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Abstra
tIn their groundbreaking paper, Bartholdi, Tovey and Tri
k [6℄ argued thatmany well-known voting rules, su
h as Plurality, Borda, Copeland and Max-imin are easy to manipulate. Following the dire
tion proposed by this paperwe examine the in�uen
e of features to whi
h attention was not paid pre-viously, namely, tie-breaking rules, and additional 
onstraints, namely, thedistan
e to the manipulator's true preferen
es, on the 
omplexity of manip-ulating ele
tions.In Chapter 3 we show that all s
oring rules, (simpli�ed) Bu
klin and Plu-rality with Runo� are easy to manipulate if the winner is sele
ted from all tied
andidates uniformly at random. This result extends to Maximin under anadditional assumption on the manipulator's utility fun
tion that is inspiredby the original model of [6℄. In 
ontrast, we show that manipulation underrandomized tie-breaking is hard for Copeland, Maximin, STV and RankedPairs. In Chapter 4 we demonstrate that Plurality, Maximin, Copeland andBorda, as well as many families of s
oring rules, be
ome hard to manipulateif we allow arbitrary polynomial-time deterministi
 tie-breaking rules.In Chapter 5, we investigate the 
omplexity of optimal manipulation, i.e.,�nding a manipulative vote that a
hieves the manipulator's goal yet deviatesas little as possible from her true ranking. We study this problem for threenatural notions of 
loseness, namely, swap distan
e, footrule distan
e, andmaximum displa
ement distan
e, and a variety of voting rules, su
h as s
oringrules, Bu
klin, Copeland, and Maximin. For all three distan
es, we obtainpolynomial-time algorithms for all s
oring rules and Bu
klin and hardnessresults for Copeland and Maximin.
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Chapter 1Introdu
tionSo
ial 
hoi
e studies the aggregation of individual preferen
es to determinean overall 
olle
tive de
ision. The history of so
ial 
hoi
e theory beginsfrom the voting paradox, whi
h was found by Marquis de Condor
et. Hepointed out that transitivity, whi
h exists for individual preferen
es, 
an beeasily lost in the aggregation pro
ess. Another person who in�uen
ed so
ial
hoi
e a lot almost at the same time as Marquis de Condor
et, was Chevalierde Borda (for example, he proposed the voting rule that is now named afterhim). They both 
onsidered ele
tions as the most natural tool for aggregatingindividual preferen
es. More re
ently, Arrow stated his famous theorem,whi
h is now known as Arrow's impossibility theorem (see [2℄). He provedthat it is impossible to design a voting rule that satis�es some very appealingproperties. This theorem is often taken as a beginning of modern so
ial 
hoi
etheory.Evidently, voting is not the only possible method for preferen
e aggre-gation. For the survey and dis
ussion of the other approa
hes we refer thereader to [32℄ and [8℄. However, there are many settings where voting is themost appropriate approa
h to aggregating preferen
es, and in this thesis wewill fo
us on voting, and, more spe
i�
ally, algorithmi
 properties of vari-ous voting pro
edures. For a detailed des
ription of voting pro
edures andme
hanisms see [1℄.Commonly, in an ele
tion we have some set of 
andidates and preferen
es(or votes), i.e., linear orders over the entire set of 
andidates, of all voters.A voting rule takes these preferen
es and gives us the winner of the ele
tion.Mostly, voting rules grant points to the 
andidates and the winner of anele
tion is someone who has the highest s
ore. Still, pro
edures of granting1



2 CHAPTER 1. INTRODUCTIONpoints 
an have very di�erent nature. For example, the widely used Pluralityrule gives ea
h 
andidate one point for every vote where he is ranked in the�rst position. On the other hand, Copeland is based on a 
ompletely di�erentprin
iple: In this 
ase we 
onsider all possible pairwise ele
tions over the setof 
andidates and a 
andidate obtains a point for every pairwise ele
tionsthat he wins.It is easy to 
onstru
t preferen
es that give us di�erent out
omes of theele
tion under di�erent voting rules. For example, 
onsider the set of 
andi-dates {Putin, Zuganov,Mironov,Medvedev} and the following set of votes:
Putin ≻ Zuganov ≻ Mironov ≻ Medvedev

Putin ≻ Zuganov ≻ Mironov ≻ Medvedev

Zuganov ≻ Mironov ≻ Medvedev ≻ Putin

Mironov ≻ Zuganov ≻ Medvedev ≻ Putin

Medvedev ≻ Zuganov ≻ Mironov ≻ PutinClearly, if we use Plurality to determine the winner then it would be Putin.In 
ase of Copeland the vi
tory would be shifted to Zuganov.Therefore, we 
an see that 
areful 
hoi
e of voting rule is really important.Understanding weak points of di�erent voting rules as well as properties ofele
tion out
omes under these voting rules 
an help us make an optimal
hoi
e of voting method.The example above also illustrates that under Plurality the last voterhas a great in
entive to lie about his real preferen
es, at least assuming hisknowledge about the votes of others. If the last voter submits a vote withZuganov at the �rst pla
e and ties are broken in favor of Zuganov then he 
an
hange the out
ome of the ele
tion. We 
an see that he prefers this out
ometo the original one. That gives us an example of possibility of manipulatingthe ele
tion.Evidently, it would be a great advantage for the voting rule to be resis-tant to manipulation. Unfortunately, su
h voting rules do not exist. It wasproved by Gibbard [26℄ and Satterthwaite [39℄ that for ele
tions with at least3 
andidates any non-di
tatorial and surje
tive voting rule is manipulable.Even after this result hope remains that voting rules 
an withstand manipu-lation in pra
ti
e if it is 
omputationally di�
ult to �nd a manipulative vote.That was the motivation of one of the most in�uential early 
ontributions



1.1. TIE-BREAKING RULES 3to 
omputational so
ial 
hoi
e, namely the paper by Bartholdi, Tovey, andTri
k entitled �The 
omputational di�
ulty of manipulating an ele
tion� [6℄.In this paper, the authors suggested that 
omputational 
omplexity 
an serveas a barrier to dishonest behavior by the voters, and proposed 
lassifying vot-ing rules a

ording to how di�
ult it is to manipulate them. In parti
ular,they argued that su
h well-known voting rules as Plurality, Borda, Copelandand Maximin are easy to manipulate, yet a variant of the Copeland ruleknown as se
ond-order Copeland is 
omputationally resistant to manipula-tion. In a subsequent paper, Bartholdi and Orlin [5℄ showed that anotherwell-known voting rule, namely, STV, is NP-hard to manipulate as well.Sin
e then, the 
omputational 
omplexity of manipulation under variousvoting rules, either by a single voter or by a 
oalition of voters, re
eived
onsiderable attention in the literature, both from the theoreti
al and fromthe experimental perspe
tive (see, in parti
ular, [49, 48℄ and the re
ent sur-vey [21, 23℄ for the former, and [44, 12℄ for the latter). While it has been ar-gued that worst-
ase 
omplexity does not provide adequate prote
tion againstmali
ious behavior (see, e.g. [37, 46, 24, 29℄), determining whether a givenvoting rule is NP-hard to manipulate is still a natural �rst step in evaluatingits resistan
e to manipulation in realisti
 s
enarios.This thesis 
ontinues and re�nes this line of resear
h. We examine thein�uen
e of features to whi
h attention was not paid previously, namely,tie-breaking rules, and additional 
onstraints, namely, the distan
e to themanipulator's true preferen
es, on the 
omplexity of manipulating ele
tions.1.1 Tie-breaking rulesMany 
ommon voting rules operate by assigning s
ores to 
andidates, sothat the winner is the 
andidate with the highest s
ore. Now, in ele
tionswith a large number of voters and a small number of 
andidates there isusually only one 
andidate that obtains the top s
ore. However, this doesnot ne
essarily hold when the alternative spa
e is large, as may be the 
asewhen, e.g., agents in a multiagent system use voting to de
ide on a joint planof a
tion [20℄. This does not hold either in the ele
tions where the number ofvoters is small and the number of alternatives is not large. If, nevertheless,a single out
ome needs to be sele
ted, su
h ties have to be broken. In the
ontext of manipulation, this means that the manipulator should take the tie-breaking rule into a

ount when 
hoosing his a
tions. Mu
h of the existing



4 CHAPTER 1. INTRODUCTIONliterature on voting manipulation 
ir
umvents the issue by assuming thatthe manipulator's goal is to make some distinguished 
andidate p one of theele
tion winners, or, alternatively, the unique winner. The former assumption
an be interpreted as a tie-breaking rule that is favorable to the manipulator,i.e., given a tie that involves p, always sele
ts p as the winner; similarly,the latter assumption 
orresponds to a tie-breaking rule that is adversarialto the manipulator. In fa
t, most of the existing algorithms for �ndinga manipulative vote work for any tie-breaking rule that sele
ts the winnera

ording to a given ordering on the 
andidates (su
h tie-breaking rules areknown as lexi
ographi
); the two 
ases 
onsidered above 
orrespond to thisorder being, respe
tively, the manipulator's preferen
e order or its inverse.In Chapter 3 we study an equally appealing approa
h to breaking ties,namely, sele
ting the winner among all tied 
andidates uniformly at random.Note that under randomized tie-breaking the out
ome of the ele
tion is arandom variable, so it is not immediately 
lear how to 
ompare two out
omes:is having your se
ond-best alternative as the only winner preferable to thelottery in whi
h your top and bottom alternatives have equal 
han
es ofwinning? In this thesis we propose to deal with this issue by augmenting themanipulator's preferen
e model: we assume that the manipulator assigns anumeri
 utility to all 
andidates, and his goal is to vote so as to maximize hisexpe
ted utility, where the expe
tation is 
omputed over the random 
hoi
esof the tie-breaking pro
edure; this approa
h is standard in the so
ial 
hoi
eliterature (see, e.g., [27℄) and has also been used in [14℄. We show that inthis setting any s
oring rule and Bu
klin are easy to manipulate, and so isthe Maximin rule, assuming that the manipulator assigns 1 unit of utility toone 
andidate and utility 0 to all other 
andidates. In 
ontrast, we provide
NP-hardness results on the 
omplexity of manipulating Maximin for generalutilities as well as Copeland and several iterative voting rules. Our resultsfor randomized tie-breaking 
an be summarized by Table 1.1.In Chapter 4, we fo
us on deterministi
 tie-breaking rules. The easinessresults obtained in [6℄ after 
areful examination 
an be extended to arbitrarylexi
ographi
 tie-breaking rules. Given these easiness results, it is naturalto ask whether all (e�
iently 
omputable) deterministi
 tie-breaking rulesprodu
e easily manipulable rules when 
ombined with the voting 
orrespon-den
es 
onsidered in [6℄. Now, paper [6℄ shows that for Copeland this isnot the 
ase, by proving that the se
ond-order Copeland rule is hard to ma-nipulate. However, prior to our work, no su
h result was known for otherrules 
onsidered in [6℄. We demonstrate that Maximin and Borda, as well



1.2. MINIMIZING THEDISTANCETO THE TRUE PREFERENCES5P NP-hardS
oring rules CopelandMaximin (restri
ted) Maximin (general)simpli�ed Bu
klin STV
lassi
 Bu
klin Ranked PairsPlurality w/Runo�Table 1.1: Summary of results of Chapter 3.as many families of s
oring rules, be
ome hard to manipulate if we allowarbitrary polynomial-time deterministi
 tie-breaking rules. This holds evenif we require that the tie-breaking rule only depends on the set of the tiedalternatives, rather than the voters' preferen
es over them; we will refer tosu
h tie-breaking rules as simple. Our proof also works for Copeland, thusstrengthening the hardness result of [6℄ to simple tie-breaking rules. We re-mark, however, that our hardness result is not universal: Plurality and others
oring rules that 
orrespond to s
oring ve
tors with a bounded number ofnon-zero 
oordinates are easy to manipulate under any polynomial-time sim-ple tie-breaking rule, However, if non-simple tie-breaking rules are allowed,Plurality 
an be shown to be hard to manipulate as well.1.2 Minimizing the distan
e to the true prefer-en
esIn Chapter 5 we study a re�nement of the question asked by Bartholdi,Tovey and Tri
k. We observe that, while the manipulator is willing to lieabout her preferen
es, she may nevertheless prefer to submit a vote thatdeviates as little as possible from her true ranking. Indeed, if voting is publi
(or if there is a risk of information leakage), and a voter's preferen
es are atleast somewhat known to her friends and 
olleagues, she may be worried thatvoting non-truthfully 
an harm her reputation�yet hope that she will not be
aught if her vote is su�
iently similar to her true ranking. Alternatively, avoter who is un
omfortable about manipulating an ele
tion for ethi
al reasonsmay �nd a lie more palatable if it does not require her to re-order morethan a few 
andidates. Finally, a manipulator may want to express supportfor 
andidates she truly likes, even if these 
andidates have no 
han
es of



6 CHAPTER 1. INTRODUCTIONwinning; while she may lie about her ranking, she would prefer to submit avote where her most preferred 
andidates are ranked 
lose to the top.These s
enarios suggest the following resear
h question: does a voting ruleadmit an e�
ient algorithm for �nding a manipulative vote that a
hieves themanipulator's goals, yet deviates from her true ranking as little as possible?To make this question pre
ise, we need to de
ide how to measure the dis-
repan
y between the manipulator's true preferen
es and her a
tual vote.Mathemati
ally speaking, votes are permutations of the 
andidate set, andthere are several distan
es on permutations that one 
an use. In our work,we 
onsider what is arguably the two most prominent distan
es on votes,namely, the swap distan
e [30℄ (also known as bubble-sort distan
e, Kendalldistan
e, et
.) and the footrule distan
e [42℄ (also known as the Spearmandistan
e), as well as a natural variation of the footrule distan
e, whi
h we
all the maximum displa
ement distan
e.In more detail, the swap distan
e 
ounts the number of 
andidate pairsthat are ranked di�erently in two preferen
e orderings. Thus, when themanipulator 
hooses her vote based on the swap distan
e, she is trying tominimize the number of swaps needed to transform her true ranking intothe manipulative vote. We remark that for swap distan
e, our problem 
anbe viewed as a spe
ial 
ase of the swap bribery problem [18℄; however, ourquestion is not addressed by existing 
omplexity results for swap bribery [18,17, 16, 40℄. The footrule distan
e and the maximum displa
ement distan
eare based on 
omputing, for ea
h 
andidate, the absolute di�eren
e betweenhis positions in the two votes; the footrule distan
e then 
omputes the sumof these quantities, over all 
andidates, while the maximum displa
ementdistan
e returns the largest of them. We believe that ea
h of these distan
es
aptures a reasonable approa
h to de�ning what it means for two votes to be
lose to ea
h other; therefore, we are interested in analyzing the 
omplexityof our manipulation problem for all of them.We study our problem for several 
lassi
 voting rules, namely, Bu
klin,Copeland, Maximin, as well as all s
oring rules. For all these rules, the al-gorithm of Bartholdi et al. [6℄ �nds a su

essful manipulation if it exists.However, this algorithm does not ne
essarily produ
e a vote that is opti-mal with respe
t to any of our distan
e measures: in parti
ular, it alwaysranks the manipulator's target 
andidate �rst, even if this is not ne
essary toa
hieve the manipulator's goal. Thus, we need to devise new algorithms�orprove that �nding an optimal manipulation is 
omputationally hard.We investigate the 
omplexity of optimal voting manipulation for three



1.3. THESIS STRUCTURE 7distan
e measures on votes and four types of voting rules. For all threedistan
es, we obtain the same 
lassi�
ation of these rules with respe
t tothe 
omplexity of �nding an optimal manipulation: our problem is easy forBu
klin and all polynomial-time 
omputable families of s
oring rules (seeChapter 2 for de�nitions), but hard for Copeland and Maximin. For swapdistan
e and footrule distan
e, we strengthen these hardness results to showthat our problem is, in fa
t, hard to approximate up to a fa
tor of Ω(logm),where m is the number of 
andidates.Our results 
an be summarized by the following table:S
. rules Bu
klin Copeland Maximin
dswap P P Ω(logm)-inapp. Ω(logm)-inapp.

dfr P P Ω(logm)-inapp. Ω(logm)-inapp.
dmd P P NPC NPCTable 1.2: Summary of results of Chapter 51.3 Thesis stru
tureThis thesis is organized as follows. Chapter 2 
ontains the preliminariesand 
onsists mostly of de�nitions and dis
ussion of di�erent approa
hes tode�ning manipulation problems in so
ial 
hoi
e. Chapter 3 and Chapter4 des
ribe the in�uen
e of tie-breaking rules on the 
omplexity of votingmanipulation. In Chapter 3 we fo
us on randomized tie-breaking. Arbitrarydeterministi
 polynomial-time 
omputable tie-breaking rules are analyzedin Chapter 4. Chapter 5 des
ribes algorithms and hardness results for theoptimal manipulation problem. In Chapter 6 we dis
uss dire
tions for futurework.
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Chapter 2PreliminariesAn ele
tion is given by a set of 
andidates C = {c1, . . . , cm} and a ve
tor
R = (R1, . . . , Rn), where ea
h Ri, i = 1, . . . , n, is a linear order over C;
Ri is 
alled the preferen
e order (or, vote) of voter i. We denote the spa
eof all linear orderings over C by L(C). The ve
tor R = (R1, . . . , Rn) is
alled a preferen
e pro�le. For readability, we will sometimes denote Ri by
≻i. When a ≻i b for some a, b ∈ C, we say that voter i prefers a to b.We denote by r(cj , Ri) the rank of 
andidate cj in the preferen
e order Ri:
r(cj, Ri) = |{c ∈ C | c ≻i cj}|+ 1.A voting rule F is a mapping that, given a preferen
e pro�le R over
C, outputs a 
andidate c ∈ C; we write c = F(R). Many 
lassi
 votingrules, su
h as the ones de�ned below, are, in fa
t, voting 
orresponden
es,i.e., they map a preferen
e pro�le R to a non-empty subset S of C. Voting
orresponden
es 
an be transformed into voting rules using tie-breaking rules.A tie-breaking rule for an ele
tion (C,R) is a mapping T = T (R, S) thatfor any S ⊆ C, S 6= ∅, outputs a 
andidate c ∈ S. A tie-breaking rule
T is 
alled simple if it does not depend on R, i.e., the value of T (R, S) isuniquely determined by S. Su
h rules have the attra
tive property that if amanipulator 
annot 
hange the set of tied 
andidates, he 
annot a�e
t theout
ome of the ele
tion. Further, we say that T is lexi
ographi
 with respe
tto a preferen
e ordering ≻ over C if for any preferen
e pro�le R over C andany S ⊆ C it sele
ts the most preferred 
andidate from S with respe
t to ≻,i.e., we have T (S) = c if and only if c ≻ a for all a ∈ S \ {c}.A 
omposition of a voting 
orresponden
e F and a tie-breaking rule Tis a voting rule T ◦ F that, given a preferen
e pro�le R over C, outputs
T (R,F(R)). Clearly, T ◦ F is a voting rule and T ◦ F(R) ∈ F(R).9



10 CHAPTER 2. PRELIMINARIES2.1 Voting rulesWe will now des
ribe the voting rules (
orresponden
es) 
onsidered in thisthesis. All these rules assign s
ores to 
andidates; the winners are the 
an-didates with the highest s
ores.S
oring rules Any ve
tor α = (α1, . . . , αm) ∈ Rm with α1 ≥ · · · ≥ αmde�nes a s
oring rule Fα. Under this rule, ea
h voter grants αi pointsto the 
andidate it ranks in the i-th position; the s
ore of a 
andidate isthe sum of the s
ores it re
eives from all voters. The ve
tor α is 
alleda s
oring ve
tor. A s
oring rule is said to be faithful if α1 > · · · > αm.We are interested in s
oring rules that are su

in
tly representable;therefore, throughout this paper we assume that the 
oordinates of αare nonnegative integers given in binary. We remark that s
oring rulesare de�ned for a �xed number of 
andidates. Therefore, we will often
onsider families of s
oring rules, i.e., 
olle
tions of the form (αm)∞m=1,where αm = (αm
1 , . . . , α

m
m). We require su
h families to be polynomial-time 
omputable, i.e., we only 
onsider families of voting rules (αm)∞m=1for whi
h there exists a polynomial-time algorithm that given an m ∈

N outputs αm
1 , . . . , α

m
m. A well-known example of a polynomial-time
omputable family of s
oring rules is Borda, given by αm = (m −

1, . . . , 1, 0).
k-approval, Plurality and Bu
klin Under the k-approval rule, a 
andi-date gets one point for ea
h voter that ranks him in the top k positions;

1-approval is also known as Plurality. It is easy to see that k-approvaland Plurality are examples of families of s
oring rules. Let k∗ be thesmallest value of k su
h that some 
andidate's k-approval s
ore is atleast ⌊n/2⌋+ 1; we will say that k∗ is the Bu
klin winning round. Un-der the simpli�ed Bu
klin rule, the winners are all 
andidates whose
k∗-approval s
ore is at least ⌊n/2⌋ + 1; under the Bu
klin rule, thewinners are all k∗-approval winners. A 
andidate's Bu
klin s
ore is his
k∗-approval s
ore.Copeland and se
ond-order Copeland We say that a 
andidate a winsa pairwise ele
tion against b if more than half of the voters prefer a to
b; if exa
tly half of the voters prefer a to b, then a is said to tie hispairwise ele
tion against b. Given a rational value α ∈ [0, 1], under the



2.1. VOTING RULES 11Copelandα rule ea
h 
andidate gets 1 point for ea
h pairwise ele
tionhe wins and α points for ea
h pairwise ele
tion he ties.A 
andidate's se
ond-order Copeland s
ore is the sum of the Copelands
ores of the 
ompetitors he defeats. Under the se
ond-order Copelandrule, the winner is 
hosen among the 
andidates with the highest Co-peland s
ores, breaking ties a

ording to the se
ond-order Copelands
ore. We follow the de�nition of se
ond-order Copeland voting rule in[6℄. In this paper the examples of using se
ond-order Copeland 
an bealso found.Maximin and Ranked PairsFor every pair of 
andidates (c, d) ∈ C, we de�ne s(c, d) as |{i | c ≻i d}|.The Maximin s
ore of a 
andidate c ∈ C is equal to the number ofvotes he gets in his worst pairwise ele
tion; in other words, his s
oreequals mind∈C\{c} s(c, d).Ranked Pairs was �rstly 
onsidered by T. N. Tideman in [43℄. ForRanked Pairs the ele
tion pro
eeds in several steps. This rule �rst 
re-ates an entire ranking of all the 
andidates, as follows. In ea
h step, we
onsider a pair of 
andidates c, d that we have not previously 
onsidered(as a pair): spe
i�
ally, we 
hoose the remaining pair with the highest
s(c, d) (note that there may be several su
h pairs; we will 
omment onthis issue in Chapter 3). We then �x the order c, d, unless this 
ontra-di
ts previous orders that we �xed (that is, it violates transitivity). We
ontinue until we have 
onsidered all pairs of 
andidates (hen
e, in theend, we have a full ranking). The 
andidate at the top of the rankingwins.Plurality with Runo� and STV Under the STV rule, the ele
tionpro
eeds in rounds. During ea
h round, the 
andidate with the lowestPlurality s
ore is eliminated, and the 
andidates' Plurality s
ores arere
omputed. The winner is the 
andidate that survives till the lastround. Plurality with Runo� 
an be thought of as a 
ompressed versionof STV: we �rst sele
t two 
andidates with the highest Plurality s
ores,and then output the winner of the pairwise ele
tion between them. Notethat these de�nitions are somewhat ambiguous, as several 
andidatesmay have the lowest/highest Plurality s
ore; we will 
omment on thisissue in Se
tion 3.6.



