
i

Preference Elicitation for Group Decisions Using Voting Theory

Thesis submitted in partial fulfillment
of the requirements for the degree of

“DOCTOR OF PHILOSOPHY”

by

Lihi Dery

Submitted to the Senate of
Ben-Gurion University of the Negev

July 2014

Beer-Sheva

ii

This work was carried out under the supervision of

Dr. Meir Kalech

Prof. Lior Rokach

Prof. Bracha Shapira

In the Department of Information Systems Engineering

Faculty of Engineering Sciences

iii

Acknowledgments

I began working with Prof. Lior Rokach when I was at my last year of undergraduate

studies. This was enough to intrigue me to stay. Throughout the years I was often astounded by

his quick thinking and never-ending scientific optimism which often made me leave his office

muttering to myself: why didn’t I think about it?”. Prof. Bracha Shapira, the head of the

Information Systems Department has been my feminine role model, showing me that research

and motherhood do not necessarily contradict. Dr. Meir Kalech was always there when I needed

him. Through long periods of this research it was only his encouragement, support and advice

that kept me going. I especially enjoyed our discussions around paper deadlines.

Prof. Daniel Berry, from the University of Waterloo, changed my perspective and

motivated me with his presentation: “Advice for finishing that Damn PhD". I thank him for

caring enough to write and lecture on this important subject.

For some reason, students are not usually mentioned in acknowledgments. However, for

me teaching served as a constant reminder of the lively side of higher education. I especially

thank my project students: Inon Golan, Eli Ponyatovski and Aviad Carmeli for their contribution

of ideas and data.

Friends in grad school shared this journey with me, were and still are always there for

support, reminding me that I am not alone on this path.

I could not have managed without my parents who changed their plans and gave up

activities so that I could meet (yet another) deadline. Their dedication to my kids and therefore to

my PhD is one of the reasons I can now write these acknowledgments.

My beloved husband and partner in life kept me focused on what’s important. My kids,

born into this PhD, are the true scientists: they invent research questions, build hypothesis,

experiment with the world and arrive at amazing conclusions. They inspire me. It will take some

years before they learn English, or even learn to read and write and I hope that when they will

finally read this it will make them proud of their mom.

Advisers, colleagues, students, friends and family: I thank you all. You are all part of this

work. I could not have done it without you.

iv

In memory of my grandma

Ruth Naamani (1923 - 2012)

v

Abstract

 This study addresses the issue of preference elicitation for group decision making using

voting rules. We propose a general, domain-free framework for preference management, where

the goal is to minimize the communication cost with the users. We introduce novel heuristics and

show how they can operate under rating and ranking voting protocols, specifically under the

Range and the Borda protocols. We suggest an interactive incremental framework where at each

step one user is queried for either her rating for one item or for her ranking order of two items.

We propose two approaches for heuristics that determine what query to select next (i.e., whom to

query regarding what item or items). One heuristic computes the information gain of each

potential query. The other heuristic uses the probability distribution of the voters’ preferences to

select the candidate most likely to win and the voter that is expected to maximize the score of

that item. Both heuristics rely on probabilistic rating distributions. We show how these

distributions can be estimated. The rating distributions are updated iteratively, allowing their

accuracy to increase over time.

Although outputting a definite winner is the most accurate result, we also examine

possible effort-accuracy tradeoffs and aggregation strategies in preference elicitation. First, we

suggest terminating preference elicitation sooner by returning 𝑘 alternatives to the group

members where one of the alternatives is the winner, rather than returning just one winner item.

Second, we suggest computing approximate winner or winners with some confidence level. On

one hand, receiving an approximate winner item is less accurate; on the other hand, it further

reduces the communication cost. Finally, we suggest considering the aggregation strategy when

combining the user preferences. We show that the aggregation strategy affects the

communication cost required of the preference elicitation and we compare two state-of-the-art

aggregation strategies: the Majority based strategy and the Least Misery strategy. We

demonstrate the effectiveness of our framework by evaluating the different heuristics on four

real-world datasets. In order to examine the possible effect of different data characteristics we

also use simulated datasets were we can play with the data parameters.

