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Abstract

In this thesis, we consider two classes of problems where algorithms are increasingly

used to make, or assist in making, a wide range of decisions. The first class of

problems we consider is the allocation of jointly owned resources among a group of

agents, and the second is the elicitation and aggregation of probabilistic forecasts

from agents regarding future events. Solutions to these problems must trade off

between many competing objectives including economic efficiency, fairness between

participants, and strategic concerns.

In the first part of the thesis, we consider shared resource allocation, where we

relax two common assumptions in the fair divison literature. Firstly, we relax the

assumption that goods are private, meaning that they must be allocated to only

a single agent, and introduce a more general public decision making model. This

allows us to incorporate ideas and techniques from fair division to define novel fair-

ness notions in the public decisions setting. Second, we relax the assumption that

decisions are made offline, and instead consider online decisions. In this setting, we

are forced to make decisions based on limited information, while seeking to retain

fairness and game-theoretic desiderata.

In the second part of the thesis, we consider the design of mechanisms for fore-

casting. We first consider a tradeoff between several desirable properties for wagering

mechanisms, showing that the properties of Pareto efficiency, incentive compatibil-

ity, budget balance, and individual rationality are incompatible with one another.
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We propose two compromise solutions by relaxing either Pareto efficiency or incen-

tive compatibility. Next, we consider the design of decentralized prediction markets,

which are defined by the lack of any single trusted authority. As a consequence,

markets must be closed by popular vote amongst a group of anonymous, untrusted

arbiters. We design a mechanism that incentivizes arbiters to truthfully report their

information even when they have a (possibly conflicting) stake in the market them-

selves.
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1

Introduction

Increasingly, algorithmic platforms are being utilized to make decisions based on the

private information of heterogeneous agents. On one hand, algorithmic solutions

are available to guide a group of individuals towards a mutually beneficial outcome

in situations where more ad-hoc approaches may be suboptimal. Examples include

dividing a set of items from, say, an inheritance [95, 9], or deciding on a location

for a group lunch [6, 8]. On the other hand, some algorithms capture information

from individuals with the goal of informing the decision of some central agent, or

principal. These might include using prediction markets [5, 7] to harness wisdom-of-

crowd effects for evaluating policy decisions, revenue maximization on e-commerce

sites like eBay or Amazon, or matching kidney donors to patients [144, 145].

These platforms leverage research in economics, theoretical computer science,

and artificial intelligence to produce good solutions. The exact nature of a ‘good’

solution is not always clear, but there are certain guiding principles. Does the solution

provide high utility to the participants (that is, is it economically efficient)? Is utility

distributed fairly? Is the system user-friendly? Can a solution by computed in a

reasonable amount of time? Do participants have an incentive to truthfully reveal

1



their information? As we will see, it is not usually possible to simultaneously resolve

all these questions positively.

In this thesis, we consider algorithm design for two classes of problem. First, we

consider the design of algorithms for allocating shared resources. As a canonical ex-

ample of shared resource allocation, consider the allocation of computing resources.

Limited resources, such as processor time and memory space, are continually allo-

cated among competing applications in datacenters, shared clusters, and at the level

of individual machines. The second class of problems concerns using individual in-

formation to probabilistically forecast future events. For instance, a company may

want to estimate the probability that its new product will ship on time; one way

to do this is to obtain estimates from the employees involved in the development

of the product. Media outlets may wish to forecast the result of an election, or a

government agency may wish to estimate the effect of a new policy on some social

indicator.

We now describe each of these areas, and our contribution, in more detail.

Shared Resource Allocation. The sharing economy has already had significant impact

on the way people access a myriad of services including transportation (Uber, Lyft)

and accommodation (AirBnB, Couchsurfing). But existing models mostly rely on

shared usage, where a single owner shares their item with many paying customers.

However, at their heart, these models look a lot like our other economic systems,

where individuals pay for a service. A single owner has full control over their item,

and seeks to maximize profit with no regard to fairness. This is a familiar objective.

When not only the usage, but also the ownership of resources is shared, the

objective changes from an economic design standpoint. Under this model, we need

protocols that achieve efficient allocation while also being fair, by guaranteeing that

benefits from sharing are distributed evenly among stakeholders. More pragmatically,

2



shared ownership requires clear rules and an unambiguous democratic process put

in place, rather than a single owner having the final say. Thus, shared ownership

models are naturally suited to algorithmic solutions, where the rules can be checked

and agreed upon in advance, and consistently executed as required.

In modern computing, a shared ownership model of resource allocation is com-

mon. Resource requirements can fluctuate heavily over time, but adverse effects can

be mitigated by pooling resources with other users. Examples include maintaining

a shared cluster that individual researchers submit jobs to, allocating CPU time

among competing applications, and storing data in a shared cache. However, even

beyond computing, there are many areas where allocating shared resources is a key

concern. Cars, for instance, are often jointly owned between members of one or more

families (and, with the advent of self-driving cars and increased urbanization, this

trend appears to be accelerating). As another example, public funds and property

are resources jointly owned by taxpayers; deciding what to build on a piece of public

land is a (shared) resource allocation problem in this sense.

The work in this part of the thesis bears similarity to the literature on fair division.

Informally, fair division is the study of allocating scarce resources among competing

agents. However, work in fair division generally1 makes (at least) two assumptions

that make it unsuitable for the resource sharing applications we have discussed.

1. Private Goods. Most work in fair division assumes that goods are private,

meaning that at most one agent can derive postive utility per good. The clas-

sic cake-cutting problem lies in this setting, as does the problem of allocating

indivisible goods among agents. However, in many resource sharing settings,

we are required to make decisions where more than one agent can benefit si-

multaneously. Examples include storing data in a shared cache (many different

1 There are, of course, exceptions that will be discussed as relevant.

3



Private Goods Public Goods
Offline Standard Fair Division Chapter 2
Online Chapter 4 Chapter 3

Figure 1.1: Summary of problem settings for the first part of this thesis.

applications can access the cached data), building public infrastructure (many

people use public roads, hospitals, parks, etc), and deciding who gets to use a

jointly-owned vehicle (which can carry more than one person).

2. Offline decisions. Often, we have the power to re-allocate resources over time

(e.g., you can take the car today, but I get it tomorrow). In these settings, in

makes sense to consider the allocation problem as a repeated, or online, process.

Doing so allows us to exploit heterogeneity in demand not only across goods,

but also across time.

The key contribution of this part of the thesis is to propose solutions to resource

allocation problems where these assumptions do not apply. Figure 1.1 provides an

overview of the problem settings that we consider. Note that, throughout these chap-

ters, we will not consider the use of money. Although money can make information

elicitation easier, there are many settings where it is either disallowed for legal or

moral reasons, or simply unsuitable. For example, when allocating use of a resource

among friends over time, it is uncommon for people to exchange money regularly (of

course, all the friends may have contributed money to acquire the resource originally,

but this is a one-off payment). When voting on the provision of public funds or to

elect a representative, we generally abide by the “one person, one vote” principle,

rather than allowing vote-buying.2

2 A line of work on quadratic voting is a notable exception to this rule [134, 161, 135], though
even there it’s not quite as simple as votes being sold for a single anonymous price.
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Forecasting. Reasoning about future events is a central problem for making good

decisions. One way to do this is to aggregate the beliefs of many other agents,

harnessing the “wisdom of crowds” effect. The wisdom of crowds effect relies on

two factors. First, that many agents provide an estimate, and second, that agents

truthfully report their beliefs.3 The work presented in this part of the thesis therefore

aims to achieve these twin objectives.

The most common way to incentivize agents to put effort into gathering and

(truthfully) reporting their information is to reward them with payments that depend

on the quality of their forecasts. Several approaches have been designed for this

purpose – in this thesis, we focus on wagering mechanisms and prediction markets,

but other mechanisms include scoring rules and forecasting competitions.

In a wagering mechanism, forecasters submit both a probabilistic prediction re-

garding the outcome of some event, and an amount of money that they are prepared

to wager. Once the outcome is realized, the mechanism redistributes the wagers

among the agents depending on their wager and the quality of their prediction. A

prediction market works similarly, but is more dynamic. Agents trade securities that

pay off depending on the outcome of the event. At any point in time, securities

corresponding to different outcomes can be bought or sold at a given price, which is

interpreted as the market’s perceived probability of that outcome being realized.

We address two key problems pertaining to the design of wagering mechanisms

and prediction markets.

1. Existing incentive-compatible wagering mechanisms suffer from a low stakes

problem: In most cases, participants lose far less money than their full wager,

3 It can be sufficient for agents to misreport their beliefs in a predictable way, so that their true
beliefs can be inferred from their reports. Among other problems, this is unreliable in practice as
it may not be the case that all agents construct their reports in the predicted manner. Further, by
the revelation principle [126], the existence of a non-truthful mechanism implies the existence of a
truthful mechanism with the same properties.
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even when they make a bad prediction. This introduces several problems.

It disincentivizes participation, since agents stand to make only small profits

and losses, and it can lead to distorted incentives, even with respect to the

probabilistic predictions, if agents choose to artificially inflate their wager. We

formalize the tradeoff between incentive compatibility and a Pareto optimality

condition that captures the low-stakes problem, and propose mechanisms to

address the problem.

2. Recently, there has been a wave of decentralized prediction markets [132, 2,

4, 3], that operate without a single trusted governing entity. There are many

advantages to such a model, but one disadvantage is that markets must be

closed according to consensus among a group of arbiters, rather than by some

authority. Since these platforms are, by design, anonymous, it is impossible to

prevent the arbiters from also participating in the market. Therefore, in these

markets we not only have to consider the incentives of a trader, but also of an

arbiter (who may also be a trader).

While the two parts of this thesis are presented as distinct components, forging

a connection between them remains a compelling direction for future work. A par-

ticularly promising direction is to apply forecasting mechanisms to online resource

allocation problems. The challenge in designing online algorithms for these problems,

and online algorithms in general, is the need to commit to a decision without any

knowledge of the future. However, if we can run a prediction mechanism, either built

in to an online algorithm or running parallel to it, then we may be able to incentivize

agents to predict their future reports, and adapt our online algorithm accordingly.

In this way, we may be able to direct additional utility to agents who increase social

welfare by accurately predicting their future reports.
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1.1 Structure of this Thesis and Overview of Results

This thesis describes a selection of my work on shared resource allocation and fore-

casting, with three chapters devoted to each topic.

1.1.1 Shared Resource Allocation

Each chapter in this part of the thesis corresponds to a different relaxation of the

standard fair division setting, where private goods are allocated among agents in a

one-shot (offline) manner.

Chapter 2: Public Resources, Offline Decisions. In this chapter, we consider a multiple

issue, public decision model that generalizes the problem of allocating indivisible

private goods. The primary question that we consider is the following: How can we

best define notions of fairness in this public decision setting?

In the private goods setting, the dominant notion of fairness is that of envy-

freeness [76], which says that no agent should prefer any other agent’s allocation

to their own, and its relaxations such as envy-freeness up to one good (EF1) [117].

Unfortunately, when resources are public, agents no longer receive a well-defined

allocation, and the notion of envy is therefore not applicable.

In this chapter, we take a different route to defining fair allocations. Our starting

point is the proportionality guarantee [153], which says that each agent should receive

at least a 1{n fraction of the utility she would receive if she were a dictator capable

of unilaterally making all decisions. Proportionality is weaker than envy-freeness,

but for deterministic outcomes it is still impossible to guarantee for all instances.

We therefore define fairness guarantees that relax proportionality. We introduce

the Round Robin Share (RRS) and the Pessimistic Proportional Share (PPS), which

provide utility guarantees to the agents based on the utilities that they receive ac-

cording to simple protocols. In another direction, and inspired by the definition of
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EF1, we define the Proportionality up to One Issue (Prop1) guarantee, which says

that each agent should be able to guarantee themselves their proportional share if

we give them the power to change the outcome on a single issue.

After defining these three fairness properties, we consider two mechanisms that

are known to satisfy desirable properties in the private goods case. The first is the

Maximum Nash Welfare (MNW) mechanism [124], which maximizes the product

of the utilities of all the agents, and the second is the leximin mechanism, which

maximizes the utility of the agent with the minimum utility. We show that MNW

satisfies Prop1 but not RRS or PPS, while leximin satisfies RRS and PPS but not

Prop1. An exciting question that our work leaves open is whether there exists a

mechanism that satisfies all three properties, as well as the efficiency property of

Pareto Optimality (PO).

Finally, we consider the complexity of computing outcomes that satisfy our fair-

ness properties in conjunction with PO. We show that satisfying RRS or PPS and

PO simultaneously is NP-hard. However, for the special case of private goods di-

vision, we provide a polynomial-time algorithm to compute an allocation satisfying

PPS and PO.

Chapter 3: Public Resources, Online Decisions. In this chapter, we consider the same

public decision framework as in Chapter 2, but we allow issues to arrive online.

Motivated by the performance of the MNW algorithm for the offline version of the

problem, we examine algorithms for online Nash Welfare maximization.

We focus on two greedy algorithms. The first, Greedy, makes decisions that

maximize the cumulative Nash Welfare. The second, PF, chooses the alternative

that maximizes the sum of percentage increases in cumulative utility over agents.

Due to fundamental difficulties that arise from multiplying and dividing by zero, it

is unclear how these algorithms should behave, or even be defined, when some agents
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have not accumulated any utility at the present time.

We provide a framework that both unifies the Greedy and PF algorithms and

defines their output when some agents have zero accumulated utility. The main idea

is to endow each agent with a random infinitesimal hallucinated utility that allows

us to sidestep problems arising from zero-utility agents. Not only does this provide

a way to choose a single alternative (by randomly sampling infinitesimal utilities),

but we provide efficient algorithms for computing the full set of possibly chosen

alternatives.

Our second contribution is to provide an axiomatic characterization of the PF

algorithm in terms of four axioms: scale-freeness, plurality, separability into single-

minded agents, and no zero-dominated alternatives. Finally, we compare the per-

formance of both algorithms on a computer systems example and compare them

to a state-of-the-art algorithm in terms of theoretical guarantees. Both algorithms

outperform the state-of-the-art on our dataset, with Greedy slightly outperforming

PF.

Chapter 4: Private Resources, Online Decisions. In the previous two chapters, we have

not considered the agents’ (lack of) incentives to provide their true utilities to the

mechanism. Indeed, when resources are public, any consideration of incentives is

difficult because of the famous free rider problem. Informally, if it is impossible to

prevent an agent from using a resource, then an agent that gets high utility from some

resource can simply pretend not to like it, and be ‘compensated’ by the algorithm in

some other way.

In this chapter, we consider the problem of designing incentive-compatible mech-

anisms for the repeated allocation of private goods, thus avoiding the free rider

problem. In our setting, each agent contributes some number of identical units of

a private good to a shared pool. At each of a finite number of rounds, this pool
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of resources must be reallocated among the agents that contribute to it. At each

round, each agent has a demand for resources that defines a piecewise linear utility

function. For every resource received up to their demand, agents receive high (H)

utility per resource. For every resource over and above their demand, agents receive

low (L) utility per resource.

Our goal is to design online allocation mechanisms that satisfy strategy-proofness

(no agent can improve their utility by lying about their demands) and sharing in-

centives (agents do better by contributing their resources to the common pool than

by withholding them). There are two key ways in which our work diverges from

previous work [96, 97, 99, 20, 14, 17, 16, 154, 146]. The first is that we require our

economic properties to hold ex-post, meaning that participants can not regret their

truth-telling or participation decisions even in hindsight. Other works only require

that participants make their decision with distributional knowledge of other partic-

ipants’ utilities, and that truthful reporting is optimal in expectation with respect

to these distributions. The second is that we allow L ą 0, meaning that agents can

still derive positive utility from extra resources by, say, running background tasks or

over-consuming now to reduce demand later.4

We design two mechanisms. The Flexible Lending mechanism satisfies strategy-

proofness and approximate sharing incentives, while providing close to optimal per-

formance in practice, in the sense that resources are almost always allocated to

agents that have high utility for them. For settings where exact sharing incentives

is desirable, we also design the T -Period mechanism, which satisfies both strategy-

proofness and sharing incentives. In doing so, however, it restricts the space of

possible allocations, resulting in significantly lower performance than the flexible

lending mechanism in practice.

4 Some previous work allows for more general utility functions, but does not obtain ex-post
axiomatic guarantees.
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1.1.2 Forecasting

Chapters 5 and 6 investigate a tradeoff between economic efficiency and incentive

compatibility in wagering mechanisms. Chapter 7 concerns the design of prediction

markets that must be closed by popular vote, rather than by a single trusted entity.

Chapter 5: Incentive Compatible and Efficient Wagering: The Double Clinching Auction

This chapter is inspired by the observation that existing wagering mechanisms [112,

113, 56] ask agents to specify a maximum acceptable loss (their wager), but in most

instances agents incur a loss that is only a small fraction of the specified amount.

Some of the wager is therefore left unused, in the sense that the agent would prefer

to use it to bet against another agent with a different probability estimate.

Our first contribution in this chapter is to formalize this intuition via the notion

of Pareto optimality. We say that a wagering mechanism is Pareto optimal if, after

all agents have made their reports to the mechanism, no group of agents would

like to make a side bet amongst themselves in addition to the bets facilitated by

the mechanism. Informally, this says that the mechanism is extracting all possible

trade. Unfortunately, we show that Pareto optimality is incompatible with three

other fundamental properties in wagering mechanism design: individual rationality

(all agents should participate willingly), weak budget balance (the mechanism should

not lose money), and weak incentive compatibility (agents should not profit from

lying about their probability estimate).

Therefore, we seek to design a wagering mechanism that retains the three core

properties, while coming ‘close’ to Pareto optimality in some sense. To that end, we

design the Double Clinching Auction (DCA). The DCA uses the observation that any

wagering mechanism can be expressed in terms of the allocation of Arrow-Debreu

securities. It then utilizes an auction format known as the adaptive clinching auction
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to allocate securities to agents – conveniently, the adaptive clinching auction requires

each agent to report a fixed valuation per item and a budget. The former can be

inferred from an agent’s probability estimate, and the latter corresponds exactly to

their wager. The final innovation in the design of the DCA is to have the mechanism

sell the ‘right’ number of securities to guarantee incentive compatibility. This turns

out to be the point at which the mechanism exactly breaks even on the lowest priced

security.

In experiments based on real contest data, we show that the DCA comes a lot

closer to achieving Pareto optimality than existing incentive-compatible wagering

mechanisms, in at least two senses. First, the total risk incurred by the agents is

higher than for other mechanisms, and second, a large proportion of the agents have

a worst case loss that is exactly equal to their wager.

Chapter 6: Efficient Wagering by Relaxing Incentive Compatibility In this chapter we

consider the tradeoff between incentive compatibility and Pareto optimality from

a different angle. Rather than insisting on incentive compatibility and sacrificing

Pareto optimality, we relax incentive compatibility and retain Pareto optimality (as

well as budget balance and individual rationality). To achieve this, we consider the

Parimutuel Consensus Mechanism (PCM), defined by Eisenberg and Gale [72].

We show that the PCM not only satisfies individual rationality, strict budget

balance, and Pareto optimality, but also anonymity (the outcome does not depend

on the agents’ identities), sybilproofness (agents splitting or merging identities does

not affect the outcome), and envy-freeness (no agent envies the bet defined by the

mechanism for any other agent). Further, subject to a mild condition on the reports

of the agents, the PCM is the only wagering mechanism that satisfies these six

properties.

The rest of this chapter argues that, despite not satisfying incentive compatibility,
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the PCM does retain some desirable incentive properties. First, it satisfies incentive-

compatibility in the large [22], which says that incentives to misreport vanish as the

number of agents grows large. Therefore, we would expect few opportunities to

misreport in data with large numbers of agents, which is exactly what we observe

in our real contest data. Not only that, but profitable misreports, when they exist,

are not very profitable and arguably not worth the inherent risk that a misreporting

agent faces due to their uncertainty regarding the reports of other agents. We also

show that even on small instances, the PCM remains fairly robust to misreporting.

Chapter 7: Crowdsourced Outcome Determination in Decentralized Prediction Markets In

this chapter we turn to prediction market design. Inspired by the rise of decentralized

prediction market platforms, we design a prediction market mechanism that does not

rely on the existence of a trusted center to close the market. Instead, the market must

be closed by popular vote amongst a group of arbiters. The fundamental difficulty

is that the true outcome cannot be verified, and there is no way to prevent some

arbiters from also having a position in the market. This creates a strong incentive

problem, where arbiters may want to close the market in the direction of the outcome

that achieves the highest profit for them, rather than the true outcome.

To escape this intractability, we make a key assumption: that the total budget

of any given trader is upper bounded by some constant B. This allows us to bound

the total number of securities that a trader is able to buy, thus limiting the profit

that they can achieve by changing the market outcome. However, arbiters still have

non-zero incentive to manipulate the market outcome to match their position. To

counter this, we incorporate a peer prediction mechanism to incentivize arbiters to

truthfully report the outcome that they observe.

Our mechanism incorporates three key innovations. First, in the market trading

phase, we incorporate a trading fee. Fees are common in real-world prediction mar-
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kets but are usually a necessary inconvenience rather than a feature. Our trading fee

ensures that the price of any security does not become too low, thus guaranteeing

that a trader with a bounded budget can only buy a bounded number of securities

(without this, the budget bound B would not be useful). Further, we use the funds

raised from the trading fees to pay the arbiters (via the peer prediction mechanism)

for closing the market.

Second, when eliciting votes from the arbiters, we pay them according to a mod-

ified version of the 1/prior peer prediction mechanism [162, 106, 107], that we term

the 1/prior with midpoint mechanism. This is a technical adaptation that reduces

the effect of any asymmetry in the belief update model held by the arbiters.

Third, to determine the outcome of the market (and therefore the payoff for each

security), we allow continuous outcomes rather than a binary yes/no. In particular,

we declare the market outcome to be the fraction of arbiters that report the event

to have occurred. One advantage of this is that each market has a well-defined

outcome. Even if the event to be predicted is ambiguous or unclear, traders are

explicitly predicting the behavior of the arbiters relative to the question. But the

key advantage is that the continuous payoff structure prevents any single arbiter

from having too much effect on the outcome. Each arbiter can modify the payoff of

a security by only 1{m, where m is the number of arbiters, rather than (potentially)

being able to swing the outcome from 0 to 1, or vice versa.

1.2 Bibliographic Notes

All work presented in this thesis is based on work published with co-authors. I am

the primary author, or one of two joint primary authors, on each paper.

Chapter 2 is based on joint work with Vincent Conitzer and Nisarg Shah [61].

Chapter 3 is based on joint work with Vincent Conitzer and Seyed Majid Zahedi [83].

Chapter 4 is based on joint work with Vincent Conitzer, Benjamin Lee, and Seyed
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Majid Zahedi [84].5 Chapter 5 is based on joint work with David Pennock and

Jennifer Wortman Vaughan [82]. Chapter 6 is based on joint work with David

Pennock [77]. Chapter 7 is based on joint work with Sébastien Lahaie and David

Pennock [81].

1.2.1 Omitted Work

Work completed during my Ph.D. studies that has been excluded from this thesis
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• Work on voting: runoff scoring rules [78], tiebreaking [79], multi-winner ap-

proval voting [25, 26, 43] and societal tradeoffs [59, 60].

• Work on game theory: possible/necessary equilibrium actions [41] and signaling

in Bayesian Stackelberg games [167].

• Design of forecasting competitions [165].

• Design of false-name-proof recommendation systems [42].

• Price of stability in network design games [80].

5 This work also appears in Zahedi’s Ph.D. dissertation.
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2

Public Goods, Offline Allocation

2.1 Introduction

In this chapter, we study a model of decision making that generalizes classic fair

division. In the long history of fair division - dating back to at least the work of

Steinhaus [153], most work focuses on the fair division of private goods, in which

a set of m items must be divided among a set of n agents. Agents express their

preferences by specifying their value for each good, and our goal is to find a division

of the goods that is fair to all agents.

One particularly appealing notion of fairness is envy-freeness [76], which says

that no agent should want to switch her set of items with that of another agent.

This is a natural and strong notion of fairness that has long been the subject of

fair division research [156, 141, 110, 100, 37, 38, 46]. It actually implies many other

fairness notions such as proportionality [153] — each agent should get at least a

1{n fraction of her value for the entire set of goods — and envy-freeness up to one

good (EF1) [117] — no agent should envy another agent after removing at most one

good from the latter agent’s bundle. Unfortunately, envy-freeness cannot always be
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guaranteed, and therefore its relaxations have been focused on [117, 44, 138, 49].

Division of private goods, however, is not the only application in which we may

desire a fair outcome. Often, we may need to make decisions where every alternative

gives positive utility to many agents, rather than to just one agent as in the case of

private goods. For instance, consider a couple, Alice and Bob, deciding where to go

to dinner. Alice likes Italian food the most, but does not like Indian, whereas Bob

prefers Indian food but does not like Italian. When there is only a single decision

to make, we are simply in a classic bargaining game where agents must attempt to

arrive at a mutually agreeable solution. Nash [124] proposed maximizing the product

of agents’ utilities (the Nash welfare) as an elegant solution that uniquely satisfies

several appealing properties. But no matter how we arrive at a decision – and there

is a myriad of work in computational social choice [39] discussing how exactly we

should do so – some tradeoff must necessarily be made, and we may not be able to

make everyone happy.

However, if we have several public decisions to make, maybe we can reach a

compromise by making sure that all agents are happy with at least some of the

decisions. For example, if Alice and Bob are to follow their dinner with a movie,

then maybe Bob will be willing to eat Italian food for dinner if he gets to pick his

favorite movie, and maybe Alice will agree to this compromise.

Note that this setting generalizes the classic private goods setting, because in

this special case we can view each public decision as the allocation of a single good.

While envy is a compelling notion in the private goods setting, it makes less sense for

public decisions. In our example, irrespective of where Alice and Bob go for dinner,

because they are eating the same food, it is not clear what it would mean for Alice

to envy Bob. If she could somehow trade places with Bob, she would still be sitting

at the other end of the dinner table, eating the same food, and not be any better

off. Thankfully, proportionality still has a sensible interpretation: Each agent should
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get at least a 1{n fraction of the utility she would get if her most desired alternative

was chosen for each decision. Unfortunately, as with envy-freeness, proportionality

cannot always be guaranteed. Therefore in this work we consider relaxations of

proportionality in order to arrive at fairness notions that can be guaranteed.

2.1.1 Our Results

Formally, a public decision making problem consists of m issues, where each issue has

several associated alternatives. Each of n agents has a utility for each alternative of

each issue. Making a decision on an issue amounts to choosing one of the alternatives

associated with the issue, and choosing an overall outcome requires making a decision

on each issue simultaneously. The utility to a agent for an outcome is the sum of her

utilities for the alternatives chosen for different issues. This is a very simple setting,

but one in which the problem of fairness is already non-trivial.

We propose relaxations of proportionality in two directions. The first, propor-

tionality up to one issue (Prop1), is similar in spirit to EF1, stating that a agent

should be able to get her proportional share if she gets to change the outcome of a

single issue in her favor. The second direction is based on the guarantees provided

by the round robin mechanism. This mechanism first orders the set of agents, and

then repeatedly goes through the ordering, allowing each agent to make her favorite

decision on any single issue, until decisions are made on all the issues. Our first

relaxation in this direction, the round robin share (RRS), guarantees each agent the

utility that she would have received under the round robin mechanism if she were

the last agent in the ordering. Note that the round robin mechanism lets each agent

make decisions on roughly the same number of issues. A further relaxation in this

direction, the pessimistic proportional share (PPS), guarantees each agent the utility

that she would get if her favorite alternatives were chosen for (approximately) a 1{n

fraction of the issues, where these issues are chosen adversarially.

18



Table 2.1: Axioms satisfied or approximated by the mechanisms we consider. The
MNW solution is split into private goods and general decisions because we obtain
significantly stronger results for private goods. Results for the leximin mechanism
and the round robin method apply equally to private goods and public decisions.
The approximation results are lower bounds; we omit the upper bounds from the
table for simplicity.

PO PPS RRS Prop1
MNW, Private goods X X (Th. 10) 1

2
(Th. 10) X (Th. 4)

MNW, Public decisions X (Th. 4) 1
n

(Th. 8) 1
n

(Th. 8) X (Th. 4)

Leximin Mechanism X X (Th. 2) X (Th. 2) 1
2

(Th. 2)

Round Robin Method ˆ X (Th. 1) X (Th. 1) X (Th. 1)

We examine the possibility and computational complexity of satisfying combina-

tions of these fairness desiderata. We first observe that the round robin mechanism

satisfies both Prop1 and RRS (and thus PPS). However, it fails to satisfy even the

most basic efficiency property, Pareto optimality (PO), which requires that no other

outcome should be able to make a agent strictly better off without making at least

one agent strictly worse off.

When insisting on Pareto optimality, we observe that the leximin mechanism

— informally, it chooses the outcome that maximizes the minimum utility to any

agent — satisfies RRS (therefore PPS) and PO via a simple argument. However,

this argument does not extend to establishing Prop1, although we show that RRS

implies a 1{2 approximation to Prop1. To that end, we prove that the maximum

Nash welfare (MNW) solution — informally, it chooses the outcome that maximizes

the product of utilities to agents — that is known for its many desirable fairness

properties in dividing private goods [49] satisfies Prop1 and PO in our public decision

making framework, and simultaneously provides a 1{n approximation to both RRS

and PPS. We also show that this approximation is tight up to a factor of Oplog nq.

For division of private goods, these approximations improve significantly: the MNW

solution completely satisfies PPS, and provides an n{p2n ´ 1q ą 1{2 approximation
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(but not better than 2{3 approximation in the worst case) to RRS. Table 2.1 provides

a summary of these results.

However, both the MNW outcome and the leximin outcome are NP-hard to

compute. It is therefore natural to consider whether our fairness properties can be

achieved in conjunction with PO in polynomial time. For public decision making, the

answer turns out to be negative for PPS and RRS, assuming P ‰ NP . For division

of private goods, however, we show that there exists a polynomial time algorithm

that satisfies PPS and PO.

2.1.2 Related Work

Two classic fair division mechanisms — the leximin mechanism and the maximum

Nash welfare (MNW) solution — play an important role in this paper. Both mech-

anisms have been extensively studied in the literature on private goods division. In

particular, Kurokawa et al. [111] (Section 3.2) show that the leximin mechanism sat-

isfies envy-freeness, proportionality, Pareto optimality, and a strong game-theoretic

notion called group strategyproofness, which prevents even groups of agents from

manipulating the outcome to their benefit by misrepresenting their preferences, in

a broad fair division domain with private goods and a specific form of non-additive

utilities. On the other hand, the MNW solution has been well studied in the realm of

additive utilities [140, 49]. For divisible goods, the MNW solution coincides with an-

other well-known solution concept called competitive equilibrium from equal incomes

(CEEI) [156], which also admits an approximate version for indivisible goods [44]. For

indivisible goods, the MNW solution satisfies envy-freeness up to one good, Pareto

optimality, and approximations to other fairness guarantees. One line of research

aims to approximate the optimum Nash welfare [58, 116], although it is unclear if

this achieves any of the appealing fairness guarantees of the MNW solution.

Our model is closely related to that of voting in combinatorial domains (see Lang
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and Xia [114] for an overview). However, this literature focuses on the case where

there is dependency between decisions on different issues. In contrast, our model

remains interesting even though the issues are independent, and incorporating de-

pendency is an interesting future direction. Although there is a range of work in the

voting literature that focuses on fairness [51, 120, 34, 26], especially in the context

of representation in multi-winner elections, it focuses on ordinal, rather than cardi-

nal, preferences.1 Another difference is that fairness concepts in voting apply most

naturally when n ąą m, whereas our notions of fairness are most interesting when

m ě n.

Our work is also reminiscent of the participatory budgeting problem [45], in which

there are multiple public projects with different costs, and a set of projects need to be

chosen based on preferences of the participants over the projects, subject to a budget

constraint. Recently, researchers in computational social choice have addressed this

problem from an axiomatic viewpoint [93], including fairness considerations [74], and

from the viewpoint of implicit utilitarian voting [29]. However, they assume access

only to ordinal preferences (that may stem from underlying cardinal utilities), while

we assume a direct access to cardinal utilities, as is common in the fair division

literature. Also, we do not have a budget constraint that binds the outcomes on

different issues.

2.2 Model and Preliminaries

For k P N, define rks fi t1, . . . , ku. Before we introduce the problem we study in this

paper, let us review the standard fair division setting with private goods.

Private goods division. A private goods division problem consists of a set of

1 That said, there is a recent line of work on implicit utilitarian voting that attempts to maximize
an objective with respect to the cardinal utilities underlying the ordinal preferences [137, 35], and
is therefore closer to our work.
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agents N “ rns and a set of m goods M . Each agent i P N is endowed with a utility

function ui : M Ñ R` such that uipgq denotes the value agent i derives from good

g P M . A standard assumption in the literature is that of additive valuations, i.e.,

(slightly abusing the notation) uipSq “
ř

gPS uipgq for S Ď M . An allocation A is a

partition of the set of goods among the set of agents, where Ai denotes the bundle

of goods received by agent i. Importantly, agents only derive utility from the goods

they receive, i.e., the goods private to them. The utility of agent i under allocation

A is uipAq “ uipAiq.

Public decision making. A public decision making problem also has a set of

agents N “ rns, but instead of private goods, it has a set of issues T “ rms. Each

issue t P T has an associated set of alternatives At “ tat1, . . . , a
t
kt
u, exactly one of

which must be chosen. Each agent i is endowed with a utility function uti : At Ñ R`

for each issue t, and derives utility utipa
t
jq if alternative atj is chosen for issue t. In

contrast to private goods division, a single alternative can provide positive utility to

multiple agents.

An outcome c “ pc1, . . . , cmq of a public decision making problem is a choice of

an alternative for every issue, i.e., it consists of an outcome ct P A
t for each issue

t P T . Let C denote the space of possible outcomes. Slightly abusing the notation,

let utipcq “ utipctq be the utility agent i derives from the outcome of issue t. We also

assume additive valuations: let uipcq “
ř

tPT u
t
ipcq be the utility agent i derives from

outcome c.

In this work, we study deterministic outcomes, and in Section 2.5, discuss the

implications when randomized outcomes are allowed. Further, we study the offline

problem in which we are presented with the entire problem up front, and need to

choose the outcomes on all issues simultaneously.

Private goods versus public decisions. To see why public decision making gen-
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eralizes private goods division, take an instance of private goods division, and create

an instance of public decision making as follows. Create an issue tg for each good

g. Let there be n alternatives in Atg , where alternative a
tg
i gives agent i utility uipgq

while giving zero utility to all other agents. It is easy to see that choosing alterna-

tive a
tg
i is equivalent to allocating good g to agent i. Hence, the constructed public

decision making problem effectively mimics the underlying private goods division

problem.

2.2.1 Efficiency and Fairness

In this paper, we not only adapt classical notions of efficiency and fairness defined

for private goods division to our public decision making problem, but also introduce

three fairness axioms that are novel for both public decision making and private

goods division. First, we need additional notation that we will use throughout the

paper.

Let p fi tm{nu. For issue t P T and agent i P N , let atmaxpiq P arg maxaPAttutipaqu

and utmaxpiq “ utipa
t
maxpiqq. That is, atmaxpiq is an alternative that gives agent i

the most utility for issue t, and utmaxpiq is the utility agent i derives from atmaxpiq.

Let the sequence xu
p1q
maxpiq, . . . , u

pmq
maxpiqy represent the maximum utilities agent i can

derive from different issues, sorted in a non-ascending order. Hence, tu
pkq
maxpiqukPrms “

tutmaxpiqutPT and u
pkq
maxpiq ě u

pk`1q
max piq for k P rm´ 1s.

Efficiency. In this paper, we focus on a popular notion of economic efficiency. We

say that an outcome c is Pareto optimal (PO) if there does not exist another outcome

c1 that can provide at least as much utility as c to every agent, i.e., uipc
1q ě uipcq

for all i P N , and strictly more utility than c to some agent, i.e., ui˚pc
1q ą ui˚pcq for

some i˚ P N .

Fairness. For private goods division, perhaps the most prominent notion of fairness
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is envy-freeness [76]. An allocation A is called envy-free (EF) if every agent values her

bundle at least as much as she values any other agent’s bundle, i.e., uipAiq ě uipAjq

for all i, j P N . Because envy-freeness cannot in general be guaranteed, prior work

also focuses on its relaxations. For instance, an allocation A is called envy-free up

to one good (EF1) if no agent envies another agent after removing at most one good

from the latter agent’s bundle, i.e., for all i, j P N , either uipAiq ě uipAjq or Dgj P Aj

such that uipAiq ě uipAjztgjuq.

Unfortunately, as argued in Section 2.1, the notion of envy is not well defined for

public decisions. Hence, for public decision making, we focus on another fairness ax-

iom, Proportionality, and its relaxations. For private goods division, proportionality

is implied by envy-freeness.2

Proportionality (Prop). At a high level, proportionality requires that each agent

must receive at least her “proportional share”, which is a 1{n fraction of the utility she

would derive if she could act as the dictator. For a public decision making problem,

the proportional share of agent i (Propi) is 1{n times the sum of the maximum

utilities the agent can derive across all issues, i.e.,

Propi “
1

n

ÿ

tPT

utmaxpiq.

For α P p0, 1s, we say that an outcome c satisfies α-proportionality (α-Prop) if

uipcq ě α ¨ Propi for all agents i P N . We refer to 1-Prop simply as Prop.

Proportionality up to one issue (Prop1). We introduce a novel relaxation of

proportionality (more generally, of α-proportionality) in the same spirit as envy-

freeness up to one good, which is a relaxation of envy-freeness. For α P p0, 1s, we

say that an outcome c satisfies α-proportionality up to one issue (α-Prop1) if for

every agent i P N , there exists an issue t P T such that, ceteris paribus, changing

2 This assumes non-wastefulness, i.e., that all goods are allocated. We make this assumption
throughout the paper.

24



the outcome of t from ct to atmaxpiq ensures that agent i achieves an α fraction of her

proportional share, i.e., if

@i P N Dt P T s.t. uipcq ´ u
t
ipcq ` u

t
maxpiq ě α ¨ Propi.

We refer to 1-Prop1 simply as Prop1.

Round robin share (RRS). Next, we introduce another novel fairness axiom that

is motivated from the classic round robin method that, for private goods, lets agents

take turns and in each turn, pick a single most favorite item left unclaimed. For

public decision making, we instead let agents make a decision on a single issue in

each turn. The utility guaranteed to the agents by this approach is captured by the

following fairness axiom.

Recall that the sequence xu
p1q
maxpiq, . . . , u

pmq
maxpiqy represents the maximum utility

agent i can derive from different issues, sorted in a non-ascending order. Then, we

define the round robin share of agent i (RRSi) as

RRSi “
p
ÿ

k“1

upk¨nqmax piq.

This is agent i’s utility from the round robin method, if she is last in the ordering

and all issues she does not control give her utility 0. For α P p0, 1s, we say that an

outcome c satisfies α-round robin share (α-RRS) if uipcq ě α ¨ RRSi for all agents

i P N . Again, we refer to 1-RRS simply as RRS.

Pessimistic proportional share (PPS). We introduce another novel fairness ax-

iom that is a further relaxation of round robin share. Note that the round robin

method, by letting agents make a decision on a single issue per turn, allows each

agent to make decisions on at least p “ tm{nu issues. The following axiom cap-

tures the utility agents would be guaranteed if each agent still made decisions on a

“proportional share” of p issues, but if these issues were chosen pessimistically.
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We define the pessimistic proportional share of agent i (PPSi) to be the sum of

the maximum utilities the agent can derive from a set of p issues, chosen adversarially

to minimize this sum:

PPSi “
m
ÿ

k“m´p`1

upkqmaxpiq.

For α P p0, 1s, we say that an outcome c satisfies α-pessimistic proportional share

(α-PPS) if uipcq ě α ¨ PPSi for all agents i P N . Again, we refer to 1-PPS simply as

PPS.

Connections among fairness properties. Trivially, proportionality (Prop) im-

plies proportionality up to one issue (Prop1). In addition, it can also be checked

that the following sequence of logical implications holds: Prop ùñ MMS ùñ

RRS ùñ PPS.

Here, MMS is the maximin share guarantee [44, 138]. Adapting the definition

naturally from private goods division to public decision making, the maximin share

of a agent is the utility the agent can guarantee herself by dividing the set of issues

into n bundles, if she gets to make the decisions best for her on the issues in an

adversarially chosen bundle. The maximin share (MMS) guarantee requires that

each agent must receive utility that is at least her maximin share. We do not focus

on the maximin share guarantee in this paper.

2.2.2 Mechanisms

A mechanism for a public decision making problem (resp. a private goods division

problem) maps each input instance of the problem to an outcome (resp. an alloca-

tion). We say that a mechanism satisfies a fairness or efficiency property if it always

returns an outcome satisfying the property. There are three prominent mechanisms

that play a key role in this paper.

Round robin method. As mentioned earlier, the round robin method first fixes

26



an ordering of the agents. Then the agents take turns choosing their most pre-

ferred alternative on a single issue of their choice whose outcome has not yet been

determined.

The leximin mechanism. The leximin mechanism chooses an outcome which

maximizes the utility of the worst off agent, i.e., miniPN uipcq. Subject to this con-

straint, it maximizes the utility of the second least well off agent, and so on. Note

that the leximin mechanism is trivially Pareto optimal because if it were possible to

improve some agent’s utility without reducing that of any other, it would improve

the objective that the leximin mechanism optimizes.

Maximum Nash welfare (MNW). The Nash welfare of an outcome c is the

product of utilities to all agents under c: NW pcq “
ś

iPN uipcq. When there exists an

outcome c with NW pcq ą 0, then the MNW solution chooses an arbitrary outcome

c that maximizes the Nash welfare. When all outcomes have zero Nash welfare, it

finds a largest cardinality set S of agents that can be given non-zero utility, and

selects an outcome maximizing the product of their utilities, i.e.,
ś

iPS uipcq.

2.2.3 Examples

We illustrate the fairness properties through two examples.

Example 1. Consider a public decision making problem with two agents (N “ r2s)

and two issues (T “ r2s). Each issue has two alternatives (|A1| “ |A2| “ 2). The

utilities of the two agents for the two alternatives in both issues are as follows.

at1 at2
ut1 1 0
ut2 0 1

for t P r2s.

The various fair shares of the two agents are Prop1 “ RRS1 “ PPS1 “ Prop2 “

RRS2 “ PPS2 “ 1. Now, outcome c “ pa1
1, a

2
1q gives utilities u1pcq “ 2 and u2pcq “
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0, and therefore violates Prop, RRS, and PPS. It satisfies Prop1 because switching

the decision on either issue in favor of agent 2 makes her achieve her proportional

share. On the other hand, outcome c “ pa1
1, a

2
2q gives utility 1 to both agents, and

thus satisfies Prop (as well as Prop1, RRS, and PPS, which are relaxations of Prop).

Example 2. Consider a public decision making problem with two agents (N “ r2s)

and eight issues (T “ r8s). Once again, each issue has two alternatives, for which

the utilities of the two agents are as follows.

at1 at2
ut1 1 0
ut2 0 1

for t P t1, 2, 3, 4u, and
at1 at2

ut1 1 0
ut2 0 0

for t P t5, 6, 7, 8u.

In this case, we have Prop1 “ RRS1 “ PPS1 “ 4, whereas Prop2 “ RRS2 “ 2

and PPS2 “ 0. Consider outcome c “ pa1
1, a

2
1, a

3
1, a

4
1, a

5
1, a

6
1, a

7
1, a

8
1q. Then, we have

u1pcq “ 8 while u2pcq “ 0, which satisfies PPS but violates RRS. Further, c also

violates Prop1 because switching the outcome of any single issue can only give agent

2 utility at most 1, which is less than Prop2 “ 2. On the other hand, outcome

c “ pa1
2, a

2
2, a

3
2, a

4
2, a

5
1, a

6
1, a

7
1, a

8
1q achieves u1pcq “ u2pcq “ 4, and satisfies Prop (and

thus its relaxations Prop1, RRS, and PPS).

2.3 (Approximate) Satisfiability of Axioms

If we are willing to sacrifice Pareto optimality, then we can easily achieve both RRS

(and therefore PPS) and Prop1 simultaneously with the round robin mechanism.

This is not a surprising result. RRS is defined based on the guarantee provided

by the round robin mechanism, and PPS is a relaxation of RRS. The round robin

mechanism is also known to satisfy EF1 for private goods division, which is similar

in spirit to Prop1.
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Theorem 1. The round robin mechanism satisfies RRS (and therefore PPS) and

Prop1, and runs in polynomial time.

Proof. The round robin mechanism clearly runs in polynomial time (note that it is

easy for a agent to choose the next issue on which to determine the outcome). To

see why it satisfies RRS, note that the mechanism allows every agent to make a

decision on one issue once every n turns. Thus, for each k P rps, every agent gets to

make decisions on at least k of her “top” k ¨ n issues, when issues are sorted in the

descending order of the utility her favorite alternative in the issue gives her. It is

easy to see that this implies every agent i gets utility at least RRSi. Because RRS

implies PPS, the mechanism also satisfies PPS. It remains to show that it satisfies

Prop1 as well.

Fix a agent i and let c be the outcome produced by the round robin mechanism

for some choosing order of the agents. Because the round robin mechanism satisfies

RRS, agent i gets utility at least

uipcq ě
p
ÿ

k“1

upk¨nqmax piq.

For k P rms, let the kth favorite issue of agent i be the issue t for which utmaxpiq

is the kth highest. Let ` P N Y t0u be the largest index such that for every k P r`s,

outcome c chooses agent i’s most preferred alternative on her kth favorite issue.

Let t˚ be her p` ` 1qth favorite issue. To show that c satisfies Prop1, we construct

outcome c1 from c by only changing the outcome of issue t˚ to at
˚

maxpiq, and show

that uipc
1q ě Propi. Note that if ` ě p, then

uipc
1
q ě

``1
ÿ

k“1

upkqmaxpiq ě
p`1
ÿ

k“1

upkqmaxpiq ě
1

n

m
ÿ

k“1

upkqmaxpiq “ Propi.

Let ` ă p. Then, using the fact that the round robin mechanism lets agent i choose

her most preferred alternative for at least k of her favorite k ¨n issues for every k ď p
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(and her p`` 1qth favorite issue was not one of these), we have

uipc
1
q ě

``1
ÿ

k“1

upkqmaxpiq `
p
ÿ

k“``1

upk¨nqmax piq

ě
1

n

p``1q¨n
ÿ

k“1

upkqmaxpiq `
1

n

m
ÿ

k“p``1qn`1

upkqmaxpiq “ Propi.

Therefore, the round robin mechanism satisfies Prop1. �

While this result seems to reflect favorably upon the round robin mechanism,

recall that it violates Pareto optimality even for private goods division. For public

decision making, a simple reason for this is that the round robin mechanism, for

each issue, chooses an alternative that is some agent’s favorite, while it could be

unanimously better to choose compromise solutions that make many agents happy.

Imagine there are two agents and two issues, each with two alternatives. The “ex-

treme” alternative in each issue i P t1, 2u gives utility 1 to agent i but 0 to the other,

while the “compromise” alternative in each issue i P t1, 2u gives utility 2{3 to both

agents. It is clear that both agents prefer choosing the compromise alternative in

both issues to choosing the extreme alternative in both issues. Because such “Pareto

improvements” which make some agents happier without making any agent worse off

are unanimously preferred by the agents, the round robin outcome becomes highly

undesirable. We therefore seek mechanisms that provide fairness guarantees while

satisfying Pareto optimality.

A natural question is whether there exists a mechanism that satisfies RRS, Prop1,

and PO. An obvious approach is to start from an outcome that already satisfies RRS

and Prop1 (e.g., the round robin outcome), and make Pareto improvements until

no such improvements are possible. While Pareto improvements preserve RRS as

the utilities to the agents do not decrease, Prop1 can be lost as it depends on the

exact alternatives chosen and not only on the utilities to the agents. We leave it as
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an important open question to determine if RRS, Prop1, and PO can be satisfied

simultaneously.

We therefore consider satisfying each fairness guarantee individually with PO.

One can easily find an outcome satisfying RRS and PO by following the aforemen-

tioned approach of starting with an outcome satisfying RRS, and making Pareto

improvements while possible. There is also a more direct approach to satisfying RRS

and PO. Recall that the leximin mechanism chooses the outcome which maximizes

the minimum utility to any agent, subject to that maximizes the second minimum

utility, and so on. It is easy to see that this mechanism is always Pareto optimal.

Now, let us normalize the utilities of all agents such that RRSi “ 1 for every agent

i P N .3 Because the round robin mechanism gives every agent i utility at least

RRSi “ 1, it must be the case that the leximin mechanism operating on these nor-

malized utilities must also give every agent utility at least 1, and thus produce an

outcome that is both RRS and PO.

Theorem 2. The leximin mechanism satisfies RRS, PO, and p1{2q-Prop1.

That leximin satisfies p1{2q-Prop1 follows directly from the following lemma, and

noting that leximin satisfies RRS.

Lemma 3. RRS implies p1{2q-Prop1.

Proof. Note that

RRSi “
p
ÿ

k“1

upk¨nqmax piq ě
1

n

m
ÿ

t“n`1

uptqmaxpiq

and

up1qmaxpiq ě
1

n

n
ÿ

t“1

uptqmaxpiq.

3 Agents with zero round robin share can be incorporated via a simple extension to the argument.
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Summing the two equations, we get

RRSi ` u
p1q
maxpiq ě

1

n

m
ÿ

t“1

uptqmaxpiq “ Propi.

Therefore, maxtRRSi, u
p1q
maxpiqu ě 1

2
Propi.

Suppose that uipcq ě RRSi for some outcome c. Then either i already receives

her most valued item, in which case she receives utility at least maxtRRSi, u
p1q
maxpiqu ě

1
2
Propi, or she does not receive her most valued item. If she does not, then after

giving it to her, she receives utility at least 1
2
Propi. Therefore, c satisfies p1{2q-Prop1.

�

Next, we study whether we can achieve Prop1 and PO simultaneously. Neither

of the previous approaches seems to work: we already argued that following Pareto

improvements could lose Prop1, and the normalization trick is difficult to apply

because Prop1 is not defined in terms of any fixed share of utility.

One starting point to achieving Prop1 and PO is the maximum Nash welfare

(MNW) solution, which, for private goods division, is known to satisfy the similar

guarantee of EF1 and PO [49]. It turns out that the MNW solution is precisely what

we need.

Theorem 4. The MNW solution satisfies proportionality up to one issue (Prop1)

and Pareto optimality (PO).

Before we prove this, we need a folklore result, which essentially states that if the

sum of n terms is to be reduced by a fixed quantity δ that is less than each term,

then their product reduces the most when δ is taken out of the lowest term. The

following lemma proves this result when all initial terms are 1, which is sufficient for

our purpose. The proof of the lemma appears in the appendix.
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Lemma 5. Let tx1, . . . , xnu be a set of n non-negative real numbers such that
řn
i“1 maxt0, 1´ xiu ď δ, where 0 ă δ ă 1. Then,

śn
i“1 xi ě 1´ δ.

