
Fair Division of the Commons

Dominik Peters

Thesis

DPhil in Computer Science

University of Oxford
Department of Computer Science
Supervised by Prof Edith Elkind

Submitted: 10 May 2019

Viva: 2 September 2019





Abstract

A group of agents controls a common budget or owns some common resources. The agents need
to decide how to divide this budget across various projects, or to distribute the resources among
themselves. Each agent has their own preferences about the best use of the resources. We study
ways in which the agents can make these decisions in a fair manner. By fairness, we will mean
that for every group member, a proportional part of the common budget is spent in accordance
with the member’s interests. We will also be interested to take into account the interests of
subgroups, and when appropriate aim to avoid envy between group members.

We consider several settings in this thesis, capturing different types of potential uses of the
common budget. For example, we distinguish between projects that come with a fixed cost (and
can be either fully funded or not at all), and projects that can flexibly scale with the amount of
funding received. We also distinguish between uses that potentially benefit several or all group
members (public goods) or uses that benefit only one agent (private goods).

For each scenario we consider, we formalise what we might mean by a “fair” outcome, and
then design decision rules that guarantee fairness. Where possible, we additionally aim for
rules that make Pareto-efficient use of the common budget. Unfortunately, many of our rules
can be exploited by strategic agents who misreport their preferences. In these cases, we prove
impossibility theorems which imply that no fair decision rule can be resistant to such strategic
manipulation. These impossibility theorems are proved using a computer-aided technique based on
SAT solvers, which allows us to obtain computer-generated but human-readable proofs. Further,
we consider the computational complexity of the decision rules we consider. In most cases, they
can be evaluated using efficient algorithms. In other cases, there are NP-completeness results,
but we can show that efficient algorithms exist that work when preferences are well-behaved, in
the sense of exhibiting underlying structure.

iii





List of Chapters

0. Introduction 1

I. Methodological Prelude: Impossibility Theorems and SAT Solving 9

1. The No-Show Paradox 11

2. The Preference Reversal Paradox 23

3. A Disjunctive Gibbard–Satterthwaite Theorem 29

II. Budgeting with Divisible Projects 35

4. Aggregating Budget Proposals 37

5. Aggregating Approval Preferences 55

6. Aggregating Ranking Preferences 61

III. Budgeting with Indivisible Projects: Committee Elections 73

7. Strategyproof Committee Selection 75

8. Preferences Single-Peaked on Trees 89

9. Preferences Single-Peaked on Circles 117

IV. Allocation of Indivisible Items with Connected Bundles 131

10.Maximin Fair Share and Envy-Freeness up to One Good 133

11.Pareto-Optimality and Computational Complexity 157

12.Strategyproofness and EF1 167

v





Contents

0. Introduction 1

I. Methodological Prelude: Impossibility Theorems and SAT Solving 9

1. The No-Show Paradox 11
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4. Method: SAT Solving for Computer-Aided Proofs . . . . . . . . . . . . . . . . . 16
1.5. Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. The Preference Reversal Paradox 23
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2. Half-way Monotonicity and Participation . . . . . . . . . . . . . . . . . . . . . . 24
2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. A Disjunctive Gibbard–Satterthwaite Theorem 29
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. The Campbell–Kelly Theorem for Even Numbers of Voters . . . . . . . . . . . . 31
3.3. A Dilemma Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II. Budgeting with Divisible Projects 35

4. Aggregating Budget Proposals 37
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3. Two Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4. Moving Phantom Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5. The Independent Markets Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6. Pareto-Optimality and Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7. Minimum Spending Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. Aggregating Approval Preferences 55
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2. Impossibility Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3. Subset Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. Aggregating Ranking Preferences 61
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2. Positional Social Decision Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



Contents

6.3. Computation and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4. Fairness, Proportionality, and the SD-core . . . . . . . . . . . . . . . . . . . . . . 68
6.5. Other Axiomatic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III. Budgeting with Indivisible Projects: Committee Elections 73

7. Strategyproof Committee Selection 75
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3. Our Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4. The Impossibility Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.6. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8. Preferences Single-Peaked on Trees 89
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3. Egalitarian Chamberlin–Courant on Arbitrary Trees . . . . . . . . . . . . . . . . 94
8.4. Hardness of Utilitarian Chamberlin–Courant on Arbitrary Trees . . . . . . . . . 95
8.5. Utilitarian Chamberlin–Courant on Trees with Few Leaves . . . . . . . . . . . . . 97
8.6. Utilitarian Chamberlin–Courant on Trees with Few Internal Vertices . . . . . . . 99
8.7. The Attachment Digraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.8. Recognition Algorithms: Finding Nice Trees . . . . . . . . . . . . . . . . . . . . . 108
8.9. Hardness of Recognising Single-Peakedness on a Specific Tree . . . . . . . . . . . 114
8.10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9. Preferences Single-Peaked on Circles 117
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.3. Recognition Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.4. Impossibility Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.5. Kemeny’s and Young’s Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.6. Multiwinner Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.7. Discussion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

IV. Allocation of Indivisible Items with Connected Bundles 131

10.Maximin Fair Share and Envy-Freeness up to One Good 133
10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.3. MMS Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.4. EF1 Existence for Two Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5. EF1 Existence for Three Agents: A Moving-Knife Protocol . . . . . . . . . . . . 143
10.6. EF2 Existence for Any Number of Agents . . . . . . . . . . . . . . . . . . . . . . 147
10.7. EF1 Existence for Identical Valuations . . . . . . . . . . . . . . . . . . . . . . . . 152
10.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



Contents

11.Pareto-Optimality and Computational Complexity 157
11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.3. Finding Some Pareto-Optimal Allocation . . . . . . . . . . . . . . . . . . . . . . 158
11.4. Pareto-Optimality and EF1 on Paths . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.5. Pareto-Optimality and MMS on Paths . . . . . . . . . . . . . . . . . . . . . . . . 164
11.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.Strategyproofness and EF1 167
12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2. A Simple Impossibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.3. Importing Impossibilities from Cake-Cutting . . . . . . . . . . . . . . . . . . . . 168

ix





Acknowledgements

Edith Elkind has been the perfect supervisor for me. She helped start my research by proposing
fruitful open problems, and throughout my studies has provided great advice for the best ways
forward and the best opportunities to pursue. Edith gives her students great freedom, and
the success of this method for producing independent researchers is readily apparent in my
distinguished academic brothers and sisters.

Thanks to the examiners of this thesis, Mike Wooldridge and Vince Conitzer, for their careful
study and insightful comments and questions during the viva. I have also benefited from my
transfer and confirmation vivas, and am grateful for the guidance I received from Mike, and from
Elias Koutsoupias and Paul Goldberg.

I have been fortunate to work with incredible collaborators, and have especially enjoyed my
research visits around the world. Felix Brandt has hosted me for five visits and had a strong
influence on my research tastes. I’m honoured to be listed as an “external PhD student” on his
CV. I also thank Ariel Procaccia, Bill Zwicker, Jörg Rothe, Markus Brill, Piotr Skowron, Martin
Lackner, Rupert Freeman, and Jérôme Lang for being gracious and inspiring hosts. My former
fellow DPhil student Ayumi Igarashi has been a great friend and collaborator. Thanks also to
my collaborators Florian Brandl, Robert Bredereck, Piotr Faliszewski, Christian Geist, and Paul
Harrenstein.

Office 017 in the basement of the Department of Computer Science has been the location
of many joyous moments, and my thanks go out to everyone who passed through it: Markus
Brill, Ayumi Igarashi, Muhammad Najib, Martin Lackner, Piotr Skowron, Robert Bredereck,
Jiarui Gan, Haris Aziz, Bill Zwicker, Alex Voudouris, Warut Suksompong, and of course Paul
Harrenstein (office 013) who put up with too much laughter coming through the walls of 017.

My eight years in Oxford have provided me with many friends who have been invaluable
supporters, including Ali, Amadea, Andrea, Ari, Blago, Cheryl, Dominic, Eileen, Eliot, Elise,
Francis, Golo, Greg, Hadrien, Jacob, Janet, Jens, Katrien, Kim, Lucius, Lukas, Marcus, Piotr,
Rustin, Sofia, Tom, and Žiga.

I can hardly believe that I have the opportunity to work with so many amazingly talented
people, and that I got to study at this incredible university. The reason I came here was the
vision of my parents Andre and Beate, who pushed me to think bigger and to go abroad for my
studies, and who supported me enthusiastically throughout.

xi





Bibliographic Notes

Most of the contents of this thesis have been published in conference proceedings or journals.
Much of the work was done in collaboration with others. Here, I list prior publications, and
discuss any differences between the published version and the version included here. Where there
are many coauthors, I indicate the extent of my contribution. All parts of the thesis are either
written or significantly edited by me.

Part I

Chapter 1 is based on a joint paper with Felix Brandt and Christian Geist, which appeared
in AAMAS 2016 and in the journal Mathematical Social Sciences [Brandt et al., 2016b, 2017].
It also appeared in the PhD thesis of Christian Geist. My contributions to the paper include
programming, co-development of the method, production of the impossibility proof, and parts of
the writing. The present version contains a new introduction, and a simplified proof of the main
result. The published paper contains additional results about set-valued and probabilistic voting
rules.

Chapter 2 is based on a paper published in the proceedings of TARK 2017 [Peters, 2017a]. The
published paper contains additional results about set-valued voting rules and about a weakening
of half-way monotonicity, as well as a sketch of the contents of Chapter 3.

Chapter 3 has not been published before, and Theorem 3.6 appears here for the first time.

Part II

Chapter 4 is based on a paper appearing in ACM EC 2019 [Freeman, Pennock, Peters, and
Wortman Vaughan, 2019]. The published paper contains additional material about a game-
theoretic interpretation of the Independent Markets mechanism. Section 4.7 appears here for the
first time.

Chapter 5 is written for this thesis. The results have been obtained in collaboration with Felix
Brandt and Christian Stricker, and are also included in a draft paper phrased in a somewhat
different formal setting [Brandl, Brandt, Peters, Stricker, and Suksompong, 2019b].

Chapter 6 is based on a paper appearing in IJCAI 2019 [Airiau, Aziz, Caragiannis, Kruger,
Lang, and Peters, 2019]. I joined my coauthors on this project relatively late, and my main
contributions are in the exposition, the discussion in Section 6.4, and Theorem 6.7.

Part III

Chapter 7 is based on a paper appearing in AAMAS 2018 [Peters, 2018a].
Chapter 8 is based on a draft for a journal paper which in turn is based on two conference

papers on similar topics [Yu, Chan, and Elkind, 2013, Peters and Elkind, 2016], the latter
appearing in AAAI 2016. Most of the writing in the chapter as well as most results are my work,
but I have not contributed to the proofs of Theorems 8.7 and 8.9 except for minor editing.

Chapter 9 is based on a draft of a journal paper combining two conference papers [Peters and
Lackner, 2017, Peters, 2018b] appearing in AAAI 2017 and AAAI 2018 respectively.

xiii



Contents

Part IV
Chapter 10 is based on a paper appearing in ITCS 2019 [Bilò, Caragiannis, Flammini, Igarashi,
Monaco, Peters, Vinci, and Zwicker, 2018]. My main contributions are in writing and exposition,
as well as the proof of Theorem 10.18. Section 10.3 states a result from a paper appearing in
IJCAI 2017 [Bouveret, Cechlárová, Elkind, Igarashi, and Peters, 2017]. The latter paper contains
additional results about the computational complexity of deciding the existence of envy-free and
of proportional allocations. This paper is also part of the DPhil thesis of Ayumi Igarashi [2018].

Chapter 11 is based on a paper appearing in AAAI 2019 [Igarashi and Peters, 2019], but omits
some hardness proofs from the conference paper.

Chapter 12 is a brief note and has not previously been published.

xiv



Omitted Work

Some work performed during my DPhil studies is not included in this thesis, to obtain a shorter
and more coherent document.

Hedonic Games and Coalition Formation

In a hedonic game, a set of agents needs to be partitioned into coalitions. Each agent i has
preferences over which other agents are part of i’s coalition. For example, there may be friendships
or aversions between different agents, and agents may have different ideas about the ideal coalition
size. The literature on hedonic games mostly aims for a stable partition in which no agent or
group of agents wishes to change their coalition.

In my master’s thesis [Peters and Elkind, 2015, IJCAI], we unify many computational complexity
results for hedonic games in a single framework, and show that most of the existing results and
several new ones can be proven using just three reductions. Later, I studied complexity issues in
hedonic games with dichotomous preferences [Peters, 2016a, AAAI] and proved that reasoning
about the core is Σp

2-complete for additive and for Boolean hedonic games [Peters, 2017b, ADT].
I also introduced the idea of graphical hedonic games where agents only care about the presence
of their neighbours in a social network. Many stability problems become tractable if the social
network has bounded degree and bounded treewidth [Peters, 2016b, AAAI]. I have contributed
to a journal paper about fractional hedonic games [Aziz, Brandl, Brandt, Harrenstein, Olsen,
and Peters, 2019b, ACM TEAC], solving some open problems from an earlier conference paper.
We have also done some work on the related model of group activity selection problems [Igarashi,
Peters, and Elkind, 2017, AAAI].

Structured Preferences

When we can identify underlying structure in agents’ preferences, we can better model their
desires, and it may help us in identifying better social decisions. Work along these lines is
included in this thesis in Chapter 8 on preferences single-peaked on a tree and in Chapter 9 on
preferences single-peaked on a circle.

I have also worked on the recognition problem of multidimensional Euclidean preferences,
proving that it is ETR-complete [Peters, 2017c, AAAI]. We have also worked on single-crossing
preferences and especially on identifying whether a preference profile is almost single-crossing
[Jaeckle, Peters, and Elkind, 2018, AAAI, Lakhani, Peters, and Elkind, 2019, IJCAI].

Committee Elections

Part III of this thesis deals with the problem of multi-winner elections, where the aim is
to find a good committee of k candidates, where k is fixed. Additional work on this topic
considers the quality of some heuristics for finding good committees under different objective
functions [Faliszewski, Lackner, Peters, and Talmon, 2018a, AAAI], and how to extend notions
of proportionality for committee elections to rankings of candidates [Skowron, Lackner, Brill,
Peters, and Elkind, 2017, IJCAI].

xv



Contents

Voting
In Part I of this thesis, we obtain several impossibility theorems about standard single-winner
voting. I have also contributed to a journal paper about single-winner voting [Bachmeier, Brandt,
Geist, Harrenstein, Kardel, Peters, and Seedig, 2019, JCSS], proving that the famous Kemeny
rule remains NP-hard to evaluate for exactly 7 voters. While Kemeny was known to remain hard
for 4 voters, this is the first hardness result for a constant odd number of voters. We have also
obtained an axiomatic characterisation of the Borda mean rule [Brandl and Peters, 2019, Social
Choice and Welfare]. Further, we have studied the popular STV rule (Single Transferable Vote),
considering issues of communication and incomplete preferences [Ayadi, Ben Amor, Lang, and
Peters, 2019, AAMAS].

Overview Articles
We have produced a survey article and a book chapter on structured preferences [Elkind, Lackner,
and Peters, 2016, 2017b]. We have also published a book chapter explaining the technique of
using SAT solvers to prove impossibility theorems in social choice [Geist and Peters, 2017].

xvi



0. Introduction

In 2016, I participated in the “Oxford Prioritisation Project”, which was a student research group
set up by my friend Tom Sittler. We had been given GBP 10 000 by the Centre for Effective
Altruism. The aim of the ten group members was to identify a charitable recipient for this money,
and we hoped to maximise the expected impact of the donation. The search space of possible
charities is vast, and many of them do things that seem positive and impactful. Thus, we needed
to prioritise among them, and we built quantitative models to estimate the impact per dollar of
several options. After a period of three months of research, we hoped to come to a unanimous
decision for the destination of the money. We recognised that in the end there may still be
disagreements, in which case we would have to take a vote. Voting ended up being unnecessary,
and we all agreed to give the money to 80 000 Hours, a group that advises young people about
effective and altruistic career paths. But the episode made me think: if we wanted to vote over
how to split the pool of GBP 10 000 among charities, what would be a good method to do so?

I worked on my DPhil as a member of Oxford’s Balliol College. The graduate students of
the college form the Middle Common Room (MCR), which is simultaneously an organisation to
represent student interests, and also a physical common room. This handsome room in Holywell
Manor features leather sofas, portraits of long-dead influential members of Balliol, and a big
table full of newspapers and magazines. The MCR takes out subscriptions of these newspapers
and magazines, and has an annual budget of about GBP 2 000 for this purpose. Once a year, we
send around a form allowing members to vote over which periodicals to subscribe to. The form
allows each person to tick as many options as they want. Then the most popular choices are
bought, up to the budget limit. Students with tastes close to the mainstream will have much
to read, but this decision method may leave substantial minorities without a desired but niche
reading option – the Guardian has eaten up most of the budget. What would be a fair and
representative voting method?

The Department of Computer Science has only a small number of meeting rooms. Departmental
classes, seminars, group discussions, and administrative meetings have to compete over slots in
these rooms. Slots are given out on a first-come-first-served basis by emailing rooms@cs.ox.ac.uk
with a request. Late-comers may miss out, or find that the room schedule is so fragmented that
no single room is available for the required amount of time. More organised planners get most of
their requests fulfilled, which others may find unfair. Is there a way to decide on a room schedule
that is fair and efficient? Can it be done without blow-ups in computational complexity?

This thesis contains partial answers to the questions raised by these three stories. In each case,
a group of people needs to decide how to use common resources and how to divide them among
different options. Each case raises issues of fairness. And each case asks for the design of an
appropriate procedure to aggregate the group’s preferences.

The three stories illustrate different decision-making settings, and they suggest a taxonomy of
problems where we need to divide a common budget. In the third story, when allocating time
slots to users, a time slot is only useful to a single user. Time slots are private goods, as they are
for the exclusive use of a single agent. In contrast, in the first two stories, the budget was divided
among goods that were not exclusive: everyone can benefit from the newspaper subscriptions,
and everyone is affected by the donation decisions. Thus, in these instances, we are deciding on
the provision of public goods.

1



0. Introduction

public goods private goods

divisible Part II –
indivisible Part III Part IV

Table 0.1.: A taxonomy of budget division problems.

We can further distinguish these cases along a second axis. When dividing an amount of
money among charities, the budget is perfectly divisible, and we can send an arbitrary fraction
of the pool to a single charity. (In practice, the divisibility of money is limited to cents, but
the problem is more fruitfully modelled when ignoring this issue.) In contrast, when using a
common budget to buy magazines, we have to make a binary decision for each option: we cannot
subscribe to two-thirds of a magazine. In this case, the options are indivisible. Similarly, it is
usually convenient to handle room bookings in discrete time slots of 30 or 60 minutes, making
them also indivisible.

These two distinctions – public goods versus private goods, divisible options versus indivisible
ones – give rise to a 2× 2 table, shown in Table 0.1.1 Our stories correspond to three of the four
entries, and we will study these three models in Parts II, III, and IV of this thesis. The fourth
entry concerns divisible private goods, a model commonly known as cake-cutting. We do not add
to the cake-cutting literature in this thesis, but our discussion in Part IV takes inspiration from
several famous results from cake-cutting.

We will study these different budget division problems using the method and the point of
view of social choice theory and computational social choice. In social choice, we look at group
decision making as a three-step process: First, the members of the group write down their
preferences concerning the outcome (for example, by ticking all newspapers that they would like
to read). Second, the reported preferences are analysed and aggregated using a previously-chosen
algorithm, a voting rule. The voting rule will output a group decision (for example, a collection
of newspapers to subscribe to). Third, the chosen outcome is implemented by the group.

The described process is only a model of actual group decision making, and necessarily ignores
much real-life complexity. For example, social choice tends to ignore the process by which the
group arrives at the set of options to vote over (for example, a list of potential subscriptions, or a
list of potential charities). It also limits the types of preferences that group members are able to
report (for example, it might only allow rankings or a set of ticks). It ignores group deliberation
to reach consensus before a vote. However, the tools of social choice really shine at the second
step of the procedure outlined above: the theorist can design voting rules that do an impressive
job in weighing different preferences and in constructing an outcome that respects the interests
of all group members.

For each of the three types of budget division problems that we analyse, we will aim for four
different types of contributions: to formalise appropriate notions of fairness for the setting, to
design good rules for obtaining a group decision, to explore the boundary of which desirable
properties can be satisfied, and to study the computational complexity of the rules we propose.

• Formalising fairness. Fairness can mean very different things, and which kind of fairness is
desirable to achieve (if any) depends on the context. To be able to properly discuss fairness,
it helps to have formal definitions of what we mean. In budgeting problems of the kind we
are looking at, it would seem to be unfair if we completely ignore the interests of some of
the group members, in the sense of using none or very little of the budget in accordance
with their interest. In the case of indivisible goods, it might not be possible to do enough

1I thank Brandon Fain for discussions on this point.

2



different things to partially satisfy everybody. However, we might want to require that once
a large enough group of agents has similar interests, then part of the budget needs to be
spent in accordance with them. We may also want to be fair to groups, so that a group of
people with similar interests gets to ‘control’ a fraction of the budget in proportion to the
group’s size. For private goods, we can also consider the classical notion of avoiding envy.

• Designing good rules. Once we have identified a desirable form of fairness, and probably a
collection of other essential properties such as Pareto efficiency, our next task is to design
preference aggregation rules that satisfy them. In most cases, during the design process,
we can draw inspiration from rules that have been successful in other parts of social choice,
such as the idea of maximising the product (rather than the sum) of voter utilities. In other
cases, we have to design rules from scratch, and in still others we will look for help from
computer programs such as SAT solvers. Of course, the types of settings we consider have
in many cases already been studied by others, in which case our task reduces to further
analysing existing proposals.

• Exploring the limits of aggregation rules. In many cases, the results of the design process
will fall short of our hopes, and the rules obtained will not satisfy all the properties we
had identified as desirable. In this case, it is convenient to have an excuse, and a formal
version of an excuse can be obtained in form of impossibility theorems. Such theorems
have a long history in social choice; they show that no logically possible aggregation rule
can satisfy all the desired properties, and thus they establish a formal trade-off between
them. Impossibility theorems are used throughout this thesis to illuminate the settings we
discuss. We obtain these using computer-aided proof techniques.

• Ensuring computational efficiency. A preference aggregation rule is less useful if it is
computationally expensive to evaluate it. In many cases, we are able to complement our
proposed rules with efficient algorithms. However, particularly when it comes to indivisible
goods, the space of possible outcomes has a combinatorial character, and it is often provably
hard (e.g., NP-complete) to find a socially optimal outcome. For these rules, we will look
for algorithms that are efficient under additional assumptions about the input preferences.
In particular, we will look at structured preferences and find that for many appealing types
of structure, efficient algorithms can be obtained.

Part I opens our discussion with a methodological prelude. It introduces a method based on
SAT solving for obtaining impossibility theorems in social choice. We illustrate the method using
applications to single-winner voting, and so in contrast to the rest of the thesis, we do not discuss
the division of a common resource. Still, the discussion in this first part lays the groundwork for
what is to come: We will use the method to uncover trade-offs in each of the three models of fair
division that we study in parts II, III, and IV.

An impossibility theorem gives a list of properties that no aggregation mechanism can simul-
taneously satisfy. It implies that, when designing mechanisms, we must choose some of the
properties but must give up the rest. Commonly, these theorems identify a conflict between the
quality of the social outcome selected by the mechanism and the resistance of this mechanism to
strategic misrepresentation by the agents. One way to prove such an impossibility is to use logic
tools such as SAT solvers to search over the space of all logically possible aggregation mechanisms;
if the search fails to find an example of a mechanism satisfying all our desired properties, we
have established an impossibility. Excitingly, a technique based on minimal unsatisfiable sets
allows us to automatically extract a human-readable proof of the impossibility, providing rare
examples of computer-generated proofs that are comprehensible to humans.

In Chapter 1, we study the no-show paradox. This is a surprising defect of many voting rules.
A voting rule in this context asks every voter to submit a complete ranking of the candidates

3



0. Introduction

(imagine the election of the president of a country). Given these rankings, the voting rule must
select a single winning candidate. Many possible voting rules have been proposed and have
been used in elections around the globe. In the 1980s, social choice theorists noticed that under
many of these rules, it can be beneficial for voters to abstain from an election. For example,
it can happen that a voter who ranks candidate c in top position causes c to lose if the voter
participates; if the voter abstains and does not submit the ranking, then c is elected by the
rule. In particular, this occurs for voting rules from a class proposed by the 18th century French
intellectual Condorcet. We focus on the case where exactly 4 candidates are running. Using a
SAT solver, we construct a Condorcet rule which avoids the no-show paradox as long as at most
11 voters participate. On the other hand, we prove that no such rule exists for 12 or more voters.
This improves upon a result of Moulin [1988b] who proved that no such rule exists for 25 or more
voters.

In Chapter 2, we consider a related paradox that we call the preference reversal paradox.
This occurs when it is sometimes advantageous for a voter to submit the complete opposite of
the actual truthful preference ranking. Again, a surprising number of voting rules exhibit this
paradox, including all Condorcet rules. We show that the paradox is unavoidable for Condorcet
rules when there are at least 15 voters (if the number of voters is odd) or at least 24 voters (if it
is even).

In Chapter 3, we build on our work on the preference reversal paradox to prove a variant
of the Gibbard–Satterthwaite theorem. This is a foundational result of social choice theory
which shows that every efficient voting rule can be manipulated, in the sense that voters can lie
about their preferences and thereby obtain a better election outcome for themselves. The sole
exception are the “dictatorial” rules, which identify a single voter and always select that voter’s
top choice – clearly, such rules are not manipulable, but they are rather undesirable. Our version
of the Gibbard–Satterthwaite theorem tries to make it more vivid, by giving a more explicit
account of the kind of manipulations that are unavoidable: every sensible voting rule can either
be manipulated by completely reversing one’s preferences, or by a manipulation that voting rules
could easily avoid if they followed Condorcet’s principle.

Part II studies the division of a divisible common budget or resource among several options
which have a public goods character. As a high-stakes example, we can imagine a cabinet deciding
on how to divide the government’s budget among departments such as health, pensions, defence,
education, transportation, and so on. The outcome of the decision can be visualised as a pie
chart, showing the percentage of the budget spent on each area. The cabinet members have
different preferences over how the pie chart should look, perhaps due to ideological differences or
simply by favouring their own departments. Our aim is to design aggregation mechanisms that
can turn these preferences into a final pie chart.

Similar decision problems appear frequently in lower-stakes scenarios, and the ‘budget’ to be
divided need not be monetary. Let us briefly mention some applications. A team organising a
conference may wish to decide how much time to assign to talks, poster sessions, invited talks,
and coffee breaks, as a fraction of the total length of the conference. Coauthors need to decide
how much space to devote to various topics in a textbook or article as a fraction of the fixed
total length. A company which annually donates money to charity could let employees vote over
which charities should receive a donation. Finally, in a parliamentary election, voters decide
what percentage of parliament seats should go to each party, and in many countries there is some
discontent with the current voting systems for this purpose.

Preferences over the division of the budget among projects could be rather complicated, and
Part II is divided into three chapters which study different input formats for these preferences.
In each case, we will try to identify a budget division that is good (in terms of Pareto efficiency)
and which is fair. Fairness can have different meanings depending on the format of preferences,

4



but in general we will aim for notions of proportionality. For example, if 40% of the voters are
strong proponents of a particular project, then about 40% of the budget should be spent on it.

In Chapter 4, we ask each voter to specify how they would split the budget if they were the
sole decision maker. Thus, each voter submits an ideal pie chart, their own budget proposal. A
particularly natural way of aggregating the proposals is by taking the average: for each project,
spend on it the average of the fractions reported in the input pie charts. This method has many
desirable properties, but it has the drawback of being easily manipulated. For example, if we
have to divide the budget among two projects and most voters propose a 50–50 split, then a
voter favouring a 60–40 split would do well by instead proposing 100–0. We develop a class
of mechanisms that are not manipulable, assuming that voter preferences are such that they
prefer pie-charts that are close to their proposals according to the L1 metric, which sums up the
differences on each project. This broad class of mechanisms includes a mechanism inspired by a
market system which leads to outcomes that are proportional in a limited sense. It also includes
a mechanism that maximises utilitarian social welfare, and we characterise this mechanism as
the unique Pareto-efficient mechanism in our class. We then briefly consider a related setting
where projects come with a minimal funding level below which they do not make sense. We show
that this additional constraint makes it impossible for rules to be non-manipulable.

In Chapter 5, we ask voters for an approval set: they should indicate which of the possible
projects they approve. They can approve as many projects as they like. We take a voter’s
happiness with a particular budget division to be the total amount of spending on the voter’s
approved projects. Bogomolnaia et al. [2005] studied this setting, and proposed a number of
attractive aggregation rules. A particularly interesting rule selects the budget distribution that
maximises the product of voter utilities, that is, the rule that maximises the Nash product. This
rule is efficient and satisfies a strong core-like fairness property. The Nash rule is, however,
manipulable. Bogomolnaia et al. [2005] conjectured that there is an impossibility theorem showing
that no rule can simultaneously be efficient, non-manipulable, and fair in a minimal sense. We
use SAT solvers to prove their conjecture.

In Chapter 6, we consider the most traditional input method in social choice theory:
voters are asked to rank the different projects. We study a large class of rules that make
sense in this setting; these are based on converting rankings into numerical scores, and then
maximising a measure of social welfare. Egalitarian rules from our class satisfy individual fairness
properties, and Nash-like rules satisfy group fairness notions including our new concept of SD-core.

Part III considers the division of a common budget among projects that must either be fully
funded or not at all. The newspaper story at the beginning is an example of this type of problem.
A higher-stakes occurrence is in many large cities around the world that use participatory
budgeting. For example, in Paris, the city government sets aside about EUR 100 000 000 every
year for this purpose. Residents of the city can submit a proposal for a project together with a
required funding level. Example proposals include improving a neighbourhood park or renovating
a local school. Then, there is a city-wide election where each voter can vote for up to 4 of the
projects, and the most popular proposals get funded, up to the budget limit. Participatory
budgeting started in Brazil and is getting more and more popular. City governments like it for
the greater civic involvement.

The formal analysis of this setting in its full generality has only begun recently. Designing
satisfying rules can be surprisingly tricky. In the poll over which newspapers Balliol MCR should
buy, I volunteered to apply a voting rule based on the Nash product that seemed sensible to
me. I took the utility of a member to be the number of approved periodicals that we would
purchase, and then used an integer programming solver to find an affordable set that maximised
the product of utilities. To my initial surprise, the result looked very different from what we had
bought in previous years; in particular, no daily newspapers were purchased in optimum. The

5



0. Introduction

intuitive reason is that daily papers are much more expensive than weekly or monthly magazines,
and the objective function made it uneconomical to purchase a daily, even though the number of
ticks for the Guardian far exceeds that for any other choice. We fixed this problem by adding a
constraint that at least two dailies must be included in the final result, but this ad hoc approach
cannot be the last word. Without complicating the preference elicitation process, I do not see a
good solution to this problem. The underlying issue is that an approval-based system cannot
figure out how to trade off prices and approval scores.

To side-step this issue for now, the discussion in Part III will focus entirely on the unit cost case,
where all projects have the same cost. Thus, the budget division problem consists of identifying
exactly k projects to fund, for some fixed k. This problem has received significant attention by
researchers in the last several years under the names of multiwinner elections and committee
selection. We will mostly operate in the framing of electing a committee of people to represent a
larger electorate, and study rules proposed for this purpose, such as the Chamberlin–Courant
rule or Proportional Approval Voting.

In Chapter 7, like in Chapter 5, we consider a setting based on approvals, where voters can
approve as many candidates as they like. The arguably most interesting rules for this setting have
been proposed by late 19th century Danish and Swedish mathematicians Thiele and Phragmén.
Their proposed rules have the aim of proportionally representing the electorate. However, both
of these rules can be manipulated by voters who claim not to approve popular parties, a type
of free-riding. We prove, again using SAT solvers, that every approval-based committee rule is
manipulable in this way, as soon as it provides a minimum amount of voter representation.

In Chapters 8 and 9, we shift our focus to computational issues. The rules in the divisible case
considered in Part II are, as we show, all easy to implement, in the sense that the output pie
chart can be computed by fast algorithms. In contrast, many popular rules for the indivisible
case have winner determination problems that are NP-complete. These rules are typically defined
so that they maximise some objective function over the set of all possible committees. Since there
are exponentially many possible committees, it can be hard to find the best committee using
an efficient algorithm. We show that these intractability results can be avoided when the voter
preferences are well-behaved. In particular, we study cases in which the candidate space has
some underlying structure, so that the preferences are also structured. This structure can then
be used in efficient winner determination algorithms for rules such as the Chamberlin–Courant
rule.

In Chapter 8, we discuss preferences that are single-peaked on a tree. This is a generalisation
of the classic concept of single-peaked preferences which are suitable, for example, when voting
over the value of a numerical quantity. Preferences are single-peaked when the alternatives can
be arranged on an axis from left to right, such that each voter’s most preferred alternative forms
a peak, and preferences are decreasing as we move to alternatives further away on the axis.
When preferences are single-peaked, most voting impossibilities and paradoxes go away, and so
do computational intractability results – for example, Chamberlin–Courant can be computed
in polynomial time for single-peaked preferences. Unfortunately, only an exponentially small
fraction of preference profiles are single-peaked, and hence these positive results often do not
apply in practice. We consider a more permissive generalisation of single-peakedness, where the
alternative space is allowed to have any tree structure. We show that an egalitarian version of the
Chamberlin–Courant rule remains tractable on this more general domain, but that the standard
version becomes NP-complete. However, we show that if the underlying tree is well-behaved,
tractability results can again be obtained. To use the algorithms we propose in this chapter, it is
necessary to have a good understanding of how to find a tree on which a given preference profile
is single-peaked, and we give a detailed graph-theoretic treatment of this issue.

In Chapter 9, we introduce and study a different generalisation of single-peaked preferences:
those that are single-peaked on a circle. This preference model can make sense, for example,

6



when voting over the time of a recurrent meeting (with times arranged on a 24-hour clock),
or for facility location when facilities can only be built on the boundary of a city or plot of
land. We show how to efficiently recognise whether a given profile is single-peaked on a circle,
and we study the axiomatic properties of this domain restriction. Also, we show that many
hard committee selection rules, including Chamberlin–Courant and Proportional Approval
Voting, are polynomial-time computable when preferences are single-peaked on a circle. We
prove this by developing special integer linear programming formulations for the relevant winner
determination problems, and show that these formulations are totally unimodular whenever the
input preferences are single-peaked on a circle.

Part IV studies the allocation of private goods. A collection of indivisible items needs to
be distributed among agents who have different valuations for these items. Agents can receive
several items. If an item is allocated to an agent, no other agent can use that item. The
private-goods nature of the setting allows us to study a fairness notion that is quite different from
the proportionality-type notions that we studied in Parts II and III: we can aim for envy-freeness,
which requires that no agent thinks that another agent received a strictly more valuable bundle.

The word “commons” in the thesis title is meant to both refer to something commonly owned
(such as the budgets in Parts II and III), as well as to land (like in the grazing land of the Tragedy
of the Commons). When dividing land among several parties, an important consideration is to
not make the individual pieces disconnected. Disconnected pieces of land are much less useful.
The classic literature on the division of a perfectly divisible resource (“cake-cutting”) has taken
this consideration seriously, and many popular protocols aim to minimise the number of “cuts”
needed to achieve a fair outcome. However, the literature on indivisible items has traditionally
taken the set of items to have no internal structure, so that the notion of a “connected” bundle of
items does not make sense. However, in practice, the set of items may well have more structure.
The case of booking time slots in a meeting room illustrates this: a 90-minute meeting will be
more productive if held during a contiguous chunk of time, rather than split into three 30-minute
parts. Another example might occur when an organisation moves to a new building, and has to
assign offices to various teams: team communication will be aided if team members are assigned
adjacent offices.

We formalise this idea by taking the set of items to be the vertices of a graph. While deciding
on how to allocate the items, we will only allow ourselves to give out bundles which induce a
connected subgraph. The basic and most interesting example occurs when the underlying graph
is a path, and this can in particular model time slots. Our basic question is whether positive
results from the literature on indivisible items can still be obtained when imposing connectivity
constraints.

In Chapter 10, we look at two notions of fairness that have recently been introduced by
Budish [2011] and that have become very influential: the maximin share guarantee (MMS) and
envy-freeness up to one good (EF1). Both properties can easily be adapted to apply to the case
with connectivity constraints. While there exists examples where MMS cannot be obtained in
the world without connectivity constraints, we show that when the underlying graph does not
have cycles (and so is a forest), a connected MMS allocation always exists and can be found
efficiently. For EF1, several protocols have been introduced that achieve fairness according to
this standard, but none of them can be adapted to honour connectivity constraints. Thus, we
look at protocols with few cuts developed for cake-cutting and try to discretise them. Using this
approach, we are able to prove that an EF1 allocation is guaranteed to exist when the underlying
graph is a path, for either two or for three agents. For four or more agents, we use Sperner’s
lemma to show that there always exists an allocation which is envy-free up to two items (EF2).

In Chapter 11, we study Pareto-optimality and focus on additive valuations. Without connec-
tivity constraints, it is easy to obtain a Pareto-optimal allocation: just assign each item to the

7



0. Introduction

agent who values it highest. This maximises utilitarian social welfare and is thus Pareto-optimal.
However, this approach does not respect connectivity constraints, and the computational problem
of finding a Pareto-optimum becomes interesting. We show that the problem can be solved
efficiently when the item graph is very simple (a path or a star), but that it becomes NP-hard
when the graph is a tree. We also show by an example that there are instances where no EF1
allocation is Pareto-optimal, when items are arranged on a path. This is in contrast to the
situation with connectivity constraints, where it is known that EF1 and Pareto-optimality can
be jointly achieved by maximising Nash welfare.

In Chapter 12, we briefly discuss the problem of finding a strategyproof mechanism that
identifies EF1 allocations on a path, and find that there do not exist any. We connect this result
to work on cake-cutting.

8



Part I.

Methodological Prelude:
Impossibility Theorems and

SAT Solving

9





1. The No-Show Paradox

An important class of voting rules is the class of Condorcet extensions. If there
is an alternative which beats every other alternative by a majority in a pairwise
comparison, then a Condorcet extension must choose that alternative. A seminal
result by Moulin [1988b] shows that every Condorcet extension suffers from the
no-show paradox : in some situations, voters can obtain a better election result if they
abstain from the election. Moulin’s proof works if there are at least 4 alternatives
and 25 voters. We leverage SAT solving to obtain an elegant human-readable proof
of Moulin’s result that requires only 12 voters. Moreover, the SAT solver is able to
construct a Condorcet-consistent voting rule that satisfies participation as well as a
number of other desirable properties for up to 11 voters, proving the optimality of
the above bound.

1.1. Introduction
The result that founded social choice theory is Arrow’s Impossibility Theorem, and impossibility
theorems have played a central role in the field ever since. They can push the field forward by
motivating a search for a good way out, and they can lead to the design of new methods and
mechanisms. An impossibility theorem proves that no mechanism can simultaneously satisfy a
number of desirable properties. Thus, it is a formal way to prove that there is a real trade-off
between these properties: we can only satisfy some, but not all. Most commonly, theorists have
found trade-offs between the quality of the social choice, and the mechanism’s vulnerability
to strategic behaviour. Knowing trade-offs of this kind is important to guide the mechanism
design process. Many otherwise attractive preference aggregation rules are vulnerable to strategic
behaviour; an impossibility theorem can provide a justification for using the rule regardless. The
converse is also often seen, where a rule designed to be resistant to strategic behaviour fails other
desirable axioms, and again an impossibility result can suggest that this is not the mechanism
designer’s fault.

Annoyingly, impossibility theorems in social choice can be difficult to prove. The famous
dictatorship-style results of Arrow and of Gibbard—Satterthwaite have mathematically elegant
proofs based on ultrafilters, and there are dozens of alternative proofs published, employing many
delightful techniques. But this is the exception. In most other cases, truly elegant proofs are
not available. Instead, the proofs have a combinatorial feel, and depend on the construction of
several related preference profiles, together with a path through these profiles which corresponds
to a contradiction proof. These proofs are typically not insightful, and due to the type of
mathematical environment considered, we usually can’t hope for something more aesthetically
pleasing.

A good example is a theorem about the no-show paradox proved by Hervé Moulin, which
is the subject of this chapter. Fishburn and Brams [1983], while studying the popular voting
rule STV (single transferable vote), noticed an odd behaviour of that rule: There are situations
where a voter might bring about a worse outcome by participating in the election. They found
a specific profile (see Figure 1.1) in which STV declares candidate b to be the election winner,
yet if a new voter reporting preferences a � b � c is added to the profile, STV now declares the
alternative c as the election winner. Hence, it is better for the voter to abstain, since the voter

11



1. The No-Show Paradox

417 82 143 357 285 324

a a b b c c
b c a c a b
c b c a b a

(a) The plurality scores for a, b, c are 499, 500,
and 609, respectively. No-one has a majority,
so a is eliminated. A majority of voters
prefers b to c, so b wins under STV.

419 82 143 357 285 324

a a b b c c
b c a c a b
c b c a b a

(b) Two additional abc voters join. Now STV
eliminates b as the plurality loser, and a
majority prefers c to a, so c wins under
STV, which is worse for the new voters.

Figure 1.1.: Example of Fishburn and Brams [1983] showing a no-show paradox of STV. Column
headers denote how many voters submit the shown ranking. (Much smaller examples
exist.)

prefers b to c, giving rise to a “no-show paradox”. Voting rules from the class of scoring rules
(including plurality and Borda’s rule) never exhibit this paradox. However, further investigation
revealed that STV is not the only offender, and indeed almost all standard rules (except scoring
rules) suffer from the paradox. In particular, all known rules satisfying Condorcet’s consistency
axiom1 seemed to show the paradox. Moulin’s theorem formalises this observation, and states
that every voting rule either exhibits a no-show paradox, or it fails Condorcet-consistency.

Moulin proves his result by presenting a specific preference profile containing the votes of 25
voters over 4 alternatives. He then considers various combinations of voters abstaining from
the election, and shows by a case analysis that each either results in a no-show paradox, or a
failure of Condorcet-consistency. The construction of this proof is an awesome achievement, and
the student attempting to design alternative proofs by hand might find that the effort ends in
prolonged frustration. The student might end up thinking that this task would be better handled
automatically by computers, and that computers could more efficiently search for those magic
profiles that suffice to prove an impossibility. The student is in luck, because recent advances in
AI and constraint solving mean that the task can indeed be automated.

Moulin’s result proves that every Condorcet-consistent voting rule admits at least one situation
where the no-show paradox occurs, but all these situations involve many voters. Indeed, Moulin’s
result does not rule out the existence of a Condorcet-consistent rule which avoids the paradox
in all situations with fewer than 25 voters. Such a rule would be practically useful, since many
decisions are reached in small committees. We say that a rule satisfies participation if it avoids
the paradox. Our research question is this: What is the largest n for which there exists a
Condorcet-consistent rule satisfying participation? Conversely, what is the smallest n for which
Moulin’s theorem can be proved?

By hand, it is possible to make Moulin’s proof slightly more efficient, and prove the theorem
for n = 21 < 25 voters, as noted in a Master’s thesis at TU Munich [Kardel, 2014]. Further
improvements are difficult; and ideally, we would want a matching lower bound, and it is
completely unclear how to obtain non-trivial lower bounds. Using a computer-aided approach,
we achieve these aims: we show that Condorcet-consistency and participation are incompatible
for 4 alternatives and n = 12 voters, but that the same result does not hold with n = 11 voters.2

Out method is based on SAT solving. We fix a number n of voters and 4 alternatives, and then
write down a large formula of propositional logic (in conjunctive normal form) whose satisfying
assignments encode a voting rule satisfying Condorcet-consistency and participation. These

1An alternative x is a Condorcet winner if for every other alternative y, a majority of voters prefers x to y.
Condorcet-consistency requires that the voting rule outputs the Condorcet winner, whenever one exists.

2For the case of m = 3 alternatives, Moulin [1988b] showed that the maximin rule with lexicographic tie-breaking
is a Condorcet extension satisfying participation.

12



1.2. Related Work

formulas use an explicit encoding: we introduce a variable for each possible input (a preference
profile) and each possible output (an alternative) of the voting rule. Clauses are used to constrain
the voting rule so that is satisfies our axioms. We can then pass the formula to a SAT solver.
Even though our formulas are extremely large (with millions of variables and clauses), and even
though the satisfiability problem is NP-complete, the resulting formula turns out to be solvable
in a relatively short time. This is both due to recent progress in solving algorithms, and due to
the structure of our formula, which seems to be easily solved.

Now, the SAT solver may either find that our formula is satisfiable or not. If the formula is
satisfiable, a satisfying assignment encodes a voting rule satisfying our axioms. From the solver
output, we can immediately extract an explicit example of such a rule, but only in form of a
look-up table (which says, for each preference profile separately, what the outcome should be).
In the case of unsatisfiability, we have obtained an impossibility result: no voting rule satisfies
both of our requirements. Now, SAT solvers do not usually give a ‘witness’ of unsatisfiability.
Some solvers can produce a trace that can be used to check the unsatisfiability by computer
tools, but these traces tend to be very large. While these files can make for fun articles in the
popular press (recent examples include a 13 GB proof of the Erdős Discrepancy Conjecture
[Konev and Lisitsa, 2014], and a 200 TB solution to the Boolean Pythagorean Triples Problem
[Heule et al., 2016]), they cannot be understood by humans. Excitingly, in our case, it is possible
to obtain a human-readable proof of the impossibility. Our method is based on extracting a
minimal unsatisfiable set (MUS), which is a minimal (with respect to set inclusion) selection of
clauses which are already unsatisfiable. For some voting problems such as ours, where clauses
tend to be ‘local’, these MUSes can be extremely small, and only contain a few dozen clauses. By
interpreting these clauses as proof steps, it is then possible to construct (by hand) a contradiction
proof in natural language. This proof will capture an impossibility for fixed n and m, though it
is often possible to extend the proof to larger parameters using induction.

The approach described here is based on previous work by Tang and Lin [2009], Geist and
Endriss [2011], Brandt and Geist [2016], and Brandl et al. [2015a]. A straightforward application
of this methodology is not enough for the problem we study in this chapter, because the formulas
produced grow linearly with the number of possible preference profiles, and there are too many
such profiles for the parameter values we need to consider. To deal with this, we used several
new techniques. In particular, we extracted knowledge from computer-generated proofs of
weaker statements and then used this information to guide the search for proofs of more general
statements. In the following sections, we will describe this methodology and present the proof.

1.2. Related Work
The no-show paradox was first observed by Fishburn and Brams [1983] for the STV voting
rule. Ray [1986], Lepelley and Merlin [2000], and Brandt et al. [2019] investigate how frequently
this phenomenon occurs on random profiles. The main impossibility theorem addressed in this
chapter is due to Moulin [1988b] and requires at least 25 voters. This bound was improved to 21
voters by Kardel [2014]. Simplified presentations of Moulin’s proof are given by Schulze [2003]
and Smith [2007]. Holzman [1988] and Sanver and Zwicker [2009] strengthen Moulin’s theorem
by weakening Condorcet-consistency and participation, respectively. Duddy [2014a] shows the
incompatibility of Condorcet-consistency and weaker notions of participation when allowing weak
preferences. Pérez [2001] considers these notions in the context of set-valued voting rules and
shows that all common Condorcet extensions except the maximin rule and Young’s rule violate
these properties. Jimeno et al. [2009] prove variants of Moulin’s theorem for set-valued voting
rules based on the optimistic and the pessimistic preference extension. Determining optimal
bounds on the number of voters for these paradoxes has been recognised as an open problem.
For example, Pérez notes that “a practical question, which has not been dealt with here, refers to

13



1. The No-Show Paradox

the number of candidates and voters that are necessary to invoke the studied paradoxes” [Pérez,
2001, p. 614] and Duddy [2014a] concludes that “we do not know what upper bound is imposed
on the number of potential voters by the conjunction of Condorcet consistency and [...] the
participation principle in the case of linear orderings. And these upper bounds may fall as the
number of candidates rises. These are important open problems since voting is often conducted
by small groups of individuals.” The influence of the number of voters and alternatives has
recently also been studied in other contexts of social choice theory [see, e.g., Campbell and Kelly,
2010, Campbell et al., 2012].

When assuming that voters have incomplete preferences over sets or lotteries, participation
and Condorcet-consistency can be satisfied simultaneously and positive results for common
Condorcet-consistent voting rules (such as the top cycle) have been obtained by Brandt [2015]
and Brandl et al. [2015a,b]. A particularly positive result was recently obtained for maximal
lotteries, a probabilistic Condorcet extension due to Fishburn [Brandl et al., 2019a].

The computer-aided techniques in this chapter are inspired by Tang and Lin [2009], who
reduced well-known impossibility results from social choice theory (such as Arrow’s theorem) to
finite instances, which can then be checked automatically. This methodology has been extended
and applied to new problems by Geist and Endriss [2011], Brandt and Geist [2016], and Brandl
et al. [2015a]. Geist and Peters [2017] give a survey of the technique and the results obtained
with it. More generally, SAT solvers have also proven to be quite effective for other problems in
economics. A prominent example is the ongoing work by Fréchette et al. [2016] in which SAT
solvers are used for the development and execution of the FCC’s upcoming reverse spectrum
auction.

Our approach can be seen as an instance of automated mechanism design [Conitzer and
Sandholm, 2002], which uses algorithms to construct a mechanism satisfying properties such as
truthfulness and budget balance for a specific problem instance. A problem instance would be
specified by a collection of possible agent types as well as a prior distribution over them, and a
typical aim would be to find a mechanism that maximises a notion of expected social welfare or
expected revenue subject to truthfulness. Such a problem can often be solved using an integer
linear programming formulation with a similar structure as the SAT formulations that we use.
In our applications, there is no prior, and we are interested only in the existence question rather
than an optimisation of some objective function. Also, while our aim is to find an impossibility
theorem, the standard outlook of automated mechanism design is more positive: the hope is
that known impossibility theorems are unlikely to apply to the specific instance the mechanism
designer is interested in [Conitzer and Sandholm, 2003]. While there may not be known general
recipes for obtaining a good mechanism for the instance, an automated approach can find an
optimal mechanism tailored to the problem at hand. However, the automated mechanism design
literature contains some examples of impossibilities obtained from integer linear programming, for
example in the context of mechanisms for deciding charitable donations [Conitzer and Sandholm,
2011, Footnote 13]. The initial paper on automated mechanism design [Conitzer and Sandholm,
2002] studies the computational complexity of the problem of finding an optimal mechanism
for a given instance, and finds hardness results when aiming for deterministic mechanisms. A
similar question would be interesting for problems of the kind we study: for example, given an
explicit list of possible preference profiles, what is the complexity of deciding whether there is a
strategyproof and Pareto-efficient voting rule defined only on those profiles?

1.3. Preliminaries
Let A be a set of m alternatives. Let N be a set of n voters, not all of which need to participate
in the election. By N := 2N \ {∅} we denote the set of electorates, i.e., non-empty subsets of N .
We will mostly consider the case of 4 alternatives, and take A = {a, b, c, d}. We use the labels

14



1.3. Preliminaries

x, y for generic elements of A.
A linear order < is a complete, antisymmetric, transitive binary relation over A. We write �

for the strict (irreflexive) part of <. The set of all linear orders over A is denoted by A!. For
brevity, we denote by abcd the preference relation a <i b <i c <i d, eliding the identity of voter i,
and similarly for other preferences. For a linear order <, we write top(<) for the most-preferred
element of A, so that top(<) < x for all x ∈ A.

A preference profile P is a function from an electorate N ′ ∈ N to the set of linear orders A!,
assigning to every voter i ∈ N a preference relation. Thus, the set of all profiles is

⋃
N ′∈N A!N ′ .

We will always write <i for the linear order P (i), and it will be clear from the context which
profile P is meant.

To define the participation axiom, we need notation for adding or removing a voter from a
profile. For a preference profile P ∈ A!N ′ with (i,<i) ∈ P , and j ∈ N \N ′, <j ∈ A!, we write

P − i := P \ {(i,<i)}, P + (j,<j) := P ∪ {(j,<j)}.

If the identity of the voter is clear or irrelevant, we refer to P − i by P −<i, and write P +<j
instead of P + (j,<j). If k voters with the same preferences <i are to be added or removed, we
write P + k ·<i and P − k ·<i, respectively.

We wish to study voting rules, which, given a preference profile, decide on a winning alternative.
We consider two formal definitions of voting rules, depending on whether all voters are guaranteed
to participate, or not.

Definition 1.1.

• A variable-electorate voting rule is a function f :
⋃
N ′∈N A!N ′ → A.

• A fixed-electorate voting rule is a function f : A!N → A.

A variable-electorate voting rule induces a fixed-electorate voting rule in the obvious way.
Note that our definitions require f to be resolute, meaning that f returns exactly one winner for
each profile P . In this chapter, we study variable-electorate voting rules, while the next chapter
considers a similar question that is relevant for fixed electorates.

Definition 1.2. A variable-electorate voting rule f satisfies participation if all voters always
weakly prefer voting to not voting, i.e., if f(P ) <i f(P − i) for all P ∈ A!N ′ and i ∈ N ′ with
N ′ ∈ N .

Equivalently, participation requires that for all preference profiles P not including voter j, we
have f(P +<j) <j f(P ). By induction, participation also requires that f(P + k ·<j) <j f(P )
for any k > 1: thus, a group of agents with identical preferences weakly prefers joining.

Given a profile P ∈ A!N ′ , we say that a ∈ A is the Condorcet winner in P if |{i ∈ N ′ : a �i
b}| > |{i ∈ N ′ : b �i a}| for all b ∈ A \ {a}. Thus, a Condorcet winner wins against every other
alternative in a pairwise majority comparison. If a Condorcet winner exists in a profile, then it
is clearly unique.

Definition 1.3. A Condorcet extension is a voting rule that selects the Condorcet winner
whenever it exists. Thus, f is a Condorcet extension if for every preference profile P that admits
a Condorcet winner x, we have f(P ) = x. We say that f is Condorcet-consistent.

The majority margins of P is the map gP : A × A → Z with gP (x, y) = |{i ∈ N ′ | x <i
y}| − |{i ∈ N ′ | y <i x}|. If gP (x, y) > 0 for some alternatives x, y ∈ A, then a majority of
voters prefers x to y. The majority margins can be viewed as the adjacency matrix of a weighted
tournament TP . We say that a preference profile P induces the weighted tournament TP . An
example of a weighted tournament is shown in Figure 1.2. An alternative x is the Condorcet
winner in P if and only if gP (x, y) > 0 for all y ∈ A \ {x}.

15



1. The No-Show Paradox

2 3 3 2

a b c d
b d a c
d c b a
c a d b

a b

c d

4

6 6

4

Figure 1.2.: An example of a preference profile and its majority margins shown as a weighted
tournament. The number at the top of each column indicates how many voters
submit the relevant ranking; thus there are 10 voters in total in this example. The
weighted tournament is the digraph with vertex set A, and with an arc x→ y if and
only if gP (x, y) > 0; we label the arc with gP (x, y). In the example, 7 voters prefer
a to b and 3 voters prefer b to a, and so the arc from a to b is labelled by 4 = 7− 3.
Also, 5 voters prefer a to d and 5 voters prefer d to a, and so there is a majority tie;
thus we do not draw an arc between a and d.

1.4. Method: SAT Solving for Computer-Aided Proofs

The results of this chapter were obtained with the aid of a computer. In this section, we describe
the method that we employed. The main tool in our approach is an encoding of our problem
into propositional logic. We then use SAT solvers to decide whether there exists a Condorcet
extension satisfying participation. If the answer is yes, the solver returns an explicit voting rule
with the desired properties. If the answer is no, we use a process called MUS extraction to find a
short certificate of this fact which can be translated into a human-readable proof. By successively
proving stronger theorems and using the insights obtained through MUS extraction, we arrived
at results as presented in their full generality in this chapter.

1.4.1. SAT Encoding

Our aim is to construct a family (ϕn)n>1 of propositional formulas such that ϕn is satisfiable if
and only if there exists a voting rule f that satisfies Condorcet-consistency and participation if
m = 4 and |N | = n. We take A = {a, b, c, d} throughout the discussion in this section. A natural
encoding proceeds like this: Generate all profiles over 4 alternatives with at most n voters. For
each such profile P , introduce 4 propositional variables xP,a, xP,b, xP,c, xP,d, where the intended
meaning of xP,a is

xP,a is set true ⇐⇒ f(P ) = a.

We then add clauses requiring that for each profile P , f(P ) takes exactly one value, and we add
clauses requiring f to be Condorcet-consistent and satisfy participation.

Sadly, the encoding sketched above is not tractable for the values of n that we are interested
in: the number of variables and clauses used grows as Θ(24n), because there are 4! = 24 possible
preference relations over 4 alternatives and thus 24n profiles with n voters. For n = 7, this leads
to more than 400 billion variables, and for n = 15 we exceed 1022 variables.

To escape this combinatorial explosion, we will temporarily restrict our attention to pairwise
voting rules. These are voting rules whose outcome only depends on the majority margins of the
input profile. Recall that we write TP for the weighted tournament induced by P . Formally, a
voting rule f is pairwise if f(P ) = f(P ′) whenever TP = TP ′ . Examples of pairwise voting rules
are Kemeny’s rule, tournament solutions like Copeland, and Borda. To specify a pairwise rule,
we only need to decide the output for each possible weighted tournament. Abusing notation, for

16



1.4. Method: SAT Solving for Computer-Aided Proofs

a pairwise rule, for each weighted tournament T , we write f(T ) for the outcome of f at each
profile P with T = TP .

The number of weighted tournaments induced by profiles with n voters grows much slower than
the number of profiles. Our computer enumeration3 suggests a growth of order about 1.5n. This
much more manageable (yet still exponential) growth allows us to consider problem instances up
to n ≈ 16.

Other than referring to (weighted) tournaments instead of profiles, our encoding into propo-
sitional formulas now proceeds exactly like before. For each tournament T , we introduce the
variables xT,a, xT,b, xT,c, xT,d, one for each alternative. We require that at each T , exactly one
alternative is chosen, and so we define the formula

ϕfunctionality(T ) ≡
(
xT,a ∨ xT,b ∨ xT,c ∨ xT,d

)
∧
∧
x 6=y

(¬xT,x ∨ ¬xT,y)

The first part of the formula requires that at least one alternative is selected, and the second
part requires that at most one alternative is selected. With our intended interpretation of the
variables xT,x, all satisfying assignments of

∧
T ϕfunctionality(T ) are functions from tournaments

into {a, b, c, d}.
Since we are interested in voting rules that satisfy participation, we also need to encode this

property. To this end, let T = TP be the tournament induced by P and let < be a preference
relation. Define T +< := TP+<. (The tournament T +< is independent of the choice of P .) We
define

ϕparticipation(T,<) ≡
∧
x

(
xT,x →

∨
y<x

xT+<,y

)
.

Requiring f to be Condorcet-consistent is straightforward: if tournament T admits b as the
Condorcet winner, we add

ϕcondorcet(T ) ≡ ¬xT,a ∧ xT,b ∧ ¬xT,c ∧ ¬xT,d,

and we add similar formulas for each tournament that admits a Condorcet winner. Then the
models of the conjunction of all the ϕfunctionality, ϕparticipation, and ϕcondorcet formulas are precisely
the pairwise voting rules satisfying Condorcet-consistency and participation.

By adapting the ϕcondorcet formulas, we can impose more stringent conditions on f . For
example, we can use this to exclude Pareto-dominated alternatives, and to require f to always
pick from the top cycle.

1.4.2. SAT Solving and MUS Extraction

The formula we have obtained above are all given in conjunctive normal form (CNF), and thus
can be evaluated without further transformations by any off-the-shelf SAT solver. In order to
physically produce a CNF formula as described, we employ a straightforward Python script
that performs a breadth-first search4 to discover all weighted tournaments with up to n voters
(see Algorithm 1 for a schematic overview of the program). The script outputs a CNF formula
in the standard DIMACS format, and also outputs a file that, for each variable xT,x, records
the tournament T and alternative x it denotes. This is necessary because the DIMACS format
uses uninformative variable descriptors (consecutive integers) and memorising variable meanings
allows us to interpret the output of the SAT solver.

3For n = 1, . . . , 14, there are 24, 219, 1 136, 4 175, 12 216, 30 429, 67 264, 135 621, 254 200, 449 031, 755 184,
1 218 659, 1 898 456, 2 868 825 weighted tournaments induced by profiles with n voters, respectively.

4The large memory requirements of a BFS were the largest bottleneck in our approach. Sadly, a DFS does not
work in our context.

17



1. The No-Show Paradox

Algorithm 1 Generate formula for up to n voters
T0 ← {weighted tournament on {a, b, c, d} with all edges having weight 0}.
for k = 1, . . . , n do

Tk ← ∅
for T ∈ Tk−1 do

for < ∈ A! do
Calculate T ′ := T +<
if T ′ has not been seen previously, i.e., T ′ 6∈ T0 ∪ · · · ∪ Tk then

Add T ′ to Tk
Write ϕfunctionality(T ′), ϕcondorcet(T ′)

Write ϕparticipation(T,<)

As an example, the output formula for n = 15 in DIMACS format has a size of about 7 GB
and uses 50 million variables and 2 billion clauses, taking 6.5 hours to write. Plingeling [Biere,
2013], a popular SAT solver, solves this formula in 50 minutes of wall clock time, half of which is
spent parsing the formula.

In case a given instance is satisfiable, the solver returns a satisfying assignment, giving us an
existence proof and a concrete example for a voting rule satisfying participation (and any further
requirements imposed). In case a given instance in unsatisfiable, we would like to have a short
certificate of this fact as well. One possibility for this is having the SAT solver output a resolution
proof (usually using the standard DRUP or DRAT formats). This yields a machine-checkable
proof, but has two major drawbacks: the generated proofs can be uncomfortably large, and they
do not give human-accessible insights about why the formula is unsatisfiable.

We handle this problem by computing a minimal unsatisfiable subset (MUS) of the unsatisfiable
CNF formula. An MUS is a subset of the clauses of the original formula which itself is unsatisfiable,
and is minimal with respect to set inclusion: removing any clause from it yields a satisfiable
formula. We used the tools MUSer2 [Belov and Marques-Silva, 2012] and MARCO [Liffiton et al.,
2016] to extract MUSes.

Note that for purposes of extracting human-readable proofs, it is desirable for the MUS to be as
small as possible, and also to refer to as few different tournaments as possible. The first issue can
be addressed by running the MUS extractor repeatedly, instructing it to order clauses randomly
(note that clause sets of different cardinalities can be minimally unsatisfiable with respect to
set inclusion); similarly, we can use tools like MARCO to enumerate all MUSes and look for
small ones. The second issue can be addressed by computing a group MUS : here, we partition
the clauses of the CNF formula into groups; then, we look for a minimal set of groups whose
union is unsatisfiable. In our case, the clauses referring to a given tournament T form a group.
In practice, finding a group MUS first and then finding a standard (clause-level) MUS within the
group MUS yielded sets of size much smaller than MUSes returned without the intermediate
group-step (often by a factor of 10).

To translate an MUS into a human-readable proof, we created another program that visualises
the MUS in a convenient form. Roughly, the visualisation program proceeds as follows: an
MUS contains two types of clauses. Some (like ϕfunctionality, ϕcondorcet) refer to a single tour-
nament; we draw a vertex for each such tournament mentioned in the MUS. On the other
hand ϕparticipation(T,<) clauses connect the outcomes at two tournaments together; we draw
an arc between them for each ϕparticipation clause occurring in the MUS, and label the arc with
<. We also annotate vertices with their Condorcet winners if ϕcondorcet clauses are mentioned.
Indeed, this program outputs essentially the ‘proof diagram’ shown in Figure 1.3. We think that
interpreting such a diagram is quite natural. More importantly, the automatically produced
graphs allowed us to quickly judge the quality of an extracted MUS. As described, each MUS

18



1.5. Main Result

induces a directed graph whose vertices are profiles. One way to quickly judge how ‘complicated’
the corresponding impossibility proof is, is by counting the number of high-degree nodes in that
graph. Roughly, at each node that is connected to more than two other nodes we will have
to perform a case distinction. Thus, a proof with fewer high-degree vertices will be easier to
understand.

1.4.3. Incremental Proof Discovery
The SAT encoding described in Section 1.4.1 only concerns pairwise voting rules, yet our negative
result does not require or use this assumption. We were able to remove this assumption, by
going through multiple rounds of generating and evaluating SAT formulas, extracting MUSes,
and using the insights generated by this as ‘educated guesses’ to solve more general problems.

Following the process as described so far led to a proof that for 4 alternatives and 12 voters,
there is no pairwise Condorcet extension that satisfies participation. That proof used the
assumption of pairwiseness, i.e., it assumed that the voting rule returns the same alternative on
profiles inducing the same weighted tournament. However, intriguingly, the preference profiles
mentioned in the proof did not contain all 4! = 24 possible preference relations over {a, b, c, d}.
In fact, the proof only used 10 of the possible orders. Further, each profile appearing in the
proof included Pbase = {abdc, bdca, cabd, dcab} as a subprofile. As we argued at the start of
Section 1.4.1, it is intractable to search over the entire space of preference profiles. On the other
hand, it is much easier to merely search over all extensions of Pbase that contain at most n = 12
voters and only contain copies of the 10 orders previously identified. The SAT formula produced
by doing exactly this turned out to be unsatisfiable, and a small MUS extracted from it gave rise
to Theorem 1.5 below.

1.5. Main Result
Before we come to the proof of our main result, we prove a lemma which can be seen as an
‘induction step’. The proof we obtain from the SAT solver works for a fixed number of alternatives
(m = 4), and the following lemma allows us to extend the reach of the proof to any number of
alternatives greater than that.

Lemma 1.4. Suppose that f is a (variable-electorate) Condorcet extension satisfying participation,
and let P be a preference profile. Let B ( A be a set of alternatives such that each voter ranks
every x ∈ B below every y ∈ A \B. Then f(P ) /∈ B.

Proof. We say that the members of B are bottom alternatives. We prove the lemma by induction
on the number of voters |N | in P . If P consists of a single voter i, then, since f is a Condorcet
extension, f(P ) must return i’s top choice,5 which is not a bottom alternative. If P consists of
at least 2 voters, and i ∈ N , then by participation f(P ) <i f(P − i). If f(P ) were a bottom
alternative, then so would be f(P − i), contradicting the inductive hypothesis.

We are now in a position to state and prove our main claim that Condorcet extensions cannot
avoid the no-show paradox for 12 or more voters (when there are at least 4 alternatives), and
that this result is optimal.

The following computer-aided proof can be understood by examining the corresponding ‘proof
diagram’, shown in Figure 1.3. An arrow such as P P ′+ abcd indicates that profile P ′ is
obtained from P by adding a voter abcd, and is read as “if one of the bold green alternatives
(here ab) is selected at P , then one of them is selected at P ′” (by participation). The ‘leaves’

5We are not using the full force of Condorcet-consistency here, and only require a notion of unanimity or
faithfulness.

19



1. The No-Show Paradox

2 3 3 2

a b c d
b d a c
d c b a
c a d b

P0

•

− 2 · dcab
− 3 · cabd − 3 · bdca

+ 2 · abcd
•

b

− 3 · cabd

d

− 2 · abdc
− 3 · bdca

+ 2 · dcba

a b

c d

4

6 6

4
a b

c d

1

1 17 7

3

a b

c d

9
1

5
1 5

1

a b

c d

1

5 51 1

9

a b

c d

3

7 17

1

1

Figure 1.3.: Computer-aided proof of Theorem 1.5 in graphical form, showing that there is no
Condorcet extension that satisfies participation for m > 4 and n > 12.

in the diagrams are profiles admitting a Condorcet winner, and we then print the weighted
tournament associated with this profile (unlabelled arcs have weight 1, arcs not printed have
weight 0). The Condorcet winner is shown in a bold circle. In each case, the Condorcet winner
contradicts what is required by the participation axiom.

Theorem 1.5. There is no variable-electorate Condorcet extension that satisfies participation
for m > 4 and n > 12.

Proof. We first consider the case m = 4. The proof follows the structure depicted in Figure 1.3.
Let P0 = 2 ·abdc+ 3 · bdca+ 3 · cabd+ 2 ·dcab be the preference profile with 10 voters shown in the
figure, and assume for a contradiction that f is a Condorcet extension that satisfies participation.

Since P0 remains fixed after relabelling alternatives according to abcd 7→ dcba and reordering
voters, we may assume without loss of generality that f(P0) ∈ {a, b}. (An explicit proof in case
f(P ) ∈ {c, d} is indicated in Figure 1.3.)

Let P1 = P0 + 2 · abcd be the profile obtained from P0 after two new voters with preferences
abcd join. Since f satisfies participation, and f(P0) ∈ {a, b}, we must have that f(P1) ∈ {a, b},
since otherwise the new voters would be worse off by joining the electorate.

