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Abstract

Multi-agent Systems (MAS) deal with environments in which there are sev-
eral agents that may interact. The field of multi-agent systems began its rapid
advancement with the development of distributed, interconnected computer
systems, such as the Internet and multi-robot teams. Such interconnected
settings, where one agent interacts with another, involve studying interac-
tions such as coordination, cooperation and collective decision making. Many
researches in the field of multi-agent systems have investigated these social
interactions, but with the assumption of complete information. However,
agents must also be able to make good decisions in situations that involve a
substantial degree of uncertainty. In our work, we provide the foundation for
building such agents. Specifically, we have investigated the computational
aspects of two common social interactions, collective decision making by vot-
ing and collaborative search. However, we use probabilistic models that shed
a new light on these known settings.

The first part of our research investigates computational aspects of voting
procedures, with the presence of uncertainty. We begin by considering the
winner determination problem, which is termed “evaluation” in the proba-
bilistic knowledge setting. In the evaluation problem a probabilistic model
of voter preferences and a particular voting rule are given and the proba-
bility of a particular candidate winning needs to be computed. We provide
a polynomial algorithm to solve this evaluation problem when the number
of candidates is a constant, and we present experimental results illustrating
the algorithm’s performance in practice. However, when the number of can-
didates is not bounded, we prove that the problem becomes hard for many
prominent voting rules. We further show that even evaluating whether a
candidate has any chance of winning is hard in many cases, and we proffer
an approximation algorithm for both problems.

We then consider another probabilistic model, where only the probability
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that a candidate will be preferred over another is known. This information
is useful in voting trees, which are widely used in sports tournaments. In
these settings the problem is not only to calculate the probability of a can-
didate to be chosen (i.e. the evaluation problem), but also the possibility
of malicious manipulation by the election organizers (i.e. the control prob-
lem). In the setting of voting trees, the election officers may control the
election by rigging the ballot agenda, i.e. the voting order. We show that
the evaluation problem can be solved efficiently, while the control problem of
agenda rigging is provably hard in some settings. We thus present heuristics
for agenda rigging. We investigate the performance of these heuristics for
both randomly generated data sets and real-world data sets from tennis and
basketball competitions.

Finally, we consider computational aspects of manipulation. In this case,
we do not assume to have probabilistic knowledge. Rather, we assume that
we have imperfect information concerning which voters will join the coali-
tion of manipulators. This new model of strategic voting, which is called
safe manipulation, was recently put forward by Slinko and White [101]. We
study the complexity of finding a safe manipulative vote for a number of
common voting rules, while providing algorithms and hardness results for
both weighted and unweighted voters. We also propose two ways to extend
the notion of safe manipulation and study the computational properties of
the resulting extensions.

The second part of our research investigates collaborative physical search
problems with uncertain knowledge. In these settings, an agent or a team
of agents (e.g., robots) seeks a given item, potentially available at different
locations in a physical environment. We assume that the cost of acquiring
the resource or item at a given source is uncertain (a-priori), and the agents
can observe its true value only after physically arriving at the source. We
first introduce and analyze the problem with a single agent, either providing
a polynomial solution to the problem or proving its hardness. We also intro-
duce a fully polynomial time approximation scheme algorithm for a specific
variant of our problem. We then generalize our results to the multi-agent
settings, where we analyze two models for handling resources, shared and
private budget models. We present polynomial algorithms that work for any
fixed number of agents, both for shared and private budget models. For non-
communicating agents in the private budget model, we propose a polynomial
algorithm that is suitable for any number of agents. Finally, we define our
problem in an environment with self-interested agents. We show how to find
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a Nash Equilibrium in polynomial time, and prove that the bound on the
performance of our algorithms, with respect to social welfare, is tight.
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Chapter 1

Introduction

Multi-agent Systems (MAS) deal with environments in which there are sev-
eral agents that may interact. The field of multi-agent systems began its rapid
development with the advancement of distributed, interconnected computer
systems, such as the Internet and Multi-robot teams. Such interconnected
settings, where one agent interacts with another, involve studying interac-
tions such as coordination, cooperation and collective decision making [114].
Many works in the field of multi-agent systems have investigated these social
interactions, but with the assumption of complete information. However,
agents must also be able to make good decisions in situations that involve a
substantial degree of uncertainty. In our work, we provide the foundation for
building such agents. Specifically, we investigate the computational aspects
of two common social interactions: collective decision making by voting and
collaborative search. Nonetheless, we use probabilistic models that shed new
light on these known settings.

Reaching a collective decision is a very common social interaction among
people. In many multi-agent environments it is also desirable to have a
mechanism which enables the agents in a system to make a collective decision
on a given issue. The means by which such a collective decision is made is
typically a voting procedure [28]. A classic, much studied issue in the political
science literature is the design of voting procedures that, given the preferences
of voters within a system, will result in an outcome that will be acceptable to
most of the voters, i.e., that will as closely as possible reflect the preferences
of voters [5, 6]. The first part of our research investigates computational
aspects of voting procedures, with the presence of uncertainty.

When considering voting procedures from a computational perspective,
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many interesting questions arise [41]. Perhaps the most natural question
from a computer science perspective is the winner determination problem:
given the preferences of all the agents, is it possible to efficiently compute the
winning outcome according to a particular voting rule? Fortunately, in this
sense it seems that relatively few voting rules are hard to compute [16]. Per-
haps more intriguing are questions related to the complexity of manipulating
a voting procedure. It can be computationally infeasible for an agent to
compute a beneficial manipulation [15], implying that while manipulation is
possible in theory, it is infeasible in practice. Most work on the manipulation
of voting procedures has considered the manipulation of elections by voters ;
specifically, strategic misrepresentation of preferences in order to bring about
a more favored outcome. However, manipulation is also possible by election
officers – those responsible for organizing an election, which is sometimes
called “control” [17]. While the complexity of manipulation and control has
been extensively studied in previous work (see, e.g., [15,34,37,38,89]), a com-
mon underlying assumption is perfect information about voter preferences:
when computing the outcome, we have complete and correct knowledge of
the preferences of all voters. However, there are many settings whereby this
is not a realistic assumption, as we will discuss below.

We begin by considering the winner determination problem, which is
termed “evaluation” in the probabilistic knowledge setting. We assume that
for each voter, we have a probability distribution over a set of preference
orderings. Thus, for each voter, we have a number of possible preference
orderings – we do not know which of these orderings actually represents the
preferences of the voter, but for each ordering, we know the probability that
it does. The evaluation problem is therefore to compute the probability
that a particular candidate will win, given the probabilistic knowledge about
the preferences of the electorate and a specific voting rule. We proffer a
polynomial algorithm to solve the evaluation problem when the number of
candidates is a constant. We present experimental results obtained from im-
plementation of the algorithm, illustrating that the algorithm’s performance
in practice is better than its predicted theoretical bound. However, when the
number of candidates is not bounded, we prove that the problem becomes
hard for many prominent voting rules. We further show that even evaluating
whether a candidate has any chance of winning is hard in many cases, and
we provide an approximation algorithm for both problems.

We then consider another probabilistic model, where only the probability
that a candidate will be preferred over another is known. This information is
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useful in voting trees, which are widely used in sports tournaments. In these
settings the problem is not only to calculate the probability of a candidate
to be chosen (i.e. the evaluation problem), but also the possibility of mali-
cious manipulation by the election organizers (i.e. the control problem). We
investigate two common voting tree rules: the balanced voting tree, where
every candidate has to participate in the same number of matches in order
to win, and the linear order, which is a completely unbalanced tree. In these
settings, the election officers may control the election by rigging the ballot
agenda, i.e. the voting order. We show that the evaluation problem can be
solved efficiently both for the balanced and unbalanced tree, while the control
problem of agenda rigging is provably hard for the balanced tree. As a result
we present heuristics for agenda rigging. We investigate the performance of
these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions.

Finally, we consider computational aspects of manipulation. In this case,
we do not assume to have probabilistic knowledge. Rather, we assume that
we have imperfect information regarding which voters will join the coalition
of manipulators. This new model of strategic voting, which we call safe ma-
nipulation, was recently introduced by Slinko and White [101]. In this model,
a potential manipulator v announces how he intends to vote, and some of
the other voters whose preferences coincide with those of v may follow suit.
Depending on the number of followers, the outcome could be better or worse
for v than the outcome of truthful voting. A manipulative vote is called safe
if for some number of followers it improves the outcome from v’s perspective,
and can never lead to a worse outcome. We study the complexity of finding
a safe manipulative vote for a number of common voting rules, providing al-
gorithms and hardness results for both weighted and unweighted voters. We
also propose two ways of extending the notion of safe manipulation to het-
erogeneous group of manipulators, and initiate the study of computational
complexity of related questions. Our first extension of Slinko and White’s
model [101] is very simple and natural, and seems to behave similarly to
the original model from the algorithmic perspective. However, arguably, it
does not capture some of the scenarios that may occur in practice. Our sec-
ond model is considerably richer, but many of the associated computational
problems become intractable.

The second part of our research investigates collaborative physical search
problems with uncertain knowledge. In these settings, an agent or a team
of agents (e.g., robots) seeks a given item, potentially available at different
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locations in a physical environment. Traveling between locations, as well
as acquiring the item at any given location consumes resources available to
the agents. The cost of acquiring the resource or item at a given source
is uncertain (a-priori), and the agents can observe its true value only when
after physically arriving at the source. Sample applications involving this
type of search include agents on exploration and patrol missions (e.g., an
agent seeking the best location to deploy sensing equipment along its path).

Given such settings, we analyze three variants of the problem, differing in
their objective: minimizing the total expected cost, maximizing the success
probability given an initial budget, and minimizing the budget necessary to
obtain a given success probability. Although this model captures many real
world scenarios, to date it has not been investigated by other researchers.
We first introduce and analyze the problem with a single agent, and either
provide a polynomial solution to the problem or prove its hardness. We
also introduce a fully polynomial time approximation scheme algorithm for
the minimum budget variant. We then generalize our results to the multi-
agent settings, where we analyze two models for handling resources, shared
and private budget models. We present polynomial algorithms that work
for any fixed number of agents, both for shared and private budget models.
For non-communicating agents in the private budget model, we present a
polynomial algorithm that is suitable for any number of agents. We also
analyze the difference between homogeneous and heterogeneous agents, both
with respect to their allotted resources and with respect to their capabilities.
Finally, we define our variants in an environment with self-interested agents.
We show how to find a Nash Equilibrium in polynomial time, and prove
that the bound on the performance of our algorithms, with respect to social
welfare, is tight.

Below we discuss the contribution of this dissertation in more detail. In
Section 1.1 we describe our contribution to the problem of evaluation of
election outcomes under uncertainty. In Section 1.2 we introduce our work
on evaluation and control problems with voting trees and in Section 1.3 we
present our work on the complexity of safe strategic voting. In Section 1.4
we summarize our contribution to the analysis of physical search problems
with uncertain knowledge.
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1.1 Evaluation of Election Outcomes under Uncertainty

1.1 Evaluation of Election Outcomes under

Uncertainty

Determining the winner of an election in an efficient way is the most natu-
ral computational problem of voting theory. With perfect information this
problem is usually easy. However, there are many settings where this as-
sumption is not realistic. Hence, in this part of our work we investigate the
evaluation of voting rules, which is the probabilistic variant of the winner
determination problem. We assume that what is known about an electorate
is the following. For each voter, we have a probability distribution over a set
of preference orderings. The idea is that although we do not know a voter’s
preference ordering exactly, we know that it is one of a set of possible or-
derings (typically a subset of the overall set of possible preference orders),
and we have a probability distribution over these. This information may, for
example, be obtained from historical voting data, or by sampling. In this
setting, the following fundamental question arises: given such a probabilistic
model of voter preferences and a particular voting rule, how hard is it to
compute the probability that a particular candidate will win? We refer to
this as the Evaluation problem, and to the best of our knowledge, this
question has not been addressed in the existing literature1.

The motivation for investigating this question is not merely theoretical in-
terest (which is, of course, in itself legitimate). In many situations, it might
be beneficial to try to foresee the probability of a candidate being chosen
using only partial knowledge about the other agents’ preferences, which is
modeled by a probability distribution as we have described. One area is the
avoidance of strategic voting by a coalition of manipulators. Suppose that
agent A wants to vote for its most preferred candidate. Another manipulator
agent, B, could try to convince A that his preferred candidate does not have
any chance of winning so he should directly vote for his second preferred
candidate; otherwise this candidate will also lose to A’s least preferred can-
didate. Due to lack of exact knowledge of how the other agents will vote,
A may be convinced by B. Alternatively, A can estimate the other agent’s
probabilities to vote for the candidates, by asking people who know these
agents, or by using the history of their former votes on the same issue. The
ability to calculate the probability of a candidate winning should then assist

1The exception to this is the work of [35] and we discuss their work in relationship to
ours.
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1.1 Evaluation of Election Outcomes under Uncertainty

A in deciding whether B has a valid point.
This ability to calculate the probability of a candidate winning might

also be useful in other domains. For example, (and somewhat more specula-
tively), consider large multi-agent environments, in which there is a need to
keep communication to a minimum. The voting process inevitably requires
communication between the election officer and the voters in order to elicit
their preferences. However, one way to reduce the communication load is
to calculate the probabilities on the agents’ preferences from their voting
history and then calculate the probability of each candidate to win: the win-
ner is then the candidate with the highest probability of winning. In this
manner, we simulate a voting process by choosing the successful candidate
without the need of communication at all. (This method might be extended
to a more sophisticated protocol which uses limited communication by asking
only a subset of the voters about their current preferences, though we do not
investigate this possibility in this work.)

We analyze the ability to calculate the probability of a candidate winning
with a variety of different settings. We first formally define the above men-
tioned “evaluation” question in Definition 4.1. We then give a polynomial
algorithm to answer the evaluation problem when the number of candidates
is a constant. While a result in [35] establishes that Evaluation is NP-hard
for several key voting rules, even under quite stringent assumptions about
probability distributions, we show that this result holds only for weighted
voting rules with weights that are not bounded by Poly(n). We then ex-
perimentally evaluate our algorithm, showing that the actual running time
and space are smaller than the asymptotic bound. Therefore, we also test
how many voters the polynomial time algorithm can handle for a given set
of candidates. The results demonstrate that even with 6 or 7 candidates,
the algorithm can handle more than 100 voters, which suggests that it may
be used in many real-world voting scenarios. If the number of candidates is
not bounded, the evaluation problem becomes much harder: we show that
even for the well-known Plurality, k-approval Borda, Copeland, and Bucklin
voting rules the problem is #P-hard. We then analyze a simpler question,
known as the problem (Definition 4.2). This question simply asks whether a
candidate has any chance of being the winner, i.e., whether the probability
that the candidate will be a winner is greater than 0. Surprisingly, this prob-
lem is shown to be NP-complete (in the strong sense) even for the Plurality
voting rule, when voters do not have equal weights. We give a polynomial
time algorithm in cases where all voters have equal weights, for Plurality,
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1.2 How to Rig Elections and Competitions

and show that the problem is hard for many other voting rules (including
k-approval, Borda, Copeland and Bucklin). This is done by establishing the
connection to a related problem, the possible-winner problem [75]. Finally,
we present a Monte Carlo algorithm that is able to approximately answer
even the Evaluation problem where the number of candidates is a param-
eter, with an error as small as desired.

Table 1.1 summarizes our key results. For comparison, we also include
the results attained by Conitzer and Sandholm [35].

No. of Candidates Weights Chance-Evaluation Evaluation

constant
equal P(p,k,b,c,bu,m,s,...) P(p,k,b,c,bu,m,s,...)

bounded by
Poly(n)

P(p,k,b,c,bu,m,s,...) P(p,k,b,c,bu,m,s,...)

otherwise NP-hard(b,c,m,s) [35] NP-hard(b,c,m,s) [35]

parameter
equal P(p) , NP-

complete(k,b,c,bu,m)

#P-hard(p,k,b,c,bu)

bounded by
Poly(n)

NP-
complete(p,k,b,c,bu,m)

#P-hard(p,k,b,c,bu)

otherwise NP-
complete(p,k,b,c,bu,m)

#P-hard(p,k,b,c,bu)

approximation any P(p,k,b,c,bu,m,s...) P(p,k,b,c,bu,m,s...)

Table 1.1: Summary of key results. The abbreviations appearing in paren-
theses near a complexity class indicate the voting rules for which the results
have been proved. Key: p=plurality, k=k-approval, b=borda, c=copeland,
bu=bucklin, m=maximin, s=stv, . . . =many more voting rules.

1.2 How to Rig Elections and Competitions

Voting procedures may seem as efficient and elegant solutions for reaching
a collective decision among agents. However, when the multi-agent system
consists of a large number of agents, we might have hundreds of elections
occurring every minute. In such settings, it is very hard to supervise elections
to ensure that they are fair. Consequently, there is an increasing chance
that the election officers, those responsible for organizing an election, will
attempt to tilt the election results in their favor. This is, of course, a negative
phenomenon, sometimes termed control. Bartholdi et al. [17] were the first

7



1.2 How to Rig Elections and Competitions

to investigate the computational complexity of finding a successful control
by changing the set of voters or candidates. In our work we investigate
another type of election control – rigging the ballot agenda in order to favor a
particular candidate. It is well-known that some sequential pairwise majority
elections may be rigged in this way (e.g., [28, p.177] and [94]). In such
an election, the candidates are voted pairwise, and the winner remains to
challenge the next candidates while the loser is eliminated. The order of
the pairwise elections is usually done according to a binary tree. Initially,
the candidates are placed at the leaf nodes of the binary tree. Candidates
at sibling nodes compete against each other in a pairwise match, and the
winner of the match moves up the tree. The candidate who reaches the root
node is the winner of the tournament. The chairman’s role is to fix the initial
ordering of the candidates (the voting agenda). If the election officer knows
the preferences of the electorate – or more specifically, who would win in
every possible ballot – then he may be able to fix the election agenda to the
benefit of a favored candidate [79].

However, the assumption that the chairman knows exactly how a voter
would vote in any given ballot is very strong, and ultimately unrealistic. It
ignores the possibility of strategic voting, for one thing, but more generally,
the preferences of voters will not be public – the chairman will have at
best only partial knowledge about them. In light of this, the present work
considers the extent to which it is possible to rig an election agenda (and,
more generally, running orders for competitions) in the manner described
above in the presence of uncertain information. We assume that an election
officer knows the probability that a given candidate will beat another in a
pairwise ballot. This probability may be obtained from opinion polls, in the
case of governmental elections or similar; or it may be from form tables, in
the case of sporting competitions.

In our work we focus mainly on the two most common ways to organize
a set of pairwise elections. One obvious way is to use a balanced binary
tree. With this tree structure, every candidate has to participate in the same
number of matches in order to win. Due to its fairness, this voting tree
is widely used in many social settings, as well as in sporting competitions
(e.g. the soccer world cup). We also investigate a rather unfair voting tree,
where elections are ordered according to a linear order. In such an election,
the first two candidates in the ordering will be in a simple majority ballot
against each other, with the winner then going on to face a ballot against
the third candidate, and so on, until the winner of the final ballot is the
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1.2 How to Rig Elections and Competitions

overall winner. This tree structure has been used in boxing competitions,
and to elect the city to host the Olympic Games. In the voting literature,
Koutsoupias et al. [78] suggested to use this structure for voting in multi-
criteria elections and Xia et al. [117] analyzed the assumption which makes
it applicable.

Our problem may at first seem narrow – a very restricted class of voting
rules, and a very specific design objective. But this seemingly simple question
has turned out to be surprisingly subtle and some of the answers are counter-
intuitive. To begin with, note that the number of possible agendas grows
extremely quickly with the number of candidates, i.e., O( m!

2m−1 ) when the
possible tree structure is limited to be of balanced tree only. Thus, even for
a small number of candidates it can be hard to answer the agenda rigging
question. For m = 2; 4; 8; 16; 32, the numbers of possible, non-duplicate
agendas are 1; 3; 315; 638 × 106; 122 × 1024, respectively. We also note that
the two classes of voting trees that we analyze, linear order and balanced tree,
are widely used in the field of social choice and sporting competitions. They
also play a key role in other social and commercial settings, ranging from
employment interview processes to patent races and rent-seeking contests
(see [82,91,103] for details and further discussion).

Consequently we need to investigate the complexity of finding an agenda
for unbalanced and balanced voting trees. First we formally define the un-
derlying assumptions and problems. Before analyzing the problem of rigging
an agenda, we must check whether evaluating an agenda, i.e. computing the
winning probabilities of the candidates, can be done efficiently. Hence we
present a polynomial time algorithm for evaluating an agenda with any vot-
ing tree, and show an optimized version of this algorithm for balanced voting
trees. We then show that rigging an agenda for balanced voting trees is prov-
ably hard (the complete proof is due to [104, 105]). In the linear order case,
we first show how to improve the general agenda evaluation algorithm for
linear orders, and prove the unfairness of the linear order rule; a candidate
can only benefit by going late in a voting order. Thus, the election officer can
try to increase a candidate’s chance of winning by placing it last in the voting
order. We then show that a relaxed version of the original rigging agenda
problem is hard to solve. However, it is also natural to ask whether there is
any agenda which would make a specific candidate the winner with a non-zero
probability. In the linear order case, we show that this problem can be solved
in polynomial time. Our hardness results may lead us to conjuncture that
a designer cannot benefit from having the probabilistic information, since it
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1.3 Complexity of Safe Strategic Voting

is hard to rig an election agenda even with this input. However, in practi-
cal terms, the worst-case analysis is not enough. We thus present heuristics
for agenda rigging. We investigate the performance of these heuristics for
both randomly generated data sets and real-world data sets from tennis and
basketball competitions. Our heuristics achieved over 96% of the optimal
solution on average for the randomly generated and the basketball data set,
and performed reasonably well for the tennis data set. Finally, it is important
to clarify our motivation for this work. We are, of course, not advocating
election manipulation, or trying to develop techniques to make it easier! If
we can identify cases where election manipulation is easy in practice (even if
it is hard in theory), then we can use this information to design elections so
as to avoid the possibility of manipulation.

1.3 Complexity of Safe Strategic Voting

Computational aspects of voting manipulation is an active topic of current
research [41]. While the complexity of the manipulation problem for a single
voter is quite well understood, more recently researchers have begun looking
on coalitional manipulation, i.e., manipulation by multiple, possibly weighted
voters. In this setting, the standard formulation taken by all recent works is
as follows: we are given a set of votes that have been cast, and a set of manip-
ulators. We are asked whether the manipulators can cast their vote in a way
that makes a specific candidate win the election [35]. In this model, the ma-
nipulators want to get a particular candidate elected, and select their votes
based on the non-manipulators preferences that are publicly known. Unlike
the sincere voters, the manipulators are not endowed with preferences, i.e.,
ordering of candidates. This model is somewhat unsatisfactory for two rea-
sons. First, it departs from the standard model of manipulation considered
by Gibbard [57] and Satterthwaite [96], in which the manipulator, too, has
a preference over the candidates, and a manipulation is deemed successful if
it leads to an election outcome that the manipulator prefers to the outcome
of truthful voting. Second, it is asymmetric in its treatment of sincere voters
and manipulators, and thus does not explain how the manipulating coalition
forms. Therefore, it is desirable to have a plausible model of the coalition
formation process that would enable us to develop a better understanding
of coalitional manipulation. In such a model the manipulators would start
out by having the same type of preferences as sincere voters, and then some
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1.3 Complexity of Safe Strategic Voting

agents—those who are not satisfied with the current outcome and are willing
to submit an insincere ballot—would get together and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition so as to obtain
a realistic model of how the manipulating coalition forms. In particular,
it is not clear how the voters who are interested in manipulation should
identify each other, and then reach an agreement about which candidate to
promote. Indeed, the latter decision seems to call for a voting procedure, and
therefore is in itself vulnerable to strategic behavior. Further, even assuming
that suitable coalition formation and decision-making procedures exist, their
practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [101], Slinko and White put forward a model that pro-
vides a partial answer to these questions. They consider a setting where a
single voter v announces his manipulative vote L (the truthful preferences of
all agents are, as usual, common knowledge) to his set of associates F , i.e.,
the voters whose true preferences coincide with those of v. As a result, some
of the voters in F switch to voting L, while others (as well as all voters not in
F ) vote truthfully. This can happen if, e.g., v’s instructions are broadcast via
an unreliable channel, i.e., some of the voters in F simply do not receive the
announcement, or if some voters in F consider it unethical to vote untruth-
fully. Such a situation is not unusual in politics, where a public figure may
announce her decision to vote in a particular manner, and may be followed
by a subset of like-minded people. That is, in this model, the manipulating
coalition always consists of voters with identical preferences (and thus the
problem of which candidate to promote is trivially resolved), and, moreover,
the manipulators always vote in the same way. Further, it relies on minimal
communication, i.e., a single broadcast message. However, due to lack of
two-way communication, v does not know how many voters will support him
in his decision to vote L. Thus, he faces a dilemma: it might be the case that
if x voters from F follow him, then the outcome improves, while if some y 6= x
voters from F switch to voting L, the outcome becomes even less desirable to
v than the current alternative (we provide an example in Section 6.1). If v is
conservatively-minded, in such situations he would choose not to manipulate
at all. In other words, he would view L as a successful manipulation only if
(1) there exists a subset U ⊆ F such that if the voters in U switch to voting
L, the outcome improves; (2) for any W ⊆ F , if the voters in W switch to
voting L the outcome does not get worse. Slinko and White [101] call any
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manipulation that satisfies (1) and (2) safe. The main result of [101] is a
generalization of the Gibbard–Satterthwaite theorem [57, 96] to safe manip-
ulation: the authors prove that any onto, non-dictatorial voting rule with at
least 3 alternatives is safely manipulable, i.e., there exists a profile in which
at least one voter has a safe manipulation. However, Slinko and White do
not explore the computational complexity of the related problems.

In our work we focus on algorithmic complexity of safe manipulation, as
defined in [101]. We first formalize the relevant computational questions and
discuss some basic relationships between them. We then study the complex-
ity of these questions for several classic voting rules, such as Plurality, Veto,
k-approval, Bucklin, and Borda, for both weighted and unweighted voters.
For instance, we show that finding a safe manipulation is easy for k-approval
and for Bucklin, even if the voters are weighted. In contrast, for Borda, find-
ing a safe manipulation—or even checking that a given vote is safe—turns out
to be hard for weighted voters even if the number of candidates is bounded
by a small constant.

We then explore whether it is possible to extend the model of safe ma-
nipulation to settings where the manipulator may be joined by voters whose
preferences differ from his own. Indeed, in real life a voter may follow ad-
vice to vote in a certain way if it comes from a person whose preferences
are similar (rather than identical) to hers, or simply because she thinks that
voting in this manner can be beneficial to her. For instance, in politics, a
popular personality may influence many different voters at once by announc-
ing his decision to vote in a particular manner. We propose two ways of
formalizing this idea, which differ in their approach to defining the set of
a voter’s potential followers, and provide some results on the complexity of
safe manipulation in these models.

In our first extension, a manipulator v may be followed by all voters who
rank the same candidates above the current winner as v does. That is, in
this model a voter u may follow v if any change of outcome that is beneficial
to v is also beneficial to u. We show that some of the positive algorithmic
results for the standard model also hold in this more general setting. In our
second model, a voter u may follow a manipulator v that proposes to vote
L, if, roughly, there are circumstances when voting L is beneficial to u. This
model tends to be computationally more challenging: we show that finding
a safe strategic vote in this setting is hard even for very simple voting rules.
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1.4 Physical Search Problems with Uncertain

Knowledge

Frequently, in order to successfully complete its task, an agent may need to
explore (i.e., search) its environment and choose among different available
options. For example, an agent seeking to purchase a product over the inter-
net needs to query several electronic merchants in order to learn their posted
prices; a robot searching for a resource or a tangible item needs to travel
to possible locations where the resource is available and learn the configura-
tion in which it is available as well as the difficulty of obtaining it there. In
these environments, the benefit associated with an opportunity is revealed
only upon observing it. The only knowledge available to the agent prior to
observing the opportunity is the probability associated with each possible
benefit value of each prospect.

While the exploration in virtual environments can sometimes be consid-
ered costless, in physical environments traveling and observing typically also
entails a cost. Furthermore, traveling to a new location may increase or de-
crease the distance to other locations, so the cost associated with exploring
other unexplored locations changes. For example, consider a Rover robot
with the goal of mining a certain mineral. Potential mining locations may be
identified based on a satellite image, each associated with some uncertainty
regarding the difficulty of mining there. In order to assess the amount of
battery power required for mining at a specific location, the robot needs to
physically visit there. The robot’s battery is thus used not only for mining
the mineral but also for traveling from one potential location to another.
Consequently, an agent’s strategy in an environment associated with search
costs should maximize the overall benefit resulting from the search process,
defined as the value of the option eventually used minus the costs accumu-
lated along the process, rather than merely finding the best valued option.

In physical environments, it is common to use a team of agents rather than
a single agent. Extending the single agent solution to multi-agent strategy
may require subdividing the search space among the different agents. How-
ever, if agents have means of communication, then they may not wish to
become too distant, as they can call upon each other for assistance. For
example, even if a Rover does not have sufficient battery power for mining
at a given location, it may be useful for it to travel to the site in order to
determine the exact mining cost, and call for other robots that do have the
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necessary battery power. In this case, the scheduling of the robots’ travel
times is key, and must be carefully planned. If the agents are not fully co-
operative, a selfish behavior should also be handled. Each one of the agents
will try to minimize its traveling costs while still achieving the group’s goal.

Finally, agents may be of different types, or with different amounts of
resources. For example, Rover robots may enter the mission with different
initial battery charges. They may also differ in their capabilities, like a team
of rovers where some were specifically designed for mining missions, and thus
require less battery power for the same mining task.

This part of our work aims at taking the first steps in understanding
the characteristics of such physical environment settings, both for single and
multi-agent cases, and developing efficient exploration strategies for the like.
To the best of our knowledge, this is the first work to do so. Our main
focus is on environments where the opportunities are aligned along a path,
as in the case of perimeter patrol. We note that many single and multi-
agent coverage algorithms convert their complex environment into a simple
long path [51, 70, 102]. Furthermore, we show that the problem in more
general metric spaces is NP-complete, even for tree graphs. For exposition
purposes we use in the remaining of this work the classical procurement
application where the goal of the search is purchasing a product and the
value of each observed opportunity represents a price. Of course, this is only
one example of the general setting of exploration in a physical environment,
and the discussion and results of this work are relevant to any such setting,
provided that exploration and fulfilling the task use the same type of resource.

We consider three variants of the problem, differing in their objective. The
first (Min-Expected-Cost) is the problem of an agent that aims to minimize
the expected total cost of completing its task. The second (Max-Probability)
considers an agent that is given an initial budget for the task (which it
cannot exceed) and needs to act in a way that maximizes the probability
that it will complete its task (e.g., reach at least one opportunity with a
budget large enough to successfully buy the product). In the last variant
(Min-Budget) the agent is requested to guarantee a pre-defined probability
of completing the task, and needs to minimize the overall budget that will be
required to achieve the said success probability. We also consider the multi-
agent extensions of these variants. While the first variant fits mostly product
procurement applications, the two latter variants fit well into applications of
robots engaged in remote exploration, operating with a limited amount of
battery power (i.e., a budget).
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Summary of Results. We first consider the single agent case. We prove
that in general metric spaces all three problem variants are NP-hard. Thus,
as mentioned, we focus on the path setting. For this case we provide a poly-
nomial algorithm for the Min-Expected-Cost problem. We show the other
two problems (Min-Budget and Max-Probability) to be NP-complete even for
the path setting. Thus, we consider further restrictions and also provide an
approximation scheme. We show that both problems are polynomial if the
number of possible prices is constant. Even with this restriction, we show that
these problems are NP-complete on a tree graph. For the Min-Budget prob-
lem, we provide an FPTAS (fully-polynomial-time-approximation-scheme),
such that for any ε > 0, the Min-Budget problem can be approximated with
a (1 + ε) factor in O(nε−6) time, where n is the size of the input.

For the multi-agent case, we first analyze a shared budget model, where
all the resources and costs are shared among all the agents. We show that if
the number of agents is fixed, then all of the single-agent algorithms extend
to k-agents, with the time bounds growing exponentially in k. Therefore the
computation of the agents’ strategies can be performed whenever the num-
ber of agents is relatively moderate, a scenario characterizing most physical
environments where several agents cooperate in exploration and search. If
the number of agents is part of the input then the multi-agent version of
Min-Budget and Max-Probability are NP-complete even on the path and even
with a single price.

We then investigate a model of private budgets, where each agent has its
own initial budget. We again assume that the number of possible prices is
bounded. In this case, we separately consider the setting where agents can
communicate and the setting where they cannot. For non-communicating
agents we show a polynomial algorithm for the Max-Probability problem that
is suitable for any number of agents. For the Min-Budget problem with
non-communicating agents, we present a polynomial algorithm for the case
in which all agents must be allotted identical resources, but show that the
problem is NP-hard for the general case (unless the number of agents is fixed).
Next we consider agents that can communicate, and can call upon each other
for assistance. As noted above, in this case the scheduling of the different
agents’ moves must also be carefully planned. We present polynomial algo-
rithms for both the Max-Probability problem and the Min-Budget problem
that work for any constant number of agents (but become non-polynomial
when the number of agents is not constant).

We then move to the self-interested agents setting, where the agents seek
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an item but each agent tries to minimize the use of its own private budget for
traveling. We define two games, a sequential game,Min-Expected-Cost-Game,
and a simultaneous game, Min-Budget-Game. We show that when the num-
ber of possible prices is bounded and there are a fixed number of agents, the
strategy that maximizes the social welfare can be found in polynomial time.
We also show that in the Min-Budget-Game this strategy is a Nash Equilib-
rium, but this is not always the case in the Min-Expected-Cost-Game. We
therefore present a polynomial algorithm that guarantees a strategy which
is a Nash Equilibrium will be found. Furthermore, we show an upper bound
on the algorithm’s performance, and prove that it is tight.

Finally, we extend our results to the case of heterogenous agents with
different capabilities, and discuss the assumptions that we made throughout
our work. Tables 1.2 presents a summary of the results. Empty entries
represent open problems.

1.5 Thesis Overview

This dissertation comprises 9 chapters and 3 appendixes, organized into two
main parts (see Figure 1.1). This chapter constitutes the introduction of
the thesis. The next chapter surveys the related work. Chapters 3 − −6
constitute Part 1 of the dissertation, which deal with the computational
aspects of elections with uncertainty. Chapters 7 − −8 constitute Part 2
of the dissertation, which consider physical search problems with uncertain
knowledge. In Chapter 10 we provide our conclusions and discuss future
work. The appendixes consist of the proofs we have omitted from the main
text for ease of reading.
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Min-Expected-Cost Max-Probability Min-Budget

General metric spaces NP-hard NP-complete NP-complete

Trees NP-complete NP-complete

Path

Single price n/a O(m) O(m)

d prices O(d2m2) O(2d e·m
d )2d) O(2d e·m

d )2d)

General case O(d2m2) NP-complete NP-complete

(1+ε) approxima-
tion

n/a O(nε−6)

(a) Single agent.

Min-Expected-Cost Max-Probability Min-Budget

k agents O(2d2k m
k )

2k) O(m2kd em
2kd)

2kd) O(m2kd em
2kd)

2kd)

General case NP-complete NP-complete

(1 + kε) approximation n/a O(nε−6k)

(b) Multi-agent, shared budget, on the path.

Max-Probability Min-Budgetidentical Min-Budgetdistinct

No-
communication

fixed k O(m3k2) O(m3k2 logn) NP-complete

otherwise O(m3k2) O(m3k2 logn) NP-complete

With-
communication

fixed k f(m2kd̄( em
2kd̄

)2kd̄, k, d, k) ∈ P

otherwise

(c) Multi-agent, private budget, on the path.

