = e>(I−W + D)−1D.
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Proof of Cor. 3.1.1 The proof is straightforward. From the definition of social welfare and

Prop. 3.1.1, it follows

swg(a,u
I) = e>(I−W + D)−1DuI(a).

By setting ω> = e>(I−W + D)−1D, we have swg(a,u
I) = ω>uI .

Theorem 3.2.1. Consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a). (A.4)

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to u(a),

the solution to Eq. 3.6

Proof of Theorem 3.2.1 From Eq. 3.4, we observe that u(a) is the solution of the linear

system Au(a) = b with A = I− (W −D) and b = DuI(a). The Jacobi method is:

u(a)(t+1) = Λ−1(E + F)u(a)(t) + Λ−1b

Since A = I − (W −D), we have that Λ = I and E + F = W −D. As b = DuI(a), we

have:

u(a)(t+1) = I−1(W −D)u(a)(t) + I−1DuI(a)

=⇒ u(a)(t+1) = (W −D)u(a)(t) + DuI(a)

From Lemma A.2.1, we have ρ(W −D) < 1. Then, using Corollary A.1.1, we know that

u(t+1)(a) = (W − D)u(t)(a) + DuI(a) converges to u(a) which is the solution to the linear

system.

Theorem 3.2.2. In the iterative scheme above,∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞
,

where w̃ = min1≤i≤nwii.

Proof of Theorem 3.2.2 Using Eq. 3.4 and u(t)(a) = (W −D)u(t−1)(a) + DuI(a), we can

write u(a)−u(t)(a) = (W−D)(u(a)−u(t−1)(a)). By induction on t, we have u(a)−u(t)(a) =
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(W −D)t
(
u(a)− u(0)(a)

)
. Thus, we have∥∥∥u(a)− u(t)(a)

∥∥∥
∞

=
∥∥∥(W −D)t

(
u(a)− u(0)(a)

)∥∥∥
∞

≤
∥∥(W −D)t

∥∥
∞

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(by compatibility)

≤ ‖W −D‖t∞
∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by consistency)

=

max
1≤i≤n

n∑
j=1

|wij − dij |

t ∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(∞-norm)

=

max
1≤i≤n

n∑
j=1
j 6=i

|wij |


t ∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by defn. of D)

=

max
1≤i≤n

n∑
j=1
j 6=i

wij


t ∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by nonnegativity)

=

(
1− min

1≤i≤n
wii

)t ∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(by normalization)

Letting w̃ = min1≤i≤nwii, we have shown that∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞
.

Lemma A.2.2. Assume nonnegativity and normalization, consider the iterative updating scheme:

u(t)(a) = (W − D)u(t−1)(a) + DuI(a). If ∀i ∈ N , uIi (a) ∈ [c, d] and u
(0)
i (a) ∈ [c, d], then

ui(a)(t) ∈ [c, d], ∀i ∈ N and ∀t ∈ N. Moreover, we have ui(a) ∈ [c, d], ∀i ∈ N .

Proof We first prove the first part of the lemma by induction on t. The base case is t = 0 for

which it is given that u
(0)
i (a) ∈ [c, d], ∀i ∈ N . The induction hypothesis is that u

(t)
i (a) ∈ [c, d]

for all ∀i ∈ N . There are two useful inequalities which follow immediately from the induction

hypothesis: maxi∈N u
(t)
i (a) ≤ d and mini∈N u

(t)
i (a) ≥ c. We can write the updating scheme for

each individual i ∈ N and the alternative a ∈ A as follows:

u
(t+1)
i (a) = wiiu

I
i (a) +

∑
k 6=i

wiku
(t)
k (a) (A.5)

where u
(t)
i (a) denotes the utility of individual i for alternative a after t iterations. Using this

equation and the two inequalities mentioned above, we will first show the upper bound on d

and then the lower bound on c for u
(t+1)
i (a), ∀i ∈ N , and fixed a. For the upper bound, we can
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write the following:

u
(t+1)
i (a) ≤max

i∈N

{
u

(t+1)
i (a)

}
= max

i∈N

wiiuIi (a) +
∑
k 6=i

wiku
(t)
k (a)


≤max

i∈N

{
wiiu

I
i (a)

}
+
∑
k 6=i

max
i∈N

{
wiku

(t)
k (a)

}
≤wii max

i∈N

{
uIi (a)

}
+
∑
k 6=i

wik max
i∈N

{
u

(t)
k (a)

}
≤wiid+

∑
k 6=i

wik max
i∈N

{
u

(t)
k (a)

}
≤wiid+

∑
k 6=i

wikd

=d
∑
k

wik = d.

Similarly, for the lower bound:

u
(t+1)
i (a) ≥min

i∈N

{
u

(t+1)
i (a)

}
= min

i∈N

wiiuIi (a) +
∑
k 6=i

wiku
(t)
k (a)


≥min

i∈N

{
wiiu

I
i (a)

}
+
∑
k 6=i

min
i∈N

{
wiku

(t)
k (a)

}
≥wii min

i∈N

{
uIi (a)

}
+
∑
k 6=i

wik min
i∈N

{
u

(t)
k (a)

}
≥wiic+

∑
k 6=i

wik

{
u

(t)
k (a)

}
≥wiic+

∑
k 6=i

wikc

=c
∑
k

wik = c.

So we have shown that c ≤ u
(t+1)
i (a) ≤ d, ∀i ∈ N and a ∈ A, so proving the first part of the

lemma.

Now, we will prove the second part of lemma by showing that ui(a) ∈ [c, d], ∀i ∈ N and

a ∈ A. Fix an arbitrary i ∈ N . The sequence u
(t)
i (a) with t = 0, 1, 2, . . . is a convergent

sequence which converges to ui(a) = limt→∞u
(t)
i (a) (based on Theorem 3.2.1). Note that, from

the first part of this lemma, we have u
(t)
i (a) ∈ [c, d] for any t ∈ N∪{0}. So we can see u

(t)
i (a) is a
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convergent sequence on the closed set [c, d]. As [c, d] is closed, the limit point of u
(t)
i (a) sequence

which is ui(a) must belong to [c, d]. As i and a are chosen arbitrarily, we have ui(a) ∈ [c, d].

