Social Interactions under

Uncertainty in
Multi Agent Systems

Noam Hazon
Computer Science Department

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University
Ramat Gan, Israel
October 2010

This work was carried out under the supervision of Prof. Yonatan Aumann
and Prof. Sarit Kraus, Computer Science Department, Bar-Ilan University.

Acknowledgments

This research could not have been initiated nor completed without the im-
mense support of my advisors, Yonatan Aumann and Sarit Kraus. Their
advice and productive discussions greatly contributed to my understanding
of the various problems. I want to thank Yonatan for teaching me how to
prove results in an elegant way. He helped me realize that even if you know
something is true, you must show it to others in the clearest way possible. I
want to thank Sarit for teaching me what is to be dedicated to research and
quality, for her hard work and helpful comments when reviewing my papers,
for introducing me to various lines of research and to various researchers,
and for her professional support and encouragement. To make a long story
short, I would like to thank her for her invaluable guidance.

I would also like to thank Gal Kaminka, my M.Sc. supervisor, who introduced
me to the world of research, and taught me basic principles and methods.

I would like to thank my lab members from the MAS groups for creating a
friendly and productive environment. Also to my excellent coauthors: Paul
E. Dunne, Edith Elkind, David Sarne, and Michael Wooldridge I convey my

sincere appreciation.

I wish to express my gratitude to my parents, Shmuel and Tzipi, for their
support and encouragement of my academic education. They have taught
me important lessons that are not covered in any classroom.

Most of all, I would like to thank my wife Shira for the years of love and
unlimited support, and for being there for me for every occasion. Also to my
sons, Matan and Harel, who have helped in their special ways in making my
life much richer throughout my graduate studies, thank you.

Finally, my thank you to G-d.

Abstract

Multi-agent Systems (MAS) deal with environments in which there are sev-
eral agents that may interact. The field of multi-agent systems began its rapid
advancement with the development of distributed, interconnected computer
systems, such as the Internet and multi-robot teams. Such interconnected
settings, where one agent interacts with another, involve studying interac-
tions such as coordination, cooperation and collective decision making. Many
researches in the field of multi-agent systems have investigated these social
interactions, but with the assumption of complete information. However,
agents must also be able to make good decisions in situations that involve a
substantial degree of uncertainty. In our work, we provide the foundation for
building such agents. Specifically, we have investigated the computational
aspects of two common social interactions, collective decision making by vot-
ing and collaborative search. However, we use probabilistic models that shed
a new light on these known settings.

The first part of our research investigates computational aspects of voting
procedures, with the presence of uncertainty. We begin by considering the
winner determination problem, which is termed “evaluation” in the proba-
bilistic knowledge setting. In the evaluation problem a probabilistic model
of voter preferences and a particular voting rule are given and the proba-
bility of a particular candidate winning needs to be computed. We provide
a polynomial algorithm to solve this evaluation problem when the number
of candidates is a constant, and we present experimental results illustrating
the algorithm’s performance in practice. However, when the number of can-
didates is not bounded, we prove that the problem becomes hard for many
prominent voting rules. We further show that even evaluating whether a
candidate has any chance of winning is hard in many cases, and we proffer
an approximation algorithm for both problems.

We then consider another probabilistic model, where only the probability

i

that a candidate will be preferred over another is known. This information
is useful in voting trees, which are widely used in sports tournaments. In
these settings the problem is not only to calculate the probability of a can-
didate to be chosen (i.e. the evaluation problem), but also the possibility
of malicious manipulation by the election organizers (i.e. the control prob-
lem). In the setting of voting trees, the election officers may control the
election by rigging the ballot agenda, i.e. the voting order. We show that
the evaluation problem can be solved efficiently, while the control problem of
agenda rigging is provably hard in some settings. We thus present heuristics
for agenda rigging. We investigate the performance of these heuristics for
both randomly generated data sets and real-world data sets from tennis and
basketball competitions.

Finally, we consider computational aspects of manipulation. In this case,
we do not assume to have probabilistic knowledge. Rather, we assume that
we have imperfect information concerning which voters will join the coali-
tion of manipulators. This new model of strategic voting, which is called
safe manipulation, was recently put forward by Slinko and White [101]. We
study the complexity of finding a safe manipulative vote for a number of
common voting rules, while providing algorithms and hardness results for
both weighted and unweighted voters. We also propose two ways to extend
the notion of safe manipulation and study the computational properties of
the resulting extensions.

The second part of our research investigates collaborative physical search
problems with uncertain knowledge. In these settings, an agent or a team
of agents (e.g., robots) seeks a given item, potentially available at different
locations in a physical environment. We assume that the cost of acquiring
the resource or item at a given source is uncertain (a-priori), and the agents
can observe its true value only after physically arriving at the source. We
first introduce and analyze the problem with a single agent, either providing
a polynomial solution to the problem or proving its hardness. We also intro-
duce a fully polynomial time approximation scheme algorithm for a specific
variant of our problem. We then generalize our results to the multi-agent
settings, where we analyze two models for handling resources, shared and
private budget models. We present polynomial algorithms that work for any
fixed number of agents, both for shared and private budget models. For non-
communicating agents in the private budget model, we propose a polynomial
algorithm that is suitable for any number of agents. Finally, we define our
problem in an environment with self-interested agents. We show how to find

iii

a Nash Equilibrium in polynomial time, and prove that the bound on the
performance of our algorithms, with respect to social welfare, is tight.

v

Contents

1 Introduction 1
1.1 Evaluation of Election Outcomes under Uncertainty 5
1.2 How to Rig Elections and Competitions 7
1.3 Complexity of Safe Strategic Voting 10
1.4 Physical Search Problems with Uncertain Knowledge 13
1.5 Thesis Overview 16
1.6 Publications 19

2 Related Work 21
2.1 Computational Aspects of Elections with Uncertainty 21

2.1.1 Winner Determination 22
2.1.2 Control 24
2.1.3 Manipulation L. 25
2.2 Physical Search Problems with Uncertain Knowledge 27

I Computational Aspects of Elections with Uncer-

tainty 30
3 Social Choice Terminology 31
4 Evaluation of Election Outcomes under Uncertainty 34
4.1 Model and Problem Definitions 35
4.2 Constant Number of Candidates 37
4.2.1 The Algorithm 37

4.2.2 Experiments 42

4.3 The Number of Candidates as a Parameter 47
4.3.1 The Evaluation Problem 48

CONTENTS

4.3.2 Chance-Evaluation Problem 55

4.3.3 Monte Carlo Approximation 57

5 How to Rig Elections and Competitions 61

5.1 Model and Problem Definitions 62

5.2 Voting with a Fair Tree Order 65

5.3 Voting with a Linear Order of Ballots 66

5.4 Heuristics and Experimental Evaluation 71

5.4.1 Heuristics for Linear Order Voting Tree 72

5.4.2 Heuristics for Fair Voting Tree 76

6 Complexity of Safe Strategic Voting 81
6.1 Problem Definition and Computational Problems: First Ob-

servations 81

6.2 Plurality, Veto, and k-approval 84

6.3 Bucklin and Borda 0000 88

6.4 Extensions of the Safe Strategic Voting Model 94

II Physical Search Problems with Uncertain Knowl-

edge 110
7 Single Agent 111
7.1 Terminology and Definitions 111
7.2 Minimize-Expected-Cost 113
7.2.1 Hardness in General Metric Spaces 113

7.2.2 Solution for the Path 114

7.3 Min-Budget and Max-Probability 115
7.3.1 NP Completeness 115

7.3.2 Restricted Case: Bounded Number of Prices 117

7.3.3 Min-Budget Approximation 120

8 Multi-Agent 125
8.1 Shared Budget 125
8.2 Private Budget 128
8.2.1 Non-Communicating Agents 129

8.2.2 Communicating Agents 135

8.3 Self-interested Agents 139

vi

CONTENTS

8.3.1 Min-Budget Game
8.3.2 Min-Expected-Cost Game
8.4 Heterogenous Agents
8.5 Extending our Results - Discussion

9 Future Directions and Final Remarks

9.1 Summary of Key Contributions
9.2 Future Directions

Appendix

A Proofs for Chapter 4

A.1 Correctness Proof for Algorithm 1

B Proofs for Chapter 5

B.1 Proof of Theorem 5.2

C Proofs for Chapter 8

C.1 Proof of Theorem 81
C.2 Proof of Theorem 82
C.3 Proof of Theorem 83

References

vil

List of Figures

1.1
4.1

4.2
4.3

4.4

4.5
4.6

4.7

5.1

5.2

5.3

5.4

Thesis Structure.

An example of how to generate random probabilities where
m==06,1=3.
Results of first set of experiments.
Ratio of actual number to theoretical number of voting results
with increasing numbers of voters.
Ratio of actual number to theoretical number of voting results
when increasing the number of non-zero probability preference
orders for each voter (I).
Results of the last set of experiments.
Reduction from PERMANENT to EVALUATION problem used
in the proof of Theorems 4.9 and 4.10.
An example of how to build a flow network from a given set
of preferences.

Majority graph (a), and two possible voting trees: linear or-
der (b) and fair tree order (c¢). The bold font represents the

agenda, while the italic font represents the labeling of the tree.

Performance of heuristics for linear order for randomly gener-
ated probability matrices using uniform and normal probabil-
ity distributions.
Performance of heuristics for linear order for real-world data
from the domain of professional tennis and basketball.
Performance of heuristics for fair tree order for randomly gen-
erated probability matrices using uniform and normal proba-
bility distributions.o

viil

63

LIST OF FIGURES

9.5

7.1

8.1

8.2

8.3
8.4

8.5

Performance of heuristics for fair tree order for real-world data
from the domain of professional tennis and basketball. 79

Reduction of KNAPSACK to Min-Budget-Decide problem used
in proof of Theorem 7.2, for N=3. 116

Reduction of the KNAPSACK problem to the Multi-Min-Budget-
Decide problem used in the proof of Theorem 8.4, for N=3. . . 127
A possible input with a suggested strategy. The numbers on

the edges represent traveling costs. The table at each store w;
represents the cost probability function p;(c). The strategy of

each agent is illustrated by the arrows. 129
The only three cases where a pair of agents may not be separated.132
A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store wu;
represents the cost probability function p;(¢). The moves are
illustrated by the arrows. 136
A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store wu;
represents the cost probability function p;(c). The reasonable
moves are illustrated by the arrows. 142

1X

List of Tables

1.1

1.2

4.1

4.2

4.3

4.4
4.5

6.1
6.2
6.3

Summary of key results. The abbreviations appearing in paren-
theses near a complexity class indicate the voting rules for
which the results have been proved. Key: p=plurality, k=k-
approval, b=borda, c=copeland, bu=bucklin, m=maximin,
s=stv, ...=many more voting rules. 7
Summary of results for physical search problems with uncer-
tain knowledge: n is the input size, m - the number of points
(store locations), d - the number of different possible prices,
d = d+ 1, k - the number of agents, n/a - the problem was
not defined in that case or there is no need for a solution, f -
the polynomial function defined in Lemma 8.15. 17

An example of our imperfect information model of voter pref-
ETETICES. + v v v v e e e e e e e e e e e 35
Winning probabilities for each candidate, rounded to 3 decimal
places. Bold font represents the highest probability in each

voting rule. Lo 36
An example of how algorithm 1 builds a table from a given set

of preferences. 39
Extreme results. Fractions are rounded to 3 decimal places. . . 46
Number of iterations as a function of eand ae. 60
Instance of WISSAFE for the proof of Theorem 6.17. 93
Instance of WISSAFE for the proof of Theorem 6.18. 94

Preferences and weights of voters, in the proof of Theorem 6.25.106

Chapter 1

Introduction

Multi-agent Systems (MAS) deal with environments in which there are sev-
eral agents that may interact. The field of multi-agent systems began its rapid
development with the advancement of distributed, interconnected computer
systems, such as the Internet and Multi-robot teams. Such interconnected
settings, where one agent interacts with another, involve studying interac-
tions such as coordination, cooperation and collective decision making [114].
Many works in the field of multi-agent systems have investigated these social
interactions, but with the assumption of complete information. However,
agents must also be able to make good decisions in situations that involve a
substantial degree of uncertainty. In our work, we provide the foundation for
building such agents. Specifically, we investigate the computational aspects
of two common social interactions: collective decision making by voting and
collaborative search. Nonetheless, we use probabilistic models that shed new
light on these known settings.

Reaching a collective decision is a very common social interaction among
people. In many multi-agent environments it is also desirable to have a
mechanism which enables the agents in a system to make a collective decision
on a given issue. The means by which such a collective decision is made is
typically a voting procedure [28]. A classic, much studied issue in the political
science literature is the design of voting procedures that, given the preferences
of voters within a system, will result in an outcome that will be acceptable to
most of the voters, i.e., that will as closely as possible reflect the preferences
of voters [5,6]. The first part of our research investigates computational
aspects of voting procedures, with the presence of uncertainty.

When considering voting procedures from a computational perspective,

many interesting questions arise [41]. Perhaps the most natural question
from a computer science perspective is the winner determination problem:
given the preferences of all the agents, is it possible to efficiently compute the
winning outcome according to a particular voting rule? Fortunately, in this
sense it seems that relatively few voting rules are hard to compute [16]. Per-
haps more intriguing are questions related to the complexity of manipulating
a voting procedure. It can be computationally infeasible for an agent to
compute a beneficial manipulation [15], implying that while manipulation is
possible in theory, it is infeasible in practice. Most work on the manipulation
of voting procedures has considered the manipulation of elections by wvoters;
specifically, strategic misrepresentation of preferences in order to bring about
a more favored outcome. However, manipulation is also possible by election
officers — those responsible for organizing an election, which is sometimes
called “control” [17]. While the complexity of manipulation and control has
been extensively studied in previous work (see, e.g., [15,34,37,38,89]), a com-
mon underlying assumption is perfect information about voter preferences:
when computing the outcome, we have complete and correct knowledge of
the preferences of all voters. However, there are many settings whereby this
is not a realistic assumption, as we will discuss below.

We begin by considering the winner determination problem, which is
termed “evaluation” in the probabilistic knowledge setting. We assume that
for each voter, we have a probability distribution over a set of preference
orderings. Thus, for each voter, we have a number of possible preference
orderings — we do not know which of these orderings actually represents the
preferences of the voter, but for each ordering, we know the probability that
it does. The evaluation problem is therefore to compute the probability
that a particular candidate will win, given the probabilistic knowledge about
the preferences of the electorate and a specific voting rule. We proffer a
polynomial algorithm to solve the evaluation problem when the number of
candidates is a constant. We present experimental results obtained from im-
plementation of the algorithm, illustrating that the algorithm’s performance
in practice is better than its predicted theoretical bound. However, when the
number of candidates is not bounded, we prove that the problem becomes
hard for many prominent voting rules. We further show that even evaluating
whether a candidate has any chance of winning is hard in many cases, and
we provide an approximation algorithm for both problems.

We then consider another probabilistic model, where only the probability
that a candidate will be preferred over another is known. This information is

useful in voting trees, which are widely used in sports tournaments. In these
settings the problem is not only to calculate the probability of a candidate
to be chosen (i.e. the evaluation problem), but also the possibility of mali-
cious manipulation by the election organizers (i.e. the control problem). We
investigate two common voting tree rules: the balanced voting tree, where
every candidate has to participate in the same number of matches in order
to win, and the linear order, which is a completely unbalanced tree. In these
settings, the election officers may control the election by rigging the ballot
agenda, i.e. the voting order. We show that the evaluation problem can be
solved efficiently both for the balanced and unbalanced tree, while the control
problem of agenda rigging is provably hard for the balanced tree. As a result
we present heuristics for agenda rigging. We investigate the performance of
these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions.

Finally, we consider computational aspects of manipulation. In this case,
we do not assume to have probabilistic knowledge. Rather, we assume that
we have imperfect information regarding which voters will join the coalition
of manipulators. This new model of strategic voting, which we call safe ma-
nipulation, was recently introduced by Slinko and White [101]. In this model,
a potential manipulator v announces how he intends to vote, and some of
the other voters whose preferences coincide with those of v may follow suit.
Depending on the number of followers, the outcome could be better or worse
for v than the outcome of truthful voting. A manipulative vote is called safe
if for some number of followers it improves the outcome from v’s perspective,
and can never lead to a worse outcome. We study the complexity of finding
a safe manipulative vote for a number of common voting rules, providing al-
gorithms and hardness results for both weighted and unweighted voters. We
also propose two ways of extending the notion of safe manipulation to het-
erogeneous group of manipulators, and initiate the study of computational
complexity of related questions. Our first extension of Slinko and White’s
model [101] is very simple and natural, and seems to behave similarly to
the original model from the algorithmic perspective. However, arguably, it
does not capture some of the scenarios that may occur in practice. Our sec-
ond model is considerably richer, but many of the associated computational
problems become intractable.

The second part of our research investigates collaborative physical search
problems with uncertain knowledge. In these settings, an agent or a team
of agents (e.g., robots) seeks a given item, potentially available at different

3

locations in a physical environment. Traveling between locations, as well
as acquiring the item at any given location consumes resources available to
the agents. The cost of acquiring the resource or item at a given source
is uncertain (a-priori), and the agents can observe its true value only when
after physically arriving at the source. Sample applications involving this
type of search include agents on exploration and patrol missions (e.g., an
agent seeking the best location to deploy sensing equipment along its path).

Given such settings, we analyze three variants of the problem, differing in
their objective: minimizing the total expected cost, maximizing the success
probability given an initial budget, and minimizing the budget necessary to
obtain a given success probability. Although this model captures many real
world scenarios, to date it has not been investigated by other researchers.
We first introduce and analyze the problem with a single agent, and either
provide a polynomial solution to the problem or prove its hardness. We
also introduce a fully polynomial time approximation scheme algorithm for
the minimum budget variant. We then generalize our results to the multi-
agent settings, where we analyze two models for handling resources, shared
and private budget models. We present polynomial algorithms that work
for any fixed number of agents, both for shared and private budget models.
For non-communicating agents in the private budget model, we present a
polynomial algorithm that is suitable for any number of agents. We also
analyze the difference between homogeneous and heterogeneous agents, both
with respect to their allotted resources and with respect to their capabilities.
Finally, we define our variants in an environment with self-interested agents.
We show how to find a Nash Equilibrium in polynomial time, and prove
that the bound on the performance of our algorithms, with respect to social
welfare, is tight.

Below we discuss the contribution of this dissertation in more detail. In
Section 1.1 we describe our contribution to the problem of evaluation of
election outcomes under uncertainty. In Section 1.2 we introduce our work
on evaluation and control problems with voting trees and in Section 1.3 we
present our work on the complexity of safe strategic voting. In Section 1.4
we summarize our contribution to the analysis of physical search problems
with uncertain knowledge.

1.1 Evaluation of Election Outcomes under Uncertainty

1.1 Evaluation of Election Outcomes under
Uncertainty

Determining the winner of an election in an efficient way is the most natu-
ral computational problem of voting theory. With perfect information this
problem is usually easy. However, there are many settings where this as-
sumption is not realistic. Hence, in this part of our work we investigate the
evaluation of voting rules, which is the probabilistic variant of the winner
determination problem. We assume that what is known about an electorate
is the following. For each voter, we have a probability distribution over a set
of preference orderings. The idea is that although we do not know a voter’s
preference ordering exactly, we know that it is one of a set of possible or-
derings (typically a subset of the overall set of possible preference orders),
and we have a probability distribution over these. This information may, for
example, be obtained from historical voting data, or by sampling. In this
setting, the following fundamental question arises: given such a probabilistic
model of voter preferences and a particular voting rule, how hard is it to
compute the probability that a particular candidate will win? We refer to
this as the EVALUATION problem, and to the best of our knowledge, this
question has not been addressed in the existing literature!.

The motivation for investigating this question is not merely theoretical in-
terest (which is, of course, in itself legitimate). In many situations, it might
be beneficial to try to foresee the probability of a candidate being chosen
using only partial knowledge about the other agents’ preferences, which is
modeled by a probability distribution as we have described. One area is the
avoidance of strategic voting by a coalition of manipulators. Suppose that
agent A wants to vote for its most preferred candidate. Another manipulator
agent, B, could try to convince A that his preferred candidate does not have
any chance of winning so he should directly vote for his second preferred
candidate; otherwise this candidate will also lose to A’s least preferred can-
didate. Due to lack of exact knowledge of how the other agents will vote,
A may be convinced by B. Alternatively, A can estimate the other agent’s
probabilities to vote for the candidates, by asking people who know these
agents, or by using the history of their former votes on the same issue. The
ability to calculate the probability of a candidate winning should then assist

!The exception to this is the work of [35] and we discuss their work in relationship to
ours.

1.1 Evaluation of Election Outcomes under Uncertainty

A in deciding whether B has a valid point.

This ability to calculate the probability of a candidate winning might
also be useful in other domains. For example, (and somewhat more specula-
tively), consider large multi-agent environments, in which there is a need to
keep communication to a minimum. The voting process inevitably requires
communication between the election officer and the voters in order to elicit
their preferences. However, one way to reduce the communication load is
to calculate the probabilities on the agents’ preferences from their voting
history and then calculate the probability of each candidate to win: the win-
ner is then the candidate with the highest probability of winning. In this
manner, we simulate a voting process by choosing the successful candidate
without the need of communication at all. (This method might be extended
to a more sophisticated protocol which uses limited communication by asking
only a subset of the voters about their current preferences, though we do not
investigate this possibility in this work.)

We analyze the ability to calculate the probability of a candidate winning
with a variety of different settings. We first formally define the above men-
tioned “evaluation” question in Definition 4.1. We then give a polynomial
algorithm to answer the evaluation problem when the number of candidates
is a constant. While a result in [35] establishes that EVALUATION is NP-hard
for several key voting rules, even under quite stringent assumptions about
probability distributions, we show that this result holds only for weighted
voting rules with weights that are not bounded by Poly(n). We then ex-
perimentally evaluate our algorithm, showing that the actual running time
and space are smaller than the asymptotic bound. Therefore, we also test
how many voters the polynomial time algorithm can handle for a given set
of candidates. The results demonstrate that even with 6 or 7 candidates,
the algorithm can handle more than 100 voters, which suggests that it may
be used in many real-world voting scenarios. If the number of candidates is
not bounded, the evaluation problem becomes much harder: we show that
even for the well-known Plurality, k-approval Borda, Copeland, and Bucklin
voting rules the problem is #P-hard. We then analyze a simpler question,
known as the problem (Definition 4.2). This question simply asks whether a
candidate has any chance of being the winner, i.e., whether the probability
that the candidate will be a winner is greater than 0. Surprisingly, this prob-
lem is shown to be NP-complete (in the strong sense) even for the Plurality
voting rule, when voters do not have equal weights. We give a polynomial
time algorithm in cases where all voters have equal weights, for Plurality,

6

1.2 How to Rig Elections and Competitions

and show that the problem is hard for many other voting rules (including
k-approval, Borda, Copeland and Bucklin). This is done by establishing the
connection to a related problem, the possible-winner problem [75]. Finally,
we present a Monte Carlo algorithm that is able to approximately answer
even the EVALUATION problem where the number of candidates is a param-
eter, with an error as small as desired.

Table 1.1 summarizes our key results. For comparison, we also include
the results attained by Conitzer and Sandholm [35].

| No. of Candidates | Weights | CHANCE-EVALUATION | EVALUATION
equal P(p,k,b,c,bu,m,s,...) P(p,k,b,c,bu,m,s,...)
ConStant bounded by P(p,k,b,c,bu,m,s,...) P(pvkvbvcvbuzmzsi"‘)
Poly(n)
otherwise NP-hard ¢ pm,s) [35] NP-hardp,cm,s) [35]
equal P(p)) NP- #P'hard(p,k,b,c,bu)
parameter complete(x b bu.m)
bounded by || NP- #P’ha'rd(p,k,b,c,bu)
Poly(n) complete(,, . b.c.bum)
otherwise NP- #P-hard(p,k,b,c,bu)
completey kb, bu.m)
’ approximation ‘ any H P(p,k,b,c,bu,m,s...) ‘ P(p,k,b,c,bu,m,&--)

Table 1.1: Summary of key results. The abbreviations appearing in paren-
theses near a complexity class indicate the voting rules for which the results
have been proved. Key: p=plurality, k=k-approval, b=borda, c=copeland,
bu=Dbucklin, m=maximin, s=stv, ... =many more voting rules.

1.2 How to Rig Elections and Competitions

Voting procedures may seem as efficient and elegant solutions for reaching
a collective decision among agents. However, when the multi-agent system
consists of a large number of agents, we might have hundreds of elections
occurring every minute. In such settings, it is very hard to supervise elections
to ensure that they are fair. Consequently, there is an increasing chance
that the election officers, those responsible for organizing an election, will
attempt to tilt the election results in their favor. This is, of course, a negative
phenomenon, sometimes termed control. Bartholdi et al. [17] were the first

7

1.2 How to Rig Elections and Competitions

to investigate the computational complexity of finding a successful control
by changing the set of voters or candidates. In our work we investigate
another type of election control — rigging the ballot agenda in order to favor a
particular candidate. It is well-known that some sequential pairwise majority
elections may be rigged in this way (e.g., [28, p.177] and [94]). In such
an election, the candidates are voted pairwise, and the winner remains to
challenge the next candidates while the loser is eliminated. The order of
the pairwise elections is usually done according to a binary tree. Initially,
the candidates are placed at the leaf nodes of the binary tree. Candidates
at sibling nodes compete against each other in a pairwise match, and the
winner of the match moves up the tree. The candidate who reaches the root
node is the winner of the tournament. The chairman’s role is to fix the initial
ordering of the candidates (the voting agenda). If the election officer knows
the preferences of the electorate — or more specifically, who would win in
every possible ballot — then he may be able to fix the election agenda to the
benefit of a favored candidate [79].

However, the assumption that the chairman knows exactly how a voter
would vote in any given ballot is very strong, and ultimately unrealistic. It
ignores the possibility of strategic voting, for one thing, but more generally,
the preferences of voters will not be public — the chairman will have at
best only partial knowledge about them. In light of this, the present work
considers the extent to which it is possible to rig an election agenda (and,
more generally, running orders for competitions) in the manner described
above in the presence of uncertain information. We assume that an election
officer knows the probability that a given candidate will beat another in a
pairwise ballot. This probability may be obtained from opinion polls, in the
case of governmental elections or similar; or it may be from form tables, in
the case of sporting competitions.

In our work we focus mainly on the two most common ways to organize
a set of pairwise elections. One obvious way is to use a balanced binary
tree. With this tree structure, every candidate has to participate in the same
number of matches in order to win. Due to its fairness, this voting tree
is widely used in many social settings, as well as in sporting competitions
(e.g. the soccer world cup). We also investigate a rather unfair voting tree,
where elections are ordered according to a linear order. In such an election,
the first two candidates in the ordering will be in a simple majority ballot
against each other, with the winner then going on to face a ballot against
the third candidate, and so on, until the winner of the final ballot is the

8

1.2 How to Rig Elections and Competitions

overall winner. This tree structure has been used in boxing competitions,
and to elect the city to host the Olympic Games. In the voting literature,
Koutsoupias et al. [78] suggested to use this structure for voting in multi-
criteria elections and Xia et al. [117] analyzed the assumption which makes
it applicable.

Our problem may at first seem narrow — a very restricted class of voting
rules, and a very specific design objective. But this seemingly simple question
has turned out to be surprisingly subtle and some of the answers are counter-
intuitive. To begin with, note that the number of possible agendas grows
extremely quickly with the number of candidates, i.e., 0(2;”—_'1) when the
possible tree structure is limited to be of balanced tree only. Thus, even for
a small number of candidates it can be hard to answer the agenda rigging
question. For m = 2;4;8;16;32, the numbers of possible, non-duplicate
agendas are 1;3;315;638 x 10%;122 x 10%*, respectively. We also note that
the two classes of voting trees that we analyze, linear order and balanced tree,
are widely used in the field of social choice and sporting competitions. They
also play a key role in other social and commercial settings, ranging from
employment interview processes to patent races and rent-seeking contests
(see [82,91,103] for details and further discussion).

Consequently we need to investigate the complexity of finding an agenda
for unbalanced and balanced voting trees. First we formally define the un-
derlying assumptions and problems. Before analyzing the problem of rigging
an agenda, we must check whether evaluating an agenda, i.e. computing the
winning probabilities of the candidates, can be done efficiently. Hence we
present a polynomial time algorithm for evaluating an agenda with any vot-
ing tree, and show an optimized version of this algorithm for balanced voting
trees. We then show that rigging an agenda for balanced voting trees is prov-
ably hard (the complete proof is due to [104,105]). In the linear order case,
we first show how to improve the general agenda evaluation algorithm for
linear orders, and prove the unfairness of the linear order rule; a candidate
can only benefit by going late in a voting order. Thus, the election officer can
try to increase a candidate’s chance of winning by placing it last in the voting
order. We then show that a relaxed version of the original rigging agenda
problem is hard to solve. However, it is also natural to ask whether there is
any agenda which would make a specific candidate the winner with a non-zero
probability. In the linear order case, we show that this problem can be solved
in polynomial time. Our hardness results may lead us to conjuncture that
a designer cannot benefit from having the probabilistic information, since it

9

1.3 Complexity of Safe Strategic Voting

is hard to rig an election agenda even with this input. However, in practi-
cal terms, the worst-case analysis is not enough. We thus present heuristics
for agenda rigging. We investigate the performance of these heuristics for
both randomly generated data sets and real-world data sets from tennis and
basketball competitions. Our heuristics achieved over 96% of the optimal
solution on average for the randomly generated and the basketball data set,
and performed reasonably well for the tennis data set. Finally, it is important
to clarify our motivation for this work. We are, of course, not advocating
election manipulation, or trying to develop techniques to make it easier! If
we can identify cases where election manipulation is easy in practice (even if
it is hard in theory), then we can use this information to design elections so
as to avoid the possibility of manipulation.

1.3 Complexity of Safe Strategic Voting

Computational aspects of voting manipulation is an active topic of current
research [41]. While the complexity of the manipulation problem for a single
voter is quite well understood, more recently researchers have begun looking
on coalitional manipulation, i.e., manipulation by multiple, possibly weighted
voters. In this setting, the standard formulation taken by all recent works is
as follows: we are given a set of votes that have been cast, and a set of manip-
ulators. We are asked whether the manipulators can cast their vote in a way
that makes a specific candidate win the election [35]. In this model, the ma-
nipulators want to get a particular candidate elected, and select their votes
based on the non-manipulators preferences that are publicly known. Unlike
the sincere voters, the manipulators are not endowed with preferences, i.e.,
ordering of candidates. This model is somewhat unsatisfactory for two rea-
sons. First, it departs from the standard model of manipulation considered
by Gibbard [57] and Satterthwaite [96], in which the manipulator, too, has
a preference over the candidates, and a manipulation is deemed successful if
it leads to an election outcome that the manipulator prefers to the outcome
of truthful voting. Second, it is asymmetric in its treatment of sincere voters
and manipulators, and thus does not explain how the manipulating coalition
forms. Therefore, it is desirable to have a plausible model of the coalition
formation process that would enable us to develop a better understanding
of coalitional manipulation. In such a model the manipulators would start
out by having the same type of preferences as sincere voters, and then some

10

1.3 Complexity of Safe Strategic Voting

agents—those who are not satisfied with the current outcome and are willing
to submit an insincere ballot—would get together and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition so as to obtain
a realistic model of how the manipulating coalition forms. In particular,
it is not clear how the voters who are interested in manipulation should
identify each other, and then reach an agreement about which candidate to
promote. Indeed, the latter decision seems to call for a voting procedure, and
therefore is in itself vulnerable to strategic behavior. Further, even assuming
that suitable coalition formation and decision-making procedures exist, their
practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [101], Slinko and White put forward a model that pro-
vides a partial answer to these questions. They consider a setting where a
single voter v announces his manipulative vote L (the truthful preferences of
all agents are, as usual, common knowledge) to his set of associates F), i.e.,
the voters whose true preferences coincide with those of v. As a result, some
of the voters in F' switch to voting L, while others (as well as all voters not in
F) vote truthfully. This can happen if, e.g., v’s instructions are broadcast via
an unreliable channel, i.e., some of the voters in I’ simply do not receive the
announcement, or if some voters in F' consider it unethical to vote untruth-
fully. Such a situation is not unusual in politics, where a public figure may
announce her decision to vote in a particular manner, and may be followed
by a subset of like-minded people. That is, in this model, the manipulating
coalition always consists of voters with identical preferences (and thus the
problem of which candidate to promote is trivially resolved), and, moreover,
the manipulators always vote in the same way. Further, it relies on minimal
communication, i.e., a single broadcast message. However, due to lack of
two-way communication, v does not know how many voters will support him
in his decision to vote L. Thus, he faces a dilemma: it might be the case that
if x voters from F' follow him, then the outcome improves, while if some y # x
voters from F' switch to voting L, the outcome becomes even less desirable to
v than the current alternative (we provide an example in Section 6.1). If v is
conservatively-minded, in such situations he would choose not to manipulate
at all. In other words, he would view L as a successful manipulation only if
(1) there exists a subset U C F' such that if the voters in U switch to voting
L, the outcome improves; (2) for any W C F, if the voters in W switch to
voting L the outcome does not get worse. Slinko and White [101] call any

11

1.3 Complexity of Safe Strategic Voting

manipulation that satisfies (1) and (2) safe. The main result of [101] is a
generalization of the Gibbard-Satterthwaite theorem [57,96] to safe manip-
ulation: the authors prove that any onto, non-dictatorial voting rule with at
least 3 alternatives is safely manipulable, i.e., there exists a profile in which
at least one voter has a safe manipulation. However, Slinko and White do
not explore the computational complexity of the related problems.

In our work we focus on algorithmic complexity of safe manipulation, as
defined in [101]. We first formalize the relevant computational questions and
discuss some basic relationships between them. We then study the complex-
ity of these questions for several classic voting rules, such as Plurality, Veto,
k-approval, Bucklin, and Borda, for both weighted and unweighted voters.
For instance, we show that finding a safe manipulation is easy for k-approval
and for Bucklin, even if the voters are weighted. In contrast, for Borda, find-
ing a safe manipulation—or even checking that a given vote is safe—turns out
to be hard for weighted voters even if the number of candidates is bounded
by a small constant.

We then explore whether it is possible to extend the model of safe ma-
nipulation to settings where the manipulator may be joined by voters whose
preferences differ from his own. Indeed, in real life a voter may follow ad-
vice to vote in a certain way if it comes from a person whose preferences
are similar (rather than identical) to hers, or simply because she thinks that
voting in this manner can be beneficial to her. For instance, in politics, a
popular personality may influence many different voters at once by announc-
ing his decision to vote in a particular manner. We propose two ways of
formalizing this idea, which differ in their approach to defining the set of
a voter’s potential followers, and provide some results on the complexity of
safe manipulation in these models.

In our first extension, a manipulator v may be followed by all voters who
rank the same candidates above the current winner as v does. That is, in
this model a voter u may follow v if any change of outcome that is beneficial
to v is also beneficial to u. We show that some of the positive algorithmic
results for the standard model also hold in this more general setting. In our
second model, a voter u may follow a manipulator v that proposes to vote
L, if, roughly, there are circumstances when voting L is beneficial to u. This
model tends to be computationally more challenging: we show that finding
a safe strategic vote in this setting is hard even for very simple voting rules.

12

1.4 Physical Search Problems with Uncertain Knowledge

1.4 Physical Search Problems with Uncertain
Knowledge

Frequently, in order to successfully complete its task, an agent may need to
explore (i.e., search) its environment and choose among different available
options. For example, an agent seeking to purchase a product over the inter-
net needs to query several electronic merchants in order to learn their posted
prices; a robot searching for a resource or a tangible item needs to travel
to possible locations where the resource is available and learn the configura-
tion in which it is available as well as the difficulty of obtaining it there. In
these environments, the benefit associated with an opportunity is revealed
only upon observing it. The only knowledge available to the agent prior to
observing the opportunity is the probability associated with each possible
benefit value of each prospect.

While the exploration in virtual environments can sometimes be consid-
ered costless, in physical environments traveling and observing typically also
entails a cost. Furthermore, traveling to a new location may increase or de-
crease the distance to other locations, so the cost associated with exploring
other unexplored locations changes. For example, consider a Rover robot
with the goal of mining a certain mineral. Potential mining locations may be
identified based on a satellite image, each associated with some uncertainty
regarding the difficulty of mining there. In order to assess the amount of
battery power required for mining at a specific location, the robot needs to
physically visit there. The robot’s battery is thus used not only for mining
the mineral but also for traveling from one potential location to another.
Consequently, an agent’s strategy in an environment associated with search
costs should maximize the overall benefit resulting from the search process,
defined as the value of the option eventually used minus the costs accumu-
lated along the process, rather than merely finding the best valued option.

In physical environments, it is common to use a team of agents rather than
a single agent. Extending the single agent solution to multi-agent strategy
may require subdividing the search space among the different agents. How-
ever, if agents have means of communication, then they may not wish to
become too distant, as they can call upon each other for assistance. For
example, even if a Rover does not have sufficient battery power for mining
at a given location, it may be useful for it to travel to the site in order to
determine the exact mining cost, and call for other robots that do have the

13

1.4 Physical Search Problems with Uncertain Knowledge

necessary battery power. In this case, the scheduling of the robots’ travel
times is key, and must be carefully planned. If the agents are not fully co-
operative, a selfish behavior should also be handled. Each one of the agents
will try to minimize its traveling costs while still achieving the group’s goal.

Finally, agents may be of different types, or with different amounts of
resources. For example, Rover robots may enter the mission with different
initial battery charges. They may also differ in their capabilities, like a team
of rovers where some were specifically designed for mining missions, and thus
require less battery power for the same mining task.

This part of our work aims at taking the first steps in understanding
the characteristics of such physical environment settings, both for single and
multi-agent cases, and developing efficient exploration strategies for the like.
To the best of our knowledge, this is the first work to do so. Our main
focus is on environments where the opportunities are aligned along a path,
as in the case of perimeter patrol. We note that many single and multi-
agent coverage algorithms convert their complex environment into a simple
long path [51,70,102]. Furthermore, we show that the problem in more
general metric spaces is NP-complete, even for tree graphs. For exposition
purposes we use in the remaining of this work the classical procurement
application where the goal of the search is purchasing a product and the
value of each observed opportunity represents a price. Of course, this is only
one example of the general setting of exploration in a physical environment,
and the discussion and results of this work are relevant to any such setting,
provided that exploration and fulfilling the task use the same type of resource.

We consider three variants of the problem, differing in their objective. The
first (Min-Ezpected-Cost) is the problem of an agent that aims to minimize
the expected total cost of completing its task. The second (Max-Probability)
considers an agent that is given an initial budget for the task (which it
cannot exceed) and needs to act in a way that maximizes the probability
that it will complete its task (e.g., reach at least one opportunity with a
budget large enough to successfully buy the product). In the last variant
(Min-Budget) the agent is requested to guarantee a pre-defined probability
of completing the task, and needs to minimize the overall budget that will be
required to achieve the said success probability. We also consider the multi-
agent extensions of these variants. While the first variant fits mostly product
procurement applications, the two latter variants fit well into applications of
robots engaged in remote exploration, operating with a limited amount of
battery power (i.e., a budget).

14

1.4 Physical Search Problems with Uncertain Knowledge

Summary of Results. We first consider the single agent case. We prove
that in general metric spaces all three problem variants are NP-hard. Thus,
as mentioned, we focus on the path setting. For this case we provide a poly-
nomial algorithm for the Min-Ezxpected-Cost problem. We show the other
two problems (Min-Budget and Maz-Probability) to be NP-complete even for
the path setting. Thus, we consider further restrictions and also provide an
approximation scheme. We show that both problems are polynomial if the
number of possible prices is constant. Even with this restriction, we show that
these problems are NP-complete on a tree graph. For the Min-Budget prob-
lem, we provide an FPTAS (fully-polynomial-time-approximation-scheme),
such that for any € > 0, the Min-Budget problem can be approximated with
a (1 + ¢€) factor in O(ne°) time, where n is the size of the input.

For the multi-agent case, we first analyze a shared budget model, where
all the resources and costs are shared among all the agents. We show that if
the number of agents is fixed, then all of the single-agent algorithms extend
to k-agents, with the time bounds growing exponentially in k. Therefore the
computation of the agents’ strategies can be performed whenever the num-
ber of agents is relatively moderate, a scenario characterizing most physical
environments where several agents cooperate in exploration and search. If
the number of agents is part of the input then the multi-agent version of
Min-Budget and Maz-Probability are NP-complete even on the path and even
with a single price.

We then investigate a model of private budgets, where each agent has its
own initial budget. We again assume that the number of possible prices is
bounded. In this case, we separately consider the setting where agents can
communicate and the setting where they cannot. For non-communicating
agents we show a polynomial algorithm for the Max-Probability problem that
is suitable for any number of agents. For the Min-Budget problem with
non-communicating agents, we present a polynomial algorithm for the case
in which all agents must be allotted identical resources, but show that the
problem is NP-hard for the general case (unless the number of agents is fixed).
Next we consider agents that can communicate, and can call upon each other
for assistance. As noted above, in this case the scheduling of the different
agents’ moves must also be carefully planned. We present polynomial algo-
rithms for both the Max-Probability problem and the Min-Budget problem
that work for any constant number of agents (but become non-polynomial
when the number of agents is not constant).

