
COMSOC Methods in Real-World
Applications

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Christian Laußmann
aus Wuppertal

Düsseldorf, April 2023

aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Jörg Rothe

2. Prof. Dr. Dorothea Baumeister

Tag der mündlichen Prüfung:
04. Juli 2023

Acknowledgements

I thank my dear mother Dagmar who raised me to be a decent and independent man. I
also thank my father Tim for introducing me to science, opening my eyes for nature, and
keeping me curious from childhood. Without you two, your strength, and your restless help
in hard times this thesis would have been impossible. Thanks to my brother Dominik for
the discussions with you, which have expanded my world view. Dear Julia, thanks for your
mental support during the last stressful weeks that I have been working on this thesis.

I thank my advisor Jörg and my mentor Doro for the trust they put in me when supporting my
fast-track doctorate. You always helped me with good advice and gave me confidence in my
work and abilities. The many productive discussions I had with each of you were crucial to
push my ideas forward. Without these discussions this work would not have been possible.

Further, I also want to thank my colleagues Linus, Robin, and Anna. Even during COVID
restrictions and months of home office you integrated me in the department, and helped me
uncountable times with all my questions. I highly enjoyed my coffee, lunch breaks, and the
many intense discussions with you. I thank you also for proofreading this thesis, and giving
me highly useful feedback!

Special thanks go also to our secretary Claudia. Thank you for always having my back when
it came to formalities and applications, so that I was able to keep focus on research.

I also thank my co-authors for the professional and constructive joint work. Further, I thank
Jérôme Lang for helping me and my co-authors with countless discussions on the design of
frameworks and axioms.

Finally, thanks to the Deutsche Forschungsgemeinschaft (DFG) for supporting large parts of
this thesis under grant RO-1202/21-1.

iii

Der erste Schluck aus dem Becher der Naturwissenschaft macht atheistisch, aber auf dem
Grunde des Bechers wartet Gott!

∼Werner Heisenberg

Vires in numeris.

Abstract

Computational social choice (COMSOC) is a research area focussed on the design and anal-
ysis of algorithms for collective decision tasks. In this thesis, we focus on one sub-area of
the field: voting. We study four (near) real-world applications of voting. First, we show how
voting can be used in networks to find central individual nodes, or sets of nodes. We show
that network science, and voting theory overlap, and each can be informed by the other. Sec-
ond, we study participatory budgeting. This is an application of voting where voters vote on
projects they would like to fund, while external conditions such as time and cost limits must
be satisfied. Participatory budgeting is not new to literature. However, we introduce a twist:
project costs, and/or project durations are uncertain. This introduces additional difficulties to
the planning process. The third part of this thesis deals with strategic campaigns in apportion-
ment elections where an external agent tries to influence the election by bribing/convincing
voters to change their vote. We show that computing optimal bribery actions is generally easy
with an efficient algorithm we develop. This is arguably also a negative result as it means
that apportionment elections could be susceptible to such campaigns. Thus, we also propose
an extension to apportionment elections which makes the procedures computationally resis-
tant to strategic campaigns. Lastly, we develop a new ballot format for multiwinner elections
which helps voters state more sophisticated preferences with ease. More specifically, the bal-
lots allow expressing approval, incompatibilities, substitution effects, and dependencies.

Zusammenfassung

Computational social choice (COMSOC) ist ein Forschungsbereich, der sich auf die En-
twicklung und Analyse von Mechanismen zur kollektiven Entscheidungsfindung fokussiert.
In dieser Doktorarbeit behandeln wir einen besonderen Bereich von COMSOC: Wahlen. Ins-
besondere behandeln wir vier Anwendungen von Wahlmethoden, die besonders nah an realen
Anwendungen sind. Als erstes zeigen wir, wie Wahlmethoden verwendet werden können, um
zentrale Knoten (oder Knotenmengen) in Netzwerken zu identifizieren. Unsere Ergebnisse
legen nahe, dass Wahltheorie und Netzwerktheorie eine große gemeinsame Schnittmenge
haben, und dass beide voneinander profitieren können. Als nächstes betrachten wir partici-
patory budgeting (zu Deutsch: Bürgerhaushalte), wo Wähler über Projekte abstimmen, die
in einer Stadt gebaut werden sollen. Dabei gibt es Beschränkungen bezüglich des Budgets
und der Zeit, die für die Umsetzung der Projekte zur Verfügung stehen. Participatory budget-
ing ist nicht neu. Wir versuchen in dieser Arbeit aber, das Modell realistischer zu machen,

v

indem wir unsichere Projektkosten und Realisierungszeiten erlauben. Durch die Unsicher-
heiten wird der Planungsprozess erschwert. Im dritten Teil dieser Doktorarbeit kümmern wir
uns um strategische Wahlkampagnen in Parlamentswahlen. Hier versucht ein externer Agent,
den Ausgang der Wahl (d.h. die Sitzverteilung) zu seinen Gunsten zu ändern, indem gezielt
bestimmte Wähler überzeugt (oder bestochen) werden, ihre Stimme zu ändern. Wir entwick-
eln einen effizienten Algorithmus, der optimale Wahlkampagnen berechnen kann. Dies ist
nicht unbedingt ein positives Ergebnis, da es möglicherweise die Manipulation einer Wahl
erleichtert. Wir stellen daher auch eine kleine Erweiterung für parlamentarische Wahlsys-
teme vor, die die Berechnungskomplexität solcher Kampagnen signifikant erschwert. Zuletzt
entwickeln wir ein neuartiges Stimmzettelformat, welches die Stimmabgabe bei kompliziert-
eren Präferenzen in Komiteewahlen erleichtert. Unser Format ermöglicht die Angabe und
Auswertung von u.a. Abhängigkeiten und Inkompatibilitäten zwischen Kandidaten.

vi

Contents

Abstract v

1 Introduction 1
1.1 Computational Complexity . 1

1.1.1 Computation Models . 2
1.1.2 Complexity . 9

1.2 Voting . 16
1.3 Central Problems and Questions . 19
1.4 Structure . 26
1.5 Notation . 26

2 Network Centrality Through Voting Rules 27
2.1 Summary . 27
2.2 Introduction . 27
2.3 Centrality in Networks . 29

2.3.1 Centrality Indices . 29
2.3.2 Group Centrality And Node Selectors 30

2.4 Voting in Networks . 32
2.5 Single-Winner Voting-Based Centrality Indices 32

2.5.1 Axiomatic Relations . 33
2.5.2 Satisfaction Approval Voting . 34
2.5.3 Borda . 35
2.5.4 Copeland . 36

2.6 Multiwinner Voting-Based Node Selectors 38
2.7 Experiments . 42
2.8 Conclusions . 44
2.9 Publication . 45
2.10 Personal Contribution . 45

3 Participatory Budgeting under Uncertainty 47
3.1 Summary . 47
3.2 Introduction . 47
3.3 Preliminaries . 49
3.4 No Uncertainty . 52
3.5 Uncertain Duration . 53
3.6 Uncertain Cost . 53

3.6.1 Best-Effort Algorithms . 57

vii

Contents

3.7 Everything Uncertain . 60
3.8 Conclusions . 62
3.9 Publication . 63
3.10 Personal Contribution . 63

4 Strategic Campaigns in Apportionment 65
4.1 Summary . 65
4.2 Introduction . 65
4.3 Apportionment . 66

4.3.1 Computing Support Allocations . 67
4.3.2 Apportioning Seats . 68

4.4 Bribery . 69
4.5 Classical Top-Choice Mode . 70
4.6 The Second-Chance Mode . 76
4.7 Conclusions . 78
4.8 Publication . 79
4.9 Personal Contribution . 80

5 Designing More Expressive Ballots for Multiwinner Elections 81
5.1 Summary . 81
5.2 Introduction . 81
5.3 Preliminaries . 83
5.4 Bounded Approval Ballots . 83
5.5 Scoring with Bounded Approval Ballots . 85

5.5.1 Axiomatic Analysis . 87
5.5.2 The Perfect Scoring Rule . 92

5.6 Expressiveness Comparison to Approval Ballots 94
5.7 GoodVotes Web-Application . 96
5.8 Conclusions . 98
5.9 Publication . 99
5.10 Personal Contribution . 99

6 Discussion 101

Bibliography 103

Appendix 109
1 Code of Centrality Experiments . 109
2 Code of Best-Effort Experiments . 115
3 Omitted Figures of Best-Effort Experiments 123

Erklärung 129

viii

Chapter 1

Introduction

This thesis touches several areas of computer science. The two most important areas that
shine through in every chapter are computational complexity and voting. These two shall be
introduced in this chapter. Topics that are only relevant for specific chapters (e.g. networks,
bribery, budgeting, etc.) will be introduced in the respective chapters. Further, this chapter
describes the central problems this thesis deals with (Section 1.3).

The goal of this introduction is twofold. First, for the non-specialist reader this introduction
provides easily understandable explanations of the two mentioned topics, supported with
several examples. Second, it provides a deeper insight in the relations of the various topics
this thesis deals with.

1.1 Computational Complexity

For a more detailed introduction to computational complexity we refer to the books by Arora
and Barak [1], Rothe [74], [76], and the lecture by Rothe [75]. This section is based on
these works, whereby we simplify the definitions and formalism as much as possible, and
add several illustrative examples. It should be noted that the content of this section is more
or less common knowledge in computer science. So the reader who is already familiar with
theoretical computer science can continue with Section 1.2.

A central question of theoretical computer science is ‘how hard is it to actually compute
something, and what capabilities of a machine (or algorithm) are necessary to do so?’ It may
seem that for this thesis mainly the first part of the question is relevant. We are interested
in how hard it is to compute something at several places in the thesis. However, the first
and second part of the question are actually inextricably linked. You cannot know how hard
it is to tackle a problem if you don’t know what tools are available. To give an illustrative
example, we can consider digging a well with a teaspoon to be significantly harder (if not
impossible) than digging the well with a backhoe. As we will see, computation machines
have different abilities. Some are more on the ‘teaspoon-end’, and some are on the much
more sophisticated ‘backhoe-end’.

1

Chapter 1 Introduction

We will focus on the second part of the question first: what algorithmic model is needed to
solve problems in this thesis at all? Even if this is of minor relevance for the problems of the
later chapters, in Section 1.1.1 we make a short excursion into the theory of computability.
We try to be as formal as necessary, but abstract away from formal details where possible.
With what we learn there, we can then adequately define and understand the first part of the
question in Chapter 1.1.2: how hard is it to solve the problems addressed in this thesis?

1.1.1 Computation Models

Before we define the first formal computation models (in the form of theoretical machines),
let us first think about the general process of computation. What do we understand as compu-
tation? Computation tasks can be very different. We can compute the value of a mathemati-
cal function. As another computational task, we want to verify if a file is properly formatted.
Also, video editing, compiling a program, encrypting files, and brewing coffee are compu-
tation tasks (at least for modern fancy coffee machines evaluating several sensors). What do
all such tasks have in common? First, we have some input. Depending on the computation
problem this can be a number, a file, or user and sensor input. We throw the input into a
machine that is designed for dealing with that problem. Finally, we receive some output as
the answer to the problem’s question.

It makes sense to define exactly what the input may consist of. For instance, the machine
above might know how to deal with the symbols 0 and 1 but gets stuck if the input contains
the symbols △ or ♠. Just as a digital computer knows how to deal with current on (digit 1)
and current off (digit 0), but has no chance to deal with an imaginary memory brick encoding
everything by the colors blue, red, and green, or encoding everything by potatoes, tomatoes,
apples, and bananas. It is not necessary that machines work with zeros and ones. Encoding
everything with a set of colors or fruit is theoretically possible as well, as long as the machine
is capable of reading these symbols.1 We define the alphabet of a machine—the symbols it
can read—as a set Σ. Let Σ∗ be the set of all sequences of symbols from Σ, that is, the set
of all possible inputs for the machine. In case of the previous machine we have Σ = {0,1},
so Σ∗ = {λ ,0,1,00,01,10,11,000, . . .} where λ denotes the empty input. Note that Σ∗ is an
infinite set, and inputs for the machine can be arbitrarily long (but finite).

Also, the output of a machine must be defined formally. This is of course directly linked to
what kind of question is asked in the respective problem. Most of the time in complexity

1Zeros and ones are simply the easiest symbols to read and store with electronic parts.

2

1.1 Computational Complexity

theory it is assumed that the output can only be YES or NO (for example as in the task of
verifying if a file is properly formatted). We call such a computation problem a decision
problem. This comes from the theory of formal languages. We don’t want to introduce it in
detail. For short, a language is a subset of Σ∗. Such a subset may be finite or not. For instance,
an infinite language is the set of all elements from Σ∗ which contain an even number of the
symbol 1. If the corresponding machine outputs YES, the input was part of the language (we
say the machine accepts the input). Otherwise, the input was not part of the language (we
say the machine rejects). Although this doesn’t seem to be a powerful framework at first,
it is possible to define a large variety of problems with formal languages because the rules
whether an input is accepted or not can be arbitrary complex. For instance, we could define
the language 3-MOVES-CHECKMATE which contains only chess positions where it is white’s
turn, and white can win in at most 3 moves regardless of what black does. Equivalently, we
could define it as the following decision problem.

3-MOVES-CHECKMATE

Given: A chess position where it is white’s turn.
Question: Is it possible for white to win in at most 3 moves regardless of what black

does?

We can define a machine to also output something other than YES or NO (more precisely, to
output additional information on accepting or rejecting). Such a machine is then capable of
computing not only decision problems but for instance also optimization problems or search
problems. However, since there exists no common definition of the output over all computa-
tion models, we will explain how that works after defining the models. Further, in this thesis
we will most of the time be interested in the complexity of decision problems, i.e., YES/NO

outputs are more relevant in this work. Note that many problems which require other output
than just YES or NO have a sibling problem which is a proper decision problem. For exam-
ple, the problem to compute the value of f (x) = x5−3 has a sibling decision problem which
asks if the value f (x) is greater than a given number y.

In order to compute something, the machine must execute some algorithm. An algorithm is
a finite sequence of instructions. What exactly an instruction is, depends on what capabil-
ities the machine has, that is, on the computation model. It is too short-sighted saying that
compute f (x) is an instruction. We need to make it more formal in order to really know what
the machine can compute. In the following we define some common computation models.
Note that we often use the word computation machine and algorithm interchangeably, as the
machine informally is a formal model of an algorithm.

Finite State Automaton

What is the minimal requirement for an algorithm to run at all? The two most basic re-
quirements are (1) to read the input, and (2) to react based on it. We can achieve both with

3

Chapter 1 Introduction

instructions of the following format for an alphabet Σ = {a1,a2, . . . ,an}. Note that this type
of instruction is similar to a switch in many programming languages.

Line W: read next symbol A and

• go to program line X if A = a1;
• go to program line Y if A = a2;
• . . . ;
• go to program line Z if A = an

This instruction format is implemented by a (deterministic) finite state automaton (a.k.a. de-
terministic finite automaton, or DFA for short). A DFA is defined by the tuple (Σ,Q,δ ,q0,F)
where Σ is the alphabet, Q the set of states, δ : Q×Σ→ Q the transition function, q0 the
initial state, and F ⊆ Q is the set of final states. Note that Q and F are finite sets (thus the
name finite state automaton). In each step of its computation, the DFA reads the next sym-
bol from the input, looks up the current state, and determines in which state it must change.
Informally, the states correspond to a program counter which stores which program line is
executed next. DFAs cannot read the input twice. It reads one symbol (from left to right)
from the input in each step. The DFA accepts an input if and only if the complete input is
consumed, and it stops in a final state from F . For a better visibility, we can represent such
automatons graphically. Consider the following DFA which accepts non-empty inputs which
contain an even number of the symbol 1.

Example:

Let M = (Σ,Q,δ ,zs,F) with Σ = {0,1}, Q = {zs,z1,z2}, F = {z1}, and

δ zs z1 z2
0 z1 z1 z2
1 z2 z2 z1

We can represent M as follows where the final states are indicated by a second outer cir-
cle, and the arrows denote to which state the DFA changes when consuming the labelled
symbol.

zsstart z1 z2
0

1

1
1

0 0

Say we are given the input 101. The automaton M starts in zs, reads 1, changes to z2,
then reads 0 and stays in z2, and finally reads 1 and changes to state z1. Since z1 is a final
state and the input is fully consumed, the automaton accepts. Given 111 as input, the
automaton ends in z2 which is not a final state, so it rejects.

4

1.1 Computational Complexity

Apart from some YES/NO decisions, a DFA is also capable of a very limited number of
additional outputs. We can interpret the final states F as outputs. This enables us for instance
to construct an automaton which computes the function f (x) = x mod 3.

Example:

The following DFA for the alphabet Σ = {0, . . . ,9} computes the value x mod 3. If it
halts in z0, we have x mod 3≡ 0. If it halts in z1, we have x mod 3≡ 1. And if it halts
in z2, we have x mod 3≡ 2.

zsstart z1

z0

z2

0,3,6,9

1,4,7

2,5,8

0,3,6,9

0,3,6,9

0,3,6,9

1,4,7

1,4,7

1,4,72,5,8

2,5,8

2,5,8

A simple extension to a DFA is to introduce nondeterminism. The only change in a nonde-
terministic finite automaton (NFA) compared to a DFA is that the transition function is now
defined as δ : Q×Σ→ 2Q where 2Q is the powerset of Q. Informally, for each computation
step there can be multiple options what to do next. Whenever there are multiple options, we
call the step a nondeterministic transition. We can think of nondeterministic transitions as
if all options are taken simultaneously. This forms a computation tree (see next example)
where with each nondeterministic transition a new branch is created. The NFA accepts if and
only if there exists at least one accepting path in the computation tree.

Example:

Consider the following NFA:

zsstart z1

z2

z3

zerr
0 0,1

1

1
1

0

0,1

0,1

0

Say we are given 1010 as input. We can represent the automaton’s computation by the

5

Chapter 1 Introduction

following tree.

zs1010

z2

z3

z2

z1

z3

z2

zerr

z1 zerr

zerr

z1

z2

There is one accepting path in the computation tree (the one that ends with z1). Thus, the
input 1010 is accepted.

It is well known that DFAs and NFAs can accept exactly the same formal languages. Ob-
viously, a language accepted by a DFA can also be accepted by a NFA, since each DFA is
a valid NFA which makes no use of its nondeterminism. Further, by a construction due to
Rabin and Scott [72], often referred to as the powerset construction, we know that also for
each NFA N we can create a DFA which accepts the same language as N (although this DFA
may sometimes have exponentially more states than N).

However, both DFAs and NFAs are rather weak computation machines. For instance, they
will fail to decide the following language over Σ = {0,1} already: L1 = {0n1n | n > 0} where
an is the n-times concatenation of a∈ Σ. That is, it cannot even decide if an input which starts
with a sequence of zeros and ends with a sequence of ones has the same number of ones and
zeros (compare Rothe [75, p. 41]). The reason they fail is that they cannot memorize how
many ones and zeros were consumed already. Well, they can memorize that to some extent
by storing this using the states. But since the set of states is finite, it is not possible to store
arbitrary numbers there. This works only if n < k for some constant k ∈ N.

Turing Machine

The simplest type of memory we can add to an automaton is a stack. Things written to the
stack are pushed on top of the stack; reading from the stack means to pop the top element
from the stack. By adding a stack to an NFA we get a pushdown automaton (PDA). There ex-
ist also deterministic pushdown automatons (DPDA).2 PDAs can due to their simple memory

2Other than with DFAs/NFAs, deterministic PDAs can decide only a strict subset of the languages a nondeter-
ministic PDA can decide. See Rothe [75, p. 85] for an example.

6

1.1 Computational Complexity

decide more sophisticated languages than DFAs and NFAs. Nevertheless, most languages are
still undecidable by a PDA. This is because the pop operation destroys information.

It turns out that this problem can be solved by introducing a second stack to which popped
symbols from the first are pushed, and vice versa, symbols popped from the second stack are
pushed to the first. This way we lose no information anymore. A machine like this is called a
Turing machine, named after its inventor Alan Turing [85]. An equivalent and more common
and intuitive definition of a Turing machine is as follows. The machine has a finite set of
states and an unlimited working tape divided in cells to write symbols on and read symbols
from (one symbol per cell).3 The machine can only read one cell at a time. To see the other
cells, the tape can be moved one cell left or right in each computation step. The input can be
given as a separate tape (then the working tape is empty initially), or it is given directly on the
working tape (starting at the position the machine reads in its first step). Both definitions are
equivalent in terms of what languages the machine can accept, so for simplicity we assume
that the input is given on the working tape.

The machine can read from the working tape, and then decides what to do based on its current
state. It can (all in one step) change state, write on the tape (or leave it as is), and move the
tape left or right (or leave it as is). At the end of the computation the machine can either enter
an accepting state to answer YES, or it ends in a rejecting state to answer NO. Entering an
accepting or rejecting state will immediately end the computation—other than the previous
machine types DFAs, NFAs, DPDAs, and PDAs. Note that these machines had no need for
explicit rejecting states. This is because their computation ended automatically when the
input was fully consumed. This is not the case for Turing machines, as they can read the
input back and forth. Actually, Turing machines can also run forever in infinite loops.4 This
makes it necessary to have states which indicate the end of a computation.

By the way, with the end of the computation the Turing machine can not only answer YES or
NO. By writing an answer on the tape, it can output arbitrary complex computation results
such as numbers, chess positions, or even encoded images. One just has to define how the
output is formatted or interpreted.

3The machine can also have multiple working tapes, but essentially this only increases efficiency by factor
two, and has no effect on what the machine can compute (see Rothe [74, p. 24]).

4There exist also definitions of Turing machines where an infinite loop entirely replaces the rejecting state,
i.e., either the machine answers YES, or it doesn’t answer at all (see e.g. the book by Rothe [74, p. 25]).

7

Chapter 1 Introduction

Determinism and nondeterminism can also be distinguished for Turing machines. A nonde-
terministic Turing machine (NTM) can have multiple options what to do next, i.e., it can have
branches in its computation similar to the NFA in Example 1.1.1—but instead of just having
multiple succeeding states it can also be nondeterministic with regard to the movement of the
tape or which symbol to write on it. It accepts if and only if there is at least one accepting
path. A deterministic Turing machine (DTM) is not capable of nondeterministic branches.
However, it is just as powerful as a nondeterministic Turing machine because a DTM can
simulate the execution of a NTM. Therefore, it just has to run every path in the computation
tree of the NTM in sequence until it finds an accepting path (entering a rejecting state is
replaced by starting the computation of the next path). The problem is that (unless P = NP,
a question we will discuss later), in general we need up to exponentially more computation
steps to simulate a NTM with a DTM.

According to the Chruch thesis, Turing machines are capable of computing every function
that is effectively calculable (see [75, p. 115] for a historic context). Due to the lack of a
formal definition of what is ‘effectively calculable’, the thesis remains unproven. However,
it was proven for every formal algorithmic model ever proposed that Turing machines are
at least as powerful. But can they compute everything? Surprisingly, they cannot. The
following example is known as the Halting Problem (see [1, p. 22], [75, p. 155]), and
shows that even Turing machines (but also all other algorithmic models) have only a limited
computation power.

Example:

As mentioned earlier, Turing machines can run in infinite loops. Thus, an important
problem is that as long as a Turing machine doesn’t halt (accepting or rejecting the input),
we don’t know if it still computes or is simply stuck and will never give us an answer. It
would be nice to have a machine which—given the blueprinta of another Turing machine
as well as an input for this machine—decides whether the machine on the blueprint will
ever halt if it is given that input. Imagine such a machine—let’s call it M—exists.

If M answers ‘OK’, the machine from the blueprint
will eventually halt on the input. If M answers ‘Not
OK’, the machine from the blueprint runs forever.

Now consider that we have another machine N which
receives a blueprint of a Turing machine, copies it,
and puts both copies into M. If the result is ‘OK’, N
enters an infinite loop, otherwise it answers ‘OK’.

8

1.1 Computational Complexity

Let’s see what happens when we give N its own blueprint. Both copies are given into
M which now simulates what happens when N receives N as input—exactly what we
have done. If M comes to the conclusion that N halts on input N, it answers ‘OK’ which
makes N never halt. Vice versa, if M comes to the conclusion that N does not halt on
input N, it answers ‘Not OK’ which makes N halt. This paradox shows that M cannot
exist, i.e., it is impossible to compute for every given Turing machine whether it halts on
a specific input.

aNote that such a blueprint can easily be encoded to fit on an input tape by assigning it a Gödel number,
a process named after the mathematician Kurt Gödel.

Summary

As we see, the computation model (i.e., the abilities of the machine) has a huge impact
on what the machine can compute. Memory plays a crucial role. With the highly limited
memory of DFAs/NFAs, we are unable to count. Some counting ability is available when
we have a stack. However, a stack loses information when we pop symbols from it, which
limits the ability of a machine using it. Turing machines with their unrestricted memory
are finally able to compute everything that intuitively is computable. Also, determinism and
nondeterminism can make a difference in what the machine is capable of computing. While
for finite state automata, as well as for Turing machines, the determinism is not a restriction,
for pushdown automata it makes a difference in terms of what they can compute (Rothe [75,
p. 85]).

In the following we will only deal with DTMs and NTMs. DTMs are close to what our
modern computers are. The only difference is that DTMs have unlimited storage due to their
unlimited tape. However, modern computers have enough storage for reasonable instance
sizes, so DTMs are a sufficiently good model. NTMs are (to the state of current research)
impossible to build. Although modern computers are capable of parallelization, we cannot
consider them as NTMs because an NTM’s computation tree can branch arbitrary often. Not
even a high-tech chip with 32 or more computing cores can compete with that. But as we
have seen, DTMs are just as powerful as NTMs. So it should not be a problem that we have
only DTMs at hand, right? Well, in the next section we will see that although both are capable
of computing the same type of problems, DTMs are probably much, much slower.

1.1.2 Complexity

Computational complexity is a measure how many resources are required to solve a problem
algorithmically. Regarding Turing machines, the resources of interest are time (computation
steps) and space (cells on the working tape). In this work we are only interested in the re-
source time. However, note that a Turing machine can never use more space than it performs
computation steps because it requires a step to write something to a cell. Thus, time com-
plexity is always an upper bound to space complexity. For a deterministic Turing machine

9

Chapter 1 Introduction

which is given an instance of a problem we define the time requirement to be the number of
computation steps it performs until its computation is done (i.e., until it accepts or rejects).
We assume that a deterministic Turing machine always halts. For a nondeterministic Turing
machine we define the time requirement to be the number of computation steps on the short-
est accepting path if such a path exists. If the nondeterministic machine never halts, the time
requirement is undefined.

Resource requirement of a machine or algorithm usually depends on the input size. Suppose
you want to check a graph property such as whether it is bipartite.5 It is easy to imagine
that the more edges and nodes the graph has (i.e., the larger the input), the longer it takes
to verify if it is bipartite. In fact, the resource requirement of an algorithm for this problem
can become arbitrarily high by giving it an arbitrarily large graph. Essentially this holds
for most reasonable algorithms. Thus, it makes sense to define the resource requirement
of a specific algorithm as a function of the input size to make the resource requirements of
different algorithms comparable. Further, it might be that an algorithm is very fast on some
instances, and slow on others. When we speak of the resource requirements of an algorithm
we always refer to the maximum resource requirement (on worst-case instances) in relation to
the input size. Note that we usually don’t want to know the maximum resource requirement
in relation to the input size exactly, but rather how fast it grows asymptotically. Thus, it is
common to use big O notation introduced by Landau [56, p. 31]. Writing f (x) ∈ O(g(x))
means that f (x) grows asymptotically not faster than g(x). Formally,

f (x) ∈ O(g(x)) ⇐⇒ limsup
x→∞

| f (x)|
g(x)

< ∞.

However, computational complexity of a problem should not depend on resource requirement
of just one specific algorithm that solves it. Maybe we were just too stupid to find a better
algorithm. Later, when someone finds a better algorithm, the complexity of the problem
would change. To avoid this, we define the complexity of a problem to be the (maximum)
resource requirement of the best algorithm6 that solves it. Note that for determining the
complexity of a problem we need to show (1) that there exists an algorithm which solves the
problem with at most the specified resources, and (2) that there exist no algorithm solving the
problem with less resources. This means that finding an algorithm to solve a problem always
provides just an upper bound on the complexity of a problem. It remains to show that there
is also no better algorithm—this is often the harder task.

Complexity Classes

Often, we want to classify a problem’s complexity by a complexity class. Complexity classes
are sets of problems which can be solved with at most a given resource requirement. The

5Informally, bipartiteness means that we can partition the set of nodes of a graph into two sets such that edges
exist only between the two sets but not within a set.

6Best algorithm in the sense of having the lowest resource requirements.

10

1.1 Computational Complexity

complexity classes relevant for this thesis will be introduced in the following.

When we want to compute something, (time-) efficiency plays a crucial role. We don’t want
to wait arbitrarily long before getting an answer when executing an algorithm. It is common
to say that a problem can be solved efficiently if it can be solved by a deterministic Turing
machine in polynomial time. For decision problems, these problems are captured in the
complexity class P.

Definition 1. A decision problem Q belongs to the complexity class P if and only if there
exists a deterministic Turing machine M and a polynomial f : N→ N such that for every
instance I of Q machine M always gives a correct answer and always requires at most f (|I|)
computation steps, where |I| is the input length, i.e., the number of tape cells occupied by I.

Problems outside P are considered intractable. This is because these problems require a
deterministic Turing machine to run for an exponential (in the input size) number of com-
putation steps. While it is still possible that for a small input size both, polynomial and
exponential time are tractable, the growth of an exponential function is asymptotically so
much faster that it overtakes every polynomial for larger input sizes. Consider the following
example of a polynomial f (x) = x5 in comparison to the exponential function g(x) = 1.5x.
Even though f (x) (the dashed dark line) is larger than g(x) (the light dash-dotted line) for
smaller x, at some point g(x)’s growth literally explodes and overtakes f (x).

Note that polynomial runtime doesn’t really mean that we can solve a problem fast in practice.
An algorithm which runs in O(x5) cannot be considered really fast. But it is still more effi-
cient than the exponential time algorithm for larger instances. Nevertheless, one shouldn’t be
too dogmatic with distinguishing between efficient and inefficient by polynomial and expo-
nential runtime as one can of course construct an algorithm with a huge polynomial runtime
(such asO(x100)) that is slower than typical exponential runtime algorithms on every reason-
able instance size (compare Rothe [76, p. 71]). However, for the large majority of problems
which can be solved in polynomial time, the polynomial runtime of the best known algorithm
has a relatively small degree, and can thus be executed rather fast [76, p. 72].

Until now, we have only talked about deterministic Turing machines. But for this thesis,
problems that can be decided by a nondeterministic Turing machine in polynomial time are

11

Chapter 1 Introduction

interesting, too. The class of these problems is called NP (for nondeterministic polynomial
time). In practice, talking about nondeterministic algorithms is rather unintuitive. Thus, we
present a commonly used equivalent definition for the class NP.

Definition 2. A problem A belongs to the complexity class NP if and only if there exists a
deterministic Turing machine M taking an instance I of the problem A and a certificate X as
input such that

1. M runs in polynomial time, and

2. if and only if I is a YES instance for problem A, there exists a certificate X of polyno-
mial length (w.r.t. I) such that M answers YES given I and X as inputs.

Informally, a problem belongs to NP if and only if for every YES instance I we can provide
an easily verifiable certificate X witnessing that I is a YES instance. This definition captures
exactly the class of problems that can be decided by a nondeterministic Turing machine
in polynomial time because the nondeterministic Turing machine can nondeterministically
guess a certificate in polynomial time, and then verifies it in polynomial time (or finds that it
is invalid). To illustrate how certificates work, consider the CLIQUE problem.

CLIQUE

Given: A graph G = (V,E) and an integer K.
Question: Is the clique number ω(G) at least K? That is, is there a set of nodes V ′ ⊆V

with |V ′| ≥ K where every node v ∈ V ′ has an edge to every other node in
V ′, i.e., for all v,w ∈V ′,v ̸= w holds (v,w) ∈ E

If there is a clique V ′ of size at least K in the graph, we can provide the vertices of V ′ as a
certificate. This certificate has only polynomial length w.r.t. the graph G (it is actually even
smaller than G), and is verifiable in polynomial time by checking if all nodes specified in the
certificate are indeed adjacent to each other. Thus, CLIQUE belongs to NP.

12

1.1 Computational Complexity

Figure 1.1: Relations of the complexity classes described in this chapter. It is known that P
is a proper subset of EXP. However, the other inclusions are believed to be strict,
but it is not known whether they are.

We can analogously define the complement class of NP, namely coNP, which contains those
problems for which every NO instance can be easily verified with a certificate. The class
coNP is not relevant in the other chapters, so we don’t formally define it. However, note
that CLIQUE does not belong to coNP (unless NP = coNP) because it is impossible to find a
polynomial length certificate that a graph has no clique of size at least K. It is not sufficient
to show that there exists one set of nodes of size K which is not a clique. We would have
to show that all sets of nodes of size at least K are no cliques—but this requires a too large
certificate since there are exponentially many subsets of nodes.

NP and coNP both are subsets of EXP—the class of problems which can be solved by a
deterministic Turing machine in exponential time (recall that DTMs can simulate NTMs).
Further, P is a subset of both NP and coNP. For problems in P the certificate can simply be
empty, because a Turing machine can instead of verifying the certificate in polynomial time
simply compute the solution in polynomial time. We illustrate the relations of the classes P,
NP, coNP, and EXP in Figure 1.1. Note that there are also two subsets called NP- and coNP-
complete. These sets of problems will be relevant in the next subsection. Further, note that we
omitted many interesting complexity classes such as the polynomial hierachy and the boolean
hierachy. These classes are not relevant for this thesis. However, the interested reader can
learn more about these complexity classes and hierarchies in the book by Rothe [74].

Reductions

In the following we assume P ̸= NP (see the next subsection for an explanation). For showing
that a problem is in P it is sufficient to provide a deterministic algorithm solving the problem
in polynomial time. Similarly, for showing that it is in NP, it is sufficient to provide a nonde-
terministic algorithm solving the problem in polynomial time, or equivalently, showing that

13

Chapter 1 Introduction

one can verify YES instances deterministically in polynomial time given a certificate. How-
ever, since the distinction of NP and P is so important, it is insufficient to just show that the
problem is in NP. It is important to also show that it is either in P, or that it is not in P. Here,
the class of NP-complete problems comes into play. The class of NP-complete problems is a
subset of NP, containing the hardest problems in NP. Informally, this is captured as follows.
A problem A cannot be easier than a problem B if we can easily translate an instance of B
into an instance of A such that A gives us the same answer to the translated instance as B
would to the original instance. In other words, if we can easily solve instances of B using an
algorithm for A, problem B can be at most as hard as A. This process is called a reduction.

Definition 3. We say a problem B is polynomial-time many-one reducible to a problem A
(written as B≤p

m A) if and only if there is a function f computable by a deterministic Turing
machine in polynomial time such that f (x) is a YES instance for A if and only if x is a YES

instance for B.

The idea is that within NP, deterministic polynomial extra time requirement is acceptable,
as it won’t change the complexity. Note that the polynomial-time many-one reduction is
transitive in the sense that if B ≤p

m A and C ≤p
m B then also C ≤p

m A. This is easy to see:
since C ≤p

m B we can translate an instance of C in deterministic polynomial time into an
instance of B, and since B ≤p

m A, we can then take another deterministic polynomial time
computation for translating it into an instance of A. All in all, this can still be done in
deterministic polynomial-time. Note that for other complexity classes (e.g. for subclasses
of P) the polynomial-time many-one reduction is too rough. For those classes exist different
reductions [76, p. 91].

Definition 4. A problem A is hard for a complexity class C w.r.t. a specific reduction (here:
polynomial-time many-one reduction) if and only if every problem from C can be reduced to
A. Additionally, if A belongs to C, we say A is complete for C.

So the class of NP-complete problems contains the problems to which all problems from
NP can be reduced by polynomial-time many-one reductions. If we can ever solve one of
those problems with a polynomial-time algorithm, we can also solve every other problem
from NP in polynomial time. Note that all problems which are NP-complete can also be
polynomial-time many-one reduced to each other. This yields the following statement.

Corollary 1. Let A be a problem we want to show to be NP-complete. Let B be a problem we
already know is NP-complete. Then A is NP-complete if and only if (1) A is in NP, and (2) B
is polynomial-time many-one reducible to A (i.e., B≤p

m A).

We will use the statement above several times in this thesis to show that some problems
we define are indeed hard to solve. More specifically, by showing that a problem is NP-
complete we can show that there exists no efficient deterministic algorithm to solve it. As
we will see, sometimes this is a desirable result (e.g. because it makes manipulations hard),

14

1.1 Computational Complexity

and sometimes it is an undesirable result (e.g. we would like to compute something, but it
is too resource-intensive). However, for reductions we first need an NP-complete problem
to reduce from. We now introduce the HITTING SET problem (HS for short), which was
shown to be NP-complete by Karp [50]. We will use HS for showing the NP-completeness
of problems in this thesis.

HITTING SET

Given: A set U = {u1, . . . ,up}, a collection S = {S1, . . . ,Sq} of nonempty subsets of
U , and an integer K.

Question: Is there a hitting set U ′ ⊆U, |U ′| ≤ K, i.e., a set U ′ such that U ′∩Si ̸= /0 for
each Si ∈ S?

For HITTING SET instances, we assume that 1 ≤ K ≤ min{p,q}. Otherwise, the problem
would be trivial: For K ≤ 0 the subset U ′ must be empty, which renders every intersection
with it empty. For K ≥min{p,q} we could either take the whole set U as U ′, or at least one
item from each Si into U ′. In both cases, all intersections are always trivially nonempty.

P vs. NP

The P vs. NP question is one of the most prominent and important open problems in computer
science. The question is whether P and NP are actually the same classes, or whether NP is
a proper superset of P, i.e., that there are really problems which are in NP (solution is easily
verifiable with a certificate) but not in P (solution can be computed efficiently). While it
is commonly assumed that NP is a proper superset of P, no one was able to prove it, yet.
But at the same time no one was ever able to find an efficient algorithm for an NP-complete
problem—which would prove P and NP to be the same class. Note that to show P = NP it is
indeed sufficient to show for at least one NP-complete problem that it is in P. This is because
every problem from NP can, by definition, be reduced to this problem, and since this problem
is in P, all problems from NP would be, too.

The implications of the P vs. NP question reach very far. If someone is ever able to prove the
equality of P and NP, the complexity-theoretic parts of this thesis would become more or less
irrelevant. However, the implications of P = NP reach much further. A lot of complexity-
theoretic works of the last decades would be pointless. For example, the security of RSA
relies on the assumption that INTEGER FACTORIZATION is in NP but not in P.

Should we now worry that soon someone proves P = NP? Well, the problem is very old. In
the context of cryptography, already in 1955 John Nash conjectured that the time to break
a cipher grows exponentially in the key length.7 This is essentially the P vs. NP question.

7“The most direct computation procedure would be for the enemy to try all 2r possible keys one by one. [...]
Now my general conjecture is as follows: For almost all sufficiently complex types of enciphering [...] the
mean key computation length increases exponentially with the length of the key.” ∼ John Nash [67]

15

Chapter 1 Introduction

We can view the key as a certificate; given the key, decryption is easy, but without the key
deciphering takes exponential time. Note that this holds for every reasonable cryptography
method, thus, they are all vulnerable if P = NP holds. After Nash’s conjecture, many people
stated the problem independently in various contexts. Thousands of people tried to prove ei-
ther the equality or the inequality of P and NP, but they all failed.And there is a high incentive
not to fail: The Clay Mathematics Institute pledged a one million USD prize for solving the
P vs. NP question.8 In case P = NP, we can be sure that intelligence agencies would pay even
better for an efficient algorithm to break RSA and other cryptography systems. Intelligence
agencies would probably keep the algorithm secret, but it is unlikely that they could keep it
secret for long. So, if a solution was found already, we can expect that everyone in computer
science (and most other people, too) would have heard about it already. And since so many
people are (yet) unsuccessfully trying to answer the P vs. NP question for more than 60
years, it does not seem to be a simple question where we can expect an answer soon.

1.2 Voting

Let us now introduce the second major part this thesis will deal with: Voting!

Voting can be seen as a special case of cooperative game theory. We don’t want to introduce
cooperative game theory in detail here (see the book by Rothe [77] for more details). But
from a bird’s eye view, cooperative game theory is about agents from which some or all
have preferences about coalition structures (that is, collections of subsets of the agents). The
goal is then to select some admissible coalition structure as the outcome. This is why we
sometimes refer to such problems as preference aggregation. What exactly an admissible
outcome is, and what types of agents we have, characterizes what specific type of preference
aggregation problem we have. Figure 1.2 provides an overview of some relations in the field.
To illustrate the variety of problems, we explain some of them informally.

Roommates: The agents have preferences over each other. An admissible outcome is a
coalition structure where each agent is in exactly one coalition, and this coalition has
a given size. In other words, the goal is to assign each agent to a room such that the
capacity of the rooms are not exceeded and no places are left. The problem was intro-
duced by Gale and Shapley [40]. An efficient algorithm was developed by Irving [47].