Keywords: Group recommender systems, preference elicitation, multi-agent voting

vi

Table of Contents

Introduction .. 1

1.1 Motivation ... 2

1.2 Overview ... 3

1.2.1 Heuristics for Minimizing Preference Elicitation Costs 4

1.2.2 Approximations for Further Reducing Preference Elicitation 5

1.2.3 Aggregation Strategies .. 6

1.2.4 Evaluation ... 6

1.2.5 Assumptions .. 7

1.3 Main Contribution and Dissertation Overview ... 7

1.4 Publications ... 11

Related works ...12

2.1 Preference Elicitation in Recommender Systems ... 12

2.1.1 Personal Recommender Systems .. 12

2.1.2 Group Recommender Systems .. 14

2.2 Preference Elicitation Using Voting Theory ... 17

2.3 Aggregation Strategies .. 20

2.4 Drawbacks of previous research ... 21

Problem Formulation ..24

3.1 The Minimal Cost Problem ... 25

3.1.1 MDP Formulation ... 27

3.2 Voting Protocols ... 28

3.3 The Evaluation Procedure ... 29

3.3.1 Metrics .. 29

3.3.2 Statistical Test ... 30

3.3.3 Datasets ... 30

Preference Elicitation Using the Range Voting Protocol36

4.1 The Necessary Winner .. 37

4.2 Probabilistic Voter Ratings Distribution Model ... 38

vii

4.3 Item Winning Probability Using Dynamic Programming 43

4.4 Information Gain Heuristic for Range Voting .. 44

4.5 Highest Expected Score Heuristic for Range Voting 46

4.6 Evaluation ... 49

4.6.1 Simulated Data .. 49

4.6.2 The Netflix prize dataset ... 54

4.6.3 The Sushi dataset .. 59

4.6.4 The User Study Datasets ... 59

4.7 Discussion ... 61

Preference Elicitation using the Borda Voting Protocol64

5.1 The Necessary Winner .. 65

5.2 Probabilistic Voter Permutations Distribution Model 66

5.3 Item Winning Probability Using Monte Carlo Sampling 67

5.4 Information Gain Heuristic for Borda Voting .. 68

5.5 Highest Expected Score Heuristic for Borda Voting .. 69

5.6 Evaluation ... 71

5.7 Discussion ... 73

Tradeoffs and Aggregation Strategies in Preference Elicitation75

6.1 Aggregation Strategies .. 75

6.2 Termination Conditions .. 76

6.2.1 Selection Among top-k Alternatives ... 78

6.2.2 Winner Approximation ... 79

6.3 Evaluation ... 81

6.3.1 Selection of top-𝒌 Items.. 82

6.3.2 Approximation .. 87

6.3.3 Aggregation... 93

6.4 Discussion ... 101

Conclusions and Future work ..12

7.1 Summary ... 104

7.2 Discussion ... 105

7.2.1 Main Findings ... 105

viii

7.2.2 Impact on Social choice and on Recommender Systems............................ 107

7.2.3 Limitations .. 108

7.3 Future Work .. 109

Biblography ..111

Appendix ...119

ix

List of Figures

Figure 1: Model description .. 25

Figure 2: One query execution round .. 26

Figure 3: The student rate pubs&clubs and restaurants .. 35

Figure 4: Rating for two clubs... 35

Figure 5: The student can see what places need to be rated .. 35

Figure 6: A movie scenario example... 40

Figure 7: Pseudo code for computing the initial probability distribution 42

Figure 8: Algorithm 1 - Dynamic Information Gain heuristic .. 45

Figure 9: Algorithm 2 – Highest Expected Score heuristic .. 47

Figure 10: 15x20 dataset with one skewed item and UNIFORM skew 50

Figure 11: 15x20 dataset with one skewed item and LOTTERY skew 50

Figure 12: The skewness of 15x20 using (a) LOTTERY and (b) UNIFORM 51

Figure 13: One item with uniform skewness ... 52

Figure 14: Heuristics runtimes .. 53

Figure 15: Increasing voter amount with UNIFORM skewness for one specific item 54

