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Abstract  

   This study addresses the issue of preference elicitation for group decision making using 

voting rules. We propose a general, domain-free framework for preference management, where 

the goal is to minimize the communication cost with the users. We introduce novel heuristics and 

show how they can operate under rating and ranking voting protocols, specifically under the 

Range and the Borda protocols. We suggest an interactive incremental framework where at each 

step one user is queried for either her rating for one item or for her ranking order of two items. 

We propose two approaches for heuristics that determine what query to select next (i.e., whom to 

query regarding what item or items). One heuristic computes the information gain of each 

potential query. The other heuristic uses the probability distribution of the voters’ preferences to 

select the candidate most likely to win and the voter that is expected to maximize the score of 

that item. Both heuristics rely on probabilistic rating distributions. We show how these 

distributions can be estimated. The rating distributions are updated iteratively, allowing their 

accuracy to increase over time. 

Although outputting a definite winner is the most accurate result, we also examine 

possible effort-accuracy tradeoffs and aggregation strategies in preference elicitation. First, we 

suggest terminating preference elicitation sooner by returning 𝑘 alternatives to the group 

members where one of the alternatives is the winner, rather than returning just one winner item. 

Second, we suggest computing approximate winner or winners with some confidence level. On 

one hand, receiving an approximate winner item is less accurate; on the other hand, it further 

reduces the communication cost. Finally, we suggest considering the aggregation strategy when 

combining the user preferences. We show that the aggregation strategy affects the 

communication cost required of the preference elicitation and we compare two state-of-the-art 

aggregation strategies: the Majority based strategy and the Least Misery strategy. We 

demonstrate the effectiveness of our framework by evaluating the different heuristics on four 

real-world datasets. In order to examine the possible effect of different data characteristics we 

also use simulated datasets were we can play with the data parameters. 

 

Keywords: Group recommender systems, preference elicitation, multi-agent voting 
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Chapter 1  

Introduction 

Joint decisions are often required in common daily scenarios. For example, a group who 

wishes to dine together may appreciate recommendations on relevant restaurants that fit their 

joint preferences (Berkovsky and Freyne2010). Other examples include: a group of users 

wishing to engage in a joint activity such as watching a movie (O’connor et al. 2002) , a TV 

show (Yu et al. 2006; Masthoff2004; Senot et al. 2011), listening to music (McCarthy and 

Anagnost1998), and travelling (McCarthy et al. 2006).  In a different context, an acceptance 

committee is required to reach a joint decision; the members need to decide which candidates to 

choose for a graduate program out of many applicants (Xia and Conitzer2011).  

When the group members’ preferences regarding the items are known, preference 

elicitation is not required and some aggregation strategy (Masthoff2011) is used to compute the 

item that best suites the group. However, often full preferences are not readily available for 

different reasons. First, due to privacy concerns, even when available, full preference revelation 

should be treated with caution. Second, it is sometimes impractical to collect complete 

preferences due to the communication burden (Conitzer and Sandholm2005; Konczak and 

Lang2005) or to voter limitations. Consider, for example a meeting scheduling application whose 

purpose is to set a time for a conference (Kalech et al. 2011), or an application that recommends 

movies, such as Netflix (www.netflix.com). It is impractical to expect the voters to provide their 

preferences on all available options as there might be hundreds available. In this study we focus 

on a preference elicitation model for a group of users. 



2 

 

1.1 Motivation 

The motivation for this research is drawn from two domains: social choice (Brandt et al. 

2013) and recommender systems (Resnick and Varian1997). Both domains assist users in 

reaching a joint decision. Social choice originates in economics and political science and is 

concerned with different aspects of aggregating the preferences of users, usually termed agents 

or voters. In this study we use voters and users interchangeably. Recommender systems seek to 

predict items to users. We are interested specifically in group recommender systems where items 

are predicted to a group of users.  

Preference elicitation is addressed by both of these fields. In social choice, preference 

elicitation is essential when not enough information is available in order to reach a verdict (i.e., a 

winning item according to some voting protocol). However, in recommender systems, preference 

elicitation is viewed as a measure for improving the prediction accuracy.  

To illustrate a relevant social choice scenario, we return to the scenario of the faculty 

acceptance committee
1
 (Xia and Conitzer2011). A committee assembles in order to select a fixed 

number of candidates out of a field of hundreds for a Ph.D. program. Ideally, a group decision 

requires each committee member to express his or her opinion about each of the applicants; then 

a joint decision is reached based on all opinions. As their time is limited, the committee members 

do not have the resources for such a process. Instead, each member reads a portion of the total 

requests and then grades her assigned applicant files on a scale from 1 to 5.  Applicants in the 

high and low range of scores do not require any special care as they are immediately accepted or 

declined; it is those who receive an average rating which present a problem. Their files need to 

be reread by other members in order to receive additional opinions. The question is then, which 

committee member should be assigned which file to read so that a decision will be reached in 

optimal time. Assuming we know the member’s previous grading pattern (e.g., members who 

tend to grade high/low as opposed to members who give all candidates average scores), we can 

define the member’s grading probability distribution. Then voter-item query pairs can be 

selected: the voter being the committee member, the item being the applicant assigned to her for 

grading and the query being a request for the voters rating for this item. By carefully selecting 

specific voter-item query pairs, the interaction with the users can be reduced.  The goal is to 

                                                 
1 This example is taken from a private discussion with Vincet Conitzer in 2011 



3 

 

reach a decision with partial information (i.e., to reduce the number of interactions with the 

voters needed in order to reach a verdict). 

To illustrate the relevance of our research to group recommendation, consider the 

following: a group recommender system (GRS) can process 𝑁 items, where N might be very 

large. For example, in the Netflix dataset 𝑁 ≅ 16,000 movie items. The GRS ranks the items 

according to their predicted relevance to the group and then returns the top-ranked items.  Note 

that the items returned by the GRS are predicted items, and their relevance to the group depends 

on the accuracy of the GRS. We propose to add a preference elicitation procedure that follows 

the recommendation process and uses the predicted items as input. This enables us to enhance 

the recommendation system since we are then able to return an item or items that certainly fit the 

group’s preferences. Preference elicitation is the process of collecting the preferences from the 

users. It would be impractical to suggest an elicitation process on large numbers of items (e.g., 

when 𝑁 = 16,000). Studies have shown that too much choice can be demotivating. Users are 

more satisfied when presented with a single-digit number of options to choose from (Iyengar and 

Lepper2000). Thus we suggest to narrow down the ranked list of 𝑁 items provided by a 

recommender system, and to apply a preference elicitation procedure on the top-ranked items 

only.  

Preference elicitation requires time and effort so the goal is to stop the elicitation as soon 

as possible. In the worst case for most voting protocols all the preferences are needed in order to 

determine a winning item (i.e., an item that most certainly suits the group’s joint preferences) 

(Conitzer and Sandholm2005). Nevertheless, in this research we show that in practice the 

required information can be cut by more than 50%. Given partial preferences, it is possible to 

define the set of the necessary winners (Konczak and Lang2005), i.e., items which must 

necessarily win, as well as the set of possible winners, i.e., items which can still possibly win. 

These definitions enable the elicitor to determine whether there is need of more information 

concerning the voters’ preferences.  

1.2 Overview 

In this study we suggest a framework for efficient preference elicitation for joint group 

decisions. We propose novel heuristics that aim at minimizing the preference elicitation costs 

(i.e., the cost of communicating with the users). In addition, we investigate approaches for 
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managing the tradeoff between accuracy and elicitation reduction. Finally, we examine two 

strategies for aggregating the users’ preferences in order to reach a verdict. To evaluate our 

ideas, we have conducted experiments with real-world datasets as well as with simulated data. 

The following sections provide an overview of the study and our underlying assumptions.  

1.2.1 Heuristics for Minimizing Preference Elicitation Costs 

 We introduce heuristics for preference elicitation. Computing the optimal minimal set of 

queries required to determine a winner is computationally intractable due to the combinatorial 

space of queries’ orders (Walsh2008). Therefore, we propose two heuristic approaches for 

determining a winner. As we illustrate, each approach is preferred under different circumstances. 

Both approaches proceed iteratively; at each step one user is selected and queried for her 

preferences. The queries are performed under one of the following protocols: the Range voting 

protocol and the Borda voting protocol. The Range voting protocol allows users to rate an item 

within a fixed range of scores. A selected user is queried for her rating for a specific item, 

forming a voter-item query. The Borda voting protocol assumes users have a predefined order of 

preferences over the items, and can be related to pairwise comparisons. A selected user is 

queried for her preference between two items, forming a voter-item-item query. 

To determine a query, the first approach heuristically computes the information gain of 

each potential query based on the entropy of the item’s probability to win. The query that 

maximizes the information gain is selected. The second approach uses the probability 

distribution of the voters’ preferences to select the candidate most likely to win and the voter that 

is expected to maximize the score of that item.  In both algorithms, probability distributions of 

the users’ preferences are computed and updated as new information is revealed. The heuristics 

output a necessary winner item (Konczak and Lang2005), i.e., a definite winner.   

Previous studies have reported the theoretical upper and lower bounds of the required 

communication with the voters (Conitzer and Sandholm2005). However, to the best of our 

knowledge, only two studies propose practical algorithms for preference elicitation (Kalech et al. 

2011; Lu and Boutilier 2011). The first assumes each voter holds a predefined decreasing order 

of the preferences where the voters are requested to submit their highest preferences in an 

iterative process. However, the requirement to predefine preferences may be inconvenient to the 

users. Therefore, we require voters to respond and rate a specific item only when necessary.  
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Furthermore, the procedure suggested by Kalech et al. (Kalech et al. 2011) does not necessarily 

reduce communication significantly since the authors request the rating of one item from all the 

users, thus requiring the voting center to contact each of the users at each step. In the second 

study (Lu and Boutilier 2011) a practical elicitation process is proposed for the Borda voting 

protocol. This algorithm is confidential; the authors did not provide details about their algorithm 

which prohibited its expansion to the Range voting protocol or to other aggregation strategies. 

1.2.2 Approximations for Further Reducing Preference Elicitation 

Preference elicitation costs can be further reduced by trading off the accuracy and 

communication costs. We define one unit of communication as one elicitation request. First, a 

tradeoff exists between the amount of items outputted to the group and the amount of queries 

required. Less elicitation effort is required for outputting top-𝑘 items than for outputting one 

necessary winner (i.e., 𝑘 = 1). Although outputting one definite winner is the most accurate 

result, there are advantages to outputting 𝑘 items where one of them is the winner. Not only 

issues such as communication costs and privacy are reduced, it may actually be preferred to 

present a few alternatives to the user since, if one of the alternatives is unavailable, we can 

quickly switch to another alternative without requiring more elicitation (Brandt et al. 2013).  

Another tradeoff is the one that exists between the accuracy of the proposed winner item 

and the amount of queries required. We suggest outputting an item that approximately suits the 

group with some confidence level 1 − 𝛼 rather than outputting an item that definitely satisfies 

the group (where 𝛼 = 0). As we later show, the confidence level is based on the items’ winning 

probabilities. To reduce the elicitation costs even further, the two methods can be combined and 

top-𝑘 approximate items can be offered to the group. For example, consider a group that wishes 

to watch a movie together and needs to choose one from the current list available in theaters. The 

members of the group define the amount of options they wish to receive (𝑘) and the level of 

confidence in the options (0 ≤ 𝛼 ≤ 1). Thus, we wish to define new preference elicitation 

termination conditions. The first is multi-winner termination; terminate elicitation once a few 

items are found where one of them is the winner. The second is approximate multi-winner 

termination; terminate elicitation when a few items are found and one of them is approximated to 

be the winner item.  
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1.2.3 Aggregation Strategies 

In order to compute a winning item, or, as discussed in the previous section, a few 

winning items or a winning items within top-𝑘 items, the user preferences need to be aggregated 

using a fair aggregation strategy.  In his well-known work, Arrow shows that there is no perfect 

aggregation system (Arrow 1951). One of the major differences between aggregation strategies 

is the social environment in which they are used; in particular, the perspective in which fairness 

is viewed. The emphasis can be either on the individual user or towards the majority of the group 

(Jameson and Smyth2007). Two aggregation strategies that differ in their emphasis are the 

Majority Based Strategy and the Least Misery Strategy. In the Majority Based Strategy the users’ 

ratings of the different items are aggregated and the item with the highest total value is the 

winner. In the Least Misery Strategy the chosen item cannot be the least preferred by any of the 

users. The idea is that a group is as happy as its least happy member (Masthoff2011). One of the 

contributions of this research is in proposing an iterative preference elicitation algorithm which 

fits these strategies. In the social choice literature, these strategies are known as the utilitarian 

and the egalitarian settings. 

1.2.4 Evaluation 

We evaluate our methods on four real-world domains: Netflix data 

(http://www.netflixprize.com), Sushi dataset (Kamishima et al. 2005), Pubs dataset and 

Restaurants dataset
2
. We also perform evaluation on simulated data which allows us to 

manipulate the data and thus further study the different parameters. 

Experiments highlight that the suggested model reduces the communication cost in the 

elicitation process while guaranteeing that a winning candidate is found. For example, in the 

real-world Netflix contest dataset, we show that the communication cost can be reduced by more 

than 50%. Furthermore, the analysis of the heuristics under different settings provides interesting 

insights. For example, DIG heuristic excels when the data is noisy and the voters do not vote 

according to a certain pattern, while ES runs faster and performs better when there is some 

known pattern to the voter preferences (e.g., if it is known from previous analysis that the voters 

generally prefer to watch the newest movie in the cinema). We show that selecting the suitable 

                                                 
2 The Pubs dataset and Restaurants dataset are taken from “Lets Do It” recommender systems, developed by Eli Ponyatovski 

and Aviad Carmeli, 4th year students in the Information Systems Department, under the supervision of: Lihi Dery, Ofrit Lesser 

and Meir Kalech, Ben Gurion University 2014. 

http://www.netflixprize.com/
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aggregation strategy and relaxing the termination condition can reduce communication up to 

90%. 

1.2.5 Assumptions 

In this study we follow the underlying assumptions: 

1. Unknown preferences estimation - uncertainty regarding the voter preferences is 

facilitated by creating and updating voter-item probability distributions. For example, 

in the case of a group of users wishing to watch a movie together, the distribution can 

be inferred from rankings of these movies by similar users using collaborative 

filtering methods (Koren and Sill2011). We present and demonstrate a method for 

calculating probability distributions (see Chapter 4 section 2). 

2. User response - we assume that users' preferences are unknown in advance, but can 

be acquired during the process (i.e., a user who is asked about her preference on an 

item, responds to the request). Note that the user is not required to decide on all of her 

preferences beforehand. 

3. Sincere communication with the user - we assume that a user submits her true 

preferences. Therefore, in this research we do not consider manipulation 

(Gibbard1973, Satterthwaite 1975). 

4. Equal communication cost – we assume that the cost of asking a user for her 

preferences is equal for all users and for all items. 

5. Consistency – we assume consistency in voting preferences. If this assumption is not 

held, intransitive preferences might occur, and then no solution can be found. To the 

best of our knowledge, this is an assumption kept throughout the field of voting and 

social choice. Although Tversky (1969) has shown that preferences might be 

intransitive, there have been other that have shown that in most cases, voters are in 

fact transitive (Regenwetter et al. 2011). Another form of inconsistency is when 

manipulation is performed. However this is out of scope of this research. 

1.3 Main Contribution and Dissertation Overview 

The overall structure of the study takes the form of seven chapters, including this 

introductory chapter. We lay out the related work in Chapter 2. We present the problem 

description and a general preference elicitation model, with the goal of reducing the 
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communication cost in the preference elicitation process in Chapter 3. We implement the 

framework on ranking (Range) and non-ranking (Borda) voting protocols. The main 

contributions of this research are:  

1. A preference elicitation model for the Range voting protocol (Chapter 4): We 

present an elicitation model and novel heuristics for preference elicitation for the 

Range protocol. The Range protocol is very common in Recommender systems 

settings as it requires users to submit a score. Since computing the optimal minimal 

set of queries that are required to determine a winner is computationally intractable 

due to the combinatorial space of queries’ orders, we propose two novel heuristic 

approaches for determining a winner. We show that each approach has an advantage 

under different circumstances. Both approaches proceed iteratively, selecting a voter-

item pair and querying the selected voter for her score on the item. To determine a 

voter-item query pair, the first algorithm heuristically computes the information gain 

of each potential query based on the entropy of the item’s probability to win. The 

query that maximizes the information gain is selected. The second algorithm uses the 

probability distribution of the voters’ preferences to select the candidate most likely 

to win and the voter that is expected to maximize the score of that item.  In both 

algorithms, voter-item probability distributions are computed and updated as new 

information is revealed. This is achieved by computing a nonparametric probability 

distribution for each voter’s preferences of items, i.e., for voter-item pairs. The 

algorithms return a definite winner item. 

2. A preference elicitation model for the Borda voting protocol (Chapter 5):   We 

present an elicitation model and novel heuristics for preference elicitation for the 

Borda protocol. The Borda voting protocol requires users to rank their preferences so 

that no two items can receive the same score. Pairwise comparison queries can be 

related to the Borda voting protocol, since users are already required to have a fixed 

ranked list of preferences for items. Studies have shown it is easier for users to state 

opinions when the queries are pairwise (Balakrishnan and Chopra2012). The Borda 

protocol is different from the Range protocol in the methods for computing the 

necessary winner, the item winning probability, and the distribution model.  



9 

 

3. Tradeoffs and Aggregation Strategies in Preference Elicitation (Chapter 6): To 

the best of our knowledge, the following ideas have not been studied for the Range 

voting protocol.    

a. Selection: we suggest terminating preference elicitation sooner by returning 𝑘 

alternatives to the group members where one of them is a necessary winner 

rather than returning just one item.  This issue has recently been studied by 

(Lu and Boutilier2013) for the Borda voting protocol. However, the algorithm 

suggested by the authors remains confidential and we cannot attempt to adapt 

it to the Range voting protocol. 

b. Approximation: we suggest computing approximate winner or winners with 

some confidence level. For example: item 𝑎 is the winner with a 95% 

confidence level. This also shall reduce the communication cost. 

c. Aggregation: we suggest considering the aggregation strategy when 

combining the user preferences. Previous work has always implemented the 

Majority based strategy, however, we show that the aggregation strategy 

affects the effort required in the preference elicitation and we evaluate two 

state-of-the-art aggregation strategies. 

 

Finally, the conclusions chapter (Chapter 7) gives a brief summary, critique of the 

findings’ and further research areas. A schematic overview of the structure of the key chapters 

(Chapters 3-6) is provided in the following table. 
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Table 1: Schematic overview  

General framework of 

preference elicitation 

Chapter 3 

The Problem Description 

Preference elicitation for 

non-ranking and ranking 

voting rules 

Chapter 4 

Iterative Voting 

Under the 

Range Protocol 

Chapter 5 

Iterative Voting 

Under the 

Borda Protocol 

The necessary winner  

Section 4.1 

Possible maximum 

and possible 

minimum under the 

Range protocol 

Section 5.1 

Possible maximum 

and possible 

minimum under the 

Borda protocol 

Probabilistic preference 

distribution model 

Section 4.2 

Voter-item 

distribution model 

 

Section 5.2 

Voter permutations 

distribution model 

 

Item winning probability 

Section 4.3 

Dynamic 

programming 

algorithm  

 

Section 5.3 

Monte Carlo 

sampling approach  

Query selection heuristics 

for finding a definite 

winner  

Sections 4.4 - 4.5 Sections 5.4 - 5.5   

 

Chapter 6 

Tradeoffs and Aggregation Strategies in 

Preference Elicitation 

Aggregation strategies Section 6.1 Future work 

Query selection heuristics 

for winner approximation  

Section 6.2.1 

Selection among 

Top-𝑘 

Future work 

Section 6.2.2 

Approximation 

using a confidence 

interval 

Future work 
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1.4 Publications 

The following papers have been published or submitted for publication as a result of the 

research described in this dissertation: 

Chapter 4:      Iterative voting under uncertainty using the Range protocol: 

Naamani-Dery
3
, L., Kalech, M., Rokach, L., and Shapira, B. 2010. Iterative 

Voting under Uncertainty for Group Recommender Systems. In Proceedings of 

the Fourth ACM Conference on Recommender Systems. ACM, New York, NY, 

265-268.  

 

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Reaching a 

Joint Decision with Minimal Elicitation of Voter Preferences. Information 

Sciences. Vol.278, 466-487. http://dx.doi.org/10.1016/j.ins.2014.03.065 

 

Chapter 5:       Iterative voting under uncertainty using the Borda protocol 

Naamani-Dery, L., Kalech, M. and Rokach, L. 2014. Preference Elicitation for 

Group Decisions. In proceedings of the Group Decisions and Negotiation 

conference (GDN), Toulouse, June 2014. 193-201. 

 

Naamani-Dery, L., Kalech, M. and Rokach, L. 2015. Preference Elicitation for 

Group Decisions. Accepted to Group Decisions and Negotiation Journal. 

http://dx.doi.org/10.1007/s10726-015-9427-9 

 

Chapter 6:      Tradeoffs and Aggregation Strategies in Preference Elicitation 

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Preference 

Elicitation for Narrowing the Recommended List for Groups. In Proceedings of 

the 8th ACM Conference on Recommender systems, 333-336. ACM. 

 

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Reducing 

Preference Elicitation in Group Decision Making. Under review in Transactions 

on Intelligent Systems and Technology 

                                                 
3 Naamani is my maiden name (Lihi Dery) 

http://dx.doi.org/10.1016/j.ins.2014.03.065
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Chapter 2  

Related works 

This chapter surveys previous work on preference elicitation and preference aggregation 

for group decision making. Preference elicitation is studied in two domains of interest to us: 

recommender systems (section ‎2.1 and social choice theory (section ‎2.2). Preference aggregation 

strategies are surveyed in section ‎2.3. A discussion on drawbacks of previous research is 

presented in section ‎2.4 

2.1 Preference Elicitation in Recommender Systems   

Recommender systems are designed to predict which items users are expected to like. We 

first survey personal recommendation systems and then group recommender systems. 

2.1.1 Personal Recommender Systems 

In personal recommendation systems the goal is to output specific recommendations for 

one user (Resnick and Varian1997). The recommendations can either be computed using 

available information or by constructing and matching user profiles or item profiles. When 

available information is insufficient, preference elicitation can be performed. 

Guidelines for preference elicitation for personal recommendation systems were 

established by (Pu and Chen2009). In their study, the authors consider an incremental user 

system interaction process. The authors include the following four recommendations: how many 

items to display to the user, what items to display to the user, interfaces for tweaking the final 

decision, and interfaces for explaining the recommendations. Similarly, the model we propose in 

this study is incremental and interactive. At each round we elicit preferences from one user. 

Pending on the voting protocol, the user is either required to submit her rating for one item 
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(Range voting protocol) or to submit her preferred item between two items (Borda voting 

protocol). One of this study’s focuses is determining what preference to elicit, or in Chen and 

Pu’s terms, what items to display to the users. According to Pu and Chen’s guidelines, the items 

suggested to the users for preference elicitation must be diverse (2
nd

 guideline) and have a high 

likelihood of optimality (3
rd

 guideline). Item diversity can be detected only if the item features 

are known. In our study we assume no item features are available. We follow the 3
rd

 guideline to 

some extent, since we search for items that are optimal to the user. The other guidelines are less 

relevant for this study. For example, the results do not need an explanation interface since they 

are not predictions but rather approximate or necessary winners, according to preset properties. 