Proof of Theorem 4. Fix an instance of the public decision making problem. Let

S Ď N be the set of agents that the MNW outcome c gives positive utility to. Then,

by the definition of the MNW outcome, S must be a largest set of agents that can

simultaneously be given positive utility, and c must maximize the product of utilities

of agents in S.

First, we show that c is PO. Note that a Pareto improvement over c must either

give a positive utility to a agent in NzS or give more utility to a agent in S, without

reducing the utility to any agent in S. This is a contradiction because it violates

either optimality of the size of S or optimality of the product of utilities of agents in

S. Hence, MNW satisfies PO.

We now show that MNW also satisfies Prop1. Suppose for contradiction that

Prop1 is violated for agent i under c. First, note that we must have Propi ą 0.

Further, it must be the case that utmaxpiq ą 0 for at least n` 1 issues. Were this not

the case, Prop1 would be trivially satisfied for agent i since we can give her utility

up1qmaxpiq ě
1

n

n
ÿ

t“1

uptqmaxpiq “
1

n

m
ÿ

t“1

uptqmaxpiq “ Propi

by changing the outcome on a single issue.

We now show that uipcq ą 0 (i.e., i P S). For contradiction, suppose otherwise.

For each of the (at least) n ` 1 issues with utmaxpiq ą 0, there must exist another

agent j “ i that gets positive utility only from that issue under c (otherwise we could

use that issue to give positive utility to i while not reducing any other agents’ utility

to zero, contradicting the maximality of S). But this is impossible, since there are

at least n` 1 issues and only n´ 1 agents (other than i).

Because MNW outcomes and the Prop1 property are invariant to individual scal-
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ing of utilities, let us scale the utilities such that Propi “ 1 and ujpcq “ 1 for all

j P Sztiu. Select issue t˚ P T as

t˚ P arg min
tPT

ř

jPNztiu u
t
jpcq

utmaxpiq ´ u
t
ipcq

.

Note that t˚ is well defined because utmaxpiq ą utipcq for at least one t P T , otherwise

Prop1 would not be violated for agent i.

We now show that outcome c1 such that c1t˚ “ at
˚

maxpiq and c1t “ ct for all t P T ztt˚u

achieves strictly greater product of utilities of agents in S than outcome c does, which

is a contradiction as c is an MNW outcome. First, note that

ř

jPNztiu u
t˚

j pcq

ut˚maxpiq ´ u
t˚
i pcq

ď

ř

tPT

ř

jPNztiu u
t
jpcq

ř

tPT pu
t
maxpiq ´ u

t
ipcqq

“

ř

jPNztiu ujpcq

nPropi ´ uipcq
ď

pn´ 1q

pn´ 1qPropi
“ 1,

(2.1)

where the penultimate transition follows because we normalized utilities to achieve

ujpcq “ 1 for every j P Sztiu, every j P NzS satisfies ujpcq “ 0, and agent i does not

receive her proportional share. The final transition holds due to our normalization

Propi “ 1.

Let δ “
ř

jPSztiu u
t˚

j pcq. Then, Equation (2.1) implies uipc
1q ´ uipcq “ ut

˚

maxpiq ´

ut
˚

i pcq ě δ. Thus,

uipcq ` δ ď uipc
1
q ă 1, (2.2)

where the last inequality follows because the original outcome c violated Prop1 for

agent i. In particular, this implies δ ă 1. Our goal is to show that
ś

jPS ujpc
1q ą

uipcq “
ś

jPS ujpcq, where the last equality holds due to our normalization ujpcq “ 1

for j P Sztiu and because i P S. This would be a contradiction because c maximizes

the product of utilities of agents in S. Now,
ÿ

jPSztiu

maxt0, 1´ ujpc
1
qu “

ÿ

jPSztiu

maxt0, ut
˚

j pcq ´ u
t˚

j pc
1
qu ď

ÿ

jPSztiu

ut
˚

j pcq “ δ,
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where the first transition follows from setting 1 “ ujpcq (by our normalization) and

noting that c and c1 are identical for all issues except t˚, and the second because all

utilities are non-negative.

Hence, Lemma 5 implies that
ś

jPSztiu ujpc
1q ě 1´ δ. Thus,

ź

jPS

ujpc
1
q ě p1´ δq ¨ puipcq` δq “ uipcq` δ ¨ p1´uipcqq´ δ

2
ą uipcq` δ

2
´ δ2

“ uipcq,

where the inequality holds because uipcq ` δ ă 1 from Equation (2.2). �

For private goods division, this result can be derived in a simpler fashion. Cara-

giannis et al. [49] already show that MNW satisfies PO. In addition, they also show

that MNW satisfies EF1, which implies Prop1 due to our next result. To be consis-

tent with the goods division literature, we use proportionality up to one good (rather

than one issue) in the private goods division context.

Lemma 6. For private goods division, envy-freeness up to one good (EF1) implies

proportionality up to one good (Prop1).

Proof. Take an instance of private goods division with a set of agents N and a set

of goods M . Let A be an allocation satisfying EF1. Fix a agent i P N .

Due to the definition of EF1, there must exist4 a set of goods X “ tgjujPNztiu

such that uipAiq ě uipAjq ´ uipgjq for every j P Nztiu. Summing over all j P Nztiu,

we get

pn´ 1q ¨ uipAiq ě

¨

˝

ÿ

jPNztiu

uipAjq

˛

‚´ uipXq ùñ n ¨ uipAiq ě uipMq ´ uipXq

ùñ uipAiq `
uipXq

n
ě
uipMq

n
. (2.3)

4 If Aj “ H, we can add a dummy good gj that every agent has utility 0 for, and make Aj “ tgju.
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Note thatX has less than n goods. Suppose agent i receives good g˚ P arg maxgPX uipgq.

Note that g˚ R Ai. Then, we have uipAi Y tg
˚uq ě uipMq{n “ Propi, which implies

that Prop1 is satisfied with respect to agent i. Because agent i was chosen arbitrarily,

we have that EF1 implies Prop1. �

Equation 2.3 in the proof of Lemma 6 directly implies the following lemma because

the set X in the equation contains at most n´ 1 goods.

Lemma 7. Let A be an allocation of private goods that satisfies EF1. Then, for

every agent i,

uipAiq ě Propi ´
1

n

n´1
ÿ

t“1

uptqmaxpiq,

where u
ptq
maxpiq is the utility agent i derives from her tth most valued good.

Next, we turn our attention to RRS and PPS. While MNW does not satisfy

either of them, it approximates both.

Theorem 8. The MNW solution satisfies 1{n-RRS (and therefore 1{n-PPS). The

approximation is tight for both RRS and PPS up to a factor of Oplog nq.

Proof. We first show the lower bound. Fix an instance of public decision making,

and let c denote an MNW outcome. Let S Ď N denote the set of agents that achieve

positive utility under c.

Without loss of generality, let us normalize the utilities such that ujpcq “ 1 for

every j P S. Suppose for contradiction that for some agent i, uipcq ă p1{nq ¨ RRSi.

First, this implies that RRSi ą 0, which in turn implies that agent i must be able to

derive a positive utility from at least n different issues. By an argument identical to

that used to argue that uipcq ą 0 in the proof of Theorem 4, it can be shown that

we must also have uipcq ą 0 in this case (i.e., i P S).
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Now, recall that the sequence xu
p1q
maxpiq, . . . , u

pmq
maxpiqy contains the maximum utility

agent i can derive from different issues, sorted in a non-ascending order. For every

q P rps, let

tq “ arg min
pq´1qn`1ďtďqn

ÿ

jPSztiu

utjpcq.

That is, we divide the public decision making into sets of n issues, grouped by agent

i’s maximum utility for them, and for each set of issues, we let tq be the one that

the remaining agents derive the lowest total utility from. Note that tq ď qn for each

q P rps, and therefore u
ptqq
maxpiq ě u

pqnq
maxpiq.

We will show that outcome c1, where c1tq “ a
tq
maxpiq for all q P rps and c1t “ ct for

all other issues t, achieves a higher product of utilities to agents in S than c does,

which is a contradiction because c is an MNW outcome. First, note that

uipc
1
q ě

p
ÿ

q“1

uptqqmaxpiq ě
p
ÿ

k“1

upk¨nqmax piq “ RRSi ą n.

Further, we have

ÿ

jPSztiu

maxt0, 1´ ujpc
1
qu “

ÿ

jPSztiu

maxt0, ujpcq ´ ujpc
1
qu

“
ÿ

jPSztiu

p
ÿ

q“1

maxt0, u
tq
j pcq ´ u

tq
j pc

1
qu ď

ÿ

jPSztiu

p
ÿ

q“1

u
tq
j pcq,

where the first equality follows from our normalization, the second because c and c1

only differ on issues ttquqPrps, and the last because all utilities are non-negative.

Reversing the order of the summation and further manipulating the expression,

we have

p
ÿ

q“1

ÿ

jPSztiu

u
tq
j pcq ď

p
ÿ

q“1

1

n

qn
ÿ

t“pq´1qn`1

ÿ

jPSztiu

utjpcq “
1

n

pn
ÿ

t“1

ÿ

jPSztiu

utjpcq ď
n´ 1

n
,
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where the first transition follows from the definition of tq. By Lemma 5, we have

ź

jPS

ujpc
1
q “ uipc

1
q

ź

jPSztiu

ujpc
1
q ą n ¨

ˆ

1´
n´ 1

n

˙

“ 1 “
n
ź

j“1

ujpcq,

where the inequality holds because uipc
1q ě RRSi ą n ¨ uipcq “ n, as agent i receives

her round robin share under c1 but did not even receive a 1{n fraction of it under c.

Hence, outcome c1 achieves a higher product of utilities to agents in S than c does,

which is a contradiction.

For the upper bound, Consider a public decision making problem with n issues,

where each issue t has two alternatives at1 and at2 with the following utilities to the

agents. Let x “ plog n´ log log nq{n.

a1
1 a1

2

u1
1 1 d
u1

2 0 x
...

...
...

u1
n 0 x

and

at1 at2
ut1 1 d
ut2 0 0
...

...
...

utt 0 1
...

...
...

utn 0 0

for t P t2, . . . , nu.

We choose the value of d later. Note that PPS1 “ 1 as long as d ă 1. Our goal is to

make the MNW outcome choose alternative at2 for every issue t. Let us denote this

outcome by c. Then, the Nash welfare under c is

pn ¨ dq ¨ p1` xqn´1. (2.4)

Let us find conditions on d under which this is greater than the Nash welfare that

other possible outcomes c1 could achieve.

Clearly, if c11 “ a1
1 and c1t “ at1 for any t ‰ 1, then utpc

1q “ 0, and therefore

NW pc1q “ 0. Let us consider c1 under which c11 “ a1
1 and c1t “ at2 for all t ‰ 1. The

Nash welfare produced by this outcome is

1` pn´ 1qd. (2.5)
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Next, consider c1 with c11 “ a1
2, c1t˚ “ at

˚

1 for some t˚ ‰ 1, and c1t “ at2 for all

remaining t. The Nash welfare under this outcome is

p1` pn´ 1qdq ¨ x ¨ p1` xqn´2. (2.6)

We do not need to consider outcomes c1 with c11 “ a1
2 and c1t “ at1 for multiple

t ‰ 1. This is because if switching the outcome from at
˚

2 to at
˚

1 for even a single

t˚ ‰ 1 decreases the Nash welfare, switching the outcomes on other t ‰ 1 would only

further decrease the Nash welfare, as it would reduce the utility to another agent

t by the same factor 1{p1 ` xq, while increasing the utility to agent 1 by an even

smaller factor.

Let us identify the conditions on d required for the quantity in Equation (2.4) to

be greater than the quantities in Equations (2.5) and (2.6). We need

pn ¨ dq ¨ p1` xqn´1
ą p1` pn´ 1qdq ¨ 1

ô n ¨ d ą
1

p1` xqn´1 ´ 1` 1{n
, (2.7)

and

pn ¨ dqp1` xqn´1
ą p1` pn´ 1qdq ¨ x ¨ p1` xqn´2

ô n ¨ d ą
n ¨ x

n` x
. (2.8)

It is easy to check that for x “ plog n´ log log nq{n, the quantities on the RHS of

both Equations (2.7) and (2.8) are Oplog n{nq. Hence, we can set d to be sufficiently

low for n ¨d to be Θplog n{nq. However, note that n ¨d is precisely the approximation

to PPS achieved for agent 1 under c, as required. �

For private goods, we can show that the MNW solution provides much better

approximations to both RRS and PPS, as a result of its strong fairness guarantee of

EF1.
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Lemma 9. For private goods division, envy-freeness up to one good (EF1) implies

PPS and n{p2n´ 1q-RRS, but does not imply n{p2n´ 2q-RRS.

Proof. Let A be an allocation of private goods that satisfies EF1. First, we show

that A must also satisfy PPS. Suppose for contradiction that it violates PPS. Then,

there exists a agent i such that uipAiq ă PPSi, which in turn implies that |Ai| ă p.

Because the average number of goods per agent is m
n
ě p, there must exist a agent

j such that |Aj| ą p. Hence, for any good g P Aj, agent j has at least p goods even

after removing g from Aj, which implies uipAjztguq ě PPSi ą uipAiq. However, this

contradicts the fact that A is EF1.

We now show that A also satisfies 1{2-RRS. By Lemma 7, we have

uipAiq ě
1

n

m
ÿ

t“n

uptqmaxpiq ě
1

n
upnqmaxpiq `

p
ÿ

k“2

upk¨nqmax piq. (2.9)

Further, since A satisfies EF1, it must be the case that

uipAiq ě upnqmaxpiq. (2.10)

To see this, suppose for contradiction that uipAiq ă u
pnq
maxpiq, which implies that agent

i is not allocated any of her n most valued goods. Therefore, by the pigeonhole

principle, there must exist a agent j P Nztiu that is allocated at least two of these

goods. Hence, for any g P Aj, we have uipAjztguq ě u
pnq
maxpiq ą uipAiq, which violates

EF1. Finally, adding n times Equation (2.9) with n ´ 1 times Equation (2.10), we

obtain

p2n´ 1q ¨ uipAiq ě n ¨ upnqmaxpiq ` n ¨
p
ÿ

k“2

upk¨nqmax piq “ n ¨ RRSi,

which implies the desired n{p2n´ 1q-RRS guarantee.

For the upper bound, consider an instance with n agents and n2 goods, and define
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agent 1’s utility function to be

u1pgjq “

#

1 1 ď j ď n,
1

n´1
n` 1 ď j ď n2.

Note that RRS1 “ 1 ` pn ´ 1q 1
n´1

“ 2. Consider the allocation A with A1 “

tgn`1, . . . , g2nu, A2 “ tg1, g2u, and Ai “ tgi, gpi´1qn`1, . . . , gi¨nu for all agents i ą 2.

Let the utilities of agents 2 through n be positive for the goods they receive and zero

for the remaining goods. Hence, they clearly do not envy any agents. For agent 1,

we have u1pA1q “
n
n´1

, u1pA2ztg2uq “ 1, and u1pAiztgiuq “
n
n´1

for all i ą 2. That

is, agent 1 does not envy any other agent up to one good. Hence, A satisfies EF1,

and agent 1 obtains a n
2n´2

fraction of her RRS share, as required. �

As a corollary of Lemma 9, EF1 implies 1{2-RRS, and this approximation is

asymptotically tight. Further, because the MNW solution satisfies EF1, Lemma 9

immediately provides guarantees (lower bounds) for the MNW solution. However,

the upper bound in the proof of Lemma 9 does not work for the MNW solution.

Next, we establish a much weaker lower bound, leaving open the possibility that the

MNW solution may achieve a constant approximation better than 1{2 to RRS.

Theorem 10. For private goods division, the MNW solution satisfies PPS and

n{p2n ´ 1q-RRS. For every ε ą 0, the MNW solution does not satisfy p2{3 ` εq-

RRS.

Proof. The lower bounds follow directly from Lemma 9 and the fact that the MNW

solution satisfies EF1. For the upper bound, consider an instance with two agents

and four goods. Agent 1 has utilities p1´ δ, 1´ δ, 1{2, 1{2q and agent 2 has utilities

p1, 1, 0, 0q for goods pg1, g2, g3, g4q, respectively. Note that RRS1 “ 3{2 ´ δ. The

MNW allocation A is given by A1 “ tg3, g4u and A2 “ tg1, g2u. Thus, u1pA1q

RRS1
“ 2

3´2δ
.

The upper bound follows by setting δ sufficiently small. �
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2.4 Computational Complexity

In Section 2.3, we showed that without requiring Pareto optimality, we can achieve

both RRS (thus PPS) and Prop1 in polynomial time using the round robin method

(Theorem 1). In contrast, when we require PO, the leximin mechanism (with an

appropriate normalization of utilities) provides RRS (thus PPS) and PO, while the

MNW solution provides Prop1 and PO. However, both these solutions are NP-hard

to compute [140, 28]. This raises a natural question whether we can efficiently find

outcomes satisfying our fairness guarantees along with PO. For PPS, the answer is

negative.

Theorem 11. It is NP-hard to find an outcome satisfying PPS and PO.

Note that it is the search problem of finding an outcome (any outcome) satisfying

PPS and PO for which we prove computational hardness; the decision problem of

testing the existence of such an outcome is trivial as we know it always exists. Before

we prove this result, we need to introduce a new (to our knowledge) decision problem

and show that it is NP-complete.

Exact Triple-Cover by 3-sets (X33C): An instance pY, T q of X33C is given by a set Y

of r vertices and a set T “ tT1, T2, . . . , Tmu, where each Ti is a set of three vertices.

The decision problem is to determine whether it is possible to choose r sets, with

repetition allowed, such that every vertex v is contained in exactly three of the chosen

sets (an exact triple-cover).

Let us contrast this with the definition of the popular NP-complete problem,

Exact Cover by 3-sets (X3C): An instance pX,Sq of X3C is given by a set X of 3q

vertices and a set S “ tS1, . . . , Snu, where each Si is a set of three vertices. The

decision problem is to determine if there exists a subset of S of size q that covers

every vertex x P X exactly once (an exact cover).
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Lemma 12. X33C is NP-complete.

Proof. Clearly, X33C lies in NP because a triple-cover can be checked in polynomial

time. To show hardness, we reduce from X3C. Given an instance pX,Sq of X3C,

divide X into q sets of 3 vertices arbitrarily, indexed by k. For every one of these q

sets of three vertices sk “ tsk1, s
k
2, s

k
3u, create 8 new vertices, tski,j : i P r2s, j P r4su,

and 10 new sets tT ki,j : i P r2s, j P r5su. The sets T ki,j are defined as follows: T ki,1 “

tski,1, s
k
i,2, s

k
i,3u, T

k
i,2 “ tski,2, s

k
i,3, s

k
i,4u, T

k
i,3 “ tski,1, s

k
i,2, s

k
i,4u, T

k
i,4 “ tski,1, s

k
i,3, s

k
1u, and

T ki,5 “ ts
k
i,4, s

k
2, s

k
3u.

The X33C instance is given by pY “ X Y tski,j : i P r2s, j P r4s, k P rqsu, T “

S Y tT ki,j : i P r2s, j P r5s, k P rqsq. Note that |Y | “ 11q. We show that pY, T q has an

exact triple-cover if and only if there exists an exact cover for pX,Sq.

First, suppose that there exists an exact cover for pX,Sq. Then there exists an

exact triple-cover for pY, T q by selecting sets T ki,j for every k P rqs, i P r2s, and j P r5s.

It is easy to check that these 10q sets cover each ski,j exactly three times, as well as

covering skk exactly twice, for all k P rqs and k P r3s. Hence, all we need to do is add

the solution to the original X3C instance.

Now, suppose that there exists an exact triple-cover by 3-sets for the X33C in-

stance. This implies that, for any k and i, exactly three sets from tT ki,1, T
k
i,2, T

k
i,3u

must be chosen (recall that we can choose the same set more than once), because

these are the only sets that contain ski,2, which must be covered exactly three times.

We now consider how we can choose these three sets. Suppose that T ki,2 is chosen

more than once. Then only (at most) one of T ki,1 and T ki,3 is chosen, so we still need

to cover ski,1 (at least) twice. The only way to do this is by choosing T ki,4 twice. But

then ski,3, which is contained in both T ki,2 and T ki,4, is covered more than three times,

a violation of the conditions of an exact triple-cover. By similar reasoning, we can

show that T ki,3 cannot be chosen more than once. Now suppose that T ki,1 is chosen
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twice. Then it remains to choose exactly one of T ki,2 and T ki,3; suppose WLOG that

we choose T ki,2. Then we still need to cover ski,1 an additional time. The only way

to do this is to choose T ki,4, which also covers ski,3, meaning that ski,3 is covered four

times, violating the condition of the exact triple-cover. Finally, suppose that T ki,1 is

chosen three times. Then we still need to cover ski,4 three times without covering any

of ski,1, ski,2, or ski,3 again. We therefore need to choose T ki,5 three times. Otherwise,

we can choose each of T ki,1, T ki,2, T ki,3, T ki,4, and T ki,5 once each, which covers each of

ski,1, ski,2, and ski,3 once each. All other options have been ruled out. In particular, it

is necessary to choose T ki,5 at least once.

So there are two options. Regardless of which option we choose, we still have to

cover each of ski1,1, ski1,2, and ski1,3 three times each, for i1 “ i. Since the options for i1

are symmetric to those for i, it is again necessary to choose T ki1,5 at least once. If we

choose T ki,1 three times and T ki,5 three times, as well as T ki1,5 at least once (as we must),

then sk2 and sk3 are covered at least four times, a violation of the exact triple-cover.

Therefore the only possibility is to choose each of T ki,1, T ki,2, T ki,3, T ki,4, and T ki,5 once.

Similarly, we must choose each of T ki1,1, T ki1,2, T ki1,3, T ki1,4, and T ki1,5 once each also. And,

since k was arbitrary, this holds for all k P rqs.

So, for all k P rqs and all i P r2s, each of T ki,1, T ki,2, T ki,3, T ki,4, and T ki,5 is chosen

exactly once, a total of 10q sets chosen. We therefore have q more sets to choose,

which necessarily cover each of v P S exactly once (note that each v P S corresponds

to an skj for some k P rqs and j P r3s, and these are covered exactly once by either

T k1,4 or T k1,5, and exactly once again by either T k2,4 or T k2,5). The only way to choose q

sets that cover each v P S exactly once is by choosing an exact cover for the instance

pX,Sq. �

Using this lemma, we can now show that finding an outcome satisfying PPS and

PO is NP-hard through a reduction from X33C.
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Proof of Theorem 11. Let pY, T q be an instance of X33C, with |Y | “ r. Let ε P

p0, 1{p3rqq. We define a public decision making problem as follows. There are r

agents, one corresponding to each vertex v P Y , and r issues. For each issue, there

are |Y | ` |T | alternatives. For each issue t and each agent i, there is an alternative

at,i which is valued at 1 ´ ε by agent i, and 0 by all other agents. The remaining

|T | alternatives correspond to the 3-sets from the X33C instance. For a set Tj P T ,

the corresponding alternative is valued at 1
3

by agents i P Tj, and valued at 0 by all

other agents. Note that PPSi “ 1´ ε for each agent i, because there are exactly as

many issues as agents, and each agent values its most preferred alternative for each

issue at 1´ ε.

We now show that there exists an exact triple-cover by 3-sets if and only if all

outcomes to the public decision making problem that satisfy PPS and PO have

uipcq “ 1 for all i. First, suppose that there exists an exact triple-cover by 3-sets.

We need to show that all outcomes satisfying PPS and PO have uipcq “ 1 for all i.

So suppose otherwise – that there exists an outcome satisfying PPS and PO with

uipcq “ 1 for some agent i. In particular, some agent must have uipcq ą 1, otherwise

c is not PO (because it is possible to choose an outcome corresponding exactly to an

exact triple-cover, which gives each agent utility 1). But agents only derive utility

in discrete amounts of 1 ´ ε or 1
3
, which means that any agent with uipcq ą 1 has

uipcq ě
4
3
´ ε.

r
ÿ

i“1

uipcq ě
4

3
´ ε`

r´1
ÿ

i“1

p1´ εq “
1

3
` r ´ rε ą r,

where the last inequality holds because ε ă 1{p3rq. However, this is a contradiction

because each alternative in each of the r issues contributes at most 1 to the social

welfare. Therefore, every outcome satisfying PPS and PO has uipcq “ 1 for all i.

Next, suppose that there does not exist an exact triple-cover by 3-sets. So if
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we choose an alternative corresponding to a 3-set for every issue, it is not possible

for every agent to derive utility 1. Therefore, some agent must derive utility 2
3

(or

lower), which violates PPS. Thus, every outcome that satisfies PPS must include at

least one issue where the chosen alternative is one that corresponds to a agent, not

to a 3-set. Such an alternative only contributes 1 ´ ε to social welfare. Therefore,

the social welfare is strictly less than r, which means that some agent gets utility

strictly less than 1. Therefore, there is no outcome satisfying PPS (either with or

without PO) such that uipcq “ 1 for all i. Since the set of outcomes satisfying PPS

is always non-empty, it is therefore not the case that all outcomes satisfying PPS

and PO have uipcq “ 1 for all i. �

Because every outcome satisfying RRS also satisfies PPS, we have the following

corollary.

Corollary 13. It is NP-hard to find an outcome satisfying RRS and PO.

For private goods division, we show, in stark contrast to Theorem 11, that we

can find an allocation satisfying PPS and PO in polynomial time. This is achieved

using Algorithm 1. Interestingly, it produces not an arbitrary allocation satisfying

PPS and PO, but an allocation that assigns at least p “ tm{nu goods to every agent

— implying PPS, and maximizes weighted (utilitarian) social welfare according to

some weight vector — implying PO.

At a high level, the algorithm works as follows. It begins with an arbitrary weight

vector w, and an allocation A maximizing the corresponding weighted (utilitarian)

social welfare. Then, it executes a loop (Lines 3-22) while there exists a agent

receiving less than p goods, and each iteration of the loop alters the allocation in a

way that one of the agents who received more than p goods loses a good, one of the

agents who received less than p goods gains a good, and every other agent retains

the same number of goods as before.
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ALGORITHM 1: Polynomial time algorithm to achieve PPS and PO for private goods

Input: The set of agents N , the set of private goods M , and agents’ utility functions
tuiuiPN

Output: A deterministic allocation A satisfying PPS and PO
1 wÐ p1{n, . . . , 1{nq P Rn;

2 AÐ arg maxA1
ř

iPN wi ¨ uipA
1q;

3 while Di P N, |Ai| ă p do /* Until every agent receives at least p “ tm{nu

goods */

4 GT Ð ti P N : |Ai| ą pu; /* Partition agents by the number of goods they

receive */

5 EQÐ ti P N : |Ai| “ pu;

6 LS Ð ti P N : |Ai| ă pu;

7 DEC “ GT ; /* Agents whose weights we will decrease */

8 while DEC X LS “ H do
/* Minimally reduce weights of agents in DEC so a agent in DEC

loses a good */

9 pi˚, j˚, g˚q Ð arg miniPDEC,jPNzDEC,gPAi
pwi ¨ vi,gq{pwj ¨ vj,gq;

10 r Ð pwi˚ ¨ vi˚,g˚q{pwj˚ ¨ vj˚,g˚q;

11 @i P DEC, wi Ð wi{r;

12 DEC Ð DEC Y tj˚u;

13 Dpj˚q Ð pi˚, g˚q; /* Bookkeeping: j˚ can receive g˚ from i˚ */

14 end

15 j˚ Ð DEC X LS; /* Agent from LS who receives a good */

16 while j˚ R GT do
17 pi˚, g˚q Ð Dpj˚q;

18 Ai˚ Ð Ai˚ztg
˚u;

19 Aj˚ Ð Aj˚ Y tg
˚u;

20 j˚ Ð i˚;

21 end

22 end

23 return A;

Each iteration of the loop maintains a set DEC of agents whose weight it reduces.

Initially, DEC consists of agents who have more than p goods (Line 7). When the

weights are reduced enough so that a agent in DEC is about to lose a good to a agent,

necessarily outside DEC (Lines 9-11), the latter agent is added to DEC (Line 12)

before proceeding further. When a agent who has less than p goods is added to

DEC, this process stops and the algorithm leverages the set of ties it created along

the way to make the aforementioned alteration to the allocation (Lines 16-21).
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We now formally state that this produces an allocation satisfying PPS and PO,

and that it runs in polynomial time; the proof is deferred to the appendix.

Theorem 14. For private goods division, PPS and PO can be satisfied in polynomial

time.

The complexity of finding an allocation (of private goods) satisfying the stronger

guarantee RRS along with PO in polynomial time remains open, as does the com-

plexity of finding an allocation satisfying Prop1 and PO.

We note that the convenient approach of weighted welfare maximization we use

in Theorem 14 cannot be used for finding an outcome satisfying RRS and PO, as

the following example shows. This leads us to conjecture that it may be NP-hard

to find such an outcome.

Example 3. Consider a private goods division problem with two agents and four

goods. Agent 1 has utilities p4, 4, 1, 1q and agent 2 has utilities p3, 3, 2, 2q for goods

pg1, g2, g3, g4q, respectively. Note that RRS1 “ RRS2 “ 5. Consider assigning weights

w1 and w2 to agents 1 and 2, respectively. If 4w1 ą 3w2, i.e., w1 ą 3w2{4 then agent

1 receives both g1 and g2, which means that agent 2 receives utility less than her RRS

share. On the other hand, if 3w2 ą 4w1, i.e., w1 ă 3w2{4 then agent 2 receives both

g1 and g2, which means that agent 1 receives utility less than her RRS share.

The only remaining possibility is that w1 “ 3w2{4, but in that case, agent 2

receives both g3 and g4. Regardless of how we divide goods g1 and g2, one of the two

agents still receives utility less than her RRS share.

In contrast, a simple modification of Algorithm 1 seems to quickly find an alloca-

tion satisfying Prop1 and PO in hundreds of thousands of randomized simulations.

At each iteration of this version, the set DEC initially consists of agents who attain

their proportional share (it is easy to show using the Pigeonhole principle that this

48



set is non-empty for any weighted welfare maximizing allocation), and ends when a

agent is added to DEC that is not currently achieving Prop1. Thus, at every loop, a

agent that was receiving her proportional share may lose a good (but will still achieve

at least Prop1), the agent added to DEC that was not achieving Prop1 gains a good,

and some agents that were achieving Prop1 but not their proportional share may lose

a good, but only if they gain one too. These three classes of agents are therefore

analogous to agents with more than p goods, less than p goods, and exactly p goods

in Algorithm 1. Unfortunately, we are unable to prove termination of this algorithm

because it is possible that a agent who achieves Prop1 but not her proportional share

loses a high-valued good while gaining a low-valued good, thus potentially sacrificing

Prop1. Thus we do not get a property parallel to the key property of Algorithm 1,

that no agent’s utility ever drops below her PPS share, after she attains it. However,

our algorithm always seems to terminate quickly and finds an allocation satisfying

Prop1 and PO in our randomized simulations, which leads us to conjecture that it

may be possible to find an allocation satisfying Prop1 and PO in polynomial time,

either from our algorithm directly or via some other utilization of weighted welfare

maximization.

2.5 Discussion

We introduced several novel fairness notions for public decision making and consid-

ered their relationships to existing mechanisms and fairness notions. Throughout

the paper, we highlighted various open questions including the existence (and com-

plexity) of a mechanism satisfying RRS, Prop1, and PO, the complexity of finding

an outcome satisfying Prop1 and PO (for public decisions and private goods), the

complexity of finding an outcome satisfying RRS and PO (for private goods), and

whether MNW provides a constant approximation to RRS better than 1{2.

So far we only considered deterministic outcomes. If randomized outcomes are
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allowed (an alternative interpretation in the private goods case is that the goods are

infinitely divisible), then the MNW solution satisfies Prop as a direct consequence

of it satisfying Prop1 for deterministic outcomes (Theorem 4).5 To see this, consider

replicating each issue K times and dividing utilities by K. The relative effect of

granting a single agent control of a single issue becomes negligible. Thus, as K

approaches infinity, the utility of each agent i in an MNW outcome approaches a

value that is at least their proportional share Propi. The fraction of copies of issue t

in which outcome atj is selected can be interpreted as the weight placed on atj in the

randomized outcome. Because RRS, PPS, and Prop1 are relaxations of Prop, the

randomized MNW outcome also satisfies all of them.

For private goods division, this can be seen as a corollary of the fact that the

randomized MNW outcome satisfies envy-freeness, which is strictly stronger than

proportionality. This hints at a very interesting question: Is there a stronger fairness

notion than proportionality in the public decision making framework that generalizes

envy-freeness in private goods division? Although such a notion would not be satis-

fiable by deterministic mechanisms, it may be satisfied by randomized mechanisms,

or it could have novel relaxations that may be of independent interest. Recent work

by Fain et al. [75] considered exactly this problem, using the stabiliity notion of the

core as a fairness primitive. Although an outcome in the core is not guaranteed to

exist, it can be approximated.

At a high level, our work provides a framework bringing together two long-studied

branches of social choice theory — fair division theory and voting theory. Both

have at their heart the aim to aggregate individual preferences into a collective

outcome that is fair and agreeable, but approach the problem in different ways. Fair

division theory typically deals with multiple private goods, assumes access to cardinal

5 Of course, the realization may fail to satisfy Prop (and other desiderata), but the lottery is fair
if we consider expected utilities.
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utilities, and focuses on notions of fairness such as envy-freeness and proportionality.

Voting theory, in contrast, typically deals with a single public decision (with the

exception of combinatorial voting mentioned earlier), assumes access only to less

expressive ordinal preferences, has the “one voter, one vote” fairness built inherently

into the voting rules, and focuses on different axiomatic desiderata such as Condorcet

consistency and monotonicity.

Of course, one can use a voting approach to fair division, since we can have

agents express preferences over complete outcomes, and this approach has been used

successfully to import mechanisms from voting to fair division and vice versa [24, 23].

However, not only does this approach result in an exponential blowup in the number

of alternatives, it also does not provide a convenient way to express fair-division-

like axioms. Continuing to explore connections between the two fields remains a

compelling direction for future work.
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3

Public Goods, Online Allocation

3.1 Introduction

In the previous chapter we studied fairness in settings where a single outcome, pos-

sibly consisting of several different issues, must be chosen at a fixed point in time.

Fairness can be achieved by sacrificing some agents’ utility on certain issues, but

rewarding them with desirable outcomes on other issues.

Unfortunately, in real settings, it is often not possible to observe the full set of

issues upfront. For instance, suppose that Alice and Bob go to lunch together every

week. Neither knows exactly what they will want to eat in a week’s time, so the

best they can do is make decisions week-by-week. Some weeks, their preferences will

differ, and every option will leave one of them unhappy. Fortunately, we can often

address this unfairness over time—Alice gets her most preferred restaurant today,

and Bob gets his next week.

Achieving fairness over time is the topic of this chapter. We adopt the public

decision making model of Chapter 2, except that the issues arrive one at a time,

and an alternative for issue t must be chosen before issue t ` 1 arrives. Motivated
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by the performance of the MNW solution in the offline model of Chapter 2, as well

as its extensive use in the fair division setting [58, 64, 140], we adopt Nash welfare

maximization as our goal in this work.1

When we make multiple decisions over time, we could simply maximize the Nash

welfare in each round separately. But it is easy to see that this can lead to dominated

outcomes. For example, suppose there are two agents, and we can choose an alter-

native that gives one a reward of 3, and the other a reward of 0; or vice versa; or an

alternative that gives each of them 1. Within a round, the last alternative maximizes

Nash welfare; but if this scenario is repeated every round, then it would be better to

alternate between the first two alternatives, so that each agent obtains 1.5 per round

on average. Of course, initially, say in the first round, we may not realize we will

have these options every round, and so we may choose the last alternative; but if

we do have these options every round, we should eventually catch on to this pattern

and start alternating. Ideally, we would maximize the long-term Nash welfare, that

is, the product of the long-run utilities (which are the sums of each agent’s rewards),

rather than, for example, the sum of the products within the rounds.

The rest of the chapter is organized as follows. In Section 3.2 we introduce

notation and preliminaries. In Section 3.3 we present two simple greedy algorithms

for choosing alternatives, and provide intuitive interpretations of them, including an

axiomatic justification for one of them. After presenting the algorithms, we evaluate

them on data from a computer systems application in Section 3.4.

Related work: In addition to work cited in Chapter 2, there is a body of

literature studying social choice and fair division in dynamic settings. Parkes and

Procaccia [129] examine a similar problem by modeling agents’ evolving preferences

with Markov Decision Processes, with a reward function defined over states and

1 The leximin mechanism also performs well in Chapter 2, but it relies on a very particular scaling
that requires knowing the entire instance upfront.
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actions (alternatives). However, their goal is to maximize the sum of (discounted)

rewards and they do not explicitly consider fairness as an objective. Kash et al.

[108] examine a model of dynamic fair division where agents arrive at different times

and must be allocated resources; however, they do not allow for the preferences of

agents to change over time as we do. Aleksandrov et al. [17] consider an online fair

division problem in a setting where items appear one at a time, and agents declare

yes/no preferences over that item. In our setting, each round has many alternatives

and agents express more general utilities. Our work is related to the literature on

dynamic mechanism design (Parkes et al. [130] provide an overview), except that we

do not consider monetary transfers. Guo et al. [99] consider a setting similar to ours,

also without money, except that they are not explicitly interested in fairness, only

welfare, and focus on incentive compatibility.

3.2 Preliminaries

We consider an online version of the model from Chapter 2. Recall that we have a

set of agents N “ rns and issues T “ rms. Each issue t P T has an associated set of

alternatives At “ tat1, . . . , a
t
kt
u, exactly one of which must be chosen. At round t, we

observe a matrix U t “ putipa
t
jqqiPrns,jPrkts of utilities; utipa

t
jq is the utility that agent i

receives from alternative atj being chosen. In this chapter, we will require utipa
t
jq P N,

which is necessary for some of our results in Section 3.3. This is still sufficient for

agents to express their preferences to arbitrary levels of precision. Let utpat
jq denote

the j-th column of matrix U t, the vector of valuations for alternative atj.

For every round t, a (dynamic) mechanism chooses a set of alternatives Ct, from

which a single alternative ct is chosen arbitrarily. Importantly, the problem is online,

so we may only use information up to time t in order to choose Ct.

We define a vector of accrued rewards at round t, rt, where the accrued reward

of agent i at round t is the sum of i’s utilities for the chosen alternatives up to and
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including round t: rtpiq “
řt
t1“1 u

t1

i pct1q. We will often be interested in an agent’s

accrued reward before the start of round t, rt´1piq. For convenience, we will refer

to the set of agents with rt´1piq “ 0 by I0 when the round, t, is clear. The average

utility of the agents over the first t rounds is ravg
t “ 1

t
rt.

A dynamic mechanism is anonymous if applying permutation σ to the agents,

for all t, does not change the set of chosen alternatives Ct, for any t. A dynamic

mechanism is neutral if applying permutation σ to the alternatives, for all t, results

in choosing alternatives σpCtq for all t. For the rest of this chapter we only consider

anonymous, neutral DSCFs.

The Nash welfare of valuation vector r, NW prq, is defined to be the product of

the agents’ utilities, NW prq “
śn

i“1 rpiq. We also define NW`prq “
ś

i:rpiq“0 rpiq

to be the product of all positive entries of r. Our aim is to maximize the Nash

welfare of the average utility across all T rounds, NW pravg
T q. Note that while our

setting allows for discounting, we do not need to explicitly address it since the input

matrices can be pre-multiplied by the necessary factor before being passed as input

to the mechanism.

The benchmark algorithm is the optimal algorithm for the offline problem, where

an instance is given by the set tU tutPT , and can be solved by a mixed integer convex

program. We denote the optimal Nash welfare by OPT.

Our algorithms and analysis use a formal infinitesimal quantity ε. Numbers

involving ε take the form
ři“8
i“´8 xiε

i.2 For two such numbers x “
ři“8
i“´8 xiε

i and

y “
ři“8
i“´8 yiε

i, let i1 be the smallest index for which xi “ yi, if it exists. Then x ą y

if and only if xi1 ą yi1 . That is, we compare numbers lexicographically by the lowest

powers of ε. Two numbers are equal if all coefficients are equal.

2 While our framework allows for unbounded powers of ε, here we utilize only powers of ε between
ε´1 and εn.
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3.3 Greedy Algorithms

3.3.1 Algorithm Definitions

In this section we present two greedy algorithms. We note that, although these

algorithms are designed to give an approximate solution to that which maximizes

Nash welfare, much of this section is devoted to showing that they satisfy desirable

properties as algorithms in their own right. Such an approach is not new in com-

putational social choice – several papers treat approximation algorithms as distinct

voting rules [47, 48, 73]. The first algorithm, Greedy, simply chooses ct to maxi-

mize NW pravg
t q, the Nash welfare at the end of the round. The second algorithm is a

linearized version of greedy known as ProportionalFair (PF) in the networking

community [158, 103], which maximizes the sum of percentage increases in accrued

reward at each round. Equivalently, it works by assigning each agent a weight wi

(denote the vector of weights by w) equal to the inverse of her accrued reward at

the start of each round and chooses Ct “ arg maxatjPAt w ¨ utpat
jq, the alternatives

that maximize the weighted sum of valuations. Note that wi is proportional to the

product of the other agents’ accrued rewards.

Example 4. Let n “ m “ 2 and suppose that rt´1p1q “ 1, rt´1p2q “ 3, and

U t “ p 2 3
3 1 q. That is, agent 1 has valuation 2 for alternative at1 and valuation 3

for alternative at2. Agent 2 has valuation 3 for alternative at1 and valuation 1 for

alternative at2. Choosing at1 results in Nash welfare of p1 ` 2q ¨ p3 ` 3q “ 18, while

choosing at2 results in Nash welfare of p1` 3q ¨ p3` 1q “ 16. Thus Greedy chooses

at1.

Under PF, each agent is given weight inversely proportional to their own accrued

utility. That is, agent 1 has weight 1 and agent 2 has weight 1
3
. Now, taking the

weighted sum of valuations yields p1 ¨ 2q ` p1
3
¨ 3q “ 3 for alternative at1, and p1 ¨ 3q `

p1
3
¨ 1q “ 10

3
for alternative at2. Thus PF chooses at2.
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Figure 3.1: Illustration of the difference between Greedy and PF for an in-
stance with two agents. The horizontal axis represents agent 1’s reward, and the
vertical axis represents agent 2’s reward. Figure 3.1(a) shows a general instance.
Greedy chooses the alternative that maximizes area R1 ` R2 ` R3, while PF
chooses the alternative that maximizes R1 ` R3 “ vt2pajqrt´1p1q ` ut1pa

t
jqrt´1p2q “

rt´1p1qrt´1p2q
”

ut1pa
t
jq

rt´1p1q
`

ut2pa
t
jq

rt´1p2q

ı

. Figures 3.1(b) and 3.1(c) illustrate the choice of

alternative at1 and at2 in Example 4, respectively.

A graphical illustration of the difference between the two algorithms is given in

Figure 3.1.

Unfortunately, both algorithms encounter problems while there exist agents with

zero accrued reward. For Greedy, it can (and, unless some alternative is valued

positively by all agents, will) be the case that NW pravg
t q “ 0 for all choices of ct,

even when one alternative is weakly preferred to all other alternatives by all agents.

For PF, it is impossible to set a weight wi “
1

rt´1piq
for an agent with rt´1piq “ 0.

As a general framework for addressing this issue, we endow each agent i P I0 with

some arbitrary, infinitesimal reward at the start of each round. This is a natural

way to allow the algorithms to give high priority to agents with zero accrued reward

while avoiding mathematical inconsistencies, and it allows us to efficiently choose an

alternative ct if we are happy with selecting any member of the choice set Ct.

However, once we endow rewards (even infinitesimal ones), we immediately lose

scale-freeness, one of the appealing properties of using Nash welfare. Further, if we

want to choose a member of the choice set Ct uniformly at random, there is no obvi-
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ous distribution over endowed rewards that allows us to do this – choosing endowed

rewards uniformly at random from some interval will not, in general, result in draw-

ing uniformly from Ct. So, while the technique of randomly endowing infinitesimal

reward is a general and intuitive way for the algorithms to handle all situations, we

also want an algorithm to compute the entire choice set Ct.

In the following, for both Greedy and PF, we first present the algorithm to

select a single alternative via nondeterministically endowing infinitesimal reward,

followed by an algorithm to compute the entire choice set Ct.

ALGORITHM 2: Greedy (select one alternative)

Input: rt´1
1 for i “ 1, . . . , n do
2 Randomly choose 0 ă xi ď 1 ;

3 end

4 return ct P arg maxatjPAt

śn
i“1 maxtrt´1piq ` u

t
ipa

t
jq, xiεu;

The alternatives chosen by Algorithm 2 are exactly the alternatives that result

in a maximal number of agents with positive accrued reward and, subject to holding

fixed the set of agents with positive accrued reward, maximizes the product of these

agents’ rewards. For a single round, this reproduces the definition of the Maximum

Nash Welfare mechanism from Chapter 2.

ALGORITHM 3: Greedy (select all alternatives)

Input: rt´1
1 Ct Ð arg maxatjPAt |ti : rt´1piq ` u

t
ipa

t
jq ą 0u|;

2 for atj P Ct do

3 if Dj1 such that ti : rt´1piq ` u
t
ipa

t
jq ą 0u “ ti : rt´1piq ` u

t
ipa

t
j1q ą 0u and

NW`prt´1 ` utpatj qq ă NW`prt´1 ` utpatj1qq then

4 Ct Ð Ctzta
t
ju;

5 end

6 end

7 return Ct;

The version of PF for selecting a single alternative is presented as Algorithm 4.
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ALGORITHM 4: ProportionalFair (select one alternative)

Input: rt´1
1 for i P I0 do
2 Randomly choose 0 ă xi ď 1;

3 Randomly choose yi P R;

4 end

5 wi Ð

#

xi
1
ε ` yi, if rt´1piq “ 0
1

rt´1piq
, if rt´1piq ą 0

;

6 return ct P arg maxatjPAt w ¨ utpatj q;

To determine the complete choice set Ct, we solve a linear program for each

alternative that explicitly determines whether there is some infinitesimal endowment

that results in the alternative being chosen by PF.

ALGORITHM 5: ProportionalFair (select all alternatives)

Input: rt´1

1 Ct ÐH;

2 for j “ 1, . . . ,m do
3 if the following linear program is unbounded

Maximize L

subject to w1 ¨ utpatj q ě w1 ¨ utpatj1q @j1

w1i “
1

rt´1piq
@i such that rt´1piq ą 0

w1i ě L @i such that rt´1piq “ 0

then
4 Ct Ð Ct Y ta

t
ju;

5 end

6 end

7 return Ct;

A notable difference in the algorithms is that unlike Greedy, PF may leave some

agents with zero accrued utility even when it was possible to give positive utility to

all agents.

Example 5. Let n “ 2, m “ 3, and t “ 1. Suppose that U1 “ p 3 0 1
0 3 1 q. Because

t “ 1, rt´1p1q “ rt´1p2q “ 0.
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Greedy chooses a1
3 since it is the only alternative that provides non-zero re-

ward to both agents. However, PF assigns the agents weights w1, w2 and chooses

arg maxjPt1,2,3uw ¨u
tpa1

j q. Since it must be the case that either 3w1 ą w1`w2 or that

3w2 ą w1 ` w2, it is not possible for a1
3 to be chosen by PF.

For each algorithm, we prove equivalence of the two versions in the sense that

the set generated by the ‘select all’ version consists exactly of the alternatives that

the ‘select one’ version generates for some nondetermistic choices.

Theorem 15. The set of alternatives Ct chosen by Algorithm 3 at round t is exactly

the set of alternatives that can be chosen at round t by Algorithm 2.

The proof uses the fact that the product on Line 4 of Algorithm 2 is maximized

when the number of ε terms appearing in the product is minimized.

Proof. We begin by showing that every alternative that can be selected by Algo-

rithm 2 is also selected by Algorithm 3. Let ct be an alternative chosen by Algo-

rithm 2 for some choices of txiu and let p “ |ti : rt´1piq`u
t
ipctq ą 0u|. Therefore, the

lowest power of ε with non-zero coefficient in the product on Line 4 of Algorithm 2

is εn´p. If some other alternative atj has |ti : rt´1piq ` utipa
t
jq ą 0u| ą p then the

corresponding product has non-zero coefficient on a lower power of ε, contradicting

optimality of ct. That is, ct P arg maxatjPAt |ti : rt´1piq ` u
t
ipa

t
jq ą 0u|.

Next, let atj1 be an alternative with ti : rt´1piq ` utipctq ą 0u “ ti : rt´1piq `

utipa
t
j1q ą 0u. The product on Line 4 of Algorithm 2 is

NW`
prt´1 ` ut

pctqqε
n´p

ź

i:rt´1piq`utipctq“0

xi
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for ct and

NW`
prt´1 ` ut

pat
j1qqε

n´p
ź

i:rt´1piq`utipa
t
j1
q“0

xi

“NW`
prt´1 ` ut

pat
j1qqε

n´p
ź

i:rt´1piq`utipa
t
j1
q“0

xi

for alternative atj1 . Since ct is chosen by Algorithm 2, it must be the case that

NW`prt´1`utpctqq ě NW`prt´1`utpat
j1qq. Therefore, ct is chosen by Algorithm 3.

To complete the proof, we show that every alternative selected by Algorithm 3

can also be selected by Algorithm 2. To that end, let ct P Ct. We exhibit a specific

choice of txiu which results in ct being selected by Algorithm 2. Let K be some

integer greater than the largest entry in U t and let

xi “

#

1
2pK`1qn

, if rt´1piq ` u
t
ipctq ą 0

1 if rt´1piq ` u
t
ipctq “ 0.

Then the product on Line 4 of Algorithm 2 that results from ct being selected is

NW`
prt´1 ` ut

pctqqε
n´p,

where p “ |ti : rt´1piq ` utipctq ą 0u|. Now consider some alternative atj “ ct. If

ti : rt´1piq ` utipctqq ą 0u “ ti : rt´1piq ` utipa
t
jq ą 0u and NW`prt´1 ` utpctqq ě

NW`prt´1 ` utpat
jqq then the leading term in the product on Line 4 of Algorithm 2

that results from atj being selected is

NW`
prt´1 ` ut

pat
jqqε

n´p
ď NW`

prt´1 ` ut
pctqqε

n´p.

Similarly, an alternative atj with |ti : rt´1piq`u
t
ipa

t
jq ą 0u| ă |ti : rt´1piq`u

t
ipctq ą 0u|

has coefficient 0 for the εn´p term (and larger terms) in the corresponding product

on Line 4. In both cases, this product is greater for ct than for atj.
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The final case is when |ti : rt´1piq ` u
t
ipctq ą 0u| “ |ti : rt´1piq ` u

t
ipa

t
jq ą 0u| but

the two sets are not equal. In this case, the dominant term in the product on Line 4

of Algorithm 2 that results from atj being selected is at most

NW`
prt´1 ` ut

pat
jqq

1

2pK ` 1qn
εn´p

by the choice of txiu and noting that at least one agent with rt´1piq ` u
t
ipctq ą 0 has

rt´1piq ` utipa
t
jq “ 0. But, since the maximum reward any agent derives from any

alternative is K,

NW`
prt´1 ` ut

pat
jqq ď pK ` 1qpNW`

prt´1 ` ut
pctqq

ď pK ` 1qnNW`
prt´1 ` ut

pctqq.

