
Iterative Voting, Control and Sentiment Analysis

PhD Candidate: Andrea Loreggia Supervisor: prof. Francesca Rossi

Doctoral School in Mathematical Sciences

University of Padova - Italy

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica

SCUOLA DI DOTTORATO DI RICERCA IN: SCIENZE MATEMATICHE

INDIRIZZO: COMPUTER SCIENCE

CICLO: XXVIII

 ITERATIVE VOTING, CONTROL AND SENTIMENT ANALYSIS

Direttore della Scuola : Ch.mo Prof. Pier Paolo Soravia

Coordinatore d’indirizzo: Ch.mo Prof. Francesca Rossi

Supervisore :Ch.mo Prof. Francesca Rossi

 Dottorando : Andrea Loreggia

Acknowledgments

I am profoundly grateful to my advisor prof. Francesca Rossi for her support and faith in

my work. Thanks to her I had the chance to taste the flavour of making research, visiting

and meeting great people. From her I learnt that making research is sharing ideas, being

humble and listening to the others.

I would also like to acknowledge the reviewers for their valuable comments that make

me improve the quality of this work.

During the last years I could work with many great researchers which inspired me and

my work, for this I would like to thank prof. Toby Walsh who also hosted me at NICTA in

Sydney and teach me the importance of be determined but also enjoying the work. Most

of this thesis is a joint work with Brent K. Venable, Nick Mattei, Nina Narodytska, Horst

Samulowitz, Yuri Malitsky, Vijay Saraswat, Cristina Cornelio, Umberto Grandi. To all

these great computer scientists go my acknowledgements for what we have done together.

With all of them I worked and had fun, with all of them I share the results of this thesis.

I’m really grateful for their competence in what they do, for their patience in teaching me

what they know, sometimes repeating the same lesson thousands of time.

In particular, Chapter 3 describes my joint work and reports all the results proved

with Nina Narodytska, prof. Francesca Rossi, Brent K. Venable and prof. Toby Walsh.

Chapter 4 reports about my joint work with Umberto Grandi, prof. Francesca Rossi, Brent

K. Venable and prof. Toby Walsh. Chapter 5 reports about the joint work with Umberto

Grandi, prof. Francesca Rossi and Vijay Saraswat.

Finally, I’m really grateful to my family: Gabriella, Sophia and Giulia for their support

in anything I have done, for following me around the world whenever we can travel and to

be always by me wherever we are.

Riassunto

Nei sistemi multi agente spesso nasce la necessità di prendere decisioni collettive basate

sulle preferenze dei singoli individui. A tal fine può essere utilizzata una regola di voto

che, aggregando le preferenze dei singoli agenti, trovi una soluzione che rappresenti la

collettività.

In questi scenari la possibilità di agire in modo strategico può essere vista da due diversi

e opposti punti di vista. Da una parte può essere desiderabile che gli agenti non abbiano

alcun incentivo ad agire strategicamente, ovvero che gli agenti non abbiano incentivi a

riportare in modo scorretto le proprie preferenze per influenzare il risultato dell’elezione a

proprio favore, oppure che non agiscano sulla struttura del sistema elettorale stesso per

cambiarne il risultato finale. D’altra parte l’azione strategica può essere utilizzata per

migliorare la qualità del risultato o per incrementare il consenso del vincitore. Questi due

diversi scenari sono studiati ed analizzati nella tesi. Il primo modellando e descrivendo

una forma naturale di controllo chiamato "replacement control" descrivendo la complessità

computazione di tale azione strategica per diverse regole di voto. Il secondo scenario

è studiato nella forma dei sistemi di voto iterativi nei quali i singoli individui hanno la

possibilità di cambiare le proprie preferenze al fine di influenzare il risultato dell’elezione.

Le tecniche di Computational Social Choice inoltre possono essere usate in diverse

situazioni. Il lavoro di tesi riporta un primo tentativo di introdurre l’uso di sistemi elettorali

nel campo dell’analisi del sentimento. In questo contesto i ricercatori estraggono le opinioni

della comunità riguardanti un particolare elemento di interesse. L’opinione collettiva è

estratta aggregando le opinioni espresse dai singoli individui che discutono o parlano

dell’elemento di interesse attraverso testi pubblicati in blog o social network. Il lavoro di

tesi studia una nuova procedura di aggregazione proponendo una nuova variante di una

regola di voto ben conosciuta qual è Borda. Tale nuova procedura di aggregazione migliora

le performance dell’analisi del sentimento classica.

Abstract

In multi-agent systems agents often need to take a collective decision based on the prefer-

ences of individuals. A voting rule is used to decide which decision to take, mapping the

agents’ preferences over the possible candidate decisions into a winning decision for the

collection of agents.

In these kind of scenarios acting strategically can be seen in two opposite way. On

one hand it may be desirable that agents do not have any incentive to act strategically.

That is, to misreport their preferences in order to influence the result of the voting rule in

their favor or acting on the structure of the election to change the outcome. On the other

hand manipulation can be used to improve the quality of the outcome by enlarging the

consensus of the winner. These two different scenarios are studied in this thesis. The first

one by modeling and describing a natural form of control named “replacement control” and

characterizing for several voting rules its computational complexity. The second scenario

is studied in the form of iterative voting frameworks where individuals are allowed to

change their preferences to change the outcome of the election.

Computational social choice techniques can be used in very different scenarios. This

work reports a first attempt to introduce the use of voting procedures in the field of

sentiment analysis. In this area computer scientists extract the opinion of the community

about a specific item. This opinion is extracted aggregating the opinion expressed by each

individual which leaves a text in a blog or social network about the given item. We studied

and proposed a new aggregation method which can improve performances of sentiment

analysis, this new technique is a new variance of a well-known voting rule called Borda.

Contents

Acknowledgments . 3

Riassunto . 5

Abstract . 6

1 Introduction . 13

1.1 Multi-mode Control 15

1.2 Iterative Voting 16

1.3 Sentiment Analysis 16

1.4 Publications 17

1.5 Thesis Structure 18

2 Background . 19

2.1 Voting Systems 19

2.2 Voting Rules 20

2.3 Tie-breaking Rules 21

2.4 Voting Rules’ Properties 21

2.5 Complexity 22

2.5.1 Exact cover by 3-sets (X3C) . 23

2.5.2 Hitting set . 23

2.6 Strategic Behaviours 23

3 Replacement Control . 25

3.1 Background 27

3.2 Replacement Control 27

3.3 Relationship with Other Strategic Actions 28

3.4 Positional Scoring Rules 31

3.4.1 Plurality and veto . 32

3.4.2 k-Approval . 37

3.4.3 Borda . 38

3.5 Approval Voting 45

3.6 Empirical Evaluation 46

4 Iterative Voting . 57

4.1 Related work 60

4.2 Background 61

4.2.1 Iterative Voting . 61

4.3 Restricted Iterative Voting 62

4.3.1 Restricted Iterative Voting Processes . 62

4.3.2 Second-Chance and Best-Upgrade . 64

4.3.3 Convergence . 66

4.3.4 Quality of the Winner . 69

4.4 Experimental Evaluation 71

4.4.1 Experimental Setting . 71

4.4.2 Condorcet Efficiency . 72

4.4.3 Borda Score . 74

4.4.4 Real-world Datasets . 75

4.5 Iterative Processes as a One-Stage Voting Rule 76

4.5.1 One-Stage Iterative Voting Rules . 76

4.5.2 Axiomatic Properties . 76

4.5.3 Computational Complexity . 77

5 Sentiment analysis . 79

5.1 Background 82

5.1.1 Sentiment Analysis . 82

5.2 How to model individuals’ opinions 83

5.2.1 Individual data . 83

5.2.2 The sentiment analysis approach . 84

5.2.3 The voting theory approach . 85

5.2.4 Combining Sentiment with Preference . 86

5.3 Borda counts for aggregating SP-structures 87

5.3.1 Desired Axiomatic Properties . 88

5.3.2 The B∗α Rule . 90

5.3.3 Axiomatic analysis . 92

5.3.4 Algorithmic properties of B∗α . 94

5.4 Empirical Analysis 97

5.4.1 Analytical analysis . 98

5.4.2 Sentiment Analysis and Borda Count . 99

5.4.3 Incomplete Data . 100

6 Conclusions . 103

Bibliography . 108

List of Algorithms . 118

List of Figures . 119

1. Introduction

During the last few decades, the trend has been for disciplines to converge on common

techniques to be used in similar problems, besides focusing on specific techniques to be

used in narrow domains. AI is one of the best examples: the cross-fertilisation process

has led to very fascinating solutions. Consider for example genetic algorithms, which

mimic evolutionary mechanisms to solve search and optimization problems [51], in this

scenario solutions are evaluated using a fitness function and then they combine one

each other to produce a new generation of better solutions. Or think of bird flocking or

fish schooling, which are reproduced in particle swarm optimization [61] and used in

coordinating autonomous driver-less cars [50].

The individualistic approach of problem solving becomes insufficient: concepts, tech-

niques and experts need to collaborate to get a better understanding of the problems they

would like to solve. The techniques that AI makes available are being used by many other

disciplines. Just think of the variety of machine learning techniques used in medicine,

physics or astronomy, or the constraint programming algorithms that AI researchers use to

solve planning problems. AI nowadays inundates our everyday life with tools and methods

that are hidden in our household electrical devices, smart-phones and much more.

Starting from the field of multi-agent systems, researchers in AI recently considered

the use of models and problems from economics. Notable examples are voting systems

used to aggregate the results of several search engines [30], game theoretic methods that

analyse the complex interaction of autonomous agents [93], and matching procedures

implemented on large-scale problems such as the coordination of kidneys transplants [1],

14 Chapter 1. Introduction

and the assignment of students to schools [54].

In this scenario, a number of research lines federated under the name of computational

social choice [90]. The need for a computational study of collective decision procedures is

clear. On the one hand, from crowdsourcing to university admission ranking, many real-life

applications apply existing social choice methods to large scale problems. On the other

hand, collective decision-making is not a prerogative of human societies, and multi-agent

systems can use these methods to coordinate their actions when facing complex situations.

A prime example is the Sydney Coordinated Adaptive Traffic System (SCATS) a

real-life multi-agent system implementation used in different cities of 27 countries around

the world to manage city traffic. The system uses an adaptive approach [95] which permits

to adjust the management plan to the different daily traffic situations. Each intersection

has a computer that manages the traffic based on an assigned plan. There are also sensors

to analyse the traffic flow, this analysis allows to adjust the management of the traffic by

extending or reducing the green phase. But the adjustment cannot be computed using only

what a single traffic light can capture. Data from the different traffic lights of the city

is sent to a central computer which produces different plausible plans. The plan is then

chosen by the intersections using a voting system: each intersection votes for its preferred

plan basing its preferences on what have been captured by the sensors. The plan with more

preferences is chosen to manage the traffic for a specified period of time.

The thesis focuses on voting systems and aggregation methods. In particular on voting

systems where the presence of strategical agents can influence the outcome of the election.

Formally, an election system E = (C,V) is a tuple where C is a set of m alternatives (or

candidates), V is a collection of n voters that express their preferences over the candidates,

a voting rule R is used to aggregate all the preferences and choose the winner or a subset

of candidates. The agent in charge of the organization of the election is called the chair;

she can choose which candidate and/or voter can participate in the election, and which

voting rule to use. A strategical agent tries to influence the outcome of the election to get

a personal profit. Different kind of strategical actions can be identified based on the role

played by the strategical agent in the voting system. In literature the term manipulation

identifies the action that a voter or a coalition of voters perform on the final outcome when

they report untruthful preferences. Instead, the term control identifies the strategical action

exploited by the chair when she is interested in changing the election results in favour or

against some candidate [10].

This work presents several results in three different areas connected with the compu-

tational social choice discipline. The first two line of works are related one each other

because they analyze similar problems but they do that from opposite point of view. One

considering strategical action as something bad to be avoided in one-shot elections and

1.1 Multi-mode Control 15

the other one considering strategical action as something beneficial that should be used in

iterative election processes. Instead the third work proposes a new technique to be used in

the sentiment analysis area, this technique is characterized as a new voting rule.

As already said, strategical actions are usually considered malicious because they are

used to change the outcome of an election. The celebrated Gibbard-Satterthwaite theorem

[49, 92] states that every voting system with more than three candidates is prone to strategic

actions. It is then important to protect the system against these behaviours. In literature,

the usual approach adopted against them is to design voting systems where strategical

actions are very difficult to exploit and so the computational effort is so high that should

not encourage anyone from using them. In this scenario we modeled and characterized a

new strategical action named “replacement control” proving how computationally easy

or difficult is to use it. On the other hand iterative systems allow agents to manipulate,

in these systems manipulation is the engine that makes the ballot working: agents that

are not satisfied by the outcome can manipulate the system to get a personal profit. In

this scenarios, it is then important to propose restrictions that are computationally easy to

compute and to use, and that at the same time assure the convergence to a stable state where

everyone is satisfied. We also show how the outcome of these systems has a higher quality

in terms for instance of larger consensus. Results on sentiment analysis represent a different

approach to the computational social choice techniques. Usually sentiment analysis tries

to describe the opinion of the community for a particular item, basing this decision on

the individual expression. This technique works quite well when the considered item is

just one, but it presents several issues when sentiment analysis is used to compared items.

We studied and proposed a new aggregation method which can improve performances of

sentiment analysis, this new technique is a new variance of a well-known voting rule called

Borda.

1.1 Multi-mode Control

A control action may involve the deletion or addition of voters and/or candidates. While

each single action has been studied in some detail (e.g. [42]), as well as its computational

cost, there has not been much work on the combination of two or more control actions. But

in many cases the chair could exploit many different kinds of control actions at the same

time. In such a situation she could choose the action that brings the better results. The

main result is from [41], which studied the combination of control actions with separated

budget. That’s means that each action is bounded differently. In this context, we propose

a new form of multi-mode control, namely “replacement control” [70], where the same

number of candidates or voters are added and deleted by the chair.

To compute the robustness of the election with respect to such actions, we study the

16 Chapter 1. Introduction

computational complexity of the problems related to the actions.

In this line of work, we have proved some computational complexity results on well-

known voting rules: plurality, veto, k-approval, Borda, approval, and Copeland, both

for unweighted and for weighted voters. We have also run an extensive experimental

analysis of the practical complexity of this problem to check whether such voting rules

are really difficult to control in practice. To do that, we use real-world datasets from

the preflib repository [72] and we run these experiment using k-approval as voting rule.

Our empirical study [70] shows that plurality is more resistant to this form of control

than other versions of k-approval. Moreover, we compare the control power of replacing

candidates to the power of just adding or deleting them, showing that replacing candidates

add significant power to the chair, with respect to to the single control action of adding or

deleting candidates. For some cases where it is computational difficult, meaning that the

problem is NP-complete, we also defined and run some tests to verify how difficult it is in

practice, by using election from real-world dataset.

1.2 Iterative Voting

Iterative voting models an electoral process where voters are allowed to change their

preferences when the outcome of the election does not satisfy them. Voters can change

their preferences in order to make another more preferred candidate win the election. The

process can reproduce a multi-agent system where agents cannot share their complete

knowledge (in this case their preferences), either because of media limitations which do

not allow to send enough information or simply because they do not trust one another. In

this scenario the iterative process helps the system to reach an equilibrium where all the

agents are satisfied. In this are we show some theoretical results describing under which

assumptions this systems converges to a stable state where no voter has incentive to cheat,

either because she is satisfied, or because she cannot affect the outcome. We also show the

results of our simulations, showing that the quality of the winner after iteration is often

higher than that of the winner of the initial state [53].

1.3 Sentiment Analysis

Sentiment analysis is used to classify the collective opinion about a given item [68]. This is

done by extracting the individual opinions from text that individuals post on social network,

such as Twitter or blogs, via natural language processing techniques. Sentiment analysis is

then used to predict the opinion of the collectivity. Often it is used to predict the outcome

of political elections or guessing the trend of the stock market. Sentiment analysis works

quite well to predict the community opinion about a single item but it presents some issues

1.4 Publications 17

when there are multiple items or entities to compare. We present our proposal to cope with

the challenges of sentiment analysis over multiple items [52].

1.4 Publications

The work of the thesis has been presented in several international conferences. This is the

list of papers related with this work classified for journal, conference or workshop where

they were presented.

• Journal papers:

– Umberto Grandi , Andrea Loreggia, Francesca Rossi, Vijay Saraswat. A Borda

count for collective sentiment analysis. Annals of Mathematics and Artificial

Intelligence - 75 (149): 1-22, 2015.

– Andrea Loreggia. Iterative voting and multi-mode control in preference

aggregation. Intelligenza Artificiale 8 (2014) 39–51. DOI 10.3233/IA-140059.

IOS Press.

• Conference papers:

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, K. Brent Venable, and

TobyWalsh. Controlling elections by replacing candidates or votes. In

Proceedings of the 2015 International Conference on Autonomous Agents

and Multiagent Systems, AAMAS ’15, pages 1737–1738, Richland, SC, 2015.

International Foundation for Autonomous Agents and Multiagent Systems.

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Vijay Saraswat. From

Sentiment Analysis to Preference Aggregation. ISAIM 2014 special session

on computational social choice.

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable and

Toby Walsh. Restricted Manipulation in Iterative Voting: Condorcet Effi-

ciency and Borda Score. In Proceedings of the 3rd International Conference

on Algorithmic Decision Theory (ADT-2013), November 2013

• Workshop papers:

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, Kristen Brent Venable

and Toby Walsh. Controlling elections by replacing candidates: theoret-

ical and experimental results. In Proceedings of the 8th Multidisciplinary

Workshop on Advances in Preference Handling (MPREF-2014), July 2014.

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, Kristen Brent Venable

and Toby Walsh. Controlling elections by replacing candidates for Plural-

ity and Veto: theoretical and experimental results. In Proceedings of the

1st Workshop on Exploring Beyond the Worst Case in Computational Social

Choice(EXPLORE 2014), May 2014.

18 Chapter 1. Introduction

– Umberto Grandi, Andrea Loreggia, Francesca Rossi. From Sentiment Anal-

ysis to Preference Aggregation. R.i.C.e.R.c.A: RCRA Incontri E Confronti

Workshop of the XIII AI*IA Conference.

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable

and Toby Walsh. Restricted Manipulation in Iterative Voting: Condorcet

Efficiency and Borda Score. In Proceedings of the 7th Multidisciplinary

Workshop on Advances in Preference Handling (MPREF-2013), August 2013.

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable and

Toby Walsh. Restricted Manipulation in Iterative Voting: Convergence

and Condorcet Efficiency. In Proceeding of the 1st International Workshop

on Strategic Reasoning (SR-2013), 2013.

1.5 Thesis Structure

The thesis is divided in four main parts. The first part introduces the basic notions of voting

theory used in the thesis especially the notion of voting system with a brief description

about the different voting rules and the different strategical actions. The second part

is dedicated to replacement control, a brief introduction introduce the motivation about

this topic followed by the theoretical and empirical results. The third part reports the

result about iterative voting systems, again in this case a brief introduction introduces the

scenario. The fourth part describes the results related to the sentiment analysis work.

2. Background

In this section we recall the basic notions of voting theory that we shall use in this work.

We briefly describe the several voting rules used as well the notion of the different strategic

actions. We also recall the basic notions of computational complexity.

2.1 Voting Systems

Let C be a finite set of m candidates and V be a finite set of n individuals. We assume

individuals have preferences pi over candidates in C in the form of strict linear orders,

i.e., transitive, anti-symmetric and complete binary relations. Individuals express their

preferences in form of a ballot Pi (e.g., the top candidate, a set of approved candidates,

or the full linear order) and we call the choice of a ballot for each individual a profile

P = (P1, . . . ,Pn). Observe that we do not allow agents to express ties among candidates,

i.e., it is not possible for an agent to state that two candidates in C are equally preferred.

We write a Pi b to denote that agent i prefers candidate a to candidate b in profile P , on

the same way we write a Pi C \ {a} to denote that agent i prefers candidate a to all the

candidate in the set C. In this work, we assume that individuals submit as a ballot for the

election their full linear order, and we thus use the two notions of ballot and preference

interchangeably. An election E is then a pair (C,V) where C is a set of m candidates and

V is a collection of n votes (linear orders over C), as already said here we assume that

each voter gives a complete preference order over the set of candidates. For example given

C = {a,b,c}, suppose voter v1 prefers candidate b to a and c is her less preferred candidate,

then her ballot can be represented as v1 : b ≻ a ≻ c. As usual in the literature given an

20 Chapter 2. Background

arbitrary order over a set of candidates C = {c1, . . . ,cm} a preference like vi : C means

that the voter i preferences respects that arbitrary order and so the preference corresponds

to vi : a ≻ b ≻ c. On the same way a preference likes vi :
←−
C means that in the voter i

preferences that arbitrary order is inverted and so we could rewrite it in the following way

vi : c≻ b≻ a.

2.2 Voting Rules

A (non-resolute) voting rule F associates with every profile P = (P1, . . . ,Pn) a non-empty

subset of winning candidates F(P) ∈ 2C \ { /0}. Let us borrow from the literature some

notations useful to define voting rules and later some properties [32]. In particular given

two candidates c,a we set W (c,a) = |{i : c Pi a}|. There is a wide collection of voting

rules that have been defined in the literature [17] and here we focus on the following ones:

Positional scoring rules (PSR): Let (s1, . . . ,sm) be a scoring vector such that s1 > . . .> sm

and s1 > sm. If a voter ranks candidate c at j-th position in her ballot, this gives

s j points to the candidate. The candidates with the highest score win. We focus

on four particular PSR: Plurality with scoring vector (1,0, . . . ,0), veto with vector

(1, . . . ,1,0), k-approval with vector (1,1, . . . ,1,0, . . . ,0), where the scoring rule

rewards with 1 point k candidates, and Borda [103] with vector (m−1,m−2, . . . ,0).

Approval: Given a subset of approved alternatives ci ⊆C for each i ∈V , the winners of

approval voting are the candidates that receive the highest number of approvals.

Copeland: Any candidate c gets 1 point for each won pairwise comparison, she gets 0

point for each tie and she gets -1 point for each lost pairwise comparison. The score

of c is score(c)=|{a :W (c,a)>W (a,c)}|-|{a :W (a,c)>W (c,a)}|.

Maximin: The score of a candidate c is the smallest number of voters preferring it in any

pairwise comparison, i.e. score(c)=mina∈C W (c,a).

Single Transferable Vote (STV): If there exists a candidate that is ranked first by the

majority of the voters than this is the winner, otherwise the candidate that is ranked

first by the fewest number of voters gets eliminated (ties are broken following a

predetermined order of candidates). Votes initially given to the eliminated candidate

are then transferred to the candidate that comes immediately after in the individual

preferences. This process is iterated until one alternative is ranked first by a majority

of voters.

Despite its simple definition, approval voting has been the subject of an extensive

literature since its first appearance (see, e.g., [64]).

All the previous voting rules can be adapted to output a ranking of the candidates (from

higher to lower score) transforming the voting rules into social welfare functions [90], i.e.,

functions which associate with every profile of preferences a ranking of the alternatives.

2.3 Tie-breaking Rules 21

2.3 Tie-breaking Rules

All rules considered thus far are non-resolute, i.e., they associate a set of winning candidates

with every profile of preferences.

In Chapter 3 we focus on the unique-winner model, where the agent that controls the

election try to make a particular candidate p be the unique-winner of the election or she try

to preclude p from being the unique-winner.

In Chapter 4 we use a tie-breaking rule to eliminate ties in the outcome. Specifically

we focus on linear tie-breaking: the set C of candidates is ordered by ≺C, and in case of

ties the alternative ranked highest by ≺C is chosen as the unique outcome. Other forms of

tie-breaking are possible, e.g., a random choice of a candidate from the winning set. The

issue of tie-breaking has been shown to be crucial to ensure convergence of the iterative

version of a voting rule [65].

2.4 Voting Rules’ Properties

Every voting rule can be characterize using a set of properties. These properties can be

shared among different voting rules, on the other hand different voting rules can differ one

another on the properties they have. We refer to the literature for a detailed explanation of

these properties (see, e.g., [90, 96]) and report a brief description of the ones used in the

subsequent chapters:

Resoluteness: A voting rule F is said to be resolute if it always select a unique winner,

i.e. |F(P)|= 1.

Unanimity: A voting rule F is said to be unanimous or Pareto efficient if it elects the

candidate that is ranked on top of preference by all voters, when it exists, i.e. if for

each agent i ∈V , a Pi C \{a} then F(P) = a.

Weak Pareto: A voting rule F is said to be weak Pareto if it does not elect a candidate d

that is dominated by another candidate c. This means that whenever for each voter

i ∈V , c Pi d, then F(P) 6= d.

Surjectivity: A voting rule F is said to be surjective if for each candidate c ∈C there

exists a profile P for which F(P) = c.

Anonimity: A voting rule F is said to be anonymous if it treats individuals simmet-

rically, i.e. switching two individual’s preferences does not change the outcome,

F(P1, . . . ,Pn)=F(Pπ(1), . . . ,Pπ(n)) where π : N → N is a permutation function.

Neutrality: A voting rule F is said to be neutral if it treats alternatives simmetrically.

Dictatorship: A voting rule F is dictatorial if there exists a voter i ∈V such that F(P) is

her most preferred candidate. Such a voter when it exists is called the dictator.

Independence of Irrelevant Alternatives: A voting rule F is independent of irrelevant

22 Chapter 2. Background

alternatives (IIA) if given two candidates c,d ∈C and two profiles P and Q where

for each voter the relative positions of c and d are the same, whenever F(P) = c then

F(Q) 6= d.

Insensitive to Bottom-ranked Candidates: A voting rule is Insensitive to Bottom-ranked

Candidates (IBC) [63] if the winner does not change after adding or deleting a subset

of candidates that all voters rank at the bottom of their preferences.

2.5 Complexity

One of the main goal of the computer science is to solve problems. For this purpose

multitude of programmers and computer scientists design algorithms, which are a set of

instructions useful to solve a class of problems.

