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Abstract

In many multiagent settings, a decision must be made based on the preferences of

multiple agents, and agents may lie about their preferences if this is to their benefit.

In mechanism design, the goal is to design procedures (mechanisms) for making the

decision that work in spite of such strategic behavior, usually by making untruthful

behavior suboptimal. In automated mechanism design, the idea is to computationally

search through the space of feasible mechanisms, rather than to design them ana-

lytically by hand. Unfortunately, the most straightforward approach to automated

mechanism design does not scale to large instances, because it requires searching over

a very large space of possible functions. In this dissertation, we adopt an approach

to automated mechanism design that is computationally feasible. Instead of opti-

mizing over all feasible mechanisms, we carefully choose a parameterized subfamily

of mechanisms. Then we optimize over mechanisms within this family. Finally, we

analyze whether and to what extent the resulting mechanism is suboptimal outside

the subfamily. We apply (computationally feasible) automated mechanism design to

three resource allocation mechanism design problems: mechanisms that redistribute

revenue, mechanisms that involve no payments at all, and mechanisms that guard

against false-name manipulation.
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thank Prof. Hervé Moulin at Rice University for sharing with me his perspective as

an economist, and his support in my job search.

I am also grateful for all my colleagues and friends at Duke. I am grateful

especially to the participants of the CS-Econ reading group, the DRIV seminar,

and the micro theory lunch seminar, for their valuable feedback on my research,

and especially to the recently retired graduate program coordinator Diane Riggs, for

keeping an eye on my progress.

I owe a lot to my parents. As a second child, I cost them a significant amount of

fortune due to the one-child policy of China. I would like to thank my mother for

always standing behind me and keeping my childhood home for me. I would like to

thank my father for providing me my first computer when computers were relatively

rare in China, and driving me to the first Internet cafe in my home city. I also would

like to thank my elderly brother for taking care of my parents while I am away.

Finally, I thank my girlfriend Beibei who stood beside me through the most dif-

ficult period of my Ph.D. journey. She taught me the true meaning of love. Without

her many sacrifices I couldn’t be here. She helped me through so many milestones

and deadlines: WINE, AAMAS, job application, EC, AAAI, prelim, job interview,

defense. Beibei took extremely good care of me in the past year (with the help of

her mother, to whom I am also deeply indebted to). Getting to know Beibei is the

best thing that Duke brought me.

xv



1

Introduction

In the past decade, computer scientists have been increasingly focusing on interdisci-

plinary topics that lie in the intersection of computer science and economics, in large

part because the development of the Internet has led to novel and influential elec-

tronic markets, accompanied by new computing challenges. For example, keyword

auctions (Internet advertisement auctions), such as Google AdWords and Yahoo!

Sponsored Search, form a multi-billion dollar industry in rapid growth. Their unique

features, including their computational aspects, distinguish them from traditional

auctions, thus calling for new auction protocols [74]. On the other hand, existing

markets have also benefited from the development of computing. For example, com-

binatorial auctions [40] allow market participants to express richer preferences (e.g.,

“I want either product A or product B, but not both”) than traditional auctions,

which greatly increases economic efficiency when matching buyers and sellers. Be-

sides applications on Wall Street (e.g., conditional contracts), combinatorial auctions

have also been used for spectrum auctions, airport takeoff and landing slot auctions,

supply chain auctions, and many others. These combinatorial auctions, as well as

many other novel market protocols, are made possible by modern computers and
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algorithms.

This dissertation studies the problem of designing new protocols, often called

mechanisms, that implement desirable social decisions in systems involving multiple

agents. Our main focus is on designing new mechanisms, specifically, new resource

allocation mechanisms, with the help of computational techniques. We also address

mechanism design problems that arise specifically in computer science domains.

1.1 Mechanism Design Preliminaries

Mechanism design deals with making social decisions in systems involving multiple

agents. A typical setting in mechanism design is given by the following. There is a

set of agents I = {1, 2, . . . , n}, and a set of possible outcomes O (social decisions).

For example, in resource allocation problems, an outcome specifies who wins which

resources. We generally assume that the agents are rational in a game-theoretic

sense, and that each agent’s preferences are private information for that agent. Let

Θ be the space of all possible types that agents may have, where agent i’s type θi

contains all of agent i’s private information. For example, in a single-item auction,

agent i’s type θi is a nonnegative real value, which is i’s valuation for winning the only

item. In a combinatorial auction [40] in which a set of items S are simultaneously

for sale, in general, θi consists of 2|S| − 1 nonnegative real numbers, where each

number represents the valuation for receiving a certain nonempty bundle (subset) of

the items. Often, the type space is assumed to be more restricted. For example, if

each agent is only interested in a single bundle (that is, agents are single-minded),

then a type θ consists of a pair (S ′, x), where S ′ is the bundle that the agent is

interested in, and her valuation equals x if the bundle she wins contains S ′ (and

her valuation is 0 otherwise). Another special case is a multi-unit auction, in which

m indistinguishable items are for sale (equivalently, there are multiple units of the

same item for sale). Here, a type consists of m nonnegative real numbers, where the

2



jth number indicates the value for obtaining j units. A special case is a multi-unit

auction with unit demand, in which each agent wants to obtain only one unit—that

is, all m numbers are always the same, so a type effectively consists of a single

number. As is common, we assume that preferences are quasi-linear, that is, agent

i’s utility equals to her valuation for the items that she wins, minus her payment (in

settings where payments are allowed).

We generally focus on direct-revelation mechanisms, in which each agent makes

a report θi ∈ Θ of her preferences to the mechanism, which then makes the decision

based on these reported types. Hence, a mechanism is a function f : Θn → O. (If

randomized mechanisms are allowed, then a mechanism is a function f : Θn → ∆(O),

where ∆(O) are the probability distributions over O.) In settings where payments

are allowed, a mechanism also needs to specify how much each agent pays. That is,

in these settings, a mechanism is determined by both an allocation function f and

a payment function p (p = (p1, p2, . . . , pn) : Θn → Rn). When an agent reports,

she may lie so that her reported type may not be exactly θi. By a result known as

the revelation principle [49, 51, 85, 86], we can restrict attention to direct-revelation

mechanisms that incentivize truthful reporting.

Let ui(θi, o) be the valuation that agent i obtains if she has true type θi and the

outcome is o. According to the quasi-linear assumption, agent i’s utility equals her

valuation minus her payment.

A mechanism is strategy-proof if each agent is best off reporting her type truth-

fully, no matter what her type is and no matter what the other agents report. That

is, for all (θ1, . . . , θn) ∈ Θn and all θ̂i ∈ Θ,

ui(θi, f(θ1, . . . , θi, . . . , θn))− pi(θi, . . . , θi, . . . , θn) ≥

ui(θi, f(θ1, . . . , θ̂i, . . . , θn))− pi(θi, . . . , θ̂i, . . . , θn).

A mechanism is efficient if its outcome always maximizes the agents’ total valu-

3



ation. That is, for all (θ1, . . . , θn) ∈ Θn,

f(θ1, . . . , θn) ∈ arg max
o
{
∑
i

ui(θi, o)}.

A mechanism is (ex post) individually rational (IR) if each agent’s utility is al-

ways nonnegative (as long as she reports truthfully), so that participating is always

optimal. That is, for all (θ1, . . . , θn) ∈ Θn, for all i,

ui(θi, f(θ1, . . . , θi, . . . , θn))− pi(θ1, . . . , θi, . . . , θn) ≥ 0.

A mechanism is (strongly) budget balanced if the agents’ total payment is always

0. That is, for all (θ1, . . . , θn) ∈ Θn,

∑
i

pi(θ1, . . . , θi, . . . , θn) = 0.

A mechanism is non-deficit if the agents’ total payment is always at least 0. That

is, for all (θ1, . . . , θn) ∈ Θn,

∑
i

pi(θ1, . . . , θi, . . . , θn) ≥ 0.

Perhaps the most famous mechanism is the Vickrey-Clarke-Groves (VCG) mech-

anism [103, 25, 52]. This mechanism chooses an outcome o∗ that maximizes the

agents’ total valuation, that is, o∗ ∈ arg maxo{
∑

i ui(θi, o)}. That is, the mecha-

nism is efficient. Then, to determine agent i’s payment, it computes an outcome

o∗−i that would have been optimal if agent i had not been present, that is, o∗−i ∈

arg maxo{
∑

j 6=i uj(θj, o)}. Finally, it determines agent i’s payment as
∑

j 6=i uj(θj, o
∗
−i)−∑

j 6=i uj(θj, o
∗). That is, agent i pays how much she “hurts” the other agents by her

presence. This mechanism is well-known to be strategy-proof and efficient. Under

certain minimal assumptions, it is also individually rational and non-deficit.
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The goal of mechanism design is to design a mechanism that satisfies a set of de-

sired properties, and performs well according to some objective. Example objectives

include maximizing expected/worst-case social welfare (sum of the agents’ utilities)

as well as maximizing expected/worst-case revenue (total payment collected from

the agents by the mechanism).

1.2 Automated Mechanism Design

Traditionally, economists have designed mechanisms manually, based on analytical

techniques. This has resulted in many good mechanisms, such as the VCG mecha-

nism. However, there are many different variants of the mechanism design problem,

depending on the specific desired properties and objective, and many of these variants

remain unsolved. Often, they correspond to very difficult optimization problems, and

the solutions can take very complex forms.

This is where automated mechanism design can be of help. The first precise gen-

eral formulation of the automated mechanism design problem was given by Conitzer

and Sandholm [30]. The basic idea is to solve for the function f as a constrained

optimization problem, where the desired properties (e.g., strategy-proofness, IR) cor-

respond to the constraints in the optimization, and the objective (e.g., social welfare,

revenue) corresponds to the objective in the optimization.

To illustrate the framework, suppose that we have a prior distribution p for the

true type vector of the agents, p : Θn → [0, 1]. For simplicity, let us for now assume

that we are dealing with a setting where payments are not allowed. That is, ui(θ, o)

is the utility that agent i obtains if she has true type θ and the outcome is o. Finally,

suppose (for the sake of example) that strategy-proofness is the only desired property,

we want the mechanism to be deterministic, and we aim to maximize expected social

welfare. We obtain the following general formulation:

5



Variable function: f : Θn → O

Maximize
∑

~θ∈Θn p(
~θ)
∑n

i=1 ui(θi, f(~θ)) (expected social welfare)

Subject to: ∀i ∈ {1, 2, . . . , n}, ~θ ∈ Θn, θ′i ∈ Θ,

ui(θi, f(~θ)) ≥ ui(θi, f(θ1, . . . , θi−1, θ
′
i, θi+1, . . . , θn)) (strategy-proofness)

A key problem is that this is a problem of optimizing a function. Perhaps the

most basic approach to solving such problems is the one explored in a sequence of

papers by Conitzer and Sandholm [30, 32, 31, 34] (an overview can be found in a

chapter by Conitzer [27]); it works as follows. If the type space Θ and the outcome

space O are finite, and we allow for randomized mechanisms, then it is possible

to write the optimization problem as a linear program: this is done by defining a

probability variable pf (o|~θ) for each ~θ ∈ Θn and o ∈ O. For the case where we

require a deterministic mechanism, we can add the constraint that each of these

probabilities must be in {0, 1} to obtain an integer program (in the deterministic

case, the problem is generally NP-hard even with one agent). Still, the scalability of

this approach is very limited. One reason is that both the number of variables and

the number of constraints are exponential in n. Another problem is that type spaces

are generally not finite and require discretization for this approach to work. For small

instances, this approach is feasible, and the solutions to these small instances will

sometimes allow us to conjecture more general results, but generally the limitations

on scalability are too constraining.

1.3 Previous Research on Automated Mechanism Design

Since proposed, the principle of automated mechanism design (broadly interpreted)

has been applied to various settings. Constantin and Parkes [37] applied automated

mechanism design to the problem of designing revenue-optimal dynamic single-item

auctions with interdependent-value agents. Their (mixed-integer programming) for-

6



mulation turned out to be computationally feasible under several assumptions, in-

cluding that the number of agents is small, and the type space is small (coarse

discretization). Jurca and Faltings [71] applied automated mechanism design to com-

pute the minimum payments that make a reputation mechanism incentive-compatible.

In their model, when designing such mechanisms, we only need to consider two agents

at a time. That is, in this particular problem, as long as the type space is small,

the automated mechanism design process is computationally feasible. Bhattacharya

et al. [12] applied automated mechanism design to solve for revenue-maximizing

multi-item auctions with budget constrained agents. They relied on linear program

relaxations to derive upper bounds on performance, and used rounding schemes to

construct feasible mechanisms whose performances approximate the obtained upper

bounds. Hyafil and Boutilier [68] studied mechanisms that only require partial reve-

lation of preferences from agents. They discussed how to use direct AMD to design

such mechanisms. Sandholm et al. [98] applied automated mechanism design to the

design of multistage mechanisms. Here, they also do not require complete revelation

of preferences from agents. Instead, agents are queried sequentially, and only about

information that is relevant given previous query responses. Automated mechanism

design has also been applied to the online mechanism design problem [62] and to an-

alyze existing mechanism design theorems (Arrow’s Impossibility Theorem [79] and

the Myerson-Satterthwaite Impossibility Theorem [88]).

Automated mechanism design has also been used for optimizing over specific fam-

ilies of parameterized mechanisms. For example, Likhodedov and Sandholm [78, 77]

studied the problem of constructing revenue-maximizing combinatorial auctions.

They focused their attention on the family of Affine Maximizer Auctions and the

family of Virtual Valuations Combinatorial Auctions. Mechanisms inside these two

families are characterized by a set of parameters. They proposed several algorithms

for searching for the optimal values for the parameters. Likhodedov and Sand-
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holm [76] studied the problem of designing efficiency-maximizing multi-unit auctions,

subject to a minimal revenue constraint. They showed that the optimal mechanism

belongs to a family of mechanisms parameterized by a single parameter, and gave

a binary search algorithm for identifying the optimal parameter. Sandholm and

Gilpin [99] studied a special kind of mechanisms that consist of sequences of take-it-

or-leave-it offers. These mechanisms form a mechanism family parameterized by the

“offers”. They evaluated mechanisms based on equilibrium analysis, and proposed

an algorithm for optimizing the parameters (offers). Vorobeychik et al. [105] focused

on the family of Shared-Good Auctions. Each mechanism within the family is char-

acterized by two parameters. For different objectives, they searched for the optimal

shared-good auctions within the family. There is also a series of papers on simul-

taneously optimizing for parameters of the non-strategy-proof mechanisms and the

agents’ equilibrium strategies [26, 93, 18, 104, 80]. Our approach in this dissertation

is also based on the idea of optimizing over families of parameterized mechanisms.

Another line of research called heuristic mechanism design also deals with de-

signing mechanisms with the help of computation [92, 38, 91]. Unlike in automated

mechanism design where the problem of designing mechanisms is treated as an op-

timization problem, in heuristic mechanism design, we start from a heuristic mech-

anism (a mechanism that we expect to perform reasonably well), then we rely on

computation to modify the heuristic mechanism so that it becomes truthful – a

process that is called self-correction/output ironing. An approach that is similar to

heuristic mechanism design is incremental mechanism design, which was proposed by

Conitzer and Sandholm [36]. In incremental mechanism design, we start with a näıve

mechanism that is manipulable, and then incrementally make it more strategy-proof

over iterations.
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1.4 Computationally Feasible Automated Mechanism Design

To address the scalability issue of automated mechanism design, we adopt the fol-

lowing approach in this dissertation. We call this approach computationally feasible

automated mechanism design (CFAMD).

• For a specific setting, let Ω denote the set of all feasible mechanisms.1

• Instead of optimizing over Ω directly, we first choose a suitable subfamily

Ω′ ⊆ Ω based on analytical considerations, where the mechanisms in Ω′ can

be parameterized using k parameters, so that a vector (c1, . . . , ck) defines a

mechanism fc1,c2,...,ck ∈ Ω′.

• We then optimize over (c1, . . . , ck), which is generally a much easier problem.2

• Finally, we analytically study the suboptimality of the resulting mechanism in

the full set Ω.

Unlike in the more basic automated mechanism design approach described earlier,

this approach requires significant human input: we need to find a good subfamily

Ω′ as well as a formulation/algorithm for optimizing over this subfamily, and in the

end we need to analyze the suboptimality of the resulting mechanism by hand. From

the perspective of artificial intelligence, it may be disappointing that the approach

requires so much domain-specific expertise from humans. On the other hand, we

have been much more successful at contributing new results to microeconomic theory

1 Throughout this dissertation, we only consider truthful mechanisms. That is, feasibility includes
truthfulness.

2 As discussed in the previous section, there have been some previous automated mechanism
design papers that optimize over a parameterized family (notably, [78, 77, 76, 99, 105]), and that
also have other aspects in common with the CFAMD approach layed out here—for example, some
of these papers give some analytical justification for the class of mechanisms that they consider.
Therefore, we certainly do not claim to be the first to use some of these ideas. However, to our
knowledge, we are the first to lay out this general CFAMD approach in the abstract.

9



with this human-machine interactive approach, so we believe that at this point, this

is the best way in which artificial intelligence can make contributions to the theory

of mechanism design.

The key step is choosing Ω′. If Ω′ is too restrictive, then even if we find the optimal

mechanism in it, its performance will be too suboptimal. If Ω′ is too general, then the

optimization problem becomes too difficult again. That is, we want Ω′ to be general

enough that an (almost) optimal mechanism exists in Ω′, and Ω′ to be specific enough

that we know how to optimize over its parameters. Of course, choosing a good Ω′

is not as simple as doing a binary search on the specificity-generality spectrum: an

unfortunate choice may result in an Ω′ that is difficult to optimize over and still does

not produce good mechanisms!3 The point is that there is some “art” involved in

choosing a good Ω′.

1.5 Contribution and Organization

My dissertation statement is that the CFAMD approach can be successfully employed

to discover new results in the theory of mechanism design.

In Section 1.4, we formalized the CFAMD approach. This section is based on

[57].

In Chapter 2, we apply CFAMD to the problem of designing resource allocation

mechanisms that redistribute their revenue back to the agents. For allocation prob-

lems with one or more items, the well-known Vickrey-Clarke-Groves (VCG) mecha-

nism (aka. Clarke mechanism, Generalized Vickrey Auction) as introduced in Sec-

tion 1.1 is efficient, strategy-proof, individually rational, and does not incur a deficit.

However, it is not (strongly) budget balanced: generally, the agents’ payments will

sum to more than 0. In this chapter, we study mechanisms that redistribute some of

3 It should be noted that our approach is subject to the analytical bottleneck as specified in [91].
That is, sometimes, we may not be able to find a good Ω′.
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the VCG payments back to the agents, while maintaining the desirable properties of

the VCG mechanism. Below is a detailed description of this chapter’s contribution

and organization:

• Section 2.1: We study the problem of designing VCG redistribution mecha-

nisms that redistribute the most in the worst case. For auctions with multiple

indistinguishable units in which marginal values are nonincreasing, we derive a

mechanism that is optimal in this sense. We also derive an optimal mechanism

for the case where we drop the non-deficit requirement. Finally, we show that

if marginal values are not required to be nonincreasing, then the original VCG

mechanism is worst-case optimal. This section is based on [56].

• Section 2.2: We study the problem of designing VCG redistribution mecha-

nisms that redistribute the most in expectation when prior distributions over

the agents’ valuations are available. For auctions with multiple indistinguish-

able units in which each agent is only interested in one unit, we analytically

derive a mechanism that is optimal among linear redistribution mechanisms.

We also propose discretized redistribution mechanisms. We show how to auto-

matically solve for the optimal discretized redistribution mechanism for a given

discretization step size, and show that the resulting mechanisms converge to op-

timality as the step size goes to zero. We present experimental results showing

that for auctions with many bidders, the optimal linear redistribution mech-

anism redistributes almost everything, whereas for auctions with few bidders,

we can solve for the optimal discretized redistribution mechanism with a very

small step size. We then generalize our setting to auctions with multiple indis-

tinguishable units in which marginal values are nonincreasing. We extend the

notion of linear redistribution mechanisms to this more general setting. We

introduce a linear program for finding the optimal linear redistribution mech-
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anism. Since this linear program is unwieldy, we also introduce one simplified

linear program that produces relatively good linear redistribution mechanisms.

Finally, we conjecture an analytical solution for the simplified linear program.

This section is based on [59].

• Section 2.3: We study the problem of designing mechanisms whose redistri-

bution functions are undominated in the sense that no other mechanisms can

always perform as well, and sometimes better. (Here, ”always” means for every

profile of types.) We introduce two measures for comparing two VCG redis-

tribution mechanisms with respect to how well off they make the agents. We

say a non-deficit VCG redistribution mechanism is individually undominated

if there exists no other non-deficit VCG redistribution mechanism that always

has a larger or equal redistribution for each agent. We say a non-deficit VCG

redistribution mechanism is collectively undominated if there exists no other

non-deficit VCG redistribution mechanism that always has a larger or equal

sum of redistributions. We study the question of finding maximal elements in

the space of non-deficit redistribution mechanisms, with respect to the partial

orders induced by both measures. For the first measure, we give a character-

ization of all individually undominated VCG redistribution mechanisms, and

propose two techniques for generating individually undominated mechanisms

based on known individually dominated mechanisms. Experimental results

show that these techniques can significantly increase the agents’ utilities. For

the second measure, we characterize all collectively undominated VCG redis-

tribution mechanisms that are anonymous and have linear payment functions,

for auctions with multiple indistinguishable units, where each agent is only

interested in a single copy of the unit. This section is based on [55, 3].4

4 [3] is joint work with Krzysztof Apt and Evangelos Markakis. This dissertation does not contain
materialsthat were contributed by Apt or Markakis.
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• Section 2.4: We study the problem of designing the allocation rule together

with the redistribution scheme, allowing for the allocation to be inefficient. We

notice that sometimes even the optimal VCG redistribution mechanism results

in a low total utility for the agents, even though the items are allocated effi-

ciently. We further notice that by allocating inefficiently, more payment can

sometimes be redistributed, so that the net effect is an increase in the sum of

the agents’ utilities. Our objective is to design mechanisms that are competi-

tive with the first-best allocation. We define linear allocation mechanisms. We

propose an optimization model for simultaneously finding an allocation mecha-

nism and a payment redistribution rule which together are optimal, given that

the allocation mechanism is required to be either one of, or a mixture of, a

finite set of specified linear allocation mechanisms. Finally, we propose sev-

eral specific (linear) mechanisms that are based on burning items, excluding

agents, and (most generally) partitioning the items and agents into groups. We

show or conjecture that these mechanisms are optimal among various classes

of mechanisms. This section is based on [54].

In Chapter 3, we apply CFAMD to the problem of designing resource allocation

mechanisms that do not rely on payments at all. This is useful in settings where

no currency has (yet) been established (as may be the case, for example, in a peer-

to-peer network, as well as in many other multiagent systems); or where payments

are prohibited by law; or where payments are otherwise inconvenient. Below is a

detailed description of this chapter’s contribution and organization:

• Section 3.1: We study the problem of allocating a single item repeatedly among

multiple competing agents, in an environment where monetary transfers are

not possible. We design (Bayes-Nash) incentive compatible mechanisms that

do not rely on payments, with the goal of maximizing expected social welfare.
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We first focus on the case of two agents. We introduce an artificial payment

system, which enables us to construct repeated allocation mechanisms without

payments based on one-shot allocation mechanisms with payments. Under cer-

tain restrictions on the discount factor, we propose several repeated allocation

mechanisms based on artificial payments. For the simple model in which the

agents’ valuations are either high or low, the mechanism we propose is 0.94-

competitive against the optimal allocation mechanism with payments. For

the general case of any prior distribution, the mechanism we propose is 0.85-

competitive. We generalize the mechanism to cases of three or more agents. For

any number of agents, the mechanism we obtain is at least 0.75-competitive.

The obtained competitive ratios imply that for repeated allocation, artificial

payments may be used to replace real monetary payments, without incurring

too much loss in social welfare. This section is based on [61].5

• Section 3.2: We investigate the problem of allocating items among compet-

ing agents in a (single-round) setting that is both prior-free and payment-free.

Specifically, we focus on allocating multiple heterogeneous items between two

agents with additive valuation functions. Our objective is to design strategy-

proof mechanisms that are competitive against the most efficient (first-best) al-

location. We introduce the family of linear increasing-price (LIP) mechanisms.

The LIP mechanisms are strategy-proof, prior-free, and payment-free, and they

are exactly the increasing-price mechanisms satisfying a strong responsiveness

property. We show how to solve for competitive mechanisms within the LIP

family. For the case of two items, we find a LIP mechanism whose competi-

tive ratio is near optimal (the achieved competitive ratio is 0.828, while any

strategy-proof mechanism is at most 0.841-competitive). As the number of

5 [61] is joint work with Daniel Reeves. This dissertation does not contain materials that were
contributed by Reeves.

14



items goes to infinity, we prove a negative result that any increasing-price

mechanism (linear or nonlinear) has a maximal competitive ratio of 0.5. Our

results imply that in some cases, it is possible to design good allocation mech-

anisms without payments and without priors. This section is based on [60].

In Chapter 4, we study the following manipulation in Internet auctions: an agent

can submit multiple false-name bids, but then, once the allocation and payments have

been decided, withdraw some of her false-name identities (have some of her false-

name identities refuse to pay). While these withdrawn identities will not obtain the

items they won, their initial presence may have been beneficial to the agent’s other

identities. We define a mechanism to be false-name-proof with withdrawal (FNPW)

if the aforementioned manipulation is never beneficial. We first give a necessary and

sufficient condition on the type space for the VCG mechanism to be FNPW. We then

characterize both the payment rules and the allocation rules of FNPW mechanisms

in general combinatorial auctions. Based on the characterization of the payment

rules, we derive a condition that is sufficient for a mechanism to be FNPW. We also

propose the maximum marginal value item pricing (MMVIP) mechanism. We show

that MMVIP is FNPW and exhibit some of its desirable properties. We then propose

an automated mechanism design technique that transforms any feasible mechanism

into an FNPW mechanism, and prove some basic properties about this technique.

Toward the end, we prove a strict upper bound on the worst-case efficiency ratio of

FNPW mechanisms. We conclude with a characterization of FNP(W) social choice

rules. This chapter is based on [58].

Finally, in Chapter 5, we discuss future research and conclude.
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2

Redistribution Mechanisms

Many important problems in multiagent systems can be seen as resource allocation

problems. One natural way of allocating resources among agents is to auction off

the items. An allocation mechanism (or auction) takes as input the agents’ reported

valuations for the items, and as output produces an allocation of the items to the

agents, as well as payments to be made by or to the agents. As was defined in

Section 1.1, a mechanism is strategy-proof if it is a dominant strategy for the agents

to report their true valuations—that is, regardless of what the other agents do, an

agent is best off reporting her true valuation. A mechanism is efficient if it always

chooses an allocation that maximizes the sum of the agents’ valuations (aka. the

social welfare).

The well-known VCG (Vickrey-Clarke-Groves) mechanism [103, 25, 52] is both

strategy-proof and efficient.1 In fact, in sufficiently general settings, the wider but

closely related class of Groves mechanisms coincides exactly with the class of mech-

1 We use the term “VCG mechanism” to refer to the Clarke mechanism. Sometimes people refer
to the wider class of Groves mechanisms as “VCG mechanisms,” but we will avoid this usage in
this chapter. In fact, the mechanisms proposed in this chapter fall within the class of Groves
mechanisms.
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anisms that satisfy both properties [51, 65]. The VCG mechanism has an additional

nice property, which is that it satisfies the non-deficit property (in allocation set-

tings), which means that the mechanism does not need to be subsidized by an outside

party. However, the VCG mechanism does not satisfy the non-deficit constraint—

generally value flows out of the system of agents, in the form of VCG payments. In

the context of auctions, often, this is not seen as a problem for the sake of maxi-

mizing the agents’ welfare (the agents’ total utility): the idea is that the payments

are collected by the seller of the items, who is just another agent, so that nothing

goes to waste. However, this reasoning does not apply to many multiagent settings;

in particular, it does not apply to settings in which there is no seller who is sepa-

rate from the agents. For example, consider the problem of dissolving a partnership:

suppose there is a group of agents who have started a company together, but due to

personal disagreements can no longer work together, so that it becomes essential to

allocate the (currently jointly owned) company to just one of the agents. While it

makes sense to auction off the company among the agents, ideally, the revenue of this

auction is then distributed among the agents themselves—if the revenue leaves the

system of the agents, their welfare is reduced. Similarly, the agents may be deciding

how to allocate a resource that is not claimed by anyone—for example, the agents

may have jointly discovered a valuable commodity (say, an oil field) in unclaimed

territory, which they now need to allocate to the one of them that can make the

best use of it. Finally, the agents may have a jointly owned resource (say, a powerful

computer) that can only be used by one agent on any given day, and may wish to

use an auction to determine which agent gets to use it today. In all these cases,

any payment that is not redistributed to the agents truly goes to waste. Hence, to

maximize social welfare (taking payments into account), we would prefer a budget

balanced mechanism to one that merely achieves the non-deficit property (assuming

both are efficient). Unfortunately, it is impossible to achieve budget balance together
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with strategy-proofness and efficiency [67, 51, 87].2 Incidentally, while these types of

setting are perhaps not what one typically has in mind when considering “auctions”

in the common sense of the word, the fact that we use auctions does not signifi-

cantly limit the generality of our approach. Effectively, we just use “auctions” as a

convenient word to describe resource allocation mechanisms that use payments.

Previous research has sacrificed either strategy-proofness or efficiency to achieve

budget balance [46, 90, 45]. Another approach is to allocate the items according to

the VCG mechanism, and then to redistribute as much of the total VCG payment

as possible back to the agents, in a way that does not affect the desirable properties

of the VCG mechanism. Several papers have pursued this idea and proposed some

natural redistribution mechanisms [8, 94, 20]. For example, in the Bailey mecha-

nism [8], each agent receives a redistribution payment that equals 1/n times the

VCG revenue that would result if this agent were removed from the auction. In the

Cavallo mechanism [20], each agent receives a redistribution payment that equals

1/n times the minimal VCG revenue that can be obtained by changing this agent’s

own bid. For revenue monotonic settings,3 Bailey’s and Cavallo’s mechanisms coin-

cide; in this case we refer to this mechanism as the Bailey-Cavallo mechanism. As

an example, in the special case of a single-item auction, under the Bailey-Cavallo

mechanism, an agent’s redistribution payment is 1/n times the second-highest bid

among other agents’ bids. That is, the agent with the highest bid wins and pays

2 The dAGVA mechanism [41] is efficient, (strongly) budget balanced, and Bayes-Nash incentive
compatible, which means that if each agent’s belief over the other agents’ valuations is the distribu-
tion that results from conditioning the (common) prior distribution over valuations on the agent’s
own valuation, and other agents bid truthfully, then the agent is best off (in expectation) bidding
truthfully. In practice, it is somewhat unreasonable to assume that agents’ beliefs are so consistent
with each other and with the mechanism designer’s belief, so we use the much stronger and more
common notion of dominant-strategies incentive compatibility (strategy-proofness) in this chapter.

3 It is well-known that for general valuations, the VCG mechanism does not satisfy this revenue
monotonicity criterion [7, 35, 108, 110, 111] (this is in fact true for a much wider class of mech-
anisms [96]). However, with restricted valuations, such as the ones considered in this chapter,
revenue monotonicity often holds.
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the second-highest bid, as in a second-price sealed-bid (Vickrey) auction; then, the

agents with the highest and the second-highest bids each receive a redistribution

payment of v3/n, where v3 is the third-highest bid; and the remaining agents each

receive a redistribution payment of v2/n, where v2 is the second-highest bid. Hence,

the total redistributed is 2v3/n+ (n−2)v2/n ≤ nv2/n = v2. That is, there is never a

deficit. Other desirable properties of the VCG mechanism are also maintained by the

above mechanism. For example, because an agent’s redistribution does not depend

on her own bid, the agents’ incentives are not affected by the redistribution step.

That is, the above mechanism maintains strategy-proofness.

In this chapter, we extend the idea behind the Bailey-Cavallo mechanism. We

aim to design optimal redistribution mechanisms. In Section 2.1, we study the prob-

lem of designing VCG redistribution mechanisms that redistribute the most in the

worst case. In Section 2.2, we study the problem of designing VCG redistribution

mechanisms that redistribute the most in expectation. In Section 2.3, we study the

problem of designing mechanisms whose redistribution functions are undominated in

the sense that no other mechanisms can always perform as well as, and sometimes

better. Finally, in Section 2.4, we study the problem of designing allocation rule

together with the redistribution scheme, allowing for the allocation to be inefficient.

Most of the results in this chapter are obtained based on the computationally feasible

automated mechanism design approach.
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2.1 Worst-Case Optimal Redistribution of VCG Payments

In this section, we study the problem of designing VCG redistribution mechanisms

that redistribute the most in the worst case. We mainly focus on allocation settings

where there are multiple indistinguishable units of a single good, and each agent’s

valuation function is concave—that is, agents have nonincreasing marginal values.

The settings we consider here are revenue monotonic. That is, in our settings, Cav-

allo’s mechanism and Bailey’s mechanism coincide.4

From Subsection 2.1.1 to Subsection 2.1.8, we consider a slightly simpler setting

where all agents have unit demand, i.e. they want only a single unit. We propose

the family of linear VCG redistribution mechanisms. All mechanisms in this family

are efficient, strategy-proof, individually rational, and never incur a deficit. The

family includes the Bailey-Cavallo mechanism as a special case (with the caveat

that Bailey’s and Cavallo’s mechanisms can be applied in more general settings).

We then provide an optimization model for finding the optimal mechanism inside

the family, based on worst-case analysis. We convert this optimization model into

a linear program. Both numerical and analytical solutions of this linear program

are provided, and the resulting mechanism shows significant improvement over the

Bailey-Cavallo mechanism (in the worst case). For example, for the problem of

allocating a single unit, when the number of agents is 10, the resulting mechanism

always redistributes more than 98% of the total VCG payment back to the agents

(whereas the Bailey-Cavallo mechanism redistributes only 80% in the worst case).

Finally, we prove that this mechanism is in fact optimal among all mechanisms (even

nonlinear ones) that satisfy the desirable properties.

Around the same time, the same mechanism (in the unit demand setting only)

4 When there is only a single unit, the same mechanism has also been proposed by Porter et
al. [94].
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has been independently derived by Moulin [84].5 Moulin actually pursues a different

objective (also based on worst-case analysis): whereas our objective is to maximize

the fraction of VCG payments that are redistributed, Moulin tries to minimize the

overall payments from agents as a fraction of efficiency. It turns out that the result-

ing mechanisms are the same. However, for our objective, the optimal mechanism

does not change even if the individual rationality requirement is dropped, while for

Moulin’s objective, dropping individual rationality does change the optimal mecha-

nism (but only if there are multiple units).

In Subsection 2.1.8, we drop the non-deficit requirement and solve for the mech-

anism that is as close to budget balance as possible (in the worst case). This mech-

anism is in fact closer to budget balance than the best non-deficit mechanism.6

In Subsection 2.1.9, we consider the more general setting where the agents do

not necessarily have unit demand, but have nonincreasing marginal values. We gen-

eralize the optimal redistribution mechanism to this setting (both with and without

the individual rationality constraint, and both with or without the non-deficit con-

straint). In each case, the worst-case performance is the same as for the unit demand

setting.

Finally, in Subsection 2.1.10, we consider multi-unit auctions without restrictions

on the agents’ valuations—marginal values may increase. Here, we show a negative

result: when there are at least two units, no redistribution mechanism performs

better (in the worst case) than the original VCG mechanism (redistributing nothing).

2.1.1 Formalization

From this subsection to Subsection 2.1.8, we consider only the unit demand setting.

Let n denote the number of agents, and let m denote the number of units. At the

5 We thank Rakesh Vohra for pointing us to Moulin’s paper.

6 Moulin [84] also notes that dropping the non-deficit requirement can bring us closer to budget
balance, but does not solve for the optimal mechanism.
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moment, we only consider the case where m < n (otherwise the problem becomes

trivial in the unit demand setting). We also assume that m and n are always known.

This assumption is not harmful: in environments where anyone can join the auction,

running a redistribution mechanism is typically not a good idea anyway, because

everyone would want to join to collect part of the redistribution.

In the unit demand setting, an agent’s marginal value for any unit after the first

is zero. Hence, the agent’s type corresponds to a single value, which is her valuation

for having at least one unit.

Let the set of agents be I = {1, 2, . . . , n}. Since in the unit demand setting,

an agent’s type corresponds to a single value, we simply use vi to denote agent i’s

type, where vi is agent i’s valuation for having at least one unit. Without loss of

generality, we assume agent i is the agent with the ith highest type vi. That is, we

have v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. Throughout this chapter, we only consider strategy-

proof mechanisms. Therefore, vi is both agent i’s true type and reported type.

Under the VCG mechanism, each agent among 1, . . . ,m wins a unit, and pays

vm+1 for this unit. Thus, the total VCG payment equals mvm+1. When m = 1, this

is the second-price or Vickrey auction.

We modify the mechanism as follows. After running the original VCG mechanism,

agent i receives some redistribution amount zi (agent i’s redistribution payment). We

do not allow zi to depend on vi; because of this, agent i’s incentives are unaffected

by this redistribution payment, and the mechanism remains strategy-proof.

2.1.2 Linear VCG Redistribution Mechanisms

We are now ready to introduce the family of linear VCG redistribution mechanisms.

Such a mechanism is defined by a vector of constants c0, c1, . . . , cn−1. The amount

that the mechanism returns to agent i is zi = c0 +c1v1 +c2v2 + . . .+ci−1vi−1 +civi+1 +

. . . + cn−1vn. That is, an agent receives c0, plus c1 times the highest bid other than
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the agent’s own bid, plus c2 times the second-highest other bid, etc. The mechanism

is strategy-proof, because for all i, zi is independent of vi. Also, the mechanism is

anonymous and efficient.

It is helpful to see the entire list of redistribution payments:

z1 = c0 + c1v2 + c2v3 + c3v4 + . . .+ cn−2vn−1 + cn−1vn

z2 = c0 + c1v1 + c2v3 + c3v4 + . . .+ cn−2vn−1 + cn−1vn

z3 = c0 + c1v1 + c2v2 + c3v4 + . . .+ cn−2vn−1 + cn−1vn

z4 = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−1 + cn−1vn

...

zi = c0 + c1v1 + c2v2 + . . .+ ci−1vi−1 + civi+1 + . . .+ cn−1vn

...

zn−2 = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−1 + cn−1vn

zn−1 = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−2 + cn−1vn

zn = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−2 + cn−1vn−1

Not all choices of the constants c0, . . . , cn−1 produce a mechanism that is individually

rational, and not all choices of the constants produce a mechanism that never incurs

a deficit. Hence, to obtain these properties, we need to place some constraints on

the constants.

To satisfy the individual rationality criterion, each agent’s utility should always

be nonnegative. An agent that does not win a unit obtains a utility that is equal to

the agent’s redistribution payment. An agent that wins a unit obtains a utility that

is equal to the agent’s valuation for the unit, minus the VCG payment vm+1, plus

the agent’s redistribution payment.

Consider agent n, the agent with the lowest bid. Since this agent does not win an

item (m < n), her utility is just her redistribution payment zn. Hence, for the mech-

anism to be individually rational, the ci must be such that zn is always nonnegative.
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If the ci have this property, then it actually follows that zi is nonnegative for every

i, for the following reason. Suppose there exists some i < n and some vector of bids

v1 ≥ v2 ≥ . . . ≥ vn ≥ 0 such that zi < 0. Then, consider the bid vector that results

from replacing vj by vj+1 for all j ≥ i, and letting vn = 0. If we omit vn from this

vector, the same vector results that results from omitting vi from the original vector.

Therefore, n’s redistribution payment under the new vector should be the same as

i’s redistribution payment under the old vector—but this payment is negative.

If all redistribution payments are always nonnegative, then the mechanism must

be individually rational (because the VCG mechanism is individually rational, and

the redistribution payment only increases an agent’s utility). Therefore, the mecha-

nism is individually rational if and only if for any bid vector, zn ≥ 0.

To satisfy the non-deficit criterion, the sum of the redistribution payments should

be less than or equal to the total VCG payment. So for any bid vector v1 ≥ v2 ≥

. . . ≥ vn ≥ 0, the constants ci should make z1 + z2 + . . .+ zn ≤ mvm+1.

We will focus on linear VCG redistribution mechanisms that satisfy both the

individual rationality and the non-deficit property. That is, we require that the ci

satisfy the above two constraints. It turns out that some of the ci always need to be

set to 0, as the following proposition demonstrates.

Proposition 1. If c0, c1, . . . , cn−1 satisfy both the individual rationality and the non-

deficit constraints, then ci = 0 for i = 0, . . . ,m.

Proof. First, let us prove that c0 = 0. Consider the bid vector in which vi = 0 for

all i. To obtain individual rationality, we must have c0 ≥ 0. To satisfy the non-

deficit constraint, we must have c0 ≤ 0. Thus we know c0 = 0. Now, if ci = 0 for

all i, there is nothing to prove. Otherwise, let j = min{i|ci 6= 0}. Assume that

j ≤ m. We recall that we can write the individual rationality constraint as follows:

zn = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−2 + cn−1vn−1 ≥ 0 for any bid vector. Let
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us consider the bid vector in which vi = 1 for i ≤ j and vi = 0 for the rest. In this

case zn = cj, so we must have cj ≥ 0. The non-deficit constraint can be written as

follows: z1 + z2 + . . .+ zn ≤ mvm+1 for any bid vector. Consider the same bid vector

as above. We have zi = 0 for i ≤ j, because for these bids, the jth highest other bid

has value 0, so all the ci that are nonzero are multiplied by 0. For i > j, we have

zi = cj, because the jth highest other bid has value 1, and all lower bids have value

0. So the non-deficit constraint tells us that cj(n − j) ≤ mvm+1. Because j ≤ m,

vm+1 = 0, so the right hand side is 0. We also have n − j > 0 because j ≤ m < n.

So cj ≤ 0. Because we have already established that cj ≥ 0, it follows that cj = 0;

but this is contrary to assumption. So j > m.

Incidentally, this proposition also shows that if m = n − 1, then ci = 0 for all i.

Thus, we are stuck with the VCG mechanism (more details in Proposition 7). From

here on, we only consider the case where m < n− 1.

We now give two examples of mechanisms in this family.

Example 1. Bailey-Cavallo mechanism: Consider the mechanism corresponding

to cm+1 = m
n

and ci = 0 for all other i. Under this mechanism, each agent receives

a redistribution payment of m
n

times the (m + 1)th highest bid from another agent.

Hence, 1, . . . ,m+1 receive a redistribution payment of m
n
vm+2, and the others receive

m
n
vm+1. Thus, the total redistribution payment is (m+1)m

n
vm+2 +(n−m−1)m

n
vm+1.

This redistribution mechanism is individually rational, because all the redistribution

payments are nonnegative, and never incurs a deficit, because (m+ 1)m
n
vm+2 + (n−

m−1)m
n
vm+1 ≤ nm

n
vm+1 = mvm+1. (We note that for this mechanism to make sense,

we need n ≥ m+ 2.)

Example 2. Consider the mechanism corresponding to cm+1 = m
n−m−1

, cm+2 =

− m(m+1)
(n−m−1)(n−m−2)

, and ci = 0 for all other i. In this mechanism, each agent receives
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a redistribution payment of m
n−m−1

times the (m+ 1)th highest reported value from

other agents, minus m(m+1)
(n−m−1)(n−m−2)

times the (m+ 2)th highest reported value from

other agents. Thus, the total redistribution payment is mvm+1− m(m+1)(m+2)
(n−m−1)(n−m−2)

vm+3.

If n ≥ 2m + 3 (which is equivalent to m
n−m−1

≥ m(m+1)
(n−m−1)(n−m−2)

), then each agent

always receives a nonnegative redistribution payment, thus the mechanism is indi-

vidually rational. Also, the mechanism never incurs a deficit, because the total VCG

payment is mvm+1, which is greater than the amount mvm+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

vm+3

that is redistributed.

Which of these two mechanisms is better? Is there another mechanism that is

even better? This is what we study in the next subsection.

2.1.3 Worst-case Optimal Redistribution Mechanisms

Among all linear VCG redistribution mechanisms, we would like to be able to identify

the one that redistributes the greatest fraction of the total VCG payment.7 This is

not a well-defined notion: it may be that one mechanism redistributes more on some

bid vectors, and another more on other bid vectors. In this section, we compare

mechanisms by the fraction of the total VCG payment that they redistribute in the

worst case. This fraction is undefined when the total VCG payment is 0. To deal

with this, technically, we define the worst-case redistribution fraction as the largest

k so that the total amount redistributed is at least k times the total VCG payment,

for all bid vectors. (Hence, as long as the total amount redistributed is at least 0

when the total VCG payment is 0, these cases do not affect the worst-case fraction.)

Let us analyze the worst-case performances of the two example mechanisms men-

tioned earlier. For the first example, the total redistribution payment is (m +

7 The fraction redistributed seems a natural criterion to use. One good property of this criterion
is that it is scale-invariant: if we multiply all bids by the same positive constant (for example, if
we change the units by re-expressing the bids in euros instead of dollars), we would not want the
behavior of our mechanism to change.
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1)m
n
vm+2 +(n−m−1)m

n
vm+1, which is greater than or equal to (n−m−1)m

n
vm+1. In

the worst case, which is when vm+2 = 0, the fraction redistributed is n−m−1
n

. For the

second example, the total redistribution payment is mvm+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

vm+3,

which is greater than or equal to mvm+1(1 − (m+1)(m+2)
(n−m−1)(n−m−2)

). In the worst case,

which is when vm+3 = vm+1, the fraction redistributed is 1 − (m+1)(m+2)
(n−m−1)(n−m−2)

. Since

we assume that the number of agents n and the number of units m are known, we can

determine which example mechanism has better worst-case performance by compar-

ing the two quantities. When n = 6 and m = 1, for the first example (Bailey-Cavallo

mechanism), the fraction redistributed in the worst case is 2
3
, and for the second

example, this fraction is 1
2
, which implies that for this pair of n and m, the first

mechanism has better worst-case performance. On the other hand, when n = 12 and

m = 1, for the first example, the fraction redistributed in the worst case is 5
6
, and

for the second example, this fraction is 14
15

, which implies that this time the second

mechanism has better worst-case performance.

The problem of finding the worst-case optimal VCG redistribution mechanism

corresponds to the following optimization problem:

Maximize k (the fraction redistributed in the worst case)
Subject to:
For every bid vector v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
zn ≥ 0 (individual rationality)
z1 + z2 + . . .+ zn ≤ mvm+1 (non-deficit)
z1 + z2 + . . .+ zn ≥ kmvm+1 (worst-case constraint)
We recall that zi = c0 +c1v1 +c2v2 + . . .+ci−1vi−1 +civi+1 + . . .+cn−1vn

2.1.4 Transformation to Linear Programming

The optimization problem given in the previous subsection can be rewritten as a

linear program, based on the following observations.

Proposition 2. The individual rationality constraint can be written as follows:∑j
i=m+1 ci ≥ 0 for j = m+ 1, . . . , n− 1.
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Before proving this proposition, we introduce the following lemma.

Lemma 1. Given a positive integer k and a set of real constants s1, s2, . . . , sk, (s1t1+

s2t2 + . . . + sktk ≥ 0 for any t1 ≥ t2 ≥ . . . ≥ tk ≥ 0) if and only if (
∑j

i=1 si ≥ 0 for

j = 1, 2, . . . , k).

Proof. Let di = ti− ti+1 for i = 1, 2, . . . , k− 1, and dk = tk. Then (s1t1 + s2t2 + . . .+

sktk ≥ 0 for any t1 ≥ t2 ≥ . . . ≥ tk ≥ 0) is equivalent to ((
∑1

i=1 si)d1 + (
∑2

i=1 si)d2 +

. . .+ (
∑k

i=1 si)dk ≥ 0 for any set of arbitrary nonnegative di). When
∑j

i=1 si ≥ 0 for

j = 1, 2, . . . , k, the above inequality is obviously true. If for some j,
∑j

i=1 si < 0, if

we set dj > 0 and di = 0 for all i 6= j, then the above inequality becomes false. So∑j
i=1 si ≥ 0 for j = 1, 2, . . . , k is both necessary and sufficient.

We are now ready to present the proof of Proposition 2.

Proof. The individual rationality constraint can be written as zn = c0 + c1v1 + c2v2 +

c3v3 + . . .+cn−2vn−2 +cn−1vn−1 ≥ 0 for any bid vector v1 ≥ v2 ≥ . . . ≥ vn−1 ≥ vn ≥ 0.

We have already shown that ci = 0 for i ≤ m. Thus, the above can be simplified to

zn = cm+1vm+1 + cm+2vm+2 + . . . + cn−2vn−2 + cn−1vn−1 ≥ 0 for any bid vector. By

the above lemma, this is equivalent to
∑j

i=m+1 ci ≥ 0 for j = m+ 1, . . . , n− 1.

Proposition 3. The non-deficit constraint and the worst-case constraint can also be

written as linear inequalities involving only the ci and k.

Proof. The non-deficit constraint requires that for any bid vector, z1 +z2 + . . .+zn ≤

mvm+1, where zi = c0 + c1v1 + c2v2 + . . . + ci−1vi−1 + civi+1 + . . . + cn−1vn for

i = 1, 2, . . . , n. Because ci = 0 for i ≤ m, we can simplify this inequality to

qm+1vm+1 + qm+2vm+2 + . . .+ qnvn ≥ 0

qm+1 = m− (n−m− 1)cm+1

qi = −(i− 1)ci−1 − (n− i)ci, for i = m+ 2, . . . , n− 1 (when m+ 2 > n− 1, this

set of equalities is empty)
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qn = −(n− 1)cn−1

By the above lemma, this is equivalent to
∑j

i=m+1 qi ≥ 0 for j = m + 1, . . . , n.

So, we can simplify further as follows:

qm+1 ≥ 0 ⇐⇒ (n−m− 1)cm+1 ≤ m

qm+1 + . . . + qm+i ≥ 0 ⇐⇒ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for i =

2, . . . , n−m− 1

qm+1 + . . .+ qn ≥ 0 ⇐⇒ n
∑j=n−1

j=m+1 cj ≤ m

So, the non-deficit constraint can be written as a set of linear inequalities involving

only the ci.

The worst-case constraint can be also written as a set of linear inequalities, by

the following reasoning. The worst-case constraint requires that for any bid input

z1 +z2 + . . .+zn ≥ kmvm+1, where zi = c0 +c1v1 +c2v2 + . . .+ci−1vi−1 +civi+1 + . . .+

cn−1vn for i = 1, 2, . . . , n. Because ci = 0 for i ≤ m, we can simplify this inequality

to

Qm+1vm+1 +Qm+2vm+2 + . . .+Qnvn ≥ 0

Qm+1 = (n−m− 1)cm+1 − km

Qi = (i− 1)ci−1 + (n− i)ci, for i = m+ 2, . . . , n− 1

Qn = (n− 1)cn−1

By the above lemma, this is equivalent to
∑j

i=m+1Qi ≥ 0 for j = m + 1, . . . , n.

So, we can simplify further as follows:

Qm+1 ≥ 0 ⇐⇒ (n−m− 1)cm+1 ≥ km

Qm+1 + . . . + Qm+i ≥ 0 ⇐⇒ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≥ km for

i = 2, . . . , n−m− 1

Qm+1 + . . .+Qn ≥ 0 ⇐⇒ n
∑j=n−1

j=m+1 cj ≥ km

So, the worst-case constraint can also be written as a set of linear inequalities

involving only the ci and k.
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Combining all the propositions, we see that the original optimization problem

can be transformed into the following linear program. It should be noted that we

need different linear programs for different n and m.

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the fraction redistributed in the worst case)
Subject to:∑j

i=m+1 ci ≥ 0 for j = m+ 1, . . . , n− 1
km ≤ (n−m− 1)cm+1 ≤ m

km ≤ n
∑j=m+i−1

j=m+1 cj+(n−m−i)cm+i ≤ m for i = 2, . . . , n−m−1

km ≤ n
∑j=n−1

j=m+1 cj ≤ m

2.1.5 Numerical Results

For selected values of n and m, we solved the linear program using GLPK (GNU

Linear Programming Kit). In this subsection, we compare the resulting mechanisms

with the Bailey-Cavallo mechanism.

Worst-case performance

In Table 2.1, we present the results for a single unit (m = 1). The second column

displays the fraction of the total VCG payment that is not redistributed in the worst

case by the worst-case optimal mechanism—that is, it displays the value 1 − k.

(Displaying k would require too many significant digits.) Correspondingly, the third

column displays the fraction of the total VCG payment that is not redistributed by

the Bailey-Cavallo mechanism in the worst case (which is equal to 2
n
).

In Table 2.1, we showed that when m = 1, the worst-case optimal mechanism

significantly outperforms the Bailey-Cavallo mechanism in the worst case. For larger

m (m = 1, 2, 3, 4, n = m+2, . . . , 30), we compare the worst-case performance of these

two mechanisms in Figure 2.1. We see that for any m, when n = m + 2, the worst-

case optimal mechanism has the same worst-case performance as the Bailey-Cavallo

mechanism (actually, in this case, the worst-case optimal mechanism is identical to
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Table 2.1: Worst-case performances under the WCO and the Bailey-Cavallo mecha-
nisms for single-item case.

n Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 66.7% 66.7%
4 42.9% 50.0%
5 26.7% 40.0%
6 16.1% 33.3%
7 9.52% 28.6%
8 5.51% 25.0%
9 3.14% 22.2%
10 1.76% 20.0%
15 8.55e-4 13.3%
20 3.62e-5 10.0%
30 5.40e-8 6.67e-2
40 7.09e-11 5.00e-2

the Bailey-Cavallo mechanism). When n > m+2, the worst-case optimal mechanism

outperforms the Bailey-Cavallo mechanism (in the worst case).

In Subsection 2.1.9, we will see that in the more general setting where agents

have nonincreasing marginal values, the worst-case redistribution fraction for the

(generalized) worst-case optimal mechanism is the same as for the unit demand

setting. The same is true for the Bailey-Cavallo mechanism. Hence, Figure 2.1 does

not change in this more general setting.

Average-case performance

It is perhaps not surprising that the worst-case optimal mechanism significantly

outperforms the Bailey-Cavallo mechanism in the worst case, because that is, after

all, the case for which the former has been designed. We can also compare how much

the mechanisms redistribute on average (say, when the bids are drawn i.i.d. from

a uniform distribution over [0, 1]). In this case, the worst-case optimal mechanism

does not always outperform the Bailey-Cavallo mechanism. Table 2.2 compares the

expected amount of VCG payment that fails to be redistributed by the worst-case
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Figure 2.1: A comparison of the worst-case performance of the worst-case optimal
mechanism (WCO) and the Bailey-Cavallo mechanism (BC).

optimal mechanism and by the Bailey-Cavallo mechanism (m = 1).