Therefore,

NW`
prt´1 ` ut

pat
jqq

1

2pK ` 1qn
ď pK ` 1qnNW`

prt´1 ` ut
pctqq

1

2pK ` 1qn

ă NW`
prt´1 ` ut

pctqq,

so the product from Line 4 of Algorithm 2 is larger for ct than for atj. Hence the

particular choice of txiu results in ct being chosen by Algorithm 2. �

Theorem 16. The set of alternatives Ct chosen by Algorithm 5 at round t is exactly

the set of alternatives that can be chosen at round t by Algorithm 4.

Proof. We begin by showing that every alternative that can be selected by Algo-

rithm 4 is also selected by Algorithm 5. Let ct be an alternative chosen by Algo-

rithm 4 for some choices of txiuiPI0 and tyiuiPI0 . For all i R I0, set w1i “
1

rt´1piq
, and for

all i P I0, set w1i “
xi
δ
` yi for any δ ą 0. As δ Ñ 0, the variables w1i grow arbitrarily

large. Therefore, to show feasibility of the variables tw1iu we need to show that the

first set of constraints in the LP in Algorithm 5 hold for sufficiently small δ.
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Fix an alternative atj. From Line 6 of Algorithm 4, we know that w ¨ utpctq ě

w ¨ utpat
jq. The dominant coefficient in this expression is that of ε´1. Comparing

these coefficients gives us

ÿ

iPI0

xiu
t
ipctq ě

ÿ

iPI0

xiu
t
ipa

t
jq. (3.1)

If Inequality 3.1 is strict, then we know that

ÿ

iPI0

xi
δ
utipctq ą

ÿ

iPI0

xi
δ
utipa

t
jq

for any δ ą 0, and we can make the gap arbitrarily large by setting δ sufficiently

small. In particular, we can force the gap to be large enough that the following

inequality holds for any fixed values of tyiuiPI0 and trt´1piquiRI0 :

ÿ

iPI0

´xi
δ
` yi

¯

utipctq `
ÿ

iRI0

1

rt´1piq
utipctq ą

ÿ

iPI0

´xi
δ
` yi

¯

utipa
t
jq `

ÿ

iRI0

1

rt´1piq
utipa

t
jq,

which is precisely the first constraint in the linear program from Algorithm 5.

If Inequality 3.1 holds with equality, then we turn attention to the coefficient of

ε0 in the dot product from Line 6 of Algorithm 4. This tells us that

ÿ

iPI0

yiu
t
ipctq `

ÿ

iRI0

1

rt´1piq
utipctq ě

ÿ

iPI0

yiu
t
ipa

t
jq `

ÿ

iRI0

1

rt´1piq
utipa

t
jq. (3.2)

Dividing Inequality 3.1 by δ and adding Inequality 3.2 gives

n
ÿ

i“1

w1iu
t
ipctq ě

n
ÿ

i“1

w1iu
t
ipa

t
jq,

satisfying the first constraint of the LP, so the weights tw1iu are feasible. These

weights allow us to set L to arbitrarily large values as δ Ñ 0, so the LP is unbounded

and Algorithm 5 selects ct.
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We now show the other direction, that every alternative selected by Algorithm 5

can also be selected by Algorithm 4. Let ct P Ct. That is, the optimal value for the

LP in Algorithm 5 is unbounded. Then it is the case that there exist vectors p and

q “ 0 for the values of the variables in the LP such that p ` kq is feasible for all

k ą 0 and q has positive objective value (this is a known fact about linear programs

with unbounded value; see, e.g., [125], Theorem 4.7). We use these to exhibit values

of txiuiPI0 and tyiuiPI0 so that ct is chosen by Algorithm 4.

Set yi “ pi and xi “ qi for all i P I0. Let atj P A
t. By the first set of constraints

from the LP,

ÿ

iPI0

ppi ` kqiqu
t
ipctq `

ÿ

iRI0

1

rt´1piq
utipctq ě

ÿ

iPI0

ppi ` kqiqu
t
ipa

t
jq `

ÿ

iRI0

1

rt´1piq
utipa

t
jq (3.3)

for all k ą 0. In particular, this implies that it can not be the case that
ř

iPI0
qiu

t
ipctq ă

ř

iPI0
qiu

t
ipa

t
jq, or else Inequality 3.3 would be violated for large enough values of k.

There are two possiblities.

First, suppose that
ř

iPI0
qiu

t
ipctq ą

ř

iPI0
qiu

t
ipa

t
jq. Then, by our choice of xi “ qi

for all i P I0, we have that

ÿ

iPI0

xiu
t
ipctq ą

ÿ

iPI0

xiu
t
ipa

t
jq.

But, as discussed earlier,
ř

iPI0
xiu

t
ipa

t
jq is exactly the dominant term in Line 6 of

Algorithm 4. Therefore, this dot product is maximized by ct, so ct is chosen by

Algorithm 4.

Finally, suppose that
ř

iPI0
qiu

t
ipctq “

ř

iPI0
qiu

t
ipa

t
jq. So the dominant term in

Line 6 of Algorithm 4 is equal for ct and atj. By Inequality 3.3, it must be the case

that

ÿ

iPI0

piu
t
ipctq `

ÿ

iRI0

utipctq

rt´1piq
ě

ÿ

iPI0

piu
t
ipa

t
jq `

ÿ

iRI0

utipa
t
jq

rt´1piq
.
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By the choice of yi “ pi for all i P I0, the above inequality holds when we substitute

yi for every instance of pi. After making that substitution, we are left with exactly

the expression for the coefficient of ε0 in Line 6 of Algorithm 4. Since the coefficient

is at least as large for ct as for atj, and the ε´1 coefficients are equal (and there are

no further non-zero terms), ct may be chosen by Algorithm 4. �

3.3.2 Axiomatization of ProportionalFair

Now that we have given a precise definition of the PF mechanism and justified it,

in this section we provide an axiomatization of the PF mechanism.

A dynamic mechanism is scale-free if it is not affected by a uniform (multiplica-

tive) scaling of some agent’s valuations. This property is desirable because it means

we do not require any sort of agreement or synchronization as to the units of mea-

surement used by the agents in their reporting.

Definition 1. Let k ą 0. Say that a dynamic mechanism satisfies scale-free-ness

(SF) if Ct is unchanged (for the same choice of tiebreaking in earlier rounds) if we

replace utipa
t
jq by k ¨ utipa

t
jq for all atj P A

t for every t P T .

Lemma 17. PF satisfies SF.

Proof. Let c P Ct and suppose that agent i scales all her valuations by k ą 0. We

show by induction that PF still chooses c at round t. Consider a round t such that

the chosen alternative is unchanged in all previous rounds.

Suppose that rt´1piq “ 0. So for any L there exists vector of weights w1 such that

w1i ě L and alternative c maximizes the weighted sum of valuations. After i scales

her valuations by a factor of k, we can simply scale w1i by a factor of 1
k

(this will

still allow unbounded values of w1i). Therefore, the value w1 ¨utpat
jq is unchanged for

every alternative atj. Thus, alternative c still maximizes this expression.
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Now suppose that rt´1piq ą 0. Then i’s weight w1i in the scaled instance is a

factor of k smaller than in the un-scaled instance, but utipa
t
jq is a factor of k larger

than in the un-scaled instance for all alternatives atj. Thus, for any setting of weights

tw1i1ui1 “i in the un-scaled instance, the value w1 ¨ utpat
jq is unchanged in the scaled

instance. Thus, the existence of a feasible set of weights such that c is chosen in the

unscaled instance implies that c is chosen in the scaled instance also, for the same

choice of weights.

Finally we need to rule out the possibility that some new alternative, atj R Ct,

is chosen at round t in the scaled instance. But if this were the case, then we can

just scale the scaled instance by 1
k

and return to the original instance where, by the

above proof, atj P Ct. �

A dynamic mechanism is separable into single-minded agents if the chosen alter-

native at a round is unchanged by replacing an agent by several new agents with the

same accrued reward, each of which has unit positive valuation for only one alter-

native. The axiom reflects that we can interpret utilities cardinally rather than just

ordinally.

Definition 2. Say that a dynamic mechanism is separable into single-minded agents

(SSMA) if, when all agents have the same accrued reward rt´1piq “ r ą 0, Ct is

unchanged if we replace each agent with several new agents (denoted generically by

x) according to the following scheme: For every utipa
t
jq P U

t, create utipa
t
jq agents

each with rt´1pxq “ r, utxpa
t
jq “ 1, and utxpa

t
j1q “ 0 for all j1 “ j.

Lemma 18. PF satisfies SSMA.

Proof. Consider round t with valuation matrix U t. PF chooses all alternatives that

maximize the expression

n
ÿ

i“1

1

r
utipa

t
jq. (3.4)
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Now consider the instance expanded as defined by Definition 2. For every alternative

atj, there are exactly
řn
i“1 u

t
ipa

t
jq agents that have valuation 1 for atj being chosen,

while all other agents have valuation 0. Since each new agent has accrued utility r,

PF chooses all alternatives which maximize Equation 3.4. �

The plurality axiom says that if all agent valuation vectors are unit vectors, and

we have no reason to distinguish between agents, then the alternatives favored by

the most agents should be chosen.

Definition 3. Say that a dynamic mechanism satisfies plurality (P) if, when all

agents have unit valuation for only a single alternative, and all agents have the

same (non-zero) accrued reward, then Ct consists of the alternatives with non-zero

valuation from the most agents.

Plurality says nothing about the case when some agent has rt´1piq “ 0. The idea

of the axiom (in combination with SF) is that we should choose the alternative which

provides the greatest utility, relative to what agents already have. However, if agents

have zero accrued reward then it is not possible to make accurate comparisons as to

the relative benefit each agent receives.

Observation 1. PF satisfies plurality.

The final axiom says that, if we restrict attention to only agents with zero accrued

reward, alternatives which are dominated by a mixture of other alternatives should

not be played. In the case that two alternatives are equivalent with respect to agents

with rt´1piq “ 0, we should only choose an alternative if it would still be chosen in the

absence of the agents with rt´1piq “ 0. The definition is inspired by mixed strategy

dominance in game theory and, intuitively, formalizes that we should prioritize agents

with zero utility above all others.

We first define the notion of 0-dominance.
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Definition 4. Let z1, . . . , zm be nonnegative coefficients with
ř

j1 zj1 “ 1. We say

that an alternative atj is strictly 0-dominated by the mixture of alternatives
ř

j1 zj1a
t
j1

at round t if
ř

j1 zj1u
t
ipa

t
j1q ě utipa

t
jq for all agents i with rt´1piq “ 0, with at least one

of these inequalities being strict. If all inequalities hold with equality, then we say

that atj is weakly 0-dominated by the mixture
ř

j1 zj1a
t
j1.

We say that atj is (strictly, weakly) 0-dominated if there exists some mixture of

alternatives that (strictly, weakly) 0-dominates it.

Definition 5. A dynamic mechanism f satisfies No 0-Dominated Alternatives (NZDA)

if it never chooses a strictly 0-dominated alternative, and chooses a weakly 0-dominated

alternative atj only if atj would be chosen by f under a scenario where U t was mod-

ified to include (1) only the agents with rt´1piq ą 0, and (2) only the (mixtures of)

alternatives that weakly 0-dominate atj (including atj itself).

Lemma 19. PF satisfies NZDA.

Proof. Let atj be a strictly 0-dominated alternative. Note that the dominant coeffi-

cient in Line 6 of Algorithm 4 is that of ε´1, which is determined by the values of

txiuiPI0 . Therefore, an alternative is chosen by PF only if it maximizes
ř

iPI0
xiu

t
ipa

t
jq.

So, to show that atj is not selected by PF, it suffices to show that there does not

exist any allowed choice of txiu for which

ÿ

iPI0

xiu
t
ipa

t
jq ě

ÿ

iPI0

xiu
t
ipa

t
j1q

for all other alternatives atj1 .

Fix txiuiPI0 , and consider drawing an alternative atj1 from the distribution defined

by the weights z1, . . . , zm. By the dominance condition and the fact that all xi are

positive,
ÿ

iPI0

xiu
t
ipa

t
jq ă

ÿ

iPI0

xiu
t
ipa

t
j1q
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in expectation. Thus there must exist a particular j1 for which the above inequality

holds, so atj is not chosen by PF.

Fix a choice of txi, yiuiPI0 and let atj be a weakly 0-dominated alternative – suppose

that it is weakly 0-dominated by alternative atj1 (which may be a mixture of several

alternatives). Since utipa
t
j1q “ utipa

t
jq for all agents i P I0,

ÿ

iPI0

p
xi
ε
` yiqu

t
ipa

t
jq “

ÿ

iPI0

p
xi
ε
` yiqu

t
ipa

t
j1q.

Suppose that atj is chosen by PF. Then, by the definition of PF,

ÿ

iPI0

p
xi
ε
` yiqu

t
ipa

t
jq `

ÿ

iRI0

1

rt´1piq
utipa

t
jq ě

ÿ

iPI0

p
xi
ε
` yiqu

t
ipa

t
j1q `

ÿ

iRI0

1

rt´1piq
utipa

t
j1q,

which requires that

ÿ

iRI0

1

rt´1piq
utipa

t
jq ě

ÿ

iRI0

1

rt´1piq
utipa

t
j1q. (3.5)

Equation 3.5 exactly says that PF would still choose atj if only alternatives that

weakly 0-dominated atj were included in U t, and in the absence of all agents with

rt´1piq “ 0, which completes the proof. �

We now show that any mechanism that achieves SF, SSMA, P, and NZDA simul-

taneously must agree with PF. We note that of the four axioms, Greedy satisfies

only SF and P. Despite Greedy being (arguably) simpler than PF, we do not know

a good axiomatization for it.

Theorem 20. Let f be a dynamic mechanism that satisfies SF, SSMA, P, and

NZDA. Suppose that f chooses alternative ct at round t. Then PF must also choose

ct at round t (for the same history up to that point).
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Proof. We have already shown that PF satisfies SF, SSMA, P, and NZDA.

It remains to show that f ’s choice of alternative can also be chosen by PF.

First suppose that all agents have rt´1piq ą 0. Without loss of generality, let

rt´1piq “ r for all agents i. We may assume this because, by SF, f and PF would

choose the same alternatives at round t even if the valuation vectors of some agent(s)

were multiplied by a constant across all rounds. Multiplying each agent i’s valuations

by
ś

i1 “i rt´1pi
1q, we obtain an instance in which all agents have the same accrued

utility,
ś

i rt´1piq.

By SSMA, we can replace the agent i with
řm
j“1 u

t
ipa

t
jq agents, such that utipa

t
jq of

them have unit valuation for alternative atj (and 0 valuation for all other alternatives),

all with accrued reward r. Then, by plurality, f chooses ct P arg maxatjPAt

řn
i“1 u

t
ipa

t
jq.

Note that PF assigns equal weight wi to each agent since rt´1piq “ rt´1pi
1q for all

i, i1. Thus PF chooses precisely the alternatives which maximize
řn
i“1 u

t
ipa

t
jq, which

includes any alternative chosen by f .

The more intricate case is when there exists at least one agent with rt´1piq “

0. Since f satisfies NZDA, we know that f never chooses a strictly 0-dominated

alternative and only chooses a weakly 0-dominated alternative if f would still choose

that alternative when U t is modified according to Definition 5. To complete the

proof, we show that PF selects all alternatives that can possibly be chosen by f .

Specifically, we show that PF can choose all alternatives that are not (strictly or

weakly) 0-dominated, as well as any weakly 0-dominated alternative atj˚ that is

chosen by PF for the modified U t. That is, when all alternatives are removed other

than atj˚ and (mixtures of) alternatives that weakly 0-dominate it, and all agents

with rt´1piq “ 0 are removed. This is sufficient since we have shown that PF chooses

every alternative chosen by f when all agents have rt´1piq ą 0 (which is the case

when all agents with rt´1piq “ 0 are removed).
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An alternative atj˚ is either (a) strictly 0-dominated, or (b) weakly 0-dominated

and not chosen by PF when U t is modified according to Definition 5, if and only if

the optimal value of the following LP is negative for arbitrarily large values of H.

Minimize H
ÿ

iPI0

ÿ

atjPA
t

putipa
t
j˚q ´ u

t
ipa

t
jqqzj `

ÿ

iRI0

ÿ

atjPA
t

1

rt´1piq
putipa

t
j˚q ´ u

t
ipa

t
jqqzj

(3.6)

subject to
ÿ

atjPA
t

utipa
t
jqzj ě utipa

t
j˚q @i P I0

ÿ

atjPA
t

zj “ 1

zj ě 0 @j

If atj˚ is strictly dominated then the first term of the objective can be made negative

(and therefore the whole objective can be made negative when H is large enough).

If atj˚ is only weakly dominated, then the first term can be set to 0, and the second

term to be negative when there exists a mixture of alternatives that is chosen by PF

(ahead of atj˚) according to the modified U t. Conversely, if the optimal value of the

objective is negative then either there exist values for tzju such that the first term is

negative (which, combined with the first set of constraints, says that atj˚ is strictly

0-dominated), or there exist values for tzju such that the first term is zero and the

second term is negative. If the second term is negative then the weighted sum of

valuations for the mixed alternative defined by tzju is higher than the weighted sum

of valuations for atj˚ , for the weights defined by PF when restricted to agents i R I0.

This proves correctness of the LP.

We want to show that PF can choose any alternative for which the the optimal

value of LP (3.6) is nonnegative. Let atj˚ be such an alternative. We show that atj˚

can be chosen by PF by considering the dual, which has variables wi for all i P I0

(one for each constraint) and s (corresponding to the constraint on the sum of the
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zj):

Maximize
ÿ

iPI0

utipa
t
j˚qwi ´ s

subject to
ÿ

iPI0

utipa
t
jqwi ´ s ď H

ÿ

iPI0

putipa
t
j˚q ´ u

t
ipa

t
jqq

`
ÿ

iRI0

utipa
t
j˚q ´ u

t
ipa

t
jq

rt´1piq
@j P t1, . . . ,mu

wi ě 0 @i P I0

Let s “
ř

iPI0
utipaj˚qwi´ s denote the objective. The first set of constraints can now

be rewritten as

s`
ÿ

iPI0

pwi `Hquipa
t
jq `

ÿ

iRI0

1

rt´1piq
utipa

t
jq ď

ÿ

iPI0

pwi `Hqu
t
ipa

t
j˚q `

ÿ

iRI0

1

rt´1piq
utipa

t
j˚q.

Since atj˚ is not 0-dominated, the optimal value of LP (3.6) is at least zero for

any arbitrarily large value of H. By strong duality, the optimal value of the dual

is therefore also at least zero for arbitrarily large values of H. Thus, if we set

w1i “ wi ` H for all i P I0 and w1i “
1

rt´1piq
for all i P I0, we have an unbounded

and feasible set of weights for the linear program to choose atj˚ in the definition of

Algorithm 5. Therefore, atj˚ can be chosen by PF. �

3.4 Simulations

We ran the algorithms on data gathered from a power boost allocation problem. In

this problem, n computer applications are each allocated a base level of power, and

compete for k ă n additional (indivisible) units of extra power (power boosts) at

each of m rounds (each application gets at most one boost per round). We obtain

our instance from Apache Spark [168] benchmarks.

Table 3.1 lists the twelve Spark applications in our instance, each of which is

defined by a fixed number of tasks. We profile tasks’ completion time. We take the

72



Table 3.1: Spark applications and categories.

Category Applications
Statistics Correlation

Classification DecisionTree, GradientBoostedTrees,
SVM, LinearRegression, NaiveBayesian

Pattern Mining FP Growth

Clustering KMeans

Collaborative
Filtering ALS

Graph Processing Pagerank, ConnectedComponents,
TriangleCounting

number of tasks completed in a round by an application as that application’s utility.

Thus, for each application x, we estimate the base and boosted power utility (ubase
x,t

and uboost
x,t ) in each round.

In our instance, there are two power boosts to be allocated. So at each round

there are
`

12
2

˘

alternatives, one for each pair of applications. For an alternative atj

corresponding to power boosts for applications x and y, we have that utxpa
t
jq “ uboost

x,t ,

utypa
t
jq “ uboost

y,t , and utzpa
t
jq “ ubase

z,t for all other applications z “ x, y. We have 497

rounds in the instance we tested.

We evaluate the performance of Greedy and PF against the optimal offline so-

lution, and also against an algorithm designed for online stochastic convex program-

ming3 [15] - a class of problems that includes the one we study. To our knowledge this

algorithm is the state of the art for such problems in terms of theoretical guarantees.

We refer to this algorithm as Stochastic. The algorithm works by maximizing a

weighted sum of valuations at each round, where the weights are updated at each

round using online convex optimization techniques. The theoretical guarantees for

Stochastic are in expectation over instances where the order of the input matri-

ces is randomly permuted. In the instance we test, however, the utilities are highly

correlated over time. Applications that would benefit from a power boost in some

round t are more likely to also benefit from a power boost in round t ` 1, because

application phases may span multiple rounds. Due to this and other technical rea-

3 Of course, there are other online scheduling algorithms but they do not pursue Nash welfare as
an objective.
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Figure 3.2: Nash welfare achieved by the algorithms, normalized against OPT
(which has performance 1).

sons, the theoretical guarantees do not apply here. The performance of the three

algorithms is shown in Figure 3.2.

We see that Stochastic performs relatively poorly, while Greedy and PF each

achieve about 80% of the performance of OPT. This motivates us to examine the

difference in performance between Greedy and PF for smaller values of m, as the

difference between these two algorithms is most pronounced while a single decision

has a relatively large effect.

To generate smaller instances, we sample starting rounds from the full set of 497

rounds. For each value of m in Figure 3.3, we randomly generate a starting round

t P r1, 497 ´ms and consider the m rounds starting at t, for 100 random choices of

t. Our measure of performance is NW puavg
m q, allowing for fair comparisons between

different values of m.

We note that PF consistently performs slightly worse than Greedy, which is

consistent with the performance on the full instance. The difference is most pro-

nounced on small values of m, since this is where the two algorithms differ the most.

Performance increases with m, as we would expect, since more rounds allow the

algorithms to choose more flexibly once all applications have positive accrued re-
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Figure 3.3: Nash welfare achieved by Greedy and PF as a function of the number
of rounds.

ward. However, the increase is not monotonic. One explanation for this is because

we throw away any choice of starting round t for which it is impossible to achieve

NW puavg
m q ą 0 (it might be the case that for all m rounds, some application cannot

receive positive utility). Since smaller values of m result in more choices of t being

disqualified, there is a sense in which we are selecting for ‘easier’ instances for smaller

values of m.

3.5 Discussion

Election designers and social choice researchers often do not consider the fact that

many elections do not occur in isolation, but rather are repeated over time. In this

work, we have provided a framework to allow for the design and analysis of dynamic

election protocols, and repeated decision making rules generally. We have presented

two candidate online algorithms for solving these dynamic problems. Our simulations

show that both algorithms perform well, but do not determine that either is clearly

a better choice than the other. While Greedy achieves slightly higher performance,

75



ProportionalFair has the advantage of being justified by the axiomatization given

in this paper.

Note that in neither this chapter nor Chapter 2 have we focused on strategic

concerns. This is an important direction that we consider in Chapter 4, and discuss

in Chapter 8. However, there are also important contexts where strategic concerns

do not come into play. For example, instead of considering a setting where there are

multiple agents that have different utility functions, we can consider a setting where

there are multiple objectives that each alternative contributes towards. For example,

consider faculty hiring. Suppose the three objectives that we want our faculty hires to

contribute to are research, teaching, and service; moreover, suppose that at the time

of hiring we can predict well how much each candidate would contribute to each of

these objectives, if hired. Then, it stands to reason that, one year, we may hire a top

researcher that we do not expect to contribute much to the other objectives. But we

would be loath to make such a decision every year; having hired a few top researchers

who are not good at teaching or service, pressure will mount to address these needs.

This fits well into our framework, if we simply treat each of the three objectives as

an agent that is “happy” with an alternative to the extent to which it addresses

the corresponding objective. In particular, note that the fact that objectives are

measured in incomparable units – for example, we might measure research crudely

by number of top-tier publications, and teaching crudely by course evalation scores

– poses no problem to our methodology, since this methodology can anyway address

agents measuring their utilities in different units.
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4

Private Goods, Online Allocation

4.1 Introduction

So far, we have not considered agents that act strategically for private benefit. In

our general public decisions model, accounting for these concerns is a difficult task

due to the well known free-rider problem: agents with high utility for some popular

alternative can report low utility for that alternative and ‘free-ride’ off its popularity.

In this chapter, we address strategic behavior by considering a less general, pri-

vate good setting. Our motivation comes primarily from sharing computational re-

sources, but the model applies to any setting where a community of agents contribute

resources to a pool that is shared over time. Examples include supercomputers for

scientific computing [115], datacenters for Internet services [36, 157], and clusters

for academic research [12, 70].

In this chapter, we consider a model in which each user owns and operates some

number of identical resources (their endowment). At every time period (round), they

have some resource requirement, which may or may not be met by their endowment

alone. If agents act individually, some will waste unused resources at a given round,
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while others will fail to meet their full demand.

We seek to design centralized allocation mechanisms to rectify this problem. Of

course, if agents were to willingly put their resources under the control of a benev-

olent and omniscient dictator, that dictator could allocate resources to the agents

with highest utility for them. Unfortunately, agents are strategic and their true util-

ities are private information that must be extracted by the mechanism. Strategic

agents act selfishly to pursue their own objectives. Agents will determine whether

misreporting demands can improve their performance even at the expense of others

in the system. For example, an agent is likely to over-report her demand in the

current time period to obtain more resources, unless doing so leads to a reduction in

the resources allocated to her in later periods.

We seek allocation mechanisms that satisfy strategy-proofness (SP), which en-

sures that no agent benefits by misreporting her demand for resources. Incentive

compatiblity is a key feature contributing to efficiency as it allows the mechanism

to optimize performance according to agents’ true utilities. Without SP, agents’ re-

ports may not represent their true utility and allocating based on reported demands

may not produce any meaningful performance guarantee. Moreover, strategy-proof

mechanisms reduce the cognitive load on agents by eliminating the need to optimally

construct resource demands or preemptively respond to misreports by other agents

in the system.

Strategy-proofness is complemented by sharing incentives (SI), which ensures

that agents perform at least as well as they would have by not participating in the

allocation mechanism (i.e., using their own resources as a smaller, private system).

With sharing incentives, agents willingly share their resources and manage them

according to the commonly agreed upon policy. Without sharing incentives, we need

to be able to either force agents to cooperate, or be content with the possibility that

rational agents will choose not to participate in the mechanism.
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In this chapter, we consider agents who derive high utility per unit of resource

up until some amount of resource allocation (i.e., their demand) and derive low

utility beyond that allocation. The high-low formulation is appropriate for varied

resources such as processor cores, cache and memory capacity, or virtual machines

in a datacenter. For example, an agent could derive high utility when additional

processors permit her to dequeue more tasks from a highly critical job. Once the job’s

queue is empty, she derives low utility from using additional processors to replicate

tasks, which guards against stragglers or failures. In another example, an agent that

is allocated more power can turn on more processors, each of which provides high

utility from task parallelism. Once the agent exhausts her job’s parallelism, it can

use additional power to boost processor voltage and frequency for lower, non-zero

utility.

We propose allocation mechanisms for dynamic proportional sharing to address

limitations in existing approaches. We begin by proving that policies used in state-

of-the-art schedulers [11, 10, 13] fail to satisfy SP or SI. We then propose two alter-

native mechanisms. First, as our main contribution, we propose the flexible lending

mechanism to satisfy SP, guarantee at least 50% of SI performance, and provide an

asymptotic efficiency guarantee. The mechanism uses tokens to enable these theo-

retical guarantees. In practice, our simulations show that performance is comparable

to that of state-of-the-art mechanisms and achieves 98% of SI performance, much

better than the lower bound. Second, for situations where SI is a hard constraint,

we propose the T -Period mechanism to satisfy SP and SI while still outperforming

static allocations.

4.2 Preliminaries

Although the setting considered in this chapter is captured by the general public

decisions model of Chapters 2 and 3, it is more conveniently represented by a more

79



Allocation (ai,r)

U
ti

li
ty

 (
u i
,r
)

Demand (di,r)H

L

Figure 4.1: A user derives high utility from resources up to her demand and derives
low utility from resources beyond her demand.

compact model. Therefore, we introduce a new set of notation for this chapter.

Consider a dynamic system with n agents and R discrete rounds. Agent i con-

tributes ei ą 0 units of a resource at each round, which we refer to as her endowment.

In other words, ei is agent i’s contribution to the federated system, which does not

vary over time. Let rns “ t1, . . . , nu and E “
ř

iPrns ei denote the total number of

units to be allocated at each round. At round r, agent i has a true demand of di,r ě 0

units and reports a demand of d1i,r ě 0. Let d1i “ pd
1
i,1, . . . , d

1
i,Rq denote the vector of

agent i’s reports, and d1´i denote the reports of all agents other than i.

A dynamic allocation mechanism M assigns each agent an allocation aMi,rpd
1
i,d

1
´iq

using only information from the first r entries in the demand vectors. We will often

write simply ai,r when the exact mechanism and the demands are clear from context.

Let aM
i pd

1
i,d

1
´iq, often simply ai, denote the vector of agent i’s allocations. Agents

have high (H) utility per resource up to their demand, and low (L) utility per resource

that exceeds their demand. Formally, the utility of agent i at round r for ai,r units

is denoted by ui,rpai,rq and modeled as the following.

ui,rpai,rq “

#

ai,rH if ai,r ď di,r,

di,rH ` pai,r ´ di,rqL if ai,r ą di,r.

Figure 4.1 shows ui,r for user i with demand di,r at round r. For simplicity, we

assume H and L are the same for all agents, but all our results extend to the case
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where agents have different values of H and L (with the exception of §4.5.5).

While resources and demands are discrete, we allow the allocations ai,r to be

real-valued. Real-valued allocations can be thought of as probabilistic—the realized

allocation is a random allocation where agent i is allocated ai,r resources in expecta-

tion, which is always possible as a result of the Birkhoff-von Neumann theorem [33].

Agent i’s overall utility after R rounds for allocation ai is calculated additively as

follows.

Ui,Rpaiq “

R
ÿ

r“1

ui,rpai,rq.

We do not consider discounting for simplicity of presentation, but our mechanisms

readily extend to the case where agents discount their utilities over time.

In this paper, we focus on three main properties: strategy-proofness, sharing

incentives, and efficiency. First, strategy-proofness says that agents never benefit

from lying about their demands. In other words, agent i’s utility decreases if she

reports d1i ‰ di.

Definition 6. Mechanism M satisfies strategy-proofness (SP) if

Ui,Rpa
M
i pdi,d

1
´iqq ě Ui,Rpa

M
i pd

1
i,d

1
´iqq @i, @R, @di, @d

1
i, and @d1´i.

Next, sharing incentives says that by participating in the mechanism, agents

receive at least the utility they would have received by not participating.

Definition 7. Mechanism M satisfies sharing incentives (SI) if

Ui,Rpa
M
i pdi,d

1
´iqq ě Ui,Rpeiq @i, @R, @di, and @d1´i.

We also define a relaxed notion of α-sharing incentives, which says that every agent

gets at least an α fraction of the utility that she would have received without taking

part in the mechanism. Note that 1-SI is equivalent to SI.
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Definition 8. Mechanism M satisfies α-SI if

Ui,Rpa
M
i pdi,d

1
´iqq ě α Ui,Rpeiq @i, @R, @di, and @d1´i.

Finally, efficiency says that all resources should be allocated, and an agent with

L valuation should never receive a resource while there are agents with H valuation

for that resource.

Definition 9. Mechanism M satisfies efficiency if

ÿ

iPrns

aMi,r “ E,

and if aMi,r ą d1i,r for some agent i and round r, then aMj,r ě d1j,r for all agents.

Note that efficiency is relative to the agents’ reports, not their actual valuations,

which are hidden from the mechanism. Therefore, in situations where agents lie

about their valuations, it is possible that even an efficient mechanism allocates a unit

inefficiently with respect to the actual valuations. With this in mind, there is little

value in a mechanism that is efficient but not SP. Similarly, if a mechanism does not

satisfy SI, then agents may not want to participate in it. So an efficient mechanism

that does not satisfy SI may not actually exhibit efficiency gains in practice because

agents choose not to participate. In some contexts, SI may not be of concern because

agents are forced to participate or are willing to risk participation if gains are likely

large and losses are likely small.

For readability, some proofs are omitted and appear in the appendix.

4.3 Existing Mechanisms

In this section, we focus on the (weighted) max-min fairness policy, which is one of the

most widely used policies in computing systems. It is deployed in many state-of-the-

art datacenter schedulers such as the Hadoop Fair Scheduler [11], Hadoop Capacity
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Scheduler [10] and Spark Dynamic Allocator [13]. And it has been extensively studied

in the literature [89, 91, 149].

A dynamic allocation mechanism could deploy the max-min policy for two differ-

ent objectives: maximizing the minimum accumulated allocations up to a round, or

maximizing the minimum allocation at each round, independently of previous rounds.

We call the first mechanism Dynamic Max-Min (DMM) and the second mechanism

Static Max-Min (SMM). First, at each round r, DMM selects the allocation that

maximizes mini
řr
r1“1 ai,r1{ei, the minimum weighted cumulative allocation; subject

to this, it maximizes the second lowest weighted cumulative allocation, and so on.

This maximization is subject to the constraint that no resource is allocated to an

agent with low valuation as long as there are agents with high valuation.

Second, at each round r, SMM selects the allocation that maximizes mini ai,r{ei,

the minimum weighted allocation at that round; subject to this, it maximizes the

second lowest weighted allocation, and so on. This maximization is also subject to

the constraint that no resource is allocated to an agent with low valuation as long as

there are agents with high valuation. Under SMM, agents are guaranteed to receive

their demands as long as they are less than or equal to their endowment. Agents

with demands higher than their endowments receive extra resources from agents

with demands lower than their endowments. Unlike DMM, SMM allocates resources

locally at round r, regardless of agents’ allocations prior to round r.

In the rest of this section, we study properties of these two mechanisms. In

particular, we focus on three properties: strategy-proofness, sharing incentives, and

efficiency. We examine whether the existing mechanisms satisfy these properties for

the special case when L “ 0 and for the general case when L ą 0.
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4.3.1 Properties of Mechanisms for L “ 0

When L “ 0, one might think that agents do not have any incentive to misreport

their demands. However, we show that DMM fails to satisfy SI and SP.

Theorem 21. Dynamic max-min mechanism violates sharing incentives, even when

L “ 0.

Proof. Suppose that R “ 10 and there are three agents, each with ei “ 3. For

all rounds r ‰ 10, the demands are d1,r “ 1, d2,r “ 2, and d3,r “ 6. For rounds

r “ 1, . . . , 9, each agent is allocated exactly her demand. After round 9, utilities for

agents 1, 2 and 3 are 9H, 18H and 54H, respectively. At round 10, demands are

d1,10 “ 9, d2,10 “ 9, and d3,10 “ 6. DMM allocates all 9 units to agent 1, which

maximizes the minimum weighted cumulative allocation. Consider agent 2. Under

DMM, agent 2’s allocation is a2,r “ 2 for all r ‰ 10 and a2,10 “ 0. If she had not

participated in the mechanism, then she would have obtained the same utility in

each round r ‰ 10, but a strictly higher utility in round r “ 10. �

Theorem 22. Dynamic max-min mechanism violates strategy-proofness, even when

L “ 0 [17].

Proof. Consider three agents with equal endowments m1 “ m2 “ m3 “ 1 sharing

three units of a resource for three rounds. The demand of agent 1 is 3 for all three

rounds. Agent 2’s demand is 3 for rounds 1 and 3 and 0 for round 2. And agent 3

has a demand of 3 for round 2 and 0 for rounds 1 and 3. Agent 1 achieves utility of

3.375H by truthful reporting. If agent 1 misreports 0 for round 1, her utility would

increase to 3.75H. �

Since DMM does not satisfy SP, it cannot guarantee any meaningful notion of

efficiency, as explained in §4.2. Next, we show that SMM satisfies SI, SP, and effi-

ciency.
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Theorem 23. Static max-min mechanism satisfies strategy-proofness, sharing in-

centives, and efficiency when L “ 0.

Proof. We start by proving that SMM satisfies SP. Under SMM, allocations at round

r are independent of allocations at previous rounds. Suppose that agent i reports

d1i,r ‰ di,r at round r. Let a1i,r and ai,r denote i’s allocations at round r for reporting

d1i,r and di,r, respectively. If ai,r ě di,r, then i already receives her highest possible

utility, di,rH (because L “ 0), and she cannot benefit from misreporting.

If ai,r ă di,r, then for all j ‰ i, we have: (1) aj,r ď dj,r and (2) ai,r{ei ě aj,r{ej.

The former holds by SMM’s definition. The latter holds because SMM maximizes

the minimum weighted allocations in a lexicographical order. If there is j with

aj,r{ej ą ai,r{ei, then SMM should decrease aj,r and increase ai,r. Now, suppose for

contradiction that a1i,r ą ai,r. Since
ř

k a
1
k,r “

ř

k ak,r, there should be an agent `

with a1`,r ă a`,r ď d`,r. Therefore, we have:

a1`,r{e` ă a`,r{e` ď ai,r{ei ă a1i,r{ei.

This is a contradiction because SMM could improve its objective value by decreasing

a1i,r and increasing a1`,r.

To see that SMM satisfies SI, note that an agent can guarantee herself at least

ei resources (her utility from not participating) at each round by reporting d1i,r “ ei

for all r. By SP, truthful reporting achieves at least this utility. Therefore, truthful

reporting achieves at least as much utility as not participating in SMM, which proves

SI. Finally, SMM satisfies efficiency by definition, since it either completely fulfills

all demands or allocates all resources to agents that value them highly. �

4.3.2 Properties of Mechanisms for L ą 0

We now consider the general setting where an agent’s low valuation is still positive.

Unfortunately, SMM no longer retains its properties from the L “ 0 case. Agents
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are no longer indifferent to forsaking low-valued resources and may lie in order to

receive them.

Theorem 24. When L ą 0, static max-min mechanism violates strategy-proofness

and sharing incentives.

Proof. Consider an instance with 2 agents, each with endowment ei “ 1, and a

single round. Agent 1 has demand 2 and agent 2 has demand 0. SMM allocates both

resources to agent 1 and nothing to agent 2. However, had agent 2 not participated

in the mechanism, she would have received one resource and utility L ą 0. Similarly,

had she misreported her demand to be 1, she would have received one resource and

utility L ą 0. �

Indeed, in this general setting, no mechanism can simultaneously satisfy efficiency

and either of the two other desired properties.

Theorem 25. When L ą 0, there is no dynamic mechanism that satisfies α-sharing

incentives and efficiency, for any α ą 0.

Proof. Consider an instance with two agents, each with endowment ei “ 1, and a

single round. Agent 1 has demand 2 and agent 2 has demand 0. Efficiency dictates

that we allocate both resources to agent 1, which would violate α-SI for agent 2 for

any α ą 0. �

Theorem 26. When L ą 0, there is no dynamic mechanism that satisfies strategy-

proofness and efficiency.

Proof. Consider an instance with two agents, each with endowment ei “ 1, and

a single round. Both agents have demand 0. For efficiency, the mechanism must

allocate all the resources so that at least one agent receives ai,1 ą 0. Supposing

without loss of generality that a1,1 ą 0, then a2,1 ă 2. If agent 2 misreports d12,1 “ 2,
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by efficiency, the mechanism must allocate both resources to agent 2, which is an

improvement over her utility from reporting truthfully. �

Note that SP and SI are compatible. A mechanism that statically allocates

agents their endowments satisfies SP and SI; agents have no incentive to misreport

because allocations do not depend on reports and agents receive their fair share of

resources. This mechanism clearly fails to satisfy efficiency and does not extract

any benefit from sharing. In §4.5, we propose a mechanism that satisfies strategy-

proofness, guarantees each user at least 50% of their utilities from sharing incentives,

and provides an asymptotic efficiency guarantee.

4.4 Proportional Sharing With Constraints Procedure

The mechanisms we present in the remainder of this paper have, at their core, a

procedure we call Proportional Sharing With Constraints (PSWC). The procedure

allocates some amount of resources among agents proportionally to their (exogenous)

weights subject to (agent-dependent) minimum and limit constraints: (1) each agent

receives at least her minimum allocation, and (2) each agent should receives no more

than her limit allocation.

Formally, PSWC takes as input an amount to allocateA, weights w “ pw1, . . . , wnq,

minimum allocations m “ pm1, . . . ,mnq, and limit allocations l “ pl1, . . . , lnq. PSWC

outputs a vector of allocations a “ pa1, . . . , anq defined as the solution to the follow-

ing program.
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Figure 4.2: There are six agents with equal weights. The allocations are represented
by the height of the corresponding blue vertical bar. The allocations can be thought
of as the ‘most equal’ allocations, subject to no agent receiving less than her minimum
constraint or more than her maximum.

Minimize x,

s.t. ai{wi ď x if mi ă ai ď li,

ai ď li @i,

ai ě mi @i,

ÿ

iPrns

ai “ A.

PSWC is illustrated in Figure 4.2. The program can be solved in Opn logpnqq time

by the Divvy algorithm [98]. The Divvy algorithm proceeds by sorting the limit and

minimum allocation bounds in Opn logpnqq time, and then conducting a linear time

search for the optimal value of x by increasing the allocations in discrete steps until

all resources have been allocated.

The following lemma characterizes the allocations produced by the PSWC pro-

cedure and will be useful in our later proofs.

Lemma 27. Under PSWC, for every agent i, ai “ maxpmi,minpli, xwiqq.

Proof. First, we show that if mi ă xwi, then ai “ minpli, xwiq. If ai ą minpli, xwiq,

then at least one constraint is violated. If ai ă minpli, xwiq, then there exists at least

one agent ` such that a` “ xw` because otherwise, x is not optimal. In this case, ai

88



can be increased while a` for all ` with a` “ xw` decreases. This allows for a smaller

value of x, which contradicts the optimality of x. Next, we show that if mi ě xwi,

then ai “ mi. Since ai cannot be less than mi, if ai is not equal to mi, then ai ą mi,

which means ai ą xwi. However, since ai ą mi, the first constraint dictates that

ai ď xwi, a contradiction. Combining these two cases gives the desired result. �

Our proposed mechanisms all have similar structure. First, agents always receive

exactly the same number of resources that they contribute to the system (over the

entire R rounds). This is a fairness primitive in its own right, but is primarily a

design feature that helps us provide desirable properties. Second, all our proposed

dynamic mechanisms call the PSWC procedure to allocate resources at each round.

Our mechanisms are determined primarily by how we set the minimum and maximum

constraints.

4.5 Flexible Lending Mechanism

We now turn to designing mechanisms that satisfy our game-theoretic desiderata

while increasing efficiency significantly over static allocation. The static allocation

mechanism satisfies both SP and SI, but it does not exhibit any gains from shar-

ing. DMM and SMM sacrifice SP and SI in exchange for efficiency. However, in

the absence of SP, any guarantee on efficiency based on agents’ demands is not

meaningful as agents have incentives to misreport their demands when L ą 0. In

this section, we present the flexible lending (FL) mechanism. The flexible lending

mechanism achieves strategy-proofness and an asymptotic efficiency guarantee. FL

satisfies a theoretical 0.5 approximation to SI and our simulation results show that

it significantly outperforms this bound in practice (see §4.7).
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4.5.1 Definition

For a fixed number of rounds R, FL allocates exactly Rei resources to each agent

i, which is exactly her contribution to the shared pool over all R rounds. The

mechanism enforces this constraint by simply removing agent i from the list of eligible

agents once she receives Rei resources in total. We keep track of the resources each

agent has received with a running token count ti, effectively ‘charging’ each agent a

token for every resource she receives. We denote by ti,r the number of tokens that

agent i holds at the start of round r. Thus, the number of tokens that an agent holds

puts a hard limit on the number of resources she can receive at any given round.

Algorithm 6 presents the flexible lending mechanism. We define d̄i to be the

allocatable demand of agent i at each round, which is simply the minimum of her

reported demand d1i,r and the number of tokens she has remaining ti. We distinguish

between two cases depending on whether the total allocatable demand is higher or

lower than the total supply of resources.

First, if the total allocatable demand is at least as high as the total supply, then

FL runs PSWC with the minimum allocation for each agent set to 0, and the limit

allocation set to d̄i. This way, resources are allocated proportionally among all agents

that want them. Second, if the total allocatable demand is less than the total supply,

then agents receive their full allocatable demand. Therefore, FL runs PSWC with

minimum allocation for each agent i set to d̄i, and limit allocations set to her number

of tokens ti (which is always at least as large as her allocatable demand). This way,

FL allocates resources proportionally among all agents, subject to the condition that

no agent receives fewer resources than her demand.

We illustrate FL with an example.

Example 6. Consider a system with three agents and four rounds. Each agent has

endowment ei “ 1. Suppose that agents’ (truthful) reports are given by the following
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ALGORITHM 6: Flexible Lending Mechanism

1 t “ Re; /* Initialize token count */

2 for r P t1, . . . , Ru do
3 d̄Ð minpd1¨,r, tq; /* d̄i is i’s allocatable demand */

4 D Ð
ř

iPrns d̄i;

5 if D ě E then
6 a¨,r Ð PSWCpA “ E, l “ d̄,m “ 0,w “ eq;

7 else
8 a¨,r Ð PSWCpA “ E, l “ t,m “ d̄,w “ eq;

9 end

10 tÐ t´ a¨,r;

11 end

table:

di,1 di,2 di,3 di,4
i “ 1 3 1 1 0
i “ 2 0 2 1 2
i “ 3 0 0 0 4

FL allocations are given by the following table:

aFLi,1 aFLi,2 aFLi,3 aFLi,4
i “ 1 3 1 0 0
i “ 2 0 2 1.5 0.5
i “ 3 0 0 1.5 2.5

While all agents have tokens remaining, FL efficiently allocates resources. However,

in round 3, agent 1 has no tokens remaining and therefore the supply of resources

exceeds the allocatable demand. In this case, resources are evenly divided between

agents 2 and 3. In the final round, agent 2 can receive only 0.5 resources before

running out of tokens, so the rest of the resources are allocated to agent 3.

4.5.2 Basic Properties

Next, we study the properties of FL. We first show that FL satisfies strategy-

proofness. We then show that FL guarantees at least 50% of SI performance. And

finally we show that FL provides an asymptotic efficiency guarantee. Throughout
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this section, we extensively use the following lemma which characterizes FL alloca-

tions.

Lemma 28. Let x denote the objective value of FL’s call to PSWC at round r. If

D ě E, then ai,r “ minpxei, di,r, ti,rq. If D ă E, then ai,r “ minpti,r,maxpdi,r, xeiqq.

Proof. Suppose first that D ě E. Substituting the relevant terms into Lemma 27,

we have

ai,r “ maxp0,minpminpdi,r, ti,rq, xeiqq “ minpxei, di,r, ti,rq.

If instead D ă E, then again substituting into Lemma 27 gives

ai,r “ maxpminpdi,r, ti,rq,minpti,r, xeiqq “ minpti,r,maxpdi,r, xeiqq.

The final equality, maxpminpA,Bq,minpA,Cqq “ minpA,maxpB,Cqq can easily be

checked to hold case by case for any relative ordering of A, B, and C. �

We next prove a basic monotonicity result, which states that if we shift some

tokens to a single agent from all other agents, then the agent with more tokens

achieves a (weakly) higher allocation. The proof follows easily from Lemma 28 and

is deferred to the Appendix.

Lemma 29. Consider some agent i, and suppose that t1i,r ě ti,r, t
1
j,r ď tj,r for all

j ‰ i, and d1k,r “ dk,r for all k P rns. Then a1i,r ě ai,r.

As our main technical result, we show in the following subsection that FL is

strategy-proof. At a high level, we show that if an agent receives fewer high-valued

resources as a result of misreporting, then her allocations in all future rounds are

weakly higher. This means that she cannot receive fewer low-valued resources at any

future round, relative to her allocations had she not misreported. Therefore, because

the total number of resources allocated to each agent is fixed (by the initial token

count), her misreport can only result in trading high-valued resources at an early

round for other, potentially low-valued, resources at later rounds.
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4.5.3 Strategy-Proofness

Suppose agent i reports demands that are not equal to her true demands. Let r1 be

the latest round for which i misreports. That is, r1 “ maxtr : d1i,r ‰ di,ru. Suppose

that d1i,r1 ă di,r1 . We show that, all else being equal, i could (weakly) improve her

utility by instead reporting d1i,r1 “ di,r1 . The proof that reporting d1i,r1 ą di,r1 is also

(weakly) worse than reporting d1i,r1 “ di,r1 is almost identical and can be found in

Appendix B.2. It follows from this that FL is strategy-proof, since any non-truthful

reports can be converted to truthful reports one round at a time, (weakly) improving

i’s utility.

We consider parallel universes: one in which agent i misreports d1i,r1 at round r1

(the ‘misreported instance’) and one in which she truthfully reports di,r (the ‘truthful

instance,’ even though i’s reports prior to r1 may yet be non-truthful). All other

reports are identical in both universes. We denote allocations and tokens in the

misreported instance using a1 and t1, respectively, and in the truthful instance by a

and t. We denote by Dr and D1r the total demand D at round r in the truthful and

misreported instances, respectively.

We first note that for all rounds prior to r1, the allocations in the truthful and

misreported instances are the same.

Lemma 30. For all rounds r ă r1 and for all agents j, a1j,r “ aj,r.

Proof. The mechanism does not take future reports into account, so because agents’

demands in both instances are identical up to round r1, so are the allocations. �

We next show a monotonicity lemma, which says that agent i’s allocation at

round r1 is (weakly) smaller in the misreported instance than the truthful instance,

and all other agents’ allocations are (weakly) larger.

Lemma 31. For all agents j ‰ i, we have that a1j,r1 ě aj,r1. Further, a1i,r1 ď ai,r1.
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Proof. We prove the statement for all j ‰ i. The statement for i follows immediately

because the total number of allocated resources is fixed. Observe first that

D1r1 “
ÿ

kPrns

minpd1k,r1 , tk,r1q ď
ÿ

kPrns

minpdk,r1 , tk,r1q “ Dr1 ,

since i’s demand decreases in the misreported instances but all other demands and

token counts stay the same. Let x1 denote the objective value in FL’s call to PSWC

in the misreported instance, and x in the truthful instance.

Suppose that E ď D1r1 ď Dr1 . Suppose first that x1 ą x. Then, by Lemma 28, for

all j ‰ i, we have

a1j,r1 “ minpx1ej, dj,r1 , tj,r1q ě minpxej, dj,r1 , tj,r1q “ aj,r1 .