12 CHAPTER 2. PRELIMINARIES2.2 ManipulationGiven a preferen
e pro�le R over a set of 
andidates C, for any preferen
eorder L over C we denote by (R−i, L) the preferen
e pro�le obtained from Rby repla
ing Ri with L. We say that a voter i ∈ {1, . . . , n} 
an su

essfullymanipulate an ele
tion (C,R) with a preferen
e pro�le (R1, . . . , Rn) withrespe
t to a voting rule F if F(R−i, L) ≻i F(R). We will now de�ne the
omputational problem that 
orresponds to this notion.All voting rules de�ned in Se
tion 2.1 are anonymous, so, we 
an �x any
andidate as the manipulator. Thus, we �x voter n as the manipulator andwe will make this assumption throughout the thesis.De�nition 2.2.1. Let F be a voting rule. An instan
e of the F-Manipula-tion≻ problem is given by a set of 
andidates C and a preferen
e pro�le R.The question is whether there exists a vote L ∈ L(C) su
h that F(R−n, L) ≻n

F(R).Our de�nition of F-Manipulation≻ is modeled after the standard so-
ial 
hoi
e de�nition, see, e.g. [26, 39℄. However, in the 
omputational so
ial
hoi
e literature it is usual to 
onsider the de
ision problem where a manipu-lator fo
uses on a 
andidate p and his goal is to make p ele
ted; we will referto this problem as F-Manipulation (see, e.g., [6℄).These problems are 
losely related. First, a polynomial-time algorithmfor F-Manipulation 
an be 
onverted into a polynomial-time algorithmfor F-Manipulation≻ if the number of 
andidates is polynomial in thesize of the output: we 
an simply run F-Manipulation on all 
andidatesranked by the manipulator above the 
urrent winner, and pi
k the bestamong the 
andidates for whi
h F-Manipulation outputs �yes�. Thus,if F-Manipulation≻ is hard, F-Manipulation is hard, too.On the other hand, having a polynomial-time algorithm for the opti-mization version of F-Manipulation≻, in whi
h we ask who is the best
andidate (from the manipulator's perspe
tive) that 
an be made a win-ner, is su�
ient for solving F-Manipulation. Indeed, suppose that weare given an instan
e of F-Manipulation. Consider the ele
tion in whi
hthe manipulator n submits an arbitrary vote L that ranks p �rst. If p winsin this ele
tion, then we are done. Otherwise, let w be the ele
tion win-ner. If w is ranked se
ond in L, then p 
an be made the winner if andonly if our ele
tion is a �yes�-instan
e of F-Manipulation≻. Otherwise,
onsider the ele
tion obtained by promoting w into the se
ond position in
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L, i.e., one where voter n ranks p �rst and w se
ond. We know that themanipulator 
an make w the winner by voting L. Thus, n's favorite 
an-didate that 
an be made the winner is either p or w, and therefore we 
ansolve F-Manipulation using an algorithm for the optimization version of
F-Manipulation≻. Further, if F is monotone, i.e., the ele
tion winner 
on-tinues to win if we move him up in all voters' preferen
es without 
hangingthe relative order of other 
andidates, then it su�
es to have an algorithmfor the de
ision version of F-Manipulation≻: in this 
ase, w remains thewinner after we push him upwards in L, and hen
e the resulting instan
eis a �yes�-instan
e of F-Manipulation≻ if and only if n 
an make p thewinner. However, it remains un
lear if in general F-Manipulation 
an beredu
ed to F-Manipulation≻ and hen
e the existing NP-hardness resultsfor se
ond-order Copeland [6℄ and STV [5℄ do not dire
tly imply that se
ond-order Copeland-Manipulation≻ and STV-Manipulation≻ are NP-hard.Both problems stated above are de�ned for voting rules. The manipula-tion problems for voting 
orresponden
es are also widely dis
ussed. There aretwo standard approa
hes to extending the manipulation problem to voting
orresponden
es. Under the �rst approa
h, we assume that the manipulator'sgoal is to make the spe
i�
 
andidate p the only winner of the ele
tion.De�nition 2.2.2. Let F be a voting 
orresponden
e. In the F-Unique-WinnerManipulation problem, we are given an ele
tion E = (C,R) witha preferen
e pro�le R = (R1, . . . , Rn), and a preferred 
andidate p ∈ C. Thequestion is whether there exists a vote L ∈ L(C) su
h that the preferen
epro�le R′ = (R1, . . . , Rn−1, L) satis�es {p} = F(R′).Under the se
ond approa
h, it is assumed that it is enough for the ma-nipulator to make 
andidate p one of the ele
tion winners.De�nition 2.2.3. Let F be a voting 
orresponden
e. In the F-CoWin-nerManipulation problem, we are given an ele
tion E = (C,R) with apreferen
e pro�le R = (R1, . . . , Rn), and a preferred 
andidate p ∈ C. Thequestion is whether there exists a vote L ∈ L(C) su
h that the preferen
epro�le R′ = (R1, . . . , Rn−1, L) satis�es p ∈ F(R′).It is easy to see that F -UniqueWinnerManipulation is equivalent to
F ′-Manipulation, where the voting rule F ′ is obtained by 
ombining Fwith the lexi
ographi
 tie-breaking rule that is adversarial to manipulator,i.e., breaks ties a

ording to the ordering obtained by reversing Rn. Similarly,
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ase of F -CoWinnerManipulation we take the 
omposition of Fwith the lexi
ographi
 tie-breaking rule that favors the manipulator, i.e.,breaks ties a

ording to the preferen
e order Rn.2.2.1 The model and the algorithm of Bartholdi, Toveyand Tri
kWe will now des
ribe the algorithm for F -CoWinnerManipulation pro-posed in [6℄. This algorithm 
an be used for any voting 
orresponden
e Fthat assigns s
ores to 
andidates, so that the winners are the 
andidates withthe highest s
ores. The algorithm pla
es the manipulator's preferred 
andi-date p �rst, and then �lls in the remaining positions in the vote from top tobottom, sear
hing for a 
andidate that 
an be pla
ed in the next availableposition in the n-th vote so that his s
ore does not ex
eed that of p. Thisapproa
h works as long as the voting 
orresponden
e F is monotone and we
an determine a 
andidate's �nal s
ore given his position in the manipula-tor's vote and the identities of the 
andidates that the manipulator ranksabove him. It is not hard to show that Plurality and Borda (and, in fa
t, alls
oring rules), as well as Plurality with Runo�, Copeland and Maximin havethis property. Simpli�ed Bu
klin and Bu
klin do not satisfy this property,but they are easy to manipulate as well. For example, the algorithm for
(dswap,Bucklin)-OptManipulation des
ribed in Chapter 5 
an be used forproving the easiness of the manipulation problem.We 
an easily modify this algorithm to make it work for F -UniqueWin-nerManipulation: in that 
ase, when the manipulator �lls a position j inhis vote, j > 1, he needs to ensure that the s
ore of the 
andidate in thatposition is stri
tly less than that of p. Generally, if ties are broken a

ordingto a lexi
ographi
 ordering ≻ over the 
andidates, when pla
ing a 
andidate
c with c ≻ p, the manipulator needs to make sure that c's s
ore is less thanthat of p, and when pla
ing a 
andidate c with c ≺ p, he needs to make surethat c's s
ore does not ex
eed that of p.In the same paper Bartholdi, Tovey and Tri
k argued that se
ond-orderCopeland is 
omputationally resistant to manipulation. In a subsequentpaper, Bartholdi and Orlin [5℄ showed that another well-known voting rule,namely, STV, is NP-hard to manipulate as well. In [49℄ Xia et al. showedthat Ranked Pairs is hard to manipulate (for the defenition of Ranked Pairsgiven in this thesis).
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Garvey theoremMany proofs in this thesis make use of M
Garvey theorem. We will nowstate this theorem and give a sket
h of its proof.Let C be a set of 
andidates and let R = (R1, . . . , Rn) be a preferen
epro�le.De�nition 2.3.1. We say that a 
andidate ci wins the pairwise ele
tionagainst a 
andidate cj if more that half of the voters in R rank ci above cj.De�nition 2.3.2. The digraph H is said to be indu
ed by R if C is a set ofverti
es of digraph H and H 
ontains an ar
 (ci, cj) if and only if ci is thewinner of the pairwise ele
tion between ci and cj.Now we 
an state M
Garvey theorem (see also [33℄ or [35℄).Theorem 2.3.3. For any digraph Hm on m verti
es without 
y
les of length2 there exists a preferen
e pro�le R su
h that R 
onsists of at most m(m−1)votes and Hm is indu
ed by R.Proof. We give only a sket
h of the proof of this theorem. Let the vertex setof digraph Hm be C = {c1, . . . , cm}.First 
onsider the preferen
e pro�le that 
onsists of votes des
ribed asfollows. For every ar
 (ci, cj) of Hm we take votes ci ≻ cj ≻ c1 ≻ . . . ≻ cmand cm ≻ . . . ≻ c1 ≻ cj ≻ ci. For this pro�le we have ties in every pairwiseele
tion. It is easy to see that we 
an make either ci or cj the winner of theirpairwise ele
tion by swapping these 
andidates in the suitable vote. As aresult, the s
ore of the winner in the pairwise ele
tion would ex
eed the s
oreof the loser by exa
tly 2.Consider the simple example of using M
Garvey theorem. We 
onstru
tthe preferen
e pro�le with 
andidates {c1, c2, c3, c4} for the graph on 4 verti
eswith adja
en
y matrix de�ned as follows:
(ai,j) =




0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0.


At the �rst step of algorithm we obtain the preferen
e pro�le whi
h gives tiein every pairwise ele
tion. We set

R1,2 = c1 ≻ c2 ≻ c3 ≻ c4R2,1 = c4 ≻ c3 ≻ c2 ≻ c1R1,3 = c1 ≻ c3 ≻ c2 ≻ c4R3,1 = c4 ≻ c2 ≻ c3 ≻ c1R1,4 =



16 CHAPTER 2. PRELIMINARIESAfterward following the algorithm we swap ci, cj in Rj,i for all ai,j = 1.For example, 
onsider a1,2 = 1 we obtain R2,1 = c4 ≻ c3 ≻ c1 ≻ c2 instead of
R2,1 = c4 ≻ c3 ≻ c2 ≻ c1. Thereby we 
ome up with the following pro�le asa result of the algorithm.
R1,2 = c1 ≻ c2 ≻ c3 ≻ c4R2,1 = c4 ≻ c3 ≻ c1 ≻ c2R1,3 = c1 ≻ c3 ≻ c2 ≻ c4R3,1 = c4 ≻ c2 ≻ c1 ≻It is easy to see that the following 
orollary 
an be proved similarly toTheorem 2.3.3.Corollary 2.3.4. For any digraph Hm with vertex set C = {c1, . . . , cm} thatdoes not have 
y
les of length 2 there exists an ele
tion E = (C,R) with apreferen
e pro�le R = (R1, . . . , Rn), where n is even and polynomial in m,su
h that if Hm 
ontains the ar
 (ci, cj) 
andidate ci obtains exa
tly n

2
+ 1points in the pairwise ele
tion against cj, and if Hm does not 
ontain an ar
between ci and cj then there is a tie in the pairwise ele
tion.Also we 
an derive the following 
orollary from the proof of Theorem 2.3.3.Corollary 2.3.5. For any digraph Hm with vertex set C = {c1, . . . , cm} andany set of numbers {ki,j | i, j : 1, . . . , m} there exists an ele
tion E = (C,R)with a preferen
e pro�le R = (R1, . . . , Rn) where n is even and polynomialin m and maxi,j=1...m ki,j, su
h that for any ar
 (ci, cj) 
andidate ci obtainsexa
tly n

2
+ ki,j points in the pairwise ele
tion against cj and if Hm does not
ontain an ar
 between ci and cj then there is a tie in the pairwise ele
tion.Better bounds on the number of voters needed to 
onstru
t a pro�le thatindu
es a given digraph 
an be found in [35℄. In [13℄ author have 
onsideredthe 
ase of some given preorders for the voters and gave the upper bound forthe number of voter whi
h we need to add to the ele
tion due to obtaining agiven digraph. this result also fall into the realm of 
orollaries above.2.4 Gibbard-Satterthwaite TheoremWe remark, that one of the reason whi
h support interest in 
omputational
omplexity of voting manipulation is the famous Gibbard-Satterthwaite theo-rem. Informally, this theorem said that manipulation is almost always exists.The exa
t formulation of this theorem is as follows.



2.4. GIBBARD-SATTERTHWAITE THEOREM 17De�nition 2.4.1. A voting rule F is di
tatorial if there is a voter i (thedi
tator) su
h that F(R) ≻i cj for all cj ∈ C \ {F(R)}.De�nition 2.4.2. A voting rule F is onto if for ea
h a 
andidate ci thereexists a preferen
e pro�le R su
h that F(R) = ci.Now we 
an state Gibbard-Satterthwaite theorem (see [26, 39℄).Theorem 2.4.3. A non-manipulable voting rule that is onto is di
tatorial ifthe number of 
andidates is at least three.
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Chapter 3Randomized Tie-Breaking Rules
3.1 The modelIn this 
hapter we dis
uss the 
omplexity of manipulating ele
tions under avery 
ommon approa
h to tie-breaking, namely, 
hoosing the winner uni-formly at random among all tied 
andidates. In this 
ase, knowing themanipulator's preferen
e ordering is not su�
ient to determine his optimalstrategy. For example, suppose that voter n prefers a to b to c, and by votingstrategi
ally he 
an 
hange the output of the voting 
orresponden
e from b to
{a, c}. It is not immediately 
lear if this manipulation is bene�
ial. Indeed,if voter n strongly prefers a, but is essentially indi�erent between b and c,then the answer is probably positive, but if voter n strongly dislikes c andslightly prefers a to b, the answer is likely to be negative (of 
ourse, this alsodepends on n's risk attitude).Thus, to model this situation appropriately, we need to know the utilitiesthat the manipulator assigns to all 
andidates. Under the natural assumptionof risk neutrality, the manipulator's utility for a set of 
andidates is equalto his expe
ted utility when the 
andidate is drawn from this set uniformlyat random, or, equivalently, to his average utility for a 
andidate in this set.Sin
e we are interested in 
omputational issues, it is reasonable to assumethat all utilities are rational numbers; by s
aling, we 
an assume that allutilities are positive integers given in binary.Formally, given a set of 
andidates C, we assume that the manipulator isendowed with a utility fun
tion u : C → N. This fun
tion 
an be extendedto sets of 
andidates by setting u(S) = 1

|S|
∑

c∈S u(c) for any S ⊆ C.19



20 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESDe�nition 3.1.1. Given a voting 
orresponden
e F and an ele
tion (C,R),we say that a vote L is optimal for a manipulating voter n with a utilityfun
tion u : C → N with respe
t to F 
ombined with the randomized tie-breaking rule if u(F(R−n, L)) ≥ u(F(R−n, L
′)) for all L′ ∈ L(C). We saythat the manipulator has a su

essful manipulation if his optimal vote Lsatis�es u(F(R−n, L)) > u(F(R)).Now we 
an state the problem of �nding a su

essful manipulation.De�nition 3.1.2. An instan
e of the F-RandManipulation problem is atuple (E, u, q), where E = (C,R) is an ele
tion, u : C → N is the manipula-tor's utility fun
tion su
h that u(c) ≥ u(c′) if and only if c ≻n c′, and q is anon-negative rational number. It is a �yes�-instan
e if there exists a vote Lsu
h that u(F(R−n, L)) ≥ q and a �no�-instan
e otherwise.In the optimization version of F-RandManipulation, the goal is to�nd an optimal vote.We remark that F-RandManipulation is in NP for any polynomial-time 
omputable voting 
orresponden
e F : it su�
es to guess the manipu-lative vote L, determine the set S = F(R−n, L), and 
ompute the averageutility of the 
andidates in S.In the rest of this 
hapter, we will explore the 
omplexity of �nding anoptimal vote with respe
t to s
oring rules, Bu
klin, Maximin, Copeland andseveral iterative rules under the randomized tie-breaking rule.3.2 S
oring rulesAll s
oring rules turn out to be easy to manipulate under randomized tie-breaking.Theorem 3.2.1. For any s
oring ve
tor α = (α1, . . . , αm) Fα-RandMani-pulation is in P.Proof. Re
all that we assume that the manipulator is the last voter n witha utility fun
tion u, and let R′ denote the preferen
e pro�le 
onsisting of allother voters' preferen
es. Let si denote the s
ore of 
andidate ci after allvoters other than n have 
ast their vote. Let us renumber the 
andidatesin order of in
reasing s
ore, and, within ea
h group with the same s
ore,in order of de
reasing utility. That is, under the new ordering we have
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s1 ≤ · · · ≤ sm and if si = sj for some i < j then u(ci) ≥ u(cj). We saythat two 
andidates ci, cj with si = sj belong to the same level. Thus, all
andidates are partitioned into h ≤ m levels H1, . . . , Hh, so that if ci ∈ Hkand cj ∈ Hℓ, k < ℓ, then si < sj.Consider �rst the vote L0 given by c1 ≻ . . . ≻ cm, and let T be thenumber of points obtained by the winner(s) in (R′, L0). We 
laim that forany L ∈ L(C), in the preferen
e pro�le (R′, L) the winner(s) will get at least
T points. Indeed, let ci be the last 
andidate to get T points in (R′, L0),and suppose that there exists a vote L su
h that ci gets less than T pointsin (R′, L). By the pigeonhole prin
iple, this means that L assigns at least αipoints to some cj with j > i, and we have sj + αi ≥ si + αi = T , i.e., someother 
andidate gets at least T points, as 
laimed. We will say that a vote
L is 
onservative if the winners' s
ore in (R′, L) is T .We will now des
ribe possible optimal votes for the manipulator.Lemma 3.2.2. If L maximizes the utility of voter n, then either L is 
on-servative or it 
an be 
hosen so that Fα has a unique winner under (R′, L).Proof. Suppose that this is not the 
ase, i.e., any vote L that maximizes themanipulator's utility is su
h that the set S = Fα(R′, L) is of size at least
2, and all 
andidates in S get T ′ > T points. Let ci be n's most preferred
andidate in S; we have u(ci) ≥ u(S). Suppose that L grants αj pointsto ci. Sin
e we have si + αj > T , it follows that j < i. Now, 
onsiderthe vote obtained from L0 by swapping ci and cj. Clearly, all 
andidates in
C \ {ci, cj} get at most T points, and ci gets T ′ > T points. Further, cj gets
sj + αi ≤ sj + αj ≤ T points. Thus, in this 
ase ci is a unique winner and
u(ci) ≥ u(S), a 
ontradi
tion.Therefore, to �nd an optimal manipulation, it su�
es to (i) 
he
k forea
h 
andidate c ∈ C whether c 
an be made the unique winner with as
ore that ex
eeds T and (ii) �nd an optimal 
onservative vote. The optimalmanipulation 
an then be sele
ted from the ones found in (i) and (ii).Step (i) is easy to implement. Indeed, a 
andidate cj 
an be made theunique winner with a s
ore that ex
eeds T if and only if si + α1 > T . Tosee this, observe that if si + α1 > T , we 
an swap c1 and ci in L0: ci willget more than T points, and all other 
andidates will get at most T points.Conversely, if si + α1 ≤ T , then the s
ore of ci is at most T no matter howvoter n votes.



22 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESThus, it remains to show how to implement (ii). Intuitively, our algorithmpro
eeds as follows. We start with the set of winners produ
ed by L0; wewill later show that this set is minimal, in the sense that if it 
ontains x
andidates from some level, then for any vote the set of winners will 
ontainat least x 
andidates from that level. Note also that due to the ordering ofthe 
andidates we sele
t the best 
andidates from ea
h level at this step. Wethen try to in
rease the average utility of the set of winners. To this end, weorder the remaining 
andidates by their utility, and try to add them to theset of winners one by one as long as this in
reases its average utility. We willnow give a formal des
ription of our algorithm and its proof of 
orre
tness.Let S0 = Fα(R′, L0). We initialize S and L by setting S = S0, L = L0.Let ≻∗ be some ordering of the set C that ranks the 
andidates in S0 �rst,followed by the 
andidates in C\S0 in the order of de
reasing utility, breakingties arbitrarily. We order the 
andidates from C \ S0 a

ording to ≻∗, andpro
ess the 
andidates in this ordering one by one. For ea
h 
andidate cj , we
he
k if u(cj) > u(S); if this is not the 
ase, we terminate, as all subsequent
andidates have even lower utility. Otherwise, we 
he
k if we 
an swap cjwith another 
andidate that is 
urrently not in S and re
eives T − sj pointsfrom L (so that cj gets T points in the resulting vote). If this is the 
ase, weupdate L by performing the swap and set S = S ∪ {cj}. We then pro
eed tothe next 
andidate on the list.We 
laim that the vote L obtained in the end of this pro
ess is optimalfor the manipulator, among all 
onservative votes. We remark that at anypoint in time S is exa
tly the set of 
andidates that get T points in (R′, L).Thus, we 
laim that any 
onservative vote L̂ satis�es u(Fα(R′, L̂)) ≤ u(S).Assume that this is not the 
ase. Among all optimal 
onservative votes,we will sele
t one that is most �similar� to L in order to obtain a 
ontradi
tion.Formally, let L0 be the set of all optimal 
onservative votes, and let L1 bethe subset of L0 that 
onsists of all votes L′ that maximize the size of theset Fα(R′, L′) ∩ S. The ordering ≻∗ indu
es a lexi
ographi
 ordering on thesubsets of C. Let L̂ be the vote su
h that the set Fα(R′, L̂) is minimal withrespe
t to this ordering, over all votes in L1. Set Ŝ = Fα(R′, L̂); by ourassumption we have u(Ŝ) > u(S).Observe �rst that our algorithm never removes a 
andidate from S: whenwe want to add cj to S and sear
h for an appropriate swap, we only 
onsider
andidates that have not been added to S yet. Also, at ea
h step of ouralgorithm the utility of the set S stri
tly in
reases. These observations willbe important for the analysis of our algorithm.



