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ABSTRACT

Social choice theory is prolific with paradoxes and impossibilities that prevent cogent justi-

fications for decisions made by groups of people. For example, Gibbard and Satterthwaite

proved that no reasonable voting procedure exists that is non-dictatorial and immune to

agents misrepresenting their preferences. Significant work has sought to overcome this im-

possibility by either restricting the domain of agents’ preferences or dissuading this form

of strategic behavior through computational hardness. The recent approach of iterative

voting (IV), rather, aims to characterize the complex interactions ensuing from agents re-

porting their preferences strategically. In particular, agents may update their votes, given

information about other agents’ reports, prior to finalizing the group decision. Prior work

has documented properties about IV equilibrium and conditions for convergence according to

various social choice rules, information agents have access to, and agents’ behavioral schemes.

Still, only preliminary work has studied the effect IV has on social welfare of equilibrium

outcomes relative to the truthful vote.

This thesis advances our understanding of strategic behavior in social choice, via IV,

on two fronts. First, we study the effect iterative plurality has on the social welfare of

the chosen outcome with respect to the worst-case preference profile and as agents have

arbitrary rank-based utility. To overcome a poor worst-case result, we study expected per-

formance when agents’ preferences are independent and identically distributed according to

the impartial culture. Our finding surprises us in that IV helps agents choose higher quality

alternatives on average, regardless of the order of their strategic manipulations. We go on

to characterize certain classes of preference distributions for which IV improves or degrades

social welfare, thus helping to explain why prior experiments attained varying results. Sec-

ond, we generalize iterative plurality to multiple issues while agents have uncertainty about

each alternative’s score. In this setting, we identify sufficient conditions for convergence,

including O-legal preferences and a novel model about what information agents have access

to. Our study through both fronts characterizes agents’ behavior given the opportunity to

deliberate their votes. Our results provide insight for mechanism designers choosing whether

or not to encourage such deliberation, and call for further study of non-incentive compatible

mechanisms.

ix



CHAPTER 1

INTRODUCTION

1.1 Background

What is the proper process for a group of people to make a decision out of several possi-

bilities? In other words, what cogent and rational basis is there for societies to choose one

alternative over another (Sen, 1999)? This may be a group of friends deciding which restau-

rant to enjoy for lunch, a company outlining its budget for the next fiscal year, or a nation

determining its next president. If all n people (agents) have the same preferences u ≻ v over

two alternatives u and v, then clearly the proper decision is to take the unanimous choice

u over v. 1 However, what is proper if only n− 1 agents prefer u ≻ v and one agent wants

v ≻ u? This may be the case, for example in The Hitchhiker’s Guide to the Galaxy, where a

community overwhelmingly wants to bulldoze someone’s house to make space for a freeway

(Adams, 1995). How do we gauge the extent to which, as Spock from Star Trek proclaims,

the “needs of the many outweigh the needs of the few, or the one” (Meyer, N. (Director),

1982)?

Sen (1999) chalks this problem up to a lack of basis for comparing welfare across

persons: “Every mind is inscrutable to every other mind and no common denominator of

feelings is possible” (Robbins, 1938). This means that we cannot directly compare losses and

gains in welfare between two parties because welfare is subjective and privately observed.

In addition to monetary loss, the homeowner’s costs for bulldozing their house includes

sentimental value, opportunity cost for enjoying where they lived, and potential psychological

harm. Making these comparisons requires additional assumptions about a common social

welfare metric.

Portions of this chapter have previously appeared as:
Kavner, J., & Xia, L. (2021). Strategic behavior is bliss: iterative voting improves social welfare. In

Advances in neural information processing systems (Vol. 34, pp. 19021–19032). Curran Associates, Inc.
Kavner, J., Meir, R., Rossi, F., & Xia, L. (2023, August). Convergence of multi-issue iterative voting

under uncertainty. In Proceedings of the 32nd international joint conference on artificial intelligence (pp.
2783-2791). ©2023 IJCAI.

Kavner, J., & Xia, L. (2024). Average-case analysis of iterative voting. arXiv. https://arxiv.org/abs/
2402.08144.

1Of course, v could be chosen arbitrarily or randomly via a sortition method (Headlam, 1891). This
method, randomly choosing an alternative amongst all possible, is susceptible to cloning by interest groups
who stack the deck with favorable alternatives (Tideman, 1987). As many decision problems should consider
peoples’ opinions, we study decision procedures that depend on at least one agent’s preferences.
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One such common measure is Bentham (1789)’s utilitarianism, by which agents derive

measurable utility out of each social outcome and the aggregate social welfare is the sum

total of individual utilities. The utilitarian thus appraises all non-monetary facets of each

alternative before choosing the alternative that maximizes the utilitarian sum. They would

argue in favor of building the freeway if the homeowner’s loss doesn’t offset the gain others

procure from it. While utilitarianism forms a basis for modern welfare economics (Kah-

neman, Wakker, & Sarin, 1997; Mas-Colell, Whinston, & Green, 1995), there is too much

critique for it to be the end-all-be-all of proper group decision-making. For example, Rawls

(1971) advocated that the egalitarian rule, which selects the alternative that maximizes the

minimum utility offered to any individual, is more fair. Both the utilitarian and egalitarian

decision rules follow by distributive justice arguments, as the rules choose alternatives based

on the properties of the alternatives’ respective utility distributions (Rawls, 1971). Still,

these rules only work in limited circumstances for which individual utilities are measurable

and can be compared across persons.

In lieu of these strict assumptions, Arrow (1951) advanced social choice theory to study

the admissible properties of social choice functions using only agents’ ordinal preferences,

rather than their cardinal utilities. This frames proper decision-making in terms of the

properties (i.e., axioms) of the choice rule f : L(A)n → L(A) for n ∈ N agents, discrete sets

of alternatives A, and permutation group L for preferences. 2 For example, we may desire

that there is no dictator in the decision-making process. This property entails that no agent

j completely determines the social choice outcome: u ≻j v =⇒ u ≻f v, where ≻j denotes

j’s preferences and ≻f denotes the social choice ordering. Axiomatic social choice thus

follows a procedural justice approach by emphasizing the fair process by which decisions are

made (Rawls, 1971). Unfortunately, Arrow (1951) proved that any social choice rule f that

satisfies unrestricted domain, Pareto efficiency, and independent of irrelevant alternatives

among at least three alternatives must be a dictatorship. 3 Hence, there is no proper way

for groups to make decisions as defined by these properties.
2Consider A = {u, v, w}. Then L(A) = {(u ≻ v ≻ w), (u ≻ w ≻ v), (v ≻ u ≻ w), (v ≻ w ≻ u), (w ≻ u ≻

v), (w ≻ v ≻ u)}. Technical preliminaries about social choice theory are cataloged in Chapter 2.
3Unrestricted domain entails that all preferences for agents in L(A) are allowed. Pareto efficiency states

that if every agent j prefers u ≻i v, then so will the social choice f . Independent of irrelevant alternatives
states that the relative ranking of u and v by f only depends on the relative rankings of u and v provided
by the agents, rather than how agents rank some third alternative w (Brandt, Conitzer, Endriss, Lang, &
Procaccia, 2016).
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It turns out that social choice theory is prolific in axiomatic paradoxes. For instance,

May (1952) proved that majority voting over two alternatives is the unique rule satisfying

anonymity, neutrality, and positive responsiveness. 4 This holds for the irresolute version of

majority vote which selects the alternative that at least half of the agents prefer and may

yield ties. On the other hand, if we also impose resoluteness so that f yields a single outcome,

then there is no social choice rule that satisfies anonymity and neutrality (Moulin, 1983).

Moreover, majority rule fails to extend to decision problems with more than two alternatives,

as demonstrated by Condorcet’s paradox (Condorcet, 1785). Consider three agents deciding

which single ice cream flavor to buy, for example, where the first agent prefers chocolate ≻1

vanilla ≻1 strawberry, the second agent prefers vanilla ≻2 strawberry ≻2 chocolate, and

the third agent prefers strawberry ≻3 chocolate ≻3 vanilla. Hence, each alternative in A =

{chocolate, vanilla, strawberry} is preferred to the next in A by a majority of the agents.

This demonstrates the majority cycle chocolate ≻f vanilla ≻f strawberry ≻f chocolate by

the pair-wise majority rule f even though agents’ preferences are transitive.

These paradoxes imply that implementing a social choice rule will necessarily involve

trading-off desirable criteria. It is therefore up to the group to determine which axioms they

value and would like to satisfy, and hence which social choice rule to use, when aggregating

their preferences. Sen (1999) discussed some of the implications of these trade-offs in welfare

economics. Separately, Brandt et al. (2016) and Endriss (2017) summarize which axioms are

satisfied for many common social choice rules. 5

One important factor groups must contend with when choosing their decision rule is the

fact that voting is a game. Arrow (1951) and subsequent research characterized properties

of choice rules with respect to the preferences that agents report (i.e., their votes). Agents’

votes do not need to be truthful. Rather, agents can report their preferences however they

want based on how they believe other agents will vote. For example, voting insincerely is

typically seen in resolute elections where supporters of minor political parties tend to split

off their votes in favor of one of two leading parties. This phenomenon is known by political

scientists as Duverger’s law (Duverger, 1964; Riker, 1982). As a technical example, consider

the agents in our ice cream example voting via the plurality rule subject to lexicographical
4A decision rule f is anonymous if it is invariant under permutations of the agents (Endriss, 2017). It is

neutral if permuting alternatives in each agent’s preference ranking leads to permutations in f accordingly.
It satisfies positive responsiveness if increasing an alternative’s support cannot make it worse-off in f .

5A useful chart comparing axioms satisfied by common social choice rules may be found at https://
en.wikipedia.org/wiki/Comparison_of_electoral_systems.

https://en.wikipedia.org/wiki/Comparison_of_electoral_systems
https://en.wikipedia.org/wiki/Comparison_of_electoral_systems
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tie-breaking. Each agent contributes one point to the alternative it reportedly favors most

and chocolate wins as the tie-breaker. Notice that the second agent can switch their vote

from truthful vote of vanilla to strawberry and thereby update the winner to strawberry in

their favor. Hence, plurality is not strategyproof : some agent can gain by voting insincerely

according to their preferences.

There are several reasons why groups might want to implement strategyproof voting

rules, as discussed by Dowding and Hees (2008) and Conitzer and Walsh (2016). First,

strategic voting replaces information about agents’ truthful preferences with a potentially

arbitrary substitute. This substitute may be unrepresentative about what agents actually

desire and could be arbitrarily worse – for example, if all agents prefer u ≻ v yet all are voting

v ≻ u. Second, strategic voting could advantage some agents that have more computational

power, better access to information, and manipulate their votes first, over other agents

without these benefits. This reduces fairness by, in effect, eliminating anonymity of the

decision-making procedure. Furthermore, the effort that agents spend discovering beneficial

ways to strategically update their vote may be wasted and better spent on other productive

tasks. For these reasons it would be ideal for social choice rules to incentivize agents to report

their preferences truthfully. Unfortunately, the celebrated Gibbard-Satterthwaite theorem

proves that any non-dictatorial social choice rule with at least three alternatives is susceptible

to this type of strategic voting (Gibbard, 1973; Satterthwaite, 1975).

From the Gibbard-Satterthwaite theorem it would seem that groups cannot make de-

cisions that are representative of all agents’ truthful preferences using any reasonable social

choice rule. Fortunately, a number of approaches have been proposed by social choice theo-

rists and, recently, computer scientists, to overcome this limitation. Traditional approaches

include relaxing certain assumptions of the theorem, for example by restricting the domain of

agents’ preferences, using randomized voting rules, and using irresolute voting rules that may

not select a unique winner (Conitzer & Walsh, 2016). Bartholdi, Tovey, and Trick (1989),

rather, proposed that high computational complexity may be a sufficient deterrent against

agents seeking to strategically report their votes. That is, if finding a vote to improve the

outcome above the agent’s truthful vote is computationally hard, then agents won’t bother.

Human agents will find this task too tedious and computational agents, voting as a proxy

on behalf of humans, won’t spend the effort. Research into the computational complexity of

voting manipulation was taken up early on by Bartholdi III and Orlin (1991), Conitzer and
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Sandholm (2002), and Conitzer and Sandholm (2003); see discussions from Faliszewski and

Procaccia (2010), Faliszewski, Hemaspaandra, and Hemaspaandra (2010), and Conitzer and

Walsh (2016) about this topic.

Rather than deter strategic behavior, as in this prior work, Meir, Polukarov, Rosen-

schein, and Jennings (2010) sought to study the complex interactions induced by agents mis-

reporting their preferences. The authors formulated iterative voting (IV) as a game where

agents have the opportunity to change their votes prior to finalizing the collective decision.

In their model, agents update their votes myopically given information about other agents’

votes, which might come about via repeated opinion polls (Reijngoud & Endriss, 2012) or

while voting through an online platform (Zou, Meir, & Parkes, 2015). However, agents are

not assumed to be rational nor have knowledge about others’ private preferences (Aumann,

1995). Meir et al. (2010)’s aim was to determine whether, how fast, and on what alternatives

the agents will agree. They found that IV converges from any starting vote profile when

agents update their votes one-at-a-time and to the direct best response of all other votes.

Hence, strategic behavior can be accounted for in social choice by the equilibrium outcomes

found via IV negotiation.

IV advances social choice theory in two respects. First, it naturally describes how agent

strategic behavior unfolds over time and incorporates information about agents’ truthful

preferences as agents update their votes. Whereas social choice theory historically only

considered the axiomatic properties of choice rules, IV suggests how agents might actually

interact with the mechanism. This was measured empirically via human subject experiments

by Zou et al. (2015), Tal, Meir, and Gal (2015), and Meir, Gal, and Tal (2020). Second, Meir

et al. (2010) posed IV as a social choice rule in and of itself. Although strategic behavior is

inevitable by the Gibbard-Satterthwaite theorem, groups have a choice between regular social

choice rules and their iterative counterpart. They can design decision-making procedures as

either single-shot or sequential, in which agents have opportunities to repeatedly update

their votes given up-to-date vote information. For both of these aspects, understanding how

iterated strategic behavior affects social choice outcomes may help groups determine which

choice rule to implement. It may also provide some explanatory power for why real-world

electoral outcomes occur the way they do.

Following Meir et al. (2010), a series of work has investigated IV convergence under

various social choice rules and relaxed assumptions about agents’ behavioral and information
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schemes (Endriss, Obraztsova, Polukarov, & Rosenschein, 2016; Koolyk, Strangway, Lev, &

Rosenschein, 2017; Lev & Rosenschein, 2012; Meir, 2015; Meir, Lev, & Rosenschein, 2014;

Obraztsova, Markakis, Polukarov, Rabinovich, & Jennings, 2015; Rabinovich, Obraztsova,

Lev, Markakis, & Rosenschein, 2015; Reyhani & Wilson, 2012; Tsang & Larson, 2016). Still,

the effect strategic behavior has on the quality of chosen outcomes, in terms of utilitarian

social welfare, has been largely overlooked. A notable exception is Brânzei, Caragiannis,

Morgenstern, and Procaccia (2013), who took the first step to study the quality of IV-

induced outcomes. They sought to answer how bad the resulting outcome could be given

that strategic voting is inevitable. Brânzei et al. (2013) therefore defined the additive dynamic

price of anarchy (ADPOA) as the difference in social welfare between the truthful vote profile

and the worst-case equilibrium that is reachable via IV. This notion is with respect to the

worst-case preference profile and a given voting rule, and refines the well-known price of

anarchy (Roughgarden & Tardos, 2002) for a dynamical setting with myopic agents. They

found the performance is “very good” for the plurality voting rule (with an ADPoA of 1),

“not bad” for veto (with a DPoA of Ω(m) with m alternatives, m ≥ 4), and “very bad”

for Borda (with a DPoA of Ω(n) with n agents). Nevertheless, it is unclear whether these

observations holds for other notions of social welfare.

1.2 Thesis Contributions and Outline

We advance the study of IV in this thesis on two fronts: understanding the effect IV has on the

social welfare of the chosen outcome (Chapters 3 and 5), and discovering sufficient conditions

for IV convergence in a generalized multi-issue setting under uncertainty (Chapter 4). Our

preliminaries precede three technical chapters. In Chapter 2, we define and characterize

our models of social choice and iterative voting. As we prove Theorems 3.1, 3.2, and 5.1

for large populations of agents n, we provide definitions that characterize the asymptotic

growth of real-valued functions, such as the canonical Big-O notation. These theorems also

significantly apply Xia (2021a)’s research about the smoothed likelihood of ties. We therefore

also include Xia’s preliminaries and main results for completeness.

In Chapter 3, we begin our study of strategic behavior’s effect on electoral outcome

quality. Our results naturally extend those of Brânzei et al. (2013) by differentiating the

rank-based utility vector u⃗ from the iterative positional scoring rule fs⃗. Our first main
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result (Theorem 3.1) states that, unfortunately, for any fixed m ≥ 3 and utility vector u⃗,

the ADPoA of iterative plurality is Θ(n) for n agents. Therefore, the minimum loss result

attained for iterative plurality by Brânzei et al. (2013) is not upheld if u⃗ differs from plurality

utility. To overcome this negative worst-case result, we introduce the notion of expected

additive dynamic price of anarchy (EADPoA), which presumes agents’ truthful preferences

to be generated from a probability distribution. Our second main result (Theorem 3.2) is

positive and surprises us: for any fixed m ≥ 3 and utility vector u⃗, the EADPoA is −Ω(1)
when agents’ preferences are i.i.d. uniformly at random, known as Impartial Culture (IC)

distribution. In particular, our result suggests that strategic behavior is bliss because iterative

voting helps agents choose an alternative with higher expected social welfare, regardless of

the order of agents’ strategic manipulations.

In Chapter 4, we next explore how convergence of iterative plurality over a single issue,

as found by Meir et al. (2010), Meir et al. (2014), and Meir (2015), extends to multiple

referenda as agents have limited access to information. We find that for binary issues, the

existence of cycles hinges on the interdependence of issues in agents’ preference rankings.

Specifically, once an agent j takes an improvement step on an issue i, they only subsequently

revert their vote if their preference for i changes. This occurs in the event that the set of

possible winning alternatives, among other issues that affect j’s preference for i, changes.

Agents don’t have this interdependence if their preferences are O-legal – i.e., if preferences

for each issue is independent of later issues in an order O, conditioned on the outcomes of

earlier issues in the order. Agent preferences over individual issues then change only finite

times, so IV converges (Theorem 4.1).

We also find that as uncertainty increases over issues other than the one agents are

changing, fewer preference rankings admit IV improvement steps, eliminating cycles (Theo-

rem 4.2). This result assumes agents have alternating uncertainty – i.e., agents may gather

more information about the issue they’re changing their vote over, thus reducing their un-

certainty about that issue, prior to making the change. Finally, convergence does not extend

to multi-alternative issues since IV may cycle if agents only have partial order preference

information (Corollary 4.1).

Theorem 3.2 takes the first step at understanding IV beyond the worst-case analysis

and toward more realistic preference distributions. Still, IC has significant limitations and is

widely understood to be implausible (Regenwetter, 2006; Tsetlin, Regenwetter, & Grofman,
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2003; Van Deemen, 2014). In Chapter 5, we therefore take the next step in understanding

IV’s effect on welfare by extending the EADPoA to a wider class of agents’ preference distri-

butions. Theorem 5.1 demonstrates a threshold for which IV improves or degrades expected

welfare over the truthful vote. We contribute several novel binomial and multinomial lemmas

that may be useful for future study of IV and apply Xia (2021a)’s theorems to expectations

of random functions, rather than the likelihood of events. Furthermore, we continue Chap-

ter 3’s representation of agents’ preferences as a Bayesian network to gain further insight in

behavioral social choice.

We conclude in Chapter 6 by summarizing our main results and suggesting a hand-

ful of avenues of future research. These avenues include both theoretical directions, such as

studying the performance of IV beyond the distributions covered in Chapter 5, and empirical

directions, such as evaluating the extent to which artificial intelligence-powered recommenda-

tions can assist groups to make higher quality decisions (Xia, 2017). We further contextualize

our work within the perspective of smoothed analysis (Xia, 2021a).

1.2.1 Cognition and Ethics in Social Choice

Since our work follows from social choice theory (Arrow, 1951; Brandt et al., 2016),

it is worth noting a couple of assumptions often made implicitly by theorists. First, social

choice theory is about aggregating preferences from a set of agents about a set of alternatives

(i.e., the study of functions f : L(A)n → L(A) for n ∈ N agents, discrete sets of alternatives

A, and permutation group L for preferences). It is a necessary precondition that agents

know and can report their own preferences and, for this thesis, that preferences are strict,

complete, and ordinal. In particular, our results depend on agents knowing their most-

preferred (i.e., truthful) alternative and whether they prefer u ≻ v or v ≻ u for any two

alternatives u, v ∈ A. This may be difficult for real-world human agents, who have biases

and are susceptible to framing effects that inform peoples’ preferences (Plous, 1993; Tversky

& Kahneman, 1981), and computational agents if there are continuous or an exponential

number of alternatives. In this case, determining one’s favored alternative could be an NP-

hard problem in itself. How people actually form their preferences is a problem left for the

cognitive scientists, anthropologists, and marketing firms (Wildavsky, 1987). Nevertheless,

we assume that agents can answer questions about their preferences with ease. We further

assume that preferences are fixed throughout the voting process. We do not model agents
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that work to convince others of their point of view or modify others’ preferences.

Second, as previously discussed, group decision-making is trivial when agents have

unanimous preferences. In all other cases, any decision will advantage certain agents over

others. This begs the question: by what right does an individual have to impose their will

on another? In the abstract we take this right for granted as a consequence of participating

in a society with limited resources. Trade-offs must be made, although such trade-offs may

be evaluated and optimized. In practice, one consequence of voting is the tyranny of the

majority, by which a majority uses their power enabled by the voting mechanism to oppress

minority groups. This problem was addressed by early democratic philosophers such as

Rousseau (1762), Tocqueville and Reeve (1835), and Mill (1859), who wrote cognizantly

about majorities abusing their power as a king, dictator, or tyrant might.

One way of limiting powers of the majority is to impose certain properties on the social

choice function is itself, such as requiring a supermajority (i.e., some percentage greater than

50% of voters) to pass a law. Rousseau (1762, Book 4, Chapter 2) writes in favor of this

practice: “The more serious and important the question that is being put to the vote, the

nearer to unanimity the threshold should be set.” Another approach is to separate powers

endowed to governing bodies or to elevate certain rights of individuals as inalienable. These

rights cannot be nullified by vote of a legislative body; hence, certain alternatives cannot be

voted upon.

Both of these design choices concern the practical implementation of alternatives that

agents in our social choice model vote for. Our focus in this thesis is on the mathematical

function of aggregating agents’ preferences in order to make a decision. Therefore aspects

about the alternatives and agents that could affect the ethics of social choice, beyond their

mathematical abstraction, is beyond the scope of this work. For example, it would be just

to assume that those agents taking part in a decision are exactly the relevant stake-holders.

Such facets should be taken into consideration when implementing any particular voting

procedure.
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1.3 Related Work

1.3.1 Iterative Voting

The present study of iterative voting (IV) was initiated by Meir et al. (2010) who iden-

tified that iterative plurality converges when agents apply best response updates in sequence.

However, guaranteeing convergence appeared quite sensitive to its assumptions, as the au-

thors found several counter-examples when allowing agents to manipulate simultaneously,

using better- instead of best-replies, or weighing agents’ votes unequally. This inspired a

line of research on sufficient conditions for convergence. For example, Lev and Rosenschein

(2012) and Reyhani and Wilson (2012) simultaneously found that iterative veto converges

while no other positional scoring rule does. Gourves, Lesca, and Wilczynski (2016) and

Koolyk et al. (2017) demonstrated similar negative results for other common voting rules,

such as Maximin, Copeland, Bucklin, and STV. In lieu of these negative results, Grandi,

Loreggia, Rossi, Venable, and Walsh (2013), Obraztsova et al. (2015), and Rabinovich et

al. (2015) proved IV’s convergence upon imposing stricter assumptions on agent behavior,

such as truth-bias (Dutta & Sen, 2012; Obraztsova, Markakis, & Thompson, 2013; Thomp-

son, Lev, Leyton-Brown, & Rosenschein, 2013) and voting with abstentions (Börgers, 2004;

Desmedt & Elkind, 2010; Elkind, Markakis, Obraztsova, & Skowron, 2015).

Reijngoud and Endriss (2012) and Endriss et al. (2016) took a different approach by

relaxing assumptions about what information agents have access to. Instead of being certain

about alternatives scores, agents only have access to noisy or incomplete poll information that

might arise from imprecise opinion polls or latency in an online voting system, such as Doodle

(Zou et al., 2015). Agents then make local dominance improvement (LDI) steps that may

myopically improve the outcome but cannot degrade the outcome, given their information

(Conitzer, Walsh, & Xia, 2011). Endriss and colleagues provided some IV convergence results

according to different voting rules and information functions. Meir et al. (2014) and Meir

(2015) extended LDI dynamics to characterize iterative plurality, finding broad conditions

for convergence to be guaranteed. The latter work studied a nonatomic model variation

where agents have negligible impact on the outcome but multiple agents update their votes

simultaneously, greatly simplifying the dynamics. We further extend LDI dynamics to multi-

issue IV in Chapter 4 and discuss a nonatomic variant of our model in Section 4.5. Relatedly,

Sina, Hazon, Hassidim, and Kraus (2015) and Tsang and Larson (2016) studied IV with
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agents embedded in social networks and determining their improvement steps only given

their neighbors’ votes. The authors demonstrate how network structure affects the quality

of strategic outcomes.

While most IV research focuses on convergence and equilibrium properties, Brânzei et

al. (2013) quantified the worst-case quality of IV via a refinement of the well-known price

of anarchy (PoA) notion for several positional scoring rules (Koutsoupias & Papadimitriou,

2009). Separately, Elkind et al. (2015) studied the PoA of (non-IV) plurality with agents that

are truth-biased or may abstain from voting. This theoretical research is an important first

step in understanding the effect of strategic behavior on social choice welfare. Still, it needs

refinement, as several synthetic and human subjects experiments have proved inconclusive

about IV’s effects on welfare (Bowman, Hodge, & Yu, 2014; Grandi, Lang, Ozkes, & Airiau,

2022; Grandi et al., 2013; Koolyk et al., 2017; Meir et al., 2020; Reijngoud & Endriss, 2012;

Tal et al., 2015; Thompson et al., 2013; Tsang & Larson, 2016). Moreover, Brânzei et al.

(2013)’s results notably depend on the score vector being the same as agents’ rank-based

utility vector. We relax this assumption and introduce the average-case analysis of IV in

Chapter 3. In Chapter 5, we further distinguish certain classes of distributions of agent

preferences that improve or degrade average welfare.

1.3.2 Sequential and Game-Theoretic Voting

Sequential voting incorporates mechanisms by which agents don’t submit their votes

all at the same time. Agents make multiple decisions about providing their preference in-

formation to the voting mechanism, in sequence, and may reason strategically about future

world states at each decision point. This contrasts the myopic behavior assumed in the IV

literature. For example, consider multi-issue voting where agents must decide on a number

of independent issues with several alternatives for each issue. This is an extensively studied

problem in economics and computer science with applications in direct democracy referen-

dums, group planning and committee elections (see e.g., Lang and Xia (2016) for a survey).

While a standard voting procedure could be used to decide on the issues simultaneously,

the number of distinct alternatives is exponential (e.g., there are 2p alternatives for p binary

issues) and eliciting agents’ preferences may be an infeasible task. One simpler mechanism

elicits agents’ preferences sequentially according to an order O = {o1, . . . , op} such that out-

comes of each issue oi are revealed to agents prior to voting on the next issue oi+1 (Lacy &
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Niou, 2000). Still, this mechanism is not without its own problems. For example, an agent’s

preference over the alternatives in issue oi may be dependent on the outcome of a later issue

in O. This agent may have trouble reporting their preferences in sequential voting settings.

In Chapter 4, we study IV in multi-issue contexts and compare it to this sequential mecha-

nism. Our work follows research in multi-issue strategic behavior by Lang (2007), Lang and

Xia (2009), Conitzer, Lang, and Xia (2009), and Xia, Conitzer, and Lang (2011).

Another form of sequential voting considers agents who appear one-at-a-time and sub-

mit their votes in the order of their appearance. For example, Desmedt and Elkind (2010)

characterized properties of the subgame perfect Nash equilibrium when agents may abstain

from voting. Xia and Conitzer (2010) independently demonstrated that the quality of the

backward-induction winner may be highly unfavorable in the worst case. A third type of

sequential voting was proposed by Airiau and Endriss (2009), who considered agents that

repeatedly voted on whether to update a common world state or not. The authors ana-

lyzed what parameters of their model enable or accelerate convergence. These works were

discussed further by Meir (2018).

Game-theoretic analyses of social choice when agents have imperfect information about

alternative scores was popularized by Myerson and Weber (1993). In this imperfect infor-

mation setting, Chopra, Pacuit, and Parikh (2004), Conitzer et al. (2011), Reijngoud and

Endriss (2012), and Van Ditmarsch, Lang, and Saffidine (2013) studied the susceptibility of

various voting rules to agents’ strategically manipulating their votes. This line of research has

further studied the computational complexity of agents identifying successful manipulations

(Conitzer & Walsh, 2016). Grandi, Hughes, Rossi, and Slinko (2019) and Elkind, Grandi,

Rossi, and Slinko (2020) studied the Nash equilibrium of Gibbard-Satterthwaite games in

which agents may simultaneously manipulate their votes. Best-response dynamics, intro-

duced to social choice as iterative voting by Meir et al. (2010), has been studied in the game

theory literature as far back as Brown (1951)’s fictitious play procedure. Games for which

sequences of best responses converge are known as weakly acyclic (Young, 1993). The finite

improvement property, for which every improvement sequence converges, was first studied for

potential games by Monderer and Shapley (1996a) and Monderer and Shapley (1996b). This

property was further characterized by Fabrikant, Jaggard, and Schapira (2010), Andersson,

Gurvich, and Hansen (2010), Kukushkin (2011), and Apt and Simon (2015). The relation-

ship between IV, weakly acyclic games, and the finite improvement property was described
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by Meir (2016).

1.3.3 Smoothed Analysis

Spielman and Teng (2004) introduced smoothed analysis as a combination of worst- and

average-case analyses to address the issue that average-case analysis distributions themselves

may not be realistic. Their idea was to measure an algorithm’s performance with respect

to a worst-case instance subject to a random perturbation. Hence, even if an algorithm

has exponential worst-case complexity, it may be unlikely to encounter such an instance in

practice. This perspective has since been applied toward a large body of problems (see e.g.,

surveys by Spielman and Teng (2009) and Roughgarden (2021)). For example, Deng, Gao,

and Zheng (2017), Gao and Zhang (2019), and Deng, Gao, and Zhang (2022) studied the

smoothed performance of the random priority mechanism in matching problems. Extensions

into social choice were independently proposed by Baumeister, Hogrebe, and Rothe (2020)

and Xia (2020). The latter inspired a series of research extending prior results through this

lens (e.g., Xia (2021b), Xia and Zheng (2021), Liu and Xia (2022), Xia and Zheng (2022),

Xia (2023) and references within). Notably, Xia (2021a) studied the smoothed likelihood of

ties in elections, which contributes meaningfully toward our primary results in Chapter 5.

We describe in our conclusion, Chapter 6, how that chapter’s contributions may be framed

within this perspective.



CHAPTER 2

PRELIMINARIES

This chapter introduces preliminaries for the social welfare and convergence analysis of

iterative voting that we study throughout this thesis. Section 2.1 introduces notation and

common definitions for single-issue social choice. Section 2.2 extends these definitions to

describe the iterative voting procedure, first introduced by Meir et al. (2010). Section 2.3

discusses the asymptotic analysis technique we use to describe our results. Finally, Section

2.4 describes the smoothed likelihood of ties framework, introduced by Xia (2021a), which

we apply in Chapter 5. Preliminaries related to multi-issue social choice, which we study in

Chapter 4, are reserved for Section 4.2.

2.1 Social Choice

Basic setting. For any integer k ∈ N, let [k] = {1, . . . , k}. We denote by A = [m] the

set of alternatives and n ∈ N the number of agents. Each agent j ≤ n is endowed with a

preference ranking Rj ∈ L(A), the set of strict linear orders over A. A preference profile

P = (R1, . . . , Rn) is a collection of agents’ preferences. For any pair of alternatives, u, v ∈ A,

we denote by P [u ≻ v] the number of agents that prefer u to v in P .

Plurality voting. A resolute positional scoring rule fs⃗ maps vote profiles onto a unique

outcome and is characterized by a scoring vector s⃗ = (s1, . . . , sm) ∈ Rm
≥0 with s1 ≥ s2 ≥

. . . ≥ sm ≥ 0 and s1 > sm. For example, plurality uses (1, 0, . . . , 0), veto uses (1, . . . , 1, 0),

and Borda uses (m− 1,m− 2, . . . , 0). Agents vote by reporting their (possibly non-truthful)

preferences, each contributing si points to the alternative they reportedly rank ith. The

alternative with the most points wins subject to a tie-breaking rule.

Throughout this thesis we focus on the plurality voting rule f with lexicographical tie-

breaking, unless specified otherwise. According to this rule, agents vote by reporting only a

Portions of this chapter have previously appeared as:
Kavner, J., & Xia, L. (2021). Strategic behavior is bliss: iterative voting improves social welfare. In

Advances in neural information processing systems (Vol. 34, pp. 19021–19032). Curran Associates, Inc.
Kavner, J., Meir, R., Rossi, F., & Xia, L. (2023, August). Convergence of multi-issue iterative voting

under uncertainty. In Proceedings of the 32nd international joint conference on artificial intelligence (pp.
2783-2791). ©2023 IJCAI.

Kavner, J., & Xia, L. (2024). Average-case analysis of iterative voting. arXiv. https://arxiv.org/abs/
2402.08144.
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single alternative aj ∈ A into the vote profile a = (a1, . . . , an). Plurality is then defined as

f(a) = argmaxc∈A sc(a) where sc(a) = |{j ≤ n : aj = c}|. A vote a∗j = top(Rj) is truthful if

it is agent j’s most-favored alternative. We denote the truthful vote profile as a∗ = top(P ).

Rank-based additive utility. We suppose agents have additive utilities characterized by

a rank-based utility vector u⃗ = (u1, . . . , um) ∈ Rm
≥0 with u1 ≥ . . . ≥ um and u1 > um. For

example, plurality welfare has (1, 0, . . . , 0) while Borda welfare has (m − 1,m − 2, . . . , 0).

Each agent j gets u⃗(Rj, c) = ui utility for the alternative c ∈ A ranked ith in Rj. The

additive social welfare of c according to preference profile P is SWu⃗(P, c) =
∑n

j=1 u⃗(Rj, c).

2.2 Iterative Voting

We implement the iterative voting (IV) procedure introduced by Meir et al. (2010) for the

plurality rule f . Given agents’ truthful preferences P and an initial vote profile a(0), we

consider an iterative process of vote profiles a(t) = (a1(t), . . . , an(t)) that describe agents’

reported votes over time t ≥ 0. For each round t, a scheduler chooses an agent j to make a

myopic improvement step over their prior vote aj(t) by applying a specified response function

gj : An → A. A scheduler is simply a mapping from sequences of vote profiles to an agent

with an improvement step in the latest vote profile (Apt & Simon, 2015). Each agent’s

response implicitly depends on their preferences and belief about the current vote profile,

but they are not aware of others’ private preferences. An improvement step must be selected

if one exists, while other votes remains unchanged.

The literature on game dynamics considers different types of response functions, sched-

ulers, initial profiles, and other assumptions (see e.g., Fudenberg and Levine (2009), Marden,

Arslan, and Shamma (2007), Bowling (2005), and Young (1993)). This means that there

are multiple levels in which a voting rule may guarantee convergence to an equilibrium, a

vote profile where no improvement step exists (i.e., gj(a) = aj, ∀j ≤ n) (Meir, Polukarov,

Rosenschein, & Jennings, 2017). In this thesis, we study two response functions and, unless

stated otherwise, begin from the truthful vote profile a(0) = a∗. Under direct best response

(BR) dynamics, each agent j updates their vote to the unique alternative that (i) yields the

most-preferred outcome under f with respect to their preferences Rj, and (ii) will become

the winner as a result. Specifically, we denote the set of potential winning alternatives as

those who could become a winner if their plurality score were to increment by one, including
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the current winner:

PW(a) =

c ∈ A :

sc(a) = sf(a)(a)− 1, c is ordered before f(a)

sc(a) = sf(a)(a), c is ordered after f(a)

 ∪ {f(a)} (2.1)

where the ordering is lexicographical for tie-breaking (Reyhani & Wilson, 2012). We call

these alternatives approximately-tied. BR dynamics stipulate that agents change their vote

to their favorite alternative in PW(a), given full information about each alternative c’s score

sc(a). Following BR dynamics from the truthful vote profile, Brânzei et al. (2013) proved

that no agent ever changes their vote from the prior winner. Put together, this means

f(a(t)) ̸= aj(t) and f(a(t+ 1)) = aj(t+ 1).

Furthermore, Reyhani and Wilson (2012) proved that the potential winning set is

monotonic in t: that is, ∀t ≥ 0, PW(a(t + 1)) ⊆ PW(a(t)). Therefore every BR sequence

converges to an equilibrium in O(nm) rounds; specifically, this is a Nash equilibrium (NE).

Let EW(a) denote the set of equilibrium winning alternatives corresponding to any NE

reachable from a via some BR sequence:

EW(a) = {f(ã) : ∃ a BR sequence from a leading to the NE profile ã}. (2.2)

This definition entails that EW(a(t)) ⊆ PW(a(0)). As a result, iterative plurality voting

acts like a sequential tie-breaking mechanism whose outcome follows from the scheduler.

In Chapter 4, we also study local dominance improvements (LDI) for agents with

uncertainty over alternatives’ scores. We defer preliminaries related to this response function

to that chapter. The following example demonstrates this section’s concepts.