Some studies that perform preference elicitation for personal recommendation employ 

active learning that assists to depict what preferences to elicit. The decision is based on the goal 

of the recommender system: accuracy of the recommendation, system profit, user satisfaction, 

and the user’s ability to rate the required items (Rubens et al. 2011).  Our focus is on minimizing 

preference elicitation with queries geared towards finding approximate or necessary winner 

items for a group of users. Thus, employing active learning might increase the accuracy of our 

user profiles, but opposes our goal of minimizing the preference elicitation process.  

Content based recommender systems make use of the attributes of the items. For 

example, in a recent study by Freyne et al. (Freyne et al. 2013), an active learning algorithm is 

suggested, that learns the bias users have towards attributes of an item. These are reflected in the 

users rating patterns; thus, the algorithm can estimate the rating users will give to certain items, 

and use this information when deciding which preferences to elicit. One major drawback is that 

the authors limit their analysis to food recommendation and focus exclusively on meal recipes. 

We propose a domain-free model that does not require any knowledge about the items’ features. 

To conclude, the studies surveyed in this section are relevant to systems in which a single 

voter exists, although we remain interested in preference management for a group of users. 

While we share a few common ideas, such as the guideline of eliciting items that are optimal to 

the user, most earlier research  assume that item attributes are readily available, an assumption 

that we do not hold. More importantly, we did not find studies that share the same goal of 

minimizing the preference elicitation process. In the next section we discuss preference 

elicitation that is specific to groups. 
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2.1.2 Group Recommender Systems  

In this section we first introduce the features of group recommender systems in general, 

and illustrate the unique features of our model within each category. We then discuss preference 

elicitation for group recommender systems and lastly present preference estimation. 

2.1.2.1 Features of Group Recommender Systems 

Group recommendation systems output recommendations to a group of users rather than 

to one user. A classification of the state-of-the-art group recommendation systems can be found 

in the paper of Garcia et al. (Garcia et al. 2011). The systems are classified according to the 

following six independent features that influence their design: 

1. Information source – our proposed model is based on collaborative filtering 

techniques. We assume that no knowledge is available about the users (e.g., 

demographic knowledge is unavailable) or about the items (e.g., content-based 

attributes are unavailable).  

2. User-system interaction - our proposed model falls under what the author’s term a 

passive user-system interaction. In a passive user-system, the final goal is to 

provide items to the group without further interaction with the users or the system. 

3.  Domain – most existing systems are domain specific. Our model offers a domain-

free platform. 

4. Outcome – the systems are classified according to the recommendation outcome: 

a single recommendation or a ranked list of items. Our model does not fit either 

category. We propose to go one step further and offer necessary or approximate 

winner items, which defiantly fit the group.  

5. Group size – the systems are classified according to group size -- any group size 

or small groups of 2-4 users. Our system does not fall under either category. Our 

model is designed for groups of up to 30 users, and up to 30 items. 

6. Aggregation approach – the systems can either compute a group recommendation 

based on: (a) an aggregation of the recommendations to personal user profiles, or 

(b) build a group profile that is treated as a single user to which a 

recommendation is given. In our model we aggregate user preferences, not user 

recommendations. 
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Table 2 presents a summary of our system in comparison with the group recommender 

categories mentioned above. The grey cells in the table indicate the places where our 

model does not fit the available categories. 

 

Table 2: Our model according to the group recommender systems categories 

proposed by Garcia et.al. (2011) 

 Available categories Our model 

Information 

source 

Content based, collaborative filtering, 

knowledge based, hybrid approaches 

Collaborative 

filtering 

User-system 

interaction 

Passive members, active members Passive members 

Domain Domain specific, generalist Generalist (domain-

free) 

Outcome Single recommendation, ranked list of 

recommendations 

Definite or 

approximate winner 

items 

Group size Any group size, small groups Medium size 

Aggregation 

approach 

Aggregation of the recommendations to 

personal user profiles, recommend to a 

group profile 

Aggregation of user 

preferences 

 

In a study by  Garcia et al. (2011) the authors propose a domain-free group 

recommendation system. The user and item profiles are built on the data available. However, 

their approach assumes that all the user opinions are known and they focus on investigating the 

best way to aggregate all preferences. Conversely, we assume that the user preferences are 

unknown and need to be elicited. In our view, preference elicitation is another category that can 

be used to classify group recommender systems. This category is not mentioned in (Garcia et al. 

2011). 

2.1.2.2 Preference Elicitation in Group Recommender Systems 

A growing body of literature is investigating preference elicitation for group 

recommenders. In the critique model approach (Chen and Pu2012), case-based reasoning is 

applied in order to elicit voter preferences on items. Such systems require analysis and 

maintenance of item features which is not always feasible. In this study the critique model is 

irrelevant since we consider dataset where item features are unknown. Braziunas and Boutilier 
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provide (Braziunas and Boutilier2009) several utility elicitation techniques from research fields 

such as artificial intelligence, operations research and conjoint analysis. The common base of the 

techniques is that users are requested to provide unambiguous simple answers to queries. In this 

study, we follow these researchers’ method and focus on explicit preference elicitation where the 

users’ answers are unambiguous. Our model does not allow flexibility in stating the preferences; 

the user is required to submit preferences from a predefined discrete scale of values, or to choose 

between two items. Rodriguez et al. (Rodríguez et al. 2013) present an algorithm for eliciting 

complex linguistic expressions, as part of a group decision-making process. The focus of their 

study is in allowing flexibility in the expression of the preferences. Critique-based reasoning and 

linguistic expressions may be a more natural way to interact with users. However, this approach 

requires the users to spend an ample amount of time on rating their preferences and the system 

does not enable the modeling of users’ preferences unambiguous on a numbered scale.  

2.1.2.3 Preference Estimation 

Instead of eliciting preferences, some studies estimate the unknown user preferences 

using fuzzy preference relations based on the additive consistency measure (Chen et al. 2014; 

Herrera-Viedma et al. 2007).  Another approach estimates the voter preferences using Bayesian 

Networks and computes an estimated recommended item (de Campos et al. 2009). Our model 

does not attempt to estimate the unknown preferences but rather computes nonparametric 

probability distributions for the unknown preferences. 

A probabilistic algorithm that accounts for uncertainty in a single voter’s preferences was 

developed by Yu et al. (Yu et al. 2004). While their model assumes a normal distribution of 

voting preferences, we do not make such an assumption. Instead, we use a non-parametric voting 

distribution. Popescu and Pu present, a probabilistic music playlist group recommendation 

system  (Popescu and Pu2013). The probability distributions are defined as the probability for 

each item to be the winner item. However, estimations for missing items are not considered.  

Koren and Sill (2011) developed a framework for finding probability distributions that is 

calculated according to the predicted rating. We, on the other hand, show how to extract the 

probability distribution without calculating the predicted rating. We then use this distribution to 

select the next query during the preference elicitation process. The system is constantly updated 
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with new information, so the probability distributions’ accuracy increases as more preferences 

are available. 

To conclude, Table 3 illustrates two categories we propose to add to the existing 

categories in Garcia et al (2011) for classifying group recommender systems: 

1. Statement of preferences – the users can state their preferences as: (a) linguistic 

expressions, (b) using a critique based model or (c) as unambiguous preferences. Our 

model focuses on unambiguous preferences. 

2. Estimation of missing preferences - the missing preferences can either be estimated 

using a fuzzy or Bayesian model (point estimation), or a probability distribution can 

be created for each missing preference. Our model creates a non-parametric 

probability distribution for each missing preference. 

 

Table 3: Proposal of additional classification categories 

 Existing  Our model 

Preference elicitation None 

Unambiguous  

Critique based   

Linguistic expressions   

Unambiguous  

 

Estimation of missing 

preferences 

Point estimation 

Probability distributions  

Probability 

distributions 

 

  

2.2 Preference Elicitation Using Voting Theory 

Voting protocols determine how user preferences are treated (Rossi et al. 2011). In social 

choice (Suzumura, Arrow, and Sen 2010), preference elicitation is termed as voting. The 

theoretical basis for addressing voting with partial information (i.e., where users do not set the 

preferences for all items), can be found in (Conitzer and Sandholm2005; Konczak and 

Lang2005). Conitzer and Sandholm (2005) analyze the communication complexity of various 

voting protocols and determine upper and lower bounds for communication. In general, they 

show that for most voting protocols, in the worst case voters should send their entire set of 

preferences. Konczak and Lang (2005) demonstrate how to compute the sets of possible winners 
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and a set of necessary winners. These sets determine which items no longer have a chance of 

winning and which will certainly win. We adopt their approach to propose a systematic 

preference aggregation protocol where the agents do not need to send their entire set of 

preferences. 

Theoretical bounds for the computation of necessary winners have been previously 

addressed (Walsh2007; Betzler et al. 2009; Pini et al. 2009). Others considered settings where 

preferences may be unspecified, focusing on soft constraint problems (Gelain et al. 2007) or on 

sequential majority voting (Lang et al. 2007). They do not provide empirical evaluation nor do 

they focus on minimizing the preference elicitation process. 

In a recent paper, the subject of unavailable candidates is addressed (Boutilier et al. 

2014). In our research we assume that all candidate items are available. We do offer a model for 

returning top-𝑘 items where one of them is the winner item, which can be used when some of the 

items might not be available. The hardness of winner determination under various multi-winner 

voting rules was discussed in (Procaccia et al. 2008; Skowron et al. 2013; Betzler et al. 2014). 

The authors study systems were a proportional representation of users’ wishes is required. Multi-

winner voting rules are discussed in a recent work (Elkind et al. 2014). The authors address some 

multi-winner voting rules and discuss their properties under different settings. The setting 

relevant to our study is defined by the authors as “Shortlisting”: situations where 𝑘 out of 𝑁 

items are shortlisted as the most appropriate. However vote elicitation is not discussed by the 

researchers.  

Predefined probability distribution of the votes is assumed by Hazon et al. (Hazon et al. 

2008). The winning probability of each candidate is evaluated in Plurality, Borda, and Copeland 

protocols. They show theoretical bounds for the ability to calculate the probability of an 

outcome. Bachrach et al. (Bachrach et al. 2010) provide an algorithm for computing the 

probability of a candidate to win, assuming a polynomial time computable voting rule (such as 

Range voting) and assuming a uniform random distribution of voters’ choice of candidates. 

However, while both of these papers focus on calculating the winning probability for each 

candidate, we focus on practical vote elicitation, specifically on finding the winner using a 

minimal amount of queries. 

As opposed to our goal of minimizing the number of queries in general, Nisgav and Patt-

Shamir (Nisgav and Patt-Shamir2011) propose theoretical bounds for minimizing the number of 
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queries sent to each voter. Their goal is not to find a winner but to retrieve enough information in 

order to fill a voter’s preference vector (defined as the voter’s preferences for different items), so 

that the information can be used for collaborative filtering.  

2.2.1.1 Practical Preference Elicitation 

Practical vote elicitation has been addressed recently. Pfeiffer et al. (Pfeiffer et al. 2012) 

the goal is to predict the ranking of 𝑛 items, by querying voters using pairwise comparison of 

items. However, the authors do not explicitly aim to reduce the number of queries. Furthermore, 

they assume each voter can be approached only once and that there is no prior knowledge on the 

voters. As a result, voter-item distributions cannot be computed. Their method is therefore 

suitable when a large amount of voters is available and the task is to determine some hidden truth 

(also known as the wisdom of the crowds). We, on the other hand, wish to reach a joint decision 

for a specific group of voters. In Ding and Lin (Ding and Lin2013), a candidate winning set is 

defined as the set of queries needed in order to determine whether the candidate is a necessary 

winner. The authors show that for rules other than the plurality voting, computing this set is NP-

Hard. This theorem further supports our claim that heuristics are needed for preference 

elicitation. 

An attempt to reduce the number of queries is made by Kalech et al. (Kalech et al. 2011). 

The authors assume that each user holds a predefined decreasing order of the preferences. In an 

iterative process, the voters are requested to submit their highest preferences; the request is for 

the rating of a single item from all the users. One major disadvantage of this approach is that 

requiring the users to predefine their preferences can be inconvenient to the users. While these 

authors do not consider the probability distribution of the voters, our work illustrates how the 

probability distribution of the voters can be used to decrease the number of queries. Lu and 

Boutilier (2011) offer yet another practical elicitation process is proposed for the Borda voting 

protocol using the minmax regret concept. The output is a definite winner or an approximate 

winner, but the authors do not state the approximation confidence level. The authors recently 

extended their method to return multiple winners, again using the Borda protocol and minmax 

regret (Lu and Boutilier2013).  
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2.3 Aggregation Strategies 

In the previous sections we surveyed preference elicitation. In this section we survey 

research on aggregating the user preferences. 

In his well-known work, Arrow (Arrow 1951) shows that there is no perfect aggregation 

system. A summary of 11 different aggregation strategies can be found in a paper by Masthoff 

(Masthoff 2011) and their classification into three main categories can be found in a research be 

Senot et al. (Senot et al. 2011). A new strategy based on the Nash equilibrium is proposed by 

Carvalho et al. (Carvalho et al. 2013). Both Masthoff  and  Senot et al. study how different 

strategies affect group members. However, the aggregation strategies have not been studied in 

the context of preference elicitation.   

Masthoff (Masthoff2004) studies how humans prefer to integrate personal 

recommendations. She concludes that users use the Majority based strategy, the Least Misery 

based strategy and Majority without Misery strategy. The Majority based Strategy and the Least 

Misery based strategy were also chosen by Baltrunal et al. (Baltrunas et al. 2010), in a study 

focusing on evaluation of the effectiveness of GRS obtained by aggregating user preferences.  In 

(Garcia et al. 2011) the authors note that the Least Misery and the Majority strategies are the 

most common strategies used which motivated us to focus our research on these two strategies. 

In the Majority Based Strategy the users’ ratings of the different items are aggregated; the 

item with the highest total value is the winner. Note that the result is similar to taking the item 

with the highest average, thus this strategy is sometimes referred to as the Average Strategy or 

the Additive Strategy. The Majority Based strategy is used in numerous applications including 

the MusicFX system when the square of the individual preferences are summed (McCarthy and 

Anagnost1998) and the Travel Decision Forum that assists in planning a holiday (Jameson2004). 

Berkovsky and Freyne compare weighted and un-weighted additive strategies when 

recommending a recipe to a group (Berkovsky and Freyne2010). Another example is of TV 

programs recommendation for a group (Yu et al. 2006; Masthoff2004).  A disadvantage of this 

strategy is that it can be unfair towards users with the minority view. In fact, Yu et al. (Yu et al. 

2006) state that their system works well for a homogenous group but when the group is 

heterogeneous, dissatisfaction of the minority group occurs. Endriss and Grandi (Endriss and 

Grandi2013) use the Majority based strategy is used for a different purpose: to find the most 

representative user. The authors assume the votes are binary. The most representative user’s 
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opinion is presented to the group. Contrary, in our study the Majority based strategy is performed 

on the items and not on the users. 

The Least Misery Strategy defines that the chosen item cannot be the least preferred by 

any of the users. In the Polylens system the Least Misery strategy is used to recommend movies 

to small groups (O’connor et al. 2002). Their survey shows that 77% of the users found the group 

recommendation more helpful than the personal one. The disadvantage is that the minority 

opinion can dictate the group – if all users but one really want some item to win, this item will 

not be chosen (Masthoff2011). Another system with a Least Misery approach is the CATS 

system, a collaborative based travel recommendation system (McCarthy et al. 2006). A model 

for group recommendations for households sharing a movie rental account is proposed in Gorla 

et al. (Gorla et al. 2013). They offer a novel probabilistic framework for combining the relevance 

of items to users with combining the relevance of the items to the group as a whole. The 

aggregation strategy they choose to use is the Least Misery strategy. 

To conclude, the Majority and the Least Misery strategies are commonly used in the 

literature. One of the contributions of this study is considering the Least Misery strategy, which, 

to our best knowledge, has not been studied in the context of preference elicitation.  

2.4 Drawbacks of previous research 

In the previous sections we surveyed preference elicitation and preference aggregation in 

recommender systems and in social choice; we have shown where our research relates and where 

it differs from these domains. Table 4 offers a summary comparison of the differences between 

the two fields. The greyed cells indicate the way our proposed model operates: 

1. Set of items - in group recommender systems the recommendation is usually based on 

the available user preferences. If preference elicitation is performed, it is usually done 

on a set of other items (i.e. on the voters rating history and not on the set of items in 

question). In our model the preference elicitation is performed on the available items. 

2. Output - the items presented to the group are recommendations, while in social choice 

the items are necessary winners. In our model the outputs are necessary winners. 

3. Termination condition - the focus of studies in group recommender systems is usually 

on the recommendations accuracy, recommendations fairness or on the user 

satisfaction. Therefore preference elicitation terminates once the system reaches an 
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adequate level of one of these conditions. In social choice, preference elicitation 

terminates once a necessary winner is found. In this study we expand the termination 

condition and terminate the process when an approximate winner item is found within 

a list of top-𝑘 items. We have not encountered any study that approximates a winner 

or 𝑘 alternative winner with a confidence level.  

4. Aggregation strategy - we introduce algorithms which can use the Majority based or 

the Least Misery strategy in order to output one or top-𝑘 definite winner items or 

approximate winner items within some confidence level. Current research in social 

choice is limited to the Majority based strategy for preference aggregation. To the 

best of our knowledge the issue of preference elicitation and returning one or more 

items under the Least Misery strategy has not yet been investigated. 

 

 We have not seen any attempt of research in the field of social choice to connect to the 

current research in group recommender systems. Our model can be used as a second step in 

existing group recommender systems. First, the group recommender system computes the list of 

top-𝑁 recommended items.Then our model can be used in order to output approximate or 

definite winner items to the group. 

While preference elicitation and preference aggregation is addressed in the 

recommendation literature, the issue of minimizing the preference elicitation is ignored. To the 

best of our knowledge, in the social choice field, only the two attempts (Lu and Boutilier 2011 ; 

Kalech et al. 2011) have been made at vote elicitation in order to try to minimize the amount of 

queries. The advantage of our approaches is that users are not required to predefine their 

preference as in (Kalech et al. 2011) and are not necessarily required to hold a strict set of 

ordered untied preferences as in ( Lu and Boutilier 2011). 

We propose a general, domain-free framework for preference management. The model 

estimates probability distributions for the unknown preferences. We introduce novel heuristics 

and show how they can operate under ranking and non-ranking voting protocols. The heuristics 

determine which preferences to elicit, in an incremental process. One heuristic computes the 

information gain of each potential query based on the entropy of the item’s probability to win. 

The rationale behind this proposal is that reducing the entropy as fast as possible will direct us 

towards the winner as fast as possible. The other heuristic uses the probability distribution of the 
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voters’ preferences to select the candidate most likely to win and the voter that is expected to 

maximize the score of that item. The rationale behind this is that maximizing the item with the 

current maximum score will lead us towards an item whose minimum score is higher than the 

maximum of all others (Konczak and Lang2005) and in turn, towards the winner item. We 

present our model in detail in the following chapter. 

 

Table 4: Preference elicitation in recommender systems and social choice 

 Recommender systems Social choice 

Set of items on 

which preference 

elicitation is 

conducted 

other items available items 

Output (item or list 

of items) to the 

group of users 

 

predicted/recommended definite item/s 

according to some 

voting rule 

Termination 

condition 

Once the output is 

viewed as adequate: 

accurate, fair, or when 

the users are satisfied 

Necessary winners 

with some confidence 

Aggregation 

strategy 

Any aggregation 

strategy, typically 

Majority or Least 

Misery 

Majority 

 

 

 

 

 

 



24 

 

 

 

 

Chapter 3  

Problem Formulation 

We introduce a general model for reaching joint decisions with minimal elicitation of 

voter preferences. Our approach has two components: a rating distribution estimation component 

and a voting center component. The rating distribution estimation component (referred to 

hereafter as the distribution component) computes and holds a probabilistic voter preference 

distribution model, which is specific for every voting protocol. It is presented for Range Voting 

in section 4.2 and for Borda Voting in section 5.2. The voting center component is responsible 

for collecting voter preferences and returning a recommendation, given predefined termination 

conditions. A simple termination condition is, for example, the discovery of one definite winner 

item, which is recommended to the group as their best option. More termination conditions are 

discussed in section ‎6.2. 

The model is illustrated in Figure 1 and proceeds as follows: The distribution component 

holds a database of historical item ratings given by voters and uses them to estimate 

nonparametric probability distributions for all unknown ratings. The voting center component 

receives the probability distributions and utilizes them for selecting whom to query about which 

items. The heuristic generates a query that is sent to the appropriate voter, and if the response 

causes the termination condition to be reached, the voter center ends the process. If not, the 

voter's response is sent to the distribution center, which updates the probability distributions, and 

the process is repeated. The goal is to meet the termination condition using a minimal number of 

queries, thus incurring minimal cost. 
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Figure 1: Model description 

3.1 The Minimal Cost Problem 

Let us define a set of users (voters) as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} and a set of candidate items 

as  𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}. We define a request for specific information from the voter as a query 𝑞. 

The type of query depends on the voting protocol employed. Under the Range voting protocol, a 

query is a request for the rating of one voter 𝑣𝑖   for one item 𝑐𝑗. This is a voter-item query, 

denoted  𝑞𝑗
𝑖 . The rating is determined by the user from a set of ordered values, such as 1,…,5. 

Under the Borda voting protocol, a query is a request for the voter's preference between two 

items 𝑐𝑗 and 𝑐𝑘. This is a voter-item-item query, denoted  𝑞𝑗,𝑘
𝑖 .  

A query has a cost, e.g., the cost of communicating with the voter, or the cost of 

interfering the voter's regular activities. We assume that the cost is equal for all queries.   

 

Definition 1.(Cost): Given a query q, the cost function 𝑐𝑜𝑠𝑡: 𝑞 →  ℝ returns the 

communication cost of the query.  
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Throughout this research we assume that the cost is equal for all queries and that the cost 

is constant throughout the elicitation process. It is possible to determine the winner from the 

partial voters' ratings (Konczak and Lang2005; Walsh2007). We adopt an iterative method 

(Kalech et al. 2011; Lu and Boutilier 2011) which proceeds in rounds. On each round one voter 

is queried for her rating for one item. Consequently, we aim to determine the next query, such 

that the total expected cost is minimized.  

 We assume that a user always responds to a query and that the response is sincere. Let 

𝑂𝑖  represent the set of voter  𝑣𝑖’s responses to the queries. Note that this set does not necessarily 

contain all the items. 𝒪𝐴 = {𝑂1, … , 𝑂𝑚} is a set of 𝑂𝑖 sets. At the end of each round, one 

response to a query is added to 𝒪𝐴. Figure 2 illustrates one query execution round according to 

the: (a) Range protocol and (b) the Borda protocol. For the Range protocol, a request to rate an 

item is presented to the user. The user rates the requested item out of a predefined discrete 

domain of values. For the Borda protocol, the user is requested to decide between two items. In 

both protocols, the user’s response is added to 𝑂𝑖 and to the set of known preferences 𝒪𝐴. 