Hospital-Residents: In this problem (which is called College-Admissions in the original
paper by Gale and Shapely [40]) we have two types of agents, and both have prefer-
ences. On the one hand, we have the residents (students), who have preferences about
the hospitals (or colleges) they do their internship at. On the other hand, we have the
hospitals (colleges), which are concerned about the residents (students) who do their
internship with them. An admissible outcome is a coalition structure where each res-
ident is in exactly one coalition with a hospital, and each hospital is in exactly one
coalition with (multiple) residents. Further, the coalition size is never greater than the

8See the full list of problems at claymath.org/millennium-problems.

16

1.2 Voting

capacity of the hospital. In other words: each resident is assigned to a hospital, and no
hospital has more residents than it can handle.

Fair Division of Indivisible Items: Again, we have two types of agents—but this time
active and passive ones, i.e., some have preferences, and some not. The active agents
have preferences over the passive agents (which are usually called items) they want
to have in their coalition. An admissible outcome is a coalition structure where each
coalition contains at most one active agent and all coalitions are disjoint. In other
words: the agents are assigned a subset of the available items, and no item is shared.
One of the first studies is due to Brams et al. [19].

Participatory Budgeting: In participatory budgeting we have projects (the passive agents
which have no preferences), and voters who have preferences about the projects. Ad-
missible are those coalition structures, where all projects are in one of two coalitions:
winners (i.e., projects which are funded) or losers. Further, projects are associated with
a cost, and there is an upper bound on the total cost (called budget) the winner coali-
tion may have. For a historical background we refer to Cabannes [26]. For a recent
literature review in the light of computational social choice, see Aziz and Shah [4].

Multiwinner Voting: In this special case of participatory budgeting, all ‘projects’ (which
are usually called alternatives or candidates here) have cost 1. The budget is the size
of the winner coalition. In other words, we elect a committee of a given size. For a
survey on multiwinner voting we refer to the work by Kilgour [53] and the book by
Lackner and Skowron [55].

Single-Winner Voting: This is the special case of multiwinner voting where we have a
budget of exactly one, i.e., we search for a single winner. Historically, this was the first
subarea of voting theory that computational social choice paid major attention to, and
there exists lots of literature. For an overview we refer to the chapter by Zwicker [90].

Apportionment: This is a special case of multiwinner voting, where the candidates are
grouped in parties. Voters have only preferences over parties and don’t care which of
the party members join the committee. Also, multiple members from a party can join
the committee. This is a common voting mode for parliamentary elections. Although
this type of elections is used for centuries, computational social choice hasn’t paid
a lot of attention to it yet. A recent study by Brill et al. [25] shows the relation of
multiwinner voting and apportionment.

We see that preference aggregation problems are quite diverse. Not only do they differ in
the number of agent types we have, and what exactly they have preferences about. But
they also differ in what an outcome looks like, and what constraints are put on it. The
problems we are interested in—that is, voting related problems—stand out as the preference
aggregation problems where we have one type of agents (called voters) who have preferences
about another type of agents (called alternatives, candidates, or projects, depending on the
application), and the outcome differentiates the second type of agents into two categories
(winners/losers, or implemented/not implemented projects).

17

Chapter 1 Introduction

Agent Types

One Active Type

. . . Disjoint Coalitions

. . . Stable Roommate

Two Active Types

. . . Disjoint Coalitions

. . . One Agent of Type 1
per Coalition

Hospital-Residents

One Active and One Passive Type

Disjoint Coalitions

One Active per
Coalition

Fair Division of
Indivisible Items

Passive Agents in Winner
and Loser Coalitions

Participatory Budgeting
Chapter 3

Multiwinner Voting
Chapter 5

Single-Winner Voting
Chapter 2

Apportionment
Chapter 4

. . .

. . .

. . .

. . .

Figure 1.2: Taxonomy of preference-aggregation problems from a game theoretic perspective
based on a talk by Lang [57]. Topics covered in this thesis are colored gray.

As described, we can define each voting problem through cooperative game theory. However,
the framework of cooperative game theory is much more powerful than we need for these
very specific problems, and the taxonomy is only to illustrate the relations between all the
preference aggregation problems. Thus, usually in literature (see e.g. [53], [55],[84], [90]) a
simplified definition is used. We provide the common definitions below, and refine or modify
them in the later chapters if needed.

Let us begin with the simplest case: single-winner voting. Let E = (A,V) be a (single-
winner) election where A is the set of alternatives which are up for election, and V the
preferences of the voters. A (resolute) single-winner voting rule is a function f which maps
an election to an alternative from A. We call the candidate f (E) the winner w.r.t. voting
rule f . If a single-winner voting rule can result in more than one winner (that is, it gives
us a set of candidates as winners), we call it irresolute. However, in practice such rules are
made resolute by applying some tie-breaking mechanism, because in usual applications of
single-winner voting we are interested in finding a single winner, instead of multiple ones.

This is different in multiwinner voting. A (multiwinner) election E = (A,V,K) consists of
alternatives A and preferences V just as a single-winner election. But additionally we are
given a committee size K ∈ N+. A (resolute) multiwinner voting rule is a function f which
maps a (multiwinner) election to a size-K subset ofA (called the winning committee). Just as
in single-winner voting, we can have irresolute multiwinner voting rules which return a set of
winning committees. Note that there exists also literature regarding multiwinner voting rules
which choose committees of variable size (see e.g. Brandl and Peters [22]). That is, one does
not specify the committee size in advance. However, this is not considered in this thesis.

18

1.3 Central Problems and Questions

For apportionment elections a variety of definitions exists in literature. It can be defined via
approval-based multiwinner voting (see the work by Brill et al. [25]), or via vote distributions
(see Bredereck et al. [23]). However, in this work we use a definition closer to multiwinner
and single-winner elections. As an apportionment instance we are given E = (A,V,κ). The
alternativesA are usually called parties in this setting, and the committee size κ is called the
seat count. An apportionment method takes such an instance and produces a seat allocation
α : A→ N for which ∑p∈Aα(p) = κ . That is, for each party it determines the number of
seats that are allocated to that party, while ensuring that all seats are allocated and no seat is
allocated to two parties at the same time.

A participatory budgeting instance E = (A,V,K,c) generalizes a multiwinner voting in-
stance by adding a cost function c :A→N which associates each project fromA with a cost.
Further, the committee size K ∈ N is now called budget and marks the maximum amount
of money we can spend to implement projects. A budgeting method takes the instance and
maps it to a feasible bundle B⊆A, i.e., for B must hold ∑p∈B c(p)≤ K.

1.3 Central Problems and Questions

In this section we want to introduce the main problems to which solutions we contribute
in this thesis. Previously, as you may have noticed already, we were talking a lot about
preferences without actually defining what a preference is. In fact, it is hard to tell what
exactly a preference really is. Consider the following example of a single-winner election.

Example:

Alberto, Beatrix, Chris, Dave and Eve plan their joint vacation. They want to travel to
the same location and spend time together. After a first brainstorming they discuss the
shortlisted alternatives Barcelona, Paris, Munich, Zurich and Lake Garda.

I really like swimming. So Barcelona and Lake Garda are
good for me. However, I hate hiking and mountains, so I

strongly disagree Zurich.

Beatrix

I like art museums. Paris would be great. Next best would
be Munich. My third choice would be Barcelona, and the

fourth Lake Garda. And I really dislike Zurich.

Alberto

19

Chapter 1 Introduction

I’ve been to Barcelona once, and I cannot really
recommend it. Please, let us go somewhere else.

Eve

What? You don’t like Barcelona? It is at least three times
as good as Munich or Paris, and twice as good as Lake

Garda!

Dave

On a meta-level, a preference is some internal evaluation by the respective voter for the avail-
able alternatives. However, in our formal model we need concrete data. What shines through
the discussion in the previous example are three main types of formal preferences which we
will refer to as ballot types (see also Zwicker [90], Procaccia and Rosenschein [70]).

Dichotomous/Trichotomous Ballots: Beatrix and Eve categorize the alternatives in two
or three groups. Alternatives are either liked (often called approved), disliked, or neu-
tral. For Beatrix and Eve dichotomous or trichotomous ballots would be best to express
their preferences formally.

Ordinal Ranks: Alberto’s preference is a little more complicated than Beatrix’ and Eve’s.
He ranks the alternatives by how much he likes them. This can formally be expressed
by an ordinal rank:

Paris≻Munich≻ Barcelona≻ Lake Garda≻ Zurich

Sometimes in literature also weak ranks are allowed (see e.g. Mercik [62]). These are
rankings which may include ties between alternatives. For instance, Alberto could find
that Paris and Munich are equally good.

Cardinal Ballots: Dave provides even more information than Alberto. He wants to express
that Barcelona is twice as good as Lake Garda and three times as good as Paris and
Munich. This cannot be captured by ordinal ranks or trichotomous ballots. However,
cardinal ballots would allow Dave to assign each alternative a numerical value with
which he could easily express his preference. For instance, he could assign Barcelona
the value 6, Lake Garda the value 3, and Munich and Paris each the value 2.

While cardinal ballots are the most expressive types of preferences, they are used rarely.
This is mainly because the cognitive burden on casting such a ballot is very high for a human
(though it might be possible for artificial agents [70]). Especially human voters (but to some
degree also artificial intelligent agents) can very easily tell which alternatives they like, hate,
or don’t care about, and with a little more effort they can rank alternatives by how much they
like them. But assigning each alternative an exact value is very hard. Dave might be able

20

1.3 Central Problems and Questions

to do this for a very limited number of alternatives, but the more alternatives there are, the
higher will the cognitive effort be.

As we see, for single-winner voting preference expression is already not trivial. This be-
comes even more difficult in multiwinner voting and participatory budgeting. We illustrate
the complications with the following example.

Example:

Our five friends finally decide for Barcelona. For each of the three full days they spend
there they want to do one joint activity. In the guidebook the following seven propos-
als are made: Cycling, visiting an old castle, dancing salsa, having drinks, visiting a
cathedral, watching a bullfight, and lie on the beach.

Definitely we should have drinks and go to the beach. But
whatever we do the third day, please let us not support

bullfights.

Beatrix

Sightseeing for one day sounds good. We could either go
to the cathedral or the castle. But the other days we should

have some fun dancing or at the beach.

Alberto

Sightseeing sounds great but I think visiting the cathedral
makes only sense if we also visit the castle because they
are historically linked. The third day I would like to go

dancing salsa.

Chris

Once again, Beatrix’ preference can be expressed by trichotomous ballots: she likes drinks
and going to the beach, hates bullfights, and doesn’t care about the others. For Alberto and
Chris trichotomous ballots are not sufficient. Actually, not even the very expressive cardinal
ballots would suffice. This is because in their preferences the alternatives are not independent.
Alberto likes the cathedral and the castle, but doesn’t want to visit both. For Chris this is
exactly the opposite: visiting one without learning about the historical background of the

21

Chapter 1 Introduction

other makes no sense. One way we can handle this is to allow everyone to express his or
her preference through a ballot not on all alternatives but on all 3-elementary subsets of
alternatives. However, this makes the ballot huge, and it is unrealistic that voters take the
high cognitive effort to express their preference through such a ballot. This leads us to the
first central problem which will be addressed in this thesis.

Problem 1. We have seen that some voters want to express more complicated things than
others. At the same time, some voters do not want to take a lot of cognitive effort to cast their
ballot. What is the right ballot format to use for a specific application? To this end, we have
to trade off between low cognitive effort, and best possible expressiveness of the ballots.

Chapter 5 addresses Problem 1 by proposing and evaluating a new ballot format for multiwin-
ner elections. This ballot format would allow Alberto and Chris to express their preference
in Example 1.3 with low cognitive effort.

It is clear that the selection of an aggregation method depends on the ballot format because
the method has to be designed to handle the ballot type. But what the best choice for an
aggregation method is depends also on the intended application. Already for single-winner
elections it is debatable which alternative should be the winner.

Example:

Consider the following preferences.

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

≻ ≻ ≻ ≻ ≻ ≻

Several reasonable arguments how to elect the winner lead to very different results.

22

1.3 Central Problems and Questions

• The castle should win because it has more first positions than every other alterna-
tive. This is the argument behind the Plurality voting rule.

• The drinks should win because they are never at the last position; no one is really
against it. This argument is captured by the Veto voting rule.

• Dancing Salsa is the best alternative because it wins in direct comparison against
every other alternative. That is, 4 voters prefer dancing to visiting the castle but
only 3 prefer the castle; 4 prefer dancing to drinks but only 3 prefer drinks; 4 prefer
dancing to the cathedral but only 3 prefer the cathedral; and so on. This is the idea
behind the Condorcet voting rule.

• The cathedral should win because it has the lowest average position in the pref-
erences. That is, in average it has position 21

7 = 3 while the castle has average
position 25

7 ≈ 3.57, the drinks have position 24
7 ≈ 3.43, and dancing 22

7 ≈ 3.14.
This corresponds to the Borda voting rule which gives the best candidate n− 1
points, the second n−2 points, and so on. Then it selects the alternative with the
most points as winner.

Also, with the other ballot formats it is debatable what the best alternative is. Given trichoto-
mous ballots, should we rather select the alternative with the most likes, or the alternative
with the least dislikes (similar to Plurality vs. Veto)? Given cardinal ballots, should we focus
on maximizing the sum of cardinal values over all voters, or try to choose an alternative such
that the worst-off voter still has the highest possible benefit from the winner? This is why a
variety of single-winner rules have emerged over the years (see [58, 90] for an overview over
single-winner voting rules). In multiwinner voting even more considerations come into play
(compare [28]). For example, it might be important that as many voters as possible find at
least one member of the committee acceptable. This applies for instance to selecting dishes
to serve at a banquet. In political elections it is important that the committee is representative
for the voters (i.e., for each 1

K of the voters with a similar preference one alternative is in
the committee). When we shortlist candidates for a job interview, we want that candidates
who are equally preferred by the voters (e.g. receive equal amount of approval) are treated
equally. Further, in shortlisting selected candidates should not be unselected when we in-
crease the committee size. Finally, in participatory budgeting it is often considered more fair
if a proportional amount of money is spent on the satisfaction of each voter [69]. This leads
us to the second central problem of this thesis.

Problem 2. Where can we use which voting rule best, and which voting rule is best for a
given application? To this end, we have to study properties and behavior of voting rules, and
identify which properties and behavior is important or suitable for a specific application.

In Chapter 2 we study a novel application of voting rules: network centrality, and the selec-
tion of influential sets of nodes in a network. This relates to Problem 2 as we identify relevant,
desirable properties in network science, and argue which voting rules solve the problem best
(and better than existing methods from network science).

23

Chapter 1 Introduction

The following example illustrates another central problem we deal with in this thesis.

Example:

When the friends discussed on the activity proposals in Example 1.3, there was actu-
ally one proposal missing. Chris knows that there is also a leisure park in Barcelona.
However, he hasn’t made this proposal on purpose.

I want to go to the cathedral, the castle and dance Salsa. I know that
Alberto, Dave and Eve want to go dancing Salsa, too. And both

Alberto and Dave find the cathedral and the castle interesting. Thus,
at the moment it is rather likely that we will visit the cathedral, the

castle, and dance Salsa. However, there is also this leisure park, and
I know if I propose it, everyone except for me will like it, so we will

go there instead of visiting the cathedral.

Chris

What Chris does here is called electoral control in literature (see Faliszewski and Rothe [35]
for an overview). On purpose, he removes (or holds back) one alternative from the election
because he knows that this alternative makes the outcome worse for him. There are also
control types where alternatives are added, or voters are removed from/added to the election.
Further, a common problem is bribing of voters, that is, voters are paid to change their vote
[33]. We refer to the collection of all those attempts to change the election outcome as
electoral fraud.

In Example 1.3 the action to not propose the leisure park was rather obvious. However,
sometimes there are much more difficult cases, where only by adding or removing a specific
set of alternatives a successful control is possible. This may impose a high computational
complexity. As mentioned in the previous subchapter about complexity theory, high com-
putational complexity can be a positive, or negative result. Specifically electoral fraud is a
good example where high computational complexity it is a positive result, as it makes fraud
attempts more difficult. This yields the third problem of this thesis.

Problem 3. As soon as we use preference aggregation, there will always be fraud. Agents
can try to influence the election in multiple ways. High computational complexity can pre-
vent malicious agents from fraud attempts, making the preference aggregation method more
resistant against fraud. How resistant are preference aggregation methods? Can we make
them more resistant?

24

1.3 Central Problems and Questions

We will work on this problem by determining the computational complexity of several types
of fraud in apportionment elections in Chapter 4. Also, the mentioned two-stage procedure
for apportionment elections we propose in Chapter 4 will prove to increase computational
fraud resistance.

Previously, we were assuming that all required information is available. But is that realistic?
Consider the following example.

Example:

After a long discussion Alberto, Beatrix, Chris, Dave, and Eve decide to dance Salsa,
have drinks, and go to the beach—one joint activity for each day of their three days stay.
Just when they arrive in Barcelona it starts to rain.

Oh, damn. My phone says it will rain the next days with
high probability, too. It looks very bad for our beach trip. . .

Dave

Well, at least we can have the drinks indoors. And even
though dancing on the streets is nicer, we’ll find a bar

where we can also dance Salsa indoors.

Eve

We can visit the castle or the cathedral the third day. That’s
also indoors. But we have to decide that right now because

we have to preorder the tickets two days in advance.

Chris

Should they now buy tickets for the cathedral, or hope for better weather to go to the
beach? If they don’t buy tickets and it continues to rain, they must spend the third day at
the hotel. But if they buy tickets and the weather becomes better, they either lost money
for the tickets, or they go to the cathedral even though the beach would be a better option.

This example illustrates that in reality we often have uncertainty about available data. This
leads to the fourth and last central problem we address in this thesis.

Problem 4. In our theoretical models all information is available. However, in reality—and
we want our methods to be used in reality—information is usually incomplete or uncertain.
How can we deal with such incomplete information in preference aggregation?

25

Chapter 1 Introduction

This thesis contributes significantly to a deeper understanding, and possible solution for this
problem. In Chapter 3 we study uncertainty in the project cost and durations in participatory
budgeting. We show how to deal with this uncertainty algorithmically, and we show what
limitations every algorithm inherently has in this setting.

1.4 Structure

Most results presented in the following chapters were published already, or are currently
under review at a conference or journal. All those (published, or unpublished) papers are
joint work with my co-authors. To account for this, I decided to structure the subsequent
chapters as follows. At the beginning of each chapter I provide a short summary of the
topic studied in the chapter. This should help the reader to quickly identify what the chapter
is about. Next, there will be a detailed introduction to the topic, followed by definitions
and results. The chapters are independent of each other and should be comprehensible after
reading this introduction. Whenever more definitions are required, they are given in the
respective chapter. Note that some results in this thesis are not yet included in any papers.
Further, some results from published papers are not included in this thesis, because I have not
contributed significantly to these specific results. However, not all results presented here are
completely my work. To make clear what contributions to both, the paper and the chapter,
are my work, each chapter concludes with a description (1) where some results have been
published, and (2) what exactly in the paper or chapter are my contributions.

1.5 Notation

Throughout this thesis, we denote the set A\{B} by A−B for a set A and an element B. Further,
we write [i] as a shorthand for {1, . . . , i} ⊂ N for an integer i≥ 1, and [i, j] for {i, . . . , j} ⊂ N
for integers i, j with 0≤ i≤ j.

26

Chapter 2

Network Centrality Through Voting Rules

2.1 Summary

Network centrality is the science of identifying the most central or important nodes (or sets
of nodes) in a network. We study how single- and multiwinner voting rules can be used in
network science to identify central nodes (or sets of nodes) in a network. To this end, we
first define preferences for the nodes in the network based on their network relations (here:
shortest path distances). We then reformulate common single- and multiwinner voting rules
to deal with these preferences and either rank the nodes by importance (centrality ranking),
or construct a central set of nodes in the network (so-called node selectors). Finally, we
reformulate reasonable properties and axioms from voting theory for network science, and
show which of these properties are satisfied by traditional centrality measures and voting-
based centrality measures.

2.2 Introduction

Centrality indices are used to measure the individual centrality of nodes as a quantity, and to
eventually rank the nodes by their indices. Node selectors return a fixed-size group of nodes
which is the most central according to the node selector. There exist a variety of centrality
indices and node selectors in literature [54, 79, 89, 31, 39]. Often they are designed for very
specific applications, and there is no universal centrality measure or node selector which
works for every application. Let us look at the following example.

Example:

AB

C DE

FGH

I

27

Chapter 2 Network Centrality Through Voting Rules

Consider the network above. The question that motivates centrality indices is, how im-
portant is e.g. node B in the network compared to the other nodes? When the network
represents e.g. a friendship network, we might find B very important as B has many
friends. However, if the network represents a street map, we might find F much more
important than B because when F is removed, the network is no longer connected.

The question behind node selectors is what set of nodes (of size e.g. two) is most central?
One answer could be {B, C} because both have many neighbors. However, as noted by
Everett and Borgatti [31] the centrality of a group of nodes is not necessarily the sum, or
average of the individual centrality, and indeed we can argue that B and C have basically
the same neighborhood, thus are not much more central than individually. So maybe it
is better so select {B, G} because together their neighborhood covers almost the whole
network. The latter could be interesting when the goal is to maximize the influence in
the network (see e.g. Kempe et al. [52])

Voting is a very powerful tool from social choice theory. Research has paid a lot of attention
to it over the past years (see [3] for more background). As mentioned in the introduction of
this thesis, in voting we have a set of candidates (or alternatives) and a list of preferences
over these candidates, submitted by the voters. Thereby, preferences can have manifold
forms such as approval ballots or ordinal ranks. We can then use single-winner voting rules
to determine which candidate wins the election, or multiwinner voting rules to determine a
fixed-size set of candidates which are then called the winning committee. Internally, most
single-winner voting rules are actually social welfare functions which provide weak rankings
of the candidates or alternatives which represent the support a candidate has among the vot-
ers. So one can either select the best candidate, or see how good one candidate is compared
to another. Note that the goal behind centrality indices is basically the same: make candi-
dates (nodes) comparable by how much support they have among the voters (respectively,
how important each node is for the other nodes in the network). A similar relation holds also
for multiwinner voting and node selectors.

The correspondences between single-winner/multiwinner voting and centrality indices/n-
ode selectors is very interesting. The fields network science and voting theory have only
been connected in a few studies yet. Thereby, most literature linking the fields focuses
rather on studying how social networks could impact, or improve voting (see the survey by
Grandi [45]). For example, delegative voting, a.k.a. liquid democracy or interactive democ-
racy [24], describes voting where voters can either vote on an issue themselves, or delegate
their vote to a friend (i.e. a neighbor in the network) who is called the proxy voter (see e.g.
the work by Boldi et al. [15]). Boldi et al. [15] mention that one can interpret the num-
ber of delegated votes a proxy voter has as centrality index. However, as far as we know
the literature regarding the use, or adaption of voting rules as centrality measures is rather
sparse. Wilkinson [88] analyzes an application of the voting rule due to Schulze [80] to find
the important actors in a terrorist network that changes over time. Further, Zhang et al. [89]
proposed the VoteRank node selector which (as we will see later) is very similar to the se-
quential proportional approval voting multiwinner rule. In this chapter we will significantly
extend the knowledge of the relations between voting and network centrality.

28

2.3 Centrality in Networks

2.3 Centrality in Networks

We define a network as an undirected connected graph G = (N ,E), where N is the set of
nodes, and E the set of edges. Note that the definitions in this chapter can easily be extended
to weighted graphs. By N(i) = { j ∈N : {i, j} ∈ E} we denote the neighborhood of i, and by
N[i] = N(i)∪{i} its closed neighborhood. By δ (a,b) we denote the shortest path distance
between a and b. Note that the distance is symmetric, and since we assume the graph to be
connected, the distance is finite.

2.3.1 Centrality Indices

A node index c is a mapping c : N → R. Often it is not the quantities themselves that are
of interest, but only the induced ranking of nodes. For a node index c, we write i ≽c j if
c(i) ≥ c(j), i ≻c j if c(i) > c(j), and i ∼c j if c(i) = c(j) (i.e., a higher index is better).
But which node indices deserve to be called centrality indices? This is of course a substan-
tive question with—unfortunately—no definite answer. Obviously, a centrality index should
respect the common intuition that “central” nodes are connected more strongly, and more
directly to the other nodes. But it is hard to capture this intuition in a formal definition. How-
ever, as a minimum requirement we can require a node index to be invariant under graph
automotphisms (i.e., the index depends solely on the network relations of a node, and not on
the name), and to satisfy the vicinal preorder which is defined as follows.

Definition 1 (Vicinal Preorder). The vicinal preorder is a reflexive and transitive, but not
necessarily complete or antisymmetric order which for i, j ∈ N contains i ≽ j if and only if
δ (s, i)≤ δ (s, j) for all s ∈N \{i, j}.

The vicinal preorder ensures that i is considered at least as central as j if for every other
node the shortest path to i is no longer than its shortest path to j. Note that in the unweighted
networks we consider, the above falls down to the usual definition in terms of neighborhood
inclusion where i ≽ j iff N[i] ⊇ N(j) as defined by Foldes and Hammer [38]. However, to
make our results more easily generalizable for weighted networks, and because of the way
we define preferences based on distances later, it is more convenient to use distances rather
than the neighborhood inclusion. We can now define centrality formally.

Definition 2 (Centrality). Any ranking of nodes that is invariant under automorphisms and
respects the vicinal preorder is a centrality ranking. A node index which induces a centrality
ranking is called centrality index.

To give an impression of what centrality indices are, we next present some of the most com-
mon centrality indices (see Koschützki et al. [54] for an overview). We will later compare
them to the new voting-based centrality indices that we propose in Section 2.5.

29

Chapter 2 Network Centrality Through Voting Rules

Degree centrality. The degree of a node i ∈ N is the cardinality of its neighborhood. Thus,
a node is central according to degree centrality if it has many neighbors.

cdeg(i) = |N(i)|

Closeness centrality. To take indirect links to other nodes into account, closeness centrality
considers shortest-path distances δ (s, t):

cclo(i) =
1

∑t∈N−i δ (i, t)
.

Betweenness centrality. In Example 2.2 we argued that F is very central because it is a
critical connection point. This intuition is captured by betweenness centrality. Let σ(s, t)
denote the number of shortest paths from s to t and σ(s, t|i) the number of those shortest
paths also passing through a brokering node i. Then betweenness centrality is given by

cbet(i) = ∑
s,t∈N

σ(s, t|i)
σ(s, t)

.

Schoch and Brandes [79] have shown that the rankings obtained from standard centrality
indices such as degree, closeness, and betweenness centrality respect the vicinal preorder.

2.3.2 Group Centrality And Node Selectors

While centrality indices are used to differentiate nodes by their individual centrality, the
purpose of group centrality indices is to rate how central a set of nodes is. As mentioned
in the introduction, while it is easy to create a group centrality index out of a centrality
index by summing up the individual indices of the nodes in a set, such a group centrality
index is not suitable in many settings because it ignores redundancy of nodes. Everett and
Borgatti [30, 31] propose group centrality indices which extend the intuition of classical
centrality indices.

Group degree centrality [31]. The group degree centrality of a set X ⊆N is the number of
nodes in N \X which are connected to at least one node from X .

cg-deg(X) = |{t ∈N \X | ∃s ∈ X : {s, t} ∈ E}|

Group (minimum) 1 closeness centrality [31]. The distance δ (a,X) of a node a to a set of
nodes X is the minimum shortest path distance of a to any node in X . The group closeness

1Everett and Borgatti [31] also mention scenarios where it could be more realistic to define the distance of a
node a to a set X as average, or maximum distance of a to the nodes in X .

30

2.3 Centrality in Networks

centrality of a set X is the inverse2 of the sum of all distances from nodes in N \X to X .

cg-clo(X) =
1

∑t∈N\X δ (t,X)
.

Group betweenness centrality [31]. Let σ(s, t) denote the number of shortest paths from s
to t and σ(s, t|X) the number of those shortest paths also passing through at least one node
i ∈ X . Then group betweenness centrality is given by

cg-bet(X) = ∑
s,t∈N\X

σ(s, t|X)

σ(s, t)
.

Note that the group centrality indices above yield the same centrality index for sets of size
one as the respective centrality index for single nodes. Thus, they can be considered proper
generalizations. However, note that the group degree index and the group betweenness index
are not monotonic, i.e., supersets of X may have lower centrality than X . For example, the
group degree index shrinks when a node is added to X which was a direct neighbor of X , but
has no further neighbors. Similarly, when nodes s and t have all their shortest paths running
through X , and we add s, or t to X , the centrality of X can shrink. Thus, they are not suitable
to compare different-size sets of nodes. While there are fixes to this, it doesn’t really matter
for our study as we consider only fixed-size sets anyway.

In the applications we have in mind, we want to find a set of nodes of a given size K which is
very central, i.e. has a high group centrality index. Such applications include viral marketing
strategies (see the related work section of Leskovec et al. [60]), or facility location prob-
lems [49]. It is often not practical to rate all subsets of nodes, and then pick the best size-K
set since there are just so many subsets.3 Node selectors are used to construct a set of nodes
of a given size K, 1 ≤ K ≤ |N |, that collectively are as central as possible (what ‘central’
means depends on the intended application). That is, a node selector takes the network and
the number K ∈ N as input, and returns a subset of N of size exactly K. They are thus the
constructive approach to group centrality whereas group centrality indices are metrics.

Note that for many node selectors computing the node set is very difficult. For example, a
node selector aiming at computing a set which is optimal according to group degree, or group
closeness is computationally intractable because the problem is closely related to the problem
of deciding whether there is a dominating set of given size—a problem which is well known
to be NP-complete. We will later present some own node selectors based on multiwinner vot-
ing rules. Although they do not aim at maximizing group degree, or group closeness directly
(they have different interesting properties as we will see), we will also compare in experi-
ments how good they can approximate the group degree and group closeness optimum.

2Note that we use the inverse to maintain that higher values mean better centrality.
3For n nodes we have

(︁n
K

)︁
subsets. This number becomes extremely large for larger n and K.

31

Chapter 2 Network Centrality Through Voting Rules

2.4 Voting in Networks

The point of our study is to propose new centrality indices and node selectors based on voting
rules. However, voting rules take preferences and candidates as input while centrality indices
and node selectors receive a network as input. Thus, we first have to discuss how networks
can be transformed into preferences and candidates. We propose an interpretation of the
network as nodes having preferences over the other nodes. That is, nodes are both, voters
and candidates, at the same time. The preferences can be derived from the network structure.
More precisely, a node’s preference over the other nodes depends on its distances to them.
In correspondence to the absence of self-loops in the network, we assume that nodes do not
have preferences for themselves.

As discussed in the introduction to this thesis, preferences can have manifold forms. In this
chapter we focus on two of the most common types: approval ballots which allow each node
(in the role of a voter) to approve as many other nodes as desired, and ordinal ranks where
each node submits a linear order over the other nodes. We relax the requirements for ordinal
ranks for the purpose of this paper and allow ties, because they appear very often in networks
(especially in unweighted networks).

Definition 3 (Approval Ballots in Networks). Each node v ∈ N approves all nodes up to a
given threshold distance γ in the network: app(v) = {i ∈N−v : δ (i,v)≤ γ}.

An interpretation is that approved nodes are in an acceptable distance (i.e., reachable via a
sufficiently short path) from the node approving them. This could be of interest in e.g. facility
location problems. Note that due to the undirected networks, app(v) is also the set of nodes
(as voters) which approve of v.

Definition 4 ((Weak) Ordinal Ranks in Networks). A node v prefers a over b, denoted as
a≻v b, if δ (v,a)< δ (v,b), and is indifferent between a and b, denoted as a∼v b, if δ (v,a) =
δ (v,b). The position of node a in the preference of v is posv(a) = 1+ |{x ∈N−v : x≻v a}|.

So the voter node simply ranks the candidate nodes by their shortest-path distance. Note that
in case of ties in v’s preference, some nodes will share a position. Thus, the position of a
node in the preference is usually different from the actual shortest path distance.

2.5 Single-Winner Voting-Based Centrality Indices

In this section, we start developing new centrality indices based on voting rules and the
preferences we derived as just described. But before that, we briefly want to mention how
voting theory and network science relate from an axiomatic perspective.

32

2.5 Single-Winner Voting-Based Centrality Indices

2.5.1 Axiomatic Relations

There are several literature reviews on axioms in single-winner voting we can recommend to
the interested reader for a more detailled description of the axioms [3, 90, 13].

To start with, we want to mention some axioms which have immediate counterparts in net-
work science. First, there is the invariance under automorphisms which relates to neutrality
(where, informally, all candidates are treated equally) and anonymity (where, informally, all
voters are treated equally). Voting rules usually satisfy both axioms for good reasons. Who
would like to use a voting rule where some candidates, or voters have a disadvantage just
because of their name, or position in the profile? All voting rules we discuss later do guaran-
tee anonymity and neutrality, so they are also invariant under automorphisms.4 Second, we
want to note the relation between the vicinal preorder and the Pareto criterion. The criterion
states that no candidate a should win an election if there exists another candidate b who is
preferred to or considered to be indifferent with a by every voter and strictly preferred to a
by at least one voter. Recall that the vicinal preorder states that b ≽ a if δ (s,b)≤ δ (s,a) for
all s ∈N \{a,b} which is a little less strict but in the same spirit as the Pareto criterion.

Now we consider an axiom from voting theory which (as far as we know) has no counterpart
yet in network science—but it is perfectly reasonable to consider it in network science. The
axiom we are talking about is called Condocet criterion. But to define it we first need the
following definition. In voting, it is common to say that candidate a pairwise dominates
candidate b if a majority of voters prefers a over b. We reformulate this notion in terms of
network relations as follows.

Definition 5 (Pairwise Domination in Networks). Node a dominates node b, denoted as a≫
b, if and only if |{v ∈N \{a,b} : δ (v,a)< δ (v,b)}|> |{v ∈N \{a,b} : δ (v,a)> δ (v,b)}|.

That is, a dominates b when a (relative) majority of nodes is strictly closer (thus, better
connected) to a than to b. Nodes which have the same distance to both count for neither
of the two (or equivalently for both). Now the Condorcet criterion states that a candidate
(or node) should win the election if it dominates every other candidate (or node). Voting
rules satisfying the Condorcet criterion are called Condorcet-consistent. Analogously, we
can define what a Condorcet-consistent centrality ranking is.

Definition 6 (Condorcet-Consistent Centrality Ranking). A centrality ranking is Condorcet-
consistent if it satisfies the following. Whenever there exists a node x which pairwise domi-
nates all other nodes, x is ranked strictly more central than any other node.

One can easily argue that the Condorcet-criterion is very desirable in a lot of applications for
network centrality. However, we have to mention that the so-called Condorcet-winner—a

4However, it is well-known by Arrow’s Impossibility Theorem [2] that a dictatorship rule (which is obviously
not anonymous) is the only possibility to achieve a combination of other desirable properties.

33

Chapter 2 Network Centrality Through Voting Rules

node which dominates every other node—doesn’t always exist. This is known as the famous
Condorcet paradox in social choice theory. Figure 2.1 shows an example of the paradox in
networks. We study Condorcet-consistent voting rules later in Section 2.5.4.

A

CB

Figure 2.1: The Condorcet paradox: There are 6 nodes which strictly prefer A to B but only
5 strictly prefer B. Further, there are 5 nodes which strictly prefer B over C but
only 4 strictly prefer C. Finally, 5 nodes prefer C to A but only 4 strictly prefer A.
Thus, we have A≫ B≫C≫ A.

2.5.2 Satisfaction Approval Voting

The first class of rules we can derive new centrality measures from are approval rules (see
Laslier and Sanver [58] for an introduction). The advantage is here that these rules require no
modification; they work out of the box with the approval ballots we defined in Section 2.4.

The simplest approval rule is simply called approval and just sums up the approvals for each
node. Note that for a threshold distance of γ = 1, it is equivalent to degree centrality. It is
easy to see that approval also induces a centrality ranking according to Definition 2 since
if every node in the network has a shortest path to a at least as short as to b, every node
which approves b must also approve a. But we promised to derive really new centrality
measures, and not only new variants of degree centrality. A particularly interesting and more
sophisticated approval rule is satisfaction approval voting (SAV), proposed by Brams and
Kilgour [20]. In SAV, voter v contributes a score of 1

|app(v)| to each candidate in app(v), i.e.,
v’s total weight of 1 is uniformly distributed among all candidates approved by v. These
scores induce a centrality index.

Theorem 1. SAV induces a centrality index.

Proof. According to Definition 2, we need to show that the ranking induced by SAV respects
the vicinal preorder and is invariant under automorphisms.

It is easy to see that SAV is invariant under automorphisms. We now show that it respects the
vicinal preorder. Suppose i ≽ j in the vicinal preorder for some nodes i, j. Since δ (s, i) ≤
δ (s, j) for all s ∈ N \ {i, j}, we know that each node in N \{i, j} that approves of j also
approves of i and contributes exactly the same value to the scores of both. Further, each node

34

2.5 Single-Winner Voting-Based Centrality Indices

that j approves is approved by i. It follows that |app(i)| ≥ |app(j)| and thus j contributes at
least as much value to the score of i than vice versa. Hence, cSAV(i)≥ cSAV(j).

To receive a high SAV score, it is important to be close to many nodes which have not many
other connections. Figure 2.2 shows an example where this behavior may be interesting. Ac-
cording to degree centrality, nodes A and B are identically central. However, if A is removed,
the network is still connected. If B is removed, it is not. Thus, it is a reasonable intuition that
B is more central than A—and SAV results in exactly that.

A B

Figure 2.2: For γ = 1, node A receives a total SAV score of 7
3 +

1
4 , whereas B receives an SAV

score of 7+ 1
2 . Thus, B is more central according to SAV centrality.

2.5.3 Borda

Positional scoring rules are a class of voting rules which take profiles of strict ordinal ranks
as input, and assign the candidates a score which depends on the positions of the candidates
in the ranks. For example, the prominent Borda count adds 0 to the score of a candidate for
every voter where the candidate is at last position, 1 for the second but last position, 2 for
the third but last, and so on. This leads to the common formulation of the Borda count via
the scoring vector (n−1,n−2, . . . ,0). So intuitively, for each voter the candidate receives 1
point for each candidate it beats.

This is more difficult when preferences have ties as in our setting. Fortunately, Gärden-
fors [42] proposed a formulation of the Borda count which is equivalent (in the ranking, not
in the exact scores) to the scoring vector (n− 1,n− 2, . . . ,0) with strict rankings, but also
preserves the intuition in rankings with ties. One counts how many candidates i is preferred
to and subtracts the number of candidates the voter prefers to i:

cbor(i) = ∑
v∈N−i

|{a ∈N−v | i≻v a}|− |{a ∈N−v | a≻v i}|.

Theorem 2. Borda count induces a centrality ranking.

35

Chapter 2 Network Centrality Through Voting Rules

Proof. It is easy to see that Borda is invariant under automorphisms. We now show that the
ranking respects the vicinal preorder.

Suppose i ≽ j in the vicinal preorder. Since δ (s, i) ≤ δ (s, j) for all s ∈ N \{i, j}, we know
that for each s ∈ N \ {i, j}, it holds that |{a ∈ N−s | i ≻s a}| ≥ |{a ∈ N−s | j ≻s a}| and
|{a ∈ N−s | a≻s i}| ≤ |{a ∈ N−s | a≻s j}|. Thus, it holds that |{a ∈ N−s | i≻s a}|− |{a ∈
N−s | a ≻s i}| ≥ |{a ∈ N−s | i ≻s a}|− |{a ∈ N−s | a ≻s i}|, i.e., from each s ∈ N \{i, j}
node i receives at least as many points as node j.

Now we only have to ensure that i receives at least as many points from j than vice versa. For
each node s′ ∈ N \{i, j} with δ (j,s′) < δ (j, i), it holds that δ (i,s′) < δ (j, i) = δ (i, j). So
each node that j prefers to i will also be preferred by i over j. It follows that |{a ∈N− j | i≻ j
a}| ≥ |{a∈N−i | j≻i a}|. Conversely, for each node s′′ ∈N \{i, j} with δ (i,s′′)> δ (i, j), it
holds that δ (j,s′′)> δ (j, i). Thus, |{a∈N− j | a≻ j i}|≤ |{a∈N−i | a≻i j}|, so j contributes
at least as much to the score of i than vice versa.

At the first look, Borda seems to be very similar to closeness centrality. However, Figure 2.3
shows the substantial differences between Borda and closeness, but also betweenness.

5

1

3 6 7

2

4

8

9

Figure 2.3: Example where closeness, betweenness, and Borda all lead to different rankings.
Closeness centrality induces the centrality ranking 6≻ 3∼ 7≻ 1∼ 2∼ 5≻ 4≻
9≻ 8, betweenness yields 6≻ 3∼ 7≻ 2≻ 1∼ 5≻ 4∼ 8∼ 9, whereas the Borda
ranking is 7≻ 6≻ 3≻ 2≻ 5∼ 1≻ 4≻ 9≻ 8.

