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Abstract

Social choice theory is concerned with collective decision making under di�er-
ent, possibly contrasting opinions and has been part of the core of society since
ancient times. The goal is to implement some socially desired objective while
at the same time accounting for the fact that people will act strategically, in
order to manipulate the outcomes in their favor.

In this thesis, we consider the well-known objective of social welfare, i.e.
the sum of individual utilities as the social objective and following the agenda
of algorithmic mechanism design, we study how well our objectives can be
approximated by mechanisms that prevent or predict the e�ects of the agents’
strategic nature. We adopt two approaches; on one hand, we study truthful
mechanisms and bound their approximation ratios and on the other hand, we
study the e�ect of strategic play on non-truthful mechanisms, by bounding
their price of anarchy. Our results provide worst-case guarantees for the per-
formance of mechanisms in voting scenarios and resource allocation problems.

In the first part of the thesis, we consider the general social choice setting,
where agents have unrestricted cardinal preferences over a finite set of out-
comes and we study the capabilities and limitations of truthful mechanisms
for the social welfare objective. We prove upper and lower bounds on the
approximation ratio of natural classes of mechanisms, as well as the class of
all mechanisms. In the second part, we bound the ine�ciency of mechanisms
for the one-sided matching problem. We study both truthful and non-truthful
mechanisms and prove that some very well-known mechanisms in literature
are asymptotically optimal among all mechanisms. Finally, in the last part of
the thesis, we study social welfare maximization for the problem of allocating
divisible items among agents and bound the price of anarchy of the Fisher
market mechanism, a mechanism based on a fundamental market model.
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Resumé

Social choice-teori, som omhandler beslutningsregler for fællesskaber, hvor
medlemmerne har divergerende meninger, har haft central betydning for sam-
fundet siden oldtiden. Det generelle mål for teorien er at forstå hvornår og
hvordan det er muligt at implementere et socialt ønskværdigt udfald under
hensyntagen til at medlemmerne vil agere strategisk og forsøge at påvirke
udfaldet i retning af deres egne preferencer.

I denne afhandling studerer vi maximering af social velfærd - summen
af individuelle utilities - som er et velkendt mål. Vi forfølger en agenda fra
teorien om algoritmisk mekanismedesign idet vi studerer hvor godt mekanis-
mer der tager hensyn til individernes strategiske adfærd kan approksimere
den maksimalt mulige sociale velfærd. Mere specifikt forfølger vi to vari-
anter af dette spørgsmål: vi studerer hvor god approksimationen er for sand-
færdige mekanismer, når deltagerne taler sandt, og hvor god den er for ikke-
sandfærdige mekanismer i en Nash ligevægt (mekanismens såkaldte "price of
anarchy").

I den første del af afhandlingen studerer vi den første variant af spørgsmålet
for tilfældet af generelle kardinale præferencer over udfald og viser grænser for
approksimation både for naturlige restringerede klasser af mekanismer og for
alle mekanismer. I den anden del studerer vi begge varianter af spørgsmålet
for parringsproblemet med ensidede præferencer. Vi viser at visse velkendte
mekanismer er asymptotisk optimale med hensyn til approksimation. I den
tredje del studerer vi den anden variant af spørgsmålet for allokering af delelige
objekter til agenter med en mekanisme der bygger på den fundamentale Fisher
model for markeder.
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Preface

My main area of research is algorithmic mechanism design without money and
in particular approximate social welfare maximization in social choice, item
assignment and resource allocation settings, when agents have unrestricted
preferences over the possible outcomes. My contribution on these topics can
be best summarized by the following papers.1

1. “Truthful Approximations to Range Voting”
Aris Filos-Ratsikas and Peter Bro Miltersen. In Proceedings of the
10th Conference on Web and Internet Economics (WINE ’14), LNCS,
Springer, pages 175-188, 2014. (Chapter 2). [77]

2. “Social Welfare in One-sided matchings: Random Priority and beyond”
Aris Filos-Ratsikas, Søren Kristo�er Stiil Frederiksen and Jie Zhang. In
Proceedings of the 7th Symposium on Algorithmic Game Theory (SAGT
’14), LNCS, Springer, pages 1-12, 2014. (Chapter 4).[79]

3. “Welfare Ratios for One-sided Matching Mechanisms”
George Christodoulou, Aris Filos-Ratsikas, Søren Kristo�er Stiil Fred-
eriksen, Paul W. Goldberg, Jie Zhang and Jinshan Zhang. Manuscript,
2015. (Chapter 5). [57]

4. “The Fisher Market Game: Equilibrium and Welfare”
Simina Brânzei, Yiling Chen, Xiaotie Deng, Aris Filos-Ratsikas, Søren
Kristo�er Stiil Frederiksen, and Jie Zhang. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2014), AAAI Press,
pages 587-593, 2014. (Chapter 7). [43]

This thesis is comprised of three parts. The first part (Chapters 1 and 2) is
concerned with the fundamental social choice/mechanism design setting and

1The order of authors is alphabetical.
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Contents

how well (randomized) truthful mechanisms can approximate the social wel-
fare of the most preferred outcome, when agents have unrestricted preferences.
The second part (Chapters 3, 4 and 5) deals with the problem of assigning
(indivisible) items to agents, also known as the one-sided matching problem,
and studies the performance of (truthful and non-truthful) mechanisms with
respect to the social welfare. Finally, the third part (Chapters 6 and 7),
studies the allocation of divisible items under the objective of social welfare
maximization.

In addition to the topics studied in this thesis which are mentioned above,
during my Ph.D. studies, I worked on several other problems including fair
division, kidney exchange and facility location, resulting in the following pa-
pers.

5. “The Adjusted Winner Procedure: Characterizations and Equilibria”
Haris Aziz, Simina Brânzei, Aris Filos-Ratsikas and Søren Kristo�er
Stiil Frederiksen. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI ’15), to appear. [19]

6. “Facility location with double-peaked preferences”
Aris Filos-Ratsikas, Minming Li, Jie Zhang and Qiang Zhang. In Pro-
ceedings of the 29th AAAI International Conference on Artificial Intel-
ligence (AAAI ’15), AAAI Press, pages 893-899, 2015. [78]

7. “Randomized assignments for barter exchanges: Fairness vs E�ciency”
Wenyi Fang, Aris Filos-Ratsikas, Søren Kristo�er Stiil Frederiksen,
Pingzhong Tang and Song Zuo. Manuscript, 2015. [72]

8. “An improved 2-agent kidney exchange mechanism”
Ioannis Caragiannis, Aris Filos-Ratsikas and Ariel D. Procaccia. In
Theoretical Computer Science, To appear, 2015. [49]

9. “On the complexity of the consensus-halving problem”
Aris Filos-Ratsikas, Søren Kristo�er Stiil Frederiksen, Paul W. Goldberg
and Jie Zhang. Manuscript, 2015.
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The Social Choice Setting
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Chapter 1

Background

Societies are often faced with problems that must be solved collectively by
their members. How should we make a decision that reflects many, often
contrasting opinions? How should we aggregate people’s choices into a joint
decision? As Amartya Sen wrote in his 1988 Nobel Prize lecture [133]:

How can we find any rational basis for making such aggregative
judgements, as “the society prefers this to that” or “the society
should choose this over that” or “this is socially right”?

This is the subject of social choice theory, formulated in its current form
and popularized by the pioneering work of Kenneth Arrow [12] in 1951. The
fundamental blocks of social choice theory, namely decision making under
divergent preferences date back to ancient Greece and the works of Aristotle
[11]. Crucial for formalizing and establishing those concepts into a solid theory
were the works of J.C. Borda [62] and Marquis De Condorcet [63] in the 18th
century, during the French revolution. Condorcet’s observation (known as the
Condorcet Paradox) is still one of the prominent examples used to demonstrate
how majority rules, which are perhaps the most well-known voting rules, do
not always provide a clear winner. Electing single representatives or comittees
are classical examples of social choice problems; in fact most such problems can
be interpreted as voting scenarios, where participants express their preferences
through votes over a set of possible outcomes.

One answer to the question posed by Amartya Sen above was given (back
in the 18th century) by the field of welfare economics and the seminal work
of Jeremy Bentham [29], the so-called father of utilitarianism: society should
care about “the total utility of a community”. Welfare economics (in their

5



1. Background

original form) have been criticized on the basis of interpersonal utility com-
parisons. Critics, such as Robbins [127] argue that “no common demonitator
of feelings is possible” and hence one should not seek to optimize utilitarian
objectives, but rather look for e�ciency on an individual level, such as Pareto
e�ciency. However, as we will discuss later, one can think of numerous ex-
amples where utilities have natural interpretations and aggregate utility is a
reasonable measure of social e�ciency. The term “social welfare” is used to
denote exactly that; the sum of utilities of the members of the society.

It is conceivable that when faced with collective decisions, people will act
rationally or strategically in order to manipulate the outcomes in their favour.
For example, when presented with three possible outcomes and asked to rank
them in order of preference, it would make sense for someone to misreport
her ranking, if it was clear that her most preferred outcome would not be
selected, in order to boost the chances of her second most preferred outcome.
The question now becomes, “How should we design a system or an election
to prevent or handle such selfish behaviour, given that we do not know the
real preferences of people?”. This is the topic of the field of mechanism design
[96, 110, 116].

With some objective in mind (such as social welfare maximization), there
are two di�erent approaches to tackling the question above. The first one is
to “get rid” of incentives altogether; to design mechanisms (i.e. functions that
input preferences and output outcomes) that do not incentivize the partici-
pants to report anything but the truth. These mechanisms are called truthful
or strategyproof or incentive-compatible, which in game-theoretic terms means
that when interacting with such mechanisms, telling the truth is a dominant
strategy equilibrium. The other approach would be to let participants strate-
gize “freely” and predict the outcomes using the principles of game theory. In
particular, the well-known Nash equilibrium [117] is an established notion of
stability of a game. As designers, we could construct mechanisms that are not
truthful but perform well (with respect to the objectives) in the equilibrium.
We stretch the importance of adopting one of the approaches above: If we
simply implement a function of the declared preferences of the participants,
the actual outcome might be quite di�erent from the socially desired one.

Of course, managing selfish behaviour does not come without a cost. Im-
posing the (quite demanding) constraint of truthfulness often renders the so-
cial objectives unachievable. The socially optimal outcome, which would be
implementable if participants were not strategic, is no longer within reach
when restrictions for acting truthfully are in place. What we can hope for,
however, is a good approximation. In a seminal paper, Procaccia and Ten-
nenholtz [123] coined the term approximate mechanism design without money
to describe problems of that nature, when some objective is approximately
optimized under the strict constraints of truthfulness. In this framework, we
can design and compare mechanisms in terms of their approximation ratio, a
worst-case guarantee for the performance of a mechanism, over all possible

6



1.1. The setting

inputs of the problem. Similarly, when designing mechanisms that perform
well in the equilibrium, the notion of e�ciency is the Price of Anarchy [103],
which bounds the performance of a mechanism in the worst Nash equilibrium,
over all instances.

These are the two approaches that are used in this thesis, to evaluate and
compare the performance of mechanisms with respect to the social welfare
objective.

1.1 The setting
In the fundamental social choice/mechanism design setting, there is a finite
set of agents N = {1, . . . , n} and a finite set of outcomes A = {1, . . . , m}.
Following the standard convention, in the first part of the thesis, we will re-
fer to agents as voters and to outcomes as candidates or alternatives. Each
voter i has a private valuation function (or valuation) ui : A æ R, mapping
candidates to real values. In the unrestricted preference setting, these valua-
tion functions can be arbitrary. The preferences are unrestricted in the sense
that there is no reason to a priori assume that some candidates are preferred
to others, or that the nature of the problem imposes any restriction on the
values voters assign to the candidates.1 These valuation functions are to be
interpreted as von Neumann-Morgenstern utilities, i.e, they are meant to en-
code orderings on lotteries over outcomes and follow the axioms of the von
Neumann-Mongenstern expected utility theory [140]. We will sometimes re-
fer to these valuation functions as cardinal preferences, because they express
not only the preference orderings of individuals but also the intensity of the
preferences, i.e. by how much a candidate is preferred to another candidate.
Standardly, the function ui is considered well-defined only up to positive a�ne
transformations. That is, we consider x æ aui(x) + b, for a > 0 and any b,
to be a di�erent representation of ui. Given this, we can fix a canonical
representation of the valuation function; we will discuss the usual choices of
representation later on in the chapter. Let Vm denote the set of canonically
represented valuation functions on A = {1, 2, . . . , m}. We will call the vector
u = (u

1

, u
2

, . . . , un) œ Vm
n a valuation profile.

A (direct revelation) mechanism (without money) or a social choice func-
tion2 is a function M : Vm æ A mapping valuation profiles to candidates.
Mechanisms can also be randomized and M(u) is therefore in general a ran-
dom map. Alternatively, instead of viewing a mechanism as a random map, we
can view it as a map from Vm

n to �m, the set of probability density functions
on {1, . . . , m}.

1Examples of restricted or structured preference settings are single-peaked or single-
crossing preferences and the preferences in the assignment setting that we will discuss in
Part 2 of the thesis.

2Other names commonly used in literature are voting rules or voting schemes.
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1. Background

An important distinction that we will make throughout the thesis is that
between ordinal mechanisms and general (cardinal) mechanisms. Informally,
a mechanism is ordinal if the only information it uses is the rankings of can-
didates induced by the valuation functions. Formally,

Definition 1.1 (Ordinal mechanism). A mechanism M is ordinal if it holds
that M(ui, u≠i) = M(uÕ

i, u≠i), for any voter i, any preference profile u =
(ui, u≠i), and any valuation function uÕ

i with the property that for all pairs of
candidates j, jÕ, it is the case that ui(j) < ui(jÕ) if and only if uÕ

i(j) < uÕ
i(jÕ).

where, u≠i denotes the valuation functions of all voters besides voter i. For
example, the mechanism that first selects a voter uniformly at random and
then elects her most preferred candidate is ordinal. A mechanism that is not
necessarily ordinal is called cardinal.

An important class of mechanisms is that of truthful (or strategyproof or
incentive compatible) mechanisms, i.e. mechanisms that do not incentivize
voters to misreport their valuations. Formally,

Definition 1.2 (Truthfulness). A mechanism M is truthful if for any voter i œ
{1, . . . , n}, and all u = (ui, u≠i) œ Vm

n and ũi œ Vm, we have ui(M(ui, u≠i)) Ø
ui(M(ũi, u≠i)).

For randomized mechanisms, we assume that voters are expected utility
maximizers and the corresponding notion is that of truthfulness-in-expectation.

Definition 1.3 (Truthfulness-in-expectation). A mechanism M is truthful-
in-expectation if for any voter i œ {1, . . . , n}, and all u = (ui, u≠i) œ Vm

n and
ũi œ Vm, we have E[ui(M(ui, u≠i))] Ø E[ui(M(ũi, u≠i))].

Throughout this thesis, we will use the term “truthful” to denote both truthful
and truthful-in-expectation mechanisms; the distinction will be clear from the
context or explicitly stated.

Truthfulness is a quite demanding, but also quite desirable property. A
truthful mechanism elicits voters’ true private information and does not moti-
vate voters to strategize; they do not need to expend resources to find the best
way to act within the rules of the system. Designing truthful mechanisms has
been a subject of research for many years. An example of a truthful mechanism
is the following: choose a voter and elect her most preferred candidate. This
simple mechanism is called a dictatorship, since a single, distinguished voter,
“the dictator”, decides what the outcome should be. It is easily conceivable
that such mechanisms are bad; an individual’s opinion might not accurately
reflect what society wants and hence one should look for more “reasonable”
truthful mechanisms. Unfortunately, the celebrated Gibbard-Satterthwaite
theorem [86, 131] states that when preferences are unrestricted, dictatorships
are pretty much the only truthful mechanisms we can hope for.

8



1.1. The setting

Theorem 1.1 (Gibbard-Satterthwaite [86, 131]). Let m Ø 3 and let M be a
truthful, onto, deterministic mechanism. Then M is a dictatorship.

A mechanism M is onto if for all candidates j œ A, there exists some valuation
profile u such that M(u) = j. In other words, no candidate is excluded from
the election for all possible inputs. The fact that there must be at least three
candidates is crucial for the theorem; for m = 2, performing a majority vote
is a truthful mechanism.

Remark 1.1. The Gibbard-Satterthwaite theorem is often stated for ordinal
preferences, i.e. preference orderings over the candidates and not cardinal
preferences that we consider here. It is not hard to see that for determinis-
tic mechanisms, this makes no di�erence, since every truthful mechanism is
ordinal. To see this, consider two profiles (ui, u≠i) and (uÕ

i, u≠i) that induce
the same ordering of candidates for voter i (but assign di�erent numerical
values) and let M be a deterministic mechanism such that M(ui, u≠i) = a
and M(uÕ

i, u≠i) = b. If voter i prefers a to b, then she would have an incentive
to report ui instead of uÕ

i in profile (uÕ
i, u≠i), violating truthfulness. Similarly,

if she prefers b to a then then she would have an incentive to report uÕ
i instead

of ui in profile (ui, u≠i). Therefore, it must be the case then that a = b and
the mechanism is ordinal.

Theorem 1.1 seems to eliminate all possibilites for “good” mechanisms in
the unrestricted preference setting and for this reason a large body of research
has diverted to structured settings, where the impossibility theorem does not
hold and more “reasonable” truthful mechanisms can be designed. A promi-
nent example is that of single-peaked preferences, where majority outcomes
are available and median voter schemes achieve them in a truthful fashion.
But even in the unrestricted preference setting, not all hope is lost. Crucially,
Theorem 1.1 only holds for deterministic mechanisms, but not unlike in clas-
sic algorithm design, randomization can be used as a tool to create “better”
mechanisms. Indeed, simply selecting the dictator uniformly at random al-
ready seems like a better choice; voters are treated fairly and it is much less
likely that an individual whose opinions do not reflect those of society will be
chosen.

So now the question becomes, what can we do with randomized truthful
mechanisms? Is there a characterization similar to that of Theorem 1.1 for
the randomized case? The short answer is “no”, but there is an important
line of work in this direction as well. First, we give a couple of definitions.

Definition 1.4 (Unilateral mechanism [27, 87]). A unilateral mechanism M
is a mechanism for which there exists a single voter iú so that for all valuation
profiles (uiú , u≠iú) and any alternative valuation profile uÕ

≠iú for the voters
except iú, we have M(uiú , u≠iú) = M(uiú , uÕ

≠iú).

9



1. Background

Definition 1.5 (Duple mechanism [87]). A duple mechanism M is an ordinal
mechanism for which there exist two candidates jú

1

and jú
2

so that for all
valuation profiles, M elects all other candidates with probability 0.

Informally, unilateral mechanisms select some voter and then output a candi-
date at random as a function of that voter’s reports only. Dictatorships are
unilateral mechanisms; another example is a mechanism that selects a voter
and then equiprobably elects one of her k most preferred candidates for some
k Æ m. Duple mechanisms assign zero election probability to all but two
candidates. An example is a mechanism that eliminates all candidates except
two, and then performs a majority vote on those two candidates. Note that
while duple mechanisms are defined to be ordinal, unilateral mechanisms are
not necessarily ordinal. We will provide an example of a non-ordinal unilateral
mechanism in the next section.

Gibbard [87] extended the Gibbard-Satterthwaite theorem to the case of
randomized ordinal mechanisms.3

Theorem 1.2 (Gibbard [87]). The truthful ordinal mechanisms are exactly
the convex combinations of truthful unilateral ordinal mechanisms and truthful
duple mechanisms.

Theorem 1.2 is often interpreted as a negative result, similar in nature to
Theorem 1.1. However, there is also an optimistic interpretation of the result
that was suggested, e.g., by Barbera [25]: the class of randomized truthful
mechanisms is quite rich and contains many arguably “reasonable” mecha-
nisms, in contrast to dictatorships. This is true in particular because since
we consider randomized mechanisms, one can choose the distinguished voters
or the distuguished candidates at random, resulting in much more desirable
mechanisms.

1.2 The quest for truthfulness
The characterization of truthful mechanisms of Theorem 1.2 does not apply to
cardinal mechanisms. But as we mention before, unilateral mechanisms need
not be ordinal; an example is the following mechanism for three candidates,
the quadratic lottery, which was first introduced and proven to be truthful in
[84] and later in [74].

Mechanism Qn (Quadratic Lottery [74, 84]). Select a voter uniformly at ran-
dom, and let – be the valuation of her second most preferred candidate. Elect

3Theorem 1.2 actually holds only when the valuation functions are injective, i.e. voters
have distinct values for all candidates. If we allow ties, hierarchical structures come into
play [28, 88]. Since whether valuations have ties or not will be important for our results, we
will discuss this matter in detail in the next chapters.

10
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her most preferred candidate with probability (4≠–2)/6, her second most pre-
ferred candidate with probability (1+2–)/6 and her least preferred candidate
with probability (1 ≠ 2– + –2)/6.

This could lead one to suspect that a similar characterization to Theorem
1.2 would also apply to cardinal mechanisms. In a followup paper, Gibbard
[88], indeed proved a theorem along those lines, but interestingly, his result
does not apply to truthful direct revelation mechanisms,4 which are the topic
of this thesis, but only to indirect revelation mechanisms with finite strat-
egy space. Also, the restriction to finite strategy space (which is in direct
contradiction to direct revelation) is crucial for the proof.

So, what do we know about cardinal truthful mechanisms in the unre-
stricted preference domain? Random dictatorships are the only truthful mech-
anisms that exist if we require unanimity [97], a guarantee that a candidate
will be definitely elected if all voters rank him on top of their preference lists.
Such a property however, restricts the space of truthful mechanisms signifi-
cantly; removing it allows for many more mechanisms, as indicated also by
Theorem 1.2, even in the ordinal case.

Over the years, there have been several attempts of characterizing truthful
randomized mechanisms. Freixas [84] provides examples of non-ordinal mech-
anisms which are better (in the sense of economic e�ciency) than all ordinal
mechanisms, with respect to the voters’ von Neumann-Morgenstern utilities.
He also suggests that perhaps focusing on di�erentiable mechanisms is not too
restrictive and advocates the use of the di�erentiable approach to mechanism
design proposed by La�ont and Maskin [106] as a way of designing truthful
mechanisms. The idea is that if mechanisms (as functions) are su�ciently dif-
ferentiable, then incentive constraints can be written as di�erential equations
and truthful mechanisms can be constructed. Barbera et al. [27] dispute this
claim by proving that many interesting mechanisms are excluded from this
class. Specifically, they prove that if a mechanism is twice continuously di�er-
entiable then it is a convex combination of unilaterals.5 This precludes several
natural truthful mechanisms, including duples. On the other hand, Barbera
et al. [27] provide a su�cient condition for a mechanism to be truthful; if it
is a probability mixture of unilaterals and cardinal “duples”, where a duple
in their definition means that the mechanism fixes two lotteries and selects a
convex combination of the two. These contributions, however, fall short of a
characterization. An added di�culty, highlighted in [27], is that when dealing
with cardinal mechanisms, one should not expect that these mechanisms are
decomposable into convex combinations of unilaterals or duples; integrals of
these components might also come into play.

4A direct revelation mechanism is a mechanism where voters report a representation of
their valuation functions once and the mechanism chooses an output based on those reports,
i.e. there is no further interaction between the voters and the mechanism.

5Bogomolnaia [34] later relaxed the continuity assumption.
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More recently, Feige and Tennenholtz [74] designed truthful cardinal uni-
lateral mechanisms. In fact, for the mechanisms they design, it is the unique
dominant strategy for a voter to report truthfully; they call those mechanisms
truthful dominant. The authors provide a geometric characterization of a large
class of truthful dominant mechanisms. The mechanisms proposed in [74] will
be particularly useful for our purposes in the next chapters. Ehlers et al.
[69] prove that every truthful continuous mechanism is ordinal but crucially,
they consider a more general domain (referred to as a domain of “cardinal
richness”), where a�ne transformations of utility functions are not simply dif-
ferent representations of the same function. In that sense, non-ordinal truthful
mechanisms like those proposed in [84] or [74] are not continuous in their set-
ting.

The bottomline of the discussion above is that a complete characterization
of truthful randomized mechanisms, similar to Theorem 1.1 is not known.
Such a result would be very useful for our investigations in Chapter 2 but
perhaps more importantly, it would be a very crucial result in the fundamental
social choice setting.

1.3 Social welfare and approximate solutions
So far, we have discussed structural properties of truthful mechanisms and the
existing results in literature with respect to axiomatic aspects of truthfulness.
But the original question of social choice theory is “How should we choose an
outcome?” or alternatively using the terminology introduced earlier, “Which
mechanism should we choose?”. To answer that question, we need to choose
an objective function of the voters’ valuations to optimize. A natural choice
that arguably represents the “socially optimal” solution is to maximize the
sum of individual valuations, called the social welfare:

Definition 1.6 (Social welfare). Let M be a mechanism and let u be a val-
uation profile. The social welfare of M on u is defined as

qn
i=1

ui(M(u)).

For randomized mechanisms, the objective is expected social welfare maxi-
mization and the definition is very similar.

If we knew the voters’ private information (or if they reported their val-
uations truthfully), it would be easy to find the solution that maximizes the
social welfare; simply elect a candidate that maximizes the quantity above.
The challenge comes from the fact that real values are private and voters are
strategic; if we maximize the sum of reported valuations instead, the outcome
might be very di�erent from the social optimum. As mentioned at the begin-
ning of the chapter, there are two possible ways of dealing with this hurdle;
either by designing truthful mechanisms, or by estimating the loss in e�ciency
from the result of the strategic interaction among the participants. In the first
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part of the thesis, we will only discuss the former; the latter will be considered
in the second and third parts of the thesis.

Besides concepts like Pareto dominance and Pareto improvements, there
do not seem to be many suggestions in the social choice literature of any well-
defined quality measure that would enable us to rigorously compare mecha-
nisms and in particular find the best. In fact, the pure social choice approach
would be to evaluate mechanisms based on a set of properties that they satisfy
and comparisons between them are indirect and often inconclusive. Fortu-
nately, one of the main conceptual contributions of computer science to mech-
anism design in general is the suggestion of such a quality measure, namely
the notion of the worst-case approximation ratio relative to some objective
function. Indeed, a large part of the computer science literature on mech-
anism design (with or without money) is the construction and analysis of
approximation mechanisms, following the agenda set by the seminal papers
by Nisan and Ronen [119] for the case of mechanisms with money and Pro-
caccia and Tennenholz [123] for the case of mechanisms without money. In
particular, with the social welfare objective in mind, the approximation ratio
of a (randomized) mechanism is defined as follows.

Definition 1.7 (Approximation ratio). The approximation ratio of a mech-
anism M is the worst-case ratio (over all valuation profiles) of the expected
social welfare of the mechanism on the profile over the maximum social wel-
fare. That is,

ratio(M) = inf
uœVm

n

E[
qn

i=1

ui(M(u))]
maxjœA

qn
i=1

ui(j) .

The approximation ratio provides a worst-case guarantee for the performance
of a mechanism, very similarly to the notion of the approximation ratio in
approximation algorithms or the competitive ratio in online algorithms. We
remark here that the notion of the approximation ratio can be applied to
any objective function under any constraint; one for instance could aim to
approximately maximize the happiness of the least satisfied voter under the
constraint that the used mechanism is ordinal. Throughout this thesis (with
a noteable exception in Chapter 4), our objective will be to approximately
maximize the social welfare under the constraint of truthfulness.

Since the framework descibed above was established, the approximation
ratio has been adopted as the standard notion of e�ciency of mechanisms in
the computer science literature, in several subfields of mechanism design, like
facility location [7, 81, 82, 108, 109, 123], assignment problems [5, 67, 79, 89],
kidney exchange [15, 49], peer selection [8, 37, 80] and fair division [48, 59],
to name a few.
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1.4 Canonical representation

As we mentioned earlier, von Neumann-Morgenstern utility functions are well-
defined up to positive a�ne transformations. The choice of transformation
does not make a di�erence when arguing about utilities on an individual ba-
sis (for example truthfulness of unilateral mechanisms is independent of the
transformation) but it is quite important when considering interpersonal ob-
jectives, like social welfare maximization. Applying di�erent transformations
to the utility functions would result in di�erent voters having inputs of varying
“importance”. The standard approach in the literature is to fix some canon-
ical representation, or normalization of utilities and there are two popular
approaches, unit-range and unit-sum.

Unit-range representation

If we use the same transformation for all utility functions, voters’ utilities are
fixed to lie in an interval with the least preferred and the most preferred can-
didates mapped to the endpoints of the interval respectively. In the unit-range
representation, the chosen interval is [0, 1], i.e. ui is such that maxj ui(j) = 1
and minj ui(j) = 0. This is equivalent to the “zero-one rule” proposed by
Hausman [94] for normalizing and comparing von Neumann-Morgenstern util-
ities. There are two assumptions associated with this normalization.

First, for the (normalized) social welfare objective to be a reasonable cri-
terion of social e�ciency, it has to be that the satisfaction that the members
of society gain from their extreme choices being elected are (more or less)
the same. One can think of scenarios where this is true. If the bus stop is
far from A’s house, that wouldn’t be catastrophic compared to the scenario
where the bus stop is far away from B’s house, from B’s perspective. Of course
as Rawls [124] or Sen [134] would possibly argue, A might be quite di�erent
from B; maybe A has a walking disability. But such cases could always be
true and then di�erent normalizations (incorporating such di�erences) could
be in place. The “uniform” normalizations that we study in this thesis in a
sense apply to “the average person” and provide a solid mathematical frame-
work for achieving reasonable results in settings without money. Secondly,
unit-range assumes that voters are not indi�erent between all the possible
outcomes. That’s a rather mild restriction, since participants that are in-
di�erent between all choices could potentially be excluded from the election
process.

We will assume that utility functions are normalized using the unit-range
representation in Chapters 2, 4 and 5. The unit-range representation has been
used in the literature in several subfields of mechanism design such as voting
[26, 27, 84], information elicitation [74], item allocation [5, 57, 79, 144] or fair
division [30].
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Unit-sum representation
The other standard normalization in the literature is that of unit-sum, where
each voter has a total value of 1 for all the outcomes. i.e.

qm
j=1

ui(j) = 1.
Contrary to unit-range, where voters were assumed to have equal values for
the extreme outcomes, the assumption here is that each voter has an overall
“satisfaction reserve” that gets distributed between her di�erent choices. The
unit-sum normalization has been applied for social welfare maximization in
many settings without money including fair division and cake-cutting [42, 48,
58, 59, 99], indivisible and divisible item allocation [43, 57, 60, 75, 79, 89, 91]
and voting [38] among others.

We will assume the unit-sum representation in Chapters 4, 5 and 7. Fi-
nally, let us remark that without any normalization, the bounds obtained from
truthful mechanisms or due to strategic interaction are trivial and in fact, no
truthful mechanism can outperform the mechanism that elects a candidate at
random, without even looking at the valuation functions.

1.5 The utilitarian solution and interpersonal
utility comparisons

The outcome that (exactly) maximizes the social welfare is often called the
utilitarian solution6 in the economics literature. As mentioned at the begin-
ning of the chapter, the utilitarian objective is supported by the field of welfare
economics, originating in the 18th century and the works of Jeremy Bentham.
As Bentham himself said, “It is the greatest good to the greatest number of
people which is the measure of right and wrong”. Granted, the concept of
utility that the classical welfare economists had in mind is probably di�erent
from what von Neumann and Morgenstern coined “utility” in their 1940s revo-
lutionary work, but the principles are there; a decision is beneficial for society
if it is beneficial for “most” of its members. A clear point of critisism to this
viewpoint, suggested also by social choice and social politics pioneers John
Rawls [124] and Amartya Sen [134] is that utilitarianism does not account for
individuals that happen to disagree with the consensus and in that sense, such
solutions might be quite unfair. On the other side of the spectrum, outcomes
that maximize the minimum utility of any member of the society are called
egalitarian solutions. These outcomes (also known as maximin solutions) can
also be chosen as objective functions in the approximation ratio framework
described above.

The main critisism against utilitarianism however has nothing to do with
fairness issues; the objections posed by adversaries in the 1930s were in a sense
more deeply philosophical. The main argument, as highlighted in the work
of Robbins [127] (who is most often credited as the frontrunner in the race

6It i also referred to as sum-rank, e.g. see [132].
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against utilitarianism) is that comparing utilities of di�erent individuals is not
a meaningful operation, since “no common denominator of feelings is possible”.
In other words, critics argue that there is no sensible unit of measurement that
would enable utilities to be compared. This “warfare on welfare” introduced
a “note of nihilism” [16, 134] on welfare economics and attention was shifted
to Pareto e�ciency as a measure of social e�ciency. Pareto e�ciency (also
known as the Pareto criterion) states that an outcome is e�cient if no other
outcome can make someone happier, without making anyone more miserable.

But yet, we do compare utilities in our everyday lives. I would give my
Rolling Stones concert ticket to my friend, because “he likes them more than
I do”, or as J.C. Lester [107] says: “To save a friend from breaking his leg
we would usually consider it a small price to sustain a scratch ourselves”.7
More importantly, society seems to make choices based on implicit compar-
isons: The winner of an election is aimed to be the one that maximizes the
overall satisfaction of the community. The location of a bus stop is selected
to minimize the average distance from nearby houses. Many times, utilities
have natural interpretations as transportation costs in facility location prob-
lems [7, 123], compatibility probabilities in kidney exchange pools [4, 72] or
profits associated with production plans in a firm [69].