Table 1.2: Summary of results for physical search problems with uncertain
knowledge: n is the input size, m - the number of points (store locations),
d - the number of different possible prices, d̄ = d + 1, k - the number of
agents, n/a - the problem was not defined in that case or there is no need
for a solution, f - the polynomial function defined in Lemma 8.15.
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On the Evaluation of Election Outcomes under Uncertainty. Under
submission to Artificial Intelligence Journal, 2010. [64]

20



Chapter 2

Related Work

2.1 Computational Aspects of Elections with

Uncertainty

This part of our work lies in the general domain of computational social choice
theory, a research area at the intersection of artificial intelligence (AI), the-
oretical computer science, and social choice theory, that has attracted much
interest recently [41]. In general, social choice theory is concerned with the
design and analysis of methods for collective decision making. In multi-
agent settings we often have self-interested agents with different preferences
and capabilities, which need to reach a decision. Consequently, researchers
in AI have become increasingly interested in social choice theory, especially
concerning its computational aspects. One of the main topics with which
computational social choice deals, is computational voting theory (for a brief
survey of other topics, see [31]). In our work we analyze computational as-
pects of three major problems within computational voting theory: winner
determination, control and manipulation, with the assumption of uncertain
knowledge. In Chapter 4 we deal with winner determination under uncer-
tainty. In Chapter 5 we investigate the control problem of rigging an election
agenda, and in Chapter 6 we introduce our work on the complexity of safe
manipulation. Next we present each problem separately with a review of the
related work that has been done and we show the uniqueness of our settings.
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2.1.1 Winner Determination

When considering voting procedures from a computational standpoint, the
most natural question, from the computer science perspective, is whether it is
possible to efficiently compute the winning outcome according to a particular
voting rule given the preferences of all the agents. Bartholdi et al. [16]
were the first to show that, surprisingly, there is a reasonable rule where
determining the winner of the election is a hard computational problem.
Specifically, evaluating the prospective winner according to Dodgson’s rule
is NP-hard. Later, Hemaspaandra et al. [72] proved that it is complete
for the complexity class Θp

2. The work of Rothe et al. [92] subsequently
showed that winner determination under Young’s voting rule [120] is also
complete for Θp

2. Computing the Banks winner has also been shown to be NP-
complete [74, 113]. Despite these notable exceptions, most common voting
rules are easy to evaluate. However, this holds only when perfect information
about voter preferences is assumed, which is often a problematic assumption
in real world settings. Our work, as described in Chapter 4, investigates
voting rules under an uncertain information model.

The limiting assumption of perfect information has also motivated other
researchers to seek a different, more realistic model. Konczak and Lang [75]
and later Pini et al. [87], investigated the case whereby for each voter we
have a correct but incomplete model of their preference relation. For this
incomplete information setting, the researchers considered questions such as
whether there was some completion of the incompletely known preferences
for the candidates that would make a desired candidate a winner. This ques-
tion, known as the possible-winner problem, is indeed important since it is
also strongly connected to preference elicitation [36] and manipulation [75].
This incomplete information model was further investigated under sequen-
tial majority voting [79,88], under almost all scoring rules [19,20], and under
other common voting rules [115]. The complexity of the possible-winner
problem has also been studied for bounded parameters such as the number
of candidates, the number of voters, and the total number of undetermined
candidate pairs [21]. However, in contrast to our model, the incomplete
information model cannot utilize any prior knowledge of the voters’ prefer-
ences. It is “pessimistic” in nature, as it assumes that the missing data is
completely unknown, and thus it ignores any probabilistic estimation of the
voters preferences that could be learned from their voting history. Still, if
very little is known on the voters’ preferences, this model is more appropriate
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than ours. For example, if we are certain about the ranking of 2 candidates,
but believe that all ordering of intermediate candidates are equally likely.
Moreover, one of our problems (Chance-Evaluation) ignores the exact
values of the probabilities, so it is very close to the settings of the possible-
winner problem. We will show the connection between these problems in
Section 4.3.2, where we present many hardness results, which we attained,
as corollaries of [115](extended version). In a recent paper [10], Bachrach
et al. studied the computational complexity of the counting version of the
possible-winner problem. They proved #P-hardness results for Plurality and
Veto, and provide a randomized approximation algorithm for all voting rules
that are polynomial-time computable. Their algorithm may be used to gen-
erate the probabilistic input for our problem, where there is a lack of such
knowledge on the voters’ preferences.

Previous work that is most closely related to ours was conducted by
Conitzer and Sandholm [35], who used a probability distribution over the
votes as we do. Their results were derived with a restricted model of proba-
bility distributions. Their key result shows that if a manipulation for some
voting rule is hard when complete information is provided, then it will be hard
to even evaluate a candidate’s winning probability with this protocol when
there is uncertainty about the votes. However, as we will show in Section 4.2,
this result holds only for weights that are not bounded by Poly(n), where n
is the number of voters. They further analyzed the un-weighted voters case,
but only with a probability distribution that allows for perfect correlations
among the voters (which actually simulates weights to the voters). This is
also the case presented by Walsh [106], who proved some results regarding the
connection between incomplete preference settings (i.e. the possible-winner
problem) and the settings with a probability distribution over the votes, but
with perfectly correlated votes. Probabilities over voters’ preferences were
also used by Hazon et al. [66] and Vu et al. [104]. However, in both of their
works it was assumed that the only known information about an electorate
is the probability that any given candidate will beat another. This informa-
tion was then used to investigate the extent to which it is possible to rig the
agenda of an election or competition so as to favor a particular candidate.
We investigate this model in Chapter 5.
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2.1.2 Control

Most work on the manipulation of voting procedures has considered the ma-
nipulation of elections by voters, which we will discuss in the next subsection.
However, manipulation is also possible by election officers – those responsible
for organizing an election, which in this context is sometimes called “control”.
In their paper on election control Bartholdi et al. [17] introduced the prob-
lem of election organizers trying to influence the outcome of the elections
by changing the set of voters or candidates. For example, the election offi-
cers may try to remove some strong candidates so their preferred candidate
will have a higher probability of winning. The authors showed that different
voting rules differ significantly in terms of their resistance to control. The
work of Hemaspaandra et al. [73] tried to find a voting rule which would be
fully resistant to control. The authors showed that an artificially built rule
is resistant to twenty different types of control. As for natural voting rules,
Faliszewski and colleagues [45, 46] showed that some common voting rules
are very close to the ideal of total resistance to control.

In our work we analyze a different type of control, which is unique to
voting tree rules. In these rules the election organizers are responsible for
defining the order of competition between the candidates. As a result they
may rig it in order to favor a particular candidate. It is well-known that these
voting trees may be rigged in this manner – see, e.g., [28, p.177] and [94].
Specifically, in the linear order case, if the election officer knows the prefer-
ences of the electorate – or more specifically, who will win in every possible
ballot – then he can compute in polynomial time how to fix the election
agenda to the benefit of a favored candidate [79]. However, in our work
we analyze the rigging agenda problem under the assumption of uncertain
information, which is a more realistic assumption

A closely related stream of work is the problem of optimal seeding for
tournaments. This problem considers how to determine an agenda for a
voting tree that will result in an “interesting” sporting competition. Schwenk
[97] for example, assumed an imperfect information ballot matrix as we do (in
Section 5.1), and used it to produce an interesting competition agenda that
still satisfies some fairness criterions. Groh et al. [59] investigated a 4-player
scenario with an auction-like analysis; instead of knowing the probability of
winning, each player exerts some effort according to its private valuation.
Earlier work by Searls [98] analyzed voting trees for 8 players, among 3 other
tournament types. He used an imperfect information matrix to investigate
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the effect of the initial agenda on the probability that the best player will
win the game. Note that none of these papers analyzed the complexity of
finding the optimal agenda for a specific candidate, as in our work. We also
focus on asymptotic complexity results, so that our results are not limited
to very small numbers of candidates, m, such as m = 4 or m = 8.

A different model of partial information was studied by Lang et al. in [79],
where they assumed a correct but incomplete model of preference relations
for each voter. With this incomplete information setting, they considered
questions such as whether there was some completion of the incompletely
known preferences and some voting tree for the candidates that would make a
desired candidate a winner. Roughly, our aim in this work is to study election
control in much the same way as Lang et al. but with the probabilistic model
described above, instead of the incomplete profile model.

2.1.3 Manipulation

Much of the interest in computational social choice stems from the possibility
that computational complexity may provide a “solution” to some impossibil-
ity results in voting theory [28]. Specifically, a very well-known result in vot-
ing theory is the result of Gibbard [57] and Satterthwaite [96], which, crudely
put, says that any voting protocol that is not a dictatorship must inherently
be susceptible to strategic manipulation by voters. In other words, in any
non-dictatorial voting protocol, there will be situations in which voters can
benefit by lying about their preferences. However, the Gibbard-Satterthwaite
theorem only says that voters can benefit from manipulation by misrepre-
senting their preferences in principle: it does not say that manipulation is
computationally feasible. This observation led Bartholdi et al. [15] to consider
whether there were voting protocols in which manipulation by misrepresent-
ing preferences is computationally difficult (NP-hard or worse). They were
able to answer this question in the affirmative, showing that Second-order
Copeland was computationally hard to manipulate. This work subsequently
led to many other researchers studying circumstances under which voting
protocols are computationally easy or hard to manipulate, as we shall show
shortly.

For a single voter, the complexity of the manipulation problem is quite
well understood. Specifically, this problem is known to be efficiently solvable
for most common voting rules with the notable exception of Second-order
Copeland and Single Transferable Vote (STV) [14,15].
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The more recent work has focused, for the most part, on coalitional ma-
nipulation, i.e., manipulation by multiple, possibly weighted voters. In con-
trast to the single-voter case, coalitional manipulation tends to be hard.
Indeed, it has been shown to be NP-hard for weighted voters even when the
number of candidates is bounded by a small constant [35,37]. Some of these
results were later generalized by E. Hemaspaandra and L.A. Hemaspaan-
dra [71], who characterized the scoring functions in which manipulation is
NP-hard. Elkind and Lipmaa, in their work [39], discussed cryptographic
techniques to make coalitional manipulation hard, and in another paper [38]
they showed general approaches to designing hard-to-manipulate voting pro-
cedures, based on the idea of combining protocols.

For unweighted voters, nailing the complexity of coalitional manipulation
proved to be more challenging. However, Faliszewski and colleagues [47] have
established that this problem is hard for most variants of Copeland, and
Zuckerman et al. [121] have shown that it is easy for Veto and Plurality with
Runoff. Furthermore, in a recent paper Zuckerman and colleagues [118] make
substantial progress in this direction, showing, for example, that unweighted
coalitional manipulation is hard for Maximin and Ranked Pairs, but easy for
Bucklin.

All of these papers (as well as the classic work of Barholdi et al. [15])
assume that the set of manipulators is given exogenously, and the manip-
ulators are not endowed with preferences over the entire set of candidates;
rather, they simply would like a particular candidate to get elected, and
they select their votes based on the non-manipulators’ preferences that are
publicly known. That is, this model abstracts away the question of how the
manipulating coalition forms. However, to develop a better understanding
of coalitional manipulation, it would be desirable to have a plausible model
of the coalition formation process. In such a model the manipulators would
begin by having the same type of preferences as sincere voters, and then some
agents— those who are not satisfied with the current outcome and are willing
to submit an insincere ballot —would get together and decide to coordinate
their efforts. Slinko and White [101] provide such a model, but they does not
explore its complexity properties. They also assume that all manipulators
have identical preferences. In our work, we investigate the algorithmic com-
plexity of their safe manipulation model, and propose two ways of extending
this notion of manipulation to heterogeneous group of manipulators.
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2.2 Physical Search Problems with Uncertain

Knowledge

Models of a single agent search process with prior probabilistic knowledge
have attracted the attention of many researchers in various areas, mainly
in economics and operational research, prompting several reviews over the
years [81, 84]. These search models have developed to a point where their
total contribution is referred to as search theory. Probably the most famous
problem within this field is the “secretary problem”, which has a remark-
ably long list of articles that have been dedicated to its variations (see [48]
for an extensive bibliography). Nevertheless, these economic-based search
models, as well as their extensions over the years into multi-agent envi-
ronments [33, 95], assume that the cost associated with observing a given
opportunity is stationary (i.e., does not change along the search process).
While this permissive assumption facilitates the analysis of search models,
it is frequently impractical in the physical world. Therefore, in our work,
we assume that the cost associated with observing a given opportunity may
change along the search process. The use of changing search costs suggests an
optimal search strategy structure different from the one used in traditional
economic search models; other than merely deciding when to terminate its
search, the agent also needs to integrate exploration sequence considerations
into its decision making process.

Search with changing search costs has been previously considered in the
computer science domain in the contexts of Prize-Collecting Traveling Sales-
man problems (PC-TSP) [11] and the Graph Searching Problem (GSP) [77].
In PC-TSP we are given a graph with non-negative “prize” values associated
with each node, and a salesman needs to pick a subset of the nodes to visit
in order to minimize the total distance traveled while maximizing the total
prize collected. All the variants of PC-TSP are NP-hard, as they are gener-
alizations of the famous Traveling Salesman Problem (TSP). One variant of
PC-TSP is the k-TSP, where every node has a prize of one and the goal is
to minimize the total distance traveled, while visiting at least k nodes. This
variant is similar to our Min-Budget problem, where we try to minimize the
budget necessary to obtain at least a given success probability. There are
several constant-factor approximations known for the k-TSP [4,9,27,55,56].
Another variant of PC-TSP is the Orienteering problem, where the goal is to
maximize the total prize collected, while keeping the distance traveled below
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a certain threshold. This variant is similar to our Max-Probability problem,
where we try to maximize the success probability while keeping the total
traveling cost (plus the final purchase cost) below the initial budget. For
points in the plane, Arkin et al. [2] gave a constant-factor approximation.
For points in arbitrary metric spaces, Blum et al. [26] gave the first approx-
imation algorithm, which was improved by Bansal et al. [13], and later by
Chekuri et al. [30]. Nevertheless, the family of PC-TSP differs from our in-
vestigated model in in reference to two main aspects. First, the model of the
PC-TSP does not contain probabilities, only costs on the edges and prizes on
the nodes and thus constraints are additive. Second, in the PC-TSP there
is a single prize at each node and whenever the salesman visits that node
he collects the prize. In our setting, there may be several probabilities to
“collect” at each node, and the actual amount collected depends on the re-
maining budget when reaching the node. There may be cases where visiting
a node does not increase the success probability at all, even though there is
some success probability at the node (for instance if the agent does not have
enough budget when it reaches the node).

In the GSP case, the agent seeks a single item that resides at some node
of a fixed graph, and a distribution is defined over all probabilities of find-
ing the item at each of the graph’s nodes. The goal is to minimize the
expected cost, as in our Min-Expected-Cost problem. The GSP was shown
to be strictly related to a classic well-studied problem, the minimum latency
problem (MLP) [93], also called the traveling repairman problem [1], the
school-bus driver problem [111], and the delivery man problem [49, 85]. In
this problem an agent is supposed to visit the nodes of a graph in a way
that minimizes the sum of the latencies to the nodes, where the latency of a
node is its distance along the agent’s tour. The minimum latency problem
was shown to be NP-complete even when the metric space is induced by a
tree [100], but can be solved in linear time when the underlying graph is a
path [1, 53]. In the operations research community, there are several exact
exponential time algorithms for the MLP, e.g. [22,49,83,99,119]. Researchers
have also evaluated various heuristic approaches [108,110]. In the computer
science community, there is a large branch of research dealing with approx-
imate solutions to the MLP. For general metrics, Blum et.al. [25] gave the
first constant factor approximation. This was improved by Goemans and
Kleinberg [58], and later by Chaudhuri et al. [29]. Koutsoupias et al. [77]
provided a constant factor approximation for the unweighted case (i.e. for a
shortest path metric on an unweighted graph), and Arora and Karakostas [3]

28



2.2 Physical Search Problems with Uncertain Knowledge

gave a quasi-polynomial O(nO(logn)) time approximation scheme for weighted
trees and points in Rd. The MLP was also generalized to multi-agent settings
(with k repairmen) by Fakcharoenphol et al. [42, 43].

More important, Koutsoupias et al. [77] and later Ausiello et al. [8] showed
how to extend results obtained for the MLP to the GSP. For example, in some
cases, approximation developed for the MLP can be applied to the GSP. It is
not clear, however, if results obtained for the GSP can be extended to work
in our setting since in the GSP the success factor is binary: upon arriving at
a node either the item is there or not. Extensions of the GSP to scenarios
where the item is mobile are of the same character [52, 76]. In our work,
however, similar to other works in economic search theory, we assume to
have a probability distribution in each node.

Our work thus tries to bridge the gap between classical economic search
theory (which is mainly suitable for virtual or non-dimensional worlds) and
the changing search cost constraint imposed by operating in physical multi-
agent environments.
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Chapter 3

Social Choice Terminology

An election is given by a set of candidates (also referred to as alternatives)
C = {c1, . . . , cm} and a set of voters V = {1, . . . , n}. Each voter i is rep-
resented by his preference order Ri, which is a total order over C; we will
sometimes refer to total orders over C as votes. The vector R = (R1, . . . , Rn)
is called a preference profile. We say that two voters i and j are of the same
type if Ri = Rj; we write Vi = {j | Rj = Ri}.

A voting rule F is a mapping from the set of all preference profiles to the
set of candidates; if F(R) = c, we say that c wins under F in R. A voting
rule is said to be anonymous if F(R) = F(R′), where R′ is a preference profile
obtained by permuting the entries of R. In this work we consider anonymous
voting rules only. In addition, we restrict ourselves to voting rules that are
polynomial-time computable.

During the election, each voter i submits a preference order Li; the out-
come of the election is then given by F(L1, . . . , Ln). We say that a voter i is
truthful if Li = Ri. For any U ⊆ V and a vote L, we use R−U(L) to denote
the profile obtained from R by replacing Ri with L for all i ∈ U .

Voting rules We will now define the main voting rules considered in this
work. Our first family of voting rules consists of rules that assign scores to
all candidates; the winner is then selected among the candidates with the
highest score using a tie-breaking rule, i.e., a mapping T : 2C → C that
satisfies T (S) ∈ S. We consider two tie-breaking rules; random, where the
winner is randomly selected among all the tied candidates, or, alternatively,
lexicographic, where given a set of tied candidates the winner is the candidate
which is maximal with respect to a fixed ordering Â. (Our results can be
easily extended to hold for other tie-breaking rules.)
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Given a vector α = (α1, . . . , αm) with α1 ≥ · · · ≥ αm, the score sα(c) of a
candidate c ∈ C under a positional scoring rule Fα is given by

∑
i∈V αj(i,c),

where j(i, c) is the position in which voter i ranks candidate c. Many classic
voting rules can be represented using this framework. Indeed, Plurality is
the scoring rule with α = (1, 0, . . . , 0), Veto (also known as Antiplurality)
is the scoring rule with α = (1, . . . , 1, 0) , Borda is the scoring rule with
α = (m− 1,m− 2, . . . , 1, 0), and k-approval is the scoring rule with α given
by α1 = · · · = αk = 1, αk+1 = · · · = αm = 0; we will sometimes refer to
(m− k)-approval as k-veto.

Bucklin rule can be viewed as an adaptive version of k-approval. We say
that k, 1 ≤ k ≤ m, is the Bucklin winning round if for any j < k no candidate
is ranked in top j positions by at least dn/2e voters, and there exists some
candidate that is ranked in top k positions by at least dn/2e voters. We
say that the candidate c’s score in round j is his j-approval score, and his
Bucklin score sB(c) is his k-approval score, where k is the Bucklin winning
round. The Bucklin winner is the candidate with the highest Bucklin score.
Observe that the Bucklin score of the Bucklin winner is at least dn/2e.

The Copeland rule is defined based on the notion of pairwise elections.
We say that a candidate c ∈ C beats another candidate c′ ∈ C in a pairwise
election if the majority of voters rank c above c′. We will also refer to pairwise
elections as ballots. The Copeland score sC(c) of a candidate c is given by
the number of pairwise elections that c wins minus the number of pairwise
elections that c loses.

We also consider another family of voting rules, known as voting trees,
which are based on sequential pairwise elections along a binary tree. With
these rules we often summarize voter preferences in a majority graph, G ⊆
C × C, where (c, c′) ∈ G means that c would beat c′ in a pairwise election.
The majority graph is asymmetric and irreflexive, and since we assume that
a tie-breaking rule is used, G is also complete. Thus, G is a tournament on
C [80]. A voting tree on C is defined by:

• An m leaf binary tree, T , having a distinguished root r(T ).

• An agenda α, which is a one-to-one mapping between the leaf nodes of
T and the candidates from C.

Given 〈T, α,G〉, the labeling of the tree with respect to α and G is a function
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` : V → C, defined in the following recursive way:

`(v) =





α(v) if v is a leaf

w
if vl and vr are the children of v,
and w is the winner between `(vl) and `(vr) accoring to G

The winner of a voting tree rule is the candidate labeled at the root of the
tree, i.e. `(r(T )). In our work we will mainly consider two common binary tree
structures: the caterpillar structure, i.e. a completely unbalanced tree, and
the balanced tree, which we term linear order and fair tree order, respectively.

Weighted voters Our model can be extended to the situation where not all
voters are equally important by assigning an integer weight wi to each voter i.
To compute the winner of a profile (R1, . . . , Rn) under a voting rule F given
voters’ weights w = (w1, . . . , wn), we apply F on a modified profile which
contains wi copies of Ri for each i = 1, . . . , n. When all the weights are equal,
we say that the voters are unweighted. For each U ⊆ V , let |U | be the number
of voters in U and let w(U) be the total weight of the voters in U . As an
input we usually get a voting domain, i.e., a tuple S = 〈C, V,w,R〉, together
with a specific voting rule. In the case of imperfect information about voter
preferences, the voting domain will only contain the tuple S ′ = 〈C, V,w〉.
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Chapter 4

Evaluation of Election
Outcomes under Uncertainty

In this chapter we analyze the winner determination problem, with the
presence of uncertainty. We first formally define our probabilistic knowl-
edge model, and our two main problems, Evaluation (Definition 4.1) and
Chance-Evaluation (Definition 4.2). In Section 4.2, we first give a polyno-
mial algorithm to answer the evaluation problem if the number of candidates
is a constant. While a result in [35] establishes that Evaluation is NP-hard
for several key voting rules, even under quite stringent assumptions about
probability distributions, we show that this result holds only for weighted
voting rules with weights that are not bounded by Poly(n). We then eval-
uate the algorithm in practice, showing that the actual running time and
space are smaller than the asymptomatic bound. Therefore, we also test
how many voters the polynomial-time algorithm can handle for a given set
of candidates. The results indicate that even with 6 or 7 candidates, the
algorithm can handle more than 100 voters, , which suggests that it may
be used in many real-world voting scenarios. If the number of candidates
is not bounded, the evaluation problem becomes much harder we show in
Section 4.3. Namely, even for the well-known Plurality, k-approval Borda,
Copeland, and Bucklin voting rules the problem is #P-hard. We then an-
alyze a simpler question, the Chance-Evaluation problem. Surprisingly,
this problem is shown to be NP-complete (in the strong sense) even for the
Plurality voting rule, when voters do not have equal weights. We give a
polynomial time algorithm when all voters have equal weights, for Plurality,
and show that the Chance-Evaluation problem is hard for many other
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voting rules (including k-approval, Borda, Copeland and Bucklin). This is
done by establishing the connection to a related problem, the possible-winner
problem [75]. Finally, we present a Monte Carlo algorithm that is able to
approximately answer even the Evaluation problem where the number of
candidates is a parameter, with an error as small as desired.

4.1 Model and Problem Definitions

In many settings voter i ∈ V will not usually know the preferences of the
other individual voters – but he may know the probability that a voter will
vote for a specific candidate, or the probability that he will prefer one can-
didate over another. If all probabilities are 0 or 1 then the scenario is one of
perfect information, otherwise it is one of imperfect information. To model
imperfect information, we assume that we have for each voter at most l possi-
ble preference orders, which are permutations over the available alternatives.
Each such order is associated with a non-zero probability that this voter will
choose to vote for it, and the sum of probabilities of the given preference
orders is one; all the other possible preference orders, which are not explic-
itly given, are assumed to have a probability of zero. Consider the following
illustrative example. Suppose we have 4 candidates, c1, c2, c3 and c4, and 3
voters, V1, V2 and V3. The voters’ preferences are summarized in Table 4.1
with a probability associated with each preference order. In this example
n = l = 3 and m = 4.

V1 V2 V3

1
3
(c1, c2, c3, c4)

3
4
(c4, c2, c1, c3)

9
10

(c4, c2, c3, c1)
1
2
(c2, c1, c3, c4)

1
4
(c2, c1, c3, c4)

1
10

(c3, c1, c4, c2)
1
6
(c3, c1, c2, c4)

Table 4.1: An example of our imperfect information model of voter prefer-
ences.

We consider the case where voters’ choices are independent. If we collect
from each voter just one preference order (from the ones that are associated
with him) we get one possible preference profile that we call a voting scenario,
from which the winner can be calculated using one of the voting rules listed
above (Plurality, Borda, . . . ). The probability of any given voting scenario
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occurring is simply the multiplication of the probabilities of its preference
orders from the different voters. In these settings, we assume that the voters
are truthful, i.e. for each voter i, Li = Ri, thus one of the voting scenario
must occur. We are now ready to define our main problems.

Definition 4.1 (Evaluation). Given a voting domain, an imperfect infor-
mation model of voters’ preferences, as described above, a specific candidate
c∗, and a voting rule F, what is the probability that c∗ will be chosen using
F?

The answer to this question is the sum of probabilities of all the voting
scenarios where c∗ wins using F. For example, consider the imperfect infor-
mation shown in Table 4.1. Assume that random tie-breaking rule is used.
The winning probabilities for each candidate under the Plurality, Borda and
Copeland voting rules are summarized in Table 4.2. Note that c4 has the
highest probability of winning under Plurality and Copeland, but c2 has the
highest probability of winning under Borda.

Plurality Borda Copeland

c1 0.036 0.058 0.052
c2 0.178 0.7 0.256
c3 0.053 0.017 0.017
c4 0.733 0.225 0.675

Table 4.2: Winning probabilities for each candidate, rounded to 3 decimal
places. Bold font represents the highest probability in each voting rule.

Note that the complexity of this problem is a function of the number of
voters (n), the number of candidates (m), and the number of possible non-
zero probability preference orders for each voter (l). We also define a related
decision problem, which asks for a weaker question.

Definition 4.2 (Chance-Evaluation). Given a voting domain, an imper-
fect information model of voters’ preferences, as described above, a specific
candidate, c∗, and a voting rule F, is the probability that c∗ will be chosen
using F greater than zero?

Of course, an answer to the Evaluation problem immediately yields an
answer to the Chance-Evaluation problem, so if the former problem is
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easy, then so is the latter. However, it could in principle be the case that
Evaluation is hard while Chance-Evaluation is easy, which suggests
that it is worth studying Chance-Evaluation as a problem in its own
right.

Note that the Chance-Evaluation problem also seems to be a very
natural one. In many cases there will be some candidates that do not have
any chance of winning, and a voter might reasonably contemplate which
candidates have no chance of winning when deciding how to vote.

In the following sections, we analyze the complexity of the Evaluation
and Chance-Evaluation problems in two main different scenarios: when
the number of candidates is bounded by a constant; and when it is not
bounded.

4.2 Constant Number of Candidates

In many real-world scenarios, the number of alternatives is small and can be
bounded by a constant. For example, if a group of agents want to decide on
a full hour to meet in a given day, the number of alternatives is always 24.
In this section we give a polynomial algorithm for the Evaluation prob-
lem under the assumption of a constant number of alternatives1. Obviously,
this algorithm also answers the Chance-Evaluation problem in polyno-
mial time. We then present some experimental results obtained with this
algorithm, evaluating its performance in practice.

4.2.1 The Algorithm

The key to the efficiency of our algorithm is the distinction between a voting
scenario and a voting result. Intuitively, in a voting scenario we know for each
voter which preference order he votes for. But to identify a winning candi-
date, we do not care actually exactly which voter votes for which candidate;
we can aggregate the possible voting scenarios into a compact intermediate
form, which is what we call a voting result. For example, suppose we use the
Plurality rule. With Plurality, a voting result may be a vector which stores
the total number of votes for each candidate. Now suppose that there are
three voters and two candidates, c1 and c2, and all the voters do not have
a probability of 1 to vote for one of the candidates. Thus, there are three

1We thank Efrat Manisterski for her contribution in developing this algorithm.
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voting scenarios with the same voting result of two votes for c1 and one vote
for c2. A little more formally:

Definition 4.3. Given a voting rule, a voting result is a succinct way to
represent one or more voting scenarios over i voters, 0 ≤ i ≤ m, such that:

1. For i = m, the winner can be determined from the voting result over
the m voters in polynomial time.

2. A voting result over i + 1 voters can be generated from combining the
voting result for i voters and one additional preference order, in poly-
nomial time.

After we present the algorithm, we describe different ways to represent
voting results for many common voting rules. Let us first describe the algo-
rithm where all the voters’ weights are equal. A formal proof of correctness
can be found in the Appendix. We use a dynamic programming approach to
enumerate the possible voting results from the preferences of n voters and
calculate their probability. This is done by using possible voting results from
the preferences of n− 1 voters and their probabilities, which is in turn done
by using the voting results from the preferences of n − 2 voters, and so on.
Our algorithm builds a Table where the rows are possible voting results and
the columns represent the voters. We denote by T [~i, j] the cell in the table
at the row which represents the voting result vector ~i, and at column j. In
any stage, the algorithm only requires storing 2 columns in memory.

Algorithm 1 VotingResult(table T , preference orders for each voter)

1: Init T [., .] ← 0, T [~0, 0] ← 1.
2: for i ← 0 to n− 1 do
3: for all cells in column i do
4: ~r ← the voting results of the cell’s row
5: for j ← 1 to l do
6: ~cur ← preference order j of voter i+ 1
7: ~next ← the voting result from adding ~cur to ~r
8: T [ ~next, i+ 1] ← T [ ~next, i+ 1] + ( probability of ~cur × T [~r, i])

When the algorithm terminates, each cell in the last column contains
the probability of that cell’s row voting result occurring. We can identify the
winner for each voting result according to the specific voting rule. So, we can
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answer the Evaluation problem from Definition 4.1 by simply summing for
c∗ the probabilities of the voting results where it wins. Consider the following
small example. Suppose we use the plurality voting rule with 3 candidates,
c1, c2 and c3 and 2 voters, V1 and V2. The voters’ preferences are summarized
in table 4.3a. Table 4.3b shows the table, T , that is built by the algorithm
for this data. Every row represents a voting result which is a vector such
that index i counts the number of votes for candidate ci. The last column
shows the probabilities for every possible voting result with voters V1 and V2.
Thus, the probability that c1 is the winner, assuming a random tie-breaking
method is used, is 1

2
· 1
4
+ 1

2
· (1

3
· 1
4
+ 1

2
· 3
4
) + 1

2
· (1

6
· 1
4
). Note that in this

example, (2, 0, 0) is not a possible voting result.

V1 V2

1
2
c1

1
4
c1

1
3
c2

3
4
c2

1
6
c3

(a) A set of vot-
ers’ preferences.

Voting result 0 1 2
(c1, c2, c3)

0, 0, 0 1 0 0

1, 0, 0 0 1
2

0
0, 1, 0 0 1

3
0

0, 0, 1 0 1
6

0

2, 0, 0 0 0 1
2
· 1
4

1, 1, 0 0 0 1
3
· 1
4
+ 1

2
· 3
4

1, 0, 1 0 0 1
6
· 1
4

0, 2, 0 0 0 1
3
· 3
4

0, 1, 1 0 0 1
6
· 3
4

(b) The corresponding table T , that is built
by the algorithm.

Table 4.3: An example of how algorithm 1 builds a table from a given set of
preferences.

The time complexity of the algorithm is O(n× number of rows of T × l),
and the space complexity is O( number of rows of T ). The specific voting
rule determines how to express the possible voting results which in turn
determines the number of rows. Clearly, we seek a representation which is as
compact as possible to reduce time and space complexity. This issue, of how
to summarize votes in a compact way, was also studied by by Chevealeyre et
al. [32] and Xia and Conitzer [116], and we reuse some of their techniques.
It also seems that their results, showing that their upper bound is tight, can
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be imported to our settings to show that our ways for the representation of
voting results are optimal. Now, for many voting rules one of the following
methods can be used to express the possible voting results:

1. A vector of [0, n]m such that index i represents the number of voters
who voted for candidate i.

2. A vector of [0, n]m(m−1)/2 which represents the number of voters who
preferred the first candidate in each possible pair of candidates.

3. A vector of [0, n]m
2
which represents the number of voters who ranked

each candidate in each position (taken from [116]).

4. A vector of [0, n]m·2m−1
. For each candidate i, let z−i be a possible subset

of candidates not containing i. The voting result vector represents the
number of voters who preferred each candidate i over any candidate in
z−i, for each possible z−i (taken from [32]).

5. A vector of [0, n]m! which represents the number of voters who voted
for each possible preference order permutation.

We now show which method to use for some voting rules.

• Plurality. The first method can be used so the number of rows is
O((n + 1)m) and the time complexity is O((n+ 1)m · l). However, the
actual number of voting results will never be (n + 1)m, since the total
number of points given by all the candidates is n. Instead, the actual
number of voting results with n voters is exactly the number of options
to split the integer number n to exactly m non-negative integers, such
that their sum is equal to n. Two sums which differ in the order
of their summands are considered to be different compositions. This
is called a weak composition of n with exactly m parts ; we denote this
value byWC(n,m),WC(n,m) =

(
n+m−1
m−1

)
= (n+m−1)!

n!(m−1)!
. Accordingly the

running time complexity is O(l
∑n

i=0WC(i,m)) and the space required
is O(WC(n− 1,m) +WC(n,m)).

• k-approval. The first method can be used, with a running time com-
plexity of O(l

∑n
i=0WC(i·k,m)) and a space complexity of O(WC((n−

1) · k,m) +WC(n · k,m)).
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• Borda. We can use a modified version of the first method – a vector
of [0, (m − 1)n]m, which represents the total score for each candidate.

Thus, the time and space complexity are O(l
∑n

i=0WC(i · m(m−1)
2

,m))

and O(WC((n− 1) · m(m−1)
2

,m) +WC(n · m(m−1)
2

,m)), respectively.

• Bucklin. The third method can be used so the time and space complex-
ity are O(l

∑n
i=0WC(i ·m,m)) and O(WC((n − 1) ·m,m) +WC(n ·

m,m)), respectively.

• Copeland. The second method can be used, so the number of rows
is O((n + 1)m(m−1)/2) and the time complexity is O((n + 1)m(m−1)/2l).
This method can be used for any other Condorcet-consistent rule, i.e.,
Maximin, Ranked pairs, Voting trees, etc. (For an extensive discussion
on voting rules, we refer the reader to [6]).

• STV (see definition in [6]). The fourth method can be used, so the
number of rows is O((n+ 1)m·2m−1

) and the time complexity is O((n+
1)m·2m−1

l). If m ≤ 4, the last method shall be used to calculate the
number of scores for each candidate from the preference orders.

When we move to the weighted voters case, Connitzer and Sandholm [35]
expressed the Evaluation problem as the following decision problem: given
a number r, 0 ≤ r ≤ 1, is the probability of c∗ winning greater than r? They
showed that this problem is NP-hard for Borda, Copeland, Minimax and
STV, even with extremely restricted probability distributions. We show that
their results hold only for weights that are not bounded by Poly(n).

Claim 4.4. For a constant number of candidates, the Evaluation problem
is in P even for weighted voters, when the weights are in O(Poly(n))

Proof. Our dynamic programming approach (algorithm 1) can be easily ex-
tended to work with weighted voters. Actually, the only thing that has
to be changed is the range of possible voting results which determines the
number of rows in the table. The number of rows will now become at
most O(Poly(n)m), O(Poly(n)m(m−1)/2), O(Poly(n)m

2
), O(Poly(n)m·2m−1

) or
O(Poly(n)m!), depending on the specific voting rule (as described earlier).
In all cases it is still in P.

This result may be understood with reference to the proofs of Conitzer
and Sandholm [35], who used a reduction from the Partition problem.
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Partition is known to have a pseudo-polynomial time dynamic program-
ming solution [54].

4.2.2 Experiments

In the preceding section, we gave analytical results for the case where the
number of candidates is a constant. We showed that the complexity of our
algorithm grows exponentially with the number of candidates. As with many
other problems that have worst-case exponential running time, it is in inter-
esting to ask whether we do indeed see worst case performance in practice.
Our hypothesis was that in our problem, the actual number of voting results
that the algorithm stores is much smaller than the asymptotic bound in most
cases (and hence the required memory and time are smaller too). In partic-
ular, we investigated the effect of the probabilistic structure of the imperfect
information on the number of stored voting results. Additionally, we tested
the effect of the parameter l on the actual number of voting results. In this
section we present experimental results obtained with an implementation of
the algorithm for the Plurality rule with unweighted voters, which validate
our hypothesis. Accordingly, we also found it interesting to check how many
voters the polynomial-time algorithm can reasonably handle in practice, for
a given number of candidates.