We then move to the self-interested agents setting, where the agents seek

15

1.5 Thesis Overview

an item but each agent tries to minimize the use of its own private budget for
traveling. We define two games, a sequential game, Min-Ezpected-Cost-Game,
and a simultaneous game, Min-Budget-Game. We show that when the num-
ber of possible prices is bounded and there are a fixed number of agents, the
strategy that maximizes the social welfare can be found in polynomial time.
We also show that in the Min-Budget-Game this strategy is a Nash Equilib-
rium, but this is not always the case in the Min-Fxpected-Cost-Game. We
therefore present a polynomial algorithm that guarantees a strategy which
is a Nash Equilibrium will be found. Furthermore, we show an upper bound
on the algorithm’s performance, and prove that it is tight.

Finally, we extend our results to the case of heterogenous agents with
different capabilities, and discuss the assumptions that we made throughout
our work. Tables 1.2 presents a summary of the results. Empty entries
represent open problems.

1.5 Thesis Overview

This dissertation comprises 9 chapters and 3 appendixes, organized into two
main parts (see Figure 1.1). This chapter constitutes the introduction of
the thesis. The next chapter surveys the related work. Chapters 3 — —6
constitute Part 1 of the dissertation, which deal with the computational
aspects of elections with uncertainty. Chapters 7 — —8 constitute Part 2
of the dissertation, which consider physical search problems with uncertain
knowledge. In Chapter 10 we provide our conclusions and discuss future
work. The appendixes consist of the proofs we have omitted from the main
text for ease of reading.

16

1.5 Thesis Overview

‘ Min-Fxpected- Cost‘ Mazx-Probability ‘ Min-Budget

General metric spaces NP-hard NP-complete NP-complete
Trees NP-complete NP-complete

Single price n/a O(m) O(m)
Path d prices O(d?>m?) O(27eqm)2d) O(27eqm)2d)

General case O(d*m?) NP-complete NP-complete

(1+¢) approxima- | n/a O(ne=9%)

tion

(a) Single agent.

’ ‘ Min-Ezpected- Cost‘ Mazx-Probability ‘ Min-Budget ‘
k agents 0(2‘12]“%)%) O(m2kd%)%d) O(m2kd%)2kd)
General case NP-complete NP-complete
(1 + ke) approximation n/a O(ne=%F)

(b) Multi-agent, shared budget, on the path.

’ ‘ Mazx-Probability ‘ Min—Budgetidentical‘ Min—BudgetdiStian

No- fixed k O(m3k?) O(m3k?logn) NP-complete
communication | otherwise | O(m3k?) O(m3k?logn) NP-complete
With- fixed k f(m2F(2n)?kd g d k) € P
communication | otherwise ‘

(¢) Multi-agent, private budget, on the path.

Table 1.2: Summary of results for physical search problems with uncertain
knowledge: n is the input size, m - the number of points (store locations),
d - the number of different possible prices, d = d + 1, k - the number of
agents, n/a - the problem was not defined in that case or there is no need
for a solution, f - the polynomial function defined in Lemma 8.15.

17

1.5 Thesis Overview

Chapter 1: Introduction

Chapter 2: Related Work

Part 1: Computational Aspects of Elections with Uncertainty
Chapter 3: Social Choice Terminology
Chapter 4: Evaluation of Election Outcomes under Uncertainty
Chapter 5: How to Rig Elections and Competitions

Chapter 6: Complexity of Safe Strategic Voting

Part 2: Physical Search Problems with Uncertain Knowledge
Chapter 7: Single Agent

Chapter 8: Multi-Agent

Chapter 9: Future Directions and Final Remarks
Appendix

A: Proofs for Chapter 4

B: Proofs for Chapter 5

C: Proofs for Chapter 8

Figure 1.1: Thesis Structure.

18

1.6 Publications

1.6 Publications

Results that appear in this dissertation have been published in the proceed-
ings of the following refereed conferences and workshops:

Noam Hazon and Edith Elkind. Complexity of Safe Strategic Vot-
ing. The 3rd International Symposium on Algorithmic Game The-
ory (SAGT-10), 2010. Short version presented in The Third Inter-
national Workshop on Computational Social Choice (COMSOC-10),
2010. Early version presented in The First Workshop on Cooperative
Games in Multiagent Systems (CoopMAS-2010), 2010. [67-69].

Noam Hazon, Yonatan Aumann and Sarit Kraus. Collaborative Multi
Agent Physical Search with Probabilistic Knowledge. The Twenty-
first International Joint Conference on Artificial Intelligence (IJCAI-
09), 2009. [61]

Noam Hazon, Paul E. Dunne, Sarit Kraus and Michael Wooldridge.
How to Rig Elections and Competitions. The 2nd International Work-
shop on Computational Social Choice (COMSOC-08), 2008. Early ver-
sion presented in The 9th Bar-Ilan Symposium on the Foundations of
Artificial Intelligence (BISFAI-2007), 2007. [65, 66]

Yonatan Aumann, Noam Hazon, Sarit Kraus and David Sarne. Physi-
cal Search Problems Applying Economic Search Models. The Twenty-
Third Conference on Artificial Intelligence (AAAI-08), 2008. [7]

Noam Hazon. Social Interaction under Uncertainty in Multi Agent
Systems. The Thirteenth Annual AAAI/SIGART Doctoral Consor-
tium (In association with AAAI-08), 2008. [60]

Noam Hazon, Yonatan Aumann, Sarit Kraus and Michael Wooldridge.
Evaluation of Election Outcomes under Uncertainty. The Seventh In-
ternational Conference on Autonomous Agents and Multiagent Sys-
tem (AAMAS-08), 2008. Also presented in DIMACS Workshop on
the Boundary between Economic Theory and Computer Science, 2007.
(62,63]

In addition, results that appear in this dissertation have been accepted
(with revisions) to the following refereed journals:

19

1.6 Publications

e Thuc Vu, Noam Hazon, Alon Altman, Yoav Shoham, Sarit Kraus and
Michael Wooldridge. On the Complexity of Schedule Control Prob-

lems for Knock-out Tournaments. Under submission to the Journal of
Artificial Intelligence Research (JAIR), 2010. [105]

e Noam Hazon, Yonatan Aumann, Sarit Kraus and Michael Wooldridge.
On the Evaluation of Election Outcomes under Uncertainty. Under
submission to Artificial Intelligence Journal, 2010. [64]

20

Chapter 2

Related Work

2.1 Computational Aspects of Elections with
Uncertainty

This part of our work lies in the general domain of computational social choice
theory, a research area at the intersection of artificial intelligence (AI), the-
oretical computer science, and social choice theory, that has attracted much
interest recently [41]. In general, social choice theory is concerned with the
design and analysis of methods for collective decision making. In multi-
agent settings we often have self-interested agents with different preferences
and capabilities, which need to reach a decision. Consequently, researchers
in Al have become increasingly interested in social choice theory, especially
concerning its computational aspects. One of the main topics with which
computational social choice deals, is computational voting theory (for a brief
survey of other topics, see [31]). In our work we analyze computational as-
pects of three major problems within computational voting theory: winner
determination, control and manipulation, with the assumption of uncertain
knowledge. In Chapter 4 we deal with winner determination under uncer-
tainty. In Chapter 5 we investigate the control problem of rigging an election
agenda, and in Chapter 6 we introduce our work on the complexity of safe
manipulation. Next we present each problem separately with a review of the
related work that has been done and we show the uniqueness of our settings.

21

2.1 Computational Aspects of Elections with Uncertainty

2.1.1 Winner Determination

When considering voting procedures from a computational standpoint, the
most natural question, from the computer science perspective, is whether it is
possible to efficiently compute the winning outcome according to a particular
voting rule given the preferences of all the agents. Bartholdi et al. [16]
were the first to show that, surprisingly, there is a reasonable rule where
determining the winner of the election is a hard computational problem.
Specifically, evaluating the prospective winner according to Dodgson’s rule
is NP-hard. Later, Hemaspaandra et al. [72] proved that it is complete
for the complexity class ©5. The work of Rothe et al. [92] subsequently
showed that winner determination under Young’s voting rule [120] is also
complete for ©F. Computing the Banks winner has also been shown to be NP-
complete [74,113]. Despite these notable exceptions, most common voting
rules are easy to evaluate. However, this holds only when perfect information
about voter preferences is assumed, which is often a problematic assumption
in real world settings. Our work, as described in Chapter 4, investigates
voting rules under an uncertain information model.

The limiting assumption of perfect information has also motivated other
researchers to seek a different, more realistic model. Konczak and Lang [75]
and later Pini et al. [87], investigated the case whereby for each voter we
have a correct but incomplete model of their preference relation. For this
incomplete information setting, the researchers considered questions such as
whether there was some completion of the incompletely known preferences
for the candidates that would make a desired candidate a winner. This ques-
tion, known as the possible-winner problem, is indeed important since it is
also strongly connected to preference elicitation [36] and manipulation [75].
This incomplete information model was further investigated under sequen-
tial majority voting [79,88], under almost all scoring rules [19,20], and under
other common voting rules [115]. The complexity of the possible-winner
problem has also been studied for bounded parameters such as the number
of candidates, the number of voters, and the total number of undetermined
candidate pairs [21]. However, in contrast to our model, the incomplete
information model cannot utilize any prior knowledge of the voters’ prefer-
ences. [t is “pessimistic” in nature, as it assumes that the missing data is
completely unknown, and thus it ignores any probabilistic estimation of the
voters preferences that could be learned from their voting history. Still, if
very little is known on the voters’ preferences, this model is more appropriate

22

2.1 Computational Aspects of Elections with Uncertainty

than ours. For example, if we are certain about the ranking of 2 candidates,
but believe that all ordering of intermediate candidates are equally likely.
Moreover, one of our problems (CHANCE-EVALUATION) ignores the exact
values of the probabilities, so it is very close to the settings of the possible-
winner problem. We will show the connection between these problems in
Section 4.3.2, where we present many hardness results, which we attained,
as corollaries of [115](extended version). In a recent paper [10], Bachrach
et al. studied the computational complexity of the counting version of the
possible-winner problem. They proved #P-hardness results for Plurality and
Veto, and provide a randomized approximation algorithm for all voting rules
that are polynomial-time computable. Their algorithm may be used to gen-
erate the probabilistic input for our problem, where there is a lack of such
knowledge on the voters’ preferences.

Previous work that is most closely related to ours was conducted by
Conitzer and Sandholm [35], who used a probability distribution over the
votes as we do. Their results were derived with a restricted model of proba-
bility distributions. Their key result shows that if a manipulation for some
voting rule is hard when complete information is provided, then it will be hard
to even evaluate a candidate’s winning probability with this protocol when
there is uncertainty about the votes. However, as we will show in Section 4.2,
this result holds only for weights that are not bounded by Poly(n), where n
is the number of voters. They further analyzed the un-weighted voters case,
but only with a probability distribution that allows for perfect correlations
among the voters (which actually simulates weights to the voters). This is
also the case presented by Walsh [106], who proved some results regarding the
connection between incomplete preference settings (i.e. the possible-winner
problem) and the settings with a probability distribution over the votes, but
with perfectly correlated votes. Probabilities over voters’ preferences were
also used by Hazon et al. [66] and Vu et al. [104]. However, in both of their
works it was assumed that the only known information about an electorate
is the probability that any given candidate will beat another. This informa-
tion was then used to investigate the extent to which it is possible to rig the
agenda of an election or competition so as to favor a particular candidate.
We investigate this model in Chapter 5.

23

2.1 Computational Aspects of Elections with Uncertainty

2.1.2 Control

Most work on the manipulation of voting procedures has considered the ma-
nipulation of elections by voters, which we will discuss in the next subsection.
However, manipulation is also possible by election officers — those responsible
for organizing an election, which in this context is sometimes called “control”.
In their paper on election control Bartholdi et al. [17] introduced the prob-
lem of election organizers trying to influence the outcome of the elections
by changing the set of voters or candidates. For example, the election offi-
cers may try to remove some strong candidates so their preferred candidate
will have a higher probability of winning. The authors showed that different
voting rules differ significantly in terms of their resistance to control. The
work of Hemaspaandra et al. [73] tried to find a voting rule which would be
fully resistant to control. The authors showed that an artificially built rule
is resistant to twenty different types of control. As for natural voting rules,
Faliszewski and colleagues [45,46] showed that some common voting rules
are very close to the ideal of total resistance to control.

In our work we analyze a different type of control, which is unique to
voting tree rules. In these rules the election organizers are responsible for
defining the order of competition between the candidates. As a result they
may rig it in order to favor a particular candidate. It is well-known that these
voting trees may be rigged in this manner — see, e.g., [28, p.177] and [94].
Specifically, in the linear order case, if the election officer knows the prefer-
ences of the electorate — or more specifically, who will win in every possible
ballot — then he can compute in polynomial time how to fix the election
agenda to the benefit of a favored candidate [79]. However, in our work
we analyze the rigging agenda problem under the assumption of uncertain
information, which is a more realistic assumption

A closely related stream of work is the problem of optimal seeding for
tournaments. This problem considers how to determine an agenda for a
voting tree that will result in an “interesting” sporting competition. Schwenk
[97] for example, assumed an imperfect information ballot matrix as we do (in
Section 5.1), and used it to produce an interesting competition agenda that
still satisfies some fairness criterions. Groh et al. [59] investigated a 4-player
scenario with an auction-like analysis; instead of knowing the probability of
winning, each player exerts some effort according to its private valuation.
Earlier work by Searls [98] analyzed voting trees for 8 players, among 3 other
tournament types. He used an imperfect information matrix to investigate

24

2.1 Computational Aspects of Elections with Uncertainty

the effect of the initial agenda on the probability that the best player will
win the game. Note that none of these papers analyzed the complexity of
finding the optimal agenda for a specific candidate, as in our work. We also
focus on asymptotic complexity results, so that our results are not limited
to very small numbers of candidates, m, such as m =4 or m = 8.

A different model of partial information was studied by Lang et al. in [79],
where they assumed a correct but incomplete model of preference relations
for each voter. With this incomplete information setting, they considered
questions such as whether there was some completion of the incompletely
known preferences and some voting tree for the candidates that would make a
desired candidate a winner. Roughly, our aim in this work is to study election
control in much the same way as Lang et al. but with the probabilistic model
described above, instead of the incomplete profile model.

2.1.3 Manipulation

Much of the interest in computational social choice stems from the possibility
that computational complexity may provide a “solution” to some impossibil-
ity results in voting theory [28]. Specifically, a very well-known result in vot-
ing theory is the result of Gibbard [57] and Satterthwaite [96], which, crudely
put, says that any voting protocol that is not a dictatorship must inherently
be susceptible to strategic manipulation by voters. In other words, in any
non-dictatorial voting protocol, there will be situations in which voters can
benefit by lying about their preferences. However, the Gibbard-Satterthwaite
theorem only says that voters can benefit from manipulation by misrepre-
senting their preferences in principle: it does not say that manipulation is
computationally feasible. This observation led Bartholdi et al. [15] to consider
whether there were voting protocols in which manipulation by misrepresent-
ing preferences is computationally difficult (NP-hard or worse). They were
able to answer this question in the affirmative, showing that Second-order
Copeland was computationally hard to manipulate. This work subsequently
led to many other researchers studying circumstances under which voting
protocols are computationally easy or hard to manipulate, as we shall show
shortly.

For a single voter, the complexity of the manipulation problem is quite
well understood. Specifically, this problem is known to be efficiently solvable

for most common voting rules with the notable exception of Second-order
Copeland and Single Transferable Vote (STV) [14,15].

25

2.1 Computational Aspects of Elections with Uncertainty

The more recent work has focused, for the most part, on coalitional ma-
nipulation, i.e., manipulation by multiple, possibly weighted voters. In con-
trast to the single-voter case, coalitional manipulation tends to be hard.
Indeed, it has been shown to be NP-hard for weighted voters even when the
number of candidates is bounded by a small constant [35,37]. Some of these
results were later generalized by E. Hemaspaandra and L.A. Hemaspaan-
dra [71], who characterized the scoring functions in which manipulation is
NP-hard. Elkind and Lipmaa, in their work [39], discussed cryptographic
techniques to make coalitional manipulation hard, and in another paper [3§]
they showed general approaches to designing hard-to-manipulate voting pro-
cedures, based on the idea of combining protocols.

For unweighted voters, nailing the complexity of coalitional manipulation
proved to be more challenging. However, Faliszewski and colleagues [47] have
established that this problem is hard for most variants of Copeland, and
Zuckerman et al. [121] have shown that it is easy for Veto and Plurality with
Runoff. Furthermore, in a recent paper Zuckerman and colleagues [118] make
substantial progress in this direction, showing, for example, that unweighted
coalitional manipulation is hard for Maximin and Ranked Pairs, but easy for
Bucklin.

All of these papers (as well as the classic work of Barholdi et al. [15])
assume that the set of manipulators is given exogenously, and the manip-
ulators are not endowed with preferences over the entire set of candidates;
rather, they simply would like a particular candidate to get elected, and
they select their votes based on the non-manipulators’ preferences that are
publicly known. That is, this model abstracts away the question of how the
manipulating coalition forms. However, to develop a better understanding
of coalitional manipulation, it would be desirable to have a plausible model
of the coalition formation process. In such a model the manipulators would
begin by having the same type of preferences as sincere voters, and then some
agents— those who are not satisfied with the current outcome and are willing
to submit an insincere ballot —would get together and decide to coordinate
their efforts. Slinko and White [101] provide such a model, but they does not
explore its complexity properties. They also assume that all manipulators
have identical preferences. In our work, we investigate the algorithmic com-
plexity of their safe manipulation model, and propose two ways of extending
this notion of manipulation to heterogeneous group of manipulators.

26

2.2 Physical Search Problems with Uncertain Knowledge

2.2 Physical Search Problems with Uncertain
Knowledge

Models of a single agent search process with prior probabilistic knowledge
have attracted the attention of many researchers in various areas, mainly
in economics and operational research, prompting several reviews over the
years [81,84]. These search models have developed to a point where their
total contribution is referred to as search theory. Probably the most famous
problem within this field is the “secretary problem”, which has a remark-
ably long list of articles that have been dedicated to its variations (see [4§]
for an extensive bibliography). Nevertheless, these economic-based search
models, as well as their extensions over the years into multi-agent envi-
ronments [33,95], assume that the cost associated with observing a given
opportunity is stationary (i.e., does not change along the search process).
While this permissive assumption facilitates the analysis of search models,
it is frequently impractical in the physical world. Therefore, in our work,
we assume that the cost associated with observing a given opportunity may
change along the search process. The use of changing search costs suggests an
optimal search strategy structure different from the one used in traditional
economic search models; other than merely deciding when to terminate its
search, the agent also needs to integrate exploration sequence considerations
into its decision making process.

Search with changing search costs has been previously considered in the
computer science domain in the contexts of Prize-Collecting Traveling Sales-
man problems (PC-TSP) [11] and the Graph Searching Problem (GSP) [77].
In PC-TSP we are given a graph with non-negative “prize” values associated
with each node, and a salesman needs to pick a subset of the nodes to visit
in order to minimize the total distance traveled while maximizing the total
prize collected. All the variants of PC-TSP are NP-hard, as they are gener-
alizations of the famous Traveling Salesman Problem (TSP). One variant of
PC-TSP is the k-TSP, where every node has a prize of one and the goal is
to minimize the total distance traveled, while visiting at least k£ nodes. This
variant is similar to our Min-Budget problem, where we try to minimize the
budget necessary to obtain at least a given success probability. There are
several constant-factor approximations known for the k-TSP [4,9,27,55,56].
Another variant of PC-TSP is the Orienteering problem, where the goal is to
maximize the total prize collected, while keeping the distance traveled below

27

2.2 Physical Search Problems with Uncertain Knowledge

a certain threshold. This variant is similar to our Maz-Probability problem,
where we try to maximize the success probability while keeping the total
traveling cost (plus the final purchase cost) below the initial budget. For
points in the plane, Arkin et al. [2] gave a constant-factor approximation.
For points in arbitrary metric spaces, Blum et al. [26] gave the first approx-
imation algorithm, which was improved by Bansal et al. [13], and later by
Chekuri et al. [30]. Nevertheless, the family of PC-TSP differs from our in-
vestigated model in in reference to two main aspects. First, the model of the
PC-TSP does not contain probabilities, only costs on the edges and prizes on
the nodes and thus constraints are additive. Second, in the PC-TSP there
is a single prize at each node and whenever the salesman visits that node
he collects the prize. In our setting, there may be several probabilities to
“collect” at each node, and the actual amount collected depends on the re-
maining budget when reaching the node. There may be cases where visiting
a node does not increase the success probability at all, even though there is
some success probability at the node (for instance if the agent does not have
enough budget when it reaches the node).

In the GSP case, the agent seeks a single item that resides at some node
of a fixed graph, and a distribution is defined over all probabilities of find-
ing the item at each of the graph’s nodes. The goal is to minimize the
expected cost, as in our Min-FEzpected-Cost problem. The GSP was shown
to be strictly related to a classic well-studied problem, the minimum latency
problem (MLP) [93], also called the traveling repairman problem [1], the
school-bus driver problem [111], and the delivery man problem [49,85]. In
this problem an agent is supposed to visit the nodes of a graph in a way
that minimizes the sum of the latencies to the nodes, where the latency of a
node is its distance along the agent’s tour. The minimum latency problem
was shown to be NP-complete even when the metric space is induced by a
tree [100], but can be solved in linear time when the underlying graph is a
path [1,53]. In the operations research community, there are several exact
exponential time algorithms for the MLP, e.g. [22,49,83,99,119]. Researchers
have also evaluated various heuristic approaches [108,110]. In the computer
science community, there is a large branch of research dealing with approx-
imate solutions to the MLP. For general metrics, Blum et.al. [25] gave the
first constant factor approximation. This was improved by Goemans and
Kleinberg [58], and later by Chaudhuri et al. [29]. Koutsoupias et al. [77]
provided a constant factor approximation for the unweighted case (i.e. for a
shortest path metric on an unweighted graph), and Arora and Karakostas [3]

28

2.2 Physical Search Problems with Uncertain Knowledge

gave a quasi-polynomial O(n?(29™)) time approximation scheme for weighted
trees and points in R%. The MLP was also generalized to multi-agent settings
(with & repairmen) by Fakcharoenphol et al. [42,43].

More important, Koutsoupias et al. [77] and later Ausiello et al. [8] showed
how to extend results obtained for the MLP to the GSP. For example, in some
cases, approximation developed for the MLP can be applied to the GSP. It is
not clear, however, if results obtained for the GSP can be extended to work
in our setting since in the GSP the success factor is binary: upon arriving at
a node either the item is there or not. Extensions of the GSP to scenarios
where the item is mobile are of the same character [52,76]. In our work,
however, similar to other works in economic search theory, we assume to
have a probability distribution in each node.

Our work thus tries to bridge the gap between classical economic search
theory (which is mainly suitable for virtual or non-dimensional worlds) and
the changing search cost constraint imposed by operating in physical multi-
agent environments.

29

Part 1

Computational Aspects of
Elections with Uncertainty

30

Chapter 3

Social Choice Terminology

An election is given by a set of candidates (also referred to as alternatives)
C ={c1,...,cn} and a set of voters V = {1,...,n}. Each voter i is rep-
resented by his preference order R;, which is a total order over C; we will
sometimes refer to total orders over C' as votes. The vector R = (Ry, ..., R,)
is called a preference profile. We say that two voters ¢ and j are of the same
type if R; = R;; we write V; = {j | R; = R;}.

A wvoting rule F is a mapping from the set of all preference profiles to the
set of candidates; if F(R) = ¢, we say that ¢ wins under F in R. A voting
rule is said to be anonymous if F(R) = F(R'), where R’ is a preference profile
obtained by permuting the entries of R. In this work we consider anonymous
voting rules only. In addition, we restrict ourselves to voting rules that are
polynomial-time computable.

During the election, each voter i submits a preference order L;; the out-
come of the election is then given by F(Ly, ..., L,). We say that a voter i is
truthful if L; = R;. For any U C V and a vote L, we use R_y(L) to denote
the profile obtained from R by replacing R; with L for all 1 € U.

Voting rules We will now define the main voting rules considered in this
work. Our first family of voting rules consists of rules that assign scores to
all candidates; the winner is then selected among the candidates with the
highest score using a tie-breaking rule, i.e., a mapping T : 2¢ — (C that
satisfies T'(S) € S. We consider two tie-breaking rules; random, where the
winner is randomly selected among all the tied candidates, or, alternatively,
lexicographic, where given a set of tied candidates the winner is the candidate
which is maximal with respect to a fixed ordering >. (Our results can be
easily extended to hold for other tie-breaking rules.)

31

Given a vector a = (a1, ..., qy) With a3 > -+ > ayy, the score s, (c) of a
candidate ¢ € C' under a positional scoring rule I, is given by > .\, (i),
where j(i, ¢) is the position in which voter ¢ ranks candidate c. Many classic
voting rules can be represented using this framework. Indeed, Plurality is
the scoring rule with o = (1,0,...,0), Veto (also known as Antiplurality)

is the scoring rule with a = (1,...,1,0) , Borda is the scoring rule with
a=(m-—1,m-—2,...,1,0), and k-approval is the scoring rule with o given
by a1 = - =ap =1, a1 = -+ = oy, = 0; we will sometimes refer to

(m — k)-approval as k-veto.

Bucklin rule can be viewed as an adaptive version of k-approval. We say
that k, 1 < k < m, is the Bucklin winning round if for any j < k no candidate
is ranked in top j positions by at least [n/2] voters, and there exists some
candidate that is ranked in top k positions by at least [n/2] voters. We
say that the candidate c¢’s score in round j is his j-approval score, and his
Bucklin score sp(c) is his k-approval score, where k is the Bucklin winning
round. The Bucklin winner is the candidate with the highest Bucklin score.
Observe that the Bucklin score of the Bucklin winner is at least [n/2].

The Copeland rule is defined based on the notion of pairwise elections.
We say that a candidate ¢ € C' beats another candidate ¢’ € C' in a pairwise
election if the majority of voters rank ¢ above ¢/. We will also refer to pairwise
elections as ballots. The Copeland score sc(c) of a candidate ¢ is given by
the number of pairwise elections that ¢ wins minus the number of pairwise
elections that c loses.

We also consider another family of voting rules, known as woting trees,
which are based on sequential pairwise elections along a binary tree. With
these rules we often summarize voter preferences in a majority graph, G C
C x C, where (¢,d) € G means that ¢ would beat ¢ in a pairwise election.
The majority graph is asymmetric and irreflexive, and since we assume that
a tie-breaking rule is used, G is also complete. Thus, G is a tournament on
C' [80]. A voting tree on C' is defined by:

e An m leaf binary tree, T, having a distinguished root (7).

e An agenda «, which is a one-to-one mapping between the leaf nodes of
T and the candidates from C.

Given (T, «, G), the labeling of the tree with respect to « and G is a function

32

¢:V — C, defined in the following recursive way:

a(v) ifwvis aleaf
l(v) = w if v; and v, are the children of v,
and w is the winner between £(v;) and ¢(v,) accoring to G

The winner of a voting tree rule is the candidate labeled at the root of the
tree, i.e. £(r(T")). In our work we will mainly consider two common binary tree
structures: the caterpillar structure, i.e. a completely unbalanced tree, and
the balanced tree, which we term linear order and fair tree order, respectively.

Weighted voters Our model can be extended to the situation where not all
voters are equally important by assigning an integer weight w; to each voter .

To compute the winner of a profile (Ry, ..., R,) under a voting rule ¥ given
voters’ weights w = (wy,...,w,), we apply F on a modified profile which
contains w; copies of R; for each i = 1,...,n. When all the weights are equal,

we say that the voters are unweighted. For each U C V', let |U| be the number
of voters in U and let w(U) be the total weight of the voters in U. As an
input we usually get a voting domain, i.e., a tuple S = (C,V, w,R), together
with a specific voting rule. In the case of imperfect information about voter
preferences, the voting domain will only contain the tuple S" = (C,V, w).

33

Chapter 4

Evaluation of Election
Outcomes under Uncertainty

In this chapter we analyze the winner determination problem, with the
presence of uncertainty. We first formally define our probabilistic knowl-
edge model, and our two main problems, EVALUATION (Definition 4.1) and
CHANCE-EVALUATION (Definition 4.2). In Section 4.2, we first give a polyno-
mial algorithm to answer the evaluation problem if the number of candidates
is a constant. While a result in [35] establishes that EVALUATION is NP-hard
for several key voting rules, even under quite stringent assumptions about
probability distributions, we show that this result holds only for weighted
voting rules with weights that are not bounded by Poly(n). We then eval-
uate the algorithm in practice, showing that the actual running time and
space are smaller than the asymptomatic bound. Therefore, we also test
how many voters the polynomial-time algorithm can handle for a given set
of candidates. The results indicate that even with 6 or 7 candidates, the
algorithm can handle more than 100 voters, , which suggests that it may
be used in many real-world voting scenarios. If the number of candidates
is not bounded, the evaluation problem becomes much harder we show in
Section 4.3. Namely, even for the well-known Plurality, k-approval Borda,
Copeland, and Bucklin voting rules the problem is #P-hard. We then an-
alyze a simpler question, the CHANCE-EVALUATION problem. Surprisingly,
this problem is shown to be NP-complete (in the strong sense) even for the
Plurality voting rule, when voters do not have equal weights. We give a
polynomial time algorithm when all voters have equal weights, for Plurality,
and show that the CHANCE-EVALUATION problem is hard for many other

34

4.1 Model and Problem Definitions

voting rules (including k-approval, Borda, Copeland and Bucklin). This is
done by establishing the connection to a related problem, the possible-winner
problem [75]. Finally, we present a Monte Carlo algorithm that is able to
approximately answer even the EVALUATION problem where the number of
candidates is a parameter, with an error as small as desired.

4.1 Model and Problem Definitions

In many settings voter ¢ € V will not usually know the preferences of the
other individual voters — but he may know the probability that a voter will
vote for a specific candidate, or the probability that he will prefer one can-
didate over another. If all probabilities are 0 or 1 then the scenario is one of
perfect information, otherwise it is one of imperfect information. To model
imperfect information, we assume that we have for each voter at most [possi-
ble preference orders, which are permutations over the available alternatives.
Each such order is associated with a non-zero probability that this voter will
choose to vote for it, and the sum of probabilities of the given preference
orders is one; all the other possible preference orders, which are not explic-
itly given, are assumed to have a probability of zero. Consider the following
illustrative example. Suppose we have 4 candidates, ¢y, co, c3 and ¢4, and 3
voters, V7, Vo and V3. The voters’ preferences are summarized in Table 4.1
with a probability associated with each preference order. In this example
n=1[0=3and m=4.

| Vi | Va | Vs |
(01762703504) (04762701503) % <C47027C3761)
(c2,c1,¢3,¢) | 5 (ca,01,03,¢4) | 15 (c3,01,04,C0)
(037 C1, C2, 04)

(SN NV

O [[0 [

Table 4.1: An example of our imperfect information model of voter prefer-
ences.

We consider the case where voters’ choices are independent. If we collect
from each voter just one preference order (from the ones that are associated
with him) we get one possible preference profile that we call a voting scenario,
from which the winner can be calculated using one of the voting rules listed
above (Plurality, Borda, ...). The probability of any given voting scenario

35

4.1 Model and Problem Definitions

occurring is simply the multiplication of the probabilities of its preference
orders from the different voters. In these settings, we assume that the voters
are truthful, i.e. for each voter i, L; = R;, thus one of the voting scenario
must occur. We are now ready to define our main problems.

Definition 4.1 (EVALUATION). Given a voting domain, an imperfect infor-
mation model of voters’ preferences, as described above, a specific candidate

*

c*, and a voting rule F, what is the probability that c¢* will be chosen using
F?

The answer to this question is the sum of probabilities of all the voting
scenarios where ¢* wins using F. For example, consider the imperfect infor-
mation shown in Table 4.1. Assume that random tie-breaking rule is used.
The winning probabilities for each candidate under the Plurality, Borda and
Copeland voting rules are summarized in Table 4.2. Note that ¢4 has the
highest probability of winning under Plurality and Copeland, but ¢, has the
highest probability of winning under Borda.

’ \ Plurality \ Borda \ Copeland ‘
c1 | 0.036 0.058 | 0.052
co | 0.178 0.7 0.256
c3 | 0.053 0.017 | 0.017
cy | 0.733 0.225 | 0.675

Table 4.2: Winning probabilities for each candidate, rounded to 3 decimal
places. Bold font represents the highest probability in each voting rule.

Note that the complexity of this problem is a function of the number of
voters (n), the number of candidates (m), and the number of possible non-
zero probability preference orders for each voter (1). We also define a related
decision problem, which asks for a weaker question.

Definition 4.2 (CHANCE-EVALUATION). Given a voting domain, an imper-
fect information model of voters’ preferences, as described above, a specific
candidate, c*, and a voting rule F, is the probability that c¢* will be chosen
using F greater than zero?

Of course, an answer to the EVALUATION problem immediately yields an
answer to the CHANCE-EVALUATION problem, so if the former problem is

36

4.2 Constant Number of Candidates

easy, then so is the latter. However, it could in principle be the case that
EVALUATION is hard while CHANCE-EVALUATION is easy, which suggests
that it is worth studying CHANCE-EVALUATION as a problem in its own
right.

Note that the CHANCE-EVALUATION problem also seems to be a very
natural one. In many cases there will be some candidates that do not have
any chance of winning, and a voter might reasonably contemplate which
candidates have no chance of winning when deciding how to vote.

In the following sections, we analyze the complexity of the EVALUATION
and CHANCE-EVALUATION problems in two main different scenarios: when
the number of candidates is bounded by a constant; and when it is not
bounded.

4.2 Constant Number of Candidates

In many real-world scenarios, the number of alternatives is small and can be
bounded by a constant. For example, if a group of agents want to decide on
a full hour to meet in a given day, the number of alternatives is always 24.
In this section we give a polynomial algorithm for the EVALUATION prob-
lem under the assumption of a constant number of alternatives'. Obviously,
this algorithm also answers the CHANCE-EVALUATION problem in polyno-
mial time. We then present some experimental results obtained with this
algorithm, evaluating its performance in practice.

4.2.1 The Algorithm

The key to the efficiency of our algorithm is the distinction between a voting
scenario and a voting result. Intuitively, in a voting scenario we know for each
voter which preference order he votes for. But to identify a winning candi-
date, we do not care actually exactly which voter votes for which candidate;
we can aggregate the possible voting scenarios into a compact intermediate
form, which is what we call a voting result. For example, suppose we use the
Plurality rule. With Plurality, a voting result may be a vector which stores
the total number of votes for each candidate. Now suppose that there are
three voters and two candidates, ¢; and ¢y, and all the voters do not have
a probability of 1 to vote for one of the candidates. Thus, there are three

"'We thank Efrat Manisterski for her contribution in developing this algorithm.

37

4.2 Constant Number of Candidates

voting scenarios with the same voting result of two votes for ¢; and one vote
for cy. A little more formally:

Definition 4.3. Given a voting rule, a voting result is a succinct way to
represent one or more voting scenarios over i voters, 0 <1 < m, such that:

1. For i = m, the winner can be determined from the voting result over
the m wvoters in polynomaial time.

2. A woting result over i + 1 voters can be generated from combining the
voting result for v voters and one additional preference order, in poly-
nomial time.

After we present the algorithm, we describe different ways to represent
voting results for many common voting rules. Let us first describe the algo-
rithm where all the voters’ weights are equal. A formal proof of correctness
can be found in the Appendix. We use a dynamic programming approach to
enumerate the possible voting results from the preferences of n voters and
calculate their probability. This is done by using possible voting results from
the preferences of n — 1 voters and their probabilities, which is in turn done
by using the voting results from the preferences of n — 2 voters, and so on.
Our algorithm builds a Table where the rows are possible voting results and
the columns represent the voters. We denote by T[Z, j] the cell in the table
at the row which represents the voting result vector i, and at column J. In
any stage, the algorithm only requires storing 2 columns in memory.

Algorithm 1 VotingResult(table T', preference orders for each voter)

1: Tnit T[.,.] < 0, T[0,0] 1.
2: fori < 0ton—1do
for all cells in column ¢ do
7 < the voting results of the cell’s row
for j < 1tol do
ctir < preference order j of voter ¢ + 1
next < the voting result from adding cir to 7
Tnext,i+ 1] + T[next,i + 1] + (probability of ciir x T[F,i])

@

When the algorithm terminates, each cell in the last column contains
the probability of that cell’s row voting result occurring. We can identify the
winner for each voting result according to the specific voting rule. So, we can

38

4.2 Constant Number of Candidates

answer the EVALUATION problem from Definition 4.1 by simply summing for
c* the probabilities of the voting results where it wins. Consider the following
small example. Suppose we use the plurality voting rule with 3 candidates,
c1,co and c3 and 2 voters, V; and V5. The voters’ preferences are summarized
in table 4.3a. Table 4.3b shows the table, T, that is built by the algorithm
for this data. Every row represents a voting result which is a vector such
that index ¢ counts the number of votes for candidate ¢;. The last column
shows the probabilities for every possible voting result with voters V; and V5.
Thus, the probability that ¢; is the winner, assuming a random tie-breaking
method is used, is 3 -3+ 3-(3-3+3-3)+ 3 (5-7) Note that in this
example, (2,0,0) is not a possible voting result.

Vi Vs Voting result | 0 | 1 2
%cl %cl (01,02703)
Ik [0,00 [1]0] 0 |
503 1,0,0 01 0
(a) A set of vot- 0,1,0 0 % 0
ers’ preferences. 0,0,1 0 % 0
2,0,0 0]0 -
1,1,0 0[o0[3-7+3-3
1,0,1 010 co
0,2,0 0]0 3.3
0,1,1 0]0 5.3

(b) The corresponding table T, that is built
by the algorithm.

Table 4.3: An example of how algorithm 1 builds a table from a given set of
preferences.

The time complexity of the algorithm is O(nx number of rows of T' x 1),
and the space complexity is O(number of rows of T'). The specific voting
rule determines how to express the possible voting results which in turn
determines the number of rows. Clearly, we seek a representation which is as
compact as possible to reduce time and space complexity. This issue, of how
to summarize votes in a compact way, was also studied by by Chevealeyre et
al. [32] and Xia and Conitzer [116], and we reuse some of their techniques.
It also seems that their results, showing that their upper bound is tight, can

39

4.2 Constant Number of Candidates

be imported to our settings to show that our ways for the representation of
voting results are optimal. Now, for many voting rules one of the following
methods can be used to express the possible voting results:

1.

A vector of [0,n]™ such that index i represents the number of voters
who voted for candidate <.

. A vector of [0,n]™™=1/2 which represents the number of voters who

preferred the first candidate in each possible pair of candidates.

. A vector of [0,n]™ which represents the number of voters who ranked

each candidate in each position (taken from [116]).

. A vector of [0, n]™2""". For each candidate i, let z_; be a possible subset

of candidates not containing 7. The voting result vector represents the
number of voters who preferred each candidate ¢ over any candidate in
z_;, for each possible z_; (taken from [32]).

. A vector of [0,n]™ which represents the number of voters who voted

for each possible preference order permutation.

We now show which method to use for some voting rules.

e Plurality. The first method can be used so the number of rows is

O((n+ 1)™) and the time complexity is O((n + 1)™ - [). However, the
actual number of voting results will never be (n + 1)™, since the total
number of points given by all the candidates is n. Instead, the actual
number of voting results with n voters is exactly the number of options
to split the integer number n to exactly m non-negative integers, such
that their sum is equal to n. Two sums which differ in the order
of their summands are considered to be different compositions. This

is called a weak composition of n with exactly m parts; we denote this
value by WC'(n,m), WC(n,m) = ("1"]") = (ntm—L! ~Accordingly the

m—1 nl(m—1)!
running time complexity is O(1 Y WC(i,m)) and the space required
is OWC(n—1,m)+ WC(n,m)).

k-approval. The first method can be used, with a running time com-
plexity of O(1 Y"1 WC'(i-k, m)) and a space complexity of O(WC'((n—
1)-k,m)+WC(n-k,m)).

40

4.2 Constant Number of Candidates

e Borda. We can use a modified version of the first method — a vector
of [0, (m — 1)n]™, which represents the total score for each candidate.
Thus, the time and space complexity are O(1 > WC(i - W, m))

and OWC((n—1) - w,m) +WC(n- w, m)), respectively.

e Bucklin. The third method can be used so the time and space complex-
ity are O(1>_7 WC(i-m,m)) and OWC((n —1)-m,m)+ WC(n -
m,m)), respectively.

e (Copeland. The second method can be used, so the number of rows
is O((n + 1)™m=1/2) and the time complexity is O((n 4 1)™(m=D/2]),
This method can be used for any other Condorcet-consistent rule, i.e.,
Maximin, Ranked pairs, Voting trees, etc. (For an extensive discussion
on voting rules, we refer the reader to [6]).

o STV (see definition in [6]). The fourth method can be used, so the
number of rows is O((n +1)™2""") and the time complexity is O((n +
1)™2" '), If m < 4, the last method shall be used to calculate the
number of scores for each candidate from the preference orders.