 

 

Figure 2: One query execution round 

The process continues iteratively, in rounds, until the termination condition is met. 

Consider for example the termination condition: one necessary winner item, i.e., the process 

should terminate when one item is discovered, to be presented to the group as their best option. 

To determine the necessary winner we compute the possible maximum and possible minimum of 
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each candidate item. The possible maximum of an item represents the possible highest score for 

that item based on the known preferences in 𝒪𝐴, namely, by completing the unknown 

preferences with the highest score. Respectively, the possible minimum of an item represents the 

lowest score possible for that item based on the known preferences in  𝒪𝐴, namely, by 

completing the unknown preferences with the lowest score. If item 𝑐𝑗′𝑠 possible minimum is 

bigger than the possible maximum of all other items then 𝑐𝑗 is a necessary winner (Konczak and 

Lang 2005).  

The goal is to guarantee the requested termination condition with minimal cost. For 

example, for the termination condition of one necessary winner item, the goal is to execute a 

minimal number of queries in order to find an item which is a necessary winner. 

3.1.1 MDP Formulation 

The challenge stated at the end of the former paragraph challenge can be represented as a 

Markovian Decision Process (MDP). An MDP is a tuple of states, actions, a transition function 

from state to state by an action and a reward function. In our case, the states are the possible 

combinations of the users' ratings for the items. Every user can assign |D| possible values to item 

𝑐𝑗. If a user has not yet assigned any value, the current value of the item is unknown. Thus, the 

combination space is (|𝐷| + 1)𝑛∙𝑚
 , where 𝑚 is the number of users and 𝑛 is the number of 

items. The actions are the possible queries. A query is a request to a specific user to either rate an 

item (in the Range voting protocol) or to state a preference between two items (in the Borda 

voting protocol). Thus, the queries space is 𝑛 ∙ 𝑚 or 𝑛 ∙ 𝑚
2⁄  respectively. The transition function 

between two states is affected by the probability distribution of the ratings of the item about 

which the user was queried. Finally, the reward is the negative cost of the queries. The goal is to 

determine which query to choose on each round so that the communication with the user is at a 

minimum. 

We can compute the optimal query’s vector by finding the optimal policy by applying 

dynamic programming methods such as Value Iteration or Policy Iteration (Bellman1962). These 

methods grow polynomially in the number of states and actions. However, in our case the state 

space itself is exponential in the number of voters and items and dynamic programming is not 

suitable for such large settings. Thus, we present heuristic approaches that use greedy moves to 

compute the next query. 
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The heuristics and the computation of the possible minimum and possible maximum 

score are specific for each voting protocol. The heuristics for the Range voting protocol are 

presented chapter 4 and for the Borda voting protocol in Chapter 5. In the next section we 

introduce the two protocols. 

3.2 Voting Protocols 

In this study we focus on two representative voting protocols; the Range protocol 

represents the class of non-ranking rules, and the Borda protocol represents the class of ranked 

based rules (Rossi et al. 2011).  The Range voting protocol requires users to assign scores from a 

predefined range. The Borda voting protocol requires users to rank their preferences so that no 

two items can receive the same score. Pairwise comparison queries can be related to the Borda 

voting protocol, since according to the Borda protocol users are required to have a fixed ranked 

list of preferences for items. As each protocol has its advantages and disadvantages, the final 

decision is in the hands of the system administrator. 

The Range voting protocol has a few advantages. First, perhaps the main advantage of the 

Range voting protocol is that it is relevant to many already existing applications, where voters 

are asked to rate items on a specified scale and users are familiar with the requests for ratings. 

For example, on the Netflix website (www.netflix.com) users are asked to rate a movie on a 

scale of 1-5. Amazon is another example (www.amazon.com). Secondly, in the worst case, 

Range voting requires only n queries to rate the items, while pairwise comparisons (using the 

Borda protocol) usually require more queries: in the worst case it has been shown that O(nlogn) 

pairwise comparisons are required in order to restore arbitrary preferences of one user over 𝑛 

items (Conitzer2009). Lastly, the Range voting protocol satisfies the Independence of Irrelevant 

Alternatives (IAA) criterion, meaning that if candidate item 𝑐𝑖 is preferred over 𝑐𝑗, then by 

changing the preference of a third candidate 𝑐𝑘, 𝑐𝑗  must not be preferred over 𝑐𝑖 (Arrow 1951; 

Smith2001). This is important in iterative voting since the users are not required to pre-define 

their preferences. The IAA criterion is not satisfied under the Borda protocol. 

The Borda voting protocol does offer some advantages.  First, studies have shown that it 

is easier for users to state opinions when the queries are pairwise (Balakrishnan and 

Chopra2012). Consider, for example an application trying to find a sushi type most preferred by 

a group (Kamishima et al. 2005). A user might find it easier to answer a question such as: 

http://www.netflix.com/
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“Which of these two sushi types do you prefer?” as opposed to “On a scale of 1 to 5, how would 

you rate this sushi?” Secondly, users are more accurate when making relative indirect judgments 

than when they directly rank items using a linear scale (Stillwell et al. 1982). Lastly, the Borda 

protocol is computationally hard to manipulate (Betzler et al. 2011; Davies et al. 2011).  

Our research can be extended to other voting protocols such as the non-ranking protocols: 

Approval, Cumulative, and the ranking protocols: Copeland and Maximin. The differences 

between the protocols are in the way the possible minimum and possible maximum are 

calculated, as that is protocol specific (Kalech et al. 2011). The rest of the framework is affected 

by whether the protocol is a ranking or a non-ranking protocol. To summarize, the iterative 

voting framework is affected by the voting protocol in several ways: 

a) The definitions of the possible maximum and possible minimum (sections 4.1 and 

5.1). 

b) The model of the distribution of preferences – for the Range voting protocol a 

model of voter-item distribution is built. For the Borda voting protocol a model of 

ranked item preferences distribution is built (sections 4.2 for Range and 5.2 for 

Borda). 

c) The computation of item winning probability. For the Range protocol we propose 

a dynamic programming algorithm (section 4.3). For the Borda protocol we 

propose a Monte Carlo sampling approach (section 5.3).  

d) The query selection heuristics (sections 4.4 and 4.5 and 5.4 and 5.5)   

3.3 The Evaluation Procedure 

The evaluation procedure is identical throughout the study for the different protocols. In 

this section we describe the evaluation metrics and the datasets used in the experimental sections 

in chapters 4, 5, and 6. 

3.3.1 Metrics 

We evaluate the heuristics in terms of: 

(1) Communication cost – lower communication costs are desirable. We used 

two methods to compute the communication cost: 

i. Number of queries – the number of queries required for finding the 

necessary winner  
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ii. Percentage of the dataset queried – the upper bound to the queries 

amount is the amount of queries a naïve voting center would have 

aske𝑑 (𝑛 × 𝑚). The percentage of the dataset queried 𝑖s: 1 −

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠)

𝑛×𝑚
  

(2) Runtime  

(3) Probability the winner is in the top-𝑘 – this metric is used to measure the 

accuracy of the output, when the termination condition is that the winner is 

within the top-𝑘 with some confidence level. A higher probability is more 

desirable. 

 

The voting distributions were examined under different settings: 

(1) Sensitivity – the communication cost under different voting distributions. We 

show that the voting distribution within a dataset affects the communication 

cost.  

(2) Updates – the effect of iterative updates to the voting distributions. We argue 

that updating the voting distributions as more data is revealed leads to a 

decrease in the communication cost. 

(3) Size – the effect of generating the voting distributions from larger or smaller 

datasets. 

 

3.3.2 Statistical Test 

In order to conclude which algorithm performs best over multiple datasets, we follow a 

robust non-parametric procedure proposed by García et al. (García et al. 2010): we first used the 

Friedman Aligned Ranks test in order to reject the null hypothesis that all heuristics perform the 

same; this test was followed by the Bonferroni-Dunn test to find whether one of the heuristics 

perform significantly better than other heuristics.  

3.3.3 Datasets 

This evaluation was performed in four domains. The first is a simulated meeting scenario 

where voters are required to vote for their preferred time slot for a meeting. Simulating the data 
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allows us to investigate different distribution settings. The second domain is the Netflix prize 

dataset
4
, a real world dataset containing the ratings that voters assigned to the movies. The third 

domain is the Sushi dataset (Kamishima et al. 2005). The fourth domain is taken from a user-

study on a new recommendation system: “Lets Do It”. The last three domains allow us to 

examine performance in real world scenarios. The second and third domains were recently added 

to the new PrefLib library (Mattei and Walsh 2013). Specific adjustments of the datasets to the 

protocols, when required, are detailed in the evaluation sections of chapters 4-6. 

In all domains we explore scenarios that include a group of up to 30 users that are 

required to choose from up to 30 items. We assume these 30 items are the top ranked items 

returned by a group recommender system. These group sizes are rational for real world 

scenarios. It is uncommon that groups of hundreds of people wish to receive a recommendation 

for a joint activity. In the case where there are many available items (for example, 16,000 

possible movies), a group recommendation system can be used to narrow down the options to a 

magnitude of 10-30 top items. Our proposed model then operates on these items, and requests 

users for their votes for these top items. It is unrealistic to request users to vote for their 

preferences between thousands of items.  

3.3.3.1 Simulated Datasets 

We simulated the scenario of a group of 5-30 users who wish to schedule a joint meeting 

on one out of four available timeslots (items). We assume that when a user is queried regarding 

her preference for a specific timeslot, she replies with a score on a 1-4 scale. 

To examine the algorithm's sensitivity to different rating distributions, we manipulated 

the voter-item distribution settings so that the voter-item rating distribution is skewed in different 

ways. Skewness is a measure of the asymmetry of a distribution. A higher absolute skewness 

level indicates a higher asymmetry. A negative skew indicates that the distribution is 

concentrated on high vote values, while a positive skew indicates the distribution is concentrated 

on low vote values. We manually controlled the skewness level by creating rating distributions 

with different skewness levels (see Table 5).  In our experiments, we manually controlled the 

skewness level of one of the items and set the skewness of the other items in one of the following 

ways: 

                                                 
4 Netflix prize: http://www.netflixprize.com 
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(1) UNIFORM – all items except one receive a uniform skew (skew “0” in Table 

5). 

(2) LOTTERY – all items except one receive skewness out of the available 

options in Table 5. The skewness option is determined in a lottery. 

 

Having set a rating distribution for every voter-item pair, we cast lots to set the voter-item rating 

based on the distribution of the voter-item. To account for the randomness, each experiment was 

repeated 20 times.   

 

Table 5: Skewness levels 

Skewness level 𝑑1 = 1 𝑑2 = 2 𝑑3 = 3 𝑑4 = 4 

-6 0.011 0.011 0.147 0.832 

-5 0.014 0.014 0.193 0.778 

-4 0.018 0.018 0.263 0.7 

-3 0.039 0.084 0.243 0.634 

-2 0.053 0.165 0.225 0.557 

-1 0.183 0.183 0.183 0.45 

0 0.25 0.25 0.25 0.25 

1 0.45 0.183 0.183 0.183 

2 0.557 0.225 0.165 0.053 

3 0.634 0.243 0.084 0.039 

4 0.7 0.263 0.018 0.018 

5 0.778 0.193 0.014 0.014 

6 0.832 0.147 0.011 0.011 
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3.3.3.2 The Netflix Dataset 

We examined a scenario of a group of friends wishing to watch a movie together. We 

assume that there exists an incomplete history of previous movie ratings, i.e., some of the friends 

and/or some other users have rated some of the movies in question and/or other movies.  

To explore this scenario we used the real world Netflix prize dataset. The original dataset 

contains over 17,000 movie items and over 400,000 voters. Understandably, the dataset is sparse. 

In order to evaluate our heuristics, we require a dataset where all ratings are known, so that we 

can simulate the worst case scenario, where every user is queried about every movie before a 

decision is reached. To evaluate our algorithms, we used a subset of the Netflix dataset 

containing 1000 voters and 1000 movies 𝑈 × 𝐼. This subset is relatively dense, with 75% 

sparsity. This subset was used for estimating the rating distribution. We further found a subset of 

111 voters with over 116 items, which is completely full, i.e., all ratings are known for all items 

and voters. We created smaller non-overlapping test sets 𝑉 × 𝐶 in varied sizes of 10× 10 up 

to 30 × 30. All of these matrices are sub-matrices of the 1000 × 1000 subset: 𝑉 × 𝐶 ⊂ 𝑈 × 𝐼. 

In these matrices, all of the voter-item ratings are known. However, the algorithms start with no 

knowledge of these ratings. The amount of 𝑉 × 𝐶 matrices on which the experiments are run is 

described in Table 6.   

 

Table 6: File amount for each experiment size 

𝑉 × 𝐶 Amount 

10 × 10 10 

15 × 15 7 

20 × 20 5 

25 × 25 4 

30 × 30 6 

 

3.3.3.3 The Sushi Dataset 

We examined a scenario of users who are required to decide between ten types of sushi. 

The Sushi dataset (Kamishima et al. 2005) contains 5000 preference rankings over 10 kinds of 
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sushi. We derived 10 different random matrices of size 10𝑥6. In order to create an initial 

permutation probability distribution, we aggregated the number of appearances of each 

permutation in the training set and divided it by the total number of voters. Thus the initial 

permutation distribution is equal for all voters. As more queries are answered, the distributions 

are updated for each voter. Over time a unique permutation distribution pattern emerges for each 

user. 

3.3.3.4 User Study 

We created our own set of real data and examined two scenarios of a group that wishes 

to: (a) select a restaurant or (b) select a pub or club. The data was collected using a group 

recommendation system, named “Lets Do It”
5
.  

The system obtained a full set of ratings from 90 students in Ben Gurion University, for 

two different domains: (a) restaurants (16 items) and (b) pubs and clubs (23 items). Figure 3 

presents the opening screen. The students were instructed to rate each item on a 1 to 5 scale, 

according to their satisfaction from past visits, or in case they were unfamiliar with a place , 

according to how appealing it was for them to visit it. Each item had a picture and a short 

description, as shown in Figure 4. The students could view the items they rated, the items left for 

them to rate. They could also change the ratings. This is demonstrated in Figure 5.  Rating 

distributions were derived in the same manner as for the Netflix dataset (section 3.3.3). 

 

  

                                                 
5 The credit for building the system goes to Eli Ponyatovski and Aviad Carmeli, 4th year students in the Information Systems 

Department 2014 at Ben Gurion University, under the supervision of: Lihi Dery, Ofrit Lesser and Meir Kalech. The 

recommendation system is designated to study group recommendation with social networks (the study is in an initial phase). 



35 

 

 

Figure 3: The student rate pubs&clubs and restaurants 

 

Figure 4: Rating for two clubs 

 

Figure 5: The student can see what places need to be rated 
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Chapter 4  

Preference Elicitation Using the 

Range Voting Protocol 

In this chapter, we propose heuristics for query selection for determining a necessary 

winner using the Range voting protocol (Smith2001).  As explained in section ‎3.2 the Range 

voting protocol is widely used in existing applications. We address Range voting with 

incomplete information. At the beginning of the process the voter-item preferences are unknown. 

When voter-item pairs are queried, their ratings are revealed. The algorithms we propose for vote 

elicitation are iterative. In each round, the algorithm selects one voter-item pair so that the rating 

of one voter for one item is revealed. The algorithm continues until a necessary winner is found. 

When queried, the voters assign ratings to the items from a discrete domain of values 𝐷 where 

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the lowest and highest values, respectively. The score 𝑠 ∈ {𝑚 ∙ 𝑑𝑚𝑖𝑛, … ,𝑚 ∙

𝑑𝑚𝑎𝑥} is the aggregated rating an item received. The winner is the item with the highest 

aggregated score: 𝑚𝑎𝑥𝑗 ∑ 𝑞𝑗
𝑖

𝑖 .   

We first define the necessary winner under the Range voting protocol (section ‎4.1(, and 

present a method for computing voter-item distributions (section ‎4.2( We then present a novel 

dynamic programming algorithm for computing item winning probabilities (section ‎4.3(. Next, 

we suggest two heuristics for query selection (section ‎4.4 and section ‎4.5): the Dynamic 

Information Gain (DIG) heuristic computes the information gain of each potential query based 

on the entropy of the item’s probability to win. The query that maximizes the information gain is 

selected. The second heuristic, Expected Score (ES), uses the probability distribution of the 

voters’ preferences to select the candidate most likely to win and the voter that is expected to 
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maximize the score of that item.  In both algorithms, voter-item probability distributions are 

computed and updated as new information is revealed. The algorithms output a necessary winner 

item (Konczak and Lang2005). The heuristics are evaluated under different settings (section ‎4.6. 

Finally, we discuss the findings (section ‎4.7 

4.1 The Necessary Winner 

We now define the necessary winner under the Range voting protocol. In Range voting, 

the pessimistic value (possible minimum) and the optimistic value (possible maximum) of an 

item are the lowest bound and the highest bound of the range respectively. Formally, let 𝑂𝑖 =

{𝑞𝑝
𝑖 , … , 𝑞𝑡

𝑖} represent the set of voter  𝑣𝑖 responses to queries. Note that this set does not 

necessarily contain all the items. 𝒪𝐴 = {𝑂1, … , 𝑂𝑛} is a set of 𝑂𝑖 sets. The function 

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗,𝒪
𝐴)  computes the possible maximum rating for item 𝑐𝑗, given the preference values 

of the voters. 

 

Definition 2.(Range voting Possible Maximum): 

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴) =  

∑ 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂
𝑖)𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂

𝑖) =  {
𝑑𝑔         𝑖𝑓 ∃𝑞𝑝

𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑎𝑥                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

 

Similarly, the function of the possible minimum rating of item 𝑐𝑗:  𝑝𝑚𝑖𝑛𝐴(𝑐𝑗,𝑂
𝐴) is: 

 

Definition 3.(Range voting Possible Minimum):  

𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪
𝐴) =  

∑ 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂
𝑖)

𝑖
, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂

𝑖) =  {
𝑑𝑔         𝑖𝑓 ∃𝑞𝑝

𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑖𝑛                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

A necessary winner 𝑁𝑊 is an item whose minimum aggregated rating is greater than the 

maximum aggregated rating of all the others. Formally:  

 

Definition 4.(Necessary Winner): 

𝑁𝑊(𝑐𝑖) = {𝑐𝑖|𝑝𝑚𝑖𝑛𝐴(𝑐𝑖, 𝒪
𝐴) > 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖} 
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4.2 Probabilistic Voter Ratings Distribution Model 

In this section we present a method for computing voter-item distributions. When given a 

set of voters 𝑉 and a set of items 𝐶, the goal is to determine a querying policy which minimizes 

the cost and determines a necessary winner. While each voter has a unique rating for each item 

𝑞𝑗
𝑖 , it is not necessarily known to the voting center. We assume that there exists an approximate 

rating distribution of the voter-item preferences (i.e., an approximate distribution of each voter’s 

preferences for each item). In an iterative process, voter-item pairs are queried and the ratings are 

revealed. The Rating distribution is then updated. 

 

Definition 5.(Rating Distribution): the voting center considers 𝑞𝑗
𝑖  as a discrete random 

variable distributed according to some rating distribution 𝑣𝑑𝑗
𝑖, such that 𝑣𝑑𝑗

𝑖[𝑑𝑔] ≡ 𝑃𝑟(𝑞𝑗
𝑖 = 𝑑𝑔).  

 

The example presented in Table 7 shows the rating distribution of three voters for two 

items in the domain  𝐷 = {1,2,3}. For example, the probability that 𝑣1 will assign a rating of 1 to 

item 𝑐1 is 0.2. The probabilities for each item sum to 1. For example for item 𝑐1: 0.2 + 0.2 +

0.6 = 1. 

 

Table 7: Rating distribution of the voters in the set  𝑉 = {𝑣1, 𝑣2, 𝑣3} 

 
𝑣1 𝑣2 𝑣3 

𝑐1 𝑐2 𝑐1 𝑐2 𝑐1 𝑐2 

𝑑1 = 1  0.2 0.2 0.4 0.5 0.3 0.7 

𝑑2 = 2 0.2 0.2 0.3 0.2 0.3 0.1 

𝑑3 = 3 0.6 0.6 0.3 0.3 0.4 0.2 

 

In order to show that the assumption of the existence of a-priori rating probabilities is a 

realistic assumption, we present a method for approximating voter-item rating distributions. 

Furthermore, in order to demonstrate the methods feasibility, a detailed example of how these 

ratings are calculated is demonstrated.  

We assume independence between the probability distributions. While the independence 

assumption is naive, it can be used for approximating the actual probability. An attempt to 
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address dependency will yield probabilities that are too complex for a system to realistically 

hold. When facing the tradeoff between the model's accuracy and practicality, we chose to model 

a practical system. However, note that the precise probability value is not required if the queries 

are still sorted correctly according to the value of the information they hold (their 

informativeness). In the closely related domain of machine learning, a similar naive assumption 

is known to provide accurate classification, though the independence assumption is not always 

true (Domingos and Pazzani1997). We therefore argue the system's loss of accuracy, if it exists 

at all, is insignificant. 

The method uses historical ratings data to examine the correlation between voters and 

thus predicts the rating distribution of the voters. For example, consider a voting center whose 

task is to decide which movie to recommend to a group of members, out of a few available 

movies. The center has some historical voter ratings (i.e., some of the voters have rated movies 

which are not current candidates). The center also has historical item ratings(i.e., some of the 

candidate movies have been previously rated by voters who are not part of the group of current 

members). This is illustrated in Figure 6 that follows. The numbers represent known ratings, 

𝑣1. . 𝑣4 represent the group members who wish to see a movie together, and 𝑐1. . 𝑐3 represent the 

available movies. We use a collaborative filtering (CF) method (Goldberg et al. 1992) to 

examine the correlation between voters, based on their ratings. CF examines voter rating patterns 

and is usually used to predict ratings. We extended this method and used the rating predicted by 

the CF method to approximate a rating distribution. Specifically, our goal is to approximate 

voter-item voting distributions 𝑣𝑑𝑗
𝑖 for voter-item pairs whose ratings are unknown. The benefit 

of this algorithm, beyond the computation of the a-priori distribution, is that it can be used to 

compute posterior probabilities after receiving the response of each query. 

Note that the voting center examines a set of voters 𝑉 and a set of items 𝐶; the center's 

goal is to output an item from 𝐶 that fits the preferences of the voters in 𝑉. To represent the 

voters and items beyond 𝑉 and 𝐶 we define a new set of voters 𝑈 = {𝑢1. . 𝑢𝑞} and a new set of 

items 𝐼 =  {𝑖1. . 𝑖𝑝} so that 𝑉 ⊂ 𝑈 and 𝐶 ⊂ 𝐼. We assume that we have a history of ratings, that is, 

the ratings are known for at least some of the voter-item pairs of the sets 𝑈 and 𝐼, respectively. 

The reader is reminded that we denoted the set of known voter ratings 𝒪𝐴, where 𝑂𝑖 ∈ 𝒪𝐴 is the 
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set of known ratings of voter 𝑣𝑖. In the same manner, let 𝑂𝑗 = {𝑞𝑗
𝑝, … , 𝑞𝑗

𝑡} represent the known 

ratings of item 𝑐𝑗 and 𝒪𝐵 signify the set of sets so that 𝑂𝑗 ∈ 𝒪𝐵. 