2.5.4 Copeland

Previously, we have introduced the notion of a Condorcet winner and Condorcet-consistency.
We now want to introduce one common Condorcet-consistent voting rule which can be used
as a centrality index. While there are several prominent examples for Condorcet-consistent
voting rules, such as the rules due to Banks [8], or Slater [82], we decided to study Copeland’s
rule [27] as it is efficiently computable, whereas most others were shown to be NP-hard. The
Copeland score of a candidate a is defined by

ccop(a) = |{x ∈N : a≫ x}|− |{x ∈N : x≫ a}|.

Theorem 3. Copeland induces a centrality ranking.

36

2.5 Single-Winner Voting-Based Centrality Indices

Proof. It is easy to see that the Copeland scores are invariant under automorphisms. We show
that the ranking induced by Copeland also respects the vicinal preorder

Consider any pair i ≽ j in the vicinal preorder, i.e., δ (s, i)≤ δ (s, j) for every s ∈ N \{i, j}.
We show two properties: (A) i cannot be dominated by j, and (B) every node dominated by
j will also be dominated by i. (A) and (B) imply ccop(i)≥ ccop(j).

By the definition of dominance, we can ignore the votes of i and j in the pairwise comparison
of i and j. For every other node s, we have poss(i)≤ poss(j), so j cannot dominate i, which
proves statement (A).

Consider any node t ∈ N \ {i, j} that is dominated by j, i.e., |{v ∈ N \ {t, j} : posv(j) <
posv(t)}| > |{v ∈ N \{t, j} : posv(j) > posv(t)}|. We want to show that i also dominates t:
|{v ∈N \{t, i} : posv(i)< posv(t)}|> |{v ∈N \{t, i} : posv(i)> posv(t)}|. Since poss(i)≤
poss(j) for every s ∈ N \ {i, j}, every voter counting for j also counts for i and no voter
with poss(j) = poss(t) (i.e., no voter counting neither for j nor t) can count against i. In
particular, no additional node v ∈ N \{i, j, t} counts against i. We only have to check that
if i counts for j (that is, posi(j) < posi(t)), then also j counts for i (pos j(i) < pos j(t)). By
the vicinal preorder, each node that j prefers to i will also be preferred by i over j. Thus
pos j(i)≤ posi(j), which proves (B).

Figure 2.4 shows that closeness and betweenness centrality are not Condorcet-consistent.
This makes the Copeland centrality index—as far as we know the first Condorcet-consistent
centrality index ever proposed—an interesting subject to future studies.

CW

CC

BW

Figure 2.4: Closeness centrality and betweenness centrality do not satisfy the Condorcet cri-
terion for centrality rankings: The closeness centrality winner (CC) and the be-
tweenness centrality winner (BW) is not the Condorcet winner (CW).

37

Chapter 2 Network Centrality Through Voting Rules

2.6 Multiwinner Voting-Based Node Selectors

We now consider the use of multiwinner voting rules as node selectors. Important for many
multiwinner voting rules is to be representative. For example, they are designed to avoid
that when 3 candidates should be elected, and 51% approve candidates a,b,c, the committee
{a,b,c} wins regardless what the other 49% of voters want. There are various definitions of
what exactly “representative” means. One of the most common definitions is for approval
voting rules: justified representation (see Aziz et al. [7]). We formulate it for networks.

Definition 7 (Justified Representation). Let G = (N ,E) be a network and γ a given number.
A set X ⊆N with |X |= K satisfies justified representation w.r.t. γ if there is no set Z ⊆N \X
of size |Z| ≥ n−K

K , for which
⋂︁

i∈Z{ j ∈ N−i | δ (i, j) ≤ γ} ≠ /0, and for all i ∈ Z holds { j ∈
N−i | δ (i, j)≤ γ}∩X = /0. A node selector satisfies justified representation w.r.t. γ , if every
set it selects satisfies justified representation.

Thereby γ is the maximum reachable distance for nodes, i.e., the distance in which the voter
nodes approve other nodes as mentioned in Section 2.4. Informally, for X to satisfy justified
representation there must exist no group Z which deserves an own “representative” in X due
to its size, and in which all nodes in Z can agree on one representative, but no node in Z has
a representative in X . Justified representation might be an interesting property to study for
facility location problems.

One approval rule that guarantees the outcome to satisfy justified representation (see [7] for
the proof) is proportional approval voting (PAV; first proposed by Thorvald Thiele). In PAV,
it is assumed that each voter v has a satisfaction score sv(X) = 1+ 1/2+ 1/3+ · · ·+ 1/j for
a committee X , where j is the number of candidates from X approved by v. This follows
the intuition that a voter’s satisfaction grows with the number of approved candidates in the
committee, but the increment in satisfaction becomes the smaller, the more candidates this
voter already approves in the committee. PAV can thus be used as both, a group centrality
index, or a node selector (by searching for the set of nodes with the highest satisfaction). It
is known that determining the committee with the highest PAV score is NP-complete [6].

Sequential proportional approval voting (SPAV) is efficiently computable, and sometimes
referred to as an approximation of PAV (where PAV is used as node selector/multiwinner
rule). We present the generalization w-SPAV [7] with a vector w = (w1, . . . ,wK). It works
in rounds and has remarkable similarities to VoteRank [89]. In the first round, every voter
has a voting ability of w1, i.e., each node (as a voter) adds w1 to the score of each neighbor.
A node (as a candidate) with the highest score is added to the winning committee W (and is
removed as a candidate from the further election). In the subsequent rounds, every voter has
a voting ability of w j+1, where j is the number of candidates the voter approves in W . The
usual definition of SPAV is obtained by the vector w = (1, 1

2 , . . . ,
1

K+1). VoteRank [89] can be
defined by the vector w = (1,max{0,1− c},max{0,1−2c}, . . .) for some constant c which
is usually set to the inverse average degree of the network (for details on other constants see
Zhang et al. [89]). The only difference to w-SPAV is that elected nodes can still vote on

38

2.6 Multiwinner Voting-Based Node Selectors

other nodes in w-SPAV but not in VoteRank. A particularly interesting case is (1,0, . . . ,0)-
SPAV (sometimes referred to as GreedyAV), because it also guarantees outcomes that satisfy
justified representation [7] which is not guaranteed for SPAV and VoteRank.

Theorem 4. The node selectors based on PAV and GreedyAV satisfy justified representation
w.r.t. any γ , whereas SPAV and VoteRank do not satisfy justified representation for γ = 1.

Proof. By the work of Aziz et al. [7] it is known that the voting rules PAV and GreedyAV
satisfy justified representation. Since each node approves exactly the nodes within range γ ,
it is clear that also the node selectors satisfy justified representation.

For SPAV and VoteRank consider the following counter example which is based on the coun-
terexample for multiwinner voting by Aziz et al. [7]. Let G be a network with

N ={c1, . . . ,c11,v1, . . . ,v1199},
E ={
{vi,c1},{vi,c2}, for i ∈ {1, . . . ,81} (2.1)
{vi,c1},{vi,c3}, for i ∈ {82, . . . ,162} (2.2)
{vi,c2}, for i ∈ {163, . . . ,242} (2.3)
{vi,c3}, for i ∈ {243, . . . ,322} (2.4)
{vi,c4},{vi,c5}, for i ∈ {323, . . . ,403} (2.5)
{vi,c4},{vi,c6}, for i ∈ {404, . . . ,484} (2.6)
{vi,c5}, for i ∈ {485, . . . ,564} (2.7)
{vi,c6}, for i ∈ {565, . . . ,644} (2.8)
{vi,c7},{vi,c8}, for i ∈ {645, . . . ,683} (2.9)
{vi,c7},{vi,c9}, for i ∈ {694, . . . ,742} (2.10)
{vi,c7},{vi,c10}, for i ∈ {743, . . . ,791} (2.11)
{vi,c8}, for i ∈ {792, . . . ,887} (2.12)
{vi,c9}, for i ∈ {888, . . . ,983} (2.13)
{vi,c10}, for i ∈ {984, . . . ,1079} (2.14)
{vi,c11}, for i ∈ {1080, . . . ,1199} (2.15)
{vi,vi+1}, for i ∈ {1, . . . ,1198} (2.16)
}.

We want to select K = 10 nodes. With γ = 1 nodes v1, . . . ,v1199 are approved by 2 to 3 nodes
each, c1,c4 receive 162 approvals, c2,c3,c5,c6 receive 161, c7 gets 147, c8,c9,c10 receive
145, and c11 receives 120 approvals.

Consider SPAV first. SPAV will select c1 and c4 in the first two rounds (note the neighbor-
hoods are distinct) which reduces the voting ability of node blocks 2.1, 2.2, 2.5, 2.6 to 1

2 .
Thus, c2,c3,c5,c6 have now only a score of 120.5, so that c7 is selected next. This in turn

39

Chapter 2 Network Centrality Through Voting Rules

reduces the scores of c8,c9,c10 to 120.5 (see blocks 2.9, 2.10, 2.11). Since c2,c3,c5,c6,c8,c9,
and c10 have distinct neighborhoods, selecting each of them has no influence on the score of
the others. They have a higher score than c11 (and v1, . . . ,v1199) so they will all be selected
before c11. Due to K = 10 node c11 cannot be selected. However, c11 has 120≥ 11+1199−K

K =
1200

10 voter nodes (block 2.15) who do not approve of any of c1, . . . ,c10. This is a contradiction
to justified representation.

For VoteRank note that the average degree in the network is more than 2. Thus, the inverse
degree is smaller than 1

2 , i.e., whenever voting abilities are reduced to 1
2 in SPAV, they are

reduced to some value greater than 1
2 in VoteRank. It follows that c1, . . . ,c10 will still be

selected before c11. Since c1, . . . ,c10 only contribute to the scores of v1, . . . ,v1199 which are
not selected anyway, it also does not change the outcome that selected nodes cannot vote
anymore in VoteRank. In conclusion, VoteRank results in the same selection of nodes which
does not satisfy justified representation.

Beyond approval-based rules there are also multiwinner rules for ordinal ranks. One of the
most prominent rules is single transferable vote (STV). There exist several slightly different
definitions of STV in the literature. We present the one studied by Elkind et al. [29]. Adapted
to networks it works as follows.

We start by initializing the committee of selected nodes W = /0, and setting C = V = N
where C stands for nodes in the role of candidates, and V for the role of voters. The latter is
necessary because we sometimes remove a node as candidate but not as voter. Until |W |= K,
we repeat: Set the quota to q = ⌊|V |/K+1⌋.5 Determine a node (candidate) w with the highest
plurality score ρ(w) = |{v ∈V−w : posv(w) = 1}|.

• If ρ(w) ≥ q, we set W = W ∪{w} and remove q random (voter) nodes from V who
have w at first position, and we remove w from V . For all remaining preferences, we
remove w and update the positions of the other (candidate) nodes accordingly (i.e.,
every c with w≻ c improves by one position). Then we set C =C \{w}.

• If ρ(w)< q, we choose a plurality loser l (i.e., a node with the lowest plurality score).
We remove l from all preferences, update the positions of the other (candidate) nodes,
and set C =C \{l}. Note that l is not removed as a voter.

Another interesting criterion in the analysis of multiwinner rules is committee-monotonicity.
We define it for node selectors as follows.

Definition 8 (Committee Monotonicity). A node selector is committee-monotonic if for every
given network and every budget K, 1 ≤ K < |N |, the following holds: If a is in a winning
committee of size K chosen by the node selector, then the node selector puts a also into a
winning committee of size K +1.

5Note that Elkind et al. [29] use a quota that is higher by 1. We assume that nodes implicitly also like
themselves. In consistency with [29], we also remove a selected node fromN , so in fact our quota is q+1.

40

2.6 Multiwinner Voting-Based Node Selectors

A B C

Figure 2.5: A network showing that committee-monotonicity is not always an advantage:
The set {B} is good for K = 1, but {A,C} is good for K = 2.

B

C

A

Figure 2.6: A network showing that PAV is not committee-monotonic. PAV selects the set
{B} for K = 1, but the set {A,C} for K = 2.

Committee-monotonicity should not be confused with monotonicity in group centrality in-
dices, which mean that the index of a set of nodes should not decrease when a node is added
to the set. In multiwinner voting, committee-monotonicity is considered an advatage, or dis-
advantage depending on the application (see Elkind et al. [28]). In networks, however, we
can easily argue that committee-monotonicity is rather a disadvantage. Consider the network
in Figure 2.5 for example. When we ask the node selector for a size-1 set, certainly {B} is
a good option. However, a good size-2 set is {A,C} rather than any set with B because such
sets tend to be good for one half of the network but bad for the other.

STV is not committee-monotonic (even if we fix a tie-breaking rule), and it does exactly what
we described: select {B} for K = 1, and {A,C} for K = 2. Figure 2.6 shows that PAV is not
monotonic either. Monotonic node selectors can in fact be characterized. The following is
the network correspondence to a result from Elkind et al. [28] for multiwinner voting rules.

Theorem 5. If tie-breaking is fixed, a node selector is committee-monotonic if and only if it
can be obtained from a node index by selecting the best K nodes according to that index.

Proof. Selecting the best K nodes according to a centrality index is clearly monotonic as
long as the tie-breaking rule is fixed. For the other direction, consider the following method
to obtain a centrality index from a monotonic node selector: Ask for a committee X1 of size
K = 1 and assign the index value n−1 to the node in X1. For each i in {2, . . . ,n}, ask for a
committee Xi of size K = i and assign the index value n− i to the node in Xi \Xi−1.

41

Chapter 2 Network Centrality Through Voting Rules

As a consequence, degree, closeness, betweenness, and all other centrality indices (including
those based on voting rules) lead to committee-monotonic node selectors. It turns out that
also w-SPAV is committee-monotonic, so PAV and STV are the only non-monotonic node
selectors based on multiwinner rules we presented. Note that the node-selector versions of
group closeness, group betweenness, and group degree are not committee-monotonic, too.

Theorem 6. For fixed tie-breaking, w-SPAV (and thus, also VoteRank, SPAV, and GreedyAV)
is committee-monotonic.

Proof. Each of the K iterations of w-SPAV does not depend on K but only on the previous
iterations, i.e., only on which wi each voter contributes to the scores based on which nodes
are already approved in W . Due to the fixed tie-breaking rule, all previous iterations are
identical on each call, thus the previously selected nodes in W are also the same.

2.7 Experiments

To round up this chapter, we now test the node selectors introduced in Section 2.6 on some
random networks. As mentioned earlier, two metrics for group centrality are group closeness
and group degree. Although the node selectors we proposed are not specifically designed
for this task, we want to find out how good they behave with respect to these metrics. A
more detailed study will certainly be necessary in the future (especially with more samples,
different graph types, and different metrics), but the following two experiments should al-
ready provide a good indication which node selectors are of high interest. We also test the
VoteRank algorithm by Zhang et al. [89] in the experiments for a comparison. The code for
the experiments is available in the appendix.

In our first experiment we wanted to assess how close to the optimal group centrality values
(i.e., group closeness, or group degree) the centrality values of the sets selected by the dif-
ferent node selectors are. For this purpose, we generated 200 random Watts-Strogatz small
world networks [87] with 60 nodes. These networks consist of a ring of nodes where each
node is connected with its closest neighbors (in our samples, with the 6 closest neighbors),
and with some probability (here: 5%) each edge is rewired to a random other node. The
name small world is due to the fact that in those networks the diameter and average distance
between nodes is relatively small even for large networks.6 For each graph, we compute
the minimal possible group distance (respectively, maximal possible group degree) a set of
size K can have, i.e., the optimum. Afterwards, we let each node selector compute a set of
nodes of size K, and compute the difference in group distance (respectively, group degree)
of this set to the optimum. The results are given in Tables 2.1 and 2.2. The best results (i.e.,

6In a famous experiment Stanley Milgram [63] showed that the same properties apply also to real social
networks. In his experiment he selected random people all over the US, and asked them to forward a letter
to a friend who is most likely to know a given target person. The surprising result was that most letters
reached the target person within 5 hops, and no letter needed more than 10.

42

2.7 Experiments

K = 2 K = 3 K = 4

lq avg uq lq avg uq lq avg uq

VoteRank 0.07 0.21 0.31 0.05 0.13 0.18 0.04 0.08 0.12
STV 0.02 0.11 0.16 0.04 0.09 0.14 0.04 0.09 0.12

GreedyAV 0.07 0.21 0.31 0.05 0.15 0.19 0.05 0.10 0.14
SPAV 0.09 0.22 0.31 0.07 0.16 0.23 0.05 0.11 0.16

Closeness 0.22 0.36 0.47 0.32 0.47 0.58 0.38 0.53 0.66
Degree 0.14 0.33 0.43 0.18 0.33 0.42 0.18 0.31 0.39

Table 2.1: Results of the first experiment. Lq shows the lower quartile, avg the average, and
uq the upper quartile for the difference between the optimal set distance, and the
one achieved by the node selectors over 200 sample Watts-Strogatz networks.

K = 2 K = 3 K = 4

lq avg uq lq avg uq lq avg uq

VoteRank 0 0.01 0 0 0.11 0 0 0.20 0
STV 0 0.59 1 0 1.00 2 0 1.15 2

GreedyAV 0 0.17 0 0 0.33 1 0 0.65 1
SPAV 0 0.10 0 0 0.40 0 0 0.77 1

Closeness 2 3.64 5 5 7.24 9 9 11.12 14
Degree 0 1.03 2 1 2.82 5 2 4.45 7

Table 2.2: Results of the first experiment. Lq shows the lower quartile, avg the average, and
uq the upper quartile for the difference between the optimal set degree, and the
one achieved by the node selectors over 200 sample Watts-Strogatz networks.

lowest difference to optimal) are marked in boldface. We can clearly see that STV outper-
forms all other node selectors in group distance for K = 2 and K = 3, and is only slightly
behind VoteRank for K = 4. The good performance of STV is no surprise, of course: STV
is designed for ordinal preferences which in our setting encode for distances, while VoteR-
ank, GreedyAV, and SPAV consider only direct neighbors. This in turn gives the latter three
methods a huge advantage when the selected set should have many neighbors. VoteRank is
by far the best in this metric. However, also GreedyAV and SPAV perform much better than
STV. Finally, note that closeness and degree centrality (not in the group centrality version)
perform very bad. This underlines once again that node selectors need more sophisticated
design than just selecting the individually best K nodes, and voting rules adapted as node
selectors successfully achieve this.

Note that computing the optimal solution is computationally hard. Thus, in our first exper-
iment we are limited to networks with only 60 nodes. The same experiment is simply not
realizable with sufficiently high sample rate on larger networks (the experiment takes already
several hours in the current version). However, note that our node selectors are far more

43

Chapter 2 Network Centrality Through Voting Rules

K = 2 K = 3 K = 4 K = 10

Graph Size 500 1000 500 1000 500 1000 500 1000

VoteRank 14.5% 3.5% 6.5% 2.5% 5.0% 3.5% 2.0% 1.0%
STV 79.5% 90.0% 89.0% 92.0% 88.0% 93.0% 93.0% 96.5%

GreedyAV 12.5% 6.5% 4.5% 4.5% 5.0% 2.0% 3.0% 2.0%
SPAV 14.5% 4.5% 4.5% 4.0% 5.5% 4.0% 2.5% 1.0%

Table 2.3: Results for the second experiment. The percentage is the fraction of our 200 sam-
ple graphs where the respective node selector performs best in terms of the group
closeness.

K = 2 K = 3 K = 4 K = 10

Graph Size 500 1000 500 1000 500 1000 500 1000

VoteRank 100% 100% 99.5% 99.5% 99.5% 100% 96.5% 96.0%
STV 14.5% 17.5% 7.0% 6.0% 6.5% 2.5% 6.0% 0.5%

GreedyAV 99.5% 99.5% 96.5% 97.0% 95.0% 97.5% 78.0% 81.5%
SPAV 98.0% 100% 98.0% 98.5% 94.5% 97.5% 69.0% 78.0%

Table 2.4: Results for the second experiment. The percentage is the fraction of our 200 sam-
ple graphs where the respective node selector performs best in terms of the group
degree.

efficient, and take only few seconds to compute even on significantly larger networks. Thus,
we conduct a second experiment with a different setup and larger graphs.

In our second experiment we take Watts-Strogatz networks once again. This time the net-
works are significantly larger with 500, or 1,000 nodes each. Since we cannot compute the
optimum values on such large networks, we just count for each node selector on how many
of our sample networks it yields the best set (among the node selectors in our test). When
multiple selectors yield an equally good set, we count it as a victory for all of them. Note
that comparisons of the type ‘how much better is X compared to Y on this graph’ don’t really
make sense when we don’t know the optimal values. So we decided to just count as described
above. The results are shown in Tables 2.3 and 2.4. The second experiment confirms the re-
sults from our first experiment: STV performs very good in terms of group closeness, while
VoteRank is usually the best choice for group degree.

2.8 Conclusions

In this chapter we showed that network science and social choice overlap in the field of
network centrality and voting theory. Not only are some axioms similar, or interchangeable;

44

2.9 Publication

we even identified further axioms from social choice—the Condorcet criterion and justified
representation—which could be very interesting for network science.

We developed new centrality indices and node selectors based on voting rules. The Copeland
centrality index based on the same name voting rule is (as far as we know) the only Condorcet-
consistent centrality index yet. This makes it a very interesting candidate for future studies in
network science when the intended application seems to benefit from Condorcet-consistency.
Another very interesting candidate for future studies is the multiwinner voting based node
selector STV. In our experiments it often produced sets of nodes with a very good group
closeness (i.e., the average distance from nodes outside the set to the most proximate node in
the set is very small). It will be interesting to test STV in the future in other network science
applications. For example, STV might improve viral marketing. To this end, we propose
testing it on the SIR infection model as Zhang et al. [89] did with VoteRank.

We further want to point out a result which goes quite in the opposite direction than the
results so far: Voting theory might also be influenced by network science. We showed that
the VoteRank method [89] is very similar to the class of w-SPAV multiwinner voting rules.
The fact that VoteRank outperformed two of the most common w-SPAV rules GreedyAV and
SPAV could lead to new insights in voting theory. A future direction of research could be to
translate VoteRank back to multiwinner voting, and test whether the rule yields better results
than GreedyAV and SPAV in voting, too.

2.9 Publication

Parts of this chapter appeared as extended abstract at the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS) in 2022.

U. Brandes, C. Laußmann, and J. Rothe. “Voting for Centrality (Extended Ab-
stract)”. In: International Conference on Autonomous Agents and Multiagent
Systems. IFAAMAS, 2022

2.10 Personal Contribution

The idea of linking single-winner voting rules and centrality indices is due to Ulrik Brandes.
Linking group centrality and node selectors to multiwinner voting is my idea. The theoretical
results in Sections 2.5.2, 2.5.4 (published as Theorem 3.2 in [21]), and 2.6 were proven by
me with support from Jörg Rothe. Further, I did the entire experimental study in Section 2.7.
The results on positional scoring rules (Section 2.5.3 in this work, and further results in [21]
not included in this chapter) were proven by Ulrik Brandes. The writing of the publication
[21] was conducted in equal parts by Ulrik Brandes, Jörg Rothe, and me.

45

Chapter 3

Participatory Budgeting under Uncertainty

3.1 Summary

In this chapter, we introduce a new model for participatory budgeting, which captures sit-
uations, where the cost and durations of projects underlies some uncertainty in advance.
Further, we are also given a time constraint on the total project execution time and the total
implementation time. In the first part of the chapter, we define properties which are arguably
desirable for a budgeting method in this scenario. We show that, whenever cost is uncer-
tain, there exists no perfect method because some properties are incompatible. This is why
we design best effort budgeting methods for scenarios where cost is uncertain. Although
these methods cannot guarantee to satisfy all properties, they guarantee a maximal subset of
properties, and do their best to satisfy also the other properties.

3.2 Introduction

Let us start with an example.

Example:

Chris travels through Italy. One evening he visits the pub of the village Budgètta. While
drinking his red wine he hears the people at the next table talking about a participatory
budgeting campaign.

“I have to say, I liked the idea of refurbishing our historical craftsman mu-
seum. Our city’s tradition in handcrafting canoes must be credited!”

sais the old man who wears an odd hat with two black feathers in it. The woman next to
him responds nodding.

“Absolutely! But the price was 50% higher than estimated. Even worse: the
project was delayed by 3 months! Now there isn’t enough money left to fund
the new roof for the train station. The major could have planned that better.”

47

Chapter 3 Participatory Budgeting under Uncertainty

A young man in a gray suit on the other side of the table agrees.

“You are so right, Maria! Everyone knew that there was some risk that the
refurbishing becomes far more expensive. I would have implemented the
solar panels on public buildings and the electric vehicle charging stations
first. At least we knew relatively precisely how much they cost.”

The old man is gesturing wildly with his hands. His long beard shakes while he talks
with a much louder voice than before.

“Come on. The museum was the most liked project in the whole campaign.
It makes absolutely sense to implement it. And look: it could also have been
cheap, and you would have gotten your solar panels afterwards.”

Later that evening while Chris walks home tipsy from the red wine, he finds an old poster
at a wall which advertises the participatory budgeting campaign. Chris reads it, and asks
himself how such campaigns could be planned better.

The poster above shows a usual setting of participatory budgeting. Projects are associated
with cost and time, and we have both, cost and time limits, for the whole campaign. A
campaign manager then ask the voters which projects should be implemented, and based on
these votes decides which subset of projects will be implemented.

However, what Chris heard in the pub tells us that the scenario on the poster is not very
realistic. The museum took more time, and costs much more than written on the poster.
That is, the exact cost and duration of a project are usually only known after finishing it.
We can also observe this in many real-world projects. For Germans, projects like the Berlin
airport BER, the Elbphilharmonie concert hall in Hamburg, and the infrastructure project
Stuttgart 21 come into mind. All of these projects exceeded their time limit and budget by

48

3.3 Preliminaries

huge amounts. But cost explosions and heavy delays also happen on municipal level. Thus,
such uncertainty should also be considered in participatory budgeting.

A common way to accommodate this uncertainty is to estimate cost and duration. These
estimates are usually submitted by the company, or person, who proposes the project, or
the project manager collects offers from companies. But estimations come with problems.
Not only are estimates often inaccurate. They can also be strategic (and manipulated). For
instance, on the one hand, if the estimated cost is far too high, the company will probably
not get the contract. On the other hand, if it is far too low, the company is unable to realize
the project. In the latter case, either the company gets more money from the campaign
manager, or the company is bankrupt, and leaves an unfinished project behind (which will
also require the campaign manager to pay another company to finish it). To some degree
this encourages companies to submit too optimistic offers, while companies which plan with
some safety margin are punished. Thus, we think a better approach is to provide a range,
and a probability distribution for both, cost and duration. Then, the campaign manager can
include this uncertainty in the planing process. We summarize the problem types (and where
they are discussed) in the following table.

Cost known Cost uncertain

Duration
known Regular PB (Section 3.4) Section 3.6

Duration
uncertain Section 3.5 Section 3.7

The contributions of this chapter are mainly the ones in Section 3.6, whereas the other sec-
tions are mainly a literature review and explanation of the problems.

3.3 Preliminaries

Let A = {a1, . . . ,am} be the set of projects and each subset B ⊆ A is a bundle. We are given
a time limit τ ∈ N+ and a budget ℓ ∈ N+. The projects are evaluated by a set of voters
V = {v1, . . . ,vn}. Each voter v approves a subset of projects denoted by appv ⊆ A. By
sv(B) = |B∩ appv| we denote the satisfaction of voter v with bundle B, i.e. the number of
items in B approved by v. We define s(B,V) = ∑v∈V sv(B) as the total satisfaction of all
voters (we omit V when it is clear from the context). We assume s({a}) > 0 for all a ∈ A,
i.e., each project is approved by at least one voter.

49

Chapter 3 Participatory Budgeting under Uncertainty

Projects are also associated with cost and durations. In the following sections we distinguish
the cases where none, one, or both of them are uncertain. In the typical participatory budget-
ing setting [84, 90, 4] both, cost and durations are known.1 This is modelled by the cost func-
tion c : A→N+ and the duration function δ : A→N+. We assume c(a)≤K and δ (a)≤ τ for
all projects a∈ A. In case duration is uncertain, we are given the tuple ˜︁δ = (δmin,δmax,δ ,δp),
where δmin : A→ N+ and δmax→ N+ provide the lower and upper bounds on the project’s
duration, while δ → N+ models the exact duration. It holds that δ (a) ∈ [δmin(a),δmax(a)].
By δp(a,x) we denote the probability that project a ∈ A takes at most time x ∈ N+ to finish.
Overloading notation, by δp(B,x) for a set B we denote the probability that every project
from B takes time at most x. We assume in accordance with δ (a) ≤ τ that δmax(a) ≤ τ
for all projects a ∈ A. In case cost is uncertain, we are given ˜︁c = (cmin,cmax,c,cp), where
cmin : A→N+ and cmax : A→N+ model lower and upper bounds on the project’s costs, while
c : A→N+ are the exact costs. Note that c(a) ∈ [cmin(a),cmax(a)]. By cp(a,x) we denote the
probability that project a ∈ A costs at most x ∈ N+. Again, overloading notation, by cp(B,x)
we denote the probability that all projects from the set B together costs at most x. We assume
in accordance with c(a) ≤ ℓ that cmax(a) ≤ ℓ for all projects a ∈ A. We abuse notation by
denoting c(B) = ∑a∈B c(a) as the cost of a bundle B (analogously with cmin and cmax).

A budgeting scenario E is given by a tuple (A,V,c, ℓ,δ ,τ) where c is replaced by ˜︁c when
cost is uncertain, and δ is replaced by ˜︁δ when duration is uncertain. A budgeting scenario
is processed by an online budgeting method. Such a method works in discrete time steps,
and successively builds a budgeting log L : A→ N0 ∪{⊥} representing at which time step
a project has been started, where ⊥ denotes that the project will not be realized at all. That
is, formally the output of an online budgeting method R(E) is a budgeting log. We further
define the set of realized projects for a budgeting log L as R(L) = {a∈A | L(a) ̸=⊥}. Finally,
for every t ∈ [τ], let U(L, t) = {a ∈ A | L(a)≤ t < L(a)+δ (a)} be the running yet unfinished
projects, and F(L, t) = {a ∈ A | L(a)+δ (a)≤ t} the finished projects.

Depending on what uncertainties occur in the scenario, the budgeting method has limited
access to the cost function c, or the project durations δ . In case of uncertain cost, if L(a) = t∗,
then c(a) is available only after the project has been implemented, i.e. at time step t∗+
δ (a). Obviously, the decision made at step t∗ is fixed and may not be revised when more
information is available. Similarly, when time is uncertain, the online budgeting method has
access to δ only after the project is finished, i.e., at time step t∗+δ (a). Note that this can be
particularly difficult for the method, since it doesn’t even know when additional information
becomes available. An offline budgeting method has access to the exact cost function c and
the exact durations δ at any time.

A budgeting log, and thus also an online budgeting method, has rather weak requirements.
For instance, it is allowed in a budgeting log to start arbitrarily many projects simultaneously,
even if they will certainly exceed the budget limit; or to start projects so late that they cannot
be completed in time. These issues are undesirable and should be avoided. Thus, we now
introduce axioms to describe the properties of online budgeting methods.

1In regular PB the time limit is usually not given, because it can be ignored as we see in the next section.

50

3.3 Preliminaries

Definition 1. Let E be a budgeting scenario and L be a budgeting log with respect to E. L
satisfies the following axioms if respective conditions are met.

Risk-free (RF): The budget may never be exceeded. Formally, c(R(L))≤ ℓ.

Punctuality (PU): Every realized project finishes within the given time limit. Formally, for
all a ∈ A it holds that either L(a) =⊥ or L(a)+δ (a)≤ τ .

Exhaustiveness (EX): There should be no project, which could have been implemented
even with maximum cost without breaking feasibility. Formally, for B = R(L) and
every a ∈ A\B, it holds that c(B)+ cmax(a)> ℓ.

ααα-Risk-assessment (ααα-RA): A (set of) project(s) may only be started if the probability for
exceeding the budget limit is at most α . Formally, given α ∈ [0,1), it holds that a set
of projects S may only be started at time t if cp(U(L, t)∪S, ℓ− c(F(L, t)))≥ 1−α .

ψψψ-Delay-risk (ψψψ-DR): A (set of) project(s) may only be started if the probability for ex-
ceeding the time limit is at most ψ . Formally given ψ ∈ [0,1), a set of projects S may
only be started at time t if (∏a∈U(L,t) δp(a,τ−L(a))) ·δp(S,τ− t)≥ 1−ψ.

κκκ-Limitation (κκκ-LI): The budget limit may not be exceeded by a factor greater than κ .
Formally, c(R(L))≤ κℓ.

A budgeting method R satisfies some axiom χ if R(E) satisfies χ for every budgeting sce-
nario (regardless of the tie-breaking method).

Note that 0-risk-assessment, 1-limitation, and the risk-free property coincide. Further, punc-
tuality and 0-delay-risk coincide. More generally we can say that α-RA and κ-LI are relax-
ations of RF, and that ψ-DR is a relaxation of PU.

Risk-assessment and limitation can be interpreted as follows. The client has (κ − 1)ℓ extra
money as a security, or loan option which should be used only if absolutely necessary. With
a good risk-assessment (i.e. small α) it is improbable that the security is ever touched.
Exhaustiveness has two interpretations. First, voters naturally expect that approved projects
are realized if there is money left to do so safely. Second, it is common that the budget
of a department may be reduced in the next period if it is not completely spent. Not all
axioms make sense for all types of uncertainty. That is, when cost is known in advance,
it makes no sense to analyze α-risk-assessment or κ-limitation. Analogously, it makes no
sense to analyze ψ-delay-risk when durations are known. One might be tempted to analyze
κ-limitation even when cost is known. The definition would actually work fine. However, it
is still not useful as without uncertainty it is just equivalent to increasing the budget limit. It
should really only be considered together with α-risk-assessment because we want to model
that the budget should not be exceeded with high probability, but if we have bad luck, it is at
least not exceeded by more than the factor κ .

51

Chapter 3 Participatory Budgeting under Uncertainty

Independent of the above properties we want to maximize the satisfaction of the voters with
the outcome. One key metric for the analysis of online optimization algorithms is the worst-
case ratio between a solution found by an online algorithm and an optimal (satisfaction max-
imizing) solution with complete knowledge. This factor is known as competitive ratio (CR)
(see Fiat and Woeginger [37]).

Definition 2 (Competitive Ratio (CR)). An online budgeting methodR is σ -competitive (σ -
CR) if there is a constant ∆ ∈ R, such that for every E ∈ E and Bℓ = {B ⊆ A | c(B) ≤ ℓ} it
holds that s(R(R(E)))+∆≥ 1

σ maxB∈Bℓ
s(B).

Note that there exist offline algorithms which compute an optimal solution, and simultane-
ously are exhaustive, risk-free, and punctual. The simplest of such algorithms just checks for
every subset B ⊆ A whether (1) c(B) ≤ ℓ, and (2) whether there exists no project p ∈ A \B
such that c(p)+ c(B) ≤ ℓ. The first condition guarantees that implementing the bundle is
risk-free, and the second condition guarantees exhaustiveness. Note that punctuality is al-
ways guaranteed since δ (a)≤ τ for each a∈ A, and all projects can be started simultaneously
at time 0. From the bundles which pass both checks we can select the bundle with the highest
satisfaction (with arbitrary tie-breaking).

3.4 No Uncertainty

Let us first consider a scenario where we have no uncertainty in both cost and durations. That
is, the budgeting scenario E is given by a tuple (A,V,c, ℓ,δ ,τ). We call this the classical
participatory budgeting because it corresponds to participatory budgeting as it is used in
reality, and well studied in literature (see Aziz and Shah [4] for an overview). Note that in
this scenario offline and online budgeting methods are equivalent, as they both have access
to the same information. Thus, the following remark.

Remark 1. When exact cost and duration, are known in advance, there exists an online
budgeting method which is exhaustive, risk-free, punctual, and has a competitive ratio of 1.

Note that in typical definitions—as in the formal participatory budgeting framework for
approval-based preferences introduced by Faliszewski and Talmon [84] and extended to ir-
resolute budgeting rules by Baumeister et al. [11]—durations of projects, and time limits are
usually omitted. This is because for each project a holds δ (a) ≤ τ , i.e., each project can be
implemented when we start it at time step 0 (formally, L(a) = 0). And since we know all in-
formation (particularly the cost) in advance, we can simply compute which projects we want
to implement, and then start them simultaneously at time step 0.2 Thus, the whole scenario
can be simplified even more. We don’t even need the complicated notion of a budgeting
log—we can just directly provide the set of realized projects as solution.

2The budgeting log allows us to also start projects later, but there is really no reason to do so.

52

3.5 Uncertain Duration

3.5 Uncertain Duration

Now we introduce uncertainty about the durations of projects. Therefore, each project is
associated with minimum duration, maximal duration, exact duration, and a probability
distribution over the durations. As mentioned, this information is provided by the tuple˜︁δ = (δmin,δmax,δ ,δp). Since the exact cost of each project is known, for each bundle we
can still compute whether it is exhaustive, and whether it fits in our budget. We can even
determine whether it is optimal w.r.t. the satisfaction of the voters. Due to δmax(a) ≤ τ for
all projects a ∈ A, we can also guarantee punctuality by starting all projects at time step 0.
Thus, introducing uncertainty in the project durations doesn’t really change anything.

Remark 2. When exact costs are known, but durations are uncertain in advance, there still
exists an online budgeting method which is exhaustive, risk-free, punctual, and has a com-
petitive ratio of 1.

However, note that the problem becomes much more interesting now when projects have to
be implemented sequentially. Reasons can be limited parallelization capabilities (e.g. we
have only three workers, so only three projects can run in parallel), or dependencies between
the projects (e.g. we can independently decide on refurbishing the museum, and on installing
solar panels, but if we want both, we first have to refurbish the museum because parts of the
roof will be replaced; see e.g. Rey et al. [73]). When project durations are uncertain, and
some projects must be implemented sequentially, it is indeed an interesting question which
projects to implement at all, and how to schedule them in order to minimize risk for exceeding
the time limit (see ψ-delay-risk). Similar problems are studied in scheduling and project
planning literature where tasks have to be scheduled while respecting their dependencies and
resource requirements. Such problems have been studied with uncertain project durations
e.g. by Ma et al. [61] and Moradi and Shadrokh [66]. Further, we want to mention the work
by Vaziri et al. [86], who analyze project planning where the time for tasks is uncertain and
can be influenced by the resources allocated to that task. Note however, that scheduling and
project planning is different from participatory budgeting since in participatory budgeting we
only select and implement a subset of projects while in scheduling and project planning we
have to finish all tasks.

3.6 Uncertain Cost

Let us now consider the case where durations are known, but cost is uncertain. Gomez et
al. [44] present a participatory budgeting model considering uncertainty for both, cost and
satisfaction. In contrast to ours, their model is purely stochastic (a set of projects is feasible
if its expected cost is within the budget limit). Further, in their model projects don’t have
durations and are implemented all at the same time. Similar considerations were studied
in KNAPSACK literature, which is closely related to classical participatory budgeting. In

53

Chapter 3 Participatory Budgeting under Uncertainty

KNAPSACK, we are given items associated with value and weights, and try to maximize
the value of a set of projects without breaking a weight limit (see Kellerer et al. [51] for
an introduction to the problem). It has been studied under uncertain weights by Monaci et
al. [64, 65]. They aim to find solutions which perform well even if the exact weights turn
out to be unfavorable. The KNAPSACK variant by Goerigk et al. [43] allows for querying the
exact weight of a fixed number of items in order to find a good solution when weights are
uncertain. However, KNAPSACK does not incorporate durations and time limits as we do.

In our model we are given the uncertain cost functions by the tuple ˜︁c = (cmin,cmax,c,cp).
Now, it is not that simple anymore to precompute bundles which are exhaustive and risk-free.
It is easy to see that for a risk-free bundle we have to work with the upper cost limits provided
by cmax. But this can result in a lot of money being left in the end which potentially violates
exhaustiveness. Of course, we could wait for the projects to finish, and if money is left we
implement further projects (assuming their maximum cost) until the bundle is exhaustive.
However, this certainly brakes punctuality at some point. We can conclude that there is one
major incompatibility in this setting. We cannot be punctual, risk-free, and exhaustive at the
same time. The following two results show that we can even strengthen this result further as
it holds for every reasonable relaxation of RF.3

Theorem 1. The following incompatibilities hold when cost is uncertain.

1. For any fixed α < 1, no online budgeting method simultaneously satisfies α-risk-
assessment, punctuality, and exhaustiveness.

2. For any fixed κ < m, no online budgeting method simultaneously satisfies κ-limitation,
punctuality, and exhaustiveness.