When we move to the weighted voters case, Connitzer and Sandholm [35]
expressed the EVALUATION problem as the following decision problem: given
a number r, 0 < r < 1, is the probability of ¢* winning greater than r? They
showed that this problem is NP-hard for Borda, Copeland, Minimax and
STV, even with extremely restricted probability distributions. We show that
their results hold only for weights that are not bounded by Poly(n).

Claim 4.4. For a constant number of candidates, the EVALUATION problem
is in P even for weighted voters, when the weights are in O(Poly(n))

Proof. Our dynamic programming approach (algorithm 1) can be easily ex-
tended to work with weighted voters. Actually, the only thing that has
to be changed is the range of possible voting results which determines the
number of rows in the table. The number of rows will now become at
most O(Poly(n)™), O(Poly(n)™™=1/2) O(Poly(n)™), O(Poly(n)™*" ") or
O(Poly(n)™), depending on the specific voting rule (as described earlier).
In all cases it is still in P. O

This result may be understood with reference to the proofs of Conitzer
and Sandholm [35], who used a reduction from the PARTITION problem.

41

4.2 Constant Number of Candidates

PARTITION is known to have a pseudo-polynomial time dynamic program-
ming solution [54].

4.2.2 Experiments

In the preceding section, we gave analytical results for the case where the
number of candidates is a constant. We showed that the complexity of our
algorithm grows exponentially with the number of candidates. As with many
other problems that have worst-case exponential running time, it is in inter-
esting to ask whether we do indeed see worst case performance in practice.
Our hypothesis was that in our problem, the actual number of voting results
that the algorithm stores is much smaller than the asymptotic bound in most
cases (and hence the required memory and time are smaller too). In partic-
ular, we investigated the effect of the probabilistic structure of the imperfect
information on the number of stored voting results. Additionally, we tested
the effect of the parameter [on the actual number of voting results. In this
section we present experimental results obtained with an implementation of
the algorithm for the Plurality rule with unweighted voters, which validate
our hypothesis. Accordingly, we also found it interesting to check how many
voters the polynomial-time algorithm can reasonably handle in practice, for
a given number of candidates.

Our implementation (written in C++) ran on a 64-bit Linux PC, with 8
GB of RAM. The large amount of main memory was needed for the algorithm
to store the table of the voting results. This table was implemented using
Judy array [18], a complex but very fast associative array data structure for
storing and looking up values. We chose to use this data structure since
it typically requires much less memory than a conventional hash table. We
measured the algorithm’s performance by counting the total number of cells
that were produced during run-time, to avoid the effect of the computer’s
hardware on the results (in contrast to time, which depends on the actual
testing hardware). In most cases we ran 15 iterations and took the average;
in the extreme cases, where the running time was too long, we took the
average of only 5 iterations.

As an input, the algorithm takes an imperfect information matrix. Unlike
in other experimental work in social choice which generates random prefer-
ences or random voters’ weights (see [107] for example), we need to randomly
generate probabilities over possible preferences. As noted before, in this work
we assume that some knowledge on the preferences can be derived, and only

42

4.2 Constant Number of Candidates

[preference orders have a non-zero probability for each voter. Therefore, the
impartial culture assumption [24], which is a model of an electorate in which
all preference orders are equally likely, can not be used. Alternatively, we
considered two methods for selecting | candidates for each voter (Plurality
needs the top choice candidate only) and generating the probabilities, using
uniform and normal distributions. In the first method, [candidates were ran-
domly chosen for each voter and the probability that she will vote for each
one of them was set to 1/l. The second method defined an arbitrary fixed
order over the candidates. It then randomly chose one candidate to be the
mean of the normal distribution, for each voter. The other [— 1 candidates
were chosen by their proximity to the mean candidate. The probability that
each voter will vote for each one of the candidates was set according to the
normal distribution, with the selected mean and a variance of 1. Figure 4.1
demonstrates the difference between these 2 methods.

*—= []

I I I I I I

| I I I I I

Candidates: 1 2 3 4 5 6
Probabilities: = L 1
3 3 3

Candidates: 1 2 3 4 5 6

Probabilities: 0.285 043 0.285
(b) normal distribution.

Figure 4.1: An example of how to generate random probabilities where m =
6, =3.

In the first set of experiments, we tested the effect of the random methods
that we used to generate the voters preferences. In these experiments we fixed
[to be 3, and we evaluated the effect of the two methods on the running time
(in terms of the number of generated cells) for 5 and 6 candidates and 20—100
voters. The results are shown in Figure 4.2.

43

4.2 Constant Number of Candidates

400000000

-5 candidates, normal

350000000 . .
&5 candidates, uniform

300000000 6 candidates, normal

-6 candidates, uniform
250000000

200000000

150000000

Number of Cells

100000000

50000000

L

80 100

0 B A

20 40

60
Number of Voters

Figure 4.2: Results of first set of experiments.

Clearly, using the uniform distribution to generate the preferences results
in more options to split the total number of votes among the candidates.
Thus, increasing the number of voting results yields a higher running time.
The second method simulates a more realistic scenario, the “single-peaked
preference” principle [23]. In this case, there is some predetermined linear
ordering of the candidate set. Every voter has some special place he likes best
along that line, and his dislike for a candidate grows larger as the candidate
goes further away from that spot. Similarly, in our case every voter has
some special place that we believe has the highest probability to be selected,
and the probability that the voter will vote for a candidate decreases as the
candidate goes further away from that spot. In this case the votes are less
scattered among the candidates, and thus the number of voting results is
lower, yielding a lower running time.

We also used these settings to demonstrate how the ratio between the
actual number of voting results to the theoretical number behaves. Since we
used Plurality, the theoretical bound was computed using the W' function
(as described above). The results are summarized in Figure 4.3. As there
are more voting scenarios which lead to the same voting result, the gap be-
tween the theoretical bound to the actual number of voting results increases.
Thus, this ratio is lower when there are more candidates or when a normal
distribution rather than a uniform distribution is used to generate the im-

44

4.2 Constant Number of Candidates

perfect information. On the other hand, the number of voters does not have
a significant effect on this ratio.

1

0.9
B —n
0.8 /

07 /—//

0.6

05 —*

Ratio

0.4

0.3 -5 candidates, norrmal
02 &5 candidates, uniform
6 candidates, normal

—6 candidates, uniform

20 0 60 20 100
Number of Voters

Figure 4.3: Ratio of actual number to theoretical number of voting results
with increasing numbers of voters.

In the second set of experiments, we investigated the effect of [on the
actual number of voting results. Although the algorithm’s running time is
(asymptomatically) linear in [, it was interesting to check if [has the same
effect on the actual number of voting results. In these experiments, we fixed
the number of candidates to 5, and used the normal distribution to generate
preferences. We measured the ratio between the actual number of voting
results to the theoretical bound (computed using the WC' function) for 50
and 100 voters and [between 2 — 5. The results are shown in Figure 4.4.
Fortunately, as [increases the ratio of the actual number to the theoretical
number of voting results increases in the same manner. As in the previous
experiment, this ratio is not affected by the number of voters. Note that
since m = 5, if [= 5 too, every possible voting result may happen, thus the
ratio is 1.

The consequence of what we have shown so far is that there is a gap be-
tween the theoretically predicted running time and the actual one. Therefore,
in the last set of experiments we tested how many voters the polynomial-time
algorithm can handle in practice, for a given number of candidates. We set

45

4.2 Constant Number of Candidates

0.9

0.8 +-50 voters

07 100 voters

0.6

0.5

Ratio

0.4

0.3

0.2

0.1

Figure 4.4: Ratio of actual number to theoretical number of voting results
when increasing the number of non-zero probability preference orders for
each voter (1).

[at its minimum value, 2, and we used the normal distribution to generate
the preferences. We then tested for 4 — 7 candidates how many voters the
algorithm can handle. Clearly, we would have attained better results if we
had allowed the algorithm to use a hard disk as a virtual memory. However,
the 1/0O overheads would result in much higher running time, and we wanted
to test our algorithm with reasonable limits. Therefore, the algorithm used
only main memory, and the “extreme” results that are shown in Table 4.4
were achieved just before the algorithm ran out of space. The complete pic-
ture is shown in Figure 4.5. Note that the y-axis is shown on a logarithmic
scale.

of can- | # of | Theoretical # | Actual # of | Ratio | Time Total
didates voters | of voting results | voting results (sec) of cells

4 1100 223,045,351 | 47,331,609.2 | 0.212 | 111183.4 | 13,122,678,458.0
) 400 1,093,567,501 | 93,506,124.2 | 0.086 | 338200.4| 7,640,484,607.0
6 140 498,187,404 | 18,146,578.2 | 0.036 | 4756 442,092,341.2
7 100 1,705,904,746 | 22,381,578.8 | 0.013 | 3792 346,504,543.2

Table 4.4: Extreme results. Fractions are rounded to 3 decimal places.

46

4.3 The Number of Candidates as a Parameter

2E+10

2E+09

200000000

20000000

2000000

-4 candidates

200000 #5 candidates

6 candidates

Number of Cells (logarithmic scale)

20000
—7 candidates
2000
20 60 100 140 220 400 440 480 520 560 600 640 720 760 800 840 880 920 960 1000 1040 1080
Number of Voters

Figure 4.5: Results of the last set of experiments.

The results show that the actual running time (in terms of generated
cells) heavily depends on the number of candidates, as expected. It is also
apparent that the algorithm can handle a practical number of voters, even
with 6 or 7 candidates. For example, the Israeli parliament (the Knesset)
has 120 voters, and the United States Senate has 100 voters. Table 4.4 shows
again the difference between the theoretical upper bound on the number of
voting results (computed using WC' function), and the actual number.

4.3 The Number of Candidates as a Param-
eter

If we cannot bound the number of candidates, then EVALUATION becomes
much harder. In this section, we show that EVALUATION for k-approval,
Borda, , Copeland, Bucklin and even for Plurality is #P-hard in this case.
We also analyze the seemingly weaker question, the CHANCE-EVALUATION
problem. Surprisingly, we show that even this problem is hard when voters do
not all have equal weights under Plurality. We show that with equal weights,
CHANCE-EVALUATION is still hard under k-approval, Approval, Range and
Cumulative. However, we give a polynomial algorithm for the case where all
voters have equal weights with Plurality.

47

4.3 The Number of Candidates as a Parameter

4.3.1 The Evaluation Problem

Sometimes, the number of candidates cannot be assumed to be a constant,
but is necessarily a parameter of the problem. For example, if a group of
agents wants to choose one of them as a leader, m = n and thus it is not
a constant. There are some special cases where the number of voters is
a constant and so a naive algorithm, which simply evaluates all possible
options and runs in time polynomial of O(m™) will suffice. In most cases
this is probably not going to happen. Unfortunately, as we will see, if both
the number of voters, n, and the number of candidates, m, are given as
parameters, the problem is #P-hard even for the Plurality, Borda, Range,
Approval, Cumulative and Copeland voting rules.

All our #P-hard reductions will be from a well known #P-complete prob-
lem, PERMANENT, which is to calculate the permanent of a 0l-matrix, (or,
equivalently, to count the number of perfect matchings for a bipartite graph).

Definition 4.5. Denote by S, the set of all permutations of the numbers

1,2,...,n. The permanent of an n-by-n matrix A = (a; ;) is defined as
perm(A) = Z Hai,a(i)
o€Sy i=1

For a bipartite graph G = (X UY, E) such that ¥V(z,y) € E,x € X and
y €Y, and | X|=|Y|=r, a perfect matching is a set of edges such that no
two edges share a common vertex and every vertex is incident to exactly one
edge. The permanent of G'’s adjacency matriz in fact counts the number of
perfect matchings for G.

We are now ready to show the proof for the Plurality voting rule.

Theorem 4.6. If n and m are not constant, the EVALUATION problem 1is
#P-hard for the Plurality voting rule.

Proof. Given a bipartite graph G = (X UY | E), with X = {z1,..., 2.}
and Y = {y1,...,y.}, for which we wish to count the number of perfect
matchings, we construct an instance of the EVALUATION problem such that
the probability of the chosen candidate to win is a function of (and only of)
the number of perfect matchings in G. The voters are all the vertices of X
plus two additional voters xy and w, all with equal weights. The candidates
are all the vertices of Y plus two additional candidates y, and a. We first

48

4.3 The Number of Candidates as a Parameter

consider the case where the tie-breaking rule is lexicographic, and a has the
top priority. For every x € X, if (x,y) € E, set the probability that voter
x votes for candidate y to be % With the remaining probability (1 — degT(x),
where deg () is the degree of x) voter = votes for yo. Finally, w votes for
candidate a with probability 1, and x(votes for candidate vy with probability
1.

Consider a particular set of votes cast by the voters. Voters xy and w
have no choice, so consider the choices made by voters in X. Each such set
of choices naturally corresponds to a collection of r edges , M, between X
and Y:

M = {(z,y) € X xY : x voted for y}

(note that if x voted for yo then this pair is not included in M). We show
that a wins the election iff M is a perfect matching.

Suppose that M is a perfect matching, then all candidates in Y get exactly
one vote (from the voters in X) as do G and ¥y, (from w and xq, respectively).
Thus, all candidates obtain the same score, and a wins by the tie-breaking
rule. Conversely, suppose that M is not a perfect matching. Then, either
there is a candidate y € Y that gets more than one vote, or else there is a
voter x € X that voted for yy (in addition to the vote yo surely received from
xg). In either case, there is a candidate that got more than one vote, while
a received only one vote (from @). Hence, @ does not win the election.

The probability that the voters of X elect any specific perfect matching
is r~". Thus

Pr[a wins the election] =" - PM(G)

where PM(G) denotes the number of perfect matchings in G. Hence, the
answer to the EVALUATION problem also gives us one for the number of
perfect matchings.

The proof for random tie-breaking is essentially identical, only that in
the case of an exact matching a does not necessarily win, but only wins with
probability —L5. Hence, in this case Pr[a wins the election] = = - PM(G).
The rest of the proof remains the same. n

As for k-approval, we only need to slightly modify the reduction used in
the proof for Plurality. Recall that in k-approval only the k first candidates
get scores, so we don’t care what is their order, and the order of the other
m — k candidates.

49

4.3 The Number of Candidates as a Parameter

Theorem 4.7. If n and m are not constant, the EVALUATION problem is
#P-hard for the k-approval voting rule, for every fized k.

Proof. Given a bipartite graph G = (X UY, F), with X = {zy,..., 2.} and
Y ={vy1,...,y,}, for which we wish to count the number of perfect match-
ings, we construct almost the same instance of the EVALUATION problem as
in the proof of Theorem 4.6. The set of voters is the same, but we add a set
of dummy candidates D = {d;j} U{di}, where 1 <i<k—1,0<j <r. For
every x € X if (z,y) € F, set the probability that voter x gives one point to
candidates vy, d;, ceey d’;fl to be % With the remaining probability (1— degT(z),
where deg (x) is the degree of x) voter x gives one point to ypo, d;o, . ,d’y“()_l.
Finally, w gives one point to candidates a,d}, ... ,d’g_l with probability 1,
and z(gives one point to candidates o, d;o, e ,d’y“gl with probability 1.
Now, each candidate d;j and d} gets the same number of points as y; and
a, respectively. Therefore, the rest of the proof is essentially identical to that

for the Plurality rule. O

We now turn to the Borda and Copeland protocols. We start with a
simple lemma, the proof of which is trivial.

Lemma 4.8. Let V be a set of voters, each with an individual preference
order over a set of candidates. Suppose that all orders are different, and that
for each preference order of any voter v, there exists another voter v' with
the exact opposite preference order. Then:

e [n the Borda protocol all candidates get the exact same score (which is
also the average score).

e [n the Copeland protocol, all pairwise contests are tied, for a total score
of 0 for all candidates.

Theorem 4.9. If n and m are not constant, the EVALUATION problem 1is
#P-hard for the Borda voting rule.

Proof. Let G = (X UY, E) be a bipartite graph, with X = {z,... 2.}
and Y = {y1,...,y,}, for which we wish to count the number of perfect
matchings. We construct an instance of the EVALUATION problem as follows.
There are 2(r + 1) voters composed of two subsets: X+ and W, with r + 1
voters in each. The set X consists of the set X plus one additional voter .
The set W consists of r + 1 voters wy, . .., w,. All voters have equal weights.

50

4.3 The Number of Candidates as a Parameter

There are r + 2 candidates: C' = {c,...,c.} and one “special” candidate
a. We build the EVALUATION instance in such a way that every perfect
matching in G corresponds to a voting scenario in which for every voter
z; € X, there is a voter w; € W with the exact reverse preference order. In
this case, by Lemma 4.8 all candidates have the same score, and a wins by
lexicographic tie-breaking rule. Furthermore, the EVALUATION instance is
constructed so that a only wins in voting scenarios that correspond to perfect
matchings in G. The details follow.

For ease of notation we denote i & j = (i + j)mod(r + 1). Define the
following set of orderings over the candidate set. For each i = 0,...,r let
s; = (¢, Cip1s - - - » Cigr, @), and denote by (s;)® the reverse order to s;. For
each (z;,y;) € E (an edge in G), there is a probability of 1/r that voter z;
vote for order s;. With the remaining probability (1 — degT(xj)) voter x; votes
for order sg. Voter xg votes for sq with probability 1. For voters in W, voter
w; votes for order (s;)® with probability 1. Note that, in particular, a is last
in all votes of X and first in all votes of W. See Figure 4.6 for an example
of how to build an instance from a given bipartite graph where r = 3.

Consider a set of orders chosen by the voters. Only the voters of X
have any choice, so consider their votes. Each such set of choices naturally
corresponds to a collection of r edges, M, between X and Y

M = {(z;,y;) € X xY : x; voted s;}

We show that for lexicographic tie-breaking, a wins the election iff M is a
perfect matching in G.

Suppose that M is a perfect matching in G. Then, each s; gets exactly
one vote from the voters in X*. However, each (s;)® also receives exactly one
vote, from the voters of W. Hence, for each preference order that received
a vote, the exact opposite order was also voted for. In this case, by Lemma
4.8, a wins by lexicographic tie-breaking rule.

Conversely, suppose that M is not a perfect matching. Denote by « the
average total score of the candidates, « = (r 4+ 1). Since « is an average, it
is independent of the actual choices made by the voters. Consider M. Since
M is not a perfect matching, there exists at least one order s; that does note
receive any vote from X . W.lo.g. assume that this is s,. Note that in all
orders s; with i # r candidate ¢, appears after candidate c¢,_;. Hence, the
total score that ¢,_; gets from voters of X must be higher than the total
score they give ¢,. The voters of W, on the other hand, in total give all

o1

4.3 The Number of Candidates as a Parameter

candidates of C' the exact same score (since the construction of the s;’s is
symmetric). Hence, ¢,_; gets a higher total score than ¢,, and, in particular,
it is not the case that all candidates get an identical total score. Thus, there
must be a candidate ¢;, that gets a total score [strictly greater than the
average . On the other hand, the score of a is always the same (being
always last in votes of X and first in votes of W). Hence, its score is always
identical to the one it gets in a perfect matching, namely «. Hence, a does
not win the elections.

The probability that the voters of X elect any specific perfect matching is
r~". Thus, Pr[a wins the election] = =" - PM(G). Hence, the answer to the
EVALUATION problem also gives us one for the number of perfect matchings.

The proof for random tie-breaking (instead of lexicographic) is essentially

identical, as in the proof for Plurality. 0
[@ : (C0,C1,C2,C3,8)
(C1,C2,C3,C0,8)
X<
(C2,C3,C0,C1,8)
2/,
~ A7 (C3.C0.C1,C28)

e 1 A
Wo (&,G3,C2,C1,C0)
W1

X
() D)

W<
& & @ 1 (8,6,C0,C5,C2)

1 A
\ @ (8,3,C1,C0,Ca)

) (s
(a) Bipartite graph example, (b) The corresponding instance for the EVAL-
r=3. UATION algorithm.

Figure 4.6: Reduction from PERMANENT to EVALUATION problem used in
the proof of Theorems 4.9 and 4.10.

Theorem 4.10. If n and m are not constant, the EVALUATION problem is
#P-hard for the Copeland voting rule.

Proof. The proof is very similar to that of the Borda protocol, and uses the
exact same construction. Following that proof, we show that also for the

52

4.3 The Number of Candidates as a Parameter

Copeland protocol, @ can win iff M (as defined in the Borda proof) is a
perfect matching. Indeed, if M is a perfect matching, then as shown above,
for each vote for a given preference order there is a vote for the exact reverse
order. Thus, the conditions of Lemma 4.8 hold, and all candidates get an
identical 0 score. Hence, a can win (either by lexicographic or by random
choice, depending on the protocol).

Conversely, suppose that M is not a perfect matching. Then, there exists
at least one order s; that is not voted for by any voter of X*. W.lo.g.
assume that this is s.. In all orders s; with ¢ # r candidate ¢,_; appears
before candidate c,. In all orders (s;)" with i # (r—1) candidate ¢,_; appears
immediately after c,, and in (s,_1)% it appears before candidate c,. Hence,
for any other candidate c;, if ¢, wins the pairwise contest with ¢;, so does
¢.—1. In addition, c¢,_; beats c¢.. Hence, in total, ¢,_; must win strictly more
pairwise contests than c.. Hence, it cannot be the case that all candidates
score exactly 0. Thus, since the average total score is necessarily 0, there
must be at least one candidate that scores more than 0. On the other hand,
a ties all pairwise contests (it is first in all votes by W and last in all those
by XT), for a total of 0. Thus, a cannot win the elections. The rest of the
proof is identical to that for the Borda rule. m

As for Bucklin, we use a slightly different construction. This proof does
not assume the use of any specific tie-breaking rule.

Theorem 4.11. If n and m are not constant, the EVALUATION problem is
#P-hard for the Bucklin voting rule.

Proof. Let G = (X UY,FE) be a bipartite graph, with X = {z1,..., 2.}
and Y = {y1,...,¥y,}, for which we wish to count the number of perfect
matchings. We construct an instance of the EVALUATION problem as follows.
There are 2(r + 1) voters, thus the Bucklin score of the Bucklin winner will
be at least r + 2. The voters are composed of two subsets: X and W, with
r + 1 voters in each. The set X consists of the set X plus one additional
voter xg. The set W consists of r + 1 voters wg, ..., w,. All voters have
equal weights. There are r + 1 regular candidates: C' = {cy, ..., ¢} and one
“special” candidate a. Additionally, there are (r + 1) dummy candidates:
D:{d;j}u{dé}, where 1 <i<r, 0<j <.

We build the EVALUATION instance in such a way that every perfect
matching in GG corresponds to a voting scenario in which the Bucklin wining
round is 7+ 2 and candidate a wins. Furthermore, the EVALUATION instance

53

4.3 The Number of Candidates as a Parameter

is constructed so that in other voting scenarios the Bucklin winning round is
strictly less than r 4+ 2 and one of the candidates form C' wins. The details
follow.

For ease of notation we denote i @ j = (i + j)mod(r+1). In our construc-
tion, the Bucklin wining round is always less than or equal to r 4 2, thus we
show only the first r+2 candidates in each preference order (other candidates
may be placed arbitrarily). For each i = 0,...,7 let s; = (¢, d;, oy dy s a),
and t; = (a,¢;, Ciw1, - - -, Ciay, d). For each (z;,9;) € E (an edge in G), there
is a probability of 1/r that voter x; vote for order s;. With the remaining
probability (1— degT(”)) voter x; votes for order sy. Voter zy votes for sy, with
probability 1. For voters in W, voter w; votes for order ¢; with probability 1.
Note that any order s; gives one point to candidate ¢ € C' in the first round,
and every order t; gives one point to ¢ € C' on each round 7, 2 < j < 4.

Consider a set of orders chosen by the voters. Only the voters of X
have any choice, so consider their votes. Each such set of choices naturally

corresponds to a collection of r edges, M, between X and Y:
M = {(z;,y;) € X xY : x; voted s;}

We show that a wins the election iff M is a perfect matching in G.

Suppose that M is a perfect matching in G. Then, each s; gets exactly
one vote from the voters in X*. For every j, 1 < 7 < r+1, the score of every
dummy candidate d € D in round j is less than or equals 1. The score of
every candidate ¢ € C' in round j is 7, and the score of @ in round j is r + 1.
Since no candidate has more than r + 2 points, every j, 1 < j < r+1, is not
the Bucklin winning round. On the other hand, in round r + 2 the score of
a is 2(r 4+ 1) while no other candidate has more than r + 1 points. Therefore
the Bucklin winning round is r 4+ 2 and a is the (unique) winner.

Conversely, suppose that M is not a perfect matching. Then, there exists
at least one order s; that is voted more than one time by voters of X,
Therefore, there is at least one candidate ¢ € C with a score of at least r + 2
in round r + 1. Then, the Bucklin winning round is less than or equals r + 1.
On the other hand, a’s score in every round j, 1 < 7 < r+1, is exactly r + 1.
Thus, a cannot win the elections.

The probability that the voters of X elect any specific perfect matching

is r~". Thus, Pr[a wins the election] = =" - PM(G). Hence, the answer
to the EVALUATION problem also gives us one for the number of perfect
matchings. [

o4

4.3 The Number of Candidates as a Parameter

Note that all our proofs use equal weights for the voters, so the results
hold for the weighted voters case with un-bounded or bounded weights too.

4.3.2 Chance-Evaluation Problem

Our original definition of the EVALUATION problem yields a problem that
is hard to compute for some common voting rules. Surprisingly, the weaker
question, CHANCE-EVALUATION, is hard even for the simplest voting rule —
Plurality — when voters do not all have equal weights.

Theorem 4.12. If n and m are not constant, the CHANCE-EVALUATION
problem is NP-complete for the Plurality voting rule when the voters do not
all have equal weights.

Proof. The problem is clearly in NP — given one voting scenario where c¢*
wins, we can check that indeed c* is the winner in polynomial time. The NP-
hardness reduction is from the NP-complete BIN-PACKING problem: given
a finite set U of items, an integer size s(u) for each u € U, a positive integer
bin capacity B and a positive integer k, is there a partition of U into disjoint
sets Uy, Us, ..., U, such that the sum of the sizes of the items in each U; is B
or less? The instance for the CHANCE-EVALUATION problem is as follows.
Every item is represented by a voter, where the item size is the voter’s weight.
We add another voter, v, with the weight B + 1. Every bin is represented
by a candidate, and we add another candidate z. v, has a probability of 1
to vote for z, and all the other voters have an equal probability to vote for
each one of the remaining candidates. We look for the possibility of z to
be a winner. Note that every voting scenario corresponds to a packing and
vice versa; a voter with weight x which votes for candidate y is like placing
an item with size x in bin y. One item can not be in more than one bin
and every voter can not vote for more than one candidate. Now suppose the
tie-breaking rule is lexicographic and z is the minimal candidate with respect
to the ordering. z is the winner if and only if all the other candidates get B
or less votes. So there is a packing if and only if there is a voting scenario
where z is the winner. The proof for random tie-breaking is similar, only
that the weight of v, is set to B. O

This problem is NP-complete in the strong sense [54], meaning that even
if the weights are bounded by Poly(n) the problem remains hard (unlike the
case with the constant number of candidates, as shown before).

95

4.3 The Number of Candidates as a Parameter

Fortunately, for Plurality, if all voters have equal weights the problem can
be solved in polynomial time.

Theorem 4.13. FEven if n and m are not constant, the CHANCE-
EVALUATION problem is in P for the Plurality voting rule where all voters
have equal weights.

Proof. We give a polynomial time algorithm to answer the CHANCE-
EVALUATION problem, assuming a random tie-breaking is used. The idea
is very similar to the technique presented by West [109, p.176], and we also
refer to Faliszewski et al. [44,45] for a different use of network flow techniques
in the context of voting problems. Let ¢* be the candidate for whom we are
trying to determine whether it has any chance of winning. Count the number
of voters that vote for ¢* with non-zero probability, and denote this number
by b. Then build a flow network G = (V, F') which contains a bipartite graph
G = (VI'UV2 E') and two additional nodes s and t, V = V1'UV2'U{s, t}.
V1’ has a node for every voter which has a zero probability to vote for ¢*, and
V2" has a node for every candidate but ¢*. For every i € VY, if voter ¢ has a
non-zero probability to vote for candidate j then (i,j) € E'. In E, s has an
edge with capacity 1 to all the nodes of V1’| ¢t has an edge with capacity b
from all the nodes of V2’ and if (i,7) € E', (i,j) € F too, with capacity 1.
Now find a maximum flow and check that every edge from s to a node of V1’
has a residual capacity of zero. If such a flow exists, it represents a voting
scenario where ¢* gets b votes and all the other candidates get b or less votes
so the algorithm returns “yes”. If not, then in every voting scenario, ¢* can
get at most b votes and there is at least one candidate who gets more than
b votes so the algorithm returns “no”. The construction of the flow network
and all the stages of the algorithm can be done in polynomial time, therefore
the CHANCE-EVALUATION problem for Plurality is in P where all the voters
have equal weights.

The algorithm for lexicographic tie-breaking is similar. Let Top(c*) be
the set of all candidates that are more favored than ¢* according to the lexi-
cographic tie-breaking. For every edge (v,t) € E, such that v corresponds to
a candidate in Top(c*), set the capacity to b— 1. The rest of the construction
remains the same. If the required flow exists, it represents a voting scenario
where ¢* gets b votes, all the candidates that are more favored than ¢* get
b — 1 or less votes, and all the other candidates get b or less votes so the
algorithm returns “yes”. If not, then in every voting scenario, ¢* can get at
most b votes and there is at least one candidate which is more favored than

56

4.3 The Number of Candidates as a Parameter

c¢* who gets more than b — 1 votes, or there is other candidate who gets more
than b votes. Thus, the algorithm returns “no”. O

Figure 4.7 shows how the algorithm builds a flow network from the set
of preferences in Figure 4.7a. In this example we seek a voting scenario
where candidate D has a chance to win, and we use random tie-breaking.
We remove voters V; and V5 which have a non-zero probability of voting for
D, and build a flow network as described in Figure 4.7b. In this example,
a possible maximal flow is to assign 1 to all the outgoing edges of s, to the
edges (Va, A), (V3, B), (V4, B), (Vs,C), (V7,C) and (A,t), and to assign 2 to
the edges from B and C' to t. Therefore, D has a chance to win; if V; and Vj
vote for D, V5 votes for A, V3 and V, vote for B, and Vi and V5 vote for C.

For other voting rules, we get NP-hardness results as a corollaries of Xia
and Conitzer’s work [115](extended version). They considered the possible-
winner problem, where they assumed to have a correct but incomplete model
of each voter’s preference order. The input to our problem is different; we
have for each voter a collection of complete preference orders, with associ-
ated probabilities. Nevertheless, since the CHANCE-EVALUATION problem
ignores the exact values of the probabilities, if the partial orders considered
in possible-winner problem have a polynomial number of extensions, then
possible-winner becomes a subproblem of CHANCE-EVALUATION. Thus we
get:

Proposition 4.14. If n and m are not constant, the CHANCE-EVALUATION
problem is NP-complete for k-approval, Borda, Copeland, Bucklin, and Max-
imin voting rules, even if the voters are unweighted 2.

4.3.3 Monte Carlo Approximation

Computing the exact answer for EVALUATION and CHANCE-EVALUATION
problems seems to be hard in many cases. However, we can utilize the un-
derlying probabilities to achieve an approximate solution even for the EVAL-
UATION problem. The idea is to use a statistical approach, in which we
sample according to the given probabilities in order to estimate the real win-
ning probability.

2This result also holds for Ranked Pairs and Voting tress, but we do not discuss these
rules in this part of our work.

o7

4.3 The Number of Candidates as a Parameter

V1 Vz V3 V4 VS V6 V7
oa b a b a b (b Al g |l g
4 2 3 3 3 3 3
gl ¢/l g2 c|2p|2 c|2 c
2 2 2 3 3 3 3
b 1 ¢
4 6

(a) A set of preferences.

(b) The corresponding flow network for candidate D.

Figure 4.7: An example of how to build a flow network from a given set of
preferences.

o8

4.3 The Number of Candidates as a Parameter

The algorithm is as follows. For each voter, we sample one preference
order according to the given distribution, thus obtaining a voting scenario.
Since the voters’ choices are independent, this process is equivalent to sam-
pling one voting scenario according to the voting scenarios’ distribution
(which we do not know). We then calculate the winner from this voting
scenario using the given voting rule, and repeat the whole process t times.
Given a specific candidate, ¢*, we are interested in his winning probability,
denoted p. This probability is approximately the number of sampled voting
scenarios where ¢* wins divided by ¢, denote this ratio by p.

From the perspective of ¢*, each iteration has two possible outcomes:
where ¢* wins or when another candidate wins. The winning probability
of ¢*, p, is the same in each iteration, and the iterations are statistically
independent. Therefore, the distribution of p is a binomial distribution,
and the maximum likelihood estimator for p is p. This estimator is also
known to be unbiased for the binomial distribution. We can build a binomial
confidence interval which relies on approximating the binomial distribution
with a normal distribution, by the following formula:

lAl_A IAl_A
P(f)— p(t p)Zl_% S p Sf)_i_ uzl_(;) :1—0{ (41)

where Z;_q is the 1 — § percentile of a standard normal distribution, and «

is our chosen probability of error. For bounding the distance from the real
winning probability, we require that given an ¢,

lp—pl <e (4.2)

Combining (1) and (2) above we get that the number of required iterations

is:)
VPl —p)Zi_a
752(p(P)12>
€

(4.3)

i.e, the winning probability p that we have found after such ¢ iterations is,
with a probability of 1 — «, within e-environment of the real probability p.
Table 4.5 shows the required number of iterations (t) as a function of ¢ and
a, assuming that p(1 — p) is maximal, i.e. p = 0.5.

99

4.3 The Number of Candidates as a Parameter

| o | e [¢t]
0.05 | 0.05 271
0.05 | 0.01 6,764
0.05 | 0.001 | 676,386
0.01 | 0.05 042
0.01 | 0.01 13,530
0.01 | 0.001 | 1,352,974
0.001 | 0.05 955
0.001 | 0.01 23,874
0.001 | 0.001 | 2,387,384
0.0001 | 0.05 1,384
0.0001 | 0.01 34,578
0.0001 | 0.001 | 3,457,771

Table 4.5: Number of iterations as a function of € and «.

60

Chapter 5

How to Rig Elections and
Competitions

In this chapter we consider the evaluation and control of elections, with
the presence of uncertainty. We assume that we only know the probability
that a candidate will be preferred over another. We first formally define the
underlying assumptions and problems in Section 5.1. In Section 5.2 we give
a polynomial time algorithm for evaluating an agenda with any voting tree,
and show an optimized version of this algorithm for balanced voting trees.
We then show that rigging an agenda for balanced voting trees is provably
hard (the complete proof is due to [104,105]). In Section 5.3 we analyze
the linear order case. We first show how to improve the general agenda
evaluation algorithm for linear orders, and prove the unfairness of the linear
order rule; a candidate can only benefit by going late in a voting order.
Thus, the election officer can try to increase a candidate’s chance of winning
by placing it last in the voting order. We then show that a relaxed version
of the original rigging agenda problem, is hard to solve. However, it is also
natural to ask if there is any agenda which would make a specific candidate
the winner with a non-zero probability. With linear order, we show that this
problem can be solved in polynomial time. Our hardness results may lead us
to conjuncture that a designer cannot benefit from having the probabilistic
information, since it is hard to rig an election agenda even with this input.
However, in practice, a worst-case analysis is not enough. We thus present
heuristics for agenda rigging in Section 5.4. We investigate the performance
of these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions. Our heuristics achieved over

61

5.1 Model and Problem Definitions

96% of the optimal solution on average for the randomly generated and the
basketball data set, and performed reasonably well for the tennis data set.

5.1 Model and Problem Definitions

In our probabilistic model, we assume that for any pairwise election, the
probability of one player winning against the other is known. This prob-
ability can be obtained from past statistics or from some learning models.
Here we do not place any constraints on the probabilities, except the funda-
mental properties. Thus there might be no transitivity between the winning
probabilities, e.g., candidate i has more than a 50% chance of beating candi-
date j, candidate j has more than a 50% chance of beating candidate k, but
candidate k also has more than a 50% chance of beating candidate 7. We
summarize this information on an imperfect information ballot matrix M,
which is a C' x C' matrix of probabilities, such that if M|¢;, ¢;| = p, then in a
pairwise election between c¢; and c;, candidate ¢; will win with a probability
of p. We require that 0 < M|¢;,¢j] = 1 — MJcj,¢;]) < 1. If all probabilities
are 0 or 1 then we say the scenario is one of perfect information, and the
ballot matrix represents the adjacency matrix of the majority graph, G (see
Chapter 3 for the definition of G).

The most obvious way to organize a series of pairwise elections is in a fair
tree order. In Figure 5.1(b), we see how pairwise elections between candidates
A, B,C and D may be organized into such a tree. The idea is that candidates
A and B face each other in a pairwise election, while candidates C' and D face
each other in another pairwise election. This association of all the candidates
to the leaves is the agenda, a. The winner of the first pairwise election (A
in this case) then faces the winner of the second (D), and the winner of this
third pairwise election (D) is declared the overall winner. This process of
elimination is simulated by the labeling function, and the overall winner is
the candidate labeled at the root of the tree (see Chapter 3 for a formal
definition of the labeling function). The voting tree in Figure 5.1(b) is said
to be fair because it is balanced, and as a consequence every possible overall
winner would have to win the same number of pairwise elections.

The task of the election officer may thus be perceived as generating such a
binary tree, T, with candidates C' allocated to leaves of the tree. Since only
partial (probabilistic) information is known, we first need to consider the
evaluation problem, which requires computation of the winning probabilities

62

5.1 Model and Problem Definitions

(a)
majority graph
A—B
C<«—D
(b) ©
fair tree order

linear order

£

Figure 5.1: Majority graph (a), and two possible voting trees: linear order

(b) and fair tree order (c¢). The bold font represents the agenda, while the
italic font represents the labeling of the tree.

63

5.1 Model and Problem Definitions

of the candidates. Formally, given (T, o, M) the evaluation of T with respect
to a and M is a mapping n : V — [0,1]" such that for any v € V,
n(v) = (p1,...,pn) if and only Pr[¢; is the winner at v | = p;. Thus at
index ¢ n(r(7")) will contain the probability that ¢; will be the overall winner
of T

The opportunity for manipulation by the election officer is possible in such
settings , for example, by placing a favored candidate against candidates it
is likely to beat. If we relax the fairness constraint, then the possibilities for
an election officer to manipulate the election increase. Figure 5.1(c) shows a
rather unfair voting tree; in fact, it defines a linear order (A, B, C, D) for the
candidates, with the first ballot taking place between A and B, the winner
competing against C, and so on, until the winner of the final ballot (D in
this case) is the overall winner. The unfairness arises due to the possibility
of a candidate winning the overall election despite only participating in one
ballot (as is the case depicted in Figure 5.1(c)). We will denote linear voting
orders (i.e., permutations of C) by 7,7,

In a scenario of perfect information, a successful manipulation by the
election officer is one that guarantees that a specific candidate will win. In
our setting, as we deal with probabilities, the election officer’s goal can be
interpreted in two different concrete formulations:

e Imperfect information agenda rigging (IIAR): Given a set of candidates
C, an imperfect information ballot matrix M, a favored candidate ¢* €
C and a probability p, does an agenda a exist such that ¢* will win in
this setting with a probability of at least p?

e Imperfect information weak agenda rigging (ITWAR): Given a set of
candidates C', an imperfect information ballot matrix M and a favored
candidate ¢* € (', does an agenda « which would make ¢* the winner
with a non-zero probability exist?

In the following sections we analyze the complexity of the IIAR and II-
WAR problems with fair tree and linear orders. We will refer to these prob-
lems in the fair tree order setting as IIAR/ and ITWAR/ | respectively, and
in the linear order setting as IIAR! and IIWAR'.

64

5.2 Voting with a Fair Tree Order

5.2 Voting with a Fair Tree Order

We begin by considering the evaluation problem, which requires computation
of the candidates’ winning probabilities. It is not obvious that even the
evaluation problem is easy in our setting, since to compute the probability
that a given candidate will win the overall election, we must consider every
possible ordering of wins emerging from a given tree structure: in any given
ballot, there are two outcomes, in contrast to the perfect information case.
However, the following result implies the problem is in P for every voting
tree.

Theorem 5.1. Given (T, o, M), where T is any m leaf binary tree, the
evaluation of T' with respect to o and M is computable in O(m3) arithmetic
operations.

