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Introduzione

Molti problemi della vita reale presentano dei vincoli, cioè delle richieste che devono es-

sere soddisfatte totalmente. A volte però risulta più naturale esprimere questi vincoli in

maniera meno stringente tramite delle preferenze. Inoltre introducendo le preferenze riusci-

amo a trovare una soluzione comunque accettabile in alcuni problemi sovravincolati che non

avrebbero alcuna soluzione in presenza di soli vincoli.

Oltre alle preferenze, un altro tipo di informazione presente in molti problemi reali è l’in-

certezza. Molti problemi sono infatti caratterizzati da eventi incerti che non possono essere

controllati dall’utente. In alcuni casi l’utente può avere un’informazione di tipo probabilis-

tico o possibilistico riguardo al verificarsi di questi eventi incerti, altre volte può non avere

alcuna informazione.

Visto che le preferenze e l’incertezza sono due concetti chiave in molti problemi reali

è importante saper modellare fedelmente questi due concetti. Lo scopo di questa tesi di

dottorato è quello di definire e studiare dei formalismi che possano modellare problemi con

molti tipi di preferenze e l’incertezza, studiare le proprietà di questi formalismi e sviluppare

degli strumenti per risolverli, considerando anche il caso in cui le preferenze sono espresse

da più agenti. Per raggiungere questo obiettivo abbiamo seguito diverse linee di lavoro.

Siamo partiti considerando un formalismo noto in letteratura per rappresentare le pref-

erenze, cioè il formalismo dei vincoli soft [BMR97]. I vincoli soft sono vincoli classici a cui

si associa o all’intero vincolo, oppure ad ogni assegnamento delle variabili, un certo elemen-

to, che è solitamente interpretato come un livello di preferenza o di importanza. Questi livelli

sono di solito ordinati e l’ordine riflette l’idea che alcuni livelli sono migliori di altri. Inoltre,

tramite un opportuno operatore di combinazione, è possibile ottenere il livello di preferenza

di una soluzione globale a partire dalle preferenze nel vincolo.

Dopo aver introdotto il formalismo dei vincoli soft per la rappresentazione delle pref-

erenze, abbiamo presentato la teoria matematica utilizzata in questa tesi per rappresentare

l’incertezza, cioè la teoria della possibilità [Zad78]. La teoria della possibilità è una teoria

alternativa alla teoria della probabilità che permette di caratterizzare il verificarsi degli eventi

1



2 INTRODUZIONE

incerti quando non si hanno eventi rispetto ai quali riferirsi.

A partire dal formalismo dei vincoli soft e dalla teoria della possibilità abbiamo poi

definito un formalismo per modellare problemi con preferenze espresse da un singolo agente

in presenza di incertezza. L’idea è quella di rimuovere l’incertezza, cioè la parte del prob-

lema che noi non possiamo controllare, come proposto in [DFP96a], e di definire dei nuovi

vincoli solo sulla parte controllabile del problema, garantendo però che alcune proprietà

desiderabili relative all’ordinamento delle soluzioni e alla robustezza delle soluzioni, cioè

alla compatibilità delle soluzioni rispetto agli eventi incerti, vengano soddisfatte. Prima ab-

biamo considerato problemi con preferenze fuzzy e incertezza e poi abbiamo generalizzato il

formalismo per rappresentare un qualunque tipo di preferenza dimostrando che le proprietà

desiderate continuavano a valere. Inoltre abbiamo definito un risolutore basato su tecniche di

branch and bound per trovare le soluzioni ottime di questi problemi secondo varie semantiche

più o meno rischiose rispetto l’incertezza.

Abbiamo poi considerato il concetto della biplarità nell’ambito delle preferenze [BDKP02,

BDKP06]. A questo proposito abbiamo definito un formalismo che permette di modellare

problemi con preferenze bipolari, cioè con preferenze positive e negative, che rispecchia

quello che avviene comunemente nella vita reale. Se devo prendere una decisione e ho due

giudizi positivi su di essa allora tale decisione avrà una valutazione complessiva ancora più

positiva, al contrario una decisione caratterizzata da due giudizi negativi avrà una valutazione

complessiva ancora più negativa. Inoltre se su una stessa decisione si hanno sia dei giudizi

positivi sia dei giudizi negativi è naturale che quella decisione abbia una valutazione globale

che compensa i giudizi positivi con quelli negativi. Il formalismo che abbiamo definito per

rappresentare le preferenze bipolari generalizza il formalismo dei vincoli soft, che modella

solo le preferenze negative, permettendo di rappresentare anche le preferenze positive, l’in-

differenza e la compensazione tra preferenze positive e negative. Abbiamo inoltre definito

un risolutore basato su tecniche di branch and bound per trovare le soluzioni ottime in questi

problemi con preferenze bipolari. Abbiamo poi considerato la presenza dell’incertezza an-

che in problemi bipolari e abbiamo definito una procedura per modellare e risolvere questi

problemi che generalizza al caso di preferenze bipolari la procedura descritta sopra nel caso

di preferenze fuzzy e incertezza.

Abbiamo poi preso in esame il contesto multiagente, dove più agenti esprimono contem-

poraneamente le loro preferenze, che possono essere parzialmente ordinate, su un insieme

di alternative. In questo caso l’obiettivo è quello di aggregare le preferenze degli agenti per

ottenere un ordinamento collettivo delle alternative (social welfare theory) oppure l’alterna-

tiva migliore (social choice theory). Abbiamo considerato dei risultati classici in letteratu-
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ra nell’ambito dell’aggregazione di preferenze totalmente ordinate relativi a due proprietà

desiderabili, la fairness e la non manipolabilità [Arr51, MS77, Gib73], e li abbiamo estesi al

caso di preferenze parzialmente ordinate.

Quindi abbiamo considerato la presenza dell’incertezza anche nel contesto multiagente.

In particolare abbiamo considerato l’aggregazione di preferenze nel caso in cui alcuni agenti

decidano di non rivelare le loro preferenze su qualche coppia di alternative. A questo propos-

ito abbiamo esaminato la complessità computazionale di determinare i vincitori necessari e

possibili, cioè quelle alternative che sono sempre le più preferite dagli agenti indipenden-

temente da come l’incompletezza sarà risolta oppure in almeno un modo in cui questa in-

completezza potrà essere risolta. Abbiamo dimostrato che è NP-hard calcolare questi vinci-

tori, quindi abbiamo individuato delle condizioni sufficienti sulla regola di aggregazione

delle preferenze che permettono di calcolare questi vincitori in tempo polinomiale. Abbi-

amo inoltre mostrato l’utilità di questi vincitori nell’ambito dell’elicitazione di preferenze.

Abbiamo poi considerato una specifica regola di aggregazione delle preferenze (sequential

majority voting) che effettua una sequenza di confronti di maggioranza tra coppie di alterna-

tive lungo un albero di voto e in cui il vincitore dipende dall’albero di voto scelto. Abbiamo

provato che determinare i vincitori possibili e necessari in questo ambito, cioè quelle alter-

native che vincono in almeno un albero di voto o in tutti gli alberi di voto, è polinomiale,

mentre calcolare i vincitori possibili diventa NP-hard se si richiede che l’albero di voto sia

bilanciato. In questo caso quindi è difficile per chi decide l’albero di voto manipolare il

risultato [BTT95]. Infine abbiamo dimostrato che questi risultati di complessità continuano

a valere anche nel caso in cui gli agenti esprimono alcune delle loro preferenze in maniera

incompleta.





Chapter 1

Introduction

The aim of this Ph.D. thesis is to define and study formalisms that can model problems with

preferences and uncertainty, possibly defined by several agents, and to define tools to solve

such problems.

1.1 Motivation

Preferences are ubiquitous in real life. In fact, most problems are over-constrained and would

not be solvable if we insist that all their requirements are strictly met, hence it is more

reasonable to express their requirements in a soft way, i.e., via preferences. Moreover, many

problems are more naturally described via preferences rather than hard statements.

Preferences come in many kinds. In some cases it could be natural to express preferences

in quantitative terms, while in other situations it could be better to use qualitative statements.

Moreover, preferences can be unconditional or conditional. Finally, preferences can model

priorities, rankings, different levels of importance, desires or rejection levels.

Preferences can help whenever the task involves decision making and/or knowledge rep-

resentation [DFP02, DF05, DF06]. They are essential to treat reasoning about action and

time, planning diagnosis and configuration [Jun02]. Preferences are the key to understand

the non-crisp aspect of many human behaviors. For example, in mathematical decision the-

ory, preferences (often expressed as utilities) are used to model people’s economic behavior.

In Artificial Intelligence (AI), preferences help to capture agents’ goals. In databases, pref-

erences help in reducing the amount of information returned in response to user queries. In

philosophy, preferences are used to reason about values, desires, and duties. Thus, the repre-

sentation and handling of preferences should be available and efficient in any sophisticated

automated reasoning tool.

5



6 1. INTRODUCTION

Preferences are gaining more and more attention in AI, in particular in the Constraint Pro-

gramming (CP) area also in connection with Operations Research (OR). AI permits complex

preference representations and thus allows to reason with and about preferences, providing a

new perspective for formalizing preference information in qualitative and quantitative way,

that is essential for many decision making problems [Jun02, DT99].

Preferences are one type of soft information present in real-life problems. Another im-

portant feature, which arises in many real world problems, is uncertainty. In fact, many

problems are characterized by uncertain parameters which are not under the user’s direct

control, but that can be decided only by Nature. An example of an uncertain parameter is,

in the context of satellite scheduling or weather prediction, the time when clouds will disap-

pear, which can be decided only by Nature. Another example in which uncertainty occurs is

a scheduling problem, which constrains the order of execution of various activities, where the

duration of some activity is uncertain [DFP95]. In this case the goal is to define a schedule

which is the most robust with respect to uncertainty.

Uncertainty can be represented in several ways. In some problems the user can be com-

pletely ignorant about the occurrence of the uncertain events, in others he can have additional

information, which can be more or less precise regarding the occurrence of uncertain events

[Zad78, DP88, Wal02, FLS96].

Preferences and uncertainty often coexist in real-word problems. Consider for exam-

ple a scheduling problem with uncertain durations, which is over-constrained. It would be

impossible to solve it if we insist that all its requirements are strictly met. Therefore, it is

more reasonable to express (at least some of) its requirements as preferences rather than hard

statements. Doing so, we obtain a problem defined by preferences and uncertainty, where

the solutions are schedules with different levels of desirability. The goal is then to find so-

lutions with the highest level of desirability which are also robust with respect to uncertain

durations.

Since preferences and uncertainty are very often the core of real-life problems, it is im-

portant to model faithfully these two aspects, both for problems involving a single agent and

for problems regarding multiple agents. While there are several formalisms to handle some

notions of preferences and/or uncertainty, much work still needs to be done to handle them

in a general and efficient way. The aim of this thesis is to give a contribution in this direction.
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1.2 Objectives

There are many issues to be addressed about preferences and uncertainty. The main issue

is preference and uncertainty specification and representation, i.e., which formalisms can be

used to model the preferences of an agent and the uncertainty of the problem. In this respect,

contributions have been brought from studying the axiomatic properties of preferences, as

well as logics of preferences or their topological and algebraic structures [Jun02, BMR97,

BFM+96] and from defining formalisms for representing various kinds of uncertainty [FL93,

DFP96b, DP98]. In a multi-agent scenario, instead, core issues are preference composition,

merging and aggregation, as well as preference elicitation and learning priorities, conflict

resolution and belief revision [Lan02, Lan04, DP93, Doy91].

The goal of this thesis is to define and study formalisms that can model problems with

many kinds of preferences and/or uncertainty, to study properties of such formalisms, and to

develop tools to solve such problems. Moreover, we intend to be able to deal also with sce-

narios where preferences are expressed by several agents and where preference aggregation

is therefore needed to find the optimal solutions.

In order to achieve this objective, we start by defining formalisms for expressing pref-

erences of a single agent in presence of uncertainty. We start considering problems where

preferences are expressed in a quantitative non conditional way and where uncertainty is

characterized by lack of data or imprecise knowledge. In some formalisms for dealing

with preferences and uncertainty, uncertainty is expressed in terms of probability theory

[Wal02, FLS96]. In this thesis we consider a different form of uncertainty, less precise than

the probabilistic one, since we intend to model scenarios where probabilistic estimates are

not available. We define a formalism for handling preferences and this kind of uncertainty,

and we give algorithms for solving them. To achieve this goal, we exploit two formalisms:

the semiring-based soft constraint formalism [BMR97] to deal with preferences, and possi-

bility theory [Zad78] to reason with uncertainty.

Generally speaking, a soft constraint is just a classical constraint plus a way to associate,

either to the entire constraint or to each assignment of variables, a certain element, which is

usually interpreted as a level of preference or importance. Such levels are usually ordered

and the order reflects the idea that some levels are better than others. Moreover, one has also

to say, via suitable combination operators, how to obtain the level of preference of a global

solution from the preferences in the constraint.

Many formalisms have been developed to describe one or more classes of soft constraints.

For instance, consider fuzzy CSPs [Rut94], where the crisp constraints are extended with a



8 1. INTRODUCTION

level of preference represented by a real number between 0 and 1, or probabilistic CSPs

[FL93], where the probability to be in the real problem is assigned to each constraint. Some

other examples are partial CSPs [FW92] or valued CSPs [SFV95] where a preference is

assigned to each constraint, in order to also solve over constrained problems. We choose to

use one of the most general frameworks to deal with soft constraints [BMR95, BMR97]. The

framework is based on a semiring structure that is equipped with the operations needed to

combine the constraints present in the problem and to choose the best solutions. According

to the choice of the semiring, this framework is able to model all the specific soft constraint

notions mentioned above. The semiring-based soft constraint framework provides a structure

capable of representing in a compact way problems with preferences.

For handling uncertainty we consider possibility theory, which is a mathematical theory

for dealing with a certain type of uncertainty. This theory is an alternative to probability the-

ory. It can be seen as an imprecise probability theory. Possibility theory has been introduced

as an extension of the theory of fuzzy sets and fuzzy logic in [Zad78] and many contributions

to its development have been presented, for example, in [DFP96a, DP98, DP88].

Another issue that we consider in this thesis to obtain is the representation of bipolarity.

Bipolarity is an important focus of research in several domains, e.g. psychology [TK92,

SFPM02, OST57, CGB97], multi-criteria decision making [GL05], and more recently in

AI (argumentation [ABP05] and qualitative reasoning [BDKP02, BDKP06, DF05, DF06]).

Preferences on a set of possible choices are often expressed in two forms: positive and neg-

ative statements. In fact, in many real-life situations agents express what they like and what

they dislike, thus often preferences are bipolar. Starting from this observation, we define a

formalism for handling quantitative (unconditional) preferences, which is able to represent

positive and negative statements, and also to deal with uncertainty. Starting from an existing

formalism for handling negative preferences, i.e., soft constraints [BMR97], we extend it to

handle also positive preferences. The aim is to handle bipolar preferences in a way which

is as similar as possible to what naturally happens in real-life scenarios. That is, combining

two negative statements should be even worse, combining two positive statements should

be even better, and combining a positive with a negative statement should be positive if the

positive statement is stronger than the negative one, and negative otherwise. Moreover, we

want to able to express indifference, i.e., a preference which is neither positive nor negative.

In many situations, we need to represent and reason about simultaneous preferences of

several agents. To aggregate agents’ preferences, which in general express a partial order

over the possible outcomes, we can query each agent in turn and collect together the results.

Hence, we can see preference aggregation in terms of voting, which is a topic widely studied
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in Operations Research [Vin82a, Vin82b, Bou92a, Bou92b, Bar82]. In this context, we study

classical properties such as fairness and non-manipulability, and we consider classical results

on fairness of social welfare functions as Arrow’s impossibility theorem [Arr51, Kel78] and

Sen’s possibility theorem [Sen70], and results on non-manipulability of social choice func-

tions as Gibbard-Satterthwaite’s theorem [Gib73]. The main difference is that, in contrast

to what is assumed in social welfare scenarios, our agents describe their preference using

partial orders and not total orders, i.e., they can consider incomparable pairs of outcomes,

which are too dissimilar to be compared. We study if results similar to the ones of social

choice and social welfare settings still hold, by suitably adapting some of their assumptions

to deal with incomparability.

Finally, we consider uncertainty in a multi-agent scenario. We consider a multi-agent

setting where agents can hide some of their preferences [KL05]. In a preference ordering, the

relationship between some pairs of outcomes may not be specified. For example, agents may

have privacy concerns about revealing their complete preference ordering or, as in the context

of preference elicitation, preferences have not been fully elicited [CS02b]. In this context

it is interesting to determine the complexity of computing the outcomes which are always

optimal, or optimal in at least one way in which incompleteness is resolved. Moreover, if this

computation is difficult, it is useful to find cases where this computation is easy. Regarding

this topic, we investigate such complexity results both in general and for specific preference

aggregation systems, and we analyze the issue of manipulation in this context [BTT95].

1.3 Main results

In this thesis we have followed the research lines outlined in the previous section, and we

have obtained the following main results.

We have started by considering a special case of quantitative preferences, i.e., fuzzy

preferences, and we have considered an existing technique to integrate such preferences with

uncertainty, which uses possibility theory [DFP96a]. We have shown that the integration pro-

vided by this technique is too tight since the resulting ordering over solutions does not allow

one to discriminate between solutions which are highly preferred but assume unlikely events

and solutions which are not preferred but robust with respect to uncertainty. Thus, while

following the same basic idea of translating uncertainty into fuzzy constraints, we have pro-

posed an algorithm which allows us to observe separately the preference and the robustness

of the solutions. Moreover, we have defined suitable semantics for ordering the solutions

in a more or less risky way with respect to uncertainty. Then, for finding optimal solutions
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according to the different semantics, we have developed a solver which exploits branch and

bound techniques. Moreover, we have defined a more general formalism for handling dif-

ferent kinds of quantitative preference, proving that some desirable properties continue to

hold. This has allowed us to handle the coexistence of preferences and uncertainty in a more

general setting.

We have also defined a formalism to handle positive and negative preferences, which

reflects the natural behaviour that the combination of positive and negative statements has

in real-life scenarios. For doing so, we have first shown that the negative preferences are

handled by the semiring-based formalism of soft constraints [BMR97]. Then, we have in-

troduced a new algebraic structure for handling positive preferences, which has properties

similar to semirings. Hence, we have defined a new mathematical structure for handling

both positive and negative preferences by linking the positive and the negative structures in

a suitable way, so that combination of positive preferences produces a better positive pref-

erence, the combination of negative preferences produces a worse negative preference, and

the combination of positive and negative preferences produces a preference which is better

than or equal to the negative preference and worse than or equal to the positive one. We have

studied the properties of this formalism and we have defined a solver to solve such problems.

Moreover, we have generalized this solver to handle also uncertainty.

We have then considered scenarios where several agents express their preferences via

a partial order over the possible outcomes. We have seen each agent as voting if an out-

come dominates another one. Thus, we have considered preference aggregation in terms

of voting, analyzing some of the main results concerning fairness and non-manipulability

[Arr51, Kel87, MS77, Gib73]. We have shown that they can be generalized to preference ag-

gregation systems, where agents can express also incomparability between pair of outcomes.

We have finally considered scenarios where agents, for example for privacy reasons, de-

cide to hide some of their preferences [KL05]. We have determined the computational com-

plexity of computing optimal outcomes, where optimality has the meaning of being always

the best outcome (regardless of how incompleteness is resolved), or in at least one possible

complete world. We have shown that computing such outcomes is in general difficult, and

we have determined cases where such a problem is tractable. Moreover, we have shown how

the computation of such outcomes can be useful for deciding when preference elicitation is

over, which is in general a difficult problem [CS02b]. Finally, we have investigated other

tractability and intractability results for a specific voting rule, i.e, the sequential majority

voting. Such a rule performs a sequence of pairwise comparisons between two candidates

along a binary tree, and the winner depends on the chosen sequence. We have focused on
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candidates that that will win in some sequences or in all sequences and we have shown that

in general it is easy to find them, while it is difficult if we insist that the tree is balanced. We

have interpreted this difficulty in terms of difficulty for the chair to manipulate [BTT95].

1.4 Related research areas

The topics investigated in this thesis are connected to many research areas. The main ones

are Artificial Intelligence, Operations Research and Economics areas.

In particular, the topics described in Chapters 2 and 3 can be seen in fields of Artifi-

cial Intelligence regarding knowledge representation and reasoning, constraint programming

and constraint propagation. Whereas, the topics studied in Chapters 4 and 5 are typically

investigated in Artificial Intelligence by researchers interested in multi-agent systems, and

in Operations Research and Economics by researchers working on decision making and on

voting theory.

1.5 Publications

The work presented in this thesis has been developed also via a collaboration with several

colleagues and part of it has been published in the proceedings of international conferences,

as we describe below.

The work on preferences and uncertainty has been developed in collaboration with Fran-

cesca Rossi and K. Brent Venable from the University of Padova. The following papers have

been published on this subject:

• M. S. Pini, F. Rossi and K. B. Venable. Reasoning about fuzzy preferences and un-

certainty. In Proceedings of the 6th International Workshop on Soft Constraints and

Preferences, held in conjunction with the 10th International Conference on Principles

and Practice of Constraint Programming (CP 2004), Toronto, Canada, October 2004.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems. In

Proceedings of the 10th Annual Workshop of ERCIM/CoLogNet on Constraint Solving

and Constraint Logic Programming (CSCLP 2005), Uppsala, Sweden, June 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Possibility theory for reasoning about uncertain

soft constraints. In Proceedings of the 8th European Conference on Symbolic and
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Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005), Springer-

Verlag LNAI 3571, pp. 800-811, Barcelona, Spain, July 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Possibilistic and probabilistic uncertainty

in soft constraints problems. In Proceedings of the Multidisciplinary Workshop on

Advances in Preference Handling held in conjunction of the 19th International Joint

Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, July 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems.

Doctoral Paper in Proceedings of 11th International Conference of Principles and

Practice of Constraint Programming (CP 2005), Springer-Verlag LNCS 3709, p. 865,

Sitges, Spain, October 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems.

In Proceedings of International Conference on Intelligent Agents, Web Technology

and Internet Commerce (IAWTIC 2005), IEEE Computer Society, pp. 583-589, Wien,

Austria, November 2005.

The research on bipolar preferences is in collaboration with Francesca Rossi and K. Brent

Venable from the University of Padova, Stefano Bistarelli from University of Pescara, and

Henri Prade from IRIT (Toulouse), France. The following papers have been published on

this subject:

• S. Bistarelli, M. S. Pini, F. Rossi and K. B. Venable. Positive and negative preferences.

In Proceedings of the 7th International Workshop on Preferences and Soft Constraints,

held in conjunction with the 11th International Conference on Principles and Practice

of Constraint Programming (CP 2005), Sitges, Spain, October 2005.

• S. Bistarelli, M. S. Pini, F. Rossi and K. B. Venable. Modelling and solving bipolar

preference problems. In Proceedings of 11th Annual ERCIM Workshop on Constraint

Solving and Constraint Logic Programming (CSCLP 2006), Lisbon, Portugal, June

2006.

• M. S. Pini, F. Rossi and K. B. Venable. Bipolar preference problems. In Proceedings

of the 17th European Conference on Artificial Intelligence (ECAI 2006), IOS Press,

vol.141, pp. 705-706, Riva del Garda, Italy, August 2006.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in bipolar preference problems. In

Proceedings of the 8th International Workshop on Preferences and Soft Constraints,
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held in conjunction with the 12th International Conference on Principles and Practice

of Constraint Programming (CP 2006), Nantes, France, September 2006.

• M. S. Pini and F. Rossi. Reasoning on bipolar preference problems. In Proceedings of

the CP 2006 Doctoral Programme, Nantes, France, September 2006.

The work on preference aggregation is a joint research with Francesca Rossi and K. Brent

Venable from University of Padova, Toby Walsh from NICTA, Australia, and Jerome Lang

from IRIT (Toulouse), France. Our joint publications are:

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Aggregating partially ordered pref-

erences: possibility and impossibility results. In Proceedings of 10th Conference on

Theoretical Aspects of Rationality and Knowledge (TARK X), ACM Digital Library,

National University of Singapore, pp. 193-206, Singapore, June 2005.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Strategic voting when aggregating

partially ordered preferences. In Proceedings of the 5th International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS 2006), ACM Press, pp. 685-

687, Hakodate, Japan, May 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Computing possible and necessary

winners from incomplete partially-ordered preferences. In Proceedings of the 17th

European Conference on Artificial Intelligence (ECAI 2006), Best poster Award, IOS

Press, vol.141, pp. 767-768, Riva del Garda, Italy, August 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and incomparability

in preference aggregation. In Proceedings of the Multidisciplinary Workshop on Ad-

vances in Preference Handling, held in conjunction of the 17th European Conference

on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, August 2006.

• J. Lang, M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Winner determination in

sequential majority voting with incomplete preferences. In Proceedings of the Mul-

tidisciplinary Workshop on Advances in Preference Handling, held in conjunction of

the 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda,

Italy, August 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and incomparability

in preference aggregation: complexity results. In Proceedings of the 8th International
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Workshop on Preferences and Soft Constraints, held in conjunction with the 12th Inter-

national Conference on Principles and Practice of Constraint Programming (CP 2006),

Nantes, France, September 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Preference aggregation and elicita-

tion: tractability in the presence of incompleteness and incomparability. In Proceed-

ings of DIMACS/LAMSADE Workshop on Computer Science and Decision Theory II,

Paris, France, October 2006.

• J. Lang, M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Winner determination in

sequential majority voting. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI 2007), to appear, Hyderabad, India, January 2007.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and incomparability

in preference aggregation. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI 2007), to appear, Hyderabad, India, January 2007.

1.6 Structure of the thesis

The thesis is organized as follows:

• Chapter 2. We consider an existing technique to perform integration between fuzzy

preferences and uncertainty and, while following the same basic idea, we propose var-

ious alternative semantics which allow us to observe both the preference level and the

robustness with respect to uncertainty of the complete instantiations. Then we present

a solver for this kind of problems that is based on branch and bound. Finally, we

extend this approach to other classes of soft constraints proving that certain desirable

properties still hold.

• Chapter 3. We focus on problems with both positive and negative preferences, that we

call bipolar problems. We show that the soft constraints formalism models only neg-

ative preferences, and we define a new mathematical structure which allows to handle

positive preferences as well. We address the issue of the compensation between posi-

tive and negative preferences, studying the properties of this operation. Then, we ex-

tend the notion of arc consistency to bipolar problems, and we show how branch and

bound (with or without constraint propagation) can be easily adapted to solve such



1.6. STRUCTURE OF THE THESIS 15

problems. Finally, we focus on bipolar problems with uncertainty, where some vari-

ables are uncontrollable, by extending existing techniques to handle bipolar problems

and problems with uncertainty.

• Chapter 4. We consider ways of reasoning and aggregating preferences in order to

choose outcomes that satisfy all the agents. We adapt the most popular aggregating

criteria of social welfare and social choice theory [Kel87] to our context, studying their

induced semantics and complexity. Finally, we push even further the bridge between

social choice theory and aggregation of preferences obtained using AI representations,

by considering the fairness [Kel87, MS77] and the non-manipulability [Gib73, Sat75]

of the voting schemes we propose. In particular, we extend Muller-Satterthwaite’s

theorem [MS77], which is the Arrow’s theorem [Arr51] in social choice theory, and

Gibbard-Satterthwaite’s theorem [Gib73, Sat75] to the situation in which the ordering

of each agent is a partial order.

• Chapter 5. We consider how to combine the preferences of multiple agents despite

the presence of incompleteness and incomparability in their preference orderings, by

focusing on the problem of computing the possible and necessary winners, that is,

those outcomes which can be or always are the most preferred for the agents. First we

show that computing the sets of possible and necessary winners is in general a difficult

problem as it is providing a good approximation of such sets. Then we identify suffi-

cient conditions, related to general properties of the preference aggregation function,

where such sets can be computed in polynomial time. Next, we show how possible

and necessary winners can be used to focus preference elicitation. Then, we consider

a specific voting rule which performs a sequence of pairwise comparisons between

two candidates along a binary tree, where the winner depends on the chosen sequence.

Also in this case there are candidates that will win in some sequences (called possi-

ble winners) or in all sequences (called Condorcet winners). While it is easy to find

the possible and Condorcet winners, we prove that it is difficult if we insist that the

tree is balanced. Finally we consider the situation where we lack complete informa-

tions about preferences, and we determine the computational complexity of computing

possible and Condorcet winners in this extended case.

• Chapter 6. We summarize the results of the thesis, and we discuss directions for

further work.





Chapter 2

Preferences and uncertainty

Preferences and uncertainty occur in any real-life problems. The theory of possibility is one

non-probabilistic way of dealing with uncertainty, which allows for easy integration with

fuzzy preferences. In this chapter we consider an existing technique to perform such an in-

tegration and, while following the same basic idea, we propose various alternative semantics

which allow to observe both the preference and the robustness of a solution with respect to

uncertainty. Then we present a solver for this kind of problems that allows a branch and

bound approach. Finally, we extend this technique to other classes of soft constraints, prov-

ing that certain desirable properties still hold.

2.1 Motivations and chapter structure

Preferences and uncertainty occur in many real-life problems. We are concerned with the

coexistence of such concepts in the same problem. In particular, we consider uncertainty that

comes from lack of data or imprecise knowledge and scenarios where probabilistic estimates

are not available.

The theory of possibility [DP88, Zad78] is one non-probabilistic way of dealing with

uncertainty, which allows for easy integration with fuzzy preferences [DFP96a]. In fact,

both possibilities and fuzzy preferences are values between 0 and 1 associated to events and

express the level of plausibility that the event will occur, or its preference.

In our context, we will describe a real-life problem as a soft constraint problem, that

is represented by a set of variables with finite domains and a set of soft constraints among

subsets of the variables. A variable will be said to be uncertain if we cannot decide its value.

In this case, we will associate a possibility degree to each value in its domain, which will tell

how plausible it is that the variable will get that value.

17
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Soft constraints allow to express preferences over the instantiations of the variables of

the constraints. In particular, fuzzy preferences are values between 0 and 1, which are com-

bined using the min operator, and are ordered in such a way that higher values denote better

preferences.

In this chapter we consider an existing technique to integrate fuzzy preferences and un-

certainty, which uses possibility theory [DFP96a]. This technique allows one to handle un-

certainty within a fuzzy optimization engine. However, we claim that the integration pro-

vided by this technique is too tight since the resulting ordering over complete assignments

does not allow one to discriminate between solutions which are highly preferred but assume

unlikely events and solutions which are not preferred but robust with respect to uncertainty.

This is due to the fact that a single value, which summarizes the contributions of both the

uncertain variables and the fuzzy preferences, is associated to each solution.

While following the same basic idea of translating uncertainty into fuzzy constraints, we

propose various alternative semantics which allow us to observe separately the preference

level and the robustness of the complete instantiations. More precisely, each solution will be

associated to a pair of values between 0 and 1: one value will refer to the preference level,

while the other one will refer to the robustness of the solution with respect to the uncertain

variables. In this way, given a solution and the pair of values associated to it, we can see how

preferred it is according to the constraints, and also how robust it is.

The desired ordering over such pairs will then be used to order the solutions. Thus,

by choosing different orderings, we can reason in a more or less risky way with respect to

uncertainty, giving more or less importance to the preferences with respect to the robustness

of the problem. In this way, we define a class of different semantics.

We then develop a solver, that can handle fuzzy problems and uncertainty expressed via

possibility distributions, which is based on branch and bound techniques and which uses the

various semantics for ordering the solutions.

Finally, we prove that the desired properties that the semantics have, hold also when

other classes of soft constraints, not necessarily fuzzy, are used. This allows us to handle the

coexistence of preferences and uncertainty in a more general setting.

The work presented in this chapter has appeared in the proceedings of the following

conferences and workshops.

• M. S. Pini, F. Rossi and K. B. Venable. Reasoning about fuzzy preferences and un-

certainty. In Proceedings of the 6th International Workshop on Soft Constraints and

Preferences, held in conjunction with the 10th International Conference on Principles

and Practice of Constraint Programming (CP 2004), Toronto, Canada, October 2004.
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• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems. In

Proceedings of the 10th Joint Annual Workshop of ERCIM/CoLogNet on Constraint

Solving and Constraint Logic Programming (CSCLP 2005), Uppsala, Sweden, June

2005.

• M. S. Pini, F. Rossi and K. B. Venable. Possibility theory for reasoning about uncertain

soft constraints. In Proceedings of the 8th European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005), Springer-

Verlag LNAI 3571, pp. 800-811, Barcelona, Spain, July 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Possibilistic and probabilistic uncertainty

in soft constraints problems. In Proceedings of the Multidisciplinary Workshop on

Advances in Preference Handling held in conjunction of the 19th International Joint

Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, July 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems.

Doctoral Paper in Proceedings of 11th International Conference of Principles and

Practice of Constraint Programming (CP 2005), Springer-Verlag LNCS 3709, p. 865,

Sitges, Spain, October 2005.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in soft constraints problems.

In Proceedings of International Conference on Intelligent Agents, Web Technology

and Internet Commerce (IAWTIC 2005), IEEE Computer Society, pp. 583-589, Wien,

Austria, November 2005.

The chapter is organized as follows.

• In Section 2.2 we present the background on which our work is based. First, we

describe soft constraints by focusing on fuzzy constraints and we give the main notions

of possibility theory. Next, we define uncertain fuzzy CSPs and we show an existing

method (DFP) for handling uncertain fuzzy CSPs by integrating fuzzy preferences and

uncertainty via possibility theory.

• In Section 2.3 we outline the fundamental aspects characterizing an uncertain fuzzy

CSP, related to the satisfaction and the robustness, and we present some reasonable

properties to require over the solution ordering.

• In Sections 2.4 and 2.5 we present a new method for handling fuzzy CSPs with un-

certainty, that allows us to observe separately the satisfaction and the robustness of
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solutions with respect to uncertainty, and in Section 2.6, we check if the robustness

satisfies the desired properties.

• In Section 2.7 we propose various semantics for ordering the solutions with respect to

their satisfaction and robustness.

• In Section 2.8 and 2.9 we check if these semantics and the semantics produced by DFP

satisfy the desired properties on solution ordering, and in Section 2.10 we compare the

solution ordering that they induce.

• In Section 2.11 we show how a real-life problem can be modelled as an uncertain fuzzy

CSP and solved by using our procedure.

• In Section 2.12 we present a solver for finding an optimal solution of an uncertain

fuzzy CSP according to our semantics.

• In Section 2.13 we show how to generalize the procedure described in Sections 2.4

and 2.5, for integrating soft preferences not necessarily fuzzy and uncertainty, by pre-

serving the desired properties that the semantics should have.

• In Section 2.14 and Section 2.15 we describe respectively related and future work.

2.2 Background

In this section we give an overview of the background on which our work is based. First, we

present a formalism for representing soft preferences, i.e., the semiring-based soft constraints

[BMR97]. Next, we describe the formalism we will use for representing uncertainty, i.e.,

possibility theory [Zad78]. Finally, we present an existing method for integrating fuzzy

preferences and possibilistic uncertainty [DFP96a].

2.2.1 Soft constraints

In this section we will present soft constraints: a formalism which allows to handle different

kinds of preferences. In the literature there are many formalizations of the concept of soft

constraints [SFV95, Rut94]. Here we refer to the one described in [BMR97, BMR95], which

however can be shown to generalize and express many of the others [BFM+96].

In a few words, a soft constraint is just a classical constraint where each instantiation of

its variables has an associated element (also called a preference) from a partially ordered set.
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Combining constraints will then have to take into account such additional elements, and thus

the formalism has also to provide suitable operations for combination (×) and comparison

(+) of tuples of preferences and constraints. This approach is based on the concept of c-

semiring, which is just a set plus two operations.

Definition 1 (semirings and c-semirings) A semiring is a tuple 〈A, +,×, 0, 1〉 such that:

• A is a set and 0, 1 ∈ A;

• + is commutative, associative and 0 is its unit element;

• × is associative, distributes over +, 1 is its unit element and 0 is its absorbing element.

A c-semiring is a semiring 〈A, +,×, 0, 1〉 such that:

• + is defined over possibly infinite sets of elements of A in the following way:

– ∀a ∈ A,
∑

({a}) = a;

–
∑

(∅) = 0 and
∑

(A) = 1;

–
∑

(
⋃

Ai, i ∈ S) =
∑

({
∑

(Ai), i ∈ S}) for all sets of indexes S (flattening

property);

• × is commutative.

Let us consider the relation ≤S over A such that a ≤S b if and only if a + b = b. Then it

is possible to prove that (see [BMR95]):

• ≤S is a partial order;

• + and × are monotone on ≤S;

• 0 is its minimum and 1 its maximum;

• 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b), where lub means

least upper bound.

Moreover, if × is idempotent, then 〈A,≤S〉 is a complete distributive lattice and × is its

greatest lower bound (glb). Informally, the relation ≤S gives us a way to compare (some of

the) tuples of preferences and constraints. In fact, when we have a ≤S b, we will say that b

is better than (or preferred to) a.
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Definition 2 (soft constraints) Given a c-semiring S = 〈A, +,×, 0, 1〉, a finite set D (the

domain of the variables), and an ordered set of variables V , a constraint is a pair 〈def, con〉

where con ⊆ V and def : D|con| → A.

Therefore, a constraint specifies a set of variables (the ones in con), and assigns to each

tuple of values in D of these variables an element of the semiring set A. This element can be

interpreted in many ways: as a level of preference, or as a cost, or as a probability, etc. The

correct way to interpret such elements determines the choice of the semiring operations.

Definition 3 (SCSP) A soft constraint satisfaction problem is a set of soft constraints C

defined over a set of variables V .

Definition 4 (combination) Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉,

their combination c1⊗c2 is the constraint 〈def, con〉, where con = con1∪con2 and def(t) =

def1(t ↓con
con1

) ×def2(t ↓con
con2

)1.

The combination operator ⊗ can be straightforwardly extended also to finite sets of con-

straints: when applied to a finite set of constraints C, we will write
⊗

C.

In words, combining constraints means building a new constraint involving all the vari-

ables of the original ones, and which associates to each tuple of domain values for such

variables a semiring element which is obtained by multiplying the elements associated by

the original constraints to the appropriate subtuples.

Definition 5 (projection) Given a constraint c = 〈def, con〉 and a subset I of V , the pro-

jection of c over I , written c ⇓I , is the constraint 〈def ′, con′〉 where con′ = con ∩ I and

def ′(t′) =
∑

t/t↓con
I∩con

=t′ def(t).

Informally, projecting means eliminating some variables. This is done by associating to

each tuple over the remaining variables a semiring element which is the sum of the elements

associated by the original constraint to all the extensions of this tuple over the eliminated

variables.

Definition 6 (local consistency) The degree of local consistency of a partial assignment,

d = (d1, . . . , dk), is Π{ci=〈defi,coni〉|coni⊆{x1,...,xk}} defi (d ↓coni
)

Definition 7 (solution) A solution of a SCSP 〈C, V 〉 is a complete instantiation, (d1, . . . , dn),

of the variables in V = {x1, . . . xn}.

1By t ↓XY we mean the projection of tuple t, which is defined over the set of variables X , over the subset of

variables Y ⊆ X .
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Definition 8 (solution preference) Given SCSP 〈C, V 〉 and a solution s, the preference of

s is pref(s) = Π{ci=〈defi,coni〉∈C}defi(s ↓coni
),

Definition 9 (optimal solution) Given a SCSP P and a solution s, s is optimal if and only

if 6 ∃ s′, solution of P , such that pref(s′) >S pref(s).

SCSPs can be solved by extending and adapting the techniques usually used for classical

CSPs. For example, to find the best solution, we could employ a branch-and-bound search

algorithm (instead of the classical backtracking). Also the so-called constraint propagation

techniques, like arc-consistency [Mac77] and path-consistency, can be generalized to SCSPs

[BMR95, BMR97].

Instances of semiring based SCSPs

We will now give an overview of the most common instances of the semiring-based frame-

work [BMR97].

• Classical SCSPs. The semiring is

SCSP = 〈{false, true},∨,∧, false, true〉.

The only two preferences that can be given are true, indicating that the tuple is al-

lowed and false, indicating that the tuple is forbidden. Preferences are combined

using logical and and compared using logical or. Optimization criterion: any assign-

ment that has preference true on all constraints is optimal.

• Fuzzy SCSPs [BMR97, DFP96a]. The semiring is

SFCSP = 〈[0, 1], max, min, 0, 1〉.

Preferences are values between 0 and 1. They are combined using min and compared

using max. Optimization criterion: maximize minimal preference.

• Weighted SCSPs [BMR97]. The semiring is

SWCSP = 〈<+, min, +, +∞, 0〉.

Preferences are interpreted as costs from 0 to +∞. Costs are combined with +, and

compared with min. Optimization criterion: minimize sum of costs.
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• Probabilistic SCSPs [FLS96]. The semiring is

SPCSP = 〈[0, 1], max,×, 0, 1〉.

Preferences are interpreted as probabilities ranging from 0 to 1. As expected, they are

combined using ×, and compared using max. Optimization criterion: maximize joint

probability.

Example 1 Figure 2.1 shows an example of one of the instances presented above: the fuzzy

CSP. Variables are within circles, and constraints are undirected links among the variables.

Each constraint is defined by associating a preference level (in this case between 0 and 1)

to each assignment of its variables to values in their domains. Figure 2.1 shows also two

solutions, one of which, S2, is optimal. 2

D(X)=D(Y)={a,b}
D(Z)={a,b,c}

<a,a>  0.1
<a,b>  0.5
<b,a>  0.5
<b,b>  0.3

<b,c>  0.1

 ZX Y
<a,a>  0.9
<a,b>  0.3
<a,c>  0.1
<b,a>  0.8
<b,b>  0.1

solution S1=<a,a,a> 0.1=min(0.1,0.9)

solution S2=<a,b,a> 0.5=min(0.5,0.8)

max(0.5,0.1)=0.5  implies S2>S1 

Figure 2.1: A Fuzzy CSP and two of its solutions, one of which is optimal (S2).

2.2.2 Possibility theory

Possibility theory was introduced in [Zad78], in connection with the fuzzy set theory [Zad78,

DP80, DP00], to allow reasoning to be carried out on imprecise or vague knowledge, making

it possible to deal with uncertainties on this knowledge.

This theory and its developments constitute a method of formalizing non-probabilistic

uncertainties on events, i.e., a way of assessing to what extent the occurrence of an event is

possible and to what extent we are certain of its occurrence, without, however, knowing the

evaluation of the probability of this occurrence. This can happen, for instance, when there is

no similar event to be referred to.
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Possibility theory, represents the uncertainty on the occurrence of an event in the form of

possibility distributions. In what follows we will consider events represented by an uncon-

trollable variable taking a value from a particular subset.

A possibility distribution πx associated to an uncontrollable variable x represents the set

of more or less plausible, mutually exclusive values of x.

Definition 10 (possibility distribution) A possibility distribution πx associated to a single

valued variable x with domain D is a mapping from D to a totally ordered scale L (usually

[0, 1]) such that ∀d ∈ D, πx(d) ∈ L and ∃ d ∈ D such that πx(d) = 1, where 1 the top

element of the scale L.

The following conventions hold: πx(d) = 0 means x = d is impossible; πx(d) = 1 means

x = d is fully possible, unsurprising.

A possibility distribution is similar to a probability density. However, πx(d) = 1 only

means that x = d is a plausible situation, which cannot be excluded. Thus, a degree of possi-

bility can be viewed as an upper bound of a degree of probability. Possibility theory encodes

incomplete knowledge while probability accounts for random and observed phenomena. In

particular, the possibility distribution πx can encode:

• complete ignorance about x: πx(d) = 1, ∀d ∈ D. In this case all values d ∈ D are

plausible for x and so it is impossible to exclude any of them.

• complete knowledge about x: πx(d̄) = 1, ∃d̄ ∈ D and πx(d) = 0, ∀d ∈ D s.t. d 6= d̄.

In this case only the value d̄ is plausible for x.

Given a possibility distribution πx associated to a variable x, the occurrence of the event

x ∈ E ⊆ D can be defined by the possibility and the necessity degrees.

Definition 11 (possibility degree) The possibility degree of an event “x ∈ E”, denoted by

Π(x ∈ E) or simply by Π(E), is Π(x ∈ E) = supd∈Eπx(d).

The possibility degree of the event “x ∈ E’ evaluates the extent to which “x ∈ E” is

possibly true.

In particular,

• Π(x ∈ E) = 1 means that the event x ∈ E is totally possible. However it could also

not happen. Therefore in this case we are completely ignorant about its occurrence.

• Π(x ∈ E) = 0 means that the event x ∈ E for sure will not happen.
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Definition 12 (necessity degree) The necessity degree of “x ∈ E”, denoted by N(x ∈ E)

or simply by N(E), is N(x ∈ E) = infd/∈Ec(πx(d)), where c is the order reversing map in

the interval [0, 1] such that ∀p ∈ [0, 1], c(p) = 1− p and EC is the complement of E in D.

The necessity degree of the event “x ∈ E” evaluates the extent to which “x ∈ E” is

certainly true.

In particular,

• N(x ∈ E) = 1 means that the event x ∈ E is certain,

• N(x ∈ E) = 0 means that the event is not necessary at all, although it may happen. In

fact, N(x ∈ E) = 0 if and only if P (x ∈ EC) = 1.

The possibility and the necessity measures are related by the following formula Π(E) =

1−N(EC). From this, follows N(E) = 1− Π(EC).

In the following example we will compute the possibility and the necessity degrees that

a variable, defined by a certain possibility distribution, belongs to a given set.

Example 2 Assume that x is an uncontrollable variable with domain D = {5, 6, 7, 8}, πx

is possibility distribution attached to x, defined by πx(5) = 0.9, πx(6) = 0.4, πx(7) = 0.7,

πx(8) = 0.5 and E = {5, 6} is a subset of D. Then the possibility degree of the event

“x ∈ E” is Π(E) = supd∈Eπ(d) = sup{0.9, 0.4} = 0.9, whereas the necessity degree of the

same event is N(E) = infd6∈E c(π(d)) = inf{c(π(7)), c(π(8))} = inf{c(0.7), c(0.5)} =

inf{0.3, 0.5} = 0.3. Notice that if we compute N(E) using the formula N(E) = 1−Π(EC)

we obtain the same result. In fact, N(E) = 1 − Π(EC) = 1 − supd∈ECπ(d) = 1 −

sup{0.7, 0.5} = 1− 0.7 = 0.3. 2

2.2.3 Uncertainty in soft constraints

Whereas in usual soft constraint problems all the variables are assumed to be controllable,

that is, their value can be decided according to the constraints which relate them to other

variables, in many real-world problems uncertain parameters must be used. Such parameters

are associated with variables which are not under the user’s direct control and thus cannot be

assigned. Only Nature will assign them.

Some real-life examples of uncertain soft constraint problems are:

• the problem of scheduling, where the duration of a task is uncertain, for example the

task Ti has a duration of approximatively ten minutes [DFP95];
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• the problem of deciding how many training sessions to perform in a tutorial, knowing

that number of actual participants who will attend it is from 1 to 20 and more possibly

from 10 to 15 [DFP96a];

• the problem of deciding how many buses a school has to rent for an excursion knowing

that the number of the interested students is form 60 to 150 and more possibly between

90 to 120.

In [DFP96a] these problems are formalized as a set of variables, that can be controllable

and uncontrollable and a set of fuzzy constraints linking these variables.

Example 3 Figure 2.2 shows an example of an uncertain fuzzy CSP. Each constraint is de-

fined by associating a preference level (in this case between 0 and 1) to each assignment of

its variables to values in their domains. In particular, the constraint Cxyz = 〈µ, {x, y, z}〉

is defined on variables x, y and z by the preference function µ, whereas the constraint

Cxw = 〈µ1, {x, w}〉 is defined on the variables x and w by the preference function µ1.

Variables are controllable (x and w) and uncontrollable (z). The values in the domain of

the uncontrollable variable z are characterized by the possibility distribution πZ . Constraints

link controllable variables and controllable with uncontrollable variables. 2

w

x

z

y

x
Dw

={1,2}=

={5,6}

={3,4}
D
D

Dx y

z

µ (x=1, w=5)=0.4
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Figure 2.2: An uncertain fuzzy CSP.

In general, an uncertain soft CSP can be formally defined as follows.

Definition 13 (USCSP) An uncertain soft constraint satisfaction problem (USCSP) is a a

tuple 〈S, Vc, Vu, C〉, where S is a c-semiring, Vc is a set of controllable variables, Vu is a set

of uncontrollable variables, and C is a set of soft constraints involving any subset of variables

of Vc ∪ Vu.
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While in a classical soft constraint problem we can decide how to assign the variables to

make the assignment optimal, in the presence of uncertain parameters we must assign values

to the controllable variables guessing what Nature will do with the uncontrollable variables.

A solution in USCSP is an assignment to all its controllable variables. Depending on the

assumptions made on the observability of the uncontrollable variables, different optimality

criteria can be defined.

For example, an optimal solution for an USCSP can be defined as an assignment of values

to the variables in Vc such that, whatever Nature will decide for the variables in Vu, the overall

assignment will be optimal. This corresponds to assume that the values of the uncontrollable

variables are never observable, i.e., that the values of the controllable variables are decided

upon without observing the values of the uncontrollable variables. This is a pessimistic view,

and, often, an assignment satisfying such a requirement does not exist.

In such a case, one can relax the optimality condition to that of having a preference above

a certain threshold α in all scenarios. In this case solving the problem will consist of finding

the assignments to variables in Vc which satisfy this property at the highest α.

Furthermore, one could be satisfied with finding an assignment of values to the vari-

ables in Vc such that, for at least one assignment decided by Nature for the variables in Vu,

the overall assignment will be optimal. This definition follows an optimistic view. Other

definitions can be between these two extremes.

Moreover, the uncontrollable variables can be equipped with additional information on

the likelihood of their values. Such information can be given in several ways, depending on

the amount and precision of knowledge we have. In this chapter for expressing such informa-

tion we will consider possibility distributions. This information can be used to infer new soft

constraints over the controllable variables, expressing the compatibility of the controllable

parts of the problem with the uncertain parameters, and can be used to change the notion of

optimal solution.

