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Abstract

In this Ph.D thesis, we work in one of the most well studied class of problems
in Computer Science, that of Constraint Satisfaction Problems (CSPs). In
one of their usual formulations, CSPs consist of a set of variables that take
values in a common domain set. Groups of variables are tied by constraints
that restrict the possible combinations of values that the variables can have
in a solution. In such a setting, there are many objectives that one might be
interested in: checking if there is a solution, finding or approximating one,
or considering how fast an algorithmic procedure can do all that.

The framework of CSPs is broad enough to model a great number of in-
teresting problems in computer science, like the satisfiability of propositional
formulas and graph coloring problems. It is also a very developed field on its
own accord, with a lot of interesting results that classify the computational
complexity of classes of CSPs and delineate the bounds between tractability
and NP-hardness. The machinery used to tackle such problems is broad,
including polynomial-time algorithms that solve classes of CSPs, random-
ized ones that find or approximate solutions given some conditions that the
CSP in question must satisfy and algebraic manipulations that allow us to
relate their computational complexity with structural properties of their sets
of constraints.

We begin with an overview of various approaches to CSPs: defining them
in the language of Propositional, First or Second Order Logic and via homo-
morphisms and we consider the subclass of multi-sorted CSPs, that is CSPs
whose variables are divided in di↵erent sorts and take values in independent
domains. Some of these variations are discussed to show the versatility of
CSPs and provide some context to our work, while others are utilized to
prove our results.

The first part of our results concerns what is known as the probabilistic
approach. Here, we devise randomized algorithms that (i) prove conditions
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that guarantee the existence of solutions to a given instance of a CSP and (ii)
in case a solution exists, find it e�ciently. A solution in this setting is usually
expressed as a point in a probability space such that no event, from a set of
events that are deemed as “undesirable”, occurs. We work with the seminal
Lovász Local Lemma (LLL) and its variation, Shearer’s Lemma, which, given
some bounds concerning the probabilities of undesirable events and the way
these events depend on each other, provide conditions that imply all the
events can be avoided with positive probability. A solution in this setting,
is a point in a probability space such that none of the events occur. All
our work is situated in the variable framework of Moser and Tardos, where
the events are assumed to be defined upon independent random variables.
Although this is a restriction of the general setting, it is a broad framework
that easily translates to the language of CSPs and that is particularly handy
for algorithmic purposes.

Specifically, we define two new notions of dependency between the events,
the variable-directed lopsidependency (VDL) and the directed dependency (d-
dependency), which are specifically tailored to facilitate the algorithmic ma-
nipulation of events that are negatively correlated. It is quite common in
practice to depict dependencies between the events by a dependency graph,
where the nodes correspond to the events and unconnected events are con-
sidered independent. We thus discuss how the directed dependency graphs
that our notions give rise to, relate with other such graphs in the bibliogra-
phy. Furthermore, we show that the d-dependency condition gives rise to a
sparser dependency graph than other known such conditions in the variable
framework, thus allowing for stronger versions of the LLL to be proven.

We then proceed to prove the simple version of the LLL of the VDL
condition. That is, we design an algorithm which, if the probabilities of
the events are upper bounded by a common number p 2 [0, 1), the VDL
graph has maximum degree d and epd  1, e�ciently finds a point in the
probability space such that none of the events occur, thus showing at the
same time that such a point must exist in the first place. We also prove the
more general asymmetric version of the LLL for the d-dependency graph,
where the probability of each event is bounded by a number relating to the
probabilities of the events depending on it. We then prove the even stronger
Shearer’s lemma for the underlying undirected graph of the d-dependency
one, which bounds the probabilities of the events by polynomials defined
over the independent sets of the graph.

The proofs for these versions of the LLL and Shearer’s lemma employ a
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direct probabilistic approach, in which we show that the probability that our
algorithms last for at least n steps is inverse exponential to n, by express-
ing it by a recurrence relation which we subsequently solve using advanced
analytic tools, such as Bender and Richmond’s Lagrange Inversion Formula
and Gelfand’s Formula for the spectral radius of matrices. In contrast, most
extant work bounds only the expectation of the steps performed by such
algorithms. We believe that this fact is interesting in each own accord. Nev-
ertheless, we have applied our method in two interesting combinatorial prob-
lems. First, we show that 2�� 1 colors su�ce to acyclicaly color the edges
of a graph with maximum degree �, that is, we want the resulting coloring
to contain neither incident edges with the same color, nor bichromatic cy-
cles. We thus match the best possible bound for Moser-like algorithms, as
observed by Cai et al. [Acyclic edge colourings of graphs with large girth.
Random Structures & Algorithms, 50(4):511–533, 2017]. We also show how
to explicitly construct binary c-separating codes whose rate matches the op-
timal known one. c-separating codes are M ⇥n matrices over some alphabet
Q, where, in any two sets U and V of at most c rows, there is at least one
column such that the set of elements in U is disjoint with that in V . Al-
though such codes are very useful for applications, explicit constructions are
scarce.

The second part of our results lies in Social Choice Theory and, specifi-
cally, in Judgment Aggregation, where a group of agents collectively decides
a set of issues and where, both the individual positions of each agent and
the aggregated positions (the social outcome) needs to adhere to some re-
strictions that reflect logical consistency requirements. The aim is to find
aggregating procedures that preserve these requirements and do not degen-
erate to dictatorships, that is aggregators that always output the positions
of a specific agent.

Firstly, we consider the case where these restrictions are expressed by a
set of m-ary vectors X over some finite domain D, where m is the number of
issues to be decided. That is, m contains the allowed combinations of votes
over the issues and a vector not in X is deemed “irrational”. In this setting,
we characterize possibility domains, that is sets X where non-dictatorial ag-
gregation is possible, via the types of aggregators they admit. Furthermore,
we provide an analogous characterization for a subclass of possibility do-
mains we named uniform possibility domains, which are domains that admit
aggregators that are not dictatorial even when restricted to any issue and
any binary subset of allowed positions. We also show that uniform possi-
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bility domains give rise to tractable multi-sorted CSPs, while any domain
that is not uniform, gives rise to NP-complete multi-sorted CSPs, thus tying
the possibility of non-dictatorial aggregation with a dichotomy result in the
complexity of multi-sorted CSPs.

We then proceed to consider Boolean such domains, that are given as the
sets of models of propositional formulas, which, in the bibliography, are called
integrity constraints. We provide syntactic characterizations for integrity
constraints that give rise to (uniform) possibility domains and also to domains
admitting a variety of non-dictatorial aggregators with specific properties
that have appeared in the bibliography. We also show how to e�ciently
identify integrity constraints of these types and how to e�ciently construct
such constraints given a Boolean domain X of the corresponding type.

Finally, we turn our attention to the problem of recognizing if a domain
admits a (uniform) non-dictatorial aggregator. In case X is provided explic-
itly, as a set of m-ary vectors, we design polynomial-time algorithms that
solve this problem. In case X is Boolean and provided either via an integrity
constraint, or, as in the original framework of Judgment Aggregation, as
the set of consistent evaluations of a set of propositional formulas, called an
agenda, we provide upper and lower complexity bounds in the polynomial
hierarchy. We extend these results to include the cases where X admits
non-dictatorial aggregators with desirable properties.



Per–lhyh

Se aut†n thn didaktorik† diatrib† doule‘oume se Probl†mata Ikanopo–hshc

Periorism∏n (P.I.P.), ta opo–a apotelo‘n m–a apÏ tic pio kalà melethmËnec ka-

thgor–ec problhmàtwn sthn Epist†mh thc Plhroforik†c. Sthn sun†jh touc

morf†, ta P.I.P. apotelo‘ntai apÏ Ëna s‘nolo metablht∏n pou pa–rnoun timËc

apÏ Ëna koinÏ ped–o orismo‘. Oi metablhtËc autËc upÏkeintai se diàforouc

periorismo‘c, pou or–zoun touc apodekto‘c sunduasmo‘c tim∏n m–ac l‘shc.

Se autÏ to pla–sio, upàrqoun diàfora zht†mata pou mporo‘n na mac apasqo-

l†soun: o Ëlegqoc gia to an upàrqei l‘sh, to na bro‘me † na prosegg–soume

m–a l‘sh, † to pÏso gr†gora mpore– na kànei ta prohgo‘mena m–a algorijmik†

diadikas–a.

Pollà endiafËronta probl†mata sthn perioq† thc Epist†mhc twn Upologi-

st∏n mporo‘n na anaparastajo‘n wc P.I.P., Ïpwc autÏ thc ikanopoihsimÏth-
tac protasiak∏n t‘pwn † tou qrwmatismo‘ grafhmàtwn. Wc autÏnomo ereu-
nhtikÏ ped–o, ta P.I.P. Ëqoun melethje– ektetamËna, me apotËlesma na upàrqei

Ëna megàlo pl†joc ereun∏n pou ta kathgoriopoio‘n me bàsh thn upologisti-
k† poluplokÏthtà touc kai pou diaqwr–zoun ta (poluwnumik∏c) epil‘sima apÏ
ta NP-d‘skola. PËran to‘tou, Ëqoun anaptuqje– pollà ergale–a gi autà ta
probl†mata, Ïpwc poluwnumiko‘ qrÏnou algÏrijmoi gia sugkekrimËnec kath-

gor–ec P.I.P., pijanotiko– algÏrijmoi pou br–skoun † prosegg–zoun l‘seic se

P.I.P. pou ikanopoio‘n orismËnec sunj†kec kai algebrikËc prosegg–seic mËsw

twn opo–wn susqet–zoume thn upologistik† touc poluplokÏthta me thn dom†

tou sunÏlou twn periorism∏n touc.

Sthn paro‘sa ergas–a, xekinàme me thn parous–ash diafÏrwn prosegg–se-

wn sta P.I.P.: mËsw Protasiak†c, Prwtobàjmiac † Deuterobàjmiac Logik†c
kai mËsw omomorfism∏n. Meleto‘me ep–shc thn parallag† twn Polu-eid∏n
P.I.P., twn opo–wn oi metablhtËc qwr–zontai se diaforetikà e–dh kai pa–rnoun

timËc apÏ diakrità kai anexàrthta ped–a orism∏n. Kàpoiec apÏ autËc tic paral-

lagËc kai prosegg–seic d–nontai ∏ste na fane– h eur‘thta tou plais–ou mËsa

9



10

sto opo–o doule‘oume, en∏ àllec qrhsimopoio‘ntai sta –dia ta apotelËsmatà

mac.

To pr∏to mËroc twn apotelesmàtwn mac aforà thn legÏmenh pijanoti-
k† prosËggish. Sqediàzoume algor–jmouc pou (i) apodeikn‘oun sunj†kec oi
opo–ec eggu∏ntai thn ‘parxh l‘shc se stigmiÏtupa enÏc P.I.P. kai (ii) se

per–ptwsh pou upàrqei l‘sh, thn br–skoun se poluwnumikÏ qrÏno. Oi l–seic

autËc sun†jwc anaparistÏntai apÏ shme–a enÏc pijanotiko‘ q∏rou sta opo–a

den isq‘ei kanËna apÏ m–a seirà gegonÏta ta opo–a kr–nontai wc ‘anepij‘mhta’.

Doule‘oume me to TopikÏ L†mma tou Lovász (Lovász Local Lemma) kai thn
parallag† tou, to L†mma touShearer . Autà ta l†mmata, dojËntwn kàpoiwn
ànw fragmàtwn sthn pijanÏthta mh-epijumht∏n gegonÏtwn na sumbo‘n, ka-

j∏c kai sto pl†joc twn metax‘ touc susqetism∏n kai exart†sewn, mac d–noun

sunj†kec kàtw apÏ tic opo–ec upàrqei l‘sh. Akolouj∏ntac touc Moser kai
Tardos, upojËtoume Ïti Ïla ta gegonÏta or–zontai mËsw anexàrthtwn tuqa–wn
metablht∏n. ParÏlo pou autÏ e–nai Ëna pio periorismËno ped–o se sqËsh me
to na doule‘ame me geniko‘c pijanotiko‘c q∏rouc, e–nai Ëna eur‘ pla–sio pou

tairiàzei me autÏ twn P.I.P. kai sto opo–o mporo‘me e‘kola na sqediàsoume

algor–jmouc.

SugkekrimËna, eisàgoume d‘o nËec Ënnoiec exàrthshc metax‘ twn gego-

nÏtwn, thn kateujunÏmenh as‘mmetrh exàrthsh metablht†c (variable - di-
rected lopsidependency - VDL) kai thn kateujunÏmenh exàrthsh. Kai oi d‘o
autËc Ënnoiec e–nai sqediasmËnec ∏ste na epitrËpoun thn algorijmik† epexer-

gas–a arnhtikà susqetismËnwn gegonÏtwn. E–nai s‘nhjec oi exart†seic me-
tax‘ twn gegonÏtwn na apotup∏nontai sta legÏmena graf†mata exàrthshc,
twn opo–wn oi korufËc antistoiqo‘n sta gegonÏta kai ta gegonÏta pou den

en∏nontai me akmËc jewro‘ntai anexàrthta. Wc ek to‘tou, sugkr–noume ta

kateujunÏmena graf†mata exàrthshc pou prok‘ptoun apÏ tic d‘o parapànw

Ënnoiec pou eisagàgame, me àlla tËtoiou e–douc graf†mata pou qrhsimopoio-

‘ntai sthn bibliograf–a. EidikÏtera, de–qnoume Ïti to gràfhma thc kateuju-

nÏmenhc exàrthshc e–nai pio araiÏ apÏ ta perissÏtera tËtoia graf†mata, kàti

pou epitrËpei na apodeiqjo‘n pio isqurËc morfËc tou Topiko‘ L†mmatoc.

Sthn sunËqeia, apodeikn‘oume thn apl† morf† tou l†mmatoc auto‘ gia thn

VDL. SugkekrimËna, sqediàzoume Ënan algÏrijmo o opo–oc, dedomËnou Ïti h
pijanÏthta twn gegonÏtwn fràssetai apÏ Ënan arijmÏ p 2 [0, 1), Ïti to VDL
gràfhma Ëqei mËgisto bajmÏ d kai Ïti epd  1, br–skei se poluwnumikÏ qrÏno
Ëna shme–o ston pijanotikÏ q∏ro tËtoio ∏ste kanËna apÏ ta mh epijumhtà

gegonÏta na mhn isq‘ei. AutÏ fusikà sunepàgetai kai thn ‘parxh tËtoiou

shme–ou. Sthn sunËqeia, apodeikn‘oume thn mh-summetrik† ekdoq† tou l†m-
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matoc gia to gràfhma kateujunÏmenhc exàrthshc. Se aut†n thn ekdoq†, h

pijanÏthta kàje gegonÏtoc fràssetai apÏ Ënan arijmÏ pou sqet–zetai me thn

pijanÏthta Ïlwn twn exartwmËnwn apÏ autÏ gegonÏtwn. TËloc, apodeikn‘ou-

me kai to pio isqurÏ L†mma tou Shearer gia to mh-kateujunÏmeno gràfhma
pou prok‘ptei an agno†soume tic kateuj‘nseic sto gràfhma kateujunÏmenhc

exàrthshc. Se autÏ to l†mma, oi pijanÏthtec twn gegonÏtwn fràssontai apÏ

polu∏numa ep– twn anexàrthtwn sunÏlwn tou graf†matoc.

Oi apode–xeic aut∏n twn ekdoq∏n twn lhmmàtwn aut∏n g–nontai mËsw m–ac

apeuje–ac pijanotik†c anàlushc tou pl†jouc twn bhmàtwn pou kànoun oi al-

gÏrijmoi mac. Gia na to epit‘qoume autÏ, fràssoume thn pijanÏthta na e-

ktelËsoun toulàqiston n b†mata apÏ mia sqËsh anadrom†c, thn opo–a sthn
sunËqeia epil‘oume me analutikà ergale–a, Ïpwc thn ekdoq† thc FÏrmoulac A-
ntistrof†c tou Lagrange pou Ëqoun apode–xei oi Bender kai Richmond, † thn
FÏrmoula tou Gelfand gia thn fasmatik† nÏrma pinàkwn. Ant–jeta, oi mËqri
t∏ra algorijmikËc prosegg–seic upolog–zoun thn anamenÏmenh tim† twn bh-
màtwn twn algor–jmwn. Jewro‘me pwc autÏ to gegonÏc apÏ mÏno tou kànei

thn parapànw prosËggis† endiafËrousa. ParÏla autà, efarmÏsame tic me-

jÏdouc mac se d‘o endiafËronta upologistikà probl†mata. Arqikà, de–qnou-

me Ïti 2� � 1 qr∏mata arko‘n gia na bàyoume tic akmËc enÏc graf†matoc
me tËtoiwn trÏpo ∏ste, pr∏ton, na mhn upàrqoun prosp–ptousec akmËc –diou

qr∏matoc kai, de‘teron, na mhn upàrqoun diqrwmatiko– k‘kloi. To apotËlesma

autÏ e–nai bËltisto gia algor–jmouc t‘pouMoser, Ïpwc parat†rhsan oi Cai et
al. [Acyclic edge colourings of graphs with large girth. Random Structures &
Algorithms, 50(4):511–533, 2017]. AkÏmh, de–qnoume pwc na kataskeuàsou-
me c-diaqwristiko‘c k∏dikec twn opo–wn h plhrofor–a se kàje yhf–o e–nai h
bËltisth pou qei breje– sthn bibliograf–a. Oi c-diaqwristiko– k∏dikec e–nai
p–nakec diàstashcM⇥n, me stoiqe–a apÏ Ëna alfàbhto Q, ∏ste, gia kàje d‘o
upos‘nola U , V to pol‘ c gramm∏n touc, na upàrqei toulàqiston m–a st†lh
thc opo–ac ta s‘nola twn stoiqe–wn sto U kai autà tou V na e–nai xËna. Pa-
r'Ïti auto– oi k∏dikec e–nai pol‘ qr†simoi stic efarmogËc, oi kataskeuËc touc

e–nai pol‘ spàniec.

To de‘tero mËroc thc douleiàc mac e–nai sthn Jewr–a Koinwnik∏n Proti-
m†sewn kai, pio sugkekrimËna, ston SumyhfismÏ Kr–sewn, Ïpou Ëna s‘nolo
atÏmwn jËlei na apofas–sei sullogikà Ëna s‘nolo zhthmàtwn, kai pou oi du-

nato– sunduasmo– y†fwn, tÏso gia to kàje àtomo xeqwristà, Ïso kai gia thn

sullogik† apÏfash upako‘n se kàpoiouc periorismo‘c, oi opo–oi epibàloun

kàpoia Ënnoia logik†c sunËpeiac. StÏqoc e–nai na brejo‘n kanÏnec sumyh-

fismo‘ pou diathro‘n auto‘c touc periorismo‘c kai pou den ekful–zontai se
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diktator–ec, dhlad† se kanÏnec pou katal†goun pànta stic epilogËc enÏc su-
gkekrimËnou atÏmou.

Arqikà, exetàzoume thn per–ptwsh pou oi periorismo– auto– mac d–nontai wc

Ëna s‘nolo X m-adik∏n dianusmàtwn me stoiqe–a apÏ Ëna ped–o orismo‘ D,
Ïpou m e–nai to pl†joc twn zhthmàtwn ep– twn opo–wn yhf–zoun ta àtoma.
To X loipÏn periËqei touc epitrepÏmenouc sunduasmo‘c y†fwn ep– twn je-
màtwn kai kàje diànusma ektÏc tou X jewre–tai mh logikà sunepËc. Se autÏ
to pla–sio, qarakthr–zoume ta ped–a dunatÏthtac, ta s‘nola X dhlad† Ïpou
mporo‘me na bro‘me mh-diktatoriko‘c sumyhfistËc, mËsw twn eid∏n twn sum-

yhfist∏n pou dËqontai. Sthn sunËqeia, qarakthr–zoume me ant–stoiqo trÏpo

ta omoiÏmorfa ped–a dunatÏthtac, ta opo–a dËqontai sumyhfistËc oi opo–oi den
e–nai diktatoriko– akÏmh ki Ïtan perior–zontai se opoiod†pote jËma kai duadi-

kÏ upos‘nolo dunat∏n jËsewn wc proc to jËma autÏ. De–qnoume ep–shc Ïti

ta polueid† P.I.P. pou or–zontai pànw se omoiÏmorfa ped–a dunatÏthtac e–nai

poluwnumik∏c epil‘sima, en∏ ta P.I.P. pou or–zontai se s‘nola pou den e-

–nai tËtoia, e–nai NP-d‘skola, sundËontac Ëtsi thn dunatÏthta mh diktatoriko‘
sumyhfismo‘ me mia diqotom–a sthn poluplokÏthta twn polueid∏n P.I.P.

Sthn sunËqeia, asqolo‘maste me thn per–ptwsh pou to X or–zetai pànw
se duadikÏ ped–o orismo‘ kai mac d–netai wc to s‘nolo alhjotim∏n miac prota-

siak†c fÏrmoulac. Sthn bibliograf–a, tËtoiec fÏrmoulec onomàzontai perio-
rismo– akeraiÏthtac. Apodeikn‘oume suntaktiko‘c qarakthrismo‘c gia fÏr-
moulec pou mac d–noun (omoiÏmorfa) ped–a dunatÏthtac, kaj∏c kai ped–wn pou

dËqontai Ëna pl†joc apÏ mh-diktatoriko‘c sumyhfistËc me endiafËrousec i-

diÏthtec, pou Ëqoun emfaniste– sthn bibliograf–a. De–qnoume ep–shc pwc na

anagnwr–zoume apodotikà tËtoiouc suntaktiko‘c t‘pouc allà kai pwc na touc

kataskeuàzoume mËsw enÏc ped–ou me tic katàllhlec idiÏthtec.

TËloc, asqolo‘maste me to prÏblhma thc anagn∏rishc enÏc ped–ou pou

dËqetai (omoiÏmorfouc) mh diktatoriko‘c sumyhfistËc. Sthn per–ptwsh pou

to X mac Ëqei doje– wc s‘nolo dianusmàtwn, sqediàzoume poluwnumiko‘c al-
gor–jmouc pou to epil‘oun. An to X d–netai e–te wc to s‘nolo alhje–ac miac
protasiak†c fÏrmoulac, e–te wc Ëna s‘nolo logikà sunep∏n kr–sewn enÏc su-

nÏlou tËtoiwn t‘pwn, dhlad† miac antzËntac, Ïpwc †tan ki o arqikÏc trÏpoc
melËthc thc sugkekrimËnhc perioq†c, d–noume ànw kai kàtw fràgmata sthn u-

pologistik† poluplokÏthta aut∏n twn problhmàtwn, mËsw thc poluwnumik†c
ierarq–ac. Ant–stoiqa apotelËsmata br–skoume kai stic peript∏seic pou elËg-
qoume gia mh diktatoriko‘c sumyhfistËc me epijumhtËc idiÏthtec pou Ëqoun

melethje– sthn bibliograf–a.
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Chapter 1

Introduction

Constraint Satisfaction Problems (CSPs) are a robust way of expressing var-
ious computational problems, where we want to find an object which has
properties that can be expressed as constraints over a set of variables. There
is a rich theory in place on how to solve them, whether we want exact or
approximate solutions, that has been developed both as an independent field
of study and also within the various scientific fields that CSPs are applied,
like mathematical logic, algorithm design and integer programming. Study-
ing CSPs is reminiscent of learning about algebraic equations in school level
mathematics, as a way to express “real life” problems and along with the
various techniques and tools in place to solve them.

In this Ph.D thesis, we study CSPs from an algorithmic point of view. In
matters of algorithm design, we use a probabilistic approach to devise algo-
rithms that solve CSPs e�ciently. We use these algorithms to prove two sem-
inal theorems, the Lovász Local Lemma and Shearer’s Lemma. Furthermore,
we apply our approach in two well known problems in the fields of graph col-
orability and coding theory, the acyclic edge coloring and 2-separating codes
respectively. Apart from the above, we consider some important problems in
the theory of judgment aggregation, concerning non-dictatorial aggregation.
There, we take advantage of their relation with CSPs, using various tools
from the fields of universal algebra and propositional logic, in order to obtain
interesting complexity theoretic results.

The introduction is structured as follows. We first take, in Sec. 1.1, a
brief overview of CSPs in the areas that come up in our work. Then, in Sec.
1.2, we present our results in these areas. Then, in Sec. 1.3, we provide
some basic facts in scientific fields that permeate our work: graph theory in
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Subsec. 1.3.1, propositional logic in Subsec. 1.3.2 and algorithm design in
Subsec. 1.3.3. Finally, in Subsec. 1.3.4, we discuss some specialized analytic
and algebraic tools we will need to analyse some of our algorithms in Ch. 6.
The last section of the introduction can be safely skipped, and get back to if
the need arises.

1.1 Algorithmic approaches

There are numerous computational problems that can be expressed as CSPs.
For example, a system of linear inequalities in the field of real numbers can be
expressed by a set of variables, taking values in R, constrained by relations,
that is, subsets of R ✓ Rn, where n is the number of variables to which
the constraint R is applied. On the other hand, a coloring of a graph can
be expressed by relations that constrain the available colors of neighboring
vertices or incident edges. A matrix over the set Z of integers can have
constraints over the elements of its rows and columns, that force it to have
specific algebraic properties, like being invertible. In general, each problem
can have various ways to be expressed as a CSP, with each providing a unique
perspective on how to deal with it.

Although the study of CSPs includes the case of infinite domains, there
is an extensive part of research (this thesis included), that focuses on finite,
or even Boolean domains. Quite possibly, the most extensively studied CSP
in computer science, is the satisfiability problem (SAT). It is the first NP-
complete problem, as stated by the seminal “Cook-Levin” Theorem [54,214].
This means that it forms the base of a long list of computational problems
that are believed to be intractable, and where finding an e�cient algorithm
for one of them, would result in e�ciently solving all of them. This list
started of with 21 such problems, provided by Karp [137] and now contains a
huge number of problems and various classifications depending on the com-
putational aspect we are interested in.

Apart from complexity theoretic results, expressing a problem as an in-
stance of a CSP, gives access to a number of algorithms that attempt to find
exact or approximating solutions, utilize various approaches such as random-
ness or parallel computation and so on. One can refer to any introductory
book in Algorithm Design or Computational Complexity to find such ex-
amples, e.g. [10, 148, 177, 193, 199]. For example, we have algorithms that
e�ciently solve the satisfiability problem when its input is restricted to Horn
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formulas [78], renamable Horn formulas [160] and bijunctive [153] formulas.
A CSP is often defined on a set of relations R, from where the constraints

of each instance are formed. An approach that plays an important role in our
work, is to tie the complexity of CSP(R) with the algebraic properties of R.
The volume of research here is again too big to describe it completely. In the
sequel, we mention several works that connect directly or indirectly to ours.
The main approach we use, is to analyze the set of relations algebraically,
through the set of operations that preserve the relations within R. Such
operations are called polymorphisms. This immediately puts us in the field
of Universal Algebra and, specifically, Lattice and Clone Theory (see Davey
et al. [64] and Szendrei [208]). Thus, it allows us to use powerful classification
results, like Post’s complete description of the lattice of Boolean clones [186]
and tools like the “Galois Connection” [29,102,136,184,185].

1.1.1 The algebraic approach

The algebraic approach consists of relating structural properties of the set of
constraints of a CSP, with complexity theoretic results. This combination of
the fields of universal algebra and computational complexity has been proven
quite productive for both scientific areas. The main goal is to delineate classes
of constraints that give rise to tractable CSPs and, when possible, to obtain
dichotomy results, that is to provide criteria that classify a CSP as either
tractable or NP-complete. Such results are especially interesting, as they
show that many classes of CSPs cannot be NP-intermediate problems, that
is, problems that are neither polynomial-time solvable nor NP-hard. The
existence of such intermediate problems, given that P 6= NP, is known by
Ladner [155], although all the currently known problems in that class are
highly artificial.

In terms of dichotomy theorems, the first such result was provided by
Schaefer [192] for CSPs defined over Boolean domains. After this seminal
result, there have been many attempts in obtaining equivalent results for
CSPs defined over finite domains of arbitrary cardinality. A long line of
research focuses on exploiting consistency and closure properties of the con-
straints. The former idea is to find conditions which guarantee that locally
consistent solutions can be extended to globally consistent ones, while the
latter extracts complexity results based on the set of polymorphisms of the
constraints.

A CSP is said to be k-consistent if any partial solution with k�1 elements,
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can be extended to a partial solution with k elements. Every CSP has a k-
consistent equivalent one, which can be found by known algorithms, like
Cooper’s [55]. A CSP is of width k when any instance of it has a solution if
and only if the corresponding k-consistent problem does not have the empty
constraint. A CSP is of bounded width, if it has a finite width k. Some of
the most referenced works in this are Dechter et al. [67, 68] investigations
of structural properties that the set of constraints of a CSP needs to have,
in order for local consistent solutions to be extended to global solutions. In
the same spirit, Jeavons et al. [131–135] explore algebraic properties of the
set of constraints, via their polymorphisms, that guarantee either some form
of global consistency or that directly imply tractability of the CSP, whereas
Creignou et al. [61] design an e�cient algorithm for identifying if a Boolean
relation can be expressed as a conjuctive query over a given set of relations
R.

Two variables x and y in a CSP are arc-consistent if for every allowed
value a for x, there is an allowed value b for y such that (a, b) can be extended
to a solution of the CSPinstance. There is a variety of algortihms that
attempts to solve CSPs by first enforcing arc-consiistency. It that vein, Chen
and Dalmau [50] characterize classes of CSPs that can be solved via an arc-
consistency algorithm they designed whereas Dalmau et al. [63] algebraically
characterize sets of relations R that give rise to CSPs that can be solved via
arc consistency algorithms.

Renewed interest in this line of work was shown after Feder and Vardi
stated their dichotomy conjecture [90], where they argue in favour of a di-
chotomy result in the complexity of CSPs defined over finite domains of
arbitrary cardinality. Bulatov et al. have obtained tractable classes of con-
straints using finite algebras [34, 39, 41] and have provided e�cient algo-
rithms for various classes of constraints [14, 33]. By exploiting the algebras
of the constraints, Barto et al. [16] have proved the conjecture of Larose and
Zadori [159] that characterizes the CSP’s of bounded width. Bulatov has also
proved dichotomy theorems for CSPs defined over 3-element domains [36] and
conservative CSPs [35, 37, 38], that is CSPs where the domains of the vari-
ables can be restricted arbitrarily. For overviews of results in this area, see
Bulatov and Valeriote’s talks [42] and Creignou, Kolaitis and Vollmer’s ex-
position [60]. There is also a new approach to the Feder-Vardi dichotomy
conjecture by Kun and Szegedy [154], using the PCP theory.

If the domain is allowed to be infinite, one can obtain complexity results
using !-categorical structures, like Bodirsky [26] for general infinite domains,
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Bodirksy and Kára [25] for temporal CSPs. Apart from the above, Bodirsky
and Pinsker [28] generalize Schaefer’s dichotomy theorem for domains de-
fined by formulas in the language of graphs, Idziak et al. [127] explore the
tractability and learnability of CSP’s via the subalgebra’s of the constraints,
whereas Maroti and McKenzie [169] investigate the class of constraints that
admit weakly symmetric operations.

Of particular interest is the work of Bodirsky and Mamino [27], where they
aim at delineating the bound between tractable and intractable CSPs over
the integers, rational, real and complex numbers. Finally, Barto et al. [17]
characterize finitely generated varieties, that is sets of solutions for systems
of polynomial equations, via Taylor terms. Closely related is the work of
Siggers [198] that finds conditions that define a special class of varieties,
which has been conjectured to define tractable CSP’s.

Variants of the usual CSPs have also been studied. Bulatov [40] has
shown various tractable classes for multi-sorted CSPs, where the constraints
are divided into di↵erent sorts that have some limited independency, as well
as for the the problem of learnability [43] of quantified formulas. Furthermore
Kirousis and Kolaitis have provided dichotomy results both for minimal sat-
isfiability problems [139] and propositional circumscription [140] (for higher
levels of the polynomial hierarchy). In the former problem, we are inter-
ested in whether a given solution to a CSP is minimal with respect to the
component-wise partial order on truth assignments, while in the latter we
want to find all minimal models of a given propositional formula.

Atserias, Kolaitis and Severini [12] have also studied CSP’s via operator
assignments over Hilbert spaces (see [117]). In this framework, they have
completely characterized the sets R for which SAT(R)’s complexity has a
gap between the usual framework and their own.

Finally, important results have been obtained concerning the “meta-
questions” of constraint tractability, that is, the ability to discern tractable
from intractable constraints. Chen and Larose [51] study the problem of
deciding if a given structure admits a polymorphism from a class of opera-
tions, while Bessiére et al. [22] and Carbonnel [48] show how to detect if a
constraint is closed under the majority or a conservative Mal’tsev operator.
Carbonnel [47] has also showed that one can e�ciently discern the tractable
classes of conservative CSPs from the intractable ones.
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1.1.2 The Probabilistic Approach

The probabilistic approach consists of proving that an object with some de-
sired properties exists in a given probability space with positive probability.
This approach has been extensively used in various combinatorial problems,
in the form of bounds to the parameters of a problem that, when satisfied,
guarantee the existence of a solution. In CSPs the desired object is an as-
signment of values to the variables such that all the constraints are satisfied.
There are many tools that can be used to this aim, from plain linearity of
expectation, to alterations and the Second Moment method. A great variety
of such tools are described by Alon and Spencer [8, 200].

Apart from existence, we are also interested in finding such assignments.
This amounts to devising probabilistic algorithms that search the probabil-
ity space for the required object and using the aforementioned tools to prove
that they will terminate fast, by finding the object in question. In his Du-
rango lectures [200], Spencer described this process as “finding a needle in a
haystack”. Nevertheless, there are tools we can use for this purpose, with one
of the most prominent ones, and the focus of this thesis, being the “Lovász
Local Lemma” in its various forms.

The Lovász Local Lemma (LLL) was originally stated and proved in 1975
by Erdős and Lovász [85]. Its original symmetric form states that given events
E1, . . . , Em in a common probability space, if every event depends on at most
d others, and if the probabilities of all are bounded by 1/(4d), then

Pr

"
m̂

j=1

Ej

#
> 0,

and therefore there exists at least one point in the space where none of the
events occurs (E denotes the complement of E).

The asymmetric version entails an undirected dependency graph, i.e. a
graph with vertices j = 1, . . . ,m corresponding to the events E1, . . . , Em so
that for all j, Ej is mutually independent from the set of events corresponding
to vertices not connected with j. The condition that in this case guarantees
that Pr[

Vm
j=1 Ej] > 0 (and therefore that there exists at least one point

where none of the events occurs) is:

for every Ej there is a �j 2 (0, 1) such that Pr[Ej]  �j

Y

i2Nj

(1� �i), (1.1)
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where Nj is the neighborhood of vertex j in the dependency graph.
Improvements can be obtained by considering, possibly directed, sparser

graphs than the dependency graph, that correspond to stronger notions of
dependency. For a classic example, the lopsided version (LLLL) by Erdős
and Spencer [86] entails a directed graph G with vertices corresponding to
the events such that for all Ej and for all I ✓ {1, . . . ,m} \ (Nj [ {j}) we
have that

Pr

"
Ej |

\

i2I

Ei

#
 Pr [Ej] , (1.2)

where Nj is the set of vertices connected with j with an edge originating
from j. Such graphs are known as lopsidependency graphs. The su�cient
condition in this case that guarantees that the undesirable events can be
avoided is the same:

for every Ej there is a �j 2 (0, 1) such that Pr[Ej]  �j

Y

i2Nj

(1� �i). (1.3)

Note though that in this case, the product is over a possibly smaller neigh-
borhood Nj.

With respect to ordinary (not lopsided) dependency graphs, a su�cient
but also necessary condition to avoid all events was given by Shearer [196].
It reads:

For all I 2 I(G), qI(G,p) :=
X

J2I(G):I✓J

(�1)|J\I|
Y

j2J

pj > 0, (1.4)

where I(G) is the set of independent sets of G and p = (p1, . . . , pm) is the
vector of probabilities of the events.

By considering other graphs, and the corresponding to them Condition
(1.4), variants of the Shearer lemma are obtained. These variants are in
general only su�cient, however they apply to sparser dependency graphs.
For example, by proving the su�ciency of Condition (1.4) when applied
to the lopsidependency graph of Erdős and Spencer [86], we get Shearer’s
lemma for lopsidependency graphs (actually, for Shearer’s lemma in this case
it is the underlying undirected graph of the lopsidependency graph that is
considered).

Using the LLL to “e�ciently” find a point in the probability space such
that no undesirable event occurs has been a long struggle. After several
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partially successful attempts that expand over more than three decades (Alon
[7], Beck [18], Srinivasan [202] and others), Moser [171] in 2009, initially
only for the symmetric LLL, gave an extremely simple randomized algorithm
that if and when it stops, it certainly produces a point where all events are
avoided. Soon after Moser and Tardos [172] expanded this approach to more
general versions including the lopsided one. The algorithms were given in
the variable framework, where the space is assumed to be the product space
of independent random variables X1, . . . , Xl, and each event is assumed to
depend on a subset of them, called its scope. Their algorithm just samples
iteratively the variables of occurring events, until all the events cease to
occur. For the analysis, they estimate the expectation of the number of
times each event will be resampled in a given execution of the algorithm by
counting “tree-like” structures they call witness trees and by estimating the
probability that such a tree occurs in the log of the algorithm’s execution.
An alternative proof of Moser’s original result [171] has been provided by
Spencer [201]. This approach became known as the “entropy compression”
method, which is compactly presented in Tao [209]. For the proof of the
lopsided LLL, Moser and Tardos [172] defined an undirected lopsidependency
graph suitable for the variable framework.

A strengthening of the LLL has been achieved via the notion of cluster
expansion by Bissacot [24] and Pegden [180], that is closely related with
statistical mechanics. This was later generalized to Shearer’s Lemma by
Harvey and Vondrak [122].

A direct probabilistic approach has been used by Giotis et al. [104, 107]
for both the symmetric and asymmetric versions of the simple LLL. There,
instead of computing the expected number of steps of Moser’s algorithm,
the authors express the probability that it lasts for at least n steps by a
recurrence relation. They then solve this recurrence relations and prove that
this probability is inverse exponential to the number of steps that Moser’s
algorithm performs. This implies both that the algorithm will terminate with
positive probability and that it will do so fast.

In the variable framework, Harris [118] gave a weaker version for the
1.3 condition, entailing the notion of orderability, which takes advantage of
the way events are related based on the di↵erent values of the variables they
depend on. He works with the Moser-Tardos notion of lopsidependency graph
and he proves that his weaker su�cient condition can yield stronger results
than the classical Shearer’s lemma. Also, recently He et al. [123] gave a
necessary and su�cient condition for LLL in the variable framework, but for
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the dependency graph where two events are connected if their scopes share
at least one variable.

There are numerous applications of the algorithmic versions of both LLL
and its lopsided version, even for problems that do not originate from purely
combinatorial issues. For example, the lopsided version has been used in,
among others, the satisfiability problem, where the focus is on clauses that
are in conflict with each other (i.e. have opposing literals of the same vari-
able). Berman et al. [21] and Gebauer et al. [100], [101] have successfully used
this notion along with the lopsided LLL to bound the number of occurrences
per variable that can be allowed in a formula, while guaranteeing the exis-
tence of a satisfying assignment. Also, let us mention the work of Harris and
Srinivasan [119] who apply it in the setting of permutations, where the unde-
sirable events are defined over permutations ⇡k of {1, . . . , nk}, k = 1, . . . , N
and that of Harvey and Liaw [120] on Rainbow Hamiltonian cycles. Finally,
we find Albert and Frieze’s work [5] on Hamilton cycles whose edges can be
colored with pair-wise distinct colors.

For the non-lopsided versions we have the problem of covering arrays, a
problem closely related with software and hardware interaction testing. The
objective is to find the minimum number N , expressed as a function k, t, v,
such that there exists an N ⇥ k array A, with elements taken from a set ⌃
of cardinality v � 2, so that every N ⇥ t sub-array of A contains as one of
its rows every element x 2 ⌃t. Sarkar and Colbourn [191] improve on known
upper bounds for N , by using LLL. Notably, they also provide an algorithm
that constructs anN⇥k array with the above properties, by using a variant of
the Moser-Tardos algorithm [172]. Finally, we have the works of Szabó [205]
and Gasarch and Haeupler [98] on the van der Waerden number, that is, the
smallest number W (n) such that an arithmetic progression always exists in
some part of {1, . . . ,W (n)}.

The lopsided LLL was generalized to the framework of arbitrary probabil-
ity spaces by Harvey and Vondrák [121], by means of a machinery that they
called “resampling oracles”. They introduced, in the framework of arbitrary
probability spaces, directed lopsidependency graphs they called lopsided as-
sociation graphs. They proved that a graph is a lopsided association graph if
and only if it is a graph along the edges of which resampling oracles can be
applied. In the generalized framework and based on their lopsided association
condition, they algorithmically proved LLLL. In the same framework, they
also proved Shearer’s lemma which has also been independently proven by
Kolipaka and Szegedy [150]. Achlioptas and Iliopoulos [2,3] have introduced
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a powerful abstraction for algorithmic LLL, which is inherently directed and
they prove the lopsided LLL in this framework. In their non-probabilistic
framework, they try to avoid flaws, which are defined as subsets of a domain
set D and whose connections are expressed by a directed graph on D, by
performing random walks along the edges of the graph.

Let us mention here that Szegedy [206] gives a comprehensive survey of
the LLL, that contains many of the algorithmic results.

1.1.3 Graph Coloring and Coding Theory

In this subsection we describe two fields that we have applied our probabilistic
approach to, namely graph colorings and coding theory.

Acyclic Edge Coloring LetG = (V,E) be a (simple) graph with l vertices
and m edges. The chromatic index of G, often denoted by �0(G), is the least
number of colors needed to properly color its edges, i.e., to color them so that
no adjacent edges get the same color. If � is the maximum degree of G, it
is known that its chromatic index is either � or �+ 1 by Vizing [215].

The acyclic chromatic index of G, often denoted by �0
a(G), is the least

number of colors needed to properly color the edges of G so that no cycle of
even length is bichromatic, i.e. no even length cycle’s edges are colored by
only two colors. Notice that in any properly colored graph, no cycle of odd
length can be bichromatic. It has been conjectured, by J. Fiamčik [93] and
Alon et al. [9], that the acyclic chromatic index of any graph with maximum
degree � is at most �+ 2.

There is an extensive literature on the acyclic chromatic index. The
results include:

• For planar graphs �0
↵(G)  �+ 6 by Wang and Zhang [216]. Also, for

some constant M , all planar graphs with � � M have �0
↵(G) = �, as

shown by Cranston [56].

• Cai et al. [46] showed that, for every ✏ > 0, there is a g such that if the
girth of G is at least g, then �0

↵(G) = (1 + ✏)�+O(1).

• For a random d-regular graph, it holds, by Nes̆etr̆il and Wormald [176],
�0
↵(G) = d+ 1, asymptotically almost surely.
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• For d-degenerate graphs, i.e. graphs whose vertices can be ordered so
that every vertex has at most d neighbors greater than itself, �0

↵(G) 
d(2 + ✏)�e, for ✏ = 16

p
(d/�), as proved by Achlioptas and Iliopoulos

[1].

For general graphs, the known upper bounds for the chromatic index are
O(�). Specifically, Esperet and Parreau [87] proved that �0

↵(G)  4(� �

1). This bound was improved to d3.74(� � 1)e + 1 by Giotis et al. [105].
Also, an improvement of the 4(� � 1) bound was announced by Gutowski
et al. [115] (the specific coe�cient for � is not given in the abstract of the
announcement). The best bound until now was recently given by Fialho et
al. [92], where it is proved that �0

↵(G)  d3.569(��1)e+1. These results are
proved by designing randomized algorithms that with high probability halt
and produce a proper acyclic edge coloring. Such algorithms, assign at each
step a randomly chosen color in a way that properness is not destroyed. This
approach, unfortunately, necessitates a palette of more than 2(��1) colors to
deterministically guarantee properness at each step, and then another O(�)
colors to probabilistically guarantee acyclicity.

Coding Theory Coding theory is closely related, but di↵erent than, in-
formation theory. The latter was initiated by Shannon [194] and it forms a
branch of probability theory, with extensive application to communication
systems, focused on data compression and reliable transmission of informa-
tion. On the other hand, Coding Theory’s main focus is to find explicit
methods for e�cient and reliable data storage and transmission.

We can represent a code as a matrix of symbols over a finite alphabet.
The length of a code is the number of its columns, while its size that of its
rows. The rate of a code is the fraction of (the logarithm of) its size over its
length, and it measures the information stored in each bit of the code.

We are interested in c-separating codes, that is codes where, for any two
sets of at most c disjoint rows each, there is a column where the symbols
in the first set are di↵erent from the symbols in the second. Separating
codes [190] have a long tradition of study in the areas of coding theory and
combinatorics. This type of codes have been proven useful in applications
in the areas of technical diagnosis, construction of hash functions, automata
synthesis and traitor tracing.

For a code to have this property is a really strong requirement. Con-
sequently, although there is a vast research focused on obtaining lower and
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upper bounds to the rates of such codes, these bounds are weak. Also, ex-
plicit constructions of such codes are very scarce.

For instance, for the already non trivial case of binary 2-separating codes,
the best lower bound for the rate obtained so far is 0.064 [13, 190, 203],
whereas the best upper bound is 0.2835 given by Korner and Simonyi in [151].
One immediately sees that these bounds are not by any means tight. The
lower bound is obtained by the elegant technique of random coding with
expurgation. The drawback of the random coding strategy is that it gives no
clue whatsoever about how to obtain an explicit code matching the bound.

The LLL has been used in some cases in order to obtain bounds for the
rate of codes that satisfy various properties. We have already mentioned the
work of Sarkar and Colbourn [191] on covering arrays and another interesting
example is that of Deng et al. [70] on perfect and separating hash families.

1.1.4 Judgment Aggregation

Kenneth Arrow initiated the theory of preference aggregation by establishing
his celebrated General Possibility Theorem (also known as Arrow’s Impos-
sibility Theorem) [11], which asserts that it is impossible, even under mild
conditions, to aggregate in a non-dictatorial way the preferences of a society.
Judgment aggregation is a related framework that brings together aggrega-
tion and logic, since the voters have to choose among logically interconnected
propositions and the task is to aggregate the votes in a logically consistent
manner. Judgment aggregation, was initially motivated by the doctrinal
paradox, which is a special case of the discursive dilemma. For introduc-
tory expositions of the history of judgment aggregation see, e.g., Grossi and
Pigozzi [114] or List et al. [162, 165]. Wilson [217] introduced a framework
for aggregation on general attributes, rather than just preferences or propo-
sitions, and proved an Arrow-like result in this context. Wilson’s framework
was further investigated by Dokow and Holzman [76,77]. Similar approaches
are described by Grandi & Endriss [112] (see also Endriss [81]), which we
will study extensively in the sequel and Nehring & Puppe [175].

In the abstract framework we have a set of m issues on each of which a
population of individuals (voters) of size n may cast votes, from a set D of
allowed positions. Furthermore the vector of positions on all issues of every
single individual should belong to a fixed set X ✓ D

m. This set X is called
the set of rational choices or the set of feasible choices or simply the domain.
We write A := {a1, . . . , ak

} to denote an element of (Dm)n. It is convenient
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to think of such elements A as an n⇥m matrix, where aij is the position of
voter i on issue j.

An n-ary aggregator is a function F : (Dm)n 7! D
m such that X is closed

under F , meaning that if A = {x1, . . . ,xn
} 2 Xn, then F (A) 2 X. If n = 2,

then we talk about a binary aggregator, while if n = 3, we talk about a
ternary aggregator. Requiring X to be closed under F reflects the notion
of rationality of F , while requiring F to be defined on (Dm)n reflects the
notion of universality (for a recent presentation of these notions, see, e.g.,
List [166]).

A main theme of judgment aggregation theory is to relate properties of
the domain X with properties of the aggregator F . An early class of results
in this vein are the so called impossibility theorems, which assert that it is
impossible to obtain an aggregator F with certain desired properties, given
that the domain X satisfies certain minimal conditions. Such a result is the
impossibility theorem of List and Pettit [163,164], which asserts that, in the
context of judgment aggregation, if the domain contains two propositional
variables p and q, and the propositional formulas (p ^ q) and ¬(p ^ q), then
X has no aggregator that is universal, anonymous, and systematic. Infor-
mally, an aggregator is anonymous if it is invariant under permutations of
the columns of the input matrices, while an aggregator is systematic if there
is a common aggregation rule for all issues (the formal definitions of these
two notions will be given in the next chapters).

Stronger than the impossibility results are the characterization results,
where one seeks to find necessary and su�cient conditions for a domain to
admit aggregators possessing some desired property. In the abstract frame-
work of Dokow and Holzman [77], it is assumed that aggregators satisfy
a much weaker property than systematicity, namely, the property known
as independence of irrelevant alternatives or issue-by-issue aggregation (IIA)
or, simply, independence. This property is equivalent to the existence of
functions f1, . . . , fm such that fj : Dn

7! D and F (A = {a1, . . . , an
}) :=

(f1(a1), . . . , fm(am)), where aj is the j-th column of A. Note that system-
aticity is the special case of IIA in which f1 = f2 = . . . = fn.

In the Boolean framework, also known as the binary framework, it is as-
sumed that, for each issue, there are only two alternatives to choose from.
In this framework, Dokow and Holzman [76] discovered a necessary and suf-
ficient condition for a domain X to have a non-dictatorial aggregator. This
characterization involves the property of total blockedness, which was orig-
inally introduced by Nehring and Puppe [173, 175]. As Dokow and Holz-
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man [76] write “Roughly speaking, it [total blockedness] requires that the
limitations on feasibility embodied in the set X make it possible to deduce
any position on any issue from any position on any issue, via a chain of de-
ductions.” The precise definition of total blockedness will be given in the
sequel.

Dokow and Holzman [77] subsequently investigated aggregation in the
non-Boolean or non-binary framework, where, for some issues, there may be
more than two alternatives to choose from. By generalizing the notion of
a domain being totally blocked to the non-Boolean framework, they gave
a su�cient (but not necessary) condition for non-dictatorial aggregation,
namely, they showed that if a domain is not totally blocked, then it is a
possibility domain. The non-Boolean case has also been studied by Pauly &
Van Hees [179] and Herzberg [125]. In [179], the many-valued votes represent
degrees of acceptance; necessary and su�cient conditions for an aggregator
to be dictatorial are given, however no characterization of the domains that
admit non-dictatorial aggregators is proved. In [125], aggregators having the
property of systematicity are characterized as a kind of homomorphism. In
both [179] and [125], as well as in [77], it is assumed that the set of possible
votes is common to all issues.

Recently, Szegedy and Xu [207] discovered necessary and su�cient con-
ditions for non-dictatorial aggregation. Quite remarkably, their approach
relates aggregation theory with universal algebra, specifically with the struc-
ture of the space of polymorphisms. Observe also that aggregators having the
property of systematicity are just polymorphisms of the domain X, where X
is viewed as an m-ary relation (compare with [125]). However, the necessary
and su�cient conditions of Szegedy and Xu [207] still involve the notion of
the domain being totally blocked.

All the aforementioned results are situated in the abstract framework,
where the domain X is given explicitly as a set of m-ary tuples. The his-
torically first approach to judgement aggregation was the logic-based ap-
proach [163, 165]. In that approach, there is a tuple �̄ = (�1, . . . ,�m) of
propositional formulas, called the agenda, and the set X of feasible evalu-
ations consists of consistent judgements concerning the validity of the for-
mulas. Endriss et al. have studied the computational complexity of three
interesting problems based on a given agenda [84]: (i) winner determination,
where given an aggregator and a propositional formula, we want to decide
if the formula is part of the collective decision under this aggregator, (ii)
strategic manipulation, where the goal is to decide if a given aggregation
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procedure is subject to manipulation be insincere voting and (iii) safety of
the agenda, where we want to decide if a class of aggregators preserves the
logical consistency restrictions of the agenda. This last problem is related
to our framework, with the di↵erence that we search for at least one ag-
gregator of a given class preserving the logical restrictions of our domain.
Also, Terzopoulou et al. have studied the case where the individuals do not
need to decide on every issue of the agenda, but can instead provide partial
judgments [213].

A variant of this approach is the one used by Grandi and Endriss, where
the set of restrictions is provided by a propositional formula �, called an
integrity constraint, as the set of its satisfying assignments [112]. In [83],
Endriss et al. study the relation of this framework with the logic-based one,
in terms of succinctness and of the computational complexity of the winner
determination problem.

1.2 Our Results

The results contained in this thesis concern the three fields of study pre-
sented in Sec. 1.1. We begin by presenting them concisely. A more analytic
exposition follows immediately after.

I. In the algorithmic LLL framework, we provide probabilistic algorithms
that sample and resample random variables until they reach an assign-
ment of values such that none of the undesirable events occur.

(i) For a directed version of lopsidependency in the variable frame-
work we call variable directed lopsidependency, we provide an al-
gorithm that proves the symmetric version of the LLL under this
condition. This work has appeared in [145].

(ii) We algorithmically prove the asymmetric version of the LLL and
Shearer’s lemma. These results have appeared in [106].

(iii) We define a another directed version of lopsidependency for the
variable framework, which we call d-dependency. We show that
this notion produces sparser dependency graphs than other extant
notions of lopsidependency, which results in stronger version of the
LLL. For this version of lopsidependency, we prove the asymmetric
LLL and Shearer’s lemma. These results have been published
in [147].
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(iv) We design a probabilistic algorithm that finds an acyclic edge col-
oring of a graph with maximum degree �, using 2� � 1 colors.
This is the best, until today, proven bound for the acyclic chro-
matic index of a graph. This work is still unpublished and can be
found in [146].

(v) We design a probabilistic algorithm that constructs c-separating
codes of positive rate. To make the algorithm polynomial to the
length of the produced code, we are forced to obtain codes of worse
rate, but still better than other well known and extensively used
ones. The results for the case where c = 2 have appeared in [91],
while the generalization presented here is still unpublished.

All these results are presented in Ch. 6.

II. In the field of judgment aggregation, we characterize domains where
various notions of non-dictatorial aggregations are possible and we show
how to identify such domains.

(i) We characterize possibility domains as domains that admit ei-
ther binary non-dictatorial aggregators, or majority or minority
aggregators, both in the Boolean and non-Boolean framework.
We also characterize totaly blocked domains as domains that do
not admit any binary non-dictatorial aggregators. Then, we de-
fine a subclass of possibility domains we call uniform possibility
domains, which we characterize as domains admitting WNU ag-
gregators. Furthermore, we show that a multi-sorted CSP defined
over a uniform possibility domain is tractable, whereas otherwise
it is NP-complete. These are the main results in [141] and are
included in an extended version published in [144].

(ii) We characterize possibility and local possibility domains in the
Boolean framework via the syntactic types of propositional for-
mulas that describe them. We also show how to identify such
formulas and how to construct them given such a domain. Fur-
thermore we extend these results to domains admitting various
types of non-dictatorial aggregators, like anonymous, monotone
and systematic aggregators. These results appeared in [71] and
are included in an extended version published in [72].
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(iii) We consider the problem of deciding if a domain is a possibil-
ity or a uniform possibility domain. In case the domain is given
explicitly, we design polynomial time algorithms that solve this
problem. We also show that this problem can be expressed in
transitive closure logic and thus, if the domain is Boolean, it is
in NLOG. Furthermore, again in the Boolean domain, we obtain
upper and lower complexity bounds in case the domain is given
implicitly, either as the truth set of a propositional formula or via
an agenda. Finally, we obtain analogous bounds for other types
of non-dictatorial aggregation, as in (ii) above. Some preliminary
results have been presented in [143], while an extended work in-
cluding all the above is still unpublished and can be found in [142].

These results are presented in Ch. 7.

First, regarding the probabilistic approach, we work exclusively in the
Moser-Tardos variable framework, following the direct probabilistic approach
of Giotis et al. [104,107]. Our algorithms progressively sample and resample
the random variables in a structured way, until they find a point in the
probability space such that no undesirable event occurs, given that one exists.
As is the case with all extant algorithmic approaches to the LLL, both the
number of events m and the number of random variables l are assumed to be
constants. Complexity considerations are made with respect to the number
of steps the algorithms last.

We begin by defining some novel relations of directed dependency that
we call variable directed lopsidependency (VDL) and d-dependency, which are
both stronger than the lopsidependency relation of Moser and Tardos [172].
We also show that d-dependency may generate a strictly sparser depen-
dency graph than other extant ones (and so it leads to weaker su�cient
conditions for LLL). We then algorithmically prove that the lopsidepen-
dency condition su�ces to avoid all events when applied to the graph de-
fined by our new notions. Thus, in a sense we address the problem “find
other simple local conditions for the constraints (in the variable framework)
that advantageously translate to some abstract lopsided condition” posed by
Szegedy [206]. Specifically, we prove a symmetric version of the LLL, using
the VDL dependency graph and the asymmetric LLL over the d-dependency
graph.

Our approach is based on Moser’s original algorithm [171], which, upon
resampling an event, checks its neighborhood for other occurring events.
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Like in Giotis et al. [104, 107], we use a witness structure (forest) to depict
the execution of our algorithms that, in contrast with those of the “Moser-
Tardos-like” proofs, grows “forward in time”, meaning that it is constructed
as an execution moves on. Taking advantage of this structure, we express the
probability that the algorithm executes for at least n rounds by a recurrence
relation. We subsequently solve this recurrence by specialized analytical
means, and prove that it diminishes exponentially fast in n. Specifically, we
employ the result of Bender and Richmond [19] on the multivariable Lagrange
inversion formula. A positive aspect of this approach is that it provides an
exponentially small bound for the probability of the algorithm to last for at
least n steps (including to run intermittently) before it returns the desired
result, in contrast to the entropic method that estimates the expected time
of the algorithm to return a correct answer. We also note that, in contrast
to Harvey and Vondrák [121], our proof for the directed LLL is independent
of the one for Shearer’s lemma.

Finally, although we show that our notion of dependency can give stronger
results than the classical Shearer’s lemma, we use our forward approach to
prove this lemma for the d-dependency graph. An algorithmic proof for
Shearer’s lemma for the ordinary dependency graph was first provided by
Kolipaka and Szegedy [150], who actually gave a proof for the general case of
arbitrary probability spaces. The latter result was strengthened by Harvey
and Vondrák [121] for their notion of association graphs, again for general
probability spaces. Our result is for the variable framework, but for the possi-
bly sparser graph of d-dependency. Also, we give again a direct computation
of an exponentially small upper bound to the probability of the algorithm
to last for at least n steps. To carry out the computations in our forward
approach, we employ Gelfand’s formula for the spectral radius of a matrix
(see [126]).

We subsequently use this direct probabilistic approach to acyclicaly color
the edges of graphs and to construct c-separating codes. In what concerns
coloring graphs, we get rid of the necessity to initially have a separate palette
of 2(��1) colors that guarantee properness by a simple idea: ignore proper-
ness altogether when choosing a color and design the Moser-type algorithm
in a way to guarantee that no even-length cycle exists whose edges of the
same parity have the same color (same parity edges are edges that are one
edge apart in a cycle traversal —cycles in a non-proper coloring whose edges
of the same parity have the same color could have all their edges with the
same color); then repeat this process anew until a coloring that is proper
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is obtained. We show that with high probability the algorithm halts within
a polynomial number of steps. Thus we show that 2� � 1 colors su�ce to
properly edge-color a graph so that no two colors cover any cycle. As already
observed by Cai et al. [46], this bound is the best possible using a Moser-type
algorithm, because such algorithms essentially try independent colorings of
the edges, therefore 2(��1) di↵erently colored edges may be coincident with
an edge. For c-separating codes, although the straightforward application of
those results leads to constructions of exponential complexity, we show how
we can explicitly obtain codes better than the current known constructions,
by appropriately changing the conditions required in the LLL.

In the field of judgement aggregation, we follow Szegedy and Xu’s idea of
deploying the algebraic “toolkit” [207]. All our results assume multi-valued
sets of possible votes that may vary from issue to issue.

Firstly, we prove that non-dictatorial aggregation is possible for all so-
cieties of some cardinality if and only if a non-dictatorial binary aggregator
exists or a non-dictatorial ternary aggregator exists such that on every issue
j, the corresponding component fj of the aggregator is a majority operation,
i.e., for all x and y, it satisfies the equations

fj(x, x, y) = fj(x, y, x) = fj(y, x, x) = x,

or fj is a minority operation, i.e., for all x and y, it satisfies the equations

fj(x, x, y) = fj(x, y, x) = fj(y, x, x) = y.

For additional information about the notions of majority and minority oper-
ations, see Szendrei [208, p. 24].

We also show that a domain is totally blocked if and only if it admits
no non-dictatorial binary aggregators; this result shows that the notion of
a domain being totally blocked is, in a precise sense, a weak form of an
impossibility domain and thus it explains why total blockedness appears in
several previous characterization results.

After this, we introduce the notion of uniform non-dictatorial aggrega-
tor, which is an aggregator that on every issue, and when restricted to an
arbitrary two-element subset of the votes for that issue, di↵ers from all pro-
jection functions. The introduction of this notion was motivated by the fact
that an aggregator can be non-dictatorial simply by choosing di↵erent dic-
tators for two issues. Actually, this fact has also motivated numerous other
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notions stronger than non-dictatorial aggregators. In the Boolean frame-
work, uniform non-dictatorial aggregators coincide with the ones that are
locally non-dictatorial. The latter notion was introduced by Nehring and
Puppe [175].

We first compare uniform non-dictatorial aggregators to other aggrega-
tors with related properties, such as the anonymous aggregators [175], the
StrongDem aggregator of Szegedy and Xu [207], and the generalized or rolling
dictatorship of Grandi and Endriss [111, 113] and of Cariani et al. [49], re-
spectively. Then we characterize the sets of feasible voting patterns that
admit uniform non-dictatorial aggregators.

As a corollary of this characterization, we establish that, in the Boolean
framework, a set X of feasible voting patterns admits an aggregator that
is locally non-dictatorial of some arity if and only if it admits a ternary
anonymous one, a result that, to the best of our knowledge, has not been
obtained earlier (note that Nehring and Puppe [175] prove the same result,
but with the added hypothesis that the aggregators satisfy monotonicity,
and without showing, in the “only if” direction, that the anonymous one is
ternary.

Furthermore, by using Bulatov’s dichotomy theorem for conservative con-
straint satisfaction problems [14,37,38], we connect social choice theory with
the computational complexity of constraint satisfaction. Specifically, we
prove that if a set of feasible voting patterns X has a uniform non-dictatorial
aggregator of some arity, then the multi-sorted conservative constraint satis-
faction problem on X, in the sense introduced by Bulatov and Jeavons [40],
with each issue representing a sort, is tractable; otherwise it is NP-complete.
We believe that the connection of social choice theory with the constraint
satisfaction problem may lead to still further characterization results.

Turning our attention exclusively to Boolean domains, we consider the
framework of integrity constraints. It is a well known fact from elementary
Propositional Logic that for every subset X of {0, 1}m, m � 1, i.e. for every
domain, there is a Boolean formula in Conjunctive Normal Form (CNF)
whose set of satisfying truth assignments, or models, denoted by Mod(�), is
equal to D (see e.g. Enderton [80, Theorem 15B]). Zanuttini and Hébrard
[219] give an algorithm that finds such a formula and runs in polynomial-
time with respect to the size of the representation of X as input. Following
Grandi and Endriss [112], we call such a � an integrity constraint and think
of it as expressing the “rationality” of X (the term comes from databases,
see e.g. [79]).
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We prove that a domain is a possibility domain, if and only if it admits
an integrity constraint of a certain syntactic form to be precisely defined,
which we call a possibility integrity constraint. Very roughly, possibility in-
tegrity constraints are formulas that belong to one of three types, the first
two of which correspond to “easy” cases of possibility domains: (i) formulas
whose variables can be partitioned into two non-empty subsets so that no
clause contains variables from both sets that we call separable and (ii) formu-
las whose clauses are exclusive OR’s of their literals (a�ne formulas). The
most interesting third type is comprised of formulas such that if we change
the logical sign of some of their variables, we get formulas that have a Horn
part and whose remaining clauses contain only negative occurrences of the
variables in the Horn part. We call such formulas renamable partially Horn,
whereas we call partially Horn1 the formulas that belong to the third type
without having to rename any variables. Furthermore, we show that the
unified framework of Zanuttini and Hébrard [219] for producing formulas of
a specific type that describe a given domain, and which entails the notion
of prime formulas (i.e. formulas that we cannot further simplify its clauses)
works also in the case of possibility integrity constraints. Actually, in addi-
tion to the syntactical characterization of possibility domains, we give two
algorithms: the first on input a formula decides whether it is a possibility in-
tegrity constraint in time linear in the length of the formula (notice that the
definition of possibility integrity constraint entails searching over all subsets
of variables of the formula); the second on input a domain X halts in time
polynomial in the size of X and either decides that X is not a possibility
domain or otherwise returns a possibility integrity constraint that describes
X. It should be noted that the satisfiability problem remains NP-complete
even when restricted to formulas that are partially Horn. On the other hand,
in Computational Social Choice, domains are considered to be non-empty.

We then consider local possibility domains, that is, domains admitting IIA
aggregators whose components are all di↵erent than any projection function.
Such aggregators are called locally non-dictatorial (see [175]). We show that
local possibility domains are described by formulas we call local possibility
integrity constraints and again, we provide a linear algorithm that checks if a
formula is a local possibility integrity constraint and a polynomial algorithm

1
A weaker notion of Horn formulas has appeared before in the work of Yamasaki and

Doshita [218]; however our notion is incomparable with theirs, in the sense that the class

of partially Horn formulas in neither a subset nor a superset (nor equal) to the class S0
they define.
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that checks if a domain is a local possibility one and, in case it is, constructs a
local possibility integrity constraint that describes it. As a corollary we also
obtain a simpler characterization of local possibility domains in the Boolean
framework.

There are various notions of non-dictatorial aggregation, apart from the
above, that have been introduced in the field of Aggregation Theory. First,
we consider domains that admit aggregators which are not generalized dicta-
torships. A k-ary aggregator is a generalized dictatorship that, on input any
k vectors from a domain D, always returns one of those vectors as its output.
These aggregators are a natural generalization of the notion of dictatorial ag-
gregators, in the sense that they select a possibly di↵erent “dictator” for each
set of k feasible voting patters, instead of a single global one. They where
introduced by Cariani et al. [49] as rolling dictatorships, under the stronger
requirement that the above property holds for any k vectors of {0, 1}n. In
that framework, Grandi and Endriss [112] showed that generalized dicta-
torships are exactly those functions that are aggregators for every Boolean
domain. In this work, we show that domains admitting aggregators which
are not generalized dictatorships are exactly the possibility domains (apart
from some trivial cases), and are thus described by possibility integrity con-
straints.

Then, we consider anonymous aggregators, which are aggregators that
are not a↵ected by permutations of their input and monotone aggregators,
which are aggregators that do not change their output if a voter changes his
choice in order to agree with it. Both of these types of aggregators have been
extensively studied in the bibliography (see e.g. [75,76,111,112,144,162,175]),
as they have properties that are considered important, if not necessary, for
democratic voting schemes. Here, we show that domains admitting anony-
mous aggregators are described by local possbibility integrity constraints,
while domains admitting non-dictatorial monotone aggregators by separable
or renamable partially Horn formulas.

We also consider another kind of non-dictatorial aggregator that shares
an important property of majority voting. StrongDem aggregators are k-ary
aggregators that, on every issue, we can fix the votes of any k � 1 voters in
such a way that the k-th voter cannot change the outcome of the aggregation
procedure. These aggregators were introduced by Szegedy and Xu [207].
Here, we show that domains admitting StrongDem aggregators are described
by a subclass of local possibility integrity constraints.

Finally, we consider aggregators satisfying systematicity (see List [162]).
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Aggregators are called systematic when they aggregate every issue with a
common rule. This property has appeared also as (issue-)neutrality in the
bibliography (see e.g. Grandi and Endriss [112] and Nehring and Puppe
[175]). By viewing a domain D as a Boolean relation, systematic aggregators
are in fact polymorphisms of D (see Subsec. 7.2.4 and 7.3.5). Polymorphisms
are a very important and well studied tool of Universal Algebra. Apart from
showing, using known results, that domains admitting systematic aggregators
are described by specific types of local possibility integrity constraints, we
also examine how our previous results concerning the various kinds of non-
dictatorial voting schemes are a↵ected by requiring that the aggregators also
satisfy systematicity.

As examples of similar classical results in the theory of Boolean relations,
we mention that domains component-wise closed under ^ or _ have been
identified with the class of domains that are models of Horn or dual-Horn
formulas respectively (see Dechter and Pearl [68]). Also it is known that a
domain is component-wise closed under the ternary sum mod 2 if and only if
it is the set of models of a formula that is a conjunction of subformulas each of
which is an exclusive OR (the term “ternary” refers to the number of bits to
be summed). Finally, a domain is closed under the ternary majority operator
if and only it is the set of models of a CNF formula where each clause has
at most two literals. The latter two results are due to Schaefer [192]. The
ternary majority operator is the ternary Boolean function that returns 1 on
input three bits if and only if at least two of them are 1. It is also known
that the respective formulas for each case can be found in polynomial time
with respect to the size of D (see Zanuttini and Hébrard [219]).

Our results can be interpreted as verifying that various kinds of non-
dictatorial voting schemes can always be generated by integrity constraints
that have a specific, easily recognizable syntactic form. This can prove valu-
able for applications in the field of judgment aggregation, where relations
are frequently encountered in compact form, as the sets of models of in-
tegrity constraints. As examples of such applications, we mention the work
of Pigozzi [183] in avoiding the discursive dilemma, the characterization of
safe agendas by Grandi and Endriss [111], that of Endriss and de Haan [82]
concerning the winner determination problem and the work of Endriss et
al. [83] in succinct representations of doamins. Our proofs draw from results
in judgment aggregation theory as well as from results about propositional
formulas and logical relations. Specifically, as stepping stones for our al-
gorithmic syntactic characterization we use three results. First, a theorem
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implicit in Dokow and Holzman [75] stating that a domain is a possibility
domain if and only if it either admits a binary (of arity 2) non-dictatorial
aggregator or it is component-wise closed under the ternary direct sum. This
result was generalized by Kirousis et al. [144] for domains in the non-Boolean
framework. Second, a characterization of local possibility domains proven by
Kirousis et al. in [144]. Lastly, the “unified framework for structure identifi-
cation” by Zanuttini and Hébrard [219].

The aforementioned investigations have characterized possibility domains
(in both the Boolean and the non-Boolean frameworks) in terms of structural
and syntactical conditions. We now investigate possibility domains using
the algorithmic lens and, in particular, we study the following algorithmic
problem: given a set X of feasible evaluations, determine whether or not X is
a possibility domain. Szegedy and Xu give algorithms for this problem [207,
Theorem 36], but these algorithms have very high running time; in fact,
they run in exponential time in the number of issues and in the number of
positions over each issue, even when confined to the Boolean framework.

We design a polynomial-time algorithm that, given a set X of feasible
evaluations (be it in the Boolean or the non-Boolean framework), decides
whether X is a possibility domain. Furthermore, if X is a possibility do-
main, then the algorithm produces a binary non-dictatorial or a ternary
non-dictatorial aggregator for X.

The first step towards this result is to show that there is a polynomial-
time algorithm that given a set X of feasible evaluations, decides whether
X admits a binary non-dictatorial aggregator (as mentioned earlier, this
amounts to X not being totally blocked). In fact, we show a stronger result,
namely, that this problem is expressible in Transitive Closure Logic (TCL),
an extension of first-order logic with the transitive closure operator; see [161]
for the precise definitions. As a consequence, the problem of deciding whether
X admits a binary non-dictatorial aggregator is in NLOGSPACE. Using this
result, we then show that the problem of deciding whether a set X ✓ {0, 1}n

is a possibility domain is in NLOGSPACE.
After this, we give a polynomial-time algorithm for the following decision

problem: given a set X of feasible evaluations (be it in the Boolean or the
non-Boolean framework), determine whether or notX is a uniform possibility
domain; moreover, if X is a uniform possibility domain, then the algorithm
produces a suitable uniform non-dictatorial aggregator for X.

We also study the problems of non-dictatorial and uniform non-dictatorial
aggregation in case X is provided via an integrity constraint or by an agenda.
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In both cases, we provide bounds for the computational complexity of decid-
ing if X is a (uniform) possibility domain. Finally, we extend our results to
three types of aggregators that have been used in the bibliography: gener-
alised dictatorships [72,112], anonymous, monotone and systematic aggrega-
tors.

