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Zusammenfassung

Diese Arbeit beschäftigt sich mit Koalitionsbildungsspielen, welche zum Forschungsbereich
der kooperativen Spieltheorie gehören. Bei diesen Spielen geht es darum, wie sich Spieler auf
Grundlage ihrer individuellen Präferenzen in Gruppen, auch Koalitionen genannt, aufteilen.
Bei unseren Untersuchungen konzentrieren wir uns größtenteils auf hedonische Koalitions-
bildungsspiele, kurz hedonische Spiele, bei welchen vorausgesetzt wird, dass die Präferenzen
der Spieler nur von ihren eigenen Koalitionen abhängen. Ein zentrales Thema in Bezug auf
diese Spiele ist die Suche nach sinnvollen Formaten zur Abgabe der Präferenzen. Diese For-
mate sollten einfach zu erheben, möglichst ausdrucksstark und zugleich kompakt darstell-
bar sein. In der einschlägigen Literatur wurden bereits einige solcher Formate vorgestellt,
die auch wir in dieser Arbeit behandeln werden. Ein zweiter wichtiger Punkt bei der Er-
forschung von hedonischen Spielen ist die Untersuchung von Stabilität, Fairness und Op-
timalität. Klassische Stabilitätskonzepte behandeln beispielsweise die Frage, ob einzelne
Spieler oder Gruppen von Spielern einen Anreiz haben, von ihren Koalitionen abzuweichen.
Zu den bekanntesten solcher Konzepte gehören Nash-Stabilität und Kernstabilität.

Auf Grundlage des aktuellen Stands der Literatur führen wir in dieser Arbeit neue Modelle
für (hedonische) Koalitionsbildungsspiele ein und untersuchen diese im Hinblick auf axio-
matische Eigenschaften, Stabilität, Fairness und Optimalität. Dabei spielen insbesondere
Untersuchungen der Berechnungskomplexität eine wichtige Rolle.

Zuerst stellen wir verschiedene Modelle für Altruismus in Koalitionsbildungsspielen vor. Wir
konzentrieren uns dabei zunächst auf den Kontext von hedonischen Spielen und erweitern
die Modelle anschließend auf allgemeinere Koalitionsbildungsspiele, bei denen eine weitrei-
chendere Form des Altruismus’ möglich ist. Wir untersuchen unsere Modelle axiomatisch
und vergleichen diese dabei untereinander und mit anderen Modellen. Zudem analysieren wir
die Entscheidungsprobleme, die sich bei der Betrachtung klassischer Stabilitätskonzepte im
Kontext von altruistischen Spielen ergeben, in Hinblick auf ihre Berechnungskomplexität.

Anschließend definieren wir drei schwellwertbasierte Fairnessbegriffe für hedonische Spiele.
Diese werden in den Kontext einschlägiger Stabilitäts- und Fairnesskonzepte eingeordnet
und im Hinblick auf ihre Berechnungskomplexität erforscht. Außerdem untersuchen wir den
Einfluss, den unsere Fairnesskonzepte auf die soziale Wohlfahrt haben.

Schließlich führen wir ein weiteres Präferenzformat ein, bei dem die Spieler zwischen Freun-
den, neutralen Spielern und Feinden unterscheiden. Sie geben dementsprechend eine dreige-
teilte schwache Ordnung ab. Da die Präferenzen, welche sich aus diesen Ordnungen ableiten
lassen, nicht vollständig sein müssen, unterscheiden wir in den entstehenden Spielen zwi-
schen möglicher und notwendiger Stabilität. Auch hier führen wir eine Komplexitätsanalyse
der Probleme durch, die sich bezüglich bekannter Stabilitätskonzepte ergeben.
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Abstract

This thesis deals with coalition formation games, which belong to the research area of coop-
erative game theory. In these games, players divide into groups, also called coalitions, based
on their individual preferences. In our research, we mainly focus on hedonic coalition forma-
tion games, hedonic games for short, in which players’ preferences are assumed to depend
only on the coalitions containing themselves. A central problem in hedonic games research
is finding reasonable formats for the elicitation of preferences. These preference representa-
tions should be easy to elicit, reasonably expressive, and succinct. Many such formats have
already been presented in related literature, some of which we will also discuss in this thesis.
A second central point in research concerning hedonic games is the investigation of stability,
fairness, and optimality. For instance, common stability concepts deal with the question of
whether individual players or groups of players might have an incentive to deviate from their
current coalitions. Among those notions are, for example, Nash and core stability.

Based on the current state of research, we introduce new models for (hedonic) coalition
formation games and investigate them with respect to axiomatic properties, stability, fairness,
and optimality. In particular, investigations of the computational complexity of the associated
decision problems play an important role.

We start with introducing several models for altruism in coalition formation games. First, we
focus on the context of hedonic games and then extend the models to more general coalition
formation games, where a broader form of altruism is possible. We conduct an axiomatic
analysis of our models and compare them to related models and to each other. In addition,
we study the problems, that arise when considering classical stability concepts in the context
of altruistic coalition formation games, with respect to their computational complexity.

Subsequently, we define three threshold-based fairness notions for hedonic games. These
notions are considered local fairness notions in the sense that the agents only have to inspect
their own coalitions to decide whether a coalition structure is fair to them. We study the
relations of these notions to other common stability and fairness concepts and examine them
with respect to their computational complexity. Furthermore, we investigate the price of local
fairness, i.e., the impact that our fairness concepts have on the social welfare.

Finally, we introduce another preference format in which players distinguish between friends,
neutral players, and enemies. Accordingly, they cast their preferences by submitting a weak
rankings that is separated by two thresholds. Since the preferences that can be derived from
these rankings are not necessarily complete, we distinguish between possible and necessary
stability in the resulting games. Again, we perform a computational complexity analysis of
the problems that arise with respect to common stability concepts.
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Chapter 1

Introduction

Nowadays, there is an enormous range of research that is concerned with topics of artificial
intelligence (AI). In fact, AI research is not only about mimicking human intelligence but
also about a variety of solution concepts that apply knowledge from different fields of science
including not only natural sciences such as biology and physics but also social sciences such
as sociology and economics. Two fields that have gained major interest on AI conferences
are multiagent systems and game theory. While the research concerning these areas is very
broad, there is not always a clear distinction between them.

Research concerning multiagent systems mainly deals with distributed problem solving, i.e,
the cooperation of agents whose aim is to collectively solve some problem. Those systems
are often applied to problems that might be more difficult or not at all solvable for a single
agent. Inspiring examples of very successful multiagent systems can be found in nature: Ant
colonies use their communication abilities and division of labor to master complex problems
that would never be feasible for a single ant.

Game theory deals with the interaction among individual agents which are mostly assumed
to be selfishly pursuing their own goals. Research in this area roughly started with the works
due to Borel [22], Neumann [103], and Neumann and Morgenstern [104] and is commonly
divided into noncooperative and cooperative game theory. While noncooperative game the-
ory focuses on the preferences and actions of individual agents, cooperative game theory also
sees individual preferences but rather focuses on the formation of groups and allows them to
take joint actions. Examples of noncooperative game theory include the famous prisoners’
dilemma [118], the Monty Hall problem (see, e.g., Selvin [131, 132] or the German book
by Randow [120]), but also classic combinatorial games such as tic-tac-toe, nim, chess, go,
or sudoku. The focus of noncooperative game theory is mainly on studying equilibria, i.e.,
stable states where no agent has a reason to deviate from her current strategy. In cooperative
games, agents may form coalitions and take joint actions. For more background on multia-
gent systems and game theory see, e.g., the textbooks by Shoham and Leyton-Brown [133]
and by Rothe [126].

The focus of this thesis is on coalition formation games which are a key topic in coop-
erative game theory. Their applications range from technical, engineering, and economic
problems to social and even political problems. Drèze and Greenberg [53] initiated the study
of coalition formation games with hedonic preferences. These games were later formalized
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Chapter 1 Introduction

by Banerjee et al. [15] and Bogomolnaia and Jackson [21]. The key idea of such games is
that agents have to form partitions while only caring about the coalitions that they are part
of. In the general framework of hedonic games, the agents have arbitrary preferences over
all coalitions containing themselves. Yet, it is not reasonable to elicit rankings over all such
coalitions in practice. Rather, reasonable preference representations are needed. Ideally,
such formats should be succinct, expressive, and easy to elicit. The determination of rea-
sonable preference representations has been a fundamental part of hedonic games research.
Well-established representations include cardinal formats such as the additive encoding due
to Bogomolnaia and Jackson [21] and the fractional encoding by Aziz et al. [11]. Other for-
mats are based on the partitioning of the agents into friends and enemies [50, 111, 17] or on
the usage of propositional formulas [56, 9].

Another crucial branch of hedonic games research addresses problems related to notions of
stability, fairness, and optimality. The determination of such notions constitutes a major part
of past research. In particular, several common notions of stability deal with single player de-
viations. For instance, a partition of the agents in a hedonic game is said to be Nash stable (or
in a Nash equilibrium) if no agent wants to deviate to another coalition of the partition [21].
Other stability notions concern the deviation of groups. Core stability is probably the most
important notion of group stability in hedonic games (see, e.g., the early paper by Banerjee
et al. [15] and the survey by Woeginger [147]). Informally, a group of players blocks a given
partition of the players with respect to the notion of core stability if all players in this group
prefer it to the groups assigned by the partition. A partition is core stable (or in the core) if
there is no blocking coalition [15]. Relevant notions of optimality include Pareto-optimality,
popularity, and the maximization of utilitarian or egalitarian social welfare. Interesting
notions of fairness, for instance envy-freeness, have been adopted from the research of fair
division and resource allocation (see Foley [61] and the book chapters by Bouveret et al. [24]
and by Lang and Rothe [95] for background on these topics).

Given such notions of stability, optimality, or fairness, we are interested in the identification
of sufficient conditions for such notions, i.e., we ask which properties guarantee the stability,
fairness, or optimality of outcomes. Also, stable, fair, or optimal outcomes might not even
exist for certain preference profiles. A decent amount of research has been focusing on iden-
tifying properties that guarantee the existence of such outcomes. For instance, Bogomolnaia
and Jackson [21] showed that Nash stable coalition structure are guaranteed to exist in sym-
metric additively separable hedonic games. Yet, it was later shown that deciding whether a
Nash stable coalition structure exists in an (asymmetric) additively separable hedonic game
is NP-complete [136]. Determining the complexity of such existence problems has generally
been an important research aspect. For core stability and strict core stability, the existence
problem has been proved to be Σ

p
2-complete for additively separable hedonic games [146,

116, 111]. Yet, there again exist conditions that simplify the existence problem. Burani and
Zwicker [35] have shown that there always exist core stable outcomes for symmetric addi-
tively separable hedonic games with purely cardinal preferences. Dimitrov et al. [50] proved
that the existence problem is trivial for friend-oriented and enemy-oriented hedonic games.

In this thesis, we build on the current state of research and introduce further succinct pref-
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erence representations. Tackling the problem of finding an expressive, compact, and easy to
elicit preference format, we introduce weak rankings with double thresholds. These rankings
are more expressive than purely ordinal rankings (the individually rational encoding [14]),
the friends-and-enemies encoding [50], or the singleton encoding [40]. Yet, our format is
cognitively plausible and easy to elicit from the agents — probably easier than, for example,
propositional formulas (as in the case of hedonic coalition nets [56] or the boolean hedonic
encoding [9]). Furthermore, we do not make strong assumptions on the nature of the prefer-
ences (as the anonymous encoding [15] which only takes coalition sizes into account or the
boolean hedonic encoding which was designed for dichotomous preferences) and our for-
mat is succinct. In conclusion, our format provides a satisfactory balance between the three
requirements.

A second important aspect that we tackle in this thesis leads to a new branch of preference
modeling. Since the beginnings of game theory, agents were commonly considered as com-
pletely rational and self-interested individuals (see Neumann and Morgenstern [104]). We
challenge this assumption and aim for a more realistic representation of real-world coalition
formation scenarios: We introduce altruism into coalition formation games. In our models,
agents are not narrowly selfish but take the opinions of their friends into account when com-
paring different coalition structures. We present a variety of altruistic models and compare
them with regard to their axiomatic properties. After concentrating on hedonic models, we
also introduce models of altruism that drop the hedonic restriction. The changes we make for
these nonhedonic models bring some axiomatic improvements and, in our opinion, an even
more realistic model of altruism.

A third part of this thesis is concerned with fairness in hedonic games. Previous literature
considers envy-freeness as a notion of fairness [21, 10, 148, 114]. Yet, to verify this notion,
agents have to inspect the coalitions of other agents. To some extend, this is in conflict
with the hedonic assumption which states that agents only care about their own coalitions.
Furthermore, we want to avoid the need to compare large numbers of coalitions. Hence, we
introduce three notions of local fairness that can be decided solely based on the agents’ own
coalitions and their preferences.

Besides these conceptual contributions, this thesis also contains several technical contribu-
tions. We investigate the FEN-hedonic games that result from lifting weak rankings with
double thresholds to preferences over coalitions. We characterize stability in these games
and study the problems of verifying stable coalition structures and of checking their exis-
tence. Furthermore, we not only axiomatically study altruistic coalition formation games but
also provide elaborate computational analyses of the associated stability verification and ex-
istence problems. Our results cover many common stability notions such as Nash stability,
core stability, Pareto optimality, and popularity. Concerning our notions of local fairness,
we determine the complexity of computing local fairness thresholds and deciding whether
locally fair coalitions structures exist for additively separable hedonic games. Moreover, we
study the price of our local fairness notions.

3



Chapter 1 Introduction

1.1 Outline

In Chapter 2, we provide the required background for this thesis and explain all concepts
that are needed to comprehend the following chapters. The provided background includes an
introduction to computational complexity in Section 2.1, a brief overview of graph theory in
Section 2.2, and a survey of the relevant aspects of coalition formation games in Section 2.3.
This survey contains not only basic definitions and observations but also references to related
work. The major part of our research starts in Chapter 3 where we study different aspects of
altruism in coalition formation games. More precisely, Chapter 3 divides into three sections.
First, we explore altruistic hedonic games in Section 3.1. After introducing such games,
we conduct an axiomatic analysis of our altruistic models and investigate the problems of
verifying stable outcomes and of deciding whether stable outcomes exist in such games. In
Section 3.2, we further analyze altruistic hedonic games while concentrating on the notions of
popularity and strict popularity. Subsequently, we study altruism in a more general scope of
coalition formation games. In particular, Section 3.3 expounds an altruistic coalition forma-
tion model which is not restricted to hedonic preferences but allows for a more far-reaching
altruistic behavior. We identify some advantages that this extended model offers compared
to the altruistic hedonic model and study stability in these games. In Chapter 4, we con-
tinue with research concerning notions of local fairness in hedonic games. After proposing
three such notions, we relate them to other popular notions of stability, determine the com-
putational complexity of the associated decision problems, and study the price of our local
fairness notions. In Chapter 5, we introduce and study FEN-hedonic games where agents
divide the other agents into friends, enemies, and neutral players while additionally ranking
their friends and enemies respectively. We then investigate problems concerning the verifi-
cation and existence of possibly or necessarily stable coalition structures. We conclude with
Chapter 6 where we recap this thesis, highlight some important contributions, and identify
some possible directions for future research.
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Chapter 2

Background

In this chapter, we provide background information for all subjects studied in the following
chapters. We illustrate the essential models and notions that are important for understanding
this thesis. We start with an introduction to computational complexity theory in Section 2.1.
In Section 2.2, we provide a brief introduction to graph theory. Furthermore, we give an
insight into coalition formation in Section 2.3. For literature on the more general topic of
cooperative game theory, see the textbooks by Chalkiadakis et al. [41], Shoham and Leyton-
Brown [133], Peleg and Sudhölter [113], or the book chapters by Elkind and Rothe [55] and
Elkind et al. [57].