Theorem 3.2.3. Assume uIj (a), u
(0)
j (a) ∈ [c, d], for all j. Then

∣∣sw(a)− sw (t)(a)
∣∣ ≤ n(d −

c) (1− w̃)t, for all t, under the conditions above, where w̃ = min1≤i≤nwii.

Proof of Theorem 3.2.3 Let w̃ = min1≤i≤nwii. Using Theorem 3.2.2, we can write∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

=⇒∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≤ max
i

∣∣∣ui(a)− u(t)
i (a)

∣∣∣
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

=⇒
n∑
i=1

∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≤ n (1− w̃)t
∥∥∥u(a)− u(0)(a)

∥∥∥
∞
. (A.6)

By Lemma A.2.2, we know that ui(a) ∈ [c, d]. Based on this and the assumption that u
(0)
i (a) ∈

[c, d] , it follows that |ui(a)− u(0)
i (a)| ≤ d− c. So we can continue Inequality (A.6) as follows:

n∑
i=1

∣∣∣ui(a)− u(t)(a)
∣∣∣ ≤ n (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

≤ n(d− c) (1− w̃)t . (A.7)

By Lemma A.2.2, we know that ui(a) ∈ [c, d] and u
(t)
i (a) ∈ [c, d], ∀t ∈ N ∪ {0}. By the triangle

inequality, we have:

n∑
i=1

∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≥ ∣∣∣∣∣
n∑
i=1

(
ui(a)− u(t)

i (a)
)∣∣∣∣∣

=

∣∣∣∣∣
n∑
i=1

ui(a)−
n∑
i=1

u
(t)
i (a)

∣∣∣∣∣
=
∣∣∣sw(a)− sw (t)(a)

∣∣∣ . (A.8)

By Inequalities (A.7) and (A.8), we conclude that∣∣∣sw(a)− sw (t)(a)
∣∣∣ ≤ n(d− c) (1− w̃)t ,

where w̃ = min1≤i≤nwii.

Proposition 3.2.4. If sw (t)(b)− sw (t)(a) ≥ 2n(d− c) (1− w̃)t then sw(b) > sw(a).

Proof of Proposition 3.2.4 Using the triangle inequality and the inequality presented in
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Theorem 3.2.3, we can write:

sw (t)(b)− sw (t)(a)

= sw (t)(b)− sw(b) + sw(b)− sw (t)(a) + sw(a)− sw(a)

≤ |sw (t)(b)− sw(b)|+ sw(b) + |sw(a)− sw (t)(a)| − sw(a)

≤ n(d− c)(1− w̃)t + sw(b) + n(d− c)(1− w̃)t − sw(a)

= 2n(d− c)(1− w̃)t + sw(b)− sw(a).

Using this and sw (t)(b)− sw (t)(a) ≥ 2n(d− c)(1− w̃)t, we have 2n(d− c)(1− w̃)t ≤ 2n(d−
c)(1− w̃)t + sw(b)− sw(a). This implies sw(b) ≥ sw(a).

Corollary 3.3.1. ω is the unique solution to the linear system of Aω = e where A = (I −
W> + D)D−1.

Proof of Corollary 3.3.1 The proof is trivial. From Corollary 3.1.1, we have

ω> = e>(I−W + D)−1D

=⇒ ω = D>
(
(I−W + D)−1

)>
e

=⇒ ω = D
(

(I−W + D)>
)−1

e

=⇒ ω = D(I> −W> + D>)−1e

=⇒ ω = D(I−W> + D)−1e

=⇒ (I−W> + D)D−1ω = e

Let A = (I −W> + D)D−1, so we have the linear system of Aω = e with the solution of ω.

For uniqueness of ω, we need to show that (I−W> + D)D−1 is a non-singular matrix. Based

on positive self-loop assumption, D and its inverse D−1 must be non-singular. In the proof

of Proposition 3.1.1, we showed that (I −W + D) is non-singular. As the transpose of any

non-singular matrix is non-singular, (I−W + D)> = (I−W> + D) is non-singular.

Lemma A.2.3. Assuming B = W −D and G = D(W> −D)D−1, then ρ(G) = ρ(B)

Proof of Lemma A.2.3 By showing that both G and B have the same characteristic poly-

nomial (i.e., pB(λ) = pG(λ)), we demonstrate that σ(G) = σ(B), thus yielding to ρ(B) = ρ(G)

based on the definition. We first note that G = DB>D−1 and det(D) 6= 0 (due to positive

self-loop assumption). Then, using the definition of pB(λ) and transpose, multiplication and
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inverse properties of determinants, we have:

pB(λ) =det(B− λI) = det
(

(B− λI)>
)

= det(B> − λI) =
det(D)

det(D)
det(B> − λI)

=det(D)det(B> − λI)det(D−1) = det(D(B> − λI)D−1) = det(DB>D−1 −DλD−1)

=det(G− λI) = pG(λ)

Thus, σ(G) = σ(B) and consequently ρ(G) = ρ(B).

Theorem 3.3.2. Consider the following update:

ω(t+1) = D(W> −D)D−1ω(t) + De

Assuming nonnegativity, normalizaton, and positive self-loop, this method converges to ω, the

solution to linear system stated in Cor. 3.3.1.

Proof of Theorem 3.3.2 From Corollary 3.3.1, we observe that ω is the unique solution of

the linear system of Aω = e where A = (I−W> + D)D−1. The Jacobi method (as presented

in Eq. A.3) for solving this linear system is

ω(t+1) = Λ−1(E + F)ω(t) + Λ−1e.

Since A = (I −W> + D)D−1 = D−1 − (W> −D)D−1, we have Λ = D−1 and E + F =

(W> −D)D−1 based on the definitions, thus yielding the iteration:

ω(t+1) = D(W> −D)D−1ω(t) + De.

From Lemma A.2.1 and Lemma A.2.3, we have ρ(G) < 1 where G = D(W> − D)D−1.