Proof. Consider the following algorithm.
1. n(x) = unlabelled for each x € V(T')

2. For each leaf, z, of T, n(x) = (x1,...,x,) with z; = 1 if a(x) = ¢; and
z; = 0 otherwise.

3. repeat

a. Let z be any node of T with children z and y such that
n(x) # wunlabelled and n(y) # wunlabelled. Let (xi,...,xy)
denote n(x) and, similarly, (y1,...,yn) denote n(y). Compute

n(z) = (z1,. .., 2m) using

Li 22:1 y; Mlci,e;] if x>0

zi = Yi >oiy vy Mlei,eg] if 5 >0

4. until every v has n(v) # unlabelled

Step (2) correctly assigns n(v) for each leaf v of T'. Inductively assuming that
z with children x and y has both n(x) and n(y) correctly assigned, consider
the computation of n(z) in 3(a). It cannot be the case that both x; > 0 and
y; > 0 since the candidate ¢; is a leaf in at most one of the sub-trees with roots
x and y. If ¢; is a leaf of neither sub-tree then z; = y; = 0 leading to z; = 0,

65

5.3 Voting with a Linear Order of Ballots

i.e., ¢; cannot be a possible winner at z. Without loss of generality suppose
z; > 0. In order for ¢; to be a winner at node z it must first be successful at
node z (probability z; by the inductive assumption) and defeat the winner,
yj, at node y (y;M|c;, ¢;]). Summing over the contributing terms yields the
expression given in 3(a). To complete the argument it suffices to note that
O(m?) operations are carried out to compute 7(z), giving a worst-case overall
number of O(m?) steps. O

Vu et al. [104,105] show a similar algorithm that calculates the winning
probability of a specific candidate in O(m?). However, if we consider the
more common setting, in which ballots are organized according to a fair tree
order, we can use an optimized version of our algorithm . In this manner we
reduce the overall time complexity of calculating the winning probabilities of
all the candidates to O(m?). The proof is given in the appendix. We obtain:

Theorem 5.2. Given (T, «, M), where T is a fair tree order, the evaluation
of T with respect to o and M is computable in O(m?) arithmetic operations.

We now continue with the control problem, which is interpreted in our
setting as the problem of finding an agenda that gives a named candidate at
least a certain probability of winning (ITAR/ problem). Due to Theorem 5.2,
with a fair tree order the problem is in NP. Fortunately, it is also provably
hard.

Theorem 5.3. IIAR? is NP-complete.

The proof of this theorem is due to Theorem 5 in [104,105]. However the
complexity of the weaker version, IIWARY/, is still an open problem.

5.3 Voting with a Linear Order of Ballots

We now focus on the linear order case. Given such an order 7 = (c1,...,¢p)
and candidate ¢* € C, the probability of ¢* being the overall winner of 7 is
denoted by Pr{w(m) = ¢* | M], and is given as follows. For a voting order
T = (Ciys Cigs - - -, G4y,) With ¢ = ¢;,, (i.e., the preferred winner occurs k’th in
the order),

Plu(m) = ¢ | M] = ¢ x v

66

5.3 Voting with a Linear Order of Ballots

where

o= (H M[Cik’cij])

j=k+1

k—1
P = (Z Plw(ci,ciy ... cyy_,) = ci; | M] x M[Cik7cij]>

j=1

That is, in order for ¢* to emerge as the winning candidate, ¢* must defeat
every candidate put forward later in the voting order, and succeed against
the eventual winner of the voting order formed by the earlier candidates.
Theorem 5.1 showed that the probability of a candidate wining in any given
voting tree can be computed in time O(m?); for linear orders, we can improve
this to O(m?).

Theorem 5.4. Given (m, M) and any ¢* € C, Plw(r) = ¢* | M] can be
computed in O(m?) arithmetic operations.

Proof. Let m = (¢4, Ciy, - - ¢,). Consider the m x m matrix, T whose
entries, T™]j, k| are,
T, k) = Plw(ci, ...ci;) = cr | M]

Informally, 7[5, k] is the probability that candidate cj is the (current)
winner, immediately prior to the k’th ballot being held. To prove the lemma
it is sufficient to prove that 7™ may be constructed in polynomial time given
M and 7. This, however, is an easy consequence of the following,

1 if j7=1and ¢, =c;
_ 0 if e e{ci CiigroesCipt
(m) _) k 1419 “lj42 » Yim
T, k] f;} Mlcg, ¢,] x T™[j —1,i,] if ¢ = Ci;
T —1,k] x Mleg, ;) if o e{cy,...,c,_,}
Thus [T™][1,1],...,T™[1,m]] can be determined directly from 7 and each

subsequent row of 7™ is computable from its predecessor, 7, and M using
O(m) arithmetic operations. It follows that 7" can be computed with
O(m?) arithmetic operations. O

What else can be said about voting with linear orders? First, we can
make precise, and prove correct, the intuition that there is no benefit to
going early; a candidate can only benefit by going late in a voting order.
While this seems intuitive, the proof is surprisingly involved.

67

5.3 Voting with a Linear Order of Ballots

Lemma 5.5. Given (M,C) let c;,c; be distinct members of C. For
every voting order mmy of C \ {c,c;}, it holds that Pr|w(micjeimy) =
Ci] 2 PT’[U)(TFlCiCjWQ) = Ci].

Proof. Without loss of generality, let ¢; = ¢, ¢; = ¢;—1, and

™ = T1CmCm—1T2

™ = MCm_1CmT2

First observe that we may assume |my| = 0 and thus it is sufficient to prove
for all choices of 7,

Plwin(micpm_16m) = ¢m] > Plwin(miemcm_1) = Cm)

The probability, Pr,gg on the left-hand side of this expression is,
by, Plwin(m) =] Mlen,] Mlem,] +
vy Plwin(my) = ¢x) Mcg, cp1] Mcm, ci]

whereas that on the right-hand side, Prygs is,

m—2

Z Plwin(my) = cx] Mlcm, cx] M[cm, Cm-1]

In order to simplify the notational complexity, for 1 < k < m — 2, let

. = Plwin(m) = c
Y = M[Cmfla Ck]
Zk = M[Cm, Ck]
« - M[Cm7 Cm—l]
Recall that
Mleg,cp1] = 1 — Mcp1,c6] = 1 — yi

So that Prps > Prus holds only if

m—2 m—2 m—2
Tpyr + r(1—yp)z > g TEZEQ
k=1 k=1 k=1

68

5.3 Voting with a Linear Order of Ballots

which, after rearranging terms, holds only if

m—2 m—2 m—2 m—2
O‘Z TkYe + Z Tp2r 2 Ozz Tpzp + Z TkYr 2k
k=1 k=1 k=1 k=1
That is,
m—2 m—2
rp(loye + z1) > Trze(a + yg) (5.1)
k=1 k=1

The lemma follows only if this final inequality holds for every choice of «,
Tk, Y, and zp for which 0 < zp,yr, 2z < 1: these simply state that the
individual terms are probabilities.

Now if it is the case that for each k, z(ayr + 2zx) > zpzr(a + yi), then
the inequality in (5.1) is true. Thus, consider a typical terms z(ay + z),
xz(a+y). We wish to show:

VO < a,z,y,2< 1 z(ay+2) > xz(a+y)

Since this is obviously true when = = 0, is sufficient to prove ay+2z > z(a+vy).
If « € {0,1} then ay + 2z € {2,y + 2z} whereas z(a + y) € {zy,2y + 2} so
that the required inequality is immediate: z > zy and y + 2 > 2y + 2. We
have two cases: y > z and y < z. In the first of these ay + 2z > z(a + y)
follows by rearranging to obtain the inequality a(y —z) > z(y — 1): since
y—2z>0and y— 1 < 0 this inequality always holds. We are left with the
case of 0 <y < 2 <1,0 < o < 1. In this case, ay + z > z(a + y) may be
re-written as
y+(z—y) = yztalz—y)

thus completing the proof of lemma: (z —y) > 0, y > yz and (z —y) >
alz —vy). O

The immediate corollary is as follows.

Corollary 5.6. For any candidate ¢* € C, if there is a voting order, T
such that Priw(m) = ¢*| > p|, then there is a voting order ©' such that
Priw(n’) = ¢*] > p| and in which ¢* is the final candidate to run.

Proof. Given 7 with Pr{w(m) = ¢] > p, apply Lemma 5.5 repeatedly to move
c later in the voting order until it is the final candidate. O]

69

5.3 Voting with a Linear Order of Ballots

Vu et al. [104,105] generalized this result, showing that in any voting tree,
the biased tree that maximizes the winning probability of ¢* has the biased
structure in which ¢* has to play only the final match.

The general problem of determining whether there exists any agenda
which gives a named candidate at least a certain probability of winning is
hard to classify in the linear order setting, and so we will analyze a restricted
version of the problem, as follows. When we think informally about rigging
an agenda, we tend not to think just in terms of the agenda, but also in
terms of the specific outcomes that we want the agenda to lead to. So, we
might think in terms of “if I put A up against B, then B wins and goes up
against ', and C' wins...” and so on. Here, we have not just the agenda
(ABC) but also the outcomes of the ballots (B wins the first; C' the sec-

ond; ...). Here, we call these structures — which include the agenda for the

ballots together with the intended outcomes — a run. A run has the form
[c3 Ck—1 4 c* .

r:c,cp — c3 — -+ —> ¢ —> where ¢; and ¢, are the candidates up

against each other in the first ballot, ¢y is the intended winner of this ballot,
and so on, until the final ballot is between ¢,_; and ¢*, in which we intend
the winner — and hence overall winner — to be ¢*. Computing the probability
that this run will result in our desired candidate ¢* winning is simple — it is
the value: Priw(cy,cz) = co] X Pr{w(cy,c3) = c3] x -+ x Priw(c*1, ¢*) = ¢*].
We denote this value for a run r by Pr[r | M]. So, in the relazed imperfect in-
formation agenda rigging (RIIAR) problem, we are given a set of candidates
C, an imperfect information ballot matrix M, a favored candidate ¢* € C,
and a probability p. We are asked whether there exists a run r, in which the
overall winner is ¢*, such that Pr[r | M| > p.

Theorem 5.7. RIIAR is NP-complete.

Proof. A standard “guess and check” algorithm gives membership in NP. For
hardness, we reduce the k-HCA problem on tournaments [12, p.46]: we are
given a tournament G = (V, E) (i.e., a complete digraph such that (¢,¢) € E
iff (¢,c) € E) and a subset £’ C E, and we are asked whether G contains a
Hamiltonian cycle containing all edges E’. We create an instance of RITAR
as follows. The outcomes will be the vertices of G together with a new vertex,
vy . Given a tournament G = (V, E) and required edge set E’, we create a
probability matrix so that G contains a cycle with E’ iff we can create an
ordering of vertices satisfying the property given above. For each (u,v) € E’

we set M[u,v] = 1. For each (u,v) € E\ E' we set M[u,v] = 1— o (ie., a

70

5.4 Heuristics and Experimental Evaluation

“high” probability). We then set the target probability to be (1— ﬁ)'v‘*‘m.
The intuition is that in any ordering which satisfies these properties, we can
only visit at most |E \ E’| edges not in E’, and so we such an ordering
must visit all edges in E’. The difficulty is that we are after a cycle, so
we need to select a vertex (call it vT) to act as the source of the cycle and
our new vertex, v,, will act as the sink in the cycle; if we have an arc
(u,vr) € E' then we define M[u,v,] = 1, while if (u,v1) € E '\ E’ then we
define Mu,v,] =1— ﬁ; if for any vertex u € V' we have not yet defined a
value for Mu,v,]| then define M[u,v,] = 0.5. We then ask whether we can
rig the agenda for v' to win with probability greater than the target. O]

It is also natural to ask if there is some permutation of C' which would
make ¢* the winner with a non-zero probability. This is the ITWAR' problem,
which can be solved efficiently.

Theorem 5.8. I[IWAR' is in P.

Proof. In order to solve this IWAR!, we convert every non-zero probability
to 1, i.e., V(4,7), if M[i, j] > 0, assign M[i, j| = 1. We then use the algorithm
introduced by Lang et al. [79] to find the voting tree structure that allows our
favorite candidate ¢* to win or decide that it is impossible for ¢* to win. Using
induction, it is easy to see that this voting tree can be built as a caterpillar
tree, i.e. with a linear order of ballots. O

5.4 Heuristics and Experimental Evaluation

The hardness results of theorems 5.3 and 5.7 may lead us to conjuncture
that a designer cannot benefit from having the probability matrix M, since
it is hard to rig an election agenda even with this input. However, in prac-
tice, a worst-case analysis is not enough. The situation is similar to that in
cryptography, where a secure protocol is not one that is hard to break in
the worst case, but one that can be broken only with negligible probability.
Bartholdi et al., who were in many ways pioneers of the complexity-theoretic
approach to understanding election manipulation first voiced the concern
that NP-hardness results are not enough:

Concern: It might be that there are effective heuristics to ma-
nipulate an election even though manipulation is NP-complete.
Discussion: True. The existence of effective heuristics would

71

5.4 Heuristics and Experimental Evaluation

weaken any practical import of our idea. It would be very inter-
esting to find such heuristics. [15]

This motivated us to consider heuristics for our problems, and to test
their performance in different scenarios. We used a bespoke simulation pro-
gram (written in C) to evaluate the heuristics. Our experiments were in two
categories: first, randomly generated data, and second, public domain form
data from sports competitions. For each of these settings, we evaluated the
heuristics for both linear and fair tree orders. For the randomly generated
data sets, we first generated random values for the probability matrix M
from a uniform distribution in the range [0, 1], and completed the matrix to
preserve probability constraints. We then ran 100 iterations, and during each
iteration a winner candidate, c¢*, was randomly chosen and each heuristic was
used in an attempt to generate an optimal order for this player. The second
scenario was the same, except the random values for the matrix were taken
from a normal distribution with an average of 0.5 and a standard deviation of
0.2 while preserving probability constraints. For the real-world data sets, we
based our experiments on data from basketball and tennis competitions. For
the basketball experiments, we took 29 teams from the NBA, and computed
the probability matrix M from public domain form data. Here, there were
no iterations, but for every team we used each heuristic to generate a playing
order that would give this team the best chance of winning. For the tennis
experiments, we used the 13 players from the top of the ATP ranking, again
computing the probability matrix from public domain form tables.

5.4.1 Heuristics for Linear Order Voting Tree

We start with the case which is more vulnerable to manipulation by the
election officer, where the elections are organized according to a linear order.
The heuristics which we developed are as follows.

e Optimal: In those cases where it was computationally feasible to do so,
we exhaustively evaluated every permutation in order to find the real
optimal agenda as a comparison.

e Far adversary: The idea was to minimize the probability that our fa-
vorite candidate ¢* would face candidates that he had a high probability
of losing to. Thus, the candidate who had the highest probability to
beat ¢* was assigned to the leftmost leaf, the one that has the second

72

5.4 Heuristics and Experimental Evaluation

highest probability to beat ¢* was assigned to the second leaf (from
the left), and so on; ¢* was chosen to be at the rightmost leaf (cf.
Corollary 5.6).

Best win: The favorite candidate ¢* was chosen to be at the rightmost
leaf, and the candidate that ¢* had the best chance of beating was
chosen to be before it, the next being the one that this candidate was
most likely to beat, and so on.

Simple convert: The idea was to convert the probability matrix M into
a binary matrix, and then simply apply the algorithm from Theorem
5.8. To create the binary matrix, every probability which was greater
than or equal to 0.5 was converted to 1, and the others were converted
to 0. If no agenda could be found, (which is sometimes the case when
the number of candidates is small) a random agenda was generated.

Threshold convert: This was a more sophisticated attempt to convert
M into a binary matrix. We searched for the maximum threshold above
which, if we convert all the probabilities above it to 1 and below it to 0,
there was still an agenda that enabled ¢* to win (on the converted ma-
trix). We used a binary search, stopping when the difference between
the low /high limit and the threshold was less than 0.005. As before, if
no agenda could be found a random agenda was generated.

Local search: c¢* was chosen to be at the rightmost leaf. For the other
places, in every iteration a random permutation was chosen. Then
0.5 % |[N| random swaps were tested to find an agenda with maximum
winning probability (|V| iterations were done).

Random order: As a control, a random agenda was also generated.

The results for heuristics on linear order are shown in Figures 5.2 and 5.3.

First, note that the overall performance of the heuristics does not vary
significantly between uniform and normal distributions (Figure 5.2, first and
second graphs, respectively). In these graphs, the z-axis is the number of
candidates and the y-axis is the winning probability that was found using
our heuristics. Every point in the graph represents the winning probability
that was averaged over 100 iterations.

In the uniform distribution experiments, it seems that best-win and
far adversary seem to perform similarly well (marginally better than local

73

5.4 Heuristics and Experimental Evaluation

Linear order - uniform distribution

2
E
©
2
2
a
o
E 04 | —e—optimal
g 0.
S —=—far adversary
0.3 ——best win
0.2 simple convert
' —*—threshold covert
0.1 —e—|ocal search
—+—random order
0 T T T T
2 10 18 26 34 42 50

of candidates

Linear order - normal distribution

2
3
©
]
2
a
o
E 0.4 —e—optimal
g O
S —=—far adversary
0.3 ——best win
0.2 simple convert
’ —*—threshold covert
0.1 —e—|ocal search
—+—random order
0 T T T T
2 10 18 26 34 42 50

of candidates

Figure 5.2: Performance of heuristics for linear order for randomly generated
probability matrices using uniform and normal probability distributions.

74

5.4 Heuristics and Experimental Evaluation

Linear order - 13 tennis players

0.9 1

0.8
> 0.7
5 06 -
-1
o
& 0.5
2
€ 0.4 -
£
3 03

0.2

0.1

0 L
0 1 2 3 4 5 6 7 8 9 10 1 12
player number
Boptimal ®faradversary Bbestwin Olocal search Erandom order
Linear order - 29 basketball teams
1
0.9 Efar adversary Bbest win Olocal search Brandom order

winning probability

01234567 8 910111213141516 17 18 1920 21 22 23 24 25 26 27 28
team number

Figure 5.3: Performance of heuristics for linear order for real-world data from
the domain of professional tennis and basketball.

75

5.4 Heuristics and Experimental Evaluation

search), while for a normal distribution they are slightly differentiated, but
again performed better than local search. Both heuristics reached a very high
winning probability, almost 0.9, and they performed better as the number
of candidates increased. These heuristics also performed well in comparison
to the optimal solution — they gave a winning probability which on average
was only 98% from the optimal solution. Note that both of the “convert”
heuristics (simple convert, threshold convert) performed very poorly, both for
uniform and normal distributions, and thus we omitted them in subsequent
experiments.

With the tennis players experiments (Figure 5.3, first graph), the z-axis
is the player’s number that was chosen to be the winning player and the
y-axis as before. Here, there was no heuristic that performed significantly
better than the others in general, but when choosing from the heuristics, the
best solution for each player performed very well compared to the optimal
solution. They gave a winning probability which was only 96% from the
optimal solution on average, and the winning probability on average was more
than twice as high as the random order. Player number 0, (Roger Federer,
currently the world’s number one player), even succeeded in obtaining a
winning probability of 1 from local search.

We conclude that there is no one heuristic that performs significantly
better than the others for all cases. We suggest the best thing to do here
is to run all the heuristics and order the candidates according the heuristic
which gives the best results for candidate ¢* since they all run quite fast.
Note that local search takes much more time than other heuristics, but still
demonstrates acceptable time performance.

5.4.2 Heuristics for Fair Voting Tree

For this tree structure we investigated the following heuristics.

e Optimal, Far adversary, Local search: We organized the leaves of the
balanced binary tree as a linear order from left to right and applied
these heuristics as above. (Note that when the number of candidates
is not a power of 2, some of the rightmost candidates may face one less
ballot than the other candidates.)

e Best win: Because of the tree structure, we had to use a modified ver-
sion of the previous best win heuristic, but the principle remained the

76

5.4 Heuristics and Experimental Evaluation

same. We tried to maximize the probability that ¢* would compete
against candidates that he had a high probability of beating, and to
maximize the probability that they would reach the point where they
compete against him. We first assigned ¢* at the rightmost leaf of the
tree, and for each competition along its path to the root we assigned
candidates that ¢* had a high probability to of beating. In this manner,
for each candidate we defined a sub-tree for which we wanted the can-
didate to be its overall winner (unless the candidate had been assigned
to a leaf) so we could repeat this assignment procedure recursively.

Perhaps it will be easiest to understand this heuristics by a pseudo-code
description. The first call to this algorithm is BestWin(the entire tree,
c).

Algorithm 2 BestWin(Sub tree 7', winner candidate ¢*)

1: if height of T is 0 then
put ¢* in the root of T'
return
else
put ¢* in the rightmost leaf of T’
: for i + 1 to the height of T" do
temp < a candidate that ¢* has the best probability to win and was not
chosen yet
push temp into queue
9: for ¢ < 1 to the height of T' do
10: pop temp from queue
11: T’ + rightmost subtree of T, with height # — 1 and unoccupied leaves
12: BestWin(T", temp)

*®

e Random order: As a control, a random agenda was also generated.

The results of our experiments are shown in 5.4 and 5.5.

Generally, one can note that the overall wining probability is lower than in
the linear order structure, which seems to be a direct consequence of the rela-
tive fairness of the procedure. Nevertheless, if we compare the best heuristic
for each case to the random order, we get a winning probability which is on
average 4.31 times higher than the random order winning probability and
which is on average only 96% from the optimal solution, with the randomly
generated data. We also note that with this randomly generated data the

7

5.4 Heuristics and Experimental Evaluation

0.6

Fair tree order - uniform distribution

0.5

0.4

winning probability

—e—optimal

—=—far adversary

—~—best win

—e—|ocal search

——random

0 ‘
2 6

10 14 1

8 22 2

6 30 34 38 42 46 50 54 58 62 66 70

of candidates

Fair tree order - normal distribution

0.6

0.5 ¢

0.4 -

winning probability
o
w

0.2

0 ‘

—e—optimal
—a—far adversary
——best win

—e—|ocal search

——random

2 6

10 14 1

8 2

2 2

6 30 34 38 42 46 50 54 58 62 66 70

of candidates

Figure 5.4: Performance of heuristics for fair tree order for randomly gener-
ated probability matrices using uniform and normal probability distributions.

78

5.4 Heuristics and Experimental Evaluation

Fair tree order - 13 tennis players

0.9

0.8

0.7

0.5 -

winning probability

0.3 -

0.1 -

=

Boptimal ®far adversary Bbestwin Olocal search

4 5 6 7 8 9 10 11 12
player number

B random order

Fair tree order - 29 basketball teams

0.3
Efar adversary Bbest win Olocal search Brandom order

o
N
.

o©
N
.

winning probability

012345678 91011121314151617 18 192021 22 23 24 2526 27 28
team number

Figure 5.5: Performance of heuristics for fair tree order for real-world data
from the domain of professional tennis and basketball.

79

5.4 Heuristics and Experimental Evaluation

graphs have a wave-like shape: the lowest points in these waves are when
the number of candidates is exactly a power of 2 at which time the tree is
perfectly balanced. This is simply because when the number of candidates
is exactly a power of 2, every candidate must compete in exactly the same
number of ballots. In all other cases, there are some candidates (including
our favorite, ¢*) that face one less ballot. This effect can help ¢*, by forc-
ing strong competitors to undergo one more ballot. It is also apparent that
in contrast to the linear order with random normal distribution, the best
win heuristic performs better than the others: 1.25 times better than far
adversary, and 1.66 times better than local search on average.

With the NBA basketball teams experiments, (Figure 5.5, second graph),
the far adversary method was the winning heuristic. It performed better
than the others with a winning probability, which, on average was 1.24 times
better than local search and 1.08 times better than best win. The highest
winning probability was generated for team 11, the LA Lakers. It was not
computationally feasible to calculate the optimal solution for 29 teams, so we
ran another scenario with only the first 13 teams to check the performance of
our heuristics against the optimal solution. The best heuristic in each case
gave a winning probability which on average was only 99% of the optimal
solution!

In the tennis players scenario ((Figure 5.5(b), first graph) there was no
heuristic that performed significantly better than the others. But, when we
chose the best solution from the heuristics for each case the winning proba-
bility on average was 61% of the optimal solution. Perhaps the performance
difference between this case and the other cases was a result of the type
of the distribution, since the probability matrix in the tennis case contains
many high probabilities. Another indicator is the performance of our best
heuristic in each case in comparison to the random order. In the tennis sce-
nario it performed almost 5 times better, while in the basketball scenario it
performed only about 1.5 times better.

80

Chapter 6

Complexity of Safe Strategic
Voting

In this chapter we focus on algorithmic complexity of safe manipulation, as
defined by Slinko and White [101]. We first define our problem and for-
malize the relevant computational questions (Section 6.1). We then study
the complexity of these questions for several classic voting rules, for both
weighted and unweighted voters. In Section 6.2 we analyze Plurality, Veto
and k-approval voting rules, and in Section 6.3 we handle Bucklin and Borda
voting rules. We then explore whether it is possible to extend the model of
safe manipulation to settings where the manipulator may be joined by voters
whose preferences differ from his own. In Section 6.4 we propose two ways
of formalizing this idea, which differ in their approach to defining the set of
a voter’s potential followers, and provide initial results on the complexity of
safe manipulation in these models.

6.1 Problem Definition and Computational
Problems: First Observations

In our work we analyze the algorithmic complexity of safe manipulation, as
defined by Slinko and White in [101]. For the purposes of our presentation, we
can simplify their definitions considerably. The details follow. Recall that the
voters’ true preferences are given by a preference profile R = (Ry, ..., R,).

81

6.1 Problem Definition and Computational Problems: First
Observations

Definition 6.1. We say that a vote L is an incentive to vote strategically,
or a strategic vote for i at R under F, if L # R; and for some U C V; we
have F(R_y (L)) =; F(R). Further, we say that L is a safe strategic vote for
a voter ¢ at R under F if L is a strategic vote at R, and for any U C V; either
FR (L)) = F(R) or FR (L)) = F(R).

Unless specified otherwise, in this part of our work we assume that the
tie-breaking rule is lexicographic, i.e., given a set of tied alternatives, it selects
one that is maximal with respect to a fixed ordering >. To build intuition
for our notions, consider the following example.

Example 6.2. Suppose C = {a,b,c,d}, V ={1,2,3,4}, the first three voters
have preference b = a > c¢ > d, and the last voter has preference ¢ >~ d >
a > b. Suppose also that the voting rule is 2-approval. Under truthful voting,
a and b get 3 points, and ¢ and d get 1 point each. Since ties are broken
lexicographically, a wins. Now, if voter 1 changes his vote to L = b > ¢ >
a > d, b gets 3 points, a gets 2 points, and c gets 2 points, so b wins. As
b =1 a, L is a strategic vote for 1. However, it is not a safe strategic vote: if
players in Vi = {1,2,3} all switch to voting L, then ¢ gets 4 points, while b
still gets 3 points, so in this case ¢ wins and a > c.

The definition of safe strategic voting gives rise to two natural algorithmic
questions. In the definitions below, J is a given voting rule and the voters
are assumed to be unweighted.

o ISSAFE(F): Given a voting domain, a voter ¢ and a linear order L, is
L a safe strategic vote for ¢ under F7

e EXISTSAFE(J): Given a voting domain and a voter i, can voter ¢ make
a safe strategic vote under F7

The variants of these problems for weighted voters will be denoted, respec-
tively, by WISSAFE(F) and WEXISTSAFE(F). Note that, in general, it is not
clear if an efficient algorithm for (W)EXISTSAFE(F) can be used to solve
(W)ISSAFE(F), or vice versa. However, if the number of candidates is con-
stant, (W)EXISTSAFE(F) reduces to (W)ISSAFE(F). We formulate the fol-
lowing two results for weighted voters; clearly, they also apply to unweighted
voters.

Proposition 6.3. Consider any voting rule F. For any constant k, if |C| <
k, then a polynomial-time algorithm for WISSAFE(F) can be used to solve
WEXISTSAFE(F) in polynomial time.

82

6.1 Problem Definition and Computational Problems: First
Observations

Proof. In this case i has at most k! = O(1) different votes, so he can try all
of them. n

A similar reduction exists when each voter only has polynomially many
“essentially different” votes.

Proposition 6.4. Consider any scoring rule I, that satisfies either (i) o; =
0 for all j >k or (ii) a; =1 for all j < m — k, where k is a given constant.
For any such rule, a polynomial-time algorithm for WISSAFE(F,,) can be used
to solve WEXISTSAFE(J,) is polynomial time.

Proof. We consider case (i); case (ii) is similar. There are at most n* =
poly(n) different ways to fill the top k positions in a vote. Further, if two

votes only differ in positions k + 1, ..., m, they result in the same outcome.
Thus, to solve WEXISTSAFE(J,), it suffices to run WISSAFE(F,,) on poly(n)
instances. L

Observe that the class of rules considered in Proposition 6.4 includes
Plurality and Veto, as well as k-approval and k-veto when k is bounded by
a constant.

Further, we note that for unweighted voters it is easy to check if a given
manipulation is safe.

Proposition 6.5. The problem ISSAFE(F) is in P for any voting rule &F.

Proof. Set V; = {iy,...,is}. Since our voting rule is anonymous, it suffices to
check the conditions of Definition 6.1 for U € {{i1}, {1,432}, ..., {i1,. .., is}},
i.e., for s < n sets of voters. O

Together with Propositions 6.3 and 6.4, Proposition 6.5 implies that the
problem EXISTSAFE(F) is in P for Plurality, Veto, k-veto and k-approval
for constant k, as well as for any voting rule with a constant number of
candidates.

Note that when voters are weighted, the conclusion of Proposition 6.5
no longer holds. Indeed, in this case the number of subsets of V; that have
different weights (and thus may have a different effect on the outcome) may
be exponential in n. However, the problem remains easy when all weights
are small (polynomially bounded).

Proposition 6.6. For any voting rule &, WISSAFE(F) can be solved in time
Poly (1, Wimax), Where Wiax = Max;—y__, W;.

83

6.2 Plurality, Veto, and k-approval

Proof. Let i be the manipulating voter; we have w(V;) < nwpa,. Given a
vote L, we use the standard dynamic programming algorithm to check for all
w=1,..., NWpay if there exists a U,, C V; with w(U,,) = w. For each such w,
we compare F(R_p,, (L)) and F(R); clearly, the outcome is independent of the
choice of U,,. Thus, we can check if L satisfies the conditions of Definition 6.1
in time poly (7, Wax)- O

As in the case of unweighted voters, Proposition 6.6 leads to a pseudopoly-
nomial algorithm for WEXISTSAFE(F) for a constant number of candidates,
as well as for Veto and Plurality.

Corollary 6.7. For any voting rule & with at most k candidates, as well
as for any scoring rule that satisfies the conditions of Proposition 6.4,
WEXISTSAFE(F) can be solved in time poly(n®, wyay).

6.2 Plurality, Veto, and k-approval

We will now show that the easiness results for k-approval and k-veto extend
to arbitrary k£ < m and weighted voters (note that the distinction between
k-veto and (m — k)-approval only matters for constant k).

Theorem 6.8. For k-approval, the problems WISSAFE and WEXISTSAFE
are in P.

Proof. Fix a voter v € V. To simplify notation, we renumber the candidates
so that v’s preference order is given by ¢; >, ... >, ¢;. Denote v’s truthful
vote by R. Recall that V, denotes the set of voters who have the same
preferences as v. We call a candidate the mazimal manipulation winner for
vote L, if it wins when all the voters from V,, choose to vote L. Now suppose
that under truthful voting the winner is ¢;. For i = 1,...,m, let s;(R')
denote the k-approval score of ¢; given a profile R’, and set s; = s;(R).

We start by proving a useful characterization of safe strategic votes for
k-approval.

Lemma 6.9. A vote L is a safe strategic vote for v if and only if the winner
in R_y, (L) is a candidate ¢; with i < j.

Proof. Suppose that L is a safe strategic vote for v. Then there exists an
i < jand a U C V, such that the winner in R_y (L) is ¢;. It must be the
case that each switch from R to L increases ¢;’s score or decreases c;’s score:

84

6.2 Plurality, Veto, and k-approval

otherwise ¢; cannot beat c; after the voters in U change their vote from R to
L. Therefore, if ¢; beats ¢; when the preference profile is R_; (L), it continues
to beat c; after the remaining voters in V,, switch, i.e., when the preference
profile is R_y, (L). Hence, the winner in R_y, (L) is not ¢;; since L is safe,
this means that the winner in R_y, (L) is ¢, for some ¢ < j.

For the opposite direction, suppose that the winner in R_y, (L) is ¢; for
some i < j. Note that if two candidates gain points when some subset of
voters switches from R to L, they both gain the same number of points; the
same holds if both of them lose points.

Now, if j > k, a switch from R to L does not lower the score of ¢;, so it
must increase the score of ¢; for it to be the maximal manipulation winner.
Further, if a switch from R to L grants points to some ¢; # ¢;, then either
sy < s; or 84 = s; and the tie-breaking rule favors ¢; over ¢;: otherwise, ¢;
would not be the maximal manipulation winner.

Similarly, if j < k, a switch from R to L does not increase the score of ¢;,
so it must lower the score of ¢;. Further, if some ¢, # ¢; does not lose points
from a switch from R to L, then either s, < s; or sy = s; and the tie-breaking
rule favors ¢; over ¢y: otherwise, ¢; would not be the maximal manipulation
winner.

Now, consider any U C V. If s;(R_y(L)) > s;(R_y(L)), then ¢; is the
winner. If s;(R_y(L)) > s;(R_y(L)), then ¢; is the winner. Finally, suppose
si(R_y(L)) = s;(R_py(L)). By the argument above, no other candidate can
have a higher score. So, suppose that s;(R_y (L)) = s;(R_y(L)), and the
tie-breaking rule favors ¢, over ¢; and ¢;. Then this would imply that ¢, wins
in R or R_y, (L) (depending on whether a switch from R to L causes ¢, to
lose points), a contradiction. Thus, in this case, too, either ¢; or ¢; wins. [

Lemma 6.9 immediately implies an algorithm for WISSAFE: we simply
need to check that the input vote satisfies the conditions of the lemma. We
now show how to use it to construct an algorithm for WEXISTSAFE. We
need to consider two cases.
j> ke
In this case, the voters in V, already do not approve of ¢; and approve of
all ¢;, 1 < k. Thus, no matter how they vote, they cannot ensure that some
¢, 1 < k, gets more points than c;. Hence, the only way they can change
the outcome is by approving of some candidate ¢;, k < ¢ < j. Further,
they can only succeed if there exists an ¢ = k+1,...,j — 1 such that either
si +w(Vy) > s; or s; + w(V,) = s; and the tie-breaking rule favors ¢; over

85

6.2 Plurality, Veto, and k-approval

c;. If such an 7 exists, v has an incentive to manipulate by swapping ¢; and
¢; in his vote. Furthermore, it is easy to see that any such manipulation is
safe, as it only affects the scores of ¢; and c;.

i<k:

In this case, the voters in V, already approve of all candidates they prefer to
¢;, and therefore they cannot increase the scores of the first j — 1 candidates.
Thus, their only option is to try to lower the scores of ¢; as well as those of
all other candidates whose score currently matches or exceeds the best score
among Si,...,S;-1.

Set Cy = {c1,...,¢j-1}, Cp = {¢j,...,cm}. Let Cy be the set of all
candidates in C, whose k-approval score is maximal, and let sy.x be the
k-approval score of the candidates in Cy. For any ¢, € (3, let s} denote the
number of points that ¢, gets from all voters in V' \ V,; we have s, = s, for
k<l{<mands,=s —w(V,) for { =7j,... k. Now, it is easy to see that v
has a safe manipulation if and only if the following conditions hold:

e For all ¢, € Cp either s} < Spax, O §) = Smax and there exists a
candidate ¢ € Cj such that the tie-breaking rule favors ¢ over c¢y;

e There exist a set Cgpe C Cy, |Csatel = k — 7 + 1, such that for all

¢p € Caate either s, +w(V,) < Smax 01 s;+w(V,) = Smax and there exists
a candidate ¢ € C such that the tie-breaking rule favors ¢ over c¢,.

Note that these conditions can be easily checked in polynomial time by com-
puting s, and s} for all £ =1,... m.

Indeed, if such a set C,g exists, voter v can place the candidates in Clg,ge
in positions j, ...,k in his vote; denote the resulting vote by L. Clearly, if all
voters in V,, vote according to L, they succeed to elect some ¢ € Cy. Thus,
by Lemma 6.9, L is safe. Conversely, if a set Cyape with these properties does
not exist, then for any vote L # R the winner in R_y, (L) is a candidate in
Cyp, and thus by Lemma 1 L is not safe. O

We remark that Theorem 6.8 crucially relies on the fact that we break
ties based on a fixed priority ordering over the candidates. Indeed, it can
be shown that there exists a (non-lexicographic) tie-breaking rule such that
finding a safe vote with respect to k-approval combined with this tie-breaking
rule is computationally hard (assuming k& is viewed as a part of the input).
As the focus of this part of our work is on lexicographic tie-breaking, we omit
the formal statement and the proof of this fact.

86

6.2 Plurality, Veto, and k-approval

In contrast, we can show that any scoring rule with 3 candidates is easy to
manipulate safely, even if the voters are weighted and arbitrary tie-breaking
rules are allowed.

Theorem 6.10. WISSAFE(F) is in P for any voting rule F obtained by
combining a positional scoring rule with at most three candidates with an
arbitrary tie-breaking rule.

Proof. For one candidate, the statement is trivial. With two candidates,
every positional scoring rule is equivalent to Plurality, and under Plurality
with two candidates no voter has an incentive to vote strategically.

Now, suppose that |C| = 3. Consider a voter i and assume without loss
of generality that R; = (c1,cq,¢3). If F(R) = ¢4, then ¢ has no incentive to
vote strategically. We will now consider the cases F(R) = ¢ and F(R) = ¢3
separately.

1. F(R) = co. Suppose that L is a strategic vote for i. Then L cannot
rank ¢y in top two positions. Indeed, any such manipulation does not
decrease ¢;’s score and does not increase c¢;’s score. Thus, if ¢, had a
higher score than ¢y, this would still be the case no matter how many
voters in V; switch to voting L. Further, if both ¢; and ¢; had top
scores, then L could succeed only if it does not change the scores of
either of them. But in this case the score of ¢35 does not change either,
so the outcome remains the same. Thus, it remains to consider two
cases: L = (c¢1,¢3,¢2) and L = (c3,¢1,¢2). Now, let ¢ = F(R_y,(L)).
If ¢ = ¢3 (i.e., c3 is the maximal manipulation winner), L is not safe.
Further, if ¢ = ¢y, then we have ¢y = F(R_y(L)) for any U C V;, ie., L
is not a strategic vote for 7. Finally, if ¢ = ¢;, then L is a safe strategic
vote. Indeed, suppose that L is not safe, i.e., F(R_y;(L)) = ¢3 for some
U C V;. Each switch from R; to L does not decrease c3’s score, so in
that case c3 would be a full manipulation winner.

2. F(R) = c3. It can be checked that if L is a strategic vote for i, then L
has to rank ¢, first, i.e., L € {(ca,c1,¢3), (ca,c3,¢1)}. I F(R_v (L)) =
c3, by the same argument as above, there is no incentive for ¢ to vote for
L. Otherwise, L is a safe strategic vote, since c3 is the least preferred
candidate.

]

87

6.3 Bucklin and Borda

6.3 Bucklin and Borda

Bucklin rule is quite similar to k-approval, so we can use the ideas in the
proof of Theorem 6.8 to design a polynomial-time algorithm for finding a
safe manipulation with respect to Bucklin. However, the proof becomes
significantly more complicated.

Theorem 6.11. For the Bucklin rule, WEXISTSAFE is in P.

Proof. As in the proof of Theorem 6.8, we fix a voter v € V and renumber the
candidates so that v’s preference order is given by ¢; >, ... =, ¢,. Denote
v’s truthful vote by R. Let V, denote the set of voters who have the same
preferences as v. Suppose that under truthful voting the Bucklin winner is
¢;, and the winning round is k.
We have to consider two possibilities.

j>ke

In this case, no matter how the voters in V,, vote, ¢;’s k-approval score will
be at least [n/2]. Thus, the only part of v’s vote that can affect the final
outcome is the top k positions. Now, no matter how the voters in V, vote,
none of the candidates currently ranked in the top & positions by v can
beat c;. Thus, the only way v can succeed is by ranking some candidate ¢;,
k < i < j, in the top position. This will work if it makes ¢;’s k’-approval
score become at least [n/2] for some k' < k, or if it makes ¢; a k-approval
winner (under the given tie-breaking rule). To check if such a ¢; exists, v can

try to swap ¢; and ¢; in his vote for all i = k +1,...,5 — 1. Moreover, any
such manipulation is safe, as it only affects the scores of ¢; and c;.
i<k

Set Cy = {c1,...,¢j-1}, Cb = {¢j,...,cm}. Let k' be the smallest value of
¢ such that under truthful voting some ¢ € C, gets at least [n/2] votes in
round /; clearly, we have k' > k. Let Cy be the set of all candidates in C
whose k’-approval score is maximal (and hence is at least [n/2]), and let
Smax be the k’-approval score of the candidates in Cy. Let ¢ be the candidate
in Cj that is most favored by the tie-breaking rule. Throughout the proof,
for any ¢, € C' and any ¢ < m, we will say that ¢ beats ¢ under ¢-approval
if ¢’s f-approval score is no lower than that of ¢/, and if they are equal, then
our tie-breaking rule favors ¢ over ¢/. Further, we say that ¢ beats ¢’ if there
exist some ¢, ¢' < m, such that c gets at least [n/2] votes under ¢-approval,
but not under (¢ — 1)-approval, ¢’ gets at least [n/2] votes under ¢-approval,

88

6.3 Bucklin and Borda

but not under (¢ — 1)-approval, and either ¢ < ¢ or £ = ¢ and ¢ beats ¢
under (-approval.