2.1 Computational Complexity

A main part of this thesis will be the study of different decision problems and the determina-
tion of their computational complexity. But what is a decision problem, how do we measure
its complexity, and what does it mean that a problem is ‘hard’ or ‘easy’? We will answer
these and other questions in the following section and give a short introduction to compu-
tational complexity theory. For more background on this topic we refer to the textbooks by
Rothe [125, 128], Papadimitriou [112], and Arora and Barak [4].

2.1.1 Computational Problems

The objective of computational complexity theory is to classify computational problems
based on their difficulty. In general, a computational problem can be any kind of prob-
lem that could be solved by a computer. There are different types of computational problems
such as decision problems, optimization problems, and search problems. In this section, we
will concentrate on decision problems which are basically questions that can be answered
either by yes or no. We will represent any decision problem by specifying its name, an input
format, and a question concerning the input. One of the most important decision problems
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Chapter 2 Background

in computational complexity theory is the boolean satisfiability problem (SAT) [66] which
asks whether there is a truth assignment for a given boolean formula:1

SATISFIABILITY (SAT)
Given: A boolean formula ϕ in conjunctive normal form.
Question: Is there a truth assignment for the variables in ϕ that satisfies ϕ?

Now, given any decision problem, any concrete input that satisfies the specified input require-
ments is called an instance of the problem. An instance is a yes-instance if and only if the
answer to the specified question is ‘yes’ for this instance. Otherwise, the instance is called
no-instance. Decision problems can also be represented by the set of their yes-instances. For
example, SAT can be written as

SAT = {ϕ | ϕ is a satisfiable boolean formula in conjunctive normal form }.

2.1.2 Algorithms, Runtimes, and Complexity Classes

In computer science, we use algorithms to solve problems.2 Informally, a deterministic al-
gorithm for problem A is a finite sequence of explicit instructions that, when executed for
a given input I, outputs the answer to problem A for input I. Formally, algorithms can be
modeled via Turing machines which were invented by Turing [141, 142] in 1936. We will
not give a formal definition of Turing machines here but give some intuitive explanations
instead. We refer to the textbooks by Rothe [125, 128] and Papadimitriou [112] for more
background on Turing machines.

A Turing machine M that solves a problem A can be started with any instance I of the prob-
lem. Starting with an initial configuration that is based on the input I, the Turing machine M
then does some computations which lead to further configurations. After a finite number of
computation steps, M might reach a final configuration where it accepts the input I. The set
of all inputs that M accepts is called the language of M and is denoted by L(M). We say that
M accepts the problem A if it accepts all its yes-instances and none of its no-instances, i.e.,
if L(M) = A.

We further distinguish between deterministic and nondeterministic Turing machines. Deter-
ministic Turing machines (DTMs) represent deterministic algorithms and the computation of
a DTM is a deterministic sequence of configurations. That means that its computation can
be represented by a single unique path of configurations and it accepts the input exactly if it
accepts the input on this one path. For a DTM M that accept language L(M), we also say that
it decides the problem L(M). In contrast to that, nondeterministic Turing machines (NTMs)
represent nondeterministic algorithms and can have more than one computation path. In the

1For some background on boolean formulas and propositional logic see the textbooks by Rothe [125, 128].
2There are problems that are not solvable by algorithms, e.g., the halting problem, but we will only concentrate

on solvable problems in this thesis.
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2.1 Computational Complexity

computation of a NTM, there can occur configurations for which the next computation step
is not unique; rather, there might be multiple possible successor configurations. In this case,
the computation can be represented by a tree where every fork of the tree represents a non-
deterministic situation. For a NTM M, we say that M accepts the input I if I is accepted on
at least one path of the computation tree.

When developing algorithms3 for a given problem, there will certainly be more than one
possible solution. So the following questions arise: What is the best algorithm for the given
problem? And how do we even compare two algorithms? In computational complexity
theory, we compare algorithms based on their computation times (or runtimes) and space
requirements. The runtime is measured by the number of elementary computational steps
that are needed when executing the algorithm. The space requirements are measured by
the size of the memory that is used while executing the algorithm. In this thesis, we will
concentrate only on the runtime of algorithms.

Now, the goal of algorithmics is to find algorithms that have low runtimes. But of course,
the runtime of an algorithm may vary based on the concrete input instance. For example,
algorithm M might solve a given problem faster than algorithm N for a given instance while
N solves the same problem faster than M for another instance. So, how do we compare the
runtimes of these two algorithms? Common answers to this question are to compare either
the best-case, average-case, or worst-case runtimes. In this thesis, we will concentrate on
the latter. This means that we are looking for upper bounds on the runtimes of algorithms.
Further, we always measure runtimes based on the size of the input (which is usually encoded
in binary). We can then group problems into complexity classes which specify upper bounds
on their worst-case time complexity, i.e., given a problem A, we ask for the maximal number
of computation steps that the fastest algorithm solving A might need for any instance of A.

For any computable total function f : N→ N, we define

• DTIME( f ) as the set of all problems A for which there exists a DTM M with L(M) = A
that decides any instance of A of size n in time at most f (n); and

• NTIME( f ) as the set of all problems A for which there exists an NTM M with L(M) =
A that accepts any yes-instance of A of size n in time at most f (n).

As we are only interested in the asymptotic behavior of the worst-case runtime, we group
complexity classes with similar functions together. In particular, we denote the set of all
polynomial functions4 by Pol and define all problems that can be decided by a DTM (respec-
tively NTM) in polynomial time as follows:

P =
⋃

f∈Pol

DTIME( f ) and NP =
⋃

f∈Pol

NTIME( f ).

3Keep in mind that we use Turing machines as models of algorithms.
4A polynomial function f has the form f (n) =

m
∑

i=0
ci · ni = cm · nm + . . . + c2 · n2 + c1 · n + c0 where

n,m,cm, . . . ,c0 ∈ N.
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As each DTM is also a NTM (that just does not make use of the nondeterminism), it di-
rectly follows from the definitions of P and NP that P ⊆ NP. However, it is still unknown
whether P ⊂ NP or P = NP holds. This open question is known as the “P versus NP prob-
lem” [45] and is one of the seven Millennium Prize Problems [36] that were declared by the
Clay Mathematics Institute in 2000. In this thesis, we will follow the common belief and
assume that P⊂ NP. Actually, if P = NP would hold, many results from the literature would
become meaningless. For examples of such results and further discussions on the P versus
NP problem see, e.g., the book chapters by Rothe [127] and Arora and Barak [5].

For all problems in P we also say that they are solvable in (deterministic) polynomial time
and that they can be solved efficiently. We sometimes also say that these problems are easy.
For all problems that are not in P, i.e., not solvable in deterministic polynomial time, we say
that they are computationally intractable.5

Additionally to the two well-known complexity classes P and NP, we will also consider the
complexity class coNP which is the class of the complements of all problems in NP. It is
defined as

coNP = {Ā | A ∈ NP}

where, for any decision problem A, the complement of A is defined by

Ā = {I | I is a no-instance of A}.

Note that NP can analogously be defined as the set of all decision problems for which a yes-
instance can be verified in deterministic polynomial time while coNP can be defined as the set
of all decision problems for which a no-instance can be verified in deterministic polynomial
time.

2.1.3 Polynomial-Time Many-One Reducibility and Hardness

We have just seen that complexity classes specify upper bounds on the complexity of the con-
tained problems. This subsection will be on how to specify lower bounds on the complexity
of problems. We use reductions to show that one problem is at least as complex (or hard) as
another one.

We say that problem A is polynomial-time many-one reducible to problem B (denoted by
A≤p

m B) if and only if there exists a polynomial-time computable total function f that maps
instances of A to instances of B such that, for every instance I of A,

I ∈ A⇐⇒ f (I) ∈ B,

i.e., I is a yes-instance of A if and only if f (I) is a yes-instance of B. Note that the relation≤p
m

is reflexive (i.e., A≤p
m A for any problem A) and transitive (i.e., A≤p

m C for any problems A, B,
5Cobham [43] and Edmonds [54] were the first to identify the set of tractable problems with the class P (see

the Cobham-Edmonds thesis).
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2.1 Computational Complexity

Figure 2.1: Assumed relations among the complexity classes P, NP, and coNP

and C with A≤p
m B and B≤p

m C). Furthermore, a problem is said to be hard for a complexity
class if it is at least as hard as every other problem in the class. Problems that are hard for
a class and are also contained in it are called complete for the class. Formally, problem A is
≤p

m-hard for a complexity class C if B ≤p
m A for every problem B in C . We then also say

that A is C -hard. Moreover, problem A is ≤p
m-complete for the complexity class C if A ∈ C

and A is C -hard. We then also say that A is C -complete. The complexity classes P, NP, and
coNP are closed under≤p

m-reducibility which means that for C ∈ {P,NP,coNP} and any two
problems A and B, A≤p

m B and B ∈ C implies A ∈ C .

Note that SAT was the first problem that was shown to be NP-complete. This was shown
independently by Cook [44] in 1971 and by Levin [97] in 1973. While they had to use quite
sophisticated constructions to show the hardness of SAT,6 we will use the following helpful
implications to proof the hardness of problems. They follow directly from the transitivity
of ≤p

m and because P is closed under ≤p
m:

• For any complexity class C , if A is C -hard and A≤p
m B then B is C -hard.

• If problem A is NP-complete or coNP-complete, then A ∈ P if and only if P = NP.

By the second implication and under the assumption that P 6= NP, there is no polynomial-
time algorithm for any NP-complete or coNP-complete problem. Assuming that P 6= NP,
NP 6= coNP, and P 6= NP∩ coNP, the relations between the three complexity classes and the
sets of NP-hard and coNP-hard problems can be illustrated as shown in Figure 2.1.

2.1.4 Some Hard Problems

The list of decision problems that have been shown to be NP-complete grows steadily since
the Cook-Levin theorem [44, 97] was published. For instance, Karp [82] showed the NP-
completeness of many problems and a collection of many hard problems can be found in the
book by Garey and Johnson [66]. We will now present some decision problems that will be
used in this thesis.

6You can find proofs of the Cook-Levin theorem, e.g., in Garey and Johnson [66, Section 2.6] or Rothe [125,
Section 3.5.3].
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One of the decision problems that Karp [82] showed to be NP-complete is EXACT COVER

BY 3-SETS (X3C). It is defined as follows.

EXACT COVER BY 3-SETS (X3C)
Given: Integers k ≥ 2 and m≥ 2, a set B = {b1, . . . ,b3k}, and a collection

S = {S1, . . . ,Sm} of 3-element subsets of B.
Question: Is there an exact cover of B in S , i.e., a subset S ′ ⊆S of size k

such that every element of B occurs in exactly one set in S ′?

We will often make use of a restricted version of X3C. Gonzalez [68] showed that the prob-
lem remains NP-complete even when every element of the set occurs exactly three times in
the 3-element subset collection.

RESTRICTED EXACT COVER BY 3-SETS (RX3C)
Given: An integer k ≥ 2, a set B = {b1, . . . ,b3k}, and a collection

S = {S1, . . . ,S3k} of 3-element subsets of B, where each element
of B occurs in exactly three sets in S .

Question: Does there exist an exact cover of B in S , i.e., a subset S ′ ⊆S of
size k such that every element of B occurs in exactly one set in S ′?

We illustrate RX3C with the following example.

Example 2.1. Let k = 3, B = {1, . . . ,9}, and S = {S1, . . . ,S9} with

S1 = {1,2,3}, S2 = {1,5,6}, S3 = {1,5,9},
S4 = {2,4,6}, S5 = {2,7,8}, S6 = {3,4,5},
S7 = {3,7,8}, S8 = {4,6,9}, S9 = {7,8,9}.

Then, the question is whether there is a subset S ′ of S of size 3 such that each element of B
occurs exactly one time in S ′. In fact, there exists such a subset, namely S ′= {S3,S4,S7}=
{{1,5,9},{2,4,6},{3,7,8}}. Hence, the given instance is a yes-instance of RX3C.

We now turn to the following graph problem that was shown to be NP-complete by Karp
[82]. Also note that we will give some more background on graph theory in Section 2.2.

CLIQUE

Given: An integer k ≥ 1 and an undirected graph G = (V,E).
Question: Is there a clique of size k in G, i.e., a subset V ′ ⊆V of the vertices

such that there is an edge between every two vertices in V ′?
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2.2 Graph Theory

2.1.5 Beyond P and NP

P, NP, and coNP are not the only complexity classes out there. In fact, there are various
hierarchies of complexity classes beyond NP. For instance, Meyer and Stockmeyer [99] and
Stockmeyer [134] introduced the polynomial hierarchy which makes use of oracle Turing
machines. For two complexity classes C and D , the class C D contains all problems that can
be solved by an algorithm according to class C that additionally has access to an oracle which
verifies instances of a set D ∈ D in a single computation step. The polynomial hierarchy is
defined inductively by ∆

p
0 = Σ

p
0 = Π

p
0 = P and, for i≥ 0,

∆
p
i+1 = PΣ

p
i ,

Σ
p
i+1 = NPΣ

p
i , and

Π
p
i+1 = coΣ

p
i+1.

Additionally, PH =
⋃

i≥0 Σ
p
i . For the first layer of the polynomial hierarchy, the definitions

imply that ∆
p
1 = P, Σ

p
1 = NP, and Π

p
1 = coNP. The second layer is given by ∆

p
2 = PNP,

Σ
p
2 = NPNP, and Π

p
2 = coNPNP. For more details on the polynomial hierarchy, the reader is

referred to, e.g., the textbooks by Rothe [125, 128].

There are many further interesting aspects of complexity theory such as parameterized com-
plexity (see, e.g., the books by Downey and Fellows [52, 51] and Flum and Grohe [60]) and
probabilistic complexity (see Gill [67] and, e.g., Balcázar et al. [13]).

2.2 Graph Theory

We now give some basics of graph theory. For an extensive introduction to graph theory, see,
e.g., the textbooks by West [144] and Gurski et al. [70].

Formally, a graph is a pair G = (V,E) where V is a set of vertices (or nodes) and E is a
set of edges. In the case of an undirected graph, the edges are undirected and we have
E ⊆ {{u,v} | u,v ∈ V,u 6= v}. In the case of a directed graph, the edges are directed and
we have E ⊆ V ×V where any (u,v) ∈ E is a directed edge from u to v. By removing the
directions of the edges in any directed graph (V,E), we obtain its underlying undirected
graph (V,{{u,v} | (u,v) ∈ E}).

We will now illustrate some important notions of graph theory. While most of the following
terms can also be defined similarly for directed graphs, we will concentrate on the case of
undirected graphs. We define the following notions for any undirected graph G = (V,E).

G isomorphic to another undirected graph G′ = (V ′,E ′) if there is a bijection f : V → V ′

with {u,v} ∈ E ⇐⇒ { f (u), f (v)} ∈ E ′. We say that two vertices u and v are neighbors if
{u,v} ∈ E. The set of all neighbors of v is denoted by N(v) = {u ∈V |{u,v} ∈ E}.