 

 

Figure 6: A movie scenario example 

 

We assume that other than their ratings, no information about the voters is known. The 

correlation between the voters is therefore based only on their ratings. However, observed ratings 

might have a bias due to voter and item effects. A voter bias occurs when a voter tends to rate 

higher or lower than average. For example, a voter who usually rates “1” or “2” on a scale of 1 to 

5 has a negative bias. Similarly, an item bias occurs when an item tends to receive higher or 

lower rates than the average. Typical data can contain a large amount of voter and item bias 

(Koren and Bell2011). Therefore, examining the correlation between voters on the given ratings 

will give a skewed result which does not reflect the real probability distribution. 

As proposed by Koren and Bell (2011), to cope with possible existing bias in item and 

voter data, we choose to correct the given rating of a voter-item pair 𝑞𝑗
𝑖  . To compute the bias for 

voters and items we look at the deviation from the average. Suppose a is the average rating of all 

items by all voters and 𝑏𝑖,  𝑏𝑗   are the bias of voter 𝑣𝑖 and item 𝑐𝑗 ,  respectively. For example, a 
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voter has a positive bias if she tends to give candidates a higher rating than average. An item has 

a positive bias if it is rated higher than average. Equally, a negative bias exists for voters rating 

lower than average and items rated lower than average. The bias of an item is: 

(4.1) 𝑏𝑗 = ∑
𝑞𝑗

𝑖  − 𝑎

|𝑂𝑗|𝑖∈𝑂𝑗

 

 

To avoid a double calculation of the bias, the voter deviation considers the item bias: 

(4.2) 𝑏𝑖 = ∑
𝑞𝑗

𝑖  − 𝑏𝑗 − 𝑎

|𝑂𝑖|𝑗∈𝑂𝑖
 

 

The baseline prediction of a voter-item pair is denoted as 𝑏𝑗
𝑖 and can be computed from 

the average rating and the voter and item bias: 

(4.3) 𝑏𝑗
𝑖 = 𝑎 + 𝑏𝑖 + 𝑏𝑗  

 

For example, suppose we want a baseline 𝑏1
1. Suppose 𝑣1 tends to rate higher than the 

average voter and the 𝑐1 is a popular item which receives ratings higher than average. This will 

result in a high baseline prediction. In order to find the probability distribution the proposed 

algorithm relies on the Cosine similarity equation, which is used in many collaborative filtering 

recommender systems for computing similarity between items or voters (Breese et al. 1998; 

Koren and Bell2011). However, we do not apply the equation directly on the ratings since they 

might be biased. We are interested in a bias-free correlation between the voters.  

Subsequently, we propose to compute the baseline prediction (eq.4.3) and subtract it from 

the voters given rating. The obtained delta expresses the actual bias-free voter behavior: 

(4.4)  Δ𝑗
𝑖 = 𝑞𝑗

𝑖 − 𝑏𝑗
𝑖 

We propose computing the similarity between a voter 𝑣𝑖 and a voter 𝑣𝑘 on the bias-free 

rating (eq.4.4). Note that the similarity is calculated based on ratings provided by 𝑣𝑖 and 𝑣𝑘 on 

mutually-rated items.   

(4.5) 𝑠𝑖𝑚𝑖,𝑘 =
∑  Δ𝑗

𝑖 ⋅ Δ𝑗
𝑘

𝑗∈𝑂𝑖

 √∑ ( Δ𝑗
𝑖)

2
∙ ∑ (Δ𝑗

𝑘)
2

𝑗∈𝑂𝑖𝑗∈𝑂𝑖
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We can now predict a rating for 𝑣𝑖 and item 𝑐𝑗  based on the degree of similarity between 

voters (𝑣𝑖 , 𝑣𝑘) and the voter bias:  

(4.6) �̂�𝑗
𝑖,𝑘 = 𝑏𝑗

𝑖 + 𝑠𝑖𝑚𝑖,𝑘 ∙  Δ𝑗
𝑘 

 

  

Figure 7: Pseudo code for computing the initial probability distribution 

 

We now extend this method and use the rating predicted by the CF method to 

approximate an initial rating distribution. The pseudo code for computing the initial rating 

distribution is presented in Figure 7.  The algorithm receives the sets of historical ratings as 

inputs, voter ratings sets, and rated items sets. First, an empty rating distribution is initialized 

(line 1) and the bias-free voter behavior is calculated (lines 2-3). Next, the similarity of voter 

pairs is calculated (lines 4-5). Then, for every voter-item pair, the predicted rating according to 

neighbor voter 𝑣𝑘 is determined according to eq.5.6 (line 8). The result is rounded to the closest 

rating (line 9). Next, the similarity results are aggregated into buckets according to ratings (lines 

   Input:  

   𝑂𝐴 – user rating sets 

   𝑂𝐵 – rated item sets 

   𝑉  - users 

   𝐶 – items 

Output:  

   VD - a rating distribution  

1. Initialize: ∀𝑖,𝑗  𝑣𝑑𝑗
𝑖 𝑑𝑔 ≡ 𝑃𝑟(𝑞𝑗

𝑖 = 𝑑𝑔) ← 0 

2. For each 𝑣𝑖 and 𝑐𝑗 do:  

3.    Compute ∆𝑗
𝑖 (eq.4.4) 

4. For each 𝑣𝑖 ∈ 𝑉 do: 

5.    For each 𝑣𝑘 ∈ 𝑂𝐵 calculate the similarity 𝑠𝑖𝑚
𝑖,𝑘  (eq.4.2) 

6. For each user-item pair do: 

7.   For each user 𝑣𝑘 do: 

8.     Compute the predicted rating �̂�𝑗
𝑖,𝑘
 (eq.4.6) 

9.     Round �̂�𝑗
𝑖,𝑘
 to the nearest rating 𝑑𝑔 

10.For each user-item pair do: 

11.  For each rating 𝑑𝑔 do: 

12.     If (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 �̂�𝑗
𝑖,𝑘) = 𝑑𝑔 then  𝑝𝑟(𝑞𝑗

𝑖 = 𝑑𝑔)  ←   𝑝𝑟(𝑞𝑗
𝑖 = 𝑑𝑔) + 𝑠𝑖𝑚𝑖 ,𝑘  

13. Normalize 𝑉𝐷 
   Return VD 
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11-12). The buckets are normalized (line 13). The normalization is done for each voter-item pair 

by dividing the value of each bucket in the total aggregated values for this pair. Finally, a rating 

distribution is returned. 

We calculate the initial rating distribution before the heuristics are applied. Both 

heuristics iteratively reveal one new rating at a time. This allows the update of the distribution 

every time a new rating is added. The accuracy is expected to grow with the number of ratings 

acquired. Note that the proposed algorithm can be used when no history of ratings is given (this 

is known as cold start). In such a case, the returned distribution will be uniform, updated as 

ratings are acquired. A full example can be found in the appendix.  

4.3 Item Winning Probability Using Dynamic Programming 

We present a dynamic programming algorithm for computing the item winning 

probability under the Range voting protocol. First, let us define the probability that an item has a 

certain score and the probability of an item to win: 

 

Definition 6. (Item Score Probability): the probability that the score of item 𝑐𝑖  

equals s is 𝑃𝑟 (𝑐𝑗 = 𝑠), when 𝑠 ∈ {𝑛 ∙ 𝑑𝑚𝑖𝑛, … , 𝑛 ∙ 𝑑𝑚𝑎𝑥} is the score of the 

aggregated ratings an item received. 

 

Definition 7. (Item Winning Probability): Under the independence of probabilities 

assumption, the probability that item cj is a winner is the aggregation of 𝑐𝑖’s 

probabilities to win over the possible ratings s: 

𝑃𝑟(𝑁𝑊 = 𝑐𝑗) = ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠 ⋀ ∀ 𝑖 ≠ 𝑗 𝑐𝑖 < 𝑠)
𝑛∙𝑑𝑚𝑎𝑥
𝑠=𝑛∙𝑑𝑚𝑖𝑛

= ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠) ∙
𝑛∙𝑑𝑚𝑎𝑥
𝑠=𝑛∙𝑑𝑚𝑖𝑛

∏ 𝑃𝑟 (𝑐𝑖 < 𝑠)∀𝑖≠𝑗  

 

To compute the probability that an item will receive the score s and to compute the 

probability that an item will receive a score of at most s, we use:  

  (4.7) 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1. . 𝑣𝑚) = ∑ (𝑃𝑟(𝑐𝑗 = 𝑠 − 𝑥|𝑣1. . 𝑣𝑚−1) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥
𝑥=𝑑𝑚𝑖𝑛

     

       where  𝑃𝑟(𝑐𝑗 = 𝑠|𝑣𝑖) = 𝑃𝑟(𝑞𝑖
𝑗
= 𝑠) 

(4.8)  𝑃𝑟(𝑐𝑗 < 𝑠) = ∑ 𝑃𝑟(𝑐𝑗 = 𝑘)𝑠−1
𝑘=𝑛∙𝑑𝑚𝑖𝑛
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4.4 Information Gain Heuristic for Range Voting 

The Dynamic Information Gain Heuristic (DIG) heuristic focuses on selecting queries 

that will at each stage maximize the available information in terms of entropy (Shannon2001).  

The heuristic computes the item winning probability using the dynamic programming algorithm 

presented in section 4.3. DIG is an iterative algorithm. It uses a greedy calculation in order to 

select a query out of the possible 𝑚 × 𝑛 queries. The chosen query is the one that maximizes the 

information gain. The information gain of a specific query is the difference between the prior and 

the posterior probability of the candidates to win given the possible responses to the query.  

The algorithm steps are presented in Figure 8. The algorithm continues until a necessary 

winner is found. In order to select a query, the heuristic calculates the information gained from 

each one of the optional queries and then selects the one that maximizes it. To compute the 

information gain, the winning probability of each item is dynamically calculated (lines 1-6), as 

shown in section ‎4.3. Next, the heuristic calculates the information gain of the 𝑚 × 𝑛 possible 

queries (lines 7-10). The information gain of a query is the difference between the prior entropy 

(line 7) and the posterior entropy given the possible responses to the query:  

(4.9) 𝐻(𝑁𝑊) =  −∑ 𝑃𝑟(𝑁𝑊 = 𝑐𝑗) ∙ log (𝑃𝑟(𝑁𝑊 = 𝑐𝑗))
𝑚
𝑗=1  

 

Definition 8. (Information Gain): The Information Gain (IG) of a query is: 

𝐼𝐺(𝑁𝑊|𝑞𝑗
𝑖) = 𝐻(𝑁𝑊) − ∑ 𝐻(𝑁𝑊|𝑞𝑗

𝑖 = 𝑑𝑔
𝑚𝑎𝑥
𝑔=𝑚𝑖𝑛 ) ∙ 𝑃𝑟 (𝑞𝑗

𝑖 = 𝑑𝑔) where 

𝐻(𝑁𝑊|𝑞𝑗
𝑖 = 𝑑𝑔)  represents the entropy of NW given the possible values by 

querying voter vi   about item cj. 

 

The query that maximizes information gain is selected: 𝑎𝑟𝑔𝑚𝑎𝑥𝐼𝐺𝑖,𝑗(𝑁𝑊|𝑞𝑗
𝑖). The 

query selection process continues until a necessary winner is found. 
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Figure 8: Algorithm 1 - Dynamic Information Gain heuristic 

 

We return to the example in section 4.3. In order to calculate the information gain (IG) of 

a certain query, we calculate the entropy reduction of 𝑁𝑊 that is achieved by that query. Table 8 

shows the entropy 𝐻(𝑁𝑊) for our example.  

The entropy of 𝑁𝑊 for each possible query response (𝑞𝑗
𝑖 = 𝑑𝑔) is denoted as 

𝐻(𝑁𝑊|𝑞𝑗
𝑖 = 𝑑𝑔).  This entropy is now calculated. In our example, in Table 9, 𝑁𝑊 = 𝑐1|𝑞1

1 = 1  

is 0.997, 𝑁𝑊 = 𝑐1|𝑞1
1 = 2   is 0.92 and 𝑁𝑊 = 𝑐1|𝑞1

1 = 3   is 0.646. To calculate the weighted 

average of the entropy we multiply the entropy by the probability of the random variable 

𝑃𝑅(𝑞𝑗
𝑖 = 𝑑𝑔)  (the reduced side in the Information Gain equation in definition 8). For instance, 

the weighted average of query 𝑞1
1 is 0.771. Consequently, the information gain for query 𝑞1

1  is: 

𝐼𝐺(𝑁𝑊|𝑞1
1) = 𝐻(𝑁𝑊) − (𝐻(𝑁𝑊|𝑞1

1 = 1) ∙ 0.2 + 𝐻(𝑁𝑊|𝑞1
1 = 2) ∙ 0.2 +

𝐻(𝑁𝑊|𝑞1
1 = 3) ∙ 0.6) = 0.844 − 0.771 = 0.073.  

Finally, we select the query that maximizes the information gain. In our example, 

querying voter 𝑣2 about 𝑐2 generates the maximum information gain (0.084, Table 9, row 5, last 

  Input:  

   𝑉  - users 

   𝐶 – items 

   𝑆 - scores 

Output:  

   A query  

1. For each item 𝑐𝑗: 

2. For each score 𝑠𝑡: 
3. Calculate the probability that 𝑐𝑗 will receive 𝑠𝑡 

(eq. 4.7) 

4. Calculate the probability that 𝑐𝑗 will receive at 

most 𝑠𝑡 (eq.4.8) 
5. For each item 𝑐𝑗: 

6. Calculate the probability that 𝑐𝑗 will win: Pr(𝑁𝑊 = 𝑐𝑗)   
7. Calculate the entropy of  NW (eq. 4.9) 

8. For each possible query 𝑞𝑖
𝑗
: 

9. Calculate the entropy of NW given 𝑞𝑖
𝑗
 (H(WC|𝑞𝑖

𝑗
))  

10. Calculate the information gain achieved by 𝑞𝑖
𝑗
 

Return the query that maximizes the information gain: 

𝑎𝑟𝑔𝑚𝑎𝑥𝐼𝐺𝑖,𝑗(𝑊𝐶|𝑞𝑗
𝑖)
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column). The algorithm iterates until a necessary winner is found. Note that the information gain 

is calculated only for the unknown ratings. 

The complexity of this algorithm is affected by the dynamic programming algorithm that 

computes the probability that 𝑐𝑗 = 𝑠  (∀𝑠 ∈ {𝑛 ∙ 𝑑𝑚𝑖𝑛, … , 𝑛 ∙ 𝑑𝑚𝑎𝑥}). We calculate this 

probability for all items (m) and ratings (n*|D|) for every voter (n). This is done by scanning the 

possible ratings:  

∑ 𝑃𝑟(𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑐𝑖 𝑓𝑟𝑜𝑚 𝑢𝑠𝑒𝑟𝑠 𝑣1 …𝑣𝑛−1 = 𝑠) ∙ 𝑃𝑟(𝑞𝑛
𝑖 = 𝑘)

𝑑𝑚𝑎𝑥
𝑘=𝑑𝑚𝑖𝑛

(|𝐷|).  

This dynamic algorithm is implemented for every possible query of the voters over the 

items (𝑚 ∙ 𝑛|𝐷|). Thus, the worst case complexity is 𝑂(𝑚2𝑛3|𝐷|3). 

 

Table 8: The Entropy Function H(NW) 

 
Entropy 

𝑐1 0.332 

𝑐2 0.511 

sum 0.844 

 

Table 9: Information Gain 

Item Voter 𝑑 = 1 𝑑 = 2 𝑑 = 3 
Weighted 

average 

IG (Information 

Gain) 

𝑐1 

𝑣1 0.997 0.92 0.646 0.771 0.073 

𝑣2 0.982 0.8 0.489 0.779 0.065 

𝑣3 0.996 0.853 0.545 0.773 0.071 

𝑐2 

𝑣1 0.415 0.717 0.943 0.793 0.051 

𝑣2 0.572 0.872 1 0.76 0.084 

𝑣3 0.68 0.939 0.99 0.768 0.076 

 

4.5 Highest Expected Score Heuristic for Range Voting 

The highest expected heuristic (ES) score is based on the exploration vs. exploitation 

tradeoff. As mentioned earlier, a necessary winner is an item whose possible minimum is greater 
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than the possible maximum of the other items. The possible maximum of an item decreases 

while its possible minimum increases as more information about voter preferences is revealed. 

Thus, an item for which no voter has yet submitted a rating has the highest possible maximum 

and must be considered as a possible winner. On the other hand, the same item has the lowest 

possible minimum and cannot yet be a necessary winner. Therefore, for more information, we 

may want to explore the voters' preferences for the items in order to determine their potential of 

being a necessary winner. Once we have enough information about the items' rating, we can 

exploit this information to further inquire about the items that are more likely to win given that 

the item in question is not the winner 

We propose a heuristic which chooses its next query by considering the item that has the 

possible maximum and the voter expected to maximize the rating of that item. The expected 

rating of 𝑞𝑗
𝑖  based on the rating distribution 𝑣𝑑𝑖

𝑗
  is: 

(4.10)  𝐸𝑆(𝑣𝑑𝑗
𝑖) = ∑ Pr (𝑞𝑗

𝑖 = 𝑑𝑔) ∙ 𝑑𝑔
𝑚𝑎𝑥
𝑔=𝑚𝑖𝑛  

  

 

Figure 9: Algorithm 2 – Highest Expected Score heuristic 

 

For item 𝑐𝑗, we choose the voter that maximizes the expected rating: 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝐸𝑆(𝑣𝑑𝑗
𝑖). 

Using this approach, we encourage a broad exploration of the items since the less information we 

have about an item's rating, the higher possible maximum it has. In addition, we exploit the 

   Input:    

 𝑉  - users 

 𝐶 – items 

   Output: 

         A query 

1. Initialize: 𝑝𝑠 ← 0 (possible maximum) 𝑚𝑎𝑥 ← 0 

(maximum) 𝑖𝑛𝑑𝑒𝑥 ← 0 
2. For each item 𝑐𝑗: 

3.  𝑝𝑠 ← calculate the possible maximum of 𝑐𝑗 according 
to definition 2 

4.  If 𝑝𝑠 > 𝑚𝑎𝑥 then 𝑚𝑎𝑥 ← ps and 𝑖𝑛𝑑𝑒𝑥 ← 𝑗 

5. For each user 𝑣𝑖 ∈ 𝑂𝑖𝑛𝑑𝑒𝑥:  
6.  Calculate the expected rating according to eq.4.10  

Return the query that maximizes the expected rating: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝐸𝑆(𝑣𝑑𝑖𝑛𝑑𝑒𝑥
𝑖 ) 
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preferences revealed in order: (1) to refrain from querying about items that have been proven as 

impossible winners (since their possible maximum is less than a minimum of another item) and 

(2) to further examine an item that has the highest possible maximum and might be a necessary 

winner. The pseudo code for the ES algorithm is presented in Figure 9. 

 In the first step of the above algorithm, the target item of the query is chosen (lines 2-4). 

This is done by calculating the possible maximum of each item according to definition 3 in 

section 4.1 (line 3). Next, we choose the voter who is to be queried about that item (lines 5-6). 

We choose the voter who is expected to maximize the item's rating by computing the expected 

rating using the rating distribution of that item. This process is repeated until a necessary winner 

is found. Ties are broken according to the item positions according to an increasing order of all 

items. 

 The following is an illustration of the algorithm using the example used in the previous 

section. To begin with, we have only probabilistic knowledge of voter preferences.  Since no 

voter has submitted any preference yet, in the first round the possible maximum of each item is 9 

(since there are 3 voters and the maximum rating that can be assigned is 3). The first item c1 is 

selected for a query according to the tie breaking policy. According to the distribution in Table 7, 

the expected ratings of the voters over c1 are: 

𝐸𝑆(𝑣𝑑1
1) = 0.2 ∙ 1 + 0.2 ∙ 2 + 0.6 ∙ 3 = 2.4 

𝐸𝑆(𝑣𝑑) = 0.4 ∙ 1 + 0.3 ∙ 2 + 0.3 ∙ 3 = 1.9 

𝐸𝑆(𝑣𝑑3
1) = 0.3 ∙ 1 + 0.3 ∙ 2 + 0.4 ∙ 3 = 2.3 

Thus, the voter-item query pair is 𝑞1
1. Assuming the response is 𝑞1

1 = 2, in the next 

iteration the possible maximum of 𝑐1 is 8 and of  𝑐2 is 9. Therefore in the next round, 𝑐2  is 

selected as the item in the voter-item query pair. The algorithm iterates until a necessary winner 

is found. 

The complexity of this algorithm is polynomial in the number of voters, items, and 

domain size. In order to select the item that is to be queried, we compute the possible maximum 

of each item, which is 𝑂(𝑚𝑛). To select which voter to query we compute the expected rating of 

the voters about the specific item, which is  𝑂(𝑛|𝐷|). Thus, the total complexity is 𝑂(𝑛(𝑚 +

|𝐷|)). 
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4.6 Evaluation 

In sections 4.4 and 4.5 we proposed two novel heuristics, DIG and ES, which determine a 

necessary winner. In this section, we investigate the performance of DIG and ES, both with and 

without updating the rating distribution (section ‎4.2. The most similar scenario (although not 

identical) to ours is found in (Kalech et al. 2011). Hence we have also compared our methods to 

their sequential-Top method. We refer to this method as SEQTOP. To the best of our knowledge, 

there are no other algorithms that attempt to find a necessary winner by eliciting voter 

preferences and minimizing cost on the Range voting protocol, therefore the baseline for 

measuring the effectiveness of our methods is a random procedure (RANDOM), which randomly 

selects the next query.  To account for the randomness of the RANDOM algorithm, we repeated 

each experiment 20 times. An overview of the evaluation procedure was presented in chapter 3. 

4.6.1 Simulated Data  

A comparison of the four algorithms, DIG, ES, SEQTOP and RANDOM, using the 

UNIFORM technique for DIG and ES probability distribution, is presented in Figure 10. Axis x 

represents the different skewness levels assigned to one specific item. According to the 

UNIFORM technique, the other items have a uniform skewness (level “0” is Table 5). Axis y 

represents percentage of the dataset queried. 

The graph presents an experimental run on 15 voters and 20 items. Results illustrate that 

the DIG and ES perform almost equally and better than RANDOM. All three methods improve 

as the skewness negativity increases (i.e., when an item has a high probability of receiving a high 

rating and being the winning item). That is to say, when the winner item is more distinct, all 

three methods can easily identify the winner. Therefore, all three methods seem to discover this 

item quicker than in a uniform or positive skewness setting, where any of the items have an equal 

chance of being the winner. The Friedman Aligned Ranks test with a confidence level of 95% 

rejected the null-hypothesis that all heuristics perform equally. The Bonferroni-Dunn test 

concluded that ES and DIG significantly outperform RANDOM and SEQTOP at a 95% 

confidence level. However, DIG and ES are not significantly different. We obtained similar 

results for other sizes of 𝑉 × 𝐶 matrices. Note that in our experiments SEQTOP is not 

significantly different from the RANDOM baseline. This result repeats throughout the 

experiments and is discussed in section 4.7. 
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Figure 10: 15x20 dataset with one skewed item and UNIFORM skew  

for the rest of the items  

 

 

Figure 11: 15x20 dataset with one skewed item and LOTTERY skew  

for the rest of the items  

 

Using the LOTTERY technique to set skewness for all items but one, we obtained 

different results (see Figure 11). Axis x represents the dataset size and axis y is the percentage of 

the dataset queried. The methods perform similarly on different dataset sizes; the graph 
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illustrates performance on the 15x20 dataset. The Friedman Aligned Ranks test with a 

confidence level of 95% rejected the null-hypothesis that all heuristics perform the same. The 

Bonferroni-Dunn test concluded that DIG significantly outperforms RANDOM and SEQTOP at 

a 95% confidence level. However, ES outperforms only SEQTOP. 