Proof. Let us start with the first claim. Consider a budgeting scenario with an odd budget
limit ℓ ≥ 3, and the projects A = {a1,a2,a3, . . .}. Each project ai ∈ A has minimum cost
cmin(ai) = (ℓ−1)/2, maximum cost cmax(ai) = (ℓ+1)/2, and takes time δ (ai) = τ . Note that
a set of two projects exceeds the budget limit if and only if both projects have maximum
cost. Let each project have maximum cost with probability greater than

√
α . Due to α-risk-

assessment a budgeting method can only start one project at the first time step, say a1. By
punctuality it is impossible to start another project. Since c(a1) = ℓ/2 is possible, there are
instances for which c(a1)+ cmax(a2)≤ ℓ, thus exhaustiveness is violated.

Now focus on the second claim. Consider E ∈ E with projects A = {a1, . . . ,am}, m≥ 3 and a
budget of ℓ > m. Each project ai ∈ A takes time δ (ai) = τ to realize, has cost c(ai) = 1, and
maximum cost cmax(ai) = ℓ−m+1. By exhaustiveness, all projects must be realized, since
for each ai ∈ A holds c(A \ {ai})+ cmax(ai) = ℓ. Further, by punctuality all projects must
be started simultaneously. However, this decision has to be made without knowing the exact
cost. Let E ′ ∈ E be equivalent to E, except for that each project has the maximum cost of

3Note that for κ ≥ m we can simply start every project at time step 0 since cmax(a)≤ ℓ holds for every a ∈ A.
This way we achieve κ-limitation, exhaustiveness, and punctuality at the same time. However, this cannot
be considered a reasonable relaxation for risk-free.

54

3.6 Uncertain Cost

ℓ−m+ 1 as exact cost. An online budgeting method that implements all projects to satisfy
exhaustiveness and punctuality might end up spending cmax(A) = m · (ℓ−m+ 1). Thus, to
start all projects, it cannot be better than m·(ℓ−m+1)

ℓ =
(︂

m− m2+m
ℓ

)︂
-limited. By choosing ℓ

large, we can approach m to any fixed value κ < m.

Now we know that we cannot achieve exhaustiveness and punctuality in combination with
any reasonable risk-assessment, or limitation. But can we achieve at least every two of them?
Indeed, this is possible.

Theorem 2. The following algorithms are possible when only cost is uncertain.

1. There exists an algorithm which is risk-free, and simultaneously punctual.

2. There exists an algorithm which is risk-free, and simultaneously exhaustive.

3. There exists an algorithm which is punctual, and simultaneously exhaustive.

Proof. The first claim is proven by the following algorithm. We start the project with the
highest voter satisfaction, say a1, which has by definition maximum cost of at most ℓ. To
achieve punctuality, we stop now.

For the second claim, we first start the project with the highest voter satisfaction, and then
every time a project finishes we start another project which can be safely added without
exceeding the budget (i.e., assuming maximum cost). If no such project exists anymore, we
achieved exhaustiveness, and stop.

The algorithm that proves the third claim, simply starts all projects at the first time step. Note
that the set of all projects is guaranteed to be exhaustive. Since δ (a) ≤ τ for all projects
a ∈ A, the algorithm is punctual.

We can illustrate our results so far by the following triangle of participatory budgeting un-
der uncertainty. According to Theorem 1, for every reasonable bound risk it is impossible
to achieve the other two, exhaustiveness and punctuality, simultaneously. However, every
combination of two of the three is possible according to Theorem 2. Note the similarity to
the well-known principle in project management: fast, good, cheap; pick two.

55

Chapter 3 Participatory Budgeting under Uncertainty

Note that the first two algorithms in the proof of Theorem 2 are m-competitive, since s(A)≤
m · s({a1}). Further, the third algorithm is even 1-competitive. However, the third algorithm
is certainly not usable at all since it completely ignores risk. But can an algorithm with proper
risk management guarantee any better competitiveness than the first two algorithms?

Theorem 3. The following holds when only cost is uncertain. For any online budgeting
method that satisfies α-risk-assessment for a fixed α < 1, the competitive ratio is in Ω(m). If
cmax(a) = cmin(a)+1 holds for all a ∈ A, the competitive ratio is in Ω(2).

Proof. Consider E ∈E with A= {a1,a2,a3, . . . ,am} and a set of voters, such that each project
ai ∈ A yields the same (additive) satisfaction s(ai) = λ ∈ N+. Let ℓ = m, cmin(ai) = 1 and
cmax(ai) = m for every ai ∈ A. Further, for each ai we set the probability that ai costs exactly
m to α (thus, cp(ai, ℓ− 1) = 1−α). An online algorithm with α-risk-assessment cannot
start more than one project at the same time because for every pair of projects ai ̸= a j it
holds cp({ai,a j}, ℓ) ≤ cp(ai, ℓ−1) · cp(a j, ℓ−1) = (1−α)2 < 1−α . Thus it starts at most
one project, for example a1. Revealing c(a1) = m and c(ai) = 1 for i ∈ [2,m], an offline
algorithm may select the optimal solution B = A \ {a1} with s(B) = λ · (m− 1), while the
online algorithm yields a satisfaction of s({a1}) = λ . Note that since a1 already consumed
all the budget, the online algorithm cannot start any further projects anymore. Overall we
deduce a competitive ratio of (m−1) ∈Ω(m).

For bounded uncertainty by cmax(a) = cmin(a)+ 1 for all a ∈ A, we can use a similar argu-
ment. Let ℓ≥ 2 be an even number, A= {a1,a2,a3, . . . ,am}with cmin(ai)= ℓ/2 and cmax(ai)=
ℓ/2+1. Again, we assume equal utility of λ for every project. We set cp(ai, ℓ/2) = 1−α , so
the probability that two projects can be implemented within ℓ is (1−α)2 < 1−α . Let an
online budgeting method implement a1 first (due to α-RA it cannot implement two projects).
Revealing c(a1) = ℓ/2+1 and c(a2) = c(a3) = ℓ/2, the optimal solution is {a2,a3}, yielding
a competitive ratio of 2λ

λ .

We can even show that the Ω(2)-bound on the competitive ratio is tight.

Theorem 4. The following holds when only cost is uncertain. If the uncertainty on the cost is
bounded by a small factor c∗, that is, cmax(a)− cmin(a)<

cmax(a′)
m = c∗ for all a,a′ ∈ A, there

is a 2-competitive, risk-free method satisfying either punctuality or exhaustiveness.

Proof. We use the optimal offline method to retrieve an optimal bundle B, assuming the lower
bound cost for each project, i.e. ∑b∈B cmin(b)≤ ℓ.
Case 1: If ∑b∈B cmax(b)≤ ℓ, we are done.
Case 2: Otherwise, since implementing B may exceed the budget limit, we remove the
least valuable project a ∈ B and implement B′ = B \ {a} at the first time step. It holds that
ℓ ≥ ∑b∈B cmin(b) ≥ ∑b∈B cmax(b)−|B|c∗ ≥ ∑b∈B cmax(b)− cmax(a) = ∑b∈B′ cmax(b), due to
|B|c∗ ≤ |B| · cmax(a)

m ≤ cmax(a). On the other hand, since a is the least valuable project in B,

the satisfaction with B′ is at least s(B′) ≥ s(B) · |B
′|
|B| = s(B) · |B|−1

|B| . The worst competitive

56

3.6 Uncertain Cost

ratio of two is achieved if |B| = 2, since |B| = 1 is already covered by case 1. We now start
B′ at time step 0 which guarantees punctuality. To achieve exhaustiveness, we wait for the
projects in B′ to finish, and then successively start other projects (which even with maximum
cost don’t exceed the budget limit) until the set of realized projects is exhaustive. Note that
in both cases there is no risk for exceeding the budget limit.

3.6.1 Best-Effort Algorithms

The results so far are rather disappointing. We have seen that there is no online budgeting
method that guarantees all the desirable properties when cost is uncertain. And even if some
properties are compatible, the competitiveness is often rather bad in worst case. However,
this is only a worst-case analysis so far. In this section, we design “best effort” algorithms
which trade off the desirable properties, and aim for a good average competitiveness.

First, we propose the online budgeting method “Best Effort Exhaustiveness” (BEE) which
trades exhaustiveness against punctuality, risk-assessment, and limitation. That is, the method
guarantees punctuality, α-risk-assessment, and κ-limitation for given τ,α , κ , but not ex-
haustiveness—which it cannot guarantee according to Theorem 1. However, it tries to be as
exhaustive as possible. The algorithm generalizes a common greedy algorithm for Knapsack
(see Kellerer et al. [51]) to our setting. Essentially, we rank projects by their expected cost
per value ratio. That is, projects with low expected cost, but high satisfaction for the voters
are ranked high. Then, favoring the highest ranked projects, we start as many projects as
possible without violating risk-assessment, limitation, and punctuality. Whenever projects
finish, we start new projects following the same system. We provide a formal description of
the algorithm in Algorithm 1, whereby cexp(a) we denoted the expected cost of project a,
which can be computed from the probabilistic cost function cp. Due to technical reasons we
use sampling to narrow cp for sets of projects.4

With an extension of the BEE algorithm, we get the Best Effort Punctuality (BEP) algorithm
(provided in Algorithm 2) which trades punctuality against exhaustiveness, risk-assessment,
and limitation. Here, we take the result of BEE and make it exhaustive while exceeding the
time limit as little as possible.

Experimental Setup

To put the best effort algorithms to test, we use real datasets from the Participatory Budgeting
Library (PABULIB, see Stolicki et al. [83]). These datasets include approval ballots from the
voters as well as the corresponding projects with known cost but without durations. We

4Computing cp for sets of projects precisely, i.e., the composition probability distribution of several discrete
probability distributions, is computationally difficult in general. Our sampling approach just determines
whether starting a set of projects is likely to violate α-risk-assessment. To this end, we draw 1,000 costs at
random from all projects in the set, and start the set only if in less than α ·1,000 cases we exceed the budget
limit. The code is available in the appendix.

57

Chapter 3 Participatory Budgeting under Uncertainty

Algorithm 1 Best Effort Exhaustiveness (BEE)
t∗← 0
u(a)← s({a})

cexp(a)
∀a ∈ A {Rating by expected value per cost}

L(a)←⊥ ∀a ∈ A
while t∗ ≤ τ do

Y ←{a ∈ A\ (U(L, t∗)∪F(L, t∗)) | δ (a)≤ τ− t∗}
while Y ̸= /0 do

let a ∈ Y be the project with maximum u(a)
remove a from Y

{Ensure α-RA, and κ-LI}
if cmax(a)≤ κℓ− c(F(L, t∗))− cmax(U(L, t∗)) and cp(U(L, t∗)∪{a}, ℓ− c(F(L, t∗)))≥ 1−α then

L(a)← t∗ {start a}
end if

end while
update t∗ to the next time step where a project finishes

end while
return L

modify the datasets to fit our uncertainty scenario as follows. For each project we draw a
duration between 1 and 10 uniformly at random. The uncertainty is randomized for each
project a in two stages; first we draw the spread x ≥ 0 at random; then we set cmin(a) to
a uniform random value between c(a)− x and c(a), and cmax(a) = cmin(a)+ x. We set the
probability distribution of the cost to be uniform between cmin(a) and cmax(a). We run 200
samples, where for each sample we randomize new uncertainty to the cost, but the duration
as well as the exact cost is always the same. We use different distributions for the spread
to model scenarios where the exact cost can be well approximated or not: High Spread
means a normal distribution with mean µ = 0.5 · c(p) and variance σ = 0.25 · c(p) for each
project p. By Medium Spread we denote a normal distribution with µ = 0.2 · c(p) and
σ = 0.1 · c(p). Finally, by Low Spread we mean a normal distribution with µ = 0.1 · c(p)
and σ = 0.05 ·c(p). Note that spreads have to be natural numbers. So we round the numbers,
and in the very unlikely case that a spread is negative, we set it to 0.

We use three metrics to evaluate the algorithms’ performance. Given the budgeting log L
computed by an online budgeting method, first of all we measure the satisfaction of the voters.
However, since online budgeting methods are allowed to exceed the budget according to κ-
limitation, for higher κ and α the expected satisfaction can be higher than the satisfaction of
the “optimal” bundle (i.e., the offline algorithm). To circumvent this issue we introduce the
satisfaction ratio

sr(L) =
(1−α)s(B1)+αs(B2)

s(R(L))
,

whereby B1 is the optimal bundle for a budget limit ℓ and B2 the optimal bundle for a budget
limit κℓ. To measure exhaustiveness, we compute how many projects maximally could have
been realized in addition to the already realized projects. That is, the size of the largest set
X ⊆ A\R(L) of not realized projects with cmax(X)≤ ℓ− c(R(L)). So, the closer we get to 0,
the closer to complete exhaustiveness are we. For measuring punctuality, we simply compute
by how much we exceed the time limit.

58

3.6 Uncertain Cost

Algorithm 2 Best Effort Punctuality (BEP)
L = BEE() {Get budgeting log from BEE}
let t∗ be the time when the last project in L finishes
Y ←{a ∈ A\ (U(L, t∗)∪F(L, t∗)) | cmax(a)≤ ℓ− c(F(L, t∗))− cmax(U(L, t∗))}
while Y ̸= /0 or U(L, t∗) ̸= /0 do

while Y ̸= /0 do
let Y ′ ⊆ Y be the projects a with minimum δ (a)
let a ∈ Y ′ be the project with maximum cexp(a)
remove a from Y

{ensure κ-LI and α-RA:}
if cmax(a)≤ κℓ− c(F(L, t∗))− cmax(U(L, t∗)) and cp(U(L, t∗)∪{a}, ℓ− c(F(L, t∗)))≥ 1−α then

L(a)← t∗ {start a}
end if

end while
update t∗ to the next time step where a project finishes
Y ←{a ∈ A\ (U(L, t∗)∪F(L, t∗)) | cmax(a)≤ ℓ− c(F(L, t∗))− cmax(U(L, t∗))}

end while
return L

Results

The results for the dataset Warsaw Ursynów, 2021 from the PABULIB are given in Fig-
ures 3.1 and 3.2. The budgeting campaign captured by that dataset had a budget of roughly
5 million, and roughly 10,000 voters approved their preferred projects out of a set of 105
projects, with cost ranging from 2,500 to roughly 1 million, with an average cost of 232,973.6.
In our experiment the average project duration was 5.83 time units. We provide the results
for several other datasets in the appendix.

Comparing the levels of uncertainty, it is not surprising that average values for satisfaction
ratio and punctuality worsen with increasing uncertainty. However, for exhaustiveness this
is not generally the case: with high uncertainty the exhaustiveness often is better than with
medium uncertainty. Probably this is because of the higher maximum costs, which result
in fewer projects which can safely be implemented with the remaining budget. Looking at
our results in more detail, we see in the left column of Figure 3.1 that the BEE-Algorithm
performs much better in terms of both exhaustiveness and satisfaction ratio if we give it more
time. So if we have not too tight time limits (note that there are projects that already have
a duration of 10), BEE is almost exhaustive in the average case even with medium to high
uncertainty, and the satisfaction ratio comes close to 1. In the middle column of Figure 3.1,
we see that limitation plays a similar role. Up to some point a higher κ brings BEE closer
to exhaustiveness, and increases satisfaction. Yet, increasing κ even further does not seem
to have a big impact. This indicates that to some degree tighter time limits can be realized
without big quality loss by providing more backup funds, and vice versa. Risk-assessment
plays almost no role regarding exhaustiveness and satisfaction unless α is almost 0. This
is shown in the right column of Figure 3.1. Although BEE with slightly higher time limit
is close to exhaustive, real exhaustiveness is hard to achieve as the high unpunctuality of
the BEP-Algorithm shows in Figure 3.2. Recall that an average project has a duration of
5.83. Hence, even for low uncertainty, through all α and κ the time limit is exceeded (in
most cases) by a multiple. Higher uncertainty makes this effect even more dramatic. The
satisfaction ratio for BEP is by construction of the algorithm at least as high as of BEE

59

Chapter 3 Participatory Budgeting under Uncertainty

L
ow

10 20 30
0

5

10 Exhaustiveness

Sat. Ratio

1 1.2 1.4 1.6 1.8 2
0

5

10

0 0.1 0.2
0

5

10

M
ed

iu
m

10 20 30
0

5

10

1 1.2 1.4 1.6 1.8 2
0

5

10

0 0.1 0.2
0

5

10

H
ig

h

τ

10 20 30
0

5

10

κ

1 1.2 1.4 1.6 1.8 2
0

5

10

α

0 0.1 0.2
0

5

10

Figure 3.1: Experimental analysis of BEE with dataset Warsaw Ursynów, 2021 and different
levels of uncertainty. The cross marks show the average, dark colored areas the
upper and lower quartile and light colored areas show the maximum and mini-
mum values over 200 samples of the same dataset with different minimum and
maximum costs. Left: Fixed parameters α = 0.05,κ = 1.2 and a variety of time
limits. Middle: Fixed parameters α = 0.05,τ = 10 and a variety of κ-limitations.
Right: Fixed parameters τ = 10,κ = 1.2 and a variety of α-risk-assessments.

(because BEP calls BEE), and the additional projects increase the satisfaction even further.
For a better visibility, we omitted the satisfaction ratio in Figure 3.2.

3.7 Everything Uncertain

Finally, we now want to discuss the problems and questions that arise when both cost, and
durations are uncertain. That is, now we are given uncertain cost ˜︁c = (cmin,cmax,c,cp), and
uncertain durations ˜︁δ = (δmin,δmax,δ ,δp).

First, note that all properties that were incompatible in our uncertain-cost study remain in-
compatible when additionally durations are uncertain. That is, α-risk assessment, punctual-
ity, and exhaustiveness cannot be simultaneously satisfied by any online budgeting method,
and the same holds for κ-limitation, punctuality, and exhaustiveness. This holds even for the
relaxation ψ-delay-risk. The proof for Theorem 1 also proves the following result.

Remark 3. The following incompatibilities hold if both cost and durations are uncertain.

1. For any fixed α < 1 and ψ < 1, no online budgeting method simultaneously satisfies
α-risk-assessment, ψ-delay-risk, and exhaustiveness.

2. For any fixed κ < m and ψ < 1, no online budgeting method simultaneously satisfies
κ-limitation, ψ-delay-risk, and exhaustiveness.

60

3.7 Everything Uncertain

L
ow

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100
Punctuality

M
ed

iu
m

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100

H
ig

h

κ

1 1.2 1.4 1.6 1.8 2
0

50

100

α

0 0.1 0.2 0.3 0.4
0

50

100

Figure 3.2: Experimental analysis of BEP with dataset Warsaw Ursynów, 2021 and different
levels of uncertainty. The cross marks show the average, dark colored areas the
upper and lower quartile and light colored areas show the maximum and mini-
mum values over 200 samples of the same dataset with different minimum and
maximum costs. Left: Fixed parameters α = 0.05,τ = 10 and a variety of κ-
limitations. Right: Fixed parameters τ = 10,κ = 1.2 and a variety of α-risk-
assessments.

Interestingly, every two of risk-free, punctuality (and thus also ψ-delay-risk), and exhaus-
tiveness are still possible. Since every project has a maximum duration of τ , the algorithms
presented in the proof of Theorem 2 work even when durations are unknown.

Remark 4. The following algorithms are possible even if cost and durations are uncertain.

1. There exists an algorithm which is risk-free, and simultaneously punctual.

2. There exists an algorithm which is risk-free, and simultaneously exhaustive.

3. There exists an algorithm which is simultaneously punctual, and exhaustive.

Further, the bounds provided in Theorems 3 and 4 remain valid.

So does the additional uncertainty in the durations change anything at all? Well, not in the
worst case analysis. However, it will certainly be a challenge for best-effort algorithms. Let
us illustrate the problem with the following example.

Example:

Consider the Projects, cost and time intervals, and approval counts provided in the table
below. The budget is ℓ= 60K, and the time limit τ = 18 months.

61

Chapter 3 Participatory Budgeting under Uncertainty

Project Cost Time Approval

15K – 17K 3M – 4M 50

25K – 31K 4M – 6M 40

30K – 53K 12M – 18M 70

7K – 9K 3M – 4M 15

30K – 45K 8M – 13M 30

21K – 28K 2M – 3M 40

A simple approach would be to start the museum and the park benches simultaneously
accepting the risk of exceeding the budget. But we can improve our risk management by
implementing projects sequentially as we learned in Section 3.6. We could start the mu-
seum first, and when it finishes we can decide whether to implement the park benches,
or the playground, depending on the remaining budget. But note that other than in Sec-
tion 3.6 we don’t know the exact durations of the projects. So this second approach
works only if we are lucky, and the museum is implemented in relatively short time. But
there is yet another approach: We start the museum. If it finishes within 14 months, and
it costs at most 43K, we implement the park benches afterwards. If it finishes within 14
months, and it costs between 44K and 51K, we implement the playground afterwards.
And finally, if it doesn’t finish within 14 Months, we can either wait another month ac-
cepting the risk for exceeding the time limit when starting another project afterwards, but
potentially gaining information on the exact price of the museum; or implementing the
park benches, or the playground right now accepting the risk for exceeding the budget.

The third approach essentially moves the problems of the first two approaches to the future
as we run into the same problem not in the first month, but after month 14. But in many
cases the museum will finish earlier. Thus, we will often avoid this problematic decision
when using the third approach. So the third approach is certainly superior to the first two.
But an online budgeting method needs to be very sophisticated to design such strategies for
potentially dozens of projects. We leave the design of such algorithms for future work.

3.8 Conclusions

We introduced a framework for participatory budgeting where knowledge of either the exact
cost of projects, or their exact duration, or both is limited. That is, before a project finishes,
there is only information on minimum and maximum cost/duration, as well as a probability
distribution. The exact cost/duration becomes available only when a project is finished. We

62

3.9 Publication

further introduced axioms which we think a reasonable budgeting method for this scenario
(we call them online budgeting methods) should satisfy, and analyzed which axioms (and
combinations of them) are satisfiable by such methods. It turns out that while uncertain
durations alone are easy to handle, uncertain cost alone is already difficult for an online
budgeting method. We established results on what combinations of axioms can, or cannot
be achieved. We further developed and experimented with online budgeting methods which
achieve a maximal subset of axioms while doing their best to also satisfy the remaining axiom
in average case instances (so-called best-effort budgeting methods). While the sets of axioms
that work together remain the same when additional to the cost uncertainty also durations are
uncertain, we conjecture that best-effort budgeting methods for this scenario have to be much
more sophisticated. However, this remains as future work yet. Another direction for future
research could be to study dependencies between the resources time and cost. For instance,
with longer durations, the cost increases (e.g., salaries for workers have to be paid longer).
But it could also be the other way around: if one is willing to pay more, it is possible to speed
up the project by e.g. employing more workers (see Vaziri et al. [86]).

3.9 Publication

Parts of this chapter (mainly Section 3.6) appeard together with further results at the Interna-
tional Joint Conference on Artificial Intelligence in 2022.

D. Baumeister, L. Boes, and C. Laußmann. “Time-Constrained Participatory
Budgeting Under Uncertain Project Costs”. In: International Joint Confer-
ences on Artificial Intelligence. 2022

3.10 Personal Contribution

The axioms in [10] were developed by Dorothea Baumeister, Linus Boes, and me in equal
parts. For this chapter I extended the list of axioms for uncertainty in the durations. Theo-
rems 1, 2, 3, and 4 (which are merged from Theorems 3, 4, 6, 7, and 8, and Observation 5 in
[10]) were proven by Linus Boes and me in equal parts. The best-effort budgeting methods
and experiments (which were also briefly introduced in [10]) were developed, executed, and
analyzed by me. The remainder of this chapter (particularly all parts about uncertain dura-
tions) was developed by me, and is not included in [10]. The writing of the publication [10]
was conducted in equal parts by Dorothea Baumeister, Linus Boes, and me. I reused a few
text passages from [10] in this chapter which were not completely written by me.

63

Chapter 4

Strategic Campaigns in Apportionment

4.1 Summary

Probably the largest elections among humans are parliamentary elections. Voters elect rep-
resentatives into a parliament, who then discuss problems and decide for solutions. One
widely used way of electing a parliament is through party-list proportional representation
apportionment methods (or apportionment for short). Here, voters vote for parties instead of
directly for candidates, and the seats in the parliament are apportioned to the parties accord-
ing to their share of votes. Often, there is also a so-called legal electoral threshold, i.e., each
party must receive a minimum share of the total votes in order to gain seats at all.

Strategic campaigns are attempts to convince specific voters to change their vote for another
party. We model strategic campaigns as BRIBERY problems. In this chapter, we show that
most apportionment methods are vulnerable to BRIBERY regardless of whether a threshold
is imposed or not. These are bad news, since a malicious person can easily compute opti-
mal campaigns. However, we will also show that by slightly modifying the apportionment
process, we can increase the complexity of BRIBERY significantly, which provides more re-
sistance to strategic campaigns. Meanwhile, it is not much more effort for the voters to vote
in this modified setting, and computation of the seat allocation remains easy.

4.2 Introduction

When it comes to parliamentary elections, voters usually don’t vote on individual candidates
but on parties. Among these parties the fixed number of seats in the parliament is apportioned.
An apportionment method is an algorithm that apportions the seats in a parliament to the
parties. Often the goal is to apportion the seats in a way that the fraction of seats in the
parliament a party gets is as close as possible to the fraction of voters who voted for that party.
This ensures that the parliament is representative for the voters’ opinions, can then efficiently
discuss topics, and decide laws in the name of the voters. Pukelsheim [71] provides an
overview of apportionment methods in European countries and describes the process based
on real election data. Gallagher and Mitchell [41] give another very detailed explanation of
voting rules used world-wide.

65

Chapter 4 Strategic Campaigns in Apportionment

Many countries using apportionment extend the basic procedure by a so-called electoral
threshold—a minimum fraction of votes a party must receive to get any seats at all. In Ger-
many, for instance, a party must receive at least 5% of the total votes before it gets any seats
at all (even though ‘mathematically’ each of the 736 seats represents about 0.13% of the vot-
ers). By reducing the number of parties in parliament (see [68] for a study on mechanical and
psychological effects), thresholds are important for the government to quickly form, and for
the parliament to allow efficient decision-making. But a disadvantage of the threshold is that
potentially many voters are not represented in the parliament because they were supporting
a party that did not make it above the threshold. However, we don’t want to discuss these
advantages and disadvantages of thresholds in this work. We want to find out to what extent
thresholds can be exploited in strategic campaigns.

In strategic campaigns, an external agent intents to change the election outcome in his favor
by convincing (e.g. by advertisement) a limited number of voters to change their vote. That
is, an external agent seeks to change a limited number of votes in order to either ensure a
party he supports receives at least ℓ seats in the parliament (constructive case), or to limit
the influence of a party he despises by ensuring it receives no more than ℓ seats (destructive
case). In literature, this problem is usually referred to as BRIBERY. The research line on the
computational complexity of BRIBERY (which is also referred to as strategic campaigns),
was initiated by Faliszewski et al. [33]. The complexity of bribery has been studied for a wide
range of voting rules, as surveyed by Faliszewski and Rothe [35]. Most of the time bribery
was only studied for single-winner voting rules. In this chapter we study the complexity
of BRIBERY for apportionment methods with threshold. Bredereck et al. [23] only recently
initiated the study of bribery in apportionment elections. They show that an optimal strategic
campaign for apportionment elections without a threshold can be computed in polynomial
time. A similar result was shown by Güney [46]. Their studies are closely related to the first
part of this chapter, and the algorithms we provide in Section 4.5 are based on algorithms
Bredereck et al. [23] developed. Especially in the light of today’s possibilities to process
enormous amounts of data from e.g. social networks (which allow to predict the voting
behavior of individuals and to target them with individualized advertising), it becomes very
important to understand how hard it is to target elections with strategic campaigns, i.e. to
know how effective campaigns can be and how easy it is to find optimal campaigns.

4.3 Apportionment

An apportionment instance I = (P,V,τ,κ) consists of the set of m parties P , a list of n votes
V over the parties in P , a threshold τ ∈ N and the seat count κ ∈ N. We assume κ is smaller
than |V|. In reality, κ will be orders of magnitude smaller than |V| since a parliament is
supposed to be a small representation of the citizens. Each vote in V is a strict ranking of the
parties from most to least preferred, and we write A≻v B if voter v prefers party A to B. We
omit the subscript v when it is clear from the context. We refer to the most preferred party of

66

4.3 Apportionment

a voter v as v’s top choice. Relative thresholds (as they occur much more often in reality, e.g.
the 5% in Germany) can easily be converted to an absolute threshold, as in our definition.1

Next, let us look at how the apportionment instance is processed to apportion the seats to the
parties. Note that in order to respect the threshold, it must hold that whenever less than τ
voters have a party P as their top choice, P must receive 0 seats in the end. Since we want to
keep the processing of the threshold separated from the actual apportionment procedures as
they are described in literature, we process apportionment instances in two consecutive steps
as illustrated by the figure below.

I = (P,V,τ,κ) −−−−−−−−−→ σ −−−−−−−−−→ α
Apportionment

Instance
Top-Choice or
Second-Chance

Support
Allocation

Apportionment
Method

Seat
Allocation

In the first step we compute a support allocation σ . The support allocation informally de-
scribes how many voters count as supporters for each party. In the second step, the seats are
apportioned to the parties according to their support. The electoral threshold will be applied
in the first step. We will introduce two methods how to deal with the threshold in a second.
But it is important to note at this point that we require σ(P) = 0 whenever less than τ voters
have a party P as their top choice. By this requirement we ensure that no changes (compared
to literature) to the actual apportionment procedures used in the second step are needed. They
work out of the box regardless what threshold is used, and how we deal with it.

4.3.1 Computing Support Allocations

In this work we consider two methods (which we refer to as modes) of computing the support
allocation. Both result in different support allocations if and only if at least one party is below
the electoral threshold. This is because of the different ways the two modes deal with votes
for parties below the threshold. By our requirement, it is clear that—in both modes—holds
σ(P) = 0 whenever less than τ voters have a party P as their top choice. However, it is not
defined what to do with the votes which have P as their top choice. In most real elections
these votes are currently dropped. That is, the support for each party P is exactly the count
of votes where P is the top choice—except when this count is less than τ; then the support
for P is 0. We refer to this mode as the top-choice mode, as only top-choices are considered
supporters. We illustrate the procedure with the following example.

1Since strategic campaigns as we define them later do only change the votes but never the vote count, we can
use relative and absolute thresholds interchangeably, indeed. Note however, that this doesn’t hold for fraud
types which change the vote count (e.g. CONTROL).

67

Chapter 4 Strategic Campaigns in Apportionment

Example:

Consider τ = 4, P = {A,B,C,D,E}, any κ and

V = (3 × A≻ B≻C ≻ E ≻ D,

2 × C ≻ E ≻ B≻ A≻ D,

8 × D≻C ≻ E ≻ B≻ A,
6 × B≻ A≻C ≻ E ≻ D).

Clearly A, C and E don’t make it above the threshold. In the top-choice mode votes
for them (i.e., the first two blocks) are ignored. Thus, the final support allocation is
σ(A) = σ(C) = σ(E) = 0, σ(B) = 6, and σ(D) = 8.

When we consider the example above once again, it is easy to argue that while D has the
most support, party B seems to be more liked by the most voters. Knowing that A and C
don’t make it above the threshold, the first two voter groups might regret that they haven’t
voted for B instead. Both find D to be the worst party while B is their second or third
most preferred party, and B made it above the threshold. Inspired by this observation, we
introduce the second-chance mode. In the second-chance mode we first find the set P≥τ of
parties which make it above the threshold (i.e., where at least τ voters have the respective
party as top choice). Then, we let each voter count as one supporter for the party in P≥τ they
prefer the most. In the example above we have P≥τ = {B,D}. The first two voter groups
now count as supporters for B as this is their most preferred party in P≥τ . The third group
counts for D, and the last group for B, just as before. This results in the support allocation
σ(A) = σ(C) = σ(E) = 0, σ(B) = 11, and σ(D) = 8.

4.3.2 Apportioning Seats

Now that we have computed the support allocation either way, we can determine the seat
allocation by employing a so-called apportionment method. Such methods take the support
allocation σ and the seat count κ as input, and compute the seat allocation α :P →{0, . . . ,κ}
satisfying ∑A∈P α(A) = κ . We focus on the largest-remainder method (LRM) and the class
of divisor sequence apportionment methods, including, for example, the D’Hondt method
(a.k.a. Jefferson’s method), and the Sainte-Laguë method (a.k.a. the Webster method).

A divisor sequence method is characterized by a strict monotonic increasing function f :
N≥1 → N≥1. Thereby f (i) is the i-th divisor. D’Hondt, for instance, is characterized by
the function fDH(x) = x, and Sainte Laguë is characterized by fSL(x) = 2x− 1. For each
party P ∈ P , we then compute the list[︃

σ(P)
f (1)

,
σ(P)
f (2)

, . . . ,
σ(P)
f (κ)

]︃

68

4.4 Bribery

using these divisors. Then, we go through the lists of all parties to find the highest κ values.
Ties are broken by some tie-breaking mechanism. Each party receives one seat for each of
its list values that is among the κ highest values. Let us illustrate the process in the following
example for Sainte Laguë.

Example:

Suppose we apportion κ = 4 seats to the parties P = {P1,P2,P3}, and are given the fol-
lowing support allocation: σ(P1) = 1024, σ(P2) = 817, and σ(P3) = 610. We compute
the following lists (values are rounded to one decimal place):

P1 : [1024, 341.3, 204.8, 146.3],
P2 : [817, 272.3, 163.4, 116.7],
P3 : [610, 203.3, 122, 87.1].

We highlight the κ = 4 highest values in boldface. Party P1 receives two seats, parties P2
and P3 receive one seat each.

The Largest-Remainder Method (LRM) is not based on a function computing divisors. It first
computes the total support n′ = ∑P∈P σ(P) (which is exactly the number of voters except
when votes are ignored in the top-choice mode because a party is below the threshold). We
then compute the fair share fs(Pi) = κ · σ(Pi)

n′ which, informally, is the number of seats the
party would receive in a perfectly proportional parliament. Since this number is usually not
an integer, we now have to round the fair shares of the parties. First, each party Pi ∈ P
receives a lower quota of lq(Pi) = ⌊fs(Pi)⌋ seats, i.e., the integer part of fs(Pi). Usually we
now have some seats left over. Say we have s seats left, then each of the s parties with the
largest remainder rem(Pi) = frac(fs(Pi)) (where frac(x) = x−⌊x⌋ denotes the non-integer
part of a real number x) receive one additional seat (i.e., their fair share is rounded up).

In Example 4.3.2 LRM would work as follows. First we compute n′ = 1024+817+610 =
2451. We now compute the fair shares fs(P1) = κ · 1024

2451 ≈ 1.67, fs(P2) = κ · 817
2451 ≈ 1.33,

and fs(P3) = κ · 610
2451 ≈ 0.99. Thus, P1 and P2 receive a lower quota of 1 seat, and P3 no seat

for now. However, 2 seats are left, so P3 and P1 with their largest remainders receive one
additional seat each.

4.4 Bribery

By strategic campaigns we mean that an external agent strategically convinces a limited num-
ber of voters in such a way that the election outcome is changed in a by the agent desired
way. We model strategic campaigns as the following BRIBERY decision problem (compare
Bredereck et al. [23] and Faliszewski et al. [33]).

69

Chapter 4 Strategic Campaigns in Apportionment

R-BRIBERY

Given: An apportionment instance (P,V,τ,κ), a distinguished party P∗ ∈ P , and
integers ℓ, 1≤ ℓ≤ κ , and K, 0≤ K ≤ |V|.

Question: Is there a successful campaign, that is, is it possible to make P∗ receive at
least ℓ seats using apportionment methodR by changing at most K votes?

We also consider a destructive version of the problem where the external agent wants to limit
the influence of a distinguished party.

R-DESTRUCTIVE-BRIBERY

Given: An apportionment instance (P,V,τ,κ), a distinguished party P∗ ∈ P , and
integers ℓ, 0≤ ℓ < κ , and K, 0≤ K ≤ |V|.

Question: Is there a successful campaign, that is, is it possible to make P∗ receive at
most ℓ seats using apportionment methodR by changing at most K votes?

In both the constructive and the destructive cases, we assume tie-breaking in the apportion-
ment methods to be to the advantage of P∗ (i.e., in a tie, P∗ gets the seat). Note that the
encoding of τ , ℓ, and κ does not matter since they are bounded by |V|.

The analysis of the complexity of the problems above is important to understand how real-
istic it is that an external agent significantly changes the election outcome by individualized
advertisement or direct payments to the voters. Such actions are usually expensive, so we can
assume that the agent has only capabilities to change a very limited amount of votes. Thus,
the agent has to be certain that his goal can be achieved, and he has to be careful how to
spend the budget for maximal effect. Note that when the problems above are intractable for
an apportionment methodR, computing an optimal strategic campaign is intractable, too.

4.5 Classical Top-Choice Mode

We start with a complexity analysis of R-BRIBERY and R-DESTRUCTIVE-BRIBERY in the
classical top-choice mode of apportionment as defined in Section 4.3.1. Before we present
our main result regarding the top-choice mode in Theorem 1, let us first present the following
lemma and understand its implications.

Lemma 1. The following two statements hold for all divisor sequence methods and for the
Largest Remainder Method.

1. Adding voters to support a distinguished party P∗ can never make P∗ lose seats. Fur-
ther, removing voters from P∗ can never make P∗ gain seats.

70

4.5 Classical Top-Choice Mode

2. Adding voters to support another party than P∗ cannot increase the number of seats for
P∗ by more than if we add the same number of supporters to P∗ directly. Conversely,
removing supporters from another party than P∗ cannot decrease the number of seats
for P∗ by more than if we remove the same number of supporters directly from P∗.

Proof. Le us first prove the lemma for divisor sequence methods.

The first claim is easy to see. Increasing (decreasing) the support for P∗ increases (decreases)
all values in the list of P∗ while keeping the values of the other parties untouched. Thus, when
a value in the list of P∗ was one of the κ highest seats before, it still is (in the destructive
case, when a value wasn’t one of the highest, it remains so).

For the second claim, note that changing the vote counts for other parties than P∗ results in
no changes of the list values of P∗ but may increase the list values of the other parties. Thus,
the other parties cannot lose seats at all, and P∗ cannot get more seats than before. On the
other hand, adding the same vote counts to P∗ can (by the first claim) never make P∗ lose
seats. The case of removing voters is treated analogously.

The proof for LRM is a little more involved since adding or removing votes changes n and
thus the fair shares of all parties.

For the first claim, note that κ · σ(P∗)−x
n′−x < κ · σ(P∗)

n′ < κ · σ(P∗)+x
n′+x for every positive x. That is,

the fair share decreases when we remove supporters, but increases when we add supporters.
However, for other parties the fair share decreases when n′ increases, and vice versa. Thus,
P∗ receives at least as many seats as before when supporters for P∗ are added, and cannot
gain seats when supporters are removed.

For the second claim, note it is in fact possible (although rare) that P∗ receives more seats
than before by adding a voter to another party than P∗ due to the changed remainders with
the changed value of n. Party P∗’s remainder may be decreased a little less than the remainder
of a much bigger party. However, note that we would achieve the same n by adding the same
voters to P∗ instead of to the other party. In that case, P∗’s fair share is even higher, so P∗ will
not receive fewer seats than before. An analogous argumentation applies to the converse case
since removing voters from P∗ reduces P∗’s seat count at least as much as removing voters
from another party.

Lemma 1 is so important because it guarantees that in the constructive case it is optimal to
bribe K voters of other parties to vote for P∗ instead, and in the destructive case it is optimal
to take K voters away from P∗ and bribe them to vote for another party instead. Armed with
this knowledge, we can now prove our main result of the section.

Theorem 1. Let R be a divisor sequence method or the Largest Remainder Method. Then
R-BRIBERY and R-DESTRUCTIVE-BRIBERY are in P.

Let us start with the proof for divisor sequence methods.

71

Chapter 4 Strategic Campaigns in Apportionment

Proof (Divisor Sequence Methods). We prove that Algorithm 3 decides the constructive case
correctly in deterministic polynomial-time, and Algorithm 4 does for the destructive case.