11
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v1

v2 v3

v4 v5 v6 v7

v8

Figure 2.2: An undirected graph with two connected components from Example 2.2

A path from vertex v1 to vertex vk is a sequence p = (v1, . . . ,vk) of vertices with k ≥ 1 and
{vi,vi+1} ∈ E for all i ∈ {1, . . . ,k− 1}. The length of a path p = (v1, . . . ,vk) is the number
of contained edges, i.e., k− 1. A cycle is a path p = (v1, . . . ,vk) where {vk,v1} ∈ E. The
distance between vertices u and v is the length of a shortest path between u and v and is
denoted by d(u,v). If there is no path between u and v, then d(u,v) = ∞. The diameter of G
is the maximal distance between two vertices in G, i.e., maxu,v∈V d(u,v).

A graph G′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. Any subset V ′ ⊆ V of
the vertices induces a subgraph which is defined by G|V ′ = (V ′,E ∩ {{u,v} | u,v ∈ V ′}).
Hence, G|V ′ consists of all vertices in V ′ and all edges from G between the vertices in V ′.
G is connected if there exists a path from u to v for each two vertices u,v ∈ V with u 6= v.
Furthermore, G is a tree if it is connected and contains no cycles. An induced subgraph
G|V ′ of G (with V ′ ⊆ V ) is a connected component of G if G|V ′ is connected and there is no
superset V ′′ with V ′ ⊂ V ′′ ⊆ V for which G|V ′′ is connected. Note that G can be partitioned
into connected components in linear time. This can, for instance, be done via depth-first
search. Finally, a set V ′ ⊆V is a clique in G if there is an edge {u,v} ∈ E between every two
vertices u,v ∈V ′,u 6= v.

We complete this section with the following example which illustrates the above defini-
tions.

Example 2.2. Let G= (V,E) be an undirected graph with vertices V = {v1, . . . ,v8} and edges
E = {{v1,v2},{v2,v3},{v3,v4},{v4,v1},{v5,v6},{v6,v7},{v7,v8},{v6,v8}}. This graph is
depicted in Figure 2.2. First, it can be observed that G has two connected components: the
subgraphs induced by the vertex sets V1 = {v1,v2,v3,v4} and V ′′ = {v5,v6,v7,v8}. Further-
more, p = (v1,v2,v3,v4) is a path of length 3 in G. p is also a cycle because {v4,v1} ∈ E.
The vertex sets {v6,v7,v8} and {v5,v6} are examples of cliques in G. The distance between
vertices v4 and v5 is ∞ since there is no path connecting these two vertices. But the distance
between vertices v5 and v8 is 2 since this is the length of a shortest path between them. The
diameter of G is ∞ since G is not connected. However, the induced subgraphs G|V ′ and G|V ′′
both have a diameter of 2. The two induced subgraphs G|{v1,v3,v4} and G|{v5,v6,v7} are isomor-
phic to each other while this is not the case for the two subgraphs G|V ′ and G|V ′′ . Last, the
induced subgraph G|{v1,v3,v5,v7,v8} is not connected and has four connected components.
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2.3 Coalition Formation Games

In this thesis, we consider coalition formation games as a subclass of non-transferable utility
(NTU) games. In these games, agents form groups based on their individual preferences
where, in general, any partition of the agents is a possible outcome of the game. The agents
evaluate the possible outcomes based on individual preferences.

We will now give an introduction to coalition formation games. After introducing some basic
concepts, we will provide some background on hedonic games. They form an important
subclass of coalition formation games where agents only care about the coalitions that they
belong to. Afterwards, we describe some common preference representations, including
cardinal formats, representations based on the categorization into friends and enemies, and
many more. We then define some stability, optimality, and fairness notions that are of interest
when studying hedonic games and explain some interesting decision problems which are
associated with these notions. We complete the chapter by surveying the literature on this
topic and summarizing some interesting results.

For more overviews of coalition formation games, see the survey by Hajduková [72] or the
textbook by Chalkiadakis et al. [41]. For more background on NTU games see, for example,
Section 5.1 in the textbook by Chalkiadakis et al. [41]. For literature on hedonic games, we
refer to the book chapter by Aziz and Savani [8] and the survey by Woeginger [147].

2.3.1 Basic Definitions

Let N = {1, . . . ,n} be the set of agents (which we also call players). Subsets C ⊆ N of the
agents are called coalitions and, for any player i ∈ N, we denote the set of all coalitions
containing i by N i = {C ⊆ N | i ∈ C}. It holds that |N i| = 2n−1, which means that the
number of coalitions containing i is exponential in the number of agents. Coalitions that
contain only one player are also called singleton coalitions or singletons, for short. The
coalition N that consists of all players is also called the grand coalition. A coalition structure
is a partition Γ = {C1, . . . ,Ck} of the set N of agents. As for every partition, it holds that⋃k

i=1Ci = N and Ci∩C j = /0 for all i, j ∈ {1, . . . ,k} with i 6= j. There is no general restriction
on the number k of coalitions in a coalition structure which means that k can range anywhere
between 1 and n. The unique coalition in Γ that contains agent i is denoted by Γ(i). Moreover,
the set of all coalition structures for a set of agents N is denoted by CN . Note that the size
of CN grows exponentially with the number n of agents and equals the nth Bell number [18,
123]. For example, the first six Bell numbers are B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52,
and B6 = 203, which means that there are 203 possible partitions of a set of six agents.

Based on these notions, a coalition formation game is a pair (N,�), where N = {1, . . . ,n} is a
set of agents and �= (�1, . . . ,�n) is the profile of preferences of the agents. For each agent
i ∈ N, �i denotes her preference relation which is a complete weak order over all coalition
structures, i.e., �i ⊆ CN ×CN . For two coalition structures Γ,∆ ∈ CN , we say that agent i
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weakly prefers Γ to ∆ if Γ �i ∆, that i prefers Γ to ∆ (denoted by Γ �i ∆) if Γ �i ∆ but not
∆�i Γ, and that i is indifferent between Γ and ∆ (denoted by Γ∼i ∆) if Γ�i ∆ and ∆�i Γ.

2.3.2 Hedonic Games

The focus of this thesis will mainly be on coalition formation games with hedonic prefer-
ences, hedonic games for short. They were introduced independently by Banerjee et al. [15]
and Bogomolnaia and Jackson [21]. The key idea of hedonic games (going back to Drèze and
Greenberg [53]) is that agents only care about the coalitions that they are part of and not about
the rest of a coalition structure. More formally, let any coalition formation game (N,�) be
given. Then, the preference �i of player i is hedonic if it only depends on the coalitions that
i is part of, i.e., if for any two coalition structures Γ,∆ ∈ CN , it holds that Γ(i) = ∆(i) implies
Γ∼i ∆. If the preferences of all agents i ∈ N are hedonic, (N,�) is also called hedonic. For
such a hedonic (coalition formation) game (N,�), the preferences are usually represented by
complete weak orders over the set of coalitions containing an agent, i.e., �i ⊆N i×N i for
all i ∈ N. For two coalitions A,B ∈N i, we then say that i weakly prefers A to B if A �i B,
that i prefers A to B if A �i B, and that i is indifferent between A and B if A ∼i B. It follows
from the definition of hedonic games that Γ�i ∆ if and only if Γ(i)�i ∆(i).

Note that there are subclasses of hedonic games where only coalitions of certain sizes are
allowed. For example, marriage and roommate games [64, 124] are hedonic games where all
coalitions must have a size of at most two. These games and many other matching models
are studied in matching theory. For more background on this topic we refer to the book
chapter by Klaus et al. [94] and the textbooks by Roth and Sotomayor [124], Manlove [98],
and Gusfield and Irving [71]. For other subclasses of hedonic games, the agents are assumed
to divide into two types. In hedonic diversity games [31], an agent’s preference depends
on the fractions of agents of each type in a coalition. In this thesis however, we will only
concentrate on general hedonic games where agents have no types and arbitrary coalition
sizes are allowed.

We now give a simple example of a hedonic game.

Example 2.3. Let the set of players be given by N = {1,2,3}. Then, there are four different
coalitions containing agent 1, namely C1 = {1}, C2 = {1,2}, C3 = {1,3}, and C4 = {1,2,3}.
Here, C1 is a singleton coalition and C4 is the grand coalition. The set of all possible coalition
structures CN contains exactly five coalition structures:

Γ1 = {{1},{2},{3}}, Γ2 = {{1},{2,3}}, Γ3 = {{1,2},{3}},
Γ4 = {{1,3},{2}}, and Γ5 = {{1,2,3}}.

In particular, we have CN = {Γ1,Γ2,Γ3,Γ4,Γ5}.
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Further consider the following preference profile �= (�1,�2,�3) that, together with the set
of agents N, defines a hedonic game G = (N,�):

{1,2,3} �1 {1,2} �1 {1,3} �1 {1},
{1,2} �2 {1,2,3} �2 {2} �2 {2,3},
{3} �3 {1,3} ∼3 {2,3} �3 {1,2,3}.

For this hedonic game, agent 1 prefers coalition Γ4(1) = {1,3} to coalition Γ2(1) = {1}.
Therefore, 1 also prefers Γ4 to Γ2. In contrast, agent 3 is indifferent between Γ4 and Γ2
because she is indifferent between Γ4(3) = {1,3} and Γ2(3) = {2,3}.

2.3.3 Preference Representations

Even when considering the restricted case of hedonic coalition formation games, it is not
reasonable to elicit full preferences in practice. Collecting a full preference over N i for every
agent i ∈ N would not only lead to a preference profile of exponential size (in the number
of agents) but would also present an extreme cognitive burden for the agents. Hence, we
are looking for succinct representations of the preferences that are still reasonably expressive
and easy to elicit.

Cardinal Preference Representations

There is a broad literature that concerns the problem of finding compact representations for
hedonic preferences. Commonly used representations include the additive encoding due to
Bogomolnaia and Jackson [21], the fractional encoding due to Aziz et al. [11], the modified
fractional encoding due to Olsen [110], and the friends-and-enemies encoding due to Dim-
itrov et al. [50]. All these four representations have in common that they can be specified via
cardinal valuation functions, i.e., they belong to the class of cardinal hedonic games. In these
games, each agent i assigns a cardinal value to every other agent j that indicates how much i
likes j. The agents’ preferences can then be inferred from their valuation functions. The four
representations differ in the range of valuations and in how the preferences are inferred.

Additively Separable Hedonic Games A hedonic game (N,�) is additively separable
if, for every player i ∈ N, there exists a valuation function vi : N→ Q such that for any two
coalitions A,B ∈N i it holds that

A�i B⇐⇒ ∑
j∈A

vi( j)≥ ∑
j∈B

vi( j).

Hence, an additively separable hedonic game can also be represented by a tuple (N,v) con-
sisting of a set of agents and a collection of valuation functions. It is commonly assumed
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that vi(i) = 0 for every i ∈N.7 In additively separable hedonic games, agent i’s valuation of a
coalition A∈N i is defined as vadd

i (A)=∑ j∈A vi( j). Additively separable hedonic games [21]
were studied, e.g., by Sung and Dimitrov [137, 136], Aziz et al. [10], and Woeginger [146].

Example 2.4. Again, consider the hedonic game G = (N,�) from Example 2.3. G is addi-
tively separable as it can be represented via the following valuation functions:

i vi(1) vi(2) vi(3)

1 0 2 1
2 2 0 −1
3 −1 −1 0

We validate that these valuation functions indeed lead to the preferences from Example 2.3
using agent 2 as an example. We compute agent 2’s valuations for the four coalitions:

vadd
2 ({1,2}) = 2+0 = 2, vadd

2 ({1,2,3}) = 2+0−1 = 1,

vadd
2 ({2}) = 0, and vadd

2 ({2,3}) = 0−1 =−1.

Since vadd
2 ({1,2}) > vadd

2 ({1,2,3}) > vadd
2 ({2}) > vadd

2 ({2,3}), agent 2’s valuation func-
tion v2 indeed corresponds to the preference {1,2} �2 {1,2,3} �2 {2} �2 {2,3}.

Fractional Hedonic Games In fractional hedonic games, the value of a coalition is the
average value of the members of the coalition. Hence, given a valuation function vi of
agent i, i’s fractional value for a coalition A ∈N i is vfrac

i (A) = 1
|A|∑ j∈A vi( j) and a hedonic

game (N,�) is fractional if for every player i∈N there exists a valuation function vi : N→Q
such that for any two coalitions A,B ∈N i it holds that

A�i B⇐⇒ vfrac
i (A)≥ vfrac

i (B).

Again, giving a fractional hedonic game by a tuple (N,v) of agents and valuation functions,
it is commonly assumed that vi(i) = 0 for all agents i ∈ N. Fractional hedonic games [11]
have been studied, e.g., by Bilò et al. [19], Brandl et al. [25], Kaklamanis et al. [80], and
Carosi et al. [37].

Modified Fractional Hedonic Games Modified fractional hedonic games are defined
analogously to fractional hedonic games besides that the valuation of a player i ∈ N for
coalition A ∈N i is defined by

vmfrac
i (A) =

{
1

(|A|−1) ∑ j∈A vi( j) if A 6= {i},
0 if A = {i}.

7This is a normalization assumption. For each additively separable preference �i, there exists a valuation
function vi with vi(i) = 0.
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Modified fractional hedonic games [110] were studied, e.g., by Elkind et al. [58], Kaklamanis
et al. [80], Monaco et al. [101, 102], Bullinger [33], and Bullinger and Kober [34].

The Friends-and-Enemies-Encoding In the friends-and-enemies encoding due to Dim-
itrov et al. [50], each player i ∈ N partitions the other players into a set of friends Fi ⊆ N \{i}
and a set of enemies Ei = N \ (Fi ∪{i}). Based on this representation, Dimitrov et al. [50]
distinguish between the friend-oriented and the enemy-oriented preference extension. Under
the friend-oriented model, agents prefer coalitions with more friends to coalitions with fewer
friends, and in the case that two coalitions contain the same number of friends, they prefer the
coalition with fewer enemies. Formally, a hedonic game (N,�) is friend-oriented if, for any
agent i ∈ N, there exist a set of friends Fi ⊆ N \{i} and a set of enemies Ei = N \ (Fi∪{i})
such that for any two coalitions A,B ∈N i it holds that

A�i B⇐⇒ |A∩Fi|> |B∩Fi| or
(
|A∩Fi|= |B∩Fi| and |A∩Ei| ≤ |B∩Ei|

)
. (2.1)

Analogously, a hedonic game (N,�) is enemy-oriented if, for any agent i ∈ N, there exist
a set of friends Fi ⊆ N \ {i} and a set of enemies Ei = N \ (Fi ∪{i}) such that for any two
coalitions A,B ∈N i it holds that

A�i B⇐⇒ |A∩Ei|< |B∩Ei| or
(
|A∩Ei|= |B∩Ei| and |A∩Fi| ≥ |B∩Fi|

)
. (2.2)

Friend-oriented and enemy-oriented hedonic games can be seen as the subclasses of addi-
tively separable hedonic games where the valuation functions of the agents map only to
{−1,n} and {−n,1}, respectively. In particular, in friend-oriented hedonic games, agents as-
sign value n to their friends and value−1 to their enemies. In enemy-oriented hedonic games,
agents assign value 1 to their friends and value−n to their enemies. These cardinal values as-
sure that the resulting additively separable hedonic preferences in fact satisfy the conditions
from Equations 2.1 and 2.2. Agent i’s friend-oriented respectively enemy-oriented value for
coalition A ∈N i is then given by

vfo
i (A) = ∑

j∈A
vi( j) = n|A∩Fi|− |A∩Ei| and

veo
i (A) = ∑

j∈A
vi( j) = |A∩Fi|−n|A∩Ei|.

