
Manipulation of Elections: Algorithms and
Infeasibility Results

by

Piotr Faliszewski

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Lane A. Hemaspaandra

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2008

ii

To my parents, Bożena and Leszek Faliszewski.

iii

Curriculum Vitae

Piotr Faliszewski was born on November 7th, 1980 in Kraków, Poland. Piotr’s interests

in computer science started in high school when he attended lectures at AGH Univer-

sity of Science and Technology in Kraków, was a Polish Children’s Fund scholar, and

participated in science camps organized by that Fund. During that time, in 1997, Piotr

attended SciTech’97, a summer program for talented high school students organized by

Israel Institute of Technology, Technion, in Haifa, Israel. Starting in 1999 Piotr attended

AGH University of Science and Technology in Kraków, from which he graduated in 2004

with a Master of Science degree. In the Fall of 2004 Piotr joined the Ph.D. program of

the Department of Computer Science at the University of Rochester, where he worked

under the supervision of Professor Lane A. Hemaspaandra. In 2006 Piotr received a

Master of Science degree from the University of Rochester. During each of his four

summers in Rochester Piotr interned as an adjunct faculty member at the Rochester

Institute of Technology.

iv

Acknowledgments

I am deeply grateful to my advisor, Professor Lane A. Hemaspaandra, and to Profes-

sor Edith Hemaspaandra, who effectively became my coadvisor. Their advice, guidance,

and encouragement have been most valuable and will forever influence how I see research

and computer science.

I would like to thank Professors Saul Lubkin, Mitsunori Ogihara, Lenhart Schubert,

and Joel Seiferas who, together with Lane and Edith, served on my thesis committee,

freely offered their time and advice, and helped in improving this thesis. I also thank my

undergraduate advisor, Dr. Janusz Jarosz, who was responsible for my original interest

in computational complexity theory.

During my graduate student career I have worked closely with many wonderful re-

searchers, both in the Rochester area and beyond. I am grateful to Yoram Bachrach,

Eric Brelsford, Edith Elkind, Lane A. Hemaspaandra, Edith Hemaspaandra, Hen-

ning Schnoor, Ilka Schnoor, Mitsunori Ogihara, Jörg Rothe, Michael Wooldridge, and

Michael Zuckerman for their work with me and for shaping my ideas on research and

theoretical computer science. Many of the results presented in this thesis come from

our joint projects.

Section 3.3, Chapter 4, and Section 5.1 describe my joint work with Edith Hema-

spaandra and Lane A. Hemaspaandra (FHH06). In addition, parts of Chapter 4 are

based on (Fal08). Section 5.2 describes my joint work with Eric Brelsford, Edith

Hemaspaandra, Henning Schnoor, and Ilka Schnoor (BFH+08). Sections 6.1 and 6.3

describe joint work with Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg

Rothe (FHHR07; FHHR08). Section 6.2 describes joint work with Edith Hemaspaan-

v

dra, and Henning Schnoor (FHS08). Chapters 1, 2, and 3 present the introduction and

some preliminaries common to the whole thesis and, as such, are partially based on the

just-mentioned papers.

I thank the Department of Computer Science at the University of Rochester. The

department offered a wonderful environment for research and collaboration. I am grate-

ful to the Computer Science Department at Heinrich-Heine-Universität Düsseldorf and

to the Department of Computer Science at the University of Liverpool, both of which

hosted visits by me. I am particularly grateful to the Computer Science Department

at the Rochester Institute of Technology, which hired me as an adjunct faculty member

for each of my summers in Rochester, provided a wonderful working environment, and

greatly contributed to my development as an educator. I am particularly indebted to

Professor Stanis law Radziszowski for many long conversations on research, politics, and

everything.

Last but not least, I am very grateful to my family, and to my friends in Kraków,

Poznań, and Rochester. Without their unconditional support this thesis would not have

come to be.

Material in this thesis is based upon work supported by National Science Foundation

under grant CCF-0426761. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views

of the NSF or the University of Rochester.

vi

Abstract

Voting and elections are at the core of democratic societies. People vote to elect lead-

ers, decide policies, and organize their lives, but elections also have natural applications

in computer science. For example, agents in multiagent systems often need to work

together to complete some task, but each agent may have its own set of beliefs, pref-

erences, and goals. Voting provides agents with a natural way to reach decisions that

take all their preferences into account. With elections playing such an important role

both in real-life political settings and in computer science, it is natural to ask about

their resistance to misuse.

Two particular types of election misuse are manipulation and bribery. In manip-

ulation, a group of voters chooses to misrepresent its preferences in order to obtain a

more desirable outcome, and in bribery an outside agent, the briber, asks (possibly at

a cost) a group of voters to change its votes, to obtain some outcome desirable for the

briber. Classical results from political science show that, for any reasonable election

system, there are scenarios where at least some voters have an incentive to attempt

manipulation.

In this thesis we seek to protect elections from manipulators and bribers by making

their computational task of finding good manipulations/bribes prohibitively expensive.

When this is not possible, we seek to better understand (and even improve) the al-

gorithmic attacks that manipulators and bribers can employ. In doing so, we develop

new models of manipulation and bribery, and provide new approaches to studying the

computational complexity of bribery and manipulation in elections.

vii

Table of Contents

Curriculum Vitae iii

Acknowledgments iv

Abstract vi

List of Figures ix

1 Introduction 1

1.1 Elections and Manipulating Them . 2

1.2 Computational Social Choice . 5

1.3 Organization of the Thesis . 7

2 Preliminaries 8

2.1 Computational Complexity . 8

2.2 Two Useful NP-Complete Problems . 11

2.3 Graphs and Flow Networks . 13

2.4 Approximation Algorithms . 15

3 Elections, Bribery, and Manipulation 18

3.1 Elections and Election Systems . 18

3.1.1 Utility-Based Voting . 23

viii

3.2 Manipulating Elections . 24

3.3 Relations Between Bribery and Manipulation 26

4 Plurality and Utility-Based Systems 33

4.1 Bribery in Plurality . 35

4.2 Nonuniform Bribery . 46

4.2.1 Nonuniform Bribery Model . 48

4.2.2 Unweighted Nonuniform Bribery Is Easy 49

4.2.3 Nonuniform Bribery in Weighted Elections 52

4.3 Conclusions and Research Directions . 59

5 Manipulating Scoring Protocols 61

5.1 The Complexity of Bribery in Scoring Protocols 62

5.2 Approximately Manipulating Scoring Protocols 72

5.2.1 Definitions and Discussion . 72

5.2.2 Results . 74

5.3 Conclusions and Research Directions . 81

6 Towards Perfect Resistance: Copeland Voting 83

6.1 Bribery . 84

6.2 Manipulation . 88

6.2.1 Constructing Manipulation Instances 88

6.2.2 The Proof . 93

6.3 Microbribery . 97

6.4 Conclusions and Research Directions . 115

Bibliography 116

ix

List of Figures

4.1 The main procedure for plurality-weighted-$briberyunary. 43

4.2 The main procedure for plurality-weightedunary-$bribery. 44

4.3 The procedure UnaryPricesApproval. 58

6.1 Edge capacities and costs for min-cost-flow instance I(T), built from

election E. 99

6.2 The microbribery algorithm for Copelandα elections with an odd number

of voters. 101

6.3 Edge capacities and costs for min-cost-flow instance J(T), built from

election E. 106

6.4 Edge capacities and costs for min-cost-flow instance L(T), built from

election E. 110

1

1 Introduction

Elections provide a natural way for a group of individuals, each of whom may have

different goals and preferences, to arrive at a decision that is somehow acceptable to

all of them. People vote on issues as varying as selecting their governments, choos-

ing best movies, or deciding where to have dinner on a given day. Elections are also

a very interesting and natural tool within computer science, especially in multiagent

systems, where agents often have to make joint decisions. As just a few examples of

applications of voting in multiagent systems we mention the work of Ephrati and Rosen-

schein (ER97) where elections are used for planning, the work of Ghosh et al. (GMHS99)

where voting is used within a recommender system for movies, and the work of Dwork

et al. (DKNS01) where elections are used to aggregate results from multiple web-search

engines. With elections playing such an important role both in real-life political settings

and in computer science, it is natural to ask about their resistance to misuse.

In this thesis we study the complexity of manipulation and bribery in elections. Ma-

nipulation refers to situations where voters choose to submit votes that do not truthfully

reflect their real preferences and bribery refers to situations where it is an outside agent,

the briber, that to achieve some goal asks a group of voters to change their votes (pos-

sibly at an expense). For an example of manipulation, a voter might rank his or her

favorite candidate’s strongest competitor as the least desired candidate, so that his or

her favorite candidate’s chances of winning might increase. In this thesis we are inter-

ested in computational questions regarding manipulation and bribery. For example, we

ask if there is an efficient algorithm that, given an instance of an election, a preferred

2

candidate in this election, and a set of manipulative voters, decides whether there are

votes that the manipulative voters could cast to make their preferred candidate a win-

ner. We seek to classify existing election systems with respect to the computational

complexity of manipulation and bribery. In doing so, we develop new models of manip-

ulation and bribery, and provide new approaches to studying computational complexity

of bribery and manipulation in elections.

We stress that while manipulation and bribery have natural negative connotations,

they do not necessarily need to correspond to cheating or any sort of illegal actions. For

example, the problem of manipulation can be viewed as the problem of deciding whether

a given candidate still has a chance of winning, given that some group of voters (the

“manipulators”) exercises its right to vote. If we know that no candidate other than the

current winner can possibly become a winner, irrespective of what votes would be cast

by those voters who haven’t yet expressed their opinion, then we can safely terminate

the election. Of course, voters in human elections would be scandalized if they were told

that their votes were found to be irrelevant. However, in multiagent systems the fact

that some agents do not need to vote means that both the election organizer and these

agents save resources. This variant of the manipulation problem is sometimes referred

to as the problem of vote elicitation.

In a similar spirit, one could view bribery as a problem of finding a coalition of

voters who have the ability to switch the result of the election. One could view voters’

prices as measuring the difficulty of convincing them to join the coalition.

1.1 Elections and Manipulating Them

The goal of an election system is to aggregate individual preferences and provide an

outcome that “best represents” them. There is no clear definition of what best represents

means and thus, throughout history, people have come up with quite a large number of

different election systems. For example, most of the elections in the Athenian democracy

were held using a simple majority rule: Members of the assembly could either agree with

the speaker and vote yes or disagree with him and vote no. Such a system is both fair

3

and natural but is also severely limited. Sometimes we need to choose among more than

two alternatives!

One of the earliest accounts of this problem appears in a letter from Pliny the

Younger to Titius Aristo, dated A.D. 105 (see (MU95) for a translation). The letter

discusses a case where a group of liberated slaves, so-called freed men, was found near

a dead body of the employer, consul Afranius Dexter. It was not apparent whether the

consul committed suicide or whether he was killed by the freed men. Members of the

Roman Senate were quick to divide themselves into three factions: Those who wanted

the freed man to be left free (without, however, declaring them innocent), those who

believed that the men should be banished and sent to an island, and those who believed

that the men should be put to death. The Senate needed to vote in order to come up with

a verdict. However, it was not at all clear whether the Senate should vote separately

on each issue (in which case the men would be let free), should first decide between

letting the men go free and punishing them somehow (in which case the joint ranks of

the supporters of banishment and the supporters of the death penalty would have the

majority), or should organize the voting in some other way. Eventually, the supporters

of the death penalty dropped their proposal and joined the supporters of banishment.

They worried that otherwise the freed men would go unpunished. Interestingly, Pliny

the Younger, who was organizing the election, was himself an involved supporter of

letting the men go free and insisted on voting on each issue separately.

The above case illustrates one of the most important questions regarding voting and

election systems: How to organize elections in such a way that they are easy to conduct

and neither the voters nor the organizers have the incentive (or ability) to skew the

results. Death penalty supporters attempted to manipulate the election by voting for

the banishment, even though it was against their true belief. The chair of the election,

Pliny the Younger, attempted to control the result1 via insisting that each issue should

be voted on separately. Both the attempts succeeded partially: The men were punished

but were not killed. The issue of manipulation (and its closely related cousin, bribery)

1Election control refers to settings where the organizers of the election change its structure (e.g., add

or delete candidates, add or delete voters) in order to obtain a preferred outcome.

4

is at the heart of this thesis and the example described by Pliny the Younger shows how

manipulation has been a serious threat to elections since the earliest days.

Could Pliny the Younger have avoided the problems of manipulation and control?

For example, could he have chosen an election system in which the voters would have

no incentive to misrepresent their votes? A most interesting sequence of results of Ar-

row (Arr63), Gibbard (Gib73), Satterthwaite (Sat75), and Duggan and Schwartz (DS00)

answers this question negatively. Arrow showed that there is no election system that

satisfies a small set of reasonable requirements and Gibbard and Satterthwaite showed

that for any natural election system2 there exists a scenario where some voter has an in-

centive to misrepresent his or her vote, i.e., to attempt manipulation. Strictly speaking,

Gibbard and Satterthwaite showed their result for the so-called resolute election systems

(i.e., systems that always elect a single unique winner) but Duggan and Schwartz (DS00)

relaxed this resoluteness requirement.

Manipulation in elections is very tempting from the point of view of the voters

involved, but from the point of view of the society it can be quite harmful. Let us

consider the following example. We have three candidates, a, b, and c, and nine voters.

Four voters, supporters of a, have sincere preferences expressed by a > b > c. That

is, they like a best, then b, and then c. The next three voters, supporters of b, have

preference b > a > c. Finally, two voters have preference c > b > a. The election is

conducted using Borda election system (that is, for each vote, each candidate receives

2 points for being ranked first, 1 point for being ranked second, and 0 points for being

ranked last). Candidates with the most points win. If the voters reported their true

preferences then a would get 11 points, b would get 12 points, and c would get 4 points.

So, b would be the unique winner. However, b would only have 1 point of advantage over

a and so his or her supporters could attempt manipulation via voting a > c > b. a’s

supporters might reason that a couple of extra points would not change c’s performance

but taking points away from b would make a a winner. However, if the supporters of

2By natural we mean here that the system involves at least three candidates, is nondictatorial—

there is no single voter who solely, irrespective of anyone else, decides who is the winner—and that

every candidate can possibly become a winner.

5

b also attempted manipulation and voted b > c > a (using a similar justification) then

the outcome of the election would be that c gets 11 points, a and b get 8 points each,

and c is the unique winner. Naturally, it would not serve the society well as 7 out of 9

voters in fact believe that c is the least desirable candidate.

In this thesis we do not discuss issues such as why a particular group of voters would

attempt manipulation (or even how these voters got together, or game-theoretic aspects

of multiple groups of manipulators acting at the same time). We focus on a scenario

where there is a single group of manipulators who already got together and decided

which candidate’s victory they would like to ensure. The purpose of the above example

is to show that manipulation attempts can lead to very undesirable outcomes and thus

we should do our best to render manipulation infeasible.

1.2 Computational Social Choice

Results of Arrow, Gibbard and Satterthwaite, and Duggan and Schwartz are quite dis-

couraging. However, a brilliant idea, originating in a sequence of papers by Bartholdi,

Tovey, Trick, and Orlin (BTT89a; BO91; BTT92) is that even though voters might in

principle have an incentive to cheat in an election, the problem of finding an appro-

priate manipulative action (e.g., figuring out how to misrepresent one’s vote) might be

so computationally difficult that in practice the voters would not have the resources

needed to cheat effectively, and thus would be prevented from manipulating elections.

This idea of computational study of elections proved to be remarkably fruitful and,

together with the realization that societies of agents in multiagent systems face similar

issues to those faced by societies of people, lead to the development of a new field of

study, computational social choice, which intersects with political science, economics,

and computer science. We will not describe computational social choice in detail here,

but instead we point the reader to an excellent survey by Chevaleyre et al. (CELM07).

In this thesis we focus on the line of research within computational social choice that

directly extends the work of Bartholdi, Orlin, Tovey, and Trick.

Since the publication of the seminal works of Bartholdi, Orlin, Tovey, and Trick,

6

a large body of research has been dedicated to the study of computational prop-

erties of election systems. Particular interest was paid to the issues of manipula-

tion (CS03; EL05b; CS06; CSL07; HH07; PR07; BFH+08; FHS08; MPRZ08), vote elic-

itation (CS02; Con07; Wal08; XC08; PRVW08), bribery (FHH06; CFRS07; EHRS07;

Fal08), and control (HHR07a; HHR07b; ENR08; FHHR08; MPRZ08).3 Separately,

complexity-theoretic analysis of elections showed that some very attractive election sys-

tems may be impractical to use. Early work in this direction was done by Bartholdi,

Tovey, and Trick (BTT89b), and was followed by papers by Hemaspaandra, Hemaspaan-

dra, and Rothe (HHR97) on the complexity of Dodgson elections, by Hemaspaandra,

Spakowski, and Vogel (HSV05) on Kemeny elections, and by Rothe, Spakowski, and

Young (RSV03) on Young elections. These papers show that for the election systems

they study the problem of deciding whether a particular candidate is a winner is com-

plete for parallel access to NP (a believed-to-be-difficult complexity class). We point

the readers interested in this line of work to the survey by Faliszewski et al. (FHHR).

(That survey also discusses issues of control, manipulation, and bribery, but focuses on

the results of the authors and does not attempt to present a complete view of the field.)

In this thesis we classify election systems with respect to whether they allow for com-

putationally tractable manipulation and bribery. A standard technique for showing that

a particular election-related problem (say, manipulation or bribery) is computationally

intractable is to show that it is NP-hard. This approach is taken in almost all of the

papers on computational social choice cited above, and it is the approach that we take in

this thesis. One of the justifications for using NP-hardness as a barrier against manip-

ulation and control of elections is that in multiagent settings any attempts to influence

the election’s outcome are made by computationally bounded software agents that have

neither human intuition nor the computational ability to solve NP-hard problems.

Recently, such papers as (CS06; PR07; HH; MPS08) (and, to some extent, (ZPR08))

have studied the frequency (or sometimes, probability weight) of correctness of heuristics

for voting problems. Although this is a fascinating and important direction, it does not

3The above list of papers is not complete and is only given to indicated how active the field is. The

contents of this thesis were originally presented in some of the papers cited above.

7

at this point remove the need to study worst-case hardness. Indeed, we view worst-

case study as a natural prerequisite to a frequency-of-hardness attack: After all, there

is no point in seeking frequency-of-hardness results if the problem at hand is in P to

begin with. And if one cannot even prove worst-case hardness for a problem, then

proving “average-case” hardness is even more beyond reach. Also, current frequency-

of-hardness results have debilitating limitations (for example, being locked into specific

distributions; depending on unproven assumptions; and adopting “tractability” notions

that declare undecidable problems tractable and that are not robust under even linear-

time reductions). These models are arguably not ready for prime time and fail to imply

average-case polynomial runtime claims. (EHRS07; HH) provide discussions of some of

these issues.

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2 we give preliminary definitions, no-

tation, and conventions from computer science. In particular, we provide necessary

concepts from computational complexity theory, present the decision problems we use

in our NP-hardness proofs, and discuss algorithmic tools that we use, such us network

flows and approximation algorithms. In Chapter 3 we describe the election systems

that we study, our conventions for representing votes, the problems of bribery and ma-

nipulation, and results relating the complexity of bribery and manipulation problems.

Chapters 4, 5, and 6 constitute the main body of the thesis. In Chapter 4 we focus on

the issues of bribery in plurality voting and in related systems, in Chapter 5 we study

the complexity of manipulation and bribery for an important family of election rules

(so-called scoring protocols), and in Chapter 6 we focus on Copeland voting (an election

rule with some of the most promising computational properties).

8

2 Preliminaries

In this section we review basic notions and results regarding algorithms and compu-

tational complexity theory. A reader familiar with the material presented in the text-

books of Papadimitriou (Pap94), Bovet and Crescenzi (BC93), Balcázar, Dı́az, and

Gabarró (BDG95; BDG90), and Cormen et al. (CLRS01) may safely skim over this

chapter, paying attention only to the conventions that we establish for this thesis.

Generally, we use standard mathematical notation. In particular, we use N to denote

the set {0, 1, 2, . . .} and Z to denote the set {. . . ,−2,−1, 0, 1, 2, . . .}, and if A is a finite

set then we use ‖A‖ to denote the cardinality of A.

2.1 Computational Complexity

Computational complexity theory seeks to classify problems with respect to resources

(e.g., time or space) necessary to solve them in a particular computation model. In this

thesis we use Turing machines as our model of a computer and focus on time complexity.

With a few exceptions, in this thesis we focus on decision problems, i.e., problems that

seek a yes/no answer. We define decision problems using the following, standard format

(see (GJ79)):

Name: Primes.

Given: An odd, positive integer n.

Question: Is n prime?

9

Formally, decision problems are encoded as languages. An alphabet Σ is a finite set

of symbols and a string over Σ is a finite sequence of symbols from Σ. Σ∗ denotes the

set of all strings over Σ. A language L over an alphabet Σ is a subset of Σ∗. For a string

x in Σ∗, by |x| we mean the length of x.

A decision problem is modeled as a language over some alphabet Σ via uniquely

encoding each yes instance of the problem as some string over Σ. Throughout this

thesis, without loss of generality, we assume that each decision problem is encoded as

a language over Σ = {0, 1} in a natural, efficient way. In particular, we assume that all

numbers, unless specified otherwise, are encoded in binary. However, aside from this

one convention, we do not look at specific details of our encodings. We point the reader

to the classic textbook of Garey and Johnson (GJ79) for a discussion of this issue.

We often use terms “decision problem” and “language” interchangeably, even

though, formally, these are two different types of entities. The reader can easily translate

between decision problems and corresponding languages.

The main goal of this thesis is to classify various election problems either as easy or

as hard; our primary tools to achieve such classification are the class P and the theory

of NP-completeness. A language L belongs to P if it can be solved in polynomial time

on a deterministic Turing machine (i.e., if there exists a polynomial-time algorithm that

for each string x ∈ Σ∗ decides whether x ∈ L). A language L belongs to NP if it can be

solved in polynomial time on a nondeterministic Turing machine.1 Naturally, P ⊆ NP.

To show that a language is computationally hard, we prove that some known-to-be-

hard language reduces to it. At the intuitive level, a language A reduces to a language B

if the ability to solve instances of B implies the ability to solve instances of A. Formally,

1Intuitively, NP is the class of problems whose yes instances have short (polynomially bounded in

the instance length) proofs that they are in fact yes instances. Consider problem Clique below.

Name: Clique.

Given: Graph G and a nonnegative integer k.

Question: Does G contain a clique of size k?

Clique is in NP because, given a graph G and a size-k subset of its vertices, it is easy to verify in

polynomial time whether these vertices form a clique.

10

to establish the relative complexity of two languages we use the standard notion of a

polynomial-time many-one reduction.

Definition 2.1. Let A and B be two languages over alphabet Σ. A ≤p
m B (A many-one

reduces to B) if there is a polynomial-time computable function f such that

(∀x ∈ Σ∗)[x ∈ A ⇐⇒ f(x) ∈ B].

A language is NP-hard if every language in NP reduces to it. A language is NP-

complete if it is NP-hard and belongs to NP. Typically, to show that a problem is

NP-complete we first prove that it is in NP, and then we give a polynomial-time many-

one reduction to it from one of the well-known NP-complete problems. In Section 2.2

we will present two NP-complete problems that we use most often (almost exclusively)

in our NP-completeness proofs.

Aside from the standard polynomial-time many-one reductions, in one of our results

relating the complexity of manipulation and bribery we also need disjunctive truth-table

reductions.

Definition 2.2. Let A and B be two languages over alphabet Σ. We say that A ≤p
dtt B

(A disjunctively truth-table reduces to B) if there is a polynomial-time procedure that

on input x outputs a list of strings y1, . . . , ym such that x ∈ A if and only if at least one

of yi, 1 ≤ i ≤ m, is in B.

When clear from context, we will use terms “reduce” and “reduction” as shorthands

for “polynomial-time many-one reduce” and “polynomial-time many-one reduction.”

Detailed treatment of various reduction types can be found, e.g., in the work of Ladner,

Lynch, and Selman (LLS75).

As a convention, when giving an algorithm for a decision problem or when giving

a reduction we assume that the inputs satisfy the constraints specified in the Given

clause of the problem definition. For example, if we were to construct a reduction for

the problem Primes, we would assume that the inputs to be handled are odd integers

exclusively. Our reduction would not have to explicitly test if, for example, the input

integer is even. Such semantic constraints on problem inputs can easily lead to strange

11

situations (e.g., imagine the problem of satisfiability of boolean formulas where we

assume that our input formulas are satisfiable), but in our problem definitions we will

only use easily verifiable conditions, such as requiring numbers to be odd or even. Thus,

all of our algorithms and reductions can be adjusted to verify whether their inputs satisfy

appropriate conditions and, when not, either to outright reject (the algorithms) or to

output fixed no instances (the reductions; we will never reduce to Σ∗ so this will always

be possible). This convention allows us to make our NP-completeness proofs a little

clearer.

2.2 Two Useful NP-Complete Problems

Almost all NP-hardness results of this thesis follow via reductions from (variants of)

Partition (in the case of weighted elections) and X3C (in the unweighted cases). Nat-

urally, both Partition and X3C are NP-complete (see, e.g., (GJ79)). Partition asks

whether it is possible to split a sequence of integers into two subsequences that have

equal sums.

Name: Partition.

Given: A sequence s1, . . . , sn of nonnegative integers satisfying
∑n

i=1 si ≡ 0

(mod 2).

Question: Is there a set A ⊆ {1, . . . , n} such that
∑

i∈A si =
∑

i∈{1,...,n}−A si?

To prove one of our results in Section 5, we need a more restrictive version of the

problem. Let s1, . . . , sn be a sequence of nonnegative integers such that
∑n

i=1 si ≡ 0

(mod 2). In Partition′ we assume that for each i, 1 ≤ i ≤ n, it holds that

si ≥
2

2 + n

n∑
i=1

si (2.1)

and we ask whether there exists an A ⊆ {1, . . . , n} such that
∑

i∈A si = 1
2

∑n
i=1 si. For

the sake of completeness, we include a proof that Partition′ remains NP-complete.

Lemma 2.3. Partition′ is NP-complete.

Proof. Clearly, Partition′ is in NP. We will show, by a reduction from the standard

variant of Partition, that it is also NP-hard.

12

Let q = (s1, . . . , sn) be a sequence of nonnegative integers and let 2S =
∑n

i=1 si.

First, we construct a sequence q′ = (s′1, o
′
1, . . . , s

′
n, o′n) of 2n nonnegative integers that has

the following two properties. (1) q′ can be partitioned into two equal-sum subsequences

if and only if q can be. (2) Each partition of q′ into two equal-sum subsequences splits

q′ into two sequences of the same cardinality. We define s′i and o′i, for 1 ≤ i ≤ n, as

follows.

s′i = 3i−1 + 3nsi.

o′i = 3i−1.

Sequence s′1, o
′
1, . . . , s

′
n, o′n sums up to 2S′, where

S′ =
1
2

n∑
i=1

(s′i + o′i) = 3nS +
n∑

i=1

3i−1 = 3nS +
3n − 1

2
.

Clearly, any partition of s′1, o
′
1, . . . , s

′
n, o′n into two equal-sum subsequences splits q′ into

two halves such that if s′i belongs to one then o′i belongs to the other. It is also immediate

that q can be partitioned into two equal-sum subsequences if and only if q′ can.

To satisfy condition (2.1) we add a constant to each s′i and o′i. Define q̂ to be a

sequence of numbers ŝ1, ô1, . . . , ŝn, ôn such that for each i, 1 ≤ i ≤ n,

ŝi = s′i + S′ and

ôi = o′i + S′.

Clearly, any partition of q′ still is a partition of q̂, since any partition of q′ splits q′ into

two subsequences of the same cardinality. The converse holds because any partition of q̂

has to split it into subsequences that each sum up to Ŝ = S′+nS′ and this is only possible

if each subsequence contains exactly n elements. (A sum of more than n elements would

be greater than (n + 1)S′ and that would be more than the other subsequence could

sum up to.) It remains to show that (2.1) holds for q̂. This is the case because each

ŝi and ôi is greater than S′ and S′ = 2
2+2n Ŝ. (Note that sequence q̂ has 2n elements.)