No matter how the voters in V,, vote, they cannot ensure that a candidate
in C, gets at least [n/2] votes in round ¢ for ¢ < k’. Therefore, to succeed,
they need to ensure that no candidate in Cj, gets at least [n/2] (-approval
votes for ¢ < k', and that no candidate in Cj, beats all candidates in C, under
k'-approval.

Hence, v has an incentive to manipulate if and only if there is a vote L
such that if some voters in V, switch from R to L, then for any ¢ €

(a) ¢’s (K" — 1)-approval score is less than [n/2];

(b) ¢’s K-approval is at most Spa.x, and if it is equal t0 Spyay, then the
tie-breaking rule favors ¢ over c.

We will first prove that essentially any safe vote L makes ¢; lose when all
voters in V,, switch from R to L.

Lemma 6.12. If there exists a safe vote for v, then there exists a safe vote
for v that ranks all candidates in Cy in top j—1 positions. Moreover, for any
safe vote L that ranks all candidates in Cy in top j — 1 positions, it cannot
be the case that c; wins if all voters in V,, vote according to L.

Proof. To prove the first part, note that if we are given a safe vote that does
not rank some ¢ € Cy in top j — 1 positions, then we can swap the candidate
from Cp that appears in top j — 1 positions with ¢, and the resulting vote
would still be safe. We can repeat this step until all candidates ranked in
top 7 — 1 positions belong to Cj.

For the second part, observe that L cannot rank c¢; in position &' — 1
or higher, since otherwise ¢; gets at least [n/2] (k' — 1)-approval votes no
matter how many voters in V,, switch from R to L. Now, suppose that after
some voters U C V, switch from R to L, ¢; stops being the Bucklin winner,
and some ¢ € C; becomes the Bucklin winner. Note that since we assume
that ¢ is ranked in top 7 — 1 positions in L, the corresponding winning round
is k.

At this point, ¢;’s (k' — 1)-approval score is less than [n/2]. Therefore, as
the voters in V,, \ U switch from R to L, ¢;’s (k' — 1)-approval score remains
less than [n/2]. Further, each switch from R to L does not increase ¢;’s k'-
approval score, and, as argued above, ¢’s k’-approval score remains the same
after each switch. Thus, ¢;” continues to lose to ¢ under k’-approval after all

89

6.3 Bucklin and Borda

voters in V;, switch from R to L. Therefore, ¢; cannot be the Bucklin winner

when all voters in V,, vote according to L.]
We will now construct a family of votes for v as follows. For £ = j,... ,m,
let us say that a position p € {j,...,m} is safe for ¢, if ¢, satisfies conditions

(a) and (b) above whenever all voters in V,, rank ¢, in position p. Let P(¢)
denote the set of positions that are safe for ¢,. The sets P({) can be computed
independently and efficiently for each ¢, € C},. Consider now a bipartite graph
G whose vertices are candidates in C}, and positions in {j, ..., m}, and there
is an edge from a candidate ¢, to a position i if and only if i € P(¢). For
any complete matching in this graph, we can construct a vote L in which all
candidates in C, are ranked in top j — 1 positions and all candidates in Cj,
are ranked according to the matching. Denote the set of all such votes by
L(@G). Clearly, if all voters in V,, vote according to any L € L£(G), then some
candidate in Cy, wins. We will now prove two lemmas that characterize the
relationship between the set £(G) and the set of all safe votes.

Lemma 6.13. Any safe vote L that ranks all candidates in C, in top j — 1
positions ranks each ¢, € Cy in a position in P(().

Proof. Suppose that L ranks some ¢ € Cj, in a position that is not in P(¥).
This means that no candidate in C, can win when all voters in V,, vote
according to L. Now, if in this situation some ¢ € C,, ¢ # ¢;, wins, this
means that L is unsafe. On the other hand, if ¢; wins, then by Lemma 6.12
L is not safe. m

Thus, each safe vote can be transformed into a vote in £(G), i.e., if
L(G) =, there are no safe votes for v.

Lemma 6.14. [f there exists a safe vote for v, then any vote in L(G) is safe.

Proof. The proof proceeds by contraposition: we will argue that if some vote
L € L(G) is not safe, then no vote is safe for v.

Fix a vote L € L(G), and denote by Ciage the set of candidates ranked in
positions j, ..., k" in L. Suppose that initially all voters in V,, vote truthfully,
and then they switch from R to L one by one. Since L € £(G), after all voters
switch, some ¢ € Cy becomes the Bucklin winner, so at some point in this
process c; stops being the Bucklin winner. Suppose that this happens after
some subset of voters U C V,, switch. At this point, some other candidate ¢
becomes the Bucklin winner; let £” be the corresponding winning round.

90

6.3 Bucklin and Borda

Suppose first that ¢ € Cy; note that this implies £” = k’. We claim that
in this case L is safe. Indeed, this means that currently no candidate gets
at least [n/2] votes in the first £’ — 1 rounds, and all candidates in Cj, lose
to ¢ under k’-approval. Now, for any ¢ < k', each switch from R to L can
increase the f(-approval scores of the candidates in Cy,g only. However, we
know that even if all voters in V, switch from R to L, the candidates in Cgug
still do not win. Thus, after any number of additional switches from R to
L, it is still the case that no candidate gets at least [n/2] votes in the first
k" — 1 rounds, and all candidates in Cj, lose to ¢ under k’-approval. Thus, in
this case L is safe.

Now, suppose that ¢ € Cp, (and hence L is not safe). We will now argue
that in this case no vote is safe for v. Indeed, suppose that L’ is a safe vote
for v. By Lemma 6.12, we can assume that L’ ranks the candidates in C in
top 7 — 1 positions. We will now show that after the voters in U switch from
R to L', c beats both ¢; and all candidates in C,. We split the rest of the
proof of Lemma 6.14 into two lemmas.

Lemma 6.15. In R_y(L'), ¢ beats all candidates in C,.

Proof. Since c¢ is the Bucklin winner in R_y (L) its k”-approval score in
R_y(L) is at least [n/2].

We will now argue that each switch from R to L decreases ¢’s k”-approval
score. Indeed, otherwise in R_;(L) candidate ¢’s k”-approval score remains
at least [n/2]. If k" < K, this is a contradiction with L € L£(G). Now
suppose that &” = k’. Since each switch from R to L does not increase the
k"-approval scores of all ¢ € C,, ¢ continues to beat all candidates in C,
under k”-approval. Again, this is a contradiction with L € L£(G).

Thus, a switch from R to L' cannot lower ¢’s k”-approval score more than
a switch from R to L does. Hence, if k" < K/, after the voters in U switch
from R to L', ¢ has at least [n/2] k’-approval votes, so no candidate in C,
can win in this case. Now suppose that &' = k”. Neither a switch from R to
L nor a switch from R to L' changes the k’-approval scores on any ¢ € C|,.
Thus, for any ¢’ € C,, if ¢ beats ¢ under k"-approval in R_y;(L), he also beats
¢ under k’-approval in R_y(L'). Thus, in R_y(L') no candidate in C, can
win the election. O

Lemma 6.16. In R_y(L'), ¢ beats c;.

Proof. As argued in Lemma 6.12, both L and L’ rank ¢; in position k' or
lower. Since ¢ beats ¢; in R_(L), it follows that in R_ (L), candidate ¢;’s

91

6.3 Bucklin and Borda

(k" — 1)-approval score is less than [n/2]. Now, since £’ — 1 < K/, a switch
from R to L' has the same effect on ¢;’s (k" — 1)-approval score as a switch
from R to L. Thus, in R_y(L') candidate ¢;’s (k” — 1)-approval score is less
than [n/2].

It remains to show that in R_y(L’) candidate ¢; continues to lose to ¢
under k”-approval. Suppose first that £” < k' or L’ ranks ¢; in position k' +1
or lower. When a voter u of weight w switches from R to L', ¢’s k”-approval
score decreases by at most w, and c¢;’s k”-approval score decreases by w.
Further, when u switches from R to L, ¢’s k”-approval score decreases by w.
and c¢;’s k"-approval score decreases by at most w. Thus, relative to ¢;, c
does better under L' than under L. Therefore, in this case, in R_y(L') ¢;
loses to ¢ under k”-approval.

Finally, suppose that &” = k" and L’ ranks ¢; in position &’. Note that in
this case ¢;’s k’-approval score is the same no matter how many voters in V,,
switch from R to L’. Thus, by Lemma 6.12 ¢; loses to ¢ under k’-approval
in R_y(L'). Furthermore, we have argued that in R_(L'). all candidates in
C, lose to ¢ under k’-approval. Thus, by transitivity, in R_y (L) candidate
¢; loses to ¢ under k’-approval. Il

This completes the proof of Lemma 6.14.]

Thus, we conclude that to check whether v has a safe vote (and to find
one if it exists), it suffices to compute the set £L(G), check if it is not empty,
and, if it contains some L € L£(G), check if L is safe. Indeed, we have argued

that if £(G) = () then no vote is safe, and if £(G) # () then v has a safe vote
if and only if an arbitrary vote in £(G) is safe. O

Interestingly, despite the intuition that WISSAFE should be easier than
WEXISTSAFE, it turns out that WISSAFE for Bucklin is coNP-hard.

Theorem 6.17. For the Bucklin rule, WISSAFE is coNP-hard, even for a
constant number of candidates.

Proof. We give a reduction from SUBSET SUM. Recall that an instance of
SUBSET SUM is given by a set of positive integers A = {a;,...,as} and
a positive integer K. It is a “yes’-instance if there is a subset of indices
I'C{1,...,s}such that), ;a; = K and a “no”-instance otherwise.

Given an instance (A,K) of SUBSET SuM with |A] = s and
> i_,a; = S, we construct an instance of WISSAFE as follows. Set C' =
{a,b,c,x,y,z, 2"y, 2'}, and let V' = {wvy,... 05, u1,us, ug,ug}. Table 6.1

92

6.3 Bucklin and Borda

shows the preferences and weights of each voter; observe that the total weight
of all voters is 45. We ask if the vote L = (a,c, b, z,y,z,2',y',7') is a safe

Voter Preference order Weight
v, (x,y,z,a,b,c,2' Yy, 2") a;
Uy (a,e,b,z,y,z,2' ¢, 2") 28— K —1
Uy (x,c,b,a,y, 2,2y, 2) 1
U3 (y,2,b,a,c,x,2',y, 2") K
Uy (', y, 2 a,b,c,z,y, 2) S

Table 6.1: Instance of WISSAFE for the proof of Theorem 6.17.

strategic vote for v; under Bucklin; as we will see, the answer to this question
does not depend on the tie-breaking rule.

If all voters vote sincerely, then b wins in round 3 with 2S5 points, and all
other voters get less that 25 points in the first three rounds. Note also that
the total weight of voters in C'\ V,, that rank a first is 25 — K — 1, and the
total weight of voters in C'\ V,, that rank ¢ second is 25 — K.

Suppose that a group of voters U C V,, votes L. If w(U) < K, then b
remains the winner, while if w(U) > K then a becomes the winner, as it gets
the majority of votes in the first round. Therefore, L is a strategic vote for
v1. However, if w(U) = K, a only gets 25 — 1 points in any of the first three
rounds, while ¢ gets 25 points in the second round. Therefore, in this case ¢
wins, i.e., L is not safe for v;. Hence, L is a safe strategic vote for v; if and
only if no subset of A sums to K. m

For Borda, unlike k-approval and Bucklin, both of our problems are hard
when the voters are weighted. The proof of the following theorem is very
similar to that of Theorem 6.17.

Theorem 6.18. For the Borda rule, WISSAFE and WEXISTSAFE are coNP-
hard. The hardness result holds even if there are only 5 candidates.

Proof. We give a reduction from SUBSET SUM (see the proof of Theo-
rem 6.17). Given an instance (A4, K') of SUBSET SUM with [A| =5, > 7 a; =
S, we construct an instance of WISSAFE as follows. Set C' = {¢,...,c5},
and let V' = {vy,...,v,,u1,us,u3, us}. Table 6.2 shows the preferences and
weights of each voter. We ask if the vote L = (c1,c5,c4,09,c3) is a safe

93

6.4 Extensions of the Safe Strategic Voting Model

Voter Preference order Weight

v (cs,c1,C0,04,C3) a;
Uy (c1,€a, €3, Cq, Cs5) S
Us (c3,€a, €1, C5,C4) S
Us (3, €4, €0, 1, C5) S
Uy (C4,C5,CQ,C3,Cl> K

Table 6.2: Instance of WISSAFE for the proof of Theorem 6.18.

strategic vote for v; under Borda where the ties are broken according to the
preference ordering ¢z = ¢4 = ¢ > ¢ = c5 (i.e., is adversarially to vy).

If all voters vote sincerely, then c; is the winner with 10S + 2K points,
c1 gets 10S points, c3 gets 105 + K points, ¢4 gets 5S + 4K points, and c5
gets 5S + 3K points. Suppose that a group of voters U C V,, votes L. If
w(U) < K, then ¢y remains the winner, while if w(U) > K then ¢; becomes
the winner. Therefore, L is a strategic vote for v;. If w(U) = K then c;
beats c; and ¢, in a three-way tie. Therefore, L is a safe strategic vote for vy
if and only if no subset of A sums to K.

The hardness of WEXISTSAFE follows from the observation that L is the
only strategic vote available to v;. O]

6.4 Extensions of the Safe Strategic Voting
Model

So far, we followed Slinko and White’s model [101] and assumed that the only
voters who may change their votes are the ones whose preferences exactly
coincide with those of the manipulator. Clearly, in real life this assumption
does not always hold. Indeed, a voter may follow a suggestion to vote in a
certain way as long as it comes from someone he trusts (e.g., a well-respected
public figure), and this does not require that this person’s preferences are
completely identical to those of the voter. For example, if both the original
manipulator v and his would-be follower u rank the current winner last, it
is easy to see that following v’s recommendation that leads to displacing the
current winner is in u’s best interests.

In this section, we will consider two approaches to extending the notion
of safe strategic voting to scenarios where not all manipulators have identical

94

6.4 Extensions of the Safe Strategic Voting Model

preferences. In both cases, we define the set of potential followers for each
voter (in our second model, this set may depend on the vote suggested), and
define a vote L to be safe if, whenever a subset of potential followers votes L,
the outcome of the election does not get worse (and sometimes get better)
from the manipulator’s perspective. However, our two models differ in the
criteria they use to identify a voter’s potential followers.

Preference-Based Extension Our first model identifies the followers of
a given voter based on the similarities in voters’ preferences.

Fix a preference profile R and a voting rule ¥, and let ¢ be the winner
under truthful voting. For any v € V, let I(v, ¢) denote the set of candidates
that v ranks strictly above c¢. We say that two voters v and v are similar if
I(u,c) = I(v,c). A similar set S, of a voter v for a given preference profile
R and a voting rule ¥ is given by S, = {u | I(u,c) = I(v,c)}. (The set S,
depends on R and F; however, for readability we omit R and F from the
notation).

Note that if v and v are similar, they rank ¢ in the same position. Fur-
ther, a change of outcome from ¢ to another alternative is positive from u’s
perspective if and only if it is positive from v’s perspective. Thus, intuitively,
any manipulation that is profitable for u is also profitable for v. Observe also
that similarity is an equivalence relation, and the sets S, are the correspond-
ing equivalence classes. In particular, this implies that for any u,v € V either
S,=S,orS,NS,=0.

We can now adapt Definition 6.1 to our setting by replacing V,, with S,,.

Definition 6.19. A vote L is a strategic vote in the preference-based exten-
sion for v at R under F if for some U C S, we have F(R_y(L)) =, F(R).
Further, we say that L 1s a safe strategic vote in the preference-based exten-
sion for a voter v at R under F if L is a strategic vote at R under F, and for

any U C S, either F(R_y(L)) =, F(R) or F(R_y(L)) = F(R).

Observe that if L is a (safe) strategic vote for v at R under F, then it is
also a (safe) strategic vote for any u € S,. Indeed, u € S, implies S, = S,
and for any a € C' we have a =, F(R) if and only if a >, F(R). Note also that
we do not require L # R,: indeed, in the preference-based extension L = R,
may be a non-trivial manipulation, as it may induce voters in S, \ {v} to
switch their preferences to R,. That is, a voter may manipulate the election
simply by asking other voters with similar preferences to vote like he does.
Finally, it is easy to see that for any voter v, the set S, of similar voters is
easy to compute.

95

6.4 Extensions of the Safe Strategic Voting Model

The two computational problems considered throughout this work, i.e.,
the safety of a given manipulation and the existence of a safe manipulation
remain relevant for the preference-based model. We will refer to these prob-
lems in this setting as ISSAFEP” and EXISTSAFEP", respectively, and use
prefix W to denote their weighted variants. The problems (W)ISSAFE?" and
(W)EXISTSAFE?" appear to be somewhat harder than their counterparts in
the original model. Indeed, while voters in S, have similar preferences, their
truthful votes may be substantially different, so it now matters which of the
voters in S, decide to follow the manipulator (rather than just how many of
them, as in the original model). In particular, it is not clear if ISSAFEP"(5)
is polynomial-time solvable for any voting rule F. However, it turns out that
both of our problems are easy for k-approval, even with weighted voters.

Theorem 6.20. For k-approval, the problems WISSAFEP" and
WEXISTSAFE?" are in P.

Proof. As before, we fix a voter v € V and renumber the candidates so that
v’s preference order is given by ¢; =, ... >, ¢;,. Suppose that under truthful
voting the winner is ¢;, and set Cy; = {c1,...,¢j_1}, Cp = {¢j,...,cm}. Note
that all voters in .S, rank ¢; in position j, and the candidates in C, in positions
1,...,j—1. Fori =1,...,m, let s;(R") denote the k-approval score of ¢;
given a profile R’, and set s; = s;(R). We say that ¢; beats ¢, at a preference
profile R’ if 5;(R") > s4(R’) or 5;(R") = s,(R’) and the tie-breaking rule favors
¢; over ¢g; note that this relation is transitive. For any £ = 1,...,m, let U, be
the set of all voters in .S, that do not rank ¢, in the top k£ positions. Finally,
let Up(L) denote the set of candidates ranked in the top k positions in L.
We will first show how to solve WISSAFEP".

Lemma 6.21. A vote L is a safe strategic vote for v if and only if c; ¢ Up(L),
the winner in R_g, (L) belongs to C,, and for every { =1,...,m, the winner
in R_y,(L) belongs to Cy U {c;}.

Proof. Suppose that L ranks c; in the top k positions, and let the voters in
Sy switch to voting L one by one. If 7 > k, each switch increases the score
of ¢; by at least as much as it increases the score of any other candidate, so
¢; remains the winner throughout this process. On the other hand, if j <k,
all voters in S, already approve all candidates ranked above ¢;, so whenever
a voter switches to L, the scores of the candidates in C; do not increase, and
the score of ¢; does not decrease, so ¢; remains the winner. Hence, in this
case L is not a strategic vote.

96

6.4 Extensions of the Safe Strategic Voting Model

Now assume that L does not rank c¢; in the top k& positions. We will now
argue that if L is a safe strategic vote, then the winner in R_g (L) belongs to
C,. Clearly, if the winner in R_g, (L) is ¢; with ¢ > j, L is not a safe strategic
vote. Now, suppose that the winner in R_g, (L) is ¢;, but some ¢; € C,; wins
in R_y(L) for some U C S,. This implies that, in particular, ¢; beats ¢; at
R_y(L). We will now show that ¢; € Up(L). Indeed, if j < k, all voters
in S, approve of ¢;, so if ¢; &€ Up(L), we have s;(R_y(L)) = s; — w(U) and
s;(R_y(L)) = s; —w(U). On the other hand, if j > k and ¢; € Up(L), we
have s;(R_y(L)) < s; and s;(R_y(L)) = s;. In both cases, ¢; beats ¢; when
everyone votes truthfully, a contradiction.

Now, suppose that the voters in S, \ U switch to voting L one by one.
Since L ranks ¢;, but not ¢;, in the top %k positions, after each switch ¢;’s
score does not increase, and ¢;’s score does not decrease, so ¢; would still
beat ¢; when all voters in S, switch, a contradiction. Hence, if L is a safe
strategic vote, the winner in R_g, (L) must belong to Cj.

To complete the proof for the “only if” direction, note that if for some
¢ = 1,...,m the winner in R_y,(L) is a candidate from C} \ {¢;}, then
obviously L is not a safe strategic vote.

To prove the “if” direction, consider a vote L such that ¢; ¢ Up(L) and
the winner in R_g, (L) belongs to C;. We will show that if there exists at
¢ > j and a subset U such that ¢, is a winner in R_;(L), then ¢, beats all
candidates in C, U{c;} at R_y, (L), i.e., the winner in R_g, (L) is either ¢, or
some other candidate in Cj, \ {c¢;}. To this end, we will gradually transform
U into Uy so that ¢, beats all candidates in C, U {c¢;} at each stage of the
transformation. We will consider two cases.
j> ke
Suppose first that U \ U, # 0, let u be some voter in U \ Uy, and set U~ =
U\ {u}. We claim that ¢, beats all candidates in Cy U {¢;} at R_y-(L).
Indeed, w ranks ¢, in the top k positions, so Sg(R,U—(L)) > sp(R_y(L)).
Since j > k, s;(R_y-(L)) = s;(R_y(L)). Thus, ¢, beats ¢; at R_y-(L)
Further, since j > k, ¢; beats all candidates in C'\ Up(L) at R_g(L) for any
S C S,. Therefore, by transitivity, ¢, beats all candidates in Cy \ Up(L) at
R_y-(L). Finally, for all ¢; € Up(L) we have s;(R_y-(L)) < s;(R_y(L)).
Thus, ¢, beats all candidates in C, U {¢;} at R_y-(L).

By removing the voters from U \ U, one by one, we can assume that U C
U,. Now, if U, \U is non-empty, pick a voter u € U,\U, and set UT = UU{u}.
We claim that ¢, beats all candidates in C, U {¢;} at R_y+(L). Indeed, u

97

6.4 Extensions of the Safe Strategic Voting Model

does not rank ¢ in the top k positions, so s¢(R_y+(L)) = sp(R_p (L)) +w(u).
On the other hand, s;(R_y+(L)) < s;(R_p (L)) + w(u) for all ¢; € C. Thus,
ce beats all candidates in Cy U {¢;} at R_y+(L). As we can add voters from
U, \ U one by one, this also holds at R_g, (L).

i<k

Let ¢;, ¢ < j, be the winner in R_g, (L). Note that all voters in S, rank ¢;
in the top k positions. This implies ¢; € Up(L): otherwise, we would have
si(R_g, (L)) = s; —w(Sy), s;(R_g, (L)) = s; —w(S,), so ¢; would beat ¢; at
R_s,(L).

Suppose that there exists an ¢ > j and a U C S, such that ¢, beats all
candidates in Cy;U{c;} at R_y(L). We have ¢, ¢ Up(L): otherwise, we would
have sy(R_g, (L)) > s¢(R_p/(L)), s;(R_s,(L)) = s;(R_yy(L)), so ¢, would beat
¢ at R_g, (L).

As in the case j > k, suppose first that U\ Uy # 0, let u be some voter in
U\U,, and set U~ = U\{u}. We claim that ¢, beats all candidates in C,U{c;}
at R_y-(L). Indeed, u ranks ¢, in the top k positions, so sy(R_y-(L)) =
se(R_y(L)) + w(u). On the other hand, s,(R_y-(L)) < s.(R_p(L)) + w(u)
for all » € C. Thus, ¢, is the winner in R_;;- (L), and therefore we can
assume that U C U,.

Now, suppose that U, \ U # (), let u be some voter in U, \ U, and set
Ut = U U {u}. Since all voters in S, rank all candidates in C, in top k
positions, we have s,(R_y+(L)) < s.(R_y(L)) for all r € C,. Moreover,
since ¢; & Up(L), we have s;(R_y+(L)) = s;(R_py(L)) — w(w). Finally, since
u does not rank ¢, in the top k positions, we have s,(R_y+ (L)) = se(R_p/(L)).
Thus, ¢, beats all candidates in Cy U {¢;} at R_y+(L). As in the case j > k,
we conclude that ¢, beats all candidates in Cy U {¢;} at R_y,(L). O

Given the characterization of safe strategic votes provided by Lemma 6.21,
we can now solve WEXISTSAFEP" for k-approval. The argument is similar to
that in the proof of Theorem 6.8. We consider two cases:
j> ke
In this case, we cannot lower the score of c¢j, so we need to increase the
score of some ¢; with ¢ < j. Suppose there exists a safe strategic vote L
such that the winner at R_g, (L) is ¢; as argued above, this implies i < j.
Let L(i) be a vote that ranks ¢; first, ranks some candidates from C, in
positions 2,...,k (since j > k, we have |Cy| > k), and the rest of the
candidates in the remaining positions. It is not hard to see that L(i) is
also a safe strategic vote. Indeed, we have s;(R_g,(L(7))) > s;(R_g, (L))

98

6.4 Extensions of the Safe Strategic Voting Model

and s(R_g,(L(7))) = s; < so(R_g,(L)) for any ¢ > j. Thus, ¢; beats all
candidates in Cj, at R_g, (L(7)), i.e., the winner in R_g, (L(7)) must be some
candidate from C, (though not necessarily ¢;). Therefore, L(7) is also a
strategic vote. To see that L(7) is safe, observe that ¢; beats any ¢, ¢ > j,
under truthful voting, and we have s;(R_y/(L(7))) = s;, se(R_p/(L(i))) = sy
for any ¢ > j and any U C S,.

Thus, to check whether a profile R admits a safe strategic vote for v, it
suffices to construct votes of the form L(1),...,L(j — 1), and check if any of
them is a safe strategic vote for v using Lemma 6.21.
i<k
It is not hard to see that if v has a safe strategic vote, then she also has one
that ranks all candidates in Cy in top j — 1 positions. Thus, to construct
a safe strategic vote, we need to fill the remaining k£ — j + 1 positions with
“safe” candidates.

Let Cy = argmax{s; | ¢; € C,}, and let spax be the k-approval score of
the candidates in (. For any ¢; € C, let s; denote the number of points
that ¢; obtains from voters in V' \ S,. We have s; = s, + w(S,) for all
1=1,...,7 — 1. We claim that v has a safe strategic vote if and only if the
following conditions hold:

(1) For all ¢, € Cy, either s < Spax, O 8. = Smax and there exists a
candidate ¢ € Cy such that the tie-breaking rule favors ¢ over ¢,;

(2) Forall ¢, € Gy \ {c;} and all ¢ =1,...,m, at least one of the following
conditions holds:

— s+ w(S, \ (U UUy)) < Smax, Or

— s+ w(S, \ (U UUp)) = Smax and the tie-breaking rule favors some
candidate in C over c¢,., or

— si +w(S, \ (U, UUy)) < s; —w(Uy), or

— s +w(S,\ (U, UU,)) = s; —w(U,) and the tie-breaking rule favors
¢j over ¢,

and, moreover, there exists a set Cape C Cp \ {¢;} With |Cage] =k —j + 1
such that

(3) For all ¢, € Cafe, either s, + w(S,) < Smax, OF S, + w(S,) = Smax and
there exists a candidate ¢ € Cj such that the tie-breaking rule favors ¢
over ¢;;

99

6.4 Extensions of the Safe Strategic Voting Model

(4) For all ¢, € Csupe and all £ = 1,...,m, at least one of the following
conditions holds:

— s+ w(S, \ (U UU)) + w(U) < Smax, OT

— s+ w(S, \ (U, UU)) + w(U;) = Smax and the tie-breaking rule
favors some candidate in () over ¢,, or

— s +w(S, \ (U, UU)) +w(U) < s; —w(Uy), or
— s +w(S, \ (U, Uly)) +w(U;) = s; — w(U;) and the tie-breaking

rule favors c; over c,.

Note that these conditions can be easily checked in polynomial time; in par-
ticular, for each candidate ¢, € Cy\ {¢;} we can independently check if it can
be placed in Cg,upe, so we simply need to verify if there are sufficiently many
candidates that satisfy (3) and (4).

Indeed, suppose that these conditions are satisfied, and consider a vote
L that ranks the candidates in Cj in the first j — 1 positions, followed by
the candidates in Cg,g. Condition (1) ensures that any candidate not ranked
in the top k positions in L is not the winner in R_g, (L), and condition (3)
ensures that any candidate ranked in positions j, ...,k in L is not the winner
in R_g,(L). Thus, together, these two conditions ensure that the winner in
R_g,(L) is a candidate from C,. Condition (2) ensures that no candidate
¢ € (Cy\{¢j}) \ Up(L) can be the winner in R_y, (L) for any £ =1,...,m.
Similarly, condition (4) ensures that no candidate ¢, € (Cy\{c;})NUp(L) can
be the winner in R_y, (L) for any ¢ = 1,...,m. Thus, together, conditions (2)
and (4) imply that for any ¢ = 1,...,m, the winner in R_;,(L) is a candidate
from C, U {c;}. Therefore, by Lemma 6.21, L is a safe strategic vote.

Conversely, if condition (1) is violated by some ¢, € C, then for any
vote L the candidate ¢, beats all candidates in Cy at R_g, (L). Further, if
condition (2) is violated by some ¢, € Cy\ {¢;} and some ¢ < m, then for any
vote L the candidate ¢, beats all candidates in CyU{c;} at R_y,(L). In both
cases, by Lemma 6.21, v does not have a safe strategic vote. Now, suppose
that there is no set Care € Cp\{¢;} of size k—j+1 that satisfies conditions (3)
and (4). Then for any vote L there is a candidate ¢, € Cy\ {¢;} that is ranked
in top k positions in L and fails (3) or (4). In the former case, ¢, beats all
candidates from C, at R_g, (L). In the latter case, if (4) is violated for some
¢ =1,...,m, it follows that ¢, beats all candidates in Cy U {c;} at R_y,(L).
Thus, by Lemma 6.21 no vote L can be a safe strategic vote for v. O]

100

6.4 Extensions of the Safe Strategic Voting Model

In the preference-based model, a voter v follows a recommendation to vote
in a particular way if it comes from a voter whose preferences are similar to
those of v. However, this approach does not describe settings where a voter
follows a recommendation not so much because he trusts the recommender,
but for pragmatic purposes, i.e., because the proposed manipulation advances
her own goals. Clearly, this may happen even if the overall preferences of
the original manipulator and the follower are substantially different. We will
now propose a model that aims to capture this type of scenarios.

Goal-Based Extension If the potential follower’s preferences are dif-
ferent from those of the manipulator, his decision to join the manipulating
coalition is likely to depend on the specific manipulation that is being pro-
posed. Thus, in this subsection we will define the set of potential followers
F in a way that depends both on the original manipulator’s identity ¢ and
his proposed vote L, i.e., we have F' = F;(L). Note, however, that it is not
immediately obvious how to decide whether a voter j can benefit from fol-
lowing ¢’s suggestion to vote L, and thus should be included in the set F;(L).
Indeed, the benefit to j depends on which other voters are in the set F;(L),
which indicates that the definition of the set F;(L) has to be self-referential.

In more detail, for a given voting rule F, an election (C, V') with a pref-
erence profile R, a voter ¢ € V and a vote L, we say that a voter j is
pwotal for a set U C V with respect to (i,L) if j ¢ U, R; # L and
F(R_wugh(L)) =; F(R_py(L)). That is, a voter j is pivotal for a set U
if when the voters in U vote according to L, it is profitable for j to join
them. Now, it might appear natural to define the follower set for (i, L) as
the set that consists of 7 and all voters j € V' that are pivotal with respect to
(i, L) for some set U C V. However, this definition is too broad: a voter is
included as long as it is pivotal for some subset U C V', even if the voters in
U cannot possibly benefit from voting L. To exclude such scenarios, we need
to require that U itself is also drawn from the follower set. Formally, we say
that F;(L) is a follower set for (i, L) if it is a maximal set F' that satisfies
the following condition:

VieF[(j=1) V (3U C F s. t. jis pivotal for U with respect to (i, L))]

(*)
Observe that this means that F;(L) is a fixed point of a mapping from 2" to
2V i.e., this definition is indeed self-referential. To see that the follower set
is uniquely defined for any ¢ € V' and any vote L, note that the union of any
two sets that satisfy condition (*) also satisfies (*); note also that we always

101

6.4 Extensions of the Safe Strategic Voting Model

have i € F;(L).

We can now define what it means for L to be a strategic vote in the
goal-based extension and a safe strategic vote in the goal-based extension by
replacing the condition U C S; with U C F;(L) in Definition 6.19. We will
denote the computational problems of checking whether a given vote is a safe
strategic vote for a given voter in the goal-based extension and whether a
given voter has a safe strategic vote in the goal-based extension by ISSAFEY
and EXISTSAFEY, respectively, and use the prefix W to refer to weighted
versions of these problems.

Two remarks are in order. First, it may be the case that even though ¢
benefits from proposing to vote L, he is never pivotal with respect to (i, L)
(this can happen, e.g., if i’s weight is much smaller that that of the other
voters). Thus, we need to explicitly include 7 in the set F;(L), to avoid the
paradoxical situation where i ¢ F;(L). Second, our definition of a safe vote
only guarantees safety to the original manipulator, but not to her followers.
In contrast, in the preference-based extension, any vote that is safe for the
original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures
a number of situations not accounted for by the definition of a safe strategic
vote in the preference-based extension. To see this, consider the following
example.

Example 6.22. Consider an election with the set of candidates C' =
{a,b,¢c,d, e}, and three voters 1, 2, and 3, whose preferences are given by
a>1b>1c>1d>1e,e>2b>2a>2d>gc, andd>3a>3b>3c>3e.
Suppose that the voting rule is Plurality, and the ties are broken according to
the priority order d > b > c > e > a.

Under truthful voting, d is the winner, so we have S; # Sy. Thus, in the
preference-based extension, a vote that ranks a first is a safe strategic vote
for voter 2, but a vote than ranks b first is not. On the other hand, let L be
any vote that ranks b first. Then Fy(L) = F5(L) = {1,2}. Indeed, if voter 1
switches to voting L, the winner is still d, but it becomes profitable for voter
2 to join her, and vice versa. On the other hand, it is easy to see that voter
3 cannot profit by voting L. It follows that in the goal-based extension L is a
safe strategic vote for voter 1.

From a practical perspective, it is plausible that in Example 6.22 voters
1 and 2 would be able to reconcile their differences (even though they are
substantial—voter 1 ranks voter 2’s favorite candidate last) and jointly vote

102

6.4 Extensions of the Safe Strategic Voting Model

for b, as this is beneficial for both of them. Thus, at least in some situations
the model provided by the goal-based extension is intuitively more appealing.
However, computationally it is considerably harder to deal with than the
preference-based extension.

Indeed, it is not immediately clear how to compute the set F;(L), as its
definition is non-algorithmic in nature. While one can consider all subsets of
V' and check whether they satisfy condition (*), this approach is obviously
inefficient. We can avoid full enumeration if have access to a procedure
A(i, L, j,W) that for each pair (i, L), each voter j € V and each set W C V
can check if j = ¢ or there is a set U C W such that j is pivotal for U with
respect to (i, L). Indeed, if this is the case, we can compute F;(L) as follows.
We start with W =V, run A(z, L, j, W) for all j € W, and let W’ to be the
set of all voters for which A(i, L, j, W) outputs “yes”. We then set W =W’
and iterate this step until W = W’. In the end, we set F;(L) = W. The
correctness of this procedure can be proven by induction on the number of
iterations and follows from the fact that if a set W contains no subset U
that is pivotal for j, then no smaller set W/ C W can contain such a subset.
Moreover, since each iteration reduces the size of W, the process converges
after at most n iterations. Thus, this algorithm runs in polynomial time if
the procedure A(i, L, j, W) is efficiently implementable. We will now show
that this is indeed the case for Plurality (with unweighted voters).

Theorem 6.23. Given an election (C,V') with a preference profile R and
unweighted voters, a manipulator v, and a vote L, we can compute the set
F;(L) with respect to Plurality in time polynomial in the input size.

Proof. As argued above, it suffices to show that the procedure A(i, L, j, W)
can be implemented in polynomial time. We will now show how to implement
it for given values of ¢, L, j and W. Let >=; be j’s preference order, and let
> be the preference order associated with the tie-breaking rule T'. Let a be
the top-ranked candidate in j’s truthful vote, and let ¢ be the top candidate
in L.

Suppose that some subset of voters U C W switches to L, while j votes
truthfully, let S be the set of top-scoring candidates at this point, and let
x be the score of all candidates in S. When j switches from R; to L, this
decreases by one the number of points a has, and increases by one the number
of points that ¢ has.

Observe first if ¢ has at most x — 2 points, switching to L cannot be
beneficial to j. Indeed, if S = {a}, or if a is the top-ranked alternative in S

103

6.4 Extensions of the Safe Strategic Voting Model

with respect to >, j already obtains its most preferred outcome. Otherwise,
the winner is some d € S, d # a, and this remains so after the switch.

Now, suppose that ¢ has x — 1 points. Suppose that the winner is d; this
implies that d is the top-ranked candidate in S with respect to »=. Then
switching from R; to L is beneficial for j if and only if ¢ > d and ¢ >; d.
Indeed, if d > ¢, d would beat ¢ even after the switch, and if ¢ > d, but
d >=; ¢, voter j prefers the current outcome (i.e., d) to the outcome after the
switch.

Finally, suppose that ¢ has x points, and let d be the election winner.
Then switching from R; to L is beneficial for j if and only if ¢ >~ d.

Our algorithm proceeds as follows. For each d € W such that ¢ >; d
and each x = 1,...,n, we check whether there exists a set U C W such that
when the voters in U vote L and j votes truthfully, all candidates have at
most z points, d is the election winner with x points, and either (a) ¢ has
x — 1 point and ¢ > d, or (b) ¢ has x points. It outputs “yes” if and only
if it finds a pair (d,z) that satisfies this condition. The correctness of this
algorithm follows from the case analysis above. We will now show how to
check whether such a set U exists for a given pair (d, z).

First, we check whether ¢ ~; d and the current score of d is at least z,
and reject if this is not the case. Next, for each candidate e # ¢ whose score
is at least x, if e > d, we add to U all but x — 1 voters that rank e first,
and if e = d or d > e, we add to U all but x voters that rank e first. If at
this point |U| > z, we reject. Otherwise, we have ensured that all candidates
have at most x points and d is the election winner with x points. It remains
to check whether we can implement condition (a) or (b); for that, we may
need to add to U some voters who currently vote for candidates in C'\ {d, c}.
Let y denote the current score of ¢, and let z be the number of voters that
now vote for candidates in C'\ {d,e}. We accept if and only if 2z > =z —y
(i.e., we can satisfy condition (b)) or z > 2 —y — 1 and ¢ > d (i.e., we can
satisfy condition (a)).

Clearly, for each pair (d, z) this check can be implemented in polynomial
time. As there are polynomially many such pairs, we can implement the
procedure A (and hence compute the set F;(L)) in polynomial time. O

We can use Theorem 6.23 to show that under Plurality one can determine
in polynomial time whether a given vote L is safe for a player ¢, as well as find
a safe strategic vote for i if one exists, as long as the voters are unweighted.

104

6.4 Extensions of the Safe Strategic Voting Model

Theorem 6.24. The problems ISSAFEY and EXISTSAFEY are polynomial-
time solvable for Plurality.

Proof. Suppose that we are given an election (C, V') with a preference profile
R and unweighted voters, a manipulator ¢, and a vote L. Let > denote
the preference order used by the tie-breaking rule. Given a profile R' and a
candidate ¢ € C, let n(c,R’) denote the number of voters in R’ that rank ¢
first. Let a be the top-ranked candidate in L, and let be the winner under
truthful voting. We observe that if the outcome of an election R’ changes
after some voter k that ranks a candidate ¢ first switches from Rj, to L, then
either the outcome was ¢ before the switch, or it becomes a after the change.

At the high level, our algorithm (1) computes the set F;(L) and (2) for
each ¢ € C, determines whether there is a set S C F;(L) such that the winner
in R_g(L) is c. Clearly, L is a safe strategic vote for 7 if and only if the answer
is “yes” for some ¢ >; x, and “no” for all ¢ <; x.

To get the answer for a specific ¢ € C, for each kK = 1,..., m we check if
there is a set S C F;(L) such that n(c, R_g(L)) = k, n(d,R_s(L)) < k for
all ¢ > ¢, and n(cd,R_g(L)) < k for all ¢ < ¢, and output “yes” if any of
these checks produces a positive answer.

We will now show how to implement this check for a given pair (c, k).
Consider all ¢ # a, ¢ one by one. Suppose first that ¢ > ¢. Then if at least
k voters in V' \ F;(L) rank ¢ first, we output “no” and stop. Otherwise we
ask some of the voters in F;(L) that rank ¢ first to switch to L so that in the
resulting profile exactly k — 1 voters rank ¢ first. The case ¢ < ¢ is similar:
if at least k 4+ 1 voters in V' \ F;(L) rank ¢ first, we output “no” and stop,
and otherwise we ask some of the voters in F;(L) that rank ¢ first to switch
to L so that in the resulting profile exactly k voters rank ¢ first.