Note that friend- and enemy-oriented hedonic games are also referred to as hedonic games
with appreciation of friends and aversion to enemies. Friend- and enemy-oriented hedonic
games [50] were studied, e.g, by Sung and Dimitrov [137, 136], Aziz and Brandl [7], Rey
et al. [122], and Igarashi et al. [79].

Visual Presentation All these classes of cardinal hedonic games can be represented
by complete weighted directed graphs with the agents as vertices where the weight of an
edge (i, j) from agent i to agent j is i’s value for j. Sometimes some edges with equal
weights, e.g., all edges with weight zero, are omitted in the graph representation. In the case
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Figure 2.3: Graph representing the modified fractional hedonic game in Example 2.5. All
omitted edges have weight zero.

of the friends-and-enemies encoding, all weights can be omitted. Instead, the game can be
visualized by a directed graph where an edge from agent i to agent j indicates that j is i’s
friend. This graph is also called network of friends.

We call a cardinal hedonic game (N,v) symmetric if vi( j) = v j(i) for all i, j ∈N and simple if
vi( j) ∈ {0,1} for all i, j ∈ N. For symmetric friend-oriented and symmetric enemy-oriented
hedonic games, we also say that the friendship relations are mutual. In this case, the net-
work of friends is an undirected graph where an edge {i, j} represents the mutual friendship
between agents i and j.

We now give examples of a modified fractional hedonic game and a friend-oriented hedonic
game, respectively.

Example 2.5. We consider a modified fractional hedonic game (N,v) with four agents N =
{1,2,3,4}. The valuation functions of the agents are given by the graph in Figure 2.3 where
all omitted edges represent valuations of zero. According to this graph, the valuation func-
tions of the agents are:

i vi(1) vi(2) vi(3) vi(4)

1 0 2 3 0
2 2 0 1 −1
3 0 2 0 −3
4 0 1 0 0

We now compute the modified fractional preference of agent 2. First note that the set N 2 of
coalitions containing agent 2 has size 2n−1 = 23 = 8. Agent 2’s modified fractional valuations
for these eight coalitions are given in the following table:

C {2} {1,2} {2,3} {2,4} {1,2,3} {1,2,4} {2,3,4} {1,2,3,4}

vmfrac
2 (C) 0 2/1 1/1 −1/1 3/2 1/2 0/2 2/3
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1 2 3

4 5 6

7 8 9

Figure 2.4: Graph representing the friend-oriented hedonic game with mutual friendship re-
lations in Example 2.6

Sorting these valuations leads to the following modified fractional preferences of agent 2:

{1,2} �2 {1,2,3} �2 {2,3} �2 {1,2,3,4} �2 {1,2,4} �2 {2} ∼2 {2,3,4} �2 {2,4}.

Note that agent 2’s additively separable preferences for the graph in Figure 2.3 differ from
the above modified fractional preferences. For example, agent 2 prefers {1,2,3} to {1,2}
under additively separable preferences.

Next, we give a short example of a friend-oriented hedonic game.

Example 2.6. We consider a friend-oriented hedonic game (N,�) with nine agents, i.e.,
N = {1, . . . ,9}. The mutual friendship relations among the agents are given by the network
of friends in Figure 2.4. Furthermore, we consider the two coalitions A = {1,2,3,4,5,6,9}
and B = {1,2,4,7,8}.

For agent 1, it holds that she has two friends and four enemies in A while she has four friends
and no enemies in B. Therefore, 1 prefers B to A under friend-oriented preferences. Actually,
B is agent 1’s most preferred coalition as it contains all of her friends and none of her enemies.

Considering agent 2, we can observe that 2 has three friends and three enemies in A while
she has two friends and two enemies in B. Although the proportions of friends and enemies
are the same for both coalitions, agent 2 prefers coalition A to B under friend-oriented pref-
erences. This is because she compares the absolute numbers of friends in the two coalitions,
which is greater for A than for B. Using the cardinal representation of the preferences with
value n = 9 for friends and value −1 for enemies, agent 2’s friend-oriented valuations for A
and B are

vfo
2 (A) = n|A∩F2|− |A∩E2|= 9 · |{1,3,4}|− |{5,6,9}|= 9 ·3−3 = 24 and

vfo
2 (B) = n|B∩F2|− |B∩E2|= 9 · |{1,4}|− |{7,8}|= 9 ·2−2 = 16.
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Preference Representations Based on Friends and Enemies

Apart from the friends-and-enemies encoding due to Dimitrov et al. [50], there has been
quite some research concerning preference representations that are based on the partitioning
of agents into different groups.

For instance, Ota et al. [111] study hedonic games where agents specify their preferences
by partitioning the other agents into friends, enemies, and neutral agents. In their model, an
agent’s preference is independent of all agents that she is neutral to. They then distinguish
between the friend appreciation and enemy aversion due to Dimitrov et al. [50] and con-
sider the problems of verifying (strict) core stability and checking the existence of (strictly)
core stable coalition structures. They show that the neutral agents have an impact of on the
computational complexity of these problems.

Similarly, Barrot et al. [17] study hedonic games where the agents partition each other into
friends, enemies, and unknown agents. In contrast to Ota et al. [111], Barrot et al. [17] do
not assume that agents are neutral to agents that they do not know. Instead, they distinguish
between extraverted and introverted agents who either appreciate the presence of unknown
agents or prefer coalitions with fewer unknown agents. They then investigate the impact of
unknown agents on core stability and individual stability.

Another preference representation that is based on the partitioning of agents into friends, ene-
mies, and neutral players is described in Chapter 5. In particular, we introduce FEN-hedonic
games where agents represent their preferences via weak rankings with double threshold.
That means that each agent partitions the other agents into friends, enemies, and neutral
players and additionally specifies weak rankings on her friends and on her enemies, respec-
tively. For more details on FEN-hedonic games, see Chapter 5. Weak rankings with double
threshold are also studied by Rey and Rey [121] who obtain preferences over coalitions by
measuring the distance between any given coalition and the specified ranking.

Further Preference Representations

There are several other preference representations for hedonic games. We will now give a
brief overview of some prominent of these representations.

Under the singleton encoding by Cechlárová and Romero-Medina [40], the agents specify
rankings over single agents. Cechlárová and Romero-Medina [40] define two preference
extensions that lead to so-called B-preferences and W -preferences, respectively. Agents
with B-preferences rank coalitions only based on the most preferred player in each coalition.
Agents with W -preferences only care about the least preferred member of their coalitions.
These two preference extensions are also studied by Cechlárová and Hajduková [38, 39].

In the individually rational encoding due to Ballester [14], agents only rank the coalitions
that they prefer to being alone. This leads to a succinct representation whenever the number
of those coalitions is small.
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Under the anonymous encoding defined by Banerjee et al. [15], the agents’ preferences only
depend on their coalition sizes. This means that, under anonymous preferences, the agents
are indifferent among any two coalitions of the same size and do not care about the identity
of the agents. A generalization of anonymous hedonic games has been studied by Darmann
et al. [47]. They consider group activity selection problems where the agents’ preferences
depend on the sizes of their coalitions and on the activities allocated to their coalitions.

Elkind and Wooldridge [56] proposed a very expressive representation: hedonic coalition
nets where the agents specify their preferences by giving a set of propositional formulas.
With these formulas, the agents can specify which combination of agents they would like to
have in their coalitions. For instance, agent i might specify the formula j∧ k 7→i 8 which
means that i obtains utility 8 if she is in a coalition with agents j and k. These propositional
formulas can also be more complex and contain the Boolean operators ∧, ∨,→,↔, and ¬.
An agent’s total utility for a given coalition is the sum of all formulas that are satisfied by the
coalition. Elkind and Wooldridge [56] show that hedonic coalition nets generalize several
other preference representations such as hedonic games with B- or W -preferences [40], the
individually rational encoding [14], additively separable hedonic games [21], and anonymous
hedonic games [15].

Aziz et al. [9] consider hedonic games with dichotomous preferences. Formally, player i’s
preference is dichotomous if she can partition the set N i of coalitions containing herself into
two groups, satisfactory coalitions and unsatisfactory coalitions, such that she strictly prefers
any satisfactory coalition to any unsatisfactory coalition and is indifferent between any two
coalitions of the same group. Aziz et al. [9] introduce the boolean hedonic encoding, a suc-
cinct representation for hedonic games with dichotomous preferences. In this encoding, each
agent’s preference is given by a single propositional formula that characterizes this agent’s
satisfactory set of coalitions. Hedonic games with dichotomous preferences are also stud-
ied by Peters [114]. He studies the computational complexity of finding stable and optimal
coalition structures in such hedonic games. While doing so, he distinguishes between several
representations of such games, including the boolean encoding.

2.3.4 Stability and Optimality in Hedonic Games

Central questions in coalition formation are which coalition structures are likely to form and
which coalition structures are desirable outcomes. There is a broad literature that studies
such desirable properties in coalition formation. The solution concepts are concerned with
optimality, stability, and fairness. In this section, we will consider several notions of stability
and optimality.

There are various stability notions that have been proposed in the literature. Those notions
mainly concern the question whether there are agents that would like to deviate from a given
coalition structure. We distinguish different categories of stability notions. First, there are
concepts based on single player deviations such as Nash stability, individual stability, or

21



Chapter 2 Background

individual rationality that capture whether there are agents that would like to perform a de-
viation to another coalition on their own. Second, there exist notions of group stability such
as core stability that capture whether groups of agents would want to deviate together. And
third, there are notions that are based on the comparison of coalition structures such as Pareto
optimality or popularity. These notions can also be seen as optimality concepts. Further opti-
mality criteria are concerned with the maximization of social welfare or other measurements
of the agents’ satisfaction.

We now define some common stability notions and start with some classic notions. For any
given hedonic game (N,�), coalition structure Γ ∈ CN is said to be

• perfect (PF)8 if every agent is in her most preferred coalition, i.e., every agent i ∈ N
weakly prefers Γ(i) to every other coalition C ∈N i.

• individually rational (IR) if every agent weakly prefers her current coalition to being
alone, i.e., every agent i ∈ N weakly prefers Γ(i) to {i}.

Note that perfectness (formulated by Aziz et al. [12]) and individually rationality are two of
the most extreme stability notions that we consider here. While perfectness is stronger than
almost all other stability notions (except for strict popularity), individual rationality imposes
only a minimal requirement and is implied by many other notions.

We continue with some further classic notions that are concerned with single player devi-
ations and were formulated by Bogomolnaia and Jackson [21]. Coalition structure Γ ∈
CN is

• Nash stable (NS) if no agent wants to deviate to another coalition in Γ∪{ /0}, i.e., every
agent i ∈ N weakly prefers Γ(i) to every coalition C∪{i} with C ∈ Γ∪{ /0}.

• individually stable (IS) if no agent wants to deviate to another coalition C in Γ∪{ /0}
and can do so without making any agent in C worse off. Formally, Γ is IS if for all
agents i∈N and all coalitions C ∈ Γ∪{ /0}, it holds that i weakly prefers Γ(i) to C∪{i}
or there is a player j ∈C who prefers C to C∪{i}.

• contractually individually stable (CIS) if no agent i wants to deviate to another coali-
tion C in Γ∪ { /0} and can do so without making any agent in C or Γ(i) worse off.
Formally, Γ is CIS if for all agents i ∈ N and all coalitions C ∈ Γ∪{ /0}, it holds that
i weakly prefers Γ(i) to C∪{i} or there is a player j ∈C who prefers C to C∪{i} or
there is a player k ∈ Γ(i)\{i} who prefers Γ(i) to Γ(i)\{i}.

Additionally, Sung and Dimitrov [138] introduced contractual Nash stability and some other
related notions. We say that coalition structure Γ ∈ CN is

• contractually Nash stable (CNS) if no agent i wants to deviate to another coalition
in Γ∪{ /0} and can do so without making any agent in Γ(i) worse off. Formally, Γ is

8In the context of the friends-and-enemies encoding [50], perfectness is sometimes also called “wonderful
stability”, e.g., by Woeginger [147], Elkind and Rothe [55], and Rey et al. [122].
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CNS if for all agents i ∈ N and all coalitions C ∈ Γ∪{ /0}, it holds that i weakly prefers
Γ(i) to C∪{i} or there is a player k ∈ Γ(i)\{i} who prefers Γ(i) to Γ(i)\{i}.

We now turn to core stability which is a classic notion of group stability that was already
studied by Banerjee et al. [15]. Later, core stability and strict core stability have also been
extensively studied by Dimitrov et al. [50]. For any coalitions structure Γ ∈ CN and any
nonempty coalition C ⊆ N, C is said to block Γ if every agent i ∈C prefers C to Γ(i). C is
said to weakly block Γ if all agents i ∈C weakly prefer C to Γ(i) and at least one agent j ∈C
prefers C to Γ( j). Coalition structure Γ ∈ CN is

• core stable (CS) if no nonempty coalition blocks Γ.

• strictly core stable (SCS) if no nonempty coalition weakly blocks Γ.

Karakaya [81] and Aziz and Brandl [7] formulated some more related notions. For a coalition
C ⊆ N, we say that coalition structure ∆ ∈ CN is reachable from coalition structure Γ ∈ CN ,
Γ 6=∆, by coalition C if, for all i, j ∈N \C, it holds that Γ(i) = Γ( j)⇐⇒∆(i) =∆( j). In other
words, if ∆ is reachable from Γ by C, then all agents in C might deviate to other coalitions
while all agents in N \C have to stay together as before. Then, a coalition C ⊆ N, C 6= /0,

• strong Nash blocks coalition structure Γ if there exists a coalition structure ∆ that is
reachable from Γ by C such that all agents i ∈C prefer ∆(i) to Γ(i).

• weakly Nash blocks Γ if there exists a coalition structure ∆ that is reachable from Γ

by C such that all agents i ∈C weakly prefer ∆(i) to Γ(i) and there is an agent j ∈C
who prefers ∆( j) to Γ( j).

• strong individually blocks Γ if there exists a coalition structure ∆ that is reachable
from Γ by C such that all agents i ∈C prefer ∆(i) to Γ(i) and there is an agent j ∈C
such that all k ∈ ∆( j) weakly prefer ∆(k) to Γ(k).

Based on these notions it holds that coalition structure Γ ∈ CN is

• strong Nash stable (SNS) [81] if there is no coalition C⊆ N that strong Nash blocks Γ.

• strictly strong Nash stable (SSNS) [7] if there is no coalition C ⊆ N that weakly Nash
blocks Γ.

• strong individually stable (SIS) [7] if there is no coalition C ⊆ N that strong individu-
ally blocks Γ.

We now turn to some concepts that are based on the comparison of coalition structures. For
two coalition structures Γ,∆ ∈ CN , we say that ∆ Pareto-dominates Γ if every agent i ∈ N
weakly prefers ∆(i) to Γ(i) and there is an agent j ∈ N who prefers ∆( j) to Γ( j). Coalition
structure Γ ∈ CN is

• Pareto optimal (PO) if there is no coalition structure that Pareto-dominates Γ.
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Figure 2.5: Relations among the stability and optimality notions from Section 2.3.4 where a
notion A implies a notion B exactly if there is a directed path from A to B

Popularity is another notion that is based on the comparison of coalition structures. The
notion was first proposed in the context of marriage games by Gärdenfors [65]. In the context
of hedonic games, popularity and strict popularity were formulated by Aziz et al. [10] and
Lang et al. [96]. A coalition structure Γ ∈ CN is

• popular (POP) if for every coalition structure ∆ ∈ CN , at least as many agents prefer Γ

to ∆ as the other way around; formally, this means for all ∆ ∈ CN with ∆ 6= Γ that

|{i ∈ N | Γ(i)�i ∆(i)}| ≥ |{i ∈ N | ∆(i)�i Γ(i)}|.