Since q̂ can be computed in polynomial time, the proof is completed. q

X3C, exact cover by 3-sets (our problem of choice when reducing to unweighted

election problems) is defined as follows.

13

Name: X3C.

Given: A set B = {b1, . . . , b3k}, k ≥ 1, and a family of sets S = {S1, . . . , Sn}

such that for each i, 1 ≤ i ≤ n, it holds that Si ⊆ B and ‖Si‖ = 3.

Question: Is there a set A ⊆ {1, . . . , n}, ‖A‖ = k, such that
⋃

i∈A Si = B?

The set A about which we ask in X3C is called an exact cover of B. It is a “cover”

because every member of B belongs to some Si such that i ∈ A, and it is “exact”

because each member of B belongs to exactly one Si such that i ∈ A.

2.3 Graphs and Flow Networks

An undirected graph G is a pair (V (G), E(G)), where V (G) is the set of vertices and

E(G) is the set of edges, and each edge is an unordered pair of distinct vertices.2 A

directed graph is defined analogously, except that the edges are represented as ordered

pairs. For example, if u and v are distinct vertices in an undirected graph G then G

either has an edge e = {u, v} that connects u and v or it doesn’t. On the other hand,

if G is a directed graph then G either has an edge e′ = (u, v) from u to v, or an edge

e′′ = (v, u) from v to u, or both e′ and e′′, or neither e′ nor e′′.

For a directed graph G, the indegree of a vertex u ∈ V (G) is the number of G’s

edges that enter u (i.e., the number of edges of the form (v, u) in E(G)). Similarly, the

outdegree of u ∈ V (G) is the number of edges that leave u (i.e., the number of edges of

the form (u, v) in E(G)).

Intuitively, a flow network is a network of nodes with directed edges through which

we want to transport some amount of flow from the source to the sink (where these are

two designated nodes). Each edge e can carry up to c(e) units of flow, and transporting

each unit of flow through e costs a(e). In the min-cost-flow problem we have a target

flow value F , and the goal is to find a way of transporting F units of flow from the

2In this thesis, the symbols E and V are generally reserved for elections and voters, except for the

just introduced “overloading” of them as E(G) and V (G) to mean sets of edges and vertices in a graph

G. The intended meaning of E and V will always be clear from the context.

14

source to the sink, while minimizing the cost. (If there is no way of achieving target

flow F , the cost in effect is infinite.) Let us now define flow networks formally.

Definition 2.4. 1. A flow network is a quintuple (K, s, t, c, a), where K is a set

of nodes that includes the source s and the sink t, c : K2 → N is the capacity

function, and a : K2 → N is the cost function. We assume that c(u, u) = a(u, u) =

0 for each node u ∈ K, and that at most one of c(u, v) and c(v, u) is nonzero for

each pair of distinct nodes u, v ∈ K. We also assume that if c(u, v) = 0 then

a(u, v) = 0 as well.

2. Given a flow network (K, s, t, c, a), a flow is a function f : K2 → Z that satisfies

the following conditions:

(a) For each u, v ∈ K, we have f(u, v) ≤ c(u, v), i.e., capacities limit the flow.

(b) For each u, v ∈ K, we have f(u, v) = −f(v, u).3

(c) For each u ∈ K−{s, t}, we have
∑

v∈K f(u, v) = 0, i.e., the flow is conserved

in all nodes except the source and the sink.

3. The value of flow f is:

flowvalue(f) =
∑
v∈K

f(s, v).

The particular flow network we have in mind will always be clear from the context

and so we will not indicate it explicitly.

4. The cost of flow f is defined as:

flowcost(f) =
∑

u,v∈K

a(u, v)f(u, v).

That is, we pay the price a(u, v) for each unit of flow that passes from node u to

node v.

3Note that each flow is fully defined via its nonnegative values. Whenever we speak of a flow (e.g.,

when defining some particular flows) we will just speak of its nonnegative part.

15

Given a flow network (K, s, t, c, a) we will often refer to pairs of distinct nodes

(u, v) ∈ K2 such that c(u, v) > 0 as edges.

Below we define the min-cost-flow problem, which is well-known from the literature.

The definition we employ here is not the most general one and the reader might want

to consult, for example, the monograph by Ahuja, Magnanti, and Orlin (AMO93) for a

comprehensive discussion of the problem.

Definition 2.5. We define the min-cost-flow problem as follows: Given a flow network

N = (K, s, t, c, a) and a target flow value F , find a flow f that has value F (if one

exists) and has minimum cost among all such flows, or otherwise indicate that no such

flow f exists.

The min-cost-flow problem has a polynomial-time algorithm.4 There is a large body

of work devoted to flow problems and we will not even attempt to provide a complete

list of references here. Instead, we point the reader to the excellent monograph by

Ahuja, Magnanti, and Orlin (AMO93), which provides descriptions of polynomial-time

algorithms, theoretical analysis, and numerous references to previous work on flow-

related problems. We also mention that the issue of flows is so prevalent in the study of

algorithms that the textbook of Cormen et al. contains an exposition of the min-cost-

flow problem (CLRS01, p. 787).

2.4 Approximation Algorithms

If a given problem is NP-complete then, unless P = NP, there is no polynomial-time

algorithm for this problem. However, this does not mean that the problem is neces-

sarily hard to solve in practice. It might be the case that an interesting subproblem

is easy, or that typically the interesting instances are easy to solve, or that there are

4The Min-cost-flow problem is often defined in terms of capacity and cost functions that are not

necessarily limited to nonnegative integer values and so the corresponding flows are not restricted to

integer values either. However, crucially for us, it is known that if the capacity and cost functions have

integral values (as we have assumed) then there exist optimal solutions to the min-cost-flow problem

that use only integer-valued flows and that can be found in polynomial time.

16

fast approximation algorithms for the problem. In this thesis we will be interested in

this last possibility. We warn the reader that this subsection is geared strictly to the

use of approximation algorithms in this thesis. Thus, we only introduce those notions

that are necessary for us here and define these generally enough only as to be useful

for our purposes. We point the readers interested in a more thorough treatment to the

textbooks of Vazirani (Vaz03) and Ausiello et al. (ACG+99).

Approximation algorithms are typically considered in the context of the so-called

search problems (or optimization problems), that is, problems where the goal is to find

a possible solution (the goal is to find a high-quality solution) instead of just deciding

whether one exists. For example, in a decision variant of Partition we are given a

sequence of nonnegative integers s1, . . . , sn such that
∑n

i=1 si ≡ 0 (mod 2), and the

question: Is there a subsequence that sums up to exactly S = 1
2

∑n
i=1 si? In the search

variant of Partition we would want to compute such a subsequence. An approximate

solution would be a subsequence that sums up to some value S′, S′ ≤ S, and we would

measure the quality of such a solution via asking for which rational ε, 0 < ε < 1, it

holds that S′ ≥ (1− ε)S.

Let S be a search problem. For each instance I of S we let Sol(I) mean the set of all

feasible solutions. Without loss of generality we assume that Sol(I) is never empty (for

example, we can include a dummy solution for each instance). We let f be a function

such that for each instance I and solution s ∈ Sol(I), f(I, s) is a nonnegative integer. We

interpret f(I, s) as the quality of solution s for instance I. In maximization problems

we seek a solution s with as high a value of f(I, s) as possible, and in minimization

problems we seek a solution s with as low a value of f(I, s) as possible. f is sometimes

called the goal function.5 By Opt(I) we mean the value of the best solution for I, that

is, for the case of maximization problems, Opt(I) = max{f(I, s) | s ∈ Sol(I)} and for

the case of minimization problems, Opt(I) = min{f(I, s) | s ∈ Sol(I)}.

We say that an algorithm A is a fully polynomial-time approximation scheme (FP-

5For many search problems the choice of the goal function is obvious. However, this is not always

the case. In particular, we will run into the problem of selecting an appropriate goal function when

discussion approximate solutions for manipulation, in Section 5.2.

17

TAS) for S if it holds that for each instance I of S and each rational ε, 0 < ε < 1, A

computes, in time polynomial in the size of I and 1
ε , a solution A(I, ε) such that

1. for a maximization problem, f(A(I, ε)) ≥ (1− ε)Opt(I),

2. for a minimization problem, f(A(I, ε)) ≤ (1 + ε)Opt(I).

An FPTAS allows one to flexibly balance the amount of time that one is willing

to invest in computing a solution, and the quality of the solution that one expects.

Unfortunately, unless P = NP, not all NP-complete problems have an FPTAS. For

example, consider an NP-complete problem whose search variant has the property that

for each instance I, Opt(I) is polynomially bounded in the size of I. (It is easy to

give natural examples of such problems.) If such a problem had an FPTAS, then,

via computing an appropriately good approximation, one could compute an optimal

solution to each of this problem’s instances in polynomial time.

18

3 Elections, Bribery, and Manipulation

In this chapter we define our models of elections, manipulation, and bribery, and present

some relations between various flavors of manipulation and bribery.

3.1 Elections and Election Systems

We view an election as a pair E = (C, V), where C = {c1, . . . , cm} is a finite set

of candidates1 and V is a finite collection of voters v1, . . . , vn. Each voter has some

preference regarding the candidates, but the way the voters specify their preferences

depends on the setting. We focus on the so-called rational-voter model, but occasionally

we also consider other models, such as the irrational-voter model. The rational-voter

and irrational-voter models are defined as follows.

Rational voter model. Each voter’s preference is represented as a linear order over

the candidate set.2 That is, each voter vi has a preference list ci1 > ci2 > · · · > cim ,

1Note that, technically, we allow C to be an empty set but in this thesis we ignore such cases.

However, we mention that elections with no candidates sometimes arise naturally in scenarios regarding

control of elections, in particular in control via (runoff) partition of candidates. See, e.g., (BTT92;

HHR07a; FHHR07; FHHR08; ENR08).
2In this thesis we take “linear order” to mean a strict total order. This is a common convention

within voting theory, see, for example, the book of Austen-Smith and Banks (AB00). However, we

mention that the terminology typically used within mathematics allows linear orders to be nonstrict,

i.e., to include ties.

19

with {i1, i2, . . . , im} = {1, 2, . . . ,m}, which lists the candidates from the most pre-

ferred to the most despised. (We sometimes refer to preference lists as preference

orders.) The rational voter model is the standard model in computational social

choice literature and we adopt it as the default for this thesis. In many of our

proofs we use the following notational convention.

Notation 3.1. Within every election we fix some arbitrary order over the candi-

dates. Any occurrence of a subset D of candidates in a preference list means the

candidates from D are listed with respect to that fixed order. Occurrences of
−→
D

mean the same except that the candidates from D are listed in the reverse order.

For example, if C = {a, b, c, d, e}, with the alphabetical order being used, and

D = {a, c, e} then b > D > d means b > a > c > e > d, and b >
−→
D > d means

b > e > c > a > d.

Irrational voter model. Each voter’s preferences are represented as a preference table

that for every unordered pair of distinct candidates ci and cj in C indicates whether

the voter prefers ci to cj (i.e., ci > cj) or prefers cj to ci (i.e., cj > ci). In the

context of computational social choice, the irrational voter model was introduced

by Faliszewski et al. (FHHR07) in their study of the complexity of Llull and

Copeland election systems.

Other preference models include, for example, CP-nets introduced by Boutilier

et al. (BBD+04), and utility-based voting (see Section 3.1.1 for more references).

Within computational social choice, CP-nets were considered, for example, by Xia et

al. (XLY07).

Depending on the setting, in addition to their preferences, voters might also have

several other attributes. For example, in the case of weighted elections each voter vi,

1 ≤ i ≤ n, has an integer weight, ω(vi), and his or her vote counts as if it was cast by

ω(vi) weight-1 voters. (However, the voter may not choose to split the vote and use

some part of the weight to vote in one way and some part to vote in another.) Given

a subcollection U of voters, by ω(U) we mean the sum of their weights. We will often

refer to ω(U) as “the vote weight of U” or “the total weight of U .”

20

For the case of bribery, we often assume that each voter has a price that the briber

has to pay to affect the vote. In our most typical setting the price of a voter vi will

simply be a nonnegative integer π(vi). As in the case of weights, for a subcollection of

voters U , by π(U) we mean the sum of their prices. In Section 4.2 (and, to some extent,

in Section 6.3) we will study a more refined price model, but we defer its discussion

until that section.

Unless we explicitly specify otherwise, by default we consider settings in which voters

do not have weights and do not have prices.

In addition to having an election with a set of candidates and a collection of voters,

we also need an election system, E , that specifies which candidates are winners. Below

we describe the election systems and families of election systems that we consider in

this thesis. Following our convention, we assume the rational-voter model, but many of

the systems below have natural interpretations in other models. For each of the systems

that assigns points to candidates, those candidates with the most points are winners.

Scoring protocols. Let E = (C, V) be an election with m candidates c1, . . . , cm. A

scoring protocol for m candidates is a vector (α1, . . . , αm) of nonnegative integers,

with α1 ≥ · · · ≥ αm. Each candidate ck ∈ C receives αi points for each vote

that ranks him or her at the ith place. Each particular scoring protocol α regards

only a fixed number of candidates, but many election systems can be expressed

as families of scoring protocols, (α0, α1, . . . , αm, . . .), where each αi is a scoring

protocol (αi
1, α

i
2, . . . , α

i
i) for exactly i candidates.

Plurality. In plurality each voter gives one point to his or her favorite candidate.

Plurality can be viewed as a family of scoring protocols of the form (1, 0, . . . , 0).

Borda. In Borda (sometimes also called Borda count), each voter vi assigns each can-

didate cj as many points as the number of candidates that vi prefers cj to. Borda

can be viewed as a family of scoring protocols of the form (m − 1,m − 2, . . . , 0),

where m is the number of candidates participating in a given election.

21

Veto. In veto each voter gives one point to each candidate but one (the vetoed one).

Veto can be viewed as a family of scoring protocols of the form (1, . . . , 1, 0).

k-approval. In k-approval each voter gives one point to each of his or her top k can-

didates. k-approval can be viewed as a family of scoring protocols of the form

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0). Typically, we take “k” in k-approval to be a fixed constant but,

via a slight abuse of notation, one could say that, for example, veto is (m − 1)-

approval. Generalizations of k-approval include elections where each voter assigns

some points to the first k candidates on his or her preference list and all the other

candidates receive no points from that particular voter. (The way in which the

voters distribute points among the first k voters could be specified, e.g., via some

scoring protocol.)

Approval. In approval each voter gives one point to each of the candidates that he or

she approves of and gives zero points to all the other candidates. In the case of

approval voting, we typically view voters’ preferences not as preference lists but

as 0/1 approval vectors, specifying which candidates receive points. (However, see

the work of Brams and Sanver (BS06) for a variant of approval that incorporates

both preference lists and approval vectors, and see the work of Erdélyi, Nowak,

and Rothe (ENR08) for some computational results regarding this system.)

Copeland. Copelandα voting (where α is a rational value such that 0 ≤ α ≤ 1) is

somewhat different from the previous rules. Instead of having each voter distribute

some number of points among the candidates, in Copelandα points are distributed

based on the results of the so-called head-to-head contests between the candidates.

For each pair of candidates ci, cj we look at whether more voters prefer ci to cj or

whether more voters prefer cj to ci. If more voters prefer ci (i.e., ci is the winner

of this head-to-head contest) then ci receives a point, if more voters prefer cj (i.e.,

cj is the winner of this head-to-head contest) then cj receives the point, otherwise

there is a tie, and both candidates receive α points each.3

3In the literature the term “Copeland elections” is most often used for the system Copeland0.5

(e.g., (SM96; MS97) and a rescaled version of (CSL07)), but has occasionally been used for Copeland0

22

Llull. Llull is a synonym for Copeland1 voting.

Condorcet. A Condorcet winner is a candidate ci that wins head-to-head contests

against every other candidate. Naturally, in any election there is at most one

Condorcet winner and it is possible for there to be none.

For each of the above systems (except Condorcet) by scoreE(ci) we mean the number

of points of candidate ci in election E. In the case of Copelandα we often write scoreα
E(ci)

instead, to emphasize the tie-reward value α. In the case of elections based on head-to-

head contests we are also interested in the results of these contests. Informally put, if

E = (C, V) is an election and if ci and cj are two candidates in C then by vsE(ci, cj)

we mean the surplus of votes that candidate ci has over cj . Formally:

vsE(ci, cj) =


0 if ci = cj

‖{v ∈ V | v prefers ci to cj}‖

−‖{v ∈ V | v prefers cj to ci}‖ otherwise.

So: If ci defeats cj in a head-to-head contest in E then vsE(ci, cj) > 0; if they are tied

then vsE(ci, cj) = 0; and if cj defeats ci then vsE(ci, cj) < 0. We can express the score

of a candidate ci ∈ C in a Copelandα election E = (C, V) as

scoreα
E(ci) = ‖{cj ∈ C | ci 6= cj and vsE(ci, cj) > 0}‖

+ α‖{cj ∈ C | ci 6= cj and vsE(ci, cj) = 0}‖.

Note that the highest possible Copelandα score in any election E = (C, V) is ‖C‖ − 1.

Except for Condorcet rule, all the election systems presented above have the property

that they always select at least one winner. However, they may also select more than

one. Throughout this thesis, whenever we will ask whether a particular candidate is

a winner (or, whether this candidate can become a winner via some action), we mean

asking whether he or she is one of the winners (or, whether he or she can become one of

the winners). This convention is typically referred to as the nonunique-winner model.

In the unique-winner model, as expected, we would consider a candidate a winner only

(e.g., (PRK07; FHHR07)).

23

if he or she were the only winner. The literature on computational social choice is

divided as to which winner model is more natural. Some authors use one, some use the

other, and some use both. Here we adopt the nonunique-winner model because it is

typically easier to work with, and in almost all cases (certainly in all cases studied in

this thesis), hardness/easiness results regarding nonunique winners also hold for unique

winners (and the other way round).

3.1.1 Utility-Based Voting

Sometimes, instead of using the rational-voter model, it is convenient to consider the

so-called utility-based model. In the context of computational social choice it was intro-

duced by Elkind and Lipmaa (EL05a), and was later picked up by Faliszewski (Fal08)

and Meir et al. (MPRZ08). The idea of utility-based voting is that each voter has some

number of points that are distributed freely among candidates (although we sometimes

put a bound on the number of points that a voter can assign to a single candidate).

Definition 3.2. Let e and b be two positive integers. By an (e, b)-election we mean

an election over some candidate set C = {c1, . . . , cm}, where each voter from the voter

collection V distributes e integral points among the candidates, never assigning more

than b points to a single candidate. The candidates with most points are the winners.

A free-form (e, b)-election is an (e, b)-election where voters can choose not to use all

of their points.4

Many election systems that we have described in the context of the rational-voter

model can naturally be expressed as (e, b)-elections. For example, if m is the number

of candidates then plurality can be expressed as (1, 1)-elections, k-approval as (k, 1)-

elections, approval as free-form (m, 1)-elections, and veto as (m− 1, 1)-elections. (e, b)-

elections with fairly large values of e and b (say, with e being polynomially related to

the number of candidates and with b = e) are also very interesting as they capture the

spirit of allowing the voters to express the intensity of their preference.

4Note that an (e, b)-election might be impossible, e.g., if e is too large or if we have too few candidates.

On the other hand, free-form (e, b)-election is always possible.

24

3.2 Manipulating Elections

The term “manipulating elections” refers to any attempt (manipulation, bribery, con-

trol, etc.) to skew the result of an election. However, in this thesis we focus on only two

such types of attempts, namely manipulation and bribery. Informally, in the bribery

problem we are given an election E = (C, V), a budget k, some distinguished candidate

p, and we ask if we can ensure that p is a winner by changing preference lists of at most

k voters. More formally, for an election system E we define the E-bribery problem to

be the following. (All our numbers are nonnegative integers.)

Name: E-bribery.

Given: An election E = (C, V), where each voter has a preference list over the

candidates in C, a distinguished candidate p ∈ C, and a nonnegative

integer k.

Question: Is it possible to ensure that p is a winner of the E election E by

changing preference lists of at most k voters?

The above definition regards the simplest model of bribery, where the voters are

unweighted and bribing each voter requires equal effort. We also consider variants of

the bribery problem where the voters have weights, where the voters have prices, and

where the voters have both weights and prices.

In the weighted variant of the problem, E-weighted-bribery, each voter vi ∈ V has

a weight, ω(vi). In the priced variant, E-$bribery, each voter vi ∈ V has a price, π(vi),

for changing his or her preference list. In such a case we ask not whether we can bribe

at most k people, but whether we can ensure that p is a winner by spending at most k

dollars. The weighted-and-priced variant of the problem, E-weighted-$bribery, combines

prices and weights in a natural way. For example, plurality-weighted-$bribery problem

can be described as follows:

25

Name: plurality-weighted-$bribery.

Given: An election E = (C, V) (where each voter vi ∈ V has a preference list

over C, a nonnegative integer price π(vi), and a nonnegative weight

ω(vi)), a distinguished candidate p ∈ C, and a nonnegative integer k

(which we will sometimes refer to as the budget).

Question: Is there a subcollection of voters B, such that π(B) ≤ k and there

is a way to bribe the voters from B in such a way that p becomes a

winner according to the plurality rule?

Manipulation is somewhat similar to bribery in that we also need to select preference

lists for a group of voters, but in manipulation this group is prespecified. Formally, if E

is some election rule then E-manipulation is the following problem:

Name: E-manipulation.

Given: An election E = (C, V), where each voter has a preference list over

the candidates in C, a collection S of manipulative voters (without

preference lists assigned yet), and a candidate p ∈ C.

Question: Is there a way to set preference lists of the voters in S so that, ac-

cording to election system E , p is a winner of election (C, V ∪ S)?

The above definition is consistent with that used in the classic papers of Bartholdi,

Tovey, and Trick (BTT89a) and Bartholdi and Orlin (BO91). However, we mention that

sometimes one assumes that the manipulators already have some assigned preferences

and that manipulation occurs only if they cast votes that do not agree with those

preferences (e.g., if they switch the order of the second and the third candidate on their

vote as compared to their true preferences or perform some other change that, in effect,

ensures a more favorable outcome of the election for the manipulators). We also mention

that since the group of manipulators may contain more than one voter, the problem is

sometimes referred to as the coalitional manipulation problem.

Manipulation, just like bribery, can be considered in both the unweighted setting

(E-manipulation) and in the weighted one (E-weighted-manipulation), where each voter

and each manipulator has a nonnegative weight.

Let E be one of the election systems studied in this thesis. If it is the case that a

26

variant of manipulation or a variant of bribery is NP-hard for E then we will sometimes

say that E is resistant to this variant of bribery or manipulation. Similarly, we will

sometimes say that E is vulnerable to a given variant of manipulation or bribery if this

variant of manipulation or bribery is in P for E . Often the notions of resistance and

vulnerability are defined in a somewhat more complicated way (see, e.g., (HHR07a;

FHHR07; FHHR08)), but for the case of manipulation and bribery, and our set of

election systems, this definition is sufficient.

All the bribery and manipulation problems that we consider in this thesis are in the

so-called constructive setting. That is, the goal of the briber and of the manipulators is

to ensure that the preferred candidate is a winner. In the destructive setting we would

be interested in preventing a despised candidate from being a winner.

Finally, we also mention that throughout this thesis we use the term “bribery” both

in its regular sense and in the nonstandard sense of “a collection of bribes.” When using

the latter sense we will often speak of “a bribery,” by which we will mean a collection

of bribes.

3.3 Relations Between Bribery and Manipulation

For each election system E there are at least four variants of bribery (depending on

whether the voters have prices, and whether they are weighted), and two variants of

manipulation (weighted and unweighted). It will be helpful to establish some inherent

relations between hardness of these variants of manipulation and bribery before we start

building results for specific election systems.

Naturally, positive results (i.e., existence of polynomial-time algorithms) regarding

more demanding variants of bribery and manipulation problems imply positive results

about the weaker variants. For example, if weighted bribery is in P for some election

system E then, clearly, unweighted bribery is also easy for E . Conversely, hardness

results regarding simpler models imply hardness results about the more involved ones.

We will sometimes mention such implied results separately if they are interesting, but

we omit them if they are not enlightening.

27

It is also possible to relate the complexity of bribery and the complexity of manip-

ulation. In particular, we focus on the following two questions.

1. Is bribery always at least as hard as manipulation?

2. Is it the case that having an efficient algorithm for manipulation helps in deriving

an algorithm for bribery?

The latter one can, at least to some degree, be answered in the affirmative. The reason

is that to check whether a bribery of up to k voters can be successful, one can simply try

all possible manipulations by k voters. In this way, for a fixed k, we can disjunctively

truth-table reduce any bribery problem to the analogous manipulation problem.

Theorem 3.3. Let k be an arbitrary positive integer. Let B be any of our bribery

problems, but with the following constraints: Voters have no prices (i.e., we do not

consider $bribery problems) and bribing more than k voters is forbidden. Let M be the

analogous manipulation problem, i.e., the manipulation problem for the same election

system, with weighted voters if B allows that, allowing the manipulating set to contain

any number of voters between 0 and k. Then it holds that B ≤p
dtt M.

Proof. To show that B ≤p
dtt M we need to give a polynomial-time procedure that for

an input x outputs a list of strings y1, . . . , ym such that x ∈ B if and only if at least one

of yi, 1 ≤ i ≤ m, is in M. We now describe such a procedure.

Let x be the input string. We first check whether x can be parsed as an instance of

B (reminder: that is, that x meets the syntactic constraints of B). If not then we output

an empty list and terminate; otherwise we decode election E = (C, V), the preferred

candidate p, and k′ ≤ k, the maximum number of bribes we can use, from the string x.

For every subset W of at most k′ elements (we say “at most k′” rather than “exactly

k′” simply because of the possibility that k′ ≥ ‖V ‖; one could alternatively focus simply

on “exactly min(k′, ‖V ‖)”) of V we form an instance of the manipulation problem with

election (C, V − W), preferred candidate p, and the manipulator collection W . After

we go through all at-most-k′-element subsets we output the list of all the manipulation

instances that we formed.

28

This procedure clearly works in polynomial time as there are at most
(‖V ‖

k

)
=

O(‖V ‖k) sets to test and we can form instances of manipulation in polynomial time.

If any of the manipulation instances we output is in M then bribery is possible: It is

enough to bribe exactly the voters selected for the manipulating group. On the other

hand, if bribery is possible, then at least one of the instances we output belongs to M:

namely any one that includes the voters we would bribe. q

While simple, this result is still powerful enough to allow the inheritance of some

results from previous papers. Bartholdi, Tovey, and Trick (BTT89a) discuss manipu-

lation by single voters and Theorem 3.3 translates their results to the bribery case. In

particular, this translation says that bribery for k = 1 is in P for plurality, Borda count,

and many other systems.

Can we strengthen Theorem 3.3 from constant-bounded bribery to general un-

weighted bribery? The answer is no: There are election systems for which bribery

is NP-complete but manipulation is in P. In particular, manipulation for approval

voting (both in the weighted and the unweighted case) is in P for any size of manip-

ulating set: The manipulating group approves only its favorite candidate and nobody

else. However, by Theorem 4.15, bribery for approval voting is NP-complete. (Al-

though, of course, when the number of bribes is bounded by some fixed constant then,

by Theorem 3.3, approval-bribery can be solved in polynomial time.)

Let us now turn to our first question: Is bribery always at least as hard as manip-

ulation? In Theorem 3.3 we managed to disjunctively truth-table reduce a restricted

version of bribery to manipulation. Is it possible to reduce manipulation to bribery?

At first, this appears to be more difficult because bribery allows more freedom to the

person interested in affecting the elections, and to embed manipulation within bribery

we would have to find some way of expressing the fact that only a certain group of

voters should be bribed (or, at least, expressing the fact that if there is any successful

bribery then there is also one that only bribes the manipulators). However, this is in

fact easy, provided that we are willing to pay the price of reducing to $bribery rather

than to an unpriced variant of bribery.

29

Theorem 3.4. Let M be some manipulation problem and let B be the analogous

$bribery problem (for the same election system). It holds that M≤p
m B.

Proof. Let M be an instance of M containing an election E = (C, V), manipulator

collection S, and a preferred candidate p ∈ C. We form an instance B of B such that

B contains preferred candidate p, budget 0, and election E′ = (C, V ′ ∪ S′), where:

1. V ′ is equal to V , except that each voter has price 1, and

2. S′ is equal to S, except that each voter has price 0 and some fixed arbitrary

preference list.