We see that when n is small, the Bailey-Cavallo mechanism outperforms the

worst-case optimal redistribution mechanism in expectation (except for the case

n = 3, for which the two mechanisms are the same). When n is large (n ≥ 8), the

worst-case optimal redistribution mechanism outperforms the Bailey-Cavallo mech-

anism. The results are similar for larger m. That is, when n is small, the Bailey-

Cavallo mechanism outperforms the worst-case optimal redistribution mechanism in

expectation (except for the case n = m + 2, for which the two mechanisms are the

same). When n is large (e.g. n ≥ 10 for m = 2; n ≥ 13 for m = 3; n ≥ 16 for m = 4),

the worst-case optimal redistribution mechanism performs better than the Bailey-

Cavallo mechanism. In fact, this is not surprising: the expected amount that fails to

be redistributed by the Bailey-Cavallo mechanism vanishes as Θ( 1
n2 ). This is slower

than the convergence rate of the worst-case redistribution fraction for the worst-case

optimal mechanism (Corollary 1); and, of course, the average-case performance of
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Table 2.2: Average-case performances under the WCO and the Bailey-Cavallo mech-
anisms for single-item case.

n Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 0.1667 0.1667
4 0.1714 0.1000
5 0.08889 0.06667
6 0.06912 0.04762
7 0.03571 0.03571
8 0.02450 0.02778
9 0.01255 0.02222
10 0.008006 0.01818
15 3.739e-4 0.008333
20 1.726e-5 0.004762
30 2.614e-8 0.002151
40 3.461e-11 0.001220

the worst-case optimal mechanism must be at least as good as its worst-case per-

formance. This also shows that the worst-case optimal mechanism asymptotically

outperforms the Bailey-Cavallo mechanism, even in the average case.

A detailed example

Finally, let us present the result for the case n = 5,m = 1 in detail. By solving the

above linear program, we find that the optimal values for the ci are c2 = 11
45
, c3 = −1

9
,

and c4 = 1
15

. That is, the redistribution payment received by each agent under the

worst-case optimal mechanism is: 11
45

times the second highest bid among the other

agents, minus 1
9

times the third highest bid among the other agents, plus 1
15

times

the fourth highest bid among the other agents.

agent 1 receives 11
45
v3 − 1

9
v4 + 1

15
v5

agent 2 receives 11
45
v3 − 1

9
v4 + 1

15
v5

agent 3 receives 11
45
v2 − 1

9
v4 + 1

15
v5

agent 4 receives 11
45
v2 − 1

9
v3 + 1

15
v5

agent 5 receives 11
45
v2 − 1

9
v3 + 1

15
v4
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The total amount redistributed by the worst-case optimal mechanism is 11
15
v2 + 4

15
v3−

4
15
v4 + 4

15
v5; in the worst case, 11

15
v2 is redistributed. Hence, the fraction of the total

VCG payment that is not redistributed is never more than 4
15

= 26.7%.

As a specific example, for the bid vector v1 = 4, v2 = 3, v3 = 2, v4 = 1, v5 = 1,

the total amount redistributed by the worst-case optimal redistribution mechanism is

11
15
v2 + 4

15
v3− 4

15
v4 + 4

15
v5 = 11

15
3+ 4

15
2− 4

15
1+ 4

15
1 = 41

15
. The total amount redistributed

by the Bailey-Cavallo mechanism is 2
5
v3 + 3

5
v2 = 2

5
2 + 3

5
3 = 13

5
. Hence, for this bid

vector, the worst-case optimal redistribution mechanism redistributes more.

As another specific example, for the bid vector v1 = 4, v2 = 3, v3 = 2, v4 =

2, v5 = 1, the total amount redistributed by the worst-case optimal redistribution

mechanism is 11
15
v2 + 4

15
v3 − 4

15
v4 + 4

15
v5 = 11

15
3 + 4

15
2 − 4

15
2 + 4

15
1 = 37

15
. The total

amount redistributed by the Bailey-Cavallo mechanism is still 13
5

. Hence, for this bid

vector, the Bailey-Cavallo mechanism redistributes more.

2.1.6 Analytical Characterization

We recall that our linear program has the following form:

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the fraction redistributed in the worst case)
Subject to:∑j

i=m+1 ci ≥ 0 for j = m+ 1, . . . , n− 1
km ≤ (n−m− 1)cm+1 ≤ m

km ≤ n
∑j=m+i−1

j=m+1 cj+(n−m−i)cm+i ≤ m for i = 2, . . . , n−m−1

km ≤ n
∑j=n−1

j=m+1 cj ≤ m

A linear program has no solution if and only if either the objective is unbounded,

or the constraints are contradictory (there is no feasible solution). It is easy to see

that k is bounded above by 1 (redistributing more than 100% violates the non-deficit

constraint). Also, a feasible solution always exists, for example, k = 0 and ci = 0 for

all i. So an optimal solution always exists. Observe that the linear program model
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depends only on the number of agents n and the number of units m. Hence the

optimal solution is a function of n and m. It turns out that this optimal solution

can be analytically characterized as follows.

Theorem 1. For any m and n with n ≥ m + 2, the worst-case optimal mechanism

(among linear VCG redistribution mechanisms) is unique. For this mechanism, the

fraction redistributed in the worst case is

k∗ = 1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

)
The worst-case optimal mechanism is characterized by the following values for the ci:

c∗i =
(−1)i+m−1(n−m)

(
n−1
m−1

)
i
∑n−1

j=m

(
n−1
j

) 1(
n−1
i

) n−1∑
j=i

(
n− 1

j

)

for i = m+ 1, . . . , n− 1.

It should be noted that we have proved ci = 0 for i ≤ m in Proposition 1.

Proof. We first rewrite the linear program as follows. We introduce new variables

xm+1, xm+2, . . . , xn−1, defined by xj =
∑j

i=m+1 ci for j = m+1, . . . , n−1. The linear

program then becomes:

Variables: xm+1, xm+2, . . . , xn−1, k
Maximize k
Subject to:
km ≤ (n−m− 1)xm+1 ≤ m
km ≤ (m+i)xm+i−1+(n−m−i)xm+i ≤ m for i = 2, . . . , n−m−1
km ≤ nxn−1 ≤ m
xi ≥ 0 for i = m+ 1,m+ 2, . . . , n− 1

We will prove that for any optimal solution to this linear program, k = k∗.

Moreover, we will prove that when k = k∗, xj =
∑j

i=m+1 c
∗
i for j = m+ 1, . . . , n− 1.

This will prove the theorem.
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We first make the following observations:

(n−m− 1)c∗m+1

= (n−m− 1)
(n−m)(n−1

m−1)
(m+1)

∑n−1
j=m (n−1

j )
1

(n−1
m+1)

∑n−1
j=m+1

(
n−1
j

)
= (n−m− 1)

(n−m)(n−1
m−1)

(m+1)
∑n−1
j=m (n−1

j )
1

(n−1
m+1)

(
∑n−1

j=m

(
n−1
j

)
−
(
n−1
m

)
)

= (n−m− 1) m
n−m−1

− (n−m− 1)
m(n−1

m )
(n−m−1)

∑n−1
j=m (n−1

j )

= m− (1− k∗)m = k∗m

For i = m+ 1, . . . , n− 2,

ic∗i + (n− i− 1)c∗i+1

= i
(−1)i+m−1(n−m)(n−1

m−1)
i
∑n−1
j=m (n−1

j )
1

(n−1
i )

∑n−1
j=i

(
n−1
j

)
+ (n− i− 1)

(−1)i+m(n−m)(n−1
m−1)

(i+1)
∑n−1
j=m (n−1

j )
1

(n−1
i+1)

∑n−1
j=i+1

(
n−1
j

)
=

(−1)i+m−1(n−m)(n−1
m−1)∑n−1

j=m (n−1
j )

1

(n−1
i )

∑n−1
j=i

(
n−1
j

)
− (n− i− 1)

(−1)i+m−1(n−m)(n−1
m−1)

(i+1)
∑n−1
j=m (n−1

j )
i+1

(n−1
i )(n−i−1)

∑n−1
j=i+1

(
n−1
j

)
=

(−1)i+m−1(n−m)(n−1
m−1)∑n−1

j=m (n−1
j )

= (−1)i+m−1m(1− k∗)

Finally,

(n− 1)c∗n−1

= (n− 1)
(−1)n+m(n−m)(n−1

m−1)
(n−1)

∑n−1
j=m (n−1

j )
1

(n−1
n−1)

∑n−1
j=n−1

(
n−1
j

)
= (−1)m+nm(1− k∗)
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Summarizing the above, we have:

(n−m− 1)c∗m+1 = k∗m

(m+ 1)c∗m+1 + (n−m− 2)c∗m+2 = m(1− k∗)

(m+ 2)c∗m+2 + (n−m− 3)c∗m+3 = −m(1− k∗)

(m+ 3)c∗m+3 + (n−m− 4)c∗m+4 = m(1− k∗)

...

(n− 3)c∗n−3 + 2c∗n−2 = (−1)m+n−2m(1− k∗)

(n− 2)c∗n−2 + c∗n−1 = (−1)m+n−1m(1− k∗)

(n− 1)c∗n−1 = (−1)m+nm(1− k∗)

Let x∗j =
∑j

i=m+1 c
∗
i for j = m + 1,m + 2, . . . , n − 1, the first equation in the

above tells us that (n−m− 1)x∗m+1 = k∗m.

By adding the first two equations, we get (m+ 2)x∗m+1 + (n−m− 2)x∗m+2 = m.

By adding the first three equations, we get (m+3)x∗m+2 +(n−m−3)x∗m+3 = k∗m.

By adding the first i equations, where i = 2, . . . , n−m−1, we get (m+i)x∗m+i−1 +

(n−m− i)x∗m+i = m if i is even; (m+ i)x∗m+i−1 + (n−m− i)x∗m+i = k∗m if i is odd.

Finally by adding all the equations, we get nx∗n−1 = m if n−m is even; nx∗n−1 =

k∗m if n−m is odd.

Thus, for all of the constraints other than the nonnegativity constraints, we have

shown that they are satisfied by setting xj = x∗j =
∑j

i=m+1 c
∗
i and k = k∗. We next

show that the nonnegativity constraints are satisfied by these settings as well.

For m + 1 ≤ i, i + 1 ≤ n − 1, we have 1
i

∑n−1
j=i (n−1

j )
(n−1

i )
= 1

i

∑n−1
j=i

i!(n−1−i)!
j!(n−1−j)! ≥

1
i+1

∑n−2
j=i

i!(n−1−i)!
j!(n−1−j)! ≥

1
i+1

∑n−2
j=i

(i+1)!(n−1−i−1)!
(j+1)!(n−1−j−1)!

= 1
i+1

∑n−1
j=i+1 (n−1

j )
(n−1
i+1)

This implies that the absolute value of c∗i is decreasing as i increases (if the c∗i
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contains more than one number). We further observe that the sign of c∗i alternates,

with the first element c∗m+1 positive. So x∗j =
∑j

i=m+1 c
∗
i ≥ 0 for all j. Thus, we have

shown that these xi = x∗i together with k = k∗ form a feasible solution of the linear

program. We proceed to show that it is in fact the unique optimal solution.

First we prove the following proposition:

Proposition 4. If k̂, x̂i, i = m+1,m+2, . . . , n−1 satisfy the following inequalities:

k̂m ≤ (n−m− 1)x̂m+1 ≤ m

k̂m ≤ (m+ i)x̂m+i−1 + (n−m− i)x̂m+i ≤ m for i = 2, . . . , n−m− 1

k̂m ≤ nx̂n−1 ≤ m

k̂ ≥ k∗

then we must have that x̂i = x∗i and k̂ = k∗.

Proof of proposition. Consider the first inequality. We know that (n−m−

1)x∗m+1 = k∗m, so (n−m− 1)x̂m+1 ≥ k̂m ≥ k∗m = (n−m− 1)x∗m+1. It follows that

x̂m+1 ≥ x∗m+1 (n−m− 1 6= 0).

Now, consider the next inequality for i = 2. We know that (m+2)x∗m+1+(n−m−

2)x∗m+2 = m. It follows that (n−m−2)x̂m+2 ≤ m−(m+2)x̂m+1 ≤ m−(m+2)x∗m+1 =

(n−m− 2)x∗m+2, so x̂m+2 ≤ x∗m+2 (i = 2 ≤ n−m− 1⇒ n−m− 2 6= 0).

Now consider the next inequality for i = 3. We know that (m + 3)x∗m+2 + (n −

m−3)x∗m+3 = m. It follows that (n−m−3)x̂m+3 ≥ k̂m−(m+3)x̂m+2 ≥ k∗m−(m+

3)x∗m+2 = (n−m− 3)x∗m+3, so x̂m+3 ≥ x∗m+3 (i = 3 ≤ n−m− 1⇒ n−m− 3 6= 0).

Proceeding like this all the way up to i = n−m− 1, we get that x̂m+i ≥ x∗m+i if

i is odd and x̂m+i ≤ x∗m+i if i is even. Moreover, if one inequality is strict, then all

subsequent inequalities are strict. Now, if we can prove x̂n−1 = x∗n−1, it would follow

that the x∗i are equal to the x̂i (which also implies that k̂ = k∗).
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We consider two cases:

Case 1: n−m is even. We have: n−m even ⇒ n−m− 1 odd ⇒ x̂n−1 ≥ x∗n−1.

We also have: n−m even⇒ nx∗n−1 = m. Combining these two, we get m = nx∗n−1 ≤

nx̂n−1 ≤ m⇒ x̂n−1 = x∗n−1.

Case 2: n − m is odd. In this case, we have x̂n−1 ≤ x∗n−1, and nx∗n−1 = k∗m.

Then, we have: k∗m ≤ k̂m ≤ nx̂n−1 ≤ nx∗n−1 = k∗m⇒ x̂n−1 = x∗n−1.

This completes the proof of the proposition.

It follows that if k̂, x̂i, i = m+1,m+2, . . . , n−1 is a feasible solution and k̂ ≥ k∗,

then since all the inequalities in Proposition 4 are satisfied, we must have x̂i = x∗i

and k̂ = k∗. Hence no other feasible solution is as good as the one described in the

theorem.

Knowing the analytical characterization of the worst-case optimal mechanism

provides us with at least two major benefits. First, using these formulas is com-

putationally more efficient than solving the linear program using a general-purpose

solver. Second, we can derive the following corollary.

Corollary 1. If the number of units m is fixed, then as the number of agents n

increases, the worst-case fraction redistributed linearly converges to 1, with a rate of

convergence 1
2
. (That is, limn→∞

1−k∗n+1

1−k∗n
= 1

2
. That is, in the limit, the fraction that

is not redistributed halves for every additional agent.)

We note that this is consistent with the experimental data for the single-unit

case, where the worst-case remaining fraction roughly halves each time we add an-

other agent. The worst-case fraction that is redistributed under the Bailey-Cavallo

mechanism also converges to 1 as the number of agents goes to infinity, but the

convergence is much slower—it does not converge linearly (that is, letting kCn be the

fraction redistributed by the Bailey-Cavallo mechanism in the worst case for n agents,
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limn→∞
1−kCn+1

1−kCn
= limn→∞

n
n+1

= 1). We now present the proof of the corollary.

Proof. When the number of agents is n, the worst-case fraction redistributed is k∗n =

1 − (n−1
m )∑n−1

j=m (n−1
j )

. When the number of agents is n + 1, the fraction becomes k∗n+1 =

1 − (nm)∑n
j=m (nj)

. For n sufficiently large, we will have 2n − mnm−1 > 0, and hence

1−k∗n+1

1−k∗n
=

(nm)
∑n−1
j=m (n−1

j )
(n−1
m )

∑n
j=m (nj)

= n
n−m

2n−1−
∑m−1
j=0 (n−1

j )
2n−

∑m−1
j=0 (nj)

, and n
n−m

2n−1−m(n−1)m−1

2n
≤ 1−k∗n+1

1−k∗n
≤

n
n−m

2n−1

2n−mnm−1 (because
(
n
j

)
≤ ni if j ≤ i).

Since we have limn→∞
n

n−m
2n−1−m(n−1)m−1

2n
= 1

2
, and limn→∞

n
n−m

2n−1

2n−mnm−1 = 1
2
, it

follows that limn→∞
1−k∗n+1

1−k∗n
= 1

2
.

2.1.7 Worst-Case Optimality Outside the Family

In this subsection, we prove that the worst-case optimal redistribution mechanism

among linear VCG redistribution mechanisms is in fact optimal (in the worst case)

among all redistribution mechanisms that are deterministic, anonymous, strategy-

proof, efficient and satisfy the non-deficit constraint. Thus, restricting our attention

to linear VCG redistribution mechanisms did not come at a loss.

To prove this theorem, we need the following lemma. This lemma is not new: it

was informally stated by Cavallo [20]. For completeness, we present it here with a

detailed proof.

Lemma 2. A VCG redistribution mechanism is deterministic, anonymous and strategy-

proof if and only if there exists a function f : Rn−1 → R, so that the redistribution

payment zi received by i satisfies

zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn)

for all i and all bid vectors.
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Proof. First, let us prove the “only if” direction, that is, if a VCG redistribution

mechanism is deterministic, anonymous and strategy-proof then there exists a de-

terministic function f : Rn−1 → R, which makes zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn)

for all i and all bid vectors.

If a VCG redistribution mechanism is deterministic and anonymous, then for

any bid vector v1 ≥ v2 ≥ . . . ≥ vn, the mechanism outputs a unique redistribution

payment list: z1, z2, . . . , zn. LetG : Rn → Rn be the function that maps v1, v2, . . . , vn

to z1, z2, . . . , zn for all bid vectors. Let H(i, x1, x2, . . . , xn) be the ith element of

G(x1, x2, . . . , xn), so that zi = H(i, v1, v2, . . . , vn) for all bid vectors and all 1 ≤

i ≤ n. Because the mechanism is anonymous, two agents should receive the same

redistribution payment if their bids are the same. So, if vi = vj, H(i, v1, v2, . . . , vn) =

H(j, v1, v2, . . . , vn). Hence, if we let j = min{t|vt = vi}, then H(i, v1, v2, . . . , vn) =

H(j, v1, v2, . . . , vn).

Let us define K : Rn → N×Rn as follows: K(y, x1, x2, . . . , xn−1) =

[j, w1, w2, . . . , wn], where w1, w2, . . . , wn are y, x1, x2, . . . , xn−1 sorted in descending

order, and j = min{t|wt = y}. ({t|wt = y} 6= ∅ because y ∈ {w1, w2, . . . , wn}).

Also let us define F : Rn → R by F (vi, v1, v2, . . . , vi−1, vi+1, . . . , vn) =

H ◦K(vi, v1, v2, . . . , vi−1, vi+1, . . . , vn) = H(min{t|vt = vi}, v1, v2, . . . , vn)

= H(i, v1, v2, . . . , vn) = zi. That is, F is the redistribution payment to an agent that

bids vi when the other bids are v1, v2, . . . , vi−1, vi+1, . . . , vn.

Since our mechanism is required to be strategy-proof, and the space of valua-

tions is unrestricted, zi should be independent of vi by Lemma 1 in Cavallo [20].

Hence, we can simply ignore the first variable input to F ; let f(x1, x2, . . . , xn−1) =

F (0, x1, x2, . . . , xn−1). So, we have zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all bid

vectors and i. This completes the proof for the “only if” direction.

For the “if” direction, if the redistribution payment received by i satisfies zi =

f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all bid vectors and i, then this is clearly a deter-
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ministic and anonymous mechanism. To prove strategy-proofness, we observe that

because an agent’s redistribution payment is not affected by her own bid, her incen-

tives are the same as in the VCG mechanism, which is strategy-proof.

Now we are ready to introduce the next theorem:

Theorem 2. For any m and n with n ≥ m + 2, the worst-case optimal mechanism

among the family of linear VCG redistribution mechanisms is worst-case optimal

among all mechanisms that are deterministic, anonymous, strategy-proof, efficient

and satisfy the non-deficit constraint.

While we needed individual rationality earlier, this theorem does not mention it,

that is, we cannot find a mechanism with better worst-case performance even if we

sacrifice individual rationality. (The worst-case optimal linear VCG redistribution

mechanism is of course individually rational.)

Proof. Suppose there is a redistribution mechanism (when the number of units is m

and the number of agents is n) that satisfies all of the above properties and has a

better worst-case performance than the worst-case optimal linear VCG redistribution

mechanism, that is, its worst-case redistribution fraction k̂ is strictly greater than

k∗.

By Lemma 2, for this mechanism, there is a function f : Rn−1 → R so that

zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all i and all bid vectors. We first prove that

f has the following properties.

Proposition 5. f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of 1s is less than or equal

to m.

Proof of proposition. We assumed that for this mechanism, the worst-case

redistribution fraction satisfies k̂ > k∗ ≥ 0. If the total VCG payment is x, the total

redistribution payment should be in [k̂x, x] (non-deficit criterion). Consider the case
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where all agents bid 0, so that the total VCG payment is also 0. Hence, the total

redistribution payment should be in [k̂ · 0, 0]—that is, it should be 0. Hence every

agent’s redistribution payment f(0, 0, . . . , 0) must be 0.

Now, let ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number of 1s equals i. We proved

t0 = 0. If tn−1 = 0, consider the bid vector where everyone bids 1. The total VCG

payment is m and the total redistribution payment is nf(1, 1, . . . , 1) = ntn−1 = 0.

This corresponds to 0% redistribution, which is contrary to our assumption that

k̂ > k∗ ≥ 0. Now, consider j = min{i|ti 6= 0} (which is well-defined because

tn−1 6= 0). If j > m, the property is satisfied. If j ≤ m, consider the bid vector

where vi = 1 for i ≤ j and vi = 0 for all other i. Under this bid vector, the first j

agents each get redistribution payment tj−1 = 0, and the remaining n−j agents each

get tj. Thus, the total redistribution payment is (n − j)tj. Because the total VCG

payment for this bid vector is 0, we must have (n− j)tj = 0. So tj = 0 (j ≤ m < n).

But this is contrary to the definition of j. Hence f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the

number of 1s is less than or equal to m.

Proposition 6. f satisfies the following inequalities:

k̂m ≤ (n−m− 1)tm+1 ≤ m

k̂m ≤ (m+ i)tm+i−1 + (n−m− i)tm+i ≤ m for i = 2, 3, . . . , n−m− 1

k̂m ≤ ntn−1 ≤ m

Here ti is defined as in the proof of Proposition 5.

Proof of proposition. For j = m + 1, . . . , n, consider the bid vectors where

vi = 1 for i ≤ j and vi = 0 for all other i. These bid vectors together with the non-

deficit constraint and worst-case constraint produce the above set of inequalities: for

example, when j = m + 1, we consider the bid vector vi = 1 for i ≤ m + 1 and

vi = 0 for all other i. The first m+ 1 agents each receive a redistribution payment of
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tm = 0, and all other agents each receive tm+1. Thus, the total VCG redistribution is

(n−m− 1)tm+1. The non-deficit constraint gives (n−m− 1)tm+1 ≤ m (because the

total VCG payment is m). The worst-case constraint gives (n−m− 1)tm+1 ≥ k̂m.

Combining these two, we get the first inequality. The other inequalities can be

obtained in the same way.

We now observe that the inequalities in Proposition 6, together with k̂ ≥ k∗, are

the same as those in Proposition 4 (where the ti are replaced by the x̂i). Thus, we

can conclude that k̂ = k∗, which is contrary to our assumption k̂ > k∗. Hence no

mechanism satisfying all the listed properties has a redistribution fraction greater

than k∗ in the worst case.

So far we have only talked about the case where n ≥ m + 2. For the purpose

of completeness, we provide the following proposition for the n = m + 1 case. (We

assume n > m in the unit demand setting.)

Proposition 7. For any m and n with n = m+1, the original VCG mechanism (that

is, redistributing nothing) is (uniquely) worst-case optimal among all redistribution

mechanisms that are deterministic, anonymous, strategy-proof, efficient and satisfy

the non-deficit constraint.

We recall that when n = m + 1, Proposition 1 tells us that the only mechanism

inside the family of linear redistribution mechanisms is the original VCG mechanism,

so that this mechanism is automatically worst-case optimal inside this family. How-

ever, to prove the above proposition, we need to show that it is worst-case optimal

among all redistribution mechanisms that have the desired properties.

Proof. Suppose a redistribution mechanism exists that satisfies all of the above prop-

erties and has a worst-case performance as good as the original VCG mechanism, that
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is, its worst-case redistribution fraction is greater than or equal to 0. This implies

that the total redistribution payment of this mechanism is always nonnegative.

By Lemma 2, for this mechanism, there is a function f : Rn−1 → R so that

zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all i and all bid vectors. We will prove that

f(x1, x2, . . . , xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector where vi = 0 for all i. Here, each agent receives a

redistribution payment f(0, 0, . . . , 0). The total redistribution payment is then

nf(0, 0, . . . , 0), which should be both greater than or equal to 0 (by the above obser-

vation) as well less than or equal to 0 (using the non-deficit criterion and the fact that

the total VCG payment is 0). It follows that f(0, 0, . . . , 0) = 0. Now, let us consider

the bid vector where v1 = x1 ≥ 0 and vi = 0 for all other i. For this bid vector, the

agent with the highest bid receives a redistribution payment of f(0, 0, . . . , 0) = 0,

and the other n − 1 agents each receive f(x1, 0, . . . , 0). By the same reasoning as

above, the total redistribution payment should be both greater than or equal to 0

and less than or equal to 0, hence f(x1, 0, . . . , 0) = 0 for all x1 ≥ 0.

Proceeding by induction, let us assume f(x1, x2, . . . , xk, 0, . . . , 0) = 0 for all x1 ≥

x2 ≥ . . . ≥ xk ≥ 0, for some k < n − 1. Consider the bid vector where vi = xi for

i ≤ k + 1, and vi = 0 for all other i, where the xi are arbitrary numbers satisfying

x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. For the agents with the highest k + 1 bids, their

redistribution payment is specified by f acting on an input with only k non-zero

variables. Hence they all receive 0 by induction assumption. The other n − k − 1

agents each receive f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribution payment

is then (n− k− 1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0), which should be both greater than

or equal to 0, and less than or equal to the total VCG payment. Now, in this

bid vector, the lowest bid is 0 because k + 1 < n. But since n = m + 1, the

total VCG payment is mvn = 0. So we have f(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0

for all x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. By induction, this statement holds for
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all k < n − 1; when k + 1 = n − 1, we have f(x1, x2, . . . , xn−2, xn−1) = 0 for all

x1 ≥ x2 ≥ . . . ≥ xn−2 ≥ xn−1 ≥ 0. Hence, in this mechanism, the redistribution

payment is always 0; that is, the mechanism is just the original VCG mechanism.

Incidentally, we obtain the following corollary:

Corollary 2. No VCG redistribution mechanism satisfies all of the following: deter-

minism, anonymity, strategy-proofness, efficiency, and (strong) budget balance. This

holds for any n ≥ m+ 1.

Proof. For the case n ≥ m + 2: If such a mechanism exists, its worst-case perfor-

mance would be better than that of the worst-case optimal linear VCG redistribution

mechanism, which by Theorem 1 obtains a redistribution fraction strictly less than

1. But Theorem 2 shows that it is impossible to outperform this mechanism in the

worst case.

For the case n = m+ 1: If such a mechanism exists, it would perform as well as

the original VCG mechanism in the worst case, which implies that it is identical to

the VCG mechanism by Proposition 7. But the VCG mechanism is not (strongly)

budget balanced.

2.1.8 Worst-Case Optimal Mechanism When Deficits Are Allowed

In the previous subsection, we showed that even if the individual rationality require-

ment is dropped, the worst-case optimal redistribution mechanism remains the same.

In this subsection, we consider dropping the non-deficit requirement, and try to find

the redistribution mechanism that deviates the least from budget balance (in the

worst case).

We define the imbalance to be the absolute difference between the total redistri-

bution and the total VCG payment, and define the imbalance fraction to be the ratio

between the imbalance and the total VCG payment. Our goal is to minimize the
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worst-case imbalance fraction. Finding the optimal linear mechanism corresponds to

the following optimization model:

Minimize kd (the imbalance fraction in the worst case)
Subject to:
For every bid vector v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
zn ≥ 0 (individual rationality)
|z1 + z2 + . . .+ zn −mvm+1| ≤ kdmvm+1 (imbalance constraint)
We recall that zi = c0 +c1v1 +c2v2 + . . .+ci−1vi−1 +civi+1 + . . .+cn−1vn

The imbalance constraint can also be written as

(1− kd)mvm+1 ≤ z1 + z2 + . . .+ zn ≤ (1 + kd)mvm+1

The above optimization model can be transformed into a linear program, based

on the following observations.

Proposition 8. If c0, c1, . . . , cn−1 satisfy both the individual rationality and the im-

balance constraints, then ci = 0 for i = 0, . . . ,m.

The proof is a slight modification of the proof of Proposition 1.

Proof. First, let us prove that c0 = 0. Consider the bid vector in which vi = 0

for all i. To obtain individual rationality, we must have c0 ≥ 0. To satisfy the

imbalance constraint, we must have c0 ≤ 0. Thus we know c0 = 0. Now, if ci = 0

for all i, there is nothing to prove. Otherwise, let j = min{i|ci 6= 0}. Assume that

j ≤ m. We recall that we can write the individual rationality constraint as follows:

zn = c0 + c1v1 + c2v2 + c3v3 + . . .+ cn−2vn−2 + cn−1vn−1 ≥ 0 for any bid vector. Let

us consider the bid vector in which vi = 1 for i ≤ j and vi = 0 for the rest. In

this case zn = cj, so we must have cj ≥ 0. The imbalance constraint requires that :

z1 + z2 + . . .+ zn ≤ (1 + kd)mvm+1 for any bid vector. Consider the same bid vector

as above. We have zi = 0 for i ≤ j, because for these bids, the jth highest other bid

has value 0, so all the ci that are nonzero are multiplied by 0. For i > j, we have

zi = cj, because the jth highest other bid has value 1, and all lower bids have value
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0. So the imbalance constraint tells us that cj(n − j) ≤ (1 + kd)mvm+1. Because

j ≤ m, vm+1 = 0, so the right hand side is 0. We also have n − j > 0 because

j ≤ m < n. So cj ≤ 0. Because we have already established that cj ≥ 0, it follows

that cj = 0; but this is contrary to assumption. So j > m.

Proposition 9. The imbalance constraint can be written as linear inequalities in-

volving only the ci and kd.

The proof is a slight modification of the proof of Proposition 3.

Proof. The imbalance constraint requires that for any bid vector, (1− kd)mvm+1 ≤

z1 + z2 + . . . + zn ≤ (1 + kd)mvm+1, where zi = c0 + c1v1 + c2v2 + . . . + ci−1vi−1 +

civi+1 + . . . + cn−1vn for i = 1, 2, . . . , n. Because ci = 0 for i ≤ m, we can simplify

this inequality to

qm+1vm+1 + qm+2vm+2 + . . .+ qnvn ≥ 0

qm+1 = (n−m− 1)cm+1 − (1− kd)m

qi = (i− 1)ci−1 + (n− i)ci, for i = m+ 2, . . . , n− 1

qn = (n− 1)cn−1

Qm+1vm+1 +Qm+2vm+2 + . . .+Qnvn ≤ 0

Qm+1 = (n−m− 1)cm+1 − (1 + kd)m

Qi = (i− 1)ci−1 + (n− i)ci, for i = m+ 2, . . . , n− 1

Qn = (n− 1)cn−1

By Lemma 1, this is equivalent to
∑j

i=m+1 qi ≥ 0 for j = m + 1, . . . , n and∑j
i=m+1 Qi ≤ 0 for j = m+ 1, . . . , n. So, we can simplify further as follows:

(1− kd)m ≤ (n−m− 1)cm+1 ≤ (1 + kd)m

(1−kd)m ≤ n
∑j=m+i−1

j=m+1 cj +(n−m− i)cm+i ≤ (1+kd)m for i = 2, . . . , n−m−1
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(1− kd)m ≤ n
∑j=n−1

j=m+1 cj ≤ (1 + kd)m

So, the imbalance constraint can also be written as a set of linear inequalities

involving only the ci and kd.

Combining all the propositions (together with Proposition 2), we see that the

original optimization problem can be transformed into the following linear program.

Variables: cm+1, cm+2, . . . , cn−1, kd
Minimize kd (the imbalance fraction in the worst case)
Subject to:∑j

i=m+1 ci ≥ 0 for j = m+ 1, . . . , n− 1
(1− kd)m ≤ (n−m− 1)cm+1 ≤ (1 + kd)m

(1 − kd)m ≤ n
∑j=m+i−1

j=m+1 cj + (n −m − i)cm+i ≤ (1 + kd)m for
i = 2, . . . , n−m− 1
(1− kd)m ≤ n

∑j=n−1
j=m+1 cj ≤ (1 + kd)m

For this model, it is easy to see that kd is bounded below by 0. Also, kd = 1 and

ci = 0 for all i form a feasible solution. So an optimal solution always exists. As

in the case where deficits are not allowed, the optimal solution can be analytically

characterized. The characterization is the following:

Theorem 3. For any m and n with n ≥ m + 2, the worst-case optimal mechanism

with deficits (among linear VCG redistribution mechanisms) is unique. For this

mechanism, the imbalance fraction in the worst case is

k∗d =

(
n−1
m

)∑n
j=m+1

(
n
j

)
The worst-case optimal mechanism with deficits is characterized by the following

values for the ci:

c∗i =
2(−1)i+m−1(n−m)

(
n−1
m−1

)
i
∑n

j=m+1

(
n
j

) 1(
n−1
i

) n−1∑
j=i

(
n− 1

j

)
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for i = m+ 1, . . . , n− 1.

From Proposition 8 it follows that ci = 0 for i ≤ m.

Proof. Let α = k∗d/(1−k∗), where k∗ is the worst-case optimal redistribution fraction

in Theorem 1. To avoid ambiguity, we refer to the c∗i in Theorem 1 as cw∗i , and to

the c∗i here as cd∗i . Inspection reveals that cd∗i = 2αcw∗i for all i. We have shown in

Theorem 1 that∑j
i=m+1 c

w∗
i ≥ 0 for j = m+ 1, . . . , n− 1

k∗m ≤ (n−m− 1)cw∗m+1 ≤ m

k∗m ≤ n
∑j=m+i−1

j=m+1 cw∗j + (n−m− i)cw∗m+i ≤ m for i = 2, . . . , n−m− 1

k∗m ≤ n
∑j=n−1

j=m+1 c
w∗
j ≤ m

So we have∑j
i=m+1 c

d∗
i ≥ 0 for j = m+ 1, . . . , n− 1 (α is positive)

2αk∗m ≤ (n−m− 1)cd∗m+1 ≤ 2αm

2αk∗m ≤ n
∑j=m+i−1

j=m+1 cd∗j + (n−m− i)cd∗m+i ≤ 2αm for i = 2, . . . , n−m− 1

2αk∗m ≤ n
∑j=n−1

j=m+1 c
d∗
j ≤ 2αm

A sequence of algebraic manipulations reveals that 2αk∗ = (1 − k∗d) and 2α =

(1 + k∗d). Hence, k∗d and the cd∗i form a feasible solution, because we have∑j
i=m+1 c

d∗
i ≥ 0 for j = m+ 1, . . . , n− 1

(1− k∗d)m ≤ (n−m− 1)cd∗m+1 ≤ (1 + k∗d)m

(1−k∗d)m ≤ n
∑j=m+i−1

j=m+1 cd∗j +(n−m− i)cd∗m+i ≤ (1+k∗d)m for i = 2, . . . , n−m−1

(1− k∗d)m ≤ n
∑j=n−1

j=m+1 c
d∗
j ≤ (1 + k∗d)m

We proceed to show that it is in fact the unique optimal solution. Suppose ĉi and

k̂d form a feasible solution, and k̂d ≤ k∗d. We have
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(1− k∗d)m ≤ (1− k̂d)m ≤ (n−m− 1)ĉm+1 ≤ (1 + k̂d)m ≤ (1 + k∗d)m

(1−k∗d)m ≤ (1− k̂d)m ≤ n
∑j=m+i−1

j=m+1 ĉj+(n−m−i)ĉm+i ≤ (1+ k̂d)m ≤ (1+k∗d)m

for i = 2, . . . , n−m− 1

(1− k∗d)m ≤ (1− k̂d)m ≤ n
∑j=n−1

j=m+1 ĉj ≤ (1 + k̂d)m ≤ (1 + k∗d)m

We introduce new variables xm+1, xm+2, . . . , xn−1, defined by xj = 1
2α

∑j
i=m+1 ĉi

for j = m+ 1, . . . , n− 1. The above inequalities can be rewritten in terms of xi, we

have

k∗m ≤ (n−m− 1)xm+1 ≤ m

k∗m ≤ (m+ i)xm+i−1 + (n−m− i)xm+i ≤ m for i = 2, . . . , n−m− 1

k∗m ≤ nxn−1 ≤ m

However, in Proposition 4, we proved that these inequalities have a unique solu-

tion. Therefore, there is only one value that each of ĉi and k̂d can have. This proves

that k∗d and the cd∗i form the unique optimal solution.

α = k∗d/(1 − k∗) can be interpreted as the ratio between the imbalance fraction

of the worst-case optimal mechanism with deficits (among linear VCG redistribu-

tion mechanisms) and the imbalance fraction of the worst-case optimal mechanism

without deficits. This ratio can be expressed as follows:

α = k∗d/(1− k∗) =
∑n−1
j=m (n−1

j )∑n
j=m+1 (nj)

=
∑n
j=m+1 (n−1

j−1)∑n
j=m+1 (nj)

=
∑n
j=m+1((j/n)(nj))∑n

j=m+1 (nj)

For fixed n, this ratio increases as m increases. (This is because as we decrease

m by 1, the ratio of the additional terms in the fraction decreases.) When m = 1,

α = 2n−1−1
2n−n−1

(for large n, roughly 1
2
); when m = n − 2, α = n

n+1
(for large n,

roughly 1). Hence, if m is small (relative to n), the worst-case optimal linear VCG

redistribution mechanism with deficits is much closer to budget balance than the

worst-case optimal mechanism without deficits; if m is large (relative to n), they are
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Figure 2.2: The ratio between the imbalance fractions of the worst-case optimal
mechanisms with and without deficits.

about the same. On the other hand, when m is small relative to n, then the worst-

case optimal redistribution fraction is large even with the non-deficit requirement.

This means that the non-deficit constraint does not come at a great cost. Figure 2.2

shows how α changes as a function of m and n.

Now we prove that the worst-case optimal linear VCG redistribution mechanism

with deficits is in fact optimal among all redistribution mechanisms that are deter-

ministic, anonymous, strategy-proof and efficient.

Theorem 4. For any m and n with n ≥ m + 2, the worst-case optimal mecha-

nism with deficits among linear VCG redistribution mechanisms has the smallest

worst-case imbalance fraction among all VCG redistribution mechanisms that are

deterministic, anonymous, strategy-proof and efficient.

As in the case of Theorem 2, there is no redistribution mechanism with a smaller

worst-case imbalance fraction even if we sacrifice individual rationality.
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Proof. Suppose there is a redistribution mechanism (when the number of units is m

and the number of agents is n) that satisfies all of the above properties and has a

smaller worst-case imbalance fraction than that of the worst-case optimal linear VCG

redistribution mechanism with deficits—that is, its worst-case imbalance fraction k̂d

is strictly less than k∗d.

By Lemma 2, for this mechanism, there is a function f : Rn−1 → R so that zi =

f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all i and all bid vectors. The following properties

of f follow from straightforward modifications of the proofs of Proposition 5 and

Proposition 6.

Proposition 10. f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of 1s is less than or

equal to m.

Proposition 11. f satisfies the following inequalities:

(1− k̂d)m ≤ (n−m− 1)tm+1 ≤ (1 + k̂d)m

(1− k̂d)m ≤ (m+ i)tm+i−1 + (n−m− i)tm+i ≤ (1 + k̂d)m for i = 2, 3, . . . , n−m− 1

(1− k̂d)m ≤ ntn−1 ≤ (1 + k̂d)m

ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number of 1s equals i

Let xi = 1
2α
ti for i = m+ 1, . . . , n− 1. Since k̂d < k∗d, we have

k∗m < 1
2α

(1− k̂d)m ≤ (n−m− 1)xm+1 ≤ 1
2α

(1 + k̂d)m < m

k∗m < 1
2α

(1− k̂d)m ≤ (m+ i)xm+i−1 + (n−m− i)xm+i ≤ 1
2α

(1 + k̂d)m < m for

i = 2, 3, . . . , n−m− 1

k∗m < 1
2α

(1− k̂d)m ≤ nxn−1 ≤ 1
2α

(1 + k̂d)m < m

By Proposition 4, the above system of inequalities cannot hold. Hence no mech-

anism satisfying all the listed properties has an imbalance fraction less than k∗d in

the worst case.
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For the purpose of completeness, we note the following proposition, which follows

from a straightforward modification of the proof of Proposition 7.

Proposition 12. For any m and n with n = m + 1, the original VCG mecha-

nism (that is, redistributing nothing) is (uniquely) the worst-case optimal mechanism

with deficits among all redistribution mechanisms that are deterministic, anonymous,

strategy-proof and efficient.

Proof. Suppose a redistribution mechanism exists that satisfies all of the above prop-

erties and has a worst-case performance as good as the original VCG mechanism,

that is, its worst-case imbalance fraction is less than or equal to 100%.

By Lemma 2, for this mechanism, there is a function f : Rn−1 → R so that

zi = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) for all i and all bid vectors. We will prove that

f(x1, x2, . . . , xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector where vi = 0 for all i. Here, each agent receives a

redistribution payment f(0, 0, . . . , 0). The total redistribution payment is then

nf(0, 0, . . . , 0), which should be 0, because the total VCG payment is 0 (under 100%

imbalance fraction, the imbalance is still 0). It follows that f(0, 0, . . . , 0) = 0. Now,

let us consider the bid vector where v1 = x1 ≥ 0 and vi = 0 for all other i. For

this bid vector, the agent with the highest bid receives a redistribution payment

of f(0, 0, . . . , 0) = 0, and the other n − 1 agents each receive f(x1, 0, . . . , 0). By

the same reasoning as above, the total redistribution payment should be 0, hence

f(x1, 0, . . . , 0) = 0 for all x1 ≥ 0.

Proceeding by induction, let us assume f(x1, x2, . . . , xk, 0, . . . , 0) = 0 for all x1 ≥

x2 ≥ . . . ≥ xk ≥ 0, for some k < n − 1. Consider the bid vector where vi =

xi for i ≤ k + 1, and vi = 0 for all other i, where the xi are arbitrary numbers

satisfying x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. For the agents with the highest k + 1

bids, their redistribution payment is specified by f acting on an input with only k
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non-zero variables. Hence they all receive 0 by induction assumption. The other

n−k−1 agents each receive f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribution

payment is then (n− k − 1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). Now, in this bid vector,

the lowest bid is 0 because k+ 1 < n. But since n = m+ 1, the total VCG payment

is mvn = 0, which forces the total redistribution payment to be 0. So we have

f(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0 for all x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. By

induction, this statement holds for all k < n − 1; when k + 1 = n − 1, we have

f(x1, x2, . . . , xn−2, xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−2 ≥ xn−1 ≥ 0. Hence, in this

mechanism, the redistribution payment is always 0; that is, the mechanism is just

the original VCG mechanism.

2.1.9 Multi-Unit Auction with Nonincreasing Marginal Values

In this subsection, we consider the more general setting where the agents have non-

increasing marginal values. (Units remain indistinguishable.) An agent’s bid is now

a vector of m elements, with the jth element denoting this agent’s marginal value for

getting her jth unit (and the elements are nonincreasing in j). That is, the agent’s

valuation for receiving j units is the sum of the first j elements. Let the set of agents

be {1, 2, . . . , n}, where i is the agent with the ith highest initial marginal value (the

marginal value for winning the first unit).

We still consider only the case where m ≤ n− 2, because if m ≥ n− 1, then the

original VCG mechanism is worst-case optimal, both with and without deficits (we

will show this in Proposition 18).

The VCG mechanism requires us to find the efficient allocation. Because marginal

values are nonincreasing, this can be achieved by the following greedy algorithm. At

each step, we sort the agents according to their upcoming marginal values (their

values for winning their next unit), and allocate one unit to the agent with the

highest such value. We continue until there are no units left, or the remaining agents
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all have upcoming marginal values of zero (in this case, we simply throw away the

remaining units). Given that marginal values are nonincreasing, the following greedy

algorithm is effectively the same (in terms of the allocation process): sort all the

marginal values (not just those for upcoming units), and accept them in decreasing

order. Because marginal values are nonincreasing, when we accept one of them, this

marginal value does in fact correspond to that agent’s utility for receiving another

unit at that point. In the proofs below, this greedy algorithm will provide a useful

view of how units are allocated.

In the efficient allocation, only agents 1, . . . ,m can possibly win, and the VCG

payments are determined by the bids of 1, . . . ,m + 1 (because when we remove an

agent, only the top m remaining agents can possibly win).

We will generalize the worst-case optimal mechanism (both with and without

deficits) to the current setting, and show in each case that the generalized mecha-

nism has the same worst-case performance. This implies that there does not exist

another redistribution mechanism with better worst-case performance (because such

a mechanism would also have better worst-case performance in the more specific unit

demand setting).

We still use I to denote the set of all agents. We use −i to denote the set

of agents other than i. Because the mechanisms under consideration are strategy-

proof, agents can be expected to report truthfully; hence, we do not make a sharp

distinction between an agent and her bid. We define the following functions:

• V CG : P(I)→ R

For any subset S of I, let V CG(S) be the total VCG payment when only the

agents in S participate in the auction.

• E : P(I)→ R
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For any subset S of I, let E(S) be the total efficiency (that is, the total utility

not taking payments into account) when only the agents in S participate in

the auction.

• e : P(I)× I → R

For any subset S of I and any a ∈ S, let e(S, a) be the utility (not taking

payments into account) of agent a, when only the agents in S participate in

the auction. We note that E(S) =
∑

a∈S e(S, a).

• U : P(I)×N→ P(I)

For any subset S of I, any integer i (1 ≤ i ≤ |S|), let U(S, i) be the set that

results after removing the agent with the ith highest initial marginal value in

S from S. (If there is a tie, this tie is broken according to the original order

1, . . . , n.)

• R : P(I)×N→ R

For any subset S of I, any integer i (0 ≤ i ≤ |S| − m), let R(S, i) =

1
m+i

∑m+i
j=1 R(U(S, j), i − 1) if i > 0, and R(S, 0) = V CG(S). We emphasize

that this is a recursive definition: for i > 0, R(S, i) is obtained by computing,

for each j with 1 ≤ j ≤ m + i, R(U(S, j), i − 1) (that is, the value of the

function R after removing the jth agent in S from S, and decreasing i by one),

and taking the average. For i = 0, it is simply the total VCG payment if only

the agents from S are present. Shortly, we will prove some properties of this

function that clarify its usefulness to our mechanism.

Let Vi = R(I, i) for all i (0 ≤ i ≤ n − m). In what follows, we present several

propositions.

Proposition 13. For any S, Ŝ ∈ P(I), if S ⊆ Ŝ, then V CG(S) ≤ V CG(Ŝ). That

is, revenue is nondecreasing in agents.
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The above proposition was proved in [7]. It should be noted that revenue may

not be nondecreasing in agents in more general settings [96, 7, 35, 108, 110, 111].

Proposition 14. For any S ∈ P(I), 0 ≤ i ≤ |S| −m− 2, and m+ i+ 2 ≤ j ≤ |S|,

we have R(S, i) = R(U(S, j), i).

Proof. We prove this proposition by induction on i. For i = 0 and j ≥ m +

2, we have R(S, i) = V CG(S) = V CG(U(S, j)) = R(U(S, j), i), because, as we

noted earlier, the total VCG payment depends only on the agents with the high-

est m + 1 initial marginal values in S, so removing the jth agent does not change

the total VCG payment. Let us assume that we have proven that for i = k, if

j ≥ m + k + 2, R(S, k) = R(U(S, j), k). Now let us consider the case where

i = k + 1. By definition, R(S, k + 1) = 1
m+k+1

∑m+k+1
l=1 R(U(S, l), k). When j ≥

m + i + 2 = m + k + 3, we can use the induction assumption (using the fact that

j − 1 ≥ m + k + 2) to show that R(U(S, l), k) = R(U(U(S, l), j − 1), k). Hence,

R(S, k+1) = 1
m+k+1

∑m+k+1
l=1 R(U(S, l), k) = 1

m+k+1

∑m+k+1
l=1 R(U(U(S, l), j−1), k) =

1
m+k+1

∑m+k+1
l=1 R(U(U(S, j), l), k) = R(U(S, j), k + 1). (In the second-to-last step,

the same agents are removed in a different order, although the agents’ indices change

as other agents are removed.) Hence the proposition is also true for i = k + 1.

Proposition 15. For any S, Ŝ ∈ P(I), 0 ≤ i ≤ |S| −m, if S ⊆ Ŝ, then R(S, i) ≤

R(Ŝ, i). That is, R is nondecreasing in agents.

Proof. We prove this proposition by induction on i. When i = 0, using Proposi-

tion 13, R(S, i) = V CG(S) ≤ V CG(Ŝ) = R(Ŝ, i). Let us assume that we have proven

that the proposition is true for i = k, that is, R(S, k) ≤ R(Ŝ, k) if S ⊆ Ŝ. Now let us

consider the case where i = k+ 1. If Ŝ and S are the same, the proposition is trivial.

Now suppose that Ŝ has one more agent than S, and that this additional agent has

the qth highest initial marginal value in Ŝ. If q ≥ m + k + 2, U(S, j) ⊆ U(Ŝ, j)
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for all j ≤ m + k + 1. By the induction assumption, we have R(Ŝ, k + 1) =

1
m+k+1

∑m+k+1
j=1 R(U(Ŝ, j), k) ≥ 1

m+k+1

∑m+k+1
j=1 R(U(S, j), k) = R(S, k + 1).

If q ≤ m + k + 1, U(S, j) ⊆ U(Ŝ, j) for j ≤ q − 1, and U(S, j − 1) ⊆ U(Ŝ, j)

for q + 1 ≤ j ≤ m + k + 1. Using the induction assumption, we have R(Ŝ, k + 1) =

1
m+k+1

∑m+k+1
j=1 R(U(Ŝ, j), k) = 1

m+k+1

∑q−1
j=1 R(U(Ŝ, j), k)+ 1

m+k+1

∑m+k+1
j=q+1 R(U(Ŝ, j),

k) + 1
m+k+1

R(U(Ŝ, q), k) ≥ 1
m+k+1

∑q−1
j=1 R(U(S, j), k) + 1

m+k+1

∑m+k+1
j=q+1 R(U(S, j −

1), k) + 1
m+k+1

R(S, k) ≥ 1
m+k+1

∑m+k
j=1 R(U(S, j), k) + 1

m+k+1
R(U(S,m+ k + 1), k) =

R(S, k + 1).

So, if Ŝ has one more element than S, then R(S, k + 1) ≤ R(Ŝ, k + 1). It

naturally follows that if Ŝ has even more elements, then we still have R(S, k + 1) ≤

R(Ŝ, k + 1).

Proposition 16. For any S ∈ P(I), R(S, i) is nonincreasing in i. In particular,

setting S = I, Vi is nonincreasing in i.

Proof. Using Proposition 15, R(S, i+ 1) = 1
m+i+1

∑m+i+1
j=1 R(U(S, j), i) ≤

1
m+i+1

∑m+i+1
j=1 R(S, i) = R(S, i).

Proposition 17. For 0 ≤ i ≤ n−m− 1,
∑n

j=1R(−j, i) = (n−m− 1− i)Vi + (m+

1 + i)Vi+1.

Proof. Using Proposition 14, we have
∑n

j=1R(−j, i) =
∑m+i+1

j=1 R(−j, i) +∑n
j=m+i+2R(−j, i) = (m + i + 1)R(I, i + 1) + (n − m − i − 1)R(I, i) = (m + i +

1)Vi+1 + (n−m− i− 1)Vi.

Now that we have established these basic properties of R, we are ready to in-

troduce the generalization of the worst-case optimal redistribution mechanism (both

with or without deficits) to the setting where agents have nonincreasing marginal

values over units.
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Theorem 5. When agents have nonincreasing marginal values over units, for any

m and n with n ≥ m + 2, the worst-case optimal redistribution fraction (without

deficits) is

k∗ = 1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

)
(the same as in Theorem 1), and the worst-case imbalance fraction (with deficits) is

k∗d =

(
n−1
m

)∑n
j=m+1

(
n
j

)
(the same as in Theorem 3).

In each case, the following is a worst-case optimal mechanism: to agent i, re-

distribute 1
m

∑n−1
j=m+1 c

∗
jR(−i, j − m − 1). Here, the c∗j from Theorem 1 are used

to maximize the worst-case redistribution fraction without deficits, and the c∗j from

Theorem 3 are used to minimize the worst-case imbalance fraction when deficits are

allowed. The mechanisms obtained in this way in fact generalize the mechanisms

from Theorem 1 and Theorem 3.

Proof. In each case, the mechanism is strategy-proof because each agent’s redis-

tribution payment is independent of her own bid (−i does not contain i). It is

deterministic, efficient and anonymous. Because R(−i, j −m − 1) is nonincreasing

in j, and
∑i

j=m+1 c
∗
j ≥ 0 for i = m + 1, . . . , n − 1, it follows by Lemma 1 that the

mechanism is also individually rational.

Now, we recall that in the unit demand setting, for any bid vector v1 ≥ v2 ≥

. . . ≥ vn, the total amount redistributed by the worst-case optimal mechanism is∑n−1
j=m+1 c

∗
j((n− j)vj + jvj+1), which is always at least k∗mvm+1 and at most mvm+1

when we use the c∗j from Theorem 1; and which is always at least (1 − k∗d)mvm+1

and at most (1 + k∗d)mvm+1 when we use the c∗j from Theorem 3. We next show that
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analogous bounds apply to the more general mechanisms, which will complete the

proof.

For the more general mechanisms, the total redistribution payment is

1
m

∑n
i=1

∑n−1
j=m+1 c

∗
jR(−i, j −m− 1) = 1

m

∑n−1
j=m+1 c

∗
j

∑n
i=1R(−i, j −m− 1)

= 1
m

∑n−1
j=m+1 c

∗
j((n− j)Vj−m−1 + jVj−m). This expression is very similar to the total

redistributed by the mechanisms in the unit demand setting: the only differences

are that each vj has been replaced by the Vj−m−1, and there is an additional fac-

tor 1
m

. Now, the bounds for the unit demand setting hold for any nonincreasing

sequence of vj; and, by Proposition 16, we have V0 ≥ V1 ≥ . . . ≥ Vn−m−1. Hence,

1
m

∑n−1
j=m+1 c

∗
j((n− j)Vj−m−1 + jVj−m) is in [k∗V0, V0] when we use the c∗j from Theo-

rem 1, and in [(1− k∗d)V0, (1 + k∗d)V0] when we use the c∗j from Theorem 3. Because

V0 = R(I, 0) = V CG(I) is the total VCG payment, this proves the result.

So far we have only talked about the case where n ≥ m + 2. For the purpose of

completeness, we provide the following proposition for the n ≤ m+ 1 case.

Proposition 18. For any m and n with n ≤ m + 1, the original VCG mechanism

(that is, redistributing nothing) is worst-case optimal, both with or without deficits,

among all redistribution mechanisms that are deterministic, anonymous, strategy-

proof and efficient.

The proof of this proposition is based on the “nullification” technique proposed

in Cavallo [20].