The problems considered in this work are so called decision problems [47]. Roughly

speaking this kind of problems can be thought as a question to a formal system whose

answer could be either yes or no. Formally a decision problem p consists of a set Ip of

instances and for each instance i ∈ Ip corresponds a set Sp(i) which is the set of all positive

instances. An algorithm solves a decision problem if given any instance i as input of a

specific problem p, the algorithm returns "no" if the set Sp(i) is empty, it returns "yes"

otherwise.

Sometimes we also refer to search problems. An algorithm is said to solve a search

problem if given any instance i of the problem p it returns "no solutions" if Sp(i) is empty

and otherwise it returns some solutions in Sp(i).

It is then important to know which is the computational effort that the algorithm takes

in terms of used resources like running-time, memory and space. For this reason we say

that a problem is tractable if there exists an algorithm which solves it taking an amount of

time which is polynomial in the size of the instance. If such an algorithm does not exists

then the problem is said to be intractable.

As usual in literature, we adopt the big-O notation (O()) to measure the computational

complexity of an algorithm. This gives an asymptotic measure of how the algorithm

responds to changes of the input size, clearly this is a worst case in the performance of the

algorithm. Tractable problems have algorithms that run in O(nk), where n is the size of the

input instance, which means that for large values of n the algorithm takes no more than

c ·nk steps before ending with an answer.

We can describe the complexity of a problem based on its membership to a specific

complexity class. There are many complexity classes that we can define but we prefer to

report only the two used in this work. Specifically a decision problem is said to belong to

the complexity class P if it can be solved in polynomial-time by a deterministic algorithm.

Otherwise if a solution of the instance can be found by a non-deterministic algorithm

2.6 Strategic Behaviours 23

(mostly because the solution is guessed among all the available ones in the solution space)

and verified in polynomial time, then the problem is said to belong to NP. Moreover a

problem is said to be NP-hard if its computational complexity is at least the same as the

hardest problem in NP. This means that we can transform instances of a given problem into

instances of another one which belongs to the same complexity class in polynomial-time

with respect to the input size. This introduces the notion of reduction that is a function that

maps each instance of a problem into an instance of another problem. If this transformation

can be done in polynomial time with respect to the input size of the initial instance, then

we can transfer the complexity class from the first class of problems.

In early 70s Cook lays the foundation of the modern study of the computational

complexity [25]. Focusing on the NP complexity class, he proved that every problem

in NP can be reduced to a particular problem name "satisfiability". Later in the 70s

Karp proves that many decision problems in NP are equivalent in terms of computational

complexity [60] and published a set of 21 equivalent problems. When a problem p is

in NP and any other problem in NP can be reduced to it, then the problem is said to be

NP-complete. Roughly speaking this means that for NP-complete problems there does not

exist an efficient way to solve them, unless P=NP. This conjecture remains unproved even

if it is mostly accepted to be true.

In this work we use two of the 21 NP-complete problems proposed by Karp in the 70s.

For the sake of the reading we propose here the test of the problems.

2.5.1 Exact cover by 3-sets (X3C)

Given (B,S,k) an X3C instance: B = {b1, . . . ,b3k}, S = {S1, . . . ,Sn} such that S j =

{b1j ,b
2
j ,b

3
j},b

i
j ∈ B and a positive number k > 1. The question is if there exists S′ ⊆ S and

|S′|6 k such that ∪Si∈S′Si = B.

2.5.2 Hitting set

Given (B,S,k) an instance of the hitting set problem: B = {b1, . . . ,bn}, k 6 n and S =

{S1, . . . ,Sm} subsets of B. The question is if there exists a subset B′ ⊆ B with |B′|6 k such

that B′ contains at least one element from each subset of S.

2.6 Strategic Behaviours

The outcome of an election can be influenced in many different ways: for instance, voters

may submit insincere preferences, whilst the chair may add or delete candidates or votes.

These kinds of strategical actions are usually considered malicious and thus to prevent.

One possible way to reduce the effects of these tactical behaviours is to make them very

difficult to exploit and so design or use systems where the computational complexity of

24 Chapter 2. Background

deciding whether the outcome can be influenced or not is very high. This may protect

the election against such strategic actions. specifically we can identify in literature three

different categories of strategical actions:

manipulation [11]: a voter or a coalition of voters misreport their truthful preferences to

change the outcome of the election

control [10]: the chair (that is the agent in charge of the coordination of the election) acts

on the structure of the election to change the outcome, this is done for instance by

adding o deleting candidates or voters

bribery [42]: an external agent that cannot submit a ballot or it is not pivotal pay some

voters to change their preferences with some other suggested ones

In literature, we can identify different forms of the previous strategic actions. For

instance the chair can choose voting districts to favour a specific candidate or a party. This

form of control is called gerrymandering, see for instance [56, 89].

We say that a voting rule is immune to a control action when the result of the election

cannot be affected by it, otherwise we say that it is susceptible to the specified control

action. If it is susceptible, we say that it is resistant to a control action if deciding whether

it can be performed is NP-hard. On the other hand, if the decision problem is in P, we say

that the system or the voting rule is vulnerable [42].

In the 60s Arrow proved that is impossible to design a voting system which respects

a small set of desirable properties [5], i.e. there does not exist a voting system with

more than two candidates which is at the same time Pareto efficient, non-dictatorship and

independent of irrelevant alternatives. The original impossibility theorem was about social

welfare function but this can be adapted also for voting rules. Some years later Gibbard,

Satterhwaite [49, 92] and lately Duggan and Schwartz [29] showed that when a voting

system has more than two candidates it can be manipulated. Usually strategic behaviour is

seen as something bad that should be avoided. For this reason the first seminal works on

control and manipulation [11, 10] looked at the computational complexity of the problem

as a protection that the system can oppose to strategic agents. Later this line of research

led to expand these results in many different ways: Studying the computational complexity

of these strategic behaviour problems for different voting rules when there is only a single

strategic voter [e.g. 44, 42, 96, 66, 75, 12] or by a coalition of voters [e.g. 102, 15]. The

same problem was also studied parameterizing some input like for instance the number of

candidates [e.g. 23, 36, 35].

3. Replacement Control

An outcome of an election can be influenced in different ways as reported in in Section

2.6. In this chapter we focus on a specific strategic behaviour called control where an

external agent (usually called the chair) may decide which agents (voters) can vote and

which options (candidates) can be considered. In this setting, several kinds of strategic

actions can influence the result of the election. For instance, the chair may introduce new

candidates or choose the voting rule. We focus here on control by the chair [10, 55].

Control may be constructive when the chair’s goal is for a certain candidate to win, or

destructive when it is to prevent a candidate winning. Actions that the chair can take is

adding or deleting candidates or votes. Most previous works assume that only one form

of control is used (see for instance, [42, 36, 35, 75]). It is natural, however, to envision

the chair performing multiple control actions at the same time [41]. Here we consider a

specific form of combining the basic control actions, that we call replacement control,

where the chair replaces some candidates (or votes). This is the combination of deletion

and addition of candidates (or votes) in the same quantity. A similar form of control has

been considered in judgment aggregation [12].

Replacement control is a natural form of control in practice. For example, it has been

widely used during the last Indian nationwide elections.1 Replacement control is also

appropriate in many parliamentary and other elections where the size of the electorate

is fixed. Another setting where replacement control might occur is when the number of

1http://archive.indianexpress.com/news/samajwadi-party-to-replace-24-ls-candidates/1184010/,

http://indiatoday.intoday.in/story/mulayam-singh-yadav-changes-a-dozen-samajwadi-party-candidates-for-

2014-polls/1/326837.html

26 Chapter 3. Replacement Control

candidates (or voters) is made public. The chair can then only delete a candidate (voter) if

he also adds one.

Even if replacement control seems very similar to other strategical actions, such as

bribery [39] and multi-mode control [41], we show that in general it is not possible to

reduce this new control action to the others, or vice-versa. This means that it is not possible

to transfer the complexity results. We also relate the computational complexity of the

replacement control actions to that of the single control actions of adding or deleting

candidates or votes.

We study the computational complexity of replacement control for rules (plurality,

veto, Borda, k-approval, and approval). Besides providing theoretical complexity results,

where hardness informs us only about the worst case, we also performed an empirical eval-

uation using real-world data-sets. For some of the considered voting rules, our empirical

evaluation shows that rules are easy to control despite theoretical analysis classifying the

rule resistant to replacement control. These results confirm that a theoretical hardness

complexity result is not enough to ensure significant protection of an election system

from the control actions, as suggested also in [10, 42, 41, 40]. Thus both theoretical and

empirical evidence of the hardness of control is beneficial, as argued in previous studies on

manipulation [100, 99].

I have produced several papers that model and characterize replacement control. The

workshop papers are more focused on the empirical study of the strategical action while

the conference paper reports the theoretical details.

• Journal papers:

– Andrea Loreggia. Iterative voting and multi-mode control in preference

aggregation. Intelligenza Artificiale 8 (2014) 39–51. DOI 10.3233/IA-140059.

IOS Press.

• Conference papers:

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, K. Brent Venable, and

TobyWalsh. Controlling elections by replacing candidates or votes. In

Proceedings of the 2015 International Conference on Autonomous Agents

and Multiagent Systems, AAMAS ’15, pages 1737–1738, Richland, SC, 2015.

International Foundation for Autonomous Agents and Multiagent Systems.

• Workshop papers:

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, Kristen Brent Venable

and Toby Walsh. Controlling elections by replacing candidates: theoret-

ical and experimental results. In Proceedings of the 8th Multidisciplinary

Workshop on Advances in Preference Handling (MPREF-2014), July 2014.

– Andrea Loreggia, Nina Narodytska, Francesca Rossi, Kristen Brent Venable

3.1 Background 27

and Toby Walsh. Controlling elections by replacing candidates for Plural-

ity and Veto: theoretical and experimental results. In Proceedings of the

1st Workshop on Exploring Beyond the Worst Case in Computational Social

Choice(EXPLORE 2014), May 2014.

3.1 Background

In this part of the thesis most of the background is based on the notions of voting theory

and computational complexity already reported in Chapter 2. For this reason in this section

we describe the background that is specifically related with the control action framework.

Control actions were previously studied in a seminal paper from the 90s [10]. It builds

the foundations of an area of research about the computational complexity of control action.

The computational complexity is looked as a shield that the voting system can oppose to

the strategic agent that tries to constructive change the outcome of an election in favour

of a specific candidate [40]. A subsequent paper [55] introduced the destructive form of

the control, i.e. it studies the computational complexity of the decision problem where

the chair tries to ensure that a specific candidate does not win the election. Many other

works expanded this line of research looking for the computational complexity of the

decision problem related with the constructive or destructive form of the control using

many different voting rules [e.g. 42, 91, 36, 35]. The chair cannot cast any ballot, so she

can interfere with the election by acting on its structure. This can be done for instance by

adding or deleting voters or by adding or deleting candidates. All these previous works

accept the fact that the chair uses only one form of action to change the outcome. A

subsequent work [41] modeled the situation where the chair try to use more than one

control action at the same time to change the outcome of the election.

In this part of the thesis we considered the addition and deletion of candidates and/or

votes. As usual in the literature, we will use the acronyms CC (for Constructive Control),

DC (for Destructive Control), AC (for Adding Candidates), DC (for Deleting Candidates),

AV (for Adding Votes), DV (for Deleting Votes). Although the acronym DC stands for two

different notions, it will be clear from the context whether we mean Destructive Control or

Deleting Candidates.

3.2 Replacement Control

Replacement control can be seen as the combination of the addition and deletion of

either votes or candidates in equal amount. That is, the chair can replace some candidates

or some votes. We use RC (for Replacing Candidates) and RV (for Replacing Votes). These

will be combined with either constructive or destructive control (CC and DC). Formally,

28 Chapter 3. Replacement Control

we will study the following four problems.

Name: CCRV (Constructive Control via Replacing Votes), resp., DCRV (Destructive

Control via Replacing Votes)

Given: Two collectionsV1,V2 of votes, withV1∩V2 = /0, overC, a distinguished candidate

p ∈C, and k ∈ Z+

Question (CCRV): Are there subsets A⊆V2 and D⊆V1 such that |A|= |D|6 k and p is

the winner of the election E = (C,(V1 \D)∪A) ?

Question (DCRV): Are there subsets A⊆V2 and D⊆V1 such that |A|= |D|6 k and p is

NOT the winner of the election E = (C,(V1 \D)∪A) ?

Name: CCRC (Constructive Control via Replacing Candidates), resp. DCRC (Destructive

Control via Replacing Candidates)

Given: A collection V of votes over C1∪C2 (with C1 and C2 disjoint), a distinguished

candidate p ∈C1, and k ∈ Z+

Question (CCRC): Are there subsets A⊆C2 and D⊆C1 such that |A|= |D|6 k and p

is the winner of the election E = ((C1 \D)∪A,V)?

Question (DCRC): Are there subsets A ⊆ C2 and D ⊆ C1 such that |A| = |D| 6 k and

p ∈ (C1 \D) is NOT the winner of the election E = ((C1 \D)∪A,V)?

We write XY (C,A,V, p,k) to denote an instance of the problem, where X ∈ {CC,DC},

Y ∈ {AC,DC,AV,DV,RC, RV}, and C is a set of candidates. Moreover, if Y ∈ {AC,DC,

RC} then A is another set of candidates and V is the collection of votes over C∪A, while

if Y ∈ {AV,DV,RV}, then A and V are collections of votes over C. Finally, p ∈ C is a

distinguished candidate and k is the budget. Informally, A is the set of candidates or votes

that the chair may add to the election, while candidates or votes to be deleted come from C

or V . Notice that, when Y ∈ {DC,DV}, then A = /0.

3.3 Relationship with Other Strategic Actions

Replacement control is related to multi-mode control, where the chair uses two or more

control actions at the same time. However, it is not possible in general to transfer com-

plexity results between multi-mode control and replacement control. In fact, the decision

problems connected to single control actions and to replacement control could belong to

different complexity classes. We just show the case for DCRC, but the proof can be easily

extended to other combinations and other replacement control actions.

Theorem 3.3.1 There exists a voting rule and a class of elections on which DCAC is in

P, DCDC is NP-hard and DCRC is in P.

Proof. We prove the statement by modeling a voting rule which belongs to different

complexity classes with respect to the control actions. We also need to model a specific

3.3 Relationship with Other Strategic Actions 29

election where m = n, notice that every election can be massaged to be transformed in

this way by either introducing dummy candidates or cancelling voters. Consider a voting

rule that works like Borda when m > n (where m is the number of candidates and n is

the number of voters), and it works like plurality otherwise. Any election massaged to fit

the class where m = n is transformed in such a way that Borda and plurality results are

unchanged. On this class of election, the considered voting rule is resistant to DCDC and

it is vulnerable to DCAC and DCRC. In fact, plurality is resistant to DCDC [42], while

Borda is vulnerable to DCAC (see Corollary 3.4.18 later in this chapter) and also to DCRC

(see Theorem 3.4.17 later in this chapter). �

Notice that replacement control is a special case of multimode control where additions

equal in number the deletions. For this reason, we can inherit the polynomial results about

multi-mode control but not the NP-hardness results.

Bribery is also a similar control action to replacement control. Bribery occurs when an

external agent changes the preferences of some voters by bribing them with money, within

a certain budget the agent has. Bribery can be seen as a special case of control where the

chair replaces the vote of the bribed agent with any linear order, while in replacement

control the chair can only replace a vote with another available vote. If we try to construct

a polynomial many-to-one reduction from bribery to replacement control, we need to

transform in polynomial time each instance of bribery to an instance of replacement

control. Given an instance of bribery, we have to build all the possible linear orders using

the set of candidates of the bribery instance, and this can be done in O(m!), where m is

the number of candidates. So we can reduce the problem of bribery to the problem of

replacement control, but it seems that this cannot be done in polynomial time, unless we

fix the number of candidates m as parameter. However, if we do this, for scoring rules and

approval this brings the decision problems in P [39], and we cannot transfer polynomial

complexity results since replacement control is a more general problem than bribery.

In general, it could be nice to find a relationship among the different strategical actions,

as already done for bribery and coalitional manipulation [39], which allows to study

these problems from a different point of view, but it seems that it could be done only by

restricting the domain.

We now consider some axiomatic properties of voting rules and their impact on the

relationship between various types of control.

Theorem 3.3.2 Every unanimous and IBC voting rule resistant to CCAC is also resistant

to CCRC.

Proof. From any instance I =CCAC(C,A,V, p,k)we can define an instance I′=CCRC(C∪

D,A∪B,V ′, p,k), where C and A are sets of candidates and these two sets are the same

30 Chapter 3. Replacement Control

in the two instances I and I′, D and B are two additional sets of k candidates, p is the

distinguished candidate and k is the budget, V ′ is a collection of voters’ preferences over

C∪D∪A∪B. In V and V ′ voters have the same preferences over C∪A, moreover each

voter in V ′ ranks unanimously on top and in the same order candidates in D and bottom-

ranks and in the same order candidates in B. We claim that there exists a solution to I if

and only if there exists a solution to I′. Suppose that there exists a solution A′ ⊆ A to I,

with |A′|= k′ 6 k, such that p is the unique winner in the election (C∪A′,V). To make p

be the unique winner of the election in I′ the chair has to delete all the k candidates in D,

since they are unanimously ranked. Moreover since the voting rule is IBC, candidates in

B do not give any special support to any other candidate in the election, but they can be

added to the election to match the number of deleted candidates, i.e. the chair can choose a

subset B′ ⊆ B of candidates, with |B′|= k− k′. After the deletion of candidates in D, A′ is

the only subset of candidates that added to the election can make p be the unique winner.

This gives a solution (D,(A′∪B′)) to I′. Conversely, since the voters’ preferences in I and

I′ are the same over C∪A it is easy to see that given a solution (D,(A′∪B′)) of I′ then p is

also the unique winner of the election (C∪A′,V). This complete the proof. �

For the following result, we use the notion of Insensitive to Bottom-ranked Candidates

(IBC) defined in Section 2.4. We can use the IBC property and previous results about

CCDC resistance to easily define the complexity of the problem.

Theorem 3.3.3 Every voting rule that is IBC and resistant to CCDC is also resistant to

CCRC.

Proof. From any instance I = CCDC(C, /0,V, p,k) we can derive a new instance I′ =

CCRC(C,A,V ′, p,k), where C is a sets of candidates (it is the same sets in I and I′), A is

a set of k fresh candidates, V ′ is a collection of voters’ preferences over C∪A, p is the

distinguished candidate and k is the budget. Each voter in V ′ ranks at the bottom and in

the same order candidates in A, while their preferences over C are the same expressed by

voters in V . We claim that there exists a solution to I if and only if there exists a solution to

I′. Suppose that there exists a solution D⊆C to I, with |D|6 k, such that p is the unique

winner of the election E = (C \D,V). Then p is also the unique winner of the election

E ′ = ((C \D)∪A′,V ′), with A′ ⊆ A and |A′|= |D|6 k, thus giving a solution (D,A′) to I′.

This is proved by the fact that the addition of candidates from A does not change the winner

because of IBC and preferences are the same over C, then (D,A′) must be a solution of

I′. Conversely, suppose that there exists a solution (D,A′) to I′ such that p is the unique

winner of the election E ′ = ((C∪A′)\D,V ′). Then, p is also unique winner of the election

E = (C \D,V), since candidates in A do not influence the winner by IBC and the voters’

preferences in V and V ′ over C are the same. This gives us a solution D to the instance I

3.4 Positional Scoring Rules 31

and complete the proof. �

Theorem 3.3.4 Every voting rule that is IBC and resistant to DCAC or DCDC is also

resistant to DCRC.

Proof. The proof is similar to that of Theorem 3.3.2 and 3.3.3. We can extend each vote

with a set of dummy candidates at the bottom. Deleting/adding these candidates does not

change the result. �

3.4 Positional Scoring Rules

We now consider some results about some specific classes of voting rules. In general,

positional scoring rules are vulnerable to DCRV.

Theorem 3.4.1 Positional scoring rules are vulnerable to DCRV.

Proof. Algorithm 1 is a polynomial time algorithm that checks whether it is possible to

make the current winner p lose the election by replacing at most k votes. The algorithm

tries to make another candidate c defeat p by adding votes that favour c the most compared

to p and deleting as many votes that prefer p the most compared to c. In the pseudocode,

C is the set of m candidates, V and A are collections of votes over C, p is the distinguished

candidate that the function tries to make loose the election, k is the budget and s is the

scoring vector which represents the positional scoring rule. Firstly, the function checks if

p is the actual winner of the election or if she is already loosing the election, in this case

the function stops returning two empty sets as solution. If this is not the case then the

algorithm systematically checks for all candidates in C \{p}, if they can defeat p. This is

done by computing the support that each possible new voter ai ∈ A gives to p more than to

each candidate c j ∈C. We store the information in a matrix distA where rows correspond

to voters in A and column to candidates in C, distA(ai,c j) < 0 if the voter ai prefers c j

more than p, distA(ai,c j)> 0 otherwise. Similarly, the algorithm computes the support

that each voter vi ∈V gives to p and store the information in another matrix distV and at

the same time it computes the score difference between c j and p, storing the information

in dist(c j). Clearly dist(c j)< 0 for each c j ∈C since the winner of the election is p. This

is done in O(m · (|A|+ |V |)). The function greedily searches for a candidate c ∈C that

can defeat p. It starts from candidate with small distance from p and then increasingly try

with all the other. For each candidate the function adds voters from A which give more

support to c j than to p and deletes voters from V that prefer p to c j. This operation is done

in time O(k) to respect the budget. If p still wins after doing that, then there is no way to

make p lose by replacing at most k votes. If there is a way, the algorithm returns the set of

32 Chapter 3. Replacement Control

votes D to be deleted and the set A′ of those to be added. Function computeWinner(C,V,s)

computes a winner of election V over a set of candidates C using the scoring rule s. �

Algorithm 1 Destructive Control Replacing Votes

function DCRVSR(C,A,V ,p,k,s)

w← computeWinner(C,V,s)
if p 6= w then

return (/0, /0)

for all c j ∈C do

dist(c j)← 0

for all ai ∈ A do

distA(ai,c j)← s[pos(ai, p)]− s[pos(ai,c j)]

for all vi ∈V do

distV (vi,c j)← s[pos(vi, p)]− s[pos(vi,c j)]
dist(c j)← dist(c j)+distV (vi,c j)

copyC←C

while copyC 6= /0 do

c← argmaxc j ∈ copyCdist(c j);
copyC← copyC \{c}
A′ = D = /0

copyV ←V ;

copyA← A

for j← 1,k do

a← arg min
ai∈copyA

distA(ai,c);

v← arg min
vi∈copyV

distV (vi,c)

A′← A′∪{a};
D← D∪{v}
copyV ← copyV \{v};
copyA← copyA\{a}
w← computeWinner(C,(V \D)∪A′,s)
if w 6= p then

return (D,A′)

return null

3.4.1 Plurality and veto

Plurality and veto are two positional scoring rules. They are very similar, while plurality

rewards with 1 point only the most preferred alternative in each voters’ preference veto

rewards all the alternatives but the last one in the preferences. In fact their scoring vectors

are (1,0, . . . ,0) and ((1,1, . . . ,1,0)). They are both resistant to constructive and destructive

replacing candidates, but vulnerable to constructive and destructive replacing votes.

3.4 Positional Scoring Rules 33

Theorem 3.4.2 Plurality is vulnerable to CCRV.

Proof. Algorithm 2 is a polynomial-time algorithm that tries to make a candidate p win by

adding as many votes as possible for p and deleting as many votes for candidates that have

a higher score than p even after the additional support for p. In the pseudocode,C is the set

of m candidates, V and A are collections of vote over C, p is the distinguished candidate

that the function tries to make win the election, k is the budget and s is the scoring vector

which represents the positional scoring rule, in this case plurality. Firstly, the function

checks if p is the actual winner of the election, in this case the function stops returning

two empty sets as solution. Then for each candidates ci ∈C it computes the number of

voters in V that most prefer ci saving the results in a vector named score where ith position

correspond to the score of ci. The algorithm also checks if there are enough resources to

make p win the election, this is done checking whether in the A set there exist enough

voters that prefer p the most. After that it deletes all the voters that support candidates that

have a score higher than p even after the addition of the supporters from A. At this point,

if the number of voters which do not prefer p the most is higher than the budget it means

that the algorithm cannot make p win the election since it already adds all the possible

available support but it cannot delete enough adversaries’ supporters and The function

stops returning a null solution. On the other hand the algorithm can face two different

scenarios: either it added more voters than it deleted or the opposite it deleted more voters

than it added. In the first case the function try to match it by deleting as much voters that

does not support p by randomly choosing voters which prefer candidate with high scores.

In the second case the function adds voters which support candidate with small score or

eventually score very different from the new score of p. If p does not win when doing that,

then there is no way to make p win by replacing at most k votes. �

Theorem 3.4.3 Plurality is vulnerable to DCRV.

Proof. Vulnerability to DCRV follows from Theorem 3.4.1 since plurality is a scoring

rule. �

Theorem 3.4.4 Plurality is resistant to CCRC.

Proof. Resistance to CCRC follows from the fact that plurality is resistant to CCDC [10]

and from Theorem 3.3.3. �

Theorem 3.4.5 Plurality is resistant to DCRC.