Then, using Corollary A.1.1, we have shown that ω(t+1) = D(W>−D)D−1ω(t) +De converges

to ω which is the solution to the linear system of Aω = e where A = (I−W>+ D)D−1.

Lemma A.2.4. If ω is the solution to the linear system in Cor. 3.3.1 and ω
′

= (w11, w22, . . . , wnn)>

then ω ≥ ω′.

Proof of Lemma A.2.4 We first show that ω ≥ 0. As Corollary 3.1.1 demonstrates that

ω> = e>(I−W+D)−1D and D is a nonnegative matrix (due to the nonnegativity assumption).

It is sufficient to show that (I−W + D)−1 ≥ 0. We can see that I−W + D = I− (W −D)

is in the form of M-matrix. As ρ(W −D) < 1 (See Lemma A.2.1), by applying Proposition

A.1.1, we have (I−W + D)−1 ≥ 0 and consequently ω ≥ 0.

Theorem 3.3.2 implies that the ω is the fixed-point of the iterative process of ω(t+1) =

D(W> −D)D−1ω(t) + De. So using this and De = ω
′
, we have ω = D(W> −D)D−1ω+ω

′
.
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As W>, D, D−1 and ω> are nonnegative,

ω ≥ 0 =⇒ D(W> −D)D−1ω ≥ 0 =⇒ D(W> −D)D−1ω + ω
′ ≥ ω′ =⇒ ω ≥ ω′ .

Lemma A.2.5. Assuming non-negativity, normalization and positive self-loop, ω in the global

model always satisfies e>ω = n or equivalently
∑

i ωi = n.

Proof of Lemma A.2.5 We first note that e>W> = n as a consequence of normalization

assumption. Then, from Corollary 3.3.1, we can write

(I−W> + D)D−1ω = e

=⇒ e>(I−W> + D)D−1ω = e>e

=⇒ (e>I− e>W> + e>D)D−1ω = n

=⇒ (n− n+ e>D)D−1ω = n

=⇒ e>DD−1ω = n

=⇒ e>Iω = n

=⇒ e>ω = n

Theorem 3.3.3. Assume ω(0) = (w11, w22, . . . , wnn)>. In the iterative scheme above,∥∥∥ω − ω(t)
∥∥∥

1
≤ nŵ

w̃
(1− w̃)t (1− w̄),

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

Proof of Theorem 3.3.3 From ω(t) = D(W> − D)D−1ω(t−1) + De, we can write ω −
ω(t) = D(W> − D)D−1(ω − ω(t−1)). By induction on t, we can show that ω − ω(t) =

D
(
W> −D

)t
D−1(ω − ω(0)). Using this, we can write

∥∥∥ω − ω(t)
∥∥∥

1
=

∥∥∥∥D(W> −D
)t

D−1(ω − ω(0))

∥∥∥∥
1

≤ ‖D‖1
∥∥∥∥(W> −D

)t∥∥∥∥
1

∥∥D−1
∥∥

1

∥∥∥ω − ω(0)
∥∥∥

1
p-norm compatibility property

≤ ‖D‖1
∥∥∥W> −D

∥∥∥t
1

∥∥D−1
∥∥

1

∥∥∥ω − ω(0)
∥∥∥

1
p-norm consistency property

=

(
max
j

∑
i

|dij |
)(

max
j

∑
i

|wji − dij |
)t(

max
j

∑
i

∣∣∣∣ 1

dij

∣∣∣∣
)∥∥∥ω − ω(0)

∥∥∥
1

1-norm Def.

=

(
max
j
|wjj |

)max
j

∑
i 6=j
|wji|

t(
max
j

∣∣∣∣ 1

wjj

∣∣∣∣) ∥∥∥ω − ω(0)
∥∥∥

1
def. of matrix D
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=

(
max
j
wjj

)max
j

∑
i 6=j

wji

t(
1

minj wjj

)∥∥∥ω − ω(0)
∥∥∥

1
nonnegativity assumption

=

(
max
j
wjj

)(
1−min

j
wjj

)t( 1

minj wjj

)∥∥∥ω − ω(0)
∥∥∥

1
normalization assumption

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t∑
j

|ωj − wjj |

 1-norm for vectors

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t∑
j

(ωj − wjj)

 Lemma A.2.4

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)tn−∑
j

wjj

 Lemma A.2.5

= n

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t1− 1

n

∑
j

wjj


Let w̃ = min1≤j≤nwjj , ŵ = max1≤j≤nwjj , and w̄ = 1

n

∑
j wjj . Thus,

∥∥∥ω − ω(t)
∥∥∥

1
≤ nŵ

w̃
(1− w̃)t (1− w̄).

Theorem 3.3.4. Assume ω(0) = (w11, w22, . . . , wnn)>. Under normalization, nonnegativity,

and self-positive loop, for any t:

|sw(x)− sw (t)(x)| ≤ nŵ
w̃

(1− w̃)t (1− w̄)
∥∥uI(x)

∥∥
2
,

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

Proof of Theorem 3.3.4 For sw (t)(x) and sw(x), using the Cauchy-Schwarz inequality, we

can write:

|sw(x)− sw (t)(x)| = |ω>uI(x)− (ω(t))>uI(x)| = |(ω − ω(t))>uI(x)| ≤
∥∥∥ω − ω(t)

∥∥∥
2

∥∥uI(x)
∥∥

2

In general, for a given vector x, ‖x‖2 ≤ ‖x‖1. Thus, we here have |sw(x) − sw (t)(x)| ≤∥∥ω − ω(t)
∥∥

1

∥∥uI(x)
∥∥

2
. By applying Theorem 3.3.3, we have:

|sw(x)− sw (t)(x)| ≤
∥∥∥ω − ω(t)

∥∥∥
1

∥∥uI(x)
∥∥

2
≤ nŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(x)
∥∥

2
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where w̃ = min1≤j≤nwjj , ŵ = max1≤j≤nwjj , and w̄ = 1
n

∑
j wjj . Thus, we have shown

|sw(x)− sw (t)(x)| ≤ nŵ
w̃

(1− w̃)t (1− w̄)
∥∥uI(a)

∥∥
2
.