Proof. Suppose there is a mechanism that satisfies all the desirable properties and has

a worst-case performance that is at least as good as the VCG mechanism. Because

the mechanism is strategy-proof, the redistribution payment received by an agent

should be independent of her own bid. Also, if a bid profile results in a total VCG

payment of 0, then under this profile, the total redistribution payment must also be 0.
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(If the objective is to maximize redistribution without deficits, negative total redis-

tribution would result in worse performance than VCG, and positive redistribution

would violate the non-deficit constraint. If the objective is to minimize imbalance,

either negative or positive redistribution would result in worse performance than

VCG. These arguments are analogous to those in the proofs of Proposition 7 and

Proposition 12.)

For the purpose of this proof only, we introduce the following notation. If an

agent has marginal value 1 for every unit among the first k units, and 0 for any

further units, we denote her bid by k. These are the only bids that we will use in

this proof. For bi ∈ N, let f(b1, b2, . . . , bn−1) be the redistribution payment received

by an agent if the other agents’ bids are b1, . . . , bn−1.

We will prove that for any set of nonnegative integers b1, b2, . . . , bn−1, if
∑n−1

i=1 bi ≤

m, we have f(b1, . . . , bn−1) = 0. We will do so by proving by induction on k (k ≤ m)

the proposition that for any set of nonnegative integers b1, b2, . . . , bn−1, if
∑n−1

i=1 bi ≤ k,

we have f(b1, . . . , bn−1) = 0.

For the case k = 0, let us consider the case where all the agents bid 0, so that

the total redistribution payment is nf(0, 0, . . . , 0). Because the total VCG payment

is 0, the total redistribution must be 0, therefore f(0, 0, . . . , 0) must be 0.

Now let us assume that for any set of nonnegative integers b1, b2, . . . , bn−1, if∑n−1
i=1 bi ≤ k, we have f(b1, . . . , bn−1) = 0. Let b′1, b

′
2, . . . , b

′
n−1 be any set of nonnega-

tive integers that satisfies
∑n−1

i=1 b
′
i = k + 1. Consider the bid profile (consisting of n

bids) formed by the b′i and one 0. The redistribution payment received by the agent

that bids 0 is then f(b′1, b
′
2, . . . , b

′
n−1). We note that some of the b′i may equal 0 as well;

by anonymity, the payment for these agents should be the same. The redistribution

payment received by any agent that does not bid 0 is 0 by the induction assumption.

Hence, the total redistribution is a positive multiple of f(b′1, b
′
2, . . . , b

′
n−1). Given that
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k + 1 ≤ m, the total VCG payment is 0, so it must be that f(b′1, b
′
2, . . . , b

′
n−1) = 0,

completing the proof by induction.

Having proved this, we now find an example with positive total VCG payment

but zero total redistribution, which will complete the proof. We recall m ≥ n −

1. Let us consider the bid profile where one agent bids m − n + 2 and the other

agents each bid 1. Then, the total redistribution payment is (n − 1)f(m − n +

2, 1, . . . , 1︸ ︷︷ ︸
n−2

) + f(1, . . . , 1︸ ︷︷ ︸
n−1

) = 0 (since the previous proposition applies to both f(m −

n+2, 1, . . . , 1︸ ︷︷ ︸
n−2

) and f(1, . . . , 1︸ ︷︷ ︸
n−1

)). However, the total VCG payment is positive. Hence,

the mechanism has a redistribution fraction of 0% and an imbalance fraction of 100%

on this instance.

2.1.10 General Multi-Unit Auctions

In Subsection 2.1.9, we showed how the results for the unit demand setting can be

generalized to the setting where agents have nonincreasing marginal values over the

units. The natural next question is whether they can be generalized even further. In

this subsection, we study multi-unit settings without any constraint on the bidders’

valuations—that is, marginal values can be increasing (but they cannot be negative:

units can always be freely disposed of). We show that when there are at least two

units, the original VCG mechanism (that is, redistributing nothing) is worst-case

optimal, both with and without deficits. (When there is only a single unit, then the

agents must have unit demand, so the previous results do apply.)

Proposition 19. In multi-unit auctions without any restrictions on agents’ valua-

tions, when the number of units m is at least 2, the original VCG mechanism (that is,

redistributing nothing) is worst-case optimal, both with or without deficits, among all

redistribution mechanisms that are deterministic, anonymous, individually rational,
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strategy-proof and efficient.

The proof of this proposition is based on the “nullification” technique proposed

in Cavallo [20]. We emphasize that unlike some of the earlier proofs, this proof does

require individual rationality.

Proof. Proposition 18 already established that for n − 2 < m, the original VCG

mechanism is worst-case optimal even when we do assume nonincreasing marginal

values, so it suffices to consider only the case where n − 2 ≥ m. Suppose there

is a mechanism that satisfies all the desirable properties and has a worst-case per-

formance that is at least as good as the original VCG mechanism. Because the

mechanism is strategy-proof, the redistribution payment received by an agent should

be independent of her own bid.

Also, if a bid profile results in a total VCG payment of 0, then under this profile,

the total redistribution payment must also be 0 (otherwise, the performance is worse

than that of the original VCG mechanism).

For the purpose of this proof only, we introduce the following notations. If an

agent has marginal value 0 for every unit among the first m− 1 units, and marginal

value 1 for the mth unit, we denote her bid by B1. If an agent has marginal value

1 for the first unit, and 0 for any further units, we denote her bid by B2. If an

agent has marginal value 0 for all units, we denote her bid by 0. These are the only

bids that we will use in this proof. For bi ∈ {B1, B2, 0}, let f(b1, b2, . . . , bn−1) be the

redistribution payment received by an agent if the other agents’ bids are b1, . . . , bn−1.

We need f(b1, b2, . . . , bn−1) ≥ 0 to ensure individual rationality.

We will prove the following:

• f(0, 0, . . . , 0) = 0

• f(B1, 0, . . . , 0) = 0
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• f(B2, 0, . . . , 0) = 0

• f(B1, B2, 0, . . . , 0) = 0

For f(0, 0, . . . , 0), let us consider the case where all the agents bid 0, so that the

total redistribution payment is nf(0, 0, . . . , 0). Because the total VCG payment is

0, the total redistribution must be 0, therefore f(0, 0, . . . , 0) must be 0.

For f(B1, 0, . . . , 0), let us consider the case where one agent bids B1 and all the

other agents bid 0, so that the total redistribution payment is (n−1)f(B1, 0, . . . , 0)+

f(0, 0, . . . , 0) = (n−1)f(B1, 0, . . . , 0). Because the total VCG payment is 0, the total

redistribution must be 0, therefore f(B1, 0, . . . , 0) must be 0. The same argument

can be used to show that f(B2, 0, . . . , 0) = 0.

For f(B1, B2, 0, . . . , 0), let us consider the case where one agent bids B1, two

agents bid B2 and all the other agents bid 0, so that the total redistribution payment

is (n− 3)f(B1, B2, B2, 0, . . . , 0) + 2f(B1, B2, 0, . . . , 0) + f(B2, B2, 0, . . . , 0). However,

the total VCG payment is still 0 for these bids (the agents that bid B2 win; if one of

them is removed, we can do no better than to still allocate one unit to the other B2

agent, and nothing to the other agents—hence each B2 agent pays 0). Hence, the

total redistribution must be 0. Because f is nonnegative everywhere, it follows that

f(B1, B2, 0, . . . , 0) must equal 0.

Having proved this, we now find an example with positive total VCG payment

but zero total redistribution, which will complete the proof. Let us consider the bid

profile where one agent bids B1, one agent bids B2, and the other agents all bid 0.

Then, the total redistribution payment is (n−2)f(B1, B2, 0, . . . , 0)+f(B1, 0, . . . , 0)+

f(B2, 0, . . . , 0) = 0. However, the total VCG payment is positive (because we can

accept at most one of the B1 bid and the B2 bid). Hence, the mechanism has a

redistribution fraction of 0% and an imbalance fraction of 100% on this instance.
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2.2 Optimal-in-Expectation Redistribution Mechanisms

So far, we have evaluated how well a redistribution mechanism does by focusing on

the worst case. This is a very robust criterion, but if we have a prior distribution

over the valuations, it may make more sense to maximize the expected redistribution.

In this section, we study the problem of designing VCG redistribution mechanisms

that redistribute the most in expectation. From Subsection 2.2.1 to Subsection 2.2.4,

we focus on multi-unit auctions with unit demand. In Subsection 2.2.1, we cover the

necessary background and introduce our notation. In Subsection 2.2.2, we recall the

definition of linear redistribution mechanisms and we solve for optimal-in-expectation

linear (OEL) redistribution mechanisms in our setting. We focus on deriving an ana-

lytical characterization of these OEL mechanisms. In Subsection 2.2.3, we show how

to automatically (using linear programming) solve for (possibly nonlinear) mecha-

nisms that are close to optimal, based on a discretization of the valuation space. This

technique is only effective for cases with small number of agents. That is, it does

not scale very well. Fortunately, the experimental results in Subsection 2.2.4 show

that for auctions with many bidders, the optimal linear mechanism redistributes al-

most everything, whereas for auctions with few bidders, we can solve for the optimal

discretized redistribution mechanism with a very small step size. That is, the two ap-

proaches are in some sense complementary. Finally, in Subsection 2.2.5, we study the

more general setting of multi-unit auctions with nonincreasing marginal values. We

extend the notion of linear redistribution mechanisms to this more general setting,

and propose several models for finding optimal linear redistribution mechanisms. It

is more difficult to work in this more general setting, since we also need to consider

a type of ordering information; we discuss these difficulties in that subsection.
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2.2.1 Formalization

From this subsection to Subsection 2.2.4, we focus on multi-unit auctions with unit

demand. We still use n and m to denote the number of agents and the number

of units. Since we are dealing with the unit demand setting, we assume n > m.8

(Otherwise, it is clearly optimal to give every agent a unit and charge nothing.) As

usual, for the ith agent, we denote her true/reported type/bid for winning one unit

by vi (we are focusing on strategy-proof mechanisms). Without losing generality, we

assume that v1 ≥ v2 ≥ . . . ≥ vn ≥ 0.

Let constants L and U be the lower and upper bounds, respectively, on the

possible values. Hence, ∞ > U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L ≥ 0. We assume that we

have a prior joint probability distribution over the agents’ values vi. We denote the

probability density function of this joint distribution by f(v1, . . . , vn). We emphasize

that we require neither that the agents’ values are drawn from identical distributions,

nor that they are independent.

We aim to design VCG redistribution mechanisms that redistribute the most in

expectation, subject to the non-deficit constraint. Here, we do not explicitly enforce

the individual rationality constraint for the following reasons: Since our objective

is to maximize social welfare, if the prior distribution is symmetric across agents,

then under any redistribution mechanism that redistributes a nonnegative amount

of payment in expectation, every agent benefits from participating in the mechanism

(the agent receives nonnegative expected utility). That is, ex-interim individual

rationality is not a binding constraint. Our technique can also be used to design

mechanisms that are ex-interim individually rational when the prior is not symmet-

ric across agents, or mechanisms that satisfy the even stronger ex-post individual

rationality. However, this would require additional constraints and make the ana-

8 We remove this restriction in Subsection 2.2.5 where we consider settings without unit demand.
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lytical characterization in Subsection 2.2.2 too complex. For the above reasons, we

omit individual rationality constraints.

2.2.2 Linear Redistribution Mechanisms

We first restrict our attention to the family of linear redistribution mechanisms. We

recall from Subsection 2.1.2 that a linear redistribution mechanism is characterized

by a linear redistribution function of the following form:

r(v−i) = c0 + c1v−i,1 + c2v−i,2 + . . .+ cn−1v−i,n−1

Here, r(v−i) is agent i’s redistribution. v−i,j is the jth highest bid among v−i (the

set of bids other than vi). The coefficients cj completely characterize the redistribu-

tion mechanism.

Optimal-in-expectation linear redistribution mechanisms

We will prove the following result, which characterizes a linear redistribution mech-

anism that maximizes the expected total redistribution (among linear redistribution

mechanisms). We call this mechanism OEL (optimal-in-expectation, linear).

Theorem 6. Given n, m, and a prior distribution over agents’ valuations, the fol-

lowing ci define a redistribution mechanism that maximizes expected redistribution,

under the constraints that the mechanism must be a linear redistribution mechanism,

efficient, strategy-proof, and satisfy the non-deficit property.

Let the oi be defined as follows:

o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, 2, . . . , n− 1), and on = Evn − L.

The oi are determined by the given prior distribution.

Let k be any integer satisfying

k ∈ arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n}
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Let function G be defined as follows:

G(n,m, i) =
(
n−i−1
n−m−1

)
/
(
m−1
i−1

)
= (n−i−1)!(i−1)!

(n−m−1)!(m−1)!

• If 0 < k < m, then

ci = (−1)m−iG(n,m, i) for i = k + 1, . . . ,m,

ck = m/n−
∑m

i=k+1(−1)m−iG(n,m, i),

and ci = 0 for other i.

• If k = 0, then

ci = (−1)m−iG(n,m, i) for i = 1, . . . ,m,

c0 = Um/n− U
∑m

i=1(−1)m−iG(n,m, i),

and ci = 0 for other i.

• If m < k < n, then

ci = (−1)m−i−1G(n,m, i) for i = m+ 1, . . . , k − 1,

ck = m/n−
∑k−1

i=m+1(−1)m−i−1G(n,m, i),

and ci = 0 for other i.

• If k = n, then

ci = (−1)m−i−1G(n,m, i) for i = m+ 1, . . . , n− 1,

c0 = Lm/n− L
∑n−1

i=m+1(−1)m−i−1G(n,m, i),

and ci = 0 for other i.

In expectation, this mechanism fails to redistribute

okm
(
n−1
m

)
/
(
n
k

)
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This mechanism is uniquely optimal among all linear redistribution mechanisms

if and only if the choice of k is unique and there does not exist an even i and an odd

j such that oi = oj = 0.

The mechanism is complicated, and is perhaps easier to understand using the

auxiliary variables that we define in the derivation of this mechanism below.

Depending on the optimal choice of k, we have different OEL mechanisms. We

call the OEL mechanism corresponding to a specific choice of k the OEL mechanism

with index k. For k = 1, 2, . . . , n−1, the waste under the OEL mechanism with index

k equals m
(
n−1
m

)
/
(
n
k

)
(vk − vk+1). The waste under the OEL mechanism with index 0

equals m
(
n−1
m

)
(U − v1). The waste under the OEL mechanism with index n equals

m
(
n−1
m

)
(vn−L). Basically, the waste is always a multiple of: 1) the expected difference

between two adjacent (in terms of size) bids, or 2) the expected difference between

the upper bound and the largest bid, or 3) the expected difference between the lowest

bid and the lower bound. Moreover, the multiplication coefficient is determined by

m and n. Then, the OEL mechanism simply chooses the best of these options. In

contrast, under the worst-case optimal mechanism, the waste is a linear combination

of all of the bids (except for the highest m).

In what follows, we derive the OEL mechanism and prove its optimality. Our

objective is to find an linear redistribution mechanism that redistributes the most

in expectation. To optimize among the family of linear redistribution mechanisms,

we must solve for the optimal values of the ci. We want the resulting redistribution

mechanism to be strategy-proof and efficient, and we want it to satisfy the non-

deficit property. The first two properties are satisfied by all the mechanisms inside

the linear family, so the only constraint is the non-deficit property. The following

optimization model can be used to find the linear redistribution mechanism (the ci)

that redistributes the most in expectation, while satisfying the non-deficit property.
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Variables: c0, c1, . . . , cn−1

Maximize E(
∑n

i=1 ri)
Subject to:
For every bid vector U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L∑n

i=1 ri ≤ mvm+1
ri = c0 + c1v−i,1 + c2v−i,2 + . . .+ cn−1v−i,n−1

Given the prior distribution, E(mvm+1) is a constant, so the objective of the

above model may be rewritten as Minimize E(mvm+1 −
∑n

i=1 ri).

Since ri = c0 + c1v−i,1 + c2v−i,2 + . . .+ cn−1v−i,n−1, where v−i,j is the jth highest

bid among bids other than i’s own bid, we have the following:

r1 = c0 + c1v2 + c2v3 + c3v4 . . .+ cn−2vn−1 + cn−1vn

r2 = c0 + c1v1 + c2v3 + c3v4 . . .+ cn−2vn−1 + cn−1vn

r3 = c0 + c1v1 + c2v2 + c3v4 . . .+ cn−2vn−1 + cn−1vn

. . .

rn−1 = c0 + c1v1 + c2v2 + c3v3 . . .+ cn−2vn−2 + cn−1vn

rn = c0 + c1v1 + c2v2 + c3v3 . . .+ cn−2vn−2 + cn−1vn−1

We can write mvm+1−
∑n

i=1 ri as q0+q1v1+q2v2+. . .+qnvn, where the coefficients

qi are listed below:

q0 = −nc0

qi = −(i− 1)ci−1 − (n− i)ci for i = 1, 2, . . . ,m,m+ 2, . . . , n

qm+1 = m−mcm − (n−m− 1)cm+1

(We note that we introduced a dummy variable cn in the above equations—since

there are only n − 1 other bids, cn will always be multiplied by 0, but adding this

variable makes the definition of the qi more elegant.) Given n and m, q0, . . . , qn

(n + 1 values) are determined by c0, . . . , cn−1 (n values). Conversely, if q0, . . . , qn−1

are fixed, then we can completely solve for the values of c0, . . . , cn−1 (and hence also

for qn). This results in the following relation among the qi:
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q1 − n−1
1!
q2 + (n−1)(n−2)

2!
q3 − (n−1)(n−2)(n−3)

3!
q4 + . . .+ (−1)n−1 (n−1)(n−2)...2·1

(n−1)!
qn =

(−1)mm (n−1)(n−2)...(n−m)
m!

After simplification we obtain:

∑n
i=1(−1)i−1

(
n−1
i−1

)
qi = (−1)mm

(
n−1
m

)
Now, we can use the qi as the variables of the optimization model, since from them

we will be able to infer the ci. Because mvm+1−
∑n

i=1 ri = q0 +q1v1 +q2v2 +. . .+qnvn,

we can rewrite the non-deficit constraint by requiring that the latter summation is

nonnegative. Also, the qi must satisfy the previous inequality (otherwise there will

be no corresponding ci).

Variables: q0, q1, . . . , qn
Minimize E(q0 + q1v1 + q2v2 + . . .+ qnvn)
Subject to:
For every bid vector U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
q0 + q1v1 + q2v2 + . . .+ qnvn ≥ 0∑n

i=1(−1)i−1
(
n−1
i−1

)
qi = (−1)mm

(
n−1
m

)
In what follows, we will cast the above model into a linear program. We begin

with the following lemma:

Lemma 3. The following are equivalent:

(1) q0 + q1v1 + q2v2 + . . .+ qnvn ≥ 0 for all U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L

(2) q0 + L
∑n

i=1 qi + (U − L)
∑k

i=1 qi ≥ 0 for k = 0, . . . , n

Proof. (1)⇒(2): (2) can be obtained from (1) by setting v1 = v2 = . . . = vk = U and

vk+1 = vk+2 = . . . = vn = L.

(2)⇒(1): Let us rewrite T = q0 + q1v1 + q2v2 + . . . + qnvn as q0 + L
∑n

i=1 qi +

(v1− v2)
∑1

i=1 qi + (v2− v3)
∑2

i=1 qi + . . .+ (vn−1− vn)
∑n−1

i=1 qi + (vn−L)
∑n

i=1 qi. If∑k
i=1 qi ≥ 0 for every k = 1, . . . , n, then T ≥ q0 +L

∑n
i=1 qi ≥ 0 (because v1−v2, v2−
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v3, . . . , vn − L are all nonnegative). Otherwise, let k′ be the index so that
∑k′

i=1 qi

is minimal (hence negative). To make T minimal, we want vk′ − vk′+1 (which is

multiplied by
∑k′

i=1 qi) to be maximal. So the minimal value for T is q0 +L
∑n

i=1 qi+

(U − L)
∑k′

i=1 qi ≥ 0, which is attained when v1 = v2 = . . . = vk′ = U and vk′+1 =

vk′+2 = . . . = vn = L. Hence T is always nonnegative.

Let xk = (q0 + L
∑n

i=1 qi)/(U − L) +
∑k

i=1 qi for k = 0, . . . , n. The xi correspond

(one to one) to the qi, so we can use the xi as the variables in the optimization

model. The first constraint of the optimization model now becomes xk ≥ 0 for every

k. Since xk − xk−1 = qk for k = 1, . . . , n, the second constraint becomes

∑n
i=1(−1)i−1

(
n−1
i−1

)
(xi − xi−1) = (−1)mm

(
n−1
m

)
After simplification we get:

∑n
i=0(−1)i

(
n
i

)
xi = (−1)m−1m

(
n−1
m

)
Let o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, . . . , n − 1) and on = Evn − L.

The oi are all nonnegative constants that we know from the prior distribution. The

objective of the optimization model can be rewritten as follows:

E(q0 + q1v1 + q2v2 + . . .+ qnvn)

= q0 + q1Ev1 + q2Ev2 + . . .+ qnEvn

= x0(U − L) + q1(Ev1 − L) + q2(Ev2 − L) + . . .+ qn(Evn − L)

= x0((U − L)− (Ev1 − L)) + (x0 + q1)((Ev1 − L)− (Ev2 − L)) + (x0 + q1 +

q2)((Ev2 − L)− (Ev3 − L)) + . . .+ (x0 + q1 + . . .+ qn)(Evn − L)

= o0x0 + o1x1 + . . .+ onxn

We finally obtain the following linear program:
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Variables: x0, x1, . . . , xn
Minimize o0x0 + o1x1 + . . .+ onxn
Subject to:
xi ≥ 0∑n

i=0(−1)i
(
n
i

)
xi = (−1)m−1m

(
n−1
m

)
At this point, for any given n and m, for any prior distribution, it is possible to

solve this linear program using any LP solver; then, using the above, the resulting

xi can be transformed back to ci to obtain an optimal-in-expectation linear redistri-

bution mechanism. However, this will not be necessary. The following proposition

gives an analytical solution of this linear program.

Proposition 20. Let k be any integer satisfying

k ∈ arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n}

The above linear program has the following optimal solution:

xk = m
(
n−1
m

)
/
(
n
k

)
, and xi = 0 for i 6= k

The optimal objective value is

okm
(
n−1
m

)
/
(
n
k

)
This solution is the unique optimal solution if and only if the choice of k is unique

and there does not exist an even i and an odd j such that oi = oj = 0.

Proof. We can rewrite the second constraint as∑n
i=0((−1)i−m+1

(
n
i

)
)/(m

(
n−1
m

)
)xi = 1

This results in the program

Variables: x0, x1, . . . , xn
Minimize o0x0 + o1x1 + . . .+ onxn
Subject to:
xi ≥ 0∑
i=0...n;i−m odd

(
n
i

)
/(m

(
n−1
m

)
)xi =

∑
i=0...n;i−m even

(
n
i

)
/(m

(
n−1
m

)
)xi + 1
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The oi are nonnegative. To minimize the objective, we want all the xi to be as

small as possible. It is not hard to see that it does not hurt to set the xi for which

i −m is even to zero: in fact, setting them to a larger value will only force the xi

for which i−m is odd to take on larger values, by the last constraint. (It should be

noted that if there exists an even i and an odd j such that oi = oj = 0, then we can

increase the corresponding xi and xj at no cost to the objective without breaking

the constraint, hence the solution is not unique in that case.) This results in the

following linear program:

Variables: x0, x1, . . . , xn
Minimize o0x0 + o1x1 + . . .+ onxn
Subject to:
xi ≥ 0∑
i=0...n;i−m odd

(
n
i

)
/(m

(
n−1
m

)
)xi = 1

We want the xi to be as small as possible. However, the second constraint makes

it impossible to set all the xi to 0. For each xi with i−m odd, if we increase it by δ,

the left side of the second constraint is increased by
(
n
i

)
/(m

(
n−1
m

)
)δ and the objective

value is increased by oiδ. We need the left side of the second constraint to increase

to 1 (starting from 0), while minimizing the increase in the objective value. To do

so, we want to find the xi (with i − m odd) that has the minimal cost-gain ratio

(where the cost is oiδ, and the gain is
(
n
i

)
/(m

(
n−1
m

)
)δ). It follows that for any integer

k satisfying k ∈ arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n}, the linear program has the

following optimal solution: xk = m
(
n−1
m

)
/
(
n
k

)
and xi = 0 for i 6= k. The resulting

optimal objective value is okm
(
n−1
m

)
/
(
n
k

)
.

In the above argument, there were only two conditions under which we made a

choice that is not necessarily uniquely optimal: if (and only if) there exists an even

i and an odd j such that oi = oj = 0, then, as we explained, there exist optimal

solutions where some xi with m−i even is set to a positive value (in fact, it can be set
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to any value in this case); and if (and only if) arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n}

is not a singleton set, then there exists another optimal solution with another xk set

to a positive value (in fact, in this case, multiple xk may simultaneously be set to a

positive value).

By transforming the xi from Proposition 20 to the corresponding ci, we obtain

the OEL mechanism from Theorem 6.

We now present a special case that may give some further intuition. The case

where k = m+1 in Theorem 6 corresponds to the redistribution mechanism in which

each agent receives a redistribution payment that is equal to m/n times the (m+1)th

highest bid from the other agents. In our setting of multi-unit auctions with unit

demand, this is exactly the Bailey-Cavallo mechanism. This observation is formally

stated in the following corollary.

Corollary 3. Given n, m, and a prior distribution over agents’ valuations, we define

the oi as follows:

o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, 2, . . . , n− 1), and on = Evn − L.

If the following condition holds:

om+1 ≤ oi
(

n
m+1

)
/
(
n
i

)
for all 0 ≤ i ≤ n with i−m odd,

then the Bailey-Cavallo mechanism maximizes expected redistribution, under the con-

straints that the mechanism must be a linear redistribution mechanism, efficient,

strategy-proof, and satisfy the non-deficit property.

Next, we present two example OEL mechanisms.

Example 3. Consider the case where n = 3 and m = 1, and the bids are all drawn

independently and uniformly from [0, 1]. In this case, Evi = 4−i
4

for i = 1, . . . , 3.

So, U = 1, L = 0, oi = 1
4

for i = 0, . . . , 3. (We recall that o0 = U − Ev1, on =
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Evn − L, and oi = Evi − Evi+1 otherwise.) arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n}

is then {m + 1} = {2}. The expected amount that fails to be redistributed is

o2m
(
n−1
m

)
/
(
n
2

)
= 1

6
. (The expected total VCG payment is 1

2
.) The optimal solution

is given by c2 = 1
3
, and ci = 0 for other i. Hence, this optimal-in-expectation linear

redistribution mechanism is defined by ri = 1
3
v−i,2, which is actually the Bailey-

Cavallo mechanism. The total redistribution is
∑n

i=1 ri = 1
3
v2 + 2

3
v3. The expected

amount that fails to be redistributed is E(v2 − 1
3
v2 − 2

3
v3) = 2

3
E(v2 − v3) = 1

6
.

Example 4. Consider the case where n = 8 and m = 2, and the bids are all drawn

independently and uniformly from [0, 1]. In this case, Evi = 9−i
9

for i = 1, . . . , 8. So

U = 1, L = 0, oi = 1
9

for i = 0, . . . , 8. arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n} is then

{3, 5}. The expected amount that fails to be redistributed is o3m
(
n−1
m

)
/
(
n
3

)
= 1

12
.

(The expected total VCG payment is 4
3
.)

One optimal solution is given by c3 = 1
4
, and ci = 0 for other i. Hence this

expectation optimal linear redistribution mechanism is defined by ri = 1
4
v−i,3 (Bailey-

Cavallo mechanism). The total redistribution is
∑n

i=1 ri = 5
4
v3 + 3

4
v4. The expected

amount that fails to be redistributed is E(2v3 − 5
4
v3 − 3

4
v4) = 3

4
E(v3 − v4) = 1

12
.

The other optimal solution is given by c3 = 2
5
, c4 = − 3

10
, c5 = 3

20
, and ci = 0 for

other i. Hence this expectation optimal linear redistribution mechanism is defined

by ri = 2
5
v−i,3− 3

10
v−i,4 + 3

20
v−i,5. The total redistribution is

∑n
i=1 ri = 2v3− 3

4
v5 + 3

4
v6.

The expected amount that fails to be redistributed is E(3
4
(v5 − v6)) = 1

12
.

Properties of the OEL mechanism

We present some properties of the OEL mechanism. First, we have that there cannot

be another redistribution mechanism that always redistributes at least as much in

total as OEL, and strictly more in at least one case. That is, the OEL mechanism is

collectively undominated.
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Proposition 21. For any m,n and any prior distribution, there does not exist any

redistribution mechanism that, for every multi-set of bids, redistributes at least as

much in total as OEL, and redistributes strictly more in at least one case.

We will prove the above proposition in Section 2.3. More precisely, we will show

that the OEL mechanisms characterized in Theorem 6 are the only collectively un-

dominated redistribution mechanisms that are anonymous and linear in multi-unit

auctions with unit demand.

It should be noted that Proposition 21 only applies to the OEL mechanism, as

defined in Theorem 6. Under certain circumstances (as detailed in Theorem 6), this

mechanism is not uniquely optimal; and the other optimal mechanisms do not always

have the property of Proposition 21.

The next proposition shows that, if the prior distribution does not distinguish

among agents, OEL is ex-interim individually rational—that is, in expectation,

agents benefit from participating in the mechanism (they receive nonnegative ex-

pected utilities).

Proposition 22. If the prior distribution is symmetric across agents (for exam-

ple, the agents’ values are independent and identically distributed), then the OEL

redistribution mechanism is ex-interim individually rational.

Proof. The original VCG mechanism (redistributing nothing) is also a linear redistri-

bution mechanism (corresponding to ci = 0 for all i). Hence, the OEL mechanism will

always redistribute a nonnegative amount in expectation. That is, E(
∑n

i=1 ri) ≥ 0.

If the distribution is symmetric across agents, E(ri) = E(rj) for any i and j (E(ri)

is the expected redistribution received by agent i, which is independent of her own

report). So E(ri) ≥ 0 for all i. However, the VCG mechanism is well-known to

be ex-interim (in fact, ex-post) individually rational in this setting, so that even if
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E(ri) = 0, agents’ expected utility from participating in the mechanism is nonnega-

tive. It follows that OEL must also be ex-interim individually rational.

As an aside, if the prior is not symmetric across agents, then we can explicitly add

the ex-interim individual rationality constraint (or the stronger ex-post individual

rationality constraint9) into our optimization model. This still results in a linear

program (but it does not admit an elegant analytical solution).

In Theorem 6, we gave an expression for the expected amount that OEL fails to

redistribute, which depended on the prior. In the next proposition, we give an upper

bound on this that does not depend on the prior.

Proposition 23. For any prior, the OEL mechanism fails to redistribute at most

(U − L)m
(
n−1
m

)
/

∑
i=0,1,...,n;i−m odd

(
n
i

)
in expectation. This bound is tight.

Proof. Given a prior distribution (and therefore, given the oi), the expected amount

that fails to be redistributed is okm
(
n−1
m

)
/
(
n
k

)
for any k ∈ arg mini{oi/

(
n
i

)
|i−m odd, i =

0, . . . , n}. If a distribution is constructed such that oi = (U−L)
(
n
i

)
/

∑
i=0,...,n;i−m odd

(
n
i

)
for all i with i−m odd, and oi = 0 for all other i (this is in fact a feasible setting of the

oi—we can just use a degenerate distribution where the agents’ valuations are not in-

dependent), then arg mini{oi/
(
n
i

)
|i−m odd, i = 0, . . . , n} = {i|0 ≤ i ≤ n, i−m odd}.

So k can be any i as long as i − m is odd. In this case, the expected amount not

redistributed is exactly (U − L)m
(
n−1
m

)
/

∑
i=0,...,n;i−m odd

(
n
i

)
.

Now suppose that there is another distribution under which the mechanism fails

to redistribute strictly more in expectation. Then, the new set of o′i must satisfy

9 A mechanism is ex-post individually rational if every agent receives nonnegative utility for any
bids.
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o′im
(
n−1
m

)
/
(
n
k

)
> m

(
n−1
m

)
/

∑
i=0,...,n;i−m odd

(
n
i

)
= oim

(
n−1
m

)
/
(
n
k

)
for any i with i−m odd.

It follows that o′i > oi for any i with i − m odd. Since
∑

i=0,...,n;i−m odd

oi = U − L

and o′i ≥ 0 for any i with i − m even, we have
∑

i=0,...,n

o′i > U − L, which is a

contradiction.

For Example 3, Proposition 23 gives an upper bound on the expected amount

that fails to be redistributed of 0.5 (we recall that the actual amount is 1
6
). For

Example 4, Proposition 23 gives an upper bound on the expected amount that fails

to be redistributed of 0.3281 (we recall that the actual amount is 1
12

).

The next proposition shows that for fixed m, as n goes to infinity, the expected

amount that fails to be redistributed goes to 0; hence OEL is asymptotically optimal

for fixed number of units.

Proposition 24. For fixed m, as n goes to infinity, the expected amount that fails

to be redistributed by OEL goes to 0.

Proof. By Proposition 23, we only need to show that for fixed m, as n goes to infinity,

(U − L)m
(
n−1
m

)
/

∑
i=0,1,...,n;i−m odd

(
n
i

)
goes to 0.

We have that (U − L)m
(
n−1
m

)
/

∑
i=0,1,...,n;i−m odd

(
n
i

)
≤ (U − L)m

(
n−1
m

)
/
(

n
m+1

)
=

(U −L)m(n−1)!(m+1)!(n−m−1)!
m!(n−m−1)!n!

= (U −L)(m+ 1)m/n. The right-hand side goes to 0 as

n goes to infinity.

On the other hand, if we increase both n and m, and keep their difference within

constant C, then the expected amount fails to redistributed by OEL also goes to 0:

for large n, the expected amount fails to be redistributed by OEL is at most

(U − L)m
(
n−1
m

)
/

∑
i=0,1,...,n;i−m odd

(
n
i

)
≤ (U − L)n(n− 1)C−1/

∑
i=0,1,...,n;i−m odd

(
n
i

)
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= (U − L)n(n − 1)C−1/(
∑

i=1,2,...,n−1;i−m odd

(
(
n−1
i−1

)
+
(
n−1
i

)
) +

∑
i=0,n;i−m odd

(
n
i

)
). Basi-

cally, the denominator is exponential in n, while the numerator is polynomial in n.

Therefore, as n increases, the amount fails to be redistributed by OEL approaches

0.

So far, we have only considered anonymous redistribution mechanisms (that is,

mechanisms with the same redistribution function r(·) for each agent).10 If we allow

the redistribution mechanism to be nonanonymous, then we can use different ci

for different bidders. Moreover, even for the same bidder, we can use different ci

depending on the order of the other bidders (in terms of their bids), and there are (n−

1)! such orders. Thus, it is clear that to optimize among the class of nonanonymous

linear redistribution mechanisms, we need significantly more variables, and analytical

solution of the linear program no longer seems tractable. However, we do have the

following proposition, which shows that the OEL mechanism remains optimal even

among nonanonymous linear redistribution mechanisms, if the prior is symmetric.

Proposition 25. If the prior distribution is symmetric across agents (for example,

the agents’ values are independent and identically distributed), then no nonanony-

mous linear redistribution mechanism can redistribute strictly more than the OEL

mechanism (which is anonymous) in expectation.

Proof. Let us define the average of two (not necessarily anonymous) redistribution

mechanisms as follows: for any multi-set of bids, for any agent i, if one redistribu-

tion mechanism redistributes x to agent i, and the other redistribution mechanism

redistributes y to i, then the average mechanism redistributes (x + y)/2 to i. It is

not difficult to see that if two redistribution mechanisms both never incur a deficit,

then the average of these two mechanisms also satisfies the non-deficit property. This

averaging operation is easily generalized to averaging over three or more mechanisms.

10 An exception is Proposition 21, which shows that there is not even a nonanonymous mechanism
that always redistributes at least as much in total as OEL, and strictly more in at least one case.
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Now let us assume that r is a nonanonymous linear redistribution mechanism,

and that r redistributes strictly more than the OEL mechanism in expectation when

the prior distribution is symmetric across agents. Let π be any permutation of n

elements. We permute the way r treats the agents according to π, and denote the

new mechanism by rπ. That is, rπ treats agent π(i) the way r treats i. Since we

assumed that the prior distribution is symmetric across agents, the expected total

amount redistributed by rπ should be the same as that redistributed by r. Now,

if we take the average of the rπ over all permutations π, we obtain an anonymous

linear redistribution mechanism that redistributes as much in expectation as r (and

hence more than the OEL mechanism). But this contradicts the optimality of the

OEL mechanism among anonymous linear redistribution mechanisms.

2.2.3 Discretized Redistribution Mechanisms

In the previous subsection, we only considered linear redistribution mechanisms.

This restriction allowed us to find the optimal linear redistribution mechanism by

analytically solving a linear program. In this subsection, we consider a larger domain

of eligible mechanisms, and propose discretized redistribution mechanisms, which can

be automatically designed [30] and can outperform the OEL mechanism. (In this

subsection, for simplicity and to be able to compare to the previous subsection, we

only consider anonymous mechanisms, and we do not impose an individual rationality

constraint. However, all of the below can be generalized to allow for nonanonymous

mechanisms and an individual rationality constraint.)

We study the following problem: given a prior distribution f (the joint pdf of

v1, v2, . . . , vn), we try to find a redistribution mechanism that redistributes the most

in expectation among all redistribution mechanisms that can be characterized by

continuous functions. For simplicity, we will assume that f is continuous. The

optimization model is the following:
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Variable function: r : Rn−1 → R, r continuous
Maximize∫
U≥v1≥...≥vn≥L

∑n
i=1 r(v−i)f(v1, v2, . . . , vn)dv1dv2 . . . dvn

Subject to:
For every bid vector U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L∑n

i=1 r(v−i) ≤ mvm+1

Let R∗ be the optimal objective value for this model. (To be precise, we have

not proved that an optimal solution exists for this model: it could be that the set of

feasible solution values does not include its least upper bound. In this case, simply let

R∗ be the least upper bound.) Since we are not able to solve this model analytically,

we try to solve it numerically.

We divide the interval [L,U ] (within which the bids lie) into N equal parts, with

step size h = (U − L)/N . Let k denote the subinterval: I(k) = [L+ kh, L+ kh+ h]

(k = 0, 1, . . . , N − 1). Define rh : Rn−1 → R as follows: for all U ≥ x1 ≥ x2 ≥ . . . ≥

xn−1 ≥ L, rh(x1, x2, . . . , xn−1) = zh[k1, k2, . . . , kn−1] where ki = b(xi−L)/hc (except

that ki = N − 1 if xi = U). Here, the zh[k1, k2, . . . , kn−1] are variables. We call such

a mechanism a discretized redistribution mechanism of step size h.

Proposition 26. A discretized redistribution mechanism satisfies the non-deficit

constraint if and only if

∑n
i=1 z

h[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L+ km+1h)

for every N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0.

Proof. For every N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0, if vi = L + kih for all i, then∑n
i=1 z

h[k1, k2, . . . , ki−1, ki+1, . . . , kn] is the total redistribution and m(L+ km+1h) is

the total VCG payment. It follows that if the mechanism satisfies the non-deficit

property, the inequalities in the proposition must hold. Conversely, if all the in-

equalities in the proposition hold, then the total redistribution of the mechanism
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is never more than m(L + km+1h), which is less than equal to the total VCG pay-

ment mvm+1. So the mechanism never incurs a deficit if all the inequalities in the

proposition hold.

The following linear program finds the optimal discretized redistribution mecha-

nism for step size h. The variables are zh[k1, k2, . . . , kn−1] for all integers ki satisfying

N−1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. The objective is the expected total redistribution,

where p[k1, k2, . . . , kn] = P (v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn)) (we note that the

p[k1, k2, . . . , kn] are constants).

Variables: zh[. . .]
Maximize∑

N−1≥k1≥k2≥...≥kn≥0 p[k1, k2, . . . , kn]
∑n

i=1 z
h[k1, k2, . . . , ki−1, ki+1, . . . , kn]

Subject to:
For every N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0∑n

i=1 z
h[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L+ km+1h)

Let z∗h[. . .] denote the optimal solution of the above linear program, and let

r∗h denote the corresponding optimal discretized redistribution mechanism. Let R∗h

denote the optimal objective value. The next proposition shows that discretized re-

distribution mechanisms cannot outperform the best continuous redistribution mech-

anisms.

Proposition 27. R∗h ≤ R∗.

Proof. For any ε > 0, we will show how to construct a continuous function r′ε so that

r′ε ≤ r∗h everywhere, and the measure of the set {r∗h 6= r′ε} is less than ε.

Let B be the greatest lower bound of r∗h (r∗h is bounded below because it is a

piecewise constant function with finitely many pieces). For given U ≥ x1 ≥ x2 ≥

. . . ≥ xn−1 ≥ L, let d(x1, . . . , xn−1) be the minimal distance from any xi − L to

the nearest multiple of h. For any δ > 0, let rδ(x1, . . . , xn−1) = r∗h(x1, . . . , xn−1) if
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d(x1, . . . , xn−1) > δ, and rδ(x1, . . . , xn−1) = r∗h(x1, . . . , xn−1)

− (δ − d(x1, . . . , xn−1))(r∗h(x1, . . . , xn−1)−B)/δ otherwise.

It is easy to see that the function rδ is continuous at any point where d(x1, . . . , xn−1)

> δ, because at these points, r∗h is continuous. Furthermore, the function is con-

tinuous at any point where δ > d(x1, . . . , xn−1) > 0, because r∗h and d are both

continuous at these points. Moreover, it is also continuous at any point where

d(x1, . . . , xn−1) = δ, because at such a point r∗h(x1, . . . , xn−1)

− (δ− d(x1, . . . , xn−1))(r∗h(x1, . . . , xn−1)−B)/δ = r∗h(x1, . . . , xn−1). Finally, at any

point where d(x1, . . . , xn−1) = 0, the function is continuous because on any point

x′1, . . . , x
′
n−1 at distance at most γ > 0 from x1, . . . , xn−1, the function will take value

at most γ(H −B)/δ, where H is an upper bound on r∗h (H is finite).

As δ goes to 0, so does the measure of the set {r∗h 6= rδ}. Moreover, rδ ≤ r∗h

everywhere. Hence we can obtain r′ε with the desired property by letting it equal rδ

for sufficiently small δ.

Now, r′ε is a feasible redistribution mechanism, because it always redistributes

less than r∗h. Moreover, because f is a continuous pdf on a compact domain, as

ε → 0, the difference in expected value between r′ε and r∗h goes to 0. Hence, we

can create continuous redistribution functions that come arbitrarily close to R∗h

in terms of expected redistribution, and hence R∗ (the least upper bound of the

expected redistributions that can be obtained with continuous functions) is at least

R∗h.

The next proposition shows that if we make the discretization finer, we will do

no worse.

Proposition 28. R∗h ≤ R∗h/2.

Proof. For all 2N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0, let zh/2[k1, k2, . . . , kn−1] =

z∗h[bk1/2c, bk2/2c, . . . , bkn−1/2c]. The discretized redistribution mechanism corre-
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sponding to zh/2[. . .] is exactly r∗h. The discretized redistribution mechanism r∗h

satisfies the non-deficit property. Hence the variables zh/2[. . .] form a feasible solu-

tion of the linear program corresponding to step size h/2, so its expected redistribu-

tion must be less than or equal to that of the optimal solution of the linear program

corresponding to step size h/2. That is, R∗h ≤ R∗h/2.

The next proposition shows that as we make the discretization finer and finer,

we converge to the optimal value for continuous redistribution mechanisms.

Proposition 29. limh→0R
∗h = R∗.

Proof. For any γ > 0, there exists a continuous redistribution mechanism r∗ such that

its expected redistribution is at least R∗−γ. r∗ is continuous on a closed and bounded

domain, so r∗ is uniformly continuous. Hence for any ε > 0, there exists δ > 0 so

that |r∗(x1, x2, . . . , xn−1) − r∗(x′1, x′2, . . . , x′n−1)| ≤ ε as long as maxi{|xi − x′i|} ≤ δ.

Choose h ≤ δ, and define zh[k1, k2, . . . , kn−1] by r∗(L+ k1h, L+ k2h, . . . , L+ kn−1h)

for all N−1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. zh[. . .] corresponds to a feasible discretized

mechanism rh. In addition, rh ≥ r∗ − ε. Hence, the expected redistribution of the

optimal discretized mechanism with step size (at most) h is R∗h ≥ R∗ − γ − nε.

Since γ and ε are both arbitrarily small, limh→0R
∗h ≥ R∗. By Proposition 27,

limh→0R
∗h ≤ R∗.

We note that a discretized redistribution mechanism rh is defined by a finite

number of real-valued variables: namely, one variable zh[k1, k2, . . . , kn−1] for every

N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. Because of this, we can use a standard LP solver

to solve for the optimal discretized redistribution mechanism rh (for given m,n, h

and prior). In general, this linear program involves exponential number of variables

and does not scale. However, at least for small problem instances, we can set h to

very small values, and by Proposition 29, we expect the resulting mechanism to be

close to optimal.
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But how do we know how far from optimal we are? As it turns out, the discretiza-

tion method can also be used to find upper bounds on R∗. Here, we will assume that

agents’ values are independent and identically distributed. The following linear pro-

gram gives an upper bound on R∗.

Variables: zh[. . .]
Maximize∑

N−1≥k1≥k2≥...≥kn≥0 p[k1, k2, . . . , kn]
∑n

i=1 z
h[k1, k2, . . . , ki−1, ki+1, . . . , kn]

Subject to:
For every N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0∑n

i=1 z
h[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤

mE(vm+1|v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn))

The intuition behind this linear program is the following. In the previous linear

program, the non-deficit constraints were effectively set for the lowest values within

each discretized block, which guaranteed that they would hold for every value in the

block. In this linear program, however, we set the non-deficit constraints by taking

the expectation over the values in each block. Generally, this will result in deficits

for values inside the block, so this program does not produce feasible mechanisms.

Let ẑh[. . .] denote the optimal solution of the above linear program, and let r̂h

denote the (not necessarily feasible) corresponding optimal discretized redistribution

mechanism. Let R̂h denote the optimal objective value. We have the following

propositions:

Proposition 30. If the bids are independent and identically distributed, then R̂h ≥

R∗.

Proof. Let r be any feasible continuous (anonymous) redistribution mechanism. Now,

consider the conditional expectation of a bidder’s redistribution payment under r,

given that, for each i ∈ {1, . . . , n − 1}, the ith highest bid among other bidders is

in I(ki) = [L + kih, L + kih + h]. Let zh[k1, k2, . . . , kn−1] denote this conditional
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expectation. (We emphasize that this does not depend on which agent we choose,

due to the i.i.d. assumption.)

Now, these zh[. . .] constitute a feasible solution of the above linear program, for

the following reason. The left-hand side of the constraint in the above linear program

is now the expected total redistribution of r, given that for each i ∈ {1, . . . , n}, the ith

highest bid is in I(ki); and the right-hand side is the expected total VCG payment,

given that for each i ∈ {1, . . . , n}, the ith highest bid is in I(ki). Because r satisfies

non-deficit by assumption, the constraint must be met by the zh[. . .].

Moreover, the objective value of the feasible solution defined by the zh[. . .] is

identical to the expected total amount redistributed by r. Hence, for every expected

total amount redistributed by a feasible continuous mechanism, there exists a feasible

solution to the above linear program that attains that value. It follows that R̂h ≥

R∗.

So, we have that R∗h is a lower bound on R∗, and R̂h is an upper bound. The

next proposition considers how close these two bounds are, in terms of the step size

h.

Proposition 31. If the bids are independent and identically distributed, then R̂h ≤

R∗h +mh.

Proof. Consider the right-hand side of the constraints of the above linear program.

We have mE(vm+1|v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn)) ≤ m(L+ km+1h+h), since

vm+1 ∈ I(km+1) implies that vm+1 ≤ L+ km+1h+h. Consider an optimal solution of

the linear program for determining R̂h. Now, from every variable zh[k1, k2, . . . , kn−1],

subtract mh/n. This results in a feasible solution of the linear program for de-

termining R∗h, and the decrease in the objective value is nmh/n = mh. Hence,

R̂h ≤ R∗h +mh.
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Hence, by solving the linear program for determining R∗h, we get a lower bound

on R∗ and a discretized redistribution mechanism that comes close to it. If we also

have that the bids are independent and identically distributed, by solving the linear

program for determining R̂h, we get an upper bound on R∗ that is close to R∗h.

2.2.4 Experimental Results

We now have two different types of redistribution mechanisms with which we can

try to maximize the expected total amount redistributed. The OEL mechanism

has the advantage that Theorem 6 gives a simple expression for it, so it is easy

to scale to large auctions. In addition, it is optimal among all linear redistribution

mechanisms, although nonlinear redistribution mechanisms may perform even better

in expectation despite not being able to welfare dominate the OEL mechanism. On

the other hand, the discretized mechanisms have the advantage that, as we decrease

the step size h, we will converge to the maximum amount that can be redistributed

by any continuous redistribution mechanism. The disadvantage of this approach is

that it does not scale to large auctions. Fortunately, the experimental results below

show that for auctions with many bidders, the OEL mechanism redistributes almost

everything, whereas for auctions with few bidders, we can solve for the optimal

discretized redistribution mechanism with a very small step size. That is, the two

types of redistribution mechanisms are in some sense complementary.

In Table 2.3, for different n (number of agents) and m (number of units), we list

the expected amount of redistribution by both the OEL mechanism and the optimal

discretized mechanism (for specific step sizes). The bids are independently drawn

from the uniform [0, 1] distribution.

In Table 2.3, the column “VCG” gives the expected total VCG payment; the

column “BC” gives the expected redistribution by the Bailey-Cavallo mechanism;

the column “OEL” gives the expected redistribution by the OEL mechanism; the
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Table 2.3: Expected redistribution by VCG, BC, OEL, and discretized mechanisms,
for small numbers of agents.

n,m VCG BC OEL R∗h R̂h %
3,1 0.5000 0.3333 0.3333 0.4218 (N=100) 0.4269 84.4
4,1 0.6000 0.5000 0.5000 0.5498 (N=40) 0.5625 91.6
5,1 0.6667 0.6000 0.6000 0.6248 (N=25) 0.6452 93.7
6,1 0.7143 0.6667 0.6667 0.6701 (N=15) 0.7040 93.8

3,2 0.5000 0.0000 0.3333 0.4169 (N=100) 0.4269 83.4
4,2 0.8000 0.5000 0.5000 0.6848 (N=40) 0.7103 85.6
5,2 1.0000 0.8000 0.8000 0.8944 (N=25) 0.9355 89.4
6,2 1.1429 1.0000 1.0000 1.0280 (N=15) 1.0978 89.9

Table 2.4: Expected redistribution by VCG, BC, and OEL for large numbers of
agents.

n,m VCG BC OEL % n,m VCG BC OEL %
10,1 0.8182 0.8000 0.8143 99.5 20,1 0.9048 0.9000 0.9048 100.0
10,3 1.9091 1.8000 1.8000 94.3 20,5 3.5714 3.5000 3.5564 99.6
10,5 2.2727 2.0000 2.0000 88.0 20,10 4.7619 4.5000 4.5000 94.5
10,7 1.9091 1.4000 1.8000 94.3 20,15 3.5714 3.0000 3.5564 99.6
10,9 0.8182 0.0000 0.8143 99.5 20,19 0.9048 0.0000 0.9048 100.0

column “R∗h” gives the expected redistribution by the optimal discretized redistri-

bution mechanism (step size 1/N); the column “R̂h” gives the upper bound on the

expected redistribution by any continuous redistribution mechanism (same step size

as that of R∗h). The last column gives the percentages of the VCG payment that

are redistributed by the optimal discretized redistribution mechanisms (rounding to

the nearest tenth).

Finally, when the number of agents is large, the OEL mechanism is very close to

optimal, as shown in Table 2.4:

The fifth and tenth columns give the percentages of the VCG payment that are

redistributed by the OEL mechanisms (rounding to the nearest tenth).
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2.2.5 Multi-Unit Auctions with Nonincreasing Marginal Values

In this subsection, we consider a more general setting in which agents do not neces-

sarily have unit demand, that is, they may value receiving units in addition to the

first. However, we assume that the marginal values are nonincreasing, that is, they

value the earlier units (weakly) more. (Units remain indistinguishable.) We still use

n and m to denote the number of agents and the number of available units, but we

no longer require that m < n. An agent’s bid is now a nonincreasing sequence of

m elements. We denote agent i’s bid by Bi =< bi1, bi2, . . . , bim >, where bij is agent

i’s marginal value for getting her jth unit (so that bij ≥ bi(j+1)). That is, agent i’s

valuation for receiving j units is
∑j

k=1 bik. A bid profile now consists of n vectors

Bi, with 1 ≤ i ≤ n, or equivalently mn elements bij, with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We represent the bij in matrix form as follows:


b1m b2m . . . bnm
. . . . . . . . . . . .
b12 b22 . . . bn2

b11 b21 . . . bn1


Without loss of generality, we assume that b11 ≥ b21 ≥ . . . ≥ bn1. That is, the

agents are ordered according to their marginal values for winning their first unit. We

denote the kth highest element among all the bij by vk (1 ≤ k ≤ mn).

We assume that we know the joint distribution of the bij (and hence we also know

the joint distribution of the vk). We continue to use U to denote the known upper

bound on the values that the bij can take (U is also the upper bound on the vk). In

this subsection we will not consider the case where there is a lower bound L > 0 on

all the bij (vk); that is, we assume the lower bound is 0. (In fact, if there is a lower

bound L > 0, we can simply require the agents to bid how far above L their marginal

values are, that is, require them to submit b′ij = bij − L, in which case we arrive at
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the case that we study below. The VCG payments under these modified bids will

always be mL less than under the original bids, but we can easily redistribute this

additional mL. Hence, the restriction that L = 0 comes without loss of generality.)

Let B be a bid profile. We denote the set of bids other than Bi (agent i’s own

bid) by B−i. B−i consists of mn−m elements. We can write B−i in matrix form as

follows: 
b1m . . . bi−1,m bi+1,m . . . bnm
. . . . . . . . . . . . . . . . . . . . .
b12 . . . bi−1,2 bi+1,2 . . . bn2

b11 . . . bi−1,1 bi+1,1 . . . bn1


We denote the kth highest element in B−i by v−i,k (1 ≤ k ≤ mn−m).

Our definition for VCG redistribution mechanisms in this setting is similar to

our earlier definition. Namely, in a VCG redistribution mechanism, we first allocate

the units efficiently, according to the VCG mechanism; then, each agent receives a

redistribution payment that is independent of her own bid. An efficient allocation

is obtained by accepting the m highest marginal values (v1, v2, . . . , vm). That is, if

x elements among v1, v2, . . . , vm come from agent i’s bid, then agent i wins x units.

Agent i’s redistribution equals r(B−i), where r is the function that characterizes the

redistribution rule.

We now need a definition of linear redistribution mechanisms in this setting. We

could define linear redistribution mechanisms as follows:

r(B−i) = c0 + c1v−i,1 + c2v−i,2 + . . .+ cmn−mv−i,mn−m

We will study this particular definition later; however, it should immediately be

noted that this definition ignores some potentially valuable information in B−i, as

shown by the following example.

Example 5. Let n = 3 and m = 2.
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• Case 1: Let B−i be

[
0 0
U U

]
.

• Case 2: Let B−i be

[
U 0
U 0

]
.