Proof. Resistance to DCRC follows from the fact that plurality is resistant to DCDC [55]

and from Theorem 3.3.4. �

34 Chapter 3. Replacement Control

Algorithm 2 Constructive Control Replacing Votes

function CCRVPL(C,A,V ,p,k,s)

w← computeWinner(C,V,s)
if p = w then

return (/0, /0)

A′ =W = /0

for all ci ∈C do

score(ci)← |{v j ∈V : ci = top(v j)}|

A′←{a j ∈ A : p = top(a j)}
kp =min{k, |A′|}
W ←{c j ∈C : (score(c j)− (score(p)+ kp))> 0}
j← 0

for all wi ∈W do

listV ←{v j ∈V : wi = top(v j)}
while ((score(wi)− (score(p)+ kp))> 0) AND (listV 6= /0) do

v← chooseOne(listV)
D← D∪{v}
listV ← listV \{v}
j← j+1

score(wi)← score(wi)−1

if j > k then

return null

while j < kp do

c← argmaxci ∈C \{p}score(ci)
listV ←{v j ∈V : c = top(v j)}
if listV 6= /0 then

v← chooseOne(listV)
D← D∪{v}
listV ← listV \{v}
j← j+1

score(c)← score(c)−1

else

C←C \{c}

while j > kp do

c← arg min
ci∈C\{p}

score(ci)

listA←{a j ∈ A : c = top(a j)}
if listA 6= /0 then

v← chooseOne(listA)
A′← A′∪{v}
listA← listA\{v}
kp← kp +1

score(c)← score(c)+1

else

C←C \{c}

w← computeWinner(C,(V ∪A′)\D,s)
if w = p then

return (D,A′)

return null

3.4 Positional Scoring Rules 35

Theorem 3.4.6 Veto is vulnerable to CCRV.

Proof. Algorithm 3 is a polynomial-time algorithm that checks if p can win a given

election by replacing at most k votes. C is the set of candidates, V and A are multisets of

voters’ preferences over C, p is the distinguished candidate, k is the budget, and s is the

scoring vector. The algorithm tries to make p win by deleting as many votes as possible

that veto for p and adding as many votes as possible that veto for other candidates with a

smaller number of veto than p even after the additional support for p. If p does not win

when doing that, then there is no way to make p win by replacing at most k votes, and

the algorithm returns null. If there is a way, the algorithm returns the set of votes D to be

deleted and the set A′ of those to be added. We denote bottom(v) the bottom candidate

in a vote v. The algorithm is very similar to the one used in the proof of Theorem 3.4.2:

instead of maximizing the number of supporters for candidate p as in Algorithm 2, it tries

to minimize the number of vetoes for p.

�

Theorem 3.4.7 Veto is vulnerable to DCRV.

Proof. Vulnerability to DCRV follows from Theorem 5 since veto is a scoring rule. �

Theorem 3.4.8 Veto is resistant to CCRC.

Proof. Resistance to CCRC follows from Theorem 2 since veto is unanimous and resistant

to CCAC, as shown in [66]. �

Theorem 3.4.9 Veto is resistant to DCRC.

Proof. We prove the NP-hardness of DCRC by reduction from the hitting set problem.

Given an instance I = (B,S,k) of the hitting set problem, we show how to define an

instance I′ = DCRC(C,A,V, p,k) of the DCRC problem such that I has a solution B′ if and

only if I′ has a solution (D,A′), which means that p loses the election ((C \D)∪A′,V).

In I′, C contains the following candidates: w, p, and d j, for j = 1, . . . ,k. We call D the

set of candidates d j. A = {a1, . . . ,an} is a set of candidates the chair can use to replace

candidates in C. Each candidate ai ∈ A correspond to an element bi ∈ B. The collection V

of votes is as follows:

1 vote : D≻ A≻ w≻ p

2 votes for each Si ∈ S : p≻ D≻ A\Si ≻ w≻ Si

2 votes for each bi ∈ B : p≻ D≻ w≻ A\{ai} ≻ ai

2 votes for each di ∈ D : p≻ w≻ A≻ D\{di} ≻ di

2 votes for each a j ∈ A : p≻ w≻ D≻ A\{a j} ≻ a j

36 Chapter 3. Replacement Control

Algorithm 3 Constructive Control Replacing Voters

function CCRVVETO(C,A,V ,p,k,s)

w← computeWinner(C,V,s)
if p = w then

return (/0, /0)

A′ =W = /0

for all ci ∈C do

vetoes(ci)← |{v j ∈V : ci = bottom(v j)}|

D←{v j ∈V : p = bottom(v j)}
kp =min{k, |D|}
W ←{c j ∈C : ((vetoes(p)− kp)− vetoes(c j))> 0}
j← 0

for all wi ∈W do

listA←{a j ∈ A : wi = bottom(a j)}
while (((vetoes(p)− kp)− vetoes(wi))> 0) AND (listA 6= /0) do

a← chooseOne(listA)
A′← A′∪{a}
listA← listA\{a}
j← j+1

vetoes(wi)← vetoes(wi)+1

if j > k then

return null

while j > kp do

c← arg min
ci∈C

vetoes(ci)

listV ←{v j ∈V : c = bottom(v j)}
if listV 6= /0 then

v← chooseOne(listV)
D← D∪{v}
j← j+1

vetoes(c)← vetoes(c)−1

listV ← listV \{v}
else

C←C \{c}

while j < kp do

c← argmaxci ∈C \{p}vetoes(ci)
listA←{a j ∈ A : c = bottom(a j)}
if listA 6= /0 then

v← chooseOne(listA)
A′← A′∪{v}
kp← kp +1

vetoes(c)← vetoes(c)+1

listA← listA\{v}
else

C←C \{c}

w← computeWinner(C,(V ∪A′)\D,s)
if w = p then

return (D,A′)

return null

3.4 Positional Scoring Rules 37

We use the notation D to mean the linear order of the candidates in D, that is, d1, . . . ,dk.

The same is for A. Initially the number of vetoes per candidate is as follow: veto(p) = 1,

veto(w) = 2(m+n), veto(di)> 2. So p is the winner of the election and the only candidate

that can defeat her is w since there is no way to reduce the number of vetoes to less than 2

for any candidate in D.

We claim that a solution to I exists if and only if there exists a solution to I′. Suppose

that B′ is a solution to I. Then, in I′, we add the candidates in A corresponding to the

elements in B′ and we delete the candidates in D. This gets the following number of vetoes

per candidate: veto(p) = 1, veto(w) = 0, veto(a j) > 4, so p loses the election. On the

other hand, suppose p loses the election by replacing at most k candidates and there exists

a solution (D,A′) to I′. None of the candidates added/deleted changes the vetoes for p,

because of the structure of the profile, while the number of vetoes of w is decreased: for

each candidate ai ∈ A added to the election, the number of vetoes of w decreases by 2 if

bi ∈ Si and no previously added candidate corresponded to another b j ∈ Si. Let us consider

the set B′ of all bi corresponding to added candidates ai. We have that |B′|6 k and contains

at least one element from each subset of S. Thus it is a hitting set and therefore B′ is a

solution to I. �

3.4.2 k-Approval

Theorem 3.4.10 For 2< k < m−2, k-approval is resistant to CCRV.

Proof. To prove resistance to CCRV we use a reduction from the X3C problem. We give

the proof for k = 3, but it can be easily adapted for any k between 4 and m−3. Let (B,S,k)

be an X3C instance: B = {b1, . . . ,b3k}, S = {S1, . . . ,Sn} such that S j = {b
1
j ,b

2
j ,b

3
j},b

i
j ∈ B

and a positive number k > 1. The question is if there exists S′ ⊆ S and |S′|6 k such that

∪Si∈S′Si = B. Given an instance I = (B,S,k) of the X3C problem, we build an instance

I′ =CCRV (C,A,V, p,k), where C contains 9k+5 candidates and V contains (3kn− k−n)

votes. The candidates are: p, d1, d2, b j with j = 1, . . . ,3k, c1j , c2j , with j = 1, . . . ,3k, c1p,

c2p.

The preferences are as follows:

∀Si ∈ S,1 vote approves : Si

∀b j ∈ B,(n− l j)votes approve : {b j,c
1
j ,c

2
j}

(n− k)votes approve : {p,d1,d2}

where l j is the number of subsets Si of S where b j occurs. A = {a1, . . . ,ak} are the

additional votes the chair may add. All these votes approve only {p,c1p,c
2
p}. We claim

that there exists a solution to I if and only if there exists a solution to I′. Suppose that

S′ = {Si1 , . . . ,Sik} is a solution to I. Then the chair can make p win the election by

38 Chapter 3. Replacement Control

replacing all the votes in A with D′ = {vi1 , . . . ,vik} votes corresponding to elements in

the X3C solution. The new scores after the replacement are as follow: score(p) = n,

score(bi) = n−1, score(ci) = n− li, score(di) = n− k, thus p is the winner and (D,A′) is

a solution to I′.

Let us now suppose that there exists a solution (D,A′) to I′, which means p wins

the election E = (C,(V \D)∪A). Observe that this can be achieved only by deleting

k votes in a way that each candidate except p looses at least 1 point. In E, the scores

are: score(p) = n, score(bi) = n− ki, score(ci) = n− li, score(di) = n− k, where ki is the

number of Si j
∈ S′ in which bi occurs. Since p is the winner of E then score(p)> score(bi)

and thus ki > 0. Actually, it must be ki = 1 for all i. Assume ki > 1 for some i and p

is the winner. By a pigeon-hole argument, there is some other k j = 0 with j 6= i. This

contradicts the requirement that each ki > 0. All ki = 1 means that each bi occurs exactly

in one Si j
∈ S′. Thus S′ is a solution to I. �

Theorem 3.4.11 k-approval is vulnerable to DCRV.

Proof. Due to Theorem 3.4.1, k-approval is vulnerable to DCRV for all values of k. �

The following result can be derive using Theorem B.1 from [32] and applying Theorem

3.3.2 from this work. Initially, we were not aware of this paper and we found independently

a proof to the resistance of k-approval to CCRC that we report below.

Theorem 3.4.12 k-approval is resistant to CCRC.

Proof. Resistance to CCRC follows from Theorem 3.3.2 since k-approval is unanimous,

IBC and resistant to CCAC, as shown in [66]. �

Theorem 3.4.13 k-approval is resistant DCRC.

Proof. Resistance holds for DCRC due to Theorem 3.3.4 since k-approval is IBC and

resistant to DCAC and DCDC, as shown in [66]. �

3.4.3 Borda

Borda has been previously studied [91, 32] providing some results and leaving some other

questions open. We prove that Borda is resistant to constructive replacement control, while

it is vulnerable to its destructive versions. We also close the open problems giving new

results about the single control actions of adding or deleting candidates.

Theorem 3.4.14 Borda is resistant to CCRV.

3.4 Positional Scoring Rules 39

Proof. We prove the statement by giving a polynomial reduction from the X3C problem.

Let (B,S,k) be an X3C instance: B = {b1, . . . ,b3k}, S = {S1, . . . ,Sn} such that S j =

{b1j ,b
2
j ,b

3
j},b

i
j ∈ B and a positive number k > 1. The question is if there exists S′ ⊆ S

and |S′| 6 k such that ∪Si∈S′Si = B. Given an instance I = (B,S,k) of the X3C problem,

we build an instance I′ = CCRV (C,A,V, p,k′), where k′ = 2k. We denote scoreY (x) the

score of a candidate x in a subset of votes Y . The construction is based on balancing

scores among the preferred candidate p, a dangerous candidate w and, also dangerous,

candidates B = {bi, i = 1, . . . ,3k} that correspond to the elements of the X3C instance. We

construct an election that consists of three sets of votes: V = V 1∪V 2∪V 3 and a set of

additional votes A. Votes in A encode subsets S j, j = 1, . . . ,n. The set of votes V 1, where

w is always ranked first, and A, where p is always ranked first, are built in such a way

that scoreV (w)− scoreV (p) is large enough so that all votes in V 1 must be removed and

exactly k votes from A must be added, otherwise p loses to w. This ensures that the entire

budget must be spent. The second idea behind the reduction is to set up a score of bi in V

so that scoreV (bi)− scoreV (p) allows adding only one vote from A that corresponds to a

set S j that contains bi. Therefore, the sets that correspond to k votes that are added from

A must form a cover. Next we describe the reduction, in detail. The set of candidates C

contains m = 6k+(kn)2+4 candidates. More precisely, C = {w, p}∪D∪B∪H ∪R, with

B = {bi, i = 1, . . . ,3k}

H = {hi, i = 1, . . . ,3k}

R = {ri, i = 1, . . . ,(kn)2}

D = {d1,d2}

where w is the current winner, p is the preferred candidate, bi, i = 1, . . . ,3k are item-

candidates, H = ∪i=1,...,3k{hi}, are placeholders, R = ∪i=1,...,(kn)2{ri} are separators and

{d1,d2} are dummy candidates. Next we describe votes. To build V we use two special

pairs of votes. Each of these pairs will be applied multiple times to obtain the desired

relation among scores of candidates when we form V . The first pair is P1(x) = {(d1 ≻

x ≻ d2 ≻ C \ {d1,d2,x}),(d1 ≻
←−−−−−−−−−
C \{d1,d2,x} ≻ x ≻ d2)}. Using this pair we ensure

that the score of candidate x ∈C \{d1,d2} increases by m−1, the score of candidate u,

u ∈C \{d1,d2,x} by m−2, the score of candidate d2 by m−3, and the score of candidate

d1 by 2(m− 1). Hence, we increase the relative score of x and u ∈ C \ {d1,d2,x} by

one. Using multiple copies of this pair we can set up an arbitrary difference between

scores of x and u. The reason we place d1 at the first position is to ensure that w is never

ranked first when we use this construction. The second pair P2 = {(d2 ≻C \{d1,d2} ≻

d1),(
←−−−−−−−
C \{d1,d2}≻ d2≻ d1)} is used to decrease the score of d1 relative to other candidates.

The votes partitioned into three logical sets: V = V 1 ∪V 2 ∪V 3. V 1 consists of k votes

40 Chapter 3. Replacement Control

(w≻ B≻ H ≻ R≻ D≻ p). Note that w is always ranked first. V 2 is the first part of the

X3C encoding. To build V 2 we use a multiple copies of P1(x). Using this pair for x ∈C,

we ensure that the scores of candidates are the following:

scoreV 1∪V 2(p) = c+1

scoreV 1∪V 2(w) = 2k(m−1)+ c

scoreV 1∪V 2(bi) = k(m−1)− [(m−1)− i+(k−1)(3k− i)]+ scoreV 1(bi)+ c

scoreV 1∪V 2(hi) < c

scoreV 1∪V 2(ri) < c

scoreV 1∪V 2(d1) > c

score(d2) < c

where c is the same constant in all the previous formulas.

Note that scoreV 1∪V 2(d1) > c due to the choice of P1(x), where d1 is always ranked

first. The third set of votes V 3 is used to reduce the relative score between d1 and other

candidates and keeps the relative score of other candidates the same by using copies pairs

of P2: Using scoreV 1∪V 2(d1)− c pairs P2 we make sure scoreV (p)> scoreV (d1):

scoreV (p) = c′+1

scoreV (w) = 2k(m−1)+ c′

scoreV (bi) = k(m−1)− [(m−1)− i+(k−1)(3k− i)]+ scoreV 1(bi)+ c′

scoreV (hi) < c′

scoreV (ri) < c′

scoreV (d1) < c′

score(d2) < c′

Before defining set A, we need the following suborderings. Let H be the lexicographic

ordering over {h1, . . . ,h3k} and H(t) be the tth element in H. We define HS j
for each set

S j = {bq,br,bs}. HS j
(t) = H(t), t 6= {q,r,s} and HS j

(t) = bt , t ∈ {q,r,s}. In other words,

HS j
is H where elements {hq,hr,hs} are replaced with {bq,br,bs}. Symmetrically, let B be

the lexicographic ordering over {b1, . . . ,b3k}. Then, BS j
is B where elements {bq,br,bs}

are replaced with {hq,hr,hs}. The set A consists of n votes: A = ∪ j=1,...,n{(p ≻ HS j
≻

R≻ D≻ BS j
≻ w)}.We now prove that I has a solution S′ if and only if I′ has a solution

(D,A′). Assume that S′ is a solution of I. We will now show that by taking D =V 1 and A′

the subset of A which directly correspond to S′, we get a solution of I′. First, V 1 must be

removed. Note that score(w)− score(p) = 2k(m−1)−1. Hence, w must lose k(m−1)

points after a replacement and p must gain k(m−1) points. For w to lose k(m−1) points

we need to remove k votes where w is ranked first in V . The construction of V ensures that

3.4 Positional Scoring Rules 41

w is only ranked first in V 1, |V 1|= k. Hence, we must remove all votes in V 1. Note that

each b j loses scoreV 1(bi) points after this removal and p does not lose points. The scores

after removal of V 1 are

scoreV 2∪V 3(p) = c′+1

scoreV 2∪V 3(w) = k(m−1)+ c′

scoreV 2∪V 3(bi) = k(m−1)− [(m−1)− i+(k−1)(3k− i)]+ c′

scoreV 2∪V 3(hi) < c′

scoreV 2∪V 3(ri) < c′

scoreV 2∪V 3(d1) < c′

score(d2) < c′

Second, k votes from A, A′ ⊂ A, must be added to the election. As there exists one-to-one

correspondence between A and S, A′ corresponds to S′, S′ ⊂ S. Let o(bi) be the number of

occurrences of b j in S′. The scores after the removal of V 1 and the addition of A′ are

scoreV 2∪V 3∪A′(p) = k(m−1)+ c′+1

scoreV 2∪V 3∪A′(w) = k(m−1)+ c′

scoreV 2∪V 3∪A′(bi) = k(m−1)− [(1−o(bi))((m−1)− i)+(o(bi)−1)(3k− i)]+ c′

As o(bi) = 1, i = 1, . . . ,3k, scoreV 2∪V 3∪A′(bi) = k(m− 1) + c′. Thus p is the winner.

Assume that (D,A′) is a solution of I′. We now show that we can find an S′ which is a

solution of I. To make p the winner, D must contain V 1. Moreover, k votes from A, A′ ⊂ A,

must be added to the election. As there exists one-to-one correspondence between A and S,

let o(bi) be the number of occurrences of b j in S′. The scores after the removal of V 1 and

the addition of A′ are

scoreV 2∪V 3∪A′(p) = k(m−1)+ c′+1

scoreV 2∪V 3∪A′(w) = k(m−1)+ c′

scoreV 2∪V 3∪A′(bi) = k(m−1)− [(1−o(bi))((m−1)− i)+(o(bi)−1)(3k− i)]+ c′

We have di f f (bi, p) = scoreV 2∪V 3∪A′(bi)− scoreV 2∪V 3∪A′(p) = (o(bi)− 1)[((m− 1)−

i)− (3k− i)]−1= (o(bi)−1)[((m−1)−3k]−1. If o(b j)> 1 then di f f (bi, p)> 0 and

p cannot be the winner. Therefore, b j can occur at most once in S′. Since 3k elements

from B must occur in S′, |S′|= k. This proves that all elements in S′ are distinct and form

a cover, and thus a solution of I. �

The following result can be derive using Theorem B.4 from [32] and applying Theorem

3.3.2 from this work. Initially, we were not aware of this paper and we found independently

a proof to the resistance of Borda to CCRC that we report below.

42 Chapter 3. Replacement Control

Theorem 3.4.15 Borda is resistant to CCRC.

Proof. We prove the NP-hardness of the problem via reduction from X3C. Let (B,S,k) be

an X3C instance: B = {b1, . . . ,b3k}, S = {S1, . . . ,Sn} such that S j = {b
1
j ,b

2
j ,b

3
j},b

i
j ∈ B

and a positive number k > 1. The question is if there exists S′ ⊆ S and |S′|6 k such that

∪Si∈S′Si = B. Given an instance I = (B,S,k) of the X3C problem, we now build an instance

I′ = CCRC(C,A,V, p,k) such that I′ has a solution if and only if I has a solution. C =

{p,d}∪B∪D, where B is as in I, and D = {d1, . . . ,dk}. The set A contains n candidates:

for each Si ∈ S, there exists one candidate ai ∈ A. V contains 12kn+18k2−6k−2n+2

votes. The list of their preferences is as follows. For each Sl ∈ S:

1 vote : D≻ A\{al} ≻ b1l ≻ p≻ al ≻ d ≻ B\{b1l }

1 vote : D≻ A\{al} ≻ b2l ≻ p≻ al ≻ d ≻ B\{b2l }

1 vote : D≻ A\{al} ≻ b3l ≻ p≻ al ≻ d ≻ B\{b3l }

1 vote : D≻
←−−−−−
B\{b1l } ≻ b1l ≻ p≻ al ≻ d ≻

←−−−−
A\{al}

1 vote : D≻
←−−−−−
B\{b2l } ≻ b2l ≻ p≻ al ≻ d ≻

←−−−−
A\{al}

1 vote : D≻
←−−−−−
B\{b3l } ≻ b3l ≻ p≻ al ≻ d ≻

←−−−−
A\{al}

For each bi ∈ B there are (2n+3k−2li−1) votes for each of the following preferences:

D≻ bi ≻ d ≻ p≻ B\{bi} ≻ A

D≻
←−
A ≻

←−−−−
B\{bi} ≻ p≻ bi ≻ d

where li is the number of Sl in S where bi occurs. Furthermore, there are:

2n+1 votes : D≻ p≻ d ≻ B≻ A

2n+1 votes : D≻
←−
A ≻

←−
B ≻ p≻ d

We now prove that there exists a solution to I if and only if there is a solution to I′. Suppose

that S′ = {Si1 , . . . ,Sik} is a solution to I. Then the chair can make p win the election

E = ((C \D)∪A′,V). The scores in E are as follow:

score(p) = C′+3k+1

score(bi) = C′+3k

score(d) = C′−11n

score(ai) = C′−3

where C′ = (4k+1)((3k−1)(2n+3k)+n+1)+2n. Thus p is the winner and (D,A′) is

a solution to I′.

3.4 Positional Scoring Rules 43

For the reverse, suppose that there exists a solution (D,A′) to I′. This means that p wins

the election E = ((C\D)∪A′,V). Observe that this can be achieved only by deleting all the

candidates in D and then by adding k candidates in A, since |D|= k. Let A′ = {ai1 , . . . ,aik}

be the set of added candidates. Then there exists a set S′ = {Si1 , . . . ,Sik} such that its

elements correspond to elements in A′. Scores in E are as follow:

score(p) = C′+3k+1

score(bi) = C′+3k−1+ ci

score(d) = C′−11n

score(ai) = C′−3

where ci is the number of Si j
∈ S′ in which bi occurs. Since p is the winner of the new

election then score(p)> score(bi) and so C′+3k+1>C′+3k−1+ ci, thus ci < 2. We

now show that no ci can be equal to zero. Assume that some ci = 0 and p is the winner. By

the pigeon-hole principle, there must be some other c j > 2 for some j 6= i. This contradicts

the requirement that each ci < 2. So, each ci = 1, which means that each bi occurs exactly

in one Si j
∈ S′. That corresponds to an X3C and S′ is a solution to I. �

Corollary 3.4.16 Borda is resistant to CCAC.

Proof. The proof is very similar to the one of Theorem 3.4.15, Indeed, we can follow the

same proof, but since there are no candidates to delete we can omit the set D. �

We have shown that DCRC is NP-hard for plurality and veto. Surprisingly, DCRC is

polynomial for Borda. This is because the difference between two consecutive scores in

the Borda’s scoring vector are identical, unlike in plurality or veto.

Theorem 3.4.17 Borda is vulnerable to DCRC and DCRV.

Proof. Vulnerability to DCRV follows from Theorem 3.4.1 since Borda is a scoring rule.

Algorithm 4 is a polynomial algorithm that checks if p can lose a given election by

replacing at most k candidates. C and A are sets of candidates, V is a multiset of voters’

preferences over C∪A, p is the distinguished candidate, k is the budget. The algorithm

computes the Borda winner w. If p is different from w, then p already loses the election,

so nothing needs to be done. Otherwise, we compute dist(x,ci), the score that ci gives to x

compared to that it gives to w. This only depends on relative positions of x, ci and w as the

scoring vector for Borda rule satisfies the property si− si−1 = 1 for all i. Then we consider

each candidate x and check whether x can beat p by removing, one at a time, candidates

that bring the smallest number of points to x and adding candidates that bring the largest

number of points to x. �

44 Chapter 3. Replacement Control

Algorithm 4 Destructive Control Replacing Candidates

function DCRCBORDA(C,A,V, p,k)
w←Compute-Borda-winner(C,V)
if p 6= w then

return (/0, /0)

for all x ∈C∪A do

for all ci ∈ ((C∪A)\{x}) do

dist(x,ci)← 0

for all vl ∈V do

dist(x,ci) ← sign(sign(pos(vl,x) − pos(vl,ci)) − sign(pos(vl,w) −
pos(vl,ci)))+dist(x,ci)

for all x ∈C∪A do

A′ = D = /0;copyC←C;copyA← A

j← 0

if x ∈ A then

A′← A′∪{x}; j← 1

c← arg min
ci∈copyC

dist(x,ci);copyC← copyC \{c}

D← D∪{c}

while j < k do

c← arg min
ci∈copyC

dist(x,ci);a← argmaxai ∈ copyAdist(x,ai)

A′← A′∪{a};D← D∪{c}
w←Compute-Borda-winner((C \D)∪A′,V)
copyC← copyC \{c};copyA← copyA\{a}; j← j+1

if w 6= p then

return (D,A′)

return null ⊲

3.5 Approval Voting 45

As a corollary of the above theorem, Borda is also vulnerable to adding or deleting

candidates for destructive control.

Corollary 3.4.18 Borda is vulnerable to DCAC and DCDC.

Proof. The algorithm is very similar to the one in Theorem 3.4.17 except that for DCDC

problem A = /0 and, for DCAC, we do not need to find any candidate to put in the set

D. �

3.5 Approval Voting

Approval voting is resistant to CCRV and vulnerable to the other forms of replacement

control.

Theorem 3.5.1 Approval is resistant to CCRV.