It is interesting to see that DIG outperforms ES when the LOTTERY technique is 

applied. We argue that the reason for this is due to the skewness of all voter-item pairs. To 

illustrate, Figure 12 displays the skewness of 15 voters and 20 items, when one item is set with 

uniform skewness and the other items have a skewness determined by (a) using the LOTTERY 

technique or (b) using the UNIFORM technique. Axis x represents the voters (from voter #1 to 

voter #15) and axis y represents the skewness level. The dots on the graph are the items. For 

example, the bottom-most dot in Figure 12(a) is an item whose pair is voter #1, which has a 

skewness level of -6. As illustrated, using the LOTTERY technique, the voter-item pairs have a 

scattered skewness with no distinct pattern. In this setting, DIG has an advantage as it considers 

all rating probabilities using an entropy function. Therefore, DIG is superior for noisy data and 

when no assumption can be made on the voter-item probable rating.  ES focuses on the item that 

is most likely to win; when there is no such item, ES loses its advantage.  

 

 

(a) 
 

(b) 
Figure 12: The skewness of 15x20 using (a) LOTTERY and (b) UNIFORM 
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In the next set of experiments we varied the number of voters from 3 to 21 and the 

number of items from 4 to 28 in order to examine our algorithms under small and large settings. 

In Figure 13 we illustrate a comparison between the three algorithms when the dataset size 

increases and the skewness is determined by LOTTERY. Axis x is the dataset size and axis y is 

(a) the amount of queries or (b) the percentage of the dataset queried. As can be observed on 

graph (a) the number of queries required to identify the winning item grows with the size of the 

dataset. Graph (b) shows us that the percentage of the dataset queried is stable. Yet again, the 

Friedman Aligned Ranks test with a confidence level of 95% rejected the null-hypothesis that all 

heuristics perform the same. The Bonferroni-Dunn test concluded that DIG significantly 

outperforms RANDOM and SEQTOP at a 95% confidence level. However, ES outperforms only 

SEQTOP. 

(a) 
 

(b) 

Figure 13: One item with uniform skewness. For the rest of the items skewness is set by 

LOTTERY 

 

Runtime results are presented in Figure 14.  Axis x presents the datasets size and axis y 

shows the runtime per query in milliseconds. As observed, while DIG runs in polynomial time 

ES, SEQTOP and RANDOM run in linear time. This coincides with the runtime complexities we 

presented in sections 4.4 and 4.5.  
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Figure 14: Heuristics runtimes 

 

We further examined our methods, using the LOTTERY distribution settings under the 

following conditions: when the number of voters increase but the number of items remains the 

same, and when the number of items increases but the number of voters remains the same. This 

is illustrated in Figure 15 and Figure 16, respectively. In both cases, DIG performs in the best 

manner, followed by ES and SEQTOP.  RANDOM is the worst performer. When the number of 

voters increases, all methods query a larger percentage of the dataset. When the number of items 

increases, the performance of all methods improves. Since finding a winner requires querying 

each one of the voters, this conclusion adheres to the necessary winner protocol. This task 

becomes more difficult as the number of voters increases. For the data in Figure 15, the 

Friedman Aligned Ranks test with a confidence level of 95% rejected the null-hypothesis that all 

heuristics perform the same. The Bonferroni-Dunn test concluded that DIG significantly 

outperforms RANDOM and SEQTOP at a 95% confidence level. However, ES outperforms only 

SEQTOP. In Figure 16, the Friedman Aligned Ranks test with a confidence level of 95% 

rejected the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test 

concluded that DIG and ES significantly outperforms RANDOM and SEQTOP at a 95% 

confidence level.   
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Figure 15: Increasing voter amount with UNIFORM skewness for one specific item, 

LOTTERY skewness for the rest of the items 

 

 

Figure 16: Increasing item amount with UNIFORM skewness for one specific item, 

LOTTERY skewness for the rest of the items 

4.6.2 The Netflix prize dataset 

In this section we examine the performance of DIG and ES on the real world Netflix 

dataset and analyze their sensitivity to different settings.  
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Note that in every iteration the rating of one voter-item pair is revealed and the rating 

distributions are updated with this new information. Our hypothesis states that updating the 

rating distribution would lead each algorithm to a faster solution. In order to examine this 

assumption, we generated two more settings:  

(a) “UPDATE” – when the algorithm’s rating distribution is updated as new voter-item 

ratings are revealed. 

(b) “NO UPDATE” – when the algorithm’s rating distribution is not updated.  

 

In Netflix there is a huge amount of (sparse) historical rating data. Prior to the 

algorithm’s execution, we generated the rating distributions of the voter-item pairs using the 

algorithm described in section 5.  Both DIG and ES rely on the rating distributions. To compare 

rating distribution generated from a larger dataset to a rating distribution generated from a 

smaller dataset, we generated two settings: 

(c) “BIG” – the rating distribution is generated from a matrix of size 1000 (i.e., 𝑈 × 𝐼 =
1000 × 1000).  This matrix is more than 30 times bigger than the biggest evaluated 

dataset (30 × 30). 

(d) “SMALL” – the rating distribution is generated from a matrix of size 100 (i.e., 

𝑈 × 𝐼 = 100 × 100). This matrix is about three times bigger than the biggest 

evaluated dataset. 

 

Figure 17 presents DIG’s performance on the different datasets using the SMALL matrix 

size for approximating and updating the distribution. Axis x is the dataset size and axis y is the 

percentage of queries from the amount of queries a naïve voting center would have asked (𝑛 ×

𝑚). As hypothesized, DIG algorithm performs significantly better, with a 95% confidence level, 

when the distribution is updated following each iteration. Interestingly, while there is no 

significant difference between the normalized amount of queries for different dataset sizes under 

NO UPDATE, once the distribution is updated, performance improves with an increase in the 

dataset size. The best results are obtained for the 30 × 30 dataset; the communication cost is cut 

to 48%.  

This result is closely linked with the results presented in Figure 18 where DIG is 

presented with UPDATE on the BIG and SMALL matrices. Axis x illustrates the different 

datasets and axis y is the percentage of the dataset queried. DIG performs significantly better 

under SMALL. This can be explained by the fact that DIG is very sensitive to distribution 

updates (see Figure 17) and the distribution updates are more meaningful on the smaller dataset 
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(SMALL) since the ratio between each newly acquired rating and the dataset size is bigger for 

small datasets and thus has more impact on the distribution.  

Although achieving the best results, ES behaves quite differently from DIG. ES generally 

seems to be less sensitive to changes in the settings than DIG. Figure 19 and Figure 20 

demonstrate ES’s performance under UPDATE and NO UPDATE and under BIG and SMALL 

respectively. Axis x shows the dataset size and axis y shows the percentage of the dataset queried 

until a necessary winner is found. 

As observed in Figure 19  ES performs better under UPDATE. The result was found 

significant at a 95% confidence level.  Yet, another trend is noticed: ES generally performs better 

as the dataset size increases, regardless of the performance of an update. This is unlike DIG that 

presents the same trend for UPDATE. This might explain the somewhat baffling results 

presented in Figure 20 where no significant difference in ES’s performance under settings BIG 

or SMALL is observed. While DIG inherently relies on the distribution by finding the query with 

the highest information gain, ES focuses on the expected score of a certain item. This makes ES 

less sensitive to the accuracy of the distribution and therefore, less sensitive to the matrix size 

(BIG or SMALL) from which the distribution is derived. 

To understand the reason for the superiority of ES over DIG for the Netflix dataset, we 

examined a sample dataset of size 10x10 and checked the skewness of the rating distributions. 

Figure 21 demonstrates the skewness when the rating distributions are created using the (a) 

SMALL and (b) BIG techniques, respectively. Axis x illustrates the voter number (voters 1-10) 

and axis y illustrates the skewness level. Each dot on the graph accounts for one item. In graph 

(b) most of the voter-item pairs have a skewness clustered around the “0” level skewness. In 

graph (a) the skewness of the voter-item pairs is a bit more scattered, but still  clustered around 

the “0”  skewness level and again around the “10” skewness level. Note that some of the items 

overlap in their skewness so that only one dot is visible. 
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Figure 17: DIG algorithm on the “SMALL” 

rating distribution, with and without updates 

Figure 18: DIG algorithm with UPDATE on 

BIG and SMALL 
 

Figure 19: ES algorithm on the “SMALL” 

rating distribution, with and without updates 

Figure 20: ES algorithm with UPDATE on 

BIG and SMALL 

 
Recall that in our experiments on simulated data we showed that DIG has an advantage 

when there is no typical skewness pattern and ES is advantageous when there is some pattern to 

the skewness.  In Figure 21 the distributions are clustered enough for ES to depict a probable 

winner, therefore making ES more attractive.   
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(a) (b) 
Figure 21: Skewness when the distributions are created in the  

(a) SMALL technique or (b) BIG technique 

 

A comparison of the three algorithms DIG, ES, and RANDOM on all aspects measured is 

presented in Table 10. In this table we measured the percentage of queries out of the amount of 

queries a naïve voting center would have asked (𝑛 × 𝑚). We averaged the percentages. Both 

algorithms show that updating the distribution based on the revealed ratings significantly reduces 

the amount of communication. The best result is achieved by ES; that is able to cut the 

communication load up to 51%. Note that RANDOM and SEQTOP are presented separately in 

the last column since they perform equally for all settings. The Friedman Aligned Ranks test 

with a confidence level of 95% rejected the null-hypothesis that all heuristics perform the same. 

The Bonferroni-Dunn test concluded that ES significantly outperforms DIG, RANDOM and 

SEQTOP at a 95% confidence level.   

  

Table 10: Average percentage of dataset exhaustion under different settings 

 

 (a) BIG (b) SMALL SMALL/BIG SMALL/BIG 

DIG ES DIG ES RANDOM SEQTOP 

(c) UPDATE 0.77 0.51 0.63 0.51 0.95 0.91 

(d) NO UPDATE 0.82 0.6 0.9 0.61 0.95 0.91 
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4.6.3 The Sushi dataset 

The results of experiments on different dataset sizes are illustrated in Figure 22. Axis x is 

the dataset size and Axis y is the percentage of the dataset that was queried. In this dataset there 

are no more items beyond the ten items in question. Therefore, the DIG and ES heuristics begin 

with a uniform voter-item probability distribution for all voters and items. The results are similar 

to the results obtained in section ‎4.6.1 on simulated data with uniform distribution, namely there 

is no significant difference between DIG and ES.  As explained in the previous sections, this 

result can be expected when the voter-item distributions are uniform. 

The Friedman Aligned Ranks test with a confidence level of 95% rejected the null-

hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that ES and 

DIG significantly outperform SEQTOP and ES also outperforms RANDOM at a 95% confidence 

level.  As mentioned, there is no significant difference between DIG and ES. 

 

Figure 22: Comparison of algorithms on the Sushi dataset 

4.6.4 The User Study Datasets 

The results of the experiment on two datasets that we collected as part of a user study are 

displayed in Figure 23 for the pubs dataset and in Figure 24 for the Restaurants dataset. Axis x is 

the dataset size: from 5 to 30 users over 10 items. Axis y is the percentage of the dataset queried. 

In both dataset, we observe that ES requires fewer queries in order to find a winner.  
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For the Pubs dataset, the Friedman Aligned Ranks test with a confidence level of 95% 

rejected the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test 

concluded that ES outperforms DIG and RANDOM and that DIG outperforms RANDOM at a 

95% confidence level. For the Restaurants dataset, the Friedman Aligned Ranks test with a 

confidence level of 95% rejected the null-hypothesis that all heuristics perform the same. The 

Bonferroni-Dunn test concluded that ES significantly outperforms the rest of the heuristics at a 

95% confidence level.   

In order to explain these results, we examined the datasets skewness distributions (see 

Figure 25). In both cases, the skewness is clustered so that ES depicts a pattern and outperforms 

DIG as explained in section 4.6.1.  

 

 

 

Figure 23: Comparison of algorithms on the Pubs dataset 
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Figure 24: Comparison of algorithms on the Restaurants dataset 

 

(a) 

 

(b) 

Figure 25: Skewness of the distributions for datasets: (a) Pubs and (b) Restaurants  

4.7 Discussion 

In this chapter we presented algorithms that employ voting mechanisms and aim to find a 

winning item with minimal communication between the voting center and the voters. We assume 

that the voters’ preferences are unknown in advance, but some historical ratings for voter-item 

pairs do exist. We proposed an algorithm for approximating the voter-item rating distribution. 
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Moreover, we offered two novel heuristics, DIG and ES, which iteratively choose a voter to 

query about a certain item’s value until a winning item is found. DIG uses an entropy function to 

calculate the information gained from each possible voter-item pair and chooses to query the 

voter-item that maximizes the information gain. ES focuses on the most probable item to win. 

We have compared DIG and ES to a random baseline and to the sequentialTop method suggested 

in (Kalech et al. 2011), termed SEQTOP. Our experiments show that our proposed algorithms 

can reduce the communication load between the voting center and the voters by more than 50%. 

We have analyzed our algorithms in different settings both on simulated data and on real-world 

datasets and have identified the preferred settings for each of the algorithms. 

The SEQTOP method performs poorly in our experiments, due to the fact that it was not 

designed for the purpose of single voter-item queries. Furthermore, SEQTOP does not consider 

voter-item probabilities. Therefore SEQTOP cannot operate optimally in the scenario we wish to 

evaluate in this study. In our scenarios, there is an intelligent voting center that computes what is 

the best next query, whereas SEQTOP was originally designed for scenarios where an intelligent 

voting center did not exist and therefore asks the voters for their top-rated item in a batch of 

queries. In (Kalech et al. 2011) SEQTOP is compared to a method where voters submit random 

items, not their top-rated items, and reveals that SEQTOP is significantly better. 

Using simulated data, we showed that DIG is holds the upper hand when the data is noisy 

and there is no clear winning item. ES outperforms DIG when there is some skewness pattern in 

the data. From examining different dataset sizes on the percentage of queries, out of the amount 

of possible queries a naïve voting center would have asked (𝑛 × 𝑚), we conclude that as 

expected, an increase in the number of the voters in the dataset leads to an increase in the 

percentage of queries. However, interestingly, an increase in the number of items leads to a 

decrease in the percentage of the required queries. This can be explained by the fact that each 

voter needs to be queried at least once in order for the voting center to determine a necessary 

winner, but not all items must be queried. With regards to runtime, for a fast convergence, ES is 

preferable since it runs in linear time while the DIG runs in polynomial time. 

We wished to examine DIG and ES’s performance in a real world setting. Therefore we 

used the Sushi dataset and the Netflix, Pubs and Restaurants datasets where our method for 

approximating voter-item rating distributions was applied. On the Sushi dataset, we did not find 

a significant difference between DIG and ES although both heuristics significantly outperformed 
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RANDOM and SEQTOP (as they did in all experiments). In this dataset the voter-item 

probability does not play a major role. This difference was found on the Pubs dataset and the 

Restaurants dataset. 

On the Netflix dataset, we examined the algorithms with and without updating the voter-

item distributions when new ratings were revealed. We found that both DIG and ES perform 

better when updates are enabled. DIG was found to be more sensitive than ES to the distribution 

updates. We also examined a scenario where the distribution is approximated from a small 

100x100 dataset of historical ratings as opposed to a scenario where the distribution is 

approximated from a larger dataset of 1000x1000 historical ratings (we could not perform this 

evaluation for the Pubs and Restaurants datasets since they contain 90 users only).  ES is 

indifferent to the size of the dataset, but DIG performs significantly better on the smaller 

100x100 dataset. The differences between DIG and ES can be explained by the differences in the 

way they are constructed. ES identifies the item that is most probable to win and focuses on 

extracting ratings tied to this item. DIG looks at all of the voter-item pairs and chooses to query 

the pair with the highest information gain. Therefore, the more accurate the rating distributions 

are, the better DIG performs. Since the rating distributions are more accurate when updated and 

on a smaller dataset, these are settings in which DIG will excel. ES, being less sensitive to 

accuracy in the distributions, is also less affected by distribution updates and distribution 

accuracy. To conclude, we recommend using DIG when the data is noisy with no clear trend and 

when runtime is not of significance. ES should be used when runtime is an issue or when there is 

a high probability that a certain item or items are more favored.  
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Chapter 5  

Preference Elicitation using the 

Borda Voting Protocol 

In this chapter, we propose heuristics for query selection using the Borda voting protocol.  

The Borda protocol assumes every voter has a total order of ranked preferences on 𝑛 items. The 

voting center translates the preferences into an ordered sequence of values with a decreasing 

value of 1: {𝑛 − 1, 𝑛 − 2. . .0}. Each value is uniquely assigned to one item only. The winning 

item is the item with the highest aggregated score: 𝑚𝑎𝑥𝑗 ∑ 𝑞𝑗
𝑖

𝑖 .  We address Borda voting with 

incomplete information. At the beginning of the process the voter-item-item preferences are 

unknown. 

In an incremental elicitation model, the voting center queries for voter 𝑣𝑖’s pairwise 

preferences. A pairwise query 𝑞𝑗,𝑘
𝑖  for user 𝑣𝑖’s preference between candidates 𝑐𝑗 and 𝑐𝑘 has two 

possible responses: 𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖  or 𝑞𝑘
𝑖 ≺ 𝑞𝑗

𝑖  meaning candidate item 𝑐𝑘 is either preferred over 

candidate item 𝑐𝑗 or vice versa. The goal of the elicitation process is to minimize the overall 

number of queries. Determining the next optimal query recursively depends on the order of the 

rest of the queries. There are an exponential number of such orders (𝑂(𝑚 ∙ 𝑛 ∙ (𝑛 − 1)2)!) so 

finding the optimal minimal set of queries is intractable. Therefore, we propose a myopic 

approach for selecting the next user-item-item query trio.  

We first define the necessary winner under the Borda voting protocol (section ‎5.1), and 

present a preferences distribution model for the Borda voting protocol (section ‎5.2). We then 
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present a method for computing item winning probabilities (section ‎5.3) under the Borda 

protocol. Next, we suggest two heuristics for query selection (section ‎5.4 and section ‎5.5).  The 

heuristics are examined under different settings (section ‎5.6). Lastly, a discussion of the analysis 

is provided (section ‎5.7). 

5.1 The Necessary Winner 

We now define the necessary winner under the Borda voting protocol. The Borda 

possible maximum of an item represents the possible highest score for an item based on the 

known preferences. When no preferences are known, the Borda possible maximum of item 𝑐𝑗 is 

the maximum score 𝑠𝑛 = 𝑛−1 that any item can receive multiplied by the total number of items: 

(𝑛−1) ∙ 𝑚. This score will be achieved if all voters will rank 𝑐𝑗 as their most preferred item. The 

Borda possible maximum of 𝑐𝑗 decreases by 1 for every voter that states some other item is 

preferred over 𝑐𝑗: 𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖 . Formally: 

   Definition 9. (Borda Possible Maximum): 

   𝑝𝑚𝑎𝑥(𝑐𝑗, 𝑂) = 𝑚 ∙ (𝑛 − 1) − ∑ 𝑝𝑚𝑎𝑥(𝑞𝑗,𝑘
𝑖 )∀  𝑞𝑗,𝑘

𝑖 ∈𝑂 ,    

𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥(𝑞𝑗,𝑘
𝑖 ) =  {

1            𝑖𝑓 𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

  

Similarly, when no preferences are known, the Borda possible minimum of an item 𝑐𝑗 is 

the minimum score 𝑠1 = 0 multiplied by the total number of items: 0 ∙ 𝑚. The Borda possible 

minimum of 𝑐𝑗  increases by 1 for every voter that states 𝑐𝑗  is preferred over some other item 𝑐𝑘: 

𝑞𝑘
𝑖 ≺ 𝑞𝑗

𝑖 .  Formally: 

   Definition 10. (Borda Possible Minimum):  

   𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) = ∑ 𝑝𝑚𝑖𝑛(𝑞𝑗,𝑘
𝑖 )∀  𝑞𝑗,𝑘

𝑖 ∈𝑂 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛(𝑞𝑗,𝑘
𝑖 ) =  {

1         𝑖𝑓 𝑞𝑘
𝑖 ≺ 𝑞𝑗 

𝑖

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

The necessary winner is defined as: 

   Definition 11. (Necessary Winner):  

   𝑁𝑊 = {𝑐𝑗|𝑝𝑚𝑖𝑛(𝑐𝑗, 𝑂) > 𝑝𝑚𝑎𝑥(𝑐𝑖, 𝑂), ∀𝑐𝑖 ∈ 𝐶}   
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5.2 Probabilistic Voter Permutations Distribution Model 

In this section we present a preferences distribution model for the Borda voting protocol. 

At the beginning of the elicitation process the voters preferences for items are unknown (i.e., the 

voting center does not know the response to any pairwise query 𝑞𝑗,𝑘
𝑖 ). The methods we suggest 

for elicitation require the voting center to hold probabilistic information as to each voter’s 

preference between each pair of items. The pairwise preference probability is noted as: 𝑝(𝑞𝑗
𝑖 ≺

𝑞𝑘 
𝑖 ). 

According to the preference probability, the voting center determines which query to 

execute (as will be shown in the next section). One option is to hold the preference probability of 

each voter for each 𝑛(𝑛 − 1) 2⁄  pairs of items. The advantage of this model is that the state 

space of the number of possible pairs per voter is polynomial and the model can easily cope with 

a large amount of candidates. However, this option ignores the dependency between pairwise 

preferences: according to the Borda protocol:  𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖 |𝑞𝑘
𝑖 ≺ 𝑞𝑙 

𝑖 ) ≠ 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖 |𝑞𝑙
𝑖 ≺ 𝑞𝑘 

𝑖 ). 

Hazon et al. (2012) consider these dependencies and to hold a full list of probabilities for 

all order permutations. An example of a permutation distribution for 3 voters and 3 items is 

given in Table 11. The pairwise preference probability of 𝑐𝑗 ≺ 𝑐𝑘 can be extracted by 

aggregating all the permutation probabilities where 𝑐𝑗
𝑖 ≺ 𝑐𝑘 

𝑖 . However, since 𝑛! is the amount of 

permutations, this model cannot cope with a large amount of candidates. Therefore, one must 

choose whether to trade off model complexity with model accuracy. We follow Hazon et al. 

(2012) and hold a complete set of permutation probabilities.  

