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Abstract

In this thesis, we are going to study the strategic manipulation of voting rules,
mostly scoring rules. In the first part, we focus on naive manipulation, where we
have a coalition of manipulators and the other voters vote sincerely. In Section
1.4we introduce a new measure of manipulability of voting rules, which reflects
both the size and the prevalence of the manipulating coalitions and is adaptable
to various concepts of manipulation. We place this measure in a framework of
probabilistic measures that organizes many results in the recent literature. We
discuss algorithmic aspects of computation of the measures and present a case
study of exact numerical results in the case of 3 candidates for several common
voting rules. In Sectior.5we study manipulability measures as power indices

in cooperative game theory. In Chapgemwe study the asymptotic behaviour of a
model of manipulation called safe manipulation for a given scoring rule under the
uniform distribution on voting situations. The technique used is computation of
volumes of convex polytopes. We present explicit numerical results in the 3 can-
didate case. In the second part of the thesis, we adopt a game-theoretic approach
to study strategic manipulation. We try to explore more behavioural assumptions
for our voters. In Chapte8, we have an introduction to voting games and dif-

ferent factors such as the available amount of information, voters’ strategies and



ability to communicate . In Chaptdr, we consider best-reply dynamics for vot-

ing games in which all players are strategic and no coalitions are formed. We
study the class of scoring rules, show convergence of a suitably restricted ver-
sion for the plurality and veto rules, and failure of convergence for other rules
including k-approval and Borda. In Chapt&r\We discuss a new model for strate-

gic voting in plurality elections under uncertainty. In particular, we introduce the
concept of inertia to capture players’ uncertainty about poll accuracy. We use a
sequence of pre-election polls as a source of partial information. Under some be-
havioural assumptions, we show how this sequence can help agents to coordinate
on an equilibrium outcome. We study the model analytically under some special
distributions of inertia, and present some simulation results for more general dis-
tributions. Some special cases of our model yield a voting rule closely related to
the instant-runoff voting rule and give insight into the political science principle
known as Duverger’s law. Our results show that the type of equilibrium and the
speed of convergence to equilibrium depend strongly on the distribution of inertia

and the preferences of agents.

This thesis is based on the results of the following papHr$2], [3], [4] and [].
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Chapter 1

The Manipulability of Voting Rules

1.1 Anintroduction to computational social choice

The novel field of computational social choice is an interdisciplinary field of study

at the interface of social choice theory and computer science. It involves study-
ing social choice mechanisms like voting systems and fair division systems with
two approaches. In the first approach, computer science offers the computational
complexity, algorithmic, mathematical and quantitative techniques for studying
decision theory, social choice, welfare economics and game theory study of vot-
ing systems. In the second approach, social choice ideas are applied to computer
science-related contexts, for example, in artificial intelligence, multiagent sys-
tems, social networks and agent optimisation. Chevaleyre et al. have provided a

short introduction to this topid].

Some of the more studied problems in this topic are electing an alternative, allo-

cating resources, reaching consensus, forming coalitions, aggregating judgements



Chapter 1. The Manipulability of Voting Rules

and beliefs.

In this thesis, we concentrate on the topic of strategic manipulation in voting sys-
tems. Voting as an aggregating method is widely used in collective decision mak-
ing and network design. Voting rules can show some undesirable behaviour such
as being vulnerable to strategic manipulation. We first explain our voting setup in
Sectionl.2and then briefly explain strategic manipulation by an example in Sec-
tion 1.3. In Sectionl.4, we study a new measure of manipulability of voting rules,
and in Sectiorl.5 we study the relation between power measures and manipula-
bility measures. Sectioh.6 deals with relevant literature review and Section
discusses some future directions. In Chagiewne study the probability of safe
manipulation. Chapte3 discusses the integration of game theory in social choice
where all voters are strategic. We study best reply dynamics and coordination
via polling under uncertainty respectively in Chaptérand5. Finally we have

Chapter6 which discusses a summary of the thesis and some future directions.

1.2 Basic terminology

Consider a set” = {vy,...,v,} of agents (theoters) choosing from a given set
C = {c,...,cn} Of alternatives (theandidateg. Each voter has aapinion
or preference ranking (a complete strict linear ordering of the candidates). This

convention is quite common in the field of voting theory.

The list of voters’ preference ordefg;, . .., R,) forms thesincere profile Each
voter submits a linear ranking;, which may or may not be the same as his sin-
cere opinion, and this gives tle&pressed profile For example, consider a set of 5

votersV' = {vy,...,vs} and a set of 3 candidatés= {a, b, ¢} with sincere pro-

5



Chapter 1. The Manipulability of Voting Rules

file (abc, abe, bac, cab, bac). The expressed profil@be, abe, bea, cab, bac) results

from the voters not voting sincerely, while the other voters do.

A social choice function(also called a resolute voting rule) is a function that
maps each profile to a single candidate, whereas a social choice correspondence
(also called a voting rule) outputs a subset of the candidates. A key feature of
most commonly used voting rulesasonymity: the function value is unchanged

if voters are permuted, so the rule treats voters equally. In this case, the profile
can be represented more succinctly asting situation, where we simply list the
numbers of voters with each of the possible opinions. For example, for three can-
didateg(a, b, c), with the standard ordeibc, acb, bac, bca, cab, cba of opinions, the
6-tuplec = (n4,...,ng) represents a voting situation with voters having pref-
erence ordeabc, etc. In the example above, this succinct input for the expressed

profile would ber = (2,0,1,1,1,0).

A voter v may try to manipulate the election result by submitting an expressed
opinion that differs from his sincere opinion, so as to gain an outcomeuvthat
prefers to the sincere outcome. The fundamental result of GibGaahfl Sat-
terthwaite B] implies that for anonymous rules, provided that> 3 andn > 2,

some voter in some voting situation can succeed in such an attempt. This theorem
shows that for a voting rule with more than 3 candidates, strategic manipulation
can happen with an individual voter under some natural conditions such as non-
imposition which conveys that each candidate can win under some conditions and
non-dictatorial condition which means the result of the election is not based on

the highest ranking alternative of one of voters.

A common class of anonymous voting rules consists of the (positisealing

rules. For eachm, a scoring rule is defined by a weight vectar, ..., w,,)

6
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with w; > wy > --- > w,,, and each voter gives scotg to his top-ranked
candidatey, to the next, etc. Uniqueness of the weight representation is obtained
by imposing the restriction, = 1, w,, = 0. The candidate with the highest total

score wins. The most commonly used voting rules are listed below.

e Plurality rule, defined by the weight vectgr, 0,0, ..., 0);
e Borda’s rule, defined by the weight vecton — 1,m — 2,...,1,0);
e Antiplurality rule (veto rule), defined by the weight vectar 1, ..., 1,0).

e k-approval rule, defined by the weight vectar, 1,...,1,0,...,0) (the

number ofl’s is exactlyk).

¢ Instant-runoff rule, If no candidate receives a majority of the first choice, the
candidate with the fewest number of votes is eliminated and the ballots cast
for that candidate are redistributed to the continuing candidates according to
the voters indicated preference. This process is repeated until one candidate

obtains a majority.

In an election with approval rule, voters should decide whether they approve or
disapprove a specific candidate.khapproval, they should approve exadtlgan-
didates. In fact, 1-approval rule is the same as plurality rulerand 1-approval
rule is the same as antiplurality rule. For example, in an election with 4 candi-
datesa, b, c andd and 2-approval voting rule, a voter with votécd, approves

candidates andb.

Another common class of anonymous rules consists of the Condorcet consistent

rules based on the pairwise majority relation. We deal with the Copeland rule as a



Chapter 1. The Manipulability of Voting Rules

representative. For each pair of candidatesdb, the pairwise scorg(a, b) of a
with respect ta equals the number of voters who ramiaboveb. The Copeland
score of alternative is given bys(a) = >, sign(p(a, b) — p(b, a)). The highest

scoring candidate is the winner.

To ensure a unique winner in every situation, elections using scoring rules usually
require an additional rule to deal with the possibility of tied scores for the first
place. Different tie-breaking rules have been used in this context. For example,
for deterministic tie-breaking rules, there is a fixed arbitrary order on candidates,
and the winner is the first of the tied candidates with respect to this order. Random
tie-breaking is more favourable for reasonsefitrality (symmetry between can-
didates) and tractability. However, random tie-breaking does not define a social
choice function, because of nondeterminism, but rather a social choice correspon-

dence.

For randomized tie-breaking, we choose one candidate uniformly at random. Scor-
ing rules are neutral with this convention. Whens large, the probability of a

tie occurring for a scoring rule under any of the most commonly studied pref-
erence distributions is asymptotically negligible, so tie-breaking conventions are
not important. However, these assumptions can make major differences for small
values ofn. Copeland’s rule must also deal with ties, and in two ways. First,
the pairwise majority relation can (whenis even) result in a tie; the standard
choices are to award both candidates involved 0, but other choices are possible.
Second, the Copeland scores of candidates may be tied. In this case, we again
can use random or deterministic tie-breaking as for scoring rules. Copeland’s rule
can have an asymptotically non-negligible fraction of ties under some preference

distributions, and our tie-breaking assumptions definitely affect the values of the
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manipulability measure$].

In some elections voters carry different weights that can represent their power
in making decision, for example their amount of stock in share holders or con-
stituency sizes. However, in most discussions of this thesis, voters have the same

weight and we have unweighted voters.

1.3 Strategic manipulation

Strategic misrepresentation of a voter’s true preferences, as a way of obtaining
an outcome preferable to that which would be expected by voting sincerely, dates
back thousands of year$(] and has generally been considered socially undesir-

able. This topic has been recently considered in many papers in computational

voting theory. We will discuss some of them in Sectiof

Example 1.1. Consider plurality rule and the following preference orders for

2000 US presidential election in Florida ¢- b means preferring to b)

49% Bush> Gore = Nader, 20% Gore >~ Nader> Bush, 20% Gore ~Bush>
Nader, 11% Nader>Gore > Bush.

If everyone votes sincerely, Bush will win this election. However, it would have
been in the interest of the Nader supporters to misrepresent their preferences and
vote for Gore. In that case, Gore will win provided others vote sincerely. This
misrepresentation is called strategic manipulation and the Nader supporters form

the coalition of manipulators.

Manipulability of social choice correspondences is a tricky subject and one has

to have an order on subsets to define it. That is, one has to extend somehow

9
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preferences over alternatives to preferences over the sets of them. It can be done
in numerous ways and there is a survey by Bossert, Barbera and Pattanaik in
[11] about possible ways to do this. In this thesis, we use stochastic dominance

improvement for defining the manipulation of sets of candidates.

Over the last few decades many papers (e.g. B8d B, 14] for a summary) have
been published in the following framework: choose a set of social choice rules;
choose a probability distribution over the set of preference orders; compute the
probability P of a randomly chosen situation being manipulable witkioters;
conclude which rules are asymptotically the best, that is, those for which

least, for larger. The results depend strongly on

e the measure of manipulability which will be discussed in Seclighand

Chapter2.

e assumptions on game-theoretic sophistication of the voters, and the infor-

mation available to them which will be discussed in Chapieard5 .

For comparing different voting systems regarding the manipulability, different
metrics have been used such as probability, complexity and social welfare and
utility. Computational hardness of manipulation has been studied for voting rules
and fair division mechanisms by some techniques as a barrier to susceptibility
to manipulation. The methods which are used to study the computational voting
rule consist of worst-case analysis, average-case, heuristic and approximate algo-
rithms. When all voters behave strategically, game theory predicts the result of

voting game by studying the outcome of interactions amongst multiple agents.

By reviewing the papers in this topic, it becomes clear that most papers consider

strategic manipulation as an undesirable behaviour which should be minimized.

10
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For example, Stensholt believes that the strategy most damaging to many prefer-
ential election methods is to give insincerely low rank to the main opponent of
one’s favourite candidatd §]. However, a small number of papers write in praise

of manipulation 6] and believe that by strategic manipulation, the total social
welfare in fact increasedf]. In this thesis, we consider strategic manipulation as

an inevitable fact, and try to have a better understanding about this phenomenon.

1.4 A new measure of manipulability of voting rules

In almost all of the social choice literature, it is regarded as desirable to minimize
the occurrence of manipulability of voting rules, that is, to design a social choice
mechanism that incentivizes sincere expression of voter preferences as much as
possible. Of course, the Gibbard-Satterthwaite theorem and related ré&sults [
8, 18] imply that completely avoiding manipulability has drastic consequences,
and leads under very mild hypotheses to dictatorship. Thus many authors have
tried to measure the manipulability of voting rules, typically by quantifying the
probability of such an event, under various assumptions on the distribution of
voter opinions (see Sectidh6 for detailed discussion of relevant literature and
Sectionl.4.1for formal definitions). More recently the idea of using measures
based on computational complexity has arisen (usually with a somewhat different
definition of manipulability), leading to substantial activity in the “computational

social choice” community.

Successful manipulation of an election, even in the case considered in the present
article when the manipulators are opposed only by naive, sincere voters, requires

considerable computational effort. To assemble a manipulating coalition, we must

11
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discover the preference rankings of voters, convince them to join the coalition,
compute their strategy, and enforce their implementation of that strategy. Each of

these becomes harder as the coalitions involved become larger.

However, measures based on the size of the manipulating coalition have been rel-
atively little explored in the literature. By far the most commonly used measure is
simply the probability that a random profile (chosen according to some standard
distribution of voter preferences) allows some manipulation. The measures based
on worst-case complexity mostly do not measure coalition size directly. Also,
they are inherently crude, as they are defined only up to polynomial-time equiv-
alence. This makes them less useful for comparing specific rules with respect to

manipulability.

Furthermore, recent results using various models of manipulation show that at
least for the most commonly studied distributions of preferences, there is a phase
transition in the probability of manipulability as the coalition size grows relative
to the total voting population, yet say little about how to compare rules near that

threshold 9] .

Our contributions

We introduce (Sectiofh.4.1) a new general probabilistic measure of susceptibility

to manipulation, describe its basic properties, and argue that it allows for more
detailed comparisons of voting rules than existing measures. We investigate its
values in detail in thg-candidate case (Sectidn4.3 for several scoring rules

and a representative Condorcet consistent rule, Copeland’s rule. This is done for

each of two standard probability models for voter preferences. We also inves-

12



Chapter 1. The Manipulability of Voting Rules

tigate the relationship between the new measure and existing measures and put
them in a common framework, thereby unifying much of the literature. We dis-
cuss the computation of these measures in detail and present several algorithms

(Sectionl.4.2.

1.4.1 Definition of the measures

We discuss three types of measures of manipulability of voting rules. All our
measures are probabilistic and depend on a probability model for the distribution
of opinions in the voter population. We consider in our numerical results two
commonly studied distributions: the uniform distribution on profiles (known as
the Impartial Culture hypothesis) and the uniform distribution on voting situations
(known as the Impartial Anonymous Culture hypothesis). However the definitions

make sense for any distribution.

The model of manipulation

Fix a voting rule. We define manipulability of a voting situation in stepwise fash-
ion as in R0]. Our definition implies that, for example, a strategic vote by a voter
with preferencéac which changes the winner fromto ¢ is not a valid manip-
ulation. The result of the election must not only be changed, but changed in a
way that incurs no loss to the manipulator. Other definitions are sometimes used
in the literature. For example, the conceptlueshold manipulation (where we
promoteb abovea, ignoring the possibility that might thereby overtake both of
them) is studied ing1]. This is related to the idea afestructive manipulation

used in many papers (we only care about defeatingpt who ends up winning).

13



Chapter 1. The Manipulability of Voting Rules

However, the concept we define here (sometimes cabegdtructive manipula-

tion) is more standard.

A related concept, (unit cosbribery, removes any constraint on the opinion of

the manipulating voter about the new profi2?], [23], [22], [24] and [25]. In

swap bribery, voters are willing to manipulate but not if that requires to depart too
much from their sincere vote. In other words, their motivation for manipulation
depends on the deviation from sincere ballots which is at most for plurality.
Campaign management is another type of strategic behaviour where the manager
of campaign tries to make his desirable candidate win the election. He offers
money to other voters for bringing that candidate forward. The amount of offered
money depends on the number of changes the voter needs to apply. Campaign

management for approval voting is considered?@ [

Another type of strategic behaviour ec®ntrol by adding or deleting voters or
candidates7]. In multi-mode control, we have 2 or more types of control actions

at once. Agenda control, happens by adding small number of spoiler candidates.
Teaming happens when adding more candidates actually helps the chances of any
of them winning as can occur in Borda rule. In election control, only a small

number of voters are added or deleted and the number of candidates is fixed.

Cloning is a type of control where the manipulator can replace each candidate by
one or more new candidates. In this model, different voting rules show different
reactions. For example, cloning for a fixed candidate can be useful in some voting
rules such as antiplurality or be useless in some of them such as plurality. How-
ever, in some rules different cloning situations behave differently. For example,
for Borda and Copeland’s rule some cases are useful for that candidate and some

cases are useleszg.

14



Chapter 1. The Manipulability of Voting Rules

In some models of strategic manipulation the coalition of manipulators cast their
votes after sincere voters. They choose their votes in a way that current winner
changes. The sincere voters are always naive and just vote sincerely. This type
of strategic behaviour has been used in computational social choice as strategic
manipulation and is calledossible winnersproblem P9, 30]. Zuckerman et al

study coalitional constructive weighted manipulation of this modeBij.[They

study whether there is a way for the manipulat@rsvith weight vectoriV' to
choose an action profile which make alternagiv@in the election. In this model

the sincere preference order of manipulators are not known, and ties are broken

adversely to the manipulator3]] .

Pattanaik discusses two types of manipulat@munter-threat andreaction [32)].
Suppose the sincere outcome:jghen a voter with preference orderc, tries to
manipulate in favour 0b. In counter-threat model, the other voters try to punish
him by making a worse result happening for him (makingin the election).
Therefore, in this case supporters just think about punishing the person that
decides to manipulate not maximising their own utility. In reaction model, the
other voters just decide to return the result to its sincere situation. Therefore,
supporters do not really care about makingin the election and just try to return

the result to its sincere one pecomes winner).

For single-winner outcomes with no ties, it is clear how to define the traditional

definition of strategic manipulation.

Definition 1.2. Fix a voting rule. Suppose that profiles=’ each yield a unique
winner, respectively, ¢. Thenr' is preferredby voterwv to profiler if and only if
¢ is no lower inv’s preference order than. If ¢ # ¢, so thatc is higher thanc,

then we sayt’ is strongly preferredo 7.

15
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Remark 1.3. Note that in our situation where indifference is not allowed (voters
must break all ties between candidates before submitting their ordering)isif
preferred toc, but not strongly preferred, theti = ¢, so the concept “preferred”
seems pointless at the first sight. However when we consider coalitions below,

this distinction makes more sense, and we keep it in order to have consistency.

If there is no unique winner, then deciding whether one outcome is preferred to
another requires extra assumptions (essentially, we must extend the previous def-
inition to preferences over sets of candidates). In our numerical results it is con-
venient to use uniform random tie-breaking and a particular such extension which
we now describe. We again stress that the particular choice made here is not

essential to the definitions of the new measures in Settibi

Definition 1.4.

Let = be a profile. We say that’ is preferredto = by voterv if and only if for
eachk = 1... m the probability of electing one afs most-favoured: candi-
dates under’ is no less than under. (If 7’ # 7 the condition implies that this

probability will be strictly greater for someg.)

Remark 1.5. Another way of stating this is to say that the probability distribution
that describes the probability of each candidate winning undes (first-order)
stochastically dominated by the analogous distributionsfor Equivalently, for
every utility function that induces the preference ordep othe expected utility

for v underr’ is greater than the expected utility forunderr.

Example 1.6. (preferring one profile to another) Suppose that in profiléhe
outcome is that: and ¢ tie as the winner, in profiler’ the outcome is thai is

the absolute winner, and inn” the outcome is that andb tie as the winner. The

16
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distribution of winning probability or{a, b, ¢) is (1/2,0,1/2) for =, (0,1, 0) for
7" and(1/2,1/2,0) for #”. Thus, takingc = 1 in the definition, we see that is
not preferred tor by a voter with sincere opiniombc. Also, takingk = 2 shows

thatr is not preferred tar’ either. However” is preferred to bothr and7’.

We can now proceed to the remaining definitions.

Definition 1.7. (i) A subsetX C V is amanipulating coalitionat the profiler
if and only if there is a profiler’ # 7 which agrees withr on V' \ X and is
preferred tor by all members oK', and strongly preferred by some member.
A manipulating coalition isninimal if it does not contain any proper subset

that is also a manipulating coalition.