To take the argument one step further, in mechanism design with money
(e.g. auctions), social welfare maximization is a very standard objective and in
fact, the celebrated class of Vickrey-Clarke-Groves (VCG) mechanisms exactly
optimizes social welfare (see [120] for details). There, participants are endowed
with quasi-linear utilities and hence their levels of satisfaction can be expressed
in monetary terms: a person’s value for an outcome is the amount of money
that she would be willing to pay to make that outcome come true. The idea
is that money serves as a unit of utility and hence comparing and adding up
utilities is well-defined. However, settings with money are quite susceptible
to the same critisism: a wealthy heir might be willing to pay much more for
a Monet than a striving painter, but that does not mean that the former
appreciates art more than the latter. As Binmore [33] says: “But, who is to
say that apples (or dollars) are the “appropriate” standard of comparison?”.

Pareto e�ciency on the other hand, the solution proposed by the new
welfare economics, is not free of critisism either. As emphatically pointed out
in [107], “The Pareto criterion disallows the welfare evaluation of changes from
any status quo in an existing society, including one with slavery, if even one
person objects to the change”. In a more computer science oriented example,
allocating all computational resources (such as storage space or memory) to
a single person is, in the Pareto sense, an e�cient outcome.8

7These types of examples are related to Harsanyi’s theory [92] of empathetic preferences

[33], see also [134].
8Another often quoted example was given in [134], where Sen argues that the burning

of Rome by emperor Nero was in fact a Pareto e�cient outcome.
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1.5. The utilitarian solution and interpersonal utility comparisons

The purpose of the discussion above is not so much to participate in
the seemingly everlasting debate of whether interpersonal utility comparisons
make sense (see [16, 33, 90, 134] for a detailed discussion on the subject),
but to point out that there are many examples where such comparisons are
meaningful and that statements like “it can never make sense to compare and
add up utilities” are, at the very least, overly dismissive.
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Chapter 2

Truthful approximations to
range voting

In this chapter, we design truthful mechanisms that approximately maximize
the social welfare, for the fundamental social choice/mechanism design set-
ting defined in Chapter 1. As mentioned earlier, we will assume that valua-
tion functions are canonically represented using the unit-range normalization,
throughout the chapter. In light of this representation, a mechanism can be
naturally interpreted as a cardinal voting scheme in which each voter provides
a ballot giving each candidate j œ M a numerical score between 0 and 1. A
winning candidate is then determined based on the set of ballots. With this
interpretation, the well-known range voting scheme is simply the determinstic
mechanism that elects a socially optimal candidate in argmaxjœA

qn
i=1

ui(j).1
In particular, range voting has by construction an approximation ratio of 1
but it is not hard to see that it is not truthful.

2.1 Introduction
We obtain results for two di�erent versions of the problem, depending on
the number of candidates. First, for many candidates, we obtain asymptotic
results as functions of the number m. Informally, such results bound the

1More precisely, range voting elects this candidate if ballots are reflecting the true val-
uation functions ui. The optimal welfare is the benchmark that we compare to, assuming
voters where being truthful, to quantify the loss in welfare because of applying truthfulness
constraints. Since we only consider truthful mechanisms in this chapter, it is without loss
of generality to define the inputs to be the true reports of the voters. In Chapter 5, we will
redefine the inputs to account for strategic play.

19



2. Truthful approximations to range voting

approximation ratios of mechanisms when the number of candidates becomes
large. Then, for m = 3, we obtain tighter, constant bounds (independent
of then number of voters). Recall that the case of 3 candidates is the first
case of interest, because for m = 2, Theorem 1.1 does not apply and in fact
majority, a simple deterministic mechanism is both truthful and optimal (has
approximation ratio 1) in our setting.

Results for many candidates
Before stating our results, we mention for comparison the approximation ratio
of some simple truthful mechanisms. Let random-candidate be the mechanism
that elects a candidate uniformly at random, without looking at the reports.
Let random-favorite be the mechanism that picks a voter uniformly at random
and elects his favorite candidate; i.e., the (unique)2 candidate to which he
assigns valuation 1. Let random-majority be the mechanism that picks two
candidates uniformly at random and elects one of them by a majority vote. It
is not di�cult to see that as a function of m and assuming that n is su�ciently
large, random-candidate as well as random-favorite have approximation ratios
�(m≠1), so this is the trivial bound we want to beat. Interestingly, random-
majority performs even worse, with an approximation ratio of �(m≠2).

First, we exhibit a randomized truthful mechanism with an approximation
ratio of �(m≠3/4). The mechanism is the following very simple one:

Mechanism FRM. With probability 3/4, pick a candidate uniformly at ran-
dom. With probability 1/4, pick a voter uniformly at random, and pick a
candidate uniformly at random from his Âm1/2Ê most preferred candidates.

Note that this mechanism is ordinal: Its behavior depends only on the rankings
of the candidates on the ballots, not on their numerical scores. We know no
asymptotically better truthful mechanism, even if we allow general (cardinal)
mechanisms, i.e., mechanisms that can depend on the numerical scores in
other ways.

We also show a negative result: For su�ciently many voters and any
truthful ordinal mechanism, there is a valuation profile where the mecha-
nism achieves at most an O(m≠2/3) fraction of the optimal social welfare in
expectation. The negative result also holds for non-ordinal mechanisms that
are mixed-unilateral, by which we mean mechanisms that elect a candidate
based on the ballot of a single randomly chosen voter, i.e. they are convex
combinations of unilateral mechanisms.

After the first version of the paper associated with this chapter, we became
aware of another mechanism3, that actually achieves an approximation of

2Throughout most of this chapter, we will assume that valuation functions are injective,
i.e. they assign di�erent values to all candidates. The reason for that choice and how that
a�ects the results will be discussed in detail later in the chapter.

3This mechanism is due to Xinye Li, who has kindly agreed to allow me to include his
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Table 2.1: Approximation ratios for m candidates. ú FRM. úú XL.

Approximation ratio Ratio Upper bound

Ordinal + Mixed unilateral �
1
m≠3/4

2ú
, �

1
m≠2/3

2úú
O

1
m≠2/3

2

Any mechanism �
1
m≠2/3

2
O

1
log log m

log m

2

�(m≠2/3), closing the gap introduced by our results. The mechanism is the
following one, which interestingly, is still mixed-unilateral and ordinal.
Mechanism XL. With probability 1/2, pick a voter uniformly at random and
elect his most preferred candidate. With probability 1/2, pick a voter uni-
formly at random and pick a candidate uniformly at random from his Âm1/3Ê
most preferred candidates.
The important point of this result (in conjuction with our upper bound) is
that cardinal information does not help improve the approximation ratio, when
considering mixed-unilateral mechanisms.

Regarding general (cardinal) mechanisms, we obtain the following im-
possibility result. Any mechanism for m alternatives and n agents with
m Ø nÂ

Ô
nÊ+2, has approximation ratio O(log log m/ log m). Interestingly, to

obtain this result, we must allow for valuation functions to exhibit ties; i.e.
map di�erent alternatives to the same numbers in [0, 1]. Extending the result
to the “no-ties” setting seems like an interesting technical challenge; this is
discussed in detail later in the chapter.

The results for many agents are summarized in Table 2.1.

Results for three candidates
We get tighter bounds for the natural case of m = 3 and for this case, we
also obtain separation results concerning the approximation ratios achievable
by natural restricted classes of truthful mechanisms. Again, we first state
the performance of the simple mechanisms defined above for comparison: For

result in my thesis. The mechanism is planned to be included in a journal paper that will
extend the results of the conference paper associated with this chapter.

Table 2.2: Approximation ratios for 3 candidates.

Approximation ratio Ratio Upper bound
Ordinal mixed unilateral 0.610 0.611

Ordinal 0.616 0.641
Any mechanism 0.660 0.940
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the case of m = 3, random-favorite and random-majority both have approxi-
mation ratios 1/2 + o(1) while random-candidate has an approximation ratio
of 1/3. We show that for m = 3 and large n, the best mechanism that is
ordinal as well as mixed-unilateral has an approximation ratio between 0.610
and 0.611. The best ordinal mechanism has an approximation ratio between
0.616 and 0.641. Finally, the best mixed-unilateral mechanism has an ap-
proximation ratio larger than 0.660. In particular, the best mixed-unilateral
mechanism strictly outperforms all ordinal ones, even the non-unilateral or-
dinal ones. The mixed-unilateral mechanism that establishes this is a convex
combination of the quadratic-lottery [74, 84] and random-favorite, that was
defined above. For general mechanisms, we prove that no truthful mechanism
has an approximation ratio larger than 0.94.

The results for 3 candidates are summarized in Table 2.2.

Related work
As we mentioned in Chapter 1, the framework introduced by Nisan and Ronen
[119] and Procaccia and Tennenholtz [123] allows for evaluating and comparing
mechanisms in terms of their approximation ratio. Although such investiga-
tions have been very popular in structured settings, somewhat surprisingly,
much less work has been done on the unrestricted preference setting, which is
the topic of the first part of this thesis. Procaccia [122], in a paper concep-
tually very closely related to work of this chapter, used the characterization
of Theorem 1.2 and proved upper and lower bounds on the approximation
ratio achievable by ordinal mechanisms for various objective functions under
general preferences. However, he only considered objective functions that can
be defined ordinally (such as, e.g. the Borda count), and did in particular not
consider approximating the optimal social welfare, which is the objective of
this thesis.

Approximate social welfare maximization was considered by Boutilier et
al. [38] in a very interesting paper closely related to the problem studied
here, but crucially, their work did not consider incentives, i.e., they did not
require truthfulness of the mechanisms in their investigations. Specifically,
they bound the approximation ratio of ordinal mechanisms, where the need for
approximate solutions is due to informational limitations and not constraints
for truthful behaviour. On the other hand, truthfulness is the pivotal property
in our approach and for some of our results, both the need for truthfulness
and lack of information factor in the approximation ratio of the mechanisms.

Our investigations are very much helped by the work of Feige and Tennen-
holtz [74] and Freixas [84] who construct non-ordinal unilateral mechanisms.
While the agenda in [74] was mechanisms for which the objective is informa-
tion elicitation itself rather than mechanisms for approximate optimization
of an objective function, the mechanisms suggested there still turn out to
be useful for social welfare maximization. In particular, our construction es-
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tablishing the gap between the approximation ratios for cardinal and ordinal
mechanisms for three candidates is based on the quadratic lottery [74, 84].

2.2 Preliminaries
Recall that Vm denotes the set of canonically represented valuation functions
on A = {1, 2, . . . , m}. Since valuation function are assumed to be canonically
represented as unit-range, Vm is the set of injective functions u : A æ [0, 1]
with the property that 0 as well as 1 are contained in the image of u.

We let Mechm,n denote the set of truthful mechanisms for n voters and m
candidates. Note that since mechanisms are randomized, they can be inter-
preted as maps from Vm

n to �m. With that in mind, Mechm,n is a convex
subset of the vector space of all maps from Vm

n to Rm.
We next define some special classes of mechanisms, based on some standard

properties.

Definition 2.1 (Anonymity [25]). A mechanism M is anonymous if the elec-
tion probabilities do not depend on the names of the voters. Formally, given
any permutation fi on N , and any u œ (Vm)n, we have M(u) = M(fi · u),
where fi · u denotes the vector (ufi(i))n

i=1

.

Definition 2.2 (Neutrality [25]). A mechanism M is neutral if the election
probabilities do not depend on the names of the candidates. Formally, given
any permutation ‡ on A, any u œ (Vm)n, and any candidate j, we have
M(u)‡(j)

= M(u
1

¶ ‡, u
2

¶ ‡, . . . , un ¶ ‡)j .

We will call a mechanism that is anonymous and neutral, symmetric.4 Note
that symmetry implies the following property: if the valuations for two can-
didates are the same (up to permutations of the voters) then their election
probabilities must be the same as well.

Recall the definition of unilateral mechanisms from Chapter 1. In this
chapter, we will use the term mixed-unilateral for mechanisms that are con-
vex combinations of unilateral truthful mechanisms. Mixed-unilateral mech-
anisms are quite attractive seen through the “computer science lens”: They
are mechanisms of low query complexity; consulting only a single randomly
chosen voter, and therefore deserve special attention in their own right. We
define the following classes of mechanisms:

- MechU
m,n: Mechanisms in Mechm,n that are mixed-unilateral.

- MechOU
m,n: Mechanisms in Mechm,n that are ordinal as well as mixed-

unilateral.
4Note that symmetry here is di�erent from the definition of symmetry in Chapter 3,

where symmetry is a property implied by anonymity alone. We abuse the definitions slightly
because the two di�erent notions of symmetry are in two separate chapters.
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2. Truthful approximations to range voting

We next give names to some specific important mechanisms.

- U q
m,n œ MechOU

m,n: Pick a voter uniformly at random and elect uniformly
at random a candidate among his q most preferred candidates.

- Dq
m,n œ MechO

m,n, for Ân/2Ê + 1 Æ q Æ n + 1: Pick two candidates
uniformly at random and eliminate all other candidates. Then check for
each voter which of the two candidates he prefers and give that candidate
a “vote”. If a candidate gets at least q votes, she is elected. Otherwise,
flip a coin to decide which of the two candidates is elected.

We let random-favorite be a nickname for U1

m,n and random-candidate be a
nickname for Um

m,n. We let random-majority be a nickname for DÂn/2Ê+1

m,n .
Note also that Dn+1

m,n is just another name for random-candidate. Finally,
recall the definition of quadratic lottery Qn from Chapter 1 (repeated here for
completeness):
Mechanism Qn (Quadratic Lottery [74, 84]). Select a voter uniformly at ran-
dom, and let – be the valuation of his second most preferred candidate. Elect
his most preferred candidate with probability (4≠–2)/6, his second most pre-
ferred candidate with probability (1 + 2–)/6 and his least preferred candidate
with probability (1 ≠ 2– + –2)/6.

As mentioned earlier, the mechanism was shown to be in MechU
3,n by

Freixas [84] and then later by Feige and Tennenholtz [74]. As we will see
later, although many cardinal mechanisms were proposed in [74], quadratic
lottery is particularly amenable to an approximation ratio analysis due to the
fact that the election probabilities are quadratic polynomials.

Recall that ratio(M) denotes the approximation ratio of a mechanism M .
We let rm,n denote the best possible approximation ratio (achieved by any
truthful mechanism) when there are n voters and m candidates. That is,

rm,n = sup
MœMechm,n

ratio(M).

Similarly, we let
rC

m,n = sup
MœMechC

m,n

ratio(M),

for C being either O, U or OU. We let rm denote the asymptotically best pos-
sible approximation ratio when the number of voters approaches infinity. That
is, rm = lim infnæŒ rm,n, and we also extend this notation to the restricted
classes of mechanisms with the obvious notation rO

m, rU
m and rOU

m .

Characterization of ordinal symmetric mechanisms
The importance of neutral and anonymous mechanisms is apparent from the
following simple lemma. Similar lemmas have been proven before in literature,
in di�erent settings [89, 95].
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Lemma 2.1. For all M œ Mechm,n, there is a M Õ œ Mechm,n such that M Õ

is anonymous and neutral and such that ratio(M Õ) Ø ratio(M). Similarly,
for all M œ MechC

m,n, there is M Õ œ MechC
m,n so that M Õ is anonymous and

neutral and so that ratio(M Õ) Ø ratio(M), for C being either O, U or OU.

Proof. Given any mechanism M , we can “anonymize” and “neutralize” M by
applying a uniformly chosen random permutation to the set of candidates and
an independent uniformly chosen random permutation to the set of voters
before applying M . This yields an anonymous and neutral mechanism M Õ

with at least a good an approximation ratio as M . Also, if M is ordinal
and/or mixed-unilateral, then so is M Õ. If M is truthful, M Õ will be truthful
as well.5

Lemma 2.1 makes the characterizations of the following theorem very useful.

Theorem 2.1. The set of anonymous and neutral mechanisms in MechOU
m,n

is equal to the set of convex combinations of the mechanisms U q
m,n, for q œ

{1, . . . , m}. Also, the set of anonymous and neutral mechanisms in Mechm,n

that can be obtained as convex combinations of duple mechanisms is equal to
the set of convex combinations of the mechanisms Dq

m,n, for q œ {Ân/2Ê +
1, Ân/2Ê + 2, . . . , n, n + 1}.

Proof. A very closely related statement was shown by Barbera [24]. We sketch
how to derive the theorem from that statement.

Barbera (in [24], as summarized in the proof of Theorem 1 in [25]) showed
that the anonymous, neutral mechanisms in MechOU

m,n are exactly the point
voting schemes and that the anonymous, neutral mechanisms that are convex
combinations of duple mechanisms are exactly supporting size schemes. A
point voting scheme is given by m real numbers (aj)m

j=1

summing to 1, with
a

1

Ø a
2

Ø · · · Ø am Ø 0. It picks a voter uniformly at random, and elects
the candidate he ranks kth with probability ak, for k = 1, . . . , m. It is easy
to see that the point voting schemes are exactly the convex combinations of
U q

m,n, for q œ {1, . . . , m}. A supporting size scheme is given by n + 1 real
numbers (bi)n

i=0

with bn Ø bn≠1

· · · Ø b
0

Ø 0, and bi + bn≠i = 1 for i Æ n/2. It
picks two di�erent candidates j

1

, j
2

uniformly at random and elects candidate
jk, k = 1, 2 with probability bsk

where sk is the number of voters than rank jk

higher than j
3≠k. It is easy to see that the supporting size schemes are exactly

the convex combinations of Dq
m,n, for q œ {Ân/2Ê+1, Ân/2Ê+2, . . . , n+1}.

The following corollary is immediate from Theorem 1.2 and Theorem 2.1.

Corollary 2.1 (Symmetric mechanisms characterization). The ordinal, anony-
mous and neutral mechanisms in Mechm,n are exactly the convex combinations

5However, if M is deterministic and truthful, M Õ will be randomized and truthful-in-
expectation.
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of the mechanisms U q
m,n, for q œ {1, . . . , m} and Dq

m,n, for q œ {Ân/2Ê +
1, Ân/2Ê + 2, . . . , n}.

Scaling with the number of voters
We next present some lemmas that allow us to understand the asymptotic
behavior of rm,n and rC

m,n for fixed m and large n, for C being either O, U or
OU.

Lemma 2.2. For any positive integers n, m, k, we have rm,kn Æ rm,n and
rC

m,kn Æ rC
m,n, for C being either O, U or OU.

Proof. Suppose we are given any mechanism M in Mechm,kn with approxima-
tion ratio –. We will convert it to a mechanism M Õ in Mechm,n with the same
approximation ratio, hence proving rm,kn Æ rm,n. The natural idea is to let
M Õ simulate M on the profile where we simply make k copies of each of the n
ballots. More specifically, let uÕ = (uÕ

1

, . . . , uÕ
n) be a valuation profile with n

voters and u = (u
1

, . . . , ukn) be a valuation profile with kn voters, such that
uik+1

= uik+2

= . . . = u
(i+1)k = uÕ

i+1

, for i = 0, . . . , n ≠ 1, where “=” denotes
component-wise equality. Then let M Õ(uÕ) = M(u). To complete the proof,
we need to prove that if M is truthful, M Õ is truthful as well.

Let u = (u
1

, . . . , ukn) be the profile defined above for kn voters and let
uÕ be the corresponding n-voter profile. We will consider deviations of voters
with the same valuation functions to the same misreported valuation function
û; without loss of generality, we can assume that these are voters 1, . . . , k. For
ease of notation, let ui+1 = (uik+1

= uik+2

= . . . = u
(i+1)k) be a block of valu-

ation functions, for i = 0, . . . , n ≠ 1 and note that given this notation, we can
write u = (u1, u2, . . . , un) = (u

1

, . . . , uk, u2, . . . , un). Let vú = E[ui(M(u))].
Now consider the profile (û, u

2

, . . . , uk, u2, . . . , un). By truthfulness, it holds
that voter 1’s expected utility in the new profile (and with respect to u

1

) is at
most vú. Next, consider the profile (û, û, u

3

, . . . , uk, u2, . . . , un) and observe
that voter 2’s utility from misreporting should be at most equal to her utility
before misreporting, which is at most vú. Continuing like this, we obtain the
valuation profile (û, û, . . . , û, u2, . . . , un) in which the expected utility of voters
1, . . . , k is at most vú and hence no deviating voter gains from misreporting.
Now observe that the new profile (û, û, . . . , û, u2, . . . , un) corresponds to an
n-voter profile (ûi

Õ, uÕ
≠i) = (ûÕ

1

, uÕ
2

, . . . , uÕ
n) which is obtained from uÕ by a

single miresport of voter 1. By the discussion above and the way M Õ was
constructed, voter 1 does not benefit from this misreport and since the mis-
reported valuation function was arbitrary, M Õ is truthful.

The same arguments can be employed for proving the lemma for rC
m,kn Æ

rC
m,n, for C being either O, U or OU.

Lemma 2.3. For any n, m and k < n, we have rm,n Ø rm,n≠k ≠ km
n . Also,

rC
m,n Ø rC

m,n≠k ≠ km
n , for C being either O, U, or OU.
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Proof. We construct a mechanism M Õ in Mechm,n from a mechanism M in
Mechm,n≠k. The mechanism M Õ simply simulates M after removing k voters,
chosen uniformly at random and randomly mapping the remaining voters to
{1, . . . , n}. In particular, if M is ordinal (or mixed-unilateral, or both) then
so is M Õ. Suppose M has approximation ratio –. Consider running M Õ on any
profile where the socially optimal candidate has social welfare wú. Note that
wú Ø n/m, since each voter assigns valuation 1 to some candidate. Ignoring
k voters reduces the social welfare of any candidate by at most k, so M Õ is
guaranteed to return a candidate with expected social welfare at least –(wú ≠
k). This is at least a –(1 ≠ k/wú) Ø – ≠ km

n fraction of wú. Since the profile
was arbitrary, we are done.

Lemma 2.4 (Scaling lemma). For any m, n Ø 2, ‘ > 0 and all nÕ Ø (n ≠
1)m/‘, we have rm,nÕ Æ rm,n + ‘ and rC

m,nÕ Æ rC
m,n + ‘, for C being either O,

U, or OU.

Proof. If n divides nÕ, the statement follows from Lemma 2.2. Otherwise, let
nú be the smallest number larger than nÕ divisible by m; we have nú < nÕ + n.
By Lemma 2.2, we have rm,nú = rm,n. By Lemma 2.3, we have rm,nú Ø
rm,nÕ ≠ (n≠1)m

nú . Therefore, rm,nÕ Æ rm,n + (n≠1)m
nú Æ rm,n + (n≠1)m

nÕ . The same
arguments work for proving rC

m,nÕ Æ rC
m,n + ‘, for C being either O, U, or

OU.

In particular, Lemma 2.4 implies that rm,n converges to a limit as n æ Œ.

Quasi-combinatorial valuation profiles
It will sometimes be useful to restrict the set of valuation functions to a certain
finite domain Rm,k for an integer parameter k Ø m. Specifically, we define:

Rm,k =
;

u œ Vm|u(A) ™ {0,
1
k

,
2
k

, . . . ,
k ≠ 1

k
, 1}

<

where u(A) denotes the image of u. Given a valuation function u œ Rm,k, we
define its alternation number a(u) as

a(u) = #{j œ {0, . . . , k ≠ 1}|[ j

k
œ u(A)] ü [j + 1

k
œ u(A)]},

where ü denotes exclusive-or. That is, the alternation number of u is the
number of indices j for which exactly one of j/k and (j + 1)/k is in the image
of u. Since k Ø m and {0, 1} ™ u(A), we have that the alternation number of
u is at least 2. We shall be interested in the class of valuation functions Cm,k

with minimal alternation number. Specifically, we define:

Cm,k = {u œ Rm,k|a(u) = 2}
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and shall refer to such valuation functions as quasi-combinatorial valuation
functions. Informally, the quasi-combinatorial valuation functions have all
valuations as close to 0 or 1 as possible.

Note that a quasi-combinatorial valuation function u is fully described by
the value of k, together with a partition of A into two sets A

0

and A
1

, with A
0

being those candidates close to 0 and A
1

being those sets close to 1 together
with a ranking of the candidates (i.e., a total ordering º on A), so that all
elements of A

1

are greater than all elements of A
0

in this ordering. Let the
type of a quasi-combinatorial valuation function be the partition and the total
ordering (A

0

, A
1

, º). Then, a quasi-combinatorial valuation function is given
by its type and the value of k. For instance, for m = 3 and candidates a, b and
c, one possible type is ({b}, {a, c}, {c º a º b}), and the quasi-combinatorial
valuation function u corresponding to this type for k = 1000 is u(a) = 0.999,
u(b) = 0, u(c) = 1.

The following lemma will be very useful in later sections. It states that
in order to analyze the approximation ratio of an ordinal and neutral mech-
anism, it is su�cient to understand its performance on quasi-combinatorial
valuation profiles. The lemma formalizes the intuition that since only ordi-
nal information is available, the worst-case will occur on “extreme” valuation
profiles.

Lemma 2.5 (Quasi-combinatorial Lemma). Let M œ Mechm,n be ordinal and
neutral. Then

ratio(M) = lim inf
kæŒ

min
uœ(Cm,k)

n

E[
qn

i=1

ui(M(u))]
qn

i=1

ui(1) .

Proof. For a valuation profile u = (ui), define g(u) = E[

qn

i=1 ui(M(u))]qn

i=1 ui(1)

. We
show the following equations:

ratio(M) = inf
uœV n

m

E[
qn

i=1

ui(M(u))]
maxjœA

qn
i=1

ui(j) (2.1)

= inf
uœV n

m

g(u) (2.2)

= lim inf
kæŒ

min
uœ(Rm,k)

n
g(u) (2.3)

= lim inf
kæŒ

min
uœ(Cm,k)

n
g(u) (2.4)

Equation (2.2) follows from the fact that since M is neutral, it is invariant
over permutations of the set of candidates, so there is a worst case instance
(with respect to approximation ratio) where the socially optimal candidate is
candidate 1. Equation (2.3) follows from the facts that (a) each u œ (Vm)n can
be written as u = limkæŒ vk where (vk) is a sequence so that vk œ (Rm,k)n

and where the limit is with respect to the usual Euclidean topology (with the
set of valuation functions being considered as a subset of a finite-dimensional
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Euclidean space), and (b) the map g is continuous in this topology (to see
this, observe that the denominator in the formula for g is bounded away from
0). Finally, equation (2.4) follows from the following claim:

’u œ (Rm,k)n ÷uÕ œ (Cm,k)n : g(uÕ) Æ g(u).

With u = (u
1

, . . . , un), we shall prove this claim by induction in
q

i a(ui)
(recall that a(ui) is the alternation number of ui).

For the induction basis, the smallest possible value of
q

i a(ui) is 2n, cor-
responding to all ui being quasi-combinatorial. For this case, we let uÕ = u.

For the induction step, consider a valuation profile u with
q

i a(ui) > 2n.
Then, there must be an i so that the alternation number a(ui) of ui is strictly
larger than 2 (and therefore at least 4, since alternation numbers are easily
seen to be even numbers). Then, there must be r, s œ {2, 3, . . . , k ≠2}, so that
r Æ s, r≠1

k ”œ ui(A), { r
k , r+1

k , . . . , s≠1

k , s
k } ™ ui(A) and s+1

k ”œ ui(A). Let r̃ be
the largest number strictly smaller than r for which r̃

k œ ui(A); this number
exists since 0 œ ui(A). Similarly, let s̃ be the smallest number strictly larger
than s for which s̃

k œ ui(A); this number exists since 1 œ ui(A). We now define
a valuation function ux œ Vm for any x œ [r̃ ≠ r + 1; s̃ ≠ s ≠ 1], as follows:
ux agrees with ui on all candidates j not in u≠1

i ({ r
k , r+1

k , . . . , s≠1

k , s
k }), while

for candidates j œ u≠1

i ({ r
k , r+1

k , . . . , s≠1

k , s
k }) , we let ux(j) = ui(j) + x

k . Now
consider the function h : x æ g((ux, u≠i)), where (ux, u≠i) denotes the result
of replacing ui with ux in the profile u. Since M is ordinal, we see by inspection
of the definition of the function g, that h on the domain [r̃ ≠ r + 1; s̃ ≠ s ≠ 1] is
a fractional linear function x æ (ax + b)/(cx + d) for some a, b, c, d œ R. As h
is defined on the entire interval [r̃ ≠r +1; s̃≠s≠1], we therefore have that h is
either monotonically decreasing or monotonically increasing in this interval, or
possibly constant. If h is monotonically increasing, we let ũ = (ur̃≠r+1, u≠i),
and apply the induction hypothesis on ũ. If h is monotonically decreasing,
we let ũ = (us̃≠s≠1, u≠i), and apply the induction hypothesis on ũ. If h is
constant on the interval, either choice works. This completes the proof.

2.3 Results for many candidates
Next, we prove our results for the case of many candidates. We start from the
approximation guarantees of two trutfhul mechanisms and then prove some
upper bounds on the approximation ratio of some general classes of truthful
mechanisms, as well as the class of all truthful mechanisms.

Approximation guarantees
First, we will analyze the approximation ratio of the mechanism FRM œ
MechOU

m,n that with probability 3/4 elects a uniformly random candidate and
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Figure 2.1: Example of the induction step of the proof of Lemma 2.5 for m = 7
and k = 10. Here, r = 4, s = 7, r̃ = 2 and s̃ = 10 and hence x œ [≠1, 2]. The
bottom figure depicts the induced profile when h(x) is monotonely decreasing
in [≠1, 2].

with probability 1/4 uniformly at random picks a voter and elects a candidate
uniformly at random from the set of his Âm1/2Ê most preferred candidates.

Theorem 2.2. Let n Ø 2, m Ø 3. Let M = 3

4

Um
m,n + 1

4

U Âm1/2Ê
m,n . Then,

ratio(M) Ø 0.37m≠3/4.

Proof. For a valuation profile u = (ui), we define

g(u) = E[
qn

i=1

ui(M(u))]
qn

i=1

ui(1) .

By Lemma 2.5, since M is ordinal, it is enough to bound from below g(u)
for all u œ (Cm,k)n with k Ø 1000(nm)2. Let ‘ = 1/k. Let ” = m‘. Note that
all functions of u map each alternative either to a valuation smaller than ” or
a valuation larger than 1 ≠ ”.

Since each voter assigns valuation 1 to at least one candidate, and since
M with probability 3/4 picks a candidate uniformly at random from the set of
all candidates, we have E[

qn
i=1

ui(M(u))] Ø 3n/(4m). Suppose
qn

i=1

ui(1) Æ
2m≠1/4n. Then g(u) Ø 3

8

m≠3/4, and we are done. So we shall assume from
now on that

nÿ

i=1

ui(1) > 2m≠1/4n. (2.5)

Obviously,
qn

i=1

ui(1) Æ n. Since M with probability 3/4 picks a can-
didate uniformly at random from the set of all candidates, we have that
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E[
qn

i=1

ui(M(u))] Ø 3

4m

q
i,j ui(j). So if

q
i,j ui(j) Ø 1

2

nm1/4, we have g(u) Ø
3

8

m≠3/4, and we are done. So we shall assume from now on that

ÿ

i,j

ui(j) <
1
2nm1/4. (2.6)

Still looking at the fixed quasi-combinatorial u, let a voter i be called gen-
erous if his Âm1/2Ê + 1 most preferred candidates are all assigned valuation
greater than 1 ≠ ”. Also, let a voter i be called friendly if he has candi-
date 1 among his Âm1/2Ê most preferred candidates. Note that if a voter is
neither generous nor friendly, he assigns to candidate 1 valuation at most ”.
This means that the total contribution to

qn
i=1

ui(1) from such voters is less
than n” < 0.001/m. Therefore, by equation (2.5), the union of friendly and
generous voters must be a set of size at least 1.99m≠1/4n.

If we let g denote the number of generous voters, we have
q

i,j ui(j) Ø
gm1/2(1 ≠ ”) Ø 0.999gm1/2, so by equation (2.6), we have that 0.999gm1/2 <
1

2

nm1/4. In particular g < 0.51m≠1/4n. So since the union of friendly and
generous voters must be a set of size at least a 1.99m≠1/4n voters, we conclude
that there are at least 1.48m≠1/4n friendly voters, i.e. the friendly voters
form at least a 1.48m≠1/4 fraction of the set of all voters. But this ensures
that U Âm1/2Ê

m,n elects candidate 1 with probability at least 1.48m≠1/4/m1/2 Ø
1.48m≠3/4. Then, M elects candidate 1 with probability at least 0.37m≠3/4

which means that g(u) Ø 0.37m≠3/4, as desired. This completes the proof.

Next, we will analyze the proof of the performance of the mechanism XL œ
MechOU

m,n that with probability 1/2 uniformly at random picks a voter and
elects his most preferred candidate and with probability 1/2 uniformly at
random picks a voter and elects a candidate uniformly at random from the
set of his Âm1/3Ê most preferred candidates.

In order to prove the approximation ratio of the mechanism, we will restrict
the valuation space further, using the nature of the mechanism. Recall that
since the mechanism is ordinal, its worst-case approximation ratio is on quasi-
combinatorial valuation profiles Cm,k. Recall the definition of the type of a
quasi-combinatorial valuation function and the sets A

0

and A
1

from Section
2.2. We emphasize the association of the sets A

0

and A
1

with the utility
function u by denoting them Au

0

and Au
1

respectively. Now, for a utility
function u œ Cm,k, define:

count(u) = |{j œ M : j œ Au
1

}| and rank(u, j) =
--{jÕ œ M : u(jÕ) Ø u(j)}

--

In other words, count(u) is the number of candidates for which a voter has
valuation close to 1 and rank(u, j) is the rank of candidate j in a voter’s
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2. Truthful approximations to range voting

ballot. Now for k Ø m, define the sets

D(a)

m,k = {u œ Ck : (count(u) Æ 2) · (1 œ Au
1

)}

D(b)

m,k =
Ó

u œ Ck : (count(u) = 1) ·
1
rank(u, 1) > Âm1/3Ê

2Ô

D(c)

m,k =
Ó

u œ Ck : count(u) = rank(u, 1) = Âm1/3Ê + 1
Ô

Dm,k = D(a)

m,k fi D(b)

m,k fi D(c)

m,k.