We now perform a case distinction on the value of f(P1).
Suppose f(P1) = a. Let P2 = P1 − 3 · bdca. Since f satisfies participation, f(P2) = a, since

otherwise the two leaving voters would be better off abstaining. Calculating the majority margins
of profile P2 (see the second tournament from the left in Figure 1.3), we find that c is a Condorcet
winner in P2. Thus, the fact that f(P2) = a contradicts that f is a Condorcet extension.

Suppose instead that f(P1) = b. Let P3 = P1 − 2 · dcab; by participation, we have that
f(P3) = b since otherwise the leaving voters are better off. Next let P4 = P3 − 3 · cabd. Again
by participation, since f(P3) = b, we must have f(P4) ∈ {b, d}, or otherwise the leaving voters
would be better off. However, in profile P4, alternative a is a Condorcet winner (see the left-most
tournament in Figure 1.3), and so we have a contradiction to f being a Condorcet extension.

Since either case leads to a contradiction, there can be no voting rule f with the desired
properties.

If m > 4, we introduce new alternatives x1, x2, . . . , xm−4 and place them to the bottom of
the voters in P0 and in all other votes. By Lemma 1.4, f chooses from {a, b, c, d} at each step,
allowing the proof to go through as for the case m = 4.

20



1.5. Main Result

a,#1,(1,1,1,1,1,1)
a,#1,(1,1,1,1,1,-1)
a,#1,(1,1,1,-1,1,1)
a,#1,(1,1,1,-1,-1,1)
a,#1,(1,1,1,1,-1,-1)
a,#1,(1,1,1,-1,-1,-1)
b,#1,(-1,1,1,1,1,1)
b,#1,(-1,1,1,1,1,-1)
b,#1,(-1,-1,1,1,1,1)
b,#1,(-1,-1,-1,1,1,1)
b,#1,(-1,1,-1,1,1,-1)
b,#1,(-1,-1,-1,1,1,-1)
c,#1,(1,-1,1,-1,1,1)
c,#1,(1,-1,1,-1,-1,1)

a,#11,(9,11,3,9,1,-9)
a,#11,(11,9,3,7,1,-9)
c,#11,(5,-9,-1,-11,-1,7)
c,#11,(5,-9,-1,-11,-1,5)
c,#11,(3,-11,-1,-9,1,7)
c,#11,(3,-11,-3,-9,1,7)
c,#11,(3,-11,-3,-11,-1,7)
b,#11,(-1,3,-5,-3,5,-3)
b,#11,(-3,3,-7,-3,5,-3)
b,#11,(-3,1,-7,-3,5,-3)
c,#11,(-3,1,-5,-5,5,-1)
a,#11,(3,7,11,-3,9,11)
a,#11,(3,7,11,-3,9,9)
a,#11,(3,7,11,-5,9,11)

Figure 1.4.: Excerpt of look-up table giving a pairwise Condorcet extension satisfying participation
for n 6 11 voters (from Theorem 1.6). Each row lists a weighted tournament as
(gP (a, b), gP (a, c), gP (a, d), gP (b, c), gP (b, d), gP (c, d)) with a chosen alternative, and
with the number of voters inducing the tournament.

A remarkable and unexpected aspect of the computer-aided proof above is its use of symmetry.
The preference profile P0 considered at the start of the proof has self-symmetries which allow us
to exclude certain outcomes without loss of generality. Such symmetries do not appear in the
original hand-made proof by Moulin [1988b]. In hindsight, it makes intuitive sense that the most
efficient proof (in terms of the number of voters required) is symmetric in this way, and we will
see similar symmetries in the computer-aided proofs found throughout this thesis.

The following result says that our bound on the number of voters is tight, because our
propositional formula for n = 11 voters is satisfiable. We do not have a good understanding of
the rule found by the solver (though see the discussion below for some statistics), and the rule
could be ill-behaved. However, a useful feature of our computer-aided approach is that we can
easily add additional requirements for the desired voting rule. Our formula for n = 11 voters
remains satisfiable even after we add the requirement that no Pareto-dominated alternatives are
selected, that no Condorcet loser is selected, and that the selected alternative is contained in the
top cycle (also known as the Smith set). For definitions of these common social choice properties,
see Fishburn [1977].

Theorem 1.6. There is a Condorcet extension f that satisfies participation for m = 4 and
n 6 11. Moreover, f is pairwise, Pareto-optimal, and a refinement of the top cycle.

The Condorcet extension f is given as a look-up table, which is derived from the output of a
SAT solver. The look-up table lists all 1 204 215 weighted tournaments inducible by up to 11
voters and assigns each an output alternative (see Figure 1.4 for an excerpt). The relevant text
file has a size of 28 MB (gzipped 4.5 MB). We deposited this file in the public repository Harvard
Dataverse, together with a Python script verifying that it describes a voting rule that satisfies
participation [Brandt et al., 2016c].

Comparing this voting rule with known voting rules, it turns out that it selects one of the
maximin winners in 99.8% and one of the Kemeny winners in 98% of all weighted tournaments.
Note that there can be multiple maximin and Kemeny winners in a given profile; the rule agrees
with the maximin rule with lexicographic tie-breaking on 95% of weighted tournaments. The
similarity with the maximin rule is interesting because maximin satisfies participation for m = 3
alternatives [Moulin, 1988b]. A well-documented flaw of the maximin rule is that it fails to be a

21



1. The No-Show Paradox

3 3 4 5

a a b d
d d c b
c b a c
b c d a

d

+ 6 · bdca

c

+ 6 · acbd

b

+ 4 · cbad

+ 4 · cabd
a

+ 4 · dabc

a b

c d

9

9 115 1

13
a b

c d

7
1

151 3

3

a b

c d

3

11 131 1

1

a b

c d

1
1 113 11

11

Figure 1.5.: Proof diagram for Moulin’s original proof.

refinement of the top cycle (and may even return Condorcet losers), while our rule avoids these
pathologies: Our computer-generated rule always picks from the top cycle while it remains very
close to the maximin rule. Also, 80% of the weighted tournament inducible by profiles with
n 6 11 voters admit a Condorcet winner, which uniquely determines the output of the rule; this
can be used to reduce the size of the look-up table.

1.6. Conclusions
We have given a tight result about the number of voters required to prove Moulin’s theorem.
Inspecting the proof and its use of a self-symmetric profile, one might suspect that the crux
of the impossibility is our assumption that voting rules are resolute. If one were to allow ties
between several alternatives, the impossibility might go away. Now, it is not completely clear
how to define participation for irresolute voting rules, but in the published version of this chapter
[Brandt et al., 2017], we consider two options (optimistic and pessimistic participation) and show
that they too lead to impossibility, albeit requiring a greater number of voters.

The graphical representation of our proof can also be used to compactly represent Moulin’s
original proof [Moulin, 1988b]. To do this, several applications of Moulin’s Claim 3 have to
be decoded into the explicit votes that are added to the profiles under consideration. This
was already done in the expositions of Schulze [2003] and Smith [2007] and the resulting proof
diagram is shown in Figure 1.5.

Note that our negative result (Theorem 1.5) applies to every m > 4, but our positive result
(Theorem 1.6) only works for m = 4. We were unable to check using our approach whether
no-show paradoxes occur with even fewer voters when the number of alternatives grows, because
the branching factors are too large when there are 5 alternatives (and hence 5! = 120 possible
preference relations). We leave this question for the (possibly far) future. Further, it would be
interesting to gain a deeper understanding of the computer-generated Condorcet extension that
satisfies participation for up to 11 voters. So far, we only know that it (slightly) differs from all
Condorcet extensions that are usually considered in the literature. As a first step, it would be
desirable to obtain a representation of this rule that is more concise than a look-up table.

22



2. The Preference Reversal Paradox

In this chapter, we consider a paradox closely related to the no-show paradox of
the last chapter. We prove that every Condorcet-consistent voting rule can be
manipulated by a voter who completely reverses their preference ranking, assuming
that there are at least 4 alternatives. For the case of precisely 4 alternatives, we
exactly characterise the number of voters for which this impossibility result can
be proved. This result is one ingredient of the “disjunctive Gibbard–Satterthwaite
theorem” that we prove in the following chapter.

2.1. Introduction
The Gibbard–Satterthwaite Theorem establishes that every non-trivial voting rule can be
manipulated by voters through misrepresenting their preferences. In this chapter, we will see
that Condorcet extensions (voting rules that select the Condorcet winner if one exists) suffer
from a particularly offensive failure of strategyproofness: all of them can be manipulated by a
voter who completely reverses their preference ranking. For example, such a voting rule might
designate c to be the winning alternative if voter i truthfully reports the ordering a �i b �i c �i d,
but choose b as the winner if voter i instead reports the ordering d �i c �i b �i a. Since i
truthfully prefers b to c, this is a successful manipulation, which one might consider surprising
given that i misreported every possible pairwise comparison. We will say that voting rules that
are manipulable in this way suffer from the preference reversal paradox. While all Condorcet
extensions exhibit this paradox, scoring rules (such a plurality and Borda’s rule) are immune.

Preference reversal paradoxes were first introduced by Sanver and Zwicker [2009] in their
study of monotonicity properties; they say that voting rules which avoid this paradox satisfy
half-way monotonicity.1 As Sanver and Zwicker [2009] show, half-way monotonicity is a weaker
property than participation, an axiom stating that a voter cannot obtain a strictly better result
by abstaining from an election; equivalently, participation says that voting truthfully guarantees
a (weakly) better result than not voting at all. As we saw in the last chapter, participation is
incompatible with Condorcet-consistency, so that Condorcet extensions must suffer from the
no-show paradox. This result is often interpreted as showing that all Condorcet extensions are
manipulable (through abstention). Notice, however, that this notion of manipulation (referring to
electorates of different sizes) is quite different from the fixed-electorate manipulations that are the
subject of the Gibbard–Satterthwaite Theorem, where a voter changes their preference ordering
in some way [see also Núñez and Sanver, 2017]. We will see that half-way monotonicity, which is
both weaker than participation and weaker than strategyproofness in the Gibbard–Satterthwaite
sense, is already incompatible with Condorcet-consistency.

This result first appeared in Sanver and Zwicker [2009] who gave a proof that, for 4 or
more alternatives and for sufficiently many voters, Condorcet extensions must fail half-way
monotonicity. However, their proof contains an arithmetical mistake2 that is non-trivial to fix.
The proof technique also is only able to establish an impossibility for electorates containing a

1They chose this name because half-way monotonicity is a weaker version of their notion of one-way monotonicity.
2In the last paragraph of the proof of their Theorem 5.2, they calculate that n∗(Q) = 30 + 8, when in fact

n∗(Q) = 30 + 4 ·m!� 38 which makes their “Condition M” inapplicable to profile Q. This problem was noticed
by Wei Yu and Tokuei Higashino (Zwicker, private communication).

23



2. The Preference Reversal Paradox

n = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
participation

half-way monotonicity

Possibility Impossibility

Table 2.1.: Numbers n of voters for which Condorcet extensions can satisfy participation or
half-way monotonicity, when there are exactly m = 4 alternatives.

sufficiently large even number of voters. Further, their proof requires at least 702 voters to go
through, this bound growing exponentially as the number of alternatives increases,3 which leaves
open the question of whether the preference reversal paradox is a problem in practical voting
situations with moderate numbers of voters.

We aim to give a new and direct proof of the impossibility. We ask a similar question as in the
last chapter, namely to find the exact number of voters required for the impossibility to hold.
Since half-way monotonicity is weaker than participation, we would expect more than 12 voters
to be necessary, and that guess is accurate. However, it turns out that we need to treat the cases
of electorates with odd and even numbers of voters separately: using the technique explained in
the previous chapter, we give proofs that require 15 voters for the odd case and 24 voters for the
even case. These constant bounds hold for any number m > 4 of alternatives. We are able to
show that these results are tight: for the case of precisely 4 alternatives,4 there exist Condorcet
extensions satisfying half-way monotonicity for up to 13 voters and 22 voters, respectively. This
yields an alternating pattern of possibility and impossibility, shown in Table 2.1.

In the previous chapter we saw that, for 4 alternatives, Moulin’s impossibility requires 12
voters to go through, while there exists a Condorcet extension satisfying participation for up
to 11 voters. This gives us a rough but intriguing way to compare the relative strengths of
participation and half-way monotonicity (see Table 2.1); we can see that half-way monotonicity
is weaker than participation, but not by much.

2.2. Half-way Monotonicity and Participation
We start by defining half-way monotonicity. If � ∈ A! is a linear order, then the reverse linear
order �rev is defined by a �rev b ⇐⇒ b � a for all a, b ∈ A. Given a profile P ∈ A!N , we write
(P−i,�′i) := P |N\{i} ∪ {(i,�′i)} for the profile obtained from P by replacing i’s vote by �′i.

Definition 2.1. A fixed-electorate voting rule f satisfies half-way monotonicity if

f(P−i,�i) <i f(P−i,�rev
i ) for all profiles P ∈ A!N and all voters i ∈ N .

Thus, voters weakly prefer voting truthfully to voting the reverse of their preferences. If a rule
violates half-way monotonicity, we say that it suffers from the preference reversal paradox.

Let us compare half-way monotonicity to the axiom of the previous chapter, participation. It
turns out that participation is a stronger requirement than half-way monotonicity, in the sense
that if a variable-electorate rule f satisfies participation, then the induced fixed-electorate rule
on N satisfies half-way monotonicity. This was shown by Sanver and Zwicker [2009, Theorem

3The large number arises because the proof uses several copies of the full profile containing a copy of each of
the m! preference orders. Fixing the arithmetical error described above tends to necessitate using many more
voters than this (Zwicker, private communication).

4For 3 alternatives, it is known that the maximin rule with some fixed tie-breaking is a Condorcet extension
satisfying half-way monotonicity.

24



2.3. Results

4.1] using a proof that established several interrelated implications among their monotonicity
axioms. Here, we give a direct proof of this implication. The idea behind the proof is simple:
a reversal of a vote is equivalent to a voter leaving the election and a new voter with reversed
preferences joining it. Applying participation to both electorate changes, we find that the vote
reversal cannot make the voter better off.

Lemma 2.2 (Sanver and Zwicker, 2009). If a variable-electorate voting rule f satisfies partici-
pation, then f satisfies half-way monotonicity.

Proof. Let P ∈ A!N be a profile and let i ∈ N be a voter with preferences <i in P . Consider the
profile P − i with i removed. By participation, we have f(P ) <i f(P − i). Also by participation,
we have f(P−i,�rev

i ) <rev
i f(P − i). Putting these together, and using the definition of the reverse

of an order, we have
f(P ) <i f(P − i) <i f(P−i,�rev

i ).

Thus, using transitivity, we have verified half-way monotonicity.

Interestingly, to deduce half-way monotonicity for electorates of n voters, we only require
participation to hold between electorates of size n− 1 and n. Núñez and Sanver [2017] also prove
the implication of Lemma 2.2 by proposing an intermediate “Condition λ” that is implied by
participation and that implies half-way monotonicity.

2.3. Results

We obtain our results in this setting using basically the same method discussed in the previous
chapter, starting by considering pairwise rules only. Using SAT solvers and a similar encoding,
we can establish that for specific n and m, a (pairwise) Condorcet extension satisfying half-way
monotonicity exists. An important difference to the situation of the previous chapter concerns
the generalisation of such a result to other values of n and m. Due to the variable-electorate
nature of the participation axiom, it is clear that if there is no appropriate rule for 12 voters,
then there also cannot be one for 13, 14, 15, . . . voters; conversely, a good rule for 11 voters
immediately induces a rule for fewer voters. However, the analogue for half-way monotonicity is
not as clear, because we now operate in a fixed-electorate setting.

The following lemma functions as an induction step, and allows us to conclude that positive
results also hold for smaller n and negative results hold for larger n, as long as parity is preserved.
This caveat is important, and we will see that half-way monotonicity is less restrictive on
Condorcet extensions defined for even electorates.

Lemma 2.3 (Induction Step). Fix a number m of alternatives, and let n > 1. If there exists a
Condorcet extension defined on electorates with n+ 2 voters which satisfies half-way monotonicity,
then there also exists a Condorcet extension for n voters satisfying half-way monotonicity.

Proof. Fix some linear order �∗ over A. Suppose |N | = n, and suppose fn+2 is a Condorcet
extension satisfying half-way monotonicity, defined for the electorate N ∪ {i, j}. Then define the
voting rule fn on the electorate N by

fn(P ) := fn+2(P + (i,�∗) + (j,�rev
∗ )) for all profiles P ∈ A!N .

Then the voting rule fn is Condorcet-consistent: if a profile P ∈ A!N admits a Condorcet winner,
then this alternative remains the Condorcet winner after adding two completely opposed orders
to P , since this operation does not change the majority margins. Further, fn satisfies half-way

25



2. The Preference Reversal Paradox

monotonicity: let P ∈ A!N be a profile, in which k ∈ N has preferences �k. Then, because fn+2
satisfies half-way monotonicity.

fn(P−k,�rev
k ) = fn+2(P−k + (k,�rev

k ) + (i,�∗) + (j,�rev
∗ ))

<k fn+2(P−k + (k,�k) + (i,�∗) + (j,�rev
∗ )) = fn(P−k,�k),

and thus also fn satisfies half-way monotonicity.

Contrapositively, this lemma implies that an incompatibility between Condorcet-consistency
and half-way monotonicity for n voters also applies to n+ 2k voters, for each k > 0. Thus, in our
impossibilities below, we only need to handle the base case for n = 15 and n = 24, respectively.

Before we present the proofs, let us have a look at our positive result.

Proposition 2.4 (Possibilities). For m = 4 alternatives, and for either n = 13 or n = 22 voters,
there exists a Condorcet extension satisfying half-way monotonicity.

Again, these voting rules are only available as look-up tables. Both of the voting rules
mentioned are pairwise, so only depend on the weighted tournament induced by the input profile.

Our negative results are proved with arguments of a similar style as before, see the proof
diagrams in Figures 2.1 and 2.2. In the figures, an arc from P to P ′ labelled “reverse 2 dcba” is
interpreted as “P ′ is obtained from P by reversing the preferences of 2 voters with preferences
dcba in P . Now, if the voting rule chooses a or b at P , then the rule must also choose a or b at
P ′ by half-way monotonicity”. The profiles at the leaves all admit a Condorcet winner, which
leads to a contradiction. The general proof strategy of our impossibility proofs is as follows: we
identify an initial profile P0, and iterate through each possible value of f(P0) ∈ A. Assuming
that f(P0) = x, say, will then, by half-way monotonicity, imply restrictions on the possible values
that f can take at profiles obtained from P0 by reversing some of the votes. In particular, it
will imply that f must not pick the Condorcet winner at some of these profiles, contradicting f
being a Condorcet extension.

In the previous chapter, working with participation, we proved an induction step that allowed
us to lift an impossibility for four alternatives to apply to any m > 4. Such an induction step is
harder to prove here, and so we handle the general case explicitly in the following proofs.

As we noted, we will treat the cases of odd and even electorates separately, since the induction
step of Lemma 2.3 only works in steps of two. Let us start with the odd case.

Theorem 2.5 (Odd Electorates). For m > 4 alternatives and odd n > 15, there does not exist a
Condorcet extension satisfying half-way monotonicity.

1 3 3 4 2 2

a a b c d d
b b d a c c
c d c b a b
d c a d b a
X X X X X X

Proof By Lemma 2.3, we only need to handle the case with n = 15.
Write A = {a, b, c, d}∪X, where X = {x1, . . . , xm−4}. Suppose there
exists a half-way monotonic Condorcet extension f for 15 voters.
Consider the 15-voter profile P0 depicted on the right. As usual, the
column numbers indicate how many voters submit a given ordering.
The X at the bottom of each vote should be replaced by an arbitrary
ordering of the alternatives in X. Our proof is by case analysis on
the value of f(P0), arriving at a contradiction in each case.

Suppose first that f(P0) ∈ {a, b} ∪ X. Let P1 be the profile after one dcba voter reverses
their preferences in P0. By half-way monotonicity, we have f(P1) ∈ {a, b} ∪X. Suppose that
f(P1) ∈ {a} ∪ X. Let P2 be the profile after two bdca voters reverse their preferences in P1.
By half-way monotonicity, we have f(P2) ∈ {a} ∪X; however c is the Condorcet winner in P2,
contradicting Condorcet-consistency of f . Thus f(P1) = b. Let P3 be the profile obtained from
P1 after one dcab voter and two cabd voters reverse their preferences. By half-way monotonicity,
we have f(P3) ∈ {b, d}. However, a is the Condorcet winner in P3, a contradiction.

26



2.3. Results

1 3 3 4 2 2

a a b c d d
b b d a c c
c d c b a b
d c a d b a

P0

P1

P3

reverse
2 cabd

reverse
1 dcab

P2

reverse
2 bdca

reverse
1 dcba

P4

P5

reverse
2 cabd

P6

reverse
3 abdc

reverse
1 abcd

2 3 1 3 2 2 1 1

a a b b c d d d
b b a d a b c c
c d c c b a a b
d c d a d c b a

2 3 2 1 4 2 1

a a a b c d d
b b c d a c c
c d d c b a b
d c b a d b a

3 3 2 2 2 3

a b c d d d
b d a b c c
d c b a a b
c a d c b a

3 4 3 2 3

b c c d d
d a d c c
c b b a b
a d a b a

Figure 2.1.: Proof diagram of the proof of Theorem 2.5.

2 4 6 6 4 2

a a b c d d
b b d a c c
c d c b a b
d c a d b a

P0

P1

P3

reverse
3 cabd

reverse
2 dcab

P2

reverse
3 bdca

reverse
2 dcba

P4

P5

reverse
3 cabd

P6

reverse
3 bdca

reverse
2 abdc

reverse
2 abcd

4 4 2 6 3 3 2

a a b b c d d
b b a d a b c
c d c c b a a
d c d a d c b

4 4 3 3 6 4

a a a b c d
b b c d a c
c d d c b a
d c b a d b

4 6 3 3 4 4

a b c d d d
b d a b c c
d c b a a b
c a d c b a

2 3 3 6 2 4 4

a a b c c d d
b c d a d c c
d d c b b a b
c b a d a b a

Figure 2.2.: Proof diagram of the proof of Theorem 2.6.

27



2. The Preference Reversal Paradox

Thus f(P0) ∈ {c, d}. Let P4 be the profile obtained from P0 by reversing an abcd voter. By
half-way monotonicity, f(P4) ∈ {c, d}. Suppose f(P4) = d. Let P5 be the profile obtained
from P4 by reversing two cabd voters; then f(P5) = d. But b is the Condorcet winner at P5, a
contradiction. Hence f(P4) = c. Let P6 be the profile obtained from P4 by reversing three abdc
voters; then f(P6) = c. But d is the Condorcet winner at P6, a contradiction.
While constructing these proofs, our SAT-based search was aided by only considering profiles
made up of the about 6–10 preference orders that appear in the proofs for the no-show paradox.

The bound on n for even electorates is significantly higher than for odd ones. Intuitively, the
reason is that Condorcet-consistency is less demanding in even electorates, because Condorcet
winners need to beat every other alternative by a majority margin of at least 2.
Theorem 2.6 (Even Electorates). For m > 4 alternatives and even n > 24, there does not exist
a Condorcet extension satisfying half-way monotonicity.

2 4 6 6 4 2

a a b c d d
b b d a c c
c d c b a b
d c a d b a
X X X X X X

Proof By Lemma 2.3, we only need to handle the case with n = 24.
Write A = {a, b, c, d} ∪ X, where X = {x1, . . . , xm−4}. Suppose
there exists a half-way monotonic Condorcet extension f for 24
voters. Consider the 24-voter profile P0 depicted on the right. The
column numbers indicate how many voters submit a given ordering;
for example, there are exactly 4 voters in P0 with the ordering
a � b � d � c � X. The X at the bottom should be replaced by
an arbitrary ordering of the alternatives in X. Our proof is by case
analysis on the value of f(P0), arriving at a contradiction in each case.

Suppose first that f(P0) ∈ {a, b} ∪ X. Let P1 be the profile after two dcba voters reverses
their preferences in P0. By half-way monotonicity, we have f(P1) ∈ {a, b} ∪X. Suppose that
f(P1) ∈ {a} ∪X. Let P2 be the profile after three bdca voters reverse their preferences in P1.
By half-way monotonicity, we have f(P2) ∈ {a} ∪X; however c is the Condorcet winner in P2,
contradicting Condorcet-consistency of f . Thus f(P1) = b. Let P3 be the profile obtained from
P1 after two dcab voter and three cabd voters reverse their preferences. By half-way monotonicity,
we have f(P3) ∈ {b, d}. However, a is the Condorcet winner in P3, a contradiction.

Thus f(P0) ∈ {c, d}. Let P4 be the profile obtained from P0 by reversing two abcd voters.
By half-way monotonicity, f(P4) ∈ {c, d}. Suppose f(P4) = d. Let P5 be the profile obtained
from P4 by reversing three cabd voters; then f(P5) = d. But b is the Condorcet winner at P5, a
contradiction. Hence f(P4) = c. Let P6 be the profile obtained from P4 by reversing two abdc
and three bdca voters; then f(P6) = c. But d is the Condorcet winner at P6, a contradiction.
One may wonder whether it is a coincidence that our cut-off for half-way monotonicity in even
electorates (n = 24) is double the cut-off for participation (n = 12). The answer is no, as
suggested by the proof of Theorem 4.1(3) of Sanver and Zwicker [2009], which (roughly) shows
that half-way monotonicity for 2n voters implies participation for n voters, at least in the presence
of homogeneity and reversal cancellation. In fact, we have obtained the proof of Theorem 2.6 by
taking the proof of Theorem 1.5, and doubling all the profiles involved in the proof.

2.4. Conclusions
We have seen that the impossibility of the previous chapter holds even for the weaker axiom of
half-way monotonicity. In the conference version [Peters, 2017a], we study analogues of our results
for set-valued voting rules [see also Sanver and Zwicker, 2012], and also consider a weakened
version of half-way monotonicity.

Thanks to Felix Brandt, Christian Geist, and Bill Zwicker for discussions that led to
this work, and to the anonymous reviewers of TARK-17 for excellent suggestions.

28



3. A Disjunctive Gibbard–Satterthwaite
Theorem

We combine the result of the previous chapter and a strengthening of a result due to
Campbell and Kelly to prove a “disjunctive Gibbard–Satterthwaite theorem”. This
theorem establishes the familiar fact that all sensible voting rules are manipulable,
but makes this conclusion more precise by illuminating some types of manipulations
that are unavoidable. Polemically, it shows that every voting rule is either “needlessly”
or “egregiously” manipulable. A result of this form was first proposed by William S.
Zwicker.

3.1. Introduction

In the previous two chapters, we saw two theorems that can be seen as criticisms of Condorcet’s
principle to elect Condorcet winners when they exist. We saw that any rule following this
principle will suffer from the no-show and the preference reversal paradox. However, there are
also important advantages to electing Condorcet winners. Notably, Condorcet extensions are
resistant to certain types of strategic manipulations. Formally, we say that a fixed-electorate
voting rule f is manipulable if for some profile P , there is a voter i who can manipulate by
reporting �′i instead of their truthful preferences �i, such that f(P−i,�′i) �i f(P−i,�i). Thus,
voter i strictly prefers misrepresenting their preferences. The famous Gibbard–Satterthwaite
theorem states that all sensible voting rules are manipulable:

Theorem 3.1 (Gibbard, 1973, Satterthwaite, 1975). Suppose that n > 2 and m > 3. Let f be a
fixed-electorate voting rule f : A!N → A which is onto, and which is not manipulable. Then there
is some i ∈ N such that f(P ) = top(�i) for all P ∈ A!N . Thus, f is a dictatorship.

On the other hand, the following well-known observation says that Condorcet extensions
cannot be manipulated when we only look at profiles admitting a Condorcet winner:

Proposition 3.2. Let P be a profile, and suppose P ′ = (P−i,�′i) is a profile obtained from P
after voter i misreports their preferences. If both P and P ′ admit a Condorcet winner, and f is
a Condorcet extension, then f(P ′) 6�i f(P ), so the manipulation was not successful.

Proof. For a contradiction, suppose that f(P ′) = b �i a = f(P ). Since a is the Condorcet winner
at P , there is a strict majority N ′ ⊆ N of voters who prefer a to b in P . Since b �i a, we have
i 6∈ N ′. Hence, all voters in N ′ also prefer a to b in P ′, forming a strict majority. This contradicts
that b is the Condorcet winner at P ′.

Surprisingly, a kind of converse to Proposition 3.2 holds: if f is not a Condorcet extension,
then it is possible for a voter to manipulate between two profiles which both admit a Condorcet
winner. For example, the Borda rule is not Condorcet-consistent, and admits the following

29



3. A Disjunctive Gibbard–Satterthwaite Theorem

manipulation:

v1 v2 v3

a a b
b b a
c c c
d d d

P

−→

v1 v2 v3

a a b
b b c
c c d
d d a

P ′

In both P and P ′, alternative a is the Condorcet winner because a majority of voters ranks a in
top position. Borda selects a at profile P , but selects alternative b at profile P ′. This gives voter
v3 a successful manipulation. I shall say that a voting rule which can be manipulated among
profiles with Condorcet winners is needlessly manipulable, because the manipulation could be
avoided if the voting rule would pick the Condorcet winners at those profiles.

The converse alluded to above was proved by Campbell and Kelly. To state their theorem,
let us introduce some definitions. We consider a fixed-electorate setting, where N is the set of
voters. Let D ⊆ A!N be a domain, i.e., a subcollection of profiles. A voting rule on the domain
D is a map f : D → A. We say that

• f is onto if for all a ∈ A, there is P ∈ D with f(P ) = a;

• f is Pareto if whenever P ∈ D is a profile such that a �i b for all i ∈ P , we have that
f(P ) 6= b;

• f is non-dictatorial if there is no i ∈ N such that f(P ) = top(�i) for all profiles P ∈ D;

• f is anonymous if f(σP ) = f(P ) for all permutations σ of N such that σP ∈ D;

• f is manipulable if there exists a profile P , a voter i, and a linear order �′i such that
both (P−i,�′i) ∈ D and (P−i,�i) ∈ D, and f(P−i,�′i) �i f(P−i,�i). Thus, voter i strictly
prefers misrepresenting their preferences.

Note that Pareto implies onto, and that anonymity is stronger than non-dictatorship.
Let DCondorcet denote the domain of all profiles P ∈ A!N that admit a Condorcet winner, and

let fCondorcet : DCondorcet → A be the Condorcet rule which assigns to each profile its Condorcet
winner. We can now state the theorem.

Theorem 3.3 (Campbell and Kelly, 2003, 2016). Suppose N contains an odd number of voters
and |A| > 3. Let f : DCondorcet → A be a non-dictatorial and onto voting rule. Then f is not
manipulable if and only if f = fCondorcet.

In other words, among voting rules defined on the domain DCondorcet, the Condorcet rule is
characterised as the unique rule that is non-dictatorial, onto, and strategyproof. We will be
interested in the implications of the Campbell–Kelly Theorem for voting rules f : A!N → A
defined for all profiles, not just for DCondorcet. It is tempting to make an argument like the
following:

(incorrect) Suppose f : A!N → A is a voting rule that is non-dictatorial and onto,
but that is not a Condorcet extension. Then, f |DCondorcet is a non-dictatorial and
onto voting rule defined on DCondorcet. Since it differs from the Condorcet rule, by
Theorem 3.3, it is manipulable on DCondorcet. Thus, f is needlessly manipulable.

30



3.2. The Campbell–Kelly Theorem for Even Numbers of Voters

The argument fails because f |DCondorcet need not be non-dictatorial or onto. These properties are
not preserved under restricting the domain of f .1 However, the argument as above goes through
if we replace non-dictatorship by the stronger condition of anonymity, and replace ontoness by
Pareto.2

Corollary 3.4. Suppose N contains an odd number of voters and |A| > 3. Let f : A!N → A
be a voting rule on the full domain. Suppose that f is anonymous and Pareto. If f is not
Condorcet-consistent, then f is manipulable on DCondorcet.

Proof. If f is anonymous, then f |DCondorcet is also anonymous and (because DCondorcet is closed
under permuting votes) thus non-dictatorial. Similarly, if f is Pareto, then f |DCondorcet is onto:
let x ∈ A, and let P be a profile in which top(�i) = x for all voters i ∈ N . Then P ∈ DCondorcet
since x is a Condorcet winner. Since x Pareto-dominates every other alternative and f is
Pareto, f(P ) = x, and hence f |DCondorcet(P ) = x, which shows that f |DCondorcet is onto. Thus, by
Theorem 3.3, f |DCondorcet is manipulable.

Hence, for odd n, every anonymous and Pareto rule is needlessly manipulable.

3.2. The Campbell–Kelly Theorem for Even Numbers of Voters

An obvious gap of these results is that they require the number of voters to be odd. What
about even numbers of voters? It turns out that Theorem 3.3 does not hold for even n: Merrill
[2011] constructed examples of rules other than the Condorcet rule that satisfy the conditions of
Theorem 3.3. We quickly discuss these examples here for completeness.

The reason that the theorem fails if n is even, is that if a (say) is the Condorcet winner at
a profile P ∈ DCondorcet, then no voter can unilaterally change the Condorcet winner: every
profile P ′ ∈ DCondorcet that differs from P only in the preferences of a single voter will also have
a as its Condorcet winner. This is because, for even n, a Condorcet winner beats every other
candidate by a margin of at least 2. Hence, for example, the following rule is strategyproof but
non-dictatorial if n is even:

f†(P ) =
{

top(�1) if a is the Condorcet winner of P ,
top(�2) otherwise.

Here, top(�i) refers to the most-preferred alternative of voter i. Note that this rule is not
anonymous: it depends on the identities of the voters. Merrill [2011] gives another example of a
‘bad’ rule that is strategyproof: take the alternatives to be the members of Zm equipped with
modular arithmetic, and consider the following rule:

f††(P ) = fCondorcet(P ) + 1.

This rule is again strategyproof on DCondorcet, and it is anonymous, but it fails to be neutral
or Pareto. (A voting rule is neutral if whenever we permute the alternative names in a profile
(and the resulting profile still is in the domain), then the output of f is permuted by the same
permutation.)

Campbell and Kelly recently proved the following version of their theorem for even n.
1For example, consider the voting rule that returns voter 1’s top choice if there is a Condorcet winner, and voter

2’s top choice otherwise. Or, consider the voting rule that outputs a fixed x ∈ A if there is a Condorcet winner,
and voter 2’s top choice otherwise.

2The same argument works if we replace Pareto by the weaker notion of unanimity, which requires an alternative
x to be selected if every voter ranks x in top position.

31



3. A Disjunctive Gibbard–Satterthwaite Theorem

Theorem 3.5 (Campbell and Kelly, 2015). Let n > 4 be even, and let m > 4. Let f :
DCondorcet → A be an anonymous and neutral voting rule. Then f is strategyproof if and only if
f = fCondorcet.

Again it is difficult to understand the implications of this result for rules f defined on the
full domain A!N . A resolute voting rule defined on the full domain can usually not be both
anonymous and neutral [Moulin, 1983], since the latter conditions force there to be tied outcomes.

In this section, we prove another analogue of the Campbell–Kelly theorem for even n, using
anonymity and Pareto (instead of neutrality) as our background axioms. As usual, this theorem
is obtained with the help of SAT solvers, though in this case the “human-produced” part is more
significant. We present the proof, and afterwards indicate how SAT solvers were used.

The proof will consider many possible manipulations, where in some profile P , voter i changes
from �i to �′i, resulting in profile P ′. Strategyproofness can then be used to conclude that
f(P ) <i f(P ′), so that the manipulating voter is weakly worse off. In the proof, we will also
repeatedly consider the possibility of voter i reversing the change, by which we mean the reverse
manipulation from P ′ to P , where strategyproofness allows us to conclude that f(P ′) <′i f(P ).

Theorem 3.6. Let n > 4 be even or odd, and let m > 3. Let f : DCondorcet → A be an
anonymous and Pareto voting rule. Then f is strategyproof if and only if f = fCondorcet.

Proof. Write A = {a, b1, . . . , bm−1}. We consider the case for even n in detail, since it cannot be
deduced from existing results, and indicate what needs to be changed for odd n at the end. So
write n = 2k for some k > 2, and set k+ := k + 1 and k− := k − 1. Thus, n = k+ + k−, and k+

is the smallest number of voters required to obtain a strict majority.
Suppose for a contradiction that f is anonymous, Pareto, and strategyproof, but that f 6=

fCondorcet. Then, by relabeling alternatives, we may assume that there exists a profile P with
fCondorcet(P ) = a but f(P ) = b1.

Because fCondorcet(P ) = a, there are at least k+ voters who prefer a to b1. Partition N =
N1 ∪N2 ∪N3 into three sets, where N1 ∪N2 is the set of voters who prefer a to b1 in P , N3 is
the set of voters who prefer b1 to a in P , and |N1| = k+. The set N2 may be empty in case that
|N1 ∪N2| = k+. Note that |N2 ∪N3| = n− k+ = k−.

Let P∗ be the profile in which

a �i b1 �i b2 �i · · · �i bm−1 for i ∈ N1,

b1 �i b2 �i · · · �i bm−1 �i a for i ∈ N2 ∪N3.

We claim that f(P∗) = b1.
We have assumed that f(P ) = b1. Suppose a voter i ∈ N1 changes their vote in P to

ab1 . . . bm−1. Let us call the resulting profile P ′. If f(P ′) = a, this would be a successful
manipulation (since by definition of N1, i prefers a to b1), contradicting strategyproofness. If
f(P ′) = bj 6= b1, then voter i reversing the change would be a successful manipulation (since
f(P ) = b1 and b1 is preferred to bj in ab1 . . . bm−1), a contradiction. Hence f(P ′) = b1. Repeating
the same argument while letting each voter in N1 replace their vote by ab1 . . . bm−1, we find that
f(P∗∗∗) = b1, where P∗∗∗ is the profile in which each voter from N1 reports ab1 . . . bm−1 and all
other voters report the same preferences as they report in P .

Next, we start from P∗∗∗ and let each voter from N2 replace their preferences by b1 . . . bm−1a.
At each step, the winner selected by f must be b1, because otherwise reversing the change
would be a successful manipulation (because b1 is the top choice in b1 . . . bm−1a). Thus, we find
that f(P∗∗) = b1, where in P∗∗ each voter in N1 reports ab1 . . . bm−1, each voter in N2 reports
b1 . . . bm−1a, and each voter in N3 reports the same as in P .

Finally, we start from P∗∗ and let each voter from N3 replace their preferences by b1 . . . bm−1a.
At each step, the winner selected by f must be b1 (because otherwise reversing the change

32



3.2. The Campbell–Kelly Theorem for Even Numbers of Voters

would be a successful manipulation since b1 is the top choice in b1 . . . bm−1a). Thus, we find that
f(P∗) = b1, proving the claim.

We will now consider several other profiles shown in Figure 3.1. For notational convenience, we
write c := bm−1, and write “· · ·” for the ranking b2 � · · · � bm−2. The profiles only specify how
many voters submit each ranking; since we have assumed that f is anonymous, this is sufficient
to determine f ’s output at each profile.

k+ k−

a b1
b1

...... c
c a

(a) P∗

k+ k−

a b1
b1

...... a
c c

(b) P2

k+ k−

a b1
c

...
b1 a... c

(c) P3

k+ k−

a c
c b1
b1

...... a

(d) P4

2 k− k−

a b1 c
c

... a
b1 a b1... c

...

(e) P5

2 k− k−

a a c
c b1 a
b1

... b1... c
...

(f) P6

k+ k−

a c
c a
b1 b1...

...

(g) P7

Figure 3.1.: Profiles used in the second part of the proof of Theorem 3.6.

The claim has established that f(P∗) = b1. Now, consider profile P2. By Pareto, f(P2) ∈ {a, b1}.
Suppose f(P2) = a. Then, let each of the k− voters successively replace their vote by b1 . . . ca.
At each step, by Pareto, either a or b1 is selected, and by strategyproofness in fact a is selected.
At the end of process we have reached P∗, so f(P∗) = a, contradiction. Thus, f(P2) = b1. Now
let each of the k+ voters of P2 replace their vote by acb1 . . . ; by Pareto at each step either a or
b1 is selected, and by strategyproofness in fact b1 is selected. Hence f(P3) = b1.

Next, consider profile P7. By Pareto, f(P7) ∈ {a, c}. Suppose first that f(P7) = a. Let
each of the k− voters replace their votes by cb1 . . . a. At each step, by Pareto, either a or c is
selected, and by strategyproofness in fact a is selected, and thus f(P4) = a. Next, let each of the
k− voters in P4 replace their vote by b1 . . . ac; by strategyproofness, at each step a is selected.
Hence f(P3) = a, a contradiction. Thus, f(P7) = c. Next, let k− of the k+ voters (i.e., all but
two) in P7 replace their vote by ab1 . . . c. By Pareto, at each step a or c is selected, and by
strategyproofness in fact c is selected, so f(P6) = c. Next, let the k− voters reporting ab1 . . . c in
P6 change their vote to b1 . . . ac; by strategyproofness, c is still selected, so f(P5) = c.

However, we have established f(P3) = b1. Suppose that k− of the k+ voters in P3 change their
vote from acb1 . . . to cab1 . . . . At each step, we must still select b1 by Pareto and strategyproofness.
The resulting profile is the same as P5 after permuting voters, so by anonymity f(P5) = b1, a
contradiction to f(P5) = c.

In case that n is odd, write n = 2k + 1, and set k+ := k + 1 and k− := k. The proof goes
through unchanged, except that in P5 and P6 as shown in Figure 3.1, only 1 instead of 2 voters
report the ranking in the left-most column (since now k+ − k− = 1 rather than 2).

The theorem implies that if an anonymous and Pareto voting rule is not a Condorcet extension,
then it is needlessly manipulable.

The first part of the proof (establishing the ‘claim’) shows that in order to prove f = fCondorcet,
it is sufficient to prove that f(P∗) = fCondorcet(P∗) for a particular profile P∗. This part of the
proof is similar to arguments appearing in the characterisations of Campbell and Kelly [2003,
2015]. Once the reduction to P∗ is in place, we can formulate our problem in propositional logic
in a similar way to previous chapters. In this way, we obtain a formula whose models correspond
to voting rules on DCondorcet that are anonymous, Pareto, and strategyproof. This formula is
satisfiable (namely by fCondorcet), but once we add a clause specifying f(P∗) 6= fCondorcet(P∗), we
obtain unsatisfiability. Extracting and analysing an MUS yields the shape of the second part of
the proof (operating on profiles P∗ and P2 to P7). The SAT approach only works for fixed n and
m; we generalised the argument by hand by inspecting the MUS proofs for different n.

33



3. A Disjunctive Gibbard–Satterthwaite Theorem

One might ask why it is necessary to first prove the claim about P∗, before using a SAT
solver. After all, the condition f 6= fCondorcet can be encoded easily (as a single clause

∨
P f(P ) 6=

fCondorcet(P )), and gives an unsatisfiability result. The problem with this attempt is that the
constraint f 6= fCondorcet is a global one, and its presence forces any MUS to include clauses about
every profile in DCondorcet. This does not yield an interpretable, compact proof. In contrast, the
condition f(P∗) 6= fCondorcet(P∗) is local, and allows for small MUSes.

3.3. A Dilemma Theorem
Let us now combine some of the theorems we have obtained into a single statement. In the
previous section, we proved that every voting rule (except Condorcet extensions) satisfying
anonymity and Pareto is manipulable in a specific way (namely between two profiles which both
admit a Condorcet winner). In the previous chapter, we saw that every Condorcet extension
is also manipulable, namely by reversing one’s preferences. Because any voting rule either is
or is not a Condorcet extension, we obtain the following “disjunctive Gibbbard–Satterthwaite
theorem”.

Theorem 3.7. Suppose there are at least 4 alternatives and at least 24 voters. Let f be a voting
rule satisfying anonymity and Pareto. Either f is manipulable on DCondorcet, or f is manipulable
by preference reversal.

Proof. If f is a Condorcet extension then this follows from Theorems 2.5 and 2.6; otherwise it
follows from Theorem 3.6.

Comparing this result with the seminal result of Gibbard [1973] and Satterthwaite [1975], we
see that the disjunctive version makes stronger assumptions (larger minimum values for n and
m, anonymity instead of non-dictatorship, and Pareto instead of onto), but it also has a stronger
conclusion: It more explicitly identifies the nature of manipulability: they are either needless
(because they could be avoided by selecting Condorcet winners) or egregious (because there is a
successful manipulation on which every pairwise comparison is misreported).

The disjunctive version of Gibbard–Satterthwaite we have obtained was first proposed by
Zwicker [2016, Corollary 2.8] using slightly different assumptions. One could imagine other
results of this type showing that every voting rule is manipulable using misreports of certain
types. One such result appears in the literature: the Gibbard–Satterthwaite Theorem holds even
if we allow voters to report only preferences that are obtained by at most one (adjacent) swap
from the truthful vote [Sato, 2013, Caragiannis et al., 2012].

34



Part II.

Budgeting with Divisible Projects

35





4. Aggregating Budget Proposals

We consider a participatory budgeting problem in which each voter submits a proposal
for how to divide a single divisible resource (such as money or time) among several
possible projects and these proposals must be aggregated. We assume `1 preferences,
for which a voter’s disutility is given by the `1 distance between the aggregate division
and the voter’s proposed division. In this model, the social-welfare-maximising
mechanism, which minimises the average `1 distance between the outcome and each
voter’s proposal, is strategyproof [Goel et al., 2019]. However, it fails to satisfy
a natural fairness notion of proportionality, placing too much weight on majority
preferences. Leveraging a connection between market prices and the generalised
median rules of Moulin [1980], we introduce the independent markets mechanism,
which is both strategyproof and proportional. We unify the social-welfare-maximising
mechanism and the independent markets mechanism by defining a broad class of
moving phantom mechanisms that includes both. We show that every moving phantom
mechanism is strategyproof. Finally, we characterise the social-welfare-maximising
mechanism as the unique Pareto-optimal mechanism in this class, suggesting an
inherent tradeoff between Pareto-optimality and proportionality.

4.1. Introduction
Throughout Part II, we consider the problem of dividing a continuous budget among several pos-
sible uses, where each use can receive any fraction of the budget: the budget is perfectly divisible.
Examples might include an organisation splitting its monetary budget among departments or a
team of event organisers deciding what fraction of the event length to devote to various activities.
Another example would be a government that needs to decide on a target energy mix (that is,
how much energy should come from fossil fuels, nuclear, or renewable sources) and wishes to
aggregate expert opinions. In this chapter, we will study preference aggregation rules that ask
each voter for the voter’s most-preferred division of the budget. Thus, each voter proposes one
possible way of dividing the budget, and we have to combine these proposals into an aggregate
division.

A first idea for aggregating the proposals would be to take the mean: view the proposals as
vectors of fractions summing to 1, and then calculate the average. An advantage of the mean is
that, intuitively, it is very fair: in effect, the mean splits the budget into pieces of size 1/n, and
lets each person decide what to do with their piece. However, the mean has a serious flaw: it is
easily manipulated. Suppose that four voters propose dividing the budget (50%, 50%) across
two projects, and a fifth voter prefers a (60%, 40%) split. The mean of these proposals is (52%,
48%). If the fifth voter instead pretends to prefer a (100%, 0%) split, the resulting mean is (60%,
40%), and so the voter has obtained the actually preferred outcome.

In this chapter, we seek mechanisms that are resistant to such manipulation. In particular, we
require that no voter can, by lying, move the aggregate division toward the voter’s preference on
one project without moving it away from it by an equal or greater amount on other projects. In
other words, we seek budget aggregation mechanisms that are strategyproof under `1 preferences,
with each voter’s disutility for a budget division equal to the `1 distance between that division
and the division the voter prefers most.

37



4. Aggregating Budget Proposals

Goel et al. [2019] showed that choosing an aggregate budget division that maximises the
utilitarian welfare of the voters (that is, a division that minimises the total `1 distance from each
voter’s report) is both strategyproof and Pareto-optimal under this utility model. However, this
utilitarian rule has a tendency to overweight majority preferences. For example, imagine that
sixty voters propose (100%, 0%) while forty propose (0%, 100%). The utilitarian aggregate is
(100%, 0%) while the mean is (60%, 40%). In many scenarios, the latter solution is more in
the spirit of consensus. For example, suppose a city uses participatory budgeting, and imagine
that each family votes for all education dollars to go to their own neighbourhood school. The
utilitarian aggregate would earmark the entire budget to the most populous school district, while
we may prefer that funds are split in proportion to the districts’ populations. To capture this idea
of fairness, we define a notion of proportionality, requiring that when voters are single-minded (as
in this example), the fraction of the budget assigned to each project is equal to the proportion
of voters who favour that project. Do there exist aggregators that are both strategyproof and
proportional?

For the case of two projects, `1 preferences are a special case of single-peaked preferences,
well-studied in the voting literature. The seminal results of Moulin [1980] imply that, in this
setting, all strategyproof voting schemes correspond to inserting n + 1 “phantom” proposals,
where n is the number of voters, and returning the median of the n true proposals and the
n + 1 phantoms. We show that there exists a way of placing the phantoms that results in a
proportional mechanism for two projects.

Generalising Moulin’s phantom median mechanisms to allow for more than two projects is
difficult. Existing proposals for multidimensional generalisations take a median in each dimension
independently [Border and Jordan, 1983, Peters et al., 1992, Barberà and Jackson, 1994].
Unfortunately, this strategy fails in our application which includes a normalisation constraints
(total aggregate spending must sum to 1). Unlike the mean, taking a coordinate-wise median will
usually fail to normalise. However, we find a way to extend Moulin’s idea of phantom voters to
our higher-dimensional setting, by allowing the set of phantoms to continuously shift upwards or
downwards, thereby increasing or decreasing the sum of the median until the aggregate becomes
normalised. This idea allows us to define a very general class of moving phantom mechanisms.
Although one might think that allowing the final phantom locations to depend on voters’ reports
might give voters an incentive to misreport, we prove that every moving phantom mechanism is
strategyproof under `1 preferences.

Among this large family of strategyproof mechanisms, we find one that satisfies our propor-
tionality requirement. This moving phantom mechanism is obtained when phantoms are placed
uniformly between 0 and a value x > 0 which increases until the coordinate-wise medians sum
to 1. To analyse this mechanism, we prove that the aggregate found by this mechanism can be
interpreted as the clearing prices in a market system, and hence call it the independent markets
mechanism. This reveals an unexpected connection between market prices and generalised
medians that may be of broader interest.

In contrast, the independent markets mechanism unfortunately fails to satisfy Pareto-optimality.
We show that this is unavoidable, as no proportional moving phantom mechanism is Pareto-
optimal. In fact, we prove that there is a unique Pareto-optimal moving phantom mechanism.
In this mechanism, all phantoms start at 0 and then, one by one, transition to 1, with no two
phantoms moving at the same time. This mechanism turns out to also have a phantom-free
interpretation: it is equivalent to selecting the maximum-entropy budget division out of all those
that maximise social welfare, the same mechanism studied by Goel et al. [2019] up to the choice
of tie-breaking rules.

At the end of the chapter, we consider a slight tweak to our model, where projects come with
a minimum level of funding: they should either receive no funding, or at least the minimum
amount, because the projects do not make sense with less funding. We show that adding this

38



4.2. Preliminaries

complication can make it impossible to achieve strategyproofness.

Related Work Several recent papers study voting rules for participatory budgeting, considering
both axiomatics and computational complexity, but under the assumption that indivisible projects
can either be fully funded or not funded at all [Goel et al., 2019, Benade et al., 2017, Lu and
Boutilier, 2011, Aziz et al., 2018a]. The setting in which partial funding of projects is permitted
has also been studied, but generally under a different utility model in which voters assign utility
scores to the projects rather than having an ideal distribution [Fain et al., 2016, Bogomolnaia
et al., 2005, Aziz et al., 2019a]. We will discuss this setting in Chapters 5 and 6.

The work of Goel et al. [2019] is closely related to this chapter. The primary focus of their
paper is on knapsack voting, in which each voter submits a preferred set of indivisible projects to
fully fund. However, they also consider the use of fractional knapsack voting in a setting in which
partial funding of projects is permitted and voters have `1 preferences. This corresponds exactly
to our setting. They show that the mechanism that maximises social welfare (with some fixed
tie-breaking) is strategyproof. We replicate this result by showing that the welfare-maximising
mechanism (with an arguably more natural way to break ties) is a member of the large class of
moving phantom mechanisms, all of which are strategyproof. Goel et al. do not consider other
mechanisms for the fractional case.

The strategyproof aggregation of preferences over numerical values (such as the temperature
for an office) has been extensively studied. A famous result of Moulin [1980] characterises the set
of strategyproof voting rules under the assumption that voters have single-peaked preferences
over values in [0, 1]. These voting rules are generalised median schemes. The best-known example
is the standard median, in which each voter reports an ideal point in [0, 1] and the median report
is selected. Other voting rules in this class insert “phantom voters” who report a fixed top choice.
Barberà et al. [1993] obtained a multi-dimensional analogue of this result for [0, 1]m, and there are
further generalisations that characterise strategyproof rules if other constraints are imposed on
the feasible set [Barberà et al., 1997]. Crucially, the constraints allowed by Barberà et al. [1997]
do not include the normalisation constraint that is fundamental to our setting. Several other
papers [Border and Jordan, 1983, Peters et al., 1992, Barberà and Jackson, 1994] introduced
multidimensional models in which one can achieve strategyproofness by taking a generalised
median in each coordinate, but such a strategy does not work with normalisation constraints.
We are not aware of results (prior to this work) that extend generalised medians to multiple
dimensions without using a mechanism that decomposes into one-dimensional mechanisms.

In the computer science literature, the above-mentioned generalised median schemes have
also been studied in the context of strategyproof facility location [Procaccia and Tennenholtz,
2013, Alon et al., 2010a]. In this context, the aim is to approximate social welfare subject to
strategyproofness.

One could apply our results to the aggregation of probabilistic beliefs. There is a large literature
on probabilistic opinion pooling [Genest and Zidek, 1986, French, 1985, Clemen, 1989, Intriligator,
1973] which studies aggregators in this context. The main focus of that literature is to preserve
stochastic and epistemic properties. To the best of our knowledge, strategic aspects have not
been considered.

Finally, recently proposed rules for crowdsourcing societal tradeoffs [Conitzer et al., 2015, 2016]
can be used to aggregate budget divisions (with full support) after converting them into pairwise
ratios of funding amounts, but this setting has also not been analysed from a strategic viewpoint.

4.2. Preliminaries
Let N = {1, . . . , n} be a set of voters and M = {1, . . . ,m} be a set of projects. Voters have
structured preferences over budget divisions (or distributions) p ∈ [0, 1]m, with

∑
j∈[m] pj = 1,

39



4. Aggregating Budget Proposals

where pj is the fraction of a public resource (such as money or time) allocated to project j. Each
voter i ∈ N has a most-preferred distribution pi = (pi,1, . . . , pi,m), with their preference over
other distributions induced by `1 distance from pi. Specifically, each voter i has a disutility for
distribution q equal to d(pi,q), where d(x,y) =

∑m
j=1 |xi − yi| denotes the `1 distance between

x and y. Note that a voter’s complete preference over all possible distributions can be deduced
from the voter’s most-preferred distribution pi.

A preference profile P = (p̂1, p̂2, . . . , p̂n) consists of a reported distribution p̂i for each voter i.
We use P−i to denote the reports of all voters other than i. A budget aggregation mechanism A
takes as input a preference profile P, and outputs an aggregate distribution A(P). A mechanism
is continuous if it is continuous when considered as a function A : (Rm)n → Rm. We say that a
mechanism is anonymous if its output is fixed under permutations of the voters, and neutral if a
permutation of the projects in voters’ inputs permutes the output in the same way.

We are interested in mechanisms that satisfy strategyproofness. Voters should not be able to
change the aggregate distribution in their favour by misrepresenting their preference.

Definition 4.1. A budget aggregation mechanism A satisfies strategyproofness if, for all prefer-
ence profiles P, voters i, and distributions pi and p̂i, d(A(P−i, p̂i),pi) > d(A(P−i,pi),pi).

We are also interested in the basic efficiency notion of Pareto-optimality. It should not be
possible to change the aggregate so that some voter is strictly better off but no other voter is
worse off.

Definition 4.2. A budget aggregation mechanism A satisfies Pareto-optimality if, for all
preference profiles P, and all distributions q, if d(A(P), p̂i) > d(q, p̂i) for some voter i, then
there exists a voter j for which d(A(P), p̂j) < d(q, p̂j).

We also consider a fairness property that we call proportionality: Suppose each voter is
single-minded, in that they prefer a distribution in which the entire resource goes to a single
project. Then it is natural to split the resource in proportion to the number of voters supporting
each project. For example, if 6 voters report (1, 0, 0), 3 voters report (0, 1, 0), and 1 voter reports
(0, 0, 1), then the aggregate should be (0.6, 0.3, 0.1).

Definition 4.3. A voter is single-minded if their preferred distribution is a unit vector. A
budget aggregation mechanism A is proportional if, for every preference profile P consisting of
only single-minded voters, and every project j, A(P)j = nj/n, where nj is the number of voters
that support project j.

Proportionality is a fairly weak definition, only applying to a small subset of possible profiles.
However, as we will see later, it is already strong enough to be incompatible with Pareto-optimality
within the class of moving phantom mechanisms that we introduce in this chapter.

4.3. Two Projects

To build intuition, we begin by considering the case in which m = 2. Due to the normalisation of
inputs and of the output, and with `1 preferences, the problem is perfectly one-dimensional in
this case. This allows us to directly import Moulin’s [1980] famous characterisation of generalised
median rules as the only strategyproof mechanisms for voters with single-peaked preferences over
a single-dimensional quantity.1

1Our preference model using `1 imposes slightly more structure than just single-peakedness, namely that voters
are indifferent between points that are equidistant to their peak. However, this restriction does not enlarge the
class of strategyproof mechanisms, at least if we impose continuity [Massó and de Barreda, 2011].

40



4.4. Moving Phantom Mechanisms

Theorem 4.4 (Moulin, 1980). For m = 2, an anonymous and continuous budget aggregation
mechanism A is strategyproof if and only if there are α0 > α1 > · · · > αn in [0, 1] such that, for
all profiles P,

A(P)1 = med(p1,1, p2,1, . . . , pn,1, α0, α1, . . . , αn),
A(P)2 = med(p1,2, p2,2, . . . , pn,2, 1− α0, 1− α1, . . . , 1− αn).

The numbers αk are known as phantoms. Each mechanism described by Theorem 4.4 can be
understood as taking the coordinate-wise median of the reported distributions, after inserting
n+ 1 phantom voters (whose report is fixed and independent of the input profile).

One can check that α0, . . . , αn define a neutral mechanism if and only if the phantom placements
are symmetric, that is if and only if (α0, . . . , αn) = (1−αn, . . . , 1−α0}. Note that there are n+ 1
phantoms but only n voters, so that the phantoms can outweigh the voters. For example, when
αk = 1/2 for all k ∈ {0, . . . , n} then the mechanism is just the constant mechanism returning
(1/2, 1/2). However, if we take α0 = 1 and αn = 0, then these two phantoms “cancel out” and
there are only n− 1 phantoms left. In fact, one can check that the mechanism is Pareto-optimal
if and only if α0 = 1 and αn = 0 [Moulin, 1980].

A particularly interesting example is the uniform phantom mechanism, obtained when placing
the phantoms uniformly over the interval [0, 1], so that αk = 1 − k/n for each k ∈ {0, . . . , n}.
This placement of phantom voters appears in a paper by Caragiannis et al. [2016b]. They were
aiming for mechanisms whose output is close to the mean, and they prove that the uniform
phantom mechanism yields an aggregate that is closer to the mean than that obtained from any
other phantom placements, in the worst case over inputs. The uniform phantom mechanism has
other attractive properties, including being proportional in the sense of Definition 4.3.

Proposition 4.5. For m = 2, the uniform phantom mechanism is the unique (anonymous and
continuous) budget aggregation mechanism A that is both strategyproof and proportional.

Proof. Theorem 4.4 gives us that A is strategyproof if and only if it can be written in terms of
phantom medians. We therefore need only to consider the additional requirement of proportion-
ality. The uniform phantom mechanism is proportional, because if P consists of n− k voters
reporting (1, 0) and k voters reporting (0, 1), then A(P)1 = αk = (n− k)/n, as required.

For uniqueness, suppose α0, . . . , αn are phantom positions that induce a proportional mech-
anism. Let k ∈ {0, . . . , n}. We show that αk = 1 − k/n. Let P be a profile consisting of only
single-minded voters with n1 = n− k voters reporting p̂i = (1, 0). Then αk is the median, and
proportionality requires that αk = n1/n = (n− k)/n = 1− k/n.

Another natural way to place the phantoms is one that takes the coordinate-wise median.
When n + 1 is even, this is achieved by placing half the phantoms at 0 and the other half at
1, outputting precisely the median of the reported values on each coordinate. When n + 1 is
odd, we place n/2 phantoms at 0, n/2 phantoms at 1, and we place a single phantom at 1/2
to preserve neutrality. This mechanism outputs the point between the left and right medians
that is closest to 1/2. The resulting mechanism returns an aggregate p that minimises the sum
of distances between the reports (p1,p2, . . . ,pn) and p. We will generalise this mechanism for
larger m in Section 4.6.

4.4. Moving Phantom Mechanisms
For m = 2, we have a complete picture of strategyproof mechanisms, thanks to Moulin’s
characterisation. Form > 3, it is less clear how to construct examples of strategyproof mechanisms.
One could try to take a generalised median for each project independently, but the result of such
a mechanism would not respect the normalisation constraint.

41



4. Aggregating Budget Proposals

0

1

j1 j2 j3

f0

f1

f2

f3

f4 0

1

j1 j2 j3

f0

f1

f2

f3

f4 0

1

j1 j2 j3

f0

f1

f2

f3

f4 0

1

j1 j2 j3

f0, f1

f2

f3

f4

Figure 4.1.: A moving phantom mechanism operating on an instance with n = 4 and m = 3.

However, there is a way of extending the idea of generalised medians to the higher-dimensional
setting. The basic idea is that if a coordinate-wise generalised median violates the normalisation
constraint, then we can adjust the placement of the phantoms, increasing or decreasing the sum
of the generalised medians as needed. Such a procedure might, in principle, give voters incentives
to manipulate in order to affect the phantom placements. However, our class of moving phantom
mechanisms manages to avoid this problem.

Definition 4.6. Let F = {fk : k ∈ {0, . . . , n}} be a family of functions, called a phantom system,
where fk : [0, 1]→ [0, 1] is a continuous, weakly increasing function with fk(0) = 0 and fk(1) = 1
for each k, and we have f0(t) > f1(t) > · · · > fn(t) for all t ∈ [0, 1]. Then, the moving phantom
mechanism AF is defined so that for all profiles P and all j ∈ [m],

AF (P)j = med(f0(t∗), . . . , fn(t∗), p̂1,j , . . . , p̂n,j), (4.1)

where t∗ is chosen so that t∗ ∈ {t :
∑
j∈[m] med(f0(t), . . . , fn(t), p̂1,j , . . . , p̂n,j) = 1}.

For brevity, we write F(t) = (f0(t), . . . , fn(t)) and abbreviate the median in (4.1) to
med(F(t),Pi∈[n],j).

Let us examine the definition. Each fk represents a phantom, and the phantom system F
represents a “movie” in which all phantoms continuously increase from 0 to 1, with the function
argument t defining an instantaneous snapshot of the phantom positions. The moving phantom
mechanism AF defined by F identifies a particular snapshot in time, t∗, for which the sum of
generalised medians over all coordinates is exactly 1. One can check that at least one such t∗

exists, and that the output of the mechanism is independent of which of these t∗ is chosen.

Proposition 4.7. The moving phantom mechanism AF is well-defined for every phantom system
F satisfying the conditions of Definition 4.6.

Proof. First note that the function t 7→
∑
j∈[m] med(F(t),Pi∈[n],j) is continuous and increasing

in t, because fk is continuous and increasing, and these properties are preserved under taking
the median and sum. This implies that, provided the set {t :

∑
j∈[m] med(F(t),Pi∈[n],j) = 1} is

non-empty, the aggregate AF (P) does not depend on the choice of t∗.
When t = 0,

∑
j∈[m] med(F(t),Pi∈[n],j) = 0, since all n+ 1 phantom entries are 0. When t = 1,∑

j∈[m] med(F(t),Pi∈[n],j) = m > 1, since all n+ 1 phantom entries are 1. By the Intermediate
Value Theorem, using continuity, there exists t ∈ [0, 1] with

∑
j∈[m] med(F(t),Pi∈[n],j) = 1.

To build intuition, we consider an example moving phantom mechanism in Figure 4.1. There
are three projects, each occupying a column on the horizontal axis, and four voters. Voter reports
are indicated by grey horizontal line segments, with their magnitude p̂i,j indicated by their
vertical position. The phantom placements are indicated by the red lines and labelled f0, . . . , f4.

42



4.4. Moving Phantom Mechanisms

For each project, the median of the four agent reports and the five phantoms is indicated by a
rectangle.

The four snapshots shown in Figure 4.1 display increasing values of t. Observe that the
position of each phantom (weakly) increases from left to right, as does the median on each
project. Although the vertical axis is not labelled, for simplicity of presentation, normalisation
here occurs in the second image from the left. In the leftmost image, the sum of the highlighted
entries is less than 1, while in the two rightmost images it is more than 1.

For simplicity, the definition of moving phantom mechanisms treats the number of voters n as
fixed. To allow n to vary, it is necessary to define a family of phantom systems, one for each n.
In the next two sections, we give two examples of such families, but for this section we keep the
presentation simple by considering only a fixed n.

Moving phantom mechanisms satisfy some important basic properties. They are all anonymous
and neutral. Here neutrality is a design choice, and one could imagine defining moving phantom
mechanisms for which the movement of the phantoms depends on the project. All moving
phantom mechanisms are also continuous.

Given a profile, we can efficiently approximate the output of a moving phantom mechanism,
assuming oracle access to its defining functions F , by performing a binary search on t. In
principle, the precise time t∗ ∈ [0, 1] at which the output of the mechanism is normalised may
have many decimal digits, and for badly-behaved F it may even be irrational. For the same
reason, the mechanism may return an irrational distribution, so the precise computation of the
output may not be possible. However, for the mechanisms studied in the following sections, we
can show that t∗ has few digits and the output is always rational, so polynomial-time computation
is possible.

We now show our main result in this section, that every moving phantom mechanism is
strategyproof. Before proving the result formally, we provide some intuition. If i changes i’s
report from pi to p̂i, the effect on the aggregate can be decomposed into two parts. First,
we can think of holding the phantoms fixed at the snapshot dictated by the truthful instance,
while changing i’s report to p̂i. Second, we can think of repositioning the phantoms to the
snapshot required to guarantee normalisation of the aggregate vector after i reports p̂i. To prove
strategyproofness, we show that any change that the aggregate distribution undergoes in the first
stage can only be bad for voter i, pushing the aggregate away from pi. Change in the second
stage can push the aggregate towards pi, helping voter i, but the magnitude of this change is
upper bounded by the magnitude of the harmful change in the first stage.

Theorem 4.8. Every moving phantom mechanism is strategyproof.

Proof. Let F define a moving phantom mechanism AF . Consider some report p̂i 6= pi, and fix
the reports of all other voters P−i. Let t∗ determine the phantom placement for reports (pi,P−i)
and t̂∗ for reports (p̂i,P−i).

Consider the effect of i’s misreport from pi to p̂i while holding the phantom placement fixed at
F(t∗). Then, because phantom placements are fixed on each project, any change that voter i can
cause on project j by misreporting must be away from i’s preference pi,j . For each j ∈ [m],

• if pi,j 6 Af (pi,P−i)j < p̂i,j , then med(F(t∗), p̂i,j ,P−i,j) > med(F(t∗), pi,j ,P−i,j);

• if p̂i,j 6 Af (pi,P−i)j < pi,j , then med(F(t∗), p̂i,j ,P−i,j) 6 med(F(t∗), pi,j ,P−i,j);

• if p̂i,j and pi,j lie on same side of Af (pi,P−i)j , med(F(t∗), p̂i,j ,P−i,j) = med(F(t∗), pi,j ,P−i,j).

Let yj = med(F(t∗), p̂i,j ,P−i,j)−med(F(t∗), pi,j ,P−i,j) denote the change caused on project j
by voter i’s misreport, subject to holding the phantom placement fixed at F(t∗). By the above,
the `1 distance from i’s preferred distribution has increased by

∑
j∈[m] |yj | as a result of i’s

misreport.