(i) Arule is manipulable at the profiler if and only if there exists a manipulat-

ing coalition at this profile.

(i) An anonymous rule ismanipulable at a voting situatiorwr if and only if there

exists a profiler giving rise too, at which the rule is manipulable.

Example 1.8.(manipulation) Consider the Borda rule, given by the weight vector
(2,1,0), and the voting situation with @c, 2 bac, 2 bca, 3 cab voters. If one of the

cab voters votes strategically agb, thena andb tie. The new outcome is preferred

by that voter because the winning probability distribution on the candidates has

changed fron{0, 1,0) to (1/2,1/2,0).

Example 1.9. (manipulation in favour of bottom-ranked candidate) Consider the
plurality rule, given by the weight vectgt, 0,0), and a voting situation having
4 abe, 3 bea and 2cab voters. The sincere winner is then There is no manip-

ulating coalition in favour ob since the only voters preferringto « are already

17
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contributing the maximum score tcand the minimum ta. However, if théhca

voters all vote strategically a®a, thenc wins.

Example 1.10.(manipulation possible in more than one way) Consider an elec-
tion with 3abc, 2 cba, 2 bea voters, and scoring rule plurality. The sincere scores
are (3,2, 2). If both cba voters change their votes toa in favour ofb, we have a
manipulating coalition with size 2 in favour éf Also, we can consider a manip-
ulating coalition with size 2 in favour aef If bothbca voters change their votes to

cba, then the winner is.

A manipulating coalition may contain members whose manipulating strategy is to

vote sincerely. The extreme case is as follows.

Example 1.11.(the maximal coalition in favour of a candidate) For each can-
didate b other than the sincere winner, the maximal coalition in favour of
consists of all voters having preference orders that rambovea. Since voters

in a manipulating coalition may vote sincerely, it follows that there exists some
coalition that can manipulate in such a way as to makiee winner if and only if

the same result can be achieved by the maximal coalition.

Removing those members who vote sincerely still gives a manipulating coalition
(which we might call aractive coalition, although this term is not standard and
will not be important here). A subset of voters contains a manipulating coalition

if and only if it contains a minimal manipulating coalition.

Example 1.12.(minimal coalitions) Consider the scoring rule with weigfi8s, 9, 0)
and a voting situation with 10bc, 6 bac, 5 cab and 5c¢ba voters. The sincere result

has the scores af, b, c respectively being199, 195, 100). Consider manipulation
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in favour ofb. If one of thebac voters changes tbra, the new scoreboard will be
(190, 195,109). So it is a minimal manipulating coalition of side and clearly
also minimum. By contrast, if &a voters change their votes tea, the new re-
sult will be (199, 199, 96). This is also a minimal manipulating coalition but not

a minimum one.

Probabilistic measures of manipulability

We first fix a numbem of voters and a probability distribution on the possible
profiles (or voting situations). Lef := X" denote the set of of all voting situa-
tions equipped with a given probability measure andSlelenote a sample from

this distribution.

The first measure concerns the logical possibility of manipulation.

Definition 1.13.

P = Pr[there is some coalition that can manipulateSt

This simple measure has been used extensively in the social choice literature. It
is relatively simple to compute for standard rules and preference distributions, but
fails to measure the computational effort required to assemble and coordinate a
manipulating coalition. It is entirely possibge priori that two rules may have

the same value oP, yet the manipulations for one require much effort (the re-
cruitment of large coalitions of manipulating agents, perhaps with rare preference
orders) while those for the other are relatively straightforward, in every voting

situation.
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Another measure takes account of the number of manipulators required.

Definition 1.14.

M = min {k: there is some coalition of siZethat can manipulate af'} .

We would like to consider the expected valfke[)/]. However, this does not
make sense because certain situations are not manipulable by any coalition, and
so M is defective We could therefore, considéis[M | M < oo|. However it is

a priori that this may be rather small for rules that are almost never manipulable,
and larger for rules that are often manipulable. More information is obtained by
considering the distribution function af/. For eachk with 1 < k£ < n, we
considerPr(M < k). This is precisely the probability that a randomly chosen

voting situation can be manipulated byr fewer agents.

The measuréd/ allows us to consider the greater work required by larger coali-
tions. For example, the communication cost between coalition members may
grow asM?, if secret negotiations must be individually carried out. However,

it is a priori possible that two rules may have the same valu&/dbr every vot-

ing situation, yet one has very few manipulating coalitions of dizewhile the

other has many, in every voting situation. (See Exampl&below.)

A third measure, which is new as far as we know, is obtained by considering both
the sizes and the prevalence of the manipulating coalitions. Both of these aspects
are captured by the informational effort required to discover a manipulating coali-
tion via the following procedure. We assume that although a potential instigator of
manipulation knows the distribution of opinions (in other words, the sincere vot-

ing situation), he does not know which agents hold which opinions. We assume

20



Chapter 1. The Manipulability of Voting Rules

that such a person must simply interview agents one by one at random, until he
has enough agents to form a manipulating coalition. This gives a random variable

equal to the number of such queries.

Definition 1.15. Let V4, ..., V, be agents sampled without replacement from the
setV of all agents, independently ¢f. Equivalently,(V3,...,V,) is a random
ordering of V, with all possible orderings being equally likely, representing the

order in which agents are queried. Let

Q) = min{k : {V4,..., Vi } contains a manipulating coalition &f}.

Note thatQ is a random variable both because it dependsSoand because it
depends or{Vi,...,V,). This random variable is in general defective, and is
defined to ber-oc if no manipulation is possible fa¥. In other words, we want Q
to have a finite value. It is the number of queries required to find a coalition, or
determine that there isn’t one, thén= n wouldn’t make sense, because we might
find a coalition exactly aften queries. S& = n + 1 is the next value and we can

use this to mean "not found”.

Remark 1.16. The dynamic query interpretation seems reasonable to us: it seems
not unreasonable to assume that an instigator knows the voting situation (through
polling) but not the exact profile. However, those readers who remain unconvinced
will see in Sectiorl.4.2that there is alternative, static interpretation 6f that

does not depend on such a story.

We illustrate these definitions using the following examples.

Example 1.17(values of()). Consider a setup with agents, scoring rule Borda

and3 alternatives. There arel different voting situations, but by using symmetry,
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we need to only consider those wittu) > s(b) > s(c) (where for example(a)
denotes the score of alternatiug It can be seen as in Sectiam.2that of these,
only the voting situatiori1, 0,1, 0,0, 0) is manipulable. The sincere scoreboard
is (3,3,0) but if thebac agent changes his vote tea then the result becomes
(2,3,1). Similarly, theabc can change tacb. Thus for this voting situation, we
makel query with probabilityl so that@ is deterministic and equals Now we
weight this voting situation according to the culture. Under IAC the probability of
such a voting situation will bg/21, so the value®r(Q < 1) andPr(Q < 2) are
eachl/7. Under IC, the situation correspondségrofiles, so the weight i8/36,

and the values dPr(@ < 1) andPr(Q < 2) are eachl /6.

Example 1.18.(difference betweef/ and @) Consider the voting situation with

6 cab and2 bac agents. Under the antiplurality voting rule, the sincere scoreboard
is (8,2,6) and the winner is.. There are no manipulating coalitions in favour of
b but manipulation in favour of is possible. The value @f is 2: if two of thecab
agents voteba, the new resultis’ = (6, 4, 6). If our first two queries discovetb
agents, therd) = 2 otherwise ) = 3 or 4. The expected value @f, conditional

on this voting situation, i$8/7 ~ 2.57.

Now consider the same situation under 32, 0) scoring rule. The sincere
resultis(16, 6, 18) and the winner ig. Manipulation in favour ob is impossible,
but we can manipulate in favour efif the twobac agents change their votes to
abc. Here againM = 2, and( can have any value betwegmand8. The expected

value of@, conditional on this voting situation, &

In this voting situation, both rules admit the logical possibility of manipulation
by coalitions of two or more agents. However, such manipulating coalitions are

much more prevalent under the antiplurality rule, because they involve a more
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numerous type of agent. This difference between the rules is captuégd by

Analogues for other models of manipulation

The measure®, M, () above depend only on the concept of manipulating coali-
tion. If we change the model of manipulation, we obtain the obvious analogues
of those measures. We discuss the case of bribery here, and leave other cases to
the reader (for example, threshold manipulation). We denote the bribery-based
analogues of the measures By M’, ()’. The measuré”’ is rather uninteresting.
Clearly, by bribing sufficiently many voters, we may make any given candidate
win, provided the voting rule satisfies the nonimposition property (each candidate
can win in some profile). Thus for most commonly used voting rites- 1 for

eachn andm. However,P’ would be interesting if it is limited to a budget. The
measurel/’ is more interesting, giving the minimum possible number of voters
to bribe in order to change the result (and it is always finite, given nonimposi-
tion). For example, for plurality)/’ equals the difference in scores between the
first- and second-ranked candidates. The meaguggves the number of queries

involved in determining a minimal set of agents who must be bribed.

Relations between the measures

We restrict to manipulation here; the analogous measures for different models

satisfy the analogous relations.

We denote the distribution function aff by F;, and analogously fof), so that
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Fy (k) = Pr(M < k), etc. Note that

Fo(k) < Fy (k) for eachk;

Fo(n) = Fy(n) = P.

Thus F, and F); contain strictly more information thaff. It does not appear
that F, is strictly more informative that,, since(Pr(AM < k))7_, cannot be
recovered froniPr(Q < k));._,. However, for a fixed voting situatia$i, Fi/s(k)

is either O or 1, and the smallgstor which it takes the value 1 is also the smallest
k for which Fs(k) > 0. Furthermore we have already seen that the valul of
does not determine the entire distributiortpbn a given voting situation. We thus

have strictly more information fror@ than fromA/ in this conditional sense.

We can unify the definitions ol and @ by considering a trivial query model

for M. We assume that in this case we know all the voters’ preferences, in other
words the sincere profile, and our “query” consists of simply approaching a voter
and inviting him to join a coalition (we assume that our invitations are never re-
fused). We would make precisely queries in order to minimize effort. Thus
the values off, (k) and £, (k) correspond to the probability that we can form a
coalition afterk queries in the case of no extra information (only the voting situa-
tion) and full information (the complete profile), respectively. Analogues of these
that consider various types of partial information could be considered, but they

appear less compelling to us and we do not pursue them here.

We have already seen that and (@ can differ. It is easy to construct a rule for

which M and( differ enormously, if we allow non-anonymous rules.
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Example 1.19. Consider a rule (“oligarchy”) that fixes3 voters and lets them
decide the result using plurality, no matter what the other voters do. In this case
M is at mostl for each manipulable situation, bgt will with high probability be

of ordern.

The relation between/ and(@ is further clarified by considering minimal manipu-
lating coalitions. In a minimal manipulating coalition, no member votes sincerely
and all of them must act together in order to manipulate. Clearly every minimum

size coalition is minimal, but the converse is not true in general.

The definition of(Q implies that when the query sequence terminates, we have
for the first time in that sequence found a set of voters that contains a minimal
manipulating coalition. Let: be the smallest size of such a coalition; e is
arandom variable. AlsQ > i > M. Thus the excess @} over M measures not
only how many wasted queries we make, but also the difference befwaad

M. If o is a voting situation in which even one minimal coalition of size larger

thanM/ exists, therB[Q | S =o0]| > E[p | S =0] > E[M | S = 0o].

Example 1.20.In Examplel.12 the minimum coalition size isbut there exists
a minimal manipulating coalition of sizé ThusE[Q] > M, conditional on this

voting situation.

We now show that there are anonymous rules for whigly and@|S can be very

different.

Example 1.21.Consider the plurality rule and denote the sincere winnewby
and letb be some other candidate. Ledenote the number of voters who rank

first, y the number who rankfirst, andz the number who do not rarikfirst, but
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who rankb overa (thus there are. —x —y — z voters who rank neither nor b first,

but ranka overb). Manipulation in favour ob is only possible if the voters of the
last type express a preference that ranksst, and this can succeed if and only if
y + z > x. The minimal coalition size in this caseis- y. The query sequence

ends when we have found- y elements from the set efelements above.

This has the flavour of a coupon-collector problem. If we assumertiavery
large compared ta, then the expected length of the query sequence is well ap-
proximated by(x — y)n/z. The ratio of E[Q] to M is then not bounded by any

constant factor, even for a fixed number of candidates.

Remark 1.22. Based on the analysis of scoring rules B3], we believe, via a
heuristic argument, that for the IC preference distribution, the ra&ti@)| /M will
be bounded by a constant depending onlynoand the weight vector, outside a

set of exponentially (in) small probability.

1.4.2 Computation of the measures
Algorithms

All the measures discussed so far can be computed for anonymous rules in time
that is polynomially bounded in, provided thatn remains bounded. The rest of
this section elaborates on this theme. Not surprisingly, it seemg’tisa¢asier to

compute thanV/, which is easier thay. We give several algorithms.

We consider here only algorithms that first compute the value of the measure
conditional on each voting situation, and aggregate this according to the chosen

culture. There may exist other algorithms that are more efficient and act by consid-
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ering several voting situations at once, but we have not yet found any. The number
of possible voting situations is the number of solutions in nonnegative integers to
the equatiom; + ny + - -+ + ny = n. This equalg™™' ') = "(”“()7;;!(_";;!’”"1).

Such objects are represented as vectors of lendthwe fix an order of the types,

and we call these (as usuab)mposition®f n with m! parts.

Before proceeding we note an alternative characterizatightbft will be useful.

Definition 1.23. For eachk > 1 consider the sét’* of all k-subsets of” equipped
with the uniform measure and consider the product spaceV'*. Let E denote

the event
E :={(S,A) € ¥ x VX | A contains a manipulating coalition &}.

Lemma 1.24.Letk > 1 and letA denote a sample froi* and .S a sample from
3. Then
Pr(Q <k|S)=Pr(F|S)

and hence
Fg(k) = Pr(E) = Pr(A contains a manipulating coalition

In other words, the probability that we require at maéstjueries to find a manip-
ulating coalition equals the probability that a randomly chogesubset contains

a manipulating coalition.

Proof. Given S, the event)) < k means precisely that the initial subsét
formed by the firs& queries contains a manipulating coalitionsatEach subset

of V' of sizek occurs with equal probabilit{/;) ~! as an initial subset of gueries of
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the query sequence, so théy is distributed asi. This gives the first equality and

the second set of equalities follows from standard probalmbiyputations. [

Remark 1.25. The distribution function of) can thus be computed by simply
counting the number of subsets of a fixed size that contain a manipulating coali-

tion.

Note that it is also true that for each fixet

Pr(A contains a manipulating coalition= £y (k).

This is because of the symmetry between voters. Without the symmetry, we know

only that the expectation ovet of P(E|A) equalsFy (k).

General algorithms

We now discuss the computation in more detail. Throughout, we assume the
existence of a subroutin€ that, given a voting situation and a subsétof V,
determines whether there is some subsekathat is a manipulating coalition.

For scoring rules, we describe such'an Sectionl.8.1

A direct computation o | S, M | S and@ | S proceeds by enumerating subsets
X and usingC' to test each one. Fd?, we need only do this foX = V. For M
and(@ we should enumerate all sizesubsets, then all sizg etc. Once we find

a manipulating coalition, this finds a minimal manipulating coalition of minimum
size, and thus determindg. To determing), we must continue to generate all

subsets of all possible sizes.

An obvious improvement is to generate compositions subsets ofl size .. ,
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n in turn, adding new minimal manipulating coalitions to a table. Each newly
generated subset is checked to see whether it contains any elements of the table.
If yes, we can updat®r(M < i) andPr(Q < i) accordingly, for alli > k.
Otherwise, check the subset to see whether it is itself a minimal manipulating
coalition by invokingC' (we add it to the table if so, and update probabilities
accordingly). Since checking containment is simply a coordinatewise operation
on the compositions and is faster th@itself, this gives a clear speedup especially

for largek. Also, we only invokeC' to check whether a given subsgf. minimal
manipulating coalition, not whether it contains one. This allows for simplification

of C in some circumstances.

Of course, non-anonymous rules require the entire profile. A general rule may
require generation qfkl) subsets for each, and henc&” in the worst case, when
the situation is not manipulable. We restrict to anonymous rules from now on.

In this case we can generate instead all types of subsets (compositibnistof

k+t—1

t parts), the number of which for eac¢his ( .

), wheret is the number of
possible types of voters to consider in a coalition (in other words we generate the
compositions of into ¢ parts). ForM we can takeé = (m — 1)!, since we need
only consider subsets consisting of voters not ranking the sincere winner highest,

but for Q we taket = m! since all types may be found by our query process.

Finally, as noted above, to compute)M, Q we know no better method in general
than to aggregate the conditional probabilities. There is one idea which seems very
promising at the first sight. To computg we can simply fixA and iterate over all
voting situations, instead of looping over all voting situations and then ove. all

But this overlooks the fact that in the first method, we must consider each profile

represented by the voting situation separately. This requitésnvocations of’'
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overall and will be uncompetitive almost always with the more direct method.

Specialized algorithms for scoring rules

For scoring rules, there exist substantial improvements to the above procedure.
The key point is that manipulability by a coalition may be described by systems
of linear (in)equalities, and some steps above can be combined. We give a brief
description below and refer t@(] for more details. We note that Copeland’s rule

lends itself to completely analogous computations which is presented in appendix.

For each candidatedifferent from the sincere winnet, and each subséf con-
sisting of voters who prefel to a, we have a systerf, of linear (in)equalities
describing manipulations which result bnwinning. The subroutin€’, simply
checks whether this system is feasible, @hsimply combines the results of these

subroutines with a logical “OR”.

To describeS;,, we begin with the variables. There is one nonnegative integer
variablez; for each sincere preference order occurringlinand one nonnegative
variabley; for each strategic vote that can occur. It appears that in the worst case
the number ofc’s is m!/2, the number of types that ramkabovea. The number

of y's could be even larger for a general rule. However it is readily seen that
for scoring rules, only strategic votes that ranfirst should be considered (other
strategies are dominated by strategies of this type), so the numbisrrefjuired

is at mostm—1)!. Furthermore the number ofs can be reduced. For those types
who sincerely rank: last andb first, voting sincerely is a dominant strategy and
hence these voters can be removed from any coalition, so that we need consider

only (m—2)!(m+1)(m—2)/2 types. The total number afs andy’s to consider
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then equalsn!(m? + m — 4)/(2m? — 2m). For some special scoring rules this
can be reduced even further. For example, for plurality and antiplurality, we need
only considerl possible strategy (rankfirst (respectively: last) and the others

in any fixed order), so the number g is only 1. And in this case, those voters
sincerely ranking first (respectivelyu last) cannot do better than by using the

sincere strategy, so the numbernd is m!(m — 2)/(2m).

We now describe the constraints$). We first have the constraints thdiz) >

s(b) > s(c¢) > .... Our random tie-breaking assumption allows this and gives

a speedup by a factor closend, because we do not need to generate all voting
situations. The scores after manipulating satigfy) > s(¢) for all candidates

¢ (there may be some strict inequalities depending on tie-breaking cases, but we
keep them all non-strict for simplicity). There is also an equality constraint that the
sum ofz’s equals the sum af's. The total number of constraintsdg: — 1. Note

that although the scores when expanded in terms of the weights and numbers of
voters of each type will involve more variables, the constraints listed only involve

the stated variables, because of cancellation.

In order to compute”|S we can simply invoke the subroutitéwith X =V, as
mentioned above. In fact we can go even further for some special distributions.
For example, for the IAC distribution, the linear systems described above allow
direct computation of the aggregate meastras follows. We need to count
the number of lattice points in the polytope determined by the sysienThis

is accomplished by algorithms to compute Ehrhart polynomials as described in

[34, 35. Inclusion-exclusion then allows the computationfaf

To computelM | S we consider the integer linear programming problem associated

to S, with objective function equal td . z;. The minimum oveb of the optimal
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values of these optimization problems is preciselys.

We now move on to discuss the new measyréNe know that it contains more
information thanP and M, so it should be expected to be harder to compute.
Although we have no theoretical justification for such an assertion, our efforts to

find algorithms have convinced us that it is true.

To compute? | S, the now-obvious method is to generate all (types of) subsets of
sizek, for eachk, and check them in turn (using — 1 iterations of the improved
algorithm C' involving the linear system above, one for each losing candidate).
We also use the lookup table approach above. We must still generate all possible

types of subsets.