Intuitively, the set D(a)

m,k contains valuation functions for which candidate 1
(who will be used as the social optimum by neutrality of the studied mecha-
nism) is assigned valuation close to 1 but there are at most 2 candidates that
are valued highly in total. The set D(b)

m,k contains valuations for which only
one candidate is assigned a high value and candidate 1 is outranked by at
least Âm1/3Ê candidates. Finally, the set D(c)

m,k contains valuation functions for
which candidate 1 is valued highly, but she is outranked by Âm1/3Ê candidates,
who are thus also valued highly.

We will prove the following lemma about the mechanism XL. The lemma
states that when bounding the approximation ratio of the mechanism, it suf-
fices to look at a subset of quasi-combinatorial profiles, given by the set Dm,k.

Lemma 2.6. Let M = 1

2

U1

m,n + 1

2

U Âm1/3Ê
m,n . Then

ratio(M) = lim inf
kæŒ

min
uœ(Dm,k)

n

E[
qn

i=1

ui(M(u))]
qn

i=1

ui(1) .

Proof. Similarly to the proof of Lemma 2.5 and since the mechanism M is
neutral, for a valuation profile u = (ui), we define g(u) = E[

qn

i=1 ui(M(u))]qn

i=1 ui(1)

. By
the proof of Lemma 2.5, and since M is ordinal, we know that

ratio(M) = lim inf
kæŒ

min
uœ(Cm,k)

n
g(u),

and hence we need to prove that

lim inf
kæŒ

min
uœ(Cm,k)

n
g(u) = lim inf

kæŒ
min

uœ(Dm,k)

n
g(u).

In order to prove that, it su�ces to prove

’u œ (Cm,k)n ÷uÕ œ (Dm,k)n : g(uÕ) Æ g(u).

The idea is similar to the one used in Lemma 2.5: we will start from an
arbitrary quasi-combinatorial profile and inductively “turn” voters’ valuation
functions into functions in the set Dm,k, while arguing that the approximation
ratio cannot increase. Specifically, consider the profile u œ (Cm,k)n\(Dm,k)n

and let i be an agent such that ui œ Cm,k\Dm,k. We will construct a valuation
function vi œ Dm,k such that the following conditions are satisfied:
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2.3. Results for many candidates

1. M(vi, u≠i) = M(ui, u≠i);

2. 1 œ Aui
1

∆ 1 œ Avi
1

;

3. j œ Aui
0

∆ j œ Avi
0

for any j ”= 1.

Note that since we are considering the case when k æ Œ and since the argu-
ment will be applied inductively, similarly to the proof of Lemma 2.5, satisfying
Conditions 1-3 su�ces to prove the lemma. Now define

S(u) =
1
{j œ M : rank(u, j) = 1}, {j œ M : 1 < rank(u, j) Æ Âm1/3Ê}

2

and observe that Condition 1 can alternatively be written as S(ui) = S(vi),
since the mechanism is invariant to rearranging the ranks of the first Âm1/3Ê
candidates, while keeping the most preferred candidate fixed. We will consider
two cases for the valuation functions vi œ Dm,k:

First, if rank(ui, 1) Æ Âm1/3Ê then

- If rank(ui, 1) = 1, let vi be such that j œ Avi
0

for every j ”= 1 and
rank(vi, j) = rank(ui, j). Then vi œ D(a)

m,k and Conditions 1-3 are satis-
fied.

- If rank(ui, 1) > 1, let jÕ be the candidate with rank(ui, jÕ) = 1. Then
let vi be such that S(vi) = S(ui) and j œ Avi

1

if and only if j œ {1, jÕ}.
Then vi œ D(a)

m,k and Conditions 1-3 are satisfied.

Now, if rank(ui, 1) > Âm1/3Ê then

- If 1 œ Aui
1

, then we have that for any j with rank(ui, j) Æ Âm1/3Ê,
j œ A

1

. Therefore, we can let vi be such that (vi) = S(ui), rank(vi, 1) =
Âm1/3Ê + 1 and j œ Avi

1

if and only if j = 1 or rank(ui, j) Æ Âm1/3Ê.
Then vi œ D(c)

m,k and Conditions 1-3 are satisfied.

- If 1 œ Aui
0

, let jÕ be the candidate with rank(ui, jÕ) = 1. Then let vi

be such that S(vi) = S(ui) and j œ Avi
1

if and only if j = jÕ. Then
vi œ D(b)

m,k and Conditions 1-3 are satisfied.

This completes the proof.

We are now ready to bound the approximation ratio of the mechanism.

Theorem 2.3. Let M = 1

2

U1

m,n + 1

2

U Âm1/3Ê
m,n . Then, ratio(M) = �(m≠2/3).
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Proof. Let u be any valuation profile; by Lemma 2.6, we can assume without
loss of generality that u œ (Dm,k)n. Similarly to Lemma 2.6 and since the
mechanism M is neutral, we can assume that candidate 1 is the social optimum
and define

g(u) = E[
qn

i=1

ui(M(u))]
qn

i=1

ui(1) .

The minimum ratio will be given by the value of g(u) for u œ (Dm,k)n as k
approaches infinity.

Recall the definition of the sets D(a)

m,k, D(b)

m,k and D(c)

m,k and let the N
1

, N
2

and N
3

be the sets of voters that have valuations in D(a)

m,k, D(b)

m,k and D(c)

m,k

respectively. Let a = |N
1

|, b = |N
2

| and c = |N
3

|. Furthermore, for ease of
notation, let T be the random variable that denotes the voter chosen by the
mechanism, let W be the variable denoting the winning candidate and let F
be the event that mechanism U1

m,n is run. Finally, let

X = lim
kæŒ

qn
i=1

ui(W )
qn

i=1

ui(1) .

Then it holds that:

E[X] Ø Pr [(T œ N
1

) · (¬F ) · (W = 1)]
+ Pr[(T œ N

2

) · F ] · E[X|(T œ N
2

) · F ]
+ Pr[(T œ N

3

) · ¬F ] · E[X|(T œ N
3

) · ¬F ]

We will bound each term of the sum individually. For the first term, since we
are calculating the probability that an agent in N

1

is selected and candidate
1 is elected under U Âm1/3Ê

m,n , we have

Pr[(T Æ a) · (¬F ) · (W = 1)] = 1
2 · a

n
· 1

Âm1/3Ê
= a

2nÂm1/3Ê
.

For the second term, if we let Y
1

= Pr[(T œ N
2

) · F ] ·E[X|(T œ N
2

) · F ], and
wi denote the (unique) candidate w for which w œ Aui

1

, we have
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2.3. Results for many candidates

Y = 1
2 · b

n
· E[X|(T œ N

2

· F ]

= 1
2 · b

n
· 1

b

ÿ

iœN2

E[X|(T = i) · F ]

= 1
2 · 1

n
·

ÿ

iœN2

qn
j=1

|wi œ A
uj

1

|
a + c

(2.7)

Ø 1
2 · 1

n

ÿ

iœN2

q
jœN2 |wi œ A

uj

1

|
a + c

= 1
2n(a + c)

m≠1ÿ

w=1

|{i œ N
2

: w œ Aui
1

}|2 (2.8)

Ø 1
2 · b

n
· 1

b
· 1

a + c
· b2

m ≠ 1 (2.9)

= b2

2n(m ≠ 1)(a + c) .

In the above calculation, for Equality 2.7, note that a valuation function in
D(b)

m,k is such that only one candidate is in set A
1

. Since we are calculating the
expectation given that mechanism U1

m,n is run, given that agent i is selected,
the winner is always the single candidate w with ui(w) = 1. Hence, we only
need to sum up over these candidates. The equality follows from the fact that
voters in D(b)

m,k have candidate 1 in A
0

. Equality 2.8 follows from rearranging
the terms and Inequality 2.9 follows from the generalized mean inequality and
the fact that

m≠1ÿ

w=1

|{i œ N
2

: w œ Aui
1

}| = b.

Using very similar arguments (and substituting |wi œ A
uj

1

| by a term of the
form

q
w:wœA

ui
1

|w œ A
uj

1

|), we can prove that

Pr[(V œ N
3

) · ¬F ] · E[X|(V œ N
3

) · ¬F ] Ø c2m1/3

2n(m ≠ 1)(a + c)

Therefore, we have that

E[X] Ø a

2nm1/3

+ b2

2n(m ≠ 1)(a + c) + c2m1/3

2n(m ≠ 1)(a + c) ,

and hence the approximation ratio of M is asymptotically

ratio(M) = �
A

a

nm1/3

+ b2

nm(a + c) + c2m1/3

nm(a + c)

B

.
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2. Truthful approximations to range voting

Since a + b + c = n, it has to be the case that at least one of a, b and c is
asymptotically �(n). If a = �(n), then ratio(M) = �(m≠1/3) and we are
done. Similarly, if c = �(n), it holds that ratio(M) = �(m≠2/3) and we are
done. Assume from now on that b = �(n) and that a = o(n) and c = o(n).
Then, we have

ratio(M) = �
A

a

nm1/3

+ n

m(a + c) + c2m1/3

nm(a + c)

B

.

If a = �(a + c), then it holds that

ratio(M) = �
3

a

nm1/3

+ n

ma

4
= �(m≠2/3)

and we are done. Similarly, if c = �(a + c) then it holds that

ratio(M) = �
3

n

mc
+ c

nm≠2/3

4
= �(m≠2/3).

This completes the proof.

Upper bounds
We next show our first negative result. We show that any convex combination
of (not necessarily ordinal) unilateral and duple mechanisms performs poorly.

Theorem 2.4. Let m Ø 20 and let n = m ≠ 1 + g where g = Âm2/3Ê. For
any mechanism M that is a convex combination of unilateral and duple mech-
anisms in Mechm,n, we have ratio(M) Æ 5m≠2/3.

Proof. Let k = Âm1/3Ê. By applying the same proof technique as in the
proof of Lemma 2.1, we can assume that M can be decomposed into a convex
combination of mechanisms M¸, with each M¸ being anonymous as well as
neutral, and each M¸ either being a mechanism of the form Dq

m,n for some q
(by Theorem 2.1), or a mechanism that applies a truthful one-voter neutral
mechanism U to a voter chosen unformly at random.

We now describe a single profile for which any such mechanism M¸ per-
forms badly. Let A

1

, .., Ag be a partition of {1, . . . , kg} with k candidates in
each set. The bad profile has the following voters:

- For each i œ {1, . . . , m ≠ 1} a voter that assigns 1 to candidate i, 0 to
candidate m and valuations smaller than 1/m2 to the rest.

- For each j œ {1, . . . , g} a vote that assigns valuations strictly bigger than
1 ≠ 1/m2 to members of Aj , valuation 1 ≠ 1/m2 to m, and valuations
smaller than 1/m2 to the rest.
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2.3. Results for many candidates

Note that the social welfare of candidate m is (1 ≠ 1/m2)g while the social
welfares of the other candidates are all smaller than 2 + 1/m. Thus, the
conditional expected approximation ratio given that the mechanism does not
elect m is at most (2 + 1/m)/(1 ≠ 1/m2)g Æ 3m≠2/3. We therefore only need
to estimate the probability that candidate m is elected. For a mechanism of
the form Dq

m,n, candidate m is chosen with probability at most 2/m, since
such a mechanism first eliminates all candidates but two and these two are
chosen uniformly at random.

For a mechanism that picks a voter uniformly at random and applies a
truthful one-agent neutral mechanism U to the ballot of this voter, we make
the following claim: Conditioned on a particular voter iú being picked, the
conditional probability that m is chosen is at most 1/(r + 1), where r is
the number of candidates that outrank m on the ballot of voter i. Indeed,
if candidate m was chosen with conditional probability strictly bigger than
1/(r + 1), she would be chosen with strictly higher probability than some
other candidate jú who outranks m on the ballot of voter iú. But if so, since
U is neutral, voter i would increase his utility by switching jú and m on his
ballot, as this would switch the election probabilities of jú and m while leaving
all other election probabilities the same. This contradicts that U is truthful.
Therefore, our claim is correct. This means that candidate m is chosen with
probability at most 1/m+(g/m)·(1/k) Æ 1/m+m2/3/(m(m1/3≠1)) Æ 2m≠2/3,
since m Ø 20.

We conclude that on the bad profile, the expected approximation ratio
of any mechanism M¸ in the decomposition is at most 3m≠2/3 + 2m≠2/3 =
5m≠2/3. Therefore, the expected approximation ratio of M on the bad profile
is also at most 5m≠2/3.

Corollary 2.2. For all m, and all su�ciently large n compared to m, any
mechanism M in MechO

m,n fi MechU
m,n has approximation ratio O(m≠2/3).

Proof. Combine Theorem 1.2, Lemma 2.4 and Theorem 2.4.

Corollary 2.2 provides an upper bound on the approximation ratio of a gen-
eral class of mechanisms that contains all ordinal mechanisms as well as many
cardinal mechanisms. The next question is how well one can do with (general)
cardinal mechanisms, which are not mixed-unilateral. We will prove a bound
that applies to the class of all truthful mechanisms next; note that the result
assumes a departure from our setting and requires that the image of the val-
uation functions has ties. We will discuss this requirement in detail later in
the chapter. The proof of the following theorem is based on Lemma 4.6 that
we will state and prove in Chapter 4.

Theorem 2.5. Let M Õ be any truthful voting mechanism for n voters and m
candidates, with m Ø nÂ

Ô
nÊ+2, in the setting with ties. The approximation

ratio of M Õ is O(log log m/ log m).
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2. Truthful approximations to range voting

Proof. In Chapter 4, we will prove a related upper bound for the one-sided
matching problem.6 The bound corresponds to an upper bound on the ap-
proximation ratio of any truthful mechanism M in the general setting with
ties. This is because there is a reduction to the general setting with ties from
the setting of the one-sided matching problem.7

In the one-sided matching problem, there is a set of n agents and a set of k
items and each agent i has a valuation function vi : [k] æ [0, 1] mapping items
to real values in the unit interval. Similarly to our definitions, these functions
are injective and both 0 and 1 are in their image. A mechanism M on input a
valuation profile v = (v

1

, ..., vn) outputs a matching M(v), i.e. an allocation
of items to agents such that each agent receives at most one item. Let Mi(v)
be the item allocated to agent i. For convenience, we will refer to this problem
as the matching setting and to our problem as the general setting.

The reduction works as follows. Let v = (v
1

, ..., vn) be a valuation profile
of the matching setting. We will construct a valuation profile u = (u

1

, ..., un)
of the general setting that will correspond to v. Let each outcome of the
matching setting correspond to a candidate in the general setting. For every
agent i and every item j let ui(L) = vi(j) for each candidate L œ A that
corresponds to a matching in which item j is allocated to agent i. Note that
the number of candidates is nk and a bound for the matching setting implies
a bound for the general setting. Specifically, the O(1/

Ô
n) bound proved in

Lemma 4.6 translates to a O(log log m/ log m) upper bound.

2.4 Results for three candidates
In this section, we consider the special case of three candidates, m = 3. To
improve readability, we shall denote the three candidates by a, b and c, rather
than by 1,2 and 3.

When the number of candidates m as well as the number of voters n are
small constants, the exact values of rO

m,n and rOU
m,n can be determined. We first

give a clean example, and then describe a general method.

Proposition 2.1. For all M œ MechO
3,3, we have ratio(M) Æ 2/3.

Proof. By Lemma 2.1, we can assume that M is anonymous and neutral. Let
a ºi b denote the fact that voter i ranks candidate a higher than b in his ballot.
Let a Condorcet profile be any valuation profile with a º

1

b º
1

c, b º
2

c º
2

a
and c º

3

a º
3

b. Since M is neutral and anonymous, by symmetry, M elects
each candidate with probability 1/3. Now, for some small ‘ > 0, consider
the Condorcet profile where u

1

(b) = ‘, u
2

(c) = ‘ and u
3

(a) = 1 ≠ ‘. The
socially optimal choice is candidate a with social welfare 2 ≠ ‘, while the

6The proof will actually be for the setting of n agents and n items but it can be easily
adapted to work when the number of items is Â

Ô
nÊ + 2.

7We will discuss this reduction explicitly in Chapter 3.
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other candidates have social welfare 1 + ‘. Since each candidate elected with
probability 1/3, the expected social welfare is (4+‘)/3. By making ‘ su�ciently
small, the approximation ratio on the profile is arbitrarily close to 2/3.

Note that the same proof works even if the mechanism is not truthful, i.e.
the loss in welfare is due to informational limitations. With a case analysis
and some pain, it can be proved by hand that random-majority achieves an
approximation ratio of at least 2/3 on any profile with three voters and three
candidates. Together with Proposition 2.1, this implies that rO

3,3 = 2

3

.
Rather than presenting the case analysis, we describe a general method for

how to exactly and mechanically compute rO
m,n and rOU

m,n and the associated
optimal mechanisms for small values of m and n. The key is to apply Yao’s
principle [141] and view the construction of a randomized mechanism as de-
vising a strategy for Player I in a two-player zero-sum game G played between
Player I, the mechanism designer, who picks a mechanism M and Player II,
the adversary, who picks an input profile u for the mechanism, i.e., an ele-
ment of (Vm)n. The payo� to Player I is the approximation ratio of M on u.
Then, the value of G is exactly the approximation ratio of the best possible
randomized mechanism. In order to apply the principle, the computation of
the value of G has to be tractable. In our case, Theorem 2.1 allows us to
reduce the strategy set of Player I to be finite while Lemma 2.5 allows us to
reduce the strategy set of Player II to be finite. This makes the game into
a matrix game, which can be solved to optimality using linear programming.
The details follow.

For fixed m, n and k > 2m, recall that the set of quasi-combinatorial
valuation functions Cm,k is the set of valuation functions u for which there is
a j so that

u(A) =
;

0,
1
k

,
2
k

, . . . ,
m ≠ j ≠ 1

k

<
fi

;
k ≠ j + 1

k
,
k ≠ j + 2

k
, . . . ,

k ≠ 1
k

, 1
<

.

Recall the definition of the type of a quasi-combinatorial valuation function
defined in Section 2.2. We see that for any fixed value of m, there is a finite set
Tm of possible types. In particular, we have |T

3

| = 12. Let ÷ : Tm ◊N æ Cm,k

be the map that maps a type and an integer k into the corresponding quasi-
combinatorial valuation function.

For fixed m, n, consider the following matrices G and H. The matrix G
has a row for each of the mechanisms U q

m,n for q = 1, . . . , m, while the matrix
H has a row for each of the mechanisms U q

m,n for q = 1, . . . , m as well as
for each of the mechanisms Dq

m,n, for q = Ân/2Ê + 1, Ân/2Ê + 2, . . . , n. Both
matrices have a column for each element of (Tm)n. The entries of the matrices
are as follows: Each entry is indexed by a mechanism M œ Mechm,n (the row
index) and by a type profile t œ (Tm)n (the column index). We let that entry
be

cM,t = lim
kæŒ

E[
qn

i=1

ui(M(uk))]
maxjœA

qn
i=1

uk
i (j)

,
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where uk
i = ÷(ti, k). Informally, we let the entry be the approximation ratio of

the mechanism on the quasi-combinatorial profile of the type profile indicated
in the column and with 1/k being “infinitisimally small”. Note that for the
mechanisms at hand, despite the fact that the entries are defined as a limit, it
is straightforward to compute the entries symbolically, and they are rational
numbers. We now have the following lemma.

Lemma 2.7. The value of G, viewed as a matrix game with the row player
being the maximizer, is equal to rOU

m,n. The value of H is equal to rO
m,n. Also,

the optimal strategies for the row players in the two matrices, viewed as con-
vex combinations of the mechanisms corresponding to the rows, achieve those
ratios.

Proof. We only show the statement for rO
m,n, the other proof being analogous.

For fixed k, consider the matrix Hk defined similarly to H, but with entries

cM,t = E[
qn

i=1

ui(M(uk))]
maxjœA

qn
i=1

uk
i (j)

,

where uk
i = ÷(ti, k). Viewing Hk as a matrix game, a mixed strategy of the

row player can be interpreted as a convex combination of the mechanisms
corresponding to the rows, and the expected payo� when the column player
responds with a particular column t is equal to the approximation ratio of J on
the valuation profile (÷(ti, k))i. Therefore, the value of the game is the worst
case approximation ratio of the best convex combination, among profiles of
the form (÷(ti, k))i for a type profile t. By Lemma 2.1, rO

m,n is determined by
the best available anonymous and neutral ordinal mechanism. By Corollary
2.1, the anonymous and neutral ordinal mechanisms are exactly the convex
combinations of the U q

m,n and the Dq
m,n mechanisms for various q. Given any

particular convex combination yielding a mechanism K, by Lemma 2.5, its
worst case approximation ratio is given by

lim inf
kæŒ

min
uœ(Cm,k)

n

E[
qn

i=1

ui(K(u))]
qn

i=1

ui(a) ,

which is equal to

lim inf
kæŒ

min
uœ(Cm,k)

n

E[
qn

i=1

ui(K(uk))]
maxjœA

qn
i=1

uk
i (j),

since K is neutral. This means that no mechanism can have an approximation
ratio better than the limit of the values of the games Hk as k approaches
infinity. By continuity of the value of a matrix game as a function of its
entries, this is equal to the value of H. Therefore, rO

m,n is at most the value
of H. Now consider the mechanism M defined by the optimal strategy for
the row player in the matrix game H. As the entries of Hk converge to the
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Table 2.3: Approximation ratios for n voters.

n/Approximation ratio rO
3,n rOU

3,n

2 2/3 2/3
3 2/3 105/171
4 2/3 5/8
5 6407/9899 34/55

Table 2.4: Mixed-unilateral ordinal mechanisms for n voters.

n/M U1

3,n U2

3,n U3

3,n

2 1/3 2/3 0
3 9/19 10/19 0
4 1/2 1/2 0
5 5/11 6/11 0

entries of H as k æ Œ, we have that for any ‘ > 0, and su�ciently large k,
the strategy is also an ‘-optimal strategy for Hk. Since ‘ is arbitrary, we have
that ratio(M) is at least the value of H, completing the proof.

When applying Lemma 2.7 for concrete values of m, n, one can take ad-
vantage of the fact that all mechanisms corresponding to rows are anonymous
and neutral. This means that two di�erent columns will have identical entries
if they correspond to two type profiles that can be obtained from one another
by permuting voters and/or candidates. This makes it possible to reduce the
number of columns drastically. After such a reduction, we have applied the
theorem to m = 3 and n = 2, 3, 4 and 5, computing the corresponding optimal
approximation ratios and optimal mechanisms. The ratios are given in Table
2.3. The mechanisms achieving the ratios are shown in Table 2.4 and Table
2.5. These mechanisms are in general not unique. Note in particular that a
di�erent approximation-optimal mechanism than random-majority was found
in MechO

3,3.

Table 2.5: Ordinal mechanisms for n voters.

n/M U1

3,n U2

3,n U3

3,n DÂn/2Ê+1

n,3 DÂn/2Ê+2

n,3 DÂn/2Ê+3

n,3

2 4/100 8/100 0 88/100 | |
3 47/100 0 0 53/100 0 |
4 0 0 0 1 0 |
5 3035/9899 0 0 3552/9899 3312/9899 0
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We now turn our attention to the case of three candidates and arbitrarily
many voters. In particular, we shall be interested in rO

3

= lim infnæŒ rO
3,n and

rOU
3

= lim infnæŒ rOU
3,n . By Lemma 2.4, we in fact have rO

3

= limnæŒ rO
3,n

and rOU
3

= limnæŒ rOU
3,n .

We present a family of ordinal and mixed-unilateral mechanisms Mn with
ratio(Mn) > 0.610. In particular, rOU

3

> 0.610. The coe�cents c
1

and c
2

were
found by trial-and-error; we present more information about how later.

Theorem 2.6. Let c
1

= 77066611

157737759

¥ 0.489 and c
2

= 80671148

157737759

¥ 0.511. Let
Mn = c

1

· U1

m,n + c
2

· U2

m,n. For all n, we have ratio(Mn) > 0.610.

Proof. By Lemma 2.5, we have that

ratio(Mn) = lim inf
kæŒ

min
uœ(C3,k)

n

E[
qn

i=1

ui(Mn(u))]
qn

i=1

ui(a) .

Recall the definition of the set of types T
3

of quasi-combinatorial valuation
functions on three candidates and the definintion of ÷ preceding the proof of
Lemma 2.7. From that discussion, we have

lim inf
kæŒ

min
uœ(Cm,k)

n

E[
qn

i=1

ui(Mn(u))]
qn

i=1

ui(a) = min
tœ(T3)

n
lim inf
kæŒ

E[
qn

i=1

ui(Mn(u))]
qn

i=1

ui(a) ,

where ui = ÷(ti, k). Also recall that |T
3

| = 12. Since Mn is anonymous,
to determine the approximation ratio of Mn on u œ (Cm,k)n, we observe
that we only need to know the value of k and the fraction of voters of each
of the possible 12 types. In particular, fixing a type profile t œ (Cm,k)n,
for each type ⁄ œ T

3

, let x⁄ be the fraction of voters in u of type ⁄. For
convenience of notation, we identify T

3

with {1, 2, . . . , 12} using the scheme
depicted in Table 2.6. Let wj = limkæŒ

qn
i=1

ui(i), where ui = ÷(ti, k), and
let pj = limkæŒ Pr[Ej ], where Ej is the event that candidate j is elected by
Mn in an election with valuation profile u where ui = ÷(ti, k). We then have

lim inf
kæŒ

E[
qn

i=1

ui(Mn(u))]
qn

i=1

ui(a) = pa · wa + pa · wb + pc · wc

wa
.

Also, from Table 2.6 and the definition of Mn, we see:

wa = n(x
1

+ x
2

+ x
3

+ x
4

+ x
5

+ x
9

)
wb = n(x

1

+ x
5

+ x
6

+ x
7

+ x
8

+ x
11

)
wc = n(x

4

+ x
7

+ x
9

+ x
10

+ x
11

+ x
12

)
pa = (c

1

+ c
2

/2)(x
1

+ x
2

+ x
3

+ x
4

) + (c
2

/2)(x
5

+ x
6

+ x
9

+ x
10

)
pb = (c

1

+ c
2

/2)(x
5

+ x
6

+ x
7

+ x
8

) + (c
2

/2)(x
1

+ x
2

+ x
11

+ x
12

)
pc = (c

1

+ c
2

/2)(x
9

+ x
10

+ x
11

+ x
12

) + (c
2

/2)(x
3

+ x
4

+ x
7

+ x
8

)
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2.4. Results for three candidates

Thus we can establish that ratio(Mn) > 0.610 for all n, by showing that the
quadratic program

minimize (pa · wa + pb · wb + pc · wc) ≠ 0.610wa

subject to x
1

+ x
2

+ · · · + x
12

= 1,

x
1

, x
2

, . . . , x
12

Ø 0
(2.10)

where wa, wb, wc, pa, pb, pc have been replaced with the above formulae using
the variables xi, has a strictly positive minimum (note that the parameter n
appears as a multiplicative constant in the objective function and can be re-
moved, so there is only one program, not one for each n). This was established
rigorously by solving the program symbolically in Maple by a facet enumer-
ation approach8 (the program being non-convex), which is easily feasible for
quadratic programs of this relatively small size.

We next present a family of ordinal mechanisms M Õ
n with ratio(M Õ

n) >
0.616. In particular, rO

3

> 0.616. The coe�cents c
1

and c
2

defining the
mechanism were again found by trial-and-error; we present more information
about how later.

Theorem 2.7. Let cÕ
1

= 0.476, cÕ
2

= 0.467 and d = 0.057 and let M Õ
n =

cÕ
1

· U1

3,n + cÕ
2

U2

3,n + d · DÂn/2Ê+1

m,n . Then ratio(M Õ
n) > 0.616 for all n.

Proof. The proof idea is the same as in the proof of Theorem 2.6. In particular,
we want to reduce proving the theorem to solving quadratic programs. The
fact that we have to deal with the DÂn/2Ê+1

m,n , i.e., random-majority, makes this
task slightly more involved. In particular, we have to solve many programs
rather than just one. We only provide a sketch, showing how to modify the
proof of Theorem 2.6.

As in the proof of Theorem 2.6, we let wj = limkæŒ
qn

i=1

ui(i), where
ui = ÷(ti, k). The expressions for wa, wb and wc as functions of the variables
xi remain the same as in that proof. Also, we let pj = limkæŒ Pr[Ej ], where
Ej is the event that candidate j is elected by M Õ

n in an election with valuation
profile u where ui = ÷(ti, k). We then have

pa = (cÕ
1 + cÕ

2/2)(x1 + x2 + x3 + x4) + (cÕ
2/2)(x5 + x6 + x9 + x10) + d · qa(t)

pb = (cÕ
1 + cÕ

2/2)(x5 + x6 + x7 + x8) + (cÕ
2/2)(x1 + x2 + x11 + x12) + d · qb(t)

pc = (cÕ
1 + cÕ

1/2)(x9 + x10 + x11 + x12) + (cÕ
2/2)(x3 + x4 + x7 + x8) + d · qc(t)

where qj(t) is the probability that random-majority elects candidate j when
the type profile is t. Unfortunately, this quantity is not a linear combination
of the xi variables, so we do not immediately arrive at a quadratic program.

However, we can observe that the values of qj(t), j = a, b, c depend only
on the outcome of the three pairwise majority votes between a, b and c, where

8The code for the quadratic solver can be found at http://pastebin.com/j9hQ8EQd.
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2. Truthful approximations to range voting

Table 2.6: Variables for types of quasi-combinatorial valuation functions with
‘ denoting 1/k.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

A 1 1 1 1 1 ≠ ‘ ‘ 0 0 1 ≠ ‘ ‘ 0 0
B 1 ≠ ‘ ‘ 0 0 1 1 1 1 0 0 1 ≠ ‘ ‘
C 0 0 ‘ 1 ≠ ‘ 0 0 1 ≠ ‘ ‘ 1 1 1 1

the majority vote between, say, a and b has three possible outcomes: a wins,
b wins, or there is a tie. In particular, there are 27 possible outcomes of the
three pairwise majority votes. To show that

min
tœ(T3)

n
lim inf
kæŒ

E[
qn

i=1

ui(M Õ
n(u))]

qn
i=1

ui(a) > 0.616,

where ui = ÷(ti, k), we partition (T
3

)n into 27 sets according to the outcomes
of the three majority votes of an election with type profile t and show that
the inequality holds on all 27 sets in the partition. We claim that on each of
the 27 sets, the inequality is equivalent to a quadratic program. Indeed, each
qj(t) is now a constant, and the constraint that the outcome is as specified
can be expressed as a linear constraint in the xi’s and added to the program.
For instance, the condition that a beats b in a majority vote can be expressed
as x

1

+ x
2

+ x
3

+ x
4

+ x
9

+ x
10

> 1/2 while a ties c can be expressed as
x

1

+ x
2

+ x
3

+ x
4

+ x
5

+ x
6

= 1/2. Except for the fact that these constraints
are added, the program is now constructed exactly as in the proof of Theorem
2.6. Solving9 the programs confirms the statement of the theorem.

We next show that rOU
3

Æ 0.611 and rO
4

Æ 0.641. By Lemma 2.4, it is enough
to show that rOU

3,nú Æ 0.611 and rO
3,nú Æ 0.641 for some fixed nú. Therefore, the

statements follow from the following theorem.

Theorem 2.8. rOU
3,23000

Æ 32093343

52579253

< 0.611 and rO
3,23000

Æ 41

64

< 0.641.

Proof. Lemma 2.7 states that the two upper bounds can be proven by show-
ing that the values of two certain matrix games G and H are smaller than
the stated figures. While the two games have a reasonable number of rows,
the number of columns is astronomical, so we cannot solve the games exactly.
However, we can prove upper bounds on the values of the games by restrict-
ing the strategy space of the column player. Note that this corresponds to
selecting a number of bad type profiles. We have constructed a catalogue of
just 5 type profiles, each with 23000 voters. Using the “fraction encoding” of
profiles suggested in the proof of Theorem 2.6, the profiles are:

9To make the program amenable to standard facet enumeration methods of quadratic
programming, we changed the sharp inequalities “>” expresssing the majority vote con-
straints into weak inequalities “Ø”. Note that this cannot decrease the cost of the optimal
solution.
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2.4. Results for three candidates

- x
2

= 14398/23000, x
5

= 2185/23000, x
11

= 6417/23000.

- x
2

= 6000/23000, x
5

= 8000/23000, x
12

= 9000/23000.

- x
1

= 11500/23000, x
11

= 11500/23000.

- x
2

= 9200/23000, x
5

= 4600/23000, x
12

= 9200/23000.

- x
2

= 13800/23000, x
12

= 9200/23000.

Solving the corresponding matrix games yields the stated upper bound.

While the catalogue of bad type profiles of the proof of Theorem 2.8 suf-
fices to prove the theorem, we should discuss how we arrived at this par-
ticular “magic” catalogue. This discussion also explains how we arrived at
the “magic” coe�cients in Theorems 2.6 and 2.7. In fact, we arrived at the
catalogue and the coe�cients iteratively in a joint local search process (or
“co-evolution” process). To get an initial catalogue, we used the fact that we
had already solved the matrix games yielding the values of rOU

3,n and rO
3,n, for

n = 2, 3, 5. By the theorem of Shapley and Snow [136], these matrix games
have optimal strategies for the column player with support size at most the
number of rows of the matrices. One can think of these supports as a small
set of bad type profiles for 2, 3 and 5 voters. Utilizing that 2, 3 and 5 all
divide 1000, we scaled all these up to 1000 voters. Also, we had solved the
quadratic programs of the proofs of Theorem 2.6 and Theorem 2.7, but with
inferior coe�cients and resulting bounds to the ones stated in this chapter.
The quadratic programs obtained their minima at certain type profiles. We
added these entries to the catalogue, and scaled all profiles to their least com-
mon multiple, i.e. 23000.