43



4. Aggregating Budget Proposals

Next, we consider the change that results from moving the phantoms from F(t∗) to
F(t̂∗). Assume that

∑
j∈[m] yj > 0 (otherwise, a very similar argument applies). Then

we have that
∑
j∈[m] med(F(t∗), p̂i,j ,P−i,j) > 1, which implies that t̂∗ 6 t∗ since the sum

is monotonic in t (see the proof of Proposition 4.7). This produces aggregate distribution
AF(p̂i,P−i) with AF(p̂i,P−i)j = med(F(t̂∗), p̂i,j ,P−i,j) 6 med(F(t∗), p̂i,j ,P−i,j) for all j, and∑
j∈[m](med(F(t∗), p̂i,j ,P−i,j)−AF (P)j) =

∑
j∈[m] yj . That is, the `1 distance between taking

generalised medians with phantoms defined by t∗ and doing so with phantoms defined by t̂∗,
conditioned on voter i reporting p̂i, is at most

∑
j∈[m] yj .

Therefore, d(AF (p̂i,P−i),pi) > d(AF (pi,P−i),pi) +
∑
j |yj | −

∑
j yj > d(AF (pi,P−i).

In addition to strategyproofness, moving phantom mechanisms satisfy a natural monotonicity
property that says that if some voter increases the report on project j, and decreases the report
on all other projects, then the aggregate weight on project j should not decrease.
Definition 4.9. A budget aggregation mechanism A satisfies monotonicity if, for all pi, p′i with
pi,j > p′i,j for some j and pi,k 6 p′i,k for all k 6= j,

A(pi,P−i)j > A(p′i,P−i)j .

Theorem 4.10. Every moving phantom mechanism satisfies monotonicity.
Proof. Let pi, p′i be such that pi,j > p′i,j for some j and pi,k 6 p′i,k for all k 6= j. Let t∗ determine
the phantom placement for reports (pi,P−i) and t′∗ for reports (p′i,P−i).

Suppose that t′∗ < t∗. We have

A(p′i,P−i)j = med(F(t′∗), p′i,j , P−i,j) 6 med(F(t∗), pi,j , P−i,j) = A(pi,P−i)j
where the inequality holds because pi,j > p′i,j and fk(t∗) > fk(t′∗) for all k ∈ {0, . . . , n}.

Next, suppose that t′∗ > t∗. Then

A(p′i,P−i)j = 1−
∑
k 6=j
A(p′i,P−i)k = 1−

∑
j′ 6=j

med(F(t′∗), p′i,j′ , P−i,j′)

6 1−
∑
j′ 6=j

med(F(t∗), pi,j′ , P−i,j′) = A(pi,P−i)j

where the inequality holds because pi,j′ < p′i,j′ for all j′ 6= j and fk(t∗) 6 fk(t′∗) for all
k ∈ {0, . . . , n}.

Before we move on to particular moving phantom mechanisms, let us end this section with a
tantalising open question: Does there exist an (anonymous, neutral, continuous) strategyproof
budget aggregation mechanism that is not a moving phantom mechanism? We have not been
able to construct any example, and have found that some mechanisms that on first sight seem
to have nothing to do with medians end up having an equivalent description as a moving
phantom mechanism. For the simpler two-project case, we already have a characterisation of all
strategyproof mechanisms (Theorem 4.4). This class can equivalently be described in terms of
moving phantoms, and so the answer to our question for m = 2 is no.
Theorem 4.11. For m = 2, moving phantom mechanisms are the only budget aggregation
mechanisms that satisfy anonymity, neutrality, continuity, and strategyproofness.
Proof. Certainly all moving phantom mechanisms satisfy these properties. For the other direction,
we know from Theorem 4.4 that any mechanism A satisfying these properties can be described
as a generalised median with phantoms α0, . . . , αn satisfying, due to neutrality, {α0, . . . , αn} =
{1− α0, . . . , 1− αn}. We show that A is equivalent to a moving phantom mechanism. Define
AF using a phantom system F for which there exists a t∗ ∈ [0, 1] with fk(t∗) = αk for every k ∈
{0, . . . , n}. Then, for every preference profile P, we have that AF (P)1 = med(F(t∗),Pi∈[n],j) =
(α0, . . . , αn,Pi∈[n],j), and AF (P)2 = 1−AF (P)1, matching the output of A.

44



4.5. The Independent Markets Mechanism

4.5. The Independent Markets Mechanism
We have seen that uniform phantoms is uniquely proportional for m = 2. By a similar argument
to the proof of Proposition 4.5, it is easy to see that any family of functions F that generates
uniform phantoms at some snapshot will be proportional, and will reduce to the uniform phantom
mechanism for m = 2. However, this leaves a large class of moving phantom mechanisms to
choose from. In this section, we identify a particular moving phantom mechanism that generalises
the uniform phantom mechanism for arbitrary m. Its output can be interpreted as a market
equilibrium.

Definition 4.12. The independent markets mechanism (AIM) is the moving phantom mechanism
defined by the phantom system fk(t) = min{t(n− k), 1} for each k ∈ {0, . . . , n}.

To visualise the phantom placement, observe that for any t 6 1/n, phantoms are being placed
at 0, t, 2t, . . . , nt. Once t reaches 1/n, phantoms continue to grow in the same manner, but
the higher phantoms get capped at 1.2 This is actually the mechanism that we displayed in
Figure 4.1. Note that, when t = 1/n, the phantom placement is uniform on [0, 1] (as is the case in
the third panel of Figure 4.1); thus, AIM reduces to the uniform phantom mechanism for m = 2.

Example 4.13. Let us consider a simple numerical example. Let n = m = 3, and suppose voter
reports are p1 = (0, 0.5, 0.5),p2 = (0.5, 0.5, 0), and p3 = (0.9, 0, 0.1). Consider the placement
of the n + 1 = 4 phantoms when t = 0.6. They are placed at f0(t) = 0.6, f1(t) = 0.4, f2(t) =
0.2, f3(t) = 0. On the first project,

med{f0(t), f1(t), f2(t), f3(t), p1,1, p2,1, p3,1} = med{0.6, 0.4, 0.2, 0, 0, 0.5, 0.9} = 0.4.

Similarly, it is easy to check that the generalised median on the second project is 0.4 and on
the third project is 0.2. Because these are normalised, t∗ = 0.6 is a valid choice of t∗, and the
outcome AIM(P) = (0.4, 0.4, 0.2).

4.5.1. Market Interpretation
Why do we call this mechanism the independent markets mechanism? To explain this, we first
establish a connection between the market clearing price in a simple single-good market and the
median of some familiar-looking numbers.

Suppose we are selling a single divisible good, of which a total amount of x ∈ [0,∞) is available.
Each of n voters has a budget of 1, and a value vi ∈ [0,∞) per unit of the good. At a price
π > 0 per unit of the good, the demand of voter i, Di(π) is given by the following function:

Di(π) =


∞ π = 0,
1
π 0 < π < vi,

0 π > vi and π > 0.

Thus, each voter demands as much of the good as their budget of 1 allows at price π, as long as
the price per unit is lower than their value per unit. The market clearing price c is the price at
which the supply of the good (x) equals the total demand. Formally,

c = sup{π :
∑
i∈[n]Di(π) > x}, (4.2)

where the supremum is necessary because, due to discontinuities in the demand function, supply
and demand may never be exactly equal.

2As written, fn(1) = 0, but Definition 4.6 requires fk(1) = 1 for all k. This detail does not matter here, since
normalisation is always achieved without moving phantom n, but one could write fn in a different form to
satisfy Definition 4.6 without it changing the behaviour of the mechanism.

45



4. Aggregating Budget Proposals

It turns out that the market clearing price c is equal to the median of the n voter values vi
and the n+ 1 “phantom values” which are uniformly distributed on the interval [0, n/x]. To the
best of our knowledge, this connection has not previously been appreciated in the literature.

Lemma 4.14. In the market defined above, the market clearing price c equals

med(0, 1/x, . . . , (n− 1)/x, n/x, v1, . . . , vn).

Proof. We distinguish the cases that the median is a phantom entry or a voter entry. Suppose
that the median is a/x for some a. Then we can partition the (real and phantom) entries, with
the exception of the phantom at a/x, into sets A and B with |A| = |B| = n, where A consists
only of entries less than or equal to a/x, and B consists only of entries greater than or equal to
a/x.

The set B contains n− a phantoms, so n− (n− a) = a voter reports. At any price π < a/x,
each voter i ∈ B has demand Di(π) = 1/π > x/a. The total demand of all voters in B is
therefore greater than x. At price π = a/x, each voter i ∈ B has demand Di(π) = 1/π = x/a (if
vi > a/x) or Di(π) = 0 (if vi = a/x), and each voter i 6∈ B has demand 0. Therefore the total
demand of all voters is at most x, so the market clearing price is a/x.

Next, suppose that the generalised median is a/x < y < (a+ 1)/x for some a 6 n− 1 (note
that the generalised median cannot be greater than n/x, because it cannot be higher than the
largest phantom value). Then we can partition the (real and phantom) entries, not including
a single voter with vi = y (one such voter must exist because the median coincides with some
entry, and no phantom entry lies at y), into sets A and B each of size n, where A consists only
of entries less than or equal to y, and B consists only of entries greater than or equal to y.

Again, B contains n − a phantom reports, so a voter reports. At all prices π < y, each of
these a voters, as well as voter i with πi = y, has demand 1/π > 1/y. The total demand is thus
greater than (a + 1)/y > x. At price π = y, the total demand is at most a/y < x (since the
number of voters with vi > y is at most the number voter reports in set B). The market clearing
price is therefore y.

The “market” connection to independent markets is now clear: For each project j, we set up a
market in which we sell an amount x of a good; this amount is the same across markets. Voter
i ∈ [n] has value p̂i,j for the good sold in market j, and has a budget of 1 in each market. The
markets are “independent” because, while each voter is engaged in every market, the budget of 1
for each market can only be used to buy the good sold in that market. Using Lemma 4.14, we
can derive the market clearing prices in each of these markets. If we write t = n/x, then these
prices correspond exactly to the output of AIM with the phantoms as placed at time t. Changing
the phantom placement by varying t to normalise the output is equivalent to varying the amount
x of the good sold in each market until the clearing prices across markets sum to 1. While we
prevent phantoms from moving above 1 in the definition of independent markets to comply with
Definition 4.6, the exact positions of these phantoms do not affect the clearing price since all
reports are at most 1.

Returning to Example 4.13, we can verify the outcome using the market interpretation, by
setting the quantity of goods to be sold in each market to x∗ = n/t∗ = 5. In the market
corresponding to project 1, the market clears at price π1 = 0.4, at which price voters 2 and 3
demand 1/π1 = 2.5 goods each, matching supply, and voter 1 demands nothing as p1,1 = 0 < π.
It can be checked that the market prices also match the independent markets outcome for projects
2 and 3.

The market system we have described yields an strategyproof aggregator, since it corresponds to
a moving phantom mechanism. There are other market-based aggregation mechanisms described
in the literature, most famously the parimutuel consensus mechanism of Eisenberg and Gale

46



4.6. Pareto-Optimality and Social Welfare

[1959]. That mechanism differs from ours in that voters have only a single budget of 1 which
they can use in all of the markets. (The supply of goods can be fixed at x = n, which guarantees
that prices are normalised, because total spending is fixed.) For the case m = 2, it does not
matter whether markets are independent or not, and our mechanism is equivalent to the one of
Eisenberg and Gale [1959]. It follows that the parimutuel consensus mechanism is strategyproof
for m = 2 (in our `1 sense). However, for m > 3, the mechanism is manipulable,3 and hence
cannot be represented as a moving phantom mechanism. We point the reader to the work of
Garg et al. [2018] for a detailed overview of other settings in which market mechanisms have
been used in the context of public decision making.

4.5.2. Other Properties of Independent Markets
The independent markets mechanism can be seen as generalising the uniform phantom placement
that guaranteed proportionality in the m = 2 case, and for a similar reason, the independent
markets mechanism satisfies proportionality.

Proposition 4.15. AIM satisfies proportionality.

Proof. When AIM is run on a profile of single-minded reports, and we stop the phantom movement
at t∗ = 1

n , then the generalised medians correspond to the proportional output. Since this is
clearly normalised, this is what AIM returns.

We next check that the independent markets outcome is always rational and can be described
in polynomially many bits, thus ensuring that it can be computed efficiently as suggested in
Section 4.4. Our argument proceeds by showing that the outcome is a solution of a linear program,
similar to a proof of rationality for the parimutuel consensus mechanism [Vazirani, 2007, Thm. 5.1].
Consider the outcome p of the independent markets, and write Nj = {i ∈ N : pj < p̂i,j} for
the set of voters that purchase good j ∈ [m] since their value is lower than its price. Now, if
x is the supply of each good, then the amount xpj of money spent on j equals the budget of
the demanders, which is |Nj |. Introducing a variable z ≡ 1/x, we can write this as pj = z · |Nj |.
Thus, p is the solution of maximising ε subject to

p̂i,j 6 pj − ε for j ∈ [m] and i ∈ Nj ,

p̂i,j > pj for j ∈ [m] and i ∈ N \Nj ,

pj = z · |Nj | for j ∈ [m],∑
j∈[m] pj = 1, pj > 0, z > 0 for j ∈ [m].

Using standard encoding techniques, one can also calculate the independent markets mechanism
using an ILP with binary variables encoding “i ∈ Nj .”

4.6. Pareto-Optimality and Social Welfare
The independent markets mechanism has several natural interpretations, and it satisfies propor-
tionality. However, it is not Pareto-optimal. If voter 1 reports (0.8, 0.2, 0) and voter 2 reports
(0.8, 0, 0.2), then independent markets returns (0.6, 0.2, 0.2), which is dominated by (0.8, 0.1, 0.1).
On this example, independent markets even fails to be range-respecting, which requires that
mini∈[n] p̂i,j 6 A(P)j 6 maxi∈[n] p̂i,j for all j ∈ [m].

The failure to be range-respecting can be fixed, if desired, by changing the positions of phantoms
0 and n. One can show that a moving phantom mechanism AF is range-respecting if and only if

3Let p1 = (0, 0.5, 0.5), p2 = (0.5, 0.5, 0). Parimutuel consensus yields prices (1/3, 1/3, 1/3), at distance 2/3 from
p1. If voter 1 instead reports p̂1 = (0, 0, 1), the price vector is (0.25, 0.25, 0.5), at distance 0.5 from p1.

47



4. Aggregating Budget Proposals

f0(t) = 1 and fn(t) = 0 for all t ∈ [0, 1] except for an initial period where phantom 0 moves from
0 to 1 while all other phantoms remain at 0, and a period at the end where phantom n moves
from 0 to 1 while all other phantoms are at 1. This mirrors a result in Section 4.3; if the outer
two phantoms are at 0 and 1, the n− 1 remaining phantoms cannot outweigh the n voter reports.

While many moving phantom mechanisms are range-respecting, it is much more difficult to
find a mechanism in this class which is Pareto-optimal. Usually, it is possible to construct a
profile in which the mechanism returns a vector p all of whose entries are phantom reports, and
then a Pareto-improvement can be obtained by perturbing this vector in the directions where
the majority of voter reports lie. Such a perturbation is not possible if the phantoms lie at 0
or 1, which turns out to be the only escape. As we prove below, no mechanism AF can be
Pareto-optimal if there is any time point t when two phantoms are both strictly between 0 and 1.

This condition is extremely restrictive, and a moment’s thought reveals that there is only one
legal phantom system which avoids having two interior phantoms: All phantoms start at 0, and
then, one by one, one of the phantoms is moved to 1. At each t, at most one phantom lies strictly
between 0 and 1 while travelling. We call this phantom system F∗. It can be formalised as

fk(t) =


0 0 6 t 6 k

n+1 ,

t(n+ 1)− k k
n+1 < t < k+1

n+1 ,

1 k+1
n+1 6 t 6 1.

Below we will show that AF∗ precisely corresponds to the budget aggregation mechanism that
maximises voter welfare, breaking ties in favour of the maximum entropy distribution. It will
immediately follow that AF∗ is indeed Pareto-optimal. Combined with Theorem 4.16 below,
which shows that all other moving phantom mechanisms are Pareto-inefficient, this implies that
the welfare-maximising mechanism is the unique Pareto-optimal moving phantom mechanism.

4.6.1. Characterising Pareto-Optimality
The proof of Theorem 4.16 shows, by induction, that each phantom needs to move all the way to 1
before the next phantom can leave its position at 0. In case this does not happen, based on the
approximate phantom positions, we construct a profile where the mechanism is Pareto-inefficient.
These constructions are of two kinds: an easier case when the interior phantoms are low (lying
below 1

n(n−1)), and a more involved case when one of the phantoms has moved higher. In both
cases, our constructions utilise two types of projects. More voters report “high” probabilities on
projects of the first type than on projects of the second type. The constructions work so that if
two phantoms simultaneously take values between 0 and 1, then the mechanism outputs middling
values on all projects. Social welfare can be improved by increasing the output on projects of the
first type, and decreasing the output on projects of the second type. By incorporating enough
symmetry between voters, we guarantee that social welfare gains are shared equally, so obtain a
Pareto-improvement.

Theorem 4.16. A moving phantom mechanism AF cannot be Pareto-optimal for any m > n2

unless AF = AF∗.

Proof. We first show that any Pareto-optimal moving phantom mechanism AF for which there
exists a t with f0(t) < 1 and f1(t) > 0 can be equivalently expressed as a moving phantom mech-
anism that does not have such a t. Suppose that AF = med(f0(t∗), . . . , fn(t∗), p̂1,j , . . . , p̂n,j) =
f0(t∗) < p̄1,j for some j. Then AF is not Pareto-optimal, because increasing AF(P)j and de-
creasing AF(P)j′ for any coordinate with AF(P)j′ > p̄1,j′ is a Pareto-improvement (such
a coordinate must exist, because

∑
j p̄1,j 6 1). Therefore, for all preference profiles P,

AF = med(f0(t∗), . . . , fn(t∗), p̂1,j , . . . , p̂n,j) > p̄1,j . This implies that f0(t∗) > p̄1,j and so

48



4.6. Pareto-Optimality and Social Welfare

the exact position of f0(t∗) has no effect on the mechanism. It would be equivalent to move
phantom f0 to position 1 before moving phantom f1.

A very similar argument can be used to show that there cannot exist a t for which fn−1(t) < 1
and fn(t) > 0. For the rest of the proof, we focus on the intermediate phantoms. Suppose that
there exists some index 1 6 k 6 n− 2 for which fk(t) < 1 and fk+1(t) > 0 for some t. If no such
k exists, then phantom system F = F∗.

We next show that if fk(t) < 1
n(n−1) , it must be the case that xk+1(t) = 0. Define an instance

with m = n2 projects. Voter i ∈ [n] reports p̂i,j = 1
n2−kn−1 for projects j ∈ {((i − 1)(n − 1) +

1, . . . , (i−1)(n−1) +n2−n−kn+k) mod n(n−1)} and for projects j ∈ {n(n−1) + (i, i+ 1, i+
n−k−2) mod n}, and p̂i,j = 0 for all other projects. Note that

∑m
j=1 p̂i,j = 1. Further, note that

among projects 1, ..., n(n−1), each voter makes n2−n−kn+k = (n−1)(n−k) non-zero reports
and each project has n−k non-zero reports, while among projects n(n−1) + 1, . . . , n2, each voter
makes n− k − 1 non-zero reports and each project has n− k − 1 non-zero reports. Therefore, if
fk(t) < 1

n2−kn−1 , the generalised median on project j is fk(t) for j ∈ {1, . . . , n(n− 1)} and the
median on project j is fk+1(t) for j ∈ {n+ 1, . . . , 2n}.

Suppose that there exists t for which fk(t) < 1
n(n−1) <

1
n2−kn−1 and fk+1(t) > 0. Then, since

f is increasing and continuous, and the aggregate distribution AF(P) is normalised, it will
necessarily be the case that for all j ∈ {1, ..., n(n− 1)}, Af (P)j = fk(t∗) < 1

n(n−1) , and for all
j ∈ {1, ..., n(n − 1)}, Af (P)j = fk+1(t∗) > 0, with n(n − 1)fk(t∗) + nfk+1(t∗) = 1. But this is
not Pareto-optimal. Consider, for some small enough ε, increasing AF(P)j by ε on projects
j ∈ {1, . . . , n(n− 1)}, and decreasing AF (P)j by ε(n− 1) on projects j ∈ {n(n− 1) + 1, . . . , n2}.
For every voter i, there are n2 − n− kn+ k projects on which the aggregate moves ε closer to
i’s report, kn − k projects for which the aggregate moves ε farther from i’s report, n − k − 1
projects on which the aggregate moves ε(n− 1) further from i’s report, and k + 1 projects for
which the aggregate moves ε(n− 1) closer to i’s report. Summing these up, the change moves
the aggregate (2n− 2)ε closer to p̂i in `1 distance.

We now show that if fk(t) < 1 then it must be the case that fk+1(t) = 0. For contradiction
suppose otherwise. Let t̄ = sup{t : fk+1(t) = 0} be the final snapshot at which fk+1(t) = 0.
By assumption, fk(t̄) < 1. We define an instance similar to that above. Let δ > 0 (we
will determine the exact value of δ later). For every voter i, let p̂i,j = 1−fk(t̄)−δ

n(n−1)−1 for every
j ∈ {(i− 1)(n− 1) + 1, . . . , (i− 1)(n− 1) +n− 1} and p̂i,j = 1−fk(t̄)

n(n−1)−1 for every j ∈ {((i− 1)(n−
1) + n, . . . , (i− 1)(n− 1) + n2 − n− kn+ k) mod n(n− 1)}. However, for j = 1, for every voter
i with pi,1 = 1−fk(t̄)−δ

n(n−1)−1 we instead set pi,1 = fk(t̄) + δ, overriding the earlier setting. Because

we know that fk(t̄) > 1
n(n−1) , we have that 1−fk(t̄)−δ

n(n−1)−1 <
1− 1

n(n−1)
n(n−1)−1 6

1
n(n−1) 6 xk, therefore the

new value of p̂i,1 is higher than the one it replaces. To set δ, choose some value that guarantees∑n(n−1)
j=1 p̂i,j < 1 for all i. In particular, by the previous observation, it is sufficient to set δ so

that
fk(t̄) + δ + (n− 2)1−fk(t̄)−δ

n(n−1)−1 + (n− k − 1)(n− 1) 1−fk(t̄)
n(n−1)−1 < 1. (4.3)

To see that such a value of δ exists, note that Equation 4.3 is continuous in δ and takes value
strictly less than 1 when δ = 0:

fk(t̄) + (n− 2) 1−fk(t̄)
n(n−1)−1 + (n− k − 1)(n− 1) 1−fk(t̄)

n(n−1)−1 < fk(t̄) + n(n− 2) 1−fk(t̄)
n(n−1)−1

< fk(t̄) + 1− fk(t̄) = 1,

where we may assume n > 3 because the case of n = 2 has only a single phantom that is not f0
or fn. For every j ∈ {1, . . . , n(n− 1)} for which p̂i,j is not explicitly set greater than 0, we set it
to 0.

49



4. Aggregating Budget Proposals

For all i, we evenly distribute the remaining (positive) mass 1 −
∑n(n−1)
j=1 pi,j evenly among

j ∈ {n(n− 1) + (i, i+ 1, i+ n− k − 2) mod n}.
When t = t̄, the generalised median on each project is fk(t) = fk(t̄) for project 1, 1−fk(t̄)−δ

n(n−1)−1
for all j ∈ {2, . . . , n(n− 1), and xk+1(t̄) = 0 for all j ∈ {n(n− 1) + 1, . . . , n2}. The sum of these
generalised medians is 1 − δ. Therefore t needs to increase to achieve normalisation. By the
definition of t̄, for any t > t̄, we have that fk+1(t) > 0, and therefore the generalised median
on all projects j ∈ {n(n− 1) + 1, . . . , n2} is greater than 0. It is therefore impossible for fk(t)
to reach fk(t̄) + δ, because then the sum of generalised medians would exceed 1. It is also
impossible for fk+1(t) to reach 1−fk(t̄)

n(n−1)−1 . If it does, then the generalised median on project 1 is
at least fk(t̄), on j ∈ {2, . . . , n(n− 1)} is 1−fk(t̄)

n(n−1)−1 and on j ∈ {n(n− 1) + 1, . . . , n2} is strictly
greater than 0. Therefore the aggregate is not normalised. To summarise, we are guaranteed
that 1

n(n−1) 6 A
F (P)1 < fk(t̄) + δ, 1−fk(t̄)−δ

n(n−1)−1 6 A
F (P)j < 1−fk(t̄)

n(n−1)−1 for all j ∈ {2, . . . , n(n− 1)},
and AF (P)j > 0 for all j ∈ {n(n+ 1) + 1, . . . , n2}.

Now we can define a Pareto-improvement to AF (P) of the same form as previously. For some
small enough ε, increase the aggregate by ε on projects j ∈ {1, . . . , n(n− 1)}, and decrease the
aggregate by ε(n− 1) on projects j ∈ {n(n− 1) + 1, . . . , n2}. For voter 1, with p1,1 = fk(t̄) + δ,
the new aggregate is ε better than AF (P) on project 1, ε worse on projects j ∈ {2, . . . , n− 1},
with p1,j = 1−fk(t̄)−δ

n(n−1)−1 , ε better on projects j ∈ {n, . . . , n2−n−kn+k}, with pi,j = 1−fk(t̄)
n(n−1)−1 , and

ε worse on projects j ∈ {n2−n−kn+k+ 1, . . . , n(n− 1)}, with pi,j = 0. On the final n projects,
there are at least k + 1 projects on which the aggregate moves ε(n− 1) closer to voter 1’s report
(on projects for which voter 1 reports pi,j = 0), and at most n − k − 1 projects for which the
aggregate moves ε(n− 1) farther from voter 1’s report. Summing these up, we get the aggregate
has moved 1− (n− 2) + (n− k − 1)(n− 1)− k(n− 1)− (n− 1)(n− k − 1) + (n− 1)(k + 1) = 2
towards p1.

For all other voters, the new aggregate is ε worse than AF (P) on projects j ∈ {(i− 1)(n− 1) +
1, . . . , n − 1}, with pi,j = 1−fk(t̄)−δ

n(n−1)−1 , and ε better on projects j ∈ {((i − 1)(n − 1) + n, . . . , (i −
1)(n − 1) + n2 − n − kn + k) mod n(n − 1)}, with pi,j = 1−fk(t̄)

n(n−1)−1 , and ε worse on projects
j ∈ {((i− 1)(n− 1) + n2 − n− kn+ k + 1, . . . , (i− 1)(n− 1) + n(n− 1)) mod n(n− 1)}, with
pi,j = 0. On the final n projects, there are at least k + 1 projects on which the aggregate moves
ε(n− 1) closer to voter i’s report (on projects for which voter i reports pi,j = 0), and at most
n− k− 1 projects for which the aggregate moves ε(n− 1) farther from voter i’s report. Summing
these up, we get that the new and old aggregates are equal `1 distances from pi.

Finally, our construction uses m = n2 projects, but we can extend it to larger m by adding
dummy projects that no voter puts any weight on.

On profiles consisting of single-minded voters, AF∗ selects a distribution that is also single-
minded, following the plurality. Hence, it is not proportional, which gives the following corollary.

Corollary 4.17. For m > n2, no moving phantom mechanism is proportional and Pareto-
optimal.

4.6.2. Maximising Social Welfare

Having narrowed down the space of Pareto-optimal moving phantom mechanisms to at most
one mechanism, let us examine the behaviour of AF∗ with the assistance of Figure 4.2, which
takes the same form as Figure 4.1. On every project, order the entries {pi,j} from largest to
smallest. We denote the relabelled entries p̄1,j > · · · > p̄n,j . At the snapshot of F∗ for which
f0(t) = · · · = fk(t) = 1 and fk+1(t) = · · · = fn(t) = 0, the generalised median selects the order

50



4.6. Pareto-Optimality and Social Welfare

0

1

j1 j2 j3

f0, f1, f2

f3, f4, f5 0

1

j1 j2 j3

f0, f1, f2

f3

f4, f5 0

1

j1 j2 j3

f0, f1, f2, f3

f4, f5

Figure 4.2.: Snapshots of the phantom system F∗ with t < t∗ (left), t = t∗ (center), and t > t∗

(right) on an instance with n = 5, m = 3.

statistic p̄n−k,j for all j. We see this in Figure 4.2 where, in the left image, k = 2 and the
generalised median is the n − k = 3rd highest report on each project, and in the right image
k = 3 and the n− k = 2nd highest reports are chosen.

We can think of F∗ as partitioning the phantom “movie” into periods defined by which
phantom is moving. Initially, all phantoms are at 0, and the generalised medians are 0 for each
j ∈ [m]. Then phantom f0 moves to 1, and the generalised medians are p̄n,j . As phantom fk
moves from 0 to 1, the generalised medians progress from p̄n−k+1,j to p̄n−k,j , until all phantoms
reach 1 and the generalised medians are uniformly 1. By (a discrete analogue of) the intermediate
value theorem, there must exist some value I for which

∑
j∈[m] p̄I+1,j 6 1 and

∑
j∈[m] p̄I,j > 1,

and this transition is made during the period in which phantom n− I is moving. In Figure 4.2,
we have I = 2 because the sum of the third-highest entries is less than one (see the left image),
while the sum of the second-highest entries is more than one (the right image).

Normalisation therefore occurs during the movement of phantom fn−I , and the final value
AF∗(P)j lies in the interval [p̄I+1,j , p̄I,j ]. If fn−I(t∗) lies in this interval, then AF∗(P)j = fn−I(t∗),
otherwise AF∗(P)j is equal to the endpoint of the interval closest to fn−I(t∗). This is depicted
in the center image of Figure 4.2, where f3(t∗) lies between the second and third-highest reports
on the first two projects, but below the third-highest report on the third project.

Finding the exact value of fn−I(t∗), and therefore the output AF∗(P), can be thought of
as finding the “most equal” distribution, subject to interval constraints on each project. This
problem has been studied before, and the (unique) value of fn−I(t∗) can be found in O(m logm)
time by the Divvy algorithm of Gulati et al. [2012].

Given a profile P, the social cost of an outcome p is
∑
i∈[n] d(p̂i,p), and the (utilitarian) social

welfare of p is the negation of the social cost. In general, there may be multiple distributions
that maximise social welfare. For example, if m = 2, one voter reports (1, 0) and another reports
(0, 1), then all distributions have the same social cost of 2. As it turns out, any distribution that
satisfies the upper and lower bound constraints of p̄I,j and p̄I+1,j maximises social welfare.

Lemma 4.18. A distribution q maximises social welfare if and only if p̄I+1,j 6 qj 6 p̄I,j for all
j.

Proof. Let q be a distribution with p̄I+1,j 6 qj = p̄I+1,j + εj 6 p̄I,j for all j, with normalisation
of q implying that

∑
j∈[m] εj = 1−

∑
j∈[m] p̄I+1,j . Then the social cost of q is

∑
j∈[m]

∑
i∈[n]
|p̄i,j − qj | =

∑
j∈[m]

∑
i∈[n]
|p̄i,j − p̄I+1,j |+

∑
i>I+1

εj −
∑
i6I

εj


=
∑
j∈[m]

∑
i∈[n]
|p̄i,j − p̄I+1,j |+ (n− 2I)

1−
∑
j∈[m]

p̄I+1,j



51



4. Aggregating Budget Proposals

Because this expression does not depend on εj , all such distributions q have the same social cost.
We now show that this distance is minimal. Let q be a distribution that does not satisfy

p̄I+1,j 6 qj 6 p̄I,j for some j. Suppose qj > p̄I,j (the case where qj < p̄I+1,j can be handled
similarly). By the definition of I, there must exist some project j′ for which qj′ < p̄I,j′ . Now,
consider the distribution q′ defined by q′j = qj − ε > p̄I,j and q′j′ = qj′ + ε < p̄I,j′ , with q′ and q
equal on all other coordinates. Compare q and q′ in terms of `1 distance from the reports. They
are indistinguishable on all projects other than j and j′. On project j, q′ is ε closer than q to all
entries p̄i,j with i > I, and at most ε farther from all other entries. On project j′, q′ is ε closer
than q to all entries p̄i,j′ with i 6 I, and at most ε farther from all other entries. Therefore, of
the 2n entries on projects j and j′, q′ is ε closer than q to at least n+ 1 of them, and no more
than ε farther than q from the other n− 1. Therefore, q does not maximise social welfare.

As a corollary of Lemma 4.18, we immediately obtain that AF∗ maximises social welfare, and
is therefore Pareto-optimal. Social-welfare-maximising mechanisms have been considered before;
all that is needed is a suitable tiebreaking procedure to select a single distribution from the set
of maximisers. Goel et al. [2019] suggest breaking ties by selecting the lexicographically largest
welfare maximiser, but this is not neutral. We propose a different way to break ties, which is
neutral: select the welfare maximiser p with largest Shannon entropy −

∑
j∈[m] pj log pj . Because

the set of welfare-maximisers is convex, and Shannon entropy is a convex function, existence and
uniqueness of p is guaranteed.

Theorem 4.19. For every profile P, AF∗ selects the entropy-maximising distribution among
those that maximise social welfare.

Proof. From the earlier discussion, we know that AF∗(P)j = med{p̄I+1,j , p̄I,j , fn−I(t∗)} ∈
[p̄I+1,j , p̄I,j ] for all j ∈ [m]. Therefore, it maximises social welfare.

It remains to show that, subject to these constraints, AF∗(P) maximises Shannon entropy.
Consider any other distribution q 6= AF∗(P) with p̄I+1,j 6 qj 6 p̄I,j . Then there must exist a
project j for which p̄I+1,j 6 AF

∗(P)j < qj 6 p̄I,j . Further, because AF∗(P)j < p̄I,j , it must be
the case that fn−I(t∗) 6 AF

∗(P)j = med{p̄I+1,j , p̄I,j , fn−I(t∗)}. There must also be a project j′
for which p̄I+1,j′ 6 qj′ < AF

∗(P)j′ 6 p̄I,j′ , with AF∗(P)j′ 6 fn−I(t∗).
Putting these together, we have that qj′ < fn−I(t∗) < qj . We also know that p̄I+1,j < qj and

qj′ < p̄I,j′ . Therefore, adjusting qj to qj − ε and qj′ to qj′ + ε, for ε small enough that none of
the above strict inequalities are violated, both (1) decreases |qj − qj′ |, which it is easy to check
increases Shannon entropy, and (2) respects social-welfare maximisation. Therefore, q is not the
unique entropy-maximising distribution among social welfare maximisers, so AF∗ is.

4.7. Minimum Spending Requirements
The model of this chapter assumes that projects are feasible no matter what fraction of the
budget is spent on them. However, many projects have some fixed costs, and so they only make
sense when spending exceeds a certain minimum level. In this section, we will show that with
these additional constraints it can become impossible to satisfy strategyproofness.

We study a specific setting to illustrate the problem. Suppose there are m = 3 projects, and
we impose the following constraint: a distribution p is feasible if px > 0 implies px > 1

3 . We only
allow reports of ideal distributions which are themselves feasible (this restriction strengthens the
following negative result).

Recall that a mechanism A is range-respecting if mini∈[n] p̂i,j 6 A(P)j 6 maxi∈[n] p̂i,j for all
j ∈ [m]. We prove that there is no anonymous, range-respecting, truthful mechanism which
selects feasible distributions, for n = 2 voters. Suppose for a contradiction that A is an aggregator
satisfying these conditions.

52



4.8. Conclusion

We will mainly reason about profiles where all reported fractions are 1
2 . An important

observation: The output at such a profile must be one of the voter reports. For example,
A((0, 0.5, 0.5), (0.5, 0, 0.5)) is either (0, 0.5, 0.5) or (0.5, 0, 0.5). To see this, note that the third
value needs to be exactly 0.5 for A to be range-respecting, and at most one of the remaining
values can be positive by the minimum spending assumption.

Lemma 4.20. We have

(a) A((0, 0.5, 0.5), (0.5, 0, 0.5)) = (0, 0.5, 0.5) iff A((0, 0.5, 0.5), (0.5, 0.5, 0)) = (0, 0.5, 0.5);

(b) A((0.5, 0, 0.5), (0, 0.5, 0.5)) = (0.5, 0, 0.5) iff A((0.5, 0, 0.5), (0.5, 0.5, 0)) = (0.5, 0, 0.5);

(c) A((0.5, 0.5, 0), (0, 0.5, 0.5)) = (0.5, 0.5, 0) iff A((0.5, 0.5, 0), (0.5, 0, 0.5)) = (0.5, 0.5, 0).

Proof. We only do (a), the other statements are symmetric. Suppose the statement is false, and
exactly one of the conditions is satisfied. Suppose (without loss of generality) that the former is
satisfied and the latter is not, so

A((0, 0.5, 0.5), (0.5, 0, 0.5)) = (0, 0.5, 0.5) (4.4)
A((0, 0.5, 0.5), (0.5, 0.5, 0)) = (0.5, 0.5, 0). (4.5)

In situation (4.4), the second voter is unhappy, and misreports (2
3 , 0,

1
3). Write

A((0, 0.5, 0.5), (2
3 , 0,

1
3)) = (a, 0.5− b, 0.5− c).

for some a, b, c > 0 (non-negativity comes from range-respecting). By truthfulness, c > a + b.
Since the output must be normalized, a = b+ c. Combining these, 0 > 2b, so b 6 0. Hence b = 0,
so a = c. From the minimum spending requirement, either a = 0 or a > 1

3 . The latter case is
impossible since then c > 1

3 so that 0.5− c 6 1
6 , which contradicts that A is range-respecting.

Thus a = b = c = 0, so
A((0, 0.5, 0.5), (2

3 , 0,
1
3)) = (0, 0.5, 0.5).

The second voter is at distance 2
3 + 1

2 + 1
6 = 8

6 . If the second voter manipulates and reports
(0.5, 0.5, 0), then by (4.5), the output is only at distance 1

6 + 1
2 + 1

6 = 5
6 < 8

6 , a successful
manipulation, contradicting truthfulness of A.

Now we apply the lemma several times, while implicitly using anonymity and our initial
observation, to obtain a contradiction.

Start by supposing, without loss of generality since we could reorder voters and projects,
that A((0, 0.5, 0.5), (0.5, 0, 0.5)) = (0, 0.5, 0.5). By (a), we have A((0, 0.5, 0.5), (0.5, 0.5, 0)) =
(0, 0.5, 0.5). This violates the left-hand part of (c), and thus its right-hand part is also violated, so
A((0.5, 0.5, 0), (0.5, 0, 0.5)) = (0.5, 0, 0.5). This satisfies the right-hand part of (b), so its left-hand
part is also satisfied, so A((0.5, 0, 0.5), (0, 0.5, 0.5)) = (0.5, 0, 0.5). This contradicts our initial
assumption.

4.8. Conclusion
We considered the problem of aggregating budget proposals for participatory budgeting. Inspired
by the generalised median mechanisms of Moulin [1980], we introduced the broad class of moving
phantom mechanisms and proved that all mechanisms in this class are strategyproof under `1
voter preferences. We analysed two moving phantom mechanisms in detail: one that maximises
social welfare while violating proportionality, and another that satisfies proportionality while
violating Pareto-optimality.

53



4. Aggregating Budget Proposals

We have implemented both mechanisms. Some preliminary simulation results suggest that
even when voters are not single-minded, independent markets is “more proportional” than AF∗ ,
in the sense that it better reflects all voters’ opinions and not just that of the majority. However,
independent markets also has a tendency to shift the aggregate towards the uniform distribution,
relative to what we might intuitively expect. This deserves more investigation.

There are many other moving phantom mechanisms that we have not considered. It would be
interesting to investigate what other properties can be achieved by other phantom systems. And
finally, as we mentioned earlier, when there are only two outcomes, we know that all (anonymous,
neutral, and continuous) strategyproof budget aggregation mechanisms can be represented as
moving phantom mechanisms. It remains an open question whether this continues to hold when
the number of outcomes m is more than 2.

54



5. Aggregating Approval Preferences

We consider the problem of dividing a perfectly divisible common budget among
several uses, employing the user-friendly input format of approval ballots: voters can
indicate for each project whether they approve it or not. We give a short overview
of several natural aggregation rules for this input type. We then prove a conjecture
of Bogomolnaia, Moulin, and Stong [2005], saying that there is no aggregation
mechanism that is efficient, strategyproof, and satisfies an extremely mild fairness
condition. This axioms in the impossibility are independent, so dropping any of the
three axioms makes the impossibility disappear.

5.1. Introduction

In this chapter, we consider the same setting as in the previous chapter: a common divisible
budget needs to be divided among several projects, and each project can receive any fraction of
the budget. However, we consider a different utility model and hence a different input format:
we allow voters to indicate, for each project, whether they approve it or disapprove it. Given a
budget division, we take the voter’s utility to be equal to the fraction of the budget spent on
approved projects.

This model was proposed by Bogomolnaia et al. [2002, 2005]. Let us introduce some of their
aggregation rules and discuss their properties on an example. Suppose that there are four projects,
A = {a, b, c, d} and five voters N = {1, 2, 3, 4, 5} with the profile

P = ({a}, {a, c}, {a, d}, {b, c}, {b, d}).

Thus, for example, voter 2 approves projects a and c, but disapproves projects b and d. Write Ai for
the approval set of voter i. The outcome space is the set ∆(A) of distributions p : A→ [0, 1] with∑
a∈A pa = 1. For a voter i ∈ N and a given distribution p, the utility of i is ui(p) =

∑
a∈Ai

pa.

a
34%b

22%

c
22%

d
22%

One possible way of obtaining a distribution is to take the spending on a
project to be proportional to its approval score. The approval score of a project
is the number of voters who approve it. In our example, the approval scores
are 3, 2, 2, 2, and the corresponding distribution is (3

9 ,
2
9 ,

2
9 ,

2
9). A problem

with this approach is that it will spend a positive fraction on every project
that is approved by at least one voter, and this includes dominated projects.

In our example, no project is dominated by another, but still this distribution is inefficient: every
voter weakly prefers (5

9 ,
4
9 , 0, 0), and voter 1 strictly prefers it.

a
100%

A standard way to achieve Pareto efficiency is to maximise some type of social
welfare. For example, we could take the distribution p for which

∑
i∈N ui(p)

is maximised. This is the utilitarian rule. On our example, the optimum is
the distribution (1, 0, 0, 0) which spends the entire budget on the project a
with the highest approval score, that is, on the approval winner. To see this,
consider any distribution which spends a positive amount on a project which is

not an approval winner; then redistributing this spending towards an approval winner increases∑
i∈N ui(p). While this choice is certainly Pareto-efficient, it seems unfair, since it gives utility 0

to voters 4 and 5, who form 40% of the electorate.

55



5. Aggregating Approval Preferences

a
60%

b
20%

c
10%

d
10%

To achieve fairness while keeping some of the utilitarian spirit, Duddy [2015]
introduces the conditional utilitarian rule, further discussed by Aziz et al.
[2019a] and Brandl et al. [2019b]. Each voter is given an equal share of the
budget (here 20%) and can decide what to do with it. Each voter i spends the
share only on approved projects, but chooses those projects in Ai which have
the highest approval score. In our example, voter 1 spends 20% on a since this

is the only approved project. Voters 2 and 3 also spend only on a, since the approval score of a is
higher than the score of b or of c. For voter 4 and 5, their two approved projects have the same
approval score, and so we let them put 10% on each. Summing up, we obtain (0.6, 0.2, 0.1, 0.1).
By design, no voter’s interests are ignored, but the resulting distribution can be inefficient. Here,
every voter weakly prefers (0.7, 0.3, 0, 0), and voter 1 strictly prefers it.

a
50%

b
50%

Another way to ensure that no voter is ignored is following the Rawlsian prin-
ciple of maximising the welfare of the worst-off agent. This would correspond
to choosing a distribution p such that the egalitarian welfare mini∈N ui(p) is
maximised. In our example, the distribution (0.5, 0.5, 0, 0) gives every voter a
utility of at least 50%, and it is easy to see that this is optimal. By standard
arguments, one can show that there is always a Pareto-efficient distribution

that maximises egalitarian welfare (by using the leximin criterion).

a
60%

b
40%

A possible criticism of the egalitarian rule is that it ignores the relative sizes of
different groups. For example, if we added a hundred voters to P who all only
approve a, the egalitarian rule would not change its output. One rule that
is often seen as a compromise is to maximise the Nash product

∏
i∈N ui(p).

This rule does take into account how frequently each vote occurs in a profile,
but it retains some of the spirit of egalitarianism: if some voter obtains a low

utility in an outcome this substantially reduces the Nash product, so it prioritises improving the
utility of badly represented voters. In particular, unlike the utilitarian rule, it will never return a
distribution in which a voter obtains utility 0, since that would give a Nash product of 0. The
Nash rule always returns a Pareto optimum, and in our case the output is (0.6, 0.4, 0, 0).

One can prove that the first three rules we mentioned (proportional to approval scores,
utilitarian rule, conditional utilitarian rule) are strategyproof: an agent with dichotomous 0/1
preferences cannot misreport to obtain higher utility. This mirrors the result that single-winner
Approval Voting is strategyproof [Brams and Fishburn, 1983]. The egalitarian rule and the Nash
product are not strategyproof: If voter 2 reports the approval set {c} instead of {a, c}, then the
egalitarian (leximin) rule returns (1

3 ,
1
3 ,

1
3 , 0) and the Nash rule returns (2

6 ,
1
6 ,

2
6 ,

1
6). In both cases,

the fraction spent on a and c together has strictly increased from the previous output.
A rule satisfies positive share if for all profiles, in the output distribution p, we have ui(p) > 0

for every i ∈ N . Thus, we never spend 100% of the budget on projects a voter disapproves. The
utilitarian rule violates positive share, even though it is an extremely weak property. Indeed,
positive share does not seem strong enough to adequately capture fairness. However, in this
chapter we are after a negative result, and thus a weak notion makes for a stronger argument.

Let us summarise our discussion so far in a table that indicates, for each of the rules we
mentioned, whether it satisfies Pareto efficiency, positive share, and strategyproofness.

approval scores utilitarian conditional utilitarian egalitarian Nash

Pareto-efficient × X × X X
positive share X × X X X
strategyproof X X X × ×

Suspiciously, no column features three checkmarks. Is there some other rule which satisfies all
three of these axioms?

56



5.2. Impossibility Theorem

5.2. Impossibility Theorem
In 2005, Bogomolnaia, Moulin, and Stong [2005] conjectured that, like the utilitarian rule, all
efficient and strategyproof mechanisms will fail positive share – and hence many other desirable
properties which are stronger, such as the individual fair share property [Bogomolnaia et al.,
2005] or the core [Aziz et al., 2019a]. They “submit as a challenging conjecture the following
statement: there is no strategyproof and ex ante efficient mechanism guaranteeing positive shares.”
Bogomolnaia et al. were able to prove impossibility theorems of this type only when substituting
much stronger versions of strategyproofness or of positive share. Still, their proofs were rather
involved, and one of them required that there are m > 17 projects.1 As to whether a mechanism
satisfying the original conditions exists, they left it as “a challenging open question to which we
suspect the answer is negative when [m] and [n] are large enough.”

Here, we confirm Bogomolnaia et al.’s conjecture.

Theorem 5.1. No mechanism satisfies efficiency, strategyproofness, and positive share when
m > 4 and n > 6.

To our surprise, Bogomolnaia et al.’s suspicion that an impossibility would require a large
number of voters and projects turned out to be false.

We proved Theorem 5.1 using the computer-aided technique based on SAT solving that we
saw in Part I. On first sight, our problem has a continuous flavour, since the rules in this context
return real-valued distributions. This suggests an encoding into integer linear programming like
we did in Section 4.7, or into SMT, which has previously been used to prove an impossibility
theorem in the formally equivalent setting of probabilistic social choice [Brandl et al., 2018]. A
drawback of these continuous methods is that they can (presently) only handle comparatively
small instances. Solving times tend to become prohibitive once we search for an impossibility for
a domain of more than a few thousand profiles. Discrete encodings of social choice problems into
SAT can often be solved for hundreds of thousands of profiles.

Our problem can be discretised by only considering the support of the distribution returned by
our mechanism; the support of a distribution is the set of projects on which a positive fraction
is spent. For 4 projects, there are only 24 − 1 = 15 possible supports per profile (compared to
infinitely many distributions). Clearly, for every rule that assigns an output distribution to every
input profile, there is an induced function that assigns a support to every input profile. Note that
the positive share axiom only refers to the support. Less obviously, Aziz, Brandl, and Brandt
[2014] have proved that whether a distribution is efficient or not depends only on its support.
The only remaining axiom is strategyproofness, which depends on the precise distributions
returned by the mechanism. However, it turns out that impossibility still holds when only
considering particularly clear-cut manipulations. In the encoding, we only consider manipulations
in which the manipulator enforces a distribution in which the entire budget is distributed across
the manipulator’s approved projects, so that by manipulating the agent obtains the maximum
possible utility of 1. If we obtain an impossibility with these axioms for support-selecting rules,
this implies the same impossibility for rules selecting a distribution.

Even after discretising, the formulas involved are very big, and further reduction techniques
are needed. There are 156 ≈ 11 million different profiles with n = 6 and m = 4, and we need
to use 15 variables for each profile (one for each support), giving 170 million variables in total.
It is much easier to obtain a result when we impose anonymity and neutrality, which was also
done by Bogomolnaia et al. [2005]. A mechanism is anonymous if it is invariant under renaming
agents, and it is neutral if a permutation of the projects induces the same permutation in the
mechanism’s output.

1Duddy [2015] proved a related impossibility using a group fairness notion. His result, like Theorems 5.1 and 5.2,
works for m > 4 projects, and he shows that this bound is tight.

57



5. Aggregating Approval Preferences

When we consider anonymous and neutral mechanisms, the number of essentially different
profiles reduces to 2197. In fact, with these extra axioms, the impossibility holds even for n = 5,
for which there are only 736 essentially different profiles. Solving the resulting formula is almost
instantaneous with a modern SAT solver. After extracting a minimal unsatisfiable set, we were
astonished to find that it only referred to two different profiles, giving a short and elegant proof.

Theorem 5.2. No anonymous and neutral rule satisfies efficiency, strategyproofness, and positive
share when m > 4 and n > 5.

Proof. We prove the incompatibility for m = 4 and n = 5. The proof can be adapted to larger
values by adding agents approving all projects or by adding projects which no-one approves.

Assume there is a strategyproof mechanism satisfying efficiency and positive share. Consider
the following profile:

Q = ({a}, {a, c}, {a, d}, {b, c}, {a, b}).

Let q be the distribution returned by the rule when given Q as input. Because the mechanism is
anonymous and neutral, since b and c are symmetric, we must have qb = qc, and this value must
be positive by positive share for voter 4. It follows that u5(q) < 1 because a positive amount is
spent on project c, which voter 5 does not approve.

Suppose voter 5 reports the approval set {b, d} instead of {a, b}. The resulting profile is

P = ({a}, {a, c}, {a, d}, {b, c}, {b, d}),

which is the same profile P we looked at before. Let p be the distribution returned by the rule
when given P as input. Suppose first that both pc and pd are positive, say pc > ε and pd > ε for
some ε > 0. Then consider the distribution p′ with

p′a = pa + ε, p′b = pb + ε, p′c = pc − ε, p′d = pd − ε.

One can check that, in profile P , ui(p′) > ui(p) for all i ∈ N , and u1(p′) > u1(p). Thus, p is
not Pareto-efficient, which contradicts efficiency of the rule. Hence either pc = 0 or pd = 0.
Now c and d are symmetric projects in P , and thus we must have pc = pd by anonymity and
neutrality of the rule. Thus pc = pd = 0. So the entire budget is split between projects a and
b, and so u5(p) = 1, where we take voter 5’s utility as reported in profile Q, and in particular
u5(p) > u5(q).

Hence, voter 5 has successfully manipulated, which contradicts strategyproofness.

This short proof relies heavily on symmetry arguments. However, the SAT solver indicates
that the theorem remains true without imposing anonymity and neutrality, confirming a second
conjecture of Bogomolnaia et al. [2005]. However, without anonymity and neutrality, proofs
become much more complicated and consider potential manipulations between hundreds of
profiles. Thus, we do not include a proof of Theorem 5.1 here. To obtain the result, one can first
find a proof (via minimal unsatisfiable subsets) that uses anonymity but not neutrality. Then,
run the SAT solver on the (manageably small) domain of profiles obtained by permuting the
profiles in the minimal unsatisfiable subset in all possible ways.

5.3. Subset Manipulations

Rules satisfying notions such as positive share aim for an outcome that makes every agent
reasonably happy. There is an obvious strategy for manipulators to try to exploit this tendency:
they can pretend to be less happy than they are. In our setting, this would correspond to

58



5.3. Subset Manipulations

approving fewer projects, i.e. to manipulate by reporting a subset of the truthful approval set.2
We can show, by a proof similar to the one above, that every efficient mechanism that satisfies
positive share can be manipulated using this technique. The proof uses anonymity and neutrality
and, in contrast to Theorem 5.1, we do not know whether this can be dropped.

Theorem 5.3. Every anonymous and neutral rule which satisfies efficiency and positive share
can be manipulated by an agent reporting a subset of their truthful approval set, when m > 5 and
n > 5.

Proof. We prove the incompatibility for m = 5 and n = 5, and the proof can be adapted to
larger values as before.

Assume that there is a rule f satisfying anonymity, neutrality, efficiency, and positive share.
Now consider the profile

P = ({a}, {a, b, c}, {a, b, d}, {a, c, e}, {d, e}).

Let p be the distribution returned by the mechanism when given profile P . Since f is efficient, we
must have pb = pc = 0, because otherwise a Pareto improvement can be obtained by redistributing
spending from either of these projects to a. Since the profile is symmetric under the permutation
σ = (b c)(d e), we must have pb = pc and pd = pe because f is anonymous and neutral. By
positive share for voter 5, we must have pd = pe > 0. It follows that u4(p) < C because a positive
amount is spent on project d, which voter 4 does not approve.

Now, suppose that voter 4 pretends not to approve a, so we get the profile Q:

Q = ({a}, {a, b, c}, {a, b, d}, {c, e}, {d, e}).

Let q be the distribution now returned by the mechanism when given profile Q. Again, by
efficiency, we must have qb = 0 since we can otherwise redistribute resources from b to a to get a
Pareto improvement. Next, suppose that both qc and qd are positive, say qc > ε and qd > ε for
some ε > 0. Then q is Pareto dominated by the distribution q′ defined as

q′a = qa + ε, q′b = qb, q′c = qc − ε, q′d = qd − ε, q′e = qe + ε.

This contradicts efficiency of f , so either qc = 0 or qd = 0. Since projects c and d are symmetric
in Q, we must have qc = qd = 0. Hence, q distributes the entire budget between projects a and e,
and so u4(q) = 1.

Thus, voter 4 has successfully manipulated f by reporting a subset of the true approval set.

Theorems 5.1 and 5.3 are both strong impossibilities, because of the weak versions of strat-
egyproofness and fairness used in their proofs. However, the table at the end of Section 5.1
shows that the impossibility disappears once we drop any of the axioms (except anonymity and
neutrality). For example, if we drop efficiency, we obtain the conditional utilitarian rule, and if
we drop strategyproofness, we obtain the Nash rule. Both of these rules are arguably attractive.

2We will also study this notion of “subset-strategyproofness” in the context of proportional multiwinner elections
in Chapter 7. The corresponding notion of superset-strategyproofness has been studied by Aziz, Bogomolnaia,
and Moulin [2019a], who found that the conditional utilitarian and the egalitarian rules satisfy it, while the
Nash rule fails it.

59





6. Aggregating Ranking Preferences

A public divisible resource is to be divided among projects. We study rules that
decide on a distribution of the budget when voters have ordinal preference rankings
over projects. We introduce a family of rules for portioning, inspired by positional
scoring rules. Rules in this family are given by a scoring vector (such as plurality
or Borda) associating a positive value with each rank in a vote, and an aggregation
function such as leximin or the Nash product. Our family contains well-studied rules,
but most are new. We discuss computational and normative properties of our rules.
We focus on fairness, and introduce the SD-core, a group fairness notion. Our Nash
rules are in the SD-core, and the leximin rules satisfy individual fairness properties.
Both are Pareto-efficient.

6.1. Introduction

In this chapter, we ask voters to report their preferences over projects as rankings, the most
common format considered in social choice. If a project is ranked more highly, the voter thinks
it is more worthwhile and should receive a larger fraction of the budget.

The space of sensible aggregation rules for this input format is large. Let us illustrate some
important design considerations by an example, in a similar spirit as the running example of
Chapter 5.

An Example A family is planning a road trip by car. The family members have different
musical tastes; they need to decide which type of music to play for how long. The genres under
consideration are a, b, c, d, e. The three children all think a � b � c � d � e; mother thinks
e � b � c � d � a; and father thinks c � a � e � d � b.

a
60%

c
20%

e
20%

One simple way to split the time is to allocate each person the same share of
time (20%) and let them decide what music to play, as a temporary dictator.
During their time, each person plays their favourite music. To the social
choice theorist, this rule sounds familiar: it is formally identical to Random
Dictatorship, whose output is usually seen not as a division of a budget, but as
a probability distribution. Indeed, any probabilistic social choice function can

be repurposed to divide budgets; but these are often not attractive for portioning since many of
them were designed as tie-breaking devices.

a
30%b

24%

c
24% d

10%

e
12%

The output of random dictatorship can be a good choice, especially if our
family strongly prefers their top choice to any other music. But it is also
plausible that mother and the children agree that b is good common ground.
Random Dictatorship, using plurality scores, ignores this. Instead, we could
impute Borda scores on our family: for example, the children give 4 ‘utility’
points to a, 3 to b, 2 to c, 1 to d, and 0 to e. Proportional Borda then allocates

time in proportion to the total Borda score of the genres. This leads to a significant time share
for b. On the other hand, the family now also listens to d, which is dominated: everyone agrees
that c is better than d! So Proportional Borda is inefficient.

61



6. Aggregating Ranking Preferences

a
100%

To restore efficiency, it makes sense to maximise a notion of social welfare.
Suppose the utility enjoyed by a family member is the weighted average of
the Borda scores of the music played on the trip, where the weights come
from the fraction of time spent on each genre. Utilitarian Borda then picks
the distribution where the sum of utilities is greatest. In our example, we
listen to a during 100% of the time. While this is Pareto-efficient, it is unfair

to mother, who only gets to listen to her least-preferred style. In fact, many rules suffer from
this phenomenon of completely overriding some voters’ preferences: For example, the ‘maximal
lotteries’ rule also only plays a since it is the Condorcet winner.

b
40%

c
60%

To avoid frustration during the trip, we may take a more egalitarian approach,
and try to give each family member a significant share. Borda-Egalitarian
picks the distribution maximising the utility of the worst-off passenger. In our
example, we can give every passenger an average Borda-utility of 2.4. In general,
this approach does not give a Pareto-efficient outcome, but we can ensure
Pareto-efficiency by using leximin maximisation: once we have maximised the

utility of the worst-off passenger, we then maximise the utility of the second-worst-off person
and so on. On this example, using leximin gives the same outcome as egalitarian.

a
46%

b
29%

c
26%

We can also maximise Nash social welfare, the product of utilities. This is
often seen as a compromise between maximising utilitarian and egalitarian
welfare notions. While egalitarian rules perform well when we wish to be fair
to each individual, Nash rules tend to be fair to groups. In our example, the
children form a large group, and Borda-Nash plays a almost half the time. If
there were more children with the same preferences in the car, Borda-Nash

would increase the time share of a. In contrast, Borda-Leximin avoids playing a to benefit
the mother, and the output of egalitarian rules does not change with the number of children.
Depending on the context, either of these behaviours might be more appropriate.

Our Contributions We introduce a class of aggregation rules called positional social decision
schemes. Rules in this class first convert each input ranking into scores for the projects, using
a scheme such as plurality or Borda scores. Then, they select a distribution of the budget
maximising social welfare given those scores, where different notions of welfare can be used;
classically, we consider utilitarian, egalitarian (leximin), and Nash welfare. Our class contains
known rules such as random dictatorship, but most have not been studied.

We begin by noting basic properties of the rules in our class, giving closed forms and equivalent
definitions in some cases. We also show that the rules in this class can be calculated or
approximated in polynomial time. For rules based on Nash welfare, we show that their output
can involve irrational percentages; we prove that those rules are guaranteed to be rational if
the scoring vector used is plurality or veto, but that no other scoring vector guarantees rational
output.

We then formalise intuitive notions of fairness in the budgeting context. The axioms we
propose require that no individual is ignored by the procedure, in the sense of having none of the
budget allocated to favoured causes. We also give some group fairness notions. Our strongest
axiom is the SD-core which, roughly, requires that a group of α% of the voters can control what
happens with α% of the budget. We show that the rules in our class based on Nash welfare
satisfy the SD-core, while the egalitarian rules satisfy the individual fairness notions.

We close by studying the performance of our rules on standard social choice properties, such
as Pareto-efficiency, strategyproofness, and monotonicity. While the first is usually satisfied by
our rules, the latter two are mostly failed.

62



6.2. Positional Social Decision Schemes

Related Work In Chapter 5, we saw related work when voters have dichotomous (approval)
preferences. The paper by Aziz et al. [2019a] considers some rules based on welfare maximisation,
and it introduces new fairness axioms (including a core notion) which are related to the fairness
axioms we discuss in Section 6.4.

Fain et al. [2016] study the divisible budgeting problem in a cardinal model which allows agents
to give a full utility function over distributions (which may also feature decreasing returns). They
study the core and connect it to the Lindahl equilibrium from the study of public goods, and
prove that a core solution always exists. For a broad class of utility functions, they show that
a core solution can be found in polynomial time by solving a suitable convex program. They
also use differential privacy to design a mechanism for this setting which satisfies approximate
versions of efficiency, truthfulness, and the core.

With rankings as input, this setting has been studied in the formally isomorphic guise of
probabilistic social choice [see Brandt, 2019 for a recent survey]. In this literature, the outcome
distribution is interpreted as a random device, which is used to eventually implement a single
outcome. This makes notions of fairness and proportionality less relevant, and it is seen as
desirable for a rule to randomise as little as possible. For example, the maximal lotteries rule
[Kreweras, 1965, Brandl et al., 2016], while attractive according to consistency axioms, spends
the entire budget on the Condorcet winner if it exists. This is usually undesirable in a budgeting
context. On the other hand, results like Gibbard’s [1977] random dictatorship theorem are
as interesting in our setting as they are within probabilistic social choice. Some papers on
probabilistic social choice also discuss fairness concerns [see, e.g., Aziz et al., 2018b; Aziz and
Stursberg, 2014].

The literature on cake-cutting and item allocation is mostly unrelated to our problem: in those
settings, goods are allocated to specific agents for their exclusive use. In our setting, resources
are spent on projects which can be enjoyed by all agents. On a technical level, the idea of scoring
followed by aggregation has been explored in fair division [Brams and King, 2005, Darmann and
Schauer, 2015, Baumeister et al., 2017].

6.2. Positional Social Decision Schemes
Preliminaries Let A = {x1, . . . , xm} be a set of projects and N = {1, . . . , n} be a set of voters.
Let A! be the set of linear orders over A. For � ∈ A!, the rank of project xj is r(�, xj) =
1 + |{xk ∈ A : xk � xj}|. A profile P = (�1, . . . ,�n) ∈ A!n is a collection of linear orders, one for
each voter. We write abc as shorthand for a � b � c. Let ∆(A) = {p : A→ [0, 1] :

∑
x∈Apx = 1}

be the set of (probability) distributions over A. We use notations such as 1
2x1 + 1

2x2 to specify a
distribution, and just xj for the degenerate distribution with pxj = 1. We say that z : A→ [0, 1]
is a partial distribution if

∑
x∈Azx 6 1. A social decision scheme (SDS) is a function F assigning

to each P ∈ A!n a nonempty subset of ∆(A), usually a singleton.

Positional SDSes A scoring vector for m projects is a vector s = (s1, . . . , sm) of numbers with
s1 > s2 . . . > sm and s1 > sm. We usually assume sm = 0. A scoring vector s is strictly decreasing
if sj > sj+1 for all j < m. The Borda vector is bor = (m− 1,m− 2, . . . , 0); the plurality vector
is plu = (1, 0, . . . , 0); the veto vector is vet = (1, . . . , 1, 0).

For a fixed profile P , we write s[i, j] = sr(�i,xj) for the s-score that voter i ∈ N assigns to project
xj ∈ A. These scores can be lifted to distributions in a natural way; the s-score of p ∈ ∆(A) for
i is s[i, p] =

∑m
j=1 pjs[i, j]. Finally, define the utility vector s[p] = (s[1, p], . . . , s[n, p]).

A welfare ordering is a weak order >W ordering utility vectors (α1, . . . , αn) ∈ Rn>0. The main
examples are utilitarianism which orders vectors by their sum, egalitarianism which uses the
minimum, the Nash product which uses multiplication, and leximin which sorts the components
of the utility vector and then orders sorted vectors lexicographically.

63



6. Aggregating Ranking Preferences

By combining a scoring vector and a welfare ordering, we can define a positional social decision
scheme.

Definition 6.1. For scoring vector s and a welfare ordering >W , define the social decision
scheme Fs,>W so that for all P ,

Fs,>W (P ) = {p ∈ ∆(A) : s[p] >W s[q] for all q ∈ ∆(A)}.

For the specific >W mentioned, we usually call these rules s-utilitarianism, s-egalitarianism,
s-leximin, and s-Nash.

Example 6.2. Consider the profile P = (ab, ab, ba) over two projects, with s = (1, 0). Then
s-utilitarianism selects a, s-egalitarianism selects 1

2a+ 1
2b, and s-Nash selects 2

3a+ 1
3b.

Extending preferences For normative analysis, it is useful to extend voters’ rankings of the
projects to (partial) preferences over distributions. We assume linear preferences: there is an
unknown utility function ui : A→ R consistent with �i such that i prefers those distributions p
with higher average utility

∑
x∈A ui(x)px. A classical way of ranking distributions despite not

knowing ui uses stochastic dominance (SD).
If p and q are (possibly partial) distributions, we write

p <SD
i q ⇐⇒

∑
xk�ixj

pxk
>
∑
xk�ixj

qxk
for all xj ∈ A.

This definition is justified by the following standard equivalence: We have p <SD
i q if and only if∑

x∈A ui(x)px >
∑
x∈A ui(x)qx for all utility functions ui : A → R satisfying minx∈A ui(x) = 0

and ui(xj) > ui(xk) iff xj �i xk. The condition that the utility of the worst project is 0 is
necessary to allow SD-comparisons of partial distributions: we assume that voters are indifferent
between not spending part of the budget or spending it on their worst project. This is crucial for
the definition of the SD-core in Section 6.4.

6.3. Computation and Basic Properties
In this section, we look at elementary properties of the family of rules we have defined. We
will note that several of the rules are familiar from the probabilistic context. We also study the
computational complexity of finding an optimal distribution.

Utilitarianism From a utilitarian perspective, it never pays to spend part of the budget on
projects whose total s-score is not maximal: shifting that spending to an s-maximal project
increases utilitarian welfare. Thus, up to ties, s-utilitarianism never mixes and spends all resources
on the s-winner. Formally, s-utilitarianism selects those distributions p for which pxj > 0 only if
the score

∑
i∈N s[i, j] is maximum.

Since the behaviour of s-utilitarianism is familiar from work on scoring rules in voting, we will
not study it in much detail.

Egalitarianism Plurality-egalitarianism is easy to understand: it returns the uniform distribution
over all projects that are ranked top by at least one voter. In the probabilistic context, this
rule is known as egalitarian simultaneous reservation [Aziz and Stursberg, 2014]. For other
scoring vectors, s-egalitarianism is less simple, and it need not return a uniform distribution
(see the example of Section 6.1). However, one can easily evaluate s-egalitarianism using linear
programming:

maximise t∗ s.t.
∑m
j=1 s[i, j] · pj > t∗ for i ∈ N∑m
j=1 pj = 1, and pj > 0 for xj ∈ A

64



6.3. Computation and Basic Properties

Algorithm 2 Computing an s-leximin distribution

Input: A profile given by utilities uji of voter i for project j.
Let N ′ ← ∅ be the set of agents whose utility has been fixed
while N ′ 6= N do

Using linear programming, find the maximum value t∗ such that there exists a
distribution (p1, . . . , pm) satisfying∑m

j=1 s[i, j]pj > t∗ for i ∈ N \N ′∑m
j=1 s[i, j]pj = ti for i ∈ N ′

for each i′ ∈ N \N ′ do
Using linear programming, find the maximum ε such that there exists a
distribution (p1, . . . , pm) satisfying∑m

j=1 s[i′, j]pj > t∗ + ε∑m
j=1 s[i, j]pj > t∗ for i ∈ N \N ′∑m
j=1 s[i, j]pj = ti for i ∈ N ′

If ε = 0, add i′ to N ′ and set ti′ ← t∗.
return the solution (p1, . . . , pm) of the last LP solved

Now, s-egalitarianism is not very decisive, and may select Pareto-inferior outcomes. When
P = (abcd, acbd, bdac), and s = (1, 1, 0, 0), it selects all distributions of the form

p · a+ q · b+ (1
2 − p) · c+ (1

2 − q) · d

where 0 6 p, q 6 1 and 1
2 6 p+ q 6 1. Note that d can get a positive fraction even though every

voter prefers b to d (so that d is Pareto-dominated). A standard way of making egalitarianism
more decisive and more efficient is by using leximin instead. In the above example, s-leximin
uniquely selects 1

2a+ 1
2b. It is easy to see that s-leximin will never give a positive fraction to a

Pareto-dominated project.
It is still possible to evaluate s-leximin in polynomial time, by solving O(n2) linear programs

successively. Our algorithm uses the convexity of ∆(A), which allows it to greedily fix the identity
of the agent who is worst-off in the current iteration.