In both cases, we have v−i,1 = U , v−i,2 = U , v−i,3 = 0, and v−i,4 = 0. Hence,

if we define the linear redistribution mechanisms as above, then the redistribution

payment must be the same in both cases.

We can see that the above definition loses some information about the ordering

of the elements in the matrix. We will show later that this information loss can in

fact come at a cost (less payments can be redistributed). It would be good if we

can incorporate the information about the order of the bij in B−i in the definition of

linear redistribution mechanisms. This is what we will do next.

Let B and B′ be two bid profiles. The elements in B and B′ are denoted by bij

and b′ij, respectively, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We say B and B′ are order

consistent, denoted by B ' B′, if for any i1, j1, i2, j2, we have that bi1j1 > bi2j2

implies b′i1j1 ≥ b′i2j2 , and b′i1j1 > b′i2j2 implies bi1j1 ≥ bi2j2 . An order consistent class of

bid profiles consists of bid profiles that are all pairwise order consistent. The set of all

allowable bid profiles can be divided into a finite number of maximal order consistent

classes (that is, order consistent classes that are not proper subsets of other order

consistent classes). (Specifically, we have one such class for every strict ordering <

on the ordered pairs (i, j) (1 ≤ i ≤ m and 1 ≤ j ≤ n) such that (i, j + 1) < (i, j)

and (i + 1, 1) < (i, 1) everywhere. We note that some bid profiles are part of more

than one of these maximal order consistent classes: for example, the bid profile with

all 0 elements belongs to all the classes.) We can apply the same definitions of order

consistency and (maximal) order consistent classes to the profiles of other bids, the

B−i. Let I(B−i) denote the maximal order consistent class that contains B−i.
11

11 If B−i belongs to multiple maximal order consistent classes, then I(B−i) is the class with
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The following definition of linear redistribution mechanisms successfully captures

the ordering information of B−i, by having separate coefficients for every maximal

order consistent class.

r(B−i) = cI(B−i),0 + cI(B−i),1v−i,1 + . . .+ cI(B−i),mn−mv−i,mn−m

Since

[
0 0
U U

]
and

[
U 0
U 0

]
are not order consistent, they can result in different

redistribution payments in this class of redistribution mechanisms.

Of course, this set of coefficients is unwieldy. As it turns out, we can simplify the

representation of these mechanisms if we assume that they are continuous.

Let r be a linear redistribution mechanism (as just defined). Let T (B−i, k) be the

result of changing the largest k elements of B−i into U , and changing the remaining

elements of B−i into 0. (We assume that ties for the top k values are broken in a

consistent way.) We note that T (B−i, k) ' B−i for all 0 ≤ k ≤ mn−m. For example,

T (

[
1 2
4 3

]
, 1) =

[
0 0
U 0

]
and T (

[
1 2
4 3

]
, 2) =

[
0 0
U U

]
.

We define the following function r′:

r′(B−i) = r(T (B−i, 0)) +
r(T (B−i, 1))− r(T (B−i, 0))

U
v−i,1 + . . .+

r(T (B−i,mn−m))− r(T (B−i,mn−m− 1))

U
v−i,mn−m

Proposition 32. If r is continuous, then r = r′.

Proof. We first restrict our attention to profiles B−i in a specific (but arbitrary)

maximal order consistent class; moreover, we only consider profiles B−i in which no

two elements are equal. For any B−i in this class, we use the same mn − m + 1

the smallest index in any predetermined order of all the classes. If we assume continuity of the
redistribution function, as we will do below, then in fact it does not matter which maximal order
consistent class we choose for B−i.
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coefficients of r, and T (B−i, k) (and hence r(T (B−i, k))) depends only on k. That is,

both the coefficients and T (B−i, k) are constant in B−i.

If r is continuous, then when B−i approaches T (B−i, k), we have that r(B−i) ap-

proaches r(T (B−i, k)). By the definition of r′, we also have that when B−i approaches

T (B−i, k), that is, when the first k elements of B−i approach U and the remaining

elements of B−i approach 0, we have that r′(B−i) approaches r(T (B−i, k)). That is,

r(T (B−i, k)) = r′(T (B−i, k)) for 0 ≤ k ≤ mn − m; that is, the functions agree in

mn−m+1 different places. Since r and r′ are both linear functions with mn−m+1

constant coefficients, r and r′ must be the same function when B−i is restricted to

one class. Since the choice of class was arbitrary, we have that r = r′.

From now on, we only consider continuous r. Hence, we can characterize r by

the values it attains at all possible T (B−i, k). T (B−i, k) consists of only the numbers

U and 0. We represent T (B−i, k) by an integer vector of length n, where the ith

coordinate of the vector is the number of Us in the ith column of T (B−i, k).

For example,

T (

[
4 2
5 3

]
, 2) =

[
U 0
U 0

]
→< 2, 0 >

T (

[
1 2
4 3

]
, 3) =

[
0 U
U U

]
→< 1, 2 >

Using this, r(T (B−i, k)) can be rewritten as r[x1, x2, . . . , xn−1], where

< x1, x2, . . . , xn−1 > is the vector representing T (B−i, k) (with for each i, 0 ≤ xi ≤ m,

and
∑
xi = k). Moreover, because we have, for example, that r(

[
0 U
U U

]
) =

r(

[
U 0
U U

]
), we can assume without loss of generality that x1 ≥ x2 ≥ . . . ≥ xn−1.

The following is an example of how to compute an agent’s redistribution payment

based on the values of r[x1, x2, . . . , xn−1].
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Example 6. Let n = 3 and m = 2. Let B−i =

[
3 1
4 2

]
.

r(B−i) = r(T (B−i, 0)) +
r(T (B−i, 1))− r(T (B−i, 0))

U
v−i,1 + . . .+

r(T (B−i,mn−m))− r(T (B−i,mn−m− 1))

U
v−i,mn−m

= r(

[
0 0
0 0

]
) +

r(

[
0 0
U 0

]
)− r(

[
0 0
0 0

]
)

U
· 4 +

r(

[
U 0
U 0

]
)− r(

[
0 0
U 0

]
)

U
· 3

+

r(

[
U 0
U U

]
)− r(

[
U 0
U 0

]
)

U
· 2 +

r(

[
U U
U U

]
)− r(

[
U 0
U U

]
)

U
· 1

= r[0, 0]+
r[1, 0]− r[0, 0]

U
·4+

r[2, 0]− r[1, 0]

U
·3+

r[2, 1]− r[2, 0]

U
·2+

r[2, 2]− r[2, 1]

U
·1

Since the values of the r[x1, x2, . . . , xn−1] completely characterize the continuous

linear redistribution mechanism, we can solve for values of the r[x1, x2, . . . , xn−1]

for which the corresponding linear redistribution mechanism satisfies the non-deficit

property and produces the least waste in expectation under this constraint.

The following proposition characterizes the non-deficit linear redistribution mech-

anisms.

Proposition 33. A linear redistribution mechanism satisfies the non-deficit property

if and only if the corresponding r[x1, x2, . . . , xn−1] satisfy the following inequalities:

For all m ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,
∑n

i=1 r[x1, . . . , xi−1, xi+1, . . . , xn] ≤ U ·

(
∑n

i=1 min{(
∑n

j=1 xj)−xi,m}−(n−1) min{
∑n

j=1 xj,m}). (The right-hand side of the

inequality corresponds to the total VCG payment for the profile < x1, x2, . . . , xn >.)

Proof. To see why the right-hand side U · (
∑n

i=1 min{(
∑n

j=1 xj) − xi,m} − (n −

1) min{
∑n

j=1 xj,m}) corresponds to the total VCG payment, we note that
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U · min{(
∑n

j=1 xj) − xi,m} is the total efficiency when i is removed, so that U ·∑n
i=1 min{(

∑n
j=1 xj)−xi,m} is the sum of all the terms corresponding to efficiencies

when one agent is removed. U · (n− 1) min{
∑n

j=1 xj,m}) corresponds to the sum of

the basic Groves terms in the payments from the agents: in this term, each agent

receives the total efficiency obtained by the other agents (when the agent is not

removed), and if we sum over all the agents, that means each agent is counted n− 1

times.

Now we can prove the main part of the proposition. If the non-deficit property is

satisfied for all bid profiles, then it should also be satisfied when the marginal values

are restricted to be either U or 0. This proves the “only if” direction. Now we prove

the “if” direction. Let B be any bid profile from a fixed maximal order consistent

class. This implies that the maximal order consistent class of B−i is fixed as well, for

every i. The total VCG payment equals the sum over all i of the m highest elements

in B−i, minus n − 1 times the sum of the m highest elements in B. In either case,

because we are restricting attention to a fixed class, the m highest elements are the

same ones for any B in the class. Because of this, the VCG payments are linear

in the vi. Additionally, again because we are restricting attention to one particular

class, the redistribution payments are also linear in the vi.

Now, if the inequalities hold, that means that the total VCG payment minus

the total redistribution is nonnegative when the marginal values are restricted to

either U or 0. That is, the non-deficit constraints hold for these extreme cases.

But by Lemma 3, if a non-deficit constraint is violated anywhere, then a non-deficit

constraint must be violated for one of these extreme cases. It follows that the non-

deficit constraints hold everywhere in the class that we were considering, and because

this class was arbitrary, the non-deficit constraint must hold everywhere.

Let z be the total number of maximal order consistent classes. Let Zj be an arbi-
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trary bid profile that is (only) in the jth class. Let P (B ∈ I(Zj)) be the probability

that a bid profile is drawn that is (only) in the jth class, and let E(v−i,k|B ∈ I(Zj))

be the expectation of the kth-highest marginal value among B−i, given that B is

(only) in the jth class. We assume that the probability that we draw a bid vector

that is in more than one class is zero (this would require that two values are exactly

equal).

Now we are ready to introduce a linear program that solves for the optimal-

in-expectation linear redistribution mechanism.12 This linear program is based on

the alternative representation of linear redistribution mechanisms, whose correctness

was established by Proposition 32, and on the characterization of the non-deficit

constraints established for this representation by Proposition 33.

Variables: r[x1, x2, . . . , xn−1] for all integer m ≥ x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0
Maximize:∑

j P (B ∈ I(Zj))
∑

i[r(T (Zj
−i, 0)) +

r(T (Zj−i,1))−r(T (Zj−i,0))

U
E(v−i,1|B ∈

I(Zj)) + . . .+
r(T (Zj−i,mn−m))−r(T (Zj−i,mn−m−1))

U
E(v−i,mn−m|B ∈ I(Zj))]

Subject to:
For all m ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,∑n

i=1 r[x1, . . . , xi−1, xi+1, . . . , xn] ≤
U · (

∑n
i=1 min{(

∑n
j=1 xj)− xi,m} − (n− 1) min{

∑n
j=1 xj,m})

We do not have an analytical solution to this linear program; all that we can

do is solve for the optimal mechanism for specific values of m and n. More prob-

lematically, in general it is not easy to compute the constants P (B ∈ I(Zj)) and

E(v−i,k|B ∈ I(Zj)). One way to work around this problem is to approximate the final

12 Incidentally, we can give a similar linear program for finding the linear redistribution mechanism
that is worst-case optimal, that is, it maximizes the fraction of total VCG payment redistributed
in the worst case. In Section 2.1, we have already identified a worst-case optimal linear mechanism
for the nonincreasing marginal values case; however, that mechanism is only optimal under the
requirement of ex-post individual rationality. The linear programming technique here can be used
to find the worst-case optimal mechanism when individual rationality is not required.
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result. That is, instead of computing an exact optimal linear redistribution mech-

anism, we can draw a few sample bid profiles, and solve for a linear redistribution

mechanism that is optimal for the samples. This way, we do not need to compute

any probabilities or conditional expectations; we simply sum over the profiles in the

sample in the objective. (However, we still enforce the constraints everywhere, not

just on the samples.) Because the linear redistribution mechanisms are continuous

and we assume continuous and bounded prior distributions for the valuations, it

follows that as the number of samples grows, we approach an optimal mechanism.

We now return to the original idea for the definition of linear redistribution mech-

anisms: what if we ignore the ordering information and just use coefficients ck for

0 ≤ k ≤ mn − m, which do not depend on the maximal order consistent class?

This will be a more scalable approach, although it will come at a loss. To find an

optimal mechanism in this class, we can take a similar approach as we did above

for the more general definition of linear redistribution mechanisms (and this ap-

proach is correct for similar reasons). We consider the extreme bid vectors where

all marginal values are U or 0, represented by vectors of integers x1, x2, . . . , xn, as

before. The fact that we ignore the ordering information now implies that we re-

quire that r[x1, x2, . . . , xn−1] = r[y1, y2, . . . , yn−1] whenever
∑n−1

i=1 xi =
∑n−1

i=1 yi. So,

we can rewrite r[x1, . . . , xn−1] as r[
∑n−1

i=1 xi]. That is, the variables now are r[k] for

k = 0, 1, . . . ,mn−m. The redistribution function now becomes:

r(B−i) = r[0] +
r[1]− r[0]

U
v−i,1 + . . .+

r[mn−m]− r[mn−m− 1]

U
v−i,mn−m

The linear program for finding an optimal mechanism becomes:
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Variables: r[k] for integer 0 ≤ k ≤ mn−m
Maximize:∑

i[r[0] + r[1]−r[0]
U

E(v−i,1) + . . .+ r[mn−m]−r[mn−m−1]
U

E(v−i,mn−m)]

Subject to:
For all m ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,∑n

i=1 r[(
∑n

j=1 xj)− xi] ≤
U · (

∑n
i=1 min{(

∑n
j=1 xj)− xi,m} − (n− 1) min{

∑n
j=1 xj,m})

While this linear program is much more manageable, it may lead to worse results

than the earlier linear program, which optimizes over the more general class of linear

redistribution mechanisms that take the ordering information into account. We now

study some example solutions to this linear program, and compare them to the

Bailey-Cavallo redistribution mechanism [8, 20]. We recall that the Bailey-Cavallo

mechanism redistributes to every agent 1
n

times the VCG payment that would result

if this agent were removed from the auction. If we only consider bid profiles from

a specific maximal order consistent class, then for any i, the VCG payment that

would result if i is removed is a linear combination of the v−i,k. Therefore, the

Bailey-Cavallo mechanism belongs to the family of linear redistribution mechanisms

that consider the ordering information (and hence, the optimal solution to the earlier

linear program will do at least as well as the Bailey-Cavallo mechanism). The Bailey-

Cavallo mechanism does not belong to the family of linear redistribution mechanisms

that ignore the ordering information: in fact, we will see that it sometimes performs

better than the optimal mechanism among linear redistribution mechanisms that

ignore the ordering information. Hence, ignoring the ordering information in general

comes at a cost.

For these examples, let us recall that agent i’s bid vector Bi consists of m ele-

ments bi1, bi2, . . . , bim. In both examples, we assume that the values of bi1, bi2, . . . , bim

are drawn independently from the uniform [0, 1] distribution, with bij being the jth

highest among the m drawn values. We also assume that B1, B2, . . . , Bn are inde-
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pendent.

Example 7. Suppose that n = 3 and m = 2. By solving the above linear program

(the one that ignores the ordering information), we get the following linear redistri-

bution mechanism that ignores ordering information: r(B−i) = 2
3
v−i,3. That is, an

agent’s redistribution is equal to two thirds of the third highest marginal value among

the set of other bids. The expected waste of this mechanism is 0.2571. In contrast,

the expected waste of the Bailey-Cavallo mechanism is 0.4571. (The expected total

VCG payment is 1.0571.) So, for this example, the optimal linear redistribution

mechanism that ignores the ordering information outperforms the Bailey-Cavallo

mechanism.

Example 8. Suppose that n = 7 and m = 2. By solving the above linear program

(the one that ignores the ordering information), we get the following linear redis-

tribution mechanism that ignores ordering information: r(B−i) = 1
5
v−i,3 + 3

35
v−i,4.

That is, an agent’s redistribution is equal to 1
5

times the third highest marginal value

among the set of other bids, plus 3
35

times the fourth highest marginal value among

the set of other bids. The expected waste of this mechanism is 0.0923. In contrast,

the expected waste of the Bailey-Cavallo mechanism is 0.0671. (The expected to-

tal VCG payment is 1.5846.) So, for this example, the Bailey-Cavallo mechanism

outperforms the optimal linear redistribution mechanism that ignores the ordering

information.

In both of these examples (as well as in other examples for which we solved

the linear program, including examples with other distributions), the optimal linear

redistribution mechanism that ignores the ordering information is a special case of

the following more general mechanism.

Mechanism M∗ is defined as follows, where t = m+ bm(n−2)
n
c.

• r[k] = U k−m
n−2

for k = m+ 1,m+ 2, . . . , t
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• r[k] = U m
n

for k > t

The redistribution an agent receives is:

r(B−i) =
∑

m+1≤k≤t

1

n− 2
v−i,k + (

m

n
− t−m
n− 2

)v−i,t+1

We conjecture that there are some more general conditions under which M∗ is

the optimal linear redistribution mechanism that ignores the ordering information.
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2.3 Undominated VCG Redistribution Mechanisms

In the previous section, we mentioned a result (Proposition 21) that stated that

OEL mechanisms are collectively undominated. In this section, we will prove this

result and investigate the dominance notion in more detail. We study the prob-

lem of designing mechanisms whose redistribution functions are undominated in the

sense that no other mechanisms can always perform as well, and sometimes better.

(Here, “always” means for every profile of types.) We introduce two measures for

comparing two VCG redistribution mechanisms with respect to how well off they

make the agents. We say a non-deficit VCG redistribution mechanism is individu-

ally undominated if there exists no other non-deficit VCG redistribution mechanism

that always has a larger or equal redistribution for each agent. We say a non-deficit

VCG redistribution mechanism is collectively undominated if there exists no other

non-deficit VCG redistribution mechanism that always has a larger or equal sum of

redistributions. We study the question of finding maximal elements in the space of

non-deficit redistribution mechanisms, with respect to the partial orders induced by

both measures. For the first measure, we give a characterization of all individually

undominated VCG redistribution mechanisms, and propose two techniques for gener-

ating individually undominated mechanisms based on known individually dominated

mechanisms. Experimental results show that these techniques can significantly in-

crease the agents’ utilities. For the second measure, we characterize all collectively

undominated VCG redistribution mechanisms that are anonymous and have linear

payment functions, for auctions with multiple indistinguishable units, where each

agent is only interested in a single copy of the unit.
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2.3.1 Formalization

We still use n to denote the number of agents. We still use θi to denote agent

i’s true/reported type (we are restricting attention to strategy-proof mechanisms).

Unless specified, we are dealing with general combinatorial auctions in this section.

A VCG redistribution mechanism is defined by a function ri : Θ1 × . . .×Θi−1 ×

Θi+1 × . . . × Θn → R for each agent i. That is, letting θ−i be the vector of types

submitted by agents other than i, ri(θ−i) indicates the amount redistributed to i.

For an anonymous redistribution mechanism, ri = r for all i.

Let us say that a VCG redistribution mechanism is feasible if it satisfies the non-

deficit constraint.13 The trivial redistribution mechanism that redistributes nothing

is always feasible. As another example, Cavallo’s mechanism [20] is given by ri(θ−i) =

1
n

min
θi∈Θi

V CG(θi, θ−i), where V CG(θi, θ−i) is the total VCG payment collected for

those reports. We could see that each agent’s redistribution is at most 1
n

of the total

VCG payment, so that there is never a deficit.

2.3.2 Individual and Collective Dominance

How should we select a redistribution mechanism? In general, we prefer to redis-

tribute as much as possible. However, two redistribution mechanisms may be incom-

parable in the sense that one redistributes more for one vector of reported types, and

the other redistributes more for another vector. In this subsection, we define two

measures for comparing two VCG redistribution mechanisms with respect to how

well off they make the agents.

13 It should be noted that here we do not require a feasible VCG redistribution mechanism to
be individually rational. There are two reasons for this. First, as mentioned in Section 2.2, since
our objective is to maximize social welfare, if the prior distribution over the agents’ valuations is
symmetric across agents, then under any redistribution mechanism that redistributes a nonnegative
amount of payment in expectation, every agent benefits from participating in the mechanism (the
agent receives nonnegative expected utility). That is, ex-interim individual rationality is not a
binding constraint. Second, some of the results in this section are based on the OEL mechanisms,
which ignore individual rationality. To be consistent, we also ignore individual rationality here.
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Before discussing the above two measures, we first mathematically characterize

all feasible VCG redistribution mechanisms.

Proposition 34. A redistribution mechanism r = (r1, . . . , rn) is feasible if and only

if for all i and all θ1, . . . , θn

ri(θ−i) ≤ inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rj(θ
′
−j)}14 (2.1)

Here, θ′−j are the reported types of the agents other than j when θi is replaced by θ′i.

V CG(θ′i, θ−i) is the total VCG payments for the type vector θ1, . . . , θi−1, θ
′
i, θi+1, . . . , θn.

Proof. We first prove the “if” direction. For any i and θ1, . . . , θn, Equation 2.1

implies that ri(θ−i) ≤ V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j) for any θ′i ∈ Θi. If we let θ′i = θi,

we obtain ri(θ−i) +
∑
j 6=i

rj(θ−j) ≤ V CG(θi, θ−i). Thus, the non-deficit property holds.

We now prove the “only if” direction. By the non-deficit property, for any

i, any θ1, . . . , θi−1, θi+1, . . . , θn, and any θ′i, we must have ri(θ−i) +
∑
j 6=i

rj(θ
′
−j) ≤

V CG(θ′i, θ−i), or equivalently ri(θ−i) ≤ V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j). Since θ′i is arbi-

trary, Equation 2.1 follows.

Now we are ready to define individual and collective (un)dominance.

Definition 1. A redistribution mechanism r is individually undominated if it is feasi-

ble, and there does not exist a feasible redistribution mechanism r′ that individually

dominates it, that is,

• for all i, for all θ1, . . . , θn, r′i(θ−i) ≥ ri(θ−i).

• for some i, for some θ1, . . . , θn, r′i(θ−i) > ri(θ−i).

14 We use “inf” instead of “min”, because r may not be continuous.
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Definition 2. A redistribution mechanism r is collectively undominated if it is feasi-

ble, and there does not exist a feasible redistribution mechanism r′ that collectively

dominates it, that is,

• for all θ1, . . . , θn,
∑

i r
′
i(θ−i) ≥

∑
i ri(θ−i).

• for some θ1, . . . , θn,
∑

i r
′
i(θ−i) >

∑
i ri(θ−i).

It is easy to see that being collectively undominated is stronger than being in-

dividually undominated. Next, we give an example to show that being collectively

undominated is strictly stronger.

Example 9. Consider a single-item auction with 4 players. We assume that for each

player, the set of allowed types is the same, namely, integers from 0 to 3. Here, the

VCG mechanism is just the second-price auction.

We define feasible redistribution mechanisms 1 and 2 as follows:

Mechanism 1: r(θ−i) = r([θ−i]1, [θ−i]2, [θ−i]3), and the function r is given in

Table 2.5. ([θ−i]j is the jth highest type among types other than i’s own type.)

Mechanism 2: r′(θ−i) = r′([θ−i]1, [θ−i]2, [θ−i]3), and the function r′ is given in

Table 2.5.

With the above characterization, mechanism 2 collectively dominates mechanism

1. The redistribution under mechanism 2 is never lower, and in some cases it is strictly

higher: for example, for the type vector (3, 2, 2, 2), the total redistribution under

mechanism 1 is 1/2, but the total redistribution under mechanism 2 is 1. On the

other hand, mechanism 2 does not individually dominate mechanism 1: for example,

r(3, 3, 2) = 1 > 5/6 = r′(3, 3, 2). In fact, no feasible redistribution mechanism

individually dominates mechanism 1.
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Table 2.5: Example mechanisms for differentiating being collectively undominated
and being individually undominated.

r(0,0,0) 0 r′(0,0,0) 0
r(1,0,0) 0 r′(1,0,0) 0
r(1,1,0) 1/4 r′(1,1,0) 1/4
r(1,1,1) 1/4 r′(1,1,1) 1/4
r(2,0,0) 0 r′(2,0,0) 0
r(2,1,0) 1/12 r′(2,1,0) 7/24
r(2,1,1) 0 r′(2,1,1) 1/6
r(2,2,0) 1/2 r′(2,2,0) 1/2
r(2,2,1) 0 r′(2,2,1) 1/4
r(2,2,2) 1/2 r′(2,2,2) 1/2
r(3,0,0) 0 r′(3,0,0) 0
r(3,1,0) 1/4 r′(3,1,0) 1/4
r(3,1,1) 0 r′(3,1,1) 1/4
r(3,2,0) 2/3 r′(3,2,0) 2/3
r(3,2,1) 1 r′(3,2,1) 19/24
r(3,2,2) 0 r′(3,2,2) 1/6
r(3,3,0) 2/3 r′(3,3,0) 5/6
r(3,3,1) 0 r′(3,3,1) 7/12
r(3,3,2) 1 r′(3,3,2) 5/6
r(3,3,3) 0 r′(3,3,3) 1/2

2.3.3 Individually Undominated Redistribution Mechanisms

In this subsection, we focus on individually undominated redistribution mechanisms.

We first give a characterization of all individually undominated VCG redistribution

mechanisms. Then, we propose two techniques for generating individually undomi-

nated mechanisms based on known individually dominated mechanisms. Finally, our

experimental results show that these techniques can significantly increase the agents’

utilities.

Theorem 7. A redistribution mechanism r is individually undominated if and only

if for all i and all θ1, . . . , θn

ri(θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rj(θ
′
−j)} (2.2)
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Here, θ′−j are the reported types of the agents other than j when θi is replaced by θ′i.

It should be noted that the only difference between Equation 2.1 and Equation 2.2

is that “≤” is replaced by “=”.

Proof. We prove the “if” direction first. Any redistribution mechanism r that sat-

isfies Equation 2.2 is feasible by Proposition 34. Now suppose that r is individ-

ually dominated, that is, there exists a feasible redistribution mechanism r′ such

that for all i and θ−i, we have r′i(θ−i) ≥ ri(θ−i), and for some i and θ−i, we have

r′i(θ−i) > ri(θ−i). For the i and θ−i that make this inequality strict, we have r′i(θ−i) >

ri(θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
j 6=i

rj(θ
′
−j)} ≥ inf

θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
j 6=i

r′j(θ
′
−j)}. But

this contradicts the feasibility of r′. It follows that r is individually undominated.

Now we prove the “only if” direction. Suppose Equation 2.2 is not satisfied. Then,

there exists some i and θ−i such that ri(θ−i) < inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rj(θ
′
−j)}. Let

a = inf
θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
j 6=i

rj(θ
′
−j)} − ri(θ−i) (so that a > 0), and let r′ be the

same as r, except that for the aforementioned i and θ−i, r
′
i(θ−i) = ri(θ−i) + a.

To show that this does not break the non-deficit constraint, consider any type

vector (θi, θ−i) where i and θ−i are the same as before (that is, any type vector

that is affected). Then, r′i(θ−i) = a + ri(θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
j 6=i

rj(θ
′
−j)} =

inf
θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
j 6=i

r′j(θ
′
−j)}. Thus, by Proposition 34, r′ is feasible. This con-

tradicts that r is individually undominated. Hence, Equation 2.2 must hold.

As an aside, suppose we were only interested in anonymous mechanisms, and

we would therefore only consider a mechanism individually dominated if it were

individually dominated by an anonymous mechanism. Then, the characterization in
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Theorem 7 remains identical.15 Therefore, all of our results apply to this modified

definition as well.

An individually undominated redistribution mechanism always exists; in general,

it is not unique. We now give two examples of individually undominated redistribu-

tion mechanisms.

Example 10. Consider a single-item auction with n ≥ 3 agents. Agent i bids

θi ∈ [0,∞). Let p(j, θ) be the jth highest element of θ. If r is Cavallo’s mecha-

nism, then r(θ−i) = 1
n
p(2, θ−i) (Cavallo’s mechanism is anonymous, so we omit the

subscript of r.) To show r is individually undominated, it suffices to show Equa-

tion 2.2 is satisfied. For Equation 2.2, we first observe that for all θ′i, V CG(θ′i, θ−i) =

p(2, (θ′i, θ−i)) ≥ p(2, θ−i) and for all j 6= i, V CG(θ′i, θ−i) = p(2, (θ′i, θ−i)) ≥ p(2, θ′−j).

Because ri(θ−i) +
∑
j 6=i

rj(θ
′
−j) = 1

n
p(2, θ−i) + 1

n

∑
j 6=i

p(2, θ′−j), it follows that for all θ′i,

ri(θ−i) ≤ V CG(θ′i, θ−i)−
∑
j 6=i

rj(θ
′
−j). Moreover, if θ′i = p(2, θ−i), then all of the above

inequalities become equalities. Hence Equation 2.2 holds. It follows that Cavallo’s

mechanism is individually undominated in this setting. (We will show that it is not

individually undominated in more general settings.)

Example 11. Consider again a single-item auction with n ≥ 5 agents. Agent i

bids θi. Let r be the following anonymous redistribution mechanism: r(θ−i) =

1
n−2

p(2, θ−i)− 2
(n−2)(n−3)

p(3, θ−i) + 6
n(n−2)(n−3)

p(4, θ−i). Equation 2.2 can be shown to

hold (the equality in Equation 2.2 is achieved by setting θ′i = p(4, θ−i)).

Because in general, there are multiple individually undominated redistribution

mechanisms, it is not clear which one is the best. If a prior distribution over agents’

types is available, then we would prefer the one that redistributes the most in ex-

pectation; however, in this section, we do not wish to assume that such a prior is

15 This can be proved by modifying the proof of Theorem 7, adding a/n to each agent’s redistri-
bution function instead of adding a to one agent’s redistribution function.
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available. Nevertheless, for any (feasible) redistribution mechanism that we might

consider using, if it is individually dominated, then there exists another (feasible)

redistribution mechanism that always redistributes at least as much to each agent,

and more in some cases. Thus, in expectation, the latter mechanism redistributes at

least as much for any prior distribution, and strictly more if the prior assigns positive

probability to the set of type vectors on which the latter mechanism redistributes

more. Hence, we would certainly prefer the latter mechanism—and if that mecha-

nism is not individually undominated, we would prefer to find one that individually

dominates it, etc. But how do we find such an improved mechanism? This is what

we study next.

In what follows, we propose two techniques that, given a redistribution mechanism

that is feasible and individually dominated, find a feasible redistribution mechanism

that individually dominates it. (If the initial mechanism is already individually un-

dominated, then the techniques will return the same mechanism.) One technique im-

mediately produces an individually undominated mechanism that is not anonymous;

the other techniques preserve anonymity, and after repeated application converge to

an individually undominated mechanism. We emphasize that we can start with any

feasible redistribution mechanism, including Cavallo’s mechanism, the WCO mech-

anism (which, even though is optimal in the worst case, is generally not individu-

ally undominated), or even the trivial redistribution mechanism that redistributes

nothing. These techniques can also be useful in settings where we do have a prior

distribution. For example, after designing a redistribution mechanism based on a

prior distribution, we can further improve it and make it individually undominated,

which will never decrease the redistribution payment to any agent.
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A Priority-Based Technique

Given a feasible redistribution mechanism r and a priority order over agents π, we

can improve r into an individually undominated redistribution mechanism that is

not anonymous. The technique works as follows.

1) Let π : {1, . . . , n} → {1, . . . , n} be a permutation representing the priority

order. That is, π(i) is agent i’s priority value (the lower the value, the higher the

priority). π−1(k) is the agent with the kth-highest priority.

2) Let i = π−1(1), and update i’s redistribution function to rπi (θ−i) = inf
θ′i∈Θi
{

V CG(θ′i, θ−i) −
∑

π(j)>1

rj(θ
′
−j)}. That is, we redistribute as much as possible to this

agent without breaking feasibility.

3) We will now consider the remaining agents in turn, according to the order

π. In the kth step, we update the redistribution function of agent i = π−1(k) to

rπi (θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
π(j)>k

rj(θ
′
−j)−

∑
π(j)<k

rπj (θ′−j)}. That is, we redistribute

as much as possible to this agent without breaking feasibility, taking the previous

k − 1 updates into account.

Thus, for every agent i, rπi (θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
π(j)>π(i)

rj(θ
′
−j)

−
∑

π(j)<π(i)

rπj (θ′−j)}. The new redistribution mechanism rπ satisfies the following

properties:

Proposition 35. For all i, for all θ−i, r
π
i (θ−i) ≥ ri(θ−i).

Proof. First consider i = π−1(1), the agent with the highest priority. For any θ−i,

we have rπi (θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rj(θ
′
−j)}. Since the original redistribution

mechanism r is feasible, by Equation 2.1, we have ri(θ−i) ≤ inf
θ′i∈Θi
{V CG(θ′i, θ−i) −
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∑
j 6=i

rj(θ
′
−j)}. Hence rπi (θ−i) ≥ ri(θ−i).

For any i 6= π−1(1), rπi (θ−i) = ri(θ−i)+ inf
θ′i∈Θi
{V CG(θ′i, θ−i)−ri(θ−i)−

∑
π(j)>π(i)

rj(θ
′
−j)−∑

π(j)<π(i)

rπj (θ′−j)}. We must show inf
θ′i∈Θi
{V CG(θ′i, θ−i) − ri(θ−i) −

∑
π(j)>π(i)

rj(θ
′
−j) −∑

π(j)<π(i)

rπj (θ′−j)} ≥ 0.

Consider p = π−1(π(i)− 1) (the agent immediately before i in terms of priority).

For any θi, θ−i, we have V CG(θi, θ−i)− ri(θ−i)−
∑

π(j)>π(i)

rj(θ−j)−
∑

π(j)<π(i)

rπj (θ−j) =

V CG(θi, θ−i)−
∑

π(j)>π(p)

rj(θ−j)−
∑

π(j)<π(p)

rπj (θ−j)− rπp (θ−p) ≥ inf
θ′p∈Θp

{V CG(θ′p, θ−p)−∑
π(j)>π(p)

rj(θ
′
−j)−

∑
π(j)<π(p)

rπj (θ′−j)}− rπp (θ−p) = 0. (For the above inequality only, θ′−j

is the set of types reported by the agents other than j when θp is replaced by θ′p.)

Because θi is arbitrary, it follows that inf
θ′i∈Θi
{V CG(θ′i, θ−i)−ri(θ−i)−

∑
π(j)>π(i)

rj(θ
′
−j)−∑

π(j)<π(i)

rπj (θ′−j)} ≥ 0. It follows that rπi (θ−i) ≥ ri(θ−i) for all i and θ−i.

Proposition 36. rπ is an individually undominated redistribution mechanism.

Proof. Let i = π−1(n). For all θ1, . . . , θn, the total VCG payment that is not redis-

tributed by rπ is V CG(θ1, . . . , θn)−
∑

j=1,...,n

rπj (θ−j) ≥ inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rπj (θ′−j)}−

rπi (θ−i) = 0. Hence rπ never incurs a deficit. So, rπ is feasible.

Using Proposition 35, we have rπi (θ−i) = inf
θ′i∈Θi
{V CG(θ′i, θ−i) −

∑
π(j)>π(i)

rj(θ
′
−j) −∑

π(j)<π(i)

rπj (θ′−j)} ≥ inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=n

rπj (θ′−j)}. Because rπ is feasible, the op-

posite inequality must also be satisfied (Equation 2.1)—hence we must have equality,

that is, Equation 2.2 must hold. It follows that rπ is individually undominated.

Example 12. Consider a single-item auction with four agents 1, 2, 3, 4. In this set-

ting, the redistribution under the WCO mechanism to agent i is r(θ−i) = (2/7)p(2, θ−i)−
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(1/7)p(3, θ−i) (where p(k, θ−i) is the kth highest bid among bids other than i’s).

Consider a specific set of bids (8, 10, 13, 5) and let π(i) = i for all i. (That is,

agent 1 bids 8 for the item and has the highest priority, etc.) If we apply the

above technique, the resulting redistribution payment to agent 1 is rπ1 (10, 13, 5) =

inf
θ′1∈[0,∞)

{V CG(θ′1, 10, 13, 5)− r(θ′1, 13, 5)− r(θ′1, 10, 5)− r(θ′1, 10, 13)} (where r is the

WCO mechanism). It turns out that the expression is minimized at θ′1 = 0, so that

rπ1 (10, 13, 5) = 30
7

. This is twice the amount 1 would have received under WCO:

r(10, 13, 5) = (2/7) · 10− (1/7) · 5 = 15
7

.

For agent 2, rπ2 (8, 13, 5) = inf
θ′2∈[0,∞)

{V CG(8, θ′2, 13, 5)− rπ1 (θ′2, 13, 5)− r(8, θ′2, 5)−

r(8, θ′2, 13)}. This expression is minimized at θ′2 = 8, so that rπ2 (8, 13, 5) = 17
7

. (Under

WCO, 2 receives only 11
7

.)

For agent 3, rπ3 (8, 10, 5) = inf
θ′3∈[0,∞)

{V CG(8, 10, θ′3, 5)− rπ1 (10, θ′3, 5)− rπ2 (8, θ′3, 5)−

r(8, 10, θ′3)}. This expression is minimized at θ′3 = 8, so that rπ3 (8, 10, 5) = 11
7

. (Under

WCO, 3 receives 11
7

as well.)

For agent 4 rπ4 (8, 10, 13) = inf
θ′4∈[0,∞)

{V CG(8, 10, 13, θ′4)−rπ1 (10, 13, θ′4)−rπ2 (8, 13, θ′4)−

rπ3 (8, 10, θ′4)}. This expression is minimized at θ′4 = 5, so that rπ4 (8, 10, 13) = 12
7

. (Un-

der WCO, 4 receives 12
7

as well.)

We note that for this priority order, the total amount redistributed is 30+17+11+12
7

=

10, that is, all of the VCG payments are redistributed. This is not true for all priority

orders; averaging over all priority orders, 0.315 remains unredistributed (compared

to 3 for the WCO mechanism). Table 2.6 shows the results for all priority orders for

this example.

Generally, most of the increase in redistribution payment goes to high-priority

agents. Hence, a reasonable approximation can be obtained by only updating the

redistribution payment functions of the first few agents. This still results in a feasible
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mechanism that individually dominates the original (or is the same), but it is no

longer guaranteed to be individually undominated.

Iterative Techniques that Preserve Anonymity

The earlier technique will, in general, not produce an anonymous redistribution mech-

anism, even if the original mechanism r is anonymous. This is because agents higher

in the priority order tend to receive higher redistribution payments. Here, we will

introduce techniques that preserve anonymity.

One way to obtain an anonymous mechanism is to consider rπ for all permutations

π, and take the average. That is, let r̄ be defined by r̄i = 1
n!

∑
π∈Sn

(rπi ), where Sn is

the set of all permutations of n elements. Given that the setting and the initial

mechanism are anonymous, this results in an anonymous mechanism. It is also

feasible:

Proposition 37. Any convex combination of a set {r(1), . . . , r(t)} of feasible redis-

tribution mechanisms is itself feasible.

Proof. Let
t∑

k=1

αk = 1 with each αk ≥ 0; we must show that r =
t∑

k=1

αkr
(k) is

feasible. For any i and θ−i, for any k, we have r
(k)
i (θ−i) ≥ 0, hence ri(θ−i) =

t∑
k=1

αkr
(k)
i (θ−i) ≥ 0. This implies individual rationality. Also, for any θ1, . . . , θn,

for any k,
n∑
i=1

r
(k)
i (θ−i) ≤ V CG(θ1, . . . , θn), hence

n∑
i=1

ri(θ−i) =
t∑

k=1

αk
n∑
i=1

r
(k)
i (θ−i) ≤

V CG(θ1, . . . , θn). This implies the non-deficit property.

Because r̄ is anonymous, all r̄i are the same, so we will simply use r̄. Even though

r̄ is an average of a set of individually undominated redistribution mechanisms, in

general, it itself is not individually undominated. In principle, we can take the
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resulting mechanism and apply the technique again. Unfortunately, this approach is

not computationally practical—in fact, it may not be feasible to perform even one

iteration of this technique if n is large, since we have to take an average over n!

mechanisms.16 However, as we mentioned, it is also possible to apply the priority-

based technique only to the first h agents. This still results in a feasible (but not

necessarily individually undominated) mechanism, and tends to obtain most of the

increase in redistribution payments. Taking the average over all such mechanisms is

feasible for sufficiently small h (there will be P n
h = n!/(n−h)! such mechanisms), and

will result in an anonymous mechanism. We will consider the extreme case where

h = 1 (i.e. we only change one agent’s redistribution function), so that we have to

take an average over only n mechanisms. This we can do iteratively.

Given a feasible and anonymous redistribution mechanism r, let r0 = r, and

let rk be the mechanism that results after k iterations of the above technique (with

h = 1). Then, for all i and θ1, . . . , θn, rk+1(θ−i) = n−1
n
rk(θ−i)+ 1

n
inf
θ′i∈Θi
{V CG(θ′i, θ−i)−∑

j 6=i
rk(θ′−j)}.

This technique can be interpreted as a generalization of the basic idea underlying

Cavallo’s mechanism. We can rewrite rk+1(θ−i) = rk(θ−i) + 1
n

inf
θ′i∈Θi
{V CG(θ′i, θ−i) −∑

j 6=i
rk(θ′−j) − rk(θ−i)}. If the starting mechanism r = r0 is the trivial redistribution

mechanism that redistributes nothing, then r1(θ−i) = 1
n

inf
θ′i∈Θi
{V CG(θ′i, θ−i)}, which

is exactly Cavallo’s mechanism.

Proposition 38. If rk is feasible, rk+1 is feasible.

16 Computational limitations often prevent us from using certain mechanisms. As an extreme
example, it is possible to have a computer search over the space of all possible (truthful) mechanisms
for the setting at hand and find the best one [30] (more details in Section 1.2), but this does not scale
to very large instances. By contrast, here, we have an analytical characterization of the mechanism,
but computing its outcomes is still hard.
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Proof. rk+1 is an average of feasible mechanisms, so Proposition 37 applies.

Proposition 39. For any i and θ−i, r
k(θ−i) is nondecreasing in k.

Proof. rk+1(θ−i) = rk(θ−i)+ 1
n

inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)−rk(θ−i)}. Because rk

is feasible by Proposition 38, inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)− rk(θ−i)} ≥ 0. Hence

rk+1(θ−i) ≥ rk(θ−i).

Proposition 40. As k → ∞, rk converges (point-wise) to an individually undomi-

nated redistribution mechanism.

Proof. By Proposition 39, the rk(θ−i) are nondecreasing in k, and since every rk is

feasible by Proposition 38, they must be bounded; hence they must converge (point-

wise). For any i and θ−i, let dk = inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)} − rk(θ−i). Using

Proposition 39, we derive the following inequality: dk+1 = inf
θ′i∈Θi
{V CG(θ′i, θ−i) −∑

j 6=i
rk+1(θ′−j)} − rk+1(θ−i) ≤ inf

θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)} − rk+1(θ−i) = inf
θ′i∈Θi
{

V CG(θ′i, θ−i)−
∑
j 6=i

rk(θ′−j)}− n−1
n
rk(θ−i)− 1

n
inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)} = n−1
n

inf
θ′i∈Θi
{V CG(θ′i, θ−i)−

∑
j 6=i

rk(θ′−j)} − n−1
n
rk(θ−i) = n−1

n
dk. As k →∞, dk = inf

θ′i∈Θi
{

V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)} − rk(θ−i) → 0. So in the limit, Equation 2.2 is satis-

fied. Thus, rk converges (point-wise) to an individually undominated redistribution

mechanism.

Corollary 4. If rk+1 = rk, then rk is individually undominated.

Proposition 41. If rk is not individually undominated, then rk+1 individually dom-

inates rk.
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Proof. rk+1 always redistributes at least as much as rk to each agent by Proposi-

tion 39. Moreover, rk+1 6= rk (otherwise Corollary 4 would imply rk is individually

undominated). Hence there must be a case where rk+1 redistributes more than rk.

Next, we present the results of some experiments in which we use the techniques

we proposed to improve both the WCO mechanism and Cavallo’s mechanism. For the

purpose of completeness, we also apply the nonanonymous (priority-based) technique

to the trivial redistribution mechanism that redistributes nothing, and compare the

resulting mechanism’s performance with that of Cavallo’s mechanism. (We omit the

result of applying the anonymity-preserving technique to the trivial redistribution

mechanism because, as we mentioned, after one iteration, we just obtain Cavallo’s

mechanism. We also omit the result of applying the nonanonymous technique to the

trivial redistribution mechanism in multi-unit auctions with unit demand, because

the resulting mechanism always has the same expected redistribution amount as

Cavallo’s mechanism: m(m+1)/n times the m+2th highest bid, plus m(n−m−1)/n

times the m+ 1th highest bid.)

Improving the WCO mechanism. The WCO mechanism applies only to

multi-unit auctions with unit demand (i.e. in which each agent only wants a single

unit); in this setting, this mechanism maximizes the percentage that is redistributed

in the worst case. This, however, does not mean that it is individually undominated,

because it could be individually dominated by another mechanism that does equally

well in the worst case, and better in other cases. Indeed, we can improve the WCO

mechanism using our techniques (resulting in another, better, worst-case optimal

mechanism).

For various m (number of units) and n (number of agents), we generated 100

random instances with each agent’s valuation drawn uniformly from [0, 1]. Table 2.7

shows the ratio between the average amount that is not redistributed by the new
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mechanism (which results from applying one of our techniques to the WCO mech-

anism), and the average amount that is not redistributed by the (original) WCO

mechanism. That is, it is the percentage of the amount that WCO fails to re-

distribute that the new mechanism also fails to redistribute. Lower numbers are

better—100% indicates no improvement over WCO, 0% indicates that everything is

redistributed. For the nonanonymous (priority-based) technique, to save computa-

tion time, we only update the redistribution payments for the first three agents. This

technique redistributes more than the anonymity-preserving technique.

Improving Cavallo’s mechanism. We recall that Cavallo’s mechanism is in-

dividually undominated in the single-item auction setting (in fact, this remains true

for multi-unit auctions with unit demand). However, as the experiment below shows,

it is not individually undominated in general.

For a combinatorial auction with n single-minded agents and 2 items, we gener-

ated 100 random instances. For each agent, we randomly chose a nonempty bundle

of items, and randomly chose a per-item value from [0, 1] (which is multiplied by

two if the agent desires the bundle of two items). The percentages have the same

meaning as before. We distinguish between the known single-minded case (where

the auctioneer knows which bundle the agent wants) and the unknown case. Again,

the nonanonymous technique redistributes more; also, more is redistributed in the

known case. The experimental results are shown in Table 2.8.

For the same set of 100 random instances, Table 2.9 shows the ratio between

the average amount that is not redistributed by the mechanism which results from

applying the nonanonymous technique to the trivial redistribution mechanism, and

the average amount that is not redistributed by Cavallo’s mechanism.
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2.3.4 Collectively Undominated Redistribution Mechanisms

In this subsection, we characterize all collectively undominated VCG redistribution

mechanisms that are anonymous and have linear payment functions, for auctions

with multiple indistinguishable units, where each agent is only interested in a single

copy of the unit.

First of all, we show that for multi-unit auctions with unit demand, the OEL

mechanisms, which are anonymous and have linear payment functions, are collec-

tively undominated (Proposition 21).

Proof. We only need to prove that the OEL mechanisms are not collectively dom-

inated by any anonymous feasible redistribution mechanism. Suppose a nonanony-

mous feasible redistribution mechanism r collectively dominates an OEL mechanism

r′, then by permuting the indices of the agents under both mechanisms, the permuted

r still collectively dominates the permuted r′. Since r′ is anonymous, the permuted

r′ is just r′. That is, any permuted r collectively dominates r′. Now we take the

average of all permuted r corresponding to all possible permutations of the agents.

The resulting mechanism r̄ is anonymous, and it collectively dominates r′. There-

fore, if a nonanonymous feasible redistribution mechanism collectively dominates an

OEL mechanism, then there exists an anonymous feasible redistribution mechanism

that collectively dominates an OEL mechanism. Therefore, we only need to prove

that the OEL mechanisms are not collectively dominated by any other anonymous

feasible redistribution mechanisms.

Since we are dealing with multi-unit auctions with unit demand, an agent’s type

is just a single value. We use [θ]i to denote the ith highest type among the agents.

We still use U and L to denote the upper bound and the lower bound on the agents’

types, respectively.

We recall that an OEL mechanism corresponds to an index from 0 to n. For
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k = 1, 2, . . . , n − 1, the waste under the OEL mechanism with index k equals

m
(
n−1
m

)
/
(
n
k

)
([θ]k − [θ]k+1). The waste under the OEL mechanism with index 0

equals m
(
n−1
m

)
(U − [θ]1). The waste under the OEL mechanism with index n equals

m
(
n−1
m

)
([θ]n − L).

We first prove that for k ∈ {1, . . . , n − 1}, the OEL mechanism with index k is

collectively undominated.

Suppose a feasible anonymous redistribution mechanism (corresponding to the

redistribution function) r collectively dominates an OEL mechanism (corresponding

to the redistribution function) r′ with index k ∈ {1, . . . , n− 1}.

For any i and θ−i, we define the following function: ∆(θ−i) = r(θ−i)− r′(θ−i).

Since r collectively dominates r′, we have that for any type profile,
∑n

i=1 ∆(θ−i) ≥

0.

We also have that, whenever [θ]k+1 = [θ]k, there is no waste under r′. In this

case, because r is feasible, its total redistribution must equal the total redistribution

under r′ (otherwise, there will be deficit). Hence, whenever [θ]k+1 = [θ]k, we have∑n
i=1 ∆(θ−i) = 0.

Now we claim that ∆(θ−i) = 0 for all θ−i.

Let c(θ−i) be the number of types among θ−i that equal [θ−i]k (the kth highest

type among θ−i). Hence, we must show that for all θ−i with c(θ−i) ≥ 1, we have

∆(θ−i) = 0.

We now prove it by induction on the value of c (backwards, from n− 1 to 1).

Base case: c = n− 1.

Suppose there is a θ−i with c(θ−i) = n − 1. That is, all the types in θ−i are

identical. When θi is also equal to the types in θ−i, all types are the same so that

[θ]k+1 = [θ]k. Hence, by our earlier observation, we have
∑n

j=1 ∆(θ−j) = 0. But we

know that for all j, ∆(θ−j) is the same value. Hence ∆(θ−i) = 0 for all θ−i when
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c(θ−i) = n− 1.

Induction step.

Let us assume that for all θ−i, if c(θ−i) ≥ p (where p ∈ {2, . . . , n − 1}), then

∆(θ−i) = 0. Now we consider any θ−i with c(θ−i) = p − 1. When θi is equal

to [θ−i]k, we have [θ]k = [θ]k+1, which implies that
∑n

j=1 ∆(θ−j) = 0. For all j

with θj = [θ−i]k, ∆(θ−j) = ∆(θ−i), and for other j, c(θ−j) = p. Therefore, by the

induction assumption,
∑n

j=1 ∆(θ−j) is a positive multiple of ∆(θ−i), which implies

that ∆(θ−i) = 0.

By induction, we have shown that ∆(θ−i) = 0 for all θ−i. This implies that r

and r′ are identical. Hence, no other feasible anonymous redistribution mechanism

collectively dominates an OEL mechanism with index k ∈ {1, . . . , n− 1}.

Similarly, we can prove that no other feasible anonymous redistribution mecha-

nism collectively dominates an OEL mechanism with index k = 0 or k = n. (In the

above induction steps, we set θi to be equal to [θ−i]k. To prove that no other feasi-

ble anonymous redistribution mechanism collectively dominates an OEL mechanism

with index k = 0, we use the same induction steps, except that we set θi to be equal

to U . To prove that no other feasible anonymous redistribution mechanism collec-

tively dominates an OEL mechanism with index k = n, we use the same induction

steps, except that we set θi to be equal to L. )

Next, we show that for multi-unit auctions with unit demand, the OEL mech-

anisms are the only individually undominated redistribution mechanisms that are

anonymous and have linear payment functions.

Proposition 42. For multi-unit auctions with unit demand, the OEL mechanisms

are the only individually undominated redistribution mechanisms that are anonymous

and have linear payment functions.

Before proving this theorem, let us introduce the following lemma:
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Lemma 4. Let I be the set of points (s1, s2, . . . , sk) (U ≥ s1 ≥ s2 ≥ . . . ≥ sk ≥ L)

that satisfy Q0 +Q1s1 +Q2s2 + . . .+Qksk = 0 (the Qi are constants). If the measure

of I is positive (Lebesgue measure on Rk), then Qi = 0 for all i.

Proof. If Qi 6= 0 for some i, then for any U ≥ s1 ≥ s2 ≥ . . . ≥ si−1 ≥ si+1 ≥ . . . ≥

sk ≥ L, to make Q0 +Q1s1 +Q2s2 + . . .+Qksk = 0, si can take at most one value.

As a result the measure of I must be 0.

Proof of Proposition 42. We still use [θ]i to denote the ith highest type among the

agents. We still use U and L to denote the upper bound and the lower bound on the

agents’ types, respectively.

Let r be a feasible anonymous linear redistribution mechanism. We recall that

a redistribution mechanism is anonymous and linear if the redistribution function is

defined as r(θ−i) = a0 +
n−1∑
j=1

aj[θ−i]j. Here, the aj are constants.

For any type profile, the total redistribution
n∑
i=1

r(θi) =
n∑
i=1

(a0 +
n−1∑
j=1

aj[θ−i]j). In

our setting, the total VCG payment equals m[θ]m+1. Therefore, for any type profile,

the waste is a linear function in terms of the types. For simplicity, we rewrite the

waste as C0 +C1[θ]1 +C2[θ]2 + . . .+Cn[θ]n. The Ci are constants determined by the

ai. We have

C0 = −na0

C1 = −(n− 1)a1

C2 = −a1 − (n− 2)a2

C3 = −2a2 − (n− 3)a3

...

Cm = −(m− 1)am−1 − (n−m)am

Cm+1 = −mam − (n−m− 1)am+1 +m

122



Cm+2 = −(m+ 1)am+1 − (n−m− 2)am+2

...

Cn−1 = −(n− 2)an−2 − an−1

Cn = −(n− 1)an−1

Given any θ−i, for any possible value of θi, we must have
n∑
j=1

r(θ−j) ≤ m[θ]m+1

(non-deficit). That is, for any θ−i, we have min
θi

(m[θ]m+1 −
n∑
j=1

r(θ−j)) ≥ 0. If for

some θ−i, we have min
θi

(m[θ]m+1−
n∑
j=1

r(θ−j)) > ε (ε > 0), then we can increase r(θ−i)

(the redistribution of agent i) by ε without violating the non-deficit constraint when

the other agents’ types are θ−i. Therefore, if r is individually undominated, for any

θ−i, we have min
θi

(m[θ]m+1 −
n∑
j=1

r(θ−j)) = 0.