Solving the linear programs of the proof of Theorem 2.8 now gave not
only an upper bound on the approximation ratio, but the optimal strategy of
Player I in the games also suggested reasonable mixtures of the U q

3,n (in the
unilateral case) and of the U q

3,n and random-majority (all Dq
3,n mechanisms

except random-majority were assigned zero weight) to use for large n, making
us update the coe�cients and bounds of Theorem 2.6 and 2.7, with new bad
type profiles being a side product. We also added by hand some bad type
profiles along the way, and iterated the procedure until no further improvement
was found. In the end we pruned the catalogue into a set of five, giving the
same upper bound as we had already obtained.

Next, we prove that rU
3

is between 0.660 and 0.750. The upper bound
follows from the following proposition and Lemma 2.4.

Proposition 2.2. rU
3,2 Æ 0.75.

Proof. Suppose M œ MechU
3,2 has ratio(M) > 0.75. By Lemma 2.1, we can

assume M is neutral. For some ‘ > 0, consider the valuation profile with
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u
1

(a) = u
2

(a) = 1 ≠ ‘, u
1

(b) = u
2

(c) = 0, and u
1

(c) = u
2

(b) = 1. As in the
proof of Theorem 2.4, by neutrality, we must have that the probability of a
being elected is at most 1

2

. The statement follows by considering a su�ciently
small ‘.

The lower bound follows from an analysis of the quadratic-lottery [74, 84].
The main reason that we focus on this particular cardinal mechanism is given
by the following lemma. Note that this lemma is equivalent to Lemma 2.5 for
the case of three candidates but applies to some cardinal mechanisms as well,
not just ordinal ones.

Lemma 2.8. Let M œ Mech
3,n be a convex combination of Qn and any ordinal

and neutral mechanism. Then

ratio(M) = lim inf
kæŒ

min
uœ(Cm,k)

n

E[
qn

i=1

ui(M(u))]
qn

i=1

ui(a) .

Proof. The proof is a simple modification of the proof of Lemma 2.5. As in
that proof, for a valuation profile u = (ui), define g(u) = E[

qn

i=1 ui(M(u))]qn

i=1 ui(a)

.

We show the following equations:

ratio(M) = inf
uœV n

3

E[
qn

i=1

ui(M(u))]
maxjœA

qn
i=1

ui(j) (2.11)

= inf
uœV n

3
g(u) (2.12)

= lim inf
kæŒ

min
uœ(R3,k)

n
g(u) (2.13)

= lim inf
kæŒ

min
uœ(C3,k)

n
g(u) (2.14)

Equations (2.12) and (2.13) follow as in the proof of Lemma 2.5. Equation
(2.14) follows from the following argument. For a profile u = (ui) œ (R

3,k)n,
let cu denote the number of pairs (i, j) with i being a voter and j a candidate,
for which ui(j) ≠ 1/k and ui(j) + 1/k are both in [0, 1] and both not in the
image of ui. Then, C

3,k consists of exactly those u in R
3,k for which cu = 0.

To establish equation (2.14), we merely have to show that for any u œ R
3,k for

which cu > 0, there is a uÕ œ R
3,k for which g(uÕ) Æ g(u) and cuÕ < cu. We will

now construct such uÕ. Since cu > 0, there is a pair (i, j) so that ui(j) ≠ 1/k
and ui(j) + 1/k are both in [0, 1] and both not in the image of ui. Let ¸≠ be
the smallest integer value so that ui(j) ≠ ¸/k is not in the image of ui, for
any integer ¸ œ {¸≠, . . . , j ≠ 1}. Let ¸

+

be the largest integer value so that
ui(j)+¸/k is not in the image of ui, for any integer ¸ œ {j+1, . . . , ¸

+

}. We can
define a valuation function ux œ Vm for any x œ [≠¸≠/k; ¸

+

/k] as follows: ux

agrees with ui except on j, where we let ux(j) = ui(j)+x. Let ux = (ux, u≠i).
Now consider the function h : x æ g(ux). Since M is a convex combination of
quadratic-lottery and a neutral ordinal mechanism, we see by inspection of the
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2.4. Results for three candidates

definition of the function g, that h on the domain [≠¸≠/k; ¸
+

/k] is the quotient
of two quadratic polynomials where the numerator has second derivative being
a negative constant and the denominator is postive throughout the interval.
This means that h attains its minimum at either ¸≠/k or at ¸

+

/k. In the first
case, we let uÕ = u¸≠/k and in the second, we let uÕ = u¸+/k. This completes
the proof.

Theorem 2.9. The limit of the approximation ratio of Qn as n approaches
infinity, is exactly the golden ratio, i.e., (

Ô
5 ≠ 1)/2 ¥ 0.618. Also, let Mn

be the mechanism for n voters that selects random-favorite with probability
29/100 and quadratic-lottery with probability 71/100. Then, ratio(Mn) >
33

50

= 0.660.

Proof. (sketch) Lemma 2.8 allows us to proceed completely as in the proof
of Theorem 2.6, by constructing and solving appropriate quadratic programs.
As the proof is a straightforward adaptation, we leave out the details.

Mechanism Mn of Theorem 2.9 achieves an approximation ratio strictly better
than 0.641. In other words, the best truthful cardinal mechanism for three
candidates strictly outperforms all ordinal ones.

We conclude the section with an upper bound on the approximation ratio
of any truthful mechanism (under no restrictions).

Theorem 2.10. All mechanisms M œ Mechm,n for n Ø 3 have ratio(M) <
0.94.

Proof. We will prove the theorem for mechanisms in Mech
3,3. By applying

Lemma 2.4, the theorem holds for any n Ø 3.10

Assume for contradiction that there exists a mechanism M œ Mech
3,3,

with ratio(M) Ø 0.94. Consider the valuation profile u with three voters
{1, 2, 3}, three candidates {a, b, c}, and valuations u

1

(b) = u
2

(b) = u
3

(c) = 1,
u

1

(c) = u
2

(c) = u
3

(b) = 0, u
1

(a) = 0.7 and u
2

(a) = u
3

(a) = 0.8. The social
optimum on profile u is candidate a, with social welfare wa = 2.3, while wb = 2
and wc = 1. Since M ’s expected social welfare is at least a 0.94 fraction of wa,
i.e. 2.162, the probability of a being elected is at least 0.54, as otherwise the
expected social welfare would be smaller than 0.54 ·2.3+0.46 ·2 = 2.162 . The
expected utility ũ of voter 1 in that case is at most 0.54 · 0.7 + 0.46 · 1 = 0.838.

Next, consider the profile uÕ identical to u except that uÕ
1

(a) = 0.0001.
Let pa, pb and pc be the probabilities of candidates a, b and c being elected on
this profile, respectively. The social optimum is b with social welfare 2. By
truthfulness, it must be the case that 0.7pa + pb Æ ũ, otherwise on profile u,
voter 1 would have an incentive to misreport u

1

(a) as 0.0001. Also, since M

10In fact, the theorem holds for any n, m Ø 3, by simply adding alternatives for which
every voter has valuation almost 0.
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has an approximation ratio of at least 0.94, it must be the case that 1.6001 ·
pa + 2 · pb + pc Ø 1.88. By those two inequalities, we have:

0.9001pa + pb + pc Ø 1.8800 ≠ ũ ∆
0.9001(pa + pb + pc) + 0.0999pB + 0.0999pC Ø 1.8800 ≠ ũ ∆

0.0999(pb + pc) Ø 0.10419 ∆
pb + pc Ø 1.42,

which is not possible. Hence, it cannot be that ratio(M) Ø 0.94.

2.5 Ties or no ties?
Before we conclude the chaper, we will discuss the issue of whether valuation
functions have ties in their image or not and how that a�ects the results of the
chapter. We do not want to declare either the “ties" or the “no ties" model
the “right one", so ideally we would like all positive results (approximation
guarantees) to be proven for the setting with ties and all negative ones (upper
bounds on approximation ratio) to be proven for the setting without ties.

For the positive results, our results are easily adaptable to the “ties” set-
ting. The main issue here is that statements like “elect one of his k most-
preferred candidates at random” are not necessarily well-defined in the pres-
ence of ties and we need a systematic way to incorporate the fact that mech-
anisms use some tie-breaking rules to resolve such issues.11

For the negative results, with the notable exception of Theorem 2.5, all of
the constructed profiles do not exhibit ties and hence they apply to both the
“ties” and the “no ties” setting. Note that even though the presence of ties
introduces additional ordinal truthful mechanisms that are not captured by
Theorem 1.2, when only considering input profiles without ties, the truthful
mechanisms are still only convex combinations of unilaterals and duples and
the results still hold. The presence of ties is crucial for the proof of Theorem
2.5 however, since otherwise a reduction from the one-sided matching setting
to the general setting is not possible. One possible escape route would be
the following: Reconstruct the proof of Lemma 4.6 for the general setting,
by creating candidates corresponding to the di�erent matchings and following
the steps of the proof, after slightly perturbing the valuation functions to
get rid of ties. This approach seems to fall short however, since it is unclear
whether it is possible to apply such a perturbation and still maintain the
symmetry of the profile that is needed to argue using anonymity and neutrality
(which is the equivalent of anonymity used in Lemma 4.6, when applied to
the general setting). Another possible way to adapt the proof to the “no-ties”
setting could be to use the probabilistic method for constructing randomly

11In fact, Xinye Li has formalized a way of dealing with such issues; this is also planned
to be part of a journal paper associated with the results of this chapter.
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generated valuation profiles, instead of a single profile. In general, it looks like
an interesting technical problem to prove a theorem equivalent to Theorem
2.5 for the setting without ties.

In this chapter, as well as in Chapter 4, we obtain results that are inde-
pendent of the presence of ties in the sense described above. For Chapters
5 and 7 however, the presence of ties is important for some of our negative
results. While valuation profiles with ties are part of the input in the settings
studied there, extending those results to valuation profiles without ties would
be interesting, for completeness.

2.6 Conclusion and future directions
By the results presented in this chapter, we know that mixed-unilateral mech-
anisms are asymptotically no better than ordinal mechanisms. Can a cardinal
mechanism which is not mixed-unilateral beat this approximation barrier?
Getting upper bounds on the performance of general cardinal mechanisms
is impaired by the lack of a characterization of cardinal mechanisms a la
Gibbard’s. Driven by the discussion on the “ties vs no ties” topic, can we
adapt the proof of Theorem 2.5 to work in the general setting without ties?
For the case of m = 3, can we close the gaps for ordinal mechanisms and
for mixed-unilateral mechanisms? How well can cardinal mechanisms do for
m = 3? Can we find a systematic way to analyze the ratio of other cardinal
truthful mechanisms proposed in [74], where the worst-case ratio is not on
quasi-combinatorial profiles?

In a somewhat di�erent approach, perhaps future work could be directed
towards analyzing the performance of non-truthful voting mechanisms, with
respect to their price of anarchy. In fact, we adopt a similar approach for the
problem of one-sided matching in Chapter 5.12 The main di�erence is that
while in matching settings, there are examples of well-known non-truthful
randomized mechanisms, in voting settings, most popular voting rules are
deterministic and could potentially have quite ine�cient equilibria. This is
not to say that good randomized voting mechanisms could not exist, but the
candidate choices in literature seem to be more limited.
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Chapter 3

Background

In the second part of the thesis, we will consider the one-sided matching prob-
lem, also known as the assignment problem or the house allocation problem
in the economic literature [98]. Informally, a set of agents have (unrestricted
cardinal) preferences over a set of items and the goal is to output a matching,
i.e. an assignment of items to agents such that each agent receives exactly
one item. Instances of matching problems in real life are numerous; assigning
students to exams, workers to shifts or clients to time slots are just a few of
them [118]. We will start by formally defining the setting.

3.1 The setting
Let N = {1, . . . , n} be a finite set of agents and A = {1, . . . , n} be a finite
set of indivisible items. An outcome is a matching of agents to items, that is,
an assignment of items to agents where each agent gets assigned exactly one
item. We can view an outcome µ as a vector (µ

1

, µ
2

. . . , µn) where µi is the
unique item matched with agent i. Let O be the set of all outcomes. Each
agent i has a private valuation function mapping outcomes to real numbers
that can be arbitrary except for one condition; agents are indi�erent between
outcomes that match them to the same item. This condition implies that
agents only need to specify their valuations for items instead of outcomes and
hence the valuation function of an agent i can be instead defined as a map
ui : A æ R from items to real numbers. Similarly to the setting of Chapter
1, these valuation functions are von Neumann-Morgenstern utilites and are
standardly considered to be well-defined up to positive a�ne transformations,
that is, for item j : j æ –ui(j)+— is considered to be a di�erent representation
of ui.
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Note that the one-sided matching setting is a special case of the basic social
choice setting of Chapter 1, where each possible matching corresponds to a
candidate. Since agents are indi�erent between candidates that correspond
to matchings that assign them the same items, the setting of this chapter is
structured, when compared to the unrestricted preference setting of Chapter
1. On the other hand, the preferences are unrestricted with respect to the
matching setting, since valuation functions (as maps from items to real values)
are arbitrary. Since the natural interpretation of the problem is in terms of
matchings, we will use the terms “agents” and “matchings” instead of “voters”
and “candidates” for the remainder of the thesis.

Let V be the set of all canonically represented valuation functions of an
agent. Call u = (u

1

, u
2

, . . . , un) a valuation profile and let V n be the set of
all valuation profiles with n agents. A direct revelation mechanism (without
money) is a function M : V n æ O mapping reported valuation profiles to
matchings. For a randomized mechanism, we define M to be random map
M : V n æ O. For ease of notation, we will let Mi(u) denote the restriction
of the outcome of the mechanism to the i’th coordinate, which is the item
assigned to agent i by the mechanism.

The definition of a truthful mechanism is very similar to the one presented
in Chapter 1 . We state the formal definition here for completeness:

Definition 3.1 (Truthfulness). A mechanism M is truthful if for each agent
i and all u = (ui, u≠i) œ V n and ũi œ V it holds that ui(Mi(ui, u≠i)) Ø
ui(Mi(ũi, u≠i)), where u≠i denotes the valuation profile u without the i’th
coordinate.

In other words, if ui is agent i’s true valuation function, then she has no
incentive to misreport it. For randomized mechanisms, similarly to Chapter
1, we define truthfulness-in-expectation.

Definition 3.2 (Truthfulness-in-expectation). A mechanism M is truthful-
in-expectation if for each agent i and all u = (ui, u≠i) œ V n and ũi œ V it
holds that E[ui(Mi(ui, u≠i))] Ø E[ui(Mi(ũi, u≠i))].

Again, we will use the term “truthful” for both truthful and truthful-in-
expectation mechanisms and the distinction will be clear from the context
or explicitly stated.

Although we will study both truthful and non-truthful mechanisms in this
part of the thesis, we will use the real valuation functions ui as inputs to a
mechanism for Chapters 3 and 4; we will redefine the inputs to be strategies
in Chapter 5. This choice is consistent with the results that we will present
in Chapters 3 and 4 ,which will be either on truthful mechanisms or on non-
truthful mechanisms assuming truthful reports.

Similarly to Chapter 1, we will make the distinction between ordinal and
cardinal mechanisms.
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Definition 3.3 (Ordinal mechanism). A mechanism M is ordinal if for any
i, any valuation profile u = (ui, u≠i) and any valuation function uÕ

i such that
for all j, jÕ œ M , ui(j) < ui(jÕ) … uÕ

i(j) < uÕ
i(jÕ), it holds that M(ui, u≠i) =

M(uÕ
i, u≠i).

A mechanism for which the above does not necessarily hold is cardinal.

3.2 Related literature from economics

In the presence of incentives, the one-sided matching problem (often referred to
as the assignment problem or house allocation problem) was originally defined
in the seminal paper of Hylland and Zeckhauser [98] and has been studied ex-
tensively ever since. There are several surveys discussing the problem (as well
as more general matching problems) [3, 137] and we refer the interested reader
to those for a in depth exposition of related results that are not necessarily
particularly relevant to the results of this thesis.

It is worth noting that while throughout the years research in economics
has sometimes considered the variant of the problem where agents’ preferences
are captured by only ordinal rankings of items, the setting presented in [98]
is exactly the same one studied here, where agents have unrestricted cardinal
valuations over a set of items. Perhaps even more strikingly, although the
matching literature in economics has been dominated by ordinal mechanisms,
Hylland and Zeckhauser propose a cardinal mechanism, the pseudo-market
mechanism. The mechanism first endows agents with artificial budgets of unit
capacity and then produces a randomized matching in a market-like fashion:
items are treated as divisible commodities, prices are announced and agents
purchase their most preferred shares at those prices. The process is repeated
until supply meets demand, i.e. all items are entirely allocated and all artifi-
cial budgets are exhausted.1 The pseudo-market mechanism is also sometimes
referred to as the CEEI mechanism [35], where CEEI stands for “competitive
equilibrium from equal incomes”, the supply-meets-demand outcome of a mar-
ket where buyers have equal budgets. The pseudo-market mechanism satisfies
the strongest notion of Pareto e�ciency for randomized mechanisms, ex-ante
Pareto e�ciency, as well as (ex-ante) envy-freeness, a guarantee that no agent
would prefer to exchange any other agent’s expected allocation with her own.
On the other hand, the mechanism is not truthful; truthfulness as a desirable
property had already been discussed in [98].

1Note that this mechanism is quite similar to the mechanism studied in Chapter 7, but
yet also quite di�erent. The main di�erence comes from the fact that in the pseudo-market
mechanism, agents purchase their favorite shares under the additional constraint that ensures
that their shares can then be interpreted as probabilities.
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3. Background

Random Priority
While Hylland and Zeckhauser’s mechanism seems like a quite complicated
solution, a folklore mechanism that pre-existed their 1979 paper and pressum-
ably dates back to ancient times, is the following simple one, called random
priority:
Mechanism (Random priority). On valuation profile u = (u

1

, u
2

, . . . , un), pick
an ordering of agents fi œ Sn uniformly at random. For i = 1 to n let agent
fii pick her favorite item (or one of her favorite items in case of ties) from the
set of available items (not already picked by some agent j with fij < fii).

The deterministic mechanism that selects some fixed ordering instead of an
ordering uniformly at random and then lets agents pick their most preferred
available items sequentially is called a serial dictatorship. For that reason,
and since random priority essentially selects a serial dictatorship uniformly
at random, the mechanism is also very often referred to as random serial
dictatorship.

In terms of desired properties, random priority is very simple to implement
and truthful. It also satisfies anonymity which implies symmetry,2 a guarantee
that agents with the same preferences will be treated equally. On the other
hand, it fails to satisfy stronger fairness notions, such as envy-freeness and
it is also on the low-end of the economic e�ciency spectrum, satisfying only
ex-post Pareto e�ciency (a property that ensures that every realized outcome
will be Pareto e�cient).

A large body of literature in economics is centered around the study of
random priority. A very interesting result is due to Abdulkadiro�lu and Sön-
mez [1], who showed that random priority is equivalent to another well-known
mechanism; the core for random endowments [135]. Bade [23] further showed
that taking any Pareto-optimal, truthful and non-bossy deterministic mech-
anism and uniformly at random assigning agents to roles, results in random
priority. Non-bossiness informally means that if an agent does not change
her allocation by reporting some di�erent ranking, she does not change any
other agent’s allocation either.3 Whether random priority is the only ex-post
e�cient, truthful and symmetric mechanism is still unknown.

Probabilistic Serial
Another very imporant mechanism, which was proposed as “a new solution
to the random assignment problem” is probabilistic serial, introduced by Crès
and Moulin [61] and popularized by Bogomolnaia and Moulin [35]:

2Recall that the notion of symmetry here is di�erent from the definition in previous
chapters. This property is also encountered in literature as equal treatment of equals.

3An example of a truthful, bossy mechanism is the mechanism that selects an agent,
matches her with her most preferred item and then allocates items to agents based only on
her ranking [138]. We will revisit this mechanism briefly in Chapter 5.
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Mechanism (Probabilistic Serial). Each item is interpreted as an infinitely di-
visible good that all agents can consume at unit speed during the unit time
interval [0, 1]. Initially each agent consumes her most preferred item (or one
of her most preferred items in case of ties) until the item is entirely consumed.
Then, the agent moves on to consume the item on top of her preference list,
among items that have not yet been entirely consumed. The mechanism ter-
minates when all items have been entirely consumed. The fraction pij of item
j consumed by agent i is then interpreted as the probability that agent i will
be matched with item j under the mechanism.

Probabilistic serial is actually one of the mechanisms in the class of si-
multaneous eating mechanisms [35]; these mechanisms are defined similarly
to probabilistic serial, for eating speeds that vary with time. This class is
actually characterized by ordinal e�ciency, an e�ciency concept that is “be-
tween” ex-post and ex-ante Pareto e�ciency. Informally, given any set of
ordinal preferences, a random assignment is ordinally e�cient if there is no
other assignment that is better (in the Pareto sense), for all von Neumann-
Morgenstern utility functions consistent with those orderings.

The mechanism also satisfies strong fairness properties, such as anonymity
and envy-freeness. On the other hand, probabilistic serial is not truthful.
In [35], it is proven that the mechanism is weakly truthful, which informally
means that given any agent and any true ranking of the items, there is no mis-
report (no other ranking) that gives the agent a higher utility for all valuation
functions consistent with the true ranking.

The superior fairness and (economic) e�ciency properties of probabilis-
tic serial to random priority has gained the mechanism a lot of popularity
throughout the years; one could make the claim that next to random priority,
it is the best-studied mechanism in matching literature. Hashimoto et al. [93]
give two axiomatic characterizations of probabilistic serial and prove that in
the setting where items are not allowed to remain unallocated, the mecha-
nism is characterized by a single property, ordinal fairness. Abdulkadiro�lu
and Sönmez [2] o�er a di�erent characterization of ordinal e�ciency, based on
the concept of dominated sets of assignments. Kesten [102] prove the equiv-
alence of probabilistic serial to two other mechanisms, a variation of the top
trading cycles algorithm where agents have equal fractional endowments of all
items and the limit version of a repeated application of random priority. Katta
and Sethuraman [101] extend the results in [35] to allow for indi�erences in
the preference rankings of the agents.

The incentive properties and the computational aspects of manipulation
of probabilistic serial have only been recently studied, with contribution com-
ing mainly from the field of computer science. We will overview the related
literature on those topics in Chapter 5.
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3.3 Truthful mechanisms
In Chapter 1, we talked about the importance of truthful mechanisms and
stated the main results characterizing truthful mechanisms in the general do-
main. Since the one-sided matching setting is restricted, the characterizations
of Theorems 1.1 and 1.2 do not necessarily hold. Do we have equivalent results
for this setting as well?

Regarding deterministic mechanisms, the most general result that we know
of is due to Svensson [138]:

Theorem 3.1 (Svensson). [138] Let M be a truthful, neutral and non-bossy
mechanism. Then M is a serial dictatorship.

Here, neutrality means independence on the names of the items, as usual,
and non-bossiness was defined earlier. Theorem 3.1 is in a sense analogous to
Theorem 1.1. A full characterization of truthful deterministic mechanisms is
yet not known.

For randomized truthful mechanisms, recently Mennle and Seuken [113]
proved a theorem analogous to Theorem 1.2.

Theorem 3.2 (Mennle and Seuken [113]). A mechanism M is ordinal and
truthful if and only if it satisfies the following three properties: upper invari-
ance, lower invariance and swap monotonicity.

Informally, upper invariance means that a swap in an agent’s ranking be-
tween two lower-ranked items does not a�ect the assignment probability of any
higher-ranked item; lower invariance is the complementary property. Swap
monotonicity requires that when the relative ranking of two items i, j (ad-
jacent in the preference ordering), with i º j is swapped, the assignment
probabilities are either una�ected, or the probability for j strictly increases
and the probability for i strictly decreases.

We remark here that unlike Chapter 2, for the results in Chapter 4, we will
not make use of any structural properties of truthful mechanisms, other than
truthfulness itself. In that sense, the characterization results are not needed
for our proofs. That being said, characterizing general truthful mechanisms for
one-sided matching problems is a very interesting open question and perhaps
surprisingly, we are not aware of any research done in that direction.

3.4 Which mechanism to choose?
Throughout the years and all over the extended literature on one sided-
matching problems, comparisons between di�erent mechanisms, mainly ran-
dom priority and probabilistic serial, were in place and the following ques-
tion was stated either implicitly or explicitly: “Which mechanism should we
choose?”.
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As we mentioned earlier, comparisons in economics are usually performed
through a set of properties satisfied by each mechanism. Random priority is
simple and very strong in terms of truthfulness,4 but lacks in terms of fairness
and economic e�ciency. Probabilistic serial is weaker in terms of incentive
properties, but satisfies better fairness and e�ciency criteria. The pseudo-
market mechanism is even stronger in terms of e�ciency, but it is not truthful
and it is not ordinal; eliticing numerical valuations from agents can sometimes
be a hard task, not to mention that the mechanism is quite complicated.

What is the best set of properties that we can hope for? A partial answer to
this question was provided by Zhou [144], who gave the following impossibility
result:

Theorem 3.3 (Zhou [144]). There is no mechanism M that is ex-ante Pareto
e�cient, truthful and symmetric.

Later on, Bogomolnaia and Moulin [35] strengthened the theorem by replacing
ex-ante Pareto e�ciency with ordinal e�ciency:

Theorem 3.4 (Bogomolnaia and Moulin [35]). There is no mechanism M
that is ordinally e�cient, truthful and symmetric.

Featherstone [73] proposed a class of mechanisms that satisfy rank e�ciency,
a concept stronger than ordinal e�ciency. However, rank e�ciency is incom-
patible with even weak strategyproofness.

Given the discussion above, qualitative comparisons of di�erent mecha-
nisms do not seem to provide definite answers and the choices are always sub-
ject to the very specific goals of the designer. For that reason, a large body of
recent literature has quantified and studied tradeo�s between e�ciency and
truthfulness properties in matching settings but also more general settings
[18, 45, 114]. Most related to the discussion here is the work by Mennle and
Seuken [114] who quantify truthfulness and propose the use of hybrid mecha-
nisms, i.e. convex combinations of di�erent mechanisms to achieve tradeo�s
between incentive and e�ciency properties.

Social welfare maximization and overview of results
The second part of this thesis o�ers an alternative viewpoint to the question
phrased earlier. Since agents are endowed with cardinal utilities, the socially
optimal solution could be the one that maximizes the social weflare. Note that
while the bulk of literature in economics is concerned with ordinal mechanisms,
discussions about ex-ante Pareto e�ciency indicate that the existence of an
underlying cardinal structure is not often in question; the argument is usually

4Random priority is actually universally truthful, which is a notion stronger than
truthfulness-in-expectation. A universally truthful mechanism is a convex combination of
deterministic truthful mechanisms.
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that it is very hard to ask agents to actually report those numerical values. As
we will see in the following chapters, our results imply that with respect to the
social welfare objective (and for the case of many items), the best mechanisms
are ordinal and hence reporting preference rankings is su�cient.

In Chapter 4, we will study the approximation ratio of mechanisms that
are truthful or ordinal (assuming truthful reports). The main result of the
chapter is that random priority is asymptotically the best truthful and the
best ordinal mechanism for the problem, for the social welfare objective.

In Chapter 5, we will consider all mechanisms, even non-truthful ones
and we will calculate their ine�ciency in the worst Nash equilibrium, using
the established notion of the Price of Anarchy. Our main result is that both
probabilistic serial and random priority are optimal among all mechanisms,
even those that are allowed to use the cardinal information of the reports.

Our results indicate that for many items and if social welfare maximization
is the goal at hand, both random priority and probabilistic serial are excellent
choices.
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Chapter 4

The approximation ratio of
truthful mechanisms

In this chapter, we will (mainly) consider (randomized) truthful mechanisms
for the objective of social welfare maximization. The setting that we study
is the basic one-sided matching setting introduced in Chapter 3. Similarly
to Chapter 2, our measure of e�ciency will be the approximation ratio. Our
main result is the following:

Theorem 4.1. The approximation ratio of random priority is �(1/
Ô

n). Fur-
thermore, random priority is asymptotically the best truthful mechanism and
the best ordinal (not necessarily truthful) mechanism for one-sided matching.

Recall our discussion in Chapter 1 about canonical representations; in this
chapter, we will assume both normalizations, unit-range and unit-sum; Theo-
rem 4.1 holds for both representations.1

4.1 Related literature
In Chapter 3, we defined random priority and discussed some of the major
work in economics on one-sided matchings. Here we will discuss the results
that are more relevant to our contributions.

As we mentioned in Chapter 3, a large amount of work in economics has
been built around ordinal mechanisms and ordinal measures of e�ciency, such

1The theorem also holds for an extension to the unit-range representation, when 0 is not
required to be in the image of the function; we discuss how in Section 4.5.
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as ordinal e�ciency. In computer science, a similar line of thought has con-
sidered ordinal measures of aggregate e�ciency. Bhalgat et al. [31] calculate
the approximation ratio of random priority and probabilistic serial, when the
objective is maximization of ordinal social welfare, a notion of e�ciency that
they define based solely on ordinal information. Other measures of e�ciency
for one-sided matchings were also studied in Krysta et al. [104], where the
authors design truthful mechanisms to approximate the size of a maximum
cardinality (or maximal agent weight) Pareto-optimal matching. Chakrabarty
and Swamy [50] also consider a purely ordinal setting and proporse rank ap-
proximation as the measure of e�ciency and lex-truthfulness as the notion of
truthfulness, in the absence of utility functions. However, these measures do
not encapsulate the “socially desired” outcome in the way that social welfare
does, i.e., they do not necessarily maximize the aggregate happiness of indi-
viduals [9], especially since an underlying cardinal valuation structure is, in
general, assumed to exist [35, 98, 144].

Social welfare maximization has been studied before in the assignment lit-
erature. Anshelevich and Das [9] consider the social welfare objective under
unrestricted, unnormalized valuations and restrict the space of allowed misre-
ports to obtain reasonable bounds. Guo and Conitzer [89] study assignment
problems where there are two agents and multiple items and agents have un-
restricted cardinal valuations under the unit-sum normalization. The authors
provide approximation guarantees and impossibility results for truthful mech-
anisms in this setting. Independently and at the same time as the results
of this chapter were published, Adamzyck et al. [5] studied a setting very
similar to the one studied here. In their setting, agents have unrestricted von
Neumann-Morgenstern valuations, restricted in the unit interval [0, 1] but not
necessarily with 0 and 1 being in the image of the functions. Our lower bound
for the unit-range representation can be obtained from their main lemma with
some additional arguments, but since the setting that they study is more gen-
eral, our upper bounds are stronger. In [5], the authors also study the problem
under dichotomous preferences [36]; in that setting truthful mechanisms that
achieve the maximum social welfare exist [67].

4.2 Preliminaries
The setting studied in this chapter is the one-sided matching setting presented
in Chapter 3. As mentioned earlier, valuation functions will be canonically
represented as unit-range, i.e., maxj ui(j) = 1 and minj ui(j) = 0 or unit-sum,
that is

q
j ui(j) = 1. We will further assume that valuation functions are

injective, i.e. agents could assign the same numerical values to di�erent items.
This assumption is not crucial for our results and is mainly for convenience, to
avoid having to resolve statements such as “the agent’s most preferred item”.
We discuss how our results extend to the “ties” setting in Section 4.5.
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A class of mechanisms that turns out to be important for our purposes
is that of neutral and anonymous mechanisms. The definitions of anonymity
and neutrality are very similar to the ones in Chapter 2, but we will state the
formal definitions here as well.

Definition 4.1 (Anonymity). A mechanism M is anonymous if for any val-
uation profile (u

1

, u
2

, . . . , un), every agent i and any permutation fi : N æ N
it holds that Mi(u1

, u
2

, . . . , un) = Mfi(i)(ufi(1)

, ufi(2)

, . . . , ufi(n)

).

In simple words, an anonymous mechanism is invariant to the names of the
agents. Note that in an anonymous mechanism, agents with exactly the same
valuation functions must have the same probabilities of receiving each item.
This property is called symmetry. A neutral mechanism is invariant to the
indices of the items, formally:

Definition 4.2 (Neutrality). A mechanism M is neutral if for any valuation
profile (u

1

, u
2

, . . . , un), every item j and any permutation ‡ : A æ A it holds
that Mi(u1

, u
2

, . . . , un) = ‡≠1(Mi(u1

¶ ‡, u
2

¶ ‡, . . . , un ¶ ‡)),

Exactly as we did in Chapter 2, we will measure the performance of a mech-
anism by its approximation ratio,

ratio(M) = inf
uœV n

qn
i=1

ui(Mi(u))
maxµœO

qn
i=1

ui(µi)

where the quantity
qn

i=1

ui(Mi(u)) is the social welfare of mechanism M on
the valuation profile u and maxµœO

qn
i=1

ui(µi) is the social welfare of the
optimal matching. For ease of notation, let wú(u) = maxµœO

qn
i=1

ui(µi). For
the case of randomized mechanisms, we will be interested in the expected social
welfare E [

qn
i=1

ui(Mi(u))] of mechanism M and the approximation ratio is
defined accordingly.

Next we will state a lemma that will be useful for our proofs. Note that
this lemma is very similar to Lemma 2.1 from Chapter 2.

Lemma 4.1. For any mechanism M , there exists an anonymous mechanism
M Õ such that ratio(M Õ) Ø ratio(M). Furthermore, if M is truthful then it
holds that M Õ is truthful.

Proof. Let M Õ be the mechanism that given any valuation profile u applies a
uniformly random permutation to the set of agents and then applies M on u.
The mechanism is clearly anonymous. Furthermore, since u is a valid input
to M , the approximation ratio of M Õ can not be worse than that of M , since
the approximation ratio is calculated over all possible valuation profiles. For
the same reason, if M is truthful and since the permutation is independent of
the reports, M Õ is truthful-in-expectation.
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We conclude the section with the following lemma about random priority.
Similar lemmas have been proved in literature (e.g. see Lemma 1 in [35], for
a slightly more general statement).