In this chapter we will consider the approach of guaranteeing a certain preference level

α taking into account the additional information on the uncontrollable variables provided in

the form of possibility distribution.

2.2.4 Unifying fuzzy preferences and uncertainty via possibility theory

Possibility theory [Zad78] can be used to code some information about the uncontrollable

variables in uncertain soft constraint problems. The method presented in [DFP96a], which

we call algorithm DFP (by the name of the authors), for managing uncertainty in fuzzy
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CSPs, proposes to translate uncertain fuzzy CSPs into fuzzy CSPs and then to solve them as

known in literature [DP80, BMR97]. More precisely, DFP takes in input an uncertain fuzzy

CSP, say Q. Then Q is reduced to a fuzzy CSP Q′, where every constraint C which links

uncontrollable variables to controllable variables is replaced by a new fuzzy constraint C ′

only among these controllable variables. This happens in the following way.

Consider a fuzzy constraint C, represented by the fuzzy relation R, which relates a

set of controllable variables X = {x1, . . . , xn}, with domains D1, . . . , Dn, to a set of

uncontrollable variables Z = {z1, . . . , zk} with domains A1, . . . , Ak. Assume the knowl-

edge of the uncontrollable variables is modeled with the possibility distribution πZ defined

on AZ = A1 × · · · × Ak. Assume the preferential information is instead represented

by function µR : DX × AZ −→ [0, 1], where DX = D1 × · · · × Dn. Value µR(d, a)

is the preference associated to the assignment to controllable and uncontrollable variables

(X = d, Z = a) = (x1 = d1, . . . , xn = dn, z1 = a1, . . . , zk = ak).

The constraint C is considered satisfied2 by assignment d = (d1, . . . , dn) ∈ D1×· · ·×Dn

if, whatever the values of a = (a1, . . . , ak), these values are compatible3 with d, i.e., if the

set of possible values for z is included in T = {a ∈ AZ|µR(d, a) > 0}. Given assignment

d ∈ DX , and µT (a) = µR(d, a), the preference of d in the new constraint C ′ obtained from

C removing uncontrollable variables is:

µ′(d) = N(d satisfies C) = N(z ∈ T ) = infa∈AZ
max(µT (a), c(πZ(a))) (2.1)

where c is the order reversing map such that c(p) = 1 − p, ∀p ∈ [0, 1]. The value µ′(d),

that is given by the necessity degree of the event “d satisfies C”, represents the degree of

satisfaction of C. It is characterized by the following property: µ′(d) ≥ α if and only if when

πZ(a) > c(α) then µR(d, a) ≥ α, where a is the actual value of z.

Informally, the new preference level of the assignment d obtained reasoning with uncer-

tainty, µ′(d), is greater or equal than α if and only if the assignments (X = d, Z = a), such

that the possibility πZ(a) is strictly greater than 1− α, had a preference µR(d, a) greater or

equal than α in the original problem.

Notice that in 2.1, µ′ is computed by applying the max operator between preferences and

possibilities. This can be done, since the scales of the preferences and of the possibilities are

equal, assuming the commensurability between preferences and possibilities.

If the uncontrollable variables z1, . . . , zk ∈ Z are logically independent from each other,

the knowledge about each zj is completely described by the possibility distributions πzj
,

2Here “satisfied” means “at least partially satisfied”.
3A value a is compatible with d if µR(d, a) > 0.
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and the joint possibility πZ is defined as follows: ∀a = (a1, . . . , ak) ∈ A1 × · · · × Ak,

πZ(a) = min{j=1,...,k}πZj
(aj).
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Figure 2.3: An example of application of algorithm DFP.

Example 4 The result of applying algorithm DFP to an uncertain fuzzy CSP is shown in

Figure 2.3. Part (a) shows the same uncertain FCSP Q shown in Figure 2.2. Recall that the

variables x, y and w are controllable, while z is uncontrollable. Part (b) shows the FCSP Q′

defined on variables x, y and w obtained by applying algorithm DFP. 2

2.3 Desired features and properties of an USCSP

In this section we outline the fundamental aspects and the desired properties which we be-

lieve are crucial in the characterization of an USCSP. In the next section we will present a

formalism which will be shown to fulfill all the requirements described here.

For stating formally the desired properties we need to give some definitions. Consider an

uncertain soft CSP, Q = 〈S, Vc, Vu, C〉, where S = 〈A, +,×, 0, 1〉4 is a c-semiring and ≤S

is the ordered induced by the operator + of S. Consider a solution s of Q, i.e., a complete

assignment to the controllable variables. We define the overall preference of a solution as

follows.

Definition 14 (overall preference) The overall preference of s, given an assignment a to

the uncontrollable variables, is pref(s, a) = Π{〈µ,con〉∈C}µ((s, a) ↓con).

In words, pref(s, a) is the global preference in the original problem of choosing s for the

controllable variables in the scenario that assigns a to the uncontrollables. This preference

4when + (respectively ×) is applied to a two-element set we will use symbol + (respectively ×) in infix

notation, while in general we will use the the symbol
∑

(respectively
∏

) in prefix notation.
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is obtained by combining all the preferences associated to the projections of the tuple (s, a)

on all the constraints in C. If Q is a fuzzy uncertain CSP, then pref(s, a) is the minimum of

these preferences, i.e., pref(s, a) = min{〈µ,con〉∈C}µ((s, a) ↓con).

Given a uncertain SCSP Q = 〈S, Vc, Vu, C〉, we consider problem Qcontrol = 〈S, Vc,

Ccontrol〉, where Ccontrol = Cf ∪ Cp contains all the constraints of Q defined only on con-

trollable variables, that we call Cf , and all the constraints of Q obtained projecting on the

controllable variables the constraints involving also uncontrollable variables, that we call

Cp. This can be seen as applying the usual variable elimination technique to uncontrollable

variables [Dec03]. We define the satisfaction degree of a solution as follows.

Definition 15 (satisfaction degree) The satisfaction degree of s is sat(s) = Π{<µ,con>∈Ccontrol}

µ(s ↓con).

In words, sat(s) is the preference obtained by combining all the preferences associated to

the projections of s on all the constraints of Qcontrol. If S is the fuzzy c-semiring then sat(s)

is the minimum of such preferences, i.e., sat(s) = min{<µ,con>∈Ccontrol}µ(s ↓con). sat(s)

measures how good s is in terms of preferences when the effects of Nature are projected out.

In fact, by considering the projections of the constraints involving also variables in Vu, only

the best possible choices for the uncontrollable variables are taken into account, allowing to

focus only on the preferential aspect of the problem.

Another kind of satisfaction degree, that we call controllable satisfaction degree, can

be obtained by simply forgetting all the constraints of the problem involving at least an

uncontrollable variable. In particular, given a solution s of an USCSP Q, we can consider

the satisfaction degree restricted to the constraints of Q involving only controllable variables,

i.e., Cf . More formally,

Definition 16 (controllable satisfaction degree) The controllable satisfaction degree of s

is satc(s) = Π{<µ,con>∈Cf}µ(s ↓con).

When we deal with uncertain SCSPs, we have to consider another interesting aspect that

characterizes a solution, that is its robustness with respect to the uncertainty. More formally,

Definition 17 (robustness) The robustness of s, say rob(s), is a value indicating the degree

of compatibility of s with uncertain events. In particular, the higher rob(s), the more assign-

ments to uncontrollable variables will yield in Q preferences higher than a given threshold

when s is chosen.
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Let us call Cfu the set of constraints < µ, con > in C involving controllable and uncon-

trollable variables, i.e., such that con ∩ Vu 6= ∅ and con ∩ Vc 6= ∅. In general, the robustness

depends on the preferences associated to subtuples of (s, a) on the constraints in Cfu and on

the possibility distributions, π(a), defined on the assignments a to the uncontrollables.

In order to characterize robustness we require that it satisfies the following two properties,

that refer to the ordering ≤S . We recall that this ordering is the one induced by the additive

operator of the c-semiring S.

Property 1 Given solutions s and s′ of an UFCSP 〈S, Vc, Vu, C = Cf ∪ Cfu〉, if for every

constraint < µ, con >∈ Cfu, µ((s, a) ↓con) ≤S µ((s′, a) ↓con) for every assignment a to

uncontrollables, then it should be that rob(s) ≤S rob(s′).

In words, if the preferences associated to subtuples of s on the constraints involving con-

trollable and uncontrollables are always greater or equal to that associated to subtuples of s′,

then it is reasonable that the robustness of s is greater or equal than the robustness of s′.

Property 2 Given a solution s of an UFCSP 〈S, Vc, Vu, C = Cf ∪ Cfu〉, assume that the

uncertainty on the variables in Vu is described by a possibility distribution π1. Assume

also to lower the possibility of every event a to π2(a) ≤ π1(a). Then it should be that

robπ1
(s) ≤S robπ2

(s).

In other words, if we lower the possibility of any value of uncontrollables, then the solution

s should have an higher value of robustness.

We will now describe some properties which we believe should be satisfied by a prefer-

ential ordering over the solutions of an USCSP.

Property 3 Given two solutions s and s′ of an UFCSP 〈S, Vc, Vu, C = Cf ∪ Cfu〉, if

pref(s, a) >S pref(s′, a) ∀a assignment to Vu, then it should be that s >S s′.

In other words, a solution should dominate any other solution which has a lower overall

preference in every possible scenario a.

Property 4 Given two solutions s and s′ of an UFCSP 〈S, Vc, Vu, C = Cf∪Cfu〉, if rob(s) =

rob(s′) and sat(s) >S sat(s′), it should be that s >S s′.

Property 5 Given two solutions s and s′ of an UFCSP 〈S, Vc, Vu, C = Cf ∪ Cfu〉, such

sat(s) = sat(s′), and rob(s) >S rob(s′), then it should be that s >S s′.

In words, two solutions which are as good with respect to one aspect (robustness or satisfac-

tion degree) and differ on the other should be ordered.
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2.4 Algorithm SP

In this section we describe a new algorithm to handle uncertain fuzzy CSPs, that is partially

based on algorithm DFP described in Section 2.2.4. We call it algorithm SP (from separation

and projection).

It starts from an uncertain fuzzy CSP Q = 〈SFCSP , Vc, Vu, C = Cf ∪ Cfu〉, where Cf

is the set of constraints of Q defined only on controllable variables and Cfu is the set of

constraints of Q defined on both controllable and uncontrollable variables. Then, it obtains

a fuzzy CSP Q′ = 〈SFCSP , Vc, C
′ = Ccontrol ∪ Cu〉, where:

• Ccontrol = Cf ∪ Cp, where Cp is the set of constraints obtained by projecting the

constraints Cfu on their controllable variables,

• Cu is the set of constraints, defined only on controllable variables, obtained from the

constraints Cfu applying the method described in Section 2.2.4.

We will now illustrate with an example how SP works.

Example 5 Let us consider the fuzzy uncertain CSP, say Q, in Figure 2.2, which is shown

again in Figure 2.4 (a). Figure 2.2 (b) shows the corresponding fuzzy CSP Q′ obtained by SP

from Q. Notice that Q′ is defined only on the controllable variables of Q, namely x, y and w.

The set of constraints Ccontrol consists of the constraint 〈µ1, {x, w}〉 (which is a constraint of

Q defined only on controllable variables) and the constraint 〈µP , {x, y}〉, obtained projecting

constraint 〈µ, {x, y, z}〉 of Q on the controllable variables x and y. The set of constraints Cu,

instead, contains only the constraint 〈µ′, {x, y}〉, obtained applying the procedure described

in Section 2.2.4 to constraint 〈µ, {x, y, z}〉 in Q. 2

Algorithm SP can be applied also to uncertain fuzzy CSPs with constraints involving

only uncontrollable variables by performing, before applying SP, the procedure described

below.

Let us assume to have a constraint Ci involving only a set {z1, . . . , zk} of uncontrollable

variables with possibility distributions respectively π1, . . . , πk. In order to apply SP we must

obtain a UFCSP, which is equivalent to the given one, but where every constraint contains at

least a controllable variable. We propose to project Ci on its uncontrollable variables and to

propagate [Dec03, BMR97] these projection constraints and the existing constraints relating

some of these uncontrollable variables with a controllable one.

However, performing this procedure, some uncontrollable variable could be not related

to any other variable. In order to avoid this fact, we propose to add induced constraints
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Figure 2.4: How SP works.

[BMR97] between every uncontrollable variable, that is not directly related with a control-

lable variable, and a controllable variable.

More precisely, let us consider an uncertain FCSP Q where there are constraints involving

only uncontrollable variables. Let us call X , the set of controllable variables, Z, the set of

uncontrollable variables, ZX ⊆ Z, the set of uncontrollable variables, that are connected

directly to a controllable variable and ZU , the set of uncontrollable variables which are not

connected directly with any controllable variable. Algorithm 1 shows how to add induced

constraints between every variable in ZU and a controllable variable in X .

Algorithm 1 takes in input an uncertain FCSP Q = 〈SFCSP , Vc = X, Vu = ZX ∪ZU , C〉,

where C may contain constraints not involving controllable variables and it returns an un-

certain FCSP Q∗ = 〈SFCSP , Vc = X, Vu = ZX ∪ ZU , C∗〉, where C∗ doesn’t contain

constraints without controllable variables. At first the algorithm initializes C∗ with C and

it defines two sets, say OldBorder and NewBorder, for containing during the algorithm

respectively the variables related by a constraint with a controllable variable and those ones

of ZU which have been connected to a controllable one during algorithm. OldBorder is

initialized with the set ZX and NewBorder with the empty set. Then, for every variable zx

in OldBorder related to a controllable variable, say xz, we consider every variable zu ∈ ZU

connected to zx and we add the induced constraint between xz and zu, by using the func-

tion InducedConstraint(xz, zu). Such a constraint is defined on the variables xz and zu and

the preference function of every assignment to these variables is obtained by performing

the maximum of the minimum of the preferences associated by the original constraints to

the appropriate subtuples. After that, variable zu is added to NewBorder and zx is re-

moved from OldBorder. When OldBorder is empty but NewBorder is not empty, then
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Algorithm 1: Adding deduced constraints relating controllable and uncontrollable

variables
Input: Q = 〈SFCSP , Vc = X, Vu = ZX ∪ ZU , C〉: UFCSP;

Output: Q∗ = 〈SFCSP , Vc = X, Vu = ZX ∪ ZU , C∗〉: UFCSP;

C∗ ← C ;

OldBorder← ZX ;

NewBorder← ∅;

while OldBorder 6= ∅ do

foreach zx ∈ OldBorder do

foreach zu ∈ ZU connected to zx do
C∗ = C∗ + InducedConstraint(xz, zu) ;

NewBorder← NewBorder ∪ {zu};
OldBorder← OldBorder \ {zx};

if OldBorder = ∅ then
OldBorder← NewBorder;

NewBorder← ∅;

return Q∗ = 〈SFCSP , Vc = X, Vu = ZX ∪ ZU , C∗〉

OldBorder is set to NewBorder and NewBorder to the empty set. When both OldBorder

and NewBorder are the empty set, algorithm terminates.

Example 6 An example of how SP preprocessing works is shown in Figure 2.5. Figure 2.5

(a) shows an uncertain FCSP Q with a constraint between two uncontrollable variables z1

and z2 respectively with domain Dz1 and Dz2. Figure 2.5 (b) shows the UFCSP Q∗ ob-

tained from Q by adding the projections constraints on z1 and z2, i.e., C4 = 〈µp1, {z1}〉

and C5 = 〈µp2, {z2}〉 and by adding the induced constraint C3 = 〈µ, {x, z2}〉, between the

controllable variable x and z2. In C3 the preference of every assignment (x = ā, z2 = c̄) is

computed as follows: µ(x = ā, z2 = c̄) = max{āi∈Dz2
}min(µ1(x = ā, z1 = āi), µ2(z1 =

āi, z2 = c̄)). The next step to perform, for having a UFCSP with only constraints con-

taining at least a controllable variable, is to propagate the constraints C1, C3, C4 and C5

of the UFCSP Q∗ and to remove C2. The resulting UFCSP, that is shown in Part (c), is

Q∗∗ = 〈SFCSP , Vc = {x}, Vu = {z1, z2}, C∗∗ = C ′
1 ∪ C ′

3, 〉, where C ′
1 and C ′

3 are the con-

straints obtained respectively from C1 and C3 after propagation. In this particular example

C ′
1 coincides with C1 and C ′

3 with C3. 2
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Figure 2.5: SP preprocessing.

2.5 Satisfaction degree and robustness

In this section we show how to compute the preference of a solution of an UFCSP. We define

this preference via two values and we show that they correspond to the satisfaction degree

and to the robustness value presented in Section 2.3.

We recall that, given a UFCSP Q = 〈SFCSP , Vc, Vu, C = Cf ∪ Cfu〉, algorithm SP

obtains a FCSP Q′ = 〈SFCSP , Vc, C = Cf ∪ Cp ∪ Cu〉. We associate to every solution

s of Q i.e., to every complete assignment to Vc, a preference that is given by the values

FP (s) = min(F (s), P (s)) and U(s), where F (s), P (s) and U(s) are respectively the mini-

mum preference over the constraints in Cf , Cp and Cu.

Example 7 In Figure 2.6 (a) we show the FCSP Q′ obtained by SP from the UFCSP Q in

Figure 2.4 (a). Figure 2.6 (b) shows all the solutions of Q′, i.e. all the complete assignments

to controllable variables, associated with a preference given by µt, which is defined by the

values FP and U . 2

The values FP and U associated to every solution correspond to the satisfaction degree

and to the robustness as defined in Section 2.3.

More precisely, given a solution s, the value FP (s) represents the satisfaction degree of

s.

In fact, FP (s) = min{<µ,con>∈Ccontrol}µ(s ↓con) coincides with the definition of sat(s)

given in Section 2.3. Thus, it represents the satisfaction degree of s in terms of preferences,
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Figure 2.6: Solutions of a FCSP Q′ obtained by SP.

when the uncontrollable variables are eliminated by projecting the constraints involving them

on the controllable variables.

Given a solution s, U(s) matches the definition of robustness given in Section 2.3.

In fact, U(s) = min{<µ′ ,con′>∈Cu}µ
′(s ↓con′), that is, U(s) is the “partial” preference

obtained by s on the constraints Cu, which are generated by the process eliminating the un-

controllable variables. Let us recall that such a procedure replaces every constraint 〈µ, con〉

in the USCSP such that con ∩ Vu = Z 6= ∅ and con ∩ Vc = X 6= ∅, with a new constraint

〈µ′, con′〉 such that con′ = con ∩ Vc and µ′(s ↓con′) = infa∈Az
max(µ(s ↓con′, a), c(πZ(a)))

where a ∈ Az (Az is the domain of Z) is an assignment to the uncontrollable variables in Z.

From this, it can be clearly seen that U(s) depends on the preferences of s on constraints

involving uncontrollable variables and on the possibility distributions defined on such vari-

ables.

Moreover, as indicated in Section 2.2.4, if µ′(s ↓con′) = α, then µ(s ↓con′, a) ≥ α, ∀a

such that π(a) > 1 − α. This means that if U(s) = β then on each constraint involving

uncontrollable variables we are sure that choosing s will give a preference of at least β when

Nature chooses values with possibility higher than 1− β. Thus the higher the robustness the

higher preference is guaranteed in a larger number of scenarios.

Notice that this is a generalization of a more intuitive measure of robustness which con-

siders the minimum preference which can be obtained in any possible case. In particular,

if we consider the case in which there is no additional information on the uncertain events,

then U(s) is exactly the minimum of preferences obtained by s on the constraints involving

controllable and uncontrollable variables. In detail, if we are in the case of complete igno-
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rance, then the possibilities of every assignment a to the uncontrollable variables are equal

to 1, i.e. πZ(a) = 1 ∀a, then U(s) = min{<µ′ ,con′>∈Cu}µ
′(s ↓con′) and for each constraint

µ′(s ↓con′) = infa∈Az
max(µ(s ↓con′, a), c(πZ(a))) = infa∈Az

max(µ(s ↓con′, a), c(1))

= infa∈Az
µ(s ↓con′, a), since c(1) = 0.

The general definition of robustness presented here generalizes the intuitive notion taking

into account the possibility distribution associated to the uncontrollable variables. Neglect-

ing such additional information can lead to unreasonable judgments, as illustrated by the

following example. In particular, using the intuitive definition of robustness we could con-

sider as bad a situation that behaves well in almost all cases and that is bad only in one

(very unlikely) case. For example, let us consider the constraint 〈µ, {x, z}〉 linking the con-

trollable variable, x, with the uncontrollable variable, z defined by preference function µ as

follows: µ(x = d, z = a1) = 0.9, µ(x = d, z = a2) = 0.9, µ(x = d, z = a3) = 0.9,

µ(x = d, z = a4) = 0.2. Let us assume that assignments z = a1, z = a2 and z = a3 have

possibility equal to 1 and that assignment z = a4 has possibility 0.1. In this case, according to

the intuitive notion, solution x = d has a robustness = inf(0.9, 0.9, 0.9, 0.2) = 0.2, even if it

behaves badly only in one case. Instead, considering the more refined notion gives a robust-

ness U(d) = inf{a1 ,a2,a3,a4}(max(0.9, 0), max(0.9, 0), max(0.9, 0), max(0.2, 0.9)) = 0.9,

which states that solution x = d behaves well in the most possible cases.

2.6 Desired properties on robustness

We will now show that U satisfies Properties 1 and 2 presented in Section 2.3.

Proposition 1 Consider two uncertain Fuzzy CSPs: Q1 = 〈SFCSP , Vc, Vu, C1 = Cf1
∪Cfu1

〉

and Q2 = 〈SFCSP , Vc, Vu, C2 = Cf2
∪ Cfu2

〉, where C1 and C2 differ only by the preference

functions of constraints involving variables in Vu, i.e., Cf1
= Cf2

, Cfu1
=

⋃
i〈µ

i
1, con

i〉 and

Cfu2
=

⋃
i〈µ

i
2, con

i〉. In particular, for every such constraint, ci = 〈µi, coni〉, such that

coni∩Vc = X i and coni∩Vu = Zi, with possibility distribution πZi , let µi
1(d, a) ≤ µi

2(d, a),

for all a assignments to Z i and for all d assignments to X i. Then, given solution s of Q1 and

Q2, such that s ↓Xi= d, U1(s) ≤ U2(s).

Proof: We recall that, for every constraint ci = 〈µi, coni〉 in the statement of Proposition 1,

µ′i
1 (d) = infa∈A

zi
max(µi

1(d, a), c(πZi(a))) and µ′i
2 (d) = infa∈A

zi
max(µi

2(d, a), c(πZi(a))),

where Azi is the Cartesian product of the domains of the variables in Z i. Since µi
1(d, a) ≤

µi
2(d, a), ∀a, d, then max(µi

1(d, a), c(πZi(a))) ≤ max(µi
2(d, a), c(πZi(a))), ∀a, d. There-

fore, infa∈A
zi

max(µi
1(d, a), c(πZi(a))) ≤ max(µi

1(d, a), c(πZi(a))) ≤ max (µi
2(d, a),
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c(πZi(a))), ∀a, ∀d. This allows to conclude that, since s ↓Xi= d, µ′i
1 (s ↓Xi) = infa∈A

zi

max (µ1(s ↓Xi, a), c(πZi(a))) ≤ infa∈A
zi

max(µ2(s ↓Xi, a), c(πZi(a))) = µ′i
2 (s ↓Xi). The

fact that U1(s) = miniµ
′i
1 (s ↓Xi

) and U2(s) = miniµ
′
2(s ↓Xi

) allows us to conclude. 2

Proposition 2 Consider two uncertain Fuzzy CSPs: Q1 = 〈SFCSP , Vc, Vu, C〉 and Q2 =

〈SFCSP , Vc, V
′
u, C〉, where Vu and V ′

u are the same set of uncontrollable variables described,

however, by different possibility distributions. In particular, for every constraint, ci =

〈µi, coni〉, such that coni ∩ Vc = X i and coni ∩ Vu = Zi, let π1
Zi(a) ≥ π2

Zi(a), for all a

assignments to Z i. Then, given solution s of Q1 and Q2, such that s ↓Xi= d, U1(s) ≤ U2(s).

Proof: As in the proof of Proposition 1, we have that, for every constraint, µ′i
1 (d) = infa∈A

zi

max(µi(d, a), c(π1
Zi(a))) and µ′i

2 (d) = infa∈A
zi

max(µi(d, a), c(π2
Zi(a))). Moreover, since

c is an order-reversing map, if π1
Zi(a) ≥ π2

Zi(a) then c(π1
Zi(a)) ≤ c(π2

Zi(a)), ∀a. Thus,

max(µi(d, a), c(π1
Zi(a))) ≤ max(µi(d, a), c(π2

Zi(a))), ∀a. From here we can conclude as

above. 2

2.7 Semantics

Once each solution is associated with two values, the satisfaction degree FP and the robust-

ness U , then there can be several ways to order the solutions. We will now propose various

approaches which differ on the attitude toward risk they implement. In the following we will

present some semantics that we believe to be reasonable.

Definition 18 (semantics) Given an uncertain FCSP Q, consider a solution s with corre-

sponding satisfaction degree FP (s) and robustness U(s). Each semantics associates to s the

ordered pair 〈as, bs〉 as follows:

• Risky (R), Diplomatic (D): 〈as, bs〉=〈FP (s), U(s)〉;

• Safe (S): 〈as, bs〉=〈U(s), FP (s)〉;

• Risky1 (R1): 〈as, bs〉=〈min(FP (s), U(s)), FP (s)〉;

• Safe1 (S1): 〈as, bs〉=〈min(FP (s), U(s)), U(s)〉.

Given two solutions s and s′, let 〈as, bs〉 and 〈as′ , bs′〉 represent the pairs associated to the

solutions by each semantics in turn. The Risky, Safe, Risky1, Safe1 semantics work as

follows:
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• if a1 > a2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for a2 > a1)

• if a1 = a2 then

– if b1 > b2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for b2 > b1)

– if b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉;

where J = R, S, R1, S1.

The Diplomatic semantics works as follows:

• if a1 ≤ a2 and b1 ≤ b2 then 〈a1, b1〉 ≤D 〈a2, b2〉 (and the opposite for a2 ≤ a1 and

b2 ≤ b1);

• if a1 = a2 and b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉;

• else 〈a1, b1〉 ./ 〈a2, b2〉 (./ means incomparable).

As it can be seen by Definition 18 all semantics, except Diplomatic, can be regarded

as a Lex ordering on pairs 〈as, bs〉 with the first component as the most important feature.

Diplomatic, instead, is a Pareto ordering on the pairs.

The first semantics we propose, which we call Risky, considers FP as the most important

feature. Informally, the idea is to give more relevance to the satisfaction degree that can be

reached in the best case considering less important a high risk of being inconsistent. Hence

we are risky, since we disregard almost completely the uncertain part of the problem.

The second semantics, called Safe, represents the opposite attitude with the respect to

the previous one, since it considers U(s) as the most important feature. Informally, the

idea is to give more importance to the robustness level that can be reached considering less

important having a high preference. In particular, in this case we consider a solution better

than another one if its robustness is higher, i.e., if it guarantees an higher number of scenarios

with an higher preference. This semantics considers the satisfaction degree of a solution

only for ordering solutions having the same robustness. This can be useful for reasoning

with uncertain problems when we are mainly interested in the part of the problem that we

cannot control. In this case we want to find the most robust solution independently from

its satisfaction degree. If the chosen solution has a very bad satisfaction degree we could

modify that solution if we want, since we can decide the controllable part.

The Risky1 semantics tries to overcome the myopic attitude of Risky, which concentrates

only on the satisfaction degree (except when there is a tie), by first considering the ordering
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generated by the minimum of FP (s) and U(s). This allows to avoid considering as good,

solutions which will give a low overall preference in most of the possible scenarios.

Similarly the Safe1 semantics mitigates the relevance given to robustness in Safe. In

fact, not considering the minimum value between FP and U before focusing on U , as Safe

does, can lead to consider as optimal solutions which have a poor overall preference despite

guaranteeing high preference on the constraints involving uncontrollables.

The last semantics proposed, called Diplomatic, aims at giving the same importance to

the two aspects of a solution: satisfaction degree and robustness. As mentioned above, the

Pareto ordering on pairs 〈as, bs〉 is adopted. The idea is that a pair is to be preferred to

another only if it wins both on preference and robustness, leaving incomparable all the pairs

that have one component higher and the other lower. Contrarily to the Diplomatic semantics,

the other semantics produce a total order over the solutions.

All semantics differ with respect to the attitude toward risk they implement and with

respect to the point of view from which they consider the problem. In particular, in Risky

and Safe for each solution, the two aspects, i.e., how well the solution performs respectively

on the controllable part of the problem and on the constraints involving uncontrollables, are

kept separated. The relation between how a solution satisfies the two aspects is ignored. This

can be seen as a myopic attitude which focuses on the satisfaction of the controllable part

in Risky, and on the compatibility with uncertainty in Safe. It should be noticed, however

that, given a solution s, while on the robustness, U(s), the preference obtained by s on the

constraints involving only controllables has absolutely no impact, on the satisfaction degree,

FP (s), the compatibility of the solution with uncertain events is taken into account through

the projection constraints. In this sense, Risky can be regarded as less myopic than Safe.

A more global view of the problem characterizes instead the Risky1, Safe1 and Diplo-

matic semantics. In fact, in the first two, considering the minimum of FP (s) and U(s) allows

to order the solutions first with respect to their predominant aspect, that is the one on which

they have a worst performance. Diplomatic resolves by using incomparability situations in

which each solution beats the other one only in one of the aspects. This corresponds to

consider both aspects separate but with the same importance.

Example 8 Figure 2.6 (b) shows a solution of the FCSP in Figure 2.6 (a) which is optimal

according to all the semantics described in Definition 18. 2

Let us now consider an example that explains the differences between the various seman-

tics.

Example 9 Let us consider two solutions of an UFCSP, s1 and s2, such that FP (s1) = 0.3,
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U(s1) = 0.5, FP (s2) = 0.5 and U(s2) = 0.3. According to the semantics defined above we

have the following orderings:

• s1 <R,R1 s2;

• s1 >S,S1 s2;

• s1 ./D s2.

If we consider two solutions, s3 and s4, such that FP (s3) = 0.5, U(s3) = 0.3, FP (s4) =

0.6 and U(s4) = 0.2, then

• s3<R s4;

• s3>S,S1,R1 s4;

• s3 ./D s4.

2

2.8 Desired properties on the solution ordering

We will now check if the semantics presented in Definition 18 satisfy the desired properties

described in Section 2.3 on the solution ordering. In particular, we will show that one of

these semantics, i.e., the Risky semantics, satisfies all these properties.

The following proposition states that Property 3 is satisfied only by Risky and Risky1.

Proposition 3 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions s

and s′ of Q, i.e., assignments to Vc, if ∀ai assignments to Vu in Q, pref(s, ai) > pref(s′, ai),

then s >J s′, where J = R, R1. Instead, it could happen s 6>J s′ for J = S, S1, D.

Proof:

• Risky1. From UFCSP Q we can obtain an equivalent UFCSP QP = 〈SFCSP , {V c},

{V u}, C1 ∪ C2 ∪ C3〉 where: V c is a controllable variable and V u is an uncon-

trollable variable, representing respectively all the variables in Vc and Vu, having as

domains the corresponding Cartesian products. The uncontrollable variable V u is de-

scribed by a possibility distribution, π, which is the joint possibility (see Section 2.2.4)

of all the possibility distributions of the uncontrollable variables in Vu. Constraints

C1 = 〈µ1, V
c〉 and C2 = 〈µ2, {V c, V u}〉 are, respectively, defined as the combination
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of all the constraints in C connecting variables in Vc and as the combination of all the

constraints in C connecting variables in Vc to variables in Vu. Constraint C3 = 〈µ3, V
c〉

is defined as the combination of all the constraints obtained from constraints in C2 by

projecting them over the controllable variables in Vc (i.e., C3 = C2 ↓Vc
). Thus, given

assignment V c = s in QP , which corresponds to an assignment to all the variables

in Vc, its preference on constraint C1 is µ1(s) = F (s), on C3 is µ3(s) = P (s) and

on C1

⊗
C3 is min(µ1(s), µ3(s)) = min(F (s), P (s)) = FP (s). Given assignment

(V c = s, V u = ai), instead, which corresponds to a complete assignment to variables

in Vc and Vu, its preference, µ2(s, ai), is obtained performing the minimum of the pref-

erences associated to all the subtuples of (s, ai) by the constraints in C involving at

least one variable in Vu and one in Vc. Using this new notation we have that ∀s, ai as-

signments to V c and V u, pref(s, ai) = min(µ1(s), µ2(s, ai)) = min(F (s), µ2(s, ai)).

We want to show that if pref(s, ai) > pref(s′, ai), ∀ai, then s>R1 s′, i.e., min(FP (s),

U(s)) > min(FP (s′), U(s′)) or (min(FP (s), U(s)) = min(FP (s′), U(s′)) and FP (s)

> FP (s′)). First, we show that if pref(s, ai) > pref(s′, ai), ∀ai, then FP (s) >

FP (s′). Then, for proving s >R1 s′, it is sufficient to prove that min(FP (s), U(s)) ≥

min(FP (s′), U(s′)).

First part. If pref(s, ai) > pref(s′, ai), ∀ai assignment to V u, then FP (s) > FP (s′).

In fact, if pref(s, ai) > pref(s′, ai), ∀ai, then this holds also for ai∗ such that P (s′) =

µ2(s, ai∗). Then we have min(F (s), µ2(s, ai∗)) > min(F (s′), µ2(s
′, ai∗)) = min(F (s′),

P (s′)) = FP (s′). Since P (s) ≥ µ2(s, ai∗)), then FP (s) = min(F (s), P (s)) ≥

min(F (s), µ2(s, ai∗)) > FP (s′), and so FP (s) > FP (s′).

Notice that from the result above follows that: if FP (s) ≤ FP (s′), then pref(s, ai) ≤

pref(s′, ai), ∃ai.

Second part. If pref(s, ai) > pref(s′, ai), ∀ai assignment to V u, then we have that

min(FP (s), U(s)) ≥ min(FP (s′), U(s′)).

The proof is given by contradiction. That is, we will show that if min(FP (s), U(s))

< min(FP (s′), U(s′)), then there is an assignment aı̄ such that pref(s, aı̄)≤ pref(s′,

āı).

1. Assume min(FP (s), U(s)) = FP (s) and min(FP (s′), U(s′)) = FP (s′). Since

we are assuming min(FP (s), U(s)) < min(FP (s′), U(s′)), then it must be FP (s) <

FP (s′). Then we can conclude by the first part of the proof.
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2. Assume min(FP (s), U(s)) = FP (s) and min(FP (s′), U(s′)) = U(s′). Then,

U(s′) ≤ FP (s′). Since we are assuming that FP (s) < U(s′), then, this implies

that FP (s) < FP (s′). Hence we can conclude as in the previous step.

3. Assume min(FP (s), U(s)) = U(s) and min(FP (s′), U(s′)) = U(s′). Moreover,

and without loss of generality5, let us consider the case in which U(s) < FP (s),

U(s′) < FP (s′), and thus, U(s) < U(s′) < FP (s′).

If we consider the uncertain FSCP QP , then U(s) = infai
(max(µ2(s, ai),

c(π(ai)))) and U(s′) = infai
(max(µ2(s

′, ai), c(π(ai)))). For the sake of no-

tation we will indicate max(µ2(s, ai), c(π(ai))) (respectively max(µ2(s
′, ai),

c(π(ai))) with mi (respectively m′
i). Let āı and a̄ be the values for V u such

that U(s) = mı̄ and U(s′) = m′
̄ (i.e., m′

̄ = max(µ2(s
′, a̄), c(π(a̄))). Then

U(s) = mı̄ ≥ µ2(s, āı). Thus, since FP (s) > U(s), then F (s) > FP (s) >

U(s) = max(µ2(s, āı), c(π(āı))) ≥ µ2(s, āı). This allows us to conclude that

pref(s, aı̄) = min(F (s), µ2(s, āı)) = µ2(s, āı).

We will now show that, for the assignment aı̄, we have pref(s, aı̄) < pref(s′, āı).

In order to do that we will consider all the possible cases from which mı̄ and m′
ı̄

can derive, where m′
ı̄ = max(µ2(s

′, āı), c(π(āı))).

First of all, since mı̄ = U(s) < U(s′) = m′
̄ and since m′

̄ ≤ m′
ı̄, then it must be

mı̄ < m′
ı̄. The cases to be considered are the following:

– mı̄ = m′
ı̄ = c(π(āı)). This can never occur since it contradicts mı̄ < m′

ı̄.

– mı̄ = µ2(s, āı) and m′
ı̄ = µ2(s

′, āı). Thus, µ2(s, āı) = mı̄ < m′
ı̄ = µ2(s

′, āı).

∗ If m′
ı̄ = µ2(s

′, āı)< F (s′), then pref(s′, āı) = µ2(s
′, āı). Since we

know that pref(s, aı̄) = µ2(s, āı), then pref(s, aı̄) < pref(s′, āı).

∗ If m′
ı̄ = µ2(s

′, āı) ≥ F (s′), then pref(s′, āı) = F (s′) and pref(s, aı̄) =

µ2(s, āı) = mı̄ = U(s) < m′
̄ = U(s′) < FP (s′) ≤ F (s′) = pref(s′, āı).

Again pref(s, aı̄) < pref(s′, āı).

– mı̄ = µ2(s, āı) and m′
ı̄ = c(π(āı)). This case can never occur since it

would give the following contradiction: c(π(aı̄)) ≤ mı̄ = µ2(s, āı) < m′
ı̄ =

c(π(āı)).

5We consider only the case with strict inequalities since if U(s) = FP (s), U(s′) = FP (s′) we are in Case

1, if U(s) = FP (s), U(s′) < FP (s′) we are in Case 2, and if U(s) < FP (s), U(s′) = FP (s′) we are in Case

4.
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– mı̄ = c(π(āı)) and m′
ı̄ = µ2(s

′, āı). Thus, pref(s, aı̄) = min(F (s), µ2(s, āı))

≤min(F (s), c(π(aı̄))) = min(F (s), U(s)) = (since P (s) ≥ U(s)) min(F (s),

P (s), U(s)) = min(FP (s), U(s)) < min(FP (s′), U(s′)) ≤ min(FP (s′), µ2(s
′,

āı)) ≤ min(F (s′), µ2(s
′, āı)) = pref(s′, āı)).

4. Assume min(FP (s), U(s)) = U(s) and min(FP (s′), U(s′)) = FP (s′).

Again, we consider only the case with strict inequalities (U(s) < FP (s), FP (s′) <

U(s′)) since all the others can be treated as one of the previous cases.

Since U(s) < FP (s′), then we have U(s) < FP (s′) < U(s′). Let mı̄ = U(s)

and m′
̄ = U(s′) as in Case 3. Since U(s) < FP (s) ≤ F (s), then, as before,

pref(s, aı̄) = µ2(s, āı).

We will show that pref(s, aı̄) < pref(s′, āı). As in the previous case, in order to

do so, we consider all the possible cases from which mı̄ and m′
ı̄ can derive. First,

notice that from U(s) < U(s′) we get mı̄ < m′
̄. The cases to be considered are

the following:

– mı̄ = m′
ı̄ = c(π(āı)). We conclude as in the corresponding step of Case 3.

– mı̄ = µ2(s, āı) and m′
ı̄ = µ2(s

′, āı). Then pref(s, aı̄) = µ2(s, āı) = mı̄ =

U(s) < FP (s′) < U(s′) = m′
̄ ≤ m′

ı̄ = µ2(s
′, āı). Hence, pref(s′, āı) =

min(F (s′), µ2(s
′, āı)) ≥ min(FP (s′), µ2(s

′, āı)) = FP (s′) > pref(s, aı̄).

– mı̄ = µ2(s, āı) and m′
ı̄ = c(π(āı)). We conclude like in the corresponding

step of Case 3.

– If mı̄ = c(π(āı)) and m′
ı̄ = µ2(s

′, āı), then pref(s, aı̄) = µ2(s, āı) ≤

mı̄ = U(s) < FP (s′) < U(s′) ≤ m′
ı̄ = µ2(s

′, āı). Hence pref(s′, āı) =

min(F (s′), µ2(s
′, āı)) ≥ min(FP (s′), µ2(s

′, āı)) = FP (s′) > pref(s, aı̄).

• Risky. We can conclude that s >R s′ for Risky semantics, by using the first part of the

proof for Risky1 semantics.

• Safe and Diplomatic. For these semantics it can happen that s 6> s′.

In fact, let us consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉 where Vc = x,

Vu = z, C is composed by two constraints: c1 =< µ1, {x} > and c2 =< µ2, {x, z} >

and where Dz = {a1, a2} and Dx = {s, s′} are respectively the domain of z and x. Let

us assume that the possibility distribution on z is such that π(a1) = 1 and π(a2) = 0.7.

Let us assume moreover that µ2(s, a1) = 0.4, µ2(s, a2) = 0.5, µ2(s
′, a1) = 0.8,

µ2(s
′, a2) = 0.9, µ1(s) = 0.3 and µ1(s

′) = 0.2. Then the overall preferences are:



46 2. PREFERENCES AND UNCERTAINTY

pref(s, a1) = 0.3, pref(s, a2) = 0.3, pref(s′, a1) = 0.2, pref(s′, a2) = 0.2, i.e.,

pref(s, ai) > pref(s′, ai), ∀ai, i = 1, 2, hence s and s′ satisfy the hypothesis. The

robustness values for s′ and s are U(s) = 0.4, U(s′) = 0.8 and the satisfaction degrees

are FP (s) = 0.3 and FP (s′) = 0.2. Therefore, s <S s′ for Safe semantics, and s ./D s′

for Diplomatic semantics.

• Safe1. For this semantics it can happen that s 6> s′.

In fact, let us consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉 where Vc = x,

Vu = z, C is composed by two constraints: c1 =< µ1, {x} > and c2 =< µ2, {x, z} >

and where Dz = {a1, a2} and Dx = {s, s′} are respectively the domain of z and x. Let

us assume that the possibility distribution on z is such that π(a1) = 1 and π(a2) = 0.7.

Let us assume moreover that µ2(s, a1) = 0.5, µ2(s, a2) = 0.2, µ2(s
′, a1) = 0.4,

µ2(s
′, a2) = 0.1, µ1(s) = 0.9 and µ1(s

′) = 0.9. Then the overall preferences

are: pref(s, a1) = 0.5, pref(s, a2) = 0.2, pref(s′, a1) = 0.4, pref(s′, a2) = 0.1,

i.e., pref(s, ai) > pref(s′, ai), ∀ai, i = 1, 2, hence s and s′ satisfy the hypothesis.

The robustness values for s′ and s are U(s) = 0.3, U(s′) = 0.3 and the satisfac-

tion degrees are FP (s) = 0.5 and FP (s′) = 0.4. Since min(FP (s), U(s)) = 0.3 =

min(FP (s′), U(s′)) and U(s) = U(s′), then s =S1 s′ for Safe1 semantics.

2

Property 4 is satisfied by Risky, Safe, Diplomatic, and Risky1, but it is not satisfied by

Safe1 as shown in the following proposition.

Proposition 4 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

s and s′ of Q, if U(s) = U(s′) and FP (s) > FP (s′), then s >J s′, where J = R, S, D, R1.

Instead, it could happen that s 6>S1 s′.

Proof:

• Risky, Safe and Diplomatic satisfy this property by definition.

Also Risky1 satisfies this property. s >R1 s′ means that min(FP (s), U(s)) > min(FP (s′),

U(s′)), or that min(FP (s), U(s)) = min(FP (s′), U(s′)) and FP (s) > FP (s′). Since

FP (s) > FP (s′) and U(s) = U(s′) then min(FP (s), U(s)) ≥ min(FP (s′), U(s′)).

If we have min(FP (s), U(s)) > min(FP (s′), U(s′)), then we conclude immediately.

If min(FP (s), U(s)) = min(FP (s′), U(s′)), we conclude by observing that FP (s) >

FP (s′).
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• Safe1. In this case it can happen s 6>S1 s′. Let us recall that s >S1 s′ means that

min(FP (s), U(s)) > min(FP (s′), U(s′)), or that min(FP (s), U(s)) = min(FP (s′),

U(s′)) and U(s) > U(s′). Assume, for example, that s and s′ are such that P (s) = 0.9,

F (s) = 0.8 and U(s) = 0.5 and P (s′) = 0.9, F (s′) = 0.7 and U(s′) = U(s) = 0.5.

Then, s and s′ satisfy the hypothesis since FP (s) = min(P (s) = 0.9, F (s) = 0.8) =

0.8 > FP (s′) = min(P (s′) = 0.9, F (s′) = 0.7, ) = 0.7. However, s =S1 s′, since

min(FP (s) = 0.8, U(s) = 0.5) = 0.5 is equal to min(F (s′) = 0.7, U(s′) = 0.5) and

U(s′) = U(s) = 0.5.

2

The next proposition shows that Property 5 is satisfied by Risky, Safe, Diplomatic and

Safe1, but that it is not satisfied by Risky1.

Proposition 5 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

s and s′ of Q, if FP (s) = FP (s′) and U(s) > U(s′), then s >J s′, where J = R, S, D, S1.

Instead, it could happen that s 6>R1 s′.

Proof:

• Risky, Safe and Diplomatic satisfy this property by definition.

Also Safe1 satisfies this property. If FP (s) = FP (s′) and U(s) > U(s′) then min(FP (s),

U(s)) ≥ min(FP (s′), U(s′)). If min(FP (s), U(s)) > min(FP (s′), U(s′)), then we

conclude immediately. If min (FP (s), U(s)) = min(FP (s′), U(s′)) we conclude by

observing that U(s) > U(s′).

• In Risky1 it can happen that s 6>R1 s′. Consider for example solutions s and s′ such that

P (s) = 0.9, F (s) = 0.5 and U(s) = 0.8 and P (s′) = 0.8, F (s′) = 0.5 and U(s′) =

0.7. We have that U(s) > U(s′) and FP (s) = min(P (s) = 0.9, F (s) = 0.5) = 0.5 =

FP (s′) = min(P (s′) = 0.8, F (s′) = 0.5). However, since min(FP (s) = 0.5, U(s) =

0.8) = 0.5 = min(FP (s′) = 0.5, U(s′) = 0.7) and FP (s) = FP (s′) = 0.5, then

s =R1 s′.

2

Summarizing, Risky satisfies all the desired properties on solution ordering (i.e., Prop-

erties 3, 4 and 5), Risky1 satisfies Properties 3 and 4, Safe and Diplomatic satisfy 4 and 5,

Safe1 satisfies only Property 5.
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2.9 Desired properties in algorithm DFP

Let us now briefly reconsider the DFP algorithm [DFP96a] (see Section 2.2.4) and the order-

ing it produces on solutions in terms of the desired properties.

Since in DFP the robustness is computed like in our approach, then Properties 1 and 2 on

the robustness continue to hold. Using our notation, according to DFP, the preference of a so-

lution s of an UFCSP is a single value equal to min(F (s), U(s)). Thus, given two solutions

s and s′ of an UFCSP, s >DFP s′ if and only if min(F (s), U(s)) > min(F (s), U(s)). We

will show that the solution ordering produced by DFP doesn’t satisfy any desired properties

regarding the solution ordering. Before showing this, we give a result which will be useful

in the proof of the following propositions.

Theorem 1 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C = Cf∪Cfu〉 where Cfu =
⋃

i〈µ
i, coni〉, such that coni ∩ Vc = X i and coni ∩ Vu = Zi, with possibility distribution

πZi and domain AZi
. For every solution s of Q, i.e., for every assignment to X i, we have

U(s) ≤ P (s), where P (s) = miniPi(s) and Pi(s) = supa∈A
Zi

µi(s, a).

Proof: We recall that U(s) = miniµ
′i(s), where for every constraint ci = 〈µi, coni〉,

µ′i(s) = infa∈A
zi

max(µi(s, a), c(πZi(a))). By the definition of µ′i(s), µ′i(s) ≤ max(µi(s, a),

c(πZi(a))), ∀a, and so this holds also for a such that πZi(a) = 1. Let us call this a as

ā. For such ā we have max(µi(s, ā), c(πZi(ā))) = max(µi(s, ā), c(1)) = max(µi(s, ā),

0) = µi(s, ā). Therefore we have µ′i(s) ≤ µi(s, ā) ≤ Pi(s), by the definition of Pi(s). The

fact that U(s) = miniµ
′i(s) and that P (s) = miniPi(s) allows us to conclude. 2

Proposition 6 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

s and s′ of Q, i.e., assignments to Vc, if ∀a assignments to Vu, pref(s, a) >pref(s′, a), then

it could happen that s 6>DFP s′.

Proof: For showing this we can use the same example considered in the proof of Proposi-

tion 3 for Safe1 semantics. 2

Proposition 7 Consider an uncertain Fuzzy CSP Q = 〈SFCSP , Vc, Vu, C〉. Given two so-

lutions s and s′ of Q, if U(s) = U(s′) and FP (s) > FP (s′), then it could happen that

s 6>DFP s′.

Proof: Let us consider any pair of solutions s and s′ such that FP (s) > FP (s′) >

U(s′) = U(s). Since, by Theorem 1, ∀s, min(FP (s), U(s)) = min(F (s), U(s)), and since
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min(FP (s), U(s)) = min(FP (s′), U(s′), then s =DFP s′. 2

Proposition 8 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

s and s′ of Q, if FP (s) = FP (s′) and U(s) > U(s′), then it could happen that s 6>DFP s′.

Proof: Let us consider for example the solutions s and s′ satisfying the hypothesis, such

that P (s) = 0.9, F (s) = 0.3 and U(s) = 0.4 and P (s′) = 0.3, F (s′) = 0.3 and U(s′) = 0.3.

Then min(F (s) = 0.3, U(s) = 0.4) = 0.3 = min(F (s′) = 0.3, U(s′) = 0.3) = 0.3 and so

s =DFP s′. 2

Notice that many desired properties don’t hold in DFP approach because, by using the

min operator, one forgets about all the other elements, which are higher than the minimum.