Example 2.1. Let there be n = 9 agents, m = 3 alternatives, and consider the preference

profile P defined such that:

• R1 = R2 = R3 = (1 ≻ 3 ≻ 2);

• R4 = R5 = (2 ≻ 3 ≻ 1);

• R6 = (2 ≻ 1 ≻ 3);

• R7 = R8 = R9 = (3 ≻ 2 ≻ 1).
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Figure 2.1: Five BR sequences in Example 2.1. The tuples denote agents’
votes; the winner appears in curly brackets; arrows indicate which agent makes

each BR step; the updated report is emphasized.

The truthful vote is a∗ = top(P ) = (1, 1, 1, 2, 2, 2, 3, 3, 3). We observe from alternatives’

scores (s1(a
∗), s2(a

∗), s3(a
∗)) = (3, 3, 3) that f(a∗) = 1, due to lexicographical tie-breaking,

and PW (a∗) = {1, 2, 3}, representing a three-way tie. Figure 2.1 describes the five BR se-

quences from a∗, where we denote improvement steps by (a(t)){f(a(t))} j−→ (a(t+1)){f(a(t+
1))}. We therefore conclude EW(a∗) = {2, 3}.

Finally, consider the utility vector u⃗ = (u1, u2, u3). The social welfare for each alter-

native is 
SWu⃗(P, 1)

SWu⃗(P, 2)

SWu⃗(P, 3)

 =


3u1 + 1u2 + 5u3

3u1 + 3u2 + 3u3

3u1 + 5u2 + 1u3

 . (2.3)

2.3 Asymptotic Analysis

In this thesis we explore the long-term behavior of sequences in the limit of the number of

agents n ∈ N. We would like to be able to quantify how quickly sequences converge to certain

values or diverge to ±∞, or if sequences are bounded, so that we may compare them. For

example, the sequence (log n)n∈N diverges slower than (n2)n∈N, which diverges slower than

(en)n∈N. The nomenclature of Big-O notation enables us to make these comparisons.

Definition 2.1. Let f and g be real-valued functions. We say that f(n) = O(g(n)) if

∃N,C > 0 such that ∀n > N , 0 ≤ f(n) ≤ Cg(n).

For example, f(n) = n2+2n = O(n2) since f(n) ≤ 2n2, ∀n > 2. One useful application

of big-O notation is to describe MacLaurin series. For example, ex =
∑∞

n=0
xn

n!
. Hence,

e−
1
n = 1− 1

n
+O

(
1

n2

)
. (2.4)
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Big-O is often used to compare the asymptotic runtime of algorithms. In our case, we use

it to describe the asymptotic economic efficiency of the iterative voting procedure. Hence,

f may be non-positive. We use the following notation to describe combined positive and

negative bounds on f .

Definition 2.2. Let f and g be real-valued functions. We say that f(n) = ±O(g(n)) if

∃N,C > 0 such that ∀n > N , |f(n)| ≤ C|g(n)|.

Equivalently, we have that |f(n)| = O(g(n)). For example, f(n) = n · cos(n) = ±O(n)
since −n ≤ f(n) ≤ n, ∀n > 0. The next two definitions describe asymptotic lower-and

tight-bounds on functions.

Definition 2.3. Let f and g be real-valued functions. We say that f(n) = Ω(g(n)) if

∃N,C > 0 such that ∀n > N , f(n) ≥ Cg(n) ≥ 0.

For example, f(n) = n2 + 2n = Ω(n) since f(n) ≥ 2n, ∀n > 0. Notice also that saying

f(n) = −Ω(g(n)) is equivalent to −f(n) = Ω(g(n)).

Definition 2.4. Let f and g be real-valued functions. We say that f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

Notice that Big-O and Big-Ω notation do not describe smallest-upper-bounds or largest-

lower-bounds like supremum and infimum. Hence, we have that f(n) = n2 + 2n = Θ(n2)

since f = O(n2) and f = Ω(n2). Furthermore, we write exp(−Θ(n)) for ef(n), where

f(n) = −Θ(n). We write f(n) ∼ g(n) if limn→∞
f(n)
g(n)

= 1.

2.3.1 Little-o Notation

Little-o notation compares the asymptotic rate of functions such that one pales in

comparison to another.

Definition 2.5. Let f and g be real-valued functions. We say that f(n) = o(g(n)) if ∀ϵ > 0,

∃N > 0 such that ∀n > N , |f(n)| ≤ ϵ|g(n)|. When g(n) does not vanish, we may write

limn→∞
f(n)
g(n)

= 0.

For example, f(n) =
√

np(1− p) for p ∈ (0, 1) is o(n) since limn→∞

√
np(1−p)

n
= 0.
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2.3.2 Asymptotic Multiplication

Let f1(n) = O(g1(n)), f2(n) = O(g2(n)), f3(n) = Θ(g3(n)) and f4(n) = Θ(g4(n)).

Then by these definitions we have

• f1(n) · f2(n) = O(g1(n) · g2(n)),

• f3(n) · f4(n) = Θ(g3(n) · g4(n)),

• f1(n) · f3(n) = O(g1(n) · g3(n)).

To be more precise, we give the examples of f1(n) = n2 + 2n, f2(n) = log(n), and f3(n) =

O(1). It is clear that f1(n) · f2(n) = Θ(n2 log(n)). We can say that f1(n) · f3(n) = O(n2)

but not that it is Θ(n2). This is because we do not have enough information about the

lower-bound Ω(f3(n)). It holds that

f1(n) · f3(n) =


Θ(n2), f3(n) = Θ(1)

Θ(n), f3(n) = Θ
(
1
n

)
Θ(1), f3(n) = Θ

(
1
n2

)
.

(2.5)

2.4 Smoothed Likelihood of Ties

A tied election is a characterization on the histogram of a preference profile satisfying certain

criterion. With positional scoring rules fs⃗, for instance, a W -way tie (i.e., a k-way tie between

the alternatives W ⊆ A, |W | = k) is the event that these alternatives have the same score and

that this score is strictly greater than those of other alternatives. This may be characterized

as a system of linear constraints on the multiplicity of rankings in P , as described by Xia

(2021a) as follows.

Definition 2.6 (Score difference vector). For any scoring vector s⃗ and pair u, v ∈ A, let

Scores⃗u,v denote the m!-dimensional vector indexed by rankings in L(A) such that ∀R ∈ L(A),
the R-component of Scores⃗u,v is sR[u] − sR[v], where R[c] is the index of c in R.

Let Hist(P ) = (xR : R ∈ L(A)) denote the vector of m! variables, each of which

represents the multiplicity of a linear order in a profile P . Therefore, Scores⃗u,v · Hist(P )

represents the score difference between u and v in P . For any W ⊆ A, we define the

polyhedron Hs⃗,W as follows.



20

Definition 2.7. Let Es⃗,W denote the matrix whose row vectors are {Scores⃗u,v : u ∈ W, v ∈
W,u ̸= v}. Let Ss⃗,W denote the matrix whose row vectors are {Scores⃗u,v : u ̸∈ W, v ∈ W}.

Let As⃗,W =

Es⃗,W

Ss⃗,T

, b⃗ =

 0⃗

−1⃗

, and let Hs⃗,W = {x⃗ ∈ Rm! : As⃗,W x⃗ ≤ b⃗} denote the

corresponding polyhedron.

It follows that the alternatives W are tied in fs⃗(P ) (notwithstanding any tie-breaking)

if and only if Hist(P ) ∈ Hs⃗,W . The following example characterizes a plurality tie between

alternatives 1 and 2 with this polyhedral representation. We denote the plurality score vector

by s⃗plu = (1, 0, . . . , 0).

Example 2.2 (Polyhedral representation of a {1, 2}-way plurality tie). Let m = 3 and

consider the vote profile a∗ = top(P ) for preference profile P . Then a W -way tied plurality

election of a∗, for W = {1, 2}, occurs if and only if Hist(P ) is in a polyhedron Hs⃗plu,W

represented by the following inequalities:

x123 + x132 − x213 − x231 ≤ 0; (2.6)

−x123 − x132 + x213 + x231 ≤ 0; (2.7)

−x123 − x132 + x312 + x321 ≤ −1; (2.8)

−x213 − x231 + x312 + x321 ≤ −1. (2.9)

The variables are x⃗ = (x123, x132, x213, x231, x312, x321) where xxyz corresponds to the number

of rankings in P with ranking (x ≻ y ≻ z). The first two inequalities state that alternatives

1 and 2 have the same plurality score, while the last two inequality states that alternative 3

has a strictly smaller plurality score than alternatives 1 and 2. This suggests that Hs⃗plu,W =

{x⃗ ∈ R6 : As⃗plu,W x⃗ ≤ b⃗} where

As⃗plu,W =


1 1 −1 −1 0 0

−1 −1 1 1 0 0

−1 −1 0 0 1 1

0 0 −1 −1 1 1

 , b⃗ =


0

0

−1
−1

 . (2.10)

Following this example, for the plurality score vector s⃗plu, general m ≥ 3, and W ⊆ A,
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the polyhedron Hs⃗plu,W is represented by the following inequalities:

∀{i1, i2} ⊆ W s.t. i1 ̸= i2,
∑

R:top(R)=i1
xR −

∑
R:top(R)=i2

xR ≤ 0; (2.11)

∀i1 ∈ W, i2 ∈ A\W,
∑

R:top(R)=i2
xR −

∑
R:top(R)=i1

xR ≤ −1. (2.12)

These inequalities cover the case of PW(a∗) = W such that all alternatives in W have the

same score. In fact, there are |W | possible cases depending on which alternative f(a∗) ∈
PW(a∗) is the winner. The other cases may be characterized by modifying b⃗ accordingly. For

example, consider PW(a∗) = W with W = {1, 2, 3} such that s1(a
∗) + 1 = s2(a

∗) = s3(a
∗).

Then Hs⃗plu,W would be represented by the inequalities:

∑
R:top(R)=1

xR −
∑

R:top(R)=2
xR ≤ −1; (2.13)

∑
R:top(R)=2

xR −
∑

R:top(R)=1
xR ≤ 1; (2.14)∑

R:top(R)=2
xR −

∑
R:top(R)=3

xR ≤ 0; (2.15)∑
R:top(R)=3

xR −
∑

R:top(R)=2
xR ≤ 0; (2.16)

∀i ∈ [4,m],
∑

R:top(R)=i
xR −

∑
R:top(R)=2

xR ≤ −1. (2.17)

This polyhedral representation of agents’ preferences is due to the smoothed analysis

work of Xia (2020) and Xia (2021a). The latter work studied how likely large elections are

tied according to several voting rules when agents’ preferences are independently distributed:

P ∼ π⃗ where ∀j ≤ n, it holds that Rj ∼ π⃗(j) ∈ ∆(L(A)), the probability simplex over all

rankings L(A). This problem has been studied extensively in the public choice literature

(see e.g., Beck (1975), Gillett (1977), Margolis (1977), Gillett (1980), Chamberlain and

Rothschild (1981), and Marchant (2001)). Xia (2021a) solved this problem beyond the

prior work by recognizing that the histogram of a randomly generated preference profile is

a Poisson multivariate variable (PMV). A tied election of the alternatives W , then, is that

PMV occurring within the polyhedron Hs⃗,W . To determine the likelihood of this event, Xia

(2021a) defined the PMV-in-polyhedron problem as PrP∼π⃗(Hist(P ) ∈ H) for any polyhedron

H, taken in supremum or infimum over distributions π⃗ ∈ Πn, and proved a dichotomy

theorem for conditions on this likelihood. The following definitions are used to formally



22

describe his main result.

Definition 2.8 (Poisson multivariate variables (PMVs)). Given µ, n ∈ N and distribution π⃗

over [µ], let X⃗π⃗ denote the (n, µ)-PMV that corresponds to π⃗. That is, let Y1, . . . , Yn denote

n identical random variables over [µ] such that for any j ≤ n, Yj is distributed as π⃗(j). For

any i ∈ [µ], the i-th component of X⃗π⃗ is the number of Yj’s that take value i.

Given µ, L, n ∈ N, an L × µ matrix A, and an L-dimensional vector b⃗, we define

H,H≤0,Hn and HZ
n as follows:

H =
{
x⃗ ∈ Rµ : Ax⃗ ≤ b⃗

}
; (2.18)

H≤0 =
{
x⃗ ∈ Rµ : Ax⃗ ≤ 0⃗

}
; (2.19)

Hn =
{
x⃗ ∈ H ∩ Rµ

≥0 : x⃗ · 1⃗ = n
}
; (2.20)

HZ
n = Hn ∩ Zµ

≥0. (2.21)

That is, H is the polyhedron represented by A and b⃗; H≤0 is the characteristic cone of H, Hn

consists of non-negative vectors in H whose L1 norm is n, and HZ
n consists of non-negative

integer vectors in Hn. By definition, HZ
n ⊆ Hn ⊆ H. Let dim(H≤0) denote the dimension of

H≤0, i.e., the dimension of the minimal linear subspace of Rµ that contains H≤0. For a set

Π of distributions over [µ], CH(Π) denotes the convex hull of Π. Π is called strictly positive

(by ϵ > 0) if ∀π⃗ ∈ Π,∀j ∈ [µ], π⃗(j) > ϵ.

Theorem 2.3 (Xia (2021a), Theorem 1). Given any µ ∈ N, any closed and strictly positive

Π over [µ], and any polyhedron H characterized by a matrix A, for any n ∈ N,

supπ⃗∈Πn Pr
(
X⃗π⃗ ∈ H

)
=


0, if HZ

n = ∅

exp(−Θ(n)), if HZ
n ̸= ∅ and H≤0 ∩ CH(Π) = ∅

Θ
(
n

dim(H≤0)−µ

2

)
, otw. (i.e.,HZ

n ̸= ∅ and H≤0 ∩ CH(Π) ̸= ∅);
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inf π⃗∈Πn Pr
(
X⃗π⃗ ∈ H

)
=


0, if HZ

n = ∅

exp(−Θ(n)), if HZ
n ̸= ∅ and CH(Π) ⊈ H≤0

Θ
(
n

dim(H≤0)−µ

2

)
, otw. (i.e.,HZ

n ̸= ∅ and CH(Π) ⊆ H≤0).

Xia (2021a) used this theorem to depict the likelihood of k-way ties according to several

voting rules. In particular, the likelihood of k-way plurality ties with i.i.d. preferences corre-

sponds to PrP∼πn(Hist(P ) ∈ Hk), where πn = (π, π, . . . , π) and Hk =
⋃

W⊆2A:|W |=kHs⃗plu,W .

In this case, Π = {π} consists of a single distribution π ∈ ∆(L(A)) and the two probabil-

ities of Theorem 2.3 coincide. The following corollary holds for either Hk or Hs⃗plu,W that

corresponds to any case of PW(a∗) = W with |W | = k.

Corollary 2.1 (Xia (2021a), Corollary 1). Fix m ≥ 3 and let n ∈ N agents’ preferences be

i.i.d. according to IC. Then the likelihood of a k-way plurality tied election is Θ
(
n− k−1

2

)
.

The probability of a 2- or 3-way tie with respect to IC is therefore Θ
(

1√
n

)
or Θ

(
1
n

)
,

respectively.



CHAPTER 3

STRATEGIC BEHAVIOR IS BLISS: ITERATIVE VOTING

IMPROVES SOCIAL WELFARE

3.1 Introduction

Voting is one of the most popular methods for a group of agents to make a collective decision

based on their preferences. Whether a decision is for a high-stakes presidential election or

a routine luncheon, agents submit their preferences and a voting rule is applied to select a

winning alternative.

One critical flaw of voting is its susceptibility to strategic manipulation. That is,

agents may have an incentive to misreport their preferences (i.e. votes) to obtain a more

favorable outcome. Unfortunately, manipulation is inevitable under any non-dictatorial

single-round voting systems when there are three or more alternatives, as recognized by

the celebrated Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975). Conse-

quently, decades of research sought to deter manipulation, especially by high computational

barriers (Bartholdi et al., 1989; Faliszewski et al., 2010; Faliszewski & Procaccia, 2010);

see Conitzer and Walsh (2016) for a recent survey of the field.

While there is a large body of literature on manipulation of single-round voting systems,

sequential and iterative voting procedures are less understood. Indeed, these procedures

occur in a variety of applications, such as Doodle or presidential election polls, where people

finalize their votes after previewing others’ responses (Desmedt & Elkind, 2010; Meir et al.,

2010; Reijngoud & Endriss, 2012; Xia & Conitzer, 2010; Zou et al., 2015). Our key question

is:

What is the effect of strategic behavior in sequential and iterative voting?

A series of work initiated by Meir et al. (2010) characterizes the dynamics and equi-

libria of iterative voting, where agents sequentially and myopically improve their reported

preferences based on other agents’ reports (Brânzei et al., 2013; Endriss et al., 2016; Grandi

et al., 2013; Koolyk et al., 2017; Lev & Rosenschein, 2012; Meir, 2016; Meir et al., 2014;

Portions of this chapter have previously appeared as: Kavner, J., & Xia, L. (2021). Strategic behavior
is bliss: iterative voting improves social welfare. In Advances in neural information processing systems (Vol.
34, pp. 19021–19032). Curran Associates, Inc.
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Obraztsova et al., 2015, 2013; Rabinovich et al., 2015; Reyhani & Wilson, 2012; Tsang &

Larson, 2016). While the convergence of iterative voting has been investigated for many

commonly studied voting rules, the effect of strategic behavior, in terms of aggregate social

welfare, remains largely unclear.

A notable exception is Brânzei et al. (2013)’s work that introduced and characterized

the additive dynamic price of anarchy (ADPoA) of iterative voting with respect to the plural-

ity, veto, and Borda social choice functions. The (additive) DPoA measures the social welfare

(difference) ratio between the truthful winner and an iterative policy’s equilibrium winners

when an adversary minimizes aggregate social welfare by controlling both the order in which

agents make their strategic manipulations and agents’ truthful preferences altogether. In

particular, Brânzei et al. (2013) proved that under iterative plurality, the number of agents

whose top preference is an equilibrium winner is at most one less than that of the truthful

plurality winner. Therefore, strategic behavior does not have a significant negative impact

on the social welfare measured by the sum plurality score of the winner. Nevertheless, it is

unclear whether this observation holds for other notions of social welfare.

3.1.1 Our Contributions

We address the key question discussed above in the iterative voting framework, first

proposed by Meir et al. (2010), by characterizing Brânzei et al. (2013)’s ADPoA under

plurality dynamics and rank-based utility functions that differ from the iteration method.

Given m ≥ 3 alternatives, a ranked-based utility function is characterized by a utility vector

u⃗ such that each agent receives ui utility if their ith ranked alternative wins, although this

alternative may differ for each agent. We study iterative plurality due to its simplicity and

popularity in practice. Moreover, our results absolve the need for the mechanism’s center

to know u⃗ exactly, thus conserving agents’ privacy. Still, we assume this is constant for all

agents.

Our first main result (Theorem 3.1) states that, unfortunately, for any fixed m ≥ 3

and utility vector u⃗, the ADPoA is Θ(n) for n agents. Therefore, the positive result achieved

by Brânzei et al. (2013) is not upheld if u⃗ differs from plurality utility under the iterative

plurality mechanism.

To overcome this negative worst-case result, we introduce the notion of expected addi-

tive dynamic price of anarchy (EADPoA), which presumes agents’ truthful preferences to be
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generated from a probability distribution. Our second main result (Theorem 3.2) is positive

and surprises us: for any fixed m ≥ 3 and utility vector u⃗, the EADPoA is −Ω(1) when

agents’ preferences are i.i.d. uniformly at random, known as Impartial Culture (IC) distri-

bution. In particular, our result suggests that strategic behavior is bliss because iterative

voting helps agents choose an alternative with higher expected social welfare, regardless of

the order of agents’ strategic manipulations.

Techniques. We compute the EADPoA by partitioning the (randomly generated) profiles

according to their potential winners – the alternatives that can be made to win by increment-

ing their plurality scores by at most one. Conditioned on profiles with two potential winners,

we show that iterative plurality returns the alternative that beats the other in a head-to-head

competition (Lemma 3.1). This type of “self selection” improves the expected social welfare

over truthful plurality winner by an additive Ω(1) (Lemma 3.2). When there are three or

more potential winners, we further show that the expected welfare loss is o(1) (Lemmas 3.3

and 3.4). Since the likelihood of k-way ties is small (in fact, Θ
(
n− k−1

2

)
by Corollary 2.1), the

overall social welfare is improved in expectation. We provide an experimental justification

of this main result in Section 3.4.

3.2 Additive Dynamic PoA Under General Utility Vectors

How bad are equilibrium outcomes, given that strategic manipulations inevitably occur by

the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975)? Brânzei et al.

(2013) sought to answer this question by defining the additive dynamic price of anarchy

(ADPoA) as the adversarial loss – the difference in welfare between the truthful winner f(a∗)

and its worst-case equilibrium winner in EW(a∗) – according to the worst-case preference

profile P . To motivate this concept, consider users of a website that can regularly log in

and update their preferences for an election. Then the ADPoA bounds the welfare loss if a

virtual assistant can recommend when users should make their changes.

Brânzei et al. (2013) originally chacterized the ADPoA for a given positional scoring

rule fs⃗ and an additive social welfare function respecting u⃗ = s⃗. In this case, the ADPoA of

plurality was found to be 1, while the (multiplicative) DPoA of veto is Ω(m) and Borda is

Ω(n) for fixed m ≥ 4. Although these results answer the authors’ question and appear opti-

mistic for plurality, they suggest more about the iteration mechanism than agents’ collective
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welfare. For example, an ADPoA for plurality of 1 means that for any truthful profile, the

difference in initial plurality scores of any equilibrium winner is at most one less that of the

truthful winner. However, when we relax the utility vector u⃗ to differ from s⃗, we find in

Theorem 3.1 that the ADPoA is quite poor at Θ(n). First, we recall Brânzei et al. (2013)’s

definition of ADPoA using our notation and explicitly define the adversarial loss D+ for a

particular truthful vote profile a∗, before proceeding to our first main result.

Definition 3.1 (Additive Dynamic Price of Anarchy (Brânzei et al., 2013)). Given

positional scoring rule fs⃗, utility vector u⃗, n agents, and preference profile P , the adversarial

loss starting from the truthful vote profile a∗ is

D+
fs⃗,u⃗

(P ) = SWu⃗(P, fs⃗(a
∗))−minc∈EW(a∗) SWu⃗(P, c). (3.1)

The additive dynamic price of anarchy (ADPoA) is

ADPoA(fs⃗, u⃗) = maxP∈L(A)n D+
fs⃗,u⃗

(P ). (3.2)

In what follows we may drop parameters and scripts from these definitions for ease of

notation when the context is clear. 6 For example, we saw in Example 2.1 in Chapter 2 that

f(a∗) = 1 and EW (a∗) = {2, 3}. Then

D+(P ) = max{ SWu⃗(P, 1)− SWu⃗(P, 2), SWu⃗(P, 1)− SWu⃗(P, 3) }

= max{ (3u1 + 1u2 + 5u3)− (3u1 + 3u2 + 3u3) ,

(3u1 + 1u2 + 5u3)− (3u1 + 5u2 + 1u3) }

= −2(u2 − u3)

≤ 0.

(3.3)

Therefore the social welfare of both equilibrium winners is at least that of the truthful

winner. In Theorem 3.2 below we’ll see this conclusion hold in expectation. For the worst

case preferences P , on the other hand, the following theorem proves this is not the case.

Rather, the worst-case equilibrium winner of P has a social welfare linearly worse than the

truthful winner.
6The superscript ‘+’ denotes an additive measure instead of a multiplicative one, as in the classical

definition of PoA.
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Theorem 3.1. Fix m ≥ 3, the plurality rule f , and utility vector u⃗ = (u1, . . . , um). Then

ADPoA(f, u⃗) = Θ(n).

Proof. The ADPoA is trivially upper bounded by the maximum social welfare attainable by

any truthful profile P . For example, let P be defined with Rj = (1, 2, . . . ,m) ∀j ≤ n and

a∗ = top(P ). Then ∀P̃ ∈ L(A)n with ã∗ = top(P̃ ),

D+(ã∗) = SWu⃗(P̃ , f(ã∗))−minc∈EW(ã∗) SWu⃗(P̃ , c)

≤ SWu⃗(P̃ , f(ã∗))

≤ SWu⃗(P, f(a
∗))

= nu1.

To lower bound ADPoA, we will construct a profile P with a two-way tie between alternatives

1, 2 ∈ A such that D+(P ) = (u2 − um)
(
n
m
− 2
)
. This implies the desired lower bound of

ADPoA = maxP̃∈L(A)n D+(P̃ )

≥ D+(P )

= (u2 − um)
( n

m
− 2
)
.

Fix m ≥ 3 and let n > 2m. Let k = argmink̃∈[2,m−1](uk̃ − uk̃+1) the position in u⃗ with the

minimal difference in adjacent coordinates. We construct P such that there are:

• α agents that prefer 1 first and 2 last;

• α agents that prefer 2 first and 1 second;

• (β
2
− 1) agents that prefer 1 second and 2 last;

• (β
2
+ 1) agents that prefer 2 in their ranking’s k-th position and 1 in their ranking’s

(k + 1)-th position.

where we define α = 1
m
(n+m−2) and β = (α−1)(m−2). It is easy to see that n = 2α+β.

We can see here that s1(a∗) = s2(a
∗) = α, and ∀c > 2, sc(a∗) = α− 1, thus guaranteeing the

two-way tie. Therefore f(a∗) = 1 and P [2 ≻ 1] = α + β
2
+ 1 > α + β

2
− 1 = P [1 ≻ 2]. This

implies EW(a∗) = {2} by the following lemma.
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Lemma 3.1. Let m ≥ 3 and u, v ∈ A such that u is ordered before v in tie-breaking. Suppose

PW(a∗) = {u, v} for some preference profile P . Then EW(a∗) = {u} if P [u ≻ v] ≥ P [u ≻ v];

otherwise EW(a∗) = {v}.

Proof. Without loss of generality, let u = 1 and v = 2. There are two cases of PW(a∗) =

{1, 2}: either alternatives 1 and 2 are exactly tied with maximal score, or they are almost

tied for maximum score while alternative 2 has one more point that 1. First, consider the

case where 1 and 2 are tied with s1(a
∗) = s2(a

∗). Let

• Id(1)(a;P ) = {j ≤ n : aj /∈ {1, 2}, and 1 ≻j 2}

• Id(2)(a;P ) = {j ≤ n : aj /∈ {1, 2}, and 2 ≻j 1}

denote the indices of agents who don’t rank 1 or 2 highest but prefer 1 ≻ 2 or 2 ≻ 1

respectively. Iterative voting proceeds by third-party agents, those in Id(1)(a(t))∪ Id(2)(a(t))

that are not voting for the tied alternatives 1 and 2 in round t, alternately changing their

votes to whichever of the two they favor. Since f(a(0)) = 1, an agent from Id(2)(a(0)) will

first change their vote to 2, thus changing the outcome to f(a(1)) = 2. This enables an agent

from Id(1)(a(1)) to change their vote to 1 and revert the outcome back to f(a(2)) = 1. This

process continues until round t when either Id(1)(a(t)) or Id(2)(a(t)) are emptied of indices. If

|Id(1)(a∗)| ≥ |Id(2)(a∗)|, the last BR step will make 1 the unique equilibrium winner, whereas

if |Id(1)(a∗)| < |Id(2)(a∗)|, the last BR step will make 2 the unique equilibrium winner.

Inverse reasoning holds if 1 and 2 differ by one initial plurality score such that s1(a∗)+

1 = s2(a
∗), implying f(a∗) = 2. In this case, the last BR step will make 1 the unique

equilibrium winner only if |Id(1)(a∗)| > |Id(2)(a∗)|, since the plurality score of 1 is initially

disadvantaged by 1. Otherwise, the unique equilibrium winner will be 2. We therefore

conclude that if P [1 ≻ 2] ≥ P [2 ≻ 1] across all n agents, then EW(a∗) = {1}; otherwise

EW(a∗) = {2}.



30

As a result of Lemma 3.1,

D+(P ) = SWu⃗(P, 1)− SWu⃗(P, 2)

= α(u2 − um) +

(
β

2
− 1

)
(u2 − um)−

(
β

2
+ 1

)
(uk − uk+1)

≥ (u2 − um)(α− 2)

= (u2 − um)

(
n−m− 2

m

)
≥ (u2 − um)

( n

m
− 2
)

where the first inequality holds because (uk − uk+1) ≤ (u2 − um).

3.3 Expected Additive Dynamic PoA

In this section we extend Brânzei et al. (2013)’s ADPoA notion to account for the average-

case adversarial loss for a positional scoring rule f , rather than only the studying worst-case.

This expected additive dynamic price of anarchy (EADPoA) bounds the adversarial loss of

strategic manipulation according to more typical distributions of agents’ rankings. Here we

distribute agents’ preference rankings i.i.d. uniformly over L(A), known as the Impartial

Culture (IC) distribution.

Definition 3.2 (Expected Additive Dynamic PoA). Given a positional scoring rule

fs⃗, a utility vector u⃗, n agents, and a distribution π⃗ over L(A)n for agents’ preferences, the

expected additive dynamic price of anarchy (EADPoA) is

EADPoA(fs⃗, u⃗, π⃗) = EP∼π⃗

[
D+

fs⃗,u⃗
(P )
]
. (3.4)

Like before, we may drop parameters and scripts when the context is clear. We similarly

fix a rank-based utility vector u⃗ that may differ from the scoring rule s⃗, but we will not

presume in the following theorem that this is known by the iterative plurality mechanism.

Theorem 3.2. Fix m ≥ 3 and utility vector u⃗ = (u1, . . . , um). For any n ∈ N we have

EADPoA(f, u⃗, IC) = −Ω(1).

Proof. The key proof technique is to partition L(A)n according to each profile’s potential
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winner set. More precisely, for every W ⊆ A with W ̸= ∅, we define:

PoA(W ) = Pr(PW(a∗) = W )× E[D+(P ) | PW(a∗) = W ].

By the law of total expectation, then,

EADPoA = E[D+(P )] =
∑m

α=1

∑
W⊆A:|W |=α

PoA(W ) (3.5)

where α denotes the number of potential winners in a∗. It is straightforward to see that

when α = 1, any profile P with |PW(a∗)| = 1 is already a NE, which implies D+(P ) = 0.

We demonstrate in Lemma 3.2, below, that for ∀W ⊆ A with |W | = 2 we have PoA(W ) =

−Ω(1). We will then demonstrate that PoA(W ) = o(1) holds ∀W ⊆ A with |W | = 3

(Lemma 3.3) and |W | ≥ 4 (if m ≥ 4; Lemma 3.4). Recalling that m is fixed, the total

number of subsets of A is viewed as a constant. Finally, these results combine to conclude

EADPoA = 0︸︷︷︸
α=1

−Ω(1)︸︷︷︸
α=2

+ o(1)︸︷︷︸
α≥3

= −Ω(1).

Intuitively, profiles with two tied alternatives drive the EADPoA negative because of

the self-selecting property of Lemma 3.1. For example, consider a truthful P with PW(a∗) =

{1, 2} and f(a∗) = 1. When more agents prefer the non-winning alternative 2, in this setting,

iterative plurality makes this correction by changing the winner to 2 and increases agents’

social welfare on average. When more agents prefer the truthful winner 1, rather, iterative

plurality doesn’t change this outcome and the adversarial loss remains zero. Without a

sufficient counter-balance to the former two-tied (α = 2) case by any of the three-or-more-tied

cases (α ≥ 3), the adversarial loss overall remains negative in expectation. The remainder

of this section proves the theorem’s three lemmas in sequence.

Lemma 3.2 (Two-alternative tied case). Given m ≥ 3 and a utility vector u⃗, for any

W ⊆ A with |W | = 2 and any n ∈ N, we have PoA(W ) = −Ω(1).

Proof. Without loss of generality let W = {1, 2} and suppose u2 > um, since the case where

u2 = um is covered by Brânzei et al. (2013). There are two possible cases of PW(a∗) = {1, 2}:
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E1 = 1{s1(a∗) = s2(a
∗)}, where 1 is the truthful winner, and E2 = 1{s1(a∗) + 1 = s2(a

∗)},
where 2 is the truthful winner. This suggests the following partition:

PoA(W ) = Pr(E1)× E[D+(P ) | E1] + Pr(E2)× E[D+(P ) | E2].

We’ll focus on the former summand where 1 and 2 are tied and prove that Pr(E1) ×
E[D+(P ) | E1] = −Ω(1). The latter summand can be proved similarly.

We believe this proof is challenging due to the dependence in agents’ rankings once we

condition on profiles that satisfy two-way ties (i.e. E1). As a result, standard approximation

techniques that assume independence, such as the Berry-Esseen inequality, no longer apply

and may also be too coarse to support our claim. Instead, we will use a Bayesian network to

further condition agents’ rankings based on two properties: the top ranked-alternative and

which of the two tied alternatives the agents prefer. Once we guarantee agents’ rankings’

conditional independence, we can identify the expected utility they gain for each alternative

and then compute E[D+(P ) | E1] efficiently.

At a high level, there are two conditions for a profile P to satisfy E1 and have non-zero

adversarial loss. First, the profile must indeed be a two-way tie. This is represented in

Step 1 below by identifying each agent j’s top-ranked alternative tj ∈ A and conditioning

D+(P ) on a specific vector of top-ranked alternatives t⃗ ∈ T2 ⊆ An, a set corresponding to all

profiles satisfying E1. Second, by Lemma 3.1, the profile should satisfy P [2 ≻ 1] > P [1 ≻ 2].

This is represented in Step 1 by identifying an indicator zj ∈ {1, 2} to suggest whether

1 ≻j 2 or 2 ≻j 1 respectively. We further condition D+(P ) on a specific vector z⃗ ∈ Zt⃗,k,

a set corresponding to all profiles in E1 with k = P [2 ≻ 1] > P [1 ≻ 2] = n − k. Once

we condition D+(P ) to satisfy these two conditions, we identify the expected difference in

welfare between the alternatives Etj ,zj for each agent j conditioned on tj, zj in Step 2, which

follows from the impartial culture assumption. Finally, we compute D+(P ) by summing over

all profiles satisfying the above two conditions and solve in Step 3, making use of Stirling’s

approximation.

More precisely, for any j ≤ n, we represent agent j’s ranking distribution (i.i.d. uniform

over L(A)) by a Bayesian network of three random variables: Tj represents the top-ranked

alternative, Zj represents whether 1 ≻j 2 or 2 ≻j 1, conditioned on Tj, and Qj represents

the linear order conditioned on Tj and Zj. Formally, we have the following definition.
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Z1
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T2

Z2

Q2

Tn

Zn

Qn

Figure 3.1: Bayesian network representation of P as T⃗ , Z⃗, and Q⃗.

Definition 3.3. For any j ≤ n, we define a Bayesian network with three random variables

Tj ∈ A, Zj ∈ {1, 2}, and Qj ∈ L(A), where Tj has no parent, Tj is the parent of Zj, and

Tj and Zj are Qj’s parents (see Figure 3.1). Let T⃗ = (T1, , . . . , Tn), Z⃗ = (Z1, , . . . , Zn), and

Q⃗ = (Q1, , . . . , Qn). The (conditional) distributions are:

• Tj follows a uniform distribution over A;

• Pr(Zj = 1 | Tj = t) =


1, t = 1

0, t = 2

0.5, t ∈ [3,m];

• Qj follows the uniform distribution over linear orders whose top alternative is Tj and

1 ≻j 2 if Zj = 1, or 2 ≻j 1 if Zj = 2.

It is not hard to verify that (unconditional) Qj follows the uniform distribution over

L(A), which implies that Q⃗ follows the same distribution as P , namely IC. Notice that if

alternative 1 or 2 is ranked at the top, then Zj is deterministic and equals to Tj. Furthermore,

if Tj ∈ {1, 2}, then Qj follows the uniform distribution over (m− 1)! linear orders; otherwise

Qj follows the uniform distribution over (m− 1)!/2 linear orders.

Example 3.1. Let m = 4 and W = {1, 2}. For every j ≤ n, Tj is the uniform distribution

over {1, 2, 3, 4}. We have that Pr(Zj = 1 | Tj = 1) = Pr(Zj = 2 | Tj = 2) = 1 and

Pr(Zj = 1 | Tj = 3) = Pr(Zj = 1 | Tj = 4) = 0.5. Given Tj = Zj = 1, Qj is the uniform
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distribution over

{[1 ≻ 2 ≻ 3 ≻ 4], [1 ≻ 2 ≻ 4 ≻ 3], [1 ≻ 3 ≻ 2 ≻ 4]

[1 ≻ 3 ≻ 4 ≻ 2], [1 ≻ 4 ≻ 2 ≻ 3], [1 ≻ 4 ≻ 3 ≻ 2]}.

Given Tj = 4 and Zj = 2, Qj is the uniform distribution over

{[4 ≻ 2 ≻ 1 ≻ 3], [4 ≻ 2 ≻ 3 ≻ 1], [4 ≻ 3 ≻ 2 ≻ 1]} .

Step 1: Identify profiles that satisfy E1. Let T2 ⊆ [m]n denote the set of vectors t⃗ =

(t1, . . . , tn) such that alternatives 1 and 2 have the maximum plurality score:

T2 =
{
t⃗ ∈ [m]n : ∀3 ≤ i ≤ m, |{j : tj = 1}| = |{j : tj = 2}| > |{j : tj = i}|

}
.

E1 holds for Q⃗ if and only if T⃗ takes a value in T2, implying that

Pr(E1)× E[D+(P ) | E1] =
∑
t⃗∈T2

Pr
(
T⃗ = t⃗

)
× EQ⃗[D

+(Q⃗) | T⃗ = t⃗]. (3.6)

Conditioned on agents’ top-ranked alternatives being t⃗ ∈ T2, we have by Lemma 3.1

that D+(Q⃗) is non-zero if and only if Q⃗[2 ≻ 1] > Q⃗[1 ≻ 2] – thus EW(top(Q⃗)) = {2} is

unique. For any t⃗ ∈ T2, let

• Id1(⃗t) ⊆ [n] denote the indices j such that tj = 1;

• Id2(⃗t) ⊆ [n] denote the indices j such that tj = 2;

• Id3(⃗t) ⊆ [n] denote the indices j such that tj /∈ {1, 2} – we call these third-party agents.