3.2. SCORING RULES 23We will �rst show that Ŝ \ S is empty.Lemma 3.2.3. We have Ŝ \ S = ∅.Proof. Suppose that the lemma is not true, and let ci be a 
andidate in Ŝ \S.Suppose that ci appears in the j-th position in our ordering of C \ S0. If ouralgorithm terminated at or before the j-th step, we have u(ci) < u(S) < u(Ŝ),and hen
e u(Ŝ \{ci}) > u(Ŝ). Also, it is easy to see that if we swap ci and cjin L̂ than we obtain S \ {ci} as a set of winners. So, this is a 
ontradi
tionwith the optimality of L̂.Thus, when our algorithm 
onsidered ci, it 
ould not �nd a suitable swap.Sin
e ci ∈ Ŝ, it has to be the 
ase that there exists an entry of the s
oringve
tor that equals T − si; however, when our algorithm pro
essed ci it wasunable to pla
e ci in a position that grants T − si points. This 
ould onlyhappen if all 
andidates that were re
eiving T−si points from L at that pointwere in S at that time; denote the set of all su
h 
andidates by Bi. Notethat all 
andidates in Bi belong to the same level as ci. Also, all 
andidatesin Bi ∩ S0 have the same or higher utility than ci, be
ause initially we orderthe 
andidates at the same level by their utility, so that L0 grants a highers
ore to the best 
andidates at ea
h level. On the other hand, all 
andidatesin Bi \ S0 were added to S at some point, whi
h means that they havebeen pro
essed before ci. Sin
e at this stage of the algorithm we order the
andidates by their utility, it means that they, too, have the same or higherutility than ci.Now, sin
e L̂ grants T −si points to ci, it grants less than T −si points toone of the 
andidates in Bi. Let ck be any su
h 
andidate, and 
onsider thevote L̂′ obtained from L̂ by swapping ci and ck. Let Ŝ ′ = Fα(R′, L̂′); we have
Ŝ ′ = (Ŝ \ {ci}) ∪ {ck}. By the argument above, we have either u(ck) > u(ci)or u(ck) = u(ci). In the former 
ase, we get u(Ŝ ′) > u(Ŝ). In the latter
ase, we get u(Ŝ ′) = u(Ŝ) and |Ŝ ′ ∩ S| > |Ŝ ∩ S|. In both 
ases, we obtain a
ontradi
tion with our 
hoi
e of L̂.Thus, we have Ŝ ⊆ S, and it remains to show that S ⊆ Ŝ. We will �rstshow that Ŝ 
ontains all 
andidates in S0.Lemma 3.2.4. We have S0 ⊆ Ŝ.Proof. Suppose that |S0 ∩ Hk| = mk for k = 1, . . . , h. We will �rst showthat |Ŝ ∩Hk| ≥ mk for k = 1, . . . , h. Indeed, �x a k ≤ h, and suppose thatthe �rst 
andidate in the k-th level is ci. Then in (R′, L0) the s
ores of the
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andidates in Hk are si + αi, . . . , si + αj for some j ≥ i. If si + αi < T , then
mk = 0 and our 
laim is trivially true for this value of k. Otherwise, by thepigeonhole prin
iple, if it holds that in (R′, L̂) less than mk voters in Hk get
T points, it has to be the 
ase that at least one 
andidate in Hk+1 ∪ · · · ∪Hhre
eives at least αi points from L̂. However, for any cℓ ∈ Hk+1 ∪ · · · ∪Hh wehave sℓ > si, so sℓ + αi > T , a 
ontradi
tion with our 
hoi
e of L̂.Now, suppose that S0 ∩ Hk 6⊆ Ŝ ∩ Hk for some k ≤ h, and 
onsider a
andidate cℓ ∈ (S0∩Hk)\(Ŝ∩Hk). Sin
e we have argued that |Ŝ∩Hk| ≥ mk,it must be the 
ase that there also exists a 
andidate cj ∈ (Ŝ∩Hk)\(S0∩Hk).It is easy to see that S0 
ontains the mk best 
andidates from Hk, so u(cℓ) ≥
u(cj). The rest of the proof is similar to that of Lemma 3.2.3: Consider thevote L̂′ obtained from L̂ by swapping cℓ and cj and let Ŝ ′ = Fα(R′, L̂′). Sin
e
cℓ and cj belong to the same level, we have Ŝ ′ = (Ŝ \ {cℓ}) ∪ {ck}. Thus,either u(Ŝ ′) > u(Ŝ) or u(Ŝ ′) = u(Ŝ) and |Ŝ ′ ∩S| > |Ŝ ∩S|. In both 
ases weget a 
ontradi
tion. Thus, we have S0 ∩ Hk ⊆ Ŝ ∩Hk. Sin
e this holds forevery value of k, the proof is 
omplete.Given Lemma 3.2.3 and Lemma 3.2.4, it is easy to 
omplete the proof.Suppose that Ŝ is a stri
t subset of S. Observe �rst that for any subset
S ′ of S there is a vote L′ su
h that Fα(R′, L′) = S ′: we 
an simply ignorethe 
andidates that are not members of S ′ when running our algorithm, asthis only in
reases the number of �available� swaps at ea
h step. Now, orderthe 
andidates in C \ S0 a

ording to ≻∗. Let ci be the �rst 
andidate inthis order that appears in S, but not in Ŝ. If there is a 
andidate cj thatappears later in the sequen
e and is 
ontained in both S and Ŝ, 
onsiderthe set S ′ = Ŝ \ {cj} ∪ {ci}. As argued above, there is a vote L′ su
h that
Fα(R′, L′) = S ′. Now, if u(ci) > u(cj), this set has a higher average utilitythat Ŝ. Thus, this is a 
ontradi
tion with our 
hoi
e of L̂. On the other hand,if u(cj) = u(ci), then we have u(S ′) = u(Ŝ), |S∩S ′| = |S∩Ŝ|, and S ′ pre
edes
Ŝ is the lexi
ographi
 ordering indu
ed by ≻∗, a 
ontradi
tion with the 
hoi
eof L̂ again. Therefore, none of the 
andidates in S that appear after ci in theordering belongs to Ŝ. Now, when we added ci to S, we did so be
ause itsutility was higher than the average utility of S at that point. However, by
onstru
tion, the latter is exa
tly equal to u(Ŝ). Thus, u(Ŝ ∪ {ci}) > u(Ŝ),a 
ontradi
tion again. Therefore, the proof is 
omplete.Example 1. It 
an be easily seen from the algorithm of �nding manipulationfor s
oring rules under randomized tie-breaking that for the initializing of
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ient information is s
ores of
andidates before submission of n-th vote and utility fun
tion of the last voter.Thus, 
onsider the following example with 5 
andidates and Borda rule fordetermination of the winner. Re
all that si denotes the s
ore of 
andidate ibefore last voter votes.
s1 = 10, s2 = 6, s3 = 12, s4 = 4, s5 = 10,

u(c1) = 2, u(c2) = 3, u(c3) = 1, u(c4) = 7, u(c5) = 4.Step 1. We renumber 
andidates in order of in
reasing s
ore. For 
an-didates of the same s
ore we use order of de
reasing utility. After this step
andidate c
′
1 has s
ore 4 and u(c

′
1) = 7, c′2 has s
ore 6 and u(c

′
2) = 3, c′3 and

c
′
4 have s
ores 10, u(c′3) = 4 and u(c

′
4) = 2 and c

′
5 has s
ore 12 and u(c

′
5) = 1.Step 2. Consider vote L0 = (c

′
1, c

′
2, c

′
3, c

′
4, c

′
5). After this vote 
andidateshave s
ores as follows.

s(c
′
1) = 8, s(c

′
2) = 9, s(c

′
3) = 12, s(c

′
4) = 11, s(c

′
5) = 12.Here we also found T = 12.Step 3. Now we determine the best 
andidate who 
an be
ome the onlywinner. The set of 
andidates whose s
ore 
an ex
eed 12 is {c′3, c

′
4, c

′
5}. The
andidate c

′
3 has the largest utility among these 
andidates. By swapping c

′
1and c

′
3 in L0 we obtain vote L. If the last voter submits L then c

′
3 is the onlywinner of the ele
tion and the utility of last voter is 4.Step 4. Now we �nd the optimal 
onservative vote. It is easy to seethat 
andidates from �rst and se
ond levels (c′1, c′2) 
annot be among tied
andidates and c

′
5 is always among the tied 
andidates. From the level 3exa
tly one 
andidate who re
eive 2 points from the last voter is in the setof tied 
andidates. Thus, L0 is the optimal 
onservative vote. After thesubmitting L0 the set of tied 
andidates is {c′3, c′5} and utility of last voter is2,5.Thus, vote L maximizes utility of manipulator. In the original notationthe best manipulative vote is (c5, c2, c4, c1, c3).3.3 Bu
klinIn this se
tion, we des
ribe a polynomial-time algorithm for Bu
klin-Rand-Manipulation. In the �rst subse
tion we will fo
us on the simpli�ed Bu
k-lin rule, and omit the term �simpli�ed� throughout this se
tion; in the se
ond
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tion, we will explain how to extend our algorithm to the 
lassi
 Bu
klinrule.3.3.1 Simpli�ed Bu
klinWe �rst need some additional notation. Consider an ele
tion E = (C,R)with |C| = m and the preferen
e pro�le R = (R1, . . . , Rn), and supposethat the manipulating voter has utility fun
tion u. Set E ′ = (C,R′) and
R′ = (R1, . . . , Rn−1). For any c ∈ C, let sk(c) denote c's k-approval s
ore in
R′. Given an L ∈ L(C), let S(L) be the set of Bu
klin winners in (R−n, L).Let ℓ = min{k | sk(c) ≥ ⌊n

2
⌋+ 1 for some c ∈ C}, and set

D = {c ∈ C | sℓ(c) ≥ ⌊n
2
⌋+ 1}.Clearly, for any L ∈ L(C), if k is the Bu
klin winning round in (R−n, L),then k ≤ ℓ. For ea
h i = 1, . . . , m, let

Ci = {c ∈ C | si(c) = ⌊n
2
⌋, si−1(c) < ⌊n

2
⌋},and set C<i =

⋃
j<iCj if i < ℓ and C<ℓ = (

⋃
j<ℓCj) \D.Suppose that i ≤ ℓ. If the manipulator ranks a 
andidate c ∈ Ci inposition i or higher, and ranks ea
h 
andidate in C<i in position i or lower,in the resulting ele
tion i is the Bu
klin winning round, and c is a Bu
klinwinner. Conversely, if i ≤ ℓ is the Bu
klin winning round in (R−n, L) and a
andidate c is a Bu
klin winner, then one of the following 
onditions holds:(a) c ∈ Ci and c is ranked in position i or higher in L, or (b) c ∈ C<i and cis ranked in position i in L, or (
) i = ℓ and c ∈ D.For i ≤ ℓ and s ≤ m, let Li,s denote the set of all votes L ∈ L(C) su
hthat (a) i is the Bu
klin winning round in (R−n, L) and (b) |S(L) ∩Ci| = s.Also, let L∗

i,s = argmax{u(S(L)) | L ∈ Li,s} be the set of utility-maximizingvotes in Li,s.We will now explain how to �nd a vote in L∗
i,s. First, we will show thatif L∗ ∈ L∗

i,s and the set S(L∗) 
ontains some 
andidate c ∈ C<i, then c is thetop 
andidate in C<i.Lemma 3.3.1. If L∗ ∈ L∗
i,s for some i ≤ ℓ and s ≤ m and S(L∗)∩C<i 6= ∅,then |S(L∗) ∩ C<i| = 1 and S(L∗) ∩ C<i ∈ argmax{u(c) | c ∈ C<i}.
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i,s, and let c be a 
andidate in S(L∗) ∩ C<i. Sin
e

i is the Bu
klin winning round for L∗ and c ∈ C<i, c 
annot be ranked inposition i− 1 or higher in L∗. Further, sin
e c ∈ S(L∗) and i is the Bu
klinwinning round for L∗, c 
annot be ranked in position i + 1 or lower in L∗(here, for i = ℓ it is 
ru
ial that the set C<ℓ does not 
ontain 
andidatesin D). Hen
e, c is ranked in position i in L∗, so |S(L∗) ∩ C<i| = 1. Now,if c 6∈ argmax{u(c) | c ∈ C<i}, 
onsider the vote L′ obtained from L∗ byswapping c with some 
andidate b ∈ argmax{u(c) | c ∈ C<i}. We have
L′ ∈ Li,s. Further, the argument above shows that b 6∈ S(L∗), so S(L′) =
(S(L∗) \ {c}) ∪ {b} and hen
e u(S(L′)) > u(S(L∗)), a 
ontradi
tion.Now, we use Lemma 3.3.1 to �nd a vote in L∗

i,s.Lemma 3.3.2. For any i ≤ ℓ and any s ≤ |C|, there is a polynomial-timealgorithm that 
he
ks whether Li,s is non-empty, and, if so, identi�es a vote
L∗ ∈ L∗

i,s.Proof. Let L1
i,s be the set of all votes L in Li,s su
h that S(L) ∩ C<i 6= ∅,and let L2

i,s = Li,s \ L1
i,s. We will identify the best vote in L1

i,s and L2
i,s andoutput the better of the two. Observe that either or both of L1

i,s and L2
i,s 
anbe empty: if both are empty, then so is Li,s, and if Lj

i,s is empty, but L3−j
i,s isnot, we output the best vote in L3−j

i,s .If C<i 6= ∅, let bi be some 
andidate in argmax{u(c) | c ∈ C<i}. ByLemma 3.3.1, to �nd the best vote in L1
i,s, we pla
e bi in position i. Now, weneed to pla
e s 
andidates from Ci in top i− 1 positions. Clearly, if |Ci| < sor if s > i−1, this is impossible, so L1

i,s = ∅. Otherwise, we pi
k s 
andidatesin Ci with the highest utility, breaking ties arbitrarily, and rank them in top
s positions in the vote. We then �ll the remaining i− 1− s positions above iwith 
andidates from C \ (Ci∪C<i); again, if |C \ (Ci∪C<i)| < i−1−s, then
L1

i,s = ∅. The remaining 
andidates 
an be ranked arbitrarily. It is easy tosee that the resulting vote L1 is in L1
i,s, and, moreover, u(S(L1)) ≥ u(S(L′))for any L′ ∈ L1

i,s.The pro
edure for �nding the best vote in L2
i,s is similar. By the sameargument as in the previous 
ase, if |Ci| < s or s > i or |C \ C<i+1| < i− s,then L2

i,s is empty. Otherwise, we pi
k s 
andidates in Ci with the highestutility, rank them in top s positions in the vote, rank some 
andidates from
C \ (Ci ∪ C<i) in the next i − s positions, and then rank the remaining
andidates arbitrarily. The resulting vote L2 satis�es u(S(L2)) ≥ u(S(L′))for any L′ ∈ L2

i,s.
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an simply �nd the best vote in Li,s for all i = 1, . . . , ℓ,
s = 0, . . . , m; while for many values of i and s the set Li,s is empty, we have
Li,s 6= ∅ for some i ≤ ℓ, s ≤ m. We obtain the following result.Theorem 3.3.3. Simpli�ed Bu
klin-RandManipulation is in P.Example 2. SupposeR′

=




a a b b d
b d a c c
d b d d a
c c c a b


 and u(d) = 10, u(b) = 5, u(c) =

2, u(a) = 1.It is easy to see that ⌊n
2

⌋
= 3 and l = 3 as well. Clearly, C1 = C<2 =

C3 = ∅, C2 = {a, b} and D = {a, b, d}. Therefore, C<3 = C2 \D = ∅.Step 1. Evidently, L1,s = ∅.Step 2. Clearly, L2,s = ∅ if s > 2. It follows from C<2 = ∅ that L1
2,s = ∅for s = 1, 2. Now we will identify the best votes in L2

2,1 and L2
2,2. At �rst pla
ewe 
onsider L2

2,1. We take the 
andidate with highest utility from C2 and this
andidate is b. Afterward we take arbitrary 
andidate from C \ (C2 ∪C<2) =
{c, d}, for example, c. The following 
andidates 
an be pla
ed in arbitraryorder. Thus, we obtain (b, c, d, a) ∈ L∗

2,1. Similarly we �nd (b, a, d, c) ∈ L∗
2,2.It is easy to see that (b, c, d, a) gives a better out
ome of the ele
tion.Step 3. It follows from C<3 = C3 = ∅ that only L2

3,0 
an be non-empty.Similarly to the previous step we obtain (c, d, b, a) ∈ L∗
3,0.Comparing (b, c, d, a) and (c, d, b, a) we 
an see that (c, d, b, a) gives thebest out
ome of the ele
tion.3.3.2 Classi
 Bu
klinTo extend our algorithm to the 
lassi
 Bu
klin rule, observe that if L ∈ Li,sfor some i < ℓ, then ea
h Bu
klin winner in (R−n, L) has the same i-approvals
ore (namely, ⌊n

2
⌋+1), therefore, any simpli�ed Bu
klin winner in (R−n, L) isalso a Bu
klin winner in (R−n, L). Thus, only the 
ase i = ℓ has to be handleddi�erently. In this 
ase, it matters whi
h 
andidates in D are ranked in top ℓpositions by the manipulator, as this a�e
ts their ℓ-approval s
ore. Therefore,for this 
ase we denote by L̂ℓ,s the set of all votes L ∈ L(C) su
h that (a)

ℓ is the Bu
klin winning round in (R−n, L) and (b) |S(L) ∩ (Cℓ ∪ D)| = s.As in the previous 
ase, we de�ne the set of votes L̂∗
ℓ,s as the set of utility-maximizing votes in L̂ℓ,s, and let L̂∗ be a vote in L̂∗

ℓ,s.



3.3. BUCKLIN 29Lemma 3.3.4. There is a polynomial-time algorithm that 
he
ks whether
L̂ℓ,s is non-empty, and, if so, identi�es a vote L∗ ∈ L̂∗

ℓ,s.Proof. Divide the set L̂∗
ℓ,s into three subsets as follows:

• let L1 be the set of all votes L in L̂∗
ℓ,s su
h that S(L) ⊂ D;

• let L2 be the set of all votes L in L̂∗
ℓ,s su
h that S(L) ∩ C<ℓ 6= ∅;

• let L3 = L̂∗
ℓ,s \ (L1 ∪ L2).Let d = max{sℓ(c) | c ∈ D}. Evidently, the Bu
klin winning s
ore in

(R−n, L) for a L ∈ L̂∗
ℓ,s is either d or d+ 1.If d > ⌊n

2
⌋ + 1 then S(L) ⊂ D for any L ∈ L̂∗

ℓ,s and, so, L2 = ∅ and
L3 = ∅. Therefore, in this 
ase our algorithm needs to 
he
k whether L1 = ∅and if it is not the 
ase then �nd L∗ ∈ L1. If d = ⌊n

2
⌋+ 1, all three sets 
anbe nonempty, and the algorithm will identify the best vote in L1, L2 and L3and output the better of the three. Thus, we divide proof into two 
ases:

d > ⌊n
2
⌋+ 1 and d = ⌊n

2
⌋+ 1.Denote the set of 
andidates whose s
ore sℓ(c) is equal to d by Dd, andthe set of 
andidates whose s
ore sℓ(c) is equal to d− 1 by Dd−1.Case d > ⌊n

2
⌋+ 1. It is easy to see that L1 = ∅ if |C<ℓ| > m − (ℓ − 1).Therefore, we 
an 
onsider only the 
ase |C<ℓ| ≤ m− (ℓ− 1). Now wewill 
onstru
t the best vote L1 su
h that the Bu
klin winning s
ore in

(R−n, L1) is equal to d+ 1 and the best vote L2 su
h that the Bu
klinwinning s
ore in (R−n, L2) is equal to d, and output the better of thetwo. If both votes do not exist then L1 = ∅.First suppose that the Bu
klin winning s
ore is d + 1. In this 
ase
S(L1) ⊂ Dd. It is easy to see that the utility of any s-element subsetof Dd is at most the sum of utilities of s most valuable 
andidates.Thus, if |Dd| − s ≤ m− ℓ−max{|C<ℓ| − 1, 0} and s < ℓ then we rank
s most valuable (ties is broken arbitrary) 
andidates from Dd at top
s positions, rank one of the 
andidates from C<ℓ at pla
e ℓ, and rankall other 
andidates in Dd and C<ℓ at the |Dd|+ |C<ℓ| − s− 1 bottompla
es; the remaining 
andidates 
an be ranked arbitrarily. The outputis the vote L1. In this 
ase ℓ is the Bu
klin winning round in (R−n, L1)and only the s 
andidates from Dd who are ranked above ℓ-th position
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ore d+1 in this round, while other 
andidates have lower s
ores.So, they are the only winners and the utility of this set of 
andidatesis larger than the utility of any subset of Dd. If s = ℓ the pro
edurewill be almost the same ex
luding the pla
ement of one 
andidate from
C<ℓ at position ℓ.Suppose |Dd| − s > m − ℓ − max{|C<ℓ| − 1, 0}. Then all 
andidatesin the set Dd ∪ C<ℓ 
annot be ranked at pla
es ℓ (this position 
an beallo
ated to a 
andidate in C<ℓ only) and below. Therefore L1 = ∅.Now 
onsider a vote L2 su
h that d is the Bu
klin winning s
ore for
(R−n, L2). Evidently, if |Dd| > s then there are no su
h votes, be
ause
Dd ⊂ S(L2). So, we 
an assume |Dd| ≤ s. By our assumption d >
⌊n
2
⌋ + 1, so, it is evident that L2 
an be obtained almost exa
tly asin the previous 
ase with two modi�
ations: We will rank s − |Dd|
andidates from Dd−1 above ℓ instead of 
andidates from Dd and pla
eall remaining 
andidates from Dd−1 and the 
andidates from Dd ∪C<ℓbelow ℓ. One 
andidate in C<ℓ 
an still be ranked at position ℓ.Case d = ⌊n

2
⌋+ 1. Noti
e that Dd−1 = ∅ in this 
ase.It is easy to see that in this 
ase the best vote L1 su
h that the Bu
klinwinning s
ore in (R−n, L1) is equal to d+ 1 
an be found exa
tly as inthe previous 
ase. Now we will �nd an optimal vote L̂∗ su
h that theBu
klin winning s
ore in (R−n, L̂

∗) is equal to d.First 
onsider L1. Obviously, Dd ⊂ S(L1). By de�nition of L1 we alsohave S(L1) ⊂ Dd, therefore, either S(L1) = Dd and |Dd| = s, or L1 = ∅.If S(L1) = Dd then neither the 
andidates from Cℓ, nor those from C<ℓ
an be among the winners of the ele
tion and, therefore, all 
andidates
Dd∪Cℓ∪C<ℓ are ranked below ℓ. Therefore, if |Dd|+|Cℓ|+|C<ℓ| ≤ m−ℓthen we 
an put 
andidates from Dd ∪Cℓ ∪C<ℓ at bottom pla
es, andall others 
an be ranked arbitrary. Otherwise, L1 = ∅.Se
ond 
onsider L2. By de�nition of L2 one 
andidate from C<ℓ and atleast one 
andidate from Cℓ 
an be among the winners of the ele
tion.Thus, at most s − 2 winners 
an be from the set Dd. Therefore, all
andidates fromDd and |C<ℓ|−1 
andidate from C<ℓ are ranked below ℓas well as |Dd|+|Cℓ|−s 
andidates fromCℓ. So, if |Cℓ|+|C<ℓ|+|Dd|−s ≤
m − ℓ + 1 then put |Dd| + |Cℓ| − s best 
andidates from Cℓ (ties arebroken arbitrary) at top pla
es, the best 
andidate from C<ℓ at the
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e ℓ, all remaining 
andidates from Cℓ ∪ C<ℓ and 
andidates from
Dd at bottom pla
es, and all others 
andidates 
an be ranked arbitrary.Otherwise, L2 = ∅.The third vote L3 
an be handled almost exa
tly as L2.Using this lemma we 
an easily obtain the following theorem.Theorem 3.3.5. Bu
klin-RandManipulation is in P.Proof. Using Lemmas 3.3.2 and 3.3.4, we 
an simply �nd the best vote in

Li,s and in L̂ℓ,s for all i = 1, . . . , ℓ− 1, s = 0, . . . , m; while for many values of
i and s the sets Li,s and L̂ℓ,s are empty, we have either Li,s 6= ∅ or L̂ℓ,s 6= ∅for some i ≤ ℓ, s ≤ m.3.4 Maximin3.4.1 General utilitiesIn this se
tion, we show that Maximin-RandManipulation is NP-hard. Infa
t, our hardness result holds even for a fairly simple utility fun
tion, namelyif we set u(w) = 0, u(c) = 1 for c ∈ C\{w}, then Maximin-RandManipula-tion be
omes NP-
omplete. Observe that if the manipulator has this utilityfun
tion, and w is the Maximin winner irrespe
tive of manipulator's vote,then the manipulator's goal is to maximize the overall number of Maximinwinners.Our hardness proof pro
eeds by a redu
tion from Feedba
k VertexSet [25℄. Re
all that an instan
e of Feedba
k Vertex Set is given bya dire
ted graph G with s verti
es {ν1, . . . , νs} and a parameter t ≤ s; it isa �yes�-instan
e if it is possible to delete at most t verti
es from G so thatthe resulting graph 
ontains no dire
ted 
y
les and a �no�-instan
e otherwise.It will be 
onvenient to assume that G 
ontains no dire
ted 
y
les of length
2. It is easy to see that Feedba
k Vertex Set remains NP-hard underthis assumption. Indeed, given an arbitrary instan
e (G, t) of Feedba
kVertex Set with r ar
s, we 
an introdu
e r new verti
es ν ′

1, . . . , ν
′
r andrepla
e ea
h ar
 of the form ei = (νj , νℓ) with a path of length 2 that 
onsistsof ar
s (νj , ν

′
i) and (ν ′

i, νℓ); denote the resulting graph by G′. Clearly, G′
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ontains no dire
ted 
y
les of length 2, and if (G, t) is a �yes�-instan
e ofFeedba
k Vertex Set, so is (G′, t): if the removal of a vertex set Xeliminates all dire
ted 
y
les in G, its removal also eliminates all dire
ted
y
les in G′. Conversely, if we 
an eliminate all dire
ted 
y
les in G′ byremoving a set of verti
es Y , 
onsider the set Y ′ obtained from Y by repla
ingea
h vertex ν ′
i ∈ Y with a vertex νj su
h that (νj , ν ′

i) is an ar
 of G′. It is easyto see that removing Y ′ eliminates all dire
ted 
y
les in G and |Y ′| ≤ |Y |.Thus, from now on, we will assume that G 
ontains no dire
ted 
y
les oflength 2.Theorem 3.4.1. Maximin-RandManipulation is NP-
omplete.Proof. We have argued that Maximin-RandManipulation is in NP. Forthe hardness proof, suppose that we are given an instan
e (G, t) of Feedba
kVertex Set, where G is an s-vertex graph with the vertex set {ν1, . . . , νs}that has no dire
ted 2-
y
les. We will now 
onstru
t an instan
e of ourproblem with C = {c1, c2, . . . , cs, w}.By Corollary 2.3.4, there exists an ele
tion E = (C,R′) with a preferen
epro�le R′ = (R1, . . . , Rn−1), where n is odd, su
h that
• for i = 1, . . . , s, if the indegree of νi in G is at least 1, then exa
tly n−1

2voters rank w above ci; otherwise, exa
tly n−1
2

+1 voter ranks w above
ci.

• if (νi, νj) ∈ G (and hen
e, sin
e G 
ontains no dire
ted 
y
les of length
2, (νj , νi) 6∈ G), exa
tly n−1

2
+ 1 voters rank ci above cj.