Proposition 3.3.5. If sw (t)(x) − sw (t)(y) ≥ n ŵw̃ (1− w̃)t (1 − w̄)
(∥∥uI(x)

∥∥
2

+
∥∥uI(y)

∥∥
2

)
then

sw(x) > sw(y).

Proof of Proposition 3.3.5 Using the inequality presented in Theorem 3.3.4, we can write:

sw (t)(x)− sw (t)(y) = sw (t)(x)− sw(x) + sw(x)− sw (t)(y) + sw(y)− sw(y)

≤ |sw (t)(x)− sw(x)|+ sw(x) + |sw(y)− sw (t)(y)| − sw(y)

≤ nŵ
w̃

(1− w̃)t (1− w̄)
∥∥uI(x)

∥∥
2

+ sw(x) + n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(y)
∥∥

2
− sw(y)

= n
ŵ

w̃
(1− w̃)t (1− w̄)

(∥∥uI(x)
∥∥

2
+
∥∥uI(y)

∥∥
2

)
+ sw(x)− sw(y)

Using this and sw (t)(x) − sw (t)(y) ≥ n ŵw̃ (1− w̃)t (1 − w̄)
(∥∥uI(x)

∥∥
2

+
∥∥uI(y)

∥∥
2

)
, we have

sw(x) ≥ sw(y).



Appendix B

Theoretical Details and Proofs of

Chapter 4

This Appendix first presents proofs of theoretical analyses of Chapter 4 in Section B.1. Then,

Section B.2 discusses the rational behind the proposed approximations.

B.1 Proofs

Theorem 4.3.1. Assume a ranking model (ρ(r|η), c(d|λ)) over m alternatives. The induced

ranking network is connected with high probability (i.e., with probability 1−o(1) where o(1)→ 0

as n→∞) if

dM (m) < c−1

(
log n

n

∣∣∣λ) ,
where dM (m) is the maximum possible distance under d given m alternatives.

Proof of Theorem 4.3.1 We note that the connection probability between two nodes with

rankings r and r
′

can be written as c(d(r, r
′
),λ) = c(dM (m),λ)+(c(d(r, r

′
),λ)− c(dM (m),λ)).

So we can consider that the network formation in the ranking network model occurs in two

phases. First any two nodes get connected to each other with fixed probability c(dM (m),λ)

(similar to the random graph model G(n, p) with p = c(dM (m),λ)). Then, any pair of nodes

with ranking r and r
′

get connected with the probability c(d(r, r
′
),λ) − c(dM (m),λ). (Note

that c(d(r, r
′
),λ)− c(dM (m),λ) ≥ 0 as c(.) is strictly decreasing and d(r, r′) ≤ dM (m) for any

r and r′.) So if we find conditions under which the network generated after phase 1 is almost

surely connected, after the second phase, the connectivity property must hold since other edges

can only be added to the network without removal of any existing edge.

It is well-known that the random graph G(n, p) is almost surely connected when p > logn
n

[52]. The first phase is actually the random graph model G(n, p) with p = c(dM (m),λ). So we

123
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require

c(dM (m)|λ) >
log n

n

Since c(.|λ) is a strictly decreasing function, its inverse c−1(.|λ) is well-defined and is a strictly

increasing function. So, we have

c(dM (m)|λ) >
log n

n

=⇒ c−1(c(dM (m)|λ)|λ) < c−1(
log n

n
)

=⇒ dM (m) < c−1

(
log n

n

∣∣∣λ)
Theorem 4.3.2. Fix m and assume ρ(r|η) distributes probability mass on more than one

ranking. The asymptotic diameter of any ranking network over m options is 2 (as n→∞).

Proof of Theorem 4.3.2 Our proof has the following steps: first we will show that asymptotic

diameter is at most 2 by demonstrating that any two arbitrary nodes are connected through

at least one other node in the network. Second, we show that each node cannot be connected

to all other nodes in the network, thus resulting in asymptotic diameter of more than 1. Then,

the asymptotic diameter has to be 2.

For the first step, we start observing that the connection probability of any two nodes

regardless of their rankings is at least p = c(dM (m)|λ). We note that c(dM (m)|λ) > 0 for any

distance metric d and m ≥ 2; so p > 0. Denote the probability that i and j have no common

neighbour k by P (not i ∼ k ∼ j). Similarly let P (not i ∼ S ∼ j) denote the probability that

i and j have no element of set S as a common neighbour. It is straightforward to see that

P (not i ∼ S ∼ j) ≤ 1−p2. Similarly, due to independence of connections, one can observe that

P (not i ∼ N \ {i, j} ∼ j) ≤ (1 − p2)n−2. Since p > 0, limn→∞ P (not i ∼ N \ {i, j} ∼ j) = 0.

This implies that i and j have to have at least one common neighbour when n → ∞. So the

shortest path between these two nodes has length at most of 2. As i and j are two arbitrary

nodes, any two pair of nodes at most have the shortest path of length 2. So the asymptotic

diameter of the network is at most 2.

We now show that asymptotic diameter is greater than 1. We prove this by contradiction.

We assume that the asymptotic diameter is 1. As the probability mass is not on a single

ranking, there are at least two rankings rm and rM such that 0 < ρ(rm) ≤ ρ(rM ) and also

ρ(rm) ≤ ρ(r) ≤ ρ(rM ) for any r with ρ(r) > 0. Let nrm and nrM denote the number of nodes

with rankings rm and rM when there are n nodes. We consider a sufficiently large n such

that nrm , nrM > 0. As rm and rM are distinct, d(rm, rM ) > 0. So, c(d(rm, rM )) < c(0). Let

P (rm, nrM ) denote the probability that one node with ranking rm gets connected to all nodes

with ranking rM . It is straightforward to see that P (rm, nrM ) = c(d(rm, rM ))nrM . We note

when n→∞, nrM →∞ when m is fixed. As c(d(rm, rM )) < c(0) ≤ 1, limn→∞ P (rm, nrM ) = 0.
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So there must be some nodes with rM that some node with rm is not directly connected to.