Since the bribery budget is set to zero, the only voters that we may possibly bribe

are those in S′. The preference lists of the voters in S′ after any such bribery directly

correspond to a manipulation in M . This reduction can be carried out in polynomial

time. q

Naturally, Theorem 3.4 holds even for $bribery problems where prices are repre-

sented in unary or are required to come from the set {0, 1}.

Unfortunately, in general Theorem 3.4 cannot be strengthened to not require reduc-

ing to a priced variant of bribery (unless P = NP, but if P = NP then there is no need

for such a reduction). We show an artificial election system where bribery is in P but

manipulation is NP-complete.

Theorem 3.5. There exists a voting system E for which manipulation is NP-complete,

but bribery is in P.

Proof. By 〈·, ·〉 we mean a fixed, natural pairing function for strings, i.e., one that is

computable in polynomial time, has polynomial-time computable projection functions,

and that satisfies |〈x, y〉| = 2(|x|+ |y|+ 1).

Let A be an NP-complete set and let B ∈ P be such that

1. A = {x ∈ Σ∗ | (∃y ∈ Σ∗)[〈x, y〉 ∈ B]}, and

30

2. (∀x, y ∈ Σ∗)[〈x, y〉 ∈ B ⇒ |x| = |y|].

Such a set B can easily be constructed from any NP-complete set by padding. The idea

of the proof is to embed a verifier for A within the election rule E . We do this in a way

that forces manipulation to solve arbitrary A instances, while allowing bribery to still

be easy.

First, we observe that preference lists can be used to encode arbitrary binary strings.

We will use the following encoding. For C a set of candidates, let c1, c2, . . . , cm be those

candidates in lexicographical order. We will view the preference list

ci1 > ci2 > ci3 > · · · > cim

as an encoding of the binary string b1b2 · · · bbm/2c, where

bj =

 0 if i2j−1 > i2j ,

1 otherwise.

This encoding is of course not the most efficient one, and a given binary string may

have many preference lists that encode it. However, this encoding is very easy and has

the properties that we need in our construction.

In our reduction, binary strings starting with 1 will encode instances (i.e., strings

over Σ, whose membership in A we want to test), and binary strings starting with 0

will encode witnesses (in our case, a string y ∈ Σ∗ is a witness for a string x ∈ Σ∗ if

〈x, y〉 is in B). Given this setup, we can describe our election system E . Let (C, V) be

an election. For each c ∈ C, c is a winner of the election if and only if ‖V ‖ = 3 and

Rule 1: all preference lists encode strings starting with 1 or all preference lists encode

strings starting with 0, or

Rule 2: exactly one preference list encodes a string that starts with 1, say 1x, and at

least one other preference list encodes a string 0y such that 〈x, y〉 ∈ B.

Thus, either all candidates are winners or none of them are winners. Note that testing

whether a candidate c is a winner of an E election can easily be done in polynomial time.

31

The following polynomial-time algorithm shows how to perform an optimal bribery. This

implies that E-bribery ∈ P.

1. If c is a winner, we do nothing.

2. Otherwise, if ‖V ‖ 6= 3, then bribery is impossible.

3. Otherwise, if there is exactly one voter whose preference list encodes a string that

starts with 1, then we bribe that voter to encode a string that starts with 0. By

Rule 1, c is a winner of the election.

4. Otherwise, there is exactly one voter whose preference list encodes a string that

starts with 0 and we bribe that voter so that his or her preference list encodes a

string that starts with 1. By Rule 1, c is a winner of the election.

On the other hand, the ability to solve the manipulation problem for E implies

the ability to solve A. We construct a reduction from A to E-manipulation. Given a

string x ∈ Σ∗, we first check whether 〈x, 0|x|〉 ∈ B. If so, then clearly x ∈ A and we

output some fixed member of E-manipulation. Otherwise, we output a manipulation

problem with candidates {1, 2, . . . , 2(|x| + 1)} and three voters, v0, v1, and v2, such

that v0’s preference list encodes 1x, v1’s preference list encodes 00|x|, and v2 is the only

manipulative voter. We claim that candidate 1 can be made a winner if and only if

x ∈ A.

Since 〈x, 0|x|〉 6∈ B, the only way in which v2 can make 1 a winner is when v2 encodes

a string 0y such that 〈x, y〉 ∈ B in which case x ∈ A. For the converse, if x ∈ A, there

exists a string y ∈ Σ|x| such that 〈x, y〉 ∈ B. We can encode string 0y as a preference

list over {1, 2, . . . , 2(|x| + 1)}, and let this be the preference list for v2. This ensures

that 1 is a winner of the election.

Since this reduction can be computed in polynomial time, and the E-manipulation’s

membership in NP is clear, we have that E-manipulation is NP-complete. q

The above election system is very unnatural. For example, depending on the votes,

its winner set is either the set of all candidates or an empty set. With some work one

32

could modify the above proof to use a slightly more realistic system, but this would make

the proof more involved and the system would not become practically useful anyway.

The main implication of Theorem 3.5 is that unless we somehow restrict our election

rules or prove P = NP, obtaining a general reduction from manipulation to bribery

seems precluded. It would be interesting to find a natural election system that also

has the property that manipulation is difficult but bribery is easy. Alternatively, it is

an interesting research direction to seek a natural social-choice-theoretic condition such

that if a given election system satisfies this condition then its manipulation problem

reduces to its bribery problem.

33

4 Plurality and Utility-Based Systems

In this chapter we study the complexity of bribery in plurality voting and the complexity

of nonuniform bribery in utility-based voting. Plurality rule is perhaps the most popular

election system in practical use. It is simple to understand and from the point of view of

democracy it is very natural and appealing to make a decision that many people prefer.

However, plurality is not perfect. For example, plurality rule may slight the voices of

minorities and does not take into account full information about voters’ preferences. In

particular, if there is some candidate that all voters rank as second best and no other

candidate is the top choice of many rankings, it might seem natural to elect this “second

best” person. Unfortunately, plurality is blind to this situation. Despite its limitations,

widespread use of plurality makes the results of this chapter particularly relevant.

Let us briefly restate how plurality and utility-based voting work, and explain why

studying them jointly is natural. Let E = (C, V) be an election. Under plurality each

voter assigns one point to his or her favorite candidate. In the bribery problem for

plurality our goal is to find a group of voters who we can afford to bribe, and bribing

whom ensures that our preferred candidate is a winner. While the task of selecting the

group of voters to bribe is not necessarily trivial, bribery in plurality is greatly simplified

by the fact that each voter has only a single point to assign. The briber does not need

to worry about any correlations between the votes, which can possibly become very

complicated. To see that this is a major simplification, consider the setting in which

the voters distribute several points each and, for some reason, the briber has to take

away at least one point from each candidate in some subset C ′ of the candidates. This

34

means the briber, in essence, has to find a minimum set of voters whose votes “cover”

the candidates in C ′. This by itself is a difficult problem (in fact, we use its difficulty

to show that bribery for approval voting is NP-complete; Theorem 4.15), let alone the

fact that reassigning the points of the bribed voters would also require care.

In utility-based voting (see Definition 3.2) each voter does have some number of

integral points to distribute among the candidates and, as in plurality, the candidates

with most points are the winners. In addition, we often impose an upper bound on the

number of points a voter can assign to a single candidate, and sometimes we allow the

voters not to use up all of their points. Examples of systems that can be represented as

utility-based voting include approval, k-approval, veto, and, of course, plurality.

As we have just argued, bribery in utility-based voting can be much harder than

in plurality. However, this hardness seems to come from the fact that, in our standard

model of bribery, bribing a voter means obtaining full control over his or her vote. While

in some situations this is a reasonable model, in others it may be more appropriate to

consider a more refined price model. For example, a voter might be perfectly happy

to swap two neighboring candidates on his or her preference list, but might outright

refuse to swap his or her most preferred candidate with his or her most despised one. In

Section 4.2 we study a variant of bribery in utility-based voting where we pay each voter

separately for each of his or her points that we reassign. We call this model nonuniform

bribery.

Now it becomes apparent why it is natural to consider bribery in plurality and

nonuniform bribery in utility-based systems jointly. Because of its flexible pricing,

nonuniform bribery in utility-based systems is very similar to regular bribery in plurality.

In nonuniform bribery, we can reassign each point cast by each voter independently,

analogously to our regular bribery in plurality. Thus, many results in Section 4.2 are

inspired by the techniques developed for bribery in plurality and, since plurality itself is

an incarnation of utility-based voting, many of the results regarding nonuniform bribery

apply to plurality.

This chapter is devoted to the study of bribery, but we mention that many ma-

nipulation results can be directly obtained via applying translation techniques from

35

Section 3.3.

4.1 Bribery in Plurality

We will view a vote in plurality rule elections as a vote for a particular candidate, namely,

the most preferred candidate according to the preference list that is the actual vote (for

the case of bribery this is the only thing that matters about the voter—although in

other contexts, such as control via deletion of candidates (BTT92; HHR07a; HHR07b),

the full ordering might be important).

The simplest bribery scenario is when the voters are unweighted and bribing each

voter requires equal effort. Not surprisingly, bribery is easy in this setting.

Theorem 4.1. plurality-bribery is in P.

Proof. The proof of this theorem is simple, but we describe it in detail as a simple

introduction to our proofs regarding bribery. We will give a polynomial-time algorithm

that given a plurality election E = (C, V), a preferred candidate p ∈ C, and a budget

k, decides whether it is possible to make p a winner by bribing at most k voters.

Our algorithm works in the following way. Initially we have bribed zero voters. We

check whether p currently is a winner. If so, we accept. Otherwise, until doing so will

exceed the bribe limit, we pick any current winner, bribe one of his or her voters to vote

for p, and jump back to the testing whether p is a winner. If we reach the bribe limit

(i.e., in the above we have the “until doing so will exceed the bribe limit” break us out

of the loop) without making p a winner then we reject.

If this algorithm accepts then obviously bribery is possible. We now show that if it

is possible to ensure that p is a winner via at most k bribes then our algorithm accepts.

Our proof follows by induction on k. For the base case it is enough to note that the

algorithm works correctly for k = 0. For the induction step, let us assume that for each

election E′ = (C ′, V ′), p ∈ C, and budget k′ such that k′ < k, where k is some positive

integer, the algorithm accepts exactly if it is possible to ensure that p is a winner via

at most k′ bribes. Now, consider an arbitrary input E = (C, V), p ∈ C, and budget k,

36

such that p can become a winner via at most k bribes. We will show that our algorithm

accepts this input. We consider two cases. If there is a bribery of up to k voters that

ensures p’s victory but that never involves any of the current winners of election (C, V)

then it is clear that our algorithm accepts. (Let Vp ⊆ V be the set of all voters who do

not vote for p. In this case any bribery of min(k, ||Vp||) voters ensures that p becomes a

winner.) Thus, let us assume that all briberies of k voters that make p a winner involve

bribing at least one of the current winners. Let E′′ = (C, V ′′) be an election obtained

from E via bribing one of the winners of (C, V), call him c1. When we run our algorithm

on input E, p, k then in the first iteration the algorithm bribes one of the winners of

(C, V) and obtains an instance of plurality-bribery that is isomorphic to E′′, p, k − 1.

Then, in the further iterations the algorithm behaves the same as if it got an input

instance isomorphic to E′′, p, k − 1 and thus, by our inductive hypothesis, accepts.

The algorithm works in polynomial time because ‖V ‖ bribes suffice to make p a

winner and each of the iterations can be executed in polynomial time. The proof is

complete. q

The ease of obtaining the above algorithm might fool us into thinking that bribery

within the plurality system is always easy. However, that is not so.

Theorem 4.2. plurality-weighted-$bribery is NP-complete, even for just two candi-

dates.

Proof. plurality-weighted-$bribery is in NP: We can guess the voters to bribe and test

whether such a bribe both makes our designated candidate a winner and does not exceed

the budget. It remains to show that the problem is NP-hard.

To show NP-hardness, we give a reduction from Partition. Let s1, . . . , sn be a

sequence of nonnegative integers, an input for Partition, and let
∑n

i=1 si = 2S. We

form an election with two candidates, p and c, and exactly n voters, v1, . . . , vn, with

each vi having both weight and price equal to si. All voters prefer c to p. The budget

k is set to S. We claim that p can become a winner if and only s1, . . . , sn can be

partitioned into two equal-sum groups.

37

Let us assume that there is a set A ⊆ {1, . . . , n} such that
∑

i∈A si = S. Clearly,

bribing the voters in {vi | i ∈ A} to vote for p ensures that p is a winner and costs exactly

S. On the other hand, assume that p can be made a winner by bribes of total cost at

most k = S. The weight of each voter is equal to his or her price and so p can obtain at

most vote weight k = S. In fact, p must obtain exactly vote weight S, since from our

setup it is clear that if p gains strictly less than vote weight S then c will be the unique

winner. This means that there is a way of picking some voters whose weights sum up

to exactly S, and thus the sequence s1, . . . , sn can be partitioned into two subsequences

that each sum up to S. Our reduction can be carried out in polynomial time and so the

proof is complete. q

The above theorems show that bribery is easy in the basic case but becomes in-

tractable if we allow for voters with prices and weights. It is natural to ask which of the

additional features (prices? weights?) is responsible for making the problem difficult. It

turns out that neither of them is the sole reason and that only their combination yields

enough power to make the problem NP-complete.1

Theorem 4.3. Both plurality-$bribery and plurality-weighted-bribery are in P.

Theorem 4.3 is a special case of a result that we prove later (namely, of Theorem 4.6)

and thus, instead of giving the proof, we provide an informal discussion of how one could

obtain algorithms for plurality-$bribery and for plurality-weighted-bribery.

A direct greedy algorithm, like the one underpinning Theorem 4.1, fails to prove

Theorem 4.3: The problem is that one has to judge whether it is better to bribe the

voters who currently prefer one of the winners, or if it is better to bribe the voters with

the highest weights (or lowest prices). To see that the former may sometime make sense,

consider an election in which a has two weight-4 voters, b has one weight-5 voter, and

p has one weight-2 voter. Bribing one weight-4 voter is a winning bribery but bribing

the one weight-5 voter is not.

1However, it is interesting to compare this to Theorems 5.2, 5.3, 5.7, and 5.8, which suggest that in

general it is often high weights that are responsible for making bribery problems NP-complete.

38

However, we may approach Theorem 4.3’s proof as follows. Assume that p will have

at least r votes after the bribery (or, in the weighted case, r vote weight), where r is

some number to be specified later. If this is to make p a winner, we need to make

sure that everyone else gets at most r votes. Thus we carefully choose enough cheapest

(heaviest) voters of candidates that defeat p so that after bribing them to vote for p each

candidate other than p has at most r votes. Then we simply have to make sure that p

gets at least r votes by bribing the cheapest (the heaviest) of the remaining voters. If

during this process p ever becomes a winner without exceeding the budget (the bribe

limit) then we know that bribery is possible.

However, how do we pick the value of r? In the case of plurality-$bribery, we

can simply run the above procedure for all ‖V ‖ possible values, and accept exactly if

it succeeds for at least one of them. For plurality-weighted-bribery a slightly trickier

approach works. Namely, it is enough to try all values r that can be obtained as a vote

weight of some candidate (other than p) via bribing some number of his or her heaviest

voters. There are only polynomially many such values and so the whole algorithm works

in polynomial time. The intuition for using such values r is the following: (a) When

bribing voters of some candidate one can always limit oneself to the heaviest ones, and

(b) after each successful bribery there is a value r′ such that p’s vote weight is at least r′,

each other candidate’s vote weight is at most r′, and there is some candidate c 6= p such

that c’s vote weight is exactly r′. Our algorithm, in essence, performs an exhaustive

search (within our heavily limited search space) for such a value r′.

Theorems 4.2 and 4.3 state that plurality-weighted-$bribery is NP-complete but

any attempt to make it simpler immediately pushes it back to the realm of P. In fact,

the situation is even more dramatic. In the NP-complete problem plurality-weighted-

$bribery we assume that both prices and weights are encoded in binary. However, if

either the prices or the weights are encoded in unary, then the problem, again, becomes

easy.

Before we proceed with a formal proof of this fact, let us discuss the issue in an

informal manner. Why does the unary encoding of the weights or of the prices matter?

The reason is that, for example, if the weights are encoded in unary then there trivially

39

are only linearly many (with respect to the size of the input problem) different total

weights of subsets of voters. Together with some additional tricks this allows us to use

dynamic programming to obtain a solution.

It is tempting to use exactly the same proof approach as the one that we hinted on in

the discussion below Theorem 4.3, that is, to split the bribery into two parts: demoting

others and promoting p. However, doing so would not be correct. Sometimes the optimal

way of getting the scores of other candidates to be at most at a certain threshold r

prevents one from getting an optimal bribe for the complete problem. Consider elections

with two candidates, c and p, and two voters v1 and v2 such that v1 has both price and

weight equal to 10, and v2 has both price and weight equal to 7. Both v1 and v2 prefer

c to p. The optimal way of getting c down to vote weight at most 10 is by bribing v2.

However, at that point making p a winner requires bribing v1 as well. Yet, bribing just

v1 is a cheaper way of making p a winner and getting c below the 10 threshold.

Definition 4.4. plurality-weighted-$briberyunary is defined exactly as is plurality-

weighted-$bribery, except the prices are to be encoded in unary. plurality-

weightedunary-$bribery is plurality-weighted-$bribery except with the weights encoded

in unary.

We will refer to plurality-weighted-$briberyunary as the “unary prices case,” and

to plurality-weightedunary-$bribery as the “unary weights case.” We will now give an

overview of how the algorithm works in the unary prices case, when given an election

E = (C, V), preferred candidate p ∈ C, and budget k. The unary weights case can be

handled analogously. The main idea is that, using the fact that there are only linearly

many possible prices to be paid, we can argue that there exists a polynomial-time

computable function Heaviest(E,C ′, π, r)—where C ′ will be a subset of the candidates,

π will be an integer price, and r will be an integer threshold—that gives the maximum

vote weight that we can obtain by bribing voters of candidates in C ′ such that

1. the cost of this bribery is at most π,

2. after the bribery every candidate in C ′ has vote weight at most r.

40

To test whether it is possible to make p a winner by spending at most k dollars, we

need to check if there is a threshold r such that scoreE(p)+Heaviest(E,C−{p}, k, r) ≥ r.

Unfortunately, in the case of plurality-weighted-$briberyunary we cannot just try all

thresholds since there may be exponentially many of them. Instead we use a strategy

similar to the one that we hinted on when discussing Theorem 4.3. After every successful

bribery (in elections with at least two candidates) there is some candidate c 6= p—

namely, the candidate(s) other than p with the greatest post-bribery total weight—that

either is a tied-with-p winner or loses only to p. We can use the after-bribery vote

weight of this candidate to be the threshold for the bribery of the voters of all the other

candidates. Of course, we neither know who this candidate is nor what vote weight he or

she would have after a successful bribery. Nonetheless, we can try all candidates c 6= p

and for each such candidate and each possible “sub-budget” b ≤ k we can ask what

is the maximum amount of additional weight we can get for p from bribing c’s voters

when allowed to spend at most b to do so. Then, using the thus obtained threshold, we

can bribe the voters of the rest of the candidates. There are (at most) linearly many

candidates and (at most) linearly many prices so this yields (at most) polynomially

many combinations.

Let us now describe how the above plan can be implemented. We no longer limit

ourselves to the unary prices case, but describe both cases in parallel. Let E = (C, V),

p, and k be our input. For each candidate c ∈ C we define

V c
E = {v ∈ V | v’s most preferred candidate is c}.

Naturally, we ask each voter that we choose to bribe to vote for p. For a given candidate

c ∈ C, we can describe our bribing options either as a function that gives the highest

weight of c’s voters we can bribe for b dollars or as a function that gives the lowest price

needed to gain vote weight at least w by bribing c’s voters.2

heaviest(c, b) = max{ω(U) | U ⊆ V c
E and π(U) ≤ b}.

cheapest(c, w) = min{π(U) | U ⊆ V c
E and ω(U) ≥ w}.

2We assume that election E is an implicit argument for these functions. The same applies to functions

Heaviest and Cheapest defined later in this discussion.

41

If c is not a candidate in C, these functions are undefined. Here and in the rest of

the proof, we take the max and min of the empty set to be undefined. Note that if

c is a candidate in E, then heaviest(c, b) is defined for all b ≥ 0 and cheapest(c, w) is

defined for all w ≤ ω(V c
E). Also note that heaviest can easily be computed in polynomial

time in the unary prices case and that cheapest can easily be computed in polynomial

time in the unary weights case. In both cases we simply use dynamic programming

solutions for the knapsack problem.3 We can further generalize these functions to give

us information about the best bribes regarding sets of candidates. For a subset U of

voters, by bribed(E,U) we mean election E with voters in U bribed to vote for p. We

define

Heaviest(C ′, b, r) = max

ω(U)

∣∣∣∣∣∣ (U ⊆
⋃

c∈C′ V c
E) ∧ (π(U) ≤ b)∧

(∀c ∈ C ′)[scorebribed(E,U)(c) ≤ r]

 , and

Cheapest(C ′, w, r) = min

π(U)

∣∣∣∣∣∣ (U ⊆
⋃

c∈C′ V c
E) ∧ (ω(U) ≥ w)∧

(∀c ∈ C ′)[scorebribed(E,U)(c) ≤ r]

 .

If C ′ is not a subset of E’s candidate set, these functions are undefined.

Lemma 4.5. We consider now only elections in which each voter has both a price

and a weight. If prices are encoded in unary then there is an algorithm that computes

Heaviest in polynomial time. If weights are encoded in unary then there is an algorithm

that computes Cheapest in polynomial time.

Proof. Note that in the unary prices case there are only linearly many sub-budgets b

for which we need to compute the value of Heaviest , namely 0 ≤ b ≤ π(V), and in the

unary weights case there are only linearly many weights w for which we need to evaluate

Cheapest , namely 0 ≤ w ≤ ω(V). Using this fact we provide dynamic programming

3The knapsack problem is the following. Given a set of items, each with a price and a weight, is it

possible to select items with total weight at least W , but without exceeding total price K? It is well

known that the knapsack problem has a polynomial-time dynamic programming algorithm if either the

prices are encoded in unary or the weights are encoded in unary. (See (MT90) for background/reference

on the knapsack problem.)

42

algorithms for computing both functions. For the base case we have the following: If c

is not a candidate of E, then both our functions are undefined. Otherwise,

Heaviest({c}, b, r) =

 heaviest(c, b) if scoreE(c)− heaviest(c, b) ≤ r,

undefined otherwise.

Cheapest({c}, w, r) =

 cheapest(c, w) if scoreE(c)− w ≤ r,

cheapest(c, scoreE(c)− r) otherwise.

The following observation allows us to compute Cheapest and Heaviest for larger

sets. We assume that C ′ does not contain c. If any of the candidates in C ′ ∪ {c} are

not candidates of E, then both our functions are undefined. Otherwise,

Heaviest(C ′ ∪ {c}, b, r) = max{Heaviest(C ′, b′, r) + Heaviest({c}, b− b′, r) |

0 ≤ b′ ≤ b and Heaviest(C ′, b′, r) and Heaviest({c}, b− b′, r) are both defined}.

Cheapest(C ′ ∪ {c}, w, r) = min{Cheapest(C ′, w′, r) + Cheapest({c}, w − w′, r) |

0 ≤ w′ ≤ w and Cheapest(C ′, w′, r) and Cheapest({c}, w − w′, r) are both defined}.

Thus, in the unary prices case we can compute Heaviest(C ′, b, r) using dynamic

programming in polynomial time. The same applies to Cheapest(E,C ′, w, r) for the

unary weights case. q

Theorem 4.6. Both plurality-weighted-$briberyunary and plurality-weightedunary-

$bribery are in P.

Proof. Algorithms for both of the problems are very similar and we will describe only

the unary prices case in detail. We provide the pseudocode for the unary weights case,

but we omit its proof of correctness, which is analogous to the proof for the unary prices

case.

Figure 4.1 shows our procedure for the unary prices case. The idea of the algorithm

is the following: Suppose that there is a set B of voters such that if we bribe all members

of B to vote for p then p becomes a winner. We can assume that for each candidate

c, c’s voters have been bribed optimally, i.e., there is no cheaper way of getting the

same (or greater) vote weight by bribing a different subset of c’s voters. There is some

43

procedure UnaryPricesBribery(C, V, p, k)

begin

C ′ = C − {p};

if k ≥ π(V) then accept;

for c ∈ C ′ do

for b such that 0 ≤ b ≤ k do

begin

w′ = heaviest(c, b);

r = scoreE(c)− w′;

w = Heaviest(C ′ − {c}, k − b, r);

if w is defined and scoreE(p) + w + w′ ≥ r then accept;

end

reject;

end

Figure 4.1: The main procedure for plurality-weighted-$briberyunary.

candidate c that has the most votes among the non-p candidates after bribery. Thus,

to decide if bribery is possible it is enough to test whether there is a candidate c 6= p

and a sub-budget b, 0 ≤ b ≤ k, such that after bribing c’s voters optimally, spending b

dollars, it is still possible to bribe (without overall exceeding the budget) voters of the

other candidates in such a way that

1. each candidate ends up with vote weight not higher than that of c, and

2. enough voters can be bribed so that p becomes a winner.

Our algorithm tests exactly if this is the case and accepts if so. (Though its “if-then”

line might at first seem to focus just on having the candidates in C − {c} beat p, note

that c’s post-bribery score is r, so that line handles c also.) By the above reasoning, if

bribery is possible the algorithm accepts. It should also be clear that if the algorithm

accepts then bribery is indeed possible. Since the functions heaviest and Heaviest can

44

procedure UnaryWeightsBribery(C, V, p, k)

begin

C ′ = C − {p};

for c ∈ C ′ do

for w′ such that 0 ≤ w′ ≤ ω(V c
E) do

begin

b = cheapest(c, w′);

r = scoreE(c)− w′;

b′ = Cheapest(C ′ − {c}, r − (scoreE(p) + w′), r);

if b′ is defined and b + b′ ≤ k then accept;

end

reject;

end

Figure 4.2: The main procedure for plurality-weightedunary-$bribery.

be computed in polynomial time, we have that the whole algorithm runs in polynomial

time. Thus, plurality-weighted-$briberyunary is in P.

An analogous algorithm works for the unary weights case, see Figure 4.2. The proof

of correctness is analogous to the unary prices case. q

Theorem 4.6 is particularly interesting because, together with Theorem 4.2, it says

that plurality-weighted-$bribery is difficult only if we choose both weights and prices to

be high. However, the prices are set by the voters and, in many cases, one would expect

that they would set them to be fairly low, rendering the bribery problem easy. Alterna-

tively, the briber may him or herself rescale the prices, obtaining a near-perfect solution

without the need to solve an NP-complete problem. The next theorem formalizes this

approach.

Theorem 4.7. There is an FPTAS for the problem of finding a minimum-cost successful

bribery in a weighted plurality election where the voters have price tags.

45

Proof. Our input instance I contains a plurality election E = (C, V) where voters are

weighted and have price tags, a preferred candidate p ∈ C, and a positive rational value

ε, 0 < ε < 1. By πmax we mean the highest price occurring in I and we assume that

πmax is at least 1. Otherwise the solution where every voter is bribed to vote for p

would be optimal. We let n be the number of voters. Thus, nπmax is an upper bound

on the cost of any bribery within I.

The high-level idea of the algorithm is to scale down the prices so that they are poly-

nomially bounded in n and 1
ε , and to run the polynomial-time algorithm for plurality-

weighted-$briberyunary from Theorem 4.6. However, I might include some voters with

very high prices that are not needed in an optimal solution. By using a scaling factor

appropriate for these high prices we may lose all the information regarding the smaller,

useful, prices. Thus, instead of performing one scaling, we perform polynomially many

of them, starting with small factors and going toward the larger ones.

Our algorithm executes dlog πmaxe iterations. In each iteration variable t contains

our current guess of an upper bound on the largest price used within the optimal solu-

tion. We start with t = 1 and we double it after every iteration.