• if (νi, νj) 6∈ G and (νj, νi) 6∈ G, exa
tly n−1
2

voters rank ci above cj.Moreover, R′ = (R1, . . . , Rn−1) 
an be 
onstru
ted in time polynomial in s.We will say that ci is a parent of cj if exa
tly n−1
2

+ 1 voter ranks ci above
cj. Observe that in the resulting ele
tion the Maximin s
ore of w is n−1

2
, andthe Maximin s
ore of any other 
andidate is n−1

2
− 1.Re
all that n is the manipulator, and 
onsider the ele
tion E ′′ = (C,R′′)with a preferen
e pro�le R′′ = (R′, L) = (R1, . . . , Rn−1, L), where L is themanipulator's vote. Sin
e w is the unique Maximin winner before the ma-nipulator votes, and w's s
ore ex
eeds the s
ore of any other 
andidate by 1,a 
andidate ci is a winner of (R′, L) if and only if (a) the manipulator ranks

ci above all of her parents and (b) w's Maximin s
ore does not in
rease;



3.4. MAXIMIN 33on the other hand, w will remain the Maximin winner no matter how themanipulator votes.Let the manipulator's utility be given by u(w) = 0, u(c) = 1 for any
c ∈ C \ {w}. Under this utility fun
tion, the manipulator's utility is 0 if
w is the only Maximin winner, 1 if w is not among the Maximin winners,and r/(r+ 1) if the Maximin winners are w and r 
andidates from C \ {w}.Let Rn be some preferen
e order over C that is 
onsistent with u, and set
R = (R1, . . . , Rn−1, Rn) and E ′ = (C,R). We 
laim that (G, t) is a �yes�-instan
e of Feedba
k Vertex Set if and only if (E ′, u, (s− t)/(s− t+1))is a �yes�-instan
e of Maximin-RandManipulation.Suppose (G, t) is a �yes�-instan
e of Feedba
k Vertex Set. Then we
an delete t verti
es from G so that the resulting graph G′ is a
y
li
, and hen
e
an be topologi
ally sorted. Let νi1 , . . . , νis−t be the verti
es of G′, listed inthe sorted order, i.e., so that any edge of G is of the form (νij , νiℓ) with j < ℓ.Consider the vote L obtained by ranking the 
andidates that 
orrespond toverti
es of G′ �rst, in reverse topologi
al order (i.e., cis−t , . . . , ci1), followedby the remaining 
andidates in C \ {w}, followed by w. By 
onstru
tion,ea
h of the �rst s − t 
andidates is ranked above all of its parents, so itsMaximin s
ore in (R′, L) is n−1

2
. On the other hand, w's s
ore remains equalto n−1

2
. Thus, the manipulator's utility in the resulting ele
tion is at least

(s− t)/(s− t+ 1).Conversely, suppose the manipulator submits a vote L′ so that in thepreferen
e pro�le (R−n, L
′) his utility is at least (s− t)/(s− t+1). We haveargued that w is a Maximin winner in (R−n, L

′), and therefore (R−n, L
′) hasat least s−t+1Maximin winners (in
luding w). Let C ′ be a set of some s−t
andidates in C \ {w} that are Maximin winners in (R−n, L

′), and supposethey appear in L′ ordered as ci1 , . . . , cis−t . Let G′ be the indu
ed subgraph of
G with the set of verti
es νi1 , . . . , νis−t . Ea
h of the 
andidates in C ′ appearsin L′ before all of its parents. Therefore, in the ordering νi1 , . . . , νis−t ofthe verti
es of G′ all ar
s are dire
ted from right to left, i.e., G′ 
ontainsno dire
ted 
y
les. Sin
e G′ has s − t verti
es, this means that (G, t) is a�yes�-instan
e of Feedba
k Vertex Set.3.4.2 A tra
table spe
ial 
aseIn the previous se
tion, we have shown that Maximin with randomized tie-breaking does not admit an e�
ient algorithm for �nding an optimal ma-nipulation in the general utility model. However, we will now present a



34 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESpolynomial-time algorithm for this problem assuming that the manipulator'sutility fun
tion has a spe
ial stru
ture. Spe
i�
ally, re
all that in the modelof [6℄ the manipulator's goal is to make a spe
i�
 
andidate p a winner. Thissuggests that the manipulator's utility 
an be modeled by setting u(p) = 1,
u(c) = 0 for all c ∈ C \ {p}. We will now show that for su
h utilities thereexists a polynomil-time algorithm for �nding an optimal manipulation underMaximin 
ombined with the randomized tie-breaking rule.Theorem 3.4.2. If the manipulator's utility fun
tion is given by u(p) = 1,
u(c) = 0 for c ∈ C \ {p}, the problem of �nding an optimal manipulationunder Maximin 
ombined with the randomized tie-breaking rule is in P.Proof. Consider an ele
tionE = (C,R) with the 
andidate set C = {c1, . . . , cm}and re
all that n is the manipulating voter. In this proof, we denote by s(ci)the Maximin s
ore of a 
andidate ci ∈ C in the ele
tion E ′ = (C,R′), where
R′ = R−n. Let s = maxci∈C s(ci).For any ci ∈ C, the manipulator's vote in
reases the s
ore of ci either by
0 or by 1. Thus, if s(p) < s − 1, the utility of the manipulator will be 0irrespe
tive of how he votes.Now, suppose that s(p) = s− 1. The manipulator 
an in
rease the s
oreof p by 1 by ranking p �rst. Thus, his goal is to ensure that after he votes(a) no other 
andidate gets s + 1 point and (b) the number of 
andidatesin C \ {p} with s points is as small as possible. Similarly, if s(p) = s, themanipulator 
an ensure that p gets s + 1 points by ranking him �rst, so hisgoal is to rank the remaining 
andidates so that in C \ {p} the number of
andidates with s+1 points is as small as possible. We will now des
ribe analgorithm that works for both of these 
ases.We 
onstru
t a dire
ted graph G with the vertex set C that 
aptures therelationship among the 
andidates. Namely, we have an edge from ci to cjif there are s(cj) votes in R′, where cj is ranked above ci. Observe that, by
onstru
tion, ea
h vertex in G has at least one in
oming edge. We say that
ci is a parent of cj in G whenever there is an edge from ci to cj . We remarkthat if the manipulator ranks one of the parents of cj above cj in his vote,then cj 's s
ore does not in
rease. We say that a vertex ci of G is purple if
s(ci) = s(p) + 1, red if s(ci) = s(p) and ci 6= p, and green otherwise; notethat by 
onstru
tion p is green. Observe also that if s(p) = s, there are nopurple verti
es in the graph. We will say that a 
andidate cj is dominatedin an ordering L (with respe
t to G) if at least one of cj 's parents in Gappears before cj in L. Thus, our goal is to ensure that the set of dominated
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andidates in
ludes all purple 
andidates and as many red 
andidates aspossible.Our algorithm is based on a re
ursive pro
edure A, whi
h takes as itsinput a graph H with a vertex set U ⊆ C together with a 
oloring of Uinto green, red and purple; intuitively, U is the set of 
urrently unranked
andidates. It returns �no� if the 
andidates in U 
annot be ranked so thatall purple 
andidates in U are dominated by other 
andidates in U withrespe
t to H . Otherwise, it returns an ordered list L of the 
andidates in Uin whi
h all purple 
andidates are dominated, and a set S 
onsisting of allred 
andidates in U that remain undominated in L with respe
t to H .To initialize the algorithm, we 
all A(G). The pro
edure A(H) is de-s
ribed below.1. Set L = ∅.2. If H 
ontains p, set L = [p], and remove p from H .3. While H 
ontains a 
andidate c that is green or has a parent that hasalready been ranked, set L :: [c] (where :: denotes the list 
on
atenationoperation) and remove c from H .4. If H is empty, return (L, ∅).5. If there is a purple 
andidate in H with no parents in H , return �no�.6. If there is a red 
andidate c in H with no parents in H , let H ′ be thegraph obtained from H by 
oloring c green. Compute A(H ′). If A(H ′)returns �no�, return �no�. Otherwise, if A(H ′) returns (L′, S ′), return
(L :: L′, S ′ ∪ {c}).7. At this point in the algorithm, ea
h vertex of H has a parent. Hen
e, H
ontains a 
y
le. Let T be some su
h 
y
le. Collapse T , i.e., (a) repla
e
T with a single vertex t, and (b) for ea
h y 6∈ T , add an edge (t, y) if
H 
ontained an edge (x, y) for some x ∈ T and add an edge (y, t) if H
ontained a vertex z with (y, z) ∈ H . Color t red if T 
ontains at leastone red vertex, and purple otherwise. Let H ′ be the resulting graphand 
all A(H ′). If A(H ′) returns �no�, return �no�. Now, suppose that
A(H ′) returns (L′, S ′).Suppose that t ∈ S ′. At any point in the algorithm, we only put avertex in S if it is red, so t must be red, and hen
e T 
ontains a red



36 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESvertex. Let c be some red vertex in T , and let L̂ be an ordering of theverti
es in T that starts with c and follows the edges of T . Let L′′ be thelist obtained from L′ by repla
ing t with L̂ (i.e., if L′ = L1 :: [t] :: L2,then L′′ = L1 :: L̂ :: L2). Return (L :: L′′, (S ′ \ {t}) ∪ {c}).If t 6∈ S ′, then by Lemma 3.4.3 (see below) t is dominated in H ′. Let
a be a parent of t that pre
edes it in L′. Then T 
ontains a 
hild of
a. Let c be some su
h 
hild, and let L̂ be an ordering of the verti
esin T that starts with c and follows the edges of T . Let L′′ be the listobtained from L′ by repla
ing t wish L̂. Return (L :: L′′, S ′).We will now argue that our algorithm outputs �no� if and only if nomatter how manipulator n votes, some 
andidate in C \ {p} gets s(p) + 2points. Moreover, if A(G) = (L, S) and the set S 
ontains r red 
andidates,then whenever manipulator n votes so that after his vote all other 
andidateshave at most s(p)+1 points, there are at least r red 
andidates with s(p)+1points.We will split the proof into several lemmas.Lemma 3.4.3. At any point in the exe
ution of the algorithm, if A(H) =

(L, S), then ea
h 
andidate in U \ S is dominated in H.Proof. The proof is by indu
tion on the re
ursion depth. Consider a 
andi-date x ∈ U \ S. Clearly, if there are no re
ursive 
alls, A ranks x at Step 3,and the 
laim is obviously true.For the indu
tion step, suppose that the 
laim is true if we have d nestedre
ursive 
alls, and 
onsider an exe
ution that makes d+1 nested 
alls. Again,
onsider a 
andidate x ∈ U \ S. As in the base 
ase, if x has been rankedin Step 3 the 
laim is 
learly true. If x was ranked in Step 6, it follows that
x 6∈ S ′, and the 
laim follows by the indu
tive assumption. Now, supposethat x was ranked in Step 7 when we 
ollapsed some 
y
le T . If x 6∈ T , then
x 6∈ S ′ and the 
laim follows by the indu
tive assumption. In parti
ular, if
x was ranked after t before the expansion, there is some vertex y in T su
hthat H 
ontains the edge (y, x), so after expansion x will be dominated by y.Now, suppose that x ∈ T . If t was in S ′, but x was not added to S, itmeans that x was not the �rst vertex of T to appear in the ranking, i.e., xwas ranked after its prede
essor in T . If t was not in S ′, then by the indu
tiveassumption t was ranked after its parent in H ′, i.e., there is a z ∈ H ′ \ {t}su
h that z is ranked before t in L′ and there is an edge (z, t) in H ′. By



3.4. MAXIMIN 37
onstru
tion of t, this means that there is a vertex y ∈ T su
h that thereis an edge (z, y) in H . Thus, when we expanded t into T , the �rst vertexof T to be ranked was pla
ed after its parent, and all subsequent verti
es of
T were pla
ed after their prede
essors in T . Thus, all verti
es in T and, inparti
ular, x, are dominated.We are now ready to prove that our algorithm 
orre
tly determines whetherthe manipulator 
an ensure that no 
andidate gets more than s(p)+1 points.Lemma 3.4.4. The algorithm outputs �no� if and only if for any vote Lthere is a purple 
andidate that is undominated.Proof. Observe that the algorithm only outputs �no� if it �nds a purple 
an-didate with no parents. Let c be some su
h 
andidate. Now, in the originalgraph G ea
h vertex has a parent. Further, if there was an edge from some
x to c, and we 
ollapsed a 
y
le T that 
ontains x, but not c, there is stillan edge from the resulting vertex t to c. Thus, the only way to obtain apurple vertex with no in
oming edges is by 
ollapsing a 
y
le T su
h that
T 
ontains purple verti
es only, and no vertex of T has an in
oming edge.By indu
tion on the exe
ution of the algorithm, it is easy to see that if weobtained a purple vertex with no in
oming edges at some point, then in theoriginal graph there was a group of purple verti
es su
h that there was noedge from any red or green vertex to any of the verti
es in the group. Now,in any ordering on C one of the 
andidates in this group would have to beranked �rst. By 
onstru
tion, this 
andidate would be ranked before all itsparents, so it is undominated.Conversely, suppose that the algorithm does not answer �no�, and outputsa pair (L, S) instead. We have observed that S 
onsists of red verti
es only.Thus, by Lemma 3.4.3 ea
h purple vertex is dominated.It remains to show that the set S output by the algorithm 
ontains asfew 
andidates as possible.Lemma 3.4.5. At any point in the exe
ution of the algorithm, if A(H) =
(L, S), then in any ordering of the 
andidates in U in whi
h ea
h purplevertex in U is dominated, at least |S| red verti
es in U are undominated.Proof. The proof is by indu
tion on the re
ursion depth. Suppose �rst thatwe make no re
ursive 
alls. Then our algorithm outputs S = ∅, and our
laim is trivially true. Now, suppose that our 
laim is true if we make d
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alls. Consider an exe
ution of A whi
h makes d+ 1 nested 
all, andsuppose that when we 
all A(H ′) within this exe
ution, it returns (L′, S ′).Suppose �rst that we made the re
ursive 
all in Step 6 of the algorithm,and therefore set S = S ′ ∪ {c}. Suppose for the sake of 
ontradi
tion thatthere exists a ranking of the 
andidates in U su
h that at most |S| − 1
andidate is undominated. Sin
e c has no parents in H , there are at most
|S| − 2 other red 
andidates that are undominated. In other words, if were
olor c green, in the resulting instan
e (whi
h is exa
tly the instan
e passedto A during the re
ursive 
all), there are at most |S| − 2 undominated red
andidates. Sin
e |S ′| = |S| − 1, this is a 
ontradi
tion with the indu
tiveassumption.Now, suppose that we made the re
ursive 
all in Step 7 of the algorithm,and 
ollapsed a 
y
le T into a vertex t. Again, assume for the sake of 
ontra-di
tion that there exists a ranking L̄ of the 
andidates in U su
h that at most
|S| − 1 
andidates are undominated. Let c be the �rst vertex of T to appearin L̄. Consider the ranking of U ′ obtained by removing all verti
es of T \ {c}from L̄ and repla
ing c with t; denote this ranking by L̄′. We 
laim that in
L̄′ at most |S| − 1 verti
es of H ′ are undominated. Indeed, any parent of cin H is a parent of t in H ′, so t is undominated if and only if c was. On theother hand, if for some vertex x the only parent that pre
eded it in L̄ was avertex y ∈ T \ {c}, then in H ′ there is an edge from t to x, i.e., x is pre
ededby its parent t in L̄′. For all other verti
es, if they were pre
eded by someparent z in L̄, they are pre
eded by the same parent in L̄′. Sin
e |S| = |S ′|,we have shown that U ′ 
an be ordered so that at most |S ′| − 1 verti
es areundominated, a 
ontradi
tion with the indu
tive assumption.Combining Lemma 3.4.4 and Lemma 3.4.5, we 
on
lude that if our algo-rithm outputs (L, S), then L is the optimal vote for the manipulator and ifour algorithm outputs �no�, then the manipulator's utility is 0 no matter howhe votes. Also, it is not hard to see that the algorithm runs in polynomialtime. Thus, the proof is 
omplete.Example 3. In this example we begin from the graph G, whi
h we obtainfrom the pro�le R−n. This graph 
an be seen at pi
ture 3. We suppose thatall verti
es ex
ept p are red in this graph and p is green.Step 1-6. The only thing whi
h algorithm does at these steps is adding pto L and deleting it from G. Step 7. After 
ollapsing the 
y
le (c, d, f) to thesingle vertex cdf we obtain the graph at pi
ture 3. Color of vertex cdf is red.



3.4. MAXIMIN 39

Figure 3.1: Graph G

Figure 3.2: Graph G after 
ontra
ting the 
y
le (c, d, f)



40 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESNow we return to the step 6 and 
olor cdf green. Vertex cdf is the onlygreen vertex in the graph, thus, add it to L. Now, both vertex a and b haveparent in L and therefore 
an be added to L in arbitrary order (say, a, b). Allverti
es c, d, f are red, therefore we 
an repla
e cdf in L by verti
es c, d, f inarbitrary order. For example, c, d, f .Now we obtain the vote (p, c, d, f, a, b) and it is easy to see that there are2 winners p and c. The utility of manipulator is 1
2
.3.5 CopelandFor the Copeland rule, we give an NP-hardness redu
tion from the Inde-pendent Set problem [25℄. An instan
e of this problem is given by anundire
ted graph G and a positive integer t. It is a �yes�-instan
e if G 
on-tains an independent set of size at least t, i.e., if G has at least t verti
es su
hthat no two of them are 
onne
ted by an edge; otherwise, it is a �no�-instan
e.Our redu
tion makes use of a te
hni
al lemma, whi
h essentially showsthat any undire
ted graph G 
an be obtained as a graph of ties in an ele
tionwhose size is polynomial in the size of G; a similar result appears in [22℄(Lemma 2.4).Lemma 3.5.1. Let G be an undire
ted graph with the vertex set ν1, . . . , νs,

s ≥ 3. Let d(νi) denote the degree of vertex νi. Then there exists a dire
tedgraph G′ with the vertex set G ∪ Z ∪ {w}, where G = {g1, . . . , gs}, Z =
{z1, . . . , z4s+1}, su
h that the outdegree dout and the indegree din of ea
h vertexof G′ satisfy

• dout(w) = 4s+ 1, din(w) = s;
• dout(gi) = 4s+ 1− d(νi), din(gi) = s for i = 1, . . . , s;
• din(z) + dout(z) = 5s+ 1 and dout(z) ≤ 3s+ 1 for all z ∈ Z,

G′ 
ontains no 2-
y
les, and, furthermore for i, j ∈ {1, . . . , s}, gi and gj arenot 
onne
ted by an ar
 in G′ if and only if there is an edge between νi and
νj in G.Proof. The graph G′ is 
onstru
ted as follows. First, we add an ar
 (g, w) forea
h g ∈ G and an ar
 (w, z) for ea
h z ∈ Z. Further, for any i, j ∈ {1, . . . , s},
i < j, we add an ar
 (gi, gj) if and only (νi, νj) 6∈ G. Also, we add an ar
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(zi, zj) for any i, j ∈ {1, . . . , 4s + 1} su
h that j ∈ {i+ 1, . . . , i+ 2s}, wheresummation is taken modulo 4s+1. At this point, w has the required indegreeand outdegree, dout(g), din(g) ≤ s for any g ∈ G, and din(z) = dout(z) = 2sfor any z ∈ Z.Now, for i = 1, . . . , s, we pi
k an arbitrary subset Zi ⊆ Z of size 4s+1−
d(νi) − di, where di is the 
urrent outdegree of gi, add an ar
 (gi, z) for all
z ∈ Zi, and add an ar
 (z, gi) for all z ∈ Z \ Zi. After this step, the verti
esin G have the desired indegree and outdegree. Moreover, for ea
h z ∈ Z andea
h x ∈ (Z ∪G∪{w}) \ {z} we have either (x, z) ∈ G or (z, x) ∈ G. Finally,we have din(z) ≥ 2s, so dout(s) ≤ 3s + 1. Therefore, G′ has the requestedproperties.We are now ready to present the main result of this subse
tion.Theorem 3.5.2. Copelandα-RandManipulation is NP-
omplete for anyrational α ∈ [0, 1].Proof. Fix a rational α ∈ [0, 1]. We have argued that Copelandα-RandMa-nipulation is in NP. For the hardness proof, suppose that we are given aninstan
e (G, t) of Independent Set, where G is a graph with the vertex set
{ν1, . . . , νs}. We will now 
onstru
t an instan
e of our problem with a set of
andidates C = G∪Z∪{w}, where G = {g1, g2, . . . , gs}, Z = {z1, . . . , z4s+1}.Given two 
andidates x, y ∈ C in an n-voter ele
tion, we say that x safelywins a pairwise ele
tion against y (and y safely loses a pairwise ele
tionagainst x) if at least ⌊n/2⌋+2 voters prefer x to y. For any 
andidate x ∈ C,let SW(x) and SL(x) denote the number of pairwise ele
tions that x safelywins and safely loses, respe
tively.Let d(νi) denote the degree of the vertex νi in G. By Lemma 3.5.1 andCorollary 2.3.5, we 
an 
onstru
t an ele
tion E ′ = (C,R′) with a preferen
epro�le R′ = (R1, . . . , Rn−1) that has the following properties:

• SW(w) = 4s+ 1, SL(w) = s;
• SW(gi) = 4s+ 1− d(νi), SL(gi) = s for i = 1, . . . , s;
• SW(z) + SL(z) = 5s+ 1 and SW(z) ≤ 3s+ 1 for any z ∈ Z;
• there is a tie between two 
andidates c and c′ if and only if c = gi,
c′ = gj for some i, j ∈ {1, . . . , s} and there is an edge between νi and
νj in G.



42 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESConsider an ele
tion E = (C,R) with R = (R1, . . . , Rn−1, R), where Ris a preferen
e ordering that is 
onsistent with the utility fun
tion u givenby u(w) = 0, u(z) = 0 for any z ∈ Z, u(g) = 1 for any g ∈ G. For any
L ∈ L(C), in the preferen
e pro�le (R−n, L) the Copelandα s
ore of w is
4s + 1, and the Copelandα s
ore of ea
h 
andidate z ∈ Z is at most 3s + 1.Moreover, the Copelandα s
ore of ea
h gi ∈ G is at least 4s + 1− d(νi) andat most 4s+1; to ensure that gi's s
ore is 4s+1, the manipulator must rank
gi above all of the 
andidates that gi is tied with in E ′ (note that for α = 1all 
andidates in G are 
urrently tied with w, but some of them will losepoints after the manipulator votes). We 
laim that (G, t) is a �yes�-instan
eof Independent Set if and only if (E, u, t/(t + 1)) is a �yes�-instan
e ofCopelandα-RandManipulation.Indeed, let J = {νi1 , . . . , νit} be an independent set in G. Consider avote L that ranks the 
andidates gi1, . . . , git �rst (in any order), followed bythe remaining 
andidates in G ∪ Z, followed by w. Clearly, in the resultingele
tion the Copelandα s
ore of the top t 
andidates in L is 4s + 1, so themanipulator's utility is at least t/(t+ 1).Conversely, suppose that for some L′ ∈ L(C) the manipulator's utility isat least t/(t+ 1). Let S ′ be the set of all 
andidates in G whose Copelandαs
ore in (R−n, L

′) is 4s + 1; we have |S ′| ≥ t. As argued above, the manip-ulator ranks ea
h 
andidate g ∈ S ′ above all 
andidates that g is tied within E ′. This implies that two 
andidates in S ′ 
annot be tied in E ′, i.e., S ′
orresponds to an independent set in G.3.6 Iterative rulesSome of the 
ommon voting rules, su
h as, e.g., STV, do not assign s
ores to
andidates. Rather, they are de�ned via multi-step pro
edures. When one
omputes the winner under su
h rules, ties may have to be broken during ea
hstep of the pro
edure. A natural approa
h to winner determination undersu
h rules is to use the parallel universes tie-breaking [9℄: a 
andidate c is anele
tion winner if the intermediate ties 
an be broken so that c is a winnerafter the �nal step. Thus, any su
h rule de�nes a voting 
orresponden
e ina usual way, and hen
e the 
orresponding RandManipulation problem iswell-de�ned. In this se
tion, we 
onsider three rules in this 
lass, namely,Plurality with Runo�, STV, and Ranked Pairs.For Plurality with Runo�, RandManipulation turns out to be in P.