These results contribute to the developing field of computational social
choice and pave the way for further exploration of algorithmic aspects of vote
aggregation. In a sense, the question we investigate is the following: given
a specific voting scheme, where some pre-defined rules of logical consistency
apply, how di�cult is it to decide if it is possible to design an aggregation rule
with some desired properties, and construct it in case it is? It should be noted
that in the field of Judgment Aggregation, quite frequently the domains that
impose the logical consistency restrictions are fixed. In such a setting, the
algorithmic approach does not have much to o↵er, since in this case we have
a one-o↵ problem. On the other hand, it is not di�cult to imagine groups
of people that constantly need to make collective decisions over di↵erent
sets of issues, where the logical restrictions that apply change according to
the dependencies between the issues. In this scenario, algorithms that can
quickly decide which aggregation rules can be applied could be useful.

In terms of the applicability of our algorithms in the abstract setting,
there is an issue with the size of the input, since a domain X given explicitly
as a set of m-ary vectors, can be too large for practical purposes. However,
as small or large the domain might be, the search space of its possible ag-
gregators is exponentially larger, even provided characterization results like
the ones in [75, 144, 207] that restrict the search to binary or ternary aggre-
gators. Thus, our tractability results in the abstract framework should be
interpreted as showing that, given access to the domain, one encounters no
more problems in deciding whether non-dictatorial aggregation is possible.
Furthermore, the algorithm for finding and producing binary non-dictatorial
aggregators (or deciding their lack thereof), is used in obtaining parts of the
complexity upper bounds in the cases where the domain is given in compact
form.

1.3 Complementary Material

We present now various notions in Graph Theory, Propositional Logic, Algo-
rithmic Design and Computational Complexity. Some of these notions will
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be used in the sequel and others are meant to provide some context to the
reader that is not familiar with these fields. In the last subsection we briefly
discuss some advanced analytic and algebraic tools we use. This discussion
far exceeds the scope of our work, so we include it here just for completeness.

1.3.1 Graph Theory

Graph Theory has a central role in computer science and especially in algo-
rithm design, since we can model various aspects of our problems by graphs
and use their reach theory to extract solutions. We provide here a very brief
overview of some basic notions in this field and the notation we use. The
interested reader can refer to any introductory textbook, such as Diestel [73].

A graph G is a pair (V,E), where V is a finite set of points, called the
vertices of the graph, and E ✓ V ⇥ V := {(u, v) | u, v 2 V } is the set of
edges. When we consider multiple graphs at the same time, we write V (G)
and E(G) to denote the vertex and edge set of G respectively.

(u, v) 2 E means that there is a directed edge, starting at u and ending
in v. Such graphs are called directed. If G is such that (u, v) 2 E if and only
if (v, u) 2 E, we say that it is undirected, and we denote the edge between u
and v by {u, v}.

An edge {u, u} is called a loop. Also, if G can have multiple edges between
two vertices, we say that it is a multigraph. A graph is simple, if it has neither
loops nor multiple edges. All the graphs we consider here are simple, unless
explicitly stated otherwise.

A path is a finite sequence of pairwise distinct vertices u1, . . . , uk, such
that (ui, ui+1) 2 E, i = 1, . . . , k�1 and it is denoted by (u1, . . . , uk). A cycle
is a path whose last vertex has an edge towards the first. The length of a
path or cycle is the number of its edges. A path (resp. cycle) with length k
is sometimes called k-path (resp. k-cycle).

A graph G is connected if, for any u, v 2 V (G), there is either a path from
u to v or vice versa. It is strongly connected if both these paths exist. In
undirected graphs, these notions coincide. A (strongly) connected component
(scc) of a graph G is a maximal (strongly) connected subset of V . A tree is a
connected and acyclic (i.e. with no cycles) graph. A possibly unconnected,
but acyclic graph is a forest.

Let G = ({1, . . . ,m}, E) be a simple undirected graph. We define Nj to
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be the neighborhood of j in G, that is:

Nj := {i | {i, j} 2 E}.

Note that since G is assumed to be simple, j /2 Nj, j = 1, . . . ,m. We denote
by N+

j := Nj [ {j} the extended neighborhood of j 2 {1, . . . ,m}. The
degree deg(j) of j, is the size |Nj| of its neighborhood. We denote by � the
maximum degree of G.

A clique of size n (n-clique), is a simple graph on n vertices, where each
pair of distinct vertices are connected by an undirected edge. An independent
set of size n, is a simple graph comprised of n vertices with no edges between
them. An edge (resp. vertex) coloring is a function f : E 7! {1, . . . , K}

(resp. f : V 7! {1, . . . , K}), where {1, . . . , K} is the set of available colors.
If |K| = k, we sometimes say that we have a k-coloring.

1.3.2 Propositional Logic

Propositional Logic is the most basic form of mathematical logic, where we
consider true/false or “1/0” sentences. It corresponds to CSPs defined on
Boolean domains and it is one of the most extensively studied parts of com-
puter science. Again, we provide here some basic definitions and notation
that can be found in any introductory textbook, like Enderton [80].

To avoid tedious technicalities, we assume we have a finite set of variables
{x1, . . . , xm}, where m is as large as needed. A propositional formula (or
simply formula) � has one of the following three forms:

• � = xi, for some i 2 {1, . . . ,m},

• � = ¬ , for some already defined formula  , or

• � =  ⇤�, where ⇤ 2 {^,_,!,$} and  ,� are already defined propo-
sitional formulas.

Thus, propositional formulas are defined recursively. We start with plain
variables and create more complicated formulas via the connectives ¬, ^,
_, !, $. Syntactically, to denote the order of operations, we either use
parenthesis or we follow the rule: ¬ comes before any ther connective, then
^,_ and finally !,$. Thus, the formula:

x1 ^ ¬x2 ! x3 _ x4,
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is the same with:
((x1 ^ (¬x2)) ! (x3 _ x4)).

We use the usual semantics for our formulas. Given an assignment of values
a = (a1, . . . , an), ai 2 {0, 1}, i = 1, . . . , n to the variables, we have that:

• if � = xi, then �(a) = 1 if and only if xi = 1,

• if � = ¬ , then �(a) = 1 if and only if  (a) = 0,

• if � =  ^ �, then �(a) = 1 if and only if  (a) = �(a) = 1,

• if � =  _ �, then �(a) = 0 if and only if  (a) = �(a) = 0,

• if � =  ! �, then �(a) = 0 if and only if  (a) = 1 and �(a) = 1 and,

• if � =  $ �, then �(a) = 1 if and only if  (a) = �(a).

A formula � tautologically entails  , denoted � |=  , if any assignment of
values that satisfies � (i.e. � evaluates to 1), satisfies  too. We extend this
definition to sets of formulas ⌃, where an assignment of values satisfies ⌃ if
and only if it satisfies every formula in ⌃.

We say that � is tautologically equivalent (or simply equivalent) with  ,
denoted by � ⌘  , if � |=  and  |= �. Two equivalent formulas are
satisfied by exactly the same assignments, thus semantically they do not
di↵er. Syntactically though they are not. For example, the length of x1 is
much smaller than that of the equivalent formula:

x1 ^ · · · ^ x1| {z }
k�times

,

when k > 1. This might seem like a triviality, but we will see later on that,
for algorithmic purposes, the length of a formula can matter a lot.

We write �(x1, . . . , xm) to denote that � is defined over the variables
x1, . . . , xm. This notation defines the length of the assignments that � admits.
That is, the set of satisfying assignments or truth set of �(x1, . . . , xm) is:

Mod(�) ✓ {0, 1}m.

Note that writing e.g. �(x1, . . . , xn) = x1 ^ x2 is not a contradiction, since it
is equivalent with the formula:

(x1 ^ x2) ^
m̂

i=3

(xi _ ¬xi).
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It thus holds that:

Mod(�) = {(1, 1)}⇥ {0, 1}m�2.

1.3.3 Algorithms

We provide here a very brief discussion concerning the computational com-
plexity of an algorithm and of a problem. We assume that the reader is
already familiar with these concepts, which can be found in any introduc-
tory textbook of Algorithm Design or Computational Complexity (see for
example [148,193]).

We loosely refer to an algorithm A as a set of specific instructions, where
given an input x, after a finite number of steps produce the output A(x).
The corresponding formal model is the Turing Machine, but we will not go
into any details here. The interested reader is again referred to introductory
textbooks (see for example [177,199]). We assume that the input x is encoded
in some suitable way (e.g. a binary representation), and we let x stand for
both the input and its representation. The length of the input x is denoted
by |x|.

The complexity of an algorithm A is the time or memory consumption
it needs to produce its output and it is measured in terms of the input’s
length. We consider, unless explicitly stated otherwise, the time complexity
of our algorithms, and we take a ”worst-case” approach. This means that we
measure the time A needs to produce its output on the worst possible input
x. The complexity of a problem, is the complexity of the best algorithm
that solves it. We make the usual assumption where an algorithm is deemed
e�cient if the time it needs to produce its output in the worst case is a
polynomial over the length of its input. The class of problems admitting
such an algorithm is P.

We begin with a very brief exposition of the Complexity Classes we will
need. For the interested reader, most introductory textbooks in the field of
Computational Complexity would do. We recommend [10,177].

One way to depict a problem, is as a set of words, that is finite sequences
of symbols, over a finite alphabet ⌃. Let ⌃⇤ be the set of words comprised
entirely of symbols from ⌃. The words are in fact encodings of the compu-
tational objects we study. Thus, a decision problem can be seen as a subset
L ✓ ⌃⇤ and the question we want to answer algorithmically is whether a
word x 2 ⌃⇤ is an element of L or not. Decision problems have their corre-
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sponding function problems, where we want to optimize some quantity. For
example, the decision version of the independent set problem is to inquire
whether a graph has k independent vertices. The corresponding function
problem is, given a graph, to find an independent set with as many vertices
are possible.

Determinism The computational complexity of a problem is defined as
the resources that the “best” (known) algorithm for that problem spends.
Assume again that an algorithm A is loosely defined as a process comprised
of a finite set of well defined and ordered steps, that, on input some x 2

⌃⇤, produces some output A(x), which is usually assumed to be 0 or 1,
denoting rejection and acceptance of the input respectively. For the time
being, we consider deterministic algorithms, that is, algorithms whose i-th
step is completely and uniquely determined by the input and the state the
algorithm is at, after completing the (i� 1)-th step.

An algorithm A solves the problem L if and only if, for all x 2 ⌃⇤, A
accepts x if and only if x 2 L. The complexity of A is measured in terms of
the length |x| of x, i.e. the number of its symbols. Although in practice every
detail counts, for theoretical purposes, we do not care about the constants
in the complexity of an algorithm. Thus, we say for example that algorithm
A has O(N2) time complexity and O(N logN) space complexity, if on input
x of length |x| = N , A needs c1N2 steps to terminate and c2N logN places
in memory to perform its operations, where c1 and c2 are constants. This is
usually referred to as “Big-O notation”, and can be found in any introductory
textbook in this scientific area, like [177].

We express the time/space consumption of an algorithm A by non de-
creasing and computable functions. A computable function is one that can
be produced by an algorithm. We will not get into details here. For our
purposes, it su�ces to know that logarithms, polynomials and exponentials
are all functions that can express the complexity of an algorithm.

Let DTIME(f(N)) be the complexity class that contains all problems L
that can be solved by a deterministic algorithm A in O(f(N)) time. The
class of polynomially solvable or tractable problems is defined as:

P :=
[

k2N\{0}

DTIME(Nk).

We consider problems in P as the ones that can be solved e�ciently, with
respect to the time an algorithm needs to solve them. Analogously, we can
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define problems that can be solved by exponential-time algorithms as:

EXP :=
[

k2N\{0}

DTIME(2N
k
).

Easily, any problem in P also belongs in EXP.
We can define analogous complexity classes concerning memory consump-

tion. Let DSPACE(f(N)) be the complexity class that contains all problems
L that can be solved by a deterministic algorithm A in O(f(N)) space. The
class of problems that can be solved in logarithmic space is

LOG = DSPACE(log(N)),

where log is assume to have base 2, unless specifically stated otherwise. LOG
is often denoted as LOGSPACE in the bibliography. The class of problems
that can be solved in polynomial space is:

PSPACE :=
[

k2n\{0}

DSPACE(Nk).

It holds that:
LOG ✓ P ✓ PSPACE ✓ EXP (1.5)

and, although we do not know anything more than that LOG ( PSPACE
and P ( EXP, we suspect that all containments are proper.

Non-determinism Non-determinism is a computational model that can-
not be implemented in the real world. Nevertheless, it is quite useful for
theoretical purposes and has been widely studied. There are many ways
that have been used to describe non-deterministic machines, e.g. as ma-
chines that guess what is the right thing to do or that do everything at the
same time. We believe that to avoid the confusion arising by comparing
non-determinism with other computational models, like oracle machines or
parallel computation, the best way is to say that a non-deterministic machine
creates “alternate universes” to go through di↵erent computational scenarios.

In contrast with deterministic algorithms, a non-deterministic one can
have more than one choices to proceed, when in a given state and reading a
particular symbol of its input. Such an algorithm accepts its input if at least
one of its computational paths leads to success and rejects otherwise. The
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time/space consumption of such an algorithm is measured as the time/space
consumption of its longest computational path.

A simple example is the following. There is a non-deterministic algorithm
that solves SAT, where, on input a formula �(x1, . . . , xn) proceeds as follows:

1. Non-deterministically choose an assignment a.

2. If �(a) = 1, accept; else, reject.

This might seem either nonsensical or extremely powerful (or both). For the
latter, we will see in the sequel that in some cases, non-determinism does
not provide any more computational power. Interestingly, even in the cases
it presumably adds computational power, we cannot yet prove it. For the
former, we will see some alternative definitions of non-deterministic classes
that make both its theoretical and practical purposes clear.

Let NTIME(f(n)) be the complexity class that contains all problems L
that can be solved by a non-deterministic algorithm A in O(f(n)) time. The
class of problems that can be solved by a polynomial time non-deterministic
algorithm is defined as:

NP :=
[

k2N\{0}

NTIME(Nk).

Analogously, we can define problems that can be solved by non-deterministic
exponential-time algorithms as:

NEXP :=
[

k2N\{0}

NTIME(2N
k
),

which is obviously a super-class of NP. Again, we can define complexity
classes concerning memory consumption. Let NSPACE(f(N)) be the com-
plexity class that contains all problems L that can be solved by a non-
deterministic algorithm A in O(f(N)) space. The class of problems that
can be solved in non-deterministic logarithmic space is

NLOG = NSPACE(log(N)),

where log is assumed to have base 2, unless specifically stated otherwise. The
class of problems that can be solved in non-deterministic polynomial space
is:

NPSPACE :=
[

k2n\{0}

NSPACE(Nk).
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It holds that:
NLOG ✓ NP ✓ NPSPACE ✓ NEXP. (1.6)

The deterministic and non-deterministic classes relate to each other as
follows:

LOG ✓ NLOG ✓ P ✓ NP ✓ PSPACE = NPSPACE ✓ EXP ✓ NEXP. (1.7)

For any computational class C, let its complementary class be defined as
follows:

coC := {L | L 2 C},

where, for any subset L ✓ ⌃⇤, L := ⌃⇤
\ L.

It is easy to see that all the deterministic polynomial classes are equal
their complementary ones. Indeed assume that L 2 DTIME(f(N)). Then,
there is an algorithm A whose running time/space if O(f(N)), such that
A(x) = 1 if and only if x 2 L. We can now design an algorithm B that
performs the exact same steps as A, but in the end, it outputs 1 if and only
if A(x) = 0. Then, it is immediate to see that L 2 DTIME(f(N)) too.

With non-determinism though, things aren’t that simple. One can see
that by the definition of acceptance in a non-deterministic algorithm. It is
known that:

P ✓ coNP \ NP and EXP ✓ NEXP \ coNEXP.

The biggest question in computational complexity is where P equals NP
or not, closely followed by whether NP = coNP or not and whether P =
NP \ coNP. A positive answer to the first question, implies positive answers
to the other two as well. We suspect thought that none of these equalities
hold.

Randomized Computation Another computational model that perme-
ates our work, is using randomness in the design of our algorithms. We will
not get into formal details here. In general, a randomized algorithm is one
that relies on “coin tosses” in order to perform some of its steps. An easy
example of such an algorithm would again be for SAT, where, on input a
formula �(x1, . . . , xn) proceeds as follows:

1. Choose an assignment a uniformly at random.

2. If �(a) = 1, accept; else, reject.
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According to the random assignment that step 1 produces, the algorithms
takes a di↵erent computational path. But, in contrast with non-determinism,
here there are no alternative universes. We simply say that, if there are k
assignments satisfying �, the the probability of succeeding is k

2n .
Usually, we allow randomness in an algorithm in two ways. Either we

allow some chance of the algorithm to produce a wrong result, or we allow
its execution time to be random and compute the expected running time of
the algorithm. This methods give rise to the following computational classes.

A language L is in the class Bounded-error Probabilistic Polynomial-time
(BPP), if there is a probabilistic algorithm A such that:

Pr[A(x) = L(x)] �
2

3
,

where L(x) = 1 if and only if x 2 L. If we allow only one-sided errors, we
get the classes RP and its complement coRP, where L 2 RP if there is a
probabilistic algorithm A such that:

if x 2 L then Pr[A(x) = 1] �
2

3
,

if x /2 L then Pr[A(x) = 0] = 1.

Thus, RP contains problems that admit algorithms that can get it wrong in
case x 2 L only.

Finally, L is in ZPP if it admits a randomized algorithm such A, such that
Pr[A(x) = L(x)] = 1 and its expected running time is polynomial. Thus,
such algorithms make no errors, but may have longer execution times. The
algorithms we present in Ch. 6 fall in fact in this class.

It holds that:

ZPP = RP \ coRP, RP [ coRP ✓ BPP.

Finally, we know that BPP ✓ EXP, but nothing more. That is, we cannot
even prove containment in NP. There are many researchers who believe that
any randomized algorithm can be derandomized and thus that P = BPP.
An interesting discussion as to why that may be true can be found in [10,
Chapters 19,20].

Polynomial Hierarchy Going above P but remaining within the bounds
of PSPACE, the polynomial hierarchy consists of the complexity classes ⌃P

k ,
⇧P

k and �P
k , k 2 N, which are recursively defined as follows:
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• ⌃P
0 = ⌃P

0 = �P
0 = P and

• ⌃P
k+1 is NP with oracle ⌃P

k , ⇧P
k+1 is coNP with oracle ⌃P

k and �P
k+1 is P

with oracle ⌃P
k , k 2 N.

It is known that

⌃P
k [ ⇧P

k ✓ �P
k+1 ✓ ⌃P

k+1 \ ⇧P
k+1, 8k 2 N.

Furthermore, if for some k 2 N, we have ⌃P
k = ⇧P

k , then PH collapses to that
level, in the sense that ⌃P

l = ⇧P
l , for all l � k. For example, if NP=coNP,

then ⌃P
k = ⇧P

k = NP, for all k � 1. For a more in depth discussion of the
polynomial hierarchy, we refer the interested reader to Stockmeyer’s work
[204]. Finally, there is the following alternative description of the polynomial
hierarchy, via certicates:

⌃P
k+1 =9⇧P

k = {x 2 {0, 1}⇤ | 9w 2 {0, 1}p(|x|) : hx,wi 2 ⇧P
k },

⇧P
k+1 =8⌃P

k = {x 2 {0, 1}⇤ | 8w 2 {0, 1}p(|x|) : hx,wi 2 ⇧P
k },

where p(|x|) is polynomial to the size of |x|. We will use both definitions of
these complexity classes to derive our results.

Hardness and Completeness We end this subsection by defining hard-
ness and completeness of a problem with respect to a computational class.
We first need the central definition of a reduction. We say that a problem L
reduces to a problem L0 and write L  L0, if there is a function f : L 7! L0

such that w 2 L if and only if f(w) 2 L0. Again we need f to be computable,
but we will not go into such details here. L polynomially reduces to L0, de-
noted by L P L0, if there is a reduction f : L 7! L0 that can be constructed
in polynomial time. Intuitively, a reduction is a way to transform an instance
of a given problem to one of another, while preserving membership to each
problem.

Let L be a problem and C a computational class. L is C-hard if every
problem of C polynomially reduces to L. It is C-complete if it is C-hard and,
furthermore, L 2 C. In general, when trying to bound the complexity of
a given problem L, membership in a class corresponds to an upper bound,
hardness in another class to a lower bound and completeness in a class to a
tight bound.
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Every level of PH contains complete problems that are generalizations of
SAT. For example, ⌃k-SAT is complete for ⌃P

k , where ⌃k-SAT is the following
decision problem: given an expression of the form

9x18x2 . . . Qxk'(x1,x2, . . . ,xk),

where ' is a Boolean formula, is this expression true when the quantifiers
vary over the set {0, 1}? (Here, Q = 9 if k is odd, while Q = 8 if k is even.)

1.3.4 Analytic and Algebraic Tools

In this section, we present some more advanced analytic and algebraic notions
that we will need in the following chapters. We begin with some preliminaries
concerning ordinary and multivariate generating functions, which we will
use, along with Bender and Richmond’s “Lagrange Inversion Formula” [19]
in order to analyse the algorithm presented in Ch. 6, Sec. 6.2. We then
proceed with some information concerning norms defined on matrices, we
define the spectral radius of a matrix and consider “Gelfand’s formula” [126],
which we need for the algorithm of Sec. 6.3.

Generating Functions Generating functions are widely used in combina-
torics in order to count the number of various objects, like formulas or graphs
with given properties. The main reason they are so useful is that they can
be viewed as analytic objects, allowing us to implement a wide and robust
theory in order to analyze them. The results we need here can all be found
in Flajolet and Sedgewick’s [94]. Let (an) := (an)n�0 be an infinite sequence.
The Ordinary Generating Function of (an) is:

A(x) :=
1X

n=0

anx
n. (1.8)

Intuitively, if (an) is the counting sequence of a class of combinatorial objects,
that is, if an denotes the number of objects of size n, then x marks that size
in the OGF, since xn appears as many times in Eq. (1.8) as there are objects
of size n, for all n 2 N.

The coe�cient of xn in A(x) is denoted by [xn]A(x), in the sense that:

[xn]A(x) = [xn]
1X

n=0

anx
n = an.
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The first known appearance of OGFs was in 1751, in a letter by Euler to
Goldbach [88], where he provides the OGF for n-gon triangulations, that is,
the number of ways one can divide a convex n-gon to triangles. It is unclear
however if Euler had a formal proof for his result.

A problem of interest that can be solved using formal power series is the
inversion problem, where, given the equation z = h(y), one wants to express
y in terms of z. Assuming that [z0]h(z) = 0 and [z1]h(z) 6= 0, the problems
can be expressed as:

�(y) =
y

h(y)
.

The Lagrange inversion formula of 1970 (see [53, 124]) provides a non- ele-
mentary solution to this problem.

Theorem 1.3.1 (Langrange inversion). Let:

�(u) =
X

k�0

�ku
k

be a formal power series, with �0 6= 0. Then, the equation y = z�(y) admits
a unique solution whose coe�cients are given by:

y(z) =
1X

n=1

ynz
n, where yn =

1

n
[un�1]�(u)n.

Furthermore, for each k > 0, the Bürmann form is:

y(z)k =
1X

n=1

y(k)n zn, where y(k)n =
k

n
[un�k]�(u)n.

Finally, by linearity, we have:

[zn]H(y(z)) =
1

n
[un�1](H 0(u)�(u)n),

where H is an arbitrary function.

We have already mentioned that one of the main features of generating
functions is that we can view them as analytic objects. Assume that we have
a function f defined on a region ⌦ of the complex plane, that is an open and
connecte subset of C. f is analytic at a point z0 2 ⌦ if, for all z in some
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open disc of ⌦ centered at z0, it is representable by a convergent power series
expansion:

f(z) =
X

n�0

cn(z � z0)
n.

The cn are referred to as Taylor coe�cients, since by di↵erentiating f n times
we obtain:

cn = f (n)(z0)n!.

We now have the following result.

Proposition 1.3.1 (Prop. IV.5 [94]). Let � be a function analytic at 0,
having non-negative Taylor coe�cients, such that �(0) 6= 0. Let R  +1 be
the radius of convergence of the series representing � at 0. If:

lim
R�

x�0(x)

x
> 1,

there exists a unique solution ⌧ 2 (0, R) of the characteristic equation:

⌧�0(⌧)

�(⌧)
= 1.

Then, the formal solution y(z) of y(z) = z�(y(z)) is analytic at 0 and its
coe�cients satisfy:

lim sup
n!+1

([zn](y(z))) =
⇣1
⇢

⌘
,

where:

⇢ =
⌧

�(⌧)
=

1
�0(⌧).

We return now to the Lagrange inversion formula, but in the case of
multivariate generating functions. This case has been extensively studied:
Bergeron et al. [20], Gessel [103], Goulden and Kulkarni [110], Haiman and
Schmitt [116]. Consider now the following definitions.

The Kroecker delta is the function:

�ij =

(
1, if i = j,

0, otherwise.

Let A be an n ⇥ n matrix, where aij is the element of the i-th row and j-th
column, i, j 2 {1, . . . , n}. Let also Ai

j be A without its i-th row and j-th
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column. The determinant det(A) of A can now be computed by the Laplace
expansion:

det(A) =
nX

j=1

(�1)i+jaij det(A
i
j), for i = 1, . . . , n,

det(A) =
nX

i=1

(�1)i+jaij det(A
i
j), for j = 1, . . . , n,

where, for a 2⇥ 2 matrix A, it holds that det(A) = a11a
2
2 � a12a

2
1.

Let x = (x1, . . . , xk) be a vector of length k and n = (n1, . . . , nk) a vector
of k natural numbers. Then:

xn := xn1
1 · · · xnk

k .

The multivariate OGF of (an) is:

A(x) :=
1X

n=0

anx
n. (1.9)

We now have the usual formulation of the multivariate Lagrange inversion.

Theorem 1.3.2 (Multivariate Lagrange inversion). Assume that g(x) and
f(x) := (f1(x), . . . , fk(x)) are formal power series in x such that fi(0) 6= 0,
i = 1, . . . , k. Then, the set of equations wi = tifi(w), i = 1, . . . , k uniquely
determine the wi as formal power series in t and:

[tn]g(w(t)) = [xn]

(
g(x)f(x)n det

⇣
�ij �

xi

fj(x)

@fj(x)

@xi

⌘)
.

The disadvantage of this formulation is that the determinant vanishes
near the point where the integrand is maximized. Bender and Richmond’s
alternate formulation avoids this issue. Assume G = (V,E) is a directed
graph on V = {0, 1, . . . , k} and:

@f

@G
:=
Y

j2V

(⇣ Y

(i,j)2E

@

@xi

⌘
fj(x)

)
.

The proof of the following formulation can be found in [19].
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Theorem 1.3.3 (Bender and Richmond [19]). Assume that g(x) and f(x) :=
(f1(x), . . . , fk(x)) are formal power series in x such that fi(0) 6= 0, i =
1, . . . , k. Then, the set of equations wi = tifi(w), i = 1, . . . , k uniquely
determine the wi as formal power series in t and:

[tn]g(w(t)) =
1

Qk
i=1 ni

[xn�1]
X

T

@(g, fn1
1 , . . . , fnk

k )

@T
,

where 1 = (1, . . . , 1), T contains all trees on {0, 1, . . . , k} with edges directed
towards 0 and @/@T is indexed from 0 to d.

Matrix norms We now proceed with some preliminaries concerning ma-
trix norms. Our aim is to present Gelfand’s formula on the spectral radius
of matrices, which we will need in the analysis of the algorithm in Sec. 6.3.
Here, we follow the Horn’s “Matrix Analysis” [126].

We begin with the definition of a norm.

Definition 1.3.1. Let V be a vector space over a field F (usually R or C).
A function k · k : V 7! R is a norm, if the following conditions hold:

1. kxk � 0, for all x 2 V ,

2. kxk = 0, if and only if x = 0,

3. kcxk = |c|kxk, for all x 2 V and c 2 F and

4. kx+ yk  kxk+ kyk, for all x,y 2 V .

Note that from any vector x, we can take a unit vector y, such that
kyk  1, by taking y = x

kxk . Some of the most common norms are the

absolute value | · | on R, where, for all x 2 R:

|x| =

(
x, if x > 0,

�x, else,

the Euclidean norm k · k2 on Rn, where:

kx = (x1, . . . , xn)k2 =
q

x2
1 + · · ·+ x2

n
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and the 1-norm (or taxicab norm or Manhattan norm) k · k1 on Rn, where:

kxk1 =
nX

i=1

|xi|.

Let Mn be the vector space of all n⇥ n matrices with elements from the
field F (usually R or C).

Definition 1.3.2. A function k · k : Mn 7! R is a (matrix-)norm (or ring-
norm, if the following conditions hold:

1. kAk � 0, for all A 2 Mn,

2. kAk = 0, if and only if A is the all-zero matrix,

3. kcAk = |c|kAk, for all A 2 Mn and c 2 F ,

4. kA+Bk  kAk+ kAk, for all A,B 2 Mn and

5. kABk  kAkkBk, for all A,B 2 Mn.

By any norm k · k on Rn (or on Cn), we can define the corresponding
matrix-norm, called the induced norm, in the following way:

kAk := sup
x 6=0

kAxk

kxk
.

For the induced norm we have the following properties.

Theorem 1.3.4. Let k · k be a norm on Rn. We use the same notation for
its induced norm on Mn. The following hold:

(i) kIk = 1, where I is the identity matrix,

(ii) kAxk  kAkkxk, for all A 2 Mn and x 2 Rn.

The spectral radius of A 2 Mn is:

⇢(A) := max{|�| | � is an eigenvalue of A}.

We can now state Gelfand’s formula.

Theorem 1.3.5 (Gelfand’s formula). Let k · k be a matrix norm on Mn and
A 2 Mn. Then:

⇢(A) = lim
k 7!+1

kAk
k
1/k.
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Chapter 2

Constraint Satisfaction
Problems

In this Chapter, we provide a general overview of constraint satisfaction prob-
lems (CSPs), in the various ways that they appear in the bibliography. We
begin by presenting the framework we use in Section 2.1 and, in Subsec-
tion 2.1.1, discuss a particular variant of CSP’s, the multi-sorted CSP’s. We
then discuss CSP’s in the field of First Order Logic, in Section 2.2 and, in
Subsection 2.2.1, present an extension of First-Order Logic, the Transitive
Closure-Logic (TCL). We proceed by discussing CPS’s via homomorphisms,
in Section 2.3 and Second-Order Logic in Section 2.4. All the relevant mate-
rial is provided in the text. The reader is assumed to have some familiarity
with Propositional and First-Order Logic (see e.g. Enderton [80]).

2.1 Our Framework

Let D be a (possibly infinite) set, which we call the domain. A relation R
with arity n is a subset of Dn. In general, we allow both trivial relations,
the empty relation ; and the whole domain D

n. The arity of R is sometimes
denoted by ↵(R).

Let R be a set of relations over D. In the bibliography, R is referred to as
a (constraint) language. Let also V be a set of variables, taking values in D.
To avoid tedious technicalities, one usually assumes V is finite, but as large
as needed. A Constraint Satisfaction Problem over R, denoted by CSP(R)
is defined as follows:

61
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CSP(R)

Instance: I = (V,D, C), where:

• V is a set of variables,

• D is the domain of the variables and

• C is a set of constraints C = (R, sc(R)) where:

– R is an n-ary relation in R and

– sc(R) is an n-ary vector of variables from V , called the scope
of the constraint.

Question: Is there an assignment of values to the variables, that is, a
function f : V 7! D, called a solution of the CSP instance, that satisfies
all of the constraints, that is, f [sc(R)] 2 R, for all C 2 C?

Figure 2.1: Constraint Satisfaction Problem over a set of relations R

The framework of CSP’s is broad enough so that many computational
problems of interest can be represented as a CSP problem. To illustrate this,
we provide a toy example from the field of Graph Theory.

Example 2.1.1. Let G = (V,E) be a simple (no loops or multiple edges)
and undirected graph. Suppose we are interested in coloring its edges with a
palette of K 2 N>1 colors {1, . . . , K} and we require the resulting coloring to
be proper, that is, no adjacent edges of the graph receive the same color.

Using a more formal terminology, we search for a function f : E 7! K,
such that f({u, v}) 6= f({z, w}), for all edges {u, v}, {z, w} such that z or
w 2 {u, v}. Such a function can be obtained as a solution to an instance of
CSP({ 6=K}), where:

• V = {xe | e = {u, v} 2 E},

• D = {1, . . . , K},

• C contains all constraints of the form ( 6=K , (x{u,v}, x{z,w})), such that
exactly one of z or w are in {u, v} and
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• 6=K✓ K2 is the inequality relation 6=K= {(a, b) 2 K2
| a 6= b}.

A solution to CSP( 6=K) easily corresponds to a proper coloring with at most
K colors. ⇧

2.1.1 Multi-Sorted CSP’s

We proceed with discussing a variant of CSP’s, the multi-sorted CSP, or
MCSP. The di↵erence with the original definition is that, in an MCSP, there
are di↵erent “sorts”, each being a “semi-autonomous” CSP, in the sense that
it contains distinct variables that take values from a distinct domains. On the
other hand, the constraints are defined over every sort, inducing dependencies
between the solutions of each sort. Here, we follow the terminology of A.
Bulatov and P. Jeavons [40].

Let D = {Di | i 2 I} be a (possibly infinite) collection of (possibly
infinite) sets. A multi-sorted relation R over D, with signature �(R) =
(i1, . . . , ik), is a subset of

Qk
j=1 Dij , where i1, . . . , ik 2 I are not necessarily

distinct. Note that the signature �(R) provides the information of the do-
mains that R is defined upon. The arity of R will again be denoted by ↵(R),
and it is now defined as the length of �(R), i.e. the number of indices ij
in the signature of R. If i1 = i2 = . . . = ik, then R is called a one-sorted
relation over D. Note that if D is a singleton, then all relations over D are
one-sorted.

Example 2.1.2. Let D = {D1, D2, D3, D4}, where D1 = {a, b, c}, D2 =
{0, 1}, D3 = {2, 3, 4, 5} and D4 = {d}. Then, we can see:

R1 = {(0, a, 0, d), (0, b, 1, d), (1, a, 0, d), (1, b, 1, d)}

either as a multi-sorted relation over D with signature �(R1) = (2, 1, 2, 4),
or as a one-sorted relation over:

D1 [D2 [D4 = {a, b, c, 0, 1, d}.

On the other hand, R2 = {(0, a), (b, 1)} is necessarily a one-sorted relation
over D1 [D2, since only values of the same sort can be permuted. ⇧

Let � be a set of multi-sorted relation over D over D. A Multi-Sorted
Constraint Satisfaction Problem over � , denoted by MCSP(� ) is defined as
follows:
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MCSP(� )

Instance: I = (V,D, �, C), where:

• V is a set of variables,

• � : V 7! I is the domain function and

• C is a set of multi-sorted constraints C = (R, sc(R)) where:

– sc(R) = (vi1 , . . . , vin) is an n-ary vector of variables from V ,
called the scope of R and

– R is a multi-sorted relation in � , with signature �(R) =
(�(vi1), . . . , �(vin)).

Question: Is there an assignment of values to the variables, that is, a
function

f : V 7!

[

D2D

D,

called a solution of the MCSP instance, that respects the variables’ do-
mains, i.e. f(v) 2 D�(v) for all v 2 V and that satisfies all of the con-
straints, that is, f [sc(R)] 2 R, for all C 2 C?

Figure 2.2: Multi-Sorted CSP

It is evident we can immediately convert an MCSP(� ) problem to a
CSP(� ), by considering all R 2 � as one-sorted relations over

S
D D 2 D

and taking the corresponding constraints for each instance. We will see
later on though that this approach does not preserve the tractability or the
intractability of the problem and is thus of little practical use.

Returning to (one-sorted) CSP’s, there are many ways to express them
across the literature. Here, we present several of them, along with the connec-
tions between them. For another such general overview, see M. Bordinsky’s
essay [25].
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2.2 First-Order Logic

We begin with some basic concepts and notation, but we do assume some
familiarity with them. Our main point of reference is Enderton’s work [80].

For our purposes, a language is any, (possibly infinite) set, containing
all the usual parenthetical and sentential connective symbols ¬,^,_,!,$,
with their standard semantic meaning and a (possibly infinite) set V of vari-
ables. The set of its parameters contains the usual quantifier symbols (8, 9),
constant symbols, usually denoted as c0, c1, c2, . . . and n-ary predicate and
functional symbols, n 2 N. In all that follows, we freely include any symbols
we need in our languages.

We call any finite sequence of symbols of a language an expression or a
word. A term t is either a single variable or constant, or an expression of the
form:

f(t1, . . . , tk),

where f is a k-ary functional symbol and t1, . . . , tn are terms. An atomic
formula is an expression of the form:

P (t1, . . . , tn),

where P is an n-ary predicate symbol and t1, . . . , tn are terms. Finally,
the (well-formed) formulas are quantified atomic formulas connected by the
connective symbols. For example:

�(x, y) = 8z(P (x, z) ! (Q(x, y, z) _ P (c0, z))

is a formula on two free variables x, y, that is variables not in the scope
of any quantifier. A formula with no free variables is called a sentence or
proposition. We use the usual ordering between the logical connectives when
we omit the parenthesis.

A structure A is a function, whose domain is the set of parameters, such
that:

- |A| is a non-empty set called the universe or domain of A, which is
assigned to the quantifiers,

- each constant symbol c takes a value in the universe |A|, denoted by
cA,
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- each n-ary predicate symbol gives rise to an n-ary relation PA
✓ |A|n

and

- each k-ary functional symbol is assigned a function fA : |A|k ! |A|.

A structure A is called relational, if it consists only of a universe and rela-
tions. Unless explicitly stated otherwise, all structures from now on will be
relational. Also, when there is no confusion, we will omit the superscript
A, thus writing e.g. P to denote both the symbol of the language and the
relation assigned to it by the structure.

Given a formula �(x1, . . . , xn), a structure A and a function s : V ! |A|,
called an assignment of values (to the variables), �[s] denotes the assignment
of value s(xi) to each free variable xi of �, i = 1, . . . , n. We write:

|=A �[s]

when �(s(x1), . . . , s(xn)) = 1, that is, � is true in A under assignment s, with
the standard Tarski’s definition of truth. We write

|=A �

when � is true under any assignment in A. In such a case, we say that A is
a model of �. Furthermore, we write

|= �

when � is valid, i.e. true in every structure and under any assignment of
values.

Given some initial structures, we can construct new ones by combining
them via the usual set-theoretic operations. Specifically, assume A and B
are structures over a common language. Then:

• the intersection A \ B is the structure whose universe is |A \ B| =
|A| \ |B|, and where, for each predicate P , PA\B = PA

\ PB,

• the union A[B is the structure whose universe is |A[B| = |A|[ |B|,
and where, for each predicate P , PA[B = PA

[ PB and

• the disjoint union A ]B is the structure whose universe is |A ]B| =
|A| ] |B|, and where, for each predicate P , PA]B = PA

] PB.
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We can define analogously the intersection, union and disjoint union struc-
tures of any countable number of structures.

A set of formulas � is satisfiable if there is a structure A and an assign-
ment of values s : V ! A such that all members of � are simultaneously
true under s in A. Finally

� |= �

if whenever a � is satisfied by an s : V ! A in a structure A, then so is �.
When � is a singleton { }, we write  |= � instead of { } |= � and write
� ⌘  whenever both � |=  and  |= � hold.

⌧-formulas A set ⌧ of relational symbols of finite arity is called a relational
signature. We say that a structure A has a finite relational signature if it
can be applied to a language with predictates of finite arities. A first order
formula is called a ⌧ -formula if all its relational symbols are in ⌧ . A ⌧ -formula
�(x1, . . . , xn) is called primitive positive if its of the form:

9xn+1, . . . .9xm( 1 ^ · · · ^  l),

where  j = P (yj1 , . . . , yjkj ), P 2 ⌧ , yji 2 {x1, . . . , xm}, i = 1 . . . kj, j =
1, . . . , l. The conjuncts  j are called the constraints of �. Don’t be con-
fused by the indices of the quantified variables. Under the notation we use,
�(x1, . . . , xn) means that x1, . . . , xn are free in �.

Accordingly to CSP’s over sets of relations R, we can define a CSP over
a structure A with a finite relational signature ⌧ as follows:

CSP(A, ⌧)

Instance: Primitive positive ⌧ -sentence �.
Question: Is � true?

Figure 2.3: Constraint Satisfaction Problem over a ⌧ -structure A

By taking R to contain exactly the predicates of A and dropping the
existential quantifiers, we immediately obtain the CSP definition of Figure
2.1. In a way, the first definition of CSP’s does not give any notice to the
syntactic properties of the language, but simply assumes that we have some
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way of writing down all the necessary information. The FO approach is
certainly more systematic, but can become tiresome in practice.

Going back to Ex. 2.1.1, we use the terminology of First Order Logic to
express the property of a graph admitting a proper coloring with K colors.

Example 2.2.1. Assume first that our language contains a variable xe, for
each e = {u, v} 2 E and a binary predicate P . Assume also a structure A,
with universe |A| = {1, . . . , K}, such that PA = {(a, b) 2 K2

| a 6= b} = 6=K.
Now, a proper coloring exists if and only if

|=A 9y19y2 · · · 9ym

 
^

e,e02E:
e\e0 6=;

P (xe, xe0)

!
,

where y1, . . . , ym is some arbitrary ordering of the variables xe, e 2 E. ⇧

⌧-theories We can also define CSP’s based on sets of sentences, rather
than structures. A first-order theory T is a set of first order sentences. It
is a ⌧ -theory if all sentences are over the same signature ⌧ . A theory T is
satisfiable if there is a structure A such that every sentence in T is true in
A. For a ⌧ -theory T , we can define CSP(T ) as follows:

CSP(T )

Instance: Primitive positive ⌧ -sentence �.
Question: Is T [ � satisfiable?

Figure 2.4: Constraint Satisfaction Problem over a ⌧ -theory T

Note that for CSP(T ) to be interesting, T must be satisfiable. In terms of
the expressibility, defining CSP’s using structures and theories is equivalent.
We begin by showing that a CSP defined on a theory T can also be expressed
over a suitable structure A.

Proposition 2.2.1. Let T be a satisfiable ⌧ -theory. Then, there exists a
⌧ -structure A such that CSP(A, ⌧) and CSP(T ) are the same problem.
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Proof. Let T be the set of models for T and define the union structure:

A =
[

B2T

B.

Observe that T is satisfied in A. Indeed, any first-order primitive positive
formula  2 T is satisfied by all B 2 T and thus by A too. We now show
that CSP(A, ⌧) and CSP(T ) are the same problem.

Let � be a first-order primitive positive ⌧ -sentence. If � 2 T , T [ � is
satisfiable and � is true in A. Thus, we can assume that � /2 T . Now let �
be true in A. Since A is a model of T , it follows that T [ {�} is satisfiable.
Finally, if T [ {�} is satisfiable, then there is some B 2 T that satisfies it.
It follows that A ◆ B satisfies it too.

We now turn our attention to the opposite result. Namely, given a CSP
over a structure A, we show how we can find a theory T whose CSP expresses
the same problem.

Proposition 2.2.2. Let A be a ⌧ -structure. Then, there exists a ⌧ -theory T
such that CSP(T ) and CSP(A, ⌧) are the same problem.

Proof. Given A, we construct a first-order primitive positive ⌧ -sentence �,
such that its only model is A. Then, it follows immediately that CSP(A, ⌧)
and CSP({�}) are the same problems.

Let |A| := {a1, . . . , am} and assume that the predicates of ⌧ , in some
arbitrary ordering, are P1, . . . , Ps, s � 1. Finally, let:

�(A) := � = 9x19x29 · · · 9xm

  
8y

m_

i=1

(y = xi)

!
^

^

 
^

j=1,2,...,s
(dj1 ,...,djkj

)2PA
j

Pj(xj1 , . . . , xjkj
)

!
^

 
^

j=1,2,...,s
(dj1 ,...,djkj

)/2PA
j

¬Pj(xj1 , . . . , xjkj
)

!!
. (2.1)

That � is such that its only model is A is straightforward.
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The Boolean Satisfiability Problem (SAT) It is known that for any
Boolean n-ary relation R, there is a propositional formula �(x1, . . . , xn) such
that the set of its satisfying assignments (or models) Mod(�) = R. Thus, if
the universe |A| of a given structure A is Boolean, by dropping the existen-
tial quantifiers of a primitive positive ⌧ -sentence �, we obtain the Boolean
satisfiability problem:

SAT

Instance: Propositional formula �.
Question: Is � satisfiable?

Figure 2.5: The Boolean Satisfiability Problem

SAT is quite possibly the most extensively studied problem in the field
of Computational Complexity. We introduce here some terminology that we
will be useful in the following chapters.

A propositional formula �(x1, . . . , xn) is in Conjunctive Normal Form,
if it is a conjunction of terms, comprised from disjunctions of variables or
negations of variables. Thus, we can write � as follows:

�(x1, . . . , xn) =
m̂

j=1

Cj,

where the terms Cj are called clauses, and are of the form:

Cj = lj1 , . . . , ljkj , j = 1, . . . ,m,

where the lji ’s are called literals and:

lji 2 {x1, . . . , xn,¬x1, . . . ,¬xn}, i = 1, . . . , kj, j = 1, . . . ,m.

For each variable xi, xi is identified with its positive literal and ¬xi is its
negative literal, i = 1, . . . , n. We denote by vbl(Cj) the variables of clause
Cj. Finally, the set of models of a formula � is denotred by Mod(�).

If kj = k, j = 1, . . . ,m, we say that � is a k-CNF formula. It is known
that every propositional formula � has an equivalent 3-CNF one.

A CNF formula � is Horn (resp. dual-Horn) if each clause has at most
one position (resp. negative) literal and 2 � SAT if each clause contains at
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most two literals. Allowing formulas with clauses of a generalized form, we
say that � is a�ne if each clause is of the form:

Cj = (lj1 � · · ·� ljkj ),

where � denotes the binary addition. Note that for example, the clause
(x� y � z) is equivalent to:

(¬x _ ¬y _ ¬z) ^ (¬x _ ¬y _ z) ^ (¬x _ y _ ¬z) ^ (x _ ¬y _ ¬z),

but in practice, it is much more convenient to use the generalized clauses.

2.2.1 Transitive Closure Logic

It is well known that first-order logic has rather limited expressive power
on finite structures. In particular, there is no formula of first-order logic
that expresses connectivity on finite graphs (see Fagin [89] and Aho and
Ullman [4]); this means that there is no formula  of first-order logic such
that a finite graph G satisfies  if and only if G is connected. Intuitively one
can see that to express connectivity, one would need to express a sequence
z1, . . . , zl, such that (x, z1), (zl, y) and (zi, zi+1) 2 R, i = 1, . . . , l � 1. The
problem here is that the number l can be arbitrarily large and we have no
way of knowing it. Given that our formulas need to be finite in length, and
thus something like:

_

l2N

⇣
R(x, z1) ^R(x, z2) ^ · · · ^R(zl�1, zl) ^R(zl, y)

⌘

is not allowed, it seems rather plausible that there is no way to express transi-
tive closure in FO Logic. Proving it far exceeds the scope of this exposition.
Moreover, the same holds true for other properties of finite graphs of al-
gorithmic significance, such as acyclicity and 2-colorability ; for details, see,
e.g., [161]. Intuitively, the reason for these limitations of first-order logic is
that first-order logic on finite structures lacks a recursion mechanism.

Least Fixed-Point Logic (LFP) augments first-order logic with a recursion
mechanism in the form of least fixed-points of positive first-order formulas.
More formally, one considers first-order formulas of the form '(x1, . . . , xn, R),
where '(x1, . . . , xn, R) is a first-order formula over a relational schema with
an extra n-ary relation symbol R such that every occurrence of R is within
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an even number of negation symbols. Every such formula has a least fixed-
point, that is, for every relational structure R, there is a smallest relation
R⇤ such that R⇤ = {(a1, . . . , an) 2 Rn : R |= '(a1, . . . , an, R⇤)}. We use the
notation '1(x, y) to denote a new formula that expresses the least fixed-point
of '(x1, . . . , xn, S).

A binary relation R ✓ D
2 is transitive if, for all x, y, z 2 D, (x, y), (y, z) 2

R implies that (x, z) 2 R. For a binary relation R ✓ D
2, its transitive closure

is defined as the set:

Rcl :=
\

{Q ✓ D
n
| R ✓ Q and Q is transitive},

that is Rcl is the smallest transitive relation that contains R.
For example, if '(x1, x2, R) is the formula

E(x1, x2) _ 9z(E(x1, z) ^R(z, x2)),

then, for every graph G = (V,E), the least fixed-point '1(x1, x2) of this for-
mula defines the transitive closure of the edge relation E. Consequently, the
expression 8x18x2'1(x1, x2) is a formula of least fixed-point logic LFP that
expresses connectivity. For a di↵erent example, let  (x, S) be the formula
8y(E(y, x) ! T (y)), where T is a unary relation symbol. It can be verified
that, for every finite graph G = (V,E), the least fixed-point  1(x) defines
the set of all nodes v in V such that no path containing v leads to a cycle.
Consequently, the expression 8x 1(x) is a formula of least fixed-logic LFP
that expresses acyclicity on finite graphs.

Transitive Closure Logic (TCL) is the fragment of LFP that allows for the
formation of the transitive closure of first-order definable relations. Thus, if
✓(x1, . . . , xk, xk+1, . . . , x2k) is a first-order formula, then we can form in TCL
the least fixed point of the formula:

✓(x1, . . . , xk, xk+1, . . . , x2k) _ 9z1 · · · 9zk(✓(x1, . . . , xk, z1, . . . , zk)^

S(z1, . . . , zk, xk+1, . . . , x2k)).

As regards their expressive power, it is known that FO ⇢ TCL ⇢ LFP
on the class of all finite graphs. In other words, FO is strictly less expressive
than TLC, while TLC is strictly less expressive than LFP on the class of
all finite graphs. As regards connections to computational complexity, it is
known FO is properly contained in LOGSPACE, TLC is properly contained
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in NLOGSPACE, and LFP is properly contained in PTIME on the class of
all finite graphs.

The situation, however, changes if ordered finite graphs are considered,
that is, finite structures of the form G = (V,E,), where E is a binary
relation on V and  is a total order on V that can be used in LFP and in
TCL formulas. In this setting, it is known that TLC = NLOGSPACE and
that LFP = PTIME (the latter result is known as the Immerman-Vardi The-
orem); thus, separating TLC from LFP on the class of all ordered graphs is
equivalent to showing that NLOGSPACE is properly contained in PTIME,
which is an outstanding open problem in computational complexity. Fur-
thermore, similar results hold for the class of all finite structures and the
class of all ordered finite structure over a relational schema containing at
least one relation symbol of arity at least 2. These results have been es-
tablished in the context of descriptive complexity theory, which studies the
connections between computational complexity and expressibility in logics
on finite structures. We refer the reader to the monographs [129, 161] for
detailed information.

2.3 Homomorphisms

Another way to define CSP’s is via the notion of homomorpisms. This frame-
work has been used quite productively, and has led to various results in the
field. Assume we have two structures A and B, with the same signature ⌧
(we call them also ⌧ -structures). A homomorphism from A to B is a function
h : |A| ! |B| such that, for each m-ary relation P 2 ⌧ , if (a1, . . . , am) 2 PA,
then (h(a1), . . . , h(am)) 2 PB.

We can define a CSP problem over a structure A with finite signature ⌧ ,
using homomorphisms, as follows:

HCSP(A, ⌧)

Instance: Structure B with finite signature ⌧ .
Question: Is there a homomorphism h : |B| ! |A|?

Figure 2.6: CSP over a ⌧ -structure A via homomorphisms
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Quite often, we consider HCSP(A, ⌧) as the class of ⌧ -structures that
homomorphically map to A. To see the correspondence between Definitions
2.1, 2.2 and 2.3, first assume we have a finite ⌧ -structure A, whose universe
|A| = {d1, . . . , dm} and let ⌧ = P1, P2, . . . , Ps, such that ↵(Pj) = kj, i =
1, . . . , s. Let xi be a variable corresponding to di, i = 1, . . . ,m and define
the canonical conjunctive query of A as:

Q(A) = 9x19x2 · · · 9xm

^

j=1,2,...,s
(dj1 ,...,djkj

)2PA
j

Pj(xj1 , . . . , xjkj
). (2.2)

Thus, the canonical conjunctive query over A, is the existential quantification
over all predicates of ⌧ and over all vectors of the relations of A. It is not
di�cult now to prove the following result, that shows that any HCSP(A, ⌧),
can be expressed also as a CSP(A, ⌧), and thus as a CSP(R) too.

Proposition 2.3.1. Let A be a structure with finite relational signature ⌧
and B a finite ⌧ -structure. Then, there exists a homomorphism h : |B| ! |A|
if and only if Q(B) is true in A.

Proof. For the forward direction, let xi = di, i = 1, . . . ,m and consider an
arbitrary conjunct Pj(xj1 , . . . , xjkj

) of B, j 2 {1, . . . , s}. Since this con-

junct appears in Q(B), it must be the case that (dj1 , . . . , djkj ) 2 PB
j . Thus

Pj(xj1 , . . . , xjkj
), and by extension, Q(B), are true in B. Now, since h is a

homomorphism, (h(dj1), . . . , h(djkj )) 2 PA
j , thus Q(B) is true in A too.

For the converse assume that Q(B) is true in A. Then, there are values
a1, . . . , am 2 |A|, such that, for xi = ai, i = 1, . . . ,m, Q(B) is true in A.
Define h : |B| ! |A|, where h(di) = ai, i = 1, . . . ,m. Let (dj1 , . . . , djkj ) 2

PB. By the definition of q(B), for some j 2 {1, . . . , s}, we have that P =
Pj and that Pj(xj1 , . . . , xjkj

) is true for xji = dji , i = 1, . . . , kj. By the

definition of h, Pj(xj1 , . . . , xjkj
) is true in A for xji = ai, i = 1, . . . , kj, thus

(aj1 , . . . , ajkj ) 2 PA.

2.4 Second-Order Logic

Second-Order Logic (SO) is a richer and more expressive extension of FO.
The di↵erence with FO is that here, we can use quantifiers over predicates and
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function symbols. Consider the setting of FO in Sec. 2.2. To avoid possible
mix-ups, we say the the variables of V are individual and we introduce two
additional kinds of variables:

• n-place predicate variables Xn
1 , X

n
2 , . . . and

• n-place function variables F n
1 , F

n
2 , . . .

We denote the set of all variables by V . The definitions for terms and atomic
formulas remain the same as before. The (well-formed) formulas are now
extended to include formulas  of the form:

8Xn
i �, 8F n

i �, 9Xn
i �, 9F n

i �,

where i 2 N and � is a (well-formed) formula.  is a sentence if no individual,
predicate or function variable occurs free.

Now, given a structure A, an assignment of values to  is as in FO, where
additionally, for any n-place predicate variable and any n-place function vari-
able, s(Xn) is an n-ary relation over |A| and s(F n) is an n-ary function on
A, if t1, . . . , tn are terms, X and n-ary predicate variable and F an n-ary
function variable:

s̄(F (t1, . . . , tn)) = s(F )(s̄(t1), . . . , s̄(tn)))

and
|=A X(t1, . . . , tn) if and only if (s̄(t1), . . . , s̄(tn)) 2 s(X).

The truth of a formula � with quantified predicate or function variables is
defined in the obvious way.

It is easy to observe that FO is indeed a part of SO. Nevertheless, we
provide here a more explicit relation between the two logics.

Theorem 2.4.1 (Skolem Normal Form). For any first-order formula �, there
is an equivalent second order formula  such that:

(i)  begins with a string of existential individual and function quantifiers,

(ii) is followed by a string of universal individual quantifiers and

(ii) ends with a quantifier-free formula.

The strings in (i) and (ii) can be empty. For a proof, see Enderton [80].
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Definition 2.4.1. Let  be a second-order formula. We say that  is an
SNP-sentence if it is of the form:

9X 8x �(X,x,A,B),

where:

• X is a string of predicate variables,

• x is a string of individual variables and

• � is a quantifier-free first-order formula with relational symbols from
A.

• B is a structure such that |B| = |A|.

The satisfiability problem for the second order formulas of Def. 2.4.1
amounts in checking if there is a structure B, with the same universe as A,
such that, by assigning values to the predicate variables of X from B, �
is true for all assignments a 2 |A|(= |B|) to the individual variables of x
(see [89, 149,178]). Formally:

SNP(A)

Instance: SNP-sentence  .
Question: Is there a structure B such that |A| = |B|, that makes  
true?

Figure 2.7: SNP over structure A

SNP is a broader class than CSP. Assume we have an instance of CSP(R)
(recall Fig. 2.1). For each constraint C, put the constraint relation R in A.
For each variable x 2 V , let X be a predicate variable of arity 1 and let
B contain all unary predicates {a}, for each a 2 |A|(= |B|). Now, the
SNP-sentence contains, for each constraint C = (R, sc(R)), where sc(R) :=
(x1, . . . , xn), the sentence:

9X1 · · · 9Xn 8x1 · · · 8xn R(x1, . . . , xn) !
n_

i=1

Xi.

We will talk more about it in Ch. 4, where we discuss the “Feder-Vardi
conjecture”.



Chapter 3

The Probabilistic Method

In this Chapter, we present a general probabilistic framework for solving
CSP’s and discuss the main tools to which we focus. In Sec. 3.1, we discuss
the Probabilistic Approach and introduce the variable framework. In Sec.
3.2, we consider dependency graphs, which constitute an e�cient way to en-
code the dependencies between a set of probabilistic events and have been
used extensively throughout the bibliography. We also present various de-
pendency notions between events that are specifically tailored for the various
theorems and algorithms that are used in this line of work. In Sec. 3.3 we
discuss the principle tool we utilize for analyzing our algorithms, the “Lovász
Local Lemma” and its variations. In Sec. 3.4 we provide some preliminaries
concerning the acyclic edge coloring of graphs and in Sec. 3.5, we introduce
some preliminary notions in Coding Theory, where some of our results are
situated.

3.1 Probabilistic Framework

It is well known that if the set of relations R is left unrestricted, CSP(R)
is NP-complete. This means that although we can quickly verify if a given
assignment of values to the variables is a solution or not, there is no e�cient
algorithm that can find such an assignment, unless the P 6= NP conjecture
turns out to be false (something that seems highly unlikely). We will discuss
aspects of the computational complexity of CSP’s in Ch. 4 (see also Subsec.
1.3.3 in Ch. 1).

As usual when one encounters NP-complete or harder problems, he or

77
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she turns to other techniques, like searching for not optimal (approximate)
solutions by relaxing the constraints or finding assignments that only satisfy
a subset of the constraints. A very popular approach is to use randomness,
allowing a chance for obtaining a wrong solution or for the algorithm to run
for too long. Here, we consider the last technique and specifically, we employ
what is known as the “Probabilistic Method” [8, 200]. Using randomness in
a CSP amounts to producing random assignments of values to the variables.
In the satisfiability setting of Fig. 2.2, we could for example flip a fair coin
independently for each variable of a given propositional formula. Simply
doing this directly gives us no advantage though. Searching in a random
way for an assignment that might not even exist is of course no better that
searching for it deterministically, by checking every possible assignment one
by one (except if we are lucky!).

What we do instead, is to search for conditions that guarantee the exis-
tence of a solution. For example, consider a k-CNF formula:

�(x1, . . . , xl) =
m̂

j=1

Cj,

where all the scopes vbl(Cj) of the constraints are pairwise distinct. We can
easily argue that such a formula is necessarily satisfiable. Indeed, take any of
the 2k�1 assignments that satisfy each clause, and combine them to produce
a satisfying assignment for the whole formula. We show that straightforward
result by an informal probabilistic fashion, to become somewhat familiar with
this approach.

Assume that, in order to produce an assignment for �, we flip a fair coin,
once for each variable xi independently. Thus the probability for each xi to
be 0 (which is equal to that of being 1), is 1/2. To compute the probability
of an assignment to be satisfying, we argue as follows. Consider a clause Cj.
Since there is only one assignment to the variables in vbl(Cj) that does not
satisfy it, it holds that the probability of Cj to be satisfied is:

1�
1

2k
=

2k � 1

2k
.

Since we have m clauses with no common variables, it follows that the prob-
ability of � to be satisfied is:

⇣2k � 1

2k

⌘m
,
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which is greater that 0, since k � 1. Now, since � is satisfied with positive
probability, a satisfying assignment must exist, thus our proof is complete.

The question of how quickly such an assignment can be found, will concern
us in Ch. 6. For now, let us note that this is in fact the principle of the
“Probabilistic Method”. When trying to prove the existence of an object
with some desirable properties, build a probability space and show that a
randomly chosen element in this space has the desired property with positive
probability.

The criterion we used above to guarantee the satisfiability of � was of
course not very useful. Firstly, most interesting formulas do not contain in-
dependent clauses (although, see the separable formulas of Ch. 5). Secondly,
in this case, the probabilistic approach had no essential advantage than a
purely analytical one would have. To see some more interesting examples,
we begin with some formalism, that will enable us to deal with CSP’s in a
probabilistic way.

Let D be a finite domain. We define a probability space over D in the
standard way, using a probability mass function p : D ! [0, 1], such that:

X

d2D

p(d) = 1

and where, for all A ✓ D:

p[A] =
X

d2E

p(d).

We work with the product probability space (Dl, pl), where Dl is the Cartesian
product :

D
l := D ⇥ · · ·⇥D| {z }

l-times

:= {(d1, . . . , dl) | d1, . . . , dl 2 D},

pl is the product probability measure:

pl((d1, . . . , dl)) :=
lY

i�1

p(di)

and l 2 N is a positive constant. To simplify things, the reader can safely
assume that p, and by extension pl, is the uniform probability measure,
where:

p[A] :=
|A|

|D|
,
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for all A ✓ D. However, what we do here works for any probability mass
function p.

A subset E ✓ D
l is an event, whose probability is denoted by Pr[E]. Its

complementary event Dl
\ E is denoted by E and it holds that:

Pr[E] = 1� Pr[E].

Given two events E and F , the conditional probability of E given F , is:

Pr[E | F ] =
Pr[E \ F ]

Pr[F ]
.

Two events E and F are independent, if:

Pr[E \ F ] = Pr[E] · Pr[F ], (3.1)

or, equivalently, if Pr[E | F ] = Pr[E]. Finally, E and F are strictly negatively
correlated, if:

Pr[E | F ] > Pr[E]. (3.2)

In what follows, we assume we have m events E1, . . . , Em, where m 2 N is
a positive constant. We use E to denote the set {E1, . . . , Em}. We consider
these events as undesirables, in the sense that we want to find conditions
that guarantee the existence of a point in D

l such that none of them occurs.
That is, we want to find conditions that guarantee:

Pr

"
m\

j=1

Ej

#
> 0.

We thus always assume that Pr[Ej] < 1, j = 1, ...,m, lest there is no way to
avoid all the events.

We begin with two easy such probabilistic criteria.

Observation 3.1.1. Let E1, . . . , Em, m � 1, be events on D
l. If:

mX

j=1

Pr[Ej] < 1,

then:

Pr

"
m\

j=1

Ej

#
> 0.
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The proof is immediate by the well known union-bound inequality:

Pr

"
m[

j=1

Ej

#


mX

j=1

Pr[Ej]. (3.3)

The benefit of the union-bound is that adding probabilities if far easier
than computing the probability of a union of events, for example via the
inclusion-exclusion principle, that can be found in any introductory book in
discrete mathematics or probabilities (see e.g. [6]) and is attributed to de
Moivre [66], which is often not feasible. Nevertheless, the criterion is too
restrictive to the point of being impractical. For example, if we have two
fair coins, and the undesirable events are for each of them to be tails, the
union-bound cannot guarantee us that we can get two heads.

The variable framework To apply the probabilistic approach to CSP’s,
we work in a slightly more restricted framework, the so called variable frame-
work, which was first used by Moser and Tardos [172]. Most of the the theo-
rems and tools we use work in the general framework as well. However, the
variable framework is both easily compatible with our CSP framework and
very well suited for designing probabilistic algorithms, which are our main
contributions.

Let Xi, i = 1, ..., l be mutually independent random variables defined on a
common probability space and taking values in D. An assignment of values
to the random variables is an l-ary vector a = (a1, ..., al), where ai 2 D,
i = 1, . . . , l. Observe that such a vector is, by definition, an element of Dl.
We assume that the events E1, . . . , Em depend on these random variables.
The scope sc(Ej) of an event Ej is the minimal subset of variables such that
one can determine whether Ej occurs or not knowing only their values.

By considering the definition of CSP’s in Fig. 2.1, it is easy to see that
an assignment a to the random variables such that none of the events occur,
corresponds to finding a solution to the instance (V,D, C) of CSP(E), where
E =:= {E1, . . . , Em} and:

• V = {X1, . . . , Xl},

• C = {(E1, sc(E1)), . . . , (Em, sc(Em))}.

On the other hand, given any instance (V,D, C) of a CSP(R), where V =
{x1, . . . , xl} and C = {(C1, sc(C1)), . . . , (Cm, sc(Cm)}, we can use the variable
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framework in a straightforward way. We have a random variable Xi for each
variable xi 2 V , taking values in D, and the event Ej is that the constraint
Cj is not satisfied, where sc(Ej) = {Xi | xi 2 sc(Cj)}.

Note that in the example of the CNF-formula we discussed, we would
define the event Ej to mean that the j-th clause of � is not satisfied. Due to
the hypothesis that vbl(Cj) were pairwise distinct, all the events would have
pairwise distinct scopes.

Finally, observe that our assumption that Pr[Ej] < 1, j = 1, . . . ,m,
corresponds to excluding constraints whose constraint relation is ;. This
is a natural requirement for the CSP to be non-trivial, since otherwise the
instance is obviously unsatisfiable. Note, on the other hand, that each con-
straint being satisfiable does not imply satisfiability of the whole instance.

There is a variation of the variable framework that has been used by
Kolipaka and Szegedy [150] to prove Shearer’s Lemma [196]. We discuss this
lemma in Sec. 3.3 and provide an alternative proof in Ch. 6. In their frame-
work, they “invert” the variable framework and use the notion of indicator
variables to define random variables through the events and not the other
way around.

Given the set of events E = {E1, . . . , Em}, the indicator variables of the
events are !1, . . . ,!m, where:

!j =

(
1, if Ej occurs,

0, else.

The only drawback of this approach is that the (random) indicator variables
are not independent, something that induces complexities in analyzing their
behaviour. Nevertheless, this framework is clearly broader than the variable
one.

3.2 Dependency graphs

Whether one works in the variable framework, or in the general one, the
events E1, . . . , Em to be avoided usually have at least some limited depen-
dency on each other. We begin with two notions of dependency: the usual
one of Eq. (3.1) and the lopsidependency, which, in the framework of depen-
dency graphs, first appeared in a paper of Erdős and Spencer [86] and takes
into account negative correlation of Eq. (3.2).
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Mutual independence The events E1, . . . , Em are mutually independent,
if for every subset J ✓ {1, . . . ,m}:

Pr

"
\

j2J

Pr[Ej]

#
=
Y

j2J

Pr[Ej]. (3.4)

Also, Ej is mutually independent from all the events Ei such that i 2 I, if
for every subset J ✓ I:

Pr

"
Ej |

\

i2J

Ei

#
= Pr[Ej]. (3.5)

Before proceeding, we can immediately obtain another criterion that guar-
antees that all the events can be avoided, which is in fact what we used in
our SAT example, where the formula had clauses which pairwise contained
di↵erent variables.

Observation 3.2.1. Let E1, . . . , Em, m � 1, be mutually independent events
on D

l. If Pr[Ej] < 1, j = 1, . . . ,m, then:

Pr

"
m\

j=1

Ej

#
> 0.

Again, we can easily prove this observation, since by (3.4), we have that:

Pr

"
m\

j=1

Ej

#
=

mY

j=1

Pr[Ej]

and since E1, . . . , Em are mutually independent if and only if E1, . . . Em are.
Again, most interesting examples do not have mutually independent events
exclusively.

We now proceed with the definition of a dependency graph, for a set of
events E .

Definition 3.2.1. Given the set of events E = {E1, . . . , Em}, let G[E ] be
a graph whose vertex set is {1, . . . ,m}. G[E ] is a dependency graph for E ,
if for all j 2 {1, . . . ,m}, Ej is mutually independent from all Ei such that
i /2 Nj.

Thus, given access to G[E ], we can find the set of dependent events of
some Ej, by checking its neighborhood Nj. Notice that mutual independence
is a symmetric relation, thus G[E ] is an undirected graph.
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Lopsidependency We turn now to a notion of dependency that produces
a sparser graph than that of Definition 3.2.1. This turns out to be beneficial
for the algorithms we design in the sequel.

Definition 3.2.2 (Erdős and Spencer [86]). Given the set of events E =
{E1, . . . , Em}, let G[E ] be a graph whose vertex set is {1, . . . ,m}. G[E ] is
a lopsidependency graph for E , if for all j 2 {1, . . . ,m}, and for all I ✓

{1, . . . ,m} such that I \ (Nj [ {j}) = ;:

Pr

"
Ej |

\

i2I

Ei

#
 Pr[Ej].

Observe that if two events are (strictly) negatively correlated, in the sense
of Eq. (3.2), they should be connected by an edge in the lopsidependency
graph. Since the notion of negative correlation is symmetric, the lopsidepen-
dency graph is again undirected. Also, it is immediate by the Definitions
3.2.1 and 3.2.2, that if G[E ] is a dependency graph for E , then it is also
a lopsidependency graph. Finally, assume that E contains two events Ei

and Ej, such that Pr[Ej | Ei] < Pr[Ej]. Then any lopsidependency graph
G(E) = (V,E) for E , such that {i, j} /2 E, is not a dependency graph for
E . Thus, a lopsidependency graph for a set of events E can be sparser than
their dependency graph.

Resamplng Oracles Harvey and Vondrak [121] introduced a notion they
named resampling oracles. Suppose that each element a 2 ⌦ is distributed
according to µa. Given a graph G[E ], a resampling oracle is a routine rj :
D

l
7! D

l, j = 1, . . . ,m, such that:

(i) if a follows the distribution µa�Ej , that is µa conditional on Ej, then
rj(a) follows µa, that is, rj removes the conditioning on Ej and

(ii) if a /2 Ei, where Ei is an event that is not in the extended neighborhood
of Ej, then rj(a) /2 Ei.

Intuitively, resampling oracles are procedures that remove the dependencies
on occurring events without causing a non-neighboring event to occur, given
that it did not occur before the resampling took place. We will see in the
sequel that this goes to the heart of the LLL-like algorithms. For now, let us
state, without proving, that Harvey and Vondrak [121] showed that for such
procedures to exists, the graph G[E ] must be a lopsided association graph.



3.2. DEPENDENCY GRAPHS 85

Definition 3.2.3. Let G[E ] be a graph on E . G[E ] is a lopsided association
graph, denoted by GA[E ], if for all j 2 {1, . . . ,m} and for all E 2 Fj:

Pr[Ej \ E] � Pr[Ej] · Pr[E], (3.6)

where Fj contains all events E whose indicator variable is a monotone non-
decreasing function of the indicator variables of all Ei such that i /2 N+

j .

GA[E ] can be sparser than a dependency graph, but it is a lopsidependency
graph. The proof for both these facts can be found again in [121].

A non-probabilistic framework Achlioptas and Illiopoulos [2, 2] intro-
duced a novel framework that, although it is not probabilistic, can be used
for the same purposes as the frameworks we discuss in this chapter. We
provide a very brief overview here for completeness.

Assume that D is a domain set, and let GAI [D] be a directed graph on
D. A flaw f is a subset of D and our aim is to find flawless objects, that is a
point in D that does not belong in any flaw, by performing random walks on
G. An edge � ! ⌧ on G[D] is called a state transformation. Thus, our aim
is to randomly follow the edges of GAI [D] in order to reach a state � that is
not an element of any flaw f .

Definition 3.2.4. Let D be a finite domain. We define the multi-digraph
GAI [D] on D as follows. Firstly, for each � 2 D, let U(�) = {f is a flaw |

� 2 f}. For each � 2 D and f 2 U(�), let {�} 6= A(f, �) ✓ D be the set of
possible actions for addressing f on �.

For each � 2 ⌦, each flaw f 2 U(�) and each ⌧ 2 A(f, �), let �
f
�! ⌧ be

an edge of GAI [D].

The correspondence to the usual framework is straightforward. D cor-
responds to D

l, flaws correspond to events and GAI [D] corresponds to the
(lopsi)dependency graph of the events. The advantage here is that D does
not need to have any specific structure or symmetry like Dl and the edges of
GAI [D] can be autonomously, according to each flaw.

We proceed now with some dependency notions, specifically tailored for
the variable framework. All of them define lopsidependency graphs for a
set of events E that are not necessarily minimal with respect to sparseness.
However, they can be used easily to design fast algorithms for solving CSP’s.
Intuitively, the sparser the dependency graph, the less the dependencies a
given algorithm has to take care of.
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Simple dependency The easiest way to define a dependency graph in the
variable framework, is by connecting events whose scopes share at least one
variable.