Algorithm 3 Deciding whether bribery is possible (divisor sequence methods).
Input: P , V , τ , κ , P∗, K, ℓ

K←min{n−σ(P∗),K}
if σ(P∗)+K < τ then

return NO
end if
compute γ {γ[P][x] is the minimum vote count we must remove from P to ensure that P receives exactly x seats before P∗ gets ℓ seats
assuming P∗ gets exactly K additional votes.}
initialize table tab with κ− ℓ columns and m rows,

where tab[0][0]← 0 and the other entries are ∞.
let o : {1, . . . , |P−P∗ |} →P−P∗ be an ordering

for i← 1 to |P−P∗ | do
for s← 0 to κ− ℓ do

for (x,cost) ∈ γ[o(i)] do
if s− x≥ 0 then

tmp← tab[i−1][s− x]+ cost
if tmp < tab[i][s] then

tab[i][s] = tmp
end if

end if
end for

end for
end for

for s← 0 to κ− ℓ do
if tab[|P−P∗ |][s]≤ K then

return YES
end if

end for
return NO

We begin with the constructive case. Algorithm 3 runs in polynomial time. This is easy to
see once we describe how γ is computed, since the rest of the algorithm consists of loops
which obviously run in polynomial-time. As commented, γ[P][x] gives the minimum number
of votes that have to be removed from party P so that P receives only x seats before P∗ re-
ceives the ℓ-th seat (assuming P∗ has exactly K additional votes in the end—which is optimal
according to Lemma 1). Computing the γ values works with a binary search for the jumping
points of the function φ , which is defined as the number of seats a party with y votes receives
before P∗ receives ℓ seats (again, assuming P∗ has exactly K additional votes in the end).
That is, assuming P∗ has p∗ votes in the end, we have φ(y) = 0 if y < τ or y

fD(1)
≤ p∗

fD(ℓ)
,

and φ(y) = max{k | y
fD(k)

> p∗
fD(ℓ)
} otherwise, where fD is the characteristic function of the

respective divisor sequence method.

We now show the correctness of the algorithm. Setting K to the minimum of n−σ(P∗) and
K is necessary to ensure that we never remove more voters from parties in P−P∗ than allowed
or exist. Next, if P∗ cannot reach the threshold, we must answer NO since P∗ can then
never receive any seat at all. In the middle part of the algorithm, we fill a table. For each i,
1≤ i≤ |P−P∗|, and each s, 0≤ s≤ κ− ℓ, the cell tab[i][s] contains the minimum number of
votes needed to be moved away from parties P1, . . . ,Pi such that P1, . . . ,Pi receive s seats in
total before P∗ is assigned its ℓ-th seat (again, assuming P∗ has exactly K additional votes in

72

4.5 Classical Top-Choice Mode

the end). The values are computed dynamically from the previous row to the next row. This
is possible because the seats that parties P1, . . . ,Pi receive in total before P∗ is assigned its
ℓ-th seat are exactly the sum of the number of seats the parties receive individually before
P∗ receives its ℓ-th seat. Further, since this number can be computed directly by comparing
the divisor list of the party with the divisor list of P∗ (i.e., the φ function of each party is
independent of other parties’ support) the required bribery budget is also exactly the sum of
the individual bribes.

Finally, in the end, we check if in the last row there exists a value of at most K. If this holds
for, say, cell tab[|P−P∗ |][s], then we correctly answer YES because there do exist bribes that
do not exceed K and ensure that the other parties receive at most s seats before P∗ is assigned
its ℓ-th seat. Since there are κ seats available, and the other parties get s≤ κ− ℓ seats before
P∗ receives the ℓ-th seat, P∗ will indeed receive its ℓ-th seat. However, if all cells of the last
row contain a value greater than K, the given budget does not suffice to ensure that the other
parties receive at most κ − ℓ seats before P∗ receives its ℓ-th seat. Thus, the other parties
receive at least κ − ℓ+ 1 seats in this case, which leaves at most ℓ− 1 seats for P∗, so we
correctly answer NO.

Algorithm 4 Deciding whether destructive bribery is possible (divisor sequence methods).
Input: P , V , τ , κ , P∗, K, ℓ

K←min{σ(P∗),K}
if σ(P∗)−K < τ then

return YES
end if
compute γ {γ[P][x] is the minimum vote count we need to add to P to ensure that P receives exactly x seats before P∗ gets ℓ+ 1 seats
assuming P∗ loses exactly K votes.}
initialize table tab with κ− ℓ columns and m rows,

where tab[0][0]← 0 and the other entries are ∞.
let o : {1, . . . , |P−P∗ |} →P−P∗ be an ordering

for i← 1 to |P−P∗ | do
for s← 0 to κ− ℓ do

for (x,cost) ∈ γ[o(i)] do
if s− x≥ 0 then

tmp← tab[i−1][s− x]+ cost
if tmp < tab[i][s] then

tab[i][s] = tmp
end if

end if
end for

end for
for s← 0 to κ− ℓ do

if tab[i−1][s]≤ K and s+φ(σ(o(i))+K− tab[i−1][s])≥ κ− ℓ then
return YES

end if
end for

end for
return NO

Now we turn towards the destructive case. It is easy to see that Algorithm 4 runs is polynomial-
time just as Algorithm 3. This time, γ and φ are defined slightly different: We define φ(y)
as the number of seats a party with y votes receives before P∗ is assigned its (ℓ+ 1)-th seat
(assuming P∗ loses K votes which is optimal by Lemma 1). Further, we define γ[P][x] as
the minimum number of votes we need to add to party P such that it receives at least x seats

73

Chapter 4 Strategic Campaigns in Apportionment

before P∗ is assigned its (ℓ+ 1)-th seat. We can compute γ in polynomial-time using bi-
nary search for the jumping points in φ (which itself can be computed similarly as in the
constructive case).

We now show the correctness of the algorithm. Setting K to the minimum of σ(P∗) and K is
necessary to ensure that we never remove more voters from P∗ than allowed or exist. Next, if
P∗ will not reach the threshold after removing K supporters, we can immediately answer YES

since P∗ doesn’t receive any seat at all. In the middle part of the algorithm, we fill a table.
For each i, 1≤ i≤ |P−P∗|, and each s, 0≤ s≤ κ− ℓ, the cell tab[i][s] contains the minimum
number of votes needed to be moved towards parties P1, . . . ,Pi such that P1, . . . ,Pi receive s
seats in total before P∗ is assigned its (ℓ+ 1)-th seat (assuming P∗ loses exactly K votes in
the end). The values are computed dynamically from the previous row to the next row which
is possible by the same argument as in the constructive case. At the end of each iteration we
check if there is a possibility with the remaining budget to gain at least κ− ℓ seats for P−P∗

before P∗ gains the (ℓ+1)-th seat. If so, we answer YES since we can add at most K voters
to the other parties such that not enough seats are left for P∗ to get the (ℓ+1)-th seat. If this
was possible in no iteration, we must answer NO since with our budget it was never possible
for P−P∗ to take enough seats away from P∗.

Let us now show the proof of Theorem 1 for the Largest Remainder method.

Proof (Largest Remainder Method). For LRM we can use very similar algorithms as for di-
visor sequence methods. However, a few changes in the design are necessary. First, since
LRM depends on the total support count (i.e., number of voters for parties above the thresh-
old), we have to pay attention when pushing a party below the threshold (or raising a party
above the threshold). This will change the total support count, and thus all fair shares. There-
fore, we will basically run the algorithm once where we push no party below the threshold,
once where we push a total of one party below the threshold, once where we push a total
of two parties below the threshold, and so on (analogously with bringing parties above the
threshold in the destructive case). The second major difference to the algorithm for divisor
sequences is that a table needs only to be filled to check whether P∗ can receive a remainder
seat. The lower quota for P∗ is fixed by the total support count already. We thus fill the table
if and only if the remainder seat matters (either because P∗ needs it in the constructive case,
or because P∗ must not get it in the destructive case).

We begin with the detailed proof for the constructive case. Algorithm 5 runs in polynomial
time. This is easy to see once we describe how γ is computed, since the rest of the algorithm
consists of loops which obviously run in polynomial-time (note that the while-loop runs only
until no further party can be pushed below the threshold, i.e., at most |P| − 1 times). As
commented, γ[P][x] gives the minimum number of votes that have to be removed from party
P so that P receives only x seats before P∗ receives its remainder seat (assuming P∗ has
exactly K additional votes in the end). Thereby, γ excludes all possibilities to push P below
the threshold, i.e., for x = 0 is undefined. This is important to let us control how many parties
are above the threshold. Computing the γ values works with a binary search for the jumping

74

4.5 Classical Top-Choice Mode

Algorithm 5 Deciding whether bribery is possible (LRM).
Input: P , V , τ , κ , P∗, K, ℓ

K←min{n−σ(P∗),K}
if σ(P∗)+K < τ then

return NO
end if
while True do

update n to match the number of voters for parties still above the threshold (budget expended already counts for P∗)
if P∗ receives at least ℓ seats by lower quota then

return YES
end if
if P∗ receives exactly ℓ−1 seats by lower quota then

compute γ {γ[P][x] is the minimum vote count we must remove from P to ensure that P receives only x seats before P∗ gets the
remainder seat.}
initialize table tab with κ− ℓ columns and m rows,

where tab[0][0]← 0 and the other entries are ∞.
let o : {1, . . . , |P−P∗ |} →P−P∗ be an ordering
for i← 1 to |P−P∗ | do

for s← 0 to κ− ℓ do
for (x,cost) ∈ γ[o(i)] do

if s− x≥ 0 then
tmp← tab[i−1][s− x]+ cost
if tmp < tab[i][s] then

tab[i][s] = tmp
end if

end if
end for

end for
end for
for s← 0 to κ− ℓ do

if tab[|P−P∗ |][s]≤ K then
return YES

end if
end for

end if
if there is a party which can be pushed below the threshold with the remaining budget then

push the smallest such party below the threshold, and update the budget accordingly
else

return NO
end if

end while

points of the function φ , which is defined as the number of seats a party with y votes receives
before P∗ receives its remainder seat (again, assuming P∗ has exactly K additional votes in
the end). That is, φ(y) is the lower quota of a party with y support whenever the remainder
of a party with y support is lower than the remainder of P∗, or else the lower quota plus one.

We now show the correctness of the algorithm. Setting K to the minimum of n−σ(P∗) and
K is necessary to ensure that we never remove more voters from parties in P−P∗ than allowed
or exist. Next, if P∗ cannot reach the threshold, we must answer NO since P∗ can then
never receive any seat at all. As mentioned, we now repeat the following first with no party
pushed below the threshold, and then again pushing one additional party (the smallest) at a
time below the threshold until we cannot push any further parties below the threshold. This
ensures that we cover all possible number of parties above the threshold, and thus all possible
values for n (the total support). For each iteration we update n accordingly to ensure the fair
shares of all parties can be computed correctly. In case P∗ receives at least ℓ seats already by
lower quota, we can safely answer YES because with the current n the distinguished party is

75

Chapter 4 Strategic Campaigns in Apportionment

already guaranteed its ℓ-th seat. Only if P∗ receives exactly ℓ− 1 seats by lower quota, we
start to fill a table as we did with the divisor sequence methods. The proof of correctness
for this part of the algorithm works analogously as for the divisor sequence methods, and
is therefore omitted. If the last table row contains a value of at most K, we know that it is
possible to take voters away from the other parties such that they receive at most κ− ℓ seats
before P∗ gets a remainder seat. So P∗ will receive the remainder seat which results in ℓ seats
for P∗ in total. However, if all cells of the last row contain a value greater than K, we must
try to push an additional party below the threshold. If this is possible, we do so, and repeat
the while-loop. Otherwise, we can answer NO because with all possible n the distinguished
party was unable to receive ℓ seats.

For the destructive case Algorithm 5 can be adapted in the same way as Algorithm 3 was
adapted for the destructive case for divisor sequence methods. This time within the while-
loop we answer YES if P∗ receives at most ℓ− 1 seats by lower quota, and we fill the table
if and only if P∗ receives exactly ℓ seats by lower quota (here we try to prevent P∗ from
receiving the remainder seat).

By tracing back through the tables one can easily extract the information from which party
how many votes have to be removed (constructive case), or to which party how many votes
have to be added (destructive case). Note, however, that this number might not add up to K
but can be smaller. In bribery, we assume votes to be moved but neither added nor deleted.
Since we assume in the algorithms (according to Lemma 1) that exactly K votes are added for
P∗ (constructive), or removed from P∗ (destructive), we might need to remove (constructive)
or add (destructive) some additional votes for some random party other than P∗. This way we
ensure that the number of votes added to P∗ matches the number removed from other parties
in the constructive case, and vice versa in the destructive case. Note further that computing
optimal campaigns can also be done efficiently by binary search for the highest (smallest)
value for ℓ where constructive (destructive) bribery is still possible.

4.6 The Second-Chance Mode

Efficient algorithms as developed in the previous section make it very simple for a campaign
manager to exert influence on the election outcome. By applying the algorithms to real
election data, one can observe that a very small budget is sufficient to change the election
outcome seriously. The interested reader is encouraged to take a look at the experimental
results in [59]. This being said, it can be considered quite dangerous for a democracy when
optimal campaigns can be computed efficiently. Therefore, it would be of great advantage if
there was some modification to the usual apportionment setting that makes the computation
of optimal campaigns intractable.

In this section we analyze the second-chance mode of voting in apportionment elections
which turns out to provide computational resistance against strategic campaigns. Instead of

76

4.6 The Second-Chance Mode

just focusing on specific apportionment methods, we generalize our results to the class of
majority-consistent apportionment methods.

Definition 1. Let A ∈ P be the party with the highest support (with arbitrary tie-breaking
if necessary) in a given support allocation σ . We call an apportionment method majority-
consistent if no party in P with less support than A receives more seats than A.

Informally, a majority-consistent apportionment methods assigns the party with highest sup-
port the most seats. This is certainly a reasonable criterion for apportionment methods, and
all prominent apportionment methods (including divisor sequence methods and LRM) satisfy
it. For this huge class of apportionment methods we can show the following result.

Theorem 2. For each majority-consistent apportionment method R, R-BRIBERY and R-
DESTRUCTIVE-BRIBERY are NP-complete in the second-chance mode.

Proof. The membership to NP is easy to see for both problems: given the list of votes af-
ter applying bribery (the certificate) we can easily verify that no more than K votes were
changed, and that now P∗ receives at least (or at most) ℓ seats. We show NP-hardness.

Let us start with the proof forR-BRIBERY. Let (U,S,K) = ({u1, . . . ,up},{S1, . . . ,Sq},K) be
an instance of HITTING SET with q ≥ 4. In polynomial time, we construct an instance of
R-BRIBERY with parties P = {c,c′}∪U , a threshold τ = 2q+1, ℓ = 1 desired seat, κ = 1
available seat, and the votes

V = (4q+2 votes c≻ ·· · ,
4q+K +2 votes c′ ≻ ·· · , (4.1)

for each j ∈ [q],2 votes S j ≻ c′ ≻ ·· · , (4.2)
for each i ∈ [p],q− γi votes ui ≻ c≻ ·· · , (4.3)
for each i ∈ [p],q− γi votes ui ≻ c′ ≻ ·· ·), (4.4)

where S j ≻ c′ means that each element in S j is preferred to c′, but we do not care about
the exact order of the elements in S j. Further, 2γi is the number of votes from group (4.2),
in which ui is at the first position. That is, it is guaranteed that each party ui is in exactly
2γi +(q− γi)+(q− γi) = 2q < τ votes at first position—thus failing the threshold. Party c is
first in the preference of 4q+2≥ τ voters, and c′ in the preference of 4q+K +2≥ τ voters.
Note that the voters in groups (4.2) and (4.4) use their second chance to vote for c′, and those
in group (4.3) use it to vote for c. It follows that currently c′ receives exactly 2q+K more
support than c, and thus wins the seat. We now show that we can make the distinguished
party P∗ = c win the seat by bribing at most K voters if and only if there exists a hitting set
of size at most K.

(⇐⇐⇐) Suppose there exists a hitting set U ′⊆U of size exactly K (if |U ′|<K, it can be padded
to size exactly K by adding arbitrary elements from U). For each ui ∈U ′, we bribe one voter
from group (4.1) to put ui at their first position. These ui now each receive the 2q+ 1 top

77

Chapter 4 Strategic Campaigns in Apportionment

choices required by the threshold, i.e., they participate in the further apportionment process.
Note that each ui can receive a support of at most 4q+1, so no ui can win the seat against c
or c′. Groups (4.3) and (4.4) do not change the support difference between c and c′ and thus
can be ignored. However, since U ′ is a hitting set, all 2q voters in group (4.2) now vote for
a party in U ′ instead of c′, reducing the difference between c and c′ by 2q. Further, we have
bribed K voters from group (4.1) to not vote for c′, which reduces the difference between
c and c′ by another K votes. Therefore, c and c′ now have the same support, and since we
assume tie-breaking to prefer c, party c wins the seat.

(⇒⇒⇒) Suppose the smallest hitting set has size K′>K. That is, with only K elements of U we
can hit at most q−1 sets from S. It follows that by bribing K voters from group (4.1) to vote
for some ui ∈U instead of c′, we can only prevent up to 2(q−1) voters from group (4.2) to
use their second chance to vote for c′. Thus, we reduce the difference between c and c′ by at
most 2(q−1)+K, which is not enough to make c win the seat. Now consider that we do not
use the complete budget K on this strategy (to bribe voters of group (4.1)), but only K′′ < K.
Note that by bringing only K′′ parties from U above the threshold, we can only hit up to
2(q− 1− (K−K′′)) sets from S. So the difference between c and c′ is reduced by at most
2(q−1− (K−K′′))+K′′ using this strategy. However, we now have a budget of K−K′′ left
to bribe voters, e.g., from group (4.1), to vote primarily for c without bringing any additional
ui above the threshold. It is easy to see that we will only reduce the difference between c
and c′ by at most 2(K−K′′) with this strategy as, in the best case, c gains one supporter and
c′ loses one with a single bribery action. Thus, we cannot reduce the difference between c
and c′ by more than 2(q−1− (K−K′′))+K′′+2(K−K′′) = 2(q−1)+K′′ with this mixed
strategy. For each K′′ ≤ K, it holds that 2(q− 1)+K′′ < 2q+K. Therefore, if there is no
hitting set of size at most K, we cannot make the distinguished party c win against c′.

The proof forR-DESTRUCTIVE-BRIBERY works analogously by exchanging c and c′. How-
ever, due to the tie-breaking we have to give c′ one additional vote. This results in the fol-
lowing votes.

V = (4q+K +2 votes c≻ ·· · ,
4q+3 votes c′ ≻ ·· · ,

for each j ∈ [q],2 votes S j ≻ c≻ ·· · ,
for each i ∈ [p],q− γi votes ui ≻ c≻ ·· · ,
for each i ∈ [p],q− γi votes ui ≻ c′ ≻ ·· ·)

By an analogous argumentation as in the constructive case, it holds that we can make c lose
the seat if and only if there exists a hitting set of size at most K.

4.7 Conclusions

We developed efficient algorithms to decide whether strategic campaigns (bribery) for ap-
portionment elections with thresholds can be successful. The algorithms can also be used to

78

4.8 Publication

compute an exact plan which voters to bribe, and how to change their votes, in order to gain
the maximum possible number of additional seats for a distinguished party (or make it lose
the maximum possible number of seats in the destructive case). Although this is a positive
result from the perspective of a campaign manager, the efficient computability of (optimal)
strategic campaigns is a negative result in terms of apportionment methods being vulnerable
to such attacks. In the light of online profiles and social networks we use in our everyday
life, predicting votes and convincing specific voters to change their votes using individual-
ized advertisement becomes more and more easy. So strategic campaigns will become more
and more a threat.

As one countermeasure we introduced the second-chance mode of voting, where voters of
parties below the threshold get a second chance to vote. It turns out that the second-chance
mode makes computing strategic campaigns intractable. Thus, it provides more resistance
to strategic campaigns. Further, note that the second-chance mode could resolve criticism
many people put up against thresholds. A voter who thinks his/her most preferred party is
likely to not make it above the threshold will probably vote for one of the bigger parties
instead—against the true preference. And voters who still vote for small parties might end
up unrepresented in the parliament. The second-chance mode encourages voters to vote also
for smaller parties if it is their true preference, as it gives these voters a second chance if the
small party doesn’t make it above the threshold. We suggest studying the extent to which
voters’ satisfaction with parliament increases when they use the second-chance mode.

As further future work, we propose to study more sophisticated cost functions for convincing
voters to change their vote (e.g., distance bribery as studied by Baumeister et al. [12]). That
is, it might cost more to change e.g. a left-wing vote to a right-wing vote than to a medium-
left vote. This models strategic campaigns even more realistically. Further, results from
Faliszewski et al. [36] show that structured preferences such as single-peaked preferences
can decrease the complexity of electoral control, a research field which is related to strategic
campaigns as we study them. It would thus be interesting to see if the second-chance mode
still protects the election from strategic campaigns when preferences are single-peaked. In
case the campaigns can be efficiently computed then, one can check whether the intractability
remains for nearly single peaked preferences. Faliszewski et al. [34] showed that this can
increase the complexity of electoral control again.

4.8 Publication

Together with additional experimental results and some results from my master thesis, the
results from this chapter were submitted to the 32nd International Joint Conference on Arti-
ficial Intelligence (IJCAI) in January, 2023.2

2By the time this thesis is published, the submitted paper was rejected and resubmitted to another conference.

79

Chapter 4 Strategic Campaigns in Apportionment

C. Laußmann, J. Rothe, and T. Seeger. Apportionment with Thresholds: Strategic Campaigns
Are Easy in the Top-Choice But Hard in the Second-Chance Mode. submitted to the 32nd
International Joint Conference on Artificial Intelligence (IJCAI 2023) in January, 2023

4.9 Personal Contribution

The idea of studying strategic campaigns in apportionment with electoral threshold was de-
veloped by me together with Tessa Seeger. Theorem 1 (corresponding to Theorem 1 in [59]
and to a proof in the appendix of that paper) was proven by me, and I developed the algo-
rithms. I thank Niclas Boehmer and Martin Bullinger for their helpful comments on the LRM
algorithms at a Schloss Dagstuhl seminar in 2021. The proof that the second-chance mode
increases computational complexity (Theorem 2 in this chapter, and Theorem 2 in [59]) was
conducted by me. Tessa Seeger and Jörg Rothe fixed some minor issues in the proofs. The
experiments in [59] (which are not part of this thesis) were conducted by me and Tessa Seeger
in joint work. The writing of the paper under review [59] was conducted in equal parts by
Jörg Rothe, Tessa Seeger, and me. I reused a few text passages from [59] in this chapter
which were not completely written by me.

This chapter is related with my master thesis. I proved a preliminary version of Theorem 1
before starting my master thesis. This result was submitted to a conference during the time I
worked on my master thesis, and got rejected. This is why it is referenced in my master thesis,
and some results in my master thesis build on it. Further, I proved several additional results
during my master thesis which are now included as Theorem 3 in [59] (which is not part of
this thesis). To state the difference between my master thesis and this chapter clearly: In this
chapter we study only strategic campaigns in the model of bribery. My master thesis deals
with electoral control—a similar yet different model of influencing the election outcome. In
electoral control we don’t change votes, but we add/delete votes, or parties.

80

Chapter 5

Designing More Expressive Ballots for Multi-
winner Elections

5.1 Summary

Throughout this thesis, we talk a lot about preferences of voters. But what are these prefer-
ences, actually? In fact, this is not easy to answer. Voters might in one setting just find things
either good or bad, and in another setting they have precise utilities for each option. When it
comes to multiwinner voting, we have even more complex preferences as the combinations
of alternatives might influence the utility of each other. In our opinion, some of the most
often occurring preference types for preferences in multiwinner voting are unconditional ap-
provals, substitution effects, incompatibilities between alternatives, and dependencies (in the
sense of mutual requirement). In this chapter, we develop a ballot format which is very easy
to use for the voters, and allows them to express the four mentioned preference types.

5.2 Introduction

Approval ballots allow a voter to expresses which alternatives he/she likes, e.g., by checking
boxes on the ballot. This ballot format is often used—mainly because it is so simple for the
voters to understand. However, approval ballots are only fully expressive when voters in a
single-winner election have dichotomous preferences. Especially in the light of multiwinner
voting it is highly questionable whether approval ballots can sufficiently express the voters’
true preferences. Consider the following example.

Example:

Beatrix, Chris, and Dave plan their joint weekend vacation. They want to select one
activity for each day (Saturday and Sunday).

“I want to do sports on one day. Generally I like swimming, hiking, and
climbing. We should do one of the three, but no matter what, the other day
we should relax or maybe visit a museum”, says Beatrix.

81

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

As we see, Beatrix is satisfied with swimming, hiking, or climbing alone, but once we select
more than one she finds it too exhaustive and is less satisfied than with one activity alone.
We say the preference includes an incompatibility. This is only one example of a preference
which cannot be expressed properly with an approval ballot. Let’s sketch another preference
that is likely to occur.

Example:

For her birthday party, Eve asks what food she should prepare for the buffet.

“I like potatoes and fries. And I also like your fancy noodle salad and self-
made bread, Eve! However, you can choose between the potatoes and fries.
I like both but one of them is sufficient”, says Alberto.

Alberto finds both potatoes and fries nice, but he doesn’t care whether only potatoes, only
fries, or both are served. In any case he has the same degree of satisfaction. We say Alberto’s
preference includes substitution effects. But his preference also includes simple approval.
He likes the noodle salad and the bread—independent of each other.

Example:

Dave is also a guest at Eve’s party. He also has a preference for the buffet.

“I pretty much like your self-made bread! However, I cannot eat bread alone.
You will also have to serve your famous herb butter.”

Dave’s preference includes a dependency. That is, herb butter alone is just as useless as
bread alone. Only the combination of the two will satisfy Dave.

As we see, some preferences can be adequately expressed by approval ballots, but other
common preferences cannot. Of course, Dave can approve bread and herb butter—but there
is no way he can state that he only likes them if both are selected. Beatrix can approve
swimming, hiking, and climbing—but there is a risk that then two or all three activities are
selected, which she didn’t want. She could also strategically approve only swimming—but
this is also not ideal as it decreases the overall approval for hiking and climbing, so that in the
end it might be that no sport at all is selected. To account for such preferences, in this chapter
we develop an easy-to-use ballot format, the bounded approval ballots with which a voter
can easily express all the four preference types (and also combinations of them). Thereby,
bounded ballots consist of bounded sets, which are essentially approval ballots with three
additional numbers: the lower bound (to model dependencies), the saturation point (for the
substitution statements), and the upper bound (for the incompatibilities). We then study how
they can be aggregated, and what axiomatic properties an aggregation method can guarantee
under which conditions. We further illustrate with examples, by how much bounded ballots
(with suitable aggregation methods) can make an election outcome better. Finally, we also
present a web-application which makes use of bounded ballots to allow voters to vote in
elections in a convenient way.

82

5.3 Preliminaries

Note that there exist other approaches to account for more complex preferences in literature.
Conditional preferences allow a voter to express a preference conditioned by the status of a
given variable. The most prominent proposals of such ballot formats are due to Barrot and
Lang [9], Boutilier et al. [17], and Booth et al. [16]. Similar ballots have been proposed
for combinatorial auctions (see [18, 78]). However, these ballots are rather complicated
compared to the very simple approval ballot format. Regarding the context of participatory
budgeting, Jain et al. [48] propose to partition the project set in categories, and define the in-
teraction type (e.g. substitution) for each partition. This is very different from our approach
as they fix the partitions and interaction types for all voters, and we allow voters to do this
on their own. Thus, voters can ‘partition’ the projects as they like. Fairstein et al. [32] gen-
eralized the work by Jain et al. [48] so that voters can now partition the projects as they like.
However, they consider mostly substitution effects. Further, the goals in participatory bud-
geting are often different from the goals in the context of multiwinner voting we consider.

5.3 Preliminaries

A multiwinner election consists of a set of m alternatives (or candidates)A= {a1, . . . ,am}, a
vote profile B= (BBB1, . . . ,BBBn) which is a list of ballots BBBi of n voters N = {1, . . . ,n}, and an
integer K ∈{1, . . . ,m}which gives the committee size. We denote by CK = {π ⊆A | |π|=K}
the set of all K-sized committees. The outcome of an irresolute multiwinner election is a set
of winning committees {π1,π2, . . .} ⊆ CK .

We use ⊕ to denote the concatenation between two lists. The subtraction of list B from list
A will be denoted through A⊖B (where for each element in B the first occurrence of the
element in A is removed). We sometimes omit the brackets around a list of length one.

5.4 Bounded Approval Ballots

A vote profile consists of ballots. The format of these ballots can vary depending on what
method for aggregation should be used. The common Approval ballots consist of a set of
alternatives. But we want to develop a ballot format which is similarly simple as approval
ballots, but provides the ability to express more sophisticated preferences. The following is
our proposal for such a ballot format.

Definition 1 (Bounded Approval Sets and Ballots). Le A be the set of alternatives. A
bounded (approval) set is a tuple B j =

⟨︁
A j, ℓ j,s j,u j⟩︁ such that A j ⊆ A and ℓ j,s j,u j ∈ N

with 1≤ ℓ j ≤ s j ≤ u j ≤ |A j|. Thereby ℓ j denotes the lower bound, s the saturation point, and
u the upper bound. A bounded (approval) ballot BBBi, for voter i∈N , is a list BBBi = (B1

i , . . . ,B
p
i)

of bounded sets.

83

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

That is, a bounded approval set contains a set of approved alternatives (just as an approval
ballot) accompanied by three numbers ℓ j, s j, and u j. Thereby the three numbers can be
interpreted as follows. At least ℓ j but no more than u j have to be selected from the set
A j; while after s j alternatives have been selected the voter will not enjoy any additional
satisfaction from selecting more alternatives. The idea is to encode our initial modelling
goals in the bounded approval sets as follows.

• Standard approval ballots can be expressed by setting ℓ j = 1, s j = u j = |A j|: the more
alternatives from A j the better.

• Incompatibilities can be expressed by bounded sets with an upper bound u j = 1: Select-
ing multiple alternatives from A j is not desired by the voter because these alternatives
are incompatible, but selecting one is desirable.

• Substitution can be expressed by bounded sets with ℓ j = s j = 1 and u j = |A j|: Selecting
one alternative from A j is desired, but additional alternatives are substitutes.

• Dependencies can be expressed by bounded sets where ℓ j = |A j|: All alternatives from
A j rely on each other, and are only useful for the voter if all of them are present.

As we see, for a voter it is not much effort to encode his/her preference. Approval ballots
are basically still valid (with simple reformatting), and incompatibilities, substitution effects,
and dependencies require the voter also only to set the bounds correctly (which, as we will
see in the web-application later, is also not difficult with assistance of a good interface). Note
that it is also possible to encode mixtures of the four preference types into a bounded set.
For instance, the set ⟨{a,b,c,d,e},2,4,5⟩ encodes that at least 2 of a,b,c,d,e have to be
selected (dependency), from 2 to 4 the satisfaction increases (simple approval), and from
4 on the satisfaction remains the same (substitution). These special cases, however, could
in some cases put a higher cognitive burden on the voters, as it is hard to assist the voter
with a simple computer interface here. In any case, most voters will be fine with the four
basic types already. Further, a bounded approval ballot can consist of one or more bounded
approval sets. This way the voter can state e.g. substitution effects for one set of alternatives,
and a dependency for another at the same time. This enables the voter to express a lot.

To illustrate the mapping of preferences to bounded ballots, consider the example from
the beginning again. Alberto likes potatoes and fries, but he considers them to be sub-
stitutes. This corresponds to the bounded set ⟨{potatoes, fries},1,1,2⟩. Further, he likes
noodle salad and the bread independent of each other. This corresponds to the bounded set
⟨{noodle salad,bread},1,2,2⟩. His bounded ballot would then be

(⟨{potatoes, fries},1,1,2⟩ ,⟨{noodle salad,bread,1,2,2}⟩).

84

5.5 Scoring with Bounded Approval Ballots

5.5 Scoring with Bounded Approval Ballots

Having just bounded ballots alone doesn’t help us solving the overall problem: computing an
outcome, i.e., a size-K committee. Thus, we have to find methods to aggregate the bounded
ballots. We now provide different scoring functions which map profiles and committees to
real numbers. Committees with the highest score win.

Definition 2 (Scoring Function). A scoring function score is a function mapping a bounded
approval ballot BBB and a committee π to a real value score(BBB,π). We extend scoring functions
to profiles s.t. for every profile B, score(B,π) = ∑BBB∈B score(BBB,π).

Of course, a scoring function for aggregating bounded approval ballots is useless if it doesn’t
respect what bounded approval ballots encode. We conduct a detailed axiomatic study in the
next section. However, to provide an intuition how scoring functions could be build, let us
first consider a bounded ballot consisting of only one bounded set B j =

⟨︁
A j, ℓ j,s j,u j⟩︁. For a

committee π , we want scoring functions to behave as depicted in Figure 5.1.

ℓ j s j u j
0

s j

|A j∩π|

sc
or

e(
(B

j)
,π

)

Figure 5.1: Intended behavior of scoring functions for a single bounded set.

The area represents that π violates a dependency or incompatibility stated in B j. Thus, π
should score 0 (the voter has no satisfaction from π). The area represents that each element
in π ∩A j is independently approved according to B j. That is, each element contributes to the
total score. Finally, the area represents that the elements in π show substitution effects
according to B j. In this area, no additional satisfaction (and thus no additional score) is
achieved when more alternatives from A j are in π . To conveniently treat regular approval
ballots, in the area we want the score to be exactly |A j ∩π|, i.e., the number of approved
alternatives in π . Note that the diagram in Figure 5.1 only shows how the whole committee
π scores, but not how the individual alternatives in the committee score. However, it is
convenient to distribute the points equally among the alternatives in |A j ∩π|. That is, in the

area each alternative scores 0, in the area each alternative scores 1, and in the area

85

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

each alternative scores s j

|A j∩π| . We formalize this in the function φ .

φ(B j,π) =

⎧⎪⎨⎪⎩
1 if ℓ j ≤ |A j∩π| ≤ s j

s j

|A j∩π| if s j < |A j∩π| ≤ u j

0 otherwise.

At this point we introduce some useful notation: for a ballot BBB and a ∈ A, let BBB|a = {B j ∈
BBB | a ∈ A j} be the bounded sets involving a. Further, in correspondence to the notation for
simple approval ballots, instead of π ∩

(︁⋃︁
B j∈BBB A j)︁ we write π ∩BBB for short.

The following scoring function total score applied to a bounded ballot consisting of a single
bounded set gives us exactly the behavior of the diagram in Figure 5.1.

Definition 3. The total score function is defined as

scoretot(BBB,π) = ∑
a∈π∩BBB

∑
B j∈BBB|a

φ(B j,π).

Bounded ballots can of course contain more than one bounded set. When designing scoring
functions, it is important that they deal with such ballots in a convenient way, too. Let us
first consider a relatively simple case. We say a bounded ballot is non-overlapping when
all bounded sets in the ballot are pairwise disjoint (i.e., for Bi,B j holds Ai ∩A j = /0). The
bounded sets in such a ballot are then completely independent. We could even treat them as
if they were all from different voters—just as in regular approval voting it doesn’t make a
difference whether one voter approves a,b and another voter c,d, or a single voter approves
a,b,c,d.1 We want scoring functions to treat non-overlapping ballots like this, too: The score
of the ballot for a committee π should be the sum of the scores of each bounded set for π .
Note that scoretot treats non-overlapping ballots exactly like this.

However, as soon as not all bounded sets in a ballot are disjoint, it is not exactly clear how
a scoring function should behave. Say a ∈ π is contained in three bounded sets B1,B2,B3

within a single bounded ballot. In one set we have φ(B1,π) = 0 because the lower bound
is not met. In the next set we have φ(B2,π) = 1 because |A2∩π| is exactly between lower
bound and saturation point. Finally, in B3 we have a substitution effect, so φ(B3,π) = 0.75.
What is now the correct score contribution of a? In scoretot the score contribution of a would
be 1.75. Arguably, this is not so good because it behaves very different from what we expect
in approval voting (alternatives which are not approved score 0, and approved alternatives
score 1). Common operators like average, minimum, and maximum can be considered to
avoid this. First, let us consider the average score function.

1Note that this makes a difference in variants of approval voting which aim at proportionality, such as satis-
faction approval voting or proportional approval voting. However, this is not what we aim for here. We
want to generalize regular approval voting.

86

5.5 Scoring with Bounded Approval Ballots

Definition 4. The average score function is defined as

scoreavg(BBB,π) = ∑
a∈π∩BBB

1
|BBB|a|

· ∑
B j∈BBB|a

φ(B j,π).

Here, the score for a would be the average of 0, 1, and 0.75, that is, approximately 0.58. This
seems quite natural since what the voter wants to express is that in some sense a dependency
is violated, but at least a is good in combination with the elements from B2 and B3. So a
should score something for B2 and B3, but not too much because one dependency is not met.
However, one can just as well argue that the voter wants a to score 0 because one dependency
is not met, or to score 1 because it is sufficient if in at least one combination of alternatives,
i.e., in B3, the alternative a is fully approved. This is captured by the following two scoring
functions maximum score and minimum score.

Definition 5. The maximum score function and minimum score function are defined as

scoremin(BBB,π) = ∑
a∈π∩BBB

min
(︁
φ(B j,π) | B j ∈ BBB|a

)︁
scoremax(BBB,π) = ∑

a∈π∩BBB
max

(︁
φ(B j,π) | B j ∈ BBB|a

)︁
.

Note that all presented scoring functions are equivalent (i.e., yield the same score) for every
non-overlapping bounded ballot.

In the next subsection we will analyze the four scoring functions axiomatically. But before
that, we want to mention that for all four scoring functions determining the best committee
cannot be done in polynomial-time, unless P = NP. This is because we can simulate the
(approval version of the) Chamberlin–Courant rule with them by submitting a single bounded
set per voter, where each bounded set B j has s j = 1 and u j = |A j|. The observation then
follows from the fact that Chamberlin–Courant winner determination is NP-hard [81].

5.5.1 Axiomatic Analysis

We now extend the rather simple modeling goal from Figure 5.1 with several other axioms
which capture how scoring functions for bounded approval ballots should behave to be con-
venient. A summary of the axiomatic analysis can be found in Table 5.1. To start with, we
present an axiom which ensures that ballots are treated in an approval-like fashion.

Definition 6 (Approval Adequacy). A scoring function score satisfies approval adequacy if
for every ballot BBB and committee π the two conditions hold:

1. score(BBB,π)≤ |π ∩BBB|;

2. score(BBB,π) = |π ∩BBB| whenever ℓ j ≤ |A j∩π| ≤ s j for all B j ∈ BBB.

87

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

Informally, the score for an item being in a committee should be between 0 and 1 (“not
approved” to “fully approved”), and if there is no reason (incompatibility, substitution, or
dependency) not to fully approve an item, the score should be indeed 1 for that item. We will
now see that this modelling goal is already violated by one of our scoring functions.

Theorem 1. The scoring functions scoremin, scoremax, and scoreavg satisfy approval ade-
quacy while scoretot violates it.

Proof. Let us first consider scoretot. It is easy to see that whenever an alternative appears
in multiple bounded sets within a ballot, the alternative can score more than 1 which vi-
olates the first condition of approval adequacy. As an example, consider the ballot BBB =
(⟨{a1,a2},1,2,2⟩ ,⟨{a1,a3},1,2,2⟩) for which holds scoretot(BBB,{a1}) = 2.

For the other scoring functions, note that (for each alternative in π ∩BBB) they select either a
minimum of values from the φ -function, a maximum, or the average. Since 0≤ φ(B j,π)≤ 1
for all bounded sets B j ∈ BBB, and all bundles π , also the score for each alternative must be
between 0 and 1, so the total score is at most |π ∩BBB|. So they all meet the first condition of
approval adequacy. For the second condition, note that whenever ℓ j ≤ |A j ∩π| ≤ s j for all
B j ∈ BBB, we have φ(B j,π) = 1 for all B j ∈ BBB. The minimum, maximum, and average of these
φ(B j,π) is 1. Thus, each alternative in π ∩BBB scores 1 which results in a total of |π ∩BBB|.

Next, we define two axioms enforcing that a violated incompatibility or dependency—when
added to the ballot—should not increase the score. Note that we allow it to decrease the score
because if an alternative appears also in other bounded sets where lower and upper bound are
not violated, it might be reasonable that the total degree of approval for the alternative is
lower with a violated bounded set. This is exactly the consideration behind scoreavg and
scoremin. However, we also do not require it to strictly decrease the score, because of our
consideration behind scoremax.

Definition 7 (Incompatibility Adequacy). A scoring function score satisfies incompatibility
adequacy if for every A⊆A, and all ballots BBB and BBB′ = BBB⊕⟨A,1,1,1⟩, the following holds:

• score(BBB,π)≤ score(BBB′,π) for every π with |π ∩A|= 1;

• score(BBB,π)≥ score(BBB′,π) for every π with |π ∩A| ̸= 1.

Theorem 2. All four scoring functions satisfy incompatibility adequacy.

Proof. Let BBB′ = BBB⊕⟨A,1,1,1⟩ be the ballot with added incompatibility.

(Case 1) Assume |π ∩A| ̸= 1. Note that φ(⟨A,1,1,1⟩ ,π) = 0. For scoretot it is now clear
that by adding ⟨A,1,1,1⟩ to the ballot the score cannot increase. For scoreavg note that
for each a ∈ π ∩A, |BBB′|a| = 1+ |BBB|a| > |BBB|a| holds, i.e., the normalization factor decreases.
This decrement together with φ(⟨A,1,1,1⟩ ,π) = 0 results in a decreased score contribu-
tion of a and since for all alternatives b ∈ π \ A the contribution is unchanged, we have

88

5.5 Scoring with Bounded Approval Ballots

scoreavg(BBB,π)≥ score(BBB′,π). For scoremin, due to φ(⟨A,1,1,1⟩ ,π) = 0 we have zero score
contribution in BBB′ for each a ∈ π ∩A. Again, since for all alternatives b ∈ π \A the contri-
bution is unchanged, the score cannot increase. For scoremax, the score doesn’t change at
all, since adding a bounded set to the ballot for which the φ -value is zero cannot change the
maximum over the φ -values.