3.6. ITERATIVE RULES 43The main idea of the proof is that if Lc is the set of all votes that rank a
andidate c ∈ C �rst, then the best vote in Lc ranks all 
andidates otherthan c a

ording to their utility.Theorem 3.6.1. Plurality with Runo�-RandManipulation is in P.Proof. Consider an ele
tion E = (C,R) and a manipulating voter n with autility fun
tion u.Evidently, if we know the optimal vote in Lc for all c ∈ C we 
an �ndthe manipulative vote in linear time. To 
omplete the proof, we will nowshow that the best vote in Lc ranks all 
andidates other than c a

ordingto their utility. Consider the vote L ∈ Lc that ranks all 
andidates otherthan c a

ording to their utility. We will prove that the utility that themanipulator obtains in ele
tion (C, (R−n, L)), is at least the utility, thatthe manipulator obtains in ele
tion (C, (R−n, L
′)) for any other vote L′. Itis easy to see that all 
andidates have the same s
ore in both ele
tions atthe �rst step. Therefore, a pair of 
andidates c1, c2 
an be obtained as thepair of 
andidates at the se
ond step in ele
tion (C, (R−n, L

′)) if and only ifthey 
an be obtained as a pair of 
andidates at the se
ond step in ele
tion
(C, (R−n, L)).Now, 
onsider the se
ond step. Suppose, 
andidates c1, c2 remain at thisstage. Evidently, if they are ranked in the n-th vote in the same way in bothele
tions, then the utility obtained by the manipulator is the same in both
ases. Therefore, we only need to 
onsider the 
ase when c does not surviveuntil the se
ond step and c1, c2 are ranked di�erently with respe
t to ea
hother in L and L′. Without loss of generality we 
an assume u(c1) > u(c2).Denote the s
ores of c1 and c2 at the se
ond step of the ele
tion (C, (R−n, L))by s1 and s2, respe
tively. Thus, the s
ores of c1 and c2 at the se
ond stepof the ele
tion (C, (R−n, L

′)) are s1 − 1 and s2 +1, respe
tively. It is easy tosee that the s
ore of the 
andidate of larger utility in
reases in (C, (R−n, L))
ompared to (C, (R−n, L
′)). Therefore, the manipulator's utility is at leastas large in (C, (R−n, L)) as in (C, (R−n, L

′)).For STV and Ranked Pairs, RandManipulation is NP-hard. The proofof this fa
t hinges on an observation that allows us to inherit hardness resultsfrom the standard model of voting manipulation.For STV and Ranked Pairs CoWinnerManipulation is known to be
NP-hard (see, respe
tively, [5℄ and [49℄). It is easy to see that this impliesthat for these rules RandManipulation is hard as well.



44 CHAPTER 3. RANDOMIZED TIE-BREAKING RULESProposition 3.6.2. For any voting 
orresponden
e F , the problems F-CoWinnerManipulation many-one redu
es to F-RandManipulation.Proof. Given an instan
e (E ′, p) of F -CoWinnerManipulationwith E ′ =
(C,R′), where R′ = (R1, . . . , Rn), we 
onstru
t an instan
e (E, u, q) of F -RandManipulation as follows. Set E = (C,R) withR = (R′

−n, R), where
R ranks p �rst, followed by all other 
andidates in an arbitrary order. Also,set u(p) = 1, u(c) = 0 for c ∈ C \ {p}, and q = 1/|C|. It is easy tosee that a �yes�-instan
e of F -CoWinnerManipulation 
orresponds to a�yes�-instan
e of F -RandManipulation and vi
e versa.Corollary 3.6.3. STV-RandManipulation and Ranked Pairs-RandMa-nipulation are NP-hard.We remark that it is not 
lear if these problems are in NP, sin
e therespe
tive winner determination problem is not known to be polynomial-timesolvable; in fa
t, for STV it is known to be NP-hard [9℄.For iterative rules one 
an also use randomness to break the intermediateties. The manipulator's goal is then to maximize the expe
ted utility withrespe
t to the resulting distribution. Generally speaking, this problem is dif-ferent from RandManipulation: while the set of 
andidates that win withnon-zero probability is the same in both settings, the probability distributionon these 
andidates 
an be di�erent.3.7 Related workIn this 
hapter we assume that the manipulator assigns utilities to all 
an-didates, and his goal is to vote so as to maximize his expe
ted utility. Thisapproa
h is standard in the so
ial 
hoi
e literature (see, e.g.,[27℄) and hasalso been used in [14℄.Also, randomized tie-breaking has been 
onsidered in the 
ontext of 
on-vergen
e to equilibria under Plurality voting [34℄.There exists very re
ent results on Maximin under randomized tie-breaking.In [51℄ it was proved that when the manipulator's utilities for the 
andidatesare given by the ve
tor (1, . . . , 1, 0, . . . , 0), with k ones and m−k zeros, thenthe problem of �nding an optimal vote for the manipulator is �xed-parametertra
table when parameterized by k.



3.8. SUMMARY 453.8 SummaryWe have determined the 
omplexity of �nding an optimal manipulation underthe randomized tie-breaking rule for several prominent voting rules, namely,s
oring rules, Maximin, Copelandα for any rational α ∈ [0, 1], two variantsof the Bu
klin rule, Plurality with Runo�, STV, and Ranked Pairs. Thisprovides an essentially 
omplete pi
ture of the 
omplexity of RandManip-ulation for 
ommonly studied voting rules (Table 3.1).P NP-hardS
oring rules CopelandMaximin (restri
ted) Maximin (general)simpli�ed Bu
klin STV
lassi
 Bu
klin Ranked PairsPlurality w/Runo�Table 3.1: Complexity of RandManipulation for 
lassi
 voting rules.To 
ompare the results for manipulation problem under randomized tie-breaking and lexi
ographi
 tie-breaking 
onsider the following table.Lexi
ographi
 tie-breaking Randomized tie-breakingS
oring rules P P(
lassi
) Bu
klin P PPlurality w/Runo� P PMaximin (restri
ted) P PMaximin (general) P NP -hardCopeland P NP -hardSTV NP -hard NP -hardRanked Pairs NP -hard NP -hardTable 3.2: Complexity of Manipulation for 
lassi
 voting rules under lexi-
ographi
 and randomized tie-breaking.
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Chapter 4Deterministi
 Tie-Breaking RulesIn [6℄ it was proved that several well-known voting 
orresponden
es are easyto manipulate if ties are broken in manipulator's favor. In Chapter 2, we haveargued that the algorithm of [6℄ 
an be modi�ed to work for an arbitrary lex-i
ographi
 tie-breaking rule. Given these easiness results, it is natural to askwhether all (e�
iently 
omputable) tie-breaking rules produ
e easily ma-nipulable rules when 
ombined with the voting 
orresponden
es 
onsideredin [6℄. In this 
hapter we show that Maximin and Borda, as well as manyfamilies of s
oring rules, be
ome hard to manipulate if we allow arbitrary
omputable deterministi
 tie-breaking rules. This holds even if we requirethat the tie-breaking rule only depends on the set of the tied alternatives,rather than the voters' preferen
es over them; we refer to su
h tie-breakingrules as simple. Now we give the formal defenition of simple tie-breaking.As it was de�ned in the preliminaries a tie-breaking rule for an ele
tion
(C,R) is a mapping T = T (R, S) that for any S ⊆ C, S 6= ∅, outputs a
andidate c ∈ S.De�nition 4.0.1. A tie-breaking rule T is 
alled simple if it is polynomial-time 
omputable and the value of T (R, S) is uniquely determined by S .Our proof also works for Copeland, thus strengthening the hardness resultfor se
ond-order Copeland proved in [6℄ to simple tie-breaking rules. We re-mark, however, that our hardness result is not universal: Plurality and others
oring rules that 
orrespond to s
oring ve
tors with a bounded number ofnon-zero 
oordinates are easy to manipulate under any polynomial-time sim-ple tie-breaking rule, However, if non-simple tie-breaking rules are allowed,Plurality 
an be shown to be hard to manipulate as well.47



48 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULESWe will �rst present a spe
i�
 simple tie-breaking rule T . We will thenshow that manipulating the 
omposition of this rule with Borda and Maximinis NP-hard. We then show that by tweaking this tie-breaking rule a little,we 
an also obtain an NP-hardness result for Copeland.Re
all that an instan
e C of 3-SAT is given by a set of s variables
X = {x1, . . . , xs} and a 
olle
tion of t 
lauses Cl = {c1, . . . , ct}, where ea
h
lause ci ∈ Cl is a disjun
tion of three literals over X, i.e., variables or theirnegations; we denote the negation of xi by xi. It is a �yes�-instan
e if thereis a truth assignment for the variables in X su
h that all 
lauses in Cl aresatis�ed, and a �no�-instan
e otherwise. This problem is known to be hardeven if we assume that all literals in ea
h 
lause are distin
t, so from nowon we assume that this is the 
ase. Now, given d variables x1, . . . , xd, thereare exa
tly ℓ =

(
2d
3

)
3-literal 
lauses that 
an be formed from these vari-ables (this in
ludes 
lauses of the form x1 ∨ x1 ∨ x2). Ordering the literalsas x1 < x1 < · · · < xd < xd indu
es a lexi
ographi
 ordering over all 3-literal
lauses. Let φi denote the i-th 
lause in this ordering. Thus, we 
an en
odean instan
e C of 3-SAT with d variables as a binary string σ(C) of length ℓ,where the i-th bit of σ(C) is 1 if and only if φi appears in C.We are ready to des
ribe T . Given a set S ⊆ C of 
andidates, where

|C| = m, T �rst 
he
ks if m = ℓ + 2s + 4 for some s > 0 and ℓ =
(
2s
3

). Ifthis is not the 
ase, it outputs the lexi
ographi
ally �rst 
andidate in S andstops. Otherwise, it 
he
ks whether cm ∈ S and for every i = 1, . . . , s, theset S satis�es |S ∩ {cℓ+2i−1, cℓ+2i}| = 1. If this is not the 
ase, it outputsthe lexi
ographi
ally �rst 
andidate in S and stops. If the 
onditions aboveare satis�ed, it 
onstru
ts an instan
e C = (X,Cl) of 3-SAT by setting
X = {x1, . . . , xs}, Cl = {φi | 1 ≤ i ≤ ℓ, ci ∈ S}. Next, it 
onstru
ts a truthassignment (ξ1, . . . , ξs) for C by setting ξi = ⊤ if cℓ+2i−1 ∈ S, cℓ+2i 6∈ S and
ξi = ⊥ if cℓ+2i−1 6∈ S, cℓ+2i ∈ S. Finally, if C(ξ1, . . . , ξs) = ⊤, it outputs cmand otherwise it outputs the lexi
ographi
ally �rst 
andidate in S. Clearly,
T is simple and polynomial-time 
omputable, and hen
e the problem T ◦ F -Manipulation is in NP for any polynomial-time 
omputable rule F (and,in parti
ular, for Borda, Maximin and Copeland). In the rest of this se
tion,we will show that T ◦ F -Manipulation is NP-hard for all these rules.



4.1. BORDA AND OTHER SCORING RULES 494.1 Borda and other s
oring rulesWe will �rst 
onsider the Borda rule. We will then show that essentially thesame proof works for a large 
lass of s
oring rules. To simplify notation, inthe proof of Lemma 4.1.1 and Theorem 4.1.2 we will denote the Borda s
oreof a 
andidate x in a preferen
e pro�le R by s(R, x).Lemma 4.1.1. For any set of 
andidates C = {c1, . . . , cm} with m ≥ 4 andany ve
tor (β1, . . . , βm−1) with βi ∈ {0, 1, . . . , m} for i = 1, . . . , m − 1 and
β1 > 0, we 
an e�
iently 
onstru
t a preferen
e pro�le R = (R1, . . . , Rn′)with n′ = m(m − 1) voters su
h that for some K ≥ m2 + m + 1 and some
u ≤ m(m − 1) the Borda s
ores of all 
andidates satisfy s(R, ci) = K + βifor i = 1, . . . , m− 1 and s(R, cm) = u.Proof. For 
onvenien
e, we will reformulate our problem as a bin-pa
kingproblem by asso
iating the 
andidates with bins, and s
ores distributed byea
h voter with items. We will �rst argue that if we have m(m− 1) items ofsize i for ea
h i = 0, . . . , m− 1, then we 
an pla
e the same number of itemsin ea
h bin so that the size of the i-th bin is the desired value of s(R, ci).We will then show that given any assignment of items into bins su
h thatevery bin holds the same number of items, we 
an 
onstru
t a 
orrespondingpreferen
e pro�le (i.e., mat
h items to the voters so that no voter pla
estwo items in the same bin). We remark that the latter result has also beenproved in Theorem 3.1 in [12℄; however, we provide a mu
h simpler proofthat generalizes easily to arbitrary s
oring rules.Let us assume that we have m(m− 1) items of ea
h size. First, for ea
h
i = 2, . . . , m − 1, let us pla
e m items of size i into ea
h of the �rst m − 1bins. At this point, ea
h of these bins 
ontains m(m − 2) items and its sizeis m2(m−1)

2
−m. We now pla
e βi items of size 1 and m − βi items of size 0into the i-th bin for i = 1, . . . , m − 1, bringing ea
h of the �rst m − 1 binsto its target size. We are left with m(m− 1) items of size 0 and 1, whi
h wewill pla
e in the last bin. Clearly, at this point ea
h bin 
ontains m(m − 1)item. Set K = m2(m−1)

2
− m, and let u be the 
urrent size of the last bin.Clearly, this pla
ement of items satis�es our 
onstraints.We will now show how to extra
t a preferen
e pro�le from this assignmentof items to bins. Our proof works for any assignment in whi
h the numberof items in ea
h bin is the same. We pro
eed in stages: at ea
h stage we
onstru
t one voter and remove the respe
tive items from all bins. We needto argue that at ea
h stage we 
an 
onstru
t a new voter, i.e., pi
k one



50 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULESitem from ea
h bin so that all these items have di�erent sizes. Then, after
m(m− 1) stages this algorithm produ
es the target preferen
e pro�le.The proof pro
eeds by indu
tion. The basis of indu
tion is easy: we 
anpi
k one item of size 0 from the last bin, one item of size 1 from the �rst bin(re
all that we assume that β1 > 0), and ea
h other item size is guaranteedto appear in all bins, so we 
an pi
k the remaining items easily.For the indu
tion step, suppose that we have already 
onstru
ted i voters.Then 
urrently we have m(m−1)−i items of ea
h size, and ea
h bin 
ontains
m(m− 1)− i items. We 
onstru
t a bipartite graph whose verti
es are itemsizes and bins, and there is an edge from an item size to a bin if this bin
urrently 
ontains an item of that size. We 
laim that this graph satis�esthe 
onditions of Hall's theorem [45℄. Indeed, pi
k a k ≤ m and 
onsider a
olle
tion of k di�erent item sizes. If all items with these sizes appear in atmost k− 1 bins, then these bins 
ontain k(m(m− 1)− i) items, so some binmust 
ontain at least k

k−1
(m(m − 1) − i) items, a 
ontradi
tion. Thus, byHall's theorem, this graph 
ontains a 
omplete bipartite mat
hing. Clearly,any su
h mat
hing 
orresponds to a voter. Thus, we 
onstru
t the (i+ 1)-stvoter and remove the 
orresponding items from the bins.Theorem 4.1.2. T ◦ Borda-Manipulation≻ is NP-hard.Proof. Suppose that we are given an instan
e C of 3-SAT with s variables.Note that this instan
e 
an be en
oded by a binary ve
tor (σ1, . . . , σℓ), where

ℓ =
(
2s
3

), as des
ribed in the 
onstru
tion of T : σi = 1 if and only if C 
on-tains the i-th 3-variable 
lause with respe
t to the lexi
ographi
 order. Wewill now 
onstru
t an instan
e of our problem with m = ℓ + 2s + 4 
andi-dates c1, c2, . . . , cm. For readability, we will also denote the �rst ℓ 
andidatesby u1, . . . , uℓ, the next 2s 
andidates by x1, y1, . . . , xs, ys, and the last four
andidates by d1, d2, w, and c.Let U = {u1, . . . , uℓ}, let Q = {ci ∈ U | σi = 1}, and let q = |Q|. For
onvenien
e, we renumber the 
andidates in U so that Q = {u1, . . . , uq}.We will now use Lemma 4.1.1 to 
onstru
t a preferen
e pro�le R′ =
(R1, . . . , Rn−1) with the following s
ores:

• s(R′, w) = K +m, s(R′, c) = K + 1;
• s(R′, ui) = K +m− i for i = 1, . . . , q;
• s(R′, ui) = K for i = q + 1, . . . , ℓ;
• s(R′, xi) = s(R′, yi) = K + i+ 1 for i = 1, . . . , s;
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• s(R′, d1) = K, s(R′, d2) = u,where K > m2 +m+ 1 and u ≤ m(m− 1).Now, 
onsider an ele
tion with the set of 
andidates C and the preferen
epro�le R1, . . . , Rn, where R1, . . . , Rn−1 are 
onstru
ted above and the pref-eren
es Rn of the last voter (who is also the manipulating voter) are givenby

c ≻ w ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ u1 ≻ . . . ≻ uℓ ≻ d1 ≻ d2.Observe that if the manipulator votes truthfully, then w wins. Thus, amanipulation is su

essful if and only if voter n manages to vote so that cgets ele
ted.Suppose �rst that we have started with a �yes�-instan
e of 3-SAT, andlet (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the 
orresponding truth assignment. For i =
1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that themanipulator submits a vote L in whi
h he ranks c, z1, . . . , zs in the top s+1positions (in this order), uq, . . . , u1, w in the bottom q + 1 positions (in thisorder), and all other 
andidates in the remaining positions in between.It is not hard to see that in this 
ase the 
andidates c, w, z1, . . . , zs andall 
andidates in Q get K+m points, while all other 
andidates get less than
K + m points. Thus, the set of tied 
andidates S is Q ∪ {c, w, z1, . . . , zs}.Therefore, given the set S, our tie-breaking rule will re
onstru
t C, 
he
kwhether z1, . . . , zs en
ode a satisfying truth assignment for C (whi
h is in-deed the 
ase), and output cm = c. Thus, in this 
ase L is a su

essfulmanipulation.Conversely, suppose that n submits a vote L so that c gets ele
ted. Sin
ewe have s(R′, w) − s(R′, c) = m − 1, it follows that L ranks c �rst and wlast, and hen
e both of them get K +m points. Similarly, we 
an show byindu
tion on i that for all i = 1, . . . , q it holds that n ranks ui in the (m− i)-th position; thus, ea
h 
andidate in Q also gets K +m points. Moreover, allother 
andidates in U \Q get less than K +m points, i.e., the manipulator
annot 
hange the formula en
oded by the set of tied 
andidates. Let S bethe set of all 
andidates with the top s
ore. Sin
e c wins the ele
tion, it hasto be the 
ase that the set S ∩ {x1, y1, . . . , xs, ys} en
odes a satisfying truthassignment for C, i.e., C is satis�able. Thus, the proof is 
omplete.It is not hard to generalize the result of Theorem 4.1.2 to all families ofs
oring ve
tors (αm)∞m=1, where αm = (αm

1 , . . . , α
m
m) ∈ Nm, and the 
oordi-nates of ea
h s
oring ve
tor satisfy the following 
onditions:



52 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES(1) αm
1 > · · · > αm

m;(2) αm
m−1 = 1, αm

m = 0;(3) there exists a polynomial p = p(m) su
h that αm
i ≤ p(m) for all m ≥ 1and all i ≤ m.That is, we require ea
h s
oring ve
tor to be faithful and polynomiallybounded, as well as to satisfy αm

m−1 = 1, αm
m = 0.Indeed, in the proof of Theorem 4.1.2, we 
an modify the 
onstru
tion ofthe non-manipulators' preferen
e pro�le R′ by requiring

• s(R′, w) = K + αm
1 + 1;

• s(R′, c) = K + 1;
• s(R′, ui) = K + αm

1 − αm
m−i + 1 for i = 1, . . . , q;

• s(R′, ui) = K for i = q + 1, . . . , ℓ;
• s(R′, xi) = s(R′, yi) = K + αm

1 − αm
i + 1 for i = 1, . . . , s;

• s(R′, d1) = K;
• s(R′, d2) = u,where K − u > αm

1 , and s(R′, z) denotes the s
ore of a 
andidate z withrespe
t to the s
oring rule Fα. Assuming that su
h a pro�le 
an be 
on-stru
ted in polynomial time, the rest of the proof of Theorem 4.1.2 goesthrough as long as the s
oring ve
tor is faithful. To 
onstru
t R′, we modifythe statement of Lemma 4.1.1 by requiring 0 ≤ βi ≤ αm
1 +1 and K−u > αm

1 ,and set the number of voters to (αm
1 + 1)(m − 1) (whi
h is polynomial by
ondition (3)). This version of Lemma 4.1.1 
an be proved in essentially thesame way as the original Lemma 4.1.1; the proof uses 
ondition (2) and theobservation that 
ondition (1) implies αm

i ≥ m − i. Thus, we obtain thefollowing 
orollary.Corollary 4.1.3. For any family of s
oring rules (Fαm)∞m=1 su
h that the
orresponding family of s
oring ve
tors (αm)∞m=1 satis�es 
onditions (1)�(3)it holds that T ◦ Fαm-Manipulation≻ is NP-
omplete.Theorem 4.1.2 
an also be extended to s
oring rules with non-faithfuls
oring ve
tors that satisfy 
onditions (2) and (3), as long as they have suf-�
iently many non-zero 
oordinates. However, the proof will have to be



4.1. BORDA AND OTHER SCORING RULES 53modi�ed by adding dummy 
andidates. In parti
ular, we 
an show that ma-nipulating the 
omposition of T and k-approval is NP-hard as long as k and
m are polynomially related (i.e., m ≤ q(k) for some polynomial q). Similarly,we 
an remove 
ondition (2) by altering the tie-breaking rule T . We omitthe formal proofs of these statements, as they are tedious, yet 
on
eptuallysimilar to the proof of Theorem 4.1.2.On the other hand, while 
ondition (3) does not seem essential, in thesense that it is plausible that s
oring rules with exponentially large 
oordi-nates are also hard to manipulate under suitable polynomial-time 
omputabletie-breaking rules, the 
urrent proof strategy will not work for this 
ase. In-deed, for su
h s
oring ve
tors the preferen
e pro�les 
onstru
ted in the proofof (an analogue of) Lemma 4.1.1 may have exponentially many voters.Note, however, that we 
annot hope to prove an analogue of Theo-rem 4.1.2 for all s
oring rules as long as we insist that the tie-breaking ruleis simple: we have to require that the s
oring ve
tor has a superlogarithmi
number of non-zero 
oordinates. Indeed, if the number of non-zero 
oordi-nates k satis�es k = O(logm), the manipulator 
an simply try all possiblepla
ements of the 
andidates into the top k positions in polynomial time.This strategy works for any simple polynomial-time tie-breaking rule, sin
ethe set of tied 
andidates only depends on the top k positions in the manip-ulator's vote. This remark 
an be applied for example to k-approval. On theother hand, if we drop the simpli
ity requirement, there exists a tie-breakingrule T ′ for whi
h even Plurality is hard to manipulate. Informally, T ′ inter-prets the set of winners as a boolean formula and views the manipulator'svote as a truth assignment.Theorem 4.1.4. There exists a tie-breaking rule T ′ su
h that T ′ ◦Plurality-Manipulation≻ is NP-
omplete.Proof. Suppose |C| = m. First we will 
onstru
t the tie-breaking rule T ′.Given a set S ⊆ C of 
andidates, T ′ �rst 
he
ks if m = ℓ + s + 2 for some
s > 0 and ℓ =