Our implementation (written in C++) ran on a 64-bit Linux PC, with 8
GB of RAM. The large amount of main memory was needed for the algorithm
to store the table of the voting results. This table was implemented using
Judy array [18], a complex but very fast associative array data structure for
storing and looking up values. We chose to use this data structure since
it typically requires much less memory than a conventional hash table. We
measured the algorithm’s performance by counting the total number of cells
that were produced during run-time, to avoid the effect of the computer’s
hardware on the results (in contrast to time, which depends on the actual
testing hardware). In most cases we ran 15 iterations and took the average;
in the extreme cases, where the running time was too long, we took the
average of only 5 iterations.

As an input, the algorithm takes an imperfect information matrix. Unlike
in other experimental work in social choice which generates random prefer-
ences or random voters’ weights (see [107] for example), we need to randomly
generate probabilities over possible preferences. As noted before, in this work
we assume that some knowledge on the preferences can be derived, and only
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l preference orders have a non-zero probability for each voter. Therefore, the
impartial culture assumption [24], which is a model of an electorate in which
all preference orders are equally likely, can not be used. Alternatively, we
considered two methods for selecting l candidates for each voter (Plurality
needs the top choice candidate only) and generating the probabilities, using
uniform and normal distributions. In the first method, l candidates were ran-
domly chosen for each voter and the probability that she will vote for each
one of them was set to 1/l. The second method defined an arbitrary fixed
order over the candidates. It then randomly chose one candidate to be the
mean of the normal distribution, for each voter. The other l − 1 candidates
were chosen by their proximity to the mean candidate. The probability that
each voter will vote for each one of the candidates was set according to the
normal distribution, with the selected mean and a variance of 1. Figure 4.1
demonstrates the difference between these 2 methods.
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(a) uniform distribution.

  

 

1 2 3 4 5 6 Candidates: 

Probabilities: 0.43 0.285

 

0.285

 (b) normal distribution.

Figure 4.1: An example of how to generate random probabilities where m =
6, l = 3.

In the first set of experiments, we tested the effect of the random methods
that we used to generate the voters preferences. In these experiments we fixed
l to be 3, and we evaluated the effect of the two methods on the running time
(in terms of the number of generated cells) for 5 and 6 candidates and 20−100
voters. The results are shown in Figure 4.2.
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Figure 4.2: Results of first set of experiments.

Clearly, using the uniform distribution to generate the preferences results
in more options to split the total number of votes among the candidates.
Thus, increasing the number of voting results yields a higher running time.
The second method simulates a more realistic scenario, the “single-peaked
preference” principle [23]. In this case, there is some predetermined linear
ordering of the candidate set. Every voter has some special place he likes best
along that line, and his dislike for a candidate grows larger as the candidate
goes further away from that spot. Similarly, in our case every voter has
some special place that we believe has the highest probability to be selected,
and the probability that the voter will vote for a candidate decreases as the
candidate goes further away from that spot. In this case the votes are less
scattered among the candidates, and thus the number of voting results is
lower, yielding a lower running time.

We also used these settings to demonstrate how the ratio between the
actual number of voting results to the theoretical number behaves. Since we
used Plurality, the theoretical bound was computed using the WC function
(as described above). The results are summarized in Figure 4.3. As there
are more voting scenarios which lead to the same voting result, the gap be-
tween the theoretical bound to the actual number of voting results increases.
Thus, this ratio is lower when there are more candidates or when a normal
distribution rather than a uniform distribution is used to generate the im-
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perfect information. On the other hand, the number of voters does not have
a significant effect on this ratio.�����������������������	
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Figure 4.3: Ratio of actual number to theoretical number of voting results
with increasing numbers of voters.

In the second set of experiments, we investigated the effect of l on the
actual number of voting results. Although the algorithm’s running time is
(asymptomatically) linear in l, it was interesting to check if l has the same
effect on the actual number of voting results. In these experiments, we fixed
the number of candidates to 5, and used the normal distribution to generate
preferences. We measured the ratio between the actual number of voting
results to the theoretical bound (computed using the WC function) for 50
and 100 voters and l between 2 − 5. The results are shown in Figure 4.4.
Fortunately, as l increases the ratio of the actual number to the theoretical
number of voting results increases in the same manner. As in the previous
experiment, this ratio is not affected by the number of voters. Note that
since m = 5, if l = 5 too, every possible voting result may happen, thus the
ratio is 1.

The consequence of what we have shown so far is that there is a gap be-
tween the theoretically predicted running time and the actual one. Therefore,
in the last set of experiments we tested how many voters the polynomial-time
algorithm can handle in practice, for a given number of candidates. We set
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Figure 4.4: Ratio of actual number to theoretical number of voting results
when increasing the number of non-zero probability preference orders for
each voter (l).

l at its minimum value, 2, and we used the normal distribution to generate
the preferences. We then tested for 4 − 7 candidates how many voters the
algorithm can handle. Clearly, we would have attained better results if we
had allowed the algorithm to use a hard disk as a virtual memory. However,
the I/O overheads would result in much higher running time, and we wanted
to test our algorithm with reasonable limits. Therefore, the algorithm used
only main memory, and the “extreme” results that are shown in Table 4.4
were achieved just before the algorithm ran out of space. The complete pic-
ture is shown in Figure 4.5. Note that the y-axis is shown on a logarithmic
scale.

# of can-

didates

# of

voters

Theoretical #
of voting results

Actual # of

voting results

Ratio Time

(sec)

Total #
of cells

4 1100 223,045,351 47,331,609.2 0.212 111183.4 13,122,678,458.0

5 400 1,093,567,501 93,506,124.2 0.086 338200.4 7,640,484,607.0

6 140 498,187,404 18,146,578.2 0.036 4756 442,092,341.2

7 100 1,705,904,746 22,381,578.8 0.013 3792 346,504,543.2

Table 4.4: Extreme results. Fractions are rounded to 3 decimal places.
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Figure 4.5: Results of the last set of experiments.

The results show that the actual running time (in terms of generated
cells) heavily depends on the number of candidates, as expected. It is also
apparent that the algorithm can handle a practical number of voters, even
with 6 or 7 candidates. For example, the Israeli parliament (the Knesset)
has 120 voters, and the United States Senate has 100 voters. Table 4.4 shows
again the difference between the theoretical upper bound on the number of
voting results (computed using WC function), and the actual number.

4.3 The Number of Candidates as a Param-

eter

If we cannot bound the number of candidates, then Evaluation becomes
much harder. In this section, we show that Evaluation for k-approval,
Borda, , Copeland, Bucklin and even for Plurality is #P-hard in this case.
We also analyze the seemingly weaker question, the Chance-Evaluation
problem. Surprisingly, we show that even this problem is hard when voters do
not all have equal weights under Plurality. We show that with equal weights,
Chance-Evaluation is still hard under k-approval, Approval, Range and
Cumulative. However, we give a polynomial algorithm for the case where all
voters have equal weights with Plurality.
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4.3.1 The Evaluation Problem

Sometimes, the number of candidates cannot be assumed to be a constant,
but is necessarily a parameter of the problem. For example, if a group of
agents wants to choose one of them as a leader, m = n and thus it is not
a constant. There are some special cases where the number of voters is
a constant and so a naive algorithm, which simply evaluates all possible
options and runs in time polynomial of O(mn) will suffice. In most cases
this is probably not going to happen. Unfortunately, as we will see, if both
the number of voters, n, and the number of candidates, m, are given as
parameters, the problem is #P-hard even for the Plurality, Borda, Range,
Approval, Cumulative and Copeland voting rules.

All our #P-hard reductions will be from a well known #P-complete prob-
lem, Permanent, which is to calculate the permanent of a 01-matrix, (or,
equivalently, to count the number of perfect matchings for a bipartite graph).

Definition 4.5. Denote by Sn the set of all permutations of the numbers
1, 2, . . . , n. The permanent of an n-by-n matrix A = (ai,j) is defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

For a bipartite graph G = (X ∪ Y,E) such that ∀(x, y) ∈ E, x ∈ X and
y ∈ Y , and |X| = |Y | = r, a perfect matching is a set of edges such that no
two edges share a common vertex and every vertex is incident to exactly one
edge. The permanent of G’s adjacency matrix in fact counts the number of
perfect matchings for G.

We are now ready to show the proof for the Plurality voting rule.

Theorem 4.6. If n and m are not constant, the Evaluation problem is
#P-hard for the Plurality voting rule.

Proof. Given a bipartite graph G = (X ∪ Y,E), with X = {x1, . . . , xr}
and Y = {y1, . . . , yr}, for which we wish to count the number of perfect
matchings, we construct an instance of the Evaluation problem such that
the probability of the chosen candidate to win is a function of (and only of)
the number of perfect matchings in G. The voters are all the vertices of X
plus two additional voters x0 and ŵ, all with equal weights. The candidates
are all the vertices of Y plus two additional candidates y0 and â. We first
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consider the case where the tie-breaking rule is lexicographic, and â has the
top priority. For every x ∈ X, if (x, y) ∈ E, set the probability that voter

x votes for candidate y to be 1
r
. With the remaining probability (1− deg (x)

r
,

where deg (x) is the degree of x) voter x votes for y0. Finally, ŵ votes for
candidate â with probability 1, and x0 votes for candidate y0 with probability
1.

Consider a particular set of votes cast by the voters. Voters x0 and ŵ
have no choice, so consider the choices made by voters in X. Each such set
of choices naturally corresponds to a collection of r edges , M , between X
and Y :

M = {(x, y) ∈ X × Y : x voted for y}
(note that if x voted for y0 then this pair is not included in M). We show
that â wins the election iff M is a perfect matching.

Suppose thatM is a perfect matching, then all candidates in Y get exactly
one vote (from the voters in X) as do â and y0 (from ŵ and x0, respectively).
Thus, all candidates obtain the same score, and â wins by the tie-breaking
rule. Conversely, suppose that M is not a perfect matching. Then, either
there is a candidate y ∈ Y that gets more than one vote, or else there is a
voter x ∈ X that voted for y0 (in addition to the vote y0 surely received from
x0). In either case, there is a candidate that got more than one vote, while
â received only one vote (from ŵ). Hence, â does not win the election.

The probability that the voters of X elect any specific perfect matching
is r−r. Thus

Pr[â wins the election] = r−r · PM(G)

where PM(G) denotes the number of perfect matchings in G. Hence, the
answer to the Evaluation problem also gives us one for the number of
perfect matchings.

The proof for random tie-breaking is essentially identical, only that in
the case of an exact matching â does not necessarily win, but only wins with
probability 1

r+2
. Hence, in this case Pr[â wins the election] = r−r

r+2
· PM(G).

The rest of the proof remains the same.

As for k-approval, we only need to slightly modify the reduction used in
the proof for Plurality. Recall that in k-approval only the k first candidates
get scores, so we don’t care what is their order, and the order of the other
m− k candidates.
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Theorem 4.7. If n and m are not constant, the Evaluation problem is
#P-hard for the k-approval voting rule, for every fixed k.

Proof. Given a bipartite graph G = (X ∪ Y,E), with X = {x1, . . . , xr} and
Y = {y1, . . . , yr}, for which we wish to count the number of perfect match-
ings, we construct almost the same instance of the Evaluation problem as
in the proof of Theorem 4.6. The set of voters is the same, but we add a set
of dummy candidates D = {diyj} ∪ {diâ}, where 1 ≤ i ≤ k− 1, 0 ≤ j ≤ r. For
every x ∈ X, if (x, y) ∈ E, set the probability that voter x gives one point to

candidates y, d1y, . . . , d
k−1
y to be 1

r
. With the remaining probability (1− deg (x)

r
,

where deg (x) is the degree of x) voter x gives one point to y0, d
1
y0
, . . . , dk−1

y0
.

Finally, ŵ gives one point to candidates â, d1â, . . . , d
k−1
â with probability 1,

and x0 gives one point to candidates y0, d
1
y0
, . . . , dk−1

y0
with probability 1.

Now, each candidate diyj and diâ gets the same number of points as yj and
â, respectively. Therefore, the rest of the proof is essentially identical to that
for the Plurality rule.

We now turn to the Borda and Copeland protocols. We start with a
simple lemma, the proof of which is trivial.

Lemma 4.8. Let V be a set of voters, each with an individual preference
order over a set of candidates. Suppose that all orders are different, and that
for each preference order of any voter v, there exists another voter v′ with
the exact opposite preference order. Then:

• In the Borda protocol all candidates get the exact same score (which is
also the average score).

• In the Copeland protocol, all pairwise contests are tied, for a total score
of 0 for all candidates.

Theorem 4.9. If n and m are not constant, the Evaluation problem is
#P-hard for the Borda voting rule.

Proof. Let G = (X ∪ Y,E) be a bipartite graph, with X = {x1, . . . , xr}
and Y = {y1, . . . , yr}, for which we wish to count the number of perfect
matchings. We construct an instance of the Evaluation problem as follows.
There are 2(r + 1) voters composed of two subsets: X+ and W , with r + 1
voters in each. The set X+ consists of the set X plus one additional voter x0.
The set W consists of r+1 voters w0, . . . , wr. All voters have equal weights.
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There are r + 2 candidates: C = {c0, . . . , cr} and one “special” candidate
â. We build the Evaluation instance in such a way that every perfect
matching in G corresponds to a voting scenario in which for every voter
xi ∈ X+, there is a voter wj ∈ W with the exact reverse preference order. In
this case, by Lemma 4.8 all candidates have the same score, and â wins by
lexicographic tie-breaking rule. Furthermore, the Evaluation instance is
constructed so that â only wins in voting scenarios that correspond to perfect
matchings in G. The details follow.

For ease of notation we denote i ⊕ j = (i + j)mod(r + 1). Define the
following set of orderings over the candidate set. For each i = 0, . . . , r let
si = (ci, ci⊕1, . . . , ci⊕r, â), and denote by (si)

R the reverse order to si. For
each (xj, yi) ∈ E (an edge in G), there is a probability of 1/r that voter xj

vote for order si. With the remaining probability (1− deg (xj)

r
) voter xj votes

for order s0. Voter x0 votes for s0 with probability 1. For voters in W , voter
wj votes for order (sj)

R with probability 1. Note that, in particular, â is last
in all votes of X+ and first in all votes of W . See Figure 4.6 for an example
of how to build an instance from a given bipartite graph where r = 3.

Consider a set of orders chosen by the voters. Only the voters of X
have any choice, so consider their votes. Each such set of choices naturally
corresponds to a collection of r edges, M , between X and Y :

M = {(xi, yj) ∈ X × Y : xi voted sj}

We show that for lexicographic tie-breaking, â wins the election iff M is a
perfect matching in G.

Suppose that M is a perfect matching in G. Then, each si gets exactly
one vote from the voters in X+. However, each (si)

R also receives exactly one
vote, from the voters of W . Hence, for each preference order that received
a vote, the exact opposite order was also voted for. In this case, by Lemma
4.8, â wins by lexicographic tie-breaking rule.

Conversely, suppose that M is not a perfect matching. Denote by α the
average total score of the candidates, α = (r + 1)2. Since α is an average, it
is independent of the actual choices made by the voters. Consider M . Since
M is not a perfect matching, there exists at least one order si that does note
receive any vote from X+. W.l.o.g. assume that this is sr. Note that in all
orders si with i 6= r candidate cr appears after candidate cr−1. Hence, the
total score that cr−1 gets from voters of X+ must be higher than the total
score they give cr. The voters of W , on the other hand, in total give all
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candidates of C the exact same score (since the construction of the si’s is
symmetric). Hence, cr−1 gets a higher total score than cr, and, in particular,
it is not the case that all candidates get an identical total score. Thus, there
must be a candidate ci0 that gets a total score β strictly greater than the
average α. On the other hand, the score of â is always the same (being
always last in votes of X+ and first in votes of W ). Hence, its score is always
identical to the one it gets in a perfect matching, namely α. Hence, â does
not win the elections.

The probability that the voters of X elect any specific perfect matching is
r−r. Thus, Pr[â wins the election] = r−r · PM(G). Hence, the answer to the
Evaluation problem also gives us one for the number of perfect matchings.

The proof for random tie-breaking (instead of lexicographic) is essentially
identical, as in the proof for Plurality.
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(b) The corresponding instance for the Eval-
uation algorithm.

Figure 4.6: Reduction from Permanent to Evaluation problem used in
the proof of Theorems 4.9 and 4.10.

Theorem 4.10. If n and m are not constant, the Evaluation problem is
#P-hard for the Copeland voting rule.

Proof. The proof is very similar to that of the Borda protocol, and uses the
exact same construction. Following that proof, we show that also for the
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Copeland protocol, â can win iff M (as defined in the Borda proof) is a
perfect matching. Indeed, if M is a perfect matching, then as shown above,
for each vote for a given preference order there is a vote for the exact reverse
order. Thus, the conditions of Lemma 4.8 hold, and all candidates get an
identical 0 score. Hence, â can win (either by lexicographic or by random
choice, depending on the protocol).

Conversely, suppose that M is not a perfect matching. Then, there exists
at least one order si that is not voted for by any voter of X+. W.l.o.g.
assume that this is sr. In all orders si with i 6= r candidate cr−1 appears
before candidate cr. In all orders (si)

R with i 6= (r−1) candidate cr−1 appears
immediately after cr, and in (sr−1)

R it appears before candidate cr. Hence,
for any other candidate cj, if cr wins the pairwise contest with cj, so does
cr−1. In addition, cr−1 beats cr. Hence, in total, cr−1 must win strictly more
pairwise contests than cr. Hence, it cannot be the case that all candidates
score exactly 0. Thus, since the average total score is necessarily 0, there
must be at least one candidate that scores more than 0. On the other hand,
â ties all pairwise contests (it is first in all votes by W and last in all those
by X+), for a total of 0. Thus, â cannot win the elections. The rest of the
proof is identical to that for the Borda rule.

As for Bucklin, we use a slightly different construction. This proof does
not assume the use of any specific tie-breaking rule.

Theorem 4.11. If n and m are not constant, the Evaluation problem is
#P-hard for the Bucklin voting rule.

Proof. Let G = (X ∪ Y,E) be a bipartite graph, with X = {x1, . . . , xr}
and Y = {y1, . . . , yr}, for which we wish to count the number of perfect
matchings. We construct an instance of the Evaluation problem as follows.
There are 2(r + 1) voters, thus the Bucklin score of the Bucklin winner will
be at least r+ 2. The voters are composed of two subsets: X+ and W , with
r + 1 voters in each. The set X+ consists of the set X plus one additional
voter x0. The set W consists of r + 1 voters w0, . . . , wr. All voters have
equal weights. There are r + 1 regular candidates: C = {c0, . . . , cr} and one
“special” candidate â. Additionally, there are (r + 1)2 dummy candidates:
D = {diyj} ∪ {djâ}, where 1 ≤ i ≤ r, 0 ≤ j ≤ r.

We build the Evaluation instance in such a way that every perfect
matching in G corresponds to a voting scenario in which the Bucklin wining
round is r+2 and candidate â wins. Furthermore, the Evaluation instance
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is constructed so that in other voting scenarios the Bucklin winning round is
strictly less than r + 2 and one of the candidates form C wins. The details
follow.

For ease of notation we denote i⊕ j = (i+ j)mod(r+1). In our construc-
tion, the Bucklin wining round is always less than or equal to r+ 2, thus we
show only the first r+2 candidates in each preference order (other candidates
may be placed arbitrarily). For each i = 0, . . . , r let si = (ci, d

1
yi
, . . . , dryi , â),

and ti = (â, ci, ci⊕1, . . . , ci⊕r, d
i
â). For each (xj, yi) ∈ E (an edge in G), there

is a probability of 1/r that voter xj vote for order si. With the remaining

probability (1− deg (xj)

r
) voter xj votes for order s0. Voter x0 votes for s0 with

probability 1. For voters in W , voter wj votes for order tj with probability 1.
Note that any order si gives one point to candidate c ∈ C in the first round,
and every order ti gives one point to c ∈ C on each round j, 2 ≤ j ≤ 4.

Consider a set of orders chosen by the voters. Only the voters of X
have any choice, so consider their votes. Each such set of choices naturally
corresponds to a collection of r edges, M , between X and Y :

M = {(xi, yj) ∈ X × Y : xi voted sj}

We show that â wins the election iff M is a perfect matching in G.
Suppose that M is a perfect matching in G. Then, each si gets exactly

one vote from the voters in X+. For every j, 1 ≤ j ≤ r+1, the score of every
dummy candidate d ∈ D in round j is less than or equals 1. The score of
every candidate c ∈ C in round j is j, and the score of â in round j is r+ 1.
Since no candidate has more than r+2 points, every j, 1 ≤ j ≤ r+1, is not
the Bucklin winning round. On the other hand, in round r + 2 the score of
â is 2(r+1) while no other candidate has more than r+1 points. Therefore
the Bucklin winning round is r + 2 and â is the (unique) winner.

Conversely, suppose that M is not a perfect matching. Then, there exists
at least one order si that is voted more than one time by voters of X+.
Therefore, there is at least one candidate c ∈ C with a score of at least r+2
in round r+1. Then, the Bucklin winning round is less than or equals r+1.
On the other hand, â’s score in every round j, 1 ≤ j ≤ r+1, is exactly r+1.
Thus, â cannot win the elections.

The probability that the voters of X elect any specific perfect matching
is r−r. Thus, Pr[â wins the election] = r−r · PM(G). Hence, the answer
to the Evaluation problem also gives us one for the number of perfect
matchings.
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Note that all our proofs use equal weights for the voters, so the results
hold for the weighted voters case with un-bounded or bounded weights too.

4.3.2 Chance-Evaluation Problem

Our original definition of the Evaluation problem yields a problem that
is hard to compute for some common voting rules. Surprisingly, the weaker
question, Chance-Evaluation, is hard even for the simplest voting rule –
Plurality – when voters do not all have equal weights.

Theorem 4.12. If n and m are not constant, the Chance-Evaluation
problem is NP-complete for the Plurality voting rule when the voters do not
all have equal weights.

Proof. The problem is clearly in NP – given one voting scenario where c∗

wins, we can check that indeed c∗ is the winner in polynomial time. The NP-
hardness reduction is from the NP-complete Bin-Packing problem: given
a finite set U of items, an integer size s(u) for each u ∈ U , a positive integer
bin capacity B and a positive integer k, is there a partition of U into disjoint
sets U1, U2, . . . , Uk such that the sum of the sizes of the items in each Ui is B
or less? The instance for the Chance-Evaluation problem is as follows.
Every item is represented by a voter, where the item size is the voter’s weight.
We add another voter, vz with the weight B + 1. Every bin is represented
by a candidate, and we add another candidate z. vz has a probability of 1
to vote for z, and all the other voters have an equal probability to vote for
each one of the remaining candidates. We look for the possibility of z to
be a winner. Note that every voting scenario corresponds to a packing and
vice versa; a voter with weight x which votes for candidate y is like placing
an item with size x in bin y. One item can not be in more than one bin
and every voter can not vote for more than one candidate. Now suppose the
tie-breaking rule is lexicographic and z is the minimal candidate with respect
to the ordering. z is the winner if and only if all the other candidates get B
or less votes. So there is a packing if and only if there is a voting scenario
where z is the winner. The proof for random tie-breaking is similar, only
that the weight of vz is set to B.

This problem is NP-complete in the strong sense [54], meaning that even
if the weights are bounded by Poly(n) the problem remains hard (unlike the
case with the constant number of candidates, as shown before).
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Fortunately, for Plurality, if all voters have equal weights the problem can
be solved in polynomial time.

Theorem 4.13. Even if n and m are not constant, the Chance-
Evaluation problem is in P for the Plurality voting rule where all voters
have equal weights.

Proof. We give a polynomial time algorithm to answer the Chance-
Evaluation problem, assuming a random tie-breaking is used. The idea
is very similar to the technique presented by West [109, p.176], and we also
refer to Faliszewski et al. [44,45] for a different use of network flow techniques
in the context of voting problems. Let c∗ be the candidate for whom we are
trying to determine whether it has any chance of winning. Count the number
of voters that vote for c∗ with non-zero probability, and denote this number
by b. Then build a flow network G = (V,E) which contains a bipartite graph
G′ = (V 1′∪V 2′, E ′) and two additional nodes s and t, V = V 1′∪V 2′∪{s, t}.
V 1′ has a node for every voter which has a zero probability to vote for c∗, and
V 2′ has a node for every candidate but c∗. For every i ∈ V ′

1 , if voter i has a
non-zero probability to vote for candidate j then (i, j) ∈ E ′. In E, s has an
edge with capacity 1 to all the nodes of V 1′, t has an edge with capacity b
from all the nodes of V 2′, and if (i, j) ∈ E ′, (i, j) ∈ E too, with capacity 1.
Now find a maximum flow and check that every edge from s to a node of V 1′

has a residual capacity of zero. If such a flow exists, it represents a voting
scenario where c∗ gets b votes and all the other candidates get b or less votes
so the algorithm returns “yes”. If not, then in every voting scenario, c∗ can
get at most b votes and there is at least one candidate who gets more than
b votes so the algorithm returns “no”. The construction of the flow network
and all the stages of the algorithm can be done in polynomial time, therefore
the Chance-Evaluation problem for Plurality is in P where all the voters
have equal weights.

The algorithm for lexicographic tie-breaking is similar. Let Top(c∗) be
the set of all candidates that are more favored than c∗ according to the lexi-
cographic tie-breaking. For every edge (v, t) ∈ E, such that v corresponds to
a candidate in Top(c∗), set the capacity to b−1. The rest of the construction
remains the same. If the required flow exists, it represents a voting scenario
where c∗ gets b votes, all the candidates that are more favored than c∗ get
b − 1 or less votes, and all the other candidates get b or less votes so the
algorithm returns “yes”. If not, then in every voting scenario, c∗ can get at
most b votes and there is at least one candidate which is more favored than

56



4.3 The Number of Candidates as a Parameter

c∗ who gets more than b− 1 votes, or there is other candidate who gets more
than b votes. Thus, the algorithm returns “no”.

Figure 4.7 shows how the algorithm builds a flow network from the set
of preferences in Figure 4.7a. In this example we seek a voting scenario
where candidate D has a chance to win, and we use random tie-breaking.
We remove voters V1 and V5 which have a non-zero probability of voting for
D, and build a flow network as described in Figure 4.7b. In this example,
a possible maximal flow is to assign 1 to all the outgoing edges of s, to the
edges (V2, A), (V3, B), (V4, B), (V6, C), (V7, C) and (A, t), and to assign 2 to
the edges from B and C to t. Therefore, D has a chance to win; if V1 and V5

vote for D, V2 votes for A, V3 and V4 vote for B, and V6 and V7 vote for C.
For other voting rules, we get NP-hardness results as a corollaries of Xia

and Conitzer’s work [115](extended version). They considered the possible-
winner problem, where they assumed to have a correct but incomplete model
of each voter’s preference order. The input to our problem is different; we
have for each voter a collection of complete preference orders, with associ-
ated probabilities. Nevertheless, since the Chance-Evaluation problem
ignores the exact values of the probabilities, if the partial orders considered
in possible-winner problem have a polynomial number of extensions, then
possible-winner becomes a subproblem of Chance-Evaluation. Thus we
get:

Proposition 4.14. If n and m are not constant, the Chance-Evaluation
problem is NP-complete for k-approval, Borda, Copeland, Bucklin, and Max-
imin voting rules, even if the voters are unweighted 2.

4.3.3 Monte Carlo Approximation

Computing the exact answer for Evaluation and Chance-Evaluation
problems seems to be hard in many cases. However, we can utilize the un-
derlying probabilities to achieve an approximate solution even for the Eval-
uation problem. The idea is to use a statistical approach, in which we
sample according to the given probabilities in order to estimate the real win-
ning probability.

2This result also holds for Ranked Pairs and Voting tress, but we do not discuss these
rules in this part of our work.
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(b) The corresponding flow network for candidate D.

Figure 4.7: An example of how to build a flow network from a given set of
preferences.
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The algorithm is as follows. For each voter, we sample one preference
order according to the given distribution, thus obtaining a voting scenario.
Since the voters’ choices are independent, this process is equivalent to sam-
pling one voting scenario according to the voting scenarios’ distribution
(which we do not know). We then calculate the winner from this voting
scenario using the given voting rule, and repeat the whole process t times.
Given a specific candidate, c∗, we are interested in his winning probability,
denoted p. This probability is approximately the number of sampled voting
scenarios where c∗ wins divided by t, denote this ratio by p̂.

From the perspective of c∗, each iteration has two possible outcomes:
where c∗ wins or when another candidate wins. The winning probability
of c∗, p, is the same in each iteration, and the iterations are statistically
independent. Therefore, the distribution of p is a binomial distribution,
and the maximum likelihood estimator for p is p̂. This estimator is also
known to be unbiased for the binomial distribution. We can build a binomial
confidence interval which relies on approximating the binomial distribution
with a normal distribution, by the following formula:

P

(
p̂−

√
p̂(1− p̂)

t
Z1−α

2
≤ p ≤ p̂+

√
p̂(1− p̂)

t
Z1−α

2

)
= 1− α (4.1)

where Z1−α
2
is the 1− α

2
percentile of a standard normal distribution, and α

is our chosen probability of error. For bounding the distance from the real
winning probability, we require that given an ε,

|p− p̂| ≤ ε (4.2)

Combining (1) and (2) above we get that the number of required iterations
is:

t ≥
(√

p̂(1− p̂)Z1−α
2

ε

)2

(4.3)

i.e, the winning probability p̂ that we have found after such t iterations is,
with a probability of 1 − α, within ε-environment of the real probability p.
Table 4.5 shows the required number of iterations (t) as a function of ε and
α, assuming that p̂(1− p̂) is maximal, i.e. p̂ = 0.5.
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α ε t

0.05 0.05 271
0.05 0.01 6,764
0.05 0.001 676,386
0.01 0.05 542
0.01 0.01 13,530
0.01 0.001 1,352,974
0.001 0.05 955
0.001 0.01 23,874
0.001 0.001 2,387,384
0.0001 0.05 1,384
0.0001 0.01 34,578
0.0001 0.001 3,457,771

Table 4.5: Number of iterations as a function of ε and α.
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Chapter 5

How to Rig Elections and
Competitions

In this chapter we consider the evaluation and control of elections, with
the presence of uncertainty. We assume that we only know the probability
that a candidate will be preferred over another. We first formally define the
underlying assumptions and problems in Section 5.1. In Section 5.2 we give
a polynomial time algorithm for evaluating an agenda with any voting tree,
and show an optimized version of this algorithm for balanced voting trees.
We then show that rigging an agenda for balanced voting trees is provably
hard (the complete proof is due to [104, 105]). In Section 5.3 we analyze
the linear order case. We first show how to improve the general agenda
evaluation algorithm for linear orders, and prove the unfairness of the linear
order rule; a candidate can only benefit by going late in a voting order.
Thus, the election officer can try to increase a candidate’s chance of winning
by placing it last in the voting order. We then show that a relaxed version
of the original rigging agenda problem, is hard to solve. However, it is also
natural to ask if there is any agenda which would make a specific candidate
the winner with a non-zero probability. With linear order, we show that this
problem can be solved in polynomial time. Our hardness results may lead us
to conjuncture that a designer cannot benefit from having the probabilistic
information, since it is hard to rig an election agenda even with this input.
However, in practice, a worst-case analysis is not enough. We thus present
heuristics for agenda rigging in Section 5.4. We investigate the performance
of these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions. Our heuristics achieved over
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96% of the optimal solution on average for the randomly generated and the
basketball data set, and performed reasonably well for the tennis data set.

5.1 Model and Problem Definitions

In our probabilistic model, we assume that for any pairwise election, the
probability of one player winning against the other is known. This prob-
ability can be obtained from past statistics or from some learning models.
Here we do not place any constraints on the probabilities, except the funda-
mental properties. Thus there might be no transitivity between the winning
probabilities, e.g., candidate i has more than a 50% chance of beating candi-
date j, candidate j has more than a 50% chance of beating candidate k, but
candidate k also has more than a 50% chance of beating candidate i. We
summarize this information on an imperfect information ballot matrix M ,
which is a C ×C matrix of probabilities, such that if M [ci, cj] = p, then in a
pairwise election between ci and cj, candidate ci will win with a probability
of p. We require that 0 ≤ M [ci, cj] = 1 − M [cj, ci] ≤ 1. If all probabilities
are 0 or 1 then we say the scenario is one of perfect information, and the
ballot matrix represents the adjacency matrix of the majority graph, G (see
Chapter 3 for the definition of G).

The most obvious way to organize a series of pairwise elections is in a fair
tree order. In Figure 5.1(b), we see how pairwise elections between candidates
A,B,C and D may be organized into such a tree. The idea is that candidates
A and B face each other in a pairwise election, while candidates C and D face
each other in another pairwise election. This association of all the candidates
to the leaves is the agenda, α. The winner of the first pairwise election (A
in this case) then faces the winner of the second (D), and the winner of this
third pairwise election (D) is declared the overall winner. This process of
elimination is simulated by the labeling function, and the overall winner is
the candidate labeled at the root of the tree (see Chapter 3 for a formal
definition of the labeling function). The voting tree in Figure 5.1(b) is said
to be fair because it is balanced, and as a consequence every possible overall
winner would have to win the same number of pairwise elections.

The task of the election officer may thus be perceived as generating such a
binary tree, T , with candidates C allocated to leaves of the tree. Since only
partial (probabilistic) information is known, we first need to consider the
evaluation problem, which requires computation of the winning probabilities
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Figure 5.1: Majority graph (a), and two possible voting trees: linear order
(b) and fair tree order (c). The bold font represents the agenda, while the
italic font represents the labeling of the tree.
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of the candidates. Formally, given 〈T, α,M〉 the evaluation of T with respect
to α and M is a mapping η : V → [0, 1]n such that for any v ∈ V ,
η(v) = 〈p1, . . . , pn〉 if and only Pr[ ci is the winner at v ] = pi. Thus at
index i η(r(T )) will contain the probability that ci will be the overall winner
of T .

The opportunity for manipulation by the election officer is possible in such
settings , for example, by placing a favored candidate against candidates it
is likely to beat. If we relax the fairness constraint, then the possibilities for
an election officer to manipulate the election increase. Figure 5.1(c) shows a
rather unfair voting tree; in fact, it defines a linear order (A,B,C,D) for the
candidates, with the first ballot taking place between A and B, the winner
competing against C, and so on, until the winner of the final ballot (D in
this case) is the overall winner. The unfairness arises due to the possibility
of a candidate winning the overall election despite only participating in one
ballot (as is the case depicted in Figure 5.1(c)). We will denote linear voting
orders (i.e., permutations of C) by π, π′, . . ..

In a scenario of perfect information, a successful manipulation by the
election officer is one that guarantees that a specific candidate will win. In
our setting, as we deal with probabilities, the election officer’s goal can be
interpreted in two different concrete formulations:

• Imperfect information agenda rigging (IIAR): Given a set of candidates
C, an imperfect information ballot matrix M , a favored candidate c∗ ∈
C and a probability p, does an agenda α exist such that c∗ will win in
this setting with a probability of at least p?

• Imperfect information weak agenda rigging (IIWAR): Given a set of
candidates C, an imperfect information ballot matrix M and a favored
candidate c∗ ∈ C, does an agenda α which would make c∗ the winner
with a non-zero probability exist?

In the following sections we analyze the complexity of the IIAR and II-
WAR problems with fair tree and linear orders. We will refer to these prob-
lems in the fair tree order setting as IIARf and IIWARf , respectively, and
in the linear order setting as IIARl and IIWARl.
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5.2 Voting with a Fair Tree Order

5.2 Voting with a Fair Tree Order

We begin by considering the evaluation problem, which requires computation
of the candidates’ winning probabilities. It is not obvious that even the
evaluation problem is easy in our setting, since to compute the probability
that a given candidate will win the overall election, we must consider every
possible ordering of wins emerging from a given tree structure: in any given
ballot, there are two outcomes, in contrast to the perfect information case.
However, the following result implies the problem is in P for every voting
tree.

Theorem 5.1. Given 〈T, α,M〉, where T is any m leaf binary tree, the
evaluation of T with respect to α and M is computable in O(m3) arithmetic
operations.

Proof. Consider the following algorithm.