Theorem 6.3. For every s, one can compute a distribution selected by s-leximin in polynomial
time.

Proof. The algorithm is specified as Algorithm 2 that requires running at most n(n+ 1)/2 linear
programs.

We argue by induction on |N ′| that every distribution p selected by s-leximin satisfies∑m
j=1 u

j
ipj = ti for each i ∈ N ′. This is vacuously true if N ′ = ∅. Suppose it is true at

some point in the algorithm. Let p be a distribution selected by s-leximin. Because p satisfies
the inductive hypothesis, from the upper LP, we know that the least s-score obtained by a voter
in N \N ′ under p is t∗. But which voter? The lower LP tests, for each i′ ∈ N \N ′, whether i′
obtains s-score exactly t∗ in all leximin distributions. Such a voter must exist: suppose not, and
for each i′ ∈ N \N ′, let p(i′) be a leximin distribution where i′ obtains s-score strictly higher
than t∗. Write p′ =

∑
i′∈N\N ′

1
|N\N ′|p(i′). Then p′ satisfies the inductive hypothesis (because each

p(i′) does), but the least s-score obtained by a voter in N \N ′ under p′ is strictly higher than
t∗, contradicting choice of t∗. Thus, there is a voter i∗ ∈ N \N ′ who obtains s-score t∗ in all
leximin distributions. Such a voter is found by the algorithm and added to N ′, establishing the
inductive step.

65



6. Aggregating Ranking Preferences

Nash product The defining optimisation problem

maximise
∑
i∈N log

(∑m
j=1 s[i, j] · pj

)
s.t.

∑m
j=1 pj = 1, and pj > 0 for xj ∈ A

of s-Nash is a convex program which can be efficiently solved using standard solvers. Formally,
one can approximate optimum Nash welfare within an additive factor of ε in time polynomial
in n, m, and 1/ε. Thus, all the usual decision problems associated with computing s-Nash are
easy. However, writing down the precise output in decimal expansion is impossible, as there are
instances where s-Nash uniquely returns a distribution with irrational fractions. For instance,
for P = (abc, acb, cab, cab) and s = (2, 1, 0), s-Nash uniquely returns 1+

√
33

8 a+ 7−
√

33
8 c.

To further understand s-Nash, let us analyse the first-order conditions of the convex program.
Write down the Lagrangian

L =
∑
i∈N log

(∑m
j=1 s[i, j] · pj

)
− λ · (1−

∑m
j=1 pj).

At an optimal solution p, we have
∂L
∂pj

=
∑
i∈N

s[i,j]
s[i,p] − λ 6 0, with equality if pj > 0.

This implies λpj =
∑
i∈N

s[i,j]
s[i,p]pj . Summing over all j, thus

λ = λ(p1 + · · ·+ pm) =
∑m
j=1

∑
i∈N

s[i,j]
s[i,p]pj = n,

since s[i, p] =
∑m
j=1 s[i, j] · pj by definition. It follows that

n >
∑
i∈N

s[i,j]
s[i,p] , with equality if pj > 0. (6.1)

For example, using (6.1), we can characterise plurality-Nash [see also Moulin, 2003, Example
3.6]:

Theorem 6.4. Plurality-Nash selects p with pj = pl(xj)/n for all j, where pl(xj) is the number
of voters placing xj top.

Proof. Let p be optimal for plurality-Nash. If some voter i puts xj top then pj > 0, or else
s[i, p] = 0 and the Nash product equals 0. By (6.1), we get n =

∑
i∈N

s[i,j]
s[i,p] = pl(xj)/pj , and so

pj = pl(xj)/n. It follows that pj = 0 whenever no voter places xj top.

Thus, we see that plurality-Nash is the same rule as random dictatorship, familiar from the
probabilistic context.

The veto-Nash rule seems sensible when projects are nuisances, where each agent wants to
minimise the amount spent on the worst option. In some sense, veto-Nash for nuisances is as
relevant as plurality-Nash for goods, in the portioning context. Mathematically, veto-Nash is
also well-behaved. While we do not provide a closed formula, the following result shows that
an exact optimum for veto-Nash can be found in polynomial time (and that it is rational). It
gives a collection of at most m different explicit rational distributions, and guarantees that the
veto-Nash optimum is among them.

Theorem 6.5. Let P be a profile, and let vt(xj) be the number of voters placing xj bottom.
Relabel projects so that vt(x1) 6 · · · 6 vt(xm). If vt(xj) = 0 for some xj, veto-Nash selects
all distributions over such projects. Otherwise, there is some k ∈ [m] with (k − 1)vt(xk) <∑k

j=1 vt(xj), such that veto-Nash selects the distribution p with

pj = 1− (k − 1)vt(xj)∑k
l=1 vt(xl)

if j ∈ [k], and pj = 0 otherwise.

66



6.3. Computation and Basic Properties

Proof. If vt(xj) = 0 for some xj , then the best-possible Nash product of 1 can be achieved, and
is achieved precisely by distributions whose support consists of never-vetoed projects.

Now suppose that vt(xj) > 0 for all xj ∈ A. Let p be a distribution selected by veto-Nash, and
take k maximal such that pk > 0. Then we must also have pj > 0 for all j = 1, . . . , k− 1. (If not,
and pj = 0 for some j, consider the distribution q with ql = pl for all l, except that qj = qk = 1

2pk.
Then, since vt(xj) 6 vt(xk), q has strictly higher Nash product than p, contradiction.) Thus,
the support of p is {x1, . . . , xk}.

For i = 1, . . . , k, equation (6.1) applies and can be written as

n =
∑

j∈[k]\{i}

vt(xj)
1− pj

+
m∑

j=k+1
vt(xj). (6.2)

Summing the equations (6.2) for i = 1, . . . , k, we get

nk = (k − 1)
∑
j∈[k]

vt(xj)
1− pj

+ k
m∑

j=k+1
vt(xj).

Using n =
∑k
j=1 vt(xj) +

∑m
j=k+1 vt(xj), rearrange this as

∑
j∈[k]

vt(xj)
1− pj

= k

k − 1

k∑
j=1

vt(xj).

From the symmetry of the equations (6.2), the values vt(xi)
1−pi

must be equal for all i ∈ [k]. Since
we know their sum, we get

vt(xi)
1− pi

= 1
k − 1

k∑
j=1

vt(xj) for all i ∈ [k].

Rearranging, we arrive at the conclusion that

pi = 1− k−1∑k

j=1 vt(xj)
vt(xi) for all i ∈ [k].

These values sum to 1, and are non-negative provided that (k − 1)vt(xk) <
∑k
j=1 vt(xj). If this

condition is not satisfied, the choice of k cannot lead to a veto-Nash optimum.

This gives an algorithm for computing veto-Nash exactly: if some projects are never vetoed,
return any distribution over these. Otherwise iterate over all k ∈ [m] satisfying the condition of
the theorem and calculate the corresponding distribution, and return the one with highest Nash
product.

Example 6.6. If 2, 3, 3 and 5 voters rank x1, x2, x3 and x4 last, respectively, then k = 2 and 3
satisfy the condition of Thm. 6.5. Thus, either p = 3

5x1 + 2
5x2 or p′ = 1

2x1 + 1
4x2 + 1

4x3 is optimal.
The former has higher Nash product, so p is optimal.

Theorems 6.4 and 6.5 show that both plurality-Nash and veto-Nash are rational. Are there
any other score vectors s such that s-Nash is guaranteed to be rational? The answer is no: for
every s other than plurality and veto, we can construct a profile where s-Nash uniquely returns
an irrational distribution. This result suggests that a convex programming solver is the best way
of computing s-Nash for s other than plurality and veto.

Theorem 6.7. Let m > 3, and let s = (s1, . . . , sm) ∈ Qm be a score vector with sm = 0 and
normalised so that s1 = 1. Unless s = (1, 0, . . . , 0) or s = (1, . . . , 1, 0), there exists a profile
P ∈ A!n for some n ∈ N such that s-Nash returns a unique distribution p with p 6∈ Qm.

67



6. Aggregating Ranking Preferences

Proof. We construct four infinite families of examples, for different shapes of score vectors s. We
only consider the case m = 3 here, and only sketch the algebra required. The other families
require a more involved construction, but work using similar calculus.

Suppose m = 3, and let s = (1, rs , 0), where 0 < r
s < 1 and r

s is in lowest terms. Let c be a
large-enough integer. Consider the following profile: c voters with abc, one voter bac, one voter
with bca. Note that b Pareto-dominates c, so that pc = 0. Let (x, 1− x, 0) be the distribution
selected by s-Nash. One can show that 0 < x < 1 if c is large enough. Now, the Nash product
obtained by this distribution is

(x+ r
s(1− x))c · ((1− x) + r

sx) · (1− x).

By optimality, x must make the derivative d/dx vanish. After a calculation, cancelling non-zero
factors, this implies that

((c+ 2)(r − s)2) · x2

+ (−(r − s)((c+ 3)r − 2(c+ 1)s)) · x
+ (r2 − 2rs− crs+ cs2) = 0

This is a quadratic equation with integer coefficients. Solutions to the equation ax2 + bx+ c = 0
involve the term

√
b2 − 4ac; thus, they are rational if and only if the discriminant b2 − 4ac is a

perfect square. In this case, the discriminant simplifies to

(c+ 1)2r2 + 4(r + 1).

The first summand is a large perfect square, and the second summand is a constant. Since the
distance between consecutive perfect squares is large (in the sense that (z + 1)2 − z2 = 2z + 1 =
Θ(z)), the discriminant cannot be a perfect square for large enough c. Hence, x is irrational.

6.4. Fairness, Proportionality, and the SD-core
Usually, s-utilitarianism spends 100% on a single project. Some agents might rank this project
in a very low position, or even in last place. In some contexts, this is unfair and might rule
out s-utilitarianism. In this section, we formalise several notions of fairness, and show that
s-egalitarianism satisfies individual fairness, and that s-Nash satisfies group fairness.

A minimal fairness axiom is positive share [adapted from Bogomolnaia et al., 2005] which
requires that if voter i ranks x in last position, then px < 1. Hence, for every voter, a positive
amount is spent on projects that they do not rank in last position. As suggested above, s-
utilitarianism fails positive share for any s.1 However, provided that sm = 0, positive share is
satisfied by s-egalitarianism, s-leximin, and s-Nash. To see this, note that the uniform distribution
has positive egalitarian and Nash welfare, whereas a distribution violating positive share has
zero egalitarian and Nash welfare.

We can strengthen positive share to individual fair share, requiring that if voter i ranks x in
last position, then px 6 1− 1

n . Thus, for each voter, at least 1
n is spent on projects not ranked

last. Note that the distribution identified by random dictatorship satisfies this condition and has
egalitarian welfare at least 1

n , normalizing s1 = 1. Thus, the optimum s-egalitarian welfare is
at least 1

n , and hence s-egalitarianism and s-leximin satisfy individual fair share (recalling that
sm = 0). Below, we show that s-Nash also satisfies it.

Consider A = {a, b}, with 9 voters ab and 1 voter ba. Then s-egalitarianism returns 1
2a+ 1

2b.
While this is individually fair, the group of 9 voters is underrepresented. If we desire fairness

1Take (m− 1)! voters ranking x1 top and the other projects in all possible ways. Copy these voters sufficiently
often. Add a voter ranking x1 bottom. Then the s-score of x1 is strictly highest, so s-utilitarianism spends
100% on x1, violating positive share.

68



6.4. Fairness, Proportionality, and the SD-core

to groups, we need a stronger axiom. One option is this: if k out of n voters rank x last,
then px 6 1 − k

n , so at least k
n is spent on projects other than x. This condition is failed by

s-egalitarianism and s-leximin, but s-Nash satisfies it. In our example, s-Nash picks 9
10a+ 1

10b.
All the notions above focus on avoiding voters’ last-ranked project. Despite working in an

ordinal setting, using the SD-extension, we can define a group fairness notion that uses more
than just the last-ranked project. An important underlying intuition is that agents are “entitled”
to 1/n of the budget, and this share should be spent in accordance to their preferences. Similarly,
a group S ⊆ N of k agents could pool together and be entitled to k/n of the budget.

The intuitive notion of entitlement can be formalised using a core-style concept. A coalition
S ⊆ N of voters is supposed to be able to ‘control’ a fraction of |S|/n of the entire budget.
The notion of control is ambiguous since coalitions may overlap and each share of the budget
is simultaneously controlled by several coalitions. However, the entitlement of S is certainly
violated under p if S can come up with a way of using only its entitlement |S|/n which all
members prefer to the way that p uses the entire budget.

Definition 6.8. A coalition S ⊆ N SD-blocks a distribution p if there exists a partial distribution
z with

∑
x∈A zx = |S|/n such that z <SD

i p for all i ∈ S, and z �SD
j p for some j ∈ S. A

distribution p is in the SD-core if no coalition SD-blocks p.

If a distribution p lies in the SD-core, then it also satisfies all of our previous conditions:
Suppose not, and consider the coalition S of voters that rank x last, where px > 1− |S|/n. Then
the coalition S can SD-block p: Write px = 1− |S|/n+ ε for some ε > 0, and define the partial
distribution z as follows:

zy = py + ε/(m− 1) for all y ∈ A \ {x}, and zx = 0.

Then
∑
a∈A za = ε+

∑
y∈A\{x} py = ε+ (1− px) = |S|/n, so that z has the required total weight.

It is easy to check that z �SD
i p for all i ∈ S. Thus, p is not in the SD-core.

For an example, consider the profile with three voters abc, acb, bca. Which distributions p are
in the SD-core? First, singleton coalitions {i} block p if px > 2

3 for any x, using z = 1
3y where

y is i’s top project (this is individual fair share). Also, the coalition consisting of abc and acb
blocks all p with pa + pb 6

2
3 and pa + pc 6 2

3 (one inequality strict), using z = 2
3a. All other

distributions are in the SD-core. This is drawn in Figure 6.1, which shows the simplex of all
distributions, where the SD-core is shaded. Note that the SD-core is not convex for this profile.

Figure 6.1 shows the outputs of s-Nash for all s as a blue line. The blue line is entirely
contained in the SD-core. In fact, s-Nash is always in the SD-core. We give a direct argument
using equation (6.1). The result can also be obtained via the theory of Lindahl equilibrium [Fain
et al., 2016, Foley, 1970].

Theorem 6.9. For any s with sm = 0, any distribution selected by s-Nash is in the SD-core.

Proof. Suppose p is selected by s-Nash. For a contradiction, assume that S ⊆ N is a blocking
coalition of agents, deviating using (z1, . . . , zm) ∈ [0, 1]m with

∑m
j=1 zj = |S|/n, such that z <SD

i p

for all i ∈ S, and z �SD
j p for some j ∈ S. Now, s defines utilities compatible with the voters’

ordinal preferences, and thus s[i, z] > s[i, p] for all i ∈ S, and s[j, z] > s[j, p] for some j ∈ S.
Then

|S| = n ·
m∑
j=1

zj
(6.1)
>

∑
i∈N

∑m
j=1 s[i, j]zj

s[i, p] =
∑
i∈N

s[i, z]
s[i, p] > |S|.

The last inequality follows because the sum contains only non-negative terms, |S| of which are at
least 1, and one of which is strictly larger than 1. This is a contradiction.

69



6. Aggregating Ranking Preferences

a

bc

plurality
Borda

veto

Figure 6.1.: The SD-core of the profile (abc, acb, bca) within the simplex of all distributions. The
shaded area shows the distributions that are in the SD-core. The blue line shows the
output of s-Nash for all s = (1, q, 0) with q ∈ [0, 1]. Plurality-Nash selects 2

3a+ 1
3b,

Borda-Nash selects 0.58a+ 0.42b, and veto-Nash selects 1
3a+ 1

3b+ 1
3c.

Thus, the s-Nash rules are particularly fair to groups. The SD-core can also be seen as a
proportionality requirement: the common resource should be divided so that the share of a project
is proportional to its support. Such a property is of particular interest in political contexts, for
example when we are dividing parliament seats among parties.

6.5. Other Axiomatic Properties

We now briefly study other axiomatic properties of our rules. We ignore ties when defining
strategyproofness and monotonicity.

Pareto-efficiency A distribution q SD-dominates p if q <SD
i p for all i ∈ N , and q �SD

j p for
some j ∈ N . A distribution p is SD-efficient if no distribution dominates it. Note that SD-core
implies SD-efficiency (with S = N), and so s-Nash rules are SD-efficient when sm = 0. More
generally, one can show that s-utilitarianism, s-leximin, and s-Nash are SD-efficient provided
that s is strictly decreasing, because if a distribution q were to SD-dominate the output p of any
of these rules, then the s-score of q would be higher than the s-score of p for each voter, which
would contradict that p maximises the notion of welfare implicit in the rule.

Strategyproofness A social decision scheme is (strongly) SD-strategyproof if, when a voter
misreports their ranking, the SDS selects a distribution that the voter believes is weakly SD-worse
than the distribution resulting from a truthful report. Plurality-Nash (i.e., random dictatorship)
is strategyproof in this sense. A well-known result of Gibbard [1977] shows that this is the only
SDS that is strategyproof and also anonymous and Pareto-efficient. Hence, all other SD-efficient
rules we have considered are manipulable. (Outside of our class of rules, Barberà [1979] shows
that proportional Borda is a strategyproof rule, but it is not efficient.)

Monotonicity An SDS F is monotone if, when we change a profile P into P ′ by moving up a
project x in a voters’ ranking (by swapping), then the share of x weakly increases, i.e., F (P ′)x >
F (P )x. This is clearly satisfied by s-utilitarianism, and also by plurality-Nash. However, other
s-Nash rules (and also s-leximin) may fail it. If s = (2, 1, 0) and P = (abc, abc, abc, acb, bac, cba),
then s-Nash selects an irrational distribution which rounds to 0.642a+ 0.333b+ 0.024c. If the
bac voter moves c up one place (to get bca), then s-Nash selects 0.5a + 0.5b. Thus, c’s share

70



6.6. Conclusions

has strictly decreased. Monotonicity is a kind of fairness to projects (x gets more if it performs
better), while our rules aim for fairness to voters.

6.6. Conclusions
We have introduced a class of aggregation rules which can be used to make budget decisions.
We have found that our rules are attractive on efficiency and fairness grounds. Formally, these
rules can be seen as outputting probabilities; thus, they may be of interest to probabilistic social
choice. More generally, the connections and differences between randomisation and splitting a
common resource need to be discussed further.

We have introduced concepts such as the SD-core which is a group fairness and proportionality
notion. Our rules based on maximising Nash welfare satisfy this property. However, one can
criticise these rules as making an arbitrary choice of the score vector used. We are not aware of
any other rules in the literature satisfying the SD-core, but maybe attractive other examples of
such rules can be found.

71





Part III.

Budgeting with Indivisible Projects:
Committee Elections

73





7. Strategyproof Committee Selection

Multiwinner voting rules can be used to select a fixed-size committee from a larger
set of candidates. We consider approval-based committee rules, which allow voters
to approve or disapprove candidates. In this setting, several voting rules such as
Proportional Approval Voting (PAV) and Phragmén’s rules have been shown to
produce committees that are proportional, in the sense that they proportionally
represent voters’ preferences; all of these rules are strategically manipulable by voters.
On the other hand, a generalisation of Approval Voting gives a non-proportional but
strategyproof voting rule. We show that there is a fundamental tradeoff between these
two properties: we prove that no multiwinner voting rule can simultaneously satisfy
a weak form of proportionality (a weakening of justified representation) and a weak
form of strategyproofness. Our impossibility is obtained using a formulation of the
problem in propositional logic and applying SAT solvers; a human-readable version
of the computer-generated proof is obtained by extracting a minimal unsatisfiable set
(MUS).

7.1. Introduction
The theory of multiwinner elections is concerned with designing and analysing procedures that,
given preference information from a collection of voters, select a fixed-size committee consisting
of k members, drawn from a larger set of m candidates. Often, we will be interested in picking a
representative committee whose members together cover the diverse interests of the voters. We
may also aim for this representation to be proportional; for example, if a group of 20% of the
voters have similar interests, then about 20% of the members of the committee should represent
those voters’ interests.

Historically, much work in mathematical social science has tried to formalise the latter type
of proportionality requirement, in the form of finding solutions to the apportionment problem,
which arises in settings where voters express preferences over parties which are comprised of
many candidates [Balinski and Young, 1982]. More recently, theorists have focussed on cases
where there are no parties, and preferences are expressed directly over the candidates [Faliszewski
et al., 2017a]. The latter setting allows for applications in areas outside the political sphere, such
as in group recommendation systems.

To formalise the requirement of proportionality in this party-free setting, it is convenient to
consider the case where input preferences are given as approval ballots: each voter reports a set
of candidates that they find acceptable. Even for this simple setting, there is a rich variety of
rules that exhibit different behaviour [Kilgour, 2010].

One natural way of selecting a committee of k candidates when given approval ballots is to
extend Approval Voting (AV): for each of the m candidates, count how many voters approve
them (their approval score), and then return the committee consisting of the k candidates whose
approval score is highest. Notably, this rule can produce committees that fail to represent large
groups of voters. Consider, for example, an instance where k = 3, and where 5 voters approve
candidates a, b and c, while 4 other voters approve only the candidate d. Then AV would select
the committee {a, b, c}, leaving almost half of the electorate unrepresented. Intuitively, the latter
group of 4 voters, consisting of more than a third of the electorate, should be represented by at

75



7. Strategyproof Committee Selection

least 1 of the 3 committee members.
Aziz et al. [2017] introduce an axiom called justified representation (JR) which formalises this

intuition that a group of n/k voters should not be left without any representation; a stronger
version of this axiom called proportional justified representation (PJR) has also been introduced
and studied [Sánchez-Fernández et al., 2017]. While AV fails these axioms, there are appealing
rules which satisfy them. An example is Proportional Approval Voting (PAV), first proposed by
Thiele [1895]. The intuition behind this rule is that voters prefer committees which contain more
of their approved candidates, but that there are decreasing marginal returns; specifically, let us
presume that voters gain 1 ‘util’ in committees that contain exactly 1 approved candidates, 1 + 1

2
utils with 2 approved candidates, and in general 1 + 1

2 + · · ·+ 1
r utils with r approved candidates.

PAV returns the committee that maximises utilitarian social welfare with this choice of utility
function. PAV satisfies a strong form of justified representation [Aziz et al., 2017].

When voters are strategic, PAV has the drawback that it can be manipulated. Indeed, suppose
a voter i approves candidates a and b. If a is also approved by many other voters, PAV is likely to
include a in its selected committee anyway, but it might not include b because voter i is already
happy enough due to the inclusion of a. However, if voter i pretends not to approve a, then it
may be utility-maximising for PAV to include both a and b, so that i successfully manipulated
the election.1 Besides PAV, there exist several other proportional rules, such as rules proposed by
Phragmén [Janson, 2016, Brill et al., 2017], but all of them can be manipulated using a similar
strategy.

That voting rules are manipulable is familiar to voting theorists; indeed the Gibbard–
Satterthwaite theorem shows that for single-winner voting rules and strict preferences, every
non-trivial voting rule is manipulable. However, in the approval-based multiwinner election
setting, we have the tantalising example of Approval Voting (AV): this rule is strategyproof in the
sense that voters cannot induce AV to return a committee including more approved candidates
by misrepresenting their approval set. This raises the natural question of whether there exist
committee rules that combine the benefits of AV and PAV: are there rules that are simultaneously
proportional and strategyproof?

The contribution of this chapter is to show that these two demands are incompatible. No
approval-based multiwinner rule satisfies both requirements. This impossibility holds even for
very weak versions of proportionality and of strategyproofness. The version of proportionality
we use is much weaker than JR. It requires that if there is a group of at least n/k voters who
all approve a certain candidate c, and none of them approve any other candidate, and no other
voters approve c, then c should be part of the committee. Strategyproofness requires that a
voter cannot manipulate the committee rule by dropping candidates from their approval ballot;
a manipulation would be deemed successful if the voter ends up with a committee that contains
additional approved candidates. In particular, our notion of strategyproofness only requires
that the committee rule be robust to dropping candidates; we do not require robustness against
arbitrary manipulations that both add and remove candidates (we considered a similar property
in Chapter 5). Additionally, we impose a mild efficiency axiom requiring that the rule not elect
candidates who are approved by none of the voters.

The impossibility theorem is obtained using the computer-aided techniques that we discussed
in earlier chapters. We encode the problem of finding a committee rule satisfying our axioms
into propositional logic, and then use a SAT solver to check whether the formula is satisfiable. If
the formula is unsatisfiable, this implies an impossibility, for a fixed number of voters, a fixed
number of candidates, and a fixed k. We can then manually prove induction steps showing that
the impossibility continues to hold for larger parameter values.

As mentioned in the Introduction of the thesis (Chapter 0), committee elections can be seen as
1For a specific example, consider P = (abc, abc, abc, abd, abd) for which abc is the unique PAV-committee for

k = 3. If the last voter instead reports to approve d only, then the unique PAV-committee is abd.

76



7.2. Preliminaries

a special case of deciding how to spend a common budget when the choices are indivisible. In this
model, there is a budget of B dollars and a collection C of projects. Each project c ∈ C comes
with a cost or price pc, and we need to find a selection W ⊆ C of projects such that

∑
c∈W pc 6 B.

This model captures the way in which many cities run their participatory budgeting projects.
Committee elections are formally identical to the special case of unit costs, where pc = 1 for all
c ∈ C, in which case B is the desired committee size. Many of the proportionality notions we
discuss below can be generalized to the non-unit-cost case [see, e.g., Aziz et al., 2018a], and so
our result implies that fair methods for participatory budgeting cannot be strategyproof. For
more on the budgeting problem without the unit cost assumption, see Benade et al. [2017], Fain
et al. [2018], Fluschnik et al. [2019], and Faliszewski and Talmon [2019]. There is also a literature
on combinatorial public projects [Papadimitriou et al., 2008], which considers VCG-like truthful
mechanisms in the presence of money; this literature usually imposes the unit cost assumption.
In our discussion, there is no money.

We begin this chapter by describing several possible versions of strategyproofness and propor-
tionality axioms. We then present the proof of our main theorem. We end by discussing some
extensions to this result, and contrast our result to a related impossibility theorem due to Duddy
[2014b].

7.2. Preliminaries

Let C be a fixed finite set of m candidates, and let N = {1, . . . , n} be a fixed finite set of n
voters. An approval ballot is a proper2 subset Ai of C, so that ∅ 6= Ai ( C; let B denote the set
of all ballots. For brevity, when writing ballots, we often omit braces and commas, so that the
ballot {a, b} is written ab. An (approval) profile is a function P : N → B assigning every voter
an approval ballot. For brevity, we write a profile P as an n-tuple, so that P = (P (1), . . . , P (n)).
For example, in the profile (ab, abc, d), voter 1 approves candidates a and b, voter 2 approves a,
b, and c, and voter 3 approves d only.

Let k be a fixed integer with 1 6 k 6 m. A committee is a subset of C of cardinality k. We
write Ck for the set of committees, and again for brevity, the committee {a, b} is written as ab.
An (approval-based) committee rule is a function f : BN → Ck, assigning to each approval profile
a unique winning committee. Note that this definition assumes that f is resolute, so that for
every possible profile, it returns exactly one committee. In our proofs, we will implicitly restrict
the domain of f to profiles P with |

⋃
i∈N P (i)| > k, so that it is possible to fill the committee

with candidates who are each approved by at least one voter. Since we are aiming for a negative
result, this domain restriction only makes the result stronger.

Let us define two specific committee rules which will be useful examples throughout.

• Approval Voting (AV) is the rule that selects the k candidates with highest approval score,
that is, the k candidates c for which |{i ∈ N : c ∈ P (i)}| is highest. Ties are broken
lexicographically.

• Proportional Approval Voting (PAV) is the rule that returns the set W ⊆ C with |W | = k
which maximises ∑

i∈N

(
1 + 1

2 + · · ·+ 1
|P (i) ∩W |

)
.

In case of ties, PAV returns the lexicographically first optimum.

2Nothing hinges on the assumption that ballots are proper subsets. Since we are mainly interested in impossibilities,
this ‘domain restriction’ slightly strengthens the results.

77



7. Strategyproof Committee Selection

Other important examples that we occasionally mention are Monroe’s rule, Chamberlin–
Courant, Phragmén’s rules, and the sequential version of PAV. For definitions of these rules, we
refer to the book chapter by Faliszewski et al. [2017a]; they are not essential for following our
technical results.

7.3. Our Axioms
In this section, we discuss the axioms that will be used in our impossibility result. These axioms
have been chosen to be as weak as possible while still yielding an impossibility. This can make
them sound technical and unnatural in isolation. To better motivate them, we discuss stronger
versions that may have more natural appeal.

7.3.1. Strategyproofness

A voter can manipulate a voting rule if, by submitting a non-truthful ballot, the voter can ensure
that the voting rule returns an outcome that the voter strictly prefers to the outcome at the
truthful profile. It is not obvious how to phrase this definition for committee rules, since we do
not assume that voters have preferences over committees; we only have approval ballots over
candidates.

One way to define manipulability in this context is to extend the preference information we
have to preferences over committees. This is the approach also typically taken when studying
set-valued (irresolute) voting rules [Taylor, 2005, Gärdenfors, 1979] or probabilistic voting rules
[Brandt, 2017]. In our setting, there are several ways to extend approval ballots to preferences
over committees, and hence several notions of strategyproofness. Our impossibility result uses
the weakest notion.

For the formal definitions, let us introduce the notion of i-variants. For a voter i ∈ N , we say
that a profile P ′ is an i-variant of profile P if P and P ′ differ only in the ballot of voter i, that
is, if P (j) = P ′(j) for all j ∈ N \ {i}. Thus, P ′ is obtained after i manipulated in some way,
assuming that P was the truthful profile.

One obvious way in which one committee can be better than another in a voter’s view is if
the former contains a larger number of approved candidates. Suppose at the truthful profile,
we elect a committee of size k = 5, of which voter i approves 2 candidates. If i can submit a
non-truthful approval ballots which leads to the election of a committee with 3 candidates who
are approved by i, then this manipulation would be successful in the cardinality sense.

Cardinality-Strategyproofness If P ′ is an i-variant of P , then we do not have |f(P ′)∩P (i)| >
|f(P ) ∩ P (i)|.

One can check that AV with lexicographic tie-breaking satisfies cardinality-strategyproofness:
it is neither advantageous to increase the approval score of a non-approved candidate, nor to
decrease the approval score of an approved candidate.

Alternatively, we can interpret an approval ballot A ∈ B to say that the voter likes the
candidates in A (and would like them to in the committee), and that the voter dislikes the
candidates not in A (and would like them not to be in the committee). The voter’s ‘utility’
derived from committee W would be the number of approved candidates in W plus the number
of non-approved candidates not in W . Interpreting approval ballots and committees as bit strings
of length m, the voter thus desires the Hamming distance between their ballot and the committee
to be small. For two sets A,B, write H(A,B) = |A∆B| = |(A ∪B) \ (A ∩B)|.

Hamming-Strategyproofness If P ′ is an i-variant of P , then we do not have H(f(P ′), P (i)) <
H(f(P ), P (i)).

78



7.3. Our Axioms

EJR

PJR

JR

d’Hondt ext.

lower quota ext.

JR on party lists

proportionality

Figure 7.1.: Proportionality axioms and logical implications.

One can check that Hamming-strategyproofness and cardinality-strategyproofness are equivalent,
because for a fixed ballot P (i), a committee is Hamming-closer to P (i) than another if and only
if the number of approved candidates is higher in the former.

The notions of strategyproofness described so far make sense if we subscribe to the interpretation
of an approval ballot as a dichotomous preference, with the voter being completely indifferent
between all approved candidates (or being unable to distinguish between them). In some settings,
this is not a reasonable assumption.

For example, suppose i approves {a, b, c}; still it might be reasonable for i to prefer a committee
containing just a to a committee containing both b and c, maybe because i’s underlying preferences
are such that a is preferred to b and c, even though all three are approved. However, i should
definitely prefer a committee that includes a strict superset of approved candidates. For example,
a committee containing a and b should be better than a committee containing only a. This
is the intuition behind superset-strategyproofness, which is a weaker notion than cardinality-
strategyproofness.

Superset-Strategyproofness If P ′ is an i-variant of P , then we do not have f(P ′) ∩ P (i) )
f(P ) ∩ P (i).

Interestingly, PAV and other proportional rules are often manipulable in a particularly simple
fashion: a manipulator can obtain a better outcome by dropping popular candidates from their
approval ballot. Formally, these rules can be manipulated even through reporting a proper
subset of the truthful ballot. Our final and official notion of strategyproofness is a version of
subset-strategyproofness which only requires the committee rule to resist manipulators who
report a subset of the truthful ballot.

Strategyproofness If P ′ is an i-variant of P with P ′(i) ⊂ P (i), then we do not have f(P ′) ∩
P (i) ) f(P ) ∩ P (i).

Manipulating by reporting a subset of one’s truthful ballot is sometimes known as Hylland free
riding [Hylland, 1992, Schulze, 2004]: the manipulator free-rides on others approving a candidate,
and can pretend to be worse off than they actually are. This can then induce the committee rule
to add further candidates from their ballot to the committee.

Interestingly, one can check that PAV cannot be manipulated by reporting a superset of one’s
ballot; such a manoeuvre never helps.

7.3.2. Proportionality
We now discuss several axioms formalising the notion that the committee rule f should be
proportional, in the sense of proportionally representing different factions of voters: for example,

79



7. Strategyproof Committee Selection

a ‘cohesive’ group of 10% of the voters should be represented by about 10% of the members of
the committee. The version of proportionality used in our impossibility is the last and weakest
axiom we discuss. Figure 7.1 shows a Hasse diagram of all discussed axioms. Approval Voting
(AV) fails all of them, as can be checked for the example profile P = (abc, abc, d) and k = 3,
where AV returns abc.

We say that a profile P is a party-list profile if for all voters i, j ∈ N , either P (i) = P (j),
or P (i) ∩ P (j) = ∅. For example, (ab, ab, cde, cde, f) is a party-list profile, but (ab, c, c, abc) is
not. A party-list profile induces a partition of the set C of candidates into disjoint parties, so
that each voter approves precisely the members of exactly one party. The problem of finding a
proportional committee given a party-list profile has been extensively studied as the problem of
apportionment. Functions g : {party-list profiles} → Ck are known as apportionment methods;
thus any committee rule induces an apportionment by restricting its domain to party-list profiles
[Brill et al., 2018]. Many proportional apportionment methods have been introduced and defended
over the last few centuries. Given a committee rule f , one way to formalise the notion that f is
proportional is by requiring that the apportionment method induced by f is proportional.

Given a party-list profile P , let us write nP (A) = |{i ∈ N : P (i) = A}| for the number of
voters approving party A. An apportionment method g satisfies lower quota if for every party-list
profile P , each party A in P gets at least bnP (A) · knc seats, that is, |g(P ) ∩ A| > bnP (A) · knc.
This notion gives us our first proportionality axiom.

Lower quota extension The apportionment method induced by f satisfies lower quota.

This axiom is satisfied by PAV, the sequential version of PAV, by Monroe’s rule if k divides n,
and Phragmén’s rule [Brill et al., 2018].

We can strengthen this axiom by imposing stronger conditions on the induced apportionment
method. For example, the apportionment method induced by PAV and by Phragmén’s rule
coincides with the d’Hondt method (aka Jefferson method, see [Brill et al., 2018] for a definition),
so we could use the following axiom.

d’Hondt extension The apportionment method induced by f is the d’Hondt method.

Aziz et al. [2017] introduce a different approach of defining a proportionality axiom. Instead of
considering only the case of party-list profiles, they impose conditions on all profiles. The intuition
behind their axioms is that sufficiently large groups of voters that have similar preferences ‘deserve’
at least a certain number of representatives in the committee. They introduce the following
axiom:

Justified Representation (JR) If P is a profile, and N ′ ⊆ N is a group with |N ′| > n
k and⋂

i∈N ′ P (i) 6= ∅, then f(P ) ∩
⋃
i∈N ′ P (i) 6= ∅.

Thus, JR requires that no group of at least n
k voters for which there is at least one candidate

c ∈ C that they all approve can remain unrepresented: at least one of the voters in the group
must approve at least one of the committee members. This axiom is satisfied, for example, by
PAV, Phragmén’s rule, and Chamberlin-Courant [Aziz et al., 2017], but not by the sequential
version of PAV unless k 6 5 [Sánchez-Fernández et al., 2017, Aziz et al., 2017].

One may think that JR is too weak: even if there is a large majority of voters who all report the
same approval set, JR only requires that one of their candidates be a member of the committee.
But this group may deserve several representatives. The following strengthened version of JR
is due to [Sánchez-Fernández et al., 2017]. It requires that a large group of voters for which
there are several candidates that they all approve should be represented by several committee
members.

Proportional Justified Representation (PJR) For any profile P and each ` = 1, . . . , k, if
N ′ ⊆ N is a group with |N ′| > ` · nk and |

⋂
i∈N ′ P (i)| > `, then |f(P ) ∩

⋃
i∈N ′ P (i)| > `.

80



7.3. Our Axioms

This axiom is also satisfied by PAV and Phragmén’s rule [Sánchez-Fernández et al., 2017, Brill
et al., 2017]. Brill et al. [2018] show that if a rule satisfies PJR, then it is also a lower quota
extension. A yet stronger version of JR is EJR, introduced by Aziz et al. [2017]; EJR requires
that there is at least one group member who has at least ` approved committee members.

Extended Justified Representation (EJR) For any profile P and each ` = 1, . . . , k, if N ′ ⊆ N
is a group with |N ′| > ` · nk and |

⋂
i∈N ′ P (i)| > `, then |f(P ) ∩ P (i)| > ` for some i ∈ N ′.

This axiom is satisfied by PAV [Aziz et al., 2017], but not by Phragmén’s rule [Brill et al., 2017].
The proportionality axiom we use in our impossibility combines features of the JR-style axioms

with the apportionment-extension axioms. Consider the following axiom.

JR on party lists Suppose P is a party-list profile, and some ballot A ∈ B appears at least n
k

times in P . Then f(P ) ∩A 6= ∅.

This axiom only requires JR to hold for party-list profiles; thus, it only requires that we represent
large-enough groups of voters who all report the exact same approval ballot [see also Behrens
et al., 2014]. As an example, this axiom requires that f(ab, ab, cd, cd) ∈ {ac, ad, bc, bd}, because
the ballots ab and cd both appear at least n

k = 4
2 = 2 times.

Our official proportionality axiom is still weaker, and only requires us to represent singleton
parties with large-enough support.

Proportionality Suppose P is a party-list profile, and some singleton ballot {c} ∈ B appears
at least n

k times in P . Then c ∈ f(P ).

This axiom should be almost uncontroversial if we desire our committee rule to be proportional
in any sense. A group of voters who all approve just a single candidate is certainly cohesive
(there are no internal disagreements), it is clear what it means to represent this group (add their
approved candidate to the committee), and the group is uniquely identified (because no outside
voters approve sets that intersect with the group’s approval ballot).

Since our proportionality axiom only refers to the apportionment method induced by f , our
impossibility states that no reasonable apportionment method admits an extension to the ‘open
list’ setting (where voters are not bound to a party) which is strategyproof.

A type of axiom related to proportionality are diversity requirements. These typically require
that as many voters as possible should have a representative in the committee, but they do not
insist that groups of voters be proportionally represented [Elkind et al., 2017a, Faliszewski et al.,
2017a]. The Chamberlin–Courant rule [Chamberlin and Courant, 1983] is an example of a rule
selecting diverse committees. Lackner and Skowron [2018] propose the following formulation of
this requirement for the approval setting:

Disjoint Diversity Suppose P is a party-list profile with at most k different parties. Then
f(P ) contains at least one member from each party.

Our main result (Theorem 7.1) also holds when replacing proportionality by disjoint diversity,
since all profiles in its proof where proportionality is invoked feature at most k different parties.

7.3.3. Efficiency

We will additionally impose a mild technical condition, which can be seen as an efficiency axiom.3
The axiom will only be used in one of the induction steps (Lemma 7.5).

3The conference version of this chapter did not use this axiom. Without it, the proof of Lemma 7.5 does not
work. I thank Boas Kluiving, Adriaan de Vries, Pepijn Vrijbergen for pointing out the error.

81



7. Strategyproof Committee Selection

Weak Efficiency If P is a profile with |
⋃
i∈N P (i)| > k, and c is a candidate who is approved

by no voters, then c 6∈ f(P ).

Thus, a rule satisfying weak efficiency should fill the committee with candidates who are
approved by some voters, rather than electing candidates approved by no one. A similar axiom
of the same name is used by Lackner and Skowron [2018]. As we declared in Section 7.2, in
our proofs we will always restrict attention to profiles P with |

⋃
i∈N P (i)| > k, so that weak

efficiency applies to all relevant profiles.

7.4. The Impossibility Theorem

We are now in a position to state our main result, that there are no proportional and strategyproof
committee rules.

Theorem 7.1. Suppose k > 3, the number n of voters is divisible by k, and m > k + 1. Then
there exists no approval-based committee rule which satisfies weak efficiency, proportionality, and
strategyproofness.

The assumption that n be divisible by k appears to be critical; the SAT solver indicates
positive results when n is not a multiple of k. However, we do not know short descriptions of
these rules, and it is possible (likely?) that impossibility holds for large n and m. Using stronger
proportionality axioms, the result holds for all sufficiently large n; see Section 7.4.3.

The proof of this impossibility was found with the help of computers, but it was significantly
simplified manually. One convenient first step is to establish the following simple lemma. It uses
strategyproofness to extend the applicability of proportionality to certain profiles that are not
party-list profiles.

Lemma 7.2. Let m = k+ 1. Let f be strategyproof and proportional. Suppose that P is a profile
in which some singleton ballot {c} appears at least n

k times, but in which no other voter approves
c. Then c ∈ f(P ).

Proof. Let P ′ be the profile defined by

P ′(i) =
{
{c} if P (i) = {c},
C \ {c} otherwise.

Then P ′ is a party-list profile, and by proportionality, c ∈ f(P ′). Thus, f(P ′) 6= C\{c}. Now, step
by step, we let each non-{c} voter j in P ′ change back their vote to P (j). By strategyproofness,
at each step the output committee cannot be C \ {c}. In particular, at the last step, we have
f(P ) 6= C \ {c}. Thus, c ∈ f(P ), as required.

7.4.1. Base case

The first major step in the proof is to establish the impossibility in the case that k = 3, n = 3, and
m = 4. The proof of this base case is by contradiction, assuming there exists some f satisfying
the axioms. We start by considering the profile P1 = (ab, c, d), and break some symmetries.
(This is a useful strategy to obtain smaller and better-behaved MUSes.) Using proportionality,
symmetry-breaking allows us to assume that f(P1) = acd. The proof then goes through seven
steps, applying the same reasoning each time. In each step, we use strategyproofness to infer
the values of f at certain profiles P2, . . . , P7. Finally, we find that strategyproofness implies that
f(P1) 6= acd, which contradicts our initial assumption about f(P1).

82



7.4. The Impossibility Theorem

Lemma 7.3. There is no committee rule that satisfies proportionality and strategyproofness for
k = 3, n = 3, and m = 4.

Proof. Suppose for a contradiction that such a committee rule f existed. Consider the profile
P1 = (ab, c, d). By proportionality, we have c ∈ f(P1) and d ∈ f(P1). Thus, we have f(P1) ∈
{acd, bcd}. By relabelling the alternatives, we may assume without loss of generality that
f(P1) = acd.

Consider P1.5 = (ab, ac, d). By Lemma 7.2, d ∈ f(P1.5). Thus, f(P1.5) = acd, or else voter 2
can manipulate towards P1.

Consider P2 = (b, ac, d). By proportionality, f(P2) ∈ {abd, bcd}. If we had f(P2) = abd, then
voter 1 in P1.5 could manipulate towards P2. Hence f(P2) = bcd.

Consider P2.5 = (b, ac, cd). By Lemma 7.2, b ∈ f(P2.5). Thus, f(P2.5) = bcd, or else voter 3
can manipulate towards P2.

Consider P3 = (b, a, cd). By proportionality, f(P3) ∈ {abc, abd}. If we had f(P3) = abc, then
voter 2 in P2.5 could manipulate towards P3. Hence f(P3) = abd.

Consider P3.5 = (b, ad, cd). By Lemma 7.2, b ∈ f(P3.5). Thus, f(P3.5) = abd, or else voter 2
can manipulate towards P3.

Consider P4 = (b, ad, c). By proportionality, f(P4) ∈ {abc, bcd}. If we had f(P4) = bcd, then
voter 3 in P3.5 could manipulate towards P4. Hence f(P4) = abc.

Consider P4.5 = (b, ad, ac). By Lemma 7.2, b ∈ f(P4.5). Thus, f(P4.5) = abc, or else voter 3
can manipulate towards P4.

Consider P5 = (b, d, ac). By proportionality, f(P5) ∈ {abd, bcd}. If we had f(P5) = abd, then
voter 2 in P4.5 could manipulate towards P5. Hence f(P5) = bcd.

Consider P5.5 = (b, cd, ac). By Lemma 7.2, b ∈ f(P5.5). Thus, f(P5.5) = bcd, or else voter 2
can manipulate towards P5.

Consider P6 = (b, cd, a). By proportionality, f(P6) ∈ {abc, abd}. If we had f(P6) = abc, then
voter 3 in P5.5 could manipulate towards P6. Hence f(P6) = abd.

Consider P6.5 = (b, cd, ad). By Lemma 7.2, b ∈ f(P6.5). Thus, f(P6.5) = abd, or else voter 3
can manipulate towards P6.

Consider P7 = (b, c, ad). By proportionality, f(P7) ∈ {abc, bcd}. If we had f(P7) = bcd, then
voter 2 in P6.5 could manipulate towards P7. Hence f(P7) = abc.

Finally, consider P7.5 = (ab, c, ad). By Lemma 7.2, c ∈ f(P7.5). Thus, f(P7.5) = abc, or else
voter 1 can manipulate towards P7. But then voter 3 can manipulate towards P1 = (ab, c, d),
because by our initial assumption, we have f(P1) = acd. Contradiction.

7.4.2. Induction steps

We now extend the base case to larger parameter values, by proving induction steps. The proofs
all take the same form: Assuming the existence of a committee rule satisfying the axioms for large
parameter values, we construct a rule for smaller values, and show that the smaller rule inherits
the axiomatic properties of the larger rule. This is done, variously, by introducing dummy voters,
by introducing dummy alternatives, and by copying voters.

Our first induction step reduces the number of voters. The underlying construction works by
copying voters, and using the ‘homogeneity’ of the axioms of proportionality and strategyproofness.
For the latter axiom, we use the fact that in the case m = k + 1, the preference extension of
approval ballots to committees is complete, in that any two committees are comparable.

Lemma 7.4. Suppose k > 2 and m = k + 1, and let q > 1 be an integer. If there exists a
proportional and strategyproof committee rule for q · k voters, then there also exists such a rule
for k voters.

83



7. Strategyproof Committee Selection

Proof. For convenience, we write profiles as lists. Given a profile P , we write qP for the profile
obtained by concatenating q copies of P . Let fqk be the rule for q · k voters. We define the rule
fk for k voters as follows:

fk(P ) = fqk(qP ) for all profiles P ∈ Bk.

Proportionality. Suppose P ∈ Bk is a party-list profile in which at least n
k = k

k = 1 voters
approve {c}. Then qP is a party-list profile in which at least q · nk = qn

k = q voters approve {c}.
Since fqk is proportional, c ∈ fqk(qP ) = fk(P ).

Strategyproofness. Suppose for a contradiction that fk is not strategyproof, so that there is
P and an i-variant P ′ with fk(P ′) ∩ P (i) ) fk(P ) ∩ P (i). Because m = k + 1, the committees
fk(P ′) and fk(P ) must differ in exactly 1 candidate. Since the manipulation was successful,
fk(P ′) must be obtained by replacing a non-approved candidate in fk(P ) by an approved one,
say fk(P ′) = fk(P ) ∪ {c} \ {d} with c ∈ P (i) 63 d. Now consider fqk(qP ), and step-by-step
let each of the q copies of P (i) in qP manipulate from P (i) to P ′(i) obtaining qP ′ in the last
step. Because fqk is strategyproof, at each step of this process fqk cannot have exchanged a
non-approved candidate by an approved candidate according to P (i). This contradicts that
fk(P ′) = fk(P ) ∪ {c} \ {d}.

Our second induction step is the simplest: We reduce the number of alternatives using dummy
candidates that no voter ever approves. This is the only place in the proof where we require the
weak efficiency axiom.

Lemma 7.5. Fix n and k, and let m > k. If there exists a weakly efficient, proportional, and
strategyproof committee rule for m + 1 alternatives, then there also exists such a rule for m
alternatives.

Proof. Let fm+1 be the committee rule defined on the candidate set Cm+1 = {c1, . . . , cm, cm+1}.
Note that every profile P over candidate set Cm = {c1, . . . , cm} is also a profile over candidate set
Cm+1. We then just define the committee rule fm for the candidate set Cm by fm(P ) := fm+1(P )
for all profiles P over candidate set Cm, where we assume that |

⋃
i∈N P (i)| > k. By weak

efficiency, fm(P ) ⊆ Cm, so that fm is a well-defined rule. It is easy to check that fm is weakly
efficient, proportional, and strategyproof.

Our last induction step reduces the committee size from k+1 to k. The construction introduces
an additional candidate and an additional voter, and appeals to Lemma 7.2 to show that the
new candidate is always part of the winning committee. Thus, the larger rule implicitly contains
a committee rule for size-k committees.

Lemma 7.6. Let k > 2. If there exists a proportional and strategyproof committee rule for
committee size k + 1, for k + 1 voters, and for k + 2 alternatives, then there also exists such a
rule for committee size k, for k voters, and for k + 1 alternatives.

Proof. Let fk+1 be the committee rule assumed to exist, defined on the candidate set Ck+2 =
{c1, . . . , ck+2}. We define the rule fk for committee size k on candidate set Ck+1 = {c1, . . . , ck+1}
as follows:

fk(A1, . . . , Ak) = fk+1(A1, . . . , Ak, {ck+2}) \ {ck+2},

for every profile P = (A1, . . . , Ak) over Ck+1. Notice that this is well-defined and returns a commit-
tee of size k, since by Lemma 7.2 applied to fk+1, we always have ck+2 ∈ fk+1(A1, . . . , Ak, {ck+2}).

Proportionality. Let P = (A1, . . . , Ak) be a party-list profile over Ck+1, in which the ballot
{c} occurs at least n

k = k
k = 1 time. Then P ′ = (A1, . . . , Ak, {ck+2}) is a party-list profile,

in which {c} occurs at least n+1
k+1 = k+1

k+1 = 1 time; thus, by proportionality of fk+1, we have
c ∈ fk+1(P ′) = fk(P ).

84



7.4. The Impossibility Theorem

Strategyproofness. If there is a successful manipulation from P to P ′ for fk, then there is a
successful manipulation from (P, {ck+2}) to (P ′, {ck+2}) for fk+1, contradiction.

Finally, we can combine all three induction steps, applying them in order, and the base case,
to get our main result.

Proof of the Main Theorem. Let k > 3, let n be divisible by k, and let m > k + 1. Suppose for
a contradiction that there does exist an approval-based committee rule f which satisfies weak
efficiency, proportionality, and strategyproofness for these parameters.

By Lemma 7.5 applied repeatedly to f , there also exists such a rule f ′ for k+1 alternatives. By
Lemma 7.4 applied to f ′, there exists a proportional and strategyproof rule f ′′ for k voters. By
Lemma 7.6 applied to f ′′, there must exist a proportional and strategyproof rule for committee
size 3, for 3 voters, and for 4 alternatives. But this contradicts Proposition 7.3.

7.4.3. Extension to other electorate sizes
One drawback of Theorem 7.1 is the condition on the number of voters n. For larger values of
k, practical elections are unlikely to have a number of voters which is exactly a multiple of k.
The impossibility as we have proved it does not rule out that for other values of n, there does
exist a proportional and strategyproof rule. Indeed, at least for small parameter values, the SAT
solver confirms that this is the case. An important open question is whether, for fixed k > 3, the
impossibility holds for all sufficiently large n.

In this section, we give one result to this effect, obtained by strengthening the proportionality
axiom. Note that all the axioms we discussed in Section 7.3.2 are based on the intuition that a
group of nk voters should be represented by one committee member. The value “nk ” is known as the
Hare quota. An alternative proposal is the Droop quota, according to which every group consisting
of strictly more than n

k+1 voters should be represented by one committee member. Thus, with
Droop quotas, slightly smaller groups already need to be represented. The strengthened axiom is
as follows.

Droop Proportionality Suppose P is any profile, and some singleton ballot {c} ∈ B appears
strictly more than n

k+1 times in P . Then c ∈ f(P ).

Note that Droop proportionality applies to all profiles and not only party-list profiles. With this
stronger proportionality axiom, we can show that for fixed k and all sufficiently large n, we have
an incompatibility with strategyproofness.

Proposition 7.7. Let k > 3, let m > k + 1, and let n > k2. Then there is no approval-based
committee rule satisfying weak efficiency, strategyproofness, and Droop proportionality.

Proof. Suppose such a rule fn exists. By Lemma 7.5 (suitably reproved to apply to the Droop
quota), there also is such a rule for m = k + 1 alternatives, so we may assume that m = k + 1.

Write n = q · k + r for some 0 6 r < k and some q > k. We will show that there exists a
committee rule for q · k voters which satisfies proportionality (with respect to the Hare quota)
and strategyproofness, which contradicts Theorem 7.1.

Fix r arbitrary ballots B1, . . . , Br. We define a committee rule fqk on q ·k voters, m alternatives,
and for committee size k, as follows:

fqk(A1, . . . , Aqk) = fn(A1, . . . , Aqk, B1, . . . , Br),

for all profiles P = (A1, . . . , Aqk) ∈ Bqk.
It is clear that fqk inherits strategyproofness from fn: Any successful manipulation of fqk is

also successful for fn.

85



7. Strategyproof Committee Selection

We are left to show that fqk satisfies (Hare) proportionality. So suppose that P =
(A1, . . . , Aqk) ∈ Bqk is a party-list profile in which singleton party {c} is approved by at least
qk
k = q voters. Note that, because r < k 6 q,

n

k + 1 = qk + r

k + 1 <
qk + q

k + 1 = q(k + 1)
k + 1 = q,

Thus, in the profile P ′ = (A1, . . . , Aqk, B1, . . . , Br), there are strictly more than n
k+1 voters

who approve {c}. Thus, by Droop proportionality, c ∈ fn(P ′) = fqk(P ). Thus, fqk is (Hare)
proportional.

Remark 7.8. If we want to restrict the Droop proportionality axiom to only apply to party-list
profiles, we can instead assume in Proposition 7.7 that m > k + 2, and then let B1 = · · · = Br =
{ck+2}, defining the rule fqk only over the first k + 1 alternatives. Then the final profile P ′ is a
party-list profile.

7.5. Related Work
A short article by Duddy [2014b] also proves an impossibility about approval-based committee
rules involving a proportionality axiom. Duddy’s result is about probabilistic committee rules,
which return probability distributions over the set of committees. Because any deterministic
committee rule induces a probabilistic one (which puts probability 1 on the deterministic output),
Duddy’s probabilistic result also has implications for deterministic rules, which we can state as
follows.

Theorem 7.9 (Duddy, 2014b). For m = 3 and k = 2, no approval-based committee rule f
satisfies the following three axioms.

1. (Representative.) There exists a profile P in which n voters approve {x} and n+ 1 voters
approve {y, z}, but f(P ) 6= {y, z}, for some n ∈ N and all distinct x, y, z ∈ C.

2. (Pareto-consistent.) If in profile P , the set of voters who approve of x is a strict subset of
the set of voters who approve of y, then f(P ) 6= {x, z}, for all distinct x, y, z ∈ C.

3. (Strategyproof.) Suppose profiles P and P ′ are identical, except that voter i approves {x, y}
in P but {x} in P ′. If f(P ) 6= {x, y}, then also f(P ′) 6= {x, y}.

How does Duddy’s theorem relate to ours? Duddy’s strategyproofness is weaker than but
very similar to our strategyproofness. Our result does not require an efficiency axiom. Duddy’s
representative axiom is noticeably different from the proportionality axioms that we have discussed.
Logically it is incomparable to our proportionality axiom; in spirit it may be slightly stronger.
Note that not even the strongest of the proportionality axioms that we have discussed (i.e., EJR)
imply Duddy’s representativeness. It is also worth noting that Duddy’s result works for smaller
values of m and k than our result, suggesting that Duddy’s axioms are stronger overall.

In computational social choice, there has been much recent interest in axiomatic questions in
committee rules. Working in the context of strict orders, Elkind et al. [2017a] introduced several
axioms and studied which committee rules satisfy them. Skowron et al. [2019] axiomatically
characterise the class of committee scoring rules, and Faliszewski et al. [2016] study the finer
structure of this class. For the approval-based setting, Lackner and Skowron [2018] characterise
committee counting rules, and give characterisations of PAV and of Chamberlin–Courant. They
also have a result suggesting that AV is the only consistent committee rule which is strategyproof.

From a computational complexity perspective, there have been several papers studying the
complexity of manipulative attacks on multiwinner elections [Meir et al., 2008, Obraztsova et al.,

86



7.6. Conclusions and Future Work

2013, Faliszewski et al., 2017b, Aziz et al., 2015, Baumeister et al., 2015]. Other work has studied
the complexity of evaluating various committee rules. Notably, it is NP-complete to find a
winning committee for PAV [Aziz et al., 2015, Skowron et al., 2015].

7.6. Conclusions and Future Work
We have proved an impossibility about approval-based committee rules. The versions of the
proportionality and strategyproofness axioms we used are very weak. It seems unlikely that, by
weakening the axioms used, one can find a committee rule that exhibits satisfying versions of
these requirements. A technical question which remains open is whether our impossibility holds
for all numbers n of voters, no matter whether it is a multiple of k (see Section 7.4.3). It would
also be interesting to study irresolute or probabilistic rules.

To circumvent the classic impossibilities of Arrow and Gibbard–Satterthwaite, it has proved
very successful to study restricted domains such as single-peaked preferences, which can often give
rise to strategyproof voting rules [Moulin, 1988a, Elkind et al., 2017b]. Elkind and Lackner [2015]
propose analogues of single-peaked and single-crossing preferences for the case of approval ballots
and dichotomous preferences. For example, a profile of approval ballots satisfies the Candidate
Interval (CI) condition if there exists an underlying linear ordering of the candidates such that
each voter approves an interval of candidates [see also Faliszewski et al., 2011]. Restricting the
domain to CI profiles in our SAT encoding suggests that an impossibility of the type we have
studied cannot be proved for this domain – at least for small values of n, m, and k. Finding
a proportional committee rule that is not manipulable on the CI domain would be an exciting
avenue for future work.

It would be interesting to obtain impossibilities using other axioms. Recently, Sánchez-
Fernández and Fisteus [2019] found some incompatibilities between proportionality and mono-
tonicity. Their version of proportionality (‘perfect representation’), however, is very strong and
possibly undesirable. It would be interesting to see whether such results hold for weaker versions
of their axioms.

Thanks to Markus Brill for suggesting subset manipulations and other ideas, and to
Martin Lackner and Piotr Skowron for useful discussions. Thanks to Boas Kluiving,
Adriaan de Vries, Pepijn Vrijbergen, and Ulle Endriss for pointing out an error in a
previous version.

87





8. Preferences Single-Peaked on Trees

A preference profile is single-peaked on a tree if the candidate set can be equipped
with a tree structure such that the preferences of each voter are decreasing from
their top candidate along all paths in the tree. We study the complexity of electing a
committee under several variants of the Chamberlin–Courant rule when preferences
are single-peaked on a tree. We first show that this problem can be solved in
polynomial time for the egalitarian version of this problem, for arbitrary trees and
scoring functions. For the standard utilitarian version of this problem, we prove that
winner determination remains NP-hard for preferences single-peaked on a tree, even
for the Borda scoring function. This hardness result holds even when the underlying
tree has bounded pathwidth and bounded diameter. However, we provide algorithms
whose running time is polynomial in the input size provided that either the number
of leaves or the number of internal vertices of the underlying tree is bounded by a
constant. To support these parameterised algorithms, we study the computational
problem of finding a tree on which a given profile is single-peaked. We develop a
structural approach that enables us to compactly represent all trees with respect to
which a given profile is single-peaked. We show how to use this representation to
efficiently find the best tree for a given profile for use with our winner determination
algorithms: Given a profile, we can efficiently find a tree with a minimum number of
leaves, or a tree with a minimum number of internal vertices among trees on which
the profile is single-peaked. We also obtain positive results for additional optimisation
criteria, but obtain NP-hardness for others.

8.1. Introduction
Computational social choice deals with algorithmic aspects of collective decision-making. One
of the fundamental questions studied in this area is the complexity of determining the election
winner(s) for voting rules: indeed, for a rule to be practically applicable, it has to be the case
that we can find the winner of an election in a reasonable amount of time.

Most common rules that are designed to output a single winner admit polynomial-time winner
determination algorithms; examples include such diverse rules as Plurality, Borda, Maximin,
Copeland, and Bucklin (see, e.g., Arrow et al., 2002, for definitions). However, there are also
some intuitively appealing single-winner rules for which winner determination is known to be
computationally hard: this is the case, for instance, for Dodgson’s rule [Bartholdi, III et al., 1989,
Hemaspaandra et al., 1997], Young’s rule [Rothe et al., 2003], and Kemeny’s rule [Bartholdi, III
et al., 1989, Hemaspaandra et al., 2005]. More recently, there has been much interest in the
computational complexity of voting rules whose purpose is to elect a representative committee
of candidates rather than select a single winner. While one can adapt common single-winner
rules to this setting (e.g., appoint the candidates with the top k scores, where k is the target
committee size, or split the voters into k districts and determine the winner in each district using
a single-winner rule), this approach may result in a committee that does not reflect the true
preferences of the electorate (see, e.g., Betzler et al., 2013). Therefore, it is preferable to use a
voting system that is specifically designed for multiwinner elections.

One such system was proposed by Chamberlin and Courant [1983]. It is usually defined for

89



8. Preferences Single-Peaked on Trees

the case where voter preferences are given as rankings (rather than approvals like in Chapter 7),
and we will use rankings throughout this chapter. Given a committee C ′ ⊆ C of k candidates,
the system assumes that each voter i is represented by i’s most-preferred candidate in C ′, that
is, the member of C ′ ranked highest in i’s preferences. Voter i is assumed to obtain utility from
this representation. This utility is increasing in the rank of i’s representative in i’s preference
ranking. For example, i’s utility could be obtained as the Borda score of the representative, but
any scoring function is possible. There is no constraint on the number of voters that can be
represented by a single candidate; the assumption is that the committee will make its decisions
by weighted voting, where the weight of each candidate is proportional to the fraction of the
electorate that the candidate represents. Chamberlin and Courant’s scheme outputs a committee
of a fixed given size that maximises the the sum of voters’ utilities according to some chosen
scoring function (see Section 8.2 for a formal definition).1 Recently, Betzler et al. [2013] suggested
an egalitarian, or maximin, variant, where the quality of a committee is measured by the utility
of the worst-off voter rather than total utility.

Unfortunately, the problem of identifying an optimal committee under the Chamberlin–Courant
rule is known to be computationally hard, even for fairly simple scoring functions. In particular,
Procaccia et al. [2008] show that this is the case for both schemes under r-approval scoring
functions, where a voter i obtains utility 1 if i’s representative is one of the r highest-ranked
candidates, and utility 0 otherwise. Lu and Boutilier [2011] give an NP-hardness proof for the
Chamberlin–Courant rule under the Borda scoring function (where the utility of a voter i is
the number of candidates i ranks below i’s representative). Betzler et al. [2013] extend these
hardness results to the egalitarian variant.

Clearly, this is bad news if we want to use the Chamberlin–Courant rule in practice: elections
may involve millions of voters and hundreds of candidates, and the election outcome needs to be
announced soon after the votes have been cast. On the other hand, simply abandoning these
voting rules in favour of easy-to-compute adaptations of single-winner rules is not acceptable if
the goal is to select a truly representative committee. Thus, it is natural to try to circumvent the
hardness results, either by designing efficient algorithms that compute an approximately optimal
committee or by identifying reasonable assumptions on the structure of the election that ensure
computational tractability. The former approach was pursued by Lu and Boutilier [2011], and by
Skowron et al. [2015]. The latter approach was initiated by Betzler et al. [2013] who provide an
extensive analysis of the fixed-parameter tractability of the winner determination problem under
both utilitarian and egalitarian variants of the Chamberlin–Courant rule. They also investigate
the complexity of this problem for single-peaked electorates.

An profile is said to be single-peaked [Black, 1948] if the set of candidates can be placed on
a one-dimensional axis, such that a voter prefers candidates that are close to the voter’s top
choice on the axis. We can expect a profile to be single-peaked when every voter evaluates the
candidates by their position on a numerical issue, such as the income tax rate or minimum wage
level, or by their position on the left-right ideological axis. Many voting-related problems that are
known to be computationally hard for general preferences become easy when voters’ preferences
are assumed to be single-peaked. This is the case for the winner determination problem under
Dodgson’s, Young’s and Kemeny’s rules [Brandt et al., 2015]. Betzler et al. [2013] show that this
is also the case for winner determination of both the utilitarian and the egalitarian version of the
Chamberlin–Courant rule.

Our Contribution The goal of this chapter is to explore whether the easiness results of Betzler
et al. [2013] for single-peaked electorates can be extended to a more general class of elections.

1Monroe [1995] has subsequently proposed a variant of this scheme where the committee is assumed to use
non-weighted voting, and, consequently, each member of the committee is required to represent approximately
the same number of voters (up to a rounding error).

90



8.1. Introduction

We focus on a generalisation of single-peaked preferences introduced by Demange [1982], which
captures a much broader class of voters’ preferences, while still implying the existence of a
Condorcet winner. This is the class of preference profiles which are single-peaked on a tree.
Informally, an election belongs to this class if we can construct a tree whose vertices are candidates
in the election, and each voter has a most-preferred candidate and ranks all other candidates
according to their perceived distance along this tree from the most-preferred candidate. A profile
is single-peaked if and only if it is single-peaked on a path.

We focus on the Chamberlin–Courant rule. We first show that, for the egalitarian variant of
this rule, winner determination is easy for an arbitrary scoring function when voters’ preferences
are single-peaked on a tree. Our proof proceeds by reducing our problem to an easy variant of the
Hitting Set problem. For the utilitarian setting, we show that winner determination for the
Chamberlin–Courant rule is NP-complete, even for the Borda scoring function. Hardness holds
even if preferences are single-peaked on a tree of bounded diameter and bounded pathwidth.
However, we present an efficient winner determination algorithm for preferences that are single-
peaked on a tree with a small number of leaves: the running time of our algorithm is polynomial
in the size of the profile, but exponential in the number of leaves (Section 8.5). Formally, the
problem is in XP with respect to the number of leaves. Further, we give an algorithm that works
for trees with a small number of internal vertices (i.e., with a large number of leaves) when
using the Borda scoring function. This algorithm places the problem in FPT with respect to the
committee size and the number of internal vertices.

Now, these parameterised algorithms assume that the tree with respect to which the preferences
are single-peaked is given as an input. However, in practice we cannot expect this to be the case:
typically, we are only given the voters’ preferences and have to construct such a tree (if it exists)
ourselves. While the algorithm of Betzler et al. faces the same issue (i.e., it needs to know the
societal axis), there exist efficient algorithms for determining the societal axis given the voters’
preferences [Bartholdi, III and Trick, 1986, Escoffier et al., 2008, Doignon and Falmagne, 1994].
In contrast, for trees the situation is more complicated. Trick [1989] describes a polynomial-time
algorithm that decides whether there exists a tree such that a given election is single-peaked with
respect to it, and constructs some such tree if this is indeed the case. However, Trick’s algorithm
leaves us a lot of freedom when constructing the tree; as a result, if the election is single-peaked
with respect to several different trees, the output of Trick’s algorithm will be dependent on the
implementation details. In particular, there is no guarantee that an arbitrary implementation will
find a tree that caters to the demands of the winner determination algorithms that we present:
for example, the algorithm may return a tree with many leaves, while we wish to find one that
has as few leaves as possible. Indeed, Trick’s algorithm may output a complex tree even when
the input profile is single-peaked on a line.