Definition 3.2.5. Two events Ei, Ej, i, j 2 {1, . . . ,m}, are s-dependent if
sc(Ei) \ sc(Ej) 6= ;.

Let now Gs(E) be the graph whose:

• vertex set is {1, . . . ,m} and

• E = {{i, j} | Ei and Ej are s-dependent}.

Since s-dependency is a symmetric notion and since each event depends on
itself, Gs(E) is an undirected graph with loops. For technical reasons that
will become aparrent in the sequel, we can safely ignore the loops.

Example 3.2.1. Suppose we have four independent Bernoulli trials, each
represented by a random variable Xi, i = 1, 2, 3, 4, with probability of success
(Xi = 1) equal to x 2 [0, 1).

Consider the set of events E = {E1, E2, E3}, where:

E1 ={(X1 = 0 _X2 = 1) ^X3 = 0},

E2 ={X2 = 1 ^X4 = 0} and

E3 ={X3 = 0 ^X4 = 1}.

It is trivial to observe that E1, E2 and E3 are pairwise s-dependent and,
consequently, that Gs[E ] is the 3-cycle (or 3-clique):

2

1 3

Figure 3.1: s-dependency graph of Def. 3.2.5

That the graph of Fig. 3.2.1 is a (lospi)dependency graph follows imme-
diately by Def. 3.2.1 and 3.2.2. ⇧

We now show that Gs[E ] is always a dependency graph and thus a lop-
sidependency graph too.
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Lemma 3.2.1. Let E be a set of events. Then, Gs[E ] is a dependency graph
for E .

Proof. Let Ej, j 2 {1, . . . ,m} be an arbitrary event from E , and I ✓

{1, . . . ,m} such that I \ (Nj [ {j}) = ;. It su�ces to prove that:

Pr

"
Ej |

\

i2I

Ei

#
= Pr[Ej] (3.7)

To that end, assume E =
T

i2I Ei and note that E is not necessarily in E . In
fact, if it is, then there is not assignment of values such that all the events
are avoided.

To prove Eq. (3.7), we can equivalently show that:

Pr[Ej \ E] � Pr[Ej] · Pr[E], (3.8)

Pr[Ej \ E]  Pr[Ej] · Pr[E]. (3.9)

Assume a = (a1, . . . , al) and b = (b1, . . . , bl) are two assignments of values
obtained by independently sampling the random variables twice, once to get a
and once to get b. Construct the assignments a0 = (a01, ..., a

0
l), b

0 = (b01, ..., b
0
l)

by swapping the values of the variables in sc(E):

• a0i = bi, for all i such that Xi 2 sc(E), a0i = ai for the rest,

• b0i = ai, for all i such that Xi 2 sc(E) and b0i = bi for the rest.

Observe that a0 and b0 are both independent samplings of the variables, since
a and b were, and we only swapped values in some positions.

Now, for Eq. (3.8), let Q be the event that Ej occurs under a and E
occurs under b and let R be the event that both Ej and E occur under a0.
Since Ej and E have disjoint scopes and by the definition of a0, it holds that
Q implies R. Thus:

Pr[Ej] · Pr[E] = Pr[Q]  Pr[R] = Pr[Ej \ E].

For Eq. (3.9), let S be the event that both Ej and E occur under a and T
the event that Ej occurs under a0 and E occurs under b0. Again, since Ej

and E have disjoint scopes and by the definitions of a0 and b0, S implies T .
Thus:

Pr[Ej \ E] = Pr[S]  Pr[T ] = Pr[Ej] · Pr[E].

Thus, since E was arbitrary, we conclude that s-dependency always defines
a dependency graph and thus a lopsidependency graph too.
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Moser-Tardos lopsidependency The first variation of lopsidependency
in the variable framework was provided by Moser and Tardos [172]. Intu-
itively, two events are MT-lopsidependent if by trying to avoid one of them,
we end up with the other one occurring, although it did not before. This
property expresses some kind of negative correlation between the events, al-
though, as we shall see in the sequel, it can be refined to obtain sparser
dependency graphs.

Definition 3.2.6 (Moser and Tardos [172]). Let Ei, Ej be events, i, j 2

{1, ...,m}. We say that Ei, Ej are MT-lopsidependent if there exist two as-
signments a,b, that di↵er only on variables in sc(Ei) \ sc(Ej), such that:

1. a makes Ei occur and b makes Ej occur and

2. either Ei occurs under b or Ej occurs under a.

Obviously, an event Ej is never lopsidependent on itself, nor on any event
whose scope shares no variables with sc(Ej). Let now GMT (E) be the graph
whose:

• vertex set is {1, . . . ,m} and

• E = {{i, j} | Ei and Ej are MT-lopsidependent}.

Since MT-lopsidependency is a symmetric notion, GMT (E) is again an undi-
rected graph.

Example 3.2.2. Consider the setting of Example 3.2.1, where the events
are:

E1 ={(X1 = 0 _X2 = 1) ^X3 = 0},

E2 ={X2 = 1 ^X4 = 0} and

E3 ={X3 = 0 ^X4 = 1}.

We’ve seen that Gs[E ] was a 3-cycle. We now prove that the graph GMT [E ] is
sparser. Consider the assignments a = (0, 0, 0, ⇤) and b = (0, 1, 0, ⇤), where
‘⇤’ means that the exact value in this coordinate can be arbitrary. Under a,
E1 occurs and E2 does not. Also, b di↵ers from a only in the value of X2,
which belongs in sc(E1) \ sc(E2) and, under it, E2 occurs. By Def. 3.2.6,
E1 and E2 are lopsidependent. Analogously, under a0 = (⇤, 1, 0, 0), E2 occurs
and E3 does not, whereas under b0 = (⇤, 1, 0, 1) E3 occurs and E2 does not.
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Also, these two assignments di↵er only in sc(E2)\sc(E3), thus, by Definition
3.2.6, E2 and E3 are lopsidependent. Finally, under any assignment of the
form (⇤, ⇤, 1, ⇤), neither E1 nor E3 occur. Since sc(E1) \ sc(E3) = {X3},
it follows that there are no assignments that satisfy the conditions of Def.
3.2.6. Thus, E1 and E3 are not lopsidependent. This means that GMT [E ] is
as follows:

2

1 3

Figure 3.2: MT-lopsidependency graph of Def. 3.2.6

Easily:

Pr[E1] =
⇣1
2
+

1

2
·
1

2

⌘
·
1

2
=

3

8

and

Pr[E1 | E3] =
Pr[E1 \ E3]

Pr[E3]
=

3
16
3
4

=
1

4
< Pr[E1].

This shows that the graph of Fig. 3.2.2 is a lospidependency graph, but not
a dependency one. ⇧

We end this paragraph by showing that for any set of events E , the graph
GMT [E ] is a lopsidependency graph.

Lemma 3.2.2. Let E be a set of events. Then, GMT [E ] is a lopsidependency
graph for E .

Proof. We closely follow that proof of Lemma 3.2.1. Let Ej, j 2 {1, . . . ,m}

be an arbitrary event from E , I ✓ {1, . . . ,m} such that I \ (Nj [ {j}) = ;

and set E =
T

i2I Ei. We show that:

Pr[Ej | E]  Pr[Ej],

or, equivalently, that:

Pr[Ej \ E]  Pr[Ej] · Pr[E].
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Again, let a = (a1, . . . , al) and b = (b1, . . . , bl) be two independent random
samplings of the variables and obtain a0 = (a01, ..., a

0
l) and b0 = (b01, ..., b

0
l) by

swapping the values of the variables in sc(E) \ sc(Ej). As before, a0 and b0

are both independent samplings of the variables.
Finally, let S be the event that both Ej and E occur under a and T the

event that Ej occurs under a0 and E occurs under b0. Since ai = a0i, for all
i such that Xi 2 sc(Ej), Ej occurs under a0. Assume now that E does not
occur under b0 and let c be the assignment of values such that:

ci =

(
b0i, i : Xi 2 sc(E)

ai, else.

Since ci = b0i for all i such that Xi 2 sc(E), E occurs under c. Also, ci 6=
ai if and only if i such that Xi 2 sc(Ej) \ sc(E). Thus, Ej and E are
lopsidependent. Contradiction.

It follows that S implies T , and thus:

Pr[Ej \ E] = Pr[S]  Pr[T ] = Pr[Ej] · Pr[E].

Thus, since E was arbitrary, we conclude that MT-lopsidependency always
defines a lopsidependency graph too.

Variable-directed lopsidependency In [145], we presented a non sym-
metric version of MT-lopsidependency we named Variable-dependent Directed
Lopsidependency (VDL) (depending on the context, VDL may also stand for
“Variable-dependent Directed Lopsidependent” –an adjective rather than a
noun).

Definition 3.2.7 (Kirousis and Livieratos [145]). Let Ei, Ej be events, i, j 2
{1, ...,m}. We say that Ej is VDL on Ei if:

1. there exists an assignment a under which Ei and Ej occur and

2. the values of the variables in sc(Ei), can be changed so that Ej occurs.

Intuitively, Ej is VDL on Ei if the e↵ort to undo the undesirable event Ei

results in Ej occurring, although it did not before. Notice that an event Ej

can never be VDL on itself, nor on any event whose scope shares no variables
with sc(Ej).

Let now GV DL(E) be the graph whose:
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• vertex set is {1, . . . ,m} and

• E = {(i, j) | Ej is VDL on Ei}.

Since VDL is not a symmetric relation, GV DL(E) is a directed graph. We
first show the connection between VDL and MT-lopsidependency.

Lemma 3.2.3. Two events Ei, Ej, i, j 2 {1, ...,m}, are MT-lopsidependent
if and only if Ei is VDL on Ej or Ej is VDL on Ei.

Proof. ()) By Definition 3.2.6, there exist assignments a,b that di↵er only
on variables in sc(Ei)\ sc(Ej) such that Ei occurs under a, Ej occurs under
b and either Ej occurs under a or Ei occurs under b. It is immediate to see
that if Ej occurs under a, Ej is VDL on Ei and that, if Ei occurs under b,
Ei is VDL on Ej.

(() Assume Ej is VDL on Ei. Then, there are two assignments a =
(a1, ..., al) and b = (b1, ..., bl) that di↵er only in sc(Ei), such that Ei, Ej

occur under a and Ej occurs under b. If assignments a, b di↵ered only in
sc(Ei) \ sc(Ej), there would be nothing to prove.

Let the assignment b0 = (b01, ..., b
0
l) be such that:

• b0i = ai, for all i 2 {1, . . . , n} such that Xi /2 sc(Ei) \ sc(Ej) and

• b0i = bi, for all i 2 {1, . . . , n} such that Xi 2 sc(Ei) \ sc(Ej).

Since a di↵ers from b only on variables in sc(Ei), it follows that b0 di↵ers
from b only on variables in sc(Ei) \ sc(Ej). Now, since Ej holds for b and
does not depend on variables not in its scope, Ej holds under b0 also. Thus,
the assignments a and b0 fulfill the requirements of Definition 3.2.6. The
analogous arguments go through if Ei is VDL on Ej.

A direct consequence of Lemma 3.2.3 is that, for any set of events E ,
GMT [E ] is the undirected graph that underlies GV DL[E ].

Example 3.2.3. Consider again the setting of Ex. 3.2.2. We show that
GV DL[E ] is sparser than GMT [E ]. By Lemma 3.2.3, E1 and E3 cannot be
connected in GV DL[E ] since they are not connected in GMT [E ]. Also, by
using the exact same assignments as in Ex. 3.2.2, we get that E2 is VDL on
E1 and that E2 and E3 are VDL on each other.
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On the other hand, E1 is not VDL on E2. To see this, consider the four
assignments under which E2 occurs, namely:

(0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0).

Under the first and third of the assignments above, E1 occurs too. Thus,
only the second and forth assignments satisfy the first condition of Definition
3.2.7. But, under both these assignments, X3 = 1, which means that E1

does not occur. Since X3 /2 sc(E2), there is no way to make E1 occurring by
changing the values of the variables 2 sc(E2), thus the second condition of
Definition 3.2.7 does not hold.

This means that GV DL[E ] is as follows:

2

1 3

Figure 3.3: VDL-lopsidependency graph of Def. 3.2.7

Since GMT [E ] is not a dependency graph, neither is GV DL[E ]. Finally,
given the calculation in Ex. (3.2.2) and that:

Pr[E2 | E1] =
1
8
5
8

=
1

5


1

4
= Pr[E2],

it follows that GMT [E ] is a lopsidependency graph. ⇧

We end this paragraph by showing that GV DL[E ] is always a lopsidepen-
dency graph.

Lemma 3.2.4. Let E be a set of events. Then, GV DL[E ] is a lopsidependency
graph for E .

Proof. Same as that of Lemma 3.2.2, by noting that sc(Ej)\sc(E) ✓ sc(Ej).
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d-dependency We end this section by further refining the lopsidependecy
notions we have discussed.

Definition 3.2.8 (Kirousis et al. [147]). Let Ei, Ej be events in E . We say
that Ej is d-dependent on Ei if:

1. there exists an assignment a under which Ei and Ej occur and

2. the values of the variables in sc(Ei), can be changed so that Ej occurs
and Ei ceases occurring.

Intuitively, Ej is d-dependent on Ei if it is possible that some successful
attempt to avoid the occurrence of Ei may end up with Ej occurring, al-
though initially it did not. Again, Ej can never be d-dependent on itself, nor
on any event whose scope shares no variables with sc(Ej).

Let now Gd(E) be the graph whose:

• vertex set is {1, . . . ,m} and

• E = {(i, j) | Ej is d-dependent on Ei}.

Since d-dependency is not a symmetric relation, Gd(E) is a directed graph.
For the connection of d-dependency to to VDL and MT-dependency, we have
the following result.

Lemma 3.2.5. Let Ei and Ej be events, i, j 2 {1, . . . ,m} and assume Ej

is d-dependent on Ei. Then Ej is VDL on Ei and thus Ei and Ej are MT-
lopsidependent.

Proof. Immediate by Definition 3.2.7 and Lemma 3.2.3.

In the following example, we show that the d-dependency graph can be
strictly sparser than other dependency graphs that have been used in the
literature.

Example 3.2.4. Consider the setting of Ex. 3.2.3. It is straightforward to
observe that Gd[E ] = GV DL[E ]. Thus, Gd[E ] is sparser than GMT [E ], it is not
a dependency graph and it is a lopsidependency one. To show that it can be
sparser than the VDL graph in some cases, consider the following setting.

Suppose we have l � 3 independent Bernoulli trials X1, X2, . . . , Xl, where
Xi = 1 denotes the event that the i-th such trial is successful, i = 1, . . . , l.
Consider also the set E containing n events:

Ej = {Xj = 1 _Xj+1 = 1},
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where Xl+1 = X1 and assume also that each of the Bernoulli trials succeeds
with probability p 2 [0, 1). Thus:

Pr[Ej] = p+ (1� p)p = 2p� p2.

We begin by showing that for any two distinct Ei, Ej, neither one of them
is d-dependent on the other. Without loss of generality, let i = 1 and j = 2.

Since sc(E1)[sc(E2) = {X1, X2, X3}, both E1 and E2 are a↵ected only by
the first three coordinates of an assignment of values. We will thus restrict
the assignments to those coordinates.

Suppose E1 and E2 occur under an assignment a. Then, a = (1, 0, 0) and
there is no way to change the first two coordinates in order for E1 and E2

to occur. Thus E2 is not d-dependent on E1. Furthermore, for E1 and E2

to occur under an assignment b, b = (0, 0, 1) and there is no way to change
the last two coordinates of b in order for E1 and E2 to occur. Thus E1 is
not d-dependent on E2.

We can analogously prove the same things for all pairs of Ej, Ej+1, j =
1, . . . , n, where En+1 := E1. Furthermore, it is easy to see that for any
i, j 2 {1, . . . , n}: i < j and j 6= i + 1, neither Ej is d-dependent on Ei nor
vice versa, since Ei, Ej have no common variables they depend on. Thus, the
d-dependency graph of the events has no edges and it is trivial to observe that
we can avoid all the events if and only if p < 1.

On the other hand, consider assignments a0 = (1, 0, 0) and b0 = (1, 1, 0).
Under a0, E1, E2 occur, under b0 E2 occurs and the assignments di↵er only
on X2 2 sc(E1) \ sc(E2). By Definition 3.2.7, E2 is VDL on E1, and thus,
E1 and E2 are MT-lopsidependent.

Given the above, it is not di�cult to see that GMT [E ] = GV DL[E ] is an
n-cycle, whereas Gd is an independent set on n vertices. Interestingly, by
interpreting Harvey and Vondrák’s [121] definition of resampling oracles in
the variable setting as the resampling of the variables in the scope of an event,
we get that GA is a directed graph, whose underlying graph is again Cn. The
same is true for GAI , where we interpret an arc f ! g between flaws f, g,
again in the variable framework, as being able to obtain flaw g by resampling
the variables in the scope of flaw f .

Finally, by performing some trivial computations, we have that:

Pr[Ej] = 2p� p3
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and

Pr[Ej | Ej+1] =
p(1� p)2

(1� p)2
= p,

j = 1, . . . , n� 1. Since 0  p < 1, Pr[Ej | Ej+1] < Pr[Ej] and thus Gd[E ] is
a lopsidependency graph, although not a dependency one. ⇧

We now show that the d-dependency graph is a lopsidependency graph.

Lemma 3.2.6. Let E be a set of events. Then, Gd[E ] is a lopsidependency
graph for E .

Proof. As usual, let E =
T

i2I Ei. Now, in order to obtain a contradiction,
suppose that:

Pr[Ej | E] > Pr[Ej]

or, equivalently, that:

Pr[Ej \ E] > Pr[Ej] · Pr[E].

Then, it holds that:

Pr[Ej \ E] = Pr[E]� Pr[Ej \ E] < Pr[E]� Pr[Ej] · Pr[E] =

Pr[E](1� Pr[Ej]) = Pr[Ej] · Pr[E]. (3.10)

Since Ei is not d-dependent on Ej, for all i 2 I, it holds that for any
assignment a that makes Ej and E hold, there is no assignment b that
di↵ers from a only in sc(Ej) that makes E hold.

To obtain a contradiction, it su�ces to show that:

Pr[Ej | E]  Pr[Ej] , Pr[Ej \ E]  Pr[Ej] · Pr[E].

Suppose now a = (a1, ..., al), � = (b1, ..., bl) are two assignments obtained by
independently sampling the random variables twice, once to get a and once
to get b. It holds that:

Pr[Ej \ E occurs under a and Ej occurs under b| {z }
event S

] = Pr[Ej \ E] · Pr[Ej].

Let now a0 = (a01, ..., a
0
l), b

0 = (b01, ..., b
0
l) be two assignments obtained by

a, b by swapping values in variables in sc(Ej):
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• a0i = bi, for all i such that Xi 2 sc(Ej), a0i = ai for the rest,

• b0i = ai, for all i such that Xi 2 sc(Ej) and b0i = bi for the rest.

Obviously a0, b0 are two independent samplings of all variables, since
all individual variables were originally sampled independently, and we only
changed the positioning of the individual variables. Also, under a0, Ej occurs.
Since none of the Ei’s is d-dependent on Ej, E occurs under a0. Also, under
b0, Ej occurs. Thus, it holds that:

Pr[under a0, Ej \ E occurs and under b0, Ej occurs| {z }
event T

] = Pr[Ej\E]·Pr[Ej]

< Pr[Ej] · Pr[E] · Pr[Ej],

where the last inequality holds by (3.10). Now, by the hypothesis and the
construction of a0, b0, it also holds that S implies T . Thus:

Pr[S]  Pr[T ] ,Pr[Ej \ E] · Pr[Ej]  Pr[Ej] · Pr[E] · Pr[Ej]

,Pr[Ej \ E]  Pr[Ej] · Pr[E].

The last inequality provides the contradiction and the proof is complete.

As we have seen, all the lopsidependency notions in the variable frame-
work we examined give rise to lopsidependency graphs. The converse is not
true. That is, there are sets of events E where we can find sparser lopsidepen-
dency graphs than Gd[E ]. Furthermore, even though we have already seen
examples where the lopsidependency graphs we defined are sparser than a
dependency graph, we can also find examples where we can define sparser
dependency graphs than Gd[E ]. We end this section with an example that
attests to that.

Example 3.2.5. Let X1 and X2 be two independent random variables taking
values, uniformly at random, in {0, 1}. Let also E1 = {X1 6= X2} and
E2 = {X2 = 0}.

First, observe that E1 is d-dependent on E2. Indeed, let a = (0, 0). Under
a, E1 does not occur and E2 does. By changing the value of X2 2 sc(E2), we
obtain the assignment b = (0, 1), under which E1 occurs and E2 doesn’t. That
E2 is d-dependent on E1 follows by taking the assignment b and changing
the value of X2 2 sc(E1) to obtain a.
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On the other hand, notice that:

Pr[E1] =
1

2
= Pr[E1 | E2].

Thus E1 and E2 are mutually independent. It follows that Gd[{E1, E2}] (and
thus GV DL[{E1, E2}] and GMT [{E1, E2}] too) is the single undirected edge
{1, 2}, whereas the graph with vertex set {1, 2} and no edges is a dependency
graph (and thus a lopsidependency graph too). ⇧

3.3 The Local Lemma

Recall that, given a set of undesirable events E , our aim is to find conditions
that guarantee us the existence of a point in the probability space, such that
none of the events in E occur. To this end, we have the various versions of
the Lovász Local Lemma (LLL) and Shearer’s Lemma, which we state in this
section. For a relevant survey, see Szegedy [206].

3.3.1 Main forms of the local lemma

The Lovász Local Lemma (LLL) was originally stated and proved in 1975
by Erdős and Lovász [85]. Its original form is now known as the symmetric
Lovász Local Lemma.

Theorem 3.3.1 (Symmetric LLL). Let E = {E1, . . . , Em} be a set of un-
desirable events and G[E ] a dependency graph for E . Let also |Nj|  d and
Pr[Ej]  p, for j = 1, . . . ,m, d 2 N and p 2 (0, 1). If

4dp  1

then

Pr

"
m̂

j=1

Ej

#
> 0.

Thus, given an upper bound to the probability of each event to occur and
another for the sizes of their neighborhoods in a dependency graph, LLL gives
us a su�cient condition to avoid the events. We will provide a proof for the
symmetric version of the LLL as a corollary of the more general, asymmetric
LLL. A direct proof of the symmetric LLL can be found in Spencer [200].
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Theorem 3.3.2 (Asymmetric LLL). Let E = {E1, . . . , Em} be a set of un-
desirable events and G[E ] a dependency graph for E . Let also �1, . . . ,�m 2

(0, 1). If

Pr[Ej]  �j

Y

i2Nj

(1� �i),

j = 1, . . . ,m, then

Pr

"
m̂

j=1

Ej

#
�

mY

j=1

(1� xj) > 0.

Proof. We follow the proof of Alon and Spencer [8]. First, observe that:

Pr

"
m̂

j=1

Ej

#
= Pr[E1] · Pr[E2 | E1] · · ·Pr

"
Em |

m�1̂

j=1

Ej

#
=

= (1� Pr[E1]) · (1� Pr[E2 | E1]) · · ·

 
1� Pr

"
Em |

m�1̂

j=1

Ej

#!
.

Thus, it su�ces to show that:

Pr

"
Ej |

j�1̂

i=1

Ei

#
 xj,

for j = 1, . . . ,m. We show something stronger: for every S ✓ {1, . . . ,m},
such that |S| < n and any j 2 {1, . . . ,m} \ S:

Pr

"
Ej |

^

i2S

Ei

#
 xj.

We do that by induction on the size of S. First, assume that |S| = 0. By
hypothesis:

Pr[Ej]  xj

Y

i2Nj

(1� xi)  xj.

Assume that the required holds for all S such that |S| < s. For a subset S
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with s elements, let S1 = {i 2 S | i 2 Nj} and S2 = S \ S1. It holds that:

Pr

"
Ej |

^

i2S

Ei

#
=
Pr
h
Ej ^

V
i2S Ei

i

Pr
hV

i2S Ei

i

=
Pr
h
Ej ^

V
i2S1

Ei |
V

l2S2
El

i

Pr
hV

i2S1
Ei |

V
l2S2

El

i . (3.11)

For the numerator of (3.11), we have:

Pr

"
Ej ^

^

i2S1

Ei |

^

l2S2

El

#
 Pr

"
Ej |

^

l2S2

El

#
=

Pr[Ej]  xj

Y

i2Nj

(1� xi), (3.12)

where the first inequality is a basic property in probability, the equality holds
since Ej is mutually independent from the events in S2 and the last inequality
holds by the hypothesis.

For the denominator, if S1 = ;, then by (3.11) and (3.12) we get that:

Pr

"
Ej |

^

i2S

Ei

#
 xj

Y

i2Nj

(1� xi)  xj.

Otherwise, assume that S1 = {i1, . . . , it}, t � 1. Then, it holds that:

Pr

"
^

i2S1

Ei |

^

l2S2

El

#
=Pr

"
Ei1 ^ · · · ^ Eit |

^

l2S2

El

#

Pr

"
Ei1 |

^

l2S2

El

#
· · ·Pr

"
Eit |

t�1̂

k=1

Eik ^

^

l2S2

El

#
=

 
1� Pr

"
Ei1 |

^

l2S2

El

#!
· · ·

 
1� Pr

"
Eit |

t�1̂

k=1

Eik ^

^

l2S2

El

#!
�

(1� xi1) · · ·(1� xit) �
Y

i2Nj

(1� xi), (3.13)
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where the first inequality holds by the induction hypothesis. By combining
Eq. (3.11), (3.12) and (3.13), we get the required and thus the proof is
complete.

We can now obtain Th. 3.3.1 as a corollary of Th.3.3.2. Note that the
condition now is e(d+1)p  1. Easily this is an improvement for d > 2 and,
as Shearer [196] has shown, it is the best possible.

Corollary 3.3.1 (Symmetric LLL). Let E = {E1, . . . , Em} be a set of un-
desirable events and G[E ] a dependency graph for E . Let also |Nj|  d and
Pr[Ej]  p, for j = 1, . . . ,m, d 2 N and p 2 (0, 1). If

e(d+ 1)p  1

then

Pr

"
m̂

j=1

Ej

#
> 0.

Proof. Again, the proof can be found in [8]. For d = 0, the condition becomes
p  1/e and the events are mutually independent. The result follows trivially.

For d > 0, set xj =
1

d+1 for all j 2 {1, . . . ,m}. By hypothesis, we have:

p 
1

d+ 1
·
1

e
.

Since Pr[Ej]  p, |Nj|  d, j = 1, . . . ,m and:

1

e
<
⇣
1�

1

d+ 1

⌘d
,

for d � 1, we have:

Pr[Ej]  p <
1

d+ 1
·

⇣
1�

1

d+ 1

⌘d
 xj

Y

i2Nj

(1� xi),

for j = 1, . . . ,m.

Both Th. 3.3.1 and Th. 3.3.2 can be stated and proven using a lopside-
pendency graph G. We refer the interested reader to the original statement
of the lopsidependency LLL by Erdős and Spencer [86]. We will discuss
lopsidependent versions of the LLL in the sequel.

A su�cient and also necessary condition to avoid all events was given by
Shearer [196]. Let I(G) be the set of independent sets of a graph G.
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Theorem 3.3.3 (Shearer’s Lemma). Let E = {E1, . . . , Em} be a set of
undesirable events and G := G[E ] a dependency graph for E . Let also
Pr[Ej] = pj 2 (0, 1), j = 1, . . . ,m and p = (p1, . . . , pm). For all I 2 I(G), if

qI(G,p) :=
X

J2I(G):I✓J

(�1)|J\I|
Y

j2J

pj > 0,

then

Pr

"
m̂

j=1

Ej

#
> 0.

qI(G,p) is called the independent polynomial of G. The reason that
Shearer’s Lemma does not make the previous versions of the LLL obsolete,
is that it is very di�cult to apply it in applications. Computing all the
independent sets of a dependency graph is a very hard problem.

Note that Theorem 3.3.3 refers to the abstract framework. This means
that it is optimal, for the level of generality to which it applies. In the
variable framework, a corresponding condition is given by He et al. [123].

3.3.2 The Local Lemma in the variable framework

Since Gs is a dependency graph and GMT , GV DL and Gd are lopsidepen-
dency graphs, they can all be used in Th. 3.3.1 and 3.3.2 to obtain the
corresponding Theorems. We provide algorithmic proofs for these theorems
in Ch 6, along with one for Shearer’s Lemma using a symmetric version of
the d-dependency relation.

Theorem 3.3.4 (Symmetric LLL in the variable framework). Let E =
{E1, . . . , Em} be a set of undesirable events and assume that G := G[E ] 2
{Gs, GMT , GV DL, Gd

}. Let also |Nj|  d and Pr[Ej]  p, for j = 1, . . . ,m,
d 2 N and p 2 (0, 1). If

e(d+ 1)p  1

then

Pr

"
m̂

j=1

Ej

#
> 0,

i.e. there exists an assignment of values to the variables Xi for which none
of the events Ej hold.
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We now use the symmetric LLL in the setting of Ex.3.2.3 to see how big
the maximum probability p can be, in order for a solution to be guaranteed
to exist.

Example 3.3.1. Consider Ex.3.2.3. Each of the four Bernoulli trials suc-
ceeds with probability x 2 [0, 1), thus:

Pr[E1] =((1� x) + x2) · (1� x),

P r[E2] =Pr[E3] = x(1� x).

Easily, the maximum probability is:

p = Pr[E1] = (�x3 + 2x2
� 2x+ 1).

Let ds, dMT , dV DL and dd be the corresponding sizes of the maximum neigh-
borhood in each of the four graphs we consider. We have already seen that
ds = 2 = dMT and dV DL = dd = 1.

Thus, by applying Theorem 3.3.4 for each of the two cases, we have that
in the former a solution is guaranteed for any x > 0.861, whereas in the
latter, for any x > 0.778. ⇧

Theorem 3.3.5 (Asymmetric LLL in the variable framework). Let E =
{E1, . . . , Em} be a set of undesirable events and assume that G := G[E ] 2
{Gs, GMT , GV DL, Gd

}. Let also �1, . . . ,�m 2 (0, 1). If

Pr[Ej]  �j

Y

i2Nj

(1� �i),

j = 1, . . . ,m, then

Pr

"
m̂

j=1

Ej

#
�

mY

j=1

(1� xj) > 0,

i.e. there exists an assignment of values to the variables Xi for which none
of the events Ej hold.

Let us now examine when the asymmetric LLL guarantees the existence
of a solution in the setting of Ex.3.2.4.
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Example 3.3.2. By applying the condition of Theorem 3.3.5 in the events
of Ex.3.2.4, for n = 3, we get that there exist �1,�2,�3 2 (0, 1) such that:

Pr[E1] �1(1� �2)(1� �3),

P r[E2] �2(1� �1)(1� �3),

P r[E3] �3(1� �1)(1� �2).

Thus, for the asymmetric LLL to apply in case we use Gs, GMT or GV DL, it
must hold that:

2p� p2  �(1� �)2,

where � = min{�1,�2,�3}. This is maximized for

� =
22

33
=

4

27
,

thus p must be at most 0.077. Using Gd on the other hand, we get the empty
graph, and thus we only need p to be strictly less than 1. ⇧

For Shearer’s Lemma, we need to work with undirected graphs, since
independent sets are not defined for directed graphs. We have already seen
that the underlying undirected graph of GV DL is GMT . Let Gsd(E) be the
graph whose:

• vertex set is {1, . . . ,m} and

• E = {(i, j) | Ej is d-dependent on Ei or Ei is d-dependent onEj}.

Theorem 3.3.6 (Shearer’s Lemma in the variable framework). Let E =
{E1, . . . , Em} be a set of undesirable events and assume that G := G[E ] 2
{Gs, GMT , Gsd

}. Let also Pr[Ej] = pj 2 (0, 1), j = 1, . . . ,m and p =
(p1, . . . , pm). For all I 2 I(G), if

qI(G,p) :=
X

J2I(G):I✓J

(�1)|J\I|
Y

j2J

pj > 0,

then

Pr

"
m̂

j=1

Ej

#
> 0,

i.e. there exists an assignment of values to the variables Xi for which none
of the events Ej hold.
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We consider again Ex.3.2.4.

Example 3.3.3. The situation is as in Ex. 3.3.2. Using Gs or GMT , we
get as dependency graph the 3-cycle (1, 2, 3) and henceforth by simple calcu-
lations, Shearer’s lemma requires that:

1� 3(2p� p2) > 0 , p < 0.184,

a stronger requirement than the one that su�ces to show that the undesirable
events can be avoided through our d-dependency notion. However, Gsd has
again no edges, so our version of Shearer’s lemma gives p < 1. ⇧

3.4 Acyclic Edge Coloring

Let G = (V,E) be a (simple) graph with l vertices and m edges (both l and
m are considered constants) and assume, to avoid trivialities, that � > 1.
An edge-coloring of G is proper if no adjacent edges have the same color. A
proper edge-coloring is k-acyclic if there are no bichromatic k-cycles, k � 3
and acyclic if there are no bichromatic cycles of any length. Note that for a
cycle to be bichromatic in a proper coloring, its length must be even. The
acyclic chromatic index of G, denoted by �(G), is the least number of colors
needed to produce a proper, acyclic edge-coloring of G.

In the algorithms of Sec. 6.4, not necessarily proper edge-colorings are
constructed by independently selecting one color for each edge from a palette
of K > 0 colors, uniformly at random (u.a.r.). Thus, for any edge e 2 E and
any color i 2 {1, . . . , K},

Pr[e receives color i] =
1

K
. (3.14)

We assume that we have K = d(2 + ✏)(� � 1)e colors at our disposal,
where ✏ > 0 is an arbitrarily small constant. We show that this number of
colors su�ce to algorithmically construct, with positive probability, a proper,
acyclic edge-coloring forG. Therefore, since for any�, there exists a constant
✏ > 0 such that d(2 + ✏)(� � 1)e  2(� � 1) + 1 = 2� � 1, it follows that
�(G)  2��1, for any graph G. In all that follows, we assume the existence
of some arbitrary ordering of the edges and the cycles of G. Edges that in
some traversal of an even-length cycle are one edge apart are said to be of the
same parity. Among the two consecutive traversals of the edges of a cycle,
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we arbitrarily select one and call it positive. Given an edge e and a 2k-cycle
C containing it, we define C(e) := {e = eC1 , . . . , e

C
2k} to be the set of edges

of C, in the positive traversal starting from e. The two disjoint and equal
cardinality subsets of C(e) comprised of edges of the same parity that are at
even (odd, respectively) distance from e are to be denoted by C0(e) (C1(e),
respectively).

We now give a cornerstone result proven by Esperet and Parreau [87]:

Lemma 3.4.1 (Esperet and Parreau [87]). At any step of any successive
coloring of the edges of a graph, there are at most 2(��1) colors that should
be avoided in order to produce a proper 4-acyclic coloring.

Proof Sketch. Notice that for each edge e, one has to avoid the colors of
all edges adjacent to e, and moreover for each pair of homochromatic (of the
same color) edges e1, e2 adjacent to e at di↵erent endpoints (which contribute
one to the count of colors to be avoided), one has also to avoid the color of
the at most one edge e3 that together with e, e1, e2 define a cycle of length
4. Thus, easily, the total count of colors to be avoided does not exceed the
number of adjacent edges of e, which is at most 2(�� 1).

3.5 Coding Theory

In this section we provide some preliminary facts about separating codes.
Let D be a finite domain of size q, that, in the language of Coding Theory,
is called an alphabet. We call the N -ary vectors of DN words.

An (N,M)q code C is a subset of DN of size M . A word in C is called
a code word. The Hamming distance (or simply, distance) between two code
words is the number of positions where they di↵er. The minimum distance
of C, denoted by d, is defined as the smallest distance between two di↵erent
code words.

In algebraic coding theory, D is usually Fq, the finite field with q elements.
In this case, a code C is linear if it forms a subspace of Fn

q . An [N, k, d]-code
is a (linear) code with length n, dimension k and minimum distance d.

Let U = {u1, . . . ,uc
} ⇢ C be a subset of size |U | = c, where ui =

(ui
1, . . . , u

i
N), i = 1, . . . , c. We denote by Uj = {u1

j , . . . .u
c
j} the set of the

alphabet elements in the j-th coordinate of the words in U . Consider now
the following definitions.
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Definition 3.5.1 (Sagalovich [190]). A code C is a c-separating code if for
any two disjoint sets U and V of code words such that |U |  c, |V |  c and
U \ V = ;, there exists at least one coordinate j such that Uj and Vj are
disjoint, i.e. Uj \ Vj = ;. We say that the coordinate j separates U and V .

Definition 3.5.2. Let C be an (N,M)q code over Q. The rate R of C is
defined as

R =
logq M

N
. (3.15)

Let R(N, c)q be the optimal rate of a c-separating (N,M)q code. We are
interested in the asymptotic rate:

Rq(c) = lim inf
N!1

Rq(N, c). (3.16)

As stated in the introduction we focus exclusively on binary c-separating
codes. We will discuss the general case c � 2 and we will also particularize
our results on the widely discussed case of c = 2.

The existence of binary c-separating codes of positive asymptotic rate is
already known. For completeness we provide the proof below.

Proposition 3.5.1 (Barg et al. [13]). There exist binary c-separating codes
of length n and size 1

2(1� 2�(2c�1))�(n/(2c�1)) and thus:

R(N, c)2 � �
log2(1� 2�(2c�1))

2c� 1
�

1

N
. (3.17)

Proof. Let C be a random binary (N,M) code. We consider pairs of sets of
at most c code words of C. The probability Pr[EU,V ] that two such sets U
and V are not separated is:

�
1� 2�(2c�1)

�N
.

Then the expected number E(Ns) of pairs of sets in C that are not separated
is:

E(Ns) 

✓
M

c

◆✓
M � c

c

◆�
1� 2�(2c�1)

�N
.

Using well known approximations, we have:

E(Ns) 
M c

c!

(M � c)c

c!

�
1� 2�(2c�1)

�N


M2c

c!c!

�
1� 2�(2c�1)

�N
.
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Take an M such that E(Ns) < M/2. Then by removing a code word from
each pair of sets that is not separated, we are left with at least M� (M/2) =
M/2 of our original code words and with all pairs of sets separated. It holds
that:

M2c

c!c!

�
1� 2�(2c�1)

�n
<

M

2
) M2c�1 <

c!c!

2

�
1� 2�(2c�1)

��N
,

thus, by taking

M <

✓
c!c!

2

◆ 1
2c�1 �

1� 2�(2c�1)
�� N

2c�1 ,

there exists a c-separating, (N,M/2)-code.
This means that there exists a code with rate:

R(N, c)2 �
log2(M/2)

N
=

log2

⇣
1
2

�
c!c!
2

� 1
2c�1

�
1� 2�(2c�1)

�� N
2c�1

⌘

N
.

For the right side of the previous equation, we have that:

log2(1/2)

N
+

1

N

1

2c� 1
log2

✓
c!c!

2

◆
�

log2
�
1� 2�(2c�1)

�

2c� 1

� �
log2

�
1� 2�(2c�1)

�

2c� 1
�

1

N
.

Focusing on the rate of the binary 2-separating codes, we have the fol-
lowing corollary:

Corollary 3.5.1 (Sagalovich [190]). There exist binary 2-separating codes of
rate:

R2(2) � 1� log2(7/8) = 0.0642.

We proceed now with two examples of well known and extensively studied
codes.

Definition 3.5.3 (MacWilliams & Sloane. [168]). The binary simplex code
Sk is a (2k � 1, k, 2k�1)-code which is the dual of the (2k � 1, 2k � 1 � k, 3)-
Hamming code.

Sk consists of the all-zero vector 0 and 2k � 1 code words of weight 2k�1.
It is called a simplex code, because every pair of code words is at the same
distance apart.
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For this family of codes, we have the following lemma, which we state
here without proof.

Lemma 3.5.1. The binary simplex code is 2-separating.

The first families of algebraic geometric codes (AG) were constructed by
V.D. Goppa [109], using the theory of algebraic curves. We denote by N ,
the number of points with coordinates in the finite field of elements over
which the curve is defined. The rate of an (N,M)q AG code with minimum
distance d satisfies:

R � 1�
d

N
�

g

N
, (3.18)

where g is the genus of the curve over which the code is defined. The lower
the ratio g/N the better the rate. Unfortunately, by the Drinfeld-Vlădut,
bound g/N is lower bounded:

lim inf
g!1

g

N
�

1
p
q � 1

. (3.19)

The Drinfeld-Vlădut, bound has been achieved by two explicitly described
sequences of curves [96, 97]. Therefore, AG codes of asymptotic rate:

R � 1�
d

N
�

1
p
q � 1

(3.20)

can be constructed.



Chapter 4

Universal Algebra and
Computational Complexity

The algebraic approach consists of obtaining results regarding the computa-
tional complexity of CSP’s through universal algebraic tools. We begin by
studying, in Sec. 4.1, the well known sets of operators over finite domains
called clones. Then, in Sec. 4.2, we provide a brief overview of results in
the computational complexity of CSP’s and MCSP’s. We mainly focus in
dichotomy theorems, that provide necessary and su�cient conditions for a
CSP to be tractable.

4.1 Clone Theory

In this section, we discuss the properties of sets of operators and relations
over a finite domain set and the central algebraic notion of operators that
preserve relations. A big part of what follows works also in the case of infinite
domains. We indicate the parts where the presented theory does not cover
the infinite case and provide some suitable references.

Given a finite domain D and a set F of finitary operations on D, the pair
(D, F ) is a universal algebra. We are interested in specific sets of operations
F , that are called clones. The main reason that clones are (algebraically)
interesting, is that two algebras whose sets of finitary operations give rise to
the same clone, are in a way equivalent (they have the same sub-algebras,
endomorphisms, congruences etc.). For general information on clones, we
propose the work of Szendrei [208] and the short exposition of Kerkho↵ et

109
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al. [138]. As we will see in the sequel, the set of clones over any domain D

has the strong structural property of being a lattice. The book of Davey and
Priestley [64] is a very good starting point on this subject. For an analytical
and easy to follow exposition of the Boolean case, that is, the case where D

has only two elements, see Bohler et al. [30, 31].

4.1.1 Operators on finite domains

Assume we have a finite domain D. A k-ary operation over D is a function
f : Dk

7! D, for k 2 N. The domain of f is denoted by Dom(f) = D
k, and

its image by Im(f) ✓ D. Under this notation, a k-ary partial function f on
D is an operator where Dom(f) ✓ D. Trivially, every operator is partial.
For any I = {i1, . . . , il} ✓ {1, . . . , k}, we denote the restriction of a vector
a = (a1, . . . , ak) 2 D

k to I by:

aI := (ai1 , . . . , ail).

For a subset R ✓ D
k, we again have its restriction:

RI := {aI | a 2 R}

and, finally, the restriction of f to a subset A ✓ D
k is the operator f�A :

Ak
7! A, where, for every a 2 A,

f�A(a) = f(a).

We now consider various operators and classes of operators we will need in
the sequel.

First assume that D is Boolean. We can suppose that D = {0, 1} without
loss of generality. We use the following Boolean operators on {0, 1}.

1. Binary symmetric operators:

^ (x, y) :=

(
1, if x = y = 1,

0, else
(4.1)

and

_ (x, y) :=

(
0, if x = y = 0,

1, else
(4.2)
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2. Ternary majority operator:

maj(x, y, z) :=

(
x, if x = y or x = z,

y, else.
(4.3)

3. Ternary a�ne operator:

� (x, y, z) :=

8
><

>:

x, if y = z,

y, if x = z,

z, else.

(4.4)

4. Ternary symmetric operators:

^
(3)(x, y, z) := ^ (^(x, y), z)), (4.5)

_
(3)(x, y, z) := _ (_(x, y), z)), (4.6)

Furthermore, we say that an operation f : {0, 1}k 7! {0, 1} is:

• invariant under permutations of its input, if for all (a1, . . . , ak) 2 {0, 1}k

and for all permutations p : {1, . . . , k} 7! {1, . . . , k}:

f(a1, . . . , ak) = f(ap(1), . . . , ap(k)), (4.7)

• monotone, if it holds that for any index i 2 {1, . . . , k} and for all vectors
(a1, . . . , ai�1, ai+1, . . . , ak) 2 {0, 1}k�1:

f(a1, . . . , ai�1, 0, ai+1, . . . , ak) = 1 )

f(a1, . . . , ai�1, 1, ai+1, . . . , ak) = 1 (4.8)

and

• linear, if there exist constants c0, c1, . . . , ck 2 {0, 1} such that for all
(a1, . . . , ak) 2 {0, 1}k:

f(a1, . . . , ak) = c0 � c1a1 � · · ·� ckak. (4.9)
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For an arbitrary domain D of finite cardinality, let f : Dk
7! D be a k-ary

operator.
We say that f is idempotent or unanimous, if f(a, . . . , a) = a, for all

a 2 D. It is supportive or conservative, if f(a1, . . . , ak) 2 {a1, . . . , ak},
for all a1, . . . , ak 2 D. Note that if D is Boolean, these notions coincide.
Furthermore, the only unary idempotent operation is the identify operator
id : D 7! D, where id(a) := a, for all a 2 D. Also, f is constant, if there is
some c 2 D such that f(a1, . . . , ak) = c, for all a1, . . . , ak 2 D.

We call f a projection (operator), if there exists a d 2 {1, . . . , k} such
that f(a1, . . . , ak) = ad, for all (a1, . . . , ak) 2 D

k. In such a case, we denote
f by prkd. Note that a projection is both idempotent and conservative. f is a
semi-projection if there exists a d 2 {1, . . . , k} such that f(a1, . . . , ak) = ad,
for all (a1, . . . , ak) 2 D

k such that |{a1, . . . , ak}| < k. In that notation, a
projection is a trivial semi-projection.

A binary operator f : D2
7! D is symmetric, if for all x, y 2 D, f(x, y) =

f(y, x). A ternary operator f : D3
7! D is a

• a majority operator if, for all x, y 2 D:

f(x, x, y) = f(x, y, x) = f(y, x, x) = x, (4.10)

• a minority operator if, for all x, y 2 D:

f(x, x, y) = f(x, y, x) = f(y, x, x) = y, (4.11)

and,

• a weak-near unanimity (WNU) operator if, for all x, y 2 D:

f(x, x, y) = f(x, y, x) = f(y, x, x). (4.12)

4.1.2 Clones and co-clones

Let O(k)
D denote the set of all k-ary operations on D, J (k)

D the set of all k-ary
projections over D and set:

OD :=
[

k2N

O
(n)
D ,

JD :=
[

k2N⇤

J
(k)
D ,
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where N⇤ := N \ {0}. Also, let P(A) denote the powerset of a set A, that is,
the set containing all of its subsets. Set:

RD :=

 
[

n2N⇤

P(Dn)

!
\ ;,

that is, the set of all finite relations over D, excluding the empty one.
We consider now a way to combine operators in order to produce new

ones, called the superposition of operators. We are interested in superpo-
sition of operator since it preserves the property of an operator to be a
polymorphism of a relation (see Subsec. 4.1.4).

Definition 4.1.1. Let f 2 O
(k)
D and g1, . . . , gk 2 O

(l)
D . The superposition of

f, g1, . . . , gl is the l-ary operator h := f(g1, . . . , gk), where:

h(x1, . . . , xl) := f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)), for all x1, . . . , xl 2 D.

Given a set of operations F , we consider the set containing all the op-
erations that can be produced by the superposition of operators in F and
projections.

Definition 4.1.2. Let F ✓ OD be a set of functions on D. F is a clone if:

1. JD ✓ F , that is, F contains all the projections and

2. F contains all functions h 2 O
(l)
D , l 2 N, for which there exist a k-ary

f 2 F and k l-ary g1, . . . , gk 2 F , such that h is their superposition,
that is h = f(g1, . . . , gk).

For any set of functions F ✓ OD, let:

[F ] :=
\

{G ✓ OD | G ◆ F and G is a clone} (4.13)

be the least clone containing F , or the clone generated by F .

Lemma 4.1.1. For any set of functions F ✓ OD, [F ] is a clone.

Proof. By definition, for any clone G, JD ✓ G. Thus, JD ✓ [F ]. Now, let

h 2 [F ] \O
(k)
D and g1, . . . , gk 2 [F ] \O

(l)
D , where k, l 2 N. Then, f, g1, . . . , gk

are in all clones G such that G ◆ F . Again by definition, h = f(g1, . . . , gk)
in all such G and thus in [F ] too.



114 CHAPTER 4. UNI. ALGEBRA AND COMP. COMPLEXITY

Thus, for each F ✓ OD, the clone generated by F is a well-defined object.
Also, it is straightforward to observe that F ✓ OD is a clone if and only if
F = [F ]. We proceed with some examples.

Example 4.1.1. We consider various sets of functions on D and the clones
they generate.

i. Obviously, OD is a clone, since [OD] = OD.

ii. Consider the projection functions prki , pr
l
j1 , . . . , pr

l
jk
, where k, l 2 N⇤,

i 2 {1, . . . , k} and j1, . . . , jk 2 {1, . . . , l}. Then, for all x1, . . . , xl 2 D,
it holds that:

(prki (pr
l
j1 , . . . , prjlk))(x1, . . . , xl) =

prki (pr
l
j1(x1, . . . , xl), . . . , pr

l
jk
(x1, . . . , xl)) =

prki (xj1 , . . . , xjk) = xji .

Thus, prki (pr
l
j1 , . . . , pr

l
jk
) = prkji. Since k, l, i.j1, . . . , jk where all chosen

arbitrarily, it follows that the superposition of projections is always a
projection function. This means that [JD] = JD and, consequently,
that JD is a clone.

iii. Let Id := {f 2 OD | f is idempotent}. Id is a clone. Indeed all projec-
tions are obviously idempotent and superposition again easily preserves
idempotency. Thus [Id] = Id.

iv. JD [ {^} is not a clone, since ^
(3) /2 JD [ {^}, although it can be

constructed by superposition from operators in JD [ {^}. Indeed, first
consider the ternary operator ^

+ := ^(pr31(x, y, z), pr
3
2(x, y, z)), that

ignores the third element of its input and is again equal to 1 if and only
if x = y = 1. Obviously, ^

+
2 [{^}]. Furthermore, ^

(3)(x, y, z) :=
^(^+(x, y, z), pr33(x, y, z)) and thus ^

(3)
2 [{^}].

A subset F ✓ OD is called complete if [F ] = OD. A clone F is maximal,
if for any f /2 F , F [ {f} is complete. Finally, a clone F is minimal if the
only proper subset of F that is a clone is JD. All these notions have been
extensively studied in trying to identify the structure of the set of clones over
a domain D.

We turn now our attention to sets R of relations over D. Recall that
an n-ary relation of D is a subset of Dn and that we denote the set of all
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relation over D, apart the empty one, by RD. Let R 2 RD be an n-ary
relation, n 2 N⇤. An element a 2 R is an n-ary vector (a1, . . . , an). Given
k such vectors a1, . . . , ak, it is convenient to view then as a k ⇥ n matrix
A over D, where ai is the i-th row of A, i = 1, . . . , k. Under this notation,
the element at the i-th row and j-th column of A is aij, i = 1, . . . , k and
j = 1, . . . , n. Furthermore, we use aj to denote the j-th column of A, i.e.:

ai =(ai1, . . . , a
i
n),

aj =(a1j , . . . , a
k
j )

T ,

for i = 1, . . . , k and j = 1, . . . , n.
For arbitrary and possibly infinite domains D, Pöschel [184, 185] defines

sets of relations that are closed under general superposition. This is a rather
technical definition which is not very easy to use in practice. Fortunately,
since we are interested primarily in finite domains, we can use an alternative
definition. First, we need some notation.

For all I ✓ {1, . . . , n}2, let the n-ary equivalence relation on I be:

En
I := {(a1, . . . , an) 2 D

n
| ai = aj, 8i, j 2 I}. (4.14)

Let ⇡[n] be the set of permutations of the set {1, . . . , n}. Let also R ✓ D
n

be an n-ary relation. We say that Q is a permutation of R and write R ⇡ Q,
if:

Q := {(ai1 , . . . , ain) | (a1, . . . , an) 2 R and (i1, . . . , in) 2 ⇡[n]}. (4.15)

Furthermore, the projection of R to I ✓ {1, . . . , n}, is the relation:

RI := {(ai1 , . . . , aik) | (a1, . . . , an) 2 R and I = {i1, . . . , ik}}. (4.16)

Definition 4.1.3. A set of relations R over a finite domain D is a co-clone
if and only if the following hold:

(i) R contains all equivalence relations, for all n 2 N⇤ and I ✓ {1, . . . , n}2.

(ii) R is closed under direct Cartesian products, that is, for all R ✓ D
n

and Q ✓ D
m such that R,Q 2 R, the Cartesian product:

R⇥Q := {(a1, . . . , an, b1, . . . , bm) | (a1, . . . , an) 2 R, (b1, . . . , bm) 2 Q},

is also in R.



116 CHAPTER 4. UNI. ALGEBRA AND COMP. COMPLEXITY

(iii) R is closed under intersections, i.e. for any T ✓ R such that all R 2 T

have the same arity n: \

R2T

R 2 R.

(iv) R is closed under permutations, i.e. if R 2 R and Q ⇡ R, then Q 2 R.

(v) R is closed under projections, i.e. if R 2 R is an n-ary relation and
I ✓ {1, . . . , n}, RI 2 R.

To get a sense as to how we can combine relations of a co-clone in order
to produce other ones inside the co-clone, we prove the following technical
result, that we will need in the sequel.

Corollary 4.1.1. Let R be a co-clone on D. Then D
n
2 R, for all n 2 N.

Proof. Take any equivalence relation En
I , and project it to some j /2 I, to

obtain D. Then, take the Cartesian product of D with itself n times.

As we did with clones, we define the least co-clone that contains a given
set of relations:

hRi :=
\

{S is a set of relations | S ◆ R and S is a co-clone}. (4.17)

Lemma 4.1.2. For any set of relations R, hRi is a co-clone.

Proof. Obvious, by Eq. 4.17 and Definition 4.1.3.

Thus, for each set of relations R, the least co-clone containing R, or the
co-clone generated by R, is a well-defined object. Also, it is immediate to
observe that R is a co-clone if and only if R = hRi. We proceed with some
examples.

Example 4.1.2. We consider various subsets R ✓ RD and the co-clones
they generate.

i. Obviously,
S

n2N D
n is a co-clone, since h

S
n2N D

n
i =

S
n2N D

n.

ii. It is easy to observe that by intersecting, permuting, projecting or taking
the Cartesian product of equivalence relations, we end up again with
equivalence relations. Thus:

{En
I | n 2 N⇤ and I ✓ {1, . . . , n}2}

is a co-clone.
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iii. Let R, S be two arbitrary sets of relations. Then

hRi ⇥ hSi ✓ hR⇥ Si.

Indeed, let R 2 hRi ⇥ hSi. Then, R = P ⇥ Q, for some P 2 hRi

and Q 2 hSi. Then, it must be the case that there exist relations
P1, . . . , Ps 2 R with arities p1, . . . , ps respectively and Q1, . . . , Qt 2 S

with arities q1, . . . , qt respectively, such that P and Q are produced by
Cartesian products, intersections and/or projections of P1, . . . , Ps and
Q1, . . . , Qt respectively.

Easily, Pi, Qj 2 hR ⇥ Si, for i = 1, . . . , s and j = 1, . . . , t. Indeed,
obviously Pi ⇥ Qj 2 R ⇥ S for any i 2 I := {1, . . . , s} and j 2 J :=
{1, . . . , t} and

Pi = (Pi ⇥Qj)I , Qj = (Pi ⇥Qj)J .

It follows that P,Q 2 hR⇥Si and thus, so does their Cartesian product
R = P ⇥Q.

The opposite inclusion does not always hold. For P or Q above to be
in hRi ⇥ hSi, it must be the case that they are themselves Cartesian
products, which is not true in most cases. But we have shown that
P,Q 2 hR⇥ Si. ⇤

Let Lo
D and L

r
D be the sets of all clones and co-clones over D respectively.

As we see in the next subsection, both these sets, under the relation of set-
inclusion have an interesting structure, that of a complete lattice.

4.1.3 Lattices

For a finite set A, we say that v is a partial order on A if it satisfies:

(i) reflexivity : a v a, for all a 2 A,

(ii) antisymmetry : a v b and b v a imply a = b, for all a, b 2 A and

(iii) transitivity : a v b and b v c imply a v c, for all a, b, c 2 A.

Furthermore v is a total ordering on A, if for all a, b 2 A, either a v b or
b v a. For example,  is a total ordering of N and ✓ a partial order of its
powerset P(N).
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We say that b covers a in (A,v) if (i) a 6= b (ii) a v b and (iii) for all
c 6= b such that a v c v b, it holds that c = a. A has a bottom element,
denoted by ?, if there exists some a 2 A such that a v b, for all b 2 a. It
has a top element, denoted by >, if there exists some a 2 A such that a w b,
for all b 2 A. Easily, the top and bottom elements are unique if they exist.

Definition 4.1.4. Let (A,v) be a (partially) ordered set with top and bottom
elements. An element a 2 A is an atom if it covers ? and a coatom if it is
covered by >.

A subset B of A is a chain, if for all a, b 2 B, either a v b or b v a. Thus
a totally ordered set A is a chain. B is an anti-chain if for all a, b 2 B, a v b
implies a = b.

Assume that (A,vA), (B,vB) are two (partially) ordered sets. An order-
isomorphism is a function h : A 7! B such that:

a vA b if and only if h(a) vB h(b), for all a, b 2 A. (4.18)

It is easy to see that an order-isomorphism h is necessarily a bijection and
that its inverse h�1 : B 7! A is also an order-isomorphism.

Let B ✓ A. An upper bound for B is an element a 2 A such that b v a,
for all b 2 B. A lower bound for B is an element a 2 A such that a v b, for
all b 2 B. Let:

Bu :={a 2 A | a is an upper bound for B}, (4.19)

Bl :={a 2 A | a is a lower bound for B}. (4.20)

The least upper bound or supremum of B, if it exists, is the least element
of Bu. Analogously, the greatest lower bound or infimum of B, if it exists, is
the greatest element of Bl. We denote them by supB and inf B respectively.

Using a notation more common to the field of universal algebra, we say
that the join of B, when it exists, is:

_

(A,vA)

B := supB (4.21)

and the meet of B, when it exists, is:
^

(A,vA)

B := infB. (4.22)

Also, when B has only two elements, say a and b, we write a _ b and a ^ b
instead of

W
(A,vA){a, b} and

V
(A,vA){a, b}.
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Definition 4.1.5. Let (A,v) be an ordered set.

(i) If a _ b and a ^ b exist for all a.b 2 A, (A,v) is a lattice.

(ii) If
W

(A,v) B and
V

(A,v) B exist for all B ✓ A, then (A,v) is a complete
lattice.

Example 4.1.3. Let (N,) be the set of natural numbers, under the usual
ordering. (N,) is a lattice, since it is a chain and thus n_m = max{n,m}

and n^m = min{n,m}, for all n,m 2 N. It is not a complete lattice though,
since for any A ✓ N that is not upper bounded,

W
N A does not exist.

On the other hand, let (P(A),✓) is a complete lattice for any finite set
A. Indeed, for any B ✓ P(A), it holds that:

_

P(A)

B =
[

X2B

X,

^

P(A)

B =
\

X2B

X.

Finally, the ordered set (P(A) \ ;,✓), where A is any finite set with at
least two distinct elements, is not a lattice, since any two distinct singletons
{a} and {b}, a, b 2 A have no meet.

As is well known, the structures we describe above reflect the way clones
(and co-clones) over a finite set are related.

Proposition 4.1.1. (Lo
D,✓) and (Lr

D,✓) are complete lattices.

Proof. This proof uses only tools from set theory and, consequently, there is
no essential di↵erence between using clones or co-clones. Thus, we provide a
proof for Lo

D. The one for Lr
D follows along the same lines.

Let B ✓ L
o
D be a set of clones on D. We have that:

[

F2B

F and
\

F2B

F

are, by definition, the smallest set containing every element of B and the
largest set contained in every element of B respectively. First observe that
the join of B is an upper bound for B, thus, by the above:

[

F2B

F ✓

_

(Lo
D,✓)

B.
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By the definition of the clone generated by a set and since the join of B is a
clone, we have that: h [

F2B

F
i
✓

_

(Lo
D,✓)

B.

The opposite inclusion is obtained by recalling that the join of B is the least
upper bound for B. Thus:

h [

F2B

F
i
=

_

(Lo
D,✓)

B.

By definition, the meet of B in L
o
D is the largest clone that is contained

in every F 2 B. It follows that:

^

(Lo
D,✓)

B ✓

\

F2B

F. (4.23)

We now show that the right-hand side of Eq. 4.23 is a clone, which implies
the opposite inclusion and thus, that:

^

(Lo
D,✓)

B =
\

F2B

F. (4.24)

This is fairly straightforward. It holds that:

\

F2B

F ✓ F, for all F 2 B.

Thus, "
\

F2B

F

#
✓ [F ] = F, for all F 2 B,

since every F 2 B is a clone. Consequently:
"
\

F2B

F

#
✓

\

F2B

F

and, since the opposite inclusion always holds, we have that the two sets are
equal and that the conjunction of the clones in B is a clone. Thus, we proved
Eq. 4.24.
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Note that although we in fact proved that the intersection of clones is
always a clone, we did not show the equivalent result for the union of clones.
In Subsec. 4.1.5, where we present L

o
D in case D has only two distinct

elements, we show that this is not always true.
Being a complete lattice is a strong structural property. Nevertheless, we

are interested to go into as much detail as possible. Obtaining a complete
description of Lo

D, for an arbitrary domain D seems to be too ambitious.
Even for a domain D with cardinality 3, Lo

D turns out to be uncountably
infinite and with an extremely complicated structure. In Subsec. 4.1.5, we
shall see a complete description of Lo

D in the case where |D| = 2, made by
Post [186]. Let us also mention that the proof of Prop. 4.1.1 holds also in
case D is infinite. This exceeds our scope though, so we refer the interested
reader to Goldstern and Pinsker’s work [108]. Finally, in Subsec. 4.1.4, we
shall see how to translate properties of Lo

D to corresponding ones of Lr
D.

Failing a complete description of Lo
D for a domain D of arbitrary cardinal-

ity, we turn to other interesting aspects of its structure, namely its maximal
and minimal clones. These classes of clones have been studied, since they
are the largest and smallest non-trivial clones respectively. The results here
are again partial.

Ivo Rosenberg [188] has characterized all maximal clones for any finite
domain D. The tools needed to present this result will be discussed in Sub-
sec. 4.1.4. For minimal clones, we have complete descriptions by Post [186]
and Csákány [62], for domains of cardinality 2 and 3 respectively. Finally,
Rosenberg has provided a necessary condition for a clone F to be minimal,
which we state here without proving.

Theorem 4.1.1 (Rosenberg [189]). Let D be a finite domain and F be a
minimal clone in L

o
D. Then, F = [f ], where f 2 OD \ JD such that f is:

i. a unary operation and is either a retraction, i.e. f 2 = f or a permu-
tation of prime order, or

ii. a binary idempotent operation, or

iii. a ternary majority operation, or

iv. a ternary minority operation, or

v. a k-ary non-trivial semi-projection.
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Some of the classes of operators in Theorem 4.1.1 appear many times in
our results in the field of Aggregation Theory.

4.1.4 Polymorphisms and the Galois Connection

The main tool that connects clones and co-clones, it the notion of preserva-
tion.

Definition 4.1.6. Let R 2 RD be an n-ary relation, n 2 N⇤, and f 2 OD a
k-ary operation. We say that f preserves R, or that f is a polymorphism of
R and write f .R, if for all a1, . . . , ak

2 R:

f(a1, . . . , ak) := (f(a1), . . . , f(an)) 2 R,

where f(aj) = f(a1j , . . . , a
k
j ), j = 1, . . . , n. Furthermore, we say that f pre-

serves a set of relations R, if f .R for all R 2 R and that R is preserved by
a set of operations B, if f .R, for all f 2 B.

The main objects we study in this subsection, are sets of operations and
relations such that the former preserve the latter.

Definition 4.1.7. Let B be a set of operators and R a set of relations. We
denote the set of polymorphisms of R by Pol(R) and the set of relations
preserved by B as Inv(B):

Pol(R) :={f 2 OD | f .R, 8R 2 R}, (4.25)

Inv(B) :={R 2 RD | f .R, 8f 2 B}. (4.26)

If B or R are singletons, we omit the brackets and write Pol(R) or Inv(f),
instead of Pol({R}) or Inv({f}) respectively.

The next two lemmas show that Pol(R) and Inv(B) have familiar struc-
tures.

Lemma 4.1.3. Given any set of relations R, Pol(R) is a clone.

Proof. Let R 2 R be an arbitrary n-ary relation and a1, . . . , ak
2 R. Let

also prkd be a k-ary projection, where d 2 {1, . . . , k}. Easily, prkd(a
1, . . . , ak) =

ad
2 R and thus, since k, d and R are arbitrary, JD ✓ Pol(R).
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Now, let f, g1, . . . , gm 2 Pol(R), where f is m-ary and g1, . . . , gm are k-
ary operators on D and consider their superposition h := f(g1, . . . , gm). It
holds that:

h(a1, . . . , ak) = (f(g1(a1), . . . , gm(a1)), . . . , f(g1(an), . . . , gm(an))).

We show that h(a1, . . . , ak) 2 R. Indeed, let:

(gl(a1), . . . , gl(an)) := bl, l = 1, . . . ,m.

It follows that (b1, . . . ,bm) is again an m⇥ k matrix with elements from R
since g1, . . . , gm preserve R. Also:

h(a1, . . . , ak) = f(b1, . . . ,bm) 2 R,

again since f .R. Thus, Pol(R) is a clone.

Lemma 4.1.4. Given any set of functions B, Inv(B) is a co-clone.

Proof. In all that follows, let f 2 B be an arbitrary k-ary operator. We
prove each property of Definition 4.1.3 separately. To make notation easier
to follow, assume that for a1, . . . , ak

2 D
k:

f(a1, . . . , ak) = (f(a1), . . . , f(an)) = (b1, . . . , bn) = b.

Let I ✓ {1, . . . , n}2 and a1, . . . , ak
2 En

I . Then,

ais = ait, 8s, t 2 I, i = 1, . . . , k

and thus, obviously, bs = bt, for all s, t 2 I. It follows that b 2 En
I and that

f . En
I .

Assume now that R = P ⇥ Q, where P is p-ary, Q is q-ary (and thus
n = p+ q) and P,Q 2 Inv(B). Since f . P and f .Q:

(b1, . . . , bs) 2 P,

(bs+1, . . . , bs+t) 2 Q

and thus b 2 P ⇥Q = R. Thus f .R.
Let Qi 2 Inv(B), i 2 I, be n-ary relations, such that:

R =
\

i2I

Qi.
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It follows that a1, . . . , ak
2 Qi and thus b 2 Qi too, for all i 2 I. Thus:

b 2

\

i2I

Qi = R

and f .R.
Let P 2 Inv(B) be an n-ary relation such that R ⇡ P . Then, there are

vectors c1, . . . , ck 2 P such that ai
⇡ ci, i = 1, . . . , k. Then:

f(c1, . . . , ck) = d 2 P,

where d ⇡ b. Thus, b 2 R and f .R.
Let P 2 Inv(B) be an m-ary relation, m < n such that there exists an

I ( {1, . . . , n}: R = PI . Then, there are vectors c1, . . . , ck 2 P such that
ai = ciI , i = 1, . . . , k. Then:

f(c1, . . . , ck) = d 2 P,

where b = dI . Thus, b 2 R and f .R.

Lemmas 4.1.3 and 4.1.4 indirectly imply that in terms of preservation,
using a set of functions or the clone it generates (and accordingly with co-
clones) has no di↵erence. Although the result is of technical nature, we feel
that it is somewhat in accordance with intuition.

Corollary 4.1.2. For any set F ✓ OD of operations and any set R ✓ RD
of relations over a finite domain D, it holds that:

1. Pol(hRi) = Pol(R) and

2. Inv([B]) = Inv(B).

Proof. First note that, since for any F ✓ OD and any R ✓ RD, F ✓ [F ] and
R ✓ hRi, we immediately have that:

Pol(hRi) ✓Pol(R), (4.27)

Inv([F ]) ✓Inv(F ). (4.28)

Now, for the opposite inclusion, we first need to show that any f 2 Pol(R)
is also in Pol(hRi). Thus, we need to show that any function preserving R,
also preserves hRi. But this is exactly what we did in the proof of Lemma
4.1.4. Analogously, to show that Inv([B]) ✓ Inv(B), we need to show that
any relation preserved by B, is also preserved by [B], which is what we did
in Lemma 4.1.3.
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The connection between the complete lattices L
o
D and L

r
D can now be

established using a well known and powerful algebraic tool.

Definition 4.1.8. Let (P,vP ), (Q,vQ) be two ordered sets and f : P 7! Q,
g : Q 7! P two functions between these two sets. f and g form a Galois
correspondence or Galois connection if the following hold:

(i) If a vP b then f(b) vQ f(a), for all a, b 2 P ,

(ii) If c vQ d then g(d) vP g(c), for all c, d 2 Q and

(iii) a vP g(f(a)) and b vQ f(g(b)), for all a 2 P and b 2 Q.

A closure operator of an ordered set (P. v) is a function f : P 7! P such
that:

(i) a v f(a), for all a 2 P,

(ii) if a v b then f(a) v f(b), for all a, b 2 P,

(iii) f(a) = f(f(a)), for all a 2 P. (4.29)

A bijection h : L 7! L0 between to lattices (L,vL) and (L0,vL0) such that:

a vL b ) h(b) vL0 h(a), 8a, b 2 L, (4.30)

is called a lattice anti-isomorphism.
In our case, we see Pol and Inv as functions between L

r
D and L

o
D.

Proposition 4.1.2. Let (Lo
D,✓) and (Lr

D,✓) be ordered sets under inclu-
sion. The functions Pol : Lr

D 7! L
o
D and Inv : Lr

D 7! L
o
D form a Galois

correspondence.

Proof. By Def. 4.1.8, we need to prove three conditions. For (i), let R,
T 2 L

r
D such that R ✓ T and assume f 2 Pol(T ). Since f preserves every

relation in T , it also holds that f .R, for all R 2 R. Thus, f 2 Pol(R) and
Pol(T ) ✓ Pol(R). Item (ii) can be proven in the same way.

For (iii), let R 2 L
r
D and assume R 2 R. Since R is preserved by every

operation in Pol(R), it holds by definition that R 2 Inv(Pol(R)) and thus
R ✓ Inv(Pol(R)). Analogously, we can show that F ✓ Pol(Inv(F )), for all
F 2 L

o
D.



126 CHAPTER 4. UNI. ALGEBRA AND COMP. COMPLEXITY

We consider now the functions Pol(Inv) : Lo
D 7! L

o
D and Inv(Pol) : Lr

D 7!

L
r
D and prove what is known as Geiger’s Theorem. To that end, the lectures

of Jin-Yi Cai et al. [44, 45] will be useful. Before proceeding we need to do
some work. A partial k-ary operator f preserves an n-ary relation R if, for
all a1, . . . , ak

2 R:

If a1, . . . , an 2 Dom(f), then (f(a1), . . . , f(an)) 2 R. (4.31)

Thus, a partial k-ary function f preserves an n-ary relation R, if it preserves
all k ⇥ n matrices of vectors from R such that f is defined on each of their
columns.

Now, let f be a k-ary operation and R an n-ary relation. Let also A ✓ R
be a set of k vectors from R, that we view as a k ⇥ n matrix. Taking the
transpose n⇥k matrix AT of A, we write f(AT ) to denote the column vector
obtained by applying f to each row of A. Thus, under that notation, f is
a polymorphism of R if and only if f(AT )T 2 R, for all A ✓ R such that
|A| = k.

Lemma 4.1.5. Let R be a co-clone. Then, any partial polymorphism f of
R can be extended to a polymorphism of R.

Proof. Let f be a k-ary partial polymorphism of R. Recall that by Lemma
4.1.3, JD ✓ Pol(R) and thus Pol(R) 6= R. We can assume that ; (
Dom(f) ( D

k, lest we have nothing to prove, since if f has an empty domain,
it is extended by every g 2 Pol(R) and, if it is defined on every vector of Dk,
it is a polymorphism of R.

Now, assume that Dom(f) := {a1, . . . , am
} and a /2 Dom(f). Let also

D := {d1, . . . , ds} and

ft(b) =

(
dt if b = a,

f(b) if b 2 Dom(f),

for t = 1, . . . , s. We show that at least one of f1, . . . , fs is a partial polymor-
phism of R. The result then follows by induction.