Proof. We prove the NP-hardness via reduction from the hitting set problem. Given an

instance I = (B,S,k) of the hitting set problem (defined earlier), we define an instance

I′ = CCRV (C,A,V, p,k) of the CCRV problem such that I has a solution B′ if and only

if I has a solution (D,A′), which means that p wins the election ((C \D)∪A′,V). In

the instance I′, C = {c1, . . . ,cm}∪{p}. Each candidate ci ∈ C \ {p} corresponds to an

element Si ∈ S of the hitting set problem. The collection of votes is specified only with

the list of candidates that each of them approves. The total number of votes in V is

n(m+ 2)− k−∑Si∈S |Si|. There is a set of n votes which correspond to the elements of

set B. For each such vote vi we define Ci = {S j ∈ S : bi ∈ S j}, and vi approves all the

candidates in Ci. The complete set of votes is defined as follows:

∀bi ∈ B, 1 vote approves Ci

∀Si ∈ S(n−|Si|) votes approve ci

(n− k) votes approve p

A = {a1, . . . ,ak} are the additional votes the chair may add. All these votes approve

only p.

In the election (C,V), scores for the candidates are as follows: score(p) = n− k and

, for all i ∈ {1, . . . ,m}, score(ci) = n. We claim that p can win this election if and only

if there exists a solution to the hitting set problem. Let us suppose that there exists a

solution to the hitting set problem, say {bi1 , . . . ,bik}. Then the chair can make p win the

election replacing the k votes corresponding to {bi1 , . . . ,bik} with the k votes in A. The new

scores are: score(p) = n and score(ci) 6 n− 1. If instead p wins the election, then the

chair replaces votes so that score(p)> score(ci), for each ci ∈C. The maximal number of

points that p can gain is |A|= k. That means each ci ∈C has to lose at least 1 point. Thus

46 Chapter 3. Replacement Control

the chair needs to eliminate k votes that support all ci’s. These eliminated votes correspond

to elements of B which are a solution to the hitting set problem. If it were not a solution,

then some candidates are not supported by these votes, so the elimination of such votes

does not change the score of some ci. Thus, ci still has n points and p is not the unique

winner of the election which is a contradiction. �

Theorem 3.5.2 Approval is vulnerable to CCRC, DCRC and DCRV.

Proof. To prove vulnerability to CCRC we can just compute the score of all candidates. To

check whether p can be the unique winner by replacing candidates, we can check if every

candidate in C that has a score higher or equal to the score of p (i.e., candidates in C which

are approved by more voters or by the same number of voters than p) can be replaced

with another candidate in A that has a score that is smaller than the score of p. This can

be done in O(|V |× |C|× |A|). Let D⊆C be the subset of candidates with score equal or

higher than the score of p and A′ ⊆ A the subset of candidates with score smaller than the

score of p, the distinguished candidate p cannot be the unique winner if: |D|> k (i.e. the

chair has not enough budget to replace all the candidates that have more support than p)

or |D|> |A′| (i.e. there are not enough resources to exploit a replacement). If |D|< k and

|D| 6 |A′| then p can be the unique winner. Similarly we can prove the vulnerability to

DCRC by computing the score of all candidates in A and replacing a candidate in C \{p}

with someone that has a score higher or equal to p. If such a candidate does not exist, then

p cannot be defeated. To prove the vulnerability to DCRV, we can use a modified version

of the algorithm used in the proof of Theorem 3.4.1 where, for each vote, we use a vector

of 0s and 1s (where 0 stands for not approved and 1 stands for approved) to describe the

set of candidates that the vote is approving, rather than using a scoring vector which is the

same for all votes. �

3.6 Empirical Evaluation

To better understand the theoretical results showing the hardness or easiness of the DCRC

control problem, we performed an empirical evaluation on real-world datasets. This allows

one to understand if a certain replacement control problem is really difficult in practice.

Besides plurality and veto, in this experimental analysis we also consider k-approval for

values of k that differ from 1 to m− 1 as this naturally interpolates between plurality

(1-approval) and veto (m-1-approval). We also run some experiments using Borda, to

check whether in practice it is easy, as the theoretical results say.

We focus on the DCRC problem in k-approval. given a set C of qualified candidates, a

set A of unqualified candidates and the voters’ preferences. Doing this we assume that the

3.6 Empirical Evaluation 47

Figure 3.1: Sushi dataset: fraction of profiles (over 1000) with successful DCRC.

budget is k = |A|. We also compare DCRC with single control actions which just add or

delete candidates (DCAC and DCDC).

We consider profiles coming from real world data sets. In particular, we use three

datasets from the prelib repository (www.preflib.org) [72]:

• the AGH Course Selection ED00009, which contains preferences of some university

students over a set of courses [94];

• the T-Shirt ED00012 dataset, which contains preferences of some NICTA employees

over some t-shirt templates;

• the sushi dataset ED00014, which contains preferences of 5000 people on various

kinds of sushi [59].

For each data set, we generate profiles of 1000 votes by randomly selecting preference

rankings from the dataset.

The first thing we show is the percentage of profiles where DCRC is able to change the

winner. Figure 3.1 reports the results using the sushi dataset, with 10 voters, |C|= 5 and

2 6 |A| 6 5. The x axis has the value of k in k-approval, which varies from 1 to 4. The

four curves correspond to different sizes of set A. Clearly, the larger k and A, the more

controllable the profile is, because there could be more harmful combinations of candidate

replacements. The same behaviour can be observed in figure 3.2 that reports the results

using the t-shirt data set, with 25 voters, |C|= 5 and 26 |A|6 5. The x axis has the value

48 Chapter 3. Replacement Control

Figure 3.2: T-shirt dataset: fraction of profiles (over 1000) with successful DCRC.

of k in k-approval, which varies from 1 to 4. Even if the data is different we can observe the

same trend in both chart: while veto seems to be controllable most of the times, plurality

shows some resistance to it.

We then consider the actual difficulty for changing the winner, or for discovering that

it cannot be changed, by considering a deterministic algorithm that checks all possible

combinations of candidates to be added, and an equal number of candidates to be deleted,

starting from combinations with budget (number of replacements) 1 and going up to

the maximum size. A lexicographic ordering over candidates is used to decided which

delete/add combinations to try first with the same budget size.

Figure 3.3 shows the average fraction of combinations tested, over all possible add/delete

combinations, when using 1000 profiles from the sushi dataset, with 10 voters, |C| = 5

and 2 6 |A| 6 5. The x axis has the value of k in k-approval, which varies from 1 to 4.

Figure 3.4 shows the same information but against the t-shirt dataset with 25 votes. We are

interested in the main trend of these charts. What is really interesting is once again that the

larger are k and |A|, the smaller is the computational effort of this algorithm.

We also considered a probabilistic algorithm that the chair of the election could use

to change the winner by replacing candidates. Such an algorithm consists of picking an

add/delete combination randomly (over all possible combinations), and checking whether

the winner changes. From the experimental data, we count the percentage of profiles where

3.6 Empirical Evaluation 49

Figure 3.3: Deterministic algorithm on sushi dataset: average percentage of used combina-

tions.

Figure 3.4: Deterministic algorithm on t-shirt dataset: average percentage of tried combi-

nations.

50 Chapter 3. Replacement Control

Figure 3.5: Deterministic and probabilistic algorithm comparison on the sushi dataset.

Figure 3.6: Deterministic and probabilistic algorithm comparison on the t-shirt dataset.

3.6 Empirical Evaluation 51

the winner changes and we use this as the probability of success of this approach. If p is

the probability that picking one profile is enough to change the winner, it is easy to see that

1/p is the expected number of profiles to be picked up before changing the winner. We

therefore show this 1/p number as a measure of how many combinations should be tested

by this probabilistic algorithm before changing the result (or discovering that it cannot

change).

Figure 3.5 compares the difficulty of the DCRC problem as measured in Fig.2 to this

measure of the difficult of DCRC via the probabilistic algorithm. We used the sushi dataset,

with 10 voters, |C| = 7 and |A| = 3. The x axis has the value of k in k-approval, which

varies from 1 to 6, while the y axis shows the percentage of add/delete combinations that

the algorithm tries before stopping. Figure 3.6 shows the data collected using the t-shirt

data set, with 25 voters, |C|= 7 and |A|= 3. It can be seen that the probabilistic algorithm

appears to be more efficient, since it always needs to try a smaller number of combinations.

We also compared the power of replacing candidates with respect to just adding or

deleting candidates. Figure 3.7 and Figure 3.8 show the percentage of profiles where

the winner changes when the chair uses the replacement control. The bar histograms

show the percentage of profiles where the replacement control succeeds and compare this

performance with the percentage of profiles where only adding candidates and deleting

candidates succeed. We used the sushi dataset, with 10 voters, |C| = 5 and |A| varies

over the x axis from 1 to 4. The different charts show that increasing the number of

candidates that the chair can use the percentage of profiles where the strategic actions

succeed increases.

We compared also the power of the single control actions with the replacement control.

Figure 3.9 shows a stacked bar histogram for plurality and veto. Each bar represents

the percentage of profiles controllable using the replacement control action. The same

profiles could be controlled using also different kind of control actions or they can be

controlled using only replacement control. For each bar, each different area represents the

percentage of profiles which is controllable using only RC but not other forms of control,

the percentage of profiles which is controllable using only AC, and so forth also for only

DC. We also count the percentage of profile where a combination of AC and DC changes

the outcome. Figure 3.9 reports results over the t-shirt dataset, with 10 voters, |C|= 5 and

|A| varies over the x axis from 1 to 4

It can be seen that RC improves the vulnerability of the voting rule since the number of

controllable profiles increases by about 9%, this is a significant increase in controllability

compared to AC or DC alone that is not reported in this chart and which is around 0,3%,

thus making the voting rule much more vulnerable to this kind of control action.

Figure 3.9 shows data about the same experiment but using the t-shirt dataset. What is

52 Chapter 3. Replacement Control

Figure 3.7: Deterministic algorithm on sushi dataset using plurality: RC compared to AC

and DC.

Figure 3.8: Deterministic algorithm on sushi dataset using veto: RC compared to AC and

DC.

3.6 Empirical Evaluation 53

Figure 3.9: Deterministic algorithm: RC compared to AC, DC, and AC+DC.

interesting in this chart is that the structure of the preferences made veto almost resistant

to AC only but the voting rule shows the same trend about the vulnerability to RC. Once

again RC improves the vulnerability of the voting rule since the number of controllable

profiles increases by about 7%, this is a significant increase in controllability compared to

AC or DC alone that is not reported in this chart and which is around 0,2%, thus making

the voting rule much more vulnerable to this kind of control action.

We also run some experiments using Borda. Theorem 3.4.17 shows that Borda is

vulnerable to DCRC. Surprisingly, the deterministic algorithm for checking whether the

winner can be changed by replacing candidates needs to test many combinations, as shown

in Figure 3.10. Also, the number of profiles where the control succeeds decreases when

the cardinality of C increases, as shown in Figure 3.11.

These results suggest that, even if the worst case theoretical analysis tells us that a

voting rule is vulnerable to a certain control action, or resistant, the conditions that make

it susceptible to the control action could be difficult to find in real-world scenarios, and

this could sometimes lead to a reverse situation in practice. Veto, for instance, is resistant

to DCRC, but in practice it is very easy to control and this can be done in almost all the

profiles. On the other hand, Borda is vulnerable to DCRC, but in practice, when the size of

the profile grows, it is unlikely to find a combination that changes the winner.

We also performed experiments with the data collected using the AGH course selection

54 Chapter 3. Replacement Control

Figure 3.10: Borda deterministic and probabilistic algorithm: comparison.

Figure 3.11: Borda: percentage of profiles (over 1000) with successful DCRC.

3.6 Empirical Evaluation 55

dataset. However, we do not report them here since they show the same trends as the ones

of the other datasets.

4. Iterative Voting

In the previous chapter we considered one-shot elections where manipulation and control

are usually considered malicious actions. A voting rule is used to decide which decision

to take, mapping the agents’ preferences over the possible candidate decisions into a

winning decision for the collection of agents. In these kind of scenarios, it may be

desirable that agents do not have any incentive to act strategically. Indeed, manipulation

and control are usually seen as a bad behavior from an agent, to be avoided or at least to

be made computationally difficult to accomplish. We know that every reasonable voting

rule is manipulable when no domain restriction is imposed on the agents’ preferences

[49, 92]. Following this finding, a considerable amount of work has been spent on devising

conditions to avoid manipulation from the perspective of the designer of an election.

For instance, one can devise restrictive conditions on the preference profiles that can

be expressed, or study computational barriers that make the calculation of manipulation

strategies too hard for the agents to be performed [9, 44].

In this chapter we consider a different setting, in which instead manipulation is allowed

in a fair way. In a first step, we let agents express their preferences over the set of possible

decisions, and a voting rule selects the current winner as in the standard case. At this point

we give to one agent at a time the possibility to manipulate, i.e., to change her preferences,

if by doing so the result changes in her favor. The process repeats with a new agent

manipulating until we eventually reach a convergent state, i.e., a profile where no single

agent can get a better result by manipulating. This process is called iterative voting, a topic

which is getting considerable attention recently in the literature on multiagent systems

58 Chapter 4. Iterative Voting

[2, 74, 65, 87, 97]. In this scenario, manipulation can be seen as a way to reach a more

informed decision, to give every agent a chance to vote strategically in a fair way and to

account for inter-agent influence over time.

There are two prototypical situations in which iterative manipulation takes place. The

first example is represented by the response of an electorate to a series of information

polls about the result of a political election. At each step individuals may realize that their

favorite candidate does not have chances to win and report a different preference in the

subsequent poll. The second example is Doodle,1 a very popular on-line system to select a

time slot for a meeting by considering the preferences of the participants. In Doodle, each

participant can approve as many time slots as she wants, and the winning time slot is the

one with the largest number of approvals. At any point, each participant can modify her

vote in order to get a better result, and this can go on for several steps.

Iterative voting has been the subject of numerous publications in recent years. Previous

work has focused on iterating the plurality rule [74], on the problem of convergence for

several voting rules [65], and on the convergence of plurality decisions between multiple

agents [2]. If the agents are allowed to manipulate in any way they want (i.e., to provide

what is usually called their best response to the current profile), then the iterative process

is not guaranteed to converge for most voting rules. Therefore, a crucial problem in the

development of iterative voting processes that can be used in practice is the definition

of simple manipulation strategies that are able to guarantee convergence. Such strategic

actions should not only guarantee convergence, but also be easy to accomplish by the

manipulating agent. In fact, contrarily to what we aim for in classical voting scenarios,

here we do not want manipulation to be computationally difficult to achieve.

In this chapter we introduce two restricted manipulation moves within the scenario of

iterative voting and we analyze some of their theoretical and practical properties. Both

manipulation moves we consider are polynomial to compute and require little information

to be used. A summary of our results follows:

Convergence. Iterative processes defined using our two proposed manipulation strategies

converge for all voting rules we consider, except for single transferable vote (STV)

for which we only have experimental evidence of convergence.

Theoretical evaluation. Iterative voting processes define new voting rules, which compute

in one stage the outcome of the iteration. We analyze the axiomatic properties as

well as the computational complexity of these new voting rules. Moreover, we show

that the winner of an iterative process cannot be Pareto dominated by the winner of

the initial election.

Experimental evaluation. For voting rules that are not Condorcet consistent, we test

1http://doodle.com

59

whether their Condorcet efficiency (that is, the probability to elect the Condorcet

winner) improves by allowing individuals to manipulate in an iterative way. We

also tested the evolution of a second parameter, the Borda score of the winner in the

truthful profile. Our results show that, with the exception of the Borda rule, both

parameters never decrease in iteration, and a significant increase can be observed

when the number of candidates is higher than that of voters, as it is the case in a

typical Doodle poll. We perform experiments using the impartial culture assumption,

a more realistic distribution of preferences called the urn model [14], and real-world

datasets from [72].

There are three possible interpretations and potential applications of our setting. First,

iterative voting can be viewed as a description of strategic behavior in real-world electoral

situations, and manipulation strategies can therefore be considered as best-response strate-

gies of agents with limited computing capabilities and little access to information about

the preferences of the other individuals (descriptive interpretation). Our results show that

manipulation in iterated elections, such as repeated opinion polls, does not influence the

result in a negative way but may actually lead to the election of candidates with better

properties.

Second, restricted manipulation moves may be imposed on agents participating in

iterated decision systems such as a Doodle poll (normative interpretation). The manipu-

lation strategies we propose in this chapter all guarantee the convergence of the iterative

process and, therefore, that a decision will eventually be reached. Moreover, they are easy

to compute and do not require the agents to submit their full preference order, which may

be exponential in combinatorial domains.

The third interpretation is that iterative voting defines novel voting rules which com-

pute in one stage the outcome of the iterative process, starting from the full preference

orders of the individuals. In this respect, our experiments show that iterative voting rules

elect candidates with both a high Borda score and a high Condorcet efficiency, which is

surprising given the classical result by Fishburn [45] that no positional scoring rule can be

Condorcet-consistent, i.e., have maximal Condorcet efficiency.

The results reported in this chapter are published in several publications. The journal

paper first introduces a preliminary study and basic results that are expanded in the

subsequent workshop and conference papers.

• Journal papers:

– Andrea Loreggia. Iterative voting and multi-mode control in preference

aggregation. Intelligenza Artificiale 8 (2014) 39–51. DOI 10.3233/IA-140059.

IOS Press.

• Conference papers:

60 Chapter 4. Iterative Voting

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable and

Toby Walsh. Restricted Manipulation in Iterative Voting: Condorcet Effi-

ciency and Borda Score. In Proceedings of the 3rd International Conference

on Algorithmic Decision Theory (ADT-2013), November 2013

• Workshop papers:

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable

and Toby Walsh. Restricted Manipulation in Iterative Voting: Condorcet

Efficiency and Borda Score. In Proceedings of the 7th Multidisciplinary

Workshop on Advances in Preference Handling (MPREF-2013), August 2013.

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable and

Toby Walsh. Restricted Manipulation in Iterative Voting: Convergence

and Condorcet Efficiency. In Proceeding of the 1st International Workshop

on Strategic Reasoning (SR-2013), 2013.

4.1 Related work

The framework of iterative voting has first been studied by Meir et al. [74] and by Lev and

Rosenschein[65]. In their works, the authors present a game-theoretical formulation of

manipulation in a voting problem and study it as a repeated game. They provide conditions

for the game to reach a Nash equilibrium varying the voting rule under consideration, the

tie-breaking rule and the manipulation strategy used by individuals (although restricted

to better response and best response). Additional work on this topic has been done by

Reyaneh and Wilson [88], and more recently by Rabinovich et al. [86]. The first paper to

consider restricted manipulation strategies in iterated elections is the work of Reijngoud

and Endriss [87] on opinion polls, in which a simple manipulation strategy is considered

and experiments are performed to evaluate the quality of a winning candidate after a

sequence of repeated elections or polls. We review some of their results in Sections 4.2

and 4.3. The more recent work by Obraztsova et al. [82] contains a theoretical analysis of

restricted manipulation strategies. Furthermore, the work of Airiau and Endriss [2] studies

conditions for convergence in the specific setting of iterated majority voting.

On the experimental side, the work of Thompson et al. [97] focuses on the plurality

rule, and studies Nash equilibria in voting games and arrives at similar conclusions as ours

on the qualities of winning candidates after iterative best-response manipulation in terms

of Condorcet efficiency and Borda score. Finally, iterative voting may have interesting

applications in the development of recommender systems which need to collect information

in an iterative fashion, such as in the work of Dery et al. [79].

4.2 Background 61

4.2 Background

In this section we recall the basic notions of voting theory that we shall use in this chapter

and we present the setting of iterative voting.

4.2.1 Iterative Voting

Voting situations are not immune to strategic reasoning by the voters. Individuals may have

incentives to manipulate the election by misreporting their truthful preferences in order

to force a candidate they prefer as the winner. The celebrated Gibbard and Satterthwaite

Theorem [49, 92] showed that no reasonable voting rule, i.e., one that is not dictatorial and

does not rule out a priori any candidate, is immune to manipulation when more than 3

candidates are involved.

The setting of iterative voting studies repeated voting processes in which individuals

are allowed to manipulate one after the other, until convergence is eventually reached.

Starting from a profile P0, a sequence of profiles is then created with the property that

at every step Pk only one individual has changed her preference from profile Pk−1. It is

usually assumed that individuals use a best response strategy when choosing what linear

order to use to manipulate the election, i.e., they choose the linear order that yields the

best possible candidate based on their truthful preference. When the iteration reaches a

Nash equilibrium, i.e., a profile in which no individual has an incentive to manipulate the

election, we say that the iterative process reaches convergence. Important features of this

framework are the sequentiality of the manipulation process (a straightforward observation

is that when agents are allowed to manipulate simultaneously then even basic iterative

processes do not converge [74]) and the fact that individual agents are myopic, i.e., they

have a strategic horizon limited to the current profile under consideration.

Meir et al. [74] and Lev and Rosenschein [65] showed that convergence is rarely

guaranteed with most voting rules under consideration, and that this property is highly

dependent on the tie-breaking rule used. For instance, while iterative plurality always

converges with a linear tie-breaking rule, the iterative version of PSRs other than plurality

as well as Maximin do not always converge. The following example shows that the iterative

version of the Copeland rule does not converge even if we choose a linear tie-breaking

rule.2

� Example 4.1 Let there be two voters and three candidates, with a≻ b≻ c as tie-breaking

order. The initial truthful profile P0 has c> b> a as the preference of voter 1 and a > c > b

for voter 2. Candidate c wins in pairwise comparison with b, and no other candidate win

any other pairwise comparison. Thus, the winner using the Copeland rule is c. Voter 2 has

2We refer to previous work by Loreggia [69] for an extensive review of results studying the convergence

of iterative voting rules.

62 Chapter 4. Iterative Voting

now an incentive to change her preferences to a > b > c, in which case by the tie-breaking

order the winner is a, which is preferred by voter 2 in her truthful preference. Now voter 1

is unhappy, and changes her ballot to b > c > a to force candidate b as the winner. This

results in an incentive for voter 2 to change her ballot to a > c > b, again forcing a as

winner. Finally, voter 1 changes again her ballot to c > b > a to obtain c as winner, moving

back to the initial profile and creating a cycle of iterated manipulation. The situation is

depicted in Figure 4.1, where the voter manipulating is marked on top of the transition

arrows.

v1 : b > c > a

v2 : a > c > b

Winner = a

v1 : b > c > a

v2 : a > b > c

Winner = b

v1 : c > b > a

v2 : a > b > c

Winner = a

v1 : c > b > a

v2 : a > c > b

Winner = c

v2

v1

v2

v1

Figure 4.1: Copeland does not converge with best response manipulation.

�

4.3 Restricted Iterative Voting

In this section we present the setting of restricted iterative voting, in which individuals

are allowed to manipulate one at a time by using a restricted set of strategic moves. We

introduce two notions of manipulation strategies which are easy to compute from the point

of view of the agents, and we show the convergence of the associated iterative process

(with the notable exception of STV). We also show that the winner of the iterated voting

process after convergence can never be a dominated candidate.

4.3.1 Restricted Iterative Voting Processes

As it is done in the case of iterative voting [74, 65], we consider a sequence of repeated

elections with individuals manipulating one at a time at each step. The iteration process

starts at a profile which we consider as truthful, i.e., every individual reports her real

preference. We regard this assumption as realistic, given that in the first stage individuals

do not have any information regarding the preferences of the other voters and that a chance

to manipulate will be given to them in eventual iteration of the process. In Section 4.5 we

4.3 Restricted Iterative Voting 63

perform an initial study of the manipulation of the entire iterative process, in which the

initial state may be non-truthful.

Let us first introduce some notation. Let inf be a function that associates with a profile

of preferences P a set of profiles inf (P), denoting the information set available to an agent

in profile P. For instance, inf (P) = P in case the agent is fully aware of the profile, and

inf (P) = {P | F(P) = c and ∀Pi ∈ P,Pi = own ballot} if the agent is only aware of the

winner of the current election under F and her own ballot. At each stage of iteration we

assume that agents follow a restricted set of strategic moves:

Definition 4.3.1 A manipulation strategy is a function M, which takes as input a

profile of preferences P0 = (P0
1 , . . . ,P

0
n), an individual i ∈V , a subset of profiles inf (P),

and a voting rule F , and outputs a linear order M(P0, i, inf (P),F) which identifies

the potentially non-truthful preference that will be reported by agent i at profile P

knowing that rule F is used. Furthermore, we require that the manipulator with truthful

preferences P0 prefers the new winner F(M(P0, i, inf (P),F),P−i) to the current one

given by F(P).

If M(P0, i, inf (P),F) = Pi we say that individual i in profile P does not have incentives to

manipulate. The notion of best response used in iterative voting can be modeled as the

following manipulation strategy (assuming that inf (P) = P):

Mbest(P
0, i,P,F) = argmax

P0
i

{P′i∈L(C)}
F(P′i ,P−i)

where L(C) is the set of all linear orders over C, the maximization is computed following

the truthful order P0
i , and P−i is the profile consisting of all individual preferences in P

except for that of individual i. If the maximization is not a singleton then a unique linear

order is chosen according to a predefined tie-breaking rule.

We also assume that the iterative process follows a turn function, which identifies the

individual that is allowed to manipulate at every step of the iteration:

Definition 4.3.2 A scheduler or turn function is a function τ , which given a sequence

of profiles P0, . . . ,Pk outputs an individual i ∈V who is allowed to manipulate at stage

k.

The easiest example of a scheduler is the sequential scheduler in which voters are manipu-

lating following the order in which they are given. Another example is the fair scheduler

which associates with each voter i a dissatisfaction index di(k) defined as follows: starting

from 0, di(k) increases by one point for each iteration step in which i has an incentive

to manipulate but is not allowed to do so by the turn function. At iteration step k the

individual that has the highest dissatisfaction index is allowed to move (in the first step,

and in case of ties, the scheduler follows the initial order in which voters are given). A

similar notion of scheduler has been introduced by Apt and Simon [3] in weakly acyclic

64 Chapter 4. Iterative Voting

games, and is of crucial importance in showing the convergence of iterative processes.