1. η(x) = unlabelled for each x ∈ V (T )

2. For each leaf, x, of T , η(x) = 〈x1, . . . , xm〉 with xi = 1 if α(x) = ci and
xi = 0 otherwise.

3. repeat

a. Let z be any node of T with children x and y such that
η(x) 6= unlabelled and η(y) 6= unlabelled. Let 〈x1, . . . , xm〉
denote η(x) and, similarly, 〈y1, . . . , ym〉 denote η(y). Compute
η(z) = 〈z1, . . . , zm〉 using

zi :=





xi

∑m
j=1 yj M [ci, cj] if xi > 0

yi
∑m

j=1 xj M [ci, cj] if yi > 0

0 if xi = yi = 0

4. until every v has η(v) 6= unlabelled

Step (2) correctly assigns η(v) for each leaf v of T . Inductively assuming that
z with children x and y has both η(x) and η(y) correctly assigned, consider
the computation of η(z) in 3(a). It cannot be the case that both xi > 0 and
yi > 0 since the candidate ci is a leaf in at most one of the sub-trees with roots
x and y. If ci is a leaf of neither sub-tree then xi = yi = 0 leading to zi = 0,
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5.3 Voting with a Linear Order of Ballots

i.e., ci cannot be a possible winner at z. Without loss of generality suppose
xi > 0. In order for ci to be a winner at node z it must first be successful at
node x (probability xi by the inductive assumption) and defeat the winner,
yj, at node y (yjM [ci, cj]). Summing over the contributing terms yields the
expression given in 3(a). To complete the argument it suffices to note that
O(m2) operations are carried out to compute η(z), giving a worst-case overall
number of O(m3) steps.

Vu et al. [104, 105] show a similar algorithm that calculates the winning
probability of a specific candidate in O(m2). However, if we consider the
more common setting, in which ballots are organized according to a fair tree
order, we can use an optimized version of our algorithm . In this manner we
reduce the overall time complexity of calculating the winning probabilities of
all the candidates to O(m2). The proof is given in the appendix. We obtain:

Theorem 5.2. Given 〈T, α,M〉, where T is a fair tree order, the evaluation
of T with respect to α and M is computable in O(m2) arithmetic operations.

We now continue with the control problem, which is interpreted in our
setting as the problem of finding an agenda that gives a named candidate at
least a certain probability of winning (IIARf problem). Due to Theorem 5.2,
with a fair tree order the problem is in NP. Fortunately, it is also provably
hard.

Theorem 5.3. IIARf is NP-complete.

The proof of this theorem is due to Theorem 5 in [104,105]. However the
complexity of the weaker version, IIWARf , is still an open problem.

5.3 Voting with a Linear Order of Ballots

We now focus on the linear order case. Given such an order π = (c1, . . . , cm)
and candidate c∗ ∈ C, the probability of c∗ being the overall winner of π is
denoted by Pr[w(π) = c∗ | M ], and is given as follows. For a voting order
π = (ci1 , ci2 , . . . , cim) with c∗ = cik , (i.e., the preferred winner occurs k’th in
the order π),

P [w(π) = c∗ | M ] = φ× ψ
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5.3 Voting with a Linear Order of Ballots

where

φ =

(
m∏

j=k+1

M [cik , cij ]

)

ψ =

(
k−1∑
j=1

P [w(ci1ci2 . . . cik−1
) = cij | M ]×M [cik , cij ]

)

That is, in order for c∗ to emerge as the winning candidate, c∗ must defeat
every candidate put forward later in the voting order, and succeed against
the eventual winner of the voting order formed by the earlier candidates.
Theorem 5.1 showed that the probability of a candidate wining in any given
voting tree can be computed in time O(m3); for linear orders, we can improve
this to O(m2).

Theorem 5.4. Given 〈π,M〉 and any c∗ ∈ C, P [w(π) = c∗ | M ] can be
computed in O(m2) arithmetic operations.

Proof. Let π = (ci1 , ci2 , . . . , cim). Consider the m × m matrix, T (π) whose
entries, T (π)[j, k] are,

T (π)[j, k] = P [w(ci1 . . . cij) = ck | M ]

Informally, T (π)[j, k] is the probability that candidate ck is the (current)
winner, immediately prior to the k’th ballot being held. To prove the lemma
it is sufficient to prove that T (π) may be constructed in polynomial time given
M and π. This, however, is an easy consequence of the following,

T (π)[j, k] =





1 if j = 1 and ck = ci1
0 if ck ∈ {cij+1

, cij+2
, . . . , cim}∑j−1

r=1 M [ck, cir ]× T (π)[j − 1, ir] if ck = cij
T (π)[j − 1, k]×M [ck, cij ] if ck ∈ {ci1 , . . . , cij−1

}
Thus [T (π)[1, 1], . . . , T (π)[1,m]] can be determined directly from π and each
subsequent row of T (π) is computable from its predecessor, π, and M using
O(m) arithmetic operations. It follows that T (π) can be computed with
O(m2) arithmetic operations.

What else can be said about voting with linear orders? First, we can
make precise, and prove correct, the intuition that there is no benefit to
going early; a candidate can only benefit by going late in a voting order.
While this seems intuitive, the proof is surprisingly involved.
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Lemma 5.5. Given 〈M,C〉 let ci, cj be distinct members of C. For
every voting order π1π2 of C \ {ci, cj}, it holds that Pr[w(π1cjciπ2) =
ci] ≥ Pr[w(π1cicjπ2) = ci].

Proof. Without loss of generality, let ci = cm, cj = cm−1, and

π = π1cmcm−1π2

π′ = π1cm−1cmπ2

First observe that we may assume |π2| = 0 and thus it is sufficient to prove
for all choices of π1,

P [win(π1cm−1cm) = cm] ≥ P [win(π1cmcm−1) = cm]

The probability, Plhs on the left-hand side of this expression is,

∑m−2
k=1 P [win(π1) = ck] M [cm−1, ck] M [cm, cm−1] +∑m−2
k=1 P [win(π1) = ck] M [ck, cm−1] M [cm, ck]

whereas that on the right-hand side, Prhs is,

m−2∑

k−1

P [win(π1) = ck] M [cm, ck] M [cm, cm−1]

In order to simplify the notational complexity, for 1 ≤ k ≤ m− 2, let

xk = P [win(π1) = ck]
yk = M [cm−1, ck]
zk = M [cm, ck]
α = M [cm, cm−1]

Recall that

M [ck, cm−1] = 1 − M [cm−1, ck] = 1 − yk

So that Plhs ≥ Prhs holds only if

m−2∑

k=1

xkykα +
m−2∑

k=1

xk(1− yk)zk ≥
m−2∑

k=1

xkzkα
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5.3 Voting with a Linear Order of Ballots

which, after rearranging terms, holds only if

α

m−2∑

k=1

xkyk +
m−2∑

k=1

xkzk ≥ α

m−2∑

k=1

xkzk +
m−2∑

k=1

xkykzk

That is,
m−2∑

k=1

xk(αyk + zk) ≥
m−2∑

k=1

xkzk(α + yk) (5.1)

The lemma follows only if this final inequality holds for every choice of α,
xk, yk, and zk for which 0 ≤ xk, yk, zk ≤ 1: these simply state that the
individual terms are probabilities.

Now if it is the case that for each k, xk(αyk + zk) ≥ xkzk(α + yk), then
the inequality in (5.1) is true. Thus, consider a typical terms x(αy + z),
xz(α + y). We wish to show:

∀ 0 ≤ α, x, y, z ≤ 1 x(αy + z) ≥ xz(α + y)

Since this is obviously true when x = 0, is sufficient to prove αy+z ≥ z(α+y).
If α ∈ {0, 1} then αy + z ∈ {z, y + z} whereas z(α + y) ∈ {zy, zy + z} so
that the required inequality is immediate: z ≥ zy and y + z ≥ zy + z. We
have two cases: y ≥ z and y < z. In the first of these αy + z ≥ z(α + y)
follows by rearranging to obtain the inequality α(y − z) ≥ z(y − 1): since
y − z ≥ 0 and y − 1 ≤ 0 this inequality always holds. We are left with the
case of 0 ≤ y < z ≤ 1, 0 < α < 1. In this case, αy + z ≥ z(α + y) may be
re-written as

y + (z − y) ≥ yz + α(z − y)

thus completing the proof of lemma: (z − y) > 0, y ≥ yz and (z − y) ≥
α(z − y).

The immediate corollary is as follows.

Corollary 5.6. For any candidate c∗ ∈ C, if there is a voting order, π
such that Pr[w(π) = c∗] ≥ p], then there is a voting order π′ such that
Pr[w(π′) = c∗] ≥ p] and in which c∗ is the final candidate to run.

Proof. Given π with Pr[w(π) = c] ≥ p, apply Lemma 5.5 repeatedly to move
c later in the voting order until it is the final candidate.

69
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Vu et al. [104,105] generalized this result, showing that in any voting tree,
the biased tree that maximizes the winning probability of c∗ has the biased
structure in which c∗ has to play only the final match.

The general problem of determining whether there exists any agenda
which gives a named candidate at least a certain probability of winning is
hard to classify in the linear order setting, and so we will analyze a restricted
version of the problem, as follows. When we think informally about rigging
an agenda, we tend not to think just in terms of the agenda, but also in
terms of the specific outcomes that we want the agenda to lead to. So, we
might think in terms of “if I put A up against B, then B wins and goes up
against C, and C wins. . . ” and so on. Here, we have not just the agenda
(ABC) but also the outcomes of the ballots (B wins the first; C the sec-
ond; . . . ). Here, we call these structures – which include the agenda for the
ballots together with the intended outcomes – a run. A run has the form

r : c1, c2
c2−→ c3

c3−→ · · · ck−1−→ c∗ c∗−→ where c1 and c2 are the candidates up
against each other in the first ballot, c2 is the intended winner of this ballot,
and so on, until the final ballot is between ck−1 and c∗, in which we intend
the winner – and hence overall winner – to be c∗. Computing the probability
that this run will result in our desired candidate c∗ winning is simple – it is
the value: Pr[w(c1, c2) = c2]×Pr[w(c2, c3) = c3]×· · ·×Pr[w(ck−1, c∗) = c∗].
We denote this value for a run r by Pr[r | M ]. So, in the relaxed imperfect in-
formation agenda rigging (RIIAR) problem, we are given a set of candidates
C, an imperfect information ballot matrix M , a favored candidate c∗ ∈ C,
and a probability p. We are asked whether there exists a run r, in which the
overall winner is c∗, such that Pr[r | M ] ≥ p.

Theorem 5.7. RIIAR is NP-complete.

Proof. A standard “guess and check” algorithm gives membership in NP. For
hardness, we reduce the k-hca problem on tournaments [12, p.46]: we are
given a tournament G = (V,E) (i.e., a complete digraph such that (c, c′) ∈ E
iff (c′, c) 6∈ E) and a subset E ′ ⊆ E, and we are asked whether G contains a
Hamiltonian cycle containing all edges E ′. We create an instance of RIIAR
as follows. The outcomes will be the vertices of G together with a new vertex,
v⊥. Given a tournament G = (V,E) and required edge set E ′, we create a
probability matrix so that G contains a cycle with E ′ iff we can create an
ordering of vertices satisfying the property given above. For each (u, v) ∈ E ′

we set M [u, v] = 1. For each (u, v) ∈ E \E ′ we set M [u, v] = 1− 1
10|V | (i.e., a
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“high” probability). We then set the target probability to be (1− 1
10|V | )

|V |−|E′|.
The intuition is that in any ordering which satisfies these properties, we can
only visit at most |E \ E ′| edges not in E ′, and so we such an ordering
must visit all edges in E ′. The difficulty is that we are after a cycle, so
we need to select a vertex (call it v>) to act as the source of the cycle and
our new vertex, v⊥, will act as the sink in the cycle; if we have an arc
(u, v>) ∈ E ′ then we define M [u, v⊥] = 1, while if (u, v>) ∈ E \ E ′ then we
define M [u, v⊥] = 1− 1

10|V | ; if for any vertex u ∈ V we have not yet defined a
value for M [u, v⊥] then define M [u, v⊥] = 0.5. We then ask whether we can
rig the agenda for v> to win with probability greater than the target.

It is also natural to ask if there is some permutation of C which would
make c∗ the winner with a non-zero probability. This is the IIWARl problem,
which can be solved efficiently.

Theorem 5.8. IIWARl is in P.

Proof. In order to solve this IIWARl, we convert every non-zero probability
to 1, i.e., ∀(i, j), if M [i, j] > 0, assign M [i, j] = 1. We then use the algorithm
introduced by Lang et al. [79] to find the voting tree structure that allows our
favorite candidate c∗ to win or decide that it is impossible for c∗ to win. Using
induction, it is easy to see that this voting tree can be built as a caterpillar
tree, i.e. with a linear order of ballots.

5.4 Heuristics and Experimental Evaluation

The hardness results of theorems 5.3 and 5.7 may lead us to conjuncture
that a designer cannot benefit from having the probability matrix M , since
it is hard to rig an election agenda even with this input. However, in prac-
tice, a worst-case analysis is not enough. The situation is similar to that in
cryptography, where a secure protocol is not one that is hard to break in
the worst case, but one that can be broken only with negligible probability.
Bartholdi et al., who were in many ways pioneers of the complexity-theoretic
approach to understanding election manipulation first voiced the concern
that NP-hardness results are not enough:

Concern: It might be that there are effective heuristics to ma-
nipulate an election even though manipulation is NP-complete.
Discussion: True. The existence of effective heuristics would
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weaken any practical import of our idea. It would be very inter-
esting to find such heuristics. [15]

This motivated us to consider heuristics for our problems, and to test
their performance in different scenarios. We used a bespoke simulation pro-
gram (written in C) to evaluate the heuristics. Our experiments were in two
categories: first, randomly generated data, and second, public domain form
data from sports competitions. For each of these settings, we evaluated the
heuristics for both linear and fair tree orders. For the randomly generated
data sets, we first generated random values for the probability matrix M
from a uniform distribution in the range [0, 1], and completed the matrix to
preserve probability constraints. We then ran 100 iterations, and during each
iteration a winner candidate, c∗, was randomly chosen and each heuristic was
used in an attempt to generate an optimal order for this player. The second
scenario was the same, except the random values for the matrix were taken
from a normal distribution with an average of 0.5 and a standard deviation of
0.2 while preserving probability constraints. For the real-world data sets, we
based our experiments on data from basketball and tennis competitions. For
the basketball experiments, we took 29 teams from the NBA, and computed
the probability matrix M from public domain form data. Here, there were
no iterations, but for every team we used each heuristic to generate a playing
order that would give this team the best chance of winning. For the tennis
experiments, we used the 13 players from the top of the ATP ranking, again
computing the probability matrix from public domain form tables.

5.4.1 Heuristics for Linear Order Voting Tree

We start with the case which is more vulnerable to manipulation by the
election officer, where the elections are organized according to a linear order.
The heuristics which we developed are as follows.

• Optimal : In those cases where it was computationally feasible to do so,
we exhaustively evaluated every permutation in order to find the real
optimal agenda as a comparison.

• Far adversary : The idea was to minimize the probability that our fa-
vorite candidate c∗ would face candidates that he had a high probability
of losing to. Thus, the candidate who had the highest probability to
beat c∗ was assigned to the leftmost leaf, the one that has the second
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highest probability to beat c∗ was assigned to the second leaf (from
the left), and so on; c∗ was chosen to be at the rightmost leaf (cf.
Corollary 5.6).

• Best win: The favorite candidate c∗ was chosen to be at the rightmost
leaf, and the candidate that c∗ had the best chance of beating was
chosen to be before it, the next being the one that this candidate was
most likely to beat, and so on.

• Simple convert : The idea was to convert the probability matrix M into
a binary matrix, and then simply apply the algorithm from Theorem
5.8. To create the binary matrix, every probability which was greater
than or equal to 0.5 was converted to 1, and the others were converted
to 0. If no agenda could be found, (which is sometimes the case when
the number of candidates is small) a random agenda was generated.

• Threshold convert : This was a more sophisticated attempt to convert
M into a binary matrix. We searched for the maximum threshold above
which, if we convert all the probabilities above it to 1 and below it to 0,
there was still an agenda that enabled c∗ to win (on the converted ma-
trix). We used a binary search, stopping when the difference between
the low/high limit and the threshold was less than 0.005. As before, if
no agenda could be found a random agenda was generated.

• Local search: c∗ was chosen to be at the rightmost leaf. For the other
places, in every iteration a random permutation was chosen. Then
0.5 ∗ |N | random swaps were tested to find an agenda with maximum
winning probability (|N | iterations were done).

• Random order : As a control, a random agenda was also generated.

The results for heuristics on linear order are shown in Figures 5.2 and 5.3.
First, note that the overall performance of the heuristics does not vary

significantly between uniform and normal distributions (Figure 5.2, first and
second graphs, respectively). In these graphs, the x-axis is the number of
candidates and the y-axis is the winning probability that was found using
our heuristics. Every point in the graph represents the winning probability
that was averaged over 100 iterations.

In the uniform distribution experiments, it seems that best-win and
far adversary seem to perform similarly well (marginally better than local
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Figure 5.2: Performance of heuristics for linear order for randomly generated
probability matrices using uniform and normal probability distributions.
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Figure 5.3: Performance of heuristics for linear order for real-world data from
the domain of professional tennis and basketball.
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search), while for a normal distribution they are slightly differentiated, but
again performed better than local search. Both heuristics reached a very high
winning probability, almost 0.9, and they performed better as the number
of candidates increased. These heuristics also performed well in comparison
to the optimal solution – they gave a winning probability which on average
was only 98% from the optimal solution. Note that both of the “convert”
heuristics (simple convert, threshold convert) performed very poorly, both for
uniform and normal distributions, and thus we omitted them in subsequent
experiments.

With the tennis players experiments (Figure 5.3, first graph), the x-axis
is the player’s number that was chosen to be the winning player and the
y-axis as before. Here, there was no heuristic that performed significantly
better than the others in general, but when choosing from the heuristics, the
best solution for each player performed very well compared to the optimal
solution. They gave a winning probability which was only 96% from the
optimal solution on average, and the winning probability on average was more
than twice as high as the random order. Player number 0, (Roger Federer,
currently the world’s number one player), even succeeded in obtaining a
winning probability of 1 from local search.

We conclude that there is no one heuristic that performs significantly
better than the others for all cases. We suggest the best thing to do here
is to run all the heuristics and order the candidates according the heuristic
which gives the best results for candidate c∗ since they all run quite fast.
Note that local search takes much more time than other heuristics, but still
demonstrates acceptable time performance.

5.4.2 Heuristics for Fair Voting Tree

For this tree structure we investigated the following heuristics.

• Optimal, Far adversary, Local search: We organized the leaves of the
balanced binary tree as a linear order from left to right and applied
these heuristics as above. (Note that when the number of candidates
is not a power of 2, some of the rightmost candidates may face one less
ballot than the other candidates.)

• Best win: Because of the tree structure, we had to use a modified ver-
sion of the previous best win heuristic, but the principle remained the
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same. We tried to maximize the probability that c∗ would compete
against candidates that he had a high probability of beating, and to
maximize the probability that they would reach the point where they
compete against him. We first assigned c∗ at the rightmost leaf of the
tree, and for each competition along its path to the root we assigned
candidates that c∗ had a high probability to of beating. In this manner,
for each candidate we defined a sub-tree for which we wanted the can-
didate to be its overall winner (unless the candidate had been assigned
to a leaf) so we could repeat this assignment procedure recursively.

Perhaps it will be easiest to understand this heuristics by a pseudo-code
description. The first call to this algorithm is BestWin(the entire tree,
c∗).

Algorithm 2 BestWin(Sub tree T , winner candidate c∗)

1: if height of T is 0 then
2: put c∗ in the root of T
3: return
4: else
5: put c∗ in the rightmost leaf of T
6: for i ← 1 to the height of T do
7: temp ← a candidate that c∗ has the best probability to win and was not

chosen yet
8: push temp into queue
9: for i ← 1 to the height of T do
10: pop temp from queue
11: T ′ ← rightmost subtree of T , with height i− 1 and unoccupied leaves
12: BestWin(T ′, temp)

• Random order : As a control, a random agenda was also generated.

The results of our experiments are shown in 5.4 and 5.5.
Generally, one can note that the overall wining probability is lower than in

the linear order structure, which seems to be a direct consequence of the rela-
tive fairness of the procedure. Nevertheless, if we compare the best heuristic
for each case to the random order, we get a winning probability which is on
average 4.31 times higher than the random order winning probability and
which is on average only 96% from the optimal solution, with the randomly
generated data. We also note that with this randomly generated data the
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Figure 5.4: Performance of heuristics for fair tree order for randomly gener-
ated probability matrices using uniform and normal probability distributions.

78



5.4 Heuristics and Experimental Evaluation

1

Fair tree order - 13 tennis players

0.7

0.8

0.9

w
in
n
in
g
 p
ro
b
a
b
il
it
y

0.3

0.4

0.5

0.6

w
in
n
in
g
 p
ro
b
a
b
il
it
y

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12

player number

optimal far adversary best win local search random order

0.3

Fair tree order - 29 basketball teams

0.2

w
in
n
in
g
 p
ro
b
a
b
il
it
y

far adversary best win local search random order

0.1

w
in
n
in
g
 p
ro
b
a
b
il
it
y

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

team number
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graphs have a wave-like shape: the lowest points in these waves are when
the number of candidates is exactly a power of 2 at which time the tree is
perfectly balanced. This is simply because when the number of candidates
is exactly a power of 2, every candidate must compete in exactly the same
number of ballots. In all other cases, there are some candidates (including
our favorite, c∗) that face one less ballot. This effect can help c∗, by forc-
ing strong competitors to undergo one more ballot. It is also apparent that
in contrast to the linear order with random normal distribution, the best
win heuristic performs better than the others: 1.25 times better than far
adversary, and 1.66 times better than local search on average.

With the NBA basketball teams experiments, (Figure 5.5, second graph),
the far adversary method was the winning heuristic. It performed better
than the others with a winning probability, which, on average was 1.24 times
better than local search and 1.08 times better than best win. The highest
winning probability was generated for team 11, the LA Lakers. It was not
computationally feasible to calculate the optimal solution for 29 teams, so we
ran another scenario with only the first 13 teams to check the performance of
our heuristics against the optimal solution. The best heuristic in each case
gave a winning probability which on average was only 99% of the optimal
solution!

In the tennis players scenario ((Figure 5.5(b), first graph) there was no
heuristic that performed significantly better than the others. But, when we
chose the best solution from the heuristics for each case the winning proba-
bility on average was 61% of the optimal solution. Perhaps the performance
difference between this case and the other cases was a result of the type
of the distribution, since the probability matrix in the tennis case contains
many high probabilities. Another indicator is the performance of our best
heuristic in each case in comparison to the random order. In the tennis sce-
nario it performed almost 5 times better, while in the basketball scenario it
performed only about 1.5 times better.
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Chapter 6

Complexity of Safe Strategic
Voting

In this chapter we focus on algorithmic complexity of safe manipulation, as
defined by Slinko and White [101]. We first define our problem and for-
malize the relevant computational questions (Section 6.1). We then study
the complexity of these questions for several classic voting rules, for both
weighted and unweighted voters. In Section 6.2 we analyze Plurality, Veto
and k-approval voting rules, and in Section 6.3 we handle Bucklin and Borda
voting rules. We then explore whether it is possible to extend the model of
safe manipulation to settings where the manipulator may be joined by voters
whose preferences differ from his own. In Section 6.4 we propose two ways
of formalizing this idea, which differ in their approach to defining the set of
a voter’s potential followers, and provide initial results on the complexity of
safe manipulation in these models.

6.1 Problem Definition and Computational

Problems: First Observations

In our work we analyze the algorithmic complexity of safe manipulation, as
defined by Slinko andWhite in [101]. For the purposes of our presentation, we
can simplify their definitions considerably. The details follow. Recall that the
voters’ true preferences are given by a preference profile R = (R1, . . . , Rn).
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6.1 Problem Definition and Computational Problems: First
Observations

Definition 6.1. We say that a vote L is an incentive to vote strategically,
or a strategic vote for i at R under F, if L 6= Ri and for some U ⊆ Vi we
have F(R−U(L)) Âi F(R). Further, we say that L is a safe strategic vote for
a voter i at R under F if L is a strategic vote at R, and for any U ⊆ Vi either
F(R−U(L)) Âi F(R) or F(R−U(L)) = F(R).

Unless specified otherwise, in this part of our work we assume that the
tie-breaking rule is lexicographic, i.e., given a set of tied alternatives, it selects
one that is maximal with respect to a fixed ordering Â. To build intuition
for our notions, consider the following example.

Example 6.2. Suppose C = {a, b, c, d}, V = {1, 2, 3, 4}, the first three voters
have preference b Â a Â c Â d, and the last voter has preference c Â d Â
a Â b. Suppose also that the voting rule is 2-approval. Under truthful voting,
a and b get 3 points, and c and d get 1 point each. Since ties are broken
lexicographically, a wins. Now, if voter 1 changes his vote to L = b Â c Â
a Â d, b gets 3 points, a gets 2 points, and c gets 2 points, so b wins. As
b Â1 a, L is a strategic vote for 1. However, it is not a safe strategic vote: if
players in V1 = {1, 2, 3} all switch to voting L, then c gets 4 points, while b
still gets 3 points, so in this case c wins and a Â1 c.

The definition of safe strategic voting gives rise to two natural algorithmic
questions. In the definitions below, F is a given voting rule and the voters
are assumed to be unweighted.

• IsSafe(F): Given a voting domain, a voter i and a linear order L, is
L a safe strategic vote for i under F?

• ExistSafe(F): Given a voting domain and a voter i, can voter i make
a safe strategic vote under F?

The variants of these problems for weighted voters will be denoted, respec-
tively, by wIsSafe(F) and wExistSafe(F). Note that, in general, it is not
clear if an efficient algorithm for (w)ExistSafe(F) can be used to solve
(w)IsSafe(F), or vice versa. However, if the number of candidates is con-
stant, (w)ExistSafe(F) reduces to (w)IsSafe(F). We formulate the fol-
lowing two results for weighted voters; clearly, they also apply to unweighted
voters.

Proposition 6.3. Consider any voting rule F. For any constant k, if |C| ≤
k, then a polynomial-time algorithm for wIsSafe(F) can be used to solve
wExistSafe(F) in polynomial time.
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Proof. In this case i has at most k! = O(1) different votes, so he can try all
of them.

A similar reduction exists when each voter only has polynomially many
“essentially different” votes.

Proposition 6.4. Consider any scoring rule Fα that satisfies either (i) αj =
0 for all j > k or (ii) αj = 1 for all j ≤ m− k, where k is a given constant.
For any such rule, a polynomial-time algorithm for wIsSafe(Fα) can be used
to solve wExistSafe(Fα) is polynomial time.

Proof. We consider case (i); case (ii) is similar. There are at most nk =
poly(n) different ways to fill the top k positions in a vote. Further, if two
votes only differ in positions k + 1, . . . ,m, they result in the same outcome.
Thus, to solve wExistSafe(Fα), it suffices to run wIsSafe(Fα) on poly(n)
instances.

Observe that the class of rules considered in Proposition 6.4 includes
Plurality and Veto, as well as k-approval and k-veto when k is bounded by
a constant.

Further, we note that for unweighted voters it is easy to check if a given
manipulation is safe.

Proposition 6.5. The problem IsSafe(F) is in P for any voting rule F.

Proof. Set Vi = {i1, . . . , is}. Since our voting rule is anonymous, it suffices to
check the conditions of Definition 6.1 for U ∈ {{i1}, {i1, i2}, . . . , {i1, . . . , is}},
i.e., for s ≤ n sets of voters.

Together with Propositions 6.3 and 6.4, Proposition 6.5 implies that the
problem ExistSafe(F) is in P for Plurality, Veto, k-veto and k-approval
for constant k, as well as for any voting rule with a constant number of
candidates.

Note that when voters are weighted, the conclusion of Proposition 6.5
no longer holds. Indeed, in this case the number of subsets of Vi that have
different weights (and thus may have a different effect on the outcome) may
be exponential in n. However, the problem remains easy when all weights
are small (polynomially bounded).

Proposition 6.6. For any voting rule F, wIsSafe(F) can be solved in time
poly(n,wmax), where wmax = maxi=1,...,nwi.
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6.2 Plurality, Veto, and k-approval

Proof. Let i be the manipulating voter; we have w(Vi) ≤ nwmax. Given a
vote L, we use the standard dynamic programming algorithm to check for all
w = 1, . . . , nwmax if there exists a Uw ⊆ Vi with w(Uw) = w. For each such w,
we compare F(R−Uw(L)) and F(R); clearly, the outcome is independent of the
choice of Uw. Thus, we can check if L satisfies the conditions of Definition 6.1
in time poly(n,wmax).

As in the case of unweighted voters, Proposition 6.6 leads to a pseudopoly-
nomial algorithm for wExistSafe(F) for a constant number of candidates,
as well as for Veto and Plurality.

Corollary 6.7. For any voting rule F with at most k candidates, as well
as for any scoring rule that satisfies the conditions of Proposition 6.4,
wExistSafe(F) can be solved in time poly(nk, wmax).

6.2 Plurality, Veto, and k-approval

We will now show that the easiness results for k-approval and k-veto extend
to arbitrary k ≤ m and weighted voters (note that the distinction between
k-veto and (m− k)-approval only matters for constant k).

Theorem 6.8. For k-approval, the problems wIsSafe and wExistSafe
are in P.

Proof. Fix a voter v ∈ V . To simplify notation, we renumber the candidates
so that v’s preference order is given by c1 Âv . . . Âv cm. Denote v’s truthful
vote by R. Recall that Vv denotes the set of voters who have the same
preferences as v. We call a candidate the maximal manipulation winner for
vote L, if it wins when all the voters from Vv choose to vote L. Now suppose
that under truthful voting the winner is cj. For i = 1, . . . ,m, let si(R

′)
denote the k-approval score of ci given a profile R′, and set si = si(R).

We start by proving a useful characterization of safe strategic votes for
k-approval.

Lemma 6.9. A vote L is a safe strategic vote for v if and only if the winner
in R−Vv(L) is a candidate ci with i < j.

Proof. Suppose that L is a safe strategic vote for v. Then there exists an
i < j and a U ⊆ Vv such that the winner in R−U(L) is ci. It must be the
case that each switch from R to L increases ci’s score or decreases cj’s score:

84



6.2 Plurality, Veto, and k-approval

otherwise ci cannot beat cj after the voters in U change their vote from R to
L. Therefore, if ci beats cj when the preference profile is R−U(L), it continues
to beat cj after the remaining voters in Vv switch, i.e., when the preference
profile is R−Vv(L). Hence, the winner in R−Vv(L) is not cj; since L is safe,
this means that the winner in R−Vv(L) is c` for some ` < j.

For the opposite direction, suppose that the winner in R−Vv(L) is ci for
some i < j. Note that if two candidates gain points when some subset of
voters switches from R to L, they both gain the same number of points; the
same holds if both of them lose points.

Now, if j > k, a switch from R to L does not lower the score of cj, so it
must increase the score of ci for it to be the maximal manipulation winner.
Further, if a switch from R to L grants points to some c` 6= ci, then either
s` < si or s` = si and the tie-breaking rule favors ci over c`: otherwise, ci
would not be the maximal manipulation winner.

Similarly, if j ≤ k, a switch from R to L does not increase the score of ci,
so it must lower the score of cj. Further, if some c` 6= ci does not lose points
from a switch from R to L, then either s` < si or s` = si and the tie-breaking
rule favors ci over c`: otherwise, ci would not be the maximal manipulation
winner.

Now, consider any U ⊆ Vv. If sj(R−U(L)) > si(R−U(L)), then cj is the
winner. If si(R−U(L)) > sj(R−U(L)), then ci is the winner. Finally, suppose
si(R−U(L)) = sj(R−U(L)). By the argument above, no other candidate can
have a higher score. So, suppose that s`(R−U(L)) = si(R−U(L)), and the
tie-breaking rule favors c` over ci and cj. Then this would imply that c` wins
in R or R−Vv(L) (depending on whether a switch from R to L causes c` to
lose points), a contradiction. Thus, in this case, too, either ci or cj wins.

Lemma 6.9 immediately implies an algorithm for wIsSafe: we simply
need to check that the input vote satisfies the conditions of the lemma. We
now show how to use it to construct an algorithm for wExistSafe. We
need to consider two cases.

j > k:
In this case, the voters in Vv already do not approve of cj and approve of
all ci, i ≤ k. Thus, no matter how they vote, they cannot ensure that some
ci, i ≤ k, gets more points than cj. Hence, the only way they can change
the outcome is by approving of some candidate ci, k < i < j. Further,
they can only succeed if there exists an i = k + 1, . . . , j − 1 such that either
si + w(Vv) > sj or si + w(Vv) = sj and the tie-breaking rule favors ci over
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cj. If such an i exists, v has an incentive to manipulate by swapping c1 and
ci in his vote. Furthermore, it is easy to see that any such manipulation is
safe, as it only affects the scores of c1 and ci.

j ≤ k:
In this case, the voters in Vv already approve of all candidates they prefer to
cj, and therefore they cannot increase the scores of the first j−1 candidates.
Thus, their only option is to try to lower the scores of cj as well as those of
all other candidates whose score currently matches or exceeds the best score
among s1, . . . , sj−1.

Set Cg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Let C0 be the set of all
candidates in Cg whose k-approval score is maximal, and let smax be the
k-approval score of the candidates in C0. For any c` ∈ Cb, let s

′
` denote the

number of points that c` gets from all voters in V \ Vv; we have s′` = s` for
k < ` ≤ m and s′` = s` −w(Vv) for ` = j, . . . , k. Now, it is easy to see that v
has a safe manipulation if and only if the following conditions hold:

• For all c` ∈ Cb either s′` < smax, or s′` = smax and there exists a
candidate c ∈ C0 such that the tie-breaking rule favors c over c`;

• There exist a set Csafe ⊆ Cb, |Csafe| = k − j + 1, such that for all
c` ∈ Csafe either s

′
`+w(Vv) < smax or s

′
`+w(Vv) = smax and there exists

a candidate c ∈ C0 such that the tie-breaking rule favors c over c`.

Note that these conditions can be easily checked in polynomial time by com-
puting s` and s′` for all ` = 1, . . . ,m.

Indeed, if such a set Csafe exists, voter v can place the candidates in Csafe

in positions j, . . . , k in his vote; denote the resulting vote by L. Clearly, if all
voters in Vv vote according to L, they succeed to elect some c ∈ C0. Thus,
by Lemma 6.9, L is safe. Conversely, if a set Csafe with these properties does
not exist, then for any vote L 6= R the winner in R−Vv(L) is a candidate in
Cb, and thus by Lemma 1 L is not safe.

We remark that Theorem 6.8 crucially relies on the fact that we break
ties based on a fixed priority ordering over the candidates. Indeed, it can
be shown that there exists a (non-lexicographic) tie-breaking rule such that
finding a safe vote with respect to k-approval combined with this tie-breaking
rule is computationally hard (assuming k is viewed as a part of the input).
As the focus of this part of our work is on lexicographic tie-breaking, we omit
the formal statement and the proof of this fact.
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In contrast, we can show that any scoring rule with 3 candidates is easy to
manipulate safely, even if the voters are weighted and arbitrary tie-breaking
rules are allowed.

Theorem 6.10. wIsSafe(F) is in P for any voting rule F obtained by
combining a positional scoring rule with at most three candidates with an
arbitrary tie-breaking rule.

Proof. For one candidate, the statement is trivial. With two candidates,
every positional scoring rule is equivalent to Plurality, and under Plurality
with two candidates no voter has an incentive to vote strategically.

Now, suppose that |C| = 3. Consider a voter i and assume without loss
of generality that Ri = (c1, c2, c3). If F(R) = c1, then i has no incentive to
vote strategically. We will now consider the cases F(R) = c2 and F(R) = c3
separately.

1. F(R) = c2. Suppose that L is a strategic vote for i. Then L cannot
rank c2 in top two positions. Indeed, any such manipulation does not
decrease c2’s score and does not increase c1’s score. Thus, if c2 had a
higher score than c1, this would still be the case no matter how many
voters in Vi switch to voting L. Further, if both c2 and c1 had top
scores, then L could succeed only if it does not change the scores of
either of them. But in this case the score of c3 does not change either,
so the outcome remains the same. Thus, it remains to consider two
cases: L = (c1, c3, c2) and L = (c3, c1, c2). Now, let c = F(R−Vi

(L)).
If c = c3 (i.e., c3 is the maximal manipulation winner), L is not safe.
Further, if c = c2, then we have c2 = F(R−U(L)) for any U ⊆ Vi, i.e., L
is not a strategic vote for i. Finally, if c = c1, then L is a safe strategic
vote. Indeed, suppose that L is not safe, i.e., F(R−U(L)) = c3 for some
U ⊂ Vi. Each switch from Ri to L does not decrease c3’s score, so in
that case c3 would be a full manipulation winner.