To obtain a contradiction, assume that ft is not a polymorphism of R,
for t = 1, . . . , s. Thus, there exist (not necessarily distinct) nt-ary relations
Rt 2 R, such that ft does not preserve Rt, t = 1, . . . , s. Furthermore,
there exist k ⇥ nt matrices Mt, comprised of vectors from Rt, such that ft
is defined on every column of Mt and ft(MT

t )
T /2 Rt, t = 1, . . . , s. Also,

MT
t ✓ Dom(ft) = {a1, . . . , am, a}, t = 1, . . . , s.
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We need to take care of a technical detail here. For each t 2 {1, . . . , s},
we can assume that there is no repeated column in Mt. Indeed assume there
are two distinct p, q 2 {1, . . . , nt}, such that cp = cq, where c1, . . . , cnt are
the columns of Mt. Let R0

t contain the vectors of Rt that identify at indices
p and q, that is:

R0
t := Rt \ Ent

p,q

and R00
t be the projection of R0

t to {1, . . . , q � 1, q + 1, . . . , nt}:

R00
t = {(c1, . . . , cq�1, cq+1, . . . , cnt) | c 2 R0

t}.

Since R is a co-clone, both R0
t and R00

t are in R. Easily now, if Nt is Mt

without cq, Nt ✓ R00
t and, furthermore, since ft(MT

t )
T /2 Rt, then ft(NT

t )
T /2

R00
t . Thus, we can use R00

t instead of Rt.
Let now:

R :=
sY

t=1

Rt.

Since R is a co-clone and thus closed under Cartesian products, it holds that
R 2 R. Furthermore, if M is the k ⇥ n matrix, where n = n1 + . . . + ns,
obtained by putting the columns of each Mt one after the other, it holds that
M ✓ R.

Claim 4.1.1. M contains a as a column exactly s times and at least one
other column c 2 {a1, . . . , am

}.

Proof of Claim 4.1.1 Assume that there is some t 2 {1, . . . , s} such that
a is not a column of Mt. Then f(MT

t )
T = ft(MT

t )
T /2 Rt and thus f is not

a partial polymorphism of R. Contradiction. That each Mt contains a as a
column exactly once is implied by the fact that columns are not repeated.

Now assume that there is no other column in M . Then, Mt = aT , t =
1, . . . , s. Now, let r 2 {1, . . . , s} such that the first element of a, a1 = dr.
Then, fr(Mr) = fr(a) = dr 2 Rr, since Mr ✓ Rr. Contradiction. ⇤

Again, let R0 := R \ En
I , where I = {i 2 n | ci = aT and let R00 = R0

I .
Arguing as above, R00

2 R. Let also N be M without the columns ci,
i 2 I. Obviously, ; ( N ✓ R00. Also, N ✓ Dom(f), thus f(NT )T 2 R00. It
follows that for some t 2 {1, . . . , s}, ft(NT )T 2 R0 and thus ft(MT

t )
T
2 Rt.

Contradiction.

We are now ready to prove the following result.
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Theorem 4.1.2 (Geiger [29, 102, 136]). For any set F ✓ OD of operations
and any set R ✓ RD of relations over a finite domain D, it holds that:

1. Pol(Inv(F )) = [F ] and

2. Inv(Pol(R)) = hRi.

Proof. First, by Corollary 4.1.2, we can instead show that:

Pol(Inv([F ])) = [F ],

Inv(Pol(hRi)) = hRi.

Equivalently, it su�ces to show that for any clone F and any co-clone R it
holds that:

Pol(Inv(F )) = F, (4.32)

Inv(Pol(R)) = R. (4.33)

We prove Eq. 4.32 and 4.33 separately.
Let f 2 F . By the definitions of Inv and Pol, f preserves every relation

in Inv(F ) and is thus also in Pol(Inv(F )). Thus, F ✓ Pol(Inv(F )). For the
opposite inclusion, we use contraposition.

Let f /2 F be a k-ary operation. We show there exists a relation R 2

Inv(F ) such that f does not preserve it. First, we order arbitrarily all the
vectors of Dk. Let A be the resulting |D|

k
⇥ k matrix. For each k-ary g 2 F ,

let g(A) be the column obtained by applying g to each line of A. Let n := |D|
k

and m := |{g 2 F | g is k-ary}| and let B = {bij}
n
m be the n ⇥ m matrix

obtained by taking all these column vectors together. Note that since F is a
clone, all the projections are included in F and thus A is a sub-matrix of B.

Let R = {bT
j | j = 1, . . . ,m}, that is R is the n-ary relation whose

vectors are the columns of B. We first show that R 2 Inv(F ). Let h be an
l-ary operation in F and c1, . . . , cl 2 R. Then, there exist k-ary functions
g1, . . . , gl 2 F such that ci = gi(A), i = 1, . . . , l. Thus:

h(c1, . . . , cl) =(h(c1), . . . , h(cn))

=(h(g1(a
1), . . . , gl(a

1)), . . . , h(g1(a
n), . . . , gl(a

n))).

Thus, h(c1, . . . , cl) is the superposition of h and g1, . . . , gl. Since F is a clone,
h(g1, . . . , gl) 2 F . But then, since h(g1, . . . , gl) is k-ary, there is a column
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of B, and a vector in R, that is equal to h(g1, . . . , gl)(a1, . . . , ak). Thus
R 2 Inv(F ).

Finally, it remains to show that f does not preserve R. Assume it does.
Then f(A) 2 R. Thus, there is a k-ary g 2 F such that f(A) = g(A).
But, since A contains all the k-ary vectors on D, it follows that f = g.
Contradiction, since f /2 F . This, concludes the proof of Eq. 4.32.

Let R 2 R. By the definitions of Pol and Inv, R is preserved by every
operation in Pol(R) and is thus also in Inv(Pol(R)). Thus, R ✓ Inv(Pol(R)).
For the opposite inclusion, we use contraposition.

Let R be an n-ary relation not in R. We show that there is an operation
f 2 Pol(R) such that R is not preserved by f . We begin by defining the
following n-ary relation:

Q :=
\

P2R:P◆R

P.

As we proved in Cor. 4.1.1, Dn
2 R. Also, by definition, Dn

◆ R. Thus,
Q is not the empty relation. Furthermore, since we take the intersection of
relations in R and R is a co-clone, Q 2 R. Thus, there exists some t 2 Q\R.

Assume that |R| = k. By considering R as a k ⇥ n matrix, we show
that there exists a k-ary f that is a partial polymorphism of R such that
f(RT ) = tT . Thus f does not preserve R and, by Lemma 4.1.5, f extends to
a polymorphism of R that does not preserve R. Interestingly, we show that
a partial f , defined only on the columns of R, such that f(RT ) = tT , will do.

First of all, assume that the columns a1, . . . , an of R are pairwise distinct.
Then, set f(ai1, . . . , a

i
k) := ti, i = 1, . . . , n. Then, f is a partial function,

defined on the columns of R, such that f(RT ) = tT . On the other hand,
assume that there are p, q 2 {1, . . . , n} such that ap = aq. Then, R ✓ En

p,q.
By the definition of Q, Q ✓ En

p,q too. Thus tp = tq and we can define f as
above. It remains to show that f is a partial polymorphism of R.

To obtain a contradiction, assume that it is not. Thus, there is an m-ary
R0

2 R and a k ⇥m matrix M ✓ R0, such that f(MT )T /2 R0. By assuming
that R0 is of minimal arity with respect to this property, we can also assume
that the columns of M are pairwise distinct. Indeed, if they are not, we can
take R0

^Em
p,q, where p, q 2 {1, . . . , n} are such that the columns bp, bq of R0

are equal and project to {1, . . . ,m} \ {q}. Thus, we have a relation R00
2 R

(since R is a co-clone, whose arity is strictly smaller than that of R0, and
such that it is not preserved by f . Contradiction.

Now, since f is defined only on the columns of R, it holds that the columns
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or M are amongst those of R. Without loss of generality, assume they are
the m first such columns. Now, observe that R ✓ R0

⇥ D
n�m, which again

implies that Q ✓ R0
⇥ D

n�m too. But this shows that t 2 R0
⇥ D

n�m,
which in turn implies that f(MT )T = (t1, . . . , tm) 2 R0. Contradiction, since
f(MT )T /2 R0.

As stated, Theorem 4.1.2 works in case D is finite. For infinite domains, it
takes the form presented e.g. in [138]. We can now easily obtain the following
two results. Note that these can be obtained without using Theorem 4.1.2
and are also true in case D is infinite.

Corollary 4.1.3. Pol and Inv are lattice anti-isomorphisms for Lr
D and L

o
D.

Proof. In proposition 4.1.2, we have shown that both Pol and Inv reverse the
order of Lo

D and L
r
D. Thus, it su�ces to show that they are bijections.

Let R, T 2 L
r
D such that Pol(R) = Pol(T ). Then, we necessarily have

that Inv(Pol(R)) = Inv(Pol(T )), which, by Theorem 4.1.2, gives us that
R = hRi = hT i = T . Thus Pol is 1� 1.

Let F 2 L
o
D. Then, Inv(F ) is a co-clone and is thus in L

r
D. By Theorem

4.1.2:

Pol(Inv(F )) = [F ] = F

and thus Pol is onto. The analogous arguments show that Inv is also a
bijection.

Corollary 4.1.4. Pol(Inv) : Lo
D 7! L

o
D and Inv(Pol) : Lr

D 7! L
r
D are closure

operations for L
o
D and L

r
D respectively.

Proof. That F ✓ Pol(Inv(F )) and R ✓ Inv(Pol(R)), for all F 2 L
o
D and

R 2 L
r
D, follows immediately by Theorem 4.1.2, since F = [F ] and R =

hRi. Now, let F,G 2 L
o
D such that F ✓ G. Again, by Theorem 4.1.2,

Pol(Inv(F )) = [F ] = F ✓ G = [G] = Pol(Inv(G)). Analogously for Inv(Pol).
Finally, for any F 2 L

o
D and R 2 L

r
D:

Pol(Inv(Pol(Inv(F )))) = [Pol(Inv(F ))] = [[F ]] = F,

Inv(Pol(Inv(Pol(R)))) = hInv(Pol(R))i = hhRii = R,

again by Theorem 4.1.2.
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4.1.5 The Boolean Case: Post’s Lattice

We present here the seminal result of Post, namely the complete description
of the lattices of clones and co-clones over Boolean domains. Apart from
being one of the most important results in the field of Universal Algebra,
it plays a critical part in our work in the field of Judgement Aggregation.
In the brief presentation we make here, we follow the approach of Böhler
et al. [30, 31], which is also where Fig. 4.1, 4.2 and 4.3 come from. For
an alternative approach, see Zverovich [128] and Pelletier [181] and for the
original proof, see Post [186].

Fig. 4.1 contains short descriptions of the clones of Boolean operators.
Below, we provide all the necessary notation to understand this table, that is
not included in Sec. 4.1.1. Fig. 4.2 contains the lattice of Boolean clones. If
F is below some F 0 and connected with it, then F ✓ F 0. Fig. 4.3 contains the
lattice of Boolean co-clones. Notionally, the co-clone containing the relations
preserved by the operations in clone F , i.e. Inv(F ), is denoted by IF . The
base of a Boolean clone B is the minimal set of operations F , with respect
to inclusion, such that [F ] = B.

Let again f : {0, 1}k 7! {0, 1}. For an a 2 {0, 1}, f is a-reproducing,
if f(a, . . . , a) = a. Observe that f is idempotent if and only if it is a-
reproducing for all a 2 {0, 1}.

f is self-dual, if for all (a1, . . . , ak) 2 {0, 1}k:

f(a1, . . . , ak) = ¬f(ā1, . . . , āk),

where 0̄ = 1 and 1̄ = 0.

For any a 2 {0, 1}, a subset A ✓ {0, 1}k is a-separating there exists
some j 2 {1, . . . , k} such that for all (a1, . . . , ak) 2 A, aj = a. f is a-
separating if the inverse f�1(a) is a-separating. It is a-separating of level l,
if every A ✓ f�1(a) such that |A| = l is a-separating. Furthermore, for each
a 2 {0, 1}, f is constant and equal to a, denoted by cka, if f(a1, . . . , ak) = a
for all (a1, . . . , ak) 2 {0, 1}k.

For k = 0, we have two cases for f : c0 := 0 and c1 := 1. For k = 1,
again f can take two forms: id(a) := a and not(a) = ¬a, for all a 2 {0, 1}.
For k = 1, and = ^, or = _, xor = �, eq(a, b) = 1 if and only if a = b,
imp(a, b) = 0 if and only if a = 1 and b = 0 and nand(a, b) = ¬(^(a, b)).
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Figure 4.1: Classes of Boolean operators
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Figure 4.2: Lattice of Boolean clones
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Figure 4.3: Lattice of Boolean co-clones
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Observe that [{id}] is in fact the clone of all projections. Finally:

E :={f k-ary, k 2 N | f(a1, . . . , ak) = c0 ^ (c1 _ a1) ^ · · · (ck _ ak)},

V :={f k-ary, k 2 N | f(a1, . . . , ak) = c0 _ (c1 ^ a1) _ · · · (ck ^ ak)},

where c0, c1, . . . , ck are constants in {0, 1}.

4.2 Computational Complexity of CSP’s

In this section we provide an overview of complexity theoretic results, both
in the Boolean and non-Boolean framework. We begin, in Subsec. 4.2.1
with an alternative proof of Schaefer’s dichotomy theorem, through Post’s
lattice. In Subsec. 4.2.2 we consider the Feder-Vardi conjecture and various
results obtained for CSP’s with non-Boolean domains, including Bulatov’s
Dichotomy Theorems for conservative and multi-sorted CSP’s. Finally, in
Subsec. 4.2.3 we consider the meta-questions in CSP’s, including Carbonnel’s
Theorem that one can e�ciently discern tractable from non-tractable CSP’s.

4.2.1 Schaefer’s Dichotomy Theorem through Post’s
Lattice

Schaefer’s Dichotomy Theorem for the Boolean satisfiability problem has
been originally proven in [192]. Here we follow the approach presented in
Bohler et al. [30, 31] using Post’s lattice [186]. We employ an analogous
strategy in Ch. 7 in order to obtain many of our results there.

Our work in this subsection is situated in the Boolean framework, thus
D can be represented by {0, 1}. Assume R,S 2 RD are sets of Boolean
relations, such that R ✓ S. Easily, any instance I of CSP(R) is also an
instance of CSP(S), since all the constraints that can be formed by relations
of R, can also be formed by relations in S. Thus, we immediately obtain the
following result.

Corollary 4.2.1. Let R,S 2 RD be sets of Boolean relations. If R ✓ S,
then CSP(R) is polynomial-time reducible to CSP(S). Specifically,CSP(R)
is polynomial-time reducible to CSP(hRi), for all R ✓ RD.

It turns out that CSP(R) and CSP(hRi) are polynomial-time equivalent.
For this, we need some more work.
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Lemma 4.2.1. For any set of relation R ✓ RD, CSP(R) and CSP(hRi) are
polynomial-time equivalent.

Proof. By Cor. 4.2.1, it su�ces to show that:

CSP(hRi) P CSP(R), for all R ✓ RD.

Recall the definition of CSP, in Fig. 2.1. Given an instance I of CSP(hRi),
we show how to translate it to an instance of CSP(R) in polynomial time.

To make the notation easier to follow, we assume that the variables used
in this instance are x1, . . . , xm and we denote the variables in the scopes of
the various constraints by z1, ..., zn 2 {x1, . . . , xm}, where the zi’s need not
be distinct. Now, if the instance has only constraints with relations from R,
we have nothing to prove. Thus below, we assume that all the constraints
we discuss are not in R.

Suppose there is some constraint C = (En
I , (z1, . . . , zn)). Let also I =

{i1, . . . , ik} and let zi1 = xj, j 2 {1, . . . ,m}. To any constraint C 0 =
(R, sc(R)), replace any xk 2 sc(R) such that xk = zil , for some l 2 {1, . . . , k},
with xj. Then delete C. Easily this procedure is polynomial (in fact linear)
and the produced instance is equivalent to I.

Assume now there is a constraint C = (R, (z1, . . . , zn)), and relations
Q,P 2 R of arities q and p respectively, such that R = Q ⇥ P (and
thus q + p = n). Replace the constraint C with C 0 = (Q, (z1, . . . , zq)) and
C” = (P, (zq+1, . . . , zq+p)). Again, this procedure is linear and the produced
instance is equivalent to I.

Let C = (R, (z1, . . . , zn)) be a constraint of I, and S ✓ R such that:

R =
\

Q2S

Q.

Every relation in S must thus have arity n. Replace the constraint C with
CQ = (Q, (z1, . . . , zn)), for all Q 2 S. As before, this procedure is linear and
the produced instance is equivalent to I.

If C = (R, (z1, . . . , zn)) is a constraint, were R ⇡ Q, for some Q 2 R,
replace it with C 0 = (Q, (zi1 , . . . , zin)), where {i1, . . . , in} is the permutation
of the columns of R needed to obtain Q. As above, this procedure is linear
and the produced instance is equivalent to I.

Finally, let C = (R, (z1, . . . , zn)) be a constraint, where R = QI , for some
k-ary Q 2 R, where k � n and I ✓ {1, . . . , k}. Without loss of generality, let
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I = {1, . . . , n} and set J := {n + 1, . . . , k}. Finally, let y1, . . . , yk�n be vari-
ables not in {x1, . . . , xm}. Replace C with C 0 = (Q, (z1, . . . , zn, y1, . . . , yk�n)).
Again, this procedure is linear and the produced instance is equivalent to I.

The result now follows by repeatedly performing the above procedures
until all the constraints contain relations from R.

We can now prove the main reduction we need for the proof of Schaefer’s
Theorem.

Theorem 4.2.1 (Jeavons [130]). Let R,S 2 RD. If Pol(S) ✓ Pol(R), then
CSP(R) P CSP(S).

Proof. Since Pol(S) ✓ Pol(R), by Prop. 4.1.2 we have that:

Inv(Pol(R)) ✓ Inv(Pol(S))

. Thus, by Th. 4.1.2, we have that hRi ✓ hSi, which in turn, by Cor.
4.2.1, implies that CSP(hRi) P CSP(hSi). The result now follows since,
by Lemma 4.2.1, CSP(hRi) is polynomially equivalent to CSP(R) as are
CSP(hSi) and CSP(S).

We consider now some special types of Boolean relations. Let R ✓ {0, 1}n

be a Boolean relation. We say it is 0-valid (resp. 1-valid) if:

(0, 0, . . . , 0)| {z }
n�times

2 R (resp. (1, 1, . . . , 1)| {z }
n�times

2 R).

R is Horn (resp. dual-Horn) if there is a Horn (resp. dual-Horn) formula �
such that Mod(�) = R. It is bijunctive it there is a 2-SAT formula � such
that Mod(�) = R and a�ne if there is an a�ne � such that Mod(�) = R.

A set of relations R is 0-valid (resp. 1-valid, Horn, dual-Horn, bijunctive,
a�ne) if every R 2 R is 0-valid (resp. 1-valid, Horn, dual-Horn, bijunctive,
a�ne). R is Schaefer, if it is Horn, dual-Horn, bijunctive or a�ne.

There are e�cient ways to recognize if a relation R is of any of the above
types. For 0/1-validity, one simply has to check if the corresponding vectors
are in R. R is Horn (resp. dual-Horn) if and only if ^ 2 Pol(R) (_ 2 Pol(R))
(see [59, 68]). It is bijunctive if and only if maj 2 Pol(R) (see [59, 192]) and
a�ne if and only if � 2 Pol(R) (see [58, 59, 192]). If one is interested in
obtaining the corresponding formula describing R, there is a standard method
that can be found e.g. in Enderton [80]. There is also a very interesting
approach of Zanuttini and Hébrard [219] that we will also use in Ch. 7.
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We are now ready to prove Schaefer’s Dichotomy Theorem for CSP’s in
the Boolean framework.

Theorem 4.2.2 (Schaefer [192]). Let R ✓ RD be a set of Boolean relations.
If R is 0-valid or 1-valid or Schaefer, CSP(R) 2 P. Otherwise, CSP(R) is
NP-complete.

Proof. Consider Lr
D of Fig. 4.3. The maximal co-clones, that is the largest

co-clones that are not equal to BR = RD, denoted by bold circles, are II0,
II1, IE2, IV2, ID2, IL2 and IN2. We show that

if R 2 {II0, II1, IE2, IV2, ID2, IL2} then, CSP(R) 2 P

and that if R ◆ IN2, then CSP(R) is NP-complete. In light of Theorem
4.2.1, the proof will be completed, since for every R 2 RD, it holds either
that R is a subset of the first six co-clones, or a superset of IN2.

If R = II0 (resp. R = II1), then Pol(R) = I0 (resp. Pol(R) = I1). Thus,
every constraint in CSP(R) is satisfied by setting every variable equal to 0
(resp. 1).

If R = IE2 (resp. IV2, ID2, IL2) then Pol(R) = E2 (resp. V2, D2,
L2). Thus, S is Horn (resp. dual-Horn, bijunctive, a�ne). There are known
algorithms that solve CSP(R) is each of those cases, that can be found e.g.
in Papadimitriou [177].

Assume now that R = IN2. Then Pol(R) = N2 = [{¬}]. It follows that
RNAE 2 R, where:

RNAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

CSP(RNAE) is in fact the NOT-ALL-EQUAL-SAT problem, that is the prob-
lem where, given a 3-SAT formula �, we want to find if there is a satisfying
assignment of � such that the variables of each clause do not receive the same
value. It is known that this is an NP-complete problem (again, see e.g. [177])
and thus the proof is finished.

Another form that Th. 4.2.2 can take is the following. We say that a
k-ary f on {0, 1} is essentially unary, if there is an i 2 {1, . . . , k} such that

f(a1, . . . , ak) = prki (a1, . . . , ak) or f(a1, . . . , ak) = ¬prki (a1, . . . , ak).

One can express that also as f being equal to the unary identity id or negation
¬ operation on its i-th variable. It can be shown that if R ◆ IN2, then
Pol(R) contains only essentially unary functions. Thus, we have the following
result.
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Corollary 4.2.2 (Jeavons et al. [131,134]). Let R ✓ RD be a set of Boolean
relations. If Pol(R) contains only essentially unary operations, then CSP(R)
is NP-complete. Otherwise, CSP(R) 2 P.

4.2.2 Dichotomy Theorems

Given Schaefer’s Dichotomy result, it is natural to inquire what happens if
the CSP is defined over a non-Boolean domain. This was explicitly stated
in what is now known as the ”Feder-Vardi conjecture” [90]. The authors
there give several indications as to why such a dichotomy might hold in the
non-Boolean case too.

The main class Feder and Vardi consider is SNP, as defined in Subsection
2.4. Interestingly, for every problem A 2 NP, there exists a problem B 2 SNP
such that A P B and B P A. This means that the existence of NP-
intermediate problems would directly translate to NP-intermediate problems
in the class SNP.

Feder and Vardi then consider three syntactical restrictions of SNP prob-
lems, namely monotonicity, monadicity and no inequality (again, see [90]).
They show that imposing any two out of this three restrictions, results in a
subclass of SNP that continuous to have polynomially equivalent problems to
every problem in NP. Nevertheless, by imposing all three restrictions, we ob-
tain the monotone monadic SNP without inequalities (MMSNP). They show
that CSP is strictly contained in MMSNP and, furthermore, that every prob-
lem in MMSNP is polynomially equivalent to a problem in CSP(although the
reduction from the CSPproblem to the MMSNP one is randomized).

Feder and Vardi’s conjecture has inspired various works in the attempt
to obtain a dichotomy result for CSP’s in the non-Boolean framework. We
make a very brief overview here of such attempts. First, let us note that
attempts in discerning tractable classes of CSP problems using various no-
tions of consistency, both predate and follow Feder and Vardi’s conjecture
(see e.g. [63,67,132]). This approach far exceeds the scope of this thesis. An-
other such approach is by Bulatov [34, 39, 41], that uses finite algebras and
groupoids to obtain results concerning the complexity of CSP’s. It should
be noted though that Bulatov has provided a dichotomy theorem in case D

contains 3 elements [36].
Using an approach similar to what we have discussed and general al-

gebraic results concerning (minimal) clones [52, 167, 189, 208], Jeavons and
Cohen [133] showed a set of relations R over a finite domain D can have
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specific types of poylmorphisms.
We say that R is reduced, if every unary operation f 2 Pol(R) is 1-1.

Note that if this is not the case, then CSP(R) can be defined in a smaller
domain D

0 (see [133] for details on this issue). Thus, from now on, we will
assume that R is reduced, for any R ✓ RD. In the non-Boolean framework,
a k-ary f 2 OD is essentially unary if there is a non-constant unary g 2 OD
such that:

f(a1, . . . , ak) := g(ai), for some i 2 {1, . . . , k}.

Theorem 4.2.3. Let R ✓ RD be a reduced set of relations over a finite
domain D. Then, either Pol(R) containts essentially unary operations only
or there is an f 2 Pol(R) such that f is:

• either a constant operation,

• or a majority operation,

• or a binary idempotent operation which is not a projection,

• or an a�ne operation,

• or a semi-projection.

The proof of Th. 4.2.3 can again be found in [133].
Now using Schaefer’s Dichotomy Theorem (Th. 4.2.2) as a base and

proceeding inductively, they proved that:

Theorem 4.2.4 (Cohen and Jeavons [133]). For any finite set R ✓ RD over
a finite domain D, if Pol(R) contains only essentially unary operations, then
CSP(R) is NP-complete.

Furthermore, they proceeded with proving the following su�cient condi-
tions for tractability.

Theorem 4.2.5. For any finite set R ✓ RD over a finite domain D, if
Pol(R) contains an operations f such that f is:

• either constant,

• or a majority operation,

• or an a�ne operation,
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then CSP(R) is tractable.

Then, they proceed to show that closure under a binary idempotent non-
projection operation or a semi-projection is not a su�cient condition for
tractability. This, along with the lack of a complete description for Lr

D and
L

o
D in case D is not Boolean (see Sec. 4.1), leaves the sought after dichotomy

theorem an open problem until today.
We finally discuss two Dichotomy Theorems by Bulatov [38, 40] for sub-

classes of the CSP’s: the conservative CSP (c-CSP) and the conservative
multi-sorted CSP (c-MCSP). We use these theorems in Ch. 7, to obtain our
results.

A set of relations R is conservative, if every B ✓ D is a relation in R.
Bulatov showed a Dichotomy Theorem for conservative CSP’s over domains
of arbitrary cardinalities.

Theorem 4.2.6 (Bulatov [38]). If for every Boolean B ✓ D there is a binary
polymorphism f of R such that f�B 2 {^,_} or a ternary polymorpism f of
R such that f�B 2 {maj,�}, then c-CSP(R) is solvable in polynomial time;
otherwise it is NP-complete.

Recall now the setting of Subsec. 2.1.1 concerning MCSP. Again, let
D = {Di | i 2 I} be an arbitrary collection of finite sets. A multi-sorted
constraint language � over D is called conservative if for all sets Di 2 D and
all subsets B ✓ Di, we have that B 2 R (as a relation over Di). A k-ary
multi-sorted polymorphism for � is a collection of k-ary operators F = (fi)i2I ,
where fi : Dk

i 7! Di, such that, for every R 2 � with signature �(R) =
(i1, . . . , in) and for every A = {a1, . . . , ak

} 2 Rk, where al = (al1, . . . , a
l
n) 2 R,

l = 1, . . . , k, it holds that:

(fi1(a1), . . . , fin(an)) 2 R.

Bulatov [37, Theorem 2.16] proved a dichotomy theorem for conservative
multi-sorted constraint languages.

Theorem 4.2.7 (Bulatov [37]). If for any i 2 I and any two-element subset
Bi ✓ Di there is either a binary multi-sorted polymorphism F = (fi)i2I of �
such that fi�Bi 2 {^,_} or a ternary multi-sorted polymorpism F = (fi)i2I
of � such that fi�Bi 2 {maj,�}, then c-MCSP(� ) is solvable in polynomial
time; otherwise it is NP-complete.
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4.2.3 Meta-questions for CSP tractability

As we have seen, depending on the set of relationsR, the computational com-
plexity of CSP(R) can vary, with the tractable and NP-complete cases draw-
ing the most attention and the question of whether there are NP-intermediate
CSP problems still open. It is natural to ask whether, given a CSP(R), we
can e�ciently decide if it is tractable or not. Given the various conditions
that have been provided in the bibliography, that either guarantee or exclude
tractability (e.g. bounded width [15]), we can instead ask for an e�cient way
to check whether a CSP(R) satisfies these conditions or not. This type of
questions are known as meta-questions.

For example, since we known that checking if a relation R is one of the
Scheafer classes (or 0/1-valid), the meta-question concerning Schaefer’s Di-
chotomy Theorem is tractable. Chen and Larose [51] provide a variety of
such results and formalize the connection between the tractability of meta-
questions with the existence of e�cient uniform algorithms for such ques-
tions, that is algorithms that uniformly solve the meta-question for whole
classes of CSP’s.

In this area, we are interested in the results of Bessiére et al. [22] and
Carbonnel [47,48]. Recall that an operator f : Dk

7! D is conservative if its
output is always a part of its input. The following three Theorems will be
used in Ch. 7.

First, we have that deciding whether a constraint language R admits a
conservative majority or minority polymorphism is tractable. Recall that
these are both su�cient conditions for tractability of CSP(R).

Theorem 4.2.8 (Bessiére et al. [22]). There is a polynomial-time algorithm
for the following problem: given a constraint language R on a set D, de-
termine whether or not R admits a conservative majority polymorphism.
Moreover, if such a polymorphism exists, then the algorithm produces one in
polynomial time.

Theorem 4.2.9 (Carbonnel [48]). There is a polynomial-time algorithm for
the following problem: given a constraint language R on a set D, determine
whether or not R admits a conservative minority polymorphism. Moreover,
if such a polymorphism exists, then the algorithm produces one in polynomial
time.

Finally, Carbonnel showed that the boundary of the dichotomy for c-
CSP(R) can be checked in polynomial time.
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Theorem 4.2.10 (Carbonnel [47]). There is a polynomial-time algorithm for
the following problem: given a constraint language R on a set A, determine
whether or not for every two-element subset B ✓ A, there is a conservative
polymorphism f of R such that either f is binary and f� B 2 {^,_} or f
is ternary and f� B 2 {maj,�}. Moreover, if such a polymorphism exists,
then the algorithm produces one in polynomial time.
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Chapter 5

Computational Social Choice
Theory

In this chapter we study concepts in the field of Social Choice Theory and,
more specifically, Judgment Aggregation. The latter is the setting where our
results of Ch. 7 are situated. We begin with some preliminaries in Preference
and Judgment Aggregation in Sec. 5.1. In Sec. 5.2 and Sec. 5.3 we study
the two main frameworks of Judgment Aggregation where our results are
situated; the abstract framework and the integrity constraints respectively.

5.1 Social Choice Theory

In this section we provide some preliminaries in Preference Aggregation (Sub-
sec. 5.1.1) and in Judgment aggregation (Subsec. 5.1.2). In the former
framework, we present Arrow’s “General Possibility Theorem”. The latter
framework is where our work is situated.

5.1.1 Preference Aggregation

The origin of Social Choice Theory, at least as a robust mathematical theory,
is usually traced back to J. K. Arrow’s “General Possibility Theorem” [11]
(or “Arrow’s Impossibility Theorem”), that was published in 1951.

Given a population of {1, . . . , k}, which we refer to as voters or agents, we
are interested in their preferences over a set of l alternatives. That is, we are
interested in, weak or strict, total, anti-symmetric and transitive orderings v

145
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or @ respectively, of the set of alternatives D, where |D| = l. These orderings
are called linear and we denote the set of all possible such ordering as L(D).
By dropping the anti-symmetry requirement, we obtain the set N (D) of total
and transitive orderings over D.

A (preference) profile is a vector P = (v1, . . . ,vk), wherevi2 L(D) is the
preference of agent i, i = 1, . . . , k. To aggregate the individual preferences
and obtain the social outcome, we use the so called social welfare functions
(SWF), which are functions f : L(D)k 7! N (D). Note that dropping the
anti-symmetry requirement in the outcome amounts to allowing ties in the
social preference order. We denote the output of f over a profile by the order
v. If there are more than one SWF, we use vf to denote the output of each
such f .

Arrow argued that a SWF to be practical as an aggregation rule, it should
have four “common sense” properties. The first one is included already at
the definition: a SWF should be defined over every element of L(D)k. This
property is sometimes called universality.

1. A SWF f is weakly Paretian if it holds that: for all a, b 2 D, if a vi b
for i = 1, . . . , k, then a v b. Intuitively, this means that f should
respect all unanimous preferences between two alternatives.

2. A SWF f is independent of irrelevant alternatives (IIA) if the relative
social ranking between any two alternatives a, b 2 D depends only on
the individual relative rankings between a and b. Formally, let P, P 0 be
two profiles such that for some a, b 2 D:

a v
P
i b if and only if a v

P 0

i b, for i = 1, . . . , k.

Then, a v
P b if and only if a v

P 0
b.

3. A SWF in non-dictatorial if there is no agent who determines by himself
the social outcome. Formally, f is a dictatorship if there exists an
i 2 {1, . . . , l} such that:

if a vi b then a v b, for all a, b 2 D.

At first glance, the majority rule, where a vmaj b if and only if |{i | a v

b}| < |{i | a w b}|, satisfies all the desired properties. The issue here, as
it was known by the so called Condorcet’s paradox in the late 18th century
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(see [65] for a retrieved version of the original work), is that the majority
rule is not even a SWF, since it does not satisfy transitivity! Indeed, assume
D := {a, b, c} and that we have three agents, where:

a v1 b v1 c,

b v2 c v2 a,

c v3 a v3 b.

The social outcome under the majority rule would be that a v b, since agents
1 and 3 prefer b to a, b v c, since agents 1 and 2 prefer c to b and c v a,
since agents 2 and 3 prefer a to c.

Arrow showed that the problem is far wider.

Theorem 5.1.1 (Arrow [11]). For any set D of at least three alternatives,
any SWF that satisfies universality, IIA and is weakly Paretian, is necessarily
a dictatorship.

Arrow’s result has initiated a variety of approaches in order to avoid it
with practical SWF. This required for some of the properties described above
to be relaxed. Universality, non-dictatorship and being weakly Paretian seem
to be considered desirable in almost every scenario. Thus, usually, the con-
dition that is relaxed is the requirement of IIA. We will not get into this
issue though here, since our focus is in a slightly di↵erent framework, which
we consider in the next section. For an interesting discussion of Arrow’s im-
possibility theorem, see Tao [210] whereas for three alternative proofs of, see
Geanakopoulos [99].

5.1.2 Judgment Aggregation

To talk about Judgment Aggregation, one must almost necessarily begin
by the doctrinal paradox of Kornhauser and Sager [152], or its most recent
and abstract form, provided by Pettit and Rabinowicz [182], the discursive
dilemma. For an interesting book containing a broad range of matters con-
cerning Computational Social Choice Theory and Judgement Aggregation,
we refer the reader to Brandt et al. [32].

Assume we have three agents (usually depicted as judges) that need to
decide if three propositional formulas, namely p, q and p^ q, are true or not.
Assume also that the first agent thinks that both p and q are true, the second
only p and the third only q. For the opinions of the agents to be consistent,



148 CHAPTER 5. COMPUTATIONAL SOCIAL CHOICE THEORY

this implies that the first agent accepts p ^ q as true, while the other two as
false. How should a collective decision be made?

Our usual preference would be to vote by majority rule. But, if so, we
have the following paradox. If the agents vote on the premises, then both p
and q and thus p^ q, should be accepted. On the other hand, if they vote on
the conclusion, p ^ q should not be accepted. The simplicity of the setting
that majority voting cannot handle was perhaps one of the main reasons this
paradox had such a strong impact in this field.

We now present the original formal framework of judgment aggregation.
Let P be the set of all propositional formulas that does not contain any
double negated formula. An agenda � ✓ P is a subset that is closed under
complementation, that is, � 2 � if and only if ¬� 2 �. We denote by �+ the
set of not negated (positive) formulas in � and by �� the negated (negative)
ones. Given an agenda � such that |�+

| = n (and thus |�| = 2n) and a
population of k agents, each agent decides over the validity or not of the
formulas of �, by selecting a judgment set J ✓ �. In the original framework,
we can assume that J is always complement free and complete, that is, for
all � 2 �, exactly one of � or ¬� is in J (although, see e.g. Terzopoulou et
al. [213] for results with incomplete judgment sets). J is consistent if there
exists an assignment of values that satisfies all � 2 J . We denote by J (�)
the set of all complete and consistent subsets of �.

A coalition C ✓ {1, . . . , k} is a subset of the agents. A profile is a vector
J := (J1, . . . , Jk) 2 J (�)k containing one complete and consistent judgment
set for each agent. For each formula � 2 �:

NJ
� := {i 2 {1, . . . , k} | � 2 Ji}

is the subset of agents accepting � as true.
A (resolute) aggregation rule for � is a function:

f : J (�)k 7! 2�.

An aggregator is complete, complement-free and/or consistent if f(J (�)k) is
complete, complement-free and/or consistent respectively. In general, aggre-
gators are required to satisfy various properties. We present many of them
in the following sections.

We end this section by demonstrating the correlation between the pref-
erence framework of Subsec. 5.1.1 and the agenda framework. First, observe
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that since given a set D of alternatives there are no logical consistency as-
sumptions for the preference orderings, there is no “natural” way to express
agendas in that framework. On the other hand, we can define a propositional
variable p(a,b) to mean that a is strictly preferred than b, for each a, b 2 D.
Now, if (a1, . . . , al) is a total ordering of the elements of D, we can express
it with the formula: ^

i=1,...,l�1

p(ai,ai+1). (5.1)

The main disadvantage here is the size of the agenda. For a set D of size l,
we need l2 propositional variables and l! ⇡ ll formulas of Eq. (5.1).

As mentioned before, Judgment Aggregation was first formalized using
agendas. Nevertheless, there are various di↵erent, and in some sense equiva-
lent, frameworks that have been developed over the years, like Wilson’s gen-
eral attributes [217], which led to the so called abstract framework that was
developed by Dokow and Holzman [76,77], the property spaces of Nehring and
Puppe [175] and Grandi and Endriss’s integrity constraints [113]. In what
follows, we take particular interest in the abstract framework (Sec. 5.2) and
in the integrity constrains (Sec. 5.3).

Let � = {�1, . . . ,�n} be an agenda. For a formula  , let:

 x :=

(
 if x = 1,

¬ else.
(5.2)

We say that the domain of � is:

X� :=
n
x = (x1, . . . , xn) |

n̂

i=1

�xi
i is satisfiable

o
.

That is, X� is the set of all consistent judgments of the formulas in the
agenda �. In what follows, we abstract from considering explicit agendas
and consider such domains on their own.

5.2 Abstract Framework

In the sequel, we have a fixed set I = {1, . . . , n} of issues. Let D be a fi-
nite set of cardinality at least 2, representing the possible positions (voting
options) on the issues. If |D| = 2 (i.e., if for every issue only a “yes” or
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“no” vote is allowed), we say that we are in the binary or the Boolean frame-
work; otherwise, we say that we are in the non-binary or the non-Boolean
framework.

Let X be a non-empty subset of Dn that represents the feasible voting
patterns. We write Xj, j = 1, . . . , n to denote the j-th projection of X. We
assume that |Xj| � 2, for j = 1, . . . , n as a non-degenaracy condition. Note
that in general, it does not (necessarily) hold that X =

Qn
j=1 Xj.

Let k � 2 be an integer representing the number of voters. The elements
of (Dn)k can be viewed as k⇥nmatrices, whose rows correspond to voters and
whose columns correspond to issues. If A = {a1, . . . , ak

} is such a matrix,
we write xi

j to denote the entry of the matrix in row i and column j; clearly,
xi
j stands for the vote of voter i on issue j. The row vectors of such matrices

will be denoted as a1, . . . , ak, and the column vectors as a1, . . . , an.
An aggregator of arity k is a function F : (Dn)k 7! D

n such that X is
closed under F , meaning that if A 2 Xk, then F (A) 2 X. Requiring that
X is closed under F reflects the rationality of F , while requiring that F is
defined on (Dn)k reflects the universality of F . Actually, universality usually
refers to F being definable on Xk; however, it is technically advantageous,
and imposes no essential restriction, to assume universality with respect to
all possible vectors of votes, even “irrational” ones (for such votes, F may
return an arbitrary value).

An aggregator F is called dictatorial on X if there is a number d 2

{1, . . . , k} such that for every A 2 Xk, we have that F (A) = xd (i.e., F (A)
is equal to the d-th row of A).

A set X of feasible voting patterns is called a possibility domain if, for
some number k � 2, there exists a non-dictatorial aggregator of arity k. Oth-
erwise, X is called an impossibility domain. Thus, a possibility domain is, by
definition, one where aggregation is possible for societies of some cardinality,
namely, the arity of the non-dictatorial aggregator.

Following List and Puppe [166], we define the notions below concerning
properties of aggregators on a domain X.

An aggregator F is called anonymous if for every two matrices A,B 2 Xk

such that the rows of b1, . . . ,bk of B are a permutation of the rows a1, . . . , ak

of A, we have that F (A) = F (B).
An aggregator F is called systematic if for every two issues i, j and every

two matrices A,B 2 Xk, if ai = bj (i.e. if the i-th column of A coincides with
the j-th column of B), then the i-th coordinate of the vector F (A) coincides
with the j-th coordinate of the vector F (B). In e↵ect, an aggregator is
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systematic if it arises from a polymorphism of X.
Much weaker than the notion of systematicity is the notion of indepen-

dence. An aggregator F is called independent of irrelevant alternatives (IIA)
or just independent if, for every issue j and for every two matrices A,B 2 Xk,
if aj = bj then the j-th coordinate of the vector F (A) coincides with the j-th
coordinate of the vector F (B). It can be easily shown that an aggregator
F is IIA if and only if for every issue j, there is a function fj : Dk

7! D

such that for every A 2 Xk, the j-th coordinate of F (A) is equal to fj(aj)
(see, e.g., [179, Lemma 1]). Thus, an aggregator is systematic if and only if
it is IIA and all functions fj are equal. Note also that an IIA aggregator is
anonymous if and only if the output of each function fj, 1  j  n, depends
only on the multi-set of the input values. Since the values of F outside X
do not matter, we assume in the sequel that for all IIA aggregators, there
are functions fj : Dk

7! D such that for every A 2 (Dn)k (and not just for
A 2 Xk), the j-th component of F (A) is equal to fj(aj). Such aggregators
will be denoted by F = (f1, . . . , fn). In this setting, it is easy to see that
an IIA aggregator F = (f1, . . . , fn) is dictatorial if and only if there is a
d = 1, . . . , k so that for every j = 1, . . . , n, we have that fj = prkd, where prkd
is the k-ary projection on the d-th coordinate (for example pr32(0, 1, 0) = 1).

Observe that, lest we can always aggregate non-dictatorially, we have
to restrict aggregators to be IIA. Indeed, let x0 2 X. Consider the non-
IIA aggregator on X2 defined by F (x, y) = x, if x 6= x0, and F (x, y) = y,
otherwise. Obviously, F is non-dictatorial ifX contains at least two elements.
In other words, the question of the possibility of non-dictatorial aggregation
is not meaningful, unless we assume independence. So, in the sequel, we
assume that aggregators are IIA. Observe, however, that the aggregator F
just defined is obviously not anonymous. If we seek to characterize domains
that admit anonymous aggregators, instead of non-dictatorial ones, then it
is meaningful to investigate the case of non-IIA aggregators. This line of
research was taken by Nehring and Puppe [175].

An IIA aggregator f̄ = (f1, . . . , fn) is supportive or conservative if for
every A 2 Xk, and for every j = 1, . . . , n, we have that fj(aj) 2 {a1j , . . . , a

k
j}.

An IIA aggregator f̄ = (f1, . . . , fn) is Paretian if for every A 2 Xk, and
for every j = 1, . . . , n, if a1j = · · · = akj , then fj(aj) = a1j = · · · = akj .

In the Boolean framework, the notions of supportiveness and being Pare-
tian are obviously equivalent. However, if more than two voting options are
o↵ered for an issue, then the notion of being supportive is in general stronger
than being Paretian, but still is a natural assumption to make.
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Throughout this paper, we assume that aggregators are IIA and support-
ive.

Example 5.2.1. Suppose that X is a Cartesian product X = Y ⇥ Z, where
Y ✓ D

l and Z ✓ D
n�l, with 1  l < n. It is easy to see that X is a possibility

domain.
Indeed, for every k � 2, the set X has non-dictatorial k-ary aggregators

of the form (f1, . . . , fl, fl+1, . . . , fn), where for some d and d0 with d 6= d0,
we have fj = prkd, for j = 1, . . . , l, and also fj = prkd0, for j = l + 1, . . . , n.
Thus, every Cartesian product of two sets of feasible patterns is a possibility
domain. ⇧

Since the arity of an aggregator is the arity of its component functions, a
ternary aggregator is an aggregator with components of arity three.

Definition 5.2.1. Let X be a set of feasible voting patterns.

• X admits a majority aggregator if it admits a ternary aggregator F =
(f1, . . . , fn) such that fj is a majority operation on Xj, for all j =
1, . . . , n.

• X admits a minority aggregator if it admits a ternary aggregator F =
(f1, . . . , fn) such that fj is a minority operation on Xj, for all j =
1, . . . ,m.

Clearly, X admits a majority (resp. minority) aggregator if and only if
there is a ternary aggregator F = (f1, . . . , fn) for X such that, for all j =
1, . . . , n and for all two-element subsets Bj ✓ Xj, we have that fj� Bj = maj
(resp. �).

In social choice theory, domains admitting a majority aggregator are often
called median spaces (see, e.g., [76]). It should also be noted that a�ne
domains play an important role in the work of Dokow and Holzman [76];
furthermore, in social choice theory, non-a�ne domains are also known as
even-number-negatable domains (see, e.g., [162]).

Example 5.2.2. The set:

X = {(a, a, a), (b, b, b), (c, c, c), (a, b, b), (b, a, a), (a, a, c), (c, c, a)}

admits a majority aggregator.
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To see this, let F = (f, f, f), where f : {a, b, c} ! {a, b, c} is as follows:

f(u, v, w) =

(
a if u, v, and w are pairwise di↵erent;

maj(u, v, w) otherwise.

Clearly, if B is a two-element subset of {a, b, c}, then f � B = maj. So,
to show that X admits a majority aggregator, it remains to show that F =
(f, f, f) is an aggregator for X. In turn, this amounts to showing that F
is supportive and that X is closed under f . It is easy to check that F is
supportive. To show that X is closed under f , let x = (x1, x2, x3),y =
(y1, y2, y3), z = (z1, z2, z3) be three elements of X. We have to show that
(f(x1, y1, z1), f(x2, y2, z2), f(x3, y3, z3)) is also in X. The only case that needs
to be considered is when x, y, and z are pairwise distinct. Several sub-
cases need to be considered. For instance, if x = (a, b, b), y = (a, a, c),
z = (c, c, a), then F (x, y, z) = (f(a, a, c), f(b, a, c), f(b, c, a)) = (a, a, a) 2 X;
the remaining combinations are left to the reader. ⇧

Example 5.2.3. The set X = {(a, b, c), (b, a, a), (c, a, a)} admits a minority
aggregator.

To see this, let F = (f, f, f), where f : {a, b, c} ! {a, b, c} is as follows:

f(u, v, w) =

(
a if u, v, and w are pairwise di↵erent;

�(u, v, w) otherwise.

Clearly, if B is a two-element subset of {a, b, c}, then f � B = �. So, to
show that X admits a minority aggregator, it remains to show that F =
(f, f, f) is an aggregator for X. In turn, this amounts to showing that F
is supportive and that X is closed under f . It is easy to check that F is
supportive. To show that X is closed under f , let x = (x1, x2, x3),y =
(y1, y2, y3), z = (z1, z2, z3) be three elements of X. We have to show that
(f(x1, y1, z1), f(x2, y2, z2), f(x3, y3, z3)) is also in X. The only case that needs
to be considered is when x, y, and z are distinct, say, x = (a, b, c), y =
(b, a, a), z = (c, a, a). In this case, we have that:

(f(a, b, c), f(b, a, a), f(c, a, a)) = (a, b, c) 2 X.

Since f is not a↵ected by permutations of the input, the proof is complete. ⇧

So far, we have given examples of possibility domains only. Next, we give
an example of an impossibility domain in the Boolean framework.
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Example 5.2.4. Let W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation,
i.e., the set of all Boolean tuples of length 3 in which exactly one 1 occurs.

We claim that W is an impossibility domain. It is not hard to show that
W is not a�ne and that it does not admit a non-dictatorial binary aggregator.
We will see that this implies that W is an impossibility domain. ⇧

Every logical relation X ✓ {0, 1}m gives rise to a generalized satisfiabil-
ity problem in the context studied by Scheafer [192]. We point out that the
property of X being a possibility domain in the Boolean framework is not
related to the tractability of the associated generalized satisfiability problem.
Concretely, the set W in Example 5.2.4 is an impossibility domain and its as-
sociated generalized satisfiability problem is the NP-complete problem Pos-
itive 1-in-3-Sat. As discussed earlier, the Cartesian product W ⇥W is a
possibility domain. Using the results in [192], however, it can be verified that
the generalized satisfiability problem arising from W ⇥ W is NP-complete.
At the same time, the set {0, 1}n is trivially a possibility domain and gives
rise to a trivially tractable satisfiability problem. Thus, the property of X
being a possibility domain is not related to the tractability of the generalized
satisfiability problem arising from X.

Nonetheless, in Ch. 7 we establish the equivalence between the stronger
notion of X being a uniform possibility domain and the weaker notion of
the tractability of the multi-sorted generalized satisfiability problem arising
from X, where each issue is taken as a di↵erent sort. Actually, we establish
this equivalence not only for satisfiability problems but also for constraint
satisfaction problems whose variables range over arbitrary finite sets.

There has been a significant body of earlier work on possibility domains.
Here, we summarize some of the results that relate the notion of a possibility
domain to the notion of a set being totally blocked, a notion originally intro-
duced in the context of the Boolean framework by Nehring and Puppe [174].
As stated earlier, a set X of possible voting patterns is totally blocked if,
intuitively, “any position on any issue can be deduced from any position on
any issue”; this intuition is formalized by asserting that a certain directed
graph GX associated with X is strongly connected.

In the case of the Boolean framework, Dokow and Holzman [76] obtained
the following necessary and su�cient condition for a set to be a possibility
domain. The necessity of this condition is also contained in Dietrich and
List [74].
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Theorem 5.2.1 (Dokow and Holzman [76, Theorem 2.2], Dietrich and List
[74, Theorem 2]). Let X ✓ {0, 1}n be a set of feasible voting patterns. The
following statements are equivalent.

• X is a possibility domain.

• X is a�ne or X is not totally blocked.

For the non-Boolean framework, Dokow and Holzman [77] found the fol-
lowing connection between the notions of totally blocked and possibility do-
main.

Theorem 5.2.2 (Dokow and Holzman [77, Theorem 2]). Let X be a set of
feasible voting patterns. If X is not totally blocked, then X is a possibility
domain; in fact, there is a non-dictatorial k-ary aggregator, for every k � 2.

Note that, in the case of the Boolean framework, Theorem 5.2.2 was
stated and proved as Claim 3.6 in [76]. For the non-Boolean framework,
Szegedy and Xu [207] obtained a su�cient and necessary condition for a
totally blocked set X to be a possibility domain.

Theorem 5.2.3 (Szegedy and Xu [207, Theorem 8]). Let X be a set of
feasible voting patterns that is totally blocked. The following statements are
equivalent.

• X is a possibility domain.

• X admits a non-dictatorial ternary aggregator.

Note that, in the case of the Boolean framework, Theorem 5.2.3 follows
from the preceding Theorems 5.2.1 and 5.2.2, the latter in the Boolean frame-
work.

A binary non-dictatorial aggregator can also be viewed as a ternary one,
where one of the arguments is ignored. By considering whether or not X
is totally blocked, Theorems 5.2.2 and 5.2.3 imply the following corollary,
which characterizes possibility domains without involving the notion of total
blockedness; to the best of our knowledge, this result has not been explicitly
stated previously.

Corollary 5.2.1. Let X be a set of feasible voting patterns. The following
statements are equivalent.
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1. X is a possibility domain.

2. X admits a non-dictatorial ternary aggregator.

For the rest of this Section only, we drop the assumption that aggregators
should be supportive (conservative) and we assume them to be just Paretian
(unanimous). Note that in the non-Boolean framework, as remarked earlier,
these two notions are not equivalent. The following result follows easily
from extant results (Theorem 5.2.2 above and Theorem 8 for the Paretian
case in [207]), although again, to the best of our knowledge, it has not been
explicitly mentioned before.

Corollary 5.2.2. Let d = max{|Xj| | j = 1, . . . , n}. Then the following
statements are equivalent:

1. X is a possibility domain (in the Paretian sense).

2. X admits a non-dictatorial and Paretian aggregator of arity at most
max(d, 3).

It is known that any Boolean setX can be described as the set of satisfying
assignment of a propositional formula �, in the sense that Mod(�) = X (see
Enderton [80]). In the context of Judgment aggregation, such formulas are
called integrity constraints.

5.3 Integrity Constraints

Recall the notation of Sec. 2.2, Fig. 2.2. In what follows, we will assume,
except if specifically noted, that n denotes the number of variables of a
formula � and m the number of its clauses.

Recall that a Horn clause is a clause with at most one positive literal. A
dual Horn is a clause with at most one negative literal. A formula that con-
tains only Horn (dual Horn) clauses is called Horn (dual Horn, respectively).
Generalizing the notion of a clause, we will also call clauses sets of literals
connected with exclusive OR (or direct sum), the logical connective that cor-
responds to summation in {0, 1} mod 2. Formulas obtained by considering
a conjunction of such clauses are called a�ne. Finally, bijunctive are called
the formulas whose clauses, in inclusive disjunctive form, i.e. whose literals
are connected with the logical OR, have at most two literals. A domain
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D ✓ {0, 1}n is called Horn, dual Horn, a�ne or bijunctive respectively, if
there is a Horn, dual Horn, a�ne or bijunctive formula � of n variables such
that Mod(�) = D.

We have presented the above notions and results without many details,
as they are all classical results. For the notions that follow we give more
detailed definitions and examples. The first one, as far as we can tell, dates
back to 1978 (see Lewis [160]).

Definition 5.3.1. A formula � whose variables are among the elements of
the set V = {x1, . . . , xn} is called renamable Horn, if there is a subset V0 ✓ V
so that if we replace every appearance of every negated literal l from V0 with
the corresponding positive one and vice versa, � is transformed to a Horn
formula.

The process of replacing the literals of some variables with their logical
opposite ones, is called a renaming of the variables of �. It is straightforward
to see that any dual-Horn formula is renamable Horn (just rename all its
variables).

Example 5.3.1. Consider the formulas �1 = (x1 _ x2 _ ¬x3) ^ (¬x1 _ x3 _

x4)^(¬x2_x3_¬x5) and �2 = (¬x1_x2_x3_x4)^(x1_¬x2_¬x3)^(x4_x5),
defined over V = {x1, x2, x3, x4, x5}.

The formula �1 is renamable Horn. To see this, let V0 = {x1, x2, x3, x4}.
By renaming these variables, we get the Horn formula �⇤

1 = (¬x1 _ ¬x2 _

x3) ^ (x1 _ ¬x3 _ ¬x4) ^ (x2 _ ¬x3 _ ¬x5). On the other hand, it is easy
to check that �2 cannot be transformed into a Horn formula for any subset
of V , since for the first clause to become Horn, at least two variables from
{x2, x3, x4} have to be renamed, making the second clause not Horn. ⇧

It turns out that whether a formula is renamable Horn can be checked in
linear time. There are several algorithms that do that in the literature, with
the one of del Val [69] being a relatively recent such example. The original
non-linear one was given by Lewis [160]. By the construction presented there,
it is easy to observe that a bijunctive formula is renamable Horn if and only
if it is satisfiable. Indeed, let ↵ be an assignment satisfying � and rename all
the variables x 2 V such that ↵(x) = 1. Then, every clause of � either has
a positive literal that is renamed, or a negative one that is not renamed.

We now proceed with introducing several syntactic types of formulas:
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Definition 5.3.2. A formula is called separable if its variables can be par-
titioned into two non-empty disjoint subsets so that no clause of it contains
literals from both subsets.

Example 5.3.2. The formula �3 = (¬x1_x2_x3)^(x1_¬x2_¬x3)^(x4_x5)
is separable. Indeed, for the partition V1 = {x1, x2, x3}, V2 = {x4, x5} of
V , we have that no clause of �3 contains variables from both subsets of the
partition. On the other hand, there is no such partition of V for neither �1

nor �2 of the previous example. ⇧

The fact that separable formulas can be recognized in linear time is rela-
tively straightforward (see Proposition 7.2.1).

Remark 5.3.1. The notion of separability in Definition 5.3.2 is a purely
syntactic property. Lang et al. [158] define a semantic version of separability,
which, in our framework, reads as follows.

Let A ✓ V and � be a formula on V . Define �A to be the projection
of � to the variables of A, i.e. � with all appearances of variables not in A
deleted. � is called semantically separable if there is a partition (A,B) of V
such that Mod(�) = Mod(�A) ⇥ Mod(�B). Such a partition (A,B) is called
an independent partition of V .

Obviously, a separable formula satisfies semantic separability. On the
other hand, consider that formula:

 = (x _ ¬y _ z) ^ (¬x _ y _ z) ^ (x _ ¬y _ ¬z) ^ (¬x _ y _ ¬z).

Clearly, this is not a separable formula in the sense of Definition 5.3.2. On
the other hand, for the partition ({x, y}, {z}) of its set of variables, it holds
that:

Mod( ) = {(0, 0), (1, 1)}⇥ {0, 1} = Mod( {x,y})⇥Mod( {z}),

and thus  is semantically separable. ⇧

We now introduce the following notions:

Definition 5.3.3. A formula � is called partially Horn if there is a nonempty
subset V0 ✓ V such that (i) the clauses containing only variables from V0 are
Horn and (ii) the variables of V0 appear only negatively (if at all) in a clause
containing also variables not in V0.
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If a formula � is partially Horn, then any non-empty subset V0 ✓ V that
satisfies the requirements of Definition 5.3.3 will be called an admissible set
of variables. Easily, if both V0, V1 ✓ V are admissible sets of variables, then
so is V0 [ V1. Also the Horn clauses that contain variables only from V0 will
be called admissible clauses (the set of admissible clauses might be empty).
A Horn clause with a variable in V \V0 will be called inadmissible (the reason
for the possible existence of such clauses will be made clear in the following
example).

Notice that a Horn formula is, trivially, partially Horn too, as is a for-
mula that contains at least one negative pure literal. It immediately follows
that the satisfiability problem remains NP-complete even when restricted to
partially Horn formulas (just add a dummy negative pure literal). In Compu-
tational Social Choice though, domains are considered to be non-empty as a
non-degeneracy condition. Actually, it is usually assumed that the projection
of a domain to any one of the n issues is the set {0, 1}.

Example 5.3.3. We first examine the formulas of the previous examples.
�1 is partially Horn, since it contains the negative pure literal ¬x5. The
Horn formula �⇤

1 is also trivially partially Horn. On the other hand, �2 and
�3 are not, since for every possible V0 ✓ {x1, x2, x3, x4, x5}, we either get
non-Horn clauses containing variables only from V0, or variables of V0 that
appear positively in inadmissible clauses.

The formula �4 = (x1 _¬x2)^ (¬x1 _ x2)^ (¬x2 _¬x3)^ (¬x1 _ x3 _ x4)
is partially Horn. Its first three clauses are Horn, though the third has to be
put in every inadmissible set, since x3 appears positively in the fourth clause
which is not Horn. The first two clauses though constitute an admissible set
of Horn clauses. Finally, �5 = (x1 _ ¬x2) ^ (x2 _ ¬x3) ^ (¬x1 _ x3 _ x4) is
not partially Horn. Indeed, since all its variables appear positively in some
clause, we need at least one clause to be admissible. The first two clauses
of �5 are Horn, but we will show that they both have to be included in an
inadmissible set. Indeed, the second has to belong to every inadmissible set
since x3 appears positively in the third, not Horn, clause. Furthermore, x2

appears positively in the second clause, which we just showed to belong to
every inadmissible set. Thus, the first clause also has to be included in every
inadmissible set, and therefore �5 is not partially Horn. ⇧

Accordingly to the case of renamable Horn formulas, we define:
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Definition 5.3.4. A formula is called renamable partially Horn if some
of its variables can be renamed (in the sense of Definition 5.3.1) so that it
becomes partially Horn.

Observe that any Horn, renamable horn or partially Horn formula is triv-
ially renamable partially Horn. Also, a formula with at least one pure posi-
tive literal is renamable partially Horn, since by renaming the corresponding
variable, we get a formula with a pure negative literal.

Example 5.3.4. All formulas of the previous examples are renamable par-
tially Horn: �⇤

1, �1 and �4 correspond to the trivial cases we discussed above,
whereas �2, �3 and �5 all contain the pure positive literal x4.

Lastly, we examine two more formulas: �6 = (¬x1 _ x2 _ x3 _ x4)^ (x1 _

¬x2 _¬x3)^ (¬x4 _ x5) is easily not partially Horn, but by renaming x4 and
x5, we obtain the partially Horn formula �⇤

6 = (¬x1 _ x2 _ x3 _ ¬x4) ^ (x1 _

¬x2_¬x3)^(x4_¬x5), where V0 = {x4, x5} is the set of admissible variables.
On the other hand, the formula �7 = (¬x1_x2_x3)^ (x1_¬x2_¬x3) is not
renamable partially Horn. Indeed, whichever variables we rename, we end
up with one Horn and one non-Horn clause, with at least one variable of the
Horn clause appearing positively in the non-Horn clause. ⇧

We prove, by Theorem 7.2.1, that checking whether a formula is renam-
able partially Horn can be done in linear time in the length of the formula.

Remark 5.3.2. Let � be a renamable partially Horn formula, and let �⇤ be
a partially Horn formula obtained by renaming some of the variables of �,
with V0 being the admissible set of variables. Let also C0 be an admissible
set of Horn clauses in �⇤. We can assume that only variables of V0 have
been renamed, since the other variables are not involved in the definition of
being partially Horn. Also, we can assume that a Horn clause of �⇤ whose
variables appear only in clauses in C0 belongs to C0. Indeed, if not, we can
add it to C0.

Another technical point is that, contrary to the case of partially Horn
formulas, it can be the case that V0 and V1 are distinct subsets of variables of
a formula which, when renamed, make the formula partially Horn, but V0[V1

is not. For example, let

 = (¬x _ ¬y) ^ (x _ z) ^ (y _ ¬z),
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which is easily not partially Horn. Let V0 = {x} and V1 = {y, z}. By
renaming these subsets of variables, we obtain the two Horn formulas:

 ⇤
{x} =(x _ ¬y) ^ (¬x _ z) ^ (y _ ¬z)

 ⇤
{y,z} =(¬x _ y) ^ (x _ ¬z) ^ (¬y _ z),

whereas, by renaming V0 [ V1 = {x, y, z}, we obtain the formula:

 ⇤ = (x _ y) ^ (¬x _ ¬z) ^ (¬y _ z),

which is not partially Horn. ⇧

Definition 5.3.5. A formula is called a possibility integrity constraint if it
is either separable, or renamable partially Horn or a�ne.

From the above and the fact that checking whether a formula is a�ne is
easy we get Theorem 7.2.2, which states that checking whether a formula is
a possibility integrity constraint can be done in polynomial time in the size
of the formula.

Now, let V, V 0 be two disjoint sets of variables. By further generalizing
the notion of a clause of a CNF formula, we say that a (V, V 0)-generalized
clause is a clause of the form:

(l1 _ · · · _ ls _ (ls+1 � · · ·� lt)),

where the literal lj corresponds to variable vj, j = 1, . . . , t, s < t, v1, . . . , vs 2
V and vs+1, . . . , vt 2 V 0. Such a clause is falsified by exactly those assign-
ments that falsify every literal li, i = 1, . . . , s and satisfy an even number of
literals lj, j = s + 1, . . . , t. An a�ne clause is trivially a (V, V 0)-generalized
clause, where all its literals correspond to variables from V 0. Consider now
the following syntactic type of formulas.

Definition 5.3.6. A formula � is a local possibility integrity constraint
(lpic) if there are two disjoint subsets V0, V1 ✓ V , with V0 [ V1 = V , such
that:

1. by renaming some variables of V0, we obtain a partially Horn formula
�⇤, whose set of admissible variables is V0 and

2. the clauses containing variables from V1 are (V0, V1)-generalized clauses.
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Example 5.3.5. Easily, every (renamable) Horn or a�ne formula is an lpic.
On the other hand, consider the following formula:

�8 = (¬x1 _ ¬x2) ^ (x1 _ x2 _ (x3 � x4 � x5)).

�8 is not an lpic, since V0 must contain both x1 and x2, and under any
renaming. either at least one of them will appear positively in the second,
non-admissible clause, or the first will seize being a Horn clause. ⇧

By Definition 5.3.6, an lpic � over V , where V0 6= ;, is a renamable
partially Horn formula. Otherwise, if V0 = ;, � is a�ne.

To end this preliminary discussion about propositional formulas, we con-
sider prime formulas. Given a clause C of a formula �, we say that a sub-
clause of C is any non-empty clause created by deleting at least one literal
of C. In Quine [187] and Zanuttini and Hébrard [219], we find the following
definitions:

Definition 5.3.7. A clause C of a formula � is a prime implicate of � if no
sub-clause of C is logically implied by �. Furthermore, � is prime if all its
clauses are prime implicates of it.

In Subsec. 7.2.2, we use this notion in order to e�ciently construct for-
mulas whose sets of models is a (local) possibility domain.

In the sequel, we will assume that all domains D ✓ {0, 1}n are non-
degenerate, i.e. for any j 2 {1, . . . , n}, it holds that Dj = {0, 1}. This is
a common assumption in Social Choice Theory, which reflects the idea that
voting is nonsensical when there is only one option. Consequently, we will
also assume that the formulas we consider have non-degenerate domains too.

Example 5.3.6. Theorem 5.2.1 directly implies that the truth set of any
a�ne formula is a possibility domain. Consider now the formula �7 = (¬x1_

x2 _ x3) ^ (x1 _ ¬x2 _ ¬x3) of Example 5.3.4. It holds that:

Mod(�7) = {0, 1}3 \ {(1, 0, 0), (0, 1, 1)}.

By checking all 43 di↵erent triples of binary unanimous operators and since
Mod(�7) is not a�ne, one can see that Mod(�7) is an impossibility domain.
On the other hand, let

�9 := (¬x1 _ x2 _ x3)^ (x1 _¬x2 _¬x3)^ (¬x4 _ x5 _ x6)^ (x4 _¬x5 _¬x6).
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Then, we have that:

Mod(�9) = Mod(�7)⇥Mod(�7),

which is a possibility domain, since every Cartesian product is (see Kirousis
et al. [144, Example 2.1]). Finally, for:

�6 = (¬x1 _ x2 _ x3 _ x4) ^ (x1 _ ¬x2 _ ¬x3) ^ (¬x4 _ x5),

of Example 5.3.4 we have that:

Mod(�6) = (Mod(�7)⇥ {(0, 0), (0, 1)}) [
⇣
({0, 1}3 \ {(1, 0, 0)})⇥ {(1, 1)}

⌘

is a possibility domain, since it admits the binary non-dictatorial aggregator
(pr21, pr

2
1, pr

2
1,_,_). ⇧

Nehring and Puppe [175] defined a type of non-dictatorial aggregators
they called locally non-dictatorial. A k-ary aggregator (f1, . . . , fn) is locally
non-dictatorial if fj 6= prkd, for all d 2 {1, . . . , k} and j = 1, . . . , n.

Definition 5.3.8. D is a local possibility domain (lpd) if it admits a locally
non-dictatorial aggregator.

Kirousis et al. [144] introduced these domains as uniform non-dictatorial
domains, both in the Boolean and non-Boolean framework and provided a
characterization for them.

Theorem 5.3.1 (Kirousis et al. [144], Theorem 5.5). D ✓ {0, 1}n is a local
possibility domain if and only if it admits a ternary aggregator (f1, . . . , fn)
such that fj 2 {^

(3),_(3),maj,�}, for j = 1, . . . , n.

Example 5.3.7. It holds that neither Mod(�6) nor Mod(�7) of Example
5.3.4, nor Mod(�9) of Example 5.3.6 are local possibility domains, since ev-
ery aggregator they admit has components that are projection functions. On
the other hand, for:

�10 = (¬x1 _ x2 _ x3) ^ (x1 _ x2 _ ¬x3),

we have that:
Mod(�10) = {0, 1}3 \ {(0, 0, 1), (1, 0, 0)},

that is a possibility domain, since it admits (^,_,^). ⇧
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Chapter 6

Algorithmic Lovász Local
Lemma

In this chapter, we present a probabilistic approach in designing algorithms
that guarantee the existence of and find solutions to CSPs. All that follows is
situated in the variable framework, where we have a set of l random variables
X1, . . . , Xl, defined on a common probability space and taking values in a
finite domain D uniformly at random. Let E1, . . . , Em ✓ D

l be undesirable
events, where sc(Ej) ✓ {1, . . . , l} denotes the scope of Ej, that is the set
of random variables it depends on. Our aim is to find a point in Dn such
that none of the events occurs. The algorithms we present are for some of
the lopsidependent notion presented in Ch. 3, but work also for the simple
dependency condition of intersecting scopes. Our inspiration comes mainly
from the probabilistic Resample algorithm of Moser [171].

In Sec. 6.1 we present an algorithm for the symmetric version of the LLL
under the VDL condition. In Sec. 6.2 and 6.3 we provide algorithms for the,
more general, asymmetric version of the LLL and Shearer’s lemma, under
the d-dependency condition. Finally, in Sec. 6.4 and 6.5 we implement
our technique to find acyclic edge colorings and construct separable codes
respectively.

6.1 Symmetric VDL Lovász Local Lemma

We begin by presenting our algorithm (Subsec. 6.1.1) for the symmetric LLL
and describing a forest structure to depict its executions (Subsec. 6.1.2).
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Finally, we proceed by analyzing it, to obtain a bound to the number of
steps it will perform (Subsec. 6.1.3).

6.1.1 The Algorithm

The notion of lopsidependency we use hereafter in this section is the directed
notion of Definition 3.2.7, which we called VDL. The outwards neighborhood
Nj of a vertex j is thus in terms of GV DL.

To prove Theorem 3.3.4 in our framework, we give a Moser-like algorithm
we call VDL-Alg, algorithm 1 below, and find an upper bound to the prob-
ability that it lasts for at least n rounds, i.e. the number of recursive calls of
Resample.

Algorithm 1 VDL-Alg

1: Sample the variables Xi, i = 1, ..., l and let a = (a1, . . . , al) be the result-
ing assignment.

2: while there exists an event that occurs under the current assignment,
let Ej be the least indexed such event and do

3: Resample(Ej)
4: end while
5: Output current assignment a.

Resample(Ej)

1: Resample the variables in sc(Ej).
2: while some event whose index is in Nj [ {j} occurs under the current

assignment, let Ek be the least indexed such event and do
3: Resample(Ek)
4: end while

It is trivial to see that if VDL-Alg ever stops, it returns an assignment
for which none of the “undesirable” events E1, ..., Em holds. We show that at
each round, VDL-Alg makes some progress that is preserved in subsequent
rounds:

Lemma 6.1.1. Consider an arbitrary call of Resample(Ej). Let S be the
set of events that do not occur at the start of this call. Then, if and when
this call terminates, all events in S [ {Ej} do not occur.
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Proof. Let Ek 2 S [ {Ej}, assume that Resample(Ej) terminates and that
Ek occurs under the current assignment a.

Ek 6= Ej, else the Resample(Ej) call couldn’t have exited the while-loop
of line 2 and thus wouldn’t have terminated.

Consequently, Ek 2 S thus, under the assignment at the beginning of
Resample(Ej), Ek did not occur. Then, it must be the case that at some
point during this resample call, some resampling of the variables caused Ek

to occur.
Let Resample(Es) be the last time Ek became occurring, and thus re-

mained occurring until the end of Resample(Ej). During this call, only the
variables in sc(Es) were resampled. Thus, it is easy to see that k 2 Ns.

Since Ek remains occurring, Resample(Es) couldn’t have exited the
while-loop of line 2 and thus couldn’t have terminated. Consequently, neither
could Resample(Ej). Contradiction.

A root call of Resampleis any call of Resamplemade when executing
line 3 of VDL-Alg and a recursive call of Resample is one made from line
2 of another Resample call. The time complexity of the algorithm will be
given in terms of the number of rounds it will need to execute.

By Lemma 6.1.1, we know that the events of the root calls of Resample
are pairwise distinct. Therefore:

Corollary 6.1.1. There are at most m Resample root calls in any execution
of VDL-Alg.

6.1.2 Forests

To depict an execution of VDL-Alg, we will use rooted forests, i.e. forests
of trees such that each tree has a special node designated as its root.