Lemma 4.2. For any valuation profile u, the optimal allocation on u is a
possible outcome of random priority.

Proof. First, suppose that no agent is matched with her most preferred item
in the optimal allocation. Then there must exist agents i

1

, ..., ik such that for
each l, agent il+1

is matched with agent il’s most preferred item and agent i
1

is matched with agent ik’s most preferred item. By swapping items along this
cycle, all agents are better o� and the allocation is not optimal.

Now consider any valuation profile u. Since there exists an agent j that
is matched with her most preferred item j in the optimal allocation for u,
random priority could pick this agent first. If we reduce u by removing the
agent i and item j, we obtain a smaller valuation profile uÕ where the optimal
allocation is the same as in u but without agent i and item j. Then, by
inductively applying the same argument, the lemma follows.

4.3 Unit-range valuation functions
In this section, we assume that the representation of the valuation functions is
unit-range. It will be useful to consider a special class of valuation functions
C‘ that we will refer to as quasi-combinatorial valuation functions, a straight-
forward adaptation of the similar notion in Chapter 2. Recall that informally,
a valuation function is quasi-combinatorial if the valuations of each agent for
every item are close to 1 or close to 0 (the proximity depends on ‘). Formally,

C‘ = {u œ V |u(A) µ [0, ‘) fi (1 ≠ ‘, 1]} ,

where u(A) is the image of the valuation function u. Let Cn
‘ ™ V n be the

set of all valuation profiles with n agents whose valuation functions are in
C‘. The following lemma implies that when we are trying to prove a lower
bound on the approximation ratio of random priority, it su�ces to restrict our
attention to quasi-combinatorial valuation profiles Cn

‘ ™ V n for any value of
‘. The proof is similar to the proof of Lemma 2.5, but applied to the one-sided
matching setting.

Lemma 4.3. Let M be an ordinal, anonymous and neutral randomized mech-
anism for the unit-range representation, and let ‘ > 0. Then

ratio(M) = inf
uœCn

‘

E[
qn

i=1

ui(Mi(u))]
wú(u) .
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Proof. Since M is anonymous and neutral, we can assume that the optimal
matching is µú where µú is the matching with µú

i = i for every agent i œ N .
Given this, then for any valuation profile u, define

g(u) = E[
qn

i=1

ui(Mi(u))]
qn

i=1

ui(µú
i ) .

Because of this, the approximation ratio can be written as ratio(M) = infuœV n g(u).
Now since Cn

‘ ™ V n, the lemma follows from the following claim:

For all u œ V n there exists uÕ œ Cn
‘ such that g(uÕ) Æ g(u)

We will prove the claim by induction on
qn

i=1

#{ui(A) fl [‘, 1 ≠ ‘]}.

Induction basis: Since
qn

i=1

#{ui(A) fl [‘, 1 ≠ ‘]} = 0, one can clearly see that
ui œ C‘ for all i œ N . So, for this case, let uÕ = u.

Induction step: Consider a profile u œ V n with
qn

i=1

#{ui(A)fl [‘, 1≠ ‘]} > 0.
Clearly, there exists an i such that #{ui(A) fl [‘, 1 ≠ ‘]} > 0. By this fact,
there exist l, r œ [‘, 1 ≠ ‘], such that l Æ r, ui(A) µ [0, ‘) fi [l, r] fi (1 ≠ ‘, 1] and
{l, r} ™ ui(A).

Let l̄ be the largest number such that l̄ œ [0, ‘) and l̄ œ ui(A). Similarly,
let r̄ be the smallest number such that r̄ œ (1 ≠ ‘, 1] and r̄ œ ui(A). Note
that both those numbers exist, since {0, 1} ™ ui(A). Now let l̃ = ¯l+‘

2

, and
r̃ = r̄+1≠‘

2

For any x œ [l̃ ≠ l, r̃ ≠ r], define a valuation function ux
i œ V as follows:

ux
i (j) =

I
ui(j), for j /œ u≠1

i ([‘, 1 ≠ ‘]})
ui(j) + x, for j œ u≠1

i ([‘, 1 ≠ ‘]}) .

This is still a valid valuation function, since by the choice of the interval
[l̃ ≠ l, r̃ ≠ r], there are no ties in the image of the function. Let (ux

i , u≠i) be
the valuation profile where all agents have the same valuation functions as
in u except for agent i, who has valuation function ux

i . Define the following
function f : x æ g ((ux

i , u≠i)). Since M is ordinal, by the definition of function
g, we can see that f on the domain [l̃ ≠ l, r̃ ≠ r] is a fractional linear function
x æ (ax + b)/(cx + d) for some a, b, c, d, œ R. Since f is defined on the
whole interval [l̃≠ l, r̃ ≠r], it is either monotonically increasing, monotonically
decreasing or constant in the interval. If f is monotonically increasing, let
ũ = (u˜l≠l, u≠i), otherwise let ũ = (ur̃≠r, u≠i). Clearly, g(ũ) Æ g(u) and

nÿ

i=1

#{ũi(A) fl [‘, 1 ≠ ‘]} <
nÿ

i=1

#{ui(A) fl [‘, 1 ≠ ‘]}.

Then, apply the induction hypothesis on ũ. This completes the proof.

65



4. The approximation ratio of truthful mechanisms

The lemma formalizes the intuition that because the mechanism is ordinal, the
worst-case approximation ratio is encountered on extreme valuation profiles.

For the unit-range representation, Theorem 4.1 is given by the following
lemmas.

Lemma 4.4. For the unit-range representation, ratio(RP ) = �
1
n≠1/2

2
.

Proof. Because of Lemma 4.3, for the purpose of computing a lower bound
on the approximation ratio of random priority, it is su�cient to only consider
quasi-combinatorial valuation profiles. Let ‘ Æ 1/n3. Then, there exists k œ N
such that

|k ≠ wú(u)| Æ 1
n2

,

where wú(u) is the social welfare of the maximum weight matching on valua-
tion profile u. Since random priority can trivially achieve an expected welfare
of 1 (for any permutation the first agent will be matched to her most pre-
ferred item), we can assume that k Ø

Ô
n, otherwise we are done. Note

that the maximum weight matching µú œ O assigns k items to agents with
ui(µi) œ (1 ≠ ‘, 1]. Since random priority is anonymous and neutral, without
loss of generality we can assume that these agents are {1, . . . , k} and for every
agent j œ N , it holds that µú

j = j. Thus uj(j) œ (1 ≠ ‘, 1] for j = 1, . . . , k and
uj(j) œ [0, ‘) for j = k + 1, . . . , n.

Consider any run of random priority; one agent is selected in each round.
Let l œ {0, . . . , n≠1} be any of the n rounds. We will now define the following
sets:

Ul = {j œ {1, . . . , n}| agent j has not been selected prior to round l}
Gl = {j œ Ul|uj(j) œ (1 ≠ ‘, 1] and item j is still unmatched}
Bl = {j œ Ul|uj(j) œ [0, ‘) or item j has already been matched to some agent}

These three families of sets should be interpreted as three sets that change
over the course of the execution of random priority. Ul is the set of agents yet
to be matched, which is partitioned into Gl, the set of “good” agents, that
guarantee a welfare of almost 1 when picked, and Bl, the set of “bad” agents,
that do not guarantee any contribution to the social welfare. For the purpose
of calculating a lower bound, we will simply bound the sizes of the sets in
these families. Obviously, G

0

= {1, . . . , k} and B
0

= {k + 1, . . . , n}.
The probability that an agent i œ Gl is picked in round l of random priority

is |Gl|/(|Gl| + |Bl|), whereas the probability that an agent i œ Bl is picked is
|Bl|/(|Gl| + |Bl|). By the discussion above, we can assume that whenever an
agent from Gl is picked her contribution to the social welfare is at least 1 ≠ ‘
whereas the contribution from an agent picked from Bl is less than ‘. In other
words, the expected contribution to the social welfare from round l is at least
|Gl|/(|Gl| + |Bl|) ≠ ‘.
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4.3. Unit-range valuation functions

We will now upper bound |Gl| and lower bound |Bl| for each l. Consider
round l and sizes |Gl| and |Bl|. First suppose that some agent i from Gl is
picked and the agent is matched with item j. If j ”= i and agent j is in Gl,
then |Gl+1

| = |Gl| ≠ 2 and |Bl+1

| = |Bl| + 1, since agent j no longer has her
item from the optimal allocation available and so agent j is in Bl+1

. On the
other hand, if j = i or agent j is in Bl then |Gl+1

| = |Gl|≠1 and |Bl+1

| = |Bl|.
In either case, |Gl+1

| Ø |Gl| ≠ 2 and |Bl+1

| Æ |Bl| + 1. Intuitively, the picked
agent might take away some item from a good agent and turn her into a bad
agent.

Now suppose that agent i from Bl is picked and the agent is matched with
item j. If agent j is in Gl then |Gl+1

| = |Gl| ≠ 1 and |Bl+1

| = |Bl|, since agent
j no longer has her item from the optimal allocation available and so agent
j is in Bl+1

. On the other hand, if agent j is in Bl then |Gl+1

| = |Gl| and
|Bl+1

| = |Bl| ≠ 1. In either case, |Gl+1

| Ø |Gl| ≠ 2 and |Bl+1

| Æ |Bl| + 1.
To sum up, in each round l of random priority, we can assume the size of

Bl increases by at most 1 and the size of Gl decreases by at most 2. Given
this and that |G

0

| = k and |B
0

| = n ≠ k and that |Gl| > 0 for l Æ Âk/2Ê, we
get

E
C

nÿ

i=1

ui(RPi(u))
D

Ø
nÿ

l=0

3 |Gl|
|Gl| + |Bl|

≠ ‘
4

Ø
Â k

2 Êÿ

l=0

k ≠ 2l

n ≠ l
≠ n‘

and the ratio is

E [
qn

i=1

ui(RPi(u))]
wú(u) Ø

qÂ k
2 Ê

l=0

k≠2l
n≠l ≠ n‘

k + 1

n2
Ø

qÂ k
2 Ê

l=0

k≠2l
n≠l ≠ n‘

2k

=
Â k

2 Êÿ

l=0

1 ≠ 2l
k

2(n ≠ l) ≠ n‘

2k
>

Â k
2 Êÿ

l=0

1 ≠ 2l
k

2n
≠ n‘

2k
Ø k ≠ 11

8n
≠ n‘

2k
.

The bound is clearly minimum when k is minimum, that is, k =
Ô

n. Since
this bound holds for any u œ Cn

‘ , we get

ratio(RP ) = inf
uœCn

‘

E[
qn

i=1

ui(Mi(u))]
wú(u) Ø

Ô
n ≠ 11
8n

≠ n‘

2
Ô

n
.

We can choose ‘ so that the approximation ratio is at least 1

20

Ô
n

for n Ø 400
and for n Æ 400, the bound holds trivially since random priority matches at
least one agent with her most preferred item.

Next, we state the following lemma about ordinal mechanisms.

Lemma 4.5. Let M be any ordinal mechanism for one-sided matching for
the unit-range representation. Then ratio(M) = O

1
n≠1/2

2
.
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4. The approximation ratio of truthful mechanisms

Proof. Let u = (u
1

, u
2

, . . . , un) be the valuation profile where:

ui(j) =
I

1 ≠ j≠1

n for 1 Æ j Æ i
n≠j
n2 otherwise

’i œ {1, . . . , Â
Ô

nÊ}

ui(j) =
I

1 for j = 1
n≠j
n2 otherwise

’i œ {Â
Ô

nÊ + 1, . . . , n}

By Lemma 4.1, we can assume that M is anonymous. Notice that the
valuation profile is ordered, i.e., ui(j) > ui(jÕ) whenever j < jÕ for all j, jÕ œ M
and all i œ N . Thus, any anonymous and ordinal mechanism on input u must
output a uniformly random matching, that is, the probability that agent i
is matched with item j is the same for all agents i, for every j œ M . The
expected welfare of the mechanism on valuation profile u will be

1
n

nÿ

i=1

nÿ

j=1

ui(j) Æ 1
n

S

U
Â
Ô

nÊÿ

i=1

3
i + n ≠ i

n

4
+

nÿ

i=Â
Ô

nÊ+1

3
1 + n ≠ 1

n

4T

V

Æ 4 + 1
2
Ô

n
Æ 5,

where in the above expression, we upper bound each term n≠j
n2 by 1

n and each
term 1 ≠ j

n by 1.
On the other hand, the social welfare of the maximum weight matching is

Â
Ô

nÊÿ

i=1

3
1 ≠ i ≠ 1

n

4
+

nÿ

i=Â
Ô

nÊ+1

n ≠ i

n2

Ø
Â
Ô

nÊÿ

i=1

3
1 ≠ i ≠ 1

n

4
Ø Â

Ô
nÊ ≠ 1 Ø

Ô
n

4 ,

where the final inequality holds for n Ø 4, the approximation ratio is at most
20Ô

n
for n Ø 4, and the bound holds trivially for n < 4.

Note that Lemma 4.5 bounds the performance of all ordinal mechanisms as-
suming truthful reporting. The right way to interpret the result is that even
if we assume that agents are honest in their interaction with the mechanism,
better social welfare guarantees are not achievable, due to informational lim-
itations. The performance of non-truthful mechanisms in the presence of
strategic play will be studied in Chapter 5.

Our final lemma provides a matching upper bound on the approximation
ratio of any truthful mechanism.

Lemma 4.6. Let M be a truthful mechanism for one-sided matching for the
unit-range representation. Then ratio(M) = O

1
n≠1/2

2
.
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4.3. Unit-range valuation functions

Proof. By Lemma 4.1, we can assume that Mechanism M is anonymous. Let
k Ø 2 be a parameter to be chosen later and let u = (u

1

, u
2

, . . . , un) be the
valuation profile where

ui(j) =

Y
__]

__[

1, for j = i
2

k ≠ j
n , for 1 Æ j Æ k + 1, j ”= i

n≠j
n2 , otherwise

’i œ {1, . . . , k + 1}

ui(j) =

Y
__]

__[

1, for j = 1
2

k ≠ j
n , for 2 Æ j Æ k + 1

n≠j
n2 , otherwise

’i œ {k + 2, . . . , n}

For i = 2, . . . , k + 1, let ui = (uÕ
i, u≠i) be the valuation profile where all

agents besides agent i have the same valuations as in u and uÕ
i = uk+2

. Note
that when agent i on valuation profile ui, reports ui instead of uÕ

i, the resulting
valuation profile is u. Since M is anonymous and uÕ

i = u
1

= uk+2

= . . . = un,
agent i receives at most a uniform lottery among these agents on valuation
profile ui and so it holds that

E[uÕ
i(Mi(ui))] Æ 1

n ≠ k + 1 +
k+1ÿ

j=2

1
n ≠ k + 1

3 2
k

≠ j

n

4

+
nÿ

j=k+2

1
n ≠ k + 1 · n ≠ j

n2

Æ 4
n ≠ k + 1

Next observe that since M is truthful, agent i should not increase her
expected utility by misreporting ui instead of uÕ

i on valuation profile ui, that
is,

E[uÕ
i(Mi(ui))] Ø E[uÕ

i(Mi(u))] (4.1)

For all i = 2, . . . , k + 1, let pi be the probability that Mi(u) = i. Then, it
holds that

E[uÕ
i(Mi(u))] Ø pi

3 2
k

≠ i

n

4
Ø pi

3 2
k

≠ k + 1
n

4

and by Inequality (4.1) we get

pi

3 2
k

≠ k + 1
n

4
Æ 4

n ≠ k + 1

=> pi Æ 4
n ≠ k + 1 · kn

2n ≠ k(k + 1) Æ 4
n ≠ k

· kn

2n ≠ (k + 1)2

Let
p = 4

n ≠ k
· kn

2n ≠ (k + 1)2

,
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4. The approximation ratio of truthful mechanisms

i.e. for all i, pi Æ p. We will next calculate an upper bound on the expected
social welfare achieved by M on valuation profile u.

For item j = 1, the contribution to the social welfare is upper bounded
by 1. Similarly, for each item j = k + 2, . . . , n, her contribution to the social
welfare is upper bounded by 1/n. Overall, the total contribution by item 1
and items k + 2, . . . , n will be upper bounded by 2.

We next consider the contribution to the social welfare from items j =
2, . . . , k + 1. Define the random variables

Xj =
I

1, if Mj(u) = j
2

k ≠ j
n , otherwise

The contribution from items j = 2, . . . , k + 1 is then
qk+1

j=2

Xj and so we
get

E

S

U
k+1ÿ

j=2

Xj

T

V =
k+1ÿ

j=2

E [Xj ] Æ
k+1ÿ

j=2

3
p + 2

k
≠ j

n

4
Æ kp + 2

Overall, the expected social welfare of mechanism M is at most 4 + pk
while the social welfare of the optimal matching is

k + 1 +
nÿ

i=k+2

n ≠ i

n2

,

which is at least k. Since

p = 4
n ≠ k

· kn

2n ≠ (k + 1)2

,

the approximation ratio of M then is

ratio(M) Æ 4 + pk

k
= 4

k
+ 4

n ≠ k
· kn

2n ≠ (k + 1)2

Let k = Â
Ô

nÊ ≠ 1 and note that
Ô

n ≠ 2 Æ k Æ
Ô

n ≠ 1. Then,

ratio(M) Æ 4
k

+ 4
n ≠ k

· kn

2n ≠ (k + 1)2

Æ 4Ô
n ≠ 2 + 4

n ≠
Ô

n + 1 · (
Ô

n ≠ 1)n
2n ≠ (

Ô
n)2

Æ 4Ô
n ≠ 2 + 4Ô

n
Æ 12Ô

n
+ 4Ô

n
= 16Ô

n
,

The last inequality holds for n Ø 9 and for n < 9 the bound holds trivially.
This completes the proof.
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4.4. Unit-sum valuation functions

4.4 Unit-sum valuation functions
In this section, we assume that the representation of the valuation functions
is unit-sum. We prove Theorem 4.1 using the following three lemmas.

Lemma 4.7. For the unit-sum representation, ratio(RP ) = �
1
n≠1/2

2
.

Proof. Let u be any unit-sum valuation profile and let C be the constant in
the bound from Lemma 4.4. Suppose first that wú(u) < 4

Ô
n/C; we will show

that random priority guarantees an expected social welfare of 1, which proves
the lower bound for this case. Consider any agent i and notice that in random
priority, the probability that the agent is picked by the l’th round is l/n, for
any 1 Æ l Æ n and hence the probability of the agent getting one of her l most
preferred items is at least l/n. Let ul

i be agent i’s valuation for her l’th most
preferred item; agent i’s expected utility for the first round is then at least
u1

i /n. For the second round, in the worst case, agent i’s most preferred item
has already been matched to a di�erent agent and so the expected utility of the
agent for the first two rounds is at least u1

i /n + u2

i /n. By the same argument,
agent i’s expected utility after n rounds is at least

qn
i=1

ul
i/n = 1/n. Since

this holds for each of the n agents, the expected social welfare is at least 1.
Suppose wú(u) Ø 4

Ô
n/C; we will transform u to a unit-range valuation

profile uÕÕ. By Lemma 4.2, the optimal allocation is achieved by a run of
random priority, so we know that in the optimal allocation at most one agent
will be matched with her least preferred item. Consider the valuation profile uÕ

where each agent i’s valuation for her least preferred item is set to 0 (unless
already 0) and the rest are as in u. Since the ordinal rankings of agents
are unchanged, random priority performs worse on this valuation profile, and
because of Lemma 4.2, wú(uÕ) Ø wú(u) ≠ 1/n. Next consider the profile

uÕÕ =
3

uÕ 1
oT 1

4

where o œ Rn and oj = (j ≠ 1)/n5. That is, uÕÕ has n + 1 agents and items,
where agents 1, . . . , n have the same valuations for items 1, . . . , n as in uÕ,
every agent has a valuation of 1 for item n + 1, and agent n + 1 only has
a significant valuation for item n + 1. Notice that uÕÕ is a unit-range valua-
tion profile, and wú(uÕÕ) Ø wú(uÕ) + 1. Furthermore, E [

qn
i=1

ui(RPi(uÕ))] Ø
E [

qn
i=1

ui(RPi(uÕÕ))] ≠ 2 and hence

E [
qn

i=1

ui(RPi(u))]
wú(u) Ø E [

qn
i=1

ui(RPi(uÕ))]
wú(uÕ) + 1/n

Ø E [
qn

i=1

ui(RPi(uÕÕ))] ≠ 2
wú(uÕÕ) + 1/n ≠ 1

Ø E [
qn

i=1

ui(RPi(uÕÕ))]
wú(uÕÕ) ≠ 2

wú(uÕÕ) Ø CÔ
n

≠ 2
wú(u)

Ø CÔ
n

≠ 2
4
Ô

n/C
= C

2
Ô

n
.
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The next lemma bounds the approximation ratio of any ordinal (not neces-
sarily truthful-in-expectation) mechanism.

Lemma 4.8. Let M be an ordinal mechanism for one-sided matching for the
unit-sum representation. Then ratio(M) = O

1
n≠1/2

2
.

Proof. Assume for ease of notation that n is a square number; the proof can
easily be adapted to the general case. By Lemma 4.1, we can assume without
loss of generality that M is anonymous. We will use the following valuation
profile u where ’i œ {1, ...,

Ô
n}:

ui(j) =
I

1 ≠
q

j ”=i ui(j), for j = i, j Æ
Ô

n
n≠j
10n5 , otherwise

ui+l
Ô

n(j) =

Y
__]

__[

1 ≠
q

j ”=i ui(j), for j = i, j Æ
Ô

n
1Ô
n

≠ j
10n2 , for j ”= i, j Æ

Ô
n

n≠j
10n5 , otherwise

, l œ {1, ...,
Ô

n ≠ 1}

Intuitively, u is a valuation profile where for each 1 Æ i Æ
Ô

n, agent i’s
valuation function induces the same ordering as agent (i + l ·

Ô
n)’s valuation

function, for 1 Æ l Æ
Ô

n ≠ 1. For agent i = 1, ...,
Ô

n, because of anonymity,
agent i can at most expect to get a uniform lottery over all the items with
each of the other

Ô
n ≠ 1 agents that have the same ordering of valuations.

For agents
Ô

n + 1, . . . , n, the contribution to the social welfare from items
1, ...,

Ô
n is at most 2 since their valuations for these items are bounded by

2/
Ô

n, and their contribution to the social welfare from items
Ô

n + 1, ..., n is
similarly bounded by 1. Thus we can write an upper bound on the expected
welfare as:

Ô
nÿ

i=1

E [ui(Mi(u))] +
nÿ

i=
Ô

n+1

E [ui(Mi(u))] Æ

Ô
nÿ

i=1

1Ô
n

+ 3 = 4,

while the social welfare of the optimal allocation is at least
Ô

n≠1/10n3. From
this, we get ratio(M) Æ 8/

Ô
n.

Finally, the upper bound for any truthful mechanism is given by the following
lemma.

Lemma 4.9. Let M be a truthful-in-expectation mechanism for one-sided
matching for the unit-sum representation. Then ratio(M) = O

1
n≠1/2

2
.

Proof. Intuitively, the lemma is true because the valuation profile used in the
proof of Lemma 4.6 can be easily modified in a way such that all rows of
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the matrices of valuations sum up to one. Specifically, consider the following
valuation profile:

ui(j) =

Y
__]

__[

1 ≠
q

j ”=i ui(j), for j = i
2

10k ≠ j
10n , for 1 Æ j Æ k + 1, j ”= i

n≠j
10n2 , otherwise

’i œ {1, . . . , k + 1}

ui(j) =

Y
__]

__[

1 ≠
q

j ”=1

ui(j), for j = 1
2

10k ≠ j
10n , for 1 < j Æ k + 1

n≠j
10n2 , otherwise

’i œ {k + 2, . . . , n}

Note that this is exactly the same valuation profile used in the proof of
Lemma 4.6 where all entries are divided by ten, except those where the valua-
tion is 1, which are now equal to 1 minus the sum of the valuations for the rest
of the items. This modification will only carry a factor of 1/10 through the
calculations and hence the proven bound will be the same asymptotically.

4.5 Extensions and special cases
Allowing ties
Our results extend if we allow ties in the image of the valuation function. All of
our upper bounds hold trivially. For the approximation guarantee of random
priority, first the mechanism clearly must be equipped with some tie-breaking
rule to settle cases where indi�erences appear. For all natural (fixed before
the execution of the mechanism) tie-breaking rules the lower bounds still hold.
To see this, consider any valuation profile with ties and a tie-breaking rule for
random priority. We can simply add su�ciently small quantities ‘ij to the
valuation profile according to the tie-breaking rule and create a new profile
without ties. The assignment probabilities of random priority will be exactly
the same as for the version with ties, and random priority achieves an �(1/

Ô
n)

approximation ratio on the new profile. Then, since ‘ij were su�ciently small,
the same bound holds for the original valuation profile.

[0,1] valuation functions
All of our results apply to the extension of the unit-range representation where
0 is not required to be in the image of the function, that is maxj ui(j) = 1 and
for all j, ui(j) œ [0, 1]. This representation captures scenarios where agents are
allowed to be (more or less) indi�erent between every single item. Since every
unit-range valuation profile is also a valid profile for this representation, the
upper bounds hold trivially. For the approximation ratio of random priority,
we obtain the following corollary.
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4. The approximation ratio of truthful mechanisms

Corollary 4.1. The approximation ratio of random priority, for the setting
with [0, 1] valuation functions is �

1
n≠1/2

2
.

Proof. Let u be any [0, 1] valuation profile and let C be the constant in the
lower bound of Lemma 4.4. Similarly to the proof of Lemma 4.7, notice that
by Lemma 4.2, the optimal matching on u matches at most one agent with her
least-preferred item. So let uÕ be the valuation profile in which each agent i has
the same valuation for every item as in profile u, except the valuation for her
least preferred item is set to 0 (if it is not already 0). Doing this, the expected
social welfare of random priority becomes smaller, and wú(uÕ) Ø wú(u) ≠ 1.
Notice that uÕ is now unit-range and by Lemma 4.4, we get that

E [
qn

i=1

ui(RPi(u)]
wú(u) Ø E [

qn
i=1

ui(RPi(uÕ))]
wú(uÕ) + 1

Ø E [
qn

i=1

ui(RPi(uÕ))]
2wú(uÕ)

Ø C/2
Ô

n

4.6 Improved approximations for small input sizes
Theorem 4.1 implies that random priority is indeed the best truthful mech-
anism for the problem, when considering the asymptotic behavior of mecha-
nisms. We now consider non-asymptotic behavior by studying the case when
n = 3 and present a non-ordinal mechanism that achieves better bounds than
any ordinal mechanism, when the representation of the valuation functions is
unit-range.

Since n = 3 and the representation is unit-range, the valuation function
of an agent i can be completely specified by a tuple (a ºi b ºi c, –i) where
a ºi b ºi c is the ordering of items 1, 2 and 3 and –i is the valuation of
agent i for her second to most preferred item. For example, the valuation
function ui(1) = 0.6, ui(2) = 1, ui(3) = 0 can be written as (2 ºi 1 ºi 3, 0.6).
By this, we can generate all possible valuation profiles with three agents and
three items using –

1

, –
2

, –
3

as variables. By anonymity and neutrality, we
can compress the search space drastically (by pruning symmetric profiles) and
then calculate the ratios on all valuation profiles as functions of –

1

, –
2

, –
3

.
For the case of random priority, it is easy to see where those ratios are

minimized and the approximation ratio is the worst ratio over all valuation
profiles that we consider. It turns out that the approximation ratio of random
priority for n = 3 is 2/3. In fact, random priority achieves the optimal ap-
proximation ratio among all ordinal mechanisms. To see this, observe that the
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4.6. Improved approximations for small input sizes

worst-case ratio of random priority is given by the following ordered valuation
profile:

u =

Q

ca
1 1 ≠ ‘ 0
1 ‘ 0
1 ‘ 0

R

db

Notice that when ‘ tends to 0, the ratio of any ordinal mechanism on u tends
to 2/3. Using a very similar construction, the bound can be extended to any
number of agents.

Theorem 4.2. For n agents, the approximation ratio of any ordinal mecha-
nism is at most 1

n≠1

+ n≠2

2n .

In particular, for n = 3, 4 and 5 we obtain bounds of 2/3, 7/12 and 11/20
respectively.

Next, consider the one-agent mechanism that given the reported valuation
function matches the agent with her most preferred item with probability
(6≠2–3)/8, with her second to most preferred item with probability (1+3–2)/8
and with her least preferred item with probability (1 ≠ 3–2 + 2–3)/8. This
mechanism, that we will refer to as the cubic lottery was presented in [74] and
proven by the authors to be truthful. Now consider the following mechanism
for the one-sided matching problem:
Mechanism (Hybrid mechanism - HM). Uniformly at random fix a permu-
tation ‡ œ S of the agents. Match agent ‡(1) with item j œ {1, 2, 3} with
probabilities given by the cubic lottery. Match agent ‡(2) with her favorite
item from the set of still available items. Match agent 3 with the remaining
item.
Since the permutation of agents is fixed uniformly at random, this mechanism
is truthful. We prove the following theorem.

Theorem 4.3. ratio(HM) = 0.699.

Proof. Observe that the mechanism is anonymous and neutral, hence we can
follow the same procedure described above and generate all possible valuation
profiles with n = 3 and then prune the profile space to obtain a relatively
small number of valuation profiles. The ratio on a valuation profile u will
be a function of the form G(–

1

, –
2

, –
3

) = g
1

(–
1

, –
2

, –
3

)/g
2

(–
1

, –
2

, –
3

) where
g

1

: V
1

◊ V
2

◊ V
3

æ R is a non-linear function corresponding to the expected
social welfare and g

2

: V
1

◊V
2

◊V
3

æ R is a linear function corresponding to the
maximum weight matching on u. Then, to calculate the approximation ratio,
we need to solve a non-linear program of the form “minimize G(–

1

, –
2

, –
3

)
subject to –

1

, –
2

, –
3

œ [0, 1]” for every valuation profile. The minimum over
all valuation profiles is the approximation ratio of the mechanism. We use
standard non-linear programming software to obtain the bound; we consider
such a computer-assisted proof su�cient.
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4. The approximation ratio of truthful mechanisms

Notice that the approximation ratio achieved by the hybrid mechanism is
strictly larger than the approximation ratio of any ordinal mechanism. The
next question would be whether we can prove similar bounds for other (small)
values of n. We might be able to extend the technique used above to n = 4
by relying heavily on computer-assisted programs to generate the valuation
profiles and calculate the ratios but it would be di�cult to extend it to any
larger number of agents, since the valuation profile space becomes quite large.
A di�erent approach for proving approximation guarantees for concrete val-
ues of n would be interesting. Finally, it would be interesting to investigate
whether random priority obtains the (non-asymptotic) optimal approximation
ratio among ordinal mechanisms for all values of n.
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Chapter 5

The price of anarchy of
mechanisms

In this chapter, we consider the e�ciency of all mechanisms, including non-
truthful, cardinal and randomized ones, in terms of their price of anarchy, for
the social welfare objective. The main result of the chapter is that random
priority and probabilistic serial achieve a price of anarchy of �(1/

Ô
n) which

is asymptotically optimal among all mechanisms for the problem.

5.1 Introduction
In Chapter 4, we (mainly) considered truthful mechanisms in terms of the ap-
proximation ratio and proved that random priority is in fact the best (asymp-
totically) mechanism for one-sided matching settings. The next question that
naturally comes to mind is “What about other mechanisms, that are not truth-
ful?”. To answer such a question, we need to find a good way to evaluate the
performance of non-truthful mechanisms. In Chapter 4, we used the approx-
imation ratio to evaluate the e�ciency of non-truthful, ordinal mechanisms,
under the assumption that it is only the limited information that results in
e�ciency loss and not the strategic behaviour of agents.

But what if we wanted to account for such behaviour as well? As we
mentioned in the introduction, one way to handle strategic behaviour, other
than truthfulness, is to let agents strategize and evaluate the stable outcomes
of the induced game. In our setting, such a game is played implicitly before
the “revelation phase” of the mechanism; agents see the reported valuation
functions of others and adjust their reports accordingly, based on the rules of
the mechanism used and the associated payo�s. Once an agreement has been
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5. The price of anarchy of mechanisms

reached, the reported valuation profile, which we will call a strategy profile, is
given as input to a mechanism. By an “agreement”, we mean a set of reports
such that no agent has any incentive to change her reported valuation. In
game theory, this solution is known as the Nash equilibrium [117]. Note that
a game corresponding to a mechanism might have multiple Nash equilibria
but it could also be the case that it does not have any Nash equilibria.

Under the assumption that strategic play will lead to stable outcomes,1
the standard measure of e�ciency in the computer science literature is the
price of anarchy [103], i.e. the minimum ratio over all valuation profiles of
the social welfare achieved by the mechanism in the worst Nash equilibrium2

over the social welfare of the optimal assignment. Note that similarly to the
approximation ratio, the price of anarchy provides worst-case guarantees for
the performance of a mechanism.

Since we are now dealing with non-truthful mechanisms, the inputs are
not necessarily the agents’ true valuations. For that reason, we will redefine
the inputs to be strategies, i.e. reported valuations which are functions of the
true valuations. For general (cardinal) mechanisms, the valuation space and
the strategy space will be the same; for ordinal mechanisms, we will define the
strategy space to be the set of all permutations of n items, which is su�cient
to represent the inputs.

Our results
In this chapter, we study and compare mechanisms based on their price of
anarchy. We will consider both unit-range and unit-sum as the canonical
representation of the valuation functions, but since our results for unit-sum
are cleaner, we will focus on them for the main exposition of the results and
discuss the unit-range normalization as an extension.