• strictly popular (SPOP) if for every coalition structure ∆ ∈ CN , more agents prefer Γ

to ∆ than the other way around; formally, this means for all ∆ ∈ CN with ∆ 6= Γ that

|{i ∈ N | Γ(i)�i ∆(i)}|> |{i ∈ N | ∆(i)�i Γ(i)}|.

We consider two further concepts that were formulated by Aziz et al. [10] and are concerned
with social welfare maximization. For any cardinal hedonic game (N,v), we say that Γ ∈ CN
maximizes

• utilitarian social welfare (USW) if ∑i∈N vi(Γ(i))≥ ∑i∈N vi(∆(i)) for all ∆ ∈ CN .

• egalitarian social welfare (ESW) if mini∈N vi(Γ(i))≥mini∈N vi(∆(i)) for all ∆ ∈ CN .

We also say that a coalition structure Γ is USW or ESW by which we mean that Γ maximizes
USW or ESW. We further use all abbreviations from this section as nouns and adjectives;
for example, we say that a coalition structure is CS (core stable) or that it satisfies CS (core
stability).

There are a lot of relations among these stability and optimality notions. Some of them
follow directly from the definitions, e.g., NS trivially implies IS which in turn implies CIS.
The relations among all notions from this section are visualized in Figure 2.5. For more
background on these relations, see, e.g., Bogomolnaia and Jackson [21] (for relations among
PO, NS, IS, CIS, and CS), Sung and Dimitrov [138] (for relations among SCS, CS, NS, IS,
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CNS, and CIS), Aziz and Brandl [7] (for relations among SSNS, SNS, SIS, and previous
notions), or Kerkmann [83] (for relations among SPOP, POP, PO, and other notions).

2.3.5 Fairness in Hedonic Games

Besides the stability concepts from the previous section, other important notions in hedonic
games are concerned with fairness. Some of these notions are inspired from the field of
fair division where three classic fairness criteria are equitability, proportionality, and envy-
freeness. Further fairness notions in fair division are jealousy-freeness due to Gourvès et
al. [69], envy-freeness up to one good due to Budish [32], the max-min fair share criterion
by Budish [32], and the min-max fair share criterion by Bouveret and Lemaı̂tre [23]. For
background on fair division theory see, e.g., the book chapters by Lang and Rothe [95] and
Bouveret et al. [24].

For hedonic games, it was proposed to use envy-freeness as a notion of fairness [21, 10, 114,
115]. We say that a coalition structure Γ ∈ CN is envy-free by replacement (EFR) if no agent
envies another agent for her coalition, i.e., if for all agents i, j ∈ N with Γ(i) 6= Γ( j), agent i
weakly prefers Γ(i) to (Γ( j) \ { j})∪{i}. Perfectness is the only notion from Section 2.3.4
that implies EFR. Also, EFR does not imply any of the notion from Section 2.3.4. The
following two examples illustrate EFR and some of the notions from Section 2.3.4 while
showing that EFR is independent from all notions besides perfectness.

Example 2.7. Consider the hedonic game G = (N,�) with N = {1,2,3} and the following
preference profile �= (�1,�2,�3):

{1,2} �1 {1,2,3} �1 {1} �1 {1,3},
{1,2} �2 {1,2,3} �2 {2} �2 {2,3},
{1,3} �3 {3} �3 {1,2,3} �3 {2,3}.

Further consider the coalition structure Γ = {{1,2},{3}}. We first observe that this coalition
structure is not EFR because agent 3 envies agent 2 for her coalition. In particular, we have

(Γ(2)\{2})∪{3}= {1,3} �3 {3}= Γ(3).

Yet, agents 1 and 2 prefer Γ to every other coalition structure which implies that Γ is SPOP.
Moreover, Γ is SSNS since there is no coalition that weakly Nash blocks Γ: First, observe
that agents 1 and 2 can not be part of any weakly Nash blocking coalition because Γ is their
unique most preferred coalition structure. Hence, {3} is the only remaining coalition that
could weakly Nash block Γ. However, deviating from {3} to {1,2}∪{3} does not present
an improvement to agent 3. Thus, there is no weakly Nash blocking coalition.

Note that G is additively separable and can be represented via the following valuations:
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i vi(1) vi(2) vi(3)

1 0 2 −1
2 2 0 −1
3 1 −2 0

For these valuation functions, Γ maximizes USW and ESW. In particular, it holds that the
USW for Γ is 2+2+0 = 4 while the ESW for Γ is min{2,2,0}= 0.

Summing up, we have shown that Γ is SPOP, SSNS, USW, and ESW but not EFR. This
shows that none of SPOP, SSNS, USW, and ESW implies EFR. Since all other notions from
Section 2.3.4 except for perfectness are implied by SPOP, SSNS, USW, or ESW, none of
these notions implies EFR either.

The next example shows that no notions from Section 2.3.4 is implied by EFR.

Example 2.8. Consider a very simple hedonic game G = (N,�) with two players N = {1,2}
and the preferences {1} �1 {1,2} and {2} �2 {1,2}. While coalition structure {{1,2}} is
EFR, it is neither IR nor CIS. Hence, EFR does not imply IR or CIS. Since all notions from
Section 2.3.4 imply IR or CIS, none of these notions is implied by EFR.

In order to decide whether EFR is satisfied, agents have to inspect not only their own but
also the coalitions of other agents. In Chapter 4, we introduce three further notions of local
fairness that can be decided while all agents only inspect their own coalitions. The three local
fairness notions, namely min-max fairness, grand-coalition fairness, and max-min fairness,
are defined via individual threshold coalitions. In Chapter 4, we study the relations among
these three local fairness notions and also relate them to other notions of stability. We further
study the computational complexity of the related existence problems and of computing the
threshold coalitions.

Further works studying envy-freeness in coalition formation games are due to Wright and
Vorobeychik [148], Ueda [143], and Barrot and Yokoo [16]. For instance, Ueda [143] intro-
duces and studies justified envy-freeness, a weakening of EFR, that is implied by CS.

2.3.6 Decision Problems for Hedonic Games

There are some natural questions that arise when studying the above stability, optimality, and
fairness notions. For instance, we are interested in whether a given notion can be guaranteed
for any hedonic game or whether there are hedonic games that do not allow any coalition
structures that satisfy this notion. For any notion α , we are further interested in the compu-
tational complexity of the verification problem and the existence problem, which are defined
as follows:
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α -VERIFICATION

Given: A hedonic game (N,�) and a coalition structure Γ ∈ CN .
Question: Does Γ satisfy α in (N,�)?

α -EXISTENCE

Given: A hedonic game (N,�).
Question: Is there a coalition structure Γ ∈ CN that satisfies α in (N,�)?

Note that there is a link between the complexities of these two problems: If α-VERIFICATION

is in P for a concept α , then α-EXISTENCE is in NP as instances can be guessed nondeter-
ministically and verified in polynomial time.

For any notion α , the following search problem is of interest as well:

α -SEARCH

Input: A hedonic game (N,�).
Output: A coalition structure Γ ∈ CN that satisfies α in (N,�) or “no” if there

does not exist such a coalition structure.

Obviously, any upper bound on the computational complexity of α-SEARCH carries over to
α-EXISTENCE, e.g., α-SEARCH ∈ P implies α-EXISTENCE ∈ P. Similarly, lower bounds on
the computational complexity of α-EXISTENCE carry over to α-SEARCH, e.g., α-EXISTENCE

being NP-hard implies α-SEARCH being NP-hard. Also, if α-VERIFICATION is in P, then
α-SEARCH is in NP.

Stability Results

We will now summarize some results concerning the above problems for the stability, op-
timality, and fairness notions from Sections 2.3.4 and 2.3.5. Some of these results can be
deduced directly from their definitions; some results are known from the literature.

Easy Verification First observe that α-VERIFICATION with α ∈ {IR,NS, IS,CIS,CNS,
EFR} is easy for any hedonic game for which the preferences can be accessed in polynomial
time. For all these notions, we can find the answer to α-VERIFICATION by iterating over all
agents and checking a polynomial number (in the number of agents) of preference relations.
This leads to a polynomial time algorithm if single preference relations can be checked in
polynomial time. Also, whenever we can determine the agents’ most preferred coalitions
in polynomial time, PF-VERIFICATION is easy. For all other notions from Section 2.3.4,
α-VERIFICATION is not easy in general. Indeed, it was shown that α-VERIFICATION is
coNP-complete for α ∈ {CS,SCS,PO,POP,SPOP,USW,ESW} even if the preferences are
additively separable (see Table 2.1).
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Guaranteed Existence The three stability notions IR, CIS, and PO impose rather mild re-
strictions on coalition structures and can be fulfilled for any hedonic game. For example, for
any hedonic game (N,�) with N = {1, . . . ,n}, the coalition structure {{1}, . . . ,{n}} consist-
ing only of singleton coalitions is IR. This follows directly from the definition of IR. Turning
to PO, it can be easily seen that a PO coalition structure is guaranteed to exist by the following
observations: Whenever a coalition structure Γ2 Pareto-dominates coalition structure Γ1, ev-
ery agent weakly prefers Γ2 to Γ1 and at least one agent prefers Γ2 to Γ1. This means that the
overall satisfaction grows when switching from Γ1 to the Pareto-dominating coalition struc-
ture Γ2. Now, assuming that there is no PO coalition structure would mean that there is an
infinite sequence of coalition structures (Γ1,Γ2, . . .). such that Γi+1 Pareto-dominates Γi for
every i≥ 1. Since there is only a finite number of coalition structures and since no coalition
structure can occur twice in the sequence (due to the growth of satisfaction), such a sequence
can not exist and there has to be a PO coalition structure. Since every PO coalition structure
is CIS, this also implies the existence of a CIS coalition structure. The corresponding result
for CIS was also shown by Ballester [14]. Finally, due to the guaranteed existence of these
three notions, we can deduce that α-EXISTENCE is trivially in P for any hedonic game and
α ∈ {IR,CIS,PO}. In addition, Bogomolnaia and Jackson [21] show that, for any hedonic
game with strict preferences,9 there exists a coalition structure that is PO, IR, and CIS at the
same time.

EFR coalition structures are guaranteed to exist for any hedonic game as well. In fact, the
coalition structures {{N}} consisting of the grand coalition and {{1}, . . . ,{n}} consisting
only of singleton coalitions are always EFR by definition. Yet, Ueda [143] shows that there
exist hedonic games where no coalition structure besides these two trivial ones is EFR.

For any cardinal hedonic game, coalition structures maximizing USW and ESW are guaran-
teed to exist as well. Again, this follows directly from the definitions.

Properties that Guarantee Existence For all other notions from Section 2.3.4, coali-
tion structures that satisfy these notions are not guaranteed to exist in general hedonic games.
However, some work has been done, studying properties that guarantee the existence of sta-
ble coalition structures. For example, Bogomolnaia and Jackson [21] study properties that
guarantee the existence of PO, CS, NS, IS, or CIS coalition structures. They show that, for
any symmetric ASHG (from here on, “additively separable hedonic game” is also abbrevi-
ated with “ASHG”), USW implies NS [21, proof of Proposition 2]. Since USW coalition
structures are guaranteed to exist in ASHGs, this means that any symmetric ASHG admits
a NS coalition structure. The same holds for IS and CNS coalition structures because NS
implies IS and CNS. Suksompong [135] generalizes the result by Bogomolnaia and Jackson
[21] and shows that NS coalition structures are even guaranteed to exist for subset-neutral
hedonic games, a generalization of symmetric ASHGs. Moreover, Bogomolnaia and Jackson
[21] show that there exists a coalition structure that simultaneously satisfies PO, IR, and IS
for any ASHG with strict preferences. Banerjee et al. [15] study the existence of CS coalition

9That means that no player is indifferent between any two different coalitions.
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structures under different restrictions of hedonic games. Motivated by the fact that there even
may not be a CS coalition structure for hedonic games that satisfy rather strong restrictions,
e.g., for anonymous ASHGs, they introduce the weak top-coalition property which guaran-
tees the existence of a CS coalition structure. Burani and Zwicker [35] show that all sym-
metric ASHGs that have purely cardinal preference profiles admit a coalition structure that is
both NS and CS. The existence of CS is also studied by Dimitrov et al. [50]. They show that
CS and SCS coalition structures exist for any friend-oriented and enemy-oriented hedonic
game. Furthermore, Alcalde and Revilla [1] introduce a property called top responsiveness
that guarantees the existence of CS coalition structures. Dimitrov and Sung [48] strengthen
the result of Alcalde and Revilla [1] by showing that top responsiveness even guarantees
the existence of SCS coalition structures. Dimitrov and Sung [49] additionally prove that
top responsiveness together with mutuality ensures the existence of NS coalition structures.
As a counterpart to top responsiveness, Suzuki and Sung [139] introduce bottom refuseness
(which is later called bottom responsiveness by Aziz and Brandl [7]). They show that, similar
to top responsiveness, bottom refuseness guarantees the existence of CS coalition structures.
Since friend-oriented hedonic games fulfill top responsiveness while enemy-oriented hedo-
nic games fulfill bottom refuseness, the existence results by Alcalde and Revilla [1] for top
responsiveness and by Suzuki and Sung [139] for bottom refuseness generalize the existence
results by Dimitrov et al. [50] for friend-oriented and enemy-oriented hedonic games. Sung
and Dimitrov [138] study the existence of CNS coalition structures and show that any hedonic
game that satisfies separability (a generalization of additive separability) and weak mutuality
admits a CNS coalition structure. Karakaya [81] establishes two properties that guarantee
the existence of a SNS coalition structure: the weak top-choice property and the descending
separability of preferences. Aziz and Brandl [7] show that the existence of a SSNS coalition
structure is guaranteed in hedonic games that satisfy top responsiveness and mutuality. Yet,
these two properties do not guarantee the existence of PF coalition structures. They also show
that SIS coalition structures are guaranteed in hedonic games that satisfy bottom responsive-
ness while the existence of SNS coalition structures is guaranteed in hedonic games that
satisfy strong bottom responsiveness and mutuality. Furthermore, Aziz and Brandl [7] study
the existence of stable coalition structures in friend-oriented and enemy-oriented hedonic
games. They show that each symmetric friend-oriented hedonic game admits a SSNS coali-
tion structure. Moreover, each enemy-oriented hedonic game admits a SIS coalition structure
and even a SNS coalition structure if the game is symmetric. They further show that SCS
coalition structures are guaranteed to exist in hedonic games with strict B-preferences [40].
Finally, Brandl et al. [25] show that CS, NS, and IS coalition structures are not guaranteed to
exist in fractional hedonic games.

Complexity Results for ASHGs Without applying suiting restrictions, many classes of
hedonic games do not admit stable coalition structures in general. In these cases, the re-
lated existence problems are not trivial. And even if coalition structures satisfying a given
notion are guaranteed to exist, the problem of finding such coalition structures might still
be intractable. Hence, there has been some research on the computational complexity of
the existence and search problems for several classes of hedonic games and various stabil-
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ity notions. For example, Brandl et al. [25] not only show that CS, NS, and IS coalition
structures are not guaranteed to exist in fractional hedonic games, but they also show that
α-EXISTENCE with α ∈ {CS,NS, IS} is NP-hard for fractional hedonic games.