The nodes of rooted forests are labeled by the events Ej, j = 1, ...,m, with
repetitions of the labels allowed and they are ordered as follows: children of
the same node are ordered as their labels are; nodes in the same tree are
ordered by preorder (respecting the ordering between siblings) and finally if
the label on the root of a tree T1 precedes the label of the root of T2, all
nodes of T1 precede all nodes of T2.

The number of nodes of a forest F is denoted by |F|.

Definition 6.1.1. A labeled rooted forest F is called feasible if the following
conditions hold:
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1. The labels of the roots of F are pairwise distinct.

2. If u, v are siblings (have a common parent), then the labels of u, v are
distinct.

3. Let Ei, Ej be the labels of nodes u, v respectively, where u is a child of
v. Then, i 2 Nj [ {j}.

Now consider an execution of M-Algorithm that lasts for n rounds. We
construct in a unique way, depending on the rounds, a feasible forest with n
nodes as follows:

1. The forest under construction will have as many roots as root calls of
Resample. These roots will be labeled by the event of the correspond-
ing root call.

2. A tree that corresponds to a root call Resample(Ej) will have as many
non-root nodes as the number of recursive calls of Resample within
Resample(Ej). The non-root nodes will be labeled by the events of
those recursive calls.

3. The non-root nodes are organized within the tree with root-label Ej

so that a node that corresponds to a call Resample(Ek) is parent to
a root that corresponds to a call Resample(El), if Resample(El)
appears immediately on top of Resample(Ek) in the recursive stack
that implements the root call Resample(Ej).

It is straightforward to verify, by inspecting the succession of steps of
algorithm 1 in an execution, and making use of Lemma 6.1.1, that a forest
constructed as above from the consecutive rounds of the execution of VDL-
Alg, is indeed a feasible forest in the sense of Definition 6.1.1. It is not true
however that every feasible forest corresponds to the consecutive rounds of
some execution of VDL-Alg. For example consider a feasible forest where a
node w has a child u and a descendent v, such that: (i) v is not a descendent
of u and (ii) u and v have the same label (thus v cannot also be a child of
w). By Lemma 6.1.1, this forest could never be constructed as above.

Definition 6.1.2. The witness forest of an execution of algorithm 1 is the
feasible forest constructed by the process described above. Given a feasible
forest F with n nodes, we denote by WF the event that in the first n rounds
of VDL-Alg, F is constructed. This implies that VDL-Alg lasts for at
least n rounds.
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We also set:

PN := Pr

"
[

F :|F|=N

WF

#
=

X

F :|F|=N

Pr
h
WF

i
, (6.1)

where the last equality holds, because the events WF are disjoint. Obviously
now:

Pr[M-Algorithm lasts for at least n rounds] = Pn. (6.2)

6.1.3 Analysis of VDL-Alg

To find an upper bound for Pn, consider the following validation algorithm,
which we call ValAlg:

Algorithm 2 ValAlg

Input: Feasible forest F with labels Ej1 , . . . , Ejn .

1: Sample the variables Xi, i = 1, ..., l.
2: for s=1,. . . ,n do
3: if Ejs does not occur under the current assignment then
4: return failure and exit.
5: else
6: Resample the variables in sc(Ejs)
7: end if
8: end for
9: return success.

The validation algorithm ValAlg, takes as input a feasible forest F

with n nodes, labeled with the events Ej1 , ..., Ejn (ordered as their respective
nodes) and outputs a Boolean value success or failure.

Intuitively, with input a feasible forest with labels Ej1 , ..., Ejn , ValAlg
initially generates a random sampling of the variables, then checks the current
event and, if it holds, resamples its variables and goes to the next event. If the
algorithm manages to go through all events, it returns success, otherwise,
at the first event that does not hold under the current assignment, it returns
failure and stops. Note that whether there are occurring events under the
last assignment generated by ValAlg is irrelevant to its success of failure.

A round of VDL-Alg-Val is the duration of any for loop executed at
lines 2-8.
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We first give a result about the probability distribution of the assignment
to the variables Xi during the execution of ValAlg.

Lemma 6.1.2 (Randomness Lemma). At the beginning of any round of the
algorthm 2, the distribution of the current assignment of values to the vari-
ables Xi, i = 1, ..., l is as if all variables have been sampled anew. Therefore
the probability of any event occurring at such an instant is bounded from
above by p.

Proof. The result follows from the fact that if at the previous iteration of
the for loop of line 2 the event Ejs has been checked, only the values of the
variables in sc(Ejs) have been exposed, and these are resampled anew.

Definition 6.1.3. Given a feasible forest F with n nodes, we say that F is
validated by ValAlg if the latter returns success on input F . The event
of this happening is denoted by VF . We also set:

P̂n =
X

F : |F|=n

Pr[VF ]. (6.3)

We now claim:

Lemma 6.1.3. For any feasible forest F , the event WF implies the event
VF , therefore:

Pn  P̂n. (6.4)

Proof. Indeed, if the random choices made by an execution of VDL-Alg
that produces as witness forest F are made by ValAlgon input F , then
clearly ValAlg will return success.

Lemma 6.1.4. For any feasible forest F with n nodes, Pr[VF ] is at most pn.

Proof. Immediate corollary of the Randomness Lemma 6.1.2.

Therefore to find an upper bound for P̂n =
P

F : |F|=n Pr[VF ], it su�ces to
find an upper bound on the number of feasible forests with n nodes, a fairly
easy exercise in enumerative combinatorics, whose solution we outline below.

First to any feasible forest F with n nodes we add new leaves to get a
new labeled forest F

0 (perhaps not feasible anymore) comprising of m full
(d+1)-ary trees whose internal nodes comprise the set of all nodes (internal
or not) of F (recall m is the total number of events E1, . . . , Em). Specifically,
we perform all the following additions of leaves:
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1. Add to F new trees, each consisting of a single root/leaf labeled with
a suitable event, so that the set of labels of all roots of F 0 is equal to
the the set of all events E1, . . . , Em. In other words, the labels of the
added roots/leaves are the events missing from the list of labels of the
roots of F .

2. Hang from all nodes (internal or not) of F new leaves, labeled with
suitable events, so that the set of the labels of the children in F

0 of
a node u of F labeled with Ej is equal to the set of the events in
Nj [ {j}. In other words, the labels of the new leaves hanging from
u are the events in Nj [ {j} that were missing for the labels of the
children of u in F .

3. Add further leaves to all nodes u of F so that every node of F (internal
or not in F) has exactly d+1 children in F

0; label all these leaves with
the first (d + 1) � |Nj [ {j}| events from the list E1, . . . , Em, so that
labels of siblings are distinct, and therefore siblings can be ordered by
the index of their labels.

Notice first that indeed, the internal nodes of F 0 comprise the set of all
nodes (internal or not) of F .

Also, the labels of the nodes of a labeled forest F 0 obtained as above are
uniquely determined from the rooted planar forest structure of F 0 when labels
are ignored, but the ordering of the nodes imposed by them is retained (a
forest comprised of rooted trees is called rooted planar if the roots are ordered
and if the children of each internal node are ordered). Indeed, the roots of F 0

are labeled by E1, . . . , Em; moreover, once the the label of an internal node
of F 0 is given, the labels of its children are distinct and uniquely specified by
the steps of the construction above.

Finally, distinct F give rise to distinct F
0. By the above remarks, to

find an upper bound to the number of feasible forests with n nodes (internal
or not), it su�ces to find an upper bound on the number of rooted planar
forests with N internal nodes comprised of m full (d + 1)-ary rooted planar
trees.

It is well known that the number tn of full (d+1)-ary rooted planar trees
with n internal nodes is equal to 1

dn+1

�
(d+1)n

n

�
, see e.g. [193, Theorem 5.13].

Now by Stirling’s approximation easily follows that for some constant A > 1,
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depending only on d, we have:

tN < A

 ⇣
1 +

1

d

⌘d
(d+ 1)

!N

. (6.5)

Also obviously the number fn of rooted planar forests with n internal nodes
that are comprised of m (d+ 1)-ary rooted planar trees is given by:

fn =
X

n1+···+nm=n
n1,...,nm�0

tn1 · · · tnm . (6.6)

From (6.5) and (6.6) we get:

fn < (An)m
 ⇣

1 +
1

d

⌘d
(d+ 1)

!n

< (An)m(e(d+ 1))n. (6.7)

So by Lemma 6.1.3, equation (6.3), Lemma 6.1.4 and equation (6.7) we get
the following theorem, which is essentially a detailed restatement of Th.
3.3.4:

Theorem 6.1.1. Assuming p and d are constants such that
⇣
1 + 1

d

⌘d
p(d +

1) < 1, (and therefore if ep(d + 1)  1), there exists an integer N , which
depends linearly on m, and a constant c 2 (0, 1) (depending on p and d) such
that if n/logn � N then the probability that VDL-Alg lasts for at least n
rounds is < cn.

Clearly, when VDL-Alg stops we have found an assignment such that
none of the events occurs. Since, by the above Theorem, this happens with
probability close to 1 for large enough n, Th. 3.3.4 follows. It is also straight-
forward to observe that with the same exact arguments, we can prove Th.
6.1.1 for Gs and GMT , since GV DL is sparser than both these dependency
graphs.

6.2 Asymmetric d-dependency LLL

In the approach of the previous section (and in both approaches by Moser
[171] and by Moser and Tardos [172]) we search for an assignment that avoids
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the undesirable events by consecutively resampling the variables in the scopes
of currently occurring events, by giving priority, when choosing the next
event whose variables will be resampled, to the occurring events that belong
to the extended neighborhood in the dependency graph of the last resampled
event (as it was done in Moser [171]). Thus the failure of the algorithm to
return a correct answer within n steps is depicted by a forest structure, which
means, in some sense, that failure to produce results, will create, step after
random step, a structure out of randomness, something that cannot last for
long, lest the second principle of thermodynamics is violated. This is, very
roughly, the intuition behind the entropic method (see Tao [209]. However,
as we stressed, we analyze the algorithm by direct computations instead of
referring to entropy. One key idea in this section, is to give absolute priority,
when searching for the next event to be resampled, to the event itself, if
it still occurs, in order to be able to utilize the d-dependency graph of the
events.

Our aim is to prove Th. 3.3.5 for Gd. It is straightforward to see that
the same arguments work for Gs, GMT and GV DL. Also, since Th. 3.3.4 is
a special case of Th. 3.3.5, we also obtain a symmetric directed LLL. We
begin by stating our algorithm (Subsec. 6.2.1) and we then analyze its time
complexity (Subsec. 6.2.2).

6.2.1 The Algorithm

dd-Alg, algorithm 6.2.1 below, successively produces random assignments,
by resampling the variables in the scopes of occurring events, until it finds
one under which no undesirable event occurs. When the variables in the
scope of an occurring event Ej are resampled, the algorithm checks if Ej still
occurs (lines 2 and 3 of the Resample routine) and, only in case it does not,
looks for occurring events in Ej’s neighborhood in Gd. Finally, if and when
all events in Ej’s neighborhood cease occurring, the algorithm looks for still
occurring events elsewhere.

Obviously, if and when dd-Alg stops, it produces an assignment to the
variables for which none of the events occurs. Our aim now is to bound the
probability that this algorithm lasts for at least n steps. We count as a step
an execution of the variable resampling command Resample in line 1 of the
subroutine Resample.

Everywhere below the asymptotics are with respect to n, the number of
steps, whereas the number l of variables and the number m of events are
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Algorithm 3 dd-Alg

1: Sample the variables Xi, i = 1, ..., l and let a be the resulting assignment.
2: while there exists an event that occurs under the current assignment,

let Ej be the least indexed such event and do
3: Resample(Ej)
4: end while
5: Output current assignment a.

Resample(Ej)

1: Resample the variables in sc(Ej).
2: if Ej occurs then
3: Resample(Ej)
4: else
5: while some event whose index is in Nj occurs under the current

assignment,
let Ek be the least indexed such event and do

6: Resample(Ek)
7: end while
8: end if

taken to be constants. The rounds, root and recursive calls are defined as in
Subsec. 6.1.1. Again, we have a corresponding lemma to Lemma 6.1.1.

Lemma 6.2.1. Consider an arbitrary call of Resample(Ej). Let Sj be the
set of events that do not occur at the start of this call. Then, if and when
this call terminates, all events in Sj [ {Ej} do not occur.

Proof. Without loss of generality, say that Resample(Ej) is the root call of
Resample, suppose it terminates and that a is the produced assignment of
values. Furthermore, suppose that Ek 2 Sj [ {Ej} and that Ek occurs under
a.

Let Ek 2 Sj. Then, under the assignment at the beginning of the main
call, Ek did not occur. Thus, it must be the case that at some point
during this call, a resampling of some variables caused Ek to occur. Let
Resample(Es) be the last time Ek became occurring, and thus remained
occurring until the end of the main call.

Since Ek did not occur at the beginning of Resample(Es), there is an
assignment of values a such that Es, Ek occur. Furthermore, for the main
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call to have terminated, Resample(Es) must have terminated too. For this
to happen Resample(Es) must have exited lines 2 and 3 of its execution.
During this time, only variables in sc(Es) were resampled and at the end, Es

did not occur anymore. Thus, Ek is in the neighborhood of Es. But then, by
line 5 of the Resample routine, Resample(Es) couldn’t have terminated
and thus, neither could the main call. Contradiction.

Thus Ek = Ej. Since under the assignment at the beginning of the main
call, Ej occurred, by lines 2 and 3 of the Resample routine, it must be
the case that during some resampling of the variables in sc(Ej), Ej became
non-occurring. The main call could not have ended after this resampling,
since Ej occurs under the assignment b produced at the end of this call.
Then, there exists some r 2 Nj such that Resample(Er) is the subsequent
Resample call. Thus Ej 2 Sr and we obtain a contradiction as in the case
where Ek 2 Sj above.

An immediate corollary of Lemma 6.2.1, is that the events of the root
calls of Resample are pairwise distinct, therefore there can be at most m
such root calls in any execution of dd-Alg.

Feasible forests, along with the event WF , are defined as in Subsec. 6.1.2.
As it happened with VDL-Alg, dd-Alg also introduces various depen-
dencies that render the probabilistic calculations essentially impossible. For
example, suppose that the i-th node of a witness forest F is labeled by Ej

and its children have labels with indices in Nj. Then, under the assignment
produced at the end of the i-th round of this execution, Ej does not occur.

We will use algorithm 2, introduced as ValAlg in Subsec. 6.1.3. Recall
that VF is the event that ValAlg is successful on input F . Lemma 6.1.3
again holds for the same reasons, where Pn now denotes the probability that
dd-Alg lasts for at least n steps.

From now on, we will use the following notation: n = {n1, . . . ,m}, where
n1, . . . , nm � 0 are such that

Pm
i=1 ni = n and n � (1)j := (n1, . . . , nj �

1, . . . , nm). In what follows, we prove the following version of Th. 3.3.5:

Theorem 6.2.1 (Algorithmic directed LLL 3.3.5 ). Suppose that there exist
�1,�2, . . . ,�m 2 (0, 1), such that

Pr(Ej)  �j

Y

i2Nj

(1� �i),

for all j 2 {1, . . . ,m}, where Nj denotes the outwards neighborhood of Ej in
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the d-dependency graph. Then, the probability that dd-Alg executes for at
least n rounds is inverse exponential in n.

Proof. We may assume, without loss of generality, that

Pr[Ej] < �j

Y

i2Nj

(1� �i), for all j 2 {1, . . . ,m},

i.e. that the hypothesis is given in terms of a strict inequality. Indeed, we can
otherwise consider an event B, such that B and E1, . . . , Em, are mutually
independent, where Pr[B] = 1 � �, for arbitrary small � > 0. We can now
perturb the events a little, by considering e.g. Ej \ B, j = 1, . . . ,m. As
a consequence, we can also assume without loss of generality that for some
other small enough ✏ > 0, we have that Pr[Ej]  (1� ✏)�j

Q
i2Nj

(1� �i).

By Lemma 6.1.3, it su�ces to prove that P̂n is inverse exponential in n.
Specifically, we show that P̂n  (1� ✏)n.

6.2.2 Recurrence for dd-Alg

Let Qn,j be the probability that ValAlg is successful when started on a
tree whose root is labeled with Ej and has

Pm
i=1 ni = n nodes labeled with

E1, . . . , Em. Observe that to obtain a bound for P̂n we need to add over all
possible forests with n nodes in total. Thus, it holds that:

P̂n 

X

n

X

n1+...+nm=n

⇣
Qn1,1 · · ·Qnm,m

⌘
.

Our aim is to show that Qn,j is exponentially small to n, for any given
sequence of n and any j 2 {1, . . . ,m}. Thus, by ignoring polynomial in n
factors, the same will hold for P̂n (recall that the number of variables and
the number of events are considered constants, asymptotics are in terms of
the number of steps n only).

Let N+
j := Nj[{j}, and assume that, for each j 2 {1, . . . ,m}, |N+

j | = kj.
Observe now that Qn,j is bounded from above by a function, denoted again
by Qn,j (to avoid overloading the notation), which follows the recurrence:

Qn,j = Pr[Ej] ·
X

n1+···+nkj=n�(1)j

⇣
Qn1,j1 + · · ·Qnkj ,jkj

⌘
, (6.8)
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with initial conditions Qn,j = 0 when nj = 0 and there exists an i 6= j such
that ni � 1; and with Q0,j = 1, where 0 is a sequence of m zeroes.

To solve the above recurrence, we introduce, for j = 1, . . . ,m, the multi-
variate generating functions :

Qj(t) =
X

n:nj�1

Qn,jt
n, (6.9)

where t = (t1, . . . , tm), tn := tn1
1 · · · tnm

m .
By multiplying both sides of (6.8) by tn and adding all over suitable n,

we get the system of equations Q:

Qj(t) = tjfj(Q), (6.10)

where, for x = (x1, . . . , xm) and j = 1 . . . ,m:

fj(x) = (1� ✏) · �j ·

 
Y

i2Nj

(1� �i)

!
·

 
Y

i2N+
j

(xi + 1)

!
. (6.11)

To solve the system, we will directly use the result of Bender and Richmond
in [19] (Theorem 2). Let g be any m-ary projection function on some of the
m coordinates. In the sequel we take g := prms , the (m)-ary projection on
the s-th coordinate. Let also B be the set of trees B = (V (B), E(B)) whose
vertex set is {0, 1, . . . ,m} and with edges directed towards 0. By [19], we
get:

[tn]g((Q)(t)) =
1Qm

j=1 nj

X

B2B

[xn�1]
@(g, fn1

1 , . . . , fnm
m )

@B
, (6.12)

where the term for a tree B 2 B is defined as:

[xn�1]
Y

r2V (B)

( 
Y

(i,r)2E(B)

@

@xi

!
fnr
r (x)

)
, (6.13)

where r 2 {0, . . . ,m} and fn0
0 := g.

We consider a tree B 2 B such that (6.13) is not equal to 0. Thus,
(i, 0) 6= E(B), for all i 6= s. On the other hand, (s, 0) 2 E(B), lest vertex 0
is isolated, and each vertex has out-degree exactly one, lest a cycle is formed
or connectivity is broken. From vertex 0, we get @prms (x)

@xs
= 1. Since our aim

is to prove that P̂n is exponentially small in n, we are are interested only
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in factors of (6.13) that are exponential in n, and we can thus ignore the
derivatives (except the one for vertex 0), as they introduce only polynomial
(in n) factors to the product. Thus, we have that (6.13) is equal to the
coe�cient of xn�1 in:

mY

j=1

(
(1� ✏)nj · �

nj

j ·

 
Y

i2Nj

(1� �i)
nj

!
·

 
Y

i2N+
j

(xi + 1)nj

!)
. (6.14)

We now group the factors of (6.14) according to the i’s. We have already
argued each vertex i has out-degree 1. Thus, the exponent of the term xi+1
is ni +

P
j:i2Nj

nj and the product of (6.14) is equal to:

mY

i=1

(
(1� ✏)ni · �ni

i · (1� �i)
P

j:i2Nj
nj

· (xi + 1)
ni+

P
j:i2Nj

nj

)
. (6.15)

Using the binomial theorem and by ignoring polynomial factors, we get that
the coe�cient of xn�1 in (6.15) is:

mY

i=1

(
(1� ✏)ni · �ni

i · (1� �i)
P

j:i2Nj
nj

·

✓
ni +

P
j:i2Nj

nj

ni

◆)
. (6.16)

By expanding (�i + 1� �i)
ni+

P
j:i2Nj

nj , we get that (6.16) is at most:

mY

i=1

(1� ✏)ni = (1� ✏)
Pm

i=1 ni = (1� ✏)n. (6.17)

Thus, P̂n is inverse exponential in n.

From Th. 6.2.1, the existential Th. 3.3.5 immediately follows.

6.3 Shearer’s lemma

We now turn our attention to Shearer’s lemma. The first algorithmic proof for
general probability spaces was given by Kolipaka and Szegedy [150]. Harvey
and Vondrák [121] proved a version of the lemma for their lopsided association
graphs (again in the generalized framework).
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Here, we apply it to the underlying undirected graph of the d-dependency
graph we introduced in Section 3.1. Note that as Harris [118] and He et
al. [123], Shearer’s lemma is tight to the level of generality to which it ap-
plies. Since our work is situated in the variable framework, the lopsidepen-
dent version of the lemma we provide is only a necessary condition for the
existence of a solution. As in the previous sections, we give a forward argu-
ment that directly leads to an exponentially small bound of the probability
of the algorithm lasting for at least n steps.

First, we provide some terminology and the main algorithm that finds the
sought after point in the probability space (Subsec. 6.3.1). Then, we design
two new validation algorithms and show how their executions are related
probabilistically with that of the main algorithm (Subsec. 6.3.2). Finally, we
bound the probability of the validation algorithm to succeed by a recurrence
relation which we subsequently solve (Subsec. 6.3.3).

6.3.1 The MaxSetRes algorithm

Let E1, . . . , Em be events, whose vector of probabilities is p = (p1, . . . , pm),
that is Pr[Ej] = pj 2 (0, 1), j = 1, . . . ,m. Recall that Gsd is a graph on m
vertices, where we associate each event Ej with vertex j, j = 1, . . . ,m and
where

E = {{i, j} | either Ej is d-dependent on Ei or Ei is d-dependent on Ej}.

A subset I ✓ {1, . . . ,m} of the graph’s vertices is an independent set
if there are no edges between its vertices. Abusing the notation, we will
sometimes say that an independent set I contains events (instead of indices
of events). Let I(G) denote the set of independent sets of G. For any
I 2 I(G), let N(I) :=

S
j2I Nj be the set of neighbors of the vertices of I.

Following Kolipaka and Szegedy [150], we say that I covers J if J ✓ I[N(I).
A multiset is usually represented as a couple (A, f), where A is a set,

called the underlying set, and f : A 7! N�1 is a function, with f(x) denoting
the multiplicity of x, for all x 2 A. In our case, the underlying sets of
multisets are always subsets of {1, . . . ,m}. Thus, to make notation easier to
follow, we use couples (I, z), where I ✓ {1, . . . ,m} and z = (z1, . . . , zm) is
an m-ary vector, with zj 2 N denoting the multiplicity of Ej in I. Note that
zj = 0 if and only if j /2 I, j = 1, . . . ,m.



180 CHAPTER 6. ALGORITHMIC LOVÁSZ LOCAL LEMMA

Algorithm 4 MaxSetRes.

1: Sample the variables Xi, i = 1, ..., l and let a be the resulting assignment.
2: t := 1, It := ;, z̄t := (0, . . . , 0).
3: repeat
4: while there exists an event Ej /2 It [ N(It) that occurs under the

current assignment,
let Ej be the least indexed such event and do

5: It := It [ {j}, c := 0, ztj := 1.
6: while Ej occurs do
7: Resample the variables in sc(Ej).
8: c := c+ 1.
9: end while.
10: if there exists an occurring event that is not in It [N(It) then
11: ztj := c+ 1.
12: else if there exists an occurring event not in Nj then
13: t := t+ 1, It := ;.
14: ztj := c.
15: else
16: for s = 1, . . . , c do
17: It+s := {Ej}.
18: end for
19: t := t+ c+ 1, It := ;.
20: end if
21: end while
22: until It = ;.
23: Output current assignment a.

Our aim is to algorithmically prove Th. 3.3.6 for Gsd. It is straightforward
to observe that the proof works for GMT and Gs too, but in those cases it
could be substantially simplified. The algorithm we use is a variation of
the Maximal Set Resample algorithm, designed by Harvey and Vondrák
in [121], which is a slowed down version of the algorithm in [150]. The
algorithm constructs multisets whose underlying sets are independent sets of
G, by selecting occurring events that it resamples until they do not occur
anymore.

A step of MaxSetRes is a single resampling of the variables of an event
in line 7, whereas a phase is an iteration of repeat at lines 3–22, except from
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the last iteration that starts and ends with It = ;. Phases are not nested.
During each phase, there are at most m repetitions of the while–loop of lines
6–9, where m is the number of events (recall that the number of variables
n, and the number of events m are considered to be constants). During
each phase, a multiset (It, zt) is created, where the underlying set It is an
independent set of G. There are two scenarios that can happen at the end of a
phase. The first is by line 13, where MaxSetRes creates a new independent
set, containing c copies of the last event it resampled at lines 6–9. The second
is by lines 16–19, where MaxSetRes proceeds c phases at once, creating
c singleton sets, containing only the event it lastly resampled at lines 6–9.
Lines 10–20 exist for technical reasons that will become apparent later.

Note that, by lines 4 and 22, if and when MaxSetRes terminates, it
produces an assignment of values under which none of the events occurs.

We now proceed with some results concerning the execution of MaxSe-
tRes. Note that it refers to the underlying independent sets of the multisets
created at each phase.

Lemma 6.3.1. It covers It+1, for all t 2 {1, . . . , n� 1}.

Proof. Let Ej be an event in It+1. Then, at some point during phase t + 1,
Ej was occurring. We will prove below that Ej occurs also at the beginning
of phase t+ 1. This will conclude the proof, since if Ej 62 N(It)[ It, then at
the moment when phase It+1 was to start, the algorithm instead of starting
It+1 would opt to add Ej to It, a contradiction.

Assume that It+1 6= {Ej}, lest we have nothing to prove. To prove that
Ej occurs at the beginning of phase t + 1, assume towards a contradiction
that it does not. Then it must have become occurring during the repeated
resamplings of an event Er introduced into It+1.

Therefore, under the assignment when Er was selected, Er occurred and
Ej did not. Furthermore, during the repeated resamplings of Er, only vari-
ables in sc(Er) had their values changed, and under the assignment at the
end of these resamplings, Er ceases occurring and Ej occurs. By Definition
3.2.8, Ej is d-dependent on Er and thus Ej 2 N(It+1). By lines 4, 10 and
12, Ej could not have been selected at any point during round t + 1. This
concludes the proof.

Consider the following definition:
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Definition 6.3.1 (Kolipaka and Szegedy [150]). A stable sequence of events
is a sequence of non-empty independent sets I = I1, . . . , In such that It covers
It+1, for all t 2 {1, . . . , n� 1}.

Stable sequences play the role of witness structures in the present frame-
work. By Lemma 6.3.1, the underlying sets of the sequence of multisets
MaxSetRes produces in an execution that lasts for at least n phases, is a
stable sequence of length n.

We now prove:

Theorem 6.3.1 (Algorithmic Shearer’s lemma 3.3.6 for Gds). If it holds that
for all I 2 I(G):

qI(G,p) =
X

J2I(G): I✓J

(�1)|J\I|
Y

j2J

pj > 0,

then the probability ⇧n that MaxSetRes lasts for at least n phases is ex-
ponentially small, i.e. for some constant c < 1, ⇧n is at most cn, ignoring
polynomial factors.

Again, Th. 3.3.6 follows immediately from Th. 6.3.1.

Proof. Let z = (z1, . . . , zn) be an (n ⇥ m)-matrix, whose rows are m-ary
vectors zt = (zt1, . . . , z

t
m) of non-negative integers, t = 1, . . . , n. Let also

(I, z) = (I1, z
1), . . . , (In, z

n)

be a sequence of multisets, whose underlying sequence I is a stable sequence.
We denote by |(I, z)| its length, i.e. the number of pairs (It, z̄t) it contains. If
⇧(I, z) is the probability that an execution of MaxSetRes produced (I, z)
(which can be zero), it is easy to see that:

⇧n =
X

(I,z):|(I,z)|=n

⇧(I, z), (6.18)

where the sum is over all possible pairs of stable sequences I of length n and
vectors z.
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6.3.2 The validation algorithms

To bound the rhs of (6.18), consider the validation algorithm MaxSetVal
below. MaxSetVal, on input a stable sequence I = I1, . . . , In, proceeds
to check each event contained in each independent set. If this event does
not occur, it fails; else it resamples the variables in its scope. Note that
the success or failure of this algorithm has nothing to do with finding an
assignment such that none of the events occur.

Algorithm 5 MaxSetVal.

Input: Stable sequence I = I1, . . . , In.

1: Sample the variables Xi, i = 1, ..., l.
2: for t=1,. . . ,l do
3: for each event Ej of It do
4: if Ej does not occur under the current assignment then
5: return failure and exit.
6: else
7: Resample the variables in sc(Ej)
8: end if
9: end for
10: end for
11: return success.

A phase of MaxSetVal is any repetition of lines 2–10. Let ⇧̂(I) be the
probability that MaxSetVal is successful on input I and:

⇧̂n :=
X

I:|I|=n

⇧̂(I). (6.19)

To obtain our result, we now proceed to show: (i) that ⇧n  ⇧̂n and (ii)
that P̂n is inverse exponential to n. For the former, consider the validation
algorithm MultiSetVal, algorithm 6, below.

MultiSetVal takes as input a sequence (I, z) of multisets whose un-
derlying sequence is stable. It then proceeds, for each multiset, to check if
its events occur under the current assignment it produces. If not it fails, else
it proceeds. When the last copy of an event inside a multiset, apart from the
last event, is resampled, it checks if that event still occurs (line 11). If it does,
the algorithm fails. If it manages to go through the whole sequence without
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Algorithm 6 MultiSetVal.

Input: (I, z) = (I1, z1), . . . , (In, zn), It = {Et1 , . . . , Etkt
}, t = 1, . . . , n.

1: Sample the variables Xi, i = 1, ..., l.
2: for t = 1, . . . , n do
3: for s = 1, . . . , kt � 1 do
4: for r = 1, . . . , ztts do
5: if Ets does not occur under the current assignment then
6: return failure and exit.
7: else
8: Resample the variables in sc(Ets)
9: end if

10: end for
11: if Ets occurs under the current assignment then
12: return failure and exit.
13: end if
14: end for
15: if Etkt

does not occur under the current assignment then
16: return failure and exit.
17: else
18: Resample the variables in sc(Etkt

)
19: end if
20: end for
21: return success.

failing, it succeeds. Note again that the success or failure of MultiSetVal
has nothing to do with obtaining an assignment such that none of the events
holds.

We call a phase of MultiSetVal each repetition of lines 2–20. Let also
P̃(I, z) be the probability that MultiSetVal succeeds on input (I, z). We
prove two lemmas concerning MultiSetVal.

Lemma 6.3.2. For each sequence (I, z), ⇧(I, z)  P̃(I, z). Thus:

⇧n 

X

(I,z):|(I,z)|=n

P̃(I, z) (6.20)

Proof. It su�ces to prove the first inequality, as the result is then derived
by (6.18). Note that the last event in every multiset that MaxSetRes
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produces always has multiplicity 1 and that, furthermore, it is not required
to be non-occurring after resamping it, in contrast with all the other events
in the multiset. It is now straightforward to notice that if MultiSetVal
makes the same random choices as MaxSetRes did when it created any
sequence (I, z), MultiSetVal will succeed on input (I, z).

Lemma 6.3.3. For any (I, z), it holds that:
X

(I,z):|(I,z)|=N

P̃(I, z) =
X

I:|I|=n

P̂(I). (6.21)

Proof. We will rearrange the sum in the lhs of (6.21). Assume that the
stable sequences of length n in G are arbitrarily ordered as I1, . . . , Is. Then,
it holds that:

X

(I,z):|(I,z)|=n

P̃(I, z) =
X

z=(z̄1,...,z̄n)

P̃(I1, z) + · · ·+
X

z=(z̄1,...,z̄n)

P̃(Is, z). (6.22)

Let I = (I1, . . . , In) be a stable sequence and consider the term
X

z=(z̄1,...,z̄n)

P̃(I, z)

of (6.22) corresponding to I. It su�ces to show that is is equal to P̂(I).
Assume again that It = {Et1 , . . . , Etkt

} and that z̄t = (zt1, . . . , z
t
m), where

ztj � 0, j = 1, . . . ,m, t = 1, . . . , n. Finally, set:

P̃(It, z̄
t) := Pr[Et1 ]

zt1 Pr[Et1 \ Et2 ] Pr[E2]
zt2�1

· · ·

Pr[Etkt�1]
ztkt�1 Pr[Etkt�1 \ Etkt

].

Then, it holds that:

X

z=(z̄1,...,z̄n)

P̃(I, z) =
X

z=(z1,...,zn)

nY

t=1

P̃(It, z
t). (6.23)

By Lemma 3.2.6, it holds that all the factors Pr[E \ E 0] that appear in
(6.23) are less or equal than Pr[E] · Pr[E 0]. Now, by factoring out:

P̂(I) =
nY

t=1

 
Pr[Et1 ] · · ·Pr[Etkt

]

!
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from the rhs of (6.23) and by rearranging the terms according to the sets It,
we get:

X

z=(z̄1,...,z̄n)

P̃(I, z) = P̂(I) ·
nY

t=1

 
X

zt=(zt1,...,z
t
kt
)

Pr[Et1 ]
zt1�1(1� Pr[Et1 ]) · · ·

Pr[Etkt�1]
ztkt�1�1(1� Pr[Etkt�1

])

!
. (6.24)

The proof is now complete, by noticing that all the factors, except from P̂(I)
in the rhs of (6.24) are equal to 1.

Thus, by (6.20), (6.21) and (6.19), we get:

⇧n  P̂n. (6.25)

6.3.3 The stable set matrix

What remains is to show that P̂n is inverse exponential to n. Towards this,
for n � 1 let

P̂n,I =
X

I:|I|=N
I1=I

P̂(I), (6.26)

where I1 is its first term of I.
Observe now that, for any independent set I, P̂1,I =

Q
j2I pj. Thus we

obtain the following recursion:

P̂N+1,I =

(Q
j2I pj

⇣P
J :I covers J P̂N,J

⌘
if N � 1,

Q
j2I pj if N = 0.

(6.27)

If the class of all non-empty independent sets is {I1, . . . , Is}, following again
the terminology of [150], we define the stable set matrix M , as an s ⇥ s
matrix, whose element in the i-th row and j-th column is

Q
j2I pj if I covers

J and 0 otherwise. Furthermore, let qn = (P̂n,I1 , . . . , P̂n,Is). Easily, (6.27) is
equivalent to:

qn = Mqn�1,

thus
qn = Mn�1q1. (6.28)
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Let k ·k1 be the 1-norm defined on Rs. It is known that any vector norm,
and thus 1-norm too, yields a norm for square matrices called the induced
norm [126] as follows:

kMk1 := sup
x 6=0

kMxk1
kxk1

�
kMq1k1
kq1k1

. (6.29)

By (6.28) and (6.29), we have that:

kqnk1 = kMn�1q1k1  kMn�1
k1 · kq1k1. (6.30)

Note now that:

P̂n 

sX

i=1

P̂n,Ii = kqnk1 = kMn�1
k1kq1k1. (6.31)

Since kq1k1 is a constant, it su�ces to show that kMn�1
k1 is exponentially

small in n. Let ⇢(M) be the spectral radius of M [126], that is:

⇢(A) := max{|�| | � is an eigenvalue of A}.

By Gelfand’s formula (see again [126]) used for the induced matrix norm
k · k1, we have that:

⇢(M) = lim
n!1

kMn
k
1/n
1 . (6.32)

Furthermore, in [150] (Theorem 14), it is proved that the following are equiv-
alent :

1. For all I 2 I(G) : qI(G, p̄) > 0.

2. ⇢(M) < 1.

Using (1 ) 2) we can select an ✏ > 0 such that ⇢(M) + ✏ < 1. Then, by
(6.32), we have that there exists a n0 (depending only on ✏,M) such that,
for n � n0: kMn�1

k1  (⇢(M) + ✏)n�1, which, together with (6.31), gives us
that P̂n is exponentially small in n.

Thus, by the analysis above, we get that there is a constant c < 1 (de-
pending on kq1k, p and ⇢(M) + ✏) such that ⇧n  cn, for n � n0 and by
ignoring polynomial factors. This concludes the proof.
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6.4 A new bound on Acyclic Edge Coloring

In this section we show that 2� � 1 colors su�ce to acyclicaly color the
edges of a graph with maximum degree �. In Subsec. 6.4.1 we present our
main algorithm and in Subsec. 6.4.2 we analyze its execution time. Then,
in Subsec. 6.4.3 we provide the necessary validation algorithm to make our
probabilistic analysis feasible and, finally, in Subsec. 6.4.4, we provide and
solve a recurrence relation that bounds the number of phases of our main
algorithms.

6.4.1 Main Algorithm

We first present below algorithm EdgeColor.

Algorithm 7 EdgeColor

1: for each e 2 E do
2: Choose a color for e from the palette, independently for each e, and

u.a.r. (not caring for properness)
3: end for
4: while there is an edge contained in a cycle of even length � 6 and having

homochromatic edges of the same parity, let e be the least such
edge and C be the least such cycle and do

5: Recolor(e, C)
6: end while
7: return the current coloring

Recolor(e, C), where C = C(e) = {e = eC1 , . . . , e
C
2k}, k � 3.

1: for i = 1, . . . , 2k � 2 do
2: Choose a color for each eCi independently and u.a.r. (not caring for

properness)
3: end for
4: while there is an edge in {eC1 , . . . , e

C
2k�2} contained in a cycle of even

length � 6 and having homochromatic edges of the same parity,
let e0 be the least such edge and C 0 the least such cycle and do

5: Recolor(e0, C 0)
6: end while

Notice that EdgeColor may not halt, and perhaps worse, even if it
stops, it may generate a non-proper coloring or a coloring that is proper
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but has bichromatic 4-cycles. However, it is obvious, because of the while-
loops in the main part of EdgeColor and in the procedure Recolor,
that if the algorithm halts, then it outputs a coloring with no cycles of even
length � 6 and having homochromatic edges of the same parity (all edges of
such cycles might be homochromatic). So in the MA that follows, we repeat
EdgeColor until the desired coloring is obtained.

Algorithm 8 MA

1: while the color generated by EdgeColor is not proper or is proper but
contains a bichromatic 4-cycle do

2: Execute EdgeColor anew
3: end while

Obviously MA, if and when it stops, generates a proper acyclic coloring.
The rest of the paper is devoted to compute the probability distribution of
the number of steps it takes.

A call of the Recolor procedure from line 5 of the algorithm Edge-
Color is a root call of Recolor, while one made from within the execution
of another Recolor procedure is called a recursive call. Each iteration of
Recolor is called a phase. We also call phase, the initial one, the for-loop
of EdgeColor. In the sequel, we count phases rather than steps of color
assignments. Because the number m of the edges of the graph is constant,
this does not a↵ect the form of the asymptotics of the number of steps.

We prove the following progression lemma, which shows that at every
time a Recolor(e, C) procedure terminates, some progress has indeed been
made, which is then preserved in subsequent phases.

Lemma 6.4.1. Consider an arbitrary call of Recolor(e, C) and let E be
the set of edges that at the beginning of the call are not contained in a cycle of
even length � 6 and having homochromatic edges of the same parity. Then,
if and when that call terminates, no such edge in E [ {e} exists.

Proof. Suppose that Recolor(e, C) terminates and there is an edge e0 2
E [ {e} contained in a cycle of even length � 6 and with homochromatic
edges of the same parity. If e0 = e, then by line 4, Recolor(e, C) could not
have terminated. Thus, e0 2 E .

Since e0 is not contained in a cycle as described at the beginning of Re-
color(e, C), it must be the case that at some point during this call, some
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cycle, with e0 among its edges, turned into one having homochromatic edges
of the same parity because of some call of Recolor. Consider the last time
this happened and let Recolor(e⇤, C⇤) be the causing call. Then, there is
some cycle C 0 of even length � 6 and with e0 2 C 0, such that the recoloring
of the edges of C⇤ resulted in C 0 having homochromatic edges of the same
parity and staying such until the end of the Recolor(e, C) call. Then there
is at least one edge e⇤ contained in both C⇤ and C 0 that was recolored Re-
color(e⇤, C⇤). By line 4 of Recolor(e⇤, C⇤), this procedure could not have
terminated, and thus neither could Recolor(e, C), a contradiction.

By Lemma 6.4.1, we get:

Lemma 6.4.2. There are at most m, the number of edges of G, i.e. a
constant, repetitions of the while-loop of the main part of EdgeColor.

However, a while-loop of Recolor or MA could last infinitely long. In
the next section we analyze the distribution of the number of steps they take.

6.4.2 Analysis of the Algorithm

In this section we will prove two things:

• The probability that EdgeColor lasts for at least n phases is inverse
exponential in n.

• The probability that the while-loop of MA is repeated at least n times
is inverse exponetial in n.

From the above two facts, yet to be proved, Lemma 6.4.2, and because ✏ in
the number of colors d(2 + ✏)(� � 1)e of the palette is an arbitrary posi-
tive constant, we get the Theorem below and its corollary, our main results.
The proof of both the above will be possible by coupling the EdgeColor
algorithm with a validation algorithm that does not have the stochastic de-
pendencies of the color assignments of EdgeColor and thus is amenable
to probabilistic analysis.

Theorem 6.4.1. Assuming 2�� 1 colors are available, the probability that
MA, which if and when it stops produces a proper acyclic edge coloring, lasts
for at least n2 steps is inverse exponential in n.

Therefore:
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Corollary 6.4.1. 2� � 1 colors su�ce to properly and acyclically color a
graph.

We will proceed as follows: we first use a graph structure to depict the
action of an execution of EdgeColor organized in phases. The goal is
to present in a structured way any undesirable behavior of EdgeColor
(and the corresponding validation algorithm), and thus get a bound on the
probability of it happening. Finally, we will give still another algorithm,
to show that can be coupled with EdgeColor whose probability we will
bound.

We will depict the action of execution of EdgeColor organized in phases
with a rooted forest, that is an acyclic graph whose connected components
(trees) all have a designated vertex as their root. We label the vertices of
such forests with pairs (e, C), where e is an edge and C a 2k-cycle containing
e, for some k � 3. If a vertex u of F is labeled by (e, C), we will sometimes
say that e is the edge-label and C the cycle-label of u. The number of nodes
of a forest is denoted by |F|.

Definition 6.4.1. A labeled rooted forest F is called feasible, if the following
two conditions hold:

i. Let e and e0 be the edge-labels of two distinct vertices u and v of G.
Then, if u, v are both either roots of F or siblings (i.e. they have a
common parent) in F , then e and e0 are distinct.

ii. If (e, C) is the label of a vertex u that is not a leaf, where C has half-
length k � 3, and e0 is the edge-label of a child v of u, then e0 2

{eC1 , . . . , e
C
2k�2}.

Given a feasible forest, we order its trees and the siblings of each node
according to their edge-labels. By traversing F in a depth-first fashion,
respecting the ordering of trees and siblings, we obtain the label sequence
L(F) = (e1, C1), . . . , (e|F|, C|F|) of F .

Given an execution of EdgeColor with at least n phases, we construct
a feasible forest with n nodes by creating one node u labeled by (e, C) for
each phase, corresponding to a call (root or recursive) of Recolor(e, C).
We structure these nodes according to the order their labels appear in the
recursive stack implementing EdgeColor: the children of a node u labeled
by (e, C) correspond to the recursive calls of Recolor made by line 5 of
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Recolor(e, C), with the leftmost child corresponding to the first such call
and so on.

Let now Pn be the probability that EdgeColor lasts for at least n
phases, and Qn be the probability that EdgeColor (i) lasts for strictly less
than n phases, and (ii) the coloring generated when it halts is either not
proper or, alternatively, it is proper and has a bichromatic 4-cycle. We are
now ready to compute upper bounds for these probabilities.

6.4.3 Validation Algorithm

We now give the validation algorithm:

Algorithm 9 ColorVal(F)

Input: L(F) = (e1, C1), . . . , (e|F|, C|F|) : Ci(ei) = {ei = eCi
1 , . . . , eCi

2ki
}.

1: Color the edges of G, independently and selecting for each a color u.a.r.
from {1, . . . , K}.

2: for i = 1, . . . , |F| do
3: if C0

i (ei) and C1
i (ei) are both monochromatic (have one color) then

4: Recolor eCi
1 , . . . , eCi

2ki�2 by selecting independently colors u.a.r.
from {1, . . . , K}

5: else
6: Recolor eCi

1 , . . . , eCi
2ki�2 by selecting independently colors u.a.r.

from {1, . . . , K}

7: return failure and exit
8: end if
9: end for

10: return success

We call each iteration of the for-loop of lines 2–9 a phase of Color-
Val(F).

Lemma 6.4.3. At the end of each phase of ColorVal the colors are dis-
tributed as if they were assigned for a first and single time to each edge,
selecting independently for each edge a color u.a.r. from the palette.

Proof. This is because at each phase, the edges eCi
1 , . . . , eCi

2ki�2, the only edges
for which information is obtained during the phase, are recolored selecting
independently a color u.a.r.
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For a feasible forest F , let VF be the event that ColorVal(F) reports
success. First, we compute the probability of VF .

Lemma 6.4.4. Let F be a feasible forest, with label sequence

L(F) = (e1, C1), . . . , (e|F|, C|F|).

Assume that Ci has half-length ki � 3, i = 1, . . . , n. Then:

Pr[VF ] =
|F|Y

i=1

 
1

K(2ki�2)

!
.

Proof. For each i, whatever the colors of eCi
2ki�1 and eCi

2ki
are, we need the other

2ki � 2 edges of C to have the same color with one of them. The probability
of this being true for each edge is, by Equation (3.14) and Lemma 6.4.3,
1
K .

We now let ColorVal(F) be executed independently for all feasible
forests with at most n nodes. We let P̂n be the probability that Color-
Val(F) succeeds for at least one F with exactly n nodes, and let Q̂n be
the probability that ColorVal(F) succeeds for at least one F such that
(i) F has strictly less than n nodes, and (ii) the coloring generated when
ColorVal(F) comes to an end is either not proper or, alternatively, it is
proper and has a bichromatic 4-cycle.

Lemma 6.4.5. We have that Pn  P̂n and Qn  Q̂n.

Proof. Consider an execution of EdgeColor and let F be the feasible forest
with n nodes generated in case the execution lasts for at least n phases, or
be the forest generated until EdgeColor halts, in case it lasts for strictly
less than n phases. Execute now ColorVal(F) making the random choices
of EdgeColor.

Lemma 6.4.6. We have that P̂n 
P

|F|=n Pr[VF ] and that Q̂n  1 ��
1�

�
2

2+✏

��m
.

Proof. The first inequality is obvious. Now, just for the sake of notational
convenience, let us call below a coloring strongly proper if it is proper and
4-acyclic. Also by just random we mean a coloring generated by indepen-
dently coloring all edges once, choosing for each a color u.a.r from the palette.
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For the second inequality, first observe that by Lemma 6.4.3 we have that
Q̂n:

Q̂n =Pr[ColorVal succeeds for at least one F with |F| < n |

the generated color is not strongly proper]⇥

Pr[a random coloring is not strongly proper] 

Pr[a random coloring is not strongly proper].

The given bound then follows from the cornerstone result of Esperet and
Parreau given in Lemma 3.4.1.

The second inequality of the Lemma above has as corollary, by Lemma
6.4.5, that the probability that the number of repetitions of the while-loop
of MA is n, is inverse exponential in n. So all that remains to be proved to
complete the proof of the main Theorem is to show that

P
|F|=n Pr[VF ] is

inverse exponential in n. We do this in the next subsection, expressing the
sum as a recurrence.

6.4.4 Recurrence

We will estimate
P

|F|=n Pr[VF ] by purely combinatorial arguments. Towards
this end, we first define the weight of a forest, denoted by kFk, to be the
number

|F|Y

i=1

 
1

K(2ki�2)

!
,

(recall that |F| denotes the number of nodes of F), and observe that by
Lemma 6.4.4 X

|F|=n

Pr[VF ] =
X

|F|=n

kFk. (6.33)

Assume that the empty tree is a feasible forest with number of nodes 0 and
weight 1. From the definition of a feasible forest, we have that such a forest
is comprised of m possibly empty trees, in one to one correspondence to the
edges, the root of each nonempty one having as edge-label the corresponding
edge. For j = 1, . . . ,m, let Tj be the set of all possible feasible trees corre-
sponding to the edge ej and let T be the collection of all m-ary sequences
(T1, . . . , Tm) with Tj 2 Tj.
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Now, obviously:
X

|F|=n

kFk =
X

(T1,...,Tm)2T
|T1|+···|Tm|=n

kT1k · · · kTmk

=
X

n1+···+nm=n
n1,...,nm�0

 ⇣ X

T12T1:
|T1|=n1

kT1k

⌘
· · ·

⇣ X

Tm2Tm:
|Tm|=nm

kTmk

⌘!
(6.34)

We will now obtain a recurrence for each factor of the rhs of (6.34). Let:

q =
�� 1

K
=

�� 1

d(2 + ✏)(�� 1)e
. (6.35)

Lemma 6.4.7. Let T e be anyone of the Tj. Then:

X

T2T e

|T |=n

kTk  Rn, (6.36)

where Rn is defined as follows:

Rn :=
X

k�3

q2k�2

 
X

n1+···+n2k�2=n�1
n1,...,n2k�2

Qn1 . . . Qn2k�2

!
(6.37)

and R0 = 1.

Proof. Indeed, the result is obvious if n = 0, because the only possible T is
the empty tree, which has weight 1. Now if n > 0, observe that there are at
most �2k�2 possible cycles with 2k edges, for some k � 3, that can be the
cycle-edge of the root of a tree T 2 T

e with |T | > 0. Since the probability

of each such cycle having homochromatic equal parity sets is
�

1
K

�2k�2
, the

lemma follows.

We will now asymptotically analyze the coe�cients of the OGF R(z) of
Rn.

Multiply both sides of (6.37) by zn and sum for n = 1, . . . ,1 to get

R(z)� 1 =
X

k�3

 
q2k�2zR(z)2k�2

!
, (6.38)
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with R(0) = 1. Setting W (z) = R(z)� 1 we get

W (z) =
X

k�3

 
q2k�2z(W (z) + 1)2k�2

!
, (6.39)

with W (0) = 0. For notational convenience, set W = W (z). Then from
(6.39) we get:

W = z
X

k�2

 
q2k(W + 1)2k

!
= z

(q(W + 1))4

1� (q(W + 1))2
. (6.40)

Now, set:

�(x) =
(q(x+ 1))4

1� (q(x+ 1))2
, (6.41)

to get from (6.40):
W = z�(W ). (6.42)

By [94, Proposition IV.5, p. 278], we have that if � is a function analytic
at 0 having non-negative Taylor coe�cients and such that �(0) 6= 0 and if
r is the radius of convergence of the series representing � at 0 and finally if
limx!r� �(x) = +1 we get that [zn]R ./ (1/⇢)n, i.e. lim sup ([zn]R)1/n =
1/⇢, where ⇢ = ⌧

�(⌧) , and ⌧ is the (necessarily unique) solution of the charac-
teristic equation:

⌧�0(⌧)

�(⌧)
= 1 (6.43)

within (0, r) (for the asymptotic notation “./” see [94, IV.3.2, p. 243]).
In our case, with � given in (6.41). The above hypotheses are easily

satisfied for each q 2 (0, 1) with r = (1/q) � 1. Also, if q = 1
2 , then r = 1,

and the (necessarily unique) solution of the characteristic equation ⌧�0(⌧)
�(⌧) = 1

within (0, 1) is ⌧ = �2 +
p
5, and therefore ⇢ = ⌧

�(⌧) = 1.

Now, as it is shown in the the proof of [94, Proposition IV.5, p. 278], the
function x�0(x)

�(x) is increasing with x 2 (0, r). Therefore, for each x 2 (0, r), it

is also increasing with q 2 (0, 1/(x+ 1)), because q appears in the argument
of � as q(x + 1). So, if q > 1/2, the unique solution of ⌧�0(⌧)

�(⌧) = 1 within

(0, r) becomes smaller than �2+
p
5. Now �0(x) is increasing with x 2 (0, r)

(�’s Taylor series has positive coe�cients), and so [zn]R ./ (1/⇢)n, for some
⇢ > 1, because ⇢ = ⌧

�(⌧) =
1

�0(⌧) .
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By the above, and since there are at most nm sequences n1, . . . , nm of
integers that add up to n, we get by Lemma 6.4.6, equations (6.33) and
(6.34), and Lemma 6.4.7 that:

P̂n  nm
⇣1
⇢

⌘n
. (6.44)

Thus, by Equation (6.44) and Lemma 6.4.5, we get that:

Lemma 6.4.8. For any ✏ > 0, and for any graph G for which l, m and
� (resp. the number of vertices, the number of edges and the maximum
degree of G) are considered constant, and given the availability of at least
(2 + ✏)(�� 1) colors, there exists a constant c 2 (0, 1), depending on l,m,D
and ✏, such that the probability that EdgeColor executes at least n steps
is  cn.

This completes the proof of our two probabilistic claims, and the proofs
of the Theorem and Corollary, our main results, given there.

6.5 Application of the LLL to c-separating
codes

In this final section, we utilize our algorithmic approach to the LLL to con-
struct c-separating codes. First, we show that the LLL implies the existence
of such codes (Subsec. 6.5.1). We then explicitly construct such codes and
compare our results to other extant works (Subsec. 6.5.2).

6.5.1 A lower bound on the rate of c-separating binary
codes

We use the Lovász Local Lemma to obtain a lower bound on the rate of
c-separating binary codes, of the same order of magnitude as the bound in
Proposition 3.5.1. However, the use of the LLL allows us to move from the
existence result to an explicit construction.

Let Xk,l, 1  k  M , 1  l  N , be M ·N independent random variables,
following the Bernoulli distribution, where:

Pr(Xk,l = 0) = Pr(Xk,l = 1) =
1

2
.
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Let also ⌦ = {0, 1}MN be the set of all (MN)-ary binary vectors. It is
convenient to think ⌦ as the set of M ⇥N matrices with binary entries, as
we can then immediately correspond an assignment of values to the variables
to an (N.M)2 binary code. Let us denote such a code by C. Recall that M
is the size of the code, i.e. the number of code words it contains and N is
the length of these code words.

It is straightforward to observe that if two sets U , V of size c0 < c are not
separated, then any two supersets U 0

� U and V 0
� V of size c, are also not

separated. Thus, it su�ces to deal with sets of exactly c code words. Let
U i = {ui,1, . . . ,ui,c

} be a set of c distinct code words of C, for 1  i 
�
M
c

�
,

where ui,j = (ui,j
1 , . . . , ui,j

n ), ui,j
l 2 F2, l = 1, . . . , N . Let:

P := {{U i, U j
} | |U i

| = |U j
| = c, U i

\U j = ; and 1  i, j 

✓
M

c

◆
: i 6= j},

be the set of disjoint sets of size c of distinct code words of C. For each
{U i, U j

} 2 P , we define the event Ei,j to occur when U i, U j are not sepa-
rated. There are m =

�
M
c

��
M�c
c

�
such events, which we assume to be ordered

arbitrarily.
We now prove two lemmas. The first one concerns the probability of each

event to occur.

Lemma 6.5.1. The probability of any event Ei,j is:

Pr[Ei,j] =

✓
1�

1

2c�1

◆N

. (6.45)

Proof. Consider the s-th coordinate of ui,1, . . . ,ui,c and uj,1, . . . ,uj,c. The
probability that U i and U j are not separated in the s-th coordinate, is equal
to 1 minus the probability that U i and U j are separated in that coordinate.
The latter is exactly 1

2c�1 , since for separation all values ui,1, . . . ,ui,c have
to be equal and di↵erent from all values uj,1, . . . ,uj,c. Thus, since each
coordinate of a code word takes values independently, we have that:

Pr[Ei,j] =

 
1�

1

2c�1

!N

and the proof is finished.



6.5. APPLICATION OF THE LLL TO C-SEPARATING CODES 199

Assume that v1, . . . ,vM is some arbitrary ordering of the code words of
C, where vk = (vk1 , . . . , v

k
N), k = 1, . . . ,M . Then we have that:

sc(Ei,j) := {Xk,1, . . . , Xk,N | vk
2 U i

[ V j
}.

Note that Ei,j cannot have some Xk,l 2 sc(Ei,j), but not Xk,l0 , for any l0 6= l.
We say that two events are dependent, if they share at least one common

random variable Xk,l, 1  k  M and 1  l  N . In fact, as is apparent from
the above, if two events share Xk,l, they also share all Xk,l0 such that l0 2
{1, . . . , N}. The next lemma bounds from above the number of dependencies
for each event.

Lemma 6.5.2. The number of events depending on Ei,j is at most:

s =
1

(c� 1)!2
6M2c�1

� 1. (6.46)

Proof. It is clear that two events are dependent if and only if the correspond-
ing pairs of sets have at least one common code word. To make notation less
cumbersome, we will say that a code word belongs in an event if the corre-
sponding random variables are in the scope of the event.

By subtracting from the total number of events the number of events that
share no common code word with Ei,j, we get that the number of events that
are d↵erent from and depend on Ei,j is equal to:

✓
M

c

◆✓
M � c

c

◆
�

✓
M � 2c

c

◆✓
M � 3c

c

◆
� 1. (6.47)

For binomial coe�cients we have the equality:
✓
M

c

◆
=

✓
M � 1

c� 1

◆
+

✓
M � 1

c

◆
(6.48)

We can apply it repeatedly:
✓
M � 1

c

◆
=

✓
M � 2

c� 1

◆
+

✓
M � 2

c

◆

✓
M � 2

c

◆
=

✓
M � 3

c� 1

◆
+

✓
M � 3

c

◆

... =
...

✓
M � (2c� 1)

c

◆
=

✓
M � 2c

c� 1

◆
+

✓
M � 2c

c

◆
. (6.49)



200 CHAPTER 6. ALGORITHMIC LOVÁSZ LOCAL LEMMA

Therefore, ✓
M

c

◆
=

2cX

i=1

✓
M � i

c� 1

◆
+

✓
M � 2c

c

◆
(6.50)

Analogously, we have

✓
M � c

c

◆
=

2cX

i=1

✓
M � c� i

c� 1

◆
+

✓
M � 3c

c

◆
(6.51)

Since for all i >= 0 ✓
M

c

◆
>

✓
M � i

c

◆
,

from (6.50) and (6.51) we have
✓
M

c

◆
< 2c

✓
M � 1

c� 1

◆
+

✓
M � 2c

c

◆
(6.52)

and ✓
M � c

c

◆
< 2c

✓
M � c� 1

c� 1

◆
+

✓
M � 3c

c

◆
(6.53)

We have that
✓
M

c

◆✓
M � c

c

◆
<


2c

✓
M � 1

c� 1

◆
+

✓
M � 2c

c

◆�
2c

✓
M � c� 1

c� 1

◆
+

✓
M � 3c

c

◆�
(6.54)

Noting that ✓
M � 1

c� 1

◆
=

c

M

✓
M

c

◆

we have

2c

✓
M � 1

c� 1

◆
2c

✓
M � c� 1

c� 1

◆
=

4c3

M

✓
M

c

◆✓
M � c� 1

c� 1

◆
.

Now we can use previous expressions to expand the left side of (6.54). Ar-
ranging terms we have (for M � 2c2)

✓
M

c

◆✓
M � c

c

◆
< 6c

✓
M

c

◆✓
M

c� 1

◆
+

✓
M � 2c

c

◆✓
M � 3c

c

◆
(6.55)
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Now, it is clear that substituting the left side of (6.55) in (6.47) the term�
M�2c

c

��
M�3c

c

�
cancels, so:

✓
M

c

◆✓
M � c

c

◆
�

✓
M � 2c

c

◆✓
M � 3c

c

◆
�1 < 6c

✓
M

c

◆✓
M

c� 1

◆
�1 (6.56)

Now, by using the approximation
�
n
k

�
 nk/k!, we have that

6c

✓
M

c

◆✓
M

c� 1

◆
 6

1

(c� 1)!(c� 1)!
M2c�1.

Armed with the previous lemmas and Th. 3.3.4, we can state the following
result.

Theorem 6.5.1. For every n > 0 there exists a binary c-separating code of
size:

M 

✓
(c� 1)!2

6e

◆ 1
2c�1

✓
22c�1

22c�1 � 1

◆ n
2c�1

(6.57)

Proof. Using values of p and s provided by Lemmas 6.5.1 and 6.5.2, we see
that for the condition of the symmetric LLL to be satisfied, it must hold
that:

e

✓
1�

1

22c�1

◆N 1

(c� 1)!2
6M2c�1

 1.

This is clearly true for the M in (6.57) and thus, the existence claim follows
by Th. 3.3.4.

By Theorem 6.5.1, we immediately obtain the following result.

Corollary 6.5.1. There exist binary c-separating codes of asymptotic rate:

R(n, c)2 � �
log2(1� 2�(2c�1))

2c� 1
�

1

n

 
log2

(c�1)!2

6e

2c� 1

!
. (6.58)

Proof. The proof is immediate by using the value of M in Theorem 6.5.1 in
Def. 3.5.2.
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Remark 6.5.1. Note our result is asymptotically equal to the bound given
by Barg et al in Proposition 3.5.1. For finite values of the code length if falls
short by:  

log2
(c�1)!2

6e

2c� 1

!
= O

✓
2c� 2

2c� 1
log2(c� 1)

◆
,

which, for a fixed c, is of little consequence for interesting values of the code
length.

For the case where c = 2, we have the following corollaries whose proof
is straightforward from the above.

Corollary 6.5.2. For every n > 0 there exists a binary 2-separating code of
size:

M 
1

3
p
5e

✓
8

7

◆N/3

. (6.59)

Corollary 6.5.3. There exist binary 2-separating codes of asymptotic rate
R ⇡ 0.064.

Remark 6.5.2. It should be noted that the results in both Theorem 6.5.1 and
Corollary 6.5.2 mean that we can find codes of size as large as the greatest
integer that is bounded from the corresponding right hand side of Eq. (6.57)
and (6.59).

6.5.2 Explicit constructions

Now that we have established a lower bound for the rate of 2-separating
binary codes, we turn our attention to obtaining explicit constructions of such
codes. We first see that to obtain a code of positive rate, the computational
complexity of our algorithm turns out to be exponential in the code length
(see Remark 6.5.3). We then show that we can tune the algorithm to be
polynomial in the code length, at the cost of having non positive code rate.
Nevertheless, the code we construct has a better rate than that of a Simplex
code of equivalent length.

Direct application of the algorithmic LLL for 2-separating codes
Consider CodeSep, algorithm 10 bellow.
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Algorithm 10 CodeSep.

1: Sample the variables Xk,l, k = 1, ...,M , l = 1, . . . , N and let C be the
resulting code.

2: while there exists a pair of non-separated subsets of P , let {U i, U j
} be

the first such pair in some arbitrary ordering of P and do
3: Resample(Ei,j)
4: end while
5: Output current code C.

Resample(Ei,j)

1: Resample the variables in sc(Ei,j).
2: while there exists a pair of non-separated subsets of P , that share at

least one code word with either U i or U j, let {U i0 , U j0
} be the first such

pair in some arbitrary ordering of P and do
3: Resample(Ei0,j0)
4: end while

In what follows, we prove the following result.

Theorem 6.5.2. For every n > 0, the probability that CodeSep lasts for
at least n rounds is inverse exponential in n. Upon termination, CodeSep
outputs a 2-separating code of size:

M =

$✓
(c� 1)!2

6e

◆ 1
2c�1

✓
22c�1

22c�1 � 1

◆ N
2c�1

%
. (6.60)

Proof. First, by the while–loop of line 2, it follows that if and when Code-
Sep terminates, it produces a c-separating code C. Thus, we only need to
show that it will indeed terminate fast.

A Resample call made from line 3 is a root call, while one made from
line 3 is a recursive one. Finally, a round is the duration of any Resample
call.

Note that at each round, CodeSep makes some progress, in the sense
that any pair {U i0 , U j0

} that was separated at the beginning of some Re-
sample(Ei,j), will also be separated at the end of that call, along with the
pair {U i, U j

}. Indeed, by line 3, of Resample(Ei,j), it is obvious that U i

and U j will be separated at the end of this call. Furthermore, any {U i0 , U j0
}

that was not separated at the beginning of the call, will either remain as
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such for the duration of this round, or it will seize being separated due to
some resampling of the random variables. In the latter case, it must share
at least one code word with some other pair {U i00 , U j00

} that was resam-
pled during Resample(U i, U j). But then, by line 2 of Resample(Ei00,j00),
Resample(Ei0,j0) would have been called.

Given an execution of CodeSep, we construct a labeled rooted forest F
(i.e. forest comprised of rooted trees), that we call the witness forest of the
execution.

(i) For each Resample(Ei,j) call, we construct a node labeled by Ei,j.

(ii) If Resample(Ei0,j0) is called from line 3 of Resample(Ei,j), then the
corresponding node labeled by Ei0,j0 is a child of that labeled by Ei,j.

It is not di�cult to see that the roots of F correspond to root calls of Re-
sample, while the rest of the nodes to recursive calls. Furthermore, since
at the end of a Resample(Ei,j) call, {U i, U j

} are separated, (i) the labels
of the roots are pair-wise district and (ii) the same holds for the labels of
siblings. Finally, (iii) if a node labeled by Ei0,j0 is a child of one labeled by
Ej, then {U i0 , U j0

} share at least one code word with {U i, U j
}. Thus, the

children of an internal node of F are at most s+ 1.
We call any forest F that satisfies (i), (ii) and (iii), feasible. The number

of its nodes is denoted by |F|. Note that the class of feasible forests is broader
than that of witness forests. We order the nodes of a feasible forest in the
following way: (i) trees and siblings are ordered according to the order of
their labels (ii) the nodes of a tree are ordered in pre-order, respecting the
ordering of siblings. Following this ordering, we can obtain the label-sequence
L(F) = (E1, . . . , En) of a feasible forest F with n nodes, where each Er is
some Ei,j.

Let Pn be the probability that CodeSep lasts for at least n rounds and
WF the event that F is the witness forest of an execution of CodeSep.
Then, it holds that:

PN = Pr

"
[

F :|F|=n

WF

#


X

F :|F|=n

Pr[WF ], (6.61)

where the last inequality is by union-bound.

Lemma 6.5.3. For any feasible forest F with n nodes, Pr[WF ]  pn.



6.5. APPLICATION OF THE LLL TO C-SEPARATING CODES 205

Proof. Assume that Ei,j is the r-th event in the label sequence L(F) of a
feasible forest F with n nodes. For F to be constructed, we have n inde-
pendent random samplings of the code C, where, at the r-th such sampling,
r = 1, . . . , n, it must be the case that:

• if r = 1, then {U i, U j
} is the first pair of not separable sets, otherwise,

• if Ei,j is the label of a root, then {U i, U j
} is the first pair of not sepa-

rable sets and no pair of sets that share a code word with those of the
last leaf can occur and

• if Ei,j is an internal node, then {U i, U j
} must be the first non-separated

pair from those that share a code word with the parent label.

Thus, we can bound Pr[WF ] by the product:

nY

r=1

Pr[the pair of sets corresponding to Er is not separated].

Now the result follows immediately.

Thus, to bound the rhs of Eq. (6.61), we need to count the number
of feasible forests with n internal nodes. To do that, we first hang from
every node of a feasible forest F leaves, labeled suitably such that each
node labeled by Ei,j of F , now has exactly s + 1 children, labeled with the
corresponding events Ei0,j0 , such that {U i, U j

} and {U i0 , U j0
} share at least

one common code word. Also, trees comprised of a single root/leaf are build,
such that the sets of root-labels and the set of undesirable events coincide.
By ordering the nodes of these new forests in the same way as before and
making them planar, we can easily see that that there is a one-to-one and
onto correspondence with the feasible forests.

Thus, we can count the number fn of of rooted planar forests with n
internal nodes, comprised of m full (s + 1)-ary rooted planar trees. Denote
the number of full (s+1)-ary rooted planar trees with n internal nodes by tn.
It holds that tn = 1

sn+1

�
(s+1)n

n

�
(see [193, Theorem 5.13]), which, by Stirling’s

approximation gives that that there is some constant A, depending only on
s, such that:

tn < A

 ⇣
1 +

1

s

⌘s
(s+ 1)

!n

. (6.62)
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Finally, by (6.62), we get:

fn =
X

n1+···+nm=n
n1,...,nm�0

tn1 · · · tnm < (An)m
 ⇣

1 +
1

s

⌘s
(s+ 1)

!n

. (6.63)

Thus, taking Eq. (6.61) and (6.63), we have that:

Pn < (An)m
 ⇣

1 +
1

s

⌘s
(s+ 1)p

!n

, (6.64)

which concludes the proof.

Remark 6.5.3. Consider line 2 of CodeSep. For the algorithm to find the
least indexed event, it must go over all the approximately M2c elements of P
and check if they are separated. Accordingly, in line 2 of a Resample(Ei,j)
call of CodeSep, the algorithm must check all the approximately M c events
in the neighborhood of Ei,j. Given the bound we proved for M , it is easy
to see that in both cases, the number of events that need to be checked is
exponentially large in N . In what follows, we will deal, in a way, with this
problem.

Constructions of polynomial complexity In Remark 6.5.3 above, we
have exposed the drawback of applying in a straightforward way the algo-
rithmic version of the LLL. Since we are aiming for a code with asymptotic
positive rate, this means that the number of code words has to be expo-
nential in the code length, which implies that the algorithmic complexity
is exponential in the code length too. If we insist in building positive rate
2-separating codes and use the algorithmic version of the LLL for it, this
exponential dependence seems to be unavoidable.

In light of this we tackle the problem of removing the exponential depen-
dence of the construction, at the cost of producing 2-separating codes with
non-positive, but still relatively good, rate.

One can see from Theorem 6.5.2 that the size of the 2-separating code
we produce, directly a↵ects the complexity of CodeSep, since the number
of checks at the while-loops of lines 2 and 2 depend on it. Furthermore,
the size of the produced code depends on the probability of the undesirable
events.
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Following this line of thought, we are going to plug in the LLL condition a
probability for bad events that is actually higher than the real one. Of course
we will only be able to prove the existence of not so “optimal” objects, but
we do so in polynomial time. This might seem somewhat unorthodox. What
we do essentially, is restrict the size of the code we sample and resample.
Thus, we allow CodeSep to make much less checks and corrections in order
to produce a 2-separating code C.

Lemma 6.5.4. Let N > 0 and any ↵ > 0 be integers such that

1

N↵
>

✓
1�

1

22c�1

◆N

. (6.65)

Then, there exists a binary c-separating code of size:

M 

✓
c!c!

16c2

◆ 1
2c�1

N
↵

2c�1 (6.66)

Proof. The proof is identical to that of Theorem 6.5.1, by taking p =
1

N↵
.

For explicit binary 2-separating codes, the interested reader is referred
to [13] and the references therein. Known constructions are somewhat par-
ticular and rare. For instance, there exists a 2-separating binary [35,6] code,
there exists a 2-separating binary [126,14] code, and of course as stated in
Lemma 3.5.1 the Simplex code is also 2-separating.

We now take a step into constructing 2-separating binary codes with rate
better than the Simplex code for any code length and in polynomial time to
their length. The following Corollary is a weaker result than Corollary 6.5.2
and follows from the fact that in Theorem 3.3.4 one only needs an upper
bound of the probability of the bad events.

Corollary 6.5.4. For every N > 0 and any ↵ > 0, there exists a binary
2-separating code of size:

M 
1

3
p
5e

N↵/3. (6.67)

Proof. Immediate consequence of Lemma 6.5.4.

Recall that the rate of a Simplex code of length N is

RSimplex(N) =
log2(n+ 1)

N
. (6.68)
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With little algebraic manipulation one can see that for any N = 2k � 1
with k > 0, and any ↵ > 0 such that:

N↵ > 5e(n+ 1)3,

the codes in Corollary 6.5.4 have better rate than the Simplex code of the
same length and with a polynomial (in N) number of code words.

As an illustration, note the following numerical example. We take N =
255. The corresponding Simplex code has dimension k = 8, and rate

RSimplex(255) =
log2(256)

255
= 0.031.

According to Corollary 6.5.4, for length N = 255 we can take ↵ = 6. Then,
there exists a code of size M = 25640, that is, of rate

R(255) =
log2(25640)

255
= 0.057.

Recall the observations made in Remark 6.5.3. In CodeSep we have to:

• go over the approximately 2M4 elements of P in line 2 and

• check all the approximately 5M3 events in the neighborhood of Ej in
line 2 of a Resample(Ej) call.