Given a value of t, an iteration is executed as follows. Set K = tε
n and construct

an instance I ′ that is identical to I, only that: (a) each price q such that q ≤ t, is

replaced by d q
K e (note that d q

K e ≤ dn
ε e), and (b) any price higher than t is replaced

by 1+2ε
ε n2 + 1. Due to this transformation, each price in I ′ is polynomially bounded

in 1
ε and n. We find an optimal solution for I ′ using the polynomial-time algorithm

for plurality-weighted-$briberyunary from the proof of Theorem 4.6. If the solution has

cost 1+2ε
ε n2 + 1 or higher then we discard it and otherwise we store it for future use

otherwise.

When all the iterations are finished, we return a stored solution with the lowest cost.

There is at least one stored solution because in the final iteration we have t ≥ πmax and

so the final iteration does not discard its solution.

We claim that this algorithm finds a solution whose cost is within 2ε of the optimal

one. Let O be an optimal solution and let u = max{π(vi) | vi is bribed within O}. Let

46

us consider an iteration of our algorithm with t such that t
2 ≤ u ≤ t. Let S be our

optimal solution to instance I ′ in this iteration. Since I and I ′ differ only in voter’s

prices, either of S and O is a valid solution for either of I and I ′. By π(S) and π(O) we

mean the costs of briberies specified in S and in O, respectively, expressed using prices

from instance I. By π′(S) and π′(O) we mean analogous values, but with respect to

prices in I ′. There is a solution to I ′ of cost less than 1+2ε
ε n2 + 1. To see this, it is

enough to note that O involves bribing at most n voters, that in I ′ each of these voters

has price at most d t
K e, and that nd t

K e ≤ ndn
ε e ≤

n2+nε
ε < 1+2ε

ε n2 + 1. S is an optimal

solution for I ′ so π′(S) < 1+2ε
ε n2 + 1 and thus S is not discarded. It holds that

π(O) ≤ π(S) ≤ Kπ′(S) ≤ Kπ′(O).

The first inequality holds because O is an optimal solution to I. The second one follows

because instance I ′ has prices rounded up. The last inequality is due to the fact that S

is an optimal solution for I ′.

Since t
2 ≤ u ≤ t and S is not discarded, for each price q of I of a voter bribed in

either O or S we have a corresponding price q′ = d q
K e in I ′. Due to rounding, it is easy

to see that for each such q and q′, it holds that q ≤ Kq′ ≤ q + K. Since any bribery

involves bribing at most n voters we have that

Kπ′(O) ≤ π(O) + nK.

Since nK = εt, and in this iteration we have t
2 ≤ u ≤ t, we have that t

2 ≤ u ≤ π(O).

Thus, the following sequence of inequalities holds.

π(S) ≤ Kπ′(S) ≤ π(O) + εt ≤ π(O) + 2επ(O) = (1 + 2ε)π(O).

Since S is not discarded and the other iterations may only improve the solution output,

the final solution the algorithm outputs is within 2ε of the optimal one. The proof is

complete. q

4.2 Nonuniform Bribery

In the previous section we assumed that each voter has a single price irrespective of how

the briber modifies the vote’s preference list. This model is often useful, but there are

47

scenarios in which a more flexible pricing scheme is more natural. For example, consider

an election with three candidates, a, b, and c, and a particular voter who prefers a to b

to c, but who actually likes both a and b and who absolutely hates c. Such a voter may

be willing, at a small price, to change his or her vote to rank b first, but would never,

regardless of the bribe, change the vote to rank c first.

A different example where it is useful to model voters as having such nonuniform

prices is best seen from the point of view of the briber. A briber that wants some

candidate p to win might want to follow a certain policy in his or her bribing. For

example, he or she might not want to bribe anyone to vote for p in order not to cast “bad

light” on p. Such a briber would have to make p a winner via bribes that redistribute

other candidates’ support. Using the nonuniform model of bribery one could express

this policy via setting the prices for moving points to p so high as to be outside of the

allowed budget. We can easily come up with other meaningful policies.

Yet another scenario where nonuniform bribery model is useful regards the issue of

coalition formation. Consider an election where one of the voters realizes that his or

her option is very unlikely to win, but where there are many other voters that support

options similar, but slightly different, from his or hers. Such a voter might want to find

out which of the others, but as few as possible, he or she would have to convince to

form a coalition with him or her in order to have enough voting power to choose an

option that all of them would be reasonably satisfied with. One way to compute such a

set would be to: (a) find a group of voters that currently vote for options similar to the

agent’s, (b) form nonuniform bribery instance where those voters can be bribed, at a

relatively low price, to vote for the agent’s option and where all other briberies are either

very expensive or impossible (beyond budget), (c) compute a minimum-cost nonuniform

bribery that ensures that the agent’s favorite option wins. The voters involved in this

bribery would be candidates for the coalition.

Thus, the issue of nonuniform bribery is both important and useful, even in the cases

where we are not really “bribing” anyone, but simply are trying to strategically plan

our behavior. In this section we give a number of results that show that the problem

of nonuniform bribery can often be solved in polynomial time in the case of unweighted

48

voters, but often becomes NP-complete if the voters are weighted, in some cases even if

the values of price functions are encoded in unary.

Throughout this section we use the utility-based voter model instead of our standard

rational voter model.

4.2.1 Nonuniform Bribery Model

Let e and b be two integer values. We define the (e, b)-bribery problem as follows: The

input contains the following elements:

1. An unweighted (e, b)-election E with candidate set C = {c1, . . . , cm} and a collec-

tion V of voters v1, . . . , vn, where each voter v`’s preference is represented via an m-

dimensional integer vector describing, in a natural way, how many points vi assigns

to each candidate, and where each voter v`’s price is a function π` : C × C → N.

2. A nonnegative integer B, the budget.

A unit bribery involves asking some voter v` ∈ V to move a single point that v` currently

assigns to some candidate ci to another candidate cj . The cost of such a unit bribery is

π`(ci, cj). Naturally, for each ` ∈ {1, . . . , n} and each candidate ci we have π`(ci, ci) = 0.

In the (e, b)-bribery problem we ask if it is possible to perform a set of unit briberies of

total cost at most B, such that

1. preferred candidate p = c1 becomes a winner, and

2. the election resulting from our bribery conforms to the requirements of an

(e, b)-election, that is, each voter assigns at most b points to each candidate.

We explicitly require that all unit briberies are executed “in parallel.” That is, the

briber cannot first bribe voter v` to move a point from some candidate ci to another

candidate cj and afterward move that same point from cj to yet another candidate cq.4

4The results of this section still hold even if such sequential bribing were legal, but we believe that

the “parallel bribery model” is more appropriate.

49

(However, it would still be legal to move to cq a point that v` had assigned to cj before

the bribery. Of course, points are unnamed entities; our requirement of not moving “the

same” point twice formally means that briberies are only legal if for each voter v` they

move, within the preference vector of that voter, at most as many points away from

each candidate as many that candidate had been assigned by v` before the bribery.)

The free-form (e, b)-bribery problem is defined analogously, only that voters do not

have to assign all their points to candidates (i.e., we are using free-form (e, b)-elections

instead of regular (e, b)-elections) and, in addition to other unit briberies, we can bribe

voters to either use their unassigned points or to take away points from some candidate

without reassigning them to any other one. In order to accomplish this we extend our

price functions to incorporate a dummy candidate d representing the slot for unassigned

points (naturally, the b-bound does not apply to d).

We define (e, b)-weighted-bribery and free-form (e, b)-weighted-bribery analogously

to their unweighted counterparts, only that the voters in the underlying elections are

weighted. We use the term “nonuniform bribery” to jointly refer to the type of bribery

problems described in this subsection.

4.2.2 Unweighted Nonuniform Bribery Is Easy

The next theorem shows that in almost all natural settings nonuniform bribery in un-

weighted (e, b)-elections is easy.

Theorem 4.8. There is an algorithm that solves (e, b)-bribery instances and free-form

(e, b)-bribery instances in time polynomial in e and the size of the instance.

Proof. We will first give an algorithm for (e, b)-bribery and then explain how it can be

modified to work for free-form (e, b)-bribery.

Our input is an (e, b)-election E, with candidate set C = {c1, . . . , cm} and voter

collection V = (v1, . . . , vn), a nonnegative integer B (the budget), and voters’ price

functions π1, . . . , πn. Our goal is to ensure that candidate p = c1 is a winner of the

election via a bribery of cost at most B.

50

Our proof follows via constructing a series of flow networks and computing minimum-

cost solutions for them. The intuition here is that the points that the voters assign to

candidates are modeled via the units of flow traveling through the network. We design

our networks in such a way that minimizing the cost of the flow, in essence, corresponds

to finding a minimum-cost bribery that gives candidate p = c1 a prespecified amount of

points and ensures that all other candidates have at most as many points.

We know that each candidate receives at most en points. For each nonnegative

integer Q between 1 and en our algorithm tests if there is a bribery of cost at most B

that ensures that p receives exactly Q points and every other candidate receives at most

Q points. Let us now fix a value of Q and show how such a test can be performed.

We form a flow network (K, s, t, c, a), see Section 2.3, with the node set K such that

K = {s, t} ∪

(
n⋃

i=1

Ci

)
∪

(
n⋃

i=1

C ′
i

)
∪ F,

where F = {f1, . . . , fm} and for each i ∈ {1, . . . , n} we have Ci = {ci1, . . . , cim}, C ′
i =

{c′i1, . . . , c′im}.

We introduce the following capacities and costs for edges in our network. (All

unmentioned edges have capacity 0.) For each voter v` and candidate ci we have c(s, c`i)

equal to the number of points v` assigns to ci before the bribery and a(s, c`i) = 0.

For each node c`i and each node c′`j we have c(c`i, c
′
`j) = e and a(c`i, c

′
`j) = π`(i, j).

These edges model unit briberies. For each node c′`i we set c(c′`i, fi) = b and a(c′`,fi
) = 0.

Finally, we have c(f1, t) = Q, a(f1, t) = 0, and for each i ∈ {2, . . . , t} we have c(fi, t) =

Q, a(fi, t) = T , where T is an integer larger than the cost of any possible bribery (e.g.,

take T = 1 + en max`,i,j π`(ci, cj)).

To perform our test we compute a minimum-cost flow of value en in this network.

If such a flow doesn’t exist the we disregard this value of Q because there is no way of

redistributing voters’ points among the candidates so that each candidate receives at

most Q points. Let f be a minimum-cost flow that we compute. Since the flow has value

en, for each node c`i we have f(s, c`i) equal to the number of points that voter ` assigns

to candidate ci in election E. For each two nodes c`i and c′`j , we interpret f(c`i, c
′
`j) as

51

the number of points that the briber asks v` to reassign from ci to cj . Note that each

point traveling on the edge from c`i to c′`j increases the cost of the flow by π`(c`i, c
′
`j),

exactly the price of such a unit bribery. (Recall that if i = j then π`(c`i, c
′
`j) = 0.)

Note that for each node c′`j , c′`j receives at most b units of flow because the only edge

outgoing from c′`j , edge (c′`j , fj), has capacity b. For each j ∈ {1, . . . ,m}, we interpret

the units of flow that enter fj as the points that candidate cj receives from all voters

after the bribery. Each unit of flow that enters fj then goes directly to the sink t, at

cost T if j ∈ {2, . . . ,m} and at cost 0 if j = 0. Thus, the cost of the whole flow is

T · (en− p’s score after bribery) + cost-of-bribery.

T is larger than the cost of any bribery. Thus, each minimum-cost flow f ′ ensures

that f ′(f1, t) is as large as possible. In particular, if there is any flow f ′′ of value en

such that f ′′(f1, t) = c(f1, t) = Q then for each minimum-cost flow f ′ it also holds that

f(f1, t) = Q. So, for our flow f , if f(f1, t) 6= Q then we can safely disregard this network

(in essence, because we have already handled this flow when analyzing smaller values of

Q). Via the interpretation of f given above, if f(f1, t) = Q then the microbribery that

f models guarantees that p gets exactly Q points. Since for each candidate cj it holds

that f(cj , t) ≤ Q, the bribery modeled by f ensures that p is a winner. In addition, it is

easy to see that since f is a minimum-cost flow of value en, the “cost-of-bribery” part

of the cost of f is equal to a minimum cost of a bribery that ensures that p gets exactly

Q points and that everyone else gets at most Q points.

This way we test, in polynomial-time, for each Q whether there is a nonuniform

bribery of cost at most B that ensures that p receives exactly Q points and all other

candidates receive at most Q points. In total, the running time of our algorithm is

polynomial in the size of our election and e.

It remains to show that free-form (e, b)-bribery also can be solved in a similar man-

ner. The algorithm for free-form (e, b)-bribery works exactly like the one for (e, b)-

bribery only that we have to slightly extend our network to account for the fact that

each voter may choose to assign only some of the points that he or she has. To do so,

we extend the candidate set with a virtual candidate d, the dummy, to whom the voters

52

will assign all the points that they would like to leave unassigned. In the flow network

we set the capacities of the edges relating to d so that there are no constraints on the

amount of flow that d may receive (but we keep the costs of all these edges intact). It

is easy to see that after such modifications of the flow network, our algorithm solves

free-form (e, b)-bribery. q

The above theorem is quite powerful. In many natural utility-based election systems,

such as plurality, veto, or (k-)approval, the number of points to distribute is polynomi-

ally bounded in the number of candidates and so, via Theorem 4.8, we get the following

corollary.

Corollary 4.9. Nonuniform bribery can be solved in polynomial time for: plurality,

veto, (k-)approval, and utility-based voting where the number of points each voter can

distribute is polynomial in the number of candidates (or voters, or both) participating

in the election.

Thus, for most practical purposes, unweighted nonuniform bribery is easy. Naturally,

it is interesting to ask if this is also the case for weighted settings. In the next section

we show that this is unlikely.

4.2.3 Nonuniform Bribery in Weighted Elections

Let us now focus on weighted nonuniform bribery. Unfortunately, when weights come

into play, even very basic nonuniform bribery problems become hard. For example, in

the next theorem we show that (1, 1)-weighted-bribery, that is, nonuniform bribery for

weighted plurality elections, is NP-complete even if the values of the price functions are

polynomially bounded in the size of the election. This is very interesting because, in

our standard bribery model, weighted bribery in plurality with unary-encoded prices is

easy (Theorem 4.6).

Theorem 4.10. (1, 1)-weighted-bribery is NP-complete even if the values of price func-

tions are polynomially bounded in the size of the election.

53

Let us explain the idea of the proof intuitively before we proceed with formal details.

In the standard plurality bribery problems (Section 4.1) the briber always asks the

voters, or at least those that he or she bribes, to vote for the briber’s favorite candidate

p. This is a reasonable method of bribing if one wants p to become a winner, but it also

has potential real-world downsides: The more people we bribe, the more likely it may

be that the malicious attempts will be detected and will work against p. To minimize

the chances of that happening we might instead bribe voters to vote not for p but for

some other candidate(s). This way p does not get extra votes but might be able to take

away enough points from the most popular candidates to become a winner. We will call

this setting negative bribery because the motivation of the briber is not to get votes for

his or her favorite candidate, but to take them away from others.

Definition 4.11. plurality-weighted-negative-bribery is defined to be the same as

plurality-weighted-bribery, except that in plurality-weighted-negative-bribery the briber

is not allowed to bribe voters to vote for the designated candidate p.

In our proof we will first argue that plurality-weighted-negative-bribery can be

modeled as (1, 1)-weighted-bribery where each price function has values polynomially

bounded in the size of the election, and then show that plurality-weighted-negative-

bribery is NP-complete.

Proof of Theorem 4.10. plurality-weighted-negative-bribery can easily be expressed

as (1, 1)-weighted-bribery. Given an instance of plurality-weighted-negative-bribery

with budget k we form an instance of (1, 1)-weighted-bribery that is identical (in par-

ticular, keeps the same budget) only that the voters’ price functions are set such that

transferring any point to p costs k + 1 (and, thus, is unaffordable) and transferring any

point to any other candidate costs 1. Thus, to prove the theorem it is enough to show

that plurality-weighted-negative-bribery is NP-complete.

Let us now show that plurality-weighted-negative-bribery is NP-complete by giving

a reduction from Partition (NP-membership is obvious). Let s1, . . . , sn be a sequence

of nonnegative integers. We design an instance of plurality-weighted-negative-bribery

such that bribery is possible if and only if s1, . . . , sn can be split into two subsequences

54

that sum up to the same value. Let S be such that
∑n

i=1 si = 2S. Our election has

three candidates: p, c1, and c2, and we have n + 1 weighted voters:

1. v0 with weight S, who votes for p, and

2. v1, . . . , vn with weights s1, . . . , sn, each of whom votes for c1.

We want to make p a winner and we allow ourselves to bribe as many candidates as we

please. (In particular, we set the bribe limit k to n + 1.)

Note that the only reasonable bribes are the ones that transfer votes of vi, 1 ≤ i ≤ n,

from c1 to c2. (Strictly speaking, v0 could legally be bribed to vote for c1 or c2, but

that can be safely ignored.) If there is a set A ⊆ {1, . . . , n} such that

∑
i∈A

si = S, (4.1)

then we could bribe all voters vi, i ∈ A, to vote for c2 and all candidates would be

winners. On the other hand, if p can end up a winner by a bribery that does not ask

anyone to vote for p, then there is a set A that satisfies Equation (4.1): after a negative

bribery p is a winner of our election if and only if each of c1 and c2 have vote weight

exactly S. However, at the beginning c1 holds 2S vote weight and so a successful bribery

needs to transfer exactly S vote weight from c1 to c2. This is only possible if (4.1) holds

for some A.

To finish the proof, we observe that this reduction can be computed in polynomial

time. q

Let us now consider weighted nonuniform bribery in approval voting. Approval

voting with m candidates is modeled as a free-form (m, 1)-election. In approval, each

voter’s 0/1-vector of point assignments is typically called his or her approval vector.

Although nonuniform bribery, as defined in this section, can be applied to approval

directly, it seems more natural to consider a restriction where each voter has a separate

55

price for switching each of the entries of his or her approval vector. We will refer to this

variant of bribery in approval voting as approval-$microbribery.

Definition 4.12. approval-$microbribery is the problem that takes as input a description

of an approval election along with a designated candidate p and a nonnegative integer

k, and asks whether it is possible to make p a winner by at most k entry changes (total)

in the approval vectors. Changing each entry of an approval vector may have a different

price.

Naturally, we can consider a weighted version, approval-weighted-$microbribery, by

allowing the voters to be weighted.

It is easy to see that microbribery for approval is a special case of nonuniform

bribery for approval, where the only affordable prices are those of moving a point from

a real candidate to the dummy one and the other way round. Thus, via Theorem 4.8,

approval-$microbribery is in P. On the other hand, we show that approval-weighted-

$microbribery is NP-complete, which implies that free-form (m, 1)-weighted-bribery,

where m is the number of candidates, is NP-complete.

Theorem 4.13. approval-weighted-$microbribery is NP-complete.

Proof. It is immediate that approval-weighted-$microbribery is in NP. To show NP-

hardness, we will construct a reduction from Partition. Let s1, . . . , sn be a sequence of

nonnegative integers and let
∑n

i=1 si = 2S. We construct an election E with candidates

p and c and n + 1 voters, v0, . . . , vn, with the following properties.

1. v0 has weight S, approves only of p, and changing any of v0’s approvals costs S+1.

2. vi, for 1 ≤ i ≤ n, has weight si, approves only of c, changing vi’s approval for p

costs si, and changing vi’s approval for c costs S + 1.

We claim that p can be made a winner by a bribery of cost at most S if and only if

there is a set A ⊆ {1, . . . , n} such that
∑

i∈A si = S.

First suppose that p can be made a winner by a bribery of cost at most S. Briberies

of cost up to S are exactly those that involve bribing some subcollection of v1, . . . , vn

56

to approve of p. Since before bribery p has S approvals and c has 2S approvals, our

bribery needs to give p at least S extra approvals. Since changing each vi’s approval of

p costs si, and the weight of each vi is also si, it follows that via a successful bribery p

gains exactly S approvals, and that the weights of the bribed voters in v1, . . . , vn add

up to exactly S. This implies that the sequence s1, . . . , sn can be partitioned into two

subsequences that each sum to S.

On the other hand, assume there is a set A ⊆ {1, . . . , n} such that
∑

i∈A si = S.

Then we can bribe voters vi, i ∈ A, to approve of p. As a result, both p and c will have

vote weight 2S and both of them will be winners. Our reduction can be computed in

polynomial time and thus the theorem is proved. q

The hardness of approval-weighted-$microbribery strictly relies on the fact that

both prices and weights can be large (since they are represented in binary). If ei-

ther prices or weights are small (in particular, if they are represented in unary) then

the problem becomes easy. We let approval-weightedunary-$microbribery be a vari-

ant of approval-weighted-$microbribery with weights represented in unary, and we let

approval-weighted-$microbriberyunary be a variant of approval-weighted-$microbribery

with prices represented in unary.

Theorem 4.14. Both approval-weightedunary-$microbribery and approval-weighted-

$microbriberyunary are in P.

Proof. The polynomial-time algorithm we provide is based on the observa-

tion that in both approval-weightedunary-$microbribery and approval-weighted-

$microbriberyunary getting vote weight for the favorite candidate can be (carefully)

treated separately from demoting the other candidates.

We can divide any bribery into two phases: First, we bribe voters to approve of p,

our favorite candidate, and second, we bribe enough voters to decline their approvals of

candidates that still defeat p. There are only polynomially many relevant vote weights

that p may obtain by bribery, so we can try them all.

57

Consider a bribery instance with election E = (C, V), preferred candidate p,

and budget k. For a candidate c, a price b, and a subset of voters V ′, we define

heaviest(V ′, c, b) to be the highest vote weight of voters in V ′ whose approval of c can

be switched by spending at most b dollars. Similarly, for a candidate c, vote weight w,

and a subset of voters V ′, we define cheapest(V ′, c, w) to be the lowest price that can

switch the approval-of-c of voters in V ′ that have total weight at least w. In our proof

we only use sets V ′ where either all voters approve of c or all voters disapprove of c.

Note that heaviest(V ′, c, b) is defined for all b ≥ 0 and that cheapest(V ′, c, w) is defined

for all w ≤ ω(V ′). As in Section 4.1, heaviest can easily be computed in polynomial

time in the unary prices case and cheapest can easily be computed in polynomial time

in the unary weights case. In addition, cheapest can be computed in polynomial time

in the unary prices case. Note that

cheapest(V ′, c, w) = min{b | heaviest(V ′, c, b) ≥ w}.

Since there are only polynomially many prices to try, this can be done in polynomial

time.

Figure 4.3 gives pseudocode for the procedure UnaryPricesApproval, which decides

approval-weighted-$microbriberyunary. The procedure simply tries all relevant weights

that p could obtain by bribery and tests whether it is possible, for any of them, to

bring the other candidates down to vote weight at most that of p without exceeding

the budget. The procedure is correct because of the separation we achieved between

the issue of bribing voters to approve of p and the issue of bribing them not to approve

of some other candidate. Also, as cheapest and heaviest are computable in polynomial

time, the procedure works in polynomial time. An analogous procedure decides the

unary weights case: Simply change the line “for b = 0 to k do” to “for w = 0 to ω(V ′)

do” and the line “w = heaviest(V ′, p, b)” to “b = cheapest(V ′, p, w).” q

To make things more interesting: In our standard model of bribery, approval is hard

even in the simplest setting (without prices and without weights).5

Theorem 4.15. approval-bribery is NP-complete.

5Which of the above-discussed bribery models for approval is most appropriate depends on the

58

procedure UnaryPricesApproval(E = (C, V, p, k))

begin

if k ≥ π(V) then accept;

V ′ = {v | v ∈ V and v does not approve of p};

for b = 0 to k do

begin

w = heaviest(V ′, p, b);

r = scoreE(p) + w;

k′ = k − b;

for c ∈ C − {p} do

begin

V ′
c = {v | v ∈ V and v approves of c};

if scoreE(c) > r then

k′ = k′ − cheapest(V ′
c , c, scoreE(c)− r);

end

if k′ ≥ 0 then accept;

end

reject;

end

Figure 4.3: The procedure UnaryPricesApproval.

Proof. Clearly, approval-bribery is in NP. NP-completeness follows from a reduction

from X3C.

Let B = {b1, . . . , b3t} and let S = {S1, . . . , Sm} be a family of three-element subsets

of B. Without loss of generality, we assume that m ≥ t; otherwise an exact cover is

impossible. For each i, 1 ≤ i ≤ 3t, let `i be the number of sets Sj that contain bi. On

setting. For example, microbribery seems more natural when we look at the web and treat web pages

as voting by linking to other pages. It certainly is easier to ask a webmaster to add/remove a link than

to completely redesign the page.

59

input (B,S) we form an election E = (C, V), where C = {p} ∪ B, and voter collection

V contains the following voters.

1. For each Si ∈ S there is a voter vi who approves exactly of the members of Si.

2. For each bi we have m− `i + 1 voters who approve only of bi.

3. We have m− t voters who approve only of p.

Note that p gets m− t approvals and that each bi, 1 ≤ i ≤ 3t, gets m + 1 approvals. We

claim that p can be made a winner by bribing at most t voters if and only if B has an

exact cover by sets in S.

First assume that there is a set A such that ‖A‖ = t and
⋃

i∈A Si = B. To make p a

winner, bribe each vi such that i ∈ A to approve only of p. As a result p gets t additional

approvals and each bi loses exactly one approval. Thus, all candidates are winners. On

the other hand, assume there is a bribery of at most t voters that makes p a winner.

Each bribed voter contributes at most one additional approval for p. Thus, p will get

at most m approvals. Each candidate in B has m + 1 approvals, and our bribery needs

to take away at least one approval from each candidate in B. Since we bribe at most

t voters, this can only happen if we bribe t voters vi that correspond to a cover of B.

This reduction can be computed in polynomial time and the proof is complete. q

By the above discussion, we cannot hope for a general efficient algorithm handling

(e, b)-weighted-bribery for e, b polynomially bounded in the size of the input election.

We need to seek either a general NP-hardness proof that would cover all reasonable

values of e and b or, alternatively, special cases of weighted nonuniform bribery for

which polynomial-time algorithms exist.

4.3 Conclusions and Research Directions

In this chapter we have presented a comprehensive study of the complexity of bribery

in plurality elections and nonuniform bribery in utility-based systems. In particular,

60

in Section 4.1 we have shown that bribery in plurality elections is almost always easy,

except for the setting in which voters have both weights and (binary encoded, relatively

large) prices. This last result follows via a proof that involves elections with two can-

didates only. Since many natural election systems reduce to plurality when only two

candidates are involved, our proof is in fact quite general.

We have also shown that even though finding optimal briberies for the case of

weighted-and-priced plurality elections is hard, finding approximate solutions is easy,

and that in fact there is an FPTAS for finding minimum-cost briberies in this setting.

In Section 4.2 we have considered nonuniform bribery in utility-based elections.

We have shown that in the unweighted case bribery is easy for utility-based weighted

election systems where the number of points that the voters have to distribute is poly-

nomially bounded. However, for the case of weighted elections we have shown examples

of nonuniform bribery problems that are NP-complete. An interesting open research

direction is to provide a general classification result for the complexity for nonuniform

bribery in weighted elections (especially in the case where the values of price functions

are encoded in unary).

61

5 Manipulating Scoring Protocols

Scoring protocols constitute one of the most important and natural classes of election

rules. Some of the oldest practically used election systems, such as plurality and Borda

count, as well as many other natural systems, e.g., k-approval and veto, can be viewed

as families of scoring protocols. To mention just two examples of practical modern-

day applications of scoring protocols, Borda count is used in certain political elections

(for example, in Slovenia) and a scoring rule with vector (12, 10, 8, 7, 6, . . . , 1, 0, . . . , 0)

is used for voting in the Eurovision Song Contest. Simplicity, naturalness, and popu-

larity of election systems based on scoring protocols make it important to study their

computational properties.

The starting point for the discussion in this chapter is the following theorem of

Hemaspaandra and Hemaspaandra (see also (PR07) and (CSL07)) that fully classifies

the hardness of weighted manipulation in scoring protocols.

Theorem 5.1 (Hemaspaandra and Hemaspaandra (HH07)). Let α = (α1, . . . , αm) be

a scoring protocol. If it is not the case that α2 = α3 = · · · = αm, then α-weighted-

manipulation is NP-complete; otherwise, it is in P.