This is usually called the ”drowning effect” [DP93].

2.10 Comparing the semantics

In this section we will compare the semantics we have considered in terms of the ordering

they produce over the solutions and in terms of the properties they satisfy.

Table 2.1 shows how a pair of solutions, which is ordered in a given way by DFP, is

ordered by the other semantics.

DFP Risky Safe Dipl. Risky1 Safe1

= <,>, = <,>,= <,>,=, ./ <,>, = <,>, =

> <,> <,> >, ./ > >

Table 2.1: The solution ordering produced by the DFP semantics compared to that of Risky,

Safe, Diplomatic, Risky1 and Safe1.

The first row of Table 2.1 indicates that if a pair of solutions is equally preferred by DFP,

it can be equally preferred or ordered in any way for Risky, Safe, Risky1 and Safe1, and it

can also be incomparable for Diplomatic.

Example 10 Consider two solutions, s1 and s2 respectively with satisfaction degree and

robustness FP (s1) = 0.5, U(s1) = 0.7 and FP (s2) = 0.7, U(s2) = 0.5, then

• s1 =DFP s2;
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• s1 <R,R1 s2;

• s1 >S,S1 s2;

• s1 ./ s2.

Consider, instead, two solutions s3 and s4 such FP (s3) = 0.2, U(s3) = 0.2 and FP (s4) =

0.5, and U(s4) = 0.2, then

• s4 =DFP,S1 s3;

• s4 >R,R1,S,D s3.

2

The second row of Table 2.1 states that, if a a pair is ordered in some way by DFP, then

it can be ordered in the same way by all the semantics, or in the opposite way in Risky and

Safe, or it can be incomparable in Diplomatic.

Example 11 Consider six solutions, s1, s2, s3, s4, s5 and s6 such that:

• FP (s1) = 0.4, U(s1) = 0.3;

• FP (s2) = 0.5, U(s2) = 0.4;

• FP (s3) = 0.5, U(s2) = 0.3;

• FP (s4) = 0.4, U(s4) = 0.4;

• FP (s5) = 0.3, U(s5) = 0.8;

• FP (s6) = 0.4, U(s6) = 0.7.

Then:

• s1 <DFP,R,S,D,R1,S1 s2;

• s3 <DFP s4 and s3 >R s4;

• s5 <DFP s6 and s5 >S s6.

2
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Notice that two solutions which are strictly ordered in DFP cannot be equally preferred

with respect to Safe or Risky. In fact, two solutions are equally preferred for Safe and Risky

(and Diplomatic) only if they have the same satisfaction degree and the same robustness, and

thus the same minimum.

A pair ordered by DFP can either maintain its ordering or become incomparable accord-

ing to Diplomatic (as shown in Table 2.1) as proved in the following proposition.

Proposition 9 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

of Q, s1 and s2, if s1 >DFP s2 then either s1 >D s2 or s1 ./D s2.

Proof: Assume, for the sake of contradiction, that s1 <D s2. Thus it must be that ei-

ther FP (s1) ≤ FP (s2) and UP (s1) < U(s2), or FP (s1) < FP (s2) and UP (s1) ≤ U(s2).

In both cases, min(FP (s1), U(s1)) ≤ min(FP (s2), U(s2)), which is in contradiction with

s1 >DFP s2. 2

Risky1 and Safe1 are semantics which refine the ordering given by DFP, i.e., they can

order tuples that are considered equal for DFP, but they never reverse the DFP ordering.

Proposition 10 Consider an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉. Given two solutions

of Q, s1 and s2, if s1 >DFP s2 then s1 >R1,S1 s2.

Proof: Since s1 >DFP s2, min(FP (s1), U(s1)) > min(FP (s2), U(s2)) and thus, s1 >R1,S1

s2. 2

Notice that from Proposition 10 it derives that the set of optimal solutions according to

DFP is a superset of the set of optimal solutions of Risky1 and Safe1.

Table 2.2 summarizes which properties hold in the various semantics.

DFP Risky Safe Dipl. Safe1 Risky1

P1 X X X X X X

P2 X X X X X X

P3 X X

P4 X X X X

P5 X X X X

Table 2.2: Properties satisfied in the various semantics. The presence of X in a cell (Pi, S)

denotes that semantics S satisfies Property Pi.
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By looking at Table 2.2 we can make the following remarks.

• Considering the first two rows, we see that the properties pertaining the definition of

robustness are satisfied by all the semantics. Indeed all semantics use the same value,

U(s), as a measure of robustness. We recall that Property 1 states that an increase in

the preferences on constraints involving uncontrollable variables results in an increase

of robustness, assuming that possibility distribution is kept fixed. The same result

can be obtained by lowering the possibilities while maintaining the preferences fixed

(Property 2). Propositions 1 and 2 show that the definition of U , given in [DFP96a] and

adopted here, satisfies these properties. However, it should be noticed that only in some

semantics such changes in the preference values (respectively in the possibilities) can

have a direct impact on the final preference associated to a solution s. In particular it

does in Safe, Risky, Diplomatic and Safe1, since the final preference of a solution

s is a pair which contains U(s). In DFP and Risky1, the effect of an increase of the

above-mentioned preferences may be drowned by the min.

• Property 3 measures the coherence of the ordering produced by the semantics with the

original one defined on the uncertain FCSP. Notice that not necessarily the absence of

such coherence, as for Safe, Diplomatic, Safe1 and DFP should be considered as

a drawback. In fact, while, at first sight, it may seem desirable to prefer an assign-

ment to controllables which outperforms another one in every circumstance, this is not

so obvious when the performance measure is the min of the preference over all the

constraints. In particular, it may be reasonable to sacrifice this property in order to

allow a higher discriminating power among the two fundamental aspects which are the

satisfaction in term of preferences and the robustness with respect to uncertainty.

• The last two properties are satisfied when, given two solutions that have the same ro-

bustness then their ordering is determined by the satisfaction degree (Property 4) and,

given two solutions that have the same satisfaction then their ordering is determined

by the robustness (Property 5). Both of these properties are satisfied by Risky, Safe

and Diplomatic, since, such semantics consider the two features separately and inde-

pendently. The other two semantics, Risky1 and Safe1, which first consider the min

of the two values, allow to discriminate only with respect to the feature which appears

as the second element of the pair. This can be explained in terms of a trade off between

the discrimination power of the semantics and its coherence with the original ordering

of the UFCSP.
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2.11 An example

In this section we will present an example with some a real-life meaning that can be mod-

elled by an uncertain FCSP and solved by applying Algorithm SP (see Section 2.4) and by

choosing one of the semantics presented in Section 2.7.

Let us consider the work of a conference chair that must organize a tutorial. The tutorial

must involve some hours of lectures, some of exercises and some of training. The chair must

find an optimal partition of the hours for the various parts which minimizes costs and takes

into account the requirements of all the involved teachers and students, and several other

constraints. For example, he must establish the number of training hours, knowing that they

require very expensive rooms to book and that they can contain only a certain number of

students for hour, but without knowing the definite number of the students that will attend

them.

In the following we will present in detail the constraints and the requirements that the

chair has to consider. We will show that the whole problem can be modelled by an uncertain

FCSP Q = 〈SFCSP , Vc, Vu, C = Cf ∪ Cfu〉. Notice that we model the constraints as fuzzy

constraints since the chair wants to find the solution that maximizes the minimum preference

of all the people involved in the tutorial.

• The tutorial must involve some hours of lectures, some hours of exercises and some

hours of training. Then Vc, the set of the controllable variables that the conference

chair can decide, contains the variables x, which represents the number of lectures

hours, y which stands for the exercises hours and w, which represents the number of

training hours.

• A requirement of the conference is that the various courses (lectures, exercises, train-

ing) must last 10, 20 or 30 hours. Hence the domains of the variables x, y and w are

Dx = Dy = Dw = {10, 20, 30}.

• Tutorial hours must be performed in rooms that can contain comfortably only a certain

number of people. However, the conference chair doesn’t know the definite number

of students that will attend them. Therefore Vu, the set of uncontrollable variables,

contains z, that is the number of students that can attend training hours.

• The conference chair has received 90 student registrations, hence he knows that at

most there will 90 students, and so that their definite number can be between 0 and

30, between 30 and 60 and between 60 and 90. He believes that it’s more possible
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that students will be between 30 and 60. In fact, he thinks that not all of them will

refuse to come, since they have paid the registration, but maybe not all of them will

come, since there are other interesting conferences in that period. This fact can be

modelled giving to the uncontrollable variable z three values in its domain that are few

(between 0 and 30), average (between 30 and 60) and many (between 60 and 90) and

associating them with the following possibilities: π(few) = 0.4, π(average) = 1,

π(many) = 0.3.

• Cf , the set of constraints defined only on controllable variables, is composed by the

following fuzzy constraints.

– The lecture professor prefers to teach for many hours, since he wants to earn

much money. This can be modelled by the fuzzy constraint c1 =< µ1, {x} >,

where µ1(10) = 0.2, µ1(20) = 0.9 and µ1(30) = 1.

– The exercise professor prefers to teach for few hours, since he is very busy in that

period. This can be described by the fuzzy constraint c2 =< µ2, {y} >, where

µ2(10) = 0.9, µ2(20) = 0.4 and µ2(30) = 0.1.

– The training hours must be done in laboratory rooms, that are expensive, hence

the conference chair, that wants to reduce costs, prefers to reduce these hours:

c3 =< µ3, {w} >, where µ3(10) = 0.6, µ3(20) = 0.5 and µ3(30) = 0.3.

– A requirement of the conference is that the tutorial lasts at most 50 hours. Let x′,

y′ and w′ the values of the variables x, y and z, then this can be represented by the

fuzzy constraint c4 =< µ4, {x, y, w} >, where µ4(x
′, y′, z′) = 1 if x′ + y′ + z′ ≤

50 and µ4(x
′, y′, z′) = 0 if x′ + y′ + z′ > 50.

– The students prefer to attend many hours of lessons for learning better the various

subjects. This can be modelled by fuzzy constraint c5 =< µ5, {x, y, w} >, where

µ5(x
′, y′, z′) = 0.4 if x′ + y′ + z′ = 30, µ5(x

′, y′, z′) = 0.5 if x′ + y′ + z′ = 40

and µ5(x
′, y′, z′) = 1 if x′ + y′ + z′ = 50.

– Moreover, the students prefer to attend many hours of exercises for learning better

the theory. We can model this requirement with the fuzzy constraint c6 =<

µ6, {y} >, where µ6(10) = 0.7, µ6(20) = 0.8 and µ6(30) = 1.

• Cfu, the set of constraints involving both controllable and uncontrollable variables, is

composed by the following fuzzy constraint.
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– The laboratory rooms can contain for every hour comfortably 30 (= few) people.

We can model this requirement with the constraint c7 = < µ7, {w, z} >, where

µ7(10, few) = 1, µ7(10, average) = 0.5, µ7(10, many) = 0.1, µ7(20, few) =

0.1, µ7(20, average) = 0.9, µ7(20, many) = 0, µ7(30, few) = 0.1, µ7(30,

average) = 0.2 and µ7(30, many) = 0.8.
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Figure 2.7: An uncertain FCSP Q = 〈SFCSP , Vc = {x, y, w}, Vu = {z}, C = {c1, c2, c3,

c4, c5, c6, c7}〉 and the corresponding FCSP Q′ = 〈SFCSP , Vc = {x, y, w}, C = {c1, c2, c3,

c4, c5, c6, c
′
7, c7p}〉 obtained by applying SP.

Applying SP to the uncertain FCSP shown in Figure 2.7 (a) we obtain the FCSP Q′ =

〈SFCSP , Vc, C
′〉 shown in Figure 2.7 (b) with C ′ = Cf ∪ Cp ∪ Cu, where:

• Cf , the set of constraints of Q defined only on Vc, is {c1, c2, c3, c4, c5, c6};

• Cp, the set of constraints obtained by projecting the constraints involving variables in

Vu on their controllable variables, is composed only by c7p = < µ7p, {w} >, where

µ7p(10) = 1, µ7p(20) = 0.9 and µ7p(30) = 0.8;

• Cu, the set of constraints defined on Vc, obtained applying the procedure for remov-

ing uncontrollable variables described in Section 2.2.4, is composed by only c′7 =<

µ′
7, {w} >, where µ′

7(10) = 0.5, µ′
7(20) = 0.6 and µ′

7(30) = 0.2.

Now we can compute, for each complete assignment s = (x = x′, y = y′, w = w′) to

Vc that doesn’t violate any constraints, the satisfaction level FP (s) and the robustness value

U(s). We recall that FP (s) = min(F (s), P (s)) and F (s), P (s), U(s), are respectively

the minimum preference over the constraints in Cf , Cp and Cu of Q′. Hence we have the

following solutions:

• s1 = (10, 10, 10) with FP (s1) = 0.2 and U(s1) = 0.5,
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• s2 = (10, 10, 20) with FP (s2) = 0.2 and U(s2) = 0.6,

• s3 = (10, 20, 10) with FP (s3) = 0.2 and U(s3) = 0.5,

• s4 = (20, 10, 10) with FP (s4) = 0.5 and U(s4) = 0.5,

• s5 = (10, 20, 20) with FP (s5) = 0.2 and U(s5) = 0.6,

• s6 = (20, 20, 10) with FP (s6) = 0.4 and U(s6) = 0.5,

• s7 = (20, 10, 20) with FP (s7) = 0.5 and U(s7) = 0.6,

• s8 = (10, 30, 10) with FP (s8) = 0.1 and U(s8) = 0.5,

• s9 = (30, 10, 10) with FP (s9) = 0.6 and U(s9) = 0.5,

• s10 = (10, 10, 30) with FP (s10)) = 0.2 and U(s10) = 0.2.

The optimal solutions for the semantics presented in Section 2.7 are:

• s9 = (30, 10, 10) for Risky and Risky1 semantics, that associate to each solution s

respectively the pair 〈FP (s), U(s)〉 and 〈min(FP (s), U(s)), FP (s)〉;

• s7 = (20, 10, 20) for Safe and Safe1, that associate to each solution s respectively the

pair 〈U(s), FP (s)〉 and 〈min(FP (s), U(s)), U(s)〉;

• s7 = (20, 10, 20) and s9 = (30, 10, 10) for Diplomatic.

This result shows that if the conference chair is Risky or Risky1, for saving money, he

proposes an optimal subdivision of the hours that doesn’t cost very much, but that is risky.

In fact, if there will be an average or a big number of students, he will not be able to allow

to every student to participate to the training hours even if they have paid for them. Whereas

if he is Safe or Safe1 he prefers to guarantee the training hours to an average number of

students, and so he will pay laboratory rooms for more hours, even if this increases the

cost to pay. If he is Diplomatic, he would like to find a solution that is not expensive and

that guarantees tutorial hours to almost all students that will come. Hence he considers

incomparable and so equally optimal the solutions decided for Risky and Safe semantics.

Notice that in general Safe and Safe1 (respectively Risky and Risky1) don’t give the

same ordering over solutions. Consider for example the solutions s2 = (10, 10, 20) and s6 =

(20, 20, 10). We have s2 >S s6 for Safe, since U(s2) = 0.6 > U(s6) = 0.5, whereas s2 <S1

s6 for Safe1, since min(FP (s2) = 0.2, U(s2) = 0.6) = 0.2 < min(FP (s6) = 0.6, U(s6) =
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0.5) = 0.5. Safe states that s2 > s6, since it prefers the most robust solution independently

from its satisfaction degree, i.e., independently by the preference of the controllable part,

whereas Safe1 states the opposite since s2 has a poor overall preference (on both controllable

and uncontrollable variables) with respect to s6, despite guaranteeing high preference on the

constraints involving uncontrollable variables.

Summarizing, the various semantics propose different optimal solutions depending by

different attitudes to the risk with respect to uncertainty. This attitude is very different from

the one of DFP that considers equally optimal solutions s4 = (20, 10, 10), s7 = (20, 10, 20)

and s9 = (30, 10, 10) even if, as we have just shown, they have very different meanings.

2.12 A solver for UFCSPs

We present a solver for finding an optimal solution of an uncertain FCSP according to the

semantics defined in Section 2.7. Since the solver is based on a branch and bound approach,

first we briefly describe how standard Branch and Bound (that we call BB) for FCSPs works.

FCSPs are NP-hard, since they are a particular case of soft constraints problems, which

are already known to be difficult problems [BMR97]. However, they can be solved via a

branch and bound technique, possibly augmented via soft constraint propagation, which may

lower the preferences and thus allow for the computation of better bounds [BMR97]. Fol-

lowing BB [Dec03], whenever a solution is found, its preference, if higher that those found

before, is kept as a lower bound, L, for the optimal preference in the maximization task.

Moreover, for each partial solution t an upper bound, ub(t), is computed by overestimating

the best preference of a solution extending t. If ub(t) ≤ L, i.e., if the preference of the best

solution in the subtree below t is worse than the preference of the best solution found so far,

then the subtree below t is pruned.

We propose to use an algorithm similar to BB [Dec03] used for fuzzy preferences, but

that it is based on our framework. More precisely, we will associate to every solution s not

a single value, like in standard BB, but an ordered pair of values, that is composed by the

satisfaction level FP (s) and the robustness U(s) and then we will use different semantics for

comparing solutions. Hence, also the upper bound ub(t) of a partial solution t will be given

by a pair of values, that we call ubFP (t) and ubU(t), that are respectively overestimations of

the best level of satisfaction and of the best value of robustness of a solution extending t.

Since we consider fuzzy preferences, these overestimations are computed as follows:

ubFP (t) = min(FPi
(t), FPni

(t)) and ubU(t) = min(Ui(t), Uni(t)), where FPi
(t) and ubUi(t)

are respectively the satisfaction level and the robustness value of the part of the problem in-
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stantiated with t, that we know, while FPni
(t) and ubUni(t) are overestimations respectively

of the satisfaction level and of the robustness value of the non-instantiated part of problem,

that we have to compute.

In some semantics, given the partial solution t, we can prune the subtree below t, without

computing the overestimations FPni
(t) and ubUni(t) mentioned above, but considering only

the satisfaction level and the robustness value of the part of the problem instantiated with t,

i.e., by using only FPi
(t) and Ui(t). For example, assume that the best solution found so far,

s, is associated with values FP∗ and U∗. If we consider Risky semantics, then for pruning the

subtree below t it is sufficient that FPi
(t) < FP∗ , since this implies that ubFP (t) ≤ FPi

(t) <

FP∗ , and so that solutions in the subtree below t are worse for Risky semantics than the

best solution found so far. Analogously, if we reason with Safe semantics, we can prune the

subtree below t only knowing that Ui(t) < U∗.

In order to state in compact way the conditions that allow to prune the subtree below a

partial assignment t in the various semantics, we use the ordered pair 〈a(t), b(t)〉 for rep-

resenting the values associated to t. This pair 〈a(t), b(t)〉 is 〈FP (t), U(t)〉 in Risky and

Diplomatic, 〈U(t), FP (t)〉 in Safe, 〈min(FP (t), U(t)), FP (t)〉 in Risky1 and 〈min(FP (t),

U(t)), U(t)〉 in Safe1. Moreover, we use index i (i.e., 〈ai(t), bi(t)〉), when we refer to the

part of the problem instantiated with t, and index ni (i.e., 〈ani(t), bni(t)〉), for referring to

non-instantiated part.

More formally, assume that the best solution found so far is associated with the pair

〈lba, lbb〉, and that the partial assignment t is defined by the pair 〈ai(t), bi(t)〉. Then, in

our branch and bound algorithm (Algorithm 3), we prune the subtree below t, if one of the

following conditions holds:

1. ai(t) < lba;

2. ai(t) ≥ lba and ani(t) < lba;

3. ai(t) ≥ lba, ani(t) = lba and bi(t) < lbb;

4. ai(t) ≥ lba, ani(t) = lba, bi(t) = lbb and bni(t) ≤ lbb.

Our branch and bound algorithm is similar to the standard one except that at every step,

instead of consider a single value for every partial assignment, it considers a pair of values

and it uses the various semantics for ordering these pairs. For a tight comparison between

our algorithm and standard BB, first we present standard BB and then we underline the main

novelties of our algorithm. The standard BB is described in Algorithm 2. It takes as input
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an assignment t and a valuation lb, that is the the preference of the best solution found so

far, and it returns a valuation. At first it sets the value v to the upper bound ub(t), that is

an overestimation of the best solution that can be found in the subtree under t. Hence if

this overestimation is worse than or equal to lb, then the algorithm doesn’t consider subtree

below t and it returns the worse element of the fuzzy c-semiring, i.e., 0. Instead, if v > lb,

then if the cardinality of t is equal to n, i.e., if t is complete assignment, then it returns v.

If this does not happen it considers a non-instantiated variable k, and, for every value a in

its domain, it computes the new lower bound lb. This value is obtained by performing the

maximum between the previous value of lb and the valuation returned by a recursive call of

the algorithm, that takes as parameters the assignment that extends t with the value a, that is

assigned to the variable k, and the present value of lb. At the end it returns the value lb.

Algorithm 2: Branch and Bound Algorithm, BB
Input: t: assignment; lb: valuation;

Output: valuation;

v ← ub(t);

if v > lb then

if |t| = n then
return v;

Let k be the future variable;

foreach a ∈ dk do
lb = max(lb, BB(t ∪ {(k, a)}, lb);

return lb;
return 0;

We propose to adapt Algorithm 2 to our framework, thus obtaining Algorithm 3, that

takes in input another parameter, i.e., S, that is the considered semantics, and it associates to

every assignment, not only a single value, but a pair of values. Therefore the values lb, ub(t)

and v are pairs of values in Algorithm 3. Moreover, instead of checking if v > lb is true,

the algorithm checks if none of the pruning conditions described previously in this section is

satisfied. Moreover, since now we have pairs of values and not single values to compare, we

replace the operator max with a new operator, that we call bestS , that compares two pairs

and returns the best one according to the semantics S. This algorithm could be used with all

our semantics.

Notice that, in Diplomatic semantics, the pruning conditions defined previously lead al-

ways to optimal solutions that are optimal solutions in Risky or in Safe semantics. Since the

main feature of Diplomatic semantics is to produce also optimal solutions that neither Risky
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Algorithm 3: Our Branch and Bound Algorithm
Input: t: assignment; 〈lba, lbb〉: pair of valuations; S: semantics

Output: pair of valuations;

〈va, vb〉 ← 〈min(ai(t), ani(t)), min(bi(t), bni(t))〉;

if ((ai(t) < lba) and (bi(t) < lbb)) or

((ai(t) < lba) and (bi(t) ≥ lbb) and (bni(t) < lbb)) or

((ai(t) ≥ lba) and (ani(t) < lba) and (bi(t) < lbb)) or

((ai(t) ≥ lba) and (ani(t) < lba) and (bi(t) ≥ lbb) and (bni(t) ≤ lbb)) then
return 〈0, 0〉;

else

if |t| = n then
return 〈va, vb〉;

Let i be the future variable;

foreach a ∈ dk do
〈lba, lbb〉 = bestS(〈lba, lbb〉, BB(t ∪ {(k, a)}, 〈lba, lbb〉, S);

return 〈lba, lbb〉;

nor Safe semantics give, then we state new pruning conditions that produce this particular

kind of Diplomatic optimal solutions. These conditions are more tight and so they allow us

for less pruning. Given a partial assignment t with values < ai(t), bi(t) >, for obtaining

Diplomatic optimal solutions that are neither Risky nor Safe optimal solutions, then we can

adapt the branch and bound algorithm allowing to prune the subtree below t only if one of

the following conditions holds:

1. ai(t) ≤ lba and bi(t) ≤ lbb;

2. ai(t) ≤ lba, bi(t) > lbb and bni(t) ≤ lbb;

3. ai(t) > lba, ani(t) ≤ lba and bi(t) ≤ lbb;

4. ai(t) > lba, ani(t) ≤ lba, bi(t) > lbb and bni(t) ≤ lbb.

In order to find this kind of Diplomatic optimal solutions, we have defined another algo-

rithm (Algorithm 4), that is equal to Algorithm 3 except that the semantics considered here is

only Diplomatic semantics and the pruning conditions in the first IF are those that we have

mentioned just before.
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Algorithm 4: Special Diplomatic Branch and Bound Algorithm
Input: t: assignment; 〈lba, lbb〉: pair of valuations; D: Diplomatic semantics

Output: pair of valuations;

〈va, vb〉 ← 〈min(ai(t), ani(t)), min(bi(t), bni(t))〉;

if ((ai(t) ≤ lba) and (bi(t) ≤ lbb)) or

((ai(t) ≤ lba) and ( bi(t) > lbb) and ( bni(t) ≤ lbb; )) or

((ai(t) > lba) and ( ani(t) ≤ lba) and (bi(t) ≤ lbb)) or

(( ai(t) > lba) and ( ani(t) ≤ lba) and ( bi(t) > lbb) and ( bni(t) ≤ lbb)) then
return 〈0, 0〉;

else

if |t| = n then
return 〈va, vb〉;

Let i be the future variable;

foreach a ∈ dk do
〈lba, lbb〉 = bestS(〈lba, lbb〉, BB(t ∪ {(k, a)}, 〈lba, lbb〉, S);

return 〈lba, lbb〉;

2.13 A generalized approach for USCSPs

In Sections 2.4 and 2.5 we have defined a method for handling Fuzzy CSPs with uncertainty.

In this section we propose a method for generalizing this procedure in order to deal with

other classes of Soft CSPs. First, we generalize algorithm SP for generic soft CSPs with

uncertainty by extending the notion of robustness in this context, and then we show that it

satisfies the desired properties presented in Section 2.3. Next, we show how to compute

the preference of a solution in this general framework and we give more general semantics

for ordering the solutions. After that, we instantiate the general framework with two well

known SCSPs, to which we add uncertainty, that are, Probabilistic CSPs, where preferences

are interpreted as probabilities and the goal is to maximize their product and Weighted CSPs,

where preferences represent costs and the goal is to minimize their sum. Finally, we check

if the solution ordering produced by the new more general semantics continues to satisfy the

desired properties on the solution ordering presented in Section 2.3.

2.13.1 Algorithm G-SP for USCSPs

In this section we show how to generalize to generic uncertain soft CSPs the algorithm SP

described in Section 2.2.4.
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We recall that SP translates fuzzy constraints linking controllable and uncontrollable

variables into fuzzy constraints involving only their controllable variables. In particular,

given an uncertain FCSP Q = 〈SFCSP , Vc, Vu, C〉, where SFCSP is the fuzzy c-semiring

〈[0, 1], max, min, 0, 1〉, SP translates every constraint 〈µ, con〉, where con ∩ Vc = X and

con ∩ Vu = Z, into a new constraint 〈µ′, con′〉, where con′ = X and µ′ is such that, ∀d

assignment to X , µ′(d) = infa∈AZ
(µ(d, a) + c(πZ(a))), where c is the order reversing map

in [0, 1], such that c(p) = 1 − p, ∀p ∈ [0, 1], AZ is the cartesian product of the domains

of variables in Z and πZ is the possibility distribution on Z. The preference function µ′ is

characterized by a property stating that, given an assignment d to X , µ′(d) ≥ α if and only

if ∀a with πZ(a) > c(α), µ(d, a) ≥ α.

In the following we give a more general definition of µ′ that holds in uncertain soft

CSPs. In order to show that it is reasonable, we show that the characterization property

for µ′ continues to hold also in this general framework. Let us consider an uncertain soft

CSP SQ = 〈S, Vc, Vu, C〉, where S is a generic c-semiring 〈A, +,×, 0, 1〉 and ≤S is the c-

semiring ordering on A induced by the additive operator of S. We generalize the preference

function of every constraint 〈µ′, con′〉 described above, obtained by removing uncontrollable

variables, as follows. Notice that + refers to the additive operator of the c-semiring.

µ′(d) = infa∈AZ
(µ(d, a) + cS(πZ(a))) (2.2)

where

• inf returns one of the bottom elements of AZ with respect to the c-semiring ordering

(i.e., a ∈ AZ such that ∀a′ ∈ AZ with a′ 6= a then a′ >S a or a′ ./S a, where ./S

means incomparable with respect to c-semiring ordering);

• [0, 1] ⊆ A. This allows us to apply the operator + between µ(d, a) and cS(πZ(a));

• cS is a order-reversing map with respect to c-semiring S, that is bijection from [0,1]

to [0,1] such that, ∀a1, a2 ∈ [0, 1], a1 ≤ a2 if and only if cS(a1) ≥S cS(a2) and

cS(cS(a)) = a, ∀a.

In what follows we show that the new preference function µ′ defined for uncertain soft

CSPs satisfies the characterization property given for uncertain FCSPs. More precisely, we

show that, if the set of preferences, A, of the c-semiring S is totally ordered, the same char-

acterization of µ′ holds, while, if A is partially ordered, a slightly weaker characterization of

µ′, that depends on the fact that preferences of A can be also incomparable, holds.
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Proposition 11 Consider an uncertain soft CSP SQ = 〈S, Vc, Vu, C〉, where S is a generic

c-semiring 〈A, +,×, 0, 1〉. Every constraint, 〈µ, con〉 ∈ C, such that con∩Vc = X and con∩

Vu = Z, with possibility distribution πZ , can be translated in a new constraint, 〈µ′, con′〉,

where con′ = X and µ′ is such that, if d is an assignment to X , and a an assignment to Z,

• if A is totally ordered,

µ′(d) ≥S α if and only if, ∀a such that πZ(a) > cS(α), µ(d, a) ≥S α.

• if A is partially ordered,

µ′(d) 6≤S α if and only if, ∀a such that πZ(a) ≥ cS(α), µ(d, a) 6≤S α

(6≤S means >S or ./S).

where cS is an order reversing map with respect to c-semiring S.

Proof: Let us recall that µ′(d) = infa∈AZ
(µ(d, a) + cS(πZ(a))).

A totally ordered. (⇒) We assume infa∈AZ
(µ(d, a) + cS(πZ(a))) ≥S α. Since infa∈AZ

(µ(d, a)+cS(πZ(a))) ≤S (µ(d, a)+cS(πZ(a))), ∀a ∈ AZ , then (µ(d, a)+cS(πZ(a))) ≥S α,

∀a ∈ AZ . For every a such that πZ(a) > cS(α), then, since cS is an order-reversing map with

respect to c-semiring S, such that cS(cS(p)) = p, we have cS(πZ(a)) <S cS(cS(α)) = α.

Since A is totally ordered, for any two elements of the c-semiring we have a + b = a or b,

then, for every a such that πZ(a) > cS(α), we have µ(d, a) = (µ(d, a) + cS(πZ(a))) ≥S α.

(⇐) We assume that, for every a such that πZ(a) > cS(α), we have µ(d, a) ≥S α.

Then, for such a, (µ(d, a) + cS(πZ(a))) ≥S µ(d, a) ≥S α. On the other hand, for every

a such that πZ(a) ≤ cS(α), we have cS(πZ(a)) ≥S α and so (µ(d, a) + (πZ(a))) ≥S α.

Thus for every a ∈ AZ , (µ(d, a) + cS(πZ(a))) ≥S α. Therefore, since the inf oper-

ator applied to elements of the c-semiring returns one of these elements, we have that

infa∈AZ
(µ(d, a) + cS(πZ(a))) ≥S α, i.e., µ′(d) ≥S α.

A partially ordered. (⇒) We assume that infa∈AZ
(µ(d, a) + cS(πZ(a))) 6≤S α, then

(µ(d, a) + cS(πZ(a))) 6≤S α, ∀a ∈ AZ . For every a such that πZ(a) ≥ cS(α) we have,

as above, cS(πZ(a)) ≤S α and so, since (µ(d, a) + c(πZ(a))) 6≤S α, we have µ(d, a) 6≤S α.

In fact, if we assume µ(d, a) ≤S α, then we obtain (µ(d, a)+c(πZ(a))) ≤S α+α, for mono-

tonicity of +, and, for idempotency of +, (µ(d, a) + c(πZ(a))) ≤S α, that is a contradiction.

(⇐) We assume that, for every a such that πZ(a) ≥ c(α), µ(d, a) 6≤S α. Then, for such

a, we have (µ(d, a)+c(πZ(a))) 6≤S α. In fact, if (µ(d, a)+c(πZ(a))) ≤S α, then, for mono-

tonicity and idempotency of +, we have µ(d, a) ≤S (µ(d, a) + c(πZ(a))) ≤S α + α = α,
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that is a contradiction. On the other hand, for every a such that πZ(a) < c(α), we have

c(πZ(a)) >S α and so (µ(d, a) + c(πZ(a))) ≥S c(πZ(a)) >S α. Thus for every a ∈ AZ ,

(µ(d, a) + c(πZ(a))) 6≤S α. Therefore, since the inf operator applied to elements of the

c-semiring returns one of these elements, we have that infa∈AZ
(µ(d, a) + c(πZ(a))) 6≤S α.

2

Now we are ready to show how algorithm generalizing SP, that we call G-SP, works. It

starts from an uncertain soft CSP SQ = 〈S, Vc, Vu, C = Cf ∪ Cfu〉, where S is a generic c-

semiring 〈A, +,×, 0, 1〉,≤S is the c-semiring ordering on A induced by the additive operator

of S, Cf is the set of constraints of SQ defined only on controllable variables, Cfu is the set

of constraints of SQ defined on both controllable and uncontrollable variables. Then, it

obtains a soft CSP SQ′ = 〈S, Vc, C
′ = Ccontrol ∪ Cu〉, where Ccontrol = Cf ∪ Cp, Cp is

the set of constraints obtained by projecting (as described in Definition 5 of Section 2.2) the

constraints Cfu on the controllable variables and Cu is the set of constraints, defined only on

controllable variables, obtained from the constraints Cfu applying the method described at

the beginning of this section.

2.13.2 Desired properties on robustness

We will now show that the new value U , which is computed by exploiting Formula 2.2,

satisfies the properties on the robustness presented in Section 2.3. As done in Section 2.13.1,

we will distinguish the cases where the set of preferences of the c-semiring is totally ordered

and where it is partially ordered, and we will give slightly modified properties in this second

case, in order to take incomparability into account.

Proposition 12 Consider two uncertain soft CSPs: SQ1 = 〈S, Vc, Vu, C1 = Cf1
∪ Cfu1

〉

and SQ2 = 〈S, Vc, Vu, C2 = Cf2
∪ Cfu2

〉, where S is a generic c-semiring 〈A, +,×, 0, 1〉,

C1 and C2 differ only by the preference functions of constraints involving variables in Vu,

i.e., Cf1
= Cf2

, Cfu1
=

⋃
i〈µ

i
1, con

i〉 and Cfu2
=

⋃
i〈µ

i
2, con

i〉. In particular, for every

such constraint, ci = 〈µi, coni〉, such that coni ∩ Vc = X i and coni ∩ Vu = Zi, with

possibility distribution πZi , let µi
1(d, a) ≤S µi

2(d, a), for all a assignments to Z i and for all

d assignments to X i. Then, given solution s of SQ1 and SQ2, such that s ↓Xi= d,

• if A is totally ordered, U1(s) ≤S U2(s);

• if A is partially ordered, U1(s) 6>S U2(s).
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Proof: We recall that, for every constraint ci = 〈µi, coni〉 in the statement of this proposi-

tion, µ′i
1 (d) = infa∈A

zi
(µi

1(d, a)+ cS(πZi(a))) and µ′i
2 (d) = infa∈A

zi
(µi

2(d, a)+ cS(πZi(a))),

where Azi is the Cartesian product of the domains of the variables in Z i. Since µi
1(d, a) ≤S

µi
2(d, a), ∀a, d, then, by monotonicity of +, (µi

1(d, a)+ cS(πZi(a)))≤S µi
2(d, a)+ cS(πZi(a))),

∀a, d.

If A totally ordered, then we have infa∈A
zi

(µi
1(d, a)+ cS(πZi(a)))≤S (µi

1(d, a)+ cS(πZi(a)))

≤S (µi
2(d, a)+ cS(πZi(a))), ∀a, ∀d. Therefore, since s ↓Xi= d, µ′i

1 (s ↓Xi) = infa∈A
zi

(µ1(s ↓Xi , a)+ cS(πZi(a))) ≤S infa∈A
zi

(µ2(s ↓Xi , a)+ cS(πZi(a))) = µ′i
2 (s ↓Xi). The fact

that U1(s) =
∏

i µ
′i
1 (s ↓Xi

) and U2(s) =
∏

i µ
′
2(s ↓Xi

), and the monotonicity of × allow to

conclude.

If A is partially ordered, then µ′i
1 (s ↓Xi) = infa∈A

zi
(µ1(s ↓Xi , a)+ cS(πZi(a))) 6>S

infa∈A
zi

(µ2(s ↓Xi , a)+ cS(πZi(a))) = µ′i
2 (s ↓Xi). In fact, if we assume that infa∈A

zi

(µ1(s ↓Xi, a)+ cS(πZi(a))) >S infa∈A
zi

(µ2(s ↓Xi , a)+ cS(πZi(a))) = µ′i
2 (s ↓Xi), then

∃ā ∈ AZ , infa∈A
zi

(µ1(s ↓Xi , a)+ cS(πZi(a))) >S (µ2(s ↓Xi, ā)+ cS(πZi(ā))), since

the operator inf returns one of the elements on which it is applied. But we know that

(µ1(s ↓Xi , a)+ cS(πZi(a))) ≤S (µ2(s ↓Xi, a)+ cS(πZi(a))), ∀a, and so, infa∈A
zi

(µ1(s ↓Xi ,

a)+ cS(πZi(a))) >S (µ2(s ↓Xi, ā)+ cS(πZi(ā))) ≥S (µ1(s ↓Xi , ā)+ cS(πZi(ā))), that is

a contradiction, since we find that infa∈A
zi

(µ1(s ↓Xi , a)+ cS(πZi(a))) >S (µ1(s ↓Xi, ā)+

cS(πZi(ā))). The fact that U1(s) =
∏

i µ
′i
1 (s ↓Xi

) and U2(s) =
∏

i µ
′
2(s ↓Xi

), and the mono-

tonicity of × allow to conclude. 2

Proposition 13 Consider two uncertain soft CSPs: SQ1 = 〈S, Vc, Vu, C〉 and SQ2 =

〈S, Vc, V
′
u, C〉, where S is a generic c-semiring 〈A, +,×, 0, 1〉, Vu and V ′

u are the same set of

uncontrollable variables described, however, by different possibility distributions. In partic-

ular, for every constraint, ci = 〈µi, coni〉, such that coni ∩ Vc = X i and coni ∩ Vu = Zi, let

π1
Zi(a) ≥ π2

Zi(a), for all a assignments to Z i. Then, given solution s of SQ1 and SQ2, such

that s ↓Xi= d,

• if A is totally ordered, U1(s) ≤S U2(s);

• if A is partially ordered, U1(s) 6>S U2(s).

Proof: For every constraint ci = 〈µi, coni〉 in the statement of this proposition we have

µ′i
1 (d) = infa∈A

zi
(µi(d, a)+ cS(π1

Zi(a))) and µ′i
2 (d) = infa∈A

zi
(µi(d, a)+ cS(π2

Zi(a))).
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Since cS is an order-reversing map with respect to c-semiring ordering, if π1
Zi(a) ≥S π2

Zi(a),

∀a then cS(π1
Zi(a)) ≤S cS(π2

Zi(a)), ∀a. Thus, by monotonicity of +, (µi(d, a)+ cS(π1
Zi(a)))

≤S (µi(d, a)+ cS(π2
Zi(a))), ∀a, d. From here we can conclude as in the proof of Proposition

12. 2

2.13.3 Semantics

In this section we show how to compute the preference of a solution of an uncertain soft CSP

and how to adapt the semantics defined in Section 2.7 to this more general context.

We recall that, given an uncertain SCSP SQ = 〈S, Vc, Vu, C = Cf ∪ Cfu〉, algorithm

G-SP obtains a SCSP SQ′ = 〈S, Vc, C = Cf ∪ Cp ∪ Cu〉. Given a solution s of SQ, i.e.,

a complete assignment to Vc, we can compute its preference. This preference, which is

obtained by computing the values F (s), P (s) and U(s), that are respectively the result of the

combination (via the operator × of the c-semiring S) of the preferences over the constraints

in Cf , Cp and Cu, is given by the two values FP (s) = (F (s)× P (s)) and U(s).

Once a solution of an uncertain soft CSP based on a c-semiring S = 〈A, +,×, 0, 1〉

is associated to a pair, we can generalize the semantics introduced in Section 2.7 for fuzzy

preferences. We perform this generalization by taking into account the fact that preferences

could also be incomparable.

Definition 19 (P-semantics) Given an uncertain soft SCSP SQ = 〈S, Vc, Vu, C〉, where S

is a semiring 〈A, +, ×, 0, 1〉 such that A is partially ordered, consider a solution s with

corresponding satisfaction degree FP (s) and robustness U(s). Each semantics associates to

s the ordered pair 〈as, bs〉 as follows:

• P-Risky (pR), P-Diplomatic (pD): 〈as, bs〉=〈FP (s), U(s)〉;

• P-Safe (pS): 〈as, bs〉=〈U(s), FP (s)〉;

• P-Risky1 (pR1): 〈as, bs〉= 〈FP (s)× U(s), FP (s)〉;

• P-Safe1 (pS1): 〈as, bs〉= 〈FP (s)× U(s), U(s)〉.

Given two solutions s and s′, let 〈as, bs〉 and 〈as′, bs′〉 represent the pairs associated to the

solutions by each semantics in turn. The P-Risky, P-Safe, P-Risky1, P-Safe1 semantics

work as follows:

• if a1 >S a2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for a2 >S a1)
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• if a1 = a2 then

– if b1 >S b2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for b2 > b1)

– if b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉;

– if b1 ./S b2 then 〈a1, b1〉 ./J 〈a2, b2〉,

• if a1 ./S a2 then

– if b1 >S b2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for b2 > b1)

– else 〈a1, b1〉 ./J 〈a2, b2〉;

where J = pR, pS, pR1, pS1.

The P-Diplomatic (pD) semantics works as follows:

• if a1 ≤ a2 and b1 ≤ b2 then 〈a1, b1〉 ≤pD 〈a2, b2〉 (and the opposite for a2 ≤ a1 and

b2 ≤ b1);

• if a1 = a2 and b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉;

• else 〈a1, b1〉 ./pD 〈a2, b2〉.

Notice that all the semantics defined above in the case of partially ordered preferences

can produce a partial order over solutions.

If the preferences in A are totally ordered, according to the ordering induced by the

additive operator of S, then in the definition of the semantics above we must not consider

cases a1 ./S a2 and b1 ./S b2, since they can’t happen. In this case all the semantics except

P-Diplomatic semantics produce a total order over the solutions.

2.13.4 Two instances of G-SP

In this section we add uncertainty to two very common classes of soft CSPs, which are

Probabilistic CSPs [FLS96] and Weighted CSPs [BMR97], and we instantiate G-SP in these

two classes in a way that all the assumptions required by G-SP are satisfied.

We recall that, given a USCSP SQ based on a generic c-semiring S = 〈A, +, ×, 0,

1〉, G-SP translates every constraint of sQ involving controllable and uncontrollable vari-

ables in a constraint only among their controllables, which is characterized by a preference

function µ such that, if d is an assignment to the controllables and a is an assignment to the

uncontrollables, µ′(d) = infa∈AZ
(µ(d, a) + cS(πZ(a))), where the assumptions are: (i) inf
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returns one of the bottom elements of AZ with respect to the c-semiring ordering, (ii) [0, 1]

is subset of the set of preferences A of the c-semiring and (iii) cS is a bijection from [0, 1]

to [0, 1] which reverses the ordering with respect to c-semiring and such that c(c(p)) = p,

∀p ∈ [0, 1].

Probabilistic CSPs with uncertainty

In several real-life scenarios, fuzzy constraints are not the ideal setting. In fact, they suffer for

the well-known drowning effect which makes solutions with the same minimum preference

but very different higher preferences not distinguished.

Probabilistic CSPs (PCSPs) [FLS96] model those situations where to each constraint

is assigned the probability to be in the real problem. Here preferences are interpreted as

probabilities ranging from 0 to 1 and, as expected, they are combined using the product

and compared using the maximum operator. The goal is to maximize the joint probability.

Therefore, the semiring to be used is SPCSP = 〈[0, 1], max,×, 0, 1}.

PCSPs with uncertainty are PCSPs defined by a set of controllable and uncontrollable

variables and by a set of constraints relating these variables. Moreover, every value in the

domain of a uncontrollable variable is associated with a possibility degree, stating how much

is possible for that variable assuming that value.

In the following we show how to instantiate the Formula 2.2 in the case of PCSPs with

uncertainty and we show that this instantiation satisfies the required assumptions.

Proposition 14 Consider a Probabilistic CSP with uncertainty SQ = 〈SPCSP , Vc, Vu, C〉,

where SPCSP = 〈[0, 1], max,×, 0, 1〉. Algorithm G-SP can be instantiated by translating

every constraint, c = 〈µ, con〉 ∈ C, such that con ∩ Vc = X and con ∩ Vu = Z with

possibility distribution πZ , in a new constraint, 〈µ′, con′ = X〉, where µ′ is such that, if d is

an assignment to X , and a an assignment to Z,

µ′(d) = mina∈AZ
max(µ(d, a), 1− πZ(a)).

Proof: (i) The assumption stating that inf returns one of the bottom elements of AZ is

trivially true, since the inf operator used here is min. (ii) [0, 1] ⊆ A is trivially true, since

A = [0, 1]. (iii) The mapping cS used here is a bijection from [0, 1] to [0, 1], which associates

to every element a ∈ [0, 1] an element cS(a) = (1− a) ∈ [0, 1]. This mapping reverses the

ordering with respect to the c-semiring SPCSP . In fact, given a1, a2 ∈ [0, 1], with a1 ≤ a2,

then 1− a1 ≥S 1− a2, since max(1− a1, 1− a2) = 1− a1. Moreover, ∀a ∈ [0, 1], we have

that 1− (1− a) = a. 2
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Example 12 Figure 2.9 shows the result of applying G-SP to the Probabilistic CSP with

uncertainty SQ = 〈SPCSP , {x, y, w}, {z}, C = Cxyz ∪Cxw〉 in Figure 2.8, where Cxyz is the

constraint 〈{x, y, z}, µ〉, Cxw is the constraint 〈{x, w}, µ1〉 and the values of uncontrollable

variables are described by the possibility distribution πZ . In particular, Figure 2.9 (a) shows

the resulting probabilistic CSP SQ′ obtained by instantiating algorithm G-SP as described

above in this section. Figure 2.9 (b) shows all the solutions, together with their associated

preferences, that have been computed following the procedure described in Section 2.13.1

with the new instantiated formula presented in Proposition 14. Notice that in this example

the optimal solution is the same for all the general semantics defined in Section 2.13.3. 2
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Figure 2.8: An uncertain soft CSP.

Weighted CSPs with uncertainty

In several situations where neither fuzzy nor probabilistic constraints are ideal, weighted

constraints can be useful to model preferences. For example, when dealing with costs which

are naturally combined by a sum. In this setting, preferences are penalties (or costs) to be

added, and the best solutions are those with the smallest preference. Therefore, Weighted

CSPs (WCSP) are characterized by the c-semiring SWCSP = 〈R+, min, +, +∞, 0〉.

Weighted CSPs with uncertainty are WCSPs defined by a set of controllable and uncon-

trollable variables and by a set of constraints relating these variables. Moreover, every value

in the domain of a uncontrollable variable is associated with a possibility degree, stating how

much is possible for that variable assuming that value.
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Figure 2.10: Result of algorithm G-SP on USCSP in Figure 2.8, seen as UWCSP.
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As done above for Probabilistic CSPs with uncertainty, we show how to instantiate the

Formula 2.2 in the case of WCSPs with uncertainty and we prove that this instantiation

satisfies the required assumptions.

Proposition 15 Consider a Weighted CSP with uncertainty SQ = 〈SWCSP , Vc, Vu, C〉,

where SWCSP = 〈R+, min, +, +∞, 0〉. Algorithm G-SP can be instantiated by translating

every constraint, c = 〈µ, con〉 ∈ C, such that con ∩ Vc = X and con ∩ Vu = Z with

possibility distribution πZ , in a new constraint, 〈µ′, con′ = X〉, where µ′ is such that, if d is

an assignment to X , and a an assignment to Z,

µ′(d) = maxa∈Az
min(µ(d, a), πZ(a))).

Proof: (i) The assumption stating that inf returns one of the bottom elements of AZ is

true, since the inf operator used here is max, that returns the highest and so the worst

cost. (ii) [0, 1] ⊆ R+. (iii) The function cS used here is the identity map in [0, 1]. Hence

c(c(a)) = c(a) = a, ∀a ∈ [0, 1]. Moreover it reverses the order with respect to c-semiring

SWCSP . In fact, given a1, a2 ∈ [0, 1] such that a1 ≤ a2, then c(a1) = a1 and c(a2) = a2, then

since min(a1, a2) = a1, a1 ≥S a2. 2

Example 13 Figure 2.10 shows how the instantiation of G-SP to uncertain WCSPs works

on the Weighted CSP with uncertainty SQ = 〈SWCSP , {x, y, w}, {z}, C = Cxyz ∪ Cxw〉

shown in Figure 2.8, where preferences are interpreted as costs and where the values of

uncontrollable variables are described by the possibility distribution πZ . Figure 2.10 (a)

shows the resulting Weighted CSP SQ′ returned by the instantiated G-SP, while Figure 2.10

(b) shows all the solutions, together with the associated pair. In this problem the optimal

solution obtained using P-Risky, P-Risky1 and P-Safe1 semantics is different from the one

obtained using P-Safe. For P-Diplomatic these two solutions are both optimal. 2

2.13.5 Desired properties on the solution ordering

In this section we check if new general semantics, that we have defined in Section 2.13.3,

satisfy the desired properties on the solution ordering presented in Section 2.3. Notice that

if a semantics in fuzzy case doesn’t satisfy a property, than surely the corresponding general

semantics doesn’t satisfy that property in general, since every new semantics generalizes the

corresponding one defined for UFCSPs. However, since the non-satisfaction of the property

could depend on the idempotency of the combination operator of the fuzzy c-semiring, then
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that property could be satisfied by the general semantics in UPCSPs or in UWCSPs, since

in their c-semirings the combination operator is not idempotent. Hence, when we will show

that a semantics doesn’t satisfy a property in general, since this happens for UFCSPs, we

will also check if the same happens also for UPCSPs and UWCSPs.