We denote [θ−i]j (the jth highest type among θ−i) by sj (j = 1, . . . , n− 1). That

is, s1 ≥ s2 ≥ . . . ≥ sn−1.

min
θi

(m[θ]m+1−
n∑
j=1

r(θ−j)) then equals the minimum of the following expressions:

min
L≤θi≤sn−1

(m[θ]m+1 −
n∑
j=1

r(θ−j))

min
sn−1≤θi≤sn−2

(m[θ]m+1 −
n∑
j=1

r(θ−j))

...

min
s2≤θi≤s1

(m[θ]m+1 −
n∑
j=1

r(θ−j))

min
s1≤θi≤U

(m[θ]m+1 −
n∑
j=1

r(θ−j))

We take a closer look at min
L≤θi≤sn−1

(mθm+1−
n∑
j=1

r(θ−j)). When L ≤ θi ≤ sn−1, the
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jth highest type [θ]j = sj for j = 1, . . . , n − 1, and the nth highest type [θ]n = θi

(this case corresponds to agent i being the agent with the lowest type). We have

min
L≤θi≤sn−1

(mθm+1−
n∑
j=1

r(θ−j)) = min
L≤θi≤sn−1

(C0 +C1s1 +C2s2 + . . .+Cn−1sn−1 +Cnθi) =

min{C0 +C1s1 + . . .+Cn−1sn−1 +CnL,C0 +C1s1 + . . .+Cn−1sn−1 +Cnsn−1}. That

is, because the expression is linear, the minimum is reached when θi is set to either

the lower bound L or the upper bound sn−1.

Similarly, we have min
sn−1≤θi≤sn−2

(mθm+1−
n∑
j=1

r(θ−j)) = min{C0+C1s1+C2s2+. . .+

Cn−2sn−2+Cn−1sn−1+Cnsn−1, C0+C1s1+C2s2+. . .+Cn−2sn−2+Cn−1sn−2+Cnsn−1}.
...

min
s2≤θi≤s1

(mθm+1−
n∑
j=1

r(θ−j)) = min{C0 +C1s1 +C2s1 +C3s2 + . . .+Cnsn−1, C0 +

C1s1 + C2s2 + C3s2 + . . .+ Cnsn−1}.

min
s1≤θi≤U

(mθm+1−
n∑
j=1

r(θ−j)) = min{C0 +C1U +C2s1 + . . .+Cnsn−1, C0 +C1s1 +

C2s1 + . . .+ Cnsn−1}.

Putting all the above together, we have that for any U ≥ s1 ≥ s2 ≥ . . . ≥ sn−1 ≥

L, the minimum of the following expressions is 0.

• (n): C0 + C1s1 + C2s2 + . . .+ Cn−1sn−1 + CnL

• (n− 1): C0 + C1s1 + C2s2 + . . .+ Cn−1sn−1 + Cnsn−1

• (n− 2): C0 + C1s1 + C2s2 + . . .+ Cn−2sn−2 + Cn−1sn−2 + Cnsn−1

• ...

• (2): C0 + C1s1 + C2s2 + C3s2 + . . .+ Cnsn−1

• (1): C0 + C1s1 + C2s1 + C3s2 + . . .+ Cnsn−1
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• (0): C0 + C1U + C2s1 + C3s2 + . . .+ Cnsn−1

The above expressions are numbered from 0 to n. Let I(i) be the set of points

(s1, s2, . . . , sn−1) (U ≥ s1 ≥ s2 ≥ . . . ≥ sn−1 ≥ L) that make expression (i) equal to

0. There must exist at least one i such that the measure of I(i) is positive. According

to Lemma 4, expression (i) must be constant at 0.

If expression (0) is constant at 0, then the waste under mechanism r is 0 whenever

the highest type is equal to the upper bound U . That is, for any type profile, the

waste C0 +C1[θ]1 +C2[θ]2 + . . .+Cn[θ]n must be a constant multiple of U − [θ]1 (the

waste is a linear function). We have C0 = −UC1 and Cj = 0 for j ≥ 2. It turns out

that the above equalities of the Cj completely determine the values of the aj, and

the corresponding mechanism is the OEL mechanism with index k = 0. We show

this below.

We recall that the Cj satisfy the following equalities:

C0 = −na0

C1 = −(n− 1)a1

C2 = −a1 − (n− 2)a2

C3 = −2a2 − (n− 3)a3

...

Cm = −(m− 1)am−1 − (n−m)am

Cm+1 = −mam − (n−m− 1)am+1 +m

Cm+2 = −(m+ 1)am+1 − (n−m− 2)am+2

...

Cn−1 = −(n− 2)an−2 − an−1

Cn = −(n− 1)an−1

We can solve for the value of an−1 based on the value of Cn.
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We can solve for the value of an−2 based on the values of an−1 and Cn−1.

...

We can solve for the value of a1 based on the values of a2 and C2.

Finally, since C0 = −UC1, the value of a0 can also be solved.

Therefore, there is only one anonymous linear redistribution mechanism whose

waste equals a constant multiple of U − [θ]1. Since the OEL mechanism with index

0 is anonymous, linear and its total waste is a constant multiple of U − [θ]1, we

have that if expression (0) is constant at 0, then the mechanism must be the OEL

mechanism with index 0.

Similarly, if expression (n) is constant at 0, then the waste under mechanism r

is 0 whenever the lowest type is equal to the lower bound L (corresponding to the

OEL mechanism with index k = n). If expression (i) is constant at 0 for other i,

then the waste under mechanism r is 0 whenever the ith and (i + 1)th type equal

(corresponding to the OEL mechanism with index k = i). This finishes the proof.

Since being collectively undominated is strictly stronger than being individually

undominated, Proposition 21 and 42 imply that for multi-unit auctions with unit

demand, the family of collectively undominated VCG redistribution mechanisms

that are anonymous and have linear payment functions, is exactly the family of

OEL mechanisms.

Theorem 8. For multi-unit auctions with unit demand, the family of collectively

undominated VCG redistribution mechanisms that are anonymous and have linear

payment functions, is exactly the family of OEL mechanisms.

The above theorem also implies that, if we are focusing on anonymous and lin-

ear VCG redistribution mechanisms for multi-unit auctions with unit demand, then

being individually undominated and being collectively undominated are equivalent.
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Table 2.6: Increase in redistribution payments relative to WCO, and total VCG
payments that are not redistributed, for different priority orders. Note that increases
are ordered according to the priority order. The “average” item gives the average
increase to the agent ordered in the kth place (first), as well as the average increase
to agent i (second).

Bids Increase Remaining
5,13,10,8 6/7,9/7,4/7,0 2/7
5,13,8,10 6/7,9/7,0,1/7 5/7
5,10,13,8 6/7,9/7,4/7,0 2/7
5,10,8,13 6/7,9/7,0,1/7 5/7
5,8,10,13 6/7,15/7,0,0 0
5,8,13,10 6/7,15/7,0,0 0
13,5,10,8 9/7,6/7,6/7,0 0
13,5,8,10 9/7,6/7,0,0 6/7
13,10,5,8 9/7,6/7,6/7,0 0
13,10,8,5 9/7,6/7,0,6/7 0
13,8,10,5 9/7,0,0,6/7 6/7
13,8,5,10 9/7,0,6/7,0 6/7
10,13,5,8 9/7,6/7,6/7,0 0
10,13,8,5 9/7,6/7,0,6/7 0
10,5,13,8 9/7,6/7,6/7,0 0
10,5,8,13 9/7,6/7,0,0 6/7
10,8,5,13 9/7,0,6/7,0 6/7
10,8,13,5 9/7,0,0,3/7 9/7
8,13,10,5 15/7,6/7,0,0 0
8,13,5,10 15/7,6/7,0,0 0
8,10,13,5 15/7,6/7,0,0 0
8,10,5,13 15/7,6/7,0,0 0
8,5,10,13 15/7,6/7,0,0 0
8,5,13,10 15/7,6/7,0,0 0

Average (1) 1.39,0.89,0.26,0.14 0.315
Average (2) 0.71,0.64,0.64,0.70
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Table 2.7: Improving WCO using dominance techniques.

n m Nonanon. Anonymous Anonymous
3 updates 1 iteration 2 iterations

4 1 42% 66% 52%
5 1 49% 69% 55%
6 1 32% 55% 39%
5 2 44% 68% 54%
6 3 45% 68% 54%

Table 2.8: Improving Cavallo using dominance techniques.

Nonanon. Anonymous Nonanon. Anonymous
n 2 updates 1 iteration 2 updates 1 iteration

unknown unknown known known
5 81% 84% 61% 75%
6 76% 82% 64% 69%
7 73% 81% 54% 68%
8 78% 83% 59% 66%

Table 2.9: Improving VCG using dominance techniques.

n Nonanon. 3 updates, unknown Nonanon. 3 updates, known
5 88% 68%
6 91% 67%
7 95% 51%
8 96% 81%
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2.4 Better Redistribution with Inefficient Allocation

So far, we have only discussed the problem of designing VCG redistribution mech-

anisms that are optimal in various senses. By definition, the VCG redistribution

mechanisms first allocate the items efficiently and charge the VCG payments. Then,

a large fraction of the VCG revenue is redistributed back to the agents, in a way

that maintains the desirable properties of the original VCG mechanism, including

strategy-proofness, the non-deficit property, and (sometimes) individual rationality.

However, in some cases, even the best redistribution mechanism fails to redistribute

a substantial amount of the VCG revenue. That is, even though the VCG redis-

tribution mechanisms maximize efficiency, the total welfare (the sum of the agents’

utilities, taking payments into account) can be very low (in fact, zero), as a result

of poor redistribution. Still, the VCG redistribution mechanisms proposed earlier in

this dissertation are optimal in various senses—but only under the constraint that

allocation is efficient.

In this section, we study the problem of designing the allocation rule together

with the redistribution scheme, allowing for the allocation to be inefficient. It turns

out that even though inefficient allocation reduces efficiency, it sometimes allows for

greater redistributions, so that the net effect is an increase in the sum of the agents’

utilities. Moulin [84] already provided an example where inefficient allocation can

lead to better results, but left a more thorough investigation for future research. As

we will see, the example mechanism that he proposed will turn out to be useful for

us.

In Subsection 2.4.1, we cover some basic definitions. In Subsection 2.4.2, we

define a class of allocation mechanisms that we call linear allocation mechanisms,

and propose an optimization model for simultaneously finding an allocation mecha-

nism and a payment redistribution rule which together are optimal, given that the
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allocation mechanism is required to be either one of, or a mixture over, a finite set

of specified linear allocation mechanisms. In Subsection 2.4.3 to Subsection 2.4.4,

we propose several specific mechanisms that are based on burning items, excluding

agents, and (most generally) partitioning the items and agents into groups. We show

or conjecture that these mechanisms are optimal among various classes of mecha-

nisms.

2.4.1 Formalization

We will restrict our attention to multi-unit auctions with unit demand. We still use

n and m to denote the number of agents and the number of units. Since we are

dealing with the unit demand setting, we assume n > m. (Otherwise, it is clearly

optimal to give every agent a unit and charge nothing.) As usual, for the ith agent,

we denote her true/reported type/bid for winning one unit by vi (we are restricting

our attention to strategy-proof mechanisms). Without losing generality, we assume

that v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. A bid profile is a vector V = (v1, v2, . . . , vn).

Let M be a strategy-proof allocation mechanism. (We use “allocation mecha-

nism” to refer to the mechanism before redistribution—for example, in a VCG redis-

tribution mechanism, the VCG mechanism is the allocation mechanism, whereas the

complete mechanism also includes the redistributions.) M does not need to be deter-

ministic: in general, M can be a probability mixture over t deterministic mechanisms

M1, . . . ,Mt. (When t = 1, M is deterministic.) With probability pi, mechanism Mi

is chosen (
∑t

i=1 pi = 1).

For each bid profile V , we define UM(V ) to be the total efficiency (sum of ob-

tained valuations) that results under M for V (this does not take payments into

account). We have UM(V ) =
∑t

i=1 piUMi
(V ). Similarly, let PM(V ) be the to-

tal revenue (sum of the agents’ payments) that results under M for V . We have

PM(V ) =
∑t

i=1 piPMi
(V ).
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For multi-unit auctions with unit demand, the VCG mechanism is just the (m+

1)th price auction: the agents with the m highest bids each win one unit and each

pay the value of the (m + 1)th-highest bid. Hence, if M is the VCG mechanism,

UM(V ) =
∑m

i=1 vi and PM(V ) = mvm+1.

Given a strategy-proof allocation mechanism M and a bid profile V , without

redistribution, the agents’ welfare under M equals UM(V ) − PM(V ). The welfare

can potentially be increased by introducing redistribution payments. We require

that the redistribution payment to each agent is independent of her own bid, so that

the mechanism will remain strategy-proof. That is, agent i receives a redistribution

payment R(V∼i), where V∼i is the bid profile without vi (v1, . . . , vi−1, vi+1, . . . , vn),

and R is any real-valued function.

Not all redistribution functions (R) are feasible. For a redistribution mechanism

to be feasible, we require two additional properties. First, we require that PM(V ) ≥∑n
i=1R(V∼i) for all V . That is, the mechanism must satisfy the non-deficit property:

the total redistribution should never exceed the revenue collected by M . Otherwise,

we need external funds to subsidize the mechanism.

We also require that the mechanism be (ex-post) individually rational: if M is

deterministic, then for any bid profile V , every agent’s utility after redistribution

must be nonnegative. If M is not deterministic, then for any bid profile V , every

agent’s expected utility after redistribution must be nonnegative.

With redistribution, for a bid profile V , the agents’ welfare is UM(V )−PM(V ) +∑n
i=1 R(V∼i). Our goal is to find a strategy-proof allocation mechanism M and a

redistribution function R that are feasible and maximize this expression. However,

this is not a well-defined objective, because the value of this expression depends on V .

It could be that one choice of M and R maximizes the expression for some V , while

another choice of M and R maximizes the expression for another V . In this section,

we return to the worst-case perspective, as in Section 2.1. Specifically, consider an
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omnipotent perfect allocation mechanism that magically identifies the agents with

the m highest true valuations, without asking for their bids, and allocates the units

to these agents at no charge. Clearly this mechanism obtains the largest welfare

that we could hope for (without deficits). Our objective is to design mechanisms

that are competitive with this perfect allocation mechanism. We say a redistribution

mechanism (M,R) is α-competitive against the perfect mechanism if the agents’

welfare under (M,R) is at least α
∑m

i=1 vi, for all bid profiles V . (
∑m

i=1 vi is the agents’

welfare under the perfect mechanism.) Our objective is to find the redistribution

mechanism (M,R) that is the most competitive, that is, that maximizes α, while

satisfying the individual rationality and non-deficit properties.

In what follows, we construct a motivational example feasible strategy-proof

mechanism that allocates inefficiently and has a higher competitive ratio (with the

perfect mechanism) than all feasible strategy-proof mechanisms that always maxi-

mize efficiency. Actually, it was shown in [84] that the WCO mechanism has the

highest competitive ratio among all feasible strategy-proof mechanisms that always

maximize efficiency.

Proposition 43. [84] The WCO mechanism has the highest competitive ratio α

against the perfect allocation mechanism, among all (efficient) VCG redistribution

mechanisms that are individually rational and satisfy the non-deficit property.

When n = 3 and m = 2, the WCO mechanism is not competitive at all:

αWCO(3, 2) = 0. In contrast, the following simple mechanism that allocates inef-

ficiently is somewhat competitive:

• Burn (throw away) one unit.

• Allocate the remaining unit according to the WCO mechanism for n = 3 and

m = 1.
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The new mechanism is feasible and strategy-proof because it is equivalent to

the WCO mechanism for n = 3 and m = 1. It is not efficient because one unit

is burned. Since αWCO(3, 1) = 1
3
, the new mechanism is 1

3
-competitive against the

perfect allocation mechanism for one unit (m = 1). That is, the new mechanism

guarantees a welfare of 1
3
v1 for any bid profile V . Since v1 ≥ v2, it also guarantees

a total utility of 1
6
(v1 + v2) for all bid profiles. Hence, the competitive ratio of the

new mechanism against the perfect allocation mechanism for two units (m = 2) is at

least 1
6
. That is, this new mechanism has a higher competitive ratio than any VCG

redistribution mechanism (any feasible strategy-proof mechanism that allocates the

units efficiently). So, ironically, in some cases, the agents are happier if one unit

is burned. Motivated by this example, in what follows, we study mechanisms that

allocate inefficiently (and in Subsection 2.4.3, we specifically study mechanisms that

are based on burning units).

2.4.2 Linear allocation mechanisms

In this subsection, we define a class of mechanisms that we call linear allocation

mechanisms. We then provide a general technique for finding the optimal redistri-

bution function for any given linear allocation mechanism. We also show how to

simultaneously find the optimal linear allocation mechanism and the corresponding

redistribution function, given that the allocation mechanism is required to be one of,

or a mixture over, a finite set of specified linear allocation mechanisms.

Definition 3. A (strategy-proof) allocation mechanism M is linear if the following

two conditions are satisfied:

• (linearity) UM(V ) and PM(V ) are linear combinations of the vi.

• (normalized individual rationality) M is individually rational, and an agent’s

payment is always 0 if her bid is 0.
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Example 13. The VCG mechanism is linear, for the following reasons. In the VCG

mechanism, the agents with the highest m bids each win one unit and each pay the

value of the (m + 1)th-highest bid. That is, for any bid profile V = (v1, v2, . . . , vn),

UM(V ) =
∑m

i=1 vi and PM(V ) = mvm+1, which are both linear.17 The normalized

individual rationality condition is also satisfied by the VCG mechanism. Under the

VCG mechanism, the payment from an agent is always less than or equal to her own

bid, and is never negative. When an agent’s bid is 0, her payment must be 0.

Example 14. The random allocation mechanism in which the winners are picked uni-

formly at random (without replacement), and there are no payments, is linear, for the

following reasons. Under this mechanism, for any bid profile V , UM(V ) = m
n

∑n
i=1 vi,

and PM(V ) = 0, which are both linear. The normalized individual rationality con-

dition is also satisfied.

Proposition 44. Any probability mixture over linear allocation mechanisms is also

linear.

Proof. Let M be a mixture over t linear allocation mechanisms M1,M2, . . . ,Mt,

where Mi is chosen with probability pi. We have UM(V ) =
∑t

i=1 piUMi
(V ) and

PM(V ) =
∑t

i=1 piPMi
(V ), which are both linear, because for any i, UMi

and PMi

are linear. Normalized individual rationality also holds: because M1,M2, . . . ,Mt are

all individually rational, any mixture over them is also individually rational. If an

agent’s bid is 0, then for all i, her payment under Mi is 0. This implies that her

payment under any mixture over the Mi is also 0.

Given the number of agents n, the number of units m, and a linear allocation

mechanism M , the following optimization model can be used to find an optimal

17 We emphasize that the linearity depends on the fact that the bids are sorted. In fact, if we
increase the (m+ 1)th-highest bid, then the revenue will increase, but only up to the point where
the bid equals the mth-highest bid; if we increase the bid further, the revenue will not change. So
in this sense, the VCG mechanism is not linear in the bids, but this is not the type of linearity that
is used in the definition.
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redistribution function R, so that the resulting mechanism (M,R) has the highest

competitive ratio. That is, we are computing the optimal redistribution function for

a fixed allocation mechanism.

Variable function: R : [0,∞)n−1 → R
Variable: α
Maximize α
Subject to:
For every bid profile V = (v1, v2, . . . , vn) with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
R(V∼n) ≥ 0 (individual rationality)
PM(V ) ≥

∑n
i=1 R(V∼i) (non-deficit)

UM(V )− PM(V ) +
∑n

i=1 R(V∼i) ≥ α
∑m

i=1 vi (competitive ratio constraint)

Because M is linear, it satisfies the normalized individual rationality condition.

Hence, if the agent with the lowest bid bids 0, her payment under M must be 0. Such

an agent’s utility is 0 when there is no redistribution, regardless of whether she wins

a unit or not. With redistribution, such an agent’s utility is just her redistribution

R(V∼n). Therefore, for the resulting mechanism (M,R) to satisfy the individual

rationality constraint, it is necessary that R(V∼n) ≥ 0 for all V∼n. Since R(V∼n)

does not depend on the value of vn, equivalently, it is necessary that R(V∼n) ≥

0 for all V . Conversely, if R(V∼n) ≥ 0 for all V , then the function R is always

nonnegative, because for any x1 ≥ x2 ≥ . . . ≥ xn−1 there exists a V such that V∼n =

(x1, x2, . . . , xn−1). This implies that R(V∼n) ≥ 0 for all V is also a sufficient condition

for individual rationality, because M is individually rational without redistribution

and nonnegative redistribution never decreases an agent’s utility. This is why the

individual rationality constraint can be written as R(V∼n) ≥ 0 for all V .

Now, suppose that the allocation mechanism is not fixed; specifically, suppose

that we need to choose one mechanism M from a set of t linear allocation mecha-

nisms {M1, . . . ,Mt}, so that M , coupled with a corresponding optimal redistribution

function, has the highest competitive ratio. Then the optimization model becomes:
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Variable function: R : [0,∞)n−1 → R
Variable: α
Binary variables: p1, p2, . . . , pt
Maximize α
Subject to:
For every bid profile V = (v1, v2, . . . , vn) with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
R(V∼n) ≥ 0 (individual rationality)∑t

j=1 pjPMj
(V ) ≥

∑n
i=1R(V∼i) (non-deficit)∑t

j=1 pjUMj
(V )−

∑t
j=1 pjPMj

(V ) +
∑n

i=1 R(V∼i) ≥ α
∑m

i=1 vi (competitive ra-

tio constraint)∑t
j=1 pj = 1

It might not be clear, at first glance, why we would want to introduce the binary

variables pj, rather than just solve the original model t times. The reason is that

if we change the pj into continuous variables ranging from 0 to 1, then the modi-

fied model optimizes for the best allocation mechanism among mechanisms that are

mixtures over {M1,M2, . . . ,Mt} (and simultaneously, it optimizes the corresponding

redistribution function). We call the above optimization model in which the pj are

binary the discrete model (DM), and we call the modified optimization model the

continuous model (CM).

DM and CM both optimize over functions, not just variables. However, as it

turns out, an optimal solution can be found by means of a linear program (for CM)

or a mixed integer program (for DM). The linear/mixed integer program can be

solved directly, using any solver.

The constraints of DM and CM must be satisfied for any bid profile V = (v1, v2, . . . ,

vn) with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. We use z ∈ {0, . . . , n} to denote the bid profile

in which the highest z bids are 1 and the remaining bids are 0. If we only require

that the constraints be satisfied for bid profiles from 0 to n, then the objective value

should be greater than or equal to the original objective value. The relaxed opti-

mization models (UCM and UDM, for “upper bounding continuous/discrete model”)

are:
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Variable function: R : [0,∞)n−1 → R
Variables: p1, p2, . . . , pt ≥ 0 (UCM only), α
Binary variables: p1, p2, . . . , pt (UDM only)
Maximize α
Subject to:
For every bid profile V from 0 to n
R(V∼n) ≥ 0 (individual rationality)∑t

j=1 pjPMj
(V ) ≥

∑n
i=1R(V∼i) (non-deficit)∑t

j=1 pjUMj
(V )−

∑t
j=1 pjPMj

(V ) +
∑n

i=1 R(V∼i) ≥ α
∑m

i=1 vi (competitive ra-

tio constraint)∑t
j=1 pj = 1

Effectively, UCM is a linear program and UDM is a mixed integer program. If

V = z, then V∼i (the bids other than i’s own bid) contains z copies of 1 and n−1−z

copies of 0 for i > z, and V∼i contains z−1 copies of 1 and n−z copies of 0 for i ≤ z.

Let us denote R(V∼i) by Rx if V∼i contains x copies of 1 (0 ≤ x ≤ n−1). Then, the n

variables R0, R1, . . . , Rn−1 specify everything about the redistribution function that

affects the UDM/UCM programs; thus, they are the only variables that we need, in

addition to the pj and α. The PMj
(V ) and UMj

(V ) are constants that we need to

evaluate for V from 0 to n. The constraints and the objective function are all linear.

This results in the following linear/mixed integer program:

Variables: p1, p2, . . . , pt ≥ 0 (UCM only)
α, R0, R1, . . . , Rn−1

Binary variables: p1, p2, . . . , pt (UDM only)
Maximize α
Subject to:∑t

j=1 pj = 1
R0 = 0, Rx ≥ 0 for 1 ≤ x ≤ n− 1∑t

j=1 pjPMj
(x) ≥ xRx−1 + (n− x)Rx for 1 ≤ x ≤ n∑t

j=1 pjUMj
(x)−

∑t
j=1 pjPMj

(x) + xRx−1 + (n− x)Rx ≥ αmin{x,m} for 1 ≤
x ≤ n

Let α∗C , R∗C,0, R
∗
C,1, . . . , R

∗
C,n−1, and p∗C,1, p

∗
C,2, . . . , p

∗
C,t denote an optimal solution

to UCM; similarly, let α∗D, R∗D,0, R
∗
D,1, . . . , R

∗
D,n−1, and p∗D,1, p

∗
D,2, . . . , p

∗
D,t denote an

optimal solution to UDM. We know that α∗C (α∗D) is an upper bound on the compet-

itive ratio that can be obtained in the continuous (discrete) case; we will show that,
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in fact, α∗C (α∗D) can be obtained, so that it is the optimal competitive ratio. The

following theorem shows how to convert the optimal solution to UCM (UDM) into a

redistribution mechanism that is defined for all V and that obtains competitive ratio

α∗C (α∗D).

Theorem 9. The optimal objective value for CM (DM) equals α∗C (α∗D). For DM, an

optimal allocation mechanism is Mj, where j is the (only) index that satisfies p∗D,j =

1. For CM, an optimal allocation mechanism is the mixture over M1,M2, . . . ,Mt

where Mj is chosen with probability p∗C,j.

An optimal redistribution function RC can be obtained from the R∗C,x as follows:

for any V and any i,

RC(V∼i) = R∗C,0V∼i(1) +
n−1∑
x=1

(R∗C,x −R∗C,x−1)V∼i(x)

Here, V∼i(x) is the xth-highest bid among bids other than i’s own bid. An optimal

redistribution function RD is defined similarly.

We note that when V∼i consists of z ones and n−z−1 zeroes, we have RC(V∼i) =

R∗C,0 +
∑z

x=1(R∗C,x−R∗C,x−1) = R∗C,z (if z = 0, RC(V∼i) = 0 = R∗C,0). (In a sense, R is

an interpolation of these values.) Before proving the theorem, we give the following

lemma. We presented a similar lemma in Section 2.1, namely, Lemma 1.

Lemma 5. When the ci do not depend on the xi, the following two systems of

inequalities are equivalent:

(a) c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥ xs ≥ 0.

(b) c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥ xs, where each xi ∈ {0, 1}.

Proof. (a) ⇒ (b) is trivial. We now prove (b) ⇒ (a). (b) implies that
∑j

i=1 ci ≥ 0

for all 1 ≤ j ≤ s. We have c1x1 + c2x2 + . . . + csxs =
∑s−1

j=1(
∑j

i=1 ci)(xj − xj+1) +

138



(
∑s

i=1 ci)xs. For all x1 ≥ x2 ≥ . . . ≥ xs ≥ 0, each term of the above expression is

nonnegative, hence the whole expression is nonnegative. So (b) ⇒ (a).

Now we are ready to prove Theorem 9.

Proof. We only need to prove that the solution described in the theorem is a feasible

solution for CM (DM). (We emphasize that feasibility also entails obtaining the

competitive ratio α∗C (α∗D) everywhere.) Because it is feasible, it is also optimal,

because α∗C (α∗D) is an upper bound on CM (DM).

In the proposed solution, we haveRC(V∼i) = R∗C,0V∼i(1)+
∑n−1

x=1(R∗C,x−R∗C,x−1)V∼i(x).

For specific i and x, when x < i, V∼i(x) = vx, and when x ≥ i, V∼i(x) = vx+1. (We

recall that V∼i(x) is the xth-highest bid among bids other than i’s own bid.) Hence,

RC(V∼i) is linear in v1, v2, . . . , vn, where the coefficients are determined by the con-

stants R∗C,x (we have similar results for RD). For all 1 ≤ j ≤ t, UMj
and PMj

are both

linear in v1, v2, . . . , vn by the linearity assumption. So for all of the constraints in CM

(DM), with the exception of the probability constraint, each side of the inequality is

a linear combination of the vi.

We need to prove that these constraints are satisfied for all v1 ≥ v2 ≥ . . . ≥ vn ≥

0. By Lemma 5, we only need them be satisfied for all v1 ≥ v2 ≥ . . . ≥ vn ≥ 0

where the vi are binary variables. That is, we only need them be satisfied for the bid

profiles V from 0 to n. But for these V , the constraints of CM (DM) are identical

with the constraints of UCM (UDM), because, as we already noted, the function RC

(RD) that we have defined coincides with the R∗C,z (R∗D,z) on these V .

Using Theorem 9, given the number of agents n and the number of units m, we

can find the optimal allocation mechanism M , and simultaneously, a corresponding

optimal redistribution function R, so that the resulting mechanism (M,R) maximizes

the competitive ratio—under the constraint that M must be one of, or a mixture

over, a finite set of specific linear allocation mechanisms M1,M2, . . . ,Mt.
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2.4.3 Burning units

In this subsection, we study allocation mechanisms that are based on (sometimes)

burning units. As was showed earlier, in some cases we can achieve a higher com-

petitive ratio by burning units than by using the most competitive mechanism that

is feasible, strategy-proof and efficient (the WCO mechanism).

We start by characterizing a set of mechanisms based on the idea of burning

units. First, we construct m allocation mechanisms that are based on burning a

deterministic number of units. Let Mi (i = 1 . . .m) be the allocation mechanism

in which m − i units are burned, and the remaining i units are allocated efficiently

according to the VCG mechanism. Mm is just the original VCG mechanism. We note

that it makes no sense to burn all units, hence i > 0. We call the Mi deterministic

burning allocation mechanisms. We can also construct allocation mechanisms in

which a random number of units are burned, by randomizing over the Mi. Let M be

a mixture of the Mi, where mechanism Mi is chosen with probability pi. That is, M

is the mechanism in which with probability pi, exactly m − i units are burned. (If

pi = 1 for some i, then M is just Mi.) We call such mixtures over the Mi randomized

burning allocation mechanisms.

The deterministic burning allocation mechanisms are strategy-proof, because the

remaining units are allocated according to the VCG mechanism, which is strategy-

proof. It follows that the randomized burning allocation mechanisms are also strategy-

proof. Also, the deterministic burning allocation mechanisms are linear. When there

are i units remaining (Mi), the agents with the i highest bids each win one unit,

and each pay the value of the (i + 1)-th highest bid. That is, for any bid profile

V = (v1, v2, . . . , vn), UMi
(V ) =

∑i
j=1 vj and PMi

(V ) = ivi+1. Both UMi
and PMi

are linear in the vi. The normalized individual rationality condition is also satisfied.

Therefore, the deterministic burning allocation mechanisms are linear. By Proposi-
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tion 44, we also have that the randomized burning allocation mechanisms are linear.

Using Theorem 9, we can find an optimal allocation mechanism M , and a corre-

sponding optimal redistribution function R, so that (M,R) maximizes the competi-

tive ratio, given that M is one of the deterministic burning allocation mechanisms,

or M is a randomized burning allocation mechanism.

In Table 2.10, we present the results for different numbers of agents and different

numbers of units. The second column (α∗D) gives the optimal competitive ratio

among all feasible mechanisms (M,R) where M is one of the deterministic burning

allocation mechanisms. The integers in the third column are the number of units

burned in the optimal mechanism that corresponds to α∗D. The fourth column (α∗C)

is the optimal competitive ratio among all feasible mechanisms (M,R) where M is

a randomized burning allocation mechanism. The values in the fifth column are the

probabilities of having one unit burned in the optimal mechanism that corresponds

to α∗C . (It turns out that in the optimal mechanism, either exactly one unit is

burned with a certain probability, or nothing is burned.) Finally, as a benchmark,

the sixth column (α∗WCO) gives the competitive ratio of the WCO mechanism (the

optimal competitive ratio among all feasible mechanisms (M,R) where M allocates

efficiently).

For the case of n = 10, m = 1, . . . , 9, we compare the values of α∗WCO, α∗D and

α∗C in Figure 2.3. When m is small, the three values are the same. As m gets large,

the value of α∗WCO decreases all the way to 0; the value of α∗D also decreases but it

gets stable when its value goes down to around 0.5; the value of α∗C first decreases,

but then increases, at the end almost reaches 1.

Of course, α∗WCO ≤ α∗D ≤ α∗C ; it turns out that all of these inequalities are

sometimes strict. Therefore, in general we need to burn a random number of units

to get the most competitive redistribution mechanism.

While we can use Theorem 9 in this way to solve for the most competitive redis-
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Table 2.10: Competitive ratios of burning allocation mechanisms.

α∗D burn α∗C burn α∗WCO

n=4,m=1 0.571 0 0.571 0 0.571
n=4,m=2 0.286 1 0.667 0.67 0.250
n=4,m=3 0.267 2 0.889 0.33 0

n=6,m=1 0.839 0 0.839 0 0.839
n=6,m=3 0.410 1 0.800 0.60 0.375
n=6,m=5 0.356 3 0.960 0.20 0

n=8,m=1 0.945 0 0.945 0 0.945
n=8,m=3 0.646 0 0.762 0.71 0.646
n=8,m=5 0.452 2 0.914 0.43 0.276
n=8,m=7 0.422 4 0.980 0.14 0
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Figure 2.3: A comparison of competitive ratios of deterministic burning allocation
mechanisms, random burning allocation mechanisms, and WCO mechanisms.
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tribution mechanism in this class of mechanisms for any given n and m, it would be

nice to have a general analytical characterization of the most competitive redistribu-

tion mechanism. The following proposition specifies a burning-based redistribution

mechanism for each m,n pair, and gives the competitive ratio for these mechanisms.

We conjecture that these mechanisms are in fact the most competitive in this class

of mechanisms (including the randomized mechanisms), but have not been able to

prove it. (However, using the linear programming methodology from Theorem 9, we

have verified that this conjecture is true for all n ≤ 10.)

Proposition 45. Given n and m, using a redistribution mechanism (M,R) where

M is a randomized burning allocation mechanism, we can achieve the following com-

petitive ratio:

max{1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

) , mn− n
mn−m

}

If the first expression is greater (or equal), then the mechanism achieving the above

ratio is the worst-case optimal VCG redistribution mechanism (nothing is burned).

If the second expression is greater, then the mechanism achieving the above ratio

is the following:

• Burn (throw away) one unit with probability n−m
n−1

.

• The remaining units are allocated according to the VCG mechanism.

• After the VCG payments, every agent receives a redistribution payment of m−1
n−1

times the m-th highest bid among bids other than this agent’s own bid. (Unlike

the VCG payments, the redistribution does not depend on whether a unit was

burned.)

Proof. We already know that the WCO mechanism is strategy-proof, feasible, and

has competitive ratio 1 − (n−1
m )∑n−1

j=m (n−1
j )

. Hence, we only need to show that the other
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mechanism proposed in the proposition is strategy-proof, feasible, and has compet-

itive ratio mn−n
mn−m , for the values of m,n for which this mechanism outperforms the

WCO mechanism.

If m = 1, then mn−n
mn−m = 0, which cannot be greater than the competitive ra-

tio of the WCO mechanism. So we only need to consider m > 1. We have al-

ready proved that any randomized burning allocation mechanism is strategy-proof.

After introducing redistribution, the mechanism remains strategy-proof, because

the redistribution does not depend on the agent’s own bid. Individual rational-

ity is satisfied because the randomized burning allocation mechanism is individ-

ually rational, and the redistribution is always nonnegative. For any bid profile

V , the VCG revenue is mvm+1 when nothing is burned, and the VCG revenue is

(m − 1)vm when one unit is burned. Together, the expected18 VCG revenue is

n−m
n−1

(m − 1)vm + (1 − n−m
n−1

)mvm+1 = m−1
n−1

(mvm+1 + (n − m)vm). For the agents

bidding v1, . . . , vm, the redistribution received is m−1
n−1

vm+1. For the other agents,

the redistribution received is m−1
n−1

vm. Therefore, the total redistribution equals the

total VCG payment, so the non-deficit criterion is satisfied. We conclude that the

mechanism is feasible.

Now we show that the mechanism has competitive ratio mn−n
mn−m . With probability

n−m
n−1

, the total efficiency is
∑m−1

i=1 vi (one unit is burned). When nothing is burned, the

total efficiency is
∑m

i=1 vi. In expectation, the total efficiency is n−m
n−1

∑m−1
i=1 vi + (1−

n−m
n−1

)
∑m

i=1 vi. This is greater than or equal to n−m
n−1

m−1
m

∑m
i=1 vi+(1− n−m

n−1
)
∑m

i=1 vi =

18 The mechanism satisfies the non-deficit criterion only in expectation over the choice of whether to
burn a unit. Alternatively, we can charge each agent her expected VCG payment, in which case there
will certainly be no deficit. One may worry that this will result in individual rationality only holding
in expectation. However, interestingly, individual rationality continues to hold unconditionally if
we charge the expected VCG payment: the only agent that faces any randomness is the mth agent,
and she pays (1− n−m

n−1 )vm+1, but then receives a redistribution of m−1
n−1 vm+1, for a total payment of

0, so that she is not unhappy even if the unit is thrown away. However, in this case, she would prefer
to place a bid of 0 instead—so the resulting mechanism is strategy-proof only in expectation over
the mechanism’s random choice. (In contrast, the mechanism in Proposition 45 is unconditionally
strategy-proof and individually rational.)

144



mn−n
mn−m

∑m
i=1 vi (we have equality when all vi are equal). Since the total payment equals

the total redistribution, efficiency is equal to welfare, so we conclude that we obtain

the competitive ratio mn−n
mn−m .

Conjecture 1. The competitive ratio in Proposition 45 is optimal for mechanisms

(M,R) where M is a randomized burning allocation mechanism. That is, if M is

required to be a randomized burning allocation mechanism, then there is an optimal

mechanism that either never burns anything (so that it coincides with the WCO

mechanism), or burns exactly one unit with some probability, so that all the revenue

can be redistributed.

2.4.4 Partitioning units and agents

In this subsection, we study allocation mechanisms that are based on partitioning the

units and the agents into groups. This is an idea that has previously been proven

effective in mechanism design [9, 50]. Based on this idea, we first characterize a

class of strongly budget balanced allocation mechanisms (in the setting of multi-

unit auctions with unit demand). Some of the mechanisms in this class have been

proposed previously [45, 84]. We focus on finding the most competitive mechanism in

this class. Because all of the mechanisms in this class are strongly budget balanced,

there will be no redistributions.

We start with two example mechanisms. They are both based on excluding one

individual agent from the set of all agents. The first one is due to Moulin [84], and

the second one is due to Faltings [45].

Example Mechanism 1

• Exclude one agent from the auction, uniformly at random.

• Assign one unit to the excluded agent at no charge.
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• The remaining units are allocated to the remaining agents according to the

VCG mechanism.

• Transfer all the VCG revenue to the excluded agent.

Example Mechanism 2

• Exclude one agent from the auction, uniformly at random.

• Units are allocated to the remaining agents according to the VCG mechanism.

• Transfer all the VCG revenue to the excluded agent.

Both example mechanisms are strategy-proof, individually rational and strongly

budget balanced. In the first mechanism, one agent is excluded and assigned one

unit. In the second mechanism, one agent is excluded and assigned zero units.

We now introduce our class of mechanisms that is based on partitioning the

agents; this class generalizes both of the previous two mechanisms.

Definition 4. Given n and m, for n1 ∈ {1, . . . , bn2 c}, m1 ∈ {0, . . . ,min{n1,m}}, we

define the following mechanism:

• Pick n1 agents to form one group, uniformly at random. The other n − n1

agents form the second group.

• Allocate m1 units among the first group, according to the VCG mechanism.

• Allocate the remaining m − m1 units among the second group, according to

the VCG mechanism.

• Transfer the VCG revenue from the first group to the second group, in any

predetermined way.
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• Transfer the VCG revenue from the second group to the first group, in any

predetermined way.

We call this mechanism the (n1,m1)-partition mechanism.

We note that Example Mechanisms 1 and 2 are the (1, 1)-partition mechanism

and the (1, 0)-partition mechanism, respectively.

Proposition 46. The partition mechanisms are strategy-proof, individually rational,

and strongly budget balanced.

Proof. Without transferring the VCG revenue, every agent is participating in a VCG

mechanism, which must be strategy-proof. For each agent, the transfer payment she

receives depends only on the bids from the other group of agents, hence it does not

affect her incentives. Therefore, the mechanisms are strategy-proof. Similarly, with-

out transferring the VCG revenue, every agent is participating in a VCG mechanism,

which must be individually rational. With transferring, the agents’ utilities become

higher or stay the same. Therefore, the mechanisms are individually rational. Fi-

nally, the strong budget balance property follows from the fact that the entire VCG

revenue is transferred.

Since the partition mechanisms are strongly budget balanced, welfare must equal

efficiency. Hence, for our objective of finding the most competitive partition mech-

anism, we can completely ignore the VCG payments and the revenue transferring

process. That is, for the analysis that follows, we pretend that there are no payments

of any kind; when we use the mechanism, we add the VCG payments and transfers

back to achieve strategy-proofness. We now show that by ignoring the payments and

transfers, the partition mechanisms become linear mechanisms (albeit linear mech-

anisms that are not strategy-proof, but this does not matter). Given n and m, let

Mn1,m1 be the (n1,m1)-partition mechanism. For any bid profile V = (v1, v2, . . . , vn),
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under Mn1,m1 , there is only a finite number of ways of dividing the vi into two groups

of size n1 and n − n1 (and each of these ways receives equal probability). For any

specific way of dividing, the agents’ total efficiency is linear in the vi. Since each

way of dividing happens with equal probability, the expected total efficiency is also

linear in the vi. That is, UMn1,m1
(V ) is linear in the vi. We also have PMn1,m1

= 0.

Hence, the partition mechanisms satisfy the linearity condition. The normalized

individual rationality condition is also satisfied (after ignoring the VCG payments

and the revenue transferring process). Thus, we can use the general technique in

Theorem 9 to solve for the optimal partition mechanism. However, we now present

a simpler solution technique based on the special structure of the class of partition

mechanisms.

The following proposition characterizes the competitive ratio of a given partition

mechanism.

Proposition 47. Given n and m, the competitive ratio of the (n1,m1)-partition

mechanism equals

UMn1,m1
(m)

m

Here, UMn1,m1
(m) is the expected efficiency (welfare) under the (n1,m1)-partition

mechanism when m agents bid 1 and the remaining agents bid 0. This competitive

ratio is equal to

∑
x∈X

(
n1

x

)(
n−n1

m−x

)
(min{x,m1}+ min{m− x,m−m1})

m
(
n
m

)
Here, X = {x|0 ≤ x ≤ n1, 0 ≤ m− x ≤ n− n1}. We will call this competitive ratio

α∗n1,m1
.

Proof. For bid profile m (where m agents bid 1 and the remaining agents bid 0), the

perfect (omnipotent) mechanism would achieve an efficiency of m. Hence,
UMn1,m1

(m)

m
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is an upper bound on α∗n1,m1
.

We now show that
UMn1,m1

(m)

m
is equal to the second expression in the proposition;

then, we will show that Mn1,m1 does in fact attain this competitive ratio. In the

(n1,m1)-partition mechanism, n1 agents are randomly picked to form one group,

and the remaining n − n1 agents form a second group. If m agents bid 1 and the

remaining agents bid 0, then the probability of having x agents that bid 1 in the group

of size n1 is
(n1x )(n−n1m−x)

(nm)
. The corresponding total welfare is (min{x,m1} + min{m −

x,m−m1}). The set of possible values of x is X. It follows that UMn1,m1
(m) is equal

to
∑
x∈X (n1x )(n−n1m−x)(min{x,m1}+min{m−x,m−m1})

(nm)
.

All that is left to show is thatMn1,m1 does in fact attain this competitive ratio. Let

us consider the following allocation mechanism, which is never better than Mn1,m1 :

• Pick n1 agents to form one group, uniformly at random. The other n − n1

agents form the second group.

• Remove the agents with the lowest n−m bids.

• For the first group, if there are more than m1 agents left, allocate m1 units

uniformly at random among the remaining agents in group one. Otherwise,

allocate one unit to every remaining agent in group one.

• For the second group, if there are more than m − m1 agents left, allocate

m−m1 units uniformly at random among the remaining agents in group two.

Otherwise, allocate one unit to every remaining agent in group two.

For any bid profile, the above mechanism results in (weakly) lower efficiency than

the (n1,m1)-partition mechanism, because in the partition mechanism, the units are

assigned efficiently within each group, and in the modified mechanism they are not

because of agent removal and random assignment.
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Under the modified mechanism, only the agents bidding v1, . . . , vm possibly win

any units, and the probability of winning is the same for each of them. For the

bid profile in which m agents bid 1 and the remaining agents bid 0, the modified

mechanism results in the same efficiency as the partition mechanism. Therefore,

because in this case, a winning agent’s utility is 1, the expected number of winners

under the modified mechanism is UMn1,m1
(m). But this probability must be the

same for all bid profiles. So, using the fact that each of the top m bidders is equally

likely to win, for a general bid profile, the expected efficiency under the modified

mechanism is
UMn1,m1

(m)

m

∑m
i=1 vi; and we know that this is (weakly) lower than the

expected efficiency under the (n1,m1)-partition mechanism. Hence, the (n1,m1)-

partition mechanism has a competitive ratio of at least
UMn1,m1

(m)

m
. We have already

proved that
UMn1,m1

(m)

m
is an upper bound of α∗n1,m1

, so this expression must be exactly

equal to the competitive ratio.

So far, we have not considered mixtures over partition mechanisms. It could be

that, by taking such mixtures, we can obtain more competitive mechanism. However,

the following proposition rules out the possibility of obtaining more competitive

mechanisms by taking mixtures over partition mechanisms.

Proposition 48. If M is a mixture over M1,M2, . . . ,Mt, where the Mi are partition

mechanisms for different values of n1,m1, and Mi is chosen with probability pi, then

there exists 1 ≤ j ≤ t so that Mj attains at least the competitive ratio of M .

Proof. By the same argument as in Proposition 47, the competitive ratio of M is at

most UM (m)
m

. We have that UM (m)
m

=
∑t
i=1 piUMi (m)

m
≤ maxj

UMj (m)

m
. But

UMj (m)

m
(where

j ∈ arg maxj
UMj (m)

m
) is the competitive ratio for Mj by Proposition 47. Hence, Mj

is as competitive as M .
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By Proposition 47, for given n and m, by maximizing

∑
x∈X

(
n1

x

)(
n−n1

m−x

)
(min{x,m1}+ min{m− x,m−m1})

m
(
n
m

)
over n1 and m1, we obtain the optimal (n1,m1)-partition mechanism. This mecha-

nism is also optimal among all mixtures of partition mechanisms by Proposition 48.

It would be nice to have a general analytical characterization of the optimal n1 and

m1. The following conjecture specifies three partition mechanisms, and gives the

corresponding competitive ratios. The conjecture states that for any n and m, the

optimal partition mechanism must be one of these three. Experimentally, we have

verified that this conjecture is true for all n ≤ 10.

Conjecture 2. For any n and m, the optimal partition mechanism is one of the

following three:

(1, 0)-partition mechanism, with competitive ratio n−1
n

;

(1, 1)-partition mechanism, with competitive ratio nm+m−n
nm

;

(2, 1)-partition mechanism, with competitive ratio

∑
x∈X′ (

2
x)(

n−2
m−x)(min{x,1}+min{m−x,m−1})

m(nm)
,

where X ′ = {x|0 ≤ x ≤ 2, 0 ≤ m− x ≤ n− 2}.

In Table 2.11, we present the results for various numbers of agents and units.

The second column (α∗n1,m1
) gives the optimal competitive ratio among all partition

mechanisms. The third column gives the values of n1 and m1, where the (n1,m1)-

partition mechanism achieves the optimal competitive ratio.

2.4.5 Generalized partition mechanisms

Finally, we slightly generalize the definition of partition mechanisms by allowing for

empty groups of agents in the partition, as well as burning units.
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Table 2.11: Competitive ratios of partition mechanisms.

α∗n1,m1
(n1,m1)

n = 4,m = 1 0.750 (1, 0)
n = 4,m = 2 0.833 (2, 1)
n = 4,m = 3 0.917 (1, 1)

n = 6,m = 1 0.833 (1, 0)
n = 6,m = 3 0.867 (2, 1)
n = 6,m = 5 0.967 (1, 1)

n = 8,m = 1 0.875 (1, 0)
n = 8,m = 3 0.875 (1, 0)
n = 8,m = 5 0.925 (1, 1)
n = 8,m = 7 0.982 (1, 1)

Definition 5. Given n and m, for nonnegative integers n1, n2,m1,m2 with n1 +n2 =

n, m1 +m2 ≤ m, we define the following mechanism:

• Pick n1 agents to form one group, uniformly at random. The other n − n1

agents form the second group. (One group can be empty.)

• Allocate m1 units among the first group, according to the VCG mechanism.

• Allocate m2 units among the second group, according to the VCG mechanism.

We call this mechanism the (n1,m1,m2)-generalized partition mechanism.

We removed the transferring of VCG revenue from the definition, because when

one group is empty, it is not possible to transfer to that group. However, we still

allow for redistribution, so if both groups are nonempty (or, more generally, if we

randomize only over generalized partition mechanisms in which both groups are

nonempty) we will in fact redistribute all the VCG revenue.

The set of generalized partition mechanisms contains all the burning allocation

mechanisms: the (0, 0,m2)-generalized partition mechanism is the mechanism in

which m − m2 units are burned, and the remaining units are allocated efficiently

among all agents.
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Proposition 49. All generalized partition mechanisms are strategy-proof and linear.

Proof. Every agent is participating in a VCG mechanism, which must be strategy-

proof and individually rational. We also have that if an agent’s bid is 0, then her

payment is 0. Let M be a generalized partition mechanism, UM and PM are the

average of the efficiency and VCG revenue over all random partitions of the agents

into groups of sizes n1 and n − n1. Given a specific way of partitioning, both the

efficiency and the VCG revenue are linear in the vi. Therefore, both UM and PM are

linear in the vi as well.

We can now directly apply Theorem 9 to find the mechanism (M,R) with the

highest competitive ratio, given that M is a mixture of the generalized partition

mechanisms. In Table 2.12, we present the results for various numbers of agents and

units. The second column (α∗) gives the optimal competitive ratio among all (M,R),

under the constraint that M is a mixture of the generalized partition mechanisms.

The third column describes a mixture of generalized partition mechanisms that at-

tains the optimal competitive ratio in each case (the meaning of (n1,m1,m2), p is that

with probability p, we use the (n1,m1,m2)-generalized partition mechanism). (We do

not present the redistribution function because we do not know how to conveniently

describe it in a table.)
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Table 2.12: Competitive ratios of generalized partition mechanisms.

α∗ allocation mechanism
n = 4,m = 1 0.842 (0, 0, 1), 0.37

(1, 0, 1), 0.63
n = 4,m = 2 0.864 (0, 0, 2), 0.18

(2, 1, 1), 0.82
n = 4,m = 3 0.923 (0, 0, 3), 0.08

(1, 1, 2), 0.92

n = 8,m = 1 0.962 (0, 0, 1), 0.69
(1, 0, 1), 0.31

n = 8,m = 3 0.908 (0, 0, 3), 0.26
(1, 0, 3), 0.74

n = 8,m = 5 0.928 (0, 0, 5), 0.04
(1, 1, 4), 0.96

n = 8,m = 7 0.982 (0, 0, 7), 0.02
(1, 1, 6), 0.98
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2.5 Summary

In this chapter, we applied CFAMD to the problem of designing resource alloca-

tion mechanisms that redistribute their revenue back to the agents. For allocation

problems with one or more items, the well-known Vickrey-Clarke-Groves (VCG)

mechanism is efficient, strategy-proof, individually rational, and does not incur a

deficit. However, it is not (strongly) budget balanced: generally, the agents’ pay-

ments will sum to more than 0. We studied mechanisms that redistribute some of

the VCG payments back to the agents, while maintaining the desirable properties of

the VCG mechanism. In Section 2.1, we focused on designing VCG redistribution

mechanisms that redistribute the most in the worst case. For auctions with multi-

ple indistinguishable units in which marginal values are nonincreasing, we derived a

mechanism that is optimal in this sense. We also showed that if marginal values are

not required to be nonincreasing, then the original VCG mechanism is worst-case

optimal. In Section 2.2, we studied the problem of designing VCG redistribution

mechanisms that redistribute the most in expectation when prior distributions over

the agents’ valuations are available. For auctions with multiple indistinguishable

units in which each agent is only interested in one unit, we analytically derived the

OEL mechanism that is optimal among linear redistribution mechanisms. For this

setting, we also proposed an automated mechanism design technique based on type

discretization. We then generalized our setting to auctions with multiple indistin-

guishable units in which marginal values are nonincreasing. We extended the notion

of linear redistribution mechanisms to this more general setting. In Section 2.3, we

studied the problem of designing mechanisms whose redistribution functions are un-

dominated in the sense that no other mechanisms can always perform as well, and

sometimes better. We introduced two measures for comparing two VCG redistri-

bution mechanisms with respect to how well off they make the agents, and studied
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the question of finding maximal elements in the space of non-deficit redistribution

mechanisms, with respect to the partial orders induced by both measures. One main

discovery is that, for auctions with multiple indistinguishable units, where each agent

is only interested in a single copy of the unit, if we restrict our attention to linear

and anonymous redistribution functions, then the maximal elements defined by both

measures coincide, and they are exactly the family of OEL mechanisms. Finally, in

Section 2.4, we studied the problem of designing the allocation rule together with

the redistribution scheme, allowing for the allocation to be inefficient. We proposed

several specific mechanisms that are based on burning items, excluding agents, and

(most generally) partitioning the items and agents into groups.
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3

Mechanism Design Without Payments

In Chapter 2, we tried minimizing the net payments by the agents, but the payments

were nevertheless a very helpful tool to create the right incentives. In this chapter,

however, we study the problem of designing resource allocation mechanisms that do

not rely on payments. This is useful in settings where no currency has (yet) been

established (as may be the case, for example, in a peer-to-peer network, as well as

in many other multiagent systems); or where payments are prohibited by law; or

where payments are otherwise inconvenient. Specifically, our objective is to design

mechanisms that do not rely on payments, and lead to high social welfare.

The problem of allocating resources among multiple competing agents when mon-

etary transfers are possible has been studied extensively in both the one-shot mech-

anism design setting [20, 8, 94, 56, 84, 39, 81], and the repeated setting [22, 11, 21,

6, 47, 72, 73]. There is also a rich literature on mechanisms without payments. A

survey is given in the book chapter by Schummer and Vohra [101]. Barberà [10]

gives an introduction to strategy-proof social choice functions. Budish [16] gives a

nice survey of existing allocation mechanisms without payments that are designed

for practical usage (e.g., the patented Adjusted Winner Procedure [14]). All these
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mechanisms are manipulable except for the Serial Dictatorship mechanism in a paper

by Budish and Cantillon [17], in which the authors study user behavior in Harvard

Business School course allocation. The recently proposed qualitative Vickrey auc-

tion [63], a generalization of the traditional Vickrey auction, is another mechanism

that does not necessarily rely on monetary payments. However, it cannot be applied

to our problem as it requires that there will be only a single winner, and that the

center has preferences over the outcomes. Mechanism design without payments has

also been studied in the contexts of matching [64] and cake-cutting [15, 23].

In this chapter, we design resource allocation mechanisms that do not rely on

monetary payments in two specific settings: repeated allocation of a single item

among multiple agents, and single-round allocation of multiple items between two

agents. The mechanisms we propose, which are based on artificial payments, turn

out to be competitive against the optimal mechanisms with payments (in the settings

that we study, the optimal mechanisms with payments produce first-best results, i.e,

optimal efficiency).