(
2s
3

). If this is not the 
ase, it outputs the lexi
ographi
ally�rst 
andidate in S and stops. After that T ′ 
he
ks whether cm ∈ S and ifthis is not the 
ase, it outputs the lexi
ographi
ally �rst 
andidate in S andstops. Otherwise, it 
onsiders the n-th (last) vote Rn. Set S ′ 
onsists of all
andidates that are ranked before cm−1 with the ex
eption of the 
andidateat the �rst position.Re
all that an instan
e C of 3-SAT with s variables 
an be en
oded bya binary ve
tor (σ1, . . . , σℓ) as des
ribed in Theorem 4.1.2. If cm ∈ S, then
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T ′ 
onstru
ts an instan
e C = (X,Cl) of 3-SAT where X = {x1, . . . , xs} and
Cl is en
oded by the string {σi = 1 | 1 ≤ i ≤ ℓ, ci ∈ S}. Next, it 
onstru
tsa truth assignment (ξ1, . . . , ξs) for C by setting ξi = ⊤ if cℓ+i ∈ S ′ and
ξi = ⊥ otherwise. Finally, if C(ξ1, . . . , ξs) = ⊤, it outputs cm and otherwiseit outputs the lexi
ographi
ally �rst 
andidate in S. This 
ompletes thedes
ription of T ′.Given an instan
e C of 3-SAT with s variables su
h that (⊥, . . . ,⊥) isnot a satisfying assignment for C we 
onstru
t an instan
e of T ′ ◦ Plurality-Manipulation≻ with ℓ + s + 2 
andidates as follows. For readability, wedenote the �rst ℓ 
andidates by u1, . . . uℓ, the next s 
andidates by x1, . . . , xs,and the last two 
andidates by w and c.Let U = {u1, . . . , uℓ}, let Q = {ci ∈ U | σi = 1}, and let q = |Q|. For
onvenien
e, we renumber the 
andidates in U so that Q = {u1, . . . , uq} and
u1 pre
edes u2, . . . , uq in the lexi
ographi
 ordering of the 
andidates.Using at most 3ℓ + 2 votes we 
an obtain a pro�le R′ = (R1, . . . , Rn−1)su
h that the s
ores of 
andidates in Q are equal to 3, the s
ore of c is equalto 2 and the s
ores of all other 
andidates are 0. Let the manipulator'spreferen
e order Rn be

c ≻ w ≻ x1 ≻ . . . ≻ xs ≻ u1 ≻ . . . ≻ uℓ.The instan
e of T ′ ◦Plurality-Manipulation≻ is (C,R) with R = (R′, Rn).Suppose that the manipulator submits his truthful vote. In this 
ase theset of tied 
andidates is Q∪{c} and S ′ = ∅. Therefore, u1 is the winner of theele
tion. Evidently, for any vote L the winner of the ele
tion (C, (R−n, L))has at least 3 points and, thus, he is a 
andidate from the set Q∪{c}. Thus,our ele
tion is a �yes�-instan
e of T ′ ◦Plurality-Manipulation≻ if and onlyif c 
an be made the winner.Suppose �rst that we have started with a �yes�-instan
e of 3-SAT, and let
(ξ1, . . . , ξs) ∈ {⊤,⊥}s be the 
orresponding truth assignment. Set X ′ = {xi |
ξi = ⊤}. Suppose that the manipulator submits a vote L in whi
h he ranks
c in top position followed by 
andidates from X ′ in positions 2, . . . , |X ′|+ 1(ranked a

ording to his preferen
e order), w in position |X ′| + 2, and allother 
andidates in the remaining positions in arbitrary order.It is not hard to see that in this 
ase 
andidate c and all 
andidates in
Q get 3 points, while all other 
andidates get 0 points. Thus, the set of tied
andidates S is Q ∪ {c}. Therefore, given the set S, our tie-breaking rulewill re
onstru
t C, 
he
k whether X ′ en
odes a satisfying truth assignment
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h is indeed the 
ase), and output cm = c. Thus, in this 
ase L isa su

essful manipulation.Conversely, suppose that n submits a vote L so that c gets ele
ted. Sin
ethe s
ore of c in R′ is 2 and the s
ore of ea
h 
andidate in Q is equal to3, it follows that L ranks c �rst and hen
e all 
andidates in Q ∪ {c} get 3points in (R′, L). All other 
andidates in C \ (Q∪ {c}) get 0 points, i.e., themanipulator 
annot 
hange the formula en
oded by the set of tied 
andidates.Let X ′ be the set of all 
andidates who are ranked between c and w. Sin
e
c wins the ele
tion, it has to be the 
ase that the set X ′ en
odes a satisfyingtruth assignment for C, i.e., C is satis�able. Thus, the proof is 
omplete.4.2 MaximinWe will now show that T ◦Maximin is hard to manipulate using essentiallythe same 
onstru
tion as in the proof of Theorem 4.1.2.Theorem 4.2.1. T ◦Maximin-Manipulation≻ is NP-hard.Proof. Given a 3-SAT formula C, we 
onstru
t an ele
tion E = (C,R) where
C, U , Q and q are as in the proof of Theorem 4.1.2.We 
an en
ode an ele
tion over a set of 
andidates C as a matrix {a(i, j)}i,j∈C,where for all i 6= j the entry a(i, j) equals the number of voters that prefer ito j. By Corollary 2.3.5, for some n = poly(m) we 
an e�
iently 
onstru
t apreferen
e pro�leR′ = (R1, . . . , Rn−1) 
orresponding to the following matrix:

• a(ui, ui+1) = b+ 1 for i = 1, . . . , q;
• a(ui, ui+1) = b− 1 for i = q + 1, . . . , ℓ;
• a(xi, yi) = a(yi, ui) = b for i = 1, . . . , s;
• a(c, w) = a(d1, c) = b, a(w, d1) = b+ 1;
• a(c, d2) = g + 1;
• a(x, y) = g + b− a(y, x) if a(y, x) has been de�ned above;
• a(x, y) = b+g

2
for all other pairs (x, y) ∈ C × C,



56 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULESwhere uℓ+1 := u1, b < m, g > 2m, and b + g = n − 1. Now, 
onsider anele
tion with the set of 
andidates C and n voters, where for i ≤ n − 1 thepreferen
es of the i-th voter are given by Ri, and the preferen
es of the lastvoter (who is also the manipulating voter) are given by
c ≻ w ≻ d1 ≻ d2 ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ uℓ ≻ . . . ≻ u1.Observe that if voter n votes truthfully, then a(w, d1) = b+2, a(w, x) > b+2for all x ∈ C \ {d1}, while the Maximin s
ore of any other 
andidate is atmost b+ 1, so w is the ele
tion winner. Hen
e, a manipulation is su

essfulif and only if n manages to vote so that c gets ele
ted. We will now showthat this is possible if and only if we have started with a �yes�-instan
e of3-SAT. Suppose �rst that we have started with a �yes�-instan
e of 3-SAT,and let (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the 
orresponding truth assignment. For

i = 1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that voter nsubmits a vote L given by
c ≻ z1 ≻ . . . ≻ zs ≻ uℓ ≻ . . . ≻ u1 ≻ . . . ≻ w,where the 
andidates in C \ (U ∪{c, w, z1, . . . , zs}) are ranked in an arbitraryorder between u1 and w. It is easy to see that after this vote the Max-imin s
ores of c, w, z1, . . . , zs and the 
andidates in Q are b + 1, while allother 
andidates have at most b Maximin points. As argued in the proof ofTheorem 4.1.2, this implies that L is a su

essful manipulation.Conversely, suppose that voter n submits a vote L so that c gets ele
ted.Before the manipulator votes, there are 
andidates whose Maximin s
ore is

b + 1. Therefore, the manipulator needs to ensure that c's Maximin s
oreis b + 1, and the set of the tied 
andidates in
ludes all 
andidates whoseMaximin s
ore is b+1 prior to n's vote. That is, w, u1, . . . , uq will be amongthe winners and uq+1, . . . , uℓ will not, be
ause their s
ores prior to n's votedo not ex
eed b − 1. Hen
e, c is not the unique winning 
andidate. Let Sbe the set of tied 
andidates. Sin
e c wins the ele
tion, it has to be the 
asethat the set S ∩ {x1, y1, . . . , xs, ys} en
odes a satisfying truth assignment forthe formula en
oded by Q, i.e., C, and thus C is satis�able. Thus, the proofis 
omplete.4.3 CopelandFor our proof for Copelandα we need to 
hange the tie-breaking rule a little.The tie-breaking rule T ′′ di�ers from T in the number of dummy 
andidates.
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T ′′ 
he
ks whether the number of 
andidates equals to ℓ+2s+6 and afterwardsit works exa
tly as T .Now we prove the following te
hni
al lemma, whi
h is needed for theproof of the hardness result for Copeland.Lemma 4.3.1. Let m = ℓ + 2s + 6, ℓ =

(
2s
3

) and s ≥ 3. Then for any
0 < q ≤ ℓ

2
− 5 there exists a dire
ted graph G with the vertex set G ∪ X ∪

Y ∪ {w, c, d1, d2, d3, d4}, where G = {g1, . . . , gℓ}, X = {x1, . . . , xs}, Y =
{y1, . . . , ys}, su
h that the outdegree dout and the indegree din of ea
h vertexof G satisfy

• dout(gi) =
m
2
+ 2, din(gi) =

m
2
− 3 for i = 1, . . . , q;

• dout(gi) =
m
2
, din(gi) =

m
2
− 1 for i = q + 1, . . . , ℓ;

• dout(x) = dout(y) = m
2
+ 1 and din(x) = din(y) = m

2
− 3 for all x ∈

X, y ∈ Y ;
• dout(w) =

m
2
+ 2, din(w) =

m
2
− 8;

• dout(c) =
m
2
+ 2, din(c) =

m
2
− 3;

• dout(d1) = dout(d2) =
ℓ
2
− q, din(d1) = din(d2) =

ℓ
2
+ q + 2s+ 4;

• dout(d3) =
ℓ
2
, din(d3) =

ℓ
2
+ 2s+ 4;

• dout(d4) = 1, din(d3) = m− 2.Also, G does not 
ontain ar
s between xi and yi for any i = 1, . . . , s aswell as ar
s between w and c, d1, d2, d3, d4 and G does not 
ontain 
y
lesof length 2.Proof. Order the verti
es in G ∪X ∪ Y ∪ {c} as
g1 ≺ · · · ≺ gℓ ≺ x1 ≺ y1 ≺ · · · ≺ xs ≺ ys ≺ cFor ea
h vertex u in this order, add ar
s to the next ℓ

2
+ s mod ℓ + 2s + 1verti
es. Then for ea
h j = 1, . . . , s remove the ar
 (xj, yj).We obtain dout(gi) = dout(yj) = dout(c) = ℓ

2
+ s for all i = 1, . . . , ℓ,

j = 1, . . . , s and dout(xj) =
ℓ
2
+ s− 1 for all j = 1, . . . , s.Next, we add ar
s from w to y for all y ∈ Y and to gi for i = ℓ

2
− 4, . . . , ℓand from ea
h remaining vertex of G ∪ X to w. Now the indegree and theoutdegree of w are as in the statement of the lemma.
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s from all x ∈ X and y ∈ Y to d1, d2, d3, d4. Now all theverti
es in X ∪ Y have desired properties.At this stage we only need to set ar
s between G ∪ {c} and d1, d2, d3, d4and within the set d1, d2, d3, d4. First, we add ar
s from all verti
es of G∪{c}to d4. Se
ond, we add ar
s from gi for i = 1, . . . , q and i = ℓ
2
+ 1, . . . , ℓ to

d1, d2; from gi for i = 1, . . . , ℓ
2
to d3. Also, we add ar
s from g ℓ

2
−4, g ℓ

2
−3, g ℓ

2
−2to d1 and from g ℓ

2
−1, g ℓ

2
to d2. (These ar
s were not set earlier, be
ause byour assumption q < ℓ

2
− 5.) For all remaining pairs gi, dj for i = 1, . . . , ℓ and

j = 1, 2, 3 we add ar
s from dj to gi. Also, we add ar
s from c to d1, d2, d3.Now, the verti
es in G ∪ {c} have the requested properties.The remaining ar
s are set as follows. We add ar
s from d1 to d2, d3, d4,from d2 to d3, d4 and from d4 to d3. It is easy to see that d1, d2, d3, d4 havethe desired degrees.Therefore, G has the requested properties.Theorem 4.3.2. T ′′ ◦Copelandα-Manipulation≻ is NP-hard for any α ∈
[0, 1].Proof. Given a 3-SAT formula C, we 
onstru
t an ele
tion E = (C,R) where
C, U , Q and q are the same as in the proof of Theorem 4.1.2. Without lossof generality we assume that q ≤ ℓ

2
− 5. We say that x safely wins a pairwiseele
tion against y (and y safely loses a pairwise ele
tion against x) if atleast n

2
+ 2 voters prefer x to y. For any 
andidate x ∈ C, let SW(x) and

SL(x) denote the number of pairwise ele
tions that x safely wins and safelyloses, respe
tively. By Corollary 2.3.5 and Lemma 4.3.1, we 
an 
onstru
t apreferen
e pro�le R′ = (R1, . . . , Rn−1) with the following properties:
• SW(ui) =

m
2
+ 2, SL(ui) =

m
2
− 3 for i = 1, . . . , q;

• SW(ui) =
m
2
, SL(ui) =

m
2
− 1 for i = q + 1, . . . , ℓ;

• SW(xi) = SW(yi) =
m
2
+ 1 for i = 1, . . . , s;

• SL(xi) = SL(yi) =
m
2
− 3 for i = 1, . . . , s;

• SW(c) = m
2
+ 1, SL(c) = m

2
− 3;

• SW(w) = m
2
+ 2, SL(w) = m

2
− 8;

• SW(d1) = SW(d2) =
ℓ
2
− q, SL(d1) = SL(d2) =

ℓ
2
+ q + 2s+ 4;

• SW(d3) =
ℓ
2
, SL(d3) = ℓ

2
+ 2s+ 4;
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• SW(d4) = 1, SL(d4) = m− 3;
• there is a tie between c and w, w and d1, d2, d3, d4, and xi and yi for
i = 1, . . . , s.Now, 
onsider an ele
tion with the set of 
andidates C and a set of n voters,where for i ≤ n− 1 the preferen
es of the i-th voter are given by Ri, and thepreferen
es of the last voter (who is also the manipulating voter) are givenby

c ≻ w ≻ d1 ≻ d2 ≻ d3 ≻ d4 ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ uℓ ≻ . . . ≻ u1.If the manipulator votes truthfully, then w wins. Hen
e, a manipulation issu

essful if and only if n manages to vote so that c gets ele
ted. We willnow show that this is possible if and only if we started with a �yes�-instan
eof 3-SAT.Suppose �rst that we have started with a �yes�-instan
e of 3-SAT, andlet (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the 
orresponding truth assignment. For i =
1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that themanipulator submits a vote L in whi
h he ranks c, z1, . . . , zs in top s + 1positions and pla
es w last. It is easy to see that in the resulting ele
tion
c, w, z1, . . . zs, u1, . . . , uq have m

2
+ 2 points and all others 
andidates have atmost m

2
+1 points. Thus, the set of tied 
andidates S is Q∪{c, w, z1, . . . , zs}.Therefore, given the set S, our tie-breaking rule will re
onstru
t C, 
he
kwhether z1, . . . , zs en
ode a satisfying truth assignment for C (whi
h is in-deed the 
ase), and output cm = c. Thus, in this 
ase L is a su

essfulmanipulation.Conversely, suppose that c wins. Sin
e prior to the manipulator's vote chas m

2
+1 points and w and the 
andidates in Q have m

2
+2 points, it followsthat voter n ranks c above w and the set of tied 
andidates S 
ontains c, w,and all 
andidates in Q. On the other hand, it 
annot 
ontain any 
andidatesin U \Q, as n's vote 
annot a�e
t their s
ores. Thus, for c to win it has tobe the 
ase that S ∩ {x1, y1, . . . , xs, ys} en
odes a satisfying assignment forthe formula that 
orresponds to Q, i.e., C.4.4 Related workOne 
an view the results in this 
hapter as a 
ontinuation of the line of worksuggested in [10, 19℄, namely, identifying minor tweaks to voting rules that



60 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULESmake them hard to manipulate. Indeed, here we propose to �tweak� a votingrule by 
ombining it with an appropriate tie-breaking rule; arguably, su
h atweak a�e
ts the original rule less than the modi�
ations proposed in [10℄and [19℄ (i.e., 
ombining a voting rule with a preround or taking a �hybrid�of the rule with itself or another rule).4.5 SummaryWe have explored the 
omplexity of manipulating many 
ommon voting rulesunder arbitrary polynomial-time tie-breaking pro
edures. We have shownthat Borda (and a large 
lass of s
oring rules), Maximin and Copelandare NP-hard to manipulate under simple tie-breaking. Moreover, all of ourhardness redu
tions dire
tly show hardness of both variants of the problem,namely, F-Manipulation≻ and F-Manipulation. Also we have demon-strated that there exists voting rules whi
h are manipulable in polynomialtime under any simple tie-breaking rule, namely, Plurality. However, thereexists a (non-simple) tie-breaking rule su
h that its 
ombination with Plu-rality is NP-hard to manipulate.



Chapter 5Optimal Voting Manipulation
5.1 The modelIn this 
hapter, we study the problem of �nding a su

essful manipulativevote that minimizes the distan
e to the manipulator's true preferen
e order.We 
onsider this problem for three distan
es on votes, namely, the swap dis-tan
e, the footrule distan
e and the maximum displa
ement distan
e (de�nedbelow) and the following voting rules: s
oring rules, Bu
klin, Copeland, andMaximin.We begin by giving the de�nition of a distan
e.De�nition 5.1.1. A distan
e on a spa
e X is a mapping d : X × X → Rthat has the following properties for all x, y, z ∈ X:(1) non-negativity: d(x, y) ≥ 0;(2) identity of indis
ernibles: d(x, y) = 0 if and only if x = y;(3) symmetry: d(x, y) = d(y, x);(4) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).In this thesis, we will be interested in distan
es over votes, i.e., mapping ofthe form d : L(C)×L(C) → R. In fa
t, sin
e we are interested in asymptoti

omplexity results, we will 
onsider families of distan
es (dm)m≥1, where dmis a distan
e over the spa
e of all linear orderings of the set {c1, . . . , cm}.Spe
i�
ally, we will 
onsider three su
h families (in the following de�nitions,
C = {c1, . . . , cm} andR and L are two preferen
e orders in L(C), also denotedas ≻R and ≻L): 61



62 CHAPTER 5. OPTIMAL VOTING MANIPULATIONSwap distan
e. The swap distan
e dswap(L,R) is given by
dswap(L,R) = |{(ci, cj) | ci ≻L cj and cj ≻R ci}|.This distan
e 
ounts the number of swaps of adja
ent 
andidates neededto transform L into R.Footrule distan
e. Re
all that r(cj, Ri) denotes the rank of 
andidate cjin the preferen
e order Ri: r(cj, Ri) = |{c ∈ C | c ≻i cj}|+ 1.The footrule distan
e dfr(L,R) is given by

dfr(L,R) =
m∑

i=1

|r(ci, L)− r(ci, R)|.This distan
e 
al
ulates by how mu
h ea
h 
andidate needs to be shiftedto transform L into R, and sums up all shifts.Maximum displa
ement distan
e. Themaximum displa
ement distan
e
dmd(L,R) is given by

dmd(L,R) = max
i=1,...,m

|r(ci, L)− r(ci, R)|.This distan
e is similar to the footrule distan
e; the only di�eren
e isthat instead of summing up all shifts it only 
onsiders the maximumshift.It is not hard to verify that the swap distan
e, the footrule distan
e,and the maximum displa
ement distan
e ful�ll all distan
e axioms. It isalso known [15℄ that the swap distan
e and the footrule distan
e are alwayswithin a fa
tor of two from ea
h other: we have dswap(L,R) ≤ dfr(L,R) ≤
2dswap(L,R) for any spa
e of 
andidates C and any L,R ∈ L(C).Re
all that we assume that voter n is the manipulator. In this 
hapterwe assume that ties are broken adversarially, i.e., against the manipulator'swishes.We will now formally des
ribe our 
omputational problem.De�nition 5.1.2. Let D = (dm)m≥1 be a family of integer-valued distan
es,where dm is a distan
e over L({c1, . . . , cm}). Let F be a voting rule. Aninstan
e of (D,F)-OptManipulation is given by an ele
tion (C,R) with
C = {c1, . . . , cm}, R = (R1, . . . , Rn), a 
andidate p ∈ C, and a positiveinteger k. It is a �yes�-instan
e if there exists a vote L ∈ L(C) su
h that
F(R−n, L) = {p} and dm(Rn, L) ≤ k, and a �no�-instan
e otherwise.



5.1. THE MODEL 63A few remarks are in order.Remark 5.1.3. The problem (D,F)-OptManipulation is in NP as longas all distan
es in D and the rule F are polynomial time 
omputable: one
an guess a vote L and 
he
k that F(R−n, L) = {p} and dm(Rn, L) ≤ k. Inparti
ular, it is in NP for all distan
e families and voting rules 
onsidered inthis thesis.Remark 5.1.4. We formulated OptManipulation as a de
ision problem.However, it also admits a natural interpretation as an optimization problem:in this 
ase, we are given an ele
tion (C,R) and a 
andidate p, and the goalis to �nd the smallest value of k su
h that there exists a vote L ∈ L(C) atdistan
e at most k from Rn that satis�es F(R−n, L) = {p} (k is assumed tobe +∞ if there is no vote L with F(R−n, L) = {p}). In this version of theproblem, one 
an relax the optimality 
ondition, and ask for an approximatelyoptimal manipulative vote: an algorithm is said to be a ρ-approximationalgorithm for (D,F)-OptManipulation, ρ ≥ 1, if, given an instan
e ofthe problem for whi
h the 
orre
t answer is k ∈ R ∪ {+∞}, it outputsa value k′ that satis�es k ≤ k′ ≤ ρk. We will 
onsider the optimizationversion ofOptManipulation (and prove hardness of approximaton results)for Copeland and Maximin under swap distan
e (Se
tions 5.2) and footruledistan
e (Se
tion 5.3).Remark 5.1.5. In our de�nition of OptManipulation, the manipulatorwants to make a spe
i�
 
andidate ele
ted; the identity of this 
andidate isgiven as a part of the instan
e des
ription. An alternative approa
h would beto ask if the manipulator 
an obtain what he 
onsiders a better out
ome bysubmitting a non-truthful vote, i.e., whether there is a vote L ∈ L(C) su
hthat dm(Rn, L) ≤ k and F(R−n, L) ≻n F(R); we will refer to this problemas OptManipulation≻ (see dis
ussion in Chapter 2). Clearly, an e�
ientalgorithm for OptManipulation 
an be used to solve OptManipula-tion≻, by determining the winner w under truthful voting, and then runningthe OptManipulation algorithm for all 
andidates that the manipulatorranks above w. Hen
e, OptManipulation is at least as hard as OptMa-nipulation≻, In what follows, we will provide polynomial-time algorithmsfor the �harder� problem OptManipulation. On the other hand, all ourNP-hardness results apply to the �easier� problem OptManipulation≻: infa
t, in all our hardness proofs the manipulator's goal will be to make hisfavorite 
andidate the ele
tion winner. Using OptManipulation as our



64 CHAPTER 5. OPTIMAL VOTING MANIPULATIONbase problem allows for a dire
t 
omparison between the problem of �ndingthe optimal manipulation and the swap bribery problem (see Se
tion 5.5).5.2 Swap distan
eWe start by 
onsidering optimal manipulability with respe
t to what is per-haps the best known distan
e on votes, namely, the swap distan
e dswap.5.2.1 S
oring rules and Bu
klinThe main result of this se
tion is a simple polynomial-time algorithm thatsolves OptManipulation for swap distan
e and an arbitrary s
oring rule;we then show that this algorithm 
an be adapted to work for the Bu
klinrule.An observation that will be important for our analysis of s
oring rulesin this and subsequent se
tions is that on
e we sele
t the position of the
andidate p whom manipulator tries to make the winner, we know �nal s
oreof p. Thus, on
e p's position is �xed, it remains to rank other 
andidatesso that their s
ores remain stri
tly lower than that of p (re
all that we useadversarial tie-breaking). More formally, let sα(c) be the total number ofpoints a 
andidate c re
eives from non-manipulators under a voting rule Fα;we will say that a position j is safe for a 
andidate cℓ given that p is rankedin position f if sα(cℓ) + αj < sα(p) + αf . Clearly, for a manipulation to besu

essful, all 
andidates other than p should be ranked in positions that aresafe for them.Fix a s
oring rule Fα with α = (α1, . . . , αm). Our algorithm relies on asubroutine A that given an ele
tion (C,R) with |C| = m, a 
andidate p, anda position f in n's vote, �nds an optimal manipulation for n among all votesthat rank p in position f . More formally, let
Lf(α) = {L ∈ L(C) | Fα(R−n, L) = {p}, r(p, L) = f};our subroutine outputs

• ⊥ if Lf(α) is empty;
• a vote L̂ su
h that dswap(L̂, Rn) ≤ dswap(L,Rn) for all L ∈ Lf (α) oth-erwise.