Next, suppose that x1 ď x. Then, again by Lemma 28 and the fact that d1i,r1 ă di,r1 ,

a1i,r1 “ minpx1ei, d
1
i,r1 , ti,r1q ď minpxei, di,r1 , ti,r1q “ ai,r1 .

And, for all j ‰ i,

a1j,r1 “ minpx1ej, dj,r1 , tj,r1q ď minpxej, dj,r1 , tj,r1q “ aj,r1 .

Because a1k,r1 ď ak,r1 for all agents k, and
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 , it must be the

case that a1k,r1 “ ak,r1 for all k, which satisfies the statement of the lemma.

Next, suppose that D1r1 ă E ď Dr1 . By the definition of FL, a1k,r1 ě minpd1k,r1 , tk,r1q

for all k, and ak,r1 ď minpdk,r1 , tk,r1q for all k. Since minpd1j,r1 , tj,r1q “ minpdj,r1 , tj,r1q

for all j ‰ i, we have that a1j,r1 ě aj,r1 , implying also that a1i,r1 ď ai,r1 .

Finally, suppose that D1r1 ď Dr1 ă E. Suppose first that x1 ď x. Then, by Lemma

28 and the assumption that d1i,r1 ă di,r1 , we have

a1i,r1 “ minpti,r1 ,maxpx1ei, d
1
i,r1qq ď minpti,r1 ,maxpxei, di,r1qq “ ai,r1

and

a1j,r1 “ minptj,r1 ,maxpx1ej, dj,r1qq ď minptj,r1 ,maxpxej, dj,r1qq “ aj,r1
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for all j ‰ i. Because a1k,r1 ď ak,r1 for all agents k, and
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 , it

must be the case that a1k,r1 “ ak,r1 for all k, which satisfies the lemma’s statement.

Next, suppose that x1 ą x. Then, again by Lemma 28, for all j ‰ i, we have

a1j,r1 “ minptj,r1 ,maxpx1ej, dj,r1qq ě minptj,r1 ,maxpxej, dj,r1qq “ aj,r1 .

�

If it is the case that a1i,r1 “ ai,r1 , then it must also be the case that a1j,r1 “ aj,r1 for

all j ‰ i. That is, allocations at round r1 are the same in the misreported instance as

the truthful instance. Therefore, for all rounds r ď r1, allocations in both universes

would be the same. In all rounds r ą r1, reports in both universes are the same.

Together, these imply that allocations for all rounds r ą r1 would be the same in

both universes. In particular, i does not profit from her misreport and could weakly

improve her utility by reporting d1i,r1 “ di,r1 . So, for the remainder of this section, we

assume that a1i,r1 ă ai,r1 .

Our next lemma states that the resources that i sacrifices in round r1 are high-

valued resources for her. The intuition is that if it were the case that i was being

forced to receive low-valued resources under truthful reporting, then she will still be

forced to receive the same number of resources when she under-reports her demand

(since there is no agent with excess demand to absorb extra resources).

Lemma 32. If a1i,r1 ă ai,r1, then ai,r1 ď di,r1.

Proof. Suppose for contradiction that ai,r1 ą di,r1 . It must therefore be the case that

D1r1 ď Dr1 ă E, where the first inequality holds because d1j,r1 “ dj,r1 for all j ‰ i and

d1i,r1 ă di,r1 . Let x denote the objective value of FL’s call to PSWC in the truthful

instance, and x1 in the misreported instance. Suppose that x1 ď x. Then, by Lemma

28 and the assumption that d1i,r1 ă di,r1 ,

a1i,r1 “ minpti,r1 ,maxpx1ei, d
1
i,r1qq ď minpti,r1 ,maxpxei, di,r1qq “ ai,r1 ,
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and for all j ‰ i,

a1j,r1 “ minptj,r1 ,maxpx1ej, dj,r1qq ď minptj,r1 ,maxpxej, dj,r1qq “ aj,r1 .

Because a1k,r1 ď ak,r1 for all agents k, and
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 , it must be the

case that a1k,r1 “ ak,r1 for all k. This contradicts the assumption that a1i,r1 ă ai,r1 .

Now suppose that x1 ą x. Note that xei ą di,r1 ą d1i,r1 , where the first inequality

holds because ai,r1 ą di,r1 . Then, again by Lemma 28 and the previous observation,

we have

a1i,r1 “ minpti,r1 ,maxpx1ei, d
1
i,r1qq “ minpti,r1 , x

1eiq

ě minpti,r1 , xeiq “ minpti,r1 ,maxpxei, di,r1qq “ ai,r1 ,

which contradicts a1i,r ă ai,r. Since we arrive at a contradiction in all cases, the

lemma statement must be true. �

As a corollary, we can write the difference in utility between the truthful and

misreported instances that i derives from round r1.

Corollary 33. ui,r1pai,r1q ´ ui,r1pa
1
i,r1q “ Hpai,r1 ´ a

1
i,r1q.

Proof. Because a1i,r1 ă ai,r1 ď di,r1 , we can substitute the utility values from Equation

(4.2):

ui,r1pai,r1q ´ ui,r1pa
1
i,r1q “ ai,r1H ´ a

1
i,r1H “ Hpai,r1 ´ a

1
i,r1q.

�

For a fixed agent k, denote by rk the round at which agent k runs out of tokens

in the truthful instance. That is, rk is the first (and only) round with ark “ tk,rk ą 0.

Note that ri ě r1, since ai,r1 ą 0. Given this, our next lemma states that, under

certain conditions, the effect of i’s misreport, d1i,r ă di,r, is to increase the objective

value of FL’s call to PSWC.
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Lemma 34. Let r ă ri (i.e., ai,r ă ti,r). Suppose t1j,r ď tj,r for all agents j ‰ i.

Suppose that either minpDr, D
1
rq ě E or maxpDr, D

1
rq ă E. Then x1 ě x, where x1

denotes the objective value of FL’s call to PSWC in the misreported instance and x

in the truthful instance.

Proof. First, suppose that minpDr, D
1
rq ě E. Suppose for contradiction that x1 ă x.

By Lemma 28, for all j ‰ i,

a1j,r “ minpx1ej, dj,r, t
1
j,rq ď minpxej, dj,r, tj,rq “ aj,r,

where the inequality follows from the assumption that x1 ă x and that t1j,r ď tj,r.

Further,

a1i,r “ minpx1ei, di,r, t
1
i,rq ď minpx1ei, di,rq ď minpxei, di,rq “ minpxei, di,r, ti,rq “ ai,r,

where the second inequality follows from the assumption that x1 ă x, and the second

to the last equality follows from the assumption that ai,r ă ti,r. Therefore, a1k,r ď ak,r

for all agents k. Since
ř

a1k,r “
ř

ak,r, it must be the case that a1k,r “ ak,r for all

agents k. Now, by the definition of FL in this case, ak,r{ek ď x1 ă x for all agents

k with ak,r ą 0. Therefore x is not the optimal objective value of PSWC in the

truthful instance, a contradiction. Thus, x1 ě x.

Next, suppose that maxpDr, D
1
rq ă E. Suppose for contradiction that x1 ă x. By

Lemma 28,

a1j,r “ minpt1j,r,maxpx1ej, dj,rqq ď minptj,r,maxpxej, dj,rqq “ aj,r,

for all j ‰ i, where the inequality follows from the assumption that x1 ă x and that

t1j,r ď tj,r. Further, we have

a1i,r “ minpt1i,r,maxpx1ei, di,rqq ď maxpx1ei, di,rq

ď maxpxei, di,rq “ minpti,r,maxpxei, di,rqq “ ai,r,
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where the second inequality follows from the assumption that x1 ă x and the second

to last equality from the assumption ai,r ă ti,r. Therefore, a1k,r ď ak,r for all agents k.

Since
ř

a1k,r “
ř

ak,r, it must be the case that a1k,r “ ak,r for all agents k. Consider

all agents with minpdk,r, tk,rq ă ak,r (i.e., those agents for which the first constraint

in the PSWC program binds in the truthful instance). For all such agents, we have

minpdk,r, tk,rq ă ak,r

ùñ dk,r ă ak,r ď tk,r

ùñ dk,r ă a1k,r ď t1k,r

ùñ minpdk,r, t
1
k,rq ă a1k,r,

which implies that the constraints bind in the misreported instance as well. There-

fore, a1k,r{ek ď x1 ă x for all agents k for which the first constraint binds in the

truthful instance. Therefore x is not the optimal objective value of the PSWC pro-

gram in the truthful instance, a contradiction. Thus, x1 ě x. �

Using Lemma 34, we show our main lemma. This lemma allows us to make an

inductive argument that, after giving up some resources in round r1, i’s allocation is

(weakly) larger for all future rounds in the misreported instance than the truthful

instance.

Lemma 35. Let r1 ă r ă ri (i.e., ai,r ă ti,r). Suppose that t1j,r ď tj,r for all agents

j ‰ i. Then for all j ‰ i, either: (1) a1j,r “ t1j,r, or (2) a1j,r ě aj,r.

Proof. Note that t1j,r ď tj,r for all j ‰ i implies that t1i,r ě ti,r, which we use in

the proof. Also, because r ą r1, we know that d1i,r “ di,r, as r1 is the last round

for which d1i,r ‰ di,r. We assume that condition (1) from the lemma statement is

false (i.e., a1j,r ă t1j,r) and show that condition (2) must hold. Suppose first that

Dr ă E. Then, because ai,r ă ti,r, we know that di,r ď ti,r ď t1i,r. This implies

that minpdi,r, ti,rq “ minpdi,r, t
1
i,rq “ di,r. Let j ‰ i. Since t1j,r ď tj,r, we have
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minpdj,r, t
1
j,rq ď minpdj,r, tj,rq. Therefore, it is the case thatD1r ď Dr ă E. By Lemma

28 and the assumption that a1j,r ă t1j,r, it must be the case that a1j,r “ maxpdj,r, x
1ejq.

Further, by Lemma 34, we know that x1 ě x. Therefore, we have

aj,r “ maxpdj,r, xejq ď maxpdj,r, x
1ejq “ a1j,r.

That is, condition (2) from the lemma statement holds.

Now suppose that Dr ě E. Then, from the definition of the mechanism, we have

that aj,r ď minpdj,r, tj,rq ď dj,r. If it is the case that D1r ă E, then we have that

a1j,r ě minpdj,r, t
1
j,rq “ dj,r, where the equality holds because otherwise we would have

a1j,r ě t1j,r, violating the assumption that a1j,r ă t1j,r. Using these inequalities, we have

a1j,r ě dj,r ě aj,r, so condition (2) from the statement of the lemma holds. Finally, it

may be the case that Dr ě E and D1r ě E. By Lemma 28 and the assumption that

a1j,r ă t1j,r, we have

a1j,r “ minpdj,r, x
1ekq ě minpdj,r, xekq “ aj,r,

where the inequality follows from Lemma 34. Thus, condition (2) of the lemma

statement holds. �

Finally, we prove that the flexible lending mechanism is strategy-proof. This

proof establishes that misreporting d1i,r is never beneficial for an agent.

Theorem 36. The flexible lending mechanism satisfies SP.

Proof. We first observe that for every r ď ri, t
1
j,r ď tj,r for every j ‰ i. This is true

for every r ď r1 because a1j,r “ aj,r for r ă r1, by Lemma 30. For r “ r1 ` 1, it

follows from Lemma 31, which says that a1j,r1 ě aj,r1 . For all subsequent rounds, up

to and including r “ ri, it follows inductively from Lemma 35: t1j,r ď tj,r implies

that either a1j,r “ t1j,r, in which case t1j,r`1 “ 0 ď tj,r`1, or a1j,r ě aj,r, in which case

t1j,r`1 “ t1j,r ´ a
1
j,r ď tj,r ´ aj,r “ tj,r`1).
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Consider an arbitrary round r ‰ r1, with r ď ri. By the above argument, we

know that t1j,r ď tj,r for all j ‰ i. Further, because reports in the truthful and

misreported instances are identical on all rounds r ‰ r1, we have that dk,r “ d1k,r for

all k P rns. Therefore, by Lemma 29, a1i,r ě ai,r. For rounds r ą ri, it is also true

that a1i,r ě ai,r, since ai,r “ 0 for these rounds by the definition of ri. Finally,

Ui,Rpaiq ´ Ui,Rpa
1
iq “

R
ÿ

r“1

pui,rpai,rq ´ ui,rpa
1
i,rqq

“ pui,r1pai,r1q ´ ui,r1pa
1
i,r1qq `

ÿ

r‰r1

pui,rpai,rq ´ ui,rpa
1
i,rqq

“ Hpai,r1 ´ a
1
i,r1q ´

ÿ

r‰r1

pui,rpa
1
i,rq ´ ui,rpai,rqq

ě Hpai,r1 ´ a
1
i,r1q ´Hpai,r1 ´ a

1
i,r1q “ 0

Here, the third transition follows from Lemma 33, and the final transition follows

because
ř

r‰r1pa
1
i,r ´ ai,rq “ ai,r1 ´ a

1
i,r1 , and every term in the sum is positive.

The proof for the case where d1i,r1 ą di,r1 is in the Appendix. Together, they show

that i achieves (weakly) higher utility by truthfully reporting her demand di,r1 at

round r, rather than misreporting d1i,r1 ‰ di,r1 . By the argument at the start of this

subsection, this is sufficient to prove strategy-proofness. �

4.5.4 Approximating Sharing Incentives

Unfortunately, FL fails to satisfy SI, and may give an agent as little as half of her SI

share.

Theorem 37. FL does not satisfy α-SI for any α ą 0.5.

Proof. Consider an instance with R rounds, and R` 1 agents, each with endowment

ei “ 1. Agent 1 has d1,1 “ d1,R “ 1 and d1,2 “ . . . “ d1,R´1 “ 0, agent 2 has

d2,r “ R for all rounds r, and all other agents have di,r “ 0 for all rounds r. In round
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1, agent 1 receives allocation a1,1 “ 1 and agent 2 receives a2,1 “ R. For rounds

r “ 2, . . . , R ´ 1, each agent j ‰ 2 receives allocation aj,r “ 1 ` 1{R. Therefore, in

round R, agent 1 receives a1,R “ R´ 1´pR´ 2qp1` 1{Rq “ 2{R. Her total utility is

therefore ppR`2q{RqH`pR´pR`2q{RqL, compared to total utility 2H`pR´2qL

that she would have received by not participating in the mechanism. For L “ 0, the

ratio of these utilities approaches 0.5 as RÑ 8. �

However, FL does provide a 0.5 approximation guarantee to SI, as we show in the

remainder of this subsection. We suppose that agent i truthfully reports her demand

di,r for all rounds (since FL is SP, she could do no better by lying), and show that

she receives at least half as much utility as she would by not participating.

Recall that for every agent i, we denote by ri the first round at which ai,ri “

ti,ri ą 0. For every agent i, define sets Bi and Ai to be the agents that run out of

tokens before and after i, respectively. Formally,

Bi “ tj : rj ď ri and aj,ri{ej ă ai,ri{eiu

Ai “ tj : rj ě ri and rj “ ri ùñ aj,ri{ej ě ai,ri{eiu.

For a round r, define

si,r “ ai,r ´ ei

ř

jPAi
aj,r

ř

jPAi
ej
.

That is, si,r is the number of resources i gets more than the (endowment weighted)

average number of resources for agents in Ai. Note further that

R
ÿ

r“1

si,r “
R
ÿ

r“1

ai,r ´
ei

ř

jPAi
ej

ÿ

jPAi

R
ÿ

r“1

aj,r “ ei ´
ei

ř

jPAi
ej

ÿ

jPAi

ej “ 0.

Lemma 38. For every agent i and every round r, si,r ď minpdi,r, ai,rq.

Proof. If ai,r ď di,r, then the lemma statement says that si,r ď ai,r, which is obviously

true by the definition of si,r. If ai,r ą di,r, then we know from the definition of FL
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that
ř

jPrns minpdj,r, tj,rq ă E, and ai,r “ minpxei, ti,rq, where x is the objective value

of FL’s call to the PSWC program. Further, all agents with
aj,r
ej
ă

ai,r
ei
ď x are

those with aj,r “ tj,r, so by definition, rj ď ri and
aj,r
ej
ă

ai,r
ei

, which means j P Bi.

Therefore,
aj,r
ej
ě

ai,r
ei

for all j P Ai, which implies
ř

jPAi
aj,r

ř

jPAi
ej
ě

ai,r
ei

. To complete the

proof, note that

si,r “ ai,r ´ ei

ř

jPAi
aj,r

ř

jPAi
ej
ď ai,r ´ ei

ai,r
ei
“ 0 ď di,r “ minpdi,r, ai,rq.

�

Theorem 39. Under FL, agents receive at least half the number of high-valued re-

sources that they would have received under static allocations.

Proof. Let S denote the number of high-valued resources that agent i receives under

static allocations. While i has tokens remaining, under FL, she is guaranteed to get

as many resources as she demands up to her endowment ei. Thus, for these rounds,

she would obtain no additional high-valued resources from not participating in the

mechanism. However, there is the possibility that by participating in the mechanism,

she runs out of tokens prematurely, thus missing out on resources in later rounds

that she wants, and would have received by not participating in the mechanism (as

in the proof of Theorem 37). The proof proceeds by showing that for every resource

that i does not receive due to a lack of tokens, she must have received at least one

high-valued resource in an earlier round.

Suppose first that ai,ri ě ei. We have the following inequality:

ÿ

rďri

minpdi,r, ai,rq ě
ÿ

rďri

si,r “ ´
ÿ

rąri

si,r “
ÿ

rąri

˜

ei

ř

jPAi
aj,r

ř

jPAi
ej

¸

“
ÿ

rąri

˜

E
ř

jPAi
ej

¸

ei ě pT ´ riqei. (4.1)

102



The first inequality follows from Lemma 38, and the second inequity because
ř

jPAi
ej ď

E. The first equality holds because
řR
r“1 si,r “ 0, and the second equality holds be-

cause ai,r “ 0 for all r ą ri. The third equality holds because for rounds r ą ri, only

agents in Ai remain active, so all resources are allocated to them.

Note that S, the number of high-valued resources that i receives by not sharing,

is upper bounded by

S ď
R
ÿ

r“1

minpdi,r, eiq ď
ÿ

rďri

minpdi,r, eiq `
ÿ

rąri

ei

ď
ÿ

rďri

minpdi,r, ai,rq `
ÿ

rąri

ei

“
ÿ

rďri

minpdi,r, ai,rq ` pT ´ riqei

ď 2
ÿ

rďri

minpdi,r, ai,rq.

The third inequality holds because under FL guarantees each agent minpdi,r, eiq re-

sources, provided they have sufficient tokens remaining, which is the case because

we assume ai,ri ě ei. The final inequality follows from Equation (4.1). Since agent

i receives exactly
ř

rďri
minpdi,r, ai,rq ě S{2 resources from participating in FL, the

lemma holds in this case.

Second, suppose that ai,ri ă ei. We have the following inequality:

ÿ

rďri

minpdi,r, ai,rq ě
ÿ

rări

minpdi,r, ai,rq ě
ÿ

rări

si,r “ ´
ÿ

rąri

si,r ´ si,ri

ě eipT ´ riq ` ei

ř

jPAi
aj,ri

ř

jPAj
ej
´ ai,ri ě eipT ´ riq ` ei ´ ai,ri “ eipT ´ ri ` 1q ´ ai,ri

(4.2)

The first inequality holds because minpdi,ri , ai,riq ě 0. The second inequality fol-

lows from Lemma 38, and the third inequality holds from Equation (4.1) and the
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definition of si,ri . The fourth inequality holds because at round ri, agent i receives al-

location ai,ri ă ei, therefore every agent j P Bi receives allocation aj,ri ă ej, therefore
ř

jPAi
aj,ri ě

ř

jPAi
ej.

As with the previous case, we can derive an upper bound on S, the number of

high-valued resources i would receive by not sharing. First, suppose that ai,ri ą di,ri .

Then we have

S ď
R
ÿ

r“1

minpdi,r, eiq ď
ÿ

rări

minpdi,r, eiq ` di,ri `
ÿ

rąri

ei

ď
ÿ

rări

minpdi,r, ai,rq `minpdi,ri , ai,riq `
ÿ

rąri

ei

“
ÿ

rďri

minpdi,r, ai,rq ` pT ´ riqei

ď
ÿ

rďri

minpdi,r, ai,rq ` pT ´ ri ` 1qei ´ ai,ri

ď 2
ÿ

rďri

minpdi,r, ai,rq

The third inequality holds because FL guarantees each agent minpdi,r, eiq resources,

provided they have sufficient tokens remaining, and by the assumption that ai,ri ą

di,ri , the fourth inequality from the assumption that ai,ri ă ei, and the final inequality

from Equation (4.2). Next, suppose that ai,ri ď di,ri . Then we have

S ď
R
ÿ

r“1

minpdi,r, eiq ď
ÿ

rări

minpdi,r, eiq ` ei `
ÿ

rąri

ei

ď
ÿ

rări

minpdi,r, ai,rq ` ai,ri ` pei ´ ai,riq `
ÿ

rąri

ei

“
ÿ

rďri

minpdi,r, ai,rq ` pT ´ ri ` 1qei ´ ai,ri

ď 2
ÿ

rďri

minpdi,r, ai,rq
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The third inequality holds because FL guarantees each agent minpdi,r, eiq resources,

provided they have sufficient tokens remaining, the equality from the assumption

that ai,ri ď di,ri , and the final inequality from Equation (4.2).

As with the previous case, eipT ´ ri` 1q´ ai,ri is an upper bound on the number

of H valued resources that i may have been able to receive in rounds r ě ri had

she not participated in the mechanism, over and above those she receives by par-

ticipating.
ř

rďri
minpdi,r, ai,rq is the number of H valued resources she receives by

participating in the mechanism. Therefore
ř

rďri
minpdi,r, ai,rq`eipT´ri`1q´ai,ri ď

2
ř

rďri
minpdi,r, ai,rq is an upper bound on the number of H valued resources i would

receive by not participating in the mechanism. Therefore, i receives at least half as

many H valued resources from participating as she would have by not participating.

�

Note that Theorem 39 implies the desired approximation. Suppose that i obtains

utility SH ` pRei ´ SqL by not participating in the mechanism. Theorem 39 in

combination with the fact that she will receive the same number of resources overall

whether she participates or not, implies that, by participating, she gets at least

SH{2` pRei ´ S{2qL ě SH{2` pRei{2´ S{2qL “ pSH ` pRei ´ SqLq{2.

4.5.5 Limit Efficiency for Symmetric Agents

In this section, we prove that, under certain assumptions, FL is efficient in the

limit as the number of rounds grows large. Suppose that each agent has the same

endowment. Without loss of generality, suppose that each agent has ei “ 1. Further,

suppose that demands are drawn i.i.d. across rounds and that the distribution within

rounds treats agents symmetrically, either demands are drawn i.i.d. across agents,

or there is correlation that treats all agents symmetrically.

Theorem 40. When demands are drawn i.i.d. across rounds and agents are sym-
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metric, FL achieves an pR´R2{3q{R fraction of the optimal efficiency with probability

at least 1´n3{R1{3. In particular, FL approaches full efficiency with high probability

in the limit as the number of rounds grows large.

Proof. Suppose we are in a world where tokens are unlimited. Let Q be a random

variable denoting how many tokens a single agent i would spend (i.e., how many

resources i would be allocated) in a single round. Note that Q can never take a

value larger than n, since only n resources are allocated per round. Note that by

the symmetry of the agents, Q is independent of the identity of any single agent,

and independent of the particular round since FL allocates independently of the

round. By symmetry, EpQq “ 1. Let StdDevpQq “ σ ď n, where the inequality

holds because Q is bounded by n. Let r “ R´R2{3 and let Qr be a random variable

denoting the number of tokens i would spend before the start of round r`1. Because

demands are drawn independently across rounds, and no agent runs out of tokens,

EpQrq “ r and StdDevpQrq “
?
rσ.

Consider the probability that agent i spends at least R tokens in the first r rounds:

P pQr ě Rq “ P pQr ´ EpQrq ě R ´ rq

“ P pQr ´ EpQrq ě R2{3

“ P pQr ´ EpQrq ě
R1{6

σ

?
Rσq

ď P pQr ´ EpQrq ě
R1{6

σ

?
rσq

ď
σ2

R1{3

Here the final inequality follows from Chebyshev’s concentration inequality, because
?
rσ is the standard deviation of Qr. Taking a union bound over all n agents, the

probability that any agent spends at least R tokens in the first r rounds is at most

nσ2{R1{3 ď n3{R1{3.
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Now suppose agents are limited by R tokens. If some agent runs out of tokens

within r rounds in this world, then it must also be the case that some agent spent

at least R tokens within r rounds in the unlimited token world. Therefore, the

probability that any agent runs out of tokens is at most the probability that some

agent spends more than R tokens in the unlimited token world, which is at most

n3{R1{3. This approaches 0 as R Ñ 8. So, with probability going to 1, no agent

runs out of tokens before round r.

By the definition of FL, full efficiency is achieved on all rounds for which no

agents have their allocation limited by lack of tokens. Therefore, with probability

going to 1, FL allocates efficiently for the first r rounds. Therefore, because demands

are i.i.d. across rounds, the expected efficiency of the mechanism approaches at least

an r{R “ pR ´ R2{3q{R fraction of the optimal efficiency. This fraction approaches

1 as RÑ 8. �

4.6 T-Period Mechanism

We have shown that FL satisfies strategy-proofness and a theoretical asymptotic

efficiency guarantee. Further, as we show in §4.7, FL exhibits only small efficiency

loss in practice in settings where our theoretical guarantee does not apply. However,

FL does not achieve (full) sharing incentives. In settings where agents require a

strong guarantee in order to participate, it may be desirable to strictly enforce sharing

incentives, in which case FL is not a suitable choice. In this section, we introduce the

T -Period mechanism, which satisfies both SP and SI. While the T -Period mechanism

does exhibit some gains from sharing (i.e., is more efficient than static allocation), it

sacrifices some efficiency relative to FL.
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4.6.1 Definition

The T -Period mechanism splits the rounds into periods of length 2T .1 For the first

T rounds of each period, we allow the agents to ‘borrow’ unwanted resources from

others. In the last T rounds of each period, the agents ‘pay back’ the resources so

that their cumulative allocation across the entire period is equal to their endowment,

2Tei.

The allocations in the second set of T rounds are independent of reports and

determined completely by the allocations in the first set of T rounds. Note that

because the number of resources that an agent i can pay back over T rounds is

bounded by Tei, we allow an agent to borrow at most Tei resources (i.e., receive at

most 2Tei resources) over the first T rounds of a period.

In Algorithm 7, each agent i has a borrowing limit, bi, which is defined to be the

maximum amount of resources that agent i can borrow in whatever remains of the

first T rounds of each period. For our analysis, we denote the value of bi at the start

of round r by bi,r. At the beginning of each period, we set bi,r to be Tei, because

agent i can at most pay back her whole endowment, ei, at every T ‘payback’ rounds.

We again define d̄i to be the allocatable demand of agent i at each round of the first

T rounds and refer to d̄1i,r as agent i’s allocatable demand at round r. At each round

r, the allocatable demand of agent i is the minimum of her reported demand d1i,r,

and her endowment plus her borrowing limit, ei ` bi,r.

We illustrate the T -Period mechanism with an example.

Example 7. Consider the instance from Example 6, where each agent has endow-

ment ei “ 1 and demands are given by:

1 For convenience, we suppose that R is a multiple of 2T . If this is not the case, we can adapt the
mechanism by returning each agent their endowment for any leftover rounds.
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ALGORITHM 7: T -Period Mechanism
Input: Agents’ reported demands, d1, and their endowments, e
Output: Agents’ allocations, a

1 for r P t1, . . . , Ru do
2 if pr mod 2T q “ 1 then
3 bÐ Te; /* bi is the amount that i is able to borrow */

4 yÐ 0; /* resources received so far this period. */

5 end

6 if 1 ď pr mod 2T q ď T then
7 d̄Ð minpd1¨,r, e` bq; /* d̄i is i’s allocatable demand */

8 D Ð
ř

iPrns d̄i;

9 if D ě E then
10 a¨,r Ð PSWCpA “ E, l “ d̄,m “ 0,w “ eq;

11 else
12 a¨,r Ð PSWCpA “ E, l “ e` b,m “ d̄,w “ eq;

13 end

14 yÐ y ` a¨,r;

15 bÐ b´maxp0,a¨,r ´ eq;

16 else
17 a¨,r Ð

1
T p2Te´ yq;

18 end

19 end

di,1 di,2 di,3 di,4
i “ 1 3 1 1 0
i “ 2 0 2 1 2
i “ 3 0 0 0 4

When T “ 1, agents can ‘borrow’ resources at odd rounds and ‘pay back’ those

resources at even rounds. Therefore, the maximum allocatable demand for each agent

and at each round is 2, because the ‘payback’ period only has one round. The 1-Period

(1-P) mechanism allocates resources as follows.

a1-Pi,1 a1-Pi,2 a1-Pi,3 a1-Pi,4
i “ 1 2 0 1 1
i “ 2 0.5 1.5 1 1
i “ 3 0.5 1.5 1 1

At round 1, agent 1 wants 2 extra resources in addition to her endowment. How-

ever, under 1-P, she can only afford 1 extra resource. She borrows 0.5 resources from
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agent 2 and 0.5 resources from agent 3. At round 2, agent 1 pays back agents 2 and

3 and receives zero resources. When T “ 1, the mechanism rigidly forces agents

to pay back resources right after they borrow them. Agent 1 would prefer to get her

high-valued resource at round 2 and delay paying back agents 2 and 3 until the last

round where her demand is zero. Note that agent 3 would also prefer to be paid back

in the last round, the only round in which she has non-zero demand.

To see how increasing T allows more flexibility, consider T “ 2 for the same

example. The 2-Period (2-P) mechanism allocates resources as follows.

a2-Pi,1 a2-Pi,2 a2-Pi,3 a2-Pi,4
i “ 1 3 1 0 0
i “ 2 0 2 1 1
i “ 3 0 0 2 2

Agent 2 is allowed to borrow 2 extra resources over the first two rounds, whereas,

under the 1-P mechanism, she is never allowed to borrow more than one resource per

round. She borrows these two resources at the first round from agents 2 and 3, and

pays them back at rounds 3 and 4.

Since the T -Period mechanism increases flexibility over the static mechanism, it

provides some gains from sharing. We would expect that increasing T , in general,

will improve efficiency as it allows for ‘borrowed’ resources to be spent more flexibly.

In the following subsection, we show that these efficiency gains do not harm SI or

SP when T ď 2. Many proofs closely follow those in §4.5 and are deferred to the

Appendix.

4.6.2 Axiomatic Properties of T-Period Mechanism

We first state a lemma characterizing the allocations of the T -Period mechanism that

is analogous to Lemma 28

Lemma 41. Let x denote the objective value of a call to PSWC. Suppose that 1 ď pr
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mod 2T q ď T . If D ě E, then ai,r “ minpei ` bi, d
1
i,r, xeiq. If D ă E, then

ai,r “ minpei ` bi,maxpd1i,r, xeiqq.

To prove strategy-proofness of the 1-Period and 2-Period mechanisms, we show

that no agent has an incentive to report d1i,r “ di,r for any round r. We again consider

parallel cases, one in which agent i misreports d1i,r and one in which she truthfully

reports di,r with all other reports the same across the two cases. Allocations and

borrowing limits in the former case is denoted by a1 and b1 respectively, and by a

and b in the latter case. Let Dr denote the total allocatable demand at a round r

in the truthful case and D1r denote the total allocatable demand at a round r in the

misreported case.

Since the T -Period mechanism resets every 2T rounds, we can assume without

loss of generality that R “ 2T for the sake of reasoning about SP and SI. For rounds

r ą T , the allocations depend completely on the allocations at earlier rounds, and

not on the agents’ reports, so there is clearly no benefit to an agent for misreporting

in these rounds. It remains to show that reporting d1i,r “ di,r is optimal for rounds

r ď T .

Our next lemma is analogous to Lemma 31.

Lemma 42. Let ai,r and a1i,r denote the allocations of agent i at round r when she

reports di,r and d1i,r, respectively, holding fixed the reports of all agents j “ i and agent

i’s reports on all rounds other than r. If d1i,r ă di,r then a1i,r ď ai,r, and a1j,r ě aj,r

for all j “ i.

Suppose that i reports d1i,r “ di,r for some round r, but this misreport does not

change i’s allocation (that is, a1i,r “ ai,r). By Lemma 42, a1j,r “ aj,r for all j “ i.

Therefore, i’s misreport has not changed the allocations at round r. Since all future

rounds take into account allocations at previous rounds but not reports, i’s misreport

has had no effect on the allocations in any round. Thus, i did not benefit from this
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misreport. We therefore assume that a1i,r “ ai,r for any round r where i reports

d1i,r “ di,r in the remainder of this section.

The next lemma and corollary are analogous to Lemma 32 and Corollary 33.

They say that if i obtains fewer resources from misreporting at round r, then those

resources are all high-valued resources.

Lemma 43. Hold the reports of all agents j “ i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d1i,r ă di,r and receives a1i,r ă ai,r, then

ai,r ď di,r.

As a corollary we obtain a formula for the difference between the utility that

agent i receives at round r under truthful reporting and misreporting, when i gets

fewer resources in the misreported instance.

Corollary 44. Hold the reports of all agents j “ i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d1i,r ă di,r and receives a1i,r ă ai,r, then

ui,rpai,rq ´ ui,rpa
1
i,rq “ Hpai,r ´ a

1
i,rq.

The next lemma and corollary complement Lemma 43 and Corollary 44 in the

case where i receives more resources in the misreported instance than the truthful

instance at round r.

Lemma 45. Hold the reports of all agents j “ i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d1i,r ą di,r and receives a1i,r ą ai,r, then

ai,r ě di,r.

Corollary 46. Hold the reports of all agents j “ i fixed, and the reports of agent i

on all rounds other than r fixed. If i reports d1i,r ą di,r and receives a1i,r ą ai,r, then

ui,rpa
1
i,rq ´ ui,rpai,rq “ Lpa1i,r ´ ai,rq.

We can now show that misreporting in round T is never beneficial to an agent.
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Lemma 47. An agent never improves her utility by reporting d1i,T “ di,T .

As a corollary, we immediately have that the 1-Period mechanism is strategy-

proof, because misreporting at round r “ 1 “ T is not beneficial, and misreporting

at round r “ 2 ą T is not beneficial by our earlier argument.

Corollary 48. The 1-Period mechanism satisfies strategy-proofness.

Our next lemma is a monotonicity statement for the borrowing limits: if i’s bor-

rowing limit at round r increases, and all other agents’ borrowing limits decrease,

then i’s allocation (weakly) increases and all other agents’ allocations (weakly) de-

crease.

Lemma 49. Suppose that r ď T . If b1i,r ě bi,r and b1j,r ď bj,r for all j “ i, and

d1k,r “ dk,r for all agents k, then a1i,r ě ai,r.

We now show that the 2-Period mechanism is strategy-proof.

Theorem 50. The 2-Period mechanism satisfies strategy-proofness.

Proof. By Lemma 47, no agent can benefit by reporting d1i,2 “ di,2. Similarly, no

agent can benefit by reporting d1i,r “ di,r for r P t3, 4u, because the 2-Period mecha-

nism ignores reports for those rounds. We may therefore assume that d1i,r “ di,r for

all agents i and all rounds r ě 2.

We show that an agent cannot benefit from reporting d1i,1 ă di,1. The proof that

reporting d1i,1 ą di,1 is not beneficial is very similar. If a1i,1 “ ai,1, then a1j,1 “ aj,1 for

all j “ i, by Lemma 42. Therefore, the allocations are unchanged for all rounds i,

as the 2-Period mechanism takes into account allocations at earlier rounds, but not

reports, and the allocations at round 1 are the same in the truthful and misreported

instances. We therefore assume that ai,1 “ a1i,1`k, for some k ą 0. This implies that

bi,2 “ b1i,2´ ki, for some ki ď k. By Corollary 44, i receives kH more utility in round
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1 under truthful reporting than under misreporting. For every j “ i, aj,1 ď a1j,1, and

bj,2 “ b1j,2 ` kj, where
ř

j “i kj ď k. By Lemma 49, a1i,2 ě ai,2. In the following, we

show that a1i,2 ď ai,2 ` k. Let x and x1 denote the objective value in the T-Period

mechanism’s call to PSWC when i reports di,r and d1i,r, respectively. We consider four

cases, corresponding to whether resources in the truthful and misreported instances

are over or under demanded at round 2. Suppose first that D2 ě E and D12 ě E.

First, suppose that x1 ă x. Then, by Lemma 41,

a1i,2 “ minpei ` b
1
i, di,2, x

1eiq “ minpei ` bi,2 ` ki, di,2, x
1eiq

ď minpei ` bi,2, di,2, x
1eiq ` ki ď minpei ` bi,2, di,2, xeiq ` ki ď ai,2 ` k

Next, suppose that x1 ě x. Then for all j “ i,

a1j,2 “ minpej ` b
1
j, dj,2, x

1ejq “ minpej ` bj,2 ´ kj, dj,2, x
1ejq

ě minpej ` bj,2, dj,2, x
1ejq ´ kj ě minpej ` bj,2, dj,2, xejq ´ kj “ aj,2 ´ kj

Taking the sum over all j “ i and noting that
ř

j “i kj ď k, we have that
ř

j “i a
1
j,2 ě

ř

j “i aj,2 ´ k. Therefore, a1i,2 ď ai,2 ` k. Second, suppose that D2 ě E and D12 ă E.

Then, by the definition of the T -Period mechanism, aj,2 ď minpej ` bj,2, dj,2q for all

j “ i. Further

a1j,2 ě minpej ` b
1
j, dj,2q “ minpej ` bj,2 ´ kj, dj,2q ě minpej ` bj,2, dj,2q ´ kj ě aj,2 ´ kj

By the same argument as in the previous case, this implies that a1i,2 ď ai,2`k. Third,

suppose that D2 ă E and D12 ě E. Then

a1i,2 ď minpei ` b
1
i, di,2q “ minpei ` bi,2 ` ki, di,2q ď minpei ` bi,2, di,2q ` ki ď ai,r ` k

Finally, suppose that D2 ă E and D12 ă E. First, suppose that x1 ă x. Then

a1i,2 “ minpei ` b
1
i,maxpdi,2, x

1eiqq “ minpei ` bi,2 ` ki,maxpdi,2, x
1eiqq

ď minpei ` bi,2,maxpdi,2, x
1eiqq ` ki

ď minpei ` bi,2,maxpdi,2, xeiqq ` ki ď ai,2 ` k
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Next, suppose that x1 ě x. Then for all j “ i,

a1j,2 “ minpej ` b
1
j,maxpdj,2, x

1ejqq “ minpej ` bj,2 ´ kj,maxpdj,2, x
1ejqq

ě minpej ` bj,2,maxpdj,2, x
1ejqq ´ kj

ě minpej ` bj,2,maxpdj,2, xejqq ´ kj “ aj,2 ´ kj

Again, this implies that a1i,2 ď ai,2 ` k.

In all cases, we have that ai,2 ď a1i,2 ď ai,2 ` k. Therefore, a1i,1 ` a
1
i,2 ď ai,1 ` ai,2,

which means that a1i,3 ě ai,3 and a1i,4 ě ai,4. Consider the difference in utility across

all four rounds between the truthful and misreported instances.

Ui,4paiq ´ Ui,4pa
1
iq “

4
ÿ

r“1

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

“ kH `
4
ÿ

r“2

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

ě kH ´ kH “ 0

The second transition is by Corollary 44, and the third transition because each

a1i,r ě ai,r for all r P t2, 3, 4u,
ř4
r“2pa

1
i,r ´ ai,rq “ k, and each resource can be worth

at most H to agent i. �

Given that the 1-P and 2-P mechanisms satisfy SP, it is easy to see that they

satisfy SI also. By strategy-proofness, the utility that an agent gets from truthfully

reporting her demands is at least the utility she gets from reporting d1i,r “ ei for

all rounds r. Sharing incentives therefore follows as a corollary of the following

proposition.

Proposition 51. Under the T -Period mechanism, any agent that reports d1i,r “ ei

for all rounds r receives ai,r “ ei for all rounds r.

Corollary 52. The T-Period mechanism satisfies SI for T ď 2.

One may hope to continue increasing flexibility, and therefore performance, by

increasing the length of the ‘borrowing’ and ‘payback’ periods, potentially all the
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way to having a single borrowing period of length R{2 and a single payback period

of length R{2. Unfortunately, even for periods of length 3, strategy-proofness is

violated.

Example 8. Consider the 3-P mechanism. Suppose that n “ 5 and R “ 6. Each

agent has endowment ei “ 1 (so each agent can borrow a total of three resources over

the first three rounds, corresponding to the sum of their endowment across the final

three rounds). Truthful demands are given by the following table.

di,1 di,2 di,3 di,4 di,5 di,6
i “ 1 3 3 0 1 1 1
i “ 2 0 3 3 1 1 1
i “ 3 0 0 0 0 0 0
i “ 4 0 0 0 0 0 0
i “ 5 0 0 0 0 0 0

The corresponding allocations are given by:

a3´P
i,1 a3´P

i,2 a3´P
i,3 a3´P

i,4 a3´P
i,5 a3´P

i,6

i “ 1 3 2 0.75 0.08 0.08 0.08
i “ 2 0.5 3 2 0.17 0.17 0.17
i “ 3 0.5 0 0.75 1.58 1.58 1.58
i “ 4 0.5 0 0.75 1.58 1.58 1.58
i “ 5 0.5 0 0.75 1.58 1.58 1.58

Agent 1’s utility is 5.25H ` 0.75L. If agent 1 misreports d11,1 “ 2, it can be

checked that her allocations become 2, 2.5, 0.625, 0.292, 0.292, 0.292. Her utility is

then 5.375H ` 0.625L, which is higher than her utility from reporting truthfully.

4.7 Evaluation

In this section, we evaluate different mechanisms using real and synthetic bench-

marks. For real benchmarks, we use a Google cluster trace [1, 142], which data

collected from a 12.5k-machine cluster over a month-long period in May 2011. All

the machines in the cluster share a common cluster manager that allocates agent
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tasks to machines.

Agents submit a set of resource demands for each task (e.g., required processors,

memory, or disk space). Agent demands are normalized relative to the largest ca-

pacity of the resource on any machine in the traces. The cluster manager records

any changes in the status of tasks (e.g., being evicted, failed, or killed) during their

life cycle in a task event table. We use the task event table to track agents’ demands

for processors over time. Note that since all demands are scaled by the same factor,

we safely use normalized demands as actual demands.

We divide time into 15 min intervals.2 We define agents’ demands for each interval

to be the sum of their demands for all tasks they run in that interval. After processing

the traces, we remove agents with constant demands or with average demand less

than some marginal threshold. We assume that agents’ endowments are equal to

their average demands.

We observe that, for each agent, demands computed from Google traces have

high correlations over time. An agent with high demand at 12am has typically high

demand at 12:15am as well. In some deployment scenarios, demands may not be

highly correlated. For example, when university cluster machines are allocated to

professors and researchers on a daily basis, a researcher may have some jobs today,

but may not want to use the cluster tomorrow.

To evaluate mechanisms in scenarios without correlated demands, we use syn-

thetic benchmarks. We create random agent populations and random number of

rounds. For each agent, we uniformly and randomly assign an endowment from 1

to 20. Once agents’ endowments are set, we uniformly and randomly generate agent

demands such that their average is equal to agents’ endowments (i.e., di,r „ ur0, 2eis)

Metrics. We report social welfare and Nash welfare, focusing on the number of

2 We have created demands for varying time intervals. Since results do not change significantly
for different interval lengths, we only include results on 15-min-long intervals.
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Figure 4.3: Social welfare achieved by different dynamic allocation mechanisms
normalized to that of static allocations for Google cluster traces and 100 instances
of random demands.

high-valued resources that each mechanism allocates. For social welfare, we report

the following.

Social Welfare “
ÿ

i

ÿ

r

minpdi,r, ai,rq.

Social welfare is a measure of efficiency but fails to distinguish between fair and

unfair outcomes. For instance, suppose agent A with endowment 100 and agent B

with endowment 1 both have demand 101. Allocating 100 units to agent A and 1

unit to agent B has the same social welfare as allocating 1 unit to A and 100 units to

B. To distinguish between these two allocations, we also report the (weighted) Nash

welfare as follows.

Nash Welfare “
ÿ

i

ei logp
ÿ

r

minpdi,r, ai,rqq.

Observe that the Nash welfare metric is higher for the former scenario than the latter,

which is in line with our intuition about which allocation is more fair.

4.7.1 Performance Evaluation

Figure 4.3 presents social welfare from varied allocation mechanisms for both Google

and random traces normalized to social welfare of static allocations. DMM and

118



DMM SMM FL 1−P 2−P R/2−P

N
o
rm

a
liz

e
d
 N

a
s
h
 W

e
lfa

re

0
.9

6
1
.0

0
1
.0

4

Google Traces

Random Demands

Figure 4.4: The Nash welfare achieved by different dynamic allocation mechanisms
normalized to that of static allocations for Google cluster traces and 100 instances
of random demands.
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Figure 4.5: Social welfare of the flexible lending mechanism normalized to that of
static allocations for varying agent population sizes and numbers of rounds. We fix
the number of rounds to 50 when we vary the number of agents, and fix the number
of agents to 50 when we vary the number of rounds.

SMM produce the same, highest social welfare as they always allocate resources to

those agents with high valuations. Note that SMM and DMM both fail to guarantee

strategy-proofness when L ą 0. Therefore, when agents report strategically, for all

the mechanism knows, SMM and DMM’s allocations could be as inefficient as static

allocations. But this is not captured in the figure, which implicitly assumes truthful

reporting.

The 1-Period mechanism produces the lowest social welfare. Increasing the period

length to 2 slightly improves the welfare of the T -Period mechanism. Note that both

mechanisms outperform static allocations. The R{2-Period mechanism achieves 87%

of SMM welfare for Google traces, but fails to provide strategy-proofness.

The social welfare of FL is competitive with state-of-the-art dynamic allocation
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Figure 4.6: Sorted Sharing Index for Google Cluster Traces.

mechanisms. FL achieves 97% of SMM’s welfare for Google traces and 98% for

random demands. In practice, strong game-theoretic desiderata do not come with

high welfare costs.

Figure 4.4 compares the normalized Nash welfare from varied mechanisms. Once

again, DMM and SMM outperform other mechanisms, but DMM and SMM’s out-

comes are no longer equal because the number of high-valued resources that each

agent receives differs across mechanisms. FL achieves 99.7% of DMM welfare for

both Google cluster and random traces. This high Nash welfare could be explained

by FL’s high social welfare and the fact that FL allocates agents their exact endow-

ment across rounds.

Figure 4.5 shows how social welfare changes when varying population size and

number of rounds under FL. As the population size increases, the diversity between

agents’ demands at each round increases. Agents’ complementary demands improve

welfare from FL as fewer agents are forced to spend tokens on low-valued resources.

Moreover, as the number of rounds increases, agents’ flexibility in spending their

tokens on high-valued resources increases. We prove in §4.5.5 that, at least when

endowments are equal, FL approximates efficiency.

4.7.2 Sharing Incentives

We define the sharing index of agent i to be the ratio between the number of high-

valued resources agent i receives under FL and under static allocations. In §4.5.4, we
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Figure 4.7: Sorted Sharing Index for a Random Trace.

show that FL guarantees that the sharing index of each agent is always at least 0.5.

In practice, however, our simulations show that the sharing index is much higher.

Figure 4.6 shows the sharing index for all agents in the Google cluster traces,

sorted in increasing order and shown on a log scale. The minimum sharing index

across all agents is 0.98, and on average agents receive 15x more utility under FL

compared to static allocations. As can be seen, there is high variance in sharing

index across agents. Agents with high index are those who have zero demand at

most of the rounds and very high demand at a few rounds. These agents benefit the

most from sharing. When they have zero demand, they do not spend any tokens.

Once they have a high demand they spend their tokens to receive the resources they

need.

Figure 4.7 shows agents’ sharing index for an instance with random demands.

Since agents do not have correlated demands, the variance in sharing index is sig-

nificantly lower compared to the Google cluster traces. Moreover, across all agents

over 100 random instances, we do not observe a single violation of SI (i.e., no agent

has a sharing index less than 1)

4.8 Related Work

There is a body of work in the mechanism design without money literature that is

related to our work. Gorokh et al. [96] consider a setting where a single item is to

be allocated repeatedly, and extend to more general settings in a follow-up paper
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[97]. They do so by endowing each user with a fixed amount of artificial currency

and then treating it similarly to if it were real money. They show that, for a large

enough number of rounds, incentives to misreport and welfare loss both vanish.

However, their notion of strategy-proofness is ex-ante Bayesian, requiring users (and

the mechanism) to know the distribution from which other users’ demands are drawn

and truthful reporting is optimal only in expectation. Our notion of SP is ex-post,

meaning that an agent never regrets truthful reporting.

Various other work does not explicitly use artificial currency, but by keeping track

of how much utility an agent should receive in the future, achieve guarantees in a

way that resembles the use of artificial currency [99, 20, 14]. Again, these results are

for a weaker notion of SP.

In a similar setting, Aleksandrov et al. [17, 16] consider a stream of resources

arriving one at a time that must be allocated among competing strategic agents.

They consider two mechanisms, one of which is similar to SMM and the other similar

to DMM. They obtain both positive and negative results for these mechanisms,

however their positive results are primarily obtained for the case where agent utilities

are 0 or 1, corresponding to our L “ 0 case. They also consider only the symmetric

agent setting, rather than our setting that allows unequal endowments.

There also exists literature on dynamic fair division [85, 159, 108], but this work

predominantly focuses on agents arriving and departing over time, rather than the

preferences themselves being dynamic, as in our work.

In the systems literature, in recent years, there has been a growing body of work

on using economic game-theory to allocate resources [89, 169, 160]. These works

only consider one-shot allocations and do not study allocations over time. Ghodsi

et al. [90] consider dynamic allocations over time but in a completely different alloca-

tion setting than ours. Their proposed mechanism allocates resources to packets in a

queue. In such a setting, time cannot be divided into fixed intervals, because process-
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ing packets take different times, which means a packet could stall all other packets

until its processed. As a result, proportional allocations have to be approximated

through discrete packet scheduling decisions [128, 67].

In a work that is close to our setting, Tang et al. [154] propose a dynamic al-

location policy that resembles DMM. We study the characteristics of DMM in §4.3

and evaluate its performance in §4.7. Another related work in this area is that of

Sandholm and Lai [146]. The authors propose a scheduler that allocates resources

between users with dynamically changing demands. This work deploys heuristics

and does not provide any theoretical guarantees that we study in this paper.

4.9 Discussion

We have considered the problem of designing mechanisms for dynamic proportional

sharing in a high-low utility model that both incentivize users to participate and

share their resources (sharing incentives), as well as truthfully report their resource

requirements to the system (strategy-proofness). We show that while each of these

properties is incompatible with full efficiency, it is possible to satisfy both of them

and still obtain some efficiency gains from sharing.