By proposing specific competitive mechanisms that do not rely on payments,

this chapter also provides an answer to the question: Are monetary payments nec-

essary for designing good mechanisms? Our results imply that, sometimes, artificial

payments are “good enough” for designing allocation mechanisms with high social

welfare.

The idea of designing mechanisms without payments to achieve competitive per-

formance against mechanisms with payments was explicitly framed by Procaccia

and Tennenholtz [95], in their paper titled Approximate Mechanism Design With-

out Money. That paper carries out a case study on locating a public facility for

agents with single-peaked preferences. (The general idea of approximate mechanism

design without payments dates back further, at least to work by Dekel et al. [43]

in a machine learning framework.) To our knowledge, along this line of research,
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we are the first to study allocation of private goods. Unlike the models studied in

the above two papers [43, 95], where agents may have consensus agreement, when

we are considering the allocation of private goods, the agents are fundamentally in

conflict.1 Nevertheless, it turns out that even here, some positive results can be

obtained. Thus, we believe that our results provide additional insights to this line of

research. Of course, it is beyond the scope of this chapter to answer the above ques-

tion in its general form; rather, we will be content to focus specifically on designing

payment-free allocation mechanisms with high social welfare.

Most of the payment-free allocation mechanisms proposed in this chapter have

been obtained with the help of the CFAMD approach. Previously, the basic AMD

approach (without parameterization) has been applied to settings without payments

(e.g., [33]). To our knowledge, this dissertation is the first to use automated mech-

anism design to study parameterized families of mechanisms that do not rely on

payments.

1 For example, both [43] and [95] proposed mechanisms that pick the “median” report from the
agents as the final outcome. When the agents’ favorite outcomes are identical, the median report is
the consensus agreement for all the agents. When allocating private goods (without externalities),
consensus agreement never exists—every agent wants every good. Of course, in the worst case (all
of these papers are based on worst-case analysis), the agents in the earlier papers are also in conflict.
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3.1 Competitive Repeated Allocation Without Payments

In this section, we study the problem of allocating a single item repeatedly among

multiple competing agents, in an environment where monetary transfers are not pos-

sible. An example scenario is an operating system that needs to allocate CPU time

slots to different applications. The resource in this example is the CPU (we assume

that we are dealing with single-core CPUs) and the agents are the applications. An-

other example scenario, closer to daily life, is “who gets the TV remote control.”

Here the resource is the remote control and the agents are the members of the house-

hold. In both scenarios the resource is allocated repeatedly among the agents, and

monetary transfers are infeasible (or at least inconvenient). In this section, we in-

vestigate problems like the above. Our objective is to maximize social welfare, i.e.,

allocative efficiency.2

We first focus on the case of two agents. We introduce an artificial payment sys-

tem, which enables us to construct repeated allocation mechanisms without payments

based on one-shot allocation mechanisms with payments. Under certain restrictions

on the discount factor, we propose several repeated allocation mechanisms based on

artificial payments. For the simple model in which the agents’ valuations are either

high or low, the mechanism we propose is 0.94-competitive against the optimal allo-

cation mechanism with payments. For the general case of any prior distribution, the

mechanism we propose is 0.85-competitive. We generalize the mechanism to cases

of three or more agents. For any number of agents, the mechanism we obtain is at

least 0.75-competitive. The obtained competitive ratios imply that for repeated allo-

cation, artificial payments may be used to replace real monetary payments, without

incurring too much loss in social welfare.

2 In Chapter 2, social welfare and allocative efficiency were not identical because there were
payments that were not collected by any agent, but in this context there are no payments so the
two coincide.
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A paper that lays out many of the foundations for repeated games is due to Abreu

et al. [2], in which the authors investigate the problem of finding pure-strategy se-

quential equilibria of repeated games with imperfect monitoring. Their key contri-

bution is the state-based approach for solving repeated games, where in equilibrium,

the game is always in a state which specifies the players’ long-run utilities, and on

which the current period’s payoffs are based. There are many papers that rely on

the same or a similar state-based approach [100, 82, 66, 19, 70].

The following papers are the most related to our work: Fudenberg et al. [48]

give a folk theorem for repeated games with imperfect public information. Both [48]

and this section are built based on the (dynamic programming style) self-generating

technique in [2] (it is called self-decomposable in [48]). However, [48] considers self-

generating based on certain supporting hyper-plane, which is guaranteed to exist

only when the discount factor goes to 1.3 Therefore, their technique does not apply

to our problem because we are dealing with non-limit discount factors.4 Another

difference between [48] and this section is that we are designing specific mechanisms,

instead of trying to prove the existence of a certain class of mechanisms. With

non-limit discount factors, it is generally difficult to precisely characterize the set of

feasible utility vectors (optimal frontier) for the agents. Several papers have already

proposed different ways of approximation (for cases of non-limit discount factors).

Athey et al. [5] study approximation by requiring that the payoffs of the agents

must be symmetric. In what, from a technical perspective, appears to be the paper

closest to the work in this section, Athey and Bagwell [4] investigate collusion in a

3 In [48], it is shown that any feasible and individually rational equilibrium payoff vector v can
be achieved in a perfect public equilibrium (self-generated based on a particular supporting hyper-
planes), as long as the discount factor reaches a threshold β. However, the threshold β depends on v.
If we consider all possible values of v, then we essentially require that the discount factor/threshold
approach 1, since any discount factor that is strictly less than 1 does not work (for some v).

4 In this section, we also require that the discount factor reaches a threshold, but here the threshold
is a constant that works for all possible priors.
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repeated game by approximating the optimal frontier by a line segment (the same

technique also appears in the work of Abdulkadiroğlu and Bagwell [1]). One of their

main results is that if the discount factor reaches a certain threshold (still strictly

less than 1), then the approximation comes at no cost. That is, the optimal (first-

best) performance can be obtained. However, their technique only works for finite

type spaces, as it builds on uneven tie-breaking. In this section, we introduce a new

technique for approximating the optimal frontier for the repeated allocation problem.

Our technique works for non-limit discount factors and is not restricted to symmetric

payoffs or finite type spaces. The technique we propose is presented in the form

of an artificial payment system, which corresponds to approximating the optimal

frontier by triangles. The artificial payment system enables us to construct repeated

allocation mechanisms without payments based on one-shot allocation mechanisms

with payments.

The remainder of this section is organized as follows. In Subsection 3.1.1, we

describe the model that we study. In Subsection 3.1.2, we review the basic results

on the standard state-based approach introduced in Abreu et al. [2], specifically in

the context of repeated allocation. In Subsection 3.1.3, we describe a numerical solu-

tion technique based on the state-based approach. The proposed numerical solution

technique is very close to the direct AMD approach. In Subsection 3.1.4, we adopt

the CFAMD approach. We introduce an artificial payment system, based on which

we analytically characterize several competitive mechanisms without payments for

different settings. Finally, in Subsection 3.1.5, we generalize the results to cases of

three or more agents.

3.1.1 Formalization

We study the problem of allocating a single item repeatedly between two (and later

in the section, more than two) competing agents. We assume that the agents’ prefer-
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ences are independent and identically distributed, across agents as well as allocation

periods, according to a distribution F . We assume that these valuations are non-

negative and have finite expectations. F does not change over time. Before each

allocation period, the agents learn their (private) valuations for having the item in

that period (but not for any future periods). There are infinitely many periods, and

agents’ valuations are discounted according to a discount factor β. Our objective is

to design a mechanism that maximizes expected social welfare under the following

constraints (we allow randomized mechanisms):

• (Bayes-Nash) Incentive Compatibility: Truthful reporting is a Bayes-Nash equi-

librium, that is, for agents who only care about their expected utilities, if an

agent reports truthfully, then the other agent’s best response is also to report

truthfully.5

• No Payments: No monetary transfers are ever made.

In the one-shot mechanism design setting, incentive compatibility is usually achieved

through payments. This ensures that agents have no incentive to overbid, because

they may have to make large payments. In the repeated allocation setting, there

are other ways to achieve incentive compatibility: for example, if an agent strongly

prefers to obtain the item in the current period, the mechanism can ensure that

she is less likely to obtain it in future periods. In a sense, this is an artificial form

of payment. Such payments introduce some new issues that do not always occur

with monetary payments, including that each agent effectively has a limited budget

(corresponding to a limited amount of future utility that can be given up); and if

one agent makes a payment to another agent by sacrificing some amount of future

5 In other parts of this dissertation, we study strategy-proof mechanisms. This section is the only
exception.
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utility, the corresponding increase in the latter agent’s utility may be different from

the decrease in the former agent’s utility.

3.1.2 State-Based Approach

Throughout the section, we adopt the state-based approach introduced in Abreu et

al. [2]. In their paper, the authors investigated the problem of finding pure-strategy

sequential equilibria of repeated games with imperfect monitoring. Their problem

can be rephrased as follows: Given a game, what are the possible pure-strategy se-

quential equilibria? Even though here we are considering a different problem (we are

designing the game), the underlying ideas still apply. In their paper, states corre-

spond to possible equilibria, while here, states correspond to feasible mechanisms. In

this subsection, we review a list of basic results and observations on the state-based

approach, specifically in the context of repeated allocation.

Let M be an incentive compatible mechanism without payments for a particular

(fixed) repeated allocation problem, defined by a particular type distribution and

a discount factor. If, under M , the expected long-term utilities of agents 1 and 2

(at the beginning) are x and y respectively, then we denote mechanism M by state

(x, y). All mechanisms that can be denoted by (x, y) are considered equivalent. If we

are about to apply mechanism M , then we say the agents are in state (x, y). In the

first period, based on the agents’ reported values, the mechanism specifies both how

to allocate the item in this period, and what to do in the future periods. The rule

for the future is itself a mechanism. Hence, a mechanism specifies how to allocate

the item within the first period, as well as the state (mechanism) that the agents

will be in in the second period. We have that (x, y) = Ev1,v2 [(r1(v1, v2), r2(v1, v2)) +

β(s1(v1, v2), s2(v1, v2))], where v1, v2 are the first-period valuations, r1, r2 are the

immediate rewards obtained from the first-period allocation rule, and (s1, s2) gives

the second-period state, representing the transition rule.
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State (x, y) is called a feasible state if there is a feasible mechanism (that is, an

incentive compatible mechanism without payments) corresponding to it. We denote

the set of feasible states by S∗. Let e be an agent’s expected valuation for the

item in a single period. E = e
1−β is the maximal expected long-term utility an

agent can receive (corresponding to the case where she receives the item in every

period). Let O be the set of states {(x, y)|0 ≤ x ≤ E, 0 ≤ y ≤ E}. We have that

S∗ ⊆ O − {(E,E)} ( O.

S∗ is convex, for the following reason. If (x1, y1) and (x2, y2) are both feasible,

then (x1+x2
2

, y1+y2
2

) is also feasible (it corresponds to the randomized mechanism where

we flip a coin to decide which of the two mechanisms to apply). S∗ is symmetric

with respect to the diagonal y = x: if (x, y) is feasible, then so is (y, x) (by switching

the roles of the two agents).

The approximate shape of S∗ is illustrated in Figure 3.1. There are three notice-

able extreme states: (0, 0) (nobody ever gets anything), (E, 0) (agent 1 always gets

the item), and (0, E) (agent 2 always gets the item). S∗ is confined by the x-axis

(from (0, 0) to (E, 0)), the y-axis (from (0, 0) to (0, E)), and, most importantly, the

bold curve, which corresponds to the optimal frontier. The square specified by the

dotted lines represents O.

Our objective is to find the state (x∗, y∗) ∈ S∗ that maximizes x∗ + y∗ (expected

social welfare). By convexity and symmetry, it does not hurt to consider only cases

where x∗ = y∗.

We now define a notion of when one set of states is generated by another. Recall

that a mechanism specifies how to allocate the item within the first period, as well

as which state the agents transition to for the second period. Let S be any set of

states with S ⊂ O. Let us assume that, in the second period, exactly the states in S

are feasible. That is, we assume that, if and only if (x, y) ∈ S, starting at the second
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Figure 3.1: An illustration of the set of all feasible states (mechanisms) for repeated
allocation without payments.

period, there exists a feasible mechanism under which the expected utilities of agent 1

and 2 are x and y, respectively. Based on this assumption, we can construct incentive

compatible mechanisms starting at the first period, by specifying an allocation rule

for the first period, as well as a transition rule that specifies the states in S to which

the agents will transition for the beginning of the second period. Now, we only need

to make sure that the first period is incentive compatible. That is, the allocation

rule in the first period, combined with the rule for selecting the state at the start of

the second period, must incentivize the agents to report their true valuations in the

first period. We say the set of resulting feasible states for the first period is generated

by S, and is denoted by Gen(S).

The following proposition provides a general guideline for designing feasible mech-

166



anisms.

Proposition 50. For any S ⊆ O, if S ⊆ Gen(S), then S ⊆ S∗. That is, if S is

self-generating, then all the states in S are feasible.

Proof. Let (x, y) be any state in S. (x, y) is also in Gen(S). Let M(x, y) be the way

in which (x, y) is generated. That is, M(x, y) specifies an allocation rule within the

first period, as well as a transition rule that determines the state (x′, y′) to which

agents will transition for the start of the second period. Because any such (x′, y′) is

in S, it is also in Gen(S), so there exists some M(x′, y′) that generates it, which we

can then use in the next period—etc. This defines a complete mechanism; moreover,

this is incentive compatible because the combination of an allocation and a transition

rule in each period is incentive compatible. Hence, (x, y) is indeed in S∗.

It should be noted that in the proof of Proposition 50, we used the fact that

F (prior distribution) does not change over time. That is, if F is not fixed, then

the above proposition may not hold. The above proof also provides a guideline for

constructing mechanisms that correspond to a given state. In general, there are many

mechanisms corresponding to a given state (for continuous F , any two mechanisms

that differ on a measure zero set of bid profiles correspond to the same state).

We now consider starting with the square O that contains S∗ and iteratively

generating sets. Let O0 = O and Oi+1 = Gen(Oi) for all i. The following proposition,

together with Proposition 50, provide a general approach for computing S∗.

Proposition 51. S∗ = Gen(S∗).

Proof. A state is feasible if and only if it can be generated from feasible states, and

S∗ consists exactly of all feasible states.

Proposition 52. For any i, we have S∗ ⊆ Oi.
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Proof. We know S∗ ⊆ O0. If S ⊆ S ′, then Gen(S) ⊆ Gen(S ′). By Proposition 51,

Gen(S∗) = S∗, so if S∗ ⊆ Oi, then S∗ = Gen(S∗) ⊆ Gen(Oi) = Oi+1. Hence, the

proposition follows by induction.

Proposition 53. The Oi form a sequence of (weakly) decreasing sets That is, Oi+1 ⊆

Oi for all i.

Proof. We have O1 ⊆ O0, because even if we assume that all the states in O are

feasible starting in the second period, an agent’s expected utility is still between 0

and E. Moreover, if Oi+1 ⊆ Oi, then Oi+2 = Gen(Oi+1) ⊆ Gen(Oi) = Oi+1. Hence,

the proposition follows by induction.

Proposition 54. If Oi = Oi+1, then Oi = S∗. That is, the Oi form a sequence that

converges to S∗ if it converges at all.

Proof. If Oi = Oi+1, then by Proposition 50, Oi ⊆ S∗. By Proposition 52, S∗ ⊆ Oi.

Therefore, we have Oi = S∗.

The above guideline leads to a numerical solution technique for finite type spaces.

With a properly chosen numerical discretization scheme, we are able to compute

an underestimation of Oi for all i, by solving a series of linear programs. The

underestimations of the Oi always converge to an underestimation of S∗ (a subset of

S∗). That is, we end up with a set of feasible mechanisms. We are also able to show

that as the discretization step size goes to 0, the obtained feasible set approaches

S∗. That is, the numerical solution technique produces an optimal mechanism in the

limit as the discretization becomes finer. Details of the numerical solution technique

are presented in the next subsection.

3.1.3 Numerical Solution

Here we provide more details of the numerical solution technique. The technique

can be applied to any finite type space. The technique solves for a mechanism that
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Figure 3.2: Discretization scheme for numerically solving for optimal repeated
allocation mechanisms without payments.

is very close to optimal. As the discretization step size goes to 0, the technique

produces an optimal mechanism in the limit.

The Oi as defined in Subsection 3.1.2 all have similar shapes to S∗. They are all

convex (because any set Gen(S) is). They all contain (0, 0), (E, 0), and (0, E). The

areas are all confined by the x-axis (from (0, 0) to (E, 0)), the y-axis (from (0, 0) to

(0, E)), and a curve from (0, E) to (E, 0). Sets with the above shape are the only

sets that we will ever come across in this subsection. Let S be one such set. We

will use convex combinations of the following states to approximate S (illustrated in

Figure 3.2):

• For i = 0, 1, . . . , N , we have state (xvi , y
v
i ), where xvi = ih and yvi is the largest

value satisfying (xvi , y
v
i ) ∈ S.
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• For i = 0, 1, . . . , N , we have state (xhi , y
h
i ), where yhi = ih and xhi is the largest

value satisfying (xhi , y
h
i ) ∈ S.

• (0, 0), (0, E), and (E, 0).

Here, h is the step size; h = E/N . The xvi and the yhi are fixed. Thus in our

representation, S is characterized by the yvi and the xhi .

We denote the above k = 2N + 5 states by (xi, yi) for i = 1, 2, . . . , k. (Some of

these states are identical.)

Let D(S) be the set of states that are convex combinations of the above k states.

We have D(S) ⊆ S, because S is convex, and all the above k states are in S. In

general, D(S) ( S, because some states in S may be missing as a result of the

discretization (those that are not convex combinations of the above k states). As the

step size h gets smaller, fewer states are missing.

We denote the (finite) type space by {θ1, θ2, . . . , θn}. Here, θi represents one

allowable type in the finite type space Ω, instead of agent i’s type (the usual definition

of θi). The prior distribution F assigns probability pi to value θi.
∑

i pi = 1.

Any mechanism that is generated by D(S) can be described by the following

variables:

• a1
ij: The probability that the item is allocated to player 1 in the first period

when 1 reports θi and 2 reports θj.

• a2
ij: The probability that the item is allocated to player 2 in the first period

when 1 reports θi and 2 reports θj.

• (xij, yij): The state the agents will go to at the beginning of the second period,

when 1 reports θi and 2 reports θj.
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• cijt: The coefficients of the convex combination to obtain that state. xij =∑k
t=1 cijtxt and yij =

∑k
t=1 cijtyt. Here, the k states (xi, yi) (i = 1, 2, . . . , k) are

the states that define (vertices of) D(S).

The above variables must satisfy the following constraints:

• The item should not be allocated more than once.

For all i and j, a1
ij + a2

ij ≤ 1.

• The future state must be in D(S).

For all i and j, xij =
∑k

t=1 cijtxt and yij =
∑k

t=1 cijtyt.

For all i, j, and t, cijt ≥ 0.

For all i and j,
∑k

t=1 cijt = 1.

• (Bayes-Nash) incentive compatibility must be satisfied.

For all i and i′, θi(
∑n

j=1 pja
1
ij) + β(

∑n
j=1 pjxij)

≥ θi(
∑n

j=1 pja
1
i′j) + β(

∑n
j=1 pjxi′j).

For all j and j′, θj(
∑n

i=1 pia
2
ij) + β(

∑n
i=1 piyij)

≥ θj(
∑n

i=1 pia
2
ij′) + β(

∑n
i=1 piyij′).

This gives the set Ŝ = Gen(D(S)) of states (x, y), satisfying:

x =
∑n

i=1 pi(θi(
∑n

j=1 pja
1
ij) + β(

∑n
j=1 pjxij))

y =
∑n

j=1 pj(θj(
∑n

i=1 pia
2
ij) + β(

∑n
i=1 piyij))

where the variables in these equations must satisfy the above constraints.

To approximately represent Ŝ, we have the following k states, whose convex

combination is D(Ŝ).

• For i = 0, 1, . . . , N , we have state (x̂vi , ŷ
v
i ), where x̂vi = ih and ŷvi is the largest

value so that (x̂vi , ŷ
v
i ) ∈ Ŝ. In other words, ŷvq is the solution of the following

linear program for q = 0, 1, . . . , N :
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Variable: ŷvq , a
1
ij, a

2
ij, xij, yij, cijt

Maximize ŷvq
Subject to:
a1
ij + a2

ij ≤ 1, for all i and j.

xij =
∑k

t=1 cijtxt, yij =
∑k

t=1 cijtyt, for all i and j.
cijt ≥ 0, for all i, j and t.∑k

t=1 cijt = 1, for all i and j.
θi(
∑n

j=1 pja
1
ij) + β(

∑n
j=1 pjxij) ≥ θi(

∑n
j=1 pja

1
i′j) + β(

∑n
j=1 pjxi′j), for all i and i′.

θj(
∑n

i=1 pia
2
ij) + β(

∑n
i=1 piyij) ≥ θj(

∑n
i=1 pia

2
ij′) + β(

∑n
i=1 piyij′), for all j and j′.

qh =
∑n

i=1 pi(θi(
∑n

j=1 pja
1
ij) + β(

∑n
j=1 pjxij)).

ŷvq =
∑n

j=1 pj(θj(
∑n

i=1 pia
2
ij) + β(

∑n
i=1 piyij)).

• For i = 0, 1, . . . , N , we have state (x̂hi , ŷ
h
i ), where ŷhi = ih and x̂hi is the largest

value so that (x̂hi , ŷ
h
i ) ∈ Ŝ. The linear programs for computing the x̂hq are

similar to those given above for the ŷvq .

• (0, 0), (0, E), and (E, 0).

For any S, the above linear programs solve for D(Ŝ) = D(Gen(D(S))). Let

Ô0 = D(O) = O and let Ôi+1 = D(Gen(D(Ôi))) for all i. If we start from Ô0, then

by solving the above linear programs iteratively, we get Ôi for all i.

It is straightforward to check that for any i, Ôi+1 ⊆ Ôi, by a similar argument as

that in the proof of Proposition 53. For any i, Ôi is characterized by the yvj and the

xhj for j = 0, 1, . . . , N . The yvj and the xhj are nonincreasing as i increases. Hence, the

Ôi always converge, and the limit set is self-generating. According to Proposition 50,

states in the resulting set are all feasible. Among all the feasible states obtained,

we pick the state (x∗, y∗) that maximizes x∗ + y∗ as our final solution. The above

linear programs can also be used to compute the actual mechanisms corresponding

to (x∗, y∗).

Proposition 55. As the step size h goes to 0, the above numerical solution technique

produces an optimal mechanism in the limit.
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Proof. Recall that according to the prior distribution F , an agent’s valuation for the

item is θi with probability pi for i = 1, 2, . . . , n. Let uF (u > 1) be the prior distri-

bution over magnified values in which an agent’s valuation is uθi with probability pi

for all i.

It is easy to see that the welfare achieved by the above technique under the modi-

fied prior distribution uF is just u times the welfare achieved under the original prior

distribution F , if we keep the number of points in the discretization (corresponding

to N) fixed.

We know that S∗ ⊆ Gen(S∗), and larger u corresponds to larger Gen(S∗). How-

ever, D(Gen(S∗)) drops some states from Gen(S∗) as a result of the discretization.

For sufficiently large u, it will be the case that S∗ ⊂ D(Gen(S∗)). Let u∗ be the

smallest value of u for which this is the case. As the step size h goes to 0, fewer

states are dropped as a result of the discretization, and as a result, the value of u∗

goes to 1 as h goes to 0.

When we apply the technique under the modified prior distribution u∗F , all the

Ôi contain S∗, for the following reason. Certainly, we have S∗ ⊆ Ô0. We know that

S∗ ⊆ D(Gen(S∗)). Therefore, if S∗ ⊆ Ôi, then S∗ ⊆ D(Gen(S∗)) ⊆ D(Gen(Ôi)) =

D(Gen(D(Ôi))) = Ôi+1. By induction, the Ôi all contain S∗. This implies that the

optimal welfare under F is less than or equal to the welfare achieved by the technique

under u∗F . Hence, the welfare achieved by the technique under F is at least 1
u∗

times

the optimal welfare. As h goes to 0, u∗ goes to 1, which means that the technique

produces an optimal mechanism in the limit.

One drawback of the numerical approach (and direct AMD approach in general)

is that the obtained mechanism does not have an elegant form. This makes it harder

to analyze. From the agents’ perspective, it is difficult to comprehend what the

mechanism is trying to do, which may lead to irrational behavior. Another drawback
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of the numerical approach is that it only applies to cases of finite type spaces. In

what follows, we take a more analytical approach. We aim to design mechanisms

that can be more simply and elegantly described, work for any type space, and are

(hopefully) close to optimality.

Later on, we will compare the performances of the mechanisms obtained numer-

ically and the mechanisms obtained by the analytical approach.

3.1.4 Competitive Analytical Mechanism

In this subsection, we propose the idea of an artificial payment system. Based on

this, we propose several mechanisms that can be elegantly described, and we can

prove that these mechanisms are close to optimality.

Let us recall the approximate shape of S∗ (Figure 3.3). The area covered by

S∗ consists of two parts. The lower left part is a triangle whose vertices are (0, 0),

(E, 0), and (0, E). These three states are always feasible, and so are their convex

combinations. The upper right part is a bow shape confined by the straight line

and the bow curve from (0, E) to (E, 0). To solve for S∗, we are essentially solving

for the largest bow shape satisfying that the union of the bow shape and the lower-

left triangle is self-generating. Here, we consider an easier problem. Instead of

solving for the largest bow shape, we solve for the largest triangle (whose vertices are

(0, E),(E, 0), and (x∗, x∗)) so that the union of the two triangles is self-generating

(illustrated in Figure 3.3). That is, we want to find the largest value of x∗ that

satisfies that the set of convex combinations of (0, 0), (E, 0), (0, E), and (x∗, x∗) is

self-generating.

Using the language of computationally feasible automated mechanism design,

what we are doing is essentially focusing on a parameterized subfamily of mecha-

nisms, where each mechanism within the subfamily corresponds to a certain value of

x∗. Then, to optimize within the subfamily, we are essentially looking for the largest
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Figure 3.3: Triangular approximation of the set of all feasible states (mechanisms)
for repeated allocation without payments.

x∗, so that (x∗, x∗) is feasible.

The triangle approximation corresponds to an artificial payment system. Let

(x∗, x∗) be any feasible state satisfying x∗ ≥ E
2

. Such a feasible state always exists

(e.g., (E
2
, E

2
)). We can implement an artificial payment system based on (x∗, x∗),

(E, 0), and (0, E), as follows. At the beginning of a period, the agents are told that

the default option is that they move to state (x∗, x∗) at the beginning of the next

period. However, if agent 1 wishes to pay v1 (v1 ≤ βx∗) units of artificial currency to

agent 2 (and agent 2 is not paying), then the agents will move to (x∗− v1
β
, x∗+E−x∗

x∗
v1
β

).

That is, the future state is moved v1
β

units to the left along the straight line connecting

(0, E) and (x∗, x∗). (This corresponds to going to each of these two states with a

certain probability.) By paying v1 units of artificial currency, agent 1’s expected

utility is decreased by v1 (the expected utility is decreased by v1
β

at the start of the
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next period). When agent 1 pays v1 units of artificial currency, agent 2 receives

only E−x∗
x∗

v1 (also as a result of future utility). In effect, a fraction of the payment

is lost in transmission. Similarly, if agent 2 wishes to pay v2 (v2 ≤ βx∗) units of

artificial currency to agent 1 (and agent 1 is not paying), then the agents will move

to (x∗ + E−x∗
x∗

v2
β
, x∗ − v2

β
). That is, the future state is moved v2

β
units towards the

bottom along the straight line connecting (x∗, x∗) and (E, 0). If both agents wish

to pay, then the agents will move to (x∗ − v1
β

+ E−x∗
x∗

v2
β
, x∗ − v2

β
+ E−x∗

x∗
v1
β

), which is

a convex combination of (0, 0), (0, E), (E, 0), and (x∗, x∗). Effectively, both agents

have a budget of βx∗, and when an agent pays the other agent, there is a gift tax

with rate 1− E−x∗
x∗

.

Based on the above artificial payment system, our approach is to design repeated

allocation mechanisms without payments, based on one-shot allocation mechanisms

with payments. In order for this to work, the one-shot allocation mechanisms need

to take the gift tax into account, and an agent’s payment should never exceed the

budget limit.

The budget constraint is difficult from a mechanism design perspective. We

circumvent this based on the following observation. An agent’s budget is at least

βE
2

= eβ
2−2β

, which goes to infinity as β goes to 1. As a result, for sufficiently

large discount factors, the budget constraint will not be binding. From now on, we

ignore the budget limit when we design the mechanisms. Then, for each obtained

mechanism, we specify how large the discount factor has to be for the mechanism to

be well defined (that is, for the budget constraint to not be violated). This allows

us to work around the budget constraint. The drawback is obvious: our proposed

mechanisms only work for discount factors reaching a (constant) threshold (though

it is not as restrictive as studying the limit case as β → 1).

176



High/Low Types

We start with the simple model in which the agents’ valuations are either H (high)

with probability p or L (low) with probability 1 − p. Without loss of generality,

we assume that L = 1. We will construct a repeated allocation mechanism without

payments based on the following pay-only one-shot allocation mechanism:

Allocation: If the reported types are the same, we determine the winner by flip-

ping a (fair) coin. If one agent’s reported value is high and the other agent’s reported

value is low, then we allocate the item to the agent reporting high.

Payment: An agent pays 0 if its reported type is low. An agent pays 1
2

if its

reported type is high (whether she wins or not); this payment does not go to the

other agent.

Proposition 56. The mechanism defined above is (Bayes-Nash) incentive compati-

ble.

Proof. If an agent’s valuation is high and she reports high, she wins with probability

1 − p
2
, and pays 1

2
. Her utility is then H(1 − p

2
) − 1

2
. If an agent’s valuation is high

and she reports low, she wins with probability 1
2
− p

2
, and pays 0. Her utility is then

H(1
2
− p

2
), which is smaller than H(1− p

2
)− 1

2
. Therefore, it is optimal for an agent

to report high if her valuation is high.

If an agent’s valuation is low and she reports low, she wins with probability 1
2
− p

2
,

and pays 0. Her utility is then 1
2
− p

2
. If an agent’s valuation is low and she reports

high, she wins with probability 1− p
2
, and pays 1

2
. Her utility is also 1

2
− p

2
. Therefore,

it is optimal for an agent to report low if her valuation is low.

Now we return to repeated allocation settings. Suppose (x∗, x∗) is a feasible state.

That is, we have an artificial payment system with gift tax rate 1− E−x∗
x∗

. We apply

the above one-shot mechanism, with the modifications that when an agent pays 1
2
,
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it is paying artificial currency instead of real currency, and the other agent receives

1
2
E−x∗
x∗

. We note that the amount an agent receives is only based on the other agent’s

reported value. Therefore, the above modifications do not affect the incentives.

Under the modified mechanism, an agent’s expected utility equals T
2
−P+P E−x∗

x∗
+

βx∗. In the above expression, T = 2p(1−p)H+p2H+(1−p)2 is the expected value of

the higher reported value. T
2

is then the ex ante expected utility received by an agent

as a result of the allocation. P = p
2

is the expected amount of artificial payment an

agent pays. P E−x∗
x∗

is the expected amount of artificial payment an agent receives.

βx∗ is the expected future utility by default (if no payments are made).

If both agents report low, then, at the beginning of the next period, the agents

go to (x∗, x∗) by default. If agent 1 reports high and agent 2 reports low, then

the agents go to (x∗ − 1
2β
, x∗ + E−x∗

2βx∗
), which is a convex combination of (x∗, x∗)

and (0, E). If agent 1 reports low and agent 2 reports high, then the agents go to

(x∗ + E−x∗
2βx∗

, x∗ − 1
2β

), which is a convex combination of (x∗, x∗) and (E, 0). If both

agents report high, then the agents go to (x∗− 1
2β

+ E−x∗
2βx∗

, x∗− 1
2β

+ E−x∗
2βx∗

), which is a

convex combination of (x∗, x∗) and (0, 0). Let S be the set of all convex combinations

of (0, 0), (E, 0), (0, E), and (x∗, x∗). The future states given by the above mechanism

are always in S. If an agent’s expected utility under this mechanism is greater than

or equal to x∗, then S is self-generating. That is, (x∗, x∗) is feasible as long as x∗

satisfies x∗ ≤ T
2
− P + P E−x∗

x∗
+ βx∗.

We rewrite it as ax∗2 + bx∗ + c ≤ 0, where a = 1 − β, b = 2P − T
2
, and c =

−EP . The largest x∗ satisfying the above inequality is simply the larger solution of

ax∗2 + bx∗ + c = 0, which is
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β)
.

This leads to a feasible mechanism M∗ (corresponding to state (x∗, x∗)). The

expected social welfare under M∗ is 2x∗, where x∗ equals the above solution.

Mechanism M∗ works as follows:
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• We start at state (x∗, x∗) in the first period.

x∗ =
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β)

In the above expression, T = 2p(1 − p)H + p2H + (1 − p)2 is the expected

value of the higher reported value. P = p
2

is the expected amount of artificial

payment an agent pays.

• If both agents report low, we flip a (fair) coin to determine the winner of this

period. The next period still starts at (x∗, x∗).

• If agent 1 reports high and agent 2 reports low, we allocate the item to agent

1. The next period starts at (x∗ − 1
2β
, x∗ + E−x∗

2βx∗
). That is, with probability

1− 1
2βx∗

, the next period starts at (x∗, x∗), and with probability 1
2βx∗

, the next

period starts at (0, E).

• Similarly, if agent 1 reports low and agent 2 reports high, we allocate the item

to agent 2. The next period starts at (x∗ + E−x∗
2βx∗

, x∗ − 1
2β

). That is, with

probability 1 − 1
2βx∗

, the next period starts at (x∗, x∗), and with probability

1
2βx∗

, the next period starts at (E, 0).

• If both agents report high, we flip a (fair) coin to determine the winner of this

period. The next period starts at (x∗ − 1
2β

+ E−x∗
2βx∗

, x∗ − 1
2β

+ E−x∗
2βx∗

). That is,

with probability 1 − 1
2βx∗

+ E−x∗
2βx∗2

, the next period starts at (x∗, x∗), and with

probability 1
2βx∗
− E−x∗

2βx∗2
, the next period starts at (0, 0).

• If a period starts at (x∗, x∗), then we repeat the above process.

• If a period starts at (E, 0), then we allocate all the items to agent 1 from this

period on.
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• If a period starts at (0, E), then we allocate all the items to agent 2 from this

period on.

• If a period starts at (0, 0), then we end the mechanism.

So far, we have not considered the budget limit. For the above M∗ to be well-

defined (satisfying the budget constraint), we need βx∗ ≥ 1
2
. Since x∗ ≥ E

2
= e

2−2β
≥

1
2−2β

, we only need to make sure that β
2−2β

≥ 1
2
. Therefore, if β ≥ 1

2
, then M∗ is

well-defined. For specific priors, M∗ could be well-defined even for smaller β.

Next, we show that (whenever M∗ is well-defined) M∗ is very close to optimality.

Consider the first-best allocation mechanism: the mechanism that always successfully

identifies the agent with the higher valuation and allocates the item to this agent

(for free). This mechanism is not incentive compatible, and hence not feasible.

The expected social welfare achieved by the first-best allocation mechanism is T
1−β ,

which is an upper bound on the expected social welfare that can be achieved by any

mechanism with (or without) payments (it is a strict upper bound, as the dAGVA

mechanism [41] is efficient, incentive compatible, and budget balanced).

Definition 6. When the agents’ valuations are either high or low, the prior distri-

bution over the agents’ valuations is completely characterized by the values of H and

p. Let W be the expected social welfare under a feasible mechanism M . Let W F be

the expected social welfare under the first-best allocation mechanism. If W ≥ αW F

for all H and p, then we say M is α-competitive. We call α a competitive ratio of M .

Proposition 57. Whenever M∗ is well-defined for all H and p, (e.g., β ≥ 1
2
), M∗

is 0.94-competitive.

Proof. The expected social welfare achieved by M∗ equals 2
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β)
.

We divide this expression by the expected social welfare achieved by the first-best

mechanism, resulting in the ratio
T
2
−2P+

√
(2P−T

2
)2+4eP

T
.
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Table 3.1: Social welfare under different repeated allocation mechanisms that do not
rely on payments.

M∗ Optimal First-best Lottery
H = 2, p = 0.2, β = 0.5 2.6457 2.6725 2.7200 2.4000
H = 4, p = 0.4, β = 0.5 5.5162 5.7765 5.8400 4.4000
H = 16, p = 0.8, β = 0.5 30.3421 30.8000 30.8000 26.0000
H = 2, p = 0.2, β = 0.8 6.6143 6.7966 6.8000 6.0000
H = 2, p = 0.8, β = 0.8 9.4329 9.8000 9.8000 9.0000
H = 16, p = 0.8, β = 0.8 75.8552 77.0000 77.0000 65.0000

We know that P = p
2
. Let x = p/T (here, 0 ≤ x ≤ 1). We may rewrite the

above ratio as 1
2
−x+

√
(x− 1

2
)2 + 2x(p+x−px)

p(2−p) . When x is close to 0 or close to 1, the

above ratio is close to 1. When p is close to 0 or close to 1, the above ratio is close

to 1 (when p is close to 0, x is also close to 0). After algebraic manipulation (with

the help of symbolic computation software), we find that the other critical points

(not on the boundary) simultaneously satisfy p4 − 8p+ 4 = 0 and x = p2

p2−2p+2
. The

exact roots of p4−8p+4 = 0 (quartic equation) can be found using Ferrari’s formula.

From this, we obtain that the minimal value of the above ratio equals 0.94 (the exact

expression is too long to write down).

As a comparison, the lottery mechanism that always chooses the winner by flip-

ping a fair coin has competitive ratio (exactly) 0.5 (if H is much larger than L and

unlikely to occur).

In Table 3.1, for different values of H, p, and β, we compare M∗ to the near-

optimal feasible mechanism obtained with the numerical solution technique. The

table elements are the expected social welfare under M∗, the near-optimal feasible

mechanism, the first-best allocation mechanism, and the lottery mechanism.
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General Valuation Space

Here, we generalize the earlier approach to general type spaces. We let f denote the

probability density function of the prior distribution. (A discrete prior distribution

can always be smoothed to a continuous distribution that is arbitrarily close.)

We will construct a repeated allocation mechanism without payments based on

the following pay-only one-shot allocation mechanism:

Allocation: The agent with the higher reported value wins the item.

Payment: An agent pays
∫ v

0
tf(t)dt if it reports v.

This mechanism is actually a6 dAGVA mechanism [41], which is known to be

(Bayes-Nash) incentive compatible.

The process is similar to the process on the high/low type space. At the end, we

obtain a feasible mechanism M∗. The expected social welfare under M∗ is 2x∗, where

x∗ equals
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β)
. Here, T =

∫∞
0

∫∞
0

max{t, v}f(t)f(v)dtdv is the

expected value of the higher valuation. P =
∫∞

0

∫ v
0
tf(t)dtf(v)dv is the expected

amount an agent pays.

Mechanism M∗ works as follows:

• We start at state (x∗, x∗) in the first period.

x∗ =
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β)

In the above expression, T =
∫∞

0

∫∞
0

max{t, v}f(t)f(v)dtdv is the expected

value of the higher valuation. P =
∫∞

0

∫ v
0
tf(t)dtf(v)dv is the expected amount

an agent pays.

6 “The” dAGVA mechanism often refers to a specific mechanism in a class of Bayes-Nash incentive
compatible mechanisms, namely one that satisfies budget balance. Here, we will use “dAGVA
mechanisms” to refer to the entire class, including ones that are not budget-balanced. Specifically,
we will only use dAGVA mechanisms in which payments are always nonnegative.
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• The item is allocated to the agent with the higher reported value. The next

period starts at

(x∗ − 1
β

∫ v1
0
tf(t)dt+ E−x∗

βx∗

∫ v2
0
tf(t)dt, x∗ − 1

β

∫ v2
0
tf(t)dt+ E−x∗

βx∗

∫ v1
0
tf(t)dt),

where v1 and v2 are the reported types of the two agents. This state is a

convex combination of (0, 0), (E, 0), (0, E), and (x∗, x∗), corresponding to a

randomization over these states that we explain below. We first consider the

case where v1 ≥ v2.

With probability
∫ v2
0 tf(t)dt

βx∗
− (E−x∗)(

∫ v2
0 tf(t)dt)

βx∗2
, the next period starts at (0, 0).

With probability
∫ v1
v2

tf(t)dt

βx∗
, the next period starts at (0, E).

With probability 1 −
∫ v1
0 tf(t)dt

βx∗
+

(E−x∗)(
∫ v2
0 tf(t)dt)

βx∗2
, the next period starts at

(x∗, x∗).

Next, we consider the case where v1 ≤ v2.

With probability
∫ v1
0 tf(t)dt

βx∗
− (E−x∗)(

∫ v1
0 tf(t)dt)

βx∗2
, the next period starts at (0, 0).

With probability
∫ v2
v1

tf(t)dt

βx∗
, the next period starts at (E, 0).

With probability 1 −
∫ v2
0 tf(t)dt

βx∗
+

(E−x∗)(
∫ v1
0 tf(t)dt)

βx∗2
, the next period starts at

(x∗, x∗).

• If a period starts at (x∗, x∗), then we repeat the above process.

• If a period starts at (E, 0), then we allocate all the items to agent 1 from this

period on.

• If a period starts at (0, E), then we allocate all the items to agent 2 from this

period on.

• If a period starts at (0, 0), then we end the mechanism.
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For the above M∗ to be well-defined, we need the budget βx∗ to be greater

than or equal to
∫∞

0
tf(t)dt = e (the largest possible amount an agent pays). Since

x∗ ≥ E
2

= e
2−2β

, we only need to make sure βe
2−2β

≥ e. Therefore, if β ≥ 2
3
, then M∗

is well-defined. For specific priors, M∗ may be well-defined for smaller β.

Next, we show that (whenever M∗ is well-defined) M∗ is competitive against the

first-best allocation mechanism for all prior distribution f . Naturally, the competitive

ratio is slightly worse than the one obtained previously for high/low valuations. We

first generalize the definition of competitiveness appropriately.

Definition 7. Let W be the expected social welfare under a feasible mechanism M .

Let W F be the expected social welfare under the first-best allocation mechanism. If

W ≥ αW F for all prior distributions, then we say that M is α-competitive. We call

α a competitive ratio of M .

Proposition 58. Whenever M∗ is well-defined for all prior distributions (e.g., β ≥
2
3
), M∗ is 0.85-competitive.

Proof. First, we note that P (the expected payment made by an agent) equals B/2

(B is the expected value of the lower valuation).

2P = 2
∫∞

0

∫ v
0
tf(t)dtf(v)dv =∫∞

0

∫ v
0
tf(t)dtf(v)dv +

∫∞
0

∫ t
0
vf(v)dvf(t)dt =∫∞

0

∫∞
0

min(t, v)f(t)f(v)dtdv.

The ratio between the expected social welfare under M∗ and the expected social

welfare under the first-best allocation mechanism equals

T
2
−B +

√
(B − T

2
)2 + 2eB

T
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Since T +B = 2e, we have T = ue for 1 ≤ u ≤ 2. We may rewrite the ratio as

ue
2
− (2e− ue) +

√
((2e− ue)− ue

2
)2 + 2e(2e− ue)

ue

=
u
2
− (2− u) +

√
((2− u)− u

2
)2 + 2(2− u)

u

Let t = 1
u

(here, 1
2
≤ t ≤ 1). The above ratio can be rewritten in terms of t as

follows:

3

2
− 2t+

√
(2t− 3

2
)2 + 4t2 − 2t

=
3

2
− 2t+

√
8t2 − 8t+

9

4

The minimal value of the above expression can occur only when t is on the

boundary or the first derivative is 0.

The first derivative of the above expression is

−2 +
8t− 4√

8t2 − 8t+ 9
4

After algebraic manipulation, we find that the above first derivative equals 0 only

when 32t2 − 32t+ 7 = 0, that is, when t = 1
2
±
√

2
8

.

Thus, we compare the values of the above expression when t equals 1
2
, 1, and 1

2
+
√

2
8

(we recall that t has to be at least 1
2
). The minimal value equals 1

2
+
√

2
4
≈ 0.85 (for

t = 1
2

+
√

2
8

).

3.1.5 Three or More Agents

We have focused on allocation problems with two agents. In this subsection, we

generalize our analytical approach to cases of three or more agents.
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Let n be the number of agents. We will continue with the state-based approach.

That is, a mechanism (state) is denoted by a vector of n nonnegative real values. For

example, if under mechanism M , agent i’s long-term expected utility equals xi, then

mechanism M is denoted by (x1, x2, . . . , xn). If we are about to apply mechanism

M , then we say the agents are in state (x1, x2, . . . , xn).

For any n, it is easy to see that the set of feasible states is convex and symmetric

with respect to permutations of the agents. A state is called fair if all its elements

are equal. For example, (1, 1, 1) is a fair state (n = 3). When there is no ambiguity

about the number of agents, the fair state (x, x, . . . , x) is denoted simply by x.

An artificial payment system can be constructed in a way that is similar to the

case of two agents. Let µn−1 be any feasible fair state for the case of n − 1 agents.

Then, the following n states are also feasible for the case of n agents:

(0, µn−1, . . . , µn−1︸ ︷︷ ︸
n−1

), (µn−1, 0, µn−1, . . . , µn−1︸ ︷︷ ︸
n−2

), . . . , (µn−1, . . . , µn−1︸ ︷︷ ︸
n−1

, 0).

We denote the above n states by si for i = 1, 2, . . . , n. Let Ŝ be the set of all

feasible states with at least one element that equals 0. Ŝ is self-generating. Suppose

we have a fair state µn for the case of n agents. Let S be the smallest convex

set containing µn and all the states in Ŝ. The si are in both Ŝ and S. An artificial

payment system can be implemented as follows (for the case of n agents): The agents

will go to state µn by default. If for all i, agent i chooses to pay vi units of artificial

currency, then we move to a new state whose ith element equals µn− vi
β

+ γ
∑

j 6=i
vj
β

.

Here γ = µn−1−µn
µn

.7 The new state M is in S. (The reason is the following. If

only agent i is paying, and it is paying nvi instead of vi, then the new state Mi

is (µn + γ
nvi
β
, . . . , µn + γ

nvi
β︸ ︷︷ ︸

i−1

, µn− nvi
β
, µn + γ

nvi
β
, . . . , µn + γ

nvi
β︸ ︷︷ ︸

n−i

), which is a convex

7 It should be noted that when one agent pays 1, then every other agent receives γ. In a sense,
γ already incorporates the fact that the payment must be divided among multiple agents.
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combination of µn and si. The average of the Mi over all i is just M . Thus M is a

convex combination of µn and the si, which implies M ∈ S.8)

With the above artificial payment system, by allocating the item to the agent

with the highest reported value and charging the agents dAGVA payments, we get

an incentive compatible mechanism. We denote agent i’s reported value by vi for all

i. The dAGVA payment for agent i equals Ev−i{max{v−i}I(vi ≥ max{v−i})}, where

I is the characteristic function (which evaluates to 1 on true and to 0 otherwise) and

v−i is the set of reported values from agents other than i.

We still use P to denote the expected amount of payment from an agent. We use

T to denote the expected value of the highest reported value. The expected utility

for an agent is then T
n
− P + (n− 1)µn−1−µn

µn
P + βµn.

To show S is self-generating, we only need to show µn is in Gen(S). That is,

µn is a feasible fair state as long as µn satisfies the following inequality: µn ≤
T
n
− P + (n− 1)µn−1−µn

µn
P + βµn.

The largest solution of µn equals
T
n
−nP+

√
(nP−T

n
)2+4(1−β)(n−1)µn−1P

2(1−β)
.

The above expression increases when the value of µn−1 increases. The highest

value for µ1 is E (when there is only one agent, we can simply give the item to the

agent for free). A natural way of solving for a good fair state µn is to start with

µ1 = E, then apply the above technique to solve for µ2, then µ3, etc.

Next, we present a proposition that is similar to Proposition 58.

Proposition 59. Let n be the number of agents. Let M∗
n be the mechanism obtained

by the technique proposed in this subsection. Whenever β ≥ n2

n2+ 3
4

, M∗
n is well defined

for all priors, and is αn-competitive, where α1 = 1, and for n > 1,

αn = min
{1≤u≤ n

n−1
}
n
u
n
−n+nu−u+

√
(n−nu+u−u

n
)2+4αn−1

n−nu+u
n

2u
.

8 The above argument assumes that the available budget is at least n times the maximum amount
an agent pays.
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For all i, αi ≥ 3
4

holds.

Proof. It is straightforward that α1 = 1.

Given the value of αn−1, we have that (n− 1)µn−1 ≥ αn−1
Tn−1

1−β , where Tn−1 is the

expected value of the largest valuation among n − 1 agents. We know that larger

µn−1 result in larger µn. That is, µn is at least

Tn
n
− nP +

√
(nP − Tn

n
)2 + 4(1− β)αn−1

Tn−1

1−β P

2(1− β)

Here, Tn is the expected value of the largest valuation among n agents. P is the

expected value of the dAGVA payment for the case of n agents.

The ratio between the expected social welfare under M∗
n and the expected social

welfare under the first-best allocation mechanism is then at least

n

Tn
n
− nP +

√
(nP − Tn

n
)2 + 4αn−1Tn−1P

2Tn

Through algebraic manipulation, we have that nTn−1 = (n − 1)Tn + nP . That

is, we may rewrite P in terms of Tn−1 and Tn. Because of this, on the one hand, we

have Tn ≥ Tn−1. On the other hand, we have Tn ≤ n
n−1

Tn−1. We rewrite Tn as uTn−1

for 1 ≤ u ≤ n
n−1

. After simplification, the above ratio becomes

n

u
n
− n+ nu− u+

√
(n− nu+ u− u

n
)2 + 4αn−1

n−nu+u
n

2u

The competitive ratio of M∗
n is at least the minimal value of the above expression.

We next prove that αi ≥ 3
4

for all i, by induction. We already have α1 = 1 ≥ 3
4
.

Now we prove that for any i, if αi−1 ≥ 3
4
, then we also have αi ≥ 3

4
.

For αi with i ≥ 2, if αi−1 ≥ 3
4
, we have

αi = min
{1≤u≤ i

i−1
}
i

u
i
− i+ iu− u+

√
(i− iu+ u− u

i
)2 + 4αi−1

i−iu+u
i

2u
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≥ min
{1≤u≤ i

i−1
}
i

u
i
− i+ iu− u+

√
(i− iu+ u− u

i
)2 + 3 i−iu+u

i

2u

= min
{1≤u≤ i

i−1
}
(
i2 − i+ 1

2
− i2

2u
+

√
(
i2

2u
− i2

2
+
i

2
− 1

2
)2 + 3(

i2

4u2
− i2

4u
+

i

4u
))

Let t = i
u
− i+ 1 (0 ≤ t ≤ 1). We have

αi ≥ min
{0≤t≤1}

(
1

2
− i

2
t+

√
(
i

2
t− 1

2
)2 +

3

4
t(t+ i− 1))

= min
{0≤t≤1}

(
1

2
− i

2
t+

√
(
i

2
t− 1

2
)2 +

3it

4
+

3

4
(t2 − t))

≥ min
{0≤t≤1}

(
1

2
− i

2
t+

√
(
i

2
t− 1

2
)2 +

3it

4
+

3

4
(−1

4
))

= min
{0≤t≤1}

(
1

2
− i

2
t+

√
i2t2

4
− it

2
+

1

4
+

3it

4
− 3

16
)

= min
{0≤t≤1}

(
1

2
− i

2
t+

√
i2t2

4
+
it

4
+

1

16
) =

3

4

Therefore, by induction, we have proved that αi ≥ 3
4

for all i.

When there are n agents, for M∗
n to be well-defined, we need M∗

i to be well-

defined for all i ≤ n, because M∗
i+1 is constructed based on M∗

i . That is, we need

the budget βµi to be greater than or equal to iTi−1 for all i ≤ n. Here, Ti−1 is the

largest possible amount an agent pays when there are i agents, and the budget must

be at least i times this amount (Footnote 8). Since µi ≥ (i−1)µi−1

i
≥ αi−1Ti−1

i−iβ , we

need to make sure βαi−1

i−iβ ≥ i. This is satisfied if β ≥ i2

i2+αi−1
. That is, as long as

β ≥ max{i≤n}{ i2

i2+αi−1
}, M∗

n is well-defined. Since αi ≥ 3
4

for all i, we have that as

long as β ≥ n2

n2+ 3
4

, M∗
n is well-defined. (For specific priors, M∗

n may be well-defined

for smaller β.)
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As a comparison, the lottery mechanism that always chooses the winner uniformly

at random has competitive ratio (exactly) 1
n
, which goes to 0 as n goes to infinity.
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3.2 Competitive Multi-Item Allocation Without Payments

In the previous section, we studied repeated allocation without payments. In this

section, we study single-round allocation without payments. In this context, if we try

to allocate a single item, there is little that can be done, because there is nothing that

an agent can give up in order to get the item. Therefore, in this section, we study

allocating multiple heterogeneous items. We investigate the problem of allocating

items (private goods) among competing agents in a setting that is both prior-free

and payment-free. That is, we do not assume that we have knowledge about the

distribution of the agents’ valuations. We also do not allow the mechanism to specify

any monetary payments. Specifically, we focus on allocating multiple heterogeneous

items between two agents. Our objective is to design strategy-proof mechanisms that

are competitive against the efficient (first-best) allocation.

It remains an open question to give an elegant characterization of mechanisms

that are strategy-proof, prior-free, and payment-free (for the problem that we study),

and we do not know how to solve for the most competitive such mechanism in general.

In our attempts to design competitive mechanisms, we introduce the family of linear

increasing-price (LIP) mechanisms, which are based on a certain artificial currency.

The LIP mechanisms are strategy-proof, prior-free, and payment-free. We show

how to solve for competitive mechanisms within the LIP family. For the case of

two items, we find a LIP mechanism whose competitive ratio is near optimal (the

achieved competitive ratio is 0.828, while any strategy-proof mechanism is at most

0.841-competitive). Thus, at least for the case of two items, it does not come at

much of a loss to focus only on LIP mechanisms. As the number of items goes to

infinity, we prove a negative result that any increasing-price mechanism (linear or

nonlinear) has a maximal competitive ratio of 0.5.

This section is organized as follows. In Subsection 3.2.1, we describe the model
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that we study. In Subsection 3.2.2, we prove an upper bound on the competitive

ratios of strategy-proof mechanisms. In Subsection 3.2.3, we introduce the family

of linear increasing-price mechanisms, and show they are the only increasing-price

mechanisms satisfying a strong responsiveness property. In Subsection 3.2.4, we solve

for competitive mechanisms within the LIP family. Finally, in Subsection 3.2.5, we

prove a negative result that as the number of items goes to infinity, any increasing-

price mechanism (linear or nonlinear) has a maximal competitive ratio of 0.5.

3.2.1 Formalization

We study the problem of allocating m (m > 1) heterogeneous items (referred to as

items 1 to m) between two agents (referred to as agents 1 and 2). We use −i to

denote the agent other than i.9

We still use O to denote the set of all possible allocations (outcomes). For the

problem that we study here, a specific allocation o ∈ O is denoted by a vector

(p1, p2, . . . , pm) (0 ≤ pj ≤ 1 for all j), where pj is the proportion10 of item j won by

agent 1 (so that 1− pj is the proportion of item j won by agent 2).