E1 implies |Id1(⃗t)| = |Id2(⃗t)|, so in order to uphold Q⃗[2 ≻ 1] > Q⃗[1 ≻ 2] there must be more

third-party agents that prefer (2 ≻ 1) than those that prefer (1 ≻ 2). Specifically, for every

⌈ |Id3 (⃗t)|+1
2
⌉ ≤ k ≤ |Id3(⃗t)|, we define Zt⃗,k ⊆ {1, 2}n as the vectors z⃗ where the number of 2’s

among indices in Id3(⃗t) is exactly k:

Zt⃗,k = {z⃗ ∈ {1, 2}n : ∀j ∈ Id1(⃗t) ∪ Id2(⃗t), zj = tj, and |{j ∈ Id3(⃗t) : zj = 2}| = k}.
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Example 3.2. Suppose m = 4, n = 9, and t⃗ = (1, 1, 2, 2, 3, 2, 4, 1, 3). Then, Id1(⃗t) =

{1, 2, 8}, Id2(⃗t) = {3, 4, 6}, Id3(⃗t) = {5, 7, 9}. Moreover, for k = 2, we have

Zt⃗,2 =


(1, 1, 2, 2, 1, 2, 2, 1, 2)

(1, 1, 2, 2, 2, 2, 1, 1, 2)

(1, 1, 2, 2, 2, 2, 2, 1, 1)


where exactly two reports from agents 5, 7, or 9 are 2’s: |{zj = 2 : j ∈ {5, 7, 9}}| = 2.

Continuing Equation (3.6), we have

Pr(E1)× E[D+(P ) | E1]

=
∑
t⃗∈T2

|Id3 (⃗t)|∑
k=⌈ |Id3(t⃗)|+1

2
⌉

∑
z⃗∈Zt⃗,k

Pr(T⃗ = t⃗, Z⃗ = z⃗)× EQ⃗[D
+(Q⃗) | T⃗ = t⃗, Z⃗ = z⃗]

=
∑
t⃗∈T2

|Id3 (⃗t)|∑
k=⌈ |Id3(t⃗)|+1

2
⌉

∑
z⃗∈Zt⃗,k

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

EQ⃗j
[u⃗(Qj, 1)− u⃗(Qj, 2) | T⃗ = t⃗, Z⃗ = z⃗]

=
∑
t⃗∈T2

|Id3 (⃗t)|∑
k=⌈ |Id3(t⃗)|+1

2
⌉

∑
z⃗∈Zt⃗,k

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

Etj ,zj (3.7)

where

Etj ,zj = EQ⃗j
[u⃗(Qj, 1)− u⃗(Qj, 2) | Tj = tj, Zj = zj].

The last equation holds because of the Bayesian network structure: for any j ≤ n, given Tj

and Zj, Qj is independent of other Q’s.

Step 2: Compute expected welfare difference per agent. Notice that Etj ,zj only de-

pends on the values of tj, zj but not j:

• If tj = zj = 1, then Etj ,zj = u1 − u2+...+um

m−1
, the expected utility of alternative 2.

• If tj = zj = 2, then Etj ,zj is the expected utility of alternative 1, which is u2+...+um

m−1
,

minus u1. Notice that E2,2 + E1,1 = 0.

• If tj /∈ {1, 2} and zj = 1, then η = Etj ,1 is the expected utility difference of alternatives

1 minus 2, conditioned on third-party agents and 1 ≻ 2. Note that η > 0 since u2 > um.
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• If tj /∈ {1, 2} and zj = 2, then Etj ,2 is the expected utility difference of alternative 1

minus 2, conditioned on third-party agents and 2 ≻ 1. It follows that Etj ,2 = −η.

As a result, Equation (3.7) becomes

∑
t⃗∈T2

|Id3 (⃗t)|∑
k=⌈ |Id3(t⃗)|+1

2
⌉

∑
z⃗∈Zt⃗,k

Pr(T⃗ = t⃗, Z⃗ = z⃗)(|Id3(⃗t)| − 2k)η (3.8)

where we’ve inserted

n∑
j=1

Etj ,zj = |Id1(⃗t)|E1,1 + |Id2(⃗t)|E2,2 − kη + (|Id3(⃗t)| − k)η.

Step 3: Simplify and solve. Note that |Id3(T⃗ )| is equivalent to the sum of n i.i.d. binary

random variables, each of which is 1 with probability m−2
m
≥ 1

3
. By Hoeffding’s inequality,

with exponentially small probability we have |Id3(T⃗ )| < 1
6
n. We may therefore focus on the

Id3(T⃗ ) ≥ 1
6
n case of Equation (3.8), which, by denoting β = |Id3(⃗t)| for ease of notation,

becomes

≤ exp−Θ(n)+
∑

t⃗∈T2:β≥ 1
6
n

β∑
k=⌈β+1

2
⌉

∑
z⃗∈Zt⃗,k

Pr(T⃗ = t⃗, Z⃗ = z⃗)(β − 2k)η

= exp−Θ(n) +
∑

t⃗∈T2:β≥ 1
6
n

β∑
k=⌈β+1

2
⌉

(β − 2k)η
∑

z⃗∈Zt⃗,k

Pr(Z⃗ = z⃗ | T⃗ = t⃗) Pr(T⃗ = t⃗)

= exp−Θ(n) +
∑

t⃗∈T2:β≥ 1
6
n

β∑
k=⌈β+1

2
⌉

(β − 2k)η

(
1

2

)β (
β

k

)
Pr(T⃗ = t⃗) (3.9)

= exp−Θ(n) +
∑

t⃗∈T2:β≥ 1
6
n

(
1

2

)β

η Pr(T⃗ = t⃗)

β∑
k=⌈β+1

2
⌉

(
β

k

)
(β − 2k)

= exp−Θ(n)−η
∑

t⃗∈T2:β≥ 1
6
n

(
1

2

)β (⌈
β + 1

2

⌉)(
β⌈

β+1
2

⌉)Pr(T⃗ = t⃗) (3.10)

where Equation (3.9) follows from Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5 and Equation (3.10) follows

from the following claim, plugging in n← β and p←
⌈
β+1
2

⌉
.
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Claim 3.1. For any n ∈ N and any p ∈ [0, n], we have

n∑
k=p

(
n

k

)
(n− 2k) = −p

(
n

p

)
.

Proof. We begin by considering a negated form of the objective:

n∑
k=p

(
n

k

)
(n− 2k) =

n∑
k=0

(
n

k

)
(n− 2k)−

p−1∑
k=0

(
n

k

)
(n− 2k)

= n2n − 2(n2n−1)−
p−1∑
k=0

(
n

k

)
(n− 2k)

= −
p−1∑
k=0

(
n

k

)
(n− 2k).

The proof continues by induction. We want to show that for all p ∈ [n],

p−1∑
k=0

(
n

k

)
(n− 2k) = p

(
n

p

)
. (3.11)

Base step. Substituting p = 1 into Equation (3.11) yields

(
n

0

)
(n− 0) = n = 1

(
n

1

)
.



38

Inductive step. Suppose Equation (3.11) holds for all p ∈ [n′] for some n′ < n. We want

to show this holds for p+ 1. We have

p∑
k=0

(
n

k

)
(n− 2k) =

p−1∑
k=0

(
n

k

)
(n− 2k) +

(
n

p

)
(n− 2p)

= p

(
n

p

)
+

(
n

p

)
(n− 2p)

= (n− p)

(
n

p

)
=

n!(n− p)

p!(n− p)!

=
n!(p+ 1)

(p+ 1)!(n− p− 1)!

= (p+ 1)

(
n

p+ 1

)
as desired, where we’ve used the induction hypothesis to get the second equality.

We next apply Stirling’s approximation to simplify Equation (3.10). Recall that Stir-

ling’s approximation is that ∀n ∈ N, n! ∼
√
2πn

(
n
e

)n. It is easy to show then that(
2n
n

)
∼ 22n√

nπ
. Since β = Θ(n), we get that

(⌈
β+1
2

⌉) ( β

⌈β+1
2 ⌉
)
= Θ(

√
n 2n). Hence, Equa-

tion (3.10) becomes

exp−Θ(n)−η
∑

t⃗∈T2:β≥ 1
6
n

Θ(
√
n) Pr(T⃗ = t⃗)

= exp−Θ(n)−Θ(
√
n) Pr

(
T⃗ ∈ T2, Id3(T⃗ ) ≥

1

6
n

)
= exp−Θ(n)−Θ(

√
n)

(
Pr(T⃗ ∈ T2)− Pr

(
T⃗ ∈ T2, Id3(T⃗ ) <

1

6
n

))
≤ exp−Θ(n)−Θ(

√
n)

(
Pr(T⃗ ∈ T2)− Pr

(
Id3(T⃗ ) <

1

6
n

))
≤ exp−Θ(n)−Θ(

√
n)

(
Θ

(
1√
n

)
− e−Θ(n)

)
= −Ω(1)

where Pr(T⃗ ∈ T2) is equivalent to the probability of a two-way tie under plurality w.r.t. IC,

which is known to be Θ
(

1√
n

)
by Corollary 2.1. This proves Lemma 3.2.
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Figure 3.2: Bayesian network representation of P as T⃗ and Q⃗.

Lemma 3.3 (Three-alternative tied case). Given m ≥ 3 and utility vector u⃗, for any

W ⊆ A with |W | = 3 and any n ∈ N, we have PoA(W ) = o(1).

Proof. The proof uses a similar yet simpler technique than that of Lemma 3.2. Without

loss of generality, suppose W = {1, 2, 3} and consider the case where the plurality scores

for 1, 2, and 3 are equal, denoted E . The proofs for cases with alternatives 2 or 3 being

truthful winners are similar. We first prove that conditioned on the vector t⃗ of all agents’ top

preferences that satisfy E , the maximum score difference between any pair of alternatives in

{1, 2, 3} is o(n) with high probability that is close to 1. Secondly, it is clear that Pr(PW(a∗) =

W ) = Θ
(
1
n

)
by Corollary 2.1. Put together, this yields

PoA(W ) = Pr(PW(a∗) = W )× E[D+(P ) | PW(a∗) = W ] = Θ

(
1

n

)
o(n) = o(1).

More precisely, for every j ≤ n, we represent agent j’s ranking distribution (i.i.d. uniform

over L(A)) by a Bayesian network of two random variables: Tj represents agent j’s top-

ranked alternative, and Qj represents j’s ranking conditioned on Tj. Formally, we have the

following definition.

Definition 3.4. For any j ≤ n, we define a Bayesian network with two random variables

Tj ∈ A and Qj ∈ L(A), where Tj has no parent and is the parent of Qj (see Figure 3.2).

Let T⃗ = (T1, , . . . , Tn) and Q⃗ = (Q1, , . . . , Qn). The (conditional) distributions are:

• Tj follows a uniform distribution over A;

• Qj follows the uniform distribution over linear orders whose top alternative is Tj.
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It is not hard to verify that (unconditional) Qj follows the uniform distribution over

L(A). Therefore, Q⃗ follows the same distribution as P , which is IC.

Example 3.3. Let m = 4 and W = {1, 2, 3}. For every j ≤ n, Tj is the uniform distribution

over [4]. Given Tj = 1, Qj is the uniform distribution over

{[1 ≻ 2 ≻ 3 ≻ 4], [1 ≻ 2 ≻ 4 ≻ 3], [1 ≻ 3 ≻ 2 ≻ 4],

[1 ≻ 3 ≻ 4 ≻ 2], [1 ≻ 4 ≻ 2 ≻ 3], [1 ≻ 4 ≻ 3 ≻ 2]}.

Given Tj = 4, Qj is the uniform distribution over

{[4 ≻ 1 ≻ 2 ≻ 3], [4 ≻ 1 ≻ 3 ≻ 2], [4 ≻ 3 ≻ 1 ≻ 2],

[4 ≻ 2 ≻ 1 ≻ 3], [4 ≻ 2 ≻ 3 ≻ 1], [4 ≻ 3 ≻ 2 ≻ 1]}.

Step 1: Identify E. Let T3 ⊆ [m]n denote the set of vectors t⃗ = (t1, . . . , tn) such that

alternatives 1, 2, and 3 have the maximum plurality score. Formally,

T3 =
{
t⃗ ∈ [m]n : ∀4 ≤ i ≤ m, |{j : tj = 1}| = |{j : tj = 2}| = |{j : tj = 3}| > |{j : tj = i}|

}
.

E holds for Q⃗ if and only if T⃗ takes a value in T3, implying the following equality.

PoA({1, 2, 3}) (3.12)

= Pr
(
PW(top(Q⃗)) = {1, 2, 3}

)
× E[D+(Q⃗) | PW(top(Q⃗)) = {1, 2, 3}]

=
∑
t⃗∈T3

Pr(T⃗ = t⃗)× E[D+(Q⃗) | T⃗ = t⃗] (3.13)

Step 2: Upper-bound the conditional adversarial loss. We next employ the law of

total expectation on Equation (3.13) by further conditioning on 1{D+(Q⃗) > n0.6}. This

event represents whether the adversarial loss scales positively and at least sub-linearly in

n. We will show this holds with high probability and establish the following conditional
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expectation to be o(n), term-by-term:

E[D+(Q⃗) | T⃗ = t⃗]

= E[D+(Q⃗) | T⃗ = t⃗,D+(Q⃗) > n0.6]× Pr(D+(Q⃗) > n0.6 | T⃗ = t⃗)

+ E[D+(Q⃗) | T⃗ = t⃗,D+(Q⃗) ≤ n0.6]× Pr(D+(Q⃗) ≤ n0.6 | T⃗ = t⃗).

First, trivially, we note that

E[D+(Q⃗) | T⃗ = t⃗,D+(Q⃗) ≤ n0.6] ≤ n0.6. (3.14)

Second, for any t ∈ [m] and i1, i2 ∈ {1, 2, 3} with i1 ̸= i2, we denote by Dt
i1,i2

the random

variable representing the utility difference between alternatives i1 and i2 in Qj, conditioned

on Tj = t:

Dt
i1,i2

= u⃗(Qj, i1)− u⃗(Qj, i2)

For any t⃗ ∈ [m]n and j ≤ n, Dtj
i1,i2
∈ [um− u1, u1− um], which implies D+(Q⃗) ≤ (u1− um)n,

and henceforth

E[D+(Q⃗) | T⃗ = t⃗,D+(Q⃗) > n0.6] ≤ (u1 − um)n. (3.15)

Third, we observe that:

• E[Dtj
i1,i2

] > 0 if tj = i1;

• E[Dtj
i1,i2

] = −E[Di1
i1,i2

] < 0 if tj = i2;

• E[Dtj
i1,i2

] = 0 otherwise.

Let Dt⃗
i1,i2

=
∑n

j=1D
tj
i1,i2

. It follows that for any t⃗ ∈ T3 we have E[Dt⃗
i1,i2

] = 0, since E implies

|{j : tj = i1}| = |{j : tj = i2}|. Recalling that D
tj
i1,i2

is bounded, it follows from Hoeffding’s

inequality that

Pr(|Dt⃗
i1,i2
| > n0.6) = exp(−Θ(n0.2)).

Recall that the equilibrium winner must be among the initial potential winners of any truthful

profile (Reyhani & Wilson, 2012). Therefore, for any t⃗ ∈ T3, following the law of total

probability, we have

Pr
(
D+(Q⃗) > n0.6 | T⃗ = t⃗

)
≤ 6 exp(−Θ(n0.2)). (3.16)
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Combining Equations (3.14), (3.15), and (3.16) with Equation (3.13) yields our claim:

PoA({1, 2, 3})

=
∑
t⃗∈T3

Pr(T⃗ = t⃗)× E[D+(Q⃗) | T⃗ = t⃗]

≤
∑
t⃗∈T3

Pr(T⃗ = t⃗)
[
6n(u1 − um) exp(−Θ(n0.2))) + n0.6(1− 6 exp(−Θ(n0.2)))

]
= Pr(T⃗ ∈ T3)o(n)

= o(1)

where Pr(T⃗ ∈ T3) is the probability of a three-way tie, known to be Θ
(
1
n

)
by Corollary 2.1.

Lemma 3.4 (Four-or-more alternative tied case). Given m ≥ 4 and a utility vector u⃗,

for any W ⊆ A with |W | ≥ 4 and any n ∈ N, we have PoA(W ) = o(1).

Proof. The lemma follows after noticing that Pr(PW(a∗) = W ) = O
(

1
n1.5

)
by Corollary 2.1

and for any profile P , D+(P ) = O(n).

3.4 Experiments

Figures 3.3 and 3.4 were generated by fixing m = 4 alternatives with Borda utility u⃗ =

(3, 2, 1, 0) and varying the number of agents. For each n ∈ {100, 200, . . . , 1000}, we sampled

10 million profiles uniformly at random and determined, for each P ∼ IC, its equilibrium

winning set EW(a∗). We then computed each profile’s adversarial loss D+(P ) and averaged

their values across all profiles with the same n. Experiments were run on an Intel Core

i7-7700 CPU running Windows with 16.0 GB of RAM.

Figure 3.3 demonstrates the sample average adversarial loss using these parameters.

Figure 3.4 partitions the loss based on 2-, 3-, and 4-way ties. We note the average adversarial

loss decreases as n increases and takes the trend of the 2-way tie loss. Since a significant

proportion of profiles have no BR dynamics, the overall trend keeps close to zero. Therefore

these results support our main theorem in this paper, that the welfare of the worst-case

strategic equilibrium winner is greater than that of the truthful winner when agents’ prefer-

ences are distributed according to IC.
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Figure 3.3: Average adversarial loss with m = 4, Borda u⃗, and 10M samples.
Error bars represent 95% confidence intervals, too small to see.

Figure 3.4: Average adversarial loss conditioned on 2-, 3-, and 4-way ties. Error
bars represent 95% confidence intervals.



CHAPTER 4

CONVERGENCE OF MULTI-ISSUE ITERATIVE VOTING

UNDER UNCERTAINTY

4.1 Introduction

Consider a wedding planner who is deciding a wedding’s banquet and wants to accommodate

the party invitees’ preferences. There are three issues with two alternatives each: the main

course (chicken or beef), the paired wine (red or white), and the cake flavor (chocolate

or vanilla). How should the planner proceed? On the one hand, they could request each

attendee’s (agent’s) full preference ranking over the 2p alternatives, for p binary issues.

However, aggregating these preferences is computationally prohibitive and eliciting them

imposes a high cognitive cost for agents. On the other hand, the planner could solicit only

agents’ votes and decide each issue independently. Although simpler, this option admits

multiple election paradoxes whereby agents can collectively select each of their least favored

outcomes. For example, suppose three agents prefer (1, 1, 0), (1, 0, 1), and (0, 1, 1) first,

respectively on the issues, and all prefer (1, 1, 1) last. Then the agents select (1, 1, 1) by

majority rule on each issue independently (Lacy & Niou, 2000). A third approach is to

decide the issues in sequence and have agents vote for their preferred alternative amongst

the current issue given the previously chosen outcomes. Still, the joint outcome may depend

on the voting agenda and agents may be uneasy voting on the current issue if their preference

depends on the outcomes of later issues (Conitzer et al., 2009).

In this chapter, we study iterative voting (IV) as a different yet natural method for

deciding multiple issues (Meir et al., 2010). We elicit agents’ most preferred alternatives and,

given information about others’ votes, allow agents to update their reports before finalizing

the group decision. This approach combines the efficiency of simultaneous voting with the

dynamics of sequential voting, thus incorporating information about agents’ lower-ranked

preferences without directly eliciting them. Like the former approach, agents only report

their most preferred alternative. Like the latter approach, agents only update one issue at a

time but are unrestricted in the order of improvements.

Portions of this chapter have previously appeared as: Kavner, J., Meir, R., Rossi, F., & Xia, L. (2023,
August). Convergence of multi-issue iterative voting under uncertainty. In Proceedings of the 32nd interna-
tional joint conference on artificial intelligence (pp. 2783-2791). ©2023 IJCAI.
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IV is an effective framework for its adaptability to various information and behavioral

schemes. First, we consider agents with full information about the real vote profile, such as

in online Doodle polls (Zou et al., 2015), who update their votes to the best response of all

others. Second, we consider agents with access only to a noisy signal about the real vote

profile, such as from imprecise opinion polls (Reijngoud & Endriss, 2012) or latency in a

networked system if they can only periodically retrieve accurate vote counts. These agents

update their votes to those that locally dominate their prior reports – votes that achieve

weakly better outcomes for all possible vote profiles and strictly better outcomes for some

possible vote profile (Meir et al., 2014). We ask two primary questions:

1. Under what conditions does multi-issue IV converge?

2. How does introducing and increasing uncertainty affect the rate of convergence?

Prior work in single-issue IV offers mixed answers, as iterative plurality and veto have

strong convergence guarantees but many other rules do not (Meir et al., 2017). This leaves us

with mixed hope in the multi-issue plurality case, and if so, that it can solve other problems

like multiple election paradoxes. Furthermore, in contrast to prior work, uncertainty for

multiple issues plays a double role. First, like the single-issue case, agents consider themselves

as possibly pivotal on any issue that is sufficiently close to a tie. Second—and this part is

new—agents may be uncertain whether changing their vote on an issue would improve or

degrade the outcome, as this may depend on the outcomes of other uncertain issues.

4.1.1 Our Contribution

On the conceptual side, we introduce a novel model that synthesizes prior work in local

dominance strategic behavior, iterative plurality voting, and simultaneous voting over mul-

tiple issues. This generalized model naturally captures both types of uncertainty discussed

above.

On the technical side, we first show that IV with or without uncertainty may not con-

verge. We then present two model refinements that prove sufficient to guarantee convergence

for binary issues: restricting agent preferences to have O-legal preferences and alternating

uncertainty, in which agents are more certain about the current issue than others. The former

converges because agents’ preferences on issues are not interdependent; the latter because

fewer preference rankings yield valid improvement steps. These convergence results do not
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extend to the multi-alternative issues setting, as IV may cycle if agents have partial order

preference information. Our convergence results for binary issues also hold for a nonatomic

variant of plurality IV in which agents are part of a large population and arbitrary subsets of

agents may change their vote simultaneously, establishing more general convergence results.

This is discussed in Section 4.5.

We conclude with empirical evidence corroborating our findings that introducing uncer-

tainty eliminates almost all cycles in IV for multiple binary issues. Our experiments further

suggest IV improves the quality of equilibrium vote profiles relative to their respective truth-

ful profiles, thus reducing multiple election paradoxes. Increasing uncertainty yields faster

convergence but degrades this welfare improvement.

4.2 Preliminaries

In this section, we extend the notation and concepts about social choice and iterative im-

provement dynamics from Chapter 2 to the multi-issue setting. Some concepts may be

reiterated in this context for completeness.

4.2.1 Multi-issue Social Choice

Basic model. Let P = {1, 2, . . . , p} be the set of p issues over the joint domain D =

×p
i=1D

i, where Di is the finite domain of alternatives for issue i. We call the issues binary

if Di = {0, 1} for each i ∈ P or multi-alternative otherwise. Each of n ∈ N agents is

endowed with a preference ranking Rj ∈ L(D), the set of strict linear orders over the

m =
∏p

i=1 |Di| alternatives. We call the collection of agents’ preferences P = (R1, . . . , Rn)

a preference profile and each agent’s most preferred alternative their truthful vote. A vote

profile a = (a1, . . . , an) ∈ Dn is a collection of votes, where aj ∈ (a1j , . . . , a
p
j) ∈ D collects

agent j’s single-alternative vote per issue. A resolute voting rule f : L(D)n → D maps vote

profiles onto a unique outcome. We call a ∈ D and ai ∈ Di for i ∈ P an alternative or

outcome synonymously.

Simultaneous plurality voting. A local voting rule, applied to each issue independently,

is simultaneous if issues’ outcomes are revealed to agents at the same time. It is sequential

according to the order O = {o1, . . . , op} if outcomes of each issue oi are revealed to agents
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prior to voting on the next issue oi+1 (Lacy & Niou, 2000). We focus on simultaneous

plurality voting and adapt the framework of Xia et al. (2011).

The plurality rule f i(a) applied to vote profile a on issue i only depends on the total

number of votes for each of its alternatives. We define the score tuple s(a) = (si(a))i∈P as

a collection of score vectors si(a) = (si(c; a))c∈Di
, which compose the score of a alternative

c ∈ Di as si(c; a) = |{j ≤ n : aij = c}|. We use the plurality rule f(a) = (f i(a))i∈P ∈ D,

where f i(a) = argmaxc∈Di
si(c; a), breaking ties lexicographically on each issue.

Let a−j denote the vote profile without agent j and (a−j, âj) the profile a by replacing

j’s vote with the prospective vote âj. Then s−j and s−j + âj denote corresponding adjusted

score tuples without j and upon replacing j’s vote. We may interchange s, s(a), and a for

ease of notation.

Preferential dependence. Whenever there are p ≥ 2 issues, agents have varying levels

of expressiveness about their preference rankings. First, note that given any two alternatives

c, c̃ ∈ D, agents can always answer whether they prefer c or c̃. Second, given two alternatives

ci, c̃i ∈ Di and the outcomes of all other issues besides i ∈ P , {fp}p∈P\{i}, agents can always

answer whether they prefer ci or c̃i. However, agents may have problems reporting their

preferences when solicited about specific issues if they are not given enough information

about issues’ outcomes. For instance, recall that for sequential voting, with respect to

an order O = {o1, . . . , op} over the issues, agents are given the outcomes of prior issues

{o1, o2, . . . , oi−1} and must subsequently report their votes over the alternatives Doi about

the issue oi (Lang & Xia, 2009). Agents whose preferences about Doi depend on the outcome

of an issue ok later in the order, k > i, may not be able to precisely report their votes. Rather,

only agents with O-legal preferences can report their votes for sequential voting rules. We

formalize the possibility of eliciting an agent’s preference over alternatives about a single

issue through the following definitions, due to Lang and Xia (2009).

Definition 4.1 (Conditional preferential independence). Let Q ⊊ P and {f q}q∈Q be out-

comes of those issues. The issue i ∈ P\Q is conditionally independent of the issues P\(Q∪
{i}) with respect to ranking R if and only if, given {f q}q∈Q, the relative ordering of alterna-

tives in Di is constant in R for any combination of outcomes {fp}p∈P\(Q∪{i}).

Definition 4.2 (O-legal preferences). Given an order O = {o1, . . . , op} over the issues,

the ranking R is called O-legal if ∀i ∈ P, oi is preferentially conditionally independent of
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oi+1, . . . , op given o1, . . . , oi−1. The preference profile P is O-legal if every ranking is O-legal

for the same order O; R is separable if it is O-legal for any order O.

Separable rankings have the advantage that agents may express their preferences on

individual issues and avoid multiple-election paradoxes, but it is a very demanding assump-

tion (Hodge, 2002; Lacy & Niou, 2000; Xia et al., 2011). Relaxing rankings to be O-legal

maintains representation compactness without permitting arbitrary preferential dependen-

cies.

Example 4.1. Consider p = 2 binary issues and n = 3 agents with preference profile

P = (R1, R2, R3) such that:

• R1 : (1, 0) ≻1 (0, 0) ≻1 (0, 1) ≻1 (1, 1);

• R2 : (1, 1) ≻2 (0, 0) ≻2 (0, 1) ≻2 (1, 0);

• R3 : (0, 0) ≻3 (0, 1) ≻3 (1, 0) ≻3 (1, 1).

The truthful vote profile a = ((1, 0), (1, 1), (0, 0)) consists of each agent’s most preferred

alternative. The score tuple is s(a) = {(1, 2), (2, 1)}, so the plurality outcome is f(a) = (1, 0).

Notice that R1 is O-legal for O = {2, 1}. That is, the agent always prefers 0 ≻ 1 on

the second issue, yet their preference for the first issue depends on f 2. Next, R3 is separable,

as the agent prefers 0 ≻ 1 on each issue independent of the other issue’s outcome. Third,

R2 is neither separable nor O-legal for any O.

Finally, notice that agent 2 can improve the outcome for themselves by voting for

â2 = (0, 1) instead of a2 = (1, 1). The adjusted score tuple is s−2 = {(1, 1), (2, 0)}, so

s−2 + â2 = {(2, 1), (2, 1)} and f(s−2 + â2) = (0, 0) ≻2 (1, 0) = f(a).

4.2.2 Improvement Dynamics

We implement the iterative voting (IV) procedure introduced by Meir et al. (2010)

for the plurality choice rule f and refined for uncertainty by Meir et al. (2014) and Meir

(2015). Most definitions carry-over from the single-issue setting, introduced in Chapter 2,

to the multi-issue setting of this chapter. However, there are notable differences in agents’

improvement dynamics due to our relaxations of implementing IV over multiple issues and

of what information agents have access to when performing their updates. In this chapter,

we study two response functions: best response (BR) dynamics, where agents know the
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real score tuple s(a), and local dominance improvement (LDI) dynamics, where agents have

uncertainty over s(a). For both dynamics, we restrict agents to only changing their vote on a

single current issue i ∈ P per round, as determined by the scheduler. We do not necessarily

assume IV begins from the truthful vote profile, unlike the other chapters. We therefore

have the following form of convergence, as described by Kukushkin (2011), Monderer and

Shapley (1996b), and Milchtaich (1996).

Definition 4.3. An IV dynamic has the restricted-finite improvement property if every

improvement sequence is finite from any initial vote profile for a given response function.

Under BR dynamics, each agent j has full information about s(a(t)) and chooses the

vote âj that yields the best possible outcome f(a(t + 1)) in the resulting vote profile with

respect to their preferences Rj, subject to changing one issue i ∈ P at a time. This is

formally put, as follows.

Definition 4.4 (Direct best response). Given the vote profile a, gj(a) = âj which yields

agent j’s most preferred outcome of the set {f(a−j, ãj) : ãij ∈ Di, ãkj = akj ∀k ̸= i} such

that the update is direct (i.e., âij = f i(ai−j, â
i
j)). If there is no change in the outcome, then

gj(a) = aj.

LDI dynamics are based on the notions of strict uncertainty and local dominance

(Conitzer et al., 2011; Reijngoud & Endriss, 2012). Let S ⊆ ×p
i=1N|Di| be a set of score

tuples that, informally, describes agent j’s uncertainty about the real score tuple s(a). An

LDI step to a prospective vote âj is one that is weakly better off than their original aj for

every v ∈ S and strictly better off for some v ∈ S, as follows.

Definition 4.5. The vote âj S-beats aj if there is at least one score tuple v ∈ S such that

f(v + âj) ≻j f(v + aj). The vote âj S-dominates aj if both (I) âj S-beats aj; and (II) aj

does not S-beat âj.

Definition 4.6 (Local dominance improvement). Given the vote profile a and agent j, let

LDi
j be the set of votes that S-dominate aj, only differ from aj on the ith issue, and are

not themselves S-dominated by any other vote differing from aj only on the ith issue. Then

gj(a) = aj if LDi
j = ∅ and âj ∈ LDi

j otherwise.

This definition distinguishes from (weak) LDI in Meir (2015) in that agents may change

their votes consecutively but only on different issues. Note that S-dominance is transitive
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and antisymmetric, but not complete, so an agent j may not have an improvement step. To

fully define the model, we need to specify S for every a. For example, if S = {s(a−j)} and

each j has no uncertainty about the real score tuple, then LDI coincides with BR and an

equilibrium coincides with Nash equilibrium. Therefore, LDI broadens BR dynamics.

4.2.3 Distance-based Uncertainty

Agents in the single-issue model construed their uncertainty sets using distance-based

uncertainty, in which all score vectors close enough to the current profile were believed

possible (Meir, 2015; Meir et al., 2014). We adapt this to the multi-issue setting by assuming

agents uphold alternative-wise distance-based uncertainty over score vectors for each issue

independently.

For any issue i ∈ P , let δ(si(a), s̃i(a)) be a distance measure for score vectors for

any vote profile a. This measure is alternative-wise if it can be written as δ(si(a), s̃i(a)) =

maxc∈Di δ̂(si(c; a), s̃i(c; a)) for some monotone function δ̂. For example, the ℓ∞ metric, where

δ̂(s, s̃) = |s− s̃|, is alternative-wise.

Given the vote profile a and issue i ∈ P , we model agent j’s uncertainty about the

adjusted score vector si−j by the uncertainty score set S̃i
−j(s; r

i
j) =

{
vi : δ(vi, si−j) ≤ rij

}
with

an uncertainty parameter rij. That is, given other votes ai−j, agent j is not sure what the

real score vector is within S̃i
−j(s; r

i
j). We define S̃−j(s, rj) = ×p

i=1S̃
i
−j(s; r

i
j) for rj = (rij)i∈P ,

and drop the parameters if the context is clear.

Example 4.2. Consider p = 2 binary issues and n = 13 agents with the vote profile a

defined such that:

• seven agents vote (0, 0);

• three agents vote (1, 1);

• two agents vote (1, 0);

• the last agent, which we label j, votes aj = (0, 1).

The score tuple is then s(a) = {(8, 5), (9, 4)}, so f(a) = (0, 0).

Under BR dynamics, j has complete information about s(a) and can compute s−j(a) =

{(7, 5), (9, 3)}. Clearly, no prospective vote âj can change the outcome f(a−j, âj).
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Under LDI dynamics, agent j has incomplete information about s(a). Suppose that j

uses the ℓ∞ uncertainty metric with uncertainty parameters (r1j , r
2
j ) = (1, 1). By the above

definitions, the uncertainty score set for issue i ∈ {1, 2} is

S̃i
−j(s; r

i
j) = {vi : |vi − si−j| ≤ rij} = {(6, 7, 8)× (4, 5, 6)} × {(8, 9, 10)× (2, 3, 4)} (4.1)

which is a bandwidth of rij = 1 around each real score si−j. Finally, consider the prospective

vote âj = (1, 1). Then

S̃−j + âj = {(6, 7, 8)× (5, 6, 7)} × {(8, 9, 10)× (3, 4, 5)} (4.2)

so that {f(v + âj) : v ∈ S̃−j} = {(0, 0), (1, 0)}.

4.3 Convergence Under Best Response Dynamics

Given the vote profile a, consider agent j changing their vote aj on issue i to the prospective

vote âj. Under BR dynamics, without uncertainty, j changes their vote only if they can

feasibly improve the outcome f(a) to one more favorable with respect to Rj. This happens

under two conditions. First, j must be pivotal on the ith issue, meaning that changing their

vote will necessarily change the outcome. Second, j must be preferential to change i by voting

for âij over aij given the outcomes of the other issues P\{i}. Agent j’s preferences are always

well-defined since they know every issue’s real outcome. Thus BR dynamics behave similar

to the single-issue setting, which we recall converges (Meir et al., 2010). However, in the

multi-issue setting, agents’ preferences on each issue may change as other issues’ outcomes

change. This entails the possibility of a cycle, as declared in the following proposition and

proved with the subsequent example.

Proposition 4.1. BR dynamics for multiple issues may not converge, even if issues are

binary.

Example 4.3. Let there be p = 2 binary issues and n = 3 agents without uncertainty and

the following preferences:

• R1 : (0, 1) ≻1 (1, 1) ≻1 (1, 0) ≻1 (0, 0);

• R2 : (0, 0) ≻2 (0, 1) ≻2 (1, 1) ≻2 (1, 0);
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Table 4.1: Agents’ votes for a(0) (truthful), a(1), a(2), and a(3).

Agent j aj(0) aj(1) aj(2) aj(3)

1 (0, 1) (1, 1) (1, 1) (0, 1)
2 (0, 0) (0, 0) (0, 1) (0, 1)
3 (1, 0) (1, 0) (1, 0) (1, 0)

f(a) (0, 0) (1, 0) (1, 1) (0, 1)

• R3 : (1, 0) ≻3 (1, 1) ≻3 (0, 0) ≻3 (0, 1).

Table 4.1 demonstrates a cycle via BR dynamics from the truthful vote profile a(0).

The order of improvement steps is j = (1, 2, 1, 2). No other BR step is possible from any

profile in the cycle, so no agent scheduler can lead to convergence.

4.4 Convergence Under Local Dominance Improvement Dynamics

LDI dynamics broadens best response since agents’ uncertainty score sets contain the true

score tuple, by definition, but it is initially unclear how uncertainty affects the possibility of

cycles. Seemingly, greater uncertainty over an agent’s current issue increases the possibility

of having LDI steps over that issue, whereas greater uncertainty over other issues decreases

this possibility. We demonstrate in Section 4.4.1 below that this relationship holds only for

binary issues, but it does not eliminate the possibility of cycles, as declared in the following

proposition and proved with Example 4.4.

Proposition 4.2. LDI dynamics with multiple issues may not converge, even if agents have

the same constant uncertainty parameters and issues are binary.

Example 4.4. Consider p = 2 binary issues and n = 13 agents who each use the ℓ∞ uncer-

tainty metric with common fixed uncertainty parameters (r1j , r
2
j ) = (1, 2) ∀j ≤ n. Suppose

that agents’ preferences abide by the following four types:

• (Type 1) three agents have rankings (0, 1) ≻ (1, 1) ≻ (1, 0) ≻ (0, 0);

• (Type 2) five agents have rankings (0, 0) ≻ (0, 1) ≻ (1, 1) ≻ (1, 0);

• (Type 3) four agents have rankings (1, 0) ≻ (1, 1) ≻ (0, 0) ≻ (0, 1);

• (Type 4) one agent has ranking (1, 1) ≻ (1, 0) ≻ (0, 1) ≻ (0, 0).



53

Table 4.2: Agents’ votes for a(0) (truthful), a(3), a(8), and a(11).

Agent Type j aj(0) aj(3) aj(8) aj(11)

1 (0, 1) (1, 1) (1, 1) (0, 1)
2 (0, 0) (0, 0) (0, 1) (0, 1)
3 (1, 0) (1, 0) (1, 0) (1, 0)
4 (1, 1) (1, 1) (1, 1) (1, 1)

There is a cycle passing through the four vote profiles a(0) (which is truthful), a(3),

a(8), and a(11) listed in Table 4.2, in which every agent of the same type has the same vote.