Alternative algorithm for ¢ There is an alternative method that avoids gener-
ating all types of subsets, which works particularly well for= 3. The idea is

to first enumerate systematically all equivalence classes of minimal manipulating
coalitions, and then use inclusion-exclusion to compute the number of subsets of

each sizé&; that contain at least one of these minimal coalitions.

Definition 1.26. Equivalence classes of minimal manipulating coalitions consist

of coalitions which have the same size and the same distribution of types.

Let V denote the number of such equivalence classes. Under plurality and an-
tiplurality, N < m — 1, because the minimal coalitions that can elect a fixed
losing candidaté simply consist of all subsets of a certain fixed sizefrom

the set of voters having one of thie. — 2)!(m + 1)(m — 2)/2 x-types as dis-
cussed above. These can be represented as compositiddswath (at most)

(m — 2)!(m + 1)(m — 2)/2 parts in the usual way. Although there are many dif-
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ferent types, they are all equivalent and we do not need to distinguish between
types. For more general scoring rules, mixed coalitions where we must keep track
of types are possible, and can be larger than/, whereM as usual is the mini-
mum coalition size. To find them, we can first find the minimal “pure” coalitions
consisting of elements of the same type usirgalls to C', and then determine

the mixed ones systematically by search, which may ink# the order of N

times.

Consider the uniform distribution on the set of all subset¥ aff sizek, and let
E; be the event that a siZzesubset contains a minimal manipulating coalition of
typei. We seek to computBr(Q < k) = Pr(U;E;). By the inclusion-exclusion

formula, we have
Pr(Q < k) =Pr(UE;) =Y Pr(E)— Y Pr(ENE)+--.

The number of terms in the inclusion-exclusion formul&is — 1. Also, the
intersection o terms requires the computation of the uniorpdf/pes of coali-
tions, which takes time of ordenn! using the obvious algorithm of taking the
coordinatewise maximum of the compositions. This gives a running time of order
N22Nm!. WhenN is sufficiently small, the inclusion-exclusion method is supe-
rior to the method described above. However as we have/Sezan grow rapidly

with M andt¢. Thus it seems that, for a general scoring rule, this method will
only be competitive with the other method above whemd N are fairly small
(however, for (anti)plurality it appears to be much superior). We do not have a

clear description of exactly when each method is best.
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The casem = 3 In this case much simplification is possible, as we now de-
scribe. The systerfi, can be reduced to a linear integer program Witrariables
and4 inequality constraints. The solution of the feasibility and optimality prob-
lems for this linear system can be simplified. As shown2@],[the system can

be replaced, using Fourier-Motzkin elimination, by a real linear system in the
x’s only, that gives necessary conditions for manipulability that are sometimes
sufficient. For example, whem = 3, this latter procedure works exactly for
antiplurality and all rules definable by weight vectgis\, 0) with A < 1/2 —

the so-called “easy rules”), but only gives bounds for the other valugg‘tiard

rules”).

For the purposes of computing|S, M |S and@|S, we may simplify the linear
system when dealing with minimal coalitions. The number of types of minimal
coalitions is even lower than the general bound given above. This is because when
m = 3, the minimal coalitions that can manipulate in favoub @fre disjoint from

those that can manipulate in favour @f The minimal coalitions consist only

of cba andbac voters, or ofbca voters. For certain rules there are even fewer:
minimal coalitions under plurality consist only @fa voters or only obca voters,

while minimal coalitions under antiplurality consist onlyfefc voters (it is never
possible to manipulate in favour efin antiplurality, becauseub voters can only

increase the advantagelobverc).

In addition, the number of strategies to check is very small, since a minimal coali-
tion containingbac and cba voters will all vote ashca, without loss of general-

ity, while a bca coalition requires consideration only afa. Thus when testing
whether a coalition is minimal, it suffices to check whether switchingtalland

bac to bea is a valid manipulation, and whether switching @it to cba is a valid
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manipulation.

If we use the alternative method with inclusion-exclusion, the inclusion-exclusion
formula hasN of order2M andm! = 6 for a general rule, whereas the direct
method requireg(" ) calls toC'. The first method will be better for (anti)plurality

n

and also for other rules providedis small enough.

Statistics

We can readily compute the conditional expectatiéifd/ | M < oo, etc, from

the distribution functions as follows. We have
> Pr(M >k) =Y kPr(M =k)+ (n+1)Pr(M = o0).
k=0 k=1

Reorganizing this equation yields

E[M | M < o] = Zkglr(kz;rg\io) ul
D opoll = Pr(M < k)] — (n+4 1) Pr(M = o0)
B Pr(M < o0)
> ope Pr(M < k)
Pr(M <mn)
"I Pr(M < k)
 Pr(M<n)

=n+1-

1.4.3 Basic numerical results

To get a feeling for the behaviour ¢ and to allow for comparison with other
measures such & and M, we have carried out detailed computationg ofor

m = 3 and for the same scoring rules and preference distributions us@@)in [
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Details of the implementation are found in Sectib8.1 We present a few rep-

resentative results here, with discussion. In addition, we present some analogous

results for a completely different type of rule, namely the Copeland rule.

In the Appendix, we give details of the algorithm implementationfior 3, and

more detailed numerical results which we feel would obscure the overall picture

if presented in the present section.

We first consider small parameter values (note that these results will be more

affected by our tie-breaking assumptions). Tablegives values oPr(Q < k)

for IC whenl < k < n < 6. Tablel.2 presents the analogous data for IAC.

Table 1.1: Values oPr(Q < k) under IC

n | k | plurality | (3,1,0) | Borda | (3,2,0)| (10,9,0)| antiplurality | Copeland
21| 0.0000 | 0.3333| 0.1667| 0.1667| 0.1667 0.3333 0.1667
2| 2| 0.0000 | 0.5000| 0.1667| 0.1667| 0.1667 0.3333 0.1667
3]1| 0.0000 | 0.0000| 0.1111] 0.1667| 0.1389 0.1111 0.0000
3|12 | 0.0000 | 0.0000| 0.1944| 0.2222| 0.2222 0.1111 0.0000
33| 0.0000 | 0.0000| 0.2500| 0.2500| 0.2500 0.1111 0.0000
4| 1| 0.1111 | 0.2083| 0.1528| 0.1759| 0.1852 0.1481 0.1111
4| 2| 0.2037 | 0.3519| 0.2176| 0.2917| 0.3009 0.2222 0.1991
4| 3| 0.2778 | 0.4583| 0.2639| 0.3657| 0.3704 0.2685 0.2639
44| 0.3333 | 0.5417| 0.2917| 0.4028| 0.4028 0.2963 0.2917
51| 0.0741 | 0.1173| 0.1296| 0.1620| 0.1119 0.2099 0.0000
5]2| 0.1481 | 0.2099| 0.2122| 0.2662| 0.1767 0.3148 0.0000
513| 0.2222 | 0.2901| 0.2793| 0.3465| 0.2191 0.3580 0.0000
54| 0.2963 | 0.3611| 0.3472| 0.4120| 0.2531 0.3688 0.0000
55| 0.3704 | 0.4167| 0.4167| 0.4630| 0.2816 0.3750 0.0000
61| 0.0412 | 0.1260| 0.1376| 0.1472| 0.1229 0.1070 0.0823
6| 2| 0.0905 | 0.2168| 0.2155| 0.2423| 0.2252 0.1523 0.1556
6| 3| 0.1451 | 0.2946| 0.2760| 0.3230| 0.3169 0.1677 0.2189
64| 0.2016 | 0.3629| 0.3283| 0.3969| 0.3956 0.1718 0.2706
6| 5| 0.2572 | 0.4218| 0.3774| 0.4623| 0.4594 0.1741 0.3099
6| 6| 03086 | 0.4707| 0.4237| 0.5163| 0.5071 0.1754 0.3369

We then choose = 32 as a moderate number of voters, even and not divisible by
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Table 1.2: Values oPr(Q < k) under IAC

n | k | plurality | (3,1,0) | Borda | (3,2,0) | (10,9,0)| antiplurality | Copeland
21| 0.0000 | 0.2857| 0.1429| 0.1429| 0.1429 0.4286 0.1429
2| 2] 0.0000 | 0.4286| 0.1429| 0.1429| 0.1429 0.4286 0.1429
31| 0.0000 | 0.0000| 0.1429| 0.2143| 0.1786 0.2143 0.0000
3|2 | 0.0000 | 0.0000| 0.2500| 0.2857| 0.2857 0.2143 0.0000
3|3 | 0.0000 | 0.0000| 0.3214| 0.3214| 0.3214 0.2143 0.0000
4| 1| 0.0714 | 0.1548| 0.1190| 0.1667| 0.1905 0.2619 0.0714
4 12| 0.1310 | 0.2540| 0.1548| 0.2619| 0.2857 0.3413 0.1310
4 13| 0.1786 | 0.3333| 0.1786| 0.3214| 0.3333 0.3810 0.1786
4 14| 0.2143 | 0.4048| 0.1905| 0.3571| 0.3571 0.4048 0.1905
51| 0.0429 | 0.0905| 0.1381| 0.1524| 0.1286 0.2810 0.0000
5|2 ] 0.0857 | 0.1595| 0.2214| 0.2476| 0.1952 0.3857 0.0000
53] 0.1286 | 0.2190| 0.2810| 0.3190| 0.2333 0.4286 0.0000
54| 0.1714 | 0.2762| 0.3333| 0.3714| 0.2619 0.4429 0.0000
55| 0.2143 | 0.3333| 0.3810| 0.4048| 0.2857 0.4524 0.0000
61| 0.0260 | 0.0931| 0.1126| 0.1580| 0.1385 0.1970 0.0433
62| 0.0589 | 0.1537| 0.1684| 0.2411| 0.2433 0.2619 0.0844
6| 3| 0.0961 | 0.2045| 0.2156| 0.3032| 0.3286 0.2857 0.1234
64| 0.1351 | 0.2506| 0.2602| 0.3563| 0.3935 0.2948 0.1576
65| 0.1732 | 0.2944| 0.3052| 0.4026| 0.4394 0.3009 0.1840
66| 0.2078 | 0.3377| 0.3506| 0.4416| 0.4740 0.3052 0.1948
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3 to reduce the number of ties and therefore the effect of our specific tie-breaking
assumptions (it turns out that for oddandm = 3, Copeland’s rules is never
manipulable under the randomized tie-breaking assumption). In Figute$.2
andl.3we plotFy, under IC and IAC. For small values bft is hard to distinguish

the different scoring rules, so we provide more detail in Tahl®&sand1.8.2in

the Appendix.

In Tablel.3we display the expected valuesiaf and(@, conditional on the voting

situation being manipulable.
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Figure 1.1: Values oPr(Q < k) whenn = 32, under IC and IAC.
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Figure 1.2: Values oPr(Q@ < k) whenn = 32, under IC and IAC.
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0.3 0.1
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Figure 1.3: Values oPr(Q < k) whenn = 32, under IC and IAC.

Table 1.3: Expected values under IC/IAC for= 32.

IC IAC

votingrule | E(Q|Q < o0) | E(M|M < oo) p E(Q|Q < o0) | E(M|M < c0) P
plurality 11.9323 2.20268 0.768301 14.8069 3.06844 0.294847
(3,1,0) 12.0874 3.49139 0.837584| 14.6438 4.85753 0.408826
Borda 11.8601 3.90602 0.865632 13.6529 4.95002 0.474621
(3,2,0) 11.5922 3.54276 0.86109 12.7878 4.3114 0.519419
(10,9,0) 12.3713 3.07908 0.63231 11.2213 3.63562 0.508407
antiplurality 6.18951 1.61894 0.45002 9.10156 3.00334 0.499054
Copeland 9.13436 2.11101 0.246735 15.1917 3.85937 0.089856

Comments on results

The results obtained shed light on the differences between the me&5uires)
and show that they can rank rules in very different ways. We give a few details

below.

The most obvious feature of the results is the different shape of the graphs for
M and( (the former can be found in the Appendix). Indeed, the graphs shown
exhibit (slightly) fewer crossings witfp than with A/, indicating more robustness

to coalition size forQ). For example, whem = 32 there is a clear ordering of

the rules plurality, (3,1,0), Borda with respect to susceptibility to manipulation
under IAC. In particular, there is a single dominant rule with respe€t (hich
minimizes the measure for ea¢h= 1...n). The difference betwee) and M

relates to the distribution of each type and the power of each type in changing the

39



Chapter 1. The Manipulability of Voting Rules

result based on the voting rule.

The measuré® gives a simple way to linearly order rules for a givenby their
susceptibility to manipulation. However, comparing distribution functions of the
form F, andFy, is harder. A natural choice is the partial order in which rubéth
associated distribution functiofi. dominates rules with associated distribution

function F; if and only if F.(k) < F(k) for eachk, 1 < k < n.

Looking deeper, we see that this dominance ordering among all our scoring rules
holds fairly often for smalh under IAC for@), but rarely under IC, whereas the
opposite is true forM/. A specific example: when = 5, the plurality rule is
dominant over all our other scoring rules under IAC when measure@, dyut

this is not the case wheW is used as the measure, while antiplurality is dominant
under/C with respect tal/ and not(). Of course, whet is large compared to,

the graphs of\/ and( are the same, as they all report the valuéor the given

rule.

Restricting to conditional values computed at those situations which are manip-
ulable for the given rule, we find that the ordering of rules based on the data in
Table 1.3 is different for M/ and Q. These induced orderings also differ from
that induced byP. In fact the 6 combinations of measurBg)/ /() and cultures

IC/IAC all yield different orderings of the 7 rules!

The results in Tablé.3 suggest that although antiplurality rather often cannot be
manipulated at all under IC, it generally requires smaller coalitions in the situa-
tions where it is manipulable. This can be observed by checking the values of
and M. However, a similar result is true for plurality, yet the value(pshows

that finding the coalitions under antiplurality is considerably easier. Thadds

valuable extra information even in this case. The small value® and () for
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antiplurality presumably occur because for this rule, any voter not ranking the
sincere winner first or last has the same power to manipulate, and can only do so
by ranking the sincere winner last, which makes the maximum possible change in
scores. For other rules, there are more constraints on the coalition members and
they have less power to change scores, so larger coalitions are required and they

are less numerous.

We describe some conjectures about the behaviour of these measures far large

in Sectionl.7.

One might expect that as the weight vector approaches the vdctor. ., 1,0)

that defines the antiplurality rule, the behaviour of the meastres/ and )
smoothly approaches that for antiplurality. However this is not always the case
for largek, as can be guessed from our results here, and also from known facts. In
fact under IC the asymptotic value Bf (M < n) (in other words, the value a?)

tends tol for all rules except plurality but some value less thdor antiplurality
(whenm = 3, this latter value equally/2, and the value convergest@asm — oo

[33]). However, this is only a limit result fok = n andn — oco. For each fixed:

andn, convergence does occur as expected. Also, for other distributions such as

IAC, this phenomenon does not occur.

The results show that the Copeland rule is considerably less manipulable than
scoring rules under all (unconditional) measures, and indeed dominates our cho-
sen scoring rules in most cases presented. The low value fof this rule is

not surprising (of course, under our tie-breaking assumptions, this value is exact
0 for oddn). The rule is defined in terms of the pairwise majority relation and
has quite different properties from those of scoring rules.38j ft was shown

that form = 3 under IAC and using lexicographic tie-breaking, Copeland’s rule
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is considerably less manipulable when measured’lthan Borda’s rule. This
resistance to manipulability appears mostly to be a result of the indecisiveness of
Copeland’s rule: forn = 3 the probability of a3-way tie under either IC or IAC
does not approach zero as— oo (unlike scoring rules), yet under our random

tie-breaking assumption, it turns out that such situations are never manipulable.

However, conditional information shows that finding a manipulating coalition for
Copeland when one exists is sometimes relatively easy, and the rule is not more

resistant to manipulation than our scoring rules in the conditional sense.

1.5 Power measures and manipulability measures

In this section we try to study the connection of the theory of manipulability
measures with the better-known, but still controversial, theory of power indices.
Strategic manipulation can be interpreted in terms of a simple game. We study
measure Q as a power index in cooperative game theory which measures the im-
portance of an individual in forming a manipulating coalition. Collective and
individual power measures in simple games can be modelled using a sequential
model for the discovery of winning coalitions. This link allows for the use of
manipulability measures that are specializations of well understood and axiomat-
ically described measures for simple games, and also suggests new general power

measures generalizing previously used measures of manipulability.
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1.5.1 The simple game associated with a profile

Definition 1.27. A simple gameon a finite sefX is a subset o2, whose elements

are calledwinning coalitions

For each profiler and social choice correspondengave define a simple game
G(R, ) as follows: declare a subset &f to be winning if and only if it contains

a manipulating coalition foRR at 7. Note that the game may be empty, and this
occurs if and only if the rule is not manipulableratWe call it themanipulation

gamedetermined byr andr.

Other definitions of “manipulation”

Clearly, any model of coalitional manipulation of a voting rule leads to an associ-
ated simple game. We simply define a winning coalition to be one that contains
a manipulating coalition (assuming always that the complement of the coalition
consists of naive, sincere voters). There are arbitrarily many restrictions one could
make on coalition formation (for example, only players adjacent in some fixed
network can belong to a coalition). Those that we have observed in the study of

manipulation are listed below.

Example 1.28. (Unit cost bribery) A subset df is winning if it contains a set

of voters who can change the result of the election by changing their votes (not
necessarily in accordance with their preferences). Winning coalitions always exist
unless the rule ismposed(i.e., the voters’ preferences are irrelevant). A restricted
budget variant exists: leB be a positive integer, and define a coalition to be
winning if it is winning as above and the number of members who do not prefer

the new winner to the old one is at mdst
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Example 1.29.(Threshold manipulation) Declare a subsetioto be winning if

it can ensure that the sincere winner no longer wins.

Example 1.30.(Truth-biased manipulation) Declare a subset©ofo be winning
if it can manipulate as in our standard definition, and each member has ranked
the sincere winner last in its preference order. Voters in this model are very risk-

averse and only try to manipulate if there is nothing to lose.

Example 1.31.(Bloc voting) Declare a subset &fto be winning if it can manipu-
late as in our standard definition, via a manipulation where all coalition members

of the same type vote the same way.

Noncooperative games

For each noncooperative game given in nhormal form, and a distinguished action
profile a, we may define a simple game in the following way. A coalition is
winning if and only if it contains a subset of players who can jointly deviate from
a (assuming all other players stick wif) in such a way that they each have higher
payoff from the resulting action profile. There is a winning coalition if and only

if a is not a strong Nash equilibrium of the game.

Transferable utility games

A simple game is a special case of a TU-game where the characteristic function
takes only the valueg and1. The more general TU-game assigns a value by its
characteristic function v : 2% — R, such thaw()) = 0. We denote the class of

all TU-games onX by G(X).
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1.5.2 The random query process

Consider the following stochastic process. We choose elemenisefjuentially
without repetition, at each step choosing uniformly from the set of elements not
yet chosen, until the set of elements seen so far first becomes a winning coalition.
This is the same process considered by Shapley and SHljika[defining their

power index. We first consider the random variable equal to the number of queries

required.
Definition 1.32. Let V4, ..., V, be elements sampled without replacement from
X, wheren = |X|. Equivalently,r := (V4,...,V},) is a uniformly random per-

mutation ofX, representing the order in which elements are to be chosen. Let

Q- = min{k : {Vi,...,V}} contains a winning coalitioh

Remark 1.33. If the game is empty we will not find a winning coalition. In this
case we defin€, to have the value. + 1. If the game is monotone, in Defini-

tion 1.32the word “contains” can be replaced by “is”.

Definition 1.34. Thequantity( is defined to be the expectation@fwith respect

to the uniform distribution on permutations &f. In symbolsQ = F,[Q~].

Non-sequential interpretation

The sequential nature of the process is only apparent, once we have averaged over
all possible orders. Thus we ought to be able to find a representtiQnthat
does not mention order of players. In order to do this, we assume from now on

that the game is monotone.
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Definition 1.35. For each natural numbek, define the probability measure;, to
be the uniform measure on the set of all subsetX off sizek. Thus each subset

of X of sizek is equally likely to be chosen, with probabili(tgz)*l.

For each natural numbér, we let W, (respectively,L,) denote the set of all

winning (respectively, losing) coalitions of size

Lemma 1.36. For eachk with0 < k < n,
Pr(Q < k) = Pr(Wy)

where the latter probability is with respect tay,.