 

Table 11: Voter permutation distribution for 3 voters and 3 items 

voters 𝑐3 ≺ 𝑐2 ≺ 𝑐1  𝑐3 ≺ 𝑐1 ≺ 𝑐2 𝑐2 ≺ 𝑐3 ≺ 𝑐1 𝑐2 ≺ 𝑐1 ≺ 𝑐3 𝑐1 ≺ 𝑐3 ≺ 𝑐2 𝑐1 ≺ 𝑐2 ≺ 𝑐3 

𝑣1 0.1 0.1 0.2 0.3 0.2 0.1 

𝑣2 0.2 0.2 0.2 0.2 0.1 0.1 

𝑣3 0.3 0.3 0.1 0.1 0.1 0.1 
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Formally, the permutation set is defined as 𝑉𝐶 = {𝑣𝑐1, … , 𝑣𝑐𝑛!}. Voter 𝑣𝑖 ‘s permutation 

distribution, denoted by 𝑣𝑐𝑖, is a discrete random variable, taking the values in 𝑉𝐶. In the above 

example, 𝑃𝑟(𝑣𝑐3 = (𝑐3 ≺ 𝑐2 ≺ 𝑐1)) = 0.1. We assume transitive closure exists. 

The model can be derived from the voters’ history of preferences or from other voters’ 

preferences on the items in question. Deriving the permutation distribution is data specific; in 

section ‎5.6 we describe how the permutation distribution for the experiments data is derived.  

5.3 Item Winning Probability Using Monte Carlo Sampling 

The computation of the item winning probabilities under the Borda voting protocol 

differs from the computation under the Range voting protocol. For the Range voting protocol we 

demonstrated a dynamic programming algorithm for computing the item winning probability. 

The algorithm assumes independence of voter preferences. This assumption does not hold under 

the Borda protocol since: 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖 |𝑞𝑘
𝑖 ≺ 𝑞𝑙 

𝑖 ) ≠ 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘 

𝑖 |𝑞𝑙
𝑖 ≺ 𝑞𝑘 

𝑖 ). We therefore turn to an 

alternative method and approximate the item winning probabilities using a Monte Carlo 

algorithm (Fishman 1996) that uses sampling to estimate the winner. The Item Winning 

Probability algorithm proceeds as follows: for each user 𝑣𝑖, one permutation is sampled out of all 

possible user permutations 𝑉𝐶. Once the permutations of all users are collected the winner is 

determined using the Borda protocol. These two steps are repeated 𝛾 times. Finally, the winning 

probability of each item is calculated as the number of times the winner was found is divided by 

the sample size 𝛾. 
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Figure 26: Pseudo code for Item Winning Probability Algorithm in the Borda protocol 

5.4 Information Gain Heuristic for Borda Voting 

Similarly to the Information Gain Heuristic (DIG) for Range Voting discussed in 

section ‎4.4, the heuristic described here focuses on selecting queries that will maximize the 

available information in terms of entropy (Shannon2001) at each stage.  However, some 

adjustments are needed due to the differences in protocol. This heuristic is named Information 

Gain for Borda (IGB). 

First, the information gain of each possible query is calculated. The information gain of a 

specific query is the difference between the prior and the posterior entropy of the probability to 

win of the item candidates given the possible responses to the query. The chosen query is the 

user-item-item query trio that maximizes the weighted information gain. The heuristic continues 

until a necessary winner is found. Ties in weighted information gain are broken according to the 

item positions in an increasing order of all items. 

The entropy function is used in order to compute the query information gain. Given the 

item winning probabilities array 𝑃𝑟𝑊𝑖𝑛 , the entropy function is: 

 

Input: 

𝑉 - the set of voters 

𝐶 - the set of candidate items 

𝑉𝐶 - the set of possible permutations 

Output:  winning probabilities array 𝑃𝑟𝑊𝑖𝑛[𝑛] for all 𝑗’s 

Initialize  winnerArray[n] ← 0 

Initialize voterArray[𝑚] ← 0 

Repeat 𝛾 times: 

    For each voter 𝑣𝑖 ∈ 𝑉 

           𝑣𝑜𝑡𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑖] ← 𝑠ample a permutation from  𝑣𝑐𝑖 

     𝑐𝑙𝑜𝑐𝑎𝑙𝑤𝑖𝑛𝑛𝑒𝑟 ← winner in 𝑣𝑜𝑡𝑒𝑟𝐴𝑟𝑟𝑎𝑦  

  𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑙𝑜𝑐𝑎𝑙𝑊𝑖𝑛𝑛𝑒𝑟] ← 𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑙𝑜𝑐𝑎𝑙𝑊𝑖𝑛𝑛𝑒𝑟] + 1   

    For each item 𝑐𝑗 ∈ 𝐶 

       Compute 𝑃𝑟𝑊𝑖𝑛[𝑗] ← 𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑗]/𝛾  
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(5.1)    𝐸(PrWin) =  −∑ 𝑃𝑟𝑊𝑖𝑛[𝑗]𝑙𝑜𝑔(𝑃𝑟𝑊𝑖𝑛[𝑗])𝑚
𝑗=1        

 

The posterior entropy is calculated for the probability winner vector that has been 

computed for the two possible outcomes of a query qj,k
i  We use E(PrWin|qcj≻ck

i ) to denote the 

entropy given user i prefers cj ≻ ck . The information gain (IG) is the difference between the 

prior entropy of the local winner and the posterior entropy given that the response of an executed 

query qj,k
i  is cj ≻ ck: 

 

(5.2)   𝐼𝐺 (𝑞𝑐𝑗≻𝑐𝑘
𝑖 ) = (𝐸(PrWin) − 𝐸 (PrWin|𝑞𝑐𝑗≻𝑐𝑘

𝑖 ))       

 

The probability that user 𝑣𝑖 prefers 𝑐𝑗 over 𝑐𝑘 p (𝑞𝑐𝑗≻𝑐𝑘

𝑖  ) can be calculated based on the 

prior permutation distribution. Thus we can compute the weighted information gain (WIG): 

 

(5.3)   𝑊𝐼𝐺 (𝑞𝑗,𝑘
𝑖 ) = 𝐼𝐺 (𝑞𝑐𝑗≻𝑐𝑘

𝑖 ) ∙ p (𝑞𝑐𝑗≻𝑐𝑘
𝑖  ) + 𝐼𝐺 (𝑞𝑐𝑗≺𝑐𝑘

𝑖 )  ∙ p (𝑞𝑐𝑗≺𝑐𝑘
𝑖  )               

 

The chosen query is the query that maximizes the weighted information gain.  

 

5.5 Highest Expected Score Heuristic for Borda Voting 

The highest expected score heuristic for Borda (ESB) is based on the idea that it is better 

to select voter-item-item trios where one of the items is expected to win. This argument is 

supported by the idea that queries on the winner item will increase its possible minimum and 

finally identify it as a necessary winner. The next theorem considers the correlation between the 

winner and the number of queries. 

 

Theorem 1: The minimum amount of queries O necessary to determine the 

winner 𝑐𝑗 is  𝑂 =
(𝑛−1)2∙𝑚

𝑛
 , on condition that all queries in O contain 𝑐𝑗 and that 

𝑐𝑗 always wins when queried.  
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Proof: Initially before the query process begins the Borda possible minimum and possible 

maximum are: (𝑐𝑗,𝑂) = 0 𝑎𝑛𝑑 ∀𝑘≠𝑗  𝑝𝑚𝑎𝑥(𝑐𝑘,𝑂) = 𝑚 ∙ (𝑛−1). 𝑐𝑗  will be declared as a 

necessary winner once 𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) > 𝑝𝑚𝑎𝑥(𝑐𝑘, 𝑂) ∀𝑘≠𝑗  (Definition 3). Let |𝑂| be the total 

amount of queries needed for verifying that 𝑐𝑗 is the winner. With each query 𝑞𝑗,𝑘
𝑙  the possible 

minimum of 𝑐𝑗 increases in 1 if 𝑐𝑗 ≻ 𝑐𝑘 ,  else if  𝑐𝑗 ≺ 𝑐𝑘  the possible maximum of 𝑐𝑘   is 

decreased in 1. Thus, in the case that  𝑐𝑗 always wins and all queries contain 𝑐𝑗 we reach the 

necessary winner with the minimum amount of queries. The minimum score of 𝑐𝑗 will be in this 

case: 𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) = |𝑂|. Each new query subtracts 1 from the possible maximum of some item 

𝑐𝑘≠𝑗. To bring the items to the same possible maximum the queries should be distributed equally 

between the items. So every item (except 𝑐𝑗) is queried |𝑂| (𝑛 − 1)⁄   times, so that 

𝑝𝑚𝑎𝑥(𝑐𝑘, 𝑂) = 𝑚 ∙ (𝑛 − 1) − |𝑂| (𝑛 − 1)⁄ .  According to Definition 3 a winner is found when 

after |𝑂| queries the minimum is bigger than the maximum. Thus, 𝑐𝑗 will be a necessary winner 

once: |𝑂| > 𝑚 ∙ (𝑛 − 1) − |𝑂| (𝑛 − 1)⁄  . Extracting |𝑂| reveals:  |𝑂| =  (𝑛 − 1)2 ∙ 𝑚 𝑛⁄ . □ 

Note that in the above extreme case, where in all queries the winner always wins, we see 

that solely querying the winner reduces the amount of queries to the minimum. The queries are 

distributed equally among the non-winning candidates. In less extreme cases where the winner 

does not win in all queries, it is still guaranteed that the winner will win in more queries than the 

other candidates. Therefore, we support a strategy that queries the item with the highest winning 

probability and thus increases the possible minimum of the expected winner rapidly. 

The Expected Score for Borda (ESB) heuristic focuses on selecting queries that maximize 

the probability of an item to win. Given the item winning probabilities array 𝑃𝑟𝑊𝑖𝑛,  the highest 

probability is:  𝑚𝑎𝑥(𝑃𝑟𝑊𝑖𝑛). The expected maximum (𝐸𝑀) represents the highest probability of 

the winning probabilities array given voter 𝑣𝑖 prefers 𝑐𝑗 over 𝑐𝑘  (𝑞𝑐𝑗≻𝑐𝑘

𝑖  ): 

(5.4)   𝐸𝑀 (𝑞𝑐𝑗≻𝑐𝑘
𝑖 ) =   𝑚𝑎𝑥 (𝑃𝑟𝑊𝑖𝑛|𝑞𝑐𝑗≻𝑐𝑘

𝑖 )     

 

Since a query has two possible outcomes, the weighted expected maximum is:   
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(5.5)   𝑊𝐸𝑀(𝑞𝑗,𝑘
𝑖 ) = 𝐸𝑀 (𝑞𝑐𝑗≻𝑐𝑘

𝑖 ) ∙ p (𝑞𝑐𝑗≻𝑐𝑘
𝑖  ) +𝐸𝑀 (𝑞𝑐𝑗≺𝑐𝑘

𝑖 )  ∙ p (𝑞𝑐𝑗≺𝑐𝑘
𝑖  )    

 

The chosen query is the query that maximizes the weighted expected maximum.   

5.6 Evaluation 

In sections 5.4 and 5.5 we proposed two novel heuristics, IGB and ESB, which determine 

a necessary winner under the Borda voting protocol. In this section, we evaluate the heuristics 

performance. The heuristics were compared to a baseline RANDOM method that selects queries 

at random. Since IGB and ESB use sampling, to accommodate for randomness each experiment 

was run 25 times. The 𝛾 parameter in the Item Sampling algorithm (the algorithm that sets the 

item winning probabilities, described in section ‎5.3) was set to 300, as above this number we did 

not detect a noticeable difference in results.  

In order to adjust Netflix to the probabilistic permutation distribution, as required in 

Borda protocol (section 5.2), we first derived a probability distribution of scores for each voter 

and item (as explained in section 4.2).  Next, the probability distribution of scores was translated 

into a permutation distribution by aggregating the probabilities of each score for each possible 

permutation.  Netflix contains ratings and not rankings and a voter is not limited to ordering 

items, and may give a few or all of the movies the same score. In cases where two items received 

an equal score from the user, we chose the items with the highest lexicographical order. 

Figure 27 and Figure 28 display a comparison between the heuristics on the Netflix and 

Sushi datasets respectively. Axis x presents a varying size of voters and items. Axis y presents 

the percentage of the dataset queried (as explained in section ‎4.6.2). ESB is ~15% better than 

IGB and RANDOM with a 95% confidence interval according to a t-test. IGB does not 

significantly differ from RANDOM. ESB reduces communication up to 60% in total.    

Runtime on the Sushi and Netflix datasets is presented in Figure 29 and Figure 30 

respectively. Axis x presents a varying size of voters and axis y presents the runtime in seconds. 

RANDOM has a constant runtime while ESB and IGB have an exponential runtime. There is no 

significant difference between the runtime of ESB and IGB. Note that the runtime on the Sushi 

dataset is longer since it runs on 6 items and only on 5 items in the Netflix dataset. 
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Figure 27: Comparison of algorithms on the Netflix dataset 

 

 

 

 

Figure 28: Comparison of algorithms on the Sushi dataset 
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Figure 29: Runtime on the Netflix dataset 

 

 

Figure 30: Runtime on the Sushi dataset 

5.7 Discussion 

In this chapter we presented heuristics that attempt to minimize the overall amount of 

queries needed for reaching a joint decision under the Borda protocol. In an iterative elicitation 

process, voters are queried for their preferences between two items. The process continues until a 

necessary winner item is found. The heuristics use probabilistic information of the voters’ 
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preferences. Usually the permutation distribution for datasets does not readily exist. However, 

we demonstrated a realistic method for easily learning this distribution on the Sushi dataset. 

Experiments on two real world datasets illustrate the superiority of the ESB heuristic over other 

possible heuristics. ESB manages to cut the communication (i.e., the queries) up to 60%. IGB, 

which seemed like a reasonable heuristic for this problem setting, failed in its performance. 

Our findings imply that a reduction in the entropy does not necessarily bring us closer to 

finding a winning item. This seemingly surprising result can be explained by the fact that IGB 

heuristic focuses on reducing the overall uncertainty, while the focus should be on finding a 

winner. In detail, using the notion of entropy to select the next query seems like a reasonable 

idea for the discussed problem set. Based on this idea, IGB algorithm attempts to reduce the 

entropy to its minimum value (of 0).  The minimum entropy is reached when the candidate 

winning probability vector (𝑃𝑟𝑊𝑖𝑛) becomes an indicator vector (in which the probability of 

exactly one item is a 1 and the others are 0). In this situation the necessary winner is revealed. 

Thus the entropy looks like a good proxy for our goal of finding the necessary winner. However, 

while the minimum entropy is equivalent to finding a winner, a reduction in the entropy value 

does not necessarily indicate that we are closer to finding the winner. Consider the following 

example: for 6 items the winning probability vector is: (0.9,0.02,0.02,0.02,0.02,0.02). After 

executing a certain query we receive the following probability vector: 

(0.88,0.11,0.025,0.025,0.025,0.025).  In this case, the query has improved the entropy (the 

entropy dropped from -0.70119 to -0.59902). However, the query does not seem to bring us 

closer to finding the winner since there is also a drop in the probability that item number 1 is the 

winner. This brings us to the idea on which ESB is based: instead of calculating the information 

gain, simply select the query which potentially provides the highest increase in the maximum 

entry in the probability vector. In the last example we should prefer a query that brings us to the 

probability vector: (0.91,0.018,0.018,0.018,0.018,0.018). Although this vector provides a smaller 

drop in the entropy (-0.64544), it provides a positive improvement in the maximum probability 

of some item to win and thus brings us closer to finding a necessary winner. 

Perhaps the main disadvantage of the presented framework is its lack of scalability, due 

to the need to hold a probabilistic model of all order permutations of items. Therefore while the 

number of voters can be increased, the number of items cannot.  
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Chapter 6  

Tradeoffs and Aggregation 

Strategies in Preference Elicitation 

The previous chapters dealt with returning one definite, necessary winner to a group of 

users. In this chapter we explore aggregation strategies and tradeoffs that reduce the required 

preference elicitation and thus reduce the communication costs. First, we offer to consider 

different preference aggregation strategies. These strategies differ in their emphasis: towards the 

individual users or towards the majority of the group (section 6.1). Second, rather than offering a 

single winner, we propose to offer the group top-k best alternatives. This can be beneficial if a 

certain item suddenly becomes unavailable, or if the group wishes to choose manually from a 

few selected items (section 6.2.1).  Finally, rather than offering a definite winning item, we 

suggest to approximate the item or the top-𝑘 items that best suit the group, according to a 

predefined confidence level. We study the tradeoff between the accuracy of the proposed winner 

item and the amount of preference elicitation required (section 6.2.2). We evaluate these three 

challenges and show how they contribute to the minimization of the preference elicitation 

(section 6.3). 

6.1 Aggregation Strategies 

The item's score depends on the strategy used. We denote the employed aggregation 

strategy  𝑠𝑡𝑟. We now define the aggregation strategies: Majority and Least Misery. As 

mentioned, in the Majority strategy the emphasis is towards the majority of the group. 
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Definition 12.(Majority Based Strategy): given the users’ preferences, the 

Majority Based Strategy computes the score of item 𝑐𝑗  as follows:  𝑠𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑐𝑗) =

∑ 𝑞
𝑗
𝑖

𝑖∈={1,…,𝑚}  

 

In the Least Misery strategy, the chosen item cannot be the least preferred by any of the 

users. 

 

Definition 13.(Least Misery Strategy): given the users’ preferences, the Least 

Misery Strategy computes the score of item 𝑐𝑗  as follows:  𝑠𝑙𝑒𝑎𝑠𝑡(𝑐𝑖) = min𝑖∈={1,…,𝑚} 𝑞
𝑗
𝑖  

 

Each of the two strategies has its pros and cons. The choice of the strategy might impact 

the outputted result. Consider the example in Table 12, showing the preferences of 3 users for 3 

items. According to the Majority Based strategy, the winning item is 𝑐1, with a total score of 11, 

followed by items 𝑐2 and 𝑐3. According to the Least Misery strategy, the winning item is 𝑐2, with 

a score of 3, followed by items 𝑐1 and 𝑐3. Therefore: 𝑆𝑉𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 = (𝑐1, 𝑐2𝑐3) and  𝑆𝑉𝑙𝑒𝑎𝑠𝑡 =

(𝑐2, 𝑐1𝑐3). 

 

Table 12: Three users and their preferences for three items 

Group Members (Users) 
Candidate Items 

𝑐1 𝑐2 𝑐3 

𝑣1 5 3 1 

𝑣2 4 3 5 

𝑣3 2 3 4 

Majority Based Score 11 9 10 

Least Misery Score 2 3 1 

 

6.2 Termination Conditions 

During the preference elicitation process, the preferences are submitted to the voting 

center that aggregates the preferences.  This process continues until a termination condition is 

reached. The termination condition is pre-set by the system administrator according to the 
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group's request. The termination condition is one of the following: a definite winning item, an 

approximate winning item with some confidence level, top-𝑘 items where one of them is the 

winner, or approximate top-𝑘 items where one of the items is the winner with some confidence 

level.  

Given a set of responses to queries and a termination condition, the goal is to determine 

whether the iterative process can be terminated. Let 𝑂𝑖 = {𝑞𝑝
𝑖 , … , 𝑞𝑡

𝑖} represents the set of 

voter  𝑣𝑖’s responses to queries. Note that this set does not necessarily contain all the items. 

𝒪𝐴 = {𝑂1, … , 𝑂𝑛}  is a set of 𝑂𝑖 sets. The function 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗,𝒪
𝐴) computes the possible maximum 

rating for item 𝑐𝑗, given the known preference values of the voters. 

 

 

Definition 14.(Possible Maximum): given the set of responses 𝒪𝐴 and an 

aggregation strategy str, the possible maximum score of candidate 𝑐𝑗, denoted 

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴), is computed as follows:  

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴, 𝑠𝑡𝑟) = {

∑ 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗, 𝑂
𝑖)𝑖∈1..𝑚 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑚𝑖𝑛𝑖 (𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂
𝑖)) 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦

  

   𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗, 𝑂
𝑖) =  {

𝑑𝑔         𝑖𝑓 ∃𝑞𝑝
𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑎𝑥                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Similarly, the function of the possible minimum rating of item 𝑐𝑗:  𝑝𝑚𝑖𝑛𝐴(𝑐𝑗,𝑂
𝐴) is: 

 

Definition 15.(Possible Minimum): given the set of responses 𝒪𝐴 and an 

aggregation strategy str, the possible minimum score of candidate 𝑐𝑗, denoted 

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴) is computed as follows: 

𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪
𝐴, 𝑠𝑡𝑟) = {

∑ 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗, 𝑂
𝑖)𝑖∈1..𝑚 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑚𝑖𝑛𝑖 (𝑝𝑚𝑖𝑛𝑖(𝑐𝑗, 𝑂
𝑖)) 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦

 

   𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂
𝑖) =  {

𝑑𝑔         𝑖𝑓 ∃𝑞𝑝
𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑖𝑛                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Consider the example given in Table 12 but assume that the rating of 𝑐1 for 𝑣3 is 

unknown: thus, 𝑞1
1 = 5, 𝑞1

2 = 4, 𝑞1
3 =? . Using definitions 3 and 4 we can compute the possible 

maximum and minimum under each aggregation strategy. For example, the possible maximum 

of 𝑐1 in the Majority strategy is 𝑝𝑚𝑎𝑥1(𝑐1, 𝑂
1, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦) = 5 + 4 + 5, since 𝑞1

3 = 𝑑𝑚𝑎𝑥 = 5. 

For the Least Misery strategy the possible maximum is: 𝑝𝑚𝑎𝑥1(𝑐1, 𝑂
1, 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦) =

𝑚𝑖𝑛(5,4,5) since  𝑞1
3 = 𝑑𝑚𝑎𝑥 = 5. The possible minimum for the two strategies is 

𝑝𝑚𝑖𝑛1(𝑐1, 𝑂
1, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦) = 5 + 4 + 1  and 𝑝𝑚𝑖𝑛1(𝑐1, 𝑂

1, 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦) = 𝑚𝑖𝑛(5,4,1) 

since  𝑞1
3 = 𝑑𝑚𝑖𝑛 = 1. 

6.2.1 Selection Among top-k Alternatives 

As mentioned in previous chapters, one possible termination condition is to stop the 

preference elicitation process once one necessary winner is found. We follow Kalech et al. 

(2011) and define a necessary winner 𝑁𝑊 as a set of items whose possible minimum aggregated 

rating is equal or greater than the possible maximum aggregated rating of all the others. This 

definition is equivalent to the definition provided by Konzak and Lang (2005), as proven in 

proposition 2 in Konzak and Lang (2005). Formally the necessary winner item set is: 

 

Definition 16.(Necessary Winners set):  

𝑁𝑊 = {𝑐𝑖|𝑝𝑚𝑖𝑛𝐴(𝑐𝑖, 𝒪
𝐴) ≥ 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖}  

 

It is possible to receive more than one necessary winner. Although the necessary winner 

set may contain more than one item, we assume that there is only one necessary item. In the case 

of more than winning items, the first item is selected lexicographically. 

In some cases, the group members can be satisfied with a shorter preference elicitation process.  