In Section 2.8 we have proved that Property 3 is satisfied only by Risky and Risky1 for

fuzzy preferences. Now we show that in general and also for UPCSPs and UWCSPs this

holds only for P-Risky semantics.

Proposition 16 Consider an uncertain SCSP SQ = 〈S, Vc, Vu, C = Cf ∪ Cu〉, where S is

a c-semiring 〈A, +,×, 0, 1〉. Given two solutions s and s′ of SQ, i.e., assignments to Vc, if

∀a assignments to Vu in SQ, pref(s, a) >S pref(s′, a) (where >S refers to the ordering

induced by operator + of S), then s >pR s′, whereas it could happen that s 6>J s′ for

J = pR1, pS, pS1, pD. The same result holds also if S = SPCSP or if S = SWCSP .

Proof:

• P-Risky. Similarly to the proof of Proposition 3, from USCSP SQ we can obtain an

equivalent USCSP SQP = 〈S, {V c}, {V u}, C1 ∪C2 ∪C3〉 where: V c is a control-

lable variable and V u is an uncontrollable variable, representing respectively all the

variables in Vc and Vu, having as domains the corresponding Cartesian products. The

uncontrollable variable V u is described by a possibility distribution, π, which is the

joint possibility (see Section 2.2.4) of all the possibility distributions of the uncon-

trollable variables in Vu. Constraints C1 = 〈µ1, V
c〉 and C2 = 〈µ2, {V c, V u}〉 are,

respectively, defined as the combination of all the constraints in C connecting vari-

ables in Vc and as the combination of all the constraints in C connecting variables in

Vc to variables in Vu. Constraint C3 = 〈µ3, V
c〉 is defined as the combination of all the

constraints obtained from constraints in C2 by projecting them (by using operator +

of the c-semiring S) over the controllable variables in Vc (i.e., C3 = C2 ↓Vc
). Notice

that all these combinations are obtained using operator × of the c-semiring S. Thus,

given assignment V c = s in SQP , which corresponds to an assignment to all the vari-

ables in Vc, its preference on constraint C1 is µ1(s) = F (s), on C3 is µ3(s) = P (s)

and on C1

⊗
C3 is µ1(s) × µ3(s)= (F (s) × P (s)) = FP (s). Given assignment

(V c = s, V u = ai), instead, which corresponds to a complete assignment to variables

in Vc and Vu, its preference, µ2(s, ai), is obtained performing the combination of the

preferences associated to all the subtuples of (s, ai) by the constraints in C involving

at least one variable in Vu. Using this new notation we have that ∀s, ai assignments to

V c and V u, pref(s, ai) = (µ1(s)× µ2(s, ai)) = (F (s)× µ2(s, ai)).
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If pref(s, ai) >S pref(s′, ai), ∀ai assignment to V u, then FP (s) >S FP (s′) and

so, by the definition of P-Risky semantics, we can conclude that s >pR s′. In fact,

if pref(s, ai) > pref(s′, ai), ∀ai, then this holds also for ai∗ such that P (s′) =

µ2(s, ai∗). Then we have (F (s)× µ2(s, ai∗)) > (F (s′)× µ2(s
′, ai∗)) = F (s′)× P (s′) =

FP (s′). Since P (s) ≥ µ2(s, ai∗)), then, by monotonicity of ×, FP (s) = (F (s) ×

P (s)) ≥ (F (s)× µ2(s, ai∗)) > FP (s′), and so FP (s) > FP (s′).

• P-Risky1, P-Safe, P-Diplomatic and P-Safe1. For these semantics it can happen that

s 6> s′. This holds also if S = SPCSP or if S = SWCSP as shown in the following.

S = SPCSP . Let us consider an UPCSP SQ = 〈SPCSP , Vc, Vu, C〉 where SPCSP =

〈[0, 1], max,×, 0, 1〉, Vc = {x}, Vu = {z}, C is composed by two constraints: c1 =<

µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′} are

respectively the domain of z and x. Let us assume that the possibility distribution on z

is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that µ2(s, a1) = 0.5,

µ2(s, a2) = 0.35, µ2(s
′, a1) = 0.6, µ2(s

′, a2) = 0.4, µ1(s) = 0.5 and µ1(s
′) = 0.4.

Then the overall preferences are: pref(s, a1) = 0.5 × 0.5 = 0.25, pref(s, a2) =

0.5×0.35 = 0.175, pref(s′, a1) = 0.4×0.6 = 0.24, pref(s′, a2) = 0.4×0.4 = 0.16,

i.e., pref(s, ai) >S pref(s′, ai), ∀i, i = 1, 2, where ≤S is the ordering induced by

maximum, hence s and s′ satisfy the hypothesis. The robustness values for s and s′ are

U(s) = 0.35, U(s′) = 0.4 and the satisfaction degrees are FP (s) = 0.5× 0.5 = 0.25

and FP (s′) = 0.6×0.4 = 0.24. Since U(s) < U(s′), then s <pS s′. Since we have also

that FP (s) > FP (s′), then s ./pD s′. Moreover, since FP (s)× U(s) = 0.25× 0.35 =

0.0875 < FP (s′)× U(s′) = 0.24× 0.4 = 0.096, then s <pR1,pS1 s′.

S = SWCSP . Let us consider an UPCSP SQ = 〈SWCSP , Vc, Vu, C〉 where SWCSP =

〈R+, min, +, +∞, 0〉, Vc = {x}, Vu = {z}, C is composed by two constraints: c1 =<

µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′} are

respectively the domain of z and x. Let us assume that the possibility distribution on z

is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that µ2(s, a1) = 0.64,

µ2(s, a2) = 0.4, µ2(s
′, a1) = 0.55, µ2(s

′, a2) = 0.35, µ1(s) = 0.4 and µ1(s
′) = 0.5.

Then the overall preferences are: pref(s, a1) = 0.4 + 0.64 = 1.04, pref(s, a2) =

0.4+0.4 = 0.8, pref(s′, a1) = 0.5+0.55 = 1.05, pref(s′, a2) = 0.5+0.35 = 0.85, i.e.,

pref(s, ai) >S pref(s′, ai), ∀i, i = 1, 2, since we consider the ordering ≤S induced

by the minimum operator, hence s and s′ satisfy the hypothesis. The robustness values

for s and s′ are U(s) = 0.64, U(s′) = 0.55 and the satisfaction degrees are FP (s) =

0.4+0.4 = 0.8 and FP (s′) = 0.5+0.35 = 0.85. Since U(s) <S U(s′), then s <pS s′.
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Since FP (s) > FP (s′), then s ./pD s′. Since FP (s) + U(s) = 0.8 + 0.64 = 1.44 <S

FP (s′)× U(s′) = 0.85 + 0.55 = 1.4, then s <pR1,pS1 s′.

2

In Section 2.8 we have proved that Property 4 and Property 5 are satisfied by all the new

semantics except respectively Safe1 and Risky1 semantics. We show that the same results

hold also for the new general semantics. Moreover we give a new relevant result stating that

Property 4 and Property 5 are satisfied by all the general semantics if we assume that the

combination operator of the c-semiring on which USCSP is based is strictly monotone.

Proposition 17 Consider an uncertain SCSP SQ = 〈S, Vc, Vu, C〉, where S is a c-semiring

〈A, +,×, 0, 1〉. Given two solutions s and s′ of SQ, if U(s) = U(s′) and FP (s) >S FP (s′),

then s >J s′, where J = pR, pS, pD, pR1. If × is strictly monotone, then s >pS1 s′,

otherwise it could happen that s 6>pS1 s′. Hence if S = SPCSP or S = SWCSP , then

s >pS1 s′ when U(s) = U(s′) 6= 0.

Proof:

• P-Risky, P-Safe, P-Diplomatic satisfy this property by definition.

Also P-Risky1 satisfies this property. Since FP (s) >S FP (s′) then, by monotonicity

of ×, (FP (s) × U(s)) ≥S (FP (s′) × U(s)), and, since U(s) = U(s′), (FP (s) ×

U(s)) ≥S (FP (s′)×U(s′)). If (FP (s)× U(s)) >S (FP (s′)× U(s′)), then we conclude

immediately. If (FP (s)× U(s)) = (FP (s′)× U(s′)) we conclude by observing that

FP (s) >S FP (s′).

• P-Safe1. If × is strictly monotone, then (FP (s) × U(s)) > (FP (s′) × U(s′)) and so

s >pS1 s′. If S = SPCSP and U(s) = U(s′) 6= 0, then ×, which is the product that is

by definition monotone, is also strictly monotone. If S = SWCSP and U(s) = U(s′) 6=

{0, +∞}, then the combination operator of S, i.e. the sum, is strictly monotone. Since,

by construction U(s) is always different from +∞, then it is sufficient that U(s) =

U(s′) 6= 0 in order to have the sum strictly monotone.

Otherwise, it could happen s 6>pS1 s′ as shown in the proof of Proposition 4 for Safe1

semantics. For showing that this holds also in UPCSPs and in UWCSPs we can con-

sider and example of UPCSP where U(s) = U(s′) = 0.

2
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We recall that constraints in Cfu are constraints between a set X of controllable variables

and a set Z of uncontrollable variables. If S = SPCSP , stating U(s) = 0 means that we have

associated in a constraint of Cfu the value 0 to an assignment (X = d, Z = a) where the

possibility of a is equal to 1. If S = SWCSP stating U(s) = 0, means that in every constraint

of Cfu for every assignment (X = d, Z = a) or its preference is equal to 0 or the possibility

of a is zero. Hence, since this last condition is very specific to obtain, we can say that in

general all the semantics satisfy Property 4 in UWCSPs.

Proposition 18 Consider a USCSP SQ = 〈S, Vc, Vu, C〉, where S is a c-semiring 〈A, +,×, 0,

1〉. Given two solutions s and s′ of SQ, if FP (s) = FP (s′) and U(s) > U(s′), then s >J s′,

where J = pR, pS, pD, pS1. If × is strictly monotone, then s >pR1 s′, otherwise it could

happen that s 6>pR1 s′. Hence if S = SPCSP , then s >pS1 s′ when FP (s) = FP (s′) 6= 0 and

if S = SWCSP then s >pS1 s′ when FP (s) = FP (s′) 6∈ {0, +∞}.

Proof:

• P-Risky, P-Safe and P-Diplomatic satisfy this property by definition.

Also P-Safe1 satisfies this property. If FP (s) = FP (s) and U(s) > U(s′), then by

monotonicity of×, (FP (s)×U(s))≥ (FP (s′)×U(s′)). If (FP (s)× U(s)) > (FP (s′)×

U(s′)), then we conclude immediately. If (FP (s)× U(s)) = (FP (s′)× U(s′)), we

conclude by observing that U(s) > U(s′).

• P-Risky1. If × is strictly monotone, then (FP (s) × U(s)) > (FP (s′) × U(s′))

and so s >pR1 s′. If S = SPCSP and FP (s) = FP (s′) 6= 0, then ×, which is the

product, that is by definition monotone, is also strictly monotone. If S = SWCSP and

FP (s) = FP (s′) 6∈ {0, +∞}, then the combination operator of S, i.e. the sum, is

strictly monotone.

Otherwise, it could happen s 6>pR1 s′. For showing this we can use the same coun-

terexample used in the proof of Proposition 5 for Risky1 semantics. For showing

that this holds also in UPCSPs and in UWCSPs we can consider an example where

FP (s) = FP (s′) = 0.

2

In UPSCPs it could be s 6> s′ when FP (s) = 0, i.e., when there is at least a constraint

where a sub-tuple of s appears such that its associated preference is zero. In UWSCPs it

could be s 6>pR1 s′ when FP (s) = 0, i.e., when in every constraint where a sub-tuple of s
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appears its associated preference is zero, and when FP (s) = +∞, i.e., when in at least a

constraint where a subtuple of s appears its associated preference is +∞.

Summarizing, P-Risky satisfies all the desired properties on the solution ordering (i.e.,

Properties 3, 4 and 5); P-Safe and P-Diplomatic satisfy Properties 4 and 5; P-Safe1 satis-

fies Property 5 and, if the combination operator of the c-semiring is strictly monotone, also

Property 4; P-Risky1 satisfies Property 4 and, if the combination operator of the c-semiring

is strictly monotone, also Property 5.

2.13.6 Desired properties in general DFP

Let us now briefly reconsider the solution ordering produced by DFP algorithm [DFP96a]

(see Section 2.2.4). We recall that in fuzzy case, according to DFP, the preference of a

solution s is a single value equal to min(F (s), U(s)). Thus, given two solutions s and s′,

s >DFP s′ if and only if min(F (s), U(s)) > min(F (s), U(s)). We can generalize this

approach to USCSPs stating that, given two solutions s and s′, s >pDFP s′ if and only if

(F (s)× U(s)) > (F (s)× U(s)), where × is the combination operator of the c-semiring on

which the USCSP is based.

We will show that the solution ordering produced by the above semantics, that we call

P-DFP, doesn’t satisfy any desired properties regarding the solution ordering also in UPCSPs

and in UWCSPs. This is due to the fact that if forgets information derived by the projections

constraints, which is instead useful to recall.

Proposition 19 Consider an uncertain SCSP SQ = 〈S, Vc, Vu, C〉. Given two solutions

s and s′ of SQ, i.e., assignments to Vc, if ∀a assignments to Vu in SQ, pref(s, a) >S

pref(s′, a), then it could happen that s 6>gDFP s′. The same result holds also if S = SPCSP

or if S = SWCSP .

Proof: For showing that s <pDFP s′ in some case, we can use the same example considered

in the proof of Proposition 6 in Section 2.9 for UFCSPs. Now we show that s <pDFP s′ can

happen also in UPCSPs and in UWCSP.

• S = SPCSP . Let us consider an UPCSP SQ = 〈SPCSP , Vc, Vu, C〉 where SPCSP

= 〈[0, 1], max,×, 0, 1〉, Vc = {x}, Vu = {z}, C is composed by two constraints:

c1 =< µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx =

{s, s′} are respectively the domain of z and x. Let us assume that the possibility

distribution on z is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover
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that µ2(s, a1) = 0.8, µ2(s, a2) = 0.3, µ2(s
′, a1) = 0.5, µ2(s

′, a2) = 0.2, µ1(s) = 0.5

and µ1(s
′) = 0.7. Then the overall preferences are: pref(s, a1) = 0.5 × 0.8 = 0.4,

pref(s, a2) = 0.5 × 0.3 = 0.15, pref(s′, a1) = 0.7 × 0.5 = 0.35, pref(s′, a2) =

0.7× 0.2 = 0.14, i.e., pref(s, ai) >S pref(s′, ai), ∀i, i = 1, 2, hence s and s′ satisfy

the hypothesis. The robustness values for s and s′ are U(s) = 0.3, U(s′) = 0.3.

Since F (s)× U(s) = 0.5 × 0.3 = 0.15 <S F (s′) × U(s′) = 0.7 × 0.3 = 0.21, then

s <pDFP s′.

• S = SWCSP . Let us consider an UWCSP SQ = 〈SWCSP , Vc, Vu, C〉 where SWCSP =

〈R+, min, +, +∞, 0〉, Vc = {x}, Vu = {z}, C is composed by two constraints:

c1 =< µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′}

are respectively the domain of z and x. Let us assume that the possibility distribution

on z is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that µ2(s, a1) =

0.05, µ2(s, a2) = 0.6, µ2(s
′, a1) = 0.4, µ2(s

′, a2) = 1, µ1(s) = 0.8 and µ1(s
′) = 0.5.

Then the overall preferences are: pref(s, a1) = 0.8 + 0.05 = 0.85, pref(s, a2) =

0.8 + 0.6 = 1.4, pref(s′, a1) = 0.5 + 0.4 = 0.9, pref(s′, a2) = 0.5 + 1 = 1.5, i.e.,

pref(s, ai) >S pref(s′, ai), ∀i, i = 1, 2, where >S is the ordering induced by the

minimum operator, hence s and s′ satisfy the hypothesis. The robustness values for

s and s′ are U(s) = 0.6, U(s′) = 0.7. Since F (s) + U(s) = 0.8 + 0.6 = 1.4 <S

F (s′) + U(s′) = 0.5 + 0.7 = 1.2, then s <pDFP s′.

2

Proposition 20 Consider a USCSP SQ = 〈S, Vc, Vu, C〉. Given two solutions s and s′ of

SQ, if U(s) = U(s′) and FP (s) >S FP (s′), then it could happen that s 6>gDFP s′. The same

result holds also if S = SPCSP or if S = SWCSP .

Proof: For showing that s <pDFP s′ in some case, we can use the same example considered

in the proof of Proposition 7 in Section 2.9 for UFCSPs. Now we show that s <pDFP s′ can

happen also when S = SPCSP or if S = SWCSP .

• S = SPCSP . Let us consider an UPCSP SQ = 〈SPCSP , Vc, Vu, C〉 where SPCSP

= 〈[0, 1], max,×, 0, 1〉, Vc = {x}, Vu = {z}, C is composed by two constraints:

c1 =< µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′}

are respectively the domain of z and x. Let us assume that the possibility distribution

on z is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that µ2(s, a1) =

0.8, µ2(s, a2) = 0.1, µ2(s
′, a1) = 0.5, µ2(s

′, a2) = 0.2, µ1(s) = 0.5 and µ1(s
′) = 0.7.
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FP (s) = 0.5×0.8 = 0.4 >S FP (s′) = 0.7×0, 5 = 0.35 and and U(s) = 0.3 = U(s′).

Hence s and s′ satisfy the hypothesis. Since F (s) × U(s) = 0.5 × 0.3 = 0.15 <S

F (s′)× U(s′) = 0.7× 0.3 = 0.21, then s <pDFP s′.

• S = SWCSP . Let us consider an UWCSP SQ = 〈SWCSP , Vc, Vu, C〉 where SWCSP =

〈R+, min, +, +∞, 0〉, Vc = {x}, Vu = {z}, C is composed by two constraints: c1 =<

µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′} are

respectively the domain of z and x. Let us assume that the possibility distribution on z

is such that π(a1) = 1 and π(a2) = 0.6. Let us assume moreover that µ2(s, a1) = 0.05,

µ2(s, a2) = 0.6, µ2(s
′, a1) = 0.4, µ2(s

′, a2) = 1, µ1(s) = 0.8 and µ1(s
′) = 0.5. Then

FP (s) = 0.8 + 0.05 = 0.85 >S FP (s′) = 0.5 + 0.4 = 0.9 and U(s) = U(s′) = 0.6

hence s and s′ satisfy the hypothesis. Since F (s) + U(s) = 0.8 + 0.6 = 1.4 <S

F (s′) + U(s′) = 0.5 + 0.6 = 1.1, then s <pDFP s′.

2

Proposition 21 Consider a USCSP SQ = 〈S, Vc, Vu, C〉. Given two solutions s and s′ of

SQ, if FP (s) = FP (s′) and U(s) >S U(s′), then it could happen that s 6>pDFP s′. The same

result holds also if S = SPCSP or if S = SWCSP .

Proof: For showing that s <pDFP s′ in some case, we can use the same example considered

in the proof of Proposition 8 in Section 2.9 for UFCSPs. Now we show that s <pDFP s′ can

happen also when S = SPCSP or if S = SWCSP .

• S = SPCSP . Let us consider an UPCSP SQ = 〈SPCSP , Vc, Vu, C〉 where SPCSP

= 〈[0, 1], max,×, 0, 1〉, Vc = {x}, Vu = {z}, C is composed by two constraints:

c1 =< µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx =

{s, s′} are respectively the domain of z and x. Let us assume that the possibility

distribution on z is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that

µ2(s, a1) = 0.4, µ2(s, a2) = 0.8, µ2(s
′, a1) = 0.5, µ2(s

′, a2) = 0.3, µ1(s) = 0.5 and

µ1(s
′) = 0.8. FP (s) = 0.5×0.8 = 0.4 = FP (s′) and and U(s) = 0.4 >S U(s′) = 0.3.

Hence s and s′ satisfy the hypothesis. Since F (s) × U(s) = 0.5 × 0.4 = 0.20 <S

F (s′)× U(s′) = 0.8× 0.3 = 0.24, then s <pDFP s′.

• S = SWCSP . Let us consider an UWCSP SQ = 〈SWCSP , Vc, Vu, C〉 where SWCSP =

〈R+, min, +, +∞, 0〉, Vc = {x}, Vu = {z}, C is composed by two constraints: c1 =<

µ1, {x} > and c2 =< µ2, {x, z} > and where Dz = {a1, a2} and Dx = {s, s′} are
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respectively the domain of z and x. Let us assume that the possibility distribution on z

is such that π(a1) = 1 and π(a2) = 0.7. Let us assume moreover that µ2(s, a1) = 0.1,

µ2(s, a2) = 0.6, µ2(s
′, a1) = 0.4, µ2(s

′, a2) = 1, µ1(s) = 0.8 and µ1(s
′) = 0.5. Then

FP (s) = 0.8 + 0.1 = 0.9 = FP (s′) and U(s) = 0.7 >S U(s′) = 0.6 hence s and s′

satisfy the hypothesis. Since F (s) + U(s) = 0.8 + 0.6 = 1.4 <S F (s′) + U(s′) =

0.5 + 0.7 = 1.2, then s <pDFP s′.

2

P-DFP P-Risky P-Safe P-Dipl. P-Safe1 P-Risky1

P1 X X X X X X

P2 X X X X X X

P3 - X - - - -

P4 - X X X Xif X

P5 - X X X X Xif

Table 2.3: Properties satisfied in the various general semantics. ’X’ means satisfied, ’Xif’

means satisfied if × of the c-semiring is strictly monotone and ’-’ means satisfied neither in

UPCSPs nor in UWCSPs.

Table 2.3 summarizes which properties hold in the new general semantics. In particular,

all the properties, which hold for the various semantics in the fuzzy case, except Property

3 for Risky1, continue to hold also for the corresponding general semantics. Moreover, if

we consider USCSPs defined by c-semirings with the combination operator which is strictly

monotonic, then P-Risky1 satisfies also Property 5 and P-Safe1 satisfies also Property 4.

Hence, under that assumption, Properties 4 and 5 are satisfied by all the new general seman-

tics. Instead, the general semantics induced by DFP satisfies the desired properties on the

solution ordering neither in UPCSPs nor in UWCSPs.

2.14 Related work

We have defined a new way for integrating preferences and possibilistic uncertainty, that

assumes commensurability between preferences and possibilities scales. This new method

allows us to discriminate the satisfaction level and the robustness value of a solution and

so to obtain a solution ordering which better reflects the desirability and the robustness of a

solution.
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Many other approaches have studied procedures for reasoning with preferences and un-

certainty, such as the ones in [DFP02, FS03, BT96, BT97]. However, they don’t mix pref-

erences and uncertainty since they do not assume commensurability. Moreover, their ap-

proaches are based on the qualitative decision theory, while our procedure is based on the

quantitative decision theory.

Some effort has been done for unifying preferences and possibilistic uncertainty [AP04]

assuming commensurability. In [AP04] two different approaches for integrating fuzzy pref-

erences and possibilistic uncertainty are proposed: a pessimistic and an optimistic one, how-

ever both methods propose to mix robustness and the satisfaction level, and so it isn’t possible

to make a tight comparison between our semantics that assume every solution is associated

with two parameters and those of [AP04] where every solution is associated with only one

value, which is the combination of the satisfaction level and the robustness one. However,

we can show some differences concerning the degree of satisfaction. In our framework we

calculate the degree of satisfaction combining in pessimistic way all preferences, but some

of them, i.e., the preferences obtained projecting on the controllable variables the constraints

involving both controllable and uncontrollable variables are computed in optimistic way. In

fact, performing projection of a constraint C linking a set of variables V = V1 ∪ V2 on the

subset V1 means choosing the assignment v1 of variables in V1 such that the assignment

(v1, v2) in V has the best preference in C. Hence in the computation of our satisfaction

degree we are less pessimistic than pessimistic approach in [AP04], where all preferences

of the solutions are calculated and combined in pessimistic way; and less optimistic than

optimistic approach in [AP04], where all the preferences of the solutions are calculated and

combined in optimistic way. Therefore the degree of satisfaction in our framework is in the

middle between optimistic and pessimistic ones proposed in [AP04].

Many approaches have been proposed for dealing with probabilistic uncertainty in de-

cision problems (some of them are [Wal02, FLS96]). Notice that approaches considering

probability distributions instead of possibility ones, make the assumption of the indepen-

dence of the uncontrollable variables, which isn’t required in our possibilistic framework. In

the following we will present some of them. In [Wal02] it is proposed a procedure for dealing

with probabilistic uncertainty in decision problems. It considers stochastic constraint pro-

gramming, where a stochastic constraint program contains both stochastic variables, which

follows a probability distribution, and controllable variables, which can be set dynamically.

In this case a complete assignment of controllable variables satisfies the stochastic constraint

program if the product of its associated probabilities is greater than or equal to a fixed

threshold. A possible future direction of search could be the application of the stochastic
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constraint programming to the our possibilistic framework. The idea is assigning values to

decision variables in a dynamic way, considering in every stage all the possible situations

that can happen. The uncertainty is given by a probability distribution also in [FLS96]. This

paper extends constraint satisfaction problem framework to deal with some decision prob-

lems under uncertainty, that they call mixed CSPs. The basis of this extension consists in a

distinction between controllable and uncontrollable variables, like in our work, but uncon-

trollable variables are characterized by a probabilistic distribution and not by a possibilistic

one. Moreover, differently from our approach, a solution gives a conditional decision. In

particular, a solution depends on the assumptions concerning the agent’s awareness of the

uncontrollable variables at the time the decision must be made. It would be interesting to

modify our framework in order to take into account these assumptions.

2.15 Future work

In this chapter we have presented a method for handling Soft CSPs with uncertainty that

allows us to discriminate the satisfaction level and the robustness value of every solution

and that satisfies some desired properties. We have first considered the method on Fuzzy

CSPs with uncertainty, i.e., soft CSPs defined by a set of controllable and uncontrollable

variables and by a set of fuzzy constraints involving these variables, where we have assumed

that the values in the domain of the uncontrollable variables are characterized by possibility

distributions. Then we have generalized the approach for dealing with other classes of soft

constraints, not necessarily fuzzy. We plan to implement the solver which we have defined

for such problems, and to perform experiments on benchmarks.

We plan to generalize the framework for what concerns uncertainty. In particular, we

want to study USCSPs where the values in domain of uncontrollable variables are defined

by probability distributions and not by possibility distributions. Then, starting from this, we

would like also to study USCSPs where the values in the domain of some uncontrollable

variables are specified by a possibility distribution and the values in the domain of other

uncontrollables are characterized by a probability distribution. In this case we could replace

possibilities with probabilities, or vice versa. In [DP98] it is presented a way to do this.

Thus we could use such a method to obtain only one kind of distribution and then, if we

have only possibility distributions, we can use the same general approach described in this

chapter, while if we have only probabilities we can apply the procedure that we want to

define for USCSPs with uncontrollable variables defined only by probability distributions.

However, if we transform a probability into a possibility distribution we loose information,
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and solutions have a lower robustness. In fact, by Property 2, if we use possibilities, which

are higher than probabilities, we get a smaller robustness value. Thus we can say that the

robustness value obtained in this way is a lower bound to the robustness. On the other hand,

if we transform possibilities into probabilities, we get smaller values, and thus, by Property

2, a higher robustness value, which can be seen as an upper bound to the robustness degree

of a solution. Thus, for avoiding loss of information, we can still use a similar approach

to the one used in this chapter, except that we have to define the robustness by an interval,

whose bouderies are the lower and upper bound defined above. Since now the robustness

is defined by an interval, in order to extend to this case the general semantics presented in

this chapter, we must define an ordering over intervals. A possible ordering defines two

intervals incomparable if one is strictly contained in the other one, and both lower and upper

bounds are different and an interval better than another one when it is different from the

other and its lower bound is greater or equal than the other lower bound and its upper bound

is greater or equal than the other upper bound. Notice that this ordering is partial over the

robustness values, while before we had a total order, hence this yields more incomparability

in the ordering over solutions induced by the various semantics.

Another line of research, that we plan to investigate, regards the comparison between

our notion of robustness with the different notions of controllability which have been in-

troduced in the literature [VF99, YSVR03]. Controllability is, in general, defined as the

ability of the agent to assign values to the controllable variables guaranteeing different levels

of consistency or preference with the possible assignments to uncontrollable variables. In

[VF99] three levels of controllability have been introduced in the context of hard quantita-

tive temporal constraints. In [YSVR03] such definitions have been extended to deal with

preferences. An assumption which is fixed is that of complete ignorance on the values taken

by the uncertain variables. We are interested in the strongest notions of controllability which

can be defined as follows. Given an uncertain SCSP 〈S, Vc, Vu, C〉, it is said to be Optimally

Strongly Controllable if there is a fixed assignment to the variables in Vc, d, such that, given

any assignment a to the variables in Vu, pref(d, a) is optimal, that is, there is no other as-

signment to Vc, d′, such that pref(d′, a) > pref(d, a). An uncertain SCSP is said to be

α-Strongly Controllable (α-SC), where α is a preference level, if there is a fixed assignment

to the variables in Vc, d, such that, given an assignment to the variables in Vu, a, pref(d, a)

is optimal if the optimal level which can be achieved given a is smaller or equal to α, and

pref(d, a) ≥ α otherwise. We think that it is possible to show that, if we make the as-

sumption of complete ignorance, then an optimal solution according to the DFP semantics

is a witness of α-SC. Making the assumption of complete ignorance in our context means to
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assume that all the possibilities degrees associated to values of uncontrollable variables are

equal to one and this means, for example in fuzzy case, to reduce robustness with respect to

uncertainty to the more intuitive notion of robustness, that considers the minimum preference

which can be obtained in any possible case. In fact, given an UFCSP Q, the robustness of a

solution s of Q is obtained by performing the minimum of all the preferences associated to

subtuples of s in the new constraints computed by SP. We recall that the preference in these

new constraints is µ′(d) = min{a∈AZ}max(µ(d, a), 1−πZ(a))), where d is an assignment to

controllable variables, µ is the preference function of the corresponding constraint involving

also uncontrollables and πZ is the possibility distribution associated with uncontrollables. If

we assume complete ignorance, then πZ(a) = 1 for any assignment a to uncontrollables,

hence µ′(d) = min{a∈AZ}max(µ(d, a), 1 − 1)) = min{a∈AZ}µ(d, a). We plan to compare

our notion of robustness with the various definitions of controllability mentioned before.





Chapter 3

Bipolar preferences

Real-life problems present several kinds of preferences. We focus on problems with both

positive and negative preferences, that we call bipolar problems. Although seemingly spec-

ular notions, these two kinds of preferences should be dealt with differently to obtain the

desired natural behaviour. We technically address this by generalizing the soft constraint

formalism, which is able to model problems with one kind of preferences. We show that

soft constraints model only negative preferences, and we define a new mathematical struc-

ture which allows to handle positive preferences as well. We also address the issue of the

compensation between positive and negative preferences, studying the properties of this op-

eration. Then, we extend the notion of arc consistency to bipolar problems, and we show

how branch and bound (with or without constraint propagation) can be easily adapted to

solve such problems. Finally, we define bipolar problems with uncertainty, where some vari-

ables are uncontrollable. We call such problems uncertain bipolar problems (UBPs) and we

propose to handle them by extending existing techniques to handle bipolar problems (BPs)

and problems with uncertainty. In particular, we first eliminate the uncertainty of the prob-

lem, transforming a UBP into a BP. Then we associate to each solution of BP both a degree

of preference and a degree of robustness. Suitable semantics are then defined to order the

solutions according to different attitudes with respect to these two notions.

3.1 Motivations and chapter structure

Many real-life problems contain statements which can be expressed as preferences. More-

over, preferences can be of many kinds: qualitative, (as in ”I like A more than B”), quanti-

tative, (as in ”I like A at level 10 and B at level 11”), conditional, (as in ”If A happens, then

I prefer B to C”), positive, (as in ”I like A, and I like B even more than A”), or negative (as

85
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in ”I don’t like A, and I really don’t like B”). Our long-term goal is to define a framework

where many all such kinds of preferences can be naturally modelled and dealt with. In this

chapter, we focus on problems which present positive and negative (quantitative and non-

conditional) preferences, that we call bipolar problems. For example, when buying a house,

we may like very much to live in the country, but we may also don’t like to have to take a bus

to go to work, and be indifferent to the color of the house. Thus we will give a preference

level (either positive, or negative, or indifference) to each feature of the house, and then we

will look for a house which overall has the best combined preference.

Positive and negative preferences could be thought as two symmetric concepts, and thus

one could think that they can be dealt with via the same operators. However, it is easy to

see that this would not model what one usually expects in real scenarios. For example, when

we have a scenario with two objects A and B, if we like both A and B, then the overall

scenario should be more preferred than having just A or B alone. On the other hand, if

we don’t like A nor B, then the preference of the overall scenario should be smaller than

the preferences of A or B alone. Thus, usually combination of positive preferences should

produce a higher (positive) preference, while combination of negative preferences should

give a lower (negative) preference.

When dealing with both kinds of preferences, it is natural to express also indifference,

which means that we express neither a positive nor a negative preference over an object. A

desired behaviour of indifference is that, when combined with any preference (either positive

or negative), it should not influence the overall preference.

Besides combining preferences of the same type, we also want to be able to combine

positive with negative preferences. We strongly believe that the most natural and intuitive

way to do so is to allow for compensation. Confronting positive against negative aspects

and compensating them with respect to their strength is one of the core features of decision-

making processes, and is, undoubtedly, a tactic universally applied to solve many real-life

problems. For example, if we have a meal with meat (which we like very much) and wine

(which we don’t like), then what should be the preference of the meal? To know that, we

should be able to compensate the positive preference given to meat with the negative prefer-

ence given to wine. The expected result is a preference which is between the two, and which

should be positive if the positive preference is ”stronger” than the negative one.

Positive and negative preferences might seem as just two different criteria to reason with,

and thus techniques such as those usually adopted by multi-criteria optimization [EG02]

could appear suitable for dealing with them. However, this interpretation would hide the

fundamental nature of bipolar preferences, that is, positive preferences are naturally the op-
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posite of negative preferences. Moreover, in multi-criteria optimization it is often reasonable

to use a Pareto-like approach, thus associating tuples of values to each solution, and compar-

ing solutions according to tuple dominance. Instead, in bipolar problems, it would be very

unnatural to force such an approach in all contexts, or to associate to a solution a preference

which is neither a positive nor a negative one.

Soft constraints [BMR97] are a useful formalism to model problems with quantitative

preferences. However, they can only model just one kind of preferences. Technically, they

can model just negative preferences, since in this framework preference combination returns

lower preferences, which, as mentioned above, is natural when using negative preferences.

In this chapter we adopt the soft constraint formalism based on semirings, to model neg-

ative preferences. We then define a new algebraic structure to model positive preferences.

To model bipolar problems, we link these two structures and we set the highest negative

preference to coincide with the lowest positive preference to model indifference. We then

define a combination operator between positive and negative preferences to model preference

compensation, and we study its properties.

Non-associativity of preference compensation occurs often in many contexts, thus we

think it is too restrictive to focus just on associative environments. Our framework allows for

non-associativity, since we want to give complete freedom to choose the positive and nega-

tive algebraic structures. However, we describe a technique that, given a negative preference

structure, builds a corresponding positive preference structure and so a bipolar preference

structure where the compensation operator is associative.

Next, we consider the problem of finding optimal solutions of bipolar problems, by sug-

gesting a possible adaptation of constraint propagation and branch and bound to the general-

ized scenario.

Finally, since many real-life situations contain some form of uncertainty, we focus on

bipolar problems with uncertainty. We call such problems uncertain bipolar problems (UBPs).

We model uncertainty by the presence of so-called uncontrollable variables. This means that

the value of such variables will not be decided by us, but by Nature. A typical example, in

the context of satellite scheduling or weather prediction, is a variable representing the time

when clouds will disappear. Although we cannot choose the value for such variables, usu-

ally we have some information on the plausibility of the different values. This is modelled

in this chapter by a possibility distribution over the domains of such variables. We tackle

such problems by adapting and extending the techniques we will propose to handle bipolar

problems and the techniques described Chapter 2 for solving problems with preferences and

uncertainty.
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When we have only negative preferences, uncertainty can be eliminated by transform-

ing constraints among controllable and uncontrollable variables into suitable constraints on

controllable variables only. When we consider also positive preferences, a similar technique

can be used, while maintaining similar properties, despite the fact that positive and negative

preferences are combined by different operators.

The resulting problem is then a bipolar problem (BP) where however each partial instan-

tiation can have both a positive and a negative preference. Such a pair of elements is then

used to associate to each solution an overall preference level and an overall robustness level.

Compensation of positive with negative preferences can be done via an operator which

is not associative. This does not allow for preference compensation within the constraints.

However, preference compensation can be performed at the level of complete solutions, thus

allowing us to associate two elements to each solution: a preference degree and a robustness

degree. Depending on the attitude we have towards risk, we can then order solutions by

using a Pareto or a lexicographic approach over such two degrees.

The work presented in this chapter has appeared in the proceedings of the following

conferences and workshops.

• S. Bistarelli, M. S. Pini, F. Rossi and K. B. Venable. Positive and negative preferences,

In Proceedings of the 7th International Workshop on Preferences and Soft Constraints,

held in conjunction with the 11th International Conference on Principles and Practice

of Constraint Programming (CP 2005), Sitges, Spain, October 2005.

• S. Bistarelli, M. S. Pini, F. Rossi and K. B. Venable. Modelling and solving bipolar

preference problems. In Proceedings of 11th Annual ERCIM Workshop on Constraint

Solving and Constraint Logic Programming (CSCLP 2006), Lisbon, Portugal, June

2006.

• M. S. Pini, F. Rossi and K. B. Venable. Bipolar preference problems. In Proceedings

of the 17th European Conference on Artificial Intelligence (ECAI 2006), IOS Press,

vol.141, pp. 705-706, Riva del Garda, Italy, August 2006.

• M. S. Pini, F. Rossi and K. B. Venable. Uncertainty in bipolar preference problems. In

Proceedings of the 8th International Workshop on Preferences and Soft Constraints,

held in conjunction with the 12th International Conference on Principles and Practice

of Constraint Programming (CP 2006), Nantes, France, September 2006.

• M. S. Pini and F. Rossi. Reasoning on bipolar preference problems. In Proceedings of

the CP 2006 Doctoral Programme, Nantes, France, September 2006.
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The chapter is organized as follows.

• In Section 3.2 we describe how to model negative preferences using classical soft

constraint formalism based on c-semirings.

• In Section 3.3 we introduce a new algebraic structure for modelling positive prefer-

ences, which has similar properties to a c-semiring, except that the combination of

positive preferences gives a higher positive preference as desired and not a lower one.

• In Section 3.4 we give a formal definition of an algebraic structure to model bipolar

preferences.

• In Section 3.5 we study the notion of compensation and of its properties (such as

associativity). Moreover, we present a technique to build a bipolar preference structure

with an associative compensation operator.

• In Section 3.6 starting from bipolar preference structures we define bipolar preference

problems and we give a semantics for ordering solutions in a bipolar problem.

• In Section 3.7 we present a real-life problem and we show how to model it as a bipolar

problem.

• In Section 3.8 we propose how to adapt branch and bound to solve bipolar problems.

We also give the definition of of bipolar propagation and we show its use within a

branch and bound solver.

• In Section 3.9 we define bipolar problems with uncertainty and we propose to handle

them by extending the procedure illustrated in Chapter 2 for removing uncontrollable

variables in preference problems with uncertainty.

• In Sections 3.10 and 3.11 we describe respectively related and future work.

3.2 Negative preferences

The structure we use to model negative preferences is exactly a c-semiring, as defined in

Section 2.2. In fact, in a c-semiring the element which acts as indifference is 1, since ∀a ∈ A,

a×1 = a. Notice that such element, denoted as 1 is not necessarily number 1 and in general

it can be any element or number (0,1,100,X). This element is the best in the ordering, which
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is consistent with the fact that indifference is the best preference we can express when using

only negative preferences.

Moreover, in a c-semiring, combination goes down in the ordering, since a × b ≤ a, b.

This can be naturally interpreted as the fact that combining negative preferences worsens the

overall preference.

Example 14 This interpretation is very natural when considering, for example, the weighted

c-semiring 〈R+, min, +, +∞, 0〉. In fact, in this case the real numbers are costs and thus

negative preferences. The sum of different costs is worse in general with respect to the

ordering induced by the additive operator (that is, min) of the c-semiring. 2

Example 15 Let us now consider the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉. According

to this interpretation, giving a preference equal to 1 to a tuple means that there is nothing

negative about such a tuple. Instead, giving a preference strictly less than 1 (e.g., 0.6) means

that there is at least a constraint which such tuple doesn’t satisfy at the best. Moreover,

combining two fuzzy preferences means taking the minimum and thus the worst among

them. 2

From now on, we will use a standard c-semiring to model negative preferences, denoted

as: 〈N, +n,×n,⊥n,>n〉.

3.3 Positive preferences

When dealing with positive preferences, we want two main properties to hold: combination

should bring to better preferences, and indifference should be lower than all the other positive

preferences. These properties can be found in the following structure.

Definition 20 (positive preference structure) A positive preference structure is a tuple 〈P,

+p, ×p, ⊥p, >p〉 such that

• P is a set and >p,⊥p∈ P ;

• +p, the additive operator, is commutative, associative, idempotent, with ⊥p as its unit

element (∀a ∈ P, a +p ⊥p= a) and >p as its absorbing element (∀a ∈ P, a +p >p =

>p);

• ×p, the multiplicative operator, is associative, commutative and distributes over +p

(a ×p (b +p c) = (a ×p b) +p (a ×p c)), with ⊥p as its unit element and >p as its
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absorbing element1.

Notice that the additive operator of this structure has the same properties as the corre-

sponding one in c-semirings, and thus it induces a partial order over P in the usual way:

a ≤p b if and only if a +p b = b. This allows to prove that +p is monotone over ≤p and that

it is the least upper bound in the lattice (P,≤p).

On the other hand, the multiplicative operator has different properties. More precisely,

the best element in the ordering (>p) is now its absorbing element, while the worst element

(⊥p) is its unit element. This reflects the desired behavior of the combination of positive

preferences.

Theorem 2 Given the positive preference structure 〈P, +p,×p, ⊥p, >p〉, consider the rela-

tion ≤p over P . Then:

• ×p is monotone over ≤p. That is, for any a, b ∈ P such that a ≤p b, then a ×p d ≤p

b×p d, ∀d ∈ P .

• For any pair a, b ∈ P , a×p b ≥p a +p b ≥p a, b.

Proof: Since a ≤p b if and only if a+pb = b, then b×pd = (a+pb)×pd = (a×pd)+p(b×pd).

Thus a×p d ≤p b×p d. Also, a×p b = a×p (b +⊥p) = (a×p b) + (a×p ⊥p) = (a×p b) + a.

Thus a×pb ≥p a (the same for b). Finally, a×pb ≥ a, b. Thus a×pb ≥ lub(a, b) = a+pb. 2

In a positive preference structure, ⊥p is the element modelling indifference. In fact, it

is the worst one in the ordering and it is the unit element for the combination operator ×p.

These are exactly the desired properties for indifference with respect to positive preferences.

The role of >p is to model a very high preference, much higher than all the others. It is

analogous to the absorbing bottom element in the set of negative preferences: when complete

inconsistency is present in one constraint, many preference aggregation frameworks declare

the whole problem inconsistent (for example the conjunctive fuzzy framework). Dually,

an absorbing top element is a preference so high that the presence of any other positive

preference cannot improve the situation. For example, when buying a house, we could say

that having at least two bedrooms is so important that any other positive feature does not

result in a higher preference. Of course negative features, combined with the top, could

return in a lower preference than the top.

1The absorbing nature of >p can be derived from the other properties.
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Example 16 As a first example of a positive preference structure, consider P1 = 〈R+, max,

+, 0, +∞〉, where preferences are positive reals. The smallest preference that can be as-

signed is 0. It represents the lack of any positive aspect and can thus be regarded as in-

difference. Preferences are aggregated taking the sum and are compared taking the max.

2

Example 17 Another example is P2 = 〈[0, 1], max, max, 0, 1〉. In this case preferences

are reals between 0 and 1, as in the fuzzy semiring for negative preferences. However, the

combination operator is max, which gives, as a resulting preference, the highest one among

all those combined. 2

Example 18 As an example of a partially ordered positive preference structure consider the

Cartesian product of the two described above: 〈R+ ×[0, 1], 〈max, max〉, 〈+, max 〉, 〈0,

0〉, 〈 +∞, 1〉〉. Positive preferences, here, are ordered pairs where the first element is a

positive preference of type P1 and the second one is a positive preference of type P2. Con-

sider for example the (incomparable) pairs (8, 0.1) and (3, 0.8). Applying the multiplicative

operator will give pair (11, 0.8) which, as expected, is better than both pairs since both

max(8, 3, 11) = 11 and max(0.1, 0.8, 0.8) = 0.8. 2

3.4 Bipolar preference structures

Once we are given a positive and a negative preference structure, a first, naive, way to com-

bine them is by performing the Cartesian product of the two structures. For example, if we

have positive structure 〈P, +p,×p, ⊥p, >p〉 and negative structure 〈N, +n,×n, ⊥n, >n〉 the

Cartesian product would be 〈P × N, 〈+p, +n〉, 〈×p,×n〉, 〈⊥p,⊥n〉, 〈>p,>n〉〉. In this set-

ting, given a solution, it will be associated with a pair 〈p, n〉, where p is the overall positive

preference and n is the overall negative preference. Such a pair is an element of the carrier

of the new structure. Clearly, the new structure is not a positive nor a negative preference

structure, and, in fact, some pairs will be neither clearly positive nor negative. The ordering

induced over the pairs is the well known Pareto ordering, which declares as incomparable

any two solutions defeating each other on one component. Although simple, this criterion

is not satisfactory in practice since we cannot compensate positive and negative preferences,

which are two symmetric concepts.

This ability is, instead, one of the key features of another, more sophisticated, bipolar

structure which we will now describe.
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Definition 21 (bipolar preference structure) A bipolar preference structure is a tuple 〈N,

P, +, ×, ⊥, 2, >〉 where

• 〈P, +|P ,×|P , 2,>〉 is a positive preference structure;

• 〈N, +|N ,×|N ,⊥, 2〉 is a c-semiring;

• + : (N ∪ P )2 −→ (N ∪ P ) is such that an + ap = ap for any an ∈ N and ap ∈ P ;

this operator induces as partial ordering on N ∪ P : ∀a, b ∈ P ∪ N , a ≤ b if and only

if a + b = b;

• × : (N ∪P )2 −→ (N ∪P ) is an operator (called the compensation operator) that, for

all a, b, c ∈ N ∪ P , satisfies the following properties:

– commutativity: a× b = b× a;

– monotonicity: if a ≤ b, then a× c ≤ b× c.

In the following, we will write +n instead of +|N and +p instead of +|P . Similarly for

×n and ×p. Moreover, we will sometimes write ×np when operator × will be applied to a

pair in (N × P ).

Bipolar preference structures generalize c-semirings. In fact, a c-semiring is just a bipolar

preference structure with a single positive preference: the indifference element, which, in

such a case, is also the top element of the structure.

Similarly, bipolar preference structures generalize positive structures. In fact, the lat-

ter are just bipolar preference structures with a single negative preference: the indifference

element. By symmetry, in such cases the indifference element coincides with the bottom

element of the structure.

Given the way the ordering is induced by + on N ∪P , easily, we have⊥≤ 2 ≤ >. Thus,

there is a unique maximum element (that is, >), a unique minimum element (that is, ⊥); the

element 2 is smaller than any positive preference and greater than any negative preference,

and it is used to model indifference. The shape of a bipolar preference structure is shown in

Figure 3.1.

Despite the ordering suggested by Figure 3.1, which places all positive preferences strictly

above negative preferences, our framework does not prevent from using the same scale to

represent both positive and negative preferences. Such a case can be easily handled by using

two isomorphisms: one between an instance of the scale and the positive preference struc-

ture, and another one between another instance of the same scale and the negative preference

structure. The same holds also when one wishes to use partially overlapping scales.
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p+,P p

N +
n n,

Figure 3.1: The shape of a bipolar preference structure.

A bipolar preference structure allows us to have different ways to model and reason

about positive and negative preferences. In fact, we can have different lattices (P,≤p) and

(N,≤n). For example, we can have a richer structure for one kind of preference. This is

common in real-life problems, where negative and positive statements are not necessarily

expressed using the same granularity. For example, we could be satisfied with just two levels

of negative preferences, while requiring ten levels of positive preferences. Nevertheless, our

framework allows to model cases in which the two structures are isomorphic, as well.

It is easy to show that the combination of a positive and a negative preference is a

preference which is higher than, or equal to, the negative one and lower than, or equal

to, the positive one. The following theorems hold when a bipolar preference structure

〈N, P, +,×,⊥, 2,>〉 is given.

Theorem 3 For all p ∈ P and n ∈ N , n ≤ p× n ≤ p.

Proof: For any n ∈ N and p ∈ P , 2 ≤ p and n ≤ 2. By monotonicity of ×, we have:

n× 2 ≤ n× p and n× p ≤ 2× p. Hence: n = n× 2 ≤ n× p ≤ 2× p = p. 2

This means that the compensation of positive and negative preferences must lie in one of

the chains between the two combined preferences. Notice that all such chains pass through

the indifference element 2. Possible choices for combining strictly positive with strictly

negative preferences are thus the average or the median operator.