In other words, the probability that we require at mésgueries to find a winning
coalition equals the probability that a randomly chosersubset is a winning

coalition.

Remark 1.37. The cumulative distribution functiafi, of ¢) can thus be computed

by simply counting the number of winning coalitions of each fixed size.

We can now derive a simple explicit formuiar Q.

Lemma 1.38.

The quantity @ intuitively seems to be a measure of inertiaresistance(as dis-
cussed in38)): its value is large if winning coalitions are scarce, and small if they
are plentiful. The rescaled quantity- Q/(n + 1) looks like an index of what has

been calledomplaisance 38, 39 anddecisivenes$40].
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We can consider more general changes of varidbldhan the affine rescaling
above, and show that measupas analogues of the Shapley value under a non-
standard, but natural, definition of a simple game. For the Shapley-Shubik index,
the measures extend naturally to measures for TU-games. In particular, the indi-
vidual measures include all weighted semivalues. The details of these computa-
tions and some other results can be found?in [2] is not included in this thesis

as itis a work in progress.

1.6 Comparison with existing literature

Here we discuss work of other authors, viewed through the framework of the
present chapter. The papers in question mostly do not use this terminology, and

we aim to unify past work.

1.6.1 Results concerning® and M

After the initial news that manipulability is essentially inevitable§] much work
has been done to minimize the likelihood of manipulation without restricting the
expressed preferences of voters, with a smaller literature dealing with IAC, and

very little with other distributions.

Early research on manipulability focuses on computig(1), the probability
that an individual can manipulate. The meashre- F;(n) has been studied in
many papers.41, 42, 43] have considered coalitional manipulation. The idea of
studying M is introduced in 44]. It is investigated in detail for scoring rules in

[20] (see also21] and [45]). The measuré’, (k) is used implicitly in B6€], where
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it is shown that for IAC, and for all faithful scoring rules (those where all weights

in the weight vector defining the rule are different) and runoff rules based on
them, there is a constat depending om: and the rule, so thaty, (k) < Ck/n.
Similar result for IC but with the upper bourdd //n is obtained in47]. Precise
asymptotics (whemn is fixed, asn — oo) for F),(k) under IC are given for
scoring rules in 33]. Xia and Conitzer 48] prove thatM must be of order at
leasty/n for a wide class of rules under rather general assumptions on preference

distributions, with a different definition of manipulation.

In the case of IC, our results and also the results38} ¢larify the conventional
wisdom on the relative manipulability of scoring rules, and Borda’s in particu-
lar. For example, Saar#ép] claims that (under IC whem = 3) the Borda rule

is the scoring rule that is least susceptible to “micro manipulations” (only indi-
vidual voters or small coalitions) but is quite poor among the scoring rules for
macro manipulations. His definition of “micro manipulation” deals with the case
k = o(y/n), where there are few manipulating coalitions for scoring rules as we
have seen. In33] the authors have proved Saari’s assertion in more general-
ity. Also, it appears likely from our numerical results that under IC, Borda is
the most manipulable scoring rule whéns of order\/n or greater, by all our
measures. Peleg has also studied the probability that #owogers can manip-
ulate the election and has proved that every scoring rule under the IC conjecture
is asymptotically coalitionally non-manipulable by coalitions of siz& o(/n)

[50].
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1.6.2 Results concerning)

The quantityQ) has not appeared explicitly before in the literature to our knowl-
edge. Several authors], 52, 53] have used probabilistic arguments to give lower
bounds on the probability of individual manipulation via a random change in the
preference order, again under IC. These results yield (weak) lower bounds on
Fy(1) that decay polynomially im and exponentially imn; they are more closely

related to the bribery analogue ©f

1.6.3 Complexity measures

Another way to measure hardness of manipulation is by computational complex-
ity, in particular NP-completeness, and this has led to active research in recent
years such asbf, 55, 56, 57, 58, 59, 48, 60]. The computational difficulty of
manipulation is studied firstly in6[l]. Faliszewski et al. have given a survey in

computational aspect of strategic manipulati6g] |

One feature of this stream of research is that it deals not with manipulation as nor-
mally defined, but with a weaker problem, namely thatvoiner determination
orterminating preference elicitatiofihardness results for this model automatically
imply hardness results for manipulation, but not vice versa) . ASseft sincere
voters with preferences is given, as is a’Betf potential manipulators, who have

no preferences. The question is whether the result of the election with electorate
S can be changed by the addition of the voters frénfwho may vote in any

way they choose). Note that if it is possible fbrto influence the result in some
way, then starting from this new result and then abstairiihgan also change the

result. For scoring rules, this means that the membeffS cdn also change the

49



Chapter 1. The Manipulability of Voting Rules

result by changing their votes. Hen€as a coalition “worthy of bribery”. Thus if

the subsef’ is not given, then finding it is equivalent to theit bribery problem
[22].

When voters are weighted, several manipulation and bribery problems become
NP-hard even for fixedn [57]. A more serious issue with complexity results

is that several recent papers such &k B3] have given evidence that although
manipulation problems may be NP-hard in the worst case, these problems are
polynomial-time to solve in practice. It is true that these results do not directly
yield strong results o)), being based on a different model of manipulation, but
they do suggest several conjectures (as well as proving results for the an@logue

of Q) for bribery).

In the standard unweighted case considered in the present article, almost all ma-
nipulation problems are solvable in polynomial time unkesis unbounded. Thus
unweighted complexity results have little relevance to traditional applications of
social choice theory to politics and economics, although they may well be impor-

tant in newer areas such as search engine aggregation.

Menton and Singh have a survey of voting rules which are NP-hard for unweighted
coalitional manipulation for a constant number of manipulators and polynomial in

winner determinationssy].

When coalition is small, it cannot change the result but when it is large enough,
there is a phase transition based on the fixed number of candidates. The phase
transition of manipulation is discussed by several authors independ6Btig4,

47, 46, [31], [19]. Recently, Mossel et al. have studied the phase transition of the

coalitional manipulation problem for generalized scoring rut&$. [
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[68] has considered a survey on the complexity of manipulation and control. The
vulnerability of elections to control by adding or deleting votes is studie@% [

The complexity of winner determination and control problems is discuss&@)in
Computational complexity of control is also studied #i]. Margin of victory is
discussed in12]. Faliszewski et al have studied control and bribery for Copeland

in[9, 73],

1.7 Extensions and future work

There are several obvious directions in which to extend the work of the present
chapter. These all relate to asymptotic results, which are most easily obtained
under the IC hypothesis, and we restrict to that case here. For scoring rules, the
probability of manipulability approaches 1 for all rules other than antiplurality as

n — oo, for fixedm.

A heuristic argument is as follows. The query process for largeclosely mod-

elled by a random walk im! dimensions, starting at the origin. Each step corre-
sponds to a new query and the transition probabilities are equal for each direction.
The walk terminates when it hits the polytope defining manipulability, and this
should happen with high probability in ordgfn steps. This leads to the con-
jecture: there is a constaat depending onn and the rule such tha < CM
asymptotically almost surely as — oo. Thus for scoring rules manipulating
coalitions of size close to the possible minimum should be fairly common, and
how common they are is measured®y It may also be true more generally for
other voting rules, although clearly there are rules for which it is false (for ex-

ample, consider a rule that fixésvoters and lets them decide the result using

51



Chapter 1. The Manipulability of Voting Rules

plurality, no matter what the other voters do - in this ca$es at most2 but
should be of orden). A weaker conjecture would be th@t < C'n wherey is the
size of the smallest minimal coalition found by the query process, as described in

Sectionl.4.1

A related question is: when scoring rules are compared asymptotically on the
basis of(), are their relative merits the same as when compared on the basis of
M? We already know that the relative order induced\Byand ) can differ for

various smalk andk.

Our numerical results here and the results3§ fllow us to make some further

conjectures.

e Forfixedv > 0, Pr(Q < vy/n) tends to a limitg(v) asn — oc;

e g is a strictly increasing function with(0) = 0 and (for all scoring rules

except antiplurality)y(oo) = 1;

e Whenm € {3,4}, the minimum value o§’(0) is attained by the Borda rule
(“Borda is the most resistant to micro-manipulation”, and otherwise, this

position is held by thém /2]-approval rule).

We also conjecture that for IAC, the plurality rule dominates all other scoring rules

when measured b, for all n (at least forn = 3).

Our numerical results were only for the case= 3. In [33] it was shown that this
case is rather special for the asymptotic behaviouriofand that “steady-state”
behaviour sets in whem > 6. It would be interesting to investigate whether
the same remains true f@J, and it is also interesting to study the computational

complexity of measuré).
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1.8 Appendix: details from our studies withm = 3

1.8.1 Details of the algorithm implementation

The computer code used to generate the numerical results in this thesis, is avail-

able on request.

Whenm = 4 andn = 100, the number of voting situations exceeds*, and so
exhaustive enumeration of voting situations as above is practically impossible for
largen. In this thesis we present computational results only/fee 3, so as not to

have to resort to stochastic simulation. Even whegs- 3, some care is required.

For example whem = 100, the number of possible voting situations is nearly
108. Also for a fixed voting situation, the computation@fusing enumeration of

all types of coalitions for each can take time of ordet®. Hence small speedups
can make the difference between practical and impractical computation. We now

discuss some of these.

First, as mentioned above, we need only perform computation for those voting
situations for whichs(a) > s(b) > s(c) ..., because of our tie-breaking conven-
tion. This means that each such voting situation is weighted by the size of its orbit
under the symmetric group of permutations of the candidates. This size divides
m/!. The probability of a given voting situation under IAC(iSf’) _1, while proba-

!

bility under IC of the voting situatio(n,, . .., ng) is a1+ We use this also

6"nq1!ng!-n

to weight the voting situations above appropriately.
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Scoring rules

Our algorithms described above work particularly wellfor= 3. We give details

for one special case, other cases being very similar (see Tabknd 0] for

more details). Suppose that the three candidaties: have sincere scorega) >

s(b) > s(c). The variables:,, z, correspond respectively to the number of voters
of type bac andcba, while the variableg,, i, to bac andbca. We also have the
equality constraint; +z» = y; +y2. The sincere scores are expressed in terms of
linear combinations of variables that give the parts of the composition that is the
voting situation. The restrictions on the sincere scores above yield two inequalities

between these scores.

As described in Sectioh.4.2we can omit the linear system entirely, since by the
use of the lookup table of minimal manipulating coalitions we only test whether
a subset is a minimal manipulating coalition or not. We know that such coalitions
must consist only otba and bac voters, all of whom vote insincerely dsa,

or only of bea voters, all of whom switch teba. Thus we need only make the

relevant switch in votes and compute the new election result.

The scores after manipulation are expressed as:

s(a’) = s(a) + (y1 — x3)wz + (y2 — Ta)ws — Tews
s(b') = s(b) + (y1 — x3)wi + (Y2 — T4)w) — TeWo

s(c') = s(c) — (y1 — w3)ws + (y2 — T4)ws — Tew:

and two more inequalities result from these. If we eliminate ong of, using
the equality constraint, we obtain an integer linear programming problemdwith

variables and constraints.
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Table 1.4: Different types of manipulation: scoring rules= 3.

Sincereoutcome | Manipulated| Pos- Coalition
outcome sible?| membetypes

s(a) > s(b) > s(c) | bwins Yes bac, cha
a,btie Yes bac, cba
c wins Yes cab, bca
a, ctie Yes cab, bca
b, ctie No
3-waytie No

s(a) = s(b) > s(c) | awins Yes abe, cab
b wins Yes bac, cba
c wins No

s(a) = s(b) = s(c) No

Copeland’s rule

The details above for scoring rules carry over almost completely to Copeland’s
rule (we have omitted details, but they are routine to verify). The types of ma-
nipulations shown in Tabl&.4 are the same. The difference is that a coalition of

bac andcba voters has a dominant manipulating strategy, namely for them all to
switch tocba. The linear system interpretation also holds, provided we use the

Copeland score instead of the positional score.

One simplification we can make is that whens odd, under our random tie-
breaking assumption, Copeland’s rule is never manipulable. This is easily verified
as follows. In each pairwise contest, there cannot be a tie. So without loss of
generality the Copeland scores are 2,b : 1,c : 0ora : 1,b : 1,c¢ : 1. In

the second case no voter has incentive and power to manipulate according to our
definition. In the first case any manipulating coalition must increase the score of
eitherd or ¢ (or both) relative ta:. Thebac voters have power by votinga, but

this only helps:, so is not preferred. Theb voters have power by votinga, but
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cannot change the winner.

1.8.2 Additional numerical results

We collect here some basic values@®@fto enable comparison of the graphs in

Sectionl.4.3 We also graph/ whenn = 32.

Table 1.5:Pr(Q < k) for n = 32 under IC

[ n k] plurality | (31,00 | Borda | (3,20) | (10,9,0) | antiplurality| Copeland]
32| 1] 0.0622452 0.0709853| 0.0818004| 0.0762216| 0.0516847, 0.084842 | 0.0189515
32| 2] 0.116312| 0.124421 | 0.136257 | 0.132179| 0.0943801 0.147295 | 0.0373838
32| 3| 0.164568 | 0.169929| 0.181409| 0.180549| 0.132563| 0.195052 | 0.0552198
32| 4] 0.208212| 0.211586| 0.223018 | 0.225521| 0.16763 0.232952 | 0.0723872
32| 5] 0.247915| 0.250851| 0.262945| 0.268256| 0.20007 0.26403 | 0.0888203
32| 6| 0.284158| 0.288264 | 0.301659| 0.308993| 0.230108| 0.290186 | 0.104461
32| 7] 0.317369| 0.324062| 0.339131| 0.347779| 0.257907| 0.312615 | 0.119258

Table 1.6:Pr(Q < k) for n = 32 under IAC

[ n[k][ plurality | (3,1,0) [ Borda | (3,2,0) [ (10,9,0) | antiplurality] Copeland |
32| 1| 0.0163955| 0.0263586, 0.039171| 0.0415325| 0.0371333 0.0669051| 0.0029835
32| 2| 0.0311806| 0.0448672 0.0633464 0.0704502 0.0693989 0.112552 | 0.00599814
32| 3| 0.0448065| 0.0610597| 0.0838489 0.0960968 0.0998481] 0.149296 | 0.00904392
32| 4| 0.0574015| 0.0763073] 0.102983| 0.120294 | 0.129006 0.18138 0.0121186
32| 5| 0.0690667| 0.0910389 0.121394| 0.143487 | 0.156969| 0.210501 | 0.0152196
32| 6| 0.079941| 0.105418| 0.139293| 0.1658 0.183747| 0.237398 | 0.0183441
32| 7| 0.0901798 0.119519| 0.156744| 0.187277| 0.209326| 0.262402 | 0.0214889
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Chapter 2

The Probability of Safe

Manipulation

2.1 Introduction

For common social choice functions, the probability that a single individual can
succeed in changing the election result under commonly used preference models
converges to zero as the number of voters, tends t@. Thus the question of

coalitional manipulation is more interesting.

Coalitions must be of fairly large size in order to manipulate effectively. For ex-
ample, under the IC hypothesis (uniform distribution on profiles) the manipulating
coalitions are typically of ordey/n, while they can be considerably larger under
other preference distributiond§, 47]. Thus the question of coalition formation
becomes important, because there are substantial coordination difficulties to be

overcome in order to manipulate successfully.
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In the previous chapter, we studied the query sequence model for forming a manip-
ulating coalition. In this chapter we study another model for coalition formation
which was proposed by Slinko and Whi#&]]. In this model a “leader” publicizes

a strategic vote and voters sharing the leader’s preference order decide whether to
follow this strategy or vote sincerely. As a topic for further researtd,|[sts the

study of the probability that such an attempt succeeds sometimes and the coali-
tion members never fare worse than with the sincere outcome. In this chapter we
study this topic for a well-known preference distribution, namely the Impartial

Anonymous Culture.

2.2 Definitions and basic properties

Letm > 1 be an integer and let' be a set of sizen, the set ofalternatives(or
candidateys Letn > 1 be an integer and lét be a set of size, the set ofagents

(or voterg. Each agent is assumed to have a total order of the alternatives, the
agent’spreference order An agenta strongly prefersalternativei to alternative

j if and only if 7 is strictly abovej in a’s preference order; if we also allow the
possibility: = ;5 then we just use the terprefers There areM := m! possible

such preference orders, which we dgfpes We denote the set of all types @y

and the set of all agents of typeoy V;. A multiset from7" with total weightn

is avoting situation whereas a function taking to 7" is aprofile. Each voting
situation corresponds naturally to several profiles, corresponding to the different

permutations of the multiset.

Let F' be a social choice function, a map that associates an eleméhtméach

profile. If this map depends only on the voting situation, then the rule is called
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anonymous

In the following definitions it is assumed that agents not mentioned continue to

vote sincerely.

Definition 2.1. A voting situation isnanipulablaf there is some subséf of vot-
ers such that, if all members of vote insincerely, the result is strongly preferred
by all members oK to the sincere outcome. Such a &ets called amanipulating

coalition

A voting situation issafefor voters of type if there is some typ€ such that for
all z with 0 < = < n;, whenever: agents of type change their vote t¢/, these

agents weakly prefer the resulting outcome to the sincere outcome.

A voting situation issafely manipulableby voters of type if it is safe for them,
and there is some value offor which the agents concerned strongly prefer the

resulting outcome to the sincere outcome.

There are three main points in the definition of safe manipulation:

¢ the manipulating coalition consists only of voters of a single type;
¢ the manipulating strategy is the same for all coalition members;

¢ the size of this coalition is unknown and there must be no risk of obtaining
a worse outcome than the sincere one (through “undershooting” or “over-

shooting”).

Overshooting occurs when the following situation holds. If some number

change front to ¢/, the result is strongly preferred to the sincere one, but if some
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numbery > x change, the sincere result is strongly preferred to the latter out-
come.Undershootingis the same, but witly > = replaced by < x. Examples
in [74] show that both phenomena can occur. In fact they can both occur in the

same voting situation as shown by the following example.

Example 2.2. Letm = 5 and consider the voting situation withvoters having

each of the possible preference orders, except the argiet5 which has4 vot-

ers. The scoring rule (see Secti@r8 for definitions if necessary) with weights
(55,39, 33,21, 0) yields scores that induce an overall ordering345 (meaning
candidate 1 wins, candidate 2 is second, etc). Consider voters obsjpeé and

the strategy of voting5241. If 1 voter switches to this strategy, the new winner

is candidate2; if 2 voters switch, then the new winner is candidaté 3 voters
switch, the new winner is candidate This shows that undershooting and over-
shooting can be possible for the same type and choice of insincere strategy in the

same voting situation.

Remark 2.3. We can consider a game in which the §eof types of voters is
partitioned into two subsets”, 7. The setl” consists of all types of voters
whose only action is to vote sincerely, while voters corresponding to tyggs in
have all possible votes open to them (we do not allow abstention). In the case
whereT” = () and this is common knowledge, we have a fully strategic game. A
situation is manipulable if and only if it is not a strong Nash equilibrium of this

game.

WhenT" = T; for some fixed typé&;, there is a different game that is easier to
analyse. A situation is safe for membersiofif and only if there exists a pure
strategy that weakly dominates the sincere strategy, and safely manipulable if and

only if there exists a pure strategy that dominates the sincere strategy.
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Remark 2.4. Note that for each type of voter that ranks the sincere winner low-
est, every situation is safe (in fact a stronger statement is true: such voters have
nothing to lose by strategic voting, no matter whatand 7" are). On the other

hand, types that rank the sincere winner highest can never manipulate.

2.3 Algorithms and polytopes

We restrict to scoring rules. However the method described works more generally

(for some rules, much more care may be needed when considering ties).

Scoring rules

Definition 2.5. Letw = (wy, ..., w,,) be such that ally; > 0, w; > wsy...w,
andw; > w,,. Thescoring rule defined by gives the following score to each

candidatec:

|C| - Z ntwr(c,t)

teT
wherer(c, t) denotes the rank efaccording to type. The candidates with largest
score are the winners. The scores giveagial orderingof candidates (the value

of the associated social welfare function).