We extend this theorem in the following two directions. First, in Section 5.1, we ob-

tain similar classification results for the case of bribery in scoring protocols for each com-

bination of priced-vs-unpriced with weighted-vs-unweighted voters. From our bribery

results we derive algorithms for manipulation in scoring protocols for the cases where

voters are either unweighted or have weights encoded in unary (cases not covered by

62

Hemaspaandra and Hemaspaandra (HH07)). Then in Section 5.2, we refine Theorem 5.1

by showing that for weighted manipulation problems in many scoring protocols there

are fully polynomial-time approximation schemes. In so doing, we give a fairly general

framework for approximate analysis of manipulation, bribery, and control problems.

5.1 The Complexity of Bribery in Scoring Protocols

Our goal in this section is to obtain a full classification of scoring protocols with respect

to their hardness of bribery. As we have already seen in Section 4, the complexity of

bribery may strongly depend on whether the voters are weighted and whether they

have price tags. Thus, in this section, we are naturally interested in seeing how the

complexity of bribery in scoring protocols depends on the type of voters involved.

Instead of obtaining our bribery results from scratch, we would ideally like to derive

them from Theorem 5.1. This is particularly easy for the case of weighted-and-priced

voters, as in this case we can use Theorem 3.4 which says that every manipulation

problem reduces to an analogous priced bribery problem. Thus, combining Theorem 3.4,

Theorem 5.1, and our results on the complexity of bribery for plurality from Section 4.1,

we obtain the following complete classification of scoring protocols with respect to the

complexity of weighted-$bribery.

Theorem 5.2. For each scoring protocol α = (α1, . . . , αm), if α1 = αm then α-weighted-

$bribery is in P; otherwise it is NP-complete.

Proof. We consider three cases.

1. α1 = · · · = αm.

2. α1 > α2 = · · · = αm.

3. All other settings.

In the first case, α1 = · · · = αm, α-weighted-$bribery is trivially in P as all candidates

are always tied. For the remaining two cases, note that α-weighted-$bribery is clearly

in NP. It remains to show NP-hardness.

63

In the second case, α1 > α2 = · · · = αm, we can employ the proof of Theorem 4.2.

Theorem 4.2 shows NP-hardness for (1, 0)-weighted-$bribery. It is easy to see that for

all m ≥ 2 we can pad this reduction with m− 2 candidates that are never ranked first

to obtain NP-hardness for (1,

m−1︷ ︸︸ ︷
0, . . . , 0)-weighted-$bribery. Note that our α describes

elections equivalent to plurality (i.e., a candidate is a winner of an α election if and

only if he or she would also be a winner of the (1,

m−1︷ ︸︸ ︷
0, . . . , 0) election with the same voters

and candidates; see (HH07, Observation 2.2)). Thus, we get NP-completeness of α-

weighted-$bribery for this case since we do have at least two candidates.

The third case follows by combining Theorem 3.4 with Theorem 5.1. Since

α-weighted-manipulation many-one reduces to α-weighted-$bribery and α-weighted-

manipulation is NP-complete in this case, we have that α-weighted-$bribery is NP-

hard. This exhausts all cases. q

Theorem 5.2 applies to weighted-$bribery, but of course it is also interesting to ask

what happens in the case where voters do not have prices. Does bribery remain NP-

complete? Can we express the constraints of manipulation without using such direct

embedding as above? The following theorem shows that the answer is “Yes, but in fewer

cases.”

Theorem 5.3. For each scoring protocol α = (α1, α2, . . . , αm), if α2 = α3 = · · · = αm

then α-weighted-bribery is in P; otherwise it is NP-complete.

If α2 = α3 = · · ·αm then either α-weighted-bribery is trivially in P (if α1 = · · · =

αm) or can be solved using the algorithm for plurality-weighted-bribery. The core of

the proof is to show NP-hardness. It would be nice to do so by reducing from the cor-

responding manipulation problems (which share the characterization’s boundary line

regarding the “α”s). This seems not to work, but in Lemma 5.5 we construct such a re-

duction that has the right properties whenever its inputs satisfy an additional condition,

namely, that the weight of the lightest manipulating voter is at least double that of the

heaviest nonmanipulator. This would suffice if the thus-restricted manipulation prob-

lem were NP-hard. Lemma 5.6 shows that the thus-restricted manipulation problem is

64

NP-hard. It does so by examining the manipulation-dichotomy proof of Hemaspaandra

and Hemaspaandra (HH07) and noting that if we apply their reduction to Partition′ (see

Section 2.2) rather than to Partition then we can guarantee the restriction mentioned

above.

Definition 5.4. By α-weighted-manipulation′ we mean the manipulation problem α-

weighted-manipulation with the restriction that each manipulative voter has weight at

least twice as high as the weight of the heaviest of the nonmanipulative voters. Each in-

stance where the restriction is violated is considered not to be an element of α-weighted-

manipulation′.

Lemma 5.5. Let α = (α1, . . . , αm) be a scoring protocol. α-weighted-manipulation′ ≤p
m

α-weighted-bribery.

Proof. Without loss of generality we can assume that αm = 0. If αm 6= 0 then we can

consider scoring protocol α′ = (α1 − αm, α2 − αm, . . . , αm − αm) instead. We give a

reduction from α-weighted-manipulation′ to α-weighted-bribery. Let our input instance

M contain election E = (C, V) and a collection S of manipulators, who want to ensure

that their preferred candidate p ∈ C is a winner. We form an instance B of bribery

with election E′ = (C, V ′), preferred candidate p, and budget ‖S‖. We set V ′ = V ∪S′,

where S′ is the collection of voters S with arbitrary preference lists that rank p last.

We assume that M fulfills α-weighted-manipulation′’s requirements regarding relative

weights of voters in V and S. If not, we output some fixed B that has no successful

briberies.

Clearly, if a manipulation is possible within M then some bribery works for B. We

show that the other direction also holds by arguing that if a successful bribery within

B exists, then there is a successful bribery that affects only voters in S′. This implies

that one can assign preference lists to voters in S so that p is a winner of (C, V ∪ S).

Let us assume that there is some way of bribing at most ‖S‖ voters in V ′ so that

p becomes a winner. If all the bribed voters are in S′ then the theorem is proven.

Otherwise, select some bribed voter v ∈ V ′ − S′. By bribing v, p gains at most (α1 +

α1) · ω(v) points over each candidate c 6= p. (The first α1 is because p can get at

65

most α1 additional points by this bribery, and the second α1 is because c can lose at

most α1 votes.) However, if instead of bribing v we would bribe some voter v′ in S′,

p would gain at least α1ω(v′) points over each c. (We would bribe v′ to put p as his

or her most preferred candidate and shift all other candidates back.) Since it holds

that ω(v′) ≥ 2ω(v), we might just as well bribe v′ instead of v, and p would still be a

winner. Thus, if p can be made a winner, then p can be made a winner by bribing only

voters in S′. This reduction can easily be computed in polynomial time and the proof

is complete. q

It remains to show that the restricted version of manipulation is NP-complete for

each of the scoring protocols for which the nonrestricted version is.

Lemma 5.6. If α = (α1, . . . , αm) is a scoring protocol such that it is not the case that

α2 = α3 = · · · = αm, then α-weighted-manipulation′ is NP-complete.

Proof. Let α = (α1, . . . , αm) be a scoring protocol such that α2 6= αm. We will use

Hemaspaandra and Hemaspaandra’s proof of Theorem 5.1 (HH07) to show the NP-

completeness of α-weighted-manipulation′. Clearly, α-weighted-manipulation′ is in NP

so we only need to prove its NP-hardness.

Hemaspaandra and Hemaspaandra’s proof of Theorem 5.1 (HH07) reduces Parti-

tion (restricted to positive integers) to α-weighted-manipulation. A close inspection

of that proof1 shows that there exist constants c and d ≥ 2 that depend only on α

such that for every sequence of positive integers s1, . . . , sn such that
∑n

i=1 si = 2S, the

Hemaspaandra-Hemaspaandra reduction outputs a manipulation problem that has the

following properties.

1. Each nonmanipulative voter has weight at most cS, and

2. the weights of the manipulative voters are ds1, ds2, . . . , dsn.

We will use these facts to provide a reduction from Partition′ to α-weighted-

manipulation′.

1We do not repeat that proof here. Interested readers are referred to (HH07).

66

Our reduction works as follows. Let s1, . . . , sn be the input sequence of nonnegative

integers,
∑n

i=1 si = 2S, such that for each i, 1 ≤ i ≤ n, it holds that si ≥ 2
2+nS. (If

these conditions do not hold then, as is our convention, we return a fixed string not in

α-weighted-manipulation′.) Without loss of generality, we assume that S > 0, and thus

s1, . . . , sn are positive integers. Let f be the reduction given by the proof of Theorem 5.1

from (HH07). We compute f((s1, . . . , sn)) = M , where M is a α-weighted-manipulation

instance with an election E = (C, V), a collection T of manipulators, and a preferred

candidate p ∈ C. Reduction f works for general Partition and so, since we already

checked the special properties required by Partition′, it has to work correctly for our

input. That is, s1, . . . , sn can be partitioned if and only if there is a way for the

manipulators in T to ensure p’s victory. Unfortunately, we cannot just output M as

it does not necessarily fulfill the condition on voters’ weights. Recall that we have to

ensure that each manipulative voter has weight at least twice as high as the weight of

the heaviest of the nonmanipulative voters. Let smin = min{sj | 1 ≤ j ≤ n}. In M , the

least weight of a voter in T is exactly dsmin, and the highest weight of a voter in V is at

most cS. However, we can split each voter v in V . The weights of the voters who do not

participate in the manipulation are irrelevant as long as the total weight of voters with

each given preference order does not change. Thus, we can replace a voter with high

weight by several other voters with the same preference order but with lower weights.

In our case, we need to make sure that each nonmanipulative voter has at most weight
1
2dsmin. Since the heaviest of the nonmanipulative voters has weight at most cS, we

need to replace each voter v ∈ V with at most⌈
cS

b1
2dsminc

⌉
(5.1)

voters, each of weight at most 1
2dsmin. Since d ≥ 2, S > 0, smin is a positive integer,

and 2
2+nS ≤ smin, we can bound (5.1) from above by⌈

cS

b1
2dsminc

⌉
≤
⌈

cS

smin

⌉
≤

⌈
cS
2S

2+n

⌉
=
⌈

c(n + 2)
2

⌉
,

which is clearly polynomially bounded in n. Thus, the splitting of voters can easily be

performed in polynomial time, and since it does not change the result of manipulation,

the theorem is proven. q

67

The proof of Theorem 5.3 simply combines Lemmas 2.3, 5.5, and 5.6.

Theorem 5.2 and Theorem 5.3 show that weighted-bribery and weighted-$bribery

within scoring protocols are, in most cases, difficult. It is interesting to ask whether

having voters who have prices but are not weighted also yields such hardness results.

As Theorem 5.7 shows, this is not the case.

Theorem 5.7. Let α = (α1, . . . , αm) be a scoring protocol. α-$bribery is in P.

Proof. We will give a polynomial-time algorithm for α-$bribery. Our input is election

E = (C, V), preferred candidate p ∈ C, and budget k. First, observe that by considering

scoring protocol α = (α1, . . . , αm) we, by definition, limit ourselves to a scenario with

m candidates, where m is a fixed constant. This implies that there are only a constant

number of different preference orders, o1, . . . , om!, that the voters might have. We

partition V into sets V1, V2, . . . , Vm! such that each Vi contains exactly the voters with

preference order oi. Some Vi’s might be empty and each Vi has at most n elements,

where n = ‖V ‖.

A bribery within E can be described by giving two sequences of integers, b1, . . . , bm!

and d1, . . . , dm!, such that 0 ≤ bi ≤ ‖Vi‖ and 0 ≤ di ≤ n, for 1 ≤ i ≤ m!, and

m!∑
i=1

bi =
m!∑
i=1

di.

Each bi says how many voters from Vi we are bribing. It is sufficient to just give the

numbers bi since we want to bribe only the cheapest members of each Vi. After we bribe

these b =
∑m!

i=1 bi voters, we need to decide what preferences to assign to them. This

is described by the sequence d1, . . . , dm!: Each di says how many of the b voters will be

assigned to have preferences oi. Since the voters are indistinguishable, specifying these

numbers is enough.

It remains to observe that there are at most nm! sequences b1, . . . , bm! and there are

at most nm! sequences d1, . . . , dm! for each b. Thus, there are at most n2(m!) sequences

to try out. For each pair of sequences it is easy to check whether after performing the

described bribery p becomes a winner and whether the budget is not exceeded. Thus,

α-$bribery is in P. q

68

There are a few issues raised by the above proof. The first one is that the proof

works for essentially all elections with a fixed number of candidates (as long as the

outcome of elections does not depend on the order of votes, but only on their values).

It is natural to ask why prices and weights exhibit such differing behavior, that is, why

α-weighted-bribery is NP-complete for almost all scoring protocols α, and α-$bribery

is in P for each scoring protocol α. One answer is that in the weighted case the voters

retain their individuality—their weights—throughout the whole process of bribery. On

the other hand, in the priced case the voters are disassociated from their prices as soon

as we decide to bribe them. If we decide to bribe a particular priced voter then we

simply need to add his or her price to our total budget, but from then on the voter is

indistinguishable from all the other bribed ones. It is precisely this observation that

facilitated the proof of Theorem 5.7.

The second issue is the disappointing running time of the given algorithm. While

nO(m!) is a polynomial in our setting, one would certainly prefer to have an algorithm

whose time complexity did not depend on m in this way. In particular, it would be

nice to have an algorithm with running time polynomial in n + m. However, if such

an algorithm existed then P = NP. This follows from the proof of the fact that

approval-bribery is NP-complete (Theorem 4.15). In that proof we showed how to

reduce X3C to approval-bribery in such a way that each voter approves of at most 3

candidates. If there were a polynomial p and an algorithm that ran in time p(‖C‖+‖V ‖)

for every scoring protocol α, then we could solve X3C by reducing it to approval-bribery

and then embedding that approval-bribery problem in an α-bribery problem for some

α = (1, 1, 1, 0, . . . , 0), possibly adding some dummy candidates. This embedding is

straightforward so we do not describe it in detail.

Let α = (α1, . . . , αm) be a scoring protocol such that it is not the case that α2 =

· · · = αm. By Theorem 5.3 we know that α-weighted-bribery is NP-complete. We

also know, by Theorem 5.7, that α-$bribery is in P. It clearly holds that α-weighted-

$bribery is NP-complete, but it is interesting to ask whether the NP-completeness of α-

weighted-bribery and α-weighted-$bribery holds because of the possibly exponentially-

large values of the weights, or do these problems remain NP-complete even if the weights

69

are encoded in unary? It turns out, by the following theorem, that high weight values

are necessary for NP-completeness.

Theorem 5.8. Let α = (α1, . . . , αm) be a scoring protocol. α-weightedunary-$bribery

is in P.

Proof. Let α = (α1, . . . , αm) be a scoring protocol. The proof of this theorem cashes in

on the same observation as that made in the proof of Theorem 5.7: There are only finitely

many different preference orders, and there are only polynomially many substantially

different ways of bribing.

Consider an instance of bribery with an election E = (C, V), preferred candidate

p, and budget k. By choice of the scoring protocol α, ‖C‖ = m. Let o1, . . . , om! be

all the different possible preference orders over C. We partition V into m! disjoint sets

V1, . . . , Vm! such that each Vi contains exactly the voters with preference order oi. A

bribery within E can be described by a sequence of m! vectors bi = (bi,1, bi,2, . . . , bi,m!),

1 ≤ i ≤ m!, such that for each i, j, 1 ≤ i, j ≤ m!, bi,j is a nonnegative integer and for

each i, 1 ≤ i ≤ m!, we have
m!∑
j=1

bi,j = ω(Vi).

The interpretation of a vector bi is that voters in Vi can be partitioned into m! collections

Vi,1, . . . , Vi,m! such that ω(Vi,j) = bi,j , with the intention of bribing voters in Vi,j to

change their preference lists to oj . When i 6= j this bribery has some price, and when

i = j it is for free as nothing really needs to be done. Note that not all vectors are

realizable; not every splitting of vote weight ω(Vi) can be achieved. The rest of this

proof is devoted to developing a method for evaluating whether a given split is possible

and computing what its minimal cost is. There are only (ω(V)m!)m! ways of selecting

vectors b1, . . . , bm! so if we can test whether a given vector is realizable (and compute

the minimal price for its realization), then we can simply try all sequences of vectors

and test whether any of them both makes p a winner and has its total cost fall within

the budget.

70

Let w = (w1, . . . , wm!) be a sequence of nonnegative integers. By V ′
i (w1, . . . , wm!)

we mean the following set of m!-element sequences of subcollections of Vi:

V ′
i (w) = {(Vi,1, . . . , Vi,m!) | (Vi =

⋃m!
j=1Vi,j) ∧ (∀1 ≤ j ≤ m!)[ω(Vi,j) = wj]}.

For each vector w we define

gi(w) =

 min{ρ | (∃(Vi,1, . . . , Vi,m!) ∈ V ′
i (w))[ρ =

∑
j 6=i π(Vi,j)]} if V ′

i (w) 6= ∅,

∞ otherwise.

That is, gi(w) gives the lowest price for bribing the voters in Vi according to weight vector

(w1, . . . , wm!). We can compute gi(w) in polynomial time using dynamic programming

techniques. Let us rename the candidates so that Vi = {v1, . . . , vt} and let gi,`(w) be the

same as gi(w) except restricted to voters v`, . . . , vt. Thus, gi,1 is exactly gi. Naturally,

the following boundary condition holds for gi,t+1.

gi,t+1(w1, . . . , wm!) =

 0 if w1 = w2 = · · · = wm! = 0,

∞ otherwise.

We can compute values of gi,`(w1, . . . , wm!) using dynamic programming and the obser-

vation that gi,`(w1, . . . , wm!) is equal to the minimum of the following:

gi,`+1(w1 − ω(v`), w2, . . . , wm!) + π(v`),

gi,`+1(w1, w2 − ω(v`), w3, . . . , wm!) + π(v`),

. . .

gi,`+1(w1, . . . , wm!−1, wm! − ω(v`)) + π(v`), and

gi,`+1(w1, . . . , wi−1, wi − ω(v`), wi+1, . . . , wm!).

Note that the last of the values handles the fact that if we bribe v` to report preference

order oi then we actually do not need to pay him or her; v` already has preference order

oi. Otherwise, we need to decide which of the m!− 1 other preference orders we ask v`

to report, and we need to pay for this change. Clearly, using this rule and the above

boundary condition we can compute gi,1(w), and thus gi(w), in time polynomial in ω(V).

Since ω(V) is polynomial in the size of the input, this completes the proof. q

71

Now, via Theorem 3.4 and the above result, we immediately obtain the complexity

of manipulation in scoring protocols where the voters are either unweighted or have

unary-encoded weights.

Corollary 5.9. For any scoring protocol α, α-weightedunary-manipulation is in P.

Proof. By Theorem 3.4, scoring protocol α, α-weightedunary-manipulation many-one

reduces to α-weightedunary-$bribery, and as the latter is in P, so is the former. q

Certain scoring protocols have natural generalizations to an arbitrary number of

candidates (e.g, Borda, veto). Although our results above do not formally imply sim-

plicity of bribery for such election systems (as we need a single P algorithm to work in all

cases), such results can often be easily obtained “by hand.” For example, Theorem 5.3

implies that veto-weighted-bribery is NP-complete even for 3 candidates. Yet the fol-

lowing result shows that the difficulty of bribery for veto voting comes purely from the

weighted votes.

Theorem 5.10. veto-bribery is in P.

Proof. The proof of this theorem is essentially the same as that of Theorem 4.1. We

can view veto elections as elections in which every voter vetoes one candidate, and each

candidate with the least number of vetoes wins.

Thus, given a bribery instance with election E = (C, V), preferred candidate p ∈ C,

and budget k, we keep on bribing voters that veto p and ask them to veto a candidate

that, at that time, has the least number of vetoes. If after at most k bribes p is a

winner then we accept; otherwise we reject. A simple inductive argument shows this is

a correct strategy. The algorithm clearly runs in polynomial time. q

Zuckerman, Procaccia, and Rosenschein (ZPR08), using a very different approach,

showed that veto-manipulation is in P.

72

5.2 Approximately Manipulating Scoring Protocols

In this section we refine Theorem 5.1 by studying the existence of fully polynomial-time

approximation schemes (FPTASes) for weighted manipulation in scoring protocols. In

particular, for each scoring protocol (α1, . . . , αm) where α1 > α2 we give an FPTAS for

the optimization variant of α-weighted-manipulation problem. The existence of these

FPTASes shows that, in spite of Theorem 5.1, weighted manipulation in (our subclass

of) scoring protocols may be computationally easy in practice, provided that we are

willing to accept approximate solutions.

5.2.1 Definitions and Discussion

To discuss approximate solutions for manipulation (or bribery, or any other decision

problem), we need to establish an appropriate goal function. In the case of bribery, a

very natural approach is to measure the cost of making our favorite candidate a winner.

We took this approach in Theorem 4.7.

In case of manipulation, coming up with a natural goal function is not as straight-

forward. For example, we can think of unweighted manipulation problems as follows.

We are given an election E = (C, V) and a preferred candidate p ∈ C, and we are

asked to find a smallest possible set of additional voters S (each with preferences over

C) such that p is a winner of election (C, V ∪ S). That is, we are interested in find-

ing a smallest set of manipulators such that these manipulators can ensure p’s victory

by casting appropriate votes. This approach was suggested and used by Zuckerman,

Procaccia, and Rosenschein (ZPR08) in their study of manipulation within Borda and

several other voting rules. However, this approach is not completely satisfactory. For

example, it is not clear how to translate this approach to the world of weighted manip-

ulation (though, like (ZPR08), we use a workaround for this issue later in this section).

More importantly, the “smallest-manipulator-set” approach does not tell us how to most

effectively use the manipulators that we do have, but rather says how many manipu-

lators we need to gather. While these two questions are very related, one can easily

see how the ability to solve the former implies the ability to solve the latter (at least if

73

we limit ourselves to having at most polynomially many manipulators), but the other

direction is not apparent. Finally, the approach of (ZPR08) cannot be applied to set-

tings where the preferred candidate is already a winner. In such settings it might seem

unreasonable to even consider manipulation, but since our information regarding other

voters might be imperfect, the manipulators still might want to cast votes that benefit

their preferred candidate most. Thus, in the remainder of this section, we introduce

and study a measure of success of manipulation that, in essence, quantifies how much

our preferred candidate benefits from the manipulative votes. The applicability of our

approach extends beyond scoring protocols and beyond manipulation, but here we focus

on manipulation in scoring protocols.

Let E be an election system (e.g., a scoring protocol). Each input to the (possibly

weighted) manipulation problem for E contains an election E = (C, V), a preferred

candidate p ∈ C, and a collection of manipulative voters S. Voters in S do not yet

have any preference lists assigned. A solution sol to such an instance of manipulation

is a collection S′ of voters that is identical to S, only that each voter in S′ is assigned

some preference list. By sol(E) we mean (C, V ∪ S′). Clearly, each such instance of

manipulation has at least one solution.

Our goal function works as follows. Let E = (C, V) be our input election, p ∈ C be

our preferred candidate, and sol be a solution to the input manipulation problem. We

define p’s performance in election E as

perf E(c) = scoreE(c)−max
d∈C

(scoreE(d)).

perf E(p) tells us either how far p is from winning, or by how much he or she is winning,

depending on whether perf E(p) is negative or positive. Our goal is to make perf E(p)

as large as possible. By β(E, sol) we mean the increase in perf E(p) that we obtain via

applying solution sol . That is,

β(E, sol) = perf sol(E)(p)− perf E(p).

We propose to set the goal in the optimization variant of manipulation to be to

maximize β(E, sol). At first, this goal may seem quite unnatural, so let us briefly explain

74

why it is, in fact, very useful. First, β function does not suffer from the problems we

described in the beginning of this section. Further, the ability to find optimal solutions

with respect to β implies the ability to solve decision variants of manipulation. This is

so because

perf sol(E)(p) = perf E(p) + β(E, s).

For a given input election E, perf E(p) is a constant. Solution sol ensures that p is a

winner if and only if perf sol(E)(p) is nonnegative. Thus, p can become a winner if and

only if

perf E(p) + max
sol∈Sol(E,p)

(β(E, sol)) ≥ 0,

where by Sol(E, p) we mean the set of all valid solutions for our manipulation problem.

Thus, maximizing β is a natural and useful goal for optimization variants of manipula-

tion and other election problems.

Let α be a scoring protocol. An instance I of α-weighted-manipulation-max is

a tuple (E,w, p) where E = (C, V) is an election with candidate set C and weighted

nonmanipulative voters V , w = (w1, . . . , wn) is a sequence of weights of the manipulative

voters, and p ∈ C is our preferred candidate. A solution is an assignment of preference

lists to the manipulative voters. Our goal is to find a solution sol that maximizes

β(E, sol).

5.2.2 Results

Theorem 5.11 below is the main result of this section. Recall, from Section 2.4, that,

given an instance I of a maximization problem, by Opt(I) we mean the value of an

optimal solution for I.

Theorem 5.11. Let α = (α0, . . . , αm) be a scoring protocol such that α0 > α1. There is

an algorithm A that given a rational number ε, 0 < ε < 1, and an instance I = (E,w, p)

of α-weighted-manipulation-max computes, in polynomial time in |I| and 1
ε , a solution

sol such that β(E, sol) ≥ (1− ε)Opt(I).

It would be wonderful to have a single FPTAS that would work for all possible

scoring protocols. However, we stress that the claim of Theorem 5.11 is that there is a

75

separate algorithm for each separate scoring protocol (α0, . . . , αm), where α0 > α1. In

particular, each of the algorithms from Theorem 5.11 is tailored for a fixed number of

candidates. Later on in this section we will show that it is unlikely (unless P = NP) that

there exists a single general FPTAS for weighted manipulation in all possible scoring

protocols.

We need some notation before we proceed with the proof of Theorem 5.11. Let

α = (α0, . . . , αm) be a scoring protocol where α0 > α1 and let C = {p, c1, . . . , cm} be a

set of candidates. p is our preferred candidate whose performance we want to maximize.

We implicitly assume that we have a set V of nonmanipulative voters, however in this

discussion the only incarnation of the nonmanipulative voters is through the sequence

s below. We let w = (w1, . . . , wn) be the sequence of weights of the manipulators.

Naturally, to maximize p’s performance, each manipulator ranks p first. The complexity

of α-weighted-manipulation-max comes from the difficulty in arranging the remainders

of the manipulators’ votes in such a way as to minimize the score of p’s most dangerous

competitor.

By E(C,w) we mean the set of all elections over the candidate set C with voter

set containing exactly voters with weights w1, . . . , wn. Let s = (s1, . . . , sm) be a se-

quence of nonnegative integers. Intuitively, the sequence s gives the scores that can-

didates c1 through cm receive from the nonmanipulative voters. By Sα(E, s) we mean

maxi∈{1,...,m}{scoreE(ci) + si} and by Tα(w, s) we mean minE∈E(C,w) Sα(E, s). Intu-

itively, function Tα(w, s) measures the smallest possible score that a highest-scoring

candidate from {c1, . . . , cm} can have after the manipulation. We now prove that for

each scoring protocol α there is an FPTAS for Tα.

Lemma 5.12. Let α = (α0, . . . , αm) be a scoring protocol and let C = {p, c1, . . . , cm}.

There is an algorithm T that given a rational number ε, 0 < ε < 1, a sequence

s = (s1, . . . , sm) of nonnegative integers and a sequence of manipulators weights

w = (w1, . . . , wn) computes an election E ∈ E(C,w) such that Sα(E, s) ≤ (1+ε)Tα(w, s).

Algorithm T runs in polynomial time in n, m, and 1
ε .

Proof. Set wmax = max{w1, . . . , wn} and set K = εwmax
nα1

. Set w′ = (Kdw1
K e, . . . ,Kdwn

K e).

76

It is possible to compute in polynomial time in n, m, and 1
ε an election E′ ∈ E(C,w′)

such that Sα(E′, s) = Tα(w′, s). (One can do so via a dynamic programming algorithm

very similar to that devised in the proof of Theorem 5.8; we enforce that in our solution

each voter ranks p first.) Let E be an election identical to E′ only that appropriate

voters have weights w1, . . . , wn instead of w′
1, . . . , w

′
n. Our algorithm outputs E.