There are four parts of the cycle between these profiles:

• from a(0)− a(3), all agents of Type 1 make LDI steps on the first issue (0, 1)
1−→ (1, 1);

• from a(3)−a(8), all agents of Type 2 make LDI steps on the second issue (0, 0) 2−→ (0, 1);

• from a(8)−a(11), all agents of Type 1 make LDI steps on the first issue (1, 1)
1−→ (0, 1);

• from a(11)− a(16), all agents of Type 2 make LDI steps on the second issue (0, 1)
2−→

(0, 0), where a(16) = a(0).

Notice that no agent of Types 3 or 4 make LDI steps, as they vote truthfully and have

separable preferences. We claim these are valid LDI steps as follows. For any vote profile in

{a(0), a(1), a(2)}, let t be the number of Type 1 agents who have made LDI steps. Then

s(a(t)) = {(8− t, 5 + t), (9, 4)} (4.3)

and for any agent j of Type 1 who has not made their first LDI step yet,

s−j = {(7− t, 5− t), (9, 3)}. (4.4)

This entails

S̃1
−j = {(6− t, 7− t, 8− t)× (4 + t, 5 + t, 6 + t)}; (4.5)

S̃2
−j = {(7, 8, 9, 10, 11)× (2, 3, 4, 5, 6)}. (4.6)

Define âj = (1, 1). Then ∀t ∈ {0, 1, 2},

s̃ = {(6, 6), (9, 4)} ∈ S̃−j(a(t); rj) (4.7)
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so that

f(s̃+ âj) = (1, 0) ≻j (0, 0) = f(s̃+ aj). (4.8)

This entails that âj S̃−j-beats aj. It is easy to see that aj does not S̃−j-beat â and that â is

not S̃−j-dominated since issues are binary. Thus LD1
j = {âj}.

The other LDI steps follow similar reasoning, yielding the cycle presented in the table.

It can be verified that this represents all possible LDI sequences from the truthful vote profile.

This finding contrasts convergence guaranteed in the single-issue setting with uncer-

tainty (Meir, 2015). After explaining the effect of uncertainty on LDI steps, we conclude the

section with two model refinements that prove sufficient to guarantee convergence for binary

issues: O-legal preferences and a form of dynamic uncertainty.

4.4.1 Effect of Uncertainty on LDI Steps

Given the vote profile a among binary issues, consider agent j changing their vote aj

on issue i to the prospective vote âj. Under LDI dynamics, j changes their vote only if two

conditions hold, similar to BR dynamics: if (I) they believe they may be pivotal on issue i

and (II) they can improve the outcome with respect to Rj. Notice that if the agent is pivotal

on the binary issue i with respect to an uncertainty parameter rij, it is pivotal with respect

to all larger parameters r̃j : r̃ij > rij over i. Furthermore, recall that j’s preference over

alternatives of issue i may depend on the outcomes of other issues, which j may be uncertain

about. It stands to reason that the more uncertainty j has over other issues, the less clarity

the agent has over their own preference for issue i’s alternatives.

We realize the following monotonic relationships between the magnitude of agents’

uncertainty parameters and whether they have an LDI step over an issue: increasing uncer-

tainty on issue i (i) may only add LDI steps over issue i, but (ii) may only eliminate LDI

steps over each other issue. This is stated technically in the following proposition. First, we

define three uncertainty parameters αj, rj, and βj such that:

• rj and αj only differ on issue k ̸= i such that rkj < αk
j ;

• rj and βj only differ on issue i such that rij < βi
j.

For each tj ∈ {αj, rj, βj}, let LDi
j(tj) denote agent j’s possible LDI steps as in Definition

4.6 with respect to the uncertainty parameter tj.
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Proposition 4.3. Given binary issues, consider agent j changing their vote on issue i in

vote profile a with one of three uncertainty parameters as defined above: αj, rj, or βj. Then

LDi
j(αj) ⊆ LDi

j(rj) ⊆ LDi
j(βj).

The relationship LDi
j(rj) ⊆ LDi

j(βj) characterizes point (i) above, in that increas-

ing uncertainty over issue i only adds LDI steps on issue i. Meanwhile, the relationship

LDi
j(αj) ⊆ LDi

j(rj) characterizes point (ii) above, in that increasing uncertainty over issue k

only removes LDI steps over issue i. The proposition is proved in two parts by demonstrating

that if a vote âj S̃−j(a;αj)-dominates aj, then it must hold that âj S̃−j(a; rj)-dominates aj;

likewise, this implies that âj S̃−j(a; βj)-dominates aj. Each of these relationships arise as

a result of S̃−j(a; rj) ⊆ S̃−j(a;αj) and S̃−j(a; rj) ⊆ S̃−j(a; βj), which result from how we

defined αj, rj, and βj. This is sufficient to prove since issues are binary. The full proof is as

follows.

Proof. We prove the theorem by proving a weaker claim that holds for the more general

multi-alternative issues setting. Specifically, for each tj ∈ {αj, rj, βj}, let Di
j(tj) denote the

set of votes that S-dominate aj and only differ on the ith issue, where S = S̃−j(a; tj). We

show that Di
j(αj) ⊆ Di

j(rj) ⊆ Di
j(βj). The theorem follows because LDi

j(tj) = Di
j(tj) for

binary issues.

Step 1: Di
j(αj) ⊆ Di

j(rj). Without loss of generality let Di
j(rj) ̸= ∅. Suppose âj ∈ Di

j(αj)

so that âj S̃−j(a;αj)-dominates aj. We prove that âj S̃−j(a; rj)-dominates aj by the 2-part

definition of S-dominate. By definition, we have that:

1. ∃s̃ ∈ S̃−j(a;αj) such that f(s̃+ âj) ≻j f(s̃+ aj), and

2. ∄s̃′ ∈ S̃−j(a;αj) such that f(s̃′ + âj) ≺j f(s̃
′ + aj).

First, by construction of the uncertainty sets,

S̃k
−j(a; rj) ⊆ S̃k

−j(a;αj) and S̃h
−j(a; rj) = S̃h

−j(a;αj)

for all h ̸= k; therefore S̃−j(a; rj) ⊆ S̃−j(a;αj). It follows that

∄s̃′ ∈ S̃−j(a; rj) such that f(s̃′ + âj) ≺j f(s̃
′ + aj)
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by point (2) above. Hence, aj does not S̃−j(a; rj)-beat âj.

Second, define a score tuple ṽ such that ṽh = s̃h for each h ̸= k and ṽk ∈ S̃k(a; rj)

arbitrarily. It is the case that ṽ ∈ S̃(a; rj) since S̃h
−j(a; rj) = S̃h

−j(a;αj) for all h ̸= k. Since

f i(s̃+ âj) ̸= f i(s̃+ aj) and fh(s̃+ âj) = fh(s̃+ aj)

for all h ̸= i, we have f(ṽ + âj) ̸= f(ṽ + aj). It follows from the first above argument that

f(ṽ + âj) ≻j f(ṽ + aj).

Therefore âj S̃−j(a; rj)-beats aj and âj ∈ Di
j(rj).

Step 2: Di
j(rj) ⊆ Di

j(βj). Without loss of generality let Di
j(βj) ̸= ∅. Suppose âj ∈ Di

j(rj),

so that âj S̃−j(a; rj)-dominates aj. We prove that âj S̃−j(a; βj)-dominates aj by the 2-part

definition of S-dominate. By definition, we have that:

1. ∃s̃ ∈ S̃−j(a; rj) such that f(s̃+ âj) ≻j f(s̃+ aj), and

2. ∄s̃′ ∈ S̃−j(a; rj) such that f(s̃′ + âj) ≺j f(s̃
′ + aj).

By construction of the uncertainty sets,

S̃i
−j(a; rj) ⊆ S̃i

−j(a; βj) and S̃h
−j(a; rj) = S̃h

−j(a; βj)

for all h ̸= i; therefore S̃−j(a; rj) ⊆ S̃−j(a; βj). It immediately follows that s̃ ∈ S̃−j(a; βj), so

âj S̃−j(a; βj)-beats aj.

Furthermore, ∄s̃′ ∈ S̃−j(a; βj) such that f(s̃′ + âj) ≺j f(s̃′ + aj) by point (2) above.

Hence, aj does not S̃−j(a; βj)-beat âj.

Therefore âj ∈ Di
j(βj), concluding our proof.

We find that this relationship between agents’ uncertainty parameters and their LDI

steps is not monotonic in the generalized case of multi-alternative issues, as Example 4.5

demonstrates that different sets of prospective votes LDi
j may not be comparable for an

agent j with different uncertainty parameters even from the same vote profile a.

Example 4.5. The purpose of this example is to demonstrate that, when issues have multiple

alternatives each, there may not be a monotonic relationship between an agent’s possible LDI

steps and the magnitude of their uncertainty parameters. Specifically, consider p = 2 issues
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with four alternatives each, labeled {Ai, Bi, Ci, Di} for i ≤ 2, and n = 21 agents. Let agent

j have ℓ∞ uncertainty metric and a O = (2, 1)-legal preference ranking Rj that satisfies:

• If f 2 = A2, then over issue 1: D1 ≻j A
1 ≻j B

1 ≻j C
1;

• If f 2 = B2, then over issue 1: B1 ≻j A
1 ≻j D

1 ≻j C
1;

• If f 2 = C2, then over issue 1: A1 ≻j B
1 ≻j D

1 ≻j C
1.

The remaining definition of Rj does not matter to illustrate this example. Suppose aj =

(D1, C2) in vote profile a with score tuple s(a) = {(6, 6, 4, 5), (5, 7, 9, 0)}.

Part 1: increasing r1j .

Step 1. If rj = (0, 0) then it is easy to see that agent j has no BR steps: the unique winner

is f(a) = (A1, C2) and, although j can make B1 win, they prefer A1 ≻ B1 when f 2(a) = C2.

Hence LD1
j = ∅.

Step 2. If rj = (1, 0) then

S̃1
−j = {(5, 6, 7)× (5, 6, 7)× (3, 4, 5)× (3, 4, 5)} (4.9)

First, when

s̃ = {(5, 5, 5, 5), (5, 7, 9, 0)} ∈ S̃−j (4.10)

then j prefers to vote for âj = (A1, C2) over aj Hence âj S̃−j-beats aj.

Second, it is easy to see that there is no s̃′ ∈ S̃−j for which it is preferable for j to vote

for either aj or â′j = (B1, C2) rather than âj. This follows since if f 1(s̃′ + aj) = B1 then

f 1(s̃′ + âj) ∈ {A1, B1} and if f 1(s̃′ + aj) = A1 then f 1(s̃′ + âj) = A1. The same holds for â′j.

Thus j cannot achieve better by voting for aj or â′j than âj for any s̃′ ∈ S̃−j. Hence, âj is

not S̃−j-beaten, so LD1
j = {(A1, C2)}.

Step 3. Now consider rj = (2, 0). Then

S̃1
−j = {(4, 5, 6, 7, 8)× (4, 5, 6, 7, 8)× (2, 3, 4, 5, 6)× (2, 3, 4, 5, 6)} (4.11)
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Since

s̃ = {(5, 5, 5, 5), (5, 7, 9, 0)} ∈ S̃−j (4.12)

then âj still S̃−j-beats aj. However, as

s̃′′ = {(4, 4, 6, 6), (5, 7, 9, 1)} ∈ S̃−j (4.13)

we have

f 1(s̃′′ + aj) = (D1, C2) ≻j (C
1, C2) = f 1(s̃′′ + âj) (4.14)

so aj S̃−j-beats âj. Hence, LD1
j = ∅.

Part 2: increasing r2j .

Step 1. Recall that when rj = (1, 0), we found that LD1
j = {(A1, C2)}.

Step 2. If rj = (1, 1), then

S̃1
−j = {(5, 6, 7)× (5, 6, 7)× (3, 4, 5)× (3, 4, 5)}; (4.15)

S̃2
−j = {(4, 5, 6)× (6, 7, 8)× (7, 8, 9)× (0, 1)}. (4.16)

For

s̃ = {(5, 5, 5, 5), (4, 7, 8, 3)} ∈ S̃−j (4.17)

then j prefers to vote for âj rather than â′j = (B1, C2), whereas for

s̃′ = {(5, 5, 5, 5), (4, 8, 7, 3)} ∈ S̃−j (4.18)

it is preferable for j to vote for â′j rather than âj. Then both âj and â′j S̃−j-dominate aj but

neither are S̃−j-dominated. Therefore LD1
j = {(A1, C2), (B1, C2)}.

Step 3. If rj = (1, 2), then

S̃2
−j = {(3, 4, 5, 6, 7)× (5, 6, 7, 8, 9)× (6, 7, 8, 9, 10)× (0, 1, 2)} (4.19)
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For

s̃′′ = {(5, 5, 5, 5), (7, 5, 6, 0)} ∈ S̃−j (4.20)

it is preferable for j to vote for aj rather than âj or â′j, so neither âj nor â′j S̃−j-dominate

aj. Thus LD1
j = ∅.

4.4.2 Strategic Responses and O-legal Preferences

We are motivated by observing in Examples 4.3 and 4.4 that cycles appear due to

agents’ interdependent preferences among the issues. Specifically, in Table 4.1, a cycle is

formed as agents 1 and 2 switch their preferences among alternatives for one issue when

the other issue changes outcomes, and this holds for opposite issues. It therefore stands to

reason that eliminating interdependent preferences by fixing agents with a O-legal preference

profile would guarantee convergence.

We prove that this is the case in Theorem 4.1. To state this result technically, we first

introduce a characterization about agents’ strategic responses, extending a lemma from Meir

(2015) to the multi-issue setting.

Definition 4.7. Agent j believes a alternative c on issue i is a possible winner if there is

some score vector where c wins:

W i
j (a) = {c ∈ Di : ∃v ∈ S̃−j(a; rj) s.t. f i(v + aj) = c}. (4.21)

In contrast, j calls c a potential winner if there is some score vector in which they can vote

to make c win:

H i
j(a) = {c ∈ Di : ∃v ∈ S̃−j(a; rj) and âj

s.t. âij = c, âkj = akj ∀k ̸= i and f i(v + âj) = c}.
(4.22)

The set of real potential winners is denoted:

H i
0(a) = {c ∈ Di : f i(s−j + âj) = c where âij = c, âkj = akj ∀k ̸= i}. (4.23)

By this definition, W i
j (a) ⊆ H i

j(a). 7 Denote by W−i(a; rj) = ×k∈P\{i}W
k
j (a) the

7Without uncertainty, Hi
j(a) (or Hi

j(a) ∪ {aij} if adding a vote to aij makes it win) is also known as the
chasing set (excluding f(a)) (Rabinovich et al., 2015) or potential winner set (including f(a), in Chapter 3)
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set of possible winning alternatives on all issues besides i, from agent j’s perspective with

uncertainty parameter rj.

Lemma 4.1. Consider an LDI step aj
j−→ âj over issue i from vote profile a by agent j with

uncertainty parameter rj. Then either:

(1) aij /∈ H i
j(a), or

(2) for every combination of possible winners in W−i(a; rj), either

(2a) aij ≺j b for all b ∈ H i
j(a), or

(2b) rij = 0, {aij, âij} ⊆ H i
0(a) and âij ≻j a

i
j.

Proof. The proof directly follows that of Lemma 3 in Meir (2015). Suppose that aij, b ∈ H i
j(a)

and aij ≻j b whenever some combination of possible winners (c1, c2, . . . , ci−1, ci+1, . . . , cp) ∈
W−i(a; rj) wins (i.e., (1) and (2a) are violated). Assume first that âij /∈ H i

0(a). By Lemma

2 of Meir (2015), ∃s̃ ∈ S̃−j(a; rj) such that:

• aij, b have maximal score (possibly with other alternatives), strictly above âij, in s̃i;

• for each k ̸= i, s̃k is such that fk(s̃+ aj) = ck wins.

W.l.o.g. assume b is prior to aij in tie-breaking (otherwise adjust s̃ so that f i(s̃) = b). Thus

f i(s̃ + aj) = aij while f i(s̃ + âj) = b. Since aij ≻j b given s̃, this implies aj S̃−j(a; rj)-beats

âj.

The remaining case is where âij ∈ H i
0(a) and aij ≻j â

i
j whenever some

(c1, c2, . . . , ci−1, ci+1, . . . , cp) ∈ W−i(a; rj)

wins. Then in s̃ where aij, â
i
j are tied and (ck)k∈P\{i} wins, it is better for j to vote for ai.

In both cases we get âj /∈ LDi
j, which is a contradiction.

Theorem 4.1. LDI dynamics converge over binary issues when all agents have O-legal

preferences for the common order O.

on issue i. Hi
j(a) coincides with Meir et al. (2014) and Meir (2015)’s definition of possible winner “Wj(s).”
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Proof. Fix an initial vote profile a(0). Suppose for contradiction that there is a cycle among

the vote profiles C = {a(t1), . . . , a(tT )}, where a(tT + 1) = a(t1) and a(t1) is reachable from

a(0) via LDI dynamics. Let i be the highest order issue in O for which any agent changes

their vote in C.
Let t∗ ∈ [t1, tT ) be the first round that some agent j takes an LDI step on issue i,

where aj
j−→ âj from vote profile a(t∗); let t∗∗ ∈ (t∗, tT ] be the last round that j switches their

vote on i back to aij. It must be the case that aij ∈ H i
j(a(t

∗)), since issues are binary and

otherwise, |H i
j(a(t

∗))| = 1 and j would not have an improvement step. Hence by Lemma 4.1,

âij ≻j a
i
j for every combination of possible winners in W−i(a(t∗); rj). Likewise, on round t∗∗,

aij ≻j â
i
j for every combination of possible winners in W−i(a(t∗∗); rj). Thus for some issue k

and outcomes x, y ∈ {0, 1}, x ̸= y, we have W k
j (a(t

∗)) = {x} and W k
j (a(t

∗∗)) = {y}.
Since j has O-legal preferences, k must be prior to issue i in the order O. However,

no agent changed their vote on issue k between rounds t∗ and t∗∗ so it must be that x ∈
W k

j (a(t
∗∗)), even if j’s uncertainty parameters changed. This forms a contradiction, so no

such cycle can exist.

The intuition behind Theorem 4.1 is that as an LDI sequence develops, there is some

“foremost” issue i in which no LDI step takes place on any issue prior to i in the order O.

Agents’ relative preferences for the alternatives in i are fixed because their preferences are

O-legal: score vectors for issues prior to i in O do not change, while scores of issues afterward

do not affect agents’ preferences for i. Hence, agents’ improvement steps over the issue i

converge, whereas any cycle must have a sub-sequence of vote profile whose votes for issue i

cycles.

Note that O-legality is not necessary for convergence, as BR dynamics induced from

the truthful vote profile in Example 4.1 converge. Although O-legality is a strict assumption,

loosening this even slightly may lead to cycles. Example 4.3 demonstrates a cycle in which

each agent has an O-legal ranking but orders differ between agents.

Separately, the theorem describes that LDI steps over the issue i eventually terminate,

thus enabling each subsequent issue in O to converge. This seems to suggest that IV under

O-legal preferences is the same as truthful sequential voting, where agents vote for their

preferred alternative on each issue oi given the known previous outcomes of {o1, . . . , oi−1}
(Lang & Xia, 2009). Although the procedures’ outcomes could be the same, there are two

notable differences. First, the initial vote profile could have an issue whose outcome differs
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from the truthful sequential outcome and no agent has an improvement step on that issue.

Second, depending on the scheduler, agents may not have further improvement steps over

an issue intermediately before IV reaches the same outcome as in truthful sequential voting.

This convergence result does not extend to the multi-alternative case, as declared in

the following proposition and proved with the subsequent example.

Proposition 4.4. LDI dynamics may not converge for multiple issues, even if agents have

the same constant uncertainty parameters and O-legal preferences for the common order O.

Example 4.6. Consider p = 2 issues and n = 15 agents who each use the ℓ∞ uncertainty

metric with common fixed uncertainty parameters (r1j , r
2
j ) = (2, 1) ∀j ≤ n. Label the alter-

natives {0, 1} and {a, b, c, d} respectively. Agent j has preferences:

• if f 1 = 0 then b ≻j c ≻j a ≻j d on the second issue;

• otherwise c ≻j b ≻j a ≻j d.

Agent k always prefers a ≻k d ≻k b ≻k c on the second issue. These preferences are O-legal

for O = {1, 2}.
Define a(0) so s(a(0)) = {(7, 8), (3, 5, 5, 2)} and aj(0) = ak(0) = (0, a). There are four

LDI steps involved in this cycle:

1. (0, a)
j−→ (0, d);

2. (0, a)
k−→ (0, d);

3. (0, d)
j−→ (0, a);

4. (0, d)
k−→ (0, a).

We will prove that these are valid LDI steps in turn, demonstrating that (i) the new vote

S-beats the old vote, (ii) the old vote does not S-beat the new vote, and (iii) the new vote is

not S-dominated. For any alternative e ∈ {a, b, c, d}, denote the vote switching the second

alternative to e by ê = (0, e). Recall that ties are broken in lexicographical order.
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Step 1: s2(a(0)) = (3, 5, 5, 2). Since r2j = 1 and a2j = a, we have H2
j (a(0)) = {a, b, c}.

(i) Let s̃ = {(6, 8), (3, 4, 4, 2)} ∈ S̃−j(a(0); rj). Then f(s̃ + d̂) = (1, b) ≻j (1, a) =

f(s̃+ â), so d̂ S̃−j-beats â.

(ii) For any s̃ ∈ S̃−j(a(0); rj), we have that if f 2(s̃ + d̂) = a then f 2(s̃ + â) = a;

otherwise, if f 2(s̃+ â) ∈ {b, c} then f 2(s̃+ d̂) = f 2(s̃+ â). Hence, it is never preferable for

j to vote for â than d̂.

(iii) Neither b̂ nor ĉ S̃−j-dominate d̂ since for s̃′ = {(6, 8), (2, 4, 5, 2)} and s̃′′ =

{(7, 7), (2, 4, 4, 2)} it is preferable for j to vote for d̂ than b̂ and ĉ, respectively.

Step 2: s2(a(1)) = (2, 5, 5, 3). Since r2k = 1 and a2j = a, we have H2
k(a(1)) = {b, c, d}.

(i) Let s̃ = {(6, 8), (2, 4, 4, 4)} ∈ S̃−k(a(1); rk). Then f(s̃ + d̂) = (1, d) ≻k (1, b) =

f(s̃+ â), so d̂ S̃−k-beats â.

(ii) For any s̃ ∈ S̃−k(a(1); rk), we have that if f 2(s̃ + d̂) = d then f 2(s̃ + â) = b;

otherwise f 2(s̃+ d̂) = f 2(s̃+ â). Hence, it is never preferable for k to vote for â than d̂.

(iii) Neither b̂ nor ĉ S̃−k-dominate d̂ since for s̃ = {(6, 8), (2, 4, 4, 4)} (the same as in

(i)), it is preferable for j to vote for d̂ than either b̂ or ĉ.

Step 3: s2(a(2)) = (1, 5, 5, 4). Since r2j = 1 and a2j = d, we have H2
j (a(2)) = {b, c, d}.

(i) Let s̃ = {(6, 8), (1, 4, 4, 4)} ∈ S̃−j(a(2); rj). Then f(s̃ + â) = (1, b) ≻j (1, d) =

f(s̃+ d̂), so â S̃−j-beats d̂.

(ii) For any s̃ ∈ S̃−j(a(2); rj), we have that if f 2(s̃ + â) = d then f 2(s̃ + d̂) = d;

otherwise, if f 2(s̃+ d̂) ∈ {b, c} then f 2(s̃+ â) = f 2(s̃+ d̂). Hence, it is never preferable for

j to vote for d̂ than â.

(iii) Neither b̂ nor ĉ S̃−j-dominate â since for s̃′ = {(6, 8), (2, 4, 5, 3)} and s̃′′ =

{(7, 7), (2, 4, 4, 3)} it is preferable for j to vote for â than b̂ and ĉ, respectively.

Step 4: s2(a(3)) = (2, 5, 5, 3). Since r2k = 1 and a2j = d, we have H2
k(a(3)) = {a, b, c}.

(i) Let s̃ = {(6, 8), (3, 4, 4, 2)} ∈ S̃−k(a(3); rk). Then f(s̃ + â) = (1, a) ≻k (1, b) =

f(s̃+ d̂), so â S̃−k-beats d̂.

(ii) For any s̃ ∈ S̃−k(a(3); rk), we have that if f 2(s̃ + â) = a then f 2(s̃ + d̂) = b;

otherwise f 2(s̃+ â) = f 2(s̃+ d̂). Hence, it is never preferable for k to vote for d̂ than â.

(iii) Neither b̂ nor ĉ S̃−k-dominate â since for s̃ = {(6, 8), (3, 4, 4, 2)} (the same as in

(i)), it is preferable for j to vote for â than either b̂ or ĉ.
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Note that H2
j (a(0)) = {a, b, c} and H2

j (a(2)) = {b, c, d}. In contrast to the single-issue

setting (see Lemma 4 of Meir (2015)), agent j takes LDI steps to alternatives not in the

potential winning set. This results from j’s uncertainty over whether b or c is most-preferred,

even as both are preferable to a and d. Hence, we get the following corollary:

Corollary 4.1. LDI dynamics may not converge for plurality over a single issue for agents

with partial order preferences.

4.4.3 Alternating Uncertainty

In Proposition 4.3 we found that for binary issues, agents may have fewer LDI steps

over an issue i if that issue has less uncertainty and other issues have more. This suggests

that LDI steps occur from a relative lack of information about the current issue’s score vector

than for other issues. If agents can gather more information about the current issue before

changing their vote, thereby decreasing its uncertainty relative to other issues, then they

may not have an LDI step.

We therefore consider a specific form of dynamics over agents’ uncertainty parameters

where agents can gather this information and consider themselves pivotal only with respect to

the lowered uncertainty. Agents are assumed to subsequently forget this relative information

since it may be outdated by the time they change their vote again. We show in the following

theorem that this eliminates cycles.

Definition 4.8. (Alternating Uncertainty.) Fix two parameters rcj, roj for each agent j such

that rcj < roj . Define each agent j’s uncertainty parameters such that whenever they are

scheduled to change their vote on issue i, j’s uncertainty for i is rcj and for each other issue

k ̸= i the uncertainty is roj .

Theorem 4.2. Given binary issues, LDI dynamics converges for agents with alternating

uncertainty.

Proof. Fix an initial vote profile a(0) and uncertainty parameters rcj , roj for each agent j ≤ n.

Suppose for contradiction that there is a cycle among the vote profiles C = {a(t1), . . . , a(tT )},
where a(tT + 1) = a(t1) and a(t1) is reachable from a(0) via LDI dynamics. Without loss of

generality, suppose all issues and agents are involved in the cycle.

Consider the agent j with the largest roj = maxu≤n r
o
u. Let t∗ ∈ [t1, tT ) be the first round

that j takes an LDI step on issue i, where aj
j−→ âj from vote profile a(t∗); let t∗∗ ∈ (t∗, tT ]
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be the last round that j switches their vote on i back to aij. It must be the case that

aij ∈ H i
j(a(t

∗)), since issues are binary and otherwise, |H i
j(a(t

∗))| = 1 and j would not have

an improvement step. Hence by Lemma 4.1, âij ≻j aij for every combination of possible

winners in W−i(a(t∗); rj). Likewise, on round t∗∗, aij ≻j â
i
j for every combination of possible

winners inW−i(a(t∗∗); rj). Thus for some issue k and outcomes x, y ∈ {0, 1}, x ̸= y, we have

W k
j (a(t

∗)) = {x} and W k
j (a(t

∗∗)) = {y}.
Let t′ ∈ (t∗, t∗∗) be the first round since t∗ that some agent h changes their vote on

issue k. Then Hk
h(a(t

′)) = {0, 1}. Since W k
j (a(t

′)) = W k
j (a(t

∗)) = {x} ⊊ {0, 1} and distance

functions are alternative-wise, rch ≥ roj . This entails roh > roj by definition of alternating

uncertainty, which contradicts the assertion that j is the agent u with the largest rou.

This convergence result does not extend to the multi-alternative case, as Example 4.6

also covers this setting.

4.5 Nonatomic Model

Each of the results so far in this chapter were presented for binary issues and atomic agents,

where each agent contributes one unit of influence to the population of n votes. We find

that these results also generalize to a nonatomic variant of IV, in which agents are part of

a very large population and have negligible influence over the outcome. Our model extends

Meir (2015)’s iterative plurality voting for nonatomic agents to the multi-issue setting. Like

this setting, our convergence results permit arbitrary subsets of agents to change their vote

simultaneously. This differs from the finite case, which may not converge if multiple agents

change their votes simultaneously (Meir et al., 2010).

In this section, we provide the necessary definitions for the nonatomic model, using our

existing notation wherever possible. There are two major differences: (i) with the identify of

an agent, and (ii) with the uncertainty score set. First, rather than treating each agent j ≤ n

individually, there are groups of identical agents with ϵ mass for some small amount ϵ. “An

agent of type j” then refers to a representative agent in this group. Second, as each agent

has negligible influence, type j agents consider any score tuple in S̃(a; rj) possible; all agents

agree of the same type agree what real score tuples are possible. Lemma 4.1, Proposition 4.3,

and Theorems 4.1 and 4.2 are each upheld after applying this model redefinition. Similar

non-convergence results also apply for the nonatomic variant of IV.
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Basic notation. We do not have a finite set of agents. Rather, a preference profile Q ∈
∆(L(D)) is a distribution over rankings that specifies the fraction of agents Q(R) for each

R ∈ L(D). We only consider moves by subsets of agents since each agent has negligible

influence. To avoid infinite improvement sequence paths of sequentially smaller subsets of

agents, we assume there is a minimum resolution ϵ, such that sets of agents of the same type

with mass ϵ always move together (although in an uncoordinated manner; see Appendix IX

of Meir (2015)). We denote the collection of these 1/ϵ sets by J . Since all agents in set j ∈ J

are indistinguishable, we refer to “agent j” as an arbitrary agent in the set j. Then Rj ∈ L(D)

is the preference, rj is the uncertainty parameter, and aj is the vote of an arbitrary agent in

the set of vote profile a.

Winner determination. For any issue i ∈ P , we define the score vector induced by the

vote profile a as si(a) = (si(c; a))c∈Di , such that si(c; a) = |{f : aij = c}|ϵ ∈ [0, 1]. Winner

determination is exactly as in the atomic model with lexicographical tie-breaking.

Uncertainty and local dominance. We assume agents utilize the same alternative-wise

distance uncertainty as the atomic model. Like the atomic model, each agent of type j ∈ J

selected by the scheduler to change their vote has uncertainty parameters rj = (rij)i∈P . Unlike

the atomic model, agents have negligible influence in the score vector. Hence, they take their

uncertainty score sets with respect to the real score tuple: S̃i(a; rij) = {vi : δ(vi, si(a)) ≤ rij}.
As before, S̃(a; rj) = ×i∈P S̃

i(a; rij).

Given v ∈ S̃(a; rj), we define f(v+aj) to be the outcome an agent of type j expects by

voting for aj according to score vector s. That is, for each issue i, the extra vote aij decides

the winner if several alternatives are tied with maximal score in s, overriding the default

tie-breaker (see Appendix X of Meir (2015)).

The definition of a local dominance improvement (LDI) step for a nonatomic agent of

type j ∈ J from vote aj to âj on issue i then is the same as in the atomic model of Definitions

4.5 and 4.6, applying this redefinition and using S̃(a; rj) in lieu of S̃−j(a; rj). The response

function gj is also the same, except that its domain (all possible profiles) is now D|J | rather

than Dn. The definition of equilibrium does not change.
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4.6 Experiments

Our computational experiments investigate the effects of uncertainty and numbers of binary

issues and agents on LDI dynamics. Specifically, we ask how often truthful vote profiles are

themselves in equilibrium, how often LDI dynamics do not converge, and the path length to

equilibrium given that LDI dynamics do converge. Our inquiry focuses on whether cycles

are commonplace in practice even though convergence is not guaranteed.

We answer these questions for a broad cross-section of inputs, with n ∈ {7, 11, 15, 19}
agents, p ∈ {2, 3, 4, 5} binary issues, and r ∈ {0, 1, 2, 3} uncertainty that is constant for

all agents, issues, and rounds. We generate 10, 000 preference profiles for each combination

by sampling agents’ preferences uniformly and independently at random. We simulate LDI

dynamics from the truthful vote profile using a scheduler that selects profiles uniformly at

random from the set of valid LDI steps among all agents and issues. If there are no such

steps, we say the sequence has converged. Otherwise, we take 50, 000 rounds as a sufficiently

large stopping condition to declare the sequence has cycled.

Our results are presented in Figures 4.1 – 4.3 with respect to n. As uncertainty is

introduced and r increases, given p = 5, the availability of LDI steps diminishes significantly

from the initial vote profile (Figure 4.1) and throughout the dynamics to eliminate (almost)

all cycles and shorten the path length to convergence (Figure 4.3). Figure 4.2 presents the

number of initial vote profiles whose LDI sequence cycles for r = 0, given that they are not

themselves in equilibrium; only five of the sampled r ≥ 1 profiles’ sequences cycle. Therefore,

cycles with uncertainty are the exception rather than the norm.

These findings corroborate our theoretical analysis. As uncertainty increases, more

issues are perceived by agents to have more than one possible winner. Since issues are inter-

dependent for many preference rankings, fewer agents have LDI steps. On the other hand,

as n increases, more agents have rankings without these interdependencies, thus increasing

the availability of LDI steps.

As an additional inquiry, we studied how IV affects the quality of outcomes by compar-

ing the social welfare of equilibrium to truthful vote profiles, measured by the percent change

in Borda welfare. Recall that the Borda utility of outcome a for ranking R is 2p minus the

index of a’s position in R; the Borda welfare is the sum of utilities across agents. We find

in Figure 4.4 that IV improves average welfare, but at a rate decreasing in r. This finding
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Figure 4.1: Percentage of truthful vote profiles not in equilibrium as n
increases.

agrees with experiments by Bowman et al. (2014) and Grandi et al. (2022), suggesting that

IV may reduce multiple-election paradoxes by helping agents choose better outcomes. How-

ever, further work will be needed to generalize this conclusion, as it contrasts experiments

of single-issue IV by Meir et al. (2020) and Koolyk et al. (2017).
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Figure 4.2: Number of truthful vote profiles whose LDI sequences cycle as n
increases.

Figure 4.3: Average number steps for LDI sequences to converge as n increases;
log scale; 95% CI (too small to show).
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Figure 4.4: Average percent change in Borda welfare as n increases; 95% CI
(too small to show).



CHAPTER 5

AVERAGE-CASE ANALYSIS OF ITERATIVE VOTING

5.1 Introduction

It is well-known in social choice theory that people may misreport their preferences to im-

prove group decisions in their favor. Consider, for example, Alice, Bob, and Charlie deciding

on which ice cream flavor to order for a party, and Charlie prefers strawberry to chocolate

to vanilla. Given that Alice wants chocolate and Bob wants vanilla, Charlie would be better

off voting for chocolate than truthfully (i.e., strawberry), by which vanilla may win as the

tie-breaker. This form of strategic behavior is prolific in political science in narrowing the

number of political parties (see e.g., Duverger’s law (Riker, 1982)). Still, it is unclear what

effect strategic behavior has on the social welfare of chosen outcomes.

Iterative voting (IV) is one model which naturally describes agents’ strategic behavior

– in misreporting their truthful preferences – over time. After agents reveal their preferences

initially, they have the opportunity to repeatedly update their votes given information about

other agents’ votes, before the final decision is reached. Meir et al. (2010) first proposed

iterative plurality voting and identified many sufficient conditions for IV to converge. This

was followed up by a series of work examining various social choice rules, information and

behavioral assumptions, and settings to determine when, to what outcomes, and how fast

IV converges (see e.g., surveys by Meir (2017) and Meir (2018)).

While significant research has focused on the convergence and equilibrium properties

of IV, only a few papers have analyzed its economic performance. Simulations and lab

experiments by Reijngoud and Endriss (2012), Grandi et al. (2013), Bowman et al. (2014),

and Grandi et al. (2022) found that IV improves outcome quality, while Koolyk et al. (2017)

and Meir et al. (2020) found IV degrades quality. Given that strategic behavior is bound to

occur, by the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975), Brânzei

et al. (2013) investigated how bad the resulting outcome could be. Brânzei et al. (2013)

defined the additive dynamic price of anarchy (ADPOA) as the difference in social welfare

between the truthful vote profile and the worst-case equilibrium that is reachable via IV.

This notion is with respect to the worst-case preference profile, any scheduler of agents’

Portions of this chapter have previously appeared as: Kavner, J., & Xia, L. (2024). Average-case analysis
of iterative voting. arXiv. https://arxiv.org/abs/2402.08144.
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improvement steps, and a given voting rule, and it refines the well-known price of anarchy

(Roughgarden & Tardos, 2002) for a dynamical setting with myopic agents. They found the

performance is “very good” for the plurality votng rule (with an ADPoA of 1), “not bad” for

veto (with a DPoA of Ω(m) with m alternatives, m ≥ 4), and “very bad” for Borda (with a

DPoA of Ω(n) with n agents).

Notably, Brânzei et al. (2013)’s theorems assumed that the positional scoring voting

rule had the same scoring vector as agents’ additive utilities. In Chapter 3, we relaxed this

assumption to arbitrary utility vectors with respect to iterative plurality. We found the

additive DPoA worsened to Θ(n) in the worst-case. While this result bounds the theoretical

consequences of IV, it provides little insight into how IV may perform realistically. Upon

realizing this poor result, we took a first step in testing IV’s practicality by exploring its

average-case performance. By assuming that agents’ preferences are distributed identically

and uniformly at random, known as the impartial culture (IC) distribution, we found the

expected additive DPoA to be −Ω(1). This suggests that IV actually improves social welfare

over the truthful vote profile on average.