Moreover, by monotonicity, we can show that if > × ⊥ = ⊥, then the result of the

compensation between any positive preference and the bottom element is the bottom element,

i.e., if there is an event which is so negative that any other positive event doesn’t matter,

for example the work loss, then every scenario including this event will be in set of the

most refused ones. Similarly, if > × ⊥ = >, then the compensation between any negative

preference and the top element is the top element, i.e., if there is an event which is so positive

that any other negative event doesn’t matter, for example winning the lottery, then every

scenario including winning the lottery will be in the set of the most preferred ones.
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N,P +p, ×p +n, ×n ×np ⊥, 2, >

R−, R+ max, sum max, sum sum −∞, 0, +∞

[−1, 0], [0, 1] max, max max, min sum −1, 0, 1

[0, 1], [1, +∞] max, prod max, prod prod 0, 1, +∞

Table 3.1: Examples of bipolar preference structures.

Theorem 4 Given bipolar preference structure 〈N, P, +,×,⊥, 2,>〉:

• if >×⊥ = ⊥, then ∀p ∈ P , p×⊥ = ⊥;

• if >×⊥ = >, then ∀n ∈ N , n×> = >.

Proof: Assume > × ⊥ = ⊥. Since for all p ∈ P , p ≤ >, then, by monotonicity of ×,

p×⊥ ≤ >×⊥ = ⊥, hence p×⊥ = ⊥.

Assume > × ⊥ = >. Since for all n ∈ N , ⊥ ≤ n, then, by monotonicity of ×,

> = >×⊥ ≤ >× n, hence >× n = >. 2

Example 19 In Table 3.1 each row corresponds to a bipolar preference structure. The struc-

ture described in the first row uses positive real numbers as positive preferences and negative

reals as negative preferences. Compensation is obtained by summing the preferences, while

the ordering is given by the max operator, i.e., the most preferred preferences are the highest

ones. In the second structure we have positive preferences between 0 and 1 and negative

preferences between −1 and 0. The compensation operator between positive preferences is

max, between negative preferences is min, between positive and negative preferences is sum

and the order is given by max. In the third structure we use positive preferences between 1

and +∞ and negative preferences between 0 and 1. Compensation is obtained by multiplying

the preferences and ordering is obtained again via max. The compensation in the first and in

the third structure is associative. 2

3.5 Associativity of preference compensation

In general, the compensation operator×may be not associative. First, we list some sufficient

conditions for the non-associativity of the × operator, then we show how to build a bipolar

preference structure with an associative combination operator.
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Theorem 5 Given a bipolar preference structure 〈P, N, +,×,⊥, 2,>〉,× is not associative

if at least one of the following two conditions is satisfied:

• > × ⊥ = c ∈ (N ∪ P )− {>,⊥};

• ∃p ∈ P −{>, 2} and n ∈ N−{⊥, 2} s.t. p×n = 2 and at least one of the following

conditions holds:

– ×p or ×n is idempotent;

– ∃p′ ∈ P − {p,>} s.t. p′ × n = 2 or ∃n′ ∈ N − {n,⊥} s.t. p× n′ = 2;

– >×⊥ = ⊥ and ∃n′ ∈ N − {⊥} s.t. n× n′ = ⊥;

– >×⊥ = > and ∃p′ ∈ P − {>} s.t. p× p′ = >;

– ∃a, c ∈ N ∪ P s.t. a × p = c if and only if c × n 6= a (or ∃a, c ∈ N ∪ P s.t.

a× n = c if and only if c× p 6= a),

Proof:

• If c ∈ P − {>}, then >× (>×⊥) = >× c = >, while (>×>)×⊥ = >×⊥ = c.

If c ∈ N −{⊥}, then ⊥× (⊥×>) = ⊥× c = ⊥, while (⊥×⊥)×> = ⊥×> = c.

• Assume that ∃p ∈ P − {>, 2} and n ∈ N − {⊥, 2} such that p× n = 2.

– If×p is idempotent, then p×(p×n) = p×2 = p, while (p×p)×n = p×n = 2.

Similarly if ×n is idempotent.

– If ∃p′ ∈ P − {p,>} such that p′ × n = 2, then (p × n) × p′ = p′, while

p× (n× p′) = p. Analogously, if ∃n′ ∈ N − {n,⊥} such that p× n′ = 2.

– If > × ⊥ = ⊥, then, by Theorem 4, p × ⊥ = ⊥. If ∃n′ ∈ N − {⊥} such that

n×n′ = ⊥, then (p×n)×n′ =2×n′ = n′, while p×(n×n′) = p×⊥ = ⊥ 6= n′.

– If > × ⊥ = >, then, by Theorem 4, n × > = >. If ∃p′ ∈ P − {>} such that

p×p′ = >, then (n×p)×p′ =2×p′ = p′, while n×(p×p′) =n×> = > 6= p′.

– If c × n 6= a, then (a × p) × n = c × n 6= a, but a × (p × n) = a × 2 = a.

Analogously if c× p 6= a.

2

Notice that sufficient conditions for the non-associativity of the compensation operator

presented in Theorem 5 refer to various aspects of a bipolar preference structure such as the
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properties of operators and the relation between × and the other operators. Since some of

these conditions often occur in practice, it is not reasonable to require associativity of ×, we

prefer to let the users the freedom of choosing operators as they want on condition that they

satisfy the properties required in Definition 21.

For example, × is not associative when the combination between > and ⊥ is differ-

ent from > or ⊥, or when there are two preferences, a positive and a negative one, whose

compensation produces the indifference element and the combination operator of either the

positive or the negative preferences is idempotent. This result depends on the fact that the

proposed framework allows one to choose freely the result of the compensation between >

and ⊥, and the operators ×n and ×p, as long as the monotonicity of × is respected. How-

ever, there are also cases in which both ×p and ×n are not idempotent, and still × is not

associative. For example, this happens when there are two different positive (respectively

negative) preferences that combined with the same negative (respectively positive) prefer-

ence give the indifference element. Another sufficient condition for the non-associativity

of the compensation operator concerns the presence of at least two negative (respectively

positive) preferences different from ⊥ (respectively >), such that their combination is ⊥

(respectively >). Consider, for example, a bipolar preference structure where N=[-50,0],

P=[0,100], +=max, × = bounded-sum, ⊥= −50, 2 = 0, and > = 100. In this case,

there are preferences such as 50 and 60 which are not equal to the top (100) but such that

their bounded sum obtains 100. As expected, −10 + (50 + 60) = −10 + 100 = 90, while

(−10+50)+60 = 40+60 = 100. Another case that leads to non-associativity of× is when

there are two preference values that don’t behave like inverse elements in ordinary algebra.

It is however useful to be able to build bipolar preference structures where compensa-

tion is associative. It is obvious that, if we are free to choose any positive and any negative

preference structure when building the bipolar framework, we will never be able to assure as-

sociativity of the compensation operator. Thus, to assure this, we must pose some restrictions

on the way a bipolar preference structure is built.

We describe now how to build a positive preference structure from a given negative one

where ×n is not idempotent, such that the resulting bipolar preference structure has an as-

sociative compensation operator. The methodology is called localization and represents a

standard systematic technique for adding multiplicative inverses to a (semi)ring [BH98].

Given a (semi)ring with carrier set N (representing, in our context, a negative preference

structure), and a subset S ⊆ N , we can construct another structure with carrier set P (rep-

resenting, for us, a positive preference structure), and a mapping from N to P which makes
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all elements in the image of S invertible in P . The localization of N by S is also denoted by

S−1N .

We can select any subset S of N . However, it is usual to select a subset S of N which is

closed under ×n, such that 1 ∈ S (1 is the unit for ×n, which represents indifference), and

0 6∈ S.

Given N and S, let us consider the quotient field of N with respect to S. This is denoted

by Quot(N, S), and will represent the carrier set of our bipolar structure. One can construct

Quot(N, S) by just taking the set of equivalence classes of pairs (n, d), where n and d are

elements of N and S respectively, and the equivalence relation is: (n, d) ≡ (m, b) ⇐⇒

n×n b = m×n d. We can think of the class of (n, d) as the fraction n
d
.

The embedding of N in Quot(N, S) is given by the mapping f(n) = (n, 1), thus the

(semi)ring N is a subring of S−1N via the identification f(a) = a
1

.

The next step is to define the + and × operator in Quot(N, S), as function of the oper-

ators +n and ×n of N . We define (n, d) + (m, b) = ((n ×n b) +n (m ×n d), d ×n b) and

(n, d)× (m, b) = (m×n n, d×n b). By using the fraction representation we obtain the usual

form where the addition and the multiplication of the formal fractions are defined according

to the natural rules: a
s

+ b
t

= (a×nt)+n(b×ns)
s×nt

and a
s
× b

t
= a×nb

s×nt
.

It can be shown that the structure 〈P, +p,×p,
1

1
, 1

0
〉, where P = {1

a
s.t. a ∈ (S ∪ {0})},

+p and ×p are the operators + and × restricted over 1

S
× 1

S
, 1

1
is the bottom element in

the induced order (notice that the element coincide with 1), and 1

0
is the top element of the

structure2, is a positive preference structure. Moreover, Quot(N, S) = P ∪ N , and it is

the carrier of a bipolar preference structure 〈P, N, +,×, 0, 1

1
, 1

0
〉 where × is an associative

compensation operator by construction.

Notice that the first example of the table in Section 3.4, as well as the third example

restricted to rational numbers, can be obtained via the localization procedure.

3.6 Bipolar preference problems

Once we have defined bipolar preference structures, we can define a notion of bipolar con-

straint, which is just a constraint where each assignment of values to its variables is associ-

ated to one of the elements in a bipolar preference structure.

Definition 22 (bipolar constraints) Given a bipolar preference structure 〈N, P, +, ×, ⊥,

2, >〉, a finite set D (the domain of the variables), and an ordered set of variables V , a

2This element is introduced ad hoc because 0 is not an unit and cannot be used to build its inverse.
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constraint is a pair 〈def, con〉 where con ⊆ V and def : D|con| → (N ∪ P ).

Given a set of bipolar constraints and a set of variables we can define a bipolar constraint

satisfaction problem.

Definition 23 (bipolar CSP) A bipolar CSP (V, C) is a set of variables V and a set of bipo-

lar constraints C over V .

There could be many ways of defining the optimal solutions of a bipolar CSP. Here

we propose a simple one which compensates only preferences of complete instantiations.

This avoids problems due to the possible non-associativity of the compensation operator,

since compensation never involves more than two preference values. Thus the preference

of a solution does not depend on the order in which the preferences of its constraints are

aggregated.

Definition 24 (optimal solutions) A solution of a bipolar CSP (V, C) is a complete assign-

ment to all variables in V , say s, and an associated preference which is computed as follows:

pref(s) = (p1 ×p . . . ×p pk) × (n1 ×n . . . ×n nl), where pi ∈ P and nj ∈ N and where

∃ 〈defi, coni〉 ∈ C for i := 1, . . . , k s.t. pi = defi(s ↓con), and ∃〈defj, conj〉 ∈ C for

j := 1, . . . , l s.t. nj = defj(s ↓con). A solution s is an optimal solution if there is no other

solution s′ with pref(s′) > pref(s).

In this definition, the preference of a solution s is obtained by combining all the positive

preferences associated to its projections over the constraints, by using×p, combining all the

negative preferences associated to its projections over the constraints, by using×n, and then,

combining the two preferences obtained so far (one positive and one negative) by using the

operator ×np.

If × is associative, then other definitions of solution preference could be used while

giving the same result. In fact, any combination of aggregation and compensation, applied to

the preferences of the constraints of the problem, would lead to the same overall preference,

and thus to the same solution ordering.

3.7 An example of bipolar CSP

We now show how a real-life problem can be modelled as a bipolar CSP. Consider the sce-

nario in which we want to buy a car and we have preferences over some features. In terms of

color, we like red, we are indifferent to white, and we hate black. Also, we like convertible
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cars a lot and we don’t care much for big cars (e.g., SUVs). In terms of engines, we like

diesel. However, we don’t want a diesel convertible.

We represent positive preferences via positive integers, negative preferences via negative

integers and we maximize the sum of all kinds of preferences. This can be modelled by a

bipolar preference structure where N = [−∞, 0], P = [0, +∞], + =max, ×=sum, ⊥ =

−∞, 2 = 0,> = +∞.

We have three variables: variable T (type) with domain {convertible, big}, variable E

(engine) with domain {diesel, gasoline}, and variable C (color) with domain {red, white,

black}. For the preferences over the colors, we define a constraint c1 = 〈def1, {C}〉 where,

for example, we set def1(red) = +10, def1(black) = −10, and def1(white) = 0. We also

have a constraint over car types, say c2 = 〈def2, {T}〉, where we set def2(convertible) =

+20 and def2(big) = −3. The constraint over engines can then be c3 = 〈def3, {E}〉,

where we can set def3(diesel) = +10 and def3(gasoline) = 0. Finally, the last preference

can be modelled by a constraint c4 = 〈def4, {T, E}〉, where we can set def4(convertible,

diesel) = −20 and def4(a, b) = 0 for (a, b) 6=(convertible, diesel). Figure 3.2 shows the

structure (variables, domains, constraints, and preferences) of such a bipolar CSP, where

preferences have been chosen to fit the informal specification above, and 0 is used to model

indifference (also when tuples are not shown).

red     
black  
white   

+10
−10
   0

C

  

diesel
gasoline

+10
0

convertible +20
−3

E

T (convertible,diesel)  −20

big

Figure 3.2: A bipolar CSP modelling car’s preferences.

Notice that we have set the preference values in a way that models the intuitive strength

of the preferences described informally in the example.

Consider solution s1=(red,convertible,diesel). pref(s1) = (def1(red)× def2(convertible)

×def3(diesel))× def4(convertible, diesel) = (10 + 20 + 10) + (−20) = 20. Analogously,

we can compute the preference of all other solutions and see that the optimal solution is (red,

convertible, gasoline) with global preference of 30.

Consider now a different bipolar preference structure, which differs from the previous

one only for ×p, which is now max. Now solution s1 has preference pref(s1) =(def1(red)
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×def2(convertible)×def3(diesel))×def4(convertible, diesel) = max(10, 20, 10)+(−20) =

0. It is easy to see that now an optimal solution has preference 20. There are two of such solu-

tions: one is the same as the optimal solution above, and the other one is (white,convertible,

gasoline). The two cars have the same features except for the color. A white convertible

is just as good as a red convertible because we decided to aggregate positive preference by

taking the maximum elements rather than by summing them.

3.8 Solving bipolar CSPs

Bipolar problems are NP-complete, since they generalize both classical and soft constraints,

which are already known to be difficult problems [BMR97]. In this section we will consider

how to adapt some usual techniques for soft constraints to bipolar problems.

3.8.1 A branch and bound solver

Preference problems based on c-semirings can be solved via a branch and bound technique,

possibly augmented via soft constraint propagation, which may lower the preferences and

thus allow for the computation of better bounds [BMR97].

In bipolar CSPs, we have both positive and negative preferences. We propose to use

an algorithm similar to Branch and Bound algorithm (BB) [Dec03] used for unipolar pref-

erences. Being able to do so is a good point since it allows to handle bipolar preferences

without much additional effort.

Following BB, whenever a solution is found, its preference, if higher that those found

before, is kept as a lower bound, L, for the optimal preference in the maximization task.

Moreover, for each partial solution t an upper bound, ub(t), is computed by overestimating

the best preference of a solution extending t. If ub(t) ≤ L, i.e. the preference of the best

solution in the subtree below t is worse than the preference of the best solution found so far,

then the subtree below t is pruned.

Our algorithm is different from standard BB since it allows the compensation operator

to be non-associative. This may require to consider some total completions of t in order to

compute ub(t).

More precisely, we adapt BB to compute, at each search node k corresponding to a partial

assignment t, an upper bound to the preferences of all the solutions in the k-rooted subtree

as follows.
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• If × is not associative, then each node is associated to a positive and a negative pref-

erence, say p and n, which are obtained by aggregating all preferences of the same

type obtained in the instantiated part of the problem. Next all the best preferences

(which may be positive or negative) in the uninstantiated part of the problem are con-

sidered. By aggregating those of the same type, we get a positive and a negative

preference, say p′ and n′, which can be combined with the ones associated to the cur-

rent node. This produces the following upper bound ub = (p×p p′)× (n×n n′), where

p′ = p1 ×p . . .×p pw, n′ = n1 ×n . . .×n ns, with w + s = r, where r is the number of

uninstantiated variables/constraints. Hence ub can be computed via r − 1 aggregation

steps and one compensation step.

• If × is associative, then we don’t need to postpone compensation until all constraints

have been considered. This means that we can keep just one preference value for

each search node, v = p × n, that can be positive or negative, which is obtained by

aggregating all preferences (both positive and negative) obtained in the instantiated

part of the problem. The same can be done considering the best preferences in the

uninstantiated part of the problem, obtaining a value v ′. Thus, ub can now be written

as ub = v × v′, where v′ = a1 × . . . × ar, where ai ∈ N ∪ P is the best preference

found in a constraint of the uninstantiated part of the problem. Thus now ub can

be computed via at most r − 1 steps among which there can be many compensation

steps. A compensation step can generate the indifference element 2, which is the unit

element for the compensation operator. Thus, when 2 is generated, the successive

computation step can be avoided.

Algorithm 5 shows the pseudocode of the procedure we propose to compute the up-

per bound within the BB algorithm. The input is a partial assignment t to a subset X =

{x1 . . . , xk} of the set of variables V = {x1, . . . xn} and the bipolar CSP, P ′, obtained from

the initial bipolar CSP by reducing the domains of the variables in X to the singleton cor-

responding to their assignment in t.

For every constraint c =< def, con >∈ C, we compute the constraint c ⇓X,t, which is

obtained by projecting c on X and considering only the subtuple t ↓X∩con. We will denote

c ⇓X,t with c′ and we will denote with C ′ the union set of all such constraints. Note that, by

the definition of projection constraint (Section 2.2), c ⇓X,t associates to subtuple t ↓X∩con

the best preference associated by def to any of its completions to variables in con.

If × is not associative, then the algorithm computes the aggregation p(t) of all the

best preferences that are positive, i.e., the preferences obtained on each constraint c+ =<
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defc+, conc+ >∈ C ′ such that defc+(t ↓con
c+

) ∈ P and the aggregation n(t) of all the

best preferences that are negative, i.e. the preferences obtained on each constraint c− =<

defc−, conc− >∈ C ′ s. t. defc−(t ↓con
c−

) ∈ N . The final step compensates between p(t) and

n(t) and returns the result, ub(t), of this compensation.

If × is associative then the algorithm aggregates directly the best preferences that can be

positive or negative and it returns the result of this aggregation, i.e. ub(t).

Algorithm 5: Upper Bound computation
Input: t: assignment to variables in X = {x1, . . . , xk}

P ′: bipolar CSP;

Output: ub(t): preference;

foreach c ∈ C do
compute c′ = c ⇓X,t

C ′ ← ∪c∈Cc′;

if × is not associative then
p(t)←

∏
p {c+∈C′}

defc+(t ↓con
c+

);

n(t)←
∏

n {c−∈C′}
defc−(t ↓con

c−
);

ub(t)← p(t)× n(t)

else
ub(t)←

∏
{c′∈C′} defc′(t ↓conc′

);

return ub(t);

3.8.2 Bipolar propagation

When looking for an optimal solution, BB can be helped by some form of partial or full

constraint propagation. To see whether this can be done when solving bipolar problems as

well, we must first understand what constraint propagation means in such problems. For

sake of simplicity, we will focus here on arc-consistency.

Given any bipolar constraint, let us first define its negative version neg(c), which is

obtained by just replacing the positive preferences via indifference. Similarly, the positive

version pos(c) is obtained by replacing negative preferences via indifference. We now define

when a constraint is negative arc-consistent and when it is positive arc-consistent. In the

following definitions we consider a bipolar preference structure 〈N, P, +, ×, ⊥, 2, >〉, we

denote with cXY a binary bipolar constraint connecting two variables X and Y , with cX the

soft domain of X and with cY the soft domain of Y .
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Definition 25 (NAC) A binary bipolar constraint cXY is Negatively Arc-Consistent (NAC)

if and only if neg(cXY ) is soft arc-consistent, i.e., if and only if neg(cX) = (neg(cX) ×n

neg(cY )×n neg(cXY )) ⇓X and neg(cY ) = (neg(cX)×n neg(cY )×n neg(cXY )) ⇓Y .

If a binary bipolar constraint is not soft arc-consistent, we can make it NAC by modifying

the soft domains of its two variables such that the two equations above hold. The modifica-

tions required can only decrease some preference values. Thus some negative preferences

can become more negative than before. If operator×n is idempotent, then such modifications

generate a new constraint which is equivalent to the given one [BMR97].

b ... +0.1 
a ...  −0.2

x y
aa ...  −0.5
ab ...  −0.2 

a ...  −0.2
b ...  0 

ba ...  0
bb ...  0 

a ...  0
b ...  −0.4

−0.4

(b)

x y
aa ...  −0.5
ab ...  −0.2 
ba ...  +0.6
bb ...  +0.7 

b ... −0.4 
a ... +0.5

 

(a)

NAC

n
= min

Figure 3.3: How to make a bipolar constraint NAC.

Example 20 In Figure 3.3 it is shown how to make a bipolar constraint Negatively Arc-

Consistent. Part (a) shows a bipolar constraint, named cXY , linking two variables, named

X and Y , where positive preferences are defined in interval [0, 1] and negative preferences

in interval [−1, 0]. Part (b) presents the negative version of cXY , that becomes NAC, if we

assume to combine negative preferences via minimum operator, by decreasing the negative

preference associated to X = a from −0.2 to −0.4. 2

Let us now consider the positive version of a bipolar constraint.

Definition 26 (PAC) A binary bipolar constraint cXY is Positively Arc-Consistent (PAC)

if and only if cX = glbX(pos(cX) ×p pos(cY ) ×p pos(cXY )) and cY = glbY (pos(cX) ×p

pos(cY ) ×p pos(cXY )), where glbX is an operator which, taken any constraint cS over vari-

ables S such that X ∈ S, computes a new constraint over X as follows: for every value

a in the domain of X , its preference is computed by taking the greatest lower bound of all

preferences given by cS to tuples containing X = a.

If a binary bipolar constraint is not positive arc-consistent, we can make it PAC by mod-

ifying the soft domains of its two variables such that the two equations above hold. The
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modifications required can only involve the increase of some preference values. Thus some

positive preferences can become more positive than before. If operator ×p is idempotent,

such modifications generate a new constraint which is equivalent to the given one.

b ... +0.1 
a ...  −0.2

p = max

x y
aa ...  −0.5
ab ...  −0.2 
ba ...  +0.6
bb ...  +0.7 

b ... −0.4 
a ... +0.5

 

(a) (b)

x y

ba ...  +0.6
bb ...  +0.7 

a ...  0
b ...  0 
a ...  +0.5

aa ...   0
ab ...   0 

b ... +0.1 +0.6PAC

Figure 3.4: How to make a bipolar constraint PAC.

Example 21 In Figure 3.4 it is shown how to make a bipolar constraint Positively Arc-

Consistent. In Part (a) we show the same bipolar constraint, cXY , presented in Figure 3.3

(a). In Part (b) we present the positive version of cXY , that becomes PAC, if we assume to

combine positive preferences via maximum operator, by increasing the positive preference

associated to X = b from +0.1 to +0.6. 2

We now explain when a binary bipolar constraint is Bipolar Arc-Consistent and when a

bipolar problem is Bipolar Arc-Consistent.

Definition 27 (BAC) A binary bipolar constraint is Bipolar Arc-Consistent (BAC) if and

only if it is both NAC and PAC. A bipolar constraint problem is BAC if and only if all its

constraints are BAC.

If a bipolar constraint problem is not BAC, we can consider its negative and positive

versions and achieve PAC and NAC on them. If both ×n and ×p are idempotent, this can be

seen as the application of functions which are monotone, inflationary, and idempotent on a

suitable partial order. Thus usual algorithms based on chaotic iterations [Apt03] can be used,

with the assurance of terminating and having a unique equivalent result which is independent

of the order in which constraints are considered. However, this can generate two versions of

the problem (of which one is NAC and the other one is PAC) which could be impossible to

reconcile. The problem can be solved by achieving only partial forms of PAC and NAC in

a bipolar problem. The basic idea is to consider the given bipolar problem, apply the NAC

and PAC algorithms to its negative and positive versions, and then modify the preferences of

the original problem only when the two new versions can be reconciled, that is, when at least
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one of the two new preferences is the indifference element. In fact, this means that, in one of

the two consistency algorithms, no change has been made. If this holds, the other preference

is used to modify the original one. This algorithm achieves a partial form of BAC, that we

call p-BAC, and assures equivalence.

Notice that this algorithm will possibly decrease some negative preferences and increase

some positive preferences. Therefore, if we use constraint propagation to improve the bounds

in a branch and bound algorithm, it will actually sometimes produce worse bounds, due to the

increase of the positive preferences. We will thus use only the propagation of negative pref-

erences (that is, NAC) within a BB algorithm. Since the upper bound is just a combination of

several preferences, and since preference combination is monotonic, lower preferences give

a lower, and thus better, upper bound.

Example 22 In Figure 3.5 it is shown how to make a bipolar constraint partially Bipolar

Arc-Consistent. We consider in Part (a) the same bipolar constraint, cXY , illustrated in Part

(a) of Figures 3.3 and 3.4. In Part (b) and Part (c) we recall how to make positive version

of cXY PAC and how to make negative version of cXY NAC, assuming to combine negative

preferences via minimum operator and positive preferences via maximum operator. In Part

(d) we show how to achieve p-BAC of cXY . For obtaining p-BAC we must reconcile the

modified preferences obtained in Part (b) and in Part (c) when it is possible. Since in this

example it is always possible to reconcile such preferences, we obtain a bipolar constraint

which is not only p-BAC, but also BAC. 2
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Figure 3.5: How to make a bipolar constraint p-BAC.
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3.9 Bipolar preferences and uncertainty

In this section we define bipolar preference problems with uncertainty and we give an algo-

rithm for translating them in a new kind of bipolar preference problems without uncertainty.

Then we give a way for computing the preference of a solution of these new problems and

we show that the same semantics mentioned in Section 2.13.3 can be used here for ordering

the solutions.

Uncertain bipolar preference problems are problems that are characterized by a set of

variables, which can be controllable or uncontrollable, and by a set of bipolar constraints.

We assume that the domain of every uncontrollable variable is equipped with a possibility

distribution, that specifies, for every value in the domain, the degree of plausibility that the

variable takes that value.

Definition 28 (UBCSP) An uncertain bipolar CSP (UBCSP) is a tuple 〈bS, Vc, Vu, bC =

bCf ∪bCfu〉, where

• bS = 〈N, P, +, ×, ⊥, 2, >〉 is a bipolar preference structure;

• Vc = {x1, . . . xn} is the set of controllable variables,

• Vu = {z1, . . . zk} is the set of uncontrollable variables with possibility distributions

{π1, . . . πk},

• bC = bCf ∪ bCfu is the set of bipolar constraints, that may involve any subset of

variables of Vc ∪ Vu. More precisely, constraints in bCf involve only on a subset of

controllable variables of Vc, while constraints in bCfu involve both a subset of variables

of Vc and a subset of variables in Vu.

3.9.1 Removing uncertainty from UBCSPs

We now describe an algorithm, that we call B-SP, for handling UBCSPs, that generalizes

algorithm SP, described in Section 2.4 for fuzzy preferences, to the case of positive and

negative totally ordered preferences. This algorithm takes in input an uncertain bipolar pref-

erence problem BQ = 〈bS, Vc, Vu, BC = BCf ∪ BCfu〉, where bS = 〈N, P, +, ×, ⊥, 2,

>〉, N and P are totally ordered sets with respect to the ordering induced by + and it re-

turns a new kind of bipolar preference problem without uncertainty. The algorithm is mainly

characterized by two steps: in the first one it transforms the given UBCSP in a new kind of

bipolar problem with uncertainty, in order to be able to handle separately the positive and the

negative preferences, and in the second one it removes uncertainty from this problem.
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1st step: translation into a new kind of UBCSP.

Since we are not assuming that the compensation operator × of bS is associative, then, for

avoiding problems due to non-associativity, we translate the given UBCSP BQ into a new

kind of bipolar preference problem, that allows to handle separately its positive and the

negative preferences. In order to get this, we introduce 2-bipolar constraints, that are similar

to bipolar constraints, except that they associate to each assignment not a unique (positive or

negative) value, but a pair of values, that is, a positive and a negative one. We consider also

2-bipolar CSPs, that are just a set of variables and a set of 2-bipolar constraints over these

variables.

The first step of B-SP regards the translation of every constraint Bc = 〈µ, con〉 in BC

into a corresponding 2-bipolar constraint bc =〈bµ, con〉 as follows. For every assignment

d to variables in con, if µ(d) ∈ P , then bµ(d) = (µ(d), 2), whereas if µ(d) ∈ N , then

bµ(d) = (2, µ(d)), i.e., if the starting preference of d is positive, then we put that preference

in the first component of the pair, and indifference in the other component, otherwise, we

put starting negative preference in the second component of the pair and indifference in the

other one.

Doing so for every constraint of bC, we obtain an uncertain 2-bipolar CSP bQ = 〈bS, Vc,

Vu, bC = bCf∪bCfu〉, which is like the uncertain bipolar preference problem BQ except that

every constraint respectively in BCf , and BCfu is translated in the corresponding 2-bipolar

constraint respectively in bCf and bCfu. Since now bQ is a problem with uncertainty that

keep separate positive and negative preferences, then we can reason separately with these

two kinds of preferences.

2nd step: elimination of uncertainty.

The next step is characterized by the translation of the 2-bipolar CSP bQ with uncertainty

in a 2-bipolar CSP without uncertainty bQ′ = 〈bS, Vc, bC
′ = bCf ∪ bCp ∪ bCu〉. This is

obtained by eliminating the uncontrollable variables and the 2-bipolar constraints in bCfu

relating controllable and uncontrollable variables and by adding new 2-bipolar constraints

only among these controllable variables. These new constraints, that can be classified in

two sets of constraints, that we call bCu and bCp, generalize the constraints in Cu and Cp

computed by SP. We recall that in SP constraints in Cu are obtained by applying a specific

procedure for removing uncontrollability and constraints in Cp are computed for recalling

the best preference that can be obtained in the removed constraints.
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Constraints in bCu. Every 2-bipolar constraint bc = 〈bµ, con〉 in bCfu, i.e. such that con ∩

Vc = X and con ∩ Vu = Z is translated into a 2-bipolar constraint bc′ = 〈bµ′, con′〉 in

bCu, where con′ = X , such that for every assignment (d, a) to X × Z, with bµ(d, a) =

(bµpos(d, a), bµneg(d, a)), bµ′(d) = (bµ′
pos(d), bµ′

neg(d)), where bµ′
pos(d) and bµ′

neg(d) are

obtained by applying a formula similar to the one presented in Section 2.4 considering re-

spectively bµpos(d, a) and bµneg(d, a) instead of µ(d, a).

Recall that in SP every constraint 〈µ, con〉 in Cfu, i.e. such that con ∩ Vc = X and

con ∩ Vu = Z, is translated in a constraint 〈µ′, con′〉 in Cu, where con′ = X and for

every assignment d to X , µ′ is defined as follows [DFP96a]: µ′(d) = infa∈AZ
max(µ(d, a),

c(πZ(a))), where c is the order reversing map in [0, 1] such that c(p) = 1 − p and where

πZ is the possibility distribution of Z, which has domain AZ . This definition depends on

the assumption of commensurability between preferences and possibilities, that can be done

since fuzzy preferences and possibilities are defined in the same scale (i.e., in [0, 1]). It

depends also on the fact that the maximum operator is the additive operator of the fuzzy c-

semiring and on the fact that c is an order reversing map in [0, 1] with respect to the ordering

induced by the maximum operator such that c(c(p)) = p, ∀p ∈ [0, 1].

Since we want to use a similar formula for both positive and negative preferences, but the

set of positive and negative preferences, i.e., P and N , are not necessarily the interval [0, 1],

we propose to map in [0, 1] the positive and the negative preferences of every assignment

(d, a) ∈ X × Z in every constraint bc ∈ bCfu. We perform this mapping via functions,

that we call respectively fp and fn, that are strictly monotone functions with respect to ≤S .

More precisely, if P = [a, b] (respectively N = [a, b]) with a < b, then fp (respectively fn):

[a, b] → [0, 1] associates to every x ∈ [a, b] the value x+|a|
b+|a|

∈ [0, 1]. Then we can apply

the formula recalled above, by replacing the maximum operator with operator + of bS, the

map c with a map cS which reverses the ordering in [0, 1] with respect to the ordering ≤S

induced by + of bS and by assuming that operator inf applied to a set A returns the worst

element of A with respect to the ordering≤S . Since all the other preferences in the problems

are in P and N , then we map again in P and N the values returned by the formula, by

using respectively the inverse functions f−1
p and f−1

n . f−1
p (respectively f−1

n ): [0, 1]→ [a, b]

associates to every y ∈ [0, 1] the value [y(b + |a|) − |a|] ∈ [a, b]. Notice that the fact that

fp and fn are strictly monotone functions with respect to the ordering ≤S induced by the

operator + of bS, implies that they are invertible and their inverse functions are monotone

with respect to the same ordering [Mar95].

More formally, we build the set bCu from bCfu as follows.

1. Every 2-bipolar constraint bc = 〈bµ, con〉 in bCfu such that con ∩ Vc = X and
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con ∩ Vu = Z, is translated in a 2-bipolar constraint with preferences in [0, 1], bc∗ =

〈bµ∗, con〉, where, for every assignment (d, a) to X × Z, bµ∗(d, a) = (bµ∗
pos(d, a),

bµ∗
neg(d, a)) and bµ∗

pos(d, a) = fp(bµpos(d, a)) ∈ [0, 1] and bµ∗
neg(d, a) = fn(bµneg(d, a))

∈ [0, 1].

2. Then bc∗ is translated into the 2-bipolar constraint bc∗
′
= 〈bµ∗′, con∗′ = X〉, only on

controllable variables, where for every assignment d to X , bµ∗′(d) = (bµ∗′

pos(d), bµ∗′

neg(d))

and bµ∗′

pos(d) and bµ∗′

neg(d) are computed by following a procedure similar to the one

described above, that is, bµ∗′

pos(d) = infa∈AZ
(bµ∗

pos(d, a)+cS(πZ(a))) and bµ∗′

neg(d) =

infa∈AZ
(bµ∗

neg(d, a) + cS(πZ(a))), where cS is an order reversing map with respect to

≤S in [0, 1], such that cS(cS(p)) = p.

3. Finally, bc∗
′

is translated in a new 2-bipolar constraint bc′ = 〈bµ′, con′ = X〉 in bCu

where for every assignment d to X , bµ′(d) = (bµ′
pos(d), bµ′

neg(d)) ∈ P × N , where

bµ′
pos(d) = f−1

p (bµ∗′

pos(d)) and µ′
neg(d) = f−1

n (bµ∗′

neg(d)).

In the following we show formally that the considered functions fp and fn are strictly

monotone with respect to the ordering induced by + of bS. Then we show that, in the general

framework that we have defined above, properties which are similar to the ones presented

for fuzzy preferences continue to hold.

Lemma 1 Given a, b ∈ R, with a < b, the function fp (respectively fn): [a, b] → [0, 1]

associating to every x ∈ [a, b] the value x+|a|
b+|a|

∈ [0, 1] is strictly monotone. Moreover, if

we consider a bipolar preference structure bS = (N, P, +, ×, ⊥, 2, >) where P and N

are totally ordered sets, then fp and fn are strictly monotone with respect to the ordering

induced by the additive operator of bS.

Proof: Given x ∈ [a, b], fp(x) = x
b+|a|

+ |a|
b+|a|

. Let us denote with K the value 1
b+|a|

and

with G the value |a|
b+|a|

. Then fp(x) = Kx + G. We have K = 1
b+|a|

> 0, since 1 > 0 and

b + |a| > 0. In fact, if b > 0 then b + |a| ≥ b + 0 > 0 + 0 = 0 and if b ≤ 0, then a < b ≤ 0,

hence −a > −b ≥ 0 and so b + |a| = b + (−a) > b + (−b) = 0. We have also G ≥ 0,

since G = |a|
b+|a|

= |a|K where K > 0 and |a| ≥ 0. Hence we have fp(x) = Kx + G, where

K > 0 and G ≥ 0. Let us consider x1 and x2 in [a, b]. If x1 < x2, then Kx1 < Kx2, by

the strict monotonicity of the product over real numbers when we multiply for a real number

K > 0, and so Kx1 + G < Kx2 + G, where G ≥ 0, for strict monotonicity of the sum over

real numbers.

Given the bipolar preference structure bS, then fp is strictly monotone with respect to

the ordering ≤S induced by its additive operator +. In fact, let us consider x1 and x2
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in P = [a, b]. If x1 <S x2, then since P is totally ordered, x1 < x2 or x1 > x2. If

x1 > x2 then, for the first part of the proof, fp(x1) > fp(x2). Analogously, if x1 < x2, then

fp(x1) < fp(x2). Hence, if x1 <S x2, then fp(x1) <S fp(x2). Similarly we can show that fn

is strictly monotone with respect to ≤S . 2

Notice that the property described in Section 2.4 characterizing the preference function

µ′ of every constraint in Cu (i.e., µ′(d) ≥ α if and only if, when πZ(a) > c(α), then

µ(d, a) ≥ α, where a is the actual value of z and c is the order reversing map in [0, 1] s.t.

c(p) = 1− p) holds also in our framework for both bµ′
pos(d) and bµ′

neg(d).

Proposition 22 Consider an uncertain 2-bipolar CSP 〈bS, Vc, Vu, bC〉, where bS = 〈N, P,

+, ×, ⊥, 2, >〉 is a bipolar preference structure where P and N are totally ordered sets.

Every 2-bipolar constraint, 〈bµ, con〉 ∈ bC, such that con∩Vc = X and con∩Vu = Z, with

possibility distribution πZ , such that if d is an assignment to X , and a an assignment to Z,

its preference is bµ(d, a) = (bµpos(d, a), bµneg(d, a)), can be translated in a new constraint,

〈bµ′, con′〉, where con′ = X and bµ′ is such that,

• bµ′
pos(d) ≥S β ∈ P if and only if, when πZ(a) > cS(fp(β)), then bµpos(d, a) ≥S β;

• bµ′
neg(d) ≥S α ∈ N if and only if, when πZ(a) > cS(fn(α)), then bµneg(d, a) ≥S α,

where cS is an order reversing map with respect to ordering≤S in [0, 1] such that cS(cS(p)) =

p, ∀p ∈ [0, 1]

Proof: We show the first statement concerning bµ′
pos(d). The second one, concerning

bµ′
neg(d), can be proved analogously, since by construction fn and f−1

n have the same prop-

erties respectively of fp and f−1
p .

We recall that bµ′
pos(d) = f−1

p (infa∈AZ
(fp(bµpos(d, a))+ cS(πZ(a)))).

(⇒) We assume that bµ′
pos(d) ≥S β. If bµ′

pos(d) ≥S β, since fp is monotone with respect

to the ordering ≤S , then fp(bµ
′
pos(d)) ≥S fp(β), i.e., fp(f

−1
p (infa∈AZ

(fp(bµpos(d, a))+

cS(πZ(a)))))≥S fp(β), that is, since fp is the inverse function of f−1
p , infa∈AZ

(fp(bµpos(d, a)

+ cS(πZ(a))) ≥S fp(β). Since we are considering totally ordered preferences, this implies

that (fp(bµpos(d, a))+ cS(πZ(a))) ≥ fp(β), ∀a ∈ AZ . For a with πZ(a) > cS(fp(β)), since

cS is an order reversing map with respect to ≤S such that cS(cS(p)) = p, we have cS(πZ(a))

<S cS(cS(fp(β)) = fp(β). Therefore for such a value a, fp(bµpos(d, a)) = (fp(bµpos(d,

a))+ cS(πZ(a))) ≥S fp(β) and, since f−1
p is monotone, we have f−1

p (fp(bµpos(d, a)))

≥S f−1
p (fp(β)), i.e., bµpos(d, a) ≥S β.

(⇐) We assume that ∀a with πZ(a) > cS(fp(β)), bµpos(d, a) ≥S β. Then, for such a,
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since fp is monotone with respect to≤S , fp(bµpos(d, a)) ≥S fp(β) and so, (fp(bµpos(d, a))+

cS(πZ(a))) ≥S fp(β). On the other hand, for every a such that πZ(a) < c(fp(β)), we

have c(πZ(a)) >S fp(β) and so (fp(bµpos(d, a))+ cS(πZ(a))) >S fp(β). Thus for ev-

ery a ∈ AZ , (fp(bµpos(d, a))+ cS(πZ(a))) ≥S fp(β) and so infa∈AZ
(fp(bµpos(d, a)) +

cS(πZ(a))) ≥S fp(β). Hence, since f−1
p is monotone, f−1

p (infa∈AZ
(fp(bµpos(d, a)) +

cS(πZ(a)))) ≥S f−1
p (fp(β)), i.e., bµ′

pos(d) ≥S β. 2

Notice also that the procedure above for removing uncontrollability holds both for pos-

itive and negative preferences, since it is not based on the combination operators (×p and

×n) of positive and negative preferences, which have different behaviours, but only on the

positive and negative operators (i.e., +p and +n) inducing the ordering which satisfy similar

properties.

Constraints in bCp. Constraints in bCp generalize constraints in Cp of SP. Recall that con-

straints in Cp are added to the resulting problem without uncertainty, in order to avoid having

solutions with satisfaction degree F strictly better than the best one in the original problem.

In the case of fuzzy preferences, adding these constraints is useful, since the aggregation of

fuzzy preferences goes down in the ordering. This is also reasonable for the negative prefer-

ences whose combination follows the same behaviour. For the positive preferences, instead,

where the combination goes up in the ordering, is reasonable to save the worst positive pref-

erence obtained in the original problem, in order to avoid to give a solution with positive

degree of satisfaction that is strictly lower than the ones that can be effectively obtained.

Hence, we define the set of constraints bCp as follows. Given a 2-bipolar constraint

bc =< bµ, con > in bCfu, such that con ∩ Vc = X and con ∩ Vu = Z, then the correspond-

ing 2-bipolar constraint in bCp is bcp =< bµp, conp = X >, and µp is such that for every

assignment d to X , bµp(d) = (bµppos
(d), bµpneg

(d)) ∈ P ×N , where bµpneg
(d) (respectively

bµppos
(d)) is the best negative (respectively the worst positive) preference that can be reached

for d in bc when we consider the various values a in the domain of the uncontrollable vari-

ables in con, i.e., bµpneg
(d) =

∑
n{a∈AZ}

bµneg(d, a) and bµppos
(d) = infp{a∈AZ}

bµpos(d, a),

where AZ is the domain of Z,
∑

n is the operator +n of the negative preferences applied to

more than two negative preferences that returns the best negative preference and infp is the

operator that, applied to a set of positive preferences, returns its worst positive preference

with respect to ordering induced by +p.
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3.9.2 Solution ordering

Once we have the problem without uncertainty bQ′ returned by B-SP, we can associate to

each solution of bQ′ both a degree of satisfaction and a degree of robustness. More pre-

cisely, for every solution s of bQ′, i.e. for every complete assignment to Vc, we compute

Fpos(s), Ppos(s), Upos(s), that are respectively obtained by combining, via operator ×p, all

the positive preferences of the projections of s over the constraints in bCf , bCp and bCu,

and Fneg(s), Pneg(s), Uneg(s), that are respectively obtained by combining, via operator ×n,

all the negative preferences of the projections of s over the constraints in bCf , bCp and bCu.

Hence, we compute two satisfaction levels, a positive one, i.e., FPpos
(s) = Fpos(s)×p Ppos(s)

and a negative one, i.e., FPneg
(s) = Fneg(s) ×n Pneg(s) and two degrees of robustness,

i.e., Upos(s) and Uneg(s), that characterize respectively the positive and the negative ro-

bustness degree. Then we can compensate the two degrees of satisfactions and the two

degrees of robustness. Hence, we can associate to every solution a degree of satisfaction

FP (s) = FPpos
(s) × FPneg

(s) and a robustness degree U(s) = Upos(s) × Uneg(s). Since

every solution is associated to a pair composed by a satisfaction degree and a robustness de-

gree, in order to compare solutions, we can use the same semantics (i.e., P-Risky, P-Risky1,

P-Safe, P-Safe1 and P-Diplomatic) described in Section 2.13.3.

Notice that the derived properties presented in Section 2.3 continue to hold. The first

one states that if we fix, for every constraint in Cfu linking controllable and uncontrollable

variables, the possibilities of its uncontrollable variables, and if we increase preferences of

a given assignment to its controllable and uncontrollable variables for every value in the

domain of the uncontrollable variables, then we obtain a higher value of robustness.

Proposition 23 Consider two uncertain 2-bipolar CSPs BQ1 = 〈bS, Vc, Vu, bC1 = bCf1
∪

bCfu1
〉, and BQ2 = 〈bS, Vc, Vu, bC2 = bCf2

∪ bCfu2
〉, where bS = 〈N, P, +, ×, ⊥, 2, >〉

is a bipolar preference structure, P and N are totally ordered sets and bC1 and bC2 differ

only by the preference functions of constraints involving variables in Vu, i.e., bCf1
= bCf2

,

bCfu1
=

⋃
i〈bµ

i
1, con

i〉 and bCfu2
=

⋃
i〈bµ

i
2, con

i〉. In particular, for every such constraint,

bci = 〈bµi, coni〉, such that coni ∩Vc = X i and coni ∩Vu = Zi, with possibility distribution

πZi , let bµi
1pos

(d, a) ≤S bµi
2pos

(d, a), and bµi
1neg

(d, a) ≤S bµi
2neg

(d, a), for all a assignments

to Zi and for all d assignments to X i, where ≤S is the order induced by the operator + of

bS. Then, given solution s of BQ1 and BQ2, such that s ↓Xi= d, U1(s) ≤S U2(s).

Proof: We recall that, for every constraint bci = 〈bµi, coni〉 ∈ Cfu1
, bµ′i

1pos
(d) = f−1

p (infa∈A
zi

(fp(bµ
i
1pos

(d, a))+ cS(πZi(a)))) and bµ′i
2pos

(d) = f−1
p (infa∈A

zi
(fp(bµ

i
2pos

(d, a))+ cS(πZi(a))))

where Azi is the Cartesian product of the domains of the variables in Z i. By hypothesis,
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bµi
1pos

(d, a) ≤S bµi
2pos

(d, a), ∀a, d, then, since f is monotone with respect to ordering ≤S ,

fp(bµ
i
1pos

(d, a)) ≤S fp(bµ
i
2pos

(d, a)), ∀a, d. Hence, by monotonicity of +, (fp(bµ
i
1pos

(d, a))+

cS(πZi(a)))) ≤S (fp(bµ
i
2pos

(d, a))+ cS(πZi(a))), ∀a, d, then infa∈A
zi

(fp(bµ
i
1pos(d, a))+

cS(πZi(a))) ≤S (fp(bµ
i
1pos

(d, a))+ c(πZi(a))) ≤S (fp(bµ
i
2pos

(d, a))+ cS(πZi(a))), ∀a, ∀d.

Therefore we have that bµ′i
1pos

(s ↓Xi) = infa∈A
zi

(fp(bµ1pos
(s ↓Xi, a))+ cS(πZi(a))) ≤S

infa∈A
zi

(fp(bµ2pos
(s ↓Xi , a) + cS(πZi(a)))) = bµ′i

2pos
(s ↓Xi). Hence we have that U1pos

(s) =
∏

p i
bµ′i

1pos
(s ↓Xi

) ≤S U2pos
(s) =

∏
p i

bµ′i
2pos

(s ↓Xi
), by monotonicity of ×p.

Analogously we can prove that U1neg
(s) =

∏
p i

bµ′i
1neg

(s ↓Xi
) ≤S U2pos

(s) =
∏

p i
bµ′2

2neg

(s ↓Xi
), by monotonicity of ×n.

The monotonicity of the compensation operator × of bS allows us to conclude. In fact,

U1(s) = U1pos
(s)× U1neg

(s) ≤S U2pos
(s)× U2neg

(s) =U2(s). 2

The other property presented in Section 2.3 states that if we fix preferences in every

constraint in Cfu and if we decreases possibilities of the uncontrollable variables, then we

obtain an higher value of robustness. This continues to hold also in our scenario for both

Upos and Uneg.

Proposition 24 Consider two uncertain 2-bipolar CSPs bQ1 = 〈bS, Vc, Vu, bC1 = bCf ∪

bCfu〉, and BQ2 = 〈bS, Vc, V
′
u, bC2 = bCf ∪ bCfu〉, where bS = 〈N, P, +, ×, ⊥, 2, >〉 is a

bipolar preference structure, P and N are totally ordered sets and Vu and V ′
u are the same

set of uncontrollable variables described, however, by different possibility distributions. In

particular, for every constraint, bci = 〈bµi, coni〉, such that coni ∩Vc = X i and coni ∩ Vu =

Zi, let π1
Zi(a) ≥ π2

Zi(a), for all a assignments to Z i. Then, given solution s of bQ1 and bQ2,

such that s ↓Xi= d, U1(s) ≤S U2(s), where ≤S is the order induced by the operator + of

bS.

Proof: For every constraint bci = 〈bµi, coni〉 ∈ bCfu, bµ′i
1pos

(d) = infa∈A
zi

(bµi
pos(d, a)+

cS(π1
Zi(a))) and µ′i

2pos
(d) = infa∈A

zi
(bµi

pos(d, a)+ cS(π2
Zi(a))). Moreover, bµ′i

1neg
(d) =

infa∈A
zi

(bµi
neg(d, a)+ cS(π1

Zi(a))) and bµ′i
2neg

(d) = infa∈A
zi

(bµi
neg(d, a)+ cS(π2

Zi(a))).

Since cS is an order-reversing map with respect to≤S , if π1
Zi(a)≥ π2

Zi(a), ∀a then cS(π1
Zi(a))

≤S cS(π2
Zi(a)), ∀a. Thus, by monotonicity of +, (bµi

pos(d, a)+ cS(π1
Zi(a)))≤S (bµi

pos(d, a)+

cS(π2
Zi(a))) and (bµi

neg(d, a)+ cS(π1
Zi(a))) ≤S (bµi

neg(d, a)+ cS(π2
Zi(a))), ∀a, d. From here

we can conclude as in the proof of Proposition 23. 2
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3.9.3 An example

In this section we show via an example how to remove uncertainty from an uncertain bipolar

CSP, how to compute the preference of a solution and how to order the solutions according

to the semantics described in Section 2.13.3.