2. F(R) = c3. It can be checked that if L is a strategic vote for i, then L
has to rank c2 first, i.e., L ∈ {(c2, c1, c3), (c2, c3, c1)}. If F(R−Vi

(L)) =
c3, by the same argument as above, there is no incentive for i to vote for
L. Otherwise, L is a safe strategic vote, since c3 is the least preferred
candidate.
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6.3 Bucklin and Borda

Bucklin rule is quite similar to k-approval, so we can use the ideas in the
proof of Theorem 6.8 to design a polynomial-time algorithm for finding a
safe manipulation with respect to Bucklin. However, the proof becomes
significantly more complicated.

Theorem 6.11. For the Bucklin rule, wExistSafe is in P.

Proof. As in the proof of Theorem 6.8, we fix a voter v ∈ V and renumber the
candidates so that v’s preference order is given by c1 Âv . . . Âv cm. Denote
v’s truthful vote by R. Let Vv denote the set of voters who have the same
preferences as v. Suppose that under truthful voting the Bucklin winner is
cj, and the winning round is k.

We have to consider two possibilities.

j > k:
In this case, no matter how the voters in Vv vote, cj’s k-approval score will
be at least dn/2e. Thus, the only part of v’s vote that can affect the final
outcome is the top k positions. Now, no matter how the voters in Vv vote,
none of the candidates currently ranked in the top k positions by v can
beat cj. Thus, the only way v can succeed is by ranking some candidate ci,
k < i < j, in the top position. This will work if it makes ci’s k′-approval
score become at least dn/2e for some k′ < k, or if it makes ci a k-approval
winner (under the given tie-breaking rule). To check if such a ci exists, v can
try to swap c1 and ci in his vote for all i = k + 1, . . . , j − 1. Moreover, any
such manipulation is safe, as it only affects the scores of c1 and ci.

j ≤ k:
Set Cg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Let k′ be the smallest value of
` such that under truthful voting some c ∈ Cg gets at least dn/2e votes in
round `; clearly, we have k′ ≥ k. Let C0 be the set of all candidates in Cg

whose k′-approval score is maximal (and hence is at least dn/2e), and let
smax be the k

′-approval score of the candidates in C0. Let ĉ be the candidate
in C0 that is most favored by the tie-breaking rule. Throughout the proof,
for any c, c′ ∈ C and any ` ≤ m, we will say that c beats c′ under `-approval
if c’s `-approval score is no lower than that of c′, and if they are equal, then
our tie-breaking rule favors c over c′. Further, we say that c beats c′ if there
exist some `, `′ ≤ m, such that c gets at least dn/2e votes under `-approval,
but not under (`−1)-approval, c′ gets at least dn/2e votes under `′-approval,
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but not under (`′ − 1)-approval, and either ` < `′ or ` = `′ and c beats c′

under `-approval.
No matter how the voters in Vv vote, they cannot ensure that a candidate

in Cg gets at least dn/2e votes in round ` for ` < k′. Therefore, to succeed,
they need to ensure that no candidate in Cb gets at least dn/2e `-approval
votes for ` < k′, and that no candidate in Cb beats all candidates in Cg under
k′-approval.

Hence, v has an incentive to manipulate if and only if there is a vote L
such that if some voters in Vv switch from R to L, then for any c ∈ Cb

(a) c’s (k′ − 1)-approval score is less than dn/2e;
(b) c’s k′-approval is at most smax, and if it is equal to smax, then the

tie-breaking rule favors ĉ over c.

We will first prove that essentially any safe vote L makes cj lose when all
voters in Vv switch from R to L.

Lemma 6.12. If there exists a safe vote for v, then there exists a safe vote
for v that ranks all candidates in Cg in top j−1 positions. Moreover, for any
safe vote L that ranks all candidates in Cg in top j − 1 positions, it cannot
be the case that cj wins if all voters in Vv vote according to L.

Proof. To prove the first part, note that if we are given a safe vote that does
not rank some c ∈ Cg in top j− 1 positions, then we can swap the candidate
from Cb that appears in top j − 1 positions with c, and the resulting vote
would still be safe. We can repeat this step until all candidates ranked in
top j − 1 positions belong to Cg.

For the second part, observe that L cannot rank cj in position k′ − 1
or higher, since otherwise cj gets at least dn/2e (k′ − 1)-approval votes no
matter how many voters in Vv switch from R to L. Now, suppose that after
some voters U ⊆ Vv switch from R to L, cj stops being the Bucklin winner,
and some c ∈ Cg becomes the Bucklin winner. Note that since we assume
that c is ranked in top j−1 positions in L, the corresponding winning round
is k′.

At this point, cj’s (k
′−1)-approval score is less than dn/2e. Therefore, as

the voters in Vv \ U switch from R to L, cj’s (k
′ − 1)-approval score remains

less than dn/2e. Further, each switch from R to L does not increase cj’s k
′-

approval score, and, as argued above, c’s k′-approval score remains the same
after each switch. Thus, cj’ continues to lose to c under k′-approval after all
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voters in Vv switch from R to L. Therefore, cj cannot be the Bucklin winner
when all voters in Vv vote according to L.

We will now construct a family of votes for v as follows. For ` = j, . . . ,m,
let us say that a position p ∈ {j, . . . ,m} is safe for c` if c` satisfies conditions
(a) and (b) above whenever all voters in Vv rank c` in position p. Let P (`)
denote the set of positions that are safe for c`. The sets P (`) can be computed
independently and efficiently for each c` ∈ Cb. Consider now a bipartite graph
G whose vertices are candidates in Cb and positions in {j, . . . ,m}, and there
is an edge from a candidate c` to a position i if and only if i ∈ P (`). For
any complete matching in this graph, we can construct a vote L in which all
candidates in Cg are ranked in top j − 1 positions and all candidates in Cb

are ranked according to the matching. Denote the set of all such votes by
L(G). Clearly, if all voters in Vv vote according to any L ∈ L(G), then some
candidate in Cg wins. We will now prove two lemmas that characterize the
relationship between the set L(G) and the set of all safe votes.

Lemma 6.13. Any safe vote L that ranks all candidates in Cg in top j − 1
positions ranks each c` ∈ Cb in a position in P (`).

Proof. Suppose that L ranks some ` ∈ Cb in a position that is not in P (`).
This means that no candidate in Cg can win when all voters in Vv vote
according to L. Now, if in this situation some c′ ∈ Cb, c

′ 6= cj, wins, this
means that L is unsafe. On the other hand, if cj wins, then by Lemma 6.12
L is not safe.

Thus, each safe vote can be transformed into a vote in L(G), i.e., if
L(G) = ∅, there are no safe votes for v.

Lemma 6.14. If there exists a safe vote for v, then any vote in L(G) is safe.

Proof. The proof proceeds by contraposition: we will argue that if some vote
L ∈ L(G) is not safe, then no vote is safe for v.

Fix a vote L ∈ L(G), and denote by Csafe the set of candidates ranked in
positions j, . . . , k′ in L. Suppose that initially all voters in Vv vote truthfully,
and then they switch from R to L one by one. Since L ∈ L(G), after all voters
switch, some c ∈ Cg becomes the Bucklin winner, so at some point in this
process cj stops being the Bucklin winner. Suppose that this happens after
some subset of voters U ⊆ Vv switch. At this point, some other candidate c
becomes the Bucklin winner; let k′′ be the corresponding winning round.
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Suppose first that c ∈ Cg; note that this implies k′′ = k′. We claim that
in this case L is safe. Indeed, this means that currently no candidate gets
at least dn/2e votes in the first k′ − 1 rounds, and all candidates in Cb lose
to c under k′-approval. Now, for any ` ≤ k′, each switch from R to L can
increase the `-approval scores of the candidates in Csafe only. However, we
know that even if all voters in Vv switch from R to L, the candidates in Csafe

still do not win. Thus, after any number of additional switches from R to
L, it is still the case that no candidate gets at least dn/2e votes in the first
k′ − 1 rounds, and all candidates in Cb lose to c under k′-approval. Thus, in
this case L is safe.

Now, suppose that c ∈ Cb (and hence L is not safe). We will now argue
that in this case no vote is safe for v. Indeed, suppose that L′ is a safe vote
for v. By Lemma 6.12, we can assume that L′ ranks the candidates in Cg in
top j− 1 positions. We will now show that after the voters in U switch from
R to L′, c beats both cj and all candidates in Cg. We split the rest of the
proof of Lemma 6.14 into two lemmas.

Lemma 6.15. In R−U(L
′), c beats all candidates in Cg.

Proof. Since c is the Bucklin winner in R−U(L) its k′′-approval score in
R−U(L) is at least dn/2e.

We will now argue that each switch from R to L decreases c’s k′′-approval
score. Indeed, otherwise in R−U(L) candidate c’s k′′-approval score remains
at least dn/2e. If k′′ < k′, this is a contradiction with L ∈ L(G). Now
suppose that k′′ = k′. Since each switch from R to L does not increase the
k′′-approval scores of all c′ ∈ Cg, c continues to beat all candidates in Cg

under k′′-approval. Again, this is a contradiction with L ∈ L(G).
Thus, a switch from R to L′ cannot lower c’s k′′-approval score more than

a switch from R to L does. Hence, if k′′ < k′, after the voters in U switch
from R to L′, c has at least dn/2e k′-approval votes, so no candidate in Cg

can win in this case. Now suppose that k′ = k′′. Neither a switch from R to
L nor a switch from R to L′ changes the k′-approval scores on any c′ ∈ Cg.
Thus, for any c′ ∈ Cg, if c beats c

′ under k′-approval in R−U(L), he also beats
c′ under k′-approval in R−U(L

′). Thus, in R−U(L
′) no candidate in Cg can

win the election.

Lemma 6.16. In R−U(L
′), c beats cj.

Proof. As argued in Lemma 6.12, both L and L′ rank cj in position k′ or
lower. Since c beats cj in R−U(L), it follows that in R−U(L), candidate cj’s
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(k′′ − 1)-approval score is less than dn/2e. Now, since k′′ − 1 < k′, a switch
from R to L′ has the same effect on cj’s (k

′′ − 1)-approval score as a switch
from R to L. Thus, in R−U(L

′) candidate cj’s (k
′′ − 1)-approval score is less

than dn/2e.
It remains to show that in R−U(L

′) candidate cj continues to lose to c
under k′′-approval. Suppose first that k′′ < k′ or L′ ranks cj in position k′+1
or lower. When a voter u of weight w switches from R to L′, c’s k′′-approval
score decreases by at most w, and cj’s k′′-approval score decreases by w.
Further, when u switches from R to L, c’s k′′-approval score decreases by w.
and cj’s k′′-approval score decreases by at most w. Thus, relative to cj, c
does better under L′ than under L. Therefore, in this case, in R−U(L

′) cj
loses to c under k′′-approval.

Finally, suppose that k′′ = k′ and L′ ranks cj in position k′. Note that in
this case cj’s k

′-approval score is the same no matter how many voters in Vv

switch from R to L′. Thus, by Lemma 6.12 cj loses to ĉ under k′-approval
in R−U(L

′). Furthermore, we have argued that in R−U(L
′). all candidates in

Cg lose to c under k′-approval. Thus, by transitivity, in R−U(L
′) candidate

cj loses to c under k′-approval.

This completes the proof of Lemma 6.14.

Thus, we conclude that to check whether v has a safe vote (and to find
one if it exists), it suffices to compute the set L(G), check if it is not empty,
and, if it contains some L ∈ L(G), check if L is safe. Indeed, we have argued
that if L(G) = ∅ then no vote is safe, and if L(G) 6= ∅ then v has a safe vote
if and only if an arbitrary vote in L(G) is safe.

Interestingly, despite the intuition that wIsSafe should be easier than
wExistSafe, it turns out that wIsSafe for Bucklin is coNP-hard.

Theorem 6.17. For the Bucklin rule, wIsSafe is coNP-hard, even for a
constant number of candidates.

Proof. We give a reduction from Subset Sum. Recall that an instance of
Subset Sum is given by a set of positive integers A = {a1, . . . , as} and
a positive integer K. It is a “yes”-instance if there is a subset of indices
I ⊆ {1, . . . , s} such that

∑
i∈I ai = K and a “no”-instance otherwise.

Given an instance (A,K) of Subset Sum with |A| = s and∑s
i=1 ai = S, we construct an instance of wIsSafe as follows. Set C =

{a, b, c, x, y, z, x′, y′, z′}, and let V = {v1, . . . , vs, u1, u2, u3, u4}. Table 6.1
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shows the preferences and weights of each voter; observe that the total weight
of all voters is 4S. We ask if the vote L = (a, c, b, x, y, z, x′, y′, z′) is a safe

Voter Preference order Weight
vi (x, y, z, a, b, c, x′, y′, z′) ai
u1 (a, c, b, x, y, z, x′, y′, z′) 2S −K − 1
u2 (x, c, b, a, y, z, x′, y′, z′) 1
u3 (y, z, b, a, c, x, x′, y′, z′) K
u4 (x′, y′, z′, a, b, c, x, y, z) S

Table 6.1: Instance of wIsSafe for the proof of Theorem 6.17.

strategic vote for v1 under Bucklin; as we will see, the answer to this question
does not depend on the tie-breaking rule.

If all voters vote sincerely, then b wins in round 3 with 2S points, and all
other voters get less that 2S points in the first three rounds. Note also that
the total weight of voters in C \ Vv1 that rank a first is 2S −K − 1, and the
total weight of voters in C \ Vv1 that rank c second is 2S −K.

Suppose that a group of voters U ⊆ Vv1 votes L. If w(U) < K, then b
remains the winner, while if w(U) > K then a becomes the winner, as it gets
the majority of votes in the first round. Therefore, L is a strategic vote for
v1. However, if w(U) = K, a only gets 2S− 1 points in any of the first three
rounds, while c gets 2S points in the second round. Therefore, in this case c
wins, i.e., L is not safe for v1. Hence, L is a safe strategic vote for v1 if and
only if no subset of A sums to K.

For Borda, unlike k-approval and Bucklin, both of our problems are hard
when the voters are weighted. The proof of the following theorem is very
similar to that of Theorem 6.17.

Theorem 6.18. For the Borda rule, wIsSafe and wExistSafe are coNP-
hard. The hardness result holds even if there are only 5 candidates.

Proof. We give a reduction from Subset Sum (see the proof of Theo-
rem 6.17). Given an instance (A,K) of Subset Sum with |A| = s,

∑s
i=1 ai =

S, we construct an instance of wIsSafe as follows. Set C = {c1, . . . , c5},
and let V = {v1, . . . , vs, u1, u2, u3, u4}. Table 6.2 shows the preferences and
weights of each voter. We ask if the vote L = (c1, c5, c4, c2, c3) is a safe
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Voter Preference order Weight
vi (c5, c1, c2, c4, c3) ai
u1 (c1, c2, c3, c4, c5) S
u2 (c3, c2, c1, c5, c4) S
u3 (c3, c4, c2, c1, c5) S
u4 (c4, c5, c2, c3, c1) K

Table 6.2: Instance of wIsSafe for the proof of Theorem 6.18.

strategic vote for v1 under Borda where the ties are broken according to the
preference ordering c3 Â c4 Â c2 Â c1 Â c5 (i.e., is adversarially to v1).

If all voters vote sincerely, then c2 is the winner with 10S + 2K points,
c1 gets 10S points, c3 gets 10S +K points, c4 gets 5S + 4K points, and c5
gets 5S + 3K points. Suppose that a group of voters U ⊆ Vv1 votes L. If
w(U) < K, then c2 remains the winner, while if w(U) > K then c1 becomes
the winner. Therefore, L is a strategic vote for v1. If w(U) = K then c3
beats c1 and c2 in a three-way tie. Therefore, L is a safe strategic vote for v1
if and only if no subset of A sums to K.

The hardness of wExistSafe follows from the observation that L is the
only strategic vote available to v1.

6.4 Extensions of the Safe Strategic Voting

Model

So far, we followed Slinko and White’s model [101] and assumed that the only
voters who may change their votes are the ones whose preferences exactly
coincide with those of the manipulator. Clearly, in real life this assumption
does not always hold. Indeed, a voter may follow a suggestion to vote in a
certain way as long as it comes from someone he trusts (e.g., a well-respected
public figure), and this does not require that this person’s preferences are
completely identical to those of the voter. For example, if both the original
manipulator v and his would-be follower u rank the current winner last, it
is easy to see that following v’s recommendation that leads to displacing the
current winner is in u’s best interests.

In this section, we will consider two approaches to extending the notion
of safe strategic voting to scenarios where not all manipulators have identical
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preferences. In both cases, we define the set of potential followers for each
voter (in our second model, this set may depend on the vote suggested), and
define a vote L to be safe if, whenever a subset of potential followers votes L,
the outcome of the election does not get worse (and sometimes get better)
from the manipulator’s perspective. However, our two models differ in the
criteria they use to identify a voter’s potential followers.

Preference-Based Extension Our first model identifies the followers of
a given voter based on the similarities in voters’ preferences.

Fix a preference profile R and a voting rule F, and let c be the winner
under truthful voting. For any v ∈ V , let I(v, c) denote the set of candidates
that v ranks strictly above c. We say that two voters u and v are similar if
I(u, c) = I(v, c). A similar set Sv of a voter v for a given preference profile
R and a voting rule F is given by Sv = {u | I(u, c) = I(v, c)}. (The set Sv

depends on R and F; however, for readability we omit R and F from the
notation).

Note that if u and v are similar, they rank c in the same position. Fur-
ther, a change of outcome from c to another alternative is positive from u’s
perspective if and only if it is positive from v’s perspective. Thus, intuitively,
any manipulation that is profitable for u is also profitable for v. Observe also
that similarity is an equivalence relation, and the sets Sv are the correspond-
ing equivalence classes. In particular, this implies that for any u, v ∈ V either
Su = Sv or Su ∩ Sv = ∅.

We can now adapt Definition 6.1 to our setting by replacing Vv with Sv.

Definition 6.19. A vote L is a strategic vote in the preference-based exten-
sion for v at R under F if for some U ⊆ Sv we have F(R−U(L)) Âv F(R).
Further, we say that L is a safe strategic vote in the preference-based exten-
sion for a voter v at R under F if L is a strategic vote at R under F, and for
any U ⊆ Sv either F(R−U(L)) Âv F(R) or F(R−U(L)) = F(R).

Observe that if L is a (safe) strategic vote for v at R under F, then it is
also a (safe) strategic vote for any u ∈ Sv. Indeed, u ∈ Sv implies Su = Sv

and for any a ∈ C we have a Âu F(R) if and only if a Âv F(R). Note also that
we do not require L 6= Rv: indeed, in the preference-based extension L = Rv

may be a non-trivial manipulation, as it may induce voters in Sv \ {v} to
switch their preferences to Rv. That is, a voter may manipulate the election
simply by asking other voters with similar preferences to vote like he does.
Finally, it is easy to see that for any voter v, the set Sv of similar voters is
easy to compute.
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The two computational problems considered throughout this work, i.e.,
the safety of a given manipulation and the existence of a safe manipulation
remain relevant for the preference-based model. We will refer to these prob-
lems in this setting as IsSafepr and ExistSafepr , respectively, and use
prefix w to denote their weighted variants. The problems (w)IsSafepr and
(w)ExistSafepr appear to be somewhat harder than their counterparts in
the original model. Indeed, while voters in Sv have similar preferences, their
truthful votes may be substantially different, so it now matters which of the
voters in Sv decide to follow the manipulator (rather than just how many of
them, as in the original model). In particular, it is not clear if IsSafepr(F)
is polynomial-time solvable for any voting rule F. However, it turns out that
both of our problems are easy for k-approval, even with weighted voters.

Theorem 6.20. For k-approval, the problems wIsSafepr and
wExistSafepr are in P.

Proof. As before, we fix a voter v ∈ V and renumber the candidates so that
v’s preference order is given by c1 Âv . . . Âv cm. Suppose that under truthful
voting the winner is cj, and set Cg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Note
that all voters in Sv rank cj in position j, and the candidates in Cg in positions
1, . . . , j − 1. For i = 1, . . . ,m, let si(R

′) denote the k-approval score of ci
given a profile R′, and set si = si(R). We say that ci beats c` at a preference
profile R′ if si(R′) > s`(R

′) or si(R′) = s`(R
′) and the tie-breaking rule favors

ci over c`; note that this relation is transitive. For any ` = 1, . . . ,m, let U` be
the set of all voters in Sv that do not rank c` in the top k positions. Finally,
let Up(L) denote the set of candidates ranked in the top k positions in L.

We will first show how to solve wIsSafepr .

Lemma 6.21. A vote L is a safe strategic vote for v if and only if cj 6∈ Up(L),
the winner in R−Sv(L) belongs to Cg, and for every ` = 1, . . . ,m, the winner
in R−U`

(L) belongs to Cg ∪ {cj}.
Proof. Suppose that L ranks cj in the top k positions, and let the voters in
Sv switch to voting L one by one. If j > k, each switch increases the score
of cj by at least as much as it increases the score of any other candidate, so
cj remains the winner throughout this process. On the other hand, if j ≤ k,
all voters in Sv already approve all candidates ranked above cj, so whenever
a voter switches to L, the scores of the candidates in Cg do not increase, and
the score of cj does not decrease, so cj remains the winner. Hence, in this
case L is not a strategic vote.
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Now assume that L does not rank cj in the top k positions. We will now
argue that if L is a safe strategic vote, then the winner in R−Sv(L) belongs to
Cg. Clearly, if the winner in R−Sv(L) is ci with i > j, L is not a safe strategic
vote. Now, suppose that the winner in R−Sv(L) is cj, but some ci ∈ Cg wins
in R−U(L) for some U ⊂ Sv. This implies that, in particular, ci beats cj at
R−U(L). We will now show that ci ∈ Up(L). Indeed, if j ≤ k, all voters
in Sv approve of ci, so if ci 6∈ Up(L), we have si(R−U(L)) = si − w(U) and
sj(R−U(L)) = sj − w(U). On the other hand, if j > k and ci 6∈ Up(L), we
have si(R−U(L)) ≤ si and sj(R−U(L)) = sj. In both cases, ci beats cj when
everyone votes truthfully, a contradiction.

Now, suppose that the voters in Sv \ U switch to voting L one by one.
Since L ranks ci, but not cj, in the top k positions, after each switch cj’s
score does not increase, and ci’s score does not decrease, so ci would still
beat cj when all voters in Sv switch, a contradiction. Hence, if L is a safe
strategic vote, the winner in R−Sv(L) must belong to Cg.

To complete the proof for the “only if” direction, note that if for some
` = 1, . . . ,m the winner in R−U`

(L) is a candidate from Cb \ {cj}, then
obviously L is not a safe strategic vote.

To prove the “if” direction, consider a vote L such that cj 6∈ Up(L) and
the winner in R−Sv(L) belongs to Cg. We will show that if there exists at
` > j and a subset U such that c` is a winner in R−U(L), then c` beats all
candidates in Cg ∪{cj} at R−U`

(L), i.e., the winner in R−U`
(L) is either c` or

some other candidate in Cb \ {cj}. To this end, we will gradually transform
U into U` so that c` beats all candidates in Cg ∪ {cj} at each stage of the
transformation. We will consider two cases.

j > k:
Suppose first that U \ U` 6= ∅, let u be some voter in U \ U`, and set U− =
U \ {u}. We claim that c` beats all candidates in Cg ∪ {cj} at R−U−(L).
Indeed, u ranks c` in the top k positions, so s`(R−U−(L)) ≥ s`(R−U(L)).
Since j > k, sj(R−U−(L)) = sj(R−U(L)). Thus, c` beats cj at R−U−(L).
Further, since j > k, cj beats all candidates in C \Up(L) at R−S(L) for any
S ⊂ Sv. Therefore, by transitivity, c` beats all candidates in Cg \ Up(L) at
R−U−(L). Finally, for all ci ∈ Up(L) we have si(R−U−(L)) ≤ si(R−U(L)).
Thus, c` beats all candidates in Cg ∪ {cj} at R−U−(L).

By removing the voters from U \U` one by one, we can assume that U ⊆
U`. Now, if U`\U is non-empty, pick a voter u ∈ U`\U , and set U+ = U∪{u}.
We claim that c` beats all candidates in Cg ∪ {cj} at R−U+(L). Indeed, u
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does not rank c` in the top k positions, so s`(R−U+(L)) = s`(R−U(L))+w(u).
On the other hand, si(R−U+(L)) ≤ si(R−U(L)) + w(u) for all ci ∈ C. Thus,
c` beats all candidates in Cg ∪ {cj} at R−U+(L). As we can add voters from
U` \ U one by one, this also holds at R−U`

(L).

j ≤ k:
Let ci, i < j, be the winner in R−Sv(L). Note that all voters in Sv rank ci
in the top k positions. This implies ci ∈ Up(L): otherwise, we would have
si(R−Sv(L)) = si − w(Sv), sj(R−Sv(L)) = sj − w(Sv), so cj would beat ci at
R−Sv(L).

Suppose that there exists an ` > j and a U ⊂ Sv such that c` beats all
candidates in Cg∪{cj} at R−U(L). We have c` 6∈ Up(L): otherwise, we would
have s`(R−Sv(L)) ≥ s`(R−U(L)), si(R−Sv(L)) = si(R−U(L)), so c` would beat
ci at R−Sv(L).

As in the case j > k, suppose first that U \U` 6= ∅, let u be some voter in
U\U`, and set U− = U\{u}. We claim that c` beats all candidates in Cg∪{cj}
at R−U−(L). Indeed, u ranks c` in the top k positions, so s`(R−U−(L)) =
s`(R−U(L)) + w(u). On the other hand, sr(R−U−(L)) ≤ sr(R−U(L)) + w(u)
for all r ∈ C. Thus, c` is the winner in R−U−(L), and therefore we can
assume that U ⊆ U`.

Now, suppose that U` \ U 6= ∅, let u be some voter in U` \ U , and set
U+ = U ∪ {u}. Since all voters in Sv rank all candidates in Cg in top k
positions, we have sr(R−U+(L)) ≤ sr(R−U(L)) for all r ∈ Cg. Moreover,
since cj 6∈ Up(L), we have sj(R−U+(L)) = sj(R−U(L))−w(u). Finally, since
u does not rank c` in the top k positions, we have s`(R−U+(L)) = s`(R−U(L)).
Thus, c` beats all candidates in Cg ∪ {cj} at R−U+(L). As in the case j > k,
we conclude that c` beats all candidates in Cg ∪ {cj} at R−U`

(L).

Given the characterization of safe strategic votes provided by Lemma 6.21,
we can now solve wExistSafepr for k-approval. The argument is similar to
that in the proof of Theorem 6.8. We consider two cases:

j > k:
In this case, we cannot lower the score of cj, so we need to increase the
score of some ci with i < j. Suppose there exists a safe strategic vote L
such that the winner at R−Sv(L) is ci; as argued above, this implies i < j.
Let L(i) be a vote that ranks ci first, ranks some candidates from Cg in
positions 2, . . . , k (since j > k, we have |Cg| ≥ k), and the rest of the
candidates in the remaining positions. It is not hard to see that L(i) is
also a safe strategic vote. Indeed, we have si(R−Sv(L(i))) ≥ si(R−Sv(L))
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and s`(R−Sv(L(i))) = s` ≤ s`(R−Sv(L)) for any ` ≥ j. Thus, ci beats all
candidates in Cb at R−Sv(L(i)), i.e., the winner in R−Sv(L(i)) must be some
candidate from Cg (though not necessarily ci). Therefore, L(i) is also a
strategic vote. To see that L(i) is safe, observe that cj beats any c`, ` > j,
under truthful voting, and we have sj(R−U(L(i))) = sj, s`(R−U(L(i))) = s`
for any ` > j and any U ⊆ Sv.

Thus, to check whether a profile R admits a safe strategic vote for v, it
suffices to construct votes of the form L(1), . . . , L(j − 1), and check if any of
them is a safe strategic vote for v using Lemma 6.21.

j ≤ k:
It is not hard to see that if v has a safe strategic vote, then she also has one
that ranks all candidates in Cg in top j − 1 positions. Thus, to construct
a safe strategic vote, we need to fill the remaining k − j + 1 positions with
“safe” candidates.

Let C0 = argmax{si | ci ∈ Cg}, and let smax be the k-approval score of
the candidates in C0. For any ci ∈ C, let s′i denote the number of points
that ci obtains from voters in V \ Sv. We have si = s′i + w(Sv) for all
i = 1, . . . , j − 1. We claim that v has a safe strategic vote if and only if the
following conditions hold:

(1) For all cr ∈ Cb, either s′r < smax, or s′r = smax and there exists a
candidate c ∈ C0 such that the tie-breaking rule favors c over cr;

(2) For all cr ∈ Cb \ {cj} and all ` = 1, . . . ,m, at least one of the following
conditions holds:

– s′r + w(Sv \ (Ur ∪ U`)) < smax, or

– s′r+w(Sv \ (Ur∪U`)) = smax and the tie-breaking rule favors some
candidate in C0 over cr, or

– s′r + w(Sv \ (Ur ∪ U`)) < sj − w(U`), or

– s′r+w(Sv \(Ur∪U`)) = sj−w(U`) and the tie-breaking rule favors
cj over cr,

and, moreover, there exists a set Csafe ⊂ Cb \ {cj} with |Csafe| = k − j + 1
such that

(3) For all cr ∈ Csafe, either s
′
r + w(Sv) < smax, or s

′
r + w(Sv) = smax and

there exists a candidate c ∈ C0 such that the tie-breaking rule favors c
over cr;
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(4) For all cr ∈ Csafe and all ` = 1, . . . ,m, at least one of the following
conditions holds:

– s′r + w(Sv \ (Ur ∪ U`)) + w(U`) < smax, or

– s′r + w(Sv \ (Ur ∪ U`)) + w(U`) = smax and the tie-breaking rule
favors some candidate in C0 over cr, or

– s′r + w(Sv \ (Ur ∪ U`)) + w(U`) < sj − w(U`), or

– s′r + w(Sv \ (Ur ∪ U`)) + w(U`) = sj − w(U`) and the tie-breaking
rule favors cj over cr.

Note that these conditions can be easily checked in polynomial time; in par-
ticular, for each candidate cr ∈ Cb \{cj} we can independently check if it can
be placed in Csafe, so we simply need to verify if there are sufficiently many
candidates that satisfy (3) and (4).

Indeed, suppose that these conditions are satisfied, and consider a vote
L that ranks the candidates in Cg in the first j − 1 positions, followed by
the candidates in Csafe. Condition (1) ensures that any candidate not ranked
in the top k positions in L is not the winner in R−Sv(L), and condition (3)
ensures that any candidate ranked in positions j, . . . , k in L is not the winner
in R−Sv(L). Thus, together, these two conditions ensure that the winner in
R−Sv(L) is a candidate from Cg. Condition (2) ensures that no candidate
cr ∈ (Cb \ {cj}) \ Up(L) can be the winner in R−U`

(L) for any ` = 1, . . . ,m.
Similarly, condition (4) ensures that no candidate cr ∈ (Cb\{cj})∩Up(L) can
be the winner in R−U`

(L) for any ` = 1, . . . ,m. Thus, together, conditions (2)
and (4) imply that for any ` = 1, . . . ,m, the winner in R−U`

(L) is a candidate
from Cg ∪ {cj}. Therefore, by Lemma 6.21, L is a safe strategic vote.

Conversely, if condition (1) is violated by some cr ∈ Cb, then for any
vote L the candidate cr beats all candidates in Cg at R−Sv(L). Further, if
condition (2) is violated by some cr ∈ Cb \{cj} and some ` ≤ m, then for any
vote L the candidate cr beats all candidates in Cg∪{cj} at R−U`

(L). In both
cases, by Lemma 6.21, v does not have a safe strategic vote. Now, suppose
that there is no set Csafe ⊂ Cb\{cj} of size k−j+1 that satisfies conditions (3)
and (4). Then for any vote L there is a candidate cr ∈ Cb\{cj} that is ranked
in top k positions in L and fails (3) or (4). In the former case, cr beats all
candidates from Cg at R−Sv(L). In the latter case, if (4) is violated for some
` = 1, . . . ,m, it follows that cr beats all candidates in Cg ∪ {cj} at R−U`

(L).
Thus, by Lemma 6.21 no vote L can be a safe strategic vote for v.
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In the preference-based model, a voter v follows a recommendation to vote
in a particular way if it comes from a voter whose preferences are similar to
those of v. However, this approach does not describe settings where a voter
follows a recommendation not so much because he trusts the recommender,
but for pragmatic purposes, i.e., because the proposed manipulation advances
her own goals. Clearly, this may happen even if the overall preferences of
the original manipulator and the follower are substantially different. We will
now propose a model that aims to capture this type of scenarios.

Goal-Based Extension If the potential follower’s preferences are dif-
ferent from those of the manipulator, his decision to join the manipulating
coalition is likely to depend on the specific manipulation that is being pro-
posed. Thus, in this subsection we will define the set of potential followers
F in a way that depends both on the original manipulator’s identity i and
his proposed vote L, i.e., we have F = Fi(L). Note, however, that it is not
immediately obvious how to decide whether a voter j can benefit from fol-
lowing i’s suggestion to vote L, and thus should be included in the set Fi(L).
Indeed, the benefit to j depends on which other voters are in the set Fi(L),
which indicates that the definition of the set Fi(L) has to be self-referential.

In more detail, for a given voting rule F, an election (C, V ) with a pref-
erence profile R, a voter i ∈ V and a vote L, we say that a voter j is
pivotal for a set U ⊆ V with respect to (i, L) if j 6∈ U , Rj 6= L and
F(R−(U∪{j})(L)) Âj F(R−U(L)). That is, a voter j is pivotal for a set U
if when the voters in U vote according to L, it is profitable for j to join
them. Now, it might appear natural to define the follower set for (i, L) as
the set that consists of i and all voters j ∈ V that are pivotal with respect to
(i, L) for some set U ⊆ V . However, this definition is too broad: a voter is
included as long as it is pivotal for some subset U ⊆ V , even if the voters in
U cannot possibly benefit from voting L. To exclude such scenarios, we need
to require that U itself is also drawn from the follower set. Formally, we say
that Fi(L) is a follower set for (i, L) if it is a maximal set F that satisfies
the following condition:

∀j ∈ F [ (j = i) ∨ (∃ U ⊆ F s. t. j is pivotal for U with respect to (i, L))]
(*)

Observe that this means that Fi(L) is a fixed point of a mapping from 2V to
2V , i.e., this definition is indeed self-referential. To see that the follower set
is uniquely defined for any i ∈ V and any vote L, note that the union of any
two sets that satisfy condition (*) also satisfies (*); note also that we always
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have i ∈ Fi(L).
We can now define what it means for L to be a strategic vote in the

goal-based extension and a safe strategic vote in the goal-based extension by
replacing the condition U ⊆ Si with U ⊆ Fi(L) in Definition 6.19. We will
denote the computational problems of checking whether a given vote is a safe
strategic vote for a given voter in the goal-based extension and whether a
given voter has a safe strategic vote in the goal-based extension by IsSafegl

and ExistSafegl , respectively, and use the prefix w to refer to weighted
versions of these problems.

Two remarks are in order. First, it may be the case that even though i
benefits from proposing to vote L, he is never pivotal with respect to (i, L)
(this can happen, e.g., if i’s weight is much smaller that that of the other
voters). Thus, we need to explicitly include i in the set Fi(L), to avoid the
paradoxical situation where i 6∈ Fi(L). Second, our definition of a safe vote
only guarantees safety to the original manipulator, but not to her followers.
In contrast, in the preference-based extension, any vote that is safe for the
original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures
a number of situations not accounted for by the definition of a safe strategic
vote in the preference-based extension. To see this, consider the following
example.

Example 6.22. Consider an election with the set of candidates C =
{a, b, c, d, e}, and three voters 1, 2, and 3, whose preferences are given by
a Â1 b Â1 c Â1 d Â1 e, e Â2 b Â2 a Â2 d Â2 c, and d Â3 a Â3 b Â3 c Â3 e.
Suppose that the voting rule is Plurality, and the ties are broken according to
the priority order d Â b Â c Â e Â a.