We can now give the following definition:

Definition 4.3.3 Given a voting rule F , a manipulation strategy M and a turn function τ ,

a restricted iterative voting process is a sequence of profiles P0, . . . ,Pk such that, for all

steps j 6 k, profile P j+1 is obtained from profile P j by having individual τ(P0, . . . ,Pi)

changing her ballot following manipulation strategy M. A restricted iterative process

converges if there exists a k0 such that at Pk0 no individual has incentive to manipulate.

The current winner can be computed at every stage of the iterative process by applying

F to the profile Pk. The Algorithm 5 can be used to compute the final winner in case the

restricted iterative process converges:

Algorithm 5 Computing winner

Input: Profile P0, voting rule F , manipulation strategy M, scheduler τ

Output: A winning candidate in C (in case of convergence)

function COMPUTEWINNER(P0, i,P,F)

k← 0

winner← F(Pk)
while has_incentive(M,Pk) do

manip← τ(P0, . . . ,Pk)
k← k+1

Pk← (M(P0,manip, inf (Pk−1),F),P−manip)
winner← F(Pk)

return winner

The procedure has_incentive(M,P) checks that at least one individual has an incentive to

manipulate using M at profile P, i.e., that we did not reach convergence. Recall that an

individual does not have incentives to manipulate in profile P if M(P0, i,P,F) = Pi, and

that P−i is the profile composed of all individual preferences except for i.

4.3.2 Second-Chance and Best-Upgrade

Given the setting of restricted iterative voting, we are interested in devising simple ma-

nipulation strategies which guarantee convergence. Previous work by Reijngoud and

Endriss [87] proposed a manipulation strategy which can be applied only once by the

voters and represents a good starting point for our analysis. Let Pk be the current profile at

step k and P0 be the initial truthful profile:

k-pragmatist (k-PRA) [87]: the manipulator i moves to the top of her reported ballot the

most preferred candidate following P0
i among those that scored in the top k positions

in Pk.3

3Note that all voting rules considered in this chapter can be easily extended to output a ranking of the

candidates rather than just a single winner, by using the score of each candidate to construct an ordering.

4.3 Restricted Iterative Voting 65

Under the k-pragmatist restriction, voters are allowed to move to the top of their reported

ballot the individual which they prefer amongst the top k candidates ranked by F . We

propose the two following definitions:

second-chance (SC): the manipulator i moves the second-best candidate in P0
i to the top

of her reported ballot Pk+1
i , unless the current winner w = F(Pk) is already her best

or second-best candidate in P0
i .

SC allows only a very simple move: switch the first and second candidate in the truthful

preference of the manipulator’s ballot unless she is already satisfied, i.e., in case the current

winner is ranked first or second in her truthful ballot. It represents a simplistic manipulation

strategy to obtain baseline results in the setting of restricted iterative voting.

best-upgrade (BU): the manipulator i moves the most preferred candidate in P0
i which is

above w = F(Pk) in Pk
i to the top of her reported ballot Pk+1

i , among those that can

become the new winner of the election.

BU instead allows an agent to swap the top candidate with a less preferred one, if this

is currently ranked above the current winner. The Algorithm 6 can be used to compute

BU(P0, i, inf (P),F):

Algorithm 6 Computing BU

Input: Truthful profile P0, individual i, profile P, voting rule F

Output: A linear order over C

function COMPUTEBU(P0, i,P,F)

original_order← Pi

better_than_winner←{c ∈C | c Pi F(P)}
while better_than_winner 6= /0 do

d←maxP0
i

better_than_winner

new_order← upgrade_top(d,Pi)
if F(new_order,P−i) = d then

return new_order

else

better_than_winner← better_than_winner−{d}

return original_order

With BU the manipulator i selects those candidates that she prefers to the current winner

in her current ballot at step k; then, starting from the most preferred one in the truthful

ballot P0
i , she tries to put such candidate on the top of her current ballot (upgrade_top)

and computes the outcome of the election; the first candidate who succeeds in becoming

the new winner of the manipulated election is the one chosen for the top position of

her reported ballot. As should be clear from the algorithm, the function inf must return

sufficient information in order for a single agent to perform winner determination: the

66 Chapter 4. Iterative Voting

score of each candidate for scoring rules, the weighted majority graph for Copeland and

maximin, and the full profile for STV.

While the choice of these restrictions may at first seems arbitrary, we believe that

they represent three basic prototypes of simple manipulation strategies for agents with

bounded computational capabilities and limited access to information. Manipulation

strategies can be evaluated following three criteria: (i) the convergence of the iterative

voting rule associated with the restriction, (ii) the information to be provided to voters

for computing their strategy, i.e., the function inf depending on the voting rule, and

(iii) the computational complexity of computing the manipulation move at every step.

Depending on the interpretation at hand different notions of an ideal restriction can be

defined. For instance, if we view iterative voting as a normative process in which we

impose restricted manipulation strategies on agents in order to guarantee convergence, an

ideal restriction always guarantees convergence, requires as little information as possible,

and is computationally easy to compute.

SC requires little information to be computed, i.e., only the winner of the current

election, and it is also very easy to compute. The amount of information required by BU

depends on the voting rule used: the candidates’ final score in case of scoring rules, the

weighted majority graph for Copeland and Maximin. Instead, in the case of STV the full

profile is required. From the point of view of the manipulator, BU is computationally easy

(i.e., polynomial) to perform. We point to Section 4.5.3 for a more detailed analysis of the

computational complexity of performing iterative manipulation.

4.3.3 Convergence

In this section we study the convergence of the restricted iterative voting process associated

with our proposed manipulation strategies.

Theorem 4.3.1 An iterative process defined using second-chance (SC) converges for

every (deterministic) voting rule F and turn function τ .

Proof. The proof of this statement is straightforward from our definitions. The iteration

process starts at the truthful profile P0, and each agent is allowed to switch the top candidate

with the one in second position only once. We stress the fact that in this chapter we consider

only deterministic voting rules, i.e., no randomised procedure is used in their definition,

therefore when no individual changes their preferences anymore the result of the voting

rule remain invariant and the process converges. �

Theorem 4.3.2 An iterative process defined using best-upgrade (BU) converges for

every turn function τ if F is a PSR, the Copeland rule or the Maximin rule.

4.3 Restricted Iterative Voting 67

Proof. The winner of an election using a PSR, Copeland or Maximin is defined as the

candidate maximizing a certain score (or with maximal score and highest rank in the

tie-breaking order). Since the maximal score of a candidate is bounded, it is sufficient to

show that the score of the winner increases at every iteration step (or, in case the score

remains constant that the position of the winner in the tie-breaking order increases) to

show that the iterative process converges. Let us start with PSR. Recall that the score of a

candidate c under a PSR is ∑i si where si is the score given by the position of c in ballot

Pi. Using BU, the manipulator moves to the top a candidate which lies above the current

winner c. Thus, the position – and hence the score – of c remains unchanged, and the new

winner must have a strictly higher score (or a better position in the tie-breaking order)

than the previous one. Since the maximal score of a candidate is bounded by n times the

maximal score that can be given, the process eventually stop. The case of Copeland and

Maximin can be solved in a similar fashion: it is sufficient to observe that the relative

position of the current winner c with all other candidates (and thus also its score) remain

unchanged when ballots are manipulated using BU. Thus, the Copeland score and the

Maximin score of a new winner must be higher than that of c (or the new winner must be

placed higher in the tie-breaking order). �

This proof generalizes to show the convergence of iterative processes using BU for any

voting rule where BU does not change the score of the winner and which outputs as winners

those candidates maximizing a notion of score.

For the case of STV, we observed experimentally that its iteration always terminates

using the fair turn function. However, as shown in the example in Figure 4.2, convergence

of STV is not guaranteed if the turn function used is sequential. For space constraints we

are omitting the preference symbol > or P between candidates, reading preference from

left to right. Let the tie-breaking rule be e >C d >C c >C b >C a, and let voters manipulate

using BU. The initial truthful profile is the one on the top left corner.

A closer look at the proofs of Theorem 4.3.1 and Theorem 4.3.2 suggests a bound on

the number of iterations of an iterative process defined with our manipulation strategies.

Since SC can be applied only once, the iteration process associated to it stops after at

most |V | steps for every voting rule. The case of BU is slightly more complex. At every

step of the iteration the score of the winner must increase (or she should be placed higher

in the tie-breaking order). Thus, in the worst case different winners will touch all possible

scores and for each score we will climb up the tie-breaking order until we reach the highest

score on the highest tie-breaking position. Since the maximal score of the winner is

bounded by a polynomial, so is the number of steps. These observations are summed up in

the following statement.

68 Chapter 4. Iterative Voting

v1 : daebc

v2 : bedac

v3 : baedc

v4 : cbeda

v5 : cebda

v6 : adbec

Winner = d

v1 : daebc

v2 : ebdac

v3 : baedc

v4 : cbeda

v5 : cebda

v6 : adbec

Winner = e

v1 : adebc

v2 : ebdac

v3 : baedc

v4 : cbeda

v5 : cebda

v6 : adbec

Winner = a

v1 : adebc

v2 : bedac

v3 : baedc

v4 : cbeda

v5 : cebda

v6 : adbec

Winner = b

v2

v1

v2

v1

Figure 4.2: STV with sequential turn function does not converge.

Theorem 4.3.3 An iterative voting process defined using SC will terminate after at most

O(|V |) steps. An iterative voting process defined using BU for a PSR, Copeland, or

Maximin, converges after at most O(s×|C|) steps, where s is the maximal score that a

candidate can receive in an election.

We conclude by showing that the veto rule does not iterate using our proposed manipulation

strategies, and therefore will not be included in our experimental analysis.

Theorem 4.3.4 If |C|> 3 the iterative voting processes defined using SC or BU with

the veto rule does not iterate, i.e., no agent has incentives to manipulate in the truthful

state.

Proof. Recall that the veto rule gives one point to all candidates but the one ranked last

in the individual ranking. It is then straightforward to observe that SC cannot change

the outcome of the veto rule if there are more than 3 candidates, since the swap occurs

only in the top part of the individual preference orders. The same holds for BU: since the

candidates that can be upgraded must lie above the current winner of the election, even if

the winner is in last position the upgrade will not change the score of any of the candidates,

as the veto rule gives one point to all candidates but the last. �

4.3 Restricted Iterative Voting 69

4.3.4 Quality of the Winner

Let P be a profile of preferences. A candidate z is Pareto-dominated by another candidate

a in P if it is the case that a Pi z for all i ∈V . The following holds:

Theorem 4.3.5 Let F be a PSR and τ be a scheduler. The winner of an iterative voting

process defined using SC and BU is never dominated in P0 by the winner of the initial

truthful profile if the latter is higher in the tie-breaking order than the former.

Proof. Let a be the winner of the initial truthful profile, i.e., a = F(P0), and let z be

dominated by a in P0. Let also a be higher in the tie-breaking order than z. We first

deal with the more difficult case of BU and we show by induction that at every step k

of the iteration z will still be dominated by a. Given that a PSR cannot elect a Pareto-

dominated candidate, we conclude that F(Pk) 6= z and thus that z cannot be the winner of

the iterated voting process (recall that by Theorem 4.3.1 the iteration converges under our

assumptions).

Let us write a≻k z when a Pareto-dominates z in Pk and a >X z. The base inductive

case when k = 0 is true since a ≻0 z by assumption. Let therefore Pk be a profile such

that a ≻k z and let F(Pk) = c. If c Pi z for all i ∈ V , in particular if c = a, then z cannot

be upgraded by BU and will therefore still be dominated by a in Pk+1. Hence we can

assume that there exists an individual j for which a Pk
j z Pk

j c, and that j is allowed to

manipulate at stage k by the turn function. Since z is above the current winner, individual j

is allowed to upgrade z to the top of the ranking provided it becomes the new winner of the

election. We show that if this is the case then also upgrading a to the top of the ranking

would lead a to be the winner of the manipulated election. Since BU upgrades the best

candidate following P0, and a≻0 z by our assumptions, z will not be upgraded and we can

conclude that a≻k+1 z. Let s′(z) be the score of candidate z if upgraded to the top position

by individual j in profile Pk. We assume that z becomes the new winner of the election,

and thus that s′(z)> s(c), where s(c) is the score of c in Pk, or in case of equality that z

sits higher in the tie-breaking order than c. Let now s′′(a) be the score of a if it is upgraded

to the top position by j in Pk instead of z. We show that s′(a)> s′(z) and thus that a can

also become the new winner of the election (recall that in case the two scores are equal,

a sits higher than z in the tie-breaking order by assumption). Upgrading a or z gives the

same score to these two candidates, i.e., the maximal score given by F . All the individuals

other than the manipulator j keep their rankings as in Pk, and since a≻k z then a gets a

higher score than z by all individuals. Thus, a gets a higher or equal score than z if put to

the top of the ranking, and we can conclude that a≻k+1 z.

In case the iterative voting process is defined using SC the proof is easier. Let P0 be

the initial truthful profile, let a = F(P0) and let s0(a) be the score of a in P0. Let z be

70 Chapter 4. Iterative Voting

v1 : vazcw

v2 : wcazv

v3 : azcvw

Winner = a

v2→

v1 : vazcw

v2 : cwazv

v3 : azcvw

Winner = c

v3→

v1 : vazcw

v3 : cwazv

v3 : zacvw

Winner = z

Figure 4.3: A dominated candidate elected by PSR with scores (2,1,1,1,0).

dominated by a in P0, and let a >X z. To show that z cannot be the winner of the iterated

election we will show that the score of z at every step k is smaller than the initial score of

a, i.e., that sk(z)6 s0(a). To see this it is sufficient to observe that manipulation using SC

can only increase the score of z by switching it with a in the first position. Thus, the best

possible sequence of manipulation will bring z to the position of a, giving z at most the

score of a in the initial profile. Since the score of a new winner in the iterated election

must have a bigger score than that of a or be ranked higher by the tie-breaking order, we

conclude that z cannot become the winner of the iterative process. �

Observe that if we relax the assumptions of Theorem 4.3.5 by allowing the winner of the

iterated process to sit higher than the initial winner in the tie-breaking order, then the proof

ceases to hold. This is shown by the following example.

� Example 4.2 Three voters have truthful preferences as in the first profile of Figure 4.3,

where preferences are read from left to right. All individuals prefer candidate a to z,

i.e., candidate z is Pareto-dominated by a, but let the tie-breaking order be as follows:

z >C c >C a >C v >C w. Assume that F is a PSR with scoring vector (2,1,1,1,0). The

winner of the election in the initial profile is therefore a. However, as shown in Figure 4.3,

successive manipulations using SC yields z as the final winner of the iterated voting

process.

�

A result analogous to Theorem 4.3.5 can be obtained for the Copeland rule.

Theorem 4.3.6 The winner of an iterative voting process defined using SC and BU with

the Copeland rule and any turn function is never dominated in P0 by the winner of the

initial truthful profile, provided the former is higher in the tie-breaking order than the

latter.

Proof. The structure of the proof for the case of BU is the same as that of Theorem 4.3.5.

The inductive step is different, since here we have to show that if the dominated candidate

z becomes the new winner of the election by being upgraded to the top position, i.e., z

wins against more candidates in pairwise comparisons, then also a can win if upgraded to

top position. Let therefore N′z be the Copeland score of z if upgraded by BU. We want to

show that the analogous score N′a > N′z to conclude that a≻k+1 z and prove the inductive

4.4 Experimental Evaluation 71

step. Since a≻k z we know that each pairwise comparison won by z in Pk is also won by

a. Now if z is upgraded by j to the top position then z may increase its Copeland score

by winning against some candidates that lied above him in Pk. But the same increase will

be given to a if it is put to the top position, thus granting him a higher or equal Copeland

score (recall that a is ranked higher than z in the tie-breaking order).

Let us now consider manipulation strategy SC. We prove that if z is dominated by

candidate a, and a >X z, then z cannot win in any step of the iterative process. The only

way in which SC can favor candidate z is by having z win against a in pairwise comparison.

Under our assumptions this can happen in case a majority of individuals rank a and z

respectively in first and second place in the truthful profile, and these individuals put z on

top in subsequent iterations using SC. However, in this situation a is a Condorcet winner of

the truthful profile, i.e. she is winning against any other candidate in C, and hence remains

the winner in all possible iterations (see Theorem 4.5.2). �

4.4 Experimental Evaluation

In this section we evaluate four manipulation strategies, namely SC, BU and 2 and 3-pragmatists,

using two parameters to assess the quality of the resulting winner. First, we measure

whether the restricted iterative version of a voting rule has a higher Condorcet efficiency

than the initial voting rule, i.e., whether the probability that a Condorcet winner (if it exists)

gets elected is higher for the iterative rather than non-iterative rule. Second, we observe

the variation of the Borda score of the winner, i.e., we compare the average position of

the current winner in the initial truthful profile at convergence with the value of the same

parameter in the initial profile. We focus on four voting rules: plurality, STV, Borda,

2 and 3-approval. Our findings show that both parameters never decrease by allowing

iterated restricted manipulation, and that a substantial increase can be observed in case

the number of candidates is higher than the number of voters (e.g., in a Doodle poll). We

conclude the section by reporting on some initial experiments with real-world datasets.

4.4.1 Experimental Setting

We generated profiles using the Polya-Eggenberger urn model (see, e.g., [14]). Individual

ballots are extracted from an urn initially containing all m! possible ballots, i.e., all linear

orders over m candidates, and each time we draw a vote from the urn we put it back with

a additional copies of the same vote. In this way we generate profiles with correlated

preferences and we control the correlation ratio with the parameter a. In our experiment

we tested three different settings: the impartial culture assumption (IC) when a = 0, the

UM10 with 10%-correlation when a = m!
9
, and the UM50 with 50%-correlation when

a = m!.

72 Chapter 4. Iterative Voting

Our results are obtained using a program implemented in Java ver.1.6.0.4 We model

two prototypical examples of iterative voting: in the electoral simulation we set the number

of candidates to m = 5 and the number of voters to n = 500 to model situations in which a

large population needs to decide on a small set of candidates. In the Doodle simulation

we set the number of candidates to m = 25 and the number of voters to n = 10 to model a

small group of people deciding over a number of time slots. In both cases we performed

additional experiments with similar number of voters and candidates without observing

significant variation in the results. In all cases we validated our conclusions using Mc

Nemar’s test, obtaining results with p consistently below 0.00001. In our experiments we

used the fair turn function defined in Section 4.3. We also performed initial experiments

using the sequential turn function obtaining similar results to those shown below (with the

exception of STV, which does not converge using the sequential turn function).

It is interesting to observe that the higher the correlation in the profile the smaller the

number of profiles in which iteration takes place (with the notable exception of the Borda

rule). In Figure 4.4 it is shown, for the Doodle simulation, the percentage of profiles in

which iteration takes place for the three different correlation ratios considered. In the case

of plurality, convergence is reached after an average of 3 steps and a maximal of 9 steps.

The figures for the other voting rules are similar.

4.4.2 Condorcet Efficiency

Figures 4.5 and 4.6 compare the four restrictions on manipulation moves with respect to

the Condorcet efficiency of the iterative version of the five voting rules under consideration,

respectively for the Doodle simulation and the electoral simulation. In both experiments

the correlation ratio is set at 10% and we generated 10.000 profiles all with Condorcet

winner.

Except for the case of the Borda rule, the Condorcet efficiency of the iterative version

of a voting rule always improves with respect to the non-iterative version, and the growth

is consistently higher when voters manipulate the election using BU rather than SC. Let

us also stress that while the increase in Condorcet efficiency using SC is minimal, it

is still surprising that such a simple move can result in a better performance than the

original version of the voting rule. The 2-pragmatist restriction performs quite well with

the plurality rule in both experiments. STV has the highest performance of all voting

rules considered thus far with respect to Condorcet efficiency and this performance is

amplified by the use of iterated manipulation, resulting in the election of a Condorcet

winner in almost 95 percent of the cases. As remarked earlier, we observed convergence

in all profiles considered. The increase in Condorcet efficiency is more noticeable in the

4The code of the program used for the experiments is made available at the following address:

www.math.unipd.it/~loreggia/download.html

4.4 Experimental Evaluation 73

Figure 4.4: Number of profiles with iteration compared to the correlation ratio.

Figure 4.5: Doodle experiment with UM10: Condorcet efficiency.

74 Chapter 4. Iterative Voting

Doodle simulation rather than in the electoral situation. When the number of individuals is

considerably higher than the number of alternatives the iterative process leads to a minimal

increase in Condorcet efficiency.

Figure 4.6: Electoral experiment with UM10: Condorcet efficiency.

We also run the same two experiments with different correlation ratios. Using the IC

assumption the increase in Condorcet efficiency is more significant, while with the UM50

assumption the results are much less perturbed by iteration. This should not come as a

surprise, given that the amount of profiles in which iteration takes place decrease rapidly

with the growth of the correlation ratio.

4.4.3 Borda Score

The second parameter we used to assess the performance of restricted manipulation moves

is known in the literature as the Borda score. Given a candidate c, let pi be the position of

c in the initial preference b0i of voter i (from bottom to top, i.e., if a candidate is ranked

first she gets m−1 points, while if she is ranked last she gets 0 points). We compute the

Borda score of c as ∑
n
i=1 pi.

For each voting rule and each restriction on the set of manipulation moves we compared

the score of the winner of the non-iterative version with that of the winner of the iterative

version after convergence over 10.000 profiles. A particular case is that of the Borda rule.

4.4 Experimental Evaluation 75

By definition this rule elects those candidates with the highest Borda score, hence we did

not evaluate the evolution of this parameter in this case. Our results showed that in both the

Doodle and the electoral simulation with UM10 the Borda score increases minimally if we

allow for iterated restricted manipulation, resulting in a chart similar to that in Figure 4.6.

The best results are in this case obtained by using BU and 2-pragmatists restrictions with

2 and 3-approval. As in the previous section, by decreasing the correlation of the generated

preferences we obtain a more significant increase in the Borda score after iteration.

4.4.4 Real-world Datasets

We performed experiments using data from [72], a library of preference

datasets collected from various sources. In order to mimic the original preference distribu-

tion, we generated 10.000 profiles with 5 candidates and 50 voters drawing votes uniformly

from three original datasets: the Netflix Prize Data [13], the Skating Data, and the Sushi

data [59]. What we observed is that preferences contained in such datasets are quite

correlated, with many profiles being composed by almost unanimous orders. The results

of the iteration are therefore negligible, as can be seen in Figure 4.7, and iteration takes

place in just a handful of profiles (in the order of 5–10 per 10.000 profiles) in accordance

with the results obtained for the highly correlated urn model UM50.

�������� �� ��� ���

�����

������
������

Figure 4.7: Sushi Dataset experiment: Condorcet efficiency

These results suggest that iterative voting is not of practical use with highly correlated

preferences, e.g, in situations such as the measuring of objective qualities of movies, sushi

or skating performances. As the UM10 Doodle experiment shows the best performance

of restricted iterative voting are instead obtained in situations where preferences are less

correlated and the group of voters is small with respect of the number of alternatives.

76 Chapter 4. Iterative Voting

4.5 Iterative Processes as a One-Stage Voting Rule

In this section we view iterative voting processes as a one-stage voting rule, which collects

the full preference order from the individual voters and runs the sequence of manipulation

moves until reaching convergence. We show that many axiomatic properties that are

satisfied by a voting rule are then transferred to its iterative versions, depending on the

manipulation strategies used. We also analyze the computational complexity of computing

the winner of these novel voting procedures and we conjecture that for some of those rules

the problem of strategic manipulation may become computationally hard.

4.5.1 One-Stage Iterative Voting Rules

The following definition presents the one-stage iterative version of a voting rule depending

on the different manipulation strategies used:

Definition 4.5.1 Let F be a voting rule, τ a turn function and M a manipulation strategy.

FM associates with every profile P the outcome of the iteration of F using turn function

τ and manipulation move in M in case it converges, and symbol ↑ otherwise.

4.5.2 Axiomatic Properties

Voting rules are traditionally studied using axiomatic properties, and we can inquire

whether these properties extend from a voting rule to its iterative version. We refer to

Section 2.4 for an explanation of these properties.

We say that a restricted manipulation move M preserves a given axiom if whenever a

voting rule F satisfies the axiom then also FM does satisfy it.

Theorem 4.5.1 SC and BU preserve unanimity for every turn function. SC and BU

preserve neutrality if the turn function is neutral. a

aI.e., if the turn function is invariant under permutation of alternatives.

Proof. Assume that the iteration process starts at a unanimous profile P in which candidate

c is at top position of all individual preferences. If F is unanimous, then F(P) = c, and

no individual has incentives to manipulate either using SC or BU. Thus, iteration stops at

step one and FSC(P) = c and FBU(P) = c, satisfying the axiom of unanimity. The proof

for anonymity and neutrality is straightforward from our definitions. �

A further important property of voting rules is Condorcet consistency: a rule is Con-

dorcet consistent if it elects a Condorcet winner when it exists. Examples of Condorcet-

consistent rules are Copeland and maximin.

Theorem 4.5.2 SC and BU preserve Condorcet consistency.

4.5 Iterative Processes as a One-Stage Voting Rule 77

Proof. Let c be the Condorcet winner of a profile P. If F is Condorcet-consistent then

F(P) = c. When individuals manipulate using either SC or BU the relative position of

the current winner with all other candidates does not change, since the manipulation only

involves candidates that lie above the current winner in the individual preferences. Thus

c remains the Condorcet winner in all iteration steps Pk of the iterative process. Since

FSC(P) = F(P) and F is Condorcet-consistent, we have that FSC(P) = c and thus FSC

is Condorcet consistent. The case of BU is easier: since it is not possible to change the

winner of the initial truthful election, i.e., the Condorcet winner, then by the definition of

BU there will be no iteration and the iterated voting rule yields the same result as the initial

voting rule. �

4.5.3 Computational Complexity

The complexity of the winner determination problem requires us to determine the time

necessary to compute the outcome of a voting rule F on a given input. This problem has

been widely investigated for many voting rules, together with the complexity of many other

problems related to voting such as manipulation and bribery (see, e.g., [43]). The problem

of winner determination should be easy to solve to render a voting rule interesting for

practical applications (and this problem is polynomial for all voting rules we considered).