We will now illustrate some results from the literature. While doing so, we concentrate on the
popular class of ASHGs. The results are summarized in Table 2.1. Sung and Dimitrov [136]
show that, for any ASHG, α-EXISTENCE with α ∈ {NS, IS} is NP-complete and that α-
EXISTENCE with α ∈ {CS,SCS} is NP-hard. Recall that all these hardness results carry over
to the corresponding search problems. Gairing and Savani [62] strengthen the above result
for NS by showing that NS-SEARCH is PLS-complete for symmetric ASHGs. In a follow-up
work, Gairing and Savani [63] define some new stability concepts for symmetric ASHGs. In
particular, they define vote-in stability which is equivalent to IS and vote-out stability which
is equivalent to CNS. The combination of vote-in and vote-out stability is equivalent to CIS.
They show that, for symmetric ASHGs, IS-SEARCH is PLS-complete while CNS-SEARCH

is in P. Sung and Dimitrov [137] show that CS-VERIFICATION is coNP-complete for enemy-
oriented hedonic games. Since enemy-oriented hedonic games are a subclass of ASHGs, the
hardness extends to the general case of ASHGs. Aziz et al. [10] extend the result by showing
that SCS-VERIFICATION is coNP-complete for enemy-oriented hedonic games as well. Fur-
thermore, Aziz et al. [10] show many more results concerning the complexity of verification,
existence, and search problems in ASHGs. For instance, they present an algorithm that finds
a CIS coalition structure for any ASHG, i.e., CIS-SEARCH is in P. Woeginger [146] shows
that C-EXISTENCE is Σ

p
2-complete for ASHGs. Afterwards, Woeginger [147] surveys the

results and open problems concerning CS and SCS. Peters [116] extends the hardness result
by Woeginger [146] and shows that SC-EXISTENCE is Σ

p
2-complete for ASHGs. Peters and

Elkind [117] establish metatheorems that show the NP-hardness of α-EXISTENCE for sev-
eral stability notions α . They apply these theorems to several classes of hedonic games such
as ASHGs and fractional hedonic games. For ASHGs, their metatheorems reveal that α-
EXISTENCE is NP-hard for α ∈ {NS, IS,CS,SCS,SSNS,SNS,SIS}. Brandt and Bullinger
[26] study POP and SPOP in ASHGs. They show that POP-EXISTENCE is NP-hard and
coNP-hard for symmetric ASHGs. Thus, they conclude that it is likely that this problem is
even Σ

p
2-complete. They also show that, for symmetric ASHGs, SPOP-EXISTENCE is coNP-

hard and α-VERIFICATION with α ∈ {POP,SPOP} is coNP-complete. Furthermore, Aziz
et al. [10] and Bullinger [33] study the combination of PO with other stability notions in
ASHGs. They, e.g., show that it is hard to find coalition structures that are PO and EF or PO
and IR. Last, Peters [115] and Hanaka and Lampis [73] study stability in ASHGs (and other
classes of hedonic games) from the viewpoint of parameterized complexity.

Outlook Needless to say, there exists more interesting related literature. For instance,
some research deals with the prices of stability, optimality, and fairness. These prices mea-
sure the losses of social welfare that come with certain stability, optimality, or fairness no-
tions. For example, the price of NS is the worst-case ratio between the maximum social
welfare and the social welfare of any NS coalition structure. Bilò et al. [19] study the price
of NS in fractional hedonic games. Elkind et al. [58] consider the price of PO in additively
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α α-VERIFICATION α-EXISTENCE α-SEARCH

PF in P [10] in P [10] in P [10]
IR in P [10] trivial [10] trivial [10]

NS in P [10] NP-complete [136], NP-hard [136],
trivial if sym [21, 135] PLS-complete [62]

IS in P [10] NP-complete [136], NP-hard [136],
trivial if sym [21] PLS-complete [63]

CIS in P [10] trivial [14] in P [10]
CNS in P in NP, in NP,

trivial if sym [21, 138] in P if sym [138, 63]

CS coNP-complete [137] Σ
p
2-complete [146, 116, 111], Σ

p
2-complete

trivial if fn. 1 holds [146, 116, 111]
SCS coNP-complete [10] Σ

p
2-complete [116, 111] Σ

p
2-complete [116, 111]

PO coNP-complete trivial in P if fn. 2 holds,
[10, 33] in P if fn. 3 holds

POP coNP-complete NP-hard [10, 26], NP-hard [10, 26],
[10, 26] coNP-hard [26] coNP-hard [26]

SPOP coNP-complete [26] coNP-hard [26] coNP-hard [26]

USW coNP-complete [10] trivial [10] NP-hard [10]
ESW coNP-complete [10] trivial [10] NP-hard [10]

EFR in P [10] trivial [10, 143] trivial [10, 143]
1 If the game is symmetric and preferences are purely cardinal [35], if the game is friend-

oriented [50], or if the game is enemy-oriented [50].
2 If all preferences are strict [10].
3 If the game is mutually indifferent [33]. Note that symmetry implies mutual indifference.

Table 2.1: Computational complexity of the problems from Section 2.3.6 for additively sep-
arable hedonic games and the stability, optimality, and fairness notions from Sec-
tions 2.3.4 and 2.3.5. Some additional results are given for subclasses of additively
separable hedonic games, e.g., “if sym” indicates that a result holds for symmetric
additively separable hedonic games.
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separable, fractional, and modified fractional hedonic games. Brânzei and Larson [29] in-
vestigate the price of CS in coalitional affinity games which are equivalent to ASHGs. In
Chapter 4, we study the price of local fairness in ASHGs.

Another recent branch of research studies the dynamics of deviations in hedonic games. Bilò
et al. [19] study best-response Nash dynamics in fractional hedonic games. Hoefer et al. [77]
analyze the impact of structural constraints (locality and externality) on the convergence in
hedonic games. Carosi et al. [37] introduce local core stability and study the convergence of
local core dynamics in simple symmetric fractional hedonic games. They also study the price
of local core stability. Brandt et al. [27] investigate how deviations according to the notion of
IS converge in various classes of hedonic games including anonymous and fractional hedonic
games. Brandt et al. [28] study dynamics based on single-player deviations in ASHGs.

Further interesting research concerns the robustness of stability against the deletion of agents
(agent failure) [79], strategyproof mechanisms that prevent strategical agent behavior [59],
or hedonic games where the communication of the agents is restricted by an underlying graph
such that agents can only form a coalition if they are connected in the graph [78].
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Altruism in Coalition Formation Games

In game theory, it is usually assumed that the agents are completely self-interested and act
perfectly rational to accomplish their individual goals. Hence, the agents are assumed to al-
ways take those actions that lead them to their own optimal outcomes. This idea is related to
the notion of the homo economicus. However, there has been some recent research from evo-
lutionary biologists that shows that this approach is obsolete. In 2020, Hare and Woods [74]
rephrased the Darwinian evolutionary thesis “survival of the fittest” with the thesis “survival
of the friendliest”. They studied the social behavior of several animal species, including dogs
but also chimpanzees and bonobos. They observe that species with highly developed social
skills and friendly behavior towards other individuals of their own and other species have an
evolutionary advantage. They even argue that friendliness was essential for the success of
the human species.

Along the same lines, there has been some research that attempts to integrate social aspects
into models of cooperative game theory. Some authors introduce social aspects as altruism
via a social network among the agents [6, 20, 76, 2]. Others directly integrate an agent’s de-
gree of selfishness or altruism into her utility function [75, 42, 3, 119]. Rothe [129] surveyed
the approaches to altruism in game theory.

In the following three sections, we will study altruism in the scope of coalition formation
games. In Section 3.1, we introduce altruistic hedonic games where agents are not narrowly
selfish but also take the opinions of their friends into account when comparing two coalitions.
We distinguish between several models of altruism and investigate them with respect to their
axiomatic properties and the computational complexity of the associated decision problems.
We continue our study in Sections 3.2, concentrating on the notions of popularity and strict
popularity. In Section 3.3, we extend the models of altruism to the more general scope of
coalition formation games and show that this extension brings some axiomatic advantages.

Related work Since the first introduction of altruistic hedonic games (see the preceding
conference version [107] of the paper that we present in the next section [91]), there has
appeared some follow-up research concerning aspects of altruism in hedonic games. For
example, Schlueter and Goldsmith [130] introduce so-called super altruistic hedonic games.
In their model, agents also behave altruistically towards agents that are further away in a
social network but weight their altruistic consideration with their distances to them. This
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approach is related to the social distance games by Brânzei and Larson [30]. Bullinger and
Kober [34] also generalize the preceding models of altruistic hedonic games. They introduce
what they call loyalty in hedonic games. For any cardinal hedonic game, they consider agents
to be loyal to any other agent that yields a positive utility when being with her in a coalition
of size two. Miles [100] provides a useful online tool that can be used to simulate altruistic,
friend-oriented, fractional, or additively separable hedonic games.
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3.1 Altruistic Hedonic Games

3.1 Altruistic Hedonic Games

This section is about the following journal article that introduces and studies altruistic hedo-
nic games.

Publication (Kerkmann et al. [91])

A. Kerkmann, N. Nguyen, A. Rey, L. Rey, J. Rothe, L. Schend, and A. Wiechers.
“Altruistic Hedonic Games”. In: Journal of Artificial Intelligence Research 75
(2022), pp. 129–169

3.1.1 Summary

While previous literature on hedonic games focuses mainly on selfish players, this work intro-
duces and studies altruism in hedonic games. The main idea while introducing our concepts
of altruism is that players do not only care about their own valuations of coalitions but also
about the valuations of others. We assume that the players have mutual friendship relations
which are represented by a network of friends. We then assume that agents care about all their
friends, i.e., their neighbors in the network of friends. When introducing the altruistic behav-
ior, we incorporate the opinions of an agent’s friends into her utility. While doing so, we
make sure that the game is still hedonic: Agents only care about their own coalitions; hence,
they only consider those friends that are in the same coalition. We focus on friend-oriented
valuations of coalitions [50] and distinguish three degrees of altruism. First, we define a
selfish-first degree where an agent first looks at her own friend-oriented valuation of a coali-
tion and, only in the case that she values two coalitions the same, she looks at the her friends’
valuations. Second, in the case of equal-treatment preferences, an agent treats herself and her
friends in her coalition the same and aggregates all valuations with equal weights. Last, we
introduce altruistic-treatment preferences where an agent first asks her friends for their valu-
ations and, only in the case that her friends value two coalitions the same, she decides based
on her own friend-oriented valuations. When aggregating the friends’ valuations, we further
distinguish between two aggregation methods. For average-based hedonic preferences, we
aggregate the valuations by taking the average and, for minimum-based hedonic preferences,
we aggregate by taking the minimum. This change of the aggregation function might seem
minor but in fact makes a major difference in the altruistic behavior.

After introducing the different models of altruism in hedonic games, we differentiate them
from the literature and study some axiomatic properties. In particular, our models can express
preferences that can not be expressed by other models known from the related literature. Fur-
thermore, they satisfy some desirable properties such as reflexivity, transitivity, polynomial-
time computability of single preferences, and anonymity. After finishing our axiomatic study,
we further consider the problems of verifying stable coalition structures in altruistic hedonic
games and of deciding whether a stable outcome exists for a given altruistic hedonic game.
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We study both problems for several common stability notions, such as Nash stability, core sta-
bility, and perfectness. While studying these problems, we not only concentrate on altruistic
hedonic games where all agents act according to the same average-based or minimum-based
degree of altruism but also consider the case of general altruistic hedonic games where each
agent might individually behave according to a different degree of altruism. For selfish-first
altruistic hedonic games, we provide a complete picture of the complexity of all considered
problems. In particular, we show that there exist individually rational, Nash stable, individu-
ally stable, and contractually individually stable coalition structures for any altruistic hedonic
game. For selfish-first altruistic hedonic games, even core stable and strictly core stable coali-
tion structures are guaranteed to exist and the existence of perfect coalition structures can be
decided in polynomial time. Concerning the verification problem, we proof that, for general
altruistic hedonic games, individual rationality, Nash stability, individual stability, and con-
tractual individual stability can be verified in polynomial time while core stability and strict
core stability verification are coNP-complete. For selfish-first altruistic hedonic games, we
further show that perfectness verification is in P.

3.1.2 Personal Contribution and Preceding Versions

This journal paper largely extends and improves multiple preceding conference papers that
were published by Nhan-Tam Nguyen, Anja Rey, Lisa Rey, Jörg Rothe, and Lena Schend
at AAMAS’16 [107], by Alessandra Wiechers and Jörg Rothe at STAIRS’20 [145], and
by Jörg Rothe at AAAI’21 [129]. Parts of the AAMAS’16 paper were also presented at
CoopMAS’16 [108] and COMSOC’16 [109]. Furthermore, Jörg Rothe and I presented some
axiomatic properties of altruistic hedonic games at COMSOC’21 [86].

The modeling of the average-based altruistic hedonic games is due to the authors of the
AAMAS’16 paper [107] and the modeling of the minimum-based variation is due to the
authors of the STAIRS’20 paper [145].

My contributions are the merging and reorganization of the individual conference papers,
additional related work in Section 2, the revision of various proofs from the AAMAS’16
paper [107] (the proofs of Propositions 4.2, 5.2, 6.14, and 6.17, Theorems 5.3, 5.5, 5.6,
6.5, and 6.6, and Lemma 6.1), additional visualizations (Figure 2 and Tables 2 and 4), the
extension of various results to the more general case where agents might act according to
different degrees of altruism, and additional results. In particular, I contributed all results
concerning the properties of min-based altruistic preferences (see Section 5.3), the detailed
results regarding the property of friend-dependence in Theorem 5.4, the results for type-
I-monotonicity under average-based EQ and AL preferences in Theorem 5.6, Lemmas 6.3
and 6.13, Example 6.7, Theorem 6.9, Corollaries 6.10, 6.12, and 6.15, and the proofs of
Propositions 6.11 and 6.16.

The writing of this journal paper was done jointly with all co-authors. The finalization and
polishing were done by Jörg Rothe and me.
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3.1.3 Publication

The full article [91] is appended here.
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3.2 Popularity and Strict Popularity in Average-Based
and Minimum-Based Altruistic Hedonic Games

The next article studies the problem of verifying popular and strictly popular coalition struc-
tures in average-based and minimum-based altruistic hedonic games.

Publication (Kerkmann and Rothe [88])

A. Kerkmann and J. Rothe. “Popularity and Strict Popularity in Average-Based
and Minimum-Based Altruistic Hedonic Games”. Submitted to the 47th Inter-
national Symposium on Mathematical Foundations of Computer Science. 2022

3.2.1 Summary

Considering hedonic games, the question of what accounts for a ‘good’ coalition structure
naturally arises. There are several notions of stability in hedonic games that indicate whether
an agent or a group of agents have an incentive to deviate from a given coalition structure.
These concepts include, e.g., Nash stability, individual stability, and core stability. By con-
trast, this work studies popularity and strict popularity in hedonic games. These two concepts
measure whether a given coalition structure is preferred to every other possible coalition
structure by a (strict) majority of the agents.