Under truthful voting, d is the winner, so we have S1 6= S2. Thus, in the
preference-based extension, a vote that ranks a first is a safe strategic vote
for voter 2, but a vote than ranks b first is not. On the other hand, let L be
any vote that ranks b first. Then F1(L) = F2(L) = {1, 2}. Indeed, if voter 1
switches to voting L, the winner is still d, but it becomes profitable for voter
2 to join her, and vice versa. On the other hand, it is easy to see that voter
3 cannot profit by voting L. It follows that in the goal-based extension L is a
safe strategic vote for voter 1.

From a practical perspective, it is plausible that in Example 6.22 voters
1 and 2 would be able to reconcile their differences (even though they are
substantial—voter 1 ranks voter 2’s favorite candidate last) and jointly vote
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for b, as this is beneficial for both of them. Thus, at least in some situations
the model provided by the goal-based extension is intuitively more appealing.
However, computationally it is considerably harder to deal with than the
preference-based extension.

Indeed, it is not immediately clear how to compute the set Fi(L), as its
definition is non-algorithmic in nature. While one can consider all subsets of
V and check whether they satisfy condition (*), this approach is obviously
inefficient. We can avoid full enumeration if have access to a procedure
A(i, L, j,W ) that for each pair (i, L), each voter j ∈ V and each set W ⊆ V
can check if j = i or there is a set U ⊆ W such that j is pivotal for U with
respect to (i, L). Indeed, if this is the case, we can compute Fi(L) as follows.
We start with W = V , run A(i, L, j,W ) for all j ∈ W , and let W ′ to be the
set of all voters for which A(i, L, j,W ) outputs “yes”. We then set W = W ′,
and iterate this step until W = W ′. In the end, we set Fi(L) = W . The
correctness of this procedure can be proven by induction on the number of
iterations and follows from the fact that if a set W contains no subset U
that is pivotal for j, then no smaller set W ′ ⊂ W can contain such a subset.
Moreover, since each iteration reduces the size of W , the process converges
after at most n iterations. Thus, this algorithm runs in polynomial time if
the procedure A(i, L, j,W ) is efficiently implementable. We will now show
that this is indeed the case for Plurality (with unweighted voters).

Theorem 6.23. Given an election (C, V ) with a preference profile R and
unweighted voters, a manipulator i, and a vote L, we can compute the set
Fi(L) with respect to Plurality in time polynomial in the input size.

Proof. As argued above, it suffices to show that the procedure A(i, L, j,W )
can be implemented in polynomial time. We will now show how to implement
it for given values of i, L, j and W . Let Âj be j’s preference order, and let
Â be the preference order associated with the tie-breaking rule T . Let a be
the top-ranked candidate in j’s truthful vote, and let c be the top candidate
in L.

Suppose that some subset of voters U ⊆ W switches to L, while j votes
truthfully, let S be the set of top-scoring candidates at this point, and let
x be the score of all candidates in S. When j switches from Rj to L, this
decreases by one the number of points a has, and increases by one the number
of points that c has.

Observe first if c has at most x − 2 points, switching to L cannot be
beneficial to j. Indeed, if S = {a}, or if a is the top-ranked alternative in S
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with respect to Â, j already obtains its most preferred outcome. Otherwise,
the winner is some d ∈ S, d 6= a, and this remains so after the switch.

Now, suppose that c has x− 1 points. Suppose that the winner is d; this
implies that d is the top-ranked candidate in S with respect to Â. Then
switching from Rj to L is beneficial for j if and only if c Â d and c Âj d.
Indeed, if d Â c, d would beat c even after the switch, and if c Â d, but
d Âj c, voter j prefers the current outcome (i.e., d) to the outcome after the
switch.

Finally, suppose that c has x points, and let d be the election winner.
Then switching from Rj to L is beneficial for j if and only if c Âj d.

Our algorithm proceeds as follows. For each d ∈ W such that c Âj d
and each x = 1, . . . , n, we check whether there exists a set U ⊆ W such that
when the voters in U vote L and j votes truthfully, all candidates have at
most x points, d is the election winner with x points, and either (a) c has
x − 1 point and c Â d, or (b) c has x points. It outputs “yes” if and only
if it finds a pair (d, x) that satisfies this condition. The correctness of this
algorithm follows from the case analysis above. We will now show how to
check whether such a set U exists for a given pair (d, x).

First, we check whether c Âj d and the current score of d is at least x,
and reject if this is not the case. Next, for each candidate e 6= c whose score
is at least x, if e Â d, we add to U all but x − 1 voters that rank e first,
and if e = d or d Â e, we add to U all but x voters that rank e first. If at
this point |U | > x, we reject. Otherwise, we have ensured that all candidates
have at most x points and d is the election winner with x points. It remains
to check whether we can implement condition (a) or (b); for that, we may
need to add to U some voters who currently vote for candidates in C \{d, c}.
Let y denote the current score of c, and let z be the number of voters that
now vote for candidates in C \ {d, e}. We accept if and only if z ≥ x − y
(i.e., we can satisfy condition (b)) or z ≥ x − y − 1 and c Â d (i.e., we can
satisfy condition (a)).

Clearly, for each pair (d, x) this check can be implemented in polynomial
time. As there are polynomially many such pairs, we can implement the
procedure A (and hence compute the set Fi(L)) in polynomial time.

We can use Theorem 6.23 to show that under Plurality one can determine
in polynomial time whether a given vote L is safe for a player i, as well as find
a safe strategic vote for i if one exists, as long as the voters are unweighted.
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Theorem 6.24. The problems IsSafegl and ExistSafegl are polynomial-
time solvable for Plurality.

Proof. Suppose that we are given an election (C, V ) with a preference profile
R and unweighted voters, a manipulator i, and a vote L. Let Â denote
the preference order used by the tie-breaking rule. Given a profile R′ and a
candidate c ∈ C, let n(c,R′) denote the number of voters in R′ that rank c
first. Let a be the top-ranked candidate in L, and let x be the winner under
truthful voting. We observe that if the outcome of an election R′ changes
after some voter k that ranks a candidate t first switches from R′

k to L, then
either the outcome was t before the switch, or it becomes a after the change.

At the high level, our algorithm (1) computes the set Fi(L) and (2) for
each c ∈ C, determines whether there is a set S ⊆ Fi(L) such that the winner
in R−S(L) is c. Clearly, L is a safe strategic vote for i if and only if the answer
is “yes” for some c Âi x, and “no” for all c ≺i x.

To get the answer for a specific c ∈ C, for each k = 1, . . . ,m we check if
there is a set S ⊆ Fi(L) such that n(c,R−S(L)) = k, n(c′,R−S(L)) < k for
all c′ Â c, and n(c′,R−S(L)) ≤ k for all c′ ≺ c, and output “yes” if any of
these checks produces a positive answer.

We will now show how to implement this check for a given pair (c, k).
Consider all c′ 6= a, c one by one. Suppose first that c′ Â c. Then if at least
k voters in V \ Fi(L) rank c′ first, we output “no” and stop. Otherwise we
ask some of the voters in Fi(L) that rank c′ first to switch to L so that in the
resulting profile exactly k − 1 voters rank c′ first. The case c′ ≺ c is similar:
if at least k + 1 voters in V \ Fi(L) rank c′ first, we output “no” and stop,
and otherwise we ask some of the voters in Fi(L) that rank c′ first to switch
to L so that in the resulting profile exactly k voters rank c′ first.

Now, suppose that we have successfully completed the previous steps.
Denote the resulting profile by R′. The rest of the procedure depends on
whether c = a. Suppose first that c = a. In this case, if c is ranked first by at
least k+1 voters in R′, we output “no”. Otherwise, we ask all voters in Fi(L)
who have not been asked to change their vote so far to switch their vote to L,
and output “yes” if c gets at least k first-place votes in the resulting election.
Now, suppose that c 6= a. In this case, we cannot increase the score of c,
and we cannot lower the score of a. Therefore, if c is ranked first by at most
k − 1 voters in R′, or a Â c and a is ranked first by at least k voters in R′,
or a ≺ c and a is ranked first by at least k + 1 voters in R′, we output “no”.
Otherwise, c beats all other candidates in R′; however, it may have more
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than k votes. If this is the case, we check if Fi(L) contains n(c,R
′)−k voters

that rank c first. If not, we output “no”; otherwise, we ask these voters to
switch to voting L and output “yes” if and only if c remains the winner in
the resulting profile.

To see that ExistSafegl for Plurality is also polynomial-time solvable,
we observe that an analogue of Proposition 6.4 remains true in the goal-based
extension. In other words, we can try all m substantially different votes, and
run IsSafegl on each of them.

For weighted voters, computing the follower set is computationally hard
even for Plurality. While this result does not immediately imply that
wIsSafegl and wExistSafegl are also hard for Plurality, it indicates that
these problems are unlikely to be easily solvable.

Theorem 6.25. Given an instance (C, V,w,R) of Plurality elections, voters
i, j ∈ V and a vote L, it is NP-hard to decide whether j ∈ Fi(L).

Proof. We give a reduction from Subset Sum. Given an instance (A,K)
of Subset Sum with |A| = s,

∑s
i=1 ai = S, we construct an instance

of our problem as follows. We let C = {a, b, c}, and create s + 3 voters
v1, . . . , vs, u1, u2, u3 with the preferences given by Table 6.3.

Voter Preference order Weight
vi (a, b, c) 3ai
u1 (a, b, c) 2
u2 (b, a, c) 3S
u3 (c, a, b) 3S + 3K + 1

Table 6.3: Preferences and weights of voters, in the proof of Theorem 6.25.

Let R denote the resulting preference profile. Clearly, under truthful
voting a gets 3S + 2 votes, b gets 3S votes and c gets 3S + 3K + 1 votes, so
c wins.

Let L = b Â a Â c. We claim that u1 ∈ Fu2(L) if and only if the given
instance of Subset Sum is a “yes”-instance. Indeed, suppose first that there
exists a set I ⊆ {1, . . . , s} such that

∑
i∈I ai = K. Set U = {vi | i ∈ I}. In

the preference profile R−U(L) candidate c gets 3S +3K +1 votes, candidate
b gets 3S+3K votes, and candidate a gets 3S−3K+2 votes. If, in addition,
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u1 switches to voting L, b becomes the winner. This implies that u1 is pivotal
for U with respect to (u2, L).

Conversely, suppose that u1 is pivotal for some set U of voters with respect
to (u2, L). It is not hard to see that it must be the case that c wins in R−U(L)
and b wins in R−U∪{u1}(L), and, furthermore, u3 6∈ Fu2(L). Therefore, the
score of c is both profiles is 3S + 3K + 1. Thus, it must be the case that
before u1 switches, b’s score is at most 3S + 3K + 1, and after u1 switches,
b’s score is at least 3S + 3K + 1. Further, if u1 votes truthfully, the score of
b is a multiple of 3. It follows that w(U \ {us+2}) = 3K, i.e., we started with
a “yes”-instance of Subset Sum.

Just a little further afield, checking whether a given vote is safe with re-
spect to 3-approval is computationally hard even for unweighted voters. This
is in contrast with the standard model and the preference-based extension,
where safely manipulating k-approval is easy for arbitrary k.

Theorem 6.26. IsSafegl is coNP-hard for 3-approval.

Proof. We reduce from Exact Cover by 3-Sets (X3C). Recall that an
instance of X3C is given by a ground set G = {g1, . . . , gs} and a collection
X = {X1, . . . , Xt} of subsets of G with |Xj| = 3 for j = 1, . . . , t. It is a “yes”-
instance if G can be covered with exactly s

3
sets from X, and a “no”-instance

otherwise.
Suppose that we are given an instance (G,X) of X3C with |G| = s,

|X| = t. We can assume without loss of generality that t > s
3
+ 3: otherwise,

the instance is easily solvable by checking allO(t3) triples of sets to be deleted.
We will now construct an instance of our problem as follows. The set of
candidates consists of G, three extra candidates {a, u, w}, and a set D =
{d1, . . . , d6} of dummy candidates.

For each set Xi ∈ X, we construct a voter i with preferences

Xi Âi a Âi G \Xi Âi u Âi D Âi w.

Let V1 denote the set of all such voters; we have V1 = {1, . . . , t}. We then
construct a set V2 whose size is polynomial in s and t. For each voter j ∈ V2,
his preferences satisfy

G Âj u Âj D Âj w Âj a.

In addition, these votes are constructed so that after the votes in V1 ∪ V2

are counted, all candidates in G have the same number of points (and, by
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construction, any other candidate has zero points). Let f denote the 3-
approval score of all alternatives in G based on V1 ∪V2. We can assume that
f > 2 s

3
+ 2; if this is not the case, we can add the required number of voters

with suitable preferences to V2.
We now construct three more voter sets: the set V3 consists of s

3
voters,

each of which ranks a first, u second and d1 third, the set V4 consists of f
voters, each of which ranks u first, w second, d2 third and a last, and the set
V5 consists of f − 2 s

3
− 1 voters, each of which ranks a first, d3 second and

d4 third. We set V = ∪5
`=1V`.

Let T be a tie-breaking rule based on any order that is consistent with

a Â G Â w Â u Â D;

we do not specify how T orders candidates in G or D.
We have s3(g) = f for all g ∈ G, s3(u) = f + s

3
, s3(a) = f − s

3
− 1,

s3(w) = s3(d2) = f , s3(d1) =
s
3
and s3(d3) = s3(d4) = f −2 s

3
−1, where s3(c)

denotes the 3-approval score of a candidate c ∈ C. Thus, under truthful
voting the winner is u.

Let L be a vote that ranks a, d5, and d6 in the top three positions. We
claim that F1(L) = V1 ∪ V3.

Observe first that no matter which voters choose to vote L, no candidate
in D can win. Indeed, d2 cannot get more points than w, no candidate in
D \ {d2} can get more points than a, and the tie-breaking rule ranks the
candidates in D below all other candidates.

Now, if s
3
− 1 voters in V3 and s

3
+ 1 in V1 vote L, then a gets f points,

u gets f + 1 points, and u remains the winner. However, if any additional
voter from V1 ∪ V3 votes L then a wins, and, moreover, all voters in V1 ∪ V3

prefer a to u.
Next, consider a voter j ∈ V2∪V4, and suppose that some subset of voters

U ⊆ V votes L. Let H denote the set of top-scoring candidates when the
voters in U vote L and j votes truthfully. Let T3 denote the set of three
candidate ranked in the top three positions in j’s truthful vote. If a ∈ H
or a trails the candidates in H by one vote, j makes a the winner by voting
L, which is not an improvement from j’s perspective. Now, suppose that
this is not the case. If T (H) = g′ for some g′ ∈ T3, by changing his vote
to L, j either does not change the outcome at all, or changes it from g′ to
another candidate not in T3, which is obviously not an improvement from
j’s perspective. In any other case, j does not have any effect on determining
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the winning candidate. Clearly, in any of these cases the outcome does not
improve from j’s point of view, i.e., j is not pivotal for any U ⊆ V with
respect to (1, L).

Further, the voters in V5 cannot increase a’s score by switching their vote
to L, since their truthful vote already gives a point to a. So, by switching
to L they simply reduce the scores of d3 and d4 and increase the scores of d5
and d6, which does not affect the final outcome.

Now, suppose that the given instance of X3C is a “yes”-instance and let
X′ be the corresponding cover. Let U = {i ∈ V1 | Xi ∈ X′} ∪ V3. Under the
profile R−U(L), all candidates in G get f − 1 points, u and w get f points, a
gets f − 1 points, and all other candidates get at most f points. Therefore,
in this case w wins, showing that L is not safe for voter 1.

Conversely, suppose that the given instance of X3C is a “no”-instance,
and consider a set U ⊆ V1 ∪ V3. If V3 6⊂ U then under the profile R−U(L), u
gets at least f +1 points, so the winner is either u or a (this depends on the
number of voters from V1 that change their vote to L). Otherwise, under the
profile R−U(L), u and w get f points. Now, if |U \ V3| > s

3
, a gets at least

f points, so it wins. Finally, if |U \ V3| ≤ s
3
, then by our assumption the set

X′ = {Xi ∈ X | i ∈ V1} is not a cover, so at least one candidate from G gets
at least f points. Thus, the winner is either a or some candidate from G. In
any of the above cases, the vote is safe from voter 1 perspective. Hence, L
is unsafe for 1 (and, by the same argument, for all the other voters in V1) if
and only if G can be covered by exactly s

3
sets in X.

Thus, while the preference-based extension appears to be similar to Slinko
and White’s original model [101] from the computational perspective, the
goal-based extension is considerably more difficult to work with.
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Physical Search Problems with
Uncertain Knowledge
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Chapter 7

Single Agent

In this chapter we investigate single agent physical search problems with un-
certain knowledge. We begin by defining three problems: Min-Expected-Cost
(minimizing the total expected cost),Max-Probability (maximizing the suc-
cess probability given an initial budget), and Min-Budget (minimizing the
budget necessary to obtain a given success probability). We then analyze
the general metric space case, with any distance function. Unfortunately,
in these settings, all three problems are NP-hard. In Section 7.2 we show
the hardness of Min-Expected-Cost, and in Section 7.3 we show the hardness
of Min-Budget and Max-Probability, which remain hard even if the metric
space is a tree. Thus, we focus on the path setting. For this case we provide
a polynomial algorithm for the Min-Expected-Cost problem (Section 7.2).
We show the other two problems (Min-Budget and Max-Probability) to be
NP-complete even for the path setting in Section 7.3. Thus, we consider fur-
ther restrictions and also provide an approximation scheme. We show that
both problems are polynomial if the number of possible prices is constant.
For the Min-Budget problem, we provide an FPTAS (fully-polynomial-time-
approximation-scheme), such that for any ε > 0, the Min-Budget problem
can be approximated with a (1 + ε) factor in O(nε−6) time, where n is the
size of the input.

7.1 Terminology and Definitions

We are provided with m points - S = {u1, . . . , um}, which represent the store
locations, together with a distance function dis : S × S → R+ - determining
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the travel costs between any two stores. We are also provided with the agents’
initial locations, which are assumed WLOG (without loss of generality) to
be at one of the stores (the product’s price at this store may be ∞). With a
single agent, there is one initial location, us; with k agents there is a vector
of initial locations (u

(1)
s , . . . , u

(k)
s ). WLOG, we may assume that the agents

are ordered from left-to-right, i.e. u
(1)
s < u

(2)
s < · · · < u

(k)
s . In addition, we

are provided with a cost probability function pi(c) - stating the probability
that the cost of obtaining the item at store i is c. Let D be the set of distinct
prices with non-zero probability, and d = |D|. We assume that the actual
price at a store is only revealed once an agent reaches the store. Given these
inputs, the goal is roughly to obtain the product at the minimal total cost,
including both travel costs and purchase price. Since we are dealing with
probabilities, this rough goal can be interpreted in three different concrete
formulations:

1. Min-Expected-Cost: minimize the expected cost of purchasing the prod-
uct.

2. Min-Budget: given a success probability, psucc, minimize the initial bud-
get necessary to guarantee purchase with probability at least psucc.

3. Max-Probability: given a total budget B, maximize the probability to
purchase the product.

In all the above problems, the optimization problem entails determining the
strategy (order) in which to visit the different stores, and if and when to
terminate the search. For the Min-Expected-Cost problem we assume that
an agent can purchase the product even after leaving the store (say by phone).
Technically, it is sometimes easy to work with the failure probability instead
of the success probability. Therefore, instead of maximizing psucc we may
phrase our objective as minimizing the failure probability. Unfortunately,
for general distance functions, all three of the above mentioned problems are
NP-hard. Thus, we focus on the case that the stores are all located on a single
path. We denote these problems Min-Budget (path), Max-Probability (path),
and Min-Expected-Cost (path), respectively. In this case we can assume that,
WLOG all points are on the line, and do away with the distance function
dis. Rather, the distance between ui and uj is simply |ui−uj|. Furthermore,
WLOG we may assume that the stores are ordered from left-to-right, i.e.
u1 < u2 < · · · < um.
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7.2 Minimize-Expected-Cost

We prove that the Min-Expected-Cost variant is hard for general metric
spaces. To prove this we first convert the problem into its decision ver-
sion. In Min-Expected-Cost-Decide we are given a set of points S, a distance
function dis : S × S → R+, an agent’s initial location us, a price-probability
function p·(·), and a maximum expected cost M . We have to decide whether
there is a policy with an expected cost at most M .

7.2.1 Hardness in General Metric Spaces

Theorem 7.1. For general metric spaces Min-Expected-Cost-Decide is NP-
hard.

Proof. The proof is by reduction from Hamiltonian path, defined as follows.
Given a graph G = (V,E) with V = {v1, . . . , vn}, decide whether there is
a simple path (vi1 , vi2 , ..., vin) in G covering all nodes of V . The reduction
is as follows. Given a graph G = (V,E) with V = {v1, . . . , vn}, set S (the
set of stores) to be S = {us} ∪ {u1, . . . , un}, where us is the designated
start location, and {u1, . . . , un} correspond to {v1, . . . , vn}. The distances
are defined as follows. For all i, j = 1, . . . , n, dis(us, ui) = 2n, and dis(ui, uj)
is the length of the shortest path between vi and vj in G. For all i, pi(0) = 0.5,
and pi(∞) = 0.5, and for us, p

s(n!) = 1. Finally, set M = 2n+
∑n

j=1 2
−j(j−

1) + 2−n(n! + n− 1).
Suppose that there is a Hamiltonian path H = (vi1 , vi2 , ..., vin) in G.

Then, the following policy achieves an expected cost of exactly M . Starting
in us move to ui1 and continue traversing according to the Hamiltonian path.
If at any point ui along the way the price is 0, purchase and stop. Otherwise
continue to the node in the path. If at all points along the path the price is
∞, purchase from store us, where the price is n!. The expected cost of this
policy is as follows. The price of the initial step (from us to ui1) is a fixed
2n. For each j, the probability to obtain price 0 at uij but not before is 2

−j.
The cost of reaching uij from ui1 is j − 1. The probability that no uj has a
price of 0 is 2−n, in which case the purchase price is n!, plus n − 1 wasted
steps. The total expected cost is thus exactly M .

Conversely, suppose that there is no Hamiltonian path in G. Clearly, since
the price at us is so large, any optimal strategy must check all nodes/stores
{u1, . . . , un} before purchasing at us. Since there is no Hamiltonian path
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in G, any such exploration would be strictly more expensive than one with
a Hamiltonian path. Thus, the expected cost would be strictly more than
M .

Note that in this proof the number of possible prices, d, is 3. Thus, for
general metric spaces Min-Expected-Cost-Decide is hard even if d is bounded.

7.2.2 Solution for the Path

When all stores are located on a path, the Min-Expected-Cost problem can be
modeled as a finite-horizon Markov decision process (MDP), as follows. Note
that on the path, at any point in time the points/stores visited by the agent
constitute a contiguous interval, which we call the visited interval. Clearly,
the algorithm need only make decisions at store locations. Furthermore, de-
cisions can be limited to times when the agent is at one of the two stores
edges of the visited interval. At each such location, the agent has only three
possible actions: “go right” - extending the visited-interval one store to the
right, “go left” - extending the visited-interval one store to the left, or “stop”
- stopping the search and buying the product at the best price so far. Also
note that after the agent has already visited the interval [u`, ur], how exactly
it covered this interval does not matter for any future decision; the costs have
already been incurred. Accordingly, the states of the MDP are quadruplets
[`, r, e, c], such that ` ≤ s ≤ r, e ∈ {`, r}, and c ∈ D, representing the situa-
tion that the agents visited stores u` through ur, it is currently at location
ue, and the best price encountered so far is c. The terminal states are Buy(c)
and all states of the form [1,m, e, c], and the terminal cost is c. For all other
states there are two or three possible actions - “go right” (provided that
r < m), “go left” (provided that 1 < `), or “stop”. The cost of “go right” on
the state [`, r, e, c] is (ur+1−ue), while the cost of “go-left” is (ue−u`−1). The
cost of “stop” is always 0. Given the state [`, r, e, c] and move “go-right”,
there is probability pr+1(c′) to transition to state [`, r+1, r+1, c′], for c′ < c.
With the remaining probability, the transition is to state [`, r + 1, r + 1, c].
Transition to all other states has zero probability. Transitions for the “go
left” action are analogous. Given the state [`, r, e, c] and the action “stop”,
there is probability 1 to transition to state Buy(c). This fully defines the
MDP. The optimal strategy for finite-horizon MDPs can be determined us-
ing dynamic programming (see [90, Ch.4]). In our case, the complexity can
be brought down to O(d2m2) steps (using O(dm2) space).
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7.3 Min-Budget and Max-Probability

7.3.1 NP Completeness

Unlike the Min-Expected-Cost problem, the other two problems are NP-
complete even on a path. To prove this we again convert the problems
into their decision versions. In the Min-Budget-Decide problem, we are given
a set of points S, a distance function dis : S × S → R+, an agent’s initial
location us, a price-probability function p·(·), a minimum success probability
psucc and maximum budget B. We have to decide whether a success proba-
bility of at least psucc can be obtained with a budget of at most B. The exact
same formulation also constitutes the decision version of the Max-Probability
problem.

Theorem 7.2. The Min-Budget-Decide problem is NP-complete even on a
path.

Proof. Given an optimal policy it is easy to compute its total cost and success
probability in O(n) steps, thereforeMin-Budget-Decide is in NP. The proof of
NP-hardness is by reduction from theKnapsack problem, defined as follows.
Given a knapsack of capacity C > 0 and N items, where each item has value
vi ∈ Z+ and size si ∈ Z+, determine whether there is a selection of items
(δi = 1 if selected, 0 if not) that fits into the knapsack, i.e.

∑N
i=1 δisi ≤ C,

and the total value,
∑N

i=1 δivi, is at least V .
Given an instance of Knapsack we build an instance for the

Min-Budget-Decide problem as follows. We assumeWLOG that all the points
are on the line. Our line consists of 2N+2 stores. N stores correspond to the
knapsack items, denoted by uk1 , ..., ukN . The other N + 2 stores are denoted
ug0 , ug1 , ..., ugN+1

, where ug0 is the agent’s initial location. Let T = 2 ·∑N
i=1 si

and maxV = N ·maxi vi. For each odd i, ugi is to the right of ug0 and ugi+2

is to the right of ugi . For each even i (i 6= 0), ugi is to the left of ug0 and ugi+2

is to the left of ugi . We set |u0 − u1| = |u0 − u2| = T and for each i > 0 also,
|ugi − ugi+2

| = T . If N is odd (even) ukN is on the right (left) side of ugi and
it is the rightmost (leftmost) point. As for the other uki points, uki is located
between ugi and ugi+2

, if i is odd, and between ugi+2
and ugi otherwise. For

both cases, |ugi − uki| = si. See figure 7.1 for an illustration.

We set B = T · ∑N+1
j=1 j + 2C + 1 and for each i set X i = T · ∑i

j=1 j +

2 · ∑i−1
j=1 sj. At store ugN+1

either the product is available at the price of 1

with probability 1 − 2−maxV , or not available at any price. On any other
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Figure 7.1: Reduction of Knapsack to Min-Budget-Decide problem used in
proof of Theorem 7.2, for N=3.

store ugi , either the product is available at the price of B−X i with the same
probability, or not available at all. At any store uki , either the product is
available at the price of B−X i−si, with probability 1−2−vi , or not available
at any price. Finally, we set psucc = 1− 2−maxV ·(N+1) · 2−V .

Suppose there is a selection of items that fit the knapsack with a total
value of at least V , and consider the following policy: go right from ug0 to
ug1 . Then for each i = 1, 2, .., N , if δi = 0 (item i was not selected) change
direction and go to the other side to ugi+1

. Otherwise, continue in the current
direction to uki and only then change direction to ugi+1

. This policy’s total

travel cost is
∑N

i=1(i ·T +δi ·2si)+(N+1) ·T = T ·∑N+1
i=1 i+2C = B−1, thus

the agent has enough budget to reach all ugi , and uki with δi = 1. When the
agent reaches ugi , i < N + 1 it has already spent on traveling cost exactly
T ·∑i

j=1 j+2 ·∑i−1
j=1(δj ·sj) ≤ X i so the agent has a probability of 1−2−maxV

to purchase the product at this store. When it reaches ugN+1
its on the end

of its tour and since the agent’s total traveling cost is B − 1, here it also
has a probability of 1 − 2−maxV to purchase the product. When it reaches
uki it has already spent exactly T ·∑i

j=1 j + 2 ·∑i−1
j=1(δj · sj) + si ≤ X i + si

so the agent has a probability of 1 − 2−vi to purchase the product in this
store. In total, the success probability is 1 − (2−maxV ·(N+1) ·∏N

i=1 2
−vi·δi) ≥

1− (2−maxV ·(N+1) · 2−V ) = psucc as required.
Suppose there is a policy, plc with a total travel cost that is less than

or equal to B, and its success probability is at least psucc. Hence, plc’s
failure probability is at most 1 − psucc = 2−maxV ·(N+1) · 2−V . Since maxV =
N · maxi vi, plc must reach all the N + 1 stores ugi with enough budget.
Hence, plc must go right from ug0 to ug1 and then to each other ugi before
ugi+1

. Therefore plc goes in a zigzag movement from one side of us to the
other side and so on repeatedly. plc also has to select some uki to reach with
enough budget. Thus, plc has to reach these uki right after the corresponding
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store ugi . We use γi = 1 to indicate the event in which plc selects to reach
uki right after ugi , and γi = 0 to denote the complementary event. plc’s total
traveling cost is less than or equal to B−1 to be able to purchase the product
also at the last store, ugN+1

, so T ·∑N+1
j=1 j+2 ·∑N

j=1 γj ·sj ≤ T ·∑N+1
j=1 j+2C.

Thus,
∑N

j=1 γj ·sj ≤ C. Also, psucc = 1−2−maxV ·(N+1)·2−V ≤ 1−2−maxV ·(N+1)·∏N
i=1 2

−vi·γi ⇒ 2−V ≤ ∏N
i=1 2

−vi·γi ⇒ V ≥ ∑N
i=1 vi · γi. Setting δi = γi gives a

selection of items that fit the knapsack.

Thus, we either need to consider restricted instances or consider approx-
imations. We do both.

7.3.2 Restricted Case: Bounded Number of Prices

We consider the restricted case when the number of possible prices, d, is
bounded. For brevity, we focus on the Min-Budget (path) problem. The
same algorithm and similar analysis work also for the Max-Probability (path)
problem. Consider first the case where there is only one possible price c0.
At any store i, either the product is available at this price, with probability
pi = pi(c0), or not available at any price. In this setting we show that the
problem can be solved in O(m) steps. This is based on the following lemma,
stating that in this case, at most one direction change is necessary.

Lemma 7.3. Consider a price c0 and suppose that in the optimal strategy
starting at point us the area covered while the remaining budget is at least
c0 is the interval [u`, ur]. Then, WLOG we may assume that the optimal
strategy is either (us ½ ur ½ u`) or (us ½ u` ½ ur).

Proof. Any other route would yield a higher cost to cover the same interval.

Using this observation, we immediately obtain an O(m3) algorithm for
the single price case: consider both possible options for each interval [u`, ur],
and for each compute the total cost and the resulting probability. Choose the
option which requires the lowest budget but still has a success probability
of at least psucc. With a little more care, the complexity can be reduced to
O(m). First note that since there is only a single price c0, we can add c0 to the
budget at the end, and assume that the product will be provided at stores for
free, provided that it is available. Now, consider the strategy of first moving
right and then switching to the left. In this case, we need only consider the
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minimal intervals that provide the desired success probability, and for each
compute the necessary budget. This can be performed incrementally, in a
total of O(m) operations for all such minimal intervals, since at most one
point can be added and one deleted at any given time. Similarly for the
strategy of first moving left and then switching to the right. The details are
provided in Algorithm 3.

Algorithm 3 OptimalPolicyForSinglePrice(Success probability psucc, single
price c0)

1: ur ← leftmost point on right of us s.t. 1−∏r
i=s 1− pi ≥ psucc

2: ` ← s
3: BRL

min ← |ur − us|
4: while ` ≥ 0 and r ≥ s do
5: B ← 2|ur − us|+ |us − u`|
6: if B < BRL

min then
7: BRL

min ← B
8: r ← r − 1
9: while ` ≥ 0 and 1−∏r

i=` 1− pi < psucc do
10: ` ← `− 1
11: u` ← rightmost point to left of us s.t. 1−∏s

i=` 1− pi ≥ psucc
12: r ← s
13: BLR

min ← |us − ul|
14: while r ≤ m and ` ≤ s do
15: B ← 2|us − u`|+ |ur − us|
16: if B < BLR

min then
17: BLR

min ← B
18: ` ← `+ 1
19: while r ≤ m and 1−∏r

i=` 1− pi < psucc do
20: r ← r + 1
21: return min{BRL

min, B
LR
min}+ c0

Next, consider the case that there may be several different available prices,
but their number, d, is fixed. We provide a polynomial algorithm for this
case (though exponential in d). First note that in the Min-Budget problem,
we seek to minimize the initial budget B necessary so as to guarantee a suc-
cess probability of at least psucc given this initial budget. Once the budget
has been allocated, however, there is no requirement to minimize the ac-
tual expenditure. Thus, at any store, if the product is available for a price
no greater than the remaining budget, it is purchased immediately and the
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search is over. If the product has a price beyond the current available bud-
get, the product will not be purchased at this store under any circumstances.
Denote D = {c1, c2, . . . , cd}, with c1 > c2 > · · · > cd. For each ci there is
an interval Ii = [u`, ur] of points covered while the remaining budget was at
least ci. Furthermore, for all i, Ii ⊆ Ii+1. Thus, consider the incremental
area covered with remaining budget ci, ∆i = Ii − Ii−1 (with ∆1 = I1). Each
∆i is a union of an interval at left of us and an interval at the right of us

(both possibly empty). The next lemma, which is the multi-price analogue
of Lemma 7.3, states that there are only two possible optimal strategies to
cover each ∆i:

Lemma 7.4. Consider the optimal strategy and the incremental areas ∆i

(i = 1, . . . , d) defined by this strategy. For ci ∈ D, let u`i be the leftmost
point in ∆i and uri the rightmost point. Suppose that in the optimal strategy
the covering of ∆i starts at point usi. Then, WLOG we may assume that
the optimal strategy is either (usi ½ uri ½ u`i) or (usi ½ u`i ½ uri). Fur-
thermore, the starting point for covering ∆i+1 is the ending point of covering
∆i.

Proof. The areas ∆i fully determine the success probability of the strategy.
Any strategy other than the ones specified in the lemma would require more
travel budget, without enlarging any ∆i.

Thus, the optimal strategy is fully determined by the leftmost and right-
most points of each ∆i, together with the choice for the ending points of
covering each area. We can thus consider all possible cases and choose the
one with the lowest budget which provides the necessary success probability.
There are m2d

(2d)!
≤ ( em

2d
)2d ways for choosing the external points of the ∆i’s,

and there are a total of 2d options to consider for the covering of each. For
each option, computing the budget and probability takes O(m) steps. Thus,
the total time is O(m2d( em

2d
)2d). Similar algorithms can also be applied for

the Max-Probability (path) problem. In all, we obtain:

Theorem 7.5. Min-Budget (path) and Max-Probability (path) can be solved
in O(m) steps for a single price and O(m2d( em

2d
)2d) for d prices.

Unfortunately, even with a bounded number of possible prices,
Min-Budget-Decide is still hard, even on a tree.

Theorem 7.6. The Min-Budget-Decide problem is NP-complete on a tree,
even with a bounded number of prices.
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Proof. Membership in NP is immediate as in the proof of Theorem 7.2. The
proof of NP-hardness is by reduction from Knapsack problem.

Given an instance of Knapsack we build an instance for the
Min-Budget-Decide problem as follows. We have N +2 stores. N stores cor-
responds to the knapsack items, denoted by uk1 , ..., ukN . The other 2 stores
are u0 and ue, where u0 is the agent’s initial location. The stores are placed
on a star, which is a tree with one internal node, u0, and N + 1 leaves. The
distance to any uki is defined according to the item value, dis(u0, uki) = si/2,
and dis(u0, ue) = C. At any store uki , either the product is available at the
price of 0 with probability 1− 2−vi , or not available at any price. At store u0

the product is not available, and at store ue either the product is available
at the price of 0 with probability 1 − 2−maxV , maxV = N · maxi vi, or not
available at any price. Finally, we set psucc = 1−2−maxV ·2−V , and B = 2 ·C.