It is easy to see that our algorithm can be made to work in polynomial time as

required. Let us now show that the solution it produces satisfies the requirements

regarding quality.

It is easy to see that Tα(w, s) ≥ α1wmax and that Sα(E′, s) ≤ Tα(w, s)+α1nK. The

former is true because some candidate needs to get α1 points from the manipulator with

weight wmax and the second follows from the fact that for each i in {1, . . . , n} we have

wi ≤ w′
i < wi + K. For the same reason Sα(E, s) ≤ Sα(E′, s).

Thus, Sα(E, s) ≤ Tα(w, s) + α1nK = Tα(w, s) + εwmax. Since Tα(w, s) ≥ α1wmax,

this yields that Sα(E, s) ≤ (1 + ε)Tα(w, s). (Note that, technically, this argument is

only correct if α1 ≥ 1 but, naturally, if α1 = 0 then the theorem is trivially satisfied.)

This completes the proof. q

With Lemma 5.12 at hand we can prove Theorem 5.11.

Proof of Theorem 5.11. Our input is I = (E,w, p), where E = (C, V) is an election

with candidate set C = {p, c1 . . . , cm} and collection V of nonmanipulative voters, w =

(w1, . . . , wn) is a sequence of manipulators’ weights, and p is our preferred candidate.

Our goal is to find a solution sol (a collection of votes for the manipulators to cast) that

(approximately) maximizes β(E, sol).

Let W =
∑n

i=1 wi and let wmax = max{w1, . . . , wn}. For each i in {1, . . . ,m} let

si = scoreE(ci). We assume that the candidates c1, . . . , cm are listed in such an order

that s1 ≥ s2 ≥ · · · ≥ sm. Since α0 > α1, in every optimal solution each manipulator

ranks p first and so, by definition of β, Opt(I) = Wα0 − (Tα(w, s)− s1). It would seem

that computing approximately Tα(w, s) should be enough to get a good approximation

of Opt(I), but Tα(w, s) can be much bigger than Opt(I). We have to, in some sense,

reduce its value first.

77

Note that we can disregard all candidates cj such that s1 − sj > α1W . If there are

k such candidates then the manipulators may simply rank them on the first k positions

after p. For the sake of simplicity, we assume that there are no such candidates.

Let s′ = (s1 − sm, . . . , sm − sm). It is easy to see that Opt(I) = Wα0 − (Tα(w, s)−

s1) = Wα0 − (Tα(w, s′)− s′1). Additionally, via the above paragraph, we have that for

each s′i it holds that s′i ≤ α1W . However, this means that Tα(w, s′) ≤ 2α1W . This is

so because at worst the candidate whose score is the value of Tα(w, s′) gets α1W points

from s′ and another α1W points from the manipulators.

Using algorithm T from Lemma 5.12, we fill-in the manipulators’ votes to form an

election E′ ∈ E(C,w) such that all voters in E′ rank p first and Tα(w, s′) ≤ Sα(s′, E′) ≤

(1 + ε′)Tα(w, s′), where ε′ = 1
2α1

ε. (Recall that in our setting α1 is a constant.) Votes

obtained in this way are the solution sol that our algorithm produces and we have

β(E, sol) = Wα0 − (Sα(s′, E′)− s′1). Note that

Opt(I) = Wα0 − (Tα(w, s′)− s′1)

≥ Wα0 − (Sα(s′, E′)− s′1)

≥ Wα0 − ((1 + ε′)Tα(w, s′)− s′1)

= Wα0 − (Tα(w, s′)− s′1)− ε′Tα(w, s′)

= Opt(I)− ε′Tα(w, s′).

Since Opt(I) ≥ W (this is a consequence of the fact that α0 > α1), Tα(w, s′) ≤ 2α1W ,

and ε′ = 1
2α1

ε, via the above calculations we have:

Opt(I) ≥ Wα0 − (Sα(s′, E′)− s′1) ≥ (1− ε)Opt(I).

Thus, Opt(I) ≥ β(E, sol) ≥ (1− ε)Opt(I). This completes the proof. q

Interestingly, we can use Theorem 5.11 to obtain results in spirit of those of

Zuckerman, Procaccia, and Rosenschein (ZPR08), for the case of scoring protocols

α = (α0, . . . , αm) such that α0 > α1.

Theorem 5.13. Let ε be a rational number, 0 < ε < 1, and let α = (α0, . . . , αm)

be a scoring protocol such that α0 > α1. There is an algorithm that, given an in-

stance I = (E,w, p) of α-weighted-manipulation-max, where w = (w1, . . . , wn) is the

78

sequence of manipulators’ weights, has the property that if there is a manipulation

that makes p a winner for instance I, the algorithm finds, in polynomial time in |I|

and 1
ε , a successful manipulation for instance I ′ = (E, (w1, . . . , wn, wn+1), p), where

wn+1 = dε max{w1, . . . , wn}e.

Proof. The idea is to use the algorithm from the proof of Theorem 5.11 with a good

enough value of ε and then supplement the solution with a single weight-wn+1 voter,

who ranks p first.

Let α, I, and I ′ be as in the statement of the theorem and assume that there is

a way to cast the manipulative voters’ votes in I so that p becomes a winner of the

election from that instance. That is, there is a solution sol ′′ such that

perf E(sol ′′)(p) = perf E(p) + Opt(I) ≥ 0.

We now describe our algorithm. Let ε be a positive rational number as in the statement

of the theorem. Let wmax = max{w1, . . . , wn}. Our algorithm works as follows.

1. Set ε′ = ε
α0n .

2. Run the algorithm from Theorem 5.11 on input (I, ε′) to obtain a solution sol

such that β(E, sol) ≥ (1− ε′)Opt(I).

3. Form a solution sol ′ for instance I ′ via adding to solution sol a single manipulator

with weight dεwmaxe that ranks p first and that ranks all other candidates in an

arbitrary order.

We claim that p is a winner of election E(sol ′). To show that this is the case it suf-

fices to show that perf E(sol ′)(p) ≥ 0. We will do so by showing that perf E(sol ′)(p) ≥

perf E(sol ′′)(p). Clearly, it holds that

perf E(sol)(p) = perf E(p) + β(E, sol)

≥ perf E(p) + (1− ε′)Opt(I).

Solution sol ′ is formed via adding to sol a manipulator with weight dεwmaxe who ranks

p first and who ranks all the remaining candidates in an arbitrary order. Since α0 > α1,

perf E(sol ′)(p) ≥ perf E(p) + (1− ε′)Opt(I) + εwmax.

79

Thus, to show that perf E(sol ′)(p) ≥ perf E(sol ′′)(p) it suffices to show that (1−ε′)Opt(I)+

εwmax ≥ Opt(I). It is easy to see that Opt(I) ≤ α0nwmax as this is the maximum value

by which p’s score can possibly grow due to including the manipulative voters. Since

ε′ = ε
α0n , this means that

(1− ε′)Opt(I) + εwmax = Opt(I)− ε′Opt(I) + εwmax

= Opt(I)− ε

α0n
Opt(I) + εwmax

≥ Opt(I)− ε

α0n
α0nwmax + εwmax

= Opt(I)− εwmax + εwmax = Opt(I).

This completes the proof. q

Theorem 5.11 notwithstanding, we now show that for the case of an unbounded

number of candidates there is no FPTAS for veto-weighted-manipulation-max, unless

P 6= NP.

Theorem 5.14. If P 6= NP, there is no FPTAS for veto-weighted-manipulation-max.

To prove Theorem 5.14 it suffices to show that veto-weightedunary-manipulation,

that is, a version of veto-weighted-manipulation where weights are encoded in unary, is

NP-complete. In unary-encoded variant of weighted manipulation in veto, and in each

fixed scoring protocol, it holds that the maximum value of β function is polynomially

bounded. Thus, if there were an FPTAS for veto-weighted-manipulation-max, then

one could, via a sufficiently good approximation, solve veto-weightedunary-manipulation

exactly in polynomial time.

To show NP-hardness of veto-weightedunary-manipulation we will reduce from Unary-

3-Partition.

80

Name: Unary-3-Partition

Given: A unary encoded integer B and a multiset A = {a1, . . . , a3m} of 3m

positive integers such that (a)
∑3m

i=1 ai = mB, and (b) for each ai ∈ A

it holds that B
4 < ai < B

2 .

Question: Is there a partition A into m 3-element subsets A1, . . . , Am such that

elements in each Ai sum up to exactly B?

Unary-3-Partition is a well-known NP-complete problem (GJ79). Note that, since

for each ai ∈ A it holds that B
4 < ai < B

2 , any partition of A into m subsets A1, . . . , Am

that each sum up to B already implies that each of A1, . . . , Am contains exactly 3

elements. Thus, we do not really need to require this in the problem definition.

Theorem 5.15. veto-weightedunary-manipulation is NP-complete.

Proof. It is easy to see that veto-weightedunary-manipulation is in NP. We now show

that it is NP-hard via a reduction from Unary-3-Partition. Let (B,A) be our input

instance of Unary-3-Partition where A = {a1, . . . , a3m}. We form an election E = (C, V)

where C = {p, c1, . . . , cm} and where V contains a single voter with weight B and

preference list

c1 > c2 > · · · > cm > p.

Additionally, there are 3m manipulative voters with weights a1, . . . , a3m. We claim

that there is a way to cast the manipulators’ votes to make p a winner if and only if

(B,A) ∈ Unary-3-Partition.

Not counting manipulators’ votes, each candidate in C, except p, has B points, and

p has 0 points. If there is a partition of A into A1, . . . , Am such that each Ai sums up

to B then there is a way to cast manipulators’ votes to ensure p’s victory. It is enough

that for each Ai the manipulators corresponding to the elements of Ai vote

p > C − {ci} > ci.

Including such votes means that each candidate in the election is vetoed by candidates

with weight exactly B and so each candidate, including p, is a winner.

81

For the converse, assume that there is a way to cast manipulators’ votes to ensure p’s

victory. Without loss of generality we assume that each manipulator ranks p first. Thus,

including manipulators’ votes, p has mB points and, to ensure p’s victory, each candidate

ci ∈ C−{p} has to be vetoed by voters with vote weight at least B. However, since the

joint vote weight of the manipulators is mB, there are m candidates in C − {p}, and

each manipulator can veto only one candidate, it holds that each ci ∈ C−{p} is vetoed

by manipulators with vote weight exactly B. It is easy to see that sets A1, . . . , Am such

that each Ai contains elements of A corresponding to manipulators vetoing candidate

ci constitutes a 3-Partition of A. The reduction clearly works in polynomial time and

the proof is complete. q

Thus, unless P = NP, Theorem 5.11 cannot be improved to give a single FPTAS for

all scoring protocols.

5.3 Conclusions and Research Directions

In this chapter we have studied the complexity of bribery and manipulation in scor-

ing protocols. In particular, we have shown that for most scoring protocols all standard

variants of the weighted-bribery problem are NP-complete, but that for each scoring pro-

tocol unweighted variants of bribery (and variants where weights are encoded in unary)

are in P. One of the explanations of this interesting behavior is that weighted voters

maintain their individuality (their weights) even after we choose to bribe them, whereas

priced voters are disassociated from their prices upon bribery. We have used our classi-

fication of scoring protocols with respect to bribery to obtain complexity results about

manipulation in scoring protocols for the cases not covered by Hemaspaandra and Hema-

spaandra (HH07), namely the cases of unweighted- and weightedunary-manipulation.

In Section 5.2 we have considered the problem of approximately solving manipula-

tion instances for scoring protocols. There is no agreed-upon, satisfactory framework for

studying approximation algorithms for manipulation and we have developed a frame-

work that we find very convincing. Our framework extends beyond manipulation and

82

scoring protocols but here we have considered only this setting. Our main result of

Section 5.2 is that for each scoring protocol α = (α1, . . . , αm) such that α1 > α2, there

is an FPTAS for α-weighted-manipulation. Thus, even though for most such scoring

protocols weighted manipulation is NP-complete, via our result the problem can still be

solved approximately in polynomial time.

This chapter opens some very natural research directions. In particular, it is very

natural to ask if there are approximation algorithms (fully polynomial-time approxima-

tion schemes) for all scoring protocols, not only for the ones that assign more points to

the top-ranked candidate than to any other one. That is, it would be very interesting

to obtain a full classification of scoring protocols with respect to the existence of FP-

TASes for weighted manipulation. Similarly, it is natural to ask about approximation

algorithms for bribery in scoring protocols. Even more generally, we are interested in

obtaining results about approximation for bribery, manipulation, and control for other

election systems. This line of research constitutes an alternative (and a complement)

to the frequency-of-hardness approach (see the last paragraph of Section 1.2). We also

point the reader to the work of Brelsford (Bre07) for some early work on approximation

in the context of control problems.

83

6 Towards Perfect Resistance:

Copeland Voting

So far, throughout this thesis we have explored many election systems and many set-

tings for bribery and manipulation, but we have not yet seen an election system that

would be resistant to all our standard flavors of bribery and manipulation. In this

chapter we focus on Copelandα voting and we show that Copelandα is resistant to all

of our standard variants of (constructive) bribery and to all standard variants of (con-

structive) manipulation.1 Since Copelandα is also resistant to essentially all standard

types of (constructive) control2 (FHHR07; FHHR08), then from the point of view of

computational social choice, Copelandα is one of the most promising election systems.

Copelandα is currently the only system with a polynomial-time winner determina-

tion procedure that is known to possess such broad resistance to misuse. However, in

Section 6.3 we show that in the irrational-voter model both Copeland0 and Copeland1

are vulnerable to microbribery. (Recall the discussion of approval microbribery in Sec-

tion 4.2.3). On the other hand, the proofs of our hardness results for the standard

type of bribery for the rational-voter model directly imply analogous hardness results

for the irrational-voter model. The exact complexity of manipulation for the irrational-

1Our results for bribery hold for each rational α, 0 ≤ α ≤ 1, and our results on manipulation holds

for each rational α, 0 < α < 1
2
. Faliszewski, Hemaspaandra, and Schnoor (FHS08) additionally show

hardness of manipulation results for rational α such that 1
2

< α < 1.
2Constructive control refers to scenarios where election organizers attempt to affect the result via

such actions as adding/deleting/partitioning candidates/voters; we do not study control problems in

this thesis but we stress that they are very important in computational social choice.

84

voter model for Copelandα is currently unknown, but is being actively studied (Gre08).

(Note that our hardness proof for manipulation in the rational-voter model relies on the

rationality of the voters and thus does not imply irrational-voter model results.)

This chapter is organized as follows. In the next two sections we show resistance

results for Copelandα for the cases of bribery and manipulation. Then in Section 6.3, we

show the forementioned vulnerability results for the case of microbribery of irrational

voters. Finally, in the last section we present conclusions and some open research

directions.

6.1 Bribery

Copelandα is resistant to bribery for each rational α, 0 ≤ α ≤ 1, even if the voters are

unweighted and do not have price tags. To prove this result we introduce a method of

controlling the relative performances of certain voters in such a way that, if one sets up

the reduction appropriately, the possibilities for successful bribery actions are sharply

constrained. This technique proceeds by constructing bribery instances where the only

briberies that could possibly ensure that our favorite candidate p is a winner involve

only those voters who rank a group of special candidates above p. The remaining voters

are used to create appropriate padding and structure within the election.

Theorem 6.1. For each rational α, 0 ≤ α ≤ 1, Copelandα-bribery is NP-complete.

Proof. Let α be an arbitrary rational α, 0 ≤ α ≤ 1. We give a reduction from X3C

to Copelandα-bribery. Let (B,S) be an instance of X3C, where B = {b1, . . . , b3k} and

S = {S1, . . . , Sn}. We assume that n ≥ k, as otherwise there certainly is no cover of B

with sets from S. We form an election E = (C, V), where C = {p, t, u, v} ∪ B, and V

contains two groups of voters, V ′ and V ′′, as specified below. For each Si, V ′ contains

one type (i) voter and one type (ii) voter:

(i) t > u > v > Si > p > B − Si,

(ii)
−−−−→
B − Si > p > v > u > t >

−→
Si .

85

V ′ also contains a single voter of type (iii) with preference list B > p > u > v > t. Since

V ′ contains 2n + 1 voters, for each two candidates x, y in C it holds that |vs(C,V ′)(x, y)|

is odd and polynomially bounded in n. In particular, for each bi ∈ B it holds that

vs(C,V ′)(bi, p) = 1.

It is easy, if a little tedious, to see that for each two candidates x, y in {u, p, v, t}

there are two voters, v′xy and v′′xy, such that

1. vs(C,{v′xy ,v′′xy})(x, y) = 2, and

2. for each pair of candidates {e, f} such that {e, f} 6= {x, y}, vs(C,{v′xy ,v′′xy})(e, f) = 0,

3. for each bi ∈ B it holds that neither v′xy nor v′′xy ranks all of {u, v, bi} ahead of p.

In essence, for each x, y in {u, p, v, t} it suffices to partition C appropriately into C1,

C2, and {x, y}, and use voters

v′x,y : C1 > x > y > C2,

v′′x,y :
−→
C2 > x > y >

−→
C1,

where the candidates within C1 and C2 are ordered appropriately. Also, for each x ∈

{u, v, t} voters,

v′x : x > B > p > {u, v, t} − {x},

v′′x :
−−−−−−−−−−→
{u, v, t} − {x} > p > x >

−→
B

have the property that for each bi ∈ B it holds that vs(C,{v′x,v′′x})(x, bi) = 2, and for each

pair of candidate {e, f}, {e, f} 6= {x, bj} for each bj ∈ B, vs(C,{v′x,v′′x})(e, f) = 0.

We form voter set V ′′ via including pairs of voters v′x,y and v′′x,y (for obvious choices

of x, y ∈ {u, v, p, t}) and pairs of voters v′x and v′′x (for obvious choices of x ∈ {u, v, t})

such that in (C, V) we obtain the following:

1. vsE(u, p) = vsE(v, p) = 2k − 1,

2. vsE(u, v) = 2k + 1,

3. vsE(t, u) = vsE(t, p) = 2k + 1,

4. vsE(v, t) = 2k + 1,

86

5. for each bi ∈ B, vs(u, bi) = vs(v, bi) = vs(t, bi) ≥ 2k + 1, and

6. for each bi ∈ B, vs(bi, p) = 1.

It is easy to see that appropriate V ′′ can be computed in polynomial time. The above

results of head-to-head contests yield the following scores.

1. scoreα
E(u) = scoreα

E(v) = scoreα
E(t) = 3k + 2,

2. scoreα
E(p) = 0, and

3. for each bi ∈ B, Copelandα
E(bi) ≤ 3k.

The results of head-to-head contests that are won by 2k+1 points or more cannot be

changed (from one candidate winning to the other one winning) via briberies of at most

k voters. Thus, the only head-to-head contests that may change their results due to a

bribery of at most k voters are those between u and p, between v and p, and between p

and each bi ∈ B. In particular, a bribery of up to k voters cannot affect in any way the

score of t, and, in effect, a bribery of up to k voters cannot increase scores of u and v.

Also, neither of the candidates bi ∈ B can obtain a score higher than 3k via a bribery

of up to k voters.

We claim that p may become a winner of E via a bribery of at most k voters if and

only if (B,S) ∈ X3C. If S contains an exact cover of B then p can become a winner via

bribing the k type (i) voters in V ′ that correspond to a cover. After bribing these voters

to rank p first, p wins his or her head-to-head contests with u, v and each candidate in

B. This gives p score 3k + 2. Via previous paragraph, this means that p is a winner.

Now, for the other direction, assume that there is a bribery of k voters such that

after this bribery p is a winner. Irrespective of which k voters are bribed, t’s score is

3k + 2. Thus, any bribery of k voters that ensures that p is a winner must guarantee

that p wins his or her head-to-head contests with both u and v, and with each member

of B. Since p loses his or hers head-to-head contests with each of u and v by exactly

2k− 1 votes, a successful bribery involves bribing k voters that each rank both u and v

ahead of p. In addition, each successful bribery of at most k voters ensures that p wins

87

his or hers head-to-head contests with each bi ∈ B, and so each voter bribed in such a

successful bribery ranks at least one member of B ahead of p. By construction of V the

only such voters are type (i) voters. Via a simple counting argument it is easy to see

that it is possible to bribe k type (i) voters so that p wins head-to-head contests with u,

v, and each member of B only if it is possible to pick k type (i) voters that correspond

to a cover of B by sets in S. The proof is complete. q

Note that the above proof does not rely upon the fact that the voters are rational.

In our reduction we can allow the voters to be irrational and form bribery instances

simply by deriving the voters’ preference tables from the voters’ given preference lists.

It is easy to see that the proof remains valid after this change; in our argument we

assume that each bribed voter, after the bribery, prefers p to all other candidates but

we do not make any further assumptions (and, in particular, we do not use linearity of

the preferences). Thus we have the following corollary.

Corollary 6.2. For each rational number α, 0 ≤ α ≤ 1, bribery for Copelandα in the

irrational-voter model is NP-complete.

Via Theorem 6.1 and Corollary 6.2 we have: For each rational α, 0 ≤ α ≤ 1,

Copelandα possesses broad—essentially perfect—resistance to bribery, regardless of

whether we are interested in rational or irrational voters. Naturally, this hardness re-

sult directly translates to the more involved cases of weighted voters, priced voters, and

weighted-and-priced voters. However, for the case of $bribery and weighted-$bribery we

can obtain an even stronger result. In the next section we show that Copelandα, for the

case of rational α such that 0 < α < 1
2 , is resistant to manipulation, even if there are only

two manipulators (and, in fact, this result holds for rational α’s such that 1
2 < α < 1 as

well; see (FHS08)). Thus, via Theorem 3.4, we conclude that Copelandα (for rational

α such that 0 < α < 1, α 6= 1
2) is resistant to $bribery and weighted-$bribery even if

the budget is so limited that at most two voters can be bribed.

88

6.2 Manipulation

We now turn to the issue of manipulation in Copelandα voting. Our main result here

is that Copelandα, for the case of rational α such that 0 < α < 1
2 , is resistant to

manipulation, even if there are only two manipulators.3

Theorem 6.3. Let α be a rational number such that 0 < α < 1
2 . Copelandα-

manipulation is NP-complete.

Our proof involves building fairly complicated instances of elections and we first provide

some results that simplify crafting such instances.

6.2.1 Constructing Manipulation Instances

Each election E = (C, V) induces a directed graph G(E) with edges labeled with non-

negative integers. Vertices of G(E) are exactly the candidates of E and edges correspond

to the results of head-to-head contests between the candidates. That is, for each two

distinct candidates ci, cj ∈ C we have an edge in G(E) from ci to cj with label k if and

only if vsE(ci, cj) = k and k > 0. The following lemma, due to McGarvey (McG53)

(see also (Ste59)), says that each directed, antisymmetric graph with edges labeled by

nonnegative even integers is induced by an election.

Lemma 6.4 ((McG53)). For each antisymmetric directed graph G with edges labeled

with nonnegative even integers, there exists an election E such that G = G(E), and E

can be computed in polynomial time in the size of G and the largest label.

Proof. For the sake of completeness, we give the algorithm. Let G be an antisymmetric

directed graph. The algorithm computes the election E = (C, V), where C = V (G)

and for each edge (a, b) in G with label k there are exactly k voters, k
2 with preference

list a > b > C − {a, b} and k
2 with preference list

−−−−−−−→
C − {a, b} > a > b. Since G is

antisymmetric and k is even, it is easy to see that G = G(E). q

3Single-voter manipulation is easy for Copelandα. This follows easily from (BTT89a).

89

We will sometimes construct complicated elections by combining simpler ones.

Whenever we speak of combining two elections, say E1 = (C1, V1) and E2 = (C2, V2),

we mean building (via the algorithm from Lemma 6.4) an election E = (C, V) whose

election graph is a disjoint union of the election graphs of E1 and E2 with, possibly,

added edges between the vertices of G(E1) and G(E2) (explicitly stating which edges,

if any, are added). In particular, we will often want to add some padding candidates to

an election, without affecting the original election significantly. In order to do so, we

will typically combine our main election with one of the following “padding” ones.

Lemma 6.5. Let α be a rational number such that 0 ≤ α ≤ 1. For each positive

integer n, there is a polynomial-time (in n) computable election Padn = (C, V) such

that ‖C‖ = 2n + 1 and for each candidate ci ∈ C it holds that scoreα
Padn

(c) = n.

Proof. Fix a positive integer n. By Lemma 6.4 it is enough to construct (in polynomial

time in n) a directed, antisymmetric graph G with 2n+1 vertices, each with its indegree

and outdegree equal to n. We set G’s vertex set to be {0, 1, . . . , 2n} and we put an edge

from vertex i to vertex j (i 6= j) if and only if (j− i) mod (2n+1) ≤ n. As a result there

is exactly one directed edge between every two distinct vertices and for each vertex i we

have edges going out from i to exactly the vertices (i+1) mod (2n+1), (i+2) mod (2n+

1), . . . , (i + n) mod (2n + 1). Thus, both the indegree and the outdegree of each vertex

is equal to n and the proof is complete. q

The next lemma allows us to easily construct elections without specifying the re-

sults of all head-to-head contests, but via giving the scores and results of head-to-head

contests for relevant candidates only.

Lemma 6.6. Let E = (C, V) be an election where C = {c1, . . . , cn′}, let α be a rational

number such that 0 ≤ α ≤ 1, and let n ≥ n′ be an integer. For each candidate ci we

denote the number of head-to-head ties of ci in E by ti. Let q be a positive integer and

let k1, . . . , kn′ be a sequence of n′ nonnegative integers such that for each ki we have

0 ≤ ki ≤ nq. There is an algorithm that in polynomial time in n outputs an election

90

E′ = (C ′, V ′) such that:

1. C ′ = C ∪D, where D = {d1, . . . , d2n′nq},

2. E′ restricted to C is E (that is, G(E′) restricted to C is G(E)),

3. the only ties in head-to-head contests in E′ are between candidates in C,

4. for each i, 1 ≤ i ≤ n′, scoreα
E′(ci) = 2n′nq − ki + tiα, and

5. for each i, 1 ≤ i ≤ 2n′nq, scoreα
E′(di) ≤ n′nq + 1.

Proof. We build E′ via combining E with a padding election F (see Lemma 6.5 and the

paragraph just before it). F = (D,W), where D = {d1, . . . , d2n′nq}, is essentially the

election Padn′nq with one arbitrary candidate removed. We partition the candidates in

D into n′ groups, D1, . . . , Dn′ , each with exactly 2nq candidates and we set the results

of head-to-head contests between each ci ∈ C and the candidates in D according to the

following scheme. For each j ∈ {1, . . . , n′} such that i 6= j, ci defeats all members of Dj

and ci defeats exactly as many candidates in Di (and loses to all the remaining ones)

as needed to ensure that

scoreα
E′(ci) = 2n′nq − ki + tiα.

It is easy to see that this is possible: ci’s score in (C ′−Di, V
′) is 2n′nq − 2nq + k′ + tiα

for some k′ such that 0 ≤ k′ ≤ n′−ti. There are 2nq candidates in Di and so ci certainly

can reach any score of the form 2n′nq−k + tiα, where k is an integer between 0 and nq,

via defeating in head-to-head contests an appropriate number of candidates in Di and

losing to all the remaining ones.

Finally, since F is Padn′nq with one candidate removed, each di gets at most n′nq

points from defeating other members of D and at most one point from possibly defeating

some member of C. Thus, for each di ∈ D, it holds that scoreα
E′(di) ≤ n′nq + 1. This

completes the proof. q

Note that in the proof of Lemma 6.6 we never introduce head-to-head contest ties

other than those already present in the election E.

91

We conclude with the following observation: Let E = (C, V) be an election and let

ci and cj be two candidates. We can add two voters, v and v′, one with preference order

ci > cj > C−{ci, cj}, and the other with preference order
−−−−−−−−→
C − {ci, cj} > ci > cj , so that

we do not change the result of any of the head-to-head contests except the one between

ci and cj , where we give ci two votes of advantage. Thus, we can build elections using

Lemma 6.6 and then amplify the results of specific head-to-head contests as we please.