Remark 2.6. If a tie occurs for largest score, then a separate tie-breaking proce-
dure is needed in order to obtain a social choice function. This can be a difficult
issue, but fortunately when considering asymptotic results under IAC as in this
thesis, we do not need to consider it further. This is because the set of tied situa-

tions has measure zero in the limitas— oo.
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We now impose an order on the candidates, and wirite= {c;,co,...,¢m}-
The types are then identified with permutations{of. .., m} and can be writ-
ten in the usual way. We describe the scores bystt@eboard the tuples =
(le1l, - - -, |em|) Of scores. The group of types acts on the scorebaavih per-
muting candidates and we denote the actiort oh w by w!. In terms of our

current notation, we have

-1
S:E nw .

teT

Example 2.7.Letm = 3 and consider the voting situation in whiélagents have
preference ordeB12 and2 agents have orde?13. Under the plurality rule given
byw = (1,0,0), the scoreboard i$0, 2, 6) and c; wins, the social ordering being
321. Under the Borda rule given b2, 1, 0), the scoreboard i$8, 4, 12) and the
order of second and third place is reversed, the social ordering bgiagUnder
the antiplurality rule given byv = (1, 1,0), the scoreboard i$8, 2, 6) and social
ordering is132. There is no weight vector for whieh can win, asc; always has

a higher score.

Without loss of generality we assume from now on that the sincere social ordering

Is123...m.

2.3.1 Whent and t’ are specified

Fix typest andt’ until further notice. We now describe the seof safely manip-
ulable voting situationss' is the union J,.. S;, wheres, is the set of situations
that are safely manipulable by voters of type This can be further refined to
S = Ut#, Si wheresS, » is the set of situations that are safely manipulable by

voters of typet using strategy’.
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To describeS; v+, we use the following basic observations.

Let z denote the number of members in a coalition of tyméno vote insincerely

and suppose they voteé Then the new and old scoreboards are related by

s —s=u= (w(t,Vl — wrl) )

For brevity we refer to those candidates ranked above candidayeagents of
typet asgood and those ranked belowasbad. For example, whem = 3

and the social ordering i3, then according to an agent of typ&3, ¢, is good
andcs is bad. The new outcome is preferred by typagents if and only if no
bad candidate is the new winner. It is strongly preferred if and only if some good

candidate is the new winner.

Proposition 2.8. Whenm = 3, undershooting can never occur, and overshooting

occurs if and only if some bad candidate wins whea n;.

Proof. First note that as a function af, the differences in scores of each al-
ternative between the sincere and strategic voting situation are (linearly) either
increasing or decreasing. Thus if candidaie above candidatgfor somex but

below for some larger value af, it will remain below for all even larger values of

x. For typesl23 and132, no better result can be achieved by strategic voting; for
types231 and321, no worse result. The only other cases are tyJigsand312.

In each case there is only one good and one bad candidate: once one overtakes the
other and the sincere winner, it stays ahead and cannot be subsequently beaten by

another candidate of the opposiype. ]
Proposition 2.9. The following algorithm solves the decision problem for safe
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manipulation for scoring rules, and runs in polynomial time provided the tie-

breaking procedure does.

Let|c|, denote the score of candidatevhenz agents have switched fromo ¢/,

and letL be the set of points of intersection of the graphs of the functions|c|,.

for 0 < z < ny. Sort the elements df. For each interval formed by successive
elements, compute the maximum sd@ref all bad candidates, and the maximum
scoreG of all good candidates. IB > G for any interval (orB = G and the tie-
breaking procedure says that a valid manipulation in favour of a bad candidate

has occurred) then safe manipulation is not possible; otherwise it is possible.

Proof. The winner is constant on each interval, so we need only check one point
in each interval, plus endpoints to deal with ties. There are at most — 1) /2
intersections of the lines which are the graphs of the functions |c|, for 0 <
x < ny. The condition on maximum good and bad scores can be checked for each

interval in time proportional ton. ]

Corollary 2.10. Whenm = 3, we need only calculate which candidate wins when

x = ny, and safe manipulation is possible if and only if the winner is good.

2.3.2 The general case

When at least one a¢fandt’ is not specified, there are obviously more possibilities,
and a brute force approach that simply tries each @aif) in turn will work.

However, we can clearly do better than this.

There are some values offor which S; is empty. This means that no matter

what the situation and the differences in the sincere scores, safe manipulation is
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impossible by typg. For example, every for which the sincere winnet is
ranked first has no incentive to manipulate. Other types have incentive but as we

see in Exampl@.11, S; may still be empty.

For thoset for which S; is nonempty, we can still remove strategiefor which

S 1s empty. Similarly, we can express the union definthgvith as few terms as
possible. This is done by discarding dominated strategies (in any particular voting
situation, even more strategies may be dominated, but we consider here those that
are never worth including for any situation). For example, any type that ranks
a bad candidate ahead of a good one is dominated by the type that differs only
by transposing those two candidates. Thus all good candidates should be ranked
ahead of all bad ones. The sincere winner should not be ranked ahead of any good
candidate for the same reason. Furthermore, each strategy that does not allow
some good candidate to catch the sincere winner should be rejected, as should
each strategy that further advantages a bad candidate higher in the social ordering

over all good candidates.

Example 2.11(m = 3). Consider type12. The only possibly undominated strat-
egy that we need to consider, according to the above discussid2i.i¢iowever
321 cannot lead to successful manipulation, as it increases the sc@rarad not
of 3. Thus type312 cannot manipulate at all, let alone safely. Ty@8s,213 and
321 have respectively the strategi&sl, 231, 231 available.

Example 2.12.Whenm = 4, the strategies that are worth considering in some
situation are as follows. For any type starting withonly the sincere strategy. For
any type ending with, any strategy that keefsat the bottom. For types starting
41, only the sincere strategy; for types startifg, any strategy that lower$

while keeping at the top and not promoting; for types starting21, any strategy
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that lowersl1, keeping first. For types ranking third, transpose the two good

candidates.

When there are very few distinct entriesin there are many fewer strategies

to consider. The extreme cases are plurality=€ (1,0,...,0)) and antiplural-

ity (1,1,...,1,0)). For plurality (respectively antiplurality), safe manipulation is
possible by a typévoter if and only if it is possible by ranking some good candi-
date first (respectively some bad candidate last). The player is indifferent between
the different strategies satisfying this criterion (if the good candidate is fixed) and
the analysis does not distinguish between them, so we can assume that any such
voter uses a standard strategy that makes a chosen good candidate the favoured
one and orders the others by increasing value of index. Thus, for example, for

m = 3 under plurality we conside¥13 and312 as possible values fof.

We have so far expressef] in terms of a union ofS;» which is as small as
possible. However the terms in the union may not be disjoint. For example, with
m > 4 a voter of type ranking; last may use any of then — 1)! — 1 insincere

strategies that leave at the bottom (whem = 3 there is only one such strategy).

To compute the final probability of safe manipulation, we need to compute the
volume of the union of alb;. This union is in general not disjoint even far= 3,

as the following example shows.

Example 2.13.Letm = 3 and consider the voting situation wighagents having
preferencel 23, 2 having preferenc@31 and2 having preferencg821. Under the

plurality rule, the last two types can each manipulate safely.

We use inclusion-exclusion to compute the volume of the union. The number of

terms in the inclusion-exclusion formulads — 1 wherep is the number of types
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involved.

2.4 Numerical results

We restrict tom = 3 and some selected scoring rules including the commonly

studied plurality, Bordaw = (2, 1, 0)), and antiplurality.

For a situation in which the sincere resultli33, types123, 132 and312 cannot
manipulate safely. We need to deal with only the remaining types, each of which
has only one insincere strategy to consider. The linear systems in question are as

follows. We denotev; — w; by w;;.

The fact that 123 is the sincere result is expressefd,&4s> |ca| > |cs3|. This

translates to

0 < nqwia + nowig + N3way + Nywsy + Nswaz + NeWs2
0 < njwag + nowsy + N3wiz + ngwiz + Nswsy + NgWa
n; > 0 forall

n=mn;+---+ ng.

For type 213, safe manipulation is possible if and only the following additional

conditions are satisfied.

lca| > [c1| — ngwas

|ca| > |es| + nawos
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which simplifies to the following system.

0 > njwia + nowiz + n3wsy + Nawsy + NsWaz + NgWsa

0 < njwaz + nawsa + N3wiz + Nawiz + Nswsy + Newa

Every voting situation can be represented in this way up to a permutation of alter-

natives.

Thus the asymptotic probability under IAC that typi3 can safely manipulate is
given by the ratio of the volume of the “strategic” polytope to that of the “sincere”
polytope. A completely analogous method works for other types. The volumes

can be computed using standard software as describ&d,i8q].

The results for several voting rules are shown in Table The column labelled
“P(manip)” gives the asymptotics probability of a voting situation begin manipu-
lable (possibly by a coalition of more than one type) and was computed using the
methods in 20] (note that the results for plurality, antiplurality and Borda have
been computed exactly elsewhe8dl]). Note that the ordering of rules accord-
ing to their susceptibility to manipulation and the corresponding order for safe
manipulation differ. Also the entries in the last column, giving conditional prob-
abilities, are decreasing. This last fact is not surprising in hindsight and probably
not dependent on the culture IAC. For example, plurality allows only one type of
member in a minimal manipulating coalition, and such members have nothing to
lose, so manipulation is possible if and only if it is safely possible. At the other
extreme, only one type of voter can manipulate under antiplurality, but whether

this is safe or not depends strongly on the voting situation.

The Borda rule is often criticized for its susceptibility to manipulation. While it is
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Table 2.1: Asymptotic probability under IAC of a situation being (safely) manip-
ulable.

scoringrule | P(manip)| P(safely)| P (safelymanip)
plurality 0.292 0.292 1.00
(3,1,0) 0.422 0.322 0.76
Borda 0.502 0.347 0.69
(3,2,0) 0.535 0.330 0.62
(20,9,0) 0.533 0.264 0.49

antiplurality | 0.525 0.222 0.42

still the most manipulable here by both measures, it is clear that many manipulable
situations under Borda require unsafe manipulations. The plurality rule seems
the least manipulable when complicated coalitions are used, but its advantage
disappears when safety is considered. These results, which of course depend on
the particular distribution IAC, nevertheless indicate that when communication is

restricted, traditional ratings of voting rules may need to be revised.

Table2.2 shows the probability that a given rule is safely manipulable by all of
the individual types listed. We see for example that tgp2 has the most ma-
nipulating power under thg, 2, 0) rule, whereag31 and321 are strongest under
plurality. Note that, for example, there is an appreciable probability that both types
213 and321 can manipulate safely. If each proceeds, ignoring the other, the result
may no longer be safe. On the other hand, if bsth and321 try simultaneously

to manipulate safely, the cancellation effect means that they are less likely to be

disappointed.
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Table 2.2: Asymptotic probability under IAC of safe manipulation by various
types

scoringrule 213 231 321 213231 | 213321 | 231321 | 213, 231321
plurality | 0.0000000| 0.156250| 0.246528| 0.000000| 0.000000| 0.111111] 0.000000
(3,1,0) 0.178369 | 0.086670| 0.216913| 0.000080| 0.104229| 0.053084, 0.000067
Borda 0.225000 | 0.047950| 0.196759| 0.000033| 0.093542| 0.027400, 0.000024
(3,2,0) 0.239297 | 0.020019| 0.152812| 0.000007| 0.070438| 0.010926, 0.000005
(10,9,0) 0.234375| 0.001687| 0.051107| 0.000000| 0.022681| 0.000866, 0.000000

antiplurality | 0.2222222| 0.000000| 0.000000; 0.000000/ 0.000000| 0.000000, 0.000000

2.5 Further discussion

The uniform distribution on profiles (the Impartial Culture hypothesis) has been

used in many analyses in voting theory, because of its analytical tractability. How-
ever, for the asymptotic study of safe manipulation it seems less useful. This is
because under IC for scoring rules, much weight is placed on situations that are
nearly tied: a typical situation has almost equal numbers of each type, and the dif-
ferences between the scores are of okder Thus as. — oo the probability that,

for example, a voter of typ821 can safely manipulate will approadhrapidly,

while the probability that a typ213 can do so will approach rapidly.

The inclusion-exclusion procedure used is probably exponential, isince the
numberp of types used seems to grow linearlyrin(we have not formally proved

this). Thus a better algorithm is needed for large

The argument of SectioB.3.2involves a monotonicity property that should be
satisfied by more than just the scoring rules, but we have not pursued such a

generalization here, leaving it for possible future work.

The literature on safe manipulation is very small still - our literature search turned
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up only one preprint of unknown publication status, dealing with complexity is-
sues (though a similar idea was apparently use@hwithout explicit mention).
However the basic model is attractive and some obvious generalizations should
be investigated. For example, we can use a probability distribution to model the
number of followers, instead of considering the worst case outcome, and thereby
consider whether strategic voting even with lack of coordination can lead to better

outcomes in the sense of expected utility.

72



73



Part Il
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Chapter 3

An Introduction to Voting Games

3.1 Introduction

In the previous chapters we discussed naive manipulation in which just a coali-
tion of manipulators vote strategically and the others vote sincerely. However,

a natural question that arises here is that what will happen if all voters behave
strategically and all of them know that too. In this case the strategy of each agent
depends on the strategy of other agents. Game theory is a useful tool in interactive
decision theory. The cooperation and conflict of self-interested and autonomous
agents can be modelled mathematically in the game-theoretic study of voting sys-
tems. Self-interested agents do not necessarily want to hurt each other, or even
that they care only about themselves. Instead, it means that each agent has his
own description of which states of the world he lik&§][ This can include good

or bad things happening to the other agents and he tries to bring about these states
of the world. This analysis can be considered for two different purposes: as a

mechanism designer for analyzing the behaviour of people in the system and us-
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ing those information for designing the system, or as a player for finding the best
response against the action of the other players. From one perspective, games are
either simultaneous or sequential. We are going to dissuissltaneousvoting

games in which voters act simultaneously. If voters do not play simultaneously,
we have ssequentialgame. Another way of categorizing games is to divide them

to cooperative and non-cooperative. lan-cooperativegame theory the basic
modelling unit is the individual (including his beliefs, preferences, and possible
actions). Incooperativevoting games, players are able to form binding commit-

ments. We are going to study the non-cooperative models of voting games.

3.2 \oting game

Definition 3.1. A normal or strategic form gameonsists of:

e N, afinite set oplayers
e For each playeri € N, a finite set opure strategiesS;,

e For each playeri € N, a payoff function u; that specifies a utility value
for each profile of pure strategies,...,s;,...,s,). The range of this
function is normally the set of real numbers, where the number represents
a cardinal utility. However, in our model, the payoff function is the ordinal

utilities given by the voters’ preferences of that profile.

In voting games, the set of players are voters, states, special interest groups, or
politicians. Each player’s action is his vote or decision, and his strategy deter-

mines his action. One kind of strategy is to select a single action and play it. Such
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a strategy is called pure strategy. Players could also follow another (less obvious)
type of strategy which is called mixed strategy: randomizing over the set of pos-
sible strategies according to some probability distribution. Note that pure strategy

is a special case of mixed strategy.

A dominated strategy is a strategy for which there is some other strategy that is
always better whatever the other players are doing . A strategjyicsly domi-

nant when no matter how the other players may play, it is the best strategy. For
example, in elections with 3 candidates and approval voting, the dominant strat-
egy is to vote for the most desirable element and voting for the least desirable
candidate is dominated7]. A game isdominance solvablef iterated removal

of dominated strategies ends in a unique equilibrium which is a reasonable guess

for what will happen if we have rational players and complete informafi&h [

Definition 3.2 (Nash equilibrium). A Nash equilibrium is a list (profile) of strate-
gies of all players, from which no player is willing to deviate unilaterally. In other

words, the profilds;, ..., s% ) is a Nash equilibrium if

Vi e Nand Vs; :

*

Wi(STy ey STy ey Sh) = Ui (ST, vy Siyoeey SN)

Theorem 1(Nash Theorem)At least one (mixed strategy) Nash equilibrium ex-

ists in a non-cooperative game with a finite set of actions.

Nash equilibrium is a stable situation when there is no voter who has motivation
to deviate unilaterally. If a strictly dominant strategy exists for one player , that

player will play that strategy in each of the game’s Nash equilibria.
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A voting rule isstrategy-proof if for all possible profiles of preferences, “every
one votes sincerely” is a Nash equilibrium. In other words, if all voters behave
sincerely, no voter benefits by being insincere. However, as we discussed in Chap-
ter 1, the Gibbard-Satterthwaite theoreif 8] shows that for each nondictatorial
social choice function allowing unrestricted preferences of votersrovaterna-

tives (m > 3) and such that each alternative can win in some profile, there always
exists a profile which is unstable. In other words, in the voting game with ordinal
utilities given by the voter preferences of that profile, the strategy where all vot-
ers express their sincere preferences may not be a Nash equilibrium. Therefore,
there exists at least one strategy profile where one voter has incentive to deviate

unilaterally by expressing an insincere preference.

Strategic voting is clearly a question of game theory. However, it has still been
little studied from this viewpoint, perhaps since its main questions go beyond the
Nash equilibrium concept (which applies only to individual manipulation). So
far most of the studies in the area of computational voting game are dealing with
the cooperative models of coalitional voting games or the complexity analysis of
relevant solution concepts (e.g. Nash equilibriur8]] such as, exploring the
voting power of coalitions in weighted voting games (e.g. weighted threshold
games) 80, 81, 82], the compact representation of such games or studying the

complexity of the core and Banzhaf and Shapley val88k [

A start has been made in filling the gaps between that case and the classical game
theory situation of full common knowledg&4]. The game-theoretic study of
strategic manipulation is discussed 84 85, 86, 87, 88, 89]. The aims and ob-
jectives of these papers are to define a proper model for a voting game and to find

the equilibrium outcome. Beside Nash equilibrium, other solution concepts are
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studied in this context such as correlated equilibri@®] pnd regret minimiza-

tion [91].

Correlated equilibrium as a signalling device tells each player about the strategy
that he should choose (it gives a joint probability distribution over the set of out-
comes). However, they are not informed about the outcome of the experiment,
and they may choose to follow or not according to their utility function. Regret
minimization is a relatively new solution concept. In this solution concept, each
voter does not know about the other players’ actions and he just tries to choose a
strategy that ensures that he has done reasonably well compared to the best possi-
ble action without paying attention to the other players’ actions. In fact the regret
of each action represents the utility difference of the best possible outcome and
that action. The quality of solution concepts has been measured in some papers
by the price of stability and the price of anarchy e.g. 92,[93]. The price of
stability and anarchy are the best and the worst possible ratio between the cost of

an outcome at Nash equilibrium and that of an optimal one.

Predicting the result of the game is challenging, as voting games can have many
equilibria. Therefore, we are interested in studying how we can omit some of the

possible equilibria and reach a unique equilibrium. We concentrate on best reply
voting games and study the convergence of dynamic process in CHapieée

study the factors that influence this convergence.

One important factor which has significant effect on the strategies of players in
voting games is the available amount of information. Complete information mod-
els where the preferences are common knowledge among the voters are more
common in this area. However, recently there are more papers studying partial

information models such a84, 95, 96, 97]. Poisson model for population uncer-
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tainty is discussed ir9@].

We study the effect of information by introducing a new model of voting games
in Chapter5. In this model voters achieve partial information via a series of
pre-election polls, and also each voter has some uncertainty about the announced

result of polls. We study the different distributions of uncertainty for plurality

voting games.
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Chapter 4

Best Reply Dynamics for Scoring

Rules

4.1 Introduction

The strategic misrepresentation of a voter’s true preferences, as a way of obtaining
an outcome preferable to that which would be expected by voting sincerely, dates
back thousands of years. The amount of information available to voters and their
ability to communicate influence voter’s behaviour greatly. Here we consider the
case in which all players behave strategically, but coalitions are not formed. The
natural setting then is that of a normal form game with ordinal preferences, or

more generally a game form.