Average-case analysis is traditionally employed in computer science as a way around

the intractability of NP-hard problems. This analysis is motivated by the possibility that

worst-case results only occur infrequently in practice (Bogdanov & Trevisan, 2006). As seen

with IV, average-case analysis hopes to provide a less pessimistic measure of an algorithm’s

performance. Still, the distribution used in the analysis may itself be unrealistic (Spielman

& Teng, 2009). Indeed, IC used in Chapter 3 is widely understood to be implausible (Re-

genwetter, 2006; Tsetlin et al., 2003; Van Deemen, 2014), yet useful perhaps as a benchmark

against other analytical results in social choice. This presents an opportunity to advance our

understanding of iterative plurality voting beyond IC.

5.1.1 Our Contribution

We address the limitations of IC by analyzing the average-case performance of IV with

respect to a larger class of input preferences. Our primary result is a characterization of

certain classes of independent and identically distributed preferences for which IV improve

or degrades social welfare. We describe to what extent welfare changes as the number of

agents n increases, specified informally as follows.

Theorem 5.1 (Expected dynamic price of anarchy, informally put). There are classes of
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i.i.d. preferences such that, for even numbers of agents n ∈ N, the expected performance of

iterative plurality is Θ(1), −Θ(1), or ±O
(

1√
n

)
; for odd n, the performance is −Θ(1).

Negative-valued performance according to our metric entails that equilibrium out-

comes, resulting from IV, have higher welfare than their corresponding truthful winners.

The differences in agents’ preference distributions may therefore explain some of the vari-

ability of IV economic performance across experiments.

Our techniques begin similar to Theorem 3.2 in that we partition the expected per-

formance of IV based on which set of alternatives are tied when agents vote truthfully, and

we study each case separately. We further make use of a Bayesian network representa-

tion of agents’ preferences in order to effectively group preference profiles by their economic

performance and their likelihood of occurrence. Although our approach from Chapter 3 is

applicable to our study, there are several places in their original proof which break down.

Namely, their method only entails a bound on IV’s expected performance of ±O(
√
n), which

is insufficiently refined. Moreover, their is additional bias in the welfare each agent con-

tributes to IV’s expected performance, due to our assumptions about agents’ preferences,

that was not present in our study of IC. These factors make our analysis significantly more

complicated and require a collection of novel binomial and multinomial lemmas to solve (see

Sections 5.3.1 – 5.3.4).

Our analysis makes significant use of the PMV-in-Polyhedron theorem from (Xia,

2021a) to characterize the asymptotic likelihood of tied elections. Specifically, we capture the

likelihood that the histogram of a preference profile, which is a Poisson multivariate variable,

fits into a polyhedron that specify a tied election (Corollary 5.1 below) and with additional

constraints (Lemma 5.6 below). Xia (2021a)’s techniques are not directly applicable in our

setting because they characterize the likelihood of events occurring, whereas we study the

expected performance of a protocol. Rather, we devise novel applications of their theorems

in this chapter.

5.1.2 Preliminaries

The performance of IV is commonly measured by a worst-case comparison in social

welfare between the truthful vote profile and the equilibrium that are reachable via the

dynamics. This captures the impact that IV has against the outcome that would take place

without agents’ strategic manipulation of their votes. Moreover, it does not assume that the
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order agents make their improvement steps is controlled; the measure is over the worst-case

scheduler. In the following definitions, we consider this performance measure according to

the worst-case preference profile P as well as the average-case analysis when P is sampled

from some distribution π⃗. Specifically, we recall those definitions from Chapters 2 and 3 that

are pertinent to our present analysis.

We denote the set of potential winning alternatives as those who could become a winner

if their plurality score sc(a) were to increment by one, including the current winner:

PW(a) =

c ∈ A :

sc(a) = sf(a)(a)− 1, c is ordered before f(a)

sc(a) = sf(a)(a), c is ordered after f(a)

 ∪ {f(a)} (5.1)

where the ordering is lexicographical for tie-breaking. We call these alternatives approximately-

tied. We denote the set of equilibrium winning alternatives as those corresponding to any

NE reachable from a via some BR sequence:

EW(a) = {f(ã) : ∃ a BR sequence from a leading to the NE profile ã}. (5.2)

For a given positional scoring rule fs⃗, a utility vector u⃗, n agents, preference profile P ,

and distribution of preferences π⃗, the adversarial loss starting from the truthful vote profile

a∗ = top(P ) is

D+
fs⃗,u⃗

(P ) = SWu⃗(P, fs⃗(a
∗))−minc∈EW(a∗) SWu⃗(P, c). (5.3)

The additive dynamic price of anarchy (ADPoA) is

ADPoA(fs⃗, u⃗) = maxP∈L(A)n D+
fs⃗,u⃗

(P ). (5.4)

The expected additive dynamic price of anarchy (EADPoA) is

EADPoA(fs⃗, u⃗, π⃗) = EP∼π⃗

[
D+

fs⃗,u⃗
(P )
]
. (5.5)

Throughout this chapter, we assume that there are m = 3 alternatives and that fs⃗ = f is

the plurality rule unless stated otherwise. We may drop parameters and scripts from these

definitions for ease of notation when the context is clear.
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5.2 Characterization of Average-Case Iterative Voting

Our main result extends the EADPoA beyond Chapter 3’s study of IC toward a wider class

of single-agent preference distributions. With IC, each agent has an equal probability of

voting for each alternative, truthfully in a∗, and equal likelihood of preferring u ≻ v or u ≻ v

for any two alternatives u, v ∈ A. It was realized in Theorem 3.2 that these two concepts led

IC to be concentrated around profiles that yielded a negative adversarial loss D+(P ), leading

to an EADPoA = −Ω(1) conclusion. In contrast, our distribution π is characterized by the

following assumption.

Assumption 5.1. Consider the single-agent preference distribution π = (π1, . . . , π6) corre-

sponding to the rankings:

R1 = (1 ≻ 2 ≻ 3); R4 = (3 ≻ 1 ≻ 2);

R2 = (2 ≻ 3 ≻ 1); R5 = (1 ≻ 3 ≻ 2);

R3 = (3 ≻ 2 ≻ 1); R6 = (2 ≻ 1 ≻ 3).

(5.6)

We assume π1 = π2 > 2π3 = 2π4 > 0 and π5 = π6 = 0.

Like IC, π is designed to have equal probability for agents preferring alternatives 1 and

2 most and for preferring either 1 ≻ 2 or 2 ≻ 1. This maximizes the likelihood of a {1, 2}-tie
and ensures that the likelihood of any other-way tie (i.e., PW(a∗) = W where |W | ≥ 2 and

W ̸= {1, 2}) is exponentially small (see Corollary 5.1 below). With a {1, 2}-tie, IV will then

be characterized by the third-party agents, those with rankings R3 and R4, alternatively

switching their votes for alternatives 1 and 2 until convergence (recall Lemma 3.1).

The non-support of rankings R5 and R6 yields an important difference between π and

IC that distinguishes our Theorem 5.1 result from Theorem 3.2. Notice in Assumption 5.1

that each agent with ranking R1 adds u1 − u2 to D+(P ) while each agent with ranking R2

subtracts u1 − u3 from D+(P ). Hence, we must keep track of how many agents have each

of these rankings in our analysis (i.e., n
2
− q in Lemma 5.1). With IC (i.e., π1 = . . . = π6),

the average contribution that agents with ranking R1 make to D+(P ) cancel out with those

with ranking R6; likewise, the contributions that agents with rankings R2 and R5 cancel out

(recall Equation (3.8)). This distinction enables our different asymptotic values for different

values of π1 (see Lemma 5.4 below).
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We present Theorem 5.1 next. Our main result is contributed by Lemmas 5.1 and 5.2

which characterize EADPoA given the two-way approximate-tie PW(a∗) = {1, 2} for even

and odd numbers of agents n respectively. The primary techniques involve Xia (2021a)’s

smoothed likelihood of ties (in Corollary 5.1 and Lemma 5.6), local central limit theorems

(Petrov, 1975) (see Section 5.3.2), the Wallis product approximation for the central binomial

coefficient (Galvin, 2018) (see Section 5.3.3), and a number of binomial theorems (in Lemma

5.3). Notice that by Assumption 5.1, we have π1 ∈ (1
3
, 1
2
) and 2(π1 + π3) = 1. We denote

agents’ joint preference distribution by P ∼ πn = (π, π, . . . , π).

Theorem 5.1. Suppose π follows Assumption 5.1. Given the plurality rule f and rank-based

utility vector u⃗ with u2 > u3, ∃N > 0 such that ∀n > N that are even,

EADPoA(f, u⃗, πn) =


Θ(1), 0.4 < π1 <

1
2

−Θ(1), 1
3
< π1 < 0.4

±O
(

1√
n

)
, π1 = 0.4

while for odd n, EADPoA(f, u⃗, πn) = −Θ(1). If u1 > u2 = u3, then EADPoA(f, u⃗, πn) =

±O
(

1√
n

)
; otherwise, if u1 = u2 = u3, then EADPoA(f, u⃗, πn) = ± exp(−Θ(n)).

Proof. We prove the theorem by partitioning L(A)n based on the possible potential winner

sets and applying the law of total expectation to sum EADPoA across these partitions.

Specifically, for every W ⊆ A we define

PoA(W ) = PrP∼πn(PW(P ) = W )× EP∼πn [D+(P ) | PW(P ) = W ].

This entails

EADPoA =
∑
c∈A

PoA({c}) +
∑

W⊆A\{1,2},
|W |≥2

PoA(W ) + PoA({1, 2}). (5.7)

First, it is clear that
∑

c∈A PoA({c}) = 0 since any profile P with |PW(P )| = 1 is an
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equilibrium, so D+(P ) = 0. Second, we get that

∑
W⊆A\{1,2},

|W |≥2

∣∣PoA(W )
∣∣ = ∑

W⊆A\{1,2},
|W |≥2

Pr(PW(a∗) = W ) ·
∣∣E[D+(P ) | PW(a∗) = W ]

∣∣
≤ O(n)

∑
W⊆A\{1,2},

|W |≥2

Pr(PW(a∗) = W ) (5.8)

= exp(−Θ(n)). (5.9)

Equation (5.8) follows from maxP |D+(P )| = O(n) since each agent contributes only a con-

stant amount to D+(P ) (recall Theorem 3.1). Equation (5.9) follows from the following

corollary and the fact that |2A| = 2m is constant for fixed m.

Corollary 5.1. Fix m ≥ 3 and distribution π ∈ ∆(L(A)). Let λi(π) =
∑

j:top(Rj)=i πj be the

likelihood of an agent truthfully voting for i, and W ∗(π) = argmaxi∈[m] λi(π) be a set. Then

PrP∼πn(PW(a∗) = W ) =

Θ
(
n− |W |−1

2

)
, W ⊆ W ∗(π)

exp(−Θ(n)), W ⊈ W ∗(π).
(5.10)

Corollary 5.1 generalizes Corollary 2.1, the likelihood of k-way plurality ties, to distri-

butions beyond IC. It follows directly from the proof of Theorem 3 of Xia (2021a), especially

Claim 4(ii) in their appendix. For distributions π that abide by Assumption 5.1, we have

λ1(π) = λ2(π) > λ3(π) which entails W ∗ = {1, 2}. It follows that Pr(PW(a∗) = {1, 2}) =
Θ
(

1√
n

)
while Pr(PW(a∗) = W ) = exp(−Θ(n)) for any other W ⊆ A\{1, 2}, |W | ≥ 2.

Finally, Theorem 5.1 follows from the last term of Equation (5.7), entailed by Lemma

5.1 (n is even) and Lemma 5.2 (n is odd), below. The theorem’s conditions on u⃗ are technical

and represented in these lemmas’ proofs (see the discussion following Equations (5.20) and

(5.29)).

Lemma 5.1. Given rank-based utility vector u⃗ with u2 > u3, ∃N > 0 such that ∀n > N that
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are even,

PoA({1, 2}) =


Θ(1), 0.4 < π1 <

1
2

−Θ(1), 1
3
< π1 < 0.4

±O
(

1√
n

)
, π1 = 0.4.

Proof. For any preference profile P ∈ L(A)n such that the potential winner set PW(P ) =

{1, 2}, there are two possible cases: either alternative 1 or alternative 2 is the truthful

winner. We denote these cases by E1 = 1{s1(a∗) = s2(a
∗)} and E2 = 1{s1(a∗) + 1 = s2(a

∗)}
respectively. This suggests the following partition:

PoA({1, 2}) = PrP∼πn(E1)×EP∼πn [D+(P ) | E1]

+ PrP∼πn(E2)×EP∼πn [D+(P ) | E2]. (5.11)

Iterative plurality starting from a∗ consists of agents changing their votes from alternatives

that are not potentially-winning to alternatives that then become the winner (Brânzei et

al., 2013). Hence, EW(a∗) ⊊ {1, 2} is the unique alternative of the two with more agents

preferring it (subject to lexicographical tie-breaking; recall Lemma 3.1). This means that the

equilibrium winning alternative only differs from the truthful winner if either E1 ∧ {P [2 ≻
1] > P [1 ≻ 2]} or E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]} holds. Notice that these conditions only

depend on the histogram of agents’ rankings and not on agent identities or the order of best

response steps. Thus it is easy to identify when either condition occurs using this histogram.

Still, given that one of these events occurs, D+(P ) also depends on the histogram of agents’

rankings.

We prove Lemma 5.1 by grouping all vote profiles that satisfy the same pair of con-

ditions and have the same adversarial loss, multiplying this loss with its likelihood of oc-

currence, and summing over all such groupings. Each group is defined by how many agent

prefer each alternative most, captured by the set T 1,q (defined below), and how many agents

prefer 1 ≻ 2 or 2 ≻ 1, captured by the set Zt⃗,β (defined below). To accomplish this, we uti-

lize a Bayesian network to represent the agents’ joint preference distribution and effectively

condition the joint probability based of these groups.
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Figure 5.1: Bayesian network representation of P as T⃗ , Z⃗, and Q⃗.

Step 1: Represent as Bayesian network. For each j ≤ n, we represent agent j’s rank-

ing distribution by a Bayesian network of three random variables: Tj represents agent j’s

top-ranked alternative, Zj represents whether 1 ≻j 2 or 2 ≻j 1, conditioned on Tj, and Qj

represents the linear order conditioned on Tj and Zj.

Definition 5.1. For any j ≤ n, we define a Bayesian network with three random variables

Tj ∈ {1, 2, 3}, Zj ∈ {1, 2}, and Qj ∈ {R1, R2, R3, R4}, where Tj has no parent, Tj is the

parent of Zj, and Tj and Zj are Qj’s parents (see Figure 5.1). Let T⃗ = (T1, . . . , Tn), Z⃗ =

(Z1, . . . , Zn), and Q⃗ = (Q1, . . . , Qn). The (conditional) distributions are:

• Tj is distributed with densities {π1, π2, π3 + π4} over {1, 2, 3};

• Pr(Zj = 1 | Tj = t) =


1, t = 1

0, t = 2

0.5, t /∈ {1, 2};

• Qj is distributed uniformly over {R1, R2, R3, R4} among those whose top alternative is

Tj and 1 ≻j 2 if Zj = 1, or 2 ≻j 1 if Zj = 2.

It is not hard to verify that (unconditional) Qj follows the distribution π over

{R1, R2, R3, R4}. Therefore Q⃗ follows the same distribution as P , which is πn.

Step 2: Characterize the preference profiles. We first characterize the set of vote

profiles such that alternative 1 is the truthful winner and alternative 2 is the unique equi-

librium winner. This captures the event E1 ∧ {P [2 ≻ 1] > P [1 ≻ 2]} discussed above, such

that alternatives 1 and 2 are exactly tied and more agents prefer 2 ≻ 1 than otherwise. We
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define the set T 1,q below to describes how many agents vote for each alternative. Next, we

define the set Zt⃗,β to detail how many agents prefer alternative 1 ≻ 2 or 2 ≻ 1, conditioned

on T⃗ . We use the Bayesian network framework from Step 1 and the law of total expectation

to partition Pr(E1)×E[D+(P ) | E1] further according to these events. Finally, we defer the

other case, E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]}, such that alternative 2 is the truthful winner, alter-

native 1 is the equilibrium winner, and at least as many agents prefer 1 ≻ 2 than otherwise,

to Step 4 below.

Our characterization for the former case consists of q, β ∈ N such that there are

• n
2
− q agents with rankings R1 = (1 ≻ 2 ≻ 3) and R2 = (2 ≻ 3 ≻ 1) each;

• β agents with ranking R3 = (3 ≻ 2 ≻ 1);

• 2q − β agents with ranking R4 = (3 ≻ 1 ≻ 2).

Formally, we define T 1,q ⊆ [3]n as the set of vectors t⃗ = (t1, . . . , tn) such that alternatives 1

and 2 have the maximal plurality score of n
2
− q and alternative 1 is the victor:

T 1,q =
{
t⃗ ∈ [3]n : |{j : tj = 1}| = |{j : tj = 2}| =

(n
2
− q
)
> |{j : tj = 3}|

}
.

The minimum of q is clearly 0, while its maximum is

q∗ = max
{
q ∈ Z :

(n
2
− q
)
> 2q

}
so that

q∗ =


⌊
n
6

⌋
− 1, n mod 6 = 0⌊

n
6

⌋
+ 1, n mod 6 = 2⌊

n
6

⌋
+ 3, n mod 6 = 4.

It is easy to see that E1 holds for Q⃗ if and only if T⃗ takes a value in T 1,q for some q ∈ [0, q∗].

This implies the following equality:

Pr(E1)×E[D+(P ) | E1] =
q∗∑
q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)×EQ⃗[D
+(Q⃗) | T⃗ = t⃗]. (5.12)

Without loss of generality, we will assume for the duration of the proof that q∗ =
⌊
n
6

⌋
− 1,
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taking the case that n is divisible by 6. It is easy to show that for a constant number of

terms in Equation (5.12) such that q = Θ(n), the objective is exponentially small and hence

does not affect the result of this lemma. The case where n is odd is handled by Lemma 5.2.

Given that t⃗ ∈ T 1,q, there are 2q agents with either ranking R3 or R4. We uphold the

event E1 ∧{P [2 ≻ 1] > P [1 ≻ 2]} with respect to Q⃗ by having β > q agents with ranking R3

(recall that this event is necessary by Lemma 3.1). Specifically, for every β ∈ [q + 1, 2q], we

define Zt⃗,β ⊆ {1, 2}n as the vectors z⃗ where the number of 2s among indices in {j ≤ n : tj /∈
{1, 2}} is exactly β:

Zt⃗,β = {z⃗ ∈ {1, 2}n : zj = tj ∀j : tj ∈ {1, 2} and |{j : tj /∈ {1, 2}, zj = 2}| = β}.

Continuing Equation (5.12) we get

Pr(E1)×E[D+(P ) | E1]

=

n
6
−1∑

q=0

∑
t⃗∈T 1,q

2q∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)EQ⃗[D
+(Q⃗) | T⃗ = t⃗, Z⃗ = z⃗]

=

n
6
−1∑

q=0

∑
t⃗∈T 1,q

2q∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

EQ⃗j
[u⃗(Qj, 1)− u⃗(Qj, 2) | T⃗ = t⃗, Z⃗ = z⃗]

=

n
6
−1∑

q=0

∑
t⃗∈T 1,q

2q∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

E1
tj ,zj

(5.13)

where

E1
tj ,zj

= EQj
[u⃗(Qj, 1)− u⃗(Qj, 2) | Tj = tj, Zj = zj].

This holds by the Bayesian network: for any j ≤ n, given Tj and Zj, Qj is conditionally

independent of other Q’s.

Step 3: Substitute expected welfare per agent. Notice that E1
tj ,zj

only depends on

the values of tj and zj, but not j. We interpret this summation as aggregating the amount

of welfare each agent with given tj and zj values contributes to the adversarial loss D+(Q⃗).

In particular, each agent j with tj = 1 as their most-preferred alternative must have ranking

Qj = R1 = (1 ≻ 2 ≻ 3), by Definition 5.1. This entails that they contribute u⃗(R1, 1) −
u⃗(R1, 2) = u1 − u2 welfare to D+(Q⃗); recall our use of rank-based utility with vector u⃗ =
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(u1, u2, u3). The same argument holds to yield −u1 + u3 welfare for each agent with tj = 2,

corresponding with R2 = (2 ≻ 3 ≻ 1). Next, any agent with tj /∈ {1, 2} entails that they

have either ranking R3 = (3 ≻ 2 ≻ 1) or R4 = (3 ≻ 1 ≻ 2). If zj = 2, the agent has ranking

R3 and contributes −u2 + u3 welfare to D+(Q⃗); otherwise, if zj = 1, the agent has ranking

R4 and contributes u2 − u3 welfare. In sum, we have

E1
tj ,zj

=



u1 − u2, tj = zj = 1

−u1 + u3, tj = zj = 2

−u2 + u3, tj /∈ {1, 2}, zj = 2

u2 − u3, tj /∈ {1, 2}, zj = 1,

which yields

n∑
j=1

E1
tj ,zj

=


n
2
− q

n
2
− q

β

2q − β

 ·


u1 − u2

−u1 + u3

−u2 + u3

u2 − u3


=
(n
2
− q
)
(−u2 + u3) + (2q − 2β)(u2 − u3)

= (u2 − u3)
(
−n

2
+ 3q − 2β

)
.

The duration of this proof carries over (u2−u3) as a factor in front of Equation (5.13). Since

we assumed u2 > u3, we will forego writing this factor for ease of notation. Equation (5.13)

is therefore proportional to

n
6
−1∑

q=0

∑
t⃗∈T 1,q

2q∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
(
−n

2
+ 3q − 2β

)

=

n
6
−1∑

q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)

2q∑
β=q+1

(
−n

2
+ 3q − 2β

) ∑
z⃗∈Zt⃗,β

Pr(Z⃗ = z⃗ | T⃗ = t⃗)

=

n
6
−1∑

q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)

2q∑
β=q+1

(
−n

2
+ 3q − 2β

)(2q
β

)
1

22q
(5.14)
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where the last line follows from

Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5.

Case when q = 0. Notice that Equation (5.14) is zero when q = 0. This is because there

are zero third-party agents, so there is no iterative plurality dynamics. By Lemma 3.1, the

adversarial loss is zero.

Next, we apply the following binomial identities, which are proved in Section 5.3.4.

Lemma 5.3. For q ≥ 1, the following identities hold:

1.
2q∑

β=q+1

(
2q

β

)
1

22q
=

1

2
− 1

22q

(
2q − 1

q − 1

)

2.
2q∑

β=q+1

β

(
2q

β

)
1

22q
=

q

2

By applying Equations 1 and 2 of Lemma 5.3, Equation (5.14) simplifies to

n
6
−1∑

q=1

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)

((
−n

2
+ 3q

)(1

2
− 1

22q

(
2q − 1

q − 1

))
− 2

(q
2

))

=

n
6
−1∑

q=1

Pr(T⃗ ∈ T 1,q)

(
1

2

(
−n

2
+ q
)
−
(
−n

2
+ 3q

)
22q

(
2q − 1

q − 1

))
. (5.15)

Recall from Definition 5.1 that T⃗ is a multinomial distribution over {1, 2, 3} with event

probabilities (π1, π2, π3+π4). Furthermore, T 1,q is the event where there are n
2
− q of 1s and

2s each in T⃗ , and 2q of 3s. Therefore

Pr(T⃗ ∈ T 1,q) =

(
n

n
2
− q, n

2
− q, 2q

)
π

n
2
−q

1 π
n
2
−q

2 (π3 + π4)
2q

=

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 ·
22q(
2q
q

) . (5.16)
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Hence, Equation (5.15) becomes

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

((
−n

2
+ q
)

2

22q(
2q
q

) − (−n
2
+ 3q

)
2

)
(5.17)

where we use the fact that 2
(
2q−1
q−1

)
=
(
2q
q

)
.

Step 4: Repeat process for case E2. We next repeat the above process in Steps 2 and

3 for E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]}, such that alternative 2 is the truthful winner, alternative

1 is the equilibrium winner, and at least as many agents prefer 1 ≻ 2 than otherwise. In this

case, we have

• n
2
− 1− q agents with ranking R1 = (1 ≻ 2 ≻ 3);

• n
2
− q agents with ranking R2 = (2 ≻ 3 ≻ 1);

• β agents with ranking R3 = (3 ≻ 2 ≻ 1);

• 2q + 1− β agents with ranking R4 = (3 ≻ 1 ≻ 2).

Define T 2,q ⊆ [3]n as the set of vectors t⃗ = (t1, . . . , tn) such that alternative 2 has the

maximal plurality score of n
2
− q and alternative 1 has one fewer vote:

T 2,q =
{
t⃗ ∈ [3]n : |{j : tj = 1}|+ 1 = |{j : tj = 2}| =

(n
2
− q
)
> |{j : tj = 3}|

}
.

The number of third-party agents is 2q + 1, so the maximum value of q is

q∗ = max
{
q ∈ Z :

(n
2
− q
)
> 2q + 1

}
so that

q∗ =


⌊
n
6

⌋
− 1, n mod 6 = 0⌊

n
6

⌋
, n mod 6 ∈ {2, 4}.
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It is easy to see that E2 holds for Q⃗ if and only if T⃗ takes a value in T 2,q for some q ∈ [0, q∗].

This implies the following equality:

Pr(E2)×E[D+(P ) | E2] =
q∗∑
q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)×EQ⃗[D
+(Q⃗) | T⃗ = t⃗]. (5.18)

Like in Step 2, we will assume q∗ =
⌊
n
6

⌋
− 1 without loss of generality, taking the case that n

is divisible by 6. Given that t⃗ ∈ T 2,q, there are 2q+1 third-party agents with either ranking

R3 or R4. We uphold the event E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]} with respect to Q⃗ by having

β ∈ [0, q] agents with ranking R3. Therefore, continuing Equation (5.18) we get

Pr(E2)×E[D+(P ) | E2]

=

n
6
−1∑

q=0

∑
t⃗∈T 2,q

q∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)EQ⃗[D
+(Q⃗) | T⃗ = t⃗, Z⃗ = z⃗]

=

n
6
−1∑

q=0

∑
t⃗∈T 2,q

q∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

EQ⃗j
[u⃗(Qj, 2)− u⃗(Qj, 1) | T⃗ = t⃗, Z⃗ = z⃗]

=

n
6
−1∑

q=0

∑
t⃗∈T 2,q

q∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

E2
tj ,zj

(5.19)

where

E2
tj ,zj

= EQ⃗j
[u⃗(Qj, 2)− u⃗(Qj, 1) | Tj = tj, Zj = zj]

which holds because of the Bayesian network structure. Notice that E2
tj ,zj

and only depends

on the values of tj and zj, but not j. By Definition 5.1 and realizing that E1
tj ,zj

= −E2
tj ,zj

,

we get

n∑
j=1

E2
tj ,zj

= −


n
2
− 1− q

n
2
− q

β

2q + 1− β

 ·


u1 − u2

−u1 + u3

−u2 + u3

u2 − u3


= −

(n
2
− q
)
(−u2 + u3)− (2q − 2β)(u2 − u3)− (−u1 + 2u2 − u3)

= −(u2 − u3)
(
−n

2
+ 3q − 2β

)
+ (u1 − 2u2 + u3). (5.20)
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First, notice that when u⃗ represents Borda welfare then u1−2u2+u3 = 0. Otherwise, for this

constant term, we have that Equation (5.19) is proportional to the likelihood of two-way ties

for plurality voting under i.i.d. preferences. By Corollary 5.1, this term is either +Θ
(

1√
n

)
or −Θ

(
1√
n

)
. Second, like in Step 3 above, we will forego writing the factor (u2−u3) in front

of Equation (5.19) for ease of notation. Equation (5.19) is therefore proportional to

−
n
6
−1∑

q=0

∑
t⃗∈T 2,q

q∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
(
−n

2
+ 3q − 2β

)

= −
n
6
−1∑

q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)

q∑
β=0

(
−n

2
+ 3q − 2β

) ∑
z⃗∈Zt⃗,β

Pr(Z⃗ = z⃗ | T⃗ = t⃗)

= −
n
6
−1∑

q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)

q∑
β=0

(
−n

2
+ 3q − 2β

)(2q + 1

β

)
1

22q+1
(5.21)

where the last line follows from

Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5.

Case when q = 0. Unlike the prior case, now when q = 0 there is a single third-party

agent with ranking R4. This is illustrated in Equation (5.21), with q = β = 0, as

∑
t⃗∈T 2,0

Pr(T⃗ = t⃗) ·
(
−n

2

)(1
0

)
1

2

= −n

4
Pr(T⃗ ∈ T 2,0)

= −n

4

(
n

n
2
− 1, n

2
, 1

)
π

n
2
−1

1 π
n
2
2 (π3 + π4)

1

= −nπ3π
n
1

2π1

(n/2)

(
n

n/2

)
= −O(n1.5) · (2π1)

n

= − exp(−Θ(n))

by Stirling’s approximation.
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Proposition 5.1 (Stirling’s approximation).

n! ∼
√
2πn

(n
e

)n
.

Hence, (
2n

n

)
∼ 22n√

nπ
.

This proposition is discussed further in Section 5.3.3. Next, we make use of the

following binomial identities, which are proved in Section 5.3.4.

Lemma 5.3. For q ≥ 1, the following identities hold:

3.
q∑

β=0

(
2q + 1

β

)
1

22q+1
=

1

2

4.

q∑
β=0

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

4

)
− 2q + 1

22q+1

(
2q − 1

q − 1

)
.

By applying Equations 3 and 4 of Lemma 5.3, Equation (5.21) simplifies to

−
n
6
−1∑

q=1

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)

((
−n

2
+ 3q

)(1

2

)
− 2

(
2q + 1

4
− 2q + 1

22q+1

(
2q − 1

q − 1

)))

= −
n
6
−1∑

q=1

(
1

2

(
−n

2
+ q − 1

)
+

2q + 1

22q

(
2q − 1

q − 1

))
Pr(T⃗ ∈ T 2,q). (5.22)

Recall that T⃗ is a multinomial distribution over {1, 2, 3} with event probabilities (π1, π2, π3+

π4). Furthermore, T 2,q is the event where there are n
2
− 1 − q of 1s in T⃗ , n

2
− q of 2s, and

2q + 1 of 3s. Therefore

Pr(T⃗ ∈ T 2,q) =

(
n

n
2
− 1− q, n

2
− q, 2q + 1

)
π

n
2
−1−q

1 π
n
2
−q

2 (π3 + π4)
2q+1

=

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 ·
π3(

n
2
− q)

π1(2q + 1)

22q+1(
2q
q

) . (5.23)
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Hence, Equation (5.22) becomes

−
n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

(
π3(−n

2
+ q − 1)(n

2
− q)

π1(2q + 1)

22q(
2q
q

) + π3(
n
2
− q)

π1

)
(5.24)

where we again use the fact that 2
(
2q−1
q−1

)
=
(
2q
q

)
.

Step 5: Put parts together. Recall that our original problem began as Equation (5.11)

which we initially split into Equation (5.12) and (5.18). Through a sequence of steps we trans-

formed these equations into Equations (5.17) and (5.24) and an additional + or −Θ
(

1√
n

)
term (if u⃗ is not Borda). Recombining them yields

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

(
−1

2

(
−n

2
+ 3q

)
+

π3

π1

(
−n

2
+ q
))

+

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

(−n
2
+ q)22q(
2q
q

) (
1

2
+

π3(−n
2
+ q − 1)

π1(2q + 1)

)
. (5.25)

In Section 5.3.1 we introduce Lemma 5.4 to prove that the asymptotic rate of the first

summation of Equation (5.25) is Θ(1) if π1 < 0.4, −Θ(1) if π1 > 0.4, and ±O
(
1
n

)
otherwise

(i.e., π1 = 0.4). We further prove in Lemma 5.5, in that section, that the second summation

of Equation (5.25) is ±O
(

1√
n

)
. This concludes the proof of Lemma 5.1.

Lemma 5.2. Given rank-based utility vector u⃗ with u2 > u3, ∃N > 0 such that ∀n > N that

are odd,

PoA({1, 2}) = −Θ(1).

Proof. This lemma’s proof follows almost identically to that of Lemma 5.1, where n is even,

except for how T 1,q and T 2,q are defined to account for n being odd. Our subsequent analysis

yields a different conclusion than that lemma. We begin by defining two events as before,

E1 = 1{s1(a∗) = s2(a
∗)} and E2 = 1{s1(a∗) + 1 = s2(a

∗)}, and a similar partition of the
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objective by these cases:

PoA({1, 2}) = PrP∼πn(E1)×EP∼πn [D+(P ) | E1]

+ PrP∼πn(E2)×EP∼πn [D+(P ) | E2]. (5.26)

We take care of the cases E1 ∧ {P [2 ≻ 1] > P [1 ≻ 2]} and E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]}
separately, in Steps 1 and 2 below, and use Step 3 to tie these pieces back together.

Step 1: Case E1. In this case, we have

• n−1
2
− q agents with ranking R1 = (1 ≻ 2 ≻ 3);

• n−1
2
− q agents with ranking R2 = (2 ≻ 3 ≻ 1);

• β agents with ranking R3 = (3 ≻ 2 ≻ 1);

• 2q + 1− β agents with ranking R4 = (3 ≻ 1 ≻ 2).

Define T 1,q ⊆ [3]n as the set of vectors t⃗ = (t1, . . . , tn) such that alternatives 1 and 2 have

the maximal plurality score and alternative 1 is the victor:

T 1,q =
{
t⃗ ∈ [3]n : |{j : tj = 1}| = |{j : tj = 2}| =

(
n− 1

2
− q

)
> |{j : tj = 3}|

}
.

The number of third-party agents is 2q + 1, so the maximum value of q is

q∗ = max

{
q ∈ Z :

(
n− 1

2
− q

)
> 2q + 1

}
so that

q∗ =


⌊
n
6

⌋
− 1, n mod 6 ∈ {1, 3}⌊

n
6

⌋
, n mod 6 = 5.

It is easy to see that E1 holds for Q⃗ if and only if T⃗ takes a value in T 1,q for some q ∈ [0, q∗].

This implies the following equality:

Pr(E1)×E[D+(P ) | E1] =
q∗∑
q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)×EQ⃗[D
+(Q⃗) | T⃗ = t⃗]. (5.27)
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Without loss of generality, we will assume for the duration of the proof that q∗ =
⌊
n
6

⌋
−1. It

is easy to show that for a constant number of terms in Equation (5.27) such that q = Θ(n),

the objective is exponentially small and hence does not affect the result of this lemma.

Given that t⃗ ∈ T 1,q, there are 2q + 1 third-party agents with either ranking R3 or R4.

We uphold the event E1 ∧ {P [2 ≻ 1] > P [1 ≻ 2]} with respect to Q⃗ by having β ∈ [q + 1, 2q]

agents with ranking R3. Therefore, continuing Equation (5.27) we get

Pr(E1)×E[D+(P ) | E1]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

2q+1∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)EQ⃗[D
+(Q⃗) | T⃗ = t⃗, Z⃗ = z⃗]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

2q+1∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

EQ⃗j
[u⃗(Qj, 1)− u⃗(Qj, 2) | T⃗ = t⃗, Z⃗ = z⃗]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

2q+1∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

E1
tj ,zj

(5.28)

where

E1
tj ,zj

= EQj
[u⃗(Qj, 1)− u⃗(Qj, 2) | Tj = tj, Zj = zj].

This holds by the Bayesian network: for any j ≤ n, given Tj and Zj, Qj is conditionally

independent of other Q’s. By Definition 5.1, we have

n∑
j=1

E1
tj ,zj

=


n−1
2
− q

n−1
2
− q

β

2q + 1− β

 ·


u1 − u2

−u1 + u3

−u2 + u3

u2 − u3


=

(
n− 1

2
− q

)
(−u2 + u3) + (2q − 2β)(u2 − u3) + (u2 − u3)

= (u2 − u3)

(
−n− 1

2
+ 3q − 2β

)
+ (u2 − u3). (5.29)

First, for this constant term, we have that Equation (5.28) is proportional to the likelihood

of two-way ties for plurality voting under i.i.d. preferences. By Corollary 5.1, this term is

Θ
(

1√
n

)
. Second, the duration of this proof carries over (u2 − u3) as a factor in front of
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Equation (5.28). Since we assumed u2 > u3, we will forego writing this factor for ease of

notation. Equation (5.28) is therefore proportional to

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

2q+1∑
β=q+1

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)

(
−n− 1

2
+ 3q − 2β

)

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)

2q+1∑
β=q+1

(
−n− 1

2
+ 3q − 2β

) ∑
z⃗∈Zt⃗,β

Pr(Z⃗ = z⃗ | T⃗ = t⃗)

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 1,q

Pr(T⃗ = t⃗)

2q+1∑
β=q+1

(
−n− 1

2
+ 3q − 2β

)(
2q + 1

β

)
1

22q+1
(5.30)

where the last line follows from

Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5.

Case when q = 0. The case for q = 0 is similar to the event E2 in Lemma 5.1. When

q = 0 there is a single third-party agent with ranking R4. This is illustrated in Equation

(5.30), with q = β = 0, as

∑
t⃗∈T 1,0

Pr(T⃗ = t⃗) ·
(
−n− 1

2

)(
1

0

)
1

2

= −n− 1

4
Pr(T⃗ ∈ T 1,0)

= −n− 1

4

(
n

n−1
2
, n−1

2
, 1

)
π

n−1
2

1 π
n−1
2

2 (π3 + π4)
1

= −(n− 1)π3π
n
1

2π1

(n)

(
n− 1

(n− 1)/2

)
= −O(n1.5) · (2π1)

n

= − exp(−Θ(n))

by Stirling’s approximation (Proposition 5.1).

Next, we apply the following binomial identities, which are proved in Section 5.3.4.

Lemma 5.3. For q ≥ 1, the following identities hold:
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5.
2q+1∑
β=q+1

(
2q + 1

β

)
1

22q+1
=

1

2

6.