The main mechanism that we present, the flexible lending mechanism, is strategy-

proof and provides each user a theoretical guarantee of at least half her sharing

incentives share. While we do not guarantee full sharing incentives, we show via

simulations on both real and synthetic data that in practical situations, no users

are significantly worse off by participating in the sharing scheme (and the majority

are vastly better off). We show that under certain assumptions, the flexible lending

mechanism provides full efficiency in the large round limit, which is supported by

our simulation results. By incentivizing truthful reporting, we posit that the flexible

lending mechanism will in fact produce significant efficiency gains in settings where

agents are strategic.
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Many directions for future work remain. The 2-Period mechanism fully satisfies

both SP and SI, but remains very inflexible in its allocations. A key challenge is the

design of a more flexible mechanism that satisfies both properties (or some upper

bound on the efficiency that such mechanisms can achieve). Another direction is

to extend the utility model. The high/low model is crucial to the positive strategic

results that we obtain because trade-offs are well-defined: swapping an L resource for

an H resource is always bad. Even introducing a medium (M) value complicates the

situation considerably, and extending to such a setting would represent an exciting

step forward.
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5

Incentive Compatible and Efficient Wagering: The
Double Clinching Auction

5.1 Introduction

In the second part of this thesis, we consider the problem of forecasting. A principal

wants to gather information pertaining to the probability of some future event, but

has no direct means to do so himself. Therefore, the information must be elicited

from a group of self-interested agents. We first turn our attention to a class of

elicitation mechanisms known as wagering mechanisms.

Wagering mechanisms allow a principal to elicit the beliefs of a group of agents

without paying them directly or taking on any risk. Each agent specifies a belief, her

own subjective estimate of the likelihood of a future event, such as the Democratic

nominee winning the 2020 U.S. Presidential election. She also specifies a monetary

budget or wager, the maximum amount that she is willing to lose. These wagers

are then collected by the principal and, after the truth is revealed, redistributed to

agents in such a way that agents with more accurate predictions are more highly

rewarded. Meanwhile, since agents directly report their beliefs, the principal is able
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to leverage the wisdom of crowds to obtain an accurate consensus forecast for the

event, for example by computing an average [102], a budget-weighted average [31], a

supra-Bayesian inference [121], or another aggregate measure of the forecasts [88].

Lambert et al. [112, 113] introduced the class of weighted-score wagering mecha-

nisms (WSWMs), the unique wagering mechanisms to simultaneously satisfy a set

of desirable properties including strict budget balance and incentive compatibility.

Incentive compatibility is achieved through the use of strictly proper scoring rules,

reward functions designed to incentivize truthful reports from risk-neutral agents.

In particular, each agent’s payoff under a WSWM is proportional to the difference

between her own score and the budget-weighted score of the other agents. Chen et al.

[56] later proposed the class of no-arbitrage wagering mechanisms (NAWMs), which

are incentive compatible but only weakly budget balanced, allowing the principal to

profit off of disagreement among agents. Under an NAWM, an agent’s payoff is pro-

portional to her score minus the score of the budget-weighted average belief. To our

knowledge, these mechanisms and their derivatives (such as the randomized, private

WSWM of Cummings et al. [63]) are the only known incentive compatible wagering

mechanisms.

As an artifact of their use of proper scoring rules, these mechanisms have one

undesirable property: In general, it is not possible for any agent to lose her full wager,

even if all other agents are perfectly informed. In other words, the mechanisms are not

Pareto optimal, in the sense that agents have significant budget left over even when

additional trade would be mutually beneficial. This is a serious concern in practice

since agents typically gravitate to venues where they have the opportunity for large

gains. If these mechanisms yield badly suboptimal allocations, agents may question

the rules or simply go elsewhere. Indeed, all widely deployed wagering mechanisms,

including parimutuels, bookmakers, and double auctions, feature Pareto optimality.

Additionally, wagers effectively lose their meaning as budgets. This has a surprising
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implication on the quality of reports. Because an agent can never lose her full wager,

she may be able to artificially inflate her reported budget risk-free. It turns out that

when agents misreport their budgets, they can also have incentive to misreport their

beliefs (see Example 10).

Motivated by this observation, we ask whether it is possible to design an incentive

compatible wagering mechanism that achieves Pareto optimality without sacrificing

other key properties. Unfortunately, the answer is no. We prove that no weakly

incentive compatible wagering mechanism can achieve Pareto optimality along with

individual rationality (meaning agents have incentive to participate) and weak budget

balance. If the principal cannot force agents to participate and does not wish to

subsidize the market, he must compromise on Pareto optimality. Given that, we

seek an incentive compatible mechanism that is near-Pareto-optimal in practice.

Our mechanism is inspired by the observation that the output of a wagering

mechanism has a natural interpretation as an allocation of securities. An agent who

wins ρ1 dollars if the Democrat is elected and loses ρ0 dollars otherwise can equiva-

lently be viewed as paying ρ0 dollars up front for ρ0 ` ρ1 shares of an Arrow-Debreu

security worth $1 if and only if the Democrat is elected. Thus wagering mecha-

nisms can be viewed as allocating items (the securities) to agents, and it is natural

to ask whether techniques from the auctions literature can be used. The clinching

auction [21] produces VCG allocations and payments for multiple identical items,

but VCG-style approaches cannot be applied when agents have budgets. Instead, we

build on the adaptive clinching auction [68, 32], an extension of the clinching auction

that incorporates budget constraints.

Our mechanism, the double clinching auction (DCA), is a two-sided version of

the adaptive clinching auction. It elicits truthful reports by selling a variable number

of securities to the agents via two simultaneous instances of the adaptive clinching

auction, one which sells securities that pay off $1 only if the event of interest happens
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(yes securities), and one which sells securities that pay off $1 only if it does not (no

securities). The principal can always sell a pair of yes and no securities for $1 or more

without risk, since he will owe exactly $1 to the agents regardless of the outcome.

Our key technical contribution is determining the number of security pairs that the

principal can sell via adaptive clinching auctions in such a way that he never loses

money, without incentivizing agents to misreport their beliefs.

We also show that under the double clinching auction, each agent has at least

some risk of losing her entire budget, making the budget declaration risky to inflate

and restoring the semantics of the wager as the largest acceptable worst-case loss.

To evaluate the efficiency of the DCA, we run a series of simulations using thou-

sands of probability judgments about hundreds of events, collected from an online

forecasting contest called ProbabilitySports [87]. We compare the performance of the

DCA with WSWMs, NAWMs, and the parimutuel consensus mechanism [72], which

is Pareto optimal but not incentive compatible. Our simulations show that the DCA

is indeed significantly closer to Pareto optimal than the other incentive compati-

ble mechanisms, sometimes approaching the efficiency of the parimutuel consensus

mechanism, which was specifically designed to maximize trade. Given the results,

we are optimistic that the DCA can serve as a practical wagering mechanism that

both satisfies agent demand and encourages honest revelations.

We follow previous authors [109, 104, 112, 56], assuming that agents have im-

mutable beliefs that do not update during wagering. Our agents “agree to disagree”,

unlike Bayesian agents. While immutable beliefs and perfect Bayesian reasoning are

both idealizations, the former is arguably closer to reality. In practice, overconfident

opponents, each expecting to gain, trade all the time [105, 69], contradicting the

no-trade theorems implied in the Bayesian setting. Other authors have explored in-

centive properties of wagering mechanisms with Bayesian [113] or boundedly rational

[131] agents.
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5.2 Wagering Mechanisms

Let X be a binary random variable or event with value or outcome in t0, 1u. For

example, imagine X “ 1 is the outcome that the Democratic nominee wins the 2020

U.S. Presidential election and X “ 0 is the outcome that he or she loses. We consider

a setting in which a principal is interested in eliciting the beliefs of a set of agents

N about the likelihood that X “ 1. Following the line of work initiated by Lambert

et al. [112], we assume that each agent i P t1, ¨ ¨ ¨ , Nu has a private, subjective,

immutable belief pi about the probability that X “ 1, and that agents are risk

neutral up to some budget limitation. That is, each agent budgets for the largest

loss that she is willing to tolerate, then maximizes her expected wealth subject to

the budget constraint.

The principal operates a wagering mechanism in which each agent i submits a

report p̂i P r0, 1s, capturing her subjective belief about the likelihood that X “ 1,

and a wager wi ě 0, representing the maximum amount that she is prepared to lose.

After observing the realized value of X, denoted x, the principal redistributes the

agents’ wagers, rewarding agents based on their wagers and the accuracy of their

reports. We denote by Πipp̂; w, xq the net payoff to agent i under reports p̂ and

wagers w when X “ x. For a wagering mechanism to be valid, it must be the case

that no agent can lose more than her wager (i.e., for all i, p̂, w, and x, we have

Πipp̂; w;xq ě ´wi) and an agent can choose not to participate by wagering 0 (i.e.,

Πipp̂; w;xq “ 0 whenever wi “ 0). We can therefore let N “ N without loss of

generality, since non-participation is equivalent to a zero wager. We denote by p̂´i

the predictions of all agents other than i and by w´i the wagers of all agents other

than i.
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5.2.1 Examples of Wagering Mechanisms and Connections to Proper Scoring Rules

There is a close connection between wagering mechanisms and proper scoring rules

used to elicit truthful predictions from individual agents [147, 92]. A scoring rule

s maps a prediction p P r0, 1s and an outcome x P t0, 1u to a score or reward in

R Y t´8u. We say s is proper if for all p, q P r0, 1s, pspp, 1q ` p1 ´ pqspp, 0q ě

pspq, 1q`p1´pqspq, 0q, and strictly proper if this inequality is strict whenever p ‰ q.

An agent who is rewarded for her prediction using a proper scoring rule therefore

maximizes her expected reward by reporting her true belief, uniquely if the scoring

rule is strictly proper. A common example of a strictly proper scoring rule is the

Brier score [40], spp, xq “ 1´ px´ pq2.

For a wagering mechanism to elicit truthful reports about the likelihood of X, it

must be the case that, fixing the wagers w and reports p̂´i of other agents, agent i’s

payoff Πi is a proper scoring rule. Building on this idea, Lambert et al. [112, 113]

introduced the class of weighted score wagering mechanisms (WSWMs). A WSWM

has a payoff function of the form

Πipp̂; w;xq “ wi

˜

spp̂i, xq ´

ř

jPN wjspp̂j, xq
ř

jPN wj

¸

(5.1)

where s is any strictly proper scoring rule bounded in r0, 1s. WSWMs are the unique

wagering mechanisms to simultaneously satisfy a set of desirable axioms that includes

strict budget balance (the principal neither makes nor loses money), individual ratio-

nality (all agents have incentive to participate), strict incentive compatibility (agents

have incentive to truthfully reveal their beliefs about X), anonymity (all agents are

treated the same), sybilproofness (agents cannot profit by creating false identities),

and a normality property (loosely, if agent i changes her report to improve her own

expected payoff, the expected payoffs of other agents can’t increase).

Chen et al. [56] pointed out that under a WSWM, it can be possible for an
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agent to risklessly profit: there exist reports p̂ and wagers w such that for some

agent i, both Πipp̂; w; 1q and Πipp̂; w; 0q are positive. They proposed an alternative

class of incentive compatible mechanisms called no-arbitrage wagering mechanisms

(NAWMs), in which this extra profit is instead collected by the principal. The payoff

to each agent is proportional to the difference between the score of his own prediction

and the score of a type of weighted average of the other agents’ predictions. We will

return to these mechanisms later in the chapter.

5.2.2 Security Interpretation of Wagering Mechanisms

The output of a wagering mechanism has a natural interpretation as an allocation

of Arrow-Debreu securities with payoffs that are contingent on the realization of X.

We define a yes security to be a contract worth $1 in the outcome X “ 1 and $0

if X “ 0. Similarly, a no security is worth $0 if X “ 1 and $1 if X “ 0. A risk

neutral agent with belief p about the likelihood that X “ 1 would be willing to buy

a yes security at any price up to p or a no security at any price up to 1 ´ p. Since

such trades reveal information about agents’ beliefs, securities of this form are often

considered in the context of prediction markets.

Suppose a wagering mechanism would yield a net payoff to agent i of ρ1 “

Πipp̂; w; 1q when X “ 1 and ρ0 “ Πipp̂; w; 0q when X “ 0. This is equivalent

to the payoff that i would receive if she were sold yi “ maxtρ1´ ρ0, 0u yes securities

and ni “ maxtρ0 ´ ρ1, 0u no securities for a total cost of σi “ maxt´ρ0,´ρ1u.

For example, if ρ0 ă ρ1, then agent i’s participation in the wagering mechanism is

equivalent to agent i paying the principal σi “ ´ρ0 before X is realized and then

receiving yi “ ρ1 ´ ρ0 from the principal in the outcome X “ 1.

Therefore, the output of a wagering mechanism can be completely specified by

a triple py,n,σq, where for each agent i, yi ě 0 is the number of yes securities

allocated to i, ni ě 0 is the number of no securities allocated to i, and σi is the
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cost paid by i for these securities. To be a valid output, we require that for all i,

either yi “ 0 or ni “ 0 (or both), and σi ď wi. This requirement is without loss

of generality since any (fraction of a) pair of yes and no securities can be precisely

converted into (a fraction of) $1. We rely on the securities-based interpretation of

wagering mechanisms for the remainder of this paper.1

5.2.3 Properties of Wagering Mechanisms

Lambert et al. [112] introduced several desirable properties for wagering mechanisms.

We focus on three of these properties in our analysis: individual rationality, incentive

compatibility, and budget balance. The definitions from Lambert et al. [112] are

easily translated into our security-based representation. First, individual rationality

requires that agents participate willingly; agents have nothing to lose (in expectation)

by participating truthfully.

Definition 10. A wagering mechanism is individually rational if, for any player i

and any subjective probability pi, there exists a report p̂i such that for all p̂´i,w,

piyipp̂; wq ` p1´ piqnipp̂; wq ě σipp̂; wq.

Incentive compatibility requires that each agent maximizes her expected payoff

by reporting truthfully, regardless of the reports and wagers of other agents.

Definition 11. A wagering mechanism is weakly incentive compatible if, for every

agent i with belief pi and all reports p̂ and wagers w,

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq ´ σippi, p̂´i; wq

ě piyipp̂; wq ` p1´ piqnipp̂; wq ´ σipp̂; wq.

The mechanism satisfies strict incentive compatibility if the inequality is strict when-

ever pi ‰ p̂i.

1 Note that in the case of WSWMs, the observation of Chen et al. [56] implies that it is possible
to have σi ă 0 for some i, meaning that i is allocated securities and actually receives money from
the principal.
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Finally, a wagering mechanism is budget balanced if the principal never loses.

Definition 12. A wagering mechanism is weakly budget balanced if, for all p̂ and

w,
ÿ

iPN
yipp̂; wq ď

ÿ

iPN
σipp̂; wq and

ÿ

iPN
nipp̂; wq ď

ÿ

iPN
σipp̂; wq.

The mechanism is strictly budget balanced if the inequalities hold with equality for

all p̂ and w.

5.3 A Tradeoff Between Efficiency and Incentive Compatibility

Our goal is to design a wagering mechanism not to maximize profit but to maxi-

mize the amount of useful and credible information gathered. In this context, both

incentive compatibility and Pareto optimality (the formal definition is given in Sec-

tion 5.3.2) are important. The former literally keeps agents honest, steering them to

report their true best estimates and reassuring the principal that probabilities are

not tainted by irrelevant strategic play. The latter keeps agents happy, earning them

as much utility as possible without inexplicably leaving dollars on the table. Pareto

optimality is standard in prediction markets, parimutuel markets, betting exchanges,

and financial exchanges. A badly suboptimal allocation may confuse agents, discour-

age them from playing, or encourage them to inflate their budgets, as we shall see

below, which may cause their probability reports to become untruthful too.

5.3.1 Inefficient Allocations and Budget Inflation

In this section, we consider the undesirable effects of Pareto inefficiency. We start

with an example.

Example 9. There are N “ 4 agents with reported beliefs p̂ “ p0.1, 0.2, 0.5, 0.7q

and wagers w “ p1, 1, 1, 1q. Under the Brier scoring rule WSWM, the outcome is

py “ p0, 0, 0.25, 0.65q,n “ p0.55, 0.35, 0, 0q,σ “ p0.36, 0.19, 0.05, 0.29qq.
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Observe that in Example 9, no agent stands to lose her full wager, regardless

of the outcome. Indeed, the closest is agent 1, who risks losing 36% of her wager

in the worst case. The total risk—the sum of all the agents’ worst-case losses—is

less than 25% of the total wagers. Thus WSWM is facilitating much less trade than

if the agents were left to trade amongst themselves. Further, consider the 0.9 yes

and 0.9 no securities allocated in Example 9. Thinking of these securities as any

other commodity, we see that their allocation is not efficient. Some yes securities

are allocated to agent 3 even though agent 4 has both a higher valuation and leftover

budget.

The example above is in no way an edge case or specially manufactured; we will

see in Section 4.7 that, if anything, it shows higher-than-average efficiency compared

to our real-data simulations. Indeed, the following observation, which was originally

made by Lambert et al. [112], shows that under a WSWM, agents who report any

uncertainty will never lose their entire wager.

Proposition 53 (Lambert et al. 112). For any weighted score wagering mechanism,

for any i P N and any reports p̂ and w, if p̂i P p0, 1q and wi ą 0, then σipp̂,wq ă wi.

This observation has an important implication that goes beyond the desire to

facilitate as much trade as possible. Because an agent who reports her true budget

wi can never lose it all, she may be able to report a higher budget w1i such that her

maximum loss is still bounded by wi. It turns out that when agents misreport their

budgets, they may also have incentive to misreport their beliefs.

Example 10. In Example 9, agent 4 derives utility 0.65 ¨ 0.7´ 0.29 “ 0.17 for being

allocated 0.65 yes securities at a cost of 0.29, since she values each yes security at

0.7. However, since this does not exhaust her budget, she could inflate her budget

to w14 “ 2.04 and instead be allocated 1.05 yes securities at a cost of 0.47, deriving

utility 0.26. This budget inflation is completely safe in the sense that she never loses
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more than her budget, regardless of the reports and wagers of the other agents, (even

if all other agents have arbitrarily large budgets and perfectly predict the outcome).

However, if agent 4 lowers her probability report to p̂4 “ 0.6, she is able to inflate

her budget even further. Intuitively, this is because 0.6 is a more moderate report

than 0.7, so that even if X “ 0, her loss will be lower. Agent 4 can safely report

w14 “ 2.78 along with p̂4 “ 0.6 without any risk of spending more than her budget,

regardless of the reports and wagers of the other agents. She is then allocated 0.96

yes securities at a cost of 0.38. Her expected utility is now 0.96 ¨ 0.7 ´ 0.38 “ 0.30,

which is higher than she could safely obtain by truthfully reporting p̂i “ 0.7.

5.3.2 Pareto Optimality

In this section, we define a natural notion of Pareto optimality for wagering mecha-

nisms. For a fixed number of securities, a Pareto optimal allocation is, as usual, any

locally optimal allocation that cannot be improved for one agent without harming

others. However, the number of pairs of securities is not fixed: the principal or the

agents can always manufacture more yes-no pairs at the cost of $1. Given this, we

need a slightly expanded definition of Pareto optimality.

We say that a wagering mechanism is Pareto optimal if, treating agents’ reports

and wagers as their true beliefs and budgets, after all yes and no securities have

been allocated and payments for these securities collected by the principal, there is

no side bet that agents could make that would strictly benefit one without harming

another, even if agents are allowed to create their own securities. We first define the

notion of a profitable side bet.

Definition 13. Given reports p̂, wagers w, allocations y and n of yes and no

securities, and payments σ, a triple p∆y,∆n,∆σq is a profitable side bet if the

following three conditions hold:

1.
ř

iPN ∆yi “
ř

iPN ∆ni “
ř

iPN ∆σi “ 0.
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2. For all i P N , mintyi `∆yi, ni `∆niu ´ pσi `∆σiq ě ´wi.

3. For all i P N , p̂i∆yi`p1´ p̂iq∆ni ě ∆σi, with strict inequality for at least one

i.

Let’s examine this definition. The first condition ensures that p∆y,∆n,∆σq is

a valid exchange among the agents, that is, all cash or securities given to one agent

must come from other agents. The second condition ensures that no agent’s budget

is violated. The third guarantees that the exchange is profitable for at least one

agent without harming any other agent (assuming truthful reports). We can now

formally define Pareto optimality.

Definition 14. A wagering mechanism is Pareto optimal if for all reports p̂ and wa-

gers w, the mechanism’s output pypp̂; wq,npp̂; wq,σpp̂; wqq is such that there exists

no profitable side bet.

This definition is difficult to work with directly. We show that there is an intuitive

equivalent characterization of Pareto optimality in terms of allocations and costs: A

mechanism is Pareto optimal if and only if there is some threshold price such that all

agents with beliefs above the threshold spend their entire budget on yes securities

while all agents with beliefs below the threshold spend their entire budget on no

securities. This is formalized in the following theorem.

Theorem 54. A wagering mechanism is Pareto optimal if and only if for all reports

p̂ and w, there exists an agent j P N such that

@i : p̂i ă p̂j, σipp̂; wq “ wi and yipp̂; wq “ 0,

@i : p̂i ą p̂j, σipp̂; wq “ wi and nipp̂; wq “ 0.
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The first step of the proof, which appears in the appendix, is to show that any

time a profitable side bet exists, there is a profitable side bet with ∆σi “ 0 for all

agents i. This is because $1 in cash is equivalent to a pair of yes and no securities.

Thus we can limit attention to side bets that only involve the exchange of securities.

The second step shows that, any time a profitable side bet exists, there exists a

profitable side bet involving only two agents. The final step is to show that there is

no profitable side bet between two agents if and only if the conditions in Theorem 54

hold.

Eisenberg and Gale [72] defined and analyzed the parimutuel consensus mecha-

nism (PCM), a natural Pareto-optimal wagering mechanism. The outcome of the

PCM is defined by a price π, such that all agents with p̂i ą π exhaust their entire

wager buying yes securities at price π, and all agents with p̂i ă π exhaust their entire

wager buying no securities at price 1´ π. Any imbalance in demand for yes and no

securities at price π is bridged by agents with report exactly π, who may buy either

yes or no securities at the discretion of the mechanism. We can think of the PCM

as a parimutuel mechanism with a proxy agent that switches agents’ bets to the

outcome most favorable to them, given the price. The PCM satisfies budget balance

and individual rationality. However, the PCM does not satisfy incentive compati-

bility, because an agent may affect the price π in a way that is favorable to them.

We explore the parimutuel consensus mechanism in more detail in Chapter 6, and

provide in Example 12 an instance where the PCM violates incentive compatibility.

5.3.3 An Impossibility Result

We have shown that WSWM fails to produce Pareto optimal allocations and PCM

fails to achieve incentive compatibility. In this section, we show that the tradeoff

is unavoidable: no incentive compatible wagering mechanism can achieve Pareto

optimality along with two other core properties.
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The proof extends the intuition that for any two agents i and j with differing

reports p̂i ă p̂j, they must trade according to some intermediate price p P rp̂i, p̂js.

It is therefore always in the interests of at least one of the agents to misreport her

belief closer to that of the other agent, forcing the price further from her own true

belief and thus achieving a higher payoff in expectation.

Theorem 55. No wagering mechanism simultaneously satisfies individual rational-

ity, weak incentive compatibility, weak budget balance, and Pareto optimality. This

holds even if the number of agents is arbitrarily large and all agents wager the same

amount of money. Any three of the four properties are simultaneously attainable.

Proof. We first show the impossibility. Suppose there are N ě 2 agents with beliefs

p and identical wagers w “ 1. (It is trivial to extend the proof to wi “ w for all i

for any constant w, but complicates notation.) For simplicity, assume that all the pi

are unique.

Assume that we are running a mechanism that satisfies individual rationality,

weak incentive compatibility, weak budget balance, and Pareto optimality. We will

first show that for any such mechanism, if for all i, pi ă 1{N , then the Pareto

optimality threshold p “ maxi pi. Throughout the rest of this proof, let j denote the

agent i with p “ pi.

By individual rationality and incentive compatibility, we have that for all i, piyi`

p1´ piqni ě σi. By Pareto optimality, this implies that for all i : pi ą p, piyi ě 1, so

yi ě 1{pi. For the special agent j, if yj ą 0 then yj ě σj{pj. By budget balance, we

then have

ÿ

i:piąp

1

pi
` 1pyj ą 0q

σj
pj
ď

N
ÿ

i“1

yi ď
N
ÿ

i“1

σi “ pN ´ 1q ` σj.

Suppose that it were not the case that j “ arg maxi pi. Then there is at least one
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agent i with pi ą p, and so

ÿ

i:piąp

1

pi
` 1pyj ą 0q

σj
pj
ě

ÿ

i:piąp

1

pi
ą N ě pN ´ 1q ` σj.

Since this inequality is strict, it contradicts the previous equation.

Now, consider the case in which for all i ă N , p̂i ă 1{pN`2q and p̂N “ 1{pN`1q.

We have shown above that if all agents report truthfully then j “ N . This means

that for all i ‰ N , σi “ 1. Furthermore, for any i ‰ N , this would still be the case

even if i changed his report to any other value less than (but arbitrarily close to)

pN “ 1{pN ` 1q. By incentive compatibility, such changes in report cannot change

ni, and so by individual rationality, it has to be the case that p1 ´ pNqni ě 1, so

ni ě 1{p1´ pNq for all i ‰ N . By budget balance,

N ´ 1

1´ pN
ď

N
ÿ

i“1

ni ď
N
ÿ

i“1

σi ď pN ´ 1q ` σN

and so

σN ě pN ´ 1q

ˆ

1

1´ pN
´ 1

˙

“
N ´ 1

N
.

By individual rationality, budget balance, and this bound on σN , we must have

0 ď
1

N ` 1
yN ´ σN ď

1

N ` 1
ppN ´ 1q ` σNq ´ σN “

N ´ 1

N ` 1
´ σN

ˆ

N

N ` 1

˙

ď 0.

This implies that σN “ pN ´ 1q{N , yN “ N ´ 1 ` σN , and the expected utility of

agent N is 0.

Suppose that agent N instead reported pN “ 1{pN ` 2q. We would still have

j “ N since no other reports are as high. By the same argument we made above, it

would have to be the case that

σN ě pN ´ 1q

ˆ

1

1´ pN
´ 1

˙

“
N ´ 1

N ` 1
.
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Again using a similar argument to the one above, by individual rationality, budget

balance, and this bound on σN ,

0 ď
1

N ` 2
yN ´ σN ď

1

N ` 2
ppN ´ 1q ` σNq ´ σN “

N ´ 1

N ` 2
´ σN

ˆ

N ` 1

N ` 2

˙

ď 0.

This implies that σN “ pN ´ 1q{pN ` 1q, yN “ N ´ 1` σN , and the expected utility

of agent N is

p̂NyN ´ σN “
N ´ 1

pN ` 1q2
ą 0.

Therefore, agent N would prefer to deviate and the mechanism is not incentive

compatible, a contradiction.

It remains to show that any three of the four properties are simultaneously

attainable. The parimutuel consensus mechanism achieves individual rationality,

weak budget balance, and Pareto optimality (see Chapter 6), and it is known that

WSWMs satisfy (strong) incentive compatibility, individual rationality, and (strong)

budget balance. To achieve weak incentive compatibility, weak budget balance, and

Pareto optimality, we can simply take the entire wager from every agent (that is, let

yi “ ni “ 0 and σi “ wi for all i). Finally, to satisfy individual rationality, incentive

compatibility and Pareto optimality, we can sell unlimited quantities of yes securi-

ties at a per-unit price p (fixed independently of the reports) and no securities at a

per-unit price 1´ p, so that all agents with report p̂i “ p fully exhaust their budget

buying either yes or no securities. �

Individual rationality is hard to imagine giving up: We cannot force agents to

participate. Weak incentive compatibility is key to ensuring the credibility of agents’

reports. Although untruthful mechanisms like parimutuel wagering flourish in prac-

tice and do display an ability to aggregate useful information [18, 133], our goal is

to create a mechanism that simplifies reasoning for the agents and principal and
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that offers some modicum of assurance that the reports the principal is seeing are

accurate to the best abilities of the agents. Some wagering mechanisms, in particular

automated market maker algorithms for prediction markets [54], do give up budget

balance, subsidizing trade as a reward for information. However, most mechanisms

seek profits if anything, not losses. When a subsidy is not possible or desired, we

must relax Pareto optimality. In the remainder of this paper, we present and analyze

our double clinching auction wagering mechanism which maintains individual ratio-

nality, weak incentive compatibility, and weak budget balance, while coming close to

Pareto optimality in practice.

5.4 The Adaptive Clinching Auction

Since wagering mechanisms can be interpreted as allocating items (securities) to

agents, it is natural to ask whether techniques from the auctions literature might be

useful. Ausubel’s clinching auction [21] produces VCG allocations and payments in

the setting in which there are multiple identical items and each agent has a fixed

valuation per item. However, VCG-style approaches cannot be applied in our setting

since agents have budgets. Instead, we build on the adaptive clinching auction of

Dobzinski et al. [68], which extends Ausubel’s auction to handle budget constraints.

In this section, we review the adaptive clinching auction and state some known

results that are used in our analysis. Many details are necessarily omitted. For a full

description, we point the reader to Dobzinski et al. [68] and, for the divisible-items

version, Bhattacharya et al. [32]. In describing the auction, we use notation that

parallels that of the wagering mechanism setting, but the general description in this

section is for arbitrary items.

Suppose that there are m identical, indivisible items for sale to a set of agents N .

Each agent i has a private value pi for each item and a budget wi, which we assume

is known to the auctioneer.
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The adaptive clinching auction is an ascending price auction. Each agent i P N

reports a bid p̂i. The price p per item starts at 0 and grows over time. Items are

allocated as the price increases. As this happens, the auctioneer keeps track of the

number of items qippq that have been allocated to each agent i at prices less than

p along with the total cost cippq of those items and the agent’s remaining budget

Bippq “ wi ´ cippq. Define the demand of agent i at price p to be

Dippq “

$

’

’

&

’

’

%

8 p “ 0,
Y

Bippq
p

]

0 ă p ă p̂i,

0 p ě p̂i and p ą 0.

(5.2)

The adaptive clinching auction allocates items to agent i at price p if the total

demand of the other agents falls below the total supply. In particular, let qppq “ m´
ř

iPN qippq be the total number of items yet to be allocated. At any point, if D´ippq “
ř

j “iDjppq ă qppq, then qppq´D´ippq items are allocated to (or “clinched by”) agent

i at a price of p per item, and the relevant variables are updated accordingly.

The auction ends when the total demand no longer exceeds the total supply, that

is, when
ř

iPN Dippq ď qppq. At this point, the price stops ascending and all agents

with Dippq ą 0 are allocated their full demand at a per-item price of p. If the total

demand at price p is strictly less than the supply (i.e.,
ř

iPN Dippq ă qppq), then the

remaining qppq ´
ř

iPN Dippq items are allocated to agents i with p̂i “ p. (We will

see below that this is always possible to do.) A worked example is contained in the

appendix.

The adaptive clinching auction can be extended to handle divisible items. While

this extension is more complicated to write down, conceptually we simply view the

auction as a continuous-time process. Bhattacharya et al. [32] give a formal descrip-

tion. We omit the details, but summarize the properties of the auction that we use

to derive our results.2

2 Both Dobzinski et al. [68] and Bhattacharya et al. [32] describe the divisible-items version in
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First, agents have incentive to participate in the auction and to bid truthfully.

Lemma 56 (Dobzinski et al. [68]). The adaptive clinching auction for divisible items

is individually rational. When budgets are known to the auctioneer, it is also incentive

compatible: Every agent i maximizes expected utility by reporting p̂i “ pi.

While Dobzinski et al. [68] only state incentive compatibility for the case of

indivisible items, their proof carries through for the continuous version, and this fact

is used heavily by Bhattacharya et al. [32]. It follows from the observation that the

report p̂i only determines the price at which agent i drops out of the auction. While

the price is below pi, agent i can clinch (portions of) items at a per-item price below

her value, thus deriving positive utility. After the price rises above pi, any items she

would clinch would cost more than her value, so she would derive negative utility.

Thus, it is optimal to drop out of the auction exactly when the price reaches pi.

We additionally use the fact that no agent is charged more than her budget.

Lemma 57 (Dobzinski et al. [68], Bhattacharya et al. [32]). The adaptive clinching

auction for divisible items never charges an agent more than her budget.

We also rely heavily on the following facts, which together imply that no agent

(or the auctioneer) can be made better off without harming another agent.

Lemma 58 (Dobzinski et al. [68], Bhattacharya et al. [32]). The adaptive clinching

auction for divisible items always allocates all m items.

Lemma 59 (Dobzinski et al. [68], Bhattacharya et al. [32]). If an agent receives a

non-zero allocation of items from the adaptive clinching auction for divisible items,

then any player with a higher bid exhausts her entire budget.

terms of a single divisible item. For our purposes, it is more convenient to view it as an auction
over some number m of divisible items. This is equivalent and simply requires a rescaling of agent
values.
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Finally, the utility of each agent is (weakly) increasing in the number of items

sold.

Lemma 60 (Goel et al. [94]). Fixing p̂ and w, if p̂i “ pi then i receives weakly

greater expected utility from the adaptive clinching auction for divisible items when

the number of items m increases.

5.5 The Double Clinching Auction

In this section, we present the double clinching auction. Motivated by the observa-

tion that existing incentive compatible wagering mechanisms do not even allocate

securities efficiently, we turn to the adaptive clinching auction as a way to efficiently

allocate any fixed number of securities. The principal runs two instances of the adap-

tive clinching auction for divisible items, deriving the agents’ bids from their reports.

The first instance, which we refer to as the yes auction, sells some number m˚ of

yes securities to the agents, fixing the bid of each agent i to equal her report p̂i. The

second instance, which we refer to as the no auction, sells m˚ no securities, fixing

the bid of agent i to 1´ p̂i. If m˚ is chosen such that the payment collected for each

pair of yes and no securities is at least $1, then the principal never loses money, that

is, the mechanism is weakly budget balanced. While many values of m˚ balance the

budget, we define one particular value of m˚, carefully selected to ensure that agents

cannot profit by misreporting their beliefs.

The primary technical contribution of this section is the derivation of m˚ and the

proof that the resulting auction is indeed (weakly) incentive compatible.

5.5.1 Definition of the Double Clinching Auction

To formally define the double clinching auction, we first describe the selection of

m˚, the number of securities to be sold in each of the two instances of the adaptive

clinching auction. We start by defining a pair of demand functions. These are similar
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to Equation (5.2), but do not take into account items that may have been allocated.

Let Dy
i be the demand of agent i for (arbitrarily divisible) yes securities at price

p assuming a per-item value of p̂i, and Dn
i her demand for no securities at price p

assuming a per-item value of 1´ p̂i, that is,

Dy
i ppq “

$

’

&

’

%

8 p “ 0,
wi

p
0 ă p ă p̂i,

0 p ě p̂i and p ą 0,

and Dn
i ppq “

$

’

&

’

%

8 p “ 0,
wi

p
0 ă p ă 1´ p̂i,

0 p ě p̂i and p ą 0.

Let Dyppq “
ř

iPN Dy
i ppq be the total demand of all agents for yes securities at price

p, and Dy
´ippq “

ř

j “iD
y
j ppq be the total excluding agent i. Define Dnppq and Dn

´ippq

similarly.

The double clinching auction allocates securities only when there are 4 or more

agents with positive wagers. (Agents with wagers of zero can simply be dropped

since this is equivalent to not participating.) If there are fewer than 4, then no trade

occurs. For the remainder of this section, assume that there are N ě 4 agents who

submit reports p̂1 ď p̂2 ď . . . ď p̂N and wagers w ą 0.

Fixing the number of securities m, define the lowest clinching prices as

cypmq “

#

inftp : miniPN Dy
´ippq ă mu m ą 0,

p̂N´1 m “ 0,

and

cnpmq “

#

inftp : miniPN Dn
´ippq ă mu m ą 0,

1´ p̂2 m “ 0.

Here cypmq can be thought of as the price at which the first (possibly infinitesimal)

fraction of a security would be clinched in an adaptive clinching auction for m yes

securities, and similarly, cnpmq the price at which the first fraction of a security

would be clinched in an auction for m no securities. The m “ 0 case is simply a
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technical definition that is required in our proofs. Both cypmq and cnpmq are well-

defined since they each take the infimum of a non-empty set that is bounded below

by 0 since Dy
´ip0q “ Dn

´ip0q “ 8 for all agents i. It is easy to see that for all m,

cypmq P p0, p̂N´1s and cnpmq P p0, 1´p̂2s. The following lemma gives additional useful

properties of these functions. To show continuity, it is sufficient to show that the

functions are surjective (onto), since a surjective, monotonic function is continuous.

Lemma 61. Fixing reports p̂ and wagers w, cy and cn are continuous and weakly

decreasing.

Let M “ tm : cypmq ` cnpmq ą 1u. For any m PM , auctioning off m yes and m

no securities via two adaptive clinching auctions is guaranteed to collect more than

m dollars total, or more than $1 for each pair, guaranteeing no loss for the principal.

We set m˚ to be the largest m in M : the most pairs of securities such that every

pair, even every fraction of a pair, costs more than $1 per share (i.e., every ε shares

cost more than $ε). Formally, the number of pairs of securities auctioned is

m˚
“

#

supM p̂2 ă p̂N´1,

0 p̂2 “ p̂N´1.
(5.3)

The following lemma guarantees that m˚ is well-defined. This is clearly the case

when p̂2 “ p̂N´1. To show that m˚ is well-defined when p̂2 ă p̂N´1, it is sufficient to

show that the set M is non-empty and bounded above, which implies the existence

of a unique least upper bound. To show that m˚ ą 0 when p̂N´1 ą p̂2, we argue

that cyp0q ` cnp0q ą 1, which implies there must exist some m1 ą 0 such that

cypm
1q` cnpm

1q ą 1. This in turn implies that m1 PM and therefore, m˚ “ supM ě

m1 ą 0.

Lemma 62. For any p̂ and w, m˚ is well-defined. Furthermore, m˚ ą 0 when

p̂N´1 ą p̂2.
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With these definitions in place, we can formally define the double clinching auc-

tion; see Algorithm 8. The principal first sets m˚ according to Equation 5.3. He

then runs an auction for m˚ yes securities (the yes auction) and an auction for m˚

no securities (the no auction). A worked example of the double clinching auction on

the reports from Example 9 is given in the appendix.

We have already shown that this procedure is well defined. However, to show

that the double clinching auction is a valid wagering mechanism, we must also show

that no agent ever loses more than her wager; that is, for any p̂ and w, the double

clinching auction produces output py,n,σq such that for all i P N , mintyi, niu “ 0

and σi ď wi. We show this in the following theorem.

ALGORITHM 8: The Double Clinching Auction. Here ClinchingAuctionpm, p̂,wq de-
notes the allocation and payments produced by an adaptive clinching auction for m arbi-
trarily divisible items on bids p̂ and budgets w.

Input: Reports p̂ and wagers w ą 0 of N agents
1 if N ă 4 or p̂2 “ p̂N´1 then
2 Set py,n,σq “ p0,0,0q;

3 else
4 Set m˚ as in Equation 5.3;

5 Let py,σyq “ ClinchingAuctionpm˚, p̂,wq;

6 Let pn,σnq “ ClinchingAuctionpm˚,1´ p̂,wq;

7 Let σ “ σy ` σn;

8 end
Output: py,n,σq

Theorem 63. The double clinching auction is a valid wagering mechanism.

From Lemma 57, we know that no agent can lose more than her wager in either

the yes auction or the no auction alone. It is therefore sufficient to show that no

agent is ever allocated a positive number of securities in both auctions. This follows

immediately from the following lemma, taking p to be the report p̂i of any agent,

and the definition of the clinching auction.
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Lemma 64. Fixing any reports p̂ and wagers w, for any p P r0, 1s, either miniPN Dy
´ippq ě

m˚, miniPN Dn
´ip1´ pq ě m˚, or both.

Proof. If m˚ “ 0 then this claim is trivially true, since for all p, miniPN Dy
´ippq ě 0

and miniPN Dn
´ippq ě 0. So suppose that m˚ ą 0. Suppose that miniPN Dy

´ippq ă m˚

and miniPN Dn
´ip1´pq ă m˚. Then there exists anm1 ă m˚ such that miniPN Dy

´ippq ă

m1 and miniPN Dn
´ip1´ pq ă m1. Therefore, when m1 securities are sold, clinching in

the yes auction begins at (or before) p, and clinching in the no auction begins at (or

before) 1´p. That is, cypm
1q ď p and cnpm

1q ď 1´p. So cypm
1q`cnpm

1q ď p`1´p “

1. This implies that m1 is a lower upper bound on the set tm : cypmq ` cnpmq ą 1u

than m˚ is, violating the definition of m˚. �

5.5.2 Properties of the Double Clinching Auction

In this section, we discuss some desirable properties of the double clinching auction.

We first observe that the double clinching auction is weakly budget balanced and

individually rational.

Proposition 65. The double clinching auction is weakly budget balanced and indi-

vidually rational.

Proof. We first prove budget balance. From Lemma 58, we know that all m˚ se-

curities are allocated in both the yes auction and the no auction. Since all yes

securities are bought for a per-unit price of at least cypm
˚q and all no securities are

bought at a per-unit price of at least cnpm
˚q, the principal collects payments of at

least m˚pcypm
˚q` cnpm

˚qq which equals m˚ by Lemma 66. For each pair of yes and

no securities sold, the principal pays out exactly $1 to the agents, regardless of the

outcome. Therefore the principal is guaranteed to collect more than he pays out.

We next prove individual rationality. In particular we show that truthful re-

porting leads to non-negative expected payoff. From Lemma 56, agents obtain non-
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negative utility from truthfully reporting p̂i and 1 ´ p̂i in each of the two clinching

auctions, regardless of the value of m˚. Since participating truthfully in the double

clinching auction is equivalent to participating truthfully in each of the two clinching

auctions individually, each agent derives non-negative utility for doing so. So the

double clinching auction is individually rational. �

Lemma 66. For any reports p̂ and wagers w, cypm
˚q ` cnpm

˚q “ 1.

Finally we state our main theoretical result: incentive compatibility of the double

clinching auction. The proof is significantly more involved and we develop it in the

next subsection.

Theorem 67. The double clinching auction is weakly incentive compatible.

5.5.3 Proof of Incentive Compatibility

In this section, we prove Theorem 67, beginning with some useful lemmas. The first

states that an agent cannot benefit from misreporting her belief unless it increases

the number of securities.

Lemma 68. For any i P N , fix the wagers w of all agents and reports p̂´i of all

agents but i, and let p̂i “ pi. Agent i cannot increase her expected utility under the

double clinching auction by reporting any p̂1i ‰ pi unless this report increases the

value of m˚.

Proof. Let m˚ denote the number of security pairs allocated by the double clinching

auction when i reports p̂i “ pi, and m̂˚ the number when i reports p̂1i.

First, observe that agent i cannot benefit from any misreport for which m˚ “ m̂˚.

This follows immediately from the incentive compatibility of the adaptive clinching

auction (Lemma 56). Agent i maximizes the utility she gains from both the yes and

no auctions individually when her bids in these auctions are truthful. Fixing m˚, the
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yes and no auctions are run independently, so agent i maximizes her total utility by

reporting her true belief. Next, suppose that m̂˚ ă m˚. Agent i’s utility for bidding

untruthfully for m̂˚ securities is weakly less than her utility for bidding truthfully

for m̂˚ securities, by incentive compatibility of the adaptive clinching auction, which

is weakly less than her utility for bidding truthfully for m˚ securities, by Lemma 60.

Thus she would weakly prefer to bid truthfully than to make any misreport that

reduces m˚. �

Lemma 69 follows because, when any agent increases her report, the demand

for yes (respectively, no) securities at a fixed price does not decrease (respectively,

increase).

Lemma 69. For any i P N , fix the wagers w of all agents and reports p̂´i of all

agents but i. For any fixed m, as i’s report p̂i increases, the lowest clinching price

cypmq weakly increases, while the lowest clinching price cnpmq weakly decreases.

The proof of Lemma 70 uses the fact that as the price moves from any value p

to a sufficiently close higher value p1, no new agent will drop out of the auction, and

so demand functions only change by a very small amount.

Lemma 70. For any reports p̂ and wagers w, and any m, miniPN Dy
´ipcypmqq ď m

and miniPN Dn
´ipcnpmqq ď m.

We are now ready to complete the proof of Theorem 67. We start by observing

that no agent can be allocated both yes and no securities. We treat two cases. If

an agent’s misreport does not change the type of security that she is allocated, then

it cannot increase the number of securities sold, and so by Lemma 68, cannot be

profitable. If her misreport does change the type of security that she is allocated,

she may be able to increase the number of securities auctioned. However, in this

case, the amount she pays would be higher than her value for the securities she gets.
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Proof of Theorem 67. Consider an agent i with belief pi and let p̂´i denote the re-

ports of all agents other than i. Let m˚ be the number of pairs of securities auctioned

if i truthfully reports pi. Denote by ĉy and ĉn the lowest clinching price functions if i

misreports p̂i “ pi, and by D̂ the demand functions in the misreported instance. Let

m̂˚ denote the number of pairs of securities auctioned in the misreported instance.

Noting that p̂i “ pi, we can break the analysis into four cases:

(1) pi ă cypm
˚
q and p̂i ď cypm

˚
q (3) pi ď cypm

˚
q and p̂i ą cypm

˚
q

(2) pi ą cypm
˚
q and p̂i ě cypm

˚
q (4) pi ě cypm

˚
q and p̂i ă cypm

˚
q

Case 1 and Case 2 are symmetric, since in Case 2 1´pi ă cnpm
˚q and 1´p̂i ď cnpm

˚q,

which is equivalent to Case 1 reversing the outcomes yes and no. Similarly, Case 3

and Case 4 are symmetric. Therefore, it is sufficient to show that i does not benefit

from misreporting in Cases 1 or 3.

Case 1: pi ă cypm
˚q and p̂i ď cypm

˚q. To show that i can not benefit from this

misreport, we prove that she does not change the clinching prices cypm
˚q and cnpm

˚q.

We will show that if p̂i ă cypm
˚q then this is true because the global demand can

only change at prices between pi and p̂i, and this interval does not contain cypm
˚q.

When p̂i “ cypm
˚q, some more care is necessary.

If m˚ “ 0 then cypm
˚q “ pN´1. Further, we know that pN´1 “ p2, or else it

would be the case that m˚ ą 0, by Lemma 62. And, since we have assumed that

pi ă cypm
˚q, we know that i’s report is the lowest of all agents. Since p̂i ď cypm

˚q “

pN´1 “ p2, p̂i is still the (equal) lowest report, and therefore both the second highest

and second lowest reports are unchanged. In particular, p̂2 “ p̂N´1, so m̂˚ “ 0. By

Lemma 68, this misreport does not benefit i.

Now suppose that m˚ ą 0. We first show that cypm
˚q “ ĉypm

˚q and cnpm
˚q “

ĉnpm
˚q. If p̂i ă cypm

˚q then the demand locally around cypm
˚q and cnpm

˚q is

unchanged. Therefore, since cypm
˚q and cnpm

˚q are the prices at which demand
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drops below m˚, these quantities remain unchanged in the misreported instance. If

p̂i “ cypm
˚q then, by Lemma 69, cypm

˚q ď ĉypm
˚q, since pi ă p̂i “ cypm

˚q. However,

for all p ą cypm
˚q, the demand in the misreported instance is exactly the same as

that in the truthful instance, and therefore mini D̂
y
´ippq ă m˚ for all p ą cypm

˚q,

which implies that ĉypm
˚q ď cypm

˚q. This, together with the earlier statement that

ĉypm
˚q ě cypm

˚q, gives us cypm
˚q “ ĉypm

˚q. By similar reasoning, cnpm
˚q “ ĉnpm

˚q.

Therefore ĉypm
˚q` ĉnpm

˚q “ cypm
˚q`cnpm

˚q “ 1. Since ĉy and ĉn are decreasing

functions, m˚ is an upper bound on the set M “ tm : ĉypmq ` ĉnpmq ą 1u. Since

the double clinching auction sells a number of securities equal to the least upper

bound of M , it therefore sells at most m˚ securities in the misreported instance. By

Corollary 68, agent i does not profit from this misreport.

Case 3: pi ď cypm
˚q and p̂i ą cypm

˚q. In this case, i’s misreport can increase

the number of securities sold. However, we show that to do so, i must be allocated

some yes securities. But since i’s misreport is higher than her true value, it must

also be the case that the price for yes securities is higher in the misreported instance

than the truthful instance. Because all yes securities are sold at a price higher than

i’s valuation in the truthful instance, it must still be the case in the misreported

instance. Therefore i does not get any positive utility from the securities she is

allocated.

There are two possibilities. First is that ĉypm
˚q ` ĉnpm

˚q ď 1, in which case we

need to sell (weakly) fewer securities in the misreported instance than the truthful

instance. That is, m̂˚ ď m˚. By Lemma 68, the misreport can not be profitable for

i in this case.

Second is that ĉypm
˚q ` ĉnpm

˚q ą 1. In this case it may be possible to sell more

securities, so assume that m̂˚ ą m˚ (otherwise i’s misreport is not profitable, by
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Lemma 68). By Lemma 70, minj D̂
y
´jpĉypm

˚qq ď m˚ ă m̂˚. So, by Lemma 64,

min
j
D̂n
´jp1´ ĉypm

˚
qq ě m̂˚. (5.4)

In what remains of the proof, we show that holding the number of securities the

same as in the truthful instance, i’s misreport cannot result in the clinching price

rising all the way above p̂i. We can then use the fact that the clinching price de-

creases as we sell more securities to deduce that p̂i ě ĉypm̂
˚q, which (after addressing

some details) says that i is allocated yes securities, and not no securities. By lower

bounding the price of the yes securities by i’s true valuation pi, this says that i can

not derive positive utility from this misreport. We now prove this formally.

We first show that p̂i ě ĉypm
˚q. In the case that m˚ “ 0, this is true because p̂i ą

cypm
˚q “ pN´1, so therefore p̂i is one of the two highest reports in the misreported

instance. And, since m˚ “ 0, it follows that ĉypm
˚q “ p̂N´1 ď p̂i.

For the case that m˚ ą 0, note that the demand is unchanged from the truthful

instance at all prices greater than or equal to p̂i. Therefore for all p ě p̂i, we

have that minj D̂
y
´jppq “ minj D

y
´jppq ă m˚, where the inequality holds because

p ě p̂i ą cypm
˚q. In particular, minj D̂

y
´jpp̂iq ă m˚, which implies that p̂i ě ĉypm

˚q.