For all these rules for which we have proven convergence in Section 4.3.3 we are able

to show that the problem of winner determination remains polynomial also for the iterative

version:

Theorem 4.5.3 The winner determination problem is polynomial for iterated PSRs,

Copeland and Maximin using restricted manipulation moves SC and BU.

Proof. The proof consists of the following observations: at each iteration step, a manip-

ulation strategy should be used to determine the new profile, and the current winner be

computed (recall the algorithms presented in Section 4.3). All manipulation strategies we

considered can be computed in polynomial time, and the winner determination problem is

also polynomial for PSRs, Copeland and Maximin. Hence the outcome of every iteration

step can be computed in polynomial time. We can now conclude by using Theorem 4.3.3

to obtain a polynomial upper bound on the number of iteration steps for both manipulation

strategies SC and BU. �

The problem of the computational complexity of strategic manipulation in iterated voting

processes is rather complex, and we leave it as an open question. Consider an iterative

voting process, and a voter which is submitting her first vote, which we assume as truthful.

If provided with enough information about the preferences of the other individuals, this

voter may compute the outcome of the iterated voting rule for each preference order she

78 Chapter 4. Iterative Voting

may submit, and thus behave accordingly manipulating the entire iterative voting process.

However, observe that in this case we drop one of the crucial assumptions of iterative

voting processes, as individuals are not myopic but act strategically with an arbitrarily long

horizon.

All voting rules we considered except for STV are easy to compute, but also to

manipulate. A voting procedure becomes attractive when the winner determination problem

is polynomial while manipulation is NP-hard (as it is the case for STV). An investigation

of the computational complexity of manipulating FM varying the manipulation strategy M

and the voting rule F has the potential of unveiling new similar rules. Further arguments

in this direction can be taken from the recent work by Narodytska and Walsh [80], which

suggest that adding multiple steps to a voting rule may lead to a significant increase in the

computational complexity of manipulation.

5. Sentiment analysis

We live in a world where we communicate more and more on social media, writing text

that reflects our opinions and feelings. Being able to formalize such opinions and reason

with them can be very useful for a number of practical applications. First, service providers

may personalize their offer based on customers opinions. Second, companies may test

what products would be better received by potential consumers, and adjust their strategy

accordingly. Third, community councils and candidates in political elections may evaluate

the reception of their proposals, and focus their attention on the most preferred ones. It

comes therefore as no surprise that the extraction of individual opinions from textual

expressions, such as tweets, blog posts, or product reviews, has been the subject of a very

active area of research in recent years.

Researchers in sentiment analysis and opinion mining [? 83] developed a collection of

tools in natural language processing (NLP) for the extraction of opinions, sentiments, or

attitudes of individuals from their textual expressions. In order to summarize the opinion

of all the individuals in a unique indicator, the opinions extracted are then used to define a

notion of collective sentiment about the entities under consideration, be they commercial

products, policies or candidates.

In this chapter we observe that current sentiment analysis techniques are good enough

when we are trying to understand the positive or negative opinion of a set of agents over a

single item, but they fall short when we are considering several items. Our claim stems

from the observation that, when several items are being compared, the approach taken by

sentiment analysis of only focusing on positive or neutral polarities may differ from the

80 Chapter 5. Sentiment analysis

approach that computes the most preferred item by making use of comparative preference

information. Consider for instance the following situation, in which two candidates Ann

and Bob are competing in an election.

� Example 5.1 Assume there are a total of 35 people who are expressing their positive or

negative attitude on social media about two candidates Ann and Bob: 20 persons are talking

positively about Ann, 15 persons are talking negatively about Ann, 30 persons are talking

positively about Bob, and 5 persons are talking negatively about Bob. However, what

people write on social media is just a textual abstraction of the comparative preferences

they have in mind, which in this particular case we assume to be a ranked list of the two

candidates. Assume therefore that their preferences are as described in the following table,

where candidates to the left are more preferred than candidates to the right, and the bar

signals the threshold of positive vs. negative opinions:

20 voters: Ann Bob |
10 voters: Bob | Ann

5 voters: | Ann Bob

Sentiment analysis Bob

Majority rule Ann

In the profile described above there are 30 voters that express a positive opinion about

Bob, and 20 voters that express a similar opinion about Ann. Hence, sentiment analysis, as

well as similar methods based solely on sentiment information, would conclude that Bob

is the most popular candidate. However, if we assume that the election will be decided

by majority voting, then Ann will be the winner of the election with 25 votes over 10 for

Bob, unlike the outcome of sentiment analysis. Observe that the positive/negative opinions

expressed by the individuals are consistent with the preferences that will then be revealed

at the time of voting. �

The situation above is a good example of the use of sentiment analysis and preference

aggregation for the prediction of a real-world event. In this particular case, a prediction

of an electoral result is being based on the number of positive opinions extracted from

voters. Similar examples can also be devised to point out a problem in situations of

decision-making: think of Ann and Bob as two products that a firm is considering to

promote, and the sentiment and preferences expressed in the table be those extracted from

conversations and reviews of its customers. When the firm needs to decide which of the

two products to invest in, sentiment analysis and preference aggregation would give two

different recommendations.

The first message of this chapter is that all these considerations can be phrased in the

framework of preference analysis [90, 98] and voting theory [6]. For instance, sentiment

81

analysis as presented in the example above uses a preference aggregation method called

approval voting [18], which is based only on positive or negative opinions expressed over

candidates. Text-extracted opinions may present both polarities and preference orderings,

and the main contribution of this chapter is to propose a definition of collective sentiment

that makes use of both kinds of information.

Building on the classical Borda count (see, e.g., [17]) we define and study a class

of voting rules that aggregate both polarities and preference orderings into a collective

sentiment, taking into account the incompleteness inherent in text-extracted opinions,

where each individual may refer only to some of the items under consideration. We study

the behavior of this class of rules from a decision-theoretic perspective. First, we list a

number of properties that are desirable in the context of sentiment analysis, and we show

that our proposed rules satisfy all such conditions. Second, we perform experiments to

quantify the discrepancy between classical sentiment analysis techniques and our proposed

rule, and we investigate its behavior with respect to partial information. The results we

obtain indicate that our proposed Borda count not only satisfies a list of desirable properties

when its outcome is used as a basis for decision-making, but also it is computationally

tractable and it behaves well in highly incomplete domains.

To the best of our knowledge this work is the first attempt to apply techniques from

preference aggregation and voting theory to sentiment analysis over multiple issues. Re-

lated work has focused on sketching a road map for developing sentiment analysis as an

alternative to opinion polls for the prediction of electoral results [76], focusing however

on the statistical significance of the population studied rather than on the aggregation

method used. Preference aggregation techniques have been used with success in other

areas of computer science such as human computation and collective annotation of textual

corpora [34, 71], and on developing procedures for collective decision making that are

able to handle incomplete preferences [85, 101]. A line of work which is similar in spirit

to the one proposed in this chapter is the work of Brams and Sanver [16] in social choice

theory, albeit for the specific setting of committee decisions and elections. We refer to

Section 5.3.3 for a more detailed discussion of this approach. We also acknowledge the

work of Garg et al. [48] on opinion pooling, which is however focused on the aggregation

of probabilistic opinions.

The work of the thesis has been presented in several international conferences. This

is the list of papers related with this work classified for journal, conference or workshop

where they were presented.

• Journal papers:

– Umberto Grandi , Andrea Loreggia, Francesca Rossi, Vijay Saraswat. A Borda

count for collective sentiment analysis. Annals of Mathematics and Artificial

82 Chapter 5. Sentiment analysis

Intelligence - 75 (149): 1-22, 2015.

• Conference papers:

– Umberto Grandi, Andrea Loreggia, Francesca Rossi, Vijay Saraswat. From

Sentiment Analysis to Preference Aggregation. ISAIM 2014 special session

on computational social choice.

• Workshop papers:

– Umberto Grandi, Andrea Loreggia, Francesca Rossi. From Sentiment Anal-

ysis to Preference Aggregation. R.i.C.e.R.c.A: RCRA Incontri E Confronti

Workshop of the XIII AI*IA Conference.

5.1 Background

In this section we present the basic definitions of sentiment analysis. Notions about voting

theory and preference aggregation are based on Chapter 2.

5.1.1 Sentiment Analysis

Sentiment analysis and opinion mining [83?] is a collection of techniques for the

extraction of people’s opinions, sentiments, and evaluations from textual expressions. A

set of entities or alternatives X is defined as the sentiment targets, and individual opinions

about entities in X are extracted from a given set of product reviews, blog posts or other

sources of textual information.

Formally, two forms of opinions can be identified:

Definition 5.1.1 [67] A regular opinion is a tuple (g,s,h, t) where g is the sentiment

target, s is the sentiment about the target, h is the opinion holder and t is the opinion

time.

Definition 5.1.2 [58] A comparative opinion (e1,e2,pa,h, t) is a tuple where e1 and e2

are two entities that are being compared, pa is the preferred alternative among e1 and

e2, h is the opinion holder and t the time.

Sentiment targets are also called entities or items, and can be anything such as products,

policies or persons. The sentiment s in a regular opinion is usually taken to be a positive,

negative or neutral polarity, i.e., an element of {+,−,0}, although recent developments

are directed to a more general setting of graded polarity such as a “five-stars” scale or

numerical score [37]. The opinion holder h is the individual who wrote a text expressing

sentiment s, and the time t is the moment at which h wrote the text. In this chapter we will

not make use of the temporal information, but we refer the reader to Chapter 6 for further

discussion on the important role that temporal information may play in the development of

principled notions of collective sentiment.

5.2 How to model individuals’ opinions 83

The objective of sentiment analysis is to extract all possible opinion tuples as in

Definitions 5.1.1 and 5.1.2. Popular approaches to perform this task use a bag of words

extracted from a tagged corpus of positive sentences, and then count in a more or less

complex way the presence of such positive words in untagged documents [84]. Machine

learning techniques such as naive Bayes approaches and sentiment classifiers built using

semi-supervised learning are also widely used for these tasks (see, e.g., [84, 7] for regular

opinions and [58, 46] for comparative opinions).

A notion of collective sentiment aggregates individuals’ opinions into a collective

view, and it is usually expressed as a polarity. The most common approaches define the

collective sentiment as a positive sentiment if the number of positive opinions about the

item outnumbers the number of negative opinions. When more than one item is considered,

each textual expression is classified as positive, negative or neutral, and the items with the

largest number of positive expressions are declared as the most preferred ones according

to the collective opinion (see, e.g., [77, 8, 20]).

5.2 How to model individuals’ opinions

Sentiment analysis and preference aggregation take two different approaches in the rep-

resentation of absolute and comparative preferential information that is extracted from

individual data. The aim of this section is to formally define these two approaches, and to

propose a novel structure for preference representation that combines sentiment polarity

with comparative preferences.

5.2.1 Individual data

We assume to have collected a set of textual expressions Ti for every individual i ∈I ,

and that exploiting tools from NLP we are able to extract regular opinions expressed by

individuals about the entities in a set X in the form of a score (see Definition 5.1.1), as

well as comparative opinions in the form of binary comparisons (see Definition 5.1.2).

Definition 5.2.1 The individual data extracted from a set of individual expressions Ti

is a tuple (σi,6
P
i ,6

N
i) where:

• σi : Di → R is a function defined on a subset of entities Di ⊆X representing all

regular opinions, i.e., degrees of positive and negative opinions over entities;

• 6P
i is a preorder with domain Pi⊆X , representing the set of positive comparative

opinions of individual i;

• 6N
i is a preorder with domain Ni ⊆X representing the set of negative compara-

tive opinions of individual i.

84 Chapter 5. Sentiment analysis

We make the further assumption that the individual data is always coherent, i.e., the

sets Pi and Ni are disjoint sets and when entities a and b are in Pi (resp. Ni) then both

σi(a) and σi(b) are positive numbers (resp. negative), and also that a 66P
i b (resp. a 66N

i b)

if σi(b) < σi(a). Observe moreover that the sets Di, Pi and Ni may have non-empty

intersection.

� Example 5.2 A company wants to evaluate three products of different colors: red (R),

green (G) and blue (B). A corpora of textual expressions by three individuals is collected

and the individual data extracted is as follows. The first individual has a positive opinion

about all three products R,G,B, but the degree of these opinions is slightly different: we

extract a score of 5 for product R, a score of 4 for entities G and B, and no pairwise

comparison among the products. The second individual has a positive score of 1 about

product G while expressing a negative opinion about the other two colors. She also

expresses a direct preference of R over B. Finally, the third individual has a neutral opinion

about R and B, while she considers alternative G negatively with a score of −4. We can

summarize the opinions extracted from the three individuals in the terminology of our

Definition 5.2.1:

• Individual 1: σ1(R) = 5,σ1(G) = σ1(B) = 4 and P1 = N1 = /0;

• Individual 2: σ2(G) = 1, P2 = /0, and N2 = {R,B} with B 6N
2 R;

• Individual 3: σ3(R) = σ3(B) = 0, σ3(G) =−4, and P3 = N3 = /0.

�

5.2.2 The sentiment analysis approach

Sentiment analysis (at least in its most common implementation) disregards the intensity

of sentiment as well as the comparative opinions, focusing only on the extraction of a

positive, negative or neutral polarity from individual expressions.

Definition 5.2.2 Given individual data (σi,6
P
i ,6

N
i) extracted from individual expres-

sions Ti, the pure sentiment data associated with it is a function Senti : Ei →{+,−,0},

where Ei = Di∪Pi∪Ni, defined as:

Senti(c) =

sgn(σi(c)) if c ∈ Di

0 if σi(c) = 0

+ if c ∈ Pi

− if c ∈ Ni

After the information about the individual sentiments have been extracted, the most

common approach in the definition of the collective sentiment is to choose the entities with

the largest amount of positive opinions, disregarding the number of negative opinions.

5.2 How to model individuals’ opinions 85

� Example 5.3 The pure sentiment data associated with Example 5.2 is the following:

• Individual 1: Sent1(R) = Sent1(G) = Sent1(B) = +

• Individual 2: Sent2(G) = + and Sent2(R) = Sent2(B) =−

• Individual 3: Sent3(R) = Sent3(B) = 0 and Sent3(G) =−

Using approval voting as a definition of the collective sentiment we obtain G as the most

preferred entity, with two positive opinions received. With the same method we can easily

construct a collective ranking of the entities, obtaining R and B tied in the second position

with just one positive opinion received. �

5.2.3 The voting theory approach

While sentiment analysis focuses only on polarities, the other extreme of the spectrum

is the approach of voting theory, that is restricted to comparative preference information

only. For the purpose of this work we represent individual preferences by using preorders,

i.e., reflexive and transitive binary relations. This choice is motivated by two important

characteristics of preferences extracted from textual expressions:

• Interpersonal incomparability: Since individuals have very different styles of writing

or attitudes towards judging the entities under consideration, we believe that scores or

any other form of graded polarity cannot be compared across individuals. Therefore

we argue in favor of an ordinal representation of both regular and comparative

opinions.

• Incompleteness: Since preferences and sentiments are observed from individual

expressions we cannot assume this information to be complete.

Formally, we can define the voting theory approach as follows:

Definition 5.2.3 Given the individual data (σi,6
P
i ,6

N
i) extracted from individual ex-

pressions Ti, the pure preference data associated with it is a preordered set (Di,6
D
i),

where Di = Di∪Pi∪Ni, defined as:

x 6D
i y⇔

x 6P
i y and x,y ∈ Pi or

x 6N
i y and x,y ∈ Ni or

x ∈ Ni and y ∈ Pi or

σi(x)6 σi(y) and x,y ∈ Di

Pure preference data is thus the union of the comparative opinions extracted from the

ordinal relation entailed by σi, with the addition of all the binary comparisons between

elements from Pi and elements from Ni.

� Example 5.4 The pure preference data associated with Example 5.2 is the following:

• Individual 1: B∼1 G <1 R

86 Chapter 5. Sentiment analysis

• Individual 2: B <2 R <2 G

• Individual 3: G <3 B∼ R

Where G < R stands for G 6 R and R 66 G, and G∼ R stands for G 6 R and R 6 G. Using

a straightforward adaptation of the Borda rule to preorders, we obtain B < G < R as the

collective ranking: R receives 4 points, one for each alternative that is strictly ranked below

by one of the individuals, G receives 2 points, and B only 1 point. �

5.2.4 Combining Sentiment with Preference

In this section we propose a novel structure that combines features from both the sentiment

analysis approach and the voting theory approach presented in the previous two sections.

On the one hand we take binary comparisons as central to our analysis, using preorders to

represent comparative preferential information. On the other hand, we complement this

representation with a classification of the alternatives into three disjoint sets representing

the positive, negative and neutral polarity:

Definition 5.2.4 An SP-structure (for Sentiment-Preference structure) over a set of

candidates X is a tuple S = (P,N ,Z), where P , N and Z are disjoint subsets of

X , and both P and N are ordered respectively by preorders 6P and 6N .

An SP-structure indicates the subsets of positive (P), negative (N) and neutral (Z)

candidates among the set of entities X , and specifies a set of binary comparisons between

positive or negative candidates. The remaining elements of X \ (P ∪N ∪Z) are those

alternatives for which no information has been collected.

We obtain SP-structures from individual data as follows:

Definition 5.2.5 Let (σi,6
P
i ,6

N
i) be the individual data extracted from individual

expressions Ti. The SP-structure associated with it is the tuple (Pi,Ni,Zi):

• Pi = Pi∪D+
i where D+

i = {x ∈ Di | σi(x)> 0}

• Ni = Ni∪D−i where D−i = {x ∈ Di | σi(x)< 0}

• Zi = {x ∈ Di | σi(x) = 0}

with preorder relations defined as follows:

x 6P
i y ⇔

x 6P
i y and x,y ∈ Pi or

σi(x)6 σi(y) and x,y ∈ D+
i

x 6N
i y⇔

x 6N
i y and x,y ∈ Ni or

σi(x)6 σi(y) and x,y ∈ D−i

� Example 5.5 The SP-structures associated with Example 5.2 are the following:

5.3 Borda counts for aggregating SP-structures 87

Individual 1 Individual 2 Individual 3

R

P|
G∼ B G

R,B Z

R G

N|
B

Figure 5.1: SP-structures associated with Example 5.2.

• Individual 1: P1 = {R,G,B} with G 6P
1 R and G∼P

1 B, N1 = Z1 = /0

• Individual 2: P2 = {G}, N2 = {R,B} with B 6N
2 R, Z2 = /0

• Individual 3: P3 = /0, N3 = {G} and Z3 = {R,B}

SP-structures can be easily visualized, and in Figure 5.1 we draw the three structures

described above. Alternatives that are in higher positions in the table are preferred to those

that are in lower positions, and the three sets P , Z and N are separated by horizontal

lines. �

In conclusion, an SP-structure compactly represents both sentiment information in

the form of three polarity sets, as well as comparative opinions in the two preorders

over the positive and negative sets. SP-structures are based on a purely ordinal view of

preferences, hence assuming a very low degree of interpersonal comparability among

individuals’ preferences. This assumption could be relaxed by, for instance, normalizing

the scores extracted from the individual data, or directly using them in the construction of

the collective sentiment. While these approaches may fit some particular applications, they

require additional assumptions to be able to merge comparative opinions, which are of an

ordinal nature, with the possibly normalized scores representing regular opinions.

5.3 Borda counts for aggregating SP-structures

In order to aggregate SP-structures, and therefore put forward our definition of collective

sentiment, in this section we define a class of aggregation procedures based on the classical

Borda count (see Section 2.2). We begin by introducing a list of properties which are

desirable in the context of sentiment analysis, and then put forward our definition of

aggregation method. We show that this method satisfies all the desirable properties we

introduced and that it generalizes both the existing definition used by sentiment analysis

and the classical Borda rule in preference aggregation. We conclude the section with a

study of the algorithmic aspects of our proposed Borda count.

88 Chapter 5. Sentiment analysis

5.3.1 Desired Axiomatic Properties

In this section we adapt classical axiomatic properties from the literature in social choice

theory to the case of SP-structures, providing a suitable interpretation in the domain of

sentiment analysis. We build on the axiomatization of the Borda rule proposed by Young

[103], which we complement with axioms specific to our domain of application.

We first need to introduce some useful notation. Let us call a collection of SP-

structures (P1, . . . ,Pn) a profile, which we denote by P. If S1 and S2 are profiles of

SP-structures, let S1+S2 be the profile obtained by putting together the two original pro-

files (renaming voters if necessary), i.e. if S1 = (P1, . . . ,Pn) and S2 = (Q1, . . . ,Qm), then

S1+S2 = (P1, . . . ,Pn,Q1, . . . ,Qm). A profile is called symmetric if the set of individuals

can be partitioned in pairs of individuals {i, i′} with completely opposite SP-structures,

i.e., if Pi = Ni′ , Ni = Pi′ , 6
P
i =
←−−
6N

i′ and 6N
i =
←−−
6P

i′ , where 6
P
i =
←−−
6N

i′ means that the

preorder over the set P for voter i is equal to the inverted preorder over the set N of

voter i′. A symmetric profile necessarly contains an even number of SP-structures. Finally,

given a single SP-structure S = (P,N ,Z), we say that a voter i ranks a above b in S if

one of the following four conditions holds: b 6P
i a and a 66P

i b, or b 6N
i a and a 66N

i b,

or a ∈P and b ∈Z ∪N , or a ∈Z and b ∈N .

Let F be a rule which associates a set of most preferred alternatives with a profile of

SP-structures. We now list a number of desirable properties for such an aggregation rule F .

The first set of properties is an adaptation of classical axioms from social choice theory,

regarding the equality of treatment of alternatives and individuals:

• Neutrality: For any profile S and permutation of entities ρ : X →X , we have that

F(Sρ) = ρ(F(S)), where Sρ is profile S with alternatives in X renamed by ρ .

• Anonymity: For any profile S and permutation of individuals ρ : I →I , we have

that F(Sρ(1), . . . ,Sρ(n)) = F(S1, . . . ,Sn).

Neutrality requires that if we rename the items in X , the result should be the renaming

of the initial result. Anonymity instead formalizes the fact that the collective opinion

should not depend on the name of the individuals. The following two properties pro-

vide requirements on how to treat consensus and total disagreement in the individual

preferences:

• Weak-Pareto: If S is a profile in which all individuals rank a above b, then b 6∈ F(S).

• Cancellation. If a profile S is symmetric then all entities are in the winning set, i.e.,

F(S) = X .

The weak-Pareto property is a fundamental property when aggregating individuals’ pref-

erences: agreement among all individuals should be reflected in the collective opinion.

5.3 Borda counts for aggregating SP-structures 89

Cancellation requires instead that if the disagreement is so extreme, as in a symmetric

profile where individuals come in pairs whose preferences cancel each other out, then all

items should be declared as the most preferred ones in the collective opinion.

The following two properties formalize the requirement that more information collected

over an individual’s preferences should lead to a result that is more preferred by that

individual:

• Voters participation: For all profiles S = (S1, . . . ,Sn) and SP-structure Sn+1, any

candidate in F(S+ Sn+1) \F(S) is ranked in higher or same position than any

candidate in F(S) in the preferences of voter n+1.

• Rank participation: For all profiles S = (S1, . . . ,Sn) and SP-structure S′ ⊂ Sn, any

candidate in F(S) \F(S−n + S′) is ranked in higher or same position than any

candidate in F(S−n +S′) in the preferences of voter n.1

Where S′ ⊂ Sn means we are considering a subset of entities and their relative positions

and relations do not change in the SP-structure. The property would express that each

voter has incentive in expressing more information about as many entities as possible.

In the classical voting theory context, participation means that voters have an incentive to

participate [78]. In a sentiment analysis context individuals have already expressed their

opinion, so we do not need to favor their participation. However, the first property tells us

that considering one more individual in the computation of the collective sentiment should

result in a candidate that is higher in her ranking. In a similar way, the second property

requires that more information on an individual’s opinion lead to results that the individual

ranks higher.

Finally, the following property formalizes the possibility of using techniques such as

map-reduce [28] in particular profiles, for a more efficient computation of the set of most

preferred alternatives:

• Consistency: For all profiles S1 and S2, if F(S1)∩F(S2) 6= /0 then F(S1+ S2) =

F(S1)∩F(S2).

Consistency can be an important property in an application domain where one needs to

deal with big quantities of data, such as sentiment analysis. It tells us that if we manage to

partition the (possibly very large set of) individual opinions into smaller sets which have

some best candidate in common, perhaps by means of a proper heuristic, then we can work

on the elements of the partition independently. Thus divide and conquer approaches are

possible, which parallelize and possibly speed up the computation.

All properties presented above are adapted from the literature on social choice theory

1Inclusions of SP-structures is defined as inclusions of preorders, and S−n represents profile S without

SP-structure Sn.

90 Chapter 5. Sentiment analysis

[6]. Not all combinations of axiomatic properties are feasible: for instance, the well-known

Arrow’s Theorem showed that it is not possible to aggregate linear orders using a rule

that satisfies three simple desirable properties (namely, a weaker version of anonymity, an

additional property called independence of irrelevant alternatives, and weak-Pareto) [5].

This is not the case for the list of axioms presented above, as we will show in the following

sections.

5.3.2 The B∗α Rule

In this section we propose a parameterized class of aggregation procedures for profiles

of SP-structures that builds on the classical Borda count, taking into account the incom-

pleteness of the ordering and the additional information given by the sentiment polarity

expressed by the individuals.

In the following definition we use α = (α1,α2,α3,α4) with α1,α2,α3,α4 ∈ R
+. If c

in P , downP(c) is the set of elements of P that are less preferred than c, upP(c) is the

set of elements of P that are more preferred than c, and incP(c) is defined as the the set

of elements that are incomparable to c in P (in N , respectively, for downN , upN and

incN). We will omit the reference to S when it is clear from the context.