Let us now turn to the issue of building manipulation instances needed in the proof

of Theorem 6.3. The reduction that we construct in that proof accepts as input an

X3C instance I and outputs a manipulation instance with an election E = (C, V),

preferred candidate p ∈ C, and two manipulators, v and v′. In the proof we specify this

instance by giving a collection of candidates c1, . . . , cn, their scores relative to the score

of p, and the results of head-to-head contests (among c1, . . . , cm) that the manipulators

can affect. (Each of these contests is won/lost by exactly two votes; we refer to these

contests as flexible and to all the other ones as nonflexible.) In the proof we assume that

the manipulators cannot (would not) affect results of any head-to-head contests other

than these flexible ones. The remainder of this section is devoted to showing that thus

specified instances of manipulation can in fact be constructed in polynomial time. On

the surface, it seems that one can build such instances by simply invoking Lemma 6.6,

but this is not the case. Our reduction relies on candidates c1, . . . , cn having scores of

the form x+αy, where y is not necessarily 0. The natural way of constructing elections

where candidates have such scores involves introducing ties in head-to-head contests.

However, such head-to-head contests could then be affected by the manipulators, and

the proof relies on the fact that this is not possible. Thus, in what follows, we describe

an alternative way of obtaining scores of this form.

Since the manipulators’ goal is to ensure p’s victory, we assume, without loss of

generality, that the manipulators always rank p first.

We design E to have an even number of voters and to have all head-to-head contests

won/lost by more than two votes unless specified otherwise. In our construction of E

we ensure that, not counting the manipulators’ votes, p obtains K points, where K

is some fairly large integer. p receives each of these K points by winning a head-to-

92

head contest. p loses all remaining head-to-head contests—except for one—by more

than 2 votes. This one singled-out head-to-head contest is between p and a special

candidate t. p loses this contest by exactly 2 votes. Since both manipulators rank p

first, including their votes we have that p’s final, “postmanipulation,” Copelandα score

in E is ` = K + α. We ensure that t has Copelandα score lower than K and we never

use candidate t for purposes other than this in our construction. (Of course, we still

have to assign results of head-to-head contests between t and all other candidates, but

this can be done automatically via an invocation of Lemma 6.6.)

For each candidate ci, 1 ≤ i ≤ n, let fi and ti be two nonnegative integers such

that our reduction requires candidate ci to have prior-to-manipulation Copelandα score

K + αti ± fi. Implementing the integral part of the score would be an easy invocation

of Lemma 6.6. But how do we implement α parts of the scores?

Let T =
∑n

i=1 ti. In our reduction T is polynomially bounded in the size of I.

We introduce T candidates e1, . . . , eT and we require that their Copelandα scores, not

counting the manipulators’ votes, are exactly K+1. We also set that for each ci, exactly

ti distinct candidates from the set {e1, . . . , eT } win their head-to-head contests with ci,

each by exactly two votes. We build our election by invoking Lemma 6.6 for candidates

{p, t, c1, . . . , cn, e1, . . . , eT }, requiring p to have K points, t to have less than K points,

each ci to have exactly fi points, each ei to have K + 1 points, and with head-to-head

contests set arbitrarily except those mentioned explicitly above (including the flexible

head-to-head contests among c1, . . . , cn).

How does this construction work? Before we “begin the manipulation” it does not

work at all. However, it is easy to see that if p is to become a winner then both

manipulators, v and v′, have to guarantee that each candidate ej in {e1, . . . , eT } ties

the head-to-head contest with the candidate ci that ej used to defeat by 2 votes, thus

giving each ci the additional αti points. The reason is that p can at best have Copelandα

score ` = K + α and, had v and v′ not ensured all the ties we mention then at least one

of e1, . . . , eT would have Copelandα score K + 1 > K + α (recall that 0 < α < 1
2). p

would not be a winner. v and v′ can ensure that all these ties happen by listing each of

c1, . . . , cn before any of e1, . . . , eT in their votes.

93

Thus, we can assume that we can specify the α parts of the scores of ci’s. In our

specifications of Copelandα scores for candidates we can also use expressions of the form

fi−αti because for each rational α in (0, 1) there are two nonnegative integer constants,

s1 and s2, such that αs1 = s2 − α, which we can use to express this subtraction.

6.2.2 The Proof

This section constitutes the proof of Theorem 6.3. We show, via a reduction from X3C,

that for each rational α, 0 < α < 1
2 , Copelandα-manipulation is NP-hard.

Let I = (B,S) be an instance of X3C, where B = {b1, . . . , b3k} and S = {S1, . . . , Sn}

is some family of 3-element subsets of B. We describe an election E where two ma-

nipulative voters, v and v′, can ensure a distinguished candidate p’s victory if and only

if I is a yes-instance of X3C. Note that, following the discussion in Section 6.2.1, we

will only describe significant candidates and omit the padding ones. Similarly, we will

express scores that our candidates have before manipulators’ votes are counted in the

form ` + f + αt, where ` is the (essentially fixed) number of points that p obtains.

From now on when describing E we will use the word “candidates” to refer only to the

significant candidates, but one should keep in mind that, of course, the padding ones

are there as well.

Given (B,S), we build our election E to have the following candidates. (Below we

also give their prior-to-manipulation Copelandα scores and their flexible head-to-head

contests.)

p. The distinguished candidate whose victory we want to ensure. By the discussion

below Theorem 6.3, after manipulation p has exactly ` Copelandα points.

b1, . . . , b3k. For each i ∈ {1, . . . , 3k} we have a single candidate bi with Copelandα score

`− α.

S1, . . . , Sn, z11 , . . . zn3. For each set Si we have a single candidate Si with score `+3−3α.

Each Si defeats in their head-to-head contests exactly those bj ’s that are members

of Si (these victories are by 2 votes each).

94

c. The counter candidate; has Copelandα score `− (n− k)α.

z11 , . . . , zn3. Candidates zi1 , zi2 , and zi3 , i ∈ {1, . . . , n} are responsible for implementing

a certain consistency gadget. For each i ∈ {1, . . . , n} we have that zi1 wins by

2 votes the head-to-head contest with zi2 , zi2 wins by 2 votes the head-to-head

contest with zi3 , and zi3 wins by 2 votes the head-to-head contest with c. Also,

each Si defeats, by 2 votes, each of the candidates zi1 , zi2 , and zi3 . The form of

Copelandα scores of candidates zit depends on α and we specify it later.

Aside from head-to-head contests mentioned above, all other head-to-head contests

are either won or lost by more than 2 votes.

For each i ∈ {1, . . . , n}, Si refers to both a candidate in E and a set in S. Similarly,

for each i ∈ {1, . . . , n}, bi1 , bi2 , and bi3 refer to candidates in E as well as to the elements

of Si ∈ S.

Each candidate Si, i ∈ {1, . . . , n} has a surplus of 3−3α Copelandα points. To ensure

p’s victory, the manipulators have to case such votes that remove this surplus. For each

Si we can do so via enforcing that Si ties with at least three of zi1 , zi2 , zi3 , bi1 , bi2 , bi3 .

Later we show how to specify scores of candidates zi1 , zi2 , zi3 , i ∈ {1, . . . , n} in such

a way that in every manipulation that guarantees p’s victory, if Si ties with at least

one of zi1 , zi2 , or zi3 then c ties with some candidate that he or she used to lose to.

Thus, c’s score increases by α for each such Si. We now show that this implies that any

manipulation that ensures p’s victory has to guarantee that each Si either ties with all

three of bi1 , bi2 , bi3 or with neither of them.

Let us assume that there is a way for v and v′ to cast their votes in such a way

that p is a winner. This means that after the manipulation all other candidates have

scores at most `. For each j ∈ {0, 1, 2, 3}, let Kj be the number of candidates Si that,

including votes of v and v′, tie with exactly j of bi1 , bi2 , bi3 . Since there are exactly n

candidates Si, we have that

K0 + K1 + K2 + K3 = n. (6.1)

95

Each Si that is not accounted for in K3 has to tie with at least one zit , t ∈ {1, 2, 3},

and for each such Si the counter candidate c gets extra α points. Thus,

K0 + K1 + K2 ≤ n− k, (6.2)

as (n− k)α is the largest number of points c can accept without having his or her score

over ` (recall our gadget connecting zit ’s and c). Finally, since there are exactly 3k

candidates b1, . . . , b3k, and each of them can tie with at most one Si, we have

3K3 + 2K2 + 1K1 ≤ 3k. (6.3)

If we sidewise add to it inequality (6.2) multiplied by 3 then we obtain

3K0 + 3K1 + 3K2 + 3K3 + 2K2 + 1K1 ≤ 3n. (6.4)

Since, via (6.1),

3K0 + 3K1 + 3K2 + 3K3 = 3n, (6.5)

we have that 2K2 + K1 ≤ 0. Since K1 and K2 are nonnegative integers, it implies that

K1 and K2 are 0; after the manipulation each candidate Si either ties with each of bi1 ,

bi2 , bi3 or with none of them.

Thus, if p is to be a winner, at most k of candidates Si can tie with candidates

corresponding to the members of Si (because 3K3 + 2K2 + K1 ≤ 3k and both K2 and

K1 are 0). Since, at most n−k of Si’s can tie with their associated candidates zi1 , zi2 , zi3 ,

it is easy to see that those Si’s that tie with the corresponding candidates bi1 , bi2 , bi3

constitute exactly an exact-3-cover of B. To finish this direction of the proof it remains

to show that for any manipulators’ votes that ensure p’s victory it really is the case

that for each Si that ties with at least one of zi1 , zi2 , zi3 (including manipulators’ votes)

candidate c’s score increases by α.

We set the scores of candidates z11 , . . . , zn3 depending on the value of α. We first

handle the case when 1
3 ≤ α < 1

2 . In this case, we declare that each of zit , i ∈ {1, . . . , n},

t ∈ {1, 2, 3}, has score exactly `+1−3α. (Note that since α ≥ 1
3 , 1−3α ≤ 0.) It is easy

to see that if any of zit obtains extra α (or more) points from tieing either with Si or

zit−1 (provided t > 0 for the latter) then we need to ensure that this zit also “unloads”

96

these extra points somewhere. The only way to decrease zit ’s score is via ensuring that

he or she ties with zit+1 (or c, if t = 3). Since α < 1
2 , the amount of points zit loses this

way balances all the points zit might obtain due to manipulation and ensures that his

or her score is at most `. Also, due to zit tieing with zit+1 , t ∈ {1, 2}, zit+1 obtains extra

α points he or she needs to unload. This way the effect of Si tieing with either one of

zit ’s (t ∈ {1, 2, 3}) propagates to eventually increasing c’s score by α. The reader can

easily verify that if each of zi1 , zi2 , zi3 ties with Si, zi1 ties with zi2 , zi2 ties with zi3 and

zi3 ties with c then each of zi1 , zi2 , zi3 has Copelandα score at most `. Such tieing can

be implemented by manipulators v and v′ if in both their votes they prefer c to zi3 to

zi2 to zi1 to Si.

For the case of rational α such that 0 < α ≤ 1
3 it is easy to see that the same

arguments work provided that each candidate zit , i ∈ {1, . . . , n}, t ∈ {1, 2, 3} starts

with Copelandα score equal to `.

We now show that if I is a yes-instance of X3C then p can become a winner of our

election. Let SC be a set of all candidates Si that correspond to some exact-3-cover of

B and let ZC be the set of their corresponding zit candidates. Let Z be the set of all

the zit candidates in the election. It is easy to check that voters v and v′ can ensure p’s

victory via casting votes as follows.

v : p > c > ZC > SC > B > S − SC > Z − ZC > · · ·

v′ : p > S − SC > Z − ZC > c > ZC > SC > B > · · ·

The ellipsis means the padding candidates, listed in arbitrary order. It is easy to verify

that with these votes all candidates end up with Copelandα score of at most ` and that

p gets exactly ` points, becoming a winner. The proof is complete.

Interestingly, by replacing our consistency gadgets with other constructions, it is

possible to adapt the above proof to work with rational α’s between 3
4 and 1. However,

the proof of Faliszewski, Hemaspaandra, and Schnoor (FHS08) for the case of α strictly

between 1
2 and 1 employs a somewhat different approach. The case of α = 1

2 remains

open.

97

6.3 Microbribery

In this section we explore microbribery of irrational voters in Copelandα. In standard

bribery problems for irrational voters we would be asking whether it is possible to ensure

that a designated candidate p is a winner by modifying the preference tables of at most

k voters. In microbribery we have to pay separately for each preference-table entry flip

and, thus, we pay more the more we alter a vote. Copelandα microbribery problems

are very similar in flavor to the approval microbribery problems that we studied in

Section 4.2.3, but the proofs for Copelandα seem to be much more involved than their

counterparts for approval voting. The reason is that Copelandα elections allow for subtle

and complicated interactions between the candidates’ scores.

For each rational α, 0 ≤ α ≤ 1, we define Copelandα-microbribery to be the following

decision problem.

Name: Copelandα-microbribery.

Given: An election E = (C, V), where each voter has a preference table over the

candidates in C, a distinguished candidate p ∈ C, and a nonnegative integer k.

Question: Is it possible, by flipping at most k entries in the preference tables of voters

in V , to ensure that p is a Copelandα winner of the resulting election?

Throughout the remainder of this section we will use the term microbribe to refer

to flipping an entry in a preference table, and we will use the term microbribery to refer

to bribing possibly irrational voters via microbribes. Recall that by “irrational voters”

we simply mean that they are allowed to have, but not that they must have, irrational

preferences.

Let E be an election with candidate set C = {c1, c2, . . . , cm} and voter collection

V = (v1, v2, . . . , vn). We define two functions, wincostE and tiecostE , that describe the

costs of ensuring a victory or a tie of a given candidate in a particular head-to-head

98

contest.

Definition 6.7. Let E = (C, V) be an election and let ci and cj be two distinct candi-

dates in C.

1. By wincostE(ci, cj) we mean the minimum number of microbribes that ensures

that ci defeats cj in their head-to-head contest. If ci already wins this contest then

wincostE(ci, cj) = 0.

2. By tiecostE(ci, cj) we mean the minimum number of microbribes that ensures that

ci ties with cj in their head-to-head contest, or ∞ if E has an odd number of voters

and thus ties are impossible.

The next theorem is our main result of this section.

Theorem 6.8. For α ∈ {0, 1}, Copelandα-microbribery is in P.

We prove Theorem 6.8 via Lemmas 6.9 through 6.13 below, which cover three cases:

(a) an odd number of voters, where all Copelandα elections with 0 ≤ α ≤ 1 are identical

due to the lack of ties, (b) Copeland1 with an even number of voters, and (c) Copeland0

with an even number of voters.

Lemma 6.9. For each rational α with 0 ≤ α ≤ 1, there is a polynomial-time algorithm

that solves the constructive microbribery problem for Copelandα elections with an odd

number of voters.

Proof. Our input is a nonnegative integer k (the budget) and an election E = (C, V),

where the candidate set C is {c0, c1, . . . , cm}, the number of voters is odd, and p = c0

is the candidate whose victory we want to ensure via at most k microbribes. Note

that, since it is sometimes convenient to be able to speak of p and all other candidates

uniformly, we use p and c0 to refer to the same candidate interchangeably. As the

number of voters is odd, ties never occur and the particular value of α used does not

affect Copelandα score of any candidate. Fix an arbitrary such α.

We give a polynomial-time algorithm for the constructive microbribery problem.

A high-level overview is that we try to find a threshold value T such that there is a

99

Edge Parameters

e = (s, ci),

where ci ∈ C

c(e) = scoreα
E(ci)

a(e) = 0

e = (ci, cj),

where ci, cj ∈ C and vsE(ci, cj) > 0

c(e) = 1

a(e) = wincostE(cj , ci)

e = (c0, t)
c(e) = T

a(e) = 0

e = (ci, t),

where i > 0 and ci ∈ C

c(e) = T

a(e) = B

every other edge e
c(e) = 0

a(e) = 0

Figure 6.1: Edge capacities and costs for min-cost-flow instance I(T), built from election

E.

microbribery of cost at most k that transforms E into E′ such that (a) p has scoreα
E′

exactly T , and (b) every other candidate has scoreα
E′ at most T .

Let B be a number that is greater than the cost of any possible microbribery within

E (e.g., B = ‖V ‖·‖C‖2 +1). For each possible threshold T , we consider a min-cost-flow

instance I(T) with node set K = C ∪ {s, t}, where s is the source and t is the sink, the

edge capacities and costs are specified in Figure 6.1, and the target flow value is

F =
∑
ci∈C

scoreα
E(ci) =

‖C‖(‖C‖ − 1)
2

.

Note that with an odd number of voters, constructive microbribery in Copelandα

simply requires us to choose for which pairs of distinct candidates we want to flip the

outcome of their head-to-head contest in order to ensure p’s victory. Thus it is sufficient

to represent a microbribery M as a collection of pairs (ci, cj) of distinct candidates for

whom we need to flip the result of their head-to-head contest from ci winning to cj

100

winning. Clearly, given such a collection M , the cheapest way to implement it costs

∑
(ci,cj)∈M

wincostE(cj , ci).

A crucial observation for our algorithm is that we can directly translate flows to

microbriberies using the following interpretation. Let f be a flow (as per Definition 2.4

with all edge flows being integers) of value F within instance I(T). The units of flow

that travel through the network correspond to Copelandα points. For each ci ∈ C, we

interpret the amount of flow that goes directly from s to ci as the number of Copelandα

points that ci has before any microbribery is attempted,4 and the amount of flow that

goes directly from ci to t as the number of Copelandα points that ci has after the

microbribery (defined by the flow). The units of flow that travel between distinct ci’s

(i.e., through edges of the form (ci, cj), i 6= j) correspond to the microbribes exerted:

A unit of flow traveling from node ci to cj corresponds to changing the result of the

head-to-head contest between ci and cj from ci winning to cj winning. In this case, the

Copelandα point moves from ci to cj and the cost of the flow increases by a(ci, cj) =

wincost(cj , ci), exactly the minimum cost of a microbribery that flips this contest’s

result. Let Mf be the microbribery defined, as just described, by flow f . It is easy to

see that

flowcost(f) = B · (F − f(c0, t)) +
∑

(ci,cj)∈Mf

wincostE(cj , ci).

Thus we can easily extract the cost of microbribery Mf from the cost of flow f .

Our algorithm crucially depends on this correspondence between flows and micro-

briberies. (In the proofs of Lemmas 6.11 and 6.13 that cover the case of an even number

of voters we simply show how to modify the instances I(T) to handle ties, and we show

correspondences between the new networks and microbriberies; the rest of these proofs

is the same as here.)

Note that for small values of T no flow of value F exists for I(T). The reason for

this is that the edges coming into the sink t might not have enough capacity to hold a

4Note that for each ci ∈ C any flow of value F within I(T) needs to send exactly scoreα
E(ci) units

from s to ci.

101

procedure Copelandα-odd-microbribery(E = (C, V), k, p)

begin

if p is a winner of E then accept;

F =
∑

ci∈C scoreα
E(ci) = ‖C‖(‖C‖−1)

2 ;

for T = 0 to ‖C‖ − 1 do

begin

build an instance I(T) of min-cost-flow;

if I(T) has no flow of value F then

restart the for loop with the next value of T ;

f = a minimum-cost flow for I(T);

if f(c0, t) < T then restart the loop;

κ = flowcost(f)−B · (F − T);

if κ ≤ k then accept;

end;

reject;

end

Figure 6.2: The microbribery algorithm for Copelandα elections with an odd number

of voters.

flow of value F . In such situations it is impossible to guarantee that every candidate

gets at most T points; there are too many Copelandα points to distribute.

Figure 6.2 gives our algorithm for constructive microbribery in Copelandα. There

is a polynomial-time algorithm for the min-cost-flow problem and thus this algorithm

can be implemented to run in polynomial time.

Let us now prove that this algorithm is correct. We have presented above how a

flow f of value F within I(T) (with 0 ≤ T ≤ F) defines a microbribery. Based on this,

it is clear that if our algorithm accepts then there is a microbribery of cost at most k

that ensures p’s victory.

102

On the other hand, suppose now that there exists a microbribery of cost at most k

that ensures p’s victory in the election. We will show that our algorithm accepts in this

case.

Let M be a minimum-cost microbribery (of cost at most k) that ensures p’s victory.

As pointed out above, M can be represented as a collection of pairs (ci, cj) of distinct

candidates for whom we flip the result of the head-to-head contest from ci winning to

cj winning. The cost of M is ∑
(ci,cj)∈M

wincostE(cj , ci).

Since applying microbribery M ensures that p is a winner, we have that each candidate

among c1, c2, . . . , cm has at most as many Copelandα points as p does. Let E′ be the

election that results from E after applying microbribery M to E (i.e., after flipping the

results of the contests specified by M in an optimal way, as given by wincostE). Let T ′

be scoreα
E′(p), p’s Copelandα score after implementing M . Clearly, 0 ≤ T ′ ≤ ‖C‖ − 1.

Consider instance I(T ′) and let fM be the flow that corresponds to the microbribery

M . In this flow each edge of the form (s, ci) carries flow of its maximum capacity,

scoreα
E(ci), each edge of the form (ci, cj) carries one unit of flow exactly if e is listed

in M and carries zero units of flow otherwise, and each edge of the form (ci, t) carries

scoreα
E′(ci) units of flow. It is easy to see that this is a legal flow. The cost of fM is

flowcost(fM) = B · (F − T ′) +
∑

(ci,cj)∈M

wincostE(cj , ci).

After applying M , p gets T ′ Copelandα points that travel to the sink t via edge (c0, t)

with cost a(c0, t) = 0, and all the remaining F − T ′ points travel via edges (ci, t),

i ∈ {1, 2, . . . ,m}, with cost a(ci, t) = B. The remaining part of flowcost(fM) is the cost

of the units of flow traveling through the edges (ci, cj) that directly correspond to the

cost of microbribery M .

Now consider some minimum-cost flow fmin for I(T ′). Since fM exists, a minimum-

cost flow must exist as well. Clearly, we have

flowcost(fmin) ≤ flowcost(fM).

103

Let T ′′ be the number of units of flow that fmin assigns to travel over the edge (c0, t),

i.e., T ′′ = fmin(c0, t). The only edges with nonzero cost for sending flow through them

are those in the set {(ci, cj) | ci, cj ∈ C ∧ vsE(ci, cj) > 0} ∪ {(ci, t) | i ∈ {1, . . . ,m}} and

thus the cost of fmin can be expressed as (recall that vsE(ci, cj) > 0 implies i 6= j)

flowcost(fmin) = B · (F − T ′′) +
∑

ci,cj∈C∧vsE(ci,cj)>0

fmin(ci, cj) · wincostE(cj , ci).

B >
∑

i,j,i 6=j wincostE(ci, cj), for each ci, cj ∈ C such that vsE(ci, cj) > 0 we have

fmin(ci, cj) ∈ {0, 1}, and flowcost(fmin) ≤ flowcost(fM), so it must hold that T ′′ = T ′

and

∑
ci,cj∈C∧vsE(ci,cj)>0

fmin(ci, cj) · wincostE(cj , ci) ≤
∑

(ci,cj)∈M

wincostE(cj , ci).

Thus flow fmin corresponds to a microbribery that guarantees p’s victory and has cost

at most as high as that of M . Since M was chosen to have minimum cost among all

such microbriberies, flow fmin corresponds to a microbribery of minimum cost and our

algorithm correctly accepts within the for loop of Figure 6.2, at the very latest when in

the for loop T is set to T ′. q

We now turn to the algorithms showing that Copeland0 and Copeland1, with irra-

tional voters allowed, are vulnerable to microbribery when the number of voters is even.

In this case we need to take into account that it is sometimes more desirable to have

candidates tie each other in a head-to-head contest than to have one of them win the

contest.

Lemma 6.10. Let E = (C, V) be an election with candidate set C = {c0, c1, . . . , cm}

and with an even number of voters, specified via preference tables over C. If the election

is conducted using Copeland0 then no minimum-cost microbribery that ensures victory

for c0 involves either (a) flipping a result of a head-to-head contest between any two

distinct candidates ci, cj ∈ C − {c0} from ci winning to cj winning, or (b) changing a

result of a head-to-head contest between any two distinct candidates in C − {c0} from a

tie to one of them winning.

104

Proof. Our proof follows by way of contradiction. Let E = (C, V) be an election as

specified in the lemma. For the sake of a contradiction suppose there is a minimum-

cost microbribery M that makes c0 win and that there are two distinct candidates,

ci and cj , in C − {c0} such that microbribery M involves switching the result of the

head-to-head contest between these candidates from ci winning to cj winning or from

a tie to one of them winning. Consider the microbribery M ′ that is identical to M ,

except that it makes ci tie with cj in a head-to-head contest, either via an appropriate

number of microbribes if ci and cj do not tie originally, or via leaving the corresponding

preference-table entries untouched if they do tie initially. Clearly, this microbribery M ′

has a lower cost than M and it still ensures c0’s victory. This is a contradiction. q

With Lemma 6.10 at hand, we can show that microbribery is easy for Copeland0 for

the case of an even number of voters.

Lemma 6.11. There is a polynomial-time algorithm that solves the microbribery prob-

lem for Copeland0 elections with an even number of voters.

Proof. Our input is election E = (C, V), where C = {c0, c1, . . . , cm}, p = c0, and V is a

collection of an even number of voters, each specified via a preference table over C. Our

algorithm is essentially the same as that used in the proof of Lemma 6.9, except that

instead of using instances I(T) we now use instances J(T) defined below. In this proof

we show how to construct these instances and how they correspond to microbriberies

within E. The proof of Lemma 6.9 shows how to use such a correspondence to solve

the microbribery problem at hand.

Let T be a nonnegative integer, 0 ≤ T ≤ ‖C‖ − 1. Instance J(T) is somewhat

different from the instance I(T) used in the proof of Lemma 6.9. In particular, due

to Lemma 6.10, we model only microbriberies that have the following effects on our

election:

1. For any two distinct candidates ci, cj in C − {c0}, the result of the head-to-head

contest between ci and cj may possibly turn into a tie.

105

2. For each candidate ci in C−{c0}, the result of a head-to-head contest between c0

and ci may possibly turn into either a tie (from ci defeating c0) or into c0 defeating

ci (from either a tie or from ci defeating c0).

Our instance J(T) contains special nodes, namely the elements of the sets C ′ and

C ′′ below, to handle these possible interactions. We define

C ′ = {cij | i, j ∈ {1, 2, . . . ,m} ∧ vsE(ci, cj) > 0} and

C ′′ = {ci0 | i ∈ {1, 2, . . . ,m} ∧ vsE(ci, c0) ≥ 0}.

For each possible threshold T , define J(T) to be the flow network with node set K =

C ∪ C ′ ∪ C ′′ ∪ {s, t}, where s is the source, t is the sink, and the edge capacities and

costs are as stated in Figure 6.3. (As before, we set B to be a number that is greater

than the cost of any possible microbribery within E, e.g., B = ‖V ‖ · ‖C‖2 + 1.) The

target flow value is

F =
∑
v∈K

c(s, v).

Instance J(T) is fairly complicated but it in fact does closely follow the instance

of microbribery that we have at hand. As in the proof of Lemma 6.9, the units of

flow that travel through the network are interpreted as Copeland0 points, and flows are

interpreted as specifying microbriberies. We now describe a bit more precisely how we

interpret our flow network J(T). In particular, we will argue that each flow f of value

F that travels through the network J(T) corresponds to a microbribery within E that

gives each candidate ci ∈ C exactly f(ci, t) Copeland0 points:

1. For each ci ∈ C, the units of flow that enter ci from s correspond to the number

of ci’s Copeland0 points in E, prior to any microbribery.

2. For each ci ∈ C, the units of flow that go directly from ci to t correspond to the

number of ci’s Copeland0 points after a microbribery as specified by the flow.