Figure 16: Increasing item amount with UNIFORM skewness for one specific item 54

Figure 17: DIG algorithm on the “SMALL” rating distribution, with and without updates... 57

Figure 18: DIG algorithm with UPDATE on BIG and SMALL .. 57

Figure 19: ES algorithm on the “SMALL” rating distribution, with and without updates 57

Figure 20: ES algorithm with UPDATE on BIG and SMALL ... 57

Figure 21: Skewness when the distributions are created in the SMALL or BIG techniques .. 58

Figure 22: Comparison of algorithms on the Sushi dataset .. 59

Figure 23: Comparison of algorithms on the Pubs dataset ... 60

Figure 24: Comparison of algorithms on the Restaurants dataset ... 61

Figure 25: Skewness of the distributions for datasets: (a) Pubs and (b) Restaurants.............. 61

Figure 26: Pseudo code for Item Winning Probability Algorithm in the Borda protocol 68

Figure 27: Comparison of algorithms on the Netflix dataset .. 72

Figure 28: Comparison of algorithms on the Sushi dataset .. 72

Figure 29: Runtime on the Netflix dataset .. 73

x

Figure 30: Runtime on the Sushi dataset ... 73

Figure 31: Heuristics comparison for top-k with skewness level (-6)..................................... 84

Figure 32: Heuristics comparison for top-k with skewness level (0) 84

Figure 33: Heuristics comparison for top-k with skewness level (6) 85

Figure 34: Heuristics comparison for top-k on the Netflix dataset ... 85

Figure 35: Heuristics comparison for top-k on the Sushi dataset .. 86

Figure 36: Heuristics comparison for top-k on the Pubs dataset ... 86

Figure 37: Heuristics comparison for top-k on the Restaurants dataset 87

Figure 38: Approximations with simulated data with skewness (0) 88

Figure 39: Approximations on the Netflix dataset .. 89

Figure 40: Approximations on the Sushi dataset .. 89

Figure 41: Approximations on the Pubs dataset.. 90

Figure 42: Approximations on the Restaurants dataset ... 90

Figure 43: Simulated data: the probability the winner is within top-k 91

Figure 44: Netflix data: the probability the winner is within top-k ... 91

Figure 45: Sushi data - probability winner is within top-k .. 92

Figure 46: DIG with Majority (MAJ) strategy different skewness levels 94

Figure 47: DIG with Least Misery (LM) strategy different skewness levels 94

Figure 48: ES with Majority (MAJ) strategy different skewness levels 95

Figure 49: ES with Least Misery (LM) strategy different skewness levels 95

Figure 50: DIG with MAJ and DIG with LM on .. 96

Figure 51: Skewness 0... 97

Figure 52: Netflix dataset: strategies comparison, top-k ... 97

Figure 53: Sushi dataset: strategies comparison, top-k ... 98

Figure 54: Pubs dataset: strategies comparison, top-k .. 98

Figure 55: Restaurants dataset: strategies comparison, top-k ... 99

Figure 56: Netflix dataset: strategies comparison, approximation .. 100

Figure 57: Sushi dataset: strategies comparison, approximation .. 100

Figure 58: Pubs dataset: Strategies comparison, approximation... 101

Figure 59: Restaurants dataset: strategies comparison, approximation 101

xi

List of Tables

Table 1: Schematic overview .. 10

Table 2: Our model according to the group recommender systems categories 15

Table 3: Proposal of additional classification categories .. 17

Table 4: Preference elicitation in recommender systems and social choice 23

Table 5: Skewness levels... 32

Table 6: File amount for each experiment size ... 33

Table 7: Rating distribution of the voters in the set 𝑉 = {𝑣1, 𝑣2, 𝑣3} 38

Table 8: The Entropy Function H(NW) .. 46

Table 9: Information Gain ... 46

Table 10: Average percentage of dataset exhaustion under different settings 58

Table 11: Voter permutation distribution for 3 voters and 3 items ... 66

Table 12: Three users and their preferences for three items ... 76

Table 13: Confidence Level Test .. 93

Table 14: Bias free behavior according to eq.4.4 .. 120

Table 15: Voter-to-voter similarity according to eq.4.5.. 120

Table 16: Predicted rating according to eq.4.6 .. 121

Table 17: Aggregated voter similarities .. 121

Table 18: The normalized distribution .. 122

Table 13: The probability that an item has a score of s... 123

Table 14: The probability that an item has a score of at most s .. 123

Table 15: The winning probability of an item... 123

1

Chapter 1

Introduction

Joint decisions are often required in common daily scenarios. For example, a group who