Now, suppose that we have successfully completed the previous steps.
Denote the resulting profile by R’. The rest of the procedure depends on
whether ¢ = a. Suppose first that ¢ = a. In this case, if ¢ is ranked first by at
least k+1 voters in R’, we output “no”. Otherwise, we ask all voters in F;(L)
who have not been asked to change their vote so far to switch their vote to L,
and output “yes” if ¢ gets at least k first-place votes in the resulting election.
Now, suppose that ¢ # a. In this case, we cannot increase the score of c,
and we cannot lower the score of a. Therefore, if ¢ is ranked first by at most
k — 1 voters in R, or a > ¢ and a is ranked first by at least k& voters in R,
or a < ¢ and a is ranked first by at least k + 1 voters in R, we output “no”.
Otherwise, ¢ beats all other candidates in R’; however, it may have more

105

6.4 Extensions of the Safe Strategic Voting Model

than k votes. If this is the case, we check if F;(L) contains n(c, R') — k voters
that rank c first. If not, we output “no”; otherwise, we ask these voters to
switch to voting L and output “yes” if and only if ¢ remains the winner in
the resulting profile.

To see that EXISTSAFEY for Plurality is also polynomial-time solvable,
we observe that an analogue of Proposition 6.4 remains true in the goal-based
extension. In other words, we can try all m substantially different votes, and
run ISSAFEY on each of them. m

For weighted voters, computing the follower set is computationally hard
even for Plurality. While this result does not immediately imply that
WISSAFE? and WEXISTSAFE? are also hard for Plurality, it indicates that
these problems are unlikely to be easily solvable.

Theorem 6.25. Given an instance (C,V,w,R) of Plurality elections, voters
i,7 €V and a vote L, it is NP-hard to decide whether j € F;(L).

Proof. We give a reduction from SUBSET SUM. Given an instance (A, K)

of SUBSET SuM with |A] = s, Y7 ,a; = S, we construct an instance
of our problem as follows. We let C' = {a,b,c}, and create s + 3 voters
V1, ..., Ug, Uy, U, u3 With the preferences given by Table 6.3.

Voter Preference order Weight

s (a,b,c) 3a;
Uy (a,b,c) 2
Us (b,a,c) 35
U3 (c,a,b) 35 +3K +1

Table 6.3: Preferences and weights of voters, in the proof of Theorem 6.25.

Let R denote the resulting preference profile. Clearly, under truthful
voting a gets 35 + 2 votes, b gets 35 votes and ¢ gets 35 + 3K + 1 votes, so
C wWins.

Let L =b > a > ¢. We claim that u; € F,,(L) if and only if the given
instance of SUBSET SUM is a “yes”-instance. Indeed, suppose first that there
exists a set 1 C {1,...,s} such that >",_;a;, = K. Set U = {v; | i € I}. In
the preference profile R_;(L) candidate ¢ gets 35 + 3K + 1 votes, candidate
b gets 35 + 3K votes, and candidate a gets 35 — 3K + 2 votes. If, in addition,

106

6.4 Extensions of the Safe Strategic Voting Model

uy switches to voting L, b becomes the winner. This implies that u; is pivotal
for U with respect to (ug, L).

Conversely, suppose that u; is pivotal for some set U of voters with respect
to (ug, L). It is not hard to see that it must be the case that ¢ wins in R_y (L)
and b wins in R_yygu,}(L), and, furthermore, us ¢ F,,(L). Therefore, the
score of ¢ is both profiles is 35 + 3K + 1. Thus, it must be the case that
before u; switches, b’s score is at most 35S + 3K + 1, and after u; switches,
b’s score is at least 35S 4+ 3K + 1. Further, if u; votes truthfully, the score of
b is a multiple of 3. It follows that w(U \ {us12}) = 3K, i.e., we started with
a “yes”’-instance of SUBSET SUM. O

Just a little further afield, checking whether a given vote is safe with re-
spect to 3-approval is computationally hard even for unweighted voters. This
is in contrast with the standard model and the preference-based extension,
where safely manipulating k-approval is easy for arbitrary k.

Theorem 6.26. ISSAFEY is coNP-hard for 3-approval.

Proof. We reduce from EXACT COVER BY 3-SETS (X3C). Recall that an
instance of X3C is given by a ground set G = {g,...,gs} and a collection
X ={Xy,..., Xy} of subsets of G with | X;| =3forj =1,...,¢. Itisa “yes’-
instance if G can be covered with exactly 3 sets from X, and a “no”-instance
otherwise.

Suppose that we are given an instance (G,X) of X3C with |G| = s,
|X| = t. We can assume without loss of generality that ¢ > § + 3: otherwise,
the instance is easily solvable by checking all O(#?) triples of sets to be deleted.
We will now construct an instance of our problem as follows. The set of
candidates consists of G, three extra candidates {a,u,w}, and a set D =
{di,...,ds} of dummy candidates.

For each set X; € X, we construct a voter ¢ with preferences

Xi>—ia>—iG\Xi>-iu>—iD>-iw.

Let V; denote the set of all such voters; we have V; = {1,...,t}. We then
construct a set V5 whose size is polynomial in s and ¢. For each voter j € V5,
his preferences satisfy

G>—ju>—jD>—jw>—ja.

In addition, these votes are constructed so that after the votes in V3 U V5
are counted, all candidates in G have the same number of points (and, by

107

6.4 Extensions of the Safe Strategic Voting Model

construction, any other candidate has zero points). Let f denote the 3-
approval score of all alternatives in G based on V; UV;. We can assume that
J > 2%+ 2; if this is not the case, we can add the required number of voters
with suitable preferences to V5.

We now construct three more voter sets: the set V3 consists of 3 voters,
each of which ranks a first, u second and d; third, the set Vj consists of f
voters, each of which ranks wu first, w second, dsy third and a last, and the set
Vs consists of f — 2% — 1 voters, each of which ranks a first, d3 second and
dy third. We set V = U;_, V.

Let T be a tie-breaking rule based on any order that is consistent with

a-G»=w=u= D,

we do not specify how T" orders candidates in G or D.

We have s3(g) = f for all g € G, s3(u) = f+ 3, s3(a) = f— 35— 1,
s3(w) = s3(dz) = f, s3(d1) = 5 and s3(d3) = s3(dy) = f —25 — 1, where s3(c)
denotes the 3-approval score of a candidate ¢ € C'. Thus, under truthful
voting the winner is u.

Let L be a vote that ranks a, ds, and dg in the top three positions. We
claim that Fy(L) = V3 U V.

Observe first that no matter which voters choose to vote L, no candidate
in D can win. Indeed, dy cannot get more points than w, no candidate in
D\ {dy} can get more points than a, and the tie-breaking rule ranks the
candidates in D below all other candidates.

Now, if £ —1 voters in V3 and £ + 1 in V} vote L, then a gets f points,
u gets f + 1 points, and v remains the winner. However, if any additional
voter from V; U V3 votes L then a wins, and, moreover, all voters in V; U V3
prefer a to u.

Next, consider a voter j € VoUVj, and suppose that some subset of voters
U C V votes L. Let H denote the set of top-scoring candidates when the
voters in U vote L and j votes truthfully. Let 73 denote the set of three
candidate ranked in the top three positions in j’s truthful vote. If a € H
or a trails the candidates in H by one vote, j makes a the winner by voting
L, which is not an improvement from j’s perspective. Now, suppose that
this is not the case. If T(H) = ¢’ for some ¢’ € T3, by changing his vote
to L, j either does not change the outcome at all, or changes it from ¢ to
another candidate not in 73, which is obviously not an improvement from
7’s perspective. In any other case, j does not have any effect on determining

108

6.4 Extensions of the Safe Strategic Voting Model

the winning candidate. Clearly, in any of these cases the outcome does not
improve from j’s point of view, i.e., j is not pivotal for any U C V with
respect to (1, L).

Further, the voters in V5 cannot increase a’s score by switching their vote
to L, since their truthful vote already gives a point to a. So, by switching
to L they simply reduce the scores of d3 and ds and increase the scores of d5
and dg, which does not affect the final outcome.

Now, suppose that the given instance of X3C is a “yes”-instance and let
X" be the corresponding cover. Let U = {i € V; | X; € X'} U V3. Under the
profile R_;(L), all candidates in G' get f — 1 points, u and w get f points, a
gets f — 1 points, and all other candidates get at most f points. Therefore,
in this case w wins, showing that L is not safe for voter 1.

Conversely, suppose that the given instance of X3C is a “no”-instance,
and consider a set U C V; U V3. If V3 & U then under the profile R_;(L), u
gets at least f + 1 points, so the winner is either u or a (this depends on the
number of voters from V; that change their vote to L). Otherwise, under the
profile R_y(L), u and w get f points. Now, if [U \ V3| > 3, a gets at least
f points, so it wins. Finally, if [U \ V3| < 3, then by our assumption the set
X'={X; € X|ieVi}is not a cover, so at least one candidate from G gets
at least f points. Thus, the winner is either a or some candidate from G. In
any of the above cases, the vote is safe from voter 1 perspective. Hence, L
is unsafe for 1 (and, by the same argument, for all the other voters in V}) if
and only if G can be covered by exactly £ sets in X. O

Thus, while the preference-based extension appears to be similar to Slinko
and White’s original model [101] from the computational perspective, the
goal-based extension is considerably more difficult to work with.

109

Part 11

Physical Search Problems with
Uncertain Knowledge

110

Chapter 7
Single Agent

In this chapter we investigate single agent physical search problems with un-
certain knowledge. We begin by defining three problems: Min-FExpected-Cost
(minimizing the total expected cost),Maz-Probability (maximizing the suc-
cess probability given an initial budget), and Min-Budget (minimizing the
budget necessary to obtain a given success probability). We then analyze
the general metric space case, with any distance function. Unfortunately,
in these settings, all three problems are NP-hard. In Section 7.2 we show
the hardness of Min-FEzpected-Cost, and in Section 7.3 we show the hardness
of Min-Budget and Maz-Probability, which remain hard even if the metric
space is a tree. Thus, we focus on the path setting. For this case we provide
a polynomial algorithm for the Min-Ezxpected-Cost problem (Section 7.2).
We show the other two problems (Min-Budget and Mazx-Probability) to be
NP-complete even for the path setting in Section 7.3. Thus, we consider fur-
ther restrictions and also provide an approximation scheme. We show that
both problems are polynomial if the number of possible prices is constant.
For the Min-Budget problem, we provide an FPTAS (fully-polynomial-time-
approximation-scheme), such that for any € > 0, the Min-Budget problem
can be approximated with a (1 + €) factor in O(ne™%) time, where n is the
size of the input.

7.1 Terminology and Definitions

We are provided with m points - S = {us, ..., u;}, which represent the store
locations, together with a distance function dis: S x S — RT - determining

111

7.1 Terminology and Definitions

the travel costs between any two stores. We are also provided with the agents’
initial locations, which are assumed WLOG (without loss of generality) to
be at one of the stores (the product’s price at this store may be oo). With a
single agent, there is one initial location, us; with k& agents there is a vector

of initial locations (ugl), e ,ugk)). WLOG, we may assume that the agents

are ordered from left-to-right, i.e. uV < u? <o <P I addition, we
are provided with a cost probability function p’(c) - stating the probability
that the cost of obtaining the item at store ¢ is c. Let D be the set of distinct
prices with non-zero probability, and d = |D|. We assume that the actual
price at a store is only revealed once an agent reaches the store. Given these
inputs, the goal is roughly to obtain the product at the minimal total cost,
including both travel costs and purchase price. Since we are dealing with
probabilities, this rough goal can be interpreted in three different concrete

formulations:

1. Min-FEzxpected-Cost: minimize the expected cost of purchasing the prod-
uct.

2. Min-Budget: given a success probability, ps,e., minimize the initial bud-
get necessary to guarantee purchase with probability at least pgyce.

3. Max-Probability: given a total budget B, maximize the probability to
purchase the product.

In all the above problems, the optimization problem entails determining the
strategy (order) in which to visit the different stores, and if and when to
terminate the search. For the Min-FEzpected-Cost problem we assume that
an agent can purchase the product even after leaving the store (say by phone).
Technically, it is sometimes easy to work with the failure probability instead
of the success probability. Therefore, instead of maximizing pg,.. we may
phrase our objective as minimizing the failure probability. Unfortunately,
for general distance functions, all three of the above mentioned problems are
NP-hard. Thus, we focus on the case that the stores are all located on a single
path. We denote these problems Min-Budget (path), Maz-Probability (path),
and Min-Expected-Cost (path), respectively. In this case we can assume that,
WLOG all points are on the line, and do away with the distance function
dis. Rather, the distance between u; and w; is simply |u; —u;|. Furthermore,
WLOG we may assume that the stores are ordered from left-to-right, i.e.
Up < Ug < -+ < Uppy.

112

7.2 Minimize-Expected-Cost

7.2 Minimize-Expected-Cost

We prove that the Min-Fxpected-Cost variant is hard for general metric
spaces. To prove this we first convert the problem into its decision ver-
sion. In Min-FExpected-Cost-Decide we are given a set of points S, a distance
function dis: S x S — R™, an agent’s initial location ug, a price-probability
function p'(+), and a maximum expected cost M. We have to decide whether
there is a policy with an expected cost at most M.

7.2.1 Hardness in General Metric Spaces

Theorem 7.1. For general metric spaces Min-Expected-Cost-Decide is NP-
hard.

Proof. The proof is by reduction from Hamiltonian path, defined as follows.
Given a graph G = (V, E) with V = {vy,...,v,}, decide whether there is
a simple path (v, viy,...,v;,) in G covering all nodes of V. The reduction
is as follows. Given a graph G = (V, E) with V = {vy,...,v,}, set S (the
set of stores) to be S = {us} U {uy,...,u,}, where ug is the designated
start location, and {uy,...,u,} correspond to {vy,...,v,}. The distances
are defined as follows. For all ¢, =1,...,n, dis(us, w;) = 2n, and dis(u;, u;)
is the length of the shortest path between v; and v; in G. For all ¢, p’(0) = 0.5,
and p'(oo) = 0.5, and for us, p*(n!) = 1. Finally, set M = 2n+37 | 277(j —
)+2"(nl+n—-1).

Suppose that there is a Hamiltonian path H = (v;,,vi,,...,v;,) in G.
Then, the following policy achieves an expected cost of exactly M. Starting
in us; move to u;, and continue traversing according to the Hamiltonian path.
If at any point u; along the way the price is 0, purchase and stop. Otherwise
continue to the node in the path. If at all points along the path the price is
00, purchase from store u,, where the price is n!. The expected cost of this
policy is as follows. The price of the initial step (from us to u;,) is a fixed
2n. For each j, the probability to obtain price 0 at u;; but not before is 277,
The cost of reaching u;; from u; is j — 1. The probability that no u; has a
price of 0 is 27", in which case the purchase price is n!, plus n — 1 wasted
steps. The total expected cost is thus exactly M.

Conversely, suppose that there is no Hamiltonian path in G. Clearly, since
the price at ug is so large, any optimal strategy must check all nodes/stores
{uy,...,u,} before purchasing at wus. Since there is no Hamiltonian path

113

7.2 Minimize-Expected-Cost

in (G, any such exploration would be strictly more expensive than one with
a Hamiltonian path. Thus, the expected cost would be strictly more than
M. O

Note that in this proof the number of possible prices, d, is 3. Thus, for
general metric spaces Min-Fxpected-Cost-Decide is hard even if d is bounded.

7.2.2 Solution for the Path

When all stores are located on a path, the Min-Fxpected-Cost problem can be
modeled as a finite-horizon Markov decision process (MDP), as follows. Note
that on the path, at any point in time the points/stores visited by the agent
constitute a contiguous interval, which we call the wvisited interval. Clearly,
the algorithm need only make decisions at store locations. Furthermore, de-
cisions can be limited to times when the agent is at one of the two stores
edges of the wvisited interval. At each such location, the agent has only three
possible actions: “go right” - extending the visited-interval one store to the
right, “go left” - extending the visited-interval one store to the left, or “stop”
- stopping the search and buying the product at the best price so far. Also
note that after the agent has already visited the interval [ug, u,|, how exactly
it covered this interval does not matter for any future decision; the costs have
already been incurred. Accordingly, the states of the MDP are quadruplets
[0, r e, c], such that £ < s <r, e € {{,r}, and c € D, representing the situa-
tion that the agents visited stores u, through wu,, it is currently at location
ue, and the best price encountered so far is ¢. The terminal states are Buy(c)
and all states of the form [1,m, e, ¢|, and the terminal cost is ¢. For all other
states there are two or three possible actions - “go right” (provided that
r < m), “go left” (provided that 1 < ¢), or “stop”. The cost of “go right” on
the state [¢,r, e, c] is (u,4+1 — u.), while the cost of “go-left” is (ue—up_1). The
cost of “stop” is always 0. Given the state [(,r, e, c| and move “go-right”,
there is probability p"*1(¢’) to transition to state [¢,r+1,7+1,c], for ¢ < c.
With the remaining probability, the transition is to state [, + 1,7 + 1, ¢|.
Transition to all other states has zero probability. Transitions for the “go
left” action are analogous. Given the state [¢,r, e, | and the action “stop”,
there is probability 1 to transition to state Buy(c). This fully defines the
MDP. The optimal strategy for finite-horizon MDPs can be determined us-
ing dynamic programming (see [90, Ch.4]). In our case, the complexity can
be brought down to O(d*m?) steps (using O(dm?) space).

114

7.3 Min-Budget and Max-Probability

7.3 Min-Budget and Max-Probability

7.3.1 NP Completeness

Unlike the Min-Fxpected-Cost problem, the other two problems are NP-
complete even on a path. To prove this we again convert the problems
into their decision versions. In the Min-Budget-Decide problem, we are given
a set of points S, a distance function dis : S x S — R, an agent’s initial
location ug, a price-probability function p(+), a minimum success probability
Psuce and maximum budget B. We have to decide whether a success proba-
bility of at least psu.. can be obtained with a budget of at most B. The exact
same formulation also constitutes the decision version of the Max-Probability
problem.

Theorem 7.2. The Min-Budget-Decide problem is NP-complete even on a
path.

Proof. Given an optimal policy it is easy to compute its total cost and success
probability in O(n) steps, therefore Min-Budget-Decide is in NP. The proof of
NP-hardness is by reduction from the KNAPSACK problem, defined as follows.
Given a knapsack of capacity C' > 0 and N items, where each item has value
v; € Z1 and size s; € Z", determine whether there is a selection of items
(0; = 1 if selected, 0 if not) that fits into the knapsack, i.e. ZZNZI 0is; < C,
and the total value, Zf\il 0;v;, is at least V.

Given an instance of KNAPSACK we build an instance for the
Min-Budget-Decide problem as follows. We assume WLOG that all the points
are on the line. Our line consists of 2N +2 stores. N stores correspond to the
knapsack items, denoted by uy,, ..., ug,. The other N + 2 stores are denoted
Ugy, Ugy s -+ Ugy 1, Where ug, is the agent’s initial location. Let T = 2- Zf\il S
and maxV = N - max; v;. For each odd 4, ug, is to the right of uy, and u,,_,
is to the right of u,,. For each even i (i # 0), uy, is to the left of u,, and u,,,
is to the left of u,,. We set |ug — u1| = |ug — uz| = T and for each i > 0 also,
[ug, — Ug,,,| =T. If N is odd (even) uy, is on the right (left) side of u,, and
it is the rightmost (leftmost) point. As for the other wy, points, uy, is located
between uy, and ug,,, if 7 is odd, and between u,, , and u,, otherwise. For
both cases, |u, — uy,| = s;. See figure 7.1 for an illustration.

We set B:T-Z?{:ﬁlj—f—QC’—kl and for each i set Xi:T-Zé.le—i—
2. Z;;ll sj. At store ug,,, either the product is available at the price of 1
with probability 1 — 27™V | or not available at any price. On any other

115

7.3 Min-Budget and Max-Probability

T T T T
M
O—O0—0O O OO0—0O0
Ug, Uk, Ug, Ugo=Ps ug: Uk, Ugs Uks

Sy S1 S3

Figure 7.1: Reduction of KNAPSACK to Min-Budget-Decide problem used in
proof of Theorem 7.2, for N=3.

store u,,, either the product is available at the price of B — X" with the same
probability, or not available at all. At any store wuy,, either the product is
available at the price of B — X' —s;, with probability 1 —27% or not available
at any price. Finally, we set pyee = 1 — 27me@V-(N+1) . 9=V,

Suppose there is a selection of items that fit the knapsack with a total
value of at least V', and consider the following policy: go right from ug, to
tg,. Then for each i = 1,2,.., N, if ; = 0 (item ¢ was not selected) change
direction and go to the other side to u,,,,. Otherwise, continue in the current
direction to u, and only then change direction to ug,,,. This policy’s total
travel cost is S0 (i-T+06;-2s;)+(N+1)-T =T-3" 41420 = B—1, thus
the agent has enough budget to reach all u,,, and wu, with §; = 1. When the
agent reaches u,,, i < N + 1 it has already spent on traveling cost exactly
T-37 j+2 Z;;ll (8;+s;) < X' so the agent has a probability of 1 —2-mV
to purchase the product at this store. When it reaches u,,_, its on the end
of its tour and since the agent’s total traveling cost is B — 1, here it also
has a probability of 1 — 2™V to purchase the product. When it reaches
uy, it has already spent exactly T - Z;le +2- Z;;ll(éj sj) 8 < X'+ s
so the agent has a probability of 1 — 27% to purchase the product in this
store. In total, the success probability is 1 — (277eV-(N+1) . TN 9-vidi) >
1 — (27maaV-(N+1) . 9=V = p_ e as Tequired.

Suppose there is a policy, plc with a total travel cost that is less than
or equal to B, and its success probability is at least ps.... Hence, plc’s
failure probability is at most 1 — pgyee = 2779V N+D . 2=V GQince mazV =
N - max;v;, plc must reach all the N + 1 stores u, with enough budget.
Hence, plc must go right from wugy, to u, and then to each other ug before
ug, .. Therefore plc goes in a zigzag movement from one side of u, to the
other side and so on repeatedly. plc also has to select some uy, to reach with
enough budget. Thus, plc has to reach these uy, right after the corresponding

116

7.3 Min-Budget and Max-Probability

store ug,. We use 7; = 1 to indicate the event in which plc selects to reach
uy, right after u,,, and v; = 0 to denote the complementary event. plc’s total
traveling cost is less than or equal to B—1 to be able to purchase the product
also at the last store, u,,,,, so T-Zj.\[:tlj+2-2j.v:1 vj- 85 < T~Z§V:J§1j+20.
Thus, Zjvzl Y-85 < C. AlS0, Peyee = 1—27maxV- N+ 9=V <] _g-mazV-(N+1),
Hf\il 2 Vi = 27V < Hf\il 27V = V> 21]\;1 v; - ;. Setting d; = ~; gives a
selection of items that fit the knapsack. Il

Thus, we either need to consider restricted instances or consider approx-
imations. We do both.

7.3.2 Restricted Case: Bounded Number of Prices

We consider the restricted case when the number of possible prices, d, is
bounded. For brevity, we focus on the Min-Budget (path) problem. The
same algorithm and similar analysis work also for the Maz-Probability (path)
problem. Consider first the case where there is only one possible price cq.
At any store i, either the product is available at this price, with probability
p; = p'(cy), or not available at any price. In this setting we show that the
problem can be solved in O(m) steps. This is based on the following lemma,
stating that in this case, at most one direction change is necessary.

Lemma 7.3. Consider a price co and suppose that in the optimal strategy
starting at point us the area covered while the remaining budget is at least
co is the interval [ug,u.]. Then, WLOG we may assume that the optimal
strategy is either (us — u, — wug) or (us = up — u,).

Proof. Any other route would yield a higher cost to cover the same interval.
O

Using this observation, we immediately obtain an O(m?) algorithm for
the single price case: consider both possible options for each interval [uy, u,],
and for each compute the total cost and the resulting probability. Choose the
option which requires the lowest budget but still has a success probability
of at least psuc.. With a little more care, the complexity can be reduced to
O(m). First note that since there is only a single price ¢y, we can add ¢, to the
budget at the end, and assume that the product will be provided at stores for
free, provided that it is available. Now, consider the strategy of first moving
right and then switching to the left. In this case, we need only consider the

117

7.3 Min-Budget and Max-Probability

minimal intervals that provide the desired success probability, and for each
compute the necessary budget. This can be performed incrementally, in a
total of O(m) operations for all such minimal intervals, since at most one
point can be added and one deleted at any given time. Similarly for the
strategy of first moving left and then switching to the right. The details are
provided in Algorithm 3.

Algorithm 3 OptimalPolicyForSinglePrice(Success probability psyce, single
price ¢g)

—_

: Uy < leftmost point on right of us s.t. 1 —[[_. 1 — pi > Dsuce
{+ s
Bﬁan — |ur — us|
while ¢ > 0 and r > s do
B 2|uy — us| + |us — uy|
if B < Bgﬁl then
BEL + B
r—r—1
while ¢ >0 and 1 —[[;_,1 — pi < Psucc do
L+—0—1
: ug < rightmost point to left of us s.t. 1 —[[7_, 1 — pi > Psuce
S
: BLE « Jug —
: while »r <m and ¢ < s do
B+ 2|us — ug| + |up — ug|
if B < BLE then
BLE B
L+—{1+1
while r <m and 1 —[[;_,1 — p; < Psucc do
r—r4+1
: return min{BFL BLEY 4 ¢

min’ *~ min

DO N = = = e e e e s e e
B2 9 0N s wy 2o

Next, consider the case that there may be several different available prices,
but their number, d, is fixed. We provide a polynomial algorithm for this
case (though exponential in d). First note that in the Min-Budget problem,
we seek to minimize the initial budget B necessary so as to guarantee a suc-
cess probability of at least pg,.. given this initial budget. Once the budget
has been allocated, however, there is no requirement to minimize the ac-
tual expenditure. Thus, at any store, if the product is available for a price
no greater than the remaining budget, it is purchased immediately and the

118

7.3 Min-Budget and Max-Probability

search is over. If the product has a price beyond the current available bud-
get, the product will not be purchased at this store under any circumstances.
Denote D = {c1,¢9,...,¢q}, with ¢; > ¢o > -+ > ¢4. For each ¢; there is
an interval I; = [uy, u,] of points covered while the remaining budget was at
least ¢;. Furthermore, for all ¢, I; C I;;;. Thus, consider the incremental
area covered with remaining budget ¢;, A; = I; — I; 1 (with Ay = I). Each
A; is a union of an interval at left of u, and an interval at the right of wu,
(both possibly empty). The next lemma, which is the multi-price analogue
of Lemma 7.3, states that there are only two possible optimal strategies to
cover each A;:

Lemma 7.4. Consider the optimal strateqy and the incremental areas A;
(i = 1,...,d) defined by this strateqy. For ¢; € D, let u,, be the leftmost
point in A; and u,, the rightmost point. Suppose that in the optimal strategy
the covering of A; starts at point us,. Then, WLOG we may assume that
the optimal strategy is either (us, — Uy, ™ uyg,) o1 (Us, = Wg, ™ Uy,). Fur-
thermore, the starting point for covering A,y is the ending point of covering
A;.

Proof. The areas A; fully determine the success probability of the strategy.
Any strategy other than the ones specified in the lemma would require more
travel budget, without enlarging any A,. O

Thus, the optimal strategy is fully determined by the leftmost and right-
most points of each A;, together with the choice for the ending points of
covering each area. We can thus consider all possible cases and choose the
one with the lowest budget which provides the necessary success probability.

2d

There are % < (92)24 ways for choosing the external points of the A;’s,

2d
and there are a total of 2¢ options to consider for the covering of each. For

each option, computing the budget and probability takes O(m) steps. Thus,
the total time is O(m2%(%%)**). Similar algorithms can also be applied for
the Maz-Probability (path) problem. In all, we obtain:

Theorem 7.5. Min-Budget (path) and Max-Probability (path) can be solved
in O(m) steps for a single price and O(m2*(52)*?) for d prices.

Unfortunately, even with a bounded number of possible prices,
Min-Budget-Decide is still hard, even on a tree.

Theorem 7.6. The Min-Budget-Decide problem is NP-complete on a tree,
even with a bounded number of prices.

119

7.3 Min-Budget and Max-Probability

Proof. Membership in NP is immediate as in the proof of Theorem 7.2. The
proof of NP-hardness is by reduction from KNAPSACK problem.

Given an instance of KNAPSACK we build an instance for the
Min-Budget-Decide problem as follows. We have N + 2 stores. N stores cor-
responds to the knapsack items, denoted by wy,, ..., ug,. The other 2 stores
are ug and u., where ug is the agent’s initial location. The stores are placed
on a star, which is a tree with one internal node, ug, and N + 1 leaves. The
distance to any wy, is defined according to the item value, dis(ug, ug,) = /2,
and dis(ug, u.) = C. At any store uy,, either the product is available at the
price of 0 with probability 1 — 27", or not available at any price. At store ug
the product is not available, and at store u, either the product is available
at the price of 0 with probability 1 — 27V mazV = N - max; v;, or not
available at any price. Finally, we set pye. = 1 —277%V .27V and B = 2-C.

Suppose there is a selection of items that fit the knapsack with a total
value of at least V', and consider the following policy: foreach: =1,2,.., N, if
d; = 1 (item i was selected) go from ug to ug, and then back to ug. Finally, go
from wug to u.. This policy’s travel cost is Zij\il(éi -8;)+C <2-C = B. If the
product is available at any store, its price is 0. Thus, the success probability
of this policy is 1 — (27™*V . [X, 27%%) > 1 — (27 . 27V) = pee as
required.

Suppose there is a policy, plc with a total travel cost that is less than or
equal to B, and its success probability is at least ps.... Hence, plc’s failure
probability is at most 1 — peyee = 2774V . 27V Since mazrV = N - max; v;,
plc must reach store u.. plc also has to select some uy, to reach, but since
dis(ug,ue) = C and B = 2 - C, ple must reach these u, before reaching .
We use 7; = 1 to indicate the event in which plc selects to reach wuy,, and
v; = 0 to denote the complementary event. plc’s traveling cost before going
to u, is less than or equal C, to be able reach u,, so Zjvzl v, -85 < C. Also,

Pouce = 1 =27V .97V <1 —gmmesV LTI 97w = 97V <[, 277 =
V > SN v -y Setting §; = v, gives a selection of items that fit the
knapsack. -

7.3.3 Min-Budget Approximation

Next, we provide an FPTAS (fully-polynomial-time-approximation-scheme)
for the Min-Budget (path) problem. The idea is to force the agent to move in
quantum steps of some fixed size 9. In this case the tour taken by the agent

120

7.3 Min-Budget and Max-Probability

can be divided into segments, each of size . Furthermore, the agent’s decision
points are restricted to the ends of these segments, except for the case where
along the way the agent has sufficient budget to purchase the product at a
store, in which case it does so and stops. We call such a movement of the
agent a d-resolution tour. Note that the larger ¢ the less decision points there
are, and the complexity of the problem decreases. Given 0 < € < 1, we show
that with a proper choice of § we can guarantee a (1 + €) approximation to
the optimum, while maintaining a complexity of O(npoly(1/e€)), where n is
the size of the input.

Our algorithm is based on computing for (essentially) each initial possible
budget B, the maximal achievable success probability, and then pick the
minimum budget with probability at least ps.... Note that once the interval
[¢, 7] has been covered without purchasing the product, the only information
that matters for any future decision is (i) the remaining budget, and (ii) the
current location. The exact (fruitless) way in which this interval was covered
is, at this point, immaterial. This, “memoryless” nature calls, again, for a
dynamic programming approach. We now provide a dynamic programming
algorithm to compute the optimal d-resolution tour. WLOG assume that
us = 0 (the initial location is at the origin). For integral ¢, let w; = id. The
points w;, which we call the resolution points, are the only decision points for
the algorithm. Set L and R to be such that wy, is the rightmost w; to the left
of all the stores and wg the leftmost w; to the right of all stores. We define two
tables, fail[-,-, -,] and act[,-, -, -], such that for all £,r, L < ¢ <0 <r <R,
e € {{,r} (one of the end points), and budget B, fail[(, r, e, B] is the minimal
failure probability achievable for purchasing at the stores outside [wy,w,],
assuming a remaining budget of B, and starting at location w,. Similarly,
act[¢,r, e, B] is the best act to perform in this situation (“left”, “right”, or
“stop”). Given an initial budget B, the best achievable success probability
is (1 —fail[0,0,0, B]) and the first move is act[0, 0,0, B]. It remains to show
how to compute the tables. The computation of the tables is performed from
the outside in, by induction on the number of remaining points. For ¢ = L
and r = R, there are no more stores to search and fail[L, R, e, B] = 1 for any
e and B. Assume that the values are known for ¢ remaining points, we show
how to compute for i + 1 remaining points. Consider cost[(,r, e, B] with i+ 1
remaining points. Then, the least failure probability obtainable by a decision

121

7.3 Min-Budget and Max-Probability

to move right (to w,;1) is:

Fr=|1- Z p(c) | failll,r + 1,7+ 1, B —]
chf(S

Similarly, the least failure probability obtainable by a decision to move left
(to wy_q) is:

Fpo=|1- Y pYo) | failll — 1,r,t =1, B —]
chf(S

Thus, we can choose the act providing the least failure probability, determin-
ing both act[l,r, e, B] and fail[¢,r, e, B]. In practice, we compute the table
only for B’s in integral multiples of 4. This can add at most § to the opti-
mum. Also, we may place a bound Bgax on the maximal B we consider in
the table. In this case, we start filling the table with w; = —Bfiax/ 0 and
W = Bgax /8, the furthest point reachable with budget BY

Next, we show how to choose d and prove the approximation ratio. Set
A = €/9. Let @ = min{|us — uss1|, |us — us—1]} - the minimum budget
necessary to move away from the starting point, and 8 = m?|u,, — u;| +
max{c : 34, p’(c) > 0} - an upper bound on the total usable budget. We start
by setting § = M2« and double it until 6 > A2/, performing the computation

for all such values of §. For such value of §, we fill the tables (from scratch) for

J

all values of B’s in integral multiples of § up to BY,. = 2A725. We now prove
that for at least one of the choices of 0 we obtain a (1 + €) approximation.
Consider a success probability pg... and suppose that optimally this suc-
cess probability can be obtained with budget B, using the tour 7,,. By
tour we mean a list of actions (“right”, “left” or “stop”) at each decision

point (which, in this case, are all store locations). We convert T, to a J-
resolution tour, Tg,t,

time to the right of w; then To(;t moves all the way to w;y;. Similarly, for

as follows. For any ¢ > 0, when 7,,, moves for the first

© <0, when T,,, moves for the first time to the left of w; then T(g,t moves all
the way to w;_.

Note that Tg,t requires additional travel costs only when it “overshoots”,
i.e. when it goes all the way to the resolution point while 7,;would not. This
can either happen (i) in the last step, or (ii) when 7, makes a direction

122

7.3 Min-Budget and Max-Probability

change. Type (i) can happen only once and costs at most §. Type (ii) can
happen at most once for each resolution point, and costs at most 26. Suppose

that 79, makes ¢ turns (i.e. t directions changes). Then, the total additional

opt
travel cost of the tour T O‘zﬁ

T, with budget B,y and TO

opt

over T, is at most (2¢41)0. Furthermore, if we use
with budget B, + (2t + 1) then at any store,
the available budget under TO(S . 1s at least that available with 7,,,. Thus, 79

opt
is a d-resolution tour that Witzfl budget at most B,,; + (2t 4 1)d succeeds Wit]il
probability > pgu... Hence, our dynamic algorithm, which finds the optimal
such d-resolution tour will find a tour with budget ngt < Byt + (2t + 2)0
obtaining at least the same success probability (one additional 0 for the

integral multiples of § in the tables).

Since Totit has t-turns, 7,,; must also have t-turns, with targets at ¢ distinct
resolution segments. For any ¢, the i-th such turn (of 7,,;) necessarily means
that T,,smoves to a point at least (i — 1) segments away, i.e. a distance of
at least (¢ — 1)0. Thus, for B,,, which is at least the travel cost of T, we
have:!)

, t-1@) . t°
Byt > 1—1)0 =—"—=0>—0 7.1
opt — ;() 2 - 4 ()
On the other hand, since we consider all options for ¢ in multiples of 2, there

must be a & such that: L
A"25 > Bop > %8 (7.2)
Combining (7.1) and (7.2) we get that ¢ < 2A~!. Thus, the approximation
ratio is:
Bou o Bl _ 1 ssnd (7.3)
Bopt Bopi - A-20/2 '

<1+ (BA+4X?) <1+e€ (7.4)

IN

Also, combining (7.2) and (7.4) we get that

BY, < Bou(l1+¢) <2)2% =B

opt max

Hence, the tables with resolution § consider this budget, and ngt will be
found.

! Assuming that ¢t > 1. If t = 0,1 the additional cost is small by (7.2).

123

7.3 Min-Budget and Max-Probability

It remains to analyze the complexity of the algorithm. For any given ¢
there are B?nax /6 = 2X7% budgets we consider and at most this number of
resolution points at each side of u,, for each, there are two entries in the
table. Thus, the size of the table is < 8A\7% = O(e®). The computation
of each entry takes O(1) steps. We consider § in powers of 2 up to § < 2",
where n is the size of the input. Thus, the total computation time is O(ne=9).
We obtain:

Theorem 7.7. For any € > 0, the Min-Budget (path) problem can be ap-
prozimated with a (1 + €) factor in O(ne~%) steps.

124

Chapter 8

Multi-Agent

In this chapter we investigate multi-agent physical search problems with un-
certain knowledge. In these settings, we analyze two models for handling
resources, the shared and the private budget models. We present poly-
nomial algorithms that work for any fixed number of agents, both for the
shared budget model (Section 8.1) and for the private budget model (Sub-
section 8.2.2). For non-communicating agents in the private budget model,
we present a polynomial algorithm that is suitable for any number of agents
(Subsection 8.2.1). We also analyze the difference between homogeneous and
heterogeneous agents in Section 8.4, both with respect to their allotted re-
sources and with respect to their capabilities. Finally, we define our variants
in an environment with self-interested agents in Section 8.3. We show how
to find a Nash Equilibrium in polynomial time, and prove that the bound on
the performance of our algorithms, with respect to the social welfare, is tight.
We conclude this chapter in Section 8.5, with a discussion on the assumptions
we have made, and we suggest ways to extend our current results.

8.1 Shared Budget

Since even the single agent case is hard for general metric spaces, with the
multi-agent case we focus solely on situations in which all the stores are on a
single path. We assume k agents, operating in the same underlying physical
setting as in the single agent case, i.e. a set of stores S and a price proba-
bility function for each store. We assume that the goal is not individualized;
the agents seek to obtain only one item and having multiple goods is not

125

8.1 Shared Budget

beneficial. Furthermore, since the agents are fully collaborative, they do not
care which agent will obtain the item.

We begin by analyzing the shared budget multi-agent model, where all
the resources and costs are shared among all the agents. In theory, agents
may move in parallel, but since minimizing time is not an objective, we
may assume WLOG that at any given time only one agent moves. When
an agent reaches a store and finds the price at this location, the opti-
mal strategy should tell whether to purchase the product (and where) and
if not what agent should move next and to where. Therefore, in the
k-Shared-Min- Expected-Cost problem the agents try to minimize the expected
total cost, which includes the travel costs of all agents plus the final pur-
chase price (which is one of the prices that the agents have sampled). In
k-Shared-Min-Budget and k-Shared-Maz-Probability, the initial budget is for
the use of all the agents, and the success probability is for any of the agents
to purchase, at any location. Since all the agents use the same budget in
this model, inter alia, for traveling costs, we assume the agents can commu-
nicate with each other to coordinate their moves. In k-Shared-Min-Budget
and k-Shared-Maz-Probability the agents only need to announce to the other
agents when they reach a specific store. In k-Shared-Min-FExpected-Cost the
agents also need to communicate the price they find at the location they have
reached.

In general, the algorithms for the single-agent case (for the path) can be
extended to the multi-agent case, with the additional complexity of coordi-
nating between the agents. We present the proofs in the appendix since they
are very similar to proofs in the single agent case.

Theorem 8.1. With k agents, k-Shared-Min-Expected-Cost can be solved
mn O(d22k(%)2’“).

Theorem 8.2. With k agents, k-Shared-Min-Budget and
k-Shared-Max-Probability with d possible prices can be solved in

O(m2ke(gmy2kd).

Theorem 8.3. With k agents, for any e > 0, k-Shared-Min-Budget can be
approzimated to within a factor of (1+ke) in O(ne=5%) steps (for an arbitrary
number of prices).

While the complexity in the multi-agent case grows exponentially in the
number of agents, in most physical environments where several agents coop-
erate in exploration and search, the number of agents is relatively moderate.

126

8.1 Shared Budget

In these cases the computation of the agents’ strategies is efficiently facili-
tated by the principles of the algorithmic approach presented in this work.

If the number of agents is not fixed (i.e. part of the input) then, the
complexity of all three variants grows exponentially. Most striking perhaps
is that k-Shared-Min-Budget and k-Shared-Mazx-Probability are NP-complete
even on the path with a single price. To prove this we again formulate
the problems into a decision version- k-Shared-Min-Budget-Decide - given a
set of points S on the path, initial locations for all agents (ugl), . ,ugk)),
a price-probability function p'(-), a minimum success probability ps,.. and
a maximum budget B, decide if success probability of at least psu.. can be
achieved with a maximum budget B.

Theorem 8.4. k-Shared-Min-Budget-Decide is NP-complete even on the
path with a single price.