The voting games of this type have enormously many Nash equilibria and are not
necessarily dominance solvab&7[. Eliminating dominated strategies is not also

helpful because typically far too many equilibria remain for the Nash equilibrium
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to be a credible prediction. Other refinements such as strong and coalition-proof
Nash equilibria may not always exi€9]. One natural direction of enquiry is to
consider best-reply dynamics, where players take turns in moving myopically in
response to previous moves by other players (these moves are pure strategies of
the associated game). For many games this process leads to convergence (neces-
sarily at a pure Nash equilibrium). It can also be interpreted in the voting context
as a method of reaching consensus, and is in fact used in this way in some ap-
plications such as Doodle (for scheduling). According to Fudenberg and Levine
[10Q, in some cases, most learning models do not converge to any equilibrium
and just coincide with the notion of rationalizability, but if best-reply dynamics
converges, it necessarily finds a NE. Therefore, the question that arises here is in
which cases these best-reply dynamics converge for voting games. To our knowl-
edge, in the voting context the first paper to discuss best-reply dynamid3lis [
which concentrated on the plurality rule. The authors considered the effect of ini-
tial state, tie-breaking rule, the players’ strategy and weights on convergence. The
results show that this definition of best reply, even for such a rule which restricts
voter expression severely, is too general to guarantee convergence. Sequential
and simultaneous voting games for plurality with abstention have been discussed
in [88]. For the sequential case, they provide a complete analysis of the setting
with two candidates, and show that for three or more candidates the equilibria
of sequential voting may behave in a counterintuitive manner. The strategy of
each voter depends strongly on the information he has about the other players’

preference orders.
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4.1.1 Our contribution

A natural extension of][0]] is to consider general positional scoring rules, which

we do. We find that non-convergence occurs much more often in this case, as
might be expected because of the much larger strategy spaces involved. For
the antiplurality (veto) rule, which restricts strategy spaces as much as plurality,
we give a complete analysis and show convergence under rather general condi-
tions. We also give unified simple proofs for plurality and antiplurality and give
more details on the boundary between convergence and nonconvergence when tie-
breaking methods are considered. We study cycles in the scoring rules between
plurality and antiplurality. For a general scoring rule, the order in which players
respond in the best reply dynamics influences the convergence considerably. Our
results show that some tightening of the definition of best reply is indeed required
for convergence for plurality and antiplurality. However, a natural extension of

this tighter definition to general scoring rules fails to guarantee convergence.

4.2 Problem description

4.2.1 \Voting setup

There is a se€’ of alternatives (candidates) and a 8ebf players (voters), with
m := |C|, n := |V/|. Each voter has a strict total order on candidates, the pref-
erence order of that voter, denoted This defines the séf of types of voters,
and|7| = m!. The function mapping — o, is the profile. A voting rule (or
social choice correspondence) that maps each profile to a nonempty subset of

(the winner set).
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For a voting ruleR, we study the gamé&'(V, C, R) where each voter submits a
permutationr, of the candidates as an action. The set of pure strategies available
to voterz, S;, consists of then! possible types. In other words, a voter can report

a preference order, which may not be his sincere one. We denote the sincere
profile and the profile at time respectively byp, andp;,. We order the types

lexicographically, based on a fixed order of candidates.

A voting situation is a multi-set fromT" with total weightn. For anonymous
rules (those invariant under permutations of the voters), the voting situation gives
a more compact description than the full profile, with no loss of information.
For example, if we have 3 candidates) and ¢, and 4 voters with preference
ordersabe, bea, cab andbca, the voting situation coinciding with that profile is

(1,0,0,2,1,0).

A voting rule (or social choice correspondence) is a mapping taking each profile
to a nonempty subset @f (the winners). A voting rule isresolute (or a social

choice function) if the set of winners always has size

Thescoring rule determined by a weight vectar with

l=w 2wy =22 wy_1 2 w,, =20

assigns the score

s(c) := Z {v e Vim, =t} wy,-1(c) 4.2)

teT

to each candidate. For example, several well-known scoring rules are:

e Plurality: w = (1,0,...,0,0) in which each voter in effect votes for one
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candidate.

e Antiplurality (veto):w = (1, 1,...,1,0) in which each voter in effect votes

against one candidate.

e Borda:w =(m—1,m—2,...,1,0).

The winners are the candidates with the highest score. These rules allow ties in
scores and to make them resolute, we choose to use a deterministic tie-breaking
rule. However, for neutrality (symmetry between candidates) we need to consider

randomized tie-breaking.

4.2.2 Improvement step

Let p be a profile. Suppose that voterchanges his vote. We say this is an
improvement stepif p’ (the new profile) igreferred to p by voterv. The funda-
mental results on strategic manipulation initiated by Gibb@difid Satterthwaite

[8] imply that, provided the voting rule is resolute, under very mild additional con-
ditions (such as not being dictatorial), and provided that 3 andn > 2, some

agent in some sincere voting situation has an improvement step.

In order to describe improvement steps in more detail, we need to discuss out-
comes and payoffs (at least ordinal, if not cardinal). The obvious way to do this in
the case of resolute voting rules is to declare that the outcome in which the winner
is a is preferred by voter to the outcome in which the winnerasf and only if a

is higher tharb in v’s sincere preference order.

Example 4.1. (alphabetical tie-breaking) Consider the Borda rule, given by the

weight vector(2,1,0), and the voting situation with 2bc, 2 bac, 2 bca, 3 cab
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voters. The current winner i& If one of thecab voters changes asch, thena

wins. The new outcome is preferred by that voter because he puetiets

Stochastic dominance

In the case of multiple winners (or randomized tie-breaking), more assumptions
are needed. We unify the two cases by using the idea of stochastic dominance as
in[20]. This corresponds to a rather risk-averse model of manipulation, as we now
describe. It can be described in probabilistic language as follows. For each winner
set constructed by the voting rule, we have a uniform distribution on the candidates
in that set, and other candidates have probability zero associated with them. Voter
v prefers an outcome with winner st to an outcome with winner sét’”’ if

and only if the following condition holds. List the candidates in decreasing order
of preference for voter, and consider the probability distributions as described
above. We say thdl’ is preferred tdV’ if and only if for eachk = 1---m the
probability of electing one of the firgt candidates given outconi& should be

no less than givei/’. (If W’ = W the condition implies that this probability will

be strictly greater for somk).

Our definition of improvement step implies that, for example, a vote by a voter
with preferencéac which changes the winner set framto {b, ¢} is not an im-
provement. Of course, if we assigned cardinal utilities to outcomes, there might
be some voters for which such a move increases expected utility. In fact, it is eas-
ily shown that our definition above says that the probability distribution associated
with W first order stochastically dominates the distribution associatediWwitHt

is well known [L0Z that this is equivalent to requiring théit is preferred tdl”’
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in terms of expected utility, for all cardinal utilities consistent with the preference

order of the voter.

Example 4.2. (random tie-breaking) Suppose that in profilehe outcome is that
a andc tie as the winner, in profile’ the outcome is thdtis the absolute winner,
and inp” the outcome is that andb tie as the winner. The probability distribution
of winning on(a, b, ¢) is (1/2,0,1/2) for p, (0, 1,0) for p’ and(1/2,1/2,0) for
p”. Thus, takingt = 1 in the definition, we see that is not preferred tgp by a
voter with sincere opinionbc. Also, takingk = 2 shows thap is not preferred to

p’ either. Howevernp” is preferred to bothp andp’.

Other possibilities For example, 101] has considered the case where voters
have fixed but arbitrary cardinal utilities. This allows for situations in which more
moves are considered to be improvement steps than in our stochastic dominance

model above.

4.3 Best reply dynamics

We make the following assumptions in our analysis of best reply dynamics for

scoring rules.

¢ No fixed order for players’ turns: in fact, whichever voter has an improve-

ment step can move next.

e Myopic moves: Voters act as though each move is their only chance for
improving the result, regardless of considering any chance of changing in

the future.
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e Costly voting: if there would be no change in the winner set, no move is

made.

¢ Restricted best reply (RBR): we may have several improvement steps which
give the same outcome, in which case we choose the one that maximizes the

winning score margin of the new winner.

e Stochastic dominance-based improvement step for non-resolute rules.

All the assumptions except the last one are consistent with thosdih [The
fourth applies only for scoring rules, but the others make sense for all voting

rules.

Example 4.3. Consider the antiplurality rule with 2 voterg = {1,2} and 4
candidatesC' = {a,b, ¢, d}, alphabetically tie-breaking. The sincere profile is

po = (acbd, bacd). Vetoing candidate is represented by-c in the strategy profile

of voters. The number above the arrow represents the player who moves, and the

candidate in braces shows the winner. If voters start from sincere state, we have:
(=d,—d){a} = (—d, —a){b} — (~b,—a){c} = (—b,—c){a}

As you can see in the example, best reply is not unique, for example, the last move
by the second player can instead-bé. However—c (vetoing the current winner)

is what we call RBR for antiplurality .

4.4  Antiplurality

In this section we show convergence of best reply dynamics under rather general

conditions, for a very special scoring rule, namely the antiplurality rule.
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For the game&(V, C, A), sincew = (1,1, ...,1,0), we can without loss of gen-
erality assume thaf; = {—c|c € C'} (because subtracting the vectar1,...,1)

from the weight vector makes no difference to the outcome of the game or to the
differences in scores). In fact, there @&e—1)! possible orders that give the same

score. Thus, each improvement step can be written— —b whereb # a.

Remark 4.4. We define; as the winner set after the move of playeat timet.

For alphabetical tie-breaking this set is a singleton.

Analogous to the case for pluralit§ (1], there are 3 types of improvement steps.

Type 1l a ¢ O andb € 041

Type 2: a € o, andb ¢ o,

Type 3: a € o, andb € 0;_

Remark 4.5. It can easily be shown that if ¢ o, andb ¢ o,_4, this move does

not change the winner set. Therefore, it is not an improvement step.

Example 4.6. Suppose we have 2 voters and 3 candidates using antiplurality rule
with alphabetical tie-breaking. The sincere profilepis = (abc, bac). If voters
start from the sincere state, the current winneridf the second player changes
his vote from—c to —a, the winner switches ta According to our definition, it is

atype 1 move.

Some notations We define some notations that we use through the rest of the

paper.
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We writecr> ¢ if ¢ has a lower index (higher priority) thahin tie-breaking.

We write s(¢’) < s(c) if either s(¢’) < s(c¢) or s(c) = s(¢’) ande > ¢/(note

that it is not a logical notation, and we just use it for simplicity).

We use the symbal >; b when voteri prefers candidate to b.

We denote the score of candidatafter the improvement step at timdy

si(a).
e We use the notation —— y when voteri changes his vote fromto y.

Theorem 4.7. Suppose thata — —c is a type 2 improvement step at timjend
letb € 0o, 1. Then—a — —bis a type 3 improvement step leading to the same set
o;. Furthermore, in this case the margin of victory of the new winner will be more

than in the original case.

Proof.

After the improvement stepa — —c at timet, we have

si(a) = s;-1(a) + 1

si(c) = sp_1(c) — 1.

Sincea € o, (according to the definition of type 2) ahdec o, ; ands;_;(b) =

s¢(b), in alphabetical tie-breaking, we have

si(a) = s¢(b) = si(c) and si(a) = si(y) y € C\ {a,b} (4.2)
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If we had the improvement stepa — —b at timet instead, (we denote the score

in this case withs})

sy(a) = si(a) and s;(b) = s4(b) — 1;

si(c) = si(c) +1 and si(y) = si(y).

By substituting in Equation4(2), we haves;(a) = s;(y) for eachy € C. There-
fore, a is the new winner. For randomized tie-breaking, we can substiuby
>. Also, the margin of victory with a type 3 improvement step wouldslie) —

sp(b) = s¢(a) — s¢(b) + 1 which is more than the original margin(a) — s,(b). O

We now make a key definition of the allowed moves. Allowing type 2 moves can
lead to a cycle. An example for plurality has been presentetiGfi [Proposition

4). We present a similar example for antiplurality with 7 candidates and 10 voters
below. Suppose the sincere preference is

PO = (3251764, 4653721, 1245673, 4275631, 2541637, 6351472, 3765214, 7345261, 4561723, 6725134)
and voters start by voting sincerely. We present the first several iterations (symbol

¢ shows the stage from which the cycle becomes apparent):

(—4,-1,-3,—-1,-7,-2,—4, -1, -3, —4){5} -2 (=4, -5, -3, -1, -7, -2, -4, —1, -3, —4){6} -
(—4,-5,—6,—1,—7,—2,—4, -1, -3, —4){2} - (=4, -5, —6, -1, -7, -2, -2, —1, -3, —4){3} =
(—4,—1,-6,—1,-7,—2, -2, —1, -3, —4){5} > (=4, -1, -6, -1, 7, 2,2, —5,—3, —4){3} -
(—4,-1,-3,-1,-7,-2,-2,—5, -3, —4){6} == (—4,—1,-3,—1,-7, -2, -2, —1,-3,—4){5} =%
(—4,-1,-3,-1,-7,-2,-2, -1, -3, —5){6} — (-4, —6, -3, —1, -7, -2, -2, —1, -3, —5){4} -
(—4,-6,-3,—1,—7, -2, —4, -1, -3, =5){2} > (=4, -1, -3, -1, -7, -2, —4,—1, -3, —5){6} ——
(—4,-1,-6,—1,—-7,-2,—4,—1, -3, —5){2} - (—4,—1,-6,—1,—7,—2, -2, —1,-3,—5){3} ...

(_47_17_37_17_71_27_41_17_37 _4){5} <> .
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Definition 4.8. (RBR) A restricted best replys any improvement step of type 1
or type 3, in which the player making the step vetoes his least preferred member

of o,_, denoteds,_;.

From now on, we consider only improvement steps using restricted best replies.
It is also clear from the definition that no two consecutive improvement steps can

be made by the same voter.

Example 4.9. When voters start from the sincere initial state, and the sincere
scoreboard is a tie among all candidates, all improvement steps would be type
3 ones. Therefore, no improvement step can occur, as voters have already voted
against their least desirable candidate, and any change will allow that candidate

to win.

Definition 4.10. (set of potential winners The set of potential winners at time
t, W, consists of those candidates who have a chance of winning at the next step

(timet + 1), depending on the different RBR of voters.

Remark 4.11. If candidatec can win by type 1, it can also win by type 3 because
when a candidate can win without increasing its score, it is obviously still a winner

when its score is increased by 1. Therefore,

W, = {c | if some player moves-c — —b attimet + 1,then c € 0,41} (4.3)

4.4.1 Alphabetical tie-breaking

Lemma4.12.1f t < ' thenW, C W}.
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Proof. Consider an improvement stepn — —b at timet. According to Defini-
tion 4.8 0,_1 = b. Letc € W,_; andy € C'\ {a,b}. Then, by considering that

the scores of andy, Yy € C; y # a,b don’t change at time, we have:

si(c) +1=s1(c) +1 3= 5.1(b) — 1 = 54(b) (4.4)

si(c) +1=s5-1(c) + 1= si1(y) = se(y) (4.5)

If the improvement step is of type 3, then best reply— —b at timet gives the
same scores as the best reply — —b followed by —¢c — —a at timet + 1.

Therefores € W,.
If the improvement step is of type 1, l&t= o,. Note thatt’ ¢ {a,b}.

According to equatior4.5), fory = v/,

se(e) + 1 5= s (V) > s(0) — 1 (4.6)

According to the definition of winner,

s:(V') = si(y);Vy € C (4.7)

In particular fory = a,

si(c) + 1= s:(b) = s4(a) (4.8)

N
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Thus, by transitivity of>= (which follows from the underlying transitive lexico-

graphic order o), ¢ € W,. ]

A counter-example for an arbitrary deterministic tie-breaking rule Con-
sider a situation with candidatesb, c andx under the antiplurality rule. Sup-
pose the set of candidates with the highest score after round is {b, 2} and
si-1(a) = s4-1(c) = s4_1(b) — 1. Suppose further that the order of candidates in
tie-breaking is as followsh>>x andc> 2 andx > a anda > c. Based on Definition
4.8 ¢ € W,_;1. Consider a best repta — —b at timet. Ifitis a type 3 move
theno; = a andc is still in W;, as—c — —a makesc winner. Suppose the move
is of type 1 andb; = z. According to the tie-breaking rulé,>> z andc > z > a

but,a > c. Thus,cis not inTV, because-c¢ — —x does not make win.

Lemma 4.13. There is at most one type 1 move and each voter has atrmest

moves of type 3.

Proof. Suppose a stepa — —b is a type 1 move at time We claim this im-
provement step is the firstimprovement step. Ifitis not the firstimprovement step,
according to Definitior}.8, a has been a winner before. Therefardyas been in

the winner set in the past. In other words¢, : ¢’ < ¢t a = oy and thereforeq €

Wy . According to Lemmat.12 a € W,_; which means after improvement step
—a — —b at timet, a is a winner. However, this has contradiction with the as-
sumption of improvement step of type 1. Therefore, there is at most one type 1
move. According to the definition of improvement step, at every step’—> —b

of type 3, it must hold that ; b . Therefore, each voter has at most- 1 steps

of type3.
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Theorem 4.14.Restricted Best Reply Dynamics (RBRD)d4WV, C, A) with al-
phabetical tie-breaking will converge to a NE from any state in at mhest(m —

1)n steps.

Proof. If we haven voters, Lemmat.13implies that each voter makes at most

m — 1 moves of type 3 and there is at most one type 1enov ]

4.4.2 Randomized tie-breaking

Lemma 4.15.1f t < ¢’ thenW, C W}.

Proof. The proof is very similar to the alphabetical case (Lenmiri). Except,

we do not need to deal with tie-breaking. Therefore, we can substitute the notation
»= by >. For the second part of the proof where we consider a type 1 improve-
ment step, we can always find sucly'a To see this, note that according to the
definition of improvement step, the winner set should be changed and the score of
b decreases. Thereforcannot be the unique winner at timeas it results irb

being the unigue winner at tinte- 1, contradicting the definition of improvement

step.
]

Lemma 4.16. There is at most one type 1 move and each voter has atrmest

moves of type 3.

Proof. The first part can be proved in a similar way to Lemdni3 For the second
part, similarly, we show that ~; b if voter ; makes the type 3 improvement step
—a — —b. According to the definition of type 3 improvement stég o;_; and

a € o;. We definep(a) as the probability of winning of. Two cases can occur.

96



Chapter 4. Best Reply Dynamics for Scoring Rules

Case la € 0,

p(a) increases to 1 ang(b) decreases to 0. The probability of winning of candi-

dates in the set;_; decreases and for other candidates stay 0.

In this caseq becomes the unique winner at timeTherefore, according to the
definition of stochastic dominance improvement steghould be preferred to all

other elements of;_;.
Case 2a ¢ 0,1

i)b = 0,1 In this casep(a) andp(c) increases tg_5 andp(b) decreases from 1

to k—iz (assuming the number of candidateswhose score is 1 point behirds

k) and for other candidates it remains the same.

ii) b € o, therefore,p(a) increases ang(b) decreases anglc) stays the same.

Thereforen ; b, otherwise, it is not an improvemestiep. O

The analogue of Theoret14now follows.

Theorem 4.17.RBRD forG(V, C, A) with randomized tie-breaking, will con-

verge to a NE from any state in at m@st — 1)n + 1 steps.

Remark 4.18. The only part in the proof for randomized tie-breaking, where we
used stochastic dominance assumption of improvement step is for the bound on
type 3 moves. An example of cycle is already showrd@][for a fixed utility

case.

4.4.3 Who can win?

In this part, we describ@/; in more detail.
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W, =W uW}uw? (4.9)

whereW? is the level of winner set which includes the candidates who are tied
with the winner,IW! contains the candidates who can win by a type 1 move and
W? those who can win by a type 3 move and not a type 1 moveM,et s;(o;)
andd;(c) = M, — s.(c). In factd,(c) represents the score difference of candidate
c and the winner after move Therefore/¥° = {c | d(c) = 0}. The description

of the other two subsets is straightforward.

Proposition 4.19. For alphabetical tie-breaking,

Wl ={cl|d(c)=1c>; v €W} (4.10)

W? = {c| d(c) =2 and unique winner ana: > ¢; V¢ € W u W}, (4.11)

For the case of randomized tie-breaking,

W, ={c|di(c) <1ordi(c) =2 and there is a unique winnek. (4.12)

To obtain a better idea about who is really winning in practice at equilibrium, we
ran several simulation experiments with different initial profiles (sincere, random).
The numerical results suggest that in the cases with sincere initial state, the winner
set of equilibrium is contained iW,. However, this is not true when we start from

an arbitrary state.
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4.5 Plurality

The results in this section are completely analogous to those in subection 4.4, and
are quite similar to10]] but with easier proofs. We remove some details of proofs

as they are similar to previous section.

Definition 4.20. (RBR) For plurality rule, arestricted best replys any improve-
ment step of type 1 or type 3, in which

Type 1: a ¢ o, 1 andb € o,

Type 3: a € 0,1 andb € o,

The restricted best replies defined above are similar to the best repli#8lin [

where the phrase “better reply” is used for non-restricted best replies.

Remark 4.21. (set of potential winnersFor plurality also, we just consider the
candidates who can win by type 3 moves because of the same argument as an-

tiplurality. Therefore, the set of potential winners is

W, = {c | if some player moves— c anda € o, thenc € 0,1} (4.13)

4.5.1 Alphabetical tie-breaking

Lemma 4.22.1f t < t' thenW, C W,.