Observe that, with the value of M 
1

3
p
5e

N↵/3 given by Corollary 6.5.4, this

can be done in polynomial time in the code length. Furthermore, by taking
this value for M , by Theorem 6.5.2 applies verbatim. Thus, we have proven
the following:

Theorem 6.5.3. For every n > 0, the probability that CodeSep lasts for
at least n rounds is inverse exponential in n. Upon termination, CodeSep
outputs a 2-separating code of length n and size:

M 
1

3
p
5e

N↵/3,

with rate larger than the Simplex code of the same length. The computational
complexity is O(N4↵/3) for any ↵ such that N↵ > 5e(N + 1)3.
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Using code concatenation It is an established fact that in order to ob-
tain infinite families of codes with a certain property one can resort to code
concatenation (see Forney [95]). This construction consists of two codes. An
inner code over a small alphabet q, say Ci = (N,Mi)q. The size of the in-
ner code is precisely the size of outer code’s alphabet Co = (No,Mo)Q with
|Q| = Mi. There is a bijection  : Q ! Ci between the inner code words and
the elements of the outer code’s alphabet. Take an outer code’s code word
and apply  to each symbol. This will give us an NNo-tuple. We denote by
Ci � Co the (NM,Mo)q the code formed by all such NN0-tuples. Note that
Ci � Co is a code over the alphabet q.

It is straightforward to prove that if the rates of the composing codes are
Ri and Ro, then rate of the concatenated code is Ri ·Ro.

Lemma 6.5.5. Let C be an (No,M)Q code with minimum distance d. If

d > N0 �
N0

c2
(6.69)

then C is c-separating.

If fact any code satisfying the distance constrain of the lemma possesses
two stronger properties, namely the c-Identifiable Parent Property (IPP) and
the c-Traceability (TA) property (see Staddon et al. [203]).

Lemma 6.5.6. Let Ci = (N,Mi)2 be a c-separating binary code of rate Ri

and let Co = (No,Mo)Q a c-separating code of rate Ro with |Q| = Mi. Then
Ci � Co is a binary c separating code of rate RiRo.

Our goal is to construct a family of asymptotically good c-separating
binary codes in polynomial time. For the inner code, we are going to use
our algorithmic constructions. For the outer code we will rely on algebraic-
geometric codes.

We will need the following lemmas.

Lemma 6.5.7. A c-separating AG (No,M)Q code over an alphabet Q can
be constructed for rates

R <
1

c2
�

1p
|Q|� 1

. (6.70)

By the results in Shum et al. [197], these codes can be constructed with
polynomial complexity O((No logQ No)3).



210 CHAPTER 6. ALGORITHMIC LOVÁSZ LOCAL LEMMA

Proof. The lemma follows from (6.69) and (3.20). Since, there exist an AG
code with R = 1� d

No
�

1p
|Q|�1

and separation implies d
No

> 1� 1
c2 .

Lemma 6.5.8. Setting the code length N to be 22cc lnM in Eq. (6.57),
satisfies Theorem 6.5.1 for codes of size M .

Proof. We can express (6.57) as

ln
⇣

M2c�16e
(c�1)!2

⌘

ln
�

22c�1

22c�1�1

� < N.

Since,

ln

✓
1

1� 1
22c�1

◆
= � ln(1�

1

22c�1
),

by using the well known approximation � ln(1� 1
22c�1 ) �

1
22c�1 we have

ln
⇣

M2c�116c2

c!c!

⌘

ln
�

22c�1

22c�1�1

�  22c�1) ln

✓
6eM2c�1

(c� 1)!2

◆
< 22cc lnM.

So we can take N such that:

N � 22cc lnM

and the proof is completed. ⇤
Our main result is the following.

Theorem 6.5.4. There are explicit constructions of binary c-separating code
of rate R = O

�
1

22cc3

�
.

Proof. We are going to use code concatenation for the construction. For
the outer code Co we will take a c-separating code as in Lemma 6.5.7, with
|Q| = c2�, where � > 2 is a positive integer. The rate of this code is

⇥( 1
c2 ). This is because, if we express (6.70) as R = 1

↵

✓
1
c2 �

1p
|Q|�1

◆
for an

appropriate ↵ > 0, then both

lim
c!1

1
↵

⇣
1
c2 �

1
c��1

⌘

1
c2

< 1 and lim
c!1

1
c2

1
↵

⇣
1
c2 �

1
c��1

⌘ > 0
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and the proof is finished. ⇤
For the inner code Ci we will take a c binary separating code of size

c�. By the claim above, the code has rate O( 1
22cc). The theorem follows by

Lemma 6.5.6.

Comparison with previous works and applications to fingerprinting
Let us show explicit rates of our results. We

Take for instance values for c = 2, c = 4 and c = 6. According to
Lemma 6.5.7 and the proof of Theorem 6.5.4, for the outer code , we take
|Q| = c6. That means that sizes f

There are not many attempts in the literature to construct separating
codes. To see the relevance of the results in this paper, check for instance [170]
where explicit constructions of secure and almost secure frameproof codes.
Secure frameproofness is a name given to separation in the crypto literature.

In [170] for separating codes of size M = 102 the authors obtain codes
with rates R2 = 2.2967E�6, R4 = 1.4018E�10 and R6 = 1.5210E�14. For
separating codes of size M = 108 they obtain codes of rate R2 = 5.7417E�7,
R4 = 3.5045E�11 and R6 = 3.8026E�15. For almost secure frameproof
codes the rates are R2 = 2.1598E�3, R4 = 9.1699E�6 and R6 = 6.3793E�8.
According to Theorem 6.5.4 we have R2 = 0.00390625, R4 = 1.5258E�5 and
R6 = 1.88380E�7

Code c = 2 6 8

Theorem 6.5.2

(exponential complexity) 6.422� 2 9.161� 3 1.616� 3

Theorem 6.5.4

(polynomial complexity) 9.258� 4 6.348� 6 1.004� 7

Separating

(Moreira et al. [170]) 1.422� 1 1.703� 2 3.001� 3

Almost secure frameproof

(Moreira et al. [170]) 2.075� 1 6.422� 2 2.328� 2

Table 6.1: Lower bounds on the rate of some q-ary codes.

The extensive work by Barg et al. [13], is a deep discussion of finger-
printing codes using separating codes. In that paper there is a large number
of existence results about fingerprinting codes, but unfortunately there are
almost no explicit constructions other than for the case t = 2.

To see how our results fit in we take, for instance, the following results.
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Corollary 6.5.5 (Corollary 4.3 [13]). For any fixed c, any q � (c2+2)2 that
is an even power of a prime, and any rate R < R2cR0(W ), where is R0(W )
the root of the equation

R(W ) log2 q = D

✓
1

c
� c

✓
R(W )�

1
p
q � 1

◆
||
c� 1

q � 1

◆

and

R2c = �
log2(1� 2�(2c�1))

2c� 1

a binary fingerprinting code of length N and size 2RN constructed by con-
catenating a fixed inner (m, q) code V with the c-separating property and AG
codes W of rate R(W )  R0(W ) and growing length N0, identifies one traitor
with exponentially falling error probability.

Corollary 6.5.6 (Corollary 5.2 [13]). : Let R(s)
c be the maximum achievable

rate of c-separating codes. For any rate R, 0 < R < R
(s)
c
c3 , there exists a

sequence of c-secure fingerprinting codes of length n and size 2RN that allow
polynomial-time identification with error probability falling exponentially with
the code length N .

The algorithms presented in Section 6.5.2 provide constructions of poly-
nomial complexity to approach these results.



Chapter 7

Aggregating Abstract and
Implicitly given Domains

In this chapter, we present our results in the field of Judgement Aggrega-
tion. We begin with characterizing various abstract domains in terms of the
aggregators they admit in Sec. 7.1. In Sec. 7.2 we syntactically charac-
terize integrity constraints whose domains have interesting properties. Fi-
nally, in Sec. 7.1, we discuss the computational complexity of deciding if
a domain (whether it is abstract or is given implicitly) can be aggregater
non-dictatorially.

7.1 Characterizations for Abstract Domains

In this section, we characterize possibility domains in the Boolean and non-
Boolean domains (Subsec. 7.1.1). Then, we proceed to characterize totally
blocked domains (Subsec. 7.1.2) and, finally, we define and characterize
uniform possibility domains (Subsec. 7.1.3).

7.1.1 Characterization of Possibility Domains

Our first result is a necessary and su�cient condition for a set of feasible
voting patterns to be a possibility domain.

Theorem 7.1.1. Let X be a set of feasible voting patterns. The following
statements are equivalent.

213
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1. X is a possibility domain.

2. X admits a non-dictatorial binary aggregator or it admits a majority
aggregator or it admits a minority aggregator.

Theorem 7.1.1 is stronger than Corollary 5.2.1 because, unlike Corollary
5.2.1, it gives explicit information about the nature of the components fj of
non-dictatorial ternary aggregators F = (f1, . . . , fn), when the components
are restricted to a two-element subset Bj ✓ Xj of the set of positions on
issue j, information that is necessary to relate results in aggregation theory
with complexity theoretic results (besides the three projections, there are 61
supportive ternary functions on a two element set). Observe also that if F =
(f1, . . . , fn) is a binary aggregator, then every component fj is necessarily a
projection function or the function ^ or the function _, when restricted to a
two-element subset Bj ✓ Xj (identified with the set {0, 1}). So, for binary
aggregators, the information about the nature of their components is given
gratis.

Only the direction 1 =) 2 of Theorem 7.1.1 requires proof. Towards this
goal, we first introduce a new notion, that of monomorphic aggregators, and
give three lemmas, which we then use to prove Theorem 7.1.1.

Let X be a set of feasible voting patterns and let F = (f1, . . . , fn) be a
k-ary aggregator for X.

Definition 7.1.1. We say that F is locally monomorphic if for all indices i
and j with 1  i, j  n, for all two-element subsets Bi ✓ Xi and Bj ✓ Xj, for
every bijection g : Bi 7! Bj, and for all column vectors xi = (x1

i , . . . , x
k
i ) 2

Bk
i , we have that

fj(g(x
1
i ), . . . , g(x

k
i )) = g(fi(x

1
i , . . . , x

k
i )).

Intuitively, the above definition says that, no matter how we identify the
two elements of Bi and Bj with 0 and 1, the restrictions fi� Bi and fj� Bj

are equal as functions. Notice that in the definition we are allowed to have
i = j, which implies that if in a specific Bj we interchange the values 0 and
1 in the arguments of fj� Bj, then the bit that gives the image of fj� Bj is
flipped.

It follows immediately from the definitions that if an aggregator is dicta-
torial, then it is locally monomorphic. For binary aggregators, the converse
is true. Indeed, assume that F = (f1, ..., fn) is a binary locally monomor-
phic aggregator for X. We claim that F = (f1, ..., fn) is dictatorial on X.
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To see this, fix a coordinate fi and consider a pair (a, b) 2 X2
i with a 6= b.

By conservativeness, either fi(a, b) = a or fi(a, b) = b. We claim that if
fi(a, b) = a, then (f1, . . . , fn) = (pr21, . . . , pr

2
1), while if fi(a, b) = b, then

(f1, . . . , fm) = (pr22, . . . , pr
2
2). To see this, consider a coordinate fj and a

pair (a0, b0) 2 X2
j with a0 6= b0. Let g : {a, b} ! {a0, b0} be the bijection

g(a) = a0 and g(b) = b0. Since F = (f1, ..., fn) is locally monomorphic,
we have that fj(a0, b0) = fj(g(a), g(b)) = g(fi(a, b)) = g(a) = a0, hence
(f1, . . . , fn) = (pr21, . . . , pr

2
1). The case where fi(a, b) = b is entirely analo-

gous. As we shall see next, a ternary locally monomorphic aggregator need
not be dictatorial. In fact, majority aggregators and minority aggregators
are locally monomorphic, but, of course, they are not dictatorial.

Example 7.1.1. Let X be a set of feasible voting patterns that admits a
ternary aggregator F = (f1, ..., fn) that is either a majority or a minority
aggregator. Then F is locally monomorphic.

Indeed, suppose that F is a minority aggregator, i.e. for every j with
1  j  n and every two-element set Bj ✓ Xj, we have that fj �Bj= �. Let
i, j be such that 1  i, j, n, let Bi = {a, b} ✓ Xi, and let Bj = {c, d} ✓ Xj

(we make no assumption for the relation, if any, between a, b, c, d). There
are exactly two bijections g and g0 from Bi to Bj, namely,

g(a) = c and g(b) = d

g0(a) = d and g0(b) = c

Suppose that (x, y, z) is a triple with x, y, z 2 Bi. Since |Bi| = |Bj| = 2, it
holds that fi �Bi= � and fj �Bj= �. Without loss of generality, suppose that
x = a, y = z = b. Then

fj(g(x), g(y), g(z)) = fj(c, d, d)

= �(c, d, d) = c

= g(a) = g(�(a, b, b))

= g(fi(x, y, z)).

An analogous statement holds for g0. Since i, j were arbitrary, we conclude
that f̄ is locally monomorphic.

The proof for the case when f̄ is a majority aggregator is similar. ⇧

We now present the first lemma needed in the proof of Theorem 7.1.1,
which gives a su�cient condition for all aggregators of all arities to be locally
monomorphic.
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Lemma 7.1.1. Let X be a set of feasible voting patterns. If every binary
aggregator for X is dictatorial on X, then, for every k � 2, every k-ary
aggregator for X is locally monomorphic.

Proof. Under the hypothesis that all binary aggregators are dictatorial, the
conclusion is obviously true for binary aggregators. For the induction step,
suppose that the conclusion is true for all (k � 1)-ary aggregators, where
k � 3. Consider a k-ary aggregator F = (f1, . . . , fn) and a pair (Bi, Bj)
of two-element subsets Bi ✓ Xi and Bj ✓ Xj. To render the notation less
cumbersome, we will take the liberty to denote the two elements of both
Bi and Bj as 0 and 1. Assume now, towards a contradiction, that there
are a column-vector (a1, . . . , ak) with ai 2 {0, 1}, 1  i  k, a “copy”
of this vector belonging to Bk

i , another copy belonging to Bk
j , such that

fi(a1, . . . , ak) 6= fj(a1, . . . , ak). Since k � 3, by the pigeonhole principle
applied to two holes and at least three pigeons, there is a pair of coordinates
of (a1, . . . , ak) that coincide. Without loss of generality, assume that these
two coordinates are the two last ones, i.e., ak�1 = ak. We now define an
(k�1)-ary aggregator G = (g1, . . . , gm) as follows: given k�1 voting patterns
(xi

1, . . . , x
i
n), i = 1, . . . , k � 1, define k voting patterns by just repeating the

last one and then for all k = 1, . . . , n, define

gk(x
1
l , . . . , x

k�1
l ) = fl(x

1
l , . . . , x

k�1
l , xk�1

l ).

It is straightforward to verify that G is an (k � 1)-ary aggregator on X that
is not locally monomorphic, which contradicts the inductive hypothesis.

Remark 7.1.1. The preceding argument generalizes to arbitrary cardinalities
in the following way: if every aggregator of arity at most s on X is dictatorial,
then every aggregator on X is s-locally monomorphic, meaning that for every
t  s and for all sets Bj ✓ Xj of cardinality t, the functions fj� Bj are all
equal up to bijections between the Bj’s.

Next, we state a technical lemma whose proof was inspired by a proof in
Dokow and Holzman [77, Proposition 5].

Lemma 7.1.2. Assume that for all integers k � 2 and for every k-ary
aggregator F = (f1, . . . , fn), there is an integer d  k such that for every
integer j  n and every two-element subset Bj ✓ Xj, the restriction fj� Bj

is equal to prkd, the k-ary projection on the d-th coordinate. Then for all
integers k � 2 and for every k-ary aggregator F = (f1, . . . , fn) and for all
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s � 2, there is an integer d  k such that for every integer j  n and every
subset Bj ✓ Xj of cardinality at most s, the restriction fj� Bj is equal to prkd.

Proof. The proof will be given by induction on s. The induction basis s = 2
is given by hypothesis. Before delving into the inductive step of the proof and
for the purpose of making the intuition behind it clearer, let us mention the
following fact whose proof is left to the reader. This fact illustrates the idea
for obtaining a non-dictatorial aggregator of lower arity from one of higher
arity.

Let A be a set and let f : A3
7! A be a supportive function such that if

among x1, x2, x3 at most two are di↵erent, then f(x1, x2, x3) = x1. Assume
also that there exist pairwise distinct a1, a2, a3 such that f(a1, a2, a3) = a2;
in the terminology of universal algebra, f is a semi-projection, but not a pro-
jection. Define g(x1, x2) = f(x1, f(x1, x2, a3), a3). Then, by distinguishing
cases as to the value of f(x1, x2, a3), it is easy to verify that g is support-
ive; however, g is not a projection function because g(a1, a2) = a2, whereas
g(a1, a3) = a1.

For the inductive step of the proof of Lemma 7.1.2, we assume that for
every k � 2 and every k-ary aggregator F = (f1, . . . , fn), there is a d  k
such that for every integer j  n and every subset Bj ✓ Xj with at most s�1
elements, the restriction fj � Bj is equal to prkd . Fix such an k-ary aggregator
F and fix an integer d, obtained by applying the induction hypothesis to s�1
and F . Assume, without loss of generality that d = 1. We will show that for
every j  n and for every subset Bj ✓ Xj of cardinality at most s, we have
that fj� Bj = prk1, the k-ary projection function on d = 1. We may assume
that s  k, lest the induction hypothesis applies.

Assume towards a contradiction that there exists an integer j0  n and
row vectors a1, . . . , ak in X such that the set Bj0 = {a1j0 , . . . , a

k
j0} has cardi-

nality s and
fj0(a

1
j0 , . . . , a

k
j0) 6= a1j0 . (7.1)

By supportiveness, there exists i0 2 {2, . . . , k} such that

fj0(a
1
j0 , . . . , a

k
j0) = ai0j0 . (7.2)

Let {l1, . . . , ls} be a subset of {1, . . . , k} of cardinality s such that al1j0 , . . . , a
ls
j0

are pairwise distinct. Obviously, if i 62 {l1, . . . , ls}, then there exists t 2

{1, . . . , s} such that aij0 = altj0 . So, by renumbering we may assume that
l1 = 1, . . . , ls = s and i0 = 2. Recall that s � 3. Let B�

j0 = {a1j0 , . . . , a
s�1
j0 }.
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We define an (s � 1)-ary aggregator F� = (f�
1 , . . . , f

�
n ) as follows: for j =

1, . . . , n and (x1
j , . . . x

s�1
j ) 2 Xs�1

j , first define (y1j , . . . , y
k
j ) 2 Xk

j as follows:

yij =

8
>>><

>>>:

xi
j for i = 1, . . . , s� 1,

asj if i = s,

asj if i > s and aij0 = asj0 ,

xt
j for the least t < s such that aij0 = atj0 , if i > s and aij0 6= asj0 ,

(7.3)
then we set:

ŷij =

(
yij if aij0 6= a2j0 ,

fj(y1j , . . . , y
k
j ) if aij0 = a2j0 ,

(7.4)

and finally define:

f�
j (x

1
j , . . . , x

s�1
j ) = fj(ŷ

1
j , . . . , ŷ

k
j ).

First observe that F� is supportive. Indeed this follows from the observa-
tion that because of the inductive hypothesis, f�

j can never take the value asj ,
if (x1

j , . . . , x
s�1
j ) 2 Xs�1

j , but asj 6= x1
j . Then observe that F� = (f�

1 , . . . , f
�
n )

is an aggregator on X, because, in case xi
2 X for all i = 1, . . . , s � 1 then

all row vectors y1, . . . , yk defined above belong to X (each is either some xi

or some ai).
It is obvious that

f�
j0(a

1
j0 , . . . , a

s�1
j0 ) = fj0(a

1
j0 , . . . , a

k
j0) = a2j0 .

Also, let x1
j0 , . . . , x

s�1
j0 2 B�

j0 be such that x1
j0 6= x2

j0 and

2  |{x1
j0 , . . . , x

s�1
j0 }|  s� 2.

It is easy to see that for the corresponding ŷij0 , it holds that

2  |{ŷ1j0 , . . . , ŷ
k
j0}|  s� 1.

It follows that

f�
j0(x

1
j0 , . . . , x

s�1
j0 ) = fj0(ŷ

1
j0 , . . . , ŷ

k
j0) = ŷ1j0 = x1

j0 6= x2
j0 .

Therefore, f�
j0� B�

j0 cannot be a projection function, which contradicts the
inductive hypothesis (assumed to hold for every F ); this concludes the proof
of Lemma 7.1.2.
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The proof of the next lemma is straightforward.

Lemma 7.1.3. Let X be a set of feasible voting patterns. For every j with
1  j  n and every subset Bj ✓ Xj, the set CBj of the restrictions fj� Bj of
the j-th components of aggregators F = (f1, . . . , fm) for X is a clone on Bj.

As we saw in Ch. 4, one of Post’s main findings is that if C is a clone
of conservative functions on a two-element set, then either C contains only
projection functions or C contains one of the following operations: the binary
operation ^, the binary operation _, the ternary operation �, the ternary
operation maj.

Using all of the above, we are now ready to prove Theorem 7.1.1.
Proof of Theorem 7.1.1. As stated earlier, only the direction 1 =) 2

requires proof. In the contrapositive, we will prove that if X does not admit
a majority or a minority aggregator, and it does not admit a non-dictatorial
binary aggregator, then X does not have an k-ary non-dictatorial aggregator,
for any k. Towards this goal, and assuming that X is as stated, we will first
show that the hypothesis of Lemma 7.1.2 holds. Once this is established, the
conclusion will follow from Lemma 7.1.2 by taking s = max{|Xj| : 1  j 

n}.
Given j  n and a two-element subset Bj ✓ Xj, consider the clone CBj .

If CBj contained one of the binary operations ^ or _, then X would have
a binary non-dictatorial aggregator, a contradiction. If, on the other hand,
CBj contained the ternary operation � or the ternary operation maj, then,
by Lemma 7.1.1, X would admit a minority or a majority aggregator, a
contradiction as well. So, by Post’s result, all elements of CBj , no matter
what their arity is, are projection functions. By Lemma 7.1.1 again, since
X has no binary non-dictatorial aggregator, we have that for every k and
for every k-ary aggregator F = (f1, . . . , fn), there exists an integer d  m
such that for every j  n and every two-element set Bj ✓ Xj, the restriction
fj� Bj is equal to prkd, the k-ary projection on the d-th coordinate. This
concludes the proof of Theorem 7.1.1.

In the case of the Boolean framework, Theorem 7.1.1 takes the stronger
form of Theorem 7.1.2 below. Although this result for the Boolean framework
is implicit in Dokow and Holzman [76], we give an independent proof.

Theorem 7.1.2 (Dokow and Holzman). Let X ✓ {0, 1}n be a set of feasible
voting patterns. The following statements are equivalent.

1. X is a possibility domain.
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2. X is a�ne (i.e., X admits a minority aggregator) or X admits a non-
dictatorial binary aggregator.

Proof. Only the direction 1 =) 2 requires proof. Assume that X is a pos-
sibility domain in the Boolean framework. By Theorem 7.1.1, X admits
either a majority or a minority aggregator or X has non-dictatorial binary
aggregator. Since we are in the Boolean framework, this means that X is
a�ne or X is bijunctive or X has a non-dictatorial binary aggregator. If X
has at most two elements, then X is closed under �, hence X is a�ne. So,
it su�ces to show that if X is bijunctive and has at least three elements,
then X has a non-dictatorial binary aggregator. To prove the latter, fix an
element a = (a1, . . . , an) 2 X. Define the following binary aggregator, where
x = (x1, . . . , xn) and y = (y1, . . . , yn) are arbitrary elements of X:

F a(x,y) = (maj(x1, y1, a1), . . . ,maj(xn, yn, an)). (7.5)

First, observe that F a is indeed an aggregator for X. Since X is closed
under maj, all we have to prove is that F a is supportive. But this is obvi-
ous, because, for j  n, if xj = aj or yj = aj, then maj(xj, yj, aj) = xj

or maj(xj, yj, aj) = yj. If xj 6= aj and yj 6= aj, then xj = yj, hence
maj(xj, yj, aj) = xj = yj.

Now, consider an a 2 X such that at some coordinate i, ai = 1 and
at some coordinate j, aj = 0 (such a exists, because X has at least three
elements). Observe that F a

i = _, by equation 7.5 and because ai = 1.
Similarly, F a

j = ^, because aj = 0. Therefore F a
i 6= F a

j .

7.1.2 Characterization of Total Blockedness

As discussed in the preceding section, much of the earlier work on possibility
domains used the notion of a set being totally blocked. Our next result char-
acterizes this notion in terms of binary aggregators and, in many respects,
“explains” the role of this notion in the earlier results about possibility do-
mains.

We begin by giving the precise definition of what it means for a set X
of feasible voting patterns to be totally blocked. We will follow closely the
notation and terminology used by Dokow and Holzman [77].

Let X be a set of feasible voting patterns.

• Given subsets Bj ✓ Xj, j = 1, . . . , n, the product B =
Qn

j=1 Bj is called
a sub-box. It is called a 2-sub-box if |Bj| = 2, for all j.
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Elements of a box B that belong also to X will be called feasible evalu-
ations within B (in the sense that each issue j = 1, . . . , n is “evaluated”
within B).

• Let K be a subset of {1, . . . , n} and let x be a tuple in
Q

j2K Bj.

We say that x is a feasible partial evaluation within B if there exists
a feasible evaluation y within B that extends x, i.e., xj = yj, for all
j 2 K; otherwise, we say that x is an infeasible partial evaluation within
B.

We say that x is a B-Minimal Infeasible Partial Evaluation (B-MIPE)
if x is an infeasible partial evaluation within B and if for every j 2 K,
there is a bj 2 Bj such that changing the j-th coordinate of x to bj
results into a feasible partial evaluation within B.

• We define a directed graph GX as follows.

The vertices of GX are the pairs of distinct elements u, u0 in Xj, for all
j = 1, . . . n. Each such vertex is denoted by uu0

j.

Two vertices uu0
s, vv

0
t with s 6= t are connected by a directed edge

from uu0
s to vv0t if there exists a 2-sub-box B =

Qn
j=1 Bj, a set K ✓

{1, . . . , n}, and a B-MIPE x = (xj)j2K such that s, t 2 K and Bs =
{u, u0

} and Bt = {v, v0} and xs = u and xt = v0. Each such directed
edge is denoted by uu0

s �!
B,x,K

vv0t (or just uu
0
s ! vv0t, in case B,x, K are

understood from the context).

Notice that uu0
s ! vv0t if and only if v0vt ! u0us.

We now give the following definition:

Definition 7.1.2 (Dokow and Holzman [77]). We say that X is totally
blocked if the graph GX is strongly connected, i.e., every two distinct vertices
uu0

s, vv
0
t are connected by a directed path (this must hold even if s = t).

Example 7.1.2. Let X = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and X 0 =
{(0, 1), (1, 0)}.

Both GX and GX0 have two vertices for each issue j, namely 01j and 10j,
where GX has j = 1, 2, 3 and GX0 has j = 1, 2. In the figures below, we use
undirected edges between two vertices uu0

s and vv0t to denote the existence of
both uu0

s ! vv0t and vv0t ! uu0
s.
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Since X is in the Boolean framework, the only 2-sub-box B is X1⇥X2⇥X3.
The B-MIPEs of X are (0, 0, 0), (0, 1, 1), (1, 0, 1) and (1, 1, 0). Consider 011,
012 of GX . Due to (0, 1, 1), 011 ! 012 and due to (1, 0, 1), 012 ! 011. Also,
due to (0, 0, 0), 01i ! 10j, 8i, j 2 {1, 2, 3} : i 6= j. The rest of the cases are
left to the reader.

Observe that GX is strongly connected and that it admits no binary non-
dictatorial aggregator, as expected by Theorem 7.1.3 below, but it admits the
ternary minority aggregator.

GX

011

101

012

102

013 103

GX0

011 102

101 012

On the other hand, the only 2-sub-box B0 of X 0 is X 0
1⇥X 0

2, since it is also
in the Boolean framework. The B0-MIPEs of X 0 are (0, 0) and (1, 1). Easily
now, 011 $ 102 and 101 $ 012.

Observe that GX0 is not strongly connected (it is not even connected)
and, as expected by Theorem 7.1.3 below, it admits binary non-dictatorial
aggregators, namely, (^,_) and (_,^). ⇧

This notion is a generalization to the case where the domain D is allowed
to have an arbitrary cardinality of a corresponding notion for the Boolean
framework, originally given in [174].

To give the intuition behind the above rather technical definition, assume
that we are in the Boolean case, so the only 2-sub-box is

Qn
j=1 Xj. Observe

that a MIPE x is a vector of votes on some of the issues, which however
cannot be extended to a vector of votes on all issues in X, i.e. cannot be
extended to a “rational” voting pattern on all issues, and is a minimal partial
such vector, in the sense that deleting the vote of a single issue from x, we
get a partial vector of votes that can be extended to a total rational one.
Now observe that if uu0

s, vv
0
t with s 6= t are connected by an edge, then there
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is a minimal way to fix the votes on some issues other than s, t so that any
rational total voting pattern that takes these fixed values and has the value
u on issue s, should take the value v on issue t. Therefore as Dokow and
Holzman [75] write “Roughly speaking, it requires that the limitations on
feasibility embodied in the set X make it possible to deduce any position on
any issue from any position on any issue, via a chain of deductions.”

We are now ready to state the following result, which — quite remarkably
we believe— characterizes total blockedness as a weak form of impossibility,
for any number of issues and any possible set of votes for each issue.

Theorem 7.1.3. Let X be a set of feasible voting patterns. The following
statements are equivalent.

1. X is totally blocked.

2. X has no non-dictatorial binary aggregator.

Observe that Theorem 7.1.2 is also an immediate consequence of Theorem
5.2.1 and Theorem 7.1.3. In view of Theorem 5.2.2 by Dokow and Holzman
[77], only the direction 1 =) 2 of Theorem 7.1.3 requires proof. Nevertheless,
we prove both directions of Theorem 7.1.3 for completeness.

Proof. We start with direction 1 =) 2.
Consider at first two vertices uu0

s, vv
0
t of GX (with s 6= t) connected by

an edge uu0
s ! vv0t. Then there exists a 2-sub-box B =

Qn
j=1 Bj with Bs =

{u, u0
} and Bt = {v, v0} and a B-MIPE x = (xj)j2K such that {s, t} ✓ K

and xs = u, xt = v0.

Claim 7.1.1. For every binary aggregator F = (f1, . . . , fn) of X, it holds
that if fs(u, u0) = u, then ft(v, v0) = v.

To prove the Claim, first observe that by the minimality of x within B
if we flip xs from u to u0 or if we flip xt from v0 to v, then we get, in both
cases, respective feasible evaluations within B. Therefore, there are two total
evaluations e and e0 in X \B such that

• es = u0 and

• ep = xp for p 2 K, p 6= s (in particular et = v0),

and



224 CHAPTER 7. AGGREGATING DOMAINS

• e0t = v and

• e0p = xp for p 2 K, p 6= t (in particular e0s = u).

If we assume, towards a contradiction, that fs(u, u0) = u and ft(v, v0) = v0,
we immediately have that the evaluation

F (e, e0) := (f1(e1, e
0
1), . . . , fn(en, e

0
n))

extends (xj)j2K , contradicting the latter’s infeasibility within B. This com-
pletes the proof of the Claim and we now return to the proof of Theorem
7.1.3.

From the Claim we get that if uu0
s !! vv0t and fs(u, u0) = u, then

ft(v, v0) = v (even if s = t), where uu0
s !! vv0t means that there is path from

uu0
s to vv0t in the graph GX . Also, since by supportiveness ft(v, v0) 2 {v, v0},

we have that if vv0t !! uu0
s and fs(u, u0) = u0, then ft(v, v0) = v0. From this,

it immediately follows that if GX is strongly connected, then every binary
aggregator of X is dictatorial.

We will now prove Direction 2 =) 1 of Theorem 7.1.3 , namely, that if
X is not totally blocked, then there is a non-dictatorial binary aggregator
(this part is contained in [77, Theorem 2] – Theorem 5.2.2 above). Since GX

is not strongly connected, there is a partition of the vertices of GX into two
mutually disjoint and non-empty subsets V1 and V2 so that there is no edge
from a vertex of V1 towards a vertex in V2. We now define a F = (f1, . . . , fn),
where fs : A2

s 7! As, as follows:

fs(u, u
0) =

8
><

>:

u if uu0
s 2 V1 and u 6= u0,

u0 if uu0
s 2 V2 and u 6= u0,

u if u = u0.

(7.6)

In other words, for two di↵ering values u and u0 in Xs, the function fs is
defined as the projection on the first coordinate if uu0

s 2 V1, and as the
projection onto the second coordinate if uu0

s 2 V2; we also define fk(u, u) = u
if u = u0.

Notice that F is non-dictatorial, because V1 and V2 are not empty.
All that remains to be shown is that X is closed under F , i.e., if e =

(e1, . . . , en), e0 = (e01, . . . , e
0
n) 2 X are two total feasible evaluations, then

f̄(e, e0) := (f1(e1, e
0
1), . . . fn(en, e

0
n)) 2 X. (7.7)
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Let
L = {j = 1, . . . , n | ej 6= e0j}.

For an arbitrary j 2 L, define vertexj(e, e0) to be the vertex uu0
j of GX , where

u = ej and u0 = e0j .
If now F (e, e0) = e or if F (e, e0) = e0, then obviously (7.7) is satisfied. So

assume that
F (e, e0) 6= e and F (e, e0) 6= e0. (7.8)

Also, towards showing (7.7) by contradiction, assume

F (e, e0) 62 X. (7.9)

Define now a 2-sub-box B = (Bj)j=1,...,n as follows:

Bj =

(
{ej, e0j} if ej 6= e0j,

{ej, aj} otherwise ,
(7.10)

where aj is an arbitrary element 6= ej of Xj (the latter choice is only made
to ensure that |Bj| = 2 in all cases).

Because of (7.9) and (7.10), we have that F (e, e0) is a total evaluation
infeasible within B. Towards constructing a B-MIPE, delete one after the
other (and as far as it can go) coordinates of F (e, e0), while taking care
not to destroy infeasibility within B. Let K ✓ {1, . . . , n} be the subset of
coordinate indices that remain at the end of this process. Then the partial
evaluation

x :=
�
fj(ej, e

0
j)
�
j2K (7.11)

is infeasible within B. Therefore, lest e or e0 extends x =
�
fj(ej, e0j)

�
j2K (not

permissible because the latter partial evaluation is infeasible), there exist
s, t 2 K such that

es 6= e0s and et 6= e0t (7.12)

and also
fs(es, e

0
s) = es and ft(et, e

0
t) = e0t. (7.13)

But then if we set
u = es, u

0 = e0s, v = et, v
0 = e0t, (7.14)

we have, by (7.6), (7.12), (7.13) and (7.14), that

vertexs(e, e
0) = uu0

s 2 V1 and vertext(e, e
0) = vv0t 2 V2 (7.15)
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and, by (7.6), (7.13) and (7.14), we get that

uu0
s �!
B,x,K

vv0t

which by (7.15) is a contradiction, because we get an edge from V1 to V2.
This completes the proof of Theorem 7.1.3.

Before proceeding further, we point out that the three types of non-
dictatorial aggregators in Theorem 7.1.1 are, in a precise sense, independent
of each other.

Example 7.1.3. Consider the set X = {0, 1}3 \ {(1, 1, 0)} of satisfying as-
signments of the Horn clause (¬x _ ¬y _ z).

It is easy to see that X is closed under the binary operation ^, but it is
not closed under the ternary majority operation maj or the ternary minority
operation �.

Thus, X is a possibility domain admitting a non-dictatorial binary aggre-
gator, but not a majority aggregator or a minority aggregator. ⇧

Example 7.1.4. Consider the set X = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}
of solutions of the equation x+ y + z = 1 over the two-element field.

It is easy to see that X is closed under the ternary minority operation
�, but it is not closed under the ternary majority operation maj. Moreover,
Dokow and Holzman [76, Example 3] pointed out that X is totally blocked,
hence Theorem 7.1.3 implies that X does not admit a non-dictatorial binary
aggregator.

Thus, X is a possibility domain admitting a minority aggregator, but not
a majority aggregator or a non-dictatorial binary aggregator. ⇧

Example 7.1.5. Consider the set X = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 0, 0)}.
This set was studied in [77, Example 4]. It can be shown that X ad-

mits a majority aggregator. To see this, consider the ternary operator F =
(f1, f2, f3) such that fj(x, y, z) is the majority of x, y, z, if at least two of
the three values are equal, or it is 0 otherwise. Notice that in the latter case
the value 0 must be one of the x, y, z, so this operator is indeed supportive.
It is easy to verify that X is closed under (f1, f2, f3). Moreover, if one of
the fj’s is restricted to a two-element domain (i.e., to one of {0, 1}, {(1, 2)},
{0, 2}), then it must be the majority function by its definition, so F is indeed
a majority aggregator on X.
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Dokow and Holzman argued that X is totally blocked, hence Theorem 7.1.3
implies that X does not admit a non-dictatorial binary aggregator.

Next, we claim that X does not admit a minority aggregator. Towards
a contradiction, assume it admits the minority aggregator G = (g1, g2, g3).
By applying G to the triples (0, 1, 2), (1, 2, 0), (0, 0, 0) in X, we infer that
the triple (g1(0, 1, 0), g2(1, 2, 0), g3(2, 0, 0)) must be in X. By the assumption
that this aggregator is the minority operator on two-element domains, we
have that g1(0, 1, 0) = 1 and g3(2, 0, 0) = 2, so X contains a triple of the
form (1, g2(1, 2, 0), 2); however, X contains no triple whose first coordinate
is 1 and its third coordinate is 2, so we have arrived at a contradiction.

Thus, X is a possibility domain admitting a majority aggregator, but not
a minority aggregator or a non-dictatorial binary aggregator. ⇧

Observe that the possibility domains in Examples 7.1.3 and 7.1.4 are in
the Boolean framework, while the possibility domain in Example 7.1.5 is not.
This is no accident, because it turns out that, in the Boolean framework, if a
set admits a majority aggregator, then it also admits a non-dictatorial binary
aggregator. This property is shown as a claim in the proof of Theorem 7.1.2.
Note also that this explains why admitting a majority aggregator is not part
of the characterization of possibility domains in the Boolean framework in
Theorem 7.1.2.

7.1.3 Uniform Possibility Domains

In this Section, we connect aggregation theory with multi-sorted constraint
satisfaction problems. Towards this goal, we introduce a new type of ag-
gragators, namely uniform non-dictatorial aggregators, which is a stronger
notion of non-dictatorial aggregators.

Definition 7.1.3. We say that an aggregator F = (f1, . . . , fn) for X is
uniform non-dictatorial if for every j = 1, . . . , n and every two-element subset
Bj ✓ Xj, we have that fj� Bj is not a projection function.

Obviously, such an aggregator is not dictatorial. In the literature, sev-
eral other ways to strengthen the notion of being non-dictatorial have been
suggested, mainly for the Boolean case. We mention these below and outline
their relation to the notion of uniform non-dictatorial aggregator.

A k-ary aggregator F = (f1, . . . , fm), in the Boolean framework, is locally
dictatorial if there exists a j 2 {1, . . . , n} and a d 2 {1, . . . , k} such that
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fj = prkd (see [175] ). It can be easily seen that, in the Boolean framework,
F is locally non-dictatorial if and only if it is uniform non-dictatorial. As
mentioned in Section 2, an aggregator F = (f1, . . . , fn) is anonymous if the
output of each fj depends only on the multi-set of its input values. It is easy
to see that an anonymous aggregator is also uniform non-dictatorial; the
converse however is not necessarily true. The same holds for the StrongDem
aggregator, defined by Szegedy and Xu in [207]: for all j 2 {1, . . . , n}, for
all Bj ✓ Xj and for all i 2 {1, . . . , k}, there exist a1j , . . . , a

k
j 2 Bj, such

that, the value of fj(a1j , . . . , a
i�1
j , xi

j, a
i+1
j , . . . , akj ) does not depend on the

value of xi
j (this aggregator is defined in the non-Boolean framework). It is

again easy to see that such an aggregator is uniform non-dictatorial. On the
other hand, consider the uniform non-dictatorial (and systematic) aggregator
F = (f, . . . , f) such that f is a minority operator. F is not StrongDem:
consider f on input a, b, c 2 {0, 1}. If a = b, then if c 6= a, f(a, b, c) = c; else
it is equal to a. If a 6= b, then, if c = a, f(a, b, c) = b, else it is equal to a.
Thus, there are no values for a, b in order for f to be independent of c.

Finally, it is interesting to compare aggregators that are not uniform
non-dictatorial with generalized dictatorshis, defined by Grandi and En-
driss [111, 113] (or rolling dictatorships ; see [49]). A k-ary aggregator F =
(f1, . . . , fn) for X is a generalized dictatorship if there exists a function
g : Xk

7! {1, . . . , k} such that, for any x = (x1, . . . , xk) 2 Xk,

f̄(x) = xg(x).

The notions of generalized dictatorships and not uniform non-dictatorial
aggregators di↵er. Informally, note that: (i) a generalized dictatorship refers
to elements x 2 Xk, whereas not uniform non-dictatorial aggregators to
issues j and (ii) for an aggregator F not to be a generalized dictatorship,
we only need one element x such that F is not dictatorial on this element,
whereas for an aggregator to be uniform non-dictatorial, we need all issues
to be aggregated in a non-dictatorial way. Formally, the class of aggregators
that are not generalized dictatorships is neither a subclass nor a superclass of
the uniform non-dictatorial ones. Indeed, recall the aggregator of Example
5.2.1. It is not a generalized dictatorship, since for each x 2 Xk, it introduces
two dictators (the d-th voter for the first l issues and the d0-th for the rest)
and, obviously, it is not a uniform non-dictatorial aggregator, since all of its
components are projections. On the other hand, let X = {(0, 0), (1, 1)} ✓

{0, 1}2 and let F = (maj,maj), which is obviously a uniform non-dictatorial
aggregator. It is not hard to see that f̄ is a generalized dictatorship.
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We now turn our attention to sets of feasible voting patterns that admit
uniform non-dictatorial aggregators.

Definition 7.1.4. Let X be a set of feasible voting patterns. We say that
X is a uniform possibility domain if X admits a uniform non-dictatorial
aggregator of some arity.

The next example shows that the notion of a uniform possibility domain
is strictly stronger than the notion of a possibility domain.

Example 7.1.6. Let W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation,
considered in Example 5.2.4. As seen earlier, the Cartesian product W ⇥W
is a possibility domain. We claim that W ⇥ W is not a uniform possibility
domain in the sense of Definition 7.1.4. Indeed, since W is an impossibility
domain, it follows easily that for every k, all k-ary aggregators of W ⇥ W
are of the form

(prkd , pr
k
d , pr

k
d , pr

k
d0 , pr

k
d0 , pr

k
d0), for d, d0 2 {1, . . . , k}. ⇧

It is obvious that every set X that admits a majority aggregator or a
minority aggregator is a uniform possibility domain. The next example states
that uniform possibility domains are closed under Cartesian products.

Example 7.1.7. If X and Y are uniform possibility domains, then so is
their Cartesian product X ⇥ Y .

Assume that X ✓ D
l and Z ✓ D

n�l, where 1  l < n. Let (f1, . . . , fl) be
a uniform non-dictatorial aggregator for X and let (fl+1 . . . , fn) be a uniform
non-dictatorial aggregator for Y . Then

(f1, . . . , fl, fl+1, . . . , fn)

is a uniform non-dictatorial aggregator for X ⇥ Y . ⇧

We now provide a useful characterization for uniform possibility domains.

Theorem 7.1.4. Let X be a set of feasible voting patterns. The following
statements are equivalent.

1. X is a uniform possibility domain.

2. For every j = 1, . . . , n and for every two-element subset Bj ✓ Xj, there
is an aggregator F = (f1, . . . , fn) (that depends on j and Bj) of some
arity such that fj� Bj is not a projection function.
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3. There is a ternary aggregator F = (f1, . . . , fn) such that for all j =
1, . . . , n and all two-element subsets Bj ✓ Xj, we have that fj� Bj is
one of the ternary operations ^(3), _(3), maj, � (to which of these four
ternary operations the restriction fj� Bj is equal to depends on j and
Bj).

4. There is a ternary aggregator F = (f1, . . . , fn) such that for all j =
1, . . . , n and all x, y 2 Xj, we have that fj(x, y, y) = fj(y, x, y) =
fj(y, y, x).

Before the proof of Theorem 7.1.4, we give several preliminaries.
We start with the following lemma:

Lemma 7.1.4 (Superposition of aggregators). Let F = (f1, . . . , fn) be a
k-ary aggregator and let

H1 = (h1
1, . . . , h

1
n), . . . , H

k = (hk
1, . . . , h

k
n)

be k l-ary aggregators (all on n issues). Then the n-tuple of l-ary functions
(g1, . . . , gn) defined by:

gj(x1, . . . , xl) = fj(h
1
j(x1, . . . , xl), . . . , h

k
j (x1, . . . , xl)), j = 1, . . . , n

is also an aggregator.

Proof. Let xs
j , s = 1, . . . , l, j = 1, . . . , n be an l⇥ n matrix whose rows are in

X. Since the H i, i = 1, . . . , k are l-ary aggregators, we conclude that for all
i = 1, . . . , k,

(hi
1(x

1
1, . . . , x

l
1), . . . , h

i
n(x

1
n, . . . , x

l
n)) 2 X.

We now apply the aggregator F = (f1, . . . , fn) to the k ⇥ n matrix

hi
j(x

1
j , . . . , x

l
j), i = 1, . . . , k, j = 1, . . . , n,

which concludes the proof.

Using the above lemma we will assume below, often tacitly, that vari-
ous tuples of functions obtained by superposition of aggregators with other
aggregators, like projections, are aggregators as well.

We now prove three lemmas:
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Lemma 7.1.5. Let D be an arbitrary set and f : D3
7! D a ternary support-

ive operation on D, and B a two-element subset of D taken as {0, 1}. Then
f�B is commutative if and only if f�B 2 {^

(3),_(3),maj,�}.

Proof. Only the su�ciency of commutativity of f�B for its being one of
^

(3),_(3), maj,� is not entirely trivial. Since f is supportive, f(0, 0, 0) = 0
and f(1, 1, 1) = 1. Assume f�{0, 1} is commutative. Let

f(1, 0, 0) = f(0, 1, 0) = f(0, 0, 1) := a, and

f(0, 1, 1) = f(1, 0, 1) = f(1, 1, 0) := b.

By supportiveness, a, b 2 {0, 1}. If a = b = 0, then f = ^
(3); if a = b = 1,

f = _
(3); if a = 0 and b = 1, f = maj; and if a = 1 and b = 0, f = �.

Lemma 7.1.6. Let D be an arbitrary set and f, g : D3
7! D two ternary

supportive operations on D. Define the supportive as well ternary operation

h(x, y, z) = f(g(x, y, z), g(y, z, x), g(z, x, y)).

If B is a two-element subset of D then h�B is commutative if either f�B or
g�B is commutative.

Proof. The result is entirely trivial if g�B is commutative, since in this case,
by supportiveness of f , h�B = g�B. If on the other hand f�B is commu-
tative then easily from the definition of h follows that for any x, y, z 2 B,
h(x, y, z) = h(y, z, x) = h(z, x, y). This form of superposition of f and g
appears also in Bulatov [38, Section 4.3].

For notational convenience, we introduce the following definition:

Definition 7.1.5. Let F and G be two aggregators on X. Let F ⇧G be the
ternary aggregator H = (h1, . . . , hn) defined by:

hj(x, y, z) = fj(gj(x, y, z), gj(y, z, x), gj(z, x, y)), j = 1, . . . ,m,

(The fact that H is indeed an aggregator follows from Lemma 7.1.4 and
the fact that a tuple of functions comprised of the same projections is an
aggregator.)



232 CHAPTER 7. AGGREGATING DOMAINS

Lemma 7.1.7. Let H and G be two aggregators on X. Let i, j 2 {1, . . . , n}
two arbitrary issues (perhaps identical) and Bi, Bj two-element subsets of Xi

and Xj, respectively. If fi�Bi and gj�Bj are commutative (i.e., by Lemma
7.1.5 if each is one of the ^(3),_(3), maj,�) then both F ⇧G�Bi and F ⇧G�Bj

are commutative (i.e., each is one of the ^
(3),_(3), maj,�).

Proof. Immediate by Lemmas 7.1.5 and 7.1.6.

We now prove the characterization of uniform possibility domains. Some
of the techniques employed in the proof of Theorem 7.1.4 and the preceding
lemmas had been used by Bulatov (see [37, Proposition 3.1] [38, Proposition
2.2]; these results however consider only operations of arity two or three.)1

Proof of Theorem 7.1.4.
The directions (1) =) (2) and (3) =) (1) are obvious. Also the

equivalence of (3) and (4) immediately follows from Lemma 7.1.5. It remains
to show (2) =) (3). For a two-element subset Bj ✓ Xj, let CBj be the clone
(Lemma 7.1.3) of the restrictions fj� Bj of the j-th components of aggregators
F = (f1, . . . , fn). By Post [186], we can easily get that CBj contains one of the
operations ^,_,maj and �. Therefore, easily, for all j, Bj there is a ternary
aggregator F = (f1, . . . , fn) (depending on j, Bj) such that fj�Bj is one of
the ^

(3),_(3),maj and �. Now let F 1, . . . , FN be an arbitrary enumeration
of all ternary aggregators each of which on some issue j and some two-
element Bj is one of the ^

(3),_(3),maj and � and such that the F l’s cover
all possibilities for j, Bj. As a ternary operation H such that uniformly for
each j, Bj, the restriction hj�Bj belongs to the set {^(3),_(3),maj,�} we can
take, by Lemma 7.1.7,

(· · · (F 1
⇧ F 2) ⇧ · · · ⇧ FN),

which concludes the proof.
We now prove a result that connects locally non-dictatorial and anony-

mous aggregators in the Boolean framework. Nehring and Puppe [175, The-
orem 2] proved that a domain admits a monotone and locally non-dictatorial
aggregator if and only if it admits a monotone anonymous one. An n-ary
aggregator F = (f1, ..., fm) is monotone if, for all j 2 {1, . . . , n} and for all
i 2 {1, . . . , k} it satisfies the following condition:

fj(x
1
j , . . . , x

i�1
j , xi

j, x
i+1
j . . . , xk

j ) = 1 ) fj(x
1
j , . . . , x

i�1
j , 1, xi+1

j , . . . , xk
j ) = 1.

1
This came to the attention of the authors only after the work reported here had been

essentially completed.



7.1. CHARACTERIZATIONS FOR ABSTRACT DOMAINS 233

As a corollary of our Theorem 7.1.4, we show not only that the monotonicity
requirement can be dropped but also that in the “only if” direction, the
anonymous aggregator can be proved to be ternary. Specifically, we prove:

Corollary 7.1.1. Let X be a set of feasible voting patterns in the Boolean
framework. The following statements are equivalent.

1. X admits a locally non-dictatorial aggregator of some arity k.

2. X admits an anonymous ternary aggregator.

Proof. Recall that, in the Boolean framework, the notions of locally and uni-
form non-dictatorial aggregators coincide. Thus, condition 1 of the Corollary
is equivalent with X being a uniform possibility domain. The result now fol-
lows by condition 4 of Theorem 7.1.4

Recall the setting of Subsec. 2.1.1 and 4.2.2. If X ✓ D
n is a set of

feasible voting patterns, then X can be considered as multi-sorted relation
with signature (1, . . . , n) (one sort for each issue). We write R

cons
X to denote

the multi-sorted conservative constraint language consisting of X and all
subsets of D.

In this framework, and in case all D = {0, 1}, we have that CSP(Rcons
X )

coincides with the problem SATC({X}). Note that the presence of the sets
{0} and {1} in the constraint language amounts to allowing constants, besides
variables, in the constraints.

Bulatov’s Dichotomy Theorem for c-MCSP(Th. 4.2.7), in our setting
reads:

Theorem 7.1.5. If for any j = 1, . . . , n and any two-element subset Bj ✓ Xj

there is either a binary aggregator F = (f1, . . . , fn) such that fj�Bj 2 {^,_}
or a ternary aggregator F = (f1, . . . , fm) such that fj�Bj 2 {maj,�}, then
c-MCSP(RX) is solvable in polynomial time; otherwise it is NP-complete.

We now state the following dichotomy theorem.

Theorem 7.1.6. If X is a uniform possibility domain, then c-MCSP(RX)
is solvable in polynomial time; otherwise it is NP-complete.

Proof. The tractability part of the statement follows from Bulatov’s Di-
chotomy Theorem and item (3) of Theorem 7.1.4 (observing that x ^ y =
^

(3)(x, x, y) and similarly for _ and using Lemma 7.1.4), whereas the com-
pleteness part follows from Bulatov’s Dichotomy Theorem and item (2) of
Theorem 7.1.4.
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We end this section with the following example:

Example 7.1.8. Let Y = {0, 1}3 \ {(1, 1, 0)} be the set of satisfying assign-
ments of the clause (¬x _ ¬y _ z) and let:

Z = {(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 0)}

be the set of solutions of the equation x + y + z = 0 over the two-element
field.

We claim that Y and Z are uniform possibility domains, hence, by Ex-
ample 7.1.7, the Cartesian product X = Y ⇥ Z is also a uniform possibility
domain. From Theorem 7.1.6, it follows that c-MCSP(RX) is solvable in
polynomial time. However, the generalized satisfiability problem c-CSP(RX)
is NP-complete.

Indeed, in Schaefer’s [192] terminology, the set Y is Horn (equivalently,
it is coordinate-wise closed under ^); however, it is not dual Horn (equiva-
lently, it is not coordinate-wise closed under _), nor a�ne (equivalently, it
does not admit a minority aggregator) nor bijunctive (equivalently, it does
not admit a majority aggregator). Therefore, by coordinate-wise closure un-
der ^, we have that Y is a uniform possibility domain. Also, Z is a�ne, but
not Horn, nor dual Horn neither bijunctive. So, being a�ne, Z is a uniform
possibility domain. The NP-completeness of c-CSP(RX) follows from Schae-
fer’s dichotomy theorem [192], because X is not Horn, dual Horn, a�ne, nor
bijunctive. ⇧

7.2 Syntactic Characterizations via Integrity
Constraints

In this section, we begin (Subsec. 7.2.1) by showing that we can e�ciently
recognize the syntactic types of the integrity constraints we defined in Sec.
5.3. We then proceed to give syntactic characterizations for Boolean (local)
possibility domains via the integrity constraints that describe them (Subsec.
7.2.2. Afterwards, we show how, given a Boolean domain D, we can e�-
ciently construct such integrity constraints that describe it (Subsec. 7.2.3).
Finally, we turn our attention to other forms of non-dictatorial aggregators
and provide corresponing characteriztions (Subsec. 7.2.4).
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7.2.1 Identifying (local) possibility int. constraints

In this section, we show that identifying (local) possibility integrity con-
straints can be done in time linear in the length of the input formula. By
Definitions 5.3.5 and 5.3.6, it su�ces to show that for separable formulas, re-
namable partially Horn formulas and lpic’s, since the corresponding problem
for a�ne formulas is trivial.

In all that follows, we assume that we have a set of variables V :=
{x1, . . . , xn} and a formula � defined on V that is a conjunction of m clauses
C1, . . . , Cm, where Cj = (lj1 , . . . , ljkj ), j = 1, . . . , n, and ljs is a positive or
negative literal of xjs , s = 1, . . . , kj. We denote the set of variables corre-
sponding to the literals of a clause Cj by vbl(Cj).

We begin with the result for separable formulas:

Proposition 7.2.1. There is an algorithm that, on input a formula �, halts
in time linear in the length of � and either returns that the formula is not
separable, or alternatively produces a partition of V in two non-empty and
disjoint subsets V1, V2 ✓ V , such that no clause of � contains variables from
both V1 and V2.

Proof. We construct a graph on the variables of �, where two such vertices
are connected if they appear consecutively in a common clause of �. The
result is then obtained by showing that � is separable if and only if G is not
connected.

Suppose the variables of each clause are ordered by the indices of their
corresponding literals in the clause. Thus, we say that xjs , xjt are consecutive
in Cj, if t = s+ 1, s = 1, . . . , kj � 1.

Given a formula �, construct an undirected graph G = (V,E), where :

• V is the set of variables of �, and

• two vertices are connected if they appear consecutively in a common
clause of �.

It is easy to see that each clause Cj, where vbl(Cj) = {xj1 , . . . , xjkj
} induces

the path {xj1 , . . . , xjkj
} in G.

For the proof of linearity, notice that the set of edges can be constructed
in linear time with respect to the length of �, since we simply need to read
once each clause of � and connect its consecutive vertices. Also, there are
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standard techniques to check connectivity in linear time in the number of
edges (e.g. by a depth-first search algorithm).

The correctness of the algorithm is derived by noticing that two con-
nected vertices of G cannot be separated in �. Indeed, consider a path
P := {xr, . . . , xs} in G (this need not be a path induced by a clause).
Then, each couple xt, xt+1 of vertices in P belongs in a common clause of
�, t = r, . . . , s�1. Thus, � is separable if and only if G is not connected.

To deal with renamable partially Horn formulas, we will start with Lewis’
idea [160] of creating, for a formula �, a 2Sat formula �0 whose satisfiability
is equivalent to � being renamable Horn. However, here we need to (i) look
for a renaming that might transform only some clauses into Horn and (ii)
deal with inadmissible Horn clauses, since such clauses can cause other Horn
clauses to become inadmissible too.

Proposition 7.2.2. For every formula �, there is a formula �0 such that �
is renamable partially Horn if and only if �0 is satisfiable.

Before delving into the proof, we introduce some notation. Assume that
after a renaming of some of the variables in V , we get the partially Horn
formula �⇤, with V0 being the admissible set of variables. Let C0 be an
admissible set of clauses for �⇤. We assume below that only a subset V ⇤

✓ V0

has been renamed and that all Horn clauses of �⇤ with variables exclusively
from V0 belong to C0 (see Remark 5.3.2). Also, let V1 := V \ V0. The clauses
of �⇤, which are in a one to one correspondence with those of �, are denoted
by C⇤

1 , . . . , C
⇤
m, where C⇤

j corresponds to Cj, j = 1, . . . ,m.

Proof. For each variable x 2 V , we introduce a new variable x0. Intuitively,
setting x = 1 means that x is renamed (and therefore x 2 V ⇤), whereas
setting x0 = 1 means that x is in V0, but is not renamed. Finally we set
both x and x0 equal to 0 in case x is not in V0. Obviously, we should not not
allow the assignment x = x0 = 1 (a variable in V0 cannot be renamed and
not renamed). Let V = V [ {x0

| x 2 V }.
Consider the formula �0 below, with variable set V . For each clause C

of � and for each x 2 vbl(C): if x appears positively in C, introduce the
literals x and ¬x0 and if it appears negatively, the literals ¬x and x0. �0 is
the conjunction of the following clauses: for each clause C of � and for each
two variables x, y 2 vbl(C), �0 contains the disjunctions of the positive with
the negative literals introduced above. Thus:
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(i) if C contains the literals x, y, then �0 contains the clauses (x_¬y0) and
(¬x0

_ y),

(ii) if C contains the literals x,¬y, then �0 contains the clauses (x _ ¬y)
and (¬x0

_ y0) (accordingly if C contains ¬x, y) and

(iii) if C contains the literals ¬x,¬y, then �0 contains the clauses (¬x _ y0)
and (x0

_ ¬y).

Finally, we add the following clauses to �0:

(iv) (¬xi _ ¬x0
i), i = 1, . . . , n and

(v)
W

x2V x.

The clauses of items (i)–(iv) correspond to the intuition we explained in the
beginning. For example, consider the case where a clause Cj of � has the
literals x,¬y. If we add x to V0 without renaming it, we should not rename y,
since we would have two positive literals in a clause of C0. Also, we should not
add the latter to V1, since we would have a variable of V0 appearing positively
in a clause containing a variable of V1. Thus, we have that x0

! y0, which
is expressed by the equivalent clause (¬x0

_ y0) of item (ii). The clauses of
item (iv) exclude the assignment x = x0 = 1 for any x 2 V . Finally, since we
want V0 to be non-empty, we need at least one variable of V to be set to 1.

To complete the proof of Proposition 7.2.2, we now proceed as follows.
()) First, suppose � is renamable partially Horn. Let V0, V1, V ⇤ and V

as above. Suppose also that V0 6= ;.
Set a = (a1, . . . , a2n) to be the following assignment of values to the

variables of V :

a(x) =

(
1, if x 2 V ⇤,

0, else,
and a(x0) =

(
0, if x 2 V ⇤

[ V1,

1, else,

for all x 2 V . To obtain a contradiction, suppose a does not satisfy �0.
Obviously, the clauses of items (iv) and (v) above are satisfied, by the

definition of a and the fact that V0 is not empty.
Now, consider the remaining clauses of items (i)–(iii) above and suppose

for example that some (¬x _ y0) is not satisfied. By the definition of �0,
there exists a clause C which, before the renaming takes place, contains the
literals ¬x,¬y (see item (iii)). Since the clause is not satisfied, a(x) = 1 and
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a(y0) = 0, which in turn means that x 2 V ⇤ and y 2 V ⇤
[ V1. If y 2 V1, C⇤

contains, after the renaming, a variable in V1 and a positive appearance of a
variable in V0. If y 2 V ⇤, C⇤ contains two positive literals of variables in V0.
Contradiction. The remaining cases can be proven analogously and are left
to the reader.

(() Suppose now that a = (a1, . . . , a2n) is an assignment of values to the
variables of V that satisfies �0. We define the following subsets of V :

- V ⇤ = {x | a(x) = 1},

- V0 = {x | a(x) = 1 or a(x0) = 1} and

- V1 = {x | a(x) = a(x0) = 0}.

Let �⇤ be the formula obtained by �, after renaming the variables of V ⇤.
Obviously, V0 is not empty, since a satisfies the clause of item (v).
Suppose that a clause C⇤, containing only variables from V0, is not Horn.

Then, C⇤ contains two positive literals x, y. If x, y 2 V0 \ V ⇤, then neither
variable was renamed and thus C also contains the literals x, y. This means
that, by item (i) above, �0 contains the clauses (x_¬y0) and (¬x0

_ y). Now,
since x, y 2 V0 \ V ⇤, it holds that a(x) = a(y) = 0 and a(x0) = a(y0) = 1.
Then, a does not satisfy these two clauses. Contradiction. In the same way,
we obtain contradictions in cases that at least one of x and y is in V ⇤.

Finally, suppose that there is a variable x 2 V0 that appears positively in
a clause C⇤ /2 C0. Let y 2 V1 be a variable in C⇤ (there is at least one such
variable, lest C⇤

2 C0). Suppose also that y appears positively in C⇤.
Assume x 2 V ⇤. Then, C contains the literals ¬x, y. Thus, by item (ii),

�0 contains the clause (¬x _ y). Furthermore, since x 2 V ⇤, a(x) = 1 and
since y 2 V1, a(y) = 0. Thus the above clause is not satisfied. Contradiction.
In the same way, we obtain contradictions in all the remaining cases.

To compute �0 from �, one would need quadratic time in the length of �.
Thus, we introduce the following linear algorithm that decides if a formula
� is renamable partially Horn, by tying a property of a graph constructed
based on �, with the satisfiability of �0.

Theorem 7.2.1. There is an algorithm that, on input a formula �, halts in
time linear in the length of � and either returns that � is not renamable par-
tially Horn or alternatively produces a subset V ⇤

✓ V such that the formula
�⇤ obtained from � by renaming the literals of variables in V ⇤ is partially
Horn.
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To prove Theorem 7.2.1, we define a directed bipartite graph G, i.e. a
directed graph whose set of vertices is partitioned in two sets such that no
vertices belonging in the same part are adjacent. Then, by computing its
strongly connected components (scc), i.e. its maximal sets of vertices such
that every two of them are connected by a directed path, we show that at
least one of them is not bad (does not contain a pair of vertices we will specify
below) if and only if � is renamable partially Horn.

For a directed graph G, we will denote a directed edge from a vertex u to
a vertex v by (u, v). A (directed) path from u to v, containing the vertices
u = u0, . . . , us = v, will be denoted by (u, u1, . . . , us�1, v) and its existence
by u ! v. If both u ! v and v ! u exist, we will sometimes write u $ v.

Recall that given a directed graphG = (V,E), there are known algorithms
that can compute the scc of G in time O(|V | + |E|), where |V | denotes the
number of vertices of G and |E| that of its edges (see e.g. Tarjan [211]). By
identifying the vertices of each scc, we obtain a directed acyclic graph (DAG).
An ordering (u1, . . . , un) of the vertices of a graph is called topological if there
are no edges (ui, uj) such that i � j, for all i, j 2 {1, . . . , n}.

Proof. Given � defined on V , whose set of clauses is C and let again V =
V [ {x0

| x 2 V }. We define the graph G, with vertex set V [ C and edge set
E such that, if C 2 C and x 2 vbl(C), then:

• if x appears negatively in C, E contains (x, C) and (C, x0),

• if x appears positively in C, E contains (x0, C) and (C, x) and

• E contains no other edges.

Intuitively, if x, y 2 V , then a path (x, C, y) corresponds to the clause x ! y
which is logically equivalent to (¬x _ y). The intuition behind x and x0 is
exactly the same as in Proposition 7.2.2. We will thus show that the bipartite
graph G defined above, contains all the necessary information to decide if �0

is satisfiable, with the di↵erence that G can be constructed in time linear in
the length of the input formula. To that end, observe that to construct G,
we need constant-time access to the formula �. Indeed, one only needs to
read � once, from left to right, constructing one vertex for each clause and
connecting the vertices of the clause with it in the way described above.

There is a slight technicality arising here since, by the construction above,
G always contains either the path (x, C, x0) or (x0, C, x), for any clause C and
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x 2 vbl(C), whereas neither (¬x _ x0) nor (x _ ¬x0) are ever clauses of �0.
Thus, from now on, we will assume that no path can contain the vertices x,
C and x0 or x0, C and x consecutively, for any clause C and x 2 vbl(C).

Observe that by construction, (i) (x, C) or (C, x) is an edge of G if and
only if x 2 vbl(C), x 2 V and (ii) (x, C) (resp. (x0, C)) is an edge of G if
and only if (C, x0) (resp.(C, x)) is one too.

We now prove several claims concerning the structure of G. To make
notation less cumbersome, assume that for an x 2 V , x00 = x. Consider the
formula �0 of Proposition 7.2.2.

Claim 7.2.1. Let x, y 2 V . For z1, . . . , zk 2 V and C1, . . . , Ck+1 2 C, it
holds that (x, C1, z1, C2, . . . , zk, Ck+1, y) is a path of G if and only if (¬x_z1),
(¬zi _ zi+1), i = 1, . . . , k � 1 and (¬zk _ y) are all clauses of �0.

Proof of Claim. Can be easily proved inductively to the length of the
path, by recalling that a path (u, C, v) corresponds to the clause (¬u _ v),
for all u, v 2 V and C 2 C. ⇤

Claim 7.2.2. Let x, y 2 V . If x ! y, then y0 ! x0.

Proof of Claim. Since x ! y, there exist variables z1, . . . , zk 2 V and
clauses C1, . . . , Ck+1 2 C, such that (x, C1, z1, C2, . . . , zk, Ck+1, y) is a path of
G. By Claim 7.2.1, (¬x _ z1), (¬zi _ zi+1), i = 1, . . . , k � 1 and (¬zk _ y)
are all clauses of �0. By Proposition 7.2.2, so do (¬y0 _ z0k), (¬z

0
i+1 _ z0i),

i = 1, . . . , k�1 and (¬z01_x0) and the result is obtained by using Claim 7.2.1
again. ⇤

We can obtain the scc’s of G using a variation of a depth-first search
(DFS) algorithm, that, whenever it goes from a vertex x (resp. x0) to a
vertex C, it cannot then go to x0 (resp. x) at the next step. Since the
algorithm runs in time linear in the number of the vertices and the edges of
G, it is also linear in the length of the input formula �.

Let S be a scc of G. We say that S is bad, if, for some x 2 V , S contains
both x and x0. We can decide if each of the scc’s is bad or not again in time
linear in the length of the input formula.

Claim 7.2.3. Let S be a bad scc of G and y 2 V be a vertex of S. Then, y0

is in S.

Proof of Claim. Since S is bad, there exist two vertices x, x0 of V in S.
If x = y we have nothing to prove, so we assume that x 6= y. Then, we have
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that y ! x, which, by Claim 7.2.2 implies that x0
! y0. Since x ! x0, we

get that y ! y0. That y0 ! y can be proven analogously. ⇤.
Let the scc’s of G, in reverse topological order, be S1, . . . .St. We describe

a process of assigning values to the variables of V :

1. Set every variable that appears in a bad scc of G to 0.

2. For each j = 1, . . . , t assign value 1 to every variable of Sj that has
not already received one (if Sj is bad no such variable exists). If some
x 2 V of Sj takes value 1, then assign value 0 to x0.

3. Let a be the resulting assignment to the variables of V .

Now, the last claim we prove is the following:

Claim 7.2.4. There is at least one variable z 2 V that does not appear in a
bad scc of G if and only if �0 is satisfiable.

Proof of Claim. ()) We prove that every clause of type (i)–(v) is satisfied.
First, by the construction of a, every clause ¬xi _ ¬x0

i, i = 1, . . . , n, of type
(iv) is obviously satisfied. Also, since by the hypothesis, z is not in a bad scc,
it holds, by step 2 above, that either z or z0 are set to 1. Thus, the clauseW

x2V x of type (v) is also satisfied.
Now, suppose some clause (x_¬y0) (type (i)) of �0 is not satisfied. Then

a(x) = 0 and a(y0) = 1. Furthermore, there is a vertex C such that (y0, C)
and (C, x) are edges of G. By the construction of G, (x0, C) and (C, y) are
also edges of G.

Since a(x) = 0, it must hold either that x is in a bad scc of G, or that
a(x0) = 1. In the former case, we have that x ! x0, which, together with
(y0, C, x) and (x0, C, y) gives us that y0 ! y. Contradiction, since then a(y0)
should be 0. In the latter case, we have that there are two scc’s Sp, Sr of G
such that x 2 Sp, x0

2 Sr and p < r in their topological order. But then,
there is some q : p  q  r such that C in Sq. Now, if p = q, we obtain a
contradiction due to the existence of (x0, C), else, due to (C, x).

The proof for the rest of the clauses of types (i)–(iii) are left to the reader.
(() First, recall that for two propositional formulas �, , we say that

� logically entails  , and write � |=  , if any assignment that satisfies �,
satisfies  too.

Now observe that, if x, y are two vertices in V such that x ! y, then
�0

|= (¬x _ y). Indeed, suppose � is an assignment of values that satisfies
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�0. If �(y) = 1, we have nothing to prove. Thus, assume that �(y) = 0.
By Claim 7.2.1, if (x, C1, z1, C2, z2, . . . , zk, Ck+1, y) is the path x ! y, then
(¬x_ z1), (¬zi _ zi+1), i = 1, . . . , k� 1 and (¬zk _ y) are all clauses of �0 and
are thus satisfied by �. Since �(y) = 0, we have �(zk) = 0. Continuing in
this way, �(zi) = 0, i = 1, . . . , k and thus �(x) = 0 too, which implies that
�(¬x _ y) = 1.

Now, for the proof of the claim, suppose again that �0 is satisfiable, and
let � be an assignment (possibly di↵erent than ↵) that satisfies �0. Since �
satisfies �0, it satisfies

W
x2V x. This means that there exists some x 2 V

such that �(x) = 1. But � also satisfies (¬x_¬x0), so we get that �(x0) = 0.
Thus �((¬x_x0)) = 0, which means that �0 does not logically entail ¬x_x0.
By the discussion above, there exists no path from x to x0, so x is not in a
bad scc of G. ⇤

By Proposition 7.2.2, we have seen that � is renamable partially Horn if
and only if �0 is satisfiable. Also, in case �0 is satisfiable, a variable x 2 V is
renamed if and only if a(x) = 1.

Thus, by the above and Claim 7.2.4, � is renamable partially Horn if
and only if there is some variable x that does not appear in a bad scc of G.
Furthermore, the process described in order to obtain assignment a is linear
in the length of the input formula, and a provides the information about
which variables to rename.

Because checking whether a formula is a�ne can be trivially done in linear
time, we get:

Theorem 7.2.2. There is an algorithm that, on input a formula �, halts in
linear time in the length of � and either returns that � is not a possibility
integrity constraint, or alternatively, (i) either it returns that � is a�ne or
(ii) in case � is separable, it produces two non-empty and disjoint subsets
V1, V2 ✓ V such that no clause of � contains variables from both V1 and V2

and (iii) in case � is renamable partially Horn, it produces a subset V ⇤
✓ V

such that the formula �⇤ obtained from � by renaming the literals of variables
in V ⇤ is partially Horn.

We proceed by showing that we can recognize lpic’s e�ciently.