Proof. An optimal policy defines for each time step which agent should move
and in which direction. Since there are at most 2m time steps, it is easy to
compute the success probability and the total cost in O(m) steps, there-
fore the problem is in NP. The NP-hard reduction is from the KNAPSACK
problem.

We assume WLOG that all the points are on the line. We use N agents
and our line consists of 2N stores. N stores correspond to the knapsack
items, denoted wuy,, ..., ux,. The other N points are the starting point of the

agents, {ugi)}izlv_’N. We set the left most point to ul? and the right most
point to ug,. For all 1 < i < N — 1 set uy, right after ul and wY right
after uy,. Set |ugl) —uy,| = s; and |ug, — ugl+1)| = B+ 1. See figure 8.1 for an

illustration.

S1

B+1 5, B+1 55
"
O—0O o O0—CO0—0O

M 2 3)
U’ U u” U ug U,

3

Figure 8.1: Reduction of the KNAPSACK problem to the Multi-Min-Budget-
Decide problem used in the proof of Theorem 8.4, for N=3.

The price at all the nodes is ¢g = 1 and p* (1) = 1 — 27%. Finally, set
B=C+1and psyee =1 —27".

127

8.2 Private Budget

For every agent 7, the only possible move is to node py,, denote by v; =1
if agent ¢ moves to py,, and 0 if not. Therefore, there is a selection of items
that fit, i.e, Zfil d;s; < C, and the total value, Zf\il d;v;, is at least V' iff
there is a selection of agents that move such that Z@Nﬂ v:s; < B, and the
total probability 1 — H@]L 727V is at least peyee = 1 — 27V O]

This is in contrast to the single agent case where the single price case can
be solved in O(n) steps.

8.2 Private Budget

We now investigate a model of private budgets, whereby each agent j has
its own initial budget B; (unlike the previous shared budget model). If the
objective is to minimize the total expected cost, the private budgets model is
equal to the shared budget model since the agents are cooperative. Therefore
in this case we have two concrete problem formulations:

1. k-Private-Maz-Probability: given initial budgets B;, for each agent j,
maximize the probability of obtaining the item.

2. k-Private-Min-Budget: given a target success probability psyec, mini-
mize the agents’ initial budgets necessary to guarantee acquisition of
the item with a probability of at least pgyce.

Since the corresponding single-agent problems are hard even for the path,
we again assume that the number of possible prices, d, is bounded. In the
k-Private- Min-Budget problem it is also important to distinguish between
two different agent models:

e [dentical budgets: the initial budgets of all the agents must be the
same. The problem is to minimize this initial budget, and we denote

the problem as k-Private-Min-Budgefidentical

e Distinct: the agents’ initial budgets may be different. In this case the
problem is to minimize the average initial budget, and we denote the
problem as k—Pm’vate—Mm—BudgetdIStht.

128

8.2 Private Budget

8.2.1 Non-Communicating Agents

We first consider the case where agents cannot communicate with each other.
In this case agents cannot assist each other. Hence a solution is a strategy
comprising of a set of ordered lists, one for each agent, determining the
sequence of stores this agent must visit.

The success probability of a strategy is the probability that at least one
of the agents will succeed in its task. Technically, in this case, it is easier to
calculate the complementary failure probability: the probability that all the
agents will not succeed in their tasks. For example, suppose that the stores
and agents are located as illustrated in Figure 8.2, and consider the depicted
strategy. This strategy fails if for both agents and each of the stores they

visit the cost of the item is higher than their remaining budget. This will
11,1 4

happen with probability 5 -7 -5 ¢ = %. Hence, the success probability of

this strategy is %.

0.5 | 60 0.75 | 20 05125 02|10

Figure 8.2: A possible input with a suggested strategy. The numbers on the
edges represent traveling costs. The table at each store u; represents the cost
probability function p;(c). The strategy of each agent is illustrated by the
arrows.

We begin by considering the k-Private-Maz-Probability problem. We
prove:

Theorem 8.5. In the no communication case if the number of possible costs
15 constant then k-Private-Max-Probability can be solved in polynomial time
for any number of agents.

The proof is based on the following definitions and lemmata.

129

8.2 Private Budget

Note that multiple strategies may result in the same success probability.
In this case we say that the strategies are equivalent. In particular there may
be more than one optimal strategy.

Definition 8.6. Let S be a strategy. Agentsi and i are said to be separated
by S if each store that is reached by i is not reached by i.

Lemma 8.7. If agents i and i are not separated by any optimal strategy,
then in at least one optimal strategy at least one of these agents must pass
the wnitial location of the other.

Proof. WLOG assume that 4 is on the right side of 7. Consider an optimal
strategy S. Let r be the rightmost store that is reached by i and [the
leftmost store that is reached by 7. Assume that none of the agents passes
the initial location of the other in S. Thus, there is at least one store between
their initial locations that is reached by both agents. WLOG assume that
1 reaches at least one store with a higher budget than i’s remaining budget
when reaching it, and denote by 7* the rightmost such store. Consider the
following modified strategy: ¢ goes according to S till the stage it has to reach
7*. If ¢ did not reach r yet then instead of reaching 7* it goes all the way
straight to r. Otherwise, it stops just before reaching 7*. i goes according to
S till the stage it has to reach 7. If ¢ did not reach [yet then after reaching
7 it goes all the way straight to . Otherwise, it stops after reaching 7*.
Agents i and i are separated by this strategy and it has at least the same
success probability as .S, in contradiction. O

Lemma 8.8. Suppose that agents i and i are not separated by any optimal
strategqy. Let S be an optimal strategy. Suppose that in S agent i passes the
initial location of agent i and agent © does not stay in its initial location.
Then, there is an optimal strategy such that one of the following holds:

e i moves only in one direction which is opposite to the final movement’s
direction of i. Furthermore, if the final movement’s direction of i s
right(left) then i passes the leftmost(rightmost) store that is reached by
i.

e cither i ori does not move.

Proof. WLOG assume that i is on the right side of 4. Let [/,] be the interval
of stores covered by 4. Since 7 passes the initial location of 4, [is located on

the left of ugi) and r is located on the right of ugi).

130

8.2 Private Budget

First we show that we may assume that i reaches at least one store outside
the interval [[,r]. If this is not the case, consider two cases. If i’s remaining
budget at each store is always as high as i’s remaining budget then ¢ does
not have to move and the theorem holds. Otherwise, let 7 the rightmost
store where i’s remaining budget is higher than i’s remaining budget. If 7* is
on the left side of ¢’s initial location, then as in the proof of Lemma 8.7, the
agents can be separated. If 7 is on the right side of 7’s initial location and
it equals 7, there is no need for ¢ to reach r since at each store in [ug), r], 1
has at least the same budget as ¢. Thus, there is an optimal strategy where
either i does not move or it moves only to the left, so i passes the rightmost
store that is reached by 7. If 7* is on the right side of ¢ but on the left side of
r then there is no need for i to go beyond 7*. Since it has more budget than
i at this location, i can move to [while i moves to r. Thus, again, there is an
optimal strategy where either ¢ does not move or it moves only to the right,
so i passes the leftmost store that is reached by 7. Thus, we may assume that
1 reaches at least one store outside the interval [I,7].

WLOG assume that ¢’s final movement’s direction is left and suppose
that ¢ reaches at least one store outside the interval [I, 7] to the left of I. If i’s
budget at [is higher than ¢’s remaining budget there, then it is also higher
at u’ , and again the agents can be separated. If i’s budget at [is not higher
than i’s remaining budget, than 7 does not have to move since ¢ can reach
the same stores to the left of [.

Now suppose that i moves to the right (which is the opposite direction
of #’s final movement) and passes ugi), but it also changes its direction. The
only reason for 7 to change directions is to reach a store on the left side of
its initial location, with a higher budget than ¢ has at this store, or to reach
a store that ¢ does not reach at all. In both cases ¢ must reach each store in
L, ugl) | with at least the same budget as ¢ has at the same location, so either
S is not optimal, or we can modify S by letting only 7 to move while i does
not move at all. O

Using these lemmata we observe that for any two agents, there is only
a constant number of possible cases where the agents are not separated by
the optimal strategies. Figure 8.3 illustrates the three core cases (the others
are symmetrical). Here, agents 1 and 3 are non-separated agents. Note that
every agent between them, like agent 2, does not have to move at all in the
optimal strategy.

Therefore we can use a dynamic programming approach to find an optimal

131

8.2 Private Budget

Figure 8.3: The only three cases where a pair of agents may not be separated.

132

8.2 Private Budget

strategy whereby all the agents are separated, but we also check the non-
separated strategies individually.

Recall that in our problem the objective is to maximize the success prob-
ability, given the initial budgets. Technically, it is easy to work with the
failure probability instead of the success probability.

Definition 8.9. faillu;, j| is the minimal failure probability if the only reach-
able stores are in the interval [uy,u;|, and only agents 1,--- ,j are allowed
to move. actlu;, j] is the optimal strateqy achieving faillu;, j|, under the same
conditions *.

Note that where u; < u¥, fail[u;, j] is not defined. Given act|u;, j],
fail[u;, j] can be easily computed in O(m) steps. For technical reasons we
add another agent, 0, with a budget of zero and set its initial location to
the leftmost store, i.e ul’ = u. fail[u;, 0]=1 for all ¢, and this agent doesn’t
affect the failure probability of any policy.

We are now ready to prove Theorem 8.5

Proof of Theorem 8.5 We use dynamic programming to calculate
fail[w,,, k] and act[u,,, k]. For fail[u;, 1] and act[u;, 1], which is the single agent
case, we employ the polynomial algorithm obtained from Theorem 7.5.

()

Given any agent j we first consider the case where u; = ug’’. In this case

in the optimal strategy j moves only to the left, or not at all. Let ul(J) be the
leftmost store visited by j with the optimal strategy for the given interval,

and agent [be the one such that ud < ul) (I may equal 0). Each agent
¢ such that [<t < j does not move in the optimal strategy. Otherwise,
agents ¢t and j are not separated and according to Lemma 8.8 agent ¢ must

(J)

pass the rightmost store ugs’’, which is not possible. The same argument

shows that each agent t such_ that ¢t < [does not reach ul(j). Therefore
act[u;, j] is composed of act[ul(‘z;)1, [], which are already known, together with
the movement of agent j to ul(j), Thus, computing u) takes O(m) steps.

Next, consider the case where u; > ugj),

In this case, in the optimal

strategy j may move in both directions, or not move at all. Let ul(j) be

!There may be more than one strategy with the same failure probability, act[u;, j] is
one of them

133

8.2 Private Budget

the leftmost store visited by j with the optimal strategy for this interval,

and agent [is the one such that ul! < ul(j). TFirst note that each agent
t, t < I, and j are separated by the optimal policy, or j does not move.
Otherwise, according to Lemma 8.7 ¢t must pass the initial location of j but

according to Lemma 8.8 j must reach a store outside the interval [ug), ud)]

which does not occur. Since j passes the initial locations of every agent ¢,
[<t < j,if one of them moves it goes only in the opposite direction of the
final movement direction of j according to Lemma 8.8 , and as illustrated in
Figure 8.3. Since they all must move in the same direction, according to the
same Lemma at most one of them moves in the optimal policy. Therefore, to
compute act[u;,j] we check only the following options, and choose the best
one:

1. j does not move, and act[ug, j] = act[uz, j — 1].

2. Each agent t, [< t < j, does not move. Thus, act[ua,j] is composed

of act[ul(*z)l,l], with the optimal movement of agent j in the interval

The previous two options assume that j and every other agent are separated.
Otherwise:

3. One agent t, [< t < j, moves. Let ugt) be the leftmost store visited
by either agent ¢ or j, with the optimal strategy, and agent [is the

one such that u{’ < ul(t). act[ui,j] is composed of act[ugf)l,], with the

t)

optimal movement of the two agents j and ¢ in the interval [Uz(Uil

There are at most m possible options for ylu)

at most k£ agents m possible options for ul(t). Therefore for each agent j and

store u; act[u;, j] can be found in O(m?k) steps, and act[u,,, k| can be found
in O(m3k?) time steps using O(mk) space.

. In each option we check for

For the k-Private-Min-Budget problem we obtain:

Theorem 8.10. In the no communication setting, if the number of costs is

constant, k—Private—Min—Budgetidemﬁical

any number of agents.

can be solved in polynomial time for

134

8.2 Private Budget

Proof. By Theorem 8.5, given a budget B, we can calculate the maximum
achievable success probability. Thus we can run a binary search over the
possible values of B to find the minimal one that still guarantees a success
probability psue.. The maximum required budget is 2 - |u; — |, which is
part of the input. Thus the binary search will require a polynomial number
of steps. Il

Theorem 8.11. If the number of agents is a parameter,
k—Private—Min—Budgetdwt”wt with no communication 1is NP-complete
even for a single possible cost.

Proof. Membership in NP is trivial. Theorem 8.4 considered the
shared budget case and showed that when the number of agents is
not constant the k-Shared-Min-Budget problem is NP-complete. In the
k—Private—Mm—BudgetdiStinCt problem the objective is to minimize the av-
erage budget, which is the same as minimizing the total budget. Thus, the
hardness of the problem follows from that of the k-Shared-Min-Budget prob-
lem. O

8.2.2 Communicating Agents

Once communication is added agents can call upon each other for assistance
and the relative scheduling of the agents’ moves must also be considered. In
this case a solution is an ordered list of moves, where each move is a pair
stating an agent and its next destination.

The success probability of a solution is now calculated according to the
order of moves. For example, suppose that the stores and agents are located
as illustrated in Figure 8.4.

Consider the following solution: agent 2 first goes to u4 and then agent
1 goes to us. Agent 2 is the only one which can succeed at uy, with a
probability of 0.8. With probability of 0.2 it will not succeed and agent 1
has a probability of 0.2 to succeed at us. Hence, the success probability is
0.840.2-0.2 = 0.84. If we switch the order of the moves we get a probability
of 0.9 to succeed at us with the first move, since agent 2 will be called for
assistance if the cost required is less than 100. If not, agent 2 will move to
us as before. Hence, this solution success probability is 0.9+ 0.1-0.8 = 0.98.

When the number of agents is not fixed, k-Private-Max-Probability,
k-Private-Min-Budgefidentical oy k_Private-Min- BudgetQStnct are ot

135

8.2 Private Budget

\Uy 50 @
C P C

100 0.2 | 100

0.7 | 80 0.8 | 50

0.2 | 30

Figure 8.4: A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store u; represents the cost
probability function p;(¢). The moves are illustrated by the arrows.

known to be solvable in polynomial time. However, in many physical en-
vironments where several agents cooperate in exploration and search, the
number of agents is relatively small. In this case we can show that all the
three problems can be solved in polynomial time. We show:

Theorem 8.12. In the setting of communicating agents, if the
number of agents and the number of different costs is fized
then k-Private-Max-Probability, k-Private-Min-Budget®@entical ;g

k—Private—Min—Budgetdismwt can be solved in polynomial time.

For brevity, we focus on the k-Private-Max-Probability problem. The
same algorithm and similar analysis work also for the other two problems.

First note that as in Maz-Probability, in k-Private-Max-Probability we
need to maximize the probability of obtaining the item given the initial
budgets B;, but there is no requirement to minimize the actual resources
consumed (in contrast to k-Shared-Max-Probability). Thus, at any store, if
agents can obtain the item for a cost no greater than its remaining budget,
the search is over. Furthermore, if the cost is beyond the agent’s available
budget, but there is another agent with a sufficient budget to both travel
from its current location and to obtain the item, then this agent is called
upon and the search is also over. Otherwise, the item will not be obtained
at this store under any circumstances. Thus, the basic strategy structure,
which determines which agent goes where, remains the same. Unless the
search has to be terminated, the decision of one agent where to go next is
not affected by the knowledge gained by others. Using a similar argument

136

8.2 Private Budget

as in the proof of Theorem 8.2, we get the following result. For brevity, we
denote d instead of d + 1.

@_)%J)

Proposition 8.13. For k agents, one needs only to consider O(m?k‘i(%d

number of options for the set of moves of the agents.

Proof. Let ¢; > ¢ > -+ > ¢q be the set of costs. For each agent j and
for each ¢; there is an interval]i(j) = [ug, u,] of points covered while the
agent’s remaining budget is at least ¢;. Furthermore, for each 5 and for all
i Ii(j) C Iz'(i)l' Thus, consider for each agent the incremental area covered
when 7ts remaining budget is ¢; but less than ¢;_4, Al(j) = l-(j) Ii(z)1 (with
Agj) = Il(j)). Each Agj) is a union of an interval at left of u{) and an interval
at the right of ud) (both possibly empty). Since there is communication,
an agent may continue to reach a store even if it does not have any chance
of obtaining the item there, in order to reveal the cost for the use of other
agents. Thus, the optimal strategy may define also an interval Ic(i]) = [ug, u,]
of points covered while the remaining budget of j is greater than 0. By
Lemma C.1, the moves of each agent are fully determined by the leftmost
and rightmost stores of each AEJ), together with the choice for the ending
points of covering each area. For each two agents ji,jo, the intervals of
covered points are disjoint, i.e. Igl) N Ié—”) = (). Therefore, for each j there
(% 22&
(2d)!
Agj)’s, and there are a total of 2¢ options to consider for the covering of each.

Thus, the total number of options for the set of moves is O(de_(%)%g)

which is polynomial (in m) O

are at most < (%)M possible choices for the external stores of the

I

It thus remains to consider the scheduling between the moves, i.e. their
order. Theoretically, with n moves there are n! different possible orderings.
We show, however, that for any given set of moves, we need only to consider
a polynomial number of possible orderings. '

Consider a given set of moves M, determining the sets AZ(J). Note that
for each agent, M fully determines the order of the moves of this agent. A
subset M’ of M is said to be a prefiz of M, if for each agent the moves in M’
are a prefix of the moves of this agent in M. A subset M’ is a suffix of M
if M — M’ is a prefix. We now inductively define the notion of a cascading
order:

1. The trivial order on moves of a single agent is cascading.

137

8.2 Private Budget

2. Let M be a set of moves, and let ¢;, be the highest cost that any agent
can pay. An order S on M is cascading if M and S can be decomposed
M = Mpre U M, ;U Mpost and S = Spre o S,,i4° Sposta such that:

e Mpre is a prefix of M consisting only of moves of agents with
budget less than ¢;, and Spre is a cascading order on Mpre.

e There exists an agent j' with budget at least ¢;, such that M, .,
consists of all the moves of j' in Al(g 7 and S.miq is the (one possible)
order on these moves.

® Mpyst are the remaining moves in M and Spgg i a cascading
order on them.

We prove (by induction) that cascading orders are optimal.

Lemma 8.14. For any set of moves M there exists a cascading order with
optimal success probability.

Proof. The proof is by induction on the number of agents and the number
of moves in M. If there is only one agent moving in M then the order is
cascading. Otherwise, consider any other order S on M and let A;, be the
set of agents with budget at least ¢;,. Let 5’ be the first agent in A;, to cover
its Af; and let to be the time it completes covering it. Mpre includes all the

moves taken by agents not in A;, prior to to; M,,, includes all the moves

of 7" in Ag/); and M),4 the rest of the moves in M. We show that we do
not decrease the success probability by first making all moves of Mpge then
all those of M,,.7. and finally those of Mpost' By the inductive hypothesis
Spre, Sypig and Spost are optimal for Myre, M,,;, and Mposb respectively
and the result follows.

Before t, all agents in A;, have a higher budget than any agent not in A4;,.
Thus, before ¢y agents of A;, will never call upon those not in A;,. Thus, it
cannot decrease the success probability if we let the agents not in A;, take
their moves first. Thus, we can allow to first perform all moves of Mpre.

Also, before ¢y no agents of A;, needs to call upon each other for assistance
(since they are all in the same resource bracket). Thus, we may allow them
to take their moves mdependently without decreasing the success probability.
In particular, we can allow j' to complete its covering of A) before any other
member of A, moves. Thus, we get that first having the moves of Mpre and
then of M. does not decrease the success probability. The moves of Mpost
are the remaining moves. O

138

8.3 Self-interested Agents

Finally we show that the number of cascading orders is polynomial:

Lemma 8.15. For fized k and d and any set of moves M there are a poly-
nomial number of cascading orders on M.

Proof. Set f(n,k,d,f) be the number of cascading orders with k agents,
n moves, d costs and ¢ agents in A;,. We prove by induction that f is
a polynomial in n. Since ¢ < k, the result follows. Clearly, for any ¢,
f(n,k,0,0) = ¢! (all of which are useless). Then, by the definition of cascad-
ing orders f(n, k,d, 0) < In*~f(n,k—€,d—1,k—0)f(n,k,d,£—1) (the n* be-
ing for the choice of Mpre). By the inductive hypothesis f(n, k—{,d—1,k—/)
and f(n,k,d,¢ — 1) are polynomials in n. Thus, so is f(n, k,d, ().]

Together with Corollary 8.13 we get that the total number of options to
consider is polynomial, proving the k-Private-Max-Probability part of Theo-
rem 8.12. The proof for the other two problems is similar.

8.3 Self-interested Agents

In this section we consider the strategic behavior that may occur when the
agents are self-interested. We assume k agents, operate in the same un-
derlying physical setting as in the previous multi-agent case with private
budgets, i.e. the stores are all on a single path, the number of possible prices,
d, is bounded, and there is a fixed number of agents. However in the self-
interested agents setting, the agents seek to obtain the item but do not
want to spend their individual budgets on travel costs; we assume the pur-
chase price is equally shared among all the agents. In this case we define
two games, a simultaneous game, Min-Budget-Game, and a sequential game,
Min-FExpected-Cost-Game.

8.3.1 Min-Budget Game

In the Min-Budget-Game we are given a target success probability psyc., and
each agent’s objective is to minimize its initial budget necessary to guarantee
that the item will be acquired with a probability of at least pgyu... To avoid
the case where each agent will set its initial budget at zero, we set the utility
of not guaranteeing the success probability pgu.. so low that it will always
be worthwhile to attain it. We assume the game is a simultaneous game;

139

8.3 Self-interested Agents

the agents can only choose their initial budgets. After this phase, the agents
calculate the (collaborative) strategy that will maximize their success prob-
ability (given their chosen budgets) and follow it. The only decision point in
this game is when an agent needs to choose its budget.

Since the number of agents and the number of different costs is fixed, the
optimal solution for k-Prz’vate—Mz’n-BudgetdiStinCt can be found in polyno-
mial time, whether the agents can or cannot communicate (Theorem 8.12).
Let B; " he the initial budget that was assigned to agent ¢ by the algorithm

from Theorem 8.12. This solution of k-Pm’vate-Mm—BudgetdiStinCt, which is
optimal, can be directly translated into a strategy, denote Opt,,.: each agent
i should individually choose its initial budget to be B;' 9 Obviously, Optsee
maximizes the social welfare and it can be computed in polynomial time.
Furthermore, Opt,,. is also a Nash Equilibrium [86, p.14]. Clearly, for each
agent ¢, there is no incentive to deviate and to choose a budget for itself which
is larger than B™, since with B™? the success probability pyec is already
guaranteed (assuming the other agents will not deviate). On the other hand,
since the algorithm of Theorem 8.12 is optimal, there is no incentive for each
agent i to deviate and choose a budget for itself which is smaller than B s,
as Psuce Will not be achieved (recall that the utility of not guaranteeing the
success probability is very low). We obtain:

Theorem 8.16. In the Min-Budget-Game, the strategy that maximizes the
social welfare, Opts,., can be found in polynomial time and it is also a Nash
Equilibrium.

8.3.2 Min-Expected-Cost Game

In the Min-FEzpected-Cost-Game each agent’s objective is to minimize its total
expected cost. As in the previous game, to avoid the case where each agent
will not want to make any move, we set the utility of not obtaining the item
so low that it is always worth traveling to at least one store to purchase the
product. The Min-Ezpected-Cost-Game is a sequential game and the rules are
as follows. At each time step, only one of the agents is allowed to move to the
next store, but it can also decide not to move at all. Then there is a decision
phase, where every agent is allowed to buy the product, to opt-out, or to do
nothing. If at least on agent decides to buy the product, it is purchased and
then the game is over (even if other agents decide to opt-out). No matter how
many agents decide to buy the product, only one is purchased. If no agent

140

8.3 Self-interested Agents

decides to buy the product and at least one agent decides to opt-out then
the game is over without buying the product. Otherwise, the decision phase
ends and the game proceeds by allowing the next agent (according to a fixed,
pre-defined cyclic order) to move. The pre-defined order of movement phases
well-define the game, but it is has no essential meaning; the agents have the
option not to move during their turns, so actually any order of movements
may occur.

In order to find the strategy that will maximize the social welfare,
Optsoe, we need to run the algorithm from Theorem 8.1. In our setting,
it will run in polynomial time. However, unlike in the Min-Budget-Game,
the solution found cannot be directly translated into a strategy. First,
we need to translate the movements. At any stage, if the algorithm for
k-Shared-Min-FExpected-Cost decides that a specific agent should move, for
instance agent ¢, then the strategy for Min-Fxpected-Cost-Game defines that
until it is agent ¢’s turn to move, any other agent will not move during
its movement phase, and all the agents will do nothing during the decision
phase. We also need to handle the case where one agent does not move ac-
cording to this strategy. For this purpose, we determine that in any case
where one of the agents deviates from its determined policy in the move-
ment phase, the other agents purchase the product during the decision phase
that follows. If it is not possible, i.e. the product is not available yet, the
other agents opt-out during the decision phase. The translation of the algo-
rithm’s decision to buy is straightforward; the strategy defines that in the
corresponding decision phase all the agents decide to buy. We also do not
need to handle the case where one agent deviates in a decision phase, since
the game will be over in that case. In conclusion, Opts,., the strategy for
Min-FEzpected-Cost-Game that maximizes the social welfare, can be found
in polynomial time using the algorithm from Theorem 8.1. However, Optg,.
is not always a Nash Equilibrium, as will be shown in Example 8.17. For
ease of notation, when describing Opt,,. or any other strategy we omit the
movement and decision phases when the agents do nothing.

Example 8.17. Suppose that the stores and agents are located as illustrated
i Figure 8.5. The traveling costs between us and uz and between uy and us
are so high, that the only reasonable moves are according to the illustrated
arrows. Opts,. for this example is that agent 1 will go to us. If the price
1s 6 the product will be purchased. Otherwise, agent 3 will go to ug and if
the price is 6 the product will be purchased. Otherwise, agent 2 will go to

141

8.3 Self-interested Agents

uy and the product will be purchased at the minimal sampled price (which
can be 12 or 27). The expected cost of this strategy is 14.375, but it is not a
Nash Equilibrium. Clearly, if the product was not purchased after the moves
of agents 1 and 3, then the minimal sampled price will be 27. At this stage,
if agent 2 deviates and decides not to move, the product will be purchased
and the private cost of agent 2 will be 9 (the purchase price is equally shared
among all the agents). If agent 2 proceeds according to Opt,., its expected
cost will be 4 4+0.5-4+0.5-9 =10.5 > 9. Therefore, agent 2 will have an
incentive to deviate from Optg,..

If we switch the movement order of agents 2 and 3, the expected cost will be
higher, 15.125, but this strategy is a Nash Equilibrium. Clearly, agent 1 will
not deviate during its turn since the other agents will opt-out. Agent 2 will
not deviate during its turn since its private cost will be 10, and if it will follow
the strategy its expected cost will be 44-0.5-4+0.5-(0.5-2+0.5-9) = 8.75 < 10
(assuming the other agents will not deviate). Agent 3 will not deviate during
its turn either, since its private cost will be 10, and if it will follow the strategy
its expected cost will be 44+0.5-2+0.5-9 = 9.5 < 10.

HIGH

Figure 8.5: A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store u; represents the
cost probability function p;(c). The reasonable moves are illustrated by the
arrows.

Example 8.17 demonstrates that Opt,,. is not always a Nash Equilib-
rium. We now show a polynomial algorithm that always returns a strategy
which is a Nash Equilibrium. Furthermore, we show an upper bound on the
algorithm’s performance, and prove that it is tight.

Theorem 8.18. There is a polynomial algorithm for finding a Nash Equi-
librium for the Min-Expected-Cost-Game.

142

8.3 Self-interested Agents

Proof. The algorithm works as follows. It divides all the buying costs
by k, and then solves the finite-horizon MDP as in the proof of Theo-
rem 8.1. The solution gained is then translated into a strategy for the
Min-FExpected-Cost-Game, in the same way we translated the optimal so-
lution of k-Shared-Min-Expected-Cost to Optgee. Let denote this strategy by
Optyash- Since the pre-process takes O(d) operations the algorithm for find-
ing Optyash is polynomial.

Any strategy S consists of traveling costs and buying costs, denoted by
{t;} and {b;}, respectively. We can then write the expected cost of S as

E[S] = Z(pf 1) + Z(pf -b;), where pt, p? are the associated probabilities.

We also \szrite t, €y ifl the traveling cost ¢; was credited to the movement of
agent 7.

We now analyze the steps of Optyesn. First note that if the product
is not available yet, there is no incentive to deviate since the other agents
will opt-out and the game will be over. We thus assume that the product
is available. The last step of Optygsn is & decision step, where the product
is purchased. By definition, there is an incentive to purchase the product
in this step. In any other decision phase the strategy of Optygasn is not to
purchase the product. However, if agent j deviates in a movement phase,
the product will be purchased in the decision phase that follows. Therefore,
we only need to consider the movement phases. Now, consider agent j and
a movement phase r, and suppose that j needs to move in r. If j deviates
(does not move), his expected cost will be ¢/k, the best price encountered so
far divided by the number of agents. Since Opty,sp, is optimal (with respect
to the modified buying costs),

c/k > Z(pf i) + Z(pf ~bi/k) (8.1)

P>r ©>r

Z(pf) > Z (P - t) (8.2)

i>r 127,t,€7

Combining (8.1) and (8.2) we obtain,

c/k > Z (5 - t:) +Z<p? - bi/k)

i>rti€J P>r

In addition,

where the right term is the expected cost of agent j if it follows Optygsh-

143

8.3 Self-interested Agents

Therefore, agent 7 has no incentive to deviate. The same analysis shows that
7 does not have an incentive to deviate if it does need to move in 7. O

Optyash 18 a Nash Equilibrium, but it does not maximize the social wel-
fare. Furthermore, there may be another Nash Equilibrium which will yield
a larger social welfare. For example, recall the settings in Example 8.17. In
these settings, Optygsn, policy is that agent 1 will go to us. If the price is 6
the product will be purchased. Otherwise, agent 3 will go to ug and buy the
product at the minimal price (6 or 27). This is indeed a Nash Equilibrium
with an expected cost of 15.25. However, we already showed a better Nash
Equilibrium with an expected cost of 15.125. We now prove an upper bound
on the performance of Opty.sn; the expected cost of Optyasn 18 N0 more than
k times worse than the expected cost of Optee.

Theorem 8.19. E[Optyasn| < k - E[Optsoc].

Proof. Suppose that E[Optyasn] > k - E[Optsoe]. Therefore,

B[Optyass] = Y _(Bh-t:)+ Y _(00-bi) > k> _(0h-t)+ > _(1}-b))] = E[Opton]
i i J J

Then,

i J

PICRIOEDICRILEDSCRARD RN
Since t; > t;/k and b; > b, /k then,
D i)+ D (07 bi/k) > D (5 t) + (0 bi/k)

The left and right terms are the expected costs of Opty.sn and Optgge, Te-
spectively, where all the buying costs are divided by k. Therefore, Optyasn
is not optimal in these settings. Contradiction. O]

As for the lower bound, consider the following example.

Example 8.20. For any ¢ > 0, suppose that the price at us = ugl) s k
with a probability of 1, and the price at the leftmost store, u; is 0 with a
probability of 1. The traveling cost from us to uy s 14 €. In all other stores
the price is always 0, and the traveling costs between any other store to us

144

8.4 Heterogenous Agents

is very high, for instance k. Opts. for this example is that agent 1 will
go left and buy the product at uy;. The cost of this strategy is 1 + €, but it
1s not a Nash Equilibrium. Clearly, agent 1 will prefer to buy the product
in its initial location, ug, since its own cost will be 1, instead of 1 + € in
Optsoe- The total cost from this strategy will be k, and it is the only Nash
Equilibrium. Therefore, for any algorithm that finds a strategy S which is a
Nash Equilibrium, E[S] € Q(ILJre - E[Optsoc]), and the bound from Theorem
8.19 is tight.

8.4 Heterogenous Agents

The analysis so far assumes that all agents are of the same type, with identical
capabilities. Specifically, the cost of obtaining the item at any given store is
assumed to be the same for all agents. However, agents may be of different
types and hence with different capabilities. For example, some agents may
be equipped with a drilling arm, which allows them to consume less battery
power while mining. In this section we consider situations of heterogenous
agents, and show that the results can be extended to such settings.

While agents may have different capabilities, in many cases it is rea-
sonable to assume that if one agent is more capable than the other at one
location, it is also more capable at all other locations (or at least not less
capable). Hence the following definition:

Definition 8.21. We say that agents are inconsistent if there exist budgets
B, B, agents j,j', and locations i,i’, such that at location i with budget B

Pr[j can obtain the item] < Pr[j’ can obtain the item)]
but at location v with budget B’
Pr[j can obtain the item] > Pr[j’ can obtain the item)]

We now show that the results of Subsection 8.2.1 can be extended to
heterogenous agents.

Theorem 8.22. [In the private budget and no communication Sset-
ting, if the number of different costs for each agent is constant, then
k-Private-Max-Probability and k-Private-Min-Budget {4€™cal copn e solved
i polynomial time with any number of heterogenous agents, provided that
the agents are consistent.

145

8.5 Extending our Results - Discussion

The algorithm is essentially the same dynamic programming algorithm
described in Subsection 8.2.1. The consistency assumption is necessary for
lemmata 8.7 and 8.8 to remain true.

In any other case, we can do away with the consistency assumption.
Clearly, however, we do need to assume that upon reaching a site, agents
can assess the cost for obtaining the item for all other agents. Otherwise,
communication would be meaningless. We obtain:

Theorem 8.23. In the setting of communicating agents, with a con-
stant number of agents, and a constant number of different costs for
each agent, k-Shared-Min-Expected-Cost, k-Shared-Max-Probability,
k-Shared-Min-Budget, k-Private-Max-Probability,
k—Private—Min-Budgetidentical and k—Private—Min—BudgetdiStht can
be solved in polynomial time even with inconsistent heterogenous agents.

The algorithms and proofs remain essentially the same as those for the
case of homogenous agents.

8.5 Extending our Results - Discussion

In this work we mainly analyzed the case where the stores are located along
a path (either closed or non-closed). There are many settings where this as-
sumption holds. For example, the assumption faithfully captures the setting
of perimeter patrol applications (see [40,112]). Also, as pointed out in the
introduction, many coverage algorithms convert their complex environment
into a simple path. However, numerous physical environments may only be
represented by a planar graph. Theorems 7.1 and 7.6 show that physical
search problems are hard even on planar graphs and trees, even with a single
agent, but finding a heuristic is of practical interest nonetheless. It seems that
the first steps in building such a heuristic will be to utilize our results. For
example, one should try to avoid repeated coverage as much as possible and
restrict the number of cases where such coverage is necessary, as we showed
in theorem 8.5. Another idea is to convert the complex graph structure into
a path, where each site on the path represents a region of strongly-connected
nodes on the original graph. Many graphs which represent real physical en-
vironments consist of some regions with strongly-connected nodes, but few
edges connect these regions (for example, cities, have many roads inside but
are connected by only a few highways). A heuristic algorithm for these graphs

146

8.5 Extending our Results - Discussion

may use our algorithm to construct a strategy for the sites along the path,
and use an additional heuristic for visiting the sites inside a region.

We also considered the case where mining costs are rounded/estimated to
one of a constant number of possible options. We believe that this assumption
is appropriate since the given input for our problems includes prior proba-
bilistic knowledge. Usually, this data comes from some sort of estimation
so it is reasonable to assume that the number of options is fixed. Neverthe-
less, if the number of costs will not be a constant it can be rounded to a
fixed number of costs, which yields a PTAS (polynomial-time approximation
scheme) for our problems.

We also assumed that the agents seek only one item. As soon as more
than one item is needed, our results do not hold, and seemingly the problems
become NP-complete.

147

Chapter 9

Future Directions and Final
Remarks

We summarize the key contributions of this thesis in Section 9.1, and suggest
future directions for this research in Section 9.2.

9.1 Summary of Key Contributions

In the first part of this dissertation we focus on the computational aspects
of voting procedures under uncertainty. We analyze computational aspects
of three major problems within the computational voting theory: winner
determination, control and manipulation. Our main contribution in this
part of the work is as follows.

e When the number of candidates is a constant, we provide a polyno-
mial time algorithm which computes the probability that a candidate
will win an election, given probabilistic information (the EVALUATION
problem). The algorithm can handle many voting rules whether voter
weights are equal, or not. When the number of candidates is not
bounded, we prove that the aforementioned EVALUATION problem is
#P-hard to compute, for Plurality, k-approval, Borda, Copeland and
Bucklin voting rules. We prove that even checking whether a can-
didate has any chance of winning (the CHANCE-EVALUATION prob-
lem) with the Plurality voting rule is NP-complete when the voters
are weighted. For the unweighted voters case, we prove that the
CHANCE-EVALUATION problem remains NP-complete for k-approval,

148

9.1 Summary of Key Contributions

Borda, Copeland, Bucklin and Maximin rules. However, for the Plural-
ity protocol we propose a polynomial time algorithm. We also provide
a simple Monte Carlo algorithm that is able to approximately compute
the probability of a candidate to win under any setting, with an error
as small as we would like.

e With voting trees, we show that calculating the probability of a candi-
date to be chosen is easy, even when the only given is the probability
that a candidate will be preferred over another. We provide an opti-
mized algorithm for this problem for linear order and fair tree order.
We demonstrate the unfairness of the linear order rule, and prove that
finding an agenda which would make a specific candidate the winner
with a non-zero probability (weak agenda rigging) is easy with linear
order. However, with fair tree order, we show that the agenda rigging
problem is provably hard. We also demonstrate that, while it seems
hard to control an election by rigging the agenda in theory, there are
heuristics that perform well on this problem in practice.

e initiate the computational analysis of a new model for coalition ma-
nipulation, termed safe manipulation, that was recently introduced by
Slinko and White [101]. We show that finding a safe manipulation is
easy for k-approval for an arbitrary value of k and for Bucklin, even with
weighted voters. We prove that checking whether a given manipulation
is safe is polynomial-time solvable for k-approval, but is coNP-hard for
Bucklin. For the Borda rule, we show that both checking whether a
given manipulation is safe and identifying a safe manipulation is hard
when the voters are weighted. We also propose two ways of extending
the notion of safe manipulation to heterogeneous group of manipu-
lators, and initiate the study of computational complexity of related
questions.

In the second part of the dissertation, we consider collaborative physical
search problems with uncertain knowledge. We analyze single and multi-
agent settings, with various models and assumptions. The contribution of
this part is summarized as follows.

e With a single agent, we define three variants of our general problem:
Min-FExpected-Cost, Maz-Probability and Min-Budget. We prove that
these problems are hard on a metric space, sometimes even if it is a

149

9.2 Future Directions

tree. We thus focus on the path case, presenting a polynomial algo-
rithm for the Min-Ezpected-Cost problem, and proving hardness for the
Maz-Probability and the Min-Budget problems. We provide an FPTAS
for Min-Budget and show that both problems are polynomial if the
number of possible prices is bounded.

e With multiple agents, we analyze shared and private budget mod-
els. With shared budget, we show how all of the single-agent algo-
rithms extend to k agents, with the time bounds growing exponen-
tially in k. We prove that this is also the case with the private budget
model, if the agents can communicate. In the case of private bud-
get with a setting of no communicating, we present a polynomial al-
gorithm that is suitable for any number of agents. We also extend
the analysis to heterogenous agents. Finally, we consider the self-
interested agents setting, showing how to find a Nash Equilibrium for
the simultaneous game (Min-Budget-Game) and the sequential game
(Min-FEzpected-Cost-Game) in polynomial time. In both cases, we show
an upper bound on the ratio between this solution and the optimal one
(the one which maximizes social welfare) and prove that it is tight.