As our main contribution, for the unit-sum representation, we bound the
ine�ciency of the two dominant mechanisms in the literature of one-sided
matching problems, probabilistic serial and random priority. Note that ran-
dom priority is truthful but it does have other equilibria as well. Our results
in Chapter 4 bound the performance of the mechanism in the truthtelling
equilibria; here we build upon those results and prove an e�ciency guarantee
for all equilibria of the mechanism, not just the truthtelling ones. Similar
approaches have been done for truthful mechanisms like the second price auc-
tion in settings with money [22]. We complement this analysis by showing a
matching upper bound that applies to all cardinal (randomized) mechanisms.
As a result, we conclude that those two ordinal mechanisms are optimal.

We start by proving an �(1/
Ô

n) price of anarchy guarantee for the two
mechanisms mentioned above and then we prove that no mechanism can

1Assuming of course that Nash equilibria exist for the mechanism in question.
2In fact, the price of anarchy can be similarly defined for any solution concept, not just

the Nash equilibrium, as we will see thoughout the chapter.
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achieve a price of anarchy better than O(1/
Ô

n). The fact that those mecha-
nisms are ordinal is quite interesting; our results suggest that similarly to the
results in Chapter 4, even if we allow mechanisms to use the cardinal nature
of the reports, we can not achieve better e�ciency guarantees.

We study both the complete information and the incomplete information
settings. In games of complete information, agents know each others’ valua-
tion functions and choose their strategies with that information at hand. In
settings of incomplete information, agents’ valuations are drawn from some
known prior distributions; other agents know the distributions but not the
actual valuations. We stress that, in analogy to the literature in auctions
[32, 56, 64, 76, 139], in the complete information case, our price of anarchy
bounds extend from the simplest solutions concepts of pure or mixed Nash
equilibrium to the very general concepts of correlated and coarse-correlated
equilibria. For the incomplete information case, we show how our results
extend for Bayes-Nash equilibria.

We also consider deterministic mechanisms and prove that the pure price
of anarchy of any mechanism (including cardinal mechanisms) is bounded by
O(1/n2). This result suggests that randomization is essential for non-trivial
e�ciency guarantees to be achievable.

As an extension to our main results, we consider the price of stability [10],
a more optimistic measure of e�ciency than the price of anarchy. The price of
stability bounds the performance of the mechanism at the best Nash equilib-
rium instead of the worst one. We prove that under a mild “proportionality-
like” property, our upper bound of O(1/

Ô
n) extends to this case as well.

Finally, we prove that our lower bounds of �(1/
Ô

n) for random priority
and probabilistic serial extend to the unit-range representation. For determin-
istic mechanisms, we prove a price of anarchy upper bound of O(1/n) whereas
for general randomized mechanisms, we prove an upper bound of O(1/n1/4)
with respect to ‘-approximate Nash equilibria. Proving a O(1/

Ô
n) match-

ing upper bound for the unit-range representation as well is certainly a very
interesting problem.

Related work
The ine�ciency of games has been studied in various contexts in algorithmic
game theory [47, 53, 54, 83, 129, 130], with the price of anarchy objective in
e�ect. In mechanism design and settings with money, such as combinatorial
auctions, a recent body of literature studies the price of anarchy of item-
bidding auctions with second-price or first-price payment rules (see [32, 56,
64, 76, 139] for an non-exclusive list). Similar approaches have been adopted
in settings without money [46, 55, 75, 143]; we will also use the same approach
for divisible item allocation in Chapter 7.

Our lower bounds are established by probabilistic serial; we quantify the
e�ciency loss of the mechanism due to the strategic behaviour of the agents.
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5. The price of anarchy of mechanisms

The strategic aspects of the mechanism3 were, somewhat surprisingly, only
recently studied. Aziz et al. [20] prove that although sequences of best re-
sponses might cycle, the mechanism is guaranteed to have pure Nash equi-
libria. This is important for our investigations, because we can use the pure
Nash equilibrium as the solution concept4 for analyzing the price of anarchy
of probabilistic serial, before moving to more general solution concepts. The
authors in [20] as well as in [21] also study computational aspects of manip-
ulating the mechanism. Ekici and Kesten [71] prove that some of the nice
prorties of the mechanism are not guaranteed to exist in the ordinal equilibria
of the induced game. An ordinal equilibrium is a strategy profile (a set of
rankings) such that no agent has any incentive to deviate for at least one von
Neumann-Morgenstern utility function consistent with her true ranking.

5.2 Preliminaries
The setting studied here is the one-sided matching setting presented in Chap-
ter 3 and the valuation functions are defined similary. In constrast to previous
chapters, however, we will define the inputs of the mechanisms to account for
strategic play, which was not an issue when considering truthful mechanisms.
We define s = (s

1

, s
2

, . . . , sn) to be a pure strategy profile, where si is the
reported valuation vector of agent i. For general mechanisms, the set of all
valuation profiles V n is also the set of all pure strategy profiles. A direct
revelation mechanism without money is a function M : V n æ O mapping
strategy profiles to matchings. For a randomized mechanism, we define M to
be a random map M : V n æ O. Similarly to Chapter 3, let Mi(s) denote
the restriction of the outcome of the mechanism to the i’th coordinate. For
randomized mechanisms, we will introduce some new notation that will be
used throughout this chapter; let

pM,s
ij = Pr[Mi(s) = j] and pM,s

i = (pM,s
i1 , . . . , pM,s

in ).

When it is clear from the context, we will drop one or both of the superscripts
from the terms pM,s

ij . The utility of an agent from the outcome of a deter-
ministic mechanism M on input strategy profile s is simply ui(Mi(s)). For
randomized mechanisms, an agent’s utility is E[ui(Mi(s))] =

qn
j=1

pM,s
ij uij .

Again, we will be interested in ordinal mechanisms; we have defined ordinal
mechanisms in Chapter 3 but we redefine them in terms of strategies here.

Definition 5.1. A mechanism M is ordinal if for any strategy profiles s, sÕ

such that for all agents i and for all items j, ¸, sij < si¸ … sÕ
ij < sÕ

i¸, it holds
3In terms of strategic play, because the properties of the mechanism in terms of truth-

fulness were considered already in [35].
4Note that the mechanism is ordinal and hence it always has mixed Nash equilibria.

This is not true for general mechanisms though, where the strategy space is continuous.
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5.3. Price of anarchy guarantees

that M(s) = M(sÕ). A mechanism for which the above does not necessarily
hold is cardinal.

For ordinal mechanisms, we define the strategy space to be the set of all
permutations of n items instead of the space of valuation functions V n. A
strategy si of agent i is a preference ordering of items (a

1

, a
2

, . . . , an) where
a¸ º ak for ¸ < k. We will write j ºi jÕ to denote that agent i prefers item
j to item jÕ according to her true valuation function and j ºsi jÕ to denote
that she prefers item j to item jÕ according to her strategy si. When it is
clear from the context, we abuse the notation slightly and let ui denote the
truthtelling strategy of agent i, even when the mechanism is ordinal. Note
that in the setting of this chapter, agents can be indi�erent between items
and hence the preference order can be a weak ordering.5

Recall the definitions of anonymity and neutrality from chapter 4. The
definitions in terms of strategies are straightforward adaptations.

An equilibrium is a strategy profile in which no agent has an incentive to
deviate to any di�erent strategy. In this chapter, we will first focus on the
concept of pure Nash equilibrium, formally,

Definition 5.2. A strategy profile s is a pure Nash equilibrium if ui(Mi(s)) Ø
ui(Mi(sÕ

i, s≠i)) for all agents i, and pure deviating strategies sÕ
i.

In Section 5.6, we extend our results to more general equilibrium notions as
well as the setting of incomplete information, where agents’ values are drawn
from known distributions. Let SM

u denote the set of all pure Nash equilibria
of mechanism M under truthful valuation profile u. The measure of e�ciency
that we will use is the (pure) price of anarchy6

PoA(M) = inf
uœV n

minsœSMu
SWM (u, s)

SWOP T (u)

where SWM (u, s) =
qn

i=1

E[ui(Mi(s))] is the expected social welfare of mecha-
nism M on strategy profile s under true valuation profile u, and SWOP T (u) =
maxµœO

qn
i=1

ui(µi) is the social welfare of the optimal matching. Let OPT (u)
be the optimal matching on profile u. In Section 5.5 we will define and use a
more optimistic notion of e�ciency, the price of stability.

5.3 Price of anarchy guarantees
We start from our price of anarchy lower bounds, for the two mechanisms we
consider.

5We will assume that both the valuations and the strategies can exhibit ties, although
only the former is important for our results.

6The price of anarchy is usually defined as the inverse of this ratio and that is also the
definition used in the paper associated with this chapter. Here, we use this ratio to maintain
consistency throughout the thesis.
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5. The price of anarchy of mechanisms

Probabilistic serial

We first consider probabilistic serial, which we will refer to as PS for short.
Recall the definition of the mechanism from Chapter 3; it is straightforward
to apply the definition to the strategies instead of the true valuations.

We prove that the price of anarchy of PS is �(1/
Ô

n). We start by proving
the following lemma, which states that in a pure Nash equilibrium of the
mechanism, an agent’s utility cannot be much worse than what her utility
would be if she were consuming the item she is matched with in the optimal
allocation from the beginning of the mechanism until the item is entirely
consumed. Let tj(s) be the time when item j is entirely consumed on profile
s under PS(s).

Lemma 5.1. Let u be any profile of true agent valuations and let s be a
pure Nash equilibrium. Let i be any agent and let j = OPTi(u). Then,qn

¸=1

ps
i¸ui¸ Ø 1

4

· tj(s) · uij.

Proof. Let sÕ = (sÕ
i, s≠i) be the strategy profile obtained from s when agent

i deviates to the strategy sÕ
i where sÕ

i is some strategy such that j ºsi ¸
for all items ¸ ”= j. If sÕ

i = si, i.e. agent i is already consuming item j
from the beginning, her utility ui(PSi(s)) =

qn
¸=1

ps
i¸ui¸ is at least tj(s) · uij

and we are done. Hence assume that si ”= sÕ
i. Obviously, agent i’s utility

ui(PSi(sÕ)) =
qn

l=1

psÕ
il uil is at least tj(sÕ) · uij so since s is a pure Nash

equilibrium, it su�ces to prove that tj(sÕ) Ø 1

4

· tj(s).
First, note that if agent i is the only one consuming item j for the duration

of the mechanism, then tj(sÕ) = 1 and we are done. So assume at least one
other agent consumes item j at some point, and let · be the time when the
first agent besides agent i starts consuming item j in sÕ. Obviously, tj(sÕ) > · ,
therefore if · Ø 1

4

· tj(s) then tj(sÕ) Ø 1

4

· tj(s) and we are done. So assume
that · < 1

4

· tj(s). Next observe that in the interval [·, tj(sÕ)], agent i can
consume at most half of what remains of item i because there exists at least
one other agent consuming the item for the same duration. Overall, agent i’s
consumption is at most 1

2

+ 1

4

tj(s) so at least 1

2

≠ 1

4

tj(s) of the item will be
consumed by the rest of the agents.

Now consider all agents other than i in profile s and let – be the the
amount of item j that they have consumed by time tj(s). Notice that the
total consumption speed of an item is non-decreasing in time which means in
particular that for any 0 Æ — Æ 1, agents other than i need at least —tj(s) time
to consume – · — in profile s. Next, notice that since agent i starts consuming
item j at time 0 in sÕ and all other agents use the same strategies in s and
sÕ, it holds that every agent k ”= i starts consuming item j in sÕ no sooner
than she does in s. This means that in profile sÕ, agents other than i will need
more time to consume — · –; in particular they will need at least —tj(s) time,
so tj(sÕ) Ø —tj(s). However, from the previous paragraph we know that they
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will consume at least 1

2

≠ 1

4

tj(s), so letting — = 1

–

1
1

2

≠ 1

4

tj(s)
2

we get

tj(sÕ) Ø —tj(s) Ø tj(s)
31

2 ≠ 1
4 tj(s)

4 1
–

Ø tj(s)
31

2 ≠ 1
4 tj(s)

4
Ø 1

4 · tj(s)

We can now prove the pure price of anarchy guarantee of the mechanism.

Theorem 5.1. The pure price of anarchy of probabilistic serial is �(1/
Ô

n).

Proof. Let u be any profile of true agent valuations and let s be any pure
Nash equilibrium. First, note that by reporting truthfully, every agent i can
get an allocation that is at least as good as

1
1

n , . . . , 1

n

2
, regardless of other

agents’ strategies. To see this, first consider time t = 1/n and observe that
during the interval [0, 1/n], agent i is consuming her favorite item (say a

1

)
and hence pia1 Ø 1

n . Next, consider time · = 2/n and observe that during the
interval [0, 2/n], agent i is consuming one or both of her two favorite items (a

1

and a
2

) and hence pia1 + pia2 Ø 2

n . By a similar argument, for any k, it holds
that

qn
j=1

piaj Ø k
n . This implies that regardless of other agents’ strategies,

agent i can achieve a utility of at least 1

n

qn
j=1

uij . Since s is a pure Nash
equilibrium, it holds that ui(PSi(s)) Ø 1

n

qn
j=1

uij as well. Summing over all
agents, we get that

SWP S(u, s) Ø 1
n

nÿ

i=1

nÿ

j=1

uij = 1.

If SWOP T (u) Æ
Ô

n then we are done, so assume SWOP T (u) >
Ô

n.
Because PS is neutral, we can assume tj(s) Æ tjÕ(s) for j < jÕ without loss

of generality. Observe that for all j = 1, . . . , n, it holds that tj(s) Ø j
n . This

is true because for any t œ [0, 1], by time t, exactly tn mass of items must
have been consumed by the agents. Since j is the jth item that is entirely
consumed, by time tj(s), the mass of items that must have been consumed is
at least j. By this, we get that tj(s)n Ø j, which implies tj(s) Ø j

n .
For each j let ij be the agent that gets item j in the optimal allocation

and for ease of notation, let wij be her valuation for the item. Now by Lemma
5.1, it holds that uij (PS(s)) Ø 1

4

· j
n ·wij and SWP S(u, s) Ø 1

4

qn
j=1

j
nwij . The

price of anarchy is then at least
1

4n

qn
j=1

j · wijqn
j=1

wij

.

Consider the case when the above ratio is minimized and let k be an integer
such that k Æ

qn
j=1

wij Æ k +1. Then it must be that wij = 1 for j = 1, . . . , k

and wij = 0, for k + 2 Æ ij Æ n. Hence the minimum ratio is awik+1 +b

k+wik+1
, for
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some a, b > 0, which is monotone for wik+1 in [0, 1]. Therefore, the minimum
value of awik+1 +b

k+wik+1
is achieved when either wik+1 = 0 or wik+1 = 1. As a result,

the minimum value of the ratio is obtained when
q

i=1

n wik+1 = k for some k.
By simple calculations, the price of anarchy should be at least

qk
j=1

j
n

4k
Æ

k(k≠1)

2n

4k
= k ≠ 1

8n
,

so the price of anarchy is maximized when k is minimized. By the argument
earlier, k >

Ô
n and hence the ratio is �(1/

Ô
n).

In Section 5.6, we extend Theorem 5.1 to broader solution concepts and the
incomplete information setting.

Random priority
We now turn our attention to another mechanism, random priority, or RP
for short. Recall the definition of the mechanism from Chapter 3. Random
priority is truthful, but it does have other equilibria as well. From Chapter 4,
we know that the welfare of the mechanism in the truthtelling equilibria and
the maximum social welfare di�er by a multiple of at most O(

Ô
n). We prove

here that this ratio is guaranteed in all equilibria of the mechanism, for any
of the equilibrium notions. We start with an interesting lemma when agents’
valuation for items are all distinct.

Lemma 5.2. If valuations are distinct, the social welfare is the same in all
mixed Nash equilibria of random priority.

Proof. Let i be an agent, and let B be a subset of the items. Let s be a
mixed Nash equilibrium with the property that with positive probability, i
will be chosen to select an item at a point when B is the set of remaining
items. In that case (by distinctness of i’s values), i’s strategy should place
agent i’s favourite item in B on the top of the preference list among items in
B. Suppose that for items j and jÕ, there is no set of items B that may be
o�ered to i with positive probability, in which either j or jÕ is optimal. Then
i may rank them either way, i.e. can announce j ºi jÕ or jÕ ºi j. However,
that choice has no e�ect on the other agents, in particular it cannot a�ect
their social welfare.

Given Theorem 4.1, Lemma 5.2 implies the following.

Corollary 5.1. If valuations are distinct, the price of anarchy of random
priority is �(1/

Ô
n).

The same guarantee on the price of anarchy holds even when the true valua-
tions of agents are not necessarily distinct.
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Theorem 5.2. The price of anarchy of random priority is �(1/
Ô

n), even if
valuations are not distinct.

Proof. We know from Chapter 4 that the social welfare of random priority
given truthful reports, is within O(

Ô
n) of the social optimum. The social

welfare of a (mixed) Nash equilibrium q cannot be worse than the worst pure
profile from q that occurs with positive probability, so let s be such a pure
profile. We will say that agent i misranks items j and jÕ if j ºi jÕ, but jÕ ºsi j.

If an agent misranks two items for which she has distinct values, it is be-
cause she has 0 probability in s to receive either item. So we can change s so
that no items are misranked, without a�ecting the social welfare or the alloca-
tion. For items that the agent values equally (which are then not misranked)
we can apply arbitrarily small perturbations to make them distinct. Profile s
is thus consistent with rankings of items according to perturbed values and is
truthful with respect to these values, which, being arbitrarily close to the true
ones, have optimum social welfare arbitrarily close to the true optimal social
welfare.

Theorem 5.2 can be extended to solution concepts more general than the
mixed Nash equilibrium. Again, the details are presented in Section 5.6.

5.4 Upper bounds
Here, we prove our main upper bound. Note that the result holds for any
mechanism, including randomized and cardinal mechanisms. Since we are
interested in mechanisms with good properties, it is natural to consider those
mechanisms that have pure Nash equilibria.

Theorem 5.3. The pure price of anarchy of any mechanism for one-sided
matching is O(1/

Ô
n).

Proof. Assume n = k2 for some k œ N. Let M be a mechanism and consider
the following valuation profile u. There are

Ô
n sets of agents and let Gj denote

the j-th set. For every j œ {1, . . . ,
Ô

n} and every agent i œ Gj , it holds that
uij = 1

n +– and uik = 1

n ≠ –
n≠1

, for k ”= j, where – is su�ciently small. Let s be
a pure Nash equilibrium and for every set Gj , let ij = arg miniœGj pM,s

ij (break
ties arbitrarily). Observe that for all j = 1, . . . ,

Ô
n, it holds that pM,s

ijj Æ 1Ô
n

and let I = {i
1

, i
2

, . . . , iÔ
n}. Now consider the valuation profile uÕ where:

- For every agent i /œ I, uÕ
i = ui.

- For every agent ij œ I, let uÕ
ijj = 1 and uÕ

ijk = 0 for all k ”= j.

We claim that s is a pure Nash equilibrium under uÕ as well. For agents not
in I, the valuations have not changed and hence they have no incentive to
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deviate. Assume now for contradiction that some agent i œ I whose most
preferred item is item j could deviate to some beneficial strategy sÕ

i. Since
agent i only values item j, this would imply that p

M,(sÕ
i,s≠i)

ij > pM,s
ij . However,

since agent i values all items other than j equally under ui and her most
preferred item is item j, such a deviation would also be beneficial under profile
u, contradicting the fact that s is a pure Nash equilibrium.

Now consider the expected social welfare of M under valuation profile uÕ

at the pure Nash equilibrium s. For agents not in I and taking – to be less
than 1

n3 , the contribution to the social welfare is at most 1. For agents in I,
the contribution to the welfare is then at most 1Ô

n
·

Ô
n + 1 and hence the

expected social welfare of M is at most 3. As the optimal social welfare is at
least

Ô
n, the bound follows.

Interestingly, if we restrict our attention to deterministic mechanisms, then
we can prove that only trivial pure price of anarchy guarantees are achievable.

Theorem 5.4. The pure price of anarchy of any deterministic mechanism for
one-sided matching is O(1/n2).

Proof. Let M be a deterministic mechanism that always has a pure Nash
equilibrium. Let u be a valuation profile such that for for all agents i and iÕ,
it holds that ui = uiÕ , ui1 = 1

n + 1

n3 and uij > uik for j < k. Let s be a pure
Nash equilibrium for this profile and assume without loss of generality that
Mi(s) = i.

Now fix another true valuation profile uÕ such that uÕ
1

= u
1

and for agents
i = 2, . . . , n, uÕ

i,i≠1

= 1 ≠ ‘Õ
i,i≠1

and uij = ‘Õ
ij for j ”= i ≠ 1, where 0 Æ ‘Õ

ij Æ 1

n3 ,q
j ”=i≠1

‘Õ
ij = ‘Õ

i,i≠1

and ‘Õ
ij > ‘Õ

ik if j < k when j, k ”= i ≠ 1. Intuitively, in
profile uÕ, each agent i œ {2, . . . , n} has valuation close to 1 for item i ≠ 1
and small valuations for all other items. Futhermore, she prefers items with
smaller indices, except for item i ≠ 1.

We claim that s is a pure Nash equilibrium under true valuation profile u
as well. Assume for contradiction that some agent i has a benefiting deviation,
which matches her with an item that she prefers more than i. But then, since
the set of items that she prefers more than i in both u and uÕ is {1, . . . , i},
the same deviation would match her with a more preferred item under u as
well, contradicting the fact that s is a pure Nash equilibrium. It holds that
SWOP T (uÕ) Ø n ≠ 2 whereas the social welfare of M is at most 2

n and the
theorem follows.

Remark 5.1. The mechanism that naively maximizes the sum of the reported
valuations with no regard to incentives, when equipped with a lexicographic
tie-breaking rule has pure Nash equilibria and also achieves the above ratio in
the worst-case, which means that the bounds are tight.
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5.5 Price of stability
Theorem 5.3 bounds the price of anarchy of all mechanisms. A more opti-
mistic (and hence stronger when proving lower bounds) measure of e�ciency
is the price of stability, i.e. the worst-case ratio over all valuation profiles
of optimal social welfare over the welfare attained at the best equilibrium,
formally defined as

PoS(M) = inf
uœV n

maxsœSMu
SWM (u, s)

SWOP T (u) .

In this section we extend Theorem 5.3 to the price of stability of all mecha-
nisms that satisfy a “proportionality-like” property. This class is quite large
and contains most well-known mechanisms, including probabilistic serial and
random priority. We start with a few definitions that will be needed through-
out the section.

Definition 5.3 (Stochastic Dominance [35]). Let a
1

ºi a
2

ºi · · · ºi an be the
(possibly weak) preference ordering of agent i. A random assignment vector
pi for agent i stochastically dominates another random assignment vector qi ifqk

j=1

piaj Ø
qk

j=1

qiaj , for all k = 1, 2, · · · , n. The notation that we will use
for this relation is pi ºsd

i qi.

Definition 5.4 (Safe strategy). Let M be a mechanism. A strategy si is a
safe strategy if for any strategy profile s≠i of the other players, it holds that
Mi(si, s≠i) ºsd

i

1
1

n , 1

n , . . . , 1

n

2
.

We will say that a mechanism M has a safe strategy if every agent i has a
safe strategy si in M . We now state our lower bound.

Theorem 5.5. The pure price of stability of any mechanism for one-sided
matching that has a safe strategy is O(1/

Ô
n).

Proof. Let M be a mechanism and let I = {k+1, . . . , n} be a subset of agents.
Let u be the following valuation profile.

- For all agents i œ I, let uij = 1

k for j = 1, · · · , k and uij = 0 otherwise.

- For all agents i /œ I, let uii = 1 and uij = 0, j ”= i.

Now let s be a pure Nash equilibrium on profile u and let sÕ
i be a safe strategy of

agent i. The expected utility of each agent i œ I in the pure Nash equilibrium
s is

E[ui(s)] =
ÿ

jœ[n]

pij(si, s≠i)vij Ø
ÿ

jœ[n]

pij(sÕ
i, s≠i)vij Ø 1

n

ÿ

jœ[n]

vij = 1
n

,
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due to the fact that s is pure Nash equilibrium and sÕ
i is a safe strategy of

agent i.
On the other hand, the utility of agent i œ I can be calculated by

E[ui(s)] =
ÿ

jœ[n]

pij(si, s≠i)vij = 1
k

kÿ

j=1

pij .

Because s is a pure Nash equilibrium, it holds that E[ui] Ø 1

n , so we get that
qk

j=1

pij Ø k
n , i œ I. As for the rest of the agents, it holds that

ÿ

iœN\I

kÿ

j=1

pij = k ≠
ÿ

iœI

kÿ

j=1

pij Æ k ≠ (n ≠ k)k

n
= k2

n
.

This implies that the contribution to the social welfare from agents not in I
is at most k2

n and the expected social welfare of M will be at most 1 + k2
n . It

holds that SWOP T (u) Ø k and the bound follows by choosing k =
Ô

n.

Due to Theorem 5.5, in order to obtain an O(1/
Ô

n) bound for a mechanism
M , it su�ces to prove that M has a safe strategy. In fact, most reasonable
mechanisms, including random priority and probabilistic serial satisfy this
property. We observe that this is indeed the case for a large class of mecha-
nisms in the literature, including for example the well-known class of ordinal,
envy-free mechanisms:

Definition 5.5 (Envy-freeness [35, 98]). A mechanism M is (ex-ante) envy-
free if for all agents i and r and all profiles s, it holds that

qn
j=1

pijsij Ø
qn

j=1

prjsrj . Furthermore, if M is ordinal, then this implies pM,s
i ºsd

si
pM,s

r .

Given the interpretation of a truthtelling safe strategy as a “proportionality-
like” property, the next lemma is not surprising; it is well-known that in fair
division settings, envy-freeness implies proportionality, when no resources are
wasted7.

Lemma 5.3. Let M be an ordinal, envy-free mechanism for one-sided match-
ing. Then for any agent i, the truthtelling strategy ui is a safe strategy.

Proof. Let s = (ui, s≠i) be the strategy profile in which agent i is truthtelling
and the rest of the agent are playing some strategies s≠i. Since M is envy-free
and ordinal, it holds that

ql
j=1

ps
ij Ø

ql
j=1

ps
rj for all agents r œ {1, . . . , n}

and all l œ {1, . . . , n}. Summing up these inequalities for agents r = 1, 2, . . . , n
we obtain

n
lÿ

j=1

ps
ij Ø

lÿ

j=1

nÿ

r=1

ps
rj = l,

7We can show that all of our lower bounds still hold even if we allow items to remain
unallocated with positive probabilities.
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which implies that
ql

j=1

ps
ij Ø l

n , for all i œ {1, . . . , n}, for all l œ {1, . . . , n}.

Lemma 5.4. Random priority has truthtelling as a safe strategy.

Proof. Since random priority first fixes an ordering of agents uniformly at
random, every agent i has a probability of 1

n to be selected first to choose
an item, a probability of 2

n to be selected first or second and so on. If the
agent ranks her items truthfully, then for every l = 1, . . . , n, it holds thatql

i=1

pij Ø l
n .

Recently, Mennle and Seuken [114] defined the class of hybrid mechanisms to
obtain tradeo�s between quantified versions of Pareto e�ciency and truthful-
ness. Hybrid mechanisms are convex combinations of di�erent mechanisms,
such as probabilistic serial and random priority.

Lemma 5.5. Let M be a hybrid mechanism which is a convex combination of
mechanisms that have truthtelling as a safe strategy. Then M has truthtelling
as a safe strategy.

Proof. Mechanism M can be written as a convex combination of mechanisms
M

1

, M
2

, . . ., Mk i.e. for every agent i and and strategy profile s = (ui, s≠i),
it holds that pM,s

i =
qk

i=j –jp
Mj ,s
i , with

qk
j=1

–j = 1. Since truthtelling is
a safe strategy for all mechanisms Mj , j = 1, . . . , k, it also holds that for
every j,

ql
m=1

p
Mj ,s
im Ø l

n , for all l = 1, . . . , n. This means that for every
l = 1, . . . , n, it holds that

ql
j=1

pM,s
ij Ø – l

n +(1≠–) l
n = l

n and hence Mi(s) ºsd
i

( 1

n , 1

n , . . . , 1

n).

Probabilistic serial is ordinal and envy-free [35] and hence from Lemma 5.3
and Lemma 5.5 we obtain the following corollaries.

Corollary 5.2. The price of stability of any ordinal, envy-free mechanism for
one-sided matching (including probabilistic serial) is O(1/

Ô
n).

Corollary 5.3. The price of stability of any hybrid mechanism for one-sided
matching which is a convex combination of mechanisms that have truthtelling
as a safe strategy (including random priority) is O(1/

Ô
n).

Note that the safe strategy condition is in a sense a minimal condition
required for Theorem 5.5, because we can not hope to prove a strong upper
bound on the price of stability of all mechanisms.

To see this, consider the following deterministic, randomly dictatorial mech-
anism [138]: Select an agent iú uniformly at random and match her with her
most preferred item jú. Then, fix an ordering of the rest of the agents and
match them sequentially according to this ordering to items

j
1

œ argmax
jœA\{jú}

uiúj , j
2

œ argmax
jœA\{jú,j1}

uiúj
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5. The price of anarchy of mechanisms

and so on, breaking ties arbitrarily. Note that this mechanism is truthful;
once agent iú is selected, she is matched with her most preferred item and
the rest of the agents can not influence the outcome. However, it is easy to
see that the mechanism has other equilibria as well; any report such that jú

is on top of agent iú’s preference ranking grants the agent maximum utility.
In particular, there is some strategy siú of agent iú that results in an welfare-
optimal assignment for the rest of the agents. We can prove the following
theorem.

Theorem 5.6. The price of stability of the randomly dictatorial mechanism
RD is at least 1/2.

Proof. Consider any valuation profile u and assume first that SWOP T (u) Ø 2.
Given the choice of some agent i and her most preferred item j, in the best
Nash equilibrium, the mechanism outputs a social welfare optimal matching
OPT≠i(u≠i) for agents in N\{i} and items in A\{j}. Since OPT≠i(u≠i) is
optimal, it is at least as good as the matching that matches every agent l œ
N\{i, iÕ} with item OPTl(u), except agent iÕ, the agent for which OPTiÕ(u) =
j, who is matched with item OPTi(u). In other words, for every realization of
randomness, the mechanism produces a matching that is at least as good as
OPT (u), except for the allocation of two agents that is swapped: the agent i
chosen by the mechanism and the agent that receives agent i’s most preferred
item in the optimal matching.

Let vi be the valuation of agent i for her most preferred item and let wi be
her valuation for item OPTi(u). Then, from the discussion above, it holds that
for every choice of agent i (with most preferred item j), the welfare achieved
is at least SWOP T (u) + vi ≠ wi ≠ wj , which is at least SWOP T (u) ≠ 1, since
vi Ø wi and wj Æ 1. The price of stability is then at least 1 ≠ 1/SWOP T (u)
which is at least 1/2, since SWOP T (u) Ø 2.

Assume from now on that SWOP T (u) Æ 2. Observe that, in the best
Nash equilibrium of the randomly dictatorial mechanism RD on input u, the
outcome is at least as good as the outcome of random priority; in particular,
there exists some Nash equilibrium such that RD(u) = RP (u). By the proof
of Lemma 4.7, we know that, for the unit-sum representation, SWRP (u) Ø 1
and hence SWRD(u) Ø 1 as well. Since SWOP T (u) Æ 2, this proves the
theorem.

It is not hard to see that the price of anarchy of the randomly dictatorial
mechanism is �(1/n). Given that bestowing the rights to the allocation to a
single agent is intuitively not a good choice, the above result indicates that one
should perhaps be careful when adopting the price of stability as the measure
of performance.
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5.6 More general solution concepts

In the previous sections, we employed the pure Nash equilibrium as the solu-
tion concept for bounding the ine�ciency of mechanisms, mainly because of
its simplicity. Here, we describe how to extend our results to broader well-
known equilibrium concepts in literature. For completeness, we include the
pure Nash equilibrium (that we have already defined) in the discussion below.

We consider five standard equilibrium notions: pure Nash, mixed Nash,
correlated, coarse correlated and Bayes-Nash equilibria. For the first four,
the agents have full information. In the Bayesian setting, the valuations are
drawn from some distributions and agents know their own valuation and the
distributions from which the other valuations are drawn. We formally define
the di�erent equilibrium concepts.

Definition 5.6. Given a mechanism M , let q be a distribution over strate-
gies. Also, for any distribution � let �≠i denote the marginal distribution
without the ith index. Then a strategy profile q is called a

pure Nash equilibrium if q = s, ui(Mi(s)) Ø ui(Mi(sÕ
i, s≠i)),

mixed Nash equilibrium if q = ◊iqi, Es≥q[ui(Mi(s))] Ø Es≠i≥q≠i [ui(Mi((sÕ
i, s≠i)))],

correlated equilibrium if Es≥q[ui(Mi(s))|si] Ø Es≥q[ui(Mi((sÕ
i, s≠i)))|si],

coarse correlated equilibrium if Es≥q[ui(Mi(s))] Ø Es≥q[ui(Mi((sÕ
i, s≠i)))],

Bayes-Nash equilibrium for a distribution �u where each (�u)i is independent, if
when u ≥ �u then q(u) = ◊iqi(ui) and for all ui in the support of (�u)i

Eu≠i,s≥q(u)[ui(Mi(s))] Ø Eu≠i,s≠i≥q≠i(u≠i)[ui(Mi(sÕ
i, s≠i))],

where the given inequalities hold for all agents i, and (pure) deviating strate-
gies sÕ

i. Also notice that for randomized mechanisms , the definitions are with
respect to the expectation over the random choices of the mechanism.