From p̂i ě ĉypm
˚q, we have that 1´ p̂i ď 1´ ĉypm

˚q, which implies that D̂n
´ip1´

p̂iq ě D̂n
´ip1 ´ ĉypm

˚qq. Combining this with Equation 5.4, D̂n
´ip1 ´ p̂iq ě D̂n

´ip1 ´

ĉypm
˚qq ě minj D̂

n
´jp1 ´ ĉypm

˚qq ě m̂˚, which implies that i does not receive no

securities in the misreported instance. There are two possibilities remaining. If i

also does not receive yes securities, then agent i achieves zero overall payoff after

misreporting, which is no better than her payoff from reporting truthfully. Otherwise,

the average price paid per yes security is at least ĉypm̂
˚q “ 1´ĉnpm̂

˚q ě 1´ĉnpm
˚q ě

1´ cnpm
˚q “ cypm

˚q ě pi, where the first inequality follows from the fact that ĉn is

decreasing and m̂˚ ą m˚, and the second inequality follows from Lemma 69, because

153



p̂i ą pi. Therefore i is paying a price for the securities equal to or greater than they

are worth to her, so she obtains non-positive expected payoff, which is no better than

her (non-negative) truthful payoff. �

5.5.4 Beyond Weak Incentive Compatibility

Theorem 67 proves weak incentive compatibility. Taken at face value, weak incentive

compatibility is, well, extremely weak. Indeed, simply paying each agent a constant

amount regardless of her report satisfies weak incentive compatibility.

We show that the double clinching auction actually satisfies a stronger property:

If agent i makes any misreport p̂i “ pi, then, for some set of reports p̂´i of the other

agents, agent i obtains strictly lower expected utility than she would by reporting

truthfully. If agent i is sufficiently uncertain about other agents, she is strictly better

off reporting her true belief.

Theorem 71. Fix any set of agents N with N ě 4 and any wagers w. For any

agent i with belief pi and any report p̂i ‰ pi, there exist reports p̂´i of the other

agents such that under the double clinching auction

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq ´ σippi, p̂´i; wq

ą piyipp̂; wq ` p1´ piqnipp̂; wq ´ σipp̂; wq.

Proof. Suppose that p̂i ą pi; because of the symmetries in the double clinching

auction, this is without loss of generality. For all j ‰ i, let p̂j lie in ppi, p̂iq and assume

there are at least three unique reports from the agents j ‰ i. This guarantees that

m˚ ą 0 by Lemma 62. Since p̂i is the largest report, yipp̂,wq ą 0; this follows from

Lemma 59. Furthermore, cypm
˚q ą pi, so the price i pays per yes security must be
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strictly greater than pi, so σipp̂; wq ă piyipp̂; wq. Thus,

piyipp̂; wq ` p1´ piqnipp̂; wq ´ σipp̂; wq “ piyipp̂; wq ´ σipp̂; wq

ă 0 ď piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq ´ σippi, p̂´i; wq,

where the final inequality follows from the fact that the double clinching auction is

incentive compatible and individually rational. �

5.5.5 Budget Inflation Under the Double Clinching Auction

As discussed in Section 5.3, even a wagering mechanism that satisfies incentive com-

patibility may give an agent incentive to misreport her belief if she can safely inflate

her budget. Since the double clinching auction is not Pareto optimal, a bidder with

complete knowledge of the reports and wagers of other agents could have incentive

to inflate her budget. Further, there exist examples analogous to Example 10 where

the potential for an agent to inflate her budget may also affect her incentive to report

truthfully.

However, in reality agents operate with only limited knowledge about the reports

of other agents. While the budget misreport in Example 10 was safe in the sense that

the budget inflation could not lead to the misreporting agent overspending her true

budget, we can show that completely safe manipulations are not possible under the

double clinching auction. An agent cannot inflate her wager without at least some

risk of losing more than her true budget. This is in stark contrast to Proposition 53

for the WSWM.

Theorem 72. Fix any set of agents N with N ě 4. For any agent i with report p̂i

and wager wi, there exist reports p̂´i and wagers w´i of the other agents such that

σi “ wi under the double clinching auction.

Proof. Suppose without loss of generality that p̂i ě
1
2
. Let p̂´i “

pp1, p2, . . . , pN´2, pN´1q “ p0.1, 0.1, . . . , 0.1, 0.45q and w´i “ p2wi, 2wi, . . . , 2wi, wiq.
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Consider the allocation of a double clinching auction with m “
wi

0.4
. Then cypmq “

wi

wi{0.4
“ 0.4, so both agents N ´ 1 and i “ N begin clinching at p “ 0.4, and

cnpmq ě
2wi

wi{0.4
“ 0.8. In particular, since cypmq ` cnpmq ą 1, it must be the case

that m˚ ą m for this instance. Since agent N ´1 is allocated some non-zero number

of yes securities when m pairs of securities are allocated via clinching auction, she

is also allocated non-zero yes securities when m˚ pairs of securities are auctioned.

By Lemma 59, it must be the case that agent σi “ wi. �

5.6 Simulations

For a fixed number of yes securities, the adaptive clinching auction is efficient, so

we had reason to suspect that the double clinching auction, selling m˚ yes and no

securities, would be near efficient. In this section, in a series of simulations based

on real probability reports, we show that indeed the DCA is much more efficient

than the WSWM or the NAWM, in some cases coming remarkably close to Pareto

optimality.

We compare the performance of the double clinching auction to the parimutuel

consensus mechanism (PCM), the Brier scoring rule version of the weighted score wa-

gering mechanism (WSWM), and the Brier-score no-arbitrage wagering mechanism

(NAWM). The PCM is known to be Pareto optimal, serving as the gold standard

with respect to the amount of trade generated, though is not incentive compati-

ble. WSWMs and NAWMs provide a natural comparison as the only other known,

non-trivial wagering mechanisms that are individually rational, incentive compatible,

and budget balanced. We chose the Brier scoring rule since it is commonly used in

practice.

We tested each wagering mechanism on a data set consisting of probability reports
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collected from an online prediction contest called ProbabilitySports [87].3,4 The data

set consists of probabilistic predictions about the outcomes of 1643 U.S. National

Football League games between the start of the 2000 preseason and the end of the

2004 season. For each match, between 64 and 1574 people reported their subjective

probability of the home team winning the game. After each game, they earned points

in the contest according to a Brier scoring rule.

The ProbabilitySports users provided probabilities but not wager amounts. We

simulate wagers in two ways. First, we generate uniform wagers: we fix all wagers

at 1, modeling a scenario where agents are equal or cannot vary the default wager

amount. Second, we generate wagers according to a Pareto distribution, reflecting

the typical distribution of wealth in a population. We used a Pareto distribution

with shape parameter 1.16 and scale parameter 1, which is often described as “20%

of the population has 80% of the wealth.” Each random set of wagers was scaled so

that the average wager for any single match is exactly 1, allowing a comparison to

the uniform wager case.

5.6.1 Notes on Implementation

A perfectly faithful implementation of the double clinching auction, as defined in

Section 5.5, would require running an adaptive clinching auction for arbitrarily di-

visible goods with continuously increasing price function and allocations. In practice,

it is necessary to discretize the price increases, thus computing allocations and prices

that approximately match the double clinching auction.

One might be concerned that this discretization could adversely affect the nice

properties of the double clinching auction. In particular, it might now be possible

3 We thank Brian Galebach for providing us with this data.

4 We also conducted simulations with random probability reports, generated both uniformly at
random and according to a beta distribution. The results, and in particular the relative performance
of the mechanisms, are very similar to those obtained using the ProbabilitySports data set.
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for an agent to profit by misreporting her probability. To check whether this was

the case, we empirically tested incentive compatibility on the 1643 matches from the

ProbabilitySports data set. For each match, we chose a random agent i and ran the

double clinching auction 101 times to calculate the expected payoff i would receive

reporting each value in the set t0, 0.01, 0.02, . . . , 0.99, 1u. We found a single profitable

misreport for only a single one of these matches, with the misreporting agent able to

increase her expected utility from 5.1611 to 5.1612. This suggests that the mechanism

retains (at least approximate) incentive compatibility when discretized.

5.6.2 Results

The results are summarized in Table 5.1. The top table shows various statistics

averaged across all 1643 matches, with wagers for each match drawn from a Pareto

distribution. The Risk/Wagers column reports the total risk, summed across all

agents, divided by the total wager, summed across all agents, or
ř

iPN σi{
ř

iPN wi.

A value of 1 means that every agent risks losing her entire wager for one outcome;

a value of 0 means that no trade occurs. The %Full Stakes column reports the

percentage of agents that risk losing their entire wager under one outcome (i.e.,

σi “ wi). The #Securities column gives the total number of pairs of securities

sold to the agents, or
ř

iPN yi “
ř

iPN ni. The Principal Profit column shows the

principal’s net profit. Finally, the Agent Utility column gives the sum of the agents’

expected utilities, assuming immutable beliefs and truthful reports.

As expected, the PCM facilitates the most trade, in terms of both the risk:budget

ratio and the number of securities sold. However, there is a notably large gap in these

metrics between the double clinching auction and the NAWM and WSWM, with the

double clinching auction selling almost five times as many securities as the NAWM

and WSWM. Additionally, under the double clinching auction, over 80% of agents

risk their entire wagers, compared with no agents under NAWM and WSWM. This
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Table 5.1: Evaluation of wagering mechanisms using reports from the ProbabilityS-
ports data set. The top table was generated using Pareto distribution wagers, the
bottom with uniform wagers.

Risk/Wagers %Full Stakes #Securities Profit Agent Utility
PCM 0.94 97.2 601.1 0 200.1
DCA 0.80 82.6 489.3 28.4 152.1

NAWM 0.20 0 98.4 25.8 27.9
WSWM 0.16 0 101.2 0 53.7

Risk/Wagers %Full Stakes #Securities Profit Agent Utility
PCM 0.97 96.9 618.5 0 208.1
DCA 0.97 96.4 616.4 1.3 206.3

NAWM 0.21 0 102.5 28.7 28.8
WSWM 0.17 0 105.7 0 57.4

is further evidence that falsely inflating a wager amount under the double clinching

auction, while possibly beneficial in theory, would be extremely risky in practice,

with a high chance of the manipulating agent losing more than her true budget.

We note that, while our objective is not to make a profit for the principal, the

double clinching auction does yield a reasonable profit without sacrificing agent wel-

fare.

The bottom table reports the same metrics when the agents’ wagers are equal.

While the three other mechanisms exhibit very similar performance in this case, the

double clinching auction displays a marked increase in the amount of trade facilitated,

under all metrics, and a drop in profit. For the objective of maximizing trade, this

is a particularly compelling argument to use the double clinching auction in cases

when equal wagers are natural.

Note that all matches in the ProbabilitySports data set have a relatively large

number of agents participating. However, in many cases we are interested in in-

stances with smaller numbers of agents. To investigate this behavior, we generated

smaller instances by subsampling reports from the full set of reports for each match.

Figure 5.1 plots the ratio of total risk to total budget, p
ř

iPN σiq{p
ř

iPN wiq, for the
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Figure 5.1: The risk:budget ratio for each of the four wagering mechanisms, plotted
as a function of N .

four mechanisms for values of N ranging from 5 to 50, with wagers randomly drawn

from a Pareto distribution. We see that while the PCM, NAWM, and WSWM ex-

hibit only minimal change as N increases, the double clinching auction facilitates

more trade for larger values of N . However, even for N “ 5, the double clinching

auction facilitates approximately twice the trade as the WSWM and the NAWM,

suggesting that the double clinching auction is the best truthful mechanism when

maximizing trade is a primary objective.

5.7 Discussion

We have defined and analyzed the double clinching auction, proving that it simulta-

neously satisfies incentive compatibility, budget balance, and individual rationality.

While we showed that no wagering mechanism can simultaneously achieve these three

properties along with Pareto optimality, our simulations suggest that the DCA comes

close to Pareto optimality in practice, making it the first known incentive compatible

wagering mechanism to do so.

It would be valuable, but apparently non-trivial, to extend the DCA to settings

with non-binary outcomes. The DCA crucially exploits the fact that agents can be

ordered by their reports in one dimension, allowing us to guarantee that no agent is
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allocated both yes and no securities. With larger outcome spaces, this property no

longer holds, and designing a mechanism in which the principal auctions off three or

more types of securities would require novel techniques.

Even in the binary-outcome setting, a number of interesting problems remain.

While our simulations suggest that the DCA comes close to achieving Pareto opti-

mality, we have not established any formal approximation guarantee. An additional

particularly compelling question is whether our choice of m˚ is the largest number of

securities that can be sold via a pair of adaptive clinching auctions while satisfying

incentive compatibility and budget balance.
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6

Efficient Wagering by Relaxing Incentive
Compatibility

6.1 Introduction

In Chapter 5, we considered the problem of low stakes, where existing wagering

mechanisms are not (close to) Pareto optimal. We showed that Pareto optimality is

incompatible with the core properties of individual rationality, budget balance, and

incentive compatibility. Unwilling to give up any of the core properties, we designed

a mechanism that was close to Pareto optimal: the double clinching auction.

In this chapter, we take a different approach. Rather than relaxing Pareto opti-

mality, we relax full incentive compatibility, but achieve a formal approximation to

incentive compatibility instead. In this sense, we get three of the four incompatible

properties, and come ‘close’ to the fourth in a precise sense.

To do this, we consider the parimutuel consensus mechanism (PCM) [72], which

can be seen as the equilibrium of parimutuel betting. In parimutuel betting, each

bettor places money on one of several future outcomes—say, horse #1 to win a race.

She is allowed to cancel her bet or move her money to a different outcome at any
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time, even at the last second before wagering closes and the race begins. After the

outcome resolves—say, horse #1 wins—agents who picked the wrong outcome lose

their wagers to the agents who picked correctly. Winning agents split the pot in

proportion to the size of their wagers.

The PCM is equivalent to parimutuel betting where each agent has a proxy.

Each agent’s proxy knows her true probabilities for all outcomes. As bets come

in, and the prospective payoff per dollar, or odds, for each outcome converge, the

proxy automatically switches its agent’s money to the outcome yielding the highest

expected payoff for that agent. In equilibrium, all the proxies are optimizing and

none want to switch outcomes. At any point in time, the odds can be interpreted as

probabillities, providing a prediction of the outcome of the event.

Eisenberg and Gale discuss one undesirable feature of the equilibrium: it produces

odds that sometimes ignore some agents. Manski [118] further explores in detail

how the equilibrium of risk-neutral, budget-constrained agents may fail to aggregate

beliefs in a sensible way. Additionally, the PCM is not incentive compatible, or

truthful. An agent may strategically improve her payoff by taking into account what

other agents know or what they may do. In the end, her best action may be to report

false probabilities to her proxy that differ from her true subjective probabilities. For

a principal whose primary goal is information elicitation, this is problematic because

some of the reported probabilities may not faithfully reflect the bettors’ private

information.

Given the potential for bad equilibria and the lack of incentive compatibility,

why is the PCM still prevalent? One answer is that, in practice, it often works

fine. Parimutuel betting does consistently induce a wisdom-of-crowds effect, pro-

ducing odds that encode well calibrated and accurate probabilistic forecasts of the

outcomes [18, 151, 155], like many prediction markets do [19]. Plott et al. [133] tested

parimutuel betting in a laboratory experiment, showing that the mechanism is an
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effective vehicle for information aggregation regardless of why it might go wrong in

theory. If agents have concave or risk-averse utility for money, the equilibrium of

similar mechanisms is stable and induces sensible belief aggregation [31, 166]. In

particular, an agent with logarithmic utility does best by betting an amount on each

outcome proportional to her probability [62].

In this chapter, we examine another plausible reason why the PCM continues

to enjoy usage: the mechanism satisfies a number of desirable axioms for wagering

systems. We prove that the PCM is the unique wagering mechanism that is Pareto

optimal, individually rational, strictly budget balanced, sybilproof, anonymous, and

envy-free, subject to a mild condition on the reports.

To address the lack of incentive compatibility, we show that the PCM is near

incentive compatible in some sense. Yes, there are scenarios where agents can gain

from lying, but we prove that the PCM is incentive compatible in the large, as the

number of agents grows. In extensive simulations using real forecasts from an online

contest, we show that opportunities for agents to profit from untruthful play are

rare, mostly vanishing as the number of agents grows. Our results shed light on the

practical success of the PCM. Despite its flaws, identified as early as 1959, it does

satisfy six natural and desirable properties of wagering mechanisms and it comes

close both theoretically and empirically to obtaining a crucial seventh: incentive

compatibility.

6.2 Preliminaries

We work in the same setup as Chapter 5. We have a binary random variable X and

a set of agents N , each of whom submits a report p̂i and wager wi to the mechanism.

We do however impose one additional restriction on the wagers by requiring they be

rational. That is, wi P Qě0. This assumption is required in Section 6.4. The output

of the mechanism is specified by a triple py,n,σq, where yi is the number of yes
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securities allocated to agent i, ni the number of no securities, and σi the price paid

by i for those securities.

For this chapter, we introduce some more properties of wagering mechanisms.

First, anonymity says that the payouts do not depend on the identities of the agents.

This is a basic property that all wagering mechanisms proposed in the literature,

including the PCM, satisfy.

Second, sybilproofness [112] says that it is not beneficial for agents to participate

under multiple fake identities, or for agents reporting the same probability to merge.

Definition 15. A wagering mechanism is sybilproof if for any subset of players S,

for any p̂ with p̂i “ p̂j for i, j P S, for any vectors of wagers w,w1 with wi “ w1i for

i R S and
ř

iPS wi “
ř

iPS w
1
i, it is the case that:

ÿ

iPS

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “
ÿ

iPS

pyipp̂; w1
q, nipp̂; w1

q, σipp̂; w1
qq

and for all i R S,

pyipp̂; wq,nipp̂; wq, σipp̂; wqq “ pyipp̂; w1
q, nipp̂; w1

q, σipp̂; w1
qq.

Lastly, we consider the property of envy-freeness [76]. Envy-freeness is a basic

fairness property which says that no player should envy the allocation of securities

to any other agent.

Definition 16. Say that agent i envies another agent j if σjpp̂; wq ď wi and

p̂iyipp̂; wq ` p1´ p̂iqnipp̂; wq ´ σipp̂; wq ă p̂iyjpp̂; wq ` p1´ p̂iqnjpp̂; wq ´ σjpp̂; wq

A wagering mechanism is envy-free if there is no pair of agents pi, jq such that i

envies j.

We also note that for this chapter we use a slightly stronger definition of individual

rationality than in the previous chapter. Our previous definition required that every
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agent had some report that guaranteed non-negative expected payoff. The version

that we use in this chapter requires that truthful reporting guarantees non-negative

expected payoff, which is implied by the earlier version of individual rationality in

combination with incentive compatibility. We require the stronger version in the

proof of Theorem 74.

Definition 17. A wagering mechanism is individually rational if, for any agent i

and any belief pi, for all p̂´i,w it holds that

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq ě σippi, p̂´i; wq

6.3 The Parimutuel Consensus Mechanism

The Parimutuel Consensus Mechanism (PCM) can be thought of as a direct imple-

mentation of the equilibrium of parimutuel betting. The PCM includes the rules of

parimutuel betting plus, conceptually, a proxy agent that automatically switches its

agent’s bet to the outcome with highest expected profit per security. The output of

the mechanism is the equilibrium where all proxies are stable. For the binary case

of yes and no outcomes that we consider, the PCM is defined by a price π such that

an agent with probability less than π is allocated no securities at a price of 1´π per

security, and an agent with probability more than π is allocated yes securities at a

price of π per security. The equilibrium condition is

ÿ

i:p̂iăπ

wi
1´ π

`
ÿ

i:p̂i“π

c1wi
1´ π

“
ÿ

i:p̂iąπ

wi
π
`

ÿ

i:p̂i“π

c2wi
π

, (6.1)

where c1 and c2 lie in the interval r0, 1s and mintc1, c2u “ 0. These represent the

possibility of needing agents with p̂i “ π to bet (some of) their wager to correctly

balance the market prices and allow the market to reach equilibrium, even though

they get zero expected profit. At most one of c1 and c2 is greater than 0, since it
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would be redundant to have agents with p̂i “ π betting on both yes and no. Note

that the left hand side of Equation 6.1 is the total number of no securities allocated,

and the right hand side is the total number of yes securities allocated. Eisenberg

and Gale [72] show as their main contribution that such a price is both unique and

guaranteed to exist. The output of the PCM is defined by

yipp̂,wq “

$

’

&

’

%

0 p̂i ă π
c2wi

π
p̂i “ π

wi

π
p̂i ą π

, nipp̂,wq “

$

’

&

’

%

wi

1´π
p̂i ă π

c1wi

1´π
p̂i “ π

0 p̂i ą π

and

σipp̂,wq “

$

’

&

’

%

wi p̂i ă π

maxtc1, c2uwi p̂i “ π

wi p̂i ą π

Example 11. Suppose that there are four agents, with reports p̂ “ p0.3, 0.5, 0.6, 0.8q

and wagers w “ p1, 1, 3, 6q. Observe that setting π “ 0.6 and c1 “ 2{3, c2 “ 0 satisfies

Equation 6.1: each side of the equation has value 10. Further, setting π ă 0.6 results

in the right hand side of Equation 6.1 being greater than the left hand side, for any

allowed values of c1 and c2, and the opposite is true for any π ą 0.6.

We can now compute the output of the PCM on this instance, according to the

formulae above. Agents 1 and 2 are allocated 2.5 yes securities each, for a price of

1, agent 3 is allocated 5 yes securities for a price of 2 (note that this is a c1 “ 2{3

fraction of agent 3’s budget), and agent 4 is allocated 10 no securities for a price of

6.

Recall that, by Theorem 55, no wagering mechanism can simultaneously sat-

isfy individual rationality, weak incentive compatibility, weak budget balance, and

Pareto optimality. Theoretical papers on wagering mechanisms are generally re-

luctant to give up any of the first three properties, sacrificing Pareto optimality

167



[56, 82, 112, 113]. However, in practice, Pareto optimality is an important con-

sideration and virtually all real-world wagering mechanisms, including parimutuels,

bookmakers, and double auctions, satisfy it. This is because trade drives participa-

tion; a mechanism that facilitates little trade is of little use or interest to agents.

Individual rationality seems hard to give up. We cannot force agents to play

a game that they expect to lose and, even if we did, they could just wager wi “

0. The center may be willing to pay for the information inherent in the agents’

beliefs, subsidizing the mechanism and relaxing budget balance. Market scoring

rules [52, 101], for example, do just that, losing a strictly bounded amount of money

in service of gaining information. However, a patron will only subsidize events that

bear on valuable decisions. Nearly all fielded wagering mechanisms have taxes, not

subsidies, yielding profits, not losses.

If we want Pareto optimality, individual rationality, and budget balance, we are

forced to give up on incentive compatibility. That’s exactly what the PCM does (see

Example 12 for a concrete example). In the remainder of this paper, we show that the

PCM is the unique wagering mechanism that simultaneously satisfies the other six

properties of budget balance, individual rationality, Pareto optimality, anonymity,

sybilproofness and envy-freeness, subject to a condition on the reports. We then

show that, despite not satisfying incentive compatibility, the PCM is approximately

incentive compatibile in two senses. First, we prove that, as the number of agents

grows, the mechanism is incentive compatible in the large. Second, we show empiri-

cally that, across thousands of simulated wagers based on real probability estimates,

opportunities to profit from misreports are almost negligible.

6.4 Properties of the PCM

Despite its theoretical flaws, including the possibility of nonsensical information ag-

gregation, the PCM seems well behaved in practice. In this section, we examine
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one possible reason for this by providing a theoretical justification for the PCM. We

first note that the PCM satisfies six desirable properties for wagering mechanisms.

Although incentive compatibility is not one of the six, we know that adding it is

impossible without giving something up: no mechanism satisfying even just the first

three properties can also be incentive compatible.

Proposition 73. The parimutuel consensus mechanism satisfies individual rational-

ity, budget balance, Pareto optimality, anonymity, sybilproofness, and envy-freeness.

That the PCM satisfies the first three properties is noted by Freeman et al. [82].

Proof. For this proof, we assume that c2 “ 0 in the equilibrium condition given by

Equation 6.1. The proof for the case where c1 “ 0 follows via symmetric arguments

for all properties.

1. Anonymity Anonymity clearly holds because Equation 6.1 and the allocation

of securities do not depend on the identities of the agents.

2. Individual rationality: Consider some agent i. If pi ă π,

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq “ p1´ piq
wi

1´ π
ą wi “ σippi, p̂´i; wq

If pi ą π,

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq “ pi
wi
π
ą wi “ σippi, p̂´i; wq

Finally, if pi “ π,

piyippi, p̂´i; wq ` p1´ piqnippi, p̂´i; wq “ p1´ piqc1
wi

1´ π
“ c1wi “ σippi, p̂´i; wq

3. Budget balance: First, note that

ÿ

iPN
yipp̂; wq “

ÿ

p̂iąπ

wi
π
“

ÿ

p̂iăπ

wi
1´ π

` c1

ÿ

p̂i“π

w1

1´ π
“

ÿ

iPN
nipp̂; wq,
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where the second transition follows from the definition of π. Next,

ÿ

iPN
σipp̂; wq “

ÿ

p̂iąπ

wi `
ÿ

p̂iăπ

wi `
ÿ

p̂i“π

c1wi

“ π
ÿ

p̂iąπ

wi
π
` p1´ πq

˜

ÿ

p̂iăπ

wi
1´ π

` c1

ÿ

p̂i“π

w1

1´ π

¸

“ π
ÿ

p̂iąπ

wi
π
` p1´ πq

ÿ

p̂iąπ

wi
π

“
ÿ

p̂iąπ

wi
π
“

ÿ

iPN
yipp̂; wq “

ÿ

iPN
nipp̂; wq,

Where the third transition is obtained via the definition of π (and noting that c2 “ 0,

by assumption).

4. Pareto optimality We show that the price π satisfies the condition of

the Pareto optimality definition. From the definition of the PCM, if p̂i ą π then

σipp̂; wq “ wi and nipp̂; wq “ 0, and if p̂i ă π then σipp̂; wq “ wi and yipp̂; wq “ 0.

5. Sybilproofness: Consider a set of sybils S such that w and w1 satisfy the

conditions of Definition 15, with corresponding prices π and π1 reached by the PCM.

By the definition of sybils, the following three conditions hold:

ÿ

i:p̂iăπ

wi “
ÿ

i:p̂iăπ

w1i,
ÿ

i:p̂i“π

wi “
ÿ

i:p̂i“π

w1i,
ÿ

i:p̂iąπ

wi “
ÿ

i:p̂iąπ

w1i

It follows immediately that

ÿ

i:p̂iăπ

wi
1´ π

` c1

ÿ

i:p̂i“π

wi
1´ π

“
ÿ

i:p̂iąπ

wi
π

ùñ
ÿ

i:p̂iăπ

w1i
1´ π

` c1

ÿ

i:p̂i“π

w1i
1´ π

“
ÿ

i:p̂iąπ

w1i
π
,

so π “ π1, with the same value of c1 in both cases.
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Suppose first that i R S. If p̂i ą π then

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “ p
wi
π
, 0, wiq

“ p
w1i
π1
, 0, w1iq “ pyipp̂; w1

q, nipp̂; w1
q, σipp̂; w1

qq.

If p̂i ă π then

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “ p0,
wi

1´ π
,wiq

“ p0,
w1i

1´ π1
, w1iq “ pyipp̂; w1

q, nipp̂; w1
q, σipp̂; w1

qq.

Finally, if p̂i “ π then

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “ p0, c1
wi

1´ π
, c1wiq

“ p0, c1
w1i

1´ π1
, c1w

1
iq “ pyipp̂; w1

q, nipp̂; w1
q, σipp̂; w1

qq.

Next, suppose that i P S. If p̂i ą π “ π1, then p̂j “ p̂i ą π “ π1 for all j P S. We

have

ÿ

iPS

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “

˜

ÿ

iPS

wi
π
, 0,

ÿ

iPS

wi

¸

“

˜

ÿ

iPS

w1i
π1
, 0,

ÿ

iPS

w1i

¸

“
ÿ

iPS

pyipp̂; w1
q, nipp̂; w1

q, σipp̂; w1
qq.

If p̂i ă π “ π1, then

ÿ

iPS

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “

˜

0,
ÿ

iPS

wi
1´ π

,
ÿ

iPS

wi

¸

“

˜

0,
ÿ

iPS

w1i
1´ π1

,
ÿ

iPS

w1i

¸

“
ÿ

iPS

pyipp̂; w1
q, nipp̂; w1

q, σipp̂; w1
qq.
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Finally, if p̂i “ π “ π1 then

ÿ

iPS

pyipp̂; wq, nipp̂; wq, σipp̂; wqq “

˜

0,
ÿ

iPS

c1wi
1´ π

,
ÿ

iPS

c1wi

¸

“

˜

0,
ÿ

iPS

c1w
1
i

1´ π1
,
ÿ

iPS

c1w
1
i

¸

“
ÿ

iPS

pyipp̂; w1
q, nipp̂; w1

q, σipp̂; w1
qq.

Therefore, the conditions for sybilproofness are satisfied.

6. Envy-freeness: Consider an agent i with p̂i ă π. Let j “ i. If σjpp̂; wq ą wi

then i does not envy j, so suppose that σjpp̂; wq ď wi.

Suppose that p̂j ą π. Then

p̂iyjpp̂; wq ` p1´ p̂iqnjpp̂; wq ´ σjpp̂; wq “ p̂i
wj
π
´ wj

ă 0

ă p̂iyipp̂; wq ` p1´ p̂iqnipp̂; wq ´ σipp̂; wq

Next, suppose that p̂j ă π. Then

p̂iyjpp̂; wq ` p1´ p̂iqnjpp̂; wq ´ σjpp̂; wq “ p1´ p̂iq
wj

1´ π
´ wj

“ wjp
1´ p̂i
1´ π

´ 1q

ď wip
1´ p̂i
1´ π

´ 1q

“ p̂iyipp̂; wq ` p1´ p̂iqnipp̂; wq ´ σipp̂; wq

Finally, suppose that p̂j “ π. Then

p̂iyjpp̂; wq ` p1´ p̂iqnjpp̂; wq ´ σjpp̂; wq “ p1´ p̂iq
c1wj
1´ π

´ c1wj

“ c1wjp
1´ p̂i
1´ π

´ 1q

ď wip
1´ p̂i
1´ π

´ 1q

“ p̂iyipp̂; wq ` p1´ p̂iqnipp̂; wq ´ σipp̂; wq
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The cases where p̂i “ π and p̂i ą π can be proven similarly. �

6.4.1 Axiomatic Characterization

We next show that the PCM is the unique wagering mechanism satisfying the six

properties from Proposition 73, subject to a condition on the reports. Suppose

that some non-zero wager is placed on N ą 3 distinct reports, denoted by P1 ă

P2 ă . . . ă PN , and let Wk “
ř

i:p̂i“Pk
wi be the total wager at probability Pk.

We say that the non-extreme assumption holds if P2W1 ă p1 ´ P2q
řN
i“3Wi and

p1 ´ PN´1qWN ă PN´1

řN´2
i“1 Wi. For the data set used in Section 6.5 and wagers

generated according to a Pareto(α “ 1.16) distribution (see Section 6.5 for details),

the non-extreme assumption held on over 99.97% of instances.

Theorem 74. Let M be a wagering mechanism satisfying anonymity, individual

rationality, budget balance, Pareto optimality, sybilproofness, and envy-freeness. If

N ě 3, W1 ă
1´P2

P2

řN
i“3Wi and WN ă

PN´1

1´PN´1

řN´2
i“1 Wi, then payoffs defined by

M match those defined by the PCM.

Proof. We first show that any wagering mechanism that satisfies envy-freeness, sybil-

proofness, and anonymity is defined by fixed prices py and pn for yes and no securities.

That is, for all agents i with yipp̂; wq ą 0, we have py “
σipp̂;wq
yipp̂;wq

, and for all agents i

with nipp̂; wq ą 0, we have pn “
σipp̂;wq
nipp̂;wq

.

To prove this, suppose otherwise for contradiction. That is, suppose that there

exist agents i, j with yipp̂; wq ą 0 and yjpp̂; wq ą 0 such that σipp̂;wq
yipp̂;wq

ą
σjpp̂;wq

yjpp̂;wq
.

Consider a modified instance pp̂; w1q in which both of i and j participate as sybils,

denoted by sets Si and Sj, instead of their individual identities, such that for all

k, ` P Si Y Sj, we have that σk “ σ`. By sybilproofness and anonymity it must be

the case that σkpp̂; w1q “ σipp̂; wq{|Si| and ykpp̂; w1q “ yipp̂; wq{|Si| for all k P Si,

with the equivalent equalities holding for all ` P Sj also. Therefore, for all k P Si and
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` P Sj,

σkpp̂; w1q

ykpp̂; w1q
“
σipp̂; wq

yipp̂; wq
ą
σjpp̂; wq

yjpp̂; wq
“
σ`pp̂; w1q

y`pp̂; w1q
.

Because σkpp̂; w1q “ σ`pp̂; w1q, k envies `, violating envy-freeness in the modified

instance. An identical argument shows the existence of a fixed price pn for no secu-

rities.

By budget balance, the wagering mechanism must sell exactly the same number

of yes and no securities, and it must be the case that each yes/no pair sells for

exactly $1. Therefore, py ` pn “ 1. By individual rationality, it must be the case

that all agents with p̂i ă py have yipp̂; wq “ 0, and all agents with p̂i ą py have

nipp̂; wq “ 0.

We now use Pareto optimality, along with sybilproofness, anonymity, and envy-

freeness, to show that whenever there exist agents i and j, with p̂j ą p̂i ą py,

it must be the case that σipp̂; wq “ wi and σjpp̂; wq “ wj. We know by Pareto

optimality that at least one of the equalities must hold; say, σipp̂; wq “ wi. Suppose

for contradiction that σjpp̂; wq ă wj. Again consider a modified instance pp̂; w1q

in which i and j participate as sybils, denoted by sets Si and Sj, instead of their

individual identities, such that for all k, ` P Si Y Sj, we have that w1k “ w1`. By

anonymity, we have σkpp̂; w1q “ w1k for all k P Si and σ`pp̂; w1q ă w1` for all ` P Sj.

Now, using that fact that all agents are buying yes securities at price py, we have
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that

p̂`y`pp̂; w1
q ` p1´ p̂`qn`pp̂; w1

q ´ σ`pp̂; w1
q

“ p̂`
σ`pp̂; w1q

py
´ σ`pp̂; w1

q

ă p̂`
w1`
py
´ w1`

“ p̂`
w1k
py
´ w1k

“ p̂`
σkpp̂; w1q

py
´ σkpp̂; w1

q

“ p̂`ykpp̂; w1
q ` p1´ p̂`qnkpp̂; w1

q ´ σkpp̂; w1
q

Therefore, agent ` P Sj envies agent k P Si, violating envy-freeness. A similar

argument can be used to show that σipp̂; wq “ wi and σjpp̂; wq “ wj when p̂j ă p̂i ă

py.

Next, suppose that p̂j ą p̂i “ py. We show that if yipp̂; wq ą 0 then σjpp̂; wq “

wj. First, note that if σipp̂; wq ă wi, then Pareto optimality implies that σjpp̂; wq “

wj. So suppose that σipp̂; wq “ wi. Then, because we have also assumed that

yipp̂; wq ą 0, we know that yipp̂; wq “ σipp̂;wq
py

“
wi

py
. We can now use an argument

identical to that used in the previous paragraph to argue that if σjpp̂; wq ă wj, then

we can create the same modified instance pp̂; w1q so that sybils of j will envy sybils

of i. Therefore, σjpp̂; wq “ wj.

We now show that, provided the condition on reports in the statement of the

theorem holds, yipp̂; wq ą 0 for all i with p̂i “ pN´1 (note that this, along with

individual rationality, implies py ď pN´1). To see this, suppose otherwise. There

are two cases. First, if py ă pN´1 ă pN , then by our earlier observation it must

be the case that σipp̂; wq “ wi for all i with p̂i “ pN´1 or p̂i “ pN . Therefore,

yipp̂; wq “ wi

py
ą 0. Second, if py ě pN´1 and yipp̂; wq “ 0 for some i with p̂i “ pN´1,
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then we can use sybilproofness and anonymity to argue that yipp̂; wq “ 0 for all i

with p̂i “ pN´1. Therefore, the total number of yes securities allocated is strictly

less than the total number of no securities allocated:

ÿ

iPN
yipp̂; wq ď

WN

py
ď

WN

pN´1

ă
1

1´ pN´1

N´2
ÿ

i“1

Wi ď
1

pn

N´2
ÿ

i“1

Wi ď
ÿ

iPN
nipp̂; wq

This violates budget balance. By a symmetric argument, we can show that pn ď 1´p2

and nipp̂; wq ą 0 for all i with p̂i “ p2.

In particular, the previous paragraph says that, subject to the conditions of

the theorem holding, at least two bettors with distinct reports are allocated yes

securities, and at least two bettors with distinct reports are allocated no securities.

By the two earlier paragraphs, this implies that for all i with p̂i ą py, we have

σipp̂; wq “ wi, yipp̂; wq “ wi

py
, nipp̂; wq “ 0, and for all i with 1 ´ p̂i ą pn, we have

σipp̂; wq “ wi, yipp̂; wq “ 0, nipp̂; wq “ wi

pn
.

Finally, it is easy to see that the only value of py/pn that satisfies this condition

while allocating an equal number of yes and no securities and satisfying py “ 1´ pn

is that defined by py “ π and pn “ 1 ´ π, from Equation 6.1. To characterize

the allocations and payments of agents with p̂i “ py, we note that these agents are

required to exactly make up the difference between yes and no securities, if such a

difference exists. By anonymity and sybilproofness, each of these bettors must be

sold a number of securities that is proportional to their wager. This exactly matches

the allocations and payments defined by the PCM. �

6.4.2 Incentive Properties of the PCM

As a Corollary of Theorem 55 and Proposition 73, we know that the PCM violates

incentive compatibility. Intuitively, this is because agents are able to change the

price π by changing their reports.
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Example 12. Let p “ p0.4, 2
3
, 0.8q and w “ p1, 1, 1q. Then the outcome of the PCM

is py “ p0, 1.5, 1.5q,n “ p3, 0, 0q,σ “ p1, 1, 1qq. Note that the price π “ 2
3
, so agent

2’s utility is 0. However, if agent 2 misreports p̂2 “ 0.6, then the outcome becomes

py “ p0, 5
6
, 5

3
q,n “ p2.5, 0, 0q,σ “ p1, 0.5, 1qq. Now the price π “ 0.6, so agent 2’s

utility is 5
6
¨ 2

3
´ 0.5 “ 1

18
ą 0.

The misreport in Example 12 has a particular form common to all profitable

misreports. In order to change the price in a profitable way, a manipulating agent

must ensure that her misreport exactly matches the new equilibrium price. The

intuition is that the only way an agent can affect the price is to report a probability

on the opposite side of the current price as her belief. However, such a misreport

is only profitable if she does not ‘over-shoot’ and end up buying the wrong type of

security.

Theorem 75. Let p̂i “ pi be a profitable misreport for agent i. Let πT denote the

yes security price when agent i reports truthfully, and πM denote the yes security

price in the instance when i misreports p̂i. Then it must be the case that p̂i “ πM ,

and either p̂i ă πT ď pi or pi ď πT ă p̂i.

Before we give the proof, we first state and prove a monotonicity lemma which

states that, all else being equal, if the report of a single agent increases then the

security price π also (weakly) increases.

Lemma 76. Let p̂´i “ p̂1´i. Let p̂1i ă p̂i, and denote by π1 the equilibrium price

under vector of reports p̂1, and π the equilibrium price under vector of reports p̂.

Then π1 ď π.

Proof. Consider the equilibrium condition, Equation 6.1:

ÿ

j:p̂jăπ

wj
1´ π

` c1

ÿ

j:p̂j“π

wj
1´ π

“
ÿ

j:p̂jąπ

wj
π
` c2

ÿ

j:p̂j“π

wj
π
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Suppose that p̂i ą π (other cases can be handled similarly). Suppose for contradiction

that π1 ą π. Let c1, c2 represent the values of the equilibrium constants in the case

that i reports p̂i, and c11, c
1
2 represent those values when i reports p̂1i. Then we have

ÿ

j:p̂jąπ

wj
π
` c2

ÿ

j:p̂j“π

wj
π
ě

ÿ

j:p̂jąπ

wj
π
ą

ÿ

j:p̂jąπ

wj
π1

ě
ÿ

j:p̂1jąπ
1

wj
π1
` c12

ÿ

j:p̂1j“π
1

wj
π1

“
ÿ

j:p̂1jăπ
1

wj
1´ π1

` c11
ÿ

j:p̂1j“π
1

wj
1´ π1

ě
ÿ

j:p̂1jăπ
1

wj
1´ π1

ě
ÿ

j:p̂jăπ

wj
1´ π1

` c1

ÿ

j:p̂j“π

wj
1´ π1

ą
ÿ

j:p̂jăπ

wj
1´ π

` c1

ÿ

j:p̂j“π

wj
1´ π

where the equality holds by Equation 6.1, and the inequalities all hold due to the

assumptions that p̂i ą π and that π1 ą π. Comparing the first and last line contra-

dicts that π is the equilibrium price under reports p̂. Therefore, it must be the case

that π1 ď π. �

Proof of Theorem 75. Suppose that pi ą πT . The cases pi ă πT and pi “ πT can be

proven similarly. Note that if πM “ πT , then p̂i cannot be a profitable misreport,

because under truthful reporting, i already buys as many yes securities as her budget

allows, and these are the only securities from which she obtains positive expected

profit at the current price πT . Therefore, to show that any profitable misreport

satisfies p̂i ă πT , we show that πM “ πT whenever p̂i ě πT .

Consider again Equation 6.1. For p̂i ą πT , if we set π “ πT then each term in the

equation takes the same value under truthful reporting and misreporting. Therefore,
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equality holds in the misreported case with πM “ πT . Next, if p̂i “ πT ă pi, then we

know that πM ď πT , by Lemma 29, since p̂i ă pi. It remains to rule out πM ă πT . So

suppose for contradiction that πM ă πT “ p̂i ă pi. Let cM1 , c
M
2 denote the equilibrium

values of c1 and c2 when i misreports p̂i, and cT1 , c
T
2 the equilibrium values when i

truthfully reports pi. Then we have a similar system of inequalities as in the proof

of Lemma 29,
ÿ

j:p̂jąπM

wj
πM

` cM2
ÿ

j:p̂j“πM

wj
πM

ě
ÿ

j:p̂jąπM

wj
πM

ą
ÿ

j:p̂jąπM

wj
πT

ě
ÿ

j:p̂jąπT

wj
πT
`
wi
πT
` cT2

ÿ

j:p̂j“πT

wj
πT

“
ÿ

j:p̂jăπT

wj
1´ πT

` cT1
ÿ

j:p̂j“πT

wj
1´ πT

ě
ÿ

j:p̂jăπT

wj
1´ πT

ě
ÿ

j:p̂jăπM

wj
1´ πT

` cM1
ÿ

j:p̂j“πM

wj
1´ πT

ą
ÿ

j:p̂jăπM

wj
1´ πM

` cM1
ÿ

j:p̂j“πM

wj
1´ πM

which contradicts that πM is the equilibrium price when i reports p̂i. Therefore it is

not the case that πM ă πT , so πM “ πT and the misreport p̂i ě πT is not profitable.

We have shown that p̂i ă πT ă pi must hold for any profitable misreport p̂i.

Therefore, by Lemma 29, we know that πM ď πT . We now show that πM “ p̂i.

First, suppose that p̂i ă πM . Then i is buying no securities at a price 1 ´ πM ě

1 ´ πT ą 1 ´ pi, where 1 ´ pi is her value for a no security. Therefore, she obtains

negative expected profit from this purchase, meaning that p̂i is not a profitable

misreport. Second, suppose that p̂i ą πM . In this case, we can argue by setting
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π “ πM in Equation 6.1. It is easy to see that at this equilibrium price, strictly more

yes securities are sold than in the truthful case, and strictly fewer no securities. This

violates budget balance, since equal numbers of yes and no securities are sold in the

truthful case. Therefore, πM “ πT . However, we have already established that if

πM “ πT , then p̂i is not a profitable misreport, a contradiction. �

Incentive Compatibility in the Large. We now show that the PCM satisfies an approx-

imate notion of incentive compatibility known as incentive compatibility in the large

(IC-L), introduced by Azevedo and Budish [22].1 It relaxes incentive compatibility

by requiring only that truthful reporting is optimal as the number of agents grows

large, and that truthful reporting is only optimal in expectation over the reports,

rather than based on the (ex-post) realization of reports, as our definition of incentive

compatibility requires.

Conceptually, this section mirrors the work of Azevedo and Budish. Indeed, in

cases where only a finite set of reports are allowed, that the PCM satisfies IC-L

follows directly from the fact that the PCM satisfies envy-freeness (Azevedo and

Budish show that this implies IC-L when the number of possible reports is finite).

Since finite sets of reports can provide arbitrary precision, this is usually enough for

practical purposes. Most real-world mechanisms only allow reports up to a precision

of 1%, and this is also the precision we use in our simulations (see Footnote 3).

However, for completeness, we provide an independent proof of IC-L for the case

where an infinite number of reports are allowed. The proof is a simple extension of

the finite reports case.

Let D denote a probability distribution over r0, 1s with full support. We model

each agent as drawing a report p̂i i.i.d. according to D. So D models the distribution

1 There is a large body of work focusing on other limiting IC criteria, including ε-
strategyproofness [143, 71], that we do not focus on here.
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of reports, not necessarily beliefs. We will assume that wagers are drawn i.i.d. from

some fixed distribution bounded by the interval r1,W s for some W ě 1. In particular,

the ratio of the wagers of any two agents is bounded by W . Denote the expected

value of a randomly drawn wager by w.

For the remainder of this section, let pyipp̂i, wi, D, nq, nipp̂i, wi, D, nq, σipp̂i, wi, D, nqq

denote the expected allocation of securities and payment for an agent reporting p̂i and

wagering wi P r1,W s when there are n other agents that draw reports according to D

and wagers from the fixed wager distribution. Let pyipp̂i, wi, D,8q, nipp̂i, wi, D,8q,

σipp̂i, wi, D,8qq “ limnÑ8pyipp̂i, wi, D, nq, nipp̂i, wi, D, nq,

σipp̂i, wi, D, nqq. We can now formally define incentive compatibility in the large.

Definition 18. A wagering mechanism is incentive compatible in the large if, for

any D with full support over r0, 1s, and any p̂i and wi,

piyippi, wi, D,8q ` p1´ piqnippi, wi, D,8q ´ σippi, wi, D,8q

ě piyipp̂i, wi, D,8q ` p1´ piqnipp̂i, wi, D,8q ´ σipp̂i, wi, D,8q.

To show that the PCM satisfies incentive compatibility in the large, we first show

that when the number of bettors is large, no single agent can affect the security price

π; that is, agents are price-takers in the large market limit. The second step is to

show that price takers have no profitable manipulations, which follows immediately

from Theorem 75.

Theorem 77. The parimutuel consensus mechanism satisfies incentive compatibility

in the large.

Proof. Let πn denote the price defined by the PCM in expectation when there are

n agents drawing reports from D, as well as agent i reporting p̂i, and let π8 “

limnÑ8 π
n. We first show that π8 exists. For contradiction, suppose otherwise. Fix

ε ą 0. Then there exist arbitrarily large N1, N2 such that |πN1 ´ πN2 | ą ε for some
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ε ą 0. Suppose without loss of generality that πN1 ą πN2 ` ε. Note that we can

rewrite the equilibrium condition, Equation 6.1,

π “

ř

j:p̂jąπ
wj ` c2

ř

j:p̂j“π
wj

ř

j:p̂j‰π
wj ` pc1 ` c2q

ř

j:p̂j“π
wj

Therefore, πN1 and πN2 are defined by

πN1 “

ř

j “i:p̂jąπN1 w̄ ` c2

ř

j “i:p̂j“πN1 w̄ ` y1wi
ř

j “i:p̂j‰πN1 w̄ ` pc1 ` c2q
ř

j “i:p̂j“πN1 w̄ ` wi
(6.2)

πN2 “

ř

j “i:p̂jąπN2 w̄ ` c2

ř

j “i:p̂j“πN2 w̄ ` y2wi
ř

j “i:p̂j‰πN2 w̄ ` pc1 ` c2q
ř

j “i:p̂j“πN2 w̄ ` wi
(6.3)

Where y1 “ 1 if p̂i ą πN1 and y “ 0 if p̂i ă πN1 , and similarly for y2 in Equation 6.3

(for simplicity of notation, we ignore the case where p̂i “ π, but it can be handled

similarly). We can replace wagers wj by w̄ because we are interested in the price in

expectation.

Since we can choose N1 and N2 to be artbitrarily large, the sum of all wagers wj

becomes large, and the effect of the wager wi becomes arbitrarily small. Therefore,

πN1 and πN2 become arbitrarily close to one another, violating the assumption that

they are bounded apart by ε. Thus, π8 exists.

To see that π8 is independent of p̂i, we divide both the numerator and denomi-

nator of Equation 6.2 by N1 and let N1 Ñ 8. The equilibrium condition becomes

π8 “
Prx„Dpx ą π8q ` c2Prx„Dpx “ π8q

Prx„Dpx “ π8q ` pc1 ` c2qPrx„Dpx “ π8q

Since this equation has no dependence on p̂i (or wi), π
8 is independent of p̂i.

It now follows immediately from Theorem 75 that the PCM satisfies IC-L, since

any profitable manipulation must alter the security price. But in the limit as the

number of agents goes to 8, it is impossible for i to affect the price π8. �
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6.5 Simulations

We tested the incentive compatibility of the PCM on a data set consisting of prob-

ability reports gathered from an online prediction contest called ProbabilitySports

[87].2 The data set consists of probabilistic predictions about the outcome of 1643

National Football League matches from the start of the 2000 NFL preseason until

the end of the 2004 season. For each match, between 64 and 1574 players reported

their subjective probability of a fixed team (say, the home team) winning the match.

Each match was scored according to the Brier scoring rule, with points contributing

to a season-long scoreboard.

ProbabilitySports users submitted probabilities but not wagers. We generated

wagers from a variety of Pareto distributions. Pareto distributions are a natural

choice as they approximately model the distribution of wealth in a population. A

Pareto distribution is defined by two parameters: a scale parameter k, which has the

effect of multiplicatively scaling the distribution, and a shape parameter α, which

affects the size of the distribution’s tail. To allow for a fair comparison between

distributions and instance sizes, we scaled each set of randomly generated wagers so

that the average wager is 1. This means that changing the scale parameter has no

effect, as the wagers are rescaled anyway. Therefore, we fix the scale parameter to 1

and vary only the shape parameter.

The first Pareto distribution we use for wager generation has α “ 1.16, which is

often described as “20% of the population has 80% of the wealth,” and classically

viewed as a realistic distribution of wealth. Second, we use α “ 3, which produces

a more equal distribution of wagers in comparison to α “ 1.16. Finally, we consider

a uniform distribution of wagers (that is, wi “ 1 for all agents), corresponding

to a situation either where all agents are equal, or where they do not have the

2 We thank Brian Galebach for providing us with this data.
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Table 6.1: Profitable misreports under Pareto and uniform wager generation.