In Sections 8.7 and 8.8, we propose a general framework for finding trees with desired properties,
and use it to obtain polynomial-time algorithms for identifying “nice” trees when they exist,
for several appealing notions of “niceness”. Specifically, we define a digraph that encodes, in a
compact fashion, all trees with respect to which a given profile is single-peaked. This digraph
enables us to count and/or enumerate all such trees. Moreover, we show that it has many useful
structural properties. This can be exploited to efficiently find trees that minimise the number
of leaves, or the number of internal vertices, or the degree or diameter or pathwidth among
all trees with respect to which a given profile is single-peaked. These recognition algorithms
complement our parameterised algorithms for winner determination. In contrast, we show that
it is NP-complete to decide whether a profile is single-peaked on a tree which is isomorphic to a
given tree.

91



8. Preferences Single-Peaked on Trees

8.2. Preliminaries
Let C be a finite set of candidates, and let C! be the set of strict total orders over C. Let
N = {1, . . . , n} be a set of voters. A preference profile P : N → C! assigns to each voter a
preference order over C. When the profile P is clear from the context, for i ∈ N , we write �i for
the preference order P (i), and if a �i b, then we say that voter i (strictly) prefers a to b.

Given a profile P , we denote by pos(i, c) the position of candidate c ∈ C in the preference
order of voter i ∈ N :

pos(i, c) = |{c′ ∈ C : c′ �i c}|+ 1.

We write top(i) for voter i’s most-preferred candidate in position 1, we write second(i) for
the candidate in position 2, and bottom(i) for i’s least-preferred candidate in position m.
Given a subset of candidates C ′ ⊆ C, we extend this notation and let top(i, C ′), second(i, C ′),
and bottom(i, C ′) denote voter i’s most-, second-most- and least-preferred candidate in C ′,
respectively, provided that |C ′| > 3.

Given a subset C ′ ⊆ C, we write P |C′ for the profile obtained from P by restricting the
candidate set to C ′.

Multiwinner Elections A scoring function for given N and C is a mapping µ : N × C → Z
such that pos(i, c) < pos(i, c′) implies µ(i, c) > µ(i, c′). Intuitively, µ(i, c) indicates how well
candidate c represents voter i. A scoring function is said to be positional if there exists a vector
s = (s1, . . . , sm) ∈ Zm with s1 > s2 > . . . > sm such that µ(i, c) = spos(i,c). We will say that
the scoring functions are induced by the vector s. We will usually take s such that s1 = 0 and
s2, . . . , sm 6 0, where negative values correspond to ‘misrepresentation’. This choice will be
without loss of generality, as applying a positive affine transformations to s will not change the
output of the voting rules we introduce below. We will refer to the positional scoring function
that corresponds to the vector (0,−1, . . . ,−m+ 1) as the Borda scoring function.

Given a preference profile P , a committee of candidates C ′ ⊆ C, and a scoring function
µ : N ×C → Z, we take voter i’s utility from the committee C ′ to be µ(i, top(i, C ′)), that is, the
score i gives to i’s favourite candidate in C ′. We also write

m+
µ (P,C ′) =

∑
i∈N

µ(i, top(i, C ′))

for the sum of utilities of all voters (the utilitarian Chamberlin–Courant score), and

mmin
µ (P,C ′) = min

i∈N
µ(i, top(i, C ′)).

for the utility obtained by the worst-off voter (the egalitarian Chamberlin–Courant score). Given
a committee size 1 6 k 6 |C|, the utilitarian Chamberlin–Courant rule elects all committees
C ′ ⊆ C with |C ′| = k such that m+

µ (P,C ′) is maximum. The egalitarian Chamberlin–Courant
rule elects committees C ′ ⊆ C with |C ′| = k such that mmin

µ (P,C ′) is maximum. When referring
to the Chamberlin–Courant rule, we will mean the utilitarian version by default.

To study the computation of winning committees under these rules, we now formally define
the decision problems associated with their optimisation problems.

Definition 8.1. An instance of the Utilitarian CC (respectively, Egalitarian CC) problem
is given by a preference profile P , a committee size 1 6 k 6 |C|, a scoring function µ : N×C → Z,
and a bound B ∈ Z. It is a “yes”-instance if there is a subset of candidates C ′ ⊆ C with |C ′| = k
such that m+

µ (P,C ′) > B (respectively, mmin
µ (P,C ′) > B) and a “no”-instance otherwise.2

2Under our definition it may happen that some candidate in the committee does not represent any voter, i.e.,

92



8.2. Preliminaries

(a) Star (b) Caterpillar (c) Subdivision of a star

Figure 8.1.: Examples of different classes of trees

We will sometimes consider the complexity of these problems for specific families of scoring
functions. Note that a scoring function is defined for fixed C and N , so the question of asymptotic
complexity makes sense for families of scoring functions (parameterised by C and N), but not
for individual scoring functions. For instance, the Borda scoring function can be viewed as a
family of scoring functions, as it is well-defined for any C and N .

Graphs and Digraphs A digraph D = (C,A) is given by a set C of vertices and a set A ⊆ C×C
of pairs, which we call arcs. If (c, d) ∈ A, we say that (c, d) is an outgoing arc of c. An
acyclic digraph (a dag) is a digraph with no directed cycles. For a vertex c ∈ C, its out-degree
d+(c) = |{d ∈ C : (c, d) ∈ A}| is the number of outgoing arcs of c. A sink is a vertex c with
d+(c) = 0, i.e., a vertex without outgoing arcs. It is easy to see that every dag has at least one
sink. Given a digraph D = (C,A), we write G(D) for the undirected graph (C,E) where for
all c, d ∈ C, we have {c, d} ∈ E if and only if (c, d) ∈ A or (d, c) ∈ A. Thus, G(D) is the graph
obtained from D when we forget about the orientations of the arcs of D.

Given a digraph D = (C,A) and a set C ′ ⊆ C, we write D|C′ for the induced subdigraph.
Similarly, for a graph G = (C,E), we write G|C′ for the induced subgraph. We say that a set
C ′ ⊆ C is connected in a graph G if G|C′ is connected.

Classes of trees Recall that a tree is a connected graph that has no cycles. A leaf of a tree is
a vertex of degree 1. Vertices that are not leaves are internal vertices. A path is a tree that has
exactly two leaves. A star K1,n is a tree that has exactly one internal vertex and n leaves; the
internal vertex is called the center of the star. The diameter of a tree T is the maximum distance
between two vertices of T ; e.g., the diameter of a star is 2. A caterpillar is a tree in which every
vertex is within distance 1 of a central path. A subdivision of a star is a tree obtained from a
star by replacing its edges by paths. See Figure 8.1 for drawings of some examples.

Pathwidth The pathwidth of a tree T is a measure of how close T is to being a path. A path
decomposition of T = (C,E) is given by a sequence S1, . . . , Sr of subsets of C (called bags) such
that

• for each edge {c, d} ∈ E, there is a bag Si with c, d ∈ Si, and

• for each c ∈ C, the bags containing c form an interval of the sequence, so that if c ∈ Si and
c ∈ Sj for i < j, then c is also a member of Si+1, Si+2, . . . , Sj−1.

there exists a c′ ∈ C′ such that c′ 6= top(i, C′) for all i ∈ N ; equivalently, we allow for committees of size k′ < k.
It is assumed that the voting weight of such candidate in the resulting committee will be 0. This definition
is also used, by e.g., [Cornaz et al., 2012, Skowron et al., 2015]. In contrast, Betzler et al. [2013] define the
Chamberlin–Courant rule by explicitly specifying an assignment of voters to candidates, so that each candidate
in C′ has at least one voter who is assigned to it. The resulting voting rule is somewhat harder to analyse
algorithmically. Note that when |{top(i, C) : i ∈ N}| > k, the two variants of the Chamberlin–Courant rule
coincide.

93



8. Preferences Single-Peaked on Trees

The width of the path decomposition is maxi∈[r] |Si| − 1. The pathwidth of T is the minimum
width of a path decomposition of T . For more on path- and treewidth, see, e.g., Bodlaender
[1994].

Preferences That Are Single-Peaked on a Tree Consider a tree T with vertex set C. A
preference profile P is said to be single-peaked on T [Demange, 1982] if for every voter i ∈ N ,
and for every candidate c ∈ C, if another candidate c′ ∈ C lies on the unique path from top(i)
to c in T , then top(i) �i c′ �i c. The profile P is said to be single-peaked on a tree if there
exists a tree T with vertex set C such that P is single-peaked on T . The profile P is said to
be single-peaked if P is single-peaked on some tree T that is a path. Let us collect two simple
properties here. The proof is straightforward from the definitions.

Proposition 8.2. Let P be a preference profile and T be a tree on vertex set C. The following
are equivalent:

• P is single-peaked on T .

• For every C ′ ⊆ C that is connected in T , P |C′ is single-peaked on T |C′.

• For every i ∈ N and every c ∈ C, the top-initial segment {d ∈ C : d �i c} is connected in
C ′.

Given a profile P , we denote the set of all trees T such that P is single-peaked on T by T (P ).

8.3. Egalitarian Chamberlin–Courant on Arbitrary Trees
We start by presenting a simple algorithm for finding a winning committee under the egalitarian
Chamberlin–Courant rule that works for preferences single-peaked on arbitrary trees. Our
algorithm proceeds by finding a committee of minimum size that satisfies a given worst-case
utility bound.

First, we show that the winner determination problem in the egalitarian case can be reduced
to the following variant of the Hitting Set problem, where the ground set is the vertex set of a
tree T , and we need to hit a collection of connected subsets of T .

Definition 8.3. An instance of the Tree Hitting Set problem is given by a tree T on vertex
set C, a family C = {C1, . . . , Cn} of subsets of C such that each Ci is connected in T , and a
target cover size k ∈ Z+. It is a “yes”-instance if there is a subset of vertices C ′ ⊆ C with
|C ′| 6 k such that C ′ ∩ Ci 6= ∅ for i = 1, . . . , n, and a “no”-instance otherwise.

Guo and Niedermeier [2006] show that the Tree Hitting Set problem can be solved in
polynomial time. Since they consider a dual formulation (in terms of set cover), we present an
adaptation of the short argument here.

Theorem 8.4 (Guo and Niedermeier, 2006). Tree Hitting Set can be solved in polynomial
time.

Proof. Consider a vertex c ∈ C that is a leaf of T , and let d ∈ C be the (unique) vertex that c is
adjacent to. Suppose that c ∈ Ci for some i. Then, because Ci is a connected subset of T , we
either have Ci = {c} or d ∈ Ci.

With this observation, we can now give a simple algorithm that constructs a minimum hitting
set: Consider a leaf vertex c ∈ C adjacent to d ∈ C. If there exists some Ci ∈ C with Ci = {c},
then any hitting set must include c, so add c to the hitting set under construction, remove c from
T and remove all copies of {c} from C. Otherwise, every set Ci that would be hit by c is also hit

94



8.4. Hardness of Utilitarian Chamberlin–Courant on Arbitrary Trees

by d, so any hitting set including c remains a hitting set when c is replaced by d. Hence, it is
safe to delete c from T and from each Ci ∈ C. Now repeat the process on the smaller instance
constructed. Once all vertices have been deleted, return the constructed hitting set, which is
minimum by our argument.

Now we show how to reduce our winner determination problem to the hitting set problem.
Suppose we are given an instance of the Egalitarian CC problem, consisting of a profile P , a
tree T on which P is single-peaked, a target committee size k, and the bound B. We construct a
Tree Hitting Set instance as follows: The ground set is the candidate set C, the tree T is the
tree with respect to which voters’ preferences are single-peaked, and the target cover size equals
the committee size k. For each i ∈ N = {1, . . . , n}, construct the set Ci = {c ∈ C : µ(i, c) > B}.
Since µ is monotone, the set Ci is a top-initial segment of i’s preference order, i.e., is of the form
{c ∈ C : c �i d} for some d ∈ C. By Proposition 8.2, since P is single-peaked on T , each set Ci
is connected in T , so we have constructed a legal instance of Tree Hitting Set. Now note
that, for every set C ′ ∈ C,

mmax
µ (P,C ′) > B if and only if C ′ ∩ Ci = C ′ ∩ {c ∈ C : µ(i, c) > B} 6= ∅ for all i.

It follows that our reduction is correct.
Using this reduction and the algorithm for Tree Hitting Set, we can solve Egalitarian

CC in polynomial time.

Theorem 8.5. For profiles that are single-peaked on a tree, we can find a winning committee
under the egalitarian Chamberlin–Courant rule in polynomial time.

8.4. Hardness of Utilitarian Chamberlin–Courant on Arbitrary Trees

For preferences single-peaked on a path, the utilitarian version of the Chamberlin–Courant
rule becomes easy to compute [Betzler et al., 2013], using a dynamic programming algorithm.
While we are able to generalise this algorithm to work for some other trees (see Section 8.5),
it is not clear how to extend it to arbitrary trees. Indeed, here we show that the utilitarian
Chamberlin–Courant rule remains NP-complete for preferences single-peaked on a tree. Hardness
holds even for the Borda scoring function, and even for trees that have diameter 4 and pathwidth
2.

Theorem 8.6. Utilitarian CC is NP-complete, even for the Borda scoring function.

Proof. We will reduce a restricted version of Exact Cover by 3-Sets (X3C) to Utilitarian
CC. Recall that an instance of X3C is given by a ground set X = {x1, . . . , xp} with p = 3p′ for
some p′ ∈ Z+ and a collection Y = {Y1, . . . , Yq} of 3-element subsets of X; it is a “yes”-instance
if we can pick a subcollection Y ′ ⊆ Y of size p′ that covers X, i.e., for each xi ∈ X there exists
a Yj in Y ′ such that xi ∈ Yj . This problem is known to be NP-hard even if each element of X
appears in at most three sets in Y [Garey and Johnson, 1979].

Given an instance (X,Y) of X3C such that |{Yj ∈ Y : xi ∈ Yj}| 6 3 for each xi ∈ X, we
construct an instance of Utilitarian CC as follows. We let M be a large number (M = 5pq
will do).

We introduce a candidate a, two candidates yj and zj for each set Yj ∈ Y, and M dummy
candidates. Formally, we set Y = {y1, . . . , yq}, Y = {z1, . . . , zq}, D = {d1, . . . , dM}, and take
the candidate set C = {a} ∪ Y ∪ Z ∪D.

We now introduce the voters, who will come in three types N = N1 ∪N2 ∪N3.

95



8. Preferences Single-Peaked on Trees

N1 N2 N3

5p · · · 5p 1 · · · 1 M · · · M

y1 yq a a z1 zq

z1 zq yj1,1 yjp,1 y1 yq

a a yj1,2 yjp,2 a a
...

... yj1,3 yjp,3

...
...

d1 d1...
...

dM dM
...

...

• The set N1 consists of 5p identical voters for each Yj ∈ Y: they rank yj first, zj second,
and a third, followed by all other candidates as specified below. (The purpose of these
voters will be to populate good committees with representatives yj of sets Yj ∈ Y.)

• The set N2 consists of 1 voter vxi for each element xi ∈ X: vxi ranks a first, followed by
the candidates yj such that xi ∈ Yj in some order, followed by the dummy candidates
d1, . . . , dM in some order, followed by all other candidates as specified below. (The purpose
of these voters will be to ensure that every element is covered by one of the sets represented
by a yj in the committee, and to incur a heavy penalty of M if the element is uncovered.)

• The set N3 is a set of M identical voters for each Yj ∈ Y who all rank zj first, yj second,
and a third, followed by all other candidates as specified below. (The purpose of these
voters is to force any good committee to include all the zj candidates.)

The constructed profile is supposed to be single-peaked on the following tree:

a

y1 · · · yq d1 · · · dM

z1 · · · zq

This tree is obtained by starting with a star with center a and leaves Z ∪D and then attaching
yj as a leaf onto zj for every j = 1, . . . , q. It is easy to see that it has diameter 4 and pathwidth
2. To ensure that the profile is single-peaked on this tree, we need to specify how to order the
“all other candidates” in each vote. Inspecting the tree, an arbitrary order of these candidates
will do, provided that for each j, we rank yj above zj .

This completes the construction of the profile P with voter set N and candidate set C. Next,
set the target committee size to be k = p′+ q and the target bound to be B = −(5p)(q− p′)− 3p
(note that by construction, −M < B). Intuitively, the “correct committee” we have in mind
consists of all zj candidates (of which there are q), and of a selection of yj candidates that form an
exact cover (of which there should be p′ many), should there exist an exact cover. This completes
the description of our instance of the Utilitarian CC problem with the Borda scoring function
with s = (0,−1,−2, . . . ). Now let us prove that the reduction is correct.

96



8.5. Utilitarian Chamberlin–Courant on Trees with Few Leaves

Suppose we have started with a “yes”-instance of X3C, and let Y ′ be a collection of p′ many
subsets that cover X. Consider the committee C ′ = Z∪{yj : Yj ∈ Y ′}; note that |C ′| = p′+q = k.
The voters in N3 and (5p)p′ voters in N1 have their most-preferred candidate in C ′, so they
obtain a Borda score of 0. For the remaining (5p)(q − p′) voters in N1, their score under C ′ is
−1, since zj ∈ C ′ for all j. Further, each voter i ∈ N2 obtains a score of at least −3: Suppose i
corresponds to the element xi. Then i ranks the candidates yj such that xi ∈ Yj in positions
2, 3, and 4. Since Y ′ is a cover of X, at least one of these candidates appears in C ′, and so i
obtains a Borda score of at least −3. We conclude that m+

µ (P,C ′) > −(5p)(q − p′)− 3p = B.
Conversely, suppose there exists a committee C ′ of size k = p′ + q with m+

µ (P,C ′) > B. Note
first that C ′ has to contain zj for each j: otherwise, there are M voters in N3 with utility at
most −1, and then the utilitarian Chamberlin–Courant score of C ′ is at most −M < B. Thus
Z ⊆ C ′. We will now argue that C ′ \ Z is a subset of Y , and that Y ′′ = {Yj : yj ∈ C ′ \ Z} is an
exact cover of X. Suppose that C ′ \ {z} contains too few candidates from Y , i.e., at most p′ − 1
candidates from Y . Then N1 contains at least (5p)(q − (p′ − 1)) voters whose score under C ′ is
at most −1, so m+

µ (P,C ′) 6 −(5p)(q − p′ + 1) < −(5p)(q − p′)− 3p = B, a contradiction. Thus,
we have C ′ \ Z ⊆ Y . Now, suppose that Y ′′ is not an exact cover of X. Let xi be an element
of X that is not covered by Y ′′, and consider the voter i ∈ N2 corresponding to xi. Clearly,
none of the candidates ranked in positions 1, . . . ,M + 5 by this voter appear in C ′. Thus, the
score of this voter under C ′ is less than −M , so the total score of C ′ is less than −M < B, a
contradiction. Thus, a “yes”-instance of Utilitarian CC corresponds to a “yes”-instance of
X3C.

8.5. Utilitarian Chamberlin–Courant on Trees with Few Leaves

The above hardness result shows that single-peakedness on trees is not a strong enough assumption
to make our multiwinner elections tractable. However, if we place further constraints on the
shape of the underlying tree, we may be able to achieve tractability.

In this section, we present an algorithm for utilitarian Chamberlin–Courant whose running
time is polynomial for any profile that is single-peaked on a tree with a constant number of
leaves. The algorithm proceeds by dynamic programming; it can be seen as a generalisation of
the algorithm due to Betzler et al. [2013] for preferences single-peaked on a path, i.e., a tree with
two leaves.

Theorem 8.7. Given a profile P with |C| = m and |N | = n and a tree T with λ leaves such that
P is single-peaked on T , we can find a winning committee for the utilitarian Chamberlin–Courant
rule in time poly(n,mλ, kλ), where k is the target committee size.

Proof. We use dynamic programming to find a committee of size k that maximises the utilitarian
Chamberlin–Courant score.

r∗

Figure 8.2.: An anti-chain

We pick an arbitrary vertex r∗ to be the root of T . This
choice induces a partial order � on C: we set a � b if a lies
on the (unique) path from r∗ to b in T . Thus, r∗ � a for
every a ∈ C \{r∗}. A set A ⊆ C is said to be an anti-chain
if no two elements of A are comparable with respect to �.
See Figure 8.2 on the right for an example; if we added
the left child of r∗ to the set, it would not be an anti-chain
anymore. Observe that for every committee C ′ ⊆ C, its set
of maximal elements with respect to � forms an anti-chain. Note also that if a and b belong
to an anti-chain A ⊆ C and c is a leaf of T , then it cannot be the case that both a and b are
ancestors of c, and hence |A| 6 λ.

97



8. Preferences Single-Peaked on Trees

Given a vertex r, let Tr be the subtree of T rooted at r. The vertex set of Tr is Cr = {r} ∪ {c :
r � c}. Let Nr = {i ∈ N : top(i) ∈ Cr} be the set of all voters whose most-preferred candidate
belongs to Cr. Let Pr be the profile obtained from P by restricting the candidate set to Cr and
the voter set to Nr. For each r ∈ C and each ` = 1, . . . , k let

M(r, `) = max
{
m+
µ (Pr, C ′) : C ′ ⊆ Cr with |Cr| = ` and r ∈ C ′

}
be the highest Chamberlin–Courant score obtainable in Pr by a committee from Cr of size at
most `, subject to r being selected.

Suppose that we have computed these quantities for all descendants of r; we will now explain
how to compute them for r. Let C ′ ⊆ Cr be an optimal committee of size ` including r for
Pr, so that m+

µ (Pr, C ′) = M(r, `). Let A = {r1, . . . , rs} be the set of maximal elements of
C ′ \ {r} with respect to � and let `j = |C ′ ∩ Crj | for j = 1, . . . , s; we have `1 + · · ·+ `s = `− 1.
For each j, each voter in Nrj is better represented by rj than by any candidate not in Crj by
single-peakedness. Thus, the contribution of voters in Nrj to the total score M(r, `) of C ′ is
given by m+

µ (Prj , C
′ ∩Crj ). In fact, this quantity must equal M(rj , `j), since otherwise we could

replace the candidates in C ′∩Crj by the optimiser of M(rj , `j) and increase the objective score of
C ′, which would be a contradiction. On the other hand, consider a voter i in Nr \(Nr1 ∪· · ·∪Nrs).
Voter i’s most-preferred candidate in C ′ must be one of r, r1, . . . , rs: for each j = 1, . . . , s,
candidate rj is a better representative for i than any other candidate in Crj by single-peakedness.

This suggests the following procedure for computing M(r, `). Let Tr be the set of all anti-chains
in Tr. An `-division scheme for an anti-chain A = {r1, . . . , rs} ∈ Tr is a list L = (`1, . . . , `s) such
that `j > 1 for all j = 1, . . . , s and `1 + · · ·+ `s = `. We denote by LA` the set of all `-division
schemes for A. Now, for every anti-chain A = {r1, . . . , rs} ∈ Tr \ {{r}} and every `-division
scheme L = (`1, . . . , `s) ∈ LA`−1, we set N ′r = Nr \ (Nr1 ∪ · · · ∪Nrs) and

M(A,L) =
s∑
j=1

M(rj , `j) +
∑
i∈N ′r

µ(i, top(i, A ∪ {r})).

We then have M(r, `) = maxA∈Tr\{{r}},L∈LA
`−1

M(A,L), where we maximise over all anti-chains
in Tr except {r} and over all ways of dividing the `−1 slots among the elements of the anti-chain.
The base case for this recurrence corresponds to the case when r is a leaf, and is easy to deal
with.

The final answer depends on whether the root r∗ is part of the optimal Chamberlin–Courant
committee. If r∗ is selected, then the optimum Chamberlin–Courant committee has objective score
M(r∗, k). If r∗ is not selected, then we need to maximise over all anti-chains A = {r1, . . . , rs} ∈
Tr∗ \ {{r∗}} and over all ways of dividing the k slots L = (`1, . . . , `s) ∈ LAk . That is, we set
N ′r∗ = Nr∗ \ (Nr1 ∪ · · · ∪Nrs) and

M ′(A,L) =
s∑
j=1

M(rj , `j) +
∑
i∈N ′

r∗

µ(i, top(i, A)).

Note that r∗ does not appear in the second term. The total Chamberlin–Courant score is given
by max{M(r∗, k),maxA∈Tr∗\{{r∗}},L∈LA

k
M ′(A,L)}.

We have argued that the size of each anti-chain is at most λ. Therefore, to calculate each
M(r, `), we enumerate at most mλ anti-chains and at most kλ divisions. This establishes our
bound on the running time.

Notice that the time bound of our algorithm implies that the problem is in XP with respect
to the number λ of leaves in the underlying tree. Whether there is an FPT algorithm for this
parameter, or even for the combined parameter (k, λ), is open.

98



8.6. Utilitarian Chamberlin–Courant on Trees with Few Internal Vertices

8.6. Utilitarian Chamberlin–Courant on Trees with Few Internal
Vertices

Consider the star with center alternative z and leaf alternatives c1, . . . , c7. Which preference
orders are single-peaked on this tree?

c1
c2

c3

c4c5

c6

c7

z

Let us think about the possible top alternatives. A ranking could begin with z. After z, we
can rank the other alternatives in arbitrary order without violating single-peakedness. But
suppose we begin the ranking with a leaf alternative such as c1. Then z must be the second
alternative, because the set of first and second alternative must be connected in the tree. After
ranking c1 and z, we can then order the remaining alternatives arbitrarily without violating
single-peakedness. Thus, precisely the orders in which the center vertex is in first or second
position are single-peaked on the star.

Proposition 8.8. A preference profile is single-peaked on a star if and only if there exists a
candidate that every voter ranks in first or second position.

This observation implies that, in some sense, the restriction of being single-peaked on a tree
does not give us much information. For example, consider the problem to compute an optimal
Kemeny ranking. This problem is NP-complete in general [Bartholdi, III et al., 1989], and we
can easily see that it remains hard for preferences single-peaked on a star: reducing from the
general problem, we can just add a new alternative that every voter ranks in first position; this
new profile is single-peaked on a star.

For some other problems, though, the restriction to stars makes the problem easy. In particular,
this is the case for the utilitarian Chamberlin–Courant rule with the Borda scoring function.
To see this, note that it will often be a good idea to include the candidate who is the center
vertex of the star in the committee. Once we have done so, every voter is already pretty well
represented: the Borda score of each voter’s representative is either 0 or −1. So we now only
need to identify k − 1 candidates whose inclusion in the committee would bring the score of as
many voters as possible up to 0, which amounts to simply selecting k− 1 candidates with highest
plurality scores. Finally, we need to consider the case where the optimum committee does not
include the center vertex, but one can check that this can only be the committee consisting of
the k candidates with highest plurality scores (see the proof of Theorem 8.9 below). By selecting
the better of the two committees produced, we find a winning committee.

The algorithm we have sketched for the Borda scoring function on stars can be generalised to
work for trees which have a small number of internal vertices (and thus a large number of leaves).
While above we guessed whether the center vertex would be part of the winning committee or
not, we now have to guess for each internal vertex whether it will be part of the committee.

Theorem 8.9. Given a profile P with |C| = m and |N | = n and a tree T ∈ T (P ) with η internal
vertices such that P is single-peaked on T , and a target committee size k > 1, we can find a
winning committee of size k for P under the Chamberlin–Courant rule with the Borda scoring
function in time poly(n,m, (k + 1)η).

Proof. Given a candidate c ∈ C, let plu(c) = |{i ∈ N : top(i) = c}| be the number of voters in
P that rank c first. Let C◦ be the set of internal vertices of T . For each candidate c ∈ C◦, let
lvs(c) denote the set of leaf candidates in C \ C◦ that are adjacent to c in T .

99



8. Preferences Single-Peaked on Trees

Our algorithm proceeds as follows. For each candidate c ∈ C◦ it guesses a pair (b(c), `(c)),
where b(c) ∈ {0, 1} and 0 6 `(c) 6 |lvs(c)|. The component b(c) indicates whether c itself is
in the committee, and `(c) indicates how many candidates in lvs(c) are in the committee. We
require

∑
c∈C◦(b(c) + `(c)) = k. Next, the algorithm sets C ′ = {c ∈ C◦ : b(c) = 1}, and then for

each c ∈ C◦ it orders the candidates in lvs(c) in non-increasing order of plu(c) (breaking ties
according to a fixed ordering B over C), and adds the first `(c) candidates in this order to C ′.

Each guess corresponds to a committee of size k. Guessing can be implemented deterministically:
consider all options for the pair {(b(c), `(c))}c∈C◦ satisfying

∑
c∈C◦(b(c) + `(c)) = k (there are at

most 2η ·(k+1)η possibilities), compute the Chamberlin–Courant score of the resulting committee
for each option, and output the best one.

It remains to argue that this algorithm finds a committee with the maximum Chamberlin–
Courant score. To see this, let S be the set of all size-k committees with the maximum
Chamberlin–Courant score, and pick a committee S∗ from arg maxC′∈S |C ′ ∩ C◦|. When picking
S∗, we may break ties according to B, so that there is no set S ∈ arg maxC′∈S |C ′ ∩ C◦| such
that S∗ \ S = {c}, S \ S∗ = {c′} and c′ B c.

For each c ∈ C◦, let b∗(c) = 1 if c ∈ S∗ and b∗(c) = 0 otherwise, and let `∗(c) = |lvs(c) ∩ S∗|.
Our algorithm will consider the pair {(b∗(c), `∗(c))}c∈C◦ at some point, and construct a committee
S based on this pair. We will now argue that S = S∗. This shows correctness of our algorithm,
since it will return a committee with a total score at least as high as that of S.

Clearly, we have C◦ ∩ S = C◦ ∩ S∗, so it remains to argue that lvs(c) ∩ S∗ = lvs(c) ∩ S for
each c ∈ C◦. Suppose for the sake of contradiction that this is not the case, i.e., there exists a
c ∈ C◦ and a pair of candidates c′, c′′ ∈ lvs(c) with c′ ∈ S \ S∗ and c′′ ∈ S∗ \ S. We distinguish
two cases: c ∈ S∗ or c 6∈ S∗.

If c ∈ S∗, consider the committee S′ = (S∗ \ {c′′}) ∪ {c′}. We claim that S′ has the same
Chamberlin–Courant score as S∗. Note that when moving from S∗ to S′,

• the score obtained by the plu(c′′) voters who rank c′′ first changes from 0 to −1,

• the score obtained by the plu(c′) voters who rank c′ first changes from −1 to 0,

• the score of all other voters is unaffected by the change, since they prefer c ∈ S∗ ∩ S′ to
both c′ and c′′.

We also have plu(c′) > plu(c′′) by construction of S, and so the score of S′ is at least the score of
S∗, and hence they must be equal. But by construction of S, we have c′B c′′, and this contradicts
our choice of S∗ from arg maxC′∈S |C ′ ∩ C◦|.

Now, suppose that c 6∈ S∗. Consider the committee S′ = (S∗ \ {c′′}) ∪ {c}. Again, we claim
that S′ has the same Chamberlin–Courant score as S∗. Note that when moving from S∗ to S′,

• we have decreased the score of each of the plu(c′′) voters who rank c′′ first by 1 (as all of
them rank c second),

• we have increased the score of each of the plu(c′) voters who rank c′ first by at least 1 (as
all of them rank c second),

• and we do not decrease the score of any other voter (as all of them prefer c to c′′).

Again, we have plu(c′) > plu(c′′) by construction of S, and so the score of S′ is at least the
score of S∗, and hence they must be equal. Thus, the Chamberlin–Courant score of S′ is
optimal, and so S′ ∈ S. But |S′ ∩ C◦| > |S∗ ∩ C◦|, which contradicts our choice of S∗ from
arg maxC′∈S |C ′ ∩ C◦|.

100



8.7. The Attachment Digraph

It is clear from our proof that Theorem 8.9 holds for every positional scoring function whose
score vector satisfies s1 = 0, s2 = −1, s3 6 −2. Observe also that our algorithm is in FPT
with respect to the combined parameter (k, η); in contrast, for general preferences computing
the Chamberlin–Courant winners is W[2]-hard with respect to k even under the Borda scoring
function [Betzler et al., 2013]. Our previous algorithm for trees with few leaves is in XP with
respect to the number of leaves λ, but is not in FPT with respect to λ or even (k, λ).

8.7. The Attachment Digraph
We now move on from our study of multiwinner elections and turn towards the problem of
recognising when a given preference profile is single-peaked on a tree. In particular, for each
profile P , we will study the collection T (P ) of all trees on which P is single-peaked. It turns out
that the set T (P ) has a lot of structure and admits a concise representation. In many cases, this
will allow us to pick a “nice” tree from T (P ) that satisfies certain additional requirements. For
example, to use the algorithm from Section 8.5, we would want to pick the tree from T (P ) with
the fewest leaves, and to use the algorithm from Section 8.6, we would want to use the tree with
the fewest internal vertices.

Trick [1989] has presented an algorithm that decides whether T (P ) is non-empty. If so, the
algorithm produces some tree T with T ∈ T (P ). While building the tree, the algorithm makes
various arbitrary choices. In our approach, we will store all the choices that the algorithm could
take; we introduce a data structure which we call the attachment digraph of profile P which
encapsulates all the choices recorded.

We will start by giving a high-level description of Trick’s algorithm; the discussion follows
Trick’s paper closely. We first take inspiration from algorithms for recognising preferences that
are single-peaked on a line. They typically start out by noticing that an alternative that is ranked
bottom-most by some voter must be placed at one of the ends of the axis. Trick’s algorithm uses
the same idea; the analogue for trees is as follows.

Proposition 8.10. Suppose P is single-peaked on T , and suppose c occurs as a bottom-most
alternative, that is, bottom(i) = c for some i ∈ N . Then c is a leaf of T .

Proof. The set A \ {c} is a top-initial segment of vi and, hence, must be connected in T . This
can only be the case if c is a leaf of T .

Suppose we have identified a bottom-ranked alternative c; we deduce that if our profile is
single-peaked on any tree T , then c is a leaf of T . Now, being a leaf, c must have exactly one
neighbouring vertex b. Which vertex could this be? The following simple observation gives some
necessary conditions.

Proposition 8.11. Suppose P is single-peaked on T , and suppose c ∈ C is a leaf of T , adjacent
to b ∈ C. Let i ∈ N be a voter. Then either

(i) b �i c, or

(ii) c = top(i) and b = second(i).

Proof. (i) Suppose first that c is not i’s top-ranked alternative, and rather top(i) = a. Take the
unique path in T from a to c, which passes through b since b is the only neighbour of c. Since i’s
vote is single-peaked on T , it is single-peaked on this path, and hence i’s preference decreases
along it from a to c. Since b is visited before c, it follows that b �i c.

(ii) Suppose, otherwise, that c is i’s top-ranked alternative. Then {c, second(i)} is a top-initial
segment of i’s vote, which by Proposition 8.2 is a connected set in T , and hence forms an edge.
Thus, c is adjacent to second(i), so second(i) = b as required.

101



8. Preferences Single-Peaked on Trees

Thus, in our search for a neighbour of the leaf c, we can restrict our attention to those
alternatives b which for each voter i satisfy either (i) or (ii) in the proposition above. Let us
write this down more formally: For each c ∈ C and i ∈ N , define

B(i, c) =
{
{c′ ∈ C : c′ �i c} if top(i) 6= c,

{second(i)} if top(i) = c.

Applying Proposition 8.11 to all voters i gives us the following constraint for our choice of b.

Corollary 8.12. Suppose a profile is single-peaked on T , and c ∈ C is a leaf of T . Then c must
be adjacent to an element of B(c) :=

⋂
i∈N B(i, c).

We have established that it is necessary for leaf c to be adjacent to some alternative of B(c).
It turns out that if the profile is single-peaked on a tree, then for any of alternative b ∈ B(c),
there is some tree T ∈ T (P ) in which c is adjacent to b.

Proposition 8.13. Let P be a profile in which c occurs bottom-ranked. Suppose that P |C\{c} is
single-peaked on some tree T−c, and let T be a tree obtained from T−c by attaching c as a leaf
adjacent to some element b ∈ B(c). Then P is single-peaked on T .

Proof. Let T be a tree obtained as described. We show that P is single-peaked on T . Suppose
C ′ ⊆ C is a top-initial segment of the ranking of some voter i in P . We need to show that C ′ is
connected in T .

• If c 6∈ C ′, then C ′ is connected in T−c because P |C\{c} is single-peaked on T−c. Hence C ′ is
also connected in T .

• If C ′ = {c}, then C ′ is trivially connected in T .

• If c ∈ C ′ and C ′ 6= {c}, then C ′\{c} is connected in T−c because P |C\{c} is single-peaked on
T−c. Therefore, to show that C ′ is connected in T , it suffices to show that c’s neighbour b is
also an element of C ′. Since b ∈ B(c) =

⋂
i∈N B(i, c), we have that b ∈ B(i, c). If top(i) = c,

then B(i, c) = {second(i)}, so b = second(i). Because C ′ is a top-initial segment of i with
|C ′| > 2, we have b ∈ C ′, as desired. Otherwise top(i) 6= c, and so B(i, c) = {c′ : c′ �i c},
hence b �i c. Because C ′ is a top-initial segment of i including c, we must have b ∈ C ′, as
desired.

With these results in place, we can now see how a recognition algorithm could work. Select an
alternative c that is ranked bottom-most by some voter, select an arbitrary candidate b ∈ B(c),
add an edge {b, c} to the tree under construction, remove c from the profile, and recurse on
the remaining candidates. If at any point we find that B(c) = ∅, then we can conclude from
Corollary 8.12 that the profile is not single-peaked on any tree. Algorithm 3 formalises this
procedure. To avoid recursion, the algorithm uses the following notation: for every subset C ′ ⊂ C,
for each c ∈ C ′, and each i ∈ N , define

B(i, C ′, c) =
{
{c′ ∈ C ′ : c′ �i c} if top(i, C ′) 6= c,

{second(i, C ′)} if top(i, C ′) = c.

Theorem 8.14. Algorithm 3 correctly decides whether a profile is single-peaked on a tree.

Proof. First, note that if Algorithm 3 succeeds and returns a graph T , then T is a tree: first, it
is easy to see that T has |C| − 1 edges. T is also connected, because every vertex is connected to
a vertex in the set Cr at the end of the algorithm.

102



8.7. The Attachment Digraph

Algorithm 3 Trick’s algorithm to decide whether a profile is single-peaked on a tree
T ← (C,∅), the empty graph on C
C1 ← C, r ← 1
while |Cr| > 3 do

Lr ← {bottom(i, Cr) : i ∈ N}
for each candidate c ∈ Lr do

B(c)←
⋂
i∈N B(i, Cr, c)

if B(c) = ∅ then
return fail : P is not single-peaked on any tree

else
select b ∈ B(c) arbitrarily
add an edge between c and b in T

Ci+1 ← Cr \ Lr
r ← r + 1

if |Cr| = 2 then
add an edge between the two candidates in C ′ to T

return P is single-peaked on T

We show that the algorithm is correct by induction on |C|. If |C| = 1 or |C| = 2, every profile
is single-peaked on the unique tree on C, and Algorithm 3 correctly determines this. If |C| > 3,
then the while loop is executed at least once. If in the first iteration, the algorithm claims that
the profile is not single-peaked on a tree because B(c) = ∅ for some c ∈ L1, then this statement
is correct by Corollary 8.12. Otherwise, the behaviour of the algorithm after the first iteration
will be identical as if it was run on P |C2 (recall that C2 = C \ L1).

Now, if the algorithm fails in later iterations, by the inductive hypothesis, P |C2 is not single-
peaked on a tree. But then P is not single-peaked on a tree either: suppose it was single-peaked
on T . Then, by Proposition 8.10, all candidates in L1 are leaves of T , and therefore T |C2 is still
a tree, and so P |C2 is single-peaked on T |C2 (by Proposition 8.2), a contradiction. Thus, in this
case, the algorithm run on P correctly determines that P is not single-peaked on a tree.

On the other other hand, if the algorithm run on P terminates and returns a tree T , then
the algorithm run on P |C2 would have terminated and returned the tree T |C2 . By the inductive
hypothesis, P |C2 is single-peaked on T |C2 . Hence, by Proposition 8.13, P is single-peaked on T ,
and so the algorithm is correct.

Trick’s algorithm makes some arbitrary choices when selecting alternatives b ∈ B(c). Our aim
is to understand the set T (P ) of all trees that the input profile is single-peaked on, so a natural
approach is to record all possible choices that Trick’s algorithm could make at each step, and
this will encode all possible outputs of the algorithm. We do this by running Algorithm 4, which
has the same structure as Algorithm 3. Given a profile which is single-peaked on some tree, it
constructs and returns a digraph D with vertex set C which contains all possible choices that
Trick’s algorithm can make. We call D the attachment digraph of the input profile.

Example 8.15. The attachment digraphs of the following three profiles are shown in Figure 8.3.
(a) Suppose C = {a, b, c, d, e}, and let P1 be the profile with voters N = {1, 2} such that

a �1 b �1 c �1 d �1 e and e �2 d �2 c �2 b �2 a, so that the two votes are the reverse of each
other. Running Algorithm 4, we consider the sets L1 = {a, e} and L2 = {b, d}.

(b) Suppose C = {a, b, c, d, e}, and let P2 be the profile with voters N = {1, 2} such that
a �1 b �1 c �1 d �1 e and e �2 b �2 c �2 d �2 a. Running Algorithm 4, we consider the sets
L1 = {a, e} and L2 = {d}.

103



8. Preferences Single-Peaked on Trees

Algorithm 4 Build attachment digraph D = (C,A) of P
D ← (C,A), A← ∅, so D is the empty digraph on C
C1 ← C, r ← 1
while |Cr| > 3 do

Lr ← {bottom(i, Cr) : i ∈ N}
for each candidate c ∈ Lr do

B(c)←
⋂
i∈N B(v, Cr, c)

if B(c) = ∅ then
return fail : P is not single-peaked on any tree

else
for each b ∈ B(c), add an arc (c, b) to A

Ci+1 ← Cr \ Lr
r ← r + 1

if |Cr| = 2 then
add an arc between the two candidates in C ′ to A, arbitrarily directed

return D

a b c d e

(a)
a b c

de

(b)

c d

b

a

e f g

h

i
j

k

(c)

Figure 8.3.: The attachment digraphs of the profiles in Example 8.15. If a vertex has a unique
outgoing arc, the arc is drawn in black. If the vertex has at least two outgoing arcs,
the arcs are drawn in grey and curved.

(c) Suppose C = {a, b, c, d, e, f, g, h, i, j, k}, let P3 be the profile with voters N = {1, 2, 3} such
that k �1 f �1 e �1 d �1 g �1 h �1 c �1 i �1 j �1 b �1 a, and d �2 c �2 b �2 e �2 a �2
f �2 g �2 h �2 i �2 j �2 k, and g �3 f �3 h �3 i �3 e �3 d �3 c �3 b �3 a �3 j �3 k.
Running Algorithm 4, we consider the sets L1 = {a, k}, L2 = {b, j}, L3 = {c, i}, L4 = {d, h},
and L5 = {e, g}.

Algorithm 4 runs in time O(|N | · |C|2). In the rest of this section, we will analyse the structure
of the attachment digraph, and its relation to the set T (P ) of trees on which P is single-peaked.
We start with a few simple properties.

Proposition 8.16. Let x ∈ C be a candidate with x ∈ Lr. Then B(x) ∩ Lr = ∅. Hence, for
every arc (x, y) ∈ A with x ∈ Lr and y ∈ Ls, we have that s > r.

Proof. Assume for a contradiction that y ∈ B(x) and y ∈ Lr. Since y ∈ Lr, there is some voter
i ∈ N such that y = bottom(i, Cr). Since y ∈ B(x), we have that y ∈ B(i, Cr, x). Because
|Cr| > 3 (by the condition of the while loop), by the definition of B(i, Cr, x), this implies that
y �i x, which contradicts that y = bottom(i, Cr). So B(x) ∩ Lr = ∅.

104



8.7. The Attachment Digraph

For the last statement, note that if (x, y) ∈ A is an arc, then y ∈ B(x). Since B(x) ⊆ Cr =
C \ (L1 ∪ · · · ∪ Lr−1), we must have s > r. By the previous paragraph, s = r is impossible, and
hence s > r.

Proposition 8.17. Every attachment digraph D = (C,A) is acyclic and has exactly one sink.

Proof. Suppose that the while loop of Algorithm 4 is executed f − 1 times, and consider the sets
L1, . . . , Lf−1. Set Lf := C \ (L1 ∪ · · · ∪ Lf−1). Then L1, . . . , Lf is a partition of C.

For acyclicity, note that for each c ∈ Lr, since B(i, C ′, c) ⊆ Cr, we have B(c) ⊆ Cr. From this
and from Proposition 8.16, if c ∈ Lr then all outgoing arcs of c point into Li+1 ∪ · · · ∪Lf . Hence,
in the partition L1, . . . , Lf , all arcs point to the right, and there cannot be any cycles in D.

For the number of sinks, note that there is at least one sink in D because D is acyclic. Since
for every c ∈ C \ Lf we have B(c) 6= ∅, at least one outgoing arc of c is added to D. Thus, c is
not a sink. Since no c ∈ C \ Lf can be a sink, all sinks are in Lf . The condition of the while
loop implies that |Lf | 6 2, and so D has at most two sinks. If |Lf | = 1, then there is exactly one
sink and we are done. If |Lf | = 2, then the final if-clause of the algorithm adds an arc between
those two vertices, which ensures that only one of them is a sink.

If we wish to extract a tree T ∈ T (P ) from the attachment digraph D, Trick’s algorithm tells
us that we must choose, for each non-sink vertex of D, exactly one outgoing arc, and add this arc
as an edge. To formalise this process, we say that a function f : C \ {t} → C is an attachment
function for D if (c, f(c)) ∈ A is an arc of D for every c ∈ C \ {t}. Thus, f specifies one outgoing
arc for each c ∈ C \ {c}. Given an attachment function f , we write T (f) for the tree on C with
edge set

{{c, f(c)} : c ∈ C \ {t}}

We now prove that all trees of T (P ) can be obtained in this way.

Theorem 8.18. Let P be a profile that is single-peaked on some tree, and let D be its attachment
digraph. Then T ∈ T (P ) if and only if T = T (f) for some attachment function f . In other
words, P is single-peaked on a tree T if and only if T ’s edge set consists of exactly one outgoing
arc of each non-sink vertex of D.

Proof. Suppose T = T (f) for some attachment function f . Then T is a possible output of
Algorithm 3, for a suitable way of making the selections from B(c). Thus, by Theorem 8.14, the
profile P is single-peaked on T .

We prove the converse by induction on |C|. If |C| 6 2, then P is single-peaked on the unique
tree on C, which can be obtained as a T (f). So suppose that |C| > 3, and that T = (C,E) is a
tree such that P is single-peaked on T . During the first iteration of Algorithm 4, the algorithm
determines the set L1 of candidates occurring in bottom position, and sets C2 = C \ L1. From
Proposition 8.10, the vertices in L1 are leaves of T . Hence, the induced subgraph T |C2 is also a
tree, and thus P |C2 is single-peaked on T |C2 . Also, by inspection of Algorithm 4, the attachment
digraph of P |C2 is D|C2 . By the inductive hypothesis, T |C2 = T (f ′) for some attachment function
f ′ defined for D|C2 . Thus, we can define an attachment function f so that for each c ∈ C2 \ {t}
we set f(c) = f ′(c), and for each c ∈ L1 we set f(c) to be the unique neighbour of c in T . By
Corollary 8.12, T is obtained from T |C2 by attaching each c ∈ L1 to an element of B(c), which
implies that f is a legal attachment function. Thus, T = T (f), which proves the claim.

Using this characterisation of the set T (P ), we can conclude the following fact about the
cardinality |T (P )|, which must be equal to the number of different attachment functions, noting
that T (f1) 6= T (f2) whenever f1 6= f2.

Corollary 8.19. The number of trees in T (P ) is equal to the product of the out-degrees of the
non-sink vertices of D. Hence we can compute |T (P )| in polynomial time.

105



8. Preferences Single-Peaked on Trees

b

a

c d

e

a b c d

e

Figure 8.4.: The set T (P2) of trees on which P2 from Example 8.15 are single-peaked consists of
these two trees. For the left-hand tree, the attachment function has f(d) = b, while
for the right-hand tree, it has f(d) = c.

For the profiles in Example 8.15, we see that P1 is single-peaked on a unique tree (a path),
that P2 is single-peaked on exactly 2 trees (shown in Figure 8.4), and that P3 is single-peaked on
exactly 336 different trees.

It turns out that attachment digraphs have a lot of structure beyond the results of Proposi-
tion 8.17. A key property, which will allow us to use essentially greedy algorithms, is what we
call circumtransitivity.

Definition 8.20. A directed acyclic graph D = (C,A) is circumtransitive if its vertices can be
partitioned into a set →C of forced vertices and a set ⇒C = C \ →C of free vertices such that

1. every forced vertex c ∈ →C has out-degree at most 1, and if (c, c′) ∈ A then also c′ ∈ →C ,
and

2. every free vertex c ∈ ⇒C has out-degree at least 2, and whenever x, y ∈ ⇒C and z ∈ C are
such that (x, y), (y, z) ∈ A, then (x, z) ∈ A.

Recall that every directed acylic graph D has at least one sink. If it is also circumtransitive,
then the sinks of D must belong to the forced vertices. A circumtransitive digraph consists of an
inner part (the forced part), and an outer part that is transitively attached to the inner part.

Theorem 8.21. Every attachment digraph (C,A) is circumtransitive.

Proof. We will argue that Definition 8.20 is satisfied by taking the partition

→C = {c : d+(c) 6 1}, ⇒C = {c : d+(c) > 2}.

Forced: Let x ∈ →C . If d+(x) = 0, there is nothing to prove, so assume that d+(x) = 1, i.e.,
(x, y) ∈ A for some y ∈ C. We will show that d+(y) ∈ {0, 1} and hence that y ∈ →C .

If y is a sink, we are done. Otherwise, there exists an arc (y, z) ∈ A for some z ∈ C. Suppose
that x ∈ Lr and y ∈ Ls for some 1 6 r < s 6 f − 1. (Such r, s exist because neither x nor
y are sinks. We have r < s because (x, y) ∈ A, see Proposition 8.16.) Because y is the only
out-neighbour of x, we have that (x, z) 6∈ A and so z 6∈ B(x) =

⋂
i∈N B(i, Cr, x). Note that

y ∈ Cr and hence z ∈ Cr as well. Since z 6∈ B(x), we have z 6∈ B(i, Cr, x) for some i ∈ N . On
the other hand, since (x, y) ∈ A, we have y ∈ B(x) and thus y ∈ B(i, Cr, x) We consider two
cases:

(i) x 6= top(i, Cr). Then B(i, Cr, x) = {c ∈ Cr : c �i x}, and thus y �i x �i z. Now consider
iteration s. If y = top(i, Cs), then |B(i, Cs, y)| = 1 so |B(y)| = 1. Hence, y has exactly
one out-neighbour, as desired. Otherwise, since (y, z) ∈ A, we have z ∈ B(i, Cs, y) and so
z �i y. But then by transitivity z �i x, contradicting that z 6∈ B(i, Cr, x).

(ii) x = top(i, Cr). Then B(i, Cr, x) = {second(i, Cr)}, and thus since y ∈ B(i, Cr, x) we see
that y = second(i, Cr). Note that x 6∈ Cs but y ∈ Cs. Therefore, top(i, Cs) = y, and thus
|B(i, Cj , y)| = 1 so |B(y)| = 1. Hence y has exactly one out-neighbour, as desired.

106



8.7. The Attachment Digraph

Free: Consider vertices x, y, z ∈ C with x, y ∈ ⇒C and (x, y), (y, z) ∈ A. Since x, y ∈ ⇒C , they are
not sinks, so x, y 6∈ Lf . Take r < s such that x ∈ Lr and y ∈ Ls. Note that if there was a voter
i ∈ N with top(i, Cr) = x, then |B(x)| = 1, contradicting that d+(x) > 1. Thus top(i, Cr) 6= x
for all i ∈ N . Because (x, y) ∈ A, for all i ∈ N we have y ∈ B(i, Cr, x) and hence y �i x.
Similarly, since (y, z) ∈ A and d+(y) > 1 we have z �i y for all i ∈ N . Hence, by transitivity,
z �i x for all i ∈ N . Therefore z ∈

⋂
i∈N B(i, Cr, x) = B(x) and so (x, z) ∈ A, as desired.

Suppose that f is an attachment function for D. Then for each forced vertex c ∈ →C \ {t}, the
value of f(c) is uniquely determined, since c has exactly one out-neighbour. Also, it is easy to
see that G(D| →C ) is a tree (it is connected because we can reach the sink t from every forced
vertex). It follows that for every T ∈ T (P ), the tree G(D| →C ) is a subtree of T .

Finally, we study the free vertices ⇒C more closely. Part (d) of the following proposition will
be particularly useful; it states that every free vertex can be attached to either of two forced
vertices which are adjacent in D.

Proposition 8.22. Suppose |C| > 3. For every free vertex x ∈ ⇒C of the attachment digraph
D = (C,A),

(a) there is a forced vertex y ∈ →C with (x, y) ∈ A;

(b) there are at least two forced vertices y, z ∈ →C with (x, y), (x, z) ∈ A;

(c) the set {y ∈ →C : (x, y) ∈ A} induces a subtree in G(D);

(d) there are two forced vertices y, z ∈ →C with (x, y), (x, z), (y, z) ∈ A.

Proof. (a) The directed acyclic graph D has a unique sink t, and there must be a directed path
x = c1 → c2 → · · · → cp = t from x to t; take such a path of minimum length. If p = 2, then
(x, t) ∈ A, and so we are done since t ∈ →C . So suppose that p > 3. Assume first that c2 is a
free vertex. Then c1, c2 ∈ ⇒C , and (c1, c2), (c2, c3) ∈ A, and since D is circumtransitive, we have
(c1, c3) ∈ A. Thus, c1 → c3 → · · · → cp is a shorter path, contradiction. Hence c2 ∈ →C , and we
have proved that x is adjacent to at least one forced vertex.

(b) Suppose the statement is false. Choose r maximum such that there is a free vertex x ∈ ⇒C
with x ∈ Lr such that there is a unique forced vertex y ∈ →C with (x, y) ∈ A. Because x ∈ ⇒C ,
we have d+(x) > 2, and so there must be w ∈ ⇒C with (x,w) ∈ A. Because (x,w) ∈ A, we
have w ∈ Ls for some s > r. Since w is a free vertex, by (a), there must be a forced vertex
y′ ∈ →C with (w, y′) ∈ A. By circumtransitivity, since (x,w) ∈ A and (w, y′) ∈ A, we have
that (x, y′) ∈ A, and thus y = y′. Thus we have (w, y) ∈ A. Hence, w has a unique forced
out-neighbour, which contradicts maximality of r.

(c) Suppose x ∈ Lr, and suppose that A contains arcs (x, y) and (x, z) where y, z ∈ →C . Since
G(D| →C ) is a tree, there is a unique path Q from y to z in G(D| →C ); let CQ ⊆ →C be the vertex
set of the path Q. Fix any tree T ∈ T (P ). Then G(D| →C ) is a subgraph of T , and so Q is a
path in T . Pick a vote i ∈ N . Since y, z ∈ B(x), we have |B(x)| > 1 and so |B(i, Cr, x)| > 1,
and thus we have y �i x, z �i x. Consider the top-initial segment C ′ = {c ∈ C : c �i x}. By
Proposition 8.2, since P is single-peaked on T , the set C ′ is connected in T . Since y, z ∈ C ′, the
path Q must be contained in T |C′ , and hence CQ ⊆ C ′. Thus, w �i x for each w ∈ CQ, and so
CQ ⊆ B(i, Cr, x). As this holds for every i ∈ N , CQ ⊆ B(x), and so CQ ⊆ {y ∈ →C : (x, y) ∈ A}.
Hence, {y ∈ →C : (x, y) ∈ A} is connected in G(D| →C ).

(d) The set {y ∈ →C : (x, y) ∈ A} is connected (by (c)) and contains at least two members (by
(b)). Hence, by definition of G, it contains some vertices y and z with (y, z) ∈ A.

This concludes our study of the properties of attachment digraphs.

107



8. Preferences Single-Peaked on Trees

8.8. Recognition Algorithms: Finding Nice Trees
Suppose we are given a profile P with T (P ) 6= ∅ and wish to find trees in T (P ) that satisfy
additional desiderata. We will now show how the attachment digraph can be used to achieve
this. We assume throughout this section that |C| > 3, since otherwise there is a unique tree T
on C, and there is no problem of selecting the best tree.

8.8.1. Minimum Number of Internal Vertices

In Section 8.6, we saw an algorithm that could solve Utilitarian CC efficiently for profiles
single-peaked on a tree T with few internal vertices, where T was taken as input to the algorithm.
We now show how we can find, given a profile, the tree T ∈ T (P ) that has the fewest internal
vertices. Algorithm 5 constructs an attachment function, and tries to make every vertex a leaf,
if possible. In particular, every free vertex in the attachment digraph will become a leaf. We
begin by showing that the description of Algorithm 5 is well-defined, in the sense that existence
statement in the algorithm are correct.

Algorithm 5 Find T ∈ T (P ) with fewest internal vertices
Let D = (C,A) be the attachment digraph of P
Let →C , ⇒C be the collection of forced and free vertices in D
Let t be the sink vertex of D
f ← ∅, an attachment function under construction
for each c ∈ →C \ {t} do

f(c)← c′ where c′ is the unique c′ ∈ C with (c, c′) ∈ A
if | →C | = 2 then

pick some y ∈ →C
for each c ∈ ⇒C do

f(c)← y

else if | →C | > 2 then
for each c ∈ ⇒C do

find y ∈ →C such that (c, y) ∈ A and y is internal in G(D| →C )
f(c)← y

return T ∗ = T (f)

Proposition 8.23. Algorithm 5 returns a tree T ∗ ∈ T (P ).

Proof. This follows from Theorem 8.18 once we can show that the choices of the algorithm
are possible. With our running assumption that |C| > 3, it follows that | →C | > 2 from
Proposition 8.22.

Suppose that | →C | > 2. By Proposition 8.22, each free vertex c ∈ ⇒C has outgoing arcs to
two forced vertices which are adjacent in G(D| →C ). Not both of them can be leaves in the tree
G(D| →C ) since | →C | > 2, so there is y ∈ →C with (c, y) ∈ A such that y is internal in G(D| →C ).
Thus, the algorithm is well-defined in this case.

Suppose that | →C | = 2. By Proposition 8.22, each c ∈ ⇒C is adjacent to both vertices in →C ,
and thus (c, y) ∈ A for the choice of y ∈ →C made by the algorithm; thus T ∗ ∈ T (P ).

Next, we show that Algorithm 5 returns an optimal tree.

Proposition 8.24. Algorithm 5 returns a tree T ∗ ∈ T (P ) with the minimum number of internal
vertices among trees in T (P ) in polynomial time.

108



8.8. Recognition Algorithms: Finding Nice Trees

Proof. For every tree T ∈ T (P ), we must have that G(D| →C ) ⊆ T , by Theorem 8.18 and the
definition of →C . Thus, if c ∈ →C is not a leaf in the tree G(D| →C ), then c cannot be a leaf in T .

Suppose that | →C | > 2. Note that every free vertex c ∈ ⇒C is a leaf in T ∗ because f(c) ∈ →C
for all c ∈ C \ {t}. Further, every leaf of G(D| →C ) is also a leaf in T ∗. By our initial observation,
none of the remaining vertices can be a leaf in any T ∈ T (P ), so T ∗ has the maximum number
of leaves, and hence a minimum number of internal vertices.

Suppose that | →C | = 2. Since |C| > 3, we have ⇒C 6= ∅. Since the two members of →C are
adjacent in any T ∈ T (P ), it can’t be that both of them are leaves in T . Hence the number of
leaves in T ∈ T (P ) is at most | ⇒C |+ 1. The tree T ∗ has exactly | ⇒C |+ 1 leaves, and hence is
optimal.

8.8.2. Minimum Diameter

It turns out that the tree found by Algorithm 5 is also optimal on another metric: it minimises
the diameter.

Proposition 8.25. Algorithm 5 returns a tree T ∗ ∈ T (P ) with minimum diameter among trees
in T (P ) in polynomial time.

Proof. Suppose that | →C | = 2. Then T ∗ is a star with center y; no tree on at least three vertices
has smaller diameter than a star.

Suppose that | →C | > 2. In this case the diameter of T ∗ is equal to the diameter of G(D| →C ).
To see this, consider a longest path (c1, . . . , ck) in T ∗. If k = 2, then T ∗ is a star, which is a
minimum-degree tree when there are |C| > 3 vertices. So suppose that k > 3. On the longest
path, only c1 and ck can be free vertices, since all free vertices are leaves in T ∗. Suppose c1 ∈ ⇒C .
Then by construction of T ∗, c2 ∈ →C , and c2 is an internal vertex of G(D| →C ). Hence, c2 has at
least two neighbours in →C . Thus, we can find a neighbour c′1 of c2 such that c′1 6= c3. Then we
can replace c1 by c′1 in the longest path (noting that c′1 cannot appear elsewhere on the path
because G(D| →C ) is a tree). Similarly we can replace ck by a forced neighbour of ck−1 if ck ∈ ⇒C .
Having replaced all free vertices on the path by forced vertices, we have obtained a longest path
in T ∗ which is completely contained in G(D| →C ). Hence, the diameter of T ∗ is equal to the
diameter of G(D| →C ).

Because G(D| →C ) ⊆ T for every T ∈ T (P ), the diameter of any T ∈ T (P ) must be at least
the diameter of G(D| →C ). Hence T ∗ has minimum diameter.

8.8.3. Minimum Number of Leaves

In Section 8.5, we saw an algorithm for Utilitarian CC which is efficient when the input profile
is single-peaked on a tree with few leaves. The algorithm assumed that the tree T is given in its
input. Here, given a profile P , we show how to find the tree T ∗ ∈ T (P ) with the fewest leaves.

Minimising the number of leaves of a tree is equivalent to maximising its number of internal
vertices. For this, we first characterise the set of internal vertices of a tree T (f).

Proposition 8.26. Let f be an attachment function for the attachment digraph D. Then
c ∈ C \ {t} is an internal vertex of the tree T (f) if and only if |f−1(c)| > 1, i.e., c is in the range
of f . The sink vertex t is an internal vertex of T (f) if and only if |f−1(t)| > 2, i.e., there are
two distinct d1, d2 ∈ C with f(d1) = f(d2) = c.

Proof. A vertex is internal in a tree if and only if it has degree at least two. From the definition
of T (f), for c ∈ C \ {t}, the degree of c is 1 + |f−1(c)|, and the degree of t is |f−1(t)|. The claim
follows immediately.

109



8. Preferences Single-Peaked on Trees

Algorithm 6 Find T ∈ T (P ) with fewest leaves
Let D = (C,A) be the attachment digraph of P
f ← ∅, an attachment function under construction
Let t be the sink vertex of D, and let s ∈ →C be a forced vertex with unique outgoing arc
(s, t) ∈ A (this exists by Proposition 8.22)
f(s)← t
Construct a bipartite graph H with vertex set L ∪ R where A = {`c : c ∈ C \ {s, t}} and
B = {rc : c ∈ C} and edge set EH = {{`c, rd} : (c, d) ∈ A}.
Find a maximum matching M ⊆ EH in H
for each c ∈ C \ {t} do

if `c is matched in M , i.e. {`c, rd} ∈M for some d ∈ C then
f(c)← d

else
take any d ∈ C with (c, d) ∈ A
f(c)← d

return T ∗ = T (f)

Using this observation, we can prove that Algorithm 6 returns an optimal tree. The algorithm
is based on constructing a maximum matching.

Proposition 8.27. Algorithm 6 returns a tree T ∗ ∈ T (P ) with the minimum number of leaves
among trees in T (P ) in polynomial time.

Proof. That the output T ∗ of the algorithm is a member of T (P ) is clear from Theorem 8.18,
since the algorithm constructs an attachment function.

To see optimality, note first that minimising the number of leaves is equivalent to maximising
the number of internal vertices. Thus, by Proposition 8.26, we need to find an attachment
function f maximising the number of vertices c with |f−1(c)| > 1 if c 6= t or |f−1(c)| > 2 if c = t.

We claim that under the attachment function f constructed by Algorithm 6, a vertex d ∈ C is
an internal vertex of T (f) if and only if rd is matched in the maximum matching M . We start
with the if direction.

• Suppose d = t. If rt is matched in M to `c, then both c ∈ f−1(t) and s ∈ f−1(t), where s
is the vertex chosen at the very start of the algorithm. By definition of the bipartite graph
H, c 6= s, and so |f−1(t)| > 2, and hence t is an internal vertex by Proposition 8.26.

• Suppose d 6= t. If rd is matched in M to `c, then c ∈ f−1(d), and so d is internal by
Proposition 8.26.

For the only if direction, suppose that d ∈ C is not matched in M . Then in the for loop of
Algorithm 6, we never set f(c) ← d for any c ∈ C \ {c}, because otherwise we could add the
edge {`c, rd} to the matching M , contradicting its maximality. Hence, if d = t is not matched,
then f−1(t) = {s}, and so t is not internal. If d 6= t is not matched, then f−1(d) = ∅, so d is not
internal. It follows that the number of internal vertices of T (f) is |M |, and our claim is proved.

Now suppose that T (f) is not optimal, and that T ′ ∈ T (P ) is a tree with q > |M | internal
vertices. By Theorem 8.18, since T ′ ∈ T (P ), we have T ′ = T (g) for some attachment function g.
But then we can construct a matching M ′ in H of size |M ′| = q, as follows:

• If t is an internal vertex in T ′, then by Proposition 8.26, we have |g−1(t)| > 2. Select some
c ∈ g−1(t) with c 6= s, and add {`c, rd} to M ′. If t is not internal in T ′, do nothing.

110



8.8. Recognition Algorithms: Finding Nice Trees

a z

`c1

`c2

`c3

`c4

rc1

rc2

rc3

rc4

rt

1
1
1
1

1
1

1
1

1

1

k − 1
k − 1
k − 1
k − 1

k

Figure 8.5.: Flow network H constructed by Algorithm 7.

• For each d ∈ C \ {c} which is an internal vertex of T ′, select some c ∈ g−1(d) (which exists
by Proposition 8.26), and add {`c, rd} to M ′.

Clearly, we have added q edges to M ′. Because g is a function, M ′ is a matching. Since
|M ′| > |M |, we have a contradiction to maximality of M .

8.8.4. Minimum Max-Degree

In some situations, it may be desirable to find a tree in which each vertex is connected to only a
few other vertices. The following algorithm can be used to do so; it is based on calculating a
maximum flow network, an example of which is shown in Figure 8.5.

Algorithm 7 Decide whether there is T ∈ T (P ) with maximum degree at most k
Let D = (C,A) be the attachment digraph of P
Let t be the sink vertex of D
Let L = {`c : c ∈ C \ {t}} and B = {rc : c ∈ C} and construct a flow network H on vertex set
{a, z} ∪ L ∪R with arc set

EH = {(a, `c) : c ∈ C \ {t}} ∪ {(`c, rd) : c, d ∈ C, (c, d) ∈ A} ∪ {(rc, t) : c ∈ C},

and capacities cap(a, `c) = 1 for all c ∈ C\{t}, cap(`c, rd) = 1 for all (c, d) ∈ A, cap(rc, t) = k−1
for all c ∈ C \ {t}, and cap(rt, z) = k.
Find a maximum flow in H
f ← ∅, an attachment function under construction
if the flow transports |C \ {t}| units of flow then

For each (c, d) ∈ A such that a unit of flow flows across (`c, rd), set f(c)← d
return T ∗ = T (f)

else
return there is no T ∗ ∈ T (P ) with maximum degree at most k

Proposition 8.28. Algorithm 7 returns a tree T ∗ ∈ T (P ) with maximum degree at most k if
one exists, in polynomial time.

Proof. Let f be some attachment function. By definition of T (f), for each c ∈ C \{t}, the degree
of c in T (f) is 1 + |f−1(c)|, because there is 1 edge in T (f) corresponding to an outgoing arc of
c in D, and |f−1(c)| edges in T (f) corresponding to incoming arcs to c in D. Also, the degree of
the sink vertex t in T (f) is |f−1(t)|. Thus, our task reduces to deciding whether there exists an

111



8. Preferences Single-Peaked on Trees

attachment function f with
1 + |f−1(c)| 6 k (i.e., |f−1(c)| 6 k) for each c ∈ C \ {t} and |f−1(t)| 6 k. (8.1)

Such attachment functions are in one-to-one correspondence with (integral) flows of size
|C \ {t}| in the flow network constructed by Algorithm 7: Suppose f is an attachment function
satisfying (8.1); then send one unit of flow from the super-source a along each of its |C \ {t}|
outgoing links. For each c ∈ C \ {t}, send the incoming flow into `c towards rf(c). Finally, for
each c ∈ C, send the incoming flow into rc towards the super-sink z; this satisfies the capacity
constraints because f satisfies (8.1). Conversely, for any flow of size |C \ {t}|, we can define f by
setting f(c) to correspond to the destination of the out-flow from `c. The resulting f satisfies
(8.1) due to the capacity constraints of the links between the rc and the super-sink z.