It is well known that for the first four classes each is contained in the next
class, i.e., pure µ mixed µ correlated µ coarse correlated. If we regard the
full information setting as a special case of Bayesian setting, we also have
pure µ mixed µ Bayesian. This means that for the complete information
setting, when proving e�ciency guarantees, it su�ces to consider the coarse
correlated equilibria of a mechanism and in the incomplete information setting,
we only need to consider Bayes-Nash equilibria. The mixed, correlated, coarse
correlated and Bayesian price of anarchy is defined similarly to the pure price
of anarchy.
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Probabilistic serial

In the following, we extend Theorem 5.1 to the case where the solution con-
cept is the coarse correlated equilibrium. Since the class of coarse correlated
equilibria includes the classes of mixed Nash and correlated equilibria and
since we are proving a price of anarchy bound, the result covers those solution
concepts as well.

Theorem 5.7. The coarse correlated price of anarchy of probabilistic serial
is �(1/

Ô
n).

Proof. Let u be any valuation profile. Let i be any agent and let j = OPTi(u).
The intuition here is that in the proof of Lemma 5.1, the inequality tj(sÕ) Ø
1

4

tj(s) holds for every strategy profile. In particular, it holds for any pure
strategy profile s where si is in the support of the distribution of the mixed
strategy qi of agent i, for any coarse correlated equilibrium q. Now let sÕ

i be
the pure strategy that places item j on top of agent i’s preference list. This
implies that

Es≥q[ui(PSi(s))] Ø Es≥q[ui(PSi(sÕ
i, s≠i))]

Ø Es≥q[uijtj(sÕ
i, s≠i))]

Ø 1
4uijtj(s).

where the last inequality holds by the discussion above on Lemma 5.1. Using
this, we can use very similar arguments to the arguments of the proof of
Theorem 5.1 and obtain the bound.

For the incomplete information setting, when valuations are drawn from some
publically known distributions, we can prove the same upper bound on the
Bayesian price of anarchy of the mechanism.

Theorem 5.8. The Bayesian price of anarchy of probabilistic serial is �(1/
Ô

n).

Proof. The proof is again similar to the proof of Theorem 5.1. Let u be a valu-
ation profile drawn from some distribution satisfying the unit-sum constraint.
Let i be any agent and let ju = OPT (u)i, i œ [n]. Note that by a similar argu-
ment as the one used in the proof of Theorem 5.1, the expected social welfare
of PS is at least 1 and hence we can assume that Eu[SWOP T (u)] Ø 2

Ô
2n+1.
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Observe that in any Bayes-Nash equilibrium q(u) it holds that

E u
s≥q(u)

[ui(s)] = Eui

C

E u≠i

s≥q(u)

[ui(s)]
D

Ø Eui

C

E u≠i

s≠i≥q≠i(u≠i)

#
ui(sÕ

i, s≠i)
$
D

Ø Eui

C

E u≠i

s≠i≥q≠i(u≠i)

#
uijutju(sÕ

i, si)
$
D

Ø Eui

C

E u≠i

s≥q(u)

51
4uijutju(s)

6D

= 1
4E u

s≥q(u)

[uijutju(s)]

where the last inequality holds for the same reason as in the proof of Theorem
5.7 and sÕ

i denotes the strategy that puts item ju on top of agent i’s preference
list. Note that this can be a di�erent strategy for every di�erent u that we
sample. For notational convenience, we use sÕ

i to denote every such strategy.
The expected social welfare at the Bayes-Nash equilibrium is then at least

nÿ

i=1

Eu,s≥q(u)

[ui(s)] Ø 1
4

ÿ

iœ[n]

E u
s≥q(u)

[uijutju(s)] Ø E u
s≥q(u)

S

U
ÿ

iœ[n]

i

4n
uiju

T

V

Ø E u
s≥q(u)

5
SWOP T (u)(SWOP T (u) ≠ 1)

8n

6

= Eu

5
SWOP T (u)(SWOP T (u) ≠ 1)

8n

6

Ø
Eu

Ë
(SWOP T (u))2

È
≠ Eu [SWOP T (u)]

8n

Ø Eu[SWOP T (u)]
2
Ô

2n
,

and the bound follows.

Random priority
Next we extend Theorem 5.2 to the large class of coarse correlated equilibria.

Theorem 5.9. The coarse correlated price of anarchy of random priority is
�(1/

Ô
n).

Proof. The argument is very similar to the one used in the proof of Theo-
rem 5.2. Again, if any strategy in the support of a correlated equilibrium q
misranks two items j and jÕ for any agent i, it can only be because agent
i has 0 probability of receiving those items, otherwise agent i would deviate

93



5. The price of anarchy of mechanisms

to truthtelling, violating the equilibrium condition. The remaining steps are
exactly the same as in the proof of Theorem 5.2.

Again, for the incomplete information case, we prove the same price of anarchy
guarantee in the Bayes-Nash equilibria of the mechanism.

Theorem 5.10. The Bayesian price of anarchy of random priority is �(1/
Ô

n).

Proof. Consider any Bayes-Nash equilibrium q(u) and let u be a any sampled
valuation profile. The expected social welfare of the random priority can be
written as Eu

Ë
Es≥q(u)

[ui(s)]
È
. Using the same argument as the one in the

proof of Theorem 5.2, we can lower bound the quantity Es≥q(u)

[ui(s)] by
�

1 Ô
n

SWOP T (u)

2
and the bound follows.

5.7 Unit-range valuations
In this section, we discuss how our results extend to the unit-range represen-
tation, i.e., maxj ui(j) = 1 and minj ui(j) = 0. In short, the price of anarchy
guarantees from Section 5.3 and 5.3 extend directly to the unit-range case.
The upper bound from Theorem 5.4 is replaced by an analogous theorem
with a di�erent (but still tight) bound whereas the upper bound from The-
orem 5.3 is replaced by an O(1/n1/4) upper bound on the Price of Anarchy
of any mechanism with respect to ‘-approximate pure Nash equilibria, for all
‘ > 0.

Price of anarchy guarantees
We extend the price of anarchy guarantees of probabilistic serial and random
priority first.

Theorem 5.11. The price of anarchy of probabilistic serial is �(1/
Ô

n) for
the unit-range representation.

Proof. First, observe that Lemma 5.1 holds independently of the representa-
tion. Secondly, in the proof of Theorem 5.1, it now holds that

SWP S(u, s) Ø 1
n

nÿ

i=1

nÿ

j=1

uij Ø 1,

which is su�cient for bounding the price of anarchy when SWOP T (u) Æ
Ô

n.
Finally, the arguments for the case when SWOP T (u) >

Ô
n hold for both

representations. It is easy to see that the extension applies to all the other
equilibrium notions as well.

Theorem 5.12. The price of anarchy of random priority is �(1/
Ô

n) for the
unit-range representation.
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Proof. First observe that Theorem 5.2 is independent of representation. Sec-
ondly, since the main theorem in Chapter 4 also holds for the unit-range rep-
resentation, the proof of Theorem 5.2 extends to unit-range as well. Again,
the result holds for all the other solution concepts.

Lower bounds for unit-range
Next, we present a price of anarchy lower bound for deterministic mechanisms.
First, we prove the following lemma about the structure of equilibria of deter-
ministic mechanisms. Note that the lemma holds independently of the choice
of representation.

Lemma 5.6. The set of pure Nash equilibria of any deterministic mechanism
is the same for all valuation profiles that induce the same preference orderings
of valuations.

Proof. Let u and uÕ be two di�erent valuation profiles that induce the same
preference ordering. Let s be a pure Nash equilibrium under true valuation
profile u and assume for contradiction that it is not a pure Nash equilibrium
under uÕ. Then, there exists an agent i who by deviating from s is matched
to a more preferred item according to uÕ

i. But that item would also be more
preferred according to ui and hence she would have an incentive to deviate
from s under true valuation profile u, contradicting the fact that s is a pure
Nash equilibrium.

Using Lemma 5.6, we can then prove the following theorem.

Theorem 5.13. The price of anarchy of any deterministic mechanism for
one-sided matching that always has pure Nash equilibria is O(1/n) for the
unit-range representation.

Proof. Let M be a deterministic mechanism that always has a pure Nash
equilbrium and let u be a valuation profile such that for all agents i and iÕ,
it holds that ui = uiÕ and uij > uik, for all items i < k. Let s be a pure
Nash equilibrium for this profile and assume without loss of generality that
Mi(s) = i. By Lemma 5.6, s is a pure Nash equilibrium for any profile u
that induces the above ordering of valuations. In particular, it is a pure Nash
equilibrium for a valuation profile satisfying

- For agents i = 1, . . . , n
2

, ui1 = 1 and uij < 1

n3 , for j > 1.

- For agents i = n
2

+ 1, . . . , n, uij > 1 ≠ 1

n3 for j = 1, . . . , n/2 and uij < 1

n3

for j = n
2

+ 1, . . . , n.

It holds that OPT (u) Ø n
2

, whereas the social welfare of M is at most 2 and
the theorem follows.
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Note that the mechanism that maximizes the sum of the reported valuations
achieves the above bound and hence the bound is tight.

We now prove a general lower bound for the class of all mechanisms when
the solution concept is the ‘-approximate pure Nash equilibrium. A strategy
profile is an ‘-approximate pure Nash equilibrium if no agent can deviate to a
di�erent strategy and improve her utility by more than ‘. For ‘-approximate
pure Nash equilibria the measure of e�ciency is the ‘-approximate pure price
of anarchy.

Theorem 5.14. Let M be a mechanism for one-sided matching and let ‘ œ
(0, 1). The ‘-approximate price of anarchy of M is O(1/n1/4) for the unit-
range representation.

Proof. Assume n = k2, where k œ N will be the size of a subset I of “im-
portant” agents. We consider valuation profiles where, for some parameter
” œ (0, 1),

- all agents have value 1 for item 1,

- there is a subset I of agents with |I| = k for which any agent i œ I has
value ”2 for any item j œ {2, . . . , k + 1} and 0 for all other items,

- for agent i ”œ I, i has value ”3 for items j œ {2, . . . , k + 1} and 0 for all
other items.

Let u be such a valuation profile and let s be a Nash equilibrium. In the
optimal allocation, members of I receive items {2, . . . , k + 1} and such an
allocation has social welfare k”2 + 1.

First, we claim that there are k(1 ≠ 2”) members of I whose utilities in s
are at most ”; call this set X. If that were false, then there would be more than
2k” members of I whose utilities in s were more than ”. That would imply
that the social welfare of s was more than 2k”2, which would contradict the
optimal social welfare attainable, for large enough n (specifically, n > 1/”4).

Next, we claim that there are at least k(1 ≠ 2”) non-members of I whose
probability (in s) to receive any item in {1, . . . , k + 1} is at most 4(k + 1)/n;
call this set Y . To see this, observe that there are at least 3

4

n agents who
all have probability at most 4/n to receive item 1. Furthermore, there are
at least 3

4

n agents who all have probability Æ 4k/n to receive an item from
the set 2, . . . , k + 1. Hence there are at least 1

2

n agents whose probabilities to
obtain these items satisfy both properties.

We now consider the operation of swapping the valuations of the agents in
sets X and Y so that the members of I from X become non-members, and vice
versa. We will argue that given that they were best-responding beforehand,
they are ”-best-responding afterwards. Consequently s is an ”-approximate
Nash equilibrium of the modified set of agents. The optimal social welfare
is unchanged by this operation since it only involves exchanging the payo�

96



5.7. Unit-range valuations

functions of pairs of agents. We show that the social welfare of s is some
fraction of the optimal social welfare, that goes to 0 as n increases and ”
decreases.

Let I Õ be the set of agents who, after the swap, have the higher utility of
”2 for getting items from {2, . . . , k + 1}. That is, I Õ is the set of agents in Y ,
together with I, minus the agents in X.

Following the above valuation swap, the agents in X are ”-best responding.
To see this, note that these agents have had a reduction to their utilities for the
outcome of receiving items from {2, . . . , k + 1}. This means that a profitable
deviation for such agents should result in them being more likely to obtain item
1, in return for them being less likely to obtain an item from {2, . . . , k + 1}.
However they cannot have probability more than ” to receive item 1, since
that would contradict the property that their expected payo� was at most ”.

After the swap, the agents in Y are also ”-best responding. Again, these
agents have had their utilities increased from ”3 to ”2 for the outcome of
receiving an item from {2, . . . , k + 1}. Hence any profitable deviation for such
an agent would involve a reduction in the probability to get item 1 in return
for an increased probability to get an item from {2, . . . , k +1}. However, since
the payo� for any item from {2, . . . , k + 1} is only ”2, such a deviation pays
less than ”.

Finally, observe that the social welfare of s under the new profile (after
the swap) is at most 1 + 3k”3. To see this, note that (by an earlier argument
and the definition of I Õ) k(1 ≠ 2”) members of I Õ have probability at most
4(k + 1)/n to receive any item from {1, . . . , k + 1}. To upper bound the
expected social welfare, note that item 1 contributes 1 to the social welfare.
Items in {2, . . . , k + 1} contribute in total, ”2 times the expected number
of members of I Õ who get them, plus ”3 times the expected number of non-
members of I Õ who get them, which is at most ”2k2” + ”3k(1 ≠ 2”) which is
less than 3k”3.

Overall, the price of anarchy is at least 3k”3/(k”2 +1), which is more than
”. The statement of the theorem is obtained by choosing ” to be less than ‘,
n large enough for the arguments to hold for the chosen ”, i.e. n > 1/”4.

Price of stability
Theorem 5.5 does not directly extend to the unit-range representation. It
is an open problem whether we can prove a similar result for the unit-range
representation as well. Note that for this representation, a simple version of
the randomly dictatorial mechanism that we presented in Section 5.5 that
selects agent iú deterministically achieves a constant price of stability. We
will call this mechanism purely dictatorial [138].

Theorem 5.15. The price of stability of the purely dictatorial mechanism D
is at least 1/2.
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Proof. Consider any valuation profile u. Let iú be the agent selected by
the mechanism and let jú be her most preferred item. First note that if
SWOP T (u) Æ 2, agent iú will be matched with her favorite item (which she
values at 1, since the representation is unit-range) and we are done. Hence,
assume from now on that SWOP T (u) > 2. Recall that the best Nash equilib-
rium, the mechanism matches agent iú with item jú and outputs a welfare-
maximizing matching for agents i œ N\{iú} and items j œ A\{jú}; let OPT≠iú

be that matching. We will argue that SWOP T≠iú (u) Ø SWOP T (u)≠2. This is
true because the matching OPT≠iú is at least as good as the matching OPT Õ

that matches each agent in N\{iú} to OPTi(u) except some agent l, who was
matched with item jú in the optimal allocation, that is now matched to item
OPTiú(u). In the worst case, agent l values item OPTiú(u) at 0 (and since we
are only considering the matching of agents in N\{iú} and items in A\{jú}),
it holds that SWOP T Õ(u) Ø SWOP T (u) ≠ 2 and hence our claim holds.

Now, since valuation vectors are unit-range, the welfare of the mechanism
from item jú is 1 and hence it holds that SWD(u) Ø SWOP T (u) ≠ 1 and the
price of stability is at least 1≠1/SWOP T (u). Since SWOP T (u) > 2, we obtain
the bound.

5.8 Discussion and future work
In this chapter, we considered all mechanisms for one-sided matching and
bounded their performance in terms of the price of anarchy. We showed that
probabilistic serial and random priority are optimal among all mechanisms,
with that objective at hand. We extended our negative results to the price of
stability of mechanisms that satisfy a mild property.

There are several future directions to be considered. First of all, unlike
Chapters 2 and 4, where most of the results could easily be adapted to work
with and without ties, here the presence of ties is essential for our main upper
bounds to hold. While indi�erences in valuations are part of the setting and
hence the profiles used are perfectly valid, as we discussed in Chapter 2, we
would ideally like to obtain impossibility results using profiles without ties.
That being said, the absence of ties complicates things further when consid-
ering best responses; if the mechanism can be completely arbitrary, then very
small indi�erences between valuations can have a major impact on incentives.
For that reason, the proof of Theorem 5.3 does not seem adaptable to the
setting with ties. On the other hand, if we impose some (mild) restrictions
on mechanisms, then we can extend the theorem to work in the “no-ties” set-
ting. Specifically, if there is any bound on the minimum di�erence in utility
that an agent can have between two outcomes of the mechanism, then we can
generate small enough indi�erences in the valuation profile used in the proof
of Theorem 5.3, construct a profile without ties and obtain the same bound.
This property is in fact satisfied by most well-known mechanisms, including
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all ordinal mechanisms.
We proved that under the mild safe strategy assumption which is satisfied

by most reasonable mechanisms, our upper bound extends to the price of
stability as well. On the other hand, an arguably “unreasonable” mechanism
like the randomly dictatorial mechanism achieves a constant price of stability.
That being said, the price of anarchy of the mechanism is quite bad. The
reason is that the mechanism basically puts all the power in one agent’s hands
and the price of stability assumes, perhaps rather optimistically, that this
agent will “do the right thing”. In a sense, while the price of stability is
meant to be an optimistic measure of ine�ciency of a system in absence of
a central planner, mechanisms like the one above delegate the task of central
planning to a single agent. In any setting where satisfying a single person can
not significantly harm society as a whole, like the one-sided matching setting,
such “trivial” mechanisms can always achieve near-optimal outcomes in terms
of their price of stability.

Can we prove stonger impossibility results for the unit-range representa-
tion? In Chapter 4, the picture is very clear; the choice of normalization is
not important for the (asymptotic) results. Here, the picture is a bit more
blurry. Is it possible to obtain tight bound for the unit-range case as well?

Finally, it would be interesting to study scenarios where comparisons be-
tween mechanisms are not done asymptotically, or the guarantees are not
achieved in the worst-case. Considering concrete numbers of agents and items,
similarly to the last section of Chapter 4 could be an example. Another op-
tion would be to make some sensible distributional assumption on the input
profiles and consider “average versions” of the price of anarchy (or the approx-
imation ratio) of mechanisms in that case. Investigating such settings could
potentially lead to more answers regarding the quality and practical usefulness
of matching mechanisms and the comparisons between them.

We conclude the chapter with a dicussion on the two measures of e�ciency
that we have considered so far.

5.9 Approximation or anarchy?
In Chapter 4, we used the approximation ratio as the measure of performance
whereas in the current chapter, we studied the price of anarchy of (not neces-
sarily truthful) mechanisms. In fact, the asymptotic bounds that we proved
in both cases turned out to be very similar. Can we then say that e.g. prob-
abilistic serial and random priority are equally good? How does the price of
anarchy objective fair when compared to the approximation ratio?

First of all, it is indisputable that for truthful mechanisms like random
priority, a price of anarchy guarantee is a stronger result than an approximatio
ratio guarantee. This is because as we mentioned earlier, truthtelling is one
equilibrium and not necessarily the worst equilibrium; in that sense a price
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of anarchy result includes the guarantee given by the approximation ratio. In
fact, Theorem 5.3 implies8 the impossibility part of Theorem 2.5 for truthful
mechanisms.

One the other hand, comparisons between the price of anarchy of non-
truthful mechanisms like probabilistic serial and the approximation ratio of
truthful mechanisms are not as direct; the main reason is the following. In a
truthful mechanism, truthtelling is not just a Nash equilibrium, it is a dom-
inant strategy equilibrium, i.e. a condition that ensures that agents have no
incentives to lie about their preferences, regardless of what other people will
do. On the other hand, the applicability of the Nash equilbrium relies on the
assumption that agents will best respond to the set of options laid in front of
them. In particular, agents will not look “two steps ahead” to find a better
report.

Perhaps even more so than the case of “non-myopic” agents, it is conceiv-
able that strategizing within a mechanism is a hard task; people don’t have
the time or the resources or even perhaps the mental capabilities of finding
the best way to act within such a complicated system. It has been shown, for
instance [20, 21] that it might be computationally hard for agents to calculate
best responses in probabilistic serial.

In other words, we can not expect agents to play truthfully but can we
expect them to always play rationally? Game theory is based on the principles
of rational play and we are by no means trying to question these assumptions.
What we are arguing is that knowing that telling the truth is the best thing
that one can do, without having to worry about others, is certainly reassuring
and while comparisons between the two measures of e�ciency are possible,
they shouldn’t be made impetuously.
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8Minus the fact that Theorem 2.5 holds for both normalizations and without ties.
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Chapter 6

Background

In Part 2 of the thesis, we considered the problem of one-sided matchings
and studied the performance of mechanisms for that problem. Recall that the
items in that setting where indivisible and agents had to be matched with
exactly one item in expectation. In this chapter, we will introduce a related
problem that also has been the topic of a large amount of literature, that of
divisible item allocation.1 In many resource allocation problems encountered
in real life, the resources are divisible; examples are numerous and range from
goods like milk or rice in “traditional” markets to distributed resources like
memory or storage space or even intangible resources, like sharing connection
costs in an online network.

The general question that has concerned researchers for many years is the
very same question of social choice, presented in Chapter 1, rephrased in terms
of the specific task at hand: “How should we allocate the resources to the
participants?” The extended literature on the topic has proposed a number
of di�erent solutions in terms of fairness, e�ciency and tradeo�s between the
two. Similarly to all the previous chapters, we will be concerned with solutions
that (approximately) maximize the social weflare of the participants.

6.1 The setting
In the divisible item allocation setting there is a set N = {1, . . . , n} of agents
and a set A = {1, . . . , m} of divisible items. Without loss of generality, the
supply of each item is assumed to be one unit. Each agent has a utility
function ui : [0, 1]m æ R that maps a quantity vector of the m items to a

1The problem is also encountered in literature as allocation of heterogeneous goods.
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real value. The quantity ui(xi) represents the agent’s utility when receiving
xi amount of the items. We will call xi an allocation vector for agent i,
where xij represents the amount of item j received by agent i. We will use
x = (x

1

, . . . , xn) to denote an allocation of the m items.2 The social welfare
is the sum of individual utilities

qn
i=1

ui(xi).

Utility functions

The utility functions express the agents’ satisfaction from receiving di�erent
amounts of items. A natural example is the linear or additive utility func-
tion, where agents’ satisfaction increases additively when they aquire larger
amounts of items, scaled by their relative intensity of preferences for those
items. In this thesis, we will consider a more general class of utility func-
tions that have received considerable interest in economics, that of constant
elasticity of substitution (CES) utilities [14]:

Definition 6.1 (CES utility function). A utility function is in the class of
constant elasticity of substitution if it satisfies

ui(xi) =

Q

a
mÿ

j=1

aij · xfl
ij

R

b

1
fl

where fl parameterizes the family, and ≠Œ < fl Æ 1, fl ”= 0.

In the definition above, aij is a parameter of the utility functions. It
quantifies how receiving more from item j a�ects agent i’s utility, while the
exact e�ect depends on the specific class of utility functions. The parameters
aij here play the role of valuations and hence we will call ai = (aij)jœA a
valuation vector.3 Note that once the class of utility functions is fixed, a
buyer’s utility function can be completely described by its valuation vector ai.

Roughly speaking, the elasticity of substitution measures the degree of
complementarity of items; how easy it is to substitute one item for another
and what e�ect that has on the utility function. The elasticity is constant for
CES function in the sense that it does not depend on the parameters xi, and
can be written as ‡ = 1/(1 ≠ fl). For di�erent choices of fl we obtain di�erent
utility functions. In the literature, there are three standard choices that give
rise to three fundamental classes of utility functions.

2If we wanted to compare the current setting with the social choice setting of Chapter
1, the former is not a special case of the latter. It is however a special case of the setting
where there is a continuum of candidates, and each allocation corresponds to a candidate.

3Note that in previous chapters, valuations and utilities had the same meaning; here we
need to make the distinction.
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Definition 6.2 (Linear utility function). A utility function is linear if it
satisfies

ui(xi) =
ÿ

jœA

aijxij .

Linear utility functions are obtained from the CES formula when fl = 1. In
that case, the elasticity tends to infinity, which means that the items are
perfect substitutes, i.e. one can be used instead of the other. A commonly
used example of items that are perfect substitutes is Pepsi and Coca-cola.

Definition 6.3 (Leontief utility function). A utility function is Leontief if it
satisfies

ui(xi) = min
jœAi

I
xij

aij

J

,

where Ai is the set of items for which agent i has non-zero valuation. The
Leontief utility function is a “limit case” of the CES function, when fl ap-
proaches ≠Œ. The elasticity ‡ in that case goes to 0 and hence the Leontief
function captures the utility of items that are perfect complements, e.g. left
and right shoes.

Definition 6.4 (Cobb-Douglas utility function). A utility function is Cobb-
Douglas if it satisfies

ui(xi) =
Ÿ

jœA

x
aij

ij .

The Cobb-Douglas utility function is obtained from CES functions when fl
approaches 0. Since the elasticity ‡ in this case is 1, it is often said that
Cobb-Douglas utilities express a perfect balance between complementarity and
substitutability.

6.2 Related literature
Divisible item allocation has been the subject of research for many years,
sometimes also under the umbrella of fair division or cake cutting [41, 115,
128, 142], with the goal often being to achieve “fair” allocations, for di�erent
notions of fairness such as equitability, envy-freeness, or proportionality [59].
The employement of markets and the accompanying results from classical
market design has been advocated as a way of achieving desired allocations
[22]. As we will see in the next section, markets are in fact implict mechanisms
for allocating divisible goods among agents.

With the social welfare objective in mind, Guo and Conitzer [89] and
Han et al. [91] study truthful mechanisms and their approximation ratios,
whereas Feldman et al. [75] and Zhang [143] bound the price of anarchy of
a non-truthful mechanism, the proportional share allocation mechanism. In a
slightly di�erent approach, Caragiannis et al. [48] bound the approximation
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ratio of mechanisms, where the ine�ciency is due to the need for fair solutions
and not truthfulness; they call this measure the price of fairness.

Linear utility functions are perhaps the most wide-spread CES utilities
used in the literature [41, 89, 91, 115]. Note that a randomized mechanism
in the setting of Chapter 3 for indivisible items can be interpreted as a de-
terministic mechanism for divisible items, where probabilities are fractions of
allocations. For example, probabilistic serial could be used as a deterministic
mechanism for n agents and n indivisible items. While both Cobb-Douglas
and Leontief utilities are quite important in economics, Leontief utilities are
also quite popular in the computer science literature [66, 85, 121], because of
the fact that they express values for items that are complements and are in
that sense quite fitting to scenarios where computational jobs are allocated
available resources in fixed ratios [59].

In Chapter 7, we will study social welfare maximization by a market-like
mechanism, the Fisher market mechanism. For that reason, we will next
introduce the fundamental economic market model of the Fisher market.

6.3 The Fisher market
The concept of the market exists since ancient times. In a traditional mar-
ket, people come with endowments of goods, or commodities, and trade those
commodities amongst each other, to satisfy their needs. This market setting
is perhaps best described by the celebrated Arrow-Debreu market [13], the
most fundamental market model in economics. In that model, also known as
the Walrasian model, the trade described above is done though the following
process. An artificial unit of currency if fixed and prices for the commodities
are announced, based on this currency. Interested buyers then announce their
demands for the commodities. Based on the stated demands, prices are ad-
justed and communicated to the buyers again, who in turn announce their new
demand sets. This process, called the tattonement process is repeated until
all items are “sold”, i.e. the market clears. It has been proven [14, 112] that
the process will always converge to a market clearing solution;4 this solution
is called a market equilibrium or a walrasian equilibrium.

One fundamental special case of the Arrow-Debreu market was introduced
by Irving Fisher [40].

Definition 6.5 (Fisher market). A Fisher market M consists of a set of
buyers and a set of divisible goods. Every buyer i has:

- an initial budget Bi > 0, which can be viewed as some currency that can
be used to acquire goods but has no intrinsic value to the buyer, and

4Interestingly, [14, 112] proved that such a solution is unique if the utility functions are
strongly concave. This will be important for our results in Chapter 7.
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- a utility function ui : [0, 1]m æ R defined as above.

A market outcome is defined as a tuple Èp, xÍ, where p is a vector of prices
for the m items and x = (x

1

, . . . , xn) is an allocation of the m items, with pj

denoting the price of item j and xij representing the amount of item j received
by buyer i.

The Fisher market is a subset of the Arrow-Debreu market, in the following
sense. There are two types of participants, one seller and multiple buyers.
The endowment of the seller consists of all the goods in the market and the
endowments of the buyers are di�erent quantities of a single good that we will
call money. The seller only experiences positive utility from aquiring money,
whereas the buyers only have positive values for goods, but they have no value
for money. The market clearing condition requires that no buyers are left with
any amount of money and the seller is not left with any amount of goods in her
possession. This condition can be rephrased as “all budgets are exhausted”
and “all items are sold”. We define the notion of a market equilibrium in the
Fisher market.

Definition 6.6. In a Fisher market M, a market equilibrium [13, 120] is a
market outcome that maximizes the utility of each buyer subject to her budget
constraint and clears the market. Formally, Èp, xÍ is a market equilibrium if
and only if

- For all i œ N , xi maximizes buyer i’s utility given prices p and budget
Bi.

- Each item j either is completely sold or has price 0, i.e.
A

nÿ

i=1

xij ≠ 1
B

pj = 0, ’j œ A.

- All budgets are spent, i.e.
qm

j=1

pj · xij = Bi, ’i œ N .

For the Fisher market model, a market equilibrium is guaranteed to exist if
each item is desired by at least one buyer and each buyer desires at least one
item [111].

The Fisher market mechanism
One can perhaps see the similarities between a market model and the divisible
item allocation setting that we study in this part of the thesis. The allocation
part x of a market outcome is an allocation of divisible items to agents and
hence a solution to the divisible item allocation problem. In that sense, one
can view the Fisher market as a mechanism for allocating divisible goods,
that we will call the Fisher market mechanism. The mechanism inputs the
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valuations of the agents, assigns them artificial budgets Bi and computes a
market equilibrium, using x as the allocation. For this to be possible however,
the mechanism designer must have a way of computing the market equilibrium
without going through the tattonement process.5 Luckily, for buyers with
utility functions from the same class in the CES family (i.e. for some fixed fl),
the equilibrium allocation can be captured by the celebrated Eisenberg-Gale
convex program [70], one of the few algorithmic results in general equilibrium
theory:

Definition 6.7 (Market equilibrium computation). The allocation of a mar-
ket equilibrium of a Fisher market M is given by the solution to the following
convex program (the prices are given by the dual variables).

max
nÿ

i=1

Bi · log(ui)

s.t. ui =

Q

a
mÿ

j=1

aij · xfl
ij

R

b

1
fl

, ’ i œ N

nÿ

i=1

xij Æ 1, ’ j œ A

xij Ø 0, ’ i œ N, j œ A

For some values of fl, for example fl = 1, the objective function of this convex
program is not strictly concave, which means that there may be multiple
market equilibria. In that case, the mechanism should be equipped with some
tie-breaking rule; the choice of tie-breaking will be quite important for some
of our results in Chapter 7.

6.4 Social welfare maximization
In Chapter 7, we will study the Fisher market mechanism for divisible item
allocation and bound its price of anarchy with respect to the social welfare
objective for di�erent utility functions. We will now discuss the main results
on social welfare maximization for divisible items mentioned earlier in more
detail.

Truthful mechanisms
The topic of social welfare maximization for divisible items in setting without
money was studied by Guo and Conitzer [89] for the case of two agents and
for linear utility functions under the unit-sum representation. The authors
propose a class of truthful mechanisms and analyze their approximation ratios.

5Otherwise the mechanism would not be direct revelation.
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Similarly to the Fisher market mechanism, their mechanisms endow agents
with artificial units of currency that they use to produce an allocation. The
problem for the case of many agents was studied by Han et al. [91] where the
authors bound the performance of any truthful mechanism.6

Theorem 6.1. [91] The approximation ratio of any truthful mechanism for
divisible item allocation with linear utility functions for the unit-sum repre-
sentation is O(1/

Ô
n).

Note that the theorem only applies to linear utility functions; to the best of
our knowledge, an impossibility result of a similar nature for other classes of
CES functions (such as Leontief or Cobb-Douglas) does not exist. In fact, it
is an interesting open problem to prove such a bound.

We do not know of any truthful mechanisms that achieve this bound.
In fact, we don’t know of many good truthful candidates that do not come
from indivisible item allocation or are not trivial. Cole et al. [59] propose
a truthful mechanism, the partial allocation mechanism, which achieves good
fairness objectives. It would be interesting to evaluate the approximation ratio
of the mechanism with respect to the social welfare. It is unclear whether it
would provide good approximations though, since crucially, the mechanism
“burns” fractions of items in order to ensure truthfulness and achieve fairness
guarantees; intuitively however, wastefulness and social welfare maximization
do not seem very compatible.

Non-truthful mechanisms
Our approach in Chapter 7 is to study a non-truthful mechanism and bound
its price of anarchy. A very similar approach was taken by Feldman et al. [75]
and Zhang [143], who study the proportional share allocation mechanism.

Definition 6.8 (Proportional share allocation mechanism). In the propor-
tional share allocation mechanism, each agent i is given a budget Bi that she
can freely distribute over the m items. The report of each agent is an m-
dimensional vector si = (si1, . . . , sim), with the property that

qm
j=1

sij = Bi.
Given any instance of the agents’ reports, s = (s

1

, . . . , sn), the price of each
item j is set to pj =

qn
k=1

skj , and agent i receives xij = sij

pj
units of item j.

If all agents report zero for some item, then that item is kept by the center.

Note that the proportional share allocation mechanism is cardinal; the same
applies to the Fisher mechanism that we will study in the next chapter. The
authors in [75] and [143] consider the unit-sum representation7 and prove

6The authors also prove a O(1/m)-upper bound on the approximation ratio of any
truthful mechanism. In our investigations, all of the bounds will be functions of n, the
number of agents.

7In fact, Zhang [143] considers a slightly more general condition.
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that the price of anarchy of the proportional share allocation mechanism is
�(1/

Ô
n) for any concave, non-decreasing utility function (including CES func-

tions). Feldman et al. [75] provide a profile for linear utilities for which the
bound is tight.