Proof. Consider an improvement step— b at timet. By the definition of best

reply in Definition4.20 b = o,. Letc € W,. Considering the new scores lofc
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andy, Yy € C; y # a,b we have:

si-1(c) + 1 =si(c) + 137 s¢(b) — 1 = s¢-1(b) (4.14)

si-1(c) +1=s(c) + 177 se(y) = se-1(y) (4.15)

If the improvement step — b is of type 3, then best reply — b followed by
b — c attimet + 1 give the same scores as best reph ¢ at timet. Therefore,

(S Wtfl.
If the improvement step is of type 1, let= o, _;; Note thata’ ¢ {a,b}.

According to Equation4.15), fory = d/,

si-1(c) + 13 si-1(d) (4.16)

According to the definition of winner,

si1(d) = si1(y); Yy e C (4.17)

In particular fory = a,

si-1(c) + 1= si1(d') = s4-1(a) (4.18)

Thus, by transitivity of:= (which follows from the underlying transitive lexico-

graphic order o), c € W,_;. O

Lemma 4.23. The number of type 1 moves is at moseind each voter has at

mostm — 1 moves of type 3.
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Proof. Suppose a step — b is a type 1 move at timeé We claima ¢ W,. If

a € W, thenb — a makesa winner but we knowh — a makesa’ win (the two
consecutive moves have cancelled out each other). Therefgrél;. According

to Lemma4.22 o ¢ Wy; Vt' > t. Therefore, the number of type 1 moves is
limited and equals the maximal set of potential winners which at most canmhave
elements. Also, as at every st@pi—> b of type 3, it must hold that -; a because
of the definition of improvement step, each voter has at mostl moves of type

3. []

Theorem 4.24. RBRD forG(V, C, P) with alphabetical tie-breaking will con-

verge to a NE from any state in at mest+ (m — 1)n Steps.

Proof. If we haven voters, Lemmat.23 implies that convergence must occur

with at mostm + (m — 1)n steps. O

4.5.2 Randomized tie-breaking

Lemma 4.25.1f t < ' thenW, C W,.

Proof. The proof is very similar to the alphabetical case (Lemh®). Except,
we do not need to deal with tie-breaking. Therefore, we can substitute the notation
»= by >. For the second part of the proof where we consider a type 1 improvement

step, we can always find sucla/aby similar reasoning as in proof of Lemmals

]

Lemma 4.26. The number of type 1 moves is at moseind each voter has at

mostm — 1 moves of type 3.
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Proof. The proof is very similar to Lemmé. 16by considering the differences of

Lemma4.23and4.13

]

Theorem 4.27.RBRD forG(V, C, P) with randomized tie-breaking will converge

to a NE from any state in at most + (m — 1)n steps.

Proof. If we haven voters, Lemmat.26 implies that convergence must occur

with at mostm + (m — 1)n steps.

O

Remark 4.28. The only part in the proof for randomized tie-breaking where we
used the assumption of stochastic dominance is for the bound on type 3 moves.
Note that an example is given ihQ1] showing that if we use fixed utility function,

and improvement is defined by expected utility increase, a cycle can occur. The
stronger definition of improvement step using stochastic dominance allows us a

general convergence result.

4.6 Counterexamples and interesting phenomena

Best reply dynamics for scoring rules other than plurality and antiplurality does
not necessarily converge. Each of the examples in this section starts from the

sincere initial state.

Example 4.29.(Cycle for Borda) Consider the sincere profile= (abc, bca) and

voting rule Borda and alphabetical tie-breaking.
(abc, bea){b} = (acb,bca){a} 2. (ach, cba){c} SN (abe, cba){a} 2, (abe, bea){b} <.
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Remark 4.30. The allowed moves in the previous example are reasonable for
restricted best replies with 3 candidates. Putting the desirable candidate (the new
winner) at the top and the current winner at the bottom maximizes the winning

score margin of the new winner.

Cycle for scoring rules “close to Plurality”:

e Suppose we have 3 candidate$ andc andp, = (abc, bca). The scoring
rule isw = (1, «,0); 0O<a < 5 and we use alphabetical tie-breaking.
(abc, bea){b} SN (ach, bea){a} 2, (ach, cba){c} L (abe, cba){a} 2,
(abe, bea){b} ¢

e generaln andn = 2

(ab---c,bc---a){b} SN (a---cb,bc---a){a} 2, (a---cb,chb---a){c} SN
(ab---c,cb---a){a} = (ab---c,bc---a){b} O

Cycle for scoring rules “close to antiplurality”: m = 3,n = 4 Suppose we
have 3 candidates b andc. The sincere profile isy = (abc, bac, cab, bea). Our

scoring rule i1, &, 0); 3 < a < 1 with alphabetical tie-breaking.
(abe, bac, cab, bea){b} — (ach, bac, cab, bea){a} - (ach, bac, cab, cba){c} SN

(abe, bac, cab, cba){a} 2 (abe, bac, cab, bea){b} ¢

Example 4.31.(Order of players matters) To understand the impact of the order
of players on the dynamics, we consider Borda rule with 4 voters and 3 candi-

dates. Supposg = (acbh, acb, cab, cba) and players start from the sincere state.
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The winner isc. The first player is not satisfied with the result and changes his
vote toabc to maken the sole winner. For simplicity, we show the moves of players

as below:

(acb, ach, cab, cba){c} —L (abe, acb, cab, cba){a} —2 (abe, ach, cba, cba){c} 2,
(abe, abe, cba, cba){a} SN (abe, abe, cba, bea){b} SN (ach, abe, cba, bea){1} -
(ach, abe, cba, cba){c} — (abe, abe, cha, bea){b} O

Notep, = p; and we have a cycle.

Now let’'s consider another order for the players. We start with another profile
coinciding withV = (0,2,0,0,1,1).

(ach, ach, cba, cab){c} — (abe, ach, cha, cab){a} SN (abe, ach, cba, cba){c} 2,
(abe, abe, cba, cba){a} > (abc, abe, bea, cba){b} —L, (abc, abe, bea, cab){a}
(equilibrium)

Thus, in contrast with previous order, we reach an equilibrium with this order of

players. 8 of 12 profiles coinciding with this voting situation do not converge.

Example 4.32(an example of cycle for 2-approval voting}onsider 4 candidates
C ={a,b,c,d} and 2 voters witlyy = {acdb, dbca} under 2-approval voting rule
with weight vectorv = (1,1,0,0). Players start from the sincere state and we
use alphabetical tie-breaking. Therefore, the sincere winner &s voters need

to approve two candidates we show the dynamic process as below:

(ac,db){a} = (ac,dc){c} — (ab,dc){a} = (ab,db){b} — (ac,db){a} O

4.7 Conclusion and future directions

A summary of results:
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e The upper bound of convergence for plurality in our papet is (m — 1)n.
However, it ism?n? in paper [LO1]. Our upper bound for antiplurality is

mn.

e The possibility of winning of a candidate depends on the type of improve-

ment step and also the candidate’s priority in tie-breaking.

e The number of type 2 moves is not bounded, so we need to use RBR for

convergence.

e We need to use stochastic dominance RBR for randomized tie-breaking for
plurality and antiplurality. Without this assumption we can have cycles, as

shown in [LO]] and [103.
e Convergence fails for some deterministic tie-breaking rules.

e The order of players influences convergence, the equilibrium result and also

the speed of convergence.

e We have examples of cycling for 2-approval.

During the writing of this paper, we noticed that Lev and Rosenschein have also
considered similar questions and have obtained quite similar re$08s How-

ever, our paper is completely independent from their work and has a different
approach. We now give a brief discussion of the similarities and differences be-

tween these papers.

Both papers give convergence results for antiplurality under alphabetical tie-breaking:
our Theoren#.14corresponds toll03 Theorem 13]. Both show nonconvergence
for k-approval (Exampld.32vs Theorem 19) and Borda (Example29vs The-

orem 11). The counterexample for Borda DB works for any tie-breaking
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rule, and form > 4, whereas ours works faf, > 3 but uses a specific tie-
breaking rule. In addition,1J03 gives a counterexample for the maximin rule
with a non-lexicographic deterministic tie-breaking rule, while we consider only

scoring rules.

[103 deals only with deterministic tie-breaking, while we discuss randomized
tie-breaking in some detail and show that stochastic dominance is the sufficient
condition for ensuring convergence. Furthermore, we consider plurality and show
how the proofs for antiplurality and plurality are essentially dual to each other.
Our convergence proofs are shorter and, in our view, simpler. The upper bound in
[103 Lemma 17] for antiplurality i$m — 2)n which can be contradicted by con-
sideringpy = (bac, cab). If voters start from(—b, —c){a} N (—a,—c){b} 2,

(—a, —b){c} SN (—c,—b){a } O where form = 3, first voter has 2 moves.

Therefore, first voter has — 1 improvement steps.

As far as future directions go, an important issue in extending to other voting rules
is to properly define a notion of restricted best reply which is general enough to
encompass all “reasonable” moves by rational agents seeking to maximize their
payoff at each step, yet doesn't allow cycles. Already Examd?® shows that

this will be difficult for Borda. Our proof skeleton for plurality and antiplurality
could be adopted provided this difficulty is overcome. However for this approach
to work easily, we would need the compaosition of two improvement steps to yield
the same situation as a single improvement step (as in the discussion of type 3
moves in the proof of Lemm& 12. One possible way of overcoming this problem
would be to impose a domain restriction (do not allow all possible preference
profiles to occur). Conceivably this might even allow type 2 moves as defined

above to be reinstated as allowable improvement steps, while still maintaining
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convergence.
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Chapter 5

Coordination via Polling in Plurality

Voting Games under Inertia

5.1 Introduction

\Voting as a preference aggregation method is widely used in human society and
artificially designed systems of software agents. A large amount of recent research
has considered the situation where a single individual or a small coalition attempts
to manipulate an election result in its favour, assuming the remaining agents are
naive (that is, always vote sincerely). Such an assumption on agent behaviour can
be justified if the goal is to prove computational hardness results. However, if we

wish to understand how voting rules function under fully strategic behaviour, we

need to study a game-theoretic model of strategic manipulation.

The plurality rule is the most widely used voting rule, despite substantial criticism

from social choice theorists. One point in its favour is its simplicity and space-
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efficiency: an agent needs only report a single alternative instead of submitting a
full preference order, a list of utilities, or a binary approval vector, as is the case
with most other rules. However, even such a simple rule can become complicated
when strategic voting behaviour is considered. In this paper, we study plurality
voting under the assumption that all agents act strategically, as a starting point for

a study of further classes of rules.

Voting games notoriously have many equilibria, and agents often cannot coordi-
nate on a particular equilibrium outcome. Hence, voting games are hard to under-
stand. The lack of publicly known information can exacerbate the lack of coordi-
nation of agents. A commonly used device that addresses the coordination issue,
especially for plurality elections, is to use publicly announced pre-election polls.
Such polls, which amount to an approximate simulation of an election with the
same agents and alternatives, increase the commonly known information among
agents and may influence their strategic behaviour. However, the beliefs of agents
regarding the accuracy of these results can be different. This is a key point in the
present paper, and we introduce the concept of inertia to describe these differences

in beliefs.

Several authors from the political science and economics disciplines have dis-
cussed the influence of pre-election polls in plurality elections, both empirically
and theoretically. The key topic of interest is what is called “Duverger’s law”,

a general political science principle stating that plurality voting tends to lead
to two-party competition]04]. More recently some papers have appeared that
study equilibria in plurality voting games from a more algorithmic viewpoint (e.g.
[101, 88]). Most of the models that have been used, with a few exceptions (e.g.

[85, 101]), concern static equilibria, classifying them as “duvergerian” or “non-
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duvergerian”, and do not attempt to discuss the dynamic process of converging to
equilibria via the use of polls. There are several important differences between
our work and existing literature. One of the differences is related to the different
amount of information and strategic behaviour of agents. The other extra feature
considered in the present paper is agent-dependent beliefs about the reliability of

this information.

5.1.1 Our contribution

We present a model for plurality elections that allows for heterogeneous agents.
We introduce the concept of an agentigrtia, which is that agent’s perception

of the accuracy of the poll result. This perception is the result of each agent’s be-
lief about such sources of error as coverage bias, miscounting, roundoff error, and
noise in the announcement of results. This concept is rather general and seems
realistic enough to be used for both human society and for designed systems of
autonomous agents. This article focuses on the plurality rule, places some restric-
tions on agent behaviour, and considers some particular distributions of inertia.
We present some numerical and analytic results on convergence to equilibria, both
duvergerian and non-duvergerian. For example, a duvergerian equilibrium often

occurs when all agents have the same value of inertia.

5.2 Game model

We have a set of agents whose set of allowable actions is to vote for a single alter-

native (not necessarily their most desirable alternative). Abstention is not allowed.
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Each agent has a total order on the set of alternatives (indifference is not allowed)
but as the voting rule is plurality, they vote for one alternative. Agents participate
in a sequence of pre-election polls before the real election. In our model, these
polls include all agents and alternatives in real election, not just a random sample.
The information that these polls reveal does not have any effect on the agents’
sincere preference order. In fact, we are interested in the strategic voting effect of
polls rather than the so-called bandwagon or underdog effects considered in some
papers 105. In those papers, agents do not have a fixed preference order and their

preference for an alternative is influenced by the popularity of that alternative.

We now discuss the assumptions in our model regarding the information and

strategic behaviour of agents.

The information available to agents

The amount of information available to agents is a very important factor in their
choice of strategy. The effect of poll information on the election result has been
discussed in]06. Complete information in plurality voting has been assumed in

[107] and there is incomplete information ih(g.

In the context of a repeated game, such as this sequence of polls under the plu-
rality rule, in order to have complete information each agent would have to know
how many agents of eadipe (sincere preference order) there are (this is usually
called thevoting situation. Even if this is unknown, we might expect to know the
number of agents expressing each preference order in the previous poll. However,
opinion polls for plurality will typically report only the number of agents ranking

each alternative first, which we call tlseoreboard This lack of information on
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further preferences of other agents is crucial in the analysis below.

We use the concept afertia to describe the reaction of agents toward the an-
nounced poll result. Agent coverage bias, miscounting or error and noise in an-
nouncing the result cause different values of uncertainty. This uncertainty brings
about an inertia in agents. Each agent has an inertia value from the irftenval

An agent with inertia value of zero believes that the poll result is accurate. How-
ever, the poll result is meaningless to an agent with inertia value of one. In fact
this agent does not consider the poll result in his decision making process. Other
agents lie between these two extremes. Each agent’s inertia value does not change
during the sequence of polls. This seems reasonable because the set of partici-
pants in each poll does not change (it is always the entire set of agents), and the

same system is used for counting and announcing the results in polls.

As far as we know this concept is new. The probability of miscounting has been
discussed inJ07], but is the same for all agents, whereas we have different values
of inertia for different agents. The Poisson model of population uncertainty, in
which there is uncertainty about the numbers of each type of agent, has been
considered in109. In this paper agents have beliefs about these numbers that
have been modelled as independent Poisson random variables. However, in our
model, each agent just knows his own inertia and sincere preference order, and
the scoreboard after each poll. This assumption makes sense for a system with
no communication or coordination. This incomplete information influences the
equilibrium result. Roughly speaking, it allows more alternatives to remain viable

from the viewpoint of each agent.
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The strategic behaviour of agents

The voting game described so far is still very general and allows for a wide range
of outcomes. Voting games with more than two alternatives have many Nash equi-
libria and are not necessarily dominance solvaBlg.[ Eliminating dominated
strategies is not sufficient to determine the result. Other refinements of equilibria
such as strong and coalition-proof Nash equilibria do not always &89st$ome
authors try to restrict the strategies of players by additional assumptions such as

by assuming no voting for an alternative from another pary].

In this paper, we assume agents have lexicographic preferences. Each agent in-
finitely prefers alternative: to alternativey, so he does not ignore any chance of
winning of a more preferred alternatiwe[111]. Lexicographic preferences are

not consistent with the idea of a cardinal utility function and probabilities are not
relevant. Rather, they give a strong bias toward sincere voting which can still be

overcome when an alternative is perceived to be a definite loser.

We also assume that each voter votes in each poll in the same way that he would if
that poll were the actual election. One scenario in which this would occur is when
voters do not know whether the current poll is the actual election. For example,
the system designer may introduce this requirement. Thus voters will not attempt
to vote strategically in the sense of misleading other voters, although they do vote
strategically in the sense of playing their perceived best response. Note that the
restricted information given by the scoreboard helps in this regard. For example,
if bea voters could infer how manyub voters there were, they could vote toin

order that thecab voters do not abandar) which might allowa to defeat.

Therefore, agents vote for their most preferred alternative whom they perceive as
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having a non-zero chance of winning in further polls.

After each poll, each agent considers a Bétof potential winners, consisting

of all alternatives whom that agent perceives as having non-zero chance to win
sometime in future. This set does not depend on the agents’ preference order and
only depends on the scoreboard and his inertia value. Agents update this set after
the announced result of each poll. Agents start by voting sincerely in the first poll.
Then, they update their votes according to their beliefs about potential winners
during the sequence of polls. All these assumptions on behaviour are common

knowledge as far as agents are concerned.

5.3 Game dynamics

5.3.1 Notation

There is a set” of alternatives (we use indexfor alternatives) which has:
members, and a sét of players withn members (we use index for agents).

We consider a sequence A&f polls indexed byk, where the last poll is the elec-

tion. However, agents are not aware of the valu&'ofEach agent has a sincere
strict preference order on alternatives. Thereratalifferent preference orders

(or types) which are indexed iy We have plurality as our scoring rule in which
each agent votes for only one alternative. Therefore, we can assume that the set of
possible strategies for playeis S, = C'. We use the following notations through

the paper:

e si(c): the normalized score of alternativén poll &£, namely the proportion

of agents who have voted forat poll &,
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cx(h): the alternative who has-th highest score in polt (e.g.cx(1) is the
winner of pollk, note that we do not consider ties in this paper as this case

occurs relatively rarely in large electorates),
¢ ;. the number of agents with type (or preference order)

o W, ;. the set of potential winners from the view point of player with inertia

valuee according to the result of pot,
e V., the set of agents who vote for alternativia poll .

Definition 5.1 (The concept of certain and doubtfu). Suppose that according
to the poll results,(i) < si(j). An agent with inertia is certain about this

statement if

(1+€)sk(i) < (1 —¢)si(d)- (5.1)

Otherwise, he isloubtful

Note that this formula implies that if inertia of an agent s 0, then he will always be
certain thatj is ahead of provided that such a result is reported. Also, Equation
(5.2) implies that an agent with inertia equal to 1 will always be doubtful of any

claimed scores.

The supporters of each alternative may be certain that the score of their favoured
alternative is less than the winner, yet they might still consider that alternative
as a potential winner and vote for him in the next poll. We study the concept of

potential winner in the next section.

Example 5.2. Consider a 3 alternative election, and suppose the result offpoll

is sk(ck(l)) = 45%, Sk(Ck(Q)) = 30% and Sk(Ck(3)) = 25%. Any agent with
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inertia less thanlll is certain that alternativgd has fewer votes than alternatife
but agents with inertia more than that are doubtful about this statement. In other
words, those witls > 1—11 do not use this statement, while the others consider it in

their strategic computations.

5.3.2 Set of potential winners

In the initial state k = 0), an agent with inertia does not have any information
about the number of supporters of each alternative. Therefore, he sees all alter-
natives as potential winnerdl. , = C, and he votes sincerely in the first poll.

For the next poll, the agent votes for the most desirable alternative who can win
in future (not necessarily the next poll) according to his interpretation of the poll
result and the voting strategies of other agents (the strategy of agents is common

knowledge).

Each agent’s set of potential winners should satisfy some basic properties. The
key necessary properties that we require are as follows. These are all common

knowledge.

e non-emptiness: Any agent with any inertia vatuigelieves that there exists
at least one candidate with a positive chance of winning. W should clearly
be nonempty for every voter, and contain the highest scoring candidate in

the current poll.

e upward closure: if an agent with inertiabelieves thaty,(z) € W, , then
he believes;(x — 1) € W, . This seems reasonable: if an agent believes

that some alternatives have a chance to win in future in the best case, then
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that agent also believes that all alternatives with higher current poll support

also have a chance to win in future.

overtaking: a possible winner must be able to overtake a higher scoring
candidate who is also a possible winner. Overtaking the next higher scoring
alternative is a necessary condition for winning, because the only chance an
alternative has for attracting more support is that he improves his ranking
position in the scoreboard. This is justified by the belief of agents about
the upper closure of set of potential winners. For overtaking, alternative
cx(z) needs extra support, and this support can only be obtained from the
supporters of alternatives with a lower score than alternagi¢e). This

is because agents who have already voted for higher scoring alternatives
thanc, () will change their votes to, () if they perceive that their current
choice does not have any chance to win. Upper closui&.qf would then

lead to inconsistent beliefs.