% Agents With
Profitable
Misreports

Average
Profit

Average Wager
per Profitable

Misreport

Average
Misreport
Distance

Pareto(α “ 1.16) 0.07 1.55 118.8 0.044
Pareto(α “ 3) ă 0.01 0.03 5.76 0.015

Uniform 0 n/a n/a n/a

opportunity to choose their wager (as in the ProbabilitySports competition). Note

that the uniform distribution is the limit of the Pareto distribution as αÑ 8.

Our first step was to examine the entire dataset. For each of the 1643 matches

and each wager distribution, we randomly generated a set of wagers drawn from that

distribution. For each set of wagers we chose 50 random agents and simulated 101

reports for them in the range t0, 0.01, . . . , 0.99, 1u.3 For each report, we computed

the agent’s expected utility, taking their true belief to be their original report pi. If

there exists a misreport p̂i “ pi that yields a higher utility than reporting their true

belief, then the agent has a profitable misreport.

The results are summarized in Table 6.1. We report four statistics. The ‘%

Agents With Profitable Misreports’ column states the percentage of agents that are

able to benefit from misreporting. The ‘Average Profit’ column gives, out of those

agents with a profitable misreport, the average benefit that the agent can gain from

misreporting optimally, over and above her utility from reporting truthfully. The

‘Average Wager per Profitable Misreport’ column gives the average wager of agents

with a profitable misreport available. Finally, the ‘Average Misreport Distance’

gives, for those agents with a profitable misreport, the average distance between the

optimal misreport and the true belief.

For wagers generated from a Pareto distribution with α “ 1.16, we found 55

3 In principle, our setup allows agents to report at a higher precision than this, so there will be
some possible misreports that we do not detect. However, we believe that considering reports of
only multiples of 0.01 is reasonable, due to limited cognitive capacity of the agents and the practical
constraints of many wagering systems.
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profitable misreports (out of 82,150 agents that we checked), which means that only

around 0.07% of the agents that we checked had a profitable misreport. It is striking

to consider the makeup of this small percentage of agents. The average wager of these

agents is 118.8 (recall that each set of wagers is scaled so that the average wager is

1). What we are seeing is that only agents with very, very high wagers have sufficient

power to change the price π. In contrast, the average profit that these agents obtain

by misreporting is only 1.55, suggesting that even these high-wager agents are unable

to have too large an effect on the security price π. This average profit is on the order

of 1-2% of the misreporting agents’ wagers – arguably an insignificant amount. For

those agents that do misreport, the optimal misreport only differs from their belief

by around 0.04.

As α increases, the number of agents with opportunity to misreport decreases.

Indeed, for the uniform wagers, we did not find a single opportunity to profitably

misreport. This is not surprising, since when wagers are uniform and there are a

large number of agents, no agent will ever be able to significantly affect the price.

So for the full data set, with 64 ď n ď 1574 agents per match, opportunities

to profitably misreport are scarce, as we would expect because the PCM satisfies

IC-L. But what about instances with fewer agents? To investigate smaller instances,

we subsampled smaller values of n from the complete set of reports and ran the

same simulation. For each match, each value of n P t10, 20, 30, 40, 50u, and each

wager distribution, we randomly sampled n reports and generated wagers. For every

instance generated in this way, we tested every agent to see whether they had a

profitable misreport.

Figure 6.1(a) shows how the percentage of agents that can profitably misreport

changes with instance size. Even with only 10 agents per instance, there are relatively

few opportunities to profitably misreport, with around 10% of all agents being able

to do so. This fraction decreases quickly as n increases – for instances with 50
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Figure 6.1: Profitable misreport characteristics for varying wager distributions and
varying numbers of agents, n.

agents, less than 2% of agents are able to profitably misreport. Interestingly, all

wager distributions exhibit approximately the same susceptibility to manipulation,

in contrast to the full instances. We speculate that this is because, while high-wager

agents are more likely to have profitable manipulations available, their existence

also prevents low-wager agents from being able to manipulate, thus rendering the

existence of high-wager agents something of a wash for small n. For large n, the

latter effect disappears, since low-wager agents are unable to profitably misreport,

even in the absence of high-wager agents.

Figure 6.1(b) shows how the average value of each profitable misreport changes

with n, where the value of a profitable misreport is the difference in expected utility

between the agent’s optimal misreport and their truthful report. Interestingly, we

see three very different trends depending on the wager distribution, all of which are

consistent with the results on the full dataset. For α “ 1.16, the average value of

a misreport steadily increases with n, as high-wager agents (who have high-value
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misreports) become more and more frequent, while low-value misreports become less

frequent. With uniform wagers, the value of a misreport quickly decreases with n.

With only 10 agents, a misreporting agent may be able to affect the price quite

significantly, however with increasing n, misreports will consist of only being able to

make small adjustments to the security price. For α “ 3, the value of a misreport

remains approximately constant as n increases, suggesting some combination of the

two previous effects.

Figure 6.1(c) shows how the average wager of agents with a profitable misreport

changes with n. For uniform wagers this line is flat, since all agents have wager

wi “ 1. The other two wager distributions display increasing wagers, which is again

explained by increasing frequency of high-wager agents (with this frequency increas-

ing faster for α “ 1.16 than for α “ 3), and decreasing frequency of low-wager agents

that are actually able to profitably misreport.

Finally, in Figure 6.1(d) we plot the average distance between a profitable misre-

port and an agent’s true belief. In contrast with the other statistics that we consider,

this one is actually relatively flat as n increases (with the exception of a significant

drop from n “ 10 to n “ 20). This tells us that even for small numbers of forecasters,

misreporting is limited to agents with beliefs fairly close to the price π and does not

significantly affect the equilibrium price.

We note that we have considered an omniscient setting where manipulating agents

have precise knowledge of the reports of other agents. In practice, of course, the ma-

nipulating agent has uncertainty about her opponents. A misreport is risky, involving

some possibility of being forced to buy securities at a price favorable to her misreport

but not her true belief. High-budget agents have the most opportunities to misreport

but also the most to lose if they miscalculate.

187



6.6 Discussion

We have provided an axiomatic justification of the parimutuel consensus mech-

nanism. While no wagering mechanism can satisfy anonymity, individual rationality,

budget balance, Pareto optimality, sybilproofness, envy-freeness and incentive com-

patibility, we show that the PCM comes very close in that it satisfies all of the first

six properties, and a relaxation of the seventh: incentive compatibility in the large.

Subject to a mild condition on the reports, the PCM is the only wagering mechanism

that satisfies all six properties. Via comprehensive simulations based on real contest

data, we have shown that on large instances, opportunities to profitably manipulate

are extremely rare. Even on small instances, the vast majority of agents cannot gain

from misreporting.

A particularly interesting future direction would be to study the relative quality

of forecasts generated by wagering mechanisms in practice, when bettors have several

mechanisms to choose from. We would expect that the PCM would induce higher

participation than non-Pareto optimal mechanisms, leading to a more accurate fore-

cast, but that some agents may lie about their belief, leading to a less accurate

forecast. Determining which of these pressures is more significant in practice would

shed light on the most suitable wagering mechanism to implement for real forecasting

applications.
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7

Crowdsourced Outcome Determination in
Decentralized Prediction Markets

7.1 Introduction

In this chapter, we move from wagering mechanisms to another common mechanism

for probabilistic information elicitation and aggregation: prediction markets. The

market operates by allowing participants to buy and sell securities which pay off

according to the outcome of the event, and participants with an informational edge

are able to place profitable trades when the market price disagrees with their own

forecast. Through this trading process, the market price can be construed as a

consensus forecast of the underlying event probability. Prediction markets have

proven effective at forecasting events in a variety of domains, including business and

politics [152, 30].

A key challenge in implementing and scaling prediction markets is the question

of outcome determination (i.e., closing markets for events). Traditional prediction

markets are centralized, in the sense that there exists a trusted center that creates

markets, oversees transactions, and closes the market appropriately. The trusted
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center is a bottleneck for defining and closing markets, limiting the scope of what

can be predicted. However, there has recently been a rise of interest in decentralized

prediction markets, where any user may create a market for an event. The markets

are closed by consensus among a group of arbiters rather than by a center.

A decentralized platform removes the requirement for a highly trusted center, but

it also allows each arbiter to directly influence the outcome of the market, in much the

same way that agents may deliberately manipulate an event due to their own stake

in the market; this is known as outcome manipulation [148, 30, 50]. Additionally, by

allowing anyone to create a market, there is no longer any guarantee that all questions

will be sensible, or even have a well-defined outcome. In this paper, we propose

a specific prediction market mechanism with crowdsourced outcome determination

that addresses several challenges faced by decentralized markets of this sort.

First is the issue of outcome ambiguity. At the time the market closes, it might

be unreasonable to assign a binary value to the event outcome due to lack of clarity

in the outcome. In a centralized market, it may be possible to postpone the market

closing date to allow for rare cases of ambiguity, but it is not clear who should make

such decisions in a decentralized marketplace. Therefore, it may be more fitting to

allow outcomes to be non-binary, reflecting some level of disagreement. Outcomes

in our mechanism are determined by the fraction of arbiters that report an event

to have occurred. This also guarantees that every market is well-defined, by having

traders explicitly trade on their expectations of the arbiter reports, not the actual

event.

Second is the problem of peer prediction. For the credibility of the market, it is

essential that arbiters are incentivized to truthfully report their opinion as to the

realized outcome. If, for instance, we reward arbiters for agreeing with the majority

opinion, then they are forced to anticipate the reports of other arbiters, not their

independent opinion. We address this problem by making a technical change to an
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existing peer prediction mechanism, the 1/prior mechanism.

Third is the inherent conflict of interest that arises by combining prediction

markets and peer prediction mechanisms. Even if arbiters can be incentivized to

report truthfully in isolation, there is no way to prevent them also having a stake

in the market. An arbiter holding securities that pay off in a particular event will

be incentivized to report that the event has occurred, even if they do not genuinely

believe it to be the case, as long as they have a chance of affecting the market

outcome. We tackle this issue by charging a trading fee that is later used to pay the

arbiters. We show that, as long as each agent is responsible for a limited fraction

of trading, and questions are clear enough, realistic trading fees can fully subsidize

truthful reporting on the part of the arbiters.

Related Work. This work is inspired by decentralized prediction markets based on

crypto-currencies, including Truthcoin, Gnosis, and especially Augur [132]. As in Au-

gur, our mechanism consists of a prediction market stage and an arbitration stage,

with trading fees from the market stage subsidizing the arbitration. The details of

the mechanisms differ in both stages, however, and Augur includes additional lay-

ers of complexity such as a reputation system. While this complexity does provide

additional protection against attack, Peterson and Krug [132] do not obtain any the-

oretical guarantees or justification for their chosen parameters. Clark et al. [57] also

discuss outcome determination in crypto-based prediction markets, among several

other implementation aspects.

Our work is most closely related to that of Chakraborty and Das [50], who con-

sider a model where two agents participate in a prediction market whose outcome

is determined by a vote among the two agents. Our model extends theirs by allow-

ing an arbitrary number of traders, and not requiring that all traders are arbiters.

Further, we take a mechanism design approach, obtaining an incentive compatible
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mechanism, while Chakraborty and Das [50] focus on analyzing the equilibrium of

a simple (to play) trading-voting game, with no peer prediction mechanism in the

voting phase to incentivize truthful voting. Recent work by Witkowski et al. [164]

also looks at a combination of forecasting and peer prediction, although the forecasts

in their paper are elicited via proper scoring rules, rather than prediction markets.

The work of Bacon et al. [27] is similar in spirit to ours, as is the literature on

outcome manipulation mentioned previously, but in all cases the concrete setting is

quite different. We also draw heavily on existing literature in prediction markets [101,

52, 55] and peer prediction [119, 136, 163]; Chen and Pennock [53] survey these topics.

7.2 Preliminaries

Let N be a set of agents and let A Ă N be a small set of distinct and verifiable

(i.e., their identities are known to the mechanism) arbiters. Let m “ |A| denote the

number of arbiters. The agents are anonymous in the sense that one cannot verify

whether a trade is placed by an arbiter or non-arbiter, and whether several trades

are placed by the same agent. Let X be a binary event with some realized outcome

in t0, 1u. We are interested in setting up a prediction market for the outcome of X,

with the resolution of the market decided upon by the arbiters.

Prediction markets. We consider prediction markets implemented via a Market Scor-

ing Rule (MSR), where the underlying scoring rule is strictly proper [101, 52]. Every

strictly proper MSR can be implemented as a market maker based on a convex cost

function. Under this market structure, agents trade shares of a security with a cen-

tralized market maker, who commits to quoting a buy and sell price for the security

at any time. The security payout is contingent on the outcome of X. In the usual

implementation, one share of the security pays out $1 in the event that X “ 1, and

$0 otherwise.
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Let q denote the total number of outstanding shares owned by the agents (note

that q can be negative, in the case that more shares have been sold than bought). The

market maker charges trades according to a convex, differentiable, and monotonically

increasing function C. An agent wishing to buy q1 ´ q securities pays Cpq1q ´ Cpqq.

Negative payments encode a transaction where securities are sold back to the market

maker. The instantaneous price of the security is given by p “ dC
dq

. Because the

market maker always commits to trading, it may run a loss once the outcome is

realized and the securities pay out, but the loss is bounded.

In practice, the cost function is also tuned using a liquidity parameter b, via

the transformation Cbpqq ” bCpq{bq. A higher setting of b results in lower price

responsiveness, in the sense that the price will change less for a fixed dollar trading

amount. It also results in a higher worst-case loss bound for the market maker. Unless

otherwise stated, our results assume that each agent participates in the market only

once. The mechanism and results extend to situations in which agents can participate

more than once, and we highlight these extensions where relevant throughout the

paper.

Peer prediction. Peer prediction mechanisms are designed to truthfully elicit private

information from a pool of agents via a reward structure that takes advantage of

information correlation across agents. After the realization of X, each arbiter i

receives either a positive or negative signal xi, which we denote by xi “ 1 and xi “ 0

respectively. Let µ be the prior probability that an agent receives a positive signal.

Let µ1 (resp. µ0) be the probability that, given agent i receives a positive (resp.

negative) signal, another randomly chosen agent also receives a positive signal.1 In

a standard peer prediction belief model, the quantities µ1 and µ0 can be calculated

1 Our analysis will assume that µ1 and µ0 are common across agents, but this is not a strict
requirement. If we allow each agent to have distinct updates µi

1, µ
i
0, then we can let µ1 “ mini µ

i
1,

corresponding to the minimum update given x̂i “ 1, and similarly µ0 “ maxi µ
i
0.
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given µ and the signal beliefs P pxi “ 1|X “ 1q and P pxi “ 1|X “ 0q; Witkowski

[162] provides an overview. Assuming common information is not always reasonable,

but it is natural in our setting to assume that agents take the closing price of the

prediction market as their prior probability of receiving a positive signal (if not, then

they can profit in expectation by participating in the market). The probabilities µ1

and µ0 are specific to the nature of the event X.

The peer prediction mechanism of interest in this work is the 1/prior (“one over

prior”) mechanism [162, 106, 107]. The 1/prior mechanism first asks each agent for

their signal report x̂i. Then, every agent i is randomly paired with a peer agent

j ‰ i, and paid

upx̂i, x̂jq “

$

’

&

’

%

kµ if x̂i “ x̂j “ 0

kp1´ µq if x̂i “ x̂j “ 1

0 if x̂i “ x̂j,

where k is some positive constant that can be freely adjusted to scale the payments

received by the arbiters. Truthfully reporting x̂i “ xi is an equilibrium provided that

µ1 ě µ ě µ0 [86]. This is a natural condition that we will assume throughout the

paper—receiving signal xi “ 1 should not decrease i’s estimate that another agent

j also receives signal x̂j “ 1. We also assume that at least one of the inequalities

is strict, so that µ1 ą µ0; this condition is known as stochastic relevance. Via a

simple adaptation of the corresponding proof for the 1/prior mechanism, it can be

shown that truthful reporting remains an equilibrium if µ is replaced by some other

constant c with µ0 ă c ă µ1 in the payments; we will exploit this fact to adapt the

1/prior mechanism for our purpose.

We call the quantity δ “ µ1 ´ µ0 the update strength. This quantity is specific

to the instance and, roughly speaking, measures how strongly positively correlated

the signals are across arbiters. The update strength is high if, after receiving a

positive (negative) signal, an arbiter believes that another given arbiter receives a
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1. Market stage.

(a) A prediction market is set up for an event X using a market scoring
rule.

(b) Agents trade in the market. For a security bought at price p, a trading
fee of fp is charged, and for a security sold at price p, a fee of fp1´pq
is charged.

(c) The market closes, trading stops.

2. Arbitration stage.

(a) Each arbiter i receives a signal xi P t0, 1u and reports an outcome
x̂i P t0, 1u.

(b) Each arbiter i is assigned a peer arbiter j ‰ i and paid according to
the 1/prior with midpoint mechanism.

(c) The outcome of the market, and the payoff of each share sold, is set
to the fraction of arbiters that report x̂i “ 1.

Figure 7.1: Prediction Market with Outcome Determined Using Peer Prediction.

positive (negative) signal with high probability. For instance, if event X is “Will the

Cleveland Cavaliers win the 2016 NBA playoffs?” then we would expect δ « 1, since

any arbiter reaching a conclusion about the outcome of the series (by watching it

live, reading in the news, etc.) would strongly expect any other arbiter to reach the

same conclusion. On the other hand, a question like “Will a Presidential candidate

tell a lie in the televised debate?” is considerably more open to interpretation, and

we would expect it to have a smaller value of δ. If an arbiter believes a candidate to

have lied, it is not necessarily the case that another arbiter believes the same.

7.3 Mechanism

A step by step description of our mechanism is given in Figure 7.1. The mechanism

runs a prediction market where the outcome is determined by a vote among arbiters.

The arbiters’ signals should be interpreted as the information they receive regarding
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the outcome of X: checking news sources, observing events, their own opinions, etc.

To ensure that arbiters truthfully report their information, we incentivize them via

a peer prediction mechanism.2 In both stages we implement non-standard versions

of existing mechanisms, which we detail in the following.

Market stage

We make use of an MSR with non-binary outcome. The outcome takes a value

X̂ P r0, 1s corresponding to the fraction of arbiters that report x̂i “ 1. Each share

sold pays off X̂. Observe that this fundamentally changes the value of a security

to a market participant: in a standard prediction market, an agent’s value for a

security is his subjective probability that event X occurs, while in our market his

value is the fraction of arbiters that he expects to report x̂i “ 1. However, given

the agent’s valuation for a security, his incentives in both markets are similar. A

risk-neutral, non-arbiter agent will trade shares until the market price matches the

security’s expected payoff, or the agent’s budget is exhausted.

This change to the payoff structure has two advantages. First, it ensures that

any question has a well-defined and unambiguous outcome, avoiding problems with

badly worded questions. This is important in any situation where users are allowed

to generate markets. Second, any market with a binary outcome that relies on

arbitration must have a point of ‘discontinuity’, where a change in report from a

single arbiter results in the value of a security changing by $1.3 There will therefore

always be situations where, given the reports of the other arbiters, a single arbiter

completely controls the market outcome. If this arbiter also has a significant stake

in the market, this creates a very large incentive problem. By utilizing non-binary

2 Each arbiter makes his report without knowledge of the report of any other arbiter; for instance,
the reports could be made simultaneously.

3 To see this, consider the case where all arbiters report x̂i “ 1, and flip one report at a time to
x̂i “ 0. One of these flips must change the outcome from X̂ “ 1 to X̂ “ 0.
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outcomes, a single arbiter can only change the value of each security by at most

$1{m.

Our mechanism imposes trading fees. Theoretical models of prediction markets

do not typically incorporate trading fees (an exception is the work of Othman et al.,

where a fee in the form of a bid-ask spread is used to allow liquidity to increase over

time), but they are standard in real-world implementations. To understand how the

fee is implemented, it is important to distinguish between transactions (buy or sell)

where an agent increases its position (in terms of risk), and transactions where it

liquidates its position. The trading fee that we implement can be seen as a fee on the

worst-case loss incurred by an agent: the fee is on p when a new security is bought,

and 1´ p when a security is sold short (because it may pay out $1). However, no fee

is levied when an agent sells back a share that it holds, or buys back a share that

was previously sold short—these are liquidation transactions.

The trading fee serves two distinct purposes in our mechanism. First, it allows us

to raise funds which can then be used to pay arbiters. Even assuming that arbiters

behave honestly (in the absence of a sophisticated peer prediction mechanism), they

still need to be compensated for the time spent looking up the outcome of X and

reporting it to the mechanism. This can, in principle, be achieved by any of a number

of fee structures.

Second, the fee provides natural bounds on the value of any given security. Even

if an event is certain to occur, with a fee of f “ 2% an agent who moves the

market price to (say) 99c actually pays a marginal cost of $0.99 ¨ 1.02 ą $1 (see

Lemma 79 for an exact bound). The multiplicative fee effectively bounds the price

of the security away from 0 and 1. Thus, it is impossible for an agent to buy securities

at an arbitrarily cheap price, which allows us to bound the number of securities, and

therefore maximum payout, of any agent with a fixed budget B. We note that there

are other reasonable fee structures which do not provide such a lower bound on the
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price. For example, if the agents only pay a fee on any profit they gain from the

market, then the price of an event that is certain to happen will still converge to 1.

Arbitration stage

The main challenge in our setting is to incentivize arbiters to truthfully report their

signal regarding the realized value of X. In the absence of any conflict of interest,

this is a simple peer prediction problem. Since the closing price of the market gives

us a natural common prior on the probability that a given arbiter receives signal

xi “ 1, it is natural to use the 1/prior mechanism. For prior signal probability µ,

the 1/prior mechanism uses the fact that µ1 ě µ ě µ0 to guarantee that truthful

reporting achieves higher payoff than misreporting. However, as µ1 approaches µ, the

payoff for truthfully reporting signal x̂i “ 1 approaches the payoff for misreporting

x̂i “ 0. In isolation, there is still no reason to misreport, but if the arbiter has some

stake in the market then it may be worthwhile to incur a small misreporting loss to

achieve other gains. The following example illustrates this issue.

Example 13. Consider a prediction market for the event “Will the Democratic pres-

idential candidate be leading the Republican presidential candidate in the polls at the

end of the month?” Suppose it is known that 10% of arbiters only check conservative

news sources, which always report that the Republican candidate is ahead, and an-

other 10% only check liberal news sources, which always report the opposite. Suppose

the market closes at µ “ 0.89. Consider an arbiter j who checks a (moderate) news

source and finds that the Democratic candidate is ahead (i.e., xj “ 1). Since it is

still the case that 10% of the arbiters will certainly receive signal xi “ 0, the updated

belief µ1 remains no higher than 0.9. That is, the update is very small, and the

expected profit from reporting x̂j “ 1 is also small. If j has bet against the outcome

(i.e., sold some securities to the market maker), it could be in his interest to lie and

report x̂j “ 0.
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However, if the moderate news site had reported that the Republican candidate

was leading (i.e., x̂j “ 0), the updated belief µ0 could be quite small, even in the

range of 0.1 (since most arbiters check moderate sources). Now j has a lot to gain

from reporting x̂j “ 0. Therefore, j would have to hold a relatively large number of

shares for misreporting to outweigh the expected profit from the 1/prior mechanism.

Example 13 stems from an asymmetry in update strength, leading to potentially

different incentives for arbiters depending on which signal they receive. We modify

the mechanism, making the update strength symmetric. Given that we know the

updated beliefs µ1 and µ0, we can pay arbiters according to the 1/prior mechanism

but use the value pµ1 ` µ0q{2 instead of the prior, µ. We call this the 1/prior

with midpoint mechanism. Using the midpoint guarantees that the incentives for

arbiters are the same regardless of the signal they receive. For the arbiter with the

greatest incentive to misreport, using the 1/prior with midpoint mechanism (weakly)

decreases his incentive to misreport over the standard 1/prior mechanism, allowing

us to achieve better bounds in our worst-case analysis.

Analysis

In this section, we derive conditions for truthful reporting (x̂i “ xi) to be a best

response, given that all other arbiters report truthfully. The main restriction we

require is an upper bound B on the total budget any given arbiter spends in the

market—without such a bound, an arbiter could have an arbitrarily large incentive

to manipulate the market’s outcome. Thus, B appears as a parameter in our analysis.

Arguably, an arbiter confident in their ability to manipulate a market outcome

could procure enough funds as to have a very large budget, especially relative to

a small market. However, in current decentralized prediction markets, each arbiter

arbitrates only a small fraction of markets. As long as the assignment of arbiters to

markets is done after the market closes, there is no way for manipulators to target
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a specific market. For this reason, we believe that manipulations are most likely

to be of a form where arbiters participate honestly in the first stage, but, if they

happen to be assigned to arbitrate a market that they also participated in, may be

able to gain by not reporting truthfully, rather than arbiters mounting deliberate

high-budget attacks in the market stage. Of course, our analysis is not specific to

that particular interpretation, but we do consider it a compelling argument in favor

of using a budget bound in our analysis.

Intuitively, we need to scale the payments made to arbiters in the arbitration

stage by a sufficiently large k so that the increased payoff for truthful reporting in

this stage overwhelms the gains from manipulating the outcome.

Lemma 78. Let ni be the number of securities held by arbiter i. Then truthfully

reporting x̂i “ xi is a best response for arbiter i, given that all other arbiters report

truthfully, if and only if

k ě
2|ni|

mδ
.

Proof. We prove the case where ni ą 0; the case for ni ă 0 is symmetric. The

total payoff for arbiter i is the sum of the payoffs from the market phase and the

arbitration phase. Fixing the reports of the other arbiters, the market payout for i is

higher when i reports x̂i “ 1. And, in expectation, the payoff for i in the arbitration

phase is higher for truthful reporting than for lying. Thus, the only problematic case

is when xi “ 0, but i may wish to report x̂i “ 1.

So suppose that xi “ 0. The expected payoff for truthfully reporting x̂i “ 0,

assuming all other arbiters truthfully report their signal, is

niµ0
m´ 1

m
` p1´ µ0qk

µ0 ` µ1

2
. (7.1)

Here µ0pm´1q is the expected number of arbiters that report signal 1, and therefore

niµ0pm ´ 1q{m is i’s expected payoff from the market, while the remaining term is
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1´µ0, the probability of i’s peer agent also reporting 0, multiplied by the payment i

receives in this case. On the other hand, the expected payoff for misreporting x̂i “ 1

is

ni

ˆ

µ0
m´ 1

m
`

1

m

˙

` µ0 k
´

1´
µ0 ` µ1

2

¯

, (7.2)

where the extra 1{m in the first term is due to the additional market payoff from i

reporting x̂i “ 1, and the latter term is now the probability of i’s peer agent reporting

1, multiplied by the payoff i receives when this happens.

We require that the expected payoff for reporting x̂i “ 1 be at most the expected

payoff for truthfully reporting x̂i “ 0. Setting term (7.2) to be at most term (7.1)

and simplifying yields the result. �

This characterization requires an upper bound on the number of securities that any

single agent owns. In itself this is an unsatisfying restriction; however, we can think

about it in terms of the size of the fee, f , and the amount of money that any single

arbiter spends in the market, B. For fixed fee f , let q´ and q` be the number

of outstanding securities such that the market prices are ppq´q “ f{p1 ` fq and

ppq`q “ 1{p1 ` fq respectively. Note that these quantities depend on the liquidity

parameter b used in the cost function.

Lemma 79. For fixed percentage fee f , the number of outstanding securities lies in

the interval rq´, q`s.

Proof. Suppose that some agent sells a security when there are already q´ outstand-

ing. Then the marginal price is exactly f{p1 ` fq. When selling a security at this

price, the agent receives f{p1 ` fq from the mechanism but must pay a trading fee

of

f

ˆ

1´
f

1` f

˙

“
f

1` f
.
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Thus the agent’s net revenue from the sale is 0 (and the possibility remains that he

must pay the mechanism in the event that X occurs). Therefore no agent makes

such a sale, and the number of outstanding securities never drops below q´.

A similar argument shows that q never exceeds q`. To buy a security when there

are already q` outstanding, an agent must pay a price of at least $1, when the fee is

included. �

Lemma 79 provides us with the minimum and maximum number of outstanding se-

curities at any time. As a corollary, we can derive the maximum number of securities

that a single agent with budget B is able to purchase or short sell. We interpret the

budget as an upper bound on the worst-case loss that the agent is able to incur. When

buying a security for price p, the worst-case loss is p, under outcome X “ 0. When

selling a security for price p, the worst-case loss is 1´ p, under outcome X “ 1. Let

φ`b pBq “ C´1
b pB`Cbpq

´qq´q´. Define q1 implicitly by B`Cbpq
`q´Cbpq

1q “ q`´q1,

and let φ´b pBq “ q1 ´ q`.

Corollary 80. At the end of the market stage, an agent i with budget B holds

ni P rφ
´
b pBq, φ

`
b pBqs securities.

Proof. We first show the upper bound. Given an existing number of outstanding

securities, q, an agent is able to increase the number of outstanding securities to q1,

where

Cbpq
1
q ´ Cbpqq “ B. (7.3)

For a fixed budget, the maximum number of securities that can be bought in a

single transaction is in the case that q is as small as possible; in our case, q “ q´.

Substituting into (7.3) gives

q1 “ C´1
b pB ` Cbpq

´
qq.
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The number of securities held by i is q1 ´ q “ q1 ´ q´, which gives the upper bound

in the statement of the corollary.

We now show the lower bound. Given an existing number of securities q, an agent

is able to decrease the number of outstanding securities to q1, where

B ` Cbpqq ´ Cbpq
1
q “ q ´ q1. (7.4)

The right hand side of (7.4) is the number of securities sold by the agent to the

mechanism, and therefore the amount that he may be required to pay the mechanism

in the case that X “ 1. The left hand side is exactly the funds that the agent is

able to use to reimburse the mechanism: his budget, B, plus the amount paid to the

agent by the mechanism for the securities, Cpqq ´ Cpq1q. The maximum number of

securities that can be sold in a single transaction is in the case that q “ q`; making

this substitution in (7.4) yields the implicit formula for q1 in the definition of φ´b pBq.

The number of securities sold by i is q1 ´ q “ q1 ´ q`, which gives the lower bound

in the statement of the corollary. �

An interesting special case is the limit as b Ñ 8. This corresponds to the market

having zero price responsiveness, meaning that all securities are purchased at a fixed

price. Conceptually, it is equivalent to the situation where agents participate in the

market more than once. In that setting, an agent could wait until the market price

reaches f
1`f

, buy a small number of securities, then wait again until the price drops.

An agent spending all their budget in this way can, in the extreme case, buy as if

the market has infinite liquidity.

Corollary 81. For an agent that spends at most B dollars in a market with trading

fee f and infinite liquidity, ni lies in the range
”

´
Bp1`fq

f
, Bp1`fq

f

ı

.

Proof. The minimum price for a single security is f
1`f

, by Lemma 79 and the defi-

nition of q´. Therefore, an agent with budget B can buy at most Bp1`fq
f

, the upper
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bound in the corollary statement.

The maximum price for a single security is 1
1`f

, by Lemma 79 and the definition

of q`. Thus, an agent selling a security has worst case loss at least 1 ´ 1
1`f

“
f

1`f
.

So, an agent with budget B can sell at most Bp1`fq
f

securities, which yields the lower

bound. �

If every agent has budget at most B in the market stage, we can combine the bounds

from Corollaries 80 and 81 and Lemma 78 to determine the minimum payment that

guarantees truthful reporting in the arbitration phase.

Theorem 82. Given that all other arbiters report truthfully, truthful reporting is a

best response for arbiter i if

k ě
2 maxt|φ´b pBq|, |φ

`
b pBq|u

mδ
.

In the case that agents may participate in the market many times, truthful reporting

requires that

k ě
2Bp1` fq

fmδ
.

Proof. The theorem follows directly from substituting the lower bound on ni from

Corollary 80 and Corollary 81 into the inequality from Lemma 78. �

Therefore, fixing an agent budget B and a trading fee f , we know how large one

needs to make the payments in the arbitration phase in order to incentivize truthful

reporting. We now take a global view, and examine the total funds required to

incentivize all arbiters to report truthfully.

Lemma 83. The total payment made to the arbiters is at most mk. We can imple-

ment a truthful equilibrium with total payment at most

2 maxt|φ´b pBq|, |φ
`
b pBq|u

δ
.
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In the case that agents may participate in the market many times, we require total

payment at most

2Bp1` fq

fδ
.

Proof. As 0 ď µ0, µ1 ď 1, their mean also lies between 0 and 1, and therefore each

arbiter’s payment in the 1/prior with midpoint mechanism is at most k. Thus the

total payment to the arbiters is at most mk, which proves the first part. Combining

this with the bounds on k from Theorem 82 yields the second part. �

Now that we have an expression for the total amount needed to pay the arbiters, we

can determine a suitable value for the fee f so that the mechanism does not need

any outside subsidy to finance these payments. Let ci denote the total cost paid by

agent i to the mechanism (so ci is negative if agent i sells securities). Define M by

M “
ÿ

i:nią0

ci `
ÿ

i:niă0

pni ` ciq.

M can be interpreted as the sum of the worst-case losses of the agents. By defini-

tion, the total fee revenue collected by the mechanism is fM . The mechanism is

guaranteed to generate enough fees to incentivize truthful reporting if the revenue is

at least as large as the total payment required for the arbiters. We state this result

as a theorem.

Theorem 84. The mechanism generates enough fee revenue to pay the arbiters with-

out requiring any outside subsidy if

fM ě
2 maxt|φ´b pBq|, |φ

`
b pBq|u

δ
. (7.5)

If agents may participate in the market many times, then we require that

fM ě
2Bp1` fq

fδ
. (7.6)
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Observe that inequality (7.6) aligns with intuition. An increase in total trader spend

M , or the trading fee f , makes it easier to incentivize the arbiters to report truthfully

since the market collects more revenue. Likewise, an increase in δ helps us satisfy the

inequality, since a large update strength increases the incentive for arbiters to report

truthfully to the peer prediction mechanism. However, a large value of B increases

the stake that any single arbiter can have in the market, which in turn increases

their payoff for misreporting.

An interesting feature of inequalities (7.5) and (7.6) is the lack of any dependence

on the number of arbitersm. One might expect that increasing the number of arbiters

would be beneficial, since this reduces the influence that any one of them has on the

market outcome. However, this is canceled out by the fact that as we add arbiters,

the payment per arbiter decreases, so that we cannot incentivize them as strongly.

7.4 Parameter Calibration

(a) Multiple Entry Case (b) Single Entry Case

Figure 7.2: Minimum fee f required to adequately incentivize arbiters, plotted as a
function of B

M
. In both cases, M “ 106 is fixed. Relationships are shown for selected

values of update strength δ and, in the right-hand plot, liquidity b.

In this section we investigate the constraints imposed by inequalities (7.5) and (7.6).

The purpose of the exercise is to illustrate how Theorem 84 can be used to inform

the choice of fee f , and to confirm that realistic fees could be charged in practice

to subsidize truthful arbitration. We consider the logarithmic market scoring rule
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(LMSR), which is the most common MSR used in practice. For the LMSR, the cost

and price functions are

Cbpqq “ b logp1` eq{bq, ppqq “
eq{b

1` eq{b
.

By the symmetry of LMSR, q´ “ ´q` and φ´b pBq “ ´φ`b pBq. We will therefore

solve for φ`b pBq. To find q´, we set ppqq “ f{p1 ` fq and solve for q, which gives

q´ “ b log f . Now, substituting the relevant components into the expression φ`b pBq “

C´1
b pB ` Cbpq

´qq ´ q´ leads to the following expression for inequality (7.5):

fM ě
2bplogpp1` fqeB{b ´ 1q ´ log fq

δ
. (7.7)

In the case where we allow agents to participate multiple times, inequality (7.6)

remains unchanged.

We plot (7.5) and (7.6) in Figure 7.2, considering their tight versions as equalities.

First consider Figure 7.2(a), which represents the worst-case scenario in which agents

can enter multiple times and potentially spend their entire budget buying securities

at minimum price p´. Suppose that some entity is creating a prediction market for

event X. Having decided on a question, the main decision is what value to set for f ,

typically in the 2-5% range. To do so, the market creator needs to first estimate a

value for δ, which will be determined by question clarity, whether the arbiters have

reliable sources to check the outcome, and other such factors. Each line in the graph

represents a specific value of δ. With δ fixed, the market creator can estimate a

value for B
M

. This is the maximum proportion of money that any single arbiter will

contribute to the market. We would expect B
M

to be small for markets that generate

a lot of interest, while niche markets would be vulnerable to having a single agent

contribute a large percentage of the total trade. Given these values, the creator can

arrive at the smallest f that is guaranteed to subsidize truthful reporting. From
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the graph, we see that in the case of a question where δ “ 1 and B
M
“ 0.001, we

can subsidize the arbiter payment with a fee of approximately 4%. This may seem

large for a clear question with high participation, but we stress that this fee is based

on a severe worst case where an agent is able to spend its entire budget purchasing

securities at the minimum price.

Now consider Figure 7.2(b), which returns to the case where an agent only enters

once, where liquidity now plays a role and we have to consider different values for

parameter b. Figure 7.2(b) includes two reasonable values for b, as well as three

different values for δ. We note that the situation looks considerably better for the

market creator; indeed, the horizontal axis is now ten times larger indicating that

we can now handle much smaller markets. When δ “ 1, we can handle situations

where a single agent can contribute as much as 2% of the total trade with a fee of

less than 5%. Even for questions with δ as low as 0.3, in a market with b “ 1000

and B
M
“ 0.005 the fee can be set to approximately 5%.

7.5 Discussion

This paper proposed and analyzed a mechanism where the outcome of an MSR

prediction market is determined via a peer prediction mechanism among a set of

arbiters. The mechanism relies on two key adaptations to incentivize truthful ar-

bitration: market shares pay out according to the proportion of arbiters who vote

affirmatively, instead of a binary payout, and peer prediction payments are based on

the midpoint of the two possible posteriors, rather than the prior. We showed that,

with this combination of adaptations, it is possible to charge a trading fee that fully

subsidizes truthful arbitration. Calibration based on plausible values of question

clarity and trading volume suggests that realistic fees of 5% should be sufficient in

practice.

While we have derived conditions under which truthful reporting is an equilib-
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rium, there remains the possibility of the arbiters reporting according to uninforma-

tive equilibria that achieve higher payoff. This problem has recently been addressed

in the peer prediction literature in situations where reporters complete several tasks

instead of just one [65, 150]; it may be worthwhile to apply these techniques to our

setting. In practice, arbiters vote on many questions across time, which opens the

possibility of using a reputation system to incentivize them to vote truthfully and

accurately [132]. The interplay of the incentives from all these mechanisms is fertile

ground for future research.
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8

Conclusion

In this thesis, we have considered algorithm design to allow for better decision making

by harnessing information provided by a set of agents. We have considered two classes

of problem: fairly allocating shared resources, and probabilistic forecasting.

For the allocation of shared resources, we have proposed and analyzed a model of

public decision making that generalizes private goods allocation. We proposed novel

fairness guarantees and analyzed algorithms for computing fair allocations in both

the offline and online setting. We also considered an online, private goods alloca-

tion problem and proposed the flexible lending mechanism, which achieves strategy

proofness and a 0.5 approximation to sharing incentives, as well as empirically high

efficiency.

Many open problems remain; see the individual chapters for details. A particu-

larly interesting theme for future research in this space is to investigate the limits of

incentive compatibility. For private goods, there are many settings in which reason-

able incentive guarantees can be obtained, while for public goods, the problem seems

hopeless due to the famous free-rider problem. But there are intermediate settings,

such as excludable, non-rival (i.e., club) goods, where there is evidence that incentive
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guarantees are still possible [139, 122, 66, 123]. Even in the public goods setting,

it may be possible to consider restricted utility models to obtain some incentive

guarantees.

In the second part of the thesis, we considered the problem of eliciting and aggre-

gating probabilistic forecasts. We considered the tradeoff between Pareto optimality

and incentive compatibility in wagering mechanisms and proposed two possible so-

lutions to the problem. We also considered prediction market design when there is

no trusted center to close the markets, forcing us to rely on a vote among a group

of untrusted entities with potential conflict of interest.

Again, there are many open questions. For many forecasting mechanisms, it is

still unclear how they perform in practice both in an absolute sense and relative to one

another. It would be interesting to examine, for instance, whether user satisfaction is

higher with a Pareto optimal wagering mechanism than with a wagering mechanism

that suffers from low stakes. It is also unclear whether, in real situations, participants

have access to enough information to allow them to profitably misreport.
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Appendix A

Omitted Proofs and Results for Chapter 2

A.1 Relationships Among Fairness Axioms

In this section, we analyze the relationship between the fairness properties we in-

troduce in this paper, namely RRS, PPS, and Prop1. First, it is easy to show that

Prop1 does not give any approximation to RRS or PPS, both for public decisions and

for private goods, because it is easy to construct examples where a player receives

zero utility, still satisfies Prop1, but has non-zero PPS share.

In the other direction, for public decisions, we showed that RRS implies 1{2-Prop1

(Lemma 3). For private goods, we can refine this result a bit further.

Theorem 85. For private goods division, RRS implies Prop1 if and only if m ď

4n´ 2.

Proof. First, let us assume m ą 4n´2. Consider the following fair division instance.

Player 1’s values, in the descending order, are as follows.

ujmaxp1q “

$

&

%

pk ´ 1q ¨ n` 1 if j “ 1,
n if j P t2, . . . , k ¨ n´ 1u,
1 if j ě k ¨ n.
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It is easy to check that player 1’s RRS share is exactly u1
maxp1q. Consider an allocation

in which player 1 receives only his most valuable good, and the remaining goods are

partitioned among the other players arbitrarily. For the sake of completeness, let

each other player have value 1 for each good he receives under this allocation, and 0

for the remaining goods. Hence, the allocation satisfies RRS.

Now, player 1’s proportional share is given by

pk ´ 1q ¨ n` 1` pkn´ 2q ¨ n` pm´ kn` 1q ¨ 1

n
“
m` kn2 ´ 3n` 2

n

ą
n` kn2

n

“ kn` 1,

where the second transition follows because m ą 4n´ 2.

The highest value that player 1 can achieve by adding one more good to his

allocation is pk´ 1q ¨ n` 1` n “ kn` 1, which falls short of the proportional share.

Hence, the allocation is not Prop1.

Now, let us assume that m ď 4n´2. Hence, k ď 3. Take a fair division instance,

and let us focus on a player i. For the sake of notational convenience, we define

ujmaxpiq “ 0 for j P tm` 1, . . . , 4n´ 2u. Note that this affects neither his RRS share

nor his satisfaction of Prop1.

We now show that if player i receives at least as much value as his RRS share

unmaxp1q`u
2n
maxp1q`u

3n
maxp1q, then we can make player i receive his proportional share

by adding a single good to his allocation.

If player i does not receive his most valuable good, then this can be accomplished
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by adding his most valuable good to his allocation because

u1
maxpiq ` u

n
maxp1q ` u

2n
maxp1q ` u

3n
maxp1q

ě

řn
j“1 u

j
maxpiq

n
`

ř2n
j“n`1 u

j
maxpiq

n
`

ř3n
j“2n`1 u

j
maxpiq

n
`

ř4n´2
j“3n`1 u

j
maxpiq

n

ě

řm
j“1 u

j
maxpiq

n
.

The first transition follows because ujmaxpiq ě vj`1
maxpiq for all j P r4n´ 3s.

Suppose player i receives his most valuable good. Let t be the smallest index

such that player i does not receive his tth most valuable good. Hence, t ě 2. Let ui

denote the utility to player i under the current allocation. Then, we have that

ui ě
t´1
ÿ

j“1

ujmaxpiq. (A.1)

ui ě vnmaxpiq ` u
2n
maxpiq ` v

3n
maxpiq. (A.2)

Multiplying Equation (A.1) by 1{n and Equation (A.2) by pn ´ 1q{n, and adding,

we get

ui ě

řt´1
j“1 u

j
maxpiq

n
`
n´ 1

n
¨ punmaxpiq ` u

2n
maxpiq ` u

3n
maxpiqq

ě

řt´1
j“1 u

j
maxpiq `

ř2n´1
j“n`1 u

j
maxpiq `

ř3n´1
j“2n`1 u

j
maxpiq `

ř4n´2
j“3n u

j
maxpiq

n

“

řt´1
j“1 u

j
maxpiq `

ř4n´2
j“n`1 u

j
maxpiq ´ u

2n
maxpiq

n

ě

řt´1
j“1 u

j
maxpiq `

ř4n´2
j“n`2 u

j
maxpiq

n
.

If t ě n ` 2, player i already receives his proportional share. Otherwise, let us

now add player i’s tth most valuable good to his allocation. His utility increases to

ui ` u
t
maxpiq ě

řt´1
j“1 u

j
maxpiq `

ř4n´2
j“n`2 u

j
maxpiq

n
`

řn`1
j“t u

j
maxpiq

n
“

řm
j“1 u

j
maxpiq

n
,
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where the first transition follows because t ě 2. Thus, player i receives his propor-

tional share after adding a single good to his allocation. Because player i was chosen

arbitrarily, we have that the allocation satisfies Prop1. �

A.2 Proof of Lemma 5

We will say that a set tx1, . . . , xnu of n non-negative real numbers is feasible for a

given 0 ă δ ă 1 if
řn
k“1 maxt0, 1´ xku ď δ.

Let X “ tx1, . . . , xnu be a feasible set and let i “ arg minkPrnstxku, so that xi

is the minimum value in X. Suppose that xi ą 1 ´ δ. We will show that there

necessarily exists another feasible set X 1 “ tx11, . . . , x
1
nu with

śn
i“1 x

1
i ă

śn
i“1 xi.

To that end, let j “ arg minkPrnsztiutxku, so that xj is the second-lowest value in

X. If xj ě 1 then set x1i “ 1´ δ and x1k “ xk for all k P rnsztiu. Clearly this set X 1

is feasible since
n
ÿ

k“1

maxt0, 1´ xku “ 1´ xi “ δ,

and
n
ź

k“1

x1k “ x1i
ź

k “i

x1k ă xi
ź

k “i

xk “
n
ź

k“1

xk.

Now consider the case where xj ă 1. Let ε “ 1
2
p1 ´ xjq and define x1i “ xi ´ ε,
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x1j “ xj ` ε, and x1k “ xk for all k P rnszti, ju.. For feasibility of X 1,

n
ÿ

k“1

maxt0, 1´ x1ku “
ÿ

kPrnszti,ju

maxt0, 1´ x1ku `maxt0, 1´ xi ` εu `maxt0, 1´ xi ` εu

“
ÿ

kPrnszti,ju

maxt0, 1´ xku ` p1´ xi ` εq ` p1´ xj ´ εq

“
ÿ

kPrnszti,ju

maxt0, 1´ xku ` p1´ xiq ` p1´ xjq

“

n
ÿ

k“1

maxt0, 1´ xku,

and

n
ź

k“1

x1k “ x1ix
1
j

ź

k “i,j

x1k “ pxi ´ εqpxj ` εq
ź

k “i,j

xk “ pxixj ´ pxj ´ xiqε´ ε
2
q

ă xixj
ź

k “i,j

xk “
n
ź

k“1

xk.

To complete the proof, it remains to show that any feasible set with smallest entry

xi “ 1´ δ has
śn

k“1 xk ě 1´ δ. Note that if xi “ 1´ δ then for X to be feasible it

can not be the case that xj ă 1. Therefore,

n
ź

k“1

xk “ p1´ δq
ź

k “i

xk ě p1´ δq.

�

A.3 Proof of Theorem 14

First, we prove that Algorithm 1 produces an allocation satisfying PPS and PO. In

particular, we prove that at the end, allocation A satisfies (A) |Ai| ě p for every

player i P N , and (B) A maximizes the weighted social welfare
ř

iPN wi ¨uipAiq. Note
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that property (A) implies that A satisfies PPS, and property (B) implies that A is

PO.

Before we prove these claims, we note that A maximizes the weighted social

welfare if and only if it allocates each good g PM to a player i maximizing wi ¨uipgq.

First, we prove claim (A). Because the outer loop (Lines 3-22) explicitly runs

until each player receives at least p goods, we simply need to prove that the loop

terminates. For this, we need to analyze the first inner loop (Lines 8-14) and the

second inner loop (Lines 16-21).

Each iteration of the first inner loop reduces the weights of players in DEC,

and adds a player j˚ P NzDEC to DEC. Because |DEC| increases by one in each

iteration, the first inner loop terminates after Opnq iterations.

The second inner loop starts from the player j˚ P LS that was added to DEC

at the end of the first inner loop, and traces back to the player i˚ that was about to

lose good g˚ to j˚ when j˚ was added to DEC. The good is explicitly transferred,

and if player i˚ had exactly p goods initially, the algorithm continues to find another

good to give back to player i˚ by tracing back to the conditions under which player

i˚ was added to DEC. This way, the transfers add a good to a player who was in

LS, maintain the number of goods of the players who were in EQ, and remove a

good from a player who was in GT . Because in each iteration, player i˚ had to be

present in DEC before player j˚ was added, this loop cannot continue indefinitely,

and must terminate in Opnq iterations as well.

Thus, both inner loops terminate in Opnq iterations, and in each iteration of the

outer loop, a player in LS receives an additional good without any new players being

added to LS. This monotonically reduces the metric
ř

iPLS p ´ |Ai| by at least 1 in

each iteration. Because this metric can be at most p ¨n ď m to begin with, the outer

loop executes Opmq times.

We now prove claim (B). That is, we want to show that allocation A remains a
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maximizer of the weighted social welfare according to weight vector w at during the

execution of the algorithm. Because we specifically select A to be a weighted social

welfare maximizer in Line 2, we simply show that neither the weight update in the

first inner loop nor the changes to the allocation in the second inner loop violate this

property.

In the first inner loop, because the weights of players in DEC are reduced by the

same multiplicative factor, goods can only transfer from players in DEC to players

in NzDEC. However, the choice of r in Line 10 ensures that the weight reduction

stops when the first such potential transfer creates a tie, preserving allocation A as

a weighted welfare maximizer. Alterations to allocation A during the second inner

loop also do not violate this property because this loop only transfers a good g˚ from

player i˚ to player j˚ when the two players were anyway tied to receive the good.

This concludes our claim that the algorithm terminates, and correctly produces

an allocation satisfying PPS and PO. We already established that the outer loop

executes Opmq times, and the two inner loops execute Opnq times. The bottleneck

within the inner loops is the arg min computation in Line 9, which requires Opn ¨

mq time to find the minimum across all goods owned by players in DEC and all

players outside DEC. Consequently, the asymptotic running time complexity of the

algorithm is Opm ¨ n ¨ nmq “ Opn2 ¨m2q. �
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Appendix B

Omitted Proofs and Results for Chapter 4

B.1 Omitted Proofs

B.1.1 Proof of Lemma 29

We use the characterization of the FL mechanism allocations from Lemma 28. We

consider four cases, corresponding to whether or not supply exceeds demand in the

truthful and misreported instances. Let x1 denote the objective value in the FL

mechanism’s call to PSWC in the misreported instance, and x in the truthful in-

stance. Suppose first that Dr ě E and D1r ě E. Suppose that x1 ď x. Then, for all

j “ i,

a1j,r “ minpx1ej, dj,r, t
1
j,rq ď minpxej, dj,r, tj,rq “ aj,r,

which implies that a1i,r ě ai,r, since
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 . On the other hand, if

x1 ą x, then

a1i,r “ minpx1ei, di,r, t
1
i,rq ě minpxei, di,r, ti,rq “ ai,r.