Theorem 6.2. [75, 143] The price of anarchy of the proportional share al-
location mechanism for divisible item allocation with CES utility functions is
�(1/

Ô
n). If the utility functions are linear, there exists a profile such that the

price of anarchy is O(1/
Ô

n).

The lower bound established in the theorem above will be very useful for our
results in Chapter 7.

6.5 Social welfare and divisible items: An agenda
From the discussion above, it is evident that the literature on social welfare
maximization in divisible item allocation settings consists of a few key papers
and many open questions. In addition, it seems that most of the papers on this
topic8 do not place themselves as parts of a common literature and present
the objectives or the contributions in di�erent ways.

We think that an agenda on social welfare maximization in divisible item
allocation settings is in place: given some general class of utility functions,
such as CES, as well as some natural subclasses, what can we achieve in terms
of social welfare? What is the approximation ratio of truthful mechanisms?
Is there a truthful mechanism that achieves the O(1/

Ô
n) barrier for linear

utility functions? What are the corresponding upper bounds for other utility
classes? What about the price of anarchy of non-truthful mechanisms? Is
there such a mechanism that outperforms all truthful ones? Can we obtain
upper bounds on the price of anarchy of any mechanism?

8Including the paper associated with Chapter 7.
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Chapter 7

The Fisher market
mechanism

In this chapter, we study the Fisher market mechanism for allocating divis-
ible items among agents. Our goal is to approximately maximize the social
welfare, i.e. the sum of agents utilities for the portions of items allocated to
them. Similarly to our approach in Chapter 5, we will consider the equilibrium
behaviour of the mechanism and bound its price of anarchy. We consider the
three major subclasses of CES utility functions, linear, Leontief and Cobb-
Douglas utilities. First, we prove that regardless of the agents’ utilities, the
mechanism has pure Nash equilibria, under a mild condition. Then, we bound
the ine�ciency of the mechanism, by obtaining price of anarchy results for all
three cases.

7.1 Introduction, setting and contributions
The strategic aspects of Fisher markets were first studied by Adsul et al. [6] for
buyers with linear utility functions. The authors showed the existence of pure
Nash equilibria under mild assumptions and provided necessary conditions for
a strategy profile to be a pure Nash equilibrium. Chen et al. [51] and Chen
et al. [52] bounded the extent to which a buyer can improve his utility by
deviating from being truthful for CES utility functions; they call this measure
the incentive ratio. More recently, Babaio� et al. [22] examined strategic
behavior in settings where markets are used as auction mechanisms, similarly
to what we do in this chapter. Unlike Fisher markets however, where money
has no intrinsic value to buyers, the buyers in the markets studied by Babaio�
et al. have quasi-linear utilities.
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Our contributions are as follows. When buyers have Leontief and Cobb-
Douglas utility functions, we show that the Fisher market mechanism always
has a pure Nash equilibrium under mild conditions. Together with the results
of Adsul et al. [6], who identified a particular pure Nash equilibrium of the
Fisher market mechanism for buyers with linear utilities, these results prove
the existence of a pure Nash equilibrium for all the three typical CES utility
functions. We then prove asymptotic price of anarchy bounds for the Fisher
market mechanism for linear, Leontief, and Cobb-Douglas utilities. For Leon-
tief and Cobb-Douglas functions, we obtain tight price of anarchy bounds of
�(1/n) and �(1/

Ô
n) respectively, where n is the number of buyers in the

game. For linear utility functions, the price of anarchy is upper bounded
by O(1/

Ô
n) and lower bounded by �(1/n). Proving tight price of anarchy

bounds for linear utility functions is left as an open question. A summary of
the results can be found in Table 7.1.

The Fisher market game

Recall the definition of the Fisher market mechanism in Chapter 6; the mech-
anism inputs the valuations of agents and computes a market equilibrium of
the corresponding Fisher market. The outcome of the mechanism is the equi-
librium allocation. Similarly to Chapter 5 however, we assume that agents
are strategic entities that will not truthfully report their valuations, if misre-
porting gives them a higher utility. The mechanism then induces a game, the
Fisher market game [6].

In the same spirit as Adsul et al. [6], we define the Fisher market game
as a game with complete information among all agents. The definition is for
agents with CES utility functions with a fixed fl. Hence, an agent’s utility
function can be described by her valuation vector ai.

Definition 7.1 (Fisher Market Game). Given a set of items A = {1, . . . , m}
and a set of agents N = {1, . . . , n}, where each agent i has budget Bi and
valuation vector ai, the Fisher Market Game is such that:

• The pure strategy space of each agent i is the set of all possible valuation
vectors that i may report: Si = {si | si œ Rm

Ø0

}. We refer to a strategy
si as a report.

• Given a strategy profile s = (si)n
i=1

, the outcome of the game is any
fixed market equilibrium of the Fisher market given by ÈBi, siÍi, after
removing all items j such that

q
iœN sij = 0.

• Let x(s) = (x
1

(s), . . . , xn(s)) denote the market allocation for strategy
profile s. For all i œ N , agent i’s utility at s is ui(xi(s)), written as ui(s)
for short.
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Table 7.1: Summary: the social welfare of the Fisher market mechanism.
Lower bound (*) is due to Zhang [143]

Cobb-Douglas Leontief Linear
UB O(1/

Ô
n) O(1/n) O(1/

Ô
n)

LB �(1/
Ô

n) (*) �(1/n) �(1/n)

We will bound the loss in social welfare in the worst pure Nash equilibrium of
the mechanism, over all valuation profiles and for di�erent utility functions.
Before we do that however, we need to ask ourselves whether the mechanism
has Nash equilibria in the first place. Note that since the strategy space is
continuous, existence of Nash equilibria is not guaranteed. As we will see in
the next section, the mechanism actually has pure Nash equilibria for all three
utility functions that we consider.

Choosing the budgets

In a Fisher market, the budgets have a natural interpretation, as the amount
of commodity that each buyers brings to the market. In other words, from
the viewpoint of the seller, some buyers are “richer” than others. On the
other hand, in the mechanism for allocation of divisible items interpretation,
budgets are only artificial and are chosen by the mechanism. The natural
choice would be to assign equal budgets to all agents, which means that all
agents are treated equally by the mechanism. A market equilibrium when
agents are equipped with equal budgets is often called a competitive equilibrium
from equal incomes (CEEI) and has received considerable attention in the
literature1 as a way of achieving fair allocations [17, 44, 45].

On the other hand, sometimes the choice of budgets might be exogenous
and not entirely up to the designer. The designer might often be instructed to
treat agents di�erently for social or economical reasons; for example, premier
customers might have more “claim” on o�ered services. Such “favoritism” can
be implemented through the choice of di�erent budgets.

For the pure Nash equilibrium existence results in Section 7.2 we will
impose no restriction on the budgets (other that the sum of budgets is equal to
the sum of prices, which is an internal requirement of the market mechanism).
Existence is guaranteed for any budgets chosen by the designer. For the price
of anarchy results in Section 7.3, we will make the following assumptions.
For the upper bounds, we will assume that all budgets are equal; note that
it is su�cient to consider this case because, since the budgets are chosen
independently of the reported valuations, for any choice of budgets, we can

1The equal budget assumption is also referred to as a balanced game in [75] and [143]
for the same problem but a di�erent mechanism.
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7. The Fisher market mechanism

create a “bad” valuation profile adjusted to that choice of budgets on which
the mechanism can not outperform the stated bounds.

For the price of anarchy guarantees, we will assume that the budgets sat-
isfy a condition that we call ”-normalization [143]; this assumption requires
that the budgets are proportional to the agent’s utility for receiving all the
items. Intuitively, this makes sense; agents that would be more satisfied with
complete allocations are given more weight within the mechanism. For linear
and Cobb-Douglas utility functions and since we are considering the unit-sum
representation of valuations, the condition boils down to agents having equal
budgets. For Leontief utilities, there is more flexibility on the choice of bud-
gets, that depends on the valuations of the agents; this has to do with the
nature of the utility function. We will discuss these assumptions further in
Section 7.3.

Reny’s theorem for games with discontinuous payo�s
The Fisher market game that we will analyze has discontinuous payo�s and
thus standard methods for proving existence of pure Nash equilibria do not
apply. The discontinuities arise because when an agent changes her valuation
for an item from some very small positive number to 0, the fraction of that
item that the agent receives might exhibit a “jump”. Our main tool for dealing
with such cases is a non-trivial result due to Reny [125] on the existence of
pure Nash equilibria in general games with discontinuous payo�s. We set up
the required machinery starting with the following definitions.

Definition 7.2 (Secure payo�). Agent i can secure a payo� of – at strategy
profile (si, s≠i) œ S if there is s̄i œ Si, such that ui(s̄i, sÕ

≠i) Ø – for all sÕ
≠i close

enough to s≠i, i.e. if there exists ‘ > 0 such that for any sÕ
≠i with |sÕ

≠i≠s≠i| < ‘
then ui(s̄i, sÕ

≠i) Ø –.

In other words, agent i can secure the payo� – if the agent has a strategy
guaranteeing a utility of at least – not only at the strategy profile (s̄i, s≠i),
but also at all profiles where agent i plays s̄i but the other agents slightly
deviate from s≠i.

Definition 7.3 (Closure of the graph of the vector payo� function). A pair
(s, u) œ S ◊ Rn is in the closure of the graph of the vector payo� function
if u œ Rn is the limit of the vector of agent payo�s for some sequence of
strategies (sk)kØ1

converging to s. That is, if u = limk

1
u

1

(sk), . . . , un(sk)
2

for some sk æ s.

Definition 7.4 (Better-reply security). A game G = (Si, ui)n
i=1

is better-reply
secure if whenever (sú, uú) is in the closure of the graph of its vector payo�
function and sú is not a Nash equilibrium, some agent i can secure a payo�
strictly above uú

i at sú.

114



7.2. Existence of pure Nash equilibria

Theorem 7.1. [Pure nash equilibrium existence [125]] If the strategy space of
each agent i, Si, is a non-empty, compact, convex subset of a metric space, the
utility function of each agent i, ui(s1

, . . . , sn) is quasi-concave in the agent’s
own strategy, si, and the game G = (Si, ui)n

i=1

is better-reply secure, then G
has at least one pure Nash equilibrium.

7.2 Existence of pure Nash equilibria
In this section, we study the existence of pure Nash equilibria for the three
main classes of CES utility functions. According to the standard definition, a
strategy profile is a pure Nash equilibrium if no agent can increase her utility
by deviating to some other strategy. In the Fisher market game, since the
outcome of the game might be one of several market equilibria, we define a
pure Nash equilibrium of the Fisher market game to be a strategy profile where
for any deviation of any agent i, agent i’s payo� does not increase, for any
market equilibrium of the resulting strategy profile. Note that this is only an
issue when the utility functions are not strictly concave and hence the market
equilibrium is not necessarily unique [13]. We start with Cobb-Douglas utility
functions.

Cobb-Douglas utilities
The main result of this section is that the Fisher market game with Cobb-
Douglas utilities has pure Nash equilibria for a large class of valuations that
captures most scenarios of interest. That is, existence is guaranteed when the
game is strongly competitive (i.e. for each item j œ A, there exists more than
one agent with non-zero valuation for it) and the valuations are unit-sum (i.e.q

j aij = 1, ’i œ N). We assume the unit-sum representation throughout the
chapter, which is also consistent with the literature on divisible item allocation
[75, 89, 91]. Strong competitiveness is required in order for a pure Nash
equilibrium to exist, since if there is an item desired by a single agent, that
agent has an incentive to assign less and less value on this item and still be
allocated the item entirely. The very same condition is employed by Adsul et
al. [6], Feldman et al. [75] and Zhang [143].

As we mentioned earlier, the game that we study has discontinuous pay-
o�s and hence we will use Theorem 7.1 for proving existence of a pure Nash
equilibrium.
Recall that given an allocation x = (xij), where xij is the amount received by
agent i from good j, the utilities are:

ui(x) =
Ÿ

jœA:aij ”=0

x
aij

ij , ’i œ N.

.
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Moreover, since utility functions are strictly concave, the market equilibrium
and market prices are unique and have the following succinct form [68]:

pj =
nÿ

i=1

aijBi and xij = aijBiqn
k=1

akjBk
whenever pj ”= 0.

We show that the Fisher market game with Cobb-Douglas utilites and unit-
sum valuations is better-reply secure.

Lemma 7.1. The Fisher market game with Cobb-Douglas utilities and unit-
sum valuations is better-reply secure.

Proof. Since all games with continuous payo�s are better-reply secure, it is
su�cient to check the property at the points where the utility functions are
discontinuous [126]. In the Fisher market game with Cobb-Douglas utilities,
the discontinuity occurs when there exists an item j such that all agents
assign a value of zero towards that item. That is, the utility functions are
discontinuous at the points in the set

D = {s œ S | ÷ j œ A such that sij = 0, ’i œ N}

Let (sú, uú) be in the closure of the graph of the vector payo� function, where
sú œ D. Then uú = limKæŒ(u

1

(sK), . . ., un(sK)) for some sequence of
strategies sK æ sú. For each sequence term sK , let sK

ij be the report of agent
i for item j and SK

j the sum of reported values for item j. Let J be the set of
items that no agent declares as valuable (i.e. with strictly positive value) in
sú:

J = {j œ A | sú
ij = 0, ’i œ N and ÷i œ N such that aij ”= 0}

Using an average argument, there exist an agent i, item l and index N
0

œ N
such that

sK
il

SK
l

Æ 2
3 , for all K Ø N

0

.

That is, agent i gets at most 50% of item l in every term of the sequence
(sK)KØ1

(except possibly for the first N
0

≠ 1 terms). Let agent i and item
l be fixed for the remainder of the proof. Let Sú

j =
qn

k=1

sú
kj be the sum of

values of the agents for item j at the strategy profile sú, SK
j =

qn
k=1

sK
kj the

sum of values for item j at the strategy profile sK , and Li = {j œ A | sú
ij > 0}

the set of items that agent i declares as valuable in the limit.
For every item k ”œ J , we have that

lim
KæŒ

sK
ik

SK
k

= sú
ik

Sú
k

.
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Then the utility of agent i in the limit of the sequence of strategies (sK)KØ1

,
can be rewritten as follows:

uú
i = lim

KæŒ

Q

a
Ÿ

jœJ

A
sK

ij

SK
j

B–ij

·
Ÿ

jœLi

A
sK

ij

SK
j

B–ij
R

b

=
Ÿ

jœJ

lim
KæŒ

A
sK

ij

SK
j

Baij

·
Ÿ

jœLi

A
sú

ij

Sú
j

Baij

Æ
32

3

4ail

·
Ÿ

jœLi

A
sú

ij

Sú
j

Baij

We illustrate the case uú
i > 0. If uú

i = 0, the analysis is simpler; agent i can
easily secure a strictly positive payo� by declaring a small valuation on the
items in J , for every ‘-perturbation of the other agents’ strategies around sú

≠i.
Define the constants

– =
ÿ

jœLi:aij ”=0

aij and “ =
33

2

4 ail
–

,

where “ > 1. Let ” > 0 be fixed such that

” <
(“ ≠ 1) · Sú

j

“ · Sú
j ≠ sú

ij

, for all j œ Li.

Consider a new strategy profile, sÕ
i, for agent i, such that

sÕ
ij =

Y
_]

_[

(1 ≠ ”)sú
ij if j œ Li1

”
|J |

2
·
1q

kœLi
sú

ik

2
if j œ J

sú
ij(= 0) otherwise

Agent i’s utility when playing sÕ
i against strategies sú

≠i is:

ui(sÕ
i, sú

≠i) =
Ÿ

jœJ

A
sÕ

ij

sÕ
ij

Baij

·
Ÿ

jœLi

A
(1 ≠ ”)sú

ij

Sú
j ≠ ” · sú

ij

Baij

=
Ÿ

jœLi

A
(1 ≠ ”)sú

ij

Sú
j ≠ ” · sú

ij

Baij

Then for each j œ Li, the following inequality holds:

“ail ·
A

(1 ≠ ”) · sú
ij

Sú
j ≠ ” · sú

ij

B

>
sú

ij

Sú
j

. (7.1)

By taking the product of Inequality (7.1) over all items j œ Li, we obtain that
ui(sÕ

i, sú
≠i) > uú

i . The utility of agent i is continuous at (sÕ
i, sú

≠i), and so for
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small changes in the strategies of the other agents around sú
≠i, agent i still

gets a better payo� than at uú
i . That is, there exists ‘ > 0 such that for all

feasible strategies sÕ
≠i of the other agents, where ||sÕ

≠i ≠ sú
≠i|| < ‘, it is still the

case that ui(sÕ
i, sÕ

≠i) > uú
i . It follows that the game is better-reply secure.

We now state the theorem.

Theorem 7.2. The Fisher market game with Cobb-Douglas utilities has a
pure Nash equilibrium under unit-sum valuations whenever the game is strongly
competitive.

Proof. The strategy set of each agent in the Fisher market game with unit-
sum, Cobb-Douglas utilities is non-empty, compact, and convex. Moreover,
the utilities are quasi-concave in the agents’ own strategies; by Lemma 7.1,
the game is also better-reply secure. Finally, it can be easily seen that the
utility function of each agent is quasi-concave in the agent’s own strategy,
by an application of the vector composition rule for functions [39]. Thus
the conditions of Reny’s theorem are met, and so a pure Nash equilibrium is
guaranteed to exist.

Leontief utilities
For the class of Leontief utility functions, we prove the existence of a pure Nash
equilibrium by directly constructing a set of equilibrium strategies. Namely,
the uniform strategy profile is a Nash equilibrium regardless of the true valu-
ations; moreover, the statement holds even for games that fail to be strongly
competitive. The high level explanation is that Leontief utilities exhibit per-
fect complementarity, thus reporting a smaller valuation for an item that no
other agent desires does not result in an increased utility for the deviator
(since utility is taken as a minimum over the allocation/valuation ratios).

We start by analyzing two-agent markets and then extend the result to
markets with multiple agents.

Theorem 7.3. Given a Fisher market game for two agents with Leontief
utilities, the uniform tuple of strategies is a pure Nash equilibrium, and the
agents’ utilities are B

1

/ maxj{a
1j} and B

2

/ maxj{a
2j}, respectively.

In order to prove Theorem 7.3, we build upon a result of Chen et al. [51], that
describes the best response strategies in two-agent markets. First, for each
agent i œ N define the following terms:

amax
i = max

jœA
{aij}, amin

i = min
jœA

{aij}, smax
i = max

jœA
{sij}, smin

i = min
jœA

{sij}.

Then, given any two-agent market and an arbitrary fixed strategy s
2

of agent
2, the best response strategy of agent 1 is [51]

s
1

= (s
1j)jœA, where s

1j = 1 ≠ s
2j · B

2

smax
2

.
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In addition, given fixed strategies (s
1

, s
2

), the market equilibrium allocation
is unique and the utility of agent 1 is:

u
1

(s
1

, s
2

) = min
jœA

I
1 ≠ s

2j · (B
2

/smax
2

)
a

1j

J

.

Agent 2’s allocation is given by: x
2j = s

2j · (B
2

/smax

2

), ’j œ A, and her utility
is the minimum possible (as evaluated using strategy s

2

); that is, uÕ
2

(s
1

, s
2

) =
B

2

/smax
2

.
For ease of notation we will assume that the prices pj and the budgets Bi

satisfy the identity:
q

jœA pj =
q

iœN Bi = 1 [51]; the proof can be adapted
for a di�erent choice of total prices and total budgets. Then, the utility of
agent i (as evaluated using the agent’s strategy si) is:

uÕ
i = Biq

jœA pjsij
, where Bi

smax
i

Æ uÕ
i Æ Bi

smin
i

.

At a high level, by using s
1

, agent 1 forces agent 2 to get the minimum possible
utility (as evaluated with respect to the reported valuations si); this translates
to the worst possible allocation for agent 2, while agent 1 gets all the remaining
items.

In order for a pair of strategies (s
1

, s
2

) to be a pure Nash equilibrium,
the utility of each agent i (evaluated using her report) satisfies uÕ

i(s1

, s
2

) =
Bi/smax

i , otherwise, some agent could increase her allocation by using the
above best response strategy (which would decrease the other agent’s alloca-
tion). Theorem 7.3 follows from Lemmas 7.2 and 7.3.

Lemma 7.2. For every pair of strategies (s
1

, s
2

) that is a pure Nash equi-
librium of the Fisher market game with two agents and Leontief utilities, the
utility of each agent i, as evaluated using her true valuations, satisfies the
inequality: ui(s1

, s
2

) Æ Bi/amax
i .

Proof. Let Ai = {k | aik = amax
i }. The equilibrium utility of agent i (evalu-

ated using her true valuations) is:

ui = min
jœA

I
sij · (Bi/smax

i )
aij

J

Æ sik · (Bi/smax
i )

amax
i

,

where k œ Ai. If it was the case that ui > Bi/amax
i , then it would follow that

Bi

amax
i

< ui Æ sik · (Bi/smax
i )

amax
i

,

and so smax
i < sik, which is false. Thus ui(s1

, s
2

) Æ Bi/amax
i .

Lemma 7.3. The uniform strategy
1

1

m , · · · 1

m

2
guarantees agent 1 a payo� of

B
1

/amax
1

, regardless of agent 2’s strategy.
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Proof. Let the strategy of agent 1 be s
1

=
1

1

m , . . . , 1

m

2
. Consider an arbitrary

strategy s
2

of agent 2 and the resulting market equilibrium prices, pÕ. Then
the utility of agent 1 (as evaluated using the strategy) is:

uÕ
1

= B
1q

jœA pÕ
j · s

1j
= B

1

q
jœA pÕ

j ·
1

1

m

2 = m · B
1

.

Then the allocation of agent 1 for each item j is given by:

xÕ
1j = s

1j · uÕ
1

=
3 1

m

4
· m · B

1

= B
1

.

Agent 1’s utility (evaluated using her true valuations), is:

u
1

= minjœA

I
xÕ

1j

a
1j

J

= minjœA

I
B

1

a
1j

J

= B
1

amax
1

.

This completes the proof of the lemma.

Note that by reporting truthfully, agent i gets ui = Bi/
1q

jœA pj · aij

2
, where

Bi/amax
i Æ ui Æ Bi/amin

i . Thus in any pure Nash equilibrium, the agents fare
worse compared to truthful play.

Next we generalize Theorem 7.3 to any number of agents. Note that
the best response strategy of Chen et al. [51] does not apply to our game
directly. However, we observe that the uniform strategy remains a pure Nash
equilibrium regardless of the number of agents.

Theorem 7.4. Given a Fisher market game with Leontief utilities, the uni-
form strategy is a Nash equilibrium for any number of agents, with utilities
ui = Bi/amax

i , for all i œ N .

Proof. Let i be any agent and s≠i an arbitrary fixed strategy of the other
agents. From the objective function of the Eisenberg-Gale convex program,
it can be observed that all the other agents can be seen as equivalent to
a (combined) single agent. Thus the market equilibrium allocation can be
computed by reducing the game to two agents, i and ≠i. By Theorem 7.3,
agent i has no incentive to deviate from the uniform strategy; thus the uniform
strategy is also a pure Nash equilibrium of the n-agent game. It can be verified
that the utilities are ui = Bi/amax

i , for each i œ N .

Linear Utilities
Finally, the existence of pure Nash equilibria for linear utilities was established
by Adsul et al. [6], for strongly competitive games in a more restricted model
than ours. In their model, they require that the outcome of the game on a
given set of reports s, is the market equilibrium that maximizes the product of
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every agent’s utility according to their true valuations, i.e. if there is a market
equilibrium E that every agent prefers to every other market equilibrium, then
the outcome of the game is E . We will refer to this condition as conflict-freeness
[6].

Theorem 7.5. [Adsul et al. [6]] Given any Fisher market game with linear
utilities, there exists a (symmetric) pure Nash equilibrium in which the payo�s
are identical to those obtained when agents play truthfully.

The conflict-freeness condition is meaningful in [6] because it is assumed
that the outcome of the game is chosen by the agents, who have complete
information over the real valuations of other agents.2 When using the Fisher
market as a mechanism however, the designer does not have access to the true
values and hence she can not choose the conflict-free market equilibrium that
would guarantee stable play from the agents’ part. One remedy would be for
the designer to ask the agents to tie-break between di�erent market equilibria
in case of ties, but that would contradict direct revelation and would perhaps
introduce extra incentives for the agents to manipulate.

It is an open question if there is a systematic way to choose the market
equilibrium that would allow the market to be used as a mechanism for allo-
cating divisible goods. Given that for fl < 1, the utility functions are strictly
concave, it is possible that the outcome for fl = 1 could be defined as the limit
of some sequence for fl æ 1, in order to obtain a unique outcome. Whether
such a choice would result in the induced game having pure Nash equilibria
would have to be proved as well.

7.3 Price of anarchy bounds
Having examined the existence of pure Nash equilibria in the Fisher market
mechanism, we proceed to study its price of anarchy and give asymptotic
bounds for the three main classes of CES utility functions. The price of
anarchy is defined similarly to Chapter 5.

Following [143], we will impose a condition that we call ”-normalization:
every agent’s utility is proportional to her budget if she is allocated all of the
items. More formally,

Definition 7.5 (”-normalization). For each agent i œ [n], we have that
ui(0) = 0 and Bi/ui(1) = ”, where 0 and 1 are the all 0 and all 1 vectors.

Notice that by the definition of the linear and Cobb-Douglas utility functions,
and since valuations are unit-sum, this condition is equivalent to assigning
agents equal budgets, regardless of their true valuations of their reports. For
Leontief utilities, it could be the case that agents with di�erent valuations

2This is in fact the same approach that we take in the paper associated with this chapter.
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are given di�erent budgets, but since the designer does not know their true
valuations (but only their reported valuations), it seems that assigning equal
budgets is the only safe choice.

We start our investigations about the price of anarchy of the mechanism
from linear utility functions.

Linear Utilities
For linear utilities, we begin with the following upper bound.

Theorem 7.6. The Fisher market mechanism with linear utilities and unit-
sum valuations has a price of anarchy of O(1/

Ô
n).

Proof. Consider an valuation profile with n = m2 + m agents and m items,
and recall that for all agents i, Bi = 1. For every agent i œ {1, . . . , m}, define
her valuation vector as

ai = (0, . . . , 0, 1, 0, . . . , 0),

that is, the vector in which the ith coordinate is set to 1 and all other entries
are zero. For every agent i œ {m +1, . . . , m2 + m}, define her valuation vector
as

ai =
3 1

m
, . . . ,

1
m

4
.

By checking the Karush-Kuhn-Tucker (KKT) [100, 105] conditions of the
Eisenberg-Gale convex program [65], we obtain the market equilibrium:

- The prices are: pj = m + 1, ’j œ [m]

- The allocations are: xii = 1

m+1

, ’i œ {1, . . . , m}, xij = 1

m(m+1)

, ’i œ
{m + 1, . . . , m2 + m}, ’j œ [m], and xij = 0 everywhere else.

Moreover, for any truthful reporting, any market equilibrium gives the same
utility to every agent. Thus, regardless of the chosen allocation, the social
welfare under truthfulness is 2m

m+1

. By Theorem 7.5, there exists a Nash equi-
librium in which the social welfare is the same as that of the truthful strategy
profile, and so there exists a Nash equilibrium with a social welfare of 2m

m+1

.
The optimal social welfare is at least m≠1 and the price of anarchy is at most

2m
(m≠1)(m+1)

; asymptotically, the bound is O(1/
Ô

n).

We also establish the following lower bound.

Theorem 7.7. The Fisher market mechanism with linear utilities and unit-
sum valuations has a price of anarchy of �(1/n).
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Proof. By the ”-normalization, we have: Bi/(
qm

j=1

aij) = ”, which for linear
utilities implies that Bi = Bk, ’i ”= k. By only assigning value to her most
preferred item, each agent i can guarantee utility proportional to her budget
and hence bounded as follows:

ui Ø Bi · amax
iqn

k=1

Bk
= amax

i

n
.

In the worst case, all agents prefer the same item, so the price of the item isqn
k=1

Bk and each agent gets a fraction of Bi/(
qn

k=1

Bk). The optimal social
welfare is W ú Æ

qn
i=1

amax
i , and so the price of anarchy is:

qn
i=1

ui

W ú Ø
1

n

qn
i=1

amax
iqn

i=1

amax
i

= 1
n

.

Cobb-Douglas Utilities

Recall that under Cobb-Douglas utilities with unit-sum valuations, the Fisher
market mechanism allocates to each agent i exactly a fraction

xij = aijBiqn
k=1

akjBk

of every item j. This allocation coincides with that of the proportional-share
allocation mechanism, studied by Feldman et al. [75] and Zhang [143]. This
allows us to prove the following theorem.

Theorem 7.8. The Fisher market game with Cobb-Douglas utilities has a
Price of Anarchy of �(1/

Ô
n).

Proof. For the lower bound, we can use the arguments employed by Zhang
[143] to show that the proportional-share mechanism for linear utilities has a
price of anarchy of �(1/

Ô
n). The key observation is that the technique used

in their proof does not require a specific form of the utility functions; thus
the lower bound holds more generally for any concave, non-decreasing utility
function. As a result, the Fisher market game with Cobb-Douglas utilities has
a price of anarchy of �(1/

Ô
n).

For the upper bound, consider the same valuation profile that we con-
structed in Theorem 7.6 to prove the upper bound on the price of anarchy
for the Fisher market game for linear utilities (with n = m2 + m agents and
m items). With a simple check, it can be seen that reporting truthfully is
a Nash equilibrium. Moreover, under truthfulness, the social welfare is 2m

m+1

,
while the optimal social welfare is at least m ≠ 1. Thus the price of anarchy
is at most 2m

(m≠1)(m+1)

, and we get the asymptotic bound of O(1/
Ô

n).
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Leontief Utilities
Finally, for Leontief utilities, we give the next tight bound.

Theorem 7.9. The Fisher market mechanism with Leontief utilities and unit-
sum valuations has a price of anarchy of �(1/n).

Proof. For the upper bound, consider the following valuation profile, with
m = n. Let the budget of each agent i be Bi = 1

n and the valuations
ai = (0, . . . , 1, . . . , 0), where ai is the vector in which the i’th coordinate
is 1 and all others are 0. Given the fact that the uniform strategy is a pure
Nash equilibrium, regardless of the actual valuations and that

qn
k=1

Bk = 1,3
the utility of agent i in the equilibrium is ui = Bi/amax

i = Bi; thus the social
welfare is

q
i Bi = 1. On the other hand, the social welfare of truthful report-

ing is n and the price of anarchy is 1/n.

For the lower bound, by reporting truthfully, agent i can guarantee

ui = Bi

(
qm

j=1

pjaij) Ø Bi

(
qm

j=1

pjamax
i ) = Bi

(
qn

k=1

Bkamax
i )

The optimal welfare is W ú Æ
qn

i=1

ui(1) =
qn

i=1

1/amax
i , and so the price of

anarchy is:
qn

i=1

ui

W ú Ø
qn

i=1

(Bi/ (
qn

k=1

Bkamax
i ))

qn
i=1

(1/amax
i ) =

qn
i=1

(Bi/amax
i )

qn
i=1

(1/amax
i ) ,

since for ease of notation, we can assume that
qn

k=1

Bk = 1.3 The ”-normalization
implies: amax

i Bi = ”, and so the price of anarchy is at least

nÿ

i=1

B2

i

(
qn

i=1

Bi)2

The price of anarchy is then at least

1
n

· (
qn

i=1

12)(
qn

i=1

B2

i )
(
qn

i=1

Bi)2

Ø 1
n

· (
qn

i=1

1 · Bi)2

(
qn

i=1

Bi)2

= 1
n

,

where the inequality follows by the Cauchy-Schwarz inequality.

7.4 Conclusion and future work
It remains an interesting open question whether a pure Nash equilibrium of the
Fisher market game exists for CES functions with any value of fl. The main

3This assumption is done for notational simplicity, see also [51]; the proof can be adapted
to work for any choice of total budgets and total prices.
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challenge to answering this question is that there is no explicit formula for the
allocation; instead, the allocation rule is a part of the feasible solution to a
convex program. For the case of Cobb-Douglas utility functions, where there
is such an explicit allocation function, we were able to apply Reny’s theorem
to prove equilibrium existence. The same technique can be used to obtain
similar results for other mechanisms, like the proportional share allocation
mechanism studied in [75] and [143], where closed formulas for the allocations
exist.4

The challenge associated with the lack of an explicit expression for the
allocation also carries over into proving a tight lower bound on the price of
anarchy of the Fisher market mechanism with linear utility functions. For
this case, an additional di�culty is that the market equilibrium may not be
unique and hence a proof should take all market equilibria into account. We
emphasize here that it is possible that the �(1/n) lower bound on the price
of anarchy for the linear utilities case could be obtained without the equal
budget assumption, but we also conjecture that some more involved analysis
(that somehow manages to sidestep the challenges mentioned above) would
yield a �(1/

Ô
n) price of anarchy tight bound.

The applicability of the mechanism in the linear utility case was discussed
in Subsection 7.2; removing the conflict-freeness condition seems essential for
the market to be used as a mechanism for allocating divisible items. Figuring
out a way to uniquely define the output that does not depend on agents’ true
values that would still guarantee equilibrium existence or proving that such a
way does not exist is an important open question.

More generally, our results place the Fisher market mechanism in the lit-
erature of mechanisms for social welfare maximization in divisible item allo-
cation settings without money. The research agenda for this problem was laid
out at the end of Chapter 6. Answering some of these questions is definitely
a topic of future research.

4In fact, in a preliminary version of the paper associated with this chapter, we had a
proof of pure Nash equilibrium existence in the proportional share allocation mechanism for
any CES utility function.
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