3. For each pair of distinct candidates ci, cj ∈ C − {c0} such that ci defeats cj in

their head-to-head contest in E, we have an edge e = (ci, cij) with capacity one

and cost tiecostE(cj , ci). A unit of flow that travels through e corresponds to a

106

Edge Parameters

e = (s, ci),

where ci ∈ C

c(e) = score0
E(ci)

a(e) = 0

e = (ci, cij),

where ci, cj ∈ C − {c0} and vsE(ci, cj) > 0

c(e) = 1

a(e) = tiecostE(cj , ci)

e = (ci, t),

where ci ∈ C − {c0}

c(e) = T

a(e) = B

e = (cij , t),

where ci, cj ∈ C − {c0} and vsE(ci, cj) > 0

c(e) = 1

a(e) = B

e = (ci, ci0),

where ci ∈ C − {c0} and vsE(ci, c0) > 0

c(e) = 1

a(e) = tiecostE(c0, ci)

e = (ci0, c0),

where ci ∈ C − {c0} and vsE(ci, c0) ≥ 0

c(e) = 1

a(e) = wincostE(c0, ci)− tiecostE(c0, ci)

e = (s, ci0),

where ci ∈ C − {c0} and vsE(ci, c0) = 0

c(e) = 1

a(e) = 0

e = (ci0, t),

where ci ∈ C − {c0} and vsE(ci, c0) ≥ 0

c(e) = 1

a(e) = B

e = (c0, t)
c(e) = T

a(e) = 0

every other edge e
c(e) = 0

a(e) = 0

Figure 6.3: Edge capacities and costs for min-cost-flow instance J(T), built from elec-

tion E.

microbribe that makes ci tie with cj : ci loses the point, we pay tiecostE(cj , ci),

and then the unit of flow goes directly to t. (From Lemma 6.10 we know that we

do not need to handle any other possible interactions between ci and cj in their

head-to-head contest.)

4. For each candidate ci ∈ C−{c0} such that ci defeats c0 in a head-to-head contest,

107

we need to allow for the possibility that a microbribery causes c0 to either tie with

ci or to defeat ci. Fix an arbitrary such ci. A unit of flow that travels directly

from ci to ci0 and then directly to t corresponds to a microbribery after which c0

ties with ci: ci loses the point but c0 does not receive it and the cost of the flow

increases by tiecostE(c0, ci).

On the other hand, if that unit of flow travels from ci to ci0 and then directly to

c0, then this corresponds to a microbribery after which c0 defeats ci. The point

travels from ci to c0 and the cost of the flow increases by wincostE(c0, ci).

If there is no flow entering node ci0 then this means that our microbribery does

not change the result of a head-to-head contest between c0 and ci.

5. For each candidate ci ∈ C−{c0} such that ci ties with c0 in a head-to-head contest

before any microbribery is attempted, we need to allow for c0 defeating ci after

the microbribery. Fix any such ci. A unit of flow that travels directly from s to

ci0 and then directly to c0 corresponds to a microbribery after which c0 defeats

ci in a head-to-head contest: c0 gets an additional point and the cost of the flow

increases by wincostE(c0, ci)− tiecostE(c0, ci) = wincostE(c0, ci).

On the other hand, a unit of flow that travels from s directly to ci0 and then

directly to t corresponds to a microbribery that does not change the result of a

head-to-head contest between c0 and ci.

Based on these comments, we can see the natural correspondence between flows in

J(T) and microbriberies. In particular, each flow f of value F that travels through the

network J(T) corresponds to a microbribery within E that gives each candidate ci ∈ C

exactly f(ci, t) Copeland0 points.

Now let Mf be a microbribery defined by flow f of value F within J(T), 0 ≤ T ≤

‖C‖− 1, assuming that one exists. Let cost(Mf) be the minimum cost of implementing

microbribery Mf . A close inspection of instance J(T) shows that the cost of such a flow

f is

flowcost(f) = B · (F − f(c0, t)) + cost(Mf).

108

Because of the above equation, the fact that all units of flow that are not accounted

for as c0’s points (i.e., the units of flow that do not travel through the edge (c0, t))

impose cost B on the flow, and via arguments analogous to those in Lemma 6.9, the

following holds: If for a given J(T), 0 ≤ T ≤ ‖C‖ − 1, there exists a flow of value F

then a minimum-cost flow fmin of value F corresponds to a minimum-cost microbribery

that ensures that c0 receives T points and each other candidate receives at most T

points. (Intuitively, the reason for this is that B is so large that in a minimum-cost flow

one would always send as few units of flow through edges of cost B as possible) Thus,

to solve the constructive microbribery problem for Copeland0 elections with an even

number of voters it is enough to run the algorithm from Figure 6.2, using the instances

J(T) instead of I(T) and using the new value of F . q

We now show that Copeland1, with irrational voters allowed, is vulnerable to mi-

crobribery when there are an even number of voters. The following lemma reduces the

set of microbriberies we need to model in this case.

Lemma 6.12. Let E = (C, V) be an election with candidate set C = {c0, c1, . . . , cm} and

with an even number of voters, specified via preference tables over C. If the election is

conducted using Copeland1 then no minimum-cost microbribery that ensures victory for

c0 involves obtaining a tie in a head-to-head contest between any two distinct candidates

in C − {c0}.

Proof. Our proof is again by way of contradiction. Let E = (C, V) be an election as

specified in the lemma. Suppose there is a minimum-cost microbribery that ensures

c0’s victory and that involves obtaining a tie in a head-to-head contest between two

distinct candidates in C − {c0}, say ci and cj . That is, before this microbribery we

have that either ci defeats cj or cj defeats ci in their head-to-head contest but afterward

they are tied. Clearly, a microbribery that is identical to this one except that does not

change the result of the head-to-head contest between ci and cj (i.e., one that does not

microbribe any voters to flip their preference-table entries regarding ci versus cj) has a

smaller cost and still ensures c0’s victory. This is a contradiction. q

109

Lemma 6.13. There is a polynomial-time algorithm that solves microbribery problem

for Copeland1 elections with an even number of voters.

Proof. We give a polynomial-time algorithm for constructive microbribery in Copeland1

elections with an even number of voters. Our input is a budget k ∈ N and an election

E = (C, V), where C = {c0, c1, . . . , cm}, p = c0, and V contains an even number of

voters specified via their preference tables over C. Our goal is to ensure p’s victory via

at most k microbribes.

We use essentially the algorithm from the proof of Lemma 6.9, except that instead of

using instances I(T) we now employ instances L(T) that are designed to handle tie issues

as appropriate for Copeland1. Lemma 6.12 tells us that our min-cost-flow instances L(T)

do not need to model microbriberies that incur ties between pairs of distinct candidates

in C − {c0}. We also don’t need to model microbriberies that change the outcome of

the head-to-head contest between c0 and any candidate in C − {c0} from c0 winning

to c0 not winning or from a tie to c0 losing. However, we do need to model possible

microbribery-induced ties between c0 and each ci in C − {c0}.

Define B to be a number that is greater than the cost of any possible microbribery

within E (e.g., B = ‖V ‖ · ‖C‖2 + 1 will do). Further, define the following three sets of

nodes:

C ′ = {c′i | ci ∈ C},

C ′′ = {cij | i < j ∧ ci, cj ∈ C ∧ vsE(ci, cj) = 0}, and

C ′′′ = {c0i | ci ∈ C ∧ vsE(ci, c0) > 0}.

Our flow network L(T) has the node set K = C ∪ C ′ ∪ C ′′ ∪ C ′′′ ∪ {s, t}, where s is

the source, t is the sink, and the capacities and costs of edges are defined in Figure 6.4.

Each instance L(T) asks for a minimum-cost flow of value

F =
∑
ci∈C

c(s, ci).

Note that a flow f of value F within L(T), 0 ≤ T ≤ ‖C‖ − 1, corresponds to a

microbribery Mf within election E that leaves each candidate ci with exactly f(ci, c
′
i)

110

Edge Parameters

e = (s, ci),

where ci ∈ C

c(e) = scoreL
E(ci)

a(e) = 0

e = (ci, cj),

where ci, cj ∈ C − {c0} and vsE(ci, cj) > 0

c(e) = 1

a(e) = wincostE(cj , ci)

e = (ci, cij),

where i < j, ci, cj ∈ C and vsE(ci, cj) = 0

c(e) = 1

a(e) = wincostE(cj , ci)

e = (cj , cij),

where i < j, ci, cj ∈ C and vsE(ci, cj) = 0

c(e) = 1

a(e) = wincostE(ci, cj)

e = (cij , t),

where i < j, ci, cj ∈ C and vsE(ci, cj) = 0

c(e) = 1

a(e) = B

e = (ci, c0i),

where ci ∈ C − {c0} and vsE(ci, c0) > 0

c(e) = 1

a(e) = wincost(c0, ci)

e = (c′i, c0i),

where ci ∈ C − {c0} and vsE(ci, c0) > 0

c(e) = 1

a(e) = tiecost(c0, ci)

e = (c0i, c0),

where ci ∈ C − {c0} and vsE(ci, c0) > 0

c(e) = 1

a(e) = 0

e = (ci, c
′
i),

where ci ∈ C

c(e) = T

a(e) = 0

e = (c′i, t),

where ci ∈ C − {c0}

c(e) = T

a(e) = B

e = (c′0, t)
c(e) = T

a(e) = 0

every other edge e
c(e) = 0

a(e) = 0

Figure 6.4: Edge capacities and costs for min-cost-flow instance L(T), built from election

E.

111

Copeland1 points. As in the proofs of Lemmas 6.9 and 6.11, points traveling through

the network L(T) are here interpreted as Copeland1 points and flows are interpreted

as specifying microbriberies. More specifically, we interpret the units of flow traveling

through L(T) as follows:

1. For each ci ∈ C, the units of flow that enter ci from s are interpreted as the

Copeland1 points that ci has before any microbribery is attempted.

2. For each ci ∈ C, the units of flow that travel directly from ci to c′i are interpreted

as the Copeland1 points that ci has after the microbribery defined by f has been

performed.

3. If a candidate ci ∈ C−{c0} originally defeats c0 but our flow models a microbribery

in which c0 and ci end up tied in their head-to-head contest, then we have a

single Copeland1 point that travels from ci to c′i, then to c0 through c0i, at cost

tiecostE(c0, ci), and then to c′0. This way the same unit of flow is accounted both

for the score of c0 and for the score of ci. Note that such a unit of flow then travels

to t through edge (c0, t) at zero cost.

4. For any two distinct candidates ci and cj such that ci, cj ∈ C−{c0} where ci defeats

cj in a head-to-head contest in E, a unit of flow traveling from ci to cj corresponds

to a microbribery that flips the result of their head-to-head contest. Thus cj

receives the Copeland1 point and the cost of the flow increases by wincostE(cj , ci).

5. For any ci ∈ C − {c0} where ci defeats c0 in a head-to-head contest in E, a unit

of flow traveling from ci to c0 via c0i corresponds to a microbribery that flips the

result of their head-to-head contest. Thus ci receives the Copeland1 point and the

cost of the flow increases by wincostE(c0, ci). Note that since the edge (c0i, c0)

has capacity one we ensure that at most one unit of flow travels from ci to c0

(either on a path ci, c0i, c0 (modeling a microbribery that flips the result of the

head-to-head contest between ci and c0 to c0 winning) or on a path ci, c
′
i, c0i, c0

(modeling a microbribery that enforces a tie between c0 and ci)).

112

6. For each ci, cj ∈ C, we have to take into account the possibility that ci and cj

are tied in their head-to-head contest within E, but via microbribery we want to

change the result of this contest. Let ci, cj ∈ C be two such candidates and let

i < j. Here, a unit of flow traveling from ci to cij (or, analogously, from cj to cij)

is interpreted as a microbribery that ensures cj ’s (ci’s) victory in the head-to-head

contest. Since ci and cj were already tied, cj (ci) already has his or her point for

the victory and ci (cj) gets rid of his or her point through the node cij . The cost

of the flow increases by wincostE(cj , ci) (respectively, by wincostE(ci, cj)). Also,

we point out that via the introduction of node cij we ensure that only one of ci

and cj , let us call him or her ck, can lose a point by sending it from ck to cij and

then to t; the capacity of edge (cij , t) is only one.

Through the above description, we can see the natural correspondence between

flows in L(T) and microbriberies. In particular, each flow f of value F corresponds to

a microbribery Mf within E that gives each candidate ci exactly f(ci, c
′
i) points.

Let us now analyze the cost of f . It is easy to see that each unit of flow that is not

accounted for as a Copeland1 point of c0 reaches the sink t via an edge of cost B. Also,

the only other edges through which units of flow travel at nonzero cost are those that

define the microbribery Mf . Thus the cost of our flow f can be expressed as

flowcost(f) = B · (F − f(c0, c
′
0)) + cost(Mf).

Fix T such that 0 ≤ T ≤ ‖C‖ − 1. Given the above properties of L(T) and by the

arguments presented in the proof of Lemma 6.9, if a flow of value F exists within the

flow network of instance L(T), then each minimum-cost flow in L(T) corresponds to

a microbribery that ensures that c0 has exactly T Copeland1 points and every other

candidate has at most T Copeland1 points. Thus if there exists a value T ′ such that

1. there is a flow of value F in L(T ′) and

2. the cost of a minimum-cost flow f of value F in L(T ′) is K,

then there is a microbribery of cost K −B · (F − T ′) that ensures c0’s victory.

113

On the other hand, via Lemma 6.12 and our correspondence between flows for L(T)

and microbriberies in E, there is a value T ′′ such that a minimum-cost flow in L(T ′′) cor-

responds to a minimum-cost microbribery that ensures p’s victory. Thus the algorithm

from Figure 6.2, used with the instances L(T) instead of I(T) and with our new value

of F , solves in polynomial time the constructive microbribery problem for Copeland1

with an even number of voters. q

Together, Lemmas 6.9, 6.11, and 6.13 show that both Copeland0 and Copeland1

are vulnerable to microbribery. It is interesting to note that all of our microbribery

proofs above would work just as well if we considered a slight twist to the definition

of the microbribery problem, namely–if instead of saying that each flip in a voter’s

preference table has unit cost we would allow each voter to have a possibly different

price for flipping each separate entry in his or her preference table. This change would

only affect computing the values of the functions wincost and tiecost . (Technically, we

would also have to modify Lemmas 6.10 and 6.12, which in our unit-cost setting say that

an optimal microbribery never involves certain specified pairs of candidates, whereas

in the priced setting we would need to rephrase them to state that there exist optimal

microbriberies that do not involve those specified pairs of candidates.)

An interesting direction for further study of the complexity of bribery within

Copelandα systems is to consider a version of the microbribery problem for the case

of rational voters. There, a briber would pay unit cost for a switch of two adjacent

candidates on a given voter’s preference list.

For Copelandα, we would also like to know the complexity of microbribery when α

is a rational number strictly between 0 and 1. Our network-flow-based approach does

not seem to generalize easily to values of α strictly between 0 and 1 (when the number

of voters is even) because in a flow network it is hard to “split” a unit of flow in a

tie. A promising approach would be to have several units of flow model one Copelandα

point (e.g., for the case of α = 1
2 we could try to use two units of flow to model a single

Copeland0.5 point), but then it seems very difficult (if not impossible) to find edge costs

that appropriately model the microbribery. (It is possible to do so in a very restricted

114

setting, namely where α = 1
2 and there are exactly two voters that can be bribed.) Our

results on manipulation suggest that microbribery for α strictly between 0 and 1 might

be NP-hard, but we haven’t found a way to translate our manipulation proof to the

world of microbribery.

On a related note, Kern and Paulusma (KP01) have shown that the following prob-

lem, which they call SC(0, α, 1), is NP-complete: Let α be a rational number such that

0 < α < 1 and α 6= 1
2 . We are given an undirected graph G = (V (G), E(G)), where

each vertex u ∈ V (G) is assigned a rational value cu of the form i + jα, for nonnegative

integers i and j. The question, which we have rephrased to state in terms of (a variant

of) our notion of Copelandα, is whether it is possible to (possibly partially) orient the

edges of G such that for each vertex u ∈ V (G) it holds that u’s Copelandα score is at

most cu. Here, by “Copelandα score of a vertex u” we mean, as is natural, the number

of vertices u “defeats” (i.e., the number of vertices v such that there is a directed edge

from u to v) plus α times the number of vertices that u “ties” (i.e., the number of

vertices such that there is an undirected edge between u and v).

Problem SC(0, α, 1) is very closely related to our microbribery problem. However

we do not see an immediate reduction from SC(0, α, 1) to microbribery. A natural

approach would be to embed graph G into an election (e.g., using a lemma similar to

Lemma 6.6) in such a way that our preferred candidate p can become a winner (via a

microbribery) if and only if it is possible to orient the edges of G in a way respecting the

constraints defined by the values cu (for each u in V (G)). We would, of course, have to

set the budget of our microbribery to allow modifying each of the edges in G and none

of the edges outside of G. However, this is difficult. The proof of Kern and Paulusma

uses values cu that can be implemented only via using tied head-to-head contests. The

agent performing microbribery could, potentially, affect those head-to-head contests,

thus spoiling our reduction.

115

6.4 Conclusions and Research Directions

In this chapter we have shown that Copelandα, in the rational-voter model, is resistant

to essentially all standard types of bribery and manipulation (though, in the case of

manipulation our results are limited to rational α’s where 0 < α < 1
2 ; (FHS08) shows an

analogous result for rational α’s such that 1
2 < α < 1, but the cases where α ∈ {0, 1

2 , 1}

remain open). It is also known that Copelandα is resistant to essentially all standard

types of (constructive) control (FHHR07; FHHR08). Thus, from the point of view of

computational social choice, Copelandα is one of the most promising election systems.

In Section 6.3 we have considered microbribery in the irrational-voter model and

we have shown that Copeland0 and Copeland1 are both vulnerable to microbribery.

A natural open question is to consider microbribery for the irrational-voter for the

remaining values of α, that is for rational alpha such that 0 < α < 1. We conjecture

that the problem for these values of α is NP-complete. At the end of Section 6.3 we

have outlined some possible attacks to obtain the proof of this conjecture and we have

explained the difficulties one would have to overcome in order to make these attacks

successful.

Another interesting research direction is to seek an election system that is resistant

to all standard attacks (bribery, manipulation, control) in both the constructive setting

and the destructive setting (see (HHR07b) regarding control). In this thesis we have

not considered the destructive setting, but we mention that for the case of control,

Copelandα is vulnerable to some such attacks (FHHR07; FHHR08).

116

Bibliography

[AB00] D. Austen-Smith and J. Banks. Positive Political Theory I: Collective Pref-

erence. University of Michigan Press, 2000.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,

and M. Protasi. Complexity and Approximation: Combinatorial Optimiza-

tion Problems and their Approximability Properties. Springer-Verlag, 1999.

[AMO93] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, 1993.

[Arr63] K. Arrow. Social Choice and Individual Values. John Wiley and Sons, 1951

(revised editon, 1963).

[BBD+04] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets:

A tool for representing and reasoning with conditional ceteris paribus pref-

erence statements. Journal of Artificial Intelligence Research, 21:135–191,

2004.

[BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity.

Prentice-Hall, 1993.

[BDG90] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II. EATCS

Monographs in Theoretical Computer Science. Springer-Verlag, 1990.

[BDG95] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. EATCS Texts

in Theoretical Computer Science. Springer-Verlag, 2nd edition, 1995.

117

[BFH+08] E. Brelsford, P. Faliszewski, E. Hemaspaandra, H. Schnoor, and I. Schnoor.

Approximability of manipulating elections. In Proceedings of the 23rd AAAI

Conference on Artificial Intelligence, pages 44–49. AAAI Press, July 2008.

[BO91] J. Bartholdi, III and J. Orlin. Single transferable vote resists strategic

voting. Social Choice and Welfare, 8(4):341–354, 1991.

[Bre07] E. Brelsford. Approximation and elections. Master’s thesis, Rochester In-

stitute of Technology, Rochester, NY, May 2007.

[BS06] S. Brams and R. Sanver. Critical strategies under approval voting: Who

gets ruled in and ruled out. Electoral Studies, 25(2):287–305, 2006.

[BTT89a] J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty of

manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989.

[BTT89b] J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it

can be difficult to tell who won the election. Social Choice and Welfare,

6(2):157–165, 1989.

[BTT92] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is it to control an

election? Mathematical and Computer Modeling, 16(8/9):27–40, 1992.

[CELM07] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction

to computational social choice. In Proceedings of the 33rd International

Conference on Current Trends in Theory and Practice of Computer Science,

pages 51–69. Springer-Verlag, January 2007.

[CFRS07] R. Christian, M. Fellows, F. Rosamond, and A. Slinko. On complexity of

lobbying in multiple referenda. Review of Economic Design, 11(3):217–224,

2007.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press/McGraw Hill, second edition, 2001.

118

[Con07] V. Conitzer. Eliciting single-peaked preferences using comparison queries.

In Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 408–415. ACM Press, May 2007.

[CS02] V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategy-

proofness. In Proceedings of the 18th National Conference on Artificial In-

telligence, pages 392–397. AAAI Press, July/August 2002.

[CS03] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make

manipulation hard. In Proceedings of the 18th International Joint Confer-

ence on Artificial Intelligence, pages 781–788. Morgan Kaufmann, August

2003.

[CS06] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually

hard to manipulate. In Proceedings of the 21st National Conference on

Artificial Intelligence, pages 627–634. AAAI Press, July 2006.

[CSL07] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few can-

didates hard to manipulate? Journal of the ACM, 54(3):Article 14, 2007.

[DKNS01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation meth-

ods for the web. In Proceedings of the 10th International World Wide Web

Conference, pages 613–622. ACM Press, March 2001.

[DS00] J. Duggan and T. Schwartz. Strategic manipulability without resoluteness

or shared beliefs: Gibbard–Satterthwaite generalized. Social Choice and

Welfare, 17(1):85–93, 2000.

[EHRS07] G. Erdélyi, L. Hemaspaandra, J. Rothe, and H. Spakowski. On approximat-

ing optimal weighted lobbying, and frequency of correctness versus average-

case polynomial time. In Proceedings of the 16th International Symposium

on Fundamentals of Computation Theory, pages 300–311. Springer-Verlag

Lecture Notes in Computer Science #4639, August 2007.

119

[EL05a] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manip-

ulation. In The 16th Annual International Symposium on Algorithms and

Computation, ISAAC 2005, pages 206–215. Springer-Verlag Lecture Notes

in Computer Science #3872, December 2005.

[EL05b] E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In

Proceedings of the 9th International Conference on Financial Cryptography

and Data Security, pages 285–297. Springer-Verlag Lecture Notes in Com-

puter Science #3570, February/March 2005.

[ENR08] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy preference-based

approval voting broadly resists control. In Proceedings of the 33rd Inter-

national Symposium on Mathematical Foundations of Computer Science,

pages 311–322. Springer-Verlag Lecture Notes in Computer Science #5162,

August 2008.

[ER97] E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent plan-

ning. Annals of Mathematics and Artificial Intelligence, 20(1–4):13–67,

1997.

[Fal08] P. Faliszewski. Nonuniform bribery (short paper). In Proceedings of the 7th

International Conference on Autonomous Agents and Multiagent Systems,

pages 1569–1572, May 2008.

[FHH06] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity

of bribery in elections. In Proceedings of the 21st National Conference on

Artificial Intelligence, pages 641–646. AAAI Press, July 2006.

[FHHR] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A

richer understanding of the complexity of election systems. In S. Ravi and

S. Shukla, editors, Fundamental Problems in Computing: Essays in Honor

of Professor Daniel J. Rosenkrantz. Springer. To appear. Preliminary ver-

sion available as (FHHR06).

120

[FHHR06] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A richer

understanding of the complexity of election systems. Technical Report TR-

903, Department of Computer Science, University of Rochester, Rochester,

NY, September 2006.

[FHHR07] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull

and Copeland voting broadly resist bribery and control. In Proceedings of

the 22nd AAAI Conference on Artificial Intelligence, pages 724–730. AAAI

Press, July 2007.

[FHHR08] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.

Copeland voting fully resists constructive control. In Proceedings of the

4th International Conference on Algorithmic Aspects in Information and

Management, pages 165–176. Springer-Verlag Lecture Notes in Computer

Science #5034, June 2008.

[FHS08] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting: Ties

matter. In Proceedings of the 7th International Conference on Autonomous

Agents and Multiagent Systems, pages 983–990, May 2008.

[Gib73] A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–601,

1973.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GMHS99] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: The

anatomy of recommender systems. In Proceedings of the 3rd Annual Con-

ference on Autonomous Agents, pages 434–435. ACM Press, 1999.

[Gre08] E. Green, September 2008. Personal communication.

[HH] C. Homan and L. Hemaspaandra. Guarantees for the success frequency of

an algorithm for finding Dodgson-election winners. Journal of Heuristics.

To appear. Full version available as (HH05).

121

[HH05] C. Homan and L. Hemaspaandra. Guarantees for the success frequency of

an algorithm for finding Dodgson-election winners. Technical Report TR-

881, Department of Computer Science, University of Rochester, Rochester,

NY, September 2005. Revised, June 2007.

[HH07] E. Hemaspaandra and L. Hemaspaandra. Dichotomy for voting systems.

Journal of Computer and System Sciences, 73(1):73–83, 2007.

[HHR97] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodg-

son elections: Lewis Carroll’s 1876 voting system is complete for parallel

access to NP. Journal of the ACM, 44(6):806–825, 1997.

[HHR07a] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The

complexity of precluding an alternative. Artificial Intelligence, 171(5-6):255–

285, April 2007.

[HHR07b] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Hybrid elections

broaden complexity-theoretic resistance to control. In Proceedings of the

20th International Joint Conference on Artificial Intelligence, pages 1308–

1314. AAAI Press, January 2007.

[HSV05] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny

elections. Theoretical Computer Science, 349(3):382–391, 2005.

[KP01] W. Kern and D. Paulusma. The new FIFA rules are hard: Complexity

aspects of sports competitions. Discrete Applied Mathematics, 108(3):317–

323, 2001.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time

reducibilities. Theoretical Computer Science, 1(2):103–124, 1975.

[McG53] D. McGarvey. A theorem on the construction of voting paradoxes. Econo-

metrica, 21(4):608–610, 1953.

122

[MPRZ08] R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. The complexity of

strategic behavior in multi-winner elections. Journal of Artificial Intelligence

Research, 33:149–178, 2008.

[MPS08] J. McCabe-Dansted, G. Pritchard, and A. Slinko. Approximability of Dodg-

son’s rule. Social Choice and Welfare, 31(2):311–330, 2008.

[MS97] V. Merlin and D. Saari. Copeland method II: Manipulation, monotonicity,

and paradoxes. Journal of Economic Theory, 72(1):148–172, 1997.

[MT90] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley and Sons, 1990.

[MU95] I. McLean and A. Urken. Classics of Social Choice. University of Michigan

Press, 1995.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PR07] A. Procaccia and J. Rosenschein. Junta distributions and the average-case

complexity of manipulating elections. Journal of Artificial Intelligence Re-

search, 28:157–181, February 2007.

[PRK07] A. Procaccia, J. Rosenschein, and G. Kaminka. On the robustness of pref-

erence aggregation in noisy environments. In Proceedings of the 6th Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems,

pages 416–422. ACM Press, May 2007.

[PRVW08] M. Pini, F. Rossi, K. Venable, and T. Walsh. Dealing with incomplete

agents’ preferences and an uncertain agenda in group decision making via

sequential majority voting. In Proceedings of the 11th International Con-

ference on Principles of Knowledge Representation and Reasoning, pages

571–578. AAAI Press, September 2008.

[RSV03] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner

problem for Young elections. Theory of Computing Systems, 36(4):375–386,

2003.

123

[Sat75] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and

correspondence theorems for voting procedures and social welfare functions.

Journal of Economic Theory, 10(2):187–217, 1975.

[SM96] D. Saari and V. Merlin. The Copeland method I: Relationships and the

dictionary. Economic Theory, 8(1):51–76, 1996.

[Ste59] R. Stearns. The voting problem. The American Mathematical Monthly,

66(9):761–763, 1959.

[Vaz03] V. Vazirani. Approximation Algorithms. Springer, 2003.

[Wal08] T. Walsh. Complexity of terminating preference elicitation. In Proceedings

of the 7th International Conference on Autonomous Agents and Multiagent

Systems, pages 967–974, May 2008.

[XC08] L. Xia and V. Conitzer. Determining possible and necessary winners under

common voting rules given partial orders. In Proceedings of the 23rd AAAI

Conference on Artificial Intelligence, pages 196–201. AAAI Press, July 2008.

[XLY07] L. Xia, J. Lang, and M. Ying. Strongly decomposable voting rules on multi-

attribute domains. In Proceedings of the 22nd AAAI Conference on Artificial

Intelligence, pages 776–781. AAAI Press, July 2007.

[ZPR08] M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms for the coali-

tional manipulation problem. In Proceedings of the 19th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 277–286, January 2008.