Definition 5.3.1 Given an SP-structure S = (P,N ,Z) over X , the s∗α -score of an

entity c ∈X in S is defined as follows:

s∗α(c,S) =

α1|down
P(c)|+α2| inc

P(c)|+α3|Z |+α4 if c ∈P

−α1|up
N (c)|−α2| inc

N (c)|−α3|Z |−α4 if c ∈N

0 if c 6∈P ∪N

The s∗α -score is defined as a parametrized class of scoring functions over SP-structures.

It combines the approach from sentiment analysis, giving α4 points to each alternative

in the positive set and −α4 to all those in the negative set, with a generalization of the

classical Borda rule, giving α1 points to an alternative for all those that are ranked below,

α2 points for those ranked incomparable, and α3 points for those alternatives that are in

the neutral set (negative points if the alternative is in the negative set).

Note that no point is given to entities for which an individual has a neutral sentiment or

for which she does not have any opinion. We are hence assuming that all score variables

are initialized to 0, while an equivalent formulation could leave unspecified the score

of alternatives for which no opinion has been extracted. The main difference between

alternatives in Z and alternatives in X \ (P∪N ∪Z) is that the former do contribute to

the score of alternatives in the positive or in the negative set via the parameter α3, while the

5.3 Borda counts for aggregating SP-structures 91

latter are not taken into consideration into the construction of the score of an alternative.

The use of a score may at first seems counter-intuitive given our discussion in Sec-

tion 5.2 on the interpersonal incomparability of preferential information. However, what

is being represented in the s∗α -score is purely ordinal information about the number of

alternatives being more or less preferred to others, and should not be confused with the

intensity of preference that could have been expressed in the individual data via the scoring

function σi.

To exemplify the flexibility of our setting, we can consider several assumptions on the

α vector that the modeler can choose, depending on the application at hand. For instance,

assuming α1 > α2 and α3 > α2 will make sure that more points are given to alternatives

that are strictly preferred to others than to those that are incomparable. Another possibility

is to assume that the score difference between two successive elements in the positive or

negative part should be less than the score difference between the least positive and the

best negative elements, for instance when 2α4 > α1. If these two numbers were equal, then

the s∗α -score would be equivalent to the classical Borda score when the set Z is empty,

disregarding the sentiment information.

Definition 5.3.2 The score of an entity c ∈X in the profile of SP-structures S = {Si =

(Pi,Ni,Zi) | i ∈I } is defined as follows:

S∗α(c,S) = ∑
i∈I

s∗α(c,Si)

where s∗α(c,Si) is s∗α -score of alternative c in the SP-structure Si. The winners of the B∗α

rule are the candidates with maximal total score:

B∗α(S) = argmax
c∈X

S∗α(c,S)

� Example 5.6 Let the parameters in α be α1 = α4 = 2 and α2 = α3 = 1, and therefore

let the corresponding score be as follows

s∗(2,1,1,2)(c,S) =

2×|downP(c)|+ | incP(c)|+ |Z |+2 if c ∈Pi

−2×|upN (c)|− | incN (c)|− |Z |−2 if c ∈Ni

0 if c 6∈Pi∪Ni

The winner of B∗(2,1,1,2) on the profile of SP-structures associated with Example 5.2

is R. Indeed, the score s∗(2,1,1,2)(R) = 4 since there are 2 elements ranked below R in the

positive part by the first individual (4+2 points), and R is ranked in the negative side by

individual 2 (-2 point). G follows with a score of 1 since there is one element incomparable

92 Chapter 5. Sentiment analysis

in the positive part by the first individual (1 + 2 points), G is ranked in the positive side by

individual 2 (+2 point) and G is ranked in the negative side by individual 3 with 2 elements

in the neutral set (-2-2 points). B is the worst preferred alternative with a score of −1,

obtaining 3 points by individual one, -4 points by the second individual and 0 points by the

third individual. �

5.3.3 Axiomatic analysis

We begin by showing that our Borda count generalizes the existing approaches used by

sentiment analysis and preference aggregation. Let us first introduce some notation. Call

a profile purely preferential if, for all i ∈ I , the set Pi is equal to X and is linearly

ordered, i.e., 6P
i is anti-symmetric, transitive and complete. Call a profile purely non-

negative sentimental if for all i ∈I the two sets Pi and Zi form a partition of X , and the

candidates in Pi are all incomparable, i.e., the relation 6P
i is empty, and the set Ni is also

empty. We now show that B∗α coincides with the Borda rule on purely preferential profiles,

and that it coincides with approval voting on purely non-negative sentimental ones.

Theorem 5.3.1 If a profile S is purely preferential, then for all α we have that B∗α(S) =

Borda(S). If a profile S is purely non-negative sentimental, then for all α such that

α2 = α3 we have that B∗α(S) = Approval(S).

Proof. Let S be a purely preferential profile, i.e., all individuals are expressing a linear

order over entities in X which are all in P . Let SB(c,B) be the classical Borda score, i.e.,

the number of candidates ranked below c. Since in a purely preferential profile there are

no alternatives that are incomparable to each other, and the sets N and Z are empty, the

score S∗α(c) = α1SB(c)+α4n, where n is the number of voters. Since n is constant then

the two rules elect the same candidates, no matter the value of α1 and α4.

Let now S be a purely non-negative sentimental profile and let SA(c) be the approval

score of an entity c, i.e., the number of individuals approving c. Since all alternatives

in Pi are incomparable, every approved entity in each single SP-structure gets a score

equal to α2(|X |−1)+α4. To see this, it is sufficient to observe that alternatives in Z

give α3 points to alternatives in P and α2 = α3, and moreover in a purely non-negative

sentimental profile the two sets P and Z form a partition of X . Hence, we obtain that

S∗α(c) = (α2(|X |−1)+α4) ·S
A(c) and thus B∗α elects the same candidates as approval

voting. �

Theorem 5.3.1 formalizes the fact that our proposed Borda count is a generalization of

both approaches at the extreme of the spectrum described in Section 5.2: a pure sentiment

analysis approach, which uses approval voting, and a pure preference aggregation approach,

as described by the Borda rule. The result of Theorem 5.3.1 can be generalized to profiles

5.3 Borda counts for aggregating SP-structures 93

of partial orders to show that B∗α extends the partial Borda count defined by Cullinan, Hsiao

and Polett [26] as well as the bucket averaging method of Fagin et al. [38].

We now show that our proposed Borda count for collective sentiment analysis satisfies

all the axiomatic properties presented in Section 5.3.1.

Theorem 5.3.2 B∗α satisfies consistency, neutrality, anonymity, voters participation,

rank participation, and cancellation for all α . If we assume that α1 > α2, then B∗α also

satisfies weak-Pareto.

Proof. For the sake of clarity we omit the reference to α where it is not necessary. To prove

that B∗α satisfies consistency it is sufficient to observe that S∗S1+S2
(c) = S∗S1(c)+ S∗S2(c).

Those entities with maximal score in both S1 and S2 are then the entities with maximal score

in S1+S2. Neutrality and anonymity are straightforward consequences of our definition of

S∗α .

A simple monotonicity argument can be used to prove both versions of participation.

Consider first voters-participation. Let w ∈ B∗α(S), and let Sn+1 be the additional SP-

structure. We show that the winner of the joint profile w′ is not worse in n+1’s ranking

than w. Since we have only added information from n+1, w′ must have received strictly

more points than w to become the new winner, and this can only happen if agent n+ 1

prefers w′ to w. The same argument can be straightforwardly adapted to the case of

rank-participation.

Finally, to prove that B∗α satisfies cancellation we observe that in a symmetric profile

all entities have score 0, since S∗α is symmetric with respect to P and N .

For weak-Pareto, there are four cases for an individual to rank a above b, and we can

show that in all cases s∗α(a)> s∗α(b) and thus that b cannot be in the winning set. Recall

that we assumed α1 > α2. Assume that b 6P
i a and a 66P

i b. If a third alternative c is

ranked below b then by transitivity c is also ranked below a, and hence a and b get the same

points from c. If c ∈ incPi(b) or c ∈Zi then this also gives the same points to a (or more,

if c is ranked below a since α1 > α2). Finally, down
Pi(b)⊂ downPi(a) and thus a gets

α1 more points than b. The case in which a and b are both in Ni is treated symmetrically:

just consider alternatives ranked above the two and the set upNi(a) rather than downPi(a).

If we instead assume that a ∈Pi and b ∈Zi∪Ni, then it is easy to observe that s∗α(a)> 0

while s∗α(b)6 0 and thus that also in this case s∗α(a)> s∗α(b). Finally, if a ∈Zi and b ∈Ni

then s∗α(a) = 0 but s∗α(b) < 0 since b ∈Ni gets −α4 points and any other alternatives

c ∈Ni can only decrease the score of b. �

We conclude this section by comparing B∗α with another rule, introduced in previous

work by Brams and Sanver [16], that aims at combining approval voting with preference

aggregation: fallback voting. Under this rule, each voter approves a subset (which could

94 Chapter 5. Sentiment analysis

be empty) of candidates and ranks them in a linear order. The winner of fallback voting is

obtained in an iterative way, by first checking whether there is a candidate that is top-ranked

by a majority of voters. If such a candidate does not exist, then the first and the second

ranked candidates in each voters’ preference are considered, and once again it is checked

if there is a candidate that is ranked first or second by a majority of the voters. The process

goes on adding the third and subsequently ranked candidates until an alternative obtains a

majority of approvals. If the process ends finding any candidate approved by a majority of

voters then candidates with the highest number of approval are the winners. The structures

used by fallback voting to combine approvals with comparative preferences can be seen

as a special case of SP-structures, with no neutral nor negative sets and linearly ordered

items. Fallback voting may result in a different outcome than B∗α . A detailed study of the

difference between these two rules is left as future work. While fallback voting constitutes

an interesting voting rule when individuals have incentives to express their preferences, in

applications such as sentiment analysis the individual data that is collected will rarely be

complete (see Section 5.2). Hence the need for rules that are able to handle incomplete

profiles, such as our proposed B∗α .

5.3.4 Algorithmic properties of B∗α

In this section we analyze the algorithmic aspects of our proposed Borda count for collective

sentiment analysis. Given the envisioned application, it is important that the basic problem

of computing the most preferred alternative in a given profile be tractable, i.e. that the

computational complexity of winner determination be solvable in polynomial time. We

also provide an exact bound on the minimum number of bits required to compute the

outcome of B∗α (aka. its communication complexity) and we show that it can be computed

with an incremental algorithm.

Let us first make some considerations about the size of representing an SP-structure.

Recall that we start from a set of m alternatives or entities X , and n individuals. We

assume that the sets N , P and Z are encoded with a vector of length m containing for

each alternative in X a label of 2 bits for the set to which it belongs to. Since the set N

and P are disjoint, the two preorders 6P and 6N can be represented as binary relations

on an m×m matrix, indicating for every pair (a,b) whether a 6P b or a 6N b. The size

of a profile of SP-structures with n individuals is therefore O(nm2).

The problem of winner determination is the algorithmic task of deciding whether a

designed alternative a ∈X is in the winning set of a given profile of SP-structures S.

This problem has been widely studied in voting theory [19], where its tractability is often

considered a requirement for a rule to be considered of practical interest. We now show

that the winner of our proposed Borda count can be computed in polynomial time:

5.3 Borda counts for aggregating SP-structures 95

Theorem 5.3.3 The winner of B∗α can be computed in time O(nm2), hence in time linear

in the size of the input.

Proof. Given a single SP-structure Si, the s∗α -score of an alternative a can be computed in

the following way. First check whether a ∈Zi, a ∈Pi, or a ∈Ni, which can be done in

constant time. If a ∈Zi then its score is 0. Otherwise we can compute its score by first

counting how many alternatives are in Zi, which can be done in O(m), and then counting

how many alternatives are ranked below a, in case a ∈Pi, or how many alternatives are

ranked above a, if a ∈Ni, and finally how many alternatives are incomparable to a. All

these operations can be done in O(m). We repeat this process for each alternative a and for

each individual i, obtaining the upper bound O(nm2). �

A further important algorithmic property of a voting procedure is its communication

complexity, i.e. the minimal amount of bits that needs to be expressed by the individuals

in order to compute the most preferred alternatives. Previous work [24] provided lower

and upper bounds for many voting procedures including the Borda rule, showing that the

communication complexity of computing the Borda winner is Θ(nm logm), i.e., lower

and upper bounds are both equal, up to multiplication by a constant, to the function

nm logm.Since our Borda count for collective sentiment analysis generalizes the classical

Borda rule (see Theorem 5.3.1), the communication complexity is within a constant factor

of the traditional setting:

Theorem 5.3.4 The communication complexity of B∗α is in Θ(nm logm).

Proof. An upper bound is easy to obtain, since it is sufficient for each individual to specify

their SP-structure to be able to compute the winner of B∗α . Given our representation of

SP-structures, a profile can be specified using a matrix n×m, where each cell (i, j) contains

a number x ∈ Z. If x > 0 then voter i has a positive opinion for candidate j and x indicate

how many candidates are ranked below her in the SP-structure, if x < 0 then voter i has a

negative opinion for candidate j and x indicate how many candidates are ranked higher

in the SP-structure, if x = 0 then voter i has a neutral opinion for candidate j. Moreover

if there exist candidates that are incomparable in an SP-structure then they will have the

same value. So the higher position that a candidate can have in any SP-structure is m−1

which can be represented using log(m−1) bits and we need m×n of these value, which

proves that the upper bound for the communication complexity is O(nm logm). A lower

bound can instead be obtained by adapting the same bound for the classical Borda rule

provided in [24]. �

We conclude the section by proposing a notion of incremental complexity that should

capture the feasibility of computing the result of an aggregation procedure in an on-line

96 Chapter 5. Sentiment analysis

fashion. This is a very important aspect when data is examined incrementally or when

using methods such as map-reduce [28] to deal with large quantities of data. Recall the

two participation axioms we introduced in Section 5.3.1: they imply that the result of an

aggregation procedure should take into consideration the additional information collected

from the individuals. A good aggregation procedure that can be used to define a notion of

collective sentiment should not only take care of this additional information, but also be

able to update the outcome in little time.

Let X be a set of alternatives. An individual expression P over X is a preference, a

vote, an opinion, or an SP-structure defined onX . Given a profile of individual expressions

(P1, . . . ,Pn) – be it a profile of linear orders, of approval sets or of SP-structures – a

generalized voting rule F is a function that outputs a set of most preferred alternatives

F(P1, . . . ,Pn)⊆X . If we denote with PR the space of all possible profiles for all finite

n, then F : PR → 2X . The Borda rule, approval voting, fallback voting and B∗α are all

generalized voting rules. We give the following definition:

Definition 5.3.3 An generalized voting rule F is incremental if there exists a represen-

tation of profiles r : PR → {0,1}∗ and a function F̂ : {0,1}∗×PR
1→ 2X , where

PR
1 is the set of all individual expressions, such that:

• F(P1, . . . ,Pn+1) = F̂(r(P1, . . . ,Pn),Pn+1) for all profiles (P1, . . . ,Pn+1)∈PR and

all finite n;

• for every sequence of individual expressions {Pi | i ∈ N}, the following holds:

lim
n→+∞

size[r(P1, . . . ,Pn)]

size[(P1, . . . ,Pn)]
= 0

A generalized voting rule is incremental if its outcome, i.e. the set of most preferred

candidates, can be computed by receiving the individuals expressions in a sequence, at

each step computing the new outcome and storing a minimal amount of information that

is needed to compute the outcome of the following step. Moreover, we require that the

information stored at each step using function r be much smaller than the full representation

of a profile as n grows.

Let us first show that both the Borda rule and approval voting are incremental. The

Borda rule can be computed incrementally by storing the total Borda score of each

alternative, and this can be done in space O(m log(nm)) since n× (m−1) is the maximal

Borda score that an alternative can obtain. When additional information is collected in

the form of a linear order Pn+1, the total Borda scores can simply be updated with the

additional scores computed. Since the size of a profile of linear orders is O(nm logm), the

requirement on the size of the representation holds:

5.4 Empirical Analysis 97

lim
n→+∞

size[r(P1, . . . ,Pn)]

size[(P1, . . . ,Pn)]
= lim

n→∞

O(m log(nm))

O(nm logm)
= lim

n→∞

logn

n
= 0

Approval voting receives as input a profile of sets of approved candidates, which

has size O(nm). An incremental procedure for its computation stores the number of

approvals received by any candidate, and updates them when a new voter submits her

ballots. Hence size[r(P1, . . . ,Pn)] = O(m logn), showing that approval voting is also an

incremental aggregation procedure.

Let us conclude by showing that B∗α is incremental for any α . In the same way as

the Borda rule, the total score obtained by each alternative in a profile of SP-structures S

can be stored in space O(m log(nm)), since the maximal S∗α -score is a linear function of

n×m. When a new SP-structure S is extracted, the total scores can be updated and the new

outcome computed. Since a profile of SP-structures is represented in space O(nm2) we

obtain the following:

lim
n→+∞

size[r(P1, . . . ,Pn)]

size[(P1, . . . ,Pn)]
=

m log(nm)

nm logm
= 0

We conjecture that all anonymous voting rules are incremental by Definition 5.3.3. In

fact, if a voting rule is anonymous then the information contained in a profile with n voters

can be summarized by using an amount of space that grows sub-linearly with n. However,

our definition measures an important characteristic of a generalized voting rule, one that is

particularly useful in applications that deal with large numbers of individuals. The notion

of incrementality we proposed resembles the on-line time discussed by Maudet et Al. [73],

which however focuses mostly on space complexity requirements. A complete study of

the notion of incrementality in generalized voting rules is beyond the scope of this work,

but the above discussion may serve as a starting point for further work on this topic.

5.4 Empirical Analysis

This section reports on our experimental evaluation of the B∗α rule proposed in Section 5.3.

The problem we face in this section is two-fold: First, in order to assess the relevance of

preferential ordering information in determining the collectively preferred alternatives, we

present experiments showing that there is a significant difference between the classical

definition used by sentiment analysis and the result of the B∗α rule. Second, given the

information sparsity which is characteristic of sentiment analysis domains, we evaluate

the accuracy of the B∗α rule in situations of incompleteness, showing that its accuracy

grows linearly with the amount of information available. In all our experiments we fix the

parameters of the B∗α rule to α = (2,1,1,2). We start this section with an analysis which

motivate the empirical analysis.

98 Chapter 5. Sentiment analysis

5.4.1 Analytical analysis

Counting the number of profiles where sentiment analysis and preference aggregation

return a different winner can be a difficult task. We try to analytically describe the case

with only two candidates and so where C = {a,b}, where the number of voters n is odd

and using a tiebreaking rule that prefers a to b. In this case, the possible preferences that a

single voter can cast are (preferences are represented using the same syntax of the Example

5.1 where candidates on the left side of the | have a positive opinion, while the ones on the

right side have a negative opinion):

1. a is preferred to b and the voter has a positive opinion for both of them (ab|)

2. a is preferred to b and the voter has a positive opinion for a and a negative opinion

for b (a|b)

3. a is preferred to b and the voter has a negative opinion for both of them (|ab)

4. b is preferred to a and the voter has a positive opinion for both of them (ba|)

5. b is preferred to a and the voter has a positive opinion for a and a negative opinion

for a (b|a)

6. b is preferred to a and the voter has a negative opinion for both of them (|ba)

We can identify two different types of profiles that make the two aggregation procedures

return a different winner:

• profile where l (with l > (n+ 1)/2) voters have preferences of type 4 and 6 and

where t 6 m, where t is the number of voters with preferences of type 5 and m the

number of voters with preferences of type 2

• profile where l (with l > (n+ 1)/2) voters have preferences of type 1 and 3 and

where t > m, where t is the number of voters with preferences of type 5 and m the

number of voters with preferences of type 2

In the first case preferences of type 4 and 6 represent the majority of the voters, this

makes a the preferred candidate for the sentiment analysis, since the majority gives the

same sentiment support to both candidates, while b is the winner for preference aggregation.

Preferences of type 5 can change the outcome of sentiment analysis in favour of b but

in this case their support is cancelled by preferences of type 2. The remaining voters’

preferences cannot change the winner of one of the two aggregation procedure. In fact, if

they have preferences of type 1 or 3 they increase the sentiment support without changing

the preferences for b. This first case can be formulated as follow:

n

∑
l= n+1

2

(

n

l

)

n−l

∑
t=0

(

l

t

)

2l−t
n−l

∑
m=t

(

n− l

m

)

2n−l−m (5.1)

5.4 Empirical Analysis 99

In the second case the majority of the voters prefers a to b and have the same opinion

about the two. So while a is the winner for the preference aggregation procedure, they

have the same support for the sentiment analysis. This can return a different winner only

if the sentiment support is greater and this can be achieved only if some other voter has

preferences of type 5 and voters with this type of preference are more than the voters with

preferences of type 2. Once again the remaining voters’ preferences cannot change the

winner of one of the two aggregation procedure and this case ca be formulated as follow:

n−1

∑
l= n+1

2

(

n

l

)

n−l−1

∑
m=0

(

l

m

)

2l−m
n−l

∑
t=m+1

(

n− l

t

)

2n−l−t (5.2)

The total amount of profiles where the two aggregation procedures return a different

winner is the sum of formulas 5.1 and 5.2. Where binomials compute the possible

combinations. For instance the first binomial in both formulas compute all the possible

ways of composing a majority in a profile with n voters.

The characterization is not an easy task and also for this reason we decide to make an

empirical analysis which highlights this situations.

5.4.2 Sentiment Analysis and Borda Count

A crucial factor supporting our claim that more complex models of preferences and

aggregation procedures should be used in the definition of collective sentiment is that the

classical sentiment analysis method (equivalent to approval voting) and B∗α output different

results over the same data. In fact, if they did not differ enough, it would mean that the

ordering information (not considered by approval/sentiment analysis) is not relevant for

determining the winner. Thus there would be no point in extracting ordering information

from individuals.

Figure 5.2 reports on our experiments on the simplest case of 2 candidates. We

enumerated all profiles of totally ordered SP-structures with n voters, with n from 2 to 90,

where a totally ordered SP-structure is an ordering over the two candidates (that is, a over

b or b over a), plus a threshold which associates to each candidate either a positive or a

negative sentiment. Thus, there are 6 possible such SP-structures. We have computed the

winning candidates according to sentiment analysis (i.e, approval voting) and according

to B∗α , which in the case of 2 candidates is equivalent to using the majority rule, and we

have counted the percentage of profiles on which the two winners are different. Figure 5.2

shows that such percentage stabilizes at around 30%.

We have also varied the number of candidates from 2 to 100, keeping the number of

voters fixed at 10, in which case however we did not enumerate all possibilities but we

100 Chapter 5. Sentiment analysis

Figure 5.2: Percentage of profiles where sentiment analysis and B∗α differ (2 candidates).

generated 10.000 profiles of complete SP-structures with the impartial culture assumption,

i.e., we sampled profiles with uniform distribution. Figure 5.3 shows that the percentage of

cases where B∗α yields a different result than sentiment analysis grows with the number of

candidates reaching more than 60%.

5.4.3 Incomplete Data

In practical applications individuals are likely to express their opinions over a small subset

of the alternatives under considerations, as observed, e.g., in the studies conducted on the

Netflix dataset [13]. It is therefore important to assess the behavior of our proposed Borda

count on incomplete profiles.

To do this we generated profiles of complete SP-structures with 10 candidates and 100

voters, and we deleted a certain percentage of information to obtain an incomplete version

of the profile. More precisely, we generated incomplete profiles in the following way: we

first generated complete profiles and then we picked randomly a voter and a candidate,

which is either positive or negative for that voter, and we changed the SP-structure of

that voter to have no opinion on the selected candidate. With n voters and c candidates,

nc corresponds to 100% of the information. Thus deleting x% of the information means

performing the above described modification of the profile (xnc)/100 times. We then

5.4 Empirical Analysis 101

Figure 5.3: Percentage of profiles where sentiment analysis and B∗α differ (10 voters).

compared the winner (according to B∗α) in the complete profile and in the incomplete

one, by computing the absolute value of the difference between their S∗α scores, and

we normalized it by dividing by the maximal error in the complete profile. Finally, we

averaged over 10.000 profiles, obtaining the mean error introduced by the incompleteness

of the profile. Figure 5.4 shows the trend in the error depending on the completeness of

the profiles (mean error and variance). We also show the error of the random procedure,

which outputs a candidate with uniform probability.

It is easy to see that Borda* always behaves better than the random procedure in

identifying the winner in the complete profile, and moreover that its shape shows that

accuracy quickly grows when the completeness of the profile increases.

102 Chapter 5. Sentiment analysis

Figure 5.4: Mean error of B∗α on incomplete profiles.

6. Conclusions

The thesis tackles three different problems of the computational social choice area. The

first two are more related one each other since both of them are related with the notion of

acting strategically in a voting system.

In Chapter 3 we study and report the results about the computational complexity of

replacement control. Using this kind of control action the chair tries to influence an election

by replacing candidates or votes, either constructively or destructively, which means to

favour a specific candidate or to ensure that a particular candidate does not win the election.

Table 6.1 shows most of the complexity results for the various voting rules and types of

replacement control analyzed in this chapter.

Control Plurality Veto Borda Approval k-approval

CCRV V V R R R (2< k < m−2)
DCRV V V V V V

CCRC R R R V R

DCRC R R V V R

Table 6.1: Summary of results (V: vulnerable, R: resistant).

Since the theoretical study is focused on worst-case results we also performed an

experimental analysis, using real-world data sets to verify whether k-approval and Borda

are really difficult to control (DCRC) in practice. While this study confirmed that Borda

is easy to control (as expected), it also suggests that k-approval can be easy to control in

practice despite our theoretical analysis classifying it as resistant. These results suggest

that the study of computational complexity in the worst case is not enough to ensure a

104 Chapter 6. Conclusions

significant protection to the system and empirical evidence can be beneficial, for instance it

can reveal how the control problem behaves when preferences are not uniform distributed.