Let us consider the uncertain bipolar CSP in Figure 3.6, that we call BQ, defined as

follows: 〈bS, Vc = {x, y}, Vu = {z1, z2}, BC = BCf ∪ BCfu〉. The bipolar structure

bS is 〈N = [−1, 0], P = [0, 1], + = max, ×, ⊥= −1, 2 = 0, > = 1〉, where × is

s. t. ×p = max, ×n = min and ×np = sum. The set of constraints bCfu contains

c1 = 〈µ1, {x, z1}〉 and c2 = 〈µ2, {x, z2}〉, while bCf contains c3 = 〈µ3, {x, y}〉. Figure

3.6 shows the positive and the negative preferences within such constraints, as well as the

possibility distributions π1 and π2 over domains of z1 and z2.

Figure 3.7 (a) shows the uncertain 2-bipolar CSP bQ = 〈bS, Vc = {x, y}, Vu = {z1, z2},

bC = bCf ∪ bCfu〉 built in the 1st step of B-SP. Figure 3.7 (b) shows the 2-bipolar CSP

without uncertainty bQ′ = 〈bS, Vc = {x, y}, bC ′ = bCf ∪bCp∪bCu〉, built in the 2nd step of

B-SP. bCf is composed by c3 = 〈µ3, {x, y}〉, bCp by cp1 = 〈µp1, {x}〉 and cp2 = 〈µp2, {x}〉

and bCu by c1′ = 〈µ′
1, {x}〉 and c2′ = 〈µ′

2, {x}〉. c1′ and c2′ are obtained by using functions

fn : N = [−1, 0] → [0, 1] mapping every value n ∈ [−1, 0] into the value (n + 1) ∈ [0, 1],

f−1
n : [0, 1]→ [−1, 0] mapping every value t ∈ [0, 1] into the value (t− 1) ∈ [−1, 0] and cS

mapping every p ∈ [0, 1] in 1− p.

Figure 3.7 (c) shows all the solutions of the UBCSP BQ, i.e., all the complete assign-

ments to the controllable variables (thus x and y). To compute the preference of a solution

s, we need the positive satisfaction degree FPpos
(s) (respectively, the negative satisfaction

degree FPneg
(s)) obtained by combining via ×p = max (respectively, ×n = min) all the

positive preferences associated to the projections of s in constraints on bCf∪bCp, i.e., c3, cp1

and cp2. We need also to compute the positive robustness Upos(s) (respectively, the negative

robustness Uneg(s)) obtained by combining via ×p = max (respectively, ×n = min) all the

positive preferences associated to the projections of s in constraints in bCu, i.e., in this case

in c1′ and c2′. Then we obtain a unique satisfaction degree FP (s) for s by compensating (via

×np = sum) FPpos
(s) and FPneg(s) and a unique robustness value by compensating Upos(s)

and Uneg(s).

The optimal solution for P-Risky semantics is s2 = (y = b, x = a), which has preference

(FP = 0.8, U = −0, 2) and for P-Safe, P-Risky1 and P-Safe1 semantics is s4 = (y = b, x =

b), which has preference (FP = 0.7, U = 0.1) For the P-Diplomatic semantics s2 and s4

are equally optimal. Notice that the solutions chosen by the various semantics differ on the
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attitude toward risk they implement. In particular, the P-Risky semantics is risky, since it

disregards almost completely the uncertain part of the problem. In fact, in this example it

chooses the solution that gives an high positive preference in the controllable part, even if

the uncontrollable part, which must be decided by Nature, will give with high possibility

a negative preference. On the other hand, for the P-Safe semantics is better to select the

solution with a higher robustness, i.e., that guarantees a higher number of scenarios with a

higher preference. The P-Risky1 and P-Safe1 semantics try combine the preference given in

the controllable part with that one given in the uncontrollable part. In this example, P-Safe,

P-Risky1 and P-Safe1 choose a solution with a lower preference with respect to P-Risky, but

that will have with high possibility a positive preference in the part involving uncontrollable

variables.
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Figure 3.6: An uncertain bipolar CSP.

3.10 Related work

Bipolar reasoning has already considered in the AI community, and it has been handled in

many different ways.

In [CS04], fair preference structures are introduced. In such a structure, which is an

ordered set with an operation, ⊕, the key concept is that of difference of two elements. In

particular, a structure is said to be fair if for each pair of ordered elements, α ≤ β, there

exists a maximal element, γ, such that α⊕ γ = β called the difference of β and α. Although

there is some similarity with the behaviour of our compensation operator, in [CS04], the

setting is unipolar and the goal is mainly algorithmic (extension of arc consistency to Valued

CSPs), rather than concerned with modelling new types of preferences.
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Figure 3.7: How algorithm B-SP works on the UBSCP of Figure 3.6.

In [GdBF03] the authors consider totally ordered unipolar and bipolar preference scales.

In this chapter we present a method to deal with partially ordered bipolar scales. When the

preference set is totally ordered, operators×n and×p described here correspond respectively

to the t − norm and t − conorm used in [GdBF03]. Moreover, in [GdBF03] an operator,

the uninorm, similar to the compensation operator but with the restriction of always being

associative is considered. Due to the associativity requirement, our compensation operator

is more general and may not be a uninorm when restricted to totally ordered scales.

In [BDKP02, BDKP06] a bipolar preference model based on a fuzzy possibilistic ap-

proach is described. The main differences with the framework presented in this chapter are

the fact that only fuzzy preferences are considered and that negative preferences are inter-

preted as violations of constraints. In particular, the approach followed to combine negative

and positive preferences in [BDKP02, BDKP06] is that of giving precedence to the negative

preference optimization and resorting to positive preferences only to distinguish among the

optimals found in the first step. Positive and negative preferences are, thus, kept separate

and no compensation is allowed. In [BDKP06] the negative preferences are interpreted as

strong constraints, i.e., as ordinary constraints which cannot be violated, whereas the positive

preferences as criteria which can take any rate without leading to the rejection of potential

solutions. Hence their feasible solutions are the complete assignments satisfying all the neg-

ative constraints and the optimal solutions are the feasible solutions satisfying the most of

the positive criteria. Notice that a feasible solution can be optimal even if it satisfies only

one of the positive criteria. Hence in [BDKP06] stating that an object is preferred or stating
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that its opposite is refused is very different. In fact the first statement is not important for

finding feasible solutions, because it is considered as a criteria that can or not be satisfied,

whereas the second one is very relevant, since a solution for being feasible must satisfy it. In

our framework both the negative preferences and the positive preferences are considered as

criteria, i.e., we assume that they can be compensated.

Another difference between our work and the one in [BDKP06] is that in our structure we

assume that, given a certain situation, each agent gives or a positive or a negative preference

over it, whereas in [BDKP06] they assume that an agent gives for every situation both a

positive preference, expressing how much he would like that this situation happens, and a

negative preference, defining how much we refuse that this situation does not happen. Hence

for comparing directly our approach with the one in [BDKP06], we have to introduce in our

framework something new. More precisely we set for every situation the preference that is

lacking to the indifference level, assuming that if the agent doesn’t give an explicit preference

over something it means that he is indifferent with it. For example if an agent says that he

would like at level 100 a red car, we translate this preference into a positive preference equal

to 100 expressing he likes having a red car at level 100 and in a negative preference equal to

the indifference element 2, showing that he is indifferent on the refusing not to have a red

car. The agents have two ways for saying the same thing: a positive way and a negative way.

In fact the agent can say that he prefers to have a red car at level 100 and that he refuses to

not have a red car at level 2 (positive way) or he can say that he prefers to have a red car at

level 2 and that he refuses not to have a red car at level −100 (negative way). Translating a

situation defined by a positive preference in its opposite in negative side, both in our structure

and in [BDKP06] produces a lowering of the values of the solutions, but as said before, in

[BDKP06] this translation gives much more relevance to the considered situation, since it

translate a desire into a strong constraint, and so it changes feasible solutions, whereas in our

structure this doesn’t increase the importance of this situation in the problem, even if it can

change the ranking of the feasible solutions and the set of the optimal solutions.

3.11 Future work

We plan to develop a solver for bipolar CSPs which should be flexible enough to accom-

modate for both associative and non-associative compensation operators, by following the

algorithm in Section 3.8. We also intend to implement the outlined algorithms for BB, NAC,

PAC, and p-BAC and to test them over classes of bipolar problems.

We plan to consider new semantics for computing the preference of a solution of a bipolar
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problem and to order the various solutions according to several design principles. When we

compute the preference of a solution, we aggregate positive and negative preferences via the

two operators×p and×n. However, this may lead to poor discrimination among solutions. In

fact, if we have a finite preference scale with few elements, then aggregating means obtaining

one of the preferences in the scale to associate to a solution. Thus, if the number of solutions

is much higher than the number of the element of the scale, many solutions will end up in

the same evaluation and will thus result indistinguishable. To solve this problem, we plan

to adapt the formalism for bipolar problems to allow for no aggregation, and to maintain,

for each solution, the tuple of all preferences given by the single constraints to the solution.

Thus a greater discriminating power is achieved. Assuming no aggregation, a solution is

associated to a tuple of positive preferences and a tuple of negative preferences. Different

solutions can then be compared by ordering the elements of their tuples (according to +p and

+n) for each solution, and then by comparing the ordered tuples by a lexicographic order.

Moreover, we want to generalize our bipolar structure in order to deal with problems,

where there are some negative statements, which are so negative that we would not like them

to be compensated even by the best positive statements. For example, if we are allergic to

the ingredients of a medicine, then, even if the medicine would solve our health problem,

we don’t want to use it. Moreover, there are also statements that need to be expressed as

hard constraints, which have to be satisfied for a scenario to be feasible. For example, if a

classroom cannot fit more than 100 students, then, no matter the other features of the room,

we cannot choose it for a class of 150 students. It is important to provide a framework where

such situations can be expressed. To do that, we plan to consider an extension of the bipolar

preference structure defined in this chapter, where it is present an additional structure, that

represents negative statements that cannot be compensated by any positive preference.

We intend to reason with bipolar preferences in terms of multi-criteria methods. In partic-

ular, we plan to define a unique more general bipolar preference structure where it is possible

to choose whether to perform compensation of positive and negative preferences, and to use

classical multi-criteria methods if we don’t allow for compensation.

We plan to generalize the BB algorithm for bipolar problems to bipolar problems with

uncertainty, by adapting to bipolar preferences the BB algorithm described in Section 2.12

for solving fuzzy CSPs with uncertainty. We also plan to extend the procedure for removing

uncontrollability to bipolar preference problems with uncertainty where the set of positive

and negative preferences are partially ordered. To do so, we intend to use a procedure similar

to the one described in Section 2.13 for removing uncertainty from soft CSPs with uncer-

tainty.



120 3. BIPOLAR PREFERENCES

Another topic that we want to investigate regards the relationship between bipolar pref-

erences and importance between pairs of variables [BD02]. In particular, we want to study if

we can assimilate importance with preferences or if it is better to keep it separate from pref-

erences like done with CP-nets [BD02]. We want also to analyse the relations with trade-off

methods [BO], which are methods proposed in literature for solving over-constrainedness in

interactive constraint-based tools that reason about user preferences.

Moreover, we plan to consider the possible connections between our work and non-

monotonic concurrent constraints [BdBC97], where removing a constraint is related to adding

a positive preference and where constraints must be considered in a fixed ordered and so

combined with a non-associative operator.

Finally, we intend to study the concept of bipolarity in the area of voting theory as done

in [BS06], which presents a voting method according to which each voter submits a set of

candidates he approves and a set of candidates he disapproves.



Chapter 4

Preference aggregation: fairness and

strategy proofness

In this chapter we want to consider even more general scenarios than those we have tackled

up to here. In fact, here we are going to study preferences expressed by multiple agents.

This means that we must consider ways of reasoning and aggregating preferences in order to

choose outcomes that satisfy all the agents.

In this chapter, we consider a multi-agent framework preference reasoning where each

agent expresses his own preferences using a partial order and we study how to aggregate the

agent’s preferences once they have been collected. In particular, we adapt the most popular

aggregating criteria of social choice theory [Kel87] in our context and we push the bridge be-

tween social choice theory and aggregation of preferences obtained using AI representations,

by considering the fairness [MS77, Arr51] and non-manipulability [Gib73, Sat75] of the ag-

gregating criteria we propose. The main difference from the context in which the famous Ar-

row’s theorem [Arr51], Muller-Satterthwaite’s theorem [MS77] and Gibbard-Satterthwaite’s

theorem [Gib73, Sat75] were originally written and our scenario is that we don’t have total

orders, that is, we allow incomparability. We thus extend Muller-Satterthwaite’s impossibil-

ity theorem [MS77] and Gibbard-Satterthwaite’s theorem [Gib73, Sat75] to the situation in

which the ordering given by each agent is a partial order.

4.1 Motivations and chapter structure

Many problems require us to combine the preferences of different agents. For example,

when planning a wedding, we must combine the preferences of the bride, the groom and

possibly some or all of the in-laws. Incomparability is an useful mechanism to resolve con-
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flict when aggregating such preferences. If half of the agents prefers a to b and the other

half prefers b to a, then it may be best to say that a and b are incomparable. In addition, an

agent’s preferences are not necessarily total. For example, while it is easy and reasonable to

compare two apartments, it may be difficult to compare an apartment and a house. We may

wish simply to declare them incomparable. Moreover, an agent may have several possibly

conflicting preference criteria he wants to follow, and their combination can naturally lead

to a partial order. For example, one may want a cheap but large apartment, so an 80 square

metre apartment which costs 100.000 euros is incomparable to a 50 square metre apartment

which costs 60.000 euros.

In [Ven05] they assume that both the preferences of an agent and the result of preference

aggregation can be a partial order. In this context, it is natural to ask if we can combine par-

tially ordered preferences fairly. For total orders, Arrow’s theorem shows this is impossible

[Arr51]. In [Ven05] they show that this result can be generalized to partial orders under cer-

tain conditions. Moreover, they identify two cases where fairness of social welfare functions

over partial orders is possible, one of which is a generalization of Sen’s theorem [Sen70].

The two cases correspond to two extremes of the amount of partiality of the partial orders.

One result considers partially ordered profiles which are very ordered (that is, very close to

be total orders), while the other concerns profiles with no chain of ordered pairs, and the

ordering relation contains a very small number of pairs.

These results assume that one is interested in obtaining a partial order over the different

scenarios as the outcome of preference aggregation. One may wonder if the situation is easier

when we are only interested in the most preferred outcomes in the aggregated preferences. In

this chapter we show that even in this case (that is, when considering social choice functions

over partial orders) it is impossible to be fair, i.e. Arrow’s impossibility theorem holds also

in this case. This is a generalization of Muller-Satterthwaite’s theorem [MS77] to partial

orders.

We then consider the notion of strategy proofness, which denotes the non-manipulability

of a social choice function. For totally ordered preferences, the Gibbard-Satterthwaite’s

result [Gib73] tells us that it is not possible for a social choice function to be at same time

non-manipulable and have no dictators. We prove that this result holds also in the partially

ordered scenario.

The work described in this chapter has appeared in the proceedings of the following

conferences:

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Aggregating partially ordered pref-

erences: possibility and impossibility results. In Proceedings of 10th Conference on
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Theoretical Aspects of Rationality and Knowledge (TARK X), ACM Digital Library,

National University of Singapore, pp. 193-206, Singapore, June 2005.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Strategic voting when aggregating

partially ordered preferences. In Proceedings of the 5th International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS 2006), ACM Press, pp. 685-

687, Hakodate, Japan, May 2006.

The chapter is organized as follows.

• In Section 4.2 we give some background notions on orderings (Section 4.2.1) and on

the formalisms for representing agents’ preferences compactly, which typically induce

a partial order (Section 4.2.2). Next we present some mechanisms for aggregating such

preferences which have been proposed in the literature, i.e., social welfare functions

and social choice functions (Section 4.2.3 and Section 4.2.4). Then, we present im-

possibility results concerning fairness in social welfare functions over partially ordered

preferences (Section 4.2.5), and possibility results in which the majority rule can be

fair (Section 4.2.5).

• In Section 4.3 we present an impossibility result concerning fairness in social choice

functions over partially ordered preferences. In particular, we define social choice

functions over partial orders and their properties, and we prove that they cannot be

fair.

• In Section 4.4 we introduce the notion of strategy proofness for partially ordered so-

cial choice functions (Section 4.4.1) and we prove the generalization of the Gibbard-

Satterthwaite’s result (Section 4.4.2).

• In Section 4.5 we present the work related to what is presented in this chapter. In

Section 4.6 we summarize the main results described in this chapter and in Section 4.7

we present the future directions of research.

4.2 Background

We start reviewing some basic notions on orders and preferences, which will be useful in

what follows. In Section 4.2.3 we describe the main notions of voting theory, those which

we will consider in this chapter, and we describe briefly the fundamental result contained

in Arrow’s impossibility theorem, in Sen’s possibility theorem, in Muller-Satterthwaite’s
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impossibility theorem and in Gibbard-Satterthwaite’s impossibility theorem. Moreover, we

present a generalization of Arrow’s impossibility theorem and a generalization of Sen’s pos-

sibility theorem to partially ordered preferences.

4.2.1 Orderings

A preference ordering can be described by a binary relation on outcomes where x is preferred

to y if and only if (x, y) is in the relation. Such relations may satisfy a number of properties.

A binary relation R on a set S (that is, R ⊆ S × S) is:

• reflexive if and only if ∀x ∈ S, (x, x) ∈ R;

• transitive if and only if ∀x, y, z ∈ S, (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R;

• antisymmetric if and only if ∀x, y ∈ S, (x, y) ∈ R and (y, x) ∈ R implies x = y;

• complete if and only if ∀x, y ∈ S, either (x, y) ∈ R or (y, x) ∈ R.

Definition 29 (total order) A total order (TO) is a binary relation which is reflexive, tran-

sitive, antisymmetric, and complete.

A total order has an unique optimal element, that is an element o ∈ S such that ∀x ∈

S, (o, x) 6∈ S. We say that this element is undominated.

Definition 30 (partial order) A partial order (PO) is a binary relation which is reflexive,

transitive and antisymmetric but may be not complete.

There may be pairs of elements (x, y) of S which are not in the partial order relation, that

is, such that neither (x, y) ∈ R nor (y, x) ∈ R. Such elements are incomparable (written

x ./ y). A partial order can have several optimal and mutually incomparable elements.

Again, we say that these elements are undominated. Undominated elements will also be

called top elements. The set of all top elements of a partial order o will be called top(o).

Elements which are below or incomparable to every other element will be called bottom

elements.

Definition 31 (strict order) Given any relation R which is either a total or a partial order, if

(x, y) ∈ R, it can be that x = y or that x 6= y. If R is such that (x, y) ∈ R implies x 6= y,

then R is said to be strict. This means that reflexivity does not hold.
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Both total and partial orders can be extended to deal with ties, that is, sets of elements

which are equally positioned in the ordering. Two elements which belong to a tie will be said

to be indifferent. To summarize, in a total order with ties, two elements can be either ordered

or indifferent. On the other hand, in a partial order with ties, two elements can be either

ordered, indifferent, or incomparable. Notice that, while incomparability is not transitive in

general, indifference is transitive, reflexive, and symmetric.

In the following we will sometimes need to consider partial orders with some restrictions.

In particular, we will call a rPO a partial order where the top elements are all indifferent, or

the bottom elements are all indifferent. In both POs and rPOs, ties are allowed everywhere,

except where explicitly stated otherwise.

4.2.2 Preferences

An agent’s preferences are not necessarily total. For example, while it is easy and reasonable

to compare two apartments, it may be difficult to compare an apartment and a house. We may

wish simply to declare them incomparable. Moreover, an agent may have several possibly

conflicting preference criteria he wants to follow, and their combination can naturally lead to

a partial order. For example, one may want a cheap but big apartment, so an 80 square meters

apartment which costs 100.000 euros is incomparable to a 50 square meters apartment which

costs 60.000 euros. We assume therefore that the preferences of an agent can be a partial

order.

A number of formalisms have been proposed for compactly representing and efficiently

reasoning about preferences of a single agent. Common to all is that they induce some sort of

partial or total ordering, possibly with ties, on the outcomes. For example, soft constraints,

described in Section 2.2.1, can model quantitative preferences [BMR97, Sch92]. We recall

that each constraint associates a preference value to each assignment of its variables. To

model preference ordering and aggregation, the set of possible preference values is the car-

rier of a semiring, whose two operations state how to order values in the set and how to

combine values to obtain new preferences. A complete assignment of values to variables is

associated to a preference value by combining the preferences of each partial assignment in

each constraint via the combination operation of the semiring. In general, the order induced

on the preferences via this approach is a partial order with ties. Assignments with the same

preference are naturally interpreted as ties.

Soft constraints can also represent hard statements, as in “I need to be back before 8pm”:

it is enough to take a set with just two preferences values (that can be interpreted as true
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and false), order them via logical or (thus true is better than false and we have a total order),

and combine them via logical and (so an assignment has preference true if all constraints

have preference true, and it is said to be consistent; an assignment has preference false, and

it is said to be inconsistent, if some of the constraints have preference false). In this case,

the ordering induced over the complete assignments is a total order with ties: all consis-

tent assignments have preference true (thus they are all indifferent) and are better than all

inconsistent assignments (which again are indifferent among them).

Another formalism for representing preferences is CP nets [BBHP99, DB02]. They are

a compact mechanism to model conditional qualitative preferences (as in “If I take the fish

course, I prefer white wine over red”) which satisfy the ceteris paribus or “all other things

being equal” property. A dependency graph in a CP net states the relation among the features

of the problem. Each feature X has a domain of possible values and some parent features

Pa(X) on which it depends on: given any complete assignment to Pa(X), CP nets state a

total order for the values in the domain of X (in a structure called a CP conditional prefer-

ence table). Such a total order represents the preference order on the values of X given the

values of its parents, all else being equal. A CP net induces an ordering over the complete

assignments of all its features: an assignment O is better than another one O ′ if there is a

chain of improving flips from O to O′, where an improving flip is a change of the value of

one feature that improves the preference according to some preference table in the CP net.

Such an ordering is in general partial and does not have ties.

Partial CP nets [RVW04] do not require that all features are ranked. This allows one

to represent situations as in “I am indifferent to the color of the car”. This means that the

ordering induced by a partial CP net over its outcomes is in general a partial ordering with

ties. In fact, there could be flips which are neither improving nor worsening, since they

change the value of a non-ranked feature.

A number of mechanisms have been proposed for aggregating such preferences [Doy91,

Sen70]. One possibility is to run an election in which each agent votes on how they rank

every pair of outcomes. In [RVW04], each agent represents their preferences with a partial

CP net and then votes on how outcomes should be ordered. However, the agents can represent

their individual preferences with soft constraints or any other formalism for representing

preferences. We need, however, to specify how their votes are collected together into a

result.

As in voting theory, the orderings of the agents is called a profile. A social welfare

function is then a function mapping profiles onto a result (a partial ordering). In [RVW04],

a number of different social welfare functions for when agents vote with partial orders are
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described.

Pareto: One outcome α is better than another β (written α �p β) if and only if every agent

says α is better than or equal to β (written α � β or α ≈ β) and at least one of them

says α is better than β. Two outcomes are incomparable if and only if they are not

ordered either way. An outcome is Pareto optimal if and only if no other outcome is

better.

Majority: One outcome α is majority better than another β (written α �maj β) if and only

if the number of agents which say that α is better than β is greater than the number

of agents which say the opposite plus the number of those that say that α and β are

incomparable. Two outcomes are majority incomparable if and only if they are not

ordered either way. An outcome is majority optimal if and only if no other outcome is

majority better.

Max: One outcome α is max better than another β (written α �max β) if and only if more

agents vote in favor than against or for incomparability. Two outcomes are max in-

comparable if and only if they are not ordered either way. An outcome is max optimal

if and only if no other outcome is max better.

Lex: This rule assumes the agents are ordered in importance. One outcome α is lexico-

graphically better than another β (written α �lex β) if and only if there exists some

agent A such that all agents higher in the order say α ≈ β and A says α � β. Two

outcomes are lexicographically incomparable iff there exists some distinguished agent

such that all agents higher in the ordering are indifferent between the two outcomes

and the outcomes are incomparable to the distinguished agent. Finally, an outcome is

lexicographically optimal if and only if no other outcome is lexicographically better.

Rank: Each agent gives a numerical rank to each outcome. For example, in a partial CP

net, the rank of an outcome is zero if the outcome is optimal, otherwise it is the length

of the shortest chain of worsening flips between one of the optimal outcomes and it.

We say that one outcome α is rank better than another β (written α �r β) if and only

if the sum of the ranks assigned to α is smaller than that assigned to β. Two outcomes

are rank indifferent iff the sum of the ranks assigned to them are equal. Either two

outcomes are rank indifferent or one must be rank better than the other. Finally, an

outcome is rank optimal if and only if no other outcome is rank better.

The Pareto and Lex rules define strict partial orderings if the agents have a strict partial

order, while if the agents have a partial order with ties then these rules give a partial order
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without ties. The Rank rule, instead, gives a total order with ties. Maj and Max are irreflexive

and antisymmetric but may be not transitive. However, they all have at least one optimal

element. Notice that in all the five rules, except Rank, it is not possible for two outcomes to

be indifferent, since we assume that each feature is ranked by at least one of the partial CP

nets, while indifference in the qualitative relations (Pareto, Max, Majority, and Lex) means

indifference for everybody. In all these voting rules, except Rank, the result of aggregating

preferences is itself a partial order. For each of these social welfare function, we can define

a corresponding social choice function by taking just the top elements in their result.

4.2.3 Social welfare theory

In classical social welfare theory [Kel87, Arr51, Str80], individuals state their preferences in

terms of total orders. In this section we will define the main concepts and properties in this

context.

Definition 32 (profile) Given a set of n individuals and a set of outcomes O, a profile is a

sequence of n orderings over O, one for each individual.

Definition 33 (social welfare function) A social welfare function is a function from profiles

to orderings over O.

Thus social welfare functions provide a way to aggregate the preferences of the n indi-

viduals into an ordering of the outcomes.

Several properties of social welfare functions can be considered:

• Freeness: if the social welfare function can produce any ordering;

• Unanimity: if all agents agree that an outcome a is preferable to another outcome b,

then the resulting order must agree as well;

• Independence to irrelevant alternatives: if the ordering between a and b in the result

depends only on the relation between a and b given by the agents;

• Monotonicity: if, whenever an agent moves up the position of one outcome in his

ordering, then (all else being equal) such an outcome cannot move down in the result;

• Dictatoriality: if there is at least an agent such that, no matter what the others vote, if

he says a is better than b then the resulting ordering says the same. Such an agent is

then called a dictator.
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• Fairness: if the social welfare function is free, unanimous, independent to irrelevant

alternatives, and non-dictatorial.

These properties are all very reasonable and desirable also for preference aggregation.

Unfortunately, a fundamental result in voting theory is Arrow’s impossibility theorem [Arr51,

Kel78] which shows that no social welfare function on total orders with ties can be fair. In

particular, the usual proofs of this result show that, given at least two voters and three out-

comes, and a social welfare function which is free, monotone, and independent of irrelevant

alternatives, then there must be at least one dictator.

It is possible to prove that monotonicity and independence to irrelevant alternatives imply

unanimity. Social welfare functions can be free, unanimous and independent to irrelevant

alternatives but not monotonic [Sen70]. Therefore a stronger version of Arrow’s result can

be obtained by proving that freeness, unanimity and independence of irrelevant assumptions

implies that there must be at least one dictator [Gea01].

A very reasonable social welfare function which is often used in elections is pairwise

majority voting. In this voting function, for each pair of outcomes, the order between them

in the result is what the majority says on this pair. This function, however, can produce an

ordering which is cyclic. A sufficient condition to avoid generating cycles via a pairwise

majority voting function is triplewise value-restriction [Sen70], which means that, for every

triple of outcomes x1, x2, x3, there exists xi ∈ {x1, x2, x3} and r ∈ {1, 2, 3} such that

no agent ranks xi as his r-th preference among x1, x2, x3. A typical example where this

condition is not satisfied and there are cycles in the result is one where agent 1 ranks x1 >

x2 > x3, agent 2 ranks x2 > x3 > x1, and agent 3 ranks x3 > x1 > x2. In this example, x1

is ranked 1st by agent 1, 2nd by agent 3, and 3rd by agent 2, x2 is ranked 1st by agent 2, 2nd

by agent 1, and 3rd by agent 3, and x3 is ranked 1st by agent 3, 2nd by agent 2, and 3rd by

agent 1. The resulting order obtained by majority voting has the cycle x1 > x2 > x3 > x1.

4.2.4 Social choice theory

In many situations we may only be interested in the best outcome for all the agents. Such a

situation can be described by means of a social choice function.

Definition 34 (social choice function) A social choice function is a mapping from a profile

to one outcome, the optimal outcome.

A social choice function f is
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• unanimous if and only if for any profile p with a = top(pi) for every agent i, (i.e., a is

at top of every individual i’s ranking) then f(p) = a;

• monotonic iff, given two profiles p and p′, if f(p) = a and, for any other alternative b,

a >pi
b implies a >p′i

b, for all agents i, then f(p′) = a;

• a dictatorship if for some agent i, f(p) = a if and only if a = top(pi). Agent i is then

called a dictator.

The Muller-Satterthwaite’s theorem is a generalization of Arrow’s theorem on total or-

ders which shows that a dictator is inevitable if we have two agents, three or more outcomes

and the social choice function collecting votes is unanimous and monotonic [MS77].

An interesting result in social choice theory is Gibbard-Statterthwaite’s theorem [Gib73].

That is, there are inevitable dictators, if we have at least two agents and three outcomes, and

the social choices function is strategy proof and onto.

A social choice function f is

• onto if and only if it is surjective, i.e., for every profile p, f(p) can be any outcome.

• strategy proof if and only if for every profile p = (p1, . . . , pi, . . . , pn) and for every

ranking pi, f(p1, . . . , p′i, . . . , pn) ≥i f(p1, . . . , pi, . . . , pn), where a ≥i b if and only

if a = b or a >i b. Intuitively, a social choice function is strategy proof if it is best for

each agent to order outcomes as they prefer and not to try to vote tactically.

4.2.5 Fairness for social welfare functions over partial orders

Preferences typically define a partial ordering over outcomes. For situations involving mul-

tiple agents, it is necessary to combine the preferences of several individuals. In this section,

we consider each agent as voting on whether they prefer one outcome to another. In [Ven05]

they prove that, under certain conditions on the kind of partial orders that are allowed to

express the preferences of the agents and of the result, if there are at least two agents and

three outcomes to order, no preference aggregation system can be fair. That is, no preference

aggregation system can be free (give any possible partial order in the result), monotonic (im-

proving a vote for an outcome only ever helps), independent to irrelevant assumptions (the

result between two outcomes only depends on how the agents vote on these two outcomes),

and non-dictatorial (there is not one agent who is never contradicted). This result generalizes

Arrow’s impossibility theorem for combining total orders [Arr51].
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The formalisms for representing preferences [BBHP99, DB02] provide an ordering on

outcomes. In general, this ordering is partial as outcomes may be incomparable. For ex-

ample, when comparing wines, we might prefer a white wine grape like chardonnay to the

sauvignon blanc grape, but we might not want to order chardonnay compared to a red wine

grape like merlot.

The result of aggregating the preferences of multiple agents is itself naturally a partial

order. If two outcomes are incomparable for each agent, it is reasonable for them to remain

incomparable in the final order. Incomparability can also help us deal with disagreement

between the agents. If some agents prefer A to B and others prefer B to A, then it may

be best to say that A and B are incomparable (as in the Pareto semantics). In [Ven05]

they consider this kind of scenario. They assume each agent has a preference ordering on

outcomes represented via soft constraints, CP-nets or any other mechanism. A preference

aggregation procedure then combines these partial orders to produce an overall preference

ordering, and this again can be a partial order. The question they address here is: can we

combine such preferences fairly? They show that, if each agent can order the outcomes via

a partial order with unique top and bottom, and if the result is a partial order with a unique

top or a unique bottom, then any preference aggregation procedure is ultimately unfair. They

assume that each agent’s preference specify a partial order over the possible outcomes.

Definition 35 (profile) Given a set of n individuals and a set of outcomes O, a profile is a

sequence of n partial orderings over O, one for each individual.

They aggregate the preferences of a number of agents using a social welfare function.

Definition 36 (social welfare function over POs) A social welfare function over partial or-

ders is a function from profiles to partial orderings over O.

As we said in Section 4.2.3, one property of preference aggregation which is highly

desirable is fairness. In [Ven05] they consider fairness also in the context of partially ordered

preferences. Arrow’s theorem does not directly apply to aggregating preferences in such a

scenario, since agents are assumed to express preferences in terms of total orders with ties.

They show that all the properties defined in Section 4.2.3 for social welfare functions over

total orders can be used also for partially ordered ones. Except in the case of dictator, they are

straightforward generalizations of the corresponding properties for social welfare functions

for total orders [ASS02].

A social welfare function over partial orders is free if it can produce any partial ordering

over outcomes.
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Definition 37 (freeness) A social welfare function f over partial orders satisfies freeness if

and only if f is surjective, that is, for every profile p, f(p) can be any partial ordering.

A social welfare function over partial orders is unanimous if, when all agents agree that

an outcome a is preferable to an outcome b, then the resulting order agrees as well.

Definition 38 (unanimity) A social welfare function f over partial orders satisfies unanim-

ity iff, for every profile p, if a >pi
b for all agents i, then a >f(p) b.

A social welfare function over partial orders is independent to irrelevant alternatives if

the ordering between two outcomes a and b in the result depends only on the relation between

a and b given by the agents.

Definition 39 (independence to irrelevant alternatives) A social welfare function f over

partial orders satisfies independence to irrelevant alternatives iff, for all profiles p and p′,

if pi(a, b) = p′i(a, b) for every pair of outcomes a and b, for all agents i, then f(p)(a, b) =

f(p′)(a, b), where, given an ordering o, o(a, b) is the restriction of o on a and b.

A social welfare function over partial orders is monotonic if, whenever an agent moves

up the position of one outcome in his ordering, then (all else being equal) such an outcome

cannot move down in the result.

Definition 40 (monotonicity) A social welfare function f over partial orders satisfies mono-

tonicity if and only if for any two profiles p and p′, if b improves with respect to a in pass-

ing from p to p′ in one agent i and pj = p′j for all j 6= i, then, in passing from f(p)

to f(p′), b improves with respect to a, where b improves with respect to a if and only if

the relationship between a and b does not move to the left along the following sequence:

>,≥, (./ or =),≤, <.

Another desirable property of social welfare functions is the absence of a dictator. With

partial orders, there are several possible notions of dictator [Ven05].

Definition 41 (dictatorship) Given a social welfare function f over partial orders,

• a strong dictator is an agent i such that, in every profile p, f(p) = pi, that is, his

ordering is the result.

• a dictator is an agent i such that, in every profile p, if a ≥pi
b then a ≥f(p) b.

• a weak dictator is an agent i such that, in every profile p, if a ≥pi
b, then a 6<f(p) b.
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Nothing is said about the result if a is incomparable or indifferent to b for the dictator or

weak dictator. A strong dictator is a dictator, and a dictator is a weak dictator. Moreover,

whilst there can only be one strong dictator or dictator, there can be any number of weak

dictators.

With partial orders, there are several possible notions of fairness.

Definition 42 (fairness) A social welfare function over partial orders is

• strongly fair if it is unanimous, independent to irrelevant alternatives, and does not

have a strong dictator;

• fair if it is unanimous, independent to irrelevant alternatives, and does not have a

dictator;

• weakly fair if it is unanimous, independent to irrelevant alternatives, and does not have

a weak dictator

Arrow’s impossibility theorem [Arr51, Kel78] shows that, if a social welfare function on

total orders with ties is unanimous and independent to irrelevant alternatives and there are at

least two voters and three outcomes, then there must be at least one dictator. In [Ven05] they

prove that freeness, monotonicity and independence to irrelevant alternatives imply unanim-

ity. On the other hand, there are social welfare functions which are free, unanimous and inde-

pendent to irrelevant alternatives but not monotonic [Sen70]. Therefore a weaker version of

Arrow’s result on total orders with ties states that freeness, monotonicity and independence

of irrelevant assumptions imply that there must be at least one dictator [Gea01].

Proposition 25 [Ven05] A social welfare function over partial orders can be fair.

For example, the Pareto rule in which the outcome is ordered if every agent agrees, but

is incomparable otherwise, is fair. A social welfare function that is fair is also strongly fair.

Hence a social welfare function on partial orders can be strongly fair. Therefore, strong

fairness is a very weak property to demand. Even voting rules which appears very “unfair”

may not have a strong dictator. For example, Lex rule, in which the agents are ordered, and

two outcomes are ordered according to the first agent who is not indifferent, is not fair, but it

is strongly fair.
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Fairness: impossibility results

In [Ven05] they show that, under certain conditions, it is impossible for a social welfare

function over partial orders to be weakly fair. The conditions involve the shape of the partial

orders. In fact, they assume the partial orders of the agents to be general (PO), but the

resulting partial order must have all top or all bottom elements indifferent (rPO).

Theorem 6 [Ven05] Given a social welfare function f over partial orders, assume the result

is a rPO, there are at least 2 agents and 3 outcomes, and f is unanimous and independent to

irrelevant alternatives. Then there is at least one weak dictator.

As with total orders, they also prove a weaker result in which they replace unanimity by

monotonicity and freeness.

Corollary 1 [Ven05] Given a social welfare function f over partial orders, assume the re-

sult is a rPO, there are at least 2 agents and 3 outcomes, and f is free, monotonic, and

independent to irrelevant alternatives. Then there is at least one weak dictator.

They consider, for example, the Pareto rule. With this rule, every agent is a weak dic-

tator since no agent can be contradicted. They note that we could consider a social welfare

function which modifies Pareto by applying the rule only to a strict subset of the agents, and

ignores the rest. The agents in the subset will then all be weak dictators. A number of re-

sults follow from these theorems. They denote the class of all social welfare functions from

profiles made with orders of type A to orders of type B by An 7→ B, and they prove the

impossibility of being weakly fair for functions in POn 7→ rPO. The first result concerns

the restriction of the codomain of the social welfare functions.

Theorem 7 [Ven05] If all functions in An 7→ B are not weakly fair, then also functions in

An 7→ B′, where B′ is a subset of B, are not weakly fair.

This theorem implies, for example, that the functions in POn 7→ O, where O is anything

more ordered than a rPO, cannot be weakly fair. For example, it can be deduced that

functions in POn 7→ TO cannot be weakly fair.

In [Ven05] they consider the restriction of the domain of the functions, that is, let us pass

from An 7→ B to A′n 7→ B where A′ is a subtype of A. They are interested in understanding

whether the impossibility result holds also when performing such a restriction. In general,

this is not true. However, passing from POn 7→ rPO to TOn 7→ rPO, they note that the

proof of Theorem 6 still works, since it does not assumes incomparability in the preferences

of the agents.
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Summarizing, they prove the same impossibility results for all functions with the follow-

ing types:

• POn 7→ rPO (by Theorem 6);

• POn 7→ TO (by Theorems 6 and 7);

• TOn 7→ rPO (by the same proof as Theorem 6);

• TOn 7→ TO, that is, Arrows’ theorem (by the result for TOn 7→ rPO and Theorem

7);

They arrange these four impossibility results in a lattice where the ordering is given by

either domain or codomain subset, as it can be seen in Figure 4.1.

POn 7→ rPO

↙ ↘

POn 7→ TO TOn 7→ rPO

↘ ↙

TOn 7→ TO

Figure 4.1: Lattice of impossibility results. rPO stands for partial order where top ele-

ments or bottom elements are all indifferent, PO stands for partial order, TO stands for total

order. Arrow’s theorem applies to TOn 7→ TO. ↙ and ↘ stand for the lattice ordering,

which is either domain or codomain subset.

Fairness: possibility results

In [Ven05] they consider ways of assuring that a social welfare function is weakly fair. In

fact, they identify situations where the well known majority rule is transitive, which makes

it weakly fair since it has all the other properties. The majority rule they consider says a is

better than b if and only if the number of agents which say that a > b is greater than the

number of agents which say that b > a plus the number of those that say that a and b are

incomparable. Notice that ties are ignored by this rule. They focus on the condition that

Sen has proved sufficient for fairness in the case of total orders, namely triplewise value-

restriction [Sen70].

Definition 43 (triplewise value-restriction) A total order profile satisfies triplewise value-

restriction if and only if for every triple of outcomes x1, x2, x3, there exists xi ∈ {x1, x2, x3}

and r ∈ {1, 2, 3} such that no agent ranks xi as his r-th preference among x1, x2, x3.
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To apply Sen’s theorem to this context, they consider linearizations of partially ordered

profiles. They note that, as they have partial orders, to assure transitivity in the resulting

order, they must avoid both cycles (as in the total order case) and incomparability in the

wrong places. More precisely, if the result has a > b > c, it is not possible to have c > a,

which would create a cycle, and not even a ./ c, since in both cases transitivity would not

hold. In this case they define a generalized triplewise value-restriction and they generalize

Sen’s theorem to partial orders without ties.

Definition 44 (generalized triplewise value-restriction) A partial order profile p satisfies

the generalized triplewise value-restriction if all the profiles obtained from p by linearizing

any PO to a TO have the triplewise value-restriction property.

Theorem 8 [Ven05] If all profiles satisfy the generalized triplewise value-restriction and are

without ties, then the majority rule is weakly fair.

This result is useful when the profiles are highly ordered, and, within each profile, the

agents have similar orders.

On the other extreme, in [Ven05] they give another possibility result which can be applied

to profiles which order few outcomes. This result assures transitivity of the resulting ordering

by a more rough approach: it just avoids the presence of chains in the result. That is, for any

triple x1, x2, x3 of outcomes, it makes sure that the result cannot contain xi > xj > xk where

i, j, k is any permutation of {1, 2, 3}. This is done by restricting the classes of orderings

allowed for the agents.

Definition 45 (non-chaining) A profile is non-chaining iff, for any triple of outcomes, only

one of the following situations, that we call respectively situations α and β, can happen:

• the outcomes are all incomparable,

• only two of them are ordered, or

• there is one of them, which is more preferred than the other two.

Or:

• the outcomes are all incomparable;

• only two of them are ordered, or

• there is one of them, which is less preferred than the other two.
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Theorem 9 [Ven05] If all profiles are non-chaining and without ties, then the majority rule

is weakly fair.

4.3 Fairness for social choice functions over partial orders

In some situations, the result of aggregating the preferences of a number of agents might

not need to be an order over outcomes. It might be enough to know the “most preferred”

outcomes. For example, when aggregating the preferences of two people who want to buy

an apartment, we don’t need to know whether they prefer an 80 square metre apartment at

the ground floor or a 50 square metre apartment at the 2nd floor, if they both prefer a 100

square metre apartment at the 3rd floor. They would just buy the 3rd floor apartment without

trying to order the other two apartments. Social choice functions identify such most preferred

outcomes, and do not care about the ordering on the other outcomes.

A social choice function on total orders is a mapping from a profile to the optimal out-

come, or winner. With partial orders, there can be several outcomes which are incomparable

and optimal. We have therefore defined the following generalization.

Definition 46 (social choice function over POs) A social choice function over partial or-

ders is a mapping from a profile to a non-empty set of outcomes, called the optimal outcomes,

or the winners.

We need to modify slightly the usual notions to deal with this generalization.

Definition 47 (unanimity) A social choice function f over partial orders is unanimous if

and only if

• given any profile p where outcome a ∈ top(pi) for every agent i, then a ∈ f(p);

• given any profile p where {a} = top(pi) for every agent i, then f(p) = {a};

Definition 48 (monotonicity) A social choice function f over partial orders is monotonic

iff, given two profiles p and p′,

• if a ∈ f(p) and for any other alternative b, a >pi
b implies a >p′i

b and a ./pi
b implies

a ./pi
b or a >p′i

b, for all agents i, then we have a ∈ f(p′);

• if f(p) = A and for all a ∈ A, for all b, a >pi
b implies a >p′i

b and a ./pi
b implies

a ./p′i
b or a >p′i

b, for all agents i, then f(p′) = A.
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Definition 49 (ontoness) A social choice function f over partial orders is onto iff, for every

subset of alternatives S, there is a profile p such that f(p) = S.

As for social welfare functions over partial orders, we will define three notions of dicta-

tors.

Definition 50 (dictatorship) Given a social choice function f over partial orders,

• a strong dictator is an agent i such that, for all profiles p, f(p) = top(pi);

• a dictator is an agent i such that, for all profiles p, f(p) ⊆ top(pi);

• a weak dictator is an agent i such that, for all profiles p, f(p) ∩ top(pi) 6= ∅.

Notice that, in any profile p, if a is the unique top of a weak dictator i, then a ∈ f(p).

However, this is not true if a is not the unique top of i.

Notice also that these three notions are consistent with the corresponding ones for social

welfare functions. More precisely, a dictator (respectively, weak, strong) for a social welfare

function f is also a dictator (respectively weak, strong) for the social choice function f ′

obtained by f by f ′(p) = top(f(p)) for every profile p.

Proposition 26 A social choice function over partial orders can be at the same time unani-

mous, monotonic, and have no dictators.

For example, the social choice function corresponding to the Pareto rule is unanimous,

monotonic, and has no dictators. However, all the agents are weak dictators. Another ex-

ample is the social choice function which returns
⋃

i top(pi), which again is unanimous,

monotonic, and has no dictators (but all agents are weak dictators). On the other hand, the

Lex rule has a strong dictator (which is the first agent).

The Muller-Satterthwaite’s theorem [MS77], which is the Arrow’s impossibility theorem

in the case of social choice functions, can be generalized to social choice functions over

partial orders without ties, for weak dictators. This means that, even if we are only interested

in obtaining a set of winners, rather than a whole preference ordering over all the outcomes,

it is impossible to be weakly fair.

Theorem 10 If we have at least two agents and at least three outcomes, and the social

choice function on partial order without ties is unanimous and monotonic, then there is at

least one weak dictator.
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Figure 4.2: Profiles p1 and p2.

Proof: The proof follows the scheme of the proof of the Muller-Satterthwaite’s theorem

that can be found in [Ren01].

Consider three alternatives a, b, and h, and a profile p where a ./ h (where ./ means

incomparability) is at the top, above every other element, and b is the unique bottom, for all

agents. By unanimity, f(p) contains both a and h, and so f(p) can be {a, h} or {a, h, d}

where d is an alternative different from a, b, h, if any.

Let us now rise b one position at time in agent 1’s ranking. By monotonicity, the set of

winners still contains both a and h, as long as b < a and b < h. When b is risen above a

and h, by monotonicity the set of winners may contain b. If we continue this with the other

agents in the order, at the end we must have b as the only winner by unanimity. Thus at some

point b must appear in the set of winners.

Step 1. Consider profiles p1 and p2. p1 is the last profile where the set of winners is still

{a, h} or {a, h, d}, where d is one or more other elements, whereas p2 is the first profile such

that the set of winners contain b.

If d ∈ f(p1), then by monotonicity on profiles p1 and p2, we have d ∈ f(p2). If instead

d 6∈ f(p1), then d 6∈ f(p2). In fact, assume d ∈ f(p2); then, by monotonicity on p2 and p1,

d ∈ f(p1) as well, which is a contradiction. Therefore,

• if f(p1) = {a, h} then f(p2) can be {b}, {a, b}, {h, b} or {a, h, b};

• if f(p1) = {a, h, d} then f(p2) can be {b, d}, {a, b, d}, {h, b, d} or {a, h, b, d}.

Step 2. Consider the new profiles p′
1 and p′2 in Figure 4.3.

Notice that f(p′2) must contain b, by monotonicity on p2 and p′2.

If d ∈ f(p2), then d ∈ f(p′2) by monotonicity on p2 and p′2. If h 6∈ f(p2), then h 6∈ f(p′2).

In fact, assume h ∈ f(p′
2); then monotonicity on p′

2 and p2 implies h ∈ f(p2), that is a

contradiction. Analogously, if a 6∈ f(p2), then a 6∈ f(p′2).

If f(p1) = {a, h, d}, we know from Step 1 that f(p2) contains d. Then, for the reasoning

above, d ∈ f(p′2). Hence f(p′2) can be {b, d}, {a, b, d}, {h, b, d} or {a, h, b, d}. Whereas, if
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Figure 4.3: Profiles p′1 and p′2.

f(p1) = {a, h}, then we know only that f(p′
2) must contain b, therefore f(p′

2) can be {b},

{b, d}, {a, b}, {a, b, d}, {h, b}, {h, b, d}, {a, h, b} or {a, h, b, d}.

In particular, if f(p2) is {b, d} or {b}, then by monotonicity on p2 and p′2, f(p′2) is respec-

tively {b, d} or {b}, and if f(p2) 6= {b}, then f(p′
2) 6= {b}. In fact, suppose f(p′

2) = {b}.

Then by monotonicity on p′
2 and p2, f(p2) = {b}, that is a contradiction. Moreover, for

the reasoning above, if f(p2) is {a, b, d} or {a, b}, i.e., h 6∈ f(p2), then h 6∈ f(p′2), and

analogously, if f(p2) is {h, b, d} or {h, b}, i.e., a 6∈ f(p2), then a 6∈ f(p′2).

Summarizing,

• if f(p1) = {a, h, d},

– if f(p2) = {b, d}, then f(p′
2) = {b, d};

– if f(p2) = {a, b, d}, then f(p′
2) = {b, d} or {a, b, d};

– if f(p2) = {h, b, d}, then f(p′
2) = {b, d} or {h, b, d};

– if f(p2) = {a, h, b, d}, then f(p′
2) can be {b, d}, {a, b, d}, {h, b, d} or {a, h, b, d};

• if f(p1) = {a, h},

– if f(p2) = {b}, then f(p′
2) = {b};

– if f(p2) = {a, b}, then f(p′
2) = {b, d}, {a, b}, {a, b, d};

– if f(p2) = {h, b}, then f(p′
2) = {b, d}, {h, b}, {h, b, d};

– if f(p2) = {a, b, h}, then f(p′
2) = {b, d}, {a, b}, {a, b, d}, {h, b}, {h, b, d},

{a, h, b} or {a, h, b, d}.