Suppose there is a selection of items that fit the knapsack with a total
value of at least V , and consider the following policy: for each i = 1, 2, .., N , if
δi = 1 (item i was selected) go from u0 to uki and then back to u0. Finally, go
from u0 to ue. This policy’s travel cost is

∑N
i=1(δi ·si)+C ≤ 2 ·C = B. If the

product is available at any store, its price is 0. Thus, the success probability
of this policy is 1 − (2−maxV · ∏N

i=1 2
−vi·δi) ≥ 1 − (2−maxV · 2−V ) = psucc as

required.
Suppose there is a policy, plc with a total travel cost that is less than or

equal to B, and its success probability is at least psucc. Hence, plc’s failure
probability is at most 1 − psucc = 2−maxV · 2−V . Since maxV = N ·maxi vi,
plc must reach store ue. plc also has to select some uki to reach, but since
dis(u0, ue) = C and B = 2 · C, plc must reach these uki before reaching ue.
We use γi = 1 to indicate the event in which plc selects to reach uki , and
γi = 0 to denote the complementary event. plc’s traveling cost before going
to ue is less than or equal C, to be able reach ue, so

∑N
j=1 γj · sj ≤ C. Also,

psucc = 1− 2−maxV · 2−V ≤ 1− 2−maxV ·∏N
i=1 2

−vi·γi ⇒ 2−V ≤ ∏N
i=1 2

−vi·γi ⇒
V ≥ ∑N

i=1 vi · γi. Setting δi = γi gives a selection of items that fit the
knapsack.

7.3.3 Min-Budget Approximation

Next, we provide an FPTAS (fully-polynomial-time-approximation-scheme)
for the Min-Budget (path) problem. The idea is to force the agent to move in
quantum steps of some fixed size δ. In this case the tour taken by the agent
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can be divided into segments, each of size δ. Furthermore, the agent’s decision
points are restricted to the ends of these segments, except for the case where
along the way the agent has sufficient budget to purchase the product at a
store, in which case it does so and stops. We call such a movement of the
agent a δ-resolution tour. Note that the larger δ the less decision points there
are, and the complexity of the problem decreases. Given 0 < ε < 1, we show
that with a proper choice of δ we can guarantee a (1 + ε) approximation to
the optimum, while maintaining a complexity of O(npoly(1/ε)), where n is
the size of the input.

Our algorithm is based on computing for (essentially) each initial possible
budget B, the maximal achievable success probability, and then pick the
minimum budget with probability at least psucc. Note that once the interval
[`, r] has been covered without purchasing the product, the only information
that matters for any future decision is (i) the remaining budget, and (ii) the
current location. The exact (fruitless) way in which this interval was covered
is, at this point, immaterial. This, “memoryless” nature calls, again, for a
dynamic programming approach. We now provide a dynamic programming
algorithm to compute the optimal δ-resolution tour. WLOG assume that
us = 0 (the initial location is at the origin). For integral i, let wi = iδ. The
points wi, which we call the resolution points, are the only decision points for
the algorithm. Set L and R to be such that wL is the rightmost wi to the left
of all the stores and wR the leftmost wi to the right of all stores. We define two
tables, fail[·, ·, ·, ·] and act[·, ·, ·, ·], such that for all `, r, L ≤ ` ≤ 0 ≤ r ≤ R,
e ∈ {`, r} (one of the end points), and budget B, fail[`, r, e, B] is the minimal
failure probability achievable for purchasing at the stores outside [w`, wr],
assuming a remaining budget of B, and starting at location we. Similarly,
act[`, r, e, B] is the best act to perform in this situation (“left”, “right”, or
“stop”). Given an initial budget B, the best achievable success probability
is (1− fail[0, 0, 0, B]) and the first move is act[0, 0, 0, B]. It remains to show
how to compute the tables. The computation of the tables is performed from
the outside in, by induction on the number of remaining points. For ` = L
and r = R, there are no more stores to search and fail[L,R, e, B] = 1 for any
e and B. Assume that the values are known for i remaining points, we show
how to compute for i+1 remaining points. Consider cost[`, r, e, B] with i+1
remaining points. Then, the least failure probability obtainable by a decision
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to move right (to wr+1) is:

FR =


1−

∑

c≤B−δ
pr+1(c)


 fail[`, r + 1, r + 1, B − δ]

Similarly, the least failure probability obtainable by a decision to move left
(to w`−1) is:

FL =


1−

∑

c≤B−δ
p`−1(c)


 fail[`− 1, r, `− 1, B − δ]

Thus, we can choose the act providing the least failure probability, determin-
ing both act[`, r, e, B] and fail[`, r, e, B]. In practice, we compute the table
only for B’s in integral multiples of δ. This can add at most δ to the opti-

mum. Also, we may place a bound Bδ
max on the maximal B we consider in

the table. In this case, we start filling the table with wL = −Bδ
max/δ and

wR = Bδ
max/δ, the furthest point reachable with budget Bδ

max.
Next, we show how to choose δ and prove the approximation ratio. Set

λ = ε/9. Let α = min{|us − us+1|, |us − us−1|} - the minimum budget
necessary to move away from the starting point, and β = m2|um − u1| +
max{c : ∃i, pi(c) > 0} - an upper bound on the total usable budget. We start
by setting δ = λ2α and double it until δ > λ2β, performing the computation
for all such values of δ. For such value of δ, we fill the tables (from scratch) for

all values of B’s in integral multiples of δ up to Bδ
max = 2λ−2δ. We now prove

that for at least one of the choices of δ we obtain a (1 + ε) approximation.
Consider a success probability psucc and suppose that optimally this suc-

cess probability can be obtained with budget Bopt using the tour Topt. By
tour we mean a list of actions (“right”, “left” or “stop”) at each decision
point (which, in this case, are all store locations). We convert Topt to a δ-

resolution tour, Tδopt, as follows. For any i ≥ 0, when Topt moves for the first

time to the right of wi then Tδopt moves all the way to wi+1. Similarly, for

i ≤ 0, when Topt moves for the first time to the left of wi then Tδopt moves all
the way to wi−1.

Note that Tδopt requires additional travel costs only when it “overshoots”,
i.e. when it goes all the way to the resolution point while Toptwould not. This
can either happen (i) in the last step, or (ii) when Topt makes a direction
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change. Type (i) can happen only once and costs at most δ. Type (ii) can
happen at most once for each resolution point, and costs at most 2δ. Suppose

that Tδopt makes t turns (i.e. t directions changes). Then, the total additional

travel cost of the tour Tδopt over Topt is at most (2t+1)δ. Furthermore, if we use

Topt with budget Bopt and Tδopt with budget Bopt+(2t+1)δ then at any store,

the available budget under Tδopt is at least that available with Topt. Thus, T
δ
opt

is a δ-resolution tour that with budget at most Bopt+(2t+1)δ succeeds with
probability ≥ psucc. Hence, our dynamic algorithm, which finds the optimal

such δ-resolution tour will find a tour with budget Bδ
opt ≤ Bopt + (2t + 2)δ

obtaining at least the same success probability (one additional δ for the
integral multiples of δ in the tables).

Since Tδopt has t-turns, Topt must also have t-turns, with targets at t distinct
resolution segments. For any i, the i-th such turn (of Topt) necessarily means
that Toptmoves to a point at least (i − 1) segments away, i.e. a distance of
at least (i − 1)δ. Thus, for Bopt, which is at least the travel cost of Topt, we
have:1

Bopt ≥
t∑

i=1

(i− 1)δ =
(t− 1)(t)

2
δ ≥ t2

4
δ (7.1)

On the other hand, since we consider all options for δ in multiples of 2, there
must be a δ̂ such that:

λ−2δ̂ ≥ Bopt ≥ λ−2

2
δ̂ (7.2)

Combining (7.1) and (7.2) we get that t ≤ 2λ−1. Thus, the approximation
ratio is:

B
ˆδ
opt

Bopt

≤ Bopt+2(t+1)
ˆδ

Bopt
≤ 1 + 2(t+1)

ˆδ
λ−2ˆδ/2

(7.3)

≤ 1 + (8λ+ 4λ2) ≤ 1 + ε (7.4)

Also, combining (7.2) and (7.4) we get that

B
ˆδ
opt ≤ Bopt(1 + ε) ≤ 2λ−2δ̂ = B

ˆδ
max

Hence, the tables with resolution δ̂ consider this budget, and B
ˆδ
opt will be

found.

1Assuming that t > 1. If t = 0, 1 the additional cost is small by (7.2).
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7.3 Min-Budget and Max-Probability

It remains to analyze the complexity of the algorithm. For any given δ

there are Bδ
max/δ = 2λ−2 budgets we consider and at most this number of

resolution points at each side of us, for each, there are two entries in the
table. Thus, the size of the table is ≤ 8λ−6 = O(ε−6). The computation
of each entry takes O(1) steps. We consider δ in powers of 2 up to β ≤ 2n,
where n is the size of the input. Thus, the total computation time is O(nε−6).
We obtain:

Theorem 7.7. For any ε > 0, the Min-Budget (path) problem can be ap-
proximated with a (1 + ε) factor in O(nε−6) steps.
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Chapter 8

Multi-Agent

In this chapter we investigate multi-agent physical search problems with un-
certain knowledge. In these settings, we analyze two models for handling
resources, the shared and the private budget models. We present poly-
nomial algorithms that work for any fixed number of agents, both for the
shared budget model (Section 8.1) and for the private budget model (Sub-
section 8.2.2). For non-communicating agents in the private budget model,
we present a polynomial algorithm that is suitable for any number of agents
(Subsection 8.2.1). We also analyze the difference between homogeneous and
heterogeneous agents in Section 8.4, both with respect to their allotted re-
sources and with respect to their capabilities. Finally, we define our variants
in an environment with self-interested agents in Section 8.3. We show how
to find a Nash Equilibrium in polynomial time, and prove that the bound on
the performance of our algorithms, with respect to the social welfare, is tight.
We conclude this chapter in Section 8.5, with a discussion on the assumptions
we have made, and we suggest ways to extend our current results.

8.1 Shared Budget

Since even the single agent case is hard for general metric spaces, with the
multi-agent case we focus solely on situations in which all the stores are on a
single path. We assume k agents, operating in the same underlying physical
setting as in the single agent case, i.e. a set of stores S and a price proba-
bility function for each store. We assume that the goal is not individualized;
the agents seek to obtain only one item and having multiple goods is not
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8.1 Shared Budget

beneficial. Furthermore, since the agents are fully collaborative, they do not
care which agent will obtain the item.

We begin by analyzing the shared budget multi-agent model, where all
the resources and costs are shared among all the agents. In theory, agents
may move in parallel, but since minimizing time is not an objective, we
may assume WLOG that at any given time only one agent moves. When
an agent reaches a store and finds the price at this location, the opti-
mal strategy should tell whether to purchase the product (and where) and
if not what agent should move next and to where. Therefore, in the
k-Shared-Min-Expected-Cost problem the agents try to minimize the expected
total cost, which includes the travel costs of all agents plus the final pur-
chase price (which is one of the prices that the agents have sampled). In
k-Shared-Min-Budget and k-Shared-Max-Probability, the initial budget is for
the use of all the agents, and the success probability is for any of the agents
to purchase, at any location. Since all the agents use the same budget in
this model, inter alia, for traveling costs, we assume the agents can commu-
nicate with each other to coordinate their moves. In k-Shared-Min-Budget
and k-Shared-Max-Probability the agents only need to announce to the other
agents when they reach a specific store. In k-Shared-Min-Expected-Cost the
agents also need to communicate the price they find at the location they have
reached.

In general, the algorithms for the single-agent case (for the path) can be
extended to the multi-agent case, with the additional complexity of coordi-
nating between the agents. We present the proofs in the appendix since they
are very similar to proofs in the single agent case.

Theorem 8.1. With k agents, k-Shared-Min-Expected-Cost can be solved
in O(d22k(m

k
)2k).

Theorem 8.2. With k agents, k-Shared-Min-Budget and
k-Shared-Max-Probability with d possible prices can be solved in
O(m2kd( em

2kd
)2kd).

Theorem 8.3. With k agents, for any ε > 0, k-Shared-Min-Budget can be
approximated to within a factor of (1+kε) in O(nε−6k) steps (for an arbitrary
number of prices).

While the complexity in the multi-agent case grows exponentially in the
number of agents, in most physical environments where several agents coop-
erate in exploration and search, the number of agents is relatively moderate.
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8.1 Shared Budget

In these cases the computation of the agents’ strategies is efficiently facili-
tated by the principles of the algorithmic approach presented in this work.

If the number of agents is not fixed (i.e. part of the input) then, the
complexity of all three variants grows exponentially. Most striking perhaps
is that k-Shared-Min-Budget and k-Shared-Max-Probability are NP-complete
even on the path with a single price. To prove this we again formulate
the problems into a decision version- k-Shared-Min-Budget-Decide - given a
set of points S on the path, initial locations for all agents (u

(1)
s , . . . , u

(k)
s ),

a price-probability function p·(·), a minimum success probability psucc and
a maximum budget B, decide if success probability of at least psucc can be
achieved with a maximum budget B.

Theorem 8.4. k-Shared-Min-Budget-Decide is NP-complete even on the
path with a single price.

Proof. An optimal policy defines for each time step which agent should move
and in which direction. Since there are at most 2m time steps, it is easy to
compute the success probability and the total cost in O(m) steps, there-
fore the problem is in NP. The NP-hard reduction is from the Knapsack
problem.

We assume WLOG that all the points are on the line. We use N agents
and our line consists of 2N stores. N stores correspond to the knapsack
items, denoted uk1 , ..., ukN . The other N points are the starting point of the

agents, {u(i)
s }i=1,..,N . We set the left most point to u

(1)
s and the right most

point to ukN . For all 1 ≤ i ≤ N − 1 set uki right after u
(i)
s and u

(i+1)
s right

after uki . Set |u(i)
s − uki| = si and |uki − u

(i+1)
s | = B+1. See figure 8.1 for an

illustration.
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Figure 8.1: Reduction of the Knapsack problem to the Multi-Min-Budget-
Decide problem used in the proof of Theorem 8.4, for N=3.

The price at all the nodes is c0 = 1 and pki(1) = 1 − 2−vi . Finally, set
B = C + 1 and psucc = 1− 2−V .
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8.2 Private Budget

For every agent i, the only possible move is to node pki , denote by γi = 1
if agent i moves to pki , and 0 if not. Therefore, there is a selection of items
that fit, i.e,

∑N
i=1 δisi ≤ C, and the total value,

∑N
i=1 δivi, is at least V iff

there is a selection of agents that move such that
∑N

i=1 γisi ≤ B, and the

total probability 1−∏N
i=1 γi2

−vi , is at least psucc = 1− 2−V .

This is in contrast to the single agent case where the single price case can
be solved in O(n) steps.

8.2 Private Budget

We now investigate a model of private budgets, whereby each agent j has
its own initial budget Bj (unlike the previous shared budget model). If the
objective is to minimize the total expected cost, the private budgets model is
equal to the shared budget model since the agents are cooperative. Therefore
in this case we have two concrete problem formulations:

1. k-Private-Max-Probability: given initial budgets Bj, for each agent j,
maximize the probability of obtaining the item.

2. k-Private-Min-Budget: given a target success probability psucc, mini-
mize the agents’ initial budgets necessary to guarantee acquisition of
the item with a probability of at least psucc.

Since the corresponding single-agent problems are hard even for the path,
we again assume that the number of possible prices, d, is bounded. In the
k-Private-Min-Budget problem it is also important to distinguish between
two different agent models:

• Identical budgets: the initial budgets of all the agents must be the
same. The problem is to minimize this initial budget, and we denote

the problem as k-Private-Min-Budgetidentical.

• Distinct: the agents’ initial budgets may be different. In this case the
problem is to minimize the average initial budget, and we denote the

problem as k-Private-Min-Budgetdistinct.
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8.2 Private Budget

8.2.1 Non-Communicating Agents

We first consider the case where agents cannot communicate with each other.
In this case agents cannot assist each other. Hence a solution is a strategy
comprising of a set of ordered lists, one for each agent, determining the
sequence of stores this agent must visit.

The success probability of a strategy is the probability that at least one
of the agents will succeed in its task. Technically, in this case, it is easier to
calculate the complementary failure probability: the probability that all the
agents will not succeed in their tasks. For example, suppose that the stores
and agents are located as illustrated in Figure 8.2, and consider the depicted
strategy. This strategy fails if for both agents and each of the stores they
visit the cost of the item is higher than their remaining budget. This will
happen with probability 1

2
· 1
4
· 1
2
· 4
5
= 1

20
. Hence, the success probability of

this strategy is 19
20
. 
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Figure 8.2: A possible input with a suggested strategy. The numbers on the
edges represent traveling costs. The table at each store ui represents the cost
probability function pi(c). The strategy of each agent is illustrated by the
arrows.

We begin by considering the k-Private-Max-Probability problem. We
prove:

Theorem 8.5. In the no communication case if the number of possible costs
is constant then k-Private-Max-Probability can be solved in polynomial time
for any number of agents.

The proof is based on the following definitions and lemmata.
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8.2 Private Budget

Note that multiple strategies may result in the same success probability.
In this case we say that the strategies are equivalent. In particular there may
be more than one optimal strategy.

Definition 8.6. Let S be a strategy. Agents i and ī are said to be separated
by S if each store that is reached by i is not reached by ī.

Lemma 8.7. If agents i and ī are not separated by any optimal strategy,
then in at least one optimal strategy at least one of these agents must pass
the initial location of the other.

Proof. WLOG assume that i is on the right side of ī. Consider an optimal
strategy S. Let r be the rightmost store that is reached by i and l̄ the
leftmost store that is reached by ī. Assume that none of the agents passes
the initial location of the other in S. Thus, there is at least one store between
their initial locations that is reached by both agents. WLOG assume that
ī reaches at least one store with a higher budget than i’s remaining budget
when reaching it, and denote by r̄∗ the rightmost such store. Consider the
following modified strategy: i goes according to S till the stage it has to reach
r̄∗. If i did not reach r yet then instead of reaching r̄∗ it goes all the way
straight to r. Otherwise, it stops just before reaching r̄∗. ī goes according to
S till the stage it has to reach r̄∗. If ī did not reach l̄ yet then after reaching
r̄∗ it goes all the way straight to l̄. Otherwise, it stops after reaching r̄∗.
Agents i and ī are separated by this strategy and it has at least the same
success probability as S, in contradiction.

Lemma 8.8. Suppose that agents i and ī are not separated by any optimal
strategy. Let S be an optimal strategy. Suppose that in S agent i passes the
initial location of agent ī and agent ī does not stay in its initial location.
Then, there is an optimal strategy such that one of the following holds:

• ī moves only in one direction which is opposite to the final movement’s
direction of i. Furthermore, if the final movement’s direction of i is
right(left) then ī passes the leftmost(rightmost) store that is reached by
i.

• either i or ī does not move.

Proof. WLOG assume that i is on the right side of ī. Let [l, r] be the interval
of stores covered by i. Since i passes the initial location of ī, l is located on

the left of u
(̄i)
s and r is located on the right of u

(̄i)
s .
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8.2 Private Budget

First we show that we may assume that ī reaches at least one store outside
the interval [l, r]. If this is not the case, consider two cases. If i’s remaining
budget at each store is always as high as ī’s remaining budget then ī does
not have to move and the theorem holds. Otherwise, let r̄∗ the rightmost
store where ī’s remaining budget is higher than i’s remaining budget. If r̄∗ is
on the left side of i’s initial location, then as in the proof of Lemma 8.7, the
agents can be separated. If r̄∗ is on the right side of i’s initial location and
it equals r, there is no need for i to reach r since at each store in [u

(i)
s , r], ī

has at least the same budget as i. Thus, there is an optimal strategy where
either i does not move or it moves only to the left, so ī passes the rightmost
store that is reached by i. If r̄∗ is on the right side of i but on the left side of
r then there is no need for ī to go beyond r̄∗. Since it has more budget than
i at this location, ī can move to l while i moves to r. Thus, again, there is an
optimal strategy where either i does not move or it moves only to the right,
so ī passes the leftmost store that is reached by i. Thus, we may assume that
ī reaches at least one store outside the interval [l, r].

WLOG assume that i’s final movement’s direction is left and suppose
that ī reaches at least one store outside the interval [l, r] to the left of l. If ī’s
budget at l is higher than i’s remaining budget there, then it is also higher

at u
(̄i)
s , and again the agents can be separated. If ī’s budget at l is not higher

than i’s remaining budget, than ī does not have to move since i can reach
the same stores to the left of l.

Now suppose that ī moves to the right (which is the opposite direction

of i’s final movement) and passes u
(i)
s , but it also changes its direction. The

only reason for ī to change directions is to reach a store on the left side of
its initial location, with a higher budget than i has at this store, or to reach
a store that i does not reach at all. In both cases ī must reach each store in
[l, u

(i)
s ] with at least the same budget as i has at the same location, so either

S is not optimal, or we can modify S by letting only ī to move while i does
not move at all.

Using these lemmata we observe that for any two agents, there is only
a constant number of possible cases where the agents are not separated by
the optimal strategies. Figure 8.3 illustrates the three core cases (the others
are symmetrical). Here, agents 1 and 3 are non-separated agents. Note that
every agent between them, like agent 2, does not have to move at all in the
optimal strategy.

Therefore we can use a dynamic programming approach to find an optimal
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Figure 8.3: The only three cases where a pair of agents may not be separated.
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strategy whereby all the agents are separated, but we also check the non-
separated strategies individually.

Recall that in our problem the objective is to maximize the success prob-
ability, given the initial budgets. Technically, it is easy to work with the
failure probability instead of the success probability.

Definition 8.9. fail[ui, j] is the minimal failure probability if the only reach-
able stores are in the interval [u1, ui], and only agents 1, · · · , j are allowed
to move. act[ui, j] is the optimal strategy achieving fail[ui, j], under the same
conditions 1.

Note that where ui < u
(j)
s , fail[ui, j] is not defined. Given act[ui, j],

fail[ui, j] can be easily computed in O(m) steps. For technical reasons we
add another agent, 0, with a budget of zero and set its initial location to
the leftmost store, i.e u

(0)
s = u1. fail[ui, 0]=1 for all i, and this agent doesn’t

affect the failure probability of any policy.
We are now ready to prove Theorem 8.5

Proof of Theorem 8.5 We use dynamic programming to calculate
fail[um, k] and act[um, k]. For fail[ui, 1] and act[ui, 1], which is the single agent
case, we employ the polynomial algorithm obtained from Theorem 7.5.

Given any agent j̄ we first consider the case where ui = u
(j̄)
s . In this case

in the optimal strategy j̄ moves only to the left, or not at all. Let u
(j̄)
l be the

leftmost store visited by j̄ with the optimal strategy for the given interval,

and agent l be the one such that u
(l)
s ≤ u

(j̄)
l (l may equal 0). Each agent

t such that l < t < j̄ does not move in the optimal strategy. Otherwise,
agents t and j̄ are not separated and according to Lemma 8.8 agent t must

pass the rightmost store u
(j̄)
s , which is not possible. The same argument

shows that each agent t such that t ≤ l does not reach u
(j̄)
l . Therefore

act[ui, j̄] is composed of act[u
(j̄)
l−1, l], which are already known, together with

the movement of agent j̄ to u
(j̄)
l . Thus, computing u

(j̄)
l takes O(m) steps.

Next, consider the case where ui > u
(j̄)
s . In this case, in the optimal

strategy j̄ may move in both directions, or not move at all. Let u
(j̄)
l be

1There may be more than one strategy with the same failure probability, act[ui, j] is
one of them

133



8.2 Private Budget

the leftmost store visited by j̄ with the optimal strategy for this interval,

and agent l is the one such that u
(l)
s ≤ u

(j̄)
l . First note that each agent

t, t ≤ l, and j̄ are separated by the optimal policy, or j̄ does not move.
Otherwise, according to Lemma 8.7 t must pass the initial location of j̄ but

according to Lemma 8.8 j̄ must reach a store outside the interval [u
(l)
s , u

(j̄)
s ]

which does not occur. Since j̄ passes the initial locations of every agent t,
l < t < j̄, if one of them moves it goes only in the opposite direction of the
final movement direction of j̄ according to Lemma 8.8 , and as illustrated in
Figure 8.3. Since they all must move in the same direction, according to the
same Lemma at most one of them moves in the optimal policy. Therefore, to
compute act[uī, j̄] we check only the following options, and choose the best
one:

1. j̄ does not move, and act[uī, j̄] = act[uī, j̄ − 1].

2. Each agent t, l < t < j̄, does not move. Thus, act[uī, j̄] is composed

of act[u
(j̄)
l−1, l], with the optimal movement of agent j̄ in the interval

[u
(j̄)
l , ui].

The previous two options assume that j̄ and every other agent are separated.
Otherwise:

3. One agent t, l < t < j̄, moves. Let u
(t̄)
l be the leftmost store visited

by either agent t or j̄, with the optimal strategy, and agent l is the

one such that u
(l)
s ≤ u

(t̄)
l . act[uī, j̄] is composed of act[u

(t̄)
l−1, l], with the

optimal movement of the two agents j̄ and t in the interval [u
(t̄)
l , ui].

There are at most m possible options for u
(j̄)
l . In each option we check for

at most k agents m possible options for u
(t̄)
l . Therefore for each agent j and

store ui act[ui, j] can be found in O(m2k) steps, and act[um, k] can be found
in O(m3k2) time steps using O(mk) space.

For the k-Private-Min-Budget problem we obtain:

Theorem 8.10. In the no communication setting, if the number of costs is

constant, k-Private-Min-Budgetidentical can be solved in polynomial time for
any number of agents.
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Proof. By Theorem 8.5, given a budget B̄, we can calculate the maximum
achievable success probability. Thus we can run a binary search over the
possible values of B̄ to find the minimal one that still guarantees a success
probability psucc. The maximum required budget is 2 · |u1 − um|, which is
part of the input. Thus the binary search will require a polynomial number
of steps.

Theorem 8.11. If the number of agents is a parameter,

k-Private-Min-Budgetdistinct with no communication is NP-complete
even for a single possible cost.

Proof. Membership in NP is trivial. Theorem 8.4 considered the
shared budget case and showed that when the number of agents is
not constant the k-Shared-Min-Budget problem is NP-complete. In the

k-Private-Min-Budgetdistinct problem the objective is to minimize the av-
erage budget, which is the same as minimizing the total budget. Thus, the
hardness of the problem follows from that of the k-Shared-Min-Budget prob-
lem.

8.2.2 Communicating Agents

Once communication is added agents can call upon each other for assistance
and the relative scheduling of the agents’ moves must also be considered. In
this case a solution is an ordered list of moves, where each move is a pair
stating an agent and its next destination.

The success probability of a solution is now calculated according to the
order of moves. For example, suppose that the stores and agents are located
as illustrated in Figure 8.4.

Consider the following solution: agent 2 first goes to u4 and then agent
1 goes to u2. Agent 2 is the only one which can succeed at u4, with a
probability of 0.8. With probability of 0.2 it will not succeed and agent 1
has a probability of 0.2 to succeed at u2. Hence, the success probability is
0.8+0.2 ·0.2 = 0.84. If we switch the order of the moves we get a probability
of 0.9 to succeed at u2 with the first move, since agent 2 will be called for
assistance if the cost required is less than 100. If not, agent 2 will move to
u5 as before. Hence, this solution success probability is 0.9+ 0.1 · 0.8 = 0.98.

When the number of agents is not fixed, k-Private-Max-Probability,

k-Private-Min-Budgetidentical and k-Private-Min-Budgetdistinct are not
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Figure 8.4: A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store ui represents the cost
probability function pi(c). The moves are illustrated by the arrows.

known to be solvable in polynomial time. However, in many physical en-
vironments where several agents cooperate in exploration and search, the
number of agents is relatively small. In this case we can show that all the
three problems can be solved in polynomial time. We show:

Theorem 8.12. In the setting of communicating agents, if the
number of agents and the number of different costs is fixed

then k-Private-Max-Probability, k-Private-Min-Budgetidentical and

k-Private-Min-Budgetdistinct can be solved in polynomial time.

For brevity, we focus on the k-Private-Max-Probability problem. The
same algorithm and similar analysis work also for the other two problems.

First note that as in Max-Probability, in k-Private-Max-Probability we
need to maximize the probability of obtaining the item given the initial
budgets Bi, but there is no requirement to minimize the actual resources
consumed (in contrast to k-Shared-Max-Probability). Thus, at any store, if
agents can obtain the item for a cost no greater than its remaining budget,
the search is over. Furthermore, if the cost is beyond the agent’s available
budget, but there is another agent with a sufficient budget to both travel
from its current location and to obtain the item, then this agent is called
upon and the search is also over. Otherwise, the item will not be obtained
at this store under any circumstances. Thus, the basic strategy structure,
which determines which agent goes where, remains the same. Unless the
search has to be terminated, the decision of one agent where to go next is
not affected by the knowledge gained by others. Using a similar argument
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as in the proof of Theorem 8.2, we get the following result. For brevity, we
denote d̄ instead of d+ 1.

Proposition 8.13. For k agents, one needs only to consider O(m2kd̄( em
2kd̄

)2kd̄)
number of options for the set of moves of the agents.

Proof. Let c1 > c2 > · · · > cd be the set of costs. For each agent j and
for each ci there is an interval I

(j)
i = [u`, ur] of points covered while the

agent’s remaining budget is at least ci. Furthermore, for each j and for all
i, I

(j)
i ⊆ I

(j)
i+1. Thus, consider for each agent the incremental area covered

when its remaining budget is ci but less than ci−1, ∆
(j)
i = I

(j)
i − I

(j)
i−1 (with

∆
(j)
1 = I

(j)
1 ). Each ∆

(j)
i is a union of an interval at left of u

(j)
s and an interval

at the right of u
(j)
s (both possibly empty). Since there is communication,

an agent may continue to reach a store even if it does not have any chance
of obtaining the item there, in order to reveal the cost for the use of other
agents. Thus, the optimal strategy may define also an interval I

(j)

d̄
= [u`, ur]

of points covered while the remaining budget of j is greater than 0. By
Lemma C.1, the moves of each agent are fully determined by the leftmost
and rightmost stores of each ∆

(j)
i , together with the choice for the ending

points of covering each area. For each two agents j1, j2, the intervals of
covered points are disjoint, i.e. I

(j1)

d̄
∩ I

(j2)

d̄
= ∅. Therefore, for each j there

are at most
(m
k
)2d̄

(2d̄)!
≤ ( em

2kd̄
)2d̄ possible choices for the external stores of the

∆
(j)
i ’s, and there are a total of 2d̄ options to consider for the covering of each.

Thus, the total number of options for the set of moves is O(2kd̄( em
2kd̄

)2kd̄),
which is polynomial (in m)

It thus remains to consider the scheduling between the moves, i.e. their
order. Theoretically, with n moves there are n! different possible orderings.
We show, however, that for any given set of moves, we need only to consider
a polynomial number of possible orderings.

Consider a given set of moves M , determining the sets ∆
(j)
i . Note that

for each agent, M fully determines the order of the moves of this agent. A
subset M ′ of M is said to be a prefix of M , if for each agent the moves in M ′

are a prefix of the moves of this agent in M . A subset M ′ is a suffix of M
if M −M ′ is a prefix. We now inductively define the notion of a cascading
order:

1. The trivial order on moves of a single agent is cascading.
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2. Let M be a set of moves, and let ci0 be the highest cost that any agent
can pay. An order S on M is cascading if M and S can be decomposed
M = Mpre ∪Mmid ∪Mpost and S = Spre ◦ Smid ◦ Spost, such that:

• Mpre is a prefix of M consisting only of moves of agents with
budget less than ci0 and Spre is a cascading order on Mpre.

• There exists an agent j′ with budget at least ci0 such that Mmid
consists of all the moves of j′ in ∆

(j′)
i0

and Smid is the (one possible)
order on these moves.

• Mpost are the remaining moves in M and Spost is a cascading
order on them.

We prove (by induction) that cascading orders are optimal.

Lemma 8.14. For any set of moves M there exists a cascading order with
optimal success probability.

Proof. The proof is by induction on the number of agents and the number
of moves in M . If there is only one agent moving in M then the order is
cascading. Otherwise, consider any other order S on M and let Ai0 be the
set of agents with budget at least ci0 . Let j

′ be the first agent in Ai0 to cover

its ∆j′
i0
and let t0 be the time it completes covering it. Mpre includes all the

moves taken by agents not in Ai0 prior to t0; Mmid includes all the moves

of j′ in ∆
(j′)
i0

; and Mpost the rest of the moves in M . We show that we do
not decrease the success probability by first making all moves of Mpre then
all those of Mmid, and finally those of Mpost. By the inductive hypothesis
Spre, Smid and Spost are optimal for Mpre, Mmid and Mpost, respectively
and the result follows.

Before t0 all agents in Ai0 have a higher budget than any agent not in Ai0 .
Thus, before t0 agents of Ai0 will never call upon those not in Ai0 . Thus, it
cannot decrease the success probability if we let the agents not in Ai0 take
their moves first. Thus, we can allow to first perform all moves of Mpre.

Also, before t0 no agents of Ai0 needs to call upon each other for assistance
(since they are all in the same resource bracket). Thus, we may allow them
to take their moves independently without decreasing the success probability.

In particular, we can allow j′ to complete its covering of ∆
(j′)
i0

before any other
member of Ai0 moves. Thus, we get that first having the moves of Mpre and
then of Mmid does not decrease the success probability. The moves of Mpost
are the remaining moves.
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Finally we show that the number of cascading orders is polynomial:

Lemma 8.15. For fixed k and d and any set of moves M there are a poly-
nomial number of cascading orders on M .

Proof. Set f(n, k, d, `) be the number of cascading orders with k agents,
n moves, d costs and ` agents in Ai0 . We prove by induction that f is
a polynomial in n. Since ` ≤ k, the result follows. Clearly, for any `,
f(n, k, 0, `) = `! (all of which are useless). Then, by the definition of cascad-
ing orders f(n, k, d, `) ≤ `nk−`f(n, k−`, d−1, k−`)f(n, k, d, `−1) (the nk be-
ing for the choice ofMpre). By the inductive hypothesis f(n, k−`, d−1, k−`)
and f(n, k, d, `− 1) are polynomials in n. Thus, so is f(n, k, d, `).

Together with Corollary 8.13 we get that the total number of options to
consider is polynomial, proving the k-Private-Max-Probability part of Theo-
rem 8.12. The proof for the other two problems is similar.

8.3 Self-interested Agents

In this section we consider the strategic behavior that may occur when the
agents are self-interested. We assume k agents, operate in the same un-
derlying physical setting as in the previous multi-agent case with private
budgets, i.e. the stores are all on a single path, the number of possible prices,
d, is bounded, and there is a fixed number of agents. However in the self-
interested agents setting, the agents seek to obtain the item but do not
want to spend their individual budgets on travel costs; we assume the pur-
chase price is equally shared among all the agents. In this case we define
two games, a simultaneous game, Min-Budget-Game, and a sequential game,
Min-Expected-Cost-Game.

8.3.1 Min-Budget Game

In the Min-Budget-Game we are given a target success probability psucc, and
each agent’s objective is to minimize its initial budget necessary to guarantee
that the item will be acquired with a probability of at least psucc. To avoid
the case where each agent will set its initial budget at zero, we set the utility
of not guaranteeing the success probability psucc so low that it will always
be worthwhile to attain it. We assume the game is a simultaneous game;
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8.3 Self-interested Agents

the agents can only choose their initial budgets. After this phase, the agents
calculate the (collaborative) strategy that will maximize their success prob-
ability (given their chosen budgets) and follow it. The only decision point in
this game is when an agent needs to choose its budget.

Since the number of agents and the number of different costs is fixed, the

optimal solution for k-Private-Min-Budgetdistinct can be found in polyno-
mial time, whether the agents can or cannot communicate (Theorem 8.12).
Let Balg

i be the initial budget that was assigned to agent i by the algorithm

from Theorem 8.12. This solution of k-Private-Min-Budgetdistinct, which is
optimal, can be directly translated into a strategy, denote Optsoc: each agent
i should individually choose its initial budget to be Balg

i . Obviously, Optsoc
maximizes the social welfare and it can be computed in polynomial time.
Furthermore, Optsoc is also a Nash Equilibrium [86, p.14]. Clearly, for each
agent i, there is no incentive to deviate and to choose a budget for itself which
is larger than Balg

i , since with Balg
i the success probability psucc is already

guaranteed (assuming the other agents will not deviate). On the other hand,
since the algorithm of Theorem 8.12 is optimal, there is no incentive for each
agent i to deviate and choose a budget for itself which is smaller than Balg

i ,
as psucc will not be achieved (recall that the utility of not guaranteeing the
success probability is very low). We obtain:

Theorem 8.16. In the Min-Budget-Game, the strategy that maximizes the
social welfare, Optsoc, can be found in polynomial time and it is also a Nash
Equilibrium.