5.2. SWAP DISTANCE 65Given A, we 
an easily solve (dswap,Fα)-OptManipulation: we run A forall values of f between 1 and m and output �yes� if at least one of these
alls returns a vote L̂ with dswap(L̂, Rn) ≤ k. Thus the running time of ouralgorithm is m times the running time of A. It remains to des
ribe A.Theorem 5.2.1. For any α = (α1, . . . , αm) ∈ Z+
m there exists a pro
edure

A that takes an n-voter m-
andidate ele
tion (C,R), a 
andidate p ∈ C, anda position f ∈ {1, . . . , m} as its input, outputs ⊥ if Lf (α) = ∅ and a vote
L̂ that satis�es dswap(L̂, Rn) ≤ dswap(L,Rn) for all L ∈ Lf(α) otherwise, andruns in time O(m2 log(nαmax)).Proof. For 
onvenien
e, let us renumber the 
andidates in C so that cm = pand c1 ≻n . . . ≻n cm−1. Our algorithm pro
eeds in m − 1 rounds. In the
ℓ-th round, ℓ = 1, . . . , m− 1, we determine the �nal position of 
andidate cℓ;we then say that this 
andidate is pinned to that position, and the positionbe
omes unavailable. Initially, all 
andidates are unpinned and all positionsare available.Initialization: We pin p to position f (thus f be
omes unavailable), andthen �ll the remaining positions with the 
andidates in C \ {p}, in the orderof n's preferen
es, i.e., pla
ing c1 in the highest available position and cm−1in the lowest available position. In what follows, we will shift the 
andidatesaround in order to make p the winner.Round ℓ, ℓ = 1, . . . , m − 1 Suppose that in the beginning of the round
andidate cℓ is ranked in position j. If j is safe for cℓ, we pin cℓ to position j(whi
h then be
omes unavailable) and pro
eed to the next round. Otherwise,we �nd the smallest value of h su
h that position h is available and safe for
cℓ; if no su
h value of h 
an be found, we terminate and return ⊥. If asuitable value of h has been identi�ed (note that h > j), then cℓ gets pinnedto position h, and all unpinned 
andidates in positions j+1, . . . , h are shiftedone available position upwards.If A does not abort (i.e., return ⊥), it terminates at the end of the (m−1)-st round and returns the vote obtained at that point. Ea
h round involves
O(m) s
ore 
omparisons and shifts, and ea
h 
omparison 
an be performed intime O(log(nα1)); this implies the bound of O(m2 log(nα1)) on the runningtime. It remains to argue that A works 
orre
tly.The following observation will be useful for our analysis.



66 CHAPTER 5. OPTIMAL VOTING MANIPULATIONLemma 5.2.2. Suppose that at the beginning of round ℓ 
andidate cℓ isranked in position j. Then positions 1, . . . , j − 1 are not available at thatpoint.Proof. An easy indu
tive argument shows that the set of 
andidates rankedabove cℓ at the beginning of round ℓ is a subset of {c1, . . . , cℓ−1}. For ea
h
t = 1, . . . , ℓ − 1, 
andidate ct is pinned in round t and therefore by thebeginning of round ℓ his position is unavailable. As this holds for all positionsabove j, the lemma is proved.We split the rest of proof into two lemmas.Lemma 5.2.3. If the subroutine A(C,R, p, f) outputs a vote L̂ then L̂ ∈
Lf(α), and if it outputs ⊥ then Lf(α) = ∅.Proof. By 
onstru
tion, if A outputs a vote L̂, then r(p, L̂) = f . Moreover,every other 
andidate cj 
an only be pinned to a position that is safe forhim. Sin
e A returns L̂ only when all 
andidates in C are pinned, we have
Fα(R−n, L̂) = {p}, and hen
e L̂ ∈ Lf(α).Now, suppose that A(C,R, p, f) =⊥. This means that for some 
andidate
cℓ, ℓ ≤ m − 1, our algorithm was unable to �nd an available safe position.Let L̂ be the vote 
onstru
ted by the algorithm by the beginning of round ℓ,and let h be the lowest available position at the beginning of round ℓ.Suppose for the sake of 
ontradi
tion that Lf (α) 6= ∅, and let L be somevote in Lf(α). Sin
e the algorithm has output ⊥, position h is not safe for cℓ.Thus, in L 
andidate cℓ is ranked in position h + 1 or lower. Consequently,some 
andidate ct that is ranked in position h + 1 or lower in L̂ must beranked in position h or higher in L. Sin
e positions h + 1, . . . , m are notavailable at the beginning of round ℓ, they are o

upied by 
andidates whowere pinned to these positions in earlier rounds (and, possibly, by p), i.e.,
t < ℓ. This means that position h was available when ct was pro
essed, butthe algorithm 
hose not to pla
e ct in position h. By Lemma 5.2.2, it wasnot the 
ase that ct was pinned to the position it was in at the beginning ofround t. Hen
e, the reason why ct was ranked in position h+1 or lower wasthat h (and, a forteriori, any position above h) was not safe for ct. On theother hand, we have argued that ct is ranked in position h or higher in L, a
ontradi
tion with L ∈ Lf(α). Thus it has to be the 
ase that Lf (α) = ∅.Lemma 5.2.4. If A(C,R, p, f) = L̂, then dswap(L̂, Rn) ≤ dswap(L,Rn) forall L ∈ Lf(α).



5.2. SWAP DISTANCE 67Proof. We will prove a somewhat stronger statement: there is a unique op-timal vote in Lf (α), and this vote 
oin
ides with L̂. Suppose for the sake of
ontradi
tion that there exists a vote L ∈ Lf(α) su
h that dswap(L,Rn) ≤
dswap(L

′, Rn) for all L′ ∈ Lf(α) and L 6= L̂. Let cℓ be the �rst 
andidateranked di�erently by L and L̂, i.e., ℓ = min{j | r(cj, L) 6= r(cj, L̂)}.Suppose �rst that r(cℓ, L̂) > r(cℓ, L). It 
annot be the 
ase that cℓ remainsin pla
e during round ℓ: by Lemma 5.2.2 all positions above cℓ in L̂ are �lledwith 
andidates in {c1, . . . , cℓ−1}, and r(cj, L̂) = r(cj, L) for j < ℓ. Hen
e, cℓhas to move during round ℓ. Now, r(cℓ, L̂) is the highest available positionthat is safe for cℓ. Sin
e r(cℓ, L) is ne
essarily safe, it follows that r(cℓ, L)must be unavailable at the beginning of round ℓ. However, this means thatthere is a 
andidate cj , j < ℓ, pinned to this position in L̂, and all su
h
andidates are ranked in the same positions in L and L̂, a 
ontradi
tion.Thus, it has to be the 
ase that r(cℓ, L̂) < r(cℓ, L). Let cj be the 
andidateranked in position r(cℓ, L̂) in L; we have j > ℓ by our 
hoi
e of ℓ. Let L′ bethe vote obtained from L by swapping cℓ and cj. We 
laim that L′ ∈ Lf(α)and dswap(L
′, Rn) < dswap(L,Rn), thus 
ontradi
ting our 
hoi
e of L.To see that L′ ∈ Lf(α), observe that after the swap the s
ores of all
andidates other than cℓ do not go up, and r(cℓ, L

′) = r(cj , L) = r(cℓ, L̂),so position r(cℓ, L
′) is safe for cℓ. It remains to prove that dswap(L

′, Rn) <
dswap(L,Rn). To this end, we need and additional de�nition: we say that apair of 
andidates (c, c′) is an inversion in a vote R if r(c, Rn) < r(c′, Rn),but r(c, R) > r(c′, R). Clearly, the swap distan
e from R to Rn is simplythe number of inversions in R. Thus, our goal is to show that L′ has fewerinversions than L.Observe �rst that (cj , cℓ) is an inversion in L, but not in L′. Among allother pairs of 
andidates, it su�
es to 
onsider pairs of the form (cj, c) and
(c, cℓ), where c is ranked between cj and cℓ in L; any other pair of 
andidatesis an inversion in L if and only if it is an inversion in L′.Sin
e j > ℓ, we have three possibilities:
cℓ ≻n c ≻n cj . In this 
ase, both (cj, c) and (c, cℓ) are inversions in L, butneither of them is an inversion in L′.
cℓ ≻n cj ≻n c. In this 
ase, (c, cℓ) is an inversion in L, but (cj , c) is not.On the other hand, (c, cj) is an inversion in L′, but (cℓ, c) is not.
c ≻n cℓ ≻n cj . In this 
ase, (cj , c) is an inversion in L, but (c, cℓ) is not. Onthe other hand, (cℓ, c) is an inversion in L′, but (c, cj) is not.
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andidate c ranked between cj and cℓ in L the pairs involving
c 
ontribute at least as mu
h to the inversion 
ount of L as to that of L′. Bytaking into a

ount the pair (cj, cℓ) itself, we 
on
lude that dswap(L

′, Rn) <
dswap(L,Rn), a 
ontradi
tion.It follows that L̂ is the optimal vote in Lf(α) and the proof of the lemmais 
omplete.The theorem now follows easily from Lemmas 5.2.3 and 5.2.4.We have already explained how to 
onvert the subroutine A into an al-gorithm for OptManipulation. Thus, we obtain the following 
orollary.Corollary 5.2.5. For every polynomial-time 
omputable family
F̂ = (Fm

α )m=1,... of s
oring rules, the problem (dswap, F̂)-OptManipulationis in P.For the Bu
klin rule, the algorithm is essentially the same; the only dif-feren
e is in the de�nition of a safe position.Theorem 5.2.6. (dswap,Bucklin)-OptManipulation is in P.Proof. Consider an ele
tion (C,R). Just as in the proof of Theorem 5.2.1,it su�
es to design a pro
edure that, for a given value of f ∈ {1, . . . , m},sear
hes for the best manipulative vote that ranks p in position f and returns
⊥ if no su
h vote 
an make p the unique winner.Fix a parti
ular value of f , and let Lf = {L ∈ L(C) | r(p, L) = f}.Let Lf be an arbitrary vote in Lf . Let r∗ be the smallest value of r su
hthat p's r-approval s
ore in (C, (R−n, Lf )) is greater than n/2; note that r∗does not depend on the 
hoi
e of Lf . For every 
andidate c ∈ C, and every
r = 1, . . . , m, let sr(c) denote c's r-approval s
ore in (C,R−n), and let s be
p's r∗-approval s
ore in (C, (R−n, Lf )); note that s > n/2.To make p the winner, we need to ensure that r∗ is the Bu
klin winninground and that the r∗-approval s
ore of any 
andidate c ∈ C \ {p} does notex
eed s. Thus, if there is a 
andidate c ∈ C \ {p} su
h that sr(c) > n/2for some r < r∗ or sr∗(c) ≥ s, then there is no vote in Lf that makes p theunique ele
tion winner, so we return ⊥ and stop.Now, suppose that this is not the 
ase. Set

C1 = {c ∈ C \ {p} | sr∗(c) = s− 1},
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C2 = {c ∈ C \ (C1 ∪ {p}) | sr(c) = ⌊n

2
⌋ for some r < r∗}.Intuitively, 
andidates from C1 
an prevent p from winning by re
eiving thesame r∗-approval s
ore as p, whi
h happens if they are ranked in the top

r∗ positions. Similarly, 
andidates from C2 
an prevent p from winning byre
eiving a stri
t majority vote in an earlier round; this happens if they areranked in the top r∗ − 1 positions. Thus, p is the unique Bu
klin winner inthe ele
tion where the manipulator submits a vote L ∈ Lf if and only if
• r(c, L) > r∗ for all c ∈ C1 and
• r(c, L) ≥ r∗ for all c ∈ C2.We will say that a position j is safe for a 
andidate c ∈ C \ {p} if
• c 6∈ C1 ∪ C2 or
• c ∈ C1 and j > r∗ or
• c ∈ C2 and j ≥ r∗.The argument above shows that p is the unique Bu
klin winner in the ele
tion

(C, (R−n, L)) if and only if in L ea
h 
andidate c 6= p is ranked in a positionthat is safe for him.Given this de�nition of a safe position, we 
an apply the algorithm fors
oring rules des
ribed in the proof of Theorem 5.2.1; note that this algorithmoperates in terms of safe positions rather than a
tual s
ores. The proofsof 
orre
tness and optimality are identi
al to those for s
oring rules (theseproofs, too, are phrased in terms of safe positions).5.2.2 Maximin and CopelandFor both Maximin and Copeland, �nding an optimal manipulation with re-spe
t to the swap distan
e turns out to be NP -hard. In fa
t, we will provethat the optimization versions of these problems (see Remark 5.1.4) 
annotbe approximated up to a fa
tor of δ log |C| for some δ > 0 unless P=NP;this implies, in parti
ular, that the de
ision versions of these problems areNP-hard (and hen
e, by Remark 5.1.3, NP-
omplete).We provide redu
tions from the optimization version of the Set Coverproblem [25℄. Re
all that an instan
e of Set Cover is given by a ground



70 CHAPTER 5. OPTIMAL VOTING MANIPULATIONset G = {g1, . . . , gt} and a 
olle
tion S = {S1, . . . , Sr} of subsets of G. In theoptimization version of the problem, the goal is to �nd the smallest value of
h su
h that G 
an be 
overed by h sets from S; we denote this value of h by
h(G,S). More formally, we are interested in the smallest value of h su
h that
G = ∪S′∈S′S ′ for some 
olle
tion of subsets S ′ ⊆ S with |S ′| = h. A ρ-app-roximation algorithm for Set Cover is a pro
edure that, given an instan
e
(G,S) of set 
over, outputs a value h′ that satis�es h(G,S) ≤ h′ ≤ ρ·h(G,S).There exists a δ > 0 su
h that Set Cover does not admit a polynomial-time
δ log t-approximation algorithm unless P=NP [38℄. The inapproximabilityresult still holds if we assume that (1) G = ∪S∈SS; (2) t ≤ r; and (3) r ≤ tKfor some positive 
onstant K. Indeed, if (1) fails, the instan
e does not admita solution, (2) 
an be a
hieved by dupli
ating sets in S, and (3) follows by a
areful inspe
tion of the proof in [38℄. Thus, in what follows, we only 
onsiderinstan
es of Set Cover that satisfy 
onditions (1)�(3).Theorem 5.2.7. There exists a δ > 0 s. t. (dswap,Maximin)-OptManipu-lation does not admit a polynomial-time δ log |C|-approximation algorithmunless P=NP.Proof. Suppose that we are given an instan
e (G,S) of Set Cover with
G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satis�es 
onditions (1)�(3).In our ele
tion, the 
andidate set is C = {p} ∪ G ∪ X ∪ S, where X =
{x1, . . . , x2r} and S = {s1, . . . , sr}.Corollary 2.3.5 implies that we 
an 
onstru
t a preferen
e pro�le R′ with
n′ voters, where n′ is polynomially bounded in t and r, so that n′ is evenand:

• For any c ∈ C \ {p} exa
tly n′/2− 2 voters prefer p to c.
• For any Sj ∈ S and any gℓ ∈ Sj exa
tly n′/2− 2 voters prefer gℓ to sj .
• For any other pair of 
andidates (c, c′) ∈ G ∪ S × G ∪ S, exa
tly n′/2voters prefer c to c′.
• For j = 1, . . . , 2r − 1 exa
tly n′/2 − 4 voters prefer xj to xj+1, and
n′/2− 4 voters prefer x2r to x1.

• For any gj ∈ G and any x ∈ X exa
tly n′/2 voters prefer gj to x.
• For any sj ∈ S and any x ∈ X exa
tly n′/2− 4 voters prefer sj to x.



5.2. SWAP DISTANCE 71Denote the Maximin s
ore of 
andidate c in ele
tion (C,R′) by s(c). Wehave s(p) = n′/2 − 2, s(gj) = n′/2 − 2 for any gj ∈ G (this follows from
ondition (1)), s(sj) = n′/2− 4 for any sj ∈ S, and s(xj) = n′/2− 4 for any
xj ∈ X.We let n = n′+1, i = n and set our preferen
e pro�le to be R = (R′, Rn),where voter n ranks the 
andidates as

p ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x2r ≻ s1 ≻ . . . ≻ sr.This 
ompletes the des
ription of our (dswap,Maximin)-OptManipulationinstan
e (as we 
onsider the optimization version of the problem, we neednot spe
ify k).Observe that p's �nal Maximin s
ore is n′/2−1 if and only if the manipu-lator ranks p �rst. Further, the �nal Maximin s
ore of any 
andidate in X∪Sis at most n′/2− 3. Finally, the �nal Maximin s
ore of a 
andidate gj ∈ G is
n′/2− 1 if in the manipulator's vote gj appears above all 
andidates sℓ su
hthat gj ∈ Sℓ and n′/2− 2 otherwise. Thus, to make p the unique winner, themanipulator should rank him �rst, and rank ea
h 
andidate gj ∈ G below a
andidate representing a set that 
overs gj.Suppose that h(G,S) = h, i.e., there exists a 
olle
tion of subsets S ′ =
{Si1 , . . . , Sih} with i1 < . . . < ih su
h that ∪S′∈S′S ′ = G. Consider a vote Lthat ranks p �rst, followed by 
andidates si1, . . . , sih (in this order), followedby 
andidates in X ∪ G (in the order of their appearan
e in Rn), followedby the remaining 
andidates in S (in the order of their appearan
e in Rn).By the argument above, p is the unique Maximin winner of (C, (R′, L)).Furthermore, we have dswap(L,Rn) ≤ h(t + 2r + (r − h)): to transform Rninto L, we swap ea
h of the 
andidates sij , j = 1, . . . , h, with (a) t 
andidatesin G, (b) 2r 
andidates in X and (
) at most r − h 
andidates in S. By
ondition (2), we obtain dswap(L,Rn) ≤ 4hr.On the other hand, 
onsider an arbitrary vote L′ su
h that p is the uniqueMaximin winner of (C, (R′, L′)). Constru
t a bipartite graph with the vertexset G ∪ S in whi
h there is an edge between gj and sℓ if and only if sℓ isranked above gj in L′. We 
laim that this graph 
ontains a mat
hing ofsize h. To see this, 
onsider a greedy algorithm that 
onstru
ts a mat
hingby inspe
ting the verti
es in G one by one and mat
hing ea
h vertex toone of its previously unmat
hed neighbors in S; if some vertex in G 
annotbe mat
hed, the algorithm pro
eeds to the next vertex. If this algorithmterminates without �nding h edges, it means that the mat
hed verti
es in
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S 
orrespond to a 
over of size at most h − 1, a 
ontradi
tion. Considera pair of 
andidates (gj, sℓ) that 
orresponds to an edge of this mat
hing,and an arbitrary 
andidate x ∈ X. It 
annot be the 
ase that L′ ranks gjabove x and x above sℓ: otherwise, by transitivity, L′ would rank gj above
sℓ. Therefore, at least one of the pairs (gj , x) and (x, sℓ) is ordered di�erentlyin Rn and L′, and therefore ea
h edge of the mat
hing 
ontributes at least
2r to the swap distan
e between L′ and Rn. Summing over all edges of themat
hing, we obtain that dswap(Rn, L

′) ≥ 2hr.Now, suppose that there is a polynomial-time ρ-approximation algo-rithm M for (dswap,Maximin)-OptManipulation: given an instan
e of
(dswap,Maximin)-OptManipulation that admits a su

essful manipulativevote L with dswap(L,Ri) = k, this algorithm outputs a value k′ that satis�es
k ≤ k′ ≤ ρk. Consider the following algorithm M′ for Set Cover: givenan instan
e (G,S) of Set Cover with |G| = t, |S| = r, M′ transforms itinto an instan
e of (dswap,Maximin)-OptManipulation as des
ribed above,applies M, and divides the returned value by 2r. Clearly, M′ runs in poly-nomial time. We 
laim that it provides a 2ρ-approximation algorithm forSet Cover.Indeed, let h = h(G,S). In this 
ase for the 
orresponding instan
e of
(dswap,Maximin)-OptManipulation there exists a su

essful manipulativevote L with dswap(L,Ri) ≤ 4hr and hen
e M outputs a value k′ that satis�es
k′ ≤ 4ρhr. On the other hand, for any su

essful manipulative vote L′we have dswap(L

′, Ri) ≥ 2hr, and hen
e the value k′ output by M satis�es
k′ ≥ 2hr. Thus, M produ
es a value h′ that satis�es h ≤ h′ ≤ 2ρh.Sin
e |C| = O(t + r) and, by 
ondition (3), r ≤ tK , we have log |C| ≤
γ log t for a suitable 
onstant γ > 0. Therefore, if there exists a polynomial-time δ log |C|-approximation algorithm for (dswap,Maximin)-OptManipu-lation for some 
onstant δ > 0, then there exists a polynomial-time δ′ log t-approximation algorithm for Set Cover for some 
onstant δ′ > 0, and,by [38℄, this implies P=NP.The argument for Copeland is similar.Theorem 5.2.8. There exists a δ > 0 su
h that for any α ∈ Q ∩ [0, 1],
(dswap,Copeland

α)-OptManipulation does not admit a polynomial-time
δ log |C|-approximation algorithm unless P=NP.Proof. Suppose that we are given an instan
e (G,S) of Set Cover with
G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satis�es 
onditions (1)�(3); we will



5.2. SWAP DISTANCE 73additionally assume that t and r are odd.In our ele
tion, the 
andidate set is C = {p} ∪ G ∪ X ∪ S, where X =
{x1, . . . , x6r} and S = {s1, . . . , sr}.It is easy to see that using a variant of the 
onstru
tion in the proof ofLemma 3.5.1 (with summation modulo t for adding the ar
s between verti
esofG and summation modulo 7r for adding the ar
s between verti
es ofX∪S),we 
an 
onstru
t a graph that indu
es the following out
omes of pairwiseele
tions between the 
andidates:

• Candidate p beats all 
andidates in G∪S as well as (t−1)/2 
andidatesin X, and loses to all other 
andidates in X.
• Every 
andidate gi ∈ G is tied with all 
andidates sℓ su
h that gi ∈ Sℓand beats all other 
andidates in X ∪ S.
• Every 
andidate in G beats exa
tly (t− 1)/2 other 
andidates in G.
• Every 
andidate in X ∪ S beats exa
tly (7r− 1)/2 other 
andidates in
X ∪ S.By Corollary 2.3.5, we 
an 
onstru
t a preferen
e pro�le R′ with n′voters, where n′ is polynomially bounded in t and r, so that n′ is even andthe out
omes of pairwise ele
tions between 
andidates are as des
ribed above.We let n = n′+1 and set our preferen
e pro�le to be R = (R′, Rn), wherevoter n (the manipulator) ranks the 
andidates as

c ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x6r ≻ s1 ≻ . . . ≻ sr.This 
ompletes the des
ription of our (dswap,Copeland
α)-OptManipula-tion instan
e; note that n is odd and therefore the value of α is unimportantfor our analysis.Observe that in R the Copeland s
ore of p is (t−1)/2+7r, the Copelands
ore of ea
h gj ∈ G is (t − 1)/2 + 7r, and the Copeland s
ore of ea
h
andidate in X ∪ S is at most (7r − 1)/2 + 1 < 4r. Thus, under truthfulvoting p is not the unique winner; indeed, for p to be the unique winner, inthe manipulator's vote every 
andidate gj ∈ G must be ranked below some
andidate sℓ su
h that gj ∈ Sℓ. Note also that the manipulator's vote 
anonly a�e
t the out
omes of pairwise ele
tions for 
andidate pairs of the form

(gj, sℓ), gj ∈ Sℓ. Thus, no matter how the manipulator votes, the Copelands
ore of every 
andidate x ∈ X is at most 4r < (t − 1)/2 + 7r, and the
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ore of every 
andidate sℓ ∈ S is at most 4r + t < (t− 1)/2 + 7r(re
all that we assume t < r), and hen
e 
andidates in X ∪S are not amongthe ele
tion winners. We 
on
lude that L is a su

essful manipulative voteif and only if it ranks ea
h 
andidate gj ∈ G below a 
andidate representinga set that 
overs gj . This 
ondition is almost identi
al to the one in theproof of Theorem 5.2.7, and, from this point on, the proof repeats the proofof Theorem 5.2.7 almost verbatim; the reader 
an verify that the analysis isnot negatively impa
ted by the fa
t that the set X 
ontains 6r 
andidates(rather than 2r 
andidates, as in the proof of Theorem 5.2.7).5.3 Footrule distan
eFor the footrule distan
e our analysis turns out to be mu
h easier than for theswap distan
e: for s
oring rules and Bu
klin, we design a simple mat
hing-based algorithm, and for Copeland and Maximin we 
an use the fa
t that theswap distan
e and the footrule distan
e are always within a fa
tor of 2 fromea
h other, as this allows us to inherit the hardness results of the previousse
tion.5.3.1 S
oring rules and Bu
klinThe overall stru
ture of our argument is similar to the one in Se
tion 5.2:for any s
oring rule Fα with α = (α1, . . . , αm) we will design a pro
edure A′that, given an ele
tion (C,R) with |C| = m, the preferred 
andidate p, atarget position f for the preferred 
andidate, and a bound k on the distan
e,
onstru
ts a vote L su
h that (a) F(R−n, L) = {p}; (b) r(p, L) = f ; (
)
dfr(L,Rn) ≤ k, or returns⊥ if no su
h vote exists. We then run this pro
edurefor f = 1, . . . , m and return �yes� if at least one of these 
alls does not return
⊥. We assume without loss of generality that the manipulator ranks the
andidates as c1 ≻n . . . ≻n cm (note that this is di�erent from the assumptionwe made in Se
tion 5.2), and denote by sα(c) the s
ore of a 
andidate c ∈ Cin ele
tion (C,R−n) under the voting rule Fα. Let r be the rank of p in n'struthful vote, i.e., p = cr.