wishes to dine together may appreciate recommendations on relevant restaurants that fit their

joint preferences (Berkovsky and Freyne2010). Other examples include: a group of users

wishing to engage in a joint activity such as watching a movie (O’connor et al. 2002) , a TV

show (Yu et al. 2006; Masthoff2004; Senot et al. 2011), listening to music (McCarthy and

Anagnost1998), and travelling (McCarthy et al. 2006). In a different context, an acceptance

committee is required to reach a joint decision; the members need to decide which candidates to

choose for a graduate program out of many applicants (Xia and Conitzer2011).

When the group members’ preferences regarding the items are known, preference

elicitation is not required and some aggregation strategy (Masthoff2011) is used to compute the

item that best suites the group. However, often full preferences are not readily available for

different reasons. First, due to privacy concerns, even when available, full preference revelation

should be treated with caution. Second, it is sometimes impractical to collect complete

preferences due to the communication burden (Conitzer and Sandholm2005; Konczak and

Lang2005) or to voter limitations. Consider, for example a meeting scheduling application whose

purpose is to set a time for a conference (Kalech et al. 2011), or an application that recommends

movies, such as Netflix (www.netflix.com). It is impractical to expect the voters to provide their

preferences on all available options as there might be hundreds available. In this study we focus

on a preference elicitation model for a group of users.

2

1.1 Motivation

The motivation for this research is drawn from two domains: social choice (Brandt et al.

2013) and recommender systems (Resnick and Varian1997). Both domains assist users in

reaching a joint decision. Social choice originates in economics and political science and is

concerned with different aspects of aggregating the preferences of users, usually termed agents

or voters. In this study we use voters and users interchangeably. Recommender systems seek to

predict items to users. We are interested specifically in group recommender systems where items

are predicted to a group of users.

Preference elicitation is addressed by both of these fields. In social choice, preference

elicitation is essential when not enough information is available in order to reach a verdict (i.e., a

winning item according to some voting protocol). However, in recommender systems, preference

elicitation is viewed as a measure for improving the prediction accuracy.

To illustrate a relevant social choice scenario, we return to the scenario of the faculty

acceptance committee
1
 (Xia and Conitzer2011). A committee assembles in order to select a fixed

number of candidates out of a field of hundreds for a Ph.D. program. Ideally, a group decision

requires each committee member to express his or her opinion about each of the applicants; then

a joint decision is reached based on all opinions. As their time is limited, the committee members

do not have the resources for such a process. Instead, each member reads a portion of the total

requests and then grades her assigned applicant files on a scale from 1 to 5. Applicants in the

high and low range of scores do not require any special care as they are immediately accepted or

declined; it is those who receive an average rating which present a problem. Their files need to

be reread by other members in order to receive additional opinions. The question is then, which

committee member should be assigned which file to read so that a decision will be reached in

optimal time. Assuming we know the member’s previous grading pattern (e.g., members who

tend to grade high/low as opposed to members who give all candidates average scores), we can

define the member’s grading probability distribution. Then voter-item query pairs can be

selected: the voter being the committee member, the item being the applicant assigned to her for

grading and the query being a request for the voters rating for this item. By carefully selecting

specific voter-item query pairs, the interaction with the users can be reduced. The goal is to

1 This example is taken from a private discussion with Vincet Conitzer in 2011

3

reach a decision with partial information (i.e., to reduce the number of interactions with the

voters needed in order to reach a verdict).