8.8.5. Minimum Pathwidth
Here, we show how to find a tree T ∈ T (P ) of minimum pathwidth. Our algorithm is based on
an algorithm by Scheffler [1990], which computes a minimum-width path decomposition of a
given tree in linear time.

We need a preliminary result showing that a tree always admits a minimum-width path
decomposition with a certain property: most vertices appear in a bag of the path decomposition
which has some ‘slack’, in the sense that the bag does not have maximum cardinality.
Lemma 8.29. For every tree T = (C,E), there exists a path decomposition S1, . . . , Sr of T of
minimum width w such that, for every edge e ∈ E, there is c ∈ e for which there exists a bag Si
with c ∈ Si such that |Si| 6 w (note that maxi |Si| = w + 1).
Proof. We show how to transform any path decomposition of T into a path decomposition of
the same width having the desired property.

Suppose S1, . . . , Sr is a path decomposition of T with width w. For each edge {c, d} ∈ E,
we do the following: Because {c, d} is an edge, there exists a bag containing both c and d Let
i ∈ {1, . . . , r} be minimum such that c, d ∈ Si.

If i = 1, then we can create a new bag S0 = S1 \ {d} and append it to the left of the sequence,
and the result is still a path decomposition. In this path decomposition, c appears in bag |S0|,
where |S0| 6 w since |S0| < |S1| 6 w + 1.

If i > 1, then one of c or d does not appear in Si−1, say d 6∈ Si−1. Then we can create a new
bag Si− 1

2
= Si \ {d}, and place it in between Si−1 and Si. The resulting sequence is still a path

decomposition, in which c appears in Si− 1
2
, with |Si− 1

2
| 6 w since |Si− 1

2
| < |Si| 6 w + 1.

Clearly, the transformation described in the proof of Lemma 8.29 can be performed in
polynomial time. Since one can find some path decomposition in polynomial time, one can find
a path decomposition with the property of Lemma 8.29 in polynomial time.
Proposition 8.30. Algorithm 8 returns a tree T ∗ ∈ T (P ) with minimum pathwidth among trees
in T (P ) in polynomial time.
Proof. First, note that the path decomposition constructed by Algorithm 8 is in fact a path
decomposition of the output tree T (f): Each free vertex c ∈ ⇒C becomes a leaf in T (f), and
occurs in only a single bag Si in the constructed path decomposition. Since c is a leaf, it is only
a part of a single edge {c, f(c)}, and we have c, f(c) ∈ Si. Also, since c occurs in only a single
bag, the set of bags containing c is trivially an interval of the path decomposition sequence.

Next, observe that the path decomposition of T (f) has the same width w as the pathwidth of
the forced part G(D| →C ), because all new bags have cardinality at most w + 1. Now, because
G(D| →C ) is a subgraph of every T ∈ T (P ), no T ∈ T (P ) can have a smaller pathwidth than
G(D| →C ). Since Algorithm 8 identifies a tree T ∈ T (P ) with the same pathwidth as G(D| →C ),
this must be optimal.

112



8.8. Recognition Algorithms: Finding Nice Trees

Algorithm 8 Find a tree T ∈ T (P ) of minimum pathwidth
Let D = (C,A) be the attachment digraph of P
Let S1, . . . , Sr be a path decomposition of G(D| →C ) of minimum width w, satisfying the
condition of Lemma 8.29
f ← ∅, an attachment function under construction
for each c ∈ C \ {t} do

if c ∈ →C then
f(c)← d, for the unique d ∈ C with (c, d) ∈ A

else if c ∈ ⇒C then
Let d1, d2 ∈ →C be two forced vertices such that (d1, d2), (c, d1), (c, d2) ∈ A

(these exist by Proposition 8.22)
Since {d1, d2} is an edge of G(D| →C ), by the condition of Lemma 8.29,

there is a bag Si with di ∈ Si and |Si| 6 w, for some i ∈ {1, 2}
f(c)← di
Make a new bag Si+ 1

2
= Si ∪ {di} and place it to the right of Si

in the sequence of the path decomposition
return T ∗ = T (f)

8.8.6. Other Graph Types
Finally, we briefly collect some observations about recognising whether T (P ) contains trees of
certain types.

Paths If a profile is single-peaked on a path, then it is simply single-peaked. The literature
contains several algorithms for recognising profiles that are single-peaked on a path. The
algorithms by Doignon and Falmagne [1994] and Escoffier et al. [2008] can be implemented to
run in time O(mn). One could also use some of the algorithms presented above. Algorithm 6
finds a tree T ∈ T (P ) with a minimum number of leaves; clearly, if T (P ) contains a path, then
this will be identified by the algorithm. Alternatively, Algorithm 7 can look for a tree T ∈ T (P )
with maximum degree k = 2; this will succeed if and only if the profile is single-peaked on a path.
Both Algorithms 6 and 7 depend on pre-computing the attachment digraph, which takes time
O(m2n). Thus, this approach is slower than using the linear time algorithms referred to above.

Stars In Proposition 8.8, we observed that a profile is single-peaked on a star graph if and only
if there is a candidate c ∈ C such that every voter ranks c in either first or second condition.
This condition can easily be verified in linear time, without needing to compute the attachment
digraph. Note that Algorithm 5 (minimising the number of internal vertices) will output a star
whenever T (P ) contains a star graph.

Caterpillars Caterpillar graphs are exactly the trees of pathwidth 1 [Proskurowski and Telle,
1999], and so Algorithm 8 can check whether a profile is single-peaked on a caterpillar. One can
also search for a caterpillar directly: first compute G(D| →C ) and check that it is a caterpillar (if
not, then no tree in T (P ) can be a caterpillar). If yes, then we can attach every free vertex as a
leaf to G(D| →C ), generating a caterpillar.

Subdivision of a Star A tree is a subdivision of a star if all but one vertex has degree at most
2. We can find a subdivision of a star in T (P ), should one exist, by adapting Algorithm 7: we
guess the center of the subdivision of the star, and then appropriately assign upper bounds on
the vertex degrees by setting the capacity constrains in the flow network.

113



8. Preferences Single-Peaked on Trees

8.9. Hardness of Recognising Single-Peakedness on a Specific Tree
The algorithms presented in Section 8.8 enable us to answer a wide range of questions about the
set T (P ). The NP-hardness results in this section, however, show that not every such question
can be answered efficiently unless P = NP.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection φ : V1 → V2
such that for all u, v ∈ V1, we have that {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2. We consider
the following computational problem.

Single-Peaked Tree Labelling

Instance: Profile P over C, a tree T0 on |C| vertices
Question: Is there a tree T = (C,E) isomorphic to T0 such that P is single-peaked on T?

In this problem, we are given a “template” unlabelled tree T0, and need to decide whether we
can label the vertices in this template by candidates so as to make the input profile single-peaked
on the resulting labelled tree. For example, if T0 is a path, then the problem is to decide whether
the profile P is single-peaked on a path, and in this case the problem is easy to solve. However,
the template T0 occurs in the input to the decision problem, and it is not clear how to proceed in
checking whether T0 “fits” into the attachment digraph. In fact, as we now show, this problem is
NP-complete.

Theorem 8.31. The problem Single-Peaked Tree Labelling is NP-complete even if T0 is
restricted to diameter at most four.

Proof. The problem is in NP since for a given T and a given isomorphism φ, we can easily check
that φ is an isomorphism and that the profile single-peaked on T .

For the hardness proof, we reduce from x3c. Suppose we are given an x3c-instance with ground
set X = {x1, . . . , xp} with p = 3p′ and a collection Y = {Y1, . . . , Yq} of 3-element subsets of X. We
then construct an instance of Single-Peaked Tree Labelling as follows. First, we construct
a tree T0 with vertex set C0 = {a, b1, . . . , bq−p′ , c1, . . . , cp′} ∪ {di,j : 1 6 i 6 p′, 1 6 j 6 3}, and
edge set E0 = {{a, bi} : 1 6 i 6 q−p′}∪{{a, ci} : 1 6 i 6 p′}∪{{ci, di,j} : 1 6 i 6 p′, 1 6 j 6 3}.
The resulting tree is drawn below; clearly it has diameter 4.

b1 b2 b3 . . . bi . . . bq−p′

a

c1 c2 . . . cp′

d1,1 d1,2 d1,3 d2,1 d2,2 d2,3 . . . dp′,1 dp′,2 dp′,3

Next, we construct a profile P with |N | = p + q voters on the candidate set C =
{z, x1, . . . , xp, y1, . . . , yq}. P will contain one vote for each object and one vote for each set.
In the following, all indifferences can be broken arbitrarily. For each object xi, we add a voter
vxi :

z � {yj : Yj 3 xi} � xi � {yj : Yj 63 xi} � X \ {xi}.

(This voter will force xi to be attached to z or to a set containing xi.) For each set Yj , we add a
voter vYj :

z � yj � {yj : j = 1, . . . , q} \ {yj} � X.

114



8.10. Conclusions

(This voter will force an edge from z to yj .)
This completes the description of the reduction. We now prove that it is correct.
Suppose the x3c-instance is a “yes”-instance, and let Y ′ = {Yj1 , . . . , Yjp′} be a cover with p′

sets. Then we build a labelling isomorphism φ : C0 → C as follows: We put φ(a) = z. For each
Yj ∈ Y ′, we take one of the bi’s and set φ(bi) = yj . For each Yj 6∈ Y ′, we take one of the ci’s and
set φ(ci) = yj . Finally, for each xk ∈ X, we find Yj ∈ Y ′ with xi ∈ Yj . Write bi = φ−1(yj), then
take one of the di,j ’s and set φ(di,j) = xk. The resulting labelled tree T is shown below. It is
easy to check that the profile P is single-peaked on T .

yjm+1 yjm+2 yjm+3 . . . yjr . . . yjn

z

yj1 yj2 . . . yjp′

xi1 xi2 xi3 xi4 xi5 xi6 . . . xip−2 xip−1 xip

Conversely, suppose that there is a labelling T of T0 so that P single-peaked on T . Let
φ : C0 → C is a witnessing isomorphism. Note that the vertex labelled z must have degree at
least q, because for each j ∈ {1, . . . , q}, voter vYj can only be single-peaked on T if z and yj
are adjacent in T . There is only one such vertex in T , namely φ(a), and hence φ(a) = z. The
vertex φ(a) has exactly q neighbours, which then must all be labelled by some yj . Exactly p′ of
the q neighbours of φ(a) have degree 4. Let Y ′ = {Yj ∈ Y : yj = φ(ci) for some 1 6 i 6 p′} be
the collection of the p′ sets occupying the vertices with degree 4. We claim that Y ′ is a cover.
Let xi ∈ X; it must be a leaf of T because all internal vertices of T have already been labelled
otherwise. Then, because vxi is single-peaked on T , the set {z, x} ∪ {yj : Yj 3 xi} must be
connected in T , so the neighbour of the leaf xi must be a member of that set. But xi cannot be
a neighbour of z, so z is a neighbour of some yj where x ∈ Yj . This implies that yj is the label
of a degree-4 vertex. Hence Yj ∈ Y ′, and so xi is covered by Y ′.

By copying the center vertex and adding some peripheral vertices, we can adjust this reduction
to show that the problem remains hard even if T0’s maximum degree is three. Notice that the
problem is (trivially) fixed-parameter tractable with parameter k = |C| by trying all k! possible
labellings of the input tree.

8.10. Conclusions
Without any restrictions on the structure of voters’ preferences, winner determination under
the Chamberlin–Courant rule is NP-hard. Positive results have been obtained when preferences
are assumed to be single-peaked, and we studied whether these results can be extended to
preferences that are single-peaked on a tree. For the egalitarian variant of the rule, we showed
that winner determination remains polynomial-time solvable for any tree and any scoring function.
For the utilitarian setting, we show that winner determination is hard for general preferences
single-peaked on a tree, but we find positive results when imposing additional restrictions. One
algorithm we present runs in polynomial time when preferences are single-peaked on a tree which
has a constant number of leaves, and another runs efficiently on a tree with a small number of
internal vertices. It would also be interesting to see whether our easiness results for preferences
that are single-peaked on a tree extend to the egalitarian version of Monroe’s rule. Betzler
et al. [2013] show that this rule becomes easy for preferences single-peaked on a path, but their
argument is much more intricate than for egalitarian Chamberlin–Courant.

115



8. Preferences Single-Peaked on Trees

To make our parameterised winner determination algorithms more applicable, we have also
studied the recognition problem in detail. We have designed polynomial-time algorithms for
recognising profiles that are single-peaked on special classes of trees. One can interpret some of
these algorithms as deciding whether the input profile is close to being single-peaked on a path,
in the sense of being single-peaked on a tree which is similar to a path (for example, having
small pathwidth). This is an alternative view on a recent literature about almost-structured
preferences which has studied various distance measures [Faliszewski et al., 2014, Erdelyi et al.,
2017, Bredereck et al., 2016, Cornaz et al., 2012].

116



9. Preferences Single-Peaked on Circles

We introduce the domain of preferences that are single-peaked on a circle, which
is another generalisation of the single-peaked domain. This preference restriction
is useful, for example, for scheduling decisions, certain facility location problems,
and for one-dimensional decisions in the presence of extremist preferences. We give
a fast recognition algorithm of this domain, and show that many popular single-
and multiwinner voting rules are polynomial-time computable on this domain. In
particular, we prove that Chamberlin–Courant and Proportional Approval Voting can
be computed in polynomial time for profiles that are single-peaked on a circle. This
result is achieved using special Integer Linear Programming formulations that become
totally unimodular whenever the input profile is single-peaked or single-peaked on a
circle. In contrast, Kemeny’s rule remains hard to evaluate, and several impossibility
results from social choice theory can be proved using only profiles in this domain.

9.1. Introduction
A central problem in the study of multi-agent systems is the aggregation of agents’ preferences
in order to make group decisions. Impossibility theorems and computational hardness result
make this problem a hard one to solve. However, a successful line of research going back to
Black’s [1948] seminal article has managed to circumvent many problems in (computational)
social choice for the special case when agents’ preferences are single-peaked. Under this preference
restriction, we assume that agents have preferences over the possible values of a one-dimensional
quantity such as the timing of a deadline, a tax rate, a thermostat setting, or the price of a new
product. A preference ordering is single-peaked if an agent has a certain most-preferred value of
the quantity and derives less and less satisfaction from values that are further away from the
subjective optimum. Another popular application of this setting is in political elections, where
it is often held that candidates can be ordered on a left-to-right spectrum making the voters’
preferences single-peaked.

Preference profiles that consist solely of single-peaked preference orderings have attractive
properties, both algorithmically and in terms of their social choice behaviour [Elkind et al.,
2016, 2017b]. For example, winner determination problems that are computationally hard in the
general case tend to be easy when restricted to single-peaked profiles [Brandt et al., 2015, Betzler
et al., 2013], and the single-peaked domain guarantees the existence of Condorcet winners as
well as transitivity of the majority relation and thus admits a strategyproof voting rule [Moulin,
1988a].

The usefulness of results of this type is limited by the extent to which profiles in practice
actually happen to be single-peaked. One way of dealing with this is to consider less restrictive
generalisations of single-peakedness. Maybe the structure of the alternative space is not quite
one-dimensional, and in this case it might be useful to consider preferences that are single-peaked
on a tree [Demange, 1982]. As we saw in Chapter 8, this domain is notably larger, yet still
retains many desirable properties in social choice terms; however, its algorithmic usefulness is
more mixed.

In this chapter, we identify a new preference restriction: being single-peaked on a circle. Here
we assume that alternatives can be placed on a circle, with agents’ preferences again being

117



9. Preferences Single-Peaked on Circles

a b c d e f g hC C C C C C C

Figure 9.1.: Example of preferences single-peaked on a circle.

decreasing on both sides of their peaks. See Figure 9.1 for some example shapes that ‘preference
curves’ might have in this setting; higher points are more preferred. Note that the circle wraps
around, and so h and a are adjacent. Intuitively, a preference profile is single-peaked on a circle
if, for every agent, we can ‘cut’ the cycle once so that the agent’s preferences are single-peaked
on the resulting line. Crucially, the location of the cutting point may differ for each agent.

The aim of this chapter is to explore this new preference domain in detail. We will find that
this domain is algorithmically useful (it often allows for efficient winner determination), but it
performs less convincingly in terms of axiomatic properties (since voting paradoxes still occur
and impossibility results can still be proved). Interestingly, this is precisely opposite to how the
results turned out for single-peakedness on trees.

single-peaked single-peaked on a tree single-peaked on a circle

axiomatic usefulness ++ + −−
algorithmic usefulness ++ − +

Table 9.1.: Rough comparison of the virtues of different domain restrictions, from very high
usefulness (++) to very low (−−).

Motivating Examples

There are many practical scenarios where we might expect
preferences to be single-peaked on a circle. This is even the
case when, on first sight, there seems to be no circle anywhere.
Indeed, suppose that alternatives are naturally ordered on
a line; we may pretend this line is a circle by joining up its
endpoints. Of course, every order that is single-peaked on
the line is also single-peaked on the circle. But crucially, the
reverse of such an order, now single-caved on the line, is still single-peaked on the same circle.
Thus, our new preference restriction allows us to combine single-peaked and single-caved votes (as
shown on the right). One interpretation is that this move allows us to accommodate “extremists”.
For example, while most people have a sweet spot somewhere on the left-right political axis,
some people might dislike centrist options and prefer the extremes. When planning a vacation,
some might have an optimal climate in mind, while others like it both very cold (skiing) and
very hot (beaches), but dislike compromises (England).

Other examples of alternative spaces are more explicitly cyclic. Consider, for example, finding
a good time for a daily event (such as a day or night shift, or a meeting, or the timing of backups)
where possibilities are arranged in a 24-hour cycle. A similar structure exists when scheduling an

118



9.2. Definition

international phone call; here, different time zones are arranged along the equator, and lead to
cyclic preferences.

But perhaps the most appealing example of preferences that can be expected to be single-
peaked on a circle come from problems inspired by facility location. Rather many structures
have a boundary that is (roughly) isomorphic to a cycle, including most cities and countries. The
problem of deciding where to locate a new airport for a city would be one example, since airports
are usually positioned on the boundary. Similarly, where should a company build new office
space? To which coastal region should a family move? Where do we want to sit in a football
stadium? Another plausible application could be inspired by security concerns, if we consider
the placement of border security checkpoints.

Contributions

The main results in this chapter can be summarised as follows:

• We formally define single-peakedness on circles and immediately extend this definition to
preferences with ties, and to dichotomous (approval) preferences.

• We show that it is possible to efficiently recognise whether a given preference profile is single-
peaked on some circle, and if so return a suitable circle. For the case of preferences without
ties, we give a recognition algorithm that runs in linear time, matching the performance in
the case for the line.

• While single-peakedness on a line serves as a way to circumvent many impossibility results
in social choice, we show that such impossibilities (including the Gibbard–Satterthwaite
theorem) can still be proved when preferences are allowed to be single-peaked on a circle.

• We then study the algorithmic properties of our new preference extension. We show that
Young’s voting rule (and also Young scores) can be efficiently computed if preferences are
single-peaked on a circle; this algorithm also improves upon the state-of-the-art when it
comes to preferences single-peaked on a line. In contrast, we show that Kemeny’s rule is
NP-hard to compute even in this restricted domain.

• Finally, we show that several multiwinner voting rules are efficiently computable in our
restricted case, specifically all that are included in the large class of so-called OWA-based
rules. This class includes, e.g., the Chamberlin–Courant rule and Proportional Approval
Voting (PAV). It is noteworthy that some of these algorithmic results have not yet been
established even for single-peaked profiles (such as the one for PAV). This general result
relies on using total unimodularity and integer programming.

9.2. Definition

Let A be a finite set of alternatives (or candidates). A weak order (or preference relation) is a
binary relation < over A which is complete and transitive. A linear order is a weak order that is
antisymmetric, and so does not allow preference ties; a strict linear order � is the irreflexive
part of a linear order. A profile P = (v1, . . . , vn) over A is a list of weak orders over A. The
elements of N = {1, . . . , n} are called voters, and we associate voter i ∈ N with the order vi,
which we call the vote of voter i. For convenience, we write a <i b whenever (a, b) ∈ vi, i.e., when
voter i weakly prefers alternative a to alternative b. We also use �i and ∼i for the strict and
indifference parts of <i. We will always write m for the number of alternatives and n for the
number of voters. If vi is a linear order, we write top(vi) for i’s most-preferred alternative.

119



9. Preferences Single-Peaked on Circles

An axis C is a strict linear order of the alternatives. We usually think of an axis as describing
the underlying one-dimensional structure of the alternative space. A linear order vi is single-
peaked with respect to the axis C if for each pair of alternatives a, b ∈ A with top(vi)C bC a or
aC bC top(vi) it holds that b �i a. Let us also give another, equivalent definition. An interval
I ⊆ A of an axis C is any set such that for all a, b, c ∈ A, if we have a, c ∈ I and aC bC c, then
b ∈ I. Then a vote vi is single-peaked with respect to the axis C if and only if for every c ∈ A,
the top-initial segment {a ∈ A : a �i c} is an interval of C. This definition in terms of intervals
immediately gives a definition of the single-peaked property for weak orders as well. There are
several possible definitions of single-peakedness for weak orders; the one we use here is often
referred to as possible single-peakedness [Lackner, 2014], since it is equivalent to saying that there
exists a linearisation of the weak order which is single-peaked.

We say that two axes C and C′ are cyclically equivalent if there is l ∈ [m] such that we
can write a1 C a2 C a3 C · · · C am and al C′ al+1 C′ · · · C′ am C′ a1 C′ · · · C′ al−1. For an axis
C, we then define the circle C(C) of C to be the set of axes cyclically equivalent to C. Any
set C of axes that can be written as C = C(C) for some C we call a circle. For example,
C = {aC bC c, bC′ cC′ a, cC′′ aC′′ b} is a circle. Note that “cutting” a circle C at a point yields
an axis C ∈ C. We say that C starts in a ∈ A if aC b for all b ∈ A \ {a}.

Definition 9.1. Let C be a circle. A vote vi is single-peaked on C if there is an axis C ∈ C such
that vi is single-peaked with respect to C. A preference profile P is single-peaked on a circle
(SPOC) if there exists a circle C such that every vote vi ∈ P is single-peaked on C.

Intuitively, a vote vi is single-peaked on C if C can be cut so that vi is single-peaked on the
resulting line.

Again let us state another equivalent definition. An interval I ⊆ A of a circle
C is a set that is an interval of one of the axes C ∈ C of the circle. Then a vote is
single-peaked on a circle C if and only if each top-initial segment {a ∈ A : a �i c}
is an interval of C. Note that the complement A \ I of an interval I of C is again
an interval. Thus, a weak order < is single-peaked on C if and only if its reverse
~< = {(b, a) : (a, b) ∈ <} is also single-peaked on C.
A vote is single-caved if its reverse is single-peaked. It follows, then, that mixtures of single-

peaked and single-caved orders (on the same axis) are SPOC. However, not all SPOC profiles
have this form; one such example is the profile shown in Figure 9.1, where the circle cannot be
cut so as to make every preference curve either single-peaked or single-caved.

9.3. Recognition Algorithms

In this section we design algorithms that decide whether a given profile is single-peaked on some
circle, and if so, return a suitable circle C.

A matrix M = (aij) with aij ∈ {0, 1} has the consecutive ones property if the columns of M
can be put into a linear order C so that for every row of M , the columns with 1-entries form
an interval of C. The matrix M has the circular ones property if its columns can be arranged
in a circle C so that the 1-entries of each row form an interval of C. Given our definitions in
terms of intervals above, it is straightforward to translate a profile P of weak orders into an
mn ×m matrix M so that P is single-peaked [single-peaked on a circle] if and only if M has
the consecutive [circular] ones property [Bartholdi, III and Trick, 1986]: Take one column for
each alternative, and one row for every top-initial segment of every voter in P ; the row is the
incidence vector of the segment. Since it is possible to check in linear time whether a matrix A
has the consecutive or circular ones property [Booth and Lueker, 1976], this gives us an O(m2n)
algorithm to recognise profiles that are single-peaked on a circle.

120



9.4. Impossibility Theorems

In the remainder of this section, we design a more explicit algorithm that runs in time O(mn)
when the input profile consists of linear orders.1

Suppose P = (v1, . . . , vn) is a profile of linear orders over A, and fix some alternative z ∈ A.
We will build another profile P ′ = (vu1 , vl1, . . . , vun, vln) of 2n weak orders by slicing each vote vi at
z into an upper part vui and a lower part vli. The upper part vui ranks all alternatives a such that
a �i z in order of �i, and puts all remaining alternatives into a least-preferred indifference class.
The lower part vli ranks all alternatives a such that z �i a in reverse order of �i, and again puts
all remaining alternatives into a least-preferred indifference class.

Example 9.2. Slicing the order a � b � c � z � d � e � f at z yields the upper part
a �u b �u c �u z ∼u d ∼u e ∼u f and the lower part f �l e �l d �l z ∼l a ∼l b ∼l c.

The notion of slicing reduces SPOC to single-peakedness:

Proposition 9.3. Suppose a profile P ′ of weak orders is obtained by slicing each vote of a
profile P of linear orders at some fixed z ∈ A. Then P is SPOC if and only if the profile P ′ is
single-peaked.

Proof. Suppose P is SPOC on C, and let C ∈ C be an axis starting in z. Since z is least-preferred
by all voters in P ′, z is not contained in any top-initial segment of any voter in P ′. However, all
top-initial segments of votes in P ′ are intervals of C. Since they do not contain z, they must also
be intervals of C. Thus, P ′ is single-peaked with respect to C.

Suppose P ′ is single-peaked with respect to C. We show that P is SPOC on C = C(C). Take
a top-initial segment S of a vote vi in P ; we prove that S is an interval of C. If z 6∈ S, then S is
a top-initial segment of vui in P ′. Thus, S is an interval of C and so an interval of C. If however
z ∈ S, then the complement A \S is a top-initial segment of vli in P ′, hence an interval of C, and
so A \ S is an interval of C. But the complement of an interval of a circle is again an interval,
and so S is an interval of C. Hence P is SPOC.

Thus, we can use an algorithm that decides whether a profile of weak orders is single-peaked
to decide whether a profile of linear orders is SPOC. Next, note that if we select z ∈ A to be the
alternative that is ranked last by v1 (say), then the profile P ′ obtained by slicing P at z contains
a linear order (namely the upper part of v1). Lackner [2014] has given a O(mn) time algorithm
that decides whether a profile of weak orders containing at least one linear order is single-peaked.
Since P ′ can be constructed from P in time O(mn), by Proposition 9.3, we obtain the following.

Theorem 9.4. There is an O(mn) time algorithm that decides whether a profile of linear orders
is single-peaked on a circle.

9.4. Impossibility Theorems
One of the major advantages of the traditional single-peaked domain is the existence of a non-
manipulable voting rule on this domain: The well-known median voter procedure sorts voters’
most preferred alternatives according to the axis C and then returns the median alternative a.
This alternative is, in fact, a (weak) Condorcet winner: for any other alternative b, a (weak)
majority of voters prefers a to b. One might hope to be able to extend this procedure to circles,
but this turns out to be impossible: the Gibbard–Satterthwaite theorem can be proved using
only profiles that are single-peaked on a circle.

A resolute voting rule f on SPOC profiles is a function assigning a single winning alternative
to every SPOC profile of linear orders. The rule f is non-dictatorial if there is no fixed voter i
such that f always picks i’s top alternative. The profile obtained from P by replacing vote vi by

1Actually, the algorithm works whenever P contains at least one linear order.

121



9. Preferences Single-Peaked on Circles

v′i is denoted by (P−i, v′i). A voting rule f on SPOC profiles is strategyproof if f(P ) <i f(P−i, v′i)
for all orders v′i such that (P−i, v′i) is still SPOC.

Theorem 9.5 (Gibbard–Satterthwaite Theorem for SPOC). There is no resolute voting rule on
SPOC profiles that is non-dictatorial, onto, and satisfies strategyproofness.

Proof. This follows immediately from the results of Kim and Roush [1980] and Sato [2010], who
prove this result for an even more restricted domain consisting only of the 2m orders which
traverse the circle clockwise and counter-clockwise starting from every possible alternative.

Note that the SPOC orders used in this proof are ‘unbalanced’, in that the most- and least-
preferred alternatives are adjacent on the circle for every agent. Still, a similar dictatorship result
can be proved even using orders that are ‘Euclidean’ on a circle, where preferences decrease
uniformly in both directions from the peak [Schummer and Vohra, 2002]. It can also be shown
that, with these Euclidean orders, the random dictatorship rule is group-strategyproof [Alon et al.,
2010b], and there is an intriguing randomised mechanism that is strategyproof and provides a
3/2-approximation to the egalitarian social welfare [Alon et al., 2010a].

Theorem 9.5 is the only impossibility theorem in this thesis that is not proved with the help of
SAT solvers. The reason is that the theorem uses two global axioms (non-dictatorial and onto)
and this rules out small MUSes.

Another desirable axiomatic property is participation, which, intuitively, states that no voter
can strictly benefit by abstaining from an election. A celebrated result of Moulin [1988b] shows
that this property is incompatible with Condorcet-consistency, which requires the voting rule to
select the Condorcet winner if one exists (see Chapter 1). This result can also be proved using
only SPOC profiles.

Theorem 9.6 (No-Show Paradox for SPOC). For m > 4 and n > 12, there is no resolute voting
rule on SPOC profiles that is Condorcet-consistent and satisfies participation.

Proof. Form = 4 alternatives, one can check that all preference profiles in the proof of Theorem 1.5
are single-peaked on the circle induced by aC bC dC cC a. For m > 5, one can extend the proof
by replacing, in every profile of the proof, the alternative a by m− 3 clones a1, . . . , am−3 where
each agent ranks them as a1 � · · · � am−3. All resulting profiles are single-peaked on the circle
induced by a1 C · · ·C am−3 C bC dC cC a1. The proof of Theorem 1.5 goes through after this
change essentially verbatim.

As described in the next section, further impossibilities about tournament-based rules can be
deduced from Lemma 9.7.

9.5. Kemeny’s and Young’s Rules
In this section, we will consider the problem of determining an election winner according to two
well-known voting rules, Young’s rule and Kemeny’s rule, that are NP-hard to evaluate in general
[Bartholdi, III et al., 1989, Rothe et al., 2003, Hemaspaandra et al., 2005]. We will be interested
to see whether these problems can be solved in polynomial time for SPOC profiles. We leave the
complexity of Dodgson’s rule for SPOC profiles for future work.

Kemeny’s rule

Kemeny’s rule is a rank aggregation rule: Given a profile P over A, its aim is to produce a
consensus ranking over A. Suppose r is a linear order over A. Its Kemeny score is

∑
i∈N |vi ∩ r|,

the number of pairwise agreements of r with P . A Kemeny ranking is a linear order r with

122



9.5. Kemeny’s and Young’s Rules

maximum Kemeny score. While it is NP-hard to find a Kemeny ranking Bartholdi, III et al.
[1989], this problem is easy for single-peaked profiles whose transitive majority relation is easily
seen to give rise to a Kemeny ranking. For SPOC preferences, the situation is less clear: the
Condorcet paradox profile (x �1 y �1 z, y �2 z �2 x, z �3 x �3 y) on 3 alternatives is SPOC,
so SPOC does not guarantee a transitive majority relation. In fact, SPOC does not guarantee
anything at all about the majority relation.

Lemma 9.7 (McGarvey’s theorem for SPOC). All (weighted) majority tournaments are inducible
by SPOC profiles.

Proof. Fix a circle C with x1 C x2 C · · ·C xm. For any arc (xi, xj) of the
target tournament, consider the following two votes which are single-peaked
on C: (subscripts modulo m)

xi+1 � · · · � xj−1 � xi � xj � xj+1 � · · · � xi−1

xx−1 � · · · � xj+1 � xi � xj � xj−1 � · · · � xi+1

These two votes induce a majority arc xi → xj with weight 2, but all other arcs have weight 0.
By combining pairs of such votes, any tournament can be obtained. If odd edge weights are
desired, start with an arbitrary single order, and then use pairs as above to adjust the weights as
needed.

Recall that Kemeny scores only depend on the weighted majority relation of a profile. Since
the profiles in the proof of McGarvey’s theorem above can be produced in polynomial time, the
hardness of Kemeny in the general case carries over.

Theorem 9.8. Finding a Kemeny ranking is NP-hard, even for SPOC preferences.

Indeed, by the same argument essentially all negative (axiomatic or computational) results in
the sphere of voting rules based on (weighted) tournaments (see Brandt et al., 2016a, Fischer
et al., 2016) still hold restricted to SPOC preferences.

Young’s rule

Given a profile P over A, an alternative c ∈ A is a Condorcet winner if for every b ∈ A \ {c},
a majority of voters in P strictly prefers c to b. The Young score of an alternative c ∈ A is
the minimum number of voters that have to be deleted from P so that c becomes a Condorcet
winner. Then, Young’s rule selects all alternatives with minimum Young score as winners. It
is known that Young winners can be found in polynomial time for single-peaked preferences
[Brandt et al., 2015], since in this case Condorcet winners always exists when the number of
voters n is odd; and the case with n even is also handled easily.

Because SPOC does not guarantee the existence of a Condorcet winner, a different approach
is needed. We will use the interpretation of SPOC in terms of intervals of the underlying circle
to give a polynomial-time algorithm that calculates the Young score of every alternative; clearly
this algorithm can then be run repeatedly to find a Young winner. Of course, our algorithm
also works for preferences single-peaked on a line; while the algorithm of Brandt et al. [2015]
returns only a Young winner, our algorithm can find the Young score of any alternative. Note
that precise definitions of Young scores differ slightly: sometimes it is only required that an
alternative be made a weak Condorcet winner through voter deletion; our algorithm can be easily
adapted for this alternative definition.

Theorem 9.9. For SPOC profiles, the Young score of an alternative can be computed in O(mn2)
time.

123



9. Preferences Single-Peaked on Circles

Proof. We fix an axis C ∈ C that starts with the alternative a whose Young score we want to
compute; let a C b C · · · C c (b is the candidate right of a, c is the rightmost candidate). We
partition voters into two sets: N1 = {i ∈ N : b �i a} and N2 = N \N1. Since P is SPOC, for
any voter i, the set Ii := {d ∈ A : d �i a} forms an interval of C. Voters in N1 correspond to
intervals containing b; voters in N2 correspond to intervals containing c but not b, and to empty
intervals. Figure 9.2 illustrates the situation: For each voter i, an arc indicates the set Ii. The
red arcs on the right belong to voters from N1, and the blue arcs on the left belong to voters
from N2.

a bc

N2
N1

Figure 9.2.: Illlustration of the proof of Theorem 9.9, for a profile with eight voter. For each
voter, an arc indicates the set of alternatives preferred to a.

The idea behind our algorithm is that if there are voters i and j with Ii ⊆ Ij , then it is at
least as profitable (for purposes of making a the Condorcet winner) to remove voter j as to
remove voter i. Now note that the intervals Ii of voters in N1 are nested by set inclusion, and
similarly for voters in N2. Thus, we let N−r1 and N−s2 denote the subsets of N1 and N2 obtained
by deleting, respectively, the r and s voters from N1 and N2 that have the r and s largest (with
respect to set inclusion) intervals Ii. Because of the nesting property, if there is a way of deleting
r and s voters from N1 and N2 that makes a the Condorcet winner, then the deletions giving
N−r1 and N−s2 also make a the Condorcet winner.

These observations suggest the following simple algorithm: For every pair (r, s) with 0 6 r 6
|N1| and 0 6 s 6 |N2|, we check whether a is the Condorcet winner in N−r1 ∪N−s2 . We return
a pair (r∗, s∗) with r∗ + s∗ minimum for which this is the case. Then the Young score of a is
r∗ + s∗. If no such pair exists, the Young score of a is infinite.

To see that this algorithm can be run in O(mn2) time, we show how to check in O(m) time
whether a is the Condorcet winner in N−r1 ∪N

−s
2 . To do so, we precompute for every x ∈ A \ {c},

0 6 r 6 |N1|, and 0 6 s 6 |N2| the numbers

d1
r(x) = |{i ∈ N−r1 : a �i x}| − |{i ∈ N−r1 : x �i a}|,
d2
s(x) = |{i ∈ N−s2 : a �i x}| − |{i ∈ N−s2 : x �i a}|.

Note that a is a Condorcet winner in N−r1 ∪ N−s2 if and only if for all x ∈ A \ {c} it holds
that d1

r(x) + d2
s(x) > 0. The quantities d1

r(x) and d2
s(x) can be precomputed in O(mn2) time.

Verifying whether d1
r(x) + d2

s(x) > 0 requires constant time and hence O(m) time for every
x ∈ A \ {c}.

9.6. Multiwinner Elections

Much recent work has studied voting rules that select not a single winner, but a committee
W ⊆ A of candidates, where |W | = k has some desired size k (see, e.g., a recent survey by

124



9.6. Multiwinner Elections

Faliszewski et al., 2017a). Depending on the context, we may wish this committee to have
different properties. For example, we may aim for a representative committee in which as many
voters as possible have a good representative, or we may aim for a proportional committee
in which subgroups of the voters are represented by committee members in proportion to the
subgroup size. Many of the commonly-studied multiwinner rules optimise an objective function
over the set of all committees. Unsurprisingly, many of them are NP-hard to evaluate. In this
section, we show that several popular rules can be evaluated in polynomial time when preferences
are single-peaked on a circle.

In Chapter 8, we studied a rule of Chamberlin and Courant [1983] that aims for a committee
that represents as many voters as well as possible. It is usually defined for profiles of linear orders.
Recall that according to this rule, each voter i is represented by i’s favourite (highest-ranked)
alternative in W ; suppose this is ci ∈W . Then, we take the ‘utility’ of voter i to be the Borda
score (i.e., position counting from the bottom) of ci in i’s ranking. The Chamberlin–Courant
rule selects a committee of size k that maximises the sum of voter utilities. By replacing Borda
scores by other scoring vectors, we obtain a whole family of rules. The class of OWA-based rules,
as defined below, is a further generalisation of this idea.

Finding a winning committee under the Chamberlin–Courant rule is known to be NP-hard for
Borda scores [Lu and Boutilier, 2011]. Betzler et al. [2013] showed that this problem becomes
easy when the input profile is single-peaked. Their algorithm starts by running a recognition
algorithm for single-peakedness on the input to obtain an underlying axis C on which the profile
is single-peaked. Then, they run a dynamic programming algorithm which constructs an optimal
committee. Roughly, this dynamic program successively considers left prefixes of the axis C,
and constructs an optimal committee using only candidates from the prefix. Unfortunately, it is
unclear how to extend this approach to preferences single-peaked on a circle, since a circle does
not have a left endpoint where we could start the dynamic program.

Thus, we follow a different approach: We design an integer linear programming (ILP) formula-
tion encoding the winner determination problem. We then show that the matrix of coefficients
appearing in the constraints of this ILP is totally unimodular whenever the input profile is SPOC.
A well-known result states that ILPs with totally unimodular constraint matrices are optimally
solved by their LP relaxations [Hoffman and Kruskal, 1956], and can thus be solved in polynomial
time.

This approach works not only for the Chamberlin–Courant rule, but for a large class of rules
introduced by Skowron et al. [2016], called OWA-based rules (OWA stands for ordered weighted
average). Let us describe this class of rules. We will give a definition that works for weak order
inputs, and so this class includes rules that work both for linear order profiles, and for approval
profiles. Given a preference profile, as a first step the rule converts preferences into numerical
scores, using a positional scoring system. Let us describe formally how this is done. Suppose
that < is a weak order over A. Then we can uniquely partition A = A1 ∪ · · · ∪Aq into disjoint
non-empty sets such that A1 � · · · � Aq and such that a ∼ b for all a, b ∈ Ar for r ∈ [q]. The
sets Ar are called the indifference classes of the weak order <. Now, for an alternative a ∈ A, if
a ∈ Ar, the rank of a in < is r, and we write rank<(a) = r. Thus, the alternatives with rank 1
are the most-preferred alternatives. If we are given a profile P , then we write ranki(a) for i ∈ N
and a ∈ A for the rank of a in voter i’s preferences. A score vector is a vector s ∈ Rm such
that s1 > s2 > · · · > sm. Common examples are s = (m− 1,m− 2, . . . , 0) for Borda scores and
s = (1, 0, . . . , 0) for plurality scores. Given such a score vector s, we say that voter i ∈ N assigns
the score sranki(a) to alternative a ∈ A, and we write s(i, a) = sranki(a). This is the standard
definition when preferences are given by linear orders. If a voter submits an approval ballot, and
we use plurality scores, then the voter assigns score 1 to all approved alternatives and score 0 to
the remaining alternatives. Note that whenever a <i b then s(i, a) > s(i, b).

The utility a voter derives from a committee under an OWA-based rule will be a linear

125



9. Preferences Single-Peaked on Circles

combination of the scores assigned to the candidates in the committee, and these values are
calculated using an OWA operator. A weight vector α ∈ Rk defines an ordered weighted average
(OWA) operator as follows: Given any vector x ∈ Rk, first sort the entries of x into non-
increasing order, so that xσ(1) > . . . > xσ(k); second, apply the weights: the ordered weighted
average of x with weights α is given by α(x) :=

∑k
i=1 αixσ(i). For example, if α = (1, 0, . . . , 0),

then α(x) = xσ(1) = maxi∈[k] xi, so that this operator returns the maximum of the vector x.
Alternatively, if α = (1, 1, . . . , 1), then α(x) =

∑k
i=1 xσ(i) =

∑k
i=1 xi, so that this operator gives

the sum of the numbers in x.
Given a profile P , a scoring vector s, and an OWA operator α, we define the utility of a

committee W = {c1, . . . , ck} as

U(s,α,W ) =
∑
i∈N

α(s(i, c1), . . . , s(i, ck)).

Then the OWA-based multiwinner rule based on s and α outputs a committee W of size k for
which U(s,α,W ) is maximum.

For example, choosing α = (1, 0, . . . , 0) and s = (m− 1,m− 2, . . . , 0) (Borda scores) gives us
the Chamberlin–Courant rule, where each voter derives as utility the score of their favourite
committee member. Choosing α = (1, 1, 0, . . . , 0) gives us an analogue of Chamberlin–Courant
where voters obtain as utility the sum of the scores of their favourite two members of the committee
(this rule is sometimes known as 2-Borda). An OWA-based rule applied to profiles with approval
votes with α = (1, 1

2 , . . . ,
1
k ) and plurality scores s = (1, 0, 0, . . . ) gives us Proportional Approval

Voting (PAV). Thus, OWA-based rules generalise both Chamberlin–Courant and PAV.
Our polynomial-time result will only work for non-increasing OWA vectors with α1 > · · · > αk.

For example, this excludes the rule where voters are represented by their least-favourite committee
member, or by their median committee member. While such rules may be sensible in some
contexts [Skowron, 2015], this restriction seems mild for most contexts.

Next, let us give an overview about total unimodularity. A matrix A = (aij)ij ∈ Zm×n with
aij ∈ {−1, 0, 1} is called totally unimodular if every square submatrix B of A has detB ∈
{−1, 0, 1}. (The rows and columns of B need not occur contiguously in A.) The following results
are well-known. Proofs and much more about their theory can be found in the textbook by
Schrijver [1998].

Theorem 9.10 (see Schrijver, 1998, Theorem 19.1). Suppose A ∈ Zm×n is a totally unimodular
matrix, b ∈ Zm is an integral vector of right-hand sides, and c ∈ Qn is an objective vector. Then
the linear program

max cTx subject to Ax 6 b (P)

has an integral optimum solution, which is a vertex of the polyhedron {x : Ax 6 b}. Thus, the
integer linear program

max cTx subject to Ax 6 b, x ∈ Zn (IP)

is solved optimally by its linear programming relaxation (P).

An optimum solution to (IP) can be found in polynomial time [Maurras et al., 1981, Tardos,
1986]. We will now state some elementary results about totally unimodular matrices, which
allows us to build new matrices from old.

Proposition 9.11 (see Schrijver, 1998, chapter 19). If A is totally unimodular, then so is

1. its transpose AT ,

2. the matrix [A | −A] obtained from A by appending the negated columns of A,

126



9.6. Multiwinner Elections

3. the matrix [A | I] where I is the identity matrix,

4. any matrix obtained from A through permuting or deleting rows or columns.

In particular, from (3) and (4) it follows that appending a unit column (0, . . . , 1, . . . , 0)T
will not destroy total unimodularity. Further, using these transformations, we can see that
Theorem 9.10 remains true even if we add to (P) constraints giving lower and upper bounds to
some variables, if we replace some of the inequality constraints by equality constraints, or change
the direction of an inequality.

0 0 1 1 1 0
1 1 1 0 0 0
0 0 0 0 1 1
0 1 1 1 1 0
0 0 0 1 1 0





A binary matrix A = (aij) ∈ {0, 1}m×n has the strong consecutive ones
property if the 1-entries of each row form a contiguous block, as in the
example on the right. A binary matrix has the consecutive ones property
if its columns can be permuted so that the resulting matrix has the strong
consecutive ones property. The key result that will allow us to connect
single-peaked preferences to total unimodularity is as follows:

Proposition 9.12 (see Schrijver, 1998, page 279). Every binary matrix with the consecutive
ones property is totally unimodular.

We remark that by a celebrated result of Seymour [1980], it is possible to decide in polynomial
time whether a given matrix is totally unimodular, though we do not use this fact.

We are now ready to prove our main result, that OWA-based rules are easy to compute for
SPOC profiles.

Theorem 9.13. Given a SPOC profile P , and an OWA-based rule specified by a scoring vector
s and a non-increasing OWA operator α, a winning committee can be found in polynomial time.

Proof. We begin by showing the result for single-peaked profiles, and later show how to modify
the argument for SPOC profiles.

Let P be a preference profile, and let k be the target committee size. Consider the following
integer linear program, whose optimal solutions correspond to winning committees under the
OWA-based rule with operator α and scoring vector s. In the program, for each r = 2, . . . ,m, we
write s′r = sr − sr−1, and we write s′1 = s1. Thus, for every r ∈ [m], we have that sr =

∑r
p=1 s

′
p.

maximise
∑
i∈N

∑
`∈[k]

∑
r∈[m]

α` · s′r · xi,`,r (OWA-ILP)

subject to
∑
c∈A

yc = k (2)

∑
`∈[k]

xi,`,r 6
∑

c : ranki(c)6r
yc for i ∈ N, r ∈ [m] (3)

xi,`,r ∈ {0, 1} for i ∈ N, ` ∈ [k], r ∈ [m]

yc ∈ {0, 1} for c ∈ A

Every feasible solution ((xi,`,r)i,`,r, (yc)c) to the ILP corresponds to a committee W = {c ∈ A :
yc = 1}. Due to the constraint

∑
c∈A yc = k, we have that |W | = k, so this is a committee of

the required size. Next suppose that S = ((xi,`,r)i,`,r, (yc)c) is an optimal solution to the ILP.
We may assume that under S, all constraints (3) are satisfied with equality, since otherwise we
could set additional variables xi,`,r to 1 without affecting feasibility, and without lowering the
objective value of the solution (because the coefficient α` · s′r of xi,`,r is non-negative). Further,

127



9. Preferences Single-Peaked on Circles

this operation does not change the committee W . Now fix a voter i ∈ N and a rank r ∈ [m].
Suppose that there are L candidates in W which voter i places in rank r or better, i.e.,

L = |W ∩ {c ∈ A : ranki(c) 6 r}|.

By our assumption that the constraint (3) is satisfied in S with equality, exactly L of the variables
xi,`,r for ` ∈ [k] are set to 1 in S. By our assumption that the vector α is non-increasing, the
coefficients α` · s′r of xi,`,r in the objective function are non-increasing as ` goes from 1 to k.
Hence, we may assume without loss of generality that in S, we have

xi,1,r = · · · = xi,L,r = 1 and xi,L+1,r = · · ·xi,k,r = 0.

Then it follows that for i ∈ N , ` ∈ [k], r ∈ [m], we have

xi,`,r = 1 if and only if W contains at least ` candidates c with ranki(c) 6 r.

Fix i ∈ N and ` ∈ [k]. Write W = {c1, . . . , ck} so that c1 <i · · · <i ck. Then it follows that, for
every r ∈ [m],

xi,`,r = 1 if and only if ranki(c`) 6 r.

(If xi,`,r = 1, then W contains at least ` candidates c with ranki(c) 6 r, and so in particular
c1, . . . , c` must have rank r or better. Conversely, if ranki(c`) 6 r then c1, . . . , c` all have rank r
or better, so there are at least ` candidates in W with rank r or better, and so xi,`,r = 1.) Hence,
the utility of voter i in committee W is

α(sranki(c1), . . . , sranki(ck)) =
∑
`∈[k]

α` · sranki(c`)

=
∑
`∈[k]

α` ·
(∑ranki(c`)

r=1 s′r

)

=
∑
`∈[k]

ranki(c`)∑
r=1

α` · s′r

=
∑
`∈[k]

∑
r∈[m]

α` · s′r · xi,`,r.

Summing over all i ∈ N , we see that the objective value of solution S to the ILP equals U(s,α,W ),
the total utility of the committee W under the OWA-based rule. Thus, the ILP correctly encodes
the winner determination problem.

Next suppose that the profile P is single-peaked. Consider the matrix M of coefficients in the
constraints of the ILP. Let M ′ be the submatrix consisting only of the columns corresponding to
the variables (yc)c∈A. Then M ′ has one row consisting of only 1s (corresponding to constraint
(2)), and for each i ∈ N and r ∈ [m] a row whose 1-entries encode the set {c ∈ A : ranki(c) 6 r}.
Note that each of these sets is a top-initial segment of the preference order of i, and hence (see
Section 9.2) an interval of the axis on which P is single-peaked. Therefore M ′ is a consecutive
ones matrix (with the columns ordered according to the axis). Thus M ′ is totally unimodular by
Proposition 9.12. Now, the matrix M is obtained from M ′ by appending columns corresponding to
the variables xi,`,r. Each of these variables occurs in only 1 constraint of type (3) with coefficient
±1 (the sign depends on how we rearrange constraint (3) to bring all variables to one side).
Thus, the column of the variable xi,`,r is a (negative) unit column, and so by Proposition 9.11,
the matrix remains totally unimodular after appending it. Thus, M is totally unimodular.
(Technically, we also need to include the constraints 0 6 xi,`,r 6 1 and 0 6 yc 6 1, but these
are unit rows which can again be added without destroying total unimodularity.) Thus, by
Theorem 9.10, the ILP can be solved in polynomial time.

128



9.6. Multiwinner Elections

The above argument for total unimodularity does not go through if P is SPOC but not
single-peaked, because then the matrix M ′ only has the circular ones property. However, we
can rearrange the ILP in such a way that we can show total unimodularity. This is a standard
technique described in a useful survey by Dom [2009, Sec 4.1.4]. Before we begin, let us note the
following general fact: suppose we are given a system of constraints

f(x) = 0 and gj(x) 6 0 for j = 1, . . . , J.

If in this system we replace one or more of the constraints gj(x) 6 0 by gj(x)− f(x) 6 0, then
the set of feasible solutions x to the system does not change.

Let P be a SPOC preference profile. Using the algorithms from Section 9.3, find a circle C
such that P is single-peaked on C, and take some C ∈ C arbitrarily. For i ∈ N and r ∈ [m],
write Ti,r = {c ∈ A : ranki(c) 6 r}. Then Ti,r is a top-initial segment of i’s vote. Since P is
single-peaked on C, Ti,r is an interval of C. Thus, either Ti,r or A\Ti,r is an interval of C. Define
the sets

Γ1 = {(i, r) : i ∈ N, r ∈ [m] such that Ti,r is an interval of C},
Γ2 = {(i, r) : i ∈ N, r ∈ [m] such that A \ Ti,r is an interval of C} \ Γ1.

Then Γ1 and Γ2 form a partition of N × [m]. Now consider the following integer linear program:

maximise
∑
i∈N

∑
`∈[k]

∑
r∈[m]

α` · s′r · xi,`,r (OWA-ILP-SPOC)

subject to
∑
c∈A

yc − k = 0 (2’)

∑
`∈[k]

xi,`,r 6
∑

c : ranki(c)6r
yc for i ∈ N, r ∈ [m] with (i, r) ∈ Γ1 (3’)

∑
`∈[k]

xi,`,r 6 −
∑

c : ranki(c)>r
yc + k for i ∈ N, r ∈ [m] with (i, r) ∈ Γ2 (3”)

xi,`,r ∈ {0, 1} for i ∈ N, ` ∈ [k], r ∈ [m]

yc ∈ {0, 1} for c ∈ A

The program (OWA-ILP-SPOC) is very similar to the original program (OWA-ILP). Note that
constraint (2’) is the same as (2) after rearranging. The constraints (3’) are a selection of the
constraints (3). Finally, constraints (3”) are obtained from constraints (3) after subtracting
constraint (2’). Since (2’) is an equality constraint, by the earlier mentioned general fact, we see
that (OWA-ILP-SPOC) and (OWA-ILP) have the same set of feasible solutions. They also have
the same objective function, and therefore (OWA-ILP-SPOC) also correctly encodes the problem
of finding a winning committee.

Finally, we can prove that (OWA-ILP-SPOC) is totally unimodular, establishing the result
that a winning committee can be found in polynomial time for SPOC profiles. Again take the
constraint matrix M and consider the submatrix M ′ corresponding to the variables (yc)c∈A. If we
rearrange the columns of M ′ according to C, then each row of M ′ consists of either of an interval
of +1s surrounded by 0s, or of an interval of −1s surrounded by 0s (the latter arising from
constraints (3”)). Combining Propositions 9.12 and 9.11, we see that M ′ is totally unimodular.
As before, M is obtained from M ′ by adding columns with a single non-zero entry, so M is also
totally unimodular.

We obtain immediately the following two corollaries:

129



9. Preferences Single-Peaked on Circles

Corollary 9.14. For SPOC profiles, Chamberlin–Courant can be computed in polynomial time.

Corollary 9.15. For SPOC profiles, PAV can be computed in polynomial time.

An interesting question is whether the method of Theorem 9.13 can be further generalized. For
example, does winner determination of OWA-based rules remain easy on single-peaked or SPOC
profiles when we drop the unit cost assumption? This would be interesting for participatory
budgeting applications. Since totally unimodular matrices can only include coefficients from
{−1, 0, 1}, it seems unlikely that the packing constraint for non-unit costs can be implemented
in this approach. However, we are not aware of a hardness result for this problem.

Fluschnik et al. [2019] study a rule that is an analogue of PAV where utilities need not be
binary. They show that this generalization of PAV remains hard to compute for single-peaked
utilities, thereby establishing a limit on the generalisability of the method of Theorem 9.13.

The ILP formulation (OWA-ILP) from the proof of Theorem 9.13 is of independent interest for
computing OWA-based rules; for example, it seems to have proven useful in the empirical study
of Faliszewski et al. [2018b]. Indeed, the “algorithm” that we propose for computing OWA-based
rules (i.e., solving the program (OWA-ILP) using an ILP solver) is correct for general preferences,
and comes with a polynomial-time guarantee in case the algorithm’s input is single-peaked. This
is in contrast to other winner determination algorithms that exploit preference structure: most
such algorithms are specialised, and do not work at all if their input fails to be appropriately
structured (this is the case, e.g., for the algorithms of Theorems 8.7, 8.9, and 9.9).

9.7. Discussion and Open Problems
Our results show that restricted preference domains that behave unfavourably in terms of
axiomatic properties might still be very useful for algorithmic purposes. Indeed, our algorithms
for Young’s rule and OWA-based committee selection rules demonstrate that it is possible to
move to a larger class than single-peaked preferences while maintaining polynomial-time runtime
bounds. Thus, our findings can be seen as a challenge to established algorithmic results based
on restricted preferences: to which degree can their application domain be extended without
resorting to super-polynomial algorithms? One open problem of this type asks whether Dodgson’s
rule can be evaluated in polynomial time for SPOC profiles.

Our definition of SPOC is not the only sensible definition. One alternative definition that
would fit into the generalised notion of single-peakedness introduced by Nehring and Puppe [2007]
is based on shortest paths: it requires that for every voter i and for every alternative x, there is
a shortest path between top(i) and x along which i’s preferences are decreasing. (Without the
word “shortest” this is equivalent to SPOC.) The impact of this alternative definition is that
every voter’s least-preferred alternative needs to be antipodal to the voter’s peak; this is strictly
more restrictive than SPOC. It would be interesting to see whether this smaller domain allows
for a wider range of positive results than SPOC.

Another direction for future work would be to extend the SPOC concept to two (and more)
dimensions – preferences single-peaked on a sphere – but this may be difficult since little is
known even about extensions of single-peakedness on a line to two or more dimensions (see Sui
et al. 2013).

Thanks to Edith Elkind for discussions, and an anonymous AAAI-17 reviewer who
pointed out mistakes in an early version.

130



Part IV.

Allocation of Indivisible Items with
Connected Bundles

131





10. Maximin Fair Share and Envy-Freeness up
to One Good

We study the allocation of indivisible private goods under the additional constraint
that each bundle needs to be connected in an underlying item graph G. We allow
agents to have arbitrary monotonic utility functions over bundles. In particular, we
are interested in the existence of fair allocations, in the sense of satisfying the maximin
share guarantee (MMS) or being envy-free up to one good (EF1). We show that
MMS allocations are guaranteed to exist whenever G is a tree. When the items are
arranged in a path, we show that EF1 allocations are guaranteed to exist, provided
that either there are at most three agents, or there are any number of agents but
they all have identical utility functions. Our existence proofs are based on classical
arguments from the divisible cake-cutting setting, and involve discrete analogues of
cut-and-choose and of Stromquist’s moving-knife protocol. Further, the Su-Simmons
technique based on Sperner’s lemma can be used to show that on a path, an EF2
allocation exists for any number of agents. Except for the results using Sperner’s
lemma, all of our procedures can be implemented by efficient algorithms. Our positive
results for paths imply the existence of connected EF1 or EF2 allocations whenever
G is traceable, i.e., contains a Hamiltonian path. For the case of two agents, we
completely characterise the class of graphs G that guarantee the existence of EF1
allocations as the class of graphs whose biconnected components are arranged in a
path. This class is strictly larger than the class of traceable graphs; one can check in
linear time whether a graph belongs to this class, and if so return an EF1 allocation.

10.1. Introduction

A famous literature considers the problem of cake-cutting [Brams and Taylor, 1996, Robertson
and Webb, 1998, Procaccia, 2016]. There, a divisible heterogeneous resource (a cake, usually
formalised as the interval [0, 1]) needs to be divided among n agents. Each agent has a valuation
function over subsets of the cake, usually formalised as an atomless measure over [0, 1]. The aim
is to partition the cake into n pieces, and allocate each piece to one agent, in a “fair” way. By
fair, we will mean that the allocation is envy-free: no agent i thinks that another agent’s piece is
more valuable than i’s own piece. A weaker fairness notion is proportionality, which requires
that each agent i obtains a piece that i values at least 1/n as much as the entire cake [0, 1].

When there are two agents, the classic procedure of cut-and-choose can produce an envy-free
division: a knife is moved from left to right, until an agent shouts to indicate that the agent
thinks the pieces to either side are equally valuable. The other agent then picks one of the pieces,
leaving the remainder for the shouter. As is easy to see, the result is an envy-free allocation. For
three or more agents, finding an envy-free division has turned out to be much trickier. An early
result by Dubins and Spanier [1961] used Lyapunov’s Theorem and measure-theoretic techniques
to show, non-constructively, that an envy-free allocation always exists. However, as Stromquist
[1980] memorably writes, “their result depends on a liberal definition of a ‘piece’ of cake, in
which the possible pieces form an entire σ-algebra of subsets. A player who only hopes for a
modest interval of cake may be presented instead with a countable union of crumbs.” In many

133



10. Maximin Fair Share and Envy-Freeness up to One Good

applications of resource allocation (such as land division, or the allocation of time slots), agents
have little use for a severely disconnected piece of cake.

Stromquist [1980] himself offered a solution, and gave a new non-constructive argument (using
topology) which proved that there always exists an envy-free division of the cake into intervals.
Forest Simmons later observed that the proof could be simplified by using Sperner’s lemma, and
this technique was subsequently presented in a paper by Su [1999]. For the three-agent case,
Stromquist [1980] also presented an appealing moving-knife procedure that more directly yields
a connected envy-free allocation. For n > 4 agents, no explicit procedures are known to produce
a connected envy-free allocation (i.e., an allocation where the cake is cut in exactly n− 1 places).
However, for n = 4, several moving-knife procedures exist that only need few cuts; for example,
the Brams–Taylor–Zwicker [1997] procedure requires 11 cuts, and a protocol of Barbanel and
Brams [2004] requires 5 cuts. (If we only aim for proportionality instead of envy-freeness, then
explicit procedures are known for every n > 2.)

In many applications, the resources to be allocated are not infinitely divisible, and we face
the problem of allocating indivisible goods. Most of the literature on indivisible goods has not
assumed any kind of structure on the item space, in contrast to the rich structure of the interval
[0, 1] in cake-cutting. Thus, there has been little attention on minimising the number of “cuts”
required in an allocation. However, when the items have a spatial or temporal structure, and
disconnected bundles are infeasible or undesirable, this consideration is important.

In this chapter, we study the allocation of items that are arranged on a path or other structure,
and impose the requirement that only connected subsets of items may be allocated to the agents.
Formally, we assume that the items form the vertex set of a graph G. A bundle of items is
connected if it induces a connected subgraph of G.

In general, it is impossible to achieve envy-freeness or proportionality with indivisible items:
Consider two agents and a single desirable item; none of the possible partitions is envy-free
or proportional. Instead, we can look for approximations. In an influential paper, Budish
[2011] introduced weakened versions both of proportionality and of envy-freeness, adapted for
the indivisible setting (without connectivity constraints). Both notions have turned out to be
extremely productive, and have received much attention in the recent literature.

Budish’s version of proportionality is the maximin share guarantee, abbreviated MMS. Rather
than aiming to guarantee each agent a bundle of value at least 1/n of the entire set of available
items, Budish defines a different guarantee. We imagine that each agent divides the items into n
bundles, and will then choose last among the bundles, so that the agent receives the worst of the
n bundles in the worst case. If the agent chooses the division into bundles so as to optimise the
value of the worst bundle, we refer to the value of that bundle as the agent’s MMS value. An MMS
allocation gives every agent a bundle that is at least as valuable as the MMS value. For additive
valuations in the setting without connectivity constraints, it was unclear whether an MMS
allocation is guaranteed to exist. Bouveret and Lemâıtre [2016] could not find a counterexample
with extensive sampling. Procaccia and Wang [2014] later found a counterexample, and a family
of more compact examples was found by Kurokawa et al. [2018]. These examples are very
intricate in the sense that the additive valuations have many decimal digits. Here, we consider
the analogue of the MMS property for the connected setting. The definition is almost the same,
except that when calculating the MMS values, we only allow partitions into connected bundles.
Therefore, the MMS values are smaller than in the general setting, making the MMS guarantee
easier to satisfy. On the other hand, we are restricted to satisfying the MMS guarantee with
connected allocations only, which makes it harder. We are able to show that, when G is a path
or a tree, then an MMS allocation always exists. The argument can be seen as an adaptation of
the last diminisher procedure, which guarantees proportionality in cake cutting. Our argument
works for any monotonic valuations, and they need not be additive. In contrast, we find a simple
example where no MMS allocation exists when G is a cycle.

134



10.1. Introduction

Budish also introduced the notion of envy-freeness up to one good (EF1). It requires that
an agent’s envy towards another bundle vanishes if we remove some item from the envied
bundle. Caragiannis et al. [2016a] show that, in the setting without connectivity constraints and
with additive valuations, the maximum Nash welfare solution satisfies EF1, as does a simple
round-robin procedure. The well-known envy-graph algorithm from Lipton et al. [2004] also
guarantees EF1. However, none of these procedures respects connectivity constraints.

We attempt to prove that connected EF1 allocations exist when G is a path. Like for MMS, we
again take inspiration from the methods that worked for cake-cutting. Thus, we use successively
more complicated tools to establish these existence results, and we prove that connected EF1
allocations exist when there are two or three agents. For two agents, there is a discrete analogue
of cut-and-choose that satisfies EF1. In that procedure, a knife moves across the path, and an
agent shouts when the knife reaches what we call a lumpy tie, that is when the bundles to either
side of the knife have equal value up to one item. For three agents, we design an algorithm
mirroring Stromquist’s moving-knife procedure which guarantees EF1. For four or more agents,
we show that Sperner’s lemma can be used to prove that an EF2 allocation exists, via a technique
inspired by the Simmons–Su approach, and an appropriately triangulated simplex of connected
partitions of the path. We also show that if all agents have the same valuation function over
bundles, then an egalitarian-welfare-optimal allocation, after suitably reallocating some items, is
EF1.

These existence results require only that agents’ valuations are monotonic (they need not be
additive). Moreover, the fairness guarantee of our algorithms is slightly stronger than the standard
notion of EF1: in the returned allocations, envy can be avoided by removing just an outer item
– one whose removal leaves the envied bundle connected. Computationally speaking, all our
existence results are immediately useful, since an example of an EF1 allocation can be found by
iterating through all O(mn) connected allocations (this stands in contrast to cake-cutting where
we cannot iterate through all possibilities). While we know of no faster algorithms to obtain an
EF1 allocation in the cases where we appeal to Sperner’s lemma, our other procedures can all be
implemented efficiently.

In simultaneous and independent work, Oh et al. [2019] designed protocols to find EF1
allocations in the setting without connectivity constraints, aiming for low query complexity. They
found that adapting cake-cutting protocols to the setting of indivisible items arranged on a path
is an especially potent way to achieve low query complexity. This led them to also study a
discrete version of the cut-and-choose protocol which achieves connected EF1 allocations for two
agents, and they found an alternative proof that an EF1 allocation on a path always exists with
identical valuations. They also present a discrete analogue of the Selfridge–Conway procedure
which, for three agents with additive valuations, produces an allocation of a path into bundles
that have a constant number of connected components. However, they do not study connected
allocations on graphs that are not paths, and they do not consider the case of (non-identical)
general valuations with more than two agents.

A recurring theme in our algorithms is the specific way that the moving knives from cake-
cutting are rendered in the discrete setting. While one might expect knives to be placed over
the edges of the path, and ‘move’ from edge to edge, we find that this movement is too ‘fast’
to ensure EF1 (see also footnote 4). Instead, our knives alternate between hovering over edges
and items. When a knife hovers over an item, we imagine the knife’s blade to be ‘thick’: the
knife covers the item, and agents then pretend that the covered item does not exist. These
intermediate steps are useful, since they can tell us that envy will vanish if we hide an item from
a bundle.

What about graphs G other than paths? Our positive results for paths immediately generalise
to traceable graphs (those that contain a Hamiltonian path), since we can run the algorithms
pretending that the graph only consists of the Hamiltonian path. For the two-agent case, we

135



10. Maximin Fair Share and Envy-Freeness up to One Good

completely characterise the class of graphs that guarantee the existence of EF1 allocations: Our
discrete cut-and-choose protocol can be shown to work on all graphs G that admit a bipolar
numbering, which exists if and only if the biconnected components (blocks) of G can be arranged
in a path. By constructing counterexamples, we prove that no graph failing this condition (for
example, a star) guarantees EF1, even for identical, additive, binary valuations. For the case
of three or more agents, it is a challenging open problem to characterise the class of graphs
guaranteeing EF1 (or even to find an infinite class of non-traceable graphs that guarantees EF1).

10.2. Preliminaries

For each natural number s ∈ N, write [s] = {1, 2, . . . , s}.
Let N = [n] be a finite set of agents and G = (V,E) be an undirected finite graph. We refer

to the vertices in V as goods or items. A subset I of V is connected if it induces a connected
subgraph G[I] of G. We write C(V ) ⊆ 2V for the set of connected subsets of V . We call a set
I ∈ C(V ) a (connected) bundle. Each agent i ∈ N has a valuation function ui : C(V ) → R
over connected bundles, which we will always assume to be monotonic, that is, X ⊆ Y implies
ui(X) 6 ui(Y ). We also assume that ui(∅) = 0 for each i ∈ N . Monotonicity implies that items
are goods; we do not consider bads (or chores) in this chapter. We say that an agent i ∈ N weakly
prefers bundle X to bundle Y if ui(X) > ui(Y ); also, agent i ∈ N strictly prefers bundle X to
bundle Y if ui(X) > ui(Y ).1 A (connected) allocation is a function A : N → C(V ) assigning to
each agent i ∈ N a connected bundle A(i) ∈ C(V ) such that each item occurs in exactly one
agent’s bundle, i.e.,

⋃
i∈N A(i) = V and A(i) ∩A(j) = ∅ whenever i 6= j.