Hence, f(p′2) can be {b}, {b, d}, {a, b}, {a, b, d}, {h, b}, {h, b, d}, {a, h, b} or {a, h, b, d}.

Notice that f(p′1) doesn’t contain b. In fact, if we suppose b ∈ f(p′
1), then by monotonic-

ity on p′1 and p1, also f(p1) should contain b. But this is a contradiction, since f(p1) doesn’t

contain b.
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Moreover, f(p′1) 6= {d}. In fact, if f(p′
1) = {d}, then by strict monotonicity on p′

1 and

p′2, f(p′2) = {d}, that is not one of the possible cases for f(p′
2). Hence, f(p′1) can be {a},

{h}, {a, h}, {a, d}, {h, d}, {a, h, d}.

If d ∈ f(p′2), then d ∈ f(p′1) for monotonicity on profiles p′
2 and p′1. If d 6∈ f(p′2),

then d 6∈ f(p′1). In fact, if we suppose d ∈ f(p′
1), then monotonicity on p′

1 and p′2, implies

d ∈ f(p′2), that is a contradiction.

Moreover, if a ∈ f(p′
2), then, for monotonicity on profile p′

2 and p′1, a ∈ f(p′1) and, for

the same reason, if h ∈ f(p′
2), then for monotonicity on profile p′

2 and p′1, h ∈ f(p′1).

If f(p′2) = {b, d}, {a, b, d}, {h, b, d} or {a, h, b, d}, then for the reasoning above, f(p′
1)

must contain d and so it can be {a, d}, {h, d}, {a, h, d}, whereas if f(p′
2) = {b}, {a, b},

{h, b}, or {a, h, b}, then f(p′
1) cannot contain d and so it can be {a}, {h} or {a, h}.

More precisely,

• if f(p′2) = {b}, then f(p′
1) can be {a}, {h} or {a, h};

• if f(p′2) = {a, b}, then f(p′
1) can be {a} or {a, h};

• if f(p′2) = {h, b}, then f(p′
1) can be {h} or {a, h};

• if f(p′2) = {a, h, b}, then f(p′
1) = {a, h};

• if f(p′2) = {b, d}, then f(p′
1) can be {a, d}, {h, d} or {a, h, d};

• if f(p′2) = {a, b, d}, then f(p′
1) can be {a, d} or {a, h, d};

• if f(p′2) = {h, b, d}, then f(p′
1) can be {h, d} or {a, h, d};

• if f(p′2) = {a, h, b, d}, then f(p′
1) = {a, h, d};

Step 3. Consider an alternative e, distinct from a, h, and b, and the arbitrary profile p3

in Figure 4.4, obtained from the profile p′
1 without changing the ranking of a and h versus

any other alternative in all agents’ rankings, bringing b just above a and h (which are at the

bottom) for agents j < i, and inserting the alternative e just above b for j ≤ i and just above

a and h for j > i.

Notice that f(p3) must not contain b, in fact if b ∈ f(p3) then, by monotonicity on p3

and p1, b ∈ f(p1), that is a contradiction. Hence f(p3) can be {a}, {h}, {d}, {a, h}, {a, d},

{h, d}, {a, h, d}.

By monotonicity on profiles p′
1 and p3, if a ∈ f(p′1) then a ∈ f(p3) and if h ∈ f(p′1)

then h ∈ f(p3). Moreover if a 6∈ f(p′
1) then a 6∈ f(p3), in fact if we assume a ∈ f(p3), then
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Figure 4.4: Profiles p3 and p4.

monotonicity on profiles p3 and p′1 produces a ∈ f(p′
1), that is a contradiction. Analogously,

if h 6∈ f(p′1) then h 6∈ f(p3).

By monotonicity on profiles p′
1 and p3, if f(p′1) = {a} then f(p3) = {a}, if f(p′1) = {h}

then f(p3) = {h} and if f(p′1) = {a, h} then f(p3) = {a, h}. In particular, if f(p′
1) 6= {a}

then f(p3) 6= {a}. In fact if f(p3) = {a}, then by monotonicity on p3 and p′1, f(p′1) must

be {a}, that is a contradiction. Analogously, if f(p′
1) 6= {h} then f(p3) 6= {h} and if

f(p′1) 6= {a, h} then f(p3) 6= {a, h}.

By Step 2 we know that f(p′
1) can be {a}, {h}, {a, h}, {a, d}, {h, d} or {a, h, d}, there-

fore, applying the reasoning above, we have that f(p′
1) = f(p3).

Step 4. Consider profile p4 derived from profile p3 by swapping the ranking of alterna-

tives a and b for agents j > i, and profile p′
4 obtained from p4 by bringing alternative e at the

unique top of every agent’s ranking. By unanimity, f(p′
4) = {e}. Note that f(p4) does not

contain b. In fact, if b ∈ f(p4), by monotonicity on profiles p4 and p′4, b ∈ f(p′4), that is a con-

tradiction since f(p′
4) = {e}. If d 6∈ f(p3), then d 6∈ f(p4) and if d ∈ f(p3), then d ∈ f(p4).

Moreover, if h 6∈ f(p3), then h 6∈ f(p4) and analogously if a 6∈ f(p3), then a 6∈ f(p4). In

fact, if a ∈ f(p4), by monotonicity on p4 and p3, then a ∈ f(p3), that is a contradiction.

Notice that if f(p3) 6= {a}, then f(p4) 6= {a}. In fact, if we assume f(p4) = {a}, then by

monotonicity on profiles p4 and p3, f(p3) must be {a}, that is a contradiction. Analogously,

if f(p3) 6= {h} then f(p4) 6= {h}, if f(p3) 6= {a, h} then f(p4) 6= {a, h}, if f(p3) 6= {a, d}

then f(p4) 6= {a, d} and if f(p3) 6= {a, h, d} then f(p4) 6= {a, h, d}.

By Step 3, we know that f(p3) can be {a}, {h}, {a, h}, {a, d}, {h, d} or {a, h, d}.

Therefore, by reasoning above, f(p3) = f(p4).

Step 5. Consider an arbitrary profile p5, with a and h the only top elements of agent i’s

ranking. It can be obtained from profile p4 without reducing the ranking of a and h versus

any other alternative in any agent’s ranking. Remember that, by step 4, f(p4) can be {a},

{h}, {a, h}, {a, d}, {h, d} or {a, h, d}. By monotonicity on profiles p4 and p5, if a ∈ f(p4),

then a ∈ f(p5), and if h ∈ f(p4), then h ∈ f(p5). Therefore, since in all possible cases
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f(p4) contains a or h (where or is not exclusive), the set of winners of an arbitrary profile,

i.e. f(p5), must contain at least one (a or h) of the tops of the agent i. Thus agent i is a weak

dictator.

It is easy to see that this proof can be easily generalized to the case of more than two tops

for agent i. Moreover, the case of just one top for agent i can be proved via a simpler version

of this proof. 2

4.4 Strategy proofness in preference aggregation

In the previous part of this chapter we have shown that many problems require us to com-

bine the preferences of different agents. Moreover, we have explained that, when aggregat-

ing preference orders, one may be interested in obtaining a combined ordering among the

outcomes, or just the set of most preferred outcomes. In the first choice the aggregation

function, which is a social welfare function, provides more information about the combined

preference ordering since it also tells us the ordering of two outcomes which are not among

the best ones. In the second scenario the aggregation function, which is a social choice func-

tion, is less informative but often enough when we are just interested in choosing one of the

most preferred outcomes. In Section 4.2.5 we have also considered a property that has been

studied by many people, both for social choice and for social welfare functions, the fairness

property.

In this section we focus on another very desirable property of preference aggregation,

which is non-manipulability (also called strategy proofness). It should not be possible for

agents to manipulate the election by voting strategically. Strategic voting is when agents

express preferences which are different from their real ones, to get the result they want.

If this is possible, then the preference aggregation rule is said to be manipulable. In this

section we focus on social choice functions. Thus the result of aggregating preferences

will be just a set of outcomes. For social choice rules on totally ordered preferences, the

Gibbard-Satterthwaite’s result [Gib73] tells us that it is not possible to be at same time non-

manipulable and have no dictators. Either there is a dictator (that is, an agent who gets what

he wants by voting sincerely) or a manipulator (that is, an agent who gets what he wants by

lying). In either case, there is an agent who gets what he wants no matter what the other

agents say.

We extend this result to partially ordered preferences. Even in this more general case,

we prove that it is impossible for a social choice function to have no dictator and be non-
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manipulable at the same time. As with total orders, we conjecture that there will be ways

around this negative result. For example, it may be that certain social choice functions on

partial orders are computationally hard to manipulate. As another example, it may be that

certain restrictions on the way agents vote (like single-peaked preferences for total orders)

guarantee strategy-proofness.

4.4.1 Strategy proofness for partial orders

The Gibbard-Satterthwaite’s theorem on totally ordered preferences [Gib73, Sat75] proves

that either we have a dictator or the social choice function can be manipulated. That is, agents

can manipulate the result using tactical voting. Once we know that fairness is impossible for

partial orders, we may now wonder if a similar relationship holds between weak dictators and

non-manipulability. To answer this question, we generalize the notion of non-manipulability

(also called strategy proofness) to social choice functions on partially ordered preferences,

and we show that the Gibbard-Satterthwaite’s theorem [Gib73, Sat75] holds in this more

general context.

In particular, we show that weak dictators are inevitable if we have at least two agents and

three outcomes, and the social choice function is strategy proof and onto. These conditions

are identical to those in the Gibbard-Satterthwaite’s theorem for total orders. A social choice

function is strategy-proof if it is best for each agent to order outcomes as he really prefers

and not to try to order them tactically, with the hope of getting a better result. More precisely,

the social choice function must never allow an agent to get a preferred outcome among the

winners by ordering outcomes in a way that contradicts his true preferences [ASS02].

If we assume that each agent’s preference specifies a partial order over the possible out-

comes then we can generalize the notion of strategy proofness as follows.

Definition 51 (strategy proofness) A social choice function f over partial orders is strategy

proof if, for every agent i, for every pair of profiles p and p′, which differ only for the agent

i ranking, that is, pi, ∀a ∈ f(p)− f(p′) and ∀b ∈ f(p′),

• if a ./pi
b, then a ./p′i

b or a <p′i
b,

• if a <pi
b, then a <p′i

b,

and ∃b ∈ f(p′) such that one of the following holds:

• (a >pi
b) and (a ./p′i

b or a <p′i
b),

• (a ./pi
b) and (a <p′i

b).
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In other words, a social choice function is strategy proof if an agent can remove an

element a from the set of winners only by worsening its rank with respect to at least one the

new winners b. This means that it is not possible for an agent to make a disappear from the

set of winners by improving its ranking in his preference ordering. In fact, this would be

tactical voting: lowering the rank of an outcome to make it a winner.

In general, even in the totally ordered case, most voting procedures involving three or

more alternatives are not strategy proof [ASS02]. This is true also in the partially ordered

case.

Example 23 Consider the following two social choice functions:

• f1 is such that f2(p) =
⋃

i top(pi), that is, this function returns the union of the sets of

optimal elements of each agent;

• f2 is the Pareto function, which returns the optimal elements of the ordering returned

by the Pareto social welfare function (where a > b is all agents say a > b, otherwise

a ./ b);

Let us now consider two profiles p and p′ on three alternatives a, b and c such that p = (p1 =

(c > a ∧ c ./ b ∧ a ./ b), p2 = (c ./ a ∧ c ./ b ∧ a ./ b), p3 = p1) and p′ = (p′1 = p1,

p′2 =(c > a > b) , p′3 = p3). Then, for both such social choice functions, the set of winners

in profile p is {a, b, c}, while in profile p′ is {b, c}. Thus a has disappeared by passing from

p to p′ but its ranking has improved with respect to b in agent i. Thus both social choice

functions are not strategy-proof. 2

4.4.2 Strategy-proofness: an impossibility result

We now generalize the Gibbard-Satterthwaite’s theorem to the partially ordered case. In

particular, we show that if a social choice function is strategy proof and onto, then there is at

least a weak dictator. For showing this result, first we prove that if a social choice function

is strategy proof and onto then it is unanimous and monotonic, then we conclude by using

Theorem 10 which states that if a social choice function is unanimous and monotonic then

there is at least a weak dictator.

Theorem 11 If a social choice function f over partial orders is strategy proof and onto, then

it is unanimous and monotonic.
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Proof: The proof is composed by two parts. Part 1 shows that if f is strategy proof then it

is monotonic, while Part 2 shows that if f is onto and monotonic then it is unanimous.

Part 1. Consider profiles p and p′, which differ only for the ranking of agent i.

Assume that a ∈ f(p) and that for any other alternative b, a >pi
b implies a >p′i

b and

a ./pi
b implies a ./p′i

b or a >p′i
b. We want to show that a ∈ f(p′). For the sake of

contradiction, assume that a 6∈ f(p′). Since f is strategy proof, then ∃c ∈ f(p′) such that

one of the following holds:

• (a >pi
c) and (a ./p′i

c or a <p′i
c),

• (a ./pi
c) and (a <p′i

c).

If the first holds then there is an element c which is worse than a in pi and that becomes

strictly better or incomparable than a in p′
i. This contradicts the fact that for any other

alternative b, a >pi
b implies a >p′i

b. If the second holds then there is an element c which is

incomparable with a in pi and becomes strictly better then a in p′
i. This contradicts the fact

that for any other alternative b, a ./pi
b implies a ./p′i

b or a >p′i
b.

Assume now that ∀a ∈ f(p), for any other alternative b, a >pi
b implies a >p′i

b and

a ./pi
b implies a ./pi

b or a >p′i
b. We want to show that f(p) = f(p′). For the sake of

contradiction, we can assume that ∃a such that a ∈ f(p) and a 6∈ f(p′) or that ∃a such that

a ∈ f(p′) and a 6∈ f(p). If ∃a such that a ∈ f(p) and a 6∈ f(p′) then, since f is strategy

proof, the same reasoning above leads to the same contradictions. If instead ∃a such that

a ∈ f(p′) and a 6∈ f(p), then since f is strategy proof, then ∃c ∈ f(p) such that one of the

following holds:

• (a >p′i
c) and (a ./pi

c or a <pi
c),

• (a ./p′i
c) and (a <pi

c).

In the first case there is an element a which is strictly smaller than or incomparable to c in pi

that becomes strictly greater than c in p′
i. This is in contradiction either with the fact that for

any other alternative b, c ./pi
b implies c ./p′i

b or c >p′i
b or with the fact that c >pi

b implies

c >p′i
b. If the second case holds then there is an element a that is smaller than c in pi and

that becomes incomparable with c in p′
i. This contradicts the assumption that for any other

alternative b, c >pi
b implies c >p′i

b.

Consider a profile q such that f(q) ⊇ {a} and a profile q ′ such that for every agent i and

for every alternative b, a >qi
b implies a >q′i

b. We want prove that f(q′) ⊇ {a}, that is

the first part of the definition of the monotonicity for social choice functions. Since we can
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move from q = (q1, ...qn) to q′ = (q′1, ...q
′
n), passing from q = (q1, q2..., qn) to (q′1, q2..., qn),

and (q′1q
′
2, ..., qn) to (q′1, q

′
2, ..., qn) and so on, and we have shown above that at each step a

remains in the set of winners, a ∈ f(q′). The same reasoning holds for profiles q such that

f(q) = A and q′ such that for every agent i, ∀a ∈ A, for every other alternative b, such that

a >qi
b implies a >q′i

b. In this case we conclude that f(q′) = A. This is the second part

of the definition of monotonicity for social choice function. We have thus shown that f is

monotonic.

Part 2. Since f is onto, then for every subset S of alternatives there is a profile p such that

f(p) = S.

If S = {a}, where is a is an alternative, since f is onto, there is a profile p such that

f(p) = {a}. If we consider the profile p′, obtained from profile p bringing a to the very top

of every agent, then for strict monotonicity on profiles p and p′, that we have just proved,

f(p′) = a. Therefore, whenever a is the unique top of every agent’s ranking in a profile

p̄, then f(p̄) = {a}. Because a is arbitrary then f satisfies pareto efficiency in the case of

unique top for every agent.

If S ⊃ {a}, since f is onto, then there is a profile p1 such that f(p1) = S ⊃ {a}. If we

consider a profile p′
1 where a is at the top (not unique) for every agent, then, for monotonicity

on profiles p1 and p′1, f(p′1) must contain a. Therefore, whenever a is one of the tops of every

agent’s ranking in a profile p̄, then f(p̄) ⊇ {a}. Because a is arbitrary, then f satisfies pareto

efficiency in the case of not unique top for every agent. 2

We now use this result, together with the extension of the Muller-Satterthwaite’s result

to easily prove the main theorem.

Theorem 12 If there are at least two agents and at least three outcomes and the social

choice function over partial orders is strategy-proof and onto, then there is at least one weak

dictator.

Proof: By Theorem 11, if a social choice is onto and strategy proof then it is monotonic

and unanimous. We can conclude via Theorem 10, which states that if a social choice is

monotonic and unanimous then there is at least one weak dictator. 2

This means that weak dictators are present not only when the function is unanimous and

monotonic, but also when it is strategy-proof and onto. In other words, it is not possible for

a social choice function to be at the same time strategy proof and onto, and have no weak

dictators.
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4.5 Related work

Preference aggregation has attracted interest from the AI community fairly recently. This

has motivated work on both preference representation and aggregation. In particular, voting

theory has been considered in light of AI specifications and in terms of combinatorial sets of

candidates. The work by Jerome Lang in [Lan02, Lan04] is related to ours since it considers a

scenario where there are multiple agents expressing preferences which must be combined in a

unifying result. This work is a very interesting survey in the field since it presents the various

logical preference representation approaches and considers them in terms of complexity for

answering the usual queries of interest.

Since the original theorem by Arrow on combining total orders, some effort has been

made to weaken its conditions. Both the domain and the codomain of a social welfare func-

tion have been the subject of more relaxed assumptions in several Arrow-like impossibility

theorems.

• In [Fis74], the codomain is a partial order, and profiles are allowed to be strict weak

orders, which are negatively transitive and asymmetric. This structure is more general

than total orders but less general than partial orders, since, for example, it does not

allow situations where A > B and C is incomparable to both A and B.

• In [Bar82], social orders can be partial, and agents are allowed to vote using a par-

tial order. However, the set of profiles must be regular, meaning that for any three

alternatives, every configuration of their orders must be present in a profile.

• In [Wey84] agents must vote using total orders. However, the social order can be

a quasi-ordering, which is reflexive and transitive. A similar setting is considered in

[DFP02], where agents use total orders with some additional requirements (such as the

discrimination axiom which requires that each agent orders strictly at least one triple

of candidates).

• In [DW91] each agent models his preferences using a non monotonic logic. Thus, it

gives a preorder on the outcomes. The concept of aggregation policy is defined as a

function that specifies the global preorder corresponding to any given set of individual

preorders. A result similar to the Arrow’s impossibility theorem [Arr51] is given for

this scenario where the agents use preorders and also the result is a preorder. However

an additional hypothesis is added, namely conflict resolution. This property requires

that if a pair is ordered in some way by at least an agent, then it must be ordered
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also in the global preorder. In other words, all pairs that are comparable for some

agent cannot be incomparable in the resulting preorder. In [DW91] it is shown that no

aggregation policy can be free, unanimous, independent of irrelevant alternatives, non

dictatorial and respect also conflict resolution. It should be noticed that the definition

of non dictatorship used in [DW91] corresponds to that of dictator which we have

given in Section 4.2.5. This result is thus different from the one we propose here.

On one side, they are more general, since they allow preorders while we allow only

partial orders. However conflict resolution is a very strong property to require. For

example the Pareto semantics defined in 4.2.2 does not respect it. Moreover we use

a weaker version of dictatorship while they use a stronger version not adapted to deal

with incomparability.

With respect to all these approaches, our profiles are more general, since in our results

a profile can be any set of partial orders. However, the resulting order of a social welfare

function is required to be a restricted partial order, that is, a partial order with a unique top

or a unique bottom. Thus our result is incomparable to these previous results. In addition,

our possibility theorem for the majority rule is, to our knowledge, the first result of this

kind for partially ordered profiles in social welfare functions. The same holds also for our

impossibility result about fairness for social choice functions.

Similarly, efforts have been made to weaken the conditions of the Gibbard-Satterthwaite’s

theorem.

• In [Bar83], the domain of the social choice function has been generalized to prefer-

ences over sets of outcomes and an impossibility result proved. In addition, efforts

have been made to identify specific situations where social choice rules are strategy

proof.

• In [NP05], the domain is restricted to single-peaked preferences and it is shown that

social choice can be non-dictatorial and strategy-proof in this situation. However, the

Gibbard-Satterthwaite’s theorem has been shown to be robust to several other restric-

tions of the domain of the social choice function.

4.6 Conclusions

We considered how the preferences of multiple agents can be aggregated together to give the

set of most preferred outcomes. We viewed the agents as voting for their preferred outcomes,
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and preference aggregation in terms therefore of a social choice voting rule. We proved that

social choice functions over partial orders cannot be weakly fair (that is, they cannot be at

the same time unanimous, independent to irrelevant alternatives, and with no weak dictator).

This result generalizes Arrow’s impossibility theorem for combining total orders [Arr51] in

the case of social choice functions [MS77].

We introduced the notion of strategy proofness (or non-manipulability) for the aggre-

gation of partially ordered preferences. We proved that when the social choice function is

strategy proof and onto, weak dictators are also present. This result shows that the fact that

agents can use partial orders to express their preferences does not change one of the fun-

damental properties of a social choice function: the absence of dictators implies the social

choice function can be manipulated. In other words, when aggregating preferences, whether

they are totally or partially ordered, no matter which aggregation function we use, there will

always be one agent who can get what he wants, either by voting sincerely or by lying about

his preferences.

4.7 Future work

Partiality in the preference ordering is interpreted here as incomparability. However, it is

sometimes useful to interpret it as lack of knowledge, for example in contexts where the

agents don’t want to reveal all their preferences, or when we are eliciting preferences and

agents do not reveal their preferences all at once. Moreover, the two interpretations of par-

tiality in the preference ordering can be combined, since agents may want to express that

some objects are really incomparable, while they may want to not say the actual relationship

among other objects. In this more general context, the notion of winners can be generalized

to the notions of possible and necessary winners [KL05]. We plan to study in this scenario

the fairness and the non-manipulability properties presented in this chapter.

We proved an impossibility result for aggregating partially ordered preferences. It is

likely that there are ways around this negative result. We plan for example to investigate

certain social choice functions on partial orders which may be computationally hard to ma-

nipulate. As another example, we intend to find certain restrictions on the way agents vote

(like single-peaked preferences for total orders) which may guarantee strategy-proofness. We

are also interested in studying other computational aspects of preference aggregation. For

example, we want to investigate how difficult it is to manipulate a preference aggregation

function.



Chapter 5

Preference aggregation with uncertainty:

complexity of winner determination

In this chapter we consider how to combine the preferences of multiple agents despite the

presence of incompleteness and incomparability in their preference orderings. An agent’s

preference ordering may be incomplete because, for example, there is an ongoing preference

elicitation process. It may also contain incomparability, which can be useful, for example,

in multi-criteria scenarios. We focus on the problem of computing the possible and neces-

sary winners, that is, those outcomes which can be or always are the most preferred for the

agents. Possible and necessary winners are useful in many scenarios, including preference

elicitation. We show that computing the sets of possible and necessary winners is in general a

difficult problem as it is providing a good approximation of such sets. We identify sufficient

conditions, related to general properties of the preference aggregation function, where such

sets can be computed in polynomial time. We show how possible and necessary winners can

be used to focus preference elicitation.

Then, we focus on specific voting rules which perform a sequence of pairwise compar-

isons between two candidates, where the result of each is computed by a majority vote. The

winner thus depends on the chosen sequence of comparisons, which can be represented by

a binary tree. In this case there are candidates that will win in some trees (called possible

winners) or in all trees (called Condorcet winners). While it is easy to find the possible and

Condorcet winners, we prove that it is difficult if we insist that the tree is balanced. This

restriction is therefore enough to make voting difficult for the chair to manipulate. We also

consider the situation where we lack complete information about preferences and we deter-

mine the computational complexity of computing possible and Condorcet winners in this

extended case considering balanced and unbalanced trees.

151
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5.1 Motivations and chapter structure

We consider a multi-agent setting where each agent specifies his preferences by means of

an ordering over the possible outcomes. A pair of outcomes can be ordered, incomparable,

in a tie, or the relationship between them may not yet be specified. Incomparability and

incompleteness represent very different concepts. Outcomes may be incomparable because

the agent does not wish very dissimilar outcomes to be compared. For example, we might

not want to compare a biography with a novel as the criteria along which we judge them

are just too different. Outcomes can also be incomparable because the agent has multiple

criteria to optimize. For example, we might not wish to compare a faster but more expensive

laptop with a slower and cheaper one. Incompleteness, on the other hand, represents simply

an absence of knowledge about the relationship between certain pairs of outcomes. Incom-

pleteness arises naturally when we have not fully elicited an agent’s preferences or when

agents have privacy concerns which prevent them from revealing their complete preference

ordering.

As we wish to aggregate together the agents’ preferences into a single preference order-

ing, we must modify preference aggregation functions to deal with incompleteness. One

possibility is to consider all possible ways in which the incomplete preference orders can

be consistently completed. In each possible completion, preference aggregation may give

different optimal elements (or winners). This leads to the idea of the possible winners (those

outcomes which are winners in at least one possible completion) and the necessary winners

(those outcomes which are winners in all possible completions) [KL05].

While voting theory has been mainly interested in possibility or impossibility results

about social choice or social welfare functions, recently there has been some interest also

in computational properties of preference aggregation [RVW04, Lan04, KL05, CS02b]. It

has also been noted that the complexity of deciding whether there is a manipulation in an

election is closely related to the complexity of computing possible winners [KL05, CS02a].

In this chapter we start by considering the complexity of computing the necessary and the

possible winners. We show that both tasks are hard in general, even to approximate. Then

we identify sufficient conditions that assure tractability. Such conditions concern properties

of the preference aggregation function, such as monotonicity and independence to irrelevant

alternatives (IIA) [ASS02], which are natural properties to require.

We show how possible and necessary winners are useful in many scenarios including

preference elicitation [CP04]. For example, elicitation is over when the set of possible win-

ners coincides with that of the necessary winners [CS02b]. However, recognizing when
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such a condition is satisfied is hard in general. We show that, if the preference aggregation

function is IIA, preference elicitation can focus just on the incompleteness concerning those

outcomes which are possible and necessary winners, allowing us to ignore all other outcomes

and to complete preference elicitation in polynomial time.

Finally, we focus on specific voting rules which are incompletely specified. In particular,

we consider a well-known family of voting rules based on sequential majority comparisons,

where the winner is computed from a series of majority comparisons along a binary voting

tree. The winner thus depends on the chosen binary voting tree. There are candidates that

will win in some trees (called possible winners) or in all trees (called Condorcet winners).

We study the impact, on these voting rules, of this new kind of incompleteness, which derives

from the voting rule itself, and of the previous form of incompleteness, which derives from

voters’ preferences.

The work described in this chapter has appeared in the proceedings of the following

conferences and international workshops:

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Computing possible and necessary

winners from incomplete partially-ordered preferences. In Proceedings of the 17th

European Conference on Artificial Intelligence (ECAI 2006), Best poster Award, IOS

Press, vol.141, pp. 767-768, Riva del Garda, Italy, August 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and incomparability

in preference aggregation. In Proceedings of the Multidisciplinary Workshop on Ad-

vances in Preference Handling, held in conjunction of the 17th European Conference

on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, August 2006.

• J. Lang, M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Winner determination in

sequential majority voting with incomplete preferences. In Proceedings of the Mul-

tidisciplinary Workshop on Advances in Preference Handling, held in conjunction of

the 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda,

Italy, August 2006.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Preference aggregation and elicita-

tion: tractability in the presence of incompleteness and incomparability. In Proceed-

ings of DIMACS/LAMSADE Workshop on Computer Science and Decision Theory II,

Paris, France, October 2006.

• J. Lang, M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Winner determination in
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sequential majority voting. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI 2007), to appear, Hyderabad, India, January 2007.

• M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and incomparability

in preference aggregation. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI 2007), to appear, Hyderabad, India, January 2007.

The chapter is organized as follows.

• In Section 5.2 we give some basic definitions on which this work is based. In particu-

lar, we define incomplete preferences and incomplete profiles, incomplete preference

aggregation functions, possible and necessary winners, and we present the combined

result, which is a way for compactly representing the set of the results of a preference

aggregation function.

• In Section 5.3 we show that computing the sets of possible and necessary winners and

good approximations of such sets is a difficult problem.

• In Section 5.4 we show that computing the combined result is a difficult problem and

we identify properties on preference aggregation functions, which allows us to com-

pute a good approximation of the combined result in polynomial time.

• In Section 5.5 we show that, starting from this good approximation of the combined

result, it is polynomial to compute the sets of possible and necessary winners.

• In Section 5.6 we show how possible and necessary winners can be used in preference

elicitation.

• In Section 5.7 we focus on a specific voting rule which is itself incompletely spec-

ified, named sequential majority voting rule, which consists on sequential majority

comparisons, which is represented by a binary tree. We recall some basics on such a

rule (Section 5.7.1). We deal with incompleteness in this voting rule (Section 5.7.2),

and we study the computational difficulty of computing candidates that win in some

or all possible binary trees. Then, we focus on binary trees where the number of

competitions for each candidate is as balanced as possible, and we show that winner

determination in this context is hard. It is however possible to build in polynomial time

a tree featuring a bounded level of imbalance where a particular candidate A wins, if

such a tree exists (Section 5.7.3). Finally, we consider the other kind of uncertainty

where the agents have only partially revealed their preferences (Section 5.7.4).
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• In Sections 5.8 and 5.9 we describe respectively related and future work.

5.2 Basic notions

In this section we give some basic notions that we will use in this chapter. We give the def-

initions of preferences and preference aggregation functions in presence of incompleteness.

We define the necessary and the possible winners in the case of partially ordered preferences.

Finally, we show a compact way for representing the set of results given by the preference

aggregation function.

5.2.1 Incomplete preferences and profiles

Agent’s preferences can be specified via a (possibly incomplete) partial order with ties over

the set of possible outcomes, that we will denote by Ω. An incomplete partial order is a

partial order where some relation between pairs of outcomes is unknown.

Definition 52 (IPO) An incomplete partial order with ties is a partial order with ties such

that the relation between any pair of outcomes A and B ∈ Ω can be A < B, A > B, A = B,

A ./ B, or A?B, where A ./ B means that A and B are incomparable, and A?B that the

relation between A and B can be any element of {=, >, <, ./}.

Example 24 Given outcomes A, B, and C, an agent may state preferences such as A > B,

B ./ C, and A > C, or also A > B, B ./ C and A?C. However, an agent cannot state

preferences such as A > B, B > C, C > A, or also A > B, B > C, A ./ C since neither

are POs. 2

If we consider a sequence of partial orders, one for every agent, where at least one of the

partial orders is incomplete, then we obtain an incomplete PO profile.

Definition 53 (IPO profile) An incomplete PO profile ip is a sequence of partial orders

ip1, . . . , ipn over a set of outcomes, such that ∃i ∈ {1, . . . , n}, ipi is incomplete.

5.2.2 Aggregation functions of incomplete preferences

We consider how to combine the preferences of multiple agents despite the presence of

incompleteness and incomparability in their preference orderings. In particular, we define a

preference aggregation function in presence of incompleteness starting from a social welfare
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function [ASS02]. We recall that, a social welfare function, as said in Section 4.2.3, maps

profiles into partial orders with ties.

Definition 54 (preference aggregation function with incompleteness) A preference aggre-

gation function with incompleteness is a function mapping IPO profiles into a sets of partial

orders with ties (POs).

Given a social welfare function f , the corresponding preference aggregation function,

written paf , works as follows. Given an IPO profile ip = (ip1, . . . , ipn), where the ipi’s

are IPOs, we consider all the profiles, say p1, . . . , pk, obtained from ip by replacing any

occurrence of ? in the ipi’s with either <, >, =, or ./ which is consistent with a partial order.

Then we set paf(ip) = {f(p1), . . . , f(pk)}. This set will be called the set of results of f on

profile ip.

Example 25 In Figure 5.1 we present an IPO profile ip = (ip1, . . . , ip3), which expresses

the preferences of three agents over three outcomes A, B, and C, and we show how the

preference aggregation function, built starting from the Pareto social welfare function, works.

We recall that the Pareto social welfare function, that we have described in Section 4.2.2, is

such that, given a profile p, for any pair of outcomes A and B, if all agents say A > B or

A = B and at least one says A > B in p, then A > B ∈ f(p); otherwise, A ./ B ∈ f(p). 2
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Figure 5.1: An IPO profile ip, its completions p1 and p2, the results f(p1) and f(p2), and the

combined result cr(f, ip).
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5.2.3 Combined result

Unfortunately, the set of results can be exponentially large. We will therefore consider a

compact representation that is polynomial in size. This may throw away information by

compacting together results into a single combined result.

Definition 55 (combined result) Given a social welfare function f and an IPO profile ip,

consider a graph, whose nodes are the outcomes, and whose arcs are labeled by non-empty

subsets of {<, >, =, ./}. Label l is on the arc between outcomes A and B if and only if there

exists a PO in paf(ip) where A and B are related by l. This graph is the combined result of

f on ip, and it is denoted by cr(f, ip). If an arc is labeled by set {<, >, =, ./}, the combined

result is fully incomplete, otherwise it is partially incomplete.

We denote the set of labels on the arc between the outcomes A and B with rel(A, B).

Example 26 Consider the preference aggregation function shown in Example 25. Its com-

bined result is shown in Figure 5.1. 2

5.2.4 Possible and necessary winners for partial orders

We extend to the case of partial orders the notions of possible and necessary winners defined

in [KL05] for total orders.

Definition 56 (necessary winners) Given a social welfare function f and an IPO profile ip,

the necessary winners of f given ip are all those outcomes which are maximal elements in

all POs in paf(ip).

A necessary winner must be a winner, no matter how incompleteness is resolved in the

IPO profile.

Definition 57 (possible winners) Given a social welfare function f and an IPO profile ip,

the possible winners are all those outcomes which are maximal elements in at least one of

the POs in paf(ip).

A possible winner is a winner in at least one possible completion of the IPO profile.

We will write NW (f, ip) and PW (f, ip) for the set of necessary and possible winners

of f on IPO profile ip. We will sometimes omit f and/or ip, and just write NW and PW

when they will be obvious or irrelevant.
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Example 27 In Example 25, A and B are necessary winners, since they are top elements in

all the completions of the IPO profile ip, i.e., both in f(p1) and in f(p2). The outcome C is

a possible winner, since it wins in f(p2), but it is not a necessary winner, since it doesn’t win

in f(p1). 2

5.3 Computing possible and necessary winners: complex-

ity results

We focus on the problem of computing the sets of possible and necessary winners in pres-

ence of incompleteness and incomparability. We prove that this computation is in general

a difficult problem, as it is providing a good approximation of such sets. In particular, we

show that computing the set of necessary and possible winners of a social welfare function

is, in general, NP-hard even if we restrict ourselves to incomplete but total orders. To do

this, we will consider the following, well known, voting rule.

Single Transferable Vote

In the STV rule each voter provides a total order on candidates and, initially, an individual’s

vote is allocated to their most preferred candidate. The quota of the election is the minimum

number of votes necessary to get elected. If only one candidate is to be elected then the quota

is |n/2| + 1, where n is the number of voters. If no candidate exceeds the quota, then, the

candidate with the fewest votes is eliminated, and his votes are equally distributed among

the second choices of the voters who had selected him as first choice. In what follows we

consider STV elections in which some total orders, provided by the voters, are incomplete.

In general, given an IPO profile and a candidate a, we say POSSIBLEWINNER holds if

and only if a is a possible winner of the election.

Theorem 13 PossibleWinner is NP-complete.

Proof: In fact, membership inNP follows by giving a completion of the profile in which a

wins. Completeness follows from the result that EFFECTIVE PREFERENCE (determining if

a particular candidate can win an election with one vote unknown) for STV isNP-complete

[BO91]. 2

This result allows us to conclude that, in general, finding possible winners of an election

is difficult. However, it should be noticed that for many rules used in practice including
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some positional scoring rules [KL05], answering Possible Winner is polynomial. The

complexity of computing possible winners is related to the complexity of deciding whether

there is a manipulation [KL05]. For instance, it isNP-complete to determine for the Borda,

Copeland, Maximin and STV rules if a coalition can cast weighted votes to ensure a given

winner [CS02a]. It follows therefore that with weighted votes, PossibleWinner isNP-

hard for these rules.

Given an IPO profile and a candidate a, we say NECESSARYWINNER holds if and only

if a is a necessary winner of the election.

Theorem 14 NecessaryWinner is coNP-complete.

Proof: The complement problem is in NP since we can show membership by giving a

completion of the profile in which some b different to a wins. To show completeness, we

give a reduction from EFFECTIVE PREFERENCE with STV in which a appears at least once

in first place in one vote. This restricted form of EFFECTIVE PREFERENCE isNP-complete

[BO91]. Consider an incomplete profile Π in which n + 1 votes have been cast, a has at

least one first place vote, one vote remains unknown, and we wish to decide if a can win.

We construct a new election from Π with n new additional votes, and one new candidate b.

We put b at the top of each of these new votes, and rank the other candidates in any order

within these n votes. We place b in last place in the original n + 1 votes, except for one

vote where a is in first place (by assumption, one such vote must exist) where we place b

in second place and shift all other candidates down. We observe that b will survive till the

last round as b has at least n votes and no other candidate can have as many till the last

round. We also observe that if a remains in the election, then the score given to each can-

didate by STV remains the same as in the original election so the candidates are eliminated

in the same order up till the point a is eliminated. If a is eliminated before the last round,

the second choice vote for b is transferred. Since b now has n + 1 votes, b is unbeatable and

must win the election. If a survives, on the other hand, to the last round, we can assume b

is ranked at the bottom of the unknown vote. All the other candidates but a and b have been

eliminated so a has n + 1 votes and is unbeatable. Hence, if a is not a possible winner in the

original election, b is the necessary winner of this new election. Thus determining the nec-

essary winner of this new election decides if a is a possible winner of the original election. 2

Given these results, we might wonder if it is easy to compute a reasonable approximation

of the sets of possible and necessary winners. Unfortunately this is not the case. The reduc-

tion described in the proof of previous theorem shows that we cannot approximate the set of
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possible winners within a factor of two. In fact, we can show that we cannot approximate

efficiently the set of possible winners within any constant factor.

Theorem 15 It is NP-hard to return a superset of the possible winners, PW ∗ in which we

guarantee |PW ∗| < k|PW | for some given positive integer k, with k > 1.

Proof: We again give a reduction from EFFECTIVE PREFERENCE for STV in which a ap-

pears at least once in first place in one vote. Consider an incomplete profile Π in which n+1

votes have been cast, a has at least one first place vote, one vote remains unknown, and we

wish to decide if a can win. We construct a new election from Π. We make k copies of Π.

In the ith copy Πi, we subscript each candidate with the integer i. We add n new additional

votes, and one new candidate b. We put b at the top of each of these new votes, and rank all

the other candidates except ai in any order within these n votes. The ranking of the candi-

dates ai is left unknown but beneath b. In each Πi, we place b in last place except for one

vote where ai is in first place (by assumption, one such vote must exist) where we place b in

second place and shift all other candidates down. Finally, for each candidate in Πj not in Πi

except for aj , we rank them in any order at the bottom of the votes in Πi. The ranking of the

candidates ai is again left unknown but beneath b. We observe that b will survive till all but

one candidate has been eliminated from one of the Πi. We also observe that if ai remains

in the election, then the score given to each candidate by STV remains the same as in the

original election so the candidates in Πi are eliminated in the same order up till the point ai

is eliminated. Suppose a cannot win the original election. Then ai will always be eliminated

before the final round. The second choice vote for b is transferred. Since b now has at least

n + 1 votes, b is unbeatable and must win the election. Suppose, on the other hand, that a

can win the original election. Then ai can survive to be the last remaining candidate in Πi.

We can assume b is ranked at the bottom of the unknown votes of all the candidates with an

index i and above all the candidates with an index j different to i. Thus ai has n+1 votes. If

we have the corresponding ranking in the other unknown votes, aj for j 6= i will also survive.

Since b has only n votes, b will be eliminated. It is now possible for any of the candidates,

ai where 1 ≤ i ≤ k to win depending on how exactly the ai are ranked in the different

votes. Thus the set of possible winners is {ai | 1 ≤ i ≤ k} plus b if a is not a necessary

winner in the original election. Hence, if a is a possible winner in the original election, the

size of the set of possible winners is greater than or equal to k, whilst if it is not, the set is

of size 1. If we know that |PW ∗| < k|PW |, then |PW ∗| < k guarantees that |PW | = 1,

b is the necessary winner and hence that a is not a possible winner in the original election. 2



5.4. COMPLEXITY OF COMPUTING THE COMBINED RESULT 161

Similarly, we cannot approximate efficiently the set of necessary winners within some

fixed ratio.

Theorem 16 It is NP-hard to return a subset of the necessary winners, NW ∗ in which we

guarantee |NW ∗| > 1
k
|NW | whenever |NW | > 0 for some given positive integer k.

Proof: In the reduction used in the last proof, |NW | = 1 if a is a possible winner in the

original election and 0 otherwise. Suppose a is a possible winner. Then in the new election,

|NW | = 1. As |NW ∗| > 1
k
|NW |, it follows that |NW ∗| = 1. Thus, the size of NW ∗ will

determine if a is possible winner. 2

5.4 Complexity of computing the combined result

We now consider the problem of computing the combined result. We show that, while in

general it is difficult, there are some restrictions which allow us to compute an approximation

of the combined result in polynomial time. In the next section, we will show how it is

possible to compute in polynomial time the set of possible and necessary winners starting

from this approximation of the combined result.

Theorem 17 Given an IPO profile, determining if a label is in the combined result for STV

isNP-complete.

Proof: In fact, a polynomial witness is a completion of the incomplete profile. To show

completeness, we use a polynomial number of calls to this problem to determine if a given

candidate is a possible winner. 2

From this result we immediately get the following corollary.

Corollary 2 Given an IPO profile and a social welfare function, computing the combined

result isNP-hard.

We now give some properties of preference aggregation functions which allow us to

compute an upper approximation to the combined result in polynomial time. We recall that

the set of labels of an arc between A and B in the combined result is called rel(A, B).

The first property we consider is independence to irrelevant alternatives (IIA). We recall

that a social welfare function is said to be IIA when, for any pair of outcomes A and B,

the ordering between A and B in the result depends only on the relation between A and B
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given by the agents [ASS02]. Many preference aggregation functions are IIA, and this is a

desirable property which is related to the notion of fairness in voting theory [ASS02]. Given

a function which is IIA, to compute the set rel(A, B), we just need to ask each agent their

preference over the pair A and B, and then use f to compute all possible results between A

and B. However, if agents have incompleteness between A and B, f has to consider all the

possible completions, which is exponential in the number of such agents.

Assume now that f is also monotonic. We recall that a social welfare function f is

monotonic when, for any two profiles p and p′ and any two outcomes A and B if passing

from p to p′ B improves with respect to A in one agent i and pj = p′j for all j 6= i, then,

passing from f(p) to f(p′), B improves with respect to A. Saying that B improves with

respect to A means that the relationship between A and B does not move left along the

following sequence: >,≥, (./ or =), ≤, <.

Consider now any two outcomes A and B. To compute rel(A, B) under IIA and mono-

tonicity, again, since f is IIA, we just need to consider the agents’ preferences over the pair

A and B. However, now we don’t need to consider all possible completions for all agents

with incompleteness between A and B, but just two completions: A < B and A > B.

Function f will return a result for each of these two completions, say AxB and AyB, where

x, y ∈ {<, >, =, ./}. Since f is monotonic, the results of all the other completions will

necessarily be between x and y in the ordering >, ≥, (./ or =), ≤, <. By taking all such

relations, we obtain a superset of rel(A, B), that we call rel∗(A, B). In fact, monotonicity

of f assures that, if we consider profile A < B and we get a certain result, then considering

profiles where A is in a better position with respect to B (that is, A > B, A = B, or A ./ B),

will give an equal or better situation for A in the result. Thus we have obtained an approx-

imation of the combined result, that we call cr∗(f, ip). We will now give a characterization

of this approximation.

Theorem 18 Given two outcomes A and B, rel∗(A, B) ⊇ rel(A, B). Moreover, if rel∗(A, B) =

{<, >, ./, =}, then either rel∗(A, B) = rel(A, B) or rel∗(A, B)− rel(A, B) = {./, =}.

Example 28 Consider the Lex rule [ASS02], in which agents are ordered and, given any

two outcomes A and B, the relation between A and B in the result is the relation given

by the first agent in the order that does not declare a tie between A and B. Consider the

incomplete profile ip = (ip1 = (A > C, B > C, A?B), ip2 = (A > B > C)). Then

rel∗(A, B) = {<, =,∼, >}, whereas rel(A, B) = {<,∼, >}.

By following the procedure informally described above, this approximation can be com-

puted polynomially, since we only need to consider two completions.
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Theorem 19 Given a preference aggregation function f which is IIA and monotonic, and

an IPO profile ip, computing cr∗(f, ip) is polynomial in the number of agents.

5.5 Computing possible and necessary winners: tractable

cases

We will now show how to determine the possible and necessary winners, given cr∗(f, ip).

Consider the arc between an outcome A and an outcome C in cr∗(f, ip). Then, if this arc

has the label A < C, then A is not a necessary winner, since there is an outcome C which

is better than A in some result. If this arc only has the label A < C, then A is not a possible

winner since we must have A < C in all results. Moreover, consider all the arcs between

A and every other outcome C. Then, if no such arc has label A < C, then A is a necessary

winner. Notice, however, that in general, even if none of the arcs connecting A have just a

single label A < C, A could not be possible winner. A could be better than some outcomes

in every completion, but there might be no completion where it is better than all of them. We

will show that this is not the case if f is IIA and monotonic.

We now define Algorithm 6, which, given cr∗(f, ip), computes NW and PW , in poly-

nomial time.

Algorithm 6: Computing NW and PW

Input: cr∗(f, ip), where f : IIA and monotonic preference aggregation function, ip:

IPO profile;

Output: P, N: sets of outcomes;

P ← Ω;

N ← Ω;

foreach A ∈ Ω do

if ∃ C ∈ Ω such that {<} ⊆ rel∗(A, C) then
N ← N − A;

if ∃ C ∈ Ω such that {<} = rel∗(A, C) then
P ← P − A;

return P , N ;

Theorem 20 Given cr∗(f, ip), Algorithm 6 terminates in O(m2) time, where m = |Ω|, re-

turning N = NW and P = PW .

Proof: Algorithm 6 considers, in the worst case, each arc exactly once, thus we have O(m2).
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N=NW. By construction of cr∗(f, ip), <6∈ rel∗(A, C) if and only if <6∈ rel(A, C). By

Algorithm 6, A ∈ N if and only if ∀C, <6∈ rel{A, C}, and this implies that there is no result

in which there exists an outcome C that beats A. Thus, A ∈ NW . On the contrary, A ∈ NW

if and only if A 6< C, ∀C ∈ Ω, for all results, from which, A ∈ N .

P = PW . An outcome A is in PW if there is no other outcome which beats it in

all results. Thus, there cannot exist any other outcome C such that < is the only label in

rel{A, C} and, thus by construction, also in rel∗{A, C}. Thus, PW ⊆ P . To show the

other inclusion we consider A ∈ P and we construct a completion of ip such that A wins

in its result. First, let us point out that for any outcome A, A ∈ P if and only if 6 ∃C ∈ Ω,

rel∗(A, C) = {<}. If ∀C ∈ Ω, <6∈ rel∗(A, C), then A is never beaten by any other out-

come C and A is NW and, thus, a PW . Secondly, let us consider the case in which A is

such that whenever <∈ rel∗(A, C), either ./ or > (or both) are also in rel∗(A, C) and let

us denote with X such set of outcomes. Then for every outcome in C ∈ X we choose >

whenever available and ./ otherwise. This corresponds to replacing A?C with A > C in the

incomplete profile. Such a choice on AC arcs cannot cause a transitivity inconsistency and

thus can be completed to a result in which A is a winner. Finally, let us consider the case in

which there is at least a C such that rel∗(A, C) = {<, =}. If for every other outcome C ′,

rel∗(A, C ′) contains exactly one label from the set: {>, ./, =} then we can safely set AC to

= since there is, for sure, a result with that labeling. Moreover, in such a result A is a winner.

Assume, instead, that there is at least an outcome C ′ such that |rel∗(A, C ′) > 1|. This means

that there is at least an agent which has not declared his preference on AC ′ and that such pref-

erence cannot be induced by transitivity closure. We replace A?C ′ with A > C ′ everywhere

in the profile, we perform the transitive closure of all the modified IPOs, and we apply f .

We will prove that such transitive closure does not force label < on AC. After the procedure,

due to monotonicity, rel(A, C ′) will contain exactly one label from the set: {>, ./, =}. Let

us assume that, after the procedure, A = C ′ and let us now consider rel(C ′, C). Had it been

rel∗(C ′, C) = {<} from the start, this would have forced rel(A, C) = {<}. However, this

is not possible since A ∈ P . This allows us to conclude that (rel∗(C ′, C) ∩ {>, ./, =}) 6= ∅

and any of such additional labels together with A = C ′ can never force A < C. Clearly,

if A > C ′ or A ./ C ′, there is no labeling of C ′C which can force A < C. It should be

noticed that any available choice on C ′C can always be made safely due to the fact that the

function is IIA and that the transitive closure of the profiles has already ruled out inconsistent

choices. By iterating the procedure until every ? in the incomplete profile is replaced, we

can construct a result of the function in which A is a winner. 2
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Pareto rule and Lex rule, described in Section 4.2.2, are examples of preference aggre-

gation functions which are both IIA and monotonic. Another example is the approval voting

rule, in which each voter can vote for as many or as few candidates as the voter chooses and

the winner is the candidate with the highest number of votes. For this last rule a tractability

result for computing NW and PW is given in [KL05] since it is a positional scoring rule.