They may agree to trade the result accuracy with less elicitation cycles. In other words, instead of 

terminating the preference elicitation once a necessary winner is found, the group may agree to 

terminate the preference elicitation once a set of top-𝑘 items is presented to them. One of these 

items is the necessary winner, but without further elicitation it is not possible to determine the 

winner. To accurately define the top-𝑘 items, let us define the possible winner group. The 

possible winners are all the items whose possible maximum aggregated rating is greater than or 

equal to the possible minimum rating of all the other items.  
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Definition 17.(Possible Winners Set): 

𝑃𝑊 = {𝑐𝑖|𝑝𝑚𝑎𝑥𝐴(𝑐𝑖, 𝒪
𝐴) ≥ 𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖} 

 

Note that the possible winning group subsumes the necessary winners: 𝑁𝑊 ⊂ 𝑃𝑊. After 

each query, the necessary winner set and the possible winner set need to be recalculated. To 

begin with, when none of the preferences are known, the possible winner set contains all items: 

|𝑃𝑊| = |𝐶| and the necessary winner’s set is empty: |𝑁𝑊| = ∅.  The process is terminated once 

the size of the set of possible winners is reduced to 𝑘. We denote the possible winner set of size k 

𝑃𝑊𝑘. Thus, the set contains the top-𝑘 possible winners, where, by definition, these top-k are 

guaranteed to include the necessary winners. The group of users is left with the task of selecting 

one among the top-𝑘 items. 

 

6.2.2 Winner Approximation 

Another possible trade-off is the accuracy-elicitation tradeoff. The preference elicitation 

process can be reduced, but the accuracy of the output is affected, the returned items are 

estimated to contain the winning item at some confidence level with an error rate 𝛼. To compute 

a necessary winner with some confidence level we will first define the score space of the 

aggregation. The score 𝑠 that the candidate can achieve after aggregating the preferences of the 

voters depends on the strategy: 

𝑆 = {
{𝑛 ∙ 𝑑𝑚𝑖𝑛, 𝑛 ∙ 𝑑𝑚𝑖𝑛 + 1… , 𝑛 ∙ 𝑑𝑚𝑎𝑥} 𝑖𝑓 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

{𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛 + 1… , 𝑑𝑚𝑎𝑥}                 𝑖𝑓 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡
 

Let us begin with examining the probability that one item has a certain score: 𝑃𝑟(𝑐𝑗 = 𝑠). 

The probability of any item to be the necessary winners is: 

 

Definition 18.(Item Winning Probability): Under the independence of 

probabilities assumption, the probability that item cj is the necessary winner is the 

aggregation of  𝑐𝑗’s probabilities to win over the possible ratings s: 

𝑃𝑟(𝑐𝑗 = 𝑁𝑊) = ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) ⋀  Pr (𝑐𝑖 < 𝑠)
𝑠∈𝑆,∀ 𝑖≠𝑗

= ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) ∙ ∏ 𝑃𝑟 (𝑐𝑖 < 𝑠)
∀𝑖≠𝑗𝑠∈𝑆∀ 𝑖≠𝑗
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The probability that given 𝑚 voters an item will receive the score s 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) 

can be computed recursively. This probability depends on the aggregation strategy.  For the 

Majority strategy we use: 

   (6.1)   𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) = 

∑ (𝑃𝑟(𝑐𝑗 = 𝑠 − 𝑥|𝑣1, . . . , 𝑣𝑚−1) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥

𝑥=𝑑𝑚𝑖𝑛

 

where  𝑃𝑟(𝑐𝑗 = 𝑠|𝑣𝑖) = 𝑃𝑟(𝑞𝑖
𝑗
= 𝑠)  

 

  

 

           For the Least Misery strategy we use: 

(6.2) 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, . . . , 𝑣𝑚) = 

∑ (𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, . . . , 𝑣𝑚) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥

𝑥=s
+ 

∑ (𝑃𝑟(𝑐𝑗 = 𝑥|𝑣1, . . . , 𝑣𝑚) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑠))
𝑑𝑚𝑎𝑥

𝑥=s+1
 

 

  

 

In both strategies we compute the probability that an item will receive a score of at most s 

as follows: 

 (6.3)  𝑃𝑟(𝑐𝑗 < 𝑠) = ∑ 𝑃𝑟(𝑐𝑗 = 𝑥|𝑣1. . 𝑣𝑚)
𝑠−1

𝑥=min (𝑆)
 

  

The following is a step by step running example, for the Majority strategy for 𝑑 =

{1,2,3}. The example is based on the voting distributions (VD’s) presented in Table 11; note that 

𝑃𝑟(𝑞3
1 = 3) = 0.4,  𝑃𝑟(𝑞3

1 = 2) = 0.3, 𝑃𝑟(𝑞3
1 = 1) = 0.3. We start by calculating 𝑃𝑟 (𝑐𝑗 = 𝑠). 

The calculation is done using a dynamic programming algorithm where each result is calculated 

using the previously calculated results. For instance, using Eq. (1), 𝑃𝑟(𝑐1 = 6) based on the 

ratings of voters 𝑣1, 𝑣2, 𝑣3: 

𝑃𝑟(𝑐1 = 6|𝑣1. . 𝑣3) = 𝑃𝑟(𝑐1 = 5|𝑣1, 𝑣2) ∙ 𝑃𝑟(𝑞3
𝑗
= 1) + 𝑃𝑟(𝑐1 = 4|𝑣1, 𝑣2) ∙

𝑃𝑟(𝑞3
𝑗
= 2) + 𝑃𝑟(𝑐1 = 3|𝑣1, 𝑣2) ∙ 𝑃𝑟(𝑞3

𝑗
= 3).  In the same manner: 𝑃𝑟(𝑐1 = 5|𝑣1, 𝑣2) = 0.14, 

𝑃𝑟(𝑐1 = 4|𝑣1, 𝑣2) = 0.36, 𝑃𝑟(𝑐1 = 3|𝑣1, 𝑣2) = 0.24 so that finally 𝑃𝑟(𝑐1 = 6|𝑣1. . 𝑣3) =

0.236.  Next, we calculate 𝑃𝑟 (𝑐1 ≤ 𝑠) using Eq (3): 𝑃𝑟(𝑐1 < 6) = 𝑃𝑟(𝑐1 = 3) +𝑃𝑟(𝑐1 =

4) +𝑃𝑟(𝑐1 = 5). 
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To define top-𝑘 with a confidence level we first define 𝑃𝑉 as a vector of items, ordered 

according to their winning probability (Definition 19): 

 

Definition 19.(Ordered Vector of winning probabilities): PV[] is an array of 

decreasingly ordered items according to their winning probabilities. 

 

The probability that the necessary winner is within the top-k is actually the aggregated 

winning probabilities of the first k items in 𝑃𝑉. The more preferences elicited from the users, the 

higher probability the necessary winner is within the top-k. The confidence level is a value which 

determines an upper bound for the probability of the necessary winner to be among the top-k.  

The preference elicitation process is terminated once the confidence level equals  1 − 𝛼.  

Formally, the termination condition is:  

   

Definition 20.(Termination with top-k approximate items):  the preference 

elicitation process terminates for a given k and 𝛼, when  ∑ 𝑃𝑉[𝑖]𝑘
𝑖=1 ≥

1 − 𝛼  where  0 ≤ 𝛼 ≤ 1. 

 

6.3 Evaluation 

We present an empirical evaluation of the following statements: (a) Selection –outputting 

top-k items reduces the required number of queries (b) Approximation – there is a tradeoff 

between outputting an approximate winner, or approximate top-k items and outputting a definite 

winner or definite top-k items. The approximation accuracy improves as more data is collected. 

(c) Aggregation – the aggregation strategy affects the preference elicitation process. We examine 

two aggregation strategies: with emphasis towards the group and with emphasis towards the user 

(i.e., the Majority and Least Misery strategies). 

We examine the performance of the DIG and ES algorithms presented in section 4. As 

mentioned in the related works section, to the best of our knowledge, there are no other 

algorithms that operate (or can be expanded to operate) under the same settings. Therefore, the 

baseline for measuring the effectiveness of our method is a random procedure (RANDOM), 

which randomly selects the next query.  To account for the randomness of the RANDOM 
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algorithm each experiment is repeated 20 times.  In addition we evaluate the communication cost 

reduction (i.e., the reduction in amount of queries needed in order to reach the termination 

condition under the given strategy). We follow the evaluation procedure presented in chapter 3. 

We evaluate the methods in terms of: (1) communication cost – we measure the number 

of queries required for finding the necessary winner (2) approximation accuracy. Our focus is on 

the analysis of the contribution of returning a winner within top-k items, thus narrowing down 

the top-𝑁 suggestions received by a recommendation system (𝑘 ≤ 𝑁). An additional focus is on 

approximating a winner and on the aggregation strategies. The analysis of the scaling of the 

matrix sizes and the runtime has been evaluated in(Naamani Dery et al. 2014) Chapter 4.  

We first present varying top-𝑘 termination conditions (section 6.3.1).We then present an 

examination of the different confidence levels (section 6.2.1) and finally we compare the two 

strategies (section 6.3.3). 

6.3.1 Selection of top-𝒌 Items 

We examined different top-𝑘 termination conditions, from 𝑘 = 1 (i.e., requiring one 

definite winner), to 𝑘 = 9 (i.e., requiring the winner to be one of the top-9 items). The results are 

for the Majority aggregation strategy with a 100% confidence level (∝= 0). Different confidence 

levels and a comparison between the performance of the Majority strategy and the Least Misery 

strategy are presented in the next sections. We first report the results of three levels of skewness 

of simulated data, followed by the Datasets: Netflix, Sushi, Pubs, and Restaurants. 

We examine three different skewness levels of simulated data. Figure 31, Figure 32 and 

Figure 33 present results for a skewness level of (6), (0) and (-6) respectively. Axis x presents 

the termination conditions 𝑘 = 1, . . ,10. Axis y presents the percentage of the dataset queried in 

order to terminate and find a winner within the top-k. A larger 𝑘 means that the termination 

condition is relaxed and less queries are needed. Indeed, in all cases, as 𝑘 increases, the amount 

of queries decreases. The performance of RANDOM is not significantly affected by skewness 

levels. For a skewness level of -6 (Figure 31), DIG outperforms ES and RANDOM and requires 

the least amount of queries. For a skewness level of (0) and of (6), ES outperforms DIG and 

RANDOM for the top-1 to top-3 items. Then, DIG resumes charge and provides better results 

(Figure 32 and Figure 33).  
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We now turn to examine the real world datasets. On the Netflix dataset (Figure 34), the 

trend is similar to that obtained on the skewness level of 0 and 6. That is, for top-1 to top-3 ES is 

superior, and then DIG maintains the lead. Again, DIG displays a sharp curve while ES requires 

almost the same number of queries regardless of the termination point (the top-𝑘). The same 

phenomenon is found on the Pubs dataset (Figure 36) and on the Restaurants dataset (Figure 37). 

However, on the Sushi dataset (Figure 35) DIG outperforms ES and RANDOM for all 𝑘.  

The results can be explained by considering the properties of the heuristics and of the 

datasets. In a setting of a simulated skewness of (-6) the votes are skewed towards the winner 

and it is more obvious who the winner is. It is less obvious who the winner is when the skewness 

level is 0 or 6 in simulated data. Also, when 𝑘 is smaller, ES performs better, since ES is 

designed to seek for potential winning items. Therefore, the amount of queries ES requires is 

more or less constant regardless of the 𝑘 items required for output. DIG is designed to focus on 

reducing entropy. When 𝑘 is larger the entropy reduces faster. In the Sushi dataset the initial 

user-item distribution is uniform so all items have the same chance to be the winning item. Thus, 

the initial state in the Sushi dataset is similar to a simulated skewness data with (0). However in 

the Netflix, Pubs, and Restaurants datasets the distributions are estimated and there is a skewness 

pattern (see section 4.6) which enables DIG to outperform. Furthermore, when it is less obvious 

who the winner is (as in Netflix), the differences in the heuristics performance are smaller.  

 For all datasets, the Friedman Aligned Ranks test with a confidence level of 95% rejects 

the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that 

DIG and ES significantly outperform RANDOM at a 95% confidence level.  
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Figure 31: Heuristics comparison for top-k with skewness level (-6) 

 

 

Figure 32: Heuristics comparison for top-k with skewness level (0) 
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Figure 33: Heuristics comparison for top-k with skewness level (6) 

 

 

Figure 34: Heuristics comparison for top-k on the Netflix dataset 
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Figure 35: Heuristics comparison for top-k on the Sushi dataset 

 

 

 

Figure 36: Heuristics comparison for top-k on the Pubs dataset 
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Figure 37: Heuristics comparison for top-k on the Restaurants dataset 

6.3.2 Approximation 

We examined the amount of queries required under different confidence levels (Figure 38 

and Figure 39), when a definite winner (𝑘 = 1) is required. For the simulated data, we set the 

skewness level to neutral (0). The results presented here are for the Majority strategy, while a 

comparison between the two aggregation strategies is presented in the next section. We also 

examine the accuracy of the approximations. 

Axis x presents the required confidence level; from 50% to 100% (100% is a definite 
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distributions for the Netflix dataset are estimated, whereas for the simulated data we have 

accurate (simulated) distributions. We show the probabilities accuracy for the datasets: simulated 

data with skewness level (0), Netflix and Sushi in Figure 43, Figure 44 and Figure 45 

respectively. Axis x is the iteration number and axis y is the probability that the winner is indeed 

within the top-𝑘 items. In this case, 𝑘 = 1. For the simulated data (Figure 43) the probability 

accuracy increases steadily as more information, acquired in the iterations, becomes available. 

On the other hand, since the Netflix, Pubs and Restaurants probabilities are estimations, there is 

more noise until a 95% probability is reached (Figure 44). The Sushi dataset also contains 

probability estimations, but the estimation is more accurate (Figure 45). To conclude, when the 

probability estimation is accurate, there is linear relationship between the number of required 

queries and the approximation level. However, an inaccurate probability distribution results in a 

“jump” when the required confidence is a 100%. 

For all datasets, the Friedman Aligned Ranks test with a confidence level of 95% rejected 

the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that 

DIG and ES significantly outperform RANDOM at a 95% confidence level.   

 

 

 

Figure 38: Approximations with simulated data with skewness (0) 
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Figure 39: Approximations on the Netflix dataset 

 

 

Figure 40: Approximations on the Sushi dataset 
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Figure 41: Approximations on the Pubs dataset 

 

Figure 42: Approximations on the Restaurants dataset 
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Figure 43: Simulated data: the probability the winner is within top-k 

 

 

Figure 44: Netflix data: the probability the winner is within top-k 
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Figure 45: Sushi data - probability winner is within top-k 
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this research. See (Koren and Sill2011) for further details on treating bias. 
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Table 13: Confidence Level Test 

Confidence 

Level 

Simulated 

Data 

Netflix 

Data 

Sushi 

Data 

Pubs 

Data 

Restaurants 

Data 

0.5 60% 50% 80% 30% 70% 

0.55 60% 50% 80% 30% 90% 

0.6 60% 50% 70% 30% 80% 

0.65 60% 50% 80% 20% 80% 

0.7 80% 50% 70% 40% 80% 

0.75 90% 50% 90% 30% 80% 

0.8 100% 60% 90% 40% 80% 

0.85 100% 60% 90% 40% 80% 

0.9 100% 60% 90% 40% 80% 

0.95 100% 70% 90% 60% 80% 
 

6.3.3 Aggregation 

We evaluated the two strategies: Majority (MAJ) and Least Misery (LM) on the DIG 

(Figure 46 and Figure 47) and ES heuristics (Figure 48 and Figure 49) for simulated data with 

different skewness levels: -6, 0, 6. Axis x presents the required top-𝑘 items and axis y presents 

the percentage of the dataset queried. DIG and ES with MAJ perform the same for skewness 

levels 0 and 6, but it is better when the skewness is -6. However, for the DIG and ES with LM, 

skewness levels have no significant effect on the performance since skewness does not indicate 

the quantity of low scores in the dataset, and the low scores are exactly the issue that needs to be 

considered in LM. 
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Figure 46: DIG with Majority (MAJ) strategy different skewness levels 

 

 

Figure 47: DIG with Least Misery (LM) strategy different skewness levels 
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Figure 48:  ES with Majority (MAJ) strategy different skewness levels 

 

 

Figure 49: ES with Least Misery (LM) strategy different skewness levels 
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“1” therefore, LM uses a tie-break to terminate. Thus, LM requires fewer queries in this 

situation.  In the Netflix dataset (Figure 52) MAJ outperforms LM, further indicating the fact that 

LM has no additional value when there is no skewness towards a certain winner. Similarly, on 

the Sushi dataset (Figure 53), MAJ outperforms LM when 𝑘 < 5 and then the trend changes and 

LM outperforms MAJ.  On the pubs and restaurant datasets (Figure 54 and Figure 55) LM 

outperforms MAJ for both heuristics. These results might be explained by the data skewness.  

 

 

Figure 50: DIG with MAJ and DIG with LM on  

simulated data on skewness level -6 
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Figure 51: Skewness 0 

 

 

Figure 52: Netflix dataset: strategies comparison, top-k 
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Figure 53: Sushi dataset: strategies comparison, top-k 

  

 

Figure 54: Pubs dataset: strategies comparison, top-k  
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Figure 55: Restaurants dataset: strategies comparison, top-k 
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the Sushi dataset, LM outperforms MAJ for confidence levels 50%-95%. For confidence level 

100%, MAJ outperforms LM. Namely, for one definite winner the system’s entropy can be 
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since Least Misery requires more queries in order to validate that none of the users are miserable. 

For all datasets, the Friedman Aligned Ranks test with a confidence level of 90% rejected 

the null-hypothesis that all heuristics perform the same for different approximation levels. We 

did not execute the Bonferroni-Dunn test since there is not one algorithm that is preferred over 

the others. 
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Figure 56: Netflix dataset: strategies comparison, approximation  

 

 

Figure 57: Sushi dataset: strategies comparison, approximation  
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Figure 58: Pubs dataset: Strategies comparison, approximation 

 

Figure 59: Restaurants dataset: strategies comparison, approximation  
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selection, returns top-𝑘 items where one of them is the winning item rather than just one (𝑘 = 1) 

definite winning item. The second termination condition, approximation, returns top-𝑘 items 

with some confidence level 𝛼 (0 ≤ 𝛼 ≤1), rather than top-𝑘 items where one of them is the 

definite winner (𝛼 = 1). Furthermore, we examined the Least Misery aggregation strategy and 

the Majority aggregation strategy.  

The final goal of this chapter was to employ selection, approximation and aggregation in 

order to reduce the amount of queries needed during a preference elicitation process for a group 

of users that want to reach a joint decision. We focused on the Range voting protocol as it is very 

commonly applied for recommender systems. We implemented two heuristics whose primary 

aim is to minimize preference elicitation: DIG and ES. These are the only two publicly available 

heuristics that aim at reducing preference elicitation for the Range voting protocol. We 

performed an experimental analysis on two real-world datasets: the Sushi dataset (Kamishima et 

al. 2005)  and the Netflix prize dataset (http://www.netflixprize.com). In order to analyze 

possible skewness levels in data, we simulated data with different skewness levels. We also 

estimated user-item probability distribution for all datasets. Lastly, we evaluated 2 datasets 

generated through a user-study. 

In general, we showed that selecting the suitable aggregation strategy and relaxing the 

termination condition can reduce communication cost up to 90%. We also showed the benefits of 

the DIG heuristic for reducing the communication cost. In ‎0 we concluded that in most cases the 

ES heuristic outperforms the DIG heuristic. The ES heuristic focuses on identifying the current 

local maximum and queries the user that maximizes this item. The DIG heuristic focuses on 

reducing the system entropy. In this chapter we revealed that when the termination conditions are 

relaxed, DIG takes the lead.  

We examined how the number of required queries is effected by the request to (1) return 

one definite winner, and (2) return top-k items. In the latter case, the group members are left with 

k items to select from (selection termination condition). With respect to the selection condition, 

there is an inverse linear connection: as 𝑘 is larger the amount of required queries is reduced. 

Only when the dataset is skewed towards a certain winner item, and also 𝑘 is set to 0 ≤ 𝑘 ≤ 3, 

does ES outperform DIG. This observation assists to determine the conditions in which each of 

these heuristics should be employed. Also, we can now state that, as expected intuitively, in 

cases where the group members are willing to accept a set of items rather than one winning item, 
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the communication cost is reduced. For example, if a group’s wish to select a movie can be 

satisfied with the system offering them a choice of top-3 movies rather than the system 

determining one movie for them, less queries to group members will be executed. 

 We studied (1) the tradeoff between finding the optimal winner and thus having an 

accurate result, and (2) the number of queries required for the process. For the approximation 

termination condition, we showed that the amount of required queries increases proportionally to 

the confidence level. We showed that DIG and ES can output accurate approximate 

recommendations. However, the accuracy is derived from the dataset’s probability distribution 

accuracy. When the probability distribution is known or is estimated accurately, the 

recommendations are more accurate. 

With respect to the aggregation strategy, we showed that the Majority strategy does not 

always outperform the Least Misery strategy. It is reasonable to assume that the strategy will be 

set according to the users’ preferences and not according to the data. We demonstrated the 

feasibility of choosing either strategy on the datasets. 
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Chapter 7  

Conclusions and Future Work 

In this chapter we summarize and discuss our work, and finally offer directions for future 

research. 

7.1 Summary 

This study addresses the issue of preference elicitation for group decision making using 

voting rules. We presented a general, domain-free framework for preference management for 

groups, where the goal is to minimize the communication cost. We studied preference elicitation 

under the non-ranking (Range) and ranking (Borda) voting protocols. The goal of the preference 

elicitation process is to return a winning item while minimizing the communication costs. 

We suggested an interactive incremental framework whose process consists of querying 

one member of the group at each step for either her rating for one item (user-item query) or for 

her preference between two items (user-item-item query). At each step the users’ preference 

distributions are updated and a new query is found. We have suggested two approaches for 

heuristics that determine what query to select next (i.e., which group member to query regarding 

what item or items). One approach focuses on reducing the entropy of the winner in the system. 

The rationale behind this proposal is that reducing the entropy quickly will lead to the winner 

using a minimal amount of queries. The other approach focuses on maximizing the score of the 

item with the highest current score; under the same rational that expects to discover the winner 

item in minimal time.  Both heuristics rely on probabilistic rating distributions. We have shown 

how these distributions can be estimated. The rating distributions are updated iteratively, 

allowing their accuracy to increase over time. 

 Although outputting a definite winner is the most accurate result, we also examined the 

effort-accuracy tradeoff and aggregation strategies for group preference elicitation. First, we 
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suggested shortening the preference elicitation process by returning 𝑘 alternatives to the group 

members rather than returning just one item. Users might prefer to receive a few options rather 

than just one; so that if a chosen option is unavailable they can switch to another option without 

triggering more rounds of preference elicitation. Secondly, we suggested computing approximate 

winner or winners with some confidence level. On one hand, receiving an approximate winner 

item is less accurate than a definite winner, but on the other hand it further reduces the 

communication cost. Lastly, we suggested considering the aggregation strategy when combining 

the user preferences. We have shown that the aggregation strategy affects the communication 

cost required of the preference elicitation and compared two state-of-the-art aggregation 

strategies: the Majority based strategy and the Least Misery strategy. 