2q+1∑
β=q+1

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

4

)
+

2q + 1

22q+1

(
2q − 1

q − 1

)
.

By applying Equations 5 and 6 of Lemma 5.3, Equation (5.30) simplifies to

⌊n6 ⌋−1∑
q=1

(−n−1
2

+ 3q

2
− 2

(
2q + 1

4
+

2q + 1

22q+1

(
2q − 1

q − 1

)))
Pr(T⃗ ∈ T 1,q)

=

⌊n6 ⌋−1∑
q=1

(
1

2

(
−n− 1

2
+ q − 1

)
− 2q + 1

22q

(
2q − 1

q − 1

))
Pr(T⃗ ∈ T 1,q). (5.31)

Recall that T⃗ is a multinomial distribution over [3] with event probabilities (π1, π2, π3 + π4).

Furthermore, T 1,q is the event where there are n−1
2
− q of 1s and 2s each in T⃗ , and 2q+1 of

3s. Therefore

Pr(T⃗ ∈ T 1,q) =

(
n

n−1
2
− q, n−1

2
− q, 2q + 1

)
π

n−1
2

−q

1 π
n−1
2

−q

2 (π3 + π4)
2q+1

=

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q+1

3 · n22q+1

(2q + 1)
(
2q
q

) . (5.32)

Hence, Equation (5.31) becomes

n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q+1

3

((
−n−1

2
+ q − 1

)
2q + 1

22q(
2q
q

) − 1

)
(5.33)

where we use the fact that 2
(
2q−1
q−1

)
=
(
2q
q

)
.

Step 2: Case E2. In this case, we have

• n−1
2
− q agents with ranking R1 = (1 ≻ 2 ≻ 3);

• n+1
2
− q agents with ranking R2 = (2 ≻ 3 ≻ 1);



93

• β agents with ranking R3 = (3 ≻ 2 ≻ 1);

• 2q − β agents with ranking R4 = (3 ≻ 1 ≻ 2).

Define T 2,q ⊆ [3]n as the set of vectors t⃗ = (t1, . . . , tn) such that alternative 2 has the

maximal plurality score of n
2
− q and alternative 1 has one fewer vote:

T 2,q =
{
t⃗ ∈ [3]n : |{j : tj = 1}|+ 1 = |{j : tj = 2}| =

(
n+ 1

2
− q

)
> |{j : tj = 3}|

}
.

The number of third-party agents is 2q, so the maximum value of q is

q∗ = max

{
q ∈ Z :

(
n+ 1

2
− q

)
> 2q

}

so that q∗ =
⌊
n
6

⌋
for any n mod 6 ∈ {1, 3, 5}. It is easy to see that E2 holds for Q⃗ if and only

if T⃗ takes a value in T 2,q for some q ∈ [0, q∗]. This implies the following equality:

Pr(E2)×E[D+(P ) | E2] =
q∗∑
q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)×EQ⃗[D
+(Q⃗) | T⃗ = t⃗]. (5.34)

To keep in line with the notation of the first case, in Step 1, and with Lemma 5.1, we will

assume q∗ =
⌊
n
6

⌋
− 1 without loss of generality. It is easy to show that the case of Equation

(5.34) for q =
⌊
n
6

⌋
is exponentially small.

Given that t⃗ ∈ T 2,q, there are 2q third-party agents with either ranking R3 or R4. We

uphold the event E2 ∧ {P [1 ≻ 2] ≥ P [2 ≻ 1]} with respect to Q⃗ by having β ∈ [0, q − 1].

Therefore, continuing Equation (5.34) we get

Pr(E2)×E[D+(P ) | E2]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

q−1∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)EQ⃗[D
+(Q⃗) | T⃗ = t⃗, Z⃗ = z⃗]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

q−1∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

EQ⃗j
[u⃗(Qj, 2)− u⃗(Qj, 1) | T⃗ = t⃗, Z⃗ = z⃗]

=

⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

q−1∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)
n∑

j=1

E2
tj ,zj

(5.35)
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where

E2
tj ,zj

= EQ⃗j
[u⃗(Qj, 2)− u⃗(Qj, 1) | Tj = tj, Zj = zj]

which holds because of the Bayesian network structure. Notice that E2
tj ,zj

and only depends

on the values of tj and zj, but not j. By Definition 5.1 and realizing that E1
tj ,zj

= −E2
tj ,zj

,

we get

n∑
j=1

E2
tj ,zj

= −


n−1
2
− q

n+1
2
− q

β

2q − β

 ·


u1 − u2

−u1 + u3

−u2 + u3

u2 − u3


= −

(
n+ 1

2
− q

)
(−u2 + u3)− (2q − 2β)(u2 − u3)− (−u1 + u2)

= −(u2 − u3)

(
−n+ 1

2
+ 3q − 2β

)
+ (u1 − u2).

First, for this constant term, we have that Equation (5.35) is proportional to the likelihood of

two-way ties for plurality voting under i.i.d. preferences. By Corollary 2.1 and Assumption

5.1, this term is Θ
(

1√
n

)
. Second, like in Step 1 above, we will forego writing the factor

(u2 − u3) in front of Equation (5.35) for ease of notation. Equation (5.35) is therefore

proportional to

−
⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

q−1∑
β=0

∑
z⃗∈Zt⃗,β

Pr(T⃗ = t⃗, Z⃗ = z⃗)

(
−n+ 1

2
+ 3q − 2β

)

= −
⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)

q−1∑
β=0

(
−n+ 1

2
+ 3q − 2β

) ∑
z⃗∈Zt⃗,β

Pr(Z⃗ = z⃗ | T⃗ = t⃗)

= −
⌊n6 ⌋−1∑
q=0

∑
t⃗∈T 2,q

Pr(T⃗ = t⃗)

q−1∑
β=0

(
−n+ 1

2
+ 3q − 2β

)(
2q

β

)
1

22q
(5.36)

since

Pr(Zj = 1 | Tj /∈ {1, 2}) = 0.5.

Case when q = 0. The case for q = 0 is similar to the event E1 in Lemma 5.1. Namely,

Equation (5.36) is zero in this case because there are zero third-party agents, so there is no
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iterative plurality dynamics. By Lemma 3.1, the adversarial loss is zero.

Next, we apply the following binomial identities, which are proved in Section 5.3.4.

Lemma 5.3. For q ≥ 1, the following identities hold:

7.
q−1∑
β=0

(
2q

β

)
1

22q
=

1

2
− 1

22q+1

(
2q

q

)

8.

q−1∑
β=0

β

(
2q

β

)
1

22q
=

q

2
− q

22q

(
2q

q

)
.

By applying Equations 7 and 8 of Lemma 5.3, Equation (5.36) simplifies to

−
⌊n6 ⌋−1∑
q=1

((
−n+ 1

2
+ 3q

)(
1

2
− 1

22q+1

(
2q

q

))
− 2

(
q

2
− q

22q

(
2q

q

)))
Pr(T⃗ ∈ T 2,q)

= −
⌊n6 ⌋−1∑
q=1

(
1

2

(
−n+ 1

2
+ q

)
−
(
−n+1

2
− q
)

22q+1

(
2q

q

))
Pr(T⃗ ∈ T 2,q). (5.37)

Recall that T⃗ is a multinomial distribution over [3] with event probabilities (π1, π2, π3 + π4).

Furthermore, T 2,q is the event where there are n−1
2
− q of 1s in T⃗ , n+1

2
− q of 2s, and 2q of

3s. Therefore

Pr(T⃗ ∈ T 2,q) =

(
n

n−1
2
− 1− q, n+1

2
− q, 2q

)
π

n−1
2

−q

1 π
n+1
2

−q

2 (π3 + π4)
2q

=

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−2q
1 π2q

3

n22q(
n+1
2
− q
) (

2q
q

) . (5.38)

Hence, Equation (5.37) becomes

− n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−2q
1 π2q

3

( (
−n+1

2
+ q
)
22q

2
(
n+1
2
− q
) (

2q
q

) − (−n+1
2
− q
)

2
(
n+1
2
− q
))

= −n
⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−2q
1 π2q

3

(
−22q−1(

2q
q

) +
1

2
+

q(
n+1
2
− q
)) (5.39)
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Step 3: Put parts together. Recall that our original problem began as Equation (5.26)

which we initially split into Equations (5.27) and (5.34). Through a sequence of steps we

transformed these equations into Equations (5.33) and (5.39). Recombining them yields

n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

×

(
π3

((
−n−1

2
+ q − 1

)
2q + 1

22q(
2q
q

) − 1

)
− π1

(
−22q−1(

2q
q

) +
1

2
+

q(
n+1
2
− q
)))

= π1n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

22q(
2q
q

) (1

2
+

π3

(
−n−1

2
+ q − 1

)
π1(2q + 1)

)

− n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

(
π3 +

π1

2
+

π1q(
n−1
2
− q
)) (5.40)

In Section 5.3.1 we introduce Lemma 5.10 to prove that the first summation of Equation

(5.40) is ±O
(

1√
n

)
. The second summation of Equation (5.40) is −Θ(1) by Lemma 5.6,

which follows after realizing that
(
π3 +

π1

2
+ π1q

(n−1
2

−q)

)
= Θ(1) for each q in its domain.

This concludes the proof of Lemma 5.2.

This concludes the proof of Theorem 5.1.

In Theorem 5.1, we found that the likelihood of a tie between alternatives W ̸= {1, 2} is

exponentially small by Corollary 5.1. This corollary may also be applied to the EADPoA for

distributions beyond Assumption 5.1. Namely, if π is concentrated around rankings with the

same leading alternative, then the likelihood of any tie is exponentially small (Xia, 2021a);

hence, so is the EADPoA. Let m ≥ 3 and λi(π) =
∑

j:top(Rj)=i πj be the likelihood of an

agent truthfully voting for i.

Proposition 5.2. For any π where {λ1(π), . . . , λm(π)} has a unique maximum,

EADPoA(f, u⃗, πn) = ± exp(−Θ(n)). (5.41)

This proposition holds by proving |PoA(W )| ≤ exp(−Θ(n)) for every W ⊆ A, similar

to the proof of Theorem 5.1.
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5.3 Proof of Technical Lemmas

5.3.1 Multinomial Lemmas

Lemma 5.4.

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

(
−1

2

(
−n

2
+ 3q

)
+

π3

π1

(
−n

2
+ q
))

=


Θ(1) , π1 < 0.4

−Θ(1) , π1 > 0.4

±O
(
1
n

)
, π1 = 0.4.

Proof. Notice that the objective takes the same form as the evaluation of a discrete expected

value: it is a summation over the range of q of a multinomial likelihood, indexed by q,

multiplied by the score function

fn(q) = −
1

2

(
−n

2
+ 3q

)
+

π3

π1

(
−n

2
+ q
)
.

This function is bounded by ±O(n) and is monotonic in q for fixed n. We prove the lemma

by partitioning the summation into different ranges of q and handling each case differently.

We see that for small enough q, fn(q) = −Θ(n), so we can factor it out of the objective and

evaluate the sum of probabilities. We make use Lemma 5.6, which applies a theorem from

(Xia, 2021a), to evaluate this remaining sum as either O
(
1
n

)
or exp(−Θ(n)) depending on

where we partition the objective. A similar case holds for large enough q, where fn(q) = Θ(n).

Now, the place at which we partition the objective summation depends on π1. When

π1 > 0.4 we ntoice that fn(q) > 0 ⇐⇒ q > ϵπ3n for some ϵ > 1. Hence, we can

partition the summation at the point (ϵ+1)
2

π3n and employ Lemma 5.6 on these segments

separately. A similar process holds for π1 < 0.4 to partition the summation at ϵπ3n for

ϵ < 1. However, a different technique must be used when π1 = 0.4. We first recognize that

fn(q) = 5
4
(π3n − q). We have fn(q) ∈ [−O(n),O(n)], so we cannot immediately factor it

out of the objective summation. We treat this case separately as Lemma 5.7. The technical

details are as follows.
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Initial observations. Notice that

fn(q) > 0 ⇐⇒ q >
n
(

1
2
− π3

π1

)
2
(

3
2
− π3

π1

) .

It is easy to verify that
n
(

1
2
−π3

π1

)
2
(

3
2
−π3

π1

) < n
6

since π3 > 0. Let ϵ = 1
2π3

(
1−6π3

3−10π3

)
such that

ϵπ3n =
n
(

1
2
− π3

π1

)
2
(

3
2
− π3

π1

) .
Recall that π3 ∈ (0, 1

6
) and π1 =

1
2
− π3 by Assumption 5.1, so ϵ > 0. Hence:

• ϵ > 1 if and only if π3 < 0.1,

• ϵ < 1 if and only if π3 > 0.1,

• ϵ = 1 if and only if π3 = 0.1.

This entails three cases to the lemma.

Case 1: (π3 < 0.1). Suppose first that π3 < 0.1 so that ϵ > 1. Then fn(q) > 0 ⇐⇒ q >

ϵπ3n. We partition the summation

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 fn(q)

= −Θ(n)

⌈ (ϵ+1)
2

π3n⌉∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

−Θ(n)

⌈ϵπ3n⌉∑
q=⌈ (ϵ+1)

2
π3n⌉+1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

+Θ(n)

n
6
−1∑

q=⌈ϵπ3n⌉+1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

= −Θ(n)Θ

(
1

n

)
− exp(−Θ(n)) + exp(−Θ(n))

= −Θ(1)
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by Lemma 5.6. This lemma is a direct application of Theorem 1 from Xia (2021a) and is

proved in Section 5.3.4.

Lemma 5.6. Fix a, b ∈ (0, 1
6
), a < b. Then

n
6
−1∑

q=⌊an⌋

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

Θ
(
1
n

)
, π3 ≥ a

exp(−Θ(n)), otherwise

and

⌈bn⌉∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

Θ
(
1
n

)
, π3 ≤ b

exp(−Θ(n)), otherwise.

Case 2: (π3 > 0.1). Now suppose that π3 > 0.1 so that ϵ < 1. Then fn(q) < 0 ⇐⇒ q <

ϵπ3n. Like the first case, we get by applying Lemma 5.6 that

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 fn(q)

= −Θ(n)

⌊ϵπ3n⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

+Θ(n)

⌊ (ϵ+1)
2

π3n⌋−1∑
q=⌊ϵπ3n⌋

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

+Θ(n)

n
6
−1∑

q=⌊ (ϵ+1)
2

π3n⌋

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

= − exp(−Θ(n)) + exp(−Θ(n)) + Θ(n)Θ

(
1

n

)
= Θ(1).

Case 3: (π3 = 0.1). In the final case, in which π3 = 0.1, we have

fn(q) =
1

4

(n
2
− 5q

)
=

5

4
(π3n− q) .
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Therefore the objective becomes

5

4

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 (π3n− q)

= −
5
(
n
n
2

)√
2nπ3π1

2n+2

n
6
−1∑

q=1

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2nπ3π1

(5.42)

by Proposition 5.2, which is proved in Section 5.3.4.

Proposition 5.2. Let q ∈
[
1, n

6
− 1
]
. Then

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

(
n
n
2

)
2n

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2

.

This proposition is useful for transforming the multinomial likelihood to a squared-

binomial equivalence. The factor out-front is Θ
(

1√
n

)
by Stirling’s approximation (see Propo-

sition 5.1 in Section 5.3.3). Notice that the multinomial domain of q is [0, n
6
] while the bino-

mial domain of q is [0, n
2
]. We may therefore extend the range of Equation (5.42) by adding

a summation that is exponentially small by Hoeffding’s inequality (Proposition 5.3). That

is, Equation (5.42) can be written as

Θ(1)

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2nπ3π1

+Θ(1)

(((
n
2

0

)
(2π1)

n
2
−0(2π3)

0

)2
(0− π3n)√
2nπ3π1

)

−Θ(1)

n
2∑

q=0

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2nπ3π1

= ± exp(−Θ(n))−Θ(1)

n
2∑

q=0

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2nπ3π1

. (5.43)

Proposition 5.3 (Hoeffding’s Inequality). Let p ∈ (0, 1) and q = 1 − p; let a, b ∈ R such

that 0 ≤ a < b ≤ 1. If p /∈ [a, b] then

⌈bn⌉∑
k=⌊an⌋

((
n

k

)
pn−kqk

)2

= exp(−Θ(n)).
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Our specific use of this inequality is proved in Section 5.3.4. Finally, Equation (5.43)

leads to

± exp(−Θ(n))±Θ(1)O
(
1

n

)
= ±O

(
1

n

)
by Lemma 5.7, which is proved in Section 5.3.2. In that section, we discuss the necessary

change of variables in order to apply the lemma. Simply put, we exchange n
2
7→ n and

2π3 7→ p.

Lemma 5.7. Let p ∈ (0, 2
3
) and Sn ∼ Bin(n, p). Then∣∣∣∣∣

n∑
k=0

(
k − np√
np(1− p)

)
Pr(Sn = k)2

∣∣∣∣∣ = O
(
1

n

)
.

This concludes the proof of Lemma 5.4.

Lemma 5.5.∣∣∣∣∣∣
n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

(−n
2
+ q)22q(
2q
q

) (
1

2
+

π3(−n
2
+ q − 1)

π1(2q + 1)

)∣∣∣∣∣∣ = O
(

1√
n

)
.

Proof. Throughout this proof we will use the fact that

(
−n

2
+ q
)(1

2
+

π3(−n
2
+ q − 1)

π1(2q + 1)

)
=

1

2π1(2q + 1)

(
−n

2
+ q
)
(q − π3n+ π1 − 2π3)

=
1

2π1(2q + 1)

(
(q − π3n)

2 + (q − π3n)(−π1n+ π1 − 2π3) + (−π1n)(π1 − 2π3)
)

(5.44)

where π1 − 2π3 ∈ (0, 1
2
) by Assumption 5.1. Let

fn(q) =
(
−n

2
+ q
)
(q − π3n+ π1 − 2π3)
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so that, in the objective,

(−n
2
+ q)22q(
2q
q

) (
1

2
+

π3(−n
2
+ q − 1)

π1(2q + 1)

)
=

fn(q)

2π1

22q

(2q + 1)
(
2q
q

) .
It is clear that fn(q) is +Θ(n2) or −O(n2) when q − π3n is −Θ(n) or +Θ(n), respectively.

Therefore we may expect to be able to factor out fn(q) from the objective when q is either

small- or large-enough. However, it is initially unclear how to treat fn(q) when q is near

the “center” of the summation since fn(q) switches signs. Recall from Proposition 5.2 that

the likelihood term in the objective,
(

n
n
2
−q,n

2
−q,q,q

)
πn−2q
1 π2q

3 , is equivalent to O
(

1√
n

)
× the

squared-binomial probability centered at π3n. The “center” of the summation, therefore, is

when q is o(n) away from π3n.

To handle these separate cases, we partition the objective summation region [1, n
6
) into

three regions defined below:

1. a “small-q” region, An, covering [1, π3n
2
),

2. a “large-q” region, Bn, covering (the negation of) [n
6
, n
2
],

3. the remainder, Cn, covering [π3n
2
, n
2
].

Both An and Bn are Θ(n) in size but do not cover the center π3n. Therefore, by Hoeffding’s

inequality (Proposition 5.3) and Lemma 5.6, these terms are exponentially small. Analyzing

Cn requires a different technique using the definition of fn(q). From Equation (5.44) above,

we see that there are three terms with varying powers of (q − π3n)
k, k ∈ {2, 1, 0}. These

three terms split up Cn into three further sub-equations, Dn, En, and Fn, respectively. We

make use of Lemmas 5.8 and 5.9 below to analyze two of these equations, while the third is

analyzed using properties of the additional term 22q

(2q+1)(2qq )
× O

(
1√
n

)
from Proposition 5.2,

and Lemma 5.6. The technical details are as follows.

We start off by splitting up the objective into three parts:

An +Bn + Cn (5.45)
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where we define

An =

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

fn(q)

2π1

22q

(2q + 1)
(
2q
q

) ,

Bn = −

(
n
n
2

)
2n

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
fn(q)

2π1

22q

(2q + 1)
(
2q
q

) ,

Cn =

(
n
n
2

)
2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
fn(q)

2π1

22q

(2q + 1)
(
2q
q

) ,
making use of Proposition 5.2, while adding and subtracting the same terms over the regions

q ∈ [n
6
, n
2
] to make Bn and Cn.

Consider the first summation of Equation (5.45). Notice that fn(q) = Θ(n2) along the

domain q ∈ [1,
⌊
π3n
2

⌋
− 1], that 22q

(2qq )(2q+1)
∈ (0, 1), ∀q > 0, and that 22q

(2qq )(2q+1)
is decreasing in

q by Stirling’s approximation (Proposition 5.1). Therefore

An =

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

fn(q)

2π1

22q

(2q + 1)
(
2q
q

)
≤ 1

2π1

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 fn(q)

= Θ(n2)

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

= exp(−Θ(n))
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by Lemma 5.6; we evaluated q = 1 for 22q

(2qq )(2q+1)
. Likewise

An =

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

fn(q)

2π1

22q

(2q + 1)
(
2q
q

)
≥ 2π3n

2π1 ·
(
π3n
π3n
2

)
(π3n+ 1)

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 fn(q)

= Θ(n1.5)

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

= exp(−Θ(n))

by Stirling’s approximation (Proposition 5.1) and Lemma 5.6; we evaluated q = π3n
2

for
22q

(2qq )(2q+1)
. Hence, by the squeeze theorem, An = exp(−Θ(n)).

Now consider the second summation of Equation (5.45). Notice that fn(q) = −O(n2)

(and fn(q) = −Ω(n)) along the domain q ∈ [n
6
, n
2
]. Therefore

Bn = −

(
n
n
2

)
2n

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
fn(q)

2π1

22q

(2q + 1)
(
2q
q

)
= Θ

(
1√
n

)
Θ

(
1√
n

)
O(n2)

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2

= exp(−Θ(n))

by Hoeffding’s inequality (Proposition 5.3).

We henceforth focus on the third summation of Equation (5.45), which may be split

up using the definition of fn(q) from Equation (5.44) as

Cn =

(
n
n
2

)
2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
fn(q)

2π1

22q

(2q + 1)
(
2q
q

)
= Dn + En + Fn (5.46)
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where we define

Dn =

(
n
n
2

)
2π1 · 2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q

(2q + 1)
(
2q
q

)(q − π3n)
2,

En =

(
n
n
2

)
(−π1n+ π1 − 2π3)

2π1 · 2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q

(2q + 1)
(
2q
q

)(q − π3n),

Fn =

(
n
n
2

)
(−π1n)(π1 − 2π3)

2π1 · 2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q

(2q + 1)
(
2q
q

) .
Consider the first summation of Equation (5.46). We get

Dn = Θ

(
1√
n

)√
2π1π3n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q
√
2π1π3n

(2q + 1)
(
2q
q

) ( q − π3n√
2π1π3n

)2

= Θ(1) · ±O
(

1√
n

)
(5.47)

= ±O
(

1√
n

)
by Stirling’s approximation (Proposition 5.1) and the following lemma, proved in Section

5.3.2. We make the change of variables n
2
7→ n, q 7→ k, and 2π3 7→ p to apply the lemma to

Equation (5.47).

Lemma 5.8. Let p ∈ (0, 2
3
) and Sn ∼ Bin(n, p). Then∣∣∣∣∣∣∣

n∑
k=⌊np

2 ⌋

(
k − np√
np(1− p)

)2
22k
√
np(1− p)

(2k + 1)
(
2k
k

) Pr(Sn = k)2

∣∣∣∣∣∣∣ = O
(

1√
n

)
.
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Now consider the second summation of Equation (5.46). We have

En =
−Θ(n)

(
n
n
2

)
2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q
√
2π1π3n

(2q + 1)
(
2q
q

) (q − π3n)√
2π1π3n

= −Θ(
√
n) · ±O

(
1

n

)
= ±O

(
1√
n

)
by Stirling’s approximation (Proposition 5.1) and the following lemma, proved in Section

5.3.2 with the same change of variables as with Lemma 5.8.

Lemma 5.9. Let p ∈ (0, 2
3
) and Sn ∼ Bin(n, p). Then∣∣∣∣∣∣∣

n∑
k=⌊np

2 ⌋

(
k − np√
np(1− p)

)
22k
√

np(1− p)

(2k + 1)
(
2k
k

) Pr(Sn = k)2

∣∣∣∣∣∣∣ = O
(
1

n

)
.

Finally, consider the third summation of Equation (5.46). We in-part undo the trans-

formation of Proposition 5.2 to get

Fn =
−Θ(n)

(
n
n
2

)
2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q

(2q + 1)
(
2q
q

)
= −Θ(n)

n
6
−1∑

q=⌊π3n2 ⌋

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3

22q

(2q + 1)
(
2q
q

)
−Θ(

√
n)

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
22q

(2q + 1)
(
2q
q

) (5.48)

= −Θ(n)Θ

(
1

n1.5

)
−Θ(

√
n)Θ

(
1√
n

)
exp(−Θ(n)) (5.49)

= −Θ
(

1√
n

)
.

We get Equation (5.48) by Stirling’s approximation (Proposition 5.1), and Equation (5.49)

by Lemma 5.6 and Hoeffding’s inequality (Proposition 5.3).

This concludes the proof of Lemma 5.5.
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Lemma 5.10.∣∣∣∣∣∣∣π1n

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

22q(
2q
q

) (1

2
+

π3

(
−n−1

2
+ q − 1

)
π1(2q + 1)

)∣∣∣∣∣∣∣ = O
(

1√
n

)
.

Proof. We begin by realizing that the objective is equal to

− 2π1

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

×
(−n−1

2
+ q)22q(
2q
q

) (
1

2
+

π3

(
−n−1

2
+ q − 1

)
π1(2q + 1)

)

+ 2π1

⌊n6 ⌋−1∑
q=1

(
n− 1

n−1
2
− q, n−1

2
− q, q, q

)
πn−1−2q
1 π2q

3

×
(q + 1

2
)22q(

2q
q

) (
1

2
+

π3

(
−n−1

2
+ q − 1

)
π1(2q + 1)

)
. (5.50)

The first summation of Equation (5.50) is ±O
(

1√
n

)
directly by Lemma 5.5, noting that

n − 1 is even. We simplify the second summation of Equation (5.50) similarly to the proof

of Lemma 5.5. For the duration of the proof, we make the change of variables n 7→ n− 1 to

simplify the notation and present the proof similarly to that lemma. Note that

π1(2q + 1)

(
1

2
+

π3

(
−n

2
+ q − 1

)
π1(2q + 1)

)
= (q − π3n+ π1 − 2π3).

We are left in the second summation of Equation (5.50) with

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 (q − π3n+ π1 − 2π3)
22q(
2q
q

)
= An +Bn + Cn + (π1 − 2π3)Dn (5.51)
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where we define

An =

⌊π3n2 ⌋−1∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 (q − π3n)
22q(
2q
q

) ,

Bn = −

(
n
n
2

)
2n

n
2∑

q=n
6

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2

(q − π3n)
22q(
2q
q

) ,

Cn =

(
n
n
2

)
2n

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2

(q − π3n)
22q(
2q
q

) ,

Dn =

n
6
−1∑

q=1

(
n

n
2
− q, n

2
− q, 2q

)
πn−2q
1 (2π3)

2q,

making use of Proposition 5.2, while adding and subtracting the same terms over the regions

q ∈ [n
6
, n
2
] to make Bn, Cn, and Dn. It is clear that both An, Bn = ± exp(−Θ(n)) by following

similar steps as in Lemma 5.5. Furthermore, Dn is equivalent to the probability of a two-

way tie with three alternatives. This is Θ
(

1√
n

)
by Corollary 5.1. Finally, consider the third

summation of Equation (5.51). We have by Stirling’s approximation

Cn = Θ

(
1√
n

) n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2π1π3n

(2q + 1)
22q
√
2π1π3n

(2q + 1)
(
2q
q

)
= Θ(1)

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2π1π3n

q√
2π1π3n

22q
√
2π1π3n

(2q + 1)
(
2q
q

)
+Θ

(
1√
n

) n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2π1π3n

22q
√
2π1π3n

(2q + 1)
(
2q
q

)
= En + Fn +Gn
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where we define

En = Θ(1)

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2(
q − π3n√
2π1π3n

)2
22q
√
2π1π3n

(2q + 1)
(
2q
q

) ,

Fn = Θ(
√
n)

n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2π1π3n

22q
√
2π1π3n

(2q + 1)
(
2q
q

) ,

Gn = Θ

(
1√
n

) n
2∑

q=⌊π3n2 ⌋

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2
(q − π3n)√
2π1π3n

22q
√
2π1π3n

(2q + 1)
(
2q
q

) .
We have that |En| = O

(
1√
n

)
by Lemma 5.8, |Fn| = Θ(

√
n)O

(
1
n

)
= O

(
1√
n

)
by Lemma 5.9,

and |Gn| = Θ
(

1√
n

)
O
(
1
n

)
= O

(
1

n1.5

)
by Lemma 5.9. This concludes the proof of Lemma

5.10.

5.3.2 Expected Collision Entropy

This section describes the asymptotic rate that certain sequences of summations in

Lemmas 5.4 and 5.5 converge to zero, such as this objective equation from Lemma 5.9:

n∑
k=⌊np

2 ⌋

(
k − np√
np(1− p)

)
22k
√
np(1− p)

(2k + 1)
(
2k
k

) Pr(Sn = k)2 (5.52)

where p ∈ (0, 2
3
) and Sn ∼ Bin(n, p). 8 Intuitively, this equation seems similar to the

standardized expectation of a binomial random variable, which is clearly zero. However,

there are two complications: the fact that we are squaring the binomial likelihood function

and the presence of the value

gn,k =
22k
√
np(1− p)

(2k + 1)
(
2k
k

) (5.53)

8We name this section “Expected Collision Entropy” for its relationship to Réyni entropy (see e.g., Fehr
and Berens (2014)). This is defined for binomial random variables as − ln

∑n
k=1

((
n
k

)
pk(1− p)n−k

)2 which
details the negative log likelihood of the two random variables being equal. This is “expected” because we’re
multiplying each collision likelihood by the standardized value k−np√

np(1−p)
.
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in the summation. While |gn,k| = Θ(1) by Lemma 5.13 (detailed below), it cannot be factored

out of the summation through standard techniques because k−np√
np(1−p)

takes on both positive

and negative values throughout the summation. One intuitively nice method, hypothetically,

could partition the summation region at k = np, factor out gn,k for each part, and then add

the two components back together. However, this method is specious; it would yield too

imprecise of an asymptotic bound. Hence, different techniques must be used.

Our methods therefore include replacing the binomial probability with a discrete Gaus-

sian form 1√
2π
e−

y2

2 , using triangle inequality, and then applying following theorem to asymp-

totically bound parts of the objective summations:

Theorem 5.2 (Petrov (1975), Chapter VII.1). Let Sn ∼ Bin(n, p). Then

sup
k∈[0,n]

∣∣∣∣∣Pr(Sn = k)− 1√
2πnp(1− p)

e
− 1

2

(
k−np√
np(1−p)

)2∣∣∣∣∣ = O
(
1

n

)
.

For the rest of the objective, we make use of properties of gn,k and a change of variables

to yield the desired claims. These concepts are described technically in the lemma proofs.

This section is presented in three parts. First, we use different notation in this section

than the prior lemmas in order to generalize these claims beyond our specific use-case.

Section 5.3.2.1 describes what change of variables are necessary to apply this section’s lemmas

from the notation used in Lemmas 5.4 and 5.5. Section 5.3.2.2 then lists and proves the three

applicable lemmas: 5.7, 5.8, and 5.9. This makes their proofs significantly more complicated.

Third, Section 5.3.2.3 proves technical lemmas that are used in the aforementioned lemmas.

5.3.2.1 Preliminaries

Let p ∈ (0, 2
3
) and q = 1− p. For each n ∈ N where np ∈ Z≥0, let Sn ∼ Bin(n, p) and

define the random variable

Xn =
Sn − np
√
npq

. (5.54)

The random variable Xn takes on the values

xn,k =
k − np
√
npq

for 0 ≤ k ≤ n (5.55)



111

which are evenly spaced out by

∆n =
1
√
npq

. (5.56)

We have

Pr(Sn = k) =

(
n

k

)
pkqn−k. (5.57)

Finally, we define

f(x) =
1√
2π

e−
x2

2 . (5.58)

In order to apply the subsequent lemmas to the claims made throughout the primary

theorem, we make the following change of variables:
n
2

q

2π3

2π1

 7→

n

k

p

q

 (5.59)

recalling that 2(π1 + π3) = 1. Hence, we get the variable

k − π3n√
2π1π3n

7→ xn,k =
k − np
√
npq

(5.60)

and a new variable definition

22k
√
2π1π3n

(2k + 1)
(
2k
k

) 7→ gn,k =
22k
√
npq

(2k + 1)
(
2k
k

) . (5.61)

5.3.2.2 Proof of Lemmas 5.7, 5.8, and 5.9

Lemma 5.7. ∣∣∣∣∣
n∑

k=0

xn,k Pr(Sn = k)2

∣∣∣∣∣ = O
(
1

n

)
.

Proof. As described in the introduction to this section, it is clear that

n∑
k=0

xn,k Pr(Sn = k) =
1
√
npq

E[Sn − np] = 0.

The challenge with this lemma is the presence of the squared-binomial probability in the

objective. Intuitively, we would like to make a symmetry argument that, for any fixed t > 0,
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xn,np−t =
−t√
npq

= − t√
npq

= −xn,np+t and Pr(Sn = np − t) ≈ Pr(Sn = np + t). Hence, most

terms would cancel out, except for perhaps the tails which occur with exponentially small

likelihood by Hoeffding’s inequality. This approach does not immediately work because

Pr(|Sn − np| < t)
n→∞−−−→ 0 for fixed t. Rather, the lemma requires summing up over a

range of at least size Θ(n) around the point k = np (e.g., [np − t, np + t] for t = Θ(n))

whose likelihood of occurrence tends to 1. However, when t = Θ(n) and p ̸= 1
2
, we have

Pr(Sn=np+t)
Pr(Sn=np−t)

∈ {exp(Θ(n)), exp(−Θ(n))}, so the xn,np−t and xn,np+t terms would not cancel

out. 9

Rather than keeping Pr(Sn = k) in our summation, which is skewed for p ̸= 1
2
, we

could replace it with the discretized Gaussian function f(xn,k)∆n = 1√
2πnpq

e−
x2n,k

2 , which is

symmetric about np. This idea comes from the central limit theorem by which we expect

the Sn−np√
npq

to converge in distribution to the standard Gaussian. The Berry–Esseen theorem

suggests that this convergence rate is O
(

1√
n

)
(see e.g., Durrett (2019)), so, intuitively,

the squared-probability should converge at rate O
(
1
n

)
. However, a direct application of

Berry–Esseen-like theorems fail since they hold only for cumulative distribution functions.

Proving this point-wise for Pr(Sn = k) at each k and including the value-term xn,k in the

summation for our lemma requires nuance.

Hence, we make use of Theorem 5.2 (Petrov, 1975, Chapter VII.1), which bounds the

point-wise difference between Pr(Sn = k) and f(xn,k)∆n by the rate O
(
1
n

)
. This lemma’s

proof proceeds by substituting the binomial probability Pr(Sn = k) by adding and sub-

tracting f(xn,k)∆n to and from the objective. This allows us to bound each term using

Theorem 5.2 and several convergence technical lemmas that are described and proved in

Section 5.3.2.3.

Notably, we replace the objective with Cn =
∑n

k=0 xn,kf(xn,k)
2∆2

n where both the

value and probability parts of the equation are symmetrical around the center np, plus some

additional terms. Still, we run into integral problems by which np may not be an integer.

It is easy to show that |Cn| = exp(−Θ(n)) if np is an integer by symmetry. Demonstrating

the desired bound that |Cn| = O
(
1
n

)
requires a handful of other steps when np is not an

integer. We demonstrate both cases in the proof below to build the reader’s intuition. The

technical details are as follows.
9This approach could work by the (local) DeMoivre-Laplace Theorem for t = O(

√
n) (see e.g., Carlen

(2018); Feller (1991)); still, it would not make this proof complete. We would not be able to bound the rate
of convergence of the tails specifically enough.
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We start off by splitting up the objective into three parts in which we replace Pr(Sn = k)

with (Pr(Sn = k)− f(xn,k)∆n) + f(xn,k)∆n at each step:

n∑
k=0

xn,k Pr(Sn = k)2

=
n∑

k=0

xn,k Pr(Sn = k)
(
Pr(Sn = k)− f(xn,k)∆n

)
+

n∑
k=0

xn,k Pr(Sn = k)f(xn,k)∆n

= An +Bn + Cn (5.62)

where we define

An =
n∑

k=0

xn,k Pr(Sn = k)
(
Pr(Sn = k)− f(xn,k)∆n

)
,

Bn =
n∑

k=0

xn,kf(xn,k)∆n

(
Pr(Sn = k)− f(xn,k)∆n

)
,

Cn =
n∑

k=0

xn,kf(xn,k)
2∆2

n.

Consider the first summation of Equation (5.62). We have

|An| =

∣∣∣∣∣
n∑

k=0

xn,k Pr(Sn = k) (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣
≤

n∑
k=0

|xn,k Pr(Sn = k)| · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=0

|xn,k|Pr(Sn = k) (5.63)

= O
(
1

n

)
(5.64)

by triangle inequality. Equation (5.63) follows from Theorem 5.2. Equation (5.64) follows

from Lemma 5.11, proved in Section 5.3.2.3.
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Lemma 5.11.
n∑

k=0

|xn,k|Pr(Sn = k) = Θ(1).

Now, for the second summation of Equation (5.62), we have

|Bn| =

∣∣∣∣∣
n∑

k=0

xn,kf(xn,k)∆n (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣
≤

n∑
k=0

|xn,kf(xn,k)∆n| · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=0

|xn,k|f(xn,k)∆n (5.65)

= O
(
1

n

)
(5.66)

by triangle inequality. Equation (5.65) follows from Theorem 5.2. Equation (5.66) follows

from the following lemma.

Lemma 5.12 (Equation 1). The following equation is Θ(1):

n∑
k=0

|xn,k|f(xn,k)∆n.