Therefore, the asymptotic diameter can not be 1. Based on this and the first step proof that

asymptotic diameter is ≤ 2; the asymptotic diameter must be 2.

Theorem 4.4.1. Given reference ranking σ and a distance-based ranking model, for any fixed

θ and any r ∈ Ω(A):

D(σM ,θ) ≤ D(r,θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.1

Proof of Theorem 4.4.1. We first note that for ω = 0, the proof is straightforward: when

ω = 0, for any r ∈ Ω(A), ρ(r|θ) = 1
m! . Hence,

D(r,θ) =
∑

r′∈Ω(A)

ρ(r
′ |θ)c

(
dτ (r

′
, r)|θ

)
=

1

m!

∑
r′∈Ω(A)

c
(
dτ (r

′
, r)|θ

)

=
1

m!

dM (m)∑
i=0

nic (i|θ) ,

where ni represents the number of rankings at distance i from a specific ranking and dM (m) is

the maximum possible distance under the metric d. We note that the value of D(r,θ) is same

for any r ∈ Ω(A). So, for this case, for any r ∈ Ω(A), we have

D(σM ,θ) = D(r,θ) = D(σ,θ),

where σM is a ranking with maximum possible distance to σ.

To prove the inequalities for the case ω ∈ (0,∞), we first let k
(r)
ij denote the number of

rankings at distance i from the reference ranking σ and distance j from an arbitrary ranking r.

Once again, let ni represent the number of rankings with distance i from an arbitrary ranking,

where i ∈ {0, · · · , dM (m)}. So, we can write

D(r,θ) =
∑

r′∈Ω(A)

ρ(r
′ |θ)c

(
d(r

′
, r)|θ

)

=
1

ψ(ω)

dM∑
i=0

dM∑
j=0

k
(r)
ij e
−ωic(j|θ). (B.1)

We also observe that for any fixed r ∈ Ω(A),

∀j ∈ {0, . . . , dM},
dM∑
i=0

k
(r)
ij = nj and ∀i ∈ {0, . . . , dM},

dM∑
j=0

k
(r)
ij = ni. (B.2)

1If more than one ranking has maximum distance, one such ranking minimizes D.
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We first focus on proving D(r,θ) ≤ D(σ,θ). By using Eq. B.1, we can view D(r,θ) as a function

over matrix K(r), denoted by f
(
K(r)

)
, with the constraints stated in Eq. B.2. Now, we explore

for which feasible instance of K(r), f(K(r)) is maximized. Using Lemma B.1.1 below, it follows

that f
(
K(r)

)
is maximized with a diagonal matrix K(r∗) with k

(r∗)
ii = ni for all i ∈ {0, . . . , dM}.

This implies that kr
∗

00 = n0 = 1; so there is one ranking, say r
′
, which has distance 0 to both r∗

and σ. Obviously, this can be only true when r∗ = r
′

= σ (based on the identity of indiscernibles

property of any metric distance). It follows that σ maximizes the function D(r,θ) when θ is

fixed. Hence, for any r ∈ Ω(A): D(r,θ) ≤ D(σ,θ).

We now focus on D(σM ,θ) ≤ D(r,θ). By using Eq. B.1, we can view D(r,θ) as a function

over matrix K(r), denoted by f
(
K(r)

)
, with the constraints stated in Eq. B.2. Using Lemma

B.1.3 below, it follows that the r∗ which minimizes f
(
K(r)

)
must have distance dM (m) to the

reference ranking. So r∗ = σM must be one of those rankings with maximum distance to σ.

Lemma B.1.1. Assume f(X) =
∑d

i=0

∑d
j=0 aijxij and aij = 1

ψ(ω)e
−ωic(j) where ω ∈ (0,∞)

and c(x|λ) is a decreasing connection probability function. Consider this constrained maximiza-

tion problem:

max
X∈R(d+1)×(d+1)

f(X)

subject to: ∀i ∈ {0, . . . , d},
d∑
j=0

xij = ci

∀j ∈ {0, . . . , d},
d∑
i=0

xij = cj

∀i, j ∈ {0, . . . , d}, xij ≥ 0 (B.3)

where ∀i, ci is a positive constant and given. The solution to this maximization problem is the

diagonal matrix X∗ such that ∀i, x∗ii = ci.

Proof of Lemma B.1.1. We prove this by contradiction. The proof strategy is as follows.

We assume that X∗ maximizes the objective function f(.) but is not diagonal. Then, by a

slight modification of some elements in X∗, we create matrix Y∗ and show that it is indeed a

feasible solution. Afterwards, we show that f(Y∗) > f(X∗) which contradicts the maximality

of X∗.

Let X∗ maximizes the objective function f(.) and assume it is not diagonal. Consider this

decomposition X∗ = L∗+D∗+U∗ where L∗, D∗, and U∗ are strictly lower triangular, diagonal,

and strictly upper triangular matrices respectively. Since X∗ is not diagonal, at least one of L∗

and U∗ must have none-zero elements. Moreover, from Lemma B.1.2 below, we can conclude

that both L∗ 6= 0 and U∗ 6= 0. Define non-empty set S = {(i, j)|u∗ij > 0 and j > i}. We

consider the lexicographical ordering on S such that

(i, j) < (k, l)⇔ i < k or (i = k and j < k).
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There must be some (im, jm) which is the minimum element in S based on our lexicographical

ordering. Based on the definition of S and the minimality of (im, jm) in S, we observe that

u∗imjm > 0 and u∗kim = 0 for any k < im. Hence,∑
k<im

x∗kim = 0 and x∗imjm > 0. (B.4)

From those two constraints which correspond to the row im and column im (see Eq. B.3), we

can write: ∑
j

x∗imj =
∑
k

x∗kim = cim =⇒
∑
j

x∗imj −
∑
k

x∗kim = 0 =⇒

∑
j 6=im

x∗imj −
∑
k 6=im

x∗kim = 0 =⇒
∑
j 6=im

x∗imj −

∑
k<im

x∗kim +
∑
k>im

x∗kim

 = 0

=⇒ x∗imjm −

∑
k<jm

x∗kim +
∑
k>jm

x∗kim

 ≤ 0

Using this and Eq. B.7, it follows that

0 < x∗imjm ≤
∑
k>im

x∗kim =⇒
∑
k>im

x∗kim > 0.