(Case 2) Assume that π ∩ A = {a} for some a ∈ A. For scoretot it is easy to see that
the score can never decrease when adding a bounded set to a ballot. For scoremin, due to
φ(⟨A,1,1,1⟩ ,π) = 1 the minimum φ -value for a cannot decrease. Since for all alternatives
b ∈ π \A the contribution is unchanged, the score cannot decrease. For scoremax, due to
φ(⟨A,1,1,1⟩ ,π) = 1 alternative a now contributes 1 to the score. Again, since for all al-
ternatives b ∈ π \A the contribution is unchanged, the score cannot decrease. For scoreavg
we distinguish three cases. (1) If BBB|a = /0, then clearly score(BBB′,π) = scoreavg(BBB,π)+ 1 >

scoreavg(BBB,π). (2) If BBB|a ̸= /0 and for all B j ∈ BBB|a, ℓ j ≤ |A j ∩ π| ≤ s j holds. Then clearly
scoreavg(BBB,π) = score(BBB′,π). (3) Finally, assume BBB|a ̸= /0 but for some B j ∈ BBB|a either
|A j∩π|< ℓ j or s j < |A j∩π|. Let α = ∑B j∈BBB|a φ(B j,π) and β = |BBB|a|. By assumption, α < β
holds. Note that α/β is the contribution of a to the score of ballot BBB. Moreover, α+1/β+1 is
the contribution of a to the score of BBB′. Since for any 0≤ α < β we have α/β < α+1/β+1, we
immediately obtain scoreavg(BBB,π)< score(BBB′,π).

Definition 8 (Dependency Adequacy). A scoring function score satisfies dependency ade-
quacy if for every A⊆A, and all ballots BBB and BBB′ = BBB⊕⟨A, |A|, |A|, |A|⟩ holds:

• score(BBB,π)≤ score(BBB′,π) for every π with A⊆ π;

• score(BBB,π)≥ score(BBB′,π) for every π with A ̸⊆ π .

Theorem 3. All four scoring functions satisfy dependency adequacy.

Proof. The argumentation is analogous to the proof for incompatibility adequacy. This time,
of course, we consider a ballot BBB′ = BBB⊕⟨A, |A|, |A|, |A|⟩ with added dependency.

Beside encoding approval, incompatibilities, and dependencies, one of our main goals was to
allow voters to encode substitution effects. By our next axiom we want to find out whether
our scoring functions treat such ballots properly.

Definition 9 (Substitution Adequacy). A scoring function score satisfies substitution ade-
quacy if for every ballot BBB and committee π for which there exists an alternative a⋆ ∈ A\π
such that for all bounded sets B j ∈ BBB|a⋆ , it is the case that s j ≤ |A j ∩π| ≤ u j− 1, we have
score(BBB,π) = score(BBB,π ∪{a⋆}).

Informally, if according to all bounded sets an item a⋆ is considered a substitute w.r.t. π , then
adding a⋆ to π should neither increase, nor decrease the score. This property, unfortunately,
is only satisfied by one scoring function.

89

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

Theorem 4. The scoring functions scoremin, scoremax, and scoreavg fail substitution ade-
quacy. Only scoretot satisfies this property.

Proof. Consider scoreavg first. LetA= {a1,a2,a3}, π = {a1,a2}, and BBB=(⟨{a1,a2},1,2,2⟩,
⟨{a1,a3},1,1,2⟩). Note that a3 is a proper substitute according to substitution adequacy, i.e.,
it fulfills the conditions required for a⋆. On the one hand, we have scoreavg(BBB,π)= 2/2+1/1 =

2. On the other hand, for π ′ = {a1,a2,a3}, we have scoreavg(BBB,π ′) = 1+1/2
2 + 1/1+

1/2
1 = 9/4,

which is more than π’s score. Thus, the substitute changes the score.

For scoremax the same ballot results in scoremax(BBB,π) = 1+ 1 = 2 while scoremax(BBB,π ′) =
1+1+ 1/2 > 2.

For scoremin the ballot BBB = (⟨{a1,a2},1,1,2⟩, ⟨{a1,a3},1,1,2⟩) results in scoremin(BBB,π) =
1/2+ 1/2 = 1 while scoremin(BBB,π ′) = 1/2+ 1/2+ 1/2 > 1.

Finally, consider scoretot. Let BBB be a bounded approval ballot, π a committee, and a⋆ ∈A\π
an alternative as in the definition of substitution adequacy. Let B = ⟨A, ℓ,s,u⟩ be an arbitrary
bounded set from BBB such that a⋆ ∈ A. By the definition of a⋆, we know that s ≤ |A∩π| ≤
u− 1. Hence, the contribution of B to scoretot(BBB,π) is s j. Now, for π ′ = π ∪{a⋆} we have
s+1≤ |A∩π ′| ≤ u. Hence, the contribution of B to scoretot(BBB,π ′) is also s j. This applies to
any bounded set including a⋆. Since the contributions of sets which don’t include a⋆ are also
unchanged, we have scoretot(BBB,π) = scoretot(BBB,π ′).

Apart from the four central axioms which describe our modelling goals there are further
axioms which ensure convenient behavior. The first one states that adding a bounded set
which does not conflict with a committee π should not decrease the score of π .

Definition 10 (Ballot-Size Monotonicity). Let BBB be a ballot and π a committee. A scoring
function score satisfies ballot-size monotonicity if for every bounded set B = ⟨A, ℓ,s,u⟩ such
that ℓ≤ |A∩π| ≤ u, we have score(BBB,π)≤ score(BBB⊕B,π).

Unfortunately, ballot-size monotonicity is only satisfied by half of our scoring functions.

Theorem 5. Ballot-size monotonicity is satisfied by scoremax and scoretot, but failed by
scoremin, and scoreavg.

Proof. Note that by adding a bounded set B j to a ballot the score under scoremax and scoretot
cannot decrease. Thus, both satisfy ballot-size monotonicity.

For scoreavg consider the following counter example. Let A = {a1,a2,a3}, π = {a1,a2},
and BBB = (⟨{a1,a2},1,2,2⟩). Observe that we have scoreavg(BBB,π) = 2. Now, consider the
bounded set B = ⟨{a1,a2,a3},1,1,3⟩ for which holds ℓ = 1 ≤ |{a1,a2,a3} ∩ π| ≤ u = 3.
Since scoreavg(BBB⊕B,π) = 1+1/2

2 + 1+1/2
2 = 3/2 < 2, ballot-size monotonicity is not satisfied.

90

5.5 Scoring with Bounded Approval Ballots

For scoremin a similar counter example works. Let A = {a1,a2,a3}, π = {a1,a2}, and BBB =
(⟨{a1,a2,a3},1,2,2⟩). Here, we have scoremin(BBB,π) = 2. Consider the bounded set B =
⟨{a1,a2},1,1,2⟩. Now we have scoremin(BBB⊕B,π) = 1 < 2.

The next axiom, ballot-splitting monotonicity, says that expressing an equivalent statement
with one big ballot, or several smaller ones, should result in the same score.

Definition 11 (Ballot-Splitting Monotonicity). A scoring function score satisfies ballot-splitting
monotonicity if for every committee π and every ballot BBB for which there exists a bounded set
B j⋆ ∈ BBB such that ℓ j⋆ ≤ |A j⋆∩π| ≤ s j⋆ , then, for BBB′ = (BBB⊖B j⋆)⊕(⟨{a},1,1,1⟩ | a∈ A j⋆∩π),
we must have score(BBB,π) = score(BBB′,π).

Ballot-splitting monotonicity is satisfied by all scoring functions we introduced.

Theorem 6. All four scoring functions satisfy ballot-splitting monotonicity.

Proof. By the definition of ballot-splitting monotonicity, we replace a bounded set B j with
|A j ∩π| = q such that φ(B j,π) = 1 by q one-elementary bounded sets B j

1, . . . ,B
j
q each with

φ(B j
i ,π) = 1 where each of these bounded sets contains exactly one element from A j ∩ π .

For scoretot this means removing q points from the score, and afterwards adding q points.
Further, this operation is neutral on the minimal and maximal values for φ for all alternatives,
meaning that the score does not change in scoremin and scoremax. Finally, for scoreavg note
that the number of bounded sets where a is contained in doesn’t change for any a ∈A by this
operation. So overall splitting the ballot has no effect on the normalization factor. Further,
each a ∈ A j ∩π loses, and gains one point by the operation. Thus, also in scoreavg the score
remains unchanged.

Finally, score monotonicity requires the score not to decrease when adding an alternative to
the committee which doesn’t conflict with any bounded set.

Definition 12 (Score Monotonicity). A scoring function score satisfies score monotonicity
if for every ballot BBB and committee π for which there exists an alternative a⋆ ∈ A\π such
that for all bounded sets B j ∈ BBB|a⋆ it is the case that ℓ j ≤ |A j ∩ π| ≤ u j− 1, we have that
score(BBB,π)≤ score(BBB,π ∪{a⋆}).

Just as substitution adequacy, unfortunately, score monotonicity is only satisfied by scoretot.

Theorem 7. The scoring functions scoremin, scoremax, and scoreavg fail score monotonicity.
Only scoretot satisfies this property.

91

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

scorex min max avg tot

Approval Adequacy ♣ ✓ ✓ ✓ ✗

Substitution Adequacy ♣ ✗ ✗ ✗ ✓

Incompatibility Adequacy ✓ ✓ ✓ ✓

Dependency Adequacy ✓ ✓ ✓ ✓

Ballot-Size Mon. ✗ ✓ ✗ ✓

Ballot-Split. Mon. ✓ ✓ ✓ ✓

Score Mon. ✗ ✗ ✗ ✓

Table 5.1: Summary of our axiomatic analysis. ♣ indicates the impossibility result.

Proof. We first prove that scoretot satisfies score monotonicity. Let a⋆ be the alternative de-
scribed in the definition, i.e., for all bounded sets B j ∈ BBB|a⋆ it is the case that ℓ j ≤ |A j ∩π| ≤
u j − 1. Note that for bounded sets where a⋆ is not a member of nothing is changed. For
bounded sets B j ∈ BBB|a⋆ with ℓ j ≤ |A j∩π| ≤ s j−1 it is immediate that the score contributions
of alternatives in A j ∩ π are the same in scoretot(BBB,π) and scoretot(BBB,π ∪ {a⋆}), and a⋆’s
contribution counts on top. In bounded sets B j ∈ BBB|a⋆ with s j ≤ |A j∩π| ≤ u j−1 (i.e., where
a⋆ is a substitute) we know that the contribution of B j to scoretot(BBB,π) is s j. This contri-
bution is unchanged in scoretot(BBB,π ∪{a⋆}). Thus, we can conclude that scoretot(BBB,π) ≤
scoretot(BBB,π ∪{a⋆}), and score monotonicity is satisfied.

Now consider the other scoring functions. Let A = {a1,a2,a3}, π = {a2,a3}, and BBB =
(⟨{a1,a2},1,1,2⟩ ,⟨{a1,a3},1,1,2⟩). Note that a1 fulfills the conditions required for a⋆ in the
definition of score monotonicity. We have scoreavg(BBB,π)= scoremin(BBB,π)= scoremax(BBB,π)=
2. However, scoreavg(BBB,π∪{a1}) =

1/2+1/2
2 + 1/2+ 1/2 < 2, scoremin(BBB,π∪{a1}) = 1

2 +
1/2+

1/2 < 2, and scoremax(BBB,π ∪{a1}) = 1
2 +

1/2+ 1/2 < 2. This shows that score monotonicity is
not satisfied by the other scoring functions.

5.5.2 The Perfect Scoring Rule

As we see in Table 5.1, none of the scoring rules we proposed is perfect. Regarding the
monotonicity axioms, scoretot is the only scoring function which satisfies all axioms. How-
ever, scoretot doesn’t satisfy approval adequacy. Arguably, approval adequacy is a very im-
portant (if not the most important) axiom since our initial goal was to extend approval ballots.
Due to the violated approval adequacy, a voter can cast a ballot in a way that an alternative
he likes has an arbitrarily high score. This is absolutely not in the spirit of approval voting.
Unfortunately, all scoring functions in our list which satisfy approval adequacy fail substitu-
tion adequacy—which is also a very important modeling goal. But can we actually design a
scoring function which satisfies all our modeling goals? Unfortunately, we cannot.

92

5.5 Scoring with Bounded Approval Ballots

Theorem 8. There exists no scoring function that satisfies approval adequacy and substitu-
tion adequacy simultaneously.

Proof. Suppose there exists a scoring rule score satisfying approval adequacy and substitu-
tion simultaneously. Throughout the proof, let A= {a1,a2,a3}, and

BBB = (⟨{a1,a3},1,1,2⟩ ,⟨{a2,a3},1,1,2⟩).

For π1 = {a3} approval adequacy implies score(BBB,π1) = 1. Note that a1 is a suitable sub-
stitute for π1 by the definition of substitution adequacy. Thus, for π ′1 = {a1,a3} must hold
score(B,π ′1) = score(B,π1) = 1 in order for score to satisfy substitution. Interestingly, al-
ternative a2 is a suitable substitute for π ′1. Thus, for π ′′1 = {a1,a2,a3} substitution entails that
score(B,π ′′1) = score(B,π ′1) = 1. Consider now the committee π2 = {a1,a2}. Approval ad-
equacy on BBB and π2 implies that score(BBB,π2) = 2. Alternative a3 is a suitable substitute here,
thus, for π ′2 = {a1,a2,a3} we should have score(B,π ′2) = score(B,π2) = 2. Since π ′2 = π ′′1 ,
the contradiction is immediate.

This result is quite bad as it prevents us from modeling what we had in mind in the first place.
However, we can still fix this issue at least partially.

The first solution is to simply not allow overlapping ballots. Recall that all scoring functions
are equivalent on non-overlapping ballots. Thus, all their good properties are combined, i.e.,
they satisfy all axioms. Consequently, we can state the following theorem (which would just
as well work with scoreavg, scoremin, or scoremax due to their equivalence).

Theorem 9. Whenever each ballot is non-overlapping, the scoring function scoretot satisfies
all axioms we defined.

This solution restricts voters in what they can express. However, it is not always clear what
a voter wants to express with an overlapping ballot anyway. For instance, what is the in-
terpretation of the following ballot from the proof of Theorem 4: BBB = (⟨{a1,a2},1,2,2⟩,
⟨{a1,a3},1,1,2⟩)? The naive interpretation is that a1 and a2 are approved, and that a1 and
a3 are substitutes. But when we think about it, also the following interpretation is possible:
a1, a2 are approved, and a3 is only desired when a1 is not selected, but the voter doesn’t
care about a3 if a1 is already selected. While both interpretations seem to be very similar,
they completely change the score of the set {a1,a2,a3}. The first interpretation corresponds
to that a1 is not fully approved because a1 and a3 ‘share’ their approval. However, the sec-
ond interpretation corresponds to that a1 is fully approved, and a3 contributes nothing to the
score, i.e., is not approved. In the proof of Theorem 4 we see that the two interpretations can
result in different final scores. To conclude, restricting ballots to not overlap might be not a
major problem for the expressiveness, as it is often unclear what an overlapping ballot means
anyway. Overlapping ballots could even increase the cognitive burden on the voters, because
they have difficulties casting a ballot which actually expresses what they want to say.

93

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

The second solution is to remove the saturation point from the ballots (or, equivalently set it
always to the upper bound). We thus drop one of our modeling goals, i.e., substitution, but at
least we now have a scoring function satisfying all other properties.

Theorem 10. The scoring rule scoremax satisfies all axioms when for each bounded set B j in
the ballot holds s j = u j.

Proof. Since scoremax satisfied all axioms but score monotonicity and substitution adequacy
already on the unrestricted ballots, we only have to show that it now satisfies the remaining
two properties. Thereby, substitution adequacy is now trivially satisfied, as there no longer
exist substitutes.

By the definition of score monotonicity, whenever there exists an alternative a⋆ ∈A\π such
that for all bounded sets B j ∈ BBB|a⋆ holds ℓ j ≤ |A j ∩π| ≤ u j−1, the score must not decrease
by adding a⋆ to π . Due to the restricted ballots, we have ℓ j ≤ |A j ∩ (π ∪{a⋆})| ≤ s j for all
B j ∈ BBB|a⋆ . Thus, for each of these bounded sets the φ -value is 1, which cannot reduce any
maximum values. Since bounded sets which don’t contain a⋆ are unaffected when we add a⋆

to the committee, the total score cannot decrease, i.e., score monotonicity is satisfied.

This solution might in some cases be the less restrictive one. However, we cannot really con-
sider it to be a good solution either. First, it doesn’t allow expressing substitution effects, and
second, it doesn’t really resolve the problem of ballot interpretation. Consider, for example,
the following ballot: BBB = (⟨{a1,a2,a3},2,3,3⟩ ,⟨{a2,a4},2,2,2⟩). Does {a1,a2} now score
2, that is, are a1 and a2 fully approved? Or did the voter mean that a2 helps make a1 useful,
but in order to also achieve satisfaction from a2 also a4 must be selected?

All in all it seems that the best solution is the first one—requiring ballots to not overlap. We
can then satisfy all axioms, avoid difficult ballot interpretations, reduce the cognitive burden
on the voters, and still allow for a significant improvement in expressiveness compared to
simple approval ballots.

5.6 Expressiveness Comparison to Approval Ballots

We now want to illustrate in how far bounded ballots are more expressive than simple ap-
proval ballots. Therefore, we present two examples where elections result in tremendously
better outcomes for the voters when they use bounded approval ballots instead of simple ap-
proval ballots. This holds even if voters cast their approval ballot strategically. However, we
assume voters do not communicate (otherwise they can trivially achieve optimal outcomes
anyway). The examples aren’t formal measures for expressiveness. Such measures (e.g.
distortion) do not really make sense here anyway, as bounded approval ballots are already
not fully expressive. The examples really only serve as an illustration what is possible with
bounded approval ballots, and not with approval ballots.

94

5.6 Expressiveness Comparison to Approval Ballots

Example:

(Pure Substitution) Assume that for every voter i, their preferences are defined such that
there exists a set of alternatives Ai ⊆ A for which i is unsatisfied whenever π ∩Ai = /0
and fully satisfied as soon as π∩Ai ̸= /0. Note that i’s preferences can easily be expressed
by a single bounded set ⟨Ai,1,1, |Ai|⟩. Now, if voter i were asked to submit a standard
approval ballot, the only reasonable ballot to submit would be Ai.

Let the number of voters n be such that n−1 is divisible by K, and letA= {a1, . . . ,ak2}.
Consider the profile B of bounded ballots in which n−1/k voters submit ⟨{a1, . . . ,ak},1,1,k⟩,
n−1/k voters submit ⟨{ak+1, . . . ,a2k},1,1,k⟩, and so on. For the last voter group which
submits

⟨︂
{a(k2−k+1), . . . ,ak2},1,1,k

⟩︂
, we add one additional voter. If standard approval

ballots were used, the first group of voters would approve {a1, . . . ,ak}, the second group
{ak+1, . . . ,a2k}, and so on. Overall, all alternatives would be approved by the same num-
ber of voters, except for a(k2−k+1), . . . ,ak2 which receive one approval more. Thus, if
we were to select a committee of size K, {a(k2−k+1), . . . ,ak2} would be selected using
standard approval ballots. This fully satisfies the last voter block, but no other voters. In
the case of bounded approval ballots, we have score(B,{a(k2−k+1), . . . ,ak2}) = n−1/k+1,
but score(B,{ak,a2k, . . . ,ak2}) = n for any of the scoring functions we proposed. Thus,
the committee {ak,a2k, . . . ,ak2} will be chosen with bounded approval ballots, thus sat-
isfying all voters.

The example above shows that already for preferences incorporating only approval and sub-
stitution, it is possible that only a fraction of the voters that could be fully satisfied are satis-
fied in simple approval voting. This becomes even worse with incompatibilities.

Example:

(Pure Incompatibility) Assume that for every voter i, their preferences are defined such
that there exists a set of alternatives Ai ⊆A for which i is unsatisfied whenever |π∩Ai| ̸=
1 and fully satisfied otherwise. Note that voter i’s preferences can be expressed by a
bounded set ⟨Ai,1,1,1⟩.

Let n ≥ 3, K = 2, and A = {a,b,c,d}. Assume that the first n− 1 voters submit the
ballot ⟨{a,b},1,1,1⟩, and the last voter submits ⟨{c,d},1,1,1⟩. It is clear that according
to each of our scoring functions the committees maximizing the social welfare are {a,c},
{a,d}, {b,c}, or {b,d}. Each of them fully satisfies all voters. Under standard approval
ballots it is reasonable to assume that the first n−1 voters would submit either {a},{b},
or {a,b}, and the last one either {c},{d}, or {c,d}. Then, unless the first n− 1 voters
all approve of only a or only b (which is unlikely if communication is impossible), the
committee {a,b} would maximize the social welfare. Note that it satisfies no voter at all.

As voters cannot express incompatibilities in approval ballots, it is possible that all voters
dislike the outcome, but there exists an outcome fully satisfying every voter. This massive
difference comes solely from the bit of extra information in the bounded ballots.

95

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

5.7 GoodVotes Web-Application

In the previous section we developed and analyzed a ballot format which (with a few limita-
tions) allows voters to express more complex preferences than with approval ballots without
major increment of cognitive effort. Probably, a question that came into the mind of the
reader several times while reading this chapter is whether it is really so little cognitive effort
for the voter to cast bounded ballots. For a mathematician, or a computer scientist, submitting
sets and bounds in the correct format is certainly not a big deal. But for most people, the for-
mat alone might already raise the cognitive effort. Simple approval voting is so easy because
the ballot format is so simple in reality. The voter doesn’t submit a properly formatted set
of candidates; the voter just checks the checkboxes of all approved candidates. So the miss-
ing component in our study is an easy way to let voters cast their ballots without requiring
complicated formats. We propose a web-based application which guides voters through the
process of casting bounded approval ballots. This should significantly reduce the cognitive
burden of casting bounded approval ballots.

The application GoodVotes is written in the Python programming language with help of the
Flask framework to handle the HTTP requests. The source code is available in the GitHub
repository github.com/claussmann/GoodVotes, and can be downloaded for free. Please note
that it is yet only a prototype of an application which could be used in real elections. While
it is fully functional, it lacks proper security assessment, database integration, and is only
optimized for the Chrome browser family. However, it shows how voters can be guided
through the process of casting bounded ballots with ease. In the following we show some
screenshots from the application, and explain how it works from the voter’s perspective.

96

https://www.python.org/
https://flask.palletsprojects.com/
https://github.com/claussmann/GoodVotes

5.7 GoodVotes Web-Application

The very first step in the process is for the election chair to create the election. In our example
from the beginning of this chapter, Eve creates the election what food to serve for the buffet.
She enters all candidates (here: food), and adds a title and description, so that every voter
knows what he/she votes for. Finally, she sets the committee size. After clicking ‘submit’,
Eve can send an invitation link to her guests (or the guests can use the search bar to find
Eve’s election) who then see all the information on Eve’s election. There is also additional
information and control options on this page which are only accessible via the password/to-
ken Eve received when creating the election. This includes ending or deleting the election, a
live view how many voters voted already, and what is currently the best committee.

When a voter clicks on the ‘Vote’ button, she is guided through a two stage voting process.
In the first step, she has to select all alternatives she generally approves of. That is, all
alternatives which later appear in the bounded ballots.

Finally, in the second step the voter can further specify her preference. To this end the voter
drags and drops approved items into bins. For each bin the voter can state whether the items
in this bin are simply approved, are substitutes, depend on each other, or are incompatible.

97

Chapter 5 Designing More Expressive Ballots for Multiwinner Elections

Note that the application doesn’t allow arbitrary bounded sets. In particular the bounded sets
in a ballot are disjoint. However, as we proved in our axiomatic analysis overlapping ballots
lead to many problems. So it is reasonable to avoid these problems in the application.

5.8 Conclusions

Our goal in this chapter was to find an approval-like ballot format which is more expres-
sive than simple approval, but remains simple enough to use for the voters. Specifically, we
wanted to allow voters to easily express substitution effects, incompatibilities, and dependen-
cies between alternatives in a committee. These three (and mixtures of them) arguably are
the most often appearing preference types in the context of approval voting. With bounded
approval ballots we proposed a ballot format which can encode for simple approval, as well
as for substitution effects, dependencies, and incompatibilities.

We proposed several scoring functions to evaluate such ballots. However, we ended with an
impossibility result which shows that not all the modeling goals we had in mind are com-
patible in general. Approval-like behavior, and properly treating substitution effects at the
same time is impossible. We have shown two ways to circumvent this problem. The most
promising one is to forbid overlapping ballots, i.e., ballots in which an alternative is part of
multiple bounded sets at the same time. Even with this restriction bounded ballots are much
more expressive than simple approval ballots, and can significantly improve the election out-
come for the voters as we illustrated in Section 5.6. Finally, in Section 5.7 we presented a
web-application called GoodVotes which allows the voter to cast bounded ballots with ease,
and without requiring knowledge of the underlying ballot format.

98

5.9 Publication

5.9 Publication

The results in this chapter together with further results are accepted, and will be presented at
the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
The code for the web-application is available at github.com/claussmann/GoodVotes.2

D. Baumeister, L. Boes, C. Laußmann, and S. Rey. “Designing Expressive
Preferences in Multiwinner Voting”. In: International Conference on Au-
tonomous Agents and Multiagent Systems. IFAAMAS, 2023

5.10 Personal Contribution

The idea for bounded approval ballots and the scoring functions, was developed jointly in
equal parts by Dorothea Baumeister, Linus Boes, Simon Rey, and me. The axiomatic analysis
in Section 5.5.1 (corresponding to Theorems 3–6 in our AAMAS paper [14]) was conducted
in equal parts by Simon Rey and me. The impossibility result in Theorem 8 (corresponding
to Theorem 8 in [14]) was proven by Simon Rey. The two possibilities to escape of the
impossibility result (Theorem 9 corresponding to Theorem 9 in our AAMAS paper [14]
and Theorem 10) were developed by Simon Rey and me in equal parts. The examples in
Section 5.6 (corresponding to Section 4.2 in [14]) were developed by me. The writing of the
publication [14] was conducted in equal parts by Dorothea Baumeister, Linus Boes, Simon
Rey, and me. I reused a few text passages from [14] in this chapter which were not completely
written by me. Finally, the application GoodVotes was designed and programmed by me.

2By the time this thesis is published, GoodVotes was renamed to GoodVoteX. In its current version, I maintain
and develop GoodVoteX together with my colleague Paul Nüsken.

99

https://github.com/claussmann/GoodVotes

Chapter 6

Discussion

In this thesis we analyzed methods from computational social choice in the light of real-world
applications. Network centrality has applications to viral marketing, infrastructure planning,
and many more. Especially in the light of social networks this research area becomes increas-
ingly important. Designing voting methods, convenient yet expressive ballots, and protecting
elections from fraud is also very important in everyday life. Democratization is progressing
everywhere. We are asked for our opinion more and more. Therefore, it is crucial that we
design good procedures, and also understand their properties and potential vulnerabilities. In
the introduction to this thesis we presented four central problems (Section 1.3). To conclude
this thesis, we now briefly want to review in how far we addressed them.

Problem 1 issued that voters might have (and want to express) relatively complicated pref-
erences, but the language for expressing these should at the same time not be too cognitive
challenging. In Chapter 5 we certainly moved a big step forward to solving this problem.
While bounded approval ballots are not fully expressive, they allow expressing the most
common preference types in multiwinner voting, i.e., substitution effects, incompatibilities,
dependencies, and regular approval. At the same time, they are not really cognitive challeng-
ing. In fact, approval ballots remain valid, so the lazy voter can just submit such a ballot.
With the web-application presented in Chapter 5 it is even more convenient for the voters to
make use of the most important features of bounded approval ballots.

Problem 2 concerns where which voting rules could be used, and where which properties are
important. We leveraged knowledge regarding this question in Chapter 2 by showing that
voting rules can be used as centrality indices and node selectors. Many properties of voting
rules which are well studied in social choice literature find application, or have counterparts in
network science. Some voting based centrality indices, or node selectors have desirable prop-
erties that common methods from network science fail. For example, Condorcet-consistency
is currently only satisfied by the Copeland centrality index which we defined based on the
same name voting rule. Further, from the experiments we also learned that the path of in-
fluence could also work in the other direction: VoteRank is closely related to the class of
w-SPAV rules, but it performs better than those rules in our experiments on networks. Maybe
results like this can also help to tweak multiwinner voting rules.

In Problem 3 we raised the question in how far preference aggregation is susceptible to fraud
attempts by malicious agents, and how it can be protected. We extended the existing literature

101

Chapter 6 Discussion

(mostly on single-winner rules) by showing the computational vulnerability of apportionment
methods to bribery-like fraud in Chapter 4. We also addressed the second part of the ques-
tion by proving that the second-chance mode (which requires only very little change in the
procedure) protects apportionment elections from such fraud by making it computationally
intractable to compute optimal actions.

Finally, in Problem 4 we pointed out that in real-world the perfect information required by
many social choice procedures might be unavailable. We addressed this problem in Chapter 3
where we introduced a more realistic framework for participatory budgeting. In participatory
budgeting projects have to be implemented, and it is well known that projects sometimes turn
out to take longer, or cost more than expected. We showed that under these conditions there
exists no ideal method. However, our best-effort methods achieve reasonably good results
with the limited information they have.

This thesis aims at building a bridge from theory to practice. Although we were able to build
this bridge to some degree in each chapter, it is still a long way before results from this thesis
are widely used in real-world applications. We believe the most promising next step is to
improve the GoodVotes application from Chapter 5. After all, a theoretical concept—even
a really good one—will only be broadly accepted if it is easy to use for common people.
By making concepts usable through web applications or apps, there are good chances that
many people will use it. A good example are online poll services such as Doodle, Bitpoll,
or Nuudel. Many people use such services just because they are very easy. But from time
to time, everyone experiences the situation that one cannot really express what one really
wants through such ‘ballots’. We believe it is time to use COMSOC methods in real-world
by making them as accessible for the voters as Doodle and others are.

102

Bibliography

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[2] K. Arrow. Social Choice and Individual Values. Vol. 12. Yale university press, 2012.

[3] K. Arrow, A. Sen, and K. Suzumura, eds. Handbook of Social Choice and Welfare.
Vol. 2. North-Holland, 2011.

[4] H. Aziz and N. Shah. “Participatory Budgeting: Models And Approaches”. In: Path-
ways Between Social Science and Computational Social Science: Theories, Methods,
and Interpretations (2021), pp. 215–236.

[5] H. Aziz and N. Shah. “Participatory Budgeting: Models and Approaches”. In: Path-
ways between Social Science and Computational Social Science: Theories, Methods
and Interpretations. Ed. by T. Rudas and P. Gábor. Springer, 2021, pp. 215–236.

[6] H. Aziz et al. “Computational Aspects of Multi-Winner Approval Voting”. In: Pro-
ceedings of the 14th international conference on autonomous agents and multiagent
systems (AAMAS). IFAAMAS, 2015, 107–115.

[7] H. Aziz et al. “Justified Representation in Approval-Based Committee Voting”. In:
Social Choice and Welfare 48.2 (2017), pp. 461–485.

[8] J. Banks. “Sophisticated Voting Outcomes and Agenda Control”. In: Social Choice
and Welfare 1.4 (1985), pp. 295–306.

[9] N. Barrot and J. Lang. “Conditional and Sequential Approval Voting on Combinatorial
Domains”. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence. 2016, pp. 88–94.

[10] D. Baumeister, L. Boes, and C. Laußmann. “Time-Constrained Participatory Budget-
ing Under Uncertain Project Costs”. In: International Joint Conferences on Artificial
Intelligence. 2022.

[11] D. Baumeister, L. Boes, and T. Seeger. “Irresolute Approval-based Budgeting”. In:
Proceedings of the 19th International Conference on Autonomous Agents and MultiA-
gent Systems. IFAAMAS, 2020, pp. 1774–1776.

[12] D. Baumeister, T. Hogrebe, and L. Rey. “Generalized Distance Bribery”. In: AAAI
Press, 2019, pp. 1764–1771.

[13] D. Baumeister and J. Rothe. “Preference Aggregation by Voting”. In: Economics and
Computation. An Introduction to Algorithmic Game Theory, Computational Social
Choice, and Fair Division. Ed. by J. Rothe. Springer Texts in Business and Economics.
Springer-Verlag, 2015. Chap. 4, pp. 197–325.

103

Bibliography

[14] D. Baumeister et al. “Designing Expressive Preferences in Multiwinner Voting”. In:
International Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,
2023.

[15] P. Boldi et al. “Voting in Social Networks”. In: Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management. ACM Press, Nov. 2009, pp. 777–
786.

[16] R. Booth et al. “Learning Conditionally Lexicographic Preference Relations”. In: Pro-
ceedings of the 19th European Conference on Artificial Intelligence. 2010, pp. 269–
274.

[17] C. Boutilier et al. “Reasoning With Conditional Ceteris Paribus Preference State-
ments”. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence. 1999, pp. 71–80.

[18] Craig Boutilier and Holger H. Hoos. “Bidding Languages for Combinatorial Auc-
tions”. In: Proceedings of the 17th International Joint Conference on Artificial Intelli-
gence. 2001, pp. 1211–1217.

[19] S. Brams, P. Edelman, and P. Fishburn. “Fair Division of Indivisible Items”. In: Theory
and Decision 55 (2003), pp. 147–180.

[20] S. Brams and D. Kilgour. “Satisfaction approval voting”. In: Voting Power and Proce-
dures. Springer, 2014, pp. 323–346.

[21] U. Brandes, C. Laußmann, and J. Rothe. “Voting for Centrality (Extended Abstract)”.
In: International Conference on Autonomous Agents and Multiagent Systems. IFAA-
MAS, 2022.

[22] F. Brandl and D. Peters. “An Axiomatic Characterization of The Borda Mean Rule”.
In: Social choice and welfare 52.4 (2019), pp. 685–707.

[23] R. Bredereck et al. “Strategic Campaign Management in Apportionment Elections”.
In: ijcai.org, July 2020, pp. 103–109.

[24] M. Brill. “Interactive Democracy”. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and Multiagent Systems. IFAAMAS, July 2018, pp. 1183–
1187.

[25] M. Brill, J. Laslier, and P. Skowron. “Multiwinner Approval Rules as Apportionment
Methods”. In: Journal of Theoretical Politics. AAAI Press, Feb. 2017, pp. 414–420.

[26] Y. Cabannes. “Participatory Budgeting: A Significant Contribution to Participatory
Democracy”. In: Environment and urbanization 16.1 (2004), pp. 27–46.

[27] A. Copeland. A reasonable social welfare function. unpublished. 1951.

[28] E. Elkind et al. “Properties of Multiwinner Voting Rules”. In: Social Choice and Wel-
fare 48.3 (2017), pp. 599–632.

[29] E. Elkind et al. “What Do Multiwinner Voting Rules Do? An Experiment over the
Two-Dimensional Euclidean Domain”. In: Proceedings of the 31st AAAI Conference
on Artificial Intelligence. AAAI Press, Feb. 2017, pp. 494–501.

104

Bibliography

[30] E. Everett and S. Borgatti. “Extending centrality”. In: Models and Methods in Social
Network Analysis 35.1 (2005), pp. 57–76.

[31] M. Everett and S. Borgatti. “The Centrality of Groups and Classes”. In: Journal of
Mathematical Sociology 23.3 (1999), pp. 181–201.

[32] R. Fairstein, R. Meir, and K. Gal. “Proportional Participatory Budgeting with Substi-
tute Projects”. In: arXiv preprint arXiv:2106.05360 (2021).

[33] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. “How Hard Is Bribery in
Elections?” In: 35 (2009), pp. 485–532.

[34] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. “The Complexity of Ma-
nipulative Attacks in Nearly Single-peaked Electorates”. In: Proceedings of the 13th
conference on theoretical aspects of rationality and knowledge. 2011, pp. 228–237.

[35] P. Faliszewski and J. Rothe. “Control and Bribery in Voting”. In: Handbook of Com-
putational Social Choice. Ed. by F. Brandt et al. Cambridge University Press, 2016.
Chap. 7, pp. 146–168.

[36] P. Faliszewski et al. “The Shield That Never Was: Societies With Single-peaked Pref-
erences Are More Open to Manipulation And Control”. In: Proceedings of the 12th
Conference on Theoretical Aspects of Rationality and Knowledge. 2009, pp. 118–127.

[37] A. Fiat and G. Woeginger. Online Algorithms: The State of the Art. Vol. 1442. Springer,
1998.

[38] S. Foldes and P. Hammer. “The Dilworth Number of a Graph”. In: Annals of Discrete
Mathematics 2 (1978), pp. 211–219.

[39] L. Freeman. “Centrality in Social Networks: Conceptual Clarification”. In: Social Net-
works 1 (1979), pp. 215–239.

[40] D. Gale and L. Shapley. “College Admissions And The Stability of Marriage”. In: The
American Mathematical Monthly 69.1 (1962), pp. 9–15.

[41] M. Gallagher and P. Mitchell, eds. The Politics of Electoral Systems. Oxford University
Press, 2005.

[42] P. Gärdenfors. “Positionalist Voting Functions”. In: Theory and Decision 4.1 (1973),
pp. 1–24.

[43] M. Goerigk et al. “The Robust Knapsack Problem with Queries”. In: Computers &
Operations Research 55 (2015), pp. 12–22.

[44] J. Gomez, D. Insua, and C. Alfaro. “A Participatory Budget Model Under Uncer-
tainty”. In: European Journal of Operational Research 249.1 (2016), pp. 351–358.

[45] U. Grandi. “Social choice and social networks”. In: Trends in Computational Social
Choice. Ed. by Ulle Endriss. AI Access, 2017. Chap. 9, pp. 196–184.

[46] E. Güney. “A Mixed Integer Linear Program for Election Campaign Optimization
under D’Hondt Rule”. In: Proceedings of the Annual International Conference of the
German Operations Research Society. Springer, 2017, pp. 73–79.

105

Bibliography

[47] R. Irving. “An Efficient Algorithm For The ’Stable Roommates’ Problem”. In: Journal
of Algorithms 6.4 (1985), pp. 577–595.

[48] P. Jain, K. Sornat, and Nimrod N. Talmon. “Participatory Budgeting with Project In-
teractions”. In: Proceedings of the 29th International Joint Conference on Artificial
Intelligence. 2020, pp. 386–392.

[49] O. Kariv and L. Hakimi. “An Algorithmic Approach to Network Location Problems. I:
The p-centers”. In: SIAM Journal on Applied Mathematics 37.3 (1979), pp. 513–538.

[50] R. Karp. “Reducibility Among Combinatorial Problems”. In: Complexity of Computer
Computations. Ed. by R. Miller and J. Thatcher. Plenum Press, 1972, pp. 85–103.

[51] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[52] D. Kempe, J. Kleinberg, and É. Tardos. “Maximizing The Spread of Influence Through
a Social Network”. In: Proceedings of the ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 2003, pp. 137–146.

[53] M. Kilgour. “Multi-Winner Voting”. In: Studies of Applied Economics 36.1 (2018),
pp. 167–180.

[54] D. Koschützki et al. “Centrality Indices”. In: Network Analysis: Methodological Foun-
dations. Ed. by U. Brandes and T. Erlebach. Springer, 2005, pp. 16–61.

[55] M. Lackner and P. Skowron. Multi-Winner Voting With Approval Preferences. Springer
Nature, 2023.

[56] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. available at https:
//archive.org/details/handbuchderlehre01landuoft/page/30/
mode/2up. Leipzig B.G. Teubner, 1909.

[57] J. Lang. Coalition Formation Games Span All of Social Choice! Towards a taxonomy.
Talk at Dagstuhl Seminar 21331 on Coalition Formation Games. 2021.

[58] J. Laslier and M. Sanver, eds. Handbook on Approval Voting. Springer, 2010.

[59] C. Laußmann, J. Rothe, and T. Seeger. Apportionment with Thresholds: Strategic
Campaigns Are Easy in the Top-Choice But Hard in the Second-Chance Mode. submit-
ted to the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)
in January, 2023.

[60] J. Leskovec, L. Adamic, and B. Huberman. “The Dynamics of Viral Marketing”. In:
ACM Transactions on the Web (TWEB) 1.1 (2007), 5–es.

[61] W. Ma et al. “Resource-Constrained Project Scheduling Problem With Uncertain Du-
rations And Renewable Resources”. In: International Journal of Machine Learning
and Cybernetics 7.4 (2016), pp. 613–621.