Lemma 5.12 consists of ten equations that we prove are all Θ(1) in Section 5.3.2.3.

Each equation is structured similarly and may be proved in almost an identical manner

except for how the proof is initialized. Hence, for convenience and straightforwardness of

this section, we pack all ten equations into the same lemma statement.

Finally, consider the third summation of Equation (5.62). We prove that |Cn| ≤ O
(
1
n

)
with the following two cases, depending on whether np is an integer or not. We demonstrate

both cases to build the reader’s intuition.
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Case 1: np is an integer. We have

Cn =
n∑

k=0

xn,kf(xn,k)
2∆2

n

=

⌈ 3np
2 ⌉∑

k=⌊np
2 ⌋

xn,kf(xn,k)
2∆2

n +

⌊np
2 ⌋−1∑
k=0

xn,kf(xn,k)
2∆2

n +
n∑

k=⌈ 3np
2 ⌉+1

xn,kf(xn,k)
2∆2

n. (5.67)

The first summation of Equation (5.67) is zero by symmetry since np is assumed to be an

integer. The second summation of Equation (5.67) is

−
⌊np

2 ⌋−1∑
k=0

Θ(
√
n) exp(−Θ(n))Θ

(
1

n

)
= − exp(−Θ(n)),

while the third summation similarly yields exp(−Θ(n)).

Case 2: np is not an integer. Now suppose that np is not an integer and that np =

tn + bn where tn ∈ N and bn ∈ (0, 1). Our approach is to split up Cn into four regions: a

“positive” region of size npq above np, a “negative” region of size npq below np, and two tails

which are clearly exponentially small. We seek to point-wise align the positive and negative

regions and have the terms at k = ⌊np⌋−u and k = ⌈np⌉+u, for u ∈ [0, ⌈npq⌉] approximately

cancel out. We make the appropriate change of variables, which leads to Equation (5.69)

below. The final step is to appropriately bound the magnitude of each part of that equation

by O
(
1
n

)
using the Maclaurin–Cauchy integral test from Lemma 5.12. The aforementioned
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partition is as follows.

Cn =
n∑

k=0

xn,kf(xn,k)
2∆2

n

=

⌊np⌋∑
k=⌊np⌋−⌈npq⌉

xn,kf(xn,k)
2∆2

n +

⌈np⌉+⌈npq⌉∑
k=⌈np⌉

xn,kf(xn,k)
2∆2

n

+

⌊np⌋−⌈npq⌉−1∑
k=0

xn,kf(xn,k)
2∆2

n +
n∑

k=⌈np⌉+⌈npq⌉+1

xn,kf(xn,k)
2∆2

n

=

⌊np⌋∑
k=⌊np⌋−⌈npq⌉

(
k − tn − bn√

npq

)
f

(
k − tn − bn√

npq

)2

∆2
n

+

⌈np⌉+⌈npq⌉∑
k=⌈np⌉

(
k − tn − bn√

npq

)
f

(
k − tn − bn√

npq

)2

∆2
n

−
⌊np⌋−⌈npq⌉−1∑

k=0

Θ(n) exp(−Θ(n))Θ

(
1

n

)
+

n∑
k=⌈np⌉+⌈npq⌉+1

Θ(n) exp(−Θ(n))Θ

(
1

n

)
. (5.68)

Notice that our partition is valid: both np− npq = np(1− q) = np2 ∈ (0, n) and np+ npq =

np(2 − p) ∈ (0, n). Next, we make the change of variables u = ⌊np⌋ − k in the first line of

Equation (5.68) and u = k − ⌈np⌉ in the second line of Equation (5.68). We therefore get

⌈npq⌉∑
u=0

(
−u− bn√

npq

)
f

(
−u− bn√

npq

)2

∆2
n

+

⌈npq⌉∑
u=0

(
u+ 1− bn√

npq

)
f

(
u+ 1− bn√

npq

)2

∆2
n

± exp(−Θ(n))

= Dn + En + Fn +Gn ± exp(−Θ(n)) (5.69)

where we define

Dn =

⌈npq⌉∑
u=0

(
u
√
npq

)(
−f
(
u+ bn√
npq

)2

+ f

(
u+ 1− bn√

npq

)2
)
∆2

n,
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En = −bn
⌈npq⌉∑
u=0

f

(
u+ bn√
npq

)2

∆3
n,

Fn = (1− bn)

⌈npq⌉∑
u=0

f

(
u+ 1− bn√

npq

)2

∆3
n.

We made use of the fact that f is an even function to get Dn and En. Consider the first

summation of Equation (5.69). We have

|Dn| ≤
⌈npq⌉∑
u=0

(
u
√
npq

) ∣∣∣∣∣−f
(

u
√
npq

)2

+ f

(
u+ 1
√
npq

)2
∣∣∣∣∣∆2

n (5.70)

=

⌈npq⌉∑
u=0

(
u
√
npq

)
f

(
u
√
npq

)2

∆2
n −

⌈npq⌉∑
u=0

(
u+ 1
√
npq

)
f

(
u+ 1
√
npq

)2

∆2
n

+

⌈npq⌉∑
u=0

(
1
√
npq

)
f

(
u+ 1
√
npq

)2

∆2
n

= ± exp(−Θ(n)) +O
(
1

n

) ⌈npq⌉∑
u=0

f

(
u
√
npq

)2

∆n

= O
(
1

n

)
.

by Lemma 5.12.2. Equation (5.70) comes from the fact that e−y2 is decreasing for y > 0, so

f
(

u+c√
npq

)2
≤ f

(
u√
npq

)2
for c ∈ (0, 1). Now consider the third summation of Equation (5.69).

We have

|Fn| ≤ O
(
1

n

) ⌈npq⌉∑
u=0

f

(
u
√
npq

)2

∆n

= O
(
1

n

)

since e−y2 is decreasing for y > 0 and by Lemma 5.12.2. It is easy to see that |Gn| = O
(
1
n

)
by similar reasoning. Collectively, this entails that |Cn| = O

(
1
n

)
.

This concludes the proof of Lemma 5.7.
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Lemma 5.8. ∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

x2
n,k · gn,k Pr(Sn = k)2

∣∣∣∣∣∣∣ = O
(

1√
n

)
.

Proof. The proof proceeds similar to Lemma 5.7 in that we substitute the binomial proba-

bility Pr(Sn = k) by adding and subtracting the discretized Gaussian function f(xn,k)∆n to

and from the objective. This allows us to bound each term using Theorem 5.2 and several

convergence technical lemmas that are described and proved in Section 5.3.2.3. The final

step of this proof is significantly simpler than that in Lemma 5.7 since we only require an

asymptotic bound of O
(

1√
n

)
. The extra term gn,k does not affect the flow of the proof, as

seen below. We start with

n∑
k=⌊np

2 ⌋
x2
n,k · gn,k Pr(Sn = k)2

=
n∑

k=⌊np
2 ⌋

x2
n,k · gn,k Pr(Sn = k)

(
Pr(Sn = k)− f(xn,k)∆n

)

+
n∑

k=⌊np
2 ⌋

x2
n,k · gn,k Pr(Sn = k)f(xn,k)∆n

= An +Bn + Cn (5.71)

where we define

An =
n∑

k=⌊np
2 ⌋

x2
n,k · gn,k Pr(Sn = k)

(
Pr(Sn = k)− f(xn,k)∆n

)
,

Bn =
n∑

k=⌊np
2 ⌋

x2
n,k · gn,kf(xn,k)∆n

(
Pr(Sn = k)− f(xn,k)∆n

)
,

Cn =
n∑

k=⌊np
2 ⌋

x2
n,k · gn,kf(xn,k)

2∆2
n.
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Consider the first summation of Equation (5.71). We have

|An| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

x2
n,k · gn,k Pr(Sn = k) (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣∣∣
≤

n∑
k=⌊np

2 ⌋

∣∣x2
n,k · gn,k Pr(Sn = k)

∣∣ · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=⌊np

2 ⌋
x2
n,k Pr(Sn = k) (5.72)

= O
(
1

n

)
(5.73)

by triangle inequality. Equation (5.72) follows from Theorem 5.2 and since |gn,k| = Θ(1) by

Lemma 5.13, proved in Section 5.3.4.

Lemma 5.13. Let k ∈
[⌊

np
2

⌋
, n
]
. Then |gn,k| = Θ(1).

Equation (5.73) follows from Lemma 5.14, proved in Section 5.3.2.3.

Lemma 5.14.
n∑

k=⌊np
2 ⌋

x2
n,k Pr(Sn = k) = Θ(1).

Now, for the second summation of Equation (5.71), we have

|Bn| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

x2
n,k · gn,kf(xn,k)∆n (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣∣∣
≤

n∑
k=⌊np

2 ⌋

∣∣x2
n,k · gn,kf(xn,k)∆n

∣∣ · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=⌊np

2 ⌋
x2
n,kf(xn,k)∆n (5.74)

= O
(
1

n

)
(5.75)

by triangle inequality. Equation (5.74) follows from Theorem 5.2 and since |gn,k| = Θ(1) by

Lemma 5.13. Equation (5.75) follows by Lemma 5.12.3. Finally, consider the third line of
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Equation (5.71). We get

|Cn| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

x2
n,k · gn,kf(xn,k)

2∆2
n

∣∣∣∣∣∣∣
≤

n∑
k=⌊np

2 ⌋
|x2

n,k · gn,kf(xn,k)
2∆2

n|

≤ O
(

1√
n

) n∑
k=⌊np

2 ⌋
x2
n,kf(xn,k)

2∆n

= O
(

1√
n

)
by triangle inequality, since |gn,k| = Θ(1) by Lemma 5.13, and by Lemma 5.12.4.

This concludes the proof of Lemma 5.8.

Lemma 5.9. ∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

xn,k · gn,k Pr(Sn = k)2

∣∣∣∣∣∣∣ = O
(
1

n

)
.

Proof. This proof proceeds in four parts. In the first part, we substitute the binomial prob-

ability Pr(Sn = k) by adding and subtracting the discretized Gaussian function f(xn,k)∆n

to and from the objective, similar to Lemmas 5.7 and 5.8. We make use of Theorem 5.2 for

some parts, as in those lemmas, and are left with Cn =
∑n

k=⌊np
2 ⌋ xn,k · gn,kf(xn,k)

2∆2
n.

Recall that in Lemma 5.7 we made a symmetry argument to bound |Cn| by O
(
1
n

)
,

while in Lemma 5.8 we factored gn,k and ∆n out of the objective to yield a O
(

1√
n

)
bound.

Since gn,k is in this summation and we require an asymptotic bound of O
(
1
n

)
for this lemma,

the techniques of these lemmas used on Cn are no longer valid. In the second step to this

proof, we therefore identify meaningful upper- and lower-bounds to Cn in order to apply

the squeeze theorem. We do this by exploiting properties of gn,k and identifying upper- and

lower-bounds to gn,k that are asymptotically equivalent (see Lemma 5.15 below). The terms

composing Cn are both positive and negative on its range k ∈ [
⌊
np
2

⌋
, n]. We upper-bound

Cn by using the upper-bound of gn,k on the positive portion of Cn and lower-bound of gn,k
on the negative portion of Cn. The opposite holds to lower-bound Cn. Recall by Lemma

5.13 that |gn,k| = Θ(1). This bound is remarkably not precise enough to prove Lemma 5.9.
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Rather, we require gn,k’s bounds to be asymptotically equivalent to attain O
(
1
n

)
bounds,

making use of the stricter Lemma 5.15.

After some simplification, we are left in the third step of the proof with

Fn =
∑⌈ 3np

2 ⌉
k=⌊np

2 ⌋
xn,k

√
1

k+0.5
f(xn,k)

2∆n. This summation is now symmetrical around np ex-

cept for the O
(

1√
k

)
factor in the summation and the possibility that np may not be an

integer. To handle the first issue, we make a symmetry argument and pair the terms at

k = np − u and k = np + u for u ∈ [0,
⌊
np
2

⌋
]. This leads to a summation similar to∑⌊np

2 ⌋
u=0

(
u√
npq

)
f
(

u√
npq

)2 (√
1

np+u
−
√

1
np−u

)
∆n (see Equation (5.94) below). We require

significant nuance to handle the case where np may not be an integer, described in Step 3

below. All-in-all, this possibility does not affect the convergence rate. Finally, we show in

Step 4 that
(√

1
np+u

−
√

1
np−u

)
= −uO

(
1

n1.5

)
, which enables us to prove Lemma 5.9. The

technical details are as follows.

Step 1: Substitute the binomial probability. We start off by splitting up the objec-

tive into three parts in which we replace Pr(Sn = k) with (Pr(Sn = k)− f(xn,k)∆n) +

f(xn,k)∆n at each step:

n∑
k=⌊np

2 ⌋
xn,k · gn,k Pr(Sn = k)2

=
n∑

k=⌊np
2 ⌋

xn,k · gn,k Pr(Sn = k)
(
Pr(Sn = k)− f(xn,k)∆n

)

+
n∑

k=⌊np
2 ⌋

xn,k · gn,k Pr(Sn = k)f(xn,k)∆n

= An +Bn + Cn (5.76)

where we define

An =
n∑

k=⌊np
2 ⌋

xn,k · gn,k Pr(Sn = k)
(
Pr(Sn = k)− f(xn,k)∆n

)
,
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Bn =
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)∆n

(
Pr(Sn = k)− f(xn,k)∆n

)
,

Cn =
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)
2∆2

n.

Consider the first summation of Equation (5.76). We have

|An| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

xn,k · gn,k Pr(Sn = k) (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣∣∣
≤

n∑
k=⌊np

2 ⌋
|xn,k · gn,k Pr(Sn = k)| · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=⌊np

2 ⌋
|xn,k|Pr(Sn = k) (5.77)

= O
(
1

n

)
(5.78)

by triangle inequality. Equation (5.77) follows from Theorem 5.2 and since |gn,k| = Θ(1) by

Lemma 5.13. Equation (5.78) follows from Lemma 5.11 and Hoeffding’s inequality (Propo-

sition 5.3).

Now, for the second summation of Equation (5.76), we have

|Bn| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)∆n (Pr(Sn = k)− f(xn,k)∆n)

∣∣∣∣∣∣∣
≤

n∑
k=⌊np

2 ⌋
|xn,k · gn,kf(xn,k)∆n| · |Pr(Sn = k)− f(xn,k)∆n|

≤ O
(
1

n

) n∑
k=⌊np

2 ⌋
|xn,k|f(xn,k)∆n (5.79)

= O
(
1

n

)
(5.80)

by triangle inequality. Equation (5.79) follows from Theorem 5.2 and since |gn,k| = Θ(1) by
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Lemma 5.13. Equation (5.80) follows from Lemma 5.12.5.

Step 2: Squeeze theorem using properties of gn,k. Our next step is to identify mean-

ingful bounds on the third summation of Equation (5.76), Cn, and apply the squeeze theo-

rem. Our upper- and lower-bounds on Cn follow from upper- and lower-bounds on gn,k in

the following lemma, described and proved in Section 5.3.3.

Lemma 5.15. √
2n

2n+ 1

√
2

π(2n+ 1)
≤ 22n

(2n+ 1)
(
2n
n

) ≤√ 2

π(2n+ 1)
.

Recall that gn,k =
22k

√
npq

(2k+1)(2kk )
, so by Lemma 5.15 we have

√
2k

2k + 1

√
2npq

π(2k + 1)
≤ gn,k ≤

√
2npq

π(2k + 1)
. (5.81)

Notice that the terms composing Cn are both positive and negative on its range k ∈ [
⌊
np
2

⌋
, n].

We upper-bound Cn by using the upper-bound of gn,k on the positive portion of Cn and lower-

bound of gn,k on the negative portion of Cn. The opposite holds to lower-bound Cn. This

procedure partitions the range of Cn into two parts: k ∈ [
⌊
np
2

⌋
, ⌊np⌋] and k ∈ [⌈np⌉ , n], each

of which is ±O
(

1√
n

)
. This bound is not tight enough to prove Lemma 5.9. We therefore

want to use a symmetry argument to have the terms at k = np − u and k = np + u for

u ∈ [0,
⌊
np
2

⌋
] approximately cancel out, like in the proof of Lemma 5.7, to yield a tighter

bound. Lemma 5.15’s bounds which are asymptotically equivalent (i.e.,
√

2k
2k+1

√
2npq

π(2k+1)
∼√

2npq
π(2k+1)

; see Lemma 5.16 below) enables us to do this. This step concludes by bounding

|Cn| ≤ O
(
1
n

)
+ |Fn| where Fn is a summation that covers the full range k ∈ [

⌊
np
2

⌋
, n] and

includes an O
(

1√
k

)
factor in the objective.
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From the third summation of Equation (5.76), we get

Cn =
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)
2∆2

n

=

⌊np⌋∑
k=⌊np

2 ⌋
xn,k · gn,kf(xn,k)

2∆2
n +

n∑
k=⌈np⌉

xn,k · gn,kf(xn,k)
2∆2

n

≤

√
⌊np⌋
⌊np⌋+ 1

⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
2npq

π(2k + 1)
f(xn,k)

2∆2
n

+
n∑

k=⌈np⌉

xn,k

√
2npq

π(2k + 1)
f(xn,k)

2∆2
n (5.82)

where the lower-bound on gn,k from Equation (5.81) is applied to the negative portion of the

summation, where k ≤ ⌊np⌋, and the upper-bound on gn,k is applied to the positive portion

of the summation, where k ≥ ⌈np⌉. Note that
√

2k
2k+1

is increasing in k, by the following

lemma, so k =
⌊
np
2

⌋
was inputted to minimize this value over the domain k ∈ [

⌊
np
2

⌋
, ⌊np⌋].

Lemma 5.16. For any constant t > 0,
√

tn
tn+1

= 1−O
(
1
n

)
.

Lemma 5.16 is proved in Section 5.3.4. By this lemma, Equation (5.82) is equivalent

to√
2

π

(
1−O

(
1

n

)) ⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n +

√
2

π

n∑
k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n

= −O
(
1

n

) ⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n +

√
2

π

n∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n (5.83)
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We repeat this process to get a lower-bound on Cn:

Cn =
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)
2∆2

n

=

⌊np⌋∑
k=⌊np

2 ⌋
xn,k · gn,kf(xn,k)

2∆2
n +

n∑
k=⌈np⌉

xn,k · gn,kf(xn,k)
2∆2

n

≥
⌊np⌋∑

k=⌊np
2 ⌋

xn,k

√
2npq

π(2k + 1)
f(xn,k)

2∆2
n

+

√
2 ⌈np⌉

2 ⌈np⌉+ 1

n∑
k=⌈np⌉

xn,k

√
2npq

π(2k + 1)
f(xn,k)

2∆2
n (5.84)

where the upper-bound on gn,k from Equation (5.81) is applied to the negative portion of

the summation, where k ≤ ⌊np⌋. Likewise, the lower-bound on gn,k from Equation (5.81) is

applied to the positive portion of the summation, where k ≥ ⌈np⌉, with k = ⌈np⌉ which is

set at argmink∈[⌈np⌉,n]

√
2k

2k+1
. By Lemma 5.16, Equation (5.84) is then equivalent to

√
2

π

⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n +

√
2

π

(
1−O

(
1

n

)) n∑
k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n

=

√
2

π

n∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n −O
(
1

n

) n∑
k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n. (5.85)

To assist the flow of the proof and reduce redundancy, we use a technical variant of

the squeeze theorem. We have shown

Equation (5.83) ≤ Cn ≤ Equation (5.85).

Rather than prove Equations (5.83) and (5.85) have the same asymptotic bounds, separately,

we combine the equations as

|Cn| ≤ max
{∣∣∣Equation (5.83)

∣∣∣, ∣∣∣Equation (5.85)
}

≤
∣∣∣Equation (5.83)

∣∣∣+ ∣∣∣Equation (5.85)
∣∣∣
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by triangle inequality. We continue the proof with

|Cn| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

xn,k · gn,kf(xn,k)
2∆2

n

∣∣∣∣∣∣∣
≤ max

{∣∣∣Equation (5.83)
∣∣∣, ∣∣∣Equation (5.85)

∣∣∣}
≤
∣∣∣Equation (5.83)

∣∣∣+ ∣∣∣Equation (5.85)
∣∣∣

=

∣∣∣∣∣∣∣−O
(
1

n

) ⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n +

√
2

π

n∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
√

2

π

n∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n −O
(
1

n

) n∑
k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n

∣∣∣∣∣∣∣
≤ |Dn|+ |En|+ 2

√
2

π
· |Fn| (5.86)

by triangle inequality, where we define

Dn = O
(
1

n

) ⌊np⌋∑
k=⌊np

2 ⌋
xn,k

√
1

2k + 1
f(xn,k)

2∆n,

En = O
(
1

n

) n∑
k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n,

Fn =
n∑

k=⌊np
2 ⌋

xn,k

√
1

2k + 1
f(xn,k)

2∆n.
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Consider the first summation in Equation (5.86). We have

|Dn| = O
(
1

n

) ∣∣∣∣∣∣∣
⌊np⌋∑

k=⌊np
2 ⌋

xn,k

√
1

2k + 1
f(xn,k)

2∆n

∣∣∣∣∣∣∣
≤ O

(
1

n1.5

) ⌊np⌋∑
k=⌊np

2 ⌋
|xn,k|f(xn,k)

2∆n

≤ O
(
1

n

) ⌊np⌋∑
k=⌊np

2 ⌋
f(xn,k)

2∆n

= O
(
1

n

)
which follows by Lemma 5.12.6. Identical reasoning follows to upper bound the second

summation in Equation (5.86):

|En| = O
(
1

n

) ∣∣∣∣∣∣
n∑

k=⌈np⌉

xn,k

√
1

2k + 1
f(xn,k)

2∆n

∣∣∣∣∣∣
≤ O

(
1

n

)
by Lemma 5.12.7.

Step 3: Handle np may not be an integer. Until this point in the proof, we have demon-

strated that the magnitude of the objective is bounded by O
(
1
n

)
+ |Cn| and that |Cn| ≤

O
(
1
n

)
+ |Fn| where

Fn =
n∑

k=⌊np
2 ⌋

xn,k

√
1

2k + 1
f(xn,k)

2∆n.

Our aim is to bound |Fn| ≤ O
(
1
n

)
. To accomplish this, in this step, we pair the terms at

k = np−u and k = np+u for u ∈ [0,
⌊
np
2

⌋
], using a change of variables, to yield a summation

similar to
⌊np

2 ⌋∑
u=0

(
u
√
npq

)
f

(
u
√
npq

)2(√
1

np+ u
−
√

1

np− u

)
∆n

(see Equation (5.94) below). We first show that the upper-tail is exponentially small. We

then handle the nuance by which np may not be an integer. This possibility does not affect
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the convergence rate, nor the intuition behind this change-of-variables. The reader may

skip from Equation (5.88) to Equation (5.94) without losing the flow of the proof. The step

concludes by bounding |Fn| ≤ O
(
1
n

)
+|Ln| where Ln is a summation that covers u ∈ [0,

⌊
np
2

⌋
]

and includes a factor similar to
(√

1
np+u

−
√

1
np−u

)
in the objective. We proceed as follows.

|Fn| =

∣∣∣∣∣∣∣
n∑

k=⌊np
2 ⌋

xn,k

√
1

k + 0.5
f(xn,k)

2∆n

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
n∑

k=⌈ 3np
2 ⌉+1

xn,k

√
1

k + 0.5
f(xn,k)

2∆n

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
⌈ 3np

2 ⌉∑
k=⌊np

2 ⌋
xn,k

√
1

k + 0.5
f(xn,k)

2∆n

∣∣∣∣∣∣∣ (5.87)

by triangle inequality. Notice that for the first summation of Equation (5.87),∣∣∣∣∣∣∣
n∑

k=⌈ 3np
2 ⌉+1

xn,k

√
1

k + 0.5
f(xn,k)

2∆n

∣∣∣∣∣∣∣
≤

n∑
k=⌈ 3np

2 ⌉+1

|xn,k|
√

1

k + 0.5
f(xn,k)

2∆n

= Θ(n)Θ(
√
n)Θ

(
1√
n

)
exp(−Θ(n))Θ

(
1√
n

)
= exp(−Θ(n))

by triangle inequality. Hence, we focus on the range k ∈
[⌊

np
2

⌋
,
⌈
3np
2

⌉]
in the second sum-

mation of Equation (5.87):

⌈ 3np
2 ⌉∑

k=⌊np
2 ⌋

xn,k

√
1

k + 0.5
f(xn,k)

2∆n

=

⌊np⌋∑
k=⌊np

2 ⌋

(
k − np
√
npq

)√
1

k + 0.5
f

(
k − np
√
npq

)2

∆n

+

⌈ 3np
2 ⌉∑

k=⌈np⌉

(
k − np
√
npq

)√
1

k + 0.5
f

(
k − np
√
npq

)2

∆n. (5.88)

For the first line of Equation (5.88) we make the change of variables u = ⌊np⌋ − k,
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which yields

⌊np⌋−⌊np
2 ⌋∑

u=0

(
⌊np⌋ − u− np
√
npq

)√
1

⌊np⌋ − u+ 0.5
f

(
⌊np⌋ − u− np
√
npq

)2

∆n. (5.89)

Suppose that np = tn + bn where tn ∈ N and bn ∈ [0, 1). Then Equation (5.89) is

−
⌊np⌋−⌊np

2 ⌋∑
u=0

(
u+ bn√
npq

)√
1

tn − u+ 0.5
f

(
u+ bn√
npq

)2

∆n, (5.90)

making use of the fact that f is an even function. For the second line of Equation (5.88) we

make the change of variables u = k − ⌈np⌉, which yields

⌈ 3np
2 ⌉−⌈np⌉∑
k=0

(
u+ ⌈np⌉ − np
√
npq

)√
1

⌈np⌉+ u+ 0.5
f

(
u+ ⌈np⌉ − np
√
npq

)2

∆n

=

⌈ 3np
2 ⌉−⌈np⌉∑
k=0

(
u+ 1− bn√

npq

)√
1

tn + u+ 1.5
f

(
u+ 1− bn√

npq

)2

∆n. (5.91)

Let

τn = min

{
⌊np⌋ −

⌊np
2

⌋
,

⌈
3np

2

⌉
− ⌈np⌉

}
which is near np

2
(and is exact, if np is an integer). Putting together Equations (5.90) and

(5.91) yields

Gn +Hn + In ± exp(−Θ(n)) (5.92)

where we define

Gn = ∆2
n(1− bn)

τn∑
u=0

1√
tn + u+ 1.5

f

(
u+ 1− bn√

npq

)2

,

Hn = −∆2
nbn

τn∑
u=0

1√
tn − u+ 0.5

f

(
u+ bn√
npq

)2

,
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In = ∆2
n

τn∑
u=0

u√
tn + u+ 1.5

f

(
u+ 1− bn√

npq

)2

− u√
tn − u+ 0.5

f

(
u+ bn√
npq

)2

.

Note that the exponentially small term in Equation (5.92) arises since there may be terms

in-between τn and either ⌊np⌋ −
⌊
np
2

⌋
or
⌈
3np
2

⌉
− ⌈np⌉. Recall that these terms are near

np
2

. Plugging in u = Θ(n) for either Equations (5.90) or (5.91) yields − exp(−Θ(n)) and

exp(−Θ(n)) respectively.

The proof continues by bounding |Gn|, |Hn|, and |In| by O
(
1
n

)
each and respectively.

Consider the first summation of Equation (5.92). Since tn = Θ(n) by definition, we have

|Gn| = O
(
1

n

) ∣∣∣∣∣
τn∑
u=0

f

(
u+ 1− bn√

npq

)2

∆n

∣∣∣∣∣
≤ O

(
1

n

) τn∑
u=0

f

(
u
√
npq

)2

∆n

= O
(
1

n

)

by triangle inequality and Lemma 5.12.8, making use of the fact that e−y2 is monotone

decreasing for y ≥ 0. A similar argument holds for Hn. Now consider the third summation

of Equation (5.92). We get

In = Jn +Kn + Ln (5.93)

where we define

Jn = ∆2
n

τn∑
u=0

u√
tn + u+ 1.5

(
f

(
u+ 1− bn√

npq

)2

− f

(
u
√
npq

)2
)
,

Kn = −∆2
n

τn∑
u=0

u√
tn − u+ 0.5

(
f

(
u+ bn√
npq

)2

− f

(
u
√
npq

)2
)
,

Ln =∆2
n

τn∑
u=0

uf

(
u
√
npq

)2(
1√

tn + u+ 1.5
− 1√

tn − u+ 0.5

)
.
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Consider the first summation of Equation (5.93). We have that |Jn| is equivalent to

O
(

1

n1.5

) ∣∣∣∣∣
τn∑
u=0

u

(
f

(
u+ 1− bn√

npq

)2

− f

(
u
√
npq

)2
)∣∣∣∣∣

≤ O
(

1

n1.5

) τn∑
u=0

u

(
f

(
u
√
npq

)2

− f

(
u+ 1
√
npq

)2
)

= O
(

1

n1.5

) τn∑
u=0

(
uf

(
u
√
npq

)2

− (u+ 1)f

(
u+ 1
√
npq

)2
)

+O
(
1

n

) τn∑
u=0

f

(
u+ 1
√
npq

)2

∆n

= O
(
1

n

) τn∑
u=0

f

(
u
√
npq

)2

∆n −O
(

1

n1.5

)
= O

(
1

n

)
.

where the second line is by triangle inequality and since e−y2 is decreasing for y > 0; the last

line is by Lemma 5.12.8. A similar argument holds for Kn.

Step 4: Handle 1√
k

using paired terms. Now consider the third summation of Equa-

tion (5.93):

Ln =
τn∑
u=0

(
u
√
npq

)
f

(
u
√
npq

)2(
1√

tn + u+ 1.5
− 1√

tn − u+ 0.5

)
∆n. (5.94)

We next simplify the internal difference in this summation. Let a = tn + u + 1.5 and

b = tn − u+ 0.5. we get:

1√
a
− 1√

b
=

√
b−
√
a√

ab
·
√
b+
√
a√

b+
√
a

=
b− a

b
√
a+ a

√
b

=
−(2u+ 1)

(tn − u+ 0.5)
√

(tn + u+ 1.5) + (tn + u+ 1.5)
√

(tn − u+ 0.5)

= −(2u+ 1) · O
(

1

n1.5

)
. (5.95)
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Returning to Equation (5.94), which is upper-bounded by zero, we get

−O
(

1

n1.5

) τn∑
u=0

(
u(2u+ 1)
√
npq

)
f

(
u
√
npq

)2

∆n

= −O
(
1

n

) τn∑
u=0

(
u
√
npq

)2

f

(
u
√
npq

)2

∆n −O
(

1

n1.5

) τn∑
u=0

(
u
√
npq

)
f

(
u
√
npq

)2

∆n

= −O
(
1

n

)

by Lemmas 5.12.9 and 5.12.10. Hence, we get that |Ln| ≤ O
(
1
n

)
.

This concludes the proof of Lemma 5.9.

5.3.2.3 Technical Lemmas

This subsection describes technical lemmas about the convergence of certain sequences

of summations. These are used to support the lemmas in Section 5.3.2.2.

Lemma 5.11.
n∑

k=0

|xn,k|Pr(Sn = k) = Θ(1).

Proof. The lemma is implied by the following:

limn→∞

n∑
k=0

|xn,k|Pr(Sn = k) =
2√
2π

.

We do not assume that np is an integer. Rather, suppose np = tn + bn where tn ∈ N and
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bn ∈ [0, 1). The objective equation is then equal to

⌊np⌋∑
k=0

|xn,k|Pr(Sn = k) +
n∑

k=⌈np⌉

|xn,k|Pr(Sn = k)

= −
⌊np⌋∑
k=0

k − tn − bn√
npq

Pr(Sn = k) +
n∑

k=⌈np⌉

k − tn − bn√
npq

Pr(Sn = k)

=
bn√
npq

⌊np⌋∑
k=0

Pr(Sn = k)− bn√
npq

n∑
k=⌈np⌉

Pr(Sn = k)

+

⌊np
2 ⌋−1∑
k=0

∣∣∣∣k − tn√
npq

∣∣∣∣Pr(Sn = k) +
n∑

k=⌊np
2 ⌋

∣∣∣∣k − tn√
npq

∣∣∣∣Pr(Sn = k)

= ±O
(

1√
n

)
+

n∑
k=⌊np

2 ⌋

∣∣∣∣k − tn√
npq

∣∣∣∣Pr(Sn = k) (5.96)

where we partitioned the lower domain of k ∈ [0, ⌊np⌋
2
) and realized that it is exponentially

small by Hoeffding’s inequality (Proposition 5.3). Next, we change the remaining summation

into a more convenient form.

n∑
k=⌊np

2 ⌋

∣∣∣∣k − tn√
npq

∣∣∣∣Pr(Sn = k)

=
1
√
npq

− ⌊np⌋∑
k=⌊np

2 ⌋
(k − tn) Pr(Sn = k) +

n∑
k=⌈np⌉

(k − tn) Pr(Sn = k)


=

1
√
npq

⌊np⌋+⌊np
2 ⌋∑

k=⌊np⌋

(k − tn) Pr(Sn = k) +
n∑

k=⌈np⌉

(k − tn) Pr(Sn = k)


=

1
√
npq

− n∑
k=⌊np⌋+⌊np

2 ⌋+1

(k − tn) Pr(Sn = k) + 2
n∑

k=⌈np⌉

(k − tn) Pr(Sn = k)


=

2
√
npq

n∑
k=⌊np⌋

(k − tn) Pr(Sn = k)− exp(−Θ(n)) (5.97)
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by Hoeffding’s inequality (Proposition 5.3). Let T =
∑n

k=⌊np⌋ k
(
n
k

)
pkqn−k. Next, we have

T = np
n∑

k=⌊np⌋

(
n− 1

k − 1

)
pk−1qn−k

=
np

q

n−1∑
k=⌊np⌋−1

(
n− 1

k

)
pkqn−k

=
np

q

n−1∑
k=⌊np⌋−1

(
n

k

)
pkqn−k

(
1− k

n

)
(5.98)

=
np

q

n∑
k=⌊np⌋

(
n

k

)
pkqn−k

(
1− k

n

)

+
np

q

((
n

⌊np⌋ − 1

)
p⌊np⌋−1qn−(⌊np⌋−1)

(
1− (⌊np⌋ − 1)

n

)
−
(
n

n

)
pnqn−n

(
1− n

n

))
(5.99)

where in Equation (5.98) we used the substitution(
n− 1

k

)
=

(n− 1)!

k!(n− 1− k)!
=

n!

k!(n− k)!
· n− k

n
.

Notice in Equation (5.99) that(
n

⌊np⌋ − 1

)
p⌊np⌋−1qn−(⌊np⌋−1)

(
1− (⌊np⌋ − 1)

n

)
=

(
n

⌊np⌋

)
⌊np⌋

n− ⌊np⌋+ 1
p⌊np⌋−1qn−⌊np⌋+1

(
n− ⌊np⌋+ 1

n

)
= q

(
⌊np⌋
np

)
·
(

n

⌊np⌋

)
p⌊np⌋qn−⌊np⌋

=
q√

2πnpq

(
1±O

(
1

n

))
by Lemma 5.17, proved in Section 5.3.4.

Lemma 5.17. (
n

⌊np⌋

)
p⌊np⌋qn−⌊np⌋ =

1√
2πnpq

(
1±O

(
1

n

))
.

This gets us

T =
np

q

(
1

2
− T

n

)
+

√
np

2πq

(
1±O

(
1

n

))
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using the fact that
∑n

k=⌊np⌋
(
n
k

)
pkqn−k = 1

2
. Hence,

T =
np

2
+

(
1±O

(
1

n

))
so that our objective from Equation (5.97) becomes

2
√
npq

(
T − ⌊np⌋

2

)
− exp(−Θ(n))

=
2√
2π

(
1±O

(
1

n

))
n→∞−−−→ 2√

2π

as claimed. This concludes the proof of Lemma 5.11.

The following lemma consists of ten equations that we prove are all Θ(1). Each equa-

tion is structured similarly and may be proved in almost an identical manner. Hence, for

convenience and straightforwardness of this section, we pack all ten equations into the same

lemma statement.

Lemma 5.12. Let

τn = min

{
⌊np⌋ −

⌊np
2

⌋
,

⌈
3np

2

⌉
− ⌈np⌉

}
which is near np

2
(and is exact, if np is an integer). The following equations are each Θ(1):

1.
n∑

k=0

|xn,k|f(xn,k)∆n.

2.
⌈npq⌉∑
u=0

f

(
u
√
npq

)2

∆n

3.
n∑

k=⌊np
2 ⌋

x2
n,kf(xn,k)∆n

4.
n∑

k=⌊np
2 ⌋

x2
n,kf(xn,k)

2∆n
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5.
n∑

k=⌊np
2 ⌋
|xn,k|f(xn,k)∆n.

6.
⌊np⌋∑

k=⌊np
2 ⌋

f(xn,k)
2∆n

7.
n∑

k=⌈np⌉

f(xn,k)
2∆n

8.
τn∑
u=0

f

(
u
√
npq

)2

∆n

9.
τn∑
u=0

(
u
√
npq

)
f

(
u
√
npq

)2

∆n

10.
τn∑
u=0

(
u
√
npq

)2

f

(
u
√
npq

)2

∆n

Proof. Each of these equations is proved using similar methods. For conciseness, in this proof,

we will demonstrate only the proofs of Equations 5, which is in xn,k-format, and 11, which is

in u-format. These equations have the largest terms in the objective summation among the

xn,k- and u-format equations, respectively. Therefore, proving that both Equations 5 and 11

are Θ(1) entails the same for the remainder of the equations. Our method is summarized as

follows.

It is clear that each of these summations are non-negative and concentrated around

the mean k = np or u = 0 (depending on the format). For each equation and large enough

|k−np| or u that are Ω(
√
n), the term is decreasing in |k−np| or u. Hence, we make use of

the Maclaurin–Cauchy integral test for convergence. For smaller |k−np| or u terms that are

O(
√
n), we demonstrate convergence using the definition of the Riemann integral. We make

use of the error function erf(x) ≡ 2√
π

∫ x

0
e−y2dy in these proofs; erf(x) ∈ (0, 1) for x > 0.