Theorem 7.2.3. There is an algorithm that, on input a formula �, halts in
linear time in the length of � and either returns that � is not a local possibility
constraint, or alternatively, produces the sets V0, V1 described in Definition
5.3.6.
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Proof. We describe the algorithm in a high level way.

1. Read once each clause C of �. If C does not contain any � connectives,
put the variables of vbl(C) to V0. Else, put the variables connected by
� to V1.

2. Check the variables in V0 and V1. If V1 = V , � is a�ne and thus an lpic.
Else, if V0 \ V1 6= ; or V0 [ V1 6= V , � is not an lpic. Also, if V0 = V , �
is an lpic if and only if it is a renamable Horn formula, something that
can be checked in linear time by the algorithm of del Val [69].

3. Assume that (V0, V1) is a partition of V . We use the following variation
of the linear algorithm presented in Theorem 7.2.1:

(a) Build the graph G = (V ,E) in the same way and compute its scc.
Let V 0 = V0 [ {x0

| x 2 V0} and V 1 = V1 [ {x0
| x 2 V1}.

(b) If there is any variable of V 0 in a bad scc of G, G is not an lpic.
Else, set all variables of V 1 to 0.

(c) Let the scc’s of G, in reverse topological order, be S1, . . . .St. For
each j = 1, . . . , t assign value 1 to every variable of Sj \ V 0 that
has not already received one (if Sj is bad no such variable exists).
If some x 2 V 0 of Sj takes value 1, then assign value 0 to x0 (recall
that (x0)0 = x).

4. Let a be the resulting assignment to the variables of V . By renaming
all variables x 2 V0 such that a(x) = 1, we obtain a partially Horn
formula, whose non-admissible clauses are (V0, V1)-generalized. Thus,
� is an lpic.

Remark 7.2.1. Recall that we have assumed that all the formulas we con-
sider have non-degenerate domains. Note that the above algorithms cannot
distinguish such formulas from other formulas of the same form that have
degenerate domains. An algorithm that could e�ciently decide that, would
e↵ectively be (due e.g. to the syntactic form of separable formulas) an al-
gorithm that could decide on input any given formula, which variables are
satisfied by exactly one Boolean value and which admit both.

The consequences of the existence of such an algorithm would be critical.
For example, consider the known coNP-hard problem of unique satisfiability,
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where we are interested in whether a propositional formula � is satisfied by
exactly one assignment of values. We could use the aforementioned algorithm
for each variable of the formula consecutively. If, at any point, we find a
variable that is satisfied by both 0 and 1, then � has more that one satisfying
assignment. Else, it doesn’t.

7.2.2 Syntactic Characterization of (local) possibility
domains

In this subsection, we provide syntactic characterizations for (local) possibil-
ity domains, by proving they are the models of (local) possibility integrity
constraints. Furthermore, we show that given a (local) possibility domain D,
we can produce a (local) possibility integrity constraint, whose set of models
is D, in time polynomial in the size of D. To obtain the characterization
for possibility domains, we proceed as follows. We separately show that each
type of a possibility integrity constraint of Definition 5.3.5 corresponds to one
of the conditions of Theorem 5.2.1: (i) Domains admitting non-dictatorial
binary projection aggregators are the sets of models of separable formulas,
those admitting non-projection binary aggregators are the sets of models of
renamable partially Horn formulas and (iii) a�ne domains are the sets of
models of a�ne formulas. For local possibility domains, we directly show
they are the models of local possibility integrity constraints.

We will need some additional notation. For a set of indices I, let DI :=
{(ai)i2I | a 2 D} be the projection of D to the indices of I and D�I :=
D{1,...,n}\I . Also, for two (partial) vectors a = (a1, . . . , ak) 2 D{1,...,k}, k < n
and b = (b1, . . . , bn�k) 2 D{k+1,...,n}, we define their concatenation to be the
vector ab = (a1, . . . , ak, b1, . . . , bn�k). Finally, given two subsets D,D0

✓

{0, 1}n, we write that D ⇡ D0 if we can obtain D by permuting the co-
ordinates of D0, i.e. if D = {(dj1 , . . . , djn) | (d1, . . . , dn) 2 D0

}, where
{j1, . . . , jn} = {1, . . . , n}.

We begin with characterizing the domains closed under a non-dictatorial
projection aggregator as the models of separable formulas.

Proposition 7.2.3. D ✓ {0, 1}n admits a binary non-dictatorial projection
aggregator (f1, . . . , fn) if and only if there exists a separable formula � whose
set of models equals D.

We will first need the following lemma:
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Lemma 7.2.1. D is closed under a binary non-dictatorial projection ag-
gregator if and only if there exists a partition (I, J) of {1, . . . , n} such that
D ⇡ DI ⇥DJ .

Proof. ()) Let F = (f1, . . . , fn) be a binary non-dictatorial projection ag-
gregator for D. Assume, without loss of generality, that fi = pr21, i =
1, . . . , k < n and fj = pr22, j = k + 1, . . . , n. Let also I := {1, . . . , k} and
J := {k + 1, . . . , n}. Since k < n, (I, J) is a partition of {1, . . . , n}. To
prove that D = DI ⇥DJ , it su�ces to prove that DI ⇥DJ ✓ D (the reverse
inclusion is always true).

Let a 2 DI and b 2 DJ . It holds that there exists an a0 2 DI and a
b0 2 DJ such that both ab0, a0b 2 D. Thus:

F (ab0, a0b) = ab 2 D,

since F = (f1, . . . , fn) is an aggregator for D, fi = pr21, i 2 I and fj = pr22,
j 2 J .

(() Suppose that D ⇡ DI ⇥DJ , where I, J is a partition of {1, . . . , n}.
Assume, without loss of generality, that I = {1, . . . , k}, k < n and J =
{k + 1, . . . , n} (thus D = DI ⇥DJ). Let also ab0, a0b 2 D, where a, a0 2 DI

and b, b0 2 DJ .
Obviously, if F = (f1, . . . , fn) is an n-tuple of projections, such that

fi = pr21, i 2 I and fj = pr22, j 2 J , then F (ab0, a0b) = ab 2 D, since a 2 DI

and b 2 DJ . Thus F = (f1, . . . , fn) is a non-dictatorial projection aggregator
for D.

Proof of Proposition 7.2.3. ()) SinceD admits a binary non-dictatorial pro-
jection aggregator (f1, . . . , fn), by Lemma 7.2.1, D ⇡ DI⇥DJ , where (I, J) is
a partition of {1, . . . , n} such that I = {i | fi = pr21} and J = {j | fj = pr22}.
Let �1 and �2 defined on {xi | i 2 I} and {xj | j 2 J} respectively, such that
Mod(�1) = DI and Mod(�2) = DJ . Let also � = �1^�2. It is straightforward
to observe that, since �1 and �2 contain no common variables:

Mod(�) ⇡ Mod(�1)⇥Mod(�2) = DI ⇥DJ ⇡ D.

(() Assume that � is separable and that Mod(�) = D. Since � is separable,
we can find a partition (I, J) of {1, . . . , n}, a formula �1 defined on {xi | i 2
I} and a �2 defined on {xj | j 2 J}, such that � = �1 ^ �2. Easily, it holds
that:

Mod(�) ⇡ Mod(�1)⇥Mod(�2) = DI ⇥DJ ⇡ D.

The required now follows by Lemma 7.2.1.
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We now turn our attention to domains closed under binary non projection
aggregators.

Theorem 7.2.4. D admits a binary aggregator (f1, . . . , fn) which is not a
projection aggregator if and only if there exists a renamable partially Horn
formula � whose set of models equals D.

We will first need two lemmas.

Lemma 7.2.2. Suppose D admits a binary aggregator F = (f1, . . . , fn) such
that there exists a partition (H, I, J) of {1, . . . , n} where fh is symmetric for
all h 2 H, fi = pr2s, for all i 2 I and fj = pr2t , with t 6= s, for all j 2 J .
Then, D also admits a binary aggregator G = (g1, . . . , gn), such that gh = fh,
for all h 2 H and gi = pr2s, for all i 2 I [ J .

Proof. Without loss of generality, assume that there exist 1  k < l < n
such that H = {1, . . . , k}, I = {k+1, . . . , l} and J = {l+1, . . . , n} and that
s = 1 (and thus t = 2). It su�ces to prove that, for two arbitrary vectors
a, b 2 D, G(a, b) 2 D, where (g1, . . . , gn) is defined as in the statement of the
lemma.

Assume that for all i 2 H, fi(ai, bi) = ci. Since F is an aggregator for D,
it holds that F (a, b) and F (b, a) are both vectors in D. By the same token,
so is F (F (a, b), F (b, a)). The result is now obtained by noticing that:

F (a, b) =(c1, . . . , ck, ak+1, . . . , al, bl+1, . . . , bn),

F (b, a) =(c1, . . . , ck, bk+1, . . . , bl, al+1, . . . , an),

and thus: F (F (a, b), F (b, a)) = (c1, . . . , ck, ak+1, . . . , an) = G(a, b).

Lemma 7.2.3. Suppose D admits a binary aggregator (f1, . . . , fn) such that,
for some J ✓ {1, . . . , n}, fj is symmetric for all j 2 J . For each d =
(d1, . . . , dn) 2 D, let d⇤ = (d⇤1, . . . , d

⇤
n) be such that:

d⇤j =

(
1� dj if j 2 J,

dj else,

for j = 1, . . . , n and set D⇤ = {d⇤ | d 2 D}. Then D⇤ admits the binary
aggregator (g1, . . . , gn), where: (i) gj = ^ for all j 2 J such that fj = _, (ii)
gj = _ for all j 2 J such that fj = ^ and (iii) gj = fj for the rest.

Furthermore, if there are two formulas � and �⇤ such that �⇤ is obtained
from � by renaming all xj, j 2 J , then D = Mod(�) if and only if D⇤ =
Mod(�⇤).
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Note that we do not assume that the set J ✓ {1, . . . , n} includes every
coordinate j such that fj is symmetric.

Proof. The former statement follows from the fact that ^(1 � dj, 1 � d0j) =
1� _(dj, d0j) (resp. _(1� dj, 1� d0j) = 1� ^(dj, d0j)), for any d, d0 2 D. For
the latter, observe that by renaming xj, j 2 J , in �, we cause all of its literals
to be satisfied by the opposite value. Thus, d⇤ satisfies �⇤ if and only if d
satisfies �.

For two vectors a, b 2 D, we define a  b to mean that if ai = 1 then
bi = 1, for all i 2 {1, . . . , n} and a < b when a  b and a 6= b.

Proof of Theorem 7.2.4. ()) We will work with the corresponding domain
D⇤ of Lemma 7.2.3 that admits an aggregator (g1, . . . , gn) whose symmetric
components, corresponding to the symmetric components of (f1, . . . , fn), are
all equal to ^. Suppose that V0 = {xi | gi = ^}. For D⇤, we compute a
formula � = �0 ^ �1, where �0 is defined on the variables of V0 and is Horn
and where �1 has only negative appearances of variables of V0. The result is
then derived by renaming all the variables xj, where j is such that fj = _.

Let I := {i | fi is symmetric} (by the hypothesis, I 6= ;). Let also
J := {j | fj = _} (J might be empty). Obviously J ✓ I. For each
d = (d1, . . . , dn) 2 D, let d⇤ = (d⇤1, . . . , d

⇤
n), where d⇤j = 1 � dj if j 2 J

and d⇤i = di else. Easily, if D⇤ = {d⇤ | d 2 D}, by Lemma 7.2.3 it admits
an aggregator (g1, . . . , gn) such that gi = ^, for all i 2 I and gj = pr21,
j /2 I. Thus, there is a Horn formula �0 on {xi | i 2 I} := V0, such that
Mod(�0) = D⇤

I .
If I = {1, . . . , n}, we have nothing to prove. Thus, suppose, without loss

of generality, that I = {1, . . . , k}, k < n. For each a = (a1, . . . , ak) 2 D⇤
I , let

Ba := {b 2 D⇤
�I | ab 2 D⇤

} be the set containing all partial vectors that can
extend a. For each a 2 D⇤

I , let  a be a formula on {xj | j /2 I}, such that
Mod( a) = Ba. Finally, let Ia := {i 2 I | ai = 1} and define:

�a :=

 
^

i2Ia

xi

!
!  a,

for all a 2 D⇤
I .

Consider the formula:

� = �0 ^

 
^

a2D⇤
I

�a

!
.
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We will prove that � is partially Horn and that Mod(�) = D⇤. By Lemma
7.2.3, the renamable partially Horn formula for D can be obtained by renam-
ing in � the variables xi such that i 2 J .

We have already argued that �0 is Horn. Also, since �a is logically equiv-
alent to (has exactly the same models as):

 
_

i2Ia

¬xi

!
_  a,

any variable of V0 that appears in the clauses of some �a, does so negatively.
It follows that � is partially Horn.

Next we show that D⇤
✓ Mod(�) and that Mod(�) ✓ D⇤. For the former

inclusion, let ab 2 D⇤, where a 2 D⇤
I and b 2 Ba. Then, it holds that a

satisfies �0 and b satisfies  a. Thus ab satisfies �a.
Now, let a0 2 D⇤

I : a 6� a0. Then, a does not satisfy
V

i2Ia0
xi, since there

exists some coordinate i 2 Ia0 such that ai = 0 and a0i = 1. Thus, ab satisfies
�a0 . Finally, let a00 2 D⇤

I : a00 < a. Then, a satisfies
V

i2Ia00
xi and thus we

must prove that b satisfies  a00 .
Since a00 2 D⇤

I , there exists a c 2 D⇤
�I such that a00c 2 D⇤. Then, since

(g1, . . . , gn) is an aggregator for D⇤:

(g1, . . . , gn)(ab, a
00c) =

(^(a1, a
00
1), . . . ,^(ak, a

00
k), pr

2
1(b1, c1), . . . , pr

2
1(bn�k, cn�k)) = a00b 2 D⇤,

since a00 < a. Thus, b 2 B(a00) and, consequently, it satisfies  a00 .
We will prove the opposite inclusion by showing that an assignment not

in D⇤ cannot satisfy �. Let ab /2 D⇤. If a /2 D⇤
I , we have nothing to prove,

since a does not satisfy �0 and thus ab /2 Mod(�). So, let a 2 D⇤
I . Then,

b /2 Ba, lest ab 2 D⇤. But then, b does not satisfy  a and thus ab does not
satisfy �a. Consequently, ab /2 Mod(�).

Thus, by renaming the variables xi, i 2 J , we produce a renamable
partially Horn formula, call it  , such that Mod( ) = D.

(() Let  be a renamable partially Horn formula with Mod( ) = D. Let
J ✓ {1, . . . , n} such that, by renaming all the xi, i 2 J , in  , we obtain a
partially Horn formula �. Let V0 be the set of variables such that any clause
containing only variables from V0 is Horn, and that appear only negatively in
clauses that contain variables from V \ V0. By Remark 5.3.2, we can assume
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that {xi | i 2 J} ✓ V0. Let also C0 be the set of admissible Horn clauses of
�.

Let again D⇤ = {d⇤ | d 2 D}, where d⇤j = 1 � dj if j 2 J and d⇤i = di
else, for all d 2 D. By Lemma 7.2.3, Mod(�) = D⇤. By the same Lemma,
and by noticing that whichever the choice of J ✓ {1, . . . , n}, (D⇤)⇤ = D,
it su�ces to prove that D⇤ is closed under a binary aggregator (f1, . . . , fn),
where fi = ^ for all i such that xi 2 V0 and fj = pr21 for the rest.

Without loss of generality, let I = {1, . . . , k}, k < n (lest we have nothing
to show) be the set of indices of the variables in V0. We need to show that
if ab, a0b0 2 D, where a, a0 2 D⇤

I and b, b0 2 D⇤
�I , then (a ^ a0)b 2 D, where

a ^ a0 = (a1 ^ a01, . . . , ak ^ a0k).
Let � = �0 ^ �1, where �0 is the conjunction of the clauses in C0 and �1

the conjunction of the rest of the clauses of �. By the hypothesis, �0 is Horn
and thus, since a, a0 satisfy �0, so does a ^ a0. Now, let Cr be a clause of �1.
If any literal of Cr that corresponds to a variable not in �0 is satisfied by b,
we have nothing to prove. If there is no such literal, since ab satisfies Cr, it
must hold that a negative literal x̄i, i 2 I, is satisfied by a. Thus, ai = 0,
which means that ai ^ a0i = 0 too. Consequently, Cr is satisfied by (a ^ a0)b.
Since Cr was arbitrary, the proof is complete.

We thus get:

Theorem 7.2.5. D is a possibility domain if and only if there exists a pos-
sibility integrity constraint � whose set of models equals D.

Proof. ()) If D is a possibility domain, then, by Theorem 5.2.1, it either
admits a non-dictatorial binary projection, or a non-projection binary aggre-
gator or a ternary aggregator all components of which are the binary addition
mod 2. In the first case, by Proposition 7.2.3, D is the model set of a sep-
arable formula. In the second, by Theoremn 7.2.4, it is the model set of a
renamable partially Horn formula and in the third, that of an a�ne formula.
Thus, in all cases, D is the model set of a possibility integrity constraint.

(() Let � be a possibility integrity constraint such that Mod(�) = D. If
� is separable, then, by Proposition 7.2.3, D admits a non-dictatorial binary
projection aggregator. If � is renamable partially Horn, then, by Theorem
7.2.4, D admits a non-projection binary aggregator. Finally, if � is a�ne,
then D admits a ternary aggregator all components of which are the binary
addition mod 2. In every case, D is a possibility domain.
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We turn now our attention to local possibility domains. Analogously to
the case of possibility domains, we characterize lpd’s as the sets of models of
lpic’s.

Theorem 7.2.6. A domain D ✓ {0, 1}n is a local possibility domain if and
only if there is a local possibility integrity constraint � such that Mod(�) = D.

We will first need two lemmas.

Lemma 7.2.4. Let D ✓ {0, 1}n and I = {j1, . . . , jt} ✓ {1, . . . , n}. Then, if
F = (f1, . . . , fn) is a k-ary aggregator for D, (fj1 , . . . , fjt) is a k-ary aggre-
gator for DI .

Proof. Without loss of generality, assume I = {1, . . . , s}, where s  n and
let a1, . . . , ak 2 DI . It follows that there exist b1, . . . , bk 2 D�I such that
c1, . . . , ck 2 D, where ci = aibi, i = 1, . . . k. Since F is an aggregator for D:

F (c1, . . . , ck) := (f1(c
1
1, . . . , c

k
1), . . . , fn(c

1
n, . . . c

k
n)) 2 D.

Thus, (f1(c11, . . . , c
k
1), . . . , fs(c

1
s, . . . , c

k
s)) 2 DI .

Lemma 7.2.5. Suppose that D admits a ternary aggregator F = (f1, . . . , fn),
where fj 2 {^

(3),�,maj}, j = 1, . . . , n. Then D admits a binary aggregator
G = (g1, . . . , gn) such that gi = ^, for all i such that fi = ^

(3), gj = pr22, for
all j such that fj = � and gk = pr22, for all k such that fk = maj.

Proof. The result is immediate, by defining G = (g1, . . . , gn) such that:

gj(x, y) = fj(x, x, y),

for j = 1, . . . , n.

Proof of Theorem 7.2.6. ()) The proof will closely follow that of Theorem
7.2.4.

Since D is an lpd, by Theorem 7.1.4, there is a ternary aggregator F =
(f1, . . . , fn) such that every component fj 2 {^

(3),_(3),�,maj}, j = 1, . . . , n.
Again, let D⇤ = {d⇤ | d 2 D}, where d⇤j = 1 � dj if j is such that fj = _

(3),
and d⇤j = dj in any other case. Thus, by Lemma 7.2.3, D⇤ admits a ternary
aggregator G = (g1, . . . , gn) such that gj 2 {^

(3),�,maj}, for j = 1, . . . , n.
Thus, by showing that D⇤ is described by a lpic �, we will obtain the same
result for D by renaming all the variables xj, where j is such that fj = _

(3).
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Without loss of generality, assume that I := {i | gi = ^
(3)
} = {1, . . . , s},

J := {j | gj = �} = {s+1, . . . , t} and K := {k | gk = maj} = {t+1, . . . , n},
where 0  s  t  n. Since D⇤

I is Horn, there is a Horn formula �0 such that
Mod(D⇤

I ) = �0.
If s = t = n, we have nothing to prove. Thus, suppose s < t  n.

For each a = (a1, . . . , as) 2 D⇤
I , let B1

a := {b 2 D⇤
J | ab 2 D⇤

I[J} and
B2

a := {c 2 D⇤
J | ac 2 D⇤

I[K} be the sets of partial vectors extending a to the
indices of J and K respectively.

Claim 7.2.5. For each a 2 D⇤
I , B

1
a and B2

a are a�ne and bijunctive respec-
tively.

Proof of Claim: We will prove the claim for B2
a. The proof for B1

a is the
same.

Let b1, b2, b3 2 B2
a. Then ab1, ab2, ab3 2 D⇤

I[K . Since, by Lemma 7.2.4,
(g1, . . . , gt) is an aggregator for D⇤

I[K and by the definition of G, it holds that
ab 2 D⇤

I[K , where b = maj(b1, b2, b3). Thus, b 2 B2
a and the result follows. ⇤

Thus, for each a 2 D⇤
I , there is an a�ne formula  a and a bijunctive �a,

such that Mod( a) = B1
a and Mod(�a) = B2

a. Let Ia := {i 2 I | ai = 1} and
define:

�1
a :=

 
^

i2Ia

xi

!
!  a

and

�2
a :=

 
^

i2Ia

xi

!
! �a,

for all a 2 D⇤
I .

Consider the formula:

� = �0 ^

 
^

a2D⇤
I

�1
a

!
^

 
^

a2D⇤
I

�2
a

!
.

Let V0 = {xi | i 2 I}, V1 = {xj | j 2 J} and V2 = {xk | k 2 K}. That �
is partially Horn with admissible set V0, can be seen in the same way as in
Theorem 7.2.4. Now, consider  a, for some a 2 D⇤

I . Since it is a�ne, it is of
the form:

 a =
r̂

j=1

 
lj1 � · · ·� ljt

!
,
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where lji are literals of variables from V1. Thus, �1
a is equivalent to:

r̂

j=1

  
_

i2Ia

¬xi

!
_ (lj1 � · · ·� ljt)

!
.

Thus, the clauses of �1
a are (V0, V1)-generalized.

Now consider �a, for some a 2 D⇤
I . Since it is bijunctive, it is of the form:

�a =
t̂

s=1

 
ls1 _ ls2

!
,

where ls1 , ls2 are (not necessarily distinct) literals of variables from V2. Thus,
�2
a is equivalent to:

t̂

s=1

  
_

i2Ia

¬xi

!
_ (ls1 _ ls2)

!
.

To prove that � is an lpic, we will show that V2 can be renamed to
that V0 [ V2 become a set of admissible variables for the renamed formula.
Consider the clauses of

� :=

 
^

a2D⇤
I

�2
a

!
=
^

a2D⇤
I

 
t̂

s=1

  
_

i2Ia

¬xi

!
_ (ls1 _ ls2)

!!
.

They are comprised of negative appearances of variables from V0 and of at
most two literals from V2. Since V0 and V2 are disjoint, we can project �
to the variables of V2, to obtain a satisfiable bijunctive formula. Thus �V2

is renamable Horn. It is obvious that the same renaming, will result in a
renaming for � such that all its clauses contain at most one positive literal.

What remains now is to show that Mod(�) = D⇤. By Lemmas 7.2.2 and
7.2.5, it follows that D⇤ admits a binary aggregator H = (h1, . . . , hn) such
that hi = ^, for all i 2 I and hj = pr21, for all j 2 J [K. The proof now is
exactly like the one of Theorem 7.2.4, by letting Ba = {bc | b 2 B1

a and c 2
B2

a} and
�a = �1

a ^ �
2
a.

(() Let  be an lpic, with Mod( ) = D. Let V0 and V1 be subsets of V as
in Definition 5.3.6. Let also � be the partially Horn formula obtained by  by
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renaming the variables of a subset V ⇤
✓ V0. Again, assume D⇤ = {d⇤ | d 2

D}, where d⇤j = 1� dj if xj 2 V ⇤ and d⇤i = di else, for all d 2 D. By Lemma
7.2.3, Mod(�) = D⇤. Thus, by Theorem 7.1.4, it su�ces to prove that D⇤ is
closed under a ternary aggregator (f1, . . . , fn), where fi 2 {^

(3),maj,�} for
i = 1, . . . , n. We will in fact show that we do not need any maj components.

Without loss of generality, let I = {1, . . . , s}, be the set of indices of the
variables in V0 and J = {s+1 . . . , n} be that of the indices of variables in V1.
We will show that if ab, a0b0, a00b00 2 D⇤, where a, a0, a00 2 D⇤

I and b, b0, b00 2 D⇤
J ,

then
d := (^(3)(a, a0, a00),�(b, b0, b00)) 2 D⇤.

Let � = �0 ^ �1, where �0 is the conjunction of the clauses containing
only variables from V0 and �1 the conjunction of (V0, V1)-generalized clauses.
By the hypothesis, �0 is Horn and thus, since a, a0, a00 satisfy �0, so does
a ^ a0 ^ a00.

Now, let Cr be a clause of �1. Suppose that there is a literal of a variable
xi 2 V0 in Cr that is satisfied by a. Since � is partially Horn with respect to
V0, it must hold that this literal was ¬xi. This means that ai = 0 and thus
^

(3)(ai, a0i, a
00
i ) = 0. The same holds if ¬xi is satisfied by a0 or a00. Thus, Cr

is satisfied.
Now, suppose there is no such literal and that the and that the sub-clause

of Cr obtained by deleting the variables of V0 is:

C 0
r = (l1 � · · ·� lz).

Since ab, a0b0, a00b00 satisfy �, it holds that b, b0 and b00 satisfy C 0
r. Since C 0

r is
a�ne, it holds that �(b, b0, b00) satisfies it.

In all cases, we proved that d satisfies � and thus the proof is complete.

Recall that by Theorem 7.1.4, lpd’s are characterized as the domains
admitting an aggregator (f1, . . . , fn), where fi 2 {^

(3),_(3),�,maj} for i =
1, . . . , n. Observe though that by the proof of Theorem 7.2.6, we immediately
obtain the following result.

Corollary 7.2.1. D ✓ {0, 1}n is a local possibility domain if and only if
it admits a ternary aggregator (f1, . . . , fn) such that fj 2 {^

(3),_(3),�}, for
j = 1, . . . , n.

The above result is a strengthening of the corresponding characterization
of such domains in the non-Boolean framework, where a domain is taken
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to be a subset of ⇧m
j=1Aj, with Ajs being arbitrary finite sets with at least

two elements. It easily follows from [144, Theorem 5.5] that in this more
general framework, a domain is a a local possibility domain2, if and only
if it admits a ternary aggregator F = (f1, . . . , fn) such that, for all j =
1, . . . , n and all two-element subsets Bj ✓ Dj, taken as {0, 1}, we have that
fj� Bj is one of the ternary operations ^(3), _(3), maj, � (to which of these
four ternary operations the restriction fj� Bj is equal to depends on j and
Bj). Corollary 7.2.1 is a strengthening in the sense that in the Boolean
framework, the maj case is missing. Interestingly, we were not able to prove
this strengthening without the use of our syntactic characterization given in
Theorem 7.2.6 above. This perhaps explains why Corollary 7.2.1 was not
previously obtained, despite the fact that for the analogous case of (plain)
possibility domains, both a characterization for the non-Boolean framework
was given in [144, Theorem 3.1], and a strengthening for the Boolean case,
where maj is missing, was already known ( [76, Theorem 2.1 and Claim 3.6]
or Dietrich and List [74, Theorem 2]).

7.2.3 E�cient constructions

To finish this section, we will use Zanuttini and Hébrard’s “unified frame-
work” [219]. Recall the definition of a prime formula (Def. 5.3.7) and consider
the following proposition:

Proposition 7.2.4. Let �P be a prime formula and � be a formula logically
equivalent to �P . Then:

1. if � is separable, �P is also separable and

2. if � is renamable partially Horn, �P is also renamable partially Horn.

Proof. Let �P be a prime formula. Quine [187] showed that the prime impli-
cates of �P can be obtained from any formula � logically equivalent to �P , by
repeated (i) resolution and (ii) omission of the clauses that have sub-clauses
already created. Thus, using the procedures (i) and (ii) on �, we can obtain
every clause of �P .

If � is separable, where (V 0, V \ V 0) is the partition of its vertex set such
that no clause contains variables from both V 0 and V \ V 0, it is obvious that

2
In [144] the terminology “uniform possibility domain” is used.



7.2. SYNTACTIC CHARACTERIZATIONS 255

neither resolution or omission can create a clause that destroys that property.
Thus, �P is separable.

Now, let � be a renamable partially Horn formula where, by renaming
the variables of V ⇤

✓ V , we obtain the partially Horn formula �⇤, whose
admissible set of variables is V0. Let also �⇤

P be the formula obtained by
renaming the variables of V ⇤ in �P . Easily, �⇤

P is prime.
Observe that the prime implicates of a partially Horn formula, are also

partially Horn. Indeed, it is not di�cult to observe that neither resolution,
nor omission can cause a variable to seize being admissible: suppose x 2 V0.
Then, the only way that it can appear in an inadmissible set due to resolution
is if there is an admissible Horn clause C containing ¬x, y, where y 2 V0 too
and an inadmissible clause C 0 containing ¬y. But then, after using resolution,
x appears negatively to the newly obtained clause. Thus, �⇤

P is partially
Horn, which means that �P is renamable partially Horn.

We are now ready to prove our first main result:

Theorem 7.2.7. There is an algorithm that, on input D ✓ {0, 1}n, halts
in time O(|D|

2n2) and either returns that D is not a possibility domain, or
alternatively outputs a possibility integrity constraint �, containing O(|D|n)
clauses, whose set of satisfying truth assignments is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm to
check if it is a�ne [219, Proposition 8], and if it is, produce, in time O(|D|

2n2)
an a�ne formula � with O(|D|n) clauses, such that Mod(�) = D. If it isn’t,
we use again Zanuttini and Hébrard’s algorithm [219] to produce, in time
O(|D|

2n2), a prime formula � with O(|D|n) clauses, such that Mod(�) = D.
Then, we use the linear algorithms of Proposition 7.2.1 and Theorem 7.2.1
to check if � is separable or renamable partially Horn. If it is either of the
two, then � is a possibility integrity constraint and, by Theorem 7.2.5, D
is a possibility domain. Else, by Proposition 7.2.4, D is not a possibility
domain.

We end this section by proving our second main result, that given an lpd
D, we can e�ciently construct an lpic � such that Mod(�) = D.

Theorem 7.2.8. There is an algorithm that, on input D ✓ {0, 1}n, halts in
time O(|D|

2n2) and either returns that D is not a local possibility domain,
or alternatively outputs a local possibility integrity constraint �, containing
O(|D|n) clauses, whose set of satisfying truth assignments is D.
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We first briefly discuss some results of Zanuttini and Hébrard. For a clause
C = l1_. . ._lt, where lj are literals, j = 1, . . . , t, let E(C) = l1�. . .�lt. For a
CNF formula � =

Vm
j=1 Cj, let A(�) =

Vm
j=1 E(C). In [219, Proposition 8], it

is proven that if � is prime, Mod(�) = D and D is a�ne, then Mod(A(�)) =
D.

Proof of Theorem 7.2.8. Given a domain D, we first use the algorithm of
Zanuttini and Hébrard [219] to produce, in time O(|D|

2n2), a prime formula
� with O(|D|n) clauses, such that Mod(�) = D. Note that at this point, �
does not contain any generalized clauses (see below). We then use the linear
algorithm of Theorem 7.2.1 to produce a set V0 such that � is renamable
partially Horn with admissible set V0.

If V0 = V we have nothing to prove. Thus, suppose that � = �0 ^ �1,
where �0 contains only variables from V0. Let �0

1 be the sub-formula of
�1, obtained by deleting all variables of V0 from �. We then check, with
Zanuttini and Hébrard’s algorithm, if �0

1 is a�ne. If not, then D is not an
lpd. If it is, we construct the formula A⇤(�1) as follows. For each clause
C = (l1 _ · · ·_ ls _ (ls+1 _ · · ·_ lt)), where l1, . . . , ls are literals of variables in
V0, let:

E⇤(C) = (l1 _ · · · _ ls _ (ls+1 � · · ·� lt))

and A⇤(�1) =
Vm

j=1 E
⇤(Cj). Then, the lpic that describes D is �0 ^ A⇤(�1).

7.2.4 Other Forms of non-Dictatorial Aggregation

In this subsection, we discuss four di↵erent notions of non-dictatorial ag-
gregation procedures that have been introduced in the field of judgment
aggregation: aggregators that are not generalized dictatorships, and anony-
mous, monotone and StrongDem aggregators. We prove that pic’s, lpic’s,
a sub-class of pic’s, and a subclass of lpic’s, respectively, describe domains
that admit each of the above four kind of aggregators. Then, we consider
the property of systematicity and examine how our results change if the
aggregators are required to satisfy it.

Generalized Dictatorships Recall the definition of generalized dictator-
ships.
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Definition 7.2.1. Let F = (f1, . . . , fn) be an n-tuple of k-ary conservative
functions. F is a generalized dictatorship for a domain D ✓ {0, 1}n, if, for
any x1, . . . , xk

2 D, it holds that:

F (x1, . . . , xk) := (f1(x1), . . . , fn(xn)) 2 {x1, . . . , xk
}. (7.16)

Much like dictatorial functions, it is straightforward to observe that if F
is a generalized dictator for D, then it is also an aggregator for D.

It should be noted here that in the original definition of Grandi and En-
driss [112], generalized dictatorships are defined independently of a specific
domain. Specifically, condition (7.16) is required to hold for all x1, . . . , xk

2

{0, 1}n. With this stronger definition, they show that the class of general-
ized dictators coincides with that of functions that are aggregators for every
domain D ✓ {0, 1}n.

Remark 7.2.2. The di↵erence in the definition of generalized dictatorships
comes from a di↵erence in the framework we use. Here, we opt to consider
the aggregators restricted in the given domain, in the sense that we are not
interested in what they do on inputs that are not allowed by it. The im-
plications of this are not very evident in the Boolean framework, especially
since we consider aggregators that satisfy IIA, on non-degenerate domains (in
fact, this issue will not arise in any other aggregator present in this work,
apart from generalized dictatorships). On the other hand, in the non-Boolean
framework, using unrestricted aggregators could result in trivial cases of non-
dictatorial aggregation, where the aggregator is not a projection only on inputs
that are not allowed by the domain.

The following example shows that the result of Grandi and Endriss [112,
Theorem 16] does not hold in our setting.

Example 7.2.1. Consider the Horn formula:

�11 = (x1_¬x2_¬x3)^(¬x1_x2_¬x3)^(¬x1_¬x2_x3)^(¬x1_¬x2_¬x3),

whose set of satisfying assignments is:

Mod(�11) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

By definition, Mod(�11) is a Horn domain and it thus admits the binary
symmetric aggregator ¯̂ = (^,^,^). Furthermore, ¯̂ is not a generalized
dictatorship for Mod(�11), since:

¯̂((0, 0, 1), (0, 1, 0)) = (0, 0, 0) /2 {(0, 0, 1), (0, 1, 0)}.
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On the other hand, consider the Horn formula:

�12 = (¬x1 _ x2) ^ (x2 _ ¬x3) ^ (¬x1 _ ¬x2 _ x3).

¯̂ is again an aggregator for the Horn domain:

Mod(�12) = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)},

but, contrary to the previous case, ¯̂ is a generalized dictatorship for the
domain Mod(�12), since it is easy to verify that for any x, y 2 D0, ¯̂(x, y) 2
{x, y}.

Finally, observe that (^,_,_) is an aggregator for Mod(�12) that is not a
generalized dictatorship. The latter claim follows from the fact that:

(^,_,_)((0, 1, 0), (1, 1, 1)) = (0, 1, 1) /2 {(0, 1, 0), (1, 1, 1)},

while the former is left to the reader. Thus, interestingly enough, �12 de-
scribes a domain admitting an aggregator that is not a generalized dictator-
ship, although it is not the aggregator that “corresponds” to the formula. ⇧

It is easy to see that (prki , . . . , pr
k
i ) is a generalized dictatorship of any

D ✓ {0, 1}n, for all k � 1 and for all i 2 {1, . . . , k}. Thus, trivially, every
domain admits aggregators which are generalized dictatorships. On the other
hand, every domain D ✓ {0, 1}n containing only two elements (a domain
cannot contain less than two due to non-degeneracy) admits only generalized
dictatorships. Indeed, assume D = {x, y}, x 6= y and let F be a k-ary
aggregator for D. Obviously, F (x, . . . , x) = x and F (y, . . . , y) = y, since F
is unanimous. Also, F (x, y) 2 {x, y} = D since F is an aggregator.

Our aim is again to find a syntactic characterization for domains that
admit aggregators which are not generalized dictatorships. The following
result shows that these domains are all the possibility domains with at least
three elements, and are thus characterized by possibility integrity constraints.

Theorem 7.2.9. A domain D ✓ {0, 1}n, with at least three elements, admits
an aggregator that is not a generalized dictatorship if and only if it is a
possibility domain.

Proof. The forward direction is obtained by the trivial fact that an aggregator
that is not a generalized dictatorship is also non-dictatorial.

Now, suppose that D is a possibility domain. Then it is either a�ne or
it admits a binary non-dictatorial aggregator. We begin with the a�ne case.
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It is a known result that D ✓ {0, 1}n is a�ne if and only if it is closed under
�, or, equivalently, if it admits the minority aggregator:

�̄ = (�, . . . ,�| {z }
n-times

)

Claim 7.2.6. Let D ✓ {0, 1}n be an a�ne domain. Then, the minority
aggregator:

�̄ = (�, . . . ,�| {z }
n-times

)

is not a generalized dictatorship for D.

Proof. Let x, y, z 2 D be three pairwise distinct vectors. Since y 6= z, there
exists a j 2 {1, . . . , n} such that yj 6= zj. It follows that yj+zj ⌘ 1( mod 2).
This means that �(xj, yj, zj) 6= xj and thus that �̄(x, y, z) 6= x. In the same
way we show that �̄(x, y, z) /2 {x, y, z}, which is a contradiction, since �̄ is
an aggregator for D.

Recall that the only binary unanimous functions are ^,_, pr21, pr
2
2.

Claim 7.2.7. Suppose D ✓ {0, 1}n admits a binary non-dictatorial non-
symmetric aggregator F = (f1, . . . , fn). Then F is not a generalized dicta-
torship.

Proof. Assume, to obtain a contradiction, that F is a generalized dictatorship
for D and let x, y 2 D. Then, F (x, y) := z 2 {x, y}. Assume that z = x.
The case where z = y is analogous.

Let J ✓ {1, . . . , n} such that fj is symmetric, for all j 2 J and fj is a
projection otherwise. Note that J 6= {1, . . . , n}. Let also I ✓ {1, . . . , n} \ J ,
such that fi = pr22, for all i 2 I and fi = pr21 otherwise. If I 6= ;, then, for
all i 2 I, it holds that:

yi = pr22(xi, yi) = fi(xi, yi) = zi = xi.

Since x, y were arbitrary, it follows that Di = {xi}, for all i 2 I. Contradic-
tion, since D is non-degenerate.

If I = ;, then fj = pr21, for all j /2 J . Note that in that case, J 6= ;, lest
F is dictatorial. Now, consider F (y, x) := w 2 {x, y} since F is a generalized
dictatorship. By the definition of F , wj = zj = xj, for all j 2 J , and wi = yi,
for all i /2 J . Thus, if w = x, D is degenerate on {1, . . . , n} \ J , whereas if
w = y, D is degenerate on J . In both cases, we obtain a contradiction.
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The only case left is when D ✓ {0, 1}n admits a binary symmetric aggre-
gator. Contrary to the previous case, where we showed that the respective
non-dictatorial aggregators could not be generalized dictatorships, here we
cannot argue this way, as Example 7.2.1 attests. Interestingly enough, we
show that as in Example 7.2.1, we can always find some symmetric aggregator
for such a domain that is not a generalized dictatorship.

Claim 7.2.8. Suppose D ✓ {0, 1}n admits a binary non-dictatorial symmet-
ric aggregator F = (f1, . . . , fn). Then, there is a binary symmetric aggregator
G = (g1, . . . , gn) for D (G can be di↵erent from F ) that is not a generalized
dictatorship for D.

Proof. If F is not a generalized dictatorship for D, we have nothing to prove.
Suppose it is and let J ✓ {1, . . . , n}, such that fj = _, for all j 2 J and
fi = ^ for all i /2 J (J can be both empty or {1, . . . , n}).

Let D⇤ = {d⇤ = (d⇤1, . . . , d
⇤
n) | d = (d1, . . . , dn) 2 D}, where:

d⇤j =

(
1� dj if j 2 J

dj else.

By Lemma 7.2.3, H = (h1, . . . , hn) is a symmetric aggregator for D if and
only if H⇤ = (h⇤

1, . . . , h
⇤
n) is an aggregator for D⇤, where h⇤

j = hj, for all j /2 J
and, for all j 2 J , if hj = _, then h⇤

j = ^ and vice-versa. As expected, the
property of being a generalized dictatorship carries on this transformation.

Claim 7.2.9. H is a generalized dictatorship for D if and only if H⇤ is a
generalized dictatorship for D⇤.

Proof. Let x = (x1, . . . , xn), y = (y1, . . . , yn) 2 D and z := H(x, y). Since
_(xj, yj) = 1�^(1�xj, 1� yj) and ^(xj, yj) = 1�_(1�xj, 1� yj), it holds
that zj = h⇤

j(x
⇤
j , y

⇤
j ), for all j /2 J , and 1�zj = h⇤

j(x
⇤
j , y

⇤
j ), for all j 2 J . Thus,

z⇤ = H⇤(x⇤, y⇤). It follows that z 2 {x, y} if and only if z⇤ 2 {x⇤, y⇤}.

Now, since D admits the generalized dictatorship F , it follows that D⇤

admits the binary aggregator ¯̂ = (^, . . . ,^)| {z }
n-times

, that is also a generalized dic-

tatorship. Our aim is to show that D⇤ admits a symmetric aggregator that
is not a generalized dictatorship. The result will then follow by Claim 7.2.9.

For two elements x⇤, y⇤ 2 D⇤, we write x⇤
 y⇤ if, for all j 2 {1, . . . , n}

such that x⇤
j = 1, it holds that y⇤j = 1.
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Claim 7.2.10.  is a total ordering for D⇤.

Proof. To obtain a contradiction, let x⇤, y⇤ 2 D⇤ such that neither x⇤
 y⇤

nor y⇤  x⇤. Thus, there exist i, j 2 {1, . . . , n}, such that x⇤
i = 1, y⇤i = 0,

x⇤
j = 0 and y⇤j = 1. Thus:

^(x⇤
i , y

⇤
i ) = ^(x⇤

j , y
⇤
j ) = 0.

Then, ¯̂(x⇤, y⇤) /2 {x⇤, y⇤}. Contradiction, since ¯̂ is a generalized dictator-
ship.

Thus, we can write D⇤ = {d1, . . . , dN}, where ds  dt if and only if s  t.
Let I ✓ {1, . . . , n} be such that, for all j 2 I: dsj = 0 for s = 1, . . . , N � 1,
and dNj = 1. Observe that I cannot be empty, lest dN = dN�1 and that
I 6= {1, . . . , n}, since |D| � 3. Let now G = (g1, . . . , gn) such that gj = ^,
for all j 2 I and gj = _, for all j /2 I.

G is an aggregator for D⇤. Indeed, let ds, dt 2 D⇤ with s  t  N � 1.
Then, for all j /2 I:

gj(d
s
j , d

t
j) = _(dsj , d

t
j) = dtj.

Also for all j 2 I:
gj(d

s
j , d

t
j) = ^(dsj , d

t
j) = 0 = dtj.

Thus, G(ds, dt) = dt 2 D⇤. Finally, consider G(ds, dN). Again, gj(dsj , d
N
j ) =

^(dsj , d
N
j ) = 0 for all j 2 I and gj(dsj , d

N
j ) = _(dsj , d

N
j ) = dNj , for all j /2 I. By

definition of I, G(ds, dN) = dN�1
2 D⇤. This, last point shows also that G is

not a generalized dictatorship, since, for any s 6= N�1, dN�1 /2 {ds, dN}.

This completes the proof of Theorem 7.2.9.

By Theorems 7.2.5 and 7.2.9 we obtain the following result.

Corollary 7.2.2. A domain D ✓ {0, 1}n, with at least three elements, admits
an aggregator that is not a generalized dictatorship if and only if there exists
a possibility integrity constraint whose set of models equals D.

Remark 7.2.3. What about knowing if a possibility integrity constraint re-
ally describes a domain that admits an aggregator that is not a generalized
dictatorship? For the requirement of having a non-degenerate domain, the
situation is the same as in Remark 7.2.1. For the requirement of the domain
having at least three elements, given that it is non-degenerate, it is easy to see
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that such domains can only arise as the truth sets of possibility integrity con-
straints that are Horn, renamable Horn or a�ne. In all these cases, Creignou
and Hébrard [57] have devised polynomial-delay algorithms that generate all
the solutions of such formulas, which can easily be implemented to terminate
if they find more than two solutions.

Anonymous, Monotone and StrongDem Aggregators Our final re-
sults concern three kinds of non-dictatorial aggregators, whose properties are
based on the majority aggregator. We repeat their definitions here.

Definition 7.2.2. Let D ✓ {0, 1}n. A k-ary aggregator F = (f1, . . . , fn) for
D is:

1. Anonymous, if it holds that for all j 2 {1, . . . , n} and for any permu-
tation p : {1, . . . , k} 7! {1, . . . , k}:

fj(a1, . . . , ak) = fj(ap(1), . . . , ap(k)),

for all a1, . . . , ak 2 {0, 1}.

2. Monotone, if for all j 2 {1, . . . , n} and for all i 2 {1, . . . , k}:

fj(a1, . . . , ai�1, 0, ai+1, . . . , ak) = 1 )

fj(a1, . . . , ai�1, 1, ai+1, . . . , ak) = 1.

3. StrongDem, if it holds that for all j 2 {1, . . . , n} and for all i 2

{1, . . . , k}, there exist a1, . . . , ai�1, ai+1, . . . , ak 2 {0, 1}:

fj(a1, . . . , ai�1, 0, ai+1, . . . , ak) = fj(a1, . . . , ai�1, 1, ai+1, . . . , ak).

Anonymous aggregators ensure that all the voters are treated equally,
while monotone that if more voters agree with the aggregator’s result, then
the outcome does not change. From a Social Theoretic point of view, Nehring
and Puppe [175] have argued that “For Arrowian (i.e. independent) aggre-
gators, monotonicity is extremely natural, and it is hard to see how non-
monotone Arrowian aggregators could be of interest in practice.” StrongDem
aggregators were introudced by Szegedy and Xu [207]. The idea here is that
there is a way to fix the votes of any k � 1 voters such that the remaining
voter cannot change the outcome of the aggregation. Apart from the interest
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these aggregators have for Judgement Aggregation, Szegedy and Xu show
that they have strong algebraic properties, as they relate to a property of
functions called strong resilience (see again [154,207]).

Notationally, since these properties are defined for each component of an
aggregator, we will say that a Boolean function f is anonymous or mono-
tone if it satisfies property 1 or 2 of Definition 7.2.2 respectively. A Boolean
function f that satisfies property 3 of Definition 7.2.2 has appeared in the
bibliography under the name of 1-immune (see [154]). The first immediate
consequence of Definition 7.2.2, is that an anonymous or StrongDem aggre-
gator is non-dictatorial. On the other hand, projection and binary symmetric
functions are easily monotone, thus every dictatorial and every binary ag-
gregator is monotone. Furthermore, since projections are neither anonymous
nor 1-immune and by Theorem 5.2.1 it is straightforward to observe the
following results.

Corollary 7.2.3. Any possibility domain D either admits a monotone non-
dictatorial aggregator or an anonymous one. Furthermore, a domain D ad-
mitting an anonymous or StrongDem aggregator is a local possibility domain.

Regardless of Corollary 7.2.3, we can find non-dictatorial aggregators that
are neither anonymous, nor monotone, nor StrongDem. An easy such exam-
ple is an aggregator with at least one component being pr31 and another
being �, since pr31 is not anonymous, � is not monotone and neither of the
two is 1-immune. Corollary 7.2.3 implies that a domain admitting such an
aggregator, admits also another that is monotone or anonymous.

We proceed now with some examples that highlight the various connec-
tions between these types of aggregators.

Example 7.2.2. Any renamable Horn or bijunctive formula describes a do-
main admitting a symmetric or majority aggregator respectively. Such aggre-
gators are anonymous, monotone and StrongDem. For a more complicated
example, consider the formula

�13 = (¬x1 _ x2) ^ (x2 _ x3 _ x4),

whose set of satisfying assignments is the local possibility domain:

Mod(�13) = {0, 1}4 \
⇣
({(1, 0)}⇥ {0, 1}2) [ {(0, 0, 0, 0)}

⌘
.

It is straightforward to check that Mod(�13) admits the anonymous, monotone
and StrongDem aggregator (^(3),_(3),maj,maj).
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On the other hand, consider the a�ne formula

�14 = x1 � x2 � x3,

where:
Mod(�14) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

It can be proven (by a combination of results by Dokow and Holzman [76,
Example 3] and Kirousis et al. [144, Example 4.5]) that Mod(�14) does not
admit any monotone or StrongDem aggregators. On the other hand, it does
admit the anonymous aggregator �̄ = (�,�,�).

Recall that in Example 5.3.6, we argued that the set of satisfying as-
signments of the formula: �7 = (¬x1 _ x2 _ x3) ^ (x1 _ ¬x2 _ ¬x3) is the
impossibility domain Mod(�7) = {0, 1}3 \ {(1, 0, 0), (0, 1, 1)}. Consider also,
from the same example, the formula �9 = (¬x1_x2_x3)^ (x1_¬x2_¬x3)^
(¬x4 _ x5 _ x6) ^ (x4 _ ¬x5 _ ¬x6), whose set of satisfying assignments is:
Mod(�9) = Mod(�7)⇥Mod(�7). Mod(�9) is a possibility domain admitting the
monotone aggregator (pr21, pr

2
1, pr

2
1, pr

2
2, pr

2
2, pr

2
2). On the other hand, Mod(�9)

admits neither anonymous, nor StrongDem aggregators, as it is not a local
possibility domain. ⇧

We now provide examples of StrongDem aggregators that are either not
anonymous or not monotone. Domains admitting such aggregators can be
proven to also admit aggregators that are anonymous and monotone (see
Theorem 7.2.11 below).

Example 7.2.3. Let F = f̄ , where f is a ternary operation defined as fol-
lows:

f(0, 0, 0) = f(0, 0, 1) =f(0, 1, 1) = f(1, 0, 1) = 0,

f(0, 1, 0) = f(1, 0, 0) =f(1, 1, 0) = f(1, 1, 1) = 1.

Obviously, f̄ is neither anonymous nor monotone, since e.g. f(0, 0, 1) 6=
f(0, 1, 0) and f(0, 1, 0) = 1, whereas f(0, 1, 1) = 0. On the other hand, f̄ is
StrongDem. Indeed, for each component of f̄ , it holds that:

f(x, 0, 1) = f(0, x, 1) = f(0, 0, x) = 0,

for all x 2 {0, 1}.
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Now, consider G = ḡ where g is a ternary operation defined as follows:

g(0, 0, 0) = g(0, 0, 1) = g(0, 1, 0) = g(1, 0, 0) = g(1, 1, 0) = 0,

g(0, 1, 1) = g(1, 0, 1) =g(1, 1, 1) = 1.

Again, ḡ is easily not anonymous, since g(1, 1, 0) 6= g(0, 1, 1). On the other
hand, ḡ is monotone and StrongDem. For the latter, observe that:

g(x, 0, 0) = g(0, x, 0) = g(0, 0, x) = 0,

for all x 2 {0, 1}. The former is very easy to check and is left to the reader.
Finally, let H = h̄, where h is a 4-ary operation defined as follows:

h(x, y, z, w) = 1 if and only if exactly two or all of x, y, z, w are equal to 1.

Since the output of h does not depend on the positions of the input bits, h is
anonymous. Also, h is 1-immune, since:

h(x, 0, 0, 0) = h(0, y, 0, 0) = h(0, 0, z, 0) = h(0, 0, 0, w),

for all x, y, z, w 2 {0, 1}. On the other hand, h is not monotone, since
h(0, 0, 1, 1) = 1 and h(0, 1, 1, 1) = 0. ⇧

The only combination of properties from Definition 7.2.2 we have not
seen, is an anonymous and monotone aggregator that is not Strong Dem.
We end this subsection by proving that such aggregators do not exist.

Lemma 7.2.6. Let f be a k-ary anonymous and monotone Boolean function.
Then, f is also 1-immune.

Proof. For k = 2, the only anonymous functions are ^ and _, which are also
1-immune.

Let k � 3. Since f is anonymous and monotone, it is not di�cult to
observe that there is some l 2 {0, . . . , k}, such that the output of f is 0 if
and only if there are at most l 1’s in the input bits. If l > 0, then:

f(x, 0, 0 . . . , 0, 0) = f(0, x, 0, . . . , 0, 0) = · · · = f(0, 0, 0, . . . , 0, x) = 0,

for all x 2 {0, 1}. If l = 0, then:

f(x, 1, 1 . . . , 1, 1) = f(1, x, 1, . . . , 1, 1) = · · · = f(1, 1, 1, . . . , 1, x) = 1,

for all x 2 {0, 1}. In both cases, f is 1-immune.
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We proceed with the syntactic characterization of domains admitting
anonymous aggregators. Nehring and Puppe [175, Theorem 2] showed that
a domain admits a monotone locally non-dictatorial aggregator if and only
if it admits a monotone anonymous one. Kirousis et al. [144] strengthened
this result by dropping the monotonicity requirement and fixing the arity of
the anonymous aggregator, as a direct consequence of Theorem 7.1.4.

Corollary 7.2.4 (Kirousis et al. [144], Corollary 5.11). D is a local possibility
domain if and only if it admits a ternary anonymous aggregator.

Proof. Immediate from the fact that any aggregator of the type described in
Theorem 7.1.4 is anonymous.

Thus, we obtain the following result.

Corollary 7.2.5. D admits a k-ary anonymous aggregator if and only if
there exists a local possibility integrity constraint whose set of models equals
D.

We now turn to monotone aggregators. Recall that a k-ary Boolean
operation f is linear, if there exist constants c0, . . . , ck 2 {0, 1} such that:

f(x1, . . . , xk) = c0 � c1x1 � · · ·� ckxk,

where � again denotes binary addition mod 2. We need two facts concern-
ing linear functions.

Lemma 7.2.7. Let f : {0, 1}k 7! {0, 1} be a linear function and suppose
that c0, c1, . . . , ck 2 {0, 1} such that:

f(x1, . . . , xk) = c0 � c1x1 � · · ·� ckxk.

Then, f is unanimous if and only if c0 = 0 and there is an odd number
pairwise distinct indices i 2 {1, . . . , k} such that ci = 1.

Proof. The inverse direction is straightforward. For the forward direction,
set x1 = · · · = xk = 0. Then, f(0, . . . , 0) = c0 and thus c0 = 0 since f is
unanimous. Finally, assume, to obtain a contradiction, that there is an even
number of c1, . . . , ck that are equal to 1. Set x1 = · · · = xk = 1. Then, it
holds that f(1, . . . , 1) = 0 and f is not unanimous. Contradiction.
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Since we work only with unanimous functions, from now on we will assume
that a linear function satisfies the conditions of Lemma 7.2.7. This implies
also that any linear function has odd arity. Note also that any k-ary linear
functions f , with exactly one i 2 {1, . . . , k} such that ci = 1 is an essentially
unary function.

Lemma 7.2.8. Let f : {0, 1}k 7! {0, 1} be a linear function, k � 3. Then,
either f is an essentially unary function, or it is neither monotone nor 1-
immune.

Proof. Let c1, . . . , ck 2 {0, 1} such that:

f(x1, . . . , xk) = c1x1 � · · ·� ckxk

and assume it is not an essentially unary function. Then, there exist at least
three pairwise distinct indices i 2 {1, . . . , k} such that ci = 1. If there are
exactly three, f = �, which is easily neither monotone, nor 1-immune.

Assume now that there are at least five pairwise distinct i 2 {1, . . . , k}
such that ci = 1. We will need only four of these indices.

Now, let j1, j2, j3, j4 2 {1, . . . , k} such that cj1 , cj2 , cj3 , cj4 = 1. Set
xj1 = xj2 = xj3 = 1 and xi = 0, for all i 2 {1, . . . , k} \ {j1, j2, j3}. Then,
f(x1, . . . , xk) = 1. By letting xj4 = 1 too, we obtain f(x1, . . . , xk) = 0, which
shows that f is not monotone.

Finally, to obtain a contradiction, suppose f is 1-immune. Then, there
exist d2, . . . , dk 2 {0, 1} such that:

f(0, d2, . . . , dk) =(1, d2, . . . , dk) ,

c2d2 � · · ·� ckdk =c1 � c2d2 � · · · ckdk ,

c1 =0.

Continuing in the same way, we can prove that cj = 0, for j = 1, . . . , k, which
is a contradiction.

We are now ready to prove our results concerning monotone and Strong-
Dem aggregators.

Theorem 7.2.10. A domain D ✓ {0, 1}n admits a monotone non-dictatorial
aggregator of some arity if and only if it admits a binary non-dictatorial one.
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Proof. That a domain admitting a binary non-dictatorial aggregator, admits
also a non-dictatorial monotone one is obvious, since all binary unanimous
functions are monotone.

For the forward direction, since D admits a monotone non-dictatorial ag-
gregator, it is a possibility domain. Now, to obtain a contradiction, suppose
D does not admit a binary non-dictatorial aggregator. Kirousis et al. [144,
Lemma 3.4] showed that in this case, every k-ary aggregator, k � 2 for D
is systematic (the notion of local monomorphicity they use corresponds to
systematicity in the Boolean framework).

Now, since D contains no binary non-dictatorial aggregators, ^,_ /2 Cj,
for all j 2 {1, . . . , n}. Thus, by Post’s lattice, either maj or � are contained
in Cj, for all j 2 {1, . . . , n} (since the aggregators must be systematic), lest
each Cj contains only projections.

Assume that maj is an aggregator for D. Then, by Kirousis et al. [144,
Theorem 3.7], D admits also a binary non-dictatorial aggregator. Contradic-
tion.

Thus, we also have that maj /2 Cj, j = 1, . . . , n. It follows that only
� 2 Cj, j = 1, . . . , n. By Post [186], it follows that for all j 2 {1, . . . , n}, Cj
contains only linear functions (see also [30]). By Lemma 7.2.8, we obtain a
contradiction.

Thus, by Proposition 7.2.3 and Theorem 7.2.4, we obtain the following
syntactic characterization.

Corollary 7.2.6. D admits a k-ary non-dictatorial monotone aggregator
if and only if there exists a separable or renamable partially Horn integrity
constraint whose set of models equals D.

To end this subsection, we now consider StrongDem aggregators. We
employ the “diamond” operator ⇧, in order to combine ternary aggregators
to obtain new ones whose components are commutative functions (recall
Subsec.7.1.3). Unfortunately, this operator will not su�ce for our purposes,
so we will also use a new operator we call the star operator ?.

Let F = (f1, . . . , fn) and G = (g1, . . . , gn) be two n-tuples of ternary
functions. Define H := F ? G to be the n-tuple of ternary functions H =
(h1, . . . , hn) where:

hj(x, y, z) = fj(fj(x, y, z), fj(x, y, z), gj(x, y, z)),
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for all x, y, z 2 {0, 1}. Easily, if F and G are aggregators for a domain D,
then so is H, since it is produced by a superposition of F and G. Under
some assumptions for F and G, H has no components equal to �.

Lemma 7.2.9. Let F = (f1, . . . , fn) be an n-tuple of ternary functions, such
that fj 2 {^

(3),_(3),maj,�}, j = 1, . . . , n, and let J = {j | fj = �}. Let
also G = (g1, . . . , gn) be an n-tuple of ternary functions, such that gj 2

{^
(3),_(3),maj}, for all j 2 J . Then, for the n-tuple of ternary functions

F ?G := H = (h1, . . . , hn), it holds that:

hj 2 {^
(3),_(3),maj},

for j = 1, . . . , n.

Proof. First, let j 2 {1, . . . , n} \ J . Then, fj 2 {^
(3),_(3),maj} and let

x, y, z 2 {0, 1} that are not all equal (lest we have nothing to show since all
fj, gj are unanimous). If fj = ^

(3), then easily:

hj(x, y, z) = ^
(3)(^(3)(x, y, z),^(3)(x, y, z), gj(x, y, z)) =

^
(3) (0, 0, gj(x, y, z)) = 0,

which shows that hj = ^
(3). Analogously, we show that fj = _

(3) implies
that hj = _

(3). Finally, let fj = maj and let maj(x, y, z) := z 2 {0, 1}. Then:

hj(x, y, z) = maj(maj(x, y, z),maj(x, y, z), gj(x, y, z)) =

maj(z, z, gj(x, y, z)) = z,

which shows that hj = maj.
Thus, we can now assume that J 6= ;. Let j 2 J . Then, we have that

fj = � and gj 2 {^
(3),_(3),maj}. Thus, we have that:

hj(x, y, z) = �(�(x, y, z),�(x, y, z), gj(x, y, z)) = gj(x, y, z),

from which it follows that hj 2 {^
(3),_(3),maj}.

At last, we are ready to prove our final results.

Theorem 7.2.11. A Boolean domain D ✓ {0, 1}n admits a k-ary Strong-
Dem aggregator if and only if it admits a ternary aggregator F = (f1, . . . , fn)
such that fj 2 {^

(3),_(3),maj}, for j = 1, . . . , n.
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Proof. It is very easy to see that all the functions in {^
(3),_,maj} are 1-

immune. Thus, we only need to prove the forward direction of the theorem.
To that end, let F = (f1, . . . , fn) be a k-ary StrongDem aggregator for D.

Then, by Theorem 7.1.4, there exists a ternary aggregator G = (g1, . . . , gn)
such that gj 2 {^

(3),_(3),maj,�} for j = 1, . . . , n. Let J = {j | fj = �}. If
J = ;, then we have nothing to prove. Otherwise, consider the clones Cj, for
each j 2 J .

Suppose now that there exists a j 2 J , such that Cj contains neither
^, nor _, nor maj. By Post’s classification of clones of Boolean functions
(see [30, 186]) and since Cj contains � and only unanimous functions, Cj

contains only linear unanimous functions. Again, by Lemma 7.2.8, Cj does
not contain any 1-immune function. Contradiction.

Thus, for each j 2 J , it holds that Cj contains either ^, or _ or maj. In
the first two cases, Cj obviously contains ^(3) or _(3) too respectively. Then,
it holds that for each j 2 J there exists an aggregator Hj = (hj

1, . . . , h
j
n),

such that hj
j 2 {^

(3),_(3),maj}. Let J := {j1, . . . , jt}.
We will now perform a series of iterative combinations between G and

the various Hj’s, using the ⇧ and ? operators, in order to obtain the required
aggregator.

First, let Gj = G ⇧ Hj, for all j 2 J . By Kirousis et al. [144, Lemma
5.10], we have that

Gj
i 2 {^

(3),_(3),maj,�},

for all i 2 {1, . . . , n} and j 2 J . Furthermore,

Gjs
js 2 {^

(3),_(3),maj},

for s = 1, . . . , t. Thus for the aggregator:

G⇤ := (· · · ((G ?Gj1) ?Gj2) ? · · · ?Gjt),

we have, by Lemma 7.2.9:

G⇤
j 2 {^

(3),_(3),maj},

for j = 1, . . . , n, which concludes the proof.

Recall Definition 5.3.6. We say that a local possibility integrity constraint
is �-free, if V2 = ;. Thus, we obtain the following syntactic characterization.

Corollary 7.2.7. A Boolean domain D ✓ {0, 1}n admits a k-ary Strong-
Dem aggregator if and only if there exists an �-free local possibility integrity
constraint whose set of satisfying assignments equals D.
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Systematic Aggregators We end this work with a discussion concerning
systematic aggregators. This is a natural requirement for aggregators from
a Social Choice point of view, given that the issues that need to be decided
are of the same nature. Recall that F = (f1, . . . , fn) is systematic if f1 =
f2 = . . . = fn. The following is obvious by considering the definitions of an
aggregator and a polymorphism.

Lemma 7.2.10. Let D ✓ {0, 1}n be a Boolean domain and F = f̄ a sys-
tematic n-tuple of k-ary Boolean functions. Then F is an aggregator for D
if and only if f is a polymorphism for D.

This directly implies that domains admitting non-dictatorial systematic
aggregators are either Horn, dual-Horn, bijunctive or a�ne. We thus imme-
diately obtain the following characterization.

Corollary 7.2.8. A Boolean domain D ✓ {0, 1}n admits a k-ary non-
dictatorial systematic aggregator if and only if there exists an integrity con-
straint which is either Horn, dual Horn, bijunctive or a�ne, whose set of
satisfying assignments equals D.

Remark 7.2.4. Why does maj appears here, although it did not in the char-
acterization of possibility domains (Theorem 5.2.1)? In the Boolean case,
a domain admitting maj, also admits a binary aggregator F = (f1, . . . , fn),
such that fj 2 {^,_}, j = 1, . . . , n (see Kirousis et al. [144, Theorem 3.7]).
The problem is that this aggregator need not be systematic. In fact, the proof
of the aforementioned theorem would produce a systematic aggregator only if
(0, . . . , 0) or (1, . . . , 1) 2 D.

Now, what if want to characterize domains admitting some of the various
non-dictatorial aggregators we discussed, but requiring also that these ag-
gregators satisfy systematicity? By Theorem 7.2.9, we know that Corollary
7.2.8 works for domains admitting systematic aggregators that are not gen-
eralized dictatorships too. Furthermore, all the aggregators (resp. integrity
constraints) of Corollary 7.3.12 (resp. 7.2.8) are locally non-dictatorial and
anonymous aggregators (resp. lpic’s), thus we also have characterizations for
domains admitting systematic locally non-dictatorial or anonymous aggrega-
tors.

For domains admitting monotone or StrongDem systematic aggregators,
we will obtain the result by Lemma 7.2.8 and Post’s Lattice. We will again
use the terminology of polymorphisms.
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Corollary 7.2.9. A domain D ✓ {0, 1}n admits a k-ary systematic non-
dictatorial monotone or StrongDem aggregator if and only if it is closed under
^, _ or maj.

Proof. It is known (and straightforward to see) that the set of polymorphisms
of a domain is a clone. Let C be the Boolean clone of polymorphisms of
D. Since it admits a non-dictatorial aggregator, at least one operator from
^,_,maj,� is in C. By Lemma 7.2.8, this cannot be only �.

Thus, finally, we have the following result.

Corollary 7.2.10. A Boolean domain D ✓ {0, 1}n admits a k-ary systematic
non-dictatorial monotone or StrongDem aggregator if and only if there exists
an integrity constraint which is either Horn, dual Horn or bijunctive, whose
set of satisfying assignments equals D.

7.3 The Computational Complexity of Ag-
gregation

In this section, we turn our attention in the computational complexity of de-
ciding if a domain admits an aggregator from a specific class of non-dictatorial
aggregators. We begin with the case where the domain is given explicitly as
a set of vectors over D. Note that in case D is Boolean, we have already pro-
vided such algorithms in Subsec. 7.2.3. We begin by showing that there is a
polynomial-time algorithm that decides whether a set of feasible voting pat-
terns is a possibility domain (Subsec. 7.3.1). We then proceed to show that
this problem is expressible in Transitive Closure Logic (Subsec. 7.3.2). Then,
in subsection 7.3.3, we provide a polynomial-time algorithm for checking if a
domain is a uniform possibility domain. After that, we provide complexity
bounds for the same problem, in case the domain is provided implicitly, via
an agenda or an integrity constraint (Subsec. 7.3.4). Finally, we extend these
results to other types of non-dictatorial aggregation that have been used in
the bibliography (Subsec. 7.3.5).

7.3.1 Tractability of Possibility Domains

Theorems 5.2.2 and 7.1.1 provide necessary and su�cient conditions for a
set X to be a possibility domain in the Boolean framework and in the non-
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Boolean framework, respectively. Admitting a binary non-dictatorial aggre-
gator is a condition that appears in both of these characterizations. Our first
result asserts that this condition can be checked in polynomial time.

Theorem 7.3.1. There is a polynomial-time algorithm for solving the fol-
lowing problem: given a set X of feasible evaluations, determine whether or
not X admits a binary non-dictatorial aggregator and, if it does, produce one.

We first show that the existence of a binary non-dictatorial aggregator
on X is tightly related to connectivity properties of a certain directed graph
HX defined next. If X ✓ D

n is a set of feasible evaluations, then HX is the
following directed graph:

• The vertices of HX are the pairs of distinct elements u, u0
2 Xj, for j 2

{1, . . . , n}. Each such vertex will usually be denoted by uu0
j. When the

coordinate j is understood from the context, we will often be dropping
the subscript j, thus denoting such a vertex by uu0.

Also, if u 2 Xj, for some j 2 {1, . . . , n}, we will often use the notation
uj to indicate that u is an element of Xj.

• Two vertices uu0
s and vv0t, where s 6= t, are connected by a directed edge

from uu0
s to vv0t, denoted by uu0

s ! vv0t, if there are a total evaluation
z 2 X that extends the partial evaluation (us, vt) and a total evaluation
z0 2 X that extends the partial evaluation (u0

s, v
0
t), such that there is

no total evaluation y 2 X that extends (us, v0t), and has the property
that yi = zi or yi = z0i, for every i 2 {1, . . . , n}.

For vertices uu0
s, vv

0
t, corresponding to issues s, t (that need not be distinct),

we write uu0
s !! vv0t to denote the existence of a directed path from uu0

s

to vv0t. In the next example, we describe explicitly the graph HX for several
di↵erent sets X of feasible voting patters. Recall that a directed graph G is
strongly connected if for every pair of vertices (u, v) of G, there is a (directed)
path from u to v.

Example 7.3.1. Let X1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and X2 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Both HX1 and HX2 have six vertices, namely
01j and 10j, for j = 1, 2, 3. In the figures below, we use undirected edges
between two vertices uu0

s and vv0t to denote the existence of both uu0
s ! vv0t

and vv0t ! uu0
s.
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HX1

011

101

012

102

013 103

HX2

011

102

013

101

012

103

Consider 011, 012 of HX1. Since the partial vectors (0, 0) and (1, 1) extend
to (0, 0, 1) and (1, 1, 1), respectively, we need to check if there is a vector in
X1 extending (0, 1), but whose third coordinate is 1. Since (0, 1, 1) /2 X2, we
have that HX1 contains both edges 011 ! 012 and 012 ! 011. Now, since the
partial vectors (0, 1) and (1, 0) extend to (0, 1, 0) and (1, 0, 0), respectively,
and since neither (0, 0, 0) nor (1, 1, 0) are in X1, we have that 011 $ 102. By
the above and because of the symmetric structure of X1, it is easy to see that
every two vertices uu0

i and vv0j of HX1 are connected if and only if i 6= j.
For X2, observe that, since no partial vector containing two “1”’s, in any

two positions, extends to an element of X2, there are no edges between the
vertices 01i, 01j and 10i, 10j, for any i, j 2 {1, 2, 3}, i 6= j. In the same way
as with HX1, we get that HX2 is a cycle.

There are two observations to be made, concerning HX1 and HX2. First,
they are both strongly connected graphs. Also, neither X1 nor X2 admit
binary non-dictatorial aggregators (X1 admits only a minority aggregator and
X2 is an impossibility domain.

Finally, consider X3 := {(0, 1), (1, 0)}. The graph HX3 has four vertices,
011, 101, 012 and 102, and it is easy to see that HX3 has only the following
edges:

HX3

011 102

101 012
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Observe that X3 is not strongly connected (it is not even connected) and
that, in contrast to the sets X1 and X2, the set X3 admits two binary non-
dictatorial aggregators, namely, (^,_) and (_,^). In Lemma 7.3.2, we es-
tablish a tight connection between strong connectedness and the existence of
binary non-dictatorial aggregators.

We now state and prove two lemmas about the graph HX .

Lemma 7.3.1. Assume that F = (f1, . . . , fn) is a binary aggregator on X.

1. If uu0
s ! vv0t and fs(u, u0) = u, then ft(v, v0) = v.

2. If uu0
s !! vv0t and fs(u, u0) = u, then ft(v, v0) = v.

Proof. The first part of the lemma follows from the definitions and the fact
that F is conservative. Indeed, if uu0

s ! vv0t, then there are a total evaluation
z = (z1, . . . , zn) 2 X that extends (us, vt) (i.e., zs = u and zt = v) and a
total evaluation z0 = (z01, . . . , z

0
n) 2 X that extends (u0

s, v
0
t) (i.e., z

0
s = u0 and

z0t = v0), such that there is no total evaluation in X that extends (us, v0t) and
agrees with z or with z0 on every coordinate. Consider the total evaluation
(f1(z1, z01), . . . , fn(zn, z

0
n)), which is in X because F is an aggregator on X.