9.2 Future Directions

In the context of the first part of this dissertation, the following points have
been left open for future work.

e Evaluation of election outcomes under uncertainty We would
like to extend our current analysis to more voting rules, including multi-
winner protocols. Even with the current protocols that we have con-
sidered there are still open questions, i.e. the complexity of EVAL-
UATION with un-weighted voters under Maximin and the CHANCE-
EVALUATION with un-weighted voters under STV. Another extension
we would like to consider would be to define and analyze a general
imperfect knowledge model, which would combine Konczak and Lang’s
model [75] of incomplete preferences with our model of probabilistic
estimation of the voters’ preferences. Moreover, we would like to im-
prove our results for the current voting rules. It would be useful to
have an approximation algorithm (or prove that one cannot be found)

150

9.2 Future Directions

for the problems that are #P-hard or NP-complete to compute. An-
other promising direction would be to use the parameterized complexity
paradigm [50] to analyze our problems. We have already showed that
if we bind one of our parameters, namely, the number of candidates,
the EVALUATION problem becomes easy to solve (and thus our prob-
lem belongs to XP, but not to FPT). It would be interesting to check
whether other restrictions could help, for example, if the number of
different probability distributions is bounded by a constant.

e How to rig elections and competitions The complexity of finding
an agenda which would make a specific candidate the winner with at
least a specific probability, is still open for linear order (ITAR! prob-
lem). The complexity of finding an agenda which would make a specific
candidate the winner with a non-zero probability is still open for fair

tree order (ITWAR/).

e Complexity of safe strategic voting A natural question which has
been left open is determining the complexity of finding a safe strategic
vote for voting rules not considered in this work, such as Copeland,
Ranked Pairs, or Maximin. Furthermore, the picture depicted in this
work is incomplete for some of the voting rules we have investigated.
In particular, it would be interesting to understand the computational
complexity of finding a safe manipulation for Borda (and, more gen-
erally, for all scoring rules) for unweighted voters. The problem for
Borda is particularly intriguing as this is perhaps the only widely stud-
ied voting rule for which the complexity of unweighted coalitional ma-
nipulation in the standard model is not known. Other exciting research
directions include formalizing and investigating the problem of select-
ing the best safe manipulation (is it the one that succeeds more often,
or one that achieves better results when it succeeds?), and extending
our analysis to other types of tie-breaking rules, such as randomized
tie-breaking rules. However, the latter question may require modifying
the notion of a safe manipulation, as the outcome of a strategic vote
becomes a probability distribution over the alternatives.

There are still many interesting open problems concerning the second
part of this dissertation. With a single agent, the complexity of the
Min-FEzpected-Cost problem on a tree remains open. This case is interest-
ing since it can be shown that Min-Fxpected-Cost is easy for a specific tree,

151

9.2 Future Directions

namely a star graph, where d is bounded. In the shared budget model, the
complexity of the k-Shared-Min-FEzxpected-Cost problem where k is part of
the input is still unresolved. In the private budget model, the complexity
of all the problems with a non-constant number of communicating agents
is unsolved. In addition, there are interesting extensions to consider. We
showed that most of our results can be extended to heterogenous agents,
with different buying capabilities. The next step should be to analyze our re-
sults with heterogenous agents with different traveling capabilities. Another
direction would be to add a time constraint, which would possibly result in
completely different optimal strategies. Also, the Min-Budget-Game can be
extended; instead of defining the utility of achieving psu.. as a step function
(“high” if pgyee is achieved and “low” if not), it could be defined as a linear
function of pg,e.. Finally, metric spaces beyond the line remain a challenge.
As we discussed in Section 8.5, it would be interesting to check the use of
our techniques in building approximations and/or heuristics for the general
metric space.

152

Appendix

153

Appendix A

Proofs for Chapter 4

A.1 Correctness Proof for Algorithm 1

Theorem A.1. Given an imperfect information model of voters’ preferences,
as described in Section 4.1, Algorithm 1 enumerate all the possible voting
scenarios in polynomial time, when the number of candidates is a constant.

Proof. Let VR be the set of voting results, that the algorithm generates in
iteration 7. We prove that the algorithm enumerates all the relevant voting
scenarios, by induction on the number of voters. If there is only one voter, the
algorithm will generate at most [voting results from the voter’s preferences.
Clearly, these are all possible voting scenarios for this voter. Otherwise,
consider the n-th iteration. Every voting scenario of n voters consist of a
voting scenario of n — 1 voters plus one preference order of the n-th voter. By
the inductive hypothesis, all the possible voting scenarios of n — 1 voters are
summarized by VR"~!. Thus, combining every voting results from VR"~! with
every preference order of the n-th voter generates VR", which summarizes all
the voting scenarios of n voters, as required.

As for the running time, the total number of voting results is polynomial
in n (since m is a constant), and for each voting result there are O(l) op-
erations for generating other voting results. Generating voting results takes
polynomial time, by definition. Thus, the algorithm’s running time is poly-
nomial in n and /. O

154

Appendix B

Proofs for Chapter 5

B.1 Proof of Theorem 5.2

Theorem 5.2. Given (T, a, M), where T is fair tree order, the evaluation of
T with respect to a and M is computable in O(m?) arithmetic operations.

Proof. Let T,g be a sub tree of T with height ;7 which contains ¢ in one of its
leaves. Let L(T) and R(T') be the left and right sub trees of T, respectively,
and denote by (1)1, (T, ..., (T'),» the candidate on the first, second, ..., last
leaf of T, respectively, when ordering the leaves from left to right.

Consider the log(m) x m matrix, F' whose entries, F'[j, k] are,

Fj, k] = Plwinner(T}) = cx| M)
Informally, F'[j, k] is the probability that candidate cj is the winner of the

sub tree 7. F may be constructed in polynomial time given (T, «, M) in
the following way.

F[1,1], F[1,2],..., F[1,m] can be determined directly from M. Each subse-
quent row of F' can be computed from the previous row according to the
following rule,

Flj K] = { Flj =1,k x Zi;l(M[cmc(R(Tg))T] x Flj—1,(R(T)))]) if ex € L(T})

Flj — 1 k] % i:l(M[Ck’c(L(TZ))T] X Flj — L(L(T]))]) if e € R(T})

Clearly, n(r(T)) = F[log(m),-]. Furthermore, for each 2 < j < log(m) we
use 27 arithmetic operations for each candidate. So the overall complexity is:
m x S0 91 = i x (S 21— 3) = x (219t 1 3) = O(m?) O

155

Appendix C

Proofs for Chapter 8

C.1 Proof of Theorem 8.1

Theorem 8.1. With k agents, k-Shared-Min-Expected-Cost can be solved
in O(d22k(%)2’“).

Proof. Since the stores are on the path, at any point in time the points/stores
visited by the agents constitute a set of k disjoint contiguous intervals, which
we call the wvisited intervals. Clearly, the algorithm need only make decisions
at store locations. Furthermore, decisions can be limited to times when the
agents are at one of the two stores edges of the visited interval. At each such
location, each agent has only three possible actions: “go right” - extending
its visited-interval one store to the right, “go left” - extending its visited-
interval one store to the left, or “stop” - stopping the search and buying
the product at the best price so far. Also note that after each agent i has
already visited its interval [ugl), uy)], how exactly it covered this interval does
not matter for any future decision; the costs have already been incurred.
Accordingly, the states of the MDP are quadruplets [L, R, F, |, such that
L= M 0@ p0) R=(r® @) B = (eM e® . e®) and
c € D. For each agent i, /%) < s < 7@ and e € {¢/® @} Every such
state represents the situation that each agent 7 visited stores u,u through
u,(, it is currently at location wu,«), and the best price encountered so far is
c. Since the intervals are disjoint, ¥ < ¢0+D for every i.

The terminal states are Buy(c) and all states such that U[E(i),r(i)] =

[1,m]. The terminal cost is c. For all other states there are at most 2k + 1

156

C.2 Proof of Theorem 8.2

possible actions - “agent i go right” (provided that) < ¢0+Y and r®) < m),
“agent i go left” (provided that r=Y < (@) and 1 < (@), or “stop”. The
cost of “agent ¢ go right” is (4, — Uew), while the cost of “agent ¢ go-
left” is (u.¢) — ups_1). The cost of “stop” is always 0. Given a vector V,
let V(j) be the same vector but with value j at index i. Given the state
L, R, E,c|] and move “agent i go-right”, there is probability p’"w“(c’) to
transition to state [L, R'(r®) + 1), E*(r® + 1),], for ¢ < c¢. With the re-
maining probability, the transition is to state [L, R'(r® + 1), E*(r® + 1), ¢].
Transition to all other states has zero probability. Transitions for the “agent
1 go left” actions are analogous, while with the action “stop” there is prob-
ability 1 to transition to state Buy(c). This fully defines the MDP. The
optimal strategy for finite-horizon MDPs can be determined using dynamic
programming (see [90, Ch.4]). In our case, the complexity can be brought
down to O(d?2¥(%)*) steps (using O(d2%(%)?*) space). O

C.2 Proof of Theorem 8.2

Theorem 8.2. With k agents, k-Shared-Min-Budget and
k-Shared-Max-Probability with d possible prices can be solved in
O(mzkd<%>2kd)'

Proof. For brevity, we focus on the k-Shared-Mazx-Probability problem. The
same algorithm and similar analysis work also k-Shared-Min-Budget problem.
Let ¢y > ¢p > -+ > cq be the set of costs. For each agent j and for each
¢; there is an interval Ii(J) = [ug, u,] of points covered while the remaining
budget is at least ¢;. Furthermore, for each 7 and for all 7, Ii(j) C]Z-(i)l. Thus,
consider for each agent the incremental area covered with remaining budget
¢; but less than ¢;_, Agj) = Iz-(j) —Iz@l (with Agj) = [fj)). Each Agj) is a union
of an interval at left of u{’ and an interval at the right of ud) (both possibly
empty). The next lemma, which is the multi-agent Max-Probability analogue
of Lemma 7.4 states that there are only two possible optimal strategies to
cover each AY:

Lemma C.1. Consider the optimal solution and the incremental areas for
each agent 7, AZ(-j) (i=1,...,d) defined by this solution. Fori € 1,...,d, let
uéj) be the leftmost store in Al(-J) and u¥ the rightmost store. Suppose that in

the optimal strategy the covering of Agj) starts at location ug) Then, WLOG

157

C.3 Proof of Theorem 8.3

we may assume that the optimal strategy for each j is either (ugj) — uﬁj) —
uy or (uf) — u — u). Furthermore, the starting point for covering

% 4

Agi)l 1s the ending point of covering Aﬁj).

Proof. Any strategy other than the ones specified in the lemma would reach
all the stores covered by the optimal solution with at most the same available
budget. O]

By the previous lemma, the moves of each agent are fully determined by
the leftmost and rightmost stores of each AZ(»]), together with the choice for the
ending points of covering each area. For each two agents j;, jo, the intervals
of covered points are disjoint, i.e. I C(l] Inr C(l”) = (). Therefore, for each j there

m\2d
are at most % < (%)Zd possible choices for the external stores of the

Az(j)’s, and there are a total of 2¢ options to consider for the covering of each.
For each option, computing the budget and probability takes O(m) steps.

Thus, the total time is O(m2*(£%)?*4) which is polynomial (in m). O

C.3 Proof of Theorem 8.3

Theorem 8.3. With k agents, For any € > 0, k-Shared-Min-Budget can be
approzimated to within a factor of (1 + ke) in O(ne=%%) steps (for arbitrary
number of prices).

Proof. For k agents, we extend the dynamic programming algorithm, which
calculates fail[-, -, -, -] and act[-, -, -, -] tables, in the same way we extended the
single agent algorithm in the proof of Theorem 8.1. We now save k disjoint
intervals, thus the tables size becomes O(¢~%). The rest of the approximation
algorithm remains essentially the same. We still consider 9 in powers of 2 up
to § < 2™, where n is the size of the input. Thus, the total computation time
is O(ne 5). Since the approximation ratio in each interval is guaranteed to
be (1 + ¢), we get a total ratio of (1 + ke). O

158

Bibliography

1]

F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and
N. Papakonstantinou. The complexity of the traveling repairman prob-
lem. Theoretical Informatics and Applications, 20:79-87, 1986.

E. Arkin, J. S. B.Mitchell, and G. Narasimhan. Resource-constrained
geometric network optimization. In Proceedings of the Fourteenth An-

nual Symposium on Computational Geometry (SCG-1998), pages 307—
316, 1998.

S. Arora and G. Karakostas. Approximation schemes for minimum la-
tency problems. In Proceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing (STOC-1999), pages 688-693, 1999.

S. Arora and G. Karakostas. A 2+¢€ approximation algorithm for the k-
mst problem. In Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA-2000), pages 754-759, 2000.

K. J. Arrow. Social Choice and Individual Values. Yale University
Press, 1951.

K. J. Arrow, A. K. Sen, and K. Suzumura, editors. Handbook of Social
Choice and Welfare, volume 1. Elsevier Science Publishers B.V., 2002.

Y. Aumann, N. Hazon, S. Kraus, and D. Sarne. Physical search prob-
lems applying economic search models. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI-2008), pages
9-16, 2008.

G. Ausiello, S. Leonardi, and A. Marchetti-Spaccamela. Algorithms
and Complexity, chapter On Salesmen, Repairmen, Spiders, and Other
Traveling Agents, pages 1-16. Springer Berlin / Heidelberg, 2000.

159

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approx-
imation guarantees for minimum weight k-trees and prize-collecting
salesmen. SIAM Journal on Computing, 28(1):254-262, 1999.

Y. Bachrach, N. Betzler, and P. Faliszewski. Probabilistic possible win-
ner determination. In Proceedings of the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence (AAAI-2010), pages 697702, 2010.

E. Balas. The prize collecting traveling salesman problem. Networks,
19:621-636, 1989.

J. Bang-Jensen and G. Gutin. On the complexity of hamiltonian path
and cycle problems in certain classes of digraphs. Discrete Applied
Mathematics, 95(1-3):41-60, 1999.

N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation
algorithms for deadline-tsp and vehicle routing with time-windows. In
Proceedings of the Thirty-Sizth Annual ACM Symposium on Theory of
Computing (STOC-2004), pages 166-174, 2004.

J. J. Bartholdi and J. Orlin. Single transferable vote resists strategic
voting. Social Choice and Welfare, 8(4):341-354, 1991.

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational dif-
ficulty of manipulating an election. Social Choice and Welfare, 6:227—
241, 1989.

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for
which it can be difficult to tell who won the election. Social Choice
and Welfare, 6:157-165, 1989.

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard is it to control
an election? Mathematical and Computer Modelling, 16:27-40, 1992.

D. Baskins. Judy IV. http://judy.sourceforge.net/, 2001.

N. Betzler and B. Dorn. Towards a dichotomy of finding possible win-
ners in elections based on scoring rules. In Proceedings of the 34th
International Symposium on Mathematical Foundations of Computer
Science (MFCS-2009), volume 5734 of Lecture Notes in Computer Sci-
ence (LNCS), pages 124-136. Springer-Verlag, 2009.

160

BIBLIOGRAPHY

[20]

[21]

[22]

[23]

[24]

[25]

2]

[27]

[28]

[29]

N. Betzler and B. Dorn. Towards a dichotomy for the possible winner
problem in elections based on scoring rules. Journal of Computer and
System Sciences, 2010. To appear.

N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate complex-
ity analysis of determining possible winners given incomplete votes. In
Proceedings of the Twenty-first International Joint Conference on Ar-
tificial Intelligence (IJCAI-2009), pages 53-58, 2009.

L. Bianco, A. Mingozzi, and S. Ricciardelli. The traveling salesman
problem with cumulative costs. Networks, 23(2):81-91, 1993.

D. Black. On the rationale of group decision-making. Journal of Po-
litical Economy, 56(1):23-34, 1948.

D. Black, editor. The theory of committees and elections. Cambridge
University Press, 1958.

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan,
and M. Sudan. The minimum latency problem. In Proceedings of the
Twenty-Siath Annual ACM Symposium on the Theory of Computing
(STOC-1994), pages 163-171, 1994.

A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoft.
Approximation algorithms for orienteering and discounted-reward tsp.
SIAM Journal on Computing, 37(2):653-670, 2007.

A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation
algorithm for the k-mst problem. Journal of Computer and System
Sciences, 58(1):101-108, 1999.

S. J. Brams and P. C. Fishburn. Voting procedures. In K. J. Arrow,
A. K. Sen, and K. Suzumura, editors, Handbook of Social Choice and
Welfare Volume 1, chapter 4. Elsevier, 2002.

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and
minimum latency tour. In Proceedings of the 44th Annual IEEE Sympo-
situm on Foundations of Computer Science (FOCS-2003), pages 36—45,
2003.

161

BIBLIOGRAPHY

[30]

[31]

[32]

[35]

[36]

[37]

[38]

C. Chekuri, N. Korula, and M. Pal. Improved algorithms for orien-
teering and related problems. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-2008), pages
661-670, 2008.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduc-
tion to computational social choice. In Proceedings of the 33rd Confer-
ence on Current Trends in Theory and Practice of Computer Science
(SOFSEM-2007), volume 4362 of Lecture Notes in Computer Science
(LNCS), pages 51-69. Springer-Verlag, 2007.

Y. Chevaleyre, J. Lang, N. Maudet, and G. Ravilly-Abadie. Compiling
the votes of a subelectorate. In Proceedings of the Twenty-first Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-2009), pages
97-102, 2009.

S. P. M. Choi and J. Liu. Optimal time-constrained trading strategies
for autonomous agents. In Proceedings of the International ICSC Sym-

posium on Multi-agents and Mobile Agents in Virtual Organizations
and E-commerce (MAMA-2000), pages 11-13, 2000.

V. Conitzer. Computational Aspects of Preference Aggregation. PhD
thesis, Department of Computer Science, Carnegie Mellon University,
2006.

V. Conitzer and T. Sandholm. Complexity of manipulating elections
with few candidates. In Proceedings of the Fighteenth National Con-
ference on Artificial Intelligence (AAAI-2002), pages 314-319, 2002.

V. Conitzer and T. Sandholm. Vote elicitation: complexity and
strategy-proofness. In Proceedings of the Eighteenth National Confer-
ence on Artificial Intelligence (AAAI-2002), pages 392-397, 2002.

V. Conitzer, T. Sandholm, and J. Lang. When are elections with few
candidates hard to manipulate? Journal of the ACM, 54(3):1-33, 2007.

E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of
manipulation. In Proceedings of the 16th International Symposium on
Algorithms and Computation (ISAAC-2005), volume 3827 of Lecture
Notes in Computer Science (LNCS), pages 206-215. Springer-Verlag,
2005.

162

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[46]

[47]

E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting.
In Financial Cryptography and Data Security, volume 3570 of Lecture
Notes in Computer Science (LNCS), pages 285-297. Springer-Verlag,
2005.

Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of
frequency-based multi-robot fence patrolling. In Proceedings of the

Seventh International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2008), pages 63-70, 2008.

U. Endriss and J. Lang, editors. Proceedings of the First International
Workshop on Computational Social Choice Theory (COMSOC-2006).
ILLC, University of Amsterdam, 2006.

J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling re-
pairman problem. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA-2003), pages 655—
664, 2003.

J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repair-
men problem. ACM Transactions on Algorithms, 3(4):40, 2007.

P. Faliszewski. Nonuniform bribery. In Proceedings of the Seventh

International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2008), pages 1569-1572, 2008.

P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
Llull and copeland voting broadly resist bribery and control. In Pro-
ceedings of the Twenty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-2007), pages 724-730, 2007.

P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
Copeland voting fully resists constructive control. In Proceedings of the
4th International Conference on Algorithmic Aspects in Information
and Management (AAIM-2008), pages 165-176, 2008.

P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting:
ties matter. In Proceedings of the Seventh International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS-2008),
pages 983-990, 2008.

163

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

T. S. Ferguson. Who solved the secretary problem? Statistical Science,
4(3):282-289, 1989.

M. Fischetti, G. Laporte, and S. Martello. The delivery man problem
and cumulative matroids. Operations Research, 41:1065-1064, 1993.

J. Flum and M. Grohe, editors. Parameterized Complexity Theory.
Springer, 2006.

Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-
uous areas by a mobile robot. Annals of Mathematics and Artificial
Intelligence, 31:77-98, 2001.

S. Gal. Search Games. Academic Press, 1980.

A. Garcia, P. Jodra, and J. Tejel. A note on the traveling repairman
problem. Networks, 40:27-31, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

N. Garg. A 3-approximation for the minimum tree spanning k vertices.
In Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science (FOCS-1996), pages 302-309, 1996.

N. Garg. Saving an epsilon: a 2-approximation for the k-mst problem in
graphs. In Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing (STOC-2005), pages 396-402, 2005.

A. Gibbard. Manipulation of voting schemes: a general result. FEcono-
metrica, 41:587-601, 1973.

M. Goemans and J. Kleinberg. An improved approximation ratio for
the minimum latency problem. In Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-1996), pages
152-158, 1996.

C. Groh, B. Moldovanu, A. Sela, and U. Sunde. Optimal seedlings in
elimination tournaments. Economic Theory, 2008. To appear.

164

BIBLIOGRAPHY

[60]

[61]

[62]

N. Hazon. Social interaction under uncertainty in multi agent systems.
In Proceedings of the Thirteenth Annual AAAI/SIGART Doctoral Con-
sortium (In association with AAAI-2008), pages 1851-1852, 2008.

N. Hazon, Y. Aumann, and S. Kraus. Collaborative multi agent physi-
cal search with probabilistic knowledge. In Proceedings of the Twenty-
first International Joint Conference on Artificial Intelligence (IJCAI-
2009), pages 167-164, 2009.

N. Hazon, Y. Aumann, S. Kraus, and M. Wooldridge. Evaluation of
election outcomes under uncertainty. In Proceedings of the DIMACS

Workshop on the Boundary between Economic Theory and Computer
Science, 2007.

N. Hazon, Y. Aumann, S. Kraus, and M. Wooldridge. Evaluation of
election outcomes under uncertainty. In Proceedings of the Seventh
International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2008), pages 959-966, 2008.

N. Hazon, Y. Aumann, S. Kraus, and M. Wooldridge. On the eval-
uation of election outcomes under uncertainty. Artificial Intelligence,
2010. Under submission.

N. Hazon, P. E. Dunne, S. Kraus, and M. Wooldridge. How to rig an
election. In Proceedings of the 9th Bar-Ilan Symposium on the Foun-
dations of Artificial Intelligence (BISFAI-2007), 2007.

N. Hazon, P. E. Dunne, S. Kraus, and M. Wooldridge. How to rig
elections and competitions. In Proceedings of the Second International
Workshop on Computational Social Choice (COMSOC-2008), pages
301-312, 2008.

N. Hazon and E. Elkind. Complexity of safe strategic voting. In
Proceedings of the 3rd International Symposium on Algorithmic Game
Theory (SAGT-10), 2010.

N. Hazon and E. Elkind. Complexity of safe strategic voting. In Pro-
ceedings of the Third International Workshop on Computational Social
Choice (COMSOC-2010), 2010.

165

BIBLIOGRAPHY

[69]

[70]

[71]

[72]

[73]

N. Hazon and E. Elkind. Complexity of safe strategic voting. In Pro-
ceedings of the First Workshop on Cooperative Games in Multiagent
Systems (CoopMAS-2010), 2010.

N. Hazon and G. A. Kaminka. Redundancy, efficiency, and robustness
in multi-robot coverage. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA-2005), pages 735-741,
2005.

E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for voting
systems. Journal of Computer and System Sciences, 73(1):73-83, 2007.

E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exact analysis
of dodgson elections: Lewis Carroll’s 1876 voting system is complete
for parallel access to NP. Journal of the ACM, 44(6):806-825, 1997.

E. Hemaspaandra, L.. A. Hemaspaandra, and J. Rothe. Hybrid elections
broaden complexity-theoretic resistance to control. In Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence

(IJCAI-2007), pages 1308-1314, 2007.

O. Hudry. A note on banks winners in tournaments are difficult to
recognize by g. j. woeginger. Social Choice and Welfare, 23(1):113—
114, 2004.

K. Konczak and J. Lang. Voting procedures with incomplete prefer-
ences. In Proceedings of the Multidisciplinary IJCAI-05 Workshop on
Advances in Preference Handling (M-PREF), 2005.

B. O. Koopman. Search and Screening: General Principles with His-
torical Applications. Pergamon Press, 1980.

E. Koutsoupias, C. H. Papadimitriou, and M. Yannakakis. Searching
a fixed graph. In Proceedings of the 23rd International Colloquium
on Automata, Languages and Programming (ICALP-1996), pages 280—
289, 1996.

D. Lacy and E. M. S. Niou. A problem with referendums. Journal of
Theoretical Politics, 12(1):5-31, 1998.

166

BIBLIOGRAPHY

[79]

[80]

[81]

[82]

[33]

[84]

[35]

[36]

[87]

[38]

[89]

J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Win-
ner determination in sequential majority voting. In Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI-2007), pages 1372-1377, 2007.

J.-F. Laslier. Tournament solutions and majority voting. Springer,
1997.

S. Lippman and J. McCall. The economics of job search: A survey.
Economic Inquiry, 14:155-189, 1976.

G. C. Loury. Market structure and innovation. The Quarterly Journal
of Economics, 93(3):395-410, 1979.

A. Lucena. Time-dependent traveling salesman problemthe delivery-
man case. Networks, 20(6):753-763, 1990.

J. McMillan and M. Rothschild. Search. In R. Aumann and S. Amster-
dam, editors, Handbook of Game Theory with Economic Applications,
chapter 27, pages 905-927. Elsevier, 1994.

E. Minieka. The delivery man problem on a tree network. Annals of
Operations Research, 18(1-4):261-266, 1989.

M. Osborne and A. Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incompleteness and
incomparability in preference aggregation. In Proceedings of the Twen-
tieth International Joint Conference on Artificial Intelligence (IJCAI-
2007), pages 1464-1469, 2007.

M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Dealing with in-
complete agents preferences and an uncertain agenda in group decision
making via sequential majority voting. In Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR-2008), pages 571-578, 2008.

A. D. Procaccia and J. S. Rosenschein. Junta distributions and the
average-case complexity of manipulating elections. Journal of AI Re-
search, 28:157-181, 2007.

167

BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

M. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley-Interscience, 1994.

S. Rosen. Prizes and incentives in elimination tournaments. The Amer-
ican Economic Review, 76(4):701-715, 1986.

J. Rothe, , H. Spakowski, and J. Vogel. Exact complexity of the winner
problem for young elections. Theory of Computing Systems, 36(4):375—
386, 2003.

S. Sahni and T. Gonzales. P-complete problems and approximate solu-
tions. In Proceedings of the 15th Annual Symposium on Switching and
Automata Theory (SWAT-197/), pages 28-32, 1974.

T. Sandholm. Distributed rational decision making. In G. Weif3, editor,
Multiagent Systems, pages 201-258. The MIT Press: Cambridge, MA,
1999.

D. Sarne and S. Kraus. Cooperative exploration in the electronic mar-
ketplace. In Proceedings of the Twentieth National Conference on Ar-
tificial Intelligence (AAAI-2005), pages 158-163, 2005.

M. A. Satterthwaite. Strategy-proofness and arrows conditions: exis-
tence and correspondence theorems for voting procedures and social
welfare functions. Journal of Economic Theory, 10:187-217, 1975.

A. J. Schwenk. What is the correct way to seed a knockout tournament.
The American Mathematical Monthly, 107(2):140-150, 2000.

D. T. Searls. On the probability of winning with different tourna-
ment procedures. Journal of the American Statistical Association,
58(304):1064-1081, 1963.

D. Simchi-Levi and O. Berman. Minimizing the total flow time of n
jobs on a network. [IE Transactions, 23(3):236-244, 1991.

R. Sitters. The minimum latency problem is np-hard for weighted
trees. In Proceedings of the 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO-2002), pages 230-239, 2002.

168

BIBLIOGRAPHY

[101]

[102]

[103]

[104]

[105]

106]

[107]

108

[109]

[110]

A. Slinko and S. White. Non-dictatorial social choice rules are safely
manipulable. In Proceedings of the Second International Workshop on
Computational Social Choice (COMSOC-2008), pages 403-413, 2008.

S. V. Spires and S. Y. Goldsmith. Exhaustive geographic search with
mobile robots along space-filling curves. In First International Work-
shop on Collective Robotics, pages 1-12, 1998.

G. Tullock. Toward a Theory of the Rent-seeking Society. Texas A&M
University Press, 1980.

T. Vu, A. Altman, and Y. Shoham. On the complexity of schedule con-
trol problems for knockout tournaments. In Proceedings of the Eighth
International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2009), pages 225-232, 20009.

T. Vu, N. Hazon, A. Altman, Y. Shoham, S. Kraus, and M. Wooldridge.
On the complexity of schedule control problems for knock-out tourna-
ments. Journal of Artificial Intelligence Research, 2010. Under sub-
mission.

T. Walsh. Uncertainty in preference elicitation and aggregation. In
Proceedings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI-2007), pages 3-8, 2007.

T. Walsh. Where are the really hard manipulation problems? the
phase transition in manipulating the veto rule. In Proceedings of the

Twenty-first International Joint Conference on Artificial Intelligence
(1JCAI-2009), pages 324-329, 2009.

[. R. Webb. Depth-first solutions for the deliveryman problem on tree-
like networks: an evaluation using a permutation model. Transporta-
tion Science, 30(2):134-147, 1996.

D. B. West, editor. Introduction to Graph Theory. Prentice Hall, 2
edition, 2001.

R. J. V. Wiel and N. V. Sahinidis. Heuristic bounds and test problem
generation for the time dependent traveling salesman problem. Trans-
portation Science, 29(2):167-183, 1995.

169

BIBLIOGRAPHY

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

121]

T. Will. Extremal Results and Algorithms for Degree Sequences of
Graphs. PhD thesis, University of Illinois at Urbana-Champaign, 1993.

K. Williams and J. Burdick. Multi-robot boundary coverage with plan
revision. In Proceedings of the 2006 IEEE International Conference on
Robotics and Automation (ICRA-2006), pages 1716-1723, 2006.

G. J. Woeginger. Banks winners in tournaments are difficult to recog-
nize. Social Choice and Welfare, 20(3):523-528, 2003.

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley
& Sons, 2002.

L. Xia and V. Conitzer. Determining possible and necessary winners
under common voting rules given partial orders. In Proceedings of
the Twenty-Third AAATI Conference on Artificial Intelligence (AAAI-
2008), pages 196201, 2008.

L. Xia and V. Conitzer. Compilation complexity of common voting
rules. In Proceedings of the Twenty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI-2010), pages 915-920, 2010.

L. Xia, J. Lang, and M. Ying. Sequential voting rules and multiple
elections paradoxes. In The Eleventh Conference on Theoretical Aspects
of Rationality and Knowledge (TARK-2007), pages 279-288, 2007.

L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and J. S. Rosen-
schein. Complexity of unweighted coalitional manipulation. In Proceed-

ings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI-2009), pages 348-353, 2009.

C. Yang. A dynamic programming algorithm for the travelling repair-
man problem. Asia-Pacific Journal of Operations Research, 6(10):192—
2061, 1989.

H. P. Young. Extending condorcets rule. Journal of Economic Theory,
16:335-353, 1977.

M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein. Algo-
rithms for the coalitional manipulation problem. Artificial Intelligence,
173(2):392-412, 2009.

170

110

111
111
113
113
114
115
115
117
120

125
125
128
129
135
139
139
140
145
146

148
148
150

153

154
154

155
155

156
156
157
158

159

"MNANO0N VT'N OY N'T'S N0 wio'n ni'yva .|

T'N' DIO
NNTANE NAI7I'MN0 . 7.1
nWIYNnn-ni7yn-1ym ntya 7.2
D"775 DLVN DA 'WIrN J7.2.1
7awn Ny nno .7.2.2
NNANONN-DIoPMI A'XPNN-IYTA NIYa.7.3
ninw-NP .7.3.1
DIoNn D'NN 190N 72am npn . 7.3.2
A'¥pPNN-IY™M NUya iy ang 7.3.3

D'1DI10 NxIp .

qQniwn 2'¥pn 8.1

'079 2'¥j7n .8.2
NWREN N7 X977 0o .8.2.1
WD N7 2va 0o .8.2.2

DNXYY? DANITN 0'2010.8.3
Axpnn-ym pnwn .8.3.1
nwiwnn-ni?vn-1ym pnwn .8.3.2

D'T'NX DI'XY D'D10.8.4

[I'T -NIXXIND NN .8.5

DI13'0"7 NINYAI D T'AY 7NN 1Y
NTN2 D"P'YN D'YIT'NN DI12'0.9.1
DTNy NN 21 .9.2

7

NS01

4 1o 12y nindin
1 DNMIAYR NI N nndin.1.A

5 {719 1y nindIn .

5.2 vowun nndIn.1.B

8 i N1y nindIn
8.1 vown nnoin.1.C
8.2 vown nnoin .2.C
8.3 vown nndIn .3.C

A

n'oMAI'AN

10
13
16
19

21
21
22
24
25
27

30

31

34
35
37
37
42
47
48
55
57

61
62
65
66
71
72
76

81
81
84
88
94

D"'"1yn oINn

anTn .
NIXTI 'R INN NN'N2A Nx¥ann nyap.1.1
NN'NAN NINNN NIVNY? 1D .1.2
NNV N'AVIVOKX NYaXN 7w ninIaon.1.3
MNANON YT OV N'T'S D220 wio'n niva.1.4
n'77 npo.1.5
n'MioNo.1.6

DinNa NITIRY .

NIXTI 'K DNN NIN'NA 7w DMIv'N 019NN 2.1
nxmnn nyap .2.1.1
noy 2.1.2
(mmn .2.1.3

MNANON VT DY N'T'D 12202 WID'N NI'va.2.2

NINTI 'K NN NN'NA 7¥ DMIY'N D'"'ONN .

N'NN2N AN AA7I'Ivn .

NIXTI 'X <MD 1IN'NAA NXINA Nyfap .

N'an nNTanl YTmn 4.1
D'TYIM 7¥ yiayp 1oon 4.2
DNNRN 4.2.1
n"onl .4.2.2
q0UN19> D'TAYIRN 1%0n .4.3
nx¥ann nyap ntva .4.3.1
NRT? 1D'0 W DXN NV7Nnn n'wa 4.3.2
177 p-noam an'ye .4.3.3

NN NIFNNN NIVAY TXD .

n'van NN 71mn 5.1

|AIN NIN'N2 YV DY Nyaxn.5.2

'MNTO 91X NYaxn.5.3

D"1011 Ni'voI'n.5.4
N'MYTOo Nyaxn? nizroorn .5.4.1
MX1'7 NN yy? nzrooin .5.4.2

NNV N'ALVIVOKX NYaxn 7w nIdI'oN .

NIMIYKRY NNYN NIIYNN DI'Yani n'yan n1mn.6.1
DNIWR-k -1 101 ,'ON' 2N :0'"717101N9N .6.2

NTI2 NO'90I ['772 NU'Y D'717101N90 .6.3

NNILIN NAVIVOXN NYAXNN 7TINY NIANN .6.4

yT' D" QWUKRD ,NT'O D220 'SIN'Y WID'N NIFYA RING 'MTIAY2 Awn 72700
NXNIY '1D'0 W'Y INWTD 1XIN WONN D210 7w NIIX IX T'N* D10 T Nj7N2 .'NNANoN
-UNIN DYIT N2'R DT 722 XN NAYN 7Y NI7Yn .20 DRIY NN 150N
"N NYT? NAELAVIT DT 702 DPIWONRD DNY'NNN 7V NIRYONNN Y R NN
NI'YaN NX 'MNTAN .0IPNR NI N'T'9 1720 021100 TNXK TWKRD 71 IMMMKN NIvn
7'w' NN97 NN NI'Yvann 770N M'RIN LNIR 'MNNAE TN D10 1Ay 1T 1201
7'W' ANP7 NTANMINYTR N0 MAXD L 27 NKRD 2707 21T NN MNY NYWpY 'MNdInI
1Y 'MNN1AI1,DRDI0 NANN D207 NIRXINN DX 'NANIN PR INK7 .NI'Yan NNX 1Y
7'W' DNMNYX MAXN 09 2PN 7TINE 'DIN'Y 2PN 7TIN D' ARYNN QIN'YY 0Y97TIN
09N ANPNN 7TIN Y |N1'DIN'WN 2NXPNN 7T 1Y [N ,0010 7Y yiap 1oon?
77N NMIYPN 'R DTN D10 7W 1901 7D 11y WIoY 7'y DNMINYKR 'Maxn ,q01m
DI'N D'DION N2 D201 '9IN'YUN WIS'NN NI'YA NIX MTAN ,91027 .'019N 2'NPNN
MNDIN N7 NIXD UK 77WUn-11'Y NIR'YNT? D'NNNIATR 'Maxnl XM 91K DU9IN'Y

1T NI NNDINT (N'MN2NN NNINY 0N') D'MNMINYRN 'WIXA 7Y [1I'7v Don

a'i1a)

Y2 D0'2D10 190N DIY' [N NIR'A0 DY TTINNN D210 NIANN NN 7¥ nnn
D'VIANN DINN2 DANNRD D'NIN'DN DA 11D ,0101'RA NA7IDLV DTN L' 'oN!
NIDIYN 7 DINNA D'P0IVN DMPNN 7W 21 190Nn7 NMP'wn N2'oN DN ,D'NNIVIXRD
AN N7V ,0T DY DT DNYRNNAN D010 190N W' N2 LI7X NIdAYNA .01JI0 NiaNNn
N71V9 QIN'Y ,DIN'TN (12D ,01210N [NI'FNNANN NIYPZRIVIRN 7Y 7NN IXD DIRY
NIYPZXIVI'N NZN D210 NIANN NPAYA 7Y DINNA NITIAY NN .NI07Nn N7l
DA N1 NI¥2 NIV7NN 727 DMK D210 ,002 .01 WAl VTN 72W nnina LI7K)
D210 N'127 NITIO'N NIX '"MPN LIT NTIAYA .NIXTIE0IN 7¢ T NY' DN DNPN2
NI'MIAN NIYPRIVYI'K MY 7¢ DMIY'NN DIYOXAN DX 'MjPN ,'9'¥90 [9INA .I7ND
D'7TN2 WM'y 'O M 'OM'Y WID'NIE NN T 2V NI0Nn N7ap NN

78 NI'Ya WTN INA DM'RND DYNINAN0oN

q0IN Y AWURD ,NN'NA 7W DMWY DYONNA POIV IT NTIAY W IURIN @700
yT'n 7¢ D101V ,NXINN NYAR N'YA XD CMIPN ANIK MIYRIN D'Yan NIRTI
NI9TYN 7Y N7ONNN KN V77N IT N'WAd ARKIZARD DY NIXY7 'MINAnon
NT? DYION TAYIN 77U NNANONN NX AWN7 IX W' ,0'on NNNa 7701 0NN
MAXNI ,N'YAN [INN9Y 7'W' DNMIIAYR 'My¥n ,DI0N D'TAYIAN 190N TWKRD .NN'N1]
N"Yay MNdIN 07K NIX7IN'0Q DNMNYRN 'WIXA DX NINATAN 0101 NIXXIN
'K D'TAYIND 190N TWKRD NN'NA 770 7w 2N0) 190N 11y W7 N'WYI D'RI7ARD
12'0 INYT'R W' D'ION TAYINYG OXN PITA7 17'9X "W DN N2INAY DA 'N'RIN .DIoN

OTIZ DTN 'RYRIZARD NY'YATIT A'Ya7 2N DNNRYR MYXD 271,077

TAYINY NINANONN IT YIT'Y NN 75 AWK , NIV 'NINAN0oN 77N '"MIjN nTIayn Jwnna
NT VTN wnNwn? NI .07 71n AT DNYIm DN OIWRD INXK Tavin 7Y qTyIr 0lon
07190 NI'MNN2 P'WYa AXIvIY "NIN'Na 'yy" DK7Y NN 77 7w nndwna
Nn"yl) Tayvim 7¢I NNANON AIW'N NYYA DR Y X7 'MIpn AT pna
("L WD N'Ya) NN'NAN AR T 7Y D719 N7 NNYWORN NI DA K7X (N'¥NI7ANN
NITTIANNN 1TO NYAPA M0 T X127 700 11 X719 ,NN'NA 'Yy 7¢ NNaona
Y NWR R ,N7'W NNIND D'RRIZARD DPYA DI IN9Y NIY MKRIN .NNYIoN NNIXa
MYXN DPTTINNNN 1TO NX DWAIZ N2 N0™MYN Nyl DX JINS9Y D'YIon DN
'VNY'0 'MINANON YT 7Y [AWIXA DX MIZNI,NMTTIANN 1TO0 NYAR7 NIpruoIn

22071721 010 NI'NNNN NP7AY 'MMR VTNl

.DNNAN T 7Y 719N Ny 7Y DTAIYN DRYONRN MAPN L JIWRID 7700 D07
DN M YIT X7 72U X9X "NNANoN Yy INWTR W'Y 'MNIn X7 T DA
N1j71¥ ,N'ADIVONR NYAXNT7 NT WTN 77 .0NI0X719'I0 7w AxoRIp? 9aoxn? o'ne
NN'YN 7¢ NIDI'ON DX MIpN .U'KRIE 17270 MY NINNKRY YXIN NIV NxY719IN
NIN97 NYWR Ml INS% N1 M MR L,NYAXD 770 190N 11y NNiva N'X719'IN
.0"pwIinn X7 DN 12 NPN7 DAl DAY NIZIPYN WA NYpnY? DA 'Mon'nn LIt 'yl
NIX 'MPZNI NNV X719 7Y NN 7Tmn DX 2'NINY7 0T 'Y 'Myyn o

178 niannn 7w DMawNn 0YOKNNN

OIRAPZ NMY AI09NOI NIX [MII' N10951NS 7¢ DNOYTNA NNWY IT NTIAY

J7'8-12 NU'oNaIIX W awnnn 'wTN? NP7 nnn n

NIXTIH='R 7NN NI'NAN NIYPEXRI0VI'X

0'1010 Nhialnn hibayna

"n1o1017'9%7 V01T ANINN N7ap DWW NIaN
NN
[ITh DyNn

awnnn 'v17? apnnn

|7'X 72 NV'ONANIIX 7Y LXIOT waIn
|]A NN

X"VUn ,"vun