Hence, there is (at least) one k > im such that x∗kim > 0. We can define

δ = min(x∗kim , x
∗
im,jm).

Note that δ > 0 since both x∗kim and x∗im,jm are positive. Let

B = {(im, im), (im, jm), (k, im), (k, jm)}.

Using δ, we can define matrix Y∗ out of X∗ as follows:

y∗ij =



x∗ij , (i, j) /∈ B
x∗imim + δ, (i, j) = (im, im)

x∗imjm − δ, (i, j) = (im, jm)

x∗kim − δ, (i, j) = (k, im)

x∗kjm + δ, (i, j) = (k, jm)

(B.5)

It is straightforward to see that Y∗ satisfies all constraints stated in Eq. B.3. We can first

observe that y∗ij ≥ 0 for all (i, j) ∈ B mostly because of the way that δ is defined and δ > 0.

Moreover, y∗ij = x∗ij ≥ 0 for all (i, j) /∈ B. Since Y∗ is different than X∗ only in four corners



Appendix B. Theoretical Details and Proofs of Chapter 4 128

of a box determined by coordinates in B, to show that Y∗ satisfies all other constraints, it is

sufficient to demonstrate that the constraints related to rows im and k, and columns im and jm

are satisfied (note that as the other rows and columns are unchanged compared to X∗, their

corresponding constraints are already satisfied.). By definition of Y∗ in Eq. B.5, we observe

that whenever δ is added to the original Xij , it is subtracted from another element in the same

row and another element in the same column; this ensures that the constraints are still met.

As Y∗ is a feasible solution, we can write:

f(Y∗)− f(X∗) =
∑
i

∑
j

y∗ijaij −
∑
i

∑
j

x∗ijaij =
∑

(i,j)∈B

aij(y
∗
ij − x∗ij)

= aimimδ − aimjmδ − akimδ + akjmδ

=
δ

ψ(ω)

[(
e−ωimc(im)− e−ωimc(jm)

)
−
(
e−ωkc(im)− e−ωkc(jm)

)]
=

δ

ψ(ω)

(
e−ωim − e−ωk

)
(c(im)− c(jm))

Since jm > im and c(.) is decreasing function, c(im) − c(jm) > 0. Also, since im < k and

ω ∈ (0,∞), we have e−ωim − e−ωk > 0. Hence,

δ

ψ(ω)

(
e−ωim − e−ωk

)
(c(im)− c(jm)) > 0 =⇒ f(Y∗) > f(X∗),

which contradicts the optimality of X∗. So X∗ has to be diagonal. Using the diagonal property

of X∗ and constraints stated in Eq. B.3, we have x∗ii = ci and for each i 6= j ∈ {1, · · · , d},
x∗ij = 0.

Lemma B.1.2. Assume matrix X satisfies the constraints in Eq. B.3 and decomposes into

diagonal matrix D, strictly upper triangular matrix U and strictly lower triangular matrix L

(i.e., X = L + D + U). Then,

L 6= 0⇐⇒ U 6= 0

Proof of Lemma B.1.2 We first prove that L 6= 0 =⇒ U 6= 0. If L 6= 0 then there

exist (at least) one (i, j) such that lij > 0 and i > j (note that lij = 0 for all j ≥ i based

on the strictly lower triangular property of L). Hence, we can define the non-empty set S =

{(j, i)|lij > 0 and i > j}. As S has a finite number of elements, we can order elements of S

lexicographically such that (j, i) > (k, l) if and only if j > k or (j = k and i > l). Let (jm, im)

be the minimum element in S based on our lexicographical ordering. Based on the definition of

S and the minimality of (jm, im) in S, we observe that limjm > 0 and ljmk = 0 for any k < jm.

Hence, ∑
k<jm

xjmk = 0 and ximjm > 0. (B.6)
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From constraints stated in Eq. B.3, we have:∑
i

xijm =
∑
k

xjmk = cjm =⇒
∑
i

xijm −
∑
k

xjmk = 0 =⇒

∑
i 6=jm

xijm −
∑
k 6=jm

xjmk = 0 =⇒
∑
i 6=jm

xijm −

∑
k<jm

xjmk +
∑
k>jm

xjmk

 = 0

=⇒ ximjm −

∑
k<jm

xjmk +
∑
k>jm

xjmk

 ≤ 0

Using this and Eq. B.6, it follows that

0 < ximjm ≤
∑
k>jm

xjmk =⇒
∑
k>jm

xjmk > 0.

Hence, there is (at least) one l > jm such that xjml > 0. So, ujml > 0 =⇒ U 6= 0.

A similar type of argument can be made for the other direction: U 6= 0 =⇒ L 6= 0. If

U 6= 0 then there exists (at least) one (i, j) such that uij > 0 and i < j (note that uij = 0

for all j ≤ i based on the strictly upper triangular property of U). Hence, we can define the

non-empty set T = {(i, j)|uij > 0 and i < j}. As T has finite number of elements, we can order

elements of T lexicographically such that (i, j) > (k, l) if and only if i > k or (i = k and j > l).

Let (im, jm) be the minimum element in T based on our lexicographical ordering. Based on the

definition of T and the minimality of (im, jm) in T , we observe that uimjm > 0 and ukim = 0

for any k < im. Hence, ∑
k<im

xkim = 0 and ximjm > 0. (B.7)

From constraints stated in Eq. B.3, we have:∑
j

ximj =
∑
k

xkim = cim =⇒
∑
j

ximj −
∑
k

xkim = 0 =⇒

∑
j 6=im

ximj −
∑
k 6=im

xkim = 0 =⇒
∑
j 6=im

ximj −

∑
k<im

xkim +
∑
k>im

xkim

 = 0

=⇒ ximjm −

∑
k<jm

xkim +
∑
k>jm

xkim

 ≤ 0

Using this and Eq. B.7, it follows that

0 < ximjm ≤
∑
k>im

xkim =⇒
∑
k>im

xkim > 0.