We study popularity and strict popularity in (minimum-based) altruistic hedonic games [107,
145, 91] and determine the complexities of two decision problems. First, we consider the
problem of verifying whether a given coalition structure in a given altruistic hedonic game
is (strictly) popular. Second, we consider the existence problem which asks whether there
exists a (strictly) popular coalition structure for a given altruistic hedonic game. While the
complexity of these problems has been partly determined for strict popularity by Nguyen et
al. [107] and Wiechers and Rothe [145], the problems have not been considered before for the
notion of popularity. We solve all cases of strict popularity verification in (minimum-based)
altruistic hedonic games that were left open by Nguyen et al. [107] and Wiechers and Rothe
[145]. Furthermore, we completely determine the complexity of popularity verification in
(minimum-based) altruistic hedonic games for all degrees of altruism. Our results reveal that
all considered verification problems are coNP-complete. Additionally, we obtain some coNP-
hardness results for strict popularity existence in equal-treatment and altruistic-treatment al-
truistic hedonic games. Besides, we infer that popularity verification is also coNP-complete
for friend-oriented hedonic games.
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3.2.2 Personal Contribution and Preceding Versions

A preliminary version of this paper has been accepted for publication at AAMAS’22 [87].

All technical results of the paper are my contribution. The writing and polishing was done
jointly with Jörg Rothe.

3.2.3 Publication

The full article [88] is appended here.
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3.3 Altruism in Coalition Formation Games

The following article studies altruism in the more general scope of coalition formation games.

Publication (Kerkmann et al. [90])

A. Kerkmann, S. Cramer, and J. Rothe. “Altruism in Coalition Formation Games”.
Submitted to the Annals of Mathematics and Artificial Intelligence. 2022

3.3.1 Summary

Inspired by the altruistic hedonic games by Nguyen et al. [107], this work introduces altruism
in general coalition formation games. While extending the framework of Nguyen et al. [107],
we model agents to behave altruistically to all their friends, not only to the friends in their
current coalitions (as it is the case for altruistic hedonic games). The model is grounded on
the friends-and-enemies encoding by Dimitrov et al. [50] where players can be represented
by the vertices of an undirected graph with the edges representing mutual friendship rela-
tions. We then consider the friend-oriented valuations of the agents and distinguish between
the three degrees of altruism introduced by Nguyen et al. [107]: selfish first, equal treatment,
and altruistic treatment. We further distinguish between a sum-based and minimum-based
aggregation of valuations. We show that our resulting altruistic models satisfy some desir-
able properties and argue that it is not reasonable to exclude any of an agent’s friends from her
altruistic behavior. We show that all our models lead to unanimous preferences while the al-
truistic hedonic games by Nguyen et al. [107] (and the min-based altruistic hedonic games by
Wiechers and Rothe [145]) can lead to equal-treatment and altruistic-treatment preferences
that are not unanimous. Moreover, we show that our models also fulfill some basic properties
introduced by Nguyen et al. [107] but our models fulfill more types of monotonicity than the
altruistic hedonic models. After completing the axiomatic study of altruistic coalition forma-
tion games, we consider some common stability notions from the context of hedonic games.
We extend the notions to the more general context of our work and study the computational
complexity of the associated verification and existence problems. We obtain broad results for
the case of selfish-first preferences and initiate the study for the other two degrees of altruism.
In particular, we show that the verification and existence problems are in P for individual ra-
tionality, Nash stability, and individual stability in all our altruistic models (all three degrees
of altruism and both aggregation functions). For core stability, popularity, and strict pop-
ularity verification, we obtain coNP-completeness results for the selfish-first models. Core
stability and strict core stability existence are trivial for selfish-first altruistic coalition for-
mation games as there always exist strictly core stable coalition structures in these games.
Furthermore, we obtain several upper bounds on the complexity of perfectness verification
and existence.
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3.3.2 Personal Contribution and Preceding Versions

Me and Jörg Rothe published a work about sum-based altruism in coalition formation games
at IJCAI’20 [84]. This journal article merges the IJCAI’20 paper [84] with a Bachelor’s
thesis about min-based altruism by Simon Cramer [46] and further results that were partly
presented by me and Jörg Rothe at COMSOC’21 (with nonarchival proceedings [86]). Parts
of this work were also presented at the 16th and 17th International Symposium on Artificial
Intelligence and Mathematics (ISAIM’20 with nonarchival proceedings [85] and ISAIM’22
without any proceedings).

The model that we present in this work extends a model introduced by Nguyen et al. [107].
The presented extension of the model to sum-based altruistic coalition formation games and
all technical results concerning sum-based altruistic coalition formation games are my con-
tribution. Furthermore, I contributed all axiomatic results from Section 3 and extended some
results for sum-based altruistic coalition formation games to the min-based case (viz., Exam-
ple 3, Theorem 5, Corollary 1, and Proposition 8).

The writing and polishing of the paper was done jointly with all co-authors.

3.3.3 Publication

The full article [90] is appended here.
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Chapter 4

Local Fairness in Hedonic Games via Individual
Threshold Coalitions

This chapter summarizes the following journal article in which we introduce and study three
local fairness notions for hedonic games:

Publication (Kerkmann et al. [93])

A. Kerkmann, N. Nguyen, and J. Rothe. “Local Fairness in Hedonic Games via
Individual Threshold Coalitions”. In: Theoretical Computer Science 877 (2021),
pp. 1–17

4.1 Summary

In this work, we introduce and study three notions of local fairness in hedonic games. Pre-
vious literature by Bogomolnaia and Jackson [21], Aziz et al. [10], Wright and Vorobeychik
[148], and Peters [114, 115] considers envy-freeness as a notion of fairness in hedonic games.
However, this notion requires agents to inspect other coalitions than their own. In contrast
to this notion, our local fairness notions can be decided solely based on the agents’ own
coalitions and their individual preferences.

We define the three local fairness notions min-max fairness, grand-coalition fairness, and
max-min fairness based on three different threshold coalitions. For each agent, these thresh-
olds are solely defined on her individual preference. Moreover, a coalition structure is fair
for an agent if she weakly prefers her coalition in this coalition structure to her threshold
coalition.

After introducing the three local fairness notions, we show that they form a strict hierarchy:
max-min fairness implies grand-coalition fairness which in turn implies min-max fairness.
We also relate the three notions to other stability notions that are known from the literature,
such as Nash stability, core stability, envy-freeness by replacement, and individual rationality.
We then study the problem of computing the fairness thresholds and determine the complex-
ity of this problem in the context of additively separable hedonic games. We also determine
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subclasses of hedonic games where fair coalition structures are guaranteed to exist. Since
this does not hold for general additively separable hedonic games, we also ask for the com-
plexity of determining whether a fair coalition structure exists in a given additively separable
hedonic game.

Afterwards, we study the minimum and maximum price of local fairness which describe the
best-case and worst-case loss of social welfare of a coalition structure that satisfies fairness
compared to the coalition structure with maximum utilitarian social welfare. In doing so,
we concentrate on min-max fairness which is the weakest of our three local fairness notions
and constrains the set of possible coalition structures less than the other two notions. For
symmetric additively separable hedonic games, we show that the maximum price of min-
max fairness is not bounded by a constant but the minimum price of min-max fairness is
always one.

Finally, we discuss an alternative fairness notion and argue that there is no local fairness
notion stronger than individual rationality such that fair coalition structures exist for every
hedonic game.

4.2 Personal Contribution and Preceding Versions

This journal publication extends a preliminary conference version by Nhan-Tam Nguyen and
Jörg Rothe [105] that was also presented at CoopMAS’16 [106]. Contents that I contributed
to our work are additional writing and improved presentation throughout the paper (e.g.,
the reordering of definitions in Section 2, the improvement of Figure 1, the reorganization
of Sections 3.1 and 3.3, additional Footnotes 3, 4, 5, and 6, the extension of Definition 8,
and the remark after Corollary 6), additional related work in Section 1.3, the examples and
explanations in Propositions 1 and 2, the first example and explanation in Proposition 3,
Section 4.1 (where a preliminary version of Theorem 4 was contained in [105]), the first part
of Theorem 6 that shows the membership of Min-Max-Exist in NP, Observation 6, and the
argumentation for Proposition 4.

4.3 Publication

The full article [93] is appended here.

44



Chapter 5

Hedonic Games with Ordinal Preferences and
Thresholds

In this chapter, we summarize the following journal article in which we introduce and study
a new preference representation in hedonic games where agents submit ordinal rankings that
are separated by two thresholds:

Publication (Kerkmann et al. [92])

A. Kerkmann, J. Lang, A. Rey, J. Rothe, H. Schadrack, and L. Schend. “Hedo-
nic Games with Ordinal Preferences and Thresholds”. In: Journal of Artificial
Intelligence Research 67 (2020), pp. 705–756

5.1 Summary

In this work, we introduce and study a new class of hedonic games which we call FEN-
hedonic games. In these games, the agents partition the other agents into friends, enemies,
and players that they are neutral to. Additionally, they submit a weak order on their friends
and on their enemies, respectively. The resulting preference representation is referred to as
weak ranking with double threshold. Based on this representation, we then infer preferences
over coalitions using the responsive extension principle. Since the resulting polarized re-
sponsive extensions are not always complete, we consider agents to possibly or necessarily
prefer a coalition to another one if this preference holds for at least one or all completions
of their polarized responsive extensions. Afterwards, we introduce so-called optimistic and
pessimistic preference extensions.

Using these extensions, we then characterize stability in FEN-hedonic games. In addition,
we study the problems of verifying stable coalition structures in FEN-hedonic games and of
checking whether stable coalition structures exist. While doing so, we distinguish between
possible and necessary stability, depending on whether there exists at least one extended
preference profile that satisfies stability or whether all extended preference profiles satisfy
stability. While these verification and existence problems for possible and necessary stability
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are in P for the strongest and weakest notion that we consider, namely for perfectness and
individual rationality, we also show some hardness results for some other stability notions.
For example, we show that possible and necessary Nash stability verification are in P, while
possible and necessary Nash stability existence are NP-complete. We also show that pos-
sible verification is coNP-complete for core stability, strict core stability, Pareto optimality,
popularity, and strict popularity. Also, necessary verification is coNP-complete for Pareto op-
timality, popularity, and strict popularity. Finally, we close our work with a short discussion
and some directions for future work.

5.2 Personal Contribution and Preceding Versions

This journal paper largely extends two conference papers published by Jérôme Lang, Anja
Rey, Jörg Rothe, Hilmar Schadrack, and Lena Schend at AAMAS’15 [96] and by me and
Jörg Rothe at AAMAS’19 [89]. The modeling is due to the authors of the AAMAS’15
paper [96]. The writing of this journal paper was done jointly with all co-authors. The ideas
of all technical results that also appear in the AAMAS’19 paper [89] are my contribution.
Also some technical parts from the preceeding AAMAS’15 paper [96] that were revised for
this journal paper are my contribution as well. Parts of the technical results of this journal
paper have already appeared, in preliminary form, in my Master’s Thesis [83]. However,
their presentation and many of their proofs were improved in the journal paper.

5.3 Publication

The full article [92] is appended here.
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Chapter 6

Conclusion and Future Work Directions

Based on the current state of research in the field of cooperative game theory, we have pro-
posed new preference formats for hedonic games, established several models of altruism,
and studied stability, optimality, and fairness in multiple classes of hedonic games. We will
now summarize the contributions of this thesis and highlight some directions for future re-
search.

In Chapter 3, we started our study with topics of altruism. Evolutionary biology has revealed
that selfishness is not always a means to success in the real world, but rather friendliness
constituted an essential advantage in the evolution of certain species, including humans [74].
Motivated by this fact and with the aim to provide a more realistic model of real world scenar-
ios, we introduced several models of altruism in coalition formation games. In Section 3.1,
we presented altruistic hedonic games that model agents to behave altruistic towards their
friends in a given network. We distinguished between three degrees of altruism and between
two ways of aggregating the agents’ preferences. We studied the six resulting models with
respect to their axiomatic properties, showing that they fulfill some desirable properties while
they can represent situations that can not be represented by other preference formats from the
literature. We then conducted a computational analysis concerning stability verification and
existence, focusing on Nash, individual, contractually individual, core, and strict core stabil-
ity, individual rationality, and perfectness. For selfish-first altruistic hedonic games, we have
settled the complexity of all considered problems. We further initiated the study for altruistic
hedonic games where the agents behave according to different degrees of altruism. An im-
portant direction for future research is the completion of this study, i.e., the determination of
the complexity of all considered verification and existence problems in this case.

In Section 3.2, we continued our study of altruistic hedonic games, focusing on the notions
of popularity and strict popularity. We have solved all open cases of popularity and strict
popularity verification, showing that verification is coNP-complete for popularity and strict
popularity and all considered models of altruism. We even proved the coNP-hardness of
strict popularity existence under equal- and altruistic-treatment. Yet, we suspect that these
existence problems might be even harder. It is an interesting question for future research
whether popularity and strict popularity existence are even Σ

p
2-complete in altruistic hedonic

games. An interesting side result of our study is that popularity verification is also coNP-
complete for friend-oriented hedonic games.
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We have extended our models of altruism in Section 3.3. While altruistic hedonic games
model agents to be altruistic to their friends in their current coalitions, we have addition-
ally proposed altruistic coalition formation games where agents behave altruistic to all their
friends, not only to those in the same coalition. We have seen that this removal of the hedo-
nic restriction brings some axiomatic advantages. Particularly, altruistic coalition formation
preferences are unanimous, which is not the case for all altruistic hedonic preferences. Fur-
thermore, altruistic coalition formation preferences fulfill more cases of monotonicity than
altruistic hedonic preferences. We have also initiated the study of stability in altruistic coali-
tion formation games. Our results include characterizations of stability in altruistic coalition
formation games and computational bounds on the complexity of the associated verification
and existence problems.

There are several possible future work directions in the scope of Chapter 3. So far, altruism
in coalition formation games was always handled as a static model where agents were only
acting according to one selected degree of altruism. We are interested in models where agents
individually and dynamically may choose to what degree they wish to act altruistically, which
seems to be more realistic: Agents can be expected to act most altruistically when they
see that others are suffering, and they are more egoistic if everyone around them is doing
well. This can also be observed in reality where solidarity with others increases when social
crises occur. We regard modeling such situations as a promising topic for future research.
Other research in the scope of altruistic coalition formation could concern the relationship
between altruism and fairness: Do altruistic preferences favor the formation of fair outcomes?
Furthermore, it could be interesting to apply altruistic coalition formation games to other
valuation functions. While we currently use friend-oriented valuations as a basis of our
model, one might also consider general additively separable or fractional valuations.

We continued with aspects of fairness in Chapter 4 where we introduced three notions of lo-
cal fairness for hedonic games. We showed that the three notions form a strict hierarchy and
related them to other common notions of stability, fairness, and optimality. We intensively
studied the three notions of altruism for additively separable hedonic games. Our studies
concerning the local fairness notions provide a diverse potential for follow-up research. For
instance, it would be interesting to extend the studies concerning the price of local fairness
in additively separable hedonic games and find restrictions to the players’ preferences such
that the price of local fairness is bounded by a nontrivial constant. Another appealing fu-
ture direction is the investigation of local fairness in other classes of hedonic games such as
fractional or modified fractional hedonic games.