Since each fj is conservative, we must have that fj(zj, z0j) 2 {zj, z0j}, for every
j, hence ft(zl, z0l) = ft(v, v0) 2 {v, v0}. Consequently, if fs(u, u0) = u, then we
must have ft(v, v0) = v, else (f1(z1, z01), . . . , fn(zn, z

0
n)) extends (us, v0t) and

agrees with z or with z0 on every coordinate. The second part of the lemma
easily follows from the first part by induction.

Lemma 7.3.2. X admits a binary non-dictatorial aggregator if and only if
the directed graph HX is not strongly connected.

Before delving into the proof, consider the graphs of Example 7.3.1. Using
the fact that the graphs HX1 and HX2 are strongly connected and also using
the second item of Lemma 7.3.1, it is easy to see that X1 and X2 admit no
binary non-dictatorial aggregator; indeed, let F = (f1, f2, f3) be a binary
aggregator of either of these two sets and suppose that f1(0, 1) = 0. Since in
both graphs HX1 and HX2 , there are paths from 011 to every other vertex,
it follows that fj = pr21, j = 1, 2, 3. If f1(0, 1) = 1, we get that fj = pr22,
j = 1, 2, 3, in the same way.

In contrast, considerHX3 and let G = (g1, g2) be a pair of binary functions
with g1(0, 1) = 0. For G to be an aggregator, Lemma 7.3.1 forces us to set
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g2(1, 0) = 1. But now, by setting g1(1, 0) = 0, and thus g2(0, 1) = 1, we get
that (g1, g2) = (^,_) is a non-dictatorial binary aggregator for X3.

Proof of Lemma 7.3.2 We first show that if X admits a binary non-
dictatorial aggregator, then HX is not strongly connected. In the con-
trapositive form, we show that if HX is strongly connected, then X ad-
mits no binary non-dictatorial aggregator. This is an easy consequence
of the preceding Lemma 7.3.1. Indeed, assume that HX is strongly con-
nected and let F = (f1, . . . , fn) be a binary aggregator on X. Take two
distinct elements x and x0 of X1. Since F is conservative, we have that
f1(x, x0) 2 {x, x0

}. Assume first that f1(x, x0) = x. We claim that fj = pr21,
for every j 2 {1, . . . , n}. To see this, let y and y0 be two distinct elements
of Xj, for some j 2 {1, . . . , n}. Since HX is strongly connected, we have
that xx0

1 !! yy0j. Since also f1(x, x0) = x, Lemma 7.3.1 implies that
fj(y, y0) = y = pr21(y, y

0) and so fj = pr21. Next, assume that f1(x, x0) = x0.
We claim that fj = pr22, for every j 2 {1, . . . , n}. To see this, let y and y0 be
two distinct elements of Xj, for some j 2 {1, . . . , n}. Since HX is strongly
connected, we have that yy0j !! xx0

1, hence, if fj(y, y
0) = y, then, Lemma

7.3.1, implies that f1(x, x0) = x, which is a contradiction because x 6= x0.
Thus, fj(y, y0) = y0 and so fj = pr22.

For the converse, assume that HX is not strongly connected and let uu0
s,

vv0t be two vertices of HX such that there is no path from uu0
s to vv0t in HX ,

i.e., it is not true that uu0
s !! vv0t. Let V1, V2 be a partition of the vertex

set such that uu0
s 2 V1, vv0t 2 V2, and there is no edge from a vertex in V1 to

a vertex in V2. We will now define a binary aggregator F = (f1, . . . , fn) and
prove that it is non-dictatorial.

Given z, z0 2 X, we set fj(zj, z0j) = zj if zz0j 2 V1, and we set fj(zj, z0j) = z0j
if zz0j 2 V2, for j 2 {1, . . . , n}. Since uu0

s 2 V1, we have that fs 6= pr22;
similarly, since vv0t 2 V2, we have that ft 6= pr21. Consequently, F is not
a dictatorial function on X. Thus, what remains to be proved is that if
z, z0,2 X, then F (z, z0) 2 X. For this, we will show that if F (z, z0) 62 X,
then there is an edge from an element of V1 to an element of V2, which is a
contradiction.

Assume that q = F (z, z0) 62 X. Let K be a minimal subset of {1, . . . , n}
such that q� K cannot be extended to a total evaluation w in X that agrees
with z or with z0 on {1, . . . , n}\K (i.e., if j 2 {1, . . . , n}\K, then wj = zj or
wj = z0j). Since z

0 is in X, it does not extend q� K, hence there is a number
p 2 K such that qp = fp(zp, z0p) = zp 6= z0p. It follows that the vertex zz0p
is in V1. Similarly, since z is in X, it does not extend q� K, hence there is
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a number r 2 K such that qr = fr(zr, z0r) = z0r 6= zr. It follows that the
vertex zz0r is in V2. Consequently, there is no edge from zz0p to zz0r in HX .
We will arrive at a contradiction by showing that zz0p ! zz0r.Consider the
set K \ {r}. By the minimality of K, there is a total evaluation w in X
that extends q� K \ {r} and agrees with z or with z0 outside K \ {r}. In
particular, we have that wp = qp = zp and wr = zr. Similarly, by considering
the set K \ {p}, we find that there is a total evaluation w0 in X that extends
q� K \ {p} and agrees with z or with z0 outside K \ {p}. In particular, we
have that w0

p = z0p and wr = qr = z0r. Note that w and w0 agree on K \{p, r}.
Since q� K does not extend to a total evaluation that agrees with z or with z0

outside K, we conclude that there is no total evaluation y in X that extends
(zp, z0r) and agrees with w or with w0 on every coordinate. Consequently,
zz0p ! zz0r, thus we have arrived at a contradiction. ⇤
Proof of Theorem 7.3.1: Given a set X of feasible evaluations, the graph
HX can be constructed in time bounded by a polynomial in the size |X| of X
(in fact, in time O(|X|

5). There are well-known polynomial-time algorithms
for testing if a graph is strongly connected and, in case it is not, producing the
strongly connected components (scc) of the graph; e.g., Kosaraju’s algorithm
presented in [195] and Tarjan’s algorithm in [211]. Consequently, by Lemma
7.3.2, there is a polynomial-time algorithm for determining whether or not
a given set X admits a binary non-dictatorial aggregator. Moreover, if X
admits such an aggregator, then one can be constructed in polynomial-time
from the strongly connected components of HX via the construction in the
proof of Lemma 7.3.2. ⇤

The next corollary follows from Theorem 7.3.1 and Theorem 7.1.3.

Corollary 7.3.1. There is a polynomial-time algorithm for the following
decision problem: given a set X of feasible evaluations, is X totally blocked?

We now turn to the problem of detecting possibility domains in the non-
Boolean framework.

Theorem 7.3.2. There is a polynomial-time algorithm for solving the fol-
lowing problem: given a set X of feasible evaluations, determine whether or
not X is a possibility domain and, if it is, produce a binary non-dictatorial
aggregator, or a ternary majority aggregator or a ternary minority aggregator
for X.
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Proof. It is straightforward to check that, by Theorem 7.1.1 and Theorem
7.3.1, it su�ces to show that there is a polynomial-time algorithm that, given
X, detects whether or not X admits a majority aggregator or a minority
aggregator, and, if it does, produces such an aggregator.

Let X be a set of feasible evaluations, where I = {1, . . . , n} is the set of
issues and D is the set of the position values. We define the disjoint union
D of the set of position values as:

D =
Fn

j=1 D =
Sn

j=1{(x, j) | x 2 D}.

We also set

X̃ = {((x1, 1), . . . , (xn, n)) | (x1, . . . , xn) 2 X} ✓ Dn.

We will show that we can go back-and-forth between conservative major-
ity or minority polymorphisms for X̃ and majority or minority aggregators
for X.

Let f : Dk
! D be a conservative polymorphism for X̃. We define the n-

tuple F = (f1, . . . , fn) of k-ary functions f1, . . . , fm as follows: if x1
j , . . . , x

k
j 2

Xj, for j 2 {1, . . . , n}, then we set fj(x1
j , . . . , x

k
j ) = yj, where yj is such that

f((x1
j , j), . . . , (x

k
j , j)) = (yj, j). Such a yj exists and is one of the xi

j’s because
f is conservative, and hence f((x1

j , j), . . . , (x
k
j , j)) 2 {(x1

j , j), . . . , (x
k
j , j)}. It

is easy to see that F is an aggregator for X. Moreover, if f is a majority or
a minority operation on X̃, then F is a majority or a minority aggregator on
X.

Next, let F = (f1, . . . , fn) be a majority or a minority aggregator for X.
We define a ternary function f : D3

! D as follows. Let (x, j), (y, s), (z, t)
be three elements of D.

• If j = s = t, then we set f((x, j), (y, s), (z, t)) = (fj(x, y, z), j).

• If j, s, t are not all equal, then if at least two of (x, j), (y, s), (z, t) are
equal to each other, we set

f((x, j), (y, s), (z, t)) = maj((x, j), (y, s), (z, t)),

if F is a majority aggregator on X, and we set
f((x, j), (y, s), (z, t)) = �((x, j), (y, s), (z, t)),

if F is a minority aggregator on X;

• otherwise, we set f((x, j), (y, s), (z, t)) = (x, j).
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It is easy to see that if F is a majority or a minority aggregator for X, then f
is a conservative majority or a conservative minority polymorphism on X̃. It
follows that X admits a majority or a minority aggregator if and only if X̃ is
closed under a conservative majority or minority polymorphism. We directly
apply the algorithm of Bessiere et al. and Carbonnel that e�ciently detects
conservative majority or conservative minority polymorphisms, respectively,
and, when it has, computes them [22,48], to � = {X̃}.

We end this subsection by showing that using the graph HX , we can
compute a binary aggregator for X that has as many symmetric components
as possible. This will allow us to obtain better complexity bounds in the
sequel.

Given a domain X ✓ D
n and a binary aggregator F = (f1, . . . , fn) for X,

we say that F is a maximum symmetric aggregator for X if, for every binary
aggregator G = (g1, . . . , gn) for X, for every j 2 {1, . . . , n} and for all binary
Bj ✓ Xj, if gj�Bj is symmetric, then so is fj�Bj . Note that a maximum
symmetric aggregator does not necessarily have any symmetric components,
for example in case X is an impossibility domain. Furthermore, if F and G
are both maximum symmetric aggregators for X, then they di↵er only on
inputs on which they are not symmetric.

Lemma 7.3.3. Every domain X admits a maximum symmetric aggregator.

Proof. Assume that there is no maximum symmetric aggregator forX. Then,
there exist two indices i, j 2 {1, . . . , n} and two binary subsets Bi ✓ Xi,
Bj ✓ Xj, such that:

• there are two binary aggregators F = (f1, . . . , fn) and G = (g1, . . . , gn)
such that fi�Bi and gj�Bj are symmetric and

• there is no binary aggregator H = (h1, . . . , hn) such that both hi�Bi

and hj�Bj are symmetric.

Let H = (h1, . . . , hn) be the n-tuple of binary functions such that, for all
l 2 {1, . . . , n} and for all x, y 2 Xl: hl(x, y) := gl(fl(x, y), fl(y, x)). That H
is an aggregator for X follows easily from the fact that F and G are. Let
also Bi = {a, b} and Bj = {c, d}. Since fi�Bi is symmetric, fi(a, b) = fi(b, a),
thus:

hi(a, b) = gi(fi(a, b), fi(b, a)) = gi(fi(a, b), fi(a, b)) = fi(a, b).
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It follows that hi�Bi is symmetric. Now, by the hypothesis, fj�Bj is not
symmetric. Assume w.l.o.g. that fj�Bj = pr21. Thus, it holds that:

hj(c, d) = gi(fi(c, d), fi(d, c)) = gi(c, d),

which means that hj�Bj is symmetric. Contradiction.

To proceed, we discuss a result concerning the structure of the graph
HX . We say that two scc’s Sp and Sq of HX are related if there exists a
j 2 {1, . . . , n} and two distinct elements u, u0

2 Xj, such that uu0
j 2 Sp and

u0uj 2 Sq.

Lemma 7.3.4. Let X be a set of feasible voting pattern and assume that
Sp, Sq and Sr are three pairwise distinct scc’s of HX . Then, Sp, Sq and Sr

cannot be pairwise related.

Proof. To obtain a contradiction, assume they are. Then, there exist (not
necessarily distinct) indices i, j, l 2 {1, . . . , n} and pairwise distinct elements
u, u0

2 Xi, v, v0 2 Xj and w,w0
2 Xl such that uu0

i, vv
0
j 2 Sp, ww0

l, u
0ui 2 Sq

and v0vj, w0wl 2 Sr. Since uu0
i !! vv0j and vv0j !! uu0

i, it follows that
v0vj !! u0ui and u0ui !! v0vj. Thus, Sq and Sr form together an scc of
HX . Contradiction.

We are now ready to show that we can find a maximum symmetric ag-
gregator for a domain X, in polynomial time to its size.

Corollary 7.3.2. There is a polynomial-time algorithm for solving the fol-
lowing problem: given a set X of feasible evaluations, produce a maximum
symmetric aggregator for X.

Proof. Construct the graph HX . For a set of vertices S, let N+(S) and
N�(S) be its extended outwards and inwards neighborhood respectively in
HX . That is, N+(S) = S [ {uu0

i | 9vv
0
j 2 S : vv0j !! uu0

i} and N�(S) =
S [ {uu0

i | 9vv
0
j 2 S : uu0

i !! vv0i}.
We define the n-tuple of binary functions F = (f1, . . . , fn) as follows. If

HX is strongly connected, set fj = pr21 for all j 2 {1, . . . , n}. Else, assume
w.l.o.g. that HX is connected. If it is not, we can deal with each connected
component independently in the same way. Assume that S1, . . . , St, t � 2,
are the scc’s of HX , in their topological order.

1. For each uu0
i 2 S1, set fi(u, u0) = u0.
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2. Let S be the set of vertices of every scc of HX that is related with S1.
For each vv0j 2 N+(S), set fj(v, v0) = v.

3. Let S 0 be the set of vertices of every scc of HX that is related with an
scc of S. Note that due to Lemma 7.3.4, such an scc cannot be related
with S1. For each ww0

j 2 N�(S), set fj(w,w0) = w0.

Note that any remaining scc must by in another connected component. If
this is the case, we proceed as above for each such connected component.
Finally, to be formally correct, let fj(a, b) = a for every j 2 {1, . . . , n} and
a, b 2 D such that either a or b /2 Xj.

We have already shown that, given X, HX can be constructed in polyno-
mial time to its size and its scc’s can also be computed in linear time to the
size of HX . Steps 1��3 can easily be implemented by checking once every
scc of HX . Thus, the overall process is clearly polynomial.

It remains to show that F = (f1, . . . , fn) is indeed a maximum symmetric
aggregator for X. To obtain a contradiction, suppose it is not. Then, there
exist a i 2 {1, . . . , n}, a binary subset Bi ✓ Xi and a binary aggregator
G = (g1, . . . , gn) for X such that fi�Bi is not symmetric, whereas gi�Bi is.

Assume that Bi = {u, u0
}. Since G is a binary aggregator for X and

gi�Bi is symmetric, by Lemma 7.3.1 there are no paths uu0
i !! u0ui or

u0ui !! uu0
i in HX . Consequently, there are two distinct scc’s of HX ,

say Sp and Sq, such that uu0
i 2 Sp and u0ui 2 Sq and there are no paths

connecting a vertex in Sp with a vertex in Sq. Given the way we constructed
F = (f1, . . . , fn), the vertices of both these scc’s are either all in S or they
are all in S 0. We show that that in both cases, there exist three pairwise
distinct scc’s of HX that are pairwise related. This is a contradiction, by
Lemma 7.3.4.

First, assume that the vertices of Sp and Sq are all in S. The case where
the vertices of Sp and Sq are all in S 0 is analogous. If both of them are
related with S1, then S1, Sp and Sq are pairwise related. Contradiction.
Else, without loss of generality, assume that Sp is not related to S1. Then,
there exists some scc Sr ofHX that is related with S1, such that Sp ✓ N+(Sr).
Since Sr is related with S1, there is some vertex vv0j 2 S1 such that v0vj 2 Sr.
Then v0vj !! uu0

i, which implies that u0ui !! vv0j. Contradiction, since
we took the scc’s of HX in their topological order.
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7.3.2 Expressibility in Transitive Closure Logic

We now show that Theorem 7.3.1 can be refined to show that the test of
whether X admits a binary non-dictatorial aggregator can be expressed in
Transitive Closure Logic. For this, we need to first encode a set X of feasible
evaluations by a suitable finite structure.

We consider a relational schema R consisting of three unary relations X 0,
I 0, V 0, and one ternary relation R0. Intuitively, X 0 will be interpreted by a
set of feasible evaluations, I 0 will be interpreted by the set of issues at hand,
and V 0 will be interpreted by the set of positions over all issues.

Given a set X ✓ Am of feasible evaluations, we let A(X) = (A,X, I, V )
be the following finite R-structure:

• A = X [ I [ V , where I = {1, . . . , n} is the set of issues, and V is the
union of all positions over all issues.

• R is the ternary relation consisting of all triples (x, j, v) such that x 2 X
and v is the j-th coordinate of x, i.e., the position for issue j in x.

It is clear that X can be identified with the finite structure A(X). Con-
versely, if we are given a finite R-structure A in which R ✓ X ⇥ I ⇥ V , then
X can be thought of as a set of feasible evaluations over the issues I.

Lemma 7.3.5. There is a first-order formula '(u, u0, k, v, v0, l) such that,
for every set X of feasible evaluations, we have that '(u, u0, k, v, v0, l) defines
the edge relation of the directed graph HX , when interpreted on the finite
structure A(X).

Proof. Consider the following first-order formula '(u, u0, k, v, v0, l):

9z9z0((X 0(z) ^X 0(z0) ^R0(z, k, u) ^R0(z, l, v) ^R(z0, k, u0) ^R(z0, l, v0))

^¬9y(X 0(y) ^R0(y, k, u) ^R0(y, l, v0)

^8j8w(R0(y, j, w) ! (R0(z, j, w) _R0(z0, j, w))))).

It is immediate from the definition of HX that the formula �(u, u0, k, v, v0, l)
defines indeed the edge relation of HX .

Transitive Closure Logic (TCL) extends first-order logic with the ability
to form the transitive closure of first-order definable relations; see e.g. [161].
As such, it is a fragment of Least Fixed-Point Logic LFP. Both TCL and LFP
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have been extensively studied in the context of descriptive complexity [129,
161], where the aim is to express and study algorithmic problems using logical
formalisms. It is known that TCL is contained in NLOGSPACE and that
LFP is contained in PTIME on the class of all finite graphs. Furthermore, it
also known these containments are strict on the class of all finite graphs, while
TCL = NLOGSPACE and LFP = PTIME on the class of all finite ordered
graphs (that is, graphs with an additional total order on their vertices that
can be used in TCL and LFP formulas).

Theorem 7.3.3. The following problem is expressible in Transitive Closure
Logic: given a set X of feasible evaluations (encoded as the finite structure
A(X)), does X admit a binary, non-dictatorial aggregator? Hence, this prob-
lem is also expressible in LFP.

Proof. The result follows immediately from Lemma 7.3.2, Lemma 7.3.5, and
the definition of Transitive Closure Logic.

It is known that every property that can be expressed in Transitive Clo-
sure Logic is in NLOGSPACE. Thus, the problem of detecting if X admits a
binary non-dictatorial aggregator is in NLOGSPACE. Note that membership
of this problem in NLOGSPACE could also be inferred from Lemma 7.3.2
and the observation that the graph HX can be constructed in LOGSPACE.
Lemma 7.3.5 strengthens this observation by showing that HX is actually
definable in first-order logic, which is a small fragment of LOGSPACE.

Now, let X ✓ {0, 1}n. We prove the following result.

Lemma 7.3.6. Checking whether a domain X ✓ {0, 1}n is a�ne can be
done in LOGSPACE.

Proof. Suppose we have a Turing Machine with a read-only tape containing
the tuples of X. In the work tape, we store triples (i1, i2, i3) of integers in
{1, . . . , k} in binary. This takes O(log k) space. The integer ij points to the
ij-th element of X. We want to examine if the sum modulo 2 of these three
elements is also in X.

To do that, for each such triple, we examine all integers i4  k one at
time. This adds another log k number of cells in the work tape. We then
store all integers j  n binary, one at a time, using another log n bits to the
work tape.

Once we have i1, i2, i3, i4, and j on the work tape, we check whether the
entry ai4j = �(a11j , ai2j , a

i3
j ). If it is, we go to the next j. If it is not, we go
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to the next i4, and when we are done with the triple (i1, i2, i3), we go to the
next such triple. If for every triple (i1, i2, i3), we find a suitable integer i4, X
is a�ne. Else, it is not.

By Corollary 7.1.2, Lemma 7.3.6 and the discussion following Theorem
7.3.3, we obtain the following result.

Theorem 7.3.4. The following problem is in NLOGSPACE: given a set
X ✓ {0, 1}n of feasible evaluations in the Boolean framework, decide whether
or not X is a possibility domain.

7.3.3 Tractability of Uniform Possibility Domains

The final results of this section is about the complexity of detecting uniform
possibility domains.

Theorem 7.3.5. There is a polynomial-time algorithm for solving the fol-
lowing problem: given a set X of feasible evaluations, determine whether or
not X is a uniform possibility domain and, if it is, produce a ternary weak
near-unanimity aggregator for X.

Proof. By Theorem 7.1.4, a set X of feasible evaluations is a uniform possi-
bility domain if and only if there is a ternary aggregator F = (f1, . . . , fn) such
that each fj is a weak near-unanimity operation, i.e., for all j 2 {1, . . . , n}
and for all x, y 2 Xj, we have that fj(x, y, y) = fj(y, x, y) = fj(y, y, x). As in
the proof of Theorem 7.3.2, we can go back-and-forth between X and the set
X̃ and verify that X is a uniform possibility domain if and only if X̃ has a
ternary, conservative, weak near-unanimity polymorphism. Theorem 4.2.10
then implies that the existence of such a polymorphism can be tested in poly-
nomial time, and that such a polymorphism can be produced in polynomial
time, if one exists.

In the Boolean case, we can prove the tractability of detecting locally
non-dictatorial aggregators without using Theorem 4.2.10. This will allow
us to obtain better complexity bounds in Subsec. 7.3.4. In the Boolean case,
Theorem 7.1.4 has been strengthened by Diaz et al.:

Corollary 7.3.3. Diàz et al. [72, Corollary 4.1] A Boolean domain X ✓

{0, 1}n is a local possibility domain if and only if it admits a ternary aggre-
gator F = (f1, . . . , fn) such that fj 2 {^

(3),_(3),�}, for j = 1, . . . , n.
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Thus, we can obtain the following algorithm in the Boolean case.

Corollary 7.3.4. There is a polynomial-time algorithm for solving the fol-
lowing problem: given a Boolean set X ✓ {0, 1}n of feasible evaluations, de-
termine whether or not X is a local possibility domain and, if it is, produce
a ternary aggregator F = (f1, . . . , fn) for X such that fj 2 {^

(3),_(3)
},�,

j = 1, . . . , n.

Proof. Let F = (f1, . . . , fn) be the binary maximal symmetric aggregator
obtained by Corollary 7.3.2 and let I, J ✓ {1, . . . ,m} such that fi = ^ for all
i 2 I and fj = _ for all j 2 J (both I and J can be empty). We prove that
X is a local possibility domain if and only if it admits the ternary aggregator
G = (g1, . . . , gn), where gi = ^

(3) for all i 2 I, gj = _
(3) for all j 2 J and

gk = �, for all k 2 {1, . . . , n}\ (I [J). Since we can obtain F in polynomial-
time to the size of X and since checking whether G is an aggregator for X
can be done also in polynomial time, the procedure is clearly polynomial to
the size of X.

That X is a local possibility domain if it admits G is self-evident. Assume
now that X is a local possibility domain. Let also F (3) = (f (3)

1 , . . . , f (3)
m ) be

the m-tuple of ternary functions, where

f (3)
j (x, y, z) = fj(fj(x, y), z),

j = 1, . . . ,m. It is straightforward to check that (i) F (3) is an aggregator

for X, (ii) f (3)
i = ^

(3) for all i 2 I, (iii) f (3)
j = _

(3) for all j 2 J and (iv)

f (3)
k 2 {pr31, pr

3
3} for all k 2 {1, . . . ,m} \ (I [ J).

Now, since X is a local possibility domain, by Corollary 7.3.3, X admits
a ternary aggregator H = (h1, . . . , hn), such that hj 2 {^

(3),_(3),�}, j =
1, . . . ,m. If H = G, there is nothing to prove.

First, assume that there is some k /2 I [ J , such that hk 2 {^
(3),_(3)

}.
Now, let G0 = (g01, . . . , g

0
n) := H ⇧ F (3) and F 0 = (f 0

1, . . . , f
0
n) be a binary

m-tuple of functions such that:

f 0
j(x, y) := g0(x, x, y), for all x, y 2 A.

It holds that G0 is an aggregator for X such that g0j 2 {^
(3),_(3)

}, for all
j 2 I [J [{k}. Thus, F 0 is a non-dictatorial aggregator and f 0

j is symmetric
for all j 2 I [ J [ {k}. Contradiction, since F is a maximal symmetric
aggregator and fk is not symmetric.

Finally, suppose that there is some j 2 I [ J such that hk = �, for all
j 2 K [ {j}. Then, G = H ⇧ F (3) and thus is an aggregator for X.
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7.3.4 Implicitly given Domains

We now procceed to establish complexity bounds for checking whether a do-
main is a possibility domain or a local possibility domain in the two variants
of the logic-based approach (recall that a local possibility domain is a uniform
possibility domain in the Boolean framework), where X is provided either
via an agenda, or as the truth set of an integrity constraint.

Suppose that we have a propositional formula � on n variables x1, . . . , xn.
Each variable xj corresponds to the j-th issue, j = 1, . . . , n, where the pos-
sible positions are 0 and 1. Let X� := Mod(�) be the set consisting of all
n-ary vectors of satisfying truth assignments of �. In this setting, we say
that � is an integrity constraint.

For the second variant, suppose that we have an agenda �̄ = (�1, . . . ,�n)
of n propositional formulas. For a formula  and an x 2 {0, 1}, let

 x :=

(
 if x = 1,

¬ if x = 0.
.

Finally, let:

X�̄ :=

(
x = (x1, . . . , xn) 2 {0, 1}n |

n̂

j=1

�
xj

j is satisfiable

)
.

Recall that, as usual in aggregation theory, we have assumed that domains
X are non-degenerate, i.e. |Xj| � 2 (thus Xj = {0, 1} in the Boolean frame-
work), for j = 1, . . . , n. Thus, we assume that both integrity constraints
and agendas are such that their domains are non-degenerate. On the other
hand, when we consider (propositional) formulas, we do not assume anything
regarding their domain (it can even be empty).

It is well known that given a domainX ✓ {0, 1}n, there is a formula � such
that its set of models Mod(�) is equal toX; see e.g. [80]. Dokow and Holzman
prove that there is also an agenda �̄ such that X�̄ = X [77]. Thus the
three variants (explicit representation, implicit representation via an integrity
constraint, and implicit representation via an agenda) are in some sense
equivalent, as regards the existence of (local) non-dictatorial aggregators.
However, neither the integrity constraint nor the agenda describing a given
domain need be unique. Thus, there is a possible loss of information when
passing from one variant to another; as List and Puppe argue, this can be
significant for certain aspects of the aggregation problem [163].
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In terms of the computational complexity of passing from one framework
to another, Zanuttini and Hébrard show that given a domain X, one can con-
struct a formula � such that Mod(�) = X in polynomial time in the size of
the domain [219]. Also, the construction in [75], where given a domain X, we
obtain an agenda �̄ such thatX�̄ = X can obviously be carried out in polyno-
mial time to the size of the domain. It is very easy to find integrity constraints
and agendas whose domains are exponentially large on their respective sizes:
consider for example the integrity constraint (x1 _ ¬x1) ^ · · · ^ (xn _ ¬xn)
and the agenda (x1, . . . , xn), where x1, . . . , xn are pairwise distinct variables.
Both have domains equal to the full Boolean domain {0, 1}n. Finally, En-
driss et al. show that, unless the polynomial hierarchy collapses, we cannot
describe an agenda by an integrity constraint of polynomial size to that of
the agenda and that, given an integrity constraint �, the problem of finding
an agenda �̄ such that X�̄ = X� is FNP-complete [83].

Here, we examine the computational complexity of checking if a domain
X is a (local) possibility domain in both the integrity constraint variant
and the agenda variant. In all that follows, we assume that the integrity
constraints are defined on at least three variables and agendas contain at
least three propositional formulas, since domains X ✓ {0, 1}n where n = 1
or 2 are all possibility domains.

Integrity Constraints Let � be an integrity constraint on n variables
and let X� = Mod(�) ⇢ {0, 1}n. The following Theorem provides an upper
bound to the complexity of checking if X� is a possibility domain.

Theorem 7.3.6. Deciding, on input �, whether X� admits a non-dictatorial
aggregator is in ⌃P

2 \ ⇧P
2 .

Proof. By Corollary 7.1.2, X� is a possibility domain if and only if it admits
a binary non-dictatorial aggregator or it is a�ne. The problem of whether
X� is a�ne is in ⇧P

1 = coNP (and thus in ⌃P
2 \ ⇧P

2 too), since it can be cast
as follows.

For all n-tuples x,y, z 2 {0, 1}, if all three satisfy �, then so does
the n-tuple �(x,y, z).

For the above problem concerning the existence of binary non-dictatorial ag-
gregators for X�, we will show separately that it is both in ⌃P

2 and in ⇧P
2 . For

the former, note that there are only four conservative (equivalently Paretian)
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functions from {0, 1}2 7! {0, 1}, namely pr21, pr
2
2, ^ and _. Therefore, there

are 4n � 2 tuples F = (f1, . . . fn), with fj : {0, 1}2 7! {0, 1}, j = 1, . . . n of
n conservative functions, where not all fj are the same projection function.
Such an n-tuple can be thought of as a binary (2⇥ 3)n-sequence, where each
fj is encoded by a sequence (01a10b), a, b 2 {0, 1}, meaning that fj(0, 1) = a
and fj(1, 0) = b.

Let us call such F candidates for non-dictatorial aggregators. The ques-
tion of deciding whether a given F is one of the 4n � 2 candidates for non-
dictatorial aggregators is easily in P. Also, the question of whether a given
binary F is an aggregator for X� can be cast as:

For all n-tuples x,y 2 {0, 1}m, if both satisfy � then so does the
n-tuple F (x,y)

and is thus in ⇧P
1 . Therefore the problem of whether X� admits a binary

non-dictatorial aggregator is in ⌃P
2 because it can be cast as:

There exists a F = (f1, . . . fn) such that F is a candidate for
non-dictatorial aggregator and for all m-tuples x,y 2 {0, 1}n, if
both satisfy �, then so does the n-tuple F (x,y).

To show that it is also in ⇧P
2 , recall that, by Lemma 7.3.2, the set X�

admits a binary non-dictatorial aggregator if and only if the graph HX is not
strongly connected. We will show that checking if HX�

is strongly connected
is in ⌃P

2 , which means that checking if HX�
is not strongly connected is in

⇧P
2 .
First note that the size of HX is polynomial in the size of �, since it has

2m nodes, where n is the number of variables of �. Thus, it su�ces to prove
that testing whether two nodes of HX�

are connected is in NP with an oracle
in coNP.

To test if two nodes are connected, we first obtain a path witnessing this.
To verify it is indeed a path, we need to check if any two of its consecutive
nodes, say uu0

s and vv0t, are connected by the edge uu0
s ! vv0t in HX . To do

that, we can again take the satisfying assignments z and z0 of � that witness
that uu0

s ! vv0t. Then, using the coNP oracle, we need to check that there is
no z⇤ that: (i) satisfies �, (ii) extends uv0 and (iii) agrees on every coordinate
either z or z0.

We now show the analogous result for local possibility domains.
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Theorem 7.3.7. Deciding, on input �, whether or not X� admits a locally
non-dictatorial aggregator is in ⌃P

2 \ ⇧P
2 .

Proof. We follow the proof of Theorem 7.3.6. By Corollary 7.3.3 we have
only three functions, namely ^

(3),_(3),�, which, when combined to an n-ary
tuple F = (f1, . . . , fn), form a local non-dictatorial aggregator for X. Thus,
the proof is exactly the same, with the di↵erence that we now have 3n tuples
that can be encoded as (6⇥ 3)n-binary sequences and we conclude that the
problem is in ⌃P

2 .
For the containment in ⇧P

2 , we argue as follows. Given access to HX�
we

can, by Corollary 7.3.4, obtain in polynomial time a ternary WNU aggregator
G = (g1, . . . , gn) such that X� is a local possibility domain if and only if it
admits G. Whether X� admits G or not is in coNP (in the same way we check
if X� is a�ne) and thus in ⇧P

2 too. Since the size of HX�
is polynomial to that

of �, it su�ces to show that testing whether there is no edge uu0
i !! vv0j in

HX�
is in ⇧P

2 . This problem can be expressed as:

For all assignments a = (a1, . . . , an), b = (b1, . . . , bn), there exists
an assignment c = (c1, . . . , cn) such that, if a, b satisfy � and
ai = u, bi = u0, aj = v, bj = v0, then c satisfies �, ci = u, cj = v0

and cl 2 {al, bl} for all l 2 {1, . . . , n} \ {i, j}.

Thus, the proof is complete.

In terms of lower bounds, we provide polynomial-time reductions from
two coNP -complete problems: the semantical independence problem and
the unsatisfiability problem for propositional formulas. The latter is the well
known problem of whether a formula has no satisfying assignments. In the
former, we are asking whether a given propositional formula is (semantically)
dependent to all its variables. That is, there is no variable (or set of variables)
such that whether an assignment of values satisfies the given formula or not,
does not depend on the values of the variable(s). For a systematic overview of
this problem and its variations, see [156] and [157]. In the setting of agendas,
this notion has been studied under the name agenda separability, in [158].

For domain X ✓ {0, 1}n and a nonempty subset I ⇢ {1, . . . , n}, we
denote by XI the projection of X to I, that is the set of all partial vectors
with indices in I that can be extended to elements of X.

Definition 7.3.1. Let �(x1, . . . , xm) be a propositional formula, where X :=
Mod(�) and let V ✓ {x1, . . . , xm} be a subset of its variables. Let also i 2
{1, . . . ,m}. We say that � is:
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i. (semantically) independent from variable xi if:

X ⇡ X{i} ⇥X�{i}

ii. (semantically) independent from the set of variables V if it is indepen-
dent from every xj 2 V .

In our setting, an integrity constraint being independent from a variable
xj means that issue j does not contribute anything in the logical consistency
restrictions imposed by the constraint. Lang et al. showed that the problem
of checking if a propositional formula depends on all its variables (is simplified
variable-dependent in their terminology), is coNP-complete [157].

To make our reductions easier to follow, we work with the specific domain:

Imp := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

Observe that Imp corresponds to a natural and well studied problem in both
preference and judgment aggregation. Suppose that we have three alterna-
tives A, B and C, where issue 1 corresponds to deciding between A and B,
issue 2 corresponds to deciding between B and C, and issue 3 corresponds
to deciding between C and A. In that setting, we can assume that, in each
issue, 1 denotes preferring the former option and 0 the latter. One can easily
see now that Imp corresponds to the natural requirement of transitivity to
our preferences.

Lemma 7.3.7. Imp is an impossibility domain.

Proof. By Corollary 7.1.2, we only need to check if Imp is a�ne, or if it
admits a binary non-dictatorial aggregator. Easily.

�̄((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (0, 0, 0) /2 Imp,

thus Imp is not a�ne.
On the other hand, let F = (f1, f2, f3) be a binary non-dictatorial thruple

of functions. There are 43 � 2 = 62 cases for F . We arbitrarily choose to
show three of them. The rest are left to the interested reader.

• If f1 = f2 = ^ and f3 = _, then F ((1, 0, 0), (0, 1, 0)) = (0, 0, 0) /2 Imp.

• If f1 = ^, f2 = _ and f3 = pr21, then F ((1, 0, 0), (0, 0, 1)) = (0, 0, 0) /2
Imp.
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• If f1 = _, f2 = pr21 and f3 = pr22, then F ((0, 0, 1), (0, 1, 0)) = (0, 0, 0) /2
Imp.

Thus, for F to be an aggregator for Imp, it must hold that f1 = f2 =
f3 = pr2d, d = 1, 2 and, consequently Imp admits only dictatorial binary
aggregators.

Let  be the propositional formula:

 (y1, y2, y3) = (y1 _ y2 _ y3) ^ (¬y1 _ ¬y2 _ ¬y3). (7.17)

Easily, Mod( ) = Imp. We are now ready to obtain our reductions.

Theorem 7.3.8. Deciding, on input �, whether or not X� admits a non-
dictatorial aggregator is coNP-hard.

Proof. Let �(x1, . . . , xl) be a propositional formula on l variables. We con-
struct, in polynomial time, a formula � such that � is independent from at
least one of its variables if and only if X� is a possibility domain. In all that
follows, n = l + 3.

Let:

�(x1, . . . , xl, y1, y2, y3) = �(x1, . . . , xl)�  (y1, y2, y3),

where: {x1, . . . , xl} and {y1, y2, y3} are disjoint sets of variables.
First, note that the length |�| of � is linear to that of �, since |�| = |�|+6.

Thus the construction is polynomial.
By (7.17), it holds that:

X� =
⇣
Mod(�)⇥ {(0, 0, 0), (1, 1, 1)}

⌘
[

⇣
Mod(¬�)⇥ Imp

⌘
. (7.18)

We first consider the two extreme cases. If � is unsatisfiable or a tautology,
then by (7.18) we have that:

X� = {0, 1}l ⇥ Imp,

or that
X� = {0, 1}l ⇥ {(0, 0, 0), (1, 1, 1)}

respectively. In both cases, we have that � is independent from all its vari-
ables and X� is a possibility domain, since it is a Cartesian product.

Thus, we can assume that both Mod(�) and Mod(¬�) are not empty. We
proceed with a series of claims.
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Claim 7.3.1. X� is not a�ne.

Proof. Let a := (a1, . . . , al) 2 Mod(¬�). Then, (a, 0, 1, 1), (a, 1, 0, 1) and
(a, 1, 1, 0) 2 X�. Furthermore:

�̄((a, 0, 1, 1), (a, 1, 0, 1), (a, 1, 1, 0)) = (a, 0, 0, 0) /2 X�.

Thus, X� is not a�ne. ⇤
By Corollary 7.1.2 and Claim 7.3.1, X� is a possibility domain if and only

if it admits a binary non-dictatorial aggregator. The following claims show
that such an aggregator must be in a restricted class.

Claim 7.3.2. Assume F = (f1, . . . , fn) is a binary aggregator for X�. Then,
fl+1 = fl+2 = fl+3 = pr2d, d 2 {1, 2}.

Proof of Claim: To obtain a contradiction, assume (fl+1, fl+2, fl+3) 6=
(pr2d, pr

2
d, pr

2
d), d = 1, 2. By Lemma 7.3.7, Imp is an impossibility domain.

Thus, there exist x,y 2 Imp such that

z := (fl+1, fl+2, fl+3)(x,y) 2 {(0, 0, 0), (1, 1, 1)}.

Let a := (a1, . . . , al) 2 Mod(¬�). Then (a,x), (a,y) 2 X�, but:

F ((a,x), (a,y)) = (a, z) /2 X�.

Thus, F is not an aggregator for X�. Contradiction.

The following claim states that F = (f1, . . . , fl, fl+1, fl+2, fl+3) cannot
have its first l coordinates be projections to the same coordinate d 2 {1, 2}
and the last three be projections to the other. This can also be derived
by (7.18), since X� is not a Cartesian product. For a proof of this general
and straightforward characterization, the interested reader is referred to [72].
Here we opted to showcase the technique we follow throughout the rest of
the proof.

Claim 7.3.3. Assume F = (f1, . . . , fn) is a binary aggregator for X�. If
fl+1 = fl+2 = fl+3 = pr2d, then there is at least one j 2 {1, . . . , l} such that
fj 6= pr2d0, d, d

0
2 {1, 2}, d 6= d0.
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Proof. We show the claim for d = 2 and d0 = 1. The analogous arguments
hold for the case where d = 1 and d0 = 2.

To obtain a contradiction, assume that f1 = · · · = fl = pr21. Let a :=
(a1, . . . , al) 2 Mod(�) and b := (b1, . . . , bl) 2 Mod(¬�). Then, (a, 0, 0, 0)
and (b, 0, 0, 1) 2 X�, but:

F ((a, 0, 0, 0), (b, 0, 0, 1)) = (a, 0, 0, 1) /2 X�.

Thus, F is not an aggregator for X�. Contradiction.

Claim 7.3.4. Assume F = (f1, . . . , fn) is a binary aggregator for X�. Then,
there is at least one j 2 {1, . . . , l} such that fj is not symmetric.

Proof. By Claim 7.3.2, for some d 2 {1, 2}, fl+1 = fl+2 = fl+3 = pr2d. To
obtain a contradiction, assume that fj is symmetric for all j 2 {1, . . . , l}.
Assume also w.l.o.g. that d = 2. The analogous arguments work for d = 1.

Let a := (a1, . . . , al) 2 Mod(�), b := (b1, . . . , bl) 2 Mod(¬�) and

(f1, . . . , fl)(a,b) := c.

Then, (a, 0, 0, 0) and (b, 0, 0, 1) 2 X. Since F is an aggragator for X�:

f((a, 0, 0, 0), (b, 0, 0, 1)) = (c, 0, 0, 0) 2 X�,

f((b, 0, 0, 1), (a, 0, 0, 0)) = (c, 0, 0, 1) 2 X�,

which, by (7.18), implies that c 2 Mod(�) \Mod(¬�). Contradiction.

The last claim deals with the case where we have both symmetric and
non-symmetric components in (f1, . . . , fl). It completely outlines the class
of binary aggregators available for X�. Notationaly, if a 2 {0, 1}n and I ✓

{1, . . . , n}, aI denotes the projection of a to the coordinates in I.

Claim 7.3.5. Assume F = (f1, . . . , fn) is a binary aggregator for X�. Then,
there exists a non-empty subset J ✓ {1, . . . , l} such that fj = pr2d for all
j 2 J [ {l + 1, l + 2, l + 3}, d = 1, 2.

Proof. By Claim 7.3.2, for some d 2 {1, 2}, fl+1 = fl+2 = fl+3 = pr2d. To
obtain a contradiction, assume that fj 6= pr2d, for all j 2 {1, . . . , l}. Assume
also w.l.o.g. that d = 2. The analogous arguments work for d = 1.

By Claims 7.3.3 and 7.3.4, there exists a partition (I, J) of {1, . . . , l}, such
that fi is symmetric for all i 2 I and fj = pr21 for all j 2 J . To make things
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easier to follow, assume w.l.o.g. that there exists an s 2 {1, . . . , l � 1} such
that I = {1, . . . , s} and J = {s + 1, . . . , l}. Let a := (a1, . . . , al) 2 Mod(�),
b := (b1, . . . , bl) 2 Mod(¬�) and assume that:

(f1, . . . , fs)(aI ,bI) := c.

Then, (a, 0, 0, 0) and (b, 0, 0, 1) 2 X�. Since F is an aggregator for X�, it
must hold that:

F ((a, 0, 0, 0), (b, 0, 0, 1)) = (c, aJ , 0, 0, 1) 2 X�,

which, by (7.18), implies that (c, aJ) 2 Mod(¬�). Furthermore, again since
F is an aggregator for X�, it must be the case that:

F ((c, aJ , 0, 0, 1), (a, 0, 0, 0)) = (c, aJ , 0, 0, 0) 2 X�,

which, by (7.18), implies that (c, aJ) 2 Mod(�). Thus, (c, aJ) 2 Mod(�) \
Mod(¬�). Contradiction.

By the above claims and Corollary 7.1.2, X� is a possibility domain if
and only if it admits a binary non-dictatorial aggregator such that there
exists a d 2 {1, 2} and a non-empty J ✓ {1, . . . , l}, where, for all j 2

J [ {l + 1, l + 2, l + 3}, fj = pr2d. It is not di�cult to see that such an
aggregator exists for d = 1 if and only if it does for d = 2. Thus, we can
safely assume that d = 1.

Before proving that our reduction works, we need some notation. For a
domain Y ✓ {0, 1}n and a non-empty set of indices I ✓ {1, . . . , n}, let YI be
the projection of Y to the indices of I, that is, the set of partial vectors with
coordinates in I that can be extended to vectors of Y .

First, assume that there exist p variables xi1 , . . . , xip 2 {x1, . . . , xl}, where
1 < p < l, such that � is independent from all of them. Let also J =
{1, . . . , l} \ {i1, . . . , ip}. Then, (7.18) can be written as:

X� ⇡ {0, 1}p ⇥

 ⇣
Mod(�)J ⇥ {(0, 0, 0), (1, 1, 1)}

⌘
[

⇣
Mod(¬�)J ⇥ Imp

⌘!
.

It is straightforward to observe that any n-tuple F = (f1, . . . , fn) of binary
functions, such that fp+1 = . . . = fn = pr2d, d = 1, 2 is an aggregator for X�.
Thus X� is a possibility domain.
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Now, assume that X� is a possibility domain and F = (f1, . . . , fn) a
binary non-dictatorial aggregator for X�. Let also (I, J) be a partition of
{1, . . . , l}, such that, for all j 2 J [ {l + 1, l + 2, l + 3}, fj = pr21 and for
all i 2 I, fi 6= pr21. Again, to simplify things, assume that there exists an
s 2 {1, . . . , l � 1} such that I = {1, . . . , s}, J = {s + 1, . . . , l}. We consider
the following three cases:

• If fi := pr22, for all i 2 I, we show that � is independent from x1, . . . , xs.
Suppose there exist vectors a,b 2 {0, 1}s and c 2 {0, 1}l�s, such that
(a, c) 2 Mod(�) and (b, c) 2 Mod(¬�). Then, (a, c, 0, 0, 0) 2 X� and
(a, c, 0, 0, 1) 2 X�. Since F is an aggregator for X�, it must hold that:

F ((a, c, 0, 0, 0), (b, c, 0, 0, 1)) = (b, c, 0, 0, 0) 2 X�,

which, by (7.18), implies that (b, c) 2 Mod(�) \ Mod(¬�). Contra-
diction. Since a,b and c where chosen arbitrarily, it follows that � is
independent from x1, . . . , xs.

• If fi is symmetric, for all i 2 I, we show that � is independent from
x1, . . . , xs. Suppose there exist vectors a,b 2 {0, 1}s and c 2 {0, 1}l�s,
such that (a, c) 2 Mod(�) and (b, c) 2 Mod(¬�). Also, assume that
(f1, . . . , fs)(a,b) := z. Then, (a, c, 0, 0, 0) 2 X� and (b, c, 0, 0, 1) 2 X�.
Since F is an aggregator for X�, it must hold that:

F ((a, c, 0, 0, 0), (b, c, 0, 0, 1)) = (z, c, 0, 0, 0) 2 X�,

F ((b, c, 0, 0, 1), (a, c, 0, 0, 0)) = (z, c, 0, 0, 1) 2 X�,

which, by (7.18), implies that (z, c) 2 Mod(�) \ Mod(¬�). Contra-
diction. Since a, b and c where chosen arbitrarily, it follows that � is
independent from x1, . . . , xs.

• If there is a partition (I1, I2) of I, such that fi = pr22 for all i 2 I1
and fi is symmetric for all i 2 I2, we show that that � is independent
from all xi such that i 2 I1. Assume again w.l.o.g. that there is a
t 2 {1, . . . , s � 1} such that I1 = {1, . . . , t} and I2 = {t + 1, . . . , s}.
Suppose there exist vectors a,b 2 {0, 1}t and c 2 {0, 1}l�t, such that
(a, c) 2 Mod(�) and (b, c) 2 Mod(¬�). Then, (a, c, 0, 0, 0) 2 X� and
(a, c, 0, 0, 1) 2 X�. Since F is an aggregator for X�, it must hold that:

F ((a, c, 0, 0, 0), (b, c, 0, 0, 1)) = (b, c, 0, 0, 0) 2 X�,
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which, by (7.18), implies that (b, c) 2 Mod(�) \ Mod(¬�). Contra-
diction. Since a,b and c where chosen arbitrarily, it follows that � is
independent from x1, . . . , xt.

This concludes the proof of both the reduction and Theorem 7.3.8.

Fortunately, the equivalent lower bound in the case of local possibility do-
mains can be obtained quicker. Here the reduction is from the unsatisfiability
problem.

Theorem 7.3.9. Deciding, on input �, whether or not X� admits a locally
non-dictatorial aggregator is coNP-hard.

Proof. We show that the problem of whether a logical formula �, defined on
k variables x1, . . . , xl, is unsatisfiable, reduces to that of deciding if the truth
set of a formula is a local possibility domain.

Let  (y1, y2, y3) be the propositional formula with Mod( ) = Imp, where
{y1, y2, y3} \ {x1, . . . , xl} = ;. Consider the formula:

� = (�(x1, . . . .xl) ^  (y1, y2, y3)) _ (z ! w),

where z and w are variables not among those of � or  . First note that
the length of � is again linear to that of �, since |�| = |�| + 8 and thus the
construction is polynomial.

Let n := l + 5. We will show that � is unsatisfiable if and only if

X� =
⇣
Mod(�)⇥Imp⇥{0, 1}2

⌘
[

⇣
{0, 1}k+3

⇥{(0, 0), (0, 1), (1, 1)}
⌘
, (7.19)

is a local possibility domain.
First, assume � is unsatisfiable. Then, (7.19):

X� = {0, 1}l+3
⇥ {(0, 0), (0, 1), (1, 1)},

which is a local possibility domain, since it admits for example the binary
aggregator F = (f1, . . . , fm), where fj = ^, j = 1, . . . ,m.

On the other hand, let Mod(�) be a local possibility domain, and assume
� is satisfiable by some assignment a = (a1, . . . , al). Since Mod(�) is a
local possibility domain, by Theorem 7.1.4, it admits a ternary locally non-
dictatorial agggregator F = (f1, . . . , fn).
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By Lemma 7.3.7, Imp is an impossibility domain. Thus, there exist bi =
(bi1, b

i
2, b

i
3) 2 Imp, i = 1, 2, 3, such that:

c := (fl+1, fl+2, fl+3)(b
1,b2,b3) /2 Imp.

Since b1,b2,b3
2 Imp, it holds that (a,bi, 1, 0) 2 X�, for i = 1, 2, 3. On the

other hand:

F ((a,b1, 1, 0), (a,b2, 1, 0), (a,b3, 1, 0)) = (a, c, 1, 0) /2 X�.

Thus F is not an aggregator for X�. Contradiction.

Agendas Suppose now that we have an agenda �̄ = (�1, . . . ,�n). We prove
the following upper bounds to the complexity of deciding whether X�̄ is a
(local) possibility domain.

Theorem 7.3.10. Given the agenda �̄ = (�1, . . . ,�n), the question whether
X�̄ admits a non-dictatorial aggregator is in �P

3 .

Proof. We will show that the problem can be decided in P with an oracle in
⌃P

2 . By Corollary 7.1.2, X�̄ is a possibility domain if and only if it is a�ne
or it admits a binary non-dictatorial aggregator. For the former, note that
it can be cast as:

For all m-tuples x,y, z 2 {0, 1}n, if it holds that:

n̂

j=1

�
xj

j ,
m̂

j=1

�
yj
j and

n̂

j=1

�
zj
j

are all satisfiable, then so is
Vn

j=1 �
wj

j , where wj = �(xj, yj, zj),
j = 1, . . . ,m.

Thus, it is in ⇧P
2 ✓ �P

3 .
It remains to show that the latter problem, or equivalently the problem of

checking if HX�̄
is strongly connected, is in �P

3 . Since HX�̄
has 2n vertices, its

size is polynomial to that of the agenda. Also, checking if a graph is strongly
connected is in P. Thus it su�ces to show that HX�̄

can be constructed

within polynomial time with an oracle in ⌃P
2 .

Consider two vertices uu0
s and vv0t of HX�̄

, with s 6= t. To decide if there
is an edge from uu0

s to vv0t, is su�ces to check the following:
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There exist binary m-sequences x,y such that:

• both
Vn

j=1 �
xj

j and
Vn

j=1 �
yj
j are satisfiable,

• xs = u, xt = v, ys = u0 and yt = v0 and

• for all n-sequences z, either
Vn

j=1 �
zj
j is not satisfiable or at

least one of the following is not true: (i) zk = u, (ii) zl = v0,
(iii) zj 2 {xj, yj} for j = 1, . . . , n.

Notice that this can be done with an oracle in ⌃P
2 .

In what concerns local possibility domains, we have the following upper
bound.

Theorem 7.3.11. Given the agenda �̄ = (�1, . . . ,�n), deciding whether X�̄

admits a locally non-dictatorial aggregator is in �P
3 .

Proof. We have already argued in Theorem 7.3.10 that HX�̄
can be con-

structed in polynomial time with an oracle in ⌃P
2 . Then, we can obtain

in polynomial time the aggregator G = (g1, . . . , gn) of Corollary 7.3.4 and
testing whether X�̄ admits it is in ⇧P

2 (in the same way we check if X�̄ is
a�ne).

In terms of lower bounds, a straightforward idea would be to construct,
given an integrity constraint, an agenda with the same domain, since that
would immediately imply that the lower bounds for the integrity constraints
carry on to the agendas. Unfortunately, as discussed above, this is an FNP-
complete problem. However, in [83], given an integrity constraint �, Endriss
et al. provide an agenda �̄, of polynomial size to the length of �, such that
X�̄ = X�. The reason this result does not imply the existence of a polynomial
reduction, is that to construct �̄, one needs a satisfying assignment of �. And
of course, finding such an assignment is intractable. Fortunately, we can get
past that in the problems we consider.

Theorem 7.3.12. Given the agenda �̄ = (�1, . . . ,�n), the question whether
X�̄ admits a non-dictatorial aggregator is coNP-hard.

Proof. Let �(x1, . . . , xk) be a propositional formula on k variables. We con-
struct, in polynomial time, an agenda �̄ such that � is independent from at
least one of its variables if and only if X�̄ is a possibility domain. In all that
follows, n = k + 3.
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Let:

�(x1, . . . , xk, y1, y2, y3) = �(x1, . . . , xk)�  (y1, y2, y3),

where: {x1, . . . , xl} and {y1, y2, y3} are disjoint sets of variables and where
Mod( ) = Imp. As in Theorem 7.3.8, we have that �’s length is linear to to
that of � and that:

X� =
⇣
Mod(�)⇥ {(0, 0, 0), (1, 1, 1)}

⌘
[

⇣
Mod(¬�)⇥ Imp

⌘
. (7.20)

Pick an arbitrary vector a = (a1, . . . , ak) 2 {0, 1}k and set:

b = (b1, . . . , bm) :=

(
(a1, . . . , ak, 0, 0, 0) if �(a1, . . . , ak) = 1,

(a1, . . . , ak, 0, 0, 1) else.

In both cases, b satisfies �. Thus, we can use Proposition 3 of [83], to
construct an agenda �̄ such that X�̄ = X�, whose size is polynomial in the
length of � and thus in that of � too. Since deciding whether a satisfies � or
not can be done in polynomial time, our construction is polynomial. Also,
by Theorem 7.3.8, � is independent from at least one of its variables if and
only if X�, and thus X�̄ too, is a possibility domain.

The analogous arguments give us coNP-hardness in the case of local pos-
sibility domains.

Theorem 7.3.13. Given the agenda �̄ = (�1, . . . ,�n), the question whether
X�̄ admits a locally non-dictatorial aggregator is coNP-hard.

Proof. Let �(x1, . . . , xk) be a propositional formula. We construct an agenda
�̄ such that X�̄ is a local possibility domain if and only if � is unsatisfiable.
Let  (y1, y2, y3) be again the propositional formula with Mod( ) = Imp,
where {y1, y2, y3} \ {x1, . . . , k} = ;. Consider the formula:

� = (�(x1, . . . .xk) ^  (y1, y2, y3)) _ (z ! w),

where z and w are variables not among those of � or  .
Let n := k + 5. By (7.19) we have that:

X� =
⇣
Mod(�)⇥Imp⇥{0, 1}2

⌘
[

⇣
{0, 1}k+3

⇥{(0, 0), (0, 1), (1, 1)}
⌘
. (7.21)
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Again, pick an arbitrary vector a = (a1, . . . , ak) 2 {0, 1}k and set:

b = (b1, . . . , bn) := (a1, . . . , ak, 0, 0, 0, 0, 0).

b satisfies �. Thus, we can use Proposition 3 of [83], to construct an agenda
�̄ such that X�̄ = X�, whose size is polynomial in the length of � and thus
in that of � too. Also, by Theorem 7.3.9, we have that � is unsatisfiable if
and only if X�, and thus X�̄ too, is a local possibility domain.

A related result, that has been answered in [84], is whether the domain of
an agenda admits the majority aggregator. In [174] and [84], such agendas
are characterized as those satisfying the median property, that is, agendas
whose every inconsistent subset, contains an inconsistent subset of size 2.
Endriss et al. [84] show that checking if an agenda satisfies the median prop-
erty is ⇧P

2 -complete. Unfortunately, this does not extend to the problem of
determining if the domain of an agenda is a possibility domain, since, even
though checking for the minority aggregator is in ⇧P

2 , the existence of binary
non-dictatorial aggregators seems to be a harder problem.

7.3.5 Other types of non-dictatorial aggregation

In this subsection, we quickly extend the results of the previous subsections in
four cases of non-dictatorial aggregation that have been used in the bibliog-
raphy. Namely, we discuss generalized dictatorships, anonymous, monotone
and systematic aggregators. We only consider the case were we search if an
implicitly given Boolean domain admits such aggregators. The case where
the domain is given explicitly has been shown to be tractable in [72], since
the results there directly provide the required aggregators.

Recall that a domain X ✓ {0, 1}m admits an aggregator that is not a
generalized dictatorship if and only if it is a possibility domain with at least
three elements (Th. 7.2.9).

Using that, we can easily prove the same complexity bounds we had for
deciding if the domain of an integrity constraint admits a non-dictatorial
aggregator.

Corollary 7.3.5. Deciding, on input �, whether X� admits an aggregator
that is not a generalized dictatorship is in ⌃P

2 \ ⇧P
2 .

Proof. By Theorem 7.2.9, it su�ces to show that deciding if X� has at least
three elements is in ⌃P

2 \ ⇧P
2 . Indeed, this can be written as:
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There exist tuples x,y, z 2 {0, 1}n that are pairwise distinct, such
that all three satisfy �.

Thus, deciding if |X�| � 3 is in ⌃P
1 ✓ ⌃P

2 \ ⇧P
2 . The rest of the proof is

identical with that of Theorem 7.3.6.

Corollary 7.3.6. Deciding, on input �, whether X� admits an aggregator
that is not a generalized dictatorship is coNP-hard.

Proof. Immediate by Theorems 7.2.9 and 7.3.8, since the domain of (7.18)
has more than two elements.

In case the domain is provided via an agenda, we can again easily obtain
the same bounds.

Corollary 7.3.7. Given the agenda �̄ = (�1, . . . ,�n), the question whether
X�̄ admits an aggregator that is not a generalized dictatorship is in �P

3 .

Proof. Again by Theorem 7.2.9, it su�ces to show that deciding whether X�̄

has at least three elements is in �P
3 . Indeed, the problem can be written as:

There exist n-tuples x,y, z 2 {0, 1}n which are pairwise distinct
and such that

Vn
j=1 �

xj

j ,
Vn

j=1 �
yj
j and

Vn
j=1 �

zj
j are all satisfiable.

Thus, it is in ⌃P
2 ✓ �P

3 . The rest of the proof is identical that of Theorem
7.3.10.

Corollary 7.3.8. Given the agenda �̄ = (�1, . . . ,�n), the question whether
X�̄ admits an aggregator that is not a generalized dictatorship is coNP-hard.

Proof. Immediate by Theorems 7.2.9 and 7.3.12, since the domain in (7.20)
has more than two elements.

It is immediate to observe that a ternary anonymous aggregator is always
WNU. Thus, using Theorem 7.1.4, Kirousis et al. proved the following result.

Corollary 7.3.9. [144, Corollary 5.11] X ✓ {0, 1}n is a local possibility
domain if and only if it admits an anonymous aggregator.

In fact, a local possibility domain always admits a ternary such aggrega-
tor. We can now obtain all the complexity bounds we have for local non-
dictatorial aggregators, in the case where we search for anonymous ones.
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Corollary 7.3.10. A. Deciding, on input �, whether X� admits an
anonymous aggregator is i. in ⌃P

2 \ ⇧P
2 and ii. coNP-hard.

B. Given the agenda �̄ = (�1, . . . ,�m), the question whether X�̄ admits
an anonymous aggregator is i. in �P

3 and ii. coNP-hard.

Proof. Ai. Immediate by Corollary 7.3.9 and Theorem 7.3.7.

Aii. Immediate by Corollary 7.3.9 and Theorem 7.3.9.

Bi. Immediate by Corollary 7.3.9 and Theorem 7.3.11.

Bii. Immediate by Corollary 7.3.9 and Theorem 7.3.13.

It is not di�cult to see that all binary aggregators (both dictatorial and
non-dictatorial) have that property. Also, in [75] and [144], it has been proven
that if a domain admits a majority aggragator, it also admits a binary non-
dictatorial one. Combining this with Theorem 7.1.2, we obtain the following
result.

Recall that a domain X ✓ {0, 1}n admits a monotone non-dictatorial
aggregator of some arity if and only if it admits a binary non-dictatorial
one (Th. 7.2.10. Thus we can again easily obtain the required complexity
bounds.

Corollary 7.3.11. A. Deciding, on input �, whether X� admits a mono-
tone non-dictatorial aggregator is i. in ⌃P

2 \ ⇧P
2 and ii. coNP-hard.

B. Given the agenda �̄ = (�1, . . . ,�n), the question whether X�̄ admits a
monotone non-dictatorial aggregator is i. in �P

3 and ii. coNP-hard.

Proof. Ai. Immediate by Theorem 7.2.10 and Theorem 7.3.6.

Aii. Immediate by Theorem 7.2.10 and by noticing that the only available
aggregators for the construction of (7.18) in Theorem 7.3.8 are binary
non-dictatorial ones.

Bi. Immediate by Theorem 7.2.10 and Theorem 7.3.10.

Bii. Immediate by Theorem 7.2.10 and by noticing that the only available
aggregators for the construction of (7.20) in Theorem 7.3.12 are binary
non-dictatorial ones.
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Corollary 7.3.12. Let X ✓ {0, 1}n be a Boolean domain. Then, either X
admits only essentially unary functions, or it is closed under ^, _, maj or
�.

This result can be obtained directly by Post’s Lattice, without considering
complexity theoretic notions. For a direct algebraic approach, see also [208,
Proposition 1.12] (by noting that the only Boolean semi-projections of arity
at least 3 are projections).

Corollary 7.3.12 translates in our framework as follows.

Corollary 7.3.13. Let X ✓ {0, 1}n be a Boolean domain. Then X admits a
systematic non-dictatorial aggregator if and only if it admits the aggregators
¯̂, _̄, maj or �̄).

In case of integrity constraints, the problem of detecting if their domains
admit systematic non-dictatoral aggregators is coNP-complete.

Proposition 7.3.1. Deciding, on input �, whether X� admits a systematic
non-dictatorial aggregator is coNP-complete.

Proof. In Theorem 7.3.6, we have already shown membership in coNP for
detecting closure under �. The proof for checking closure under ^, _, maj
is essentially the same.

Thus we only need to show coNP-hardness. We reduce from the known
coNP-complete problem of tautology, where we check if a porpositional for-
mula is satisfied by all assignments of values.

Let �(x1, . . . , xk) be the input propositional formula on k variables, and
 (y1, y2, y3) be the formula such that Mod( ) = Imp, where {x1, . . . , xk} \

{y1, y2, y3} = ;. Let also m = k + 3.
Consider the formula:

�(x1, . . . , xk, y1, y2, y3) = � _  .

If � is a tautology, X� = {0, 1}n, which is closed under ^, _, maj and �.
Otherwise:

X� =
⇣
Mod(�)⇥ {0, 1}3

⌘
[

⇣
Mod(¬�)⇥ Imp

⌘
.

Easily now, if a = (a1, . . . , ak) does not satisfy �, and f 2 {^,_,maj,�}, it
holds that (a, 0, 0, 1), (a, 0, 1, 0), (a, 1, 0, 0) 2 X�, but:

b := f̄((a, 1, 0, 0), (a, 0, 1, 0), (a, 1, 0, 0)) = {(a, 0, 0, 0), (a, 1, 1, 1)}.
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Thus, since b /2 X�, X� does not admit any systematic non-dictatorial ag-
gregator.

Finally, we can obtain the corresponding results in the case the domain
is provided via an agenda.

Proposition 7.3.2. Deciding, on input �̄ = (�1, . . . ,�n), whether X�̄ admits
a systematic non-dictatorial aggregator is in ⇧P

2 and coNP-hard.

Proof. In Theorem 7.3.11, we have already shown membership in ⇧P
2 for

detecting closure under �. The proof for checking closure under ^, _, maj
is essentially the same.

For coNP-hardness, observe that given a formula �, we can again set
� = � _  and construct an agenda whose domain is the same with X� of
Proposition 7.3.1 in polynomial time, by [83, Proposition 3]. Thus, the same
reduction as in Proposition 7.3.1 works.

Semantic equivalence We end this subsection with a sort discussion con-
cerning formulas that are not (local) possibility integrity constraints, but are
semantically equivalent to such formulas, in the sense that they have the
same set of models.

In a, yet unpublished, extended version of [143], Kirousis et al. show that
the problem of deciding whether the domain of a given formula is a possibility
domain, is in ⌃P

2 \⇧P
2 and that of whether it is a local possibility domain, is

in ⌃P
2 and coNP-hard. Thus, we immediately obtain the following results.

Corollary 7.3.14. Deciding, on input �, whether there exists a possibility
integrity constraint  such that Mod(�) = Mod( ) is in ⌃P

2 \ ⇧P
2 .

Furthermore, deciding, on input �, whether there exists an lpic  such
that Mod(�) = Mod( ) is in ⌃P

2 and coNP-hard.



Conclusions

In this thesis, we studied CSP’s, mainly from an algorithmic point of view.
On one hand, we used the probabilistic method to devise randomized algo-
rithms that guarantee the existence of solution to such problems, and find
them in polynomial time. On the other, we used the algebraic toolkit to
obtain results in the field of judgment aggregation.

Firstly, by translating the CSP framework as a set of events to be avoided
over a common probability space, we devised e�cient randomized algorithms
that, given some assumptions on the dependencies and the probabilities of the
events, prove the existence of and find a point in the probability space such
that no event occurs. More specifically, we algorithmically proved lopsided
versions of the symmetric and asymmetric Lovász Local Lemma and Shearer’s
Lemma. We worked in the variable framework of Moser and Tardos [171,172]
which, although it is more restrictive than using general probability spaces,
is broad enough to include a great variety of interesting applications and,
furthermore, is easily ameanable for algorithmic purposes.

Our inspiration came mainly form Moser’s [171] Resample procedure
that he used to prove the Lovász Local Lemma, along with the direct proba-
bilistic approach that Giotis et al. [104,107] employed to analyze it. Specifi-
cally, we show how to express the probability that at least n such Resample
procedures will be needed by a recurrence relation, which we subsequently
solve by analytic means. In our view, this approach is useful both for theo-
retical purposes and applications. To demonstrate that, we first showed how
to implement “moser-like” algorithms for sparser dependency graphs that
appear in the bibliography. Then, we applied it to show that 2� � 1 colors
su�ce to acyclicaly color the edges of a graph with maximum degree �, thus
obtaining the best known bound for the acyclic chromatic index of a graph
G and, lastly, to construct c-separating codes, a useful type of codes whose
explicit constructions are scarce in the bibliography.

305



306 CHAPTER 7. AGGREGATING DOMAINS

In the future, this line of work could be extended in various ways. Firstly,
in addition to acyclic edge coloring and separating codes, there are many
combinatorial problems, like the satisfiability problem and vertex coloring
problems, to which the LLL has already been fruitfully applied. Our direct
probabilistic approach could possibly allow us to obtain better bounds for
the parameters of these problems. Secondly, we have already argued than
in the variable framework, Shearer’s Lemma is not a necessary condition for
avoiding all the undesirable events. It would certainly be interesting to use
our approach in order to algorithmically prove versions of the LLL for even
sparser (lopsi)dependency graphs, or even for a version of Shearer’s lemma
that provides an also necessary condition in the variable framework. Finally,
apart from the LLL, there are various other probabilistic conditions that
could take its place, like Chebyshev’s Inequality [23,212], which could result
in interesting algorithmic results.

Apart from the probabilistic approach, our work was also situated in ag-
gregation theory and, specifically, in judgment aggregation. Here, we char-
acterized various domains, both in terms of the aggregators they admit and
syntactically, by the formulas (integrity constraints) that describe them. We
also showed a dichotomy theorem for the complexity of the multi-sorted con-
straint satisfaction problem defined over a special class of possibility domains
we named uniform possibility domains. Furthermore, we provided e�cient
algorithms that recognize if a domain admits various types of non-dictatorial
aggregators. In case the domain is Boolean, we provided algorithms that
construct an integrity constraint describing it and we also showed how to
e�ciently recognize integrity constraints of specific syntactic forms that give
rise to interesting possibility domains. Finally, we showed upper and lower
complexity bounds for the problems of deciding if an integrity constraint or
an agenda give rise to possibility domains with various properties.

One possible aim is of course to attempt to make the aforementioned
complexity bounds tight. Also, almost all our work is under the assumption
of conservative aggregators. The equivalent results for aggregators that are
simply Paretian would certainly be interesting. Finally, there are many vot-
ing rules across the bibliography that have not yet being expressed in the
abstract framework of Dokow and Holzman [77]. It would be interesting to
obtain characterizations for the domains that admit such voting rules.
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University Press, 2014.

[66] Abraham De Moivre. The doctrine of chances: or, a method of calcu-
lating the probability of events in play. W. Pearson, 1718.

[67] Rina Dechter. From local to global consistency. Artificial intelligence,
55(1):87–107, 1992.



BIBLIOGRAPHY 313

[68] Rina Dechter and Judea Pearl. Structure identification in relational
data. Artificial Intelligence, 58(1-3):237–270, 1992.

[69] Alvaro del Val. On 2-sat and renamable Horn. In Proceedings of the
National Conference on Artificial Intelligence, pages 279–284. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2000.

[70] D Deng, Douglas R Stinson, and Ruizhong Wei. The Lovász local
lemma and its applications to some combinatorial arrays. Designs,
Codes and Cryptography, 32(1-3):121–134, 2004.

[71] Josep Dı́az, Lefteris M. Kirousis, Sofia Kokonezi, and John Livieratos.
Algorithmically e�cient syntactic characterization of possibility do-
mains. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages
50:1–50:13, 2019.

[72] Josep Dı́az, Lefteris M. Kirousis, Sofia Kokonezi, and John Livieratos.
Algorithmically e�cient syntactic characterization of possibility do-
mains. Bulletin of the Hellenic Mathematical Society, 63:97–135, 2019.

[73] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate
texts in mathematics. Springer, 2012.

[74] Franz Dietrich and Christian List. Arrow’s theorem in judgment ag-
gregation. Social Choice and Welfare, 29(1):19–33, 2007.

[75] Elad Dokow and Ron Holzman. Aggregation of binary evaluations for
truth-functional agendas. Social Choice and Welfare, 32(2):221–241,
2009.

[76] Elad Dokow and Ron Holzman. Aggregation of binary evaluations.
Journal of Economic Theory, 145(2):495–511, 2010.

[77] Elad Dokow and Ron Holzman. Aggregation of non-binary evaluations.
Advances in Applied Mathematics, 45(4):487–504, 2010.

[78] William F Dowling and Jean H Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulae. The Journal
of Logic Programming, 1(3):267–284, 1984.



314 BIBLIOGRAPHY

[79] Ramez Elmasri and Sham Navathe. Fundamentals of database systems.
Pearson London, 2016.

[80] Herbert B. Enderton. A mathematical introduction to logic. Elsevier,
2001.

[81] Ulle Endriss. Judgment aggregation. In Brandt et al. [32], pages 399–
426.

[82] Ulle Endriss and Ronald de Haan. Complexity of the winner deter-
mination problem in judgment aggregation: Kemeny, slater, tideman,
young. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 117–125. International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

[83] Ulle Endriss, Umberto Grandi, Ronald De Haan, and Jérôme Lang.
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