[62] J. Mercik. “Voting Procedures With A Priori Incomplete Individual Profiles”. In: Mul-
tiperson decision making models using fuzzy sets and possibility theory (1990), pp. 242–
251.

[63] S. Milgram. “The Small World Problem”. In: Psychology today 2.1 (1967), pp. 60–67.

106

https://archive.org/details/handbuchderlehre01landuoft/page/30/mode/2up
https://archive.org/details/handbuchderlehre01landuoft/page/30/mode/2up
https://archive.org/details/handbuchderlehre01landuoft/page/30/mode/2up

Bibliography

[64] M. Monaci and U. Pferschy. “On the Robust Knapsack Problem”. In: SIAM Journal
on Optimization 23.4 (2013), pp. 1956–1982.

[65] M. Monaci, U. Pferschy, and P. Serafini. “Exact Solution of the Robust Knapsack
Problem”. In: Computers & Operations Research 40.11 (2013), pp. 2625–2631.

[66] H. Moradi and S. Shadrokh. “A Robust Scheduling For The Multi-Mode Project Schedul-
ing Problem With a Given Deadline Under Uncertainty of Activity Duration”. In: In-
ternational Journal of Production Research 57.10 (2019), pp. 3138–3167.

[67] J. Nash. John Nash in a letter to the NSA. https://www.nsa.gov/portals/
75/documents/news-features/declassified-documents/nash-
letters/nash_letters1.pdf. 1955.

[68] M. Pellicer and E. Wegner. “The Mechanical And Psychological Effects of Legal
Thresholds”. In: Electoral Studies 33 (2014), pp. 258–266.

[69] D. Peters, G. Pierczyński, and P. Skowron. “Proportional Participatory Budgeting With
Additive Utilities”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 12726–12737.

[70] A. Procaccia and J. Rosenschein. “The Distortion of Cardinal Preferences in Voting”.
In: Cooperative Information Agents X: 10th International Workshop. Springer. 2006,
pp. 317–331.

[71] F. Pukelsheim. Proportional Representation. Springer, 2017.

[72] M. Rabin and D. Scott. “Finite Automata and Their Decision Problems”. In: IBM
journal of research and development 3.2 (1959), pp. 114–125.

[73] S. Rey, U. Endriss, and R. de Haan. “Designing Participatory Budgeting Mechanisms
Grounded in Judgment Aggregation”. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning. Vol. 17. 1. 2020, pp. 692–
702.

[74] J. Rothe. Complexity Theory and Cryptology. Springer, 2005.

[75] J. Rothe. Informatik IV Theoretische Informatik. available at https://ccc.cs.
uni-duesseldorf.de/˜rothe/INFO4/main.pdf. lecture notes. 2019.

[76] J. Rothe. Komplexitätstheorie und Kryptologie. Springer, 2008.

[77] J. Rothe et al. Economics and Computation. Ed. by J. Rothe. Vol. 4. Springer, 2015.

[78] T. Sandholm. “Algorithm for Optimal Winner Determination in Combinatorial Auc-
tions”. In: Artificial Intelligence 135 (2002), pp. 1–54.

[79] D. Schoch and U. Brandes. “Re-Conceptualizing Centrality in Social Networks”. In:
European Journal of Applied Mathematics 27.6 (2016), pp. 971–985.

[80] M. Schulze. “A new monotonic, clone-independent, reversal symmetric, and Condorcet-
consistent single-winner election method”. In: Social Choice and Welfare 36.2 (2011),
pp. 267–303.

107

https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf
https://ccc.cs.uni-duesseldorf.de/~rothe/INFO4/main.pdf
https://ccc.cs.uni-duesseldorf.de/~rothe/INFO4/main.pdf

Bibliography

[81] P. Skowron and P. Faliszewski. “Chamberlin–Courant Rule with Approval Ballots:
Approximating the MaxCover Problem with Bounded Frequencies in FPT Time”. In:
Journal of Artificial Intelligence Research 60 (2017), pp. 687–716.

[82] P. Slater. “Inconsistencies in a Schedule of Paired Comparisons”. In: Biometrika 48.3–
4 (1961), pp. 303–312.

[83] D. Stolicki, S. Szufa, and N. Talmon. “Pabulib: A Participatory Budgeting Library”.
In: arXiv preprint arXiv:2012.06539 (2020).

[84] N. Talmon and P. Faliszewski. “A Framework for Approval-based Budgeting Meth-
ods”. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Vol. 33.
AAAI Press, 2019, pp. 2181–2188.

[85] A. Turing. “On Computable Numbers, With an Application to The Entscheidungsprob-
lem”. In: J. of Math 58.345-363 (1936), p. 5.

[86] K. Vaziri, P. Carr, and L. Nozick. “Project Planning for Construction Under Uncer-
tainty with Limited Resources”. In: Journal of Construction Engineering and Man-
agement 133.4 (2007), pp. 268–276.

[87] D. Watts and S. Strogatz. “Collective Dynamics of ’Small-World’ Networks”. In: na-
ture 393.6684 (1998), pp. 440–442.

[88] K. Wilkinson. Analysis of a Voting Method for Ranking Network Centrality Measures
on a Node-Aligned Multiplex Network. Tech. rep. AFIT-ENS-MS-18-M-170. Wright-
Patterson Air Force Base, Ohio, USA: Air Force Institute of Technology, 2018.

[89] J. Zhang et al. “Identifying a Set of Influential Spreaders in Complex Networks”. In:
Scientific Reports 6 (2016).

[90] W. Zwicker. “Introduction to the Theory of Voting”. In: Handbook of Computational
Social Choice. Ed. by F. Brandt et al. Cambridge University Press, 2016. Chap. 2,
pp. 23–56.

108

Appendix

1 Code of Centrality Experiments

We here provide the code for the experiments in Section 2.7.

Listing 6.1: Centrality.py — Implementations of Centrality Indices, and Node Selectors
from abc import ABC, a b s t r a c t m e t h o d
from random import s h u f f l e , sample , random , c h o i c e
import ne tworkx as nx
import i t e r t o o l s

c l a s s O r d i n a l P r e f e r e n c e (l i s t) :
def i n i t (s e l f , owner , i t e r a b l e p r e f = None) :

s e l f . owner = owner
i f i t e r a b l e p r e f != None :

super () . i n i t (i t e r a b l e p r e f)

def r e m o v e c a n d i d a t e (s e l f , c a n d i d a t e) :
f o r pos in s e l f :

i f c a n d i d a t e in pos :
pos . remove (c a n d i d a t e)
i f l e n (pos) == 0 :

s e l f . remove (pos)
break

def g e t p r e d e c e s s o r s o f (s e l f , c a n d i d a t e) :
p r e d e c e s s o r s = s e t ()
f o r pos in s e l f :

i f c a n d i d a t e in pos :
re turn p r e d e c e s s o r s

e l s e :
p r e d e c e s s o r s = p r e d e c e s s o r s . un ion (pos)

r a i s e V a l u e E r r o r (” C a n d i d a t e n o t i n p r e f e r e n c e : %s ” % s t r (c a n d i d a t e))

def g e t s u c c e s s o r s o f (s e l f , c a n d i d a t e) :
s u c c e s s o r s = s e t ()
found = F a l s e
f o r pos in s e l f :

i f found :
s u c c e s s o r s = s u c c e s s o r s . un ion (pos)

i f c a n d i d a t e in pos :
found = True

i f not found :
r a i s e V a l u e E r r o r (” C a n d i d a t e n o t i n p r e f e r e n c e : %s ” % s t r (c a n d i d a t e))

re turn s u c c e s s o r s

def compare (s e l f , a , b) :
i f s e l f . owner == a or s e l f . owner == b :

re turn 0
f o r pos in s e l f :

i f (a in pos) and (b not in pos) :
re turn 1

i f (a in pos) and (b in pos) :
re turn 0

i f (a not in pos) and (b in pos) :
re turn −1

def e q (s e l f , o t h e r) :
i f type (o t h e r) != type (s e l f) :

re turn F a l s e
i f o t h e r . owner != s e l f . owner :

re turn F a l s e
re turn super () . e q (o t h e r)

def s e t i t e m (s e l f , pos , nodes) :
i f type (nodes) == s e t :

super () . s e t i t e m (pos , nodes)
e l s e :

r a i s e V a l u e E r r o r (” Must be a s e t : %s ” % s t r (nodes))

109

Appendix

def append (s e l f , nodes) :
i f type (nodes) == s e t :

super () . append (nodes)
e l s e :

r a i s e V a l u e E r r o r (” Must be a s e t : %s ” % s t r (nodes))

c l a s s A p p r o v a l P r e f e r e n c e (s e t) :
def i n i t (s e l f , owner , i t e r a b l e p r e f = None) :

s e l f . owner = owner
i f i t e r a b l e p r e f != None :

super () . i n i t (i t e r a b l e p r e f)

def e q (s e l f , o t h e r) :
i f type (o t h e r) != type (s e l f) :

re turn F a l s e
i f o t h e r . owner != s e l f . owner :

re turn F a l s e
re turn super () . e q (o t h e r)

def g e t o r d i n a l p r e f e r e n c e s f r o m g r a p h (g raph) :
r e t = l i s t ()
s h o r t e s t p a t h s = nx . s h o r t e s t p a t h l e n g t h (graph , s o u r c e =None , t a r g e t =None)
f o r s t a r t , d i s t a n c e s in s h o r t e s t p a t h s :

n o d e s r e m a i n i n g = s e t (g raph . nodes)
n o d e s r e m a i n i n g . remove (s t a r t)
m a x d i s t a n c e = max (d i s t a n c e s . v a l u e s ())
p r e f = O r d i n a l P r e f e r e n c e (s t a r t)
r e t . append (p r e f)
f o r d in range (1 , m a x d i s t a n c e + 1) :

n o d e s a t p o s = {node f o r node in d i s t a n c e s i f d i s t a n c e s [node] == d}
p r e f . append (n o d e s a t p o s)
n o d e s r e m a i n i n g = n o d e s r e m a i n i n g . d i f f e r e n c e (n o d e s a t p o s)

i f l e n (n o d e s r e m a i n i n g) > 0 :
p r e f . append (n o d e s r e m a i n i n g)

re turn r e t

def g e t a p p r o v a l p r e f e r e n c e s f r o m g r a p h (g raph) :
r e t = l i s t ()
f o r node in graph . nodes :

r e t . append (A p p r o v a l P r e f e r e n c e (node , g raph . n e i g h b o r s (node)))
re turn r e t

###
###
###

c l a s s N o d e S e l e c t o r (ABC) :
def i n i t (s e l f , g raph) :

s e l f . g raph = graph

@abs t r ac tme thod
def s e l e c t c o m m i t t e e (s e l f , n u m b e r o f n o d e s) :

pass

c l a s s C e n t r a l i t y I n d e x (N od eS e l ec to r , ABC) :
def i n i t (s e l f , g raph) :

s e l f . i n d i c e s = s e l f . g e t i n d i c e s (g raph)
super () . i n i t (g raph)

def g e t w i n n e r s (s e l f) :
max val = max (s e l f . i n d i c e s . v a l u e s ())
w i n n e r s = [n f o r n in s e l f . i n d i c e s . keys () i f s e l f . i n d i c e s [n] == max val]
re turn w i n n e r s

def s e l e c t c o m m i t t e e (s e l f , number) :
r e t = s e t ()
n o d e s l e f t = l i s t (s e l f . i n d i c e s . keys ())
f o r x in range (number) :

max key = max (n o d e s l e f t , key= s e l f . i n d i c e s . g e t)
max val = s e l f . i n d i c e s [max key]
max keys = [n f o r n in n o d e s l e f t i f s e l f . i n d i c e s [n] == max val]
s e l e c t = c h o i c e (max keys)
r e t . add (s e l e c t)
n o d e s l e f t . remove (s e l e c t)

re turn r e t

@abs t r ac tme thod
def g e t i n d i c e s (s e l f , g raph) :

pass

c l a s s G r o u p C e n t r a l i t y I n d e x (No de Se l e c t o r , ABC) :
def i n i t (s e l f , g raph) :

super () . i n i t (g raph)

def s e l e c t c o m m i t t e e (s e l f , number) :

110

1 Code of Centrality Experiments

r e t = s e t ()
b e s t = 0
f o r com in i t e r t o o l s . c o m b i n a t i o n s (s e l f . g raph . nodes , number) :

i n d e x = s e l f . g e t c o m m i t t e e i n d e x (s e l f . graph , com)
i f i n d e x > b e s t :

r e t = s e t (com)
b e s t = i n d e x

re turn r e t

@abs t r ac tme thod
def g e t c o m m i t t e e i n d e x (s e l f , graph , commi t t ee) :

pass

#−−
V o t i n g Based C e n t r a l i t y
#−−

c l a s s V o t e R a n k C e n t r a l i t y (N o d e S e l e c t o r) :
name = ” VoteRank ”

NetworkX p r o v i d e s a l s o an i m p l e m e n t a t i o n . But he re we use random t i e −b r e a k i n g .
def s e l e c t c o m m i t t e e (s e l f , x) :

r e d u c t i o n c o n s t a n t = s e l f . a v e r a g e d e g r e e ()
v o t i n g a b i l i t y = {n : 1 f o r n in s e l f . g raph . nodes}
s e l e c t e d = s e t ()
f o r i in range (x) :

s c o r e s = {n : 0 f o r n in s e l f . g raph . nodes}
f o r n in s e l f . g raph . nodes :

i f n not in s e l e c t e d :
s c o r e s [n] = sum ([v o t i n g a b i l i t y [n e i g h] f o r n e i g h in s e l f . g raph . n e i g h b o r s (n)])

max val = max (s c o r e s . v a l u e s ())
max keys = [n f o r n in s e l f . g raph . nodes i f s c o r e s [n] == max val and n not in s e l e c t e d]
s e l e c t = c h o i c e (max keys)
s e l e c t e d . add (s e l e c t)
v o t i n g a b i l i t y [s e l e c t] = 0
f o r n e i g h b o r in s e l f . g raph . n e i g h b o r s (s e l e c t) :

v o t i n g a b i l i t y [n e i g h b o r] −= r e d u c t i o n c o n s t a n t
i f v o t i n g a b i l i t y [n e i g h b o r] < 0 :

v o t i n g a b i l i t y [n e i g h b o r] = 0

re turn s e l e c t e d

def a v e r a g e d e g r e e (s e l f) :
sum = 0
f o r n in s e l f . g raph . nodes :

sum += l e n (l i s t (s e l f . g raph . n e i g h b o r s (n)))
re turn sum / l e n (s e l f . g raph . nodes)

c l a s s S T V C e n t r a l i t y (N o d e S e l e c t o r) :
name = ”STV”

def s e l e c t c o m m i t t e e (s e l f , x) :
i f x > l e n (s e l f . g raph . nodes) :

x = l e n (s e l f . g raph . nodes)
p r e f r e m = g e t o r d i n a l p r e f e r e n c e s f r o m g r a p h (s e l f . g raph)
can rem = l i s t (s e l f . g raph . nodes)
w i n n e r s = s e t ()
whi le l e n (w i n n e r s) < x :

q = l e n (p r e f r e m) / / (x +1)
b e s t c , b e s t s c o r e , w o r s t c , w o r s t s c o r e = s e l f . p l u r a l i t y w i n l o s (p r e f r e m , can rem)
i f b e s t s c o r e >= q :

w i n n e r s . add (b e s t c)
s e l f . r e m o v e q p r e f e r e n c e s v o t e d f o r c (p r e f r e m , q , b e s t c)
s e l f . r e m o v e p r e f e r e n c e o f (p r e f r e m , b e s t c)
s e l f . r e m o v e c f r o m a l l p r e f e r e n c e s (p r e f r e m , b e s t c)
can rem . remove (b e s t c)

e l s e :
can rem . remove (w o r s t c)
s e l f . r e m o v e c f r o m a l l p r e f e r e n c e s (p r e f r e m , w o r s t c)

re turn w i n n e r s

@ s t a t i c m e t h o d
def p l u r a l i t y w i n l o s (p r e f e r e n c e s , c a n d i d a t e s) :

s c o r e s = d i c t ()
f o r c in c a n d i d a t e s :

s c o r e s [c] = 0
f o r p r e f in p r e f e r e n c e s :

f o r n in p r e f [0] :
s c o r e s [n] += 1

b e s t s c o r e = max (s c o r e s . v a l u e s ())
winner = c h o i c e ([n f o r n in s c o r e s i f s c o r e s [n] == b e s t s c o r e])
w o r s t s c o r e = min (s c o r e s . v a l u e s ())
l o s e r = c h o i c e ([n f o r n in s c o r e s i f s c o r e s [n] == w o r s t s c o r e])
re turn (winner , s c o r e s [winner] , l o s e r , s c o r e s [l o s e r])

@ s t a t i c m e t h o d
def r e m o v e q p r e f e r e n c e s v o t e d f o r c (p r e f e r e n c e s , q , c) :

v o t e d f o r = [p f o r p in p r e f e r e n c e s i f c in p [0]]
rem = sample (v o t e d f o r , q)

111

Appendix

f o r i in rem :
p r e f e r e n c e s . remove (i)

@ s t a t i c m e t h o d
def r e m o v e p r e f e r e n c e o f (p r e f e r e n c e s , c) :

f o r p r e f in p r e f e r e n c e s :
i f p r e f . owner == c :

p r e f e r e n c e s . remove (p r e f)
break

@ s t a t i c m e t h o d
def r e m o v e c f r o m a l l p r e f e r e n c e s (p r e f e r e n c e s , c) :

f o r p r e f in p r e f e r e n c e s :
p r e f . r e m o v e c a n d i d a t e (c)

c l a s s S P A V C e n t r a l i t y (N o d e S e l e c t o r) :
name = ” Seq −PAV”

def s e l e c t c o m m i t t e e (s e l f , x) :
s a t i s f a c t i o n = d i c t ()
f o r node in s e l f . g raph . nodes :

s a t i s f a c t i o n [node] = 1
c a n d i d a t e s = l i s t (s e l f . g raph . nodes)
s h u f f l e (c a n d i d a t e s)
s e l e c t e d s e t = s e t ()
whi le l e n (s e l e c t e d s e t) < x :

b e s t n o d e = −1
b e s t s c o r e = −1
f o r c in c a n d i d a t e s :

s c o r e = 0
f o r v in s e l f . g raph . n e i g h b o r s (c) :

s c o r e += 1 / s a t i s f a c t i o n [v]
i f s c o r e > b e s t s c o r e :

b e s t s c o r e = s c o r e
b e s t n o d e = c

s e l e c t e d s e t . add (b e s t n o d e)
f o r n e i g h b o r in s e l f . g raph . n e i g h b o r s (b e s t n o d e) :

s a t i s f a c t i o n [n e i g h b o r] += 1
c a n d i d a t e s . remove (b e s t n o d e)

re turn s e l e c t e d s e t

c l a s s G r e e d y A V C e n t r a l i t y (N o d e S e l e c t o r) :
name = ” Greedy −AV”

def s e l e c t c o m m i t t e e (s e l f , x) :
s a t i s f a c t i o n = d i c t ()
f o r node in s e l f . g raph . nodes :

s a t i s f a c t i o n [node] = 1
c a n d i d a t e s = l i s t (s e l f . g raph . nodes)
c o n t r i b u t i o n = {v : 1 f o r v in s e l f . g raph . nodes}
s h u f f l e (c a n d i d a t e s)
s e l e c t e d s e t = s e t ()
whi le l e n (s e l e c t e d s e t) < x :

s c o r e s = {c : sum (c o n t r i b u t i o n [v] f o r v in s e l f . g raph . n e i g h b o r s (c)) f o r c in c a n d i d a t e s}
b e s t n o d e = max (c a n d i d a t e s , key= lambda x : s c o r e s [x])
s e l e c t e d s e t . add (b e s t n o d e)
f o r n e i g h b o r in s e l f . g raph . n e i g h b o r s (b e s t n o d e) :

c o n t r i b u t i o n [n e i g h b o r] = 0
c a n d i d a t e s . remove (b e s t n o d e)

re turn s e l e c t e d s e t

#−−
STANDARD C e n t r a l i t y
#−−

c l a s s D e g r e e C e n t r a l i t y (C e n t r a l i t y I n d e x) :
name = ” Degree ”

def g e t i n d i c e s (s e l f , g raph) :
i f i s i n s t a n c e (graph , nx . DiGraph) :

re turn nx . i n d e g r e e c e n t r a l i t y (g raph)
re turn nx . d e g r e e c e n t r a l i t y (g raph)

c l a s s G r o u p D e g r e e C e n t r a l i t y (G r o u p C e n t r a l i t y I n d e x) :
name = ” Group Degree ”

def g e t c o m m i t t e e i n d e x (s e l f , graph , commi t t ee) :
re turn nx . g r o u p d e g r e e c e n t r a l i t y (graph , commi t t ee)

c l a s s C l o s e n e s s C e n t r a l i t y (C e n t r a l i t y I n d e x) :
name = ” C l o s e n e s s ”

def g e t i n d i c e s (s e l f , g raph) :
re turn nx . c l o s e n e s s c e n t r a l i t y (g raph)

c l a s s G r o u p C l o s e n e s s C e n t r a l i t y (G r o u p C e n t r a l i t y I n d e x) :
name = ” Group C l o s e n e s s ”

112

1 Code of Centrality Experiments

def g e t c o m m i t t e e i n d e x (s e l f , graph , commi t t ee) :
re turn nx . g r o u p c l o s e n e s s c e n t r a l i t y (graph , commi t t ee)

Listing 6.2: Experiment1.py — Implementation of First Experiment
from C e n t r a l i t y import *
import ne tworkx as nx
import random
import t ime

#########
n = 60
samples = 200
b u d g e t s = (2 , 3 , 4)
#########

def main () :
n o d e s e l e c t o r s = (V o t e R a n k C e n t r a l i t y , S T V C e n t r a l i t y , G r e e d y A V C e n t r a l i t y ,

SPAV Cen t r a l i t y , D e g r e e C e n t r a l i t y , C l o s e n e s s C e n t r a l i t y)
g r a p h s = g e n e r a t e s a m p l e s ()
e x p e r i m e n t (g raphs , n o d e s e l e c t o r s)

def g e n e r a t e s a m p l e s () :
g r a p h s = l i s t ()
g r a p h t y p e = nx . w a t t s s t r o g a t z g r a p h
k = 6
p = 0 . 0 5
p r i n t (” Using %s () f o r sample g e n e r a t i o n ”%s t r (g r a p h t y p e))
p r i n t (” P a r a m e t e r s : n = %d k = %d p = %.2 f ”%(n , k , p))
f o r s in range (s amples) :

g raph = g r a p h t y p e (n , k , p)
whi le not nx . i s c o n n e c t e d (g raph) :

g raph = g r a p h t y p e (n , k , p)
g r a p h s . append (g raph)

re turn g r a p h s

def e x p e r i m e n t (g raphs , s e l e c t o r s) :
p r i n t (”\033[92mHow Good i s S e l e c t e d S e t i n Average D i s t a n c e / Neighborhood S i z e ? \033[0m”)

def s e t d i s t a n c e a v g (commit tee , g raph) :
t o t a l = 0
f o r node in graph . nodes − commi t t ee :

d i s t a n c e s = [nx . s h o r t e s t p a t h l e n g t h (graph , s o u r c e =node , t a r g e t =x) f o r x in commi t t ee]
t o t a l += min (d i s t a n c e s)

re turn t o t a l / (l e n (g raph . nodes) − l e n (commi t t ee))

def n e i g h b o r h o o d s i z e (commit tee , g raph) :
t o t a l = 0
f o r node in graph . nodes − commi t t ee :

d i s t a n c e s = [nx . s h o r t e s t p a t h l e n g t h (graph , s o u r c e =node , t a r g e t =x) f o r x in commi t t ee]
i f min (d i s t a n c e s) == 1 :

t o t a l += 1
re turn t o t a l

f o r bu dg e t in b u d g e t s :
p r i n t (”\033[94 mSet S i z e :\033[0m \033[1m %d\033[0m”%(b ud ge t))
r e s u l t s d i s t = {method : l i s t () f o r method in s e l e c t o r s}
r e s u l t s d e g = {method : l i s t () f o r method in s e l e c t o r s}
i = 0

f o r graph in g r a p h s :
s t a r t = t ime . t ime ()

s e l e c t e d c l = G r o u p C l o s e n e s s C e n t r a l i t y (g raph) . s e l e c t c o m m i t t e e (bud ge t)
a s s e r t l e n (s e l e c t e d c l) == b ud ge t
o p t d i s t = s e t d i s t a n c e a v g (s e l e c t e d c l , g raph)

s e l e c t e d d e g = G r o u p D e g r e e C e n t r a l i t y (g raph) . s e l e c t c o m m i t t e e (bu dge t)
a s s e r t l e n (s e l e c t e d d e g) == b ud ge t
o p t d e g = n e i g h b o r h o o d s i z e (s e l e c t e d d e g , g raph)

e x t i m e = t ime . t ime () − s t a r t

f o r method in s e l e c t o r s :
s e l e c t e d = method (g raph) . s e l e c t c o m m i t t e e (bu dge t)
a s s e r t l e n (s e l e c t e d) == bu dg e t
r e s u l t s d i s t [method] . append (s e t d i s t a n c e a v g (s e l e c t e d , g raph) − o p t d i s t)
r e s u l t s d e g [method] . append (o p t d e g − n e i g h b o r h o o d s i z e (s e l e c t e d , g raph))

p r i n t (” e s t . t ime : %.1 f m i n u t e s ” %((samples − i)* e x t i m e / 6 0) , end=”\ r ” , f l u s h =True)
i += 1

p r i n t (” ”)
p r i n t (” ” *18 + ” D i s t a n c e (d i f f t o o p t) Degree (d i f f t o o p t) ”)
p r i n t (” ” *18 + ” l q avg uq max l q avg uq max”)
f o r method in s e l e c t o r s :

r e s u l t s d i s t c u r r e n t = s o r t e d (r e s u l t s d i s t [method])
r e s u l t s d e g c u r r e n t = s o r t e d (r e s u l t s d e g [method])

113

Appendix

d i s t l q = r e s u l t s d i s t c u r r e n t [i n t (s amples / 4)]
d i s t u q = r e s u l t s d i s t c u r r e n t [i n t (3* samples / 4)]
d i s t m a x = r e s u l t s d i s t c u r r e n t [−1]
d i s t a v g = sum (r e s u l t s d i s t c u r r e n t) / s amples
d e g l q = r e s u l t s d e g c u r r e n t [i n t (s amples / 4)]
deg uq = r e s u l t s d e g c u r r e n t [i n t (3* sample s / 4)]
deg max = r e s u l t s d e g c u r r e n t [−1]
deg avg = sum (r e s u l t s d e g c u r r e n t) / s amples
p r i n t (”\033[95m%s : ”%method . name +

” ” *(18 − l e n (method . name)) +
”\033[1m %.2 f %.2 f %.2 f %.2 f %d %.2 f %d %d\033[0m”
% (d i s t l q , d i s t a v g , d i s t u q , d i s t m a x , d e g l q , deg avg , deg uq , deg max))

p r i n t ()
p r i n t ()

##
main ()

Listing 6.3: Experiment2.py — Implementation of Second Experiment
from C e n t r a l i t y import *
import ne tworkx as nx
import random
import t ime

#########
n = 500
sample s = 200
b u d g e t s = (2 , 3 , 4 , 1 0)
#########

def main () :
n o d e s e l e c t o r s = (V o t e R a n k C e n t r a l i t y , S T V C e n t r a l i t y ,

G r e e d y A V C e n t r a l i t y , S P A V C e n t r a l i t y)
g r a p h s = g e n e r a t e s a m p l e s ()
e x p e r i m e n t (g raphs , n o d e s e l e c t o r s)

def g e n e r a t e s a m p l e s () :
g r a p h s = l i s t ()
g r a p h t y p e = nx . w a t t s s t r o g a t z g r a p h
k = 6
p = 0 . 0 5
p r i n t (” Using %s () f o r sample g e n e r a t i o n ”%s t r (g r a p h t y p e))
p r i n t (” P a r a m e t e r s : n = %d k = %d p = %.2 f ”%(n , k , p))
f o r s in range (s amples) :

g raph = g r a p h t y p e (n , k , p)
whi le not nx . i s c o n n e c t e d (g raph) :

g raph = g r a p h t y p e (n , k , p)
g r a p h s . append (g raph)

re turn g r a p h s

def e x p e r i m e n t (g raphs , s e l e c t o r s) :
p r i n t (”\033[92mHow Of ten i s S e l e c t e d t h e Bes t i n Average D i s t a n c e / Neighborhood S i z e ?\033[0m”)

def s e t d i s t a n c e a v g (commit tee , g raph) :
t o t a l = 0
f o r node in graph . nodes − commi t t ee :

d i s t a n c e s = [nx . s h o r t e s t p a t h l e n g t h (graph , s o u r c e =node , t a r g e t =x) f o r x in commi t t ee]
t o t a l += min (d i s t a n c e s)

re turn t o t a l / (l e n (g raph . nodes) − l e n (commi t t ee))

def n e i g h b o r h o o d s i z e (commit tee , g raph) :
t o t a l = 0
f o r node in graph . nodes − commi t t ee :

d i s t a n c e s = [nx . s h o r t e s t p a t h l e n g t h (graph , s o u r c e =node , t a r g e t =x) f o r x in commi t t ee]
i f min (d i s t a n c e s) == 1 :

t o t a l += 1
re turn t o t a l

f o r bu dg e t in b u d g e t s :
p r i n t (”\033[94 mSet S i z e :\033[0m \033[1m %d\033[0m”%(b udg e t))
r e s u l t s d i s t = {method : 0 f o r method in s e l e c t o r s}
r e s u l t s d e g = {method : 0 f o r method in s e l e c t o r s}
i = 0

f o r graph in g r a p h s :
s t a r t = t ime . t ime ()
b e s t d i s t = l i s t ()
b e s t d e g = l i s t ()
b e s t d i s t v a l = n
b e s t d e g v a l = 0

f o r method in s e l e c t o r s :
s e l e c t e d = method (g raph) . s e l e c t c o m m i t t e e (bud ge t)
a s s e r t l e n (s e l e c t e d) == bu dg e t
d i s t = s e t d i s t a n c e a v g (s e l e c t e d , g raph)
deg = n e i g h b o r h o o d s i z e (s e l e c t e d , g raph)

114

2 Code of Best-Effort Experiments

i f d i s t < b e s t d i s t v a l :
b e s t d i s t = l i s t ()
b e s t d i s t . append (method)
b e s t d i s t v a l = d i s t

e l i f d i s t == b e s t d i s t v a l :
b e s t d i s t . append (method)

i f deg > b e s t d e g v a l :
b e s t d e g = l i s t ()
b e s t d e g . append (method)
b e s t d e g v a l = deg

e l i f deg == b e s t d e g v a l :
b e s t d e g . append (method)

f o r method in b e s t d i s t :
r e s u l t s d i s t [method] += 1

f o r method in b e s t d e g :
r e s u l t s d e g [method] += 1

e x t i m e = t ime . t ime () − s t a r t
i += 1
p r i n t (” e s t . t ime : %.1 f m i n u t e s ” %((samples − i)* e x t i m e / 6 0) , end=”\ r ” , f l u s h =True)

p r i n t (” ”)
p r i n t (” ” *18 + ” Bes t D i s t a n c e i n X Cases Bes t Degree i n X Cases ”)
f o r method in s e l e c t o r s :

p r i n t (”\033[95m%s : ”%method . name +
” ” *(18 − l e n (method . name)) +
”\033[1m %.1 f %% %.1 f %% \033[0m” %
(100* r e s u l t s d i s t [method] / samples , 100* r e s u l t s d e g [method] / s amples))

p r i n t ()
p r i n t ()

##
main ()

2 Code of Best-Effort Experiments

We here provide the code for the experiments in Section 3.6.1.

Listing 6.4: LimitationVarible.py — Limitation is Variable
! / u s r / b i n / env pypy3
from Core import *
from Shared import *
import s y s
import random
from p a t h l i b import Pa th

p r i n t (” E x p e r i m e n t i n g wi th v a r i a b l e L i m i t a t i o n ”)

usage : . / L i m i t a t i o n V a r i a b l e . py DATA SAMPLES TLIMIT ALPHA UNCERTAINTY={NONE, LOW, MEDIUM, HIGH}
p a b u l i b f i l e = s y s . a rgv [1]
s a m p l e c o u n t = i n t (s y s . a rgv [2])
t l i m i t = i n t (s y s . a rgv [3])
UNCERTAINTY = s y s . a rgv [5]
a l p h a r i s k = f l o a t (s y s . a rgv [4])

d a t a s e t n a m e = p a b u l i b f i l e . r s p l i t (” / ” , 1) [1] . r e p l a c e (” . pb ” , ” ”)
Pa th (” R e s u l t s / BEE/% s /% s ”%(d a t a s e t n a m e , UNCERTAINTY)) . mkdir (p a r e n t s =True , e x i s t o k =True)
Pa th (” R e s u l t s / BEP/% s /% s ”%(d a t a s e t n a m e , UNCERTAINTY)) . mkdir (p a r e n t s =True , e x i s t o k =True)
o u t f i l e s a t b e e = open (” R e s u l t s / BEE/% s /% s / L i m i t S a t . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e s a t b e p = open (” R e s u l t s / BEP/% s /% s / L i m i t S a t . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e e x b e e = open (” R e s u l t s / BEE/% s /% s / Limi tEx . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e p u b e p = open (” R e s u l t s / BEP/% s /% s / Limi tPu . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e s a t b e e)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e s a t b e p)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e e x b e e)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e p u b e p)
p r i n t (” t l i m i t : %d a l p h a : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , a l p h a r i s k , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e s a t b e e)
p r i n t (” t l i m i t : %d a l p h a : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , a l p h a r i s k , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e s a t b e p)
p r i n t (” t l i m i t : %d a l p h a : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , a l p h a r i s k , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e e x b e e)
p r i n t (” t l i m i t : %d a l p h a : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , a l p h a r i s k , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e p u b e p)

b l i m i t , p r o j e c t s , v o t e s = r e a d s c e n a r i o (p a b u l i b f i l e)
u t i l i t i e s = {p : g e t u t i l s a t i s f a c t i o n (v o t e s , p) f o r p in p r o j e c t s}
l i m i t a t i o n s = [1 + 0 .05* i f o r i in range (2 1)]

115

Appendix

####################################
Now f o l l o w s t h e a c t u a l e x p e r i m e n t
####################################

F i n d i n g o p t i m a l s o l u t i o n s .
o p t = d i c t ()
f o r k l i m in l i m i t a t i o n s :

s e l e c t n o s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , t l i m i t , b l i m i t , u t i l i t i e s)
s e l e c t w i t h s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , t l i m i t , b l i m i t * k l im , u t i l i t i e s)
o p t [k l i m] = (1 − a l p h a r i s k) * sum (u t i l i t i e s [p] f o r p in s e l e c t n o s u r p l u s)
o p t [k l i m] += a l p h a r i s k * sum (u t i l i t i e s [p] f o r p in s e l e c t w i t h s u r p l u s)

r a t i o s b e e = {k l i m : [] f o r k l i m in l i m i t a t i o n s}
r a t i o s b e p = {k l i m : [] f o r k l i m in l i m i t a t i o n s}
e x v a l = {k l i m : [] f o r k l i m in l i m i t a t i o n s}
p u v a l = {k l i m : [] f o r k l i m in l i m i t a t i o n s}

f o r s in range (s a m p l e c o u n t) :
p r i n t (” Sample %d of %d ” % (s +1 , s a m p l e c o u n t) , end= ’\ r ’)
r e s a m p l e u n c e r t a i n t y (p r o j e c t s , UNCERTAINTY)

f o r k l i m in l i m i t a t i o n s :
B e s t e f f o r t e x h a u s t i v e n e s s
l o g = BEE(p r o j e c t s , t l i m i t , b l i m i t , k l im , a l p h a r i s k , u t i l i t i e s)
s e l e c t i o n = l o g . g e t p r o j e c t s ()
u t i l o n l i n e = sum (u t i l i t i e s [p] f o r p in s e l e c t i o n)

r a t i o s b e e [k l i m] . append (s a t i s f a c t i o n p e r f (o p t [k l i m] , u t i l o n l i n e))
e x v a l [k l i m] . append (e x h a u s t i v e n e s s p e r f (p r o j e c t s , s e l e c t i o n , t l i m i t , b l i m i t , u t i l i t i e s))

B e s t e f f o r t p u n c t u a l i t y
l o g = BEP(p r o j e c t s , t l i m i t , b l i m i t , k l im , a l p h a r i s k , u t i l i t i e s , BEE log = l o g)
s e l e c t i o n = l o g . g e t p r o j e c t s ()
u t i l o n l i n e = sum (u t i l i t i e s [p] f o r p in s e l e c t i o n)

r a t i o s b e p [k l i m] . append (s a t i s f a c t i o n p e r f (o p t [k l i m] , u t i l o n l i n e))
p u v a l [k l i m] . append (p u n c t u a l i t y p e r f (log , t l i m i t))

p r i n t ()

##
T h i s i s o n l y f o r c o r r e c t l y f o r m a t t e d o u t p u t t o f i l e
##

p r i n t (” k l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e s a t b e e)
p r i n t (” k l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e s a t b e p)
p r i n t (” k l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e e x b e e)
p r i n t (” k l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e p u b e p)

f o r k l i m in l i m i t a t i o n s :
B e s t e f f o r t e x h a u s t i v e n e s s
c u r r e n t r a t i o s b e e = s o r t e d (r a t i o s b e e [k l i m])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(k l im , min (c u r r e n t r a t i o s b e e) ,

c u r r e n t r a t i o s b e e [s a m p l e c o u n t / / 4] , sum (c u r r e n t r a t i o s b e e) / s a m p l e c o u n t ,
c u r r e n t r a t i o s b e e [3* s a m p l e c o u n t / / 4] , max (c u r r e n t r a t i o s b e e)) , f i l e = o u t f i l e s a t b e e)

c u r r e n t e x h a u s t i v = s o r t e d (e x v a l [k l i m])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(k l im , min (c u r r e n t e x h a u s t i v) ,

c u r r e n t e x h a u s t i v [s a m p l e c o u n t / / 4] , sum (c u r r e n t e x h a u s t i v) / s a m p l e c o u n t ,
c u r r e n t e x h a u s t i v [3* s a m p l e c o u n t / / 4] , max (c u r r e n t e x h a u s t i v)) , f i l e = o u t f i l e e x b e e)

B e s t e f f o r t p u n c t u a l i t y
c u r r e n t r a t i o s b e p = s o r t e d (r a t i o s b e p [k l i m])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(k l im , min (c u r r e n t r a t i o s b e p) ,

c u r r e n t r a t i o s b e p [s a m p l e c o u n t / / 4] , sum (c u r r e n t r a t i o s b e p) / s a m p l e c o u n t ,
c u r r e n t r a t i o s b e p [3* s a m p l e c o u n t / / 4] , max (c u r r e n t r a t i o s b e p)) , f i l e = o u t f i l e s a t b e p)

c u r r e n t p u n c t u a l i t y = s o r t e d (p u v a l [k l i m])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(k l im , min (c u r r e n t p u n c t u a l i t y) ,

c u r r e n t p u n c t u a l i t y [s a m p l e c o u n t / / 4] , sum (c u r r e n t p u n c t u a l i t y) / s a m p l e c o u n t ,
c u r r e n t p u n c t u a l i t y [3* s a m p l e c o u n t / / 4] , max (c u r r e n t p u n c t u a l i t y)) , f i l e = o u t f i l e p u b e p)

o u t f i l e s a t b e e . c l o s e ()
o u t f i l e s a t b e p . c l o s e ()
o u t f i l e e x b e e . c l o s e ()
o u t f i l e p u b e p . c l o s e ()

Listing 6.5: RiskVarible.py — Risk Assessment is Variable
! / u s r / b i n / env pypy3
from Core import *
from Shared import *
import s y s
import random
from p a t h l i b import Pa th

p r i n t (” E x p e r i m e n t i n g wi th v a r i a b l e Risk Assessment ”)

usage : . / R i s k V a r i a b l e . py DATA SAMPLES KAPPA TLIMIT UNCERTAINTY={NONE, LOW, MEDIUM, HIGH}
p a b u l i b f i l e = s y s . a rgv [1]
s a m p l e c o u n t = i n t (s y s . a rgv [2])