Chapter 4 studied the effects of iterative strategic reasoning on classical voting rules

by allowing individuals to manipulate the outcome of the election using a restricted set of

manipulation moves. We provided two new definitions of manipulation moves, second-

chance and best-upgrade, and showed that they lead to convergence for all voting rules

considered (cf. Theorem 4.3.1 and 4.3.2) except for STV. We evaluated both theoretically

and experimentally the performance of our restricted manipulation moves, with respect

to the Condorcet efficiency of the iterative version of a voting rule as well as the Borda

score of the winner in the initial truthful profile. We performed two simulations based

on prototypical examples of iterated manipulation: the first simulation with the number

of candidates smaller but comparable to the number of voters to model scheduling with

Doodle, and the second with the number of voters much higher than that of candidates to

model iterated polls before a political election. With the exception of the Borda rule, we

showed that restricted manipulation in iterative voting yields a positive increase in both the

Condorcet efficiency and Borda score and that the best performance is obtained when the

number of candidates is higher than the number of individuals. We also showed that some

axiomatic properties, such as unanimity and Condorcet consistency, are preserved in the

iterative process.

A first direction for future work is the analysis of different versions of manipulation

moves, and a comparison with ours and existing definitions. A starting point can be the

work of Obraztsova and Elkind [81], in which polynomial manipulation moves based on

distance are proposed. In this respect, parameters other than the Condorcet efficiency and

the Borda score may be used to evaluate the effect and the costs of iteration. A second

direction is the study of the computational complexity of manipulating iterated voting

rules, as presented at the end of Section 4.5. A third direction is the application of the

framework we defined in this chapter to account for preferences expressed as partial orders,

and preferences expressed in combinatorial domains [22]. This generalization will allow

us, among other things, to exploit preference data extracted from real-world elections

and collective decision-making processes and to assess with more accuracy the effects of

iterated restricted manipulation on less correlated distributions of preferences.

In Chapter 5 we proposed a definition of collective sentiment over multiple items in-

spired from existing research in voting theory and preference aggregation. By representing

individuals’ sentiment and preferences in a single structure we were able to encompass

classical approaches, putting forward a generalization of the classical Borda count which

has very good theoretical properties and behaves well in incomplete domains such as those

distinctive of sentiment analysis and opinion mining.

105

Related work in in this research area have traditionally focused on aggregating prefer-

ences and opinions submitted by individuals in a uniform format, in the case of sentiments

and comparative preferences extracted from individual textual expressions we have to deal

with richer structures that are however incomplete. preferences and with the problem of

combining preference and sentiments in an accurate definition of collective sentiment.

Our work opens several directions for future work. We list a number of challenges

that arise from the use of techniques from preference aggregation and voting theory for

collective sentiment analysis.

More refined models of opinions.

As already noted in Section 5.1, our analysis of preference and opinion extraction disre-

garded two important parameters:

• Time. Individual opinions are expressed at a given point in time and are also subject

to change or updates. Hence, temporal information plays an important role in

defining a coherent individual view. We believe that the literature on knowledge

representation [98], in particular belief revision and merging, provides useful tools

for the analysis and summarization of conflicting information that can be applied to

the modeling of this problem.

• Features. Entities or items are usually described by means of features, i.e., they may

be elements of a product space. Techniques from natural language processing can

be used to extract the relevant features and thus build the set of entities. However,

in this setting preferences and opinions may compare features rather than entities,

requiring a more elaborate framework for its extraction and representation. Moreover,

the combinatorial explosion resulting from a large set of features may give rise to

computational problems that require an adequate compact representation framework

for preferences. The literature on social choice in combinatorial domains [62] and in

particular on judgment aggregation [33] is highly relevant to this problem.

Validation of aggregation rules.

Since the variety of preference aggregation methods that can be defined is very large, of

which a prime example is the B∗α rule depending on the values given to its parameters

α , a natural question is how to make a choice among them. Two options are possible,

depending on the use of sentiment analysis techniques as a predictor for real-world events

or as a tool for decision-making. First, if methods of collective sentiment analysis are used

over time, tested for several settings and items, and employed in the context of predicting

the result of real-world processes (such as elections or the evolution of a market, see, e.g.,

[4]), then machine learning techniques can be used to learn the best aggregation method,

that is, the one that has proven to be the most accurate. Work on voting rules seen as

106 Chapter 6. Conclusions

maximum likelihood estimators can also be useful in this respect [24]. Alternatively, as in

classical voting theory and as performed in this chapter, axiomatic properties as well as

results about the computational complexity of aggregation rules could guide the choice of

some aggregation methods over others.

Strategic behavior in sentiment analysis.

The individuals composing a society, as well as the agents in a multiagent system, are very

often connected by interpersonal ties, e.g., when individuals are organised in a network. In

this case, individual preferences and opinions are not only the result of personal reflection

but may also take into consideration the position taken by influential individuals or simply

by agents that are close to them in the network. The field of social network analysis [57, 31]

is a burgeoning research area which has the potential of generating highly interesting results

once combined with techniques of preference and sentiment analysis. Sentiment analysis

techniques are moreover not immune to strategic manipulation. A rising phenomenon is

the creation of web services proposing the opening of thousands of fake Twitter accounts

to be used as followers of the manipulator’s account, or the publishing of big volumes of

positive posts related to the manipulator’s products. This represents a prime example of

strategic behavior in collective choice problems, and the whole body of literature published

on this topic may be put to test with real world data once the two fields of sentiment

analysis and preference aggregation have been put together to their full potential. While

the problem of manipulation for a single agent is computationally easy for the classical

case of the Borda rule, we conjecture that for B∗α this is not the case, given the higher

amount of possibilities that an agent has to manipulate the election. However, single-agent

manipulation is unlikely to occur in sentiment analysis applications, given the high number

of individuals concerned and the absence of a well-defined elicitation protocol. Instead, an

interesting direction for future work is the study of coalitional manipulation, which was

recently shown intractable even for the classical Borda rule [27, 15].

Big data and collective sentiment analysis.

When the aggregation operation is relatively simple (e.g., the majority rule), it is possible to

use straightforward techniques such as Hadoop MapReduce [28] to perform computations

in parallel. The mapping phase can be used to run sentiment classifiers on text corpora in

parallel; the resulting data objects can be combined/reduced in parallel. However, with

more complex structures (e.g., conditional preference networks when the set of entities is

described by means of features), the combination procedure may be more combinatorial in

nature and may require non-trivial parallel processing. In this context, modern scale-out

programming languages such as X10 can be particularly valuable [21], making it easy to

write code that runs over thousands of cores and deals with hundreds of gigabytes of main

107

memory data. Of particular interest is developing incremental parallel algorithms that can

update collective sentiments as new utterances stream in and need to be processed.

Bibliography

[1] David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for

barter exchange markets: enabling nationwide kidney exchanges. In Jeffrey K.

MacKie-Mason, David C. Parkes, and Paul Resnick, editors, ACM Conference on

Electronic Commerce, pages 295–304. ACM, 2007.

[2] Stéphane Airiau and Ulle Endriss. Iterated majority voting. In Proceedings of the

1st International Conference on Algorithmic Decision Theory (ADT-2009), 2009.

[3] Krzysztof R. Apt and Sunil Simon. A classification of weakly acyclic games. In

Maria Serna, editor, SAGT, volume 7615 of Lecture Notes in Computer Science,

pages 1–12. Springer, 2012.

[4] Marta Arias, Argimiro Arratia, and Ramon Xuriguera. Forecasting with twitter data.

ACM TIST, 5(1):8, 2013.

[5] Kenneth J. Arrow. Social Choice and Individual Values. John Wiley & Sons Inc.,

New York London Sydney, 1963.

[6] Kenneth J. Arrow, Amartya K. Sen, and Kotaro Suzumura, editors. Handbook of

social choice and welfare. Elsevier, Amsterdam [u.a.], 1. ed. edition, 2002.

[7] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An

enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings

of LREC-2010, 2010.

110 Chapter 6. Conclusions

[8] Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. From tweets

to polls : Linking text sentiment to public opinion time series. In Proceedings of the

International AAAI Conference on Weblogs and Social Media, 2010.

[9] John J. Bartholdi and James B. Orlin. Single transferable vote resists strategic

voting. Social Choice and Welfare, 8:341–354, 1991.

[10] John J. Bartholdi, Craig A. Tovey, and Michael A. Trick. How hard is it to control

an election. Mathematical and Computer Modeling, pages 27–40, 1992.

[11] John J. Bartholdi, Craig A. Tovey III, and Michael A. Trick. The computational

difficulty of manipulating an election. Social Choice and Welfare, 6(3):227–241,

1989.

[12] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, and Jörg Rothe.

Computational aspects of manipulation and control in judgment aggregation. In

Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT, volume 8176 of

Lecture Notes in Computer Science, pages 71–85. Springer, 2013.

[13] James Bennett and Stan Lanning. The Netflix prize. In Proceedings of the KDD

Cup and workshop, 2007.

[14] Sven Berg. Paradox of voting under an urn model: The effect of homogeneity.

Public Choice, 47(2):377–387, 1985.

[15] Nadja Betzler, Rolf Niedermeier, and Gerhard J. Woeginger. Unweighted coalitional

manipulation under the borda rule is np-hard. In Proceedings of IJCAI-2011, 2011.

[16] Steven Brams and M. Remzi Sanver. Voting systems that combine approval and

preference. In StevenJ. Brams, WilliamV. Gehrlein, and FredS. Roberts, editors, The

Mathematics of Preference, Choice and Order. Springer-Verlag Berlin Heidelberg,

2009.

[17] Steven J. Brams and Peter C. Fishburn. Voting procedures. In Kenneth Arrow,

Amartya Sen, and Kotaro Suzumura, editors, Handbook of Social Choice and

Welfare. Elsevier, 2002.

[18] Steven J. Brams and Peter C. Fishburn. Approval voting. Springer, 2nd edition,

2007.

[19] Felix Brandt, Vincent Conitzer, and Ulle Endriss. Computational social choice. In

G. Weiss, editor, Multiagent Systems, pages 213–283. MIT Press, 2013.

111

[20] Andrea Ceron, Luigi Curini, Stefano M. Iacus, and Giuseppe Porro. Every tweet

counts? How sentiment analysis of social media can improve our knowledge of

citizens’ political preferences with an application to Italy and France. New Media &

Society, 2013.

[21] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-

oriented approach to non-uniform cluster computing. In Proceedings OOPSLA-2005,

2005.

[22] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. Preference

handling in combinatorial domains: From ai to social choice. AI Magazine, Special

Issue on Preferences, 29(4):37–46, 2008.

[23] Vincent Conitzer and Tuomas Sandholm. Complexity of manipulating elections

with few candidates. In Rina Dechter and Richard S. Sutton, editors, AAAI/IAAI,

pages 314–319. AAAI Press / The MIT Press, 2002.

[24] Vincent Conitzer and Tuomas Sandholm. Common voting rules as maximum

likelihood estimators. In Proceedings of UAI-2005, 2005.

[25] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings

of the Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

[26] John Cullinan, SamuelK. Hsiao, and David Polett. A Borda count for partially

ordered ballots. Social Choice and Welfare, pages 1–14, 2013.

[27] Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh. Complexity

of and algorithms for borda manipulation. In Proceedings of AAAI-2011, 2011.

[28] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[29] John Duggan and Thomas Schwartz. Strategic manipulability without resoluteness

or shared beliefs: Gibbard-satterthwaite generalized. Social Choice and Welfare,

17(1):85–93, 2000.

[30] Cynthia Dwork, Ravi Kumar, Moni Naor, and D Sivakumar. Rank aggregation

methods for the Web. In Proceedings of the 10th international conference on World

Wide Web, pages 613–622, New York, NY, USA, 2001.

[31] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About

a Highly Connected World. Cambridge University Press, 2010.

112 Chapter 6. Conclusions

[32] Edith Elkind, Piotr Faliszewski, and Arkadii M. Slinko. Cloning in elections:

Finding the possible winners. J. Artif. Intell. Res. (JAIR), 42:529–573, 2011.

[33] Ulle Endriss. Judgment aggregation. In Felix Brandt, Vincent Conitzer, Ulle

Endriss, Jérôme Lang, and Ariel Procaccia, editors, Handbook of Computational

Social Choice. Cambridge University Press, 2015.

[34] Ulle Endriss and Raquel Fernández. Collective annotation of linguistic resources:

Basic principles and a formal model. In Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (ACL-2013), August 2013.

[35] Gábor Erdélyi, Michael R. Fellows, Jörg Rothe, and Lena Schend. Control com-

plexity in bucklin and fallback voting: A theoretical analysis. Journal of Computer

and System Sciences, 81(4):632–660, 2015.

[36] Gábor Erdélyi, Michael R. Fellows, Jörg Rothe, and Lena Schend. Control complex-

ity in bucklin and fallback voting: An experimental analysis. Journal of Computer

and System Sciences, 81(4):661–670, 2015.

[37] Andrea Esuli and Fabrizio Sebastiani. Sentiment quantification. IEEE Intelligent

Systems, 25(4):72–75, 2010.

[38] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee.

Comparing partial rankings. SIAM Journal on Discrete Mathematics, 20:47–58,

2006.

[39] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How hard is

bribery in elections? J. Artif. Intell. Res. (JAIR), 35:485–532, 2009.

[40] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Using com-

plexity to protect elections. Commun. ACM, 53(11):74–82, 2010.

[41] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Multimode

control attacks on elections. J. Artif. Intell. Res. (JAIR), 40:305–351, 2011.

[42] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe.

Llull and copeland voting computationally resist bribery and constructive control. J.

Artif. Intell. Res. (JAIR), 35:275–341, 2009.

[43] Piotr Faliszewski, Edith Hemaspaandra, LaneA. Hemaspaandra, and Jörg Rothe.

A richer understanding of the complexity of election systems. In S.S. Ravi and

SandeepK. Shukla, editors, Fundamental Problems in Computing, pages 375–406.

Springer Netherlands, 2009.

113

[44] Piotr Faliszewski and Ariel D. Procaccia. AI’s war on manipulation: Are we

winning? AI Magazine, 31(4):53–64, 2010.

[45] Peter C. Fishburn. Paradoxes of voting. The American Political Science Review,

68(2):pp. 537–546, 1974.

[46] Murthy Ganapathibhotla and Bing Liu. Mining opinions in comparative sentences.

In Proceedings of COLING-2008, 2008.

[47] Michael R. Garey and David S. Johnson. Computers and intractability: a guide to

the theory of NP-completeness. W.J. Freeman and Company, San Francisco, CA,

1979.

[48] Ashutosh Garg, T. S. Jayram, Shivakumar Vaithyanathan, and Huaiyu Zhu. General-

ized opinion pooling. In Proceedings of the AAAI Spring Symposium on Exploring

Attitude and Affect in Text: Theories and Applications, 2004.

[49] Allan Gibbard. Manipulation of voting schemes: A general result. Econometrica,

41(4):587–601, 1973.

[50] Jorge Godoy, Dominique Gruyer, Alain Lambert, and Jorge Villagra. Development

of an particle swarm algorithm for vehicle localization. In Intelligent Vehicles

Symposium, pages 1114–1119. IEEE, 2012.

[51] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Reading, MA, 1989.

[52] Umberto Grandi, Andrea Loreggia, Francesca Rossi, and Vijay Saraswat. From

sentiment analysis to preference aggregation. In Proceedings of the International

Symposium on Artificial Intelligence and Mathematics (ISAIM-2014), 2014.

[53] Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable, and

Toby Walsh. Restricted manipulation in iterative voting: Condorcet efficiency and

borda score. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors, ADT,

volume 8176 of Lecture Notes in Computer Science, pages 181–192. Springer, 2013.

[54] Mingyu Guo and Vincent Conitzer. Computationally feasible automated mechanism

design: General approach and case studies. In Maria Fox and David Poole, editors,

AAAI. AAAI Press, 2010.

[55] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Anyone but him:

The complexity of precluding an alternative. Artif. Intell., 171(5-6):255–285, 2007.

114 Chapter 6. Conclusions

[56] Mehran Hojati. Optimal political districting. Computers OR, 23(12):1147–1161,

1996.

[57] Matthew O. Jackson. Social and economic networks. Princeton University Press,

Princeton, NJ, 2008.

[58] Nitin Jindal and Bing Liu. Mining comparative sentences and relations. In Pro-

ceedings of the 21st National Conference on Artificial Intelligence (AAAI-2006),

2006.

[59] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and em-

pirical comparison of object ranking methods. In Johannes Fürnkranz and Eyke

Hüllermeier, editors, Preference Learning, pages 181–201. Springer-Verlag, 2010.

[60] Richard M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations. Plenum Press, New

York, 1972.

[61] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceed-

ings of the IEEE International Conference on Neural Networks, pages 1942–1948,

1995.

[62] Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In Felix Brandt, Vin-

cent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel Procaccia, editors, Handbook

of Computational Social Choice. Cambridge University Press, 2015.

[63] Jérôme Lang, Nicolas Maudet, and Maria Polukarov. New results on equilibria in

strategic candidacy. In Berthold Vöcking, editor, SAGT, volume 8146 of Lecture

Notes in Computer Science, pages 13–25. Springer, 2013.

[64] Jean-François Laslier and M. Remzi Sanver, editors. Handbook of Approval Voting.

Springer, 2010.

[65] Omer Lev and Jeffrey S. Rosenschein. Convergence of iterative voting. In Proceed-

ings of the 11th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2012), 2012.

[66] Andrew Lin. The complexity of manipulating k-approval elections. In Joaquim

Filipe and Ana L. N. Fred, editors, ICAART (2), pages 212–218. SciTePress, 2011.

[67] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data

(Data-Centric Systems and Applications). Springer-Verlag New York, Inc., 2006.

115

[68] Bing Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human

Language Technologies. Morgan and Claypool Publishers, 2012.

[69] Andrea Loreggia. Iterative voting and multi-mode control in preference aggregation.

Master’s thesis, University of Padova, 2012.

[70] Andrea Loreggia, Nina Narodytska, Francesca Rossi, K. Brent Venable, and Toby

Walsh. Controlling elections by replacing candidates or votes. In Proceedings of

the 2015 International Conference on Autonomous Agents and Multiagent Systems,

AAMAS ’15, pages 1737–1738, Richland, SC, 2015. International Foundation for

Autonomous Agents and Multiagent Systems.

[71] Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Better human computation

through principled voting. In Proceedings of the Twenty-Seventh AAAI Conference

on Artificial Intelligence (AAAI-2013), 2013.

[72] Nicholas Mattei and Toby Walsh. Preflib: A library for preferences http:

//www.preflib.org. In Patrice Perny, Marc Pirlot, and Alexis Tsoukiàs, editors,

ADT, volume 8176 of Lecture Notes in Computer Science, pages 259–270. Springer,

2013.

[73] Nicolas Maudet, Jérôme Lang, Yann Chevaleyre, and Guillaume Ravilly-Abadie.

Compiling the votes of a subelectorate. In Proceedings of IJCAI-2009, 2009.

[74] Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nicholas R. Jennings.

Convergence to equilibria in plurality voting. In Proceedings of the Twenty-fourth

conference on Artificial Intelligence (AAAI-2010), 2010.

[75] Curtis Menton. Normalized range voting broadly resists control. Theory Comput.

Syst., 53(4):507–531, 2013.

[76] P.T. Metaxas, E. Mustafaraj, and D. Gayo-Avello. How (not) to predict elections. In

Proceedings of PASSAT-2011 and SOCIALCOM-2011, 2011.

[77] Gilad Mishne. Predicting movie sales from blogger sentiment. In In AAAI 2006

Spring Symposium on Computational Approaches to Analysing Weblogs (AAAI-

CAAW), 2006.

[78] Hervé Moulin. Condorcet’s principle implies the no show paradox. Journal of

Economic Theory, 45(1):53–64, 1988.

116 Chapter 6. Conclusions

[79] Lihi Naamani Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Iterative voting

under uncertainty for group recommender systems. In Proceedings of the fourth

ACM conference on Recommender systems (RECSYS-2010), 2010.

[80] Nina Narodytska and Toby Walsh. Manipulating two stage voting rules. In Proceed-

ings of the Twelft International conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-2013), 2013.

[81] Svetlana Obraztsova and Edith Elkind. Optimal manipulation of voting rules.

In Proceedings of the 11th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS-2012), 2012.

[82] Svetlana Obraztsova, Evangelos Markakis, Maria Polukarov, Zinovi Rabinovich,

and Nick Jennings. On the convergence of iterative voting: How restrictive should

restricted dynamics be? In Proceedings of the 5th International Workshop on

Computational Social Choice (COMSOC-2014), 2014.

[83] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1-2):1–135, 2008.

[84] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment

classification using machine learning techniques. In Proceedings of EMNLP-2002,

pages 79–86, 2002.

[85] Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. In-

completeness and incomparability in preference aggregation: Complexity results.

Artificial Intelligence, 175(7-8):1272–1289, 2011.

[86] Zinovi Rabinovich, Svetlana Obraztsova, Omer Lev, Evangelos Markakis, and Jef-

frey Rosenschein. Analysis of equilibria in iterative voting schemes. In Proceedings

of the 5th International Workshop on Computational Social Choice (COMSOC-

2014), 2014.

[87] Annemieke Reijngoud and Ulle Endriss. Voter response to iterated poll information.

In Proceedings of the 11th International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2012), June 2012.

[88] Reyhaneh Reyhani and Mark C. Wilson. Best reply dynamics for scoring rules. In

Proceedings of the 20th European Conference on Artificial Intelligence (ECAI-2012),

pages 672–677, 2012.

[89] Federica Ricca, Andrea Scozzari, and Bruno Simeone. Political districting: from

classical models to recent approaches. 4OR, 9(3):223–254, 2011.

117

[90] Francesca Rossi, Kristen Brent Venable, and Toby Walsh. A Short Introduction to

Preferences: Between Artificial Intelligence and Social Choice. Synthesis Lectures

on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers,

2011.

[91] Nathan F. Russell. Complexity of Control of Borda Count Elections, 2007.

[92] Mark Allen Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence

and correspondence theorems for voting procedures and social welfare functions.

Journal of Economic Theory, 10(2):187 – 217, 1975.

[93] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems - Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[94] Piotr Skowron, Piotr Faliszewski, and Arkadii Slinko. Achieving fully proportional

representation is easy in practice. In In Proc. of the 2013 AAMAS, AAMAS ’13,

pages 399–406, Richland, SC, 2013. International Foundation for Autonomous

Agents and Multiagent Systems.

[95] Sydney Coordinated Adaptive Traffic System. SCATS: How it works | Adaptive con-

trol. , 2014.

[96] Alan D. Taylor. Social choice and the mathematics of manipulation. Cambridge

University Press, 2005.

[97] David R. M. Thompson, Omer Lev, Kevin Leyton-Brown, and Jeffrey S. Rosen-

schein. Empirical analysis of plurality election equilibria. In The Twelfth Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-

2013), 2013.

[98] Frank van Harmelen, Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter.

Handbook of Knowledge Representation. Elsevier, 2007.

[99] Toby Walsh. An empirical study of the manipulability of single transferable voting.

In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, ECAI, volume

215 of Frontiers in Artificial Intelligence and Applications, pages 257–262. IOS

Press, 2010.

[100] Toby Walsh. Is computational complexity a barrier to manipulation? Annals of

Mathematics and Artificial Intelligence, 62(1-2):7–26, June 2011.

[101] Lirong Xia and Vincent Conitzer. A maximum likelihood approach towards aggre-

gating partial orders. In Proceedings of IJCAI-2011, 2011.

118 Chapter 6. Conclusions

[102] Lirong Xia, Michael Zuckerman, Ariel D. Procaccia, Vincent Conitzer, and Jeffrey S.

Rosenschein. Complexity of unweighted coalitional manipulation under some

common voting rules. In Proceedings of the 21st International Joint Conference on

Artificial Intelligence (IJCAI-2009), 2009.

[103] H. Peyton Young. An axiomatization of Borda’s rule. Journal of Economic Theory,

9(1):43–52, 1974.

List of Algorithms

1 Destructive Control Replacing Votes . 32

2 Constructive Control Replacing Votes . 34

3 Constructive Control Replacing Voters . 36

4 Destructive Control Replacing Candidates 44

5 Computing winner . 64

6 Computing BU . 65

List of Figures

3.1 Sushi dataset: fraction of profiles (over 1000) with successful DCRC. . . . 47

3.2 T-shirt dataset: fraction of profiles (over 1000) with successful DCRC. . . . 48

3.3 Deterministic algorithm on sushi dataset: average percentage of used

combinations. 49

3.4 Deterministic algorithm on t-shirt dataset: average percentage of tried

combinations. 49

3.5 Deterministic and probabilistic algorithm comparison on the sushi dataset.

50

3.6 Deterministic and probabilistic algorithm comparison on the t-shirt dataset.

50

3.7 Deterministic algorithm on sushi dataset using plurality: RC compared to

AC and DC. 52

3.8 Deterministic algorithm on sushi dataset using veto: RC compared to AC

and DC. 52

3.9 Deterministic algorithm: RC compared to AC, DC, and AC+DC. 53

3.10 Borda deterministic and probabilistic algorithm: comparison. 54

3.11 Borda: percentage of profiles (over 1000) with successful DCRC. 54

4.1 Copeland does not converge with best response manipulation. 62

4.2 STV with sequential turn function does not converge. 68

4.3 A dominated candidate elected by PSR with scores (2,1,1,1,0). 70

4.4 Number of profiles with iteration compared to the correlation ratio. . . . 73

122 LIST OF FIGURES

4.5 Doodle experiment with UM10: Condorcet efficiency. 73

4.6 Electoral experiment with UM10: Condorcet efficiency. 74

4.7 Sushi Dataset experiment: Condorcet efficiency 75

5.1 SP-structures associated with Example 5.2. 87

5.2 Percentage of profiles where sentiment analysis and B∗α differ (2 candi-

dates). 100

5.3 Percentage of profiles where sentiment analysis and B∗α differ (10 voters).

101

5.4 Mean error of B∗α on incomplete profiles. 102