If ¢,(x) cannot overtake,(z — 1) in the next poll, in the most favourable

case, then: ¢ W, .. We describe this case precisely in Propositdh

We first give an example to give the intuition behind our definitions.

Example 5.3.Consider scoreboarh, b, ¢, d) = (40%, 29%, 21%, 10%) and agent
v with e = 0. Voterv reasons as follows: for each agent with inertigeither al-
ternatived € W, or not. If yes, then also alternativesb, c € W, ; (upward
closure). The agents whose most desirable potential winner is alternabage
already voted for him, and the other agents prefer to vote for alternativiesr ¢
in the next poll. Thus, the score @tannot be increased antl¢ 1, .. However,

alternativec € W, because it is possible that all supporters of alternative
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switch toc, yielding scoreboard40%, 29%, 31%, 0), andc can overtake alterna-
tive b, and in the next round all-supporters may switch to alternativeand he

can overtake alternative. Because of upward closubea € W, ;.

The basic properties above show that the currently highest-scoring alternative is
always considered a potential winner by each agent. The necessary conditions
do not definel’ uniquely. Because of lexicographic preferences, voters do not
abandon candidates easily, and so it makes sensélthstiould be as large as
possible. Of course if voters voted differently in the polls and the election (for
example if they know that the next round is the election and have no other con-
straints on strategic action)l’ might be smaller. For example, a candidate may
be able to win by successively attracting support from others, but the number of
rounds remaining may not be enough for this to occur. We are ruling out this case
by our assumptions on voter behaviour. For example, uncertainty about the time
of the actual election allied to lexicographic preferences impliesithahould be

as large as possible. Thus we argue that the necessary conditions are sufficient.

We now show how to define the set of potential winners recursively starting from

the top scoring alternative.

Definition 5.4. For 2 < i < m, define conditiorC;;. by

(L+2) Y sulcr(h) > (1= &)siler(i — 1)). (Cire)

h>i

Proposition 5.5 (The conditions for being a potential winnen. After the an-
nounced result of polk, c¢;(x) € W,y if and only if all conditionsC;;,. for

2 <4 <z hold. Algorithml computes the sét. ;.
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Algorithm 1 Function for constructingV.
Require: k£ > 1
Wey = {ar(1)}
for i =2tomdo
if ConditionC};. holdsthen
Ws,k == Wa,k U {Ck@)}
else
break
end if
end for

Proof. Upward closure shows that the best chance,0f) overtakingey(z — 1)
consists of attracting all supporters of agents currently voting for alternatiyies
with h > x, and retaining all current supporters. This yields conditigp., and
so Algorithm 1 is clearly correct. Since overtaking of even higher alternatives

must occur also, unrolling the loop in Algorithinyields theresult. ]

Remark 5.6. In the majority case from the viewpoint of an agent with inertia

valueg, in which

(1-2)selee(1) > (1+2) 3 su(o)

c#Cr(1)

alternativec(2) and consequently all other alternatives excegt ) do not have

any chance to win in the future. Thug , = {c.(1)}.

Example 5.7. Suppose the result of pdll is si(a) = 55%, s,(b) = 30% and
sk(c) = 15%. According to Propositio®.5,
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(
{a} 0<e<

Werp =4 {a,b} L<e<d

\{a,b,c} 1<ce<l.

Therefore, we have 3 different sets ot ;, based on the inertia value of agents.

In the first inertia value interval, agents perceive the result of palk a majority

case. Therefore, their set of potential winners is a singleton and they vaigrior

poll £ + 1. In the second inertia value interval, they vote &oor b in poll k£ + 1

based on their preference order. For example, an agent with preference @artler
votes fora and an agent with preference ordér votes forb in poll k£ + 1. In the

third case where agents have high inertia, they do not care about the announced
result of the poll. In fact, they believe each candidate to be viable and they just
vote sincerely in polk+1. An agent with inertia value of 1 always votes sincerely,

regardless of the poll result.

5.4 Equilibrium results for some special cases

5.4.1 Zero inertia

In the special case where inertia is identically zero for all agents, the set of poten-
tial winners is identical for all agents. We show that in this case the sequence of
polls converges to a duvergerian equilibrium, i.e., a two party competition. Note

that the inertia value is fixed in all polls and also we assume there is no majority

case.
Theorem 2(duvergerian equilibrium). In a plurality voting game with common
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inertia values = 0, the polling sequence yields a duvergerian equilibrium in a

non-majority case after at most — 2 polls.

Proof. Let m be the number of alternatives and= 0. As agents have the same
value of inertia, either all agents perceive the result as majority case or all of them
perceive it as a non-majority case. As we explained before, in the majority case,
agents vote for the highest scoring alternative (refer to Rerdd@k In a non-
majority case, we havesy(cx(1)) < >° .. ) sk(c). According to Proposition

5.5 ¢,(2) € Wy, therefore| Wy ;. |> 2.

For allv € V_; for whichc € C'\ Wy, v changes his vote to his most desirable
alternative inWy ;. Thus,sg1(c) = 0, for eachc € C' \ Wy . According to
Proposition5.5, ¢, (m) ¢ Wy . Therefore, in each poll, at least the last scored
alternative is eliminated and after at most— 2 polls, we have a duvergerian

equilibrium. ]

Remark 5.8. There is a connection with the voting method instant-runoff (IRV).
Whenm = 3, ifinertia is identically zero then our assumptions mean that the plu-
rality election is actually just IRV. For general inertia and genera) we could

fix somes > 0 and require that the election system automatically deletes the
alternative whose support becomes less thaior the next poll. If we assume
that 2 alternatives do not reach this boundatysimultaneously, we again simu-
late IRV. However, our procedure is more general, as several alternatives may be

eliminated at one step.
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5.4.2 Constant non-zero inertia

Suppose that all agents have the same value of ingriadth 0 < § < 1. Again

note that the set of potential winners is identical for all agents at all times and the
inertia value is fixed in all polls. This case is similar to the setup of Messner and
Polborn [LO7] where the probability of miscounting is positive but small. Messner
and Polborn introduce the concept of robust equilibrium and show that for plural-
ity games with 3 alternatives, all such equilibria are duvergerian. However, in that
paper, the value af is common knowledge between all agents, and this is not the
case in our model. The behavioural assumptions of agents also differ. R@ger [
shows that duvergerian equilibrium happens in all robust equilibria of plurality

games with 3 alternatives.

We consider a 3-alternative election with a large number of agents, with a fixed
inertia valued which is the same for all agents. W.l.o.g. we may assume that
s1(c) < s1(b) < s1(a). We also assume there is no majority case (refer to Remark

5.6).

Proposition 5.9. Let

1(c) s1(b) — s1(c)
1(c)” s1(b) + s1(c)

9 e 210 = 510)

s1(a) T 5100) T }. (5.2)

S
S
A c supporter with inertiad < ¢’ will change his vote ta or b in the second poll.

Proof. According to Propositio.5,

(L+0)(s1(b) + s1(c)) > (1 — 0)s1(a)
cE W9,1 <~
(14+6)s1(c) > (1 —0)s1(b)

Thereforeg € Wy, < 0 > 0',andc e C\ Wy, < 0 <40 O
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Theorem 3. Consider a plurality voting game withh = 3, and fixed inertia value
6 which is the same for all agents. Assuming a non-majority case, the polling

sequence yields a duvergerian equilibrium after 1 pail i 6'.

Proof. Similar to previous case, as agents have the same value of inertia, ei-
ther all agents perceive the result as majority case or all of them perceive it as
a non-majority case. As we explained before, in the majority case, agents vote
for the highest scoring alternative (refer to Remar®). In a non-majority case,
according to PropositioB.9, as the inertia values of all agents are equayp-
porters abandonimmediately, and a duvergerian equilibrium is reached after one

poll. m

Remark 5.10. Note that same constant non-zero inertia cases do not yield du-
vergerian equilibrium, depending on the valuedoflf # > 6', then every agent

continues voting sincerely and the poll results will not change in the sequence.

Example 5.11. Consider plurality rule with 3 alternatives where the the score-
board of the first poll ig40%, 35%, 25%). If the inertia value of all agents are

andf < % we have a duvergerian equilibrium.

5.4.3 Uniform distribution of inertia

We consider a 3-alternative election with a large number of agents, with a uniform
inertia distribution on [0,1]. We describe the initial setup via a quadruple which is
based on the first poll result; (@), s1(b), s1(c)) and the true percentagg of type

cba agents (note this value is not known to any agent). W.l.o.g., we may assume
thats,(c) < s1(b) < s1(a) and we approximate the discrete uniform distribution

across agents by a continuous one for purposes of computation.
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3.0 5¢(c)
251
2.0/
1.5
Lol si(a) = 44.6%
0.5-L
6 = S1 (CL) — 45%

500.0 10(%0.0 1500.0  2000.0

Figure 5.1: Score of the last alternativg &s a function of with uniform inertia
distribution for three different cases wheve = (s1(a), 35%,100% — s1(a) —
35%, 5%)

All ¢ supporters who believe thais a loser change their votes in favour of their
second alternative. The percentage of typegents ¢ab and cba) who vote in
favour of alternativel (« andb respectively) in pollk + 1 is denoted by, ; .
Note that the assumption of a common inertia distribution implies that fdr, all

Qeabak = Qlebab i = 0 @Ndog = 0.

Proposition 5.12. For a uniform distribution of inertia for all agents during the

sequence of polls and initial resdlt = (s(a), s1(b), s1(c), vs), we have

1
k

2’“(2((23132) (s1(b)+v6—251(c))

(smb)—a(c))(—ﬁ(iiﬁiilﬁji)k+(1—sf?c>)k)

(5.3)

ap =

1+

Proof. According to the order of alternatives in the first poll and Proposidn
a c supporter concludes thatis a loser and changes his vote(if+ ¢)s;(c) <
(1 —&)sk (D).

[

si(b)—s . .
Thereforeoy, = p{e < %}. The score of alternatives b andc in poll &
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is given by:
sp(a) = s1(a) +op1vs sp(b) = 51(b) + ar_1v (5.4)

sk(c) = s1(¢) — ap_1v6 — Q105 (5.5)

Therefore,

1(b) — s1(¢) + ag—_1(s1(c)
1(0) + s1(b) — ag—1(s1(c) —

_|_

U6)
ve)} forall £ > 1. (5.6)

S
o :p{E <
S

The stated solution formula for this recurrence is readily establish@tlogtion.

]

Proposition 5.13. The score of the last alternative in the first poll (which we

denote by:) satisfies

if 51 > 251
fim s(c) = 0 if s1(b) + vs > 251(c) 5.7)

e (M) si(c) if s1(b) + v < 251(c)

s1(0)—ve
Proof. The score of alternativeafterk + 1 polls is

si+1(c) = (1 — ay)si(c) (5.8)
According to Propositio’.12, if we convergeék to infinity, we have

1 s1(b) + vg > 2s1(c);
lim o =
k—o0 s1(b)—s1(c)
s1(c)—ve

s1(b) + vg < 2s1(c).
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The result follows immediately
0

Remark 5.14. The convergence to zero is exponentially fast with the exponential
rate decreasing as we approach the boundary between the two cases, and at the
boundary it is subexponential. Figuel shows three special cases (the boundary

case and 2 different cases in its neighbourhood).

Theorem 4. In a plurality voting game with 3 alternatives and initial resiit=
(s1(a),s1(b), s1(c),ve) and uniform distribution of inertia, the polling sequence

yields a duvergerian equilibrium if and onlydf (b) + vg > 2s1(c).

Proof. Follows immediately from Propositidh.13 ]

Fig 5.1illustrates this inequality whens = 5% ands;(b) = 35%. Fors;(a) >

45%, we have a duvergerian equilibrium.

5.4.4 Other distributions of inertia

The above results are for very special inertia distributions; explicit analysis of this
type is not possible for general distributions. In this subsection, we investigate
some different distributions via numerical simulations. Intuitively, we expect that
distributions skewed to the left (with more agents of low inertia) will converge to

thee = 0 case more quickly.

We consider the continuous triangular distributibfp) whose density function’s

graph has vertices &b, 0), (p,2) and(1,0).

Example 5.15(The effect of inertia distribution: Triangular vs. Uniform ).

Consider the initial resull” = (s1(a), s1(b), s1(c),vs) = (45%, 35%, 20%, 5%).
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According to Theore, we have a limiting duvergerian equilibrium for uniform
inertia distribution. Numerical results in Figurg.1 (the line fors;(a) = 45%)

also confirm this result. When we change the inertia distribution to be triangular
with apex 0.5, we have the result in Figlre As we see in Figure 1, the conver-
gence is very slow but changing the inertia distributio¥@.5) accelerates the

process.

Example 5.16(The effect of voting situation). In Figure 5.2, we have5% cba
agents. Figures.3 shows the result of the same situation witho cba agents
which leads to a faster convergence. Note that the voting situation is not known

to agents.

500' Sk(CL)
007
b
30.0 5#(b)
20.01
sk(c)
10.0-

1.0 2.0 3.0 4.0 5iok6lo 7.0 8.0 9.010.0

Figure 5.2:V = (45%, 35%, 20%, 5%) andT'(0.5) inertia distribution

Example 5.17(The effect of skewness of inertia distributior). Considerl” =
(40%, 35%, 25%, 10%) with an inertia distribution of7’(0.5). This yields a non-
duvergerian equilibrium, and it appears that the scorecalonverges to 22, as
shown in Figures.4. However, the same voting situation with an inertia distribu-

tion 7°(0.3) results in a duvergerian equilibrium as shown in Fig&. In this
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55.0
50.01 /M
45.01
40.01 5k(D)

35.0

30.0

25.0

20.0

15.0

10.0

5.0 sk(¢)

01.0 2.0 3.0 4.0 5:0}{6:0 7.0 8.0 9.010.0

Figure 5.3:V = (45%, 35%, 20%, 10%) andT'(0.5) inertia distribution

case, more agents validate the poll result, and we have a duvergerian equilibrium

after 10 polls.

wob—— =l

38.0 51(8)
36.07 . o
34.0

32.01
30.01
28.01
26.01
24.01 sk(c)

1.0 2.0 3.0 4.0 510k610 7.0 8.0 9.010.0

Figure 5.4:V = (40%, 35%, 25%, 10%) andT'(0.5) inertia distribution

5.5 Conclusion and future directions

In this paper we tried to study a repeated game with unknown number of rounds

and incomplete information. The strategy of each player depends on his belief
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50.01 sk(a
45.01
40'()‘/
35.01 si(b)
30.01
25.01
20.01
15.0;
10.0 sk(c
5.0

1.0 2.0 3.0 4.0 5Iok6io 7.0 8.0 9.010.0

Figure 5.5:V = (40%, 35%, 26%, 10%) andT'(0.3) inertia distribution

about the belief of other players. The sequence of opinion polls helps agents to
coordinate on an equilibrium in an environment with some uncertainties about
the accuracy of these polls. The amount of information available to agents has
a critical role in influencing the strategic choices of agents. In this paper, we try
to simplify the model with some assumptions about the strategy of players as a
starting point for studying this game. Even in this simplified model, there are
too many special cases that can happen depending on the inertia distribution or
preference distribution of agents. We try to explain the model by some examples

that give insight into different scenarios.

As a future direction, it is interesting to study how the strategy of agents will
change if they have more information or in a more complicated model, each agent
has different amounts of information. For example, some agents may have extra
information than others regarding the inertia distribution of other agents or their
preference order or the number of rounds ahead. Therefore, they may have differ-

ent belief about the strategy of each agent.

Another interesting direction would be to to allow inertia to change from one poll
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to the next. For example, if random sampling is used instead of polling all voters,
the sample size might vary between polls. More generally we want to explore the
effect of inertia in other models with different behavioural assumptions for exam-
ple, when voters use some simple heuristic strategies. We expect to observe sub-
stantial differences in equilibrium outcomes when non-zero inertia is introduced

into the model.
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Chapter 6

Conclusions

In this chapter, we first present a brief summary of the research which was dis-
cussed throughout the thesis, and also we mention some relevant papers which
have been published recently (after writing of our papers) or have not been dis-
cussed during the relevant chapters. In the second section, we have a brief dis-
cussion of the other work in the general area which we did not study during this
thesis, and can be future directions of this research. The future directions of each

chapter are discussed separately at the end of that chapter.

6.1 Summary

In the first part of this thesis we discussed that although there are preference
profiles that do not admit any strategic manipulation, it has become clear to re-
searchers that rules that are never manipulable must be very hard to find. This
negative result has inspired several strands of research. One strand proceeds by

weakening the assumptions of single-valuedness, leading to many results, most of
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which have the same negative character. Another direction (“domain conditions”)
is to sacrifice universality, and for a given set of preference profiles, to attempt to
find strategy-proof social choice function on this set. The other strand is to quan-
titatively measure the manipulability of each rule, with the aim of discovering the

rules with minimum manipulability.

In this strand we studied the manipulability of scoring rules and Copeland’s method

by introducing a new measure in Sectibd.

Xia recently has generalized the asymptotic behaviour study of strategic manipu-
lation under a general distribution of preferences and the fixed number of candi-
dates. In this model, all types of strategic behaviour are unified as vote operations
[12).

In this strand the computational hardness of manipulation has also been stud-
ied with the worst-case and typical-case analysis, approximability, and heuristic
approaches for various definitions of manipulation such as control, bribery and

possible winner.

The probability of safe manipulation was studied in Chatef112 has dis-

cussed the complexity of safe manipulation under scoring rules.

The complexity of optimal manipulation, i.e., finding a strategic vote that brings
about the manipulator’s goal yet deviates as little as possible from his sincere pref-
erence order is studied id13. They have obtained polynomial-time algorithms

for all scoring rules.

As we discussed earlier limiting the domains of voters’ preference orders has been
known as another way for decreasing the possibility of manipulation and control.

However recent results show that in some cases the single peaked preferences are
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more vulnerable to manipulation and contrblf].

In the second part of the thesis we concentrated on non-cooperative study of strate-
gic manipulation voting games. The equilibrium result and its convergence was
discussed at this part. As we saw in Chapteend5, the behavioural assump-
tions of agents and available amount of information affect the outcomes of games
considerably. Best reply dynamics for scoring rules was studied in Chépter

In Chapter5, we concentrated on plurality voting rule and studied a new model
where voters have partial information via pre-election polls and also have some

value of uncertainty regarding the result of these polls.

Recently, Elkind and Erlyi have studied manipulation under voting rule uncer-
tainty where manipulators have uncertainty regarding the voting rule, and should

choose their strategies independent of the voting ddé&][

In this thesis, we concentrated on simultaneous voting games. Sequential voting
game is one possible future direction for this research such as games with multiple
binary issues that are sequentially voted on by the votEl§] [or Stackelberg

voting games117].

6.2 Future directions

During this thesis, we just concentrated on the problem of strategic manipulation.

In this section, we intend to summarise some of the other topics in this field briefly.
By reviewing the papers in computational social choice area, we can find a large
number of papers considering

e The mechanism design of social choice functions with some desirable be-
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haviours,

e Communication and privacy complexity which analyzes the communication

requirements in voting systems for making a decision,

e The computational aspects of fair division such as cake-cutting and alloca-

tions of indivisible goods,
e The computational aspects of coalitional voting games,

e Social choice theory in combinatorial domains such as the reasoning of
combinatorial preferences, the compact representation of preferences for

multi-issue topics and preference aggregations.

Belief and judgement aggregation are other topics that have been considered in

some papers such aslg 119.

Another topic in this area is matching problem where we should find a pair for
each element of two groups by considering some preferences regarding the el-
ements of each group. For example finding a match in a marriage decision or

finding a correct match in kidney donations.

Vote elicitation in multiagent systems is another topic which has not been dis-
cussed in this thesis. The information elicited from an agent depends on what
other agents have revealed about their preferences. Depending on the elicitation
costs across voters and number of candidates, complexity and strategy-proofness
of vote elicitation differ. Walsh has considered the complexity issues in preference

elicitation and manipulation inl2Q.
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