Moreover, we provided an elaborate study of FEN-hedonic games. In Chapter 5, we intro-
duced the corresponding preference representation that is composed of weak ordinal rankings
over the agents which are separated by two thresholds. The new format adds to existing liter-
ature that deals with the separation of the agents into friends and enemies (see, e.g., Dimitrov
et al. [50], Sung and Dimitrov [137, 136], Rey et al. [122], Ota et al. [111], and Barrot et
al. [17]). It is succinct, easy to elicit from the agents, and reasonably expressive. We have
examined a variety of stability notions in the context of FEN-hedonic games, distinguishing
between possible and necessary satisfaction of these notions. An intriguing topic for future
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research could be the integration of altruism in FEN-hedonic games. It might be a chal-
lenging goal to create a model that uses the rather expressive and at the same time simple
representation of weak rankings with double thresholds and lifts these rankings to altruistic
preferences over coalitions.

In conclusion, this thesis has made a significant contribution to the field of altruism in coali-
tion formation games, expanded the research on the topic of fairness in hedonic games, and
provided a comprehensive study of hedonic games with ordinal preferences and thresholds
(FEN-hedonic games). Nevertheless, many exciting questions remain that future research
might seek to answer.
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In: Comptes rendus hebdomadaires des séances de l’Académie des sciences. Vol. 173.
1304–1308, 1921.

[23] S. Bouveret and M. Lemaı̂tre. “Characterizing Conflicts in Fair Division of Indivisi-
ble Goods Using a Scale of Criteria”. In: Journal of Autonomous Agents and Multi-
Agent Systems 30.2 (2016), pp. 259–290.

[24] S. Bouveret, Y. Chevaleyre, and N. Maudet. “Fair Allocation of Indivisible Goods”.
In: Handbook of Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U.
Endriss, J. Lang, and A. Procaccia. Cambridge University Press, 2016. Chap. 12,
pp. 284–310.

[25] F. Brandl, F. Brandt, and M. Strobel. “Fractional Hedonic Games: Individual and
Group Stability”. In: Proceedings of the 14th International Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS, May 2015, pp. 1219–1227.

[26] F. Brandt and M. Bullinger. “Finding and Recognizing Popular Coalition Structures”.
In: Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems. IFAAMAS, 2020, 195–203.

[27] F. Brandt, M. Bullinger, and A. Wilczynski. “Reaching Individually Stable Coali-
tion Structures in Hedonic Games”. In: Proceedings of the 35th AAAI Conference on
Artificial Intelligence. AAAI Press, Feb. 2021, pp. 5211–5218.

52



Bibliography

[28] F. Brandt, M. Bullinger, and L. Tappe. “Single-Agent Dynamics in Additively Sep-
arable Hedonic Games”. In: Proceedings of the 36th AAAI Conference on Artificial
Intelligence. AAAI Press, Feb. 2022, pp. 4867–4874.

[29] S. Brânzei and K. Larson. “Coalitional Affinity Games and the Stability Gap”. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence.
AAAI Press/IJCAI, 2009, pp. 79–84.

[30] S. Brânzei and K. Larson. “Social Distance Games”. In: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence. AAAI Press/IJCAI, 2011,
pp. 91–96.

[31] R. Bredereck, E. Elkind, and A. Igarashi. “Hedonic Diversity Games”. In: Proceed-
ings of the 18th International Conference on Autonomous Agents and Multiagent
Systems. IFAAMAS, May 2019, 565–573.

[32] E. Budish. “The Combinatorial Assignment Problem: Approximate Competitive Equi-
librium from Equal Incomes”. In: Journal of Political Economy 119.6 (2011), pp. 1061–
1103.

[33] M. Bullinger. “Pareto-Optimality in Cardinal Hedonic Games”. In: Proceedings of
the 19th International Conference on Autonomous Agents and Multiagent Systems.
2020, pp. 213–221.

[34] M. Bullinger and S. Kober. “Loyalty in Cardinal Hedonic Games”. In: Proceedings
of the 30th International Joint Conference on Artificial Intelligence. ijcai.org, July
2021, pp. 66–72.

[35] N. Burani and W. Zwicker. “Coalition Formation Games with Separable Prefer-
ences”. In: Mathematical Social Sciences 45.1 (2003), pp. 27–52.

[36] J. Carlson, A. Jaffe, and A. Wiles, eds. The Millennium Prize Problems. American
Mathematical Society, Providence, RI, 2006.

[37] R. Carosi, G. Monaco, and L. Moscardelli. “Local Core Stability in Simple Symmet-
ric Fractional Hedonic Games”. In: Proceedings of the 18th International Conference
on Autonomous Agents and Multiagent Systems. IFAAMAS, May 2019, pp. 574–582.
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[40] K. Cechlárová and A. Romero-Medina. “Stability in Coalition Formation Games”.
In: International Journal of Game Theory 29.4 (2001), pp. 487–494.

[41] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Coopera-
tive Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan and Claypool Publishers, 2011.

53



Bibliography

[42] P. Chen, B. de Keijzer, D. Kempe, and G. Schäfer. “Altruism and Its Impact on the
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librium”. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence. AAAI Press/IJCAI, July 2011, pp. 234–239.

[77] M. Hoefer, D. Vaz, and L. Wagner. “Dynamics in Matching and Coalition Formation
Games with Structural Constraints”. In: Artificial Intelligence 262 (2018), pp. 222–
247.

[78] A. Igarashi and E. Elkind. “Hedonic Games with Graph-Restricted Communication”.
In: Proceedings of the 15th International Conference on Autonomous Agents and
Multiagent Systems. IFAAMAS, May 2016, 242–250.

[79] A. Igarashi, K. Ota, Y. Sakurai, and M. Yokoo. “Robustness against Agent Failure
in Hedonic Games”. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence. ijcai.org, July 2019, pp. 364–370.

[80] C. Kaklamanis, P. Kanellopoulos, and K. Papaioannou. “The Price of Stability of
Simple Symmetric Fractional Hedonic Games”. In: Proceedings of the 9th Interna-
tional Symposium on Algorithmic Game Theory. Ed. by M. Gairing and R. Savani.
Springer-Verlag, 2016, pp. 220–232.

[81] M. Karakaya. “Hedonic Coalition Formation Games: A New Stability Notion”. In:
Mathematical Social Sciences 61.3 (2011), pp. 157–165.

[82] R. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Com-
puter Computations. Ed. by R. Miller, J. Thatcher, and J. Bohlinger. Springer, 1972,
pp. 85–103.

[83] A. Kerkmann. “Stability in FEN-Hedonic Games”. Master’s thesis. Heinrich-Heine-
Universität Düsseldorf, Mar. 2019.

[84] A. Kerkmann and J. Rothe. “Altruism in Coalition Formation Games”. In: Proceed-
ings of the 29th International Joint Conference on Artificial Intelligence. ijcai.org,
July 2020, pp. 347–353.

[85] A. Kerkmann and J. Rothe. “Altruism in Coalition Formation Games”. In: Nonar-
chival website proceedings of the 16th International Symposium on Artificial Intelli-
gence and Mathematics. Jan. 2020. URL: http://isaim2020.cs.ou.edu/
papers/ISAIM2020_Kerkmann_Rothe.pdf.

[86] A. Kerkmann and J. Rothe. “Four Faces of Altruistic Hedonic Games”. In: Nonar-
chival website proceedings of the 8th International Workshop on Computational So-
cial Choice. June 2021. URL: https://drive.google.com/file/d/
1VlOMwobBVyEiJekDR5pQ1LB69_CyWg1j/view.

56

http://isaim2020.cs.ou.edu/papers/ISAIM2020_Kerkmann_Rothe.pdf
http://isaim2020.cs.ou.edu/papers/ISAIM2020_Kerkmann_Rothe.pdf
https://drive.google.com/file/d/1VlOMwobBVyEiJekDR5pQ1LB69_CyWg1j/view
https://drive.google.com/file/d/1VlOMwobBVyEiJekDR5pQ1LB69_CyWg1j/view


Bibliography

[87] A. Kerkmann and J. Rothe. “Popularity and Strict Popularity in Altruistic Hedonic
Games and Minimum-Based Altruistic Hedonic Games (Extended Abstract)”. In:
Proceedings of the 21th International Conference on Autonomous Agents and Multi-
agent Systems. IFAAMAS, May 2022, pp. 1657–1659.

[88] A. Kerkmann and J. Rothe. “Popularity and Strict Popularity in Average-Based and
Minimum-Based Altruistic Hedonic Games”. Submitted to the 47th International
Symposium on Mathematical Foundations of Computer Science. 2022.

[89] A. Kerkmann and J. Rothe. “Stability in FEN-Hedonic Games for Single-Player
Deviations”. In: Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS, May 2019, pp. 891–899.

[90] A. Kerkmann, S. Cramer, and J. Rothe. “Altruism in Coalition Formation Games”.
Submitted to the Annals of Mathematics and Artificial Intelligence. 2022.

[91] A. Kerkmann, N. Nguyen, A. Rey, L. Rey, J. Rothe, L. Schend, and A. Wiechers. “Al-
truistic Hedonic Games”. In: Journal of Artificial Intelligence Research 75 (2022),
pp. 129–169.

[92] A. Kerkmann, J. Lang, A. Rey, J. Rothe, H. Schadrack, and L. Schend. “Hedonic
Games with Ordinal Preferences and Thresholds”. In: Journal of Artificial Intelli-
gence Research 67 (2020), pp. 705–756.

[93] A. Kerkmann, N. Nguyen, and J. Rothe. “Local Fairness in Hedonic Games via Indi-
vidual Threshold Coalitions”. In: Theoretical Computer Science 877 (2021), pp. 1–
17.

[94] B. Klaus, D. Manlove, and F. Rossi. “Matching under Preferences”. In: Handbook of
Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia. Cambridge University Press, 2016. Chap. 14, pp. 333–355.

[95] J. Lang and J. Rothe. “Fair Division of Indivisible Goods”. In: Economics and Com-
putation. An Introduction to Algorithmic Game Theory, Computational Social Choice,
and Fair Division. Ed. by J. Rothe. Springer Texts in Business and Economics.
Springer-Verlag, 2015. Chap. 8, pp. 493–550.

[96] J. Lang, A. Rey, J. Rothe, H. Schadrack, and L. Schend. “Representing and Solv-
ing Hedonic Games with Ordinal Preferences and Thresholds”. In: Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, May 2015, pp. 1229–1237.

[97] L. Levin. “Universal Sorting Problems”. In: Problemy Peredaci Informacii 9 (1973).
In Russian. English translation by B. Trakhtenbrot [140], pp. 115–116.

[98] D. Manlove. Algorithmics of Matching Under Preferences. Vol. 2. Series on Theoret-
ical Computer Science. World Scientific Publishing, 2013.

[99] A. Meyer and L. Stockmeyer. “The Equivalence Problem for Regular Expressions
with Squaring Requires Exponential Space”. In: Proceedings of the 13th IEEE Sym-
posium on Switching and Automata Theory. IEEE Computer Society Press, 1972,
pp. 125–129.

57



Bibliography

[100] L. Miles. “A Simulator for Hedonic Games”. In: ACM Computing Research Reposi-
tory (July 2017). arXiv: 1706.08501.

[101] G. Monaco, L. Moscardelli, and Y. Velaj. “On the Performance of Stable Outcomes in
Modified Fractional Hedonic Games with Egalitarian Social Welfare”. In: Proceed-
ings of the 18th International Conference on Autonomous Agents and Multiagent
Systems. IFAAMAS, May 2019, pp. 873–881.

[102] G. Monaco, L. Moscardelli, and Y. Velaj. “Stable Outcomes in Modified Fractional
Hedonic Games”. In: Autonomous Agents and Multi-Agent Systems 34.1 (2019), 4:1–
4:29.

[103] J. von Neumann. “Zur Theorie der Gesellschaftsspiele”. In: Mathematische Annalen
100.1 (1928), pp. 295–320.

[104] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[105] N. Nguyen and J. Rothe. “Local Fairness in Hedonic Games via Individual Threshold
Coalitions”. In: Proceedings of the 15th International Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS, May 2016, pp. 232–241.

[106] N. Nguyen and J. Rothe. “Local Fairness in Hedonic Games via Individual Thresh-
old Coalitions”. In: Nonarchival website proceedings of the 7th International Work-
shop on Cooperative Games in Multiagent Systems. May 2016. URL: https://
mimuw.edu.pl/˜tpm/CoopMas16/wp-content/uploads/2016/05/
CoopMAS-2016-Proceedings.pdf.

[107] N. Nguyen, A. Rey, L. Rey, J. Rothe, and L. Schend. “Altruistic Hedonic Games”.
In: Proceedings of the 15th International Conference on Autonomous Agents and
Multiagent Systems. IFAAMAS, May 2016, pp. 251–259.

[108] N. Nguyen, A. Rey, L. Rey, J. Rothe, and L. Schend. “Altruistic Hedonic Games”. In:
Nonarchival website proceedings of the 7th International Workshop on Cooperative
Games in Multiagent Systems. May 2016. URL: https://mimuw.edu.pl/
˜tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-
Proceedings.pdf.

[109] N. Nguyen, A. Rey, L. Rey, J. Rothe, and L. Schend. “Altruistic Hedonic Games”.
In: Nonarchival website proceedings of the 6th International Workshop on Compu-
tational Social Choice. June 2016. URL: http://research.illc.uva.nl/
COMSOC/proceedings/comsoc-2016/NguyenReyEtAlCOMSOC2016.
pdf.

[110] M. Olsen. “On Defining and Computing Communities”. In: Proceedings of the 18th
Computing: The Australasian Theory Symposium. Vol. 128. 2012, pp. 97–102.

[111] K. Ota, N. Barrot, A. Ismaili, Y. Sakurai, and M. Yokoo. “Core Stability in Hedonic
Games among Friends and Enemies: Impact of Neutrals”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. AAAI Press, 2017, pp. 359–
365.

58

https://arxiv.org/abs/1706.08501
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
https://mimuw.edu.pl/~tpm/CoopMas16/wp-content/uploads/2016/05/CoopMAS-2016-Proceedings.pdf
http://research.illc.uva.nl/COMSOC/proceedings/comsoc-2016/NguyenReyEtAlCOMSOC2016.pdf
http://research.illc.uva.nl/COMSOC/proceedings/comsoc-2016/NguyenReyEtAlCOMSOC2016.pdf
http://research.illc.uva.nl/COMSOC/proceedings/comsoc-2016/NguyenReyEtAlCOMSOC2016.pdf


Bibliography

[112] C. Papadimitriou. Computational Complexity. 2nd ed. Addison-Wesley, 1995.

[113] B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games. 2nd ed.
Springer-Verlag, 2007.

[114] D. Peters. “Complexity of Hedonic Games with Dichotomous Preferences”. In: Pro-
ceedings of the 30th AAAI Conference on Artificial Intelligence. AAAI Press, Feb.
2016, pp. 579–585.

[115] D. Peters. “Graphical Hedonic Games of Bounded Treewidth”. In: Proceedings of the
30th AAAI Conference on Artificial Intelligence. AAAI Press, Feb. 2016, pp. 586–
593.

[116] D. Peters. “Precise Complexity of the Core in Dichotomous and Additive Hedonic
Games”. In: Proceedings of the 5th International Conference on Algorithmic Deci-
sion Theory. Springer-Verlag, 2017, pp. 214–227.

[117] D. Peters and E. Elkind. “Simple causes of complexity in hedonic games”. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence. AAAI
Press/IJCAI, July 2015, pp. 617–623.

[118] W. Poundstone. Prisoner’s Dilemma: John von Neumann, Game Theory, and the
Puzzle of the Bomb. Anchor, 1993.
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Form noch bei keiner anderen Institution eingereicht habe.

Teile dieser Dissertation wurden bereits in den folgenden Schriften veröffentlicht, zur Pub-
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