8.3.2 Min-Expected-Cost Game

In theMin-Expected-Cost-Game each agent’s objective is to minimize its total
expected cost. As in the previous game, to avoid the case where each agent
will not want to make any move, we set the utility of not obtaining the item
so low that it is always worth traveling to at least one store to purchase the
product. TheMin-Expected-Cost-Game is a sequential game and the rules are
as follows. At each time step, only one of the agents is allowed to move to the
next store, but it can also decide not to move at all. Then there is a decision
phase, where every agent is allowed to buy the product, to opt-out, or to do
nothing. If at least on agent decides to buy the product, it is purchased and
then the game is over (even if other agents decide to opt-out). No matter how
many agents decide to buy the product, only one is purchased. If no agent
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decides to buy the product and at least one agent decides to opt-out then
the game is over without buying the product. Otherwise, the decision phase
ends and the game proceeds by allowing the next agent (according to a fixed,
pre-defined cyclic order) to move. The pre-defined order of movement phases
well-define the game, but it is has no essential meaning; the agents have the
option not to move during their turns, so actually any order of movements
may occur.

In order to find the strategy that will maximize the social welfare,
Optsoc, we need to run the algorithm from Theorem 8.1. In our setting,
it will run in polynomial time. However, unlike in the Min-Budget-Game,
the solution found cannot be directly translated into a strategy. First,
we need to translate the movements. At any stage, if the algorithm for
k-Shared-Min-Expected-Cost decides that a specific agent should move, for
instance agent i, then the strategy for Min-Expected-Cost-Game defines that
until it is agent i’s turn to move, any other agent will not move during
its movement phase, and all the agents will do nothing during the decision
phase. We also need to handle the case where one agent does not move ac-
cording to this strategy. For this purpose, we determine that in any case
where one of the agents deviates from its determined policy in the move-
ment phase, the other agents purchase the product during the decision phase
that follows. If it is not possible, i.e. the product is not available yet, the
other agents opt-out during the decision phase. The translation of the algo-
rithm’s decision to buy is straightforward; the strategy defines that in the
corresponding decision phase all the agents decide to buy. We also do not
need to handle the case where one agent deviates in a decision phase, since
the game will be over in that case. In conclusion, Optsoc, the strategy for
Min-Expected-Cost-Game that maximizes the social welfare, can be found
in polynomial time using the algorithm from Theorem 8.1. However, Optsoc
is not always a Nash Equilibrium, as will be shown in Example 8.17. For
ease of notation, when describing Optsoc or any other strategy we omit the
movement and decision phases when the agents do nothing.

Example 8.17. Suppose that the stores and agents are located as illustrated
in Figure 8.5. The traveling costs between u2 and u3 and between u4 and u5

are so high, that the only reasonable moves are according to the illustrated
arrows. Optsoc for this example is that agent 1 will go to u2. If the price
is 6 the product will be purchased. Otherwise, agent 3 will go to u6 and if
the price is 6 the product will be purchased. Otherwise, agent 2 will go to
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u4 and the product will be purchased at the minimal sampled price (which
can be 12 or 27). The expected cost of this strategy is 14.375, but it is not a
Nash Equilibrium. Clearly, if the product was not purchased after the moves
of agents 1 and 3, then the minimal sampled price will be 27. At this stage,
if agent 2 deviates and decides not to move, the product will be purchased
and the private cost of agent 2 will be 9 (the purchase price is equally shared
among all the agents). If agent 2 proceeds according to Optsoc, its expected
cost will be 4 + 0.5 · 4 + 0.5 · 9 = 10.5 > 9. Therefore, agent 2 will have an
incentive to deviate from Optsoc.

If we switch the movement order of agents 2 and 3, the expected cost will be
higher, 15.125, but this strategy is a Nash Equilibrium. Clearly, agent 1 will
not deviate during its turn since the other agents will opt-out. Agent 2 will
not deviate during its turn since its private cost will be 10, and if it will follow
the strategy its expected cost will be 4+0.5·4+0.5·(0.5·2+0.5·9) = 8.75 < 10
(assuming the other agents will not deviate). Agent 3 will not deviate during
its turn either, since its private cost will be 10, and if it will follow the strategy
its expected cost will be 4 + 0.5 · 2 + 0.5 · 9 = 9.5 < 10.
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Figure 8.5: A possible input with suggested moves. The numbers on the
edges represent traveling costs. The table at each store ui represents the
cost probability function pi(c). The reasonable moves are illustrated by the
arrows.

Example 8.17 demonstrates that Optsoc is not always a Nash Equilib-
rium. We now show a polynomial algorithm that always returns a strategy
which is a Nash Equilibrium. Furthermore, we show an upper bound on the
algorithm’s performance, and prove that it is tight.

Theorem 8.18. There is a polynomial algorithm for finding a Nash Equi-
librium for the Min-Expected-Cost-Game.
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Proof. The algorithm works as follows. It divides all the buying costs
by k, and then solves the finite-horizon MDP as in the proof of Theo-
rem 8.1. The solution gained is then translated into a strategy for the
Min-Expected-Cost-Game, in the same way we translated the optimal so-
lution of k-Shared-Min-Expected-Cost to Optsoc. Let denote this strategy by
OptNash. Since the pre-process takes O(d) operations the algorithm for find-
ing OptNash is polynomial.

Any strategy S consists of traveling costs and buying costs, denoted by
{ti} and {bi}, respectively. We can then write the expected cost of S as

E[S] =
∑
i

(pti · ti) +
∑
i

(pbi · bi), where pti, p
b
i are the associated probabilities.

We also write ti ∈ j if the traveling cost ti was credited to the movement of
agent j.

We now analyze the steps of OptNash. First note that if the product
is not available yet, there is no incentive to deviate since the other agents
will opt-out and the game will be over. We thus assume that the product
is available. The last step of OptNash is a decision step, where the product
is purchased. By definition, there is an incentive to purchase the product
in this step. In any other decision phase the strategy of OptNash is not to
purchase the product. However, if agent j deviates in a movement phase,
the product will be purchased in the decision phase that follows. Therefore,
we only need to consider the movement phases. Now, consider agent j and
a movement phase r, and suppose that j needs to move in r. If j deviates
(does not move), his expected cost will be c/k, the best price encountered so
far divided by the number of agents. Since OptNash is optimal (with respect
to the modified buying costs),

c/k ≥
∑
i≥r

(pti · ti) +
∑
i≥r

(pbi · bi/k) (8.1)

In addition, ∑
i≥r

(pti · ti) ≥
∑

i≥r,ti∈j
(pti · ti) (8.2)

Combining (8.1) and (8.2) we obtain,

c/k ≥
∑

i≥r,ti∈j
(pti · ti) +

∑
i≥r

(pbi · bi/k)

where the right term is the expected cost of agent j if it follows OptNash.
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Therefore, agent j has no incentive to deviate. The same analysis shows that
j does not have an incentive to deviate if it does need to move in r.

OptNash is a Nash Equilibrium, but it does not maximize the social wel-
fare. Furthermore, there may be another Nash Equilibrium which will yield
a larger social welfare. For example, recall the settings in Example 8.17. In
these settings, OptNash policy is that agent 1 will go to u2. If the price is 6
the product will be purchased. Otherwise, agent 3 will go to u6 and buy the
product at the minimal price (6 or 27). This is indeed a Nash Equilibrium
with an expected cost of 15.25. However, we already showed a better Nash
Equilibrium with an expected cost of 15.125. We now prove an upper bound
on the performance of OptNash; the expected cost of OptNash is no more than
k times worse than the expected cost of Optsoc.

Theorem 8.19. E[OptNash] ≤ k ·E[Optsoc].
Proof. Suppose that E[OptNash] > k ·E[Optsoc]. Therefore,

E[OptNash] =
∑
i

(pti ·ti)+
∑
i

(pbi ·bi) > k ·[
∑
j

(ptj ·tj)+
∑
j

(pbj ·bj)] = E[Optsoc]

Then,

∑
i

(pti · ti/k) +
∑
i

(pbi · bi/k) >
∑
j

(ptj · tj) +
∑
j

(pbj · bj)

Since ti > ti/k and bj > bj/k then,

∑
i

(pti · ti) +
∑
i

(pbi · bi/k) >
∑
j

(ptj · tj) +
∑
j

(pbj · bj/k)

The left and right terms are the expected costs of OptNash and Optsoc, re-
spectively, where all the buying costs are divided by k. Therefore, OptNash

is not optimal in these settings. Contradiction.

As for the lower bound, consider the following example.

Example 8.20. For any ε > 0, suppose that the price at u2 = u
(1)
s is k

with a probability of 1, and the price at the leftmost store, u1 is 0 with a
probability of 1. The traveling cost from u2 to u1 is 1 + ε. In all other stores
the price is always 0, and the traveling costs between any other store to u2
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is very high, for instance k. Optsoc for this example is that agent 1 will
go left and buy the product at u1. The cost of this strategy is 1 + ε, but it
is not a Nash Equilibrium. Clearly, agent 1 will prefer to buy the product
in its initial location, u2, since its own cost will be 1, instead of 1 + ε in
Optsoc. The total cost from this strategy will be k, and it is the only Nash
Equilibrium. Therefore, for any algorithm that finds a strategy S which is a
Nash Equilibrium, E[S] ∈ Ω( k

1+ε
· E[Optsoc]), and the bound from Theorem

8.19 is tight.

8.4 Heterogenous Agents

The analysis so far assumes that all agents are of the same type, with identical
capabilities. Specifically, the cost of obtaining the item at any given store is
assumed to be the same for all agents. However, agents may be of different
types and hence with different capabilities. For example, some agents may
be equipped with a drilling arm, which allows them to consume less battery
power while mining. In this section we consider situations of heterogenous
agents, and show that the results can be extended to such settings.

While agents may have different capabilities, in many cases it is rea-
sonable to assume that if one agent is more capable than the other at one
location, it is also more capable at all other locations (or at least not less
capable). Hence the following definition:

Definition 8.21. We say that agents are inconsistent if there exist budgets
B,B′, agents j, j′, and locations i, i′, such that at location i with budget B

Pr[j can obtain the item] < Pr[j′ can obtain the item]

but at location i′ with budget B′

Pr[j can obtain the item] > Pr[j′ can obtain the item]

We now show that the results of Subsection 8.2.1 can be extended to
heterogenous agents.

Theorem 8.22. In the private budget and no communication set-
ting, if the number of different costs for each agent is constant, then

k-Private-Max-Probability and k-Private-Min-Budgetidentical can be solved
in polynomial time with any number of heterogenous agents, provided that
the agents are consistent.
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The algorithm is essentially the same dynamic programming algorithm
described in Subsection 8.2.1. The consistency assumption is necessary for
lemmata 8.7 and 8.8 to remain true.

In any other case, we can do away with the consistency assumption.
Clearly, however, we do need to assume that upon reaching a site, agents
can assess the cost for obtaining the item for all other agents. Otherwise,
communication would be meaningless. We obtain:

Theorem 8.23. In the setting of communicating agents, with a con-
stant number of agents, and a constant number of different costs for
each agent, k-Shared-Min-Expected-Cost, k-Shared-Max-Probability,
k-Shared-Min-Budget, k-Private-Max-Probability,

k-Private-Min-Budgetidentical and k-Private-Min-Budgetdistinct can
be solved in polynomial time even with inconsistent heterogenous agents.

The algorithms and proofs remain essentially the same as those for the
case of homogenous agents.

8.5 Extending our Results - Discussion

In this work we mainly analyzed the case where the stores are located along
a path (either closed or non-closed). There are many settings where this as-
sumption holds. For example, the assumption faithfully captures the setting
of perimeter patrol applications (see [40, 112]). Also, as pointed out in the
introduction, many coverage algorithms convert their complex environment
into a simple path. However, numerous physical environments may only be
represented by a planar graph. Theorems 7.1 and 7.6 show that physical
search problems are hard even on planar graphs and trees, even with a single
agent, but finding a heuristic is of practical interest nonetheless. It seems that
the first steps in building such a heuristic will be to utilize our results. For
example, one should try to avoid repeated coverage as much as possible and
restrict the number of cases where such coverage is necessary, as we showed
in theorem 8.5. Another idea is to convert the complex graph structure into
a path, where each site on the path represents a region of strongly-connected
nodes on the original graph. Many graphs which represent real physical en-
vironments consist of some regions with strongly-connected nodes, but few
edges connect these regions (for example, cities, have many roads inside but
are connected by only a few highways). A heuristic algorithm for these graphs
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may use our algorithm to construct a strategy for the sites along the path,
and use an additional heuristic for visiting the sites inside a region.

We also considered the case where mining costs are rounded/estimated to
one of a constant number of possible options. We believe that this assumption
is appropriate since the given input for our problems includes prior proba-
bilistic knowledge. Usually, this data comes from some sort of estimation
so it is reasonable to assume that the number of options is fixed. Neverthe-
less, if the number of costs will not be a constant it can be rounded to a
fixed number of costs, which yields a PTAS (polynomial-time approximation
scheme) for our problems.

We also assumed that the agents seek only one item. As soon as more
than one item is needed, our results do not hold, and seemingly the problems
become NP-complete.
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Chapter 9

Future Directions and Final
Remarks

We summarize the key contributions of this thesis in Section 9.1, and suggest
future directions for this research in Section 9.2.

9.1 Summary of Key Contributions

In the first part of this dissertation we focus on the computational aspects
of voting procedures under uncertainty. We analyze computational aspects
of three major problems within the computational voting theory: winner
determination, control and manipulation. Our main contribution in this
part of the work is as follows.

• When the number of candidates is a constant, we provide a polyno-
mial time algorithm which computes the probability that a candidate
will win an election, given probabilistic information (the Evaluation
problem). The algorithm can handle many voting rules whether voter
weights are equal, or not. When the number of candidates is not
bounded, we prove that the aforementioned Evaluation problem is
#P-hard to compute, for Plurality, k-approval, Borda, Copeland and
Bucklin voting rules. We prove that even checking whether a can-
didate has any chance of winning (the Chance-Evaluation prob-
lem) with the Plurality voting rule is NP-complete when the voters
are weighted. For the unweighted voters case, we prove that the
Chance-Evaluation problem remains NP-complete for k-approval,
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Borda, Copeland, Bucklin and Maximin rules. However, for the Plural-
ity protocol we propose a polynomial time algorithm. We also provide
a simple Monte Carlo algorithm that is able to approximately compute
the probability of a candidate to win under any setting, with an error
as small as we would like.

• With voting trees, we show that calculating the probability of a candi-
date to be chosen is easy, even when the only given is the probability
that a candidate will be preferred over another. We provide an opti-
mized algorithm for this problem for linear order and fair tree order.
We demonstrate the unfairness of the linear order rule, and prove that
finding an agenda which would make a specific candidate the winner
with a non-zero probability (weak agenda rigging) is easy with linear
order. However, with fair tree order, we show that the agenda rigging
problem is provably hard. We also demonstrate that, while it seems
hard to control an election by rigging the agenda in theory, there are
heuristics that perform well on this problem in practice.

• initiate the computational analysis of a new model for coalition ma-
nipulation, termed safe manipulation, that was recently introduced by
Slinko and White [101]. We show that finding a safe manipulation is
easy for k-approval for an arbitrary value of k and for Bucklin, even with
weighted voters. We prove that checking whether a given manipulation
is safe is polynomial-time solvable for k-approval, but is coNP-hard for
Bucklin. For the Borda rule, we show that both checking whether a
given manipulation is safe and identifying a safe manipulation is hard
when the voters are weighted. We also propose two ways of extending
the notion of safe manipulation to heterogeneous group of manipu-
lators, and initiate the study of computational complexity of related
questions.

In the second part of the dissertation, we consider collaborative physical
search problems with uncertain knowledge. We analyze single and multi-
agent settings, with various models and assumptions. The contribution of
this part is summarized as follows.

• With a single agent, we define three variants of our general problem:
Min-Expected-Cost, Max-Probability and Min-Budget. We prove that
these problems are hard on a metric space, sometimes even if it is a
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tree. We thus focus on the path case, presenting a polynomial algo-
rithm for the Min-Expected-Cost problem, and proving hardness for the
Max-Probability and the Min-Budget problems. We provide an FPTAS
for Min-Budget and show that both problems are polynomial if the
number of possible prices is bounded.

• With multiple agents, we analyze shared and private budget mod-
els. With shared budget, we show how all of the single-agent algo-
rithms extend to k agents, with the time bounds growing exponen-
tially in k. We prove that this is also the case with the private budget
model, if the agents can communicate. In the case of private bud-
get with a setting of no communicating, we present a polynomial al-
gorithm that is suitable for any number of agents. We also extend
the analysis to heterogenous agents. Finally, we consider the self-
interested agents setting, showing how to find a Nash Equilibrium for
the simultaneous game (Min-Budget-Game) and the sequential game
(Min-Expected-Cost-Game) in polynomial time. In both cases, we show
an upper bound on the ratio between this solution and the optimal one
(the one which maximizes social welfare) and prove that it is tight.

9.2 Future Directions

In the context of the first part of this dissertation, the following points have
been left open for future work.

• Evaluation of election outcomes under uncertainty We would
like to extend our current analysis to more voting rules, including multi-
winner protocols. Even with the current protocols that we have con-
sidered there are still open questions, i.e. the complexity of Eval-
uation with un-weighted voters under Maximin and the Chance-
Evaluation with un-weighted voters under STV. Another extension
we would like to consider would be to define and analyze a general
imperfect knowledge model, which would combine Konczak and Lang’s
model [75] of incomplete preferences with our model of probabilistic
estimation of the voters’ preferences. Moreover, we would like to im-
prove our results for the current voting rules. It would be useful to
have an approximation algorithm (or prove that one cannot be found)
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for the problems that are #P-hard or NP-complete to compute. An-
other promising direction would be to use the parameterized complexity
paradigm [50] to analyze our problems. We have already showed that
if we bind one of our parameters, namely, the number of candidates,
the Evaluation problem becomes easy to solve (and thus our prob-
lem belongs to XP, but not to FPT). It would be interesting to check
whether other restrictions could help, for example, if the number of
different probability distributions is bounded by a constant.

• How to rig elections and competitions The complexity of finding
an agenda which would make a specific candidate the winner with at
least a specific probability, is still open for linear order (IIARl prob-
lem). The complexity of finding an agenda which would make a specific
candidate the winner with a non-zero probability is still open for fair
tree order (IIWARf ).

• Complexity of safe strategic voting A natural question which has
been left open is determining the complexity of finding a safe strategic
vote for voting rules not considered in this work, such as Copeland,
Ranked Pairs, or Maximin. Furthermore, the picture depicted in this
work is incomplete for some of the voting rules we have investigated.
In particular, it would be interesting to understand the computational
complexity of finding a safe manipulation for Borda (and, more gen-
erally, for all scoring rules) for unweighted voters. The problem for
Borda is particularly intriguing as this is perhaps the only widely stud-
ied voting rule for which the complexity of unweighted coalitional ma-
nipulation in the standard model is not known. Other exciting research
directions include formalizing and investigating the problem of select-
ing the best safe manipulation (is it the one that succeeds more often,
or one that achieves better results when it succeeds?), and extending
our analysis to other types of tie-breaking rules, such as randomized
tie-breaking rules. However, the latter question may require modifying
the notion of a safe manipulation, as the outcome of a strategic vote
becomes a probability distribution over the alternatives.

There are still many interesting open problems concerning the second
part of this dissertation. With a single agent, the complexity of the
Min-Expected-Cost problem on a tree remains open. This case is interest-
ing since it can be shown that Min-Expected-Cost is easy for a specific tree,
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9.2 Future Directions

namely a star graph, where d is bounded. In the shared budget model, the
complexity of the k-Shared-Min-Expected-Cost problem where k is part of
the input is still unresolved. In the private budget model, the complexity
of all the problems with a non-constant number of communicating agents
is unsolved. In addition, there are interesting extensions to consider. We
showed that most of our results can be extended to heterogenous agents,
with different buying capabilities. The next step should be to analyze our re-
sults with heterogenous agents with different traveling capabilities. Another
direction would be to add a time constraint, which would possibly result in
completely different optimal strategies. Also, the Min-Budget-Game can be
extended; instead of defining the utility of achieving psucc as a step function
(“high” if psucc is achieved and “low” if not), it could be defined as a linear
function of psucc. Finally, metric spaces beyond the line remain a challenge.
As we discussed in Section 8.5, it would be interesting to check the use of
our techniques in building approximations and/or heuristics for the general
metric space.
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Appendix A

Proofs for Chapter 4

A.1 Correctness Proof for Algorithm 1

Theorem A.1. Given an imperfect information model of voters’ preferences,
as described in Section 4.1, Algorithm 1 enumerate all the possible voting
scenarios in polynomial time, when the number of candidates is a constant.

Proof. Let VRi be the set of voting results, that the algorithm generates in
iteration i. We prove that the algorithm enumerates all the relevant voting
scenarios, by induction on the number of voters. If there is only one voter, the
algorithm will generate at most l voting results from the voter’s preferences.
Clearly, these are all possible voting scenarios for this voter. Otherwise,
consider the n-th iteration. Every voting scenario of n voters consist of a
voting scenario of n−1 voters plus one preference order of the n-th voter. By
the inductive hypothesis, all the possible voting scenarios of n− 1 voters are
summarized by VRn−1. Thus, combining every voting results from VRn−1 with
every preference order of the n-th voter generates VRn, which summarizes all
the voting scenarios of n voters, as required.

As for the running time, the total number of voting results is polynomial
in n (since m is a constant), and for each voting result there are O(l) op-
erations for generating other voting results. Generating voting results takes
polynomial time, by definition. Thus, the algorithm’s running time is poly-
nomial in n and l.
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Appendix B

Proofs for Chapter 5

B.1 Proof of Theorem 5.2

Theorem 5.2. Given 〈T, α,M〉, where T is fair tree order, the evaluation of
T with respect to α and M is computable in O(m2) arithmetic operations.

Proof. Let T j
k be a sub tree of T with height j which contains ck in one of its

leaves. Let L(T ) and R(T ) be the left and right sub trees of T , respectively,
and denote by (T )1, (T )2, ..., (T )m the candidate on the first, second, ..., last
leaf of T , respectively, when ordering the leaves from left to right.

Consider the log(m)×m matrix, F whose entries, F [j, k] are,

F [j, k] = P [winner(T j
k ) = ck|M)

Informally, F [j, k] is the probability that candidate ck is the winner of the
sub tree T j

k . F may be constructed in polynomial time given 〈T, α,M〉 in
the following way.
F [1, 1], F [1, 2], ..., F [1,m] can be determined directly from M . Each subse-
quent row of F can be computed from the previous row according to the
following rule,

F [j, k] =

{
F [j − 1, k]×∑j

r=1(M [ck, c(R(T j
k ))r

]× F [j − 1, (R(T j
k ))r]) if ck ∈ L(T j

k )

F [j − 1, k]×∑j
r=1(M [ck, c(L(T j

k ))r
]× F [j − 1, (L(T j

k ))r]) if ck ∈ R(T j
k )

Clearly, η(r(T )) = F [log(m), ·]. Furthermore, for each 2 ≤ j ≤ log(m) we
use 2j arithmetic operations for each candidate. So the overall complexity is:
m×∑log(m)

i=2 2i = m× (
∑log(m)

i=0 2i− 3) = m× (2log(m)+1− 1− 3) = O(m2)
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Appendix C

Proofs for Chapter 8

C.1 Proof of Theorem 8.1

Theorem 8.1. With k agents, k-Shared-Min-Expected-Cost can be solved
in O(d22k(m

k
)2k).

Proof. Since the stores are on the path, at any point in time the points/stores
visited by the agents constitute a set of k disjoint contiguous intervals, which
we call the visited intervals. Clearly, the algorithm need only make decisions
at store locations. Furthermore, decisions can be limited to times when the
agents are at one of the two stores edges of the visited interval. At each such
location, each agent has only three possible actions: “go right” - extending
its visited-interval one store to the right, “go left” - extending its visited-
interval one store to the left, or “stop” - stopping the search and buying
the product at the best price so far. Also note that after each agent i has
already visited its interval [u

(i)
` , u

(i)
r ], how exactly it covered this interval does

not matter for any future decision; the costs have already been incurred.
Accordingly, the states of the MDP are quadruplets [L,R,E, c], such that
L = (`(1), `(2), . . . , `(k)), R = (r(1), r(2), . . . , r(k)), E = (e(1), e(2), . . . , e(k)) and
c ∈ D. For each agent i, `(i) ≤ s(i) ≤ r(i) and e(i) ∈ {`(i), r(i)}. Every such
state represents the situation that each agent i visited stores u`(i) through
ur(i) , it is currently at location ue(i) , and the best price encountered so far is
c. Since the intervals are disjoint, r(i) < `(i+1) for every i.

The terminal states are Buy(c) and all states such that
⋃
i

[`(i), r(i)] =

[1,m]. The terminal cost is c. For all other states there are at most 2k + 1
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C.2 Proof of Theorem 8.2

possible actions - “agent i go right” (provided that r(i) < `(i+1) and r(i) < m),
“agent i go left” (provided that r(i−1) < `(i) and 1 < `(i)), or “stop”. The
cost of “agent i go right” is (ur(i)+1 − ue(i)), while the cost of “agent i go-
left” is (ue(i) − u`(i)−1). The cost of “stop” is always 0. Given a vector V ,
let V i(j) be the same vector but with value j at index i. Given the state

[L,R,E, c] and move “agent i go-right”, there is probability pr
(i)+1(c′) to

transition to state [L,Ri(r(i) + 1), Ei(r(i) + 1), c′], for c′ < c. With the re-
maining probability, the transition is to state [L,Ri(r(i) + 1), Ei(r(i) + 1), c].
Transition to all other states has zero probability. Transitions for the “agent
i go left” actions are analogous, while with the action “stop” there is prob-
ability 1 to transition to state Buy(c). This fully defines the MDP. The
optimal strategy for finite-horizon MDPs can be determined using dynamic
programming (see [90, Ch.4]). In our case, the complexity can be brought
down to O(d22k(m

k
)2k) steps (using O(d2k(m

k
)2k) space).

C.2 Proof of Theorem 8.2

Theorem 8.2. With k agents, k-Shared-Min-Budget and
k-Shared-Max-Probability with d possible prices can be solved in
O(m2kd( em

2kd
)2kd).

Proof. For brevity, we focus on the k-Shared-Max-Probability problem. The
same algorithm and similar analysis work also k-Shared-Min-Budget problem.
Let c1 > c2 > · · · > cd be the set of costs. For each agent j and for each
ci there is an interval I

(j)
i = [u`, ur] of points covered while the remaining

budget is at least ci. Furthermore, for each j and for all i, I
(j)
i ⊆ I

(j)
i+1. Thus,

consider for each agent the incremental area covered with remaining budget
ci but less than ci−1, ∆

(j)
i = I

(j)
i −I

(j)
i−1 (with ∆

(j)
1 = I

(j)
1 ). Each ∆

(j)
i is a union

of an interval at left of u
(j)
s and an interval at the right of u

(j)
s (both possibly

empty). The next lemma, which is the multi-agent Max-Probability analogue
of Lemma 7.4 states that there are only two possible optimal strategies to
cover each ∆

(j)
i :

Lemma C.1. Consider the optimal solution and the incremental areas for
each agent j, ∆

(j)
i (i = 1, . . . , d) defined by this solution. For i ∈ 1, . . . , d, let

u
(j)
`i

be the leftmost store in ∆
(j)
i and u

(j)
ri the rightmost store. Suppose that in

the optimal strategy the covering of ∆
(j)
i starts at location u

(j)
si . Then, WLOG
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C.3 Proof of Theorem 8.3

we may assume that the optimal strategy for each j is either (u
(j)
si ½ u

(j)
ri ½

u
(j)
`i
) or (u

(j)
si ½ u

(j)
`i

½ u
(j)
ri ). Furthermore, the starting point for covering

∆
(j)
i+1 is the ending point of covering ∆

(j)
i .

Proof. Any strategy other than the ones specified in the lemma would reach
all the stores covered by the optimal solution with at most the same available
budget.

By the previous lemma, the moves of each agent are fully determined by
the leftmost and rightmost stores of each ∆

(j)
i , together with the choice for the

ending points of covering each area. For each two agents j1, j2, the intervals
of covered points are disjoint, i.e. I

(j1)
d ∩ I

(j2)
d = ∅. Therefore, for each j there

are at most
(m
k
)2d

(2d)!
≤ ( em

2kd
)2d possible choices for the external stores of the

∆
(j)
i ’s, and there are a total of 2d options to consider for the covering of each.

For each option, computing the budget and probability takes O(m) steps.
Thus, the total time is O(m2kd( em

2kd
)2kd), which is polynomial (in m).

C.3 Proof of Theorem 8.3

Theorem 8.3. With k agents, For any ε > 0, k-Shared-Min-Budget can be
approximated to within a factor of (1 + kε) in O(nε−6k) steps (for arbitrary
number of prices).

Proof. For k agents, we extend the dynamic programming algorithm, which
calculates fail[·, ·, ·, ·] and act[·, ·, ·, ·] tables, in the same way we extended the
single agent algorithm in the proof of Theorem 8.1. We now save k disjoint
intervals, thus the tables size becomes O(ε−6k). The rest of the approximation
algorithm remains essentially the same. We still consider δ in powers of 2 up
to β ≤ 2n, where n is the size of the input. Thus, the total computation time
is O(nε−6k). Since the approximation ratio in each interval is guaranteed to
be (1 + ε), we get a total ratio of (1 + kε).
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כאשר קיים מידע , חיפוש שיתופי בסביבה פיזיתבעיות חוקר  יהחלק השני בעבודת

סיכוי שנמצא סוכן יחיד או צוות של סוכנים מחפש מוצר כלשהו שיש  במקרה זה. הסתברותי

 -העלות של השגת המוצר בכל נקודה אינה ידועה מראש .בסביבה מקומות שוניםבמספר 

ניתן לדעת מהי ו ,ידועה רק  ההתפלגות על המחירים האפשריים בכל נקודהש ההנחה היא

את הבעיות  הגדרתי. העלות האמיתית רק כאשר אחד הסוכנים מבקר פיזית באותו מקום

יעיל  ניתנות לפתרון שחלק מהבעיות הראיתי. אותן תיתחייד וניח עבור סוכןבסביבה כזו 

סכימה אלגוריתמית לקירוב יעיל  הצגתי, לכן. שקשה לתת פתרון מדויק לחלק האחר הוכחתיו

שני  תיתחיונ, את התוצאות לסביבה מרובת סוכנים הרחבתילאחר מכן . ותבעיאחת העבור 

יעיל אלגוריתם  הצגתי. מודל תקציב שיתופי ומודל תקציב פרטי, מודלים לשיתוף המשאבים

. הן עבור מדל התקציב השיתופי והן עבור מודל התקציב הפרטי, ספר קבוע של סוכניםלמ

במודל אלגוריתם יעיל שפועל עבור כל מספר של סוכנים במידה ואין תקשורת  הצגתי, בנוסף

את בעיות החיפוש השיתופי בסביבה בה הסוכנים אינם  הגדרתי, בסוףל. התקציב הפרטי

 הוכחתי. בצורה יעילה משקל נאש-אלגוריתמים למציאת שיווי הצגתיו, שיתופיים באופן מלא

 .שהוא הדוק הוכחתיו( ביחס לרווחה החברתית)חסם עליון על ביצועי האלגוריתמים 

  

 ב



 

 

 תקציר

בעלי  סוכנים מספר ישנם המחקר של מערכות מרובות סוכנים מתמודד עם סביבות בהן 

תחום הרובוטים האחרונים בכמו גם הפיתוחים , חדירת טכנולוגית האינטרנט. יחסי גומלין

הינם הסיבה העיקרית למספר רב של מחקרים העוסקים בתחום של מערכות , האוטונומיים

עולה ביתר , סוכנים המתקשרים זה עם זהמספר בהן יש , במערכות אלו. מרובות סוכנים

שיתוף פעולה , כגון תיאום, שאת הצורך במחקר של האינטראקציות החברתיות בין הסוכנים

הרבה עבודות בתחום של מערכות מרובות סוכנים חקרו אינטראקציות . לת החלטותוקב

סוכנים אמורים לקבל החלטות בצורה נבונה גם , ברם. בהנחה שכל המידע נגיש וקיים, כאלו

את היסודות לבניית סוכנים  חקרתי, זובעבודה . במקרים בהם ישנו מימד של חוסר וודאות

את המאפיינים החישוביים של שתי אינטראקציות חברתיות  תיחקר,  באופן ספציפי. כאלו

תוך כדי שימוש במודלים , וחיפוש שיתופי בחירותקבלת החלטות על ידי , נפוצות

 . אור חדש בעיות אלוהמאירים בהסתברותיים 

חוסר  וכאשר ישנ, ותמאפיינים חישוביים של בחירב של עבודה זו עוסק החלק הראשון

שבסביבה של מידע , בעיית קביעת המנצחאותה חקרתי היא  הבעיה הראשונה. וודאות

העדפות  התפלגות עלהוא הקלט הבבעיה זו . הסתברותי נקראת בעיית האבלואציה

לחשב את ההסתברות של מועמד מסוים לזכות יש צורך ו, הבוחרים וכלל בחירות מסוים

 הצגתיו, בעיהאלגוריתם יעיל לפתרון ה הצעתי, כאשר מספר המועמדים חסום. בבחירות

שבעיית  הוכחתי ,אולם. בסימולציותתוצאות ניסויים המדגימות את ביצועי האלגוריתם 

עבור מספר נרחב של כללי בחירות כאשר מספר המועמדים אינו  האבלואציה נעשית קשה

לבדוק האם למועמד מסוים יש איזשהו סיכוי אפילו שבהרבה מקרים קשה  הראיתי גם. חסום

 .אלגוריתם קירוב לבעיה זו ולבעיית האבלואציה שהוזכרה קודם הצעתיולכן , לזכות

ההסתברות שמועמד ו כאשר כל מה שידוע ז, מודל הסתברותי שונה חקרתי העבודהבהמשך 

ניתן להשתמש במידע זה . מסוים יועדף על מועמד אחר כאשר הם מושווים זה מול זה

. וצה בעיקר בתחרויות ספורטשנפ, "עצי בחירות"במשפחה של כללי בחירות שנקראת 

בעיית )לא רק את בעיית חישוב הסתברות הזכייה של מועמד  חקרתי במקרה זה

(. בעיית השליטה)אלא גם את האפשרות למניפולציה על ידי מארגני הבחירות ( האבלואציה

מניפולציה כזו יכולה לבוא לידי ביטוי בקביעת סדר ההתמודדויות , במסגרת של עצי בחירות

קשה עבור אך , שניתן לפתור את בעיית האבלואציה בצורה יעילה הראיתי. ה מסוימתבצור

 הצעתי. בה קובעים את סדר ההתמודדויותבעיית השליטה מקרים מסוימים לפתור את 

את ביצועיהן על מידע הסתברותי סינתטי  תיוחקר, היוריסטיקות לקביעת סדר התמודדויות

 .כדורסלומידע אמיתי שנלקח מתחרויות טניס ו

. מאפיינים חישוביים של בעיית המניפולציה על ידי הבוחרים חקרתי, לסיום החלק הראשון

מי מהבוחרים ע וכלל לא ידשאלא , שיש איזשהו מידע הסתברותי הנחתילא  הבמקרה ז

שנקרא , מודל חדש זה להצבעה אסטרטגית. מניפולאטוריםהצטרף לקואליציה של חליט להי

את הסיבוכיות של מציאת  תיחקר. י סלינקו וואיט"הוצע לאחרונה ע, מניפולציה בטוחה

מתי ניתן לפתור ומתי קשה לפתור  תיראיהו, מניפולציה בטוחה עבור מספר כללי הצבעה

. מושקליםגם למקרה בו יש משקולות לבוחרים וגם למקרה בו הם לא מ התייחסתי. בעיה זו

את  תישתי דרכים להרחיב את המודל המקורי של מניפולציה בטוחה וחקר בנוסף הצעתי

 .המאפיינים החישוביים של הרחבות אלו

 א
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