Then erfc(x) ≡ 1− erf(x) is the complementary error function.
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Step 1: Demonstrate convergence for Equation 5. We do not assume that np is an

integer. Rather, suppose that np = tn + bn where tn ∈ N and bn ∈ [0, 1). We partition the

objective equation into four regions, as follows:

n∑
k=⌊np

2 ⌋
x2
n,kf(xn,k)

2∆n

=
∑

k∈[⌊np
2 ⌋,n] \ [⌊np⌋−⌊npq⌋,⌈np⌉+⌈npq⌉]

x2
n,kf(xn,k)

2∆n +

⌈np⌉+⌈√npq⌉∑
k=⌊np⌋−⌊√npq⌋

x2
n,kf(xn,k)

2∆n

+

⌈np⌉+⌈npq⌉∑
k=⌈np⌉+⌈√npq⌉

x2
n,kf(xn,k)

2∆n +

⌊np⌋−⌊√npq⌋∑
k=⌊np⌋−⌊npq⌋

x2
n,kf(xn,k)

2∆n (5.100)

The first summation of Equation (5.100) is

Θ(n)Θ(n) exp(−Θ(n))Θ

(
1√
n

)
= exp(−Θ(n)).

The second summation of Equation (5.100) converges to

1

2π

∫ 1

−1

y2e−y2dy =

√
πe · erf(1)− 2

4πe
= Θ(1)

by definition of the Riemann integral. The third summation of Equation (5.100) is equivalent

to

⌈npq⌉∑
k=⌈√npq⌉

(
k + ⌈np⌉ − np
√
npq

)2

f

(
k + ⌈np⌉ − np
√
npq

)2

∆n

=

⌈√npq⌉−1∑
R=1

⌈√npq⌉−1∑
r=0

(
R
⌈√

npq
⌉
+ r + 1− bn√
npq

)2

f

(
R
⌈√

npq
⌉
+ r + 1− bn√
npq

)2

∆n

which is at most

⌈√npq⌉−1∑
R=1

R2f(R)2,
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where we plugged in r = −1 + bn since y2e−y2 is monotone decreasing along y ≥ 1. This is

taken
⌈√

npq
⌉

times and cancels out with ∆n. Furthermore, we used the fact that
R⌈√npq⌉

√
npq

≥
R. By the integral test for convergence, the third summation of Equation (5.100) converges

because
1

2π

∫ ∞

1

y2e−y2dy =
e
√
π · erfc(1)− 2

4e
= Θ(1)

converges. The fourth summation of (5.100) follows by similar reasoning. Hence, Equation

5 converges; i.e., is Θ(1) as claimed.

Step 2: Demonstrate convergence for Equation 11. The proof follows almost iden-

tically to that of Equation 5 of this lemma. Recall that τn ≈ np
2

. We partition the objective

into three regions:

τn∑
u=0

(
u
√
npq

)2

f

(
u
√
npq

)2

∆n

=

⌈√npq⌉−1∑
u=0

(
u
√
npq

)2

f

(
u
√
npq

)2

∆n +
τn∑

u=⌈npq⌉

(
u
√
npq

)2

f

(
u
√
npq

)2

∆n

+

⌈√npq⌉−1∑
R=1

⌈√npq⌉−1∑
r=0

(
R
⌈√

npq
⌉
+ r

√
npq

)2

f

(
R
⌈√

npq
⌉
+ r

√
npq

)2

∆n (5.101)

The first summation of Equation (5.101) converges to

1

2π

∫ 1

0

y2e−y2dy =
e
√
π · erf(1)− 2

4e
= Θ(1)

by definition of the Riemann integral. The second summation of Equation (5.101) is

Θ(n)Θ(n) exp(−Θ(n))Θ

(
1√
n

)
= exp(−Θ(n)).

The third summation of Equation (5.101) is at most

⌈√npq⌉−1∑
R=1

R2f(R2) (5.102)
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where we plugged in r = 0 since y2e−y2 is monotone decreasing along y ≥ 1. This is taken⌈√
npq
⌉

times and cancels out with ∆n. Furthermore, we used the fact that
R⌈√npq⌉

√
npq

≥ R.

By the integral test for convergence, the third summation of Equation (5.102) converges

because
1

2π

∫ ∞

1

y2e−y2dy =
e
√
π · erfc(1)− 2

4e
= Θ(1)

converges. Hence, Equation 11 converges (i.e., is Θ(1)), as claimed. This concludes the

proof of Lemma 5.12.

Lemma 5.14.
n∑

k=⌊np
2 ⌋

x2
n,k Pr(Sn = k) = Θ(1).

Proof. The lemma is implied by the following:

lim
n→∞

n∑
k=⌊np

2 ⌋
x2
n,k Pr(Sn = k) = 1.

Let Xn = Sn−np√
npq

for Sn ∼ Bin(n, p). We have that

n∑
k=⌊np

2 ⌋
x2
n,k Pr(Sn = k) = E[X2

n]− exp(−Θ(n))

by Hoeffding’s inequality (Proposition 5.3). We know that

E[S2
n] = n2p2 + npq.

This leads us to the conclusion that

E[X2
n] =

1

npq
E[S2

n − 2Snnp+ n2p2]

=
1

npq

(
E[S2

n]− 2npE[Sn] + n2p2
)

=
1

npq

(
(n2p2 + npq)− 2np(np) + n2p2

)
= 1.



140

This concludes the proof of Lemma 5.14.

5.3.3 Stirling, Wallis, and Central Binomial Coefficients

Stirling’s approximation for the factorial is as follows.

Proposition 5.1 (Stirling’s approximation).

n! ∼
√
2πn

(n
e

)n
.

More precisely, ∀n ≥ 1,

√
2πn

(n
e

)
e

1
12n+1 < n! <

√
2πn

(n
e

)
e

1
12n .

Plugging in Stirling’s approximation for the central binomial coefficient can demon-

strate the asymptotic growth: (
2n

n

)
∼ 22n√

nπ
. (5.103)

The error of this approximation is known to be O( 1
n
) (Luke, 1969); see Dutka (1991). For

completeness and usefulness in our main theorem, we demonstrate one proof for this asymp-

totic growth in the following lemma. This argument is transposed from lecture notes by

Galvin (2018) and uses the Wallis product for π (Wallis, 1656):

π

2
=

∞∏
n=1

4n2

4n2 − 1
=

∞∏
n=1

(
2n

2n− 1
· 2n

2n+ 1

)
. (5.104)

Lemma 5.15. √
2n

2n+ 1

√
2

π(2n+ 1)
≤ 22n

(2n+ 1)
(
2n
n

) ≤√ 2

π(2n+ 1)
.

Proof. For each n ≥ 0, define Sn =
∫ π/2

0
sinn xdx. We have

S0 =
π

2
, S1 =

∫ π/2

0

sinx dx = 1,

and for n ≥ 2 we get from integration by parts (taking u = sinn−1 x and dv = sinxdx, so
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that du = (n− 1) sinn−2 x cosxdx and v = − cosx) that

Sn = (sinn−1 x)(−cosx)|π/2x=0 −
∫ π/2

0

−(n− 1) cosx sinn−2 x cosxdx

= (n− 1)

∫ π/2

0

cos2 xsinn−2xdx

= (n− 1)

∫ π/2

0

(1− sin2 x) sinn−2 xdx

= (n− 1)Sn−2 − (n− 1)Sn.

This leads to the recurrence relation:

Sn =
n− 1

n
Sn−2 for n ≥ 2.

Iterating the recurrence relation until the initial conditions are reached, we get that

S2n =

(
2n− 1

2n

)(
2n− 3

2n− 2

)
. . .

(
3

4

)(
1

2

)
π

2

and

S2n+1 =

(
2n

2n+ 1

)(
2n− 2

2n− 1

)
. . .

(
4

5

)(
2

3

)
1.

Taking the ratio of these two identities and rearranging gets us that π
2

is equivalent to

(
2

1

)(
2

3

)(
4

3

)(
4

5

)
. . .

(
2n

2n− 1

)(
2n

2n+ 1

)
S2n

S2n+1

.

For ease of notation, define

Wn =

(
2

1

)(
2

3

)(
4

3

)(
4

5

)
. . .

(
2n

2n− 1

)(
2n

2n+ 1

)

as the first n terms of Wallis’ product, so that π
2
= Wn

S2n

S2n+1
. Now, since 0 ≤ sinx ≤ 1 on

[0, π/2], we have also

0 ≤ sin2n+1 x ≤ sin2x x ≤ sin2n−1 x,

and so, integrating and using the recurrence relation, we get

0 ≤ S2n+1 ≤ S2n ≤ S2n−1 =
2n+ 1

2n
S2n+1
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and so

1 ≤ S2n

S2n+1

≤ 1 +
1

2n
.

Hence, 1 ≤ π
2Wn
≤ 1 + 1

2n
; equivalently, 2

π
≥ Wn ≥ 2(2n)

π(2n+1)
. Wallis’ formula can now be used

to estimate the central binomial coefficient:(
2n

n

)
=

(2n)(2n− 1)(2n− 2) . . . (3)(2)(1)

(n)(n− 1) . . . (2)(1) · (n)(n− 1) . . . (2)(1)

= 2n
(2n)(2n− 1)(2n− 2) . . . (3)(2)(1)

(n)(n− 1) . . . (2)(1)

= 22n
(2n)(2n− 1)(2n− 2) . . . (3)(2)(1)

(2n)(2n− 2) . . . (4)(2)

=
22n√
2n+ 1

√
(2n+ 1)(2n− 1)2(2n− 3)2 . . . (3)2(1)

(2n)2(2n− 2)2 . . . (4)2(2)2

=
22n√

Wn(2n+ 1)
.

Therefore: √
2n

2n+ 1

√
2

π(2n+ 1)
≤ 22n

(2n+ 1)
(
2n
n

) =

√
Wn

2n+ 1

≤

√
2

π(2n+ 1)
.

This concludes the proof of Lemma 5.15.

5.3.4 Technical Lemmas

Proposition 5.2. Let q ∈
[
1, n

6
− 1
]
. Then

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

(
n
n
2

)
2n

((
n
2

q

)
(2π1)

n
2
−q(2π3)

q

)2

.
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Proof. First, we have: (
n

n
2
− q, n

2
− q, q, q

)
=

n!

(n
2
− q)!2q!2

=
n!

(n
2
)!2

(n
2
)!2

(n
2
− q)!2q!2

=

(
n
n
2

)(
n
2

q

)2

.

Second, we note:

πn−2q
1 π2q

3 =
1

2n
(
(2π1)

n
2
−q(2π3)

q
)2

.

Proposition 5.2 follows by combining these identities.

Proposition 5.3 (Hoeffding’s Inequality). Let p ∈ (0, 1) and q = 1 − p; let a, b ∈ R such

that 0 ≤ a < b ≤ 1. If p /∈ [a, b] then

⌈bn⌉∑
k=⌊an⌋

((
n

k

)
pn−kqk

)2

= exp(−Θ(n)).

Proof. Consider first the case where p < a. Then

0 ≤
⌈bn⌉∑

k=⌊an⌋

((
n

k

)
pn−kqk

)2

≤
⌈bn⌉∑

k=⌊an⌋

((
n

k

)
pn−kqk

)
= Pr

(
Sn − pn ≥ ⌊an⌋ − pn

)
− Pr

(
Sn − pn ≥ ⌈bn⌉ − pn+ 1

)
≤ exp(−Θ(n))

by Hoeffding’s inequality, where Sn ∼ Bin(n, p). Proposition 5.3 follows because the case

where p > b is similar.

The following identities are used in Lemma 5.1 to simplify several conditional expec-

tation equations. This lemma makes use of technical statements presented in Lemma 5.18,

which are proved later in this section.
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Lemma 5.3. For q ≥ 1, the following identities hold:

1.
2q∑

β=q+1

(
2q

β

)
1

22q
=

1

2
− 1

22q

(
2q − 1

q − 1

)

2.
2q∑

β=q+1

β

(
2q

β

)
1

22q
=

q

2

3.
q∑

β=0

(
2q + 1

β

)
1

22q+1
=

1

2

4.

q∑
β=0

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

4

)
− 2q + 1

22q+1

(
2q − 1

q − 1

)
.

5.
2q+1∑
β=q+1

(
2q + 1

β

)
1

22q+1
=

1

2

6.

2q+1∑
β=q+1

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

4

)
+

2q + 1

22q+1

(
2q − 1

q − 1

)
.

7.
q−1∑
β=0

(
2q

β

)
1

22q
=

1

2
− 1

22q+1

(
2q

q

)

8.

q−1∑
β=0

β

(
2q

β

)
1

22q
=

q

2
− q

22q

(
2q

q

)
.

Proof. We take these equations one at a time.
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Equation 1.

2q∑
β=q+1

(
2q

β

)
1

22q
=

2q∑
β=0

(
2q

β

)
1

22q
−

q−1∑
β=0

(
2q

β

)
1

22q
− 1

22q

(
2q

q

)
= 1−

[
1

2
− 1

22q

(
2q − 1

q − 1

)]
− 1

22q

(
2q

q

)
=

1

2
+

1

22q

[(
2q − 1

q − 1

)
−
(
2q

q

)]
=

1

2
− 1

22q

(
2q − 1

q − 1

)
where the third row is by (Lemma 5.18, Equation 2) and the last row follows from Pascal’s

rule.

Equation 2.

2q∑
β=q+1

β

(
2q

β

)
1

22q
=

2q∑
β=0

β

(
2q

β

)
1

22q
−

q−1∑
β=0

β

(
2q

β

)
1

22q
− q

22q

(
2q

q

)
= q −

[
q

2
− 2q

22q

(
2q − 1

q − 1

)]
− q

22q

(
2q

q

)
=

q

2
+

q

22q

[
2

(
2q − 1

q − 1

)
−
(
2q

q

)]
=

q

2

where the third row is by (Lemma 5.18, Equation 3) and the last row follows from Pascal’s

rule.

Equation 3. By symmetry, we have that

q∑
β=0

(
2q + 1

β

)
1

22q+1
=

22q

22q+1
=

1

2
.

Equation 4. We recall Claim 5.1 from Chapter 3:
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Claim 5.1. For any u ∈ N and any t ∈ [0, u], we have

u∑
v=t

(
u

v

)
(u− 2v) = −t

(
u

t

)
.

As a result,

t∑
v=0

(
u

v

)
(u− 2v) =

u∑
v=0

(
u

v

)
(u− 2v)−

t−1∑
v=0

(
u

v

)
(u− 2v)

= (t+ 1)

(
u

(t+ 1)

)
which implies

u
t∑

v=0

(
u

v

)
− 2

t∑
v=0

v

(
u

v

)
= (t+ 1)

(
u

(t+ 1)

)

⇒
t∑

v=0

v

(
u

v

)
=

u

2

t∑
v=0

(
u

v

)
− (t+ 1)

2

(
u

(t+ 1)

)

Substituting u← (2q + 1) and t← (q) into Equation 4, we get

q∑
β=0

β

(
2q + 1

β

)
1

22q+1
=

1

22q+1

(
(2q + 1)

2

q∑
β=0

(
2q + 1

β

)
− q + 1

2

(
2q + 1

q + 1

))

=
(2q + 1)

22q+2

q∑
β=0

(
2q + 1

β

)
− q + 1

22q+2

(
2q + 1

q + 1

)
=

(
2q + 1

4

)
− 2q + 1

22q+1

(
2q − 1

q − 1

)
where the second row comes from applying Claim 5.1, the third row is by simplification, and

the fourth row is by applying Equation 3 and simplification of the binomial.

Equation 5. Proof by symmetry.

Equation 6. Recall from Equation 4 of Lemma 5.3 that

q∑
β=0

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

4

)
− 2q + 1

22q+1

(
2q − 1

q − 1

)
.
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The equation follows since

2q+1∑
β=0

β

(
2q + 1

β

)
1

22q+1
=

(
2q + 1

2

)

by definition of the expectation of a binomial random variable.

Equation 7. Recall Equation 1 from Lemma 5.3:

2q∑
β=q+1

(
2q

β

)
1

22q
=

1

2
− 1

22q

(
2q − 1

q − 1

)
.

The equation follows by recognizing that

2q∑
β=0

(
2q

β

)
1

22q
= 1.

Equation 8. Recall Equation 2 from Lemma 5.3:

2q∑
β=q+1

β

(
2q

β

)
1

22q
=

q

2
.

The equation follows by recognizing that

2q∑
β=0

β

(
2q

β

)
1

22q
= q.

This concludes the proof of Lemma 5.3.

The following lemma applies Theorem 2.3 ((Xia, 2021a, Theorem 1)) to prove that the

likelihood an (n, 4)-PMV fits into a set describing a two-way tie such that there are a specific

number of agents with each ranking Rj (recall Definition 2.8). This additional constraint

reduces the likelihood from Θ
(

1√
n

)
, by Corollary 5.1, to Θ

(
1
n

)
. This holds as long as π3n

is contained in the summation region; the likelihood is exponentially small otherwise.
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Lemma 5.6. Fix a, b ∈ (0, 1
6
), a < b. Then

n
6
−1∑

q=⌊an⌋

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

Θ
(
1
n

)
, π3 ≥ a

exp(−Θ(n)), otherwise

and

⌈bn⌉∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 =

Θ
(
1
n

)
, π3 ≤ b

exp(−Θ(n)), otherwise.

Proof. To prove the lemma, we may assume without loss of generality that an, bn ∈ Z≥0 are

integers. This follows because |x−⌊x⌋ | ≤ 1 = o(n) for any x ∈ R, so Xia (2021a)’s theorems

are indifferent to the distinction between x and ⌊x⌋. The same holds for x and ⌈x⌉.
Consider n random variables Q1, . . . , Qn, such that Qi ∈ {R1, . . . , R4}, which are

distributed identically and independently according to π by Assumption 5.1. Let X⃗π denote

the corresponding (n, 4)-PMV to Q1, . . . , Qn according to Definition 2.8; we have µ = 4. Let

us define the sets:

T a =
{(n

2
− q,

n

2
− q, q, q

)
: q ∈

[
an,

n

6
− 1
]}

T b =
{(n

2
− q,

n

2
− q, q, q

)
: q ∈ [1, bn]

}
.

Then we have

n
6
−1∑

q=an

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 = Pr(X⃗π ∈ T a)

bn∑
q=1

(
n

n
2
− q, n

2
− q, q, q

)
πn−2q
1 π2q

3 = Pr(X⃗π ∈ T b)

which are instances of the PMV-in-polyhedron problem. Specifically, notice that

T a =
{
x⃗ ∈ R4 : Aax⃗ ≤ b⃗a

}
(5.105)



149

where

Aa =



1 −1 0 0

−1 1 0 0

0 0 1 −1
0 0 −1 1

−1
6
−1

6
5
6

−1
6

a a −1 + a a


, b⃗a =



0

0

0

0

−1
0


and

T b =
{
x⃗ ∈ R4 : Abx⃗ ≤ b⃗b

}
(5.106)

where

Ab =



1 −1 0 0

−1 1 0 0

0 0 1 −1
0 0 −1 1

0 0 −1 0

−b −b 1− b −b


, b⃗b =



0

0

0

0

−1
0


.

For any π3 ∈ (0, 1
6
) we will demonstrate in Step 1 below that [T a]Zn ̸= 0 and [T a]Zn ̸= b;

hence, the zero case of the above theorem does not apply. Next, in Step 2, we will demonstrate

that π ∈ T a ⇐⇒ π3 ≥ a and π ∈ T b ⇐⇒ π3 ≤ b; hence, the polynomial and exponential

cases of the theorem apply when the respective conditions hold. In Step 3, we will finally

demonstrate that dim([T a]≤0) = dim([T b]≤0) = 2, so that the polynomial power is 2−4
2

= −1
for each polyhedron.

Step 1: Zero case does not apply. It is easy to see that t⃗q ∈ T a for q = an and that

t⃗q ∈ T b for q = bn. This holds because a < 1
6

and b > 0 and implies that [T a]Zn ̸= ∅ and

[T b]Zn ̸= ∅. Hence, the zero case of Theorem 2.3 does not apply.

Step 2: Differentiate polynomial and exponential cases. The next condition of The-

orem 2.3 is a comparison between [T a]≤0 or [T b]≤0 and Π = {πn} using Assumption 5.1.

Consider the (fractional) vote profile πn and the last row of Aa. For T a, we have

(a, a,−1 + a, a) · πn = (−π3 + a)n ≤ 0
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if and only if π3 ≥ a. It is easy to see that v⃗ · πn ≤ 0 for any other row-vector v⃗ ∈ Aa. This

holds by our Assumption 5.1 on π that π1 = π2 > 2π3 = 2π4 > 0, which already necessitates

that π3 ∈ (0, 1
6
).

Likewise, in the last row of Ab for the case of T b, we have

(−b,−b, 1− b,−b) · πn = (π3 − b)n ≤ 0

if and only if π3 ≤ b. Similarly, v⃗ · πn ≤ 0 for any other row-vector v⃗ ∈ Ab. Therefore, the

polynomial cases of Theorem 2.3 apply to Pr(X⃗π ∈ T a) and Pr(X⃗π ∈ T b) when the lemma’s

respective conditions hold; otherwise the exponential case applies.

Step 3: Determine dimension of characteristic cones. Following the proof of Theo-

rem 1 in Xia (2021a), we start with the following definition.

Definition 5.2 (Equation (2) on page 99 of Schrijver (1998)). For any matrix A that defines

a polyhedron H, let A= denote the implicit equalities, which is the maximal set of rows of

A such that for all x⃗ ∈ H≤0, we have A= · (x⃗)T = (⃗0)T . Let A+ denote the remaining rows

of A.

By Equation (9) on page 99 of Schrijver (1998) we know that dim([T a]≤0) = µ −
rank([Aa]=) and dim([T b]≤0) = µ − rank([Ab]=). From Equations (5.105) and (5.106) we

can deduce that

[Aa]= = [Ab]= =


1 −1 0 0

−1 1 0 0

0 0 1 −1
0 0 −1 1


which has rank 2. Hence, the polynomial powers when we apply Theorem 2.3 are

(µ− rank([Aa]=))− µ

2
=

(µ− rank([Ab]=))− µ

2
= −1.

This concludes the proof of Lemma 5.6.

Lemma 5.13. Let k ∈
[⌊

np
2

⌋
, n
]
. Then∣∣∣∣∣ 22k

√
npq

(2k + 1)
(
2k
k

)∣∣∣∣∣ = Θ(1).
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Proof. By Lemma 5.15 we get that

√
2

3

√
2

π(2k + 1)
≤
√

2k

2k + 1

√
2

π(2k + 1)

≤ 22k

(2k + 1)
(
2k
k

)
≤

√
2

π(2k + 1)
.

Lemma 5.13 follows since k = Θ(n) by assumption and there is an extra Θ(
√
n) term in the

lemma’s objective.

Lemma 5.16. For any constant t > 0,
√

tn
tn+1

= 1−O
(
1
n

)
.

Proof. The lemma is implied by the following:

limn→∞ n

(√
tn

tn+ 1
− 1

)
= − 1

2t
.

Fix ϵ > 0 and define N = 1
2t2ϵ

. Then ∀n > N ,∣∣∣∣∣n
(√

tn

tn+ 1
− 1

)
+

1

2t

∣∣∣∣∣
=

∣∣∣∣n(√tn−√tn+ 1√
tn+ 1

)(√
tn+

√
tn+ 1√

tn+
√
tn+ 1

)
+

1

2t

∣∣∣∣
=

∣∣∣∣∣ −n√
tn+ 1

(√
tn+

√
tn+ 1

) + 1

2t

∣∣∣∣∣
=

1

2t

∣∣∣∣∣−tn+ 1 +
√

(tn)(tn+ 1)

tn+ 1 +
√
(tn)(tn+ 1)

∣∣∣∣∣
≤ 1

2t

∣∣∣∣−tn+ 1 + tn+ 1

2(tn)

∣∣∣∣
=

1

2t2n

<
1

2t2N

= ϵ.
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Lemma 5.16 follows by definition of the limit.

The following lemma is adapted from the proof of the local DeMoivre-Laplace theorem,

demonstrated in lecture notes by Carlen (2018).

Lemma 5.17. (
n

⌊np⌋

)
p⌊np⌋qn−⌊np⌋ =

1√
2πnpq

(
1±O

(
1

n

))
.

Proof. A more precise version of Stirling’s formula for all n ≥ 1 is

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

Taking logarithms, it follows that∣∣∣∣log n!− 1

2
log(2πn)− n log n+ n

∣∣∣∣ ≤ 1

12n
.

For n ∈ N and k ∈ [0, n] an integer, we compute

log

(
n

k

)
= log n!− log k!− log(n− k)!

≈ −1

2
log(2π) +

(
n+

1

2

)
log n−

(
k +

1

2

)
log k −

(
n− k +

1

2

)
log(n− k)

=
1

2
log

(
1

2πn

)
−
(
k +

1

2

)
log

(
k

n

)
−
(
n− k +

1

2

)
log

(
n− k

n

)
where we have used (

n+
1

2

)
=

(
k +

1

2

)
+

(
n− k +

1

2

)
− 1

2

to obtain the last line. Therefore

log

((
n

k

)
pkqn−k

)
≈ −1

2
log (2πnpq)−

(
k +

1

2

)
log

(
k

np

)
−
(
n− k +

1

2

)
log

(
n− k

nq

)
. (5.107)

Note that the error made in Equation (5.107) is no greater than

1

12

(
1

n
+

1

k
+

1

n− k

)
= O

(
1

n

)
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in magnitude. We do not assume that np is an integer. Rather, suppose np = tn + bn where

tn ∈ N and bn ∈ (0, 1). Plugging in k = ⌊np⌋ = tn into Equation (5.107) yields

− 1

2
log (2πnpq) +

(
⌊np⌋+ 1

2

)
log

(
np

⌊np⌋

)
+

(
n− ⌊np⌋+ 1

2

)
log

(
nq

n− ⌊np⌋

)
= −1

2
log (2πnpq) +

(
tn +

1

2

)
log

(
1 +

bn
tn

)
+

(
n− tn +

1

2

)
log

(
1− bn

n− tn

)
. (5.108)

We apply the Taylor expansion for the natural logarithm, which is

log(1 + t) = t− 1

2
t2 +

1

3
t3 −O(t4)

and converges for |t| < 1. This is an alternating sequence, meaning that∣∣∣∣log(1 + t)− t+
1

2
t2
∣∣∣∣ ≤ 1

3
|t|3.

Hence, for t = ±O
(
1
n

)
from Equation (5.108), the error in approximating the logarithm is

O
(

1
n3

)
. Through this approximation, we get

− 1

2
log (2πnpq) +

(
tn +

1

2

)(
bn
tn
− b2n

2t2n

)
+

(
n− tn +

1

2

)(
− bn
n− tn

+
b2n

2(n− tn)2

)
= −1

2
log (2πnpq)±O

(
1

n

)
. (5.109)

Lemma 5.17’s statement follows by noticing that e±O( 1
n) =

(
1±O

(
1
n

))
by the Maclaurin

series of the exponential.

The following identities are used to prove Lemma 5.3.

Lemma 5.18. For q ≥ 2, the following identities hold:

1.
q−1∑
β=0

(
2q − 1

β

)
1

22q−1
=

1

2

2.
q−1∑
β=0

β

(
2q − 1

β

)
1

22q−1
=

(
2q − 1

4

)
− q

22q

(
2q − 1

q − 1

)



154

3.
2q∑

β=q+1

(
2q

β

)
1

22q
=

1

2
− 1

22q

(
2q − 1

q − 1

)
.

Proof. We take these equations one at a time.

Equation 1. By symmetry, we have that

q−1∑
β=0

(
2q − 1

β

)
1

22q−1
=

22q−2

22q−1
=

1

2
.

Equation 2.

q−1∑
β=0

(
2q

β

)
1

22q
=

1

22q

(
q−1∑
β=1

(
2q − 1

β

)
+

q−1∑
β=1

(
2q − 1

β − 1

)
+ 1

)

=
1

22q

(
q−1∑
β=0

(
2q − 1

β

)
+

q−2∑
β=0

(
2q − 1

β

))

=
1

22q

(
2

q−1∑
β=0

(
2q − 1

β

)
−
(
2q − 1

q − 1

))

=
1

2
− 1

22q

(
2q − 1

q − 1

)
where the second row holds by Pascal’s rule, the third row is by changing the second sum-

mation’s base, the fourth row is by simplification, and the fifth row follows from applying

Equation 1.
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Equation 3.

q−1∑
β=0

β

(
2q

β

)
1

22q
=

1

22q

q−1∑
β=1

(2q)

(
2q − 1

β − 1

)

=
q

22q−1

q−2∑
β=0

(
2q − 1

β

)

=
q

22q−1

(
q−1∑
β=0

(
2q − 1

β

)
−
(
2q − 1

q − 1

))

=
q

2
− 2q

22q

(
2q − 1

q − 1

)

where the second row holds since b
(
a
b

)
= a
(
a−1
b−1

)
for any a, b ∈ Z≥0 and 0 < b ≤ a, the third

row is by changing the summation’s base, the fourth row is by simplification, and the fifth

row is by applying Equation 1.

This concludes the proof of Lemma 5.18.



CHAPTER 6

CONCLUSION AND FUTURE WORK

Iterative voting (IV) is a naturalistic model for strategic behavior when agents have the

opportunity to negotiate their votes prior to finalizing the collective decision. Agents play

an extended game by updating their votes over time with myopic reasoning; they do not

work to convince others of their point of view or modify others’ preferences. Prior work has

studied the convergence, equilibrium, and some performance properties of IV by varying the

social choice rule used and the models of agent behavior and information schemes. Our work

in this thesis advanced these aspects through new settings and techniques.

In Chapter 3, we studied the effect strategic behavior has on the quality of electoral

outcomes. Our results naturally extend those of Brânzei et al. (2013) by differentiating the

rank-based utility vector u⃗ from the iterative positional scoring rule fs⃗. When u⃗ = s⃗, prior

work found IV’s performance to be “very good” for plurality (ADPoA = 1), “not bad” for

veto (DPoA = Ω(m) for m ≥ 4), and “very bad” for Borda (DPoA = Ω(n)). In contrast,

we proved that iterative plurality has a Θ(n) adversarial loss in the worst case when u⃗ ̸= s⃗

(Theorem 3.1). By distributing agents’ preferences according to the impartial culture (IC),

we overcame this negative result and obtained a constant order average improvement in

social welfare, regardless of the order of agents’ best response steps (Theorem 3.2).

In Chapter 4, we explored how convergence of iterative plurality over a single issue, as

found by Meir et al. (2010), Meir et al. (2014), and Meir (2015), extends to multiple referenda

as agents have limited access to information. We found that for binary issues, the existence

of cycles hinges on the interdependence of issues in agents’ preference rankings. Specifically,

once an agent j takes a local dominance improvement (LDI) step on an issue i, they only

subsequently revert their vote if their preference for i changes. This occurs in the event that

the set of possible winning alternatives, among other issues that affect j’s preference for i,

changes. Agents don’t have this interdependence if their preferences are O-legal – i.e., if

Portions of this chapter have previously appeared as:
Kavner, J., & Xia, L. (2021). Strategic behavior is bliss: iterative voting improves social welfare. In

Advances in neural information processing systems (Vol. 34, pp. 19021–19032). Curran Associates, Inc.
Kavner, J., Meir, R., Rossi, F., & Xia, L. (2023, August). Convergence of multi-issue iterative voting

under uncertainty. In Proceedings of the 32nd international joint conference on artificial intelligence (pp.
2783-2791). ©2023 IJCAI.

Kavner, J., & Xia, L. (2024). Average-case analysis of iterative voting. arXiv. https://arxiv.org/abs/
2402.08144.
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preferences for each issue is independent of later issues in an order O, conditioned on the

outcomes of earlier issues in the order. Agent preferences over individual issues then change

only finite times, so LDI dynamics converge (Theorem 4.1).

We also found that as uncertainty increases over issues other than the one agents

are changing, fewer preference rankings admit LDI steps, eliminating cycles (Theorem 4.2).

This result assumes agents have alternating uncertainty – i.e., agents may gather more

information about the issue they’re changing their vote over, thus reducing their uncertainty

about that issue, prior to making the change. Finally, convergence does not extend to multi-

alternative issues since LDI dynamics may cycle if agents only have partial order preference

information (Corollary 4.1). Our experiments confirmed that convergence is practically

guaranteed with uncertainty, despite its possibility, and suggests IV improves agents’ social

welfare over truthful outcomes.

Putting these results together with experimental evidence of IV to date leads us to

mixed conclusions about IV’s effect on social welfare. Our theoretical result of Theorem

3.2 and experiments in Section 4.6 complement findings that IV improves welfare (e.g., see

Reijngoud and Endriss (2012) and Grandi et al. (2013) about the single-issue setting and

Bowman et al. (2014) and Grandi et al. (2022) about the multi-issue setting). Tsang and

Larson (2016) shows a similar gain in social welfare when agents have single-peaked prefer-

ences, are embedded on a social network, and make their manipulations based on estimates

of their neighbors’ reports. Put together, IV seems to provide a benefit that serves as an

additional defense of strategic manipulation to those discussed by Dowding and Hees (2008).

Still, it contrasts certain lab experiments by Meir et al. (2020) and simulations by Koolyk et

al. (2017). The variability in performance across experiments are due, in part, to differences

in model parameters being tested: the setting, social choice function, model of agent infor-

mation and behavior, and whether the experiment is based on human decisions or synthetic

vote profiles sampled from some distribution. In particular, our average-case analysis in

Chapter 3 was specific to IC. Although IC has been widely used in social choice (e.g., in the

likelihood of ties of elections (Gillett, 1977, 1980; Marchant, 2001)), it is understood to be

an unrealistic assumption (Lehtinen & Kuorikoski, 2007; Spielman & Teng, 2009). 10

Theorem 3.2 took the first step at understanding IV beyond the worst-case analysis
10Empirically, this is in terms of fitting real-world election data. Theoretically, IC maximizes the like-

lihood of Condorcet’s paradox among three-alternative elections (Regenwetter, 2006; Tsetlin et al., 2003;
Van Deemen, 2014).
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and toward more realistic preference distributions. Theorem 5.1 takes the next step by

studying IV’s performance for a wider class of agents’ preference distributions. In Chapter

5, we demonstrated a threshold for which IV improves or degrades expected welfare over

the truthful vote. We contributed several novel binomial and multinomial lemmas that

may be useful for future study of IV and applied Xia (2021a)’s theorems to expectations of

random functions, rather than the likelihood of events. Furthermore, we continued Chapter

3’s representation of agents’ preferences as a Bayesian network to gain further insight in

behavioral social choice.

Our work may be interpreted within the smoothed analysis framework put forth by Xia

(2020) and Xia (2021a). Namely, Xia expressed the smoothed likelihood of an event as the

supremum (and infimum) expectation of an indicator function, representing the worst- (and

best-) average-case analysis where input distributions are sampled from a set Π ⊆ ∆(L(A)).
A comparable “smoothed additive dynamic price of anarchy” notion would study supπ⃗∈Πn

(and inf π⃗∈Πn) EADPoA(f, u⃗, π⃗). Our work provides insights into these values if Π contains

the uniform distribution or any distribution π that follows Assumption 5.1.

There are a number of future directions for IV research, both theoretically and empir-

ically. First, while we discussed extensions of the EADPoA of iterative plurality to other

preference distributions in Proposition 5.2, our work is foremost limited in its real-world

applicability by our assumptions: m = 3 alternatives and Assumption 5.1, which notably

restricts the support in π over preference rankings. Relaxing these assumptions to account

for all identical and identically distributed preferences in ∆(L(A)) is an interesting direction

for future work. We expect that extending m > 3 will be the most involved since, in order

to apply our methods of partitioning EADPoA by the potential winning sets, the set T 1,q in

Lemma 5.1 would need to be adapted to suggest

|{j : tj = 1}| = |{j : tj = 2}| > |{j : tj = ℓ}|, ∀ℓ ≥ 3; (6.1)

likewise for T 2,q. This would significantly complicate our present analysis, though our tech-

nical lemmas in Sections 5.3.1 – 5.3.4 may assist this future direction.

A second theoretical direction would study IV quality according to other behavioral

procedures besides myopic best responses. While only a few behavioral and information

schemes guarantee convergence (Meir, 2017), this assumption limits IV’s real-world applica-
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bility to situations that assert best response agent behavior. Furthermore, our results may

be sensitive to even a few agents playing other strategies, as exemplified by the study of

trembling hand equilibrium (Obraztsova, Rabinovich, Elkind, Polukarov, & Jennings, 2016).

The welfare of voting games without guaranteed convergence may instead be characterized

by the worst-case ratio between the game’s truthful outcome and stationary distribution over

any cycle – known as the price of sinking (Goemans, Mirrokni, & Vetta, 2005). Bounding

the welfare in each cycle could extend the DPoA, left for future work.

A third avenue of future work is testing the empirical significance of our theoretical

results, as with the experiments by Zou et al. (2015), Tal et al. (2015), and Meir et al.

(2020). Understanding to what extent strategic behavior actually affects electoral outcome

quality would help mechanism designers elicit more authentic preferences. This could be

tested, for example, by fixing peoples’ preferences to align with Assumption 5.1 and varying

π1 across the dichotomy threshold: either <, =, or > 0.4. It is still uncertain how well the

iterative plurality protocol models real-world strategic behavior. While we assume myopic

best responses in this thesis, peoples’ actual behavior through an IV procedure may yield

different quality results, even while fixing their preferences. It may further be fruitful to

test whether researchers could provide recommendations by suggesting, prescriptively, that

people implement best responses in order to help them make better decisions (Xia, 2017).

Artificial intelligence-powered recommendations should (i) generally yield better social out-

comes, (ii) be perceived as fair, both from a procedural and distributional perspective and

in comparison to human-made decisions, and (iii) be desirable by the relevant stakeholders.
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