5.6 Preference elicitation

One use of necessary and possible winners is in eliciting preferences [CP04]. Preference

elicitation is the process of asking queries to agents in order to determine their preferences

over outcomes. At each stage in eliciting agents’ preferences, there is a set of possible and

necessary winners. When NW = PW , preference elicitation can be stopped since we have

enough information to declare the winners, no matter how the remaining incompleteness is

resolved [CS02b]. At the beginning, NW is empty and PW contains all outcomes. As

preferences are declared, NW grows and PW shrinks. At each step, an outcome in PW can

either pass to NW or become a loser. When PW is larger than NW , we can use these two

sets to guide preference elicitation and avoid useless work.

If the preference aggregation function is IIA, then to determine if an outcome A ∈ PW−

NW is a loser or a necessary winner, it is enough to ask agents to declare their preferences

over all pairs involving A and another outcome, say B, in PW . Moreover, IIA allows us to

consider just one profile when computing the relations between A and B in the result, and

guarantees that the result is a precise relation, that is, either <, or >, or =, or ./. Thus we

need to know all possible relations A?B for A ∈ PW − NW and B ∈ PW − {A}. In

the worst case, we need to consider all such pairs. This bound is tight as there are examples

where we may not be sure till all the relations are given. Algorithm 7, in O(|PW |2) steps

eliminates enough incompleteness to determine the winners. At each step, the algorithm asks

each agent to express their preferences on a pair of outcomes (via procedure ask(A, B)) and

aggregates such preferences via function f . If function f is polynomially computable, the

whole computation is polynomial in the number of agents and outcomes.

Theorem 21 If f is IIA and polynomially computable, then determining the set of winners

via preference elicitation is polynomial in the number of agents and outcomes.

Using the results of the previous sections, under certain conditions we know how to

compute efficiently the necessary winners and the possible winners. Thus Algorithm 7 can

be given as input the outputs of Algorithm 6.
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Algorithm 7: Winner determination
Input: PW, NW: sets of outcomes; f : preference aggregation function;

Output: W: set of outcomes;

wins: bool;

P ← PW ; N ← NW ;

while P 6= N do
choose A ∈ P −N ;

wins← true; PA ← P − {A};

repeat
choose B ∈ PA;

if ∃ an agent such that A?B then
ask(A,B);

compute f (A,B);

if f(A, B) = (A > B) then
P ← P − {B};

if f(A, B) = (A < B) then
P ← P − {A}; wins← false;

PA ← PA − {B};

until f(A, B) = (A < B) or PA = ∅ ;

if wins = true then
N ← N ∪ {A};

W ← N ;

return W ;

It should be noticed that deciding when elicitation is over, that is checking if P = N , is

hard in general since, in [CS02b] such a result has been proved for STV.

5.7 Winner determination in sequential majority voting

In this section we consider a specific preference aggregation function, the sequential majority

voting rule, which performs a sequence of pairwise comparisons between two candidates,

where the result of each is computed by a majority vote. The winner thus depends on the

chosen sequence of comparisons, which can be represented by a binary tree. Hence, there

are candidates that will win in some trees (called possible winners) or in all trees (called

Condorcet winners). We study the computational complexity of determining such winners in

the situations where we have complete and incomplete information about voters’ preferences.
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While it is easy to find the possible and Condorcet winners for such a rule, we prove that it

is difficult if we insist that the tree is balanced. This restriction is therefore enough to make

voting difficult for the chair to manipulate. We then consider the situation where we lack

complete information about preferences, and we determine the computational complexity of

computing possible and Condorcet winners in this extended case.

5.7.1 Basic notions

We now give some basic notions on sequential majority voting rules. In particular, we start

by defining preferences in such a scenario and the compact way for representing the result of

all the majority comparisons between pairs of outcomes. We define the binary voting trees

that we can use for inducing sequential majority voting rules and we define candidates that

win in some trees (possible winners) or in all trees (Condorcet winners). In this scenario we

will use sometimes the terms voters and candidates instead of agents and outcomes.

Incomplete preferences and profiles

We assume that each agent’s preferences are specified by a (possibly incomplete) strict total

order (that is, by an asymmetric, irreflexive and transitive order) over a set of candidates Ω,

then given two candidates, A, B ∈ Ω, an agent will specify exactly one of the following:

A < B, A > B, or A?B, where A?B means that the relation between A and B has not yet

been revealed.

Definition 58 (ITO) An incomplete total order without ties is a total order without ties such

that the relation between any pair of outcomes A and B can be A < B, A > B or A?B,

where A?B means that the relation between A and B is unknown and it can be > or <.

If we consider a sequence of total orders without ties, one for every agent, where at least

one of total order is incomplete, then we obtain an incomplete TO profile.

Definition 59 (ITO profile) An incomplete TO profile ip is a sequence of total orders ip1, . . . ,

ipn over a set of outcomes, such that ∃i ∈ {1, . . . , n}, ipi is incomplete.

Majority graph

We start by defining the majority graph, which is a compact representation of voters’s pref-

erences for several voting rules, such as sequential majority voting rule.
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Definition 60 (majority graph) Given a TO profile P , the majority graph M(P ) induced

by P is the graph whose set of vertices is the set of the candidates Ω and in which for all

A, B ∈ Ω, there is a directed edge from A to B in M(P ) (denoted by A >m B) if and only

if a strict majority of voters prefers A to B.

The majority graph is asymmetric and irreflexive, but it is not necessarily transitive. For

the sake of simplicity we assume that the number n of voters is odd. Then, M(P ) is complete:

for each A, B 6= A, either A >m B or B >m A holds. Therefore, M(P ) is a complete,

irreflexive and asymmetric graph, also called a tournament on Ω [Las97].

If we associate weights to the edges of the majority graph, we obtain weighted majority

graphs, which are widely used in social choice theory. Weights measure the amount of

disagreement (e.g. the number of voters preferring A to B). When we want to use standard

majority graphs, we just consider weights to be identical, and we call them just majority

graphs.

Definition 61 (weighted majority graph) The weighted majority graph associated with a

TO profile P is the graph MW (P ) whose set of vertices is Ω and in which for all A, B ∈ Ω,

there is a directed edge from A to B weighted by the number of voters who prefer A to B in

P .

Majority graphs could also be incomplete. This happens when some arc between two

candidates is missing.

Definition 62 (incomplete majority graph) Given an ITO profile P , the incomplete major-

ity graph M(P ) induced by P is the graph whose set of vertices is Ω and containing an edge

from A to B if and only if the number of voters who prefer A to B is greater than n/2. M(P )

is called a partial tournament over Ω.

The set of all (complete) tournaments extending M(P ) corresponds to a superset of the

set of majority graphs induced by all possible completions of P .

Example 29 The majority graph induced by the 3-voter profile ((A > B > C), (B > C >

A), (B > A > C)) has the three edges B >m A, B >m C, and A >m C, and so it is

complete, while the graph induced by the 3-voter profile ((A > B > C), (A > C), (A >

B, C)) is incomplete because it has only the two edges A >m B and A >m C.
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Binary voting trees

Suitable structures for representing sequential majority voting rules are binary voting trees,

that can be balanced or unbalanced.

Definition 63 (binary voting tree) [Mou88] Given a set of candidates Ω, a binary voting

tree T is a binary tree where each internal node (including the root) has two children, each

node is labelled by a candidate (element of Ω), and the leaves contain all candidates in Ω

(one in each leaf). Given an internal node x and its two children x1 and x2, the candidate

associated to x is the winner of the competition between the candidates associated to x1 and

x2.

Definition 64 (balanced voting tree) A binary voting tree T is balanced iff the difference

between the maximum and the minimum depth among the leaves is less than or equal to 1.

In general, such a difference denotes the level of imbalance of the tree.

Example 30 Figure 5.2 gives two examples of balanced voting trees. In this figure, W

returns the winner between two candidates. Figure 5.2 (a) shows a binary tree with n =

22 = 4 leaves where every leave is at depth log2(4) = 2. In the part (b) there is a tree with

n = 5 leaves which is balanced since the distance between the maximum and the minimum

depth of the leaves is 3− 2 = 1. 2

(a) (b)

D C B A

 W(w1,w2)

w1=W(C,D) w2=W(B,A)

D

w1=W(C,D)

 W(w1,A)

A

C

Figure 5.2: Balanced voting trees.

Sequential majority voting rules induced by voting trees

We now show how to induce sequential majority voting rules from voting trees.

Given a binary voting tree T , the voting rule rT induced by T maps each tournament G

to the candidate returned from the following procedure (called a knock-out competition):
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1. Pick a nonterminal node x in T whose successors p, q are terminal nodes; let P and Q

be the candidates associated to p and q respectively.

2. Delete the branches x → p and x → q from T , thus making x a terminal node with

candidate P (respectively Q) if P >m Q (respectively Q >m P ) is in G.

3. Repeat this operation until T consists of a single node. Then the candidate associated

to this node is returned.

Example 31 Given the majority graph in Figure 5.3 (a), Figure 5.3 (b) shows the voting

tree corresponding to the sequence of competitions ((A, C), (B, A)) where the winner is the

outcome B. 2

A

C

B

(a)

majority graph

B

B

A C

(b)

A

voting tree

Figure 5.3: Majority graph and a resulting voting tree.

Possible and Condorcet winners for sequential majority voting rules

Sequential majority voting rules are incompletely specified, since the winner depends on the

chosen binary voting tree. We can define Condorcet winners, which are those candidates that

win in every binary voting tree and possible winners, which are those candidates that win in

at least one of them.

Definition 65 (Condorcet winner) A candidate A is a Condorcet winner if and only if, for

any other candidate B, we have A >m B.

Thus, a Condorcet winner corresponds to a vertex of the majority graph with outgoing

edges only. There are profiles for which no Condorcet winner exists; however, when a

Condorcet winner exists, it is unique. If there is a Condorcet winner, then it is the sequential

majority winner for each binary voting tree.
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Definition 66 (possible winner) A candidate A is a possible winner if and only if there

exists at least one binary voting tree for which A is the winner.

5.7.2 Computing possible winners

The set of possible winners coincides with the top cycle of the majority graph [Mou88]. The

top cycle of a majority graph G is the set of maximal elements of the reflexive and transitive

closure G∗ of G. An equivalent characterization of possible winners is in terms of paths in

the majority graph.

Theorem 22 (see e.g. [Mou88, Las97]) Given a complete majority graph G, a candidate A

is a possible winner iff for every other candidate C, there exists a path from A to C in G.

This gives us a polynomial method to compute possible winners.

Corollary 3 Given a complete majority graph and a candidate A, checking whether A is a

possible winner and, if so, finding a tree where A wins, is polynomial .

Proof: Since path finding is polynomial [Bel58], we can check in polynomial time whether

A is a possible winner. For these paths, we can construct in polynomial time a tree in which

A wins. 2

Example 32 Assume that, given a majority graph G over candidates A, B2, B3, and C,

candidate A is a possible winner and that only C beats A. Then, for Theorem 22, there must

be a path in G from A to every other candidate. Assume A→ B2 → B3 → C is a path from

A to C in G. Figure 5.4 shows the voting tree corresponding to such a path. 2

Apath
(A, B2, B3, C)

A

B3

B2

B2B3

C

Figure 5.4: A path and the corresponding voting tree.
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5.7.3 Fair possible winners

Possible winners are candidates who win in at least one voting tree. However, such a tree

may be very unbalanced, thus representing a sequence of competitions where the winner

may compete with few other candidates. This may be considered unfair. In the following,

we will consider a competition fair if it has a balanced voting tree, and we will call such

winners fair possible winners.

Definition 67 (fair possible winner) A candidate A is a fair possible winner if and only if

there is a balanced voting tree where A wins.

For simplicity, we will assume that are 2k candidates but results can easily be lifted to

situations where the number of candidates is not a power of 2. Notice that a Condorcet

winner is a fair possible winner, since it wins in all trees, thus also in balanced ones.

We will show that a candidate is a fair possible winner when the nodes of the majority

graph can be covered by a binomial tree [CLR90], i.e., the nodes of the majority graph are

the terminal nodes of a balanced voting tree.

Definition 68 (binomial tree) A binomial tree is defined inductively as follows.

• A binomial tree of order 0, written T0, is a tree with only one node.

• A binomial tree of order k, with k > 0, written Tk, is the tree where the root has k

children, and for i = 1, . . . , k the i-th child is a binomial tree of order k − i.

It is easy to see that, in a binomial tree of order k, there are 2k nodes and the tree has

height k.

Given a majority graph with 2k nodes, and given a candidate A, it is possible to find a

covering of the nodes which is a binomial tree of order k with root A. In this situation, we

have a balanced voting tree where A wins. Thus A is a fair possible winner.

Example 33 Consider the majority graph G over candidates A, B, C and D depicted in

Figure 5.5. Since such a majority graph is covered by the binomial tree T2 with root A, we

can conclude that A is a fair possible winner. 2

Theorem 23 Given a complete majority graph G with 2k nodes, and a candidate A, A is a

fair possible winner if and only if there is a binomial tree Tk covering all nodes of G with

root A.
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 A  B
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 D
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Majority graph TBinomial tree 2 Balanced voting tree 

Figure 5.5: From a majority graph to a balanced voting tree via a binomial tree.

Proof: Assume there is a binomial tree Tk satisfying the statement of the theorem. Then

each node of Tk is associated to a candidate. For node n, we will write cand(n) to denote

such a candidate. We will show that it is possible to define, starting from Tk, a balanced

voting tree b(Tk) where A wins. Each node of b(Tk) is associated to a candidate as well, with

the same notation as above. The definition of b(Tk) is given by induction:

• If k = 0, b(T0) = T0;

• If k > 0, b(Tk) is the balanced tree built from two instances of b(Tk−1), corresponding

to the two instances of Tk−1 which are part of Tk by definition; the roots of such trees

are the children of the root of b(Tk); the candidate of the root of b(Tk) is the candidate

of the root of Tk.

It is easy to see that b(Tk) is a balanced binary voting tree, where the winner is A if A is the

candidate associated to the root of the binomial tree.

Proof of the opposite direction is similar. 2

Notice that the set of possible winners contains the set of fair possible winners, which

in turn contains the set of Condorcet winners. However, while there could be no Condorcet

winner, there is always at least one fair possible winner, since we can always build a balanced

tree where an outcome wins. Thus, a voting rule accepting only fair possible winners is well-

defined.

Unfortunately, the complexity of deciding if A is a fair possible winner is an open prob-

lem. However, for weighted majority graphs, it is difficult to check whether a candidate A is

a fair possible winner. This means that, if we restrict the voting trees only to balanced ones,

it is difficult for the chair (if they can choose the voting tree) to manipulate the election. The

problem of chair manipulation (also called “control”) has been considered first in [BTT95].



174 CHAPTER 5. PREFERENCE AGGREGATION WITH UNCERTAINTY

Theorem 24 Given a complete oriented and weighted majority graph G and a candidate A,

it isNP-complete to check whether A is a fair possible winner for G.

Proof: (Sketch) To prove the statement of the theorem, we prove that the Exact Cover prob-

lem reduces polynomially to the problem of finding a minimum binomial tree with root A

covering G. The proof is similar to that used in [PY82] to show that Exact Cover reduces

polynomially to the problem of finding a minimum spanning tree for a graph from a class of

trees which are sets of disjoint flowers of type 2 and where, for each tree t in the class, the

number of flowers of type 2 is d ≥ c|t|ε.

A flower is a tree where all nodes but the root have degree at most 2 and are at distance

1 or 2 from the root. A flower is of type 2 if at least a node has distance 2 from the root.

Binomial trees are trees which consist of disjoint flowers of type 2. In fact, the binomial

tree T2 is a flower of type 2, and all bigger binomial trees Tk, with 2k nodes, consist of 2k−2

instances of such flowers of type 2, all disjoint1. Thus we have d = 2k−2 = |Tk|
2
≥ c|Tk|ε.

Given an instance of the Exact Cover Problem, consisting of 3k sets of size 3 and 3k

elements, each of which appears three times in the sets, the proof proceeds by constructing

a graph such that the instance has an exact cover if and only if the graph has a minimum

covering binomial tree. 2

On the other hand, given a possible winner A, it is easy to find a tree, with a bounded

level of imbalance in which A wins. We define D(T, A) as the length of the path in the tree

T from the root labelled A to the only leaf labelled A. We define ∆(A) as the maximum

D(T, A) over all voting trees T where A wins. If ∆(A) = m− 1, where m = |Ω|, then A is

a Condorcet winner, and vice versa. In fact, this means that there is a tree where A competes

against everybody else, and wins. This can be seen as an alternative characterization of

Condorcet winners. Moreover, we will now show that, if A is a possible winner then there

exists a voting tree where A wins with level of imbalance at most m − ∆(A) − 1. Notice

that there could also be more balanced trees in which A wins.

Theorem 25 Given a complete majority graph G and a possible winner A, there is a voting

tree with level of imbalance smaller than or equal to m−∆(A)−1, where A wins. This tree

can be built in polynomial time.

Proof: Since A beats ∆(A) candidates, we can easily build a balanced voting tree BT

involving only A and the candidates beaten by A and this tree will have level of imbalance

1We thank Claude Guy-Quimper for this observation and for suggesting we look at [PY82].
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equal to 0. Then we have to add the remaining m−∆(A)− 1 candidates to BT . Since A is

a possible winner, there must be a path from one of the candidates beaten by A to each of the

remaining candidates. In the worst case, this adds a subtree of depth m −∆(A) − 1 rooted

at one of the nodes beaten by A in BT .

The procedure illustrated above is clearly polynomial. In fact BT can be built in linear

time in ∆(A) since A beats every candidate of BT and thus the order of the competitions

among the other candidates in BT can be set in any way respecting the balance constraint. 2

If unfair tournaments are undesirable, we can consider those possible winners for which

there are voting trees which are as balanced as possible. Theorem 25 helps us in this respect:

if A is a possible winner, knowing ∆(A), we can compute an upper bound to the minimum

imbalance of a tree where A wins. In general, if ∆(A) ≥ k, then there is a tree with

imbalance level smaller or equal than m− k − 1, hence the higher ∆(A) is, the lower is the

upper bound to the level of imbalance of a tree where A wins.

It is thus important to be able to compute ∆(A). This is an easy task. In fact, once we

know that a candidate A is a possible winner, ∆(A) coincides with the number of outgoing

edges from A in the majority graph.

Theorem 26 Given a majority graph G and a possible winner A, ∆(A) is the number of

outgoing edges from A in G.

Proof: If A has k outgoing edges, no voting tree where A wins can have A appearing at

depth larger than k. In fact, to win, A must win in all competitions scheduled by the tree, so

such competitions must be at most k. Thus ∆(A) ≤ k.

Moreover, it is possible to build a voting tree where A wins and appears at depth k. Let

us first consider the linear tree, T1, in which A competes against all and only the D1, . . . , Dk

candidates which it defeats directly in G. Clearly in such tree, T1, D(T1, A) = k. However

T1 may not contain all candidates. In particular it will not contain candidates defeating A

in G. We will now consider, one after the other, each candidate C such that C → A in

G. For each such candidate we will add a subtree to the current tree. The current tree at

the beginning is T1. Let us consider the first C and the path, which we know exists, which

connects A to C, say A → B1 → B2 . . . → Bh → C. Let j ∈ {1, . . . , h} be such that Bj

belongs to the current tree and ∀i > j, Bi does not belong to the current tree. Notice that

such candidate Bj always exists, since any path from A must start with an edge to one of

the D1, . . . , Dk candidates. We then attach to the current tree the subtree corresponding to

the path Bj → . . .→ C at node Bj obtaining a new tree in which only new candidates have
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been added. After having considered all candidates defeating C in A, the tree obtained is a

voting tree, in which A wins and has depth exactly k. Thus ∆(A) = k. 2

If a candidate is a possible winner with the maximum number of outgoing edges in the

majority graph (i.e., it is a Copeland winner), we can give a smaller upper bound on the

amount of imbalance in the fairest/most balanced tree in which it wins.

Theorem 27 If a candidate A is a Copeland winner, then the imbalance of a fairest/most

balanced tree in which A wins is smaller or equal than log(m−∆(A)− 1).

Proof: If A is Copeland winner then every candidate beating A must be beaten by at least

one candidate beaten by A. Consider the balanced tree BT defined in the proof of Theorem

25 rooted at A and involving all and only the candidates beaten by A. In the worst case all the

remaining m−∆(A)−1 candidates are beaten only by the same candidate in BT , say B ′. In

such a case, however, we can add to BT a balanced subtree with depth log(m−∆(A)− 1)

rooted at B′, involving all the remaining candidates. 2

5.7.4 Incomplete preferences

Up till now, voters have defined all their preferences over candidates, thus the majority graph

is complete; uncertainty comes only from the tree, i.e., from the voting rule itself. Another

source of uncertainty is that the voters’ preferences may only be partially known. In this case,

the profiles and so the majority graph can be incomplete. We would like to reason about the

winners in such two scenarios. In this section we show how to extend the notions of possible

and Condorcet winners for incomplete majority graphs and for incomplete profiles.

Incomplete majority graphs

Assume the incomplete information about preferences is given by an incomplete majority

graph (IMG). We can extend the notions of possible and Condorcet winners in such a sce-

nario as follows.

Definition 69 (weak/strong possible/Condorcet winners for IMGs) Let G be an incom-

plete majority graph and A a candidate.

• A is a weak possible winner for G if and only if there exists a completion of G and a

tree for which A wins.
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• A is a strong possible winner for G if and only if for every completion of G there is a

tree for which A wins.

• A is a weak Condorcet winner for G if and only if there is a completion of G for which

A is a Condorcet winner.

• A is a strong Condorcet winner for G if and only if for every completion of G, A is a

Condorcet winner.

When the majority graph is complete, strong and weak Condorcet winners coincide, and

coincide also with the notion of Condorcet winners given before.

We denote by WP (G), SP (G), WC(G) and SC(G) the sets of, respectively, weak

possible winners, strong possible winners, weak Condorcet winners and strong Condorcet

winners for G. We have the following inclusions:

SC(G) ⊆ WC(G) ∩ SP (G)

WC(G) ∪ SP (G) ⊆ WP (G)

We now give a characterization for each of the four notions above.

Theorem 28 Given an incomplete majority graph G and a candidate A, A is a strong pos-

sible winner if and only if for every other candidate B, there is a path from A to B in G.

Proof: (⇐) Suppose that for each B 6= A there is a path from A to B in G. Then these

paths remain in every completion of G. Therefore, using Theorem 22, A is a possible winner

in every completion of G, i.e., it is a strong possible winner.

(⇒) Suppose there is no path from A to B in G, ∃B. Let us define the following three subsets

of the set of candidates Ω: R(A) is the set of candidates reachable from A in G (including

A); R−1(B) is the the set of candidates from which B is reachable in G (including B); and

Others = Ω \ (R(A) ∪ R−1(B)). Because there is no path from A to B in G, we have that

R(A)∩R−1(B) = ∅ and therefore {R(A), R−1(B), Others} is a partition of Ω. Now, let us

build the complete tournament Ĝ as follows:

1. Ĝ := G;

2. ∀ x ∈ R(A), ∀ y ∈ R−1(B), add (y, x) to Ĝ;

3. ∀ x ∈ R(A), ∀ y ∈ Others, add (y, x) to Ĝ;

4. ∀ x ∈ Others, ∀ y ∈ R−1(B), add (y, x) to Ĝ;



178 CHAPTER 5. PREFERENCE AGGREGATION WITH UNCERTAINTY

5. ∀ x, y belonging to the same element of the partition: if neither (x, y) nor (y, x) in G

then add one of them (arbitrarily) in Ĝ.

We will show that G is a complete tournament and that there is no path from A to B in Ĝ. Let

us first show that Ĝ is a complete tournament. If x ∈ R(A) and y ∈ R−1(B), then (x, y) 6∈ G

(otherwise there would be a path from A to B in G). If x ∈ R(A) and y ∈ Others, then

(x, y) 6∈ G, otherwise y would be in R(A). If x ∈ Others and y ∈ R−1(B), then (x, y) 6∈ G,

otherwise x would be in R−1(B). Therefore, whenever x and y belong to two distinct ele-

ments of the partition, Ĝ contains (y, x) and not (x, y). Now, if x and y belong to the same

element of the partition, by Step 5, Ĝ contains exactly one edge among {(x, y), (y, x)}.

Therefore, Ĝ is a complete tournament. Let us show now that there is no path from A

to B in Ĝ. Suppose there is one, that is, there exist z0 = A, z1, . . . , zm−1, zm = B such

that {(z0, z1), (z1, z2), . . . , (zm−1, zm)} ⊆ Ĝ. Now, for all x ∈ R(A) and all y such that

(x, y) ∈ Ĝ, by construction of Ĝ we necessarily have y ∈ R(A). Therefore, for all i < m, if

zi ∈ R(A) then zi+1 ∈ R(A). Now, since z0 = A ∈ R(A), by induction we have zi ∈ R(A)

for all i, thus B ∈ R(A), which is impossible. Therefore, there is no path from A to B in

Ĝ. Thus, Ĝ is a complete tournament with no path from A to B, which implies that A is

not a possible winner with respect to Ĝ. Lastly, by construction, Ĝ contains G. So Ĝ is a

complete extension of G for which A is not a possible winner. This shows that A is not a

strong possible winner for G. 2

Clearly, a procedure based on the previous theorem gives us a polynomial algorithm to

find strong possible winners.

Let G be an asymmetric incomplete graph, Ω the set of candidates, and A ∈ Ω. Let us

call f(G, A) the set Σ returned by Algorithm 8 on G and A. Then we have the following

result:

Theorem 29 f(G, A) = Ω if and only if A is a weak possible winner for G.

Proof: We first make the following observation: the graph G′ obtained at the end of the al-

gorithm is asymmetric and extends G. It is asymmetric because it is asymmetric at the start

of the algorithm (since G is) and then, when an edge Y → Z is added to G′ when Z → Y is

not already in G′.

(⇒) Now, assume f(G, A) = Ω. Let G′′ be a tournament extending G′ (and, a fortiori, G).

Such a G′′ exists (because G′ is asymmetric). By construction of G′, there is a path in G′

from A to every node of f(G, A) \ {A}, hence to every node of Ω \ {A}; since G′′ extends
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Algorithm 8: Weak possible winners determination
Input: G: asymmetric incomplete graph; Ω: set of candidates; A ∈ Ω;

Output: Σ: set of outcomes;

Σ← {A}∪ {X| there is a path from A to X in G};

G′ ← G;

repeat

foreach (Y, Z) ∈ Σ× (Ω \ Σ) do

if (Z → Y ) 6∈ G′ then
add (Y → Z) to G′

foreach Z ∈ Ω \ Σ do

if there is a path from A to Z in G′ then
add Z to Σ

until Σ = Ω or there is no (Y, Z) ∈ Σ× (Ω \ Σ) s. t. (Z → Y ) ∈ G′ ;

return Σ.

G′, this holds a fortiori for G′′, hence A is a possible winner in G′′ and therefore a weak

possible winner for G.

(⇐) Conversely, assume f(G, A) = Σ 6= Ω. Denote Θ = Ω\Σ. Then, for all (Y, Z) ∈ Σ×Θ

we have Z → Y ∈ G′. Now, Z ∈ Θ means that no edge Z → Y (for Z ∈ Θ and Y ∈ Σ)

was added to G′; hence, for every Y ∈ Σ and Z ∈ Θ, we have that Z → Y ∈ G′ if and only

if Z → Y ∈ G. This implies that for all (Y, Z) ∈ Σ × Θ we have Z → Y ∈ G, therefore,

in every tournament G′′ extending G, every candidate of Θ beats every candidate of Σ, and

in particular A. Therefore, there cannot be a path in G′′ from A to a candidate in Z, which

implies that A is not a possible winner in G′′. Since the latter holds for every tournament G′′

extending G, A is not a weak possible winner for G. 2

Since the algorithm computing f(G, A) runs in time O(|Ω|2), we get, as a corollary, that

weak possible winners can be computed in polynomial time.

Given an asymmetric graph G, Θ is said to be a dominant subset of G if and only if for

every Z ∈ Θ and every X ∈ Ω \Θ we have (Z, X) ∈ G.

Then we have an alternative characterization of weak possible winners:

Theorem 30 A is a weak possible winner with respect to G if and only if A belongs to all
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dominant subsets of G.

Proof: Suppose there exists a dominant subset Θ of G such that A 6∈ Θ. Then there can

be no extension of G in which there is a path from A to a candidate Z ∈ Θ. Hence A is

not a weak possible winner for G. Conversely, suppose that A is not a weak possible winner

for G. Then the algorithm for computing f(G, A) stops with f(G, A) 6= Ω and Ω \ f(G, A)

being a dominant subset of G. Since A ∈ f(G, A), Ω \ f(G, A) is a dominant subset of G to

which A does not belong. 2

In the following we will characterize the weak/strong Condorcet winners and then we will

use this characterization for showing that it is linear to compute the exact set of weak/strong

Condorcet winners.

Theorem 31 Given an incomplete majority graph G and a candidate A, A is the strong

Condorcet winner if and only if A has m− 1 outgoing edges in G.

Proof: Follows directly from the fact that, given a majority graph, A is a Condorcet winner

if and only if A has only outgoing edges in G. 2

Theorem 32 Given an incomplete majority graph G and a candidate A, A is a weak Con-

dorcet winner if and only if A has no ingoing edges in G.

Given an incomplete majority graph, the set of weak/strong Condorcet winners can there-

fore be computed in polynomial time from the majority graph.

We end up this section by giving the bounds on the number of weak/strong possible/

Condorcet winners.

Theorem 33 Let |Ω| = m. The following inequalities hold, and for each of them the bounds

are reached: 0 ≤ |SC(G)| ≤ 1; 0 ≤ |WC(G)| ≤ m; 0 ≤ |SP (G)| ≤ m; 1 ≤ |WP (G)| ≤

m.

Incomplete profiles

Reasoning with incomplete majority graphs is useful for computing weak/strong possible/

Condorcet winners in polynomial time, however, it can lead to a loss of information. In fact,

we can define as winners some outcomes that don’t win in any completion of the incomplete

profiles inducing such majority graphs, as shown in the following example.
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Example 34 Assume to have a unique voter and three candidates A, B and C and that the

voter orders only A and B saying A > B. Then the incomplete majority graph has only one

arc between A and B. In this case B is a weak possible winner since there is a completion

of the majority graph and a voting tree where B wins. In fact, if we consider the completion

of the majority graph where B beats C and C beats A, then we can build a voting tree where

A wins, by performing first the competition between A and C, where the winner is C, and

then the competition between C and B and so the winner is B. But if we start from the

incomplete profile, then there are no completions of this profile where B wins. Notice that

the completion of the majority graph considered before cannot be a completion of the voter’s

preferences since it is not a partial order. 2

Thus, in this section we assume that incompleteness is given by an incomplete profile

(IP). In such a scenario we can extend notions of possible and Condorcet winners as follows.

Definition 70 (weak/strong possible/Condorcet winners for IPs) Let P be an incomplete

profile and A a candidate.

• A is a weak possible winner for P if and only if there exists a completion of P and a

tree for which A wins.

• A is a strong possible winner for P if and only if for every completion of P there is a

tree for which A wins.

• A is a weak Condorcet winner for P if and only if there is a completion of P for which

A is a Condorcet winner.

• A is a strong Condorcet winner for P if and only if for every completion of P A is a

Condorcet winner.

We denote by WP (P ), SP (P ), WC(P ) and SC(P ) the sets of, respectively, weak

possible winners, strong possible winners, weak Condorcet winners and strong Condorcet

winners for the incomplete profile P .

When the profile is complete, strong and weak Condorcet winners coincide, and coincide

also with the notion of Condorcet winners given before.

When, like in [KL05], the voting rule is fixed, i.e. when the voting tree is fixed, then

weak possible winners coincide with weak Condorcet winners and strong possible winners

coincide with strong Condorcet winners. Hence we have only two kinds of winners, that we

call weak winners and strong winners.
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Definition 71 (weak/strong winners for IPs) Let P be an incomplete profile, A a candidate

and the voting rule fixed (i.e., the tree fixed).

• A is a weak winner for P if and only if there exists a completion of P for which A

wins in the fixed tree.

• A is a strong winner for P if and only if for every completion of P A wins in the fixed

tree.

We denote by WW (P ) and SW (P ) the sets of weak and strong winners for the incom-

plete profile P .

Incomplete majority graph with respect to incomplete profiles

We now compare the winners obtained considering an incomplete profile with those ones

defined considering its induced incomplete majority graph.

Given an incomplete profile P and the incomplete majority graph G induced by P , then

the set of the completions of G is a superset of the set of the majority graphs induced by all

possible completions of P . The following inclusions hold.

Theorem 34 Let P be an incomplete profile and let G be the incomplete majority graph

induced by P . Then,

• WP (G) ⊇ WP (P );

• SP (G) ⊆ SP (P );

• WC(G) = WC(P );

• SC(G) = SC(P ).

Proof:

• WP (G) ⊇ WP (P ). In fact, if an outcome A belongs to WP (P ), then there is a

completion P ′ of P such that A is a possible winner and so A will be a possible

winner for the complete majority graph G′ induced by P ′. Since G′ is one of all the

possible completions of G, then A ∈ WP (G). Notice that WP (G) 6⊆ WP (P ), since

an outcome could be a possible winner for a completion of G, which is not induced by

any completion of P .



5.7. WINNER DETERMINATION IN SEQUENTIAL MAJORITY VOTING 183

• SP (G) ⊆ SP (P ). In fact, if an outcome is a possible winner for every completion

of G, then it will be a possible winner also for the majority graphs induced by the

completion of P , since the set of all the majority graphs induced by completions of P

are a subset of all the completions of G. Notice that SP (G) 6⊇ SP (P ), since there

could be an outcome that is a possible winner for every completion of P and so for

every majority graph induced by completions of P , but not for the completions of G

which are not induced by completions of P .

• WC(G) = WC(P ). In fact, as above, WC(G) ⊇ WC(P ). Moreover, WC(G) ⊆

WC(P ). In fact, if an outcome A belongs to WC(G), there is a completion of G

where A is a Condorcet winner. This complete majority graph is the majority graph

induced by the completion of P , where, we replace every A?C (where C is an outcome

different from A) with A > C. Then A ∈ WC(P ).

• SC(G) = SC(P ). In fact, as above, SC(G) ⊆ SC(P ). Moreover, SC(G) ⊇ SC(P ).

In fact, if an outcome belongs to SC(P ) then it is a Condorcet winner, i.e. it beats

every other outcome, for every completion of P . Hence he must beat every other

outcome in the certain part, hence in the incomplete majority graph G induced by P

there are only outgoing edges from this outcome and so this outcome must belong to

SC(G).

2

Theorem 35 Given a profile P , the sets WC(P ), SC(P ), WW (P ) and SW (P ) are easy

to compute.

Proof: Since WC(G) = WC(P ) and SC(G) = SC(P ) and since in Section 5.7.4 we have

shown that, given an incomplete majority graph, it is easy to compute WC(G) and SC(G),

then it is also easy to compute WC(P ) and SC(P ) for every profile P .

If the voting rule is fixed, then computing the weak winners and strong winners from

an incomplete profile is easy. In fact, given an incomplete profile P , since WW (P ) =

WP (P ) = WC(P ), SW (P ) = SP (P ) = SC(P ) and since we have shown that WC(P )

and SC(P ) are easy to compute, then also WW (P ) and SW (P ) are easy to compute. 2

Given an incomplete profile P , we think that is difficult to find WP (P ) and SP (P ), but

we don’t have a proof yet. If this conjecture is confirmed, then in order to have approxi-
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mations of these sets, it is useful to compute weak/strong possible winners for incomplete

majority graphs.

5.7.5 Fair possible winners with incomplete preferences

In this section we extend the notion of fair possible winner to the case of incomplete prefer-

ences. We consider incomplete profiles and not incomplete majority graphs, since we have

shown previously in this section that is more reasonable, because considering incomplete

majority graphs can lead to a loss of information.

Definition 72 (fair weak/strong possible winners) Let P be an incomplete profile,

• A is a fair weak possible winner for P if and only if there exists a completion of the

profile and a balanced tree for which A wins;

• A is a fair strong possible winner for P if and only if for every completion of the

profile there is a balanced tree for which A wins.

In the case of complete preferences, we have shown that for weighted majority graphs it

is difficult to check whether a candidate A is a fair possible winner. We will now show that,

if we assume thatP 6= NP , the same result holds also if we consider incompleteness. Hence

if we restrict the voting trees only to balanced ones, it is difficult for the chair to manipulate

the election.

Theorem 36 Given an incomplete profile P and a candidate A, if P 6= NP , it is NP-

complete to check whether A is a fair weak possible winner for P and also to check whether

A is a fair strong possible winner for P .

Proof: The proof is given by contradiction and considers the complexity of the problem of

checking if an outcome is a fair weak possible winner. A similar proof can be used for fair

strong possible winners.

Assume that the problem of checking whether an outcome is a fair weak possible winner

for P is in P . Then there must be a polynomial algorithm that takes in input an outcome

and an incomplete profile, and that says if this outcome is a fair weak possible winner. If we

give in input to this algorithm a complete profile and an outcome, then in polynomial time

the algorithm says if this outcome is a fair possible winner. Thus determining fair possible

winners is in P . However, Theorem 24 shows that this problem is in NP . 2
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5.8 Related work

In [KL05] preference aggregation functions for combining incomplete total orders are con-

sidered. In this setting, it is shown that determining the possible winners is in NP and the

necessary winners is in coNP . However, it is tractable to compute possible and necessary

winners for positional scoring voting procedures like the Borda and plurality procedures, as

well as for a non-positional procedure like Condorcet. Compared to our work, we permit

both incompleteness and incomparability, while [KL05] allows only for incompleteness. We

recall that incomparability is an important aspect of preferences, especially when agents have

multiple criteria to optimize. Second, [KL05] considers social choice functions which return

the (non-empty) set of winners. Instead, we consider social welfare functions which return a

partial order. Social welfare functions give a finer grained view of the result. Third, [KL05]

considers specific voting rules like the Borda procedure whilst we give, in the first part of

this chapter, general properties that ensure tractability.

The general properties found in this chapter could be useful, not just for combining pref-

erences from multiple agents, but also for combining multiple conflicting preferences from

a single agent. Recent work addressing the combination of multiple complex preferences is

presented in [Cho04] and [Kie05].

In the second part of this chapter we focused on a specific preference aggregation func-

tion, the sequential majority voting. Sequential majority voting rule can be represented by a

voting tree and the winner depends on the chosen tree. We dealt with uncertainty about the

choice of the binary tree. Because the choice of the tree is under the control of the chairman,

our results can be interpreted in terms of difficulty of manipulation by the chairman. This

issue has been considered first in [BTT95] that has pointed out that, even doing the non real-

istic assumption that the chairman knows the preferences of every voter and knows that they

will vote sincerely, some voting schemes, which are in principle susceptible to control (i.e.,

chair manipulation), are resistant in practice due to excessive computational costs, whereas

other voting schemes are vulnerable to control. For example, it may be possible to influence

the result of an election by specifying the sequence in which alternatives will be consid-

ered (which is our case), or by specifying the composition of subcommittees that nominate

candidates. With regard to chair manipulation, we proved that sequential majority voting is

easy to manipulate, except if we require that the binary tree used for defining the winner is

balanced. Having found a case where sequential majority voting is difficult to manipulate

by the chairman is a relevant result since this voting scheme had always been considered

computationally vulnerable to control (see, for example [Ban95, HM66, Mil80]). In fact,
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the chairman can determine a sequence resulting in victory for his preferred candidate, or

conclude that none exists, within a polynomial number of computational steps.

In [CS02a] there is another result regarding chair manipulation for a voting protocol,

called “Cup rule”, which is similar to our sequential voting where the tree must be balanced.

In the Cup protocol there is a balanced binary tree with one leaf per candidate, each non-leaf

node is assigned the candidate that is winner of the pairwise election of the node’s children

and the candidate assigned to the root wins. [CS02a] shows that this protocol, that requires a

schedule to be instantiated, is easy to manipulate if the schedule is known in advance and for

making manipulation difficult it is sufficient, even if there are few candidates, to randomize

over these schedules.

We also dealt with uncertainty about voters’ preferences. We showed that in this case, it is

easy to compute a lower and an upper bound of the set of candidates winning for some binary

tree. These results apply to manipulation by coalitions of voters [CS02a] and elicitation

by the chair [CS02b] as these are two situations where we have to reason with incomplete

preferences.

5.9 Future work

Possible and necessary winners are only the first step. In our future work, we will consider

the probability that a candidate is a winner assuming some probability distribution over the

possible completions. In addition, we plan to consider notions other than the winner (e.g.

possible rankings, possible dominances, ...).

We intend also to consider the addition of constraints to agents’ preferences. This means

that preference aggregation must take into account the feasibility of the outcomes. Thus

possible and necessary winners must now be feasible. Consider for example the problem of

configuring a family car. We have various product constraints. We also have preferences of

the multiple agents who will use the car (“I prefer four doors to two doors”, “You prefer soft

top to hard top”, . . .). We may therefore want to reason about a constrained preferentially op-

timization problem in which we have incompleteness and incomparability in the preferences.

We can define the constrained necessary winners as those feasible outcomes which are not

dominated by any other feasible outcome in all possible completions, and the constrained

possible winners as those feasible outcomes which are not dominated by any other feasible

outcome in at least one possible completion. Note that the necessary and possible winners

may not themselves be feasible. We may therefore need to look lower in the result than just

the winners.



5.9. FUTURE WORK 187

It is also important to consider compact knowledge representation formalisms to express

agents’ preferences, such as CP-nets and soft constraints. Possible and necessary winners

should then be defined directly from such compact representations, and preference elicitation

should concern statements allowed in the representation language.

Some of our results rely on IIA assumption, which is a strong assumption. However, we

use it just to show intractability is not inevitable on incomplete partial orders. Nevertheless,

it is important to show that these intractability results do not always hold but that there are

cases (e.g. monotonic and IIA rules on partial orders [as shown here], and positional scoring

rules on total orders [as shown in [KL05]]) where computing possible and necessary win-

ners is tractable. In the cases where computing possible and necessary winners is tractable,

our novel preference elicitation algorithm (which focuses the questions on just PW-NW) is

useful. We plan however to relax the IIA assumption in the future tractability results.

For the scenario where agents express their preferences over a set of alternatives and

their preferences are aggregated by a sequential majority rule, we characterized the class of

fair possible winners; that is, possible winners that win in a balanced voting tree and proved

that, for weighted majority graphs, it is difficult to compute fair possible winners. Balance is

therefore enough to make voting difficult for the chair to manipulate. We intend to investigate

if the complexity of computing fair possible winners with unweighted majority graphs has

the same complexity. We intend also to discover the complexity of computing weak and

strong fair possible winners in presence of incompleteness in voters’ preferences.

Finally, we plan to study incomplete preferences in the context of strategic games. In

fact, the notion of incomplete information is a well-understood topic in game theory and

dealt with by means of Bayesian games, but games with incomplete preferences have not

been analyzed.





Chapter 6

Conclusions

In this chapter we discuss what has been achieved in this thesis and we describe a number of

possible directions we would like to pursue in the future.

6.1 Summary

Preferences and uncertainty occur in many real-life problems. Thus, it is important to model

faithfully these two aspects both for problems with a single agent and for problems with

several agents. A long-term goal is to define a framework where many kinds of preferences

and many kinds of uncertainty can be naturally modelled and dealt with. In this thesis we

have given some contribution in this direction, both for single-agent and for multi-agent

settings.

We have started considering problems with fuzzy preferences, expressed by a single

agent, and we have considered also the presence of uncertainty in these problems. We have

then defined a formalism for handling fuzzy preferences and uncertainty, by integrating these

two aspects via possibility theory, so that some desirable properties are satisfied. Moreover,

we have defined suitable semantics for ordering the solutions according to different attitudes

to the risk and, by following these semantics, we have defined a solver for handling this

kind of problems. Next, we have generalized the approach to general soft preferences, thus

obtaining a more powerful engine for reasoning with preferences and uncertainty, which can

handle problems with uncertainty and with general preferences.

We have then considered scenarios where a single agent can express both positive and

negative preferences, defining a formalism that produces the desired natural behaviour for

what regarding the combination of these two kinds of preferences. Starting from the semiring-

based soft constraint formalism, we have defined a structure for handling problems with

189
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bipolar preferences, which allows to compensate positive and negative preferences, and we

have presented a solver for handling such problems. Moreover, in order to obtain a more

powerful formalism, we have generalized such an approach to the case of problems with

bipolar preferences and uncertainty.

We have then enlarged our target even more, encompassing also multi-agent scenar-

ios. We have considered preference aggregation when the users reason about their own

preferences, which can be partially ordered. In particular, the issues of fairness and non-

manipulability of the aggregation schemes have risen. We have reconsidered the main results

on these topics from social choice theory, namely Muller-Satterthwaite’s theorem, which is

Arrow’s impossibility theorem for social choice functions, and Gibbard-Satterthwaite’s the-

orem, with respect to partial orders. We have shown that the results continue to hold if the

properties required are suitably adapted to partial orders.

Finally, we have considered a more general scenario, in which agents can partially ex-

press their preferences, analyzing the computational complexity of computing possible and

necessary winners. We have shown that it is difficult both computing them exactly and

approximating them. However, we have identified sufficient conditions on the preference

aggregation function that allow us to compute the sets of possible and necessary winners

in polynomial time. Moreover, we have shown the usefulness of possible and necessary

winners in the preference elicitation process. We have then analyzed a specific class of pref-

erence aggregation functions, i.e., sequential majority voting, which performs a sequence of

pairwise comparisons between two candidates along a binary tree. For such a voting rule, we

have dealt with uncertainty which derives from the choice of the tree. We have characterized

possible and Condorcet winners and we have shown that it is difficult to find them if we re-

quire that the tree must be balanced. In this case, it is thus difficult for the chair to manipulate

the voting system. Finally, we have characterized winners of sequential majority voting in a

more general scenario, where agents can hide some of their preferences, and we have shown

that, if we don’t require that the tree must be balanced, it is easy to find the winners in this

scenario.

All the results presented in this thesis contribute to a general framework where users

can model their problems in a natural and flexible way. For example, problems may have

both hard and soft requirements. Thus it is reasonable to allow for both constraints and

preferences in the modelling framework. Also, preferences can mean desires or rejection

levels, so it is important to allow for both such notions when modelling a real-life problem.

Finally, often problems contain preferences coming from several sources, so it is crucial to

study how such preferences are combined to satisfy all sources of information.
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Moreover, very often the users have to consider problems which are affected by uncer-

tainty. However, uncertainty can be characterized in several ways, which depend on the

information that the user has on the uncertain events. For example, the user can be com-

pletely ignorant about the occurrence of an event, he can know how probable is that the

event will happen, or, in absence of a probability information, he can have a vague infor-

mation over the occurrence of event and know only how much it is possible for the event to

happen. It is useful to give users the freedom of representing uncertainty as they prefer. With

this thesis, we allow users to model uncertainty coming from lack of probabilistic informa-

tion on uncontrollable events. Thus users can either model a complete ignorance situation,

or a situation where only possibilistic information is provided about the uncertain part of the

problem.

Much work is still needed to achieve the long-term goal of a single framework where

many kinds of preferences and uncertainty can be modelled by one or several agents, and

where the underlying machinery is able to find efficiently the best solutions in all the avail-

able scenarios. This thesis tries to set the bases to move towards this goal.

6.2 Future directions

There are many future directions which will be interesting to pursue. The results of this thesis

are a strong motivation to continue exploring fields of knowledge representation, searching

for formalisms that can handle preferences and uncertainty both in the case of a single agent

and in the case of several agents.

In the context of preferences expressed by a single agent, we plan to implement the

solvers that we have presented for bipolar and not bipolar preferences with and without un-

certainty, and we intend to perform experiments on benchmarks. We plan also to generalize

the framework for what concerns uncertainty. In particular, we want to study problems with

preferences and uncertainty, where uncertainty is not only expressed via possibility theory,

but also via probability theory. Moreover, we plan to generalize the formalism of bipolar

preferences for allowing no compensation of positive and negative preferences, in order to

model classical multi-criteria approaches. We want also to strengthen the formalism for han-

dling bipolar preferences introducing the notion of importance between pairs of variables.

Moreover, we plan to investigate further preference aggregation in multi-agent scenarios.

The study of societies of artificial agents is a topic which is attracting an increasing amount

of attention. One of the main goals of AI is to build tools that allow agents to reason in

increasingly sophisticated ways. Moreover, when embedded into a distributed system, such
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agents must interact with others and negotiate common decisions while pursuing their per-

sonal goals. We believe that a powerful preference reasoning engine can make a difference,

since it allows the representation of the agent’s goal in a way that is amenable to negotiation

and coordination with other agents, avoiding deadlocks. A considerable gain can be obtained

by reconsidering many important results of social welfare theory and social choice theory in

light of this new perspective. In fact, many properties which are desirable in human soci-

eties, as unanimity, strategy-proofness, monotonicity and many others are desirable also in

all automated agents scenarios.

We also intend to investigate formalisms handling uncertainty in multi-agent preference

aggregation systems, by defining new more sophisticated notions of possible and necessary

winners. In particular, we plan to add constraints to agents’ preferences, and so to con-

sider possible and necessary winners which must be also feasible. Moreover, we plan to

express preferences via compact knowledge representation formalisms, such as CP-nets and

soft constraints, and to define possible and necessary winners directly from these compact

formalisms. We also intend to add possibility distributions over the completions of an in-

complete preference relation between outcomes, and to define winners in such scenarios.

Finally, we plan to find new tractability results to compute possible and necessary winners

both in general and for particular preference aggregation systems, possibly relaxing the IIA

assumption.
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