Second, suppose that Dr ě E and D1r ă E. Then

a1i,r ě minpdi,r, t
1
i,rq ě minpdi,r, ti,rq ě ai,r.
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Third, suppose that Dr ă E and D1r ě E. Then

a1j,r ď minpdj,r, t
1
j,rq ď minpdj,r, tj,rq ď aj,r

for all j “ i, which implies that a1i,r ě ai,r. Finally, suppose that Dr ă E and

D1r ă E. If x1 ď x, then for all j “ i, we have that

a1j,r “ minpt1j,r,maxpdj,r, x
1ejqq ď minptj,r,maxpdj,r, xejqq “ aj,r,

which implies that a1i,r ě ai,r. If x1 ą x, then

a1i,r “ minpt1i,r,maxpdi,r, x
1eiqq ě minpti,r,maxpdi,r, xeiqq “ ai,r.

Thus, the lemma holds in all cases.

B.1.2 Proof of Lemma 41

If D ě E, substituting the relevant terms into Lemma 27 gives us the following.

ai,r “ maxp0,minpminpd1i,r, ei ` biq, xeiqq “ minpei ` bi, d
1
i,r, xeiq.

If D ă E, then again by substituting into Lemma 27 we have the following.

ai,r “ maxpminpei ` bi, d
1
i,rq,minpei ` bi, xeiqq “ minpei ` bi,maxpd1i,r, xeiqq.

The final equality, maxpminpA,Bq,minpA,Cqq “ minpA,maxpB,Cqq, can easily be

checked to hold case by case for any relative ordering of A, B, and C.

B.1.3 Proof of Lemma 42

If r ą T , then the allocation of agent i is independent of her reported demand,

thus ai,r “ a1i,r. Now suppose that r ď T . Let d̄i,r “ minpdi,r, ei ` bi,rq and d̄1i,r “

minpd1i,r, ei ` bi,rq. Also, let x and x1 denote the objective value in the T -period

mechanism’s call to PSWC when i reports di,r and d1i,r, respectively. Observe first

that D1 “ d̄1i,r `
ř

j‰i d̄j,r ď d̄i,r `
ř

j‰i d̄j,r “ D.
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Suppose first that E ď D1 ď D. Let aj,r and a1j,r denote the allocations of

j{not “ i when i reports di,r and d1i,r, respectively. If x1 ě x, then for all j ‰ i, by

Lemma 41 we have:

a1j,r “ minpej ` bj,r, dj,r, x
1ejq ě minpej ` bj,r, dj,r, xejq “ aj,r.

This immediately implies that a1i,r ď ai,r, because
ř

kPrns ak,r “
ř

kPrns a
1
k,r “ E. If

x1 ă x, then again by Lemma 41 we have the following:

a1i,r “ minpei ` bi,r, d
1
i,r, x

1eiq ď minpei ` bi,r, di,r, xeiq “ ai,r.

By the same lemma, for all j ‰ i, we also have:

a1j,r “ minpej ` bj,r, dj,r, x
1ejq ď minpej ` bj,r, dj,r, xejq “ aj,r.

Therefore, for all k P rns, ak,r ě a1k,r. However, since
ř

kPrns ak,r “
ř

kPrns a
1
k,r “ E, it

has to be the case that ak,r “ a1k,r for all k.

Next, suppose that D1 ă E ď D. By the definition of the T -period mechanism,

for all j ‰ i, a1j,r ě d̄j,r , and aj,r ď d̄j,r. Therefore, a1j,r ě aj,r which implies that

a1i,r ď ai,r.

Finally, suppose that D1 ď D ă E. If x1 ě x, then by Lemma 41, for all j ‰ i,

we have:

a1j,r “ minpej ` bj,r,maxpdj,r, x
1ejqq ě minpej ` bj,maxpdj,r, xejqq “ aj,r.

This implies a1i,r ď ai,r. If x1 ă x, then, by Lemma 41 we have:

a1i,r “ minpei ` bi,r,maxpd1i,r, x
1eiqq ď minpei ` bi,r,maxpdi,r, xeiqq “ ai,r

By the same lemma, for all j ‰ i, we also have:

a1j,r “ minpej ` bj,r,maxpdj,r, x
1ejqq ď minpej ` bj,r,maxpdj,r, xejqq “ aj,r.

Therefore, for all k P rns, a1k,r ď ak,r. However, since
ř

kPrns ak,r “
ř

kPrns a
1
k,r “ E, it

has to be the case that ak,r “ a1k,r for all k.
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B.1.4 Proof of Lemma 43

Note that D1 ď D, since d1i,r ă di,r and d1j,r “ dj,r for all agents j “ i. If E ď D,

then by the definition of the T -period mechanism we have:

ai,r ď d̄i,r “ minpei ` bi, di,rq ď di,r.

Next, assume that D1 ď D ă E. Then a1i,r ă ai,r implies that there is at least

one agent j with a1j,r ą aj,r. In the proof of Lemma 42 we show that if x1 ă x, then

a1k,r “ ak,r for all k. Therefore, it has to be the case that x1 ě x. By Lemma 41,

ai,r “ minpei` bi,r,maxpdi,r, xeiqq and a1i,r “ minpei` bi,maxpd1i,r, x
1eiqq. It is easy to

see that if di,r ă xei, then a1i,r ě ai,r, which contradicts the assumption in the lemma

statement. Therefore, we have:

ai,r “ minpei ` bi,maxpdi,r, xeiqq “ minpei ` bi, di,rq ď di,r.

B.1.5 Proof of Corollary 44

Because a1i,r ă ai,r ď di,r, we can substitute the utility values from Equation (4.2),

ui,rpai,rq ´ ui,rpa
1
i,rq “ ai,rH ´ a

1
i,rH “ Hpai,r ´ a

1
i,rq.

B.1.6 Proof of Lemma 45

Note that D1 ě D, since d1i,r ą di,r and d1j,r “ dj,r for all agents j “ i. If D ă E,

then ai,r ě d̄i,r “ minpei ` bi,r, di,rq. We show that ei ` bi,r ě di,r, and therefore,

ai,r ě di,r. Suppose for contradiction that ei ` bi,r ă di,r ă d1i,r, which means d̄i,r “

d̄1i,r “ ei` bi,r. By definition of the T -period mechanism, d̄i,r ď ai,r ď ei` bi,r, which

implies ai,r “ ei` bi,r. Also, by the definition of the mechanism, a1i,r ď d̄1i,r “ ei` bi,r

if D1 ě E, and a1i,r ď ei`b
1
i,r “ ei`bi,r if D1 ă E. In both cases, a1i,r ď ei`bi,r “ ai,r,

a contradiction to the assumption in the lemma statement.

If D1 ě D ě E, then a1i,r ą ai,r implies that there is at least an agent j with

a1j,r ă aj,r. In the proof of Lemma 42 we show that if x ă x1, then a1k,r “ ak,r
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for all k. Therefore, it has to be the case that x ě x1. By Lemma 41, ai,r “

minpei` bi,r, di,r, xeiq and a1i,r “ minpei` bi,r, d
1
i,r, x

1eiq. It is easy to see that if ai,r is

xei or ei ` bi,r, then a1i,r ď ai,r. Therefore, ai,r “ di,r, which means the lemma holds.

B.1.7 Proof of Corollary 46

Because di,r ď ai,r ă a1i,r, we can substitute the utility values from Equation (4.2),

ui,rpa
1
i,rq ´ ui,rpai,rq “ di,rH ` pa

1
i,r ´ di,rqL´ pdi,rH ` pai,r ´ di,rqLq “ Lpa1i,r ´ ai,rq.

B.1.8 Proof of Lemma 47

Suppose first that agent i reports d1i,T ă di,T . Then, by Lemma 42, a1i,T ď ai,T .

If a1i,T “ ai,T , then the misreport has had no effect on the allocations, since the

allocation at rounds r ď T is unchanged, and the allocations at rounds r ą T

depend only on the allocations at rounds r ď T , not the reports. So assume that

a1i,T “ ai,T ´ k for some k ą 0. By the definition of the T -Period mechanism, i’s

allocation increases by k
T

for each of rounds T ` 1, . . . , 2T . The difference between

her utility from truthfully reporting at round T and from misreporting at round T

is given by

Ui,Rpaiq ´ Ui,Rpa
1
iq “

R
ÿ

r“1

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

“ ui,T pai,T q ´ ui,T pa
1
i,T q `

2T
ÿ

r“T`1

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

“ kH `
2T
ÿ

r“T`1

ˆ

ui,rpai,rq ´ ui,rpai,r `
k

T
q

˙

ě kH ´ kH “ 0

where the second transition follows because d1i,r “ di,r for all rounds r ă T , the

third transition from Corollary 44, and the final transition because each of the extra

resources received in the misreported case for rounds r ą T can each be worth at

most H to i.
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Next suppose that agent i reports d1i,T ą di,T . Then, by Lemma 42, a1i,T ě ai,T .

As before, assume that a1i,T “ ai,T . That is, a1i,T “ ai,T ` k for some k ą 0. By

the definition of the T -Period mechanism, i’s allocation decreases by k
T

for each of

rounds T ` 1, . . . , 2T . The difference between her utility from truthfully reporting

at round T and from misreporting at round T is given by

Ui,Rpaiq ´ Ui,Rpa
1
iq “

R
ÿ

r“1

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

“ ui,T pai,T q ´ ui,T pa
1
i,T q `

2T
ÿ

r“T`1

`

ui,rpai,rq ´ ui,rpa
1
i,rq

˘

“ ´kL`
2T
ÿ

r“T`1

ˆ

ui,rpai,rq ´ ui,rpai,r ´
k

T
q

˙

ě ´kL` kL “ 0

where the second transition follows because d1i,r “ di,r for all rounds r ă T , the

third transition from Corollary 46, and the final transition because each of the extra

resources received in the truthful case for rounds r ą T are each worth at least L to

i.

B.1.9 Proof of Lemma 49

We treat four cases, corresponding to whether or not supply exceeds demand in

the truthful and misreported instances. Let x1 denote the objective value in the T -

Period mechanism’s call to PSWC in the misreported instance, and x in the truthful

instance. All cases rely heavily on the characterization of the allocation from Lemma

41.

Suppose first that Dr ě E and D1r ě E. Suppose that x1 ď x. Then, for all

j “ i, a1j,r “ minpx1ej, dj,r, ej ` b1j,rq ď minpxej, dj,r, ej ` bj,rq “ aj,r, which implies

that a1i,r ě ai,r, since
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 . On the other hand, if x1 ą x, then

a1i,r “ minpx1ei, di,r, ei ` b1i,rq ě minpxei, di,r, ei ` bi,rq “ ai,r. Second, suppose that

Dr ě E and D1r ă E. Then a1i,r ě minpdi,r, ei ` b1i,rq ě minpdi,r, ei ` bi,rq ě ai,rq.
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Third, suppose that Dr ă E and D1r ě E. Then a1j,r ď minpdj,r, ej ` b1j,rq ď

minpdj,r, ej ` bj,rq ď aj,r for all j “ i, which implies that a1i,r ě ai,r.

Finally, suppose that Dr ă E and D1r ă E. If x1 ď x, then for all j “ i, we

have that a1j,r “ minpej ` b1j,r,maxpdj,r, x
1ejqq ď minpej ` bj,r,maxpdj,r, xejqq “ aj,r,

which implies that a1i,r ě ai,r. If x1 ą x, then a1i,r “ minpei ` b1i,r,maxpdi,r, x
1eiqq ě

minpei ` bi,r,maxpdi,r, xeiqq “ ai,r. Thus, the lemma holds in all cases.

B.1.10 Proof of Proposition 51

Let r ď T . First suppose that D ă E. Then i’s minimum allocation is d̄i,r “

minpd1i,r, ei ` bi,rq “ ei. So we know that ai,r ě ei. Suppose for contradiction that

ai,r ą ei. Then there must be some agent j “ i with aj,r ď ej. But now we

could obtain a smaller value of x in the PSWC program by assigning slightly higher

allocation to j, and slightly lower allocation to any agent with ak,r{ek “ x (we know

that j is not one of these agents since aj,r{ej ă 1 ă ai,r{ei ď x). This contradicts

optimality of the PSWC program, therefore ai,r “ ei.

Next, suppose that D ě E. Then i’s limit allocation is d̄i,r “ minpd1i,r, ei` bi,rq “

ei. So we know that ai,r ď ei. Suppose for contradiction that ai,r ă ei. Then

there must exist some agent j with aj,r ą ej. But now the objective value x of the

call to PSWC could be improved by transferring some small amount of allocation

to i from all agents k with ak,r{ek “ x (we know that i is not one of these agents

since ai,r{ei ă 1 ă aj,r{ej ď x). This contradicts optimality of the PSWC program,

therefore ai,r “ ei.

B.2 Over-reporting Demand is not Advantageous

In this section we assume that d1i,r1 ą di,r1 . The setup otherwise mirrors that of

§4.5.3.

Lemma 86. For all agents j ‰ i, we have that a1j,r1 ď aj,r1. Further, a1i,r1 ě ai,r1.
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Proof. We prove the statement for all j “ i. The statement for i follows immediately

because the total number of resources to allocate is fixed.

Observe first that

Dr1 “
ÿ

kPrns

minpdk,r1 , tk,r1q ď
ÿ

kPrns

minpd1k,r1 , tk,r1q “ D1r1 ,

since i’s demand increases in the misreported instances but all other demands and

token counts stay the same. Let x1 denote the objective value in FL’s call to PSWC

in the misreported instance, and x in the truthful instance.

Suppose that E ď Dr1 ď D1r1 . Suppose first that x1 ă x. Then, by Lemma 28,

aj,r1 “ minpxej, dj,r1 , tj,r1q ě minpx1ej, dj,r1 , tj,r1q “ a1j,r1

for all j “ i. Next, suppose that x1 ě x. Then, again by Lemma 28 and the fact

that d1i,r1 ą di,r1 ,

a1i,r1 “ minpx1ei, d
1
i,r1 , ti,r1q ě minpxei, di,r1 , ti,r1q “ ai,r1 .

And, for all j “ i,

a1j,r1 “ minpx1ej, dj,r1 , tj,r1q ě minpxej, dj,r1 , tj,r1q “ aj,r1 .

Because a1k,r1 ě ak,r1 for all users k, and
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 , it must be the case

that a1k,r1 “ ak,r1 for all k, which satisfies the statement of the lemma.

Next, suppose that Dr1 ă E ď D1r1 . By the definition of FL, ak,r1 ě minpdk,r1 , tk,r1q

for all k, and a1k,r1 ď minpd1k,r1 , tk,r1q for all k. Since minpd1j,r1 , tj,r1q “ minpdj,r1 , tj,r1q

for all j “ i, we have that aj,r1 ě a1j,r1 , implying also that ai,r1 ď a1i,r1 .

Finally, suppose that Dr1 ď D1r1 ă E. Suppose first that x ď x1. Then, by Lemma

28 and the assumption that di,r1 ă d1i,r1 , we have

ai,r1 “ minpti,r1 ,maxpxei, di,r1qq ď minpti,r1 ,maxpx1ei, d
1
i,r1qq “ a1i,r1
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and

aj,r1 “ minptj,r1 ,maxpxej, dj,r1qq ď minptj,r1 ,maxpx1ej, dj,r1qq “ a1j,r1

for all j “ i. Because ak,r1 ď a1k,r1 for all users k, and
ř

kPrns a
1
k,r1 “

ř

kPrns ak,r1 , it

must be the case that ak,r1 “ a1k,r1 for all k, which satisfies the lemma statement.

Next, suppose that x ą x1. Then, again by Lemma 28, for all j “ i, we have

aj,r1 “ minptj,r1 ,maxpxej, dj,r1qq ě minptj,r1 ,maxpx1ej, dj,r1qq “ a1j,r1 .

�

If it is the case that a1i,r1 “ ai,r1 , then it must also be that a1j,r1 “ aj,r1 for all j “ i.

So allocations at round r1 are the same in the misreported instance as the truthful

instance. Therefore, for all rounds r ď r1, allocations in both universes are the same.

In all rounds r ą r1, reports in both universes are the same. Together, these imply

that allocations for all rounds r ą r1 are the same in both universes. In particular, i

does not profit from her misreport and could weakly improve her utility by reporting

d1i,r1 “ di,r1 . So, for the remainder of this section, we assume that a1i,r1 ą ai,r1 .

Our next lemma says that the additional resources that i receives in round r1

are low valued resources for her. The intuition is that if it were the case that i

was receiving only high-valued resources under truthful reporting, then she will not

receive any extra resources by misreporting (since no agent donates any additional

resources for i to receive).

Lemma 87. If a1i,r1 ą ai,r1, then ai,r1 ě di,r1.

Proof. Suppose for contradiction that ai,r1 ă di,r1 . We also know that ai,r1 ă a1i,r1 ď

t1i,r1 “ ti,r1 , where the equality holds because allocations before round r1 are identical

in the truthful and misreported instances. It must therefore be the case that D1r1 ě

Dr1 ą E, where the first inequality holds because d1j,r1 “ dj,r1 for all j “ i and
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d1i,r1 ą di,r1 , and the second because ai,r1 ă minpti,r1 , di,r1q. Let x denote the objective

value of FL’s call to PSWC in the truthful instance, and x1 in the misreported

instance. Suppose that x ď x1. Then, by Lemma 28 and the assumption that

di,r1 ă d1i,r1 ,

ai,r1 “ minpti,r1 , xei, di,r1q ď minpti,r1 , x
1ei, d

1
i,r1q “ a1i,r1 ,

and for all j “ i

aj,r1 “ minptj,r1 , xej, dj,r1q ď minptj,r1 , x
1ej, dj,r1q “ a1j,r1 .

Because ak,r1 ď a1k,r1 for all agents k, and
ř

kPrns ak,r1 “
ř

kPrns a
1
k,r1 , it must be the

case that a1k,r1 “ ak,r1 for all k. This contradicts the assumption that ai,r1 ă a1i,r1 .

Now suppose that x ą x1. Note that xei ă di,r1 ă d1i,r1 , where the first inequality

holds because ai,r1 ă minpti,r1 , di,r1q. Then, again by Lemma 28 and the previous

observation, we have

a1i,r1 “ minpti,r1 , x
1ei, d

1
i,r1q ď minpti,r1 , xei, di,r1q “ ai,r1 ,

which contradicts that ai,r1 ă a1i,r1 .

Since we arrive at a contradiction in all cases, the lemma statement must be true.

�

As a corollary, we can write the difference in utility between the truthful and

misreported instances that i derives from round r1.

Corollary 88. ui,r1pa
1
i,r1q ´ ui,r1pai,r1q “ Lpa1i,r1 ´ ai,r1q.

Proof. Because di,r1 ď ai,r1 ă a1i,r1 , we can substitute the utility values from Equation

(4.2):

ui,r1pa
1
i,r1q´ui,r1pai,r1q “ di,r1H`pa

1
i,r1´di,r1qL´di,r1H´pa

1
i,r´di,r1qL “ Lpa1i,r1´ai,r1q.

�
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For a fixed agent k, denote by r1k the round at which agent k runs out of tokens in

the misreported universe. That is, r1k is the first (and only) round with a1rk “ t1k,rk ą 0.

Note that r1i ě r1, since a1i,r1 ą 0. Given this, our next lemma states that, under

certain conditions, the effect of i’s misreport, d1i,r ą di,r, is to decrease the objective

value of FL’s call to PSWC.

Lemma 89. Let r ă r1i (i.e., a1i,r ă t1i,r). Suppose tj,r ď t1j,r for all agents j ‰ i.

Suppose that either minpDr, D
1
rq ě E or maxpDr, D

1
rq ă E. Then x1 ď x, where x1

denotes the objective value of FL’s call to PSWC in the misreported instance and x

in the truthful instance.

Proof. First, suppose that minpDr, D
1
rq ě E. Suppose for contradiction that x ă x1.

By Lemma 28,

aj,r “ minpxej, dj,r, tj,rq ď minpx1ej, dj,r, t
1
j,rq “ a1j,r

for all j “ i, where the inequality follows from the assumption that x ă x1 and that

tj,r ď t1j,r. Further,

ai,r “ minpxei, di,r, ti,rq ď minpxei, di,rq ď minpx1ei, di,rq

“ minpx1ei, di,r, t
1
i,rq “ a1i,r,

where the second inequality follows from the assumption that x ă x1 and the second

to last equality from the assumption a1i,r ă t1i,r.

Therefore, ak,r ď a1k,r for all agents k. Since
ř

a1k,r “
ř

ak,r, it must be the case

that a1k,r “ ak,r for all agents k. Therefore, by the definition of FL, a1k,r{ek ď x ă x1

for all agents k with a1k,r ą mk “ 0. Therefore x1 is not the optimal objective value

of the PSWC program in the misreported instance, a contradiction. Thus, x ě x1.

Next, suppose that maxpDr, D
1
rq ă E. Suppose for contradiction that x ă x1. By

Lemma 28,

aj,r “ minptj,r,maxpxej, dj,rqq ď minpt1j,r,maxpx1ej, dj,rqq “ a1j,r
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for all j “ i, where the inequality follows from the assumption that x ă x1 and that

tj,r ď t1j,r. Further,

ai,r “ minpti,r,maxpxei, di,rqq ď maxpxei, di,rq ď maxpx1ei, di,rq

“ minpt1i,r,maxpx1ei, di,rqq “ a1i,r,

where the second inequality follows from the assumption that x ă x1 and the second

to last equality from the assumption a1i,r ă t1i,r.

Therefore, ak,r ď a1k,r for all agents k. Since
ř

a1k,r “
ř

ak,r, it must be the case

that a1k,r “ ak,r for all agents k. Consider all agents with minpdk,r, t
1
k,rq ă a1k,r (that

is, those agents for which the first constraint in the PSWC program binds in the

misreported instance). For all such agents, we have

minpdk,r, t
1
k,rq ă a1k,r ùñ dk,r ă a1k,r ď t1k,r ùñ dk,r ă ak,r ď tk,r ùñ minpdk,r, tk,rq ă ak,r,

so the constraints bind in the truthful instance as well. Therefore, ak,r{ek ď x ă x1 for

all agents k for which the first constraint binds in the misreported instance. There-

fore x1 is not the optimal objective value of the PSWC program in the misreported

instance, a contradiction. Thus, x ě x1. �

Using Lemma 89, we show our main lemma. It allows us to make an inductive ar-

gument that, after gaining some extra resources in round r1, i’s allocation is (weakly)

smaller for all other rounds in the mireported instance than the truthful instance.

Lemma 90. Let r1 ă r ă r1i (that is, a1i,r ă t1i,r). Suppose that tj,r ď t1j,r for all

agents j ‰ i. Then for all j ‰ i, either: (1) aj,r “ tj,r, or (2) aj,r ě a1j,r.

Proof. Note that tj,r ď t1j,r for all j “ i implies that ti,r ě t1i,r, which we use in

the proof. Also, because r1 ă r, we know that d1i,r “ di,r, as r1 is the last round

for which d1i,r “ di,r. We assume that condition 1) from the lemma statement is

false (i.e., aj,r ă tj,r) and show that condition 2) must hold. Suppose first that
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D1r ă E. Then, because a1i,r ă t1i,r, we know that d1i,r ď t1i,r ď ti,r. This implies

that minpdi,r, t
1
i,rq “ minpdi,r, ti,rq “ di,r. Let j “ i. Since tj,r ď t1j,r, we have

minpdj,r, tj,rq ď minpdj,r, t
1
j,rq. Therefore, it is the case thatDr ď D1r ă E. By Lemma

28 and the assumption that aj,r ă tj,r, it must be the case that aj,r “ maxpdj,r, xejq.

Further, by Lemma 89, we know that x ě x1. Therefore, we have

a1j,r “ maxpdj,r, x
1ejq ď maxpdj,r, xejq “ aj,r.

That is, condition (2) from the lemma statement holds.

Now suppose that D1r ě E. Then, from the definition of the mechanism, we have

that a1j,r ď minpdj,r, t
1
j,rq ď dj,r. If it is the case that Dr ă E then we have that

aj,r ě minpdj,r, tj,rq “ dj,r, where the equality holds because otherwise we would

have aj,r ě minpdj,r, tj,rq “ tj,r, violating the assumption that aj,r ă tj,r. Using these

inequalities, we have aj,r ě dj,r ě a1j,r, so condition (2) from the statement of the

lemma holds. Finally, it may be the case that D1r ěM and Dr ěM . By Lemma 28

and the assumption that aj,r ă tj,r, we have

aj,r “ minpdj,r, xekq ě minpdj,r, x
1ekq “ a1j,r,

where the inequality follows from Lemma 89. Thus, condition (2) of the lemma

statement holds. �

We now show an analogous result to Lemma 29.

Lemma 91. Suppose that tj,r ď t1j,r for all j “ i, and dk,r “ d1k,r for all k P rns.

Then ai,r ě a1i,r.

Proof. Note that the condition that tj,r ď t1j,r for all j “ i implies that ti,r ě t1i,r.

We use these assumptions, along with the characterization of the FL mechanism

allocations from Lemma 28, to prove the lemma.
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We treat four cases, corresponding to whether or not supply exceeds demand

in the truthful and misreported instances. Let x1 denote the objective value in the

FL mechanism’s call to PSWC in the misreported instance, and x in the truthful

instance. Suppose first that D1r ě E and Dr ě E. Suppose that x ď x1. Then,

for all j “ i, aj,r “ minpxej, dj,r, tj,rq ď minpx1ejdj,r, t
1
j,rq “ a1j,r, which implies that

ai,r ě a1i,r, since
ř

kPrns a
1
k,r1 “

ř

kPrns ak,r1 . On the other hand, if x ą x1, then

ai,r “ minpxei, di,r, ti,rq ě minpx1ei, di,r, t
1
i,rq “ a1i,r. Second, suppose that D1r ě E

and Dr ă E. Then ai,r ě minpdi,r, ti,rq ě minpdi,r, t
1
i,rq ě a1i,rq. Third, suppose that

D1r ă E and Dr ě E. Then aj,r ď minpdj,r, tj,rq ď minpdj,r, t
1
j,rq ď a1j,r for all j “ i,

which implies that ai,r ě a1i,r.

Finally, suppose that D1r ă E and Dr ă E. If x ď x1, then for all j “

i, we have that aj,r “ minptj,r,maxpdj,r, xejqq ď minpt1j,r,maxpdj,r, x
1ejqq “ a1j,r,

which implies that ai,r ě a1i,r. If x ą x1, then ai,r “ minpti,r,maxpdi,r, xeiqq ě

minpt1i,r,maxpdi,r, x
1eiqq “ a1i,r. Thus, the lemma holds in all cases. �

Finally, we show that the mechanism is strategy-proof.

Theorem 92. Agent i never benefits from reporting di,r1 ą di,r1.

Proof. We first observe that for every r ď r1i, tj,r ď t1j,r for every j “ i. This is true

for every r ď r1 because a1j,r “ aj,r for r ă r1, by Lemma 30. For r “ r1 ` 1, it

follows from Lemma 86, which says that aj,r1 ě a1j,r1 . For all subsequent rounds, up

to and including r “ r1i, it follows inductively from Lemma 90: tj,r ď t1j,r implies

that either aj,r “ tj,r (in which case tj,r`1 “ 0 ď t1j,r`1), or aj,r ě a1j,r (in which case

tj,r`1 “ tj,r ´ aj,r ď t1j,r ´ a
1
j,r “ t1j,r`1).

Consider an arbitrary round r “ r1, with r ď r1i. By the above argument, we

know that tj,r ď t1j,r for all j “ i. Further, because reports in the truthful and

misreported instances are identical on all rounds r “ r1, we have that dk,r “ d1k,r for
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all k P rns. Therefore, by Lemma 91, ai,r ě a1i,r. For rounds r ą r1i, it is also true

that ai,r ě a1i,r, since a1i,r “ 0 for these rounds by the definition of r1i.

Finally,

Ui,Rpaiq ´ Ui,Rpa
1
iq “

R
ÿ

r“1

pui,rpai,rq ´ ui,rpa
1
i,rqq

“
ÿ

r “r1

pui,rpai,rq ´ ui,rpa
1
i,rqq ` pui,r1pai,r1q ´ ui,r1pa

1
i,r1qq

“
ÿ

r “r1

pui,rpai,rq ´ ui,rpa
1
i,rqq ´ Lpa

1
i,r1 ´ ai,r1q

ě Lpa1i,r1 ´ ai,r1q ´ Lpa
1
i,r1 ´ ai,r1q “ 0

Where the third transition follows from Corollary 88, and the final transition because
ř

r “r1pa
1
i,r ´ ai,rq “ ai,r1 ´ a

1
i,r1 , and every term in the sum is positive. �
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Appendix C

Omitted Material from Chapter 5

C.1 Proof of Theorem 54

In this section, we provide a proof of Theorem 54. The first step of the proof is to

show that any time a profitable side bet exists, there is a profitable side bet with

∆σi “ 0 for all agents i. This is because $1 in cash is equivalent to a pair of yes and

no securities. Thus we can limit attention to side bets that only involve the exchange

of securities. The second step uses this fact to show that any time a profitable side

bet exists, there exists a profitable side bet involving only a pair of agents. The final

step is to show that there is no profitable side bet between any pair of agents if and

only if the conditions in Theorem 54 hold.

Lemma 93. For a given set of reports p̂, wagers w, allocations y and n of yes and

no securities, and payments σ, if there exists a profitable side bet p∆y,∆n,∆σq,

then there exists a profitable set bet p∆y1,∆n1,∆σ1q with ∆σ1i “ 0 for all i P N .

Proof. For all i P N , let

∆y1i “ ∆yi ´∆σi, ∆n1i “ ∆ni ´∆σi, ∆σ1i “ 0.
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We show that the three conditions of a profitable side bet are met for p∆y1,∆n1,∆σ1q.

1. First, we have

ÿ

iPN
∆y1i “

ÿ

iPN
∆yi ´

ÿ

iPN
∆σi “ 0,

ÿ

iPN
∆n1i “

ÿ

iPN
∆ni ´

ÿ

iPN
∆σi “ 0,

ÿ

iPN
∆σ1i “ 0.

2. Next, we have for all i P N ,

mintyi `∆y1i, ni `∆n1iu´pσi `∆σ1iq

“ mintyi `∆yi ´∆σi, ni `∆ni ´∆σiu ´ σi

“ mintyi `∆yi, ni `∆niu ´ pσi `∆σiq ě ´wi.

3. Finally, for all i P N ,

p̂i∆y
1
i ` p1´ p̂iq∆n

1
i “ p̂ip∆yi ´∆σiq ` p1´ p̂iqp∆ni ´∆σiq

“ p̂i∆yi ` p1´ p̂iq∆ni ´∆σi

ě 0 “ ∆σ1i.

The inequality must be strict for at least one i since p∆y,∆n,∆σq is a prof-

itable side bet.

�

Lemma 94. For a given set of reports p̂, wagers w, allocations y and n of yes and

no securities, and payments σ, if there exists a profitable side bet p∆y,∆n,∆σq,

then there exists a profitable set bet p∆y1,∆n1,∆σ1q and pair of agents j and k such

that ∆y1i “ 0 for all i but j and k, ∆n1i “ 0 for all i but j and k, and ∆σ1i “ 0 for all

i.
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Proof. From Lemma 93, we can assume without loss of generality that ∆σi “ 0 for

all i P N .

Let Sy “ ti : ∆yi ą 0 ą ∆niu and Sn “ ti : ∆ni ą 0 ą ∆yiu. We first show that

these sets are not empty. First note that in order for p∆y,∆n,∆σq to be a profitable

trade, one agent’s utility must strictly increase, implying that there must be some i

with either ∆yi ą 0 or ∆ni ą 0. If ∆ni ą 0 then there must be some j with ∆nj ă 0

(since
ř

iPN ∆ni “ 0), which implies that ∆yj ą 0 or agent j would not find the

side bet (weakly) profitable. But then there must be some k with ∆yk ă 0 (since
ř

iPN ∆yi “ 0), and by a similar argument, ∆nk ą 0. The same type of argument

can be made starting with ∆yi ą 0.

We next show that there must exist some j P Sy and k P Sn such that p̂j ą p̂k.

Suppose this were not the case. Then there is some p such that p̂j ď p for all j P Sy

and p̂k ě p for all k P Sn. We have already argued that there cannot exist any agent

i with ∆yi ă 0 and ∆ni ă 0, which implies that

ÿ

iPSyYSn

∆yi ď
ÿ

iPN
∆yi “ 0,

ÿ

iPSyYSn

∆ni ď
ÿ

iPN
∆ni “ 0, (C.1)

where both inequalities simultaneously hold with equality only if ∆ni “ ∆yi “ 0 for

all agents i R Sy Y Sn. Therefore,
ÿ

jPSy

pp̂j∆yj ` p1´ p̂jq∆njq `
ÿ

kPSn

pp̂k∆yk ` p1´ p̂kq∆nkq

ď p
ÿ

jPSy

∆yj ` p1´ pq
ÿ

jPSy

∆nj ` p
ÿ

kPSn

∆yk ` p1´ pq
ÿ

kPSn

∆nk ď 0.

This shows that the total utility of the set of agents in SyYSn weakly decreases as a

result of the side bet, meaning that either the utility of some agent i P SyYSn strictly

decreases (in which case the bet cannot be profitable), or the utility of all agents in

Sy Y Sn is unchanged, which means that both inequalities from Equation C.1 are in

fact equalites. This in turn implies that ∆ni “ ∆yi “ 0 for all agents i R Sy Y Sn,
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so no agent is strictly better off as a result of the side bet (and therefore it is not a

profitable side bet).

It remains to show that the agents j P Sy and k P Sn with p̂j ą p̂k can form

a profitable trade with each other without violating their budgets. Choose any

p P rp̂k, p̂js. For some δ ą 0, let

∆y1j “ δ ∆n1j “ ´
p

1´ p
δ ∆σ1j “ 0

∆y1k “ ´δ ∆n1k “
p

1´ p
δ ∆σ1k “ 0

and ∆y1i “ ∆n1i “ ∆σ1i “ 0 for all other i P N . We have

p̂j∆y
1
j ` p1´ p̂jq∆n

1
j “ p̂jδ ´ p1´ p̂jq

p

1´ p
δ ą 0

and

p̂k∆y
1
k ` p1´ p̂kq∆n

1
k “ ´p̂kδ ` p1´ p̂kq

p

1´ p
δ ą 0,

so the side bet is strictly profitable for both j and k. Finally, since the initial

allocation py,n,σq and the side bet p∆y,∆n,∆σq were both feasible, we know that

mintyj, yj `∆yj, nj, nj `∆nju ´ σj ě ´wj

mintyk, yk `∆yk, nk, nk `∆nku ´ σk ě ´wk

and as long as δ ď mint´∆yk,´∆njp1´ pq{pu, budgets are not violated. �

With these lemmas in place, we are ready to complete the proof.

Proof of Theorem 54. From Lemma 94, we know that a wagering mechanism is

Pareto optimal if and only if for all reports p̂ and wagers w, the mechanism’s output

pypp̂,wq,npp̂,wq,σpp̂,wqq is such that there exists no profitable side between any

pair of agents.
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Suppose that for reports p̂ and wagers w, there exists a profitable side bet between

agents j and k. Suppose for contradiction that there exists an agent ` P N such that

@i : p̂i ă p̂`, σipp̂,wq “ wi and yipp̂,wq “ 0, (C.2)

@i : p̂i ą p̂`, σipp̂,wq “ wi and nipp̂,wq “ 0. (C.3)

Note that if ∆yj “ 0 then ∆nj ě 0 (or else j would not find the trade profitable),

which implies that ∆nk ď 0 and ∆yk “ 0 (since
ř

iPN ni “ 0 and
ř

iPN yi “ 0). But

then k does not find the trade profitable.

So it must be the case that ∆yj “ 0; suppose without loss of generality that

∆yj ą 0. By similar reasoning to above, this implies that ∆yk ă 0, ∆nk ą 0, and

∆nj ă 0. By the definition of a profitable side bet, we know that

p̂j∆yj ` p1´ p̂jq∆nj ě 0 ùñ
∆yj
∆nj

ď
p̂j ´ 1

p̂j

and

p̂k∆yk ` p1´ p̂kq∆nk ě 0 ùñ
∆yk
∆nk

ě
p̂k ´ 1

p̂k
,

with at least one of these inequalities being strict. And, since ∆yk “ ´∆yj and

∆nk “ ´∆nj,

p̂k ´ 1

p̂k
ď

∆yk
∆nk

ď
p̂j ´ 1

p̂j
,

with one of the inequalities being strict. We can now deduce that

p̂k ´ 1

p̂k
ă
p̂j ´ 1

p̂j
ùñ p̂j ą p̂k.

Since ∆yk ă 0, it must be the case that either ykpp̂,wq ą 0 or σkpp̂,wq ă wi (or

both), or else mintyk `∆yk, nk `∆nku ´ pσk `∆σkq ă ´wi, violating the definition

of a profitable side bet. By statement C.2, p̂k ě p`. By similar reasoning, p̂j ď p`.

But this contradicts p̂j ą p̂k.
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For the converse, suppose that for reports p̂ and wagers w, there does not exist

an agent ` P N such that

@i : p̂i ă p̂`, σipp̂,wq “ wi and yipp̂,wq “ 0,

@i : p̂i ą p̂`, σipp̂,wq “ wi and nipp̂,wq “ 0.

Let k be the agent with the minimum report such that for all i with p̂i ą p̂k,

σipp̂,wq “ wi and nipp̂,wq “ 0. In particular, either σkpp̂,wq ă wi or nkpp̂,wq ą 0.

Since we know that there does not exist an agent ` satisfying the condition above,

there must exist a j such that p̂j ă p̂k with σjpp̂,wq ă wi or yjpp̂,wq ą 0 (or else k

would be such an agent `).

For some δ ą 0, let ∆nk “ ´δ, ∆yk “ δp1 ´ p̂kq{p̂k, ∆nj “ δ, and ∆yj “

´δp1 ´ p̂kq{p̂k. We conclude the proof by showing that this trade constitutes a

profitable side bet for j and k, by examining the three conditions individually.

1. Clearly holds, since ∆nk “ ´∆nj and ∆yk “ ´∆yj.

2. If nk ą 0 then

mintyk `∆yk, nk `∆nku ´ pσk `∆σkq ě ´σk ě ´wi

for δ ă nk, and if σk ă wi then

mintyk `∆yk, nk `∆nku ´ pσk `∆σkq ě ´δ ´ σk ě ´wi

for δ ă wi ´ σk. Similarly, if yj ą 0 then

mintyj `∆yj, nj `∆nju ´ pσj `∆σjq ě ´σj ě ´wi

for δp1´ p̂kq{p̂k ă yj, and if σj ă wi then

mintyk `∆yk, nk `∆nku ´ pσk `∆σkq ě ´δp1´ p̂kq{p̂k ´ σk ě ´wi

for δp1´ p̂kq{p̂k ` σk ă wi.
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3. For the final condition,

p̂k∆yk ` p1´ p̂kq∆nk “ p̂k
δp1´ p̂kq

p̂k
´ δp1´ p̂kq “ 0 “ ∆σk,

and

p̂j∆yj ` p1´ p̂jq∆nj “ ´p̂j
δp1´ p̂kq

p̂k
` δp1´ p̂jq “ δp1´

p̂j
p̂k
q ą 0 “ ∆σj.

�
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Table C.1: The key prices in the execution of the adaptive clinching auction.

p D1ppq D2ppq D3ppq Notes
0.3´ ε 1 2 6 D´ippq ě 3 for all i; no agent can clinch

0.3 0 2 6 D´3ppq “ 2; agent 3 can clinch one item
0.35` ε 0 1 5 D´3ppq “ 1; agent 3 can clinch one item

0.5 0 1 0 D´2ppq “ 0; agent 2 can clinch one item

C.2 Example of the Adaptive Clinching Auction

In this section we give an illustrating example of the adaptive clinching auction for

indivisible goods.

Consider an adaptive clinching auction for three identical, indivisible items and

three agents with (value, budget) pairs pp1, w1q “ p0.3, 0.3q, pp2, w2q “ p1, 0.7q, and

pp3, w3q “ p0.5, 2q. When the price p is below 0.3, agent 1 demands at least one

item, agent 2 demands at least two items, and agent 3 demands at least six items.

Therefore, no agent can clinch any items since the demand of the other two agents

is at least three.

When the price reaches 0.3, we have that D1p0.3q “ 0 (by the fact that Dippq “ 0

when p “ pi) and D2p0.3q “ 2, and therefore D´3p0.3q “ 2, so agent 3 clinches one

item for a price of 0.3. We update q3ppq “ 1, c3ppq “ 0.3, B3ppq “ 1.7, and qppq “ 2.

Next, note that at any price p ą 0.35, agent 2 demands only one item, and

therefore D´3ppq “ 1. Since this holds for all prices greater than 0.35, agent 3

clinches an item for a price of 0.35 (we refer the reader to Dobzinski et al. [68] for

a complete definition of the auction im terms of limits). The running variables are

updated to q3ppq “ 2, c3ppq “ 0.65, B3ppq “ 1.35, and qppq “ 1.

Finally, when the price reaches 0.5, agent 3 drops out of the auction (D3ppq “ 0),

as the price equals her value. Therefore, D´2ppq “ 0, so agent 2 clinches the final

item for a price of 0.5.

Table C.1 shows the evolution of demands over the course of the auction.
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C.3 Example of the Double Clinching Auction

Consider Example 9: N “ 4 agents with reported beliefs p̂ “ p0.1, 0.2, 0.5, 0.7q and

wagers w “ p1, 1, 1, 1q. To compute the outcome of the double clinching auction, we

first need to determine m˚.

Note that for m “ 2, cypmq “ inftp : miniPN Dy
´ippq ă mu “ 0.5, since at all

prices p ă 0.5 it is the case that Dy
3 “ Dy

4 “
1
p
ą 2, and for all prices p ě 0.5 it is

the case that Dy
´4 “ 0. Intuitively, once the price reaches 0.5 all agents except agent

4 have dropped out of the yes auction since the price equals or exceeds their value

for a security. Similarly, cnpmq “ inftp : miniPN Dn
´ippq ă mu “ 0.5, because at all

prices p ď 0.5 it is the case that Dn
1 “ Dn

2 “
1
p
ě 2, but for prices 0.5 ă p ă 0.8 those

demands have dropped to Dn
1 “ Dn

2 “
1
p
ă 2. Intuitively, once the price exceeds 0.5,

neither of agents 1 or 2 demands all the items, due to their budget constraint, so

each is able to start clinching.

Performing a similar exercise for m “ 2´ ε for any arbitrarily small ε, it can be

shown that cypmq “ 0.5 (it is still the case that agent 3 drops out when the price

reaches exactly 0.5, allowing agent 4 to clinch all the yes securities at this price),

and that cnpmq ą 0.5 (because the budget constraints for agents 1 and 2 do not bind

until the price slightly exceeds 0.5, and neither can begin clinching until this point).

In particular, cypmq ` cnpmq ą 1, so m PM “ tm : cypmq ` cnpmq ą 1u.

Since m P M for all m ă 2, and 2 R M , it is the case that m˚ “ supM “ 2

(since cy and cn are decreasing functions, we know that 2 is an upper bound on

M). Now, running an adaptive clinching auction for 2 yes securities yields py,σyq “

pp0, 0, 0, 2q, p0, 0, 0, 1qq, and running an adaptive clinching auction for 2 no securities

yields pn,σnq “ pp1.39, 0.61, 0, 0q, p1, 0.37, 0, 0qq. Thus, the outcome of the double

clinching auction for this instance is py,n,σq “ pp0, 0, 0, 2q, p1.39, 0.61, 0, 0q, p1, 0.37, 0, 1qq.
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C.4 Additional Proofs from Section 5.5

C.4.1 Proof of Lemma 61

We prove the lemma for cy; the argument for cn is symmetric.

We first show that cy is weakly decreasing. Consider any m and m1 such that

m1 ą m ą 0. We have tp : miniPN Dy
´ippq ă mu Ď tp : miniPN Dy

´ippq ă m1u, and

therefore

cypmq “ inftp : min
iPN

Dy
´ippq ă mu ě inftp : min

iPN
Dy
´ippq ă m1

u “ cypm
1
q.

Finally, note that for all m ą 0, Dy
´Npp̂N´1q “ 0 ă m, and so p̂N´1 P tp :

miniPN Dy
´ippq ă mu. Therefore cypmq “ inftp : miniPN Dy

´ippq ă mu ď p̂N´1 “

cyp0q.

We now show that cy is continuous by showing that cy is surjective; this, to-

gether with the fact that cy is decreasing, implies continuity. To that end, fix

any x P p0, p̂N´1q. Set m “ miniPN Dy
´ipxq ą 0, where the inequality holds be-

cause at least two agents have positive demand at price x ă p̂N´1. Then cypmq “

inftp : miniPN Dy
´ippq ă mu “ x. To see this, note that x is a lower bound on

tp : miniPN Dy
´ippq ă mu, because miniPN Dy

´i is a decreasing function of p; this fol-

lows from the definition of Dy
i . To see that x is indeed the greatest lower bound, note

that for every x1 ą x, miniPN Dy
´ipx

1q ă m, since miniPN Dy
´i is strictly decreasing

in the neighborhood of x; this follows from the fact that Dy
i ppq is strictly decreasing

until it reaches 0, and therefore miniPN Dy
´i is also strictly decreasing until it reaches

0. Finally, for x “ p̂N´1 we have that cyp0q “ x. Thus cy is surjective, and therefore

continuous. �

C.4.2 Proof of Lemma 62

Clearly, m˚ is well-defined when p̂2 “ p̂N´1. Suppose that p̂2 ă p̂N´1. To show m˚ is

well-defined, it is sufficient to show that the set M is non-empty and bounded above
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since this implies the existence of a unique least upper bound.

M must be non-empty since cyp0q`cnp0q “ p̂N´1`1´p̂2 ą 1 and therefore 0 PM .

To show it is bounded, we show that there exists an m with cypmq`cnpmq ď 1. Since

cy and cn are decreasing, this proves the existence of an upper bound.

Note that both cyp3
ř

iwiq ď
2
5

and cnp3
ř

iwiq ď
2
5
, since for all agents i,

D
y{n
´i

ˆ

2

5

˙

ď Dy{n

ˆ

2

5

˙

ď
ÿ

i

wi
2
5

“
5

2

ÿ

i

wi ă 3
ÿ

i

wi.

Therefore

cyp3
ÿ

i

wiq ` cnp3
ÿ

i

wiq ď
2

5
`

2

5
“

4

5
ă 1,

which shows that m “ 3
ř

iwi is an upper bound for M .

Finally, we show that m˚ ą 0 when p̂N´1 ą p̂2. If p̂N´1 ą p̂2 then cyp0q `

cnp0q ą 1, as noted earlier, and therefore there must exist some m1 ą 0 such that

cypm
1q ` cnpm

1q ą 1; that is, m1 PM . Therefore, m˚ “ supM ě m1 ą 0. �

C.4.3 Proof of Lemma 66

If m˚ “ 0 then cypm
˚q ` cnpm

˚q “ p̂N´1 ` p1 ´ p̂2q “ 1, where the final equality

follows from the second part of Lemma 62. So assume that m˚ ą 0.

Suppose cypm
˚q`cnpm

˚q ą 1. Let ε “ 1
2
pcypm

˚q`cnpm
˚q´1q. Then by continuity

there exists δy such that for allm1 with |m1´m˚| ă δy, |cypm
˚q´cypm

1q| ă ε. Similarly

there is a δn such that for all m1 with |m1 ´ m˚| ă δn, |cnpm
˚q ´ cnpm

1q| ă ε.

Let δ “ mintδy, δnu. Then there exists an m ą m˚ with m ´ m˚ ă δ, such that

cypmq ` cnpmq ą cypm
˚q ` cnpm

˚q ´ 2ε “ 1. This violates the definition of m˚ as an

upper bound on M , a contradiction.

Next suppose cypm
˚q ` cnpm

˚q ă 1. Let ε “ 1
2
p1 ´ cypm

˚q ´ cnpm
˚qq. Then

by continuity there exists δy such that for all m1 with |m1 ´ m˚| ă δy, |cypm
˚q ´

cypm
1q| ă ε. Similarly there is a δn such that for all m1 with |m1 ´ m˚| ă δn,
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|cnpm
˚q ´ cnpm

1q| ă ε. Let δ “ mintδy, δnu. Then there exists an m ă m˚ with

m˚ ´ m ă δ, such that cypmq ` cnpmq ă cypm
˚q ` cnpm

˚q ` 2ε “ 1. Thus m is a

lower upper bound on M than m˚, violating the definition of m˚ as the least upper

bound. �

C.4.4 Proof of Lemma 69

We prove that cypmq is increasing in agent i’s report, p̂i. The statement for cnpmq

can be proved analogously with only small modifications. First, if m “ 0, then cypmq

is defined to be the second highest report among the agents. Clearly this can only

increase as a result of any agent increasing her report.

Suppose that m ą 0. Consider two reports p̂i and p̂1i, with p̂i ă p̂1i. Let c be the

value of cypmq when i reports p̂i, and c1 the value when i reports p̂1i. Suppose that

c1 ă c. Then there exists some p P pc1, cq such that Dy
´jppq ă m˚ for some j P N

when i reports p̂1i, while Dy
´jppq ě m˚ for all j when i reports p̂i. But this is not

possible since the demand at any given price can only increase as a result of agent i

increasing her report. �

C.4.5 Proof of Lemma 70

We show the result for the yes securities.

If m “ 0, then miniPN Dy
´ipcypmqq “ miniPN Dy

´ipp̂N´1q “ Dy
´Npp̂N´1q “ 0 ď m.

Now consider the case wherem ą 0. Suppose for contradiction that miniPN D´ipcypmqq ą

m. Let ε be such that for every agent i, if cypmq ă p̂i then cypmq` ε ă p̂i. For every

agent i with p̂i ď cypmq, we have that Dy
i pcypmq ` εq “ Dy

i pcypmq ` εq “ 0. For

every agent i with p̂i ą cypmq, we have that Dy
i pcypmqq “

wi

cypmq
and Dy

i pcypmq` εq “

wi

cypmq`ε
. Note that by setting ε small enough, we can force Dy

i pcypmq ` εq to be

arbitrarily close to Dy
i pcypmqq. Since, by assumption, miniPN D´ipcypmqq ą m, we

can set ε small enough that miniPN D´ipcypmq`εq ą m. Thus, cypmq`ε is a greater
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lower bound on tp : miniPN Dy
´ippq ă mu than cypmq, violating the definition of

cypmq.
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