We assume that the agents’ valuations for the items are additive. We use a vector

(vi1, v
i
2, . . . , v

i
m) to denote agent i’s type, where vij is agent i’s valuation for winning

item j (vij ≥ 0). Additivity implies that under allocation (p1, p2, . . . , pm), agent 1’s

utility equals
∑

j pjv
1
j and agent 2’s utility equals

∑
j(1− pj)v2

j .

Furthermore, we require that the agents’ valuations are normalized. That is,

the type space Ω consists of vectors (v1, v2, . . . , vm) with
∑

j vj = 1. As a result,

an agent’s utility for an allocation can be thought of as her level of satisfaction;

if an agent wins all the items, then she is 100% satisfied. The reason that we

require this normalization is the following. When payments are available and utility

9 We usually use −i to denote the set of all agents other than i. Here, since there are only two
agents, we simply use −i to denote the agent other than i.

10 For indivisible items, pj is interpreted as the probability that agent 1 wins item j.
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is quasi-linear, payments provide a way of comparing valuations between agents.

However, because payments are unavailable in our context, it is no longer possible

to make such a comparison. Hence, the units in which valuations are expressed

become meaningless, so that the only meaning that can be derived from an agent’s

valuations is the relative valuations of the items (the ratio of the valuations). If we

(say) doubled one agent’s valuation for every item, in our payment-free context this

would double that agent’s utility for every outcome, and as a result her behavior

under any mechanism would remain completely unchanged. As a result, there can

be no hope of coming anywhere close to maximizing the social welfare without some

normalization assumption.

We define the first-best allocation mechanism M∗ to be the mechanism that al-

ways näıvely maximizes the social welfare (without considering incentives). We will

use the first-best mechanism M∗ (which is not strategy-proof) as our benchmark

when evaluating the performance of strategy-proof mechanisms. (When using M∗

as a benchmark, we assume that agents report truthfully, even though they are not

incentivized to do so. Hence, M∗ always produces the maximal social welfare among

all mechanisms, with or without priors, and with or without payments.)

Strategy-proof mechanism M is said to be (at least) α-competitive if the social

welfare under M is always greater than or equal to α times the social welfare under

M∗. Here α is called M ’s competitive ratio. The maximal possible value of α is called

M ’s maximal competitive ratio.

Example 15. The mechanism that always divides every item evenly has maximal

competitive ratio 0.5. The mechanism that always gives every item to agent 1 also

has maximal competitive ratio 0.5.

Our objective is to design strategy-proof (payment-free) mechanisms with high

competitive ratios.
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3.2.2 Upper Bound on the Competitive Ratios

In this subsection, we derive an upper bound on the competitive ratios of strategy-

proof mechanisms. Given our objective, we only need to consider strategy-proof

mechanisms that are symmetric.11

Definition 8. A mechanism M is symmetric if it satisfies

Symmetry over the agents: If we swap the reported type vectors of two of the

agents, then the items allocated to these agents are also swapped.

Symmetry over the items: If we swap agent 1’s valuations for any two items, and

we swap agent 2’s valuations for the same two items, then the allocation result for

these two items is also swapped.

Proposition 60. For any strategy-proof mechanism that is α-competitive, there is a

corresponding symmetric strategy-proof mechanism that is (at least) α-competitive.

Proof. Let M be any strategy-proof mechanism. Let Mσ1
σ2

be the mechanism that

is the same as M , except that the indices of the agents are permuted according to

an arbitrary permutation σ1, and the indices of the items are permuted according to

an arbitrary permutation σ2. Let M̄ be the “average” of the mechanisms Mσ1
σ2

over

all permutations σ1 and σ2. (That is, with equal probability, M̄ is the mechanism

corresponding to a specific permutation of the agents and the items.) M̄ is strategy-

proof, symmetric, and at least α-competitive.

Proposition 61. For the case of two agents, any symmetric strategy-proof mecha-

nism is (at least) 0.5-competitive.

Proof. By symmetry over the agents, given an agent’s report, the other agent can

guarantee herself a utility of 0.5, by cloning the report of the first agent. Because

11 This is a frequently used technique in the literature on prior-free mechanism design.
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the mechanism is strategy-proof, it follows that if the agents report truthfully, then

each of them has utility at least 0.5. Hence, the social welfare under any symmet-

ric strategy-proof mechanism is at least 1. The social welfare under the first-best

mechanism is at most 2.

Proposition 60 implies that for the purpose of deriving an upper bound on the

competitive ratios of strategy-proof mechanisms, we can safely ignore strategy-proof

mechanisms that are not symmetric.

Let us recall that a mechanism M is α-competitive if for all possible type vectors,

the social welfare under M is at least α times the social welfare under the first-best

mechanism M∗. If we restrict the type space, then the maximal competitive ratio

of M can only stay the same or increase. That is, one way to compute an upper

bound on the competitive ratios of strategy-proof mechanisms is to restrict the type

space and then solve for the largest possible competitive ratio for any strategy-proof

mechanism.

Theorem 10. The competitive ratio of any strategy-proof mechanism is at most

0.841. This is true for any number of items and two agents.

Proof. We first focus on the case of two items. We consider the following restricted

type space: {(ih, (N−i)h)|i = 0, 1, . . . , N}, where N = 50 and h = 1/N . Type vector

(ih, (N − i)h) can be denoted by the integer i. A mechanism for this restricted type

space can be denoted by the pijk for i = 1, 2 and 0 ≤ j, k ≤ N , where pijk is the

proportion of item i won by agent 1 when agent 1’s report is j and agent 2’s report

is k.

Strategy-proofness for agent 1 can then be represented by the following set of

linear inequalities: ∀ 0 ≤ j, j′, k ≤ N

jp1
jk + (N − j)p2

jk ≥ jp1
j′k + (N − j)p2

j′k

195



Strategy-proofness for agent 2 can be represented by a similar set of linear in-

equalities involving the pijk.

The mechanism characterized by the pijk is α-competitive if the following linear

inequalities are satisfied: ∀ 0 ≤ j, k ≤ N

jp1
jk + (N − j)p2

jk + k(1− p1
jk) + (N − k)(1− p2

jk) ≥

α(max{j, k}+ max{N − j,N − k})

The largest possible competitive ratio for any mechanism and for the above re-

stricted type space can thus be computed by solving a linear program, which results

in 0.841.12 Any strategy-proof mechanism for the case of m > 2 items remains

strategy-proof when applied to the case of two items (when the agents do not care

about the other items). Hence, the upper bound 0.841 still applies.

3.2.3 Linear Increasing-Price Mechanisms

As mentioned earlier, it remains an open question to solve for the most competitive

strategy-proof mechanism in general. There are two reasons for this: first, we lack an

elegant characterization of all strategy-proof mechanisms for our problem; second,

we lack a general approach for evaluating a given mechanism (computing its maximal

competitive ratio).

In our attempts to design competitive mechanisms, we start with the family of

all strategy-proof mechanisms (SP). We then move on to more and more restricted

families of mechanisms: the family of swap-dictatorial mechanisms (SD), the family

of increasing-price mechanisms (IP), and finally the family of linear increasing-price

12 We acknowledge that a computer-assisted proof is not as satisfactory as an easily human-verifiable
mathematical proof. Because this is a linear programming problem, in principle, we can give a
(nearly) optimal solution to the dual problem to show that it is impossible to better; we do not
give such a solution here because it does not seem to shed much light.
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mechanisms (LIP). These 4 families are nested as illustrated below:

LIP ( IP ( SD ( SP 13

As we move from SP to LIP, we get more and more elegant characterizations of the

mechanisms. Finally, the mechanisms in the LIP family can actually be characterized

by a single parameter, and we are able to evaluate (the competitiveness of) any given

LIP mechanism. That is, we are able to solve for competitive mechanisms within the

LIP family.

In a payment-free setting, if we fix agent −i’s report, then agent i essentially faces

a set of allowable outcomes that she can choose from (each outcome corresponds to

an allowable report of i). A necessary condition for a mechanism to be strategy-proof

is that the mechanism should always choose i’s favorite outcome (among all allowable

outcomes). This condition is not sufficient for the mechanism to be strategy-proof

for both agents, because agent −i may have the power to change the set of allowable

outcomes that agent i faces. That is, −i may want to submit a false report to get

agent i to a decision −i prefers. However, if we require that the set of allowable

outcomes agent i faces is fixed, then the mechanism that picks i’s favorite outcome

is strategy-proof for both agents. Essentially, in such a mechanism, agent i is the

dictator: she chooses her favorite outcome from a set of outcomes predetermined

by the mechanism, and agent −i has no choice but to accept this outcome (the

decision is solely made by i). This leads to the following family of swap-dictatorial

mechanisms (by Proposition 60, we only need to consider symmetric mechanisms):

Swap-Dictatorial Mechanisms: With probability 0.5, agent i is the dictator,

who chooses her favorite allocation from a predefined set of allowable allocations

Ôi ⊂ O. The Ôi satisfy the following (symmetry over the agents and the items):

13 If we define SP to be the family of all symmetric strategy-proof mechanisms, then we can only
say SD is a subset of SP. We do not know whether it is a strict subset or not.
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• If (p1, p2, . . . , pm) ∈ Ôi, then (1− p1, 1− p2, . . . , 1− pm) ∈ Ô−i for any i.

• If (p1, p2, . . . , pm) ∈ Ôi, then (pσ(1), pσ(2), . . . , pσ(m)) ∈ Ôi for any permutation

σ and i.

Swap-dictatorial mechanisms, as well as other dictatorial mechanisms, have been

studied extensively because of their simplicity (e.g., [17]). Many papers in the liter-

ature on mechanisms without payments suggest that strategy-proofness, combined

with various other properties, can only come down to mechanisms that are dictato-

rial in nature [89, 44, 112]. However, since we do not assume additional properties,

for our problem, there do exist strategy-proof mechanisms that are not dictatorial in

nature as shown below:

Example 16. Example fixed price mechanism [10] (strategy-proof, but not dicta-

torial): There are two items. Let r ∈ [1,∞) be a constant. The mechanism starts

by assigning both agents half of each item. Agent 1 has the right to propose the

following trade: sell 1
2

units of item 1 to agent 2 for 1
2r

units of item 2. (Agent 1 does

not have to propose the trade.) Agent 2 then approves or vetoes the trade proposal.

First of all, it can be seen that this is not a deterministic dictatorial mechanism.

Under a deterministic dictatorial mechanism, the dictator and the set of outcomes

the dictator can choose from are both predetermined precisely. That is, under a

deterministic dictatorial mechanism, at most one agent can affect the allocation (it

could be that the dictator agent faces one choice only). On the other hand, under

the above fixed price mechanism, the allocation depends on both agents’ reports.

Next, we show that the above fixed price mechanism is not equivalent to a random-

ization over deterministic dictatorial mechanisms (two mechanisms are equivalent if

they always produce the same allocation). We assume that the above fixed price

mechanism is equivalent to a randomization over deterministic dictatorial mecha-

nism M1,M2, . . . ,Mx. Without loss of generality, we assume under M1,M2, . . . ,Mk
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(k ≤ x), agent 1 is the dictator, and under Mk+1,Mk+2, . . . ,Mx, agent 2 is the dicta-

tor. Essentially, we are assuming that the above fixed price mechanism is equivalent

to a randomization over two mechanisms M1 and M2: under M i, agent i is the

dictator who is choosing from a randomized set of outcomes. When agent 1’s type

is (1, 0), that is, when agent 1 is only interested in item 1, she will not propose

the trade under the fixed price mechanism. That is, the final allocation is fixed to

(0.5, 0.5). When agent 1’s type is fixed to (1, 0), the allocation under M1 is fixed.

Therefore, when agent 1’s type is fixed to (1, 0), the allocation under M2 is also fixed

regardless of agent 2’s type. However, the allocation under M2 does not depend on

agent 1’s type. That is, the allocation under M2 is fixed regardless of both agents’

types. Similarly, given our assumption, we can see that the allocation under M1 is

also fixed regardless of both agents’ types. That is, the above fixed price mechanism

must produce the same allocation regardless of both agents’ types. However, this is

clearly not the case. By contradiction, the above fixed price mechanism is not equiv-

alent to a randomization over deterministic dictatorial mechanisms. In conclusion,

we proved that not all strategy-proof mechanisms are randomizations over dictato-

rial mechanisms. However, we do not know whether all symmetric strategy-proof

mechanisms are randomizations over dictatorial mechanisms or not.

For purpose of maximizing social welfare, ideally, we want the dictator agent to

take only items that she really values, and leave the remaining items to the other

agent. This leads to the following family of increasing-price (IP) mechanisms.

Increasing-Price (IP) Mechanisms: With probability 0.5, agent i is the dic-

tator, and is endowed with 1 unit of artificial currency. The dictator agent can

purchase (proportions of) items (from the mechanism, not from the other agent)

with her artificial currency. The (proportions of) items not purchased at the end go

to the other agent. Rather than having just a fixed price for each item, there is a price

schedule for each item, and the item becomes more expensive as the dictator agent
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buys more of it. The price schedules are characterized by functions f ij : [0, 1]→ R+

for i = 1, 2 and j = 1, 2, . . . ,m. f ij(x) is the instantaneous price per unit charged to

agent i (when i is the dictator) if she demands item j, at the point where x units of

her artificial currency have already been spent on item j. By Proposition 60, we can

simply assume f ij = f for all i and j. Function f is increasing and positive. We also

assume f is differentiable. If, at the end, agent i (when she is the dictator) spent

x units of artificial currency on item j, then she is allocated a proportion
∫ x

0
1
f(t)

dt

of item j. We will present an example IP mechanism later in this subsection (which

actually belongs to the more restricted class of LIP mechanisms).

The intuition for why increasing-price mechanisms might perform well is as fol-

lows. If the dictator agent demands a large proportion of an item, then she will be

paying at a high rate, which can only happen when she highly values the item. Be-

cause prices are increasing, the optimal strategy for the dictator agent is simply the

greedy strategy: purchase (an infinitesimally small amount each time) the best deal

(the item with the highest value/price ratio) until the artificial currency runs out.

That is, at some point, if the dictator agent’s valuation for item j is vj, and so far xj

units of artificial currency have been spent on item j, then the dictator agent should

purchase an infinitesimally small amount of item j∗, where j∗ = arg maxj{ vj
f(xj)
}.

At the end, for items that have been partly purchased, the final prices must be

proportional to the dictator agent’s valuations:

Lemma 6. Under an IP mechanisms, if the dictator spends k1, k2(0 < ki < 1) units

of artificial currency on items 1, 2, then the dictator’s valuations for these items must

be f1(k1) · C and f2(k2) · C for some C.

Any increasing and positive function f corresponds to an increasing-price mech-

anism. Actually, for the purpose of designing competitive mechanisms, we only need

to consider functions f that satisfy
∫ 1

0
1
f(t)

dt = 1. That is, we only need to consider
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increasing-price mechanisms in which the dictator agent gets the entirety of an item

if and only if she spends all her artificial currency on this item.

Proposition 62. For the purpose of designing competitive IP mechanisms, we only

need to consider increasing-price mechanisms with f satisfying
∫ 1

0
1
f(t)

dt = 1.

Proof. If
∫ 1

0
1
f(t)

dt > 1, then there exists U (U < 1) that satisfies
∫ U

0
1
f(t)

dt = 1.

∀0 < ε < U , let f̂ be the same as f for x ≤ U , and let f̂(x) take some very high

values for U < x ≤ 1 (in a way that makes f̂ increasing), so that
∫ 1

0
1

f̂(t)
dt ≤ 1 + ε.

Since the dictator agent will never spend more than U units of artificial currency on

any item (it is pointless for the dictator agent to continue purchasing an item when

she has already obtained the entirety of this item), on the region that matters to

the mechanism (0 ≤ x ≤ U), f and f̂ are identical. Thus, we only need to consider

functions f satisfying
∫ 1

0
1
f(t)

dt ≤ 1 + ε for arbitrary small value ε. That is, we only

need to consider cases where
∫ 1

0
1
f(t)
≤ 1.

If
∫ 1

0
1
f(t)

dt = p < 1, then let f̂ = pf , so that we have
∫ 1

0
1

f̂(t)
dt = 1. We denote

the proportion of item j won by agent i under f when i is the dictator by qij. The

proportion of item j won by agent i under f when i is not the dictator is then

1 − q−ij . The proportion of item j won by agent i under f̂ when i is the dictator

is
qij
p

(under f̂ , a dictator gets 1
p

times as much item per unit of artificial currency

at every amount of currency spent), and the proportion of item j won by agent i

under f̂ when i is not the dictator is 1 − q−ij
p

. The social welfare under f equals∑
i,j

qijv
i
j+(1−q−ij )vij

2
. The social welfare under f̂ equals

∑
i,j

qijv
i
j/p+(1−q−ij /p)vij

2
, which is

at least 1 (as in the proof of Proposition 61). It turns out that the social welfare

under f is always less than or equal to the social welfare under f̂ , as proved below.∑
i,j

qijv
i
j+(1−q−ij )vij

2
=
∑

i,j

qijv
i
j+(p−q−ij )vij+(1−p)vij

2
=
∑

i,j

qijv
i
j+(p−q−ij )vij

2
+
∑

i,j

(1−p)vij
2

=
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∑
i,j

qijv
i
j+(p−q−ij )vij

2
+(1−p) = p

∑
i,j

qijv
i
j/p+(1−q−ij /p)vij

2
+(1−p) ≤

∑
i,j

qijv
i
j/p+(1−q−ij /p)vij

2
.

Hence, we only need to consider f satisfying
∫ 1

0
1
f(t)

= 1.

Finally, the family of linear increasing-price mechanisms is described below:

Linear Increasing-Price (LIP) Mechanisms: Linear increasing-price mech-

anisms are increasing-price mechanisms characterized by a linear function f(x) =

ax + b, where a and b are positive constants. (a has to be positive for f to be in-

creasing. b has to be positive to avoid negative prices or division-by-zero.) Since we

only consider f satisfying
∫ 1

0
1
f(t)

dt = 1, we have b = a
ea−1

. That is, a LIP mechanism

is characterized by a single parameter a. From now on, we use LIP (a) to denote the

LIP mechanism with parameter a. We use b to denote the value a
ea−1

.

Example 17. Let a = 2 (b = 2
e2−1

) and m = 2. Let the agents’ type vectors be

(1, 0) and (0.5, 0.5), respectively. Under LIP (a), with 0.5 probability, agent 1 is the

dictator. Since agent 1’s type vector is (1, 0), she will spend all her artificial currency

on item 1. The resulting allocation is (1, 0): agent 1 wins the entirety of item 1, while

agent 2 gets what is left (the entirety of item 2). With 0.5 probability, agent 2 is the

dictator. Since agent 2’s type vector is (0.5, 0.5), she will divide her artificial currency

evenly on items 1 and 2. The resulting allocation is (1−
∫ 0.5

0
1

at+b
dt, 1−

∫ 0.5

0
1

at+b
dt) =

(0.283, 0.283): agent 2 wins
∫ 0.5

0
1

at+b
dt = 0.717 proportion of both item 1 and 2,

while agent 1 gets what is left (1−
∫ 0.5

0
1

at+b
dt = 0.283 proportion of both items). In

total, the resulting allocation under LIP (a) is (1− 1
2

∫ 0.5

0
1

at+b
dt, 1

2
− 1

2

∫ 0.5

0
1

at+b
dt) =

(0.642, 0.642).

Besides simplicity, the linear increasing-price mechanisms possess a nice property

that is not shared by other (non-linear) increasing-price mechanisms. Before defining

this property, we need the following definitions. Suppose we are considering an IP

mechanism characterized by function f .
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Definition 9. A type vector ~v ∈ Ω is strictly full ranked for f if a dictator agent

with true type ~v will purchase positive proportions of every item under f .

Every strictly full ranked type vector ~v = (v1, v2, . . . , vm) corresponds to a vector

(t1, t2, . . . , tm) with
∑m

j=1 tj = 1, where tj (> 0) denotes the amount of artificial

currency that an agent with type vector ~v will spend on item j (when she is the

dictator). The final value/price ratio
vj
f(tj)

should be the same for all j (Lemma 6).

Definition 10. A type vector ~v ∈ Ω is full ranked if ~v ∈W, where W is the closure

of the set of all strictly full ranked type vectors.

For a full ranked vector ~v, we also have that the final value/price ratio
vj
f(tj)

should

be the same for all j.

Not all type vectors are full ranked type vectors. If an agent has very low valua-

tions for some items, then she will not spend any artificial currency on those items

if f(0) is sufficiently high. For small f(0), most type vectors are full ranked. In the

rest of this subsection (when solving for the competitive ratios of LIP mechanisms),

we focus on full ranked type vectors, and treat vectors that are not full ranked as

exceptions.

Proposition 63. For cases of at least three items, LIP mechanisms are the only IP

mechanisms satisfying the following condition:

Strong responsiveness: For two agents with full ranked type vectors, if one agent

values an item more than the other agent, then she should win a greater proportion

of this item than the other agent.

We first prove the following lemma, which will be useful later.

Lemma 7. Let ~v = (v1, v2, . . . , vm) be a full ranked vector under LIP (a). Let ~v ’s

payment vector (t1, t2, . . . , tm) (
∑m

j=1 tj = 1) be such that an agent with true type ~v
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will spend tj units of artificial currency on item j under LIP (a) (when she is the

dictator). Then, the vj and the tj satisfy vj =
atj+b

a+mb
for all j.

Proof. The final value/price ratio
vj

atj+b
should be the same for all j, by Lemma 6.

Since
∑
vj = 1, we have vj =

atj+b

a+mb
for all j.

Now we are ready to prove the above proposition.

Proof of Proposition 63. We first prove that LIP mechanisms satisfy the strong re-

sponsiveness condition.

Lemma 7 says that under a LIP mechanism, an agent’s value for an item is

linear in the amount of artificial currency this agent would spend on the item as a

dictator. Therefore, if one agent values an item more than the other agent, then, as

the dictator, she would spend more on this item than the other agent, which means

she wins more of the item at the end.

We now prove that LIP mechanisms are the only IP mechanisms satisfying the

strong responsiveness condition, for cases of at least three items.

Let us consider an IP mechanism characterized by an increasing positive function

f . If there exist nonnegative ta, tb, t
′
a, t
′
b, so that 0 ≤ ta + tb = t′a + t′b = t ≤ 1 and

f(ta) + f(tb) > f(t′a) + f(t′b) are both satisfied, then we can construct the following

full ranked type vectors:

( f(1−t)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

, f(ta)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

, f(tb)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

,

f(0)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

, . . . , f(0)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

), and

( f(1−t)
f(1−t)+f(t′a)+f(t′b)+(m−3)f(0)

, f(t′a)
f(1−t)+f(t′a)+f(t′b)+(m−3)f(0)

,
f(t′b)

f(1−t)+f(t′a)+f(t′b)+(m−3)f(0)
,

f(0)
f(1−t)+f(t′a)+f(t′b)+(m−3)f(0)

, . . . , f(0)
f(1−t)+f(t′a)+f(t′b)+(m−3)f(0)

).

The two vectors are constructed in such a way that agent 1 will spend 1 − t

units of artificial currency on item 1, ta units on item 2, tb units on item 3, and 0

units on the other items, while agent 2 will spend 1 − t units of artificial currency
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on item 1, t′a units on item 2, t′b units on item 3, and 0 units on the other items.

Agent 1 values item 1 less than agent 2 (the denominator is larger), but they will

spend the same amount of artificial currency on item 1. So, they win the same

proportion of item 1 at the end. Now if we increase the value of agent 1 for item

1 by a tiny amount (still keeping it less than the value of agent 2), then we have

a situation where agent 1 values item 1 less, but wins a greater proportion of it

at the end (agent 1 now spends more on item 1). That is, to satisfy the strong

responsiveness condition, whenever 0 ≤ ta + tb = t′a + t′b = t ≤ 1 for nonnegative

ta, tb, t
′
a, t
′
b, we must have f(ta) + f(tb) = f(t′a) + f(t′b). That is, ∀0 ≤ c ≤ t ≤ 1, we

have f(t) + f(0) = f(t− c) + f(c). Since we assume f is differentiable, by taking the

derivative over t on both sides of the equality, we have that f ′(t) = f ′(t − c). The

values of t and c can be arbitrary. That is, f ′ is a constant. f must be linear.

The above proposition provides another justification (other than simplicity) why,

among all IP mechanisms, we focus on LIP mechanisms. In what follows, we solve

for competitive mechanisms within the LIP family.

3.2.4 Competitive Linear Increasing-Price Mechanisms

Since a linear increasing-price mechanism is characterized by a single parameter, if,

for a given value of a, we are able to evaluate the competitiveness of LIP (a), then

the task of solving for competitive LIP mechanisms can be done simply by searching

for the optimal value of a.

In what follows, we discuss how to evaluate the competitiveness of LIP (a), for a

given value of a and a given number of items.

Two Items

We first focus on the case of two items.

We denote the type vectors of agent 1 and 2 by (x, 1−x) and (y, 1−y), respectively
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(1 ≥ x ≥ y ≥ 0). We abuse notation by using x to refer to both the value x and the

type vector whose first element is x. We do the same for y.

Proposition 64. Under LIP (a), with probability 0.5, agent 1 is the dictator, whose

optimal strategy (when she is the dictator) is as follows.

• If x
a+b
≥ 1−x

b
, then agent 1 will spend all her artificial currency on item 1.

At the end, agent 1 gets item 1 in its entirety while agent 2 gets what 1 does

not take (item 2 in its entirety). It should be noted that this is the resulting

allocation when agent 1 is the dictator. When agent 2 is the dictator, we may

get a different allocation.

• If 1−x
a+b
≥ x

b
, then agent 1 will spend all her artificial currency on item 2. At the

end, agent 1 gets item 2 in its entirety while agent 2 gets item 1 in its entirety.

• Otherwise, agent 1 will spend t = x(a+2b)−b
a

units of artificial currency on item

1, and 1 − t = (1−x)(a+2b)−b
a

units of artificial currency on item 2. At the

end, the instantaneous prices of items 1 and 2 will be at + b = x(a + 2b)

and a(1 − t) + b = (1 − x)(a + 2b), respectively. (We note that the prices

are proportional to agent 1’s type vector (x, 1 − x), as they should be.) At

the end, agent 1 gets a proportion ln(at+b)
a
− ln(b)

a
of item 1 and a proportion

ln(a(1−t)+b)
a

− ln(b)
a

of item 2, while agent 2 gets the remainder.

For j = 1, 2, we use pj(x, y) to denote the proportion of item j won by agent 1 at

the end, when agent 1’s reported type vector is x and agent 2’s reported type vector

is y. (This proportion takes the randomization over who is the dictator into account.)

The value of pj(x, y) can be computed as shown above. p1(x, y) is increasing in x

and decreasing in y. p2(x, y) is decreasing in x and increasing in y. We use S(x, y)

to denote the social welfare under LIP (a). That is, S(x, y) = xp1(x, y) + (1 −
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x)p2(x, y) + y(1 − p1(x, y)) + (1 − y)(1 − p2(x, y)). The social welfare under the

first-best mechanism M∗ equals x+ 1− y.

By definition, the maximal competitive ratio of LIP (a) can be computed as

min
1≥x≥y≥0

S(x, y)

x+ 1− y

We now show how to bound the above expression from both below and above.

Let N be a large positive integer. Let h = 1
N

be the step size. Let the xi be

defined as xi = ih for i = 0, 1, . . . , N . Similarly, let the yi be defined as yi = ih for

i = 0, 1, . . . , N .

We have that

min
1≥x≥y≥0

S(x, y)

x+ 1− y
≥ min

N>i≥j≥0
{ min
xi + h ≥ x ≥ xi
yj + h ≥ y ≥ yj

S(x, y)

xi + h+ 1− yj
}

≥ min
N>i≥j≥0

xip1(xi, yj + h) + (1− xi − h)p2(xi + h, yj)
+yj(1− p1(xi + h, yj))

+(1− yj − h)(1− p2(xi, yj + h))

xi + h+ 1− yj

We also have that

min
1≥x≥y≥0

S(x, y)

x+ 1− y
≤ min

N≥i≥j≥0

S(xi, yj)

xi + 1− yj

= min
N≥i≥j≥0

xip1(xi, yj) + (1− xi)p2(xi, yj)
+yj(1− p1(xi, yj))

+(1− yj)(1− p2(xi, yj))

xi + 1− yj

We note that the xi and the yi are constants. The values of the pk(xi, yj) are also

constants (for fixed a). That is, based on the above two inequalities, we are able

to compute a constant upper bound and a constant lower bound on the maximal
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competitive ratio of LIP (a). When a = 2, the lower bound is 0.828. Since any lower

bound on the maximal competitive ratio is also a competitive ratio, LIP (2) is (at

least) 0.828-competitive. That is, the obtained LIP (2) mechanism is near optimal

for the case of two items (we recall that Theorem 10 says that any strategy-proof

mechanism is at most 0.841-competitive).

Theorem 11. For the case of two items and two agents, the competitive ratio of

LIP (2) is at least 0.828, and at most 0.829.

Three or More Items

With more than two items, we need a different technique to bound the maximal

competitive ratio of a given LIP mechanism.

Let α be the maximal competitive ratio of LIP (a) (for some given a and m).

Let W be the set of full ranked type vectors under LIP (a). Let αW be the maxi-

mal competitive ratio of LIP (a) if we restrict the type space to W. The following

proposition says that a lower bound on α can be obtained based on αW.

Proposition 65. Let α be the maximal competitive ratio of LIP (a). Let αW be the

maximal competitive ratio of LIP (a) if we restrict the type space to the set of full

ranked type vectors W. We have

a+ b

a+ 2mb
αW ≤ α

Before proving this proposition, let us introduce the following definition and

lemma.

Definition 11. Let ~v = (v1, v2, . . . , vm), which may or may not be full ranked.

Let ~v ’s payment vector (t1, t2, . . . , tm) be such that an agent with true type ~v will
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spend tj units of artificial currency on item j (when she is the dictator). We define

φ(~v) = (v′1, v
′
2, . . . , v

′
m), where v′j =

atj+b

a+mb
for all j. That is, φ(~v) is the (unique) full

ranked type vector corresponding to the payment vector of ~v.

If ~v is already full ranked, then φ(~v) = ~v. In any case, an agent with true type

φ(~v) will act in the same way as an agent with true type ~v, since their corresponding

payment vectors are the same.

Lemma 8. ∀~v = (v1, v2, . . . , vm),∀j, let φ(~v) = (v′1, . . . , v
′
m). Then, we have vj +

b
a+mb

≥ v′j and vj
a+b
a+mb

≤ v′j. That is, if we change ~v into φ(~v), the value of an

element increases at most by b
a+mb

, and the value of an element decreases at most by

a factor of a+b
a+mb

.

Proof. Let (t1, t2, . . . , tm) be the payment vector of ~v and φ(~v). Let S = {j|tj >

0, j = 1, 2, . . . ,m} and T = {j|tj = 0, j = 1, 2, . . . ,m}. We have that for all j ∈ S,

vj
atj+b

= C for a common constant C. We also have that for all j ∈ T , C ≥ vj
atj+b

=
vj
b

.

We get
∑

j∈S vj = C(a+|S|b). We also get
∑

j∈T vj ≤ C(|T |b). Since
∑

j∈S∪T vj =

1, we have C(a+mb) ≥ 1. That is, for j ∈ S, vj ≥ atj+b

a+mb
= v′j. For j ∈ T , v′j = b

a+mb
.

Therefore, for any j, vj + b
a+mb

≥ v′j.

Since
∑

j∈S∪T vj = 1 and vj ≥ 0 for all j, we have
∑

j∈S vj ≤ 1. That is,

C(a + b) ≤ C(a + |S|b) ≤ 1. That is, C ≤ 1
a+b

. Hence, for any j, vj ≤ atj+b

a+b
. Let us

recall that v′j =
atj+b

a+mb
. Therefore, for any j, vj

a+b
a+mb

≤ v′j.

Now we are ready to prove Proposition 65.

Proof of Proposition 65. Let ~v1, ~v2 ∈ Ω be any two type vectors.

Let S be the obtained social welfare (under LIP (a)) when the agents report ~v1

and ~v2, respectively. Let M be the first-best social welfare when the agents report ~v1

and ~v2, respectively. Let Sφ be the obtained social welfare (under LIP (a)) when the

209



agents report φ(~v1) and φ(~v2), respectively. Let Mφ be the first-best social welfare

when the agents report φ(~v1) and φ(~v2), respectively.

We consider what happens when agents report φ(~v1) and φ(~v2) instead of ~v1 and

~v2. The allocation does not change. Since there are m items and by Lemma 8 the

valuation of an item goes up by at most b
a+mb

, we have Sφ ≤ m b
a+mb

+ S. Since

by Lemma 8 the valuation of an item goes down by at most a factor of a+b
a+mb

, we

have Mφ ≥ a+b
a+mb

M . Therefore
S+m b

a+mb
a+b
a+mb

M
≥ Sφ

Mφ . Since S ≥ 1 (as in the proof of

Proposition 61), we have
S+m b

a+mb
S

a+b
a+mb

M
≥ Sφ

Mφ . That is, S
M
≥ a+b

a+2mb
Sφ

Mφ ≥ a+b
a+2mb

αW.

Proposition 65 implies that if we can get a lower bound on αW, then by multiplying

it by a+b
a+2mb

, we get a lower bound on α. So, we now focus on deriving a lower bound

on the maximal competitive ratio of LIP (a) considering only full ranked type vectors.

Let x,y be the agents’ valuations for item 1 (or any other item). Without loss of

generality, we assume x ≥ y. Since we are only dealing with full ranked type vectors,

we have x = atx+b
a+mb

for some 0 ≤ tx ≤ 1, where tx is the amount of artificial currency

agent 1 spends on item 1 when she is the dictator. Similar observations hold for y.

That is, y = aty+b

a+mb
for some 0 ≤ ty ≤ 1, where ty is the amount of artificial currency

agent 2 spends on item 1 when she is the dictator. Let u = y
x
. We have b

a+b
≤ u ≤ 1.

Under LIP (a), the proportion of item 1 won by agent 1 when 1 is the dictator

is ln(atx+b)
a

− ln(b)
a

. The proportion of item 1 won by agent 1 when 1 is not the

dictator is 1 − ln(aty+b)

a
+ ln(b)

a
. In total, the proportion of item 1 won by agent 1 is

1
2

+
ln(atx+b

aty+b
)

2a
= 1

2
+

ln(x
y

)

2a
= − ln(u)

2a
+ 1

2
. Similarly, the proportion of item 1 won by

agent 2 is ln(u)
2a

+ 1
2
.

We use R(x, y) to denote the sum of the agents’ utilities derived from item 1

when the agents’ valuations for item 1 are x and y, respectively (x ≥ y). Let θ(a) be
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defined as the minimum ratio between R(x, y) and x over all x, y. That is, θ(a) is

the minimum ratio of achieved utility over optimal utility for item 1 under LIP (a),

when we only consider full ranked vectors. θ(a) only depends on a (not on m). We

call it the intrinsic value of a.

Proposition 66. The intrinsic value θ(a) is less than or equal to the maximal com-

petitive ratio of LIP (a) considering only full ranked type vectors.

Proof. By symmetry over the items, the achieved utility over optimal utility for any

item is at least θ(a). Hence, the maximal competitive ratio is at least θ(a).

Let N be a large positive integer. Let h = a
N(a+b)

be the step size. Let the ui be

defined as ui = b
a+b

+ ih for i = 0, 1, . . . , N .

We observe that

θ(a) = min
b

a+mb
≤y≤x≤ a+b

a+mb

x(− ln(u)
2a

+ 1
2
) + y( ln(u)

2a
+ 1

2
)

x

= min
b
a+b
≤u≤1

− ln(u)

2a
+

1

2
+
u ln(u)

2a
+
u

2

≥ min
0≤i<N

min
ui≤u≤ui+h

(u− 1) ln(u)

2a
+

1

2
+
u

2

≥ min
0≤i<N

(ui + h− 1) ln(ui + h)

2a
+

1

2
+
ui
2

Given a, the ui are constants. The above expression is the minimum of N con-

stants. It gives a lower bound on θ(a). We denote it by θ(a). The following expression

gives an upper bound on θ(a) (denoted by θ(a)).

θ(a) = min
b
a+b
≤u≤1

− ln(u)

2a
+

1

2
+
u ln(u)

2a
+
u

2
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≤ min
0<i≤N

(ui − 1) ln(ui)

2a
+

1

2
+
ui
2

≤ min
0≤i<N

(ui + h− 1) ln(ui + h)

2a
+

1

2
+
ui
2

+
h

2

That is, the obtained lower bound θ(a) and upper bound θ(a) differ only by at

most h
2
, which can be made arbitrarily small.

Since θ(a) ≤ αW, we have that α is bounded below by a+b
a+2mb

θ(a).14

Next, we prove that θ(a) serves as an upper bound on α.15

Proposition 67. θ(a) ≥ α.

Proof. Let ᾱ be the maximal competitive ratio of LIP (a) when there are only two

items. We have ᾱ ≥ α. Hence we only need to show θ(a) ≥ ᾱ.

For the case of two items, let us consider the case where agent 1’s type vector is

( u
u+1

, 1
u+1

), and agent 2’s type vector is ( 1
u+1

, u
u+1

). Here, b
a+b
≤ u ≤ 1. It is easy to

see that these two type vectors are full ranked. The utility of agent 1 under LIP (a)

equals u
u+1

(1
2
+ ln(u)

2a
)+ 1

u+1
(1

2
+− ln(u)

2a
). The utility of agent 2 is the same. The first-best

social welfare is 2
u+1

. So, ᾱ is at most 2
1
2

+ u
u+1

ln(u)
2a

+ 1
u+1

− ln(u)
2a

2
u+1

= u+1
2

+ u ln(u)
2a

+ − ln(u)
2a

.

Since u can take any value from b
a+b

to 1, ᾱ ≤ min b
a+b
≤u≤1

1
2

+ u
2

+ u ln(u)
2a
− ln(u)

2a
.

The expression on the right side of the inequality is exactly θ(a).

Theorem 12 summarizes the development in this subsection.

Theorem 12. For the case of m items and two agents, LIP (a) is at least a+b
a+2mb

θ(a)-

competitive, and at most θ(a)-competitive.

We illustrate the results in this subsection with Figure 3.4. For three to one hun-

dred items, we searched for the LIP mechanism (from {LIP (a)|a = 0.01, 0.02, 0.03, . . . ,

14 When we compute this lower bound, we actually compute a+b
a+2mbθ(a).

15 When we compute this upper bound, we actually compute θ(a).
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Figure 3.4: LIP mechanisms’ competitive ratios

20}) that maximizes a+b
a+2mb

θ(a) (the corresponding upper bounds θ(a) are also pre-

sented).

3.2.5 Large numbers of items

We now show a negative result: as the number of items goes to infinity, any increasing-

price mechanism (whether it is linear or nonlinear) has maximal competitive ratio

0.5. That is, in the limit, they are no more competitive than the mechanism that

simply divides the items evenly.
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Theorem 13. For the case of two agents, as the number of items m goes to infinity,

the maximal competitive ratio of any increasing-price mechanism is 0.5.

Proof. Let M be any increasing-price mechanism, characterized by the price function

f . Let the type vectors of the agents be ( f(1)
f(1)+(m−1)f(0)

, f(0)
f(1)+(m−1)f(0)

, . . . , f(0)
f(1)+(m−1)f(0)

)

and (1, 0, . . . , 0), respectively. Either agent, when she is the dictator, will choose to

spend all her artificial currency on item 1.

When agent 1 is the dictator, the social welfare under M equals f(1)
f(1)+(m−1)f(0)

.

When agent 2 is the dictator, the social welfare under M equals 1 + (m−1)f(0)
f(1)+(m−1)f(0)

.

The social welfare under the first-best mechanism equals 1 + (m−1)f(0)
f(1)+(m−1)f(0)

. The

competitive ratio of M is then at most 1

1+
(m−1)f(0)

f(1)+(m−1)f(0)

= f(1)+(m−1)f(0)
f(1)+2(m−1)f(0)

. As m→∞,

this ratio goes to 0.5. That is, the maximal competitive ratio of any increasing-price

mechanism is at most 0.5 as m → ∞. On the other hand, 0.5 is a lower bound on

the competitive ratios of strategy-proof mechanisms by Proposition 61.
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3.3 Summary

In this chapter, we applied CFAMD to the problem of designing resource allocation

mechanisms that do not rely on payments at all. This is useful in settings where no

currency has (yet) been established (as may be the case, for example, in a peer-to-

peer network, as well as in many other multiagent systems); or where payments are

prohibited by law; or where payments are otherwise inconvenient. In Section 3.1,

we studied the problem of allocating a single item repeatedly among multiple com-

peting agents. We introduced an artificial payment system, which enabled us to

construct repeated allocation mechanisms without payments based on one-shot allo-

cation mechanisms with payments. Under certain restrictions on the discount factor,

we proposed several (Bayes-Nash) incentive compatible repeated allocation mecha-

nisms based on artificial payments. We proved that our mechanisms are competitive

against the first-best allocation. In Section 3.2, we investigated the problem of al-

locating multiple items among two competing agents in a single-round prior-free

setting. We introduced the family of linear increasing-price (LIP) mechanisms. The

LIP mechanisms are strategy-proof and only rely on artificial payments. We showed

how to solve for mechanisms within the LIP family that are competitive against the

first-best allocation. In both scenarios discussed in this chapter, the first-best alloca-

tion can be obtained by mechanisms with payments. Our results imply that in some

cases, artificial payments may be used to replace real monetary payments, without

incurring too much loss in social welfare.
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4

False-name-proofness with Bid Withdrawal

With the rapid development of electronic commerce, Internet auctions have become

increasingly popular over the years [83, 107, 97]. Unlike traditional auctions, typical

Internet auctions pose no geographical constraint. That is, sellers and bidders from

all over the world can participate in an Internet auction remotely over the Internet,

without having to physically attend the auction event. For sellers, this reduces the

cost of running an auction. For bidders, this lowers the entry cost. Effectively, in an

individually rational auction mechanism (a mechanism that guarantees nonnegative

utilities for the agents), a bidder loses nothing (but time) by participating in an

auction. On the one hand, this encourages more bidders to join the auction, which

potentially leads to higher revenue for the seller, as well as a higher efficiency for

the bidders. On the other hand, it enables the bidders to manipulate by submitting

multiple bids via multiple fictitious identities (e.g., user accounts linked to different

e-mail addresses).

The line of research on preventing manipulation via multiple fictitious identities

in Internet auctions was explicitly framed by the groundbreaking work of Yokoo et

al. [111]. Extending strategy-proofness, the authors define an auction mechanism

216



to be false-name-proof if the mechanism is not only strategy-proof, but also, under

this mechanism, an agent cannot benefit from submitting multiple bids under false

names (fictitious identities). The authors also extended the revelation principle to

incorporate false-name-proofness. That is (roughly stated), in settings where false-

name bids are possible, it is without loss of generality to focus only on false-name-

proof mechanisms.

Several false-name-proof mechanisms have been proposed for general combinato-

rial auction settings. These are the Set mechanism [108], the Minimal Bundle (MB)

mechanism [108], and the Leveled Division Set (LDS) mechanism [110].1 Other work

on false-name-proofness includes the following. For general combinatorial auction

settings, Yokoo [108] and Todo et al. [102] characterized the payment rules and

the allocation rules of false-name-proof mechanisms, respectively. False-name proof-

ness has also been studied in the context of voting mechanisms [29, 106]. Finally,

Conitzer [28] proposed the idea of preventing false-name manipulation by verifying

the identities of certain limited subsets of agents.

Focusing primarily on combinatorial auctions, this chapter continues the line of

research on false-name-proofness by considering an even more powerful variant of

false-name manipulation: an agent can submit multiple false-name bids, but then,

once the allocation and payments have been decided, withdraw some of her false-

name identities (have some of her false-name identities refuse to pay). While these

withdrawn identities will not obtain the items they won, their initial presence may

have been beneficial to the agent’s other identities, as shown in the following example:

Example 18. There are three single-minded agents 1, 2, 3 and two items A,B. Agent

1 bids 4 on {A,B}. Agent 2 bids 2 on {B}. Let us analyze the strategic options for

agent 3, who is single-minded on {A}, with valuation 1. (That is, ∀S ⊆ {A,B}, agent

1 A very recent paper [69] introduces a new mechanism called the ARP mechanism. However, this
mechanism requires the additional restriction that agents are single-minded.
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3’s valuation for S is 1 if and only if {A} ⊆ S.) The mechanism under consideration

is the VCG mechanism.

If agent 3 reports truthfully, then she wins nothing and pays nothing. Her result-

ing utility equals 0.

If agent 3 attempts “traditional” false-name manipulation, that is, submitting

multiple false-name bids, and honoring all of them at the end, then her utility is still

at most 0: if 3 wins both items with one identity, then she has to pay at least 4

(while her valuation for the items is only 1); if 3 wins both items with two identities

(one item for each identity), then the identity winning {B} has to pay at least 2; if 3

wins only {B} or nothing, then her utility is at most 0; if 3 wins only {A} (in which

case {B} has to be won by agent 2), then 3’s winning identity’s payment equals the

other identities’ overall valuation for {A,B} (at least 4), minus 2’s valuation for {B}

(which equals 2). That is, in this case, 3 has to pay at least 2. So, overall, 3’s utility

is at most 0 if she honors all her bids.

However, agent 3 can actually benefit from submitting multiple false-name bids,

as long as she can withdraw some of them. For example, 3 can use two identities, 3a

and 3b. 3a bids 1 on {A}. 3b bids 4 on {B}. At the end, 3a wins {A} for free, and

3b wins {B} for 2. If 3 can withdraw identity 3b (e.g., by never checking that e-mail

account anymore), never making the payment and never collecting {B}, then, she

has obtained {A} for free, resulting in a utility of 1.

If we wish to guard against manipulations like the above, we need to extend

the false-name-proofness condition. We refer to the new condition as false-name-

proofness with withdrawal (FNPW). It requires that, regardless of what other agents

do, an agent’s optimal strategy is to report truthfully using a single identity, even if

she has the option to submit multiple false-name bids, and withdraw some of them

at the end of the auction.

218



To our knowledge, this stronger version of false-name-proofness has not previously

been considered. Whether it is more or less reasonable than the original version

depends on the context. For example, in an auction, it may be possible to require

each participant to place the amount of her bid in escrow, which would prevent

manipulation based on withdrawal. However, in some auction contexts, such an

arrangement would be too unattractive to the bidders; it also reduces the anonymity

of bidding. Additionally, if we are in a setting where the payments are not monetary,

but rather are in terms of performance of future services, then it is not possible to

put the payments in escrow.

In any case, FNPW is a useful conceptual tool for analyzing false-name-proof

mechanisms. Indeed, this chapter also contributes to the research on false-name-

proofness in the traditional sense. Since FNPW is stronger than FNP, the mecha-

nisms we propose in this chapter, as well as the automated mechanism design tech-

nique, should be of interest in the FNP context as well.

The chapter is organized as follows. In Section 4.1, we formalize the problem we

study. In Section 4.2, we give a sufficient and necessary condition on the type space

for the VCG mechanism to be FNPW. In Section 4.3, we characterize both the pay-

ment rules and the allocation rules of FNPW mechanisms in general combinatorial

auctions. We also derive a sufficient condition that can be used to check whether a

mechanism is FNPW. In Section 4.4, we propose the maximum marginal value item

pricing (MMVIP) mechanism, which we prove is FNPW. In Section 4.5, we propose

an automated mechanism design technique that transforms any feasible mechanism

into an FNPW mechanism. This technique builds on the sufficient condition in Sec-

tion 4.3. In Section 4.6, we show that, under a minor condition, the mechanism

that sells all the items as a single bundle has the highest worst-case efficiency ratio

among all FNPW mechanisms. Finally, in Section 4.7, we give a characterization of

FNP(W) social choice rules.
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4.1 Formalization

We will still use the following standard notation:

• I = {1, 2, . . . , n}: the set of agents

• G = {1, 2, . . . ,m}: the set of items

• Θ: the type space of each agent

• θi ∈ Θ: agent i’s reported type (since we consider only strategy-proof mecha-

nisms, when there is no ambiguity, we also use θi to denote i’s true type)

• −i: the set of agents other than agent i

• θ−i ∈ Θn−1: types reported by agents other than agent i

We study combinatorial auction settings satisfying the following assumptions:

• ∀θ ∈ Θ, we have v(θ, ∅) = 0.

• ∀B1 ⊆ B2 ⊆ G, ∀θ ∈ Θ, we have v(θ, B1) ≤ v(θ, B2). That is, there is free

disposal.

• An agent can have any valuation function satisfying the above conditions. That

is, we are dealing with rich domains [13]. It should be noted that in Section 4.2,

we study how restrictive the type space has to be in order for the VCG mech-

anism to be FNPW. That is, we do not have the rich-domain assumption in

Section 4.2, which is an exception.

A mechanism consists of an allocation rule X : (Θ,Θn−1)→ P(G) and a payment

rule P : (Θ,Θn−1) → R. X(θi, θ−i) is the bundle agent i receives when reporting θi

(when the other agents report θ−i). P (θi, θ−i) is the payment agent i has to make
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when reporting θi (when the other agents report θ−i). When there is no ambiguity

about the other agents’ types, we simply use X(θi) and P (θi) in place of X(θi, θ−i)

and P (θi, θ−i).

Throughout the chapter, we only consider mechanisms satisfying the following

conditions:

• Strategy-proofness: ∀θi, θ′i, θ−i, we have v(θi, X(θi)) − P (θi) ≥ v(θi, X(θ′i)) −

P (θ′i). That is, if an agent uses only one identity, then truthful reporting is a

dominant strategy.

• Pay-only: ∀θi, θ−i, we have P (θi) ≥ 0.

• (Ex post) individual rationality: ∀θi, θ−i, we have v(θi, X(θi)) − P (θi) ≥ 0.

That is, if an agent reports truthfully, then her utility is guaranteed to be

nonnegative. This condition also implies that if an agent does not win any

items, or has valuation 0 for all the items, then her payment must be 0.

• Consumer sovereignty: ∀θ−i, ∀B ⊆ G, there exists θi ∈ Θ such thatX(θi, θ−i) ⊇

B. That is, no matter what the other agents bid, an agent can always win any

bundle (possibly at the cost of a large payment).

• Determinism and symmetry: We only consider deterministic mechanisms that

are symmetric over both the agents and the items (except for ties).

Yokoo [108] showed that in our setting, the mechanisms satisfying the above con-

ditions coincide with the (anonymous) price-oriented, rationing-free (PORF) mech-

anisms. Similar price-based representations have also been presented by others,

including [75]. The PORF mechanisms work as follows:

• The agents submit their reported types.
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• The mechanism is characterized by a price function χ : P(G)×Θn−1 → [0,∞).

For any agent i, for any multi-set θ−i of types reported by the other agents,

for any set of items S ⊆ G, χ(S, θ−i) is the price of S offered to i by the

mechanism. That is, i can purchase S at a price of χ(S, θ−i). ∀θ−i, we have

χ(∅, θ−i) = 0. That is, the price of nothing is always zero. ∀θ−i, ∀S1 ⊆ S2 ⊆ G,

we have χ(S1, θ−i) ≤ χ(S2, θ−i). That is, a larger bundle always has a higher

(or the same) price.

• The mechanism will select a bundle for agent i that is optimal for her given

the prices, that is, the bundle chosen for i is in

arg max
S⊆G
{v(θi, S)− χ(S, θ−i)}

The agent then pays the price for this bundle.

• Naturally, the mechanism must ensure that no item is allocated to two different

agents. This involves setting prices carefully, as well as breaking ties.

Since all feasible mechanisms (mechanisms that satisfy the desirable conditions

in our setting) are PORF mechanisms, besides using X (the allocation rule) and P

(the payment rule) to refer to a mechanism, we can also use the price function χ to

refer to a mechanism, namely, the PORF mechanism with price function χ.2

In the remainder of this section, we formally define the traditional false-name-

proofness (FNP) condition, as well as our new false-name-proofness with withdrawal

(FNPW) condition.

Definition 12. FNP. A mechanism characterized by allocation rule X and payment

rule P is FNP if and only if it satisfies the following:

2 Technically, there can be multiple PORF mechanisms with the same price function due to tie-
breaking, but this will generally not be an issue.
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∀θi, ∀θi1, θi2, . . . , θik, ∀θ−i, we have

v(θi, X(θi, θ−i))− P (θi, θ−i) ≥

v(θi,
k⋃
j=1

X(θij, θ−i ∪ (
⋃
t6=j

θit)))−
k∑
j=1

P (θij, θ−i ∪ (
⋃
t6=j

θit))

That is, truthful reporting using a single identifier is always better than submit-

ting multiple false-name bids.

Definition 13. FNPW. A mechanism characterized by allocation rule X and pay-

ment rule P is FNPW if and only if it satisfies the following:

∀θi, ∀θi1, θi2, . . . , θik, ∀θ′i1, θ′i2, . . . , θ′iq, ∀θ−i, we have

v(θi, X(θi, θ−i))− P (θi, θ−i) ≥

v(θi,
k⋃
j=1

X(θij, θ−i ∪ (
⋃
t6=j

θit) ∪ (
⋃
θ′it)))−

k∑
j=1

P (θij, θ−i ∪ (
⋃
t6=j

θit) ∪ (
⋃
θ′it))

That is, truthful reporting using a single identifier is always better than submitting

multiple false-name bids and then withdrawing some of them.

Actually, FNPW is exactly equivalent to FNP plus the following condition:

Definition 14. Others’ bids do not help (OBDNH). A mechanism character-

ized by allocation rule X and payment rule P satisfies the OBDNH condition if and

only if

∀θi, ∀θ′, ∀θ−i, we have

v(θi, X(θi, θ−i))− P (θi, θ−i) ≥ v(θi, X(θi, θ−i ∪ θ′))− P (θi, θ−i ∪ θ′)

That is, an agent’s utility for reporting truthfully does not increase if we add

another agent.

Theorem 14. FNPW is equivalent to FNP plus OBDNH.
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Proof. We first prove that FNPW implies FNP and OBDNH.

It is straightforward that FNPW implies FNP. We only need to prove that FNPW

implies OBDNH. ∀θi, ∀θ−i, ∀θ′, let k = 1, θi1 = θi, q = 1, and θ′i1 = θ′. With these

assignments, the FNPW condition reduces to the OBDNH condition.

We now prove that FNP and OBDNH together imply FNPW. ∀θi, ∀θ′i1, θ′i2, . . . , θ′iq,

∀θ−i, according to OBDNH, we have v(θi, X(θi, θ−i))− P (θi, θ−i) ≥ v(θi, X(θi, θ−i ∪

(
⋃
θ′it))) − P (θi, θ−i ∪ (

⋃
θ′it)). Then, according to FNP, ∀θi1, θi2, . . . , θik, replac-

ing θ−i by θ−i ∪ (
⋃
θ′it), we obtain v(θi, X(θi, θ−i ∪ (

⋃
θ′it))) − P (θi, θ−i ∪ (

⋃
θ′it)) ≥

v(θi,
k⋃
j=1

X(θij, θ−i∪ (
⋃
t6=j

θit)∪ (
⋃
θ′it)))−

k∑
j=1

P (θij, θ−i∪ (
⋃
t6=j

θit)∪ (
⋃
θ′it)). Combining

the inequalities, we obtain exactly the FNPW condition.