Hence, there is (at least) one k
′
> im such that xk′ im > 0. So, lk′ im > 0 =⇒ L 6= 0.
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Lemma B.1.3. Assume f(X) =
∑d

i=0

∑d
j=0 aijxij and aij = 1

ψ(ω)e
−ωic(j) where ω ∈ (0,∞)

and c(x|λ) is a decreasing connection probability function. Consider this constrained integer

programming minimization problem:

min
X∈(N∪{0})(d+1)×(d+1)

f(X)

subject to: ∀i ∈ {0, . . . , d},
d∑
j=0

xij = ci

∀j ∈ {0, . . . , d},
d∑
i=0

xij = cj

∀i, j ∈ {0, . . . , d}, xij ≥ 0 (B.8)

where ∀i, ci is a positive integer constant. Specifically, it is given that c0 = 1 and cd ≥ 1.

Matrix X∗ is the solution to this minimization problem with x∗0d = c0 = 1 and x∗id = 0 for i < d.

Proof of Lemma B.1.3 The proof is by contradiction and its general idea is as follows. We

assume that X∗ is a feasible solution and minimizes the objective function f(.) but does not

satisfy x∗0d = c0 = 1 and x∗id = 0 for i < d. Then, by slight modification of some elements in

X∗, we create matrix Y∗ and show that it is indeed feasible solution. Afterwards, we show that

f(Y∗) < f(X∗) which contacts the minimality of X∗.

Assume that X∗ minimizes the objective function f(.) but does not satisfy x∗0d = c0 = 1

and x∗id = 0 for i < d. So, based on the row constraint of
∑d

j=0 x
∗
0j = c0 = 1, there should be

l < d such that x∗0l = 1. Similarly, as x∗0d = 0 and
∑d

i=0 x
∗
id = cd ≥ 1, there should be k > 0

such that x∗kd ≥ 1. Let

B = {(0, l), (0, d), (k, l), (k, d)},

, we can define matrix Y∗ as follows:

y∗ij =



x∗ij , (i, j) /∈ B
0, (i, j) = (0, l)

1, (i, j) = (0, d)

x∗kd − 1, (i, j) = (k, d)

x∗kl + 1, (i, j) = (k, l)

(B.9)

It is straightforward to see that Y∗ satisfies all constraints stated in Eq. B.8. We can first observe

that y∗ij ≥ 0 and y∗ij ∈ N ∪ {0} for all (i, j) ∈ B. Moreover, y∗ij = x∗ij ≥ 0 for all (i, j) /∈ B.

Since Y∗ is different than X∗ only in four corners of a box determined by coordinates in B, to

show that Y∗ satisfy all other constraints, it is sufficient to demonstrate the constraints related

to rows 0 and k, and columns l and d are satisfied (note that as the other rows and columns

are unchanged compared to X∗, their corresponding constraints are already satisfied.). From
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the definition of Y∗ in Eq. B.9, we observe that whenever 1 is added to the original x∗ij , it is

subtracted from another element in the same row and another element in the same column;

this ensures that the constraints are still met.

As Y∗ is a feasible solution, we can write:

f(Y∗)− f(X∗) =
∑
i

∑
j

y∗ijaij −
∑
i

∑
j

x∗ijaij =
∑

(i,j)∈B

aij(y
∗
ij − x∗ij)

= a0d − a0l − akd + akl

=
1

ψ(ω)

[
(c(d)− c(l))−

(
e−ωkc(d)− e−ωkc(l)

)]
=

δ

ψ(ω)

(
1− e−ωk

)
(c(d)− c(l))

Since d > l and c(.) is decreasing function, c(d) − c(l) < 0. Also, since 0 < k and ω ∈ (0,∞),

we have 1− e−ωk > 0. Hence,

1

ψ(ω)

(
1− e−ωk

)
(c(d)− c(l)) < 0 =⇒ f(Y∗) > f(X∗),

which contradicts the optimality of X∗. So matrix X∗ must satisfy x∗0d = c0 = 1 and x∗id = 0

for i < d.

Proposition 4.4.2. Given a distance-based ranking network, E(θ) is bounded by

D(σM ,θ) ≤ E(θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.

Proof of Proposition 4.4.2 The proof is straightforward and follows from Thm. 4.4.1 and

Eq. 4.3:

D(σM ,θ) ≤ D(r,θ) ≤ D(σ,θ)

=⇒
∑

r∈Ω(A)

ρ(r|θ)D(σM ,θ) ≤
∑

r∈Ω(A)

ρ(r|θ)D(r,θ) ≤
∑

r∈Ω(A)

ρ(r|θ)D(σ,θ)

=⇒ D(σM ,θ)
∑

r∈Ω(A)

ρ(r|θ) ≤ E(θ) ≤ D(σ,θ)
∑

r∈Ω(A)

ρ(r|θ)

=⇒ D(σM ,θ) ≤ E(θ) ≤ D(σ,θ)

B.2 Rational Behind Approximations

We here explain the main idea and rational behind our approximation methods.

Approximation to Network Diameter. We know that two nodes have the lowest chance

of connectivity when their rankings have the maximum possible distance dM (m). In other
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words, the probability that any pair of nodes get connected is at least c(dM (m),λ). We also

note that by increasing the edge probability, the diameter (or the average shortest path length)

does not increase. So one can bound the diameter D(θ) (or the average shortest path length

〈l(θ)〉) by the diameter D
′
(n, p) (or the average shortest path length 〈l′(n, p)〉) of the random

graph G(n, p) with fixed p = c(dM (m),λ). So D(θ) ≤ D
′
(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉 with

p = c(dM (m),λ).