A′ pro
eeds by 
onstru
ting a bipartite graph G with parts X = C \ {p}and Y = {1, . . . , m} \ {f}; there is an edge from cj to ℓ if and only ifposition ℓ is safe for cj, i.e., sα(cj) + αℓ < sα(p) + αf , Ea
h edge has a



5.3. FOOTRULE DISTANCE 75weight: the weight of the edge (cj, ℓ) is simply |j − ℓ|. Clearly, there is aone-to-one 
orresponden
e between votes L that rank p in position f andsatisfy Fα(R−n, L) = {p} and perfe
t mat
hings in this graph. Furthermore,the 
ost of a mat
hing M is x if and only if the 
orresponding vote LMsatis�es dfr(LM , Rn) = x+ |r − f |. Thus, it su�
es to �nd a minimum 
ostperfe
t mat
hing in G; our algorithm returns the vote L that 
orresponds tothis mat
hing if its 
ost does not ex
eed k − |r − f | and ⊥ otherwise. Thegraph G 
an be 
onstru
ted in time O(m2 log(nαmax)), and a minimum-
ostmat
hing 
an be found in time O(m3) [11℄.We summarize these observations as follows.Theorem 5.3.1. For every polynomial-time 
omputable family
F̂ = (Fm

α )m=1,... of s
oring rules, the problem (dfr, F̂)-OptManipulationis in P.For the Bu
klin rule, it su�
es to 
ombine the mat
hing-based algorithmgiven above with the de�nition of a safe position given in the proof of Theo-rem 5.2.6. We obtain the following 
orollary.Corollary 5.3.2. (dfr,Bucklin)-OptManipulation is in P.5.3.2 Maximin and CopelandIn Se
tion 5.1 we have mentioned that for any 
andidate set C and any pairof votes L,R ∈ L(C) we have dswap(L,R) ≤ dfr(L,R) ≤ 2dswap(L,R) [15℄.Now, suppose that there exists a ρ-approximation algorithmAfr for (dfr,F)-OptManipulation for some voting rule F . Consider an instan
e (C,R, p)of (the optimization version of) this problem, and let
L′ = {L ∈ L(C) | F(R−n, L) = {p}}.If L′ 6= ∅, let k = min{dfr(L,Rn) | L ∈ L′}. On this instan
e Afr outputs avalue k′ that satis�es k ≤ k′ ≤ ρk; this value 
orresponds to a vote L ∈ L′su
h that dfr(L,Rn) = k′.Now, for any vote L′ ∈ L′ we have
dswap(L

′, Rn) ≥
1

2
dfr(L

′, Rn) ≥
k

2
.On the other hand, for L we obtain

dswap(L,Rn) ≤ dfr(L,Rn) = k′ ≤ ρk.
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onsider an algorithm Aswap for (dswap,F)-OptManipulation that,given an instan
e of the problem, runsAfr on it and returns the value reportedby Afr. The 
omputation above proves that Aswap is a 2ρ-approximationalgorithm for (dswap,F)-OptManipulation (note that Aswap returns +∞if and only if L′ = ∅). Combining this observation with Theorems 5.2.7and 5.2.8, we obtain the following 
orollaries.Corollary 5.3.3. There exists a δ > 0 s. t. (dfr,Maximin)-OptManipula-tion does not admit a polynomial δ log |C|-approximation algorithm unlessP=NP.Corollary 5.3.4. There exists a δ > 0 su
h that for any α ∈ Q ∩ [0, 1],
(dfr,Copeland

α)-OptManipulation does not admit a polynomil-time δ log |C|-approximation algorithm unless P=NP.5.4 Maximum displa
ement distan
eMaximum displa
ement distan
e is fairly generous to the manipulator. In-deed, the optimal manipulation problems for swap distan
e and footrule dis-tan
e be
ome trivial if the maximum distan
e k is bounded by a 
onstant:in this 
ase, there are only polynomially many possible manipulative votes,and the manipulator 
an try all of them. In 
ontrast, for the maximum dis-pla
ement distan
e, there are exponentially many votes even at distan
e 2from the true vote (to see this, 
ut the manipulator's vote into segments oflength 3; within ea
h segment, the 
andidates 
an be shu�ed independently).Nevertheless, from the algorithmi
 perspe
tive maximum displa
ement dis-tan
e exhibits the same behavior as swap distan
e and footrule distan
e: we
an design e�
ient algorithms for all s
oring rules and the Bu
klin rule, andderive NP-hardness results for Copeland and Maximin.5.4.1 S
oring rules and Bu
klinFor s
oring rules, we 
an use a simpli�ed variant of the min-
ost mat
hingargument given in Se
tion 5.3.1. Again, suppose that we are given a s
oringrule Fα with α = (α1, . . . , αm), an ele
tion (C,R) with |C| = m, a preferred
andidate p and a distan
e bound k. We assume that the manipulator ranksthe 
andidates as c1 ≻n . . . ≻n cm. For ea
h f = 1, . . . , m we try to �nd asu

essful manipulative vote L with dmd(L,Rn) ≤ k that ranks p in position



5.4. MAXIMUM DISPLACEMENT DISTANCE 77
f ; in fa
t, it su�
es to 
onsider only values of f that satisfy |f−r(p, Rn)| ≤ k.For ea
h su
h f , we 
onstru
t a bipartite graph G with parts C \ {p} and
{1, . . . , m} \ {f}. In this graph, there is an edge from cj to ℓ if and only if ℓis safe for cj (we use the same de�nition of a safe position as in Se
tion 5.3.1)and |ℓ − j| ≤ k. In 
ontrast to the 
onstru
tion in Se
tion 5.3.1, the graphis unweighted. It is immediate that there is a one-to-one 
orresponden
ebetween perfe
t mat
hings inG and su

essful manipulative votes at distan
eat most k from Rn. Thus, we obtain the following result.Theorem 5.4.1. For every polynomial-time 
omputable family
F̂ = (Fm

α )m=1,..., of s
oring rules, the problem (dmd, F̂)-OptManipulationis in P.For the Bu
klin rule, we use the same approa
h as in Se
tion 5.3, i.e.,
ombine the mat
hing-based algorithm with the de�nition of a safe positiongiven in the proof of Theorem 5.2.6. This results in the following 
orollary.Corollary 5.4.2. (dmd,Bucklin)-OptManipulation is in P.5.4.2 Copeland and MaximinTheorem 5.4.3. (dmd,Maximin)-OptManipulation is NP-hard.Proof. We provide a redu
tion from Set Cover to (dmd,Maximin)-OptMa-nipulation. Suppose that we are given an instan
e (G,S, k) of Set Coverwith G = {g1, . . . , gt} and S = {S1, . . . , Sr} that satis�es 
onditions (1)
G = ∪S∈SS; (2) t ≤ r.We will now 
onstru
t an instan
e of (dmd,Maximin)-OptManipula-tion with a set of 
andidates C = {p} ∪B ∪G ∪X ∪ S, where

B = {b1, . . . , bt+1}, S = {s1, . . . , sr},

X = {x1,1, . . . , x1,2r, . . . , xt+1,1, . . . , xt+1,2r}.Corollary 2.3.5 implies that we 
an 
onstru
t a preferen
e pro�le R′ with n′voters, where n′ is polynomially bounded in t and r, so that n′ is even and:
• For any c ∈ C \ {p} exa
tly n′/2− 2 voters prefer p to c.
• For any Sj ∈ S and any gℓ ∈ Sj exa
tly n′/2− 2 voters prefer gℓ to sj .
• For any xj,1 and gj exa
tly n′/2− 2 voters prefer xj,1 to gj.
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• For any xj,i+1 and xj,i exa
tly n′/2− 2 voters prefer xj,i+1 to xj,i.
• For any xj,2r and bj+1 where j = 1, . . . , t exa
tly n′/2− 2 voters prefer
xj,2r to bj+1, and exa
tly n′/2− 2 voters prefer xt+1,2r to b1.

• For any other pair of 
andidates (c, c′) ∈ B ∪ G ∪ X × B ∪ G ∪ X,exa
tly n′/2 voters prefer c to c′.
• For any sj ∈ S and any c ∈ B ∪ G ∪X exa
tly n′/2 − 4 voters prefer
sj to c.Denote the Maximin s
ore of 
andidate c in ele
tion (C,R′) by s(c). We have

s(p) = n′/2 − 2, s(bj) = n′/2 − 2 for any bj ∈ B, s(gj) = n′/2 − 2 for any
gj ∈ G (this follows from 
ondition (1)), s(xi,j) = n′/2− 2 for any xi,j ∈ X,and s(sj) = n′/2− 4 for any sj ∈ S.We let n = n′ + 1, and set our preferen
e pro�le to be R = (R′, Rn),where the manipulator ranks the 
andidates as

p ≻ b1 ≻ . . . ≻ bt+1 ≻ g1 ≻ . . . gt ≻

≻ x1,1 ≻ . . . ≻ x1,2r ≻ . . . ≻ xt+1,1 ≻ . . . ≻ xt+1,2r ≻ s1 ≻ . . . ≻ sr.We set K = (t + 1)(2r + 1) + k − 1. That 
ompletes the des
ription ofour (dmd,Maximin)-OptManipulation instan
e.Observe that p's �nal Maximin s
ore is n′/2− 1 if and only if the manip-ulator ranks p �rst. Further, the �nal Maximin s
ore of any 
andidate in Sis at most n′/2− 3.Here we will use same �parent�-terminology as in Se
tion 3.4.2 (i.e., wesay that ci is a parent of cj whenever cj obtains exa
tly n′/2−2 points in hispairwise ele
tion against ci.)It 
an be easily seen that a 
andidate in the set B∪G∪X has s
ore n′/2−2only if at least one of his parents is ranked above him in the manipulator'svote. Ea
h 
andidate in the set B∪X has exa
tly one parent. Therefore, if pis the winner of the ele
tion then for i = 1, . . . , t 
andidates {gi, xi,1, . . . , xi,2r}are ranked higher than bi+1 and 
andidates {xt+1,1, . . . , xt+1,2r} are rankedhigher than b1.Suppose that h(G,S) = k, i.e., there exists a 
olle
tion of subsets S ′ =
{Si1, . . . , Sik} with i1 < . . . < ik su
h that ∪S′∈S′S ′ = G.Consider a vote L that ranks p �rst,

• followed by 
andidates xt+1,1, . . . , xt+1,2r, b1,
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• followed by 
andidates si1 , . . . , sik (in this order),
• followed by 
andidates in G and remaining 
andidates in X (in theorder of their appearan
e in Rn),
• followed by 
andidates b2, . . . , bt+1 (in this order),
• followed by the remaining 
andidates in S (in the order of their ap-pearan
e in Rn).By the argument above, p is the unique Maximin winner of (C, (R′, L)).It is easy to see that dmd(R,L) = (2r + 1)(t+ 1) + k − 1.On the other hand, suppose h(G,S) > k and 
onsider an arbitrary vote

L′ su
h that p is the unique Maximin winner of (C, (R′, L′)).Consider a 
andidate bℓ su
h that r(bℓ, L′) ≥ p(bi, L
′) for i = 1, . . . , t+ 1.Consider 
andidates who are ranked higher than bℓ in L′. All 
andidates inthe set B have position in L′ whi
h is at least as high as the position of bℓ.Therefore, all 
andidates in the set X ∪ G are ranked above the respe
tiveelements ofB, be
ause p is the only winner of the ele
tion. Also p o

upies the�rst pla
e. We assume that h(G,S) > k, so, at least k + 1 elements of S areranked above elements ofG, be
ause every element ofG has to be pre
eded byat least one of his parents. Therefore, r(bℓ, L′) ≥ 1+(k+1)+|B|+|G|+|X| =

2+k+t+(2r+1)(t+1). It is evident that the lowest position that is a
hievablefor bℓ in R is t+ 2. Thus, dmd(R,L′) ≥ (2r + 1)(t+ 1) + k.Thus, we have 
onstru
ted an ele
tion (C,R) and a positive integer K =
(2r+1)(t+1)+k−1 so that (C,R, K) is a �yes�-instan
e of (dmd,Maximin)-OptManipulation if and only if (G,S, k) is a �yes�-instan
e of Set Cover.Theorem 5.4.4. (dmd,Copeland

α)-OptManipulation is NP-hard for anyrational α ∈ [0, 1].Proof. We provide a redu
tion from Set Cover to (dmd,Copeland
α)-OptMa-nipulation. Suppose that we are given an instan
e (G,S, k) of Set Coverwith G = {g1, . . . , gt} and S = {S1, . . . , Sr} that satis�es 
onditions (1)

G = ∪S∈SS; (2) t ≤ r; (3) t is odd.We will now 
onstru
t an instan
e of (dmd,Copeland
α)-OptManipula-tion with a set of 
andidates C = {p} ∪ {b} ∪ G ∪ X ∪ S ∪ D, where

X = {x1, . . . , x2r+1}, D = {d1, . . . , d11r} and S = {s1, . . . , sr}.It is easy to see that we 
an 
onstru
t a digraph that indu
es the followingout
omes of pairwise ele
tions.
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• Candidate p is tied with all 
andidates in {b}∪G∪X, beats 9r− t− 2
andidates in D, and loses to all other 
andidates.
• Candidate b beats all 
andidates in S ∪ D and is tied with all other
andidates.
• Every 
andidate gi ∈ G is tied with all 
andidates sℓ su
h that gi ∈ Sℓand beats all other 
andidates inX∪S as well as 8r− t−1

2
−1 
andidatesin D and t−1

2
in G.

• Every 
andidate inX∪S beats exa
tly 7r other 
andidates inX∪S∪D.
• Every 
andidate in d1, . . . , d t−1

2
beats all 
andidates in {p} ∪ G andexa
tly 7r other 
andidates in X ∪ S ∪ D. Every 
andidate in d t−1

2
+

1, . . . , d2r+t+2 beats {p} and exa
tly 7r other 
andidates in X ∪ S ∪D.All other 
andidates in D beat exa
tly 7r 
andidates in X ∪ S ∪D.The only thing that is not des
ribed among the results of pairwise ele
-tions is how to obtain the outdegrees 7r for the indu
ed subgraph on verti
es
X ∪ S ∪ D. Evidently, |X ∪ S ∪ D| = 14r + 1 and we 
an use a 
onstru
-tion with summation modulo 14r + 1 similar to the one used in the proof ofLemma 3.5.1.By Corollary 2.3.5, we 
an 
onstru
t a preferen
e pro�leR′ with n′ voters,where n′ is even and polynomially bounded in t and r and the out
omes ofpairwise ele
tions between 
andidates are as des
ribed above.We let n = n′+1 and set our preferen
e pro�le to be R = (R′, Rn), wherevoter n (the manipulator) ranks the 
andidates as

c ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x2r+1 ≻ s1 ≻ . . . ≻ sr ≻ d1 ≻ . . . ≻ d11r.SetK = 2r+1+t+k. This 
ompletes the des
ription of our (dmd,Copeland
α)-OptManipulation instan
e; note that n is odd and therefore the value of

α is unimportant for our analysis.Observe that in R the Copeland s
ore of p is 12r, the Copeland s
ore of
b is 14r + t+ 1 the Copeland s
ore of ea
h gj ∈ G is 12r, and the Copelands
ore of ea
h 
andidate in X ∪S ∪D is at most 7r+ t+1 ≤ 9r. Thus, undertruthful voting p is not among the winners at all. For p to be the uniquewinner, in the manipulator's vote every 
andidate gj ∈ G must be rankedbelow some 
andidate sℓ su
h that gj ∈ Sℓ or below b and b must be rankedbelow all 
andidates in {p} ∪G ∪X.
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an only a�e
t the out
omes ofpairwise ele
tions for 
andidate pairs of the form
• (gj, sℓ), gj ∈ Sℓ;
• (b, gi);
• (p, x), where x is any 
andidate in {b} ∪G ∪X.Thus, no matter how the manipulator votes, the Copeland s
ore of every
andidate x ∈ X ∪ S ∪ D is at most 7r + t ≤ 8r, and hen
e 
andidates in

X ∪ S ∪D are not among the ele
tion winners.So, we 
an 
on
lude that L is a su

essful manipulative vote if and onlyif it ranks ea
h 
andidate gj ∈ G below a 
andidate representing a set that
overs gj , 
andidate b below all 
andidates in {p} ∪ G ∪X and 
andidate phigher than all 
andidates in {b} ∪G ∪X.Suppose that h(G,S) = k, i.e., there exists a 
olle
tion of subsets S ′ =
{Si1 , . . . , Sik} with i1 < . . . < ik su
h that ∪S′∈S′S ′ = G.Consider a vote L that ranks p �rst, followed by 
andidates x1, . . . , x2r+1,followed by 
andidates si1, . . . , sik (in this order), followed by 
andidatesin G and followed by the remaining 
andidates in S and 
andidates in D(in the order of their appearan
e in Rn).By the argument above, p is theunique Copeland winner of (C, (R′, L)). It is easy to see that dmd(R,L) =
2r + 1 + t+ k.On the other hand, suppose h(G,S) > k and 
onsider an arbitrary vote
L′ su
h that p is the unique Copeland winner of (C, (R′, L′)). Consider
andidates who are ranked higher than b. All 
andidates in the set {p}∪X∪Gare ranked above 
andidate b, be
ause p is the only winner of the ele
tion.We assume that h(G,S) > k, so, at least k + 1 elements of S are rankedabove elements of G, be
ause every element of G has to be pre
eded byat least one of the elements sℓ su
h that gj ∈ Sℓ. Therefore, r(b, L′) ≥
k+1+1+ |G|+ |X|+1 = 4+ k+ t+2r. In R 
andidate b o

upies position
2. Thus, dmd(R,L′) ≥ 2r + 1 + t+ k + 1.Thus, we have 
onstru
ted an ele
tion (C,R) and a positive integer K =
2r+1+t+k so that (C,R, K) is a �yes�-instan
e of (dmd,Copeland

α)-OptMa-nipulation if and only if (G,S, K) is a �yes�-instan
e of Set Cover.
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an be pla
ed in the broader 
ontext of me
hanism design withveri�
ation [28, 41, 36℄. This resear
h area deals with the design of me
ha-nisms (voting rules, au
tions, et
.) for sel�sh agents in settings where agents
annot misrepresent their private information (type) arbitrarily, but ratherare restri
ted to submit a report that is in some way related to their truetype. In some settings (most notably, me
hanism design for s
heduling prob-lems) imposing natural restri
tions on possible misreports enables one to
ir
umvent known impossibility results [4, 3℄. We remark, however, that theGibbard�Satterthwaite theorem has been re
ently shown to be very robustwith respe
t to restri
tions on misreporting: every non-di
tatorial votingrule for 3 or more 
andidates remains manipulable even if we only allow themanipulative votes that only di�er by a single swap of adja
ent 
andidatesfrom the manipulator's true preferen
e ranking [7℄. Viewed from the per-spe
tive of me
hanism design with partial veri�
ation, the hardness resultsin this thesis provide a 
omplexity-theoreti
 separation between the unre-stri
ted manipulation problem for Copeland and Maximin and its versionwith partial veri�
ation (where the permissible misreports are required to bewithin a 
ertain distan
e from the manipulator's true ranking). To the bestof our knowledge, this is a �rst result of this type in the me
hanism designwith partial veri�
ation literature.5.5.1 Optimal manipulability and swap briberyThe problem of �nding an optimal manipulation with respe
t to the swapdistan
e 
an be viewed as a spe
ial 
ase of the swap bribery problem [18℄.In the swap bribery model, there is an external party that wants to make aparti
ular 
andidate the ele
tion winner. This party 
an pay the voters to
hange their preferen
e orders, with a pri
e assigned to swapping ea
h pair of
andidates in ea
h vote. The goal is to de
ide whether the manipulator 
ana
hieve his goal given a budget 
onstraint. Clearly, our problem is a spe
ial
ase of swap bribery, where for one voter ea
h swap has unit 
ost, and for theremaining voters the pri
es are set to +∞. Swap bribery is known to be hard,even to approximate, for almost all prominent voting rules, in
luding su
hrelatively simple rules as 2-approval. Thus, the easiness results of Se
tion 5.2identify a new family of easy instan
es of the swap bribery problem, thus
omplementing the results of [17, 16, 40℄. It would be interesting to see if a



5.6. SUMMARY 83somewhat more general variant of the swap bribery problem for s
oring rules,where only one voter 
an be bribed but swap bribery pri
es 
an be arbitrary,remains tra
table; it is not 
lear if the algorithm given in Se
tion 5.2 
an beadapted to handle this setting.On the other hand, one may wonder if the hardness results of Se
tion 5.2are implied by the existing hardness results for swap bribery. However, thisdoes not seem to be the 
ase: the hardness (and inapproximability) of swapbribery for Copeland and Maximin follows from the hardness results for thepossible winner problem [47℄, and the latter problem is easy if all but onevoter's preferen
es are �xed (it 
an be veri�ed that the algorithm of Bartholdiet al. ([6℄) works even if the positions of some 
andidates in the vote arealready �xed). Thus, the hardness results for Copeland and Maximin givenin Se
tion 5.2 strengthen the existing hardness results for swap bribery withrespe
t to these rules.5.6 SummaryWe have 
onsidered the problem of �nding a su

essful manipulative votethat di�ers from the manipulators' preferen
es as little as possible, for threedistan
e measures on votes and four types of voting rules. Our resultsare summarized in Table 5.1 (where �NPC� stands for �NP-
omplete� and�Ω(logm)-inapp.� stands for �inapproximable up to a fa
tor of Ω(logm)�).S
. rules Bu
klin Copeland Maximin
dswap P P Ω(logm)-inapp. Ω(logm)-inapp.

dfr P P Ω(logm)-inapp. Ω(logm)-inapp.
dmd P P NPC NPCSingle-voter manip. P P P PTable 5.1: Summary of results and 
omparing with single-voter manipulation
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Chapter 6Future Work
6.1 Tie-breaking rulesWe have determined the 
omplexity of �nding an optimal manipulation underthe randomized tie-breaking rule for several prominent voting rules, namely,s
oring rules, Maximin, Copelandα for any rational α ∈ [0, 1], two variantsof the Bu
klin rule, Plurality with Runo�, STV and Ranked Pairs. Thisprovides an essentially 
omplete pi
ture of the 
omplexity of RandManip-ulation for 
ommonly studied voting rules.Still there is a number of open questions left by our work. For instan
e,it would be interesting to see whether the easiness results for 
oalitional ma-nipulation under lexi
ographi
 tie-breaking proven by [50, 49℄ extend to ran-domized tie-breaking, or whether our algorithmi
 results hold under a moregeneral de�nition of randomized tie-breaking, where di�erent 
andidates maybe sele
ted with di�erent probabilities; the latter question in
ludes, in par-ti
ular, the setting 
onsidered in the end of Se
tion 3.6. Another promisingresear
h dire
tion is designing approximation algorithms for the optimizationversion of RandManipulation. We 
onje
ture that for Copeland it 
an beshown that this problem does not admit a 
onstant-fa
tor approximation al-gorithm, it is not the 
lear if this is the 
ase for Maximin, STV, or RankedPairs.Other interesting questions in
lude identifying natural tie-breaking rulesthat make manipulation hard and extending our results to multi-winner ele
-tions. 85



86 CHAPTER 6. FUTURE WORK6.2 Minimizing the distan
e to the true prefer-en
esWe have 
onsidered the problem of �nding a su

essful manipulative votethat di�ers from the manipulator's preferen
es as little as possible, for threedistan
e measures on votes and four types of voting rules.A natural dire
tion for future work is extending our results to otherdistan
es on votes; for instan
e, it should not be too hard to generalizeour results to weighted variants of swap and footrule distan
es; su
h dis-tan
es play an important role in several appli
ations of rank aggregation,and have re
eived 
onsiderable attention in the literature (see [31℄ and ref-eren
es therein). At a more te
hni
al level, we remark that for maximumdispla
ement distan
e we only have NP-hardness results for Copeland andMaximin; it would be interesting to see if this variant of our problem admitse�
ient approximation algorithms.
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