According to Theorem 14, to check whether an FNP mechanism is FNPW, we

only need to check whether it satisfies OBDNH.

Proposition 68. The Leveled Division Set (LDS) mechanism [110] does not satisfy

OBDNH. That is, LDS is not FNPW in general.3

The general LDS mechanism is rather complicated. Instead of describing LDS

in its general form, we focus on a specific LDS mechanism for three items, which is

characterized by reserve price 1 and the following two levels:

[{(A,B,C)}] and [{(A,B), (C)}, {(A), (B,C)}]

The mechanism works as follows. If there are at least two agents whose valuations

for {A,B,C} are at least 3, then we combine {A,B,C} into one bundle, and run

the Vickrey auction. If every agent’s valuation for {A,B,C} is less than 3, then we

do the following. We first introduce a dummy agent into the system. The dummy

agent has an additive valuation function and values every item at 1. We only allow

3 We will show later that the other two known FNP mechanisms, that is, the Set mechanism [108]
and the Minimal Bundle mechanism [108], are both FNPW.
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five types of allocations: 1) The dummy agent wins everything. 2) The dummy

agent wins one of {A,B} and {C}, and a non-dummy agent wins the other. 3) The

dummy agent wins one of {A} and {B,C}, and a non-dummy agent wins the other.

4) A non-dummy agent wins one of {A,B} and {C}, and another non-dummy agent

wins the other. 5) A non-dummy agent wins one of {A} and {B,C}, and another

non-dummy agent wins the other. We run the VCG mechanism on this restricted

set of possible allocations. Finally, if there is only one agent whose valuation for

{A,B,C} is at least 3, then this agent is the only winner. She has the option to

purchase all the items at price 3, or to obtain the result she would have obtained if

everyone (including the dummy agent) were to join in the above maximal-in-range

mechanism.

Proof. We only need to prove that the above specific LDS mechanism does not satisfy

OBDNH. We consider the following scenario. There are two agents. Agent 1 bids

2.2 on {A,B}. Agent 2 is single-minded, valuing {A} at 1.1. Under the above LDS

mechanism, if 2 reports truthfully, then {A,B} is allocated to 1, and {C} is allocated

to the dummy agent (thrown away). That is, if 2 reports truthfully, then her utility

equals 0. If, besides 2’s true identity, 2 also submits a false-name bid of 2.9 on

{B,C}, then {B,C} will be allocated to 2’s false-name identity (2 will withdraw

this identity, that is, refuse to pay for this bundle), and {A} will be allocated to 2’s

true identity at a price of 1. That is, 2 now has utility 0.1. We conclude that, in

general, LDS does not satisfy OBDNH, and hence is not FNPW.

4.2 Restriction on the type space so that VCG is FNPW

The VCG mechanism [103, 25, 52] satisfies several nice properties, including effi-

ciency, strategy-proofness, individual rationality, and the non-deficit property. Un-

fortunately, as shown by Yokoo et al. [111], the VCG mechanism is not FNP for
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general type spaces. One sufficient condition on the type space for the VCG mecha-

nism to be FNP is as follows:

Definition 15. Submodularity [111]. For any set of bidders Y , whose types are

drawn from Θ, ∀S1, S2 ⊆ G, we have U(S1, Y ) +U(S2, Y ) ≥ U(S1 ∪ S2, Y ) +U(S1 ∩

S2, Y ). Here, U(S, Y ) is defined as the total utility of bidders in Y , if we allocate

items in S to these bidders efficiently.

That is, if the type space Θ satisfies the above condition, then the VCG mech-

anism is FNP. In this section, we aim to characterize type spaces for which VCG is

FNPW. We consider restricted type spaces (that make the VCG mechanism FNPW)

in this section. In other sections, unless specified, we assume that the rich-domain

condition holds.

Theorem 15. If the type space satisfies the submodularity condition, then the VCG

mechanism is FNPW. Conversely, if the mechanism is FNPW, and additionally the

type space contains the additive valuations, then the type space satisfies the submod-

ularity condition.

That is, submodularity does not only imply FNP, it actually implies FNPW.

Moreover, unlike for FNP, in the case of FNPW, the converse also holds—if we allow

the additive valuations (those valuations which value any set of items at the sum of

the values of its elements, with no complementarity and no substitutability).

Proof. We first prove that if the type space satisfies submodularity, then the VCG

mechanism is FNPW. We consider agent i. Let K be the set of false-name identities i

submits and keeps at the end. Let W be the set of false-name identities i submits and

withdraws. We already know that submodularity is sufficient for the VCG mechanism

to be FNP. Hence, if K contains multiple identities, then i might as well replace all

of them by one identity that reports i’s true type. We then show that the identities
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in W do not help i (OBDNH). We use S to denote the set of items won by i at the

end. To win S, i pays the VCG price U(G, {−i} ∪W )−U(G− S, {−i} ∪W ) ({−i}

is the set of other agents). We use S ′ to denote the set of items won by identities

in W , when we allocate items in G − S to identities in {−i} ∪W efficiently. We

have that U(G, {−i} ∪W )− U(G− S, {−i} ∪W ) = U(G, {−i} ∪W )− U(G− S −

S ′, {−i})−U(S ′,W ) ≥ U(G−S ′, {−i})+U(S ′,W )−U(G−S−S ′, {−i})−U(S ′,W ) =

U(G− S ′, {−i})− U(G− S − S ′, {−i}). The submodularity condition implies that

U(G − S ′, {−i}) − U(G − S − S ′, {−i}) ≥ U(G, {−i}) − U(G − S, {−i}). But, the

expression on the right-hand side of the inequality is the price i would be charged for

S when she uses a single identifier. That is, i does not benefit from the false-name

identities in W . Therefore, the VCG mechanism is FNPW if the type space satisfies

submodularity.

Next, we prove that if the VCG mechanism is FNPW, then the type space must

satisfy submodularity (if it contains the additive valuations). Let S be an arbitrary

set of items. Let i be an agent that is interested in S. Since we allow additive

valuations, such i always exists (e.g., i may have a very large valuation for every

item in S). If i bids truthfully, then she can win S at a price of U(G, {−i}) −

U(G − S, {−i}). Let S ′ be another arbitrary set of items that does not intersect

with S. For each item j in S ′, we introduce a false-name identity that is only

interested in item j, with value c, where c is set to a very large value (e.g., larger

than U(G, {−i})). These false-name identities are allowed since we assume the type

space contains the additive valuations. Let W be the set of identities introduced.

With W , i can win S at a price of U(G, {−i} ∪W )−U(G−S, {−i} ∪W ). We have

that U(G, {−i}∪W )−U(G−S, {−i}∪W ) = U(G−S ′, {−i})+U(S ′,W )−U(G−S−

S ′, {−i})−U(S ′,W ) = U(G−S ′, {−i})−U(G−S−S ′, {−i}). The new price should

never be smaller than the old price. Otherwise, there is an incentive for i to submit

false-name bids and withdraw them. That is, we have U(G, {−i})−U(G−S, {−i}) ≤
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U(G−S ′, {−i})−U(G−S−S ′, {−i}). Let S1 = G−S, S2 = G−S ′, and Y = {−i}.

We have U(S1 ∩ S2, Y )− U(S1, Y ) ≤ U(S2, Y )− U(S1 ∪ S2, Y ). Since S1, S2, and Y

are arbitrary, we have submodularity.

4.3 Characterization of FNPW mechanisms

Yokoo [108] and Todo et al. [102] characterized the payment rules (the price functions

in the PORF representation) and the allocation rules of FNP mechanisms, respec-

tively. In this section, we present similar results on the characterization of FNPW

mechanisms.

4.3.1 Characterizing FNPW payments

We recall that in our setting, a feasible mechanism corresponds to a PORF mecha-

nism, characterized by a price function χ. Yokoo [108] gave the following sufficient

and necessary condition on χ for the mechanism characterized by χ to be FNP.

Definition 16. No superadditive price increase (NSA). Let O be an arbitrary

set of agents.4 We run mechanism χ (a PORF mechanism characterized by price

function χ) for the agents in O. Let Y be an arbitrary subset of O. Let Bi (i ∈ Y )

be the set of items agent i obtains. We must have

∑
i∈Y

χ(Bi, O − {i}) ≥ χ(
⋃
i∈Y

Bi, O − Y ).

By modifying the NSA condition, we get the following sufficient and necessary

condition on χ for mechanism χ to be FNPW.

Definition 17. No superadditive price increase with withdrawal (NSAW).

Let O be an arbitrary set of agents. We run mechanism χ for the agents in O. Let

4 In a slight abuse of language, we also use “a set of agents” to refer to the types reported by this
set of agents.
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Y and Z be two arbitrary nonintersecting subsets of O. Let Bi (i ∈ Y ) be the set of

items agent i obtains. We must have

∑
i∈Y

χ(Bi, O − {i}) ≥ χ(
⋃
i∈Y

Bi, O − Y − Z).

NSAW is equivalent to NSA plus the following condition.

Definition 18. Prices increase with agents (PIA). Let O be an arbitrary set

of agents. Let a be another agent not in O. ∀S ⊆ G, we must have

χ(S,O ∪ {a}) ≥ χ(S,O).

That is, from the perspective of agent i, if another agent joins in, then the price

i faces for any set of items must (weakly) increase.

Proposition 69. NSAW is equivalent to NSA plus PIA.

Proof. We first prove that NSAW implies NSA and PIA. It is straightforward that

NSAW implies NSA, so we only need to show that NSAW implies PIA. Let R be an

arbitrary set of agents. Let a be another agent not in R. ∀S ⊆ G, we can construct

an agent (denoted by y) that wins S if we run χ on the agents in R∪{a}∪{y} (e.g.,

let y be single-minded on S, with a very large value). Let Y = {y}, Z = {a}, and

O = R ∪ Y ∪ Z. NSAW implies that χ(S,R ∪ Z) = χ(S,R ∪ {a}) ≥ χ(S,R). That

is, NSAW implies PIA.

We now prove that NSA and PIA imply NSAW. PIA implies that χ(
⋃
i∈Y

Bi, O −

Y −Z) ≤ χ(
⋃
i∈Y

Bi, O− Y ). NSA implies that
∑
i∈Y

χ(Bi, O−{i}) ≥ χ(
⋃
i∈Y

Bi, O− Y ).

Combining the two inequalities, we obtain the NSAW condition.

Theorem 16. Mechanism χ is FNPW if and only if χ satisfies the NSAW condition.
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Proof. We first prove that if χ satisfies NSAW, then the mechanism is FNPW. Let

us consider a specific agent x. Let O−Y −Z be the set of agents other than herself.

Let Y be the set of false-name identities x submits and keeps at the end. Let Z be

the set of false-name identities x submits but withdraws at the end. So, O is the set

of all the identities. The set of items x receives at the end is
⋃
i∈Y

Bi, where Bi is the

bundle won by identity i. The total price x pays is
∑
i∈Y

χ(Bi, O− {i}). According to

NSAW, this price is at least χ(
⋃
i∈Y

Bi, O−Y −Z). That is, x would not be any worse

off if she just used a single identity to buy
⋃
i∈Y

Bi. When x uses only one identity, her

optimal strategy is to report truthfully. Therefore, if NSAW is satisfied, mechanism

χ is FNPW.

Next, we prove that if mechanism χ is FNPW, then χ must satisfy NSAW.

Suppose not, that is, suppose there exists some χ that corresponds to an FNPW

mechanism, and there exist three nonintersecting sets of agents Y , Z, and O−Y −Z,

such that
∑
i∈Y

χ(Bi, O − {i}) < χ(
⋃
i∈Y

Bi, O − Y − Z), where Bi is the bundle agent i

obtains (when we apply mechanism χ to the agents in O). Let us consider a single-

minded agent x, who values
⋃
i∈Y

Bi at exactly χ(
⋃
i∈Y

Bi, O−Y −Z). If the set of other

agents faced by x is O− Y −Z, then x has utility 0 if she reports truthfully using a

single identifier. However, if x instead submits multiple false-name identities Y +Z,

keeps those in Y and withdraws those in Z, then she will obtain her desired items

at a lower price and end up with positive utility, contradicting the assumption that

χ is FNPW. That is, if NSAW is not satisfied, then χ is not FNPW.

4.3.2 A sufficient condition for FNPW

The NSAW condition in Subsection 4.3.1 leads to the following sufficient condition

for mechanism χ to be FNPW.
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Definition 19. Sufficient condition for no superadditive price increase with

withdrawal (S-NSAW). Let O be an arbitrary set of agents. S-NSAW holds if we

have both of the following conditions:

• Discounts for larger bundles (DLB). ∀S1, S2 ⊆ G with S1 ∩ S2 = ∅,

χ(S1, O) + χ(S2, O) ≥ χ(S1 ∪ S2, O). That is, the sum of the prices of two

disjoint sets of items must be at least the price of the joint set.

• Prices increase with agents (PIA).5 ∀S ⊆ G, for any agent a that is not

in O, χ(S,O ∪ {a}) ≥ χ(S,O).

Proposition 70. Mechanism χ is FNPW if χ satisfies S-NSAW.

Proof. We only need to show that S-NSAW is stronger than NSAW (by Theorem 16,

NSAW is sufficient (and necessary) for χ to be FNPW). Let χ satisfy S-NSAW. Let

O be an arbitrary set of agents. We run mechanism χ on the agents in O. We divide

O into three subgroups, Y , Z, and O − Y − Z. For i ∈ Y , let Bi be the bundle

agent i obtains. By PIA, we have
∑

i∈Y χ(Bi, O − {i}) ≥
∑

i∈Y χ(Bi, O − Y − Z).

By DLB, we have
∑

i∈Y χ(Bi, O− Y −Z) ≥ χ(
⋃
i∈Y

Bi, O− Y −Z). Combining these

inequalities, we can conclude that S-NSAW implies NSAW.

S-NSAW is a cleaner, but more restrictive condition than NSAW. (To see why,

note that even if DLB does not hold, NSA may still hold: even if χ(S1, O)+χ(S2, O) <

χ(S1 ∪ S2, O), it may be the case that by putting separate bids on S1 and S2, each

of these bids makes the price for the other bundle go up, so that the result is still

more expensive than buying S1 ∪ S2 as a single bundle.) We find it easier to use

S-NSAW to prove that a mechanism is FNPW (rather than using the more complex

NSAW condition).6 Let us recall the three existing FNP mechanisms (for general

5 This is the same PIA condition as the one in Subsection 4.3.1.

6 However, S-NSAW cannot be used to prove that a mechanism is not FNPW, because it is a more
restrictive condition.
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combinatorial auction settings): the Set mechanism, the MB Mechanism, and the

LDS mechanism. We have already shown that LDS is not FNPW. With the help of

S-NSAW, we can prove that both Set and MB are FNPW.

Proposition 71. Both the Set mechanism and the MB mechanism satisfy the S-

NSAW condition. Hence, they are FNPW.

The Set mechanism simply combines all the items into a grand bundle. The grand

bundle is then sold in a Vickrey auction. The MB (Minimal Bundle) mechanism

builds on the concept of minimal bundles. A set of items S (∅ ( S ⊂ G) is called a

minimal bundle for agent i if and only if ∀S ′ ( S, v(i, S) > v(i, S ′). Under the MB

mechanism, the price of a bundle S an agent faces is equal to the highest valuation

value of a bundle, which is minimal and conflicting with S. Generally, MB coincides

with Set, because usually the grand bundle is a minimal bundle for every agent (any

smaller bundle usually gives at least slightly lower utility). The proof of the above

proposition is straightforward.

We will also use S-NSAW to prove that the MMVIP mechanism that we propose

(Section 4.4) is FNPW. The automated mechanism design technique for generating

FNPW mechanisms (Section 4.5) is also based on S-NSAW.

4.3.3 Characterizing FNPW allocations

Todo et al. [102] gave the following characterization of the allocation rules of FNP

mechanisms. We recall that X(θi, θ−i) is the set of items that agent i wins if her

reported type is θi and the reported types of the other agents are θ−i. To simplify

notation, we use X(θi) in place of X(θi, θ−i) when there is no risk of ambiguity.

Definition 20. Weak-monotonicity [13]. X is weakly monotone if ∀θi, θ′i, θ−i, we

have

v(θi, X(θi))− v(θi, X(θ′i)) ≥ v(θ′i, X(θi))− v(θ′i, X(θ′i)).
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Definition 21. Sub-additivity [102]. ∀θi, ∀θ′i, ∀θi1, θi2, . . . , θik, ∀θ′i1, θ′i2, . . . , θ′ik,

∀θ−i, we have the following:

X(θi) =
k⋃
l=1

X+Ik−l
(θil)

v(θ′i, X(θ′i)) = 0

X+Ik−l
(θ′il) ⊇ X+Ik−l

(θil)

v(θ′il, X+Ik−l
(θ′il)) = v(θ′il, X+Ik−l

(θil))

⇓

v(θ′i, X(θi)) ≤
k∑
l=1

v(θ′il, X+Ik−l
(θil)).

(Here, X+Ik−l
(θil) is short for X(θil, θ−i ∪ (

⋃
1≤t≤k,t6=l

θit)).)

X is said to be FNP-implementable if there exists a payment rule P so that X

combined with P constitutes a feasible FNP mechanism. Todo et al. [102] showed

that X is FNP-implementable if and only X satisfies both weak-monotonicity and

sub-additivity.

We define allocation rule X to be FNPW-implementable if there exists a payment

rule P so that X combined with P constitutes a feasible FNPW mechanism. We

introduce a third condition called withdrawal-monotonicity. We prove that X is

FNPW-implementable if and only X satisfies weak-monotonicity, sub-additivity, and

withdrawal-monotonicity.

Definition 22. Withdrawal-monotonicity. ∀θi, ∀θ−i, ∀θa, ∀θLi , ∀θUi , the follow-

ing holds:

v(θLi , X(θLi , θ−i)) = 0

X(θUi , θ−i ∪ θa) = X(θi, θ−i)

⇓

v(θLi , X(θi, θ−i)) ≤ v(θUi , X(θi, θ−i))
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Theorem 17. An allocation rule X is FNPW-implementable if and only X satisfies

weak-monotonicity, sub-additivity, and withdrawal-monotonicity.

Proof. We first prove that if X is FNPW-implementable, then X satisfies weak-

monotonicity, sub-additivity, and withdrawal-monotonicity. If X is FNPW-

implementable, then X is also FNP-implementable. Hence, X satisfies both weak-

monotonicity and sub-additivity [102]; only withdrawal-monotonicity remains to be

shown. Let χ be the (PORF) price function corresponding to an FNPW mechanism

that allocates according to X. We denote X(θi, θ−i) by S. Since v(θLi , X(θLi , θ−i)) =

0, we have v(θLi , S) ≤ χ(S, θ−i) (otherwise, an agent with true type θLi would

be better off purchasing S). Since X(θUi , θ−i ∪ θa) = X(θi, θ−i) = S, we have

v(θUi , S) ≥ χ(S, θ−i ∪ θa) (because an agent with true type θUi is best off buying

S when the other agents’ types are θ−i ∪ θa). χ is FNPW, hence it satisfies the PIA

condition, by Theorem 16 and Proposition 69. So, we have χ(S, θ−i∪θa) ≥ χ(S, θ−i).

Combining all the inequalities, we get v(θUi , X(θi, θ−i)) ≥ v(θLi , X(θi, θ−i)). That is,

withdrawal-monotonicity is satisfied.

Next, we prove that if X satisfies weak-monotonicity, sub-additivity, and withdrawal-

monotonicity, then X is FNPW-implementable. Since X satisfies both weak-

monotonicity and sub-additivity, X is FNP-implementable [102]. Let χ be a (PORF)

price function that characterizes an FNP mechanism that allocates according to X.

We prove that χ must also be FNPW. We only need to prove that χ satisfies PIA

(because, according to Proposition 69 and Theorem 16, if an FNP mechanism satis-

fies PIA, then it is FNPW). Suppose χ does not satisfy PIA. Then, there exists a set

of agents O, an agent a not in O (where a’s type is denoted by θa), and some S ⊆ G,

such that χ(S,O) > χ(S,O ∪ {a}). Let χ(S,O)−χ(S,O ∪ {a}) = β > 0. Let θ−i be

the reported types of the agents in O. Let i be an agent that is single-minded on S,
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with a very large valuation, so that X(θi, θ−i) = S (we denote agent i’s type by θi).

We also construct an agent that is single-minded on S, with valuation χ(S,O)− β
3
.

We denote the type of this agent by θLi . We have X(θLi , θ−i) = ∅ (she is not willing

to pay χ(S,O) to purchase S). Hence, v(θLi , X(θLi , θ−i)) = 0. We construct another

agent that is also single-minded on S, with valuation χ(S,O∪{a})+ β
3
. We denote the

type of this agent by θUi . We have X(θUi , θ−i ∪ θa) = S = X(θi, θ−i). By withdrawal-

monotonicity, we must have v(θLi , X(θi, θ−i)) ≤ v(θUi , X(θi, θ−i)). However, on the

other hand, v(θLi , X(θi, θ−i)) = χ(S,O)− β
3

= χ(S,O∪{a})+ 2β
3
> χ(S,O∪{a})+ β

3
=

v(θUi , X(θi, θ−i)). We have reached a contradiction. We conclude that χ has to satisfy

PIA, which implies that χ is FNPW. Hence, X is FNPW-implementable.

4.4 Maximum Marginal Value Item Pricing Mechanism

In this section, we introduce a new FNPW mechanism.

Definition 23. Maximum marginal value item pricing mechanism (MMVIP).

Let O be an arbitrary set of agents. MMVIP is characterized by the following price

function χ.

• ∀S ⊆ G, χ(S,O) =
∑

s∈S χ({s}, O). That is, χ uses item pricing.

• ∀s ∈ G, χ(s,O) = max
j∈O

max
S⊆G−{s}

{v(j, S ∪ {s})− v(j, S)}.7 That is, the price an

agent faces for an item is the maximum possible marginal value that any other

agent could have for that item, where the maximum is taken over all possible

allocations.

Proposition 72. MMVIP is feasible and FNPW.

7 In this notation, we assume that the maximum over an empty set is 0 (for the purpose of
presentation). Such notation will also appear later in the chapter.
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Proof. We first prove that MMVIP is feasible. We need to show that, with appro-

priate tie-breaking, MMVIP will never allocate the same item to multiple agents.

Let us suppose that under MMVIP there is a scenario in which two agents, i and j,

both win item s. Let Si and Sj be the sets of other items (items other than s) that

i and j win at the end, respectively. Let vi = v(i, Si ∪ {s})− v(i, Si). That is, vi is

i’s marginal value for s. Let vj = v(j, Sj ∪ {s})− v(j, Sj). That is, vj is j’s marginal

value for s. If vi > vj, then j has to pay at least vi to win s, which is too high for

her; j is better off not winning s. Similarly, if vi < vj, then i is better off not winning

s. If vi = vj, then i and j both have to pay at least their marginal value for s to

win s. That is, they are either indifferent between winning s or not, or prefer not

to win. The only case that does not lead to a contradiction is where they are both

indifferent; any tie-breaking rule can resolve this conflict.

We then show that MMVIP is FNPW. By Proposition 70, we only need to prove

that the price function χ that characterizes MMVIP satisfies S-NSAW. Let O be

an arbitrary set of agents. ∀S1, S2 ⊆ G with S1 ∩ S2 = ∅, we have χ(S1, O) +

χ(S2, O) = χ(S1 ∪ S2, O), because MMVIP uses item pricing. Hence, DLB is sat-

isfied. ∀S ⊆ G, for any agent a that is not in O, χ(S,O ∪ {a}) =
∑
s∈S

χ(s,O ∪

{a}) =
∑
s∈S

max
j∈O∪{a}

max
S′⊆G−{s}

{v(j, S ′∪{s})−v(j, S ′)} ≥
∑
s∈S

max
j∈O

max
S′⊆G−{s}

{v(j, S ′∪{s})−

v(j, S ′)} =
∑
s∈S

χ(s,O) = χ(S,O). That is, PIA is also satisfied.

Next, we prove two properties of the MMVIP mechanism.

Proposition 73. Suppose we restrict the domain to additive valuations. Then,

MMVIP coincides with the VCG mechanism.

Proof. When the agents’ valuations are additive, we have that MMVIP’s item price

function satisfies χ(s,O) = max
j∈O

max
S⊆G−{s}

{v(j, S ∪ {s}) − v(j, S)} = max
j∈O

v(j, {s}).
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Table 4.1: Performance comparison between MMVIP and Set for additive valuations.

MMVIP Set
Revenue 98.02 56.19
Efficiency 99.01 57.22

Thus, MMVIP is equivalent to m separate Vickrey auctions (one Vickrey auction

for each item), and hence to VCG (which also corresponds to m separate Vickrey

auctions when the valuations are additive).

The above proposition essentially says that, when the agents’ valuations are ad-

ditive, MMVIP is efficient. MMVIP is the only known FNP/FNPW mechanism with

the above property for general combinatorial auctions.

Before moving on to the other property that we prove about MMVIP, we first

experimentally compare the revenue and allocative efficiency of the MMVIP mecha-

nism and the Set mechanism, under the assumption that the agents’ valuations are

additive.8 We assume that there are 100 items and 100 agents. An agent’s valuation

for an item is drawn i.i.d. from U(0, 1) (the uniform distribution from 0 to 1). The

results are presented in Table 4.1 (the numbers shown are averages over 10000 in-

stances). The experimental results show that MMVIP leads to both higher efficiency

and higher revenue.

Finally, we have the following proposition about MMVIP.

Proposition 74. Among all FNPW mechanisms that use item pricing, MMVIP

has minimal payments. That is, let χ be the price function of MMVIP. Let χ′ be a

different price function corresponding to a different FNPW mechanism M that also

8 Under this assumption, the VCG mechanism coincides with the MMVIP mechanism. We also
have that the MB mechanism and the Set mechanism coincide. (In our experimental setup, the
grand bundle is always a minimal bundle for every agent.)
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uses item pricing. We have that there always exists a set of items S and a set of

agents O, so that χ′(S,O) > χ(S,O).

Proof. For the sake of contradiction, let us assume that the proposition is false.

That is, we assume that for every set of items S and every set of agents O, we

have χ′(S,O) ≤ χ(S,O). Since χ 6= χ′, we have that there exists at least one set

of items S and one set of agents O such that χ′(S,O) < χ(S,O). Since χ′(S,O) =∑
s∈S χ

′(s,O) and χ(S,O) =
∑

s∈S χ(s,O), it follows that there exists s ∈ S such

that χ′(s,O) < χ(s,O). By the definition of MMVIP, χ(s,O) corresponds to the

maximal marginal value of some agent j ∈ O. That is, there exists S ′ ⊂ G with

s /∈ S ′ such that χ(s,O) = v(j, S ′ ∪ {s}) − v(j, S ′). We construct an agent x,

whose valuation function is additive. Let x’s valuations of items not in S ′ ∪ {s}

be extremely high, so that x wins all these items under both mechanisms χ and

χ′. (We recall that we assume consumer sovereignty for FNPW mechanisms, so that

χ, χ′ <∞ everywhere.) Let x’s valuation on s be χ(s,O)−ε (where ε is small enough

so that χ(s,O) − ε > χ′(s,O)). Let x’s valuation of items in S ′ be 0. When the

set of agents consists of x and the agents in O, we have that x wins all the items

except for those in S ′ under M . Since M is FNPW, we have χ′(s,O) ≥ χ′(s, {j})

(PIA). That is, when the set of agents consists of only x and j, x also wins all the

items except for those in S ′ under M . Also, under M , j wins all of S ′, because

for any s′ ∈ S ′, we have χ′(s′, {x}) ≤ χ(s′, {x}) = 0. However, we then have

that χ′(s, {x}) ≤ χ(s, {x}) = χ(s,O) − ε = v(j, S ′ ∪ {s}) − v(j, S ′) − ε, so that j

would choose to also win s when facing x under M . That is, under M , when the

set of agents consists of only x and j, s is won by both agents, contradicting the

assumption that M is feasible. Thus, assuming that the proposition is false leads to

a contradiction.
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4.5 Automated FNPW Mechanism Design

In this section, we propose an automated mechanism design (AMD) technique that

transforms any feasible mechanism into an FNPW mechanism. In our setting, a

feasible mechanism is characterized by a price function χ. We start with any χ that

corresponds to a feasible mechanism (e.g., the price function of the VCG mechanism).

Our technique modifies χ so that it satisfies S-NSAW, while maintaining feasibility.

We recall that for general combinatorial auction settings, there are three known

FNPW mechanisms (Set, MB, and MMVIP), and four known FNP mechanisms (the

aforementioned three mechanisms, plus LDS). Though computationally expensive

(like many other AMD techniques in other contexts), this technique has the po-

tential to enlarge the set of known FNPW (FNP) mechanisms. By designing tiny

instances of FNPW mechanisms via automated mechanism design, we may get a bet-

ter understanding of the structure of FNPW mechanisms, from which we can then

conjecture FNPW mechanisms in analytical form. Later in this section, we show

that in a specific setting, by starting with the VCG mechanism, the AMD technique

produces exactly the MMVIP mechanism. That is, had we not known the MMVIP

mechanism, the AMD technique could have helped us find it (though it just so hap-

pened that we discovered MMVIP before the AMD technique). It remains an open

question whether new, general FNPW mechanisms can be found in this way.

The AMD technique is described as follows:

Let H : Θk → [0,∞) be a function that maps any set of agents O (more precisely,

their reported types) to a nonnegative number H(O). For any feasible mechanism

χ, we define χH as follows:

• For any set of agents O, ∀∅ ( S ⊆ G, χH(S,O) = χ(S,O) +H(O).

• For any set of agents O, χH(∅, O) = χ(∅, O) = 0.
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That is, moving from χ to χH , if we fix the reported types of the other agents

O, then we are essentially increasing the price of every nonempty set of items by the

same amount, while keeping the price of ∅ at 0.

Lemma 9. [109] ∀ feasible χ, ∀H, χH is feasible.

This lemma was first proved in [109].9 An agent is allocated her favorite set

of items (the set that maximizes valuation minus payment) in (PORF) mechanism

χ. From the perspective of agent i, the set of types reported by the other agents

θ−i is fixed. That is, for i, under χH , the price of every nonempty set of items is

increased by the same amount H(θ−i). Hence, agent i’s favorite set of items is either

unchanged, or has become ∅ (if H(θ−i) is too large). It is thus easy to see that if χ

never allocates the same item to more than one agent, then neither does χH . That

is, feasibility is not affected.10

Theorem 18. ∀ feasible χ, we define the following H. For any set of agents O,

H(O) equals the maximum of the following two values:

• max
S1,S2⊆G,S1∩S2=∅

{χ(S1 ∪ S2, O)− χ(S1, O)− χ(S2, O)}

• max
∅(S⊆G,j∈O

{χ(S,O − {j}) +H(O − {j})− χ(S,O)}

We have that χH is FNPW.

9 The GM-SMA mechanism [109] relies on this property. However, it has been shown that GM-
SMA is not FNP [102].

10 If the agents are single-minded, then in a PORF mechanism, as long as the prices of larger
sets of items are more expensive, an agent’s favorite set of items is either the set on which she
is single-minded, or the empty set. Thus, we do not need to increase the price of every set by
the same amount. As long as we are increasing the prices, an agent’s favorite set either remains
unchanged, or becomes empty (if the price increase on the set on which she is single-minded is too
high). That is, for single-minded agents, we have more flexibility in the process of transforming a
feasible mechanism into an FNPW mechanism.
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It should be noted that, for any O, the first expression in the theorem is at least

0 (setting S1 = S2 = ∅). That is, H never takes negative values. χH is feasible by

Lemma 9.

Proof. We prove that χH satisfies S-NSAW. By Proposition 70, this suffices to show

that χH is FNPW.

Proof of DLB: Let O be an arbitrary set of agents. ∀S1, S2 ⊆ G with S1∩S2 = ∅,

we prove that χH(S1, O) + χH(S2, O) ≥ χH(S1 ∪ S2, O). If at least one of S1 and S2

is empty, then w.l.o.g., we assume S1 = ∅. In this case, χH(S1, O) + χH(S2, O) =

χH(S2, O) = χH(S1∪S2, O). If neither S1 nor S2 is empty, then we have χH(S1, O)+

χH(S2, O)−χH(S1∪S2, O) = H(O) +χ(S1, O) +χ(S2, O)−χ(S1∪S2, O) ≥ H(O)−

max
S′1∩S′2=∅

{χ(S ′1 ∪ S ′2, O)− χ(S ′1, O)− χ(S ′2, O)} ≥ 0.

Proof of PIA: Let O be an arbitrary set of agents. Let a be an agent that is not

in O. If S is empty, then we have χH(S,O ∪ {a}) = χH(S,O) = 0. ∀∅ ( S ⊆ G,

χH(S,O ∪ {a}) = H(O ∪ {a}) + χ(S,O ∪ {a}) ≥ (χ(S,O) + H(S,O) − χ(S,O ∪

{a})) + χ(S,O ∪ {a}) = χH(S,O).

This still leaves the question of how to compute the H described in the theorem;

we address this next. Given χ, for any agent i and any set of other types θ−i, we

compute H(θ−i) using the following dynamic programming algorithm.

For t = 0, 1, . . . , |θ−i|

For any T ⊆ θ−i with |T | = t

h1 = max
S1,S2⊆G,S1∩S2=∅

{χ(S1 ∪ S2, T )− χ(S1, T )− χ(S2, T )}.

h2 = max
∅(S⊆G,j∈T

{H(T − {j}) + χ(S, T − {j})− χ(S, T )}.

H(T ) = max{h1, h2}.

It should be noted that the above dynamic programming algorithm does not scale

well. For example, the second “For” loop contains an exponential number of steps.
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Proposition 75. If we apply the AMD technique to a mechanism that already sat-

isfies S-NSAW, the mechanism remains unchanged.

We use the phrase “the AMD mechanism” to denote the mechanism generated by

the AMD technique starting from VCG (though the AMD technique is not restricted

to starting from VCG). Next, we prove a proposition that is similar to Proposition 73.

Proposition 76. When we restrict the preference domain to additive valuations, the

MMVIP, VCG, and AMD mechanism all coincide.

Proof. Proposition 73 already shows that MMVIP and VCG coincide. All that re-

mains to show is that VCG already satisfies S-NSAW, so that by Proposition 75,

AMD is also the same. When the agents’ valuations are additive, the VCG mecha-

nism’s price function χ is defined as follows: for any set of items S ⊂ G and any set

of additive agents O, χ(S,O) =
∑

s∈S x
s, where xs is the highest valuation for item

s among the agents in O. It is easy to see that χ satisfies S-NSAW.

Moreover, the next proposition shows that in settings with exactly two substi-

tutable items, the AMD mechanism coincides with MMVIP (but not with VCG).

Proposition 77. In settings with exactly two substitutable items, the AMD mecha-

nism coincides with MMVIP.

Proof. The proof is by induction on the number of agents. When there is only one

agent, this agent faces price 0 for every bundle under the VCG mechanism. This

already satisfies S-NSAW, so by Proposition 75, we do not need to increase any price

in the AMD process. Therefore, when n = 1, the AMD mechanism allocates all the

items to the only agent for free. The MMVIP mechanism does the same. Hence,

when n = 1, the AMD mechanism coincides with MMVIP. For the induction step,

we assume that the two mechanisms coincide when n ≤ k. When n = k+1, the price
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function of the VCG mechanism is defined as: χ({A}, O) = v∗AB − v∗B, χ({B}, O) =

v∗AB−v∗A, and χ({AB}, O) = v∗AB. Here, A and B are the two items. v∗A is the highest

valuation for A by the agents in O. v∗B is the highest valuation for B by the agents

in O. v∗AB is the highest combined valuation for {A,B} by the agents in O (which

may be obtained by splitting the items across two different agents, or giving both

to the same agent). Since the items are substitutable, v∗AB ≤ v∗A + v∗B. Equivalently,

χ({A}, O) + χ({B}, O) ≤ χ({AB}, O). Therefore, in the AMD technique, the price

of every bundle has to increase by at least χ({A,B}, 0) − χ({A}, O) − χ({B}, O).

That is, under the AMD mechanism, the price of A is at least v∗A, the price of

B is at least v∗B, and the price of {A,B} is at least v∗A + v∗B. These prices are

high enough to guarantee the PIA condition, because by the induction assumption,

the AMD mechanism coincides with MMVIP for n ≤ k; so, it follows that the

AMD technique results in exactly these prices. They coincide with the prices under

the MMVIP mechanism. Therefore, by induction, the AMD mechanism coincides

with the MMVIP mechanism for any number of agents, when there are exactly two

substitutable items.

It remains an open question whether there are more general settings in which the

AMD mechanism and the MMVIP mechanism coincide.

Finally, we compare the revenue and allocative efficiency of the VCG mecha-

nism, the Set mechanism11, the MMVIP mechanism, and the AMD mechanism. It

should be noted that the VCG mechanism is not FNPW in general. We use it as a

benchmark.

We consider a combinatorial auction with two items {A,B} and five agents

{1, 2, . . . , 5}.12 We denote agent i’s valuation for set S ⊆ {A,B} by vSi . We consider

11 The MB mechanism and the Set mechanism coincide in our experimental setup (the whole bundle
is a minimal bundle for every agent).

12 We only focused on these tiny auctions because the AMD technique is computationally quite

243



Table 4.2: Performance comparison between VCG, Set, AMD, and MMVIP for sub-
stitutable valuations.

VCG Set AMD MMVIP
Revenue 1.285 1.002 1.221 1.221

Efficiency 1.668 1.236 1.550 1.550

Table 4.3: Performance comparison between VCG, Set, AMD, and MMVIP for com-
plementary valuations.

VCG Set AMD MMVIP
Revenue 1.864 1.849 1.288 0.594

Efficiency 2.372 2.365 1.565 0.721

two scenarios, one with valuations displaying substitutability, and the other with

valuations displaying complementarity. We randomly generate 1000 instances for

each scenario.

Valuations with substitutability: The v
{A}
i and the v

{B}
i are drawn independently

from U(0, 1) (the uniform distribution from 0 to 1). For all i, v
{A,B}
i is drawn inde-

pendently from U(max{v{A}i , v
{B}
i }, v

{A}
i +v

{B}
i ). In this scenario, AMD and MMVIP

coincide. They perform better than the Set mechanism, both in terms of revenue

and allocative efficiency. The results are presented in Table 4.2.

Valuations with complementarity: The v
{A}
i and the v

{B}
i are still drawn indepen-

dently from U(0, 1). For all i, v
{A,B}
i is set to be (v

{A}
i + v

{B}
i )(1 + xi), where the xi

are also drawn independently from U(0, 1). It turns out that, in this scenario, Set

performs better than AMD and MMVIP, both in terms of revenue and allocative

efficiency. (MMVIP performs especially poorly when valuations exhibit complemen-

tarity, because every item can potentially have a very large marginal value to another

agent, leading to prices that are too high.) The results are presented in Table 4.3.

Thus, when there are two items and five agents, among these FNPW mechanisms,

expensive. Nevertheless, even the solutions to tiny auctions can be helpful in conjecturing more
general mechanisms.
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it seems that Set is most desirable if it likely that there is significant complementarity,

and AMD is most desirable if it is likely that there is substitutability. (We cannot

safely use the VCG mechanism unless we are certain that the type space makes VCG

FNPW.)

4.6 Worst-Case Efficiency Ratio of FNPW Mechanisms

Yokoo et al. [111] proved that in general combinatorial auction settings, there exists

no efficient FNP mechanisms. Iwasaki et al. [69] further showed that, under a minor

condition called IIG (described below), the worst-case efficiency ratio of any feasible

FNP mechanism is at most 2
m+1

.13

Definition 24. Independence of irrelevant good (IIG) [69]. Suppose agent i

is winning all the items. If we add an additional item that is only wanted by i, then

i still wins all the items.

Given the agents’ reported types, the efficiency ratio of a mechanism is defined

as the ratio between the achieved allocative efficiency and the optimal allocative

efficiency (payments are not taken into consideration). The worst-case efficiency

ratio of this mechanism is the minimal such ratio over all possible type profiles.

Example 19. The worst-case efficiency ratio of the Set mechanism is at least 1
m

[69].

Let v be the winning agent’s valuation for the grand bundle. The allocative efficiency

of the Set mechanism is v. The optimal allocative efficiency is at most mv, since

there are at most m winners in the optimal allocation, and a winner’s valuation (for

the items she won) is at most v.

Our next theorem is that 1
m

is a strict upper bound on the efficiency ratios of

feasible FNPW mechanisms. That is, the Set mechanism is worst-case optimal in

13 Iwasaki et al. [69] also introduced the ARP mechanism, whose worst-case efficiency ratio is
exactly 2

m+1 . However, the ARP mechanism is only FNP for single-minded agents. Our next result
implies that ARP is not FNPW, even with single-minded bidders.
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terms of efficiency ratio. Of course, this is only a worst-case analysis, which does not

preclude FNPW mechanisms from performing well most of the time.

Theorem 19. The worst-case efficiency ratio of any feasible FNPW mechanism is

at most 1
m

if IIG holds, even with single-minded bidders.

Proof. Let χ be the price function that corresponds to an FNPW mechanism with

optimal worst-case ratio. Since the Set mechanism is FNPW, χ’s worst-case efficiency

ratio is at least 1
m

. We denote item i by si. We consider the following types:

θa: the type of an agent that is single-minded on the grand bundle, with value 1.

θi (i = 1, 2, . . . ,m): the type of an agent that is single-minded on si, with value

1− ε. Here, ε is a small positive number.

Scenario 1: There are two agents. Agent a has type θa. Agent 1 has type θ1.

Scenario 2: There are two agents. Both agents have type θ1.

Scenario 3: There are m + 1 agents. Agent a has type θa. Agent i has type θi

for i = 1, 2, . . . ,m.

We first prove that in scenario 1, agent a wins. We start with the special case

of m = 1. If χ({s1}, {θ1}) > 1− ε, then we consider scenario 2. In scenario 2, both

agents cannot afford the only item. That is, the efficiency ratio is 0. Hence, we must

have χ({s1}, {θ1}) ≤ 1− ε. That is, in scenario 1, in the case of m = 1, agent a must

win. The IIG condition implies that this is also true for cases with m > 1.

Since agent a is the only winner in scenario 1, we have χ({s1}, {θa}) ≥ 1 − ε

(otherwise, agent 1 would win in scenario 1). ε can be made arbitrarily close to 0;

hence, χ({s1}, {θa}) ≥ 1.

Finally, we consider scenario 3. The price agent 1 faces for s1 is χ({s1}, {θa} ∪

(
⋃
j 6=1

{θj})). According to PIA, this price is at least χ({s1}, {θa}) = 1. That is, agent

1 does not win in scenario 3. By symmetry over the items, agent i does not win for

246



all i = 1, 2, . . . ,m. The efficiency ratio in this scenario is then at most 1
m(1−ε) , which

goes to 1
m

as ε goes to 0.

4.7 Characterizing FNP(W) in Social Choice Settings

Throughout the chapter, we have only discussed combinatorial auctions. In this

section, we focus on FNP(W)14 in social choice settings (without payments). Specif-

ically, we present a characterization of FNP(W) social choice functions (without

payments). A social choice function f is defined as f : {∅} ∪ Θ ∪ Θ2 ∪ . . . → Ω,

where Θ is the space of all possible types of an agent, and {∅} ∪Θ ∪Θ2 ∪ . . . is the

space of all possible profiles (since we do not know how many agents there are). The

definitions of Ω, θi, and θ−i are as usual. i’s valuation for outcome ω ∈ Ω is denoted

by vi(θi, ω).

First, we present the following straightforward characterization of strategy-proof

social choice functions.

Proposition 78. A social choice function f is strategy-proof if and only if it satisfies

the following condition: ∀i, θi, θ−i, we have f(θi, θ−i) ∈ arg maxθ′i vi(θi, f(θ′i, θ−i)).

Proof. If the above condition is satisfied, then ∀i, θi, θ′i, θ−i, we have

vi(θi, f(θi, θ−i)) ≥ vi(θi, f(θ′i, θ−i)). That is, reporting truthfully is a dominant strat-

egy.

If reporting truthfully is a dominant strategy, then ∀i, θi, θ′i, θ−i, we have

vi(θi, f(θi, θ−i)) ≥ vi(θi, f(θ′i, θ−i)). That is, ∀i, θi, θ−i, we have vi(θi, f(θi, θ−i)) ≥

maxθ′i vi(θi, f(θ′i, θ−i)), which is equivalent to f(θi, θ−i) ∈ arg maxθ′i vi(θi, f(θ′i, θ−i)).

That is, an agent always receives her most-preferred choice among outcomes that

14 In these settings, it does not matter whether withdrawal is allowed or not.
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she can attain with some type report. We are now ready to present the characteri-

zation of FNP(W) social choice functions.

Proposition 79. Suppose that for every outcome o ∈ Ω, there exists some type

θi ∈ Θ such that {o} = arg maxo′∈O uθi(o
′) (each o is the unique most-preferred

outcome for some type). Then, a strategy-proof and individually rational social choice

function f is FNP(W) if and only if it satisfies the following condition: ∀i, θ−i, θ0,

we have {f(θi, θ−i)|θi ∈ Θ} ⊇ {f(θi, θ−i ∪ {θ0})|θi ∈ Θ}. That is, with an additional

other agent, the set of outcomes that an agent can choose decreases or stays the same.

Proof. We first show that if f is FNP(W), then the condition must be satisfied.

Suppose not, that is, for some i, θ−i, θ0, there exists some o ∈ {f(θi, θ−i ∪ {θ0})|θi ∈

Θ} \ {f(θi, θ−i)|θi ∈ Θ}. Then, by assumption, there exists some θi ∈ Θ such that

{o} = arg maxo′∈O uθi(o
′). It follows that an agent facing type profile θ−i cannot

obtain o with a single report, but can obtain it by reporting both θ0 and some other

type (such as, by strategy-proofness, θi). Because o is her unique most-preferred

outcome, she prefers to engage in this manipulation, contradicting FNP(W).

Conversely, we show that if the condition is satisfied, then f is FNP(W). By

assumption, f is strategy-proof and individually rational, so we only need to check

that an agent has no incentive to use multiple identifiers. Suppose that o is an

outcome that i can obtain when facing θ−i by submitting multiple identities. Because

the set of choices is nonincreasing in the number of identifiers used according to the

condition, it must be that o ∈ {f(θi, θ−i)|θi ∈ Θ}. Hence, there is no reason for her

to use more than one identity.

The above proposition basically says that under FNP(W) social choice functions,

with the introduction of a new agent, an existing agent’s set of possible choices de-

creases (it potentially hurts the existing agent’s utility) or stays the same (essentially,
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it is equivalent to ignoring the new agent’s preference). That is, with a large number

of agents, generally, FNP(W) social choice functions perform poorly.

4.8 Summary

In this chapter, we studied a more powerful variant of false-name manipulation:

an agent can submit multiple false-name bids, but then, once the allocation and

payments have been decided, withdraw some of her false-name identities. While

these withdrawn identities will not obtain the items they won, their initial presence

may have been beneficial to the agent’s other identities. A mechanism is false-name-

proof with withdrawal (FNPW) if the aforementioned manipulation is never beneficial

under it. We first gave a necessary and sufficient condition on the type space for

the VCG mechanism to be FNPW. We then characterized both the payment rules

and the allocation rules of FNPW mechanisms in general combinatorial auctions.

Based on the characterization of the payment rules, we derived a condition that is

sufficient for a mechanism to be FNPW. We also proposed the maximum marginal

value item pricing (MMVIP) mechanism. We showed that MMVIP is FNPW and

exhibit some of its desirable properties. We then proposed an automated mechanism

design technique that transforms any feasible mechanism into an FNPW mechanism,

and proved some basic properties about this technique. Toward the end, we proved

a strict upper bound on the worst-case efficiency ratio of FNPW mechanisms. We

concluded with a characterization of FNP(W) social choice rules. Since FNPW

is stronger than FNP, this chapter also contributes to the research on false-name-

proofness in the traditional sense.
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5

Conclusion

In this dissertation, we formalized an approach to automated mechanism design that

is computationally feasible. Instead of optimizing over all feasible mechanisms, we

carefully choose a parameterized subfamily of mechanisms. Then we optimize over

mechanisms within this family. Finally, we analyze whether and to what extent the

resulting mechanism is suboptimal outside the subfamily. We applied (computation-

ally feasible) automated mechanism design to three resource allocation mechanism

design problems:

• In Chapter 2, we applied CFAMD to the problem of designing resource alloca-

tion mechanisms that redistribute their revenue back to the agents.

– In Section 2.1, we focused on designing VCG redistribution mechanisms

that redistribute the most in the worst case. For auctions with multi-

ple indistinguishable units in which marginal values are nonincreasing, we

derived a mechanism that is optimal in this sense. We also showed that

if marginal values are not required to be nonincreasing, then the origi-

nal VCG mechanism is worst-case optimal. For future research, we could
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consider designing worst-case optimal redistribution mechanisms for other

problem settings. Example work in this direction includes the following:

Gujar and Yadati [53] conjectured that for auctions with multiple hetero-

geneous objects in which each agent is only interested in one object, the

worst-case optimal mechanism has the same worst-case performance as the

WCO mechanism. Chorppath et al. [24] studied worst-case redistribution

for auctions with divisible goods.

– In Section 2.2, we studied the problem of designing VCG redistribution

mechanisms that redistribute the most in expectation when prior distri-

butions over the agents’ valuations are available. For auctions with mul-

tiple indistinguishable units in which each agent is only interested in one

unit, we analytically derived the OEL mechanism that is optimal among

linear redistribution mechanisms. For this setting, we also proposed an

automated mechanism design technique based on type discretization. We

then generalized our setting to auctions with multiple indistinguishable

units in which marginal values are nonincreasing. We extended the no-

tion of linear redistribution mechanisms to this more general setting. In

the more general setting, optimization within the family of linear redistri-

bution mechanisms becomes more difficult, because we need to consider a

type of ordering information. If we completely ignore the ordering infor-

mation, then the resulting mechanisms generally do not perform well. It

remains to see whether we can identify a subfamily of linear redistribution

mechanisms that is easy to optimize over, and still captures some of the

ordering information.

– In Section 2.3, we studied the problem of designing mechanisms whose

redistribution functions are undominated in the sense that no other mech-

251



anisms can always perform as well, and sometimes better. We introduced

two measures (individual and collective dominance) for comparing two

VCG redistribution mechanisms with respect to how well off they make

the agents, and studied the question of finding maximal elements in the

space of non-deficit redistribution mechanisms, with respect to the partial

orders induced by both measures. Most of our positive results only apply

to auctions with multiple indistinguishable units, where each agent is only

interested in a single copy of the unit. For example, in this setting, we

characterized the (individually and collectively) undominated redistribu-

tion mechanisms that are linear and anonymous. It remains to see whether

we can characterize more undominated mechanisms in other settings. In

this section, we also gave two techniques for transforming existing indi-

vidually dominated mechanisms into mechanisms that are individually

undominated. It remains to see whether we can derive similar techniques

for generating collectively undominated mechanisms.

– In Section 2.4, we studied the problem of designing the allocation rule

together with the redistribution scheme, allowing for the allocation to be

inefficient. We proposed several specific mechanisms that are based on

burning items, excluding agents, and (most generally) partitioning the

items and agents into groups. The mechanisms we proposed are not guar-

anteed to be optimal. de Clippel et al. [42] studied deterministic mecha-

nisms that are based on burning items in more detail, and obtained mech-

anisms that achieve higher competitive ratios. It is still an open question

to derive optimal mechanisms that are based on inefficient allocation.

• In Chapter 3, we applied CFAMD to the problem of designing resource alloca-

tion mechanisms that do not rely on payments at all.

252



– In Section 3.1, we studied the problem of allocating a single item repeat-

edly among multiple competing agents, in an environment where monetary

transfers are not possible. We introduced an artificial payment system,

which enabled us to construct repeated allocation mechanisms without

payments based on one-shot allocation mechanisms with payments. Un-

der certain restrictions on the discount factor, we proposed several (Bayes-

Nash) incentive compatible repeated allocation mechanisms based on arti-

ficial payments. We proved that our mechanisms are competitive against

the first-best allocation. The artificial payment system we proposed is

based on a triangular approximation of the optimal frontier. It would be

interesting to study artificial payment systems based on other forms of

approximation. With other artificial payment systems, we may be able to

construct mechanisms with higher competitive ratios.

– In Section 3.2, we investigated the problem of allocating multiple items

among two competing agents in a (single-round) setting that is both prior-

free and payment-free. We introduced the family of linear increasing-price

(LIP) mechanisms. The LIP mechanisms are strategy-proof and only rely

on artificial payments. We showed how to solve for mechanisms within the

LIP family that are competitive against the first-best allocation. For very

small numbers of items, we are able to find LIP mechanisms that perform

well. However, as the number of items increases, the competitive ratio of

the optimal LIP mechanism goes to 1
2

(the competitive ratio of the näıve

lottery mechanism). It is still an open problem to design mechanisms with

high competitive ratios for large numbers of items.

• In Chapter 4, we studied a more powerful variant of false-name manipulation:

an agent can submit multiple false-name bids, but then, once the allocation
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and payments have been decided, withdraw some of her false-name identities.

While these withdrawn identities will not obtain the items they won, their

initial presence may have been beneficial to the agent’s other identities. A

mechanism is false-name-proof with withdrawal (FNPW) if the aforementioned

manipulation is never beneficial under it. We first gave a necessary and suffi-

cient condition on the type space for the VCG mechanism to be FNPW. We

then characterized both the payment rules and the allocation rules of FNPW

mechanisms in general combinatorial auctions. Based on the characterization

of the payment rules, we derived a condition that is sufficient for a mechanism

to be FNPW. We also proposed the maximum marginal value item pricing

(MMVIP) mechanism. We showed that MMVIP is FNPW and exhibited some

of its desirable properties. We then proposed an automated mechanism design

technique that transforms any feasible mechanism into an FNPW mechanism,

and proved some basic properties about this technique. Toward the end, we

proved a strict upper bound on the worst-case efficiency ratio of FNPW mech-

anisms. We concluded with a characterization of FNP(W) social choice rules.

Since FNPW is stronger than FNP, this chapter also contributes to the research

on false-name-proofness in the traditional sense. For future research, we could

try to improve the AMD technique, so that we are able to design new FNP(W)

mechanisms based on AMD.

Finally, on a higher level, we believe that the computationally feasible automated

mechanism design approach, where the analytical capabilities of a human mechanism

designer work in concert with algorithms that search through restricted families of

possible mechanisms, is currently the most promising avenue for techniques from

artificial intelligence to contribute to the theory of mechanism design and (perhaps)

microeconomic theory in general. The human mechanism designer plays an essential
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role at several points in this process. For future research on CFAMD, it would be

desirable to find ways to reduce the burden that is placed on the human designer. For

example, can we design algorithms that automatically conjecture natural families of

mechanisms? Can we design algorithms that generalize the solutions to particular in-

stances into a general analytical form? Can we design algorithms that automatically

analyze how suboptimal a given mechanism is relative to the space of all feasible

mechanisms? These are challenging, but not unimaginable ways in which AI can

take on an even greater role in proving results in mechanism design and beyond.
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[10] Salvador Barberà. An introduction to strategy-proof social choice functions.
Social Choice and Welfare, 18(4):619–653, 2001.

256
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