We say that the agents have identical valuations when for all i, j ∈ N and every bundle
I ∈ C(V ), we have ui(I) = uj(I). A valuation function ui is additive if ui(I) =

∑
v∈I ui({v}) for

each bundle I ∈ C(V ). Many examples in this chapter will use identical additive valuations, and
will take G to be a path. In this case, we use a succinct notation to specify these examples; the
meaning of this notation should be clear. For example, we write “2–1–3–1” to denote an instance
with four items v1, v2, v3, v4 arranged on a path, and where ui({v1}) = 2, . . . , ui({v4}) = 1 for
each i. For such an instance, an allocation will be written as a tuple, e.g., (2, 1–3–1) denoting an
allocation allocating bundles {v1} and {v2, v3, v4}, noting that with identical valuations it does
not usually matter which agent receives which bundle.

Let Πn denotes the set of all partitions of V into n connected bundles. The maximin share of
an agent i ∈ N is

MMSi := max
(P 1,P 2,...,Pn)∈Πn

min
j∈[n]

ui(P j).

This is the utility achieved by agent i if i divides the items into n connected pieces so as to
maximise the value of the worst piece. An allocation A is an MMS allocation if ui(A(i)) > MMSi
for each agent i ∈ N .

An allocation A is envy-free if ui(A(i)) > ui(A(j)) for every pair i, j ∈ N of agents, that is, if
every agent thinks that their bundle is a best bundle in the allocation. It is well-known that an
envy-free allocation may not exist (consider two agents and one good). The main fairness notion
that we study is a version of envy-freeness up to one good (EF1), a relaxation of envy-freeness
introduced by Budish [2011] and popularised by Caragiannis et al. [2016a], adapted to the model
with connectivity constraints. This property states that an agent i will not envy another agent
j after we remove some single item from j’s bundle. Since we only allow connected bundles in

1Our arguments only operate based on agents’ ordinal preferences over bundles, and the (cardinal) valuation
functions are only used for notational convenience. One exception, perhaps, is in Algorithm 9 where we
calculate a leximin allocation, but the algorithm can be applied after choosing an arbitrary utility function
consistent with the ordinal preferences.

136



10.3. MMS Existence

our set-up, we may only remove an item from A(j) if removal of this item leaves the bundle
connected. Thus, our formal definition of EF1 is as follows.

Definition 10.1 (EF1: envy-freeness up to one outer good). An allocation A satisfies EF1 if
for any pair i, j ∈ N of agents, either A(j) = ∅ or there is a good v ∈ A(j) such that A(j) \ {v}
is connected and ui(A(i)) > ui(A(j) \ {v}).

In the instance 2–1–3–1 for two agents, the allocation (2–1, 3–1) is EF1, since the left agent’s
envy can be eliminated by removing the item of value 3 from the right-hand bundle. However,
the allocation (2, 1–3–1) fails to be EF1 according to our definition, since eliminating either
outer good of the right bundle does not prevent envy.2

Definition 10.2. A graph G guarantees EF1 (for a specific number of agents n) if for all possible
monotonic valuations for n agents, there exists some connected allocation that is EF1. A graph
G guarantees EF1 for n agents and a restricted class of valuations if for all allowed valuations, a
connected EF1 allocation exists.

For reasoning about EF1 allocations, let us introduce a few shorthands. Given an allocation A
we will say that i ∈ N does not envy j ∈ N up to v if ui(A(i)) > ui(A(j) \ {v}). The up-to-one
valuation u−i : C(V )→ R>0 of agent i ∈ N is defined, for every I ∈ C(V ), as

u−i (I) :=
{

0 if I = ∅,
min

{
ui(I \ {v}) : v ∈ I such that I \ {v} is connected

}
if I 6= ∅.

(10.1)

Thus, an allocation A satisfies EF1 if and only if ui(A(i)) > u−i (A(j)) for any pair i, j ∈ N of
agents.

Given an ordered sequence of the vertices P = (v1, v2, . . . , vm), and j, k ∈ [m] with j 6 k, we
denote the subsequence from vj to vk by P (vj , vk), i.e.,

P (vj , vk) = (vj , vj+1, . . . , vk−1, vk).

With a little abuse of notation, we often identify a subsequence P (vj , vk) with the bundle
of the corresponding vertices. Let us define L(vj) = P (v1, vj−1) as the subsequence of vertices
strictly left of vj and R(vj) = P (vj+1, vm) as the subsequence of vertices strictly right of vj .
When G is a path, in the following we always implicitly assume that its vertices v1, v2, . . . , vm
are numbered from left to right according to the order they appear along the path, so that the
set of the edges of G is {{vj , vj+1} : 1 6 j < m}. Each connected bundle in the path clearly
corresponds to a subpath or subsequence of the vertices. A Hamiltonian path of a graph G is a
path that visits all the vertices of the graph exactly once. A graph is traceable if it contains a
Hamiltonian path.

10.3. MMS Existence
Suppose G is a path, and we are given a profile of agent valuations. Our aim is to find an MMS
allocation. To this end, for each agent i ∈ N , let (P 1

i , . . . , P
n
i ) ∈ Πn be a partition of the items

such that minj∈[n] P
j
i = MMSi. Now, in the allocation A we are going to construct, some agent

i ∈ N is going to obtain the left-most bundle, and in order for A to be an MMS allocation, we
2This example shows that our definition is strictly stronger than the standard definition of EF1 without

connectivity constraints. In the instance 2–1–3–1, considered without connectivity constraints, the allocation
(2, 1–3–1) does satisfy EF1 since in the standard setting we are allowed to remove the middle item (with value
3) of the right bundle.

137



10. Maximin Fair Share and Envy-Freeness up to One Good

need that P 1
i ⊆ A(i). Since we can reallocate extra items, while looking for an MMS allocation,

we may search for allocations where A(i) = P 1
i for some agent i.

Now, how can we decide which agent should receive the left-most item? An intuitive choice
would be the agent whose MMS guarantee can most easily be satisfied. Thus, we would look for
an agent j ∈ N such that |P 1

j | is minimal, and allocate P 1
j to that agent. Now we can recurse on

the remaining items and the remaining agents.
The reduced instance we have obtained in this way has a convenient property: If we calculate

the MMS values of the remaining n− 1 agents on the remaining items, these MMS values can
only have increased. This is because the bundles in the partitions (P 2

i , . . . , P
n
i ) for i ∈ N \ {j}

only contain items that still remain, having chosen |P 1
j | minimal. Thus, by induction (the case

n = 1 being trivial), if we can obtain an MMS allocation of the remaining instance and combine
it with the allocation of P 1

j to agent j, we have obtained an MMS allocation for our original
instance. Thus, we have proved that MMS allocations always exist when G is a path.

Theorem 10.3. When G is a path, an MMS allocation exists.

The procedure sketched above can be implemented in polynomial time, because we can use
a straightforward dynamic program to compute MMS values when G is a path. The resulting
procedure can be seen as a discrete analogue of the last-diminisher procedure, which can be used
in cake-cutting to obtain a proportional division. This procedure was discovered by Banach and
Knaster [Steinhaus, 1948, Brams and Taylor, 1996].

One can prove that Theorem 10.3 continues to hold when G is a tree or a forest [Bouveret,
Cechlárová, Elkind, Igarashi, and Peters, 2017]. In the argument, we root the tree, and then
look for an agent whose MMS guarantee can be satisfied by a subtree of minimum height. The
correctness proof is similar, and the procedure can be implemented in polynomial time. On the
other hand, an MMS allocation is not guaranteed to exist when G is a cycle, and there is a
simple counterexample [Bouveret et al., 2017]. Lonc and Truszczynski [2018] showed that there
exist approximate MMS allocations when G is a cycle.

10.4. EF1 Existence for Two Agents
In cake-cutting for two agents, the standard way of obtaining an envy-free allocation is the
cut-and-choose protocol: Alice divides the cake into two equally-valued pieces, and Bob selects
the piece he prefers; the other piece goes to Alice. The same strategy almost works in the
indivisible case when items form a path; the problem is that Alice might not be able to divide
the items into two exactly-equal pieces. Instead, we ask Alice to divide the items into pieces that
are equally valued “up to one good”. The formal version is as follows. For a sequence of vertices
P = (v1, v2, . . . , vm) and an agent i, we say that vj is the lumpy tie over P for agent i if j is the
smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (10.2)

For example, when i has additive valuations 1–3–2–1–3–1, then the third item (of value 2) is the
lumpy tie for i, since 1 + 3 + 2 > 1 + 3 + 1 and 2 + 1 + 3 + 1 > 1 + 3. The lumpy tie always
exists: taking j to be the smallest index such that ui(L(vj) ∪ {vj}) > ui(R(vj)) (which exists
as the inequality holds for j = m by monotonicity), the first part of (10.2) holds. If j = 1, the
second part of (10.2) is immediate by monotonicity. If j > 1, then since j is minimal, we have
ui(L(vj)) = ui(L(vj−1) ∪ {vj−1}) < ui(R(vj−1)) = ui(R(vj) ∪ {vj}) which is the second part of
(10.2).

Using the concept of the lumpy tie, our discrete version of the cut-and-choose protocol is
specified as follows.

138



10.4. EF1 Existence for Two Agents

Discrete cut-and-choose protocol for n = 2 agents over a sequence P = (v1, v2, . . . , vm):
Step 1. Alice selects her lumpy tie vj over (v1, v2, . . . , vm).
Step 2. Bob chooses a weakly preferred bundle among L(vj) and R(vj).
Step 3. Alice receives the bundle of all the remaining vertices, including vj .

Intuitively, the protocol allows Alice to select an item vj that she will receive for sure, with
the advice that the two pieces to either side of vj should have almost equal value to her. Then,
Bob is allowed to choose which side of vj he wishes to receive. In our example with valuations
1–3–2–1–3–1, Alice selects the lumpy tie of value 2, then Bob chooses the bundle 1–3–1 to the
right and receives it, and Alice receives the bundle 1–3–2. The result is EF1. This is true in
general, and also if valuations are not identical.

Proposition 10.4. When G is a path and there are n = 2 agents, the discrete cut-and-choose
protocol yields an EF1 allocation.

Proof. Clearly, the protocol returns a connected allocation. The returned allocation satisfies EF1:
Bob does not envy Alice up to item vj , since Bob receives his preferred bundle among L(vj) and
R(vj). Also, by (10.2), Alice does not envy Bob, since Alice either receives the bundle L(vj)∪{vj}
which she weakly prefers to Bob’s bundle R(vj), or she receives the bundle R(vj) ∪ {vj}, which
she weakly prefers to Bob’s bundle L(vj).

Proposition 10.4 implies that an EF1 allocation always exists on a path. It immediately follows
that an EF1 allocation exists for every traceable graph G: simply use the discrete cut-and-choose
protocol on a Hamiltonian path of G; the resulting allocation must be connected in G. In fact,
the discrete cut-and-choose protocol works on a broader class of graphs: We only need to require
that the vertices of the graph can be numbered in a way that the allocation resulting from
the discrete cut-and-choose protocol is guaranteed to be connected. Since the protocol always
partitions the items into an initial and a terminal segment of the sequence, such a numbering
needs to satisfy the following property.

Definition 10.5. A bipolar numbering of a graph G is an ordered sequence (v1, v2, . . . , vm) of
its vertices such that for each j ∈ [n], the sets L(vj) ∪ {vj} and R(vj) ∪ {vj} are connected in G.

An equivalent definition (which is the standard one) says that a numbering is bipolar if for every
j ∈ [n], the vertex vj has a neighbour that appears earlier in the sequence, and a neighbour that
appears later in the sequence. Bipolar numberings are used in algorithms for testing planarity
and for graph drawing. Every Hamiltonian path induces a bipolar numbering, but there are also
non-traceable graphs that admit a bipolar numbering, see Figure 10.1 for examples.

1 2

3

4

5 6 1 2

3

4

5

6 7 1

2

3

4

5

6

7 1 2

3 4

5 6

7 8

Figure 10.1.: Non-traceable graphs with bipolar numberings.

Proposition 10.6. When there are n = 2 agents, then the discrete cut-and-choose protocol run
on a bipolar numbering of G yields an EF1 allocation.

Proof. The discrete cut-and-choose protocol always returns an allocation whose bundles are
either initial or terminal segments of the ordered sequence (v1, v2, . . . , vm). By definition of a
bipolar numbering, such an allocation is connected. The argument of Proposition 10.4 shows
that the allocation satisfies EF1.

139



10. Maximin Fair Share and Envy-Freeness up to One Good

It is clear that the discrete cut-and-choose protocol cannot be extended to graphs other than
those admitting a bipolar numbering. However, it could be that a different protocol is able
to produce EF1 allocations on other graphs. In the remainder of this section, we prove that
this is not the case: for n = 2 agents, a connected graph G guarantees the existence of an EF1
allocation if and only if it admits a bipolar numbering. This completely characterises the class of
graphs that guarantee EF1 existence in the two-agent case.3

For a different number of agents, the class of graphs guaranteeing an EF1 allocation will be
different. In particular, the star with three leaves does not guarantee an EF1 allocation for two
agents (as it does not have a bipolar numbering, see below), but one can check that this star
does guarantee an EF1 allocation for three or more agents.

10.4.1. Characterisation of graphs guaranteeing EF1 for two agents
Based on a known characterisation of graphs admitting a bipolar numbering, we characterise this
class in terms of forbidden substructures. We then show that these forbidden structures are also
forbidden for EF1: if a graph contains such a structure, we can exhibit an additive valuation
profile for which no EF1 allocation exists.

As a simple example, consider the star with three leaves, which is the smallest
connected graph that does not have a bipolar numbering. Suppose there are
two agents with identical additive valuations that value each item at 1. Any
connected allocation must allocate three items to one agent, and a single item
to the other agent. No such allocation is EF1, since the agent with the singleton bundle envies
the other agent, even up to one good. This star is an example of what we call a trident, and
forms a forbidden substructure. Informally, the forbidden substructures take one of two forms.
We will prove that a graph G fails to admit a bipolar numbering, and fails to guarantee EF1 for
two agents, iff either

(a) there exists a vertex s whose removal from G leaves three or more connected components, or

(b) there are subgraphs C,P1, P2, P3 of G such that (i) G is the union of these subgraphs, (ii)
the subgraphs P1, P2, P3 are vertex-disjoint, (iii) C has exactly one vertex is common with
Pi, i = 1, 2, 3, and (iv) no edge joins a vertex from one of these four subgraphs to a different
one.

To reason about these structures, it is useful to consider the block decomposition of a graph,
which will show that graphs that admit a bipolar numbering have an underlying path-like
structure. A decomposition of a graph G = (V,E) is a family {F1, F2, . . . , Ft} of edge-disjoint
subgraphs of G such that

⋃t
i=1E(Fi) = E where E(Fi) is the set of edges of a subgraph Fi.

Definition 10.7. A vertex is called a cut vertex of a graph G if removing it increases the number
of connected components of G. A graph G is biconnected if G does not have a cut vertex. A
block of G is a maximal biconnected subgraph of G.

Equivalently, a block of a graph G can be defined as a maximal subgraph of G where each
pair of vertices lie on a common cycle [Bondy and Murty, 2008]. Given a connected graph G, we
define a bipartite graph B(G) with bipartition (B, S), where B is the set of blocks of G and S is
the set of cut vertices of a graph G; a block B and a cut vertex v are adjacent in B(G) if and
only if B includes v. Since every cycle of a graph is included in some block, the graph B(G) is
known to be a tree:

3Note that no non-trivial disconnected graph guarantees EF1 for two agents: If G is disconnected, take a
connected component C with at least two vertices. Let both agents have additive valuations that value each
item in C at 1, and value items outside of C at 0. Then, in a connected allocation, all items in C must go to a
single agent, since the other agent needs to receive items from another connected component. This induces
envy in the other agent that is not bounded by one good.

140



10.4. EF1 Existence for Two Agents

Lemma 10.8 (Bondy and Murty, 2008). Let G be a connected graph. Then

• any two blocks of G have at most one cut vertex in common;

• the set of blocks forms a decomposition of G; and

• the graph B(G) is a tree.

Thus, for a connected graph G, we call B(G) the block tree of G. It turns out that G admits a
bipolar numbering if and only if B(G) is a path. For example, the graphs shown in Figure 10.1
all have their blocks arranged in a path (so that B(G) is a path), as shown in Figure 10.2.

1 2

3

4

5 6 1 2

3

4

5

6 7 1

2

3

4

5

6

7 1 2

3 4

5 6

7 8

Figure 10.2.: Block decompositions of graphs in Figure 10.1.

Lemma 10.9. A graph G admits a bipolar numbering if its block tree B(G) is a path.

Proof. Lempel et al. [1967] proved that G admits a bipolar numbering if there exist s, t ∈ V
such that adding an edge {s, t} to G makes the graph biconnected. Suppose B(G) is a path, and
let B1 and B2 be the leaf blocks at the ends of the path B(G). Take any s ∈ B1 and t ∈ B2. If
we add the edge {s, t} to G, then the graph becomes biconnected. Hence, G admits a bipolar
numbering.

Even and Tarjan [1976] provided a linear-time algorithm based on depth-first search to construct
a bipolar numbering for any biconnected graph [see also Tarjan, 1986]. Using an algorithm by
Hopcroft and Tarjan [1973] (also based on depth-first search), we can calculate the block tree
B(G) of a given graph in linear time. Thus, in linear time, we can compute a bipolar numbering
of a graph whose block tree is a path, or establish that no bipolar numbering exists. Clearly,
given a bipolar numbering, the discrete cut-and-choose protocol can also be run in linear time.

Next, we show that if B(G) is not a path, then G cannot guarantee EF1. The proof constructs
explicit counter-examples, which have a very simple structure. We say that additive valuations
ui are binary if ui({v}) ∈ {0, 1} for every v ∈ V .

Lemma 10.10. Let G be a connected graph whose block tree B(G) is not a path. Then there
exist identical, additive, binary valuations over G for two agents such that no connected allocation
is EF1.

Proof. If B(G) is not a path, then B(G) has a trident, i.e., a vertex with at least three neighbours,
and thus either

(a) there is a cut vertex s adjacent to three blocks B1, B2, and B3; or

(b) there is a block B adjacent to three different cut vertices s1, s2, and s3.

See Figure 10.3 for an illustration. In either case, we will construct identical additive valuations
that do not admit a connected EF1 allocation.

In case (a), for each i = 1, 2, 3, choose a vertex vi from Bi \ {s}. Note that we can choose such
vi 6= s due to the maximality of Bi. The two agents have utility 1 for s, v1, v2, and v3, and 0 for
the remaining vertices. Now take any connected allocation (I1, I2). One of the bundles, say I1,
includes the cut vertex s. Then I2 can contain at most one of the vertices v1, v2, v3, since I2 is

141



10. Maximin Fair Share and Envy-Freeness up to One Good

B2

B1 B3

(a) A cut vertex adjacent to three blocks

BB1 B3

B2

(b) A block adjacent to three cut vertices

Figure 10.3.: Tridents.

connected and does not contain s yet any path between distinct vi and vj goes trough s. Hence
ui(I2) 6 1. Now, the bundle I1 contains s and at least two of v1, v2, v3, so ui(I1) > 3. Thus, the
allocation is not EF1.

In case (b), for each i = 1, 2, 3, let Bi be the block sharing the cut vertex si with B. Note
that each pair of the blocks B1, B2, B3 does not share any cut vertex because B(G) forms a
tree. Choose a vertex vi from Bi \ {si} for each i = 1, 2, 3. Again, one can choose vi 6= si due
to the maximality of Bi. The two agents have utility 1 for s1, s2, s3, v1, v2, and v3, and 0 for
the remaining vertices. Now take any connected allocation (I1, I2). One of the bundles, say I1,
contains at least two cut vertices si and the other contains at most one cut vertex si. Say that
s1, s2 ∈ I1. Now, G \ {s1, s2} has three connected components, and since I2 is connected, it must
be contained in of these components. But each component contains at most two vertices with
utility 1, so ui(I2) 6 2. Since there are six vertices with utility 1 in total, ui(I1) > 4. Thus, the
allocation is not EF1.

Combining these results, we obtain the promised characterisation.

Theorem 10.11. The following conditions are equivalent for every connected graph G:

1. G admits a bipolar numbering.

2. G guarantees EF1 for two agents.

3. G guarantees EF1 for two agents with identical, additive, binary valuations.

4. The block tree B(G) is a path.

Proof. The implication (1)⇒ (2) follows from Proposition 10.6 which shows that the discrete
cut-and-choose protocol yields a connected EF1 allocation when run on a bipolar numbering.
The implication (2)⇒ (3) is immediate. The implication (3)⇒ (4) follows from Lemma 10.10
which proves the contrapositive. Finally, (4)⇒ (1) follows from Lemma 10.9.

The equivalence (2)⇔ (3) is noteworthy and perhaps surprising: It is often easier to guarantee
fairness when agents’ valuations are identical, yet in terms of the graphs that guarantee EF1 for
two agents, there is no difference between identical and non-identical valuations. Intriguingly,
even for more than two agents, we do not know of a graph which guarantees EF1 for identical
valuations, but fails it for non-identical valuations.

142



10.5. EF1 Existence for Three Agents: A Moving-Knife Protocol

10.5. EF1 Existence for Three Agents: A Moving-Knife Protocol

→→ →→

L M R
We will now consider the case of three agents. Stromquist
[1980] designed a protocol that results in an envy-free
contiguous allocation of a divisible cake. In outline, the
protocol works as follows. A referee holds a sword over
the cake. Each of the three agents holds their own knife
over the portion of the cake to the right of the sword.
Each agent positions their knife so that the portion to
the right of the sword is divided into two pieces they judge to have the same value. Now, initially,
the sword is at the left end of the cake and then starts moving at constant speed from left to
right, while the agents continuously move their knives to keep dividing the right-hand portion
into equally-valued pieces. At some point (when the left-most piece becomes valuable enough),
one of the agents shouts “cut”, and the cake will be cut twice: once by the sword, and once by the
middle one of the three knives. Agents shout “cut” as soon as the left piece is a highest-valued
piece among the three. The agent who shouts receives the left piece. The remaining agents each
receive a piece containing their knife. One can check that the resulting allocation is envy-free,
since the agent receiving the left piece prefers it to the other pieces, and the other agents who
are not shouting receive at least half the value of the part of the cake to the right of the sword.

Let G be a path, P = (v1, v2, . . . , vm). There are several difficulties in translating Stromquist’s
continuous procedure to the discrete setting for G. First, agents need to divide the piece to
the right of the sword in half, and this might not be possible exactly given indivisibilities; but
this can be handled using our concept of lumpy ties from Section 10.4. Next, when the sword
moves one item to the right, the lumpy ties of the agents may need to jump several items to the
right, for example because the new member of the left-most bundle is very valuable. To ensure
EF1, we will need to smoothen these jumps, so that the middle piece grows one item at a time.
Also, it will be helpful to have the sword move in half-steps: it alternates between being placed
between items (so it cuts the edge between the items), and being placed over an item, in which
case the sword covers the item and agents ignore that item. Finally, while the sword covers an
item, we will only terminate if at least two agents shout to indicate that they prefer the left-most
piece; this will ensure that there is an agent who is flexible about which of the bundles they are
assigned. The algorithm moves in steps, and alternates between moving the sword, and updating
the lumpy ties.

In our formal description of the algorithm, we do not use the concepts of swords and knives.
Instead, the algorithm maintains three bundles L, M , and R that can be seen as resulting from
a certain configuration of these cutting implements. We also need a few auxiliary definitions.
Recall that for a subsequence of vertices P (vs, vr) = (vs, vs+1, . . . , vr) and an agent i, we say that
vj (s 6 j 6 r) is the lumpy tie over P (vs, vr) for i if j is the smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (10.3)

Here, the definitions of L(vj) and R(vj) apply to the subsequence P (vs, vr). The lumpy tie
always exists by the discussion after equation (10.2). Each of the three agents has a lumpy tie
over P (vs, vr); a key concept for us is the median lumpy tie which is the median of the lumpy
ties of the three agents, where the median is taken with respect to the ordering of P (vs, vr). We
say that i ∈ N is a left agent (respectively, a middle agent or a right agent) over P (vs, vr) if the
lumpy tie for i appears strictly before (respectively, is equal to, or appears strictly after) the
median lumpy tie. Note that by definition of median, there is at most one left agent, at most
one right agent, and at least one middle agent.

Suppose that the median lumpy tie over the subsequence P (vs, vr) is vj , and let i be an agent.

143



10. Maximin Fair Share and Envy-Freeness up to One Good

Then using the definitions of lumpy tie and left/right agents, we find that

ui(L(vj)) > ui(R(vj) ∪ {vj}) if i is a left agent, and
ui(R(vj)) > ui(L(vj) ∪ {vj}) if i is a right agent. (10.4)

Given the median lumpy tie vj over the subsequence P (vs, vr), and a two-agent set S = {i, k} ⊆
N , we define Lumpy(S, vj , P (vs, vr)) to be the allocation of the items in P (vs, vr) to S such that

• if i is a left agent and k is a right agent, then i receives L(vj) and k receives R(vj) ∪ {vj};

• if i is a middle agent, then agent k receives k’s preferred bundle among L(vj) and R(vj),
and agent i receives the other bundle along with vj .

Using (10.3) and (10.4), we see that Lumpy(S, vj , P (vs, vr)) is an EF1 allocation:

Lemma 10.12 (Median Lumpy Ties Lemma). Suppose that S = {i, k} ⊆ N and vj is the median
lumpy tie over the subsequence P (vs, vr). Then Lumpy(S, vj , P (vs, vr)) is an EF1 allocation of
the items in P (vs, vr) to S. Furthermore, each agent in S receives a bundle weakly better than
the two bundles L(vj) and R(vj).

We now present the algorithm. The algorithm alternately moves a left pointer ` (in Steps
2 and 3) and a right pointer r (in Step 4). It also maintains bundles L, M , and R during the
execution of the algorithm.

Theorem 10.13. The moving-knife protocol finds an EF1 allocation for three agents and runs
in O(|V |) time, when G is traceable.

Proof. The algorithm is well-defined – there is one place where this is not immediate: If two
agents shout in Step 3, the algorithm description claims that there is a shouter who is a middle
agent over the subsequence P (v`+1, vm). Suppose for the moment that there is a shouter i who
is a right agent. Due to (10.4), we have ui(R) > ui({v`+1} ∪M ∪ {vr}). Since i is a shouter, we
have ui(L) > ui(R), so ui(L) > ui({v`+1} ∪M ∪ {vr}). But i did not shout in the previous Step
2 (when no-one shouted), so either ui(R) > ui(L) or ui({v`+1} ∪M) > ui(L), and either case is
a contradiction. Hence neither of the at least two shouters of Step 3 is a right agent, so at least
one shouter is a middle agent, since there is at most one left agent.

The algorithm terminates and returns an allocation, since the bundle L grows throughout the
algorithm until eventually, at least two agents will think that L is the best bundle and thus will
shout and thereby terminate the algorithm. We will now consider every possible way that the
algorithm could have terminated, and show that the resulting allocation is EF1. To follow this
proof, it is helpful to look at the figures in the description of the procedure.
Step 2.

• Agent sleft receives L and does not envy the other agents (up to good vr) since sleft is a
shouter.

• An agent i who is not a shouter does not envy sleft because i prefers either M or R to L,
and hence by Lemma 10.12 receives a bundle preferred to L.
Agent i also does not envy the other agent j 6= sleft up to one good by Lemma 10.12.

• An agent i 6= sleft who is a shouter does not envy sleft up to one good: If this is the first time
Step 2 was performed, then L = {v1}, so i does not envy sleft up to v1. Otherwise, the last
step was an iteration of Step 4(c), where by definition of Step 4(c) no-one shouted. Since
i did not shout during Step 4(c), and Step 2 did not change the bundles M and R, then
i strictly prefers either M or R to the left bundle L \ {v`} of Step 4(c). By Lemma 10.12,
agent i gets a bundle at least as good as M or R. Thus, i does not envy sleft up to v`.
Also by Lemma 10.12, agent i does not envy the other agent j 6= sleft up to one good.

144



10.5. EF1 Existence for Three Agents: A Moving-Knife Protocol

Discrete moving-knife protocol for n = 3 agents over a sequence P = (v1, v2, . . . , vm):
An agent i ∈ N is a shouter if L is best among L,M,R, so that ui(L) > ui(M) and ui(L) > ui(R).

Step 1. Initialise ` = 0 and set r so that vr is the median lumpy tie over the subsequence
P (v2, vm). Initialise L = ∅, M = {v2, v3, . . . , vr−1}, and R = {vr+1, vr+2, . . . , vm}.

Step 2. Add an additional item to L, i.e., set ` = `+ 1 and L = {v1, v2, . . . , v`}.
If no agent shouts, go to Step 3. If some agent sleft shouts, sleft receives the left bundle
L. Allocate the remaining items according to Lumpy(N \ {sleft}, vr, P (v`+1, vm)).

before v` vr

L M R

after v` vr

L M R

sleft divided among the remaining agents

Step 3. Delete the left-most point of the middle bundle, i.e., set M = {v`+2, v`+3, . . . , vr−1}.
If there are zero or one shouters, go to Step 4. If at least two agents shout, we show
below that there is a shouter s who is a middle agent over P (v`+1, vm). Then, allocate
L to a shouter sleft distinct from s. Let the agent c, distinct from s and sleft, choose a
preferred bundle among {v`+1} ∪M and {vr} ∪R. Agent s receives the other bundle.

before v` vr

L M R

after v` vr

L M R

sleft s or c s or c

Step 4. If vr is the median lumpy tie over P (v`+2, vm), go to the following cases (a)–(d). If vr is
not the median lumpy tie over P (v`+2, vm), set r = r + 1, M = {v`+2, v`+3, . . . , vr−1},
and R = {vr+1, vr+2, . . . , vm}; then, consider the following cases (a)–(d).

a) If at least two agents shout, find a shouter s who did not shout at the previous
step. If there is a shouter sleft who shouted at the previous step, sleft receives L;
else, give L to an arbitrary shouter sleft distinct from s. The agent c distinct from
s and sleft choose a preferred bundle among {v`+1} ∪M and {vr} ∪ R, breaking
ties in favour of the former option. Agent s receives the other bundle.

b) If vr is the median lumpy tie over P (v`+2, vm) and only one agent sleft
shouts, give L ∪ {v`+1} to sleft and allocate the rest according to Lumpy(N \
{sleft}, vr, P (v`+2, vm)).

c) If vr is the median lumpy tie over P (v`+2, vm) but no agent shouts, go to Step 2.
d) Otherwise vr is not the median lumpy tie over P (v`+2, vm): Repeat Step 4.

before v` vr

L M R

after v` vr

L M R

4(a) sleft s or c s or c

4(b) sleft divided by the remaining agents

145



10. Maximin Fair Share and Envy-Freeness up to One Good

Step 3.

• Agent sleft receives L and, because sleft shouted, does not envy the bundle {v`+1} ∪M up to
good v`+1, and does not envy the bundle {vr} ∪R up to good vr.

• Agent c gets his preferred bundle among {v`+1} ∪M and {vr} ∪ R, and so does not envy
agent s who receives the other bundle. Further, agent c does not envy agent sleft since c did
not shout at the last Step 2 (where no-one shouted), which, since bundle L did not change in
Step 3, means that c prefers either {v`+1} ∪M or R to L, and hence also prefers his chosen
bundle to L.

• Agent s is a middle agent, so the lumpy tie of s over P (v`+1, vm) is vr, and hence by (10.3),

us({vr} ∪R) > us({v`+1} ∪M). (10.5)

Now, agent s did not shout at the preceding Step 2 (when no-one shouted). However, s does
shout after deleting v`+1 from M . Since L and R have not changed, the reason s did not
shout at Step 2 was that L is worse than the middle bundle during Step 2, so

us({v`+1} ∪M) > us(L). (10.6)

Combining (10.5) and (10.6), we also have

us({vr} ∪R) > us(L).

Since s receives either {v`+1} ∪M or {vr} ∪R, agent s does not envy agent sleft receiving L.
Finally, from (10.5), agent s weakly prefers {vr}∪R to {v`+1}∪M . Thus, if c picks {v`+1}∪M ,
then s does not envy c. On the other hand, if c picks the bundle {vr} ∪R, then s does not
envy c up to good vr: we have us(L) > us(R) since s shouts, and so by (10.6), also

us({v`+1} ∪M) > us(R).

Step 4(a). We first prove that if i is a shouter who did not shout in the previous step, then

ui({vr} ∪R) > ui(L) > ui(M). (10.7)

In the previous step (which was either Step 3 or Step 4), the middle bundle was M \ {vr−1} and
the right bundle was {vr} ∪R. (While Step 4 allows for the possibility that the middle and right
bundles are not changed in Step 4, this is not the case if we enter Step 4(a): if the bundles are
unchanged and two agents shout, these agents already shouted in Step 3, contradicting that we
did not terminate then.) Since i did not shout with the middle and right bundles of the previous
step, we have

ui(M \ {vr−1}) > ui(L) or ui({vr} ∪R) > ui(L).
Since i is a shouter, ui(L) > ui(M), so that the first case is impossible by monotonicity. Hence
ui({vr} ∪R) > ui(L), showing (10.7), when combined with ui(L) > ui(M).

• Agent sleft receives L and does not envy other agents up to one good like in Step 3.

• Agent c gets his preferred bundle among {v`+1} ∪M and {vr} ∪ R, and so does not envy
agent s who receives the other bundle. Agent c also does not envy sleft: If c is not a shouter,
then c does not envy sleft because c prefers either M or R to L, and hence prefers his picked
piece to L. If c is a shouter, then all three agents are shouters, and by choice of c, this means
that c was not a shouter at the previous step, when there was at most one shouter. By (10.7),
uc({vr} ∪R) > uc(L), and hence

max{uc({v`+1} ∪M), uc({vr} ∪R)} > uc(L),

so that c does not envy sleft.

146



10.6. EF2 Existence for Any Number of Agents

• Agent s does not envy others up to one good:
– Suppose agent c strictly prefers {vr} ∪R to {v`+1} ∪M . Then agent c’s lumpy tie over
P (v`+1, vm) appears at or after vr by definition of the lumpy tie. As we argued before,
the bundles M and R were changed in the execution of Step 4, and r was increased by
1. Thus, vr appears strictly after the median lumpy tie over P (v`+1, vm). Thus, c is the
right agent over P (v`+1, vm). Hence s is either a left or middle agent over P (v`+1, vm)
since there is at most one right agent. Using (10.3) or (10.4), this implies

us({v`+1} ∪M) > us({vr} ∪R), (10.8)

so that s does not envy c.
By definition of s, agent s did not shout in the previous step. By (10.7), us({vr}∪R) >
us(L), so together with (10.8), we have us({v`+1} ∪M) > us(L), so s does not envy
sleft.

– Suppose c weakly prefers {v`+1} ∪M to {vr} ∪R. Then s receives the bundle {vr} ∪R
(since c breaks ties in favour of {v`+1} ∪M). By choice of s, agent s did not shout at
the last step. So by (10.7), we have us({vr} ∪R) > us(L) so that s does not envy sleft,
and also by (10.7), we have us({vr} ∪R) > us(M) so that s does not envy c up to item
v`+1.

Step 4(b).

• Agent sleft gets L ∪ {v`+1} and does not envy the other agents (up to good vr) as sleft
shouts.

• Any agent i 6= sleft is not a shouter, and thus prefers either M or R to L. Hence by Lemma
10.12 receives a bundle preferred to L, and so does not envy sleft up to item v`+1.
Agent i also does not envy the other agent j 6= sleft up to one good by Lemma 10.12.

Thus, the allocation returned by any of the steps satisfies EF1.
Our algorithm can be implemented in O(m) time: Each of steps 2, 3, and 4 will be executed at

most m times (since ` and r can only be incremented m times). Each step execution only needs
constant time: In each step, we need to check which agents shout, and this can be done in a
constant number of queries to agents’ valuations; also, in Step 4 we need to calculate the lumpy
ties of the agents, but this can be done in amortised constant time, since during the execution of
the algorithm, the position of each agent’s lumpy tie can only move to the right. Finally, when
enough agents shout, we can clearly compute and return the final allocation in O(m) time.

10.6. EF2 Existence for Any Number of Agents
For two or three agents, we have seen algorithms that are guaranteed to find an EF1 allocation
on a path (and on traceable graphs). Both algorithms were adaptations of procedures that
identify envy-free divisions in the cake-cutting problem. For the case of four or more agents,
we face a problem: there are no known procedures that find connected envy-free division in
cake-cutting if the number of agents is larger than three. However, in the divisible setting, a
non-constructive existence result is known: Su [1999] proved, using Sperner’s lemma, that for
any number of agents, a connected envy-free division of a cake always exists. One might try to
use this result as a black box to obtain a fair allocation for the indivisible problem on a path:
Translate an indivisible instance with additive valuations into a divisible cake (where each item
corresponds to a region of the cake), obtain an envy-free division of the cake, and round it to get

147



10. Maximin Fair Share and Envy-Freeness up to One Good

an allocation of the items. Suksompong [2017] followed this approach and showed that the result
is an allocation where any agent i’s envy ui(A(j))− ui(A(i)) is at most 2umax, where umax is the
maximum valuation for a single item.

In this section, rather than using Su’s [1999] result as a black box, we directly apply Sperner’s
lemma to the indivisible problem. This allows us to obtain a stronger fairness guarantee: We
show that on paths (and on traceable graphs), there always exists an EF2 allocation.4 An
allocation is EF2 if any agent’s envy can be avoided by removing up to two items from the envied
bundle. Again, we only allow removal of items if this operation leaves a connected bundle. For
example, on a path, if agent i envies the bundle of agent j, then i does not envy that bundle
once we remove its two endpoints. The formal definition for general graphs is as follows.

Definition 10.14 (EF2: envy-freeness up to two outer goods). An allocation A satisfies EF2 if
for any pair i, j ∈ N of agents, either |A(j)| 6 1, or there are two goods u, v ∈ A(j) such that
A(j) \ {u, v} is connected and ui(A(i)) > ui(A(j) \ {u, v}).

∅,∅, abcd ∅, a, bcd ∅, ab, cd ∅, abc, d ∅, abcd,∅

a,∅, bcd a, b, cd a, bc, d a, bcd,∅

ab,∅, cd ab, c, d ab, cd,∅

abc,∅, d abc, d,∅

abcd,∅,∅

Figure 10.4.: Connected partitions form a subdivided simplex

Let us first give a high-level illustration with three agents of how Sperner’s lemma can be used
to find low-envy allocations. Given a path, say P = (a, b, c, d), the family of connected partitions
of P can naturally be arranged as the vertices of a subdivided simplex, as in Figure 10.4 on the
right. For each of these partitions, each agent i labels the corresponding vertex by the index of
a bundle from that partition that i most-prefers. For example, the top vertex will be labelled
as “index 1” by all agents, since they all most-prefer the left-most bundle in (abcd,∅,∅). Now,
Sperner’s lemma will imply that at least one of the simplices (say the shaded one) is “fully-
labelled”, which means that the first agent most-prefers the left-most bundle at one vertex, the
second agent most-prefers the middle bundle at another vertex, and the third agent most-prefers
the right-most bundle at the last vertex. Notice that the partitions at the corner points of the
shaded simplex are all “similar” to each other (they can be obtained from each other by moving
only 1 item). Hence, we can “round” the corner-partitions into a common allocation A∗, say by
picking one of the corner partitions arbitrarily and then allocating bundles to agents according

4To see that EF2 is a stronger property than bounding envy up to 2umax, consider a path of four items and two
agents with additive valuations 1–10–2–2. The allocation (1, 10–2–2) is not EF2, but the first agent has an
envy of 13 < 20 = 2umax.

148



10.6. EF2 Existence for Any Number of Agents

to the labels. The resulting allocation has the property that any agents’ envy can be eliminated
by moving at most one good.5

The argument sketched above does not yield an EF1 nor even an EF2 allocation. Intuitively,
the problem is that the connected partitions at the corners of the fully-labelled simplex are “too
far apart”, so that no matter how we round the corner partitions into a common allocation A∗,
some agents’ bundles will have changed too much, and so we cannot prevent envy even up to
one or two goods. In the following, we present a solution to this problem, by considering a finer
subdivision: we introduce n − 1 knives which move in half-steps (rather than full steps), and
which might ‘cover’ an item so that it appears in none of the bundles. The result is that the
partial partitions in the corners of the fully-labelled simplex are closer together, and can be
successfully rounded into an EF2 allocation A∗.

In our approach, we use a specific triangulation (Kuhn’s triangulation). This triangulation
has the needed property that the partitions at the corners of sub-simplices are close together,
and adjacent partitions can be obtained from each other in a natural way. While this type of
triangulation has also been used in cake-cutting [e.g., Deng et al., 2012], there it was only used to
speed up algorithms (compared to the barycentric subdivision used by Su [1999]), not to obtain
better fairness properties.

10.6.1. Sperner’s lemma

We start by formally introducing Sperner’s lemma. Let conv(v1,v2, . . . ,vk) denote the convex
hull of k vectors v1,v2, . . . ,vk. An n-simplex is an n-dimensional polytope which is the convex
hull of its n+1 main vertices. A k-face of the n-simplex is the k-simplex formed by the span of any
subset of k + 1 main vertices. A triangulation T of a simplex S is a collection of sub-n-simplices
whose union is S with the property that the intersection of any two of them is either the empty
set, or a face common to both. Each of the sub-simplices S∗ ∈ T is called an elementary simplex
of the triangulation T . We denote by V (T ) the set of vertices of the triangulation T , which is
the union of vertices of the elementary simplices of T .

Let T be some fixed triangulation of an (n− 1)-simplex S = conv(v1,v2, . . . ,vn). A labeling
function is a function L : V (T ) → [n] that assigns a number in [n] (called a colour) to each
vertex of the triangulation T . A labeling function L is called proper if

• For each main vertex vi of the simplex, L assigns colour i to vi: L(vi) = i; and

• L(v) 6= i for any vertex v ∈ V (T ) belonging to the (n− 2)-face of S not containing vi.

Sperner’s lemma states that if L is a proper labeling function, then there exists an elementary
simplex of T whose vertices all have different labels.

We will consider a generalised version of Sperner’s lemma, proved, for example, by Bapat
[1989]. In this version, there are n labeling functions L1, . . . , Ln, and we are looking for an
elementary simplex which is fully-labelled for some way of assigning labeling functions to vertices,
where we must use each labeling function exactly once. The formal definition is as follows.

Definition 10.15 (Fully-labelled simplex). Let T be a triangulation of an (n− 1)-simplex, and
let L1, . . . , Ln, be labeling functions. An elementary simplex S∗ of T is fully-labelled if we can
write S∗ = conv(v∗1,v∗2, . . . ,v∗n) such that there exists a permutation φ : [n]→ [n] with

Li(v∗i ) = φ(i) for each i ∈ [n].
5One can generalise this argument to show that on paths, there exists an allocation A satisfying a weak form

of EF1: for any i, j ∈ [n], we have ui(Ii ∪ {gi}) > ui(Ij \ {gj}) for some items gi, gj such that Ii ∪ {gi} and
Ij \ {gj} are connected. For additive valuations, this implies that envy is bounded by ui(gi) + ui(gj) 6 2umax,
which is Suksompong’s [2017] result.

149



10. Maximin Fair Share and Envy-Freeness up to One Good

Our generalised version of Sperner’s lemma guarantees the existence of a fully-labelled simplex.

Lemma 10.16 (Generalised Sperner’s Lemma). Let T be a triangulation of an (n− 1)-simplex
S, and let L1, . . . , Ln be proper labeling functions. Then there is a fully-labelled simplex S∗ of T .

10.6.2. Existence of EF2 allocations
Suppose that our graph G is a path P = (1, 2, . . . ,m), where the items are named by integers.
We assume that m > n, so that there are at least as many items as agents (when m < n
it is easy to find EF1 allocations). Our aim is to cut the path P into n intervals (bundles)
I1
∗ , I

2
∗ , . . . , I

n
∗ . Throughout the argument, we will use superscripts to denote indices of bundles;

index 1 corresponds to the left-most bundle and index n corresponds to the right-most bundle.

Construction of the triangulation. Consider the (n− 1)-simplex6

Sm = {x ∈ Rn−1 : 1
2 6 x

1 6 x2 6 . . . 6 xn−1 6 m+ 1
2 }. (10.9)

We construct a triangulation Thalf of Sm whose vertices V (Thalf) are the points x ∈ Sm such that
each xj is either integral or half-integral, namely,

V (Thalf) = {x ∈ Sm : xj ∈ {1
2 , 1,

3
2 , 2,

5
2 . . . ,m,m+ 1

2} for all j ∈ [n]}.

For reasons that will become clear shortly, we call a vector x ∈ V (Thalf) a knife position.
Using Kuhn’s triangulation [Kuhn, 1960, see also Scarf, 1982, Deng et al., 2012], we can construct

Thalf so that each elementary simplex S′ ∈ Thalf can be written as S′ = conv(x1,x2, . . .xn) such
that there exists a permutation π : [n]→ [n] with

xi+1 = xi + 1
2eπ(i) for each i ∈ [n− 1], (10.10)

where ej = (0, . . . , 1, . . . , 0) is the j-th unit vector. We give an interpretation of (10.10) shortly.
Each vertex x = (x1, x2, . . . , xn−1) ∈ V (Thalf) of the triangulation Thalf corresponds to a partial

partition A(x) = (I1(x), I2(x), . . . , In(x)) of P where

Ij(x) :=
{
y ∈ {1, 2, . . . ,m} : xj−1 < y < xj

}
,

writing x0 = 1
2 and xn = m + 1

2 for convenience. Note the strict inequalities in the definition
of Ij(x). Intuitively, x specifies the location of n− 1 knives that cut P into n pieces. If xj is
integral, that is xj ∈ {1, . . . ,m}, then the j-th knife ‘covers’ the item xj , which is then part of
neither Ij(x) nor Ij+1(x). This is why A(x) is a partial partition. Since there are only n− 1
knives but m > n items, not all items are covered, so at least one bundle is non-empty.

Property (10.10) means that, if we visit the knife positions x1,x2, . . .xn at the corners of an
elementary simplex in the listed order, then at each step exactly one of the knives moves by half
a step, and each knife moves only at one of the steps.

Construction of the labeling functions. We now construct, for each agent i ∈ [n], a labeling
function Li : V (Thalf)→ [n]. The function Li takes as input a vertex x of the triangulation Thalf
(interpreted as the partial partition A(x)), and returns a colour in [n]. The colour will specify
the index of a bundle in A(x) that agent i likes most. Formally,

Li(x) ∈ {j ∈ [n] : ui(Ij(x)) > ui(Ik(x)) for all k ∈ [n]}.
6The simplex Sm is affinely equivalent to the standard (n− 1)-simplex ∆n−1 = {(l1, . . . , ln) > 0 :

∑
li = 1} via

xi = m · (l1 + l2 + · · ·+ li) + 1
2 . In these coordinates, li is the length of the ith piece (times 1/m).

150



10.6. EF2 Existence for Any Number of Agents

If there are several most-preferred bundles in A(x), ties can be broken arbitrarily. However, we
insist that the index Li(x) always corresponds to a non-empty bundle (this can be ensured since
A(x) always contains a non-empty bundle, and ui is monotonic).

The labeling functions Li are proper. For each j ∈ [m], the main vertex vj of the simplex Sm
has the form vj = (1

2 , . . . ,
1
2 ,m+ 1

2 , . . . ,m+ 1
2), where the first j−1 entries are 1

2 and the rest are
m+ 1

2 . This vertex corresponds to a partition A(vj) where Ij(vj) contains all the items, hence
is most-preferred (since ui is monotonic and by our tie-breaking), and so Li(vj) = j. Further,
any vertex x belonging to the (n− 2)-face of Sm not containing vj satisfies xj−1 = xj , and thus
corresponds to a partition A(x) where Ij(x) is empty, hence is not selected, and so Li(x) 6= j.

By the generalised version of Sperner’s lemma (Lemma 10.16), there exists an elementary
simplex S∗ = conv(x1,x2, . . . ,xn) of the triangulation Thalf which is fully-labelled, so that, for
some permutation φ : [n]→ [n], we have Li(xi) = φ(i) for all i ∈ [n].

Translation into partial partitions. The fully-labelled elementary simplex S∗ corresponds to a
sequence (A1, A2, . . . , An) of partial partitions of P , which we call the Sperner sequence, where
Ai = (I1

i , . . . , I
n
i ) := A(xi) for each i ∈ [n]. An example of a Sperner sequence is shown in

Figure 10.5, which also illustrates other concepts that we introduce shortly. From the labeling,
for each agent i ∈ [n], since Li(xi) = φ(i), the bundle with index φ(i) in the partition Ai is a
best bundle for i:

ui(Iφ(i)
i ) > ui(Iji ) for each j ∈ [n]. (10.11)

Now, for each j ∈ [n], we define the basic bundle Bj := Ij1 ∩ · · · ∩ Ijn to be the bundle of items
that appear in the j-th bundle of every partition in the Sperner sequence. The set of basic
bundles is a partial partition. Let us analyse the items between basic bundles.

From (10.10), each of the n−1 knives moves exactly once, by half a step, while passing through
the Sperner sequence (A1, A2, . . . , An). Thus, the numbers xj1, . . . , xjn take on two different values,
one of which is integral and the other half-integral. We write yj for the integral value (so yj = xji
for some i ∈ [n]), and call yj a boundary item. The j-th knife covers the item yj in some, but
not all, of the partial partitions in the Sperner sequence. Now, there are two cases:

(a) xj1 = · · · = xji = yj − 1
2 and then xji+1 = · · · = xjn = yj for some i ∈ [n], so that yj never

occurs in the j-th bundle in the Sperner sequence but sometimes occurs in the j + 1st
bundle, or

(b) xj1 = · · · = xji = yj and then xji+1 = · · · = xjn = yj + 1
2 for some i ∈ [n], so that yj sometimes

occurs in the j-th bundle in the Sperner sequence but never occurs in the j + 1st bundle.

Since yj is sometimes covered by a knife, it is not part of any basic bundle. However, we have
that

Bj ⊆ Iji ⊆ {y
j−1} ∪Bj ∪ {yj} for every i, j ∈ [n]. (10.12)

Rounding into a complete partition. We now construct a complete partition (I1
∗ , I

2
∗ , . . . , I

n
∗ )

of the path P . We define each bundle as follows:

Ij∗ := Ij1 ∪ · · · ∪ I
j
n for each j ∈ [n].

Thus, the bundle Ij∗ contains the basic bundle Bj , plus all of the boundary items yj−1 or yj that
occur in the j-th bundle at some point of the Sperner sequence. Precisely, for each boundary
item yj , j ∈ [n− 1], the item yj is placed in bundle Ij+1

∗ in case (a) above, and it is placed in
bundle Ij∗ in case (b). So the resulting partition is well-defined: every item is allocated to exactly
one bundle.

151



10. Maximin Fair Share and Envy-Freeness up to One Good

1
2 1 3

2 2 5
2 · · · · · · m+ 1

2

A1 y1 y2 y3

A2 y1 y2 y3

A3 y1 y2 y3

A4 y1 y2 y3

B1 B2 B3 B4

A∗ y1 y2 y3

Figure 10.5.: Example of the Sperner sequence A1, . . . , A4 for n = 4, as well as the derived
partition A∗. Vertical lines indicate the positions x1

i , x
2
i , x

3
i of the knives, i = 1, . . . , 4.

Shaded in gray, for i = 1, . . . , 4, is the bundle Iφ(i)
i selected by agent i as their

favourite bundle in Ai; here φ(1) = 2, φ(2) = 1, φ(3) = 4, φ(4) = 3.

An EF2 allocation. We first show that the partition (I1
∗ , I

2
∗ , . . . , I

n
∗ ) is such that agents’ expec-

tations about the value of the bundles Ij∗ are approximately correct (namely, correct up to two
items):

ui(Ij∗) > ui(I
j
i ) > ui(Bj) for every agent i ∈ [n] and every j ∈ [n]. (10.13)

This follows by monotonicity of ui, since Ij∗ = Ij1 ∪ · · · ∪ Ijn ⊇ I
j
i ⊇ Bj by (10.12).

Now, based on the partition, we can define an allocation A∗ by A∗(i) = I
φ(i)
∗ for each agent

i ∈ [n]. Thus, each agent i receives the bundle in the complete partition corresponding to i’s
most-preferred index φ(i). We prove that A∗ satisfies EF2: For any pair i, j ∈ [n] of agents, we
have

ui(A∗(i)) = ui(Iφ(i)
∗ ) > ui(Iφ(i)

i ) by (10.13)

> ui(Iφ(j)
i ) by (10.11)

> ui(Bφ(j)) by (10.13)
= ui(A∗(j) \ {yj−1, yj}). by (10.12)

Hence, we have proved the main result of this section:

Theorem 10.17. On a path, for any number of agents with monotone valuation functions, a
connected EF2 allocation exists.

10.7. EF1 Existence for Identical Valuations
A special case of the fair division problem is the case of identical valuations, where all agents have
the same valuation for the goods: for all agents i, j ∈ N and every bundle I ∈ C(V ), we have
ui(I) = uj(I). We then write u(I) for the common valuation of bundle I. The case of identical
valuations often allows for more positive results and an easier analysis. Indeed, we can prove
that, for identical valuations and any number of agents, an EF1 allocation connected on a path
is guaranteed to exist. We further show that such an allocation can be found in polynomial time.

152



10.7. EF1 Existence for Identical Valuations

Our argument, though intuitive, is not as straightforward as one might think. For example,
one might guess that in the restricted case of identical valuations, egalitarian allocations are
EF1. However, the leximin-optimal connected allocation may fail EF1: Consider a path with five
items and additive valuations 1–3–1–1–1 shared by three agents. The unique leximin allocation
is (1, 3, 1–1–1), which induces envy even up to one good. The same allocation also uniquely
maximises Nash welfare, so the Nash optimum also does not guarantee EF1. This is in contrast
to the results of Biswas and Barman [2018] who consider allocations of items into bundles that
satisfy matroid constraints (rather than our connectivity constraints), and find that the Nash
optimum satisfies EF1 under matroid constraints and the assumption of identical valuations.

Maximising an egalitarian objective seemed promising because it ensures that no-one is too
badly off, and therefore has not much reason to envy others. The problem is that some bundles
might be too desirable. To fix this, we could try to reallocate items so that no bundle is too
valuable. This is exactly the strategy of our algorithm: It starts with a leximin allocation, and
then moves items from high-value bundles to lower-value bundles, until the result is EF1. In more
detail, the algorithm identifies one agent i who is worst-off in the leximin allocation, and then
adjusts the allocation so that i does not envy any other bundle up to one good. The algorithm
does this by going through all bundles in the allocation, outside-in, and if i envies a bundle Ij
even up to one good, it moves one item from Ij inwards (in i’s direction), see Figure 10.6. As we
will show, a key invariant preserved by the algorithm is that the value of Ii never increases, and
i remains worst-off. Thus, since i does not envy others up to one good, the allocation at the end
is EF1.

Ii Ij−1 Ij

Figure 10.6.: If i envies j even up to one good, Algorithm 9 takes an item out of bundle Ij and
moves it in i’s direction.

Formally, a leximin allocation is an allocation which maximises the lowest utility of an agent;
subject to that it maximises the second-lowest utility, and so on. In particular, if the highest
achievable minimum utility is uL, then the leximin allocation is such that every agent has utility
at least uL, and the number of agents with utility exactly uL is minimum.

Algorithm 9 LEXIMIN-TO-EF1
Input: a path P = (v1, v2, . . . , vm), and identical valuations
Output: an EF1 connected allocation of P

Let A = (I1, . . . , In) be a leximin allocation of P
Fix an agent i with minimum utility in A, i.e., u(Ii) 6 u(Ij) for all j ∈ [n]
for j = 1, . . . , i− 1 do

if i envies Ij even up to one good, i.e., u(Ii) < u−(Ij) then
repeatedly delete the right-most item of Ij and add it to Ij+1 until u(Ii) > u−(Ij)

for j = n, . . . , i+ 1 do
if i envies Ij even up to one good, i.e., u(Ii) < u−(Ij) then

repeatedly delete the left-most item of Ij and add it to Ij−1 until u(Ii) > u−(Ij)
return A

Theorem 10.18. For identical valuations on a path, Algorithm 9 finds an EF1 allocation.

Proof. For an allocation A = (I1, . . . , In), write uL(A) := minj∈N u(Ij) for the minimum utility
obtained in A, and write L(A) := {j ∈ [n] : u(Ij) = uL(A)} for the set of agents (losers) who

153



10. Maximin Fair Share and Envy-Freeness up to One Good

obtain this utility. For the leximin allocation Aleximin obtained at the start of the algorithm, write
u∗L := uL(Aleximin) and L∗ := L(Aleximin). Note that by leximin-optimality, for every allocation
A we must have uL(A) 6 u∗L, and if uL(A) = u∗L then |L(A)| > |L∗|. Let i ∈ L∗ be the agent
fixed at the start of the algorithm, and recall the definition of u− from (10.1).

Claim 1. Throughout the algorithm, uL(A) = u∗L and L(A) = L∗.
The claim is true before we start the for-loops. Suppose the claim holds up until some iteration

of the first for-loop, and we now move an item from Ij to Ij+1, obtaining the new bundles
Ijnew and Ij+1

new in the new allocation Anew. Then u(Ijnew) > u−(Ij) > u(Ii) = u∗L, where the
strict inequality holds by the if- and until-clauses. Since no agent other than j has become
worse-off in Anew, it follows that uL(Anew) > uL(A) = u∗L. As noted, by optimality of u∗L, we have
uL(Anew) 6 u∗L. Hence uL(Anew) = u∗L. Thus, by optimality of L∗, we have |L(Anew)| > |L∗|.
Because agent j has not become a loser (since u(Ijnew) > u∗L as shown before) and no other agent
has become a loser, we have L(Anew) ⊆ L(A) = L∗. Thus L(Anew) = L∗, as required. The second
for-loop is handled similarly.

Claim 2. After both for-loops terminate, agent i does not envy any agent up to one good.
For any j 6= i, agent i does not envy j up to one good immediately after the relevant loop has

handled j, and at no later stage of the algorithm does Ij change.
It follows that the allocation A returned by the algorithm is EF1: By Claim 1, we have

i ∈ L(A), so that u(Ij) > u(Ii) for all j ∈ [n]. By Claim 2, agent i does not envy any other
agent up to one good, so that u(Ii) > u−(Ik) for all k ∈ [n]. Hence, for all j, k ∈ [n], we have
u(Ij) > u−(Ik), that is, no agent envies another agent up to one good.

Algorithm 9 can be implemented to run in polynomial time, because with identical valuations,
one can use dynamic programming to find a leximin allocation in time O(m2n2), and the
remainder of Algorithm 9 takes time O(mn), since each item is moved at most n times. A slight
speed-up can be achieved by observing that the proof of Theorem 10.18 only needed that the
initial allocation optimises the egalitarian welfare uL and minimises the cardinality of the set L
of losers. Such an allocation can be found by dynamic programming in time O(m2n).

The reallocation stage of our algorithm bears some similarity to an argument by Suksompong
[2017, Theorem 2] which shows that a umax-equitable allocation exists. In a very recent paper,
Oh et al. [2019, Lemma C.2] proved independently, using an inductive argument, that EF1
allocations on a path exist for identical valuations. Their procedure can also be implemented in
polynomial time.

10.8. Conclusion
We have studied the existence of EF1 allocations under connectivity constraints imposed by an
undirected graph. We have shown that for two or three agents, an EF1 allocation exists if the
graph is traceable. For any number of agents, we also proved that traceable graphs guarantee
the existence of an EF2 allocation, and they guarantee the existence of an EF1 allocation with
identical valuations. In the published version of this chapter, we show that our Sperner approach
can be adapted to prove that EF1 allocations exist for four agents [Bilò et al., 2018].

There are several questions left open. Most obviously, we do not know whether EF1 allocations
on a path exist for five or more agents. Extensive computer sampling did not find an example
where no EF1 allocation exists. One can also ask whether different topological restrictions
(e.g., cycles), or restricted preference domains (e.g., binary utilities) can allow us to obtain EF1
existence guarantees for n > 5.

While many of our procedures admit efficient implementations for finding fair allocations, for
our results based on Sperner’s lemma we do not know of algorithms better than a naive search
through all connected allocations. For divisible cake-cutting, Deng et al. [2012] proved that it is

154



10.8. Conclusion

PPAD-complete to find an envy-free allocation. What is the complexity of finding an EF1 or
EF2 allocation in our setting of items arranged on a path? Moving away from paths, it would be
interesting to study the complexity of deciding, given a graph and (say) additive valuations of
the agents, whether there exists a connected EF1 allocation.

While we were able to characterise the class of graphs guaranteeing EF1 in the two-agent case,
we have no characterisation for three or more agents. For three agents, there are non-traceable
graphs that guarantee EF1, such as the star with three leaves. Understanding such examples,
and designing EF1 procedures for them, is an interesting research direction.

In this chapter, we have only considered goods, with monotonic valuations. The setting where
some or all items are undesirable (so-called chores) is also of interest [Bogomolnaia et al., 2016,
2017, Meunier and Zerbib, 2018, Segal-Halevi, 2018, Aziz et al., 2019c]. In the model with
connectivity constraints, Aziz et al. [2019c] showed that on a path, a connected Prop1 allocation
always exists (a weaker requirement than EF1). Whether EF1 connected allocations exist in this
more general domain is an intriguing question. Recently, for cake-cutting, Segal-Halevi [2018]
noted that Su’s approach using Sperner’s lemma is not applicable to establish the existence
of an envy-free connected allocation, when agents consider some parts of the cake undesirable.
However, the existence of such allocations can be proved using other methods [Segal-Halevi, 2018,
Meunier and Zerbib, 2018], and these may be translateable to the indivisible setting.

155





11. Pareto-Optimality and Computational
Complexity

We study the problem of finding a connected allocation of indivisible items that is
Pareto-optimal. We focus on additive valuations. While it is easy to find an efficient
allocation when the underlying graph is a path or a star, the problem is NP-hard
for many other graph topologies, even for trees of bounded pathwidth and bounded
diameter. We show that on a path, there are instances where no Pareto-optimal
allocation satisfies envy-freeness up to one good.

11.1. Introduction

In mechanism design, Pareto-optimality is a basic desideratum: if we select an outcome that is
Pareto-dominated by another, users will justifiably complain. In simple settings, it is computa-
tionally trivial to find a Pareto-optimum (e.g., via serial dictatorship). Thus, it is usually sought
to be satisfied together with other criteria (like fairness or welfare maximisation). However, in
more complicated settings, even Pareto-optimality may be elusive.

In this chapter, we study Pareto-optimality for item allocation into connected bundles: Given
agents’ preferences over (connected) bundles, we wish to find an allocation that is Pareto-optimal,
that is, a connected allocation such that there is no other connected allocation which makes
some agent strictly better off while making no agent worse off. Now, in the standard setting
without connectivity constraints and with additive valuations, it is straightforward to find
Pareto-optima: For example, we can allocate each item to a person who has the highest valuation
for it (maximising utilitarian social welfare in the process), or we can run a serial dictatorship.
Neither of these approaches respects connectivity constraints. In fact, we show that it is NP-hard
to construct a Pareto-optimal allocation under connectivity constraints, unless G is extremely
simple. We will also study the combination of Pareto-optimality with the fairness axioms (MMS
and EF1) that we studied in the previous chapter.

Related Work. The relation between efficiency and fairness with connected pieces has been
studied for divisible items. Aumann and Dombb [2015] studied the utilitarian social welfare of
fair allocations under connectivity constraints. The papers by Bei et al. [2012] and Aumann
et al. [2013] considered the computational complexity of finding an allocation with connected
pieces maximising utilitarian social welfare. Bei et al. [2012] showed that utilitarian social welfare
is inapproximable when requiring that the allocation satisfy proportionality; however, without
the proportionality requirement, Aumann et al. [2013] proved that there is a polynomial-time
constant-factor approximation algorithm for finding an allocation maximising utilitarian social
welfare. The algorithm by Aumann et al. [2013] works also for indivisible items and so applies to
our setting when G is a path. A paper by Conitzer et al. [2004] considers combinatorial auctions;
translated to our setting, their results imply that one can find a Pareto-optimal connected
allocation in polynomial time, when G is a graph of bounded treewidth and agents have unit
demand: each agent specifies a connected demanded bundle such that agents have positive utility
if and only if they obtain a superset of the demanded bundle.

157



11. Pareto-Optimality and Computational Complexity

general complete tree path

PO NP-hard* poly-time NP-hard* poly-time
PO & MMS NP-hard* NP-hard* NP-hard*
PO & EF1 NP-hard poly-time† NP-hard NP-hard

Table 11.1.: Overview of our complexity results. Hardness results marked ∗ hold under Turing
reductions. The result † refers to a pseudo-polynomial algorithm by Barman et al.
[2018]. Our hardness results hold even for additive and binary valuations. In this
chapter, we only prove the hardness results of the first row, leaving the rest to the
published version [Igarashi and Peters, 2019].

With no connectivity constraints, Aziz et al. [2016] studied the computational complexity
of finding Pareto-improvements of a given allocation when agents have additive preferences.
Technically, our hardness proofs use similar techniques to hardness proofs obtained by Aziz et al.
[2013] in the context of hedonic games.

11.2. Preliminaries

Recall that a valuation function ui : C(V ) → R is additive if ui(X) =
∑
v∈X ui({v}) for each

X ∈ C(V ). We write ui(v) = ui({v}) for short. An additive valuation function is binary if
ui(v) ∈ {0, 1} for all v ∈ V . If an agent i has a binary valuation function, we say that i approves
item v if ui(v) = 1.

Given a connected allocation π : N → C(V ) and a subset N ′ of agents, we denote by π|N ′ the
allocation restricted to N ′.

Given an allocation π, another allocation π′ is a Pareto-improvement of π if ui(π′(i)) > ui(π(i))
for all i ∈ N and uj(π′(j)) > uj(π(j)) for some j ∈ N . We say that a connected allocation π is
Pareto-optimal (or Pareto-efficient, or PO for short) if there is no connected allocation that is
a Pareto-improvement of π. The utilitarian social welfare of an allocation π is

∑
i∈N ui(π(i)).

It is easy to see that a connected allocation which maximises utilitarian social welfare among
connected allocations is Pareto-optimal.

Some graph-theoretic terminology: Given a graph G = (V,E) and a subset X ⊆ V of vertices,
we denote by G \X the subgraph of G induced by V \X. The diameter of G is the maximum
distance between any pair of vertices.

11.3. Finding Some Pareto-Optimal Allocation

We start by considering the problem of producing some Pareto-optimal allocation, without
imposing any additional constraints on the quality of this allocation. When there are no
connectivity requirements (equivalently, when G is a complete graph) and valuations are additive,
this problem is trivial: Simply allocate each item v separately to an agent i who has a highest
valuation ui(v) for v. The resulting allocation maximises utilitarian social welfare and is thus
Pareto-optimal. When G is not complete, this procedure can produce disconnected bundles. We
could try to give all items to a single agent (if the graph G is connected), but the result need
not be Pareto-optimal if that agent has zero value for some items. Is it still possible to find a
Pareto-optimal allocation for specific graph topologies in polynomial time?

158



11.3. Finding Some Pareto-Optimal Allocation

11.3.1. Paths and Stars
For very simple graphs and additive valuations, the answer is positive. Our first algorithm works
when G is a path. The algorithm identifies an agent i with a non-zero valuation for the item at
the left end of the path G, and then allocates all items to i, except for any items at the right end
of the path which i values at 0. We then recursively call the same algorithm to decide on how to
allocate the remaining items.

Theorem 11.1. When G is a path, and with additive valuations, a Pareto-optimal allocation
can be found in polynomial time.

Proof. The path G is given by V = {v1, v2, . . . , vm} where {vj , vj+1} ∈ E for each j ∈ [m− 1].
For a subset V ′ of V , we denote by minV ′ the vertex of minimum index in V ′.

We design a recursive algorithm A that takes as input a subset N ′ of agents, a subpath
G′ = (V ′, E′) of G, and a valuation profile (ui)i∈N ′ , and returns a Pareto-optimal allocation of
the items in V ′ to the agents in N ′. Without loss of generality, we may assume that there is an
agent who likes the left-most vertex of G′, i.e., ui(minV ′) > 0 for some i ∈ N ′, since otherwise
we can arbitrarily allocate that item later without affecting Pareto-optimality.

If |N ′| = 1, then the algorithm allocates all items V ′ to the single agent. Suppose that |N ′| > 1.
The algorithm first finds an agent i who has positive value for minV ′; it then allocates to i a
minimal connected bundle Vi ⊆ V ′ containing all items in V ′ to which i assigns positive utility
(so that ui(Vi) = ui(V ′)). To decide on the allocation of the remaining items, we apply A to the
reduced instance (N ′ \ {i}, G′ \ Vi, (ui′)i′∈N ′\{i}).