We demonstrated the effectiveness of our framework by evaluating the heuristics on four 

real-world datasets. In addition, we examined possible effects of various data characteristics 

utilizing simulated datasets and manipulating their data parameters. 

7.2 Discussion 

We briefly present our main findings, and move on to describe their relations with the 

overlapping fields of social choice and of recommender systems. Lastly, we discuss the 

limitations of our work.  

7.2.1 Main Findings 

The main empirical findings were summarized within the respective chapters that 

describe: Preference elicitation using the Range voting protocol (Chapter 4), Preference 

elicitation using the Borda voting iterative voting (Chapter 5) and tradeoffs and aggregation 

strategies in preference elicitation (Chapter 6).  The main empirical and theoretical findings are 

the following: 

(a) Preference elicitation using the Range voting protocol: We have shown that 

heuristics can reduce the communication cost required for voting under the Range 

protocol by more than 50%. Different heuristics perform better under different 

settings: the DIG heuristic performs better when the voter-item distributions are not 

skewed towards a specific winner. The ES heuristic outperforms DIG when some 

pattern is found in the data. Furthermore, we have shown that updating the voter-item 

distributions increases the heuristics performance. The creation of the voter-item 
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distribution is more accurate when created from a smaller (100x100) set of historical 

ratings than from a bigger set (1000x1000) of historical ratings.   

(b) Preference elicitation using the Borda voting protocol: We have shown that the 

expected score for Borda heuristic (ESB) reduces the communication cost by more 

than 60%, since it focuses directly on finding a winner. The entropy based method for 

Borda (IGB) fails to reduce communication. The voter permutations probabilistic 

model cannot scale up, thus being a major disadvantage. 

(c) Tradeoffs and aggregation strategies in preference elicitation: We have 

demonstrated that selecting the suitable aggregation strategy and relaxing the 

termination condition can reduce communication cost by up to 90%. When the 

termination conditions are relaxed, the entropy-based approximation method (DIG) 

takes the lead over the expected maximum heuristic (ES). We illustrated that DIG and 

ES can output accurate approximate recommendations. However, the accuracy is 

derived from the dataset’s probability distribution accuracy. When the probability 

distribution is known or is estimated accurately, the winner approximation is more 

accurate. 

To conclude, we have examined voting elicitation under the Range and Borda voting 

protocols, representing rating and ranking of items. Rating items is a task users are familiar with; 

it is used abundantly, websites being one example. However ranking items might be easier for 

users, specifically by the method we present where two items are presented to the user and the 

user states her preference between the two. Our framework allows the system administrator or 

the group members themselves to choose which task they prefer, rating or ranking, and the 

voting protocol is determined accordingly. 

Our framework is domain free and can be used in any domain where users need to reach 

a joint decision. We have evaluated our framework on real-world datasets and on simulated 

datasets. The simulated datasets are important since they allow us to manipulate the dataset 

parameters and to examine data with different skewness of item preferences and thus simulate 

different circumstances. When running the framework on a new domain, if historical data exists 

(such as users’ ratings to other items), we can find the skewness pattern and use the heuristic that 

best fits the data. For example, when given a new domain and a request to use ratings (and not 

rankings), if we see that the data is uniformly skewed, we will suggest to use the DIG heuristic.  
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7.2.2 Impact on Social choice and on Recommender Systems 

 Our findings append to a growing body of literature on preference elicitation using 

voting rules (Lu and Boutilier 2011; Kalech et al. 2011). Our research adds a unique contribution 

to preference elicitation in social choice in a number of perspectives that have previously been 

overlooked. First, we have studied preference elicitation using two different protocols: a ranking 

protocol (represented by the Borda protocol) and a non-ranking protocol (represented by the 

Range protocol). Previous research has focused only on the Borda protocol. However, ranking is 

worth considering since it is abundant and often used by different applications such as 

netflix.com and booking.com.  Secondly, we have suggested various methods for reducing the 

amount of queries. In addition to heuristics which offer a necessary winner item, we have 

suggested (a) to return a list of top-𝑘 items where one of them is the necessary winner; and (b) to 

approximate the necessary winners or top-𝑘 items. These methods offer a decrease in the 

required amount of queries and have not been previously suggested. Finally, we examined the 

effect of aggregating the preferences in other strategies but the Majority based strategy. The 

Least Misery strategy is often needed in real-life scenarios yet has previously been overlooked 

(e.g., a group looking for a dining location may wish to avoid a fish restaurant if one of the group 

members dislikes fish).  

From the recommender systems domain perspective, this study suggests a framework for 

preference elicitation that can be used as a second step procedure in group recommenders: to 

narrow down the predicted items list and present the group of users with definite or approximate 

necessary winners. Group recommender systems often focus on improving the systems accuracy 

and usually return a prediction to the group and not definite winning items. A group 

recommender system can process thousands of candidate items and return a list of top-𝑁 items 

predicted as the most suitable to the group. We can enhance this by eliciting user preferences on 

these 𝑁 items and return a definite winner or top-𝑘 items (𝑘 ≤ 𝑁)  where one of the items is the 

winner or an approximate winner with some confidence level. This contribution may add to the 

usability of a group recommender system offering a platform that enables reaching a joint 

decision with minimal effort.  
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7.2.3 Limitations 

As a direct consequence of this study, we encountered a number of limitations, which 

need to be considered:   

a. Initial assumptions – this study assumes that the user always provides an 

answer to the query, independence of rating and equal communication cost. 

These limitations can be overcome by tweaking the model. For example, it is 

possible to model the probability that the user will answer the query. For a 

small number of voters and items it is possible to consider dependent 

probabilities. The communication cost be modeled as a weighted vector and 

added to the model.  

b. Distribution accuracy - under both protocols, probabilistic data regarding the 

users’ preferences were computed. For the Range protocol, voter-item 

distributions were computed. The accuracy of the distributions was found to 

influence the performance of the heuristics. The approximated distribution for 

the Netflix dataset was not accurate, as discussed in the evaluation section in 

Chapter 4. This limitation can be overcome by investing more time in 

researching ways to consider rating bias. However this subject was out of the 

scope of our research. 

c. Model scaling - for the Borda voting, perhaps the main disadvantage of the 

presented framework is its lack of scalability, due to the need to hold a 

probabilistic model of all order permutations of items. Therefore while the 

number of voters can be increased, the number of items cannot be increased 

beyond 10 using standard computational power. This limitation can be partly 

overcome by relaxing the need to hold all permutations, thus trading off 

accuracy for less complexity.  As discussed in section 5.2, we followed 

previous research and chose to hold all permutations in order to receive an 

accurate model. 

d. Other aggregation strategies - the current study examined the two aggregation 

strategies most common in the literature. Extension to other available 

aggregation strategies does not require a fundamental change since the 

heuristics and the model do not change. The heuristics performance under 
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different strategies can be analyzed, but this also is out of the scope of our 

research. 

e. Other voting protocols - the current study examined two voting protocols. 

Extending the study to other voting protocols is pretty straight forward since 

the only difference is the way the maximum and minimum score is computed, 

as discussed in Chapter 3. 

 

7.3 Future Work 

Further research might be conducted in order to address the limitations listed above, as 

well as other directions: 

a. Distribution accuracy – the more accurate the initial distribution is, the fewer 

queries are needed in order to find a winner. We expect that further improving the 

accuracy of the Range protocol voter-item distribution, will lead to a decrease in 

the communication costs and therefore worthy of investigation. With regard to the 

Borda protocol, relaxing the accuracy of the distribution (i.e., a relaxation in the 

need to hold all permutations), will allow us to scale up the number of items, the 

tradeoff being an increase in the communication costs.  

b. Bias in user feedback – in this work we followed (Koren and Sill2011) and 

corrected bias in user ratings when computing the rating distributions (section 

4.2). However, this does not cover all possible bias. It has been shown that users 

have different rating patterns (Kuflik et al. 2012), and further research can 

hopefully plan and integrate a domain-free algorithm that considers user rating 

patterns. 

c. Other aggregation strategies – different aggregation strategies are used for 

different purposes in the recommender systems domain. Investigating them could 

be of value. 

d. Social networks – instead of deriving the probability distributions from historical 

data, the distributions can be computed from the social network to which the user 

belongs. Social networks typically demonstrate homophily, which is the tendency 

of individuals to bond with similar others. Hence it is probable that connected 
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individuals would share similar preferences. This phenomenon is often expressed 

in the phrase "birds of a feather flock together". Thus we assume that an 

individual's preferences may be derived from the social network topology. 

e. User-study – the framework we suggested can be implemented as a real system. 

Then, a user study can be conducted, and the user satisfaction can be evaluated. 

f. Approximations and the Borda voting protocol – this study presented winner 

approximations for the Range voting protocol. Approximations for the Borda 

protocol should be defined and evaluated in future research. 
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Appendix 

An Example for the Computation of the Probabilistic Voter Rating 

Distribution Model 

The following is a step by step illustration of the probabilistic voter distribution model 

presented in section 4.2, using a running example. Consider the ratings given in Table 7 in 

section 4.2. The delta ratings (obtained using eq.4.4) are shown in Table 14. First, we compute 

voter to voter similarity using Cosine similarity (eq.4.5). The results are shown in Table 15. 

Next, we compute predicted ratings according to eq.4.6 (Table 10). Next, the similarities are 

aggregated into buckets according to their ratings (Table 17). For example, let us examine the 

aggregation for 𝑣1 and 𝑐1. In the first line of Table 10 we can see that the pair 𝑣1. 𝑐1 has no 

predicted rating of 𝑑𝑔 = 1. There are three rounded predictions of 𝑑𝑔 = 2; when the neighbor 

voters are: 𝑣1, 𝑣2, 𝑢2, 𝑢6. The corresponding similarities (i.e., v1 with each of these neighbors) in 

Table 15 are aggregated: 1 + 0.266 + 0.552 + 0.369. The result is updated in line one in 

column “2” (Table 17). Finally, we convert the results into a probability distribution such that 

each row sums up to 1 thus completing the computation of the initial voter-item rating 

distributions (Table 18). Computation of bias-free behavior can be achieved by applying 

alternative methods; however, we leave this to future research.  

The voter-item distributions are dynamic: they change as new information is revealed. 

When a voter submits a rating on an item, the voter-item probability distribution is updated by 

calculating only the changes of the relevant places. Furthermore, a new rating contains valuable 

information which affects not only the user submitting the rating, but also the probability 

distribution of other voters for the same item.  
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Table 14: Bias free behavior according to eq.4.4 

 
 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒  𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔 

𝒗𝟏 0 0 0 -0.15 2.45 2.45 2.45 1.35 -0.95 1.15 

𝒗𝟐 0 0 0 0.85 2.45 2.45 2.45 -0.65 2.05 -0.85 

𝒗𝟑 0 0 0 3.15 -1.25 0.75 1.75 1.65 0.35 1.45 

𝒗𝟒 0 0 0 3.05 1.65 -0.35 0.65 0.55 1.25 1.35 

𝒖𝟏 0.95 -0.38333 0.283333 1.05 -0.35 -1.35 -1.35 0.55 0.25 0.35 

𝒖𝟐 -1.05 0.616667 -1.71667 -1.95 0.65 1.65 1.65 -0.45 0.25 0.35 

𝒖𝟑 -2.15 -0.48333 1.183333 0.95 -0.45 -0.45 -0.45 0.45 1.15 0.25 

𝒖𝟒 0.15 -0.18333 -0.51667 -1.75 -0.15 -0.15 -0.15 0.75 1.45 0.55 

𝒖𝟓 1.15 -0.18333 -0.51667 0.25 -0.15 -0.15 -1.15 -0.25 0.45 0.55 

𝒖𝟔 0.45 0.116667 0.783333 -0.45 0.15 0.15 -0.85 1.05 -1.25 -0.15 

 

 

 

Table 15: Voter-to-voter similarity according to eq.4.5 

 

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒  𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔 

𝒗𝟏 1 0.266 -0.315 -0.53 -0.679 0.552 -0.519 -0.146 -0.509 0.369 

𝒗𝟐 0.266 1 -0.453 -0.174 -0.625 0.437 -0.209 -0.134 -0.325 -0.436 

𝒗𝟑 -0.315 -0.453 1 0.304 0.311 -0.403 0.236 -0.439 -0.032 -0.084 

𝒗𝟒 -0.53 -0.174 0.304 1 0.619 -0.614 0.309 -0.493 0.281 -0.28 
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Table 16: Predicted rating according to eq.4.6 

 

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒  𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔 

𝒗𝟏. 𝒄𝟏 2.25 2.25 0 0 0 1.64 0 0 0 2.39 

𝒗𝟏. 𝒄𝟐 3.58 3.58 0 0 0 3.89 0 0 0 3.61 

𝒗𝟏. 𝒄𝟑 2.92 2.92 0 0 0 1.94 0 0 0 3.18 

𝒗𝟐. 𝒄𝟏 2.25 2.25 0 0 0 1.77 0 0 0 0 

𝒗𝟐. 𝒄𝟐 3.58 3.58 0 0 0 3.83 0 0 0 0 

𝒗𝟐. 𝒄𝟑 2.92 2.92 0 0 0 2.14 0 0 0 0 

𝒗𝟑. 𝒄𝟏 0 0 1.95 1.95 2.23 0 1.43 0 0 0 

𝒗𝟑. 𝒄𝟐 0 0 3.28 3.28 3.15 0 3.16 0 0 0 

𝒗𝟑. 𝒄𝟑 0 0 2.62 2.62 2.69 0 2.88 0 0 0 

𝒗𝟒. 𝒄𝟏 0 0 2.05 2.05 2.6 0 1.37 0 2.36 0 

𝒗𝟒. 𝒄𝟐 0 0 3.38 3.38 3.11 0 3.22 0 3.32 0 

𝒗𝟒. 𝒄𝟑 0 0 2.72 2.72 2.86 0 3.06 0 2.56 0 

 

Table 17: Aggregated voter similarities 

  1 2 3 4 5 

𝒗𝟏. 𝒄𝟏 0 2.186 0 0 0 

𝒗𝟏. 𝒄𝟐 0 0 0 2.186 0 

𝒗𝟏. 𝒄𝟑 0 0.552 1.634 0 0 

𝒗𝟐. 𝒄𝟏 0 1.702 0 0 0 

𝒗𝟐. 𝒄𝟐 0 0 0 1.702 0 

𝒗𝟐. 𝒄𝟑 0 0.437 1.266 0 0 

𝒗𝟑. 𝒄𝟏 0.236 1.615 0 0 0 

𝒗𝟑. 𝒄𝟐 0 0 1.851 0 0 

𝒗𝟑. 𝒄𝟑 0 0 1.851 0 0 

𝒗𝟒. 𝒄𝟏 0.309 1.585 0.619 0 0 

𝒗𝟒. 𝒄𝟐 0 0 2.514 0 0 

𝒗𝟒. 𝒄𝟑 0 0 2.514 0 0 
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Table 18: The normalized distribution 

  1 2 3 4 5 

𝒗𝟏. 𝒄𝟏 0.139 0.443 0.139 0.139 0.139 

𝒗𝟏. 𝒄𝟐 0.139 0.139 0.139 0.443 0.139 

𝒗𝟏. 𝒄𝟑 0.139 0.216 0.367 0.139 0.139 

𝒗𝟐. 𝒄𝟏 0.149 0.403 0.149 0.149 0.149 

𝒗𝟐. 𝒄𝟐 0.149 0.149 0.149 0.403 0.149 

𝒗𝟐. 𝒄𝟑 0.149 0.214 0.338 0.149 0.149 

𝒗𝟑. 𝒄𝟏 0.18 0.382 0.146 0.146 0.146 

𝒗𝟑. 𝒄𝟐 0.146 0.146 0.416 0.146 0.146 

𝒗𝟑. 𝒄𝟑 0.146 0.146 0.416 0.146 0.146 

𝒗𝟒. 𝒄𝟏 0.174 0.344 0.216 0.133 0.133 

𝒗𝟒. 𝒄𝟐 0.133 0.133 0.468 0.133 0.133 

𝒗𝟒. 𝒄𝟑 0.133 0.133 0.468 0.133 0.133 

 

An Example of the Computation of the Item Winning Probability 

The following is a step by step illustration of item winning probability presented in 

section 4.3, using a running example. The example is based on the voting distributions (VD’s) 

presented in Table 7; note that: 𝑃𝑟(𝑞3
1 = 3) = 0.4,  𝑃𝑟(𝑞3

1 = 2) = 0.3, 𝑃𝑟(𝑞3
1 = 1) = 0.3. 

We begin by calculating 𝑃𝑟 (𝑐𝑗 = 𝑠). The results are presented in Table 19. The 

calculation involves a dynamic programming algorithm where each row is calculated using the 

results of the row above it. For instance, to calculate 𝑃𝑟(𝑐1 = 6) based on the ratings of voters 

𝑣1, 𝑣2, 𝑣3, we use the probabilities that were computed in columns 3-5, line 2:  𝑃𝑟(𝑐1 = 6) =

0.14 ∙ 𝑃𝑟(𝑞3
1 = 3) + 0.36 ∙ 𝑃𝑟(𝑞3

1 = 2) + 0.24 ∙ 𝑃𝑟(𝑞3
1 = 1) = 0.236. This result is bolded in 

Table 19. Next, we calculate 𝑃𝑟 (𝑐1 ≤ 𝑠) by aggregating the results of the cells in row 3 in Table 

19. For item 𝑐2, we aggregate the results of row 6. This is presented in Table 20. 

The probability that item  𝑐1  is a winner with a certain aggregated rating s is presented in 

Table 21. In our example of only two items, the probability of c1 to win is: 𝑃𝑟(𝑁𝑊 = 𝑐1) =

𝑃𝑟(𝑐1 = 𝑠)⋀𝑃𝑟 (𝑐2 ≤ 𝑠). For instance, the probability that 𝑐1 is the winner with an aggregated 
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rating of 5 is equal to the probability that its aggregated rating is 5 and the aggregated rating of 

𝑐2  is at most 5: 0.182*0.492=0.089. Next, we aggregate the item’s probability to win over all 

possible ratings s. This is demonstrated in the last column of Table 21 (i.e., 𝑃𝑟(𝑁𝑊 = 𝑐1) =

0.729). Ties are broken according to the item positions in an increasing order of all items.  

 

Table 19: The probability that an item has a score of s 

Item Voters 𝑠 = 3 𝑠 = 4 𝑠 = 5 𝑠 = 6 𝑠 = 7 𝑠 = 8 𝑠 = 9 

𝑃𝑟(𝑐1 = 𝑠) 

𝑣1  0.6 0 0 0 0 0 0 

𝑣1, 𝑣2  0.14 0.36 0.24 0.18 0 0 0 

𝑣1, 𝑣2, 𝑣3  0.024 0.066 0.182 0.236 0.27 0.15 0.072 

𝑃𝑟(𝑐2 = 𝑠) 

 

𝑣1  0.6 0 0 0 0 0 0 

𝑣1, 𝑣2  0.14 0.4 0.18 0.18 0 0 0 

𝑣1, 𝑣2, 𝑣3  0.07 0.108 0.314 0.194 0.224 0.054 0.036 

 

Table 20: The probability that an item has a score of at most s 

Item Voters 𝑠 = 3 𝑠 = 4 𝑠 = 5 𝑠 = 6 𝑠 = 7 𝑠 = 8 𝑠 = 9 

Pr (𝑐1 ≤ 𝑠)  𝑣1, 𝑣2, 𝑣3 0.024 0.09 0.272 0.508 0.778 0.928 1 

Pr (𝑐2 ≤ 𝑠) 𝑣1, 𝑣2, 𝑣3 0.07 0.178 0.492 0.686 0.91 0.964 1 

 

Table 21: The winning probability of an item 

Item Voters S=3 S=4 S=5 S=6 S=7 S=8 S=9 Total 

  Pr (𝑁𝑊 =  𝑐1)  v1, v2, v3 0.001 0.011 0.089 0.162 0.245 0.144 0.072 0.729 

Pr (𝑁𝑊 =  𝑐2) v1, v2, v3 0 0.003 0.028 0.053 0.114 0.042 0.033 0.273 



 

 

 תקציר

 

המחקר הזה מתמקד בנושא של חילוץ העדפות עבור קבלת החלטות לקבוצה בעזרת חוקי הצבעות. 

אנו מציעים  מסגרת כללית, רב תחומית לחילוץ העדפות, כאשר המטרה היא למזער את התקשורת עם 

 המשתמשים. אנו מציגים יוריסטיקות מקוריות ומראים כיצד הן פועלות תחת פרוטוקלי הצבה של דירוגים

ושל מדרגים, בפרט תחת הפרוטקולים "ריינג'" ו"בורדה". אנו מציעים מסגרת אינטרקטיבית ואינקרמנטלית; 

בכל שלב משתמש אחד מתושאל לבי הדירוג שלו לפריט אחד או לגבי המרדג שלו לשני פריטים. אנו מציעים 

לתשאל לגבי איזה פריט או שתי גישות ליוריסטיקות שקובעות איזו שאילתה היא הבאה בתור )כלומר את מי 

היוריסטיקה השנייה   אילו פריטים(. יוריסטיקה אחת מחשבת את רווח המידע של כל שאילתה המועמדת.

משתמשת בהתפלגות ההסתברותית של העדפות המשתמשים על מנת לבחור את הפריט שהכי סביר שיזכה. 

ד ניתן להעריך התפלגות זו. ההתפלגות שתי היוריסטיקות מסתמכות על התפלגות הדירוגים. אנו מראים כיצ

 מתעדכנת בצורה איטרטיבית, כך שהדיוק של ההתפלגות עולה עם הזמן.

למרות שתוצאה של פריט אחד שהוא המנצח הבטוח היא התוצאה המדויקת ביותר, אנו מסתכלים 

מציעים לסיים  גם על שקלול תמורות שבין מאמץ לדיוק ועל אסטרטגיות קיבוץ בחילוץ העדפות. ראשית, אנו

פריטים כאשר אחד מהם הוא הפריט מנצח, במקום  𝑘את חילוץ ההעדפות מוקדם יותר על ידי החזרה של 

להחזיר פריט מנצח אחד בלבד. שנית, אנו מציעים להעריך את המנצח או המנצחים המשוערים ברמת בטחון 

וער מוריד את עלות התקשורת עם מסויימת.  מצד אחד, מנצח משוער הוא פחות מדיוק, מצד שני, מנצח מש

המשתמשים. לבסוף, אנו מציעים להתחשב באסטרטגיית הקיבוץ כאשר מחברים את העדפות המשתמשים. 

אנו מראים שאסטרטיגיית הקיבוץ משפיעה על עלות התקשורת עם המשתמשים ואנו משווים שתי 

ילות של המסגרת שלנו על ידי בחינה אסטרטגיות נפוצות: "מג'וריטי" ו"ליסט מיסרי". אנו מדגימים את היע

של היוריסטיקות על ארבעה בסיסי נתונים אמתיים שונים. כדי לבחון את ההשפעות השונות של המידע אנו 

 משתמשים גם בבסיסי נתונים מסומלצים בהם ניתן לשנות את הפרמטרים של המידע. 

 

 מילות מפתח: מערכות המלצה, חילוץ העדפות, חוקי הצבעות
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