116

2 Code of Best-Effort Experiments

k l i m i t a t i o n = f l o a t (s y s . a rgv [3])
UNCERTAINTY = s y s . a rgv [5]
t l i m i t = i n t (s y s . a rgv [4])

d a t a s e t n a m e = p a b u l i b f i l e . r s p l i t (” / ” , 1) [1] . r e p l a c e (” . pb ” , ” ”)
Pa th (” R e s u l t s / BEE/% s /% s ”%(d a t a s e t n a m e , UNCERTAINTY)) . mkdir (p a r e n t s =True , e x i s t o k =True)
Pa th (” R e s u l t s / BEP/% s /% s ”%(d a t a s e t n a m e , UNCERTAINTY)) . mkdir (p a r e n t s =True , e x i s t o k =True)
o u t f i l e s a t b e e = open (” R e s u l t s / BEE/% s /% s / R i s k S a t . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e s a t b e p = open (” R e s u l t s / BEP/% s /% s / R i s k S a t . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e e x b e e = open (” R e s u l t s / BEE/% s /% s / RiskEx . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e p u b e p = open (” R e s u l t s / BEP/% s /% s / RiskPu . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e s a t b e e)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e s a t b e p)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e e x b e e)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e p u b e p)
p r i n t (” t l i m i t : %d l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e s a t b e e)
p r i n t (” t l i m i t : %d l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e s a t b e p)
p r i n t (” t l i m i t : %d l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e e x b e e)
p r i n t (” t l i m i t : %d l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(t l i m i t , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e p u b e p)

b l i m i t , p r o j e c t s , v o t e s = r e a d s c e n a r i o (p a b u l i b f i l e)
u t i l i t i e s = {p : g e t u t i l s a t i s f a c t i o n (v o t e s , p) f o r p in p r o j e c t s}
a l p h a s = [0 . 0 1 5 * i f o r i in range (3 1)]

####################################
Now f o l l o w s t h e a c t u a l e x p e r i m e n t
####################################

Compute o p t i m a l s o l u t i o n s f o r each a lpha
o p t = d i c t ()
s e l e c t n o s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , t l i m i t , b l i m i t , u t i l i t i e s)
s e l e c t w i t h s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , t l i m i t , b l i m i t * k l i m i t a t i o n , u t i l i t i e s)
f o r a l p h a r i s k in a l p h a s :

o p t [a l p h a r i s k] = (1 − a l p h a r i s k) * sum (u t i l i t i e s [p] f o r p in s e l e c t n o s u r p l u s)
o p t [a l p h a r i s k] += a l p h a r i s k * sum (u t i l i t i e s [p] f o r p in s e l e c t w i t h s u r p l u s)

r a t i o s b e e = { a l p h a r i s k : [] f o r a l p h a r i s k in a l p h a s}
r a t i o s b e p = { a l p h a r i s k : [] f o r a l p h a r i s k in a l p h a s}
e x v a l = { a l p h a r i s k : [] f o r a l p h a r i s k in a l p h a s}
p u v a l = { a l p h a r i s k : [] f o r a l p h a r i s k in a l p h a s}

f o r s in range (s a m p l e c o u n t) :
p r i n t (” Sample %d of %d ” % (s +1 , s a m p l e c o u n t) , end= ’\ r ’)
r e s a m p l e u n c e r t a i n t y (p r o j e c t s , UNCERTAINTY)

f o r a l p h a r i s k in a l p h a s :
B e s t e f f o r t e x h a u s t i v e n e s s
l o g = BEE(p r o j e c t s , t l i m i t , b l i m i t , k l i m i t a t i o n , a l p h a r i s k , u t i l i t i e s)
s e l e c t i o n = l o g . g e t p r o j e c t s ()
u t i l o n l i n e = sum (u t i l i t i e s [p] f o r p in s e l e c t i o n)

r a t i o s b e e [a l p h a r i s k] . append (s a t i s f a c t i o n p e r f (o p t [a l p h a r i s k] , u t i l o n l i n e))
e x v a l [a l p h a r i s k] . append (e x h a u s t i v e n e s s p e r f (p r o j e c t s , s e l e c t i o n , t l i m i t , b l i m i t , u t i l i t i e s))

B e s t e f f o r t p u n c t u a l i t y
l o g = BEP(p r o j e c t s , t l i m i t , b l i m i t , k l i m i t a t i o n , a l p h a r i s k , u t i l i t i e s , BEE log = l o g)
s e l e c t i o n = l o g . g e t p r o j e c t s ()
u t i l o n l i n e = sum (u t i l i t i e s [p] f o r p in s e l e c t i o n)

r a t i o s b e p [a l p h a r i s k] . append (s a t i s f a c t i o n p e r f (o p t [a l p h a r i s k] , u t i l o n l i n e))
p u v a l [a l p h a r i s k] . append (p u n c t u a l i t y p e r f (log , t l i m i t))

p r i n t ()

##
T h i s i s o n l y f o r c o r r e c t l y f o r m a t t e d o u t p u t t o f i l e
##

p r i n t (” a l p h a b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e s a t b e e)
p r i n t (” a l p h a b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e s a t b e p)
p r i n t (” a l p h a b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e e x b e e)
p r i n t (” a l p h a b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e p u b e p)

f o r a l p h a r i s k in a l p h a s :
B e s t e f f o r t e x h a u s t i v e n e s s
c u r r e n t r a t i o s b e e = s o r t e d (r a t i o s b e e [a l p h a r i s k])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(a l p h a r i s k , min (c u r r e n t r a t i o s b e e) ,

c u r r e n t r a t i o s b e e [s a m p l e c o u n t / / 4] , sum (c u r r e n t r a t i o s b e e) / s a m p l e c o u n t ,
c u r r e n t r a t i o s b e e [3* s a m p l e c o u n t / / 4] , max (c u r r e n t r a t i o s b e e)) , f i l e = o u t f i l e s a t b e e)

c u r r e n t e x h a u s t i v = s o r t e d (e x v a l [a l p h a r i s k])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(a l p h a r i s k , min (c u r r e n t e x h a u s t i v) ,

c u r r e n t e x h a u s t i v [s a m p l e c o u n t / / 4] , sum (c u r r e n t e x h a u s t i v) / s a m p l e c o u n t ,
c u r r e n t e x h a u s t i v [3* s a m p l e c o u n t / / 4] , max (c u r r e n t e x h a u s t i v)) , f i l e = o u t f i l e e x b e e)

B e s t e f f o r t e x h a u s t i v e n e s s
c u r r e n t r a t i o s b e p = s o r t e d (r a t i o s b e p [a l p h a r i s k])

117

Appendix

p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(a l p h a r i s k , min (c u r r e n t r a t i o s b e e) ,
c u r r e n t r a t i o s b e e [s a m p l e c o u n t / / 4] , sum (c u r r e n t r a t i o s b e e) / s a m p l e c o u n t ,
c u r r e n t r a t i o s b e e [3* s a m p l e c o u n t / / 4] , max (c u r r e n t r a t i o s b e e)) , f i l e = o u t f i l e s a t b e p)

c u r r e n t p u n c t = s o r t e d (p u v a l [a l p h a r i s k])
p r i n t (” %.3 f %.3 f %.3 f %.3 f %.3 f %.3 f ” %(a l p h a r i s k , min (c u r r e n t p u n c t) ,

c u r r e n t p u n c t [s a m p l e c o u n t / / 4] , sum (c u r r e n t p u n c t) / s a m p l e c o u n t ,
c u r r e n t p u n c t [3* s a m p l e c o u n t / / 4] , max (c u r r e n t p u n c t)) , f i l e = o u t f i l e p u b e p)

o u t f i l e s a t b e e . c l o s e ()
o u t f i l e s a t b e p . c l o s e ()
o u t f i l e e x b e e . c l o s e ()
o u t f i l e p u b e p . c l o s e ()

Listing 6.6: TlimitVarible.py — Time Limit is Variable
! / u s r / b i n / env pypy3
from Core import *
from Shared import *
import s y s
from p a t h l i b import Pa th
import random

p r i n t (” E x p e r i m e n t i n g wi th v a r i a b l e Time L i m i t ”)

usage : . / T l i m i t V a r i a b l e . py DATA SAMPLES KAPPA ALPHA UNCERTAINTY={NONE, LOW, MEDIUM, HIGH}
p a b u l i b f i l e = s y s . a rgv [1]
s a m p l e c o u n t = i n t (s y s . a rgv [2])
k l i m i t a t i o n = f l o a t (s y s . a rgv [3])
UNCERTAINTY = s y s . a rgv [5]
a l p h a r i s k = f l o a t (s y s . a rgv [4])

d a t a s e t n a m e = p a b u l i b f i l e . r s p l i t (” / ” , 1) [1] . r e p l a c e (” . pb ” , ” ”)
Pa th (” R e s u l t s / BEE/% s /% s ”%(d a t a s e t n a m e , UNCERTAINTY)) . mkdir (p a r e n t s =True , e x i s t o k =True)
o u t f i l e s a t = open (” R e s u l t s / BEE/% s /% s / T imeLimi tSa t . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
o u t f i l e e x = open (” R e s u l t s / BEE/% s /% s / TimeLimitEx . d a t ”%(d a t a s e t n a m e , UNCERTAINTY) , ”w”)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e s a t)
p r i n t (p a b u l i b f i l e , f i l e = o u t f i l e e x)
p r i n t (” a l p h a : %.2 f l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(a l p h a r i s k , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e s a t)
p r i n t (” a l p h a : %.2 f l i m i t : %.2 f MIN DURATION : %d MAX DURATION: %d samples : %d ” %

(a l p h a r i s k , k l i m i t a t i o n , MIN DURATION , MAX DURATION, s a m p l e c o u n t) , f i l e = o u t f i l e e x)

b l i m i t , p r o j e c t s , v o t e s = r e a d s c e n a r i o (p a b u l i b f i l e)
u t i l i t i e s = {p : g e t u t i l s a t i s f a c t i o n (v o t e s , p) f o r p in p r o j e c t s}
m a x p r o j e c t l e n g t h = max (p . d u r a t i o n f o r p in p r o j e c t s)
max t ime = 35 # t h i s i s t h e maximum t i m e i n t h e e x p e r i m e n t

####################################
Now f o l l o w s t h e a c t u a l e x p e r i m e n t
####################################

F i n d i n g o p t i m a l s o l u t i o n s .
s e l e c t n o s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , m a x p r o j e c t l e n g t h , b l i m i t , u t i l i t i e s)
s e l e c t w i t h s u r p l u s = o p t i m a l p l a n n i n g (p r o j e c t s , m a x p r o j e c t l e n g t h , b l i m i t * k l i m i t a t i o n , u t i l i t i e s)
o p t = (1 − a l p h a r i s k) * sum (u t i l i t i e s [p] f o r p in s e l e c t n o s u r p l u s)
o p t += a l p h a r i s k * sum (u t i l i t i e s [p] f o r p in s e l e c t w i t h s u r p l u s)

r a t i o s = { i : [] f o r i in range (m a x p r o j e c t l e n g t h , max t ime +1)}
e v v a l = { i : [] f o r i in range (m a x p r o j e c t l e n g t h , max t ime +1)}

f o r s in range (s a m p l e c o u n t) :
p r i n t (” Sample %d of %d ” % (s +1 , s a m p l e c o u n t) , end= ’\ r ’)
r e s a m p l e u n c e r t a i n t y (p r o j e c t s , UNCERTAINTY)

f o r t l i m i t in range (m a x p r o j e c t l e n g t h , max t ime + 1) :
b u d g e t i n g l o g = BEE(p r o j e c t s , t l i m i t , b l i m i t , k l i m i t a t i o n , a l p h a r i s k , u t i l i t i e s)
s e l e c t i o n = b u d g e t i n g l o g . g e t p r o j e c t s ()
u t i l o n l i n e = sum (u t i l i t i e s [p] f o r p in s e l e c t i o n)

r a t i o s [t l i m i t] . append (s a t i s f a c t i o n p e r f (opt , u t i l o n l i n e))
e v v a l [t l i m i t] . append (e x h a u s t i v e n e s s p e r f (p r o j e c t s , s e l e c t i o n , t l i m i t , b l i m i t , u t i l i t i e s))

p r i n t ()

##
T h i s i s o n l y f o r c o r r e c t l y f o r m a t t e d o u t p u t t o f i l e
##

p r i n t (” t l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e s a t)
p r i n t (” t l i m i t b e s t l q avg uq w o r s t ” , f i l e = o u t f i l e e x)

f o r t l i m i t in range (m a x p r o j e c t l e n g t h , max t ime + 1) :
c u r r e n t r a t i o s = s o r t e d (r a t i o s [t l i m i t])
p r i n t (”%d %.3 f %.3 f %.3 f %.3 f %.3 f ” %(t l i m i t , min (c u r r e n t r a t i o s) ,

c u r r e n t r a t i o s [s a m p l e c o u n t / / 4] , sum (c u r r e n t r a t i o s) / s a m p l e c o u n t ,
c u r r e n t r a t i o s [3* s a m p l e c o u n t / / 4] , max (c u r r e n t r a t i o s)) , f i l e = o u t f i l e s a t)

c u r r e n t e x h a u s t i v = s o r t e d (e v v a l [t l i m i t])
p r i n t (”%d %.3 f %.3 f %.3 f %.3 f %.3 f ” %(t l i m i t , min (c u r r e n t e x h a u s t i v) ,

118

2 Code of Best-Effort Experiments

c u r r e n t e x h a u s t i v [s a m p l e c o u n t / / 4] , sum (c u r r e n t e x h a u s t i v) / s a m p l e c o u n t ,
c u r r e n t e x h a u s t i v [3* s a m p l e c o u n t / / 4] , max (c u r r e n t e x h a u s t i v)) , f i l e = o u t f i l e e x)

o u t f i l e s a t . c l o s e ()
o u t f i l e e x . c l o s e ()

Listing 6.7: Shared.py — Shared Library Functions
import random
from Core import *

MIN DURATION = 1
MAX DURATION = 10

”””
Read a b u d g e t i n g s c e n a r i o from a PABULIB F i l e .
R e t u r n s t u p l e (b u d g e t l i m i t , p r o j e c t s , v o t e s)
”””
def r e a d s c e n a r i o (p a t h) :

random . seed (1 2 3 4 5)

p r o j e c t s = s e t ()
v o t e s = l i s t ()
f i l e = open (pa th , ’ r ’)

meta = d i c t ()
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”) # s k i p f i r s t l i n e
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)
whi le l i n e != ”PROJECTS” :

meta [l i n e . s p l i t (” ; ”) [0]] = l i n e . s p l i t (” ; ”) [1]
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)

l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”) # S k i p two l i n e s
whi le l i n e != ”VOTES” :

d a t a = l i n e . s p l i t (” ; ”)
r a n d o m d u r a t i o n = random . r a n d i n t (MIN DURATION , MAX DURATION)
p r o j e c t s . add (P r o j e c t (i n t (d a t a [0]) , d a t a [4] , i n t (d a t a [1]) , r a n d o m d u r a t i o n))
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)

l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”) # S k i p two l i n e s
whi le l i n e :

d a t a = l i n e . s p l i t (” ; ”)
a p p r o v a l s = [i n t (id) f o r id in d a t a [4] . s p l i t (” , ”)]
v o t e s . append (Approva lVote (a p p r o v a l s))
l i n e = f i l e . r e a d l i n e () . r e p l a c e (”\n ” , ” ”)

f i l e . c l o s e ()
bu dg e t = i n t (meta [” bu dg e t ”])
re turn (budget , p r o j e c t s , v o t e s)

”””
r e t u r n t h e r a t i o o p t / o n l i n e
”””
def s a t i s f a c t i o n p e r f (u t i l o p t , u t i l o n l i n e) :

i f u t i l o n l i n e == 0 :
i f u t i l o p t == 0 :

re turn 1
e l s e :

re turn f l o a t (’ i n f ’)
e l s e :

re turn u t i l o p t / u t i l o n l i n e

”””
Count how many p r o j e c t a t most c o u l d be s i m u l t a n e o u s l y r e a l i z e d even w i t h max c o s t
”””
def e x h a u s t i v e n e s s p e r f (p r o j e c t s , s e l e c t e d , t l i m i t , b l i m i t , u t i l i t i e s) :

n o t r e a l i z e d = s o r t e d (
[p f o r p in p r o j e c t s i f p not in s e l e c t e d and p . d u r a t i o n <= t l i m i t and u t i l i t i e s [p] > 0] ,

key = lambda p : p . u p p e r c o s t)
n u m b e r c o u l d b e a d d e d = 0
b l e f t = b l i m i t − sum (p . r e a l c o s t f o r p in s e l e c t e d)
f o r p in n o t r e a l i z e d :

i f p . u p p e r c o s t < b l e f t :
n u m b e r c o u l d b e a d d e d += 1
b l e f t −= p . u p p e r c o s t

re turn n u m b e r c o u l d b e a d d e d

”””
Re tu rn by how much t h e t i m e l i m i t i s e x c e e d e d
”””
def p u n c t u a l i t y p e r f (b u d g e t l o g , t l i m i t) :

i f b u d g e t l o g . w h e n f i n i s h e s l a s t p r o j e c t () <= t l i m i t :
re turn 0

re turn b u d g e t l o g . w h e n f i n i s h e s l a s t p r o j e c t () − t l i m i t

”””
A s s i g n each p r o j e c t a new u n c e r t a i n t y . Does n o t change t h e r e a l c o s t !

119

Appendix

”””
def r e s a m p l e u n c e r t a i n t y (p r o j e c t s , u n c e r t a i n t y) :

e x p e c t e d v a l u e = 0 . 2 # E x p e c t e d v a l u e i s 20% o f t h e p r o j e c t c o s t .
v a r i a n c e = 0 . 1 # V a r i a n c e i s 10% o f p r o j e c t c o s t . That i s , ˜70% o f t h e p r o j e c t s have

a s pr ea d o f 10% t o 30% and 95% have a spr ea d be tween 0% and 40%.
N e g a t i v e s p r e a d s are i m p o s s i b l e .

i f u n c e r t a i n t y == ”HIGH” :
e x p e c t e d v a l u e = 0 . 5
v a r i a n c e = 0 . 2 5

i f u n c e r t a i n t y == ”MEDIUM” :
e x p e c t e d v a l u e = 0 . 2
v a r i a n c e = 0 . 1

i f u n c e r t a i n t y == ”LOW” :
e x p e c t e d v a l u e = 0 . 1
v a r i a n c e = 0 . 0 5

f o r p in p r o j e c t s :
i f u n c e r t a i n t y == ”NONE” :

p . s e t r a n d o m u n c e r t a i n t y (0)
e l s e :

p r o j e c t s p r e a d = random . g a u s s (e x p e c t e d v a l u e *p . r e a l c o s t , v a r i a n c e *p . r e a l c o s t)
p r o j e c t s p r e a d = i n t (max (0 , p r o j e c t s p r e a d))
p . s e t r a n d o m u n c e r t a i n t y (p r o j e c t s p r e a d)

Listing 6.8: Core.py — Algorithms and required Datatypes
from t y p i n g import *
import random

###
Data O b j e c t s
###

c l a s s P r o j e c t :
def i n i t (s e l f , id : i n t , name : s t r , c o s t : i n t , d u r a t i o n : i n t) :

i f c o s t < 1 :
p r i n t (”WARN: Cos t c a n n o t be 0 . S e t t i n g t o 1 . ”)
c o s t = 1

s e l f . id = id
s e l f . name = name
s e l f . r e a l c o s t = c o s t
s e l f . d u r a t i o n = d u r a t i o n
s e l f . l o w e r c o s t = c o s t
s e l f . u p p e r c o s t = c o s t
s e l f . s p r e a d = 0

”””
S e t s a random u n c e r t a i n t y around t h e r e a l c o s t .
U s u a l l y m a x c o s t − m i n c o s t s h o u l d be e x a c t l y t h e spread , b u t i t
i s p o s s i b l e t h a t m i n c o s t was cropped a t c o s t 1 .
”””
def s e t r a n d o m u n c e r t a i n t y (s e l f , s p r e a d : i n t) :

l o w e r d e v i a t i o n = random . r a n d i n t (0 , s p r e a d)
u p p e r d e v i a t i o n = s p r e a d − l o w e r d e v i a t i o n
s e l f . l o w e r c o s t = max (1 , s e l f . l o w e r c o s t − l o w e r d e v i a t i o n)
s e l f . u p p e r c o s t += u p p e r d e v i a t i o n
s e l f . s p r e a d = s e l f . u p p e r c o s t − s e l f . l o w e r c o s t

”””
R e t u r n s t h e p r o b a b i l i t y t h a t t h i s p r o j e c t c o s t s e x a c t l y c o s t
”””
def p r o b a b i l i t y c o s t e x a c t (s e l f , c o s t : i n t) −> f l o a t :

i f c o s t > s e l f . u p p e r c o s t or c o s t < s e l f . l o w e r c o s t :
re turn 0

re turn 1 / (s e l f . s p r e a d + 1)

”””
R e t u r n s t h e p r o b a b i l i t y t h a t t h i s p r o j e c t c o s t s a t most c o s t
”””
def p r o b a b i l i t y c o s t m a x (s e l f , c o s t : i n t) −> f l o a t :

i f c o s t < s e l f . l o w e r c o s t :
re turn 0

re turn 1 / (s e l f . s p r e a d + 1) * (c o s t − s e l f . l o w e r c o s t + 1)

”””
R e t u r n s t h e p r o b a b i l i t y t h a t t h i s p r o j e c t c o s t s a t l e s t c o s t
”””
def p r o b a b i l i t y c o s t m i n (s e l f , c o s t : i n t) −> f l o a t :

i f c o s t > s e l f . u p p e r c o s t :
re turn 0

re turn 1 / (s e l f . s p r e a d + 1) * (s e l f . u p p e r c o s t − c o s t + 1)

”””
R e t u r n s t h e p r o b a b i l i t y t h a t t h i s p r o j e c t c o s t s be tween t h e two v a l u e s (i n c l u d e d)
”””
def p r o b a b i l i t y c o s t b e t w e e n (s e l f , co s t Lo : i n t , cos tUp : i n t) −> f l o a t :

i f co s t Lo < s e l f . l o w e r c o s t :
co s t Lo = s e l f . l o w e r c o s t

i f cos tUp > s e l f . u p p e r c o s t :

120

2 Code of Best-Effort Experiments

cos tUp = s e l f . u p p e r c o s t
re turn 1 / (s e l f . s p r e a d + 1) * (cos tUp − co s t Lo + 1)

”””
R e t u r n s a random c o s t f o r t h i s p r o j e c t a c c o r d i n g t o t h e p r o b a b i l i t y d i s t r i b u t i o n
f o r t h e c o s t s . Thus , t h e e x p e c t e d v a l u e o f t h i s f u n c t i o n i s t h e e x p e c t e d v a l u e
f o r t h e c o s t o f t h i s p r o j e c t .
”””
def d r a w r a n d o m c o s t (s e l f) −> i n t :

re turn random . r a n d i n t (s e l f . l o w e r c o s t , s e l f . u p p e r c o s t)

”””
R e t u r n s t h e e x p e c t e d c o s t f o r t h i s p r o j e c t (t h a t i s , t h e e x p e c t e d v a l u e o f
t h e p r o b a b i l i t y d i s t r i b u t i o n) .
”””
def e x p e c t e d c o s t (s e l f) −> i n t :

re turn s e l f . l o w e r c o s t + (s e l f . u p p e r c o s t − s e l f . l o w e r c o s t) / / 2

c l a s s P r o j e c t L o g (d i c t) :
def s t a r t (s e l f , p r o j e c t s , t ime) :

i f i s i n s t a n c e (p r o j e c t s , P r o j e c t) :
a s s e r t p r o j e c t s not in s e l f . keys () , ” P r o j e c t s c a n n o t be s t a r t e d t w i c e ”
s e l f [p r o j e c t s] = t ime

e l s e :
f o r p in p r o j e c t s :

a s s e r t p not in s e l f . keys () , ” P r o j e c t s c a n n o t be s t a r t e d t w i c e ”
s e l f [p] = t ime

”””
R e t u r n s a l l p r o j e c t s t h a t are f i n i s h e d by t h a t t i m e
”””
def g e t f i n i s h e d p r o j e c t s u n t i l (s e l f , t ime : i n t) −> s e t :

re turn {a f o r a in s e l f . keys () i f s e l f [a] + a . d u r a t i o n <= t ime}

”””
R e t u r n s a l l p r o j e c t s t h a t are n o t y e t f i n i s h e d b u t a l r e a d y s t a r t e d a t t h i s t i m e
”””
def g e t r u n n i n g p r o j e c t s a t (s e l f , t ime : i n t) −> s e t :

re turn {p f o r p in s e l f . keys () i f s e l f [p] + p . d u r a t i o n > t ime}

”””
R e t u r n s t h e t i m e s t e p a t which t h e n e x t p r o j e c t f i n i s h e s
”””
def w h e n f i n i s h e s n e x t p r o j e c t (s e l f , c u r r e n t t i m e : i n t) :

r u n n i n g = s e l f . g e t r u n n i n g p r o j e c t s a t (c u r r e n t t i m e)
i f l e n (r u n n i n g) > 0 :

re turn min (s e l f [p]+ p . d u r a t i o n f o r p in r u n n i n g)
re turn −1

”””
R e t u r n s t h e t i m e s t e p a t which t h e l a s t p r o j e c t f i n i s h e s
”””
def w h e n f i n i s h e s l a s t p r o j e c t (s e l f) :

i f l e n (s e l f . keys ()) > 0 :
re turn max (s e l f [p]+ p . d u r a t i o n f o r p in s e l f)

re turn −1

”””
R e t u r n s t h e s e t o f a l l p r o j e c t s t h a t have been s t a r t e d
”””
def g e t p r o j e c t s (s e l f) −> s e t :

re turn s e t (s e l f . keys ())

c l a s s Approva lVote :
def i n i t (s e l f , a p p r o v a l : s e t) :

s e l f . a p p r o v a l s = a p p r o v a l

”””
S a t i s f a c t i o n i s t h e number o f approved p r o j e c t s i n t h e outcome .
”””
def s a t i s f a c t i o n (s e l f , p r o j e c t s) −> i n t :

i f i s i n s t a n c e (p r o j e c t s , P r o j e c t) :
i f p r o j e c t s . id in s e l f . a p p r o v a l s :

re turn 1
re turn 0

re turn l e n ([p f o r p in p r o j e c t s i f p . id in s e l f . a p p r o v a l s])

”””
R e t u r n s t h e sum o f a p p r o v a l s f o r t h i s p r o j e c t
”””
def g e t u t i l s a t i s f a c t i o n (v o t e s : I t e r a b l e , p r o j e c t s) −> i n t :

re turn sum ([v o t e . s a t i s f a c t i o n (p r o j e c t s) f o r v o t e in v o t e s])

###
P r o j e c t P l a nn i n g A l g o r i t h m s
###

”””
T h i s a l g o r i t h m f i n d s t h e o p t i m a l s o l u t i o n i n t e r m s o f u t i l i t y .
”””

121

Appendix

def o p t i m a l p l a n n i n g (p r o j e c t s : I t e r a b l e , t l i m i t : i n t , b l i m i t : i n t , u t i l : d i c t) −> s e t :
t o t a l u t i l i t y = sum (u t i l . v a l u e s ())
p r o j e c t s = t u p l e (p f o r p in p r o j e c t s i f p . d u r a t i o n <= t l i m i t)
t a b l e = [[f l o a t (’ i n f ’) f o r u in range (t o t a l u t i l i t y + 1)] f o r p in range (l e n (p r o j e c t s) + 1)]
t a b l e [0] [0] = 0
f o r p in range (1 , l e n (p r o j e c t s) + 1) :

p r o j e c t u t i l i t y = u t i l [p r o j e c t s [p − 1]]
p r o j e c t c o s t = p r o j e c t s [p − 1] . r e a l c o s t
f o r u in range (t o t a l u t i l i t y + 1) :

t a b l e [p] [u] = min (t a b l e [p − 1] [u] , t a b l e [p − 1] [u− p r o j e c t u t i l i t y] + p r o j e c t c o s t)
f o r u in range (t o t a l u t i l i t y , 0 , −1) :

i f t a b l e [− 1] [u] <= b l i m i t :
t o t a l c o s t = 0
t o t a l u t i l i t y = 0
r e t = s e t ()
f o r p in range (l e n (p r o j e c t s) , 0 , −1) :

p r o j e c t u t i l i t y = u t i l [p r o j e c t s [p − 1]]
p r o j e c t c o s t = p r o j e c t s [p − 1] . r e a l c o s t
i f t a b l e [p] [u − t o t a l u t i l i t y] != t a b l e [p − 1] [u − t o t a l u t i l i t y] :

r e t . add (p r o j e c t s [p − 1])
t o t a l c o s t += p r o j e c t c o s t
t o t a l u t i l i t y += p r o j e c t u t i l i t y

a s s e r t t o t a l c o s t == t a b l e [− 1] [u]
a s s e r t t o t a l u t i l i t y == u
a s s e r t t o t a l u t i l i t y == sum (u t i l [p] f o r p in r e t)
re turn r e t

re turn s e t ()

”””
T h i s a l g o r i t h m aims a t m a x i m i z i n g u t i l i t y w h i l e p r e s e r v i n g p u n c t u a l i t y , a lpha −RA and k− l i m i t a t i o n .
I t does n o t g u a r a n t e e e x h a u s t i v e n e s s b u t does i t s b e s t e f f o r t .
”””
def BEE(p r o j e c t s : I t e r a b l e , t l i m i t : i n t , b l i m i t : i n t , k l i m : f l o a t , a l p h a : f l o a t , u t i l : d i c t) −> P r o j e c t L o g :

p r o j e c t s = [p f o r p in p r o j e c t s i f p . d u r a t i o n <= t l i m i t and u t i l [p] > 0]
l o g = P r o j e c t L o g ()
r a t i n g = {p : u t i l [p] / p . e x p e c t e d c o s t () f o r p in p r o j e c t s} # r a t i n g by u t i l i t y per c o s t
T = 0

whi le T < t l i m i t :
Y = {p f o r p in p r o j e c t s i f p . d u r a t i o n <= t l i m i t − T} − l o g . g e t p r o j e c t s ()
b s p e n t = sum (p . r e a l c o s t f o r p in l o g . g e t f i n i s h e d p r o j e c t s u n t i l (T))
whi le l e n (Y) > 0 :

p r o j e c t = max (Y, key = lambda x : r a t i n g [x])
Y. remove (p r o j e c t)
b r u n n i n g = sum (p . u p p e r c o s t f o r p in l o g . g e t r u n n i n g p r o j e c t s a t (T))
i f p r o j e c t . u p p e r c o s t <= k l i m * b l i m i t − b s p e n t − b r u n n i n g :

r u n n i n g = l o g . g e t r u n n i n g p r o j e c t s a t (T)
r u n n i n g . add (p r o j e c t)
i f i s o k w i t h r i s k (runn ing , b l i m i t − b s p e n t , a l p h a) :

l o g . s t a r t (p r o j e c t , T)

T = l o g . w h e n f i n i s h e s n e x t p r o j e c t (T)
i f T == −1:

break
return l o g

”””
T h i s a l g o r i t h m aims a t m a x i m i z i n g u t i l i t y w h i l e p r e s e r v i n g e x h a u s t i v e n e s s , alpha −RA and k− l i m i t a t i o n .
I t does n o t g u a r a n t e e p u n c t u a l i t y b u t does i t s b e s t e f f o r t .
”””
def BEP(p r o j e c t s : I t e r a b l e , t l i m i t : i n t , b l i m i t : i n t , k l i m : f l o a t , a l p h a : f l o a t , u t i l : d i c t , BEE log = None) −> P r o j e c t L o g :

p r o j e c t s = [p f o r p in p r o j e c t s i f p . d u r a t i o n <= t l i m i t and u t i l [p] > 0]
i f BEE log != None :

l o g = BEE log
e l s e :

l o g = BEE(p r o j e c t s , t l i m i t , b l i m i t , k l im , a lpha , u t i l)
T = l o g . w h e n f i n i s h e s l a s t p r o j e c t ()

Now e n s u r e e x h a u s t i v e n e s s
whi le True :

b s p e n t = sum (p . r e a l c o s t f o r p in l o g . g e t f i n i s h e d p r o j e c t s u n t i l (T))
a v a i l = b l i m i t − b s p e n t − sum (p . u p p e r c o s t f o r p in l o g . g e t r u n n i n g p r o j e c t s a t (T))
Y = {p f o r p in p r o j e c t s i f p not in l o g . g e t p r o j e c t s () and p . u p p e r c o s t <= a v a i l}

i f l e n (Y) == 0 and l o g . w h e n f i n i s h e s n e x t p r o j e c t (T) == −1:
break

whi l e l e n (Y) > 0 :
m i n d u r a t i o n = min (p . d u r a t i o n f o r p in Y)
p r o j e c t = max ([p f o r p in Y i f p . d u r a t i o n == m i n d u r a t i o n] , key=lambda x : x . e x p e c t e d c o s t ())
Y. remove (p r o j e c t)
b r u n n i n g = sum (p . u p p e r c o s t f o r p in l o g . g e t r u n n i n g p r o j e c t s a t (T))
i f p r o j e c t . u p p e r c o s t <= k l i m * b l i m i t − b s p e n t − b r u n n i n g :

r u n n i n g = l o g . g e t r u n n i n g p r o j e c t s a t (T)
r u n n i n g . add (p r o j e c t)
i f i s o k w i t h r i s k (runn ing , b l i m i t − b s p e n t , a l p h a) :

l o g . s t a r t (p r o j e c t , T)

Note : At l e a s t one p r o j e c t has been s t a r t e d because p r o j e c t s i n Y are

122

3 Omitted Figures of Best-Effort Experiments

d e f i n e d as p r o j e c t s which f i t even w i t h maximum c o s t . Thus , t h e f o l l o w i n g
w i l l i n c r e a s e T , t h u s n o t p r o d u c i n g an i n f i n i t e loop .
T = l o g . w h e n f i n i s h e s n e x t p r o j e c t (T)

re turn l o g

”””
Uses s am p l i n g t o f i g u r e o u t how l i k e l y t h e s e t o f p r o j e c t s e x c e e d s t h e bud ge t l i m i t .
I f t h e p r o b a b i l i t y i s h i g h e r than alpha , r e t u r n s F a l s e .
”””
def i s o k w i t h r i s k (p r o j e c t s : s e t , l i m i t : i n t , a l p h a : f l o a t) −> f l o a t :

max cos t = sum (p . u p p e r c o s t f o r p in p r o j e c t s)
m i n c o s t = sum (p . l o w e r c o s t f o r p in p r o j e c t s)
i f max cos t <= l i m i t :

re turn True
i f m i n c o s t > l i m i t :

re turn F a l s e
i f min (p . p r o b a b i l i t y c o s t m i n (l i m i t − (max cos t − p . u p p e r c o s t)) f o r p in p r o j e c t s) <= a l p h a :

re turn True

sample s = 1000
e x c e e d i n g s = 0
f o r i in range (s amples) :

i f sum (p . d r a w r a n d o m c o s t () f o r p in p r o j e c t s) > l i m i t :
e x c e e d i n g s += 1

re turn e x c e e d i n g s < samples * a l p h a

3 Omitted Figures of Best-Effort Experiments

We now provide the omitted results from the best-effort experiments in Section 3.6.1.

123

Appendix

L
ow

10 20 30
0

2

4

6
Exhaustiveness

Sat. Ratio

1 1.2 1.4 1.6 1.8 2
0

2

4

6

0 0.1 0.2
0

2

4

6

M
ed

iu
m

10 20 30
0

2

4

6

1 1.2 1.4 1.6 1.8 2
0

2

4

6

0 0.1 0.2
0

2

4

6

H
ig

h

τ

10 20 30
0

2

4

6

κ

1 1.2 1.4 1.6 1.8 2
0

2

4

6

α

0 0.1 0.2
0

2

4

6

L
ow

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

0 0.1 0.2 0.3 0.4
0

20

40

60

80
Punctuality

M
ed

iu
m

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

0 0.1 0.2 0.3 0.4
0

20

40

60

80

H
ig

h

κ

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

α

0 0.1 0.2 0.3 0.4
0

20

40

60

80

Figure 1: Experimental analysis with dataset Warsaw Ursynów Wysoki Północny 2018.

124

3 Omitted Figures of Best-Effort Experiments

L
ow

10 20 30
0

2

4

6
Exhaustiveness

Sat. Ratio

1 1.2 1.4 1.6 1.8 2
0

2

4

6

0 0.1 0.2
0

2

4

6

M
ed

iu
m

10 20 30
0

2

4

6

1 1.2 1.4 1.6 1.8 2
0

2

4

6

0 0.1 0.2
0

2

4

6

H
ig

h

τ

10 20 30
0

2

4

6

κ

1 1.2 1.4 1.6 1.8 2
0

2

4

6

α

0 0.1 0.2
0

2

4

6

L
ow

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

0 0.1 0.2 0.3 0.4
0

20

40

60

80
Punctuality

M
ed

iu
m

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

0 0.1 0.2 0.3 0.4
0

20

40

60

80

H
ig

h

κ

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

α

0 0.1 0.2 0.3 0.4
0

20

40

60

80

Figure 2: Experimental analysis with dataset Warsaw Ursynów 2019.

125

Appendix

L
ow

10 20 30
0

5

10 Exhaustiveness

Sat. Ratio

1 1.2 1.4 1.6 1.8 2
0

5

10

0 0.1 0.2
0

5

10

M
ed

iu
m

10 20 30
0

5

10

1 1.2 1.4 1.6 1.8 2
0

5

10

0 0.1 0.2
0

5

10

H
ig

h

τ

10 20 30
0

5

10

κ

1 1.2 1.4 1.6 1.8 2
0

5

10

α

0 0.1 0.2
0

5

10

L
ow

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100
Punctuality

M
ed

iu
m

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100

H
ig

h

κ

1 1.2 1.4 1.6 1.8 2
0

50

100

α

0 0.1 0.2 0.3 0.4
0

50

100

Figure 3: Experimental analysis with dataset Warsaw Ursynów 2020.

126

3 Omitted Figures of Best-Effort Experiments

L
ow

10 20 30
0

2

4

6

8

10
Exhaustiveness

Sat. Ratio

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

0 0.1 0.2
0

2

4

6

8

10

M
ed

iu
m

10 20 30
0

2

4

6

8

10

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

0 0.1 0.2
0

2

4

6

8

10

H
ig

h

τ

10 20 30
0

2

4

6

8

10

κ

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

α

0 0.1 0.2
0

2

4

6

8

10

L
ow

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100 Punctuality

M
ed

iu
m

1 1.2 1.4 1.6 1.8 2
0

50

100

0 0.1 0.2 0.3 0.4
0

50

100

H
ig

h

κ

1 1.2 1.4 1.6 1.8 2
0

50

100

α

0 0.1 0.2 0.3 0.4
0

50

100

Figure 4: Experimental analysis with dataset Warsaw Praga-Południe 2021.

127

Erklärung

Eidesstattliche Erklärung
entsprechend §5 der Promotionsordnung vom 15.06.2018

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige
fremde Hilfe unter Beachtung der ”Grundsätze zur Sicherung guter wissenschaftlicher Praxis
an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.

Des Weiteren erkläre ich, dass ich eine Dissertation in der vorliegenden oder in ähnlicher
Form noch bei keiner anderen Institution eingereicht habe.

Teile dieser Dissertation wurden bereits in Form von Konferenzbeiträgen veröffentlicht, zur
Publikation angenommen oder zur Begutachtung eingereicht. Die vollständigen Zitate der
jeweiligen Schriften, sowie meine Anteile an diesen Schriften werden auf den Seiten 45, 63,
80, und 99, angegeben.

Ort, Datum Christian Laußmann

	Title Page
	Abstract
	Abstract
	Contents
	Introduction
	Computational Complexity
	Computation Models
	Complexity

	Voting
	Central Problems and Questions
	Structure
	Notation

	Network Centrality Through Voting Rules
	Summary
	Introduction
	Centrality in Networks
	Centrality Indices
	Group Centrality And Node Selectors

	Voting in Networks
	Single-Winner Voting-Based Centrality Indices
	Axiomatic Relations
	Satisfaction Approval Voting
	Borda
	Copeland

	Multiwinner Voting-Based Node Selectors
	Experiments
	Conclusions
	Publication
	Personal Contribution

	Participatory Budgeting under Uncertainty
	Summary
	Introduction
	Preliminaries
	No Uncertainty
	Uncertain Duration
	Uncertain Cost
	Best-Effort Algorithms

	Everything Uncertain
	Conclusions
	Publication
	Personal Contribution

	Strategic Campaigns in Apportionment
	Summary
	Introduction
	Apportionment
	Computing Support Allocations
	Apportioning Seats

	Bribery
	Classical Top-Choice Mode
	The Second-Chance Mode
	Conclusions
	Publication
	Personal Contribution

	Designing More Expressive Ballots for Multiwinner Elections
	Summary
	Introduction
	Preliminaries
	Bounded Approval Ballots
	Scoring with Bounded Approval Ballots
	Axiomatic Analysis
	The Perfect Scoring Rule

	Expressiveness Comparison to Approval Ballots
	GoodVotes Web-Application
	Conclusions
	Publication
	Personal Contribution

	Discussion
	Bibliography
	Appendix
	Code of Centrality Experiments
	Code of Best-Effort Experiments
	Omitted Figures of Best-Effort Experiments

	Erklärung