To give more clear picture, one can assume that the network formation under ranking

network model runs in two phases. First any two nodes get connected to each other with

fixed probability of c(dM (m),λ) (similar to random graph model) which results in diameter,

say, D
′
(n, p) and average shortest path length, say, 〈l′(n, p)〉. Then, any pair of nodes with

ranking r and r
′

get connected with the probability c(d(r, r
′
),λ) − c(dM (m),λ). (Note that

c(d(r, r
′
),λ)− c(dM (m),λ) ≥ 0 as c(.) is strictly decreasing and d(r, r′) ≤ dM (m) for any r and

r′.) The latter phase results in final diameter D(θ) and average shortest path length 〈l(θ)〉.
Obviously adding more edge in the second phase can not increase the diameter and the average

shortest path. So D(θ) ≤ D′(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉 with p = c(dM (m),λ).

One can approximate the diameter D
′
(n, p) and the average shortest path length 〈l′(n, p)〉

in G(n, p) model by

D
′
(n, p) ≈

⌈
log(n)

log(n− 1)p

⌉
and 〈l′(n, p)〉 ≈ log(n)

log(n− 1)p
.

Setting p = c(dM (m),λ) and using the inequalities D(θ) ≤ D
′
(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉, we

have:

D(θ) ≤
⌈

log(n)

log(n− 1) + log c(dM (m)|λ)

⌉
and 〈l(θ)〉 ≤ log(n)

log(n− 1) + log c(dM (m)|λ)
.

˜̃E Approximation. Let p(d(r, σ) = i|ω, σ) denote the probability that the ranking r drawn

from the distance-based ranking distribution ρ(r|ω, σ) has distance i to the reference ranking

σ. We note that for i ∈ {0, · · · , dM (m)},

p(d(r, σ) = i|ω, σ) = ni
e−iω

ψ(ω)
,

where ni represents the number of rankings with distance of i to the reference ranking σ. One

can approximate p(d(r, σ) = i|ω, σ) by a binomial distribution

B

(
i|dM (m),

e−ω

1 + e−ω

)
=

(
dM (m)

i

)
e−iω

(1 + e−ω)dM (m)

where ni, and ψ(ω) are approximated by
(
dM (m)

i

)
and (1 + e−ω)dM (m) respectively. Using this

approximation, the convexity of function of c(.|λ), and Equations 4.14, 4.10, and 4.11, we can

write
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D̃(x,θ) =

(
1− x

dM (m)

)
D(σ,θ) +

(
x

dM (m)

)
D(σM ,θ)

≈
(

1− x

dM (m)

) dM (m)∑
i=0

(
dM (m)

i

)
e−iω

(1 + e−ω)dM (m)
c(i|λ)

+

(
x

dM (m)

) dM (m)∑
i=0

(
dM (m)

i

)
e−iω

(1 + e−ω)dM (m)
c(dM (m)− i|λ)

=

(
1− x

dM (m)

)
E [c(x,λ)]

x∼B
(
dM (m), e−ω

1+e−ω

) +
x

dM (m)
[c(dM (m)− x,λ)]

x∼B
(
dM (m), e−ω

1+e−ω

)
≤
(

1− x

dM (m)

)
c(E[x],λ) +

(
x

dM (m)

)
c(dM (m)− E[x],λ)

We let ˜̃D =
(

1− x
dM (m)

)
c(E[x],λ)+

(
x

dM (m)

)
c(dM (m)−E[x],λ) Now, as E [x]

x∼B
(
dM (m), e−ω

1+e−ω

) =

dM (m)e−ω

1+e−ω , we have

˜̃D(x,θ) =

(
1− x

dM (m)

)
c

(
dM (m)e−ω

1 + e−ω

)
+

x

dM (m)
c

(
dM (m)

1 + e−ω

)
.

Using this approximation, one can approximate the edge density by

˜̃E(θ) = E
[

˜̃D(x,θ)
]

x∼B
(
dM (m), e−ω

1+e−ω

)
=

1

1 + e−ω
c

(
dM (m)e−ω

1 + e−ω

)
+

e−ω

1 + e−ω
c

(
dM (m)

1 + e−ω

)
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emerging small world. Journal of Political Economy, 114(2):403–412, 2006.

[171] Mark S. Granovetter. The strength of weak ties. American Journal of Sociology,

78(6):1360–1380, 1973.

[172] Jerrold W. Grossman. The evolution of the mathematical research collaboration graph.

Congressus Numerantium, pages 201–212, 2002.

[173] John Guiver and Edward Snelson. Bayesian inference for plackett-luce ranking models.

In Proceedings of the 26th Annual International Conference on Machine Learning, pages

377–384. ACM, 2009.

[174] I.E. Hafalir. Stability of marriage with externalities. International Journal of Game

Theory, 37(3):353–369, 2008.

[175] Nima Haghpanah, Nicole Immorlica, Vahab Mirrokni, and Kamesh Munagala. Optimal

auctions with positive network externalities. In Proceedings of the 12th ACM Conference

on Electronic Commerce, EC ’11, pages 11–20, New York, NY, USA, 2011. ACM.

[176] Frank Harary. A criterion for unanimity in french’s theory of social power. In Dorwin

Cartwright (Ed), Studies in Social Power, pages 168–182, 1959.

[177] John C. Harsanyi. Rational Behaviour and Bargaining Equilibrium in Games and Social

Situations. Cambridge University Press, 1977.

[178] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strate-

gies over social networks. In Proceedings of the 17th International Conference on World

Wide Web, pages 189–198. ACM, 2008.

[179] Elaine Hatfield, John T. Cacioppo, and Richard L. Rapson. Emotional contagion. Current



BIBLIOGRAPHY 147

Directions in Psychological Science, 2(3):96–99, 1993.

[180] Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Exact analysis of dodgson

elections: Lewis carroll’s 1876 voting system is complete for parallel access to np. Journal

of the ACM (JACM), 44(6):806–825, 1997.

[181] Robert J. Henery. Permutation probabilities for gamma random variables. Journal of

Applied Probability, pages 822–834, 1983.
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parisons. In Automata, Languages and Programming, pages 601–612. Springer, 2011.



BIBLIOGRAPHY 148

[195] Amin Karbasi, Stratis Ioannidis, and Laurent Massoulié. Hot or not: Interactive content
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