We will prove by induction on |N ′| that the allocation produced by A is Pareto-optimal.
This is clearly true when |N ′| = 1. Suppose that A returns a Pareto-optimal allocation when
|N ′| = k− 1; we will prove it for |N ′| = k. Let π be the allocation returned by A, where A chose
agent i and allocated the bundle Vi before making a recursive call. Assume for a contradiction
that there is a Pareto-improvement π′ of π. Thus, in particular, ui(π′(i)) > ui(π(i)). By the
algorithm’s choice of the bundle Vi, we must have Vi ⊆ π′(i) and ui(π′(i)) = ui(π(i)). Thus,
there is an agent j′ different from i who receives strictly higher value in π′ than in π.

Now, since G \ π′(i) is a subgraph of G \ Vi, the allocation π′|N ′\{i} is an allocation for the
instance I ′ = (N ′ \ {i}, G′ \ Vi, (ui′)i′∈N ′\{i}). Also, we have

• uj(π′(j)) > uj(π(j)) for all agents j ∈ N ′ \ {i}; and

• uj′(π′(j′)) > uj′(π(j′)) for some j′ ∈ N ′ \ {i}.

Thus, π′|N ′\{i} is a Pareto-improvement of the allocation π|N ′\{i}. But π|N ′\{i} is the allocation
returned by A for the instance I ′, contradicting the inductive hypothesis that A returns Pareto-
optimal allocations for |N ′| = k − 1.

Another graph type for which we can find a Pareto-optimum is a star. In fact, we can efficiently
calculate an allocation maximising utilitarian social welfare. Note that when G is a star, at most
one agent can receive two or more items. This allows us to translate welfare maximisation into a
bipartite matching instance.

Theorem 11.2. When G is a star, and valuations are additive, a Pareto-optimal allocation can
be found in polynomial time.

Proof. We give an algorithm to find an allocation that maximises the utilitarian social welfare.
Let G be a star with center vertex c and m− 1 leaves. We start by guessing an agent i ∈ N who
receives the item c. By connectedness, every other agent can receive at most one (leaf) item. To
allocate the leaf items, we construct a weighted bipartite graph Hi with bipartition (N ′, V \ {c})
where N ′ consists of agents j ∈ N \ {i} together with m − 1 copies i1, i2, . . . , im−1 of agent i.

159



11. Pareto-Optimality and Computational Complexity

(These copies represent ‘slots’ in i’s bundle.) Each edge of form {j, v} for j ∈ N \ {i} has weight
uj(v) and each edge of form {ik, v} has weight ui(v).

Observe that each connected allocation in which i obtains c can be identified with a matching
in Hi: Every leaf object is either matched with the agent receiving it, or is matched with some
copy ik of i if the object is part of i’s bundle. Note that utilitarian social welfare of this allocation
equals the total weight of the matching. Since one can find a maximum-weight matching in a
bipartite graph in polynomial time (see, e.g., Korte and Vygen, 2006), we can find an allocation
of maximum utilitarian social welfare efficiently.

We have shown that finding a Pareto-optimum is easy for paths and for stars. An interesting
open problem is whether the problem is also easy for caterpillars, a class of graphs containing
both paths and stars. One might be able to combine the approaches of Theorems 11.1 and 11.2
to handle them, but the details are difficult. Note that caterpillars are precisely the graphs of
pathwidth 1; we discuss a negative result about graphs of pathwidth 2 below. Another open
problem is whether finding a Pareto-optimum is easy when G is a cycle.

11.3.2. Hardness Results

For more general classes of graphs, the news is less positive. We show that, unless P = NP,
there is no polynomial-time algorithm which produces a Pareto-optimal allocation when G is an
arbitrary tree, even for binary valuations. Notably, this result implies that it is NP-hard to find
allocations maximising any type of social welfare (utilitarian, leximin, Nash) when G is a tree,
since such allocations are also Pareto-optimal.

To obtain our hardness result, we first consider a more general problem which is easier
to analyse, namely the case where G is a forest. Since a Pareto-optimum always exists, we
cannot employ the standard approach of showing that a decision problem is NP-hard via many-
one reductions. Instead, we show (by a Turing reduction) that a polynomial-time algorithm
producing a connected Pareto-optimal allocation could be used to solve an NP-complete problem
in polynomial time.

Theorem 11.3. Unless P = NP, there is no polynomial-time algorithm which finds a Pareto-
optimal connected allocation when G is a union of vertex-disjoint paths of size 3, even if valuations
are binary and additive.

Proof. We give a Turing reduction from Exact-3-Cover (X3C). Recall that an instance of
X3C is given by a set of elements X = {x1, x2, . . . , x3r} and a family S = {S1, . . . , Ss} of
three-element subsets of X; it is a ‘yes’-instance if and only if there is an exact cover S ′ ⊆ S with
|S ′| = r and

⋃
S∈S′ S = X. For a set S ∈ S, order the three elements of S in some canonical way

(e.g., alphabetically) and write S1, S2, S3 for the elements in that order.
Given an instance (X,S) of X3C, for each S ∈ S, construct a path PS on three vertices

vS,1, vS,2, vS,3. Let G =
⋃
S∈S PS . For each element x ∈ X, we introduce an agent ix with

uix(vS,j) = 1 iff Sj = x, and uix(vS,j) = 0 otherwise. Thus, agent ix approves all instances of x.
We also introduce s− r dummy agents d1, . . . , ds−r who approve every item, so udk

(vS,j) = 1 for
all j, k, S. Note that for each agent ix, a highest-value connected bundle has value 1, while for a
dummy agent dk, a highest-value connected bundle has value 3.

Suppose we had an algorithm A which finds a Pareto-optimal allocation. We show how to use
A to solve X3C. Run A on the allocation problem constructed above to obtain a Pareto-optimal
allocation π. We claim that the X3C instance (X,S) has a solution iff

uix(π(ix)) = 1 for all x ∈ X and
udk

(π(dk)) = 3 for all k ∈ [s− r].
(11.1)

160



11.3. Finding Some Pareto-Optimal Allocation

Since (11.1) is easy to check, this equivalence implies that A can be used to solve X3C, and
hence our problem is NP-hard.

Suppose π satisfies (11.1). We construct a solution to the X3C instance. For each k ∈ [s− r],
since udk

(π(dk)) = 3, we must have π(dk) = PS for some S ∈ S. Let S ′ = {S ∈ S : π(dk) 6=
PS for all k ∈ [s− r]}. Then S ′ is a solution: Clearly |S ′| = r; further, for every x ∈ X, we have
that π(ix) ∈ PS for some S ∈ S, and since uix(π(ix)) = 1 by (11.1), this implies that x ∈ S.
Thus,

⋃
S∈S′ S = X. Hence, S ′ is a solution to the X3C instance (X,S).

Conversely, suppose there is a solution S ′ to the instance of X3C, but suppose for a contradiction
that π fails condition (11.1). Define the following allocation π∗: For each x ∈ X, identify a
set S ∈ S ′ and an index j ∈ [3] such that Sj = x and set π∗(ix) = {vS,j}; next, write
S \ S ′ = {S′1, . . . , S′s−r} and set π∗(dk) = {vS′

k
,1, vS′

k
,2, vS′

k
,3} for each k ∈ [s − r]. Then π∗

satisfies (11.1). Since π fails (11.1), the allocation π∗ Pareto-dominates π, contradicting that π
is Pareto-optimal. Hence, π satisfies (11.1), as desired.

Building on this reduction, we find that it is also hard to find a Pareto-efficient allocation if G is
a tree (rather than a forest).

vS1,1 vS1,2 vS1,3 . . . vSs,1 vSs,2 vSs,3 c

vS1,1

vS1,3 vS1,2

vSs,1

vSs,2 vSs,3

v̂S1,1

v̂S1,3 v̂S1,2 v̂Ss,2

v̂Ss,1

v̂Ss,3

. . .

. . .

Figure 11.1.: Graphs constructed in the proofs of Theorem 11.3 (left) and Theorem 11.4 (right).

Theorem 11.4. Unless P = NP, there is no polynomial-time algorithm which finds a Pareto-
optimal connected allocation when G is a tree, even if valuations are binary and additive.

Proof. To extend the reduction in the proof of Theorem 11.3 to trees, we first ‘double’ the
reduction, by making a copy of each object and a copy of each agent with the same preference as
the original agent. Specifically, given an instance (X,S) of X3C, we create the same instance
as in the proof of Theorem 11.3; that is, we make a path PS = (vS,1, vS,2, vS,3) for each S ∈ S,
and construct agent ix for each x ∈ X and dummy agents d1, d2, . . . , ds−r with the same binary
valuations.

In addition, we make a path P̂S of copies v̂S,1, v̂S,2, v̂S,3 of each S ∈ S. We then make a copy
îx of each agent ix (x ∈ X) together with copies d̂1, d̂2, . . . , d̂s−r of the dummy agents. We also
introduce a new item c which serves as the center of a tree; specifically, we attach the center to
the middle vertex vS,2 of the path PS , and the middle vertex v̂S,2 of the path P̂S , for each S ∈ S.
The resulting graph G is a tree consisting of 2r + 2|S| paths of length 3, each attached to the
vertex c by their middle vertex. See Figure 11.1.

No agent has positive value for the center item c. Copied agents only value copied objects and
have the same valuations as the corresponding original agents, and non-copied agents only value
non-copied objects. Formally, for each element x ∈ X, each k ∈ [s− r], and each item v, agents’
binary valuations are given as follows:

• uix(v) = 1 iff v = vS,j and Sj = x;

• udk
(v) = 1 iff v = vS,j for some S, j;

• uîx(v) = 1 iff v = v̂S,j and Sj = x;

161



11. Pareto-Optimality and Computational Complexity

• ud̂k
(v) = 1 iff v = v̂S,j for some S, j.

Write No = { ix : x ∈ X } ∪ {d1, d2, . . . , ds−r} for the set of original agents, and Vo =⋃
S∈S{vS,1, vS,2, vS,3} for the set of original items.
Suppose we had an algorithm A which finds a Pareto-optimal allocation. We show how to use

A to solve X3C. Run A on the allocation problem constructed above to obtain a Pareto-optimum
π. We may suppose without loss of generality that c 6∈ π(i) for any i ∈ No, since otherwise we
can swap the roles of the originals and the copies. We may further assume that each original
agent i ∈ No only receives original items, i.e., π(i) ⊆ Vo, since we can move any other items from
π(i) into other bundles without making anyone worse off. Hence, since c 6∈ π(i), we see that
π(i) ⊆ PS for some S ∈ S because π(i) is connected in G. This shows that uix(π(ix)) 6 1 for all
x ∈ X and udk

(π(dk)) 6 3 for all k ∈ [s− r]. We prove that the X3C instance has a solution iff

uix(π(ix)) = 1 for all x ∈ X and
udk

(π(dk)) = 3 for all k ∈ [s− r].
(11.2)

Since (11.2) is easy to check, this equivalence implies that A can be used to solve X3C, and
hence our problem is NP-hard. If (11.2) holds, then the argument in the proof of Theorem 11.3
applies and shows that the X3C instance has a solution.

Conversely, suppose there is a solution S ′ ⊆ S to the X3C instance. Then, as in the proof
of Theorem 11.3, there is an allocation π∗ : No → C(Vo) of the original items to the original
agents such that uix(π∗(ix)) = 1 for all x ∈ X and udk

(π∗(dk)) = 3 for all k ∈ [s− r]. Extend
π∗ to all agents by defining π∗(ĵ) = π(ĵ) ∩ (V \ Vo) for every copied agent ĵ. It is easy to
check that π∗ is a connected allocation. For each copied agent ĵ, we have uĵ(π

∗(ĵ)) = uĵ(π(ĵ)),
since ĵ has a valuation of 0 for every item in Vo. Also, for each original agent i ∈ No, we have
ui(π∗(i)) > ui(π(i)), since i obtains an optimal bundle under π∗. It follows that if π fails (11.2),
then π∗ is a Pareto-improvement of π, contradicting that π is Pareto-optimal. So π satisfies
(11.2).

Note that the graph constructed in the above proof has pathwidth 2 and diameter 4, so
hardness holds even for trees of bounded pathwidth and bounded diameter.

11.4. Pareto-Optimality and EF1 on Paths
In Section 11.3, we were aiming to find some Pareto-optimum, and obtained a positive result for
the important case where G is a path. Now we aim for an efficient allocation which is also EF1.

When there are no connectivity requirements, it is known that efficiency and fairness are
compatible: Caragiannis et al. [2016a] showed that an allocation maximising the Nash product of
agents’ valuations is both Pareto-optimal and EF1. While it is NP-hard to compute the Nash
solution, Barman et al. [2018] designed a (pseudo-)polynomial-time algorithm which finds an
allocation satisfying these two properties.

In our model, unfortunately, EF1 is incompatible with Pareto-optimality, even when G is a
path. The following examples only require binary additive valuations and only two or three
agents.

Example 11.5. Consider an instance with two agents a, b and a path with five items v1, . . . , v5,
and binary additive valuations as shown below.

v1 v2 v3 v4 v5

a : 1 0 1 1 0
b : 0 1 1 0 1

162



11.4. Pareto-Optimality and EF1 on Paths

Write an allocation π as a pair (π(a), π(b)). Then the allocation

• ({v1}, {v2, v3, v4, v5}) is not EF1,

• ({v1, v2}, {v3, v4, v5}) is Pareto-dominated by ({v1}, {v2, v3, v4, v5}),

• ({v1, v2, v3}, {v4, v5}) is Pareto-dominated by ({v1, v2, v3, v4}, {v5}),

• ({v1, v2, v3, v4}, {v5}) is not EF1.

The other allocations also fail Pareto-optimality or EF1, by symmetry.

The following alternative example shows that Pareto-optimality and EF1 conflict in another
restricted setting, where each agent’s approval set is an interval.

Example 11.6. Consider an instance with three agents a1, a2, and b, and a path with eleven
items v1, . . . , v11, and binary additive valuations as shown below.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

a1, a2 : 1 1 1 1 1 1 1 1 1 1 1
b : 0 0 0 1 1 0 0 0 0 0 0

Suppose π is a Pareto-optimal EF1 allocation. Then, for each i = 1, 2, because b does not
envy ai up to one good, we have {v4, v5} 6⊆ π(ai). Thus, for each i = 1, 2, we have either
π(ai) ⊆ {v1, . . . , v4} (and we say ai is in group L) or π(ai) ⊆ {v5, . . . , v11} (and ai is in group
R). Now, a1 and a2 are not both in group L, since then there would be a Pareto-improvement
by giving the six items {v6, . . . , v11} to a1. Also, a1 and a2 are not both in group R, since
then one of them (say a1) would receive at most 3 approved items, and there would be a
Pareto-improvement by giving items {v1, v2, v3} to a1 and {v6, . . . , v11} to a2. Hence, without
loss of generality, a1 is in group L and a2 is in group R. Since π is Pareto-optimal, we have
π(b) ⊆ {v4, v5}; if b were to obtain any other items, then we can reallocate these items to a1
and a2 to obtain a Pareto-improvement. Thus, a1 obtains at most four approved items (as
π(a1) ⊆ {v1, . . . , v4}), but a2 receives at least six approved items (as {v6, . . . , v11} ⊆ π(a2)), so π
is not EF1, a contradiction.

Given that we do not have an existence guarantee, a natural question is whether it is easy to
decide whether a given instance admits a Pareto-optimal allocation satisfying EF1. Using the
ideas of the reduction of Theorem 11.3 and inserting the above examples as gadgets, one can
prove that it is NP-hard to decide this question. See the conference paper for a proof [Igarashi
and Peters, 2019]. The obvious complexity upper bound is Σp

2; an open problem is whether the
problem is complete for this class. A related result of de Keijzer et al. [2009] shows that without
connectivity constraints and with additive valuations, it is Σp

2-complete to decide whether a
Pareto optimal and envy-free allocation exists; see also Bouveret and Lang [2008].

Note that in Examples 11.5 and 11.6, there are two different types of agents’ valuations.
Invoking Theorem 10.18 from the previous chapter, we can show that a Pareto-optimal EF1
allocation exists on paths for agents with additive valuations that are identical, i.e., ui(X) = ui(X)
for all bundles X ∈ C(V ) and all i, j ∈ N .

Proposition 11.7. When G is a path and agents have identical additive valuations, a connected
allocation that is Pareto-optimal and satisfies EF1 exists and can be found efficiently.

163



11. Pareto-Optimality and Computational Complexity

Proof. When agents have identical additive valuations, every allocation π has the same utilitarian
social welfare

∑
i∈N ui(π(i)) =

∑
v∈V u1(v). Hence, every allocation maximises social welfare and

is thus Pareto-optimal. Now, by Theorem 10.18, if G is a path then a connected EF1 allocation
exists, which, by the above reasoning, is also Pareto-optimal. This allocation can be found
efficiently since Theorem 10.18 comes with an efficient algorithm.

For identical valuations that are not additive, Pareto-optimality and EF1 are again incompatible
on a path.

Example 11.8. There are four items a, b, c, d arranged on a path, and two agents with the
following identical valuations:

X u(X) X u(X) X u(X)

{a} 2 {a, b} 2 {a, b, c} 3
{b} 2 {b, c} 3 {b, c, d} 4
{c} 2 {c, d} 3 {a, b, c, d} 4
{d} 1

These valuations are subadditive. Then the allocation

• {{a, b, c, d},∅} is not EF1,

• {{a, b, c}, {d}} is not EF1,

• {{a, b}, {c, d}} is Pareto-dominated by {{a}, {b, c, d}},

• {{a}, {b, c, d}} is not EF1.

11.5. Pareto-Optimality and MMS on Paths

In the previous section, we saw that deciding the existence of an allocation that is Pareto-efficient
and satisfies EF1 is computationally hard, even for a path, and saw examples where no such
allocation exists. Part of the reason is that envy-freeness notions and Pareto-optimality are
not natural companions: it is easy to construct envy-free allocations, which, after a Pareto-
improvement, are not envy-free anymore.

An alternative notion of fairness avoids this problem: Pareto-improving upon an MMS
allocation preserves the MMS property, because MMS only specifies a lower bound on agents’
utilities. In Section 10.3, we saw that if G is a tree, then an MMS allocation always exists (and
can be found efficiently). Hence, if G is a tree, there is an allocation that is both Pareto-optimal
and MMS: take an MMS allocation, and repeatedly find Pareto-improvements until reaching a
Pareto-optimum, which must still satisfy the MMS property.

While existence is guaranteed, it is unclear whether we can find an allocation satisfying both
properties in polynomial time. Certainly, by the negative result of Theorem 11.4, this is not
possible when G is an arbitrary tree. What about the case when G is a path? In the conference
paper, we show that, unless P = NP, there is no polynomial-time algorithm which finds a
Pareto-optimal MMS allocation when G is a path, even if valuations are binary and additive
[Igarashi and Peters, 2019]. The proof also implies that we cannot in polynomial time find a
Pareto-optimal allocation that is α-MMS, for fixed α > 0, where an allocation π is said to be
α-MMS if ui(π(i)) > α ·MMSi for all i ∈ N .

164



11.6. Conclusion

11.6. Conclusion
In this chapter, we have studied the computational complexity of finding Pareto-efficient outcomes,
in the natural setting where we need to allocate indivisible items into connected bundles. We
showed that although finding a Pareto-optimal allocation is easy for some topologies, this does not
extend to general trees. Further, we proved that when imposing additional fairness requirements,
finding a Pareto-optimum becomes NP-hard even when the underlying item graph is a path. We
have also seen that a Pareto-optimal EF1 allocation may not exist with the contiguity requirement
while such an allocation always exists when these requirements are ignored.

Thanks to Erel Segal-Halevi, Warut Suksompong, and Rohit Vaish for useful discus-
sions.

165





12. Strategyproofness and EF1

In this brief final chapter, we consider the existence of strategyproof allocation rules
for items arranged on a path, and find that no such rule exists that also guarantees
EF1. We connect this result with similar results from cake-cutting.

12.1. Introduction

In the previous chapters, we have mostly been interested in the existence of high-quality allocations
of items. For practical uses, there remains the problem of selecting among those allocations that
satisfy our desired axioms such as EF1, that is, the problem of designing a mechanism that,
given a valuation profile, returns an allocation. The cut-and-choose procedure for n = 2 agents
and the Stromquist-inspired moving knife procedure for n = 3 agents are such mechanisms.
Once we have a mechanism, it makes sense to not just study intra-profile axioms such as EF1
(which only concern the quality of the output), but to also consider inter-profile axioms that
connect the outputs at different profiles. The inter-profile condition we have studied most often
in this thesis is strategyproofness, which can easily be defined for our setting. Unfortunately,
the cut-and-choose procedure as well as the Stromquist procedure are both manipulable. For
example, suppose that n = 2, and there are five items arranged on a path. Alice has valuation
1–1–1–1–1, so her lumpy tie is the middle item. Bob has valuation 1–1–0–0–0, so he picks the
bundle to the left of Alice’s lumpy tie, and Alice obtains the rest, namely three items. However,
if Alice reports her valuation as 1–1–0–0–0 (the same as Bob), then her lumpy tie would be the
second item; Bob still chooses the left bundle, and now Alice obtains the right four items. Thus,
Alice has obtained a more valuable bundle by misreporting her valuations.

In the setting without connectivity constraints, Amanatidis et al. [2017] characterised all
strategyproof allocation mechanisms when there are n = 2 agents with additive valuations. They
then proved that no mechanism in their class guarantees EF1 [Amanatidis et al., 2017, Sec. 4.2]
for m > 5 items, and hence no strategyproof EF1 mechanism exists. Now suppose we had a
mechanism that satisfies connectivity constraints and is also strategyproof and EF1. The exact
same mechanism could be used in the model without connectivity constraints and continues to be
strategyproof and EF1, contradicting the result of Amanatidis et al. [2017]. Thus, for example,
there does not exist a strategyproof mechanism that allocates 5 or more items arranged on a
path to players while guaranteeing EF1. This proof uses rather heavy machinery, requiring a full
characterisation of all strategyproof mechanisms. Here, we give a simple and direct argument.

12.2. A Simple Impossibility

Our result will work even on the restricted domain of additive valuations that are binary and
where each agent approves items that form an interval of the path G. For n = 2 and m = 5,
there are only 162 = 256 valuation profiles with this restricted domain. For each valuation profile,
there are only 12 possible connected allocations (that are complete in the sense of allocating all
items to the agents). It is easy to write down a propositional formula encoding a mechanism
that is strategyproof and EF1, and this formula is unsatisfiable and admits an MUS referring to
only five profiles.

167



12. Strategyproofness and EF1

Theorem 12.1. Suppose there are n = 2 agents, and m > 5 items arranged on a graph G that
is a path. Then there exists no strategyproof mechanism which always returns a complete EF1
allocation connected on G. Impossibility holds even for binary additive valuations, where every
agent approves an interval of items.

Proof. We start by considering the case of m = 5 items with V = {a, b, c, d, e} arranged on a
path in the printed order. Suppose there exists a mechanism that is strategyproof, returns a
complete and connected allocation, and guarantees EF1.

Consider the following profile P1:

u1 : 1–1–0–0–0 u2 : 1–1–0–0–0

By completeness and EF1, each agent needs to obtain at least one of items a and b. Thus, by
completeness and connectedness, one agent obtains bundle {a} and the other {b, c, d, e}. Without
loss of generality, suppose that agent 1 obtains {a}.

Consider the following profile P2:

u1 : 1–1–0–0–0 u2 : 0–1–1–1–1

In this profile, agent 2 needs to obtain items b, c, d, and e, since otherwise agent 2 can manipulate
and report valuations 1–1–0–0–0 which brings us to profile P1 where agent 2 obtains all these
items. On the other hand, agent 2 cannot also obtain item a by EF1. Hence, agent 1 obtains
bundle {a}.

Consider the following profile P3:

u1 : 1–1–1–1–0 u2 : 0–1–1–1–1

In this profile, by EF1, agent 1 either obtains bundle {a, b} or {a, b, c}. Thus, in profile P2, agent
1 has an incentive to manipulate towards P3, contradicting strategyproofness.

To extend the argument to the case m > 5, we can append additional items on the right-hand
end of the path and stipulate that neither agent values these items.

12.3. Importing Impossibilities from Cake-Cutting
There is another way to obtain a result along the lines of Theorem 12.1, by reduction from
divisible cake-cutting. Fix some ε > 0, and suppose we had a mechanism for allocating a path of
M items among n agents while being strategyproof and EF1. Then we can use this mechanism
as a mechanism for cake-cutting: Given continuous agent valuations over the interval [0, 1],
approximate these by additive valuations over the path of M items and run the mechanism
on this instance. For sufficiently large M , the resulting mechanism for cake-cutting will be
ε-strategyproof (in the sense that a misreport can increase utility by at most ε) and ε-envy-free
(in the sense that envy is bounded by ε). However, the literature on cake-cutting contains
impossibilities about strategyproofness and envy-freeness [Bei et al., 2017, Theorem 1, Bei et al.,
2018, Theorem 3], and the proofs also establish impossibility for the ε-versions of these properties.
Hence, for large enough M , no strategyproof EF1 mechanism for the indivisible setting can exist.
By using the result of Bei et al. [2017], we can obtain an impossibility also for n > 2 and for a
weakening of the requirement that allocations be complete, but requiring non-binary additive
valuations. By using the result of Bei et al. [2018], we can obtain an impossibility for n = 2 and
even for binary additive valuations where each agent approves an interval of items beginning
with the left-most item.

168



Bibliography

S. Airiau, H. Aziz, I. Caragiannis, J. Kruger, J. Lang, and D. Peters. Portioning using ordinal
preferences: Fairness and efficiency. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI), pages 11–17, 2019. [→ p. xiii]

N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Strategyproof approximation of the
minimax on networks. Mathematics of Operations Research, 35(3):513–526, 2010a. Extended
version: arXiv:0907.2049. [→ p. 39, 122]

N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Walking in circles. Discrete
Mathematics, 310(23):3432–3435, 2010b. [→ p. 122]

G. Amanatidis, G. Birmpas, G. Christodoulou, and E. Markakis. Truthful allocation mechanisms
without payments: Characterization and implications on fairness. In Proceedings of the 18th
ACM Conference on Economics and Computation (ACM-EC), pages 545–562, 2017. [→ p. 167]

K. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare, Volume 1.
Elsevier, 2002. [→ p. 89]

Y. Aumann and Y. Dombb. The efficiency of fair division with connected pieces. ACM
Transactions on Economics and Computation, 3:23:1–23:16, 2015. [→ p. 157]

Y. Aumann, Y. Dombb, and A. Hassidim. Computing socially-efficient cake divisions. In
Proceedings of the 12th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 343–350, 2013. [→ p. 157]

M. Ayadi, N. Ben Amor, J. Lang, and D. Peters. Single transferable vote: Incomplete knowledge
and communication issues. In Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 1288–1296, 2019. [→ p. xvi]

H. Aziz and P. Stursberg. A generalization of probabilistic serial to randomized social choice. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pages 559–565,
2014. [→ p. 63, 64]

H. Aziz, F. Brandt, and P. Harrenstein. Pareto optimality in coalition formation. Games and
Economic Behavior, 82:562–581, 2013. [→ p. 158]

H. Aziz, F. Brandl, and F. Brandt. Universal Pareto dominance and welfare for plausible
utility functions. In Proceedings of the 15th ACM Conference on Economics and Computation
(ACM-EC), pages 331–332, 2014. [→ p. 57]

H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, and T. Walsh. Computational
aspects of multi-winner approval voting. In Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 107–115, 2015. [→ p. 87]

H. Aziz, P. Biró, J. Lang, J. Lesca, and J. Monnot. Optimal reallocation under additive and
ordinal preferences. In Proceedings of the 15th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 402–410, 2016. [→ p. 158]

169



Bibliography

H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in
approval-based committee voting. Social Choice and Welfare, 48(2):461–485, 2017. [→ p. 76,
80, 81]

H. Aziz, B. E. Lee, and N. Talmon. Proportionally representative participatory budgeting:
Axioms and algorithms. In Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 23–31, 2018a. [→ p. 39, 77]

H. Aziz, P. Luo, and C. Rizkallah. Rank maximal equal contribution: a probabilistic social choice
function. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pages
910–916, 2018b. [→ p. 63]

H. Aziz, A. Bogomolnaia, and H. Moulin. Fair mixing: the case of dichotomous preferences. In
Proceedings of the 20th ACM Conference on Economics and Computation (ACM-EC), pages
753–781, 2019a. [→ p. 39, 56, 57, 59, 63]

H. Aziz, F. Brandl, F. Brandt, P. Harrenstein, M. Olsen, and D. Peters. Fractional hedonic
games. ACM Transactions on Economics and Computation, 7(2), 2019b. [→ p. xv]

H. Aziz, I. Caragiannis, and A. Igarashi. Fair allocation of combinations of indivisible goods and
chores. In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 53–59, 2019c. [→ p. 155]

G. Bachmeier, F. Brandt, C. Geist, P. Harrenstein, K. Kardel, D. Peters, and H. G. Seedig.
k-majority digraphs and the hardness of voting with a constant number of voters. Journal of
Computer and System Sciences, 105:130–157, 2019. [→ p. xvi]

M. Balinski and H. P. Young. Fair Representation: Meeting the Ideal of One Man, One Vote.
Yale University Press, 1982. (2nd Edition, Brookings Institution Press, 2001). [→ p. 75]

R. B. Bapat. A constructive proof of a permutation-based generalization of Sperner’s lemma.
Mathematical Programming, 44(1):113–120, 1989. [→ p. 149]

J. B. Barbanel and S. J. Brams. Cake division with minimal cuts: envy-free procedures for three
persons, four persons, and beyond. Mathematical Social Sciences, 48(3):251–269, 2004. [→ p.
134]

S. Barberà. Majority and positional voting in a probabilistic framework. Review of Economic
Studies, 46(2):379–389, 1979. [→ p. 70]

S. Barberà and M. Jackson. A characterization of strategy-proof social choice functions for
economies with pure public goods. Social Choice and Welfare, 11(3):241–252, 1994. [→ p. 38,
39]

S. Barberà, F. Gul, and E. Stacchetti. Generalized median voter schemes and committees.
Journal of Economic Theory, 61(2):262–289, 1993. [→ p. 39]

S. Barberà, J. Masso, and A. Neme. Voting under constraints. Journal of Economic Theory, 76
(2):298–321, 1997. [→ p. 39]

S. Barman, S. K. Krishnamurthy, and R. Vaish. Finding fair and efficient allocations. In
Proceedings of the 19th ACM Conference on Economics and Computation (ACM-EC), pages
557–574, 2018. [→ p. 158, 162]

J. Bartholdi, III and M. Trick. Stable matching with preferences derived from a psychological
model. Operations Research Letters, 5(4):165–169, 1986. [→ p. 91, 120]

170



Bibliography

J. Bartholdi, III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6(3):157–165, 1989. [→ p. 89, 99, 122,
123]

D. Baumeister, S. Dennisen, and L. Rey. Winner determination and manipulation in minisum
and minimax committee elections. In Proceedings of the 3rd International Conference on
Algorithmic Decision Theory (ADT), pages 469–485. Springer, 2015. [→ p. 87]

D. Baumeister, S. Bouveret, J. Lang, N.-T. Nguyen, T. T. Nguyen, J. Rothe, and A. Saffidine.
Positional scoring-based allocation of indivisible goods. Autonomous Agents and Multi-Agent
Systems, 31(3):628–655, 2017. [→ p. 63]

J. Behrens, A. Kistner, A. Nitsche, and B. Swierczek. The Principles of LiquidFeedback. 2014.
[→ p. 81]

X. Bei, N. Chen, X. Hua, B. Tao, and E. Yang. Optimal proportional cake cutting with connected
pieces. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI), pages
1263–1269, 2012. [→ p. 157]

X. Bei, N. Chen, G. Huzhang, B. Tao, and J. Wu. Cake cutting: envy and truth. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pages 3625–3631,
2017. [→ p. 168]

X. Bei, G. Huzhang, and W. Suksompong. Truthful fair division without free disposal. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pages
63–69, 2018. [→ p. 168]

A. Belov and J. Marques-Silva. MUSer2: An efficient MUS extractor. Journal on Satisfiability,
Boolean Modeling and Computation, 8:123–128, 2012. [→ p. 18]

G. Benade, S. Nath, A. D. Procaccia, and N. Shah. Preference elicitation for participatory
budgeting. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI),
pages 376–382, 2017. [→ p. 39, 77]

N. Betzler, A. Slinko, and J. Uhlmann. On the computation of fully proportional representation.
Journal of Artificial Intelligence Research, 47(1):475–519, 2013. [→ p. 89, 90, 93, 95, 97, 101,
115, 117, 125]

A. Biere. Lingeling, Plingeling and Treengeling entering the SAT competition 2013. In Proceedings
of the SAT Competition 2013, pages 51–52, 2013. [→ p. 18]

V. Bilò, I. Caragiannis, M. Flammini, A. Igarashi, G. Monaco, D. Peters, C. Vinci, and W. S.
Zwicker. Almost envy-free allocations with connected bundles. In Proceedings of the 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019), pages 14:1–14:21, 2018.
Extended version: arXiv:1808.09406. [→ p. xiv, 154]

A. Biswas and S. Barman. Fair division under cardinality constraints. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI), pages 91–97, 2018. [→ p.
153]

D. Black. On the rationale of group decision-making. The Journal of Political Economy, 56(1):
23–34, 1948. [→ p. 90, 117]

H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1–2):1–21, 1994. [→
p. 94]

171



Bibliography

A. Bogomolnaia, H. Moulin, and R. Stong. Collective choice under dichotomous preferences.
Extended working paper version, 2002. [→ p. 55]

A. Bogomolnaia, H. Moulin, and R. Stong. Collective choice under dichotomous preferences.
Journal of Economic Theory, 122(2):165–184, 2005. [→ p. 5, 39, 55, 57, 58, 68]

A. Bogomolnaia, H. Moulin, F. Sandomirskyi, and E. Yanovskaya. Dividing goods and bads
under additive utilities. 2016. arXiv:1610.03745. [→ p. 155]

A. Bogomolnaia, H. Moulin, F. Sandomirskyi, and E. Yanovskaya. Competitive division of a
mixed manna. Econometrica, 85(6):1847–1871, 2017. [→ p. 155]

J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 1st edition, 2008. [→ p. 140, 141]

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3):
335–379, 1976. [→ p. 120]

K. C. Border and J. S. Jordan. Straightforward elections, unanimity and phantom voters. Review
of Economic Studies, 50(1):153–170, 1983. [→ p. 38, 39]

S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of indivisible goods: logical
representation and complexity. Journal of Artificial Intelligence Research, 32(1):525–564, 2008.
[→ p. 163]

S. Bouveret and M. Lemâıtre. Characterizing conflicts in fair division of indivisible goods using
a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290, 2016. [→ p.
134]

S. Bouveret, K. Cechlárová, E. Elkind, A. Igarashi, and D. Peters. Fair division of a graph.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI),
pages 135–141, 2017. [→ p. xiv, 138]

S. J. Brams and P. C. Fishburn. Approval Voting. Birkhäuser, 1983. [→ p. 56]

S. J. Brams and D. L. King. Efficient fair division: Help the worst off or avoid envy? Rationality
and Society, 17(4):387–421, 2005. [→ p. 63]

S. J. Brams and A. D. Taylor. Fair division: from cake-cutting to dispute resolution. Cambridge
University Press, 1996. [→ p. 133, 138]

S. J. Brams, A. D. Taylor, and W. S. Zwicker. A moving-knife solution to the four-person
envy-free cake-division problem. Proceedings of the American Mathematical Society, 125(2):
547–554, 1997. [→ p. 134]

F. Brandl and D. Peters. An axiomatic characterization of the Borda mean rule. Social Choice
and Welfare, 52(4):685–707, 2019. [→ p. xvi]

F. Brandl, F. Brandt, C. Geist, and J. Hofbauer. Strategic abstention based on preference
extensions: Positive results and computer-generated impossibilities. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI), pages 18–24, 2015a. [→ p.
13, 14]

F. Brandl, F. Brandt, and J. Hofbauer. Incentives for participation and abstention in probabilistic
social choice. In Proceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1411–1419, 2015b. [→ p. 14]

172



Bibliography

F. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica, 84
(5):1839–1880, 2016. [→ p. 63]

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the incompatibility of efficiency and
strategyproofness via SMT solving. Journal of the ACM, 65(2), 2018. [→ p. 57]

F. Brandl, F. Brandt, and J. Hofbauer. Welfare maximization entices participation. Games and
Economic Behavior, 14:308–314, 2019a. [→ p. 14]

F. Brandl, F. Brandt, D. Peters, C. Stricker, and W. Suksompong. Donor coordination: Collective
distribution of individual contributions. 2019b. Working paper. [→ p. xiii, 56]

F. Brandt. Set-monotonicity implies Kelly-strategyproofness. Social Choice and Welfare, 45(4):
793–804, 2015. [→ p. 14]

F. Brandt. Rolling the dice: Recent results in probabilistic social choice. In U. Endriss, editor,
Trends in Computational Social Choice, chapter 1, pages 3–26. AI Access, 2017. [→ p. 78]

F. Brandt. Collective choice lotteries: Dealing with randomization in economic design. In J.-F.
Laslier, H. Moulin, R. Sanver, and W. S. Zwicker, editors, The Future of Economic Design.
Springer-Verlag, 2019. Forthcoming. [→ p. 63]

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT solving. Journal
of Artificial Intelligence Research, 55:565–602, 2016. [→ p. 13, 14]

F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaandra. Bypassing combinatorial
protections: Polynomial-time algorithms for single-peaked electorates. Journal of Artificial
Intelligence Research, 53:439–496, 2015. [→ p. 90, 117, 123]

F. Brandt, M. Brill, and P. Harrenstein. Tournament solutions. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social Choice,
chapter 3. Cambridge University Press, 2016a. [→ p. 123]

F. Brandt, C. Geist, and D. Peters. Optimal bounds for the no-show paradox via SAT solving.
In Proceedings of the 15th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 314–322, 2016b. [→ p. xiii]

F. Brandt, C. Geist, and D. Peters. Replication data for: Optimal bounds for the no-show
paradox via SAT solving. Harvard Dataverse. http://dx.doi.org/10.7910/DVN/TGIQB7, 2016c.
[→ p. 21]

F. Brandt, C. Geist, and D. Peters. Optimal bounds for the no-show paradox via SAT solving.
Mathematical Social Sciences, 90:18–27, 2017. Special Issue in Honor of Hervé Moulin. [→ p.
xiii, 22]

F. Brandt, J. Hofbauer, and M. Strobel. Exploring the no-show paradox for Condorcet extensions
using Ehrhart theory and computer simulations. In Proceedings of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 520–528, 2019.
[→ p. 13]

R. Bredereck, J. Chen, and G. J. Woeginger. Are there any nicely structured preference profiles
nearby? Mathematical Social Sciences, 79:61–73, 2016. [→ p. 116]

M. Brill, R. Freeman, S. Janson, and M. Lackner. Phragmén’s voting methods and justified
representation. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI),
pages 406–413, 2017. [→ p. 76, 81]

173

http://dx.doi.org/10.7910/DVN/TGIQB7


Bibliography

M. Brill, J.-F. Laslier, and P. Skowron. Multiwinner approval rules as apportionment methods.
Journal of Theoretical Politics, 30(3):358–382, 2018. [→ p. 80, 81]

E. Budish. The combinatorial assignment problem: Approximate competitive equilibrium from
equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011. [→ p. 7, 134, 136]

D. E. Campbell and J. S. Kelly. A strategy-proofness characterization of majority rule. Economic
Theory, 22(3):557–568, 2003. [→ p. 30, 33]

D. E. Campbell and J. S. Kelly. Strategy-proofness and weighted voting. Mathematical Social
Sciences, 60(1):15–23, 2010. [→ p. 14]

D. E. Campbell and J. S. Kelly. Anonymous, neutral, and strategy-proof rules on the Condorcet
domain. Economics Letters, 128:79–82, 2015. [→ p. 32, 33]

D. E. Campbell and J. S. Kelly. Correction to “A strategy-proofness characterization of majority
rule”. Economic Theory Bulletin, 4(1):121–124, 2016. [→ p. 30]

D. E. Campbell, J. Graver, and J. S. Kelly. There are more strategy-proof procedures than you
think. Mathematical Social Sciences, 64(3):263–265, 2012. [→ p. 14]

I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu. Mechanism design: from partial to probabilistic
verification. In Proceedings of the 13th ACM Conference on Electronic Commerce (ACM EC),
pages 266–283, 2012. [→ p. 34]

I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. The Unrea-
sonable Fairness of Maximum Nash Welfare. In Proceedings of the 17th ACM Conference on
Economics and Computation (ACM-EC), pages 305–322, 2016a. [→ p. 135, 136, 162]

I. Caragiannis, A. D. Procaccia, and N. Shah. Truthful univariate estimators. In Proceedings of
the 33rd International Conference on Machine Learning (ICML), pages 127–135, 2016b. [→ p.
41]

J. R. Chamberlin and P. N. Courant. Representative deliberations and representative decisions:
Proportional representation and the Borda rule. The American Political Science Review, 77
(3):718–733, 1983. [→ p. 81, 89, 125]

R. T. Clemen. Combining forecasts: A review and annotated bibliography. International Journal
of Forecasting, 5:559–583, 1989. [→ p. 39]

V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proceedings of the 18th
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 103–110, 2002. [→ p.
14]

V. Conitzer and T. Sandholm. Applications of automated mechanism design. In Proceedings of
the UAI workshop on Bayesian Modeling Applications, 2003. [→ p. 14]

V. Conitzer and T. Sandholm. Expressive markets for donating to charities. Artificial Intelligence,
175(7-8):1251–1271, 2011. [→ p. 14]

V. Conitzer, J. Derryberry, and T. Sandholm. Combinatorial auctions with structured item
graphs. In Proceedings of the 19th AAAI Conference on Artificial Intelligence (AAAI), pages
212–218, 2004. [→ p. 157]

V. Conitzer, M. Brill, and R. Freeman. Crowdsourcing societal tradeoffs. In Proceedings of the
14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) Blue
Sky Ideas track, pages 1213–1217, 2015. [→ p. 39]

174



Bibliography

V. Conitzer, R. Freeman, M. Brill, and Y. Li. Rules for choosing societal tradeoffs. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence (AAAI), pages 460–467, 2016. [→ p. 39]

D. Cornaz, L. Galand, and O. Spanjaard. Bounded single-peaked width and proportional
representation. In Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI), pages 270–275, 2012. [→ p. 93, 116]

A. Darmann and J. Schauer. Maximizing Nash product social welfare in allocating indivisible
goods. European Journal of Operational Research, 247(2):548–559, 2015. [→ p. 63]

B. de Keijzer, S. Bouveret, T. Klos, and Y. Zhang. On the complexity of efficiency and envy-
freeness in fair division of indivisible goods with additive preferences. In Proceedings of the 1st
International Conference on Algorithmic Decision Theory (ADT), pages 98–110, 2009. [→ p.
163]

G. Demange. Single-peaked orders on a tree. Mathematical Social Sciences, 3(4):389–396, 1982.
[→ p. 91, 94, 117]

X. Deng, Q. Qi, and A. Saberi. Algorithmic solutions for envy-free cake cutting. Operations
Research, 60(6):1461–1476, 2012. [→ p. 149, 150, 154]

J.-P. Doignon and J.-C. Falmagne. A polynomial time algorithm for unidimensional unfolding
representations. Journal of Algorithms, 16(2):218–233, 1994. [→ p. 91, 113]

M. Dom. Algorithmic aspects of the consecutive-ones property. Bulletin of the European
Association for Theoretical Computer Science, 98:27–59, 2009. [→ p. 129]

L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American Mathematical Monthly,
68(1):1–17, 1961. [→ p. 133]

C. Duddy. Condorcet’s principle and the strong no-show paradoxes. Theory and Decision, 77(2):
275–285, 2014a. [→ p. 13, 14]

C. Duddy. Electing a representative committee by approval ballot: An impossibility result.
Economics Letters, 124(1):14–16, 2014b. [→ p. 77, 86]

C. Duddy. Fair sharing under dichotomous preferences. Mathematical Social Sciences, 73:1–5,
2015. [→ p. 56, 57]

E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method. The
Annals of Mathematical Statistics, 30(1):165–168, 1959. [→ p. 46, 47]

E. Elkind and M. Lackner. Structure in dichotomous preferences. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI), pages 2019–2025, 2015. [→
p. 87]

E. Elkind, M. Lackner, and D. Peters. Preference restrictions in computational social choice:
Recent progress. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), pages 4062–4065, 2016. [→ p. xvi, 117]

E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of multiwinner voting rules.
Social Choice and Welfare, 48(3):599–632, 2017a. [→ p. 81, 86]

E. Elkind, M. Lackner, and D. Peters. Structured preferences. In U. Endriss, editor, Trends in
Computational Social Choice, chapter 10. 2017b. [→ p. xvi, 87, 117]

175



Bibliography

G. Erdelyi, M. Lackner, and A. Pfandler. Computational aspects of nearly single-peaked
electorates. Journal of Artificial Intelligence Research, 58:297–337, 2017. [→ p. 116]

B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its complexity. In Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI), pages 366–370, 2008. [→ p.
91, 113]

S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2(3):
339–344, 1976. [→ p. 141]

B. Fain, A. Goel, and K. Munagala. The core of the participatory budgeting problem. In
Proceedings of the 12th International Workshop on Internet and Network Economics (WINE),
pages 384–399, 2016. [→ p. 39, 63, 69]

B. Fain, K. Munagala, and N. Shah. Fair allocation of indivisible public goods. In Proceedings of
the 19th ACM Conference on Economics and Computation (ACM-EC), pages 575–592, 2018.
[→ p. 77]

P. Faliszewski and N. Talmon. A framework for approval-based budgeting methods. In Proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI), pages 2181–2188, 2019. [→ p.
77]

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. The shield that never
was: Societies with single-peaked preferences are more open to manipulation and control.
Information and Computation, 209(2):89–107, 2011. [→ p. 87]

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of manipulative attacks
in nearly single-peaked electorates. Artificial Intelligence, 207:69–99, 2014. [→ p. 116]

P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Committee scoring rules: Axiomatic
classification and hierarchy. In Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), pages 250–256, 2016. [→ p. 86]

P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner voting: A new challenge for
social choice theory. In U. Endriss, editor, Trends in Computational Social Choice, chapter 2.
2017a. [→ p. 75, 78, 81, 125]

P. Faliszewski, P. Skowron, and N. Talmon. Bribery as a measure of candidate success: Complexity
results for approval-based multiwinner rules. In Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 6–14, 2017b. [→ p. 87]

P. Faliszewski, M. Lackner, D. Peters, and N. Talmon. Effective heuristics for committee scoring
rules. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pages
1023–1030, 2018a. [→ p. xv]

P. Faliszewski, S. Szufa, and N. Talmon. Optimization-based voting rule design: The closer to
utopia the better. In Proceedings of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 32–40, 2018b. [→ p. 130]

F. Fischer, O. Hudry, and R. Niedermeier. Weighted tournament solutions. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational
Social Choice, chapter 4. Cambridge University Press, 2016. [→ p. 123]

P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33
(3):469–489, 1977. [→ p. 21]

176



Bibliography

P. C. Fishburn and S. J. Brams. Paradoxes of preferential voting. Mathematics Magazine, 56(4):
207–214, 1983. [→ p. 11, 12, 13]

T. Fluschnik, P. Skowron, M. Triphaus, and K. Wilker. Fair knapsack. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (AAAI), pages 1941–1948, 2019. [→ p. 77, 130]

D. K. Foley. Lindahl’s solution and the core of an economy with public goods. Econometrica, 38
(1):66–72, 1970. [→ p. 69]

A. Fréchette, N. Newman, and K. Leyton-Brown. Solving the station repacking problem. In
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pages 702–709,
2016. [→ p. 14]

R. Freeman, D. M. Pennock, D. Peters, and J. Wortman Vaughan. Truthful aggregation of
budget proposals. In Proceedings of the 20th ACM Conference on Economics and Computation
(ACM-EC), pages 751–752, 2019. arXiv:1905.00457. [→ p. xiii]

S. French. Group consensus probability distributions: A critical survey. Bayesian Statistics, 2:
183–202, 1985. [→ p. 39]

P. Gärdenfors. On definitions of manipulation of social choice functions. In J. J. Laffont, editor,
Aggregation and Revelation of Preferences. North-Holland, 1979. [→ p. 78]

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979. [→ p. 95]

N. Garg, A. Goel, and B. Plaut. Markets for public decision-making. In Proceedings of the
14th International Workshop on Internet and Network Economics (WINE), page 445, 2018.
arXiv:1807.10836. [→ p. 47]

C. Geist and U. Endriss. Automated search for impossibility theorems in social choice theory:
Ranking sets of objects. Journal of Artificial Intelligence Research, 40:143–174, 2011. [→ p.
13, 14]

C. Geist and D. Peters. Computer-aided methods for social choice theory. In U. Endriss, editor,
Trends in Computational Social Choice, chapter 13, pages 249–267. AI Access, 2017. [→ p. xvi,
14]

C. Genest and J. Zidek. Combining probability distributions: A critique and an annotated
bibliography. Statistical Science, 1(1):114–148, 1986. [→ p. 39]

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587–601,
1973. [→ p. 29, 34]

A. Gibbard. Manipulation of schemes that mix voting with chance. Econometrica, 45(3):665–681,
1977. [→ p. 63, 70]

A. Goel, A. K. Krishnaswamy, S. Sakshuwong, and T. Aitamurto. Knapsack voting for participa-
tory budgeting. ACM Transactions on Economics and Computation, 7(2):8:1–8:27, 2019. [→
p. 37, 38, 39, 52]

A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman. Demand based hierarchical QoS
using storage resource pools. In USENIX Annual Technical Conference, pages 1–13, 2012. [→
p. 51]

177



Bibliography

J. Guo and R. Niedermeier. Exact algorithms and applications for tree-like weighted set cover.
Journal of Discrete Algorithms, 4(4):608–622, 2006. [→ p. 94]

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elections: Lewis
Carroll’s 1876 voting system is complete for parallel access to NP. Journal of ACM, 44(6):
806–825, 1997. [→ p. 89]

E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections. Theoretical
Computer Science, 349(3):382–391, 2005. [→ p. 89, 122]

M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the Boolean Pythagorean
triples problem via cube-and-conquer. In Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing, pages 228–245, 2016. [→ p. 13]

A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. In H. W. Kuhn
and A. W. Tucker, editors, Linear Inequalities and Related Systems, pages 223–246. Princeton
University Press, 1956. [→ p. 125]

R. Holzman. To vote or not to vote: What is the quota? Discrete Applied Mathematics, 22(2):
133–141, 1988. [→ p. 13]

J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Commu-
nications of the ACM, 16(6):372–378, 1973. [→ p. 141]

A. Hylland. Proportional representation without party lists. In R. Malnes and A. Underdal,
editors, Rationality and institutions : essays in honour of Knut Midgaard on the occasion of
his 60th birthday, pages 126–153. Universitetsforlaget, 1992. [→ p. 79]

A. Igarashi. Fairness and stability in structured environments, 2018. DPhil thesis, University of
Oxford. [→ p. xiv]

A. Igarashi and D. Peters. Pareto-optimal allocation of indivisible goods with connectivity
constraints. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI),
pages 2045–2052, 2019. Extended version: arXiv:1811.04872. [→ p. xiv, 158, 163, 164]

A. Igarashi, D. Peters, and E. Elkind. Group activity selection on social networks. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI), pages 565–571, 2017. [→ p. xv]

M. Intriligator. A probabilistic model of social choice. The Review of Economic Studies, 40(4):
553–560, 1973. [→ p. 39]

F. Jaeckle, D. Peters, and E. Elkind. On recognising nearly single-crossing preferences. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pages 1079–1086,
2018. [→ p. xv]

S. Janson. Phragmén’s and Thiele’s election methods. 2016. arXiv:1611.08826. [→ p. 76]

J. L. Jimeno, J. Pérez, and E. Garćıa. An extension of the Moulin No Show Paradox for voting
correspondences. Social Choice and Welfare, 33(3):343–459, 2009. [→ p. 13]

K. Kardel. Participation and group-participation in social choice theory. Master’s thesis,
Technische Universität München, 2014. [→ p. 12, 13]

D. M. Kilgour. Approval balloting for multi-winner elections. In J.-F. Laslier and R. Sanver,
editors, Handbook on Approval Voting, pages 105–124. Springer, 2010. [→ p. 75]

178



Bibliography

K. H. Kim and F. W. Roush. Special domains and nonmanipulability. Mathematical Social
Sciences, 1(1):85–92, 1980. [→ p. 122]

B. Konev and A. Lisitsa. A SAT attack on the Erdős discrepancy conjecture. In Proceedings of
the 17th International Conference on Theory and Applications of Satisfiability Testing, pages
219–226. 2014. [→ p. 13]

B. Korte and J. Vygen. Combinatorial Optimization - Theory and Algorithms. Springer, 2006.
[→ p. 160]

G. Kreweras. Aggregation of preference orderings. In Mathematics and Social Sciences I:
Proceedings of the seminars of Menthon-Saint-Bernard, France (1–27 July 1960) and of
Gösing, Austria (3–27 July 1962), pages 73–79, 1965. [→ p. 63]

H. W. Kuhn. Some combinatorial lemmas in topology. IBM Journal of Research and Development,
4(5):518–524, 1960. [→ p. 150]

D. Kurokawa, A. D. Procaccia, and J. Wang. Fair enough: Guaranteeing approximate maximin
shares. Journal of the ACM, 65(2):8, 2018. [→ p. 134]

M. Lackner. Incomplete preferences in single-peaked electorates. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI), pages 742–748, 2014. [→ p. 120, 121]

M. Lackner and P. Skowron. Consistent approval-based multi-winner rules. In Proceedings of the
19th ACM Conference on Economics and Computation (ACM-EC), pages 47–48, 2018. [→ p.
81, 82, 86]

F. Lakhani, D. Peters, and E. Elkind. Correlating preferences and attributes: Nearly single-
crossing profiles. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 414–420, 2019. [→ p. xv]

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. Theory of
Graphs: International Symposium, pages 215–232, 1967. [→ p. 141]

D. Lepelley and V. Merlin. Scoring run-off paradoxes for variable electorates. Economic Theory,
17(1):53–80, 2000. [→ p. 13]

M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016. [→ p. 18]

R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of
indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce (ACM-
EC), pages 125–131, 2004. [→ p. 135]

Z. Lonc and M. Truszczynski. Maximin share allocations on cycles. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI), pages 410–416, 2018. [→ p.
138]

T. Lu and C. Boutilier. Budgeted social choice: From consensus to personalized decision making.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI),
pages 280–286, 2011. [→ p. 39, 90, 125]

J. Massó and I. M. de Barreda. On strategy-proofness and symmetric single-peakedness. Games
and Economic Behavior, 72(2):467–484, 2011. [→ p. 40]

179



Bibliography

J. F. Maurras, K. Truemper, and M. Akgül. Polynomial algorithms for a class of linear programs.
Mathematical Programming, 21(1):121–136, 1981. [→ p. 126]

R. Meir, A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence Research, 33:149–178, 2008. [→ p. 86]

L. N. Merrill. Parity dependence of a majority rule characterization on the Condorcet domain.
Economics Letters, 112(3):259–261, 2011. [→ p. 31]

F. Meunier and S. Zerbib. Envy-free divisions of a partially burnt cake. 2018. arXiv:1804.00449.
[→ p. 155]

B. Monroe. Fully proportional representation. American Political Science Review, 89(4):925–940,
1995. [→ p. 90]

H. Moulin. On strategy-proofness and single-peakedness. Public Choice, 35:437–455, 1980. [→ p.
37, 38, 39, 40, 41, 53]

H. Moulin. The Strategy of Social Choice. North-Holland, 1983. [→ p. 32]

H. Moulin. Axioms of Cooperative Decision Making. Cambridge University Press, 1988a. [→ p.
87, 117]

H. Moulin. Condorcet’s principle implies the no show paradox. Journal of Economic Theory, 45
(1):53–64, 1988b. [→ p. 4, 11, 12, 13, 21, 22, 122]

H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003. [→ p. 66]

K. Nehring and C. Puppe. The structure of strategy-proof social choice, Part I: General
characterization and possibility results on median spaces. Journal of Economic Theory, 135
(1):269–305, 2007. [→ p. 130]

M. Núñez and M. R. Sanver. Revisiting the connection between the no-show paradox and
monotonicity. Mathematical Social Sciences, 90:9–17, 2017. [→ p. 23, 25]

S. Obraztsova, Y. Zick, and E. Elkind. On manipulation in multi-winner elections based on
scoring rules. In Proceedings of the 12th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 359–366, 2013. [→ p. 86]

H. Oh, A. D. Procaccia, and W. Suksompong. Fairly allocating many goods with few queries. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), pages 2141–2148,
2019. Extended version: arXiv:1807.11367. [→ p. 135, 154]

C. Papadimitriou, M. Schapira, and Y. Singer. On the hardness of being truthful. In Proceedings
of the 49th Symposium on Foundations of Computer Science (FOCS), pages 250–259, 2008.
[→ p. 77]

J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences.
Social Choice and Welfare, 18(3):601–616, 2001. [→ p. 13, 14]

D. Peters. Complexity of hedonic games with dichotomous preferences. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI), pages 579–585, 2016a. [→ p. xv]

D. Peters. Graphical hedonic games of bounded treewidth. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI), pages 586–593, 2016b. [→ p. xv]

180



Bibliography

D. Peters. Condorcet’s principle and the preference reversal paradox. In Proceedings of the
16th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pages 455–469,
2017a. [→ p. xiii, 28]

D. Peters. Precise complexity of the core in dichotomous and additive hedonic games. In
Proceedings of the 5th International Conference on Algorithmic Decision Theory (ADT), pages
214–227, 2017b. [→ p. xv]

D. Peters. Recognising multidimensional Euclidean preferences. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence (AAAI), pages 642–648, 2017c. Extended version:
arXiv:1602.08109. [→ p. xv]

D. Peters. Proportionality and strategyproofness in multiwinner elections. In Proceedings of
the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1549–1557, 2018a. [→ p. xiii]

D. Peters. Single-peakedness and total unimodularity: New polynomial-time algorithms for
multi-winner elections. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pages 1169–1176, 2018b. [→ p. xiii]

D. Peters and E. Elkind. Simple causes of complexity in hedonic games. In Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI), pages 617–623, 2015.
[→ p. xv]

D. Peters and E. Elkind. Preferences single-peaked on nice trees. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI), pages 594–600, 2016. [→ p. xiii]

D. Peters and M. Lackner. Preferences single-peaked on a circle. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence (AAAI), pages 649–655, 2017. [→ p. xiii]

H. Peters, H. van der Stel, and T. Storcken. Pareto optimality, anonymity, and strategy-proofness
in location problems. International Journal of Game Theory, 21(3):221–235, 1992. [→ p. 38,
39]

A. D. Procaccia. Cake cutting algorithms. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. D. Procaccia, editors, Handbook of Computational Social Choice, chapter 13. Cambridge
University Press, 2016. [→ p. 133]

A. D. Procaccia and M. Tennenholtz. Approximate mechanism design without money. ACM
Transactions on Economics and Computation, 1(4):18:1–18:26, 2013. [→ p. 39]

A. D. Procaccia and J. Wang. Fair enough: Guaranteeing approximate maximin shares. In
Proceedings of the 15th ACM Conference on Economics and Computation (ACM-EC), pages
675–692, 2014. [→ p. 134]

A. D. Procaccia, J. S. Rosenschein, and A. Zohar. On the complexity of achieving proportional
representation. Social Choice and Welfare, 30:353–362, 2008. [→ p. 90]

A. Proskurowski and J. A. Telle. Classes of graphs with restricted interval models. Discrete
Mathematics & Theoretical Computer Science, 3(4):167–176, 1999. [→ p. 113]

D. Ray. On the practical possibility of a ’no show paradox’ under the single transferable vote.
Mathematical Social Sciences, 11(2):183–189, 1986. [→ p. 13]

J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you can. AK Peters/CRC Press,
1998. [→ p. 133]

181



Bibliography

J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for Young
elections. Theory of Computing Systems, 36(4):375–386, 2003. [→ p. 89, 122]

L. Sánchez-Fernández and J. A. Fisteus. Monotonicity axioms in approval-based multi-winner
voting rules. In Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 485–493, 2019. [→ p. 87]

L. Sánchez-Fernández, E. Elkind, M. Lackner, N. Fernández, J. A. Fisteus, P. Basanta Val, and
P. Skowron. Proportional justified representation. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence (AAAI), pages 670–676, 2017. [→ p. 76, 80, 81]

M. R. Sanver and W. S. Zwicker. One-way monotonicity as a form of strategy-proofness.
International Journal of Game Theory, 38(4):553–574, 2009. [→ p. 13, 23, 24, 25, 28]

M. R. Sanver and W. S. Zwicker. Monotonicity properties and their adaption to irresolute social
choice rules. Social Choice and Welfare, 39(2–3):371–398, 2012. [→ p. 28]

S. Sato. Circular domains. Review of Economic Design, 14(3-4):331–342, 2010. [→ p. 122]

S. Sato. A sufficient condition for the equivalence of strategy-proofness and non-manipulability
by preferences adjacent to the sincere one. Journal of Economic Theory, 148:259–278, 2013.
[→ p. 34]

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10
(2):187–217, 1975. [→ p. 29, 34]

H. E. Scarf. The computation of equilibrium prices: an exposition. Handbook of Mathematical
Economics, 2:1007–1061, 1982. [→ p. 150]

P. Scheffler. A linear algorithm for the pathwidth of trees. In Topics in combinatorics and graph
theory, pages 613–620. Springer, 1990. [→ p. 112]

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998. [→ p. 126,
127]

M. Schulze. Condorcet and Participation. Election-Methods mailing list. http://lists.electorama.
com/pipermail/election-methods-electorama.com/2003-October/011042.html, 2003. (Accessed:
7 Nov 2015). [→ p. 13, 22]

M. Schulze. Free riding. Voting Matters, 18:2–5, 2004. [→ p. 79]

J. Schummer and R. V. Vohra. Strategy-proof location on a network. Journal of Economic
Theory, 104(2):405–428, 2002. [→ p. 122]

E. Segal-Halevi. Fairly dividing a cake after some parts were burnt in the oven. In Proceedings of
the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1276–1284, 2018. Extended version: arXiv:1704.00726. [→ p. 155]

P. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory, Series B, 28
(3):305–359, 1980. [→ p. 127]

P. Skowron. What do we elect committees for? A voting committee model for multi-winner rules.
In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI), pages
1141–1147, 2015. [→ p. 126]

182

http://lists.electorama.com/pipermail/election-methods-electorama.com/2003-October/011042.html
http://lists.electorama.com/pipermail/election-methods-electorama.com/2003-October/011042.html


Bibliography

P. Skowron, P. Faliszewski, and A. Slinko. Achieving fully proportional representation: Approx-
imability results. Artificial Intelligence, 222:67–103, 2015. [→ p. 87, 90, 93]

P. Skowron, P. Faliszewski, and J. Lang. Finding a collective set of items: From proportional
multirepresentation to group recommendation. Artificial Intelligence, 241:191–216, 2016. [→
p. 125]

P. Skowron, M. Lackner, M. Brill, D. Peters, and E. Elkind. Proportional rankings. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pages 409–415,
2017. [→ p. xv]

P. Skowron, P. Faliszewski, and A. Slinko. Axiomatic characterization of committee scoring rules.
Journal of Economic Theory, 180:244–273, 2019. [→ p. 86]

W. D. Smith. “Participation failure” is forced in Condorcet methods with at least 4 candidates.
The Center for Range Voting. http://rangevoting.org/CondPF.html, 2007. (Accessed: 7 Nov
2015). [→ p. 13, 22]

H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948. [→ p. 138]

W. Stromquist. How to cut a cake fairly. The American Mathematical Monthly, 87(8):640–644,
1980. [→ p. 133, 134, 143]

F. E. Su. Rental harmony: Sperner’s lemma in fair division. The American Mathematical
Monthly, 106(10):930–942, 1999. [→ p. 134, 147, 148, 149]

X. Sui, A. Francois-Nienaber, and C. Boutilier. Multi-dimensional single-peaked consistency and
its approximations. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), pages 375–382, 2013. [→ p. 130]

W. Suksompong. Fairly allocating contiguous blocks of indivisible items. In Proceedings of the
10th International Symposium on Algorithmic Game Theory (SAGT), pages 333–344, 2017.
Extended version: arXiv:1707.00345. [→ p. 148, 149, 154]

P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility theorems. Artificial
Intelligence, 173(11):1041–1053, 2009. [→ p. 13, 14]

E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations
Research, 34(2):250–256, 1986. [→ p. 126]

R. E. Tarjan. Two streamlined depth-first search algorithms. Fundamenta Informaticae, 9:85–94,
1986. [→ p. 141]

A. D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University Press,
2005. [→ p. 78]

T. N. Thiele. Om flerfoldsvalg. Oversigt over det Kongelige Danske Videnskabernes Selskabs
Forhandlinger, pages 415–441, 1895. [→ p. 76]

M. A. Trick. Recognizing single-peaked preferences on a tree. Mathematical Social Sciences, 17
(3):329–334, 1989. [→ p. 91, 101]

V. V. Vazirani. Combinatorial algorithms for market equilibria. In N. Nisan, T. Roughgarden,
É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 5, pages 103–134.
Cambridge University Press, 2007. [→ p. 47]

183

http://rangevoting.org/CondPF.html


Bibliography

L. Yu, H. Chan, and E. Elkind. Multiwinner elections under preferences that are single-peaked
on a tree. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI), pages 425–431, 2013. [→ p. xiii]

W. S. Zwicker. Introduction to the theory of voting. In F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social Choice, chapter 2.
Cambridge University Press, 2016. [→ p. 34]

184


	Introduction
	Methodological Prelude: Impossibility Theorems and SAT Solving
	The No-Show Paradox
	Introduction
	Related Work
	Preliminaries
	Method: SAT Solving for Computer-Aided Proofs
	Main Result
	Conclusions

	The Preference Reversal Paradox
	Introduction
	Half-way Monotonicity and Participation
	Results
	Conclusions

	A Disjunctive Gibbard–Satterthwaite Theorem
	Introduction
	The Campbell–Kelly Theorem for Even Numbers of Voters
	A Dilemma Theorem


	Budgeting with Divisible Projects
	Aggregating Budget Proposals
	Introduction
	Preliminaries
	Two Projects
	Moving Phantom Mechanisms
	The Independent Markets Mechanism
	Pareto-Optimality and Social Welfare
	Minimum Spending Requirements
	Conclusion

	Aggregating Approval Preferences
	Introduction
	Impossibility Theorem
	Subset Manipulations

	Aggregating Ranking Preferences
	Introduction
	Positional Social Decision Schemes
	Computation and Basic Properties
	Fairness, Proportionality, and the SD-core
	Other Axiomatic Properties
	Conclusions


	Budgeting with Indivisible Projects: Committee Elections
	Strategyproof Committee Selection
	Introduction
	Preliminaries
	Our Axioms
	The Impossibility Theorem
	Related Work
	Conclusions and Future Work

	Preferences Single-Peaked on Trees
	Introduction
	Preliminaries
	Egalitarian Chamberlin–Courant on Arbitrary Trees
	Hardness of Utilitarian Chamberlin–Courant on Arbitrary Trees
	Utilitarian Chamberlin–Courant on Trees with Few Leaves
	Utilitarian Chamberlin–Courant on Trees with Few Internal Vertices
	The Attachment Digraph
	Recognition Algorithms: Finding Nice Trees
	Hardness of Recognising Single-Peakedness on a Specific Tree
	Conclusions

	Preferences Single-Peaked on Circles
	Introduction
	Definition
	Recognition Algorithms
	Impossibility Theorems
	Kemeny's and Young's Rules
	Multiwinner Elections
	Discussion and Open Problems


	Allocation of Indivisible Items with Connected Bundles
	Maximin Fair Share and Envy-Freeness up to One Good
	Introduction
	Preliminaries
	MMS Existence
	EF1 Existence for Two Agents
	EF1 Existence for Three Agents: A Moving-Knife Protocol
	EF2 Existence for Any Number of Agents
	EF1 Existence for Identical Valuations
	Conclusion

	Pareto-Optimality and Computational Complexity
	Introduction
	Preliminaries
	Finding Some Pareto-Optimal Allocation
	Pareto-Optimality and EF1 on Paths
	Pareto-Optimality and MMS on Paths
	Conclusion

	Strategyproofness and EF1
	Introduction
	A Simple Impossibility
	Importing Impossibilities from Cake-Cutting