To illustrate the relevance of our research to group recommendation, consider the

following: a group recommender system (GRS) can process 𝑁 items, where N might be very

large. For example, in the Netflix dataset 𝑁 ≅ 16,000 movie items. The GRS ranks the items

according to their predicted relevance to the group and then returns the top-ranked items. Note

that the items returned by the GRS are predicted items, and their relevance to the group depends

on the accuracy of the GRS. We propose to add a preference elicitation procedure that follows

the recommendation process and uses the predicted items as input. This enables us to enhance

the recommendation system since we are then able to return an item or items that certainly fit the

group’s preferences. Preference elicitation is the process of collecting the preferences from the

users. It would be impractical to suggest an elicitation process on large numbers of items (e.g.,

when 𝑁 = 16,000). Studies have shown that too much choice can be demotivating. Users are

more satisfied when presented with a single-digit number of options to choose from (Iyengar and

Lepper2000). Thus we suggest to narrow down the ranked list of 𝑁 items provided by a

recommender system, and to apply a preference elicitation procedure on the top-ranked items

only.

Preference elicitation requires time and effort so the goal is to stop the elicitation as soon

as possible. In the worst case for most voting protocols all the preferences are needed in order to

determine a winning item (i.e., an item that most certainly suits the group’s joint preferences)

(Conitzer and Sandholm2005). Nevertheless, in this research we show that in practice the

required information can be cut by more than 50%. Given partial preferences, it is possible to

define the set of the necessary winners (Konczak and Lang2005), i.e., items which must

necessarily win, as well as the set of possible winners, i.e., items which can still possibly win.

These definitions enable the elicitor to determine whether there is need of more information

concerning the voters’ preferences.

1.2 Overview

In this study we suggest a framework for efficient preference elicitation for joint group

decisions. We propose novel heuristics that aim at minimizing the preference elicitation costs

(i.e., the cost of communicating with the users). In addition, we investigate approaches for

4

managing the tradeoff between accuracy and elicitation reduction. Finally, we examine two

strategies for aggregating the users’ preferences in order to reach a verdict. To evaluate our

ideas, we have conducted experiments with real-world datasets as well as with simulated data.

The following sections provide an overview of the study and our underlying assumptions.

1.2.1 Heuristics for Minimizing Preference Elicitation Costs

 We introduce heuristics for preference elicitation. Computing the optimal minimal set of

queries required to determine a winner is computationally intractable due to the combinatorial

space of queries’ orders (Walsh2008). Therefore, we propose two heuristic approaches for

determining a winner. As we illustrate, each approach is preferred under different circumstances.

Both approaches proceed iteratively; at each step one user is selected and queried for her

preferences. The queries are performed under one of the following protocols: the Range voting

protocol and the Borda voting protocol. The Range voting protocol allows users to rate an item

within a fixed range of scores. A selected user is queried for her rating for a specific item,

forming a voter-item query. The Borda voting protocol assumes users have a predefined order of

preferences over the items, and can be related to pairwise comparisons. A selected user is

queried for her preference between two items, forming a voter-item-item query.

To determine a query, the first approach heuristically computes the information gain of

each potential query based on the entropy of the item’s probability to win. The query that

maximizes the information gain is selected. The second approach uses the probability

distribution of the voters’ preferences to select the candidate most likely to win and the voter that

is expected to maximize the score of that item. In both algorithms, probability distributions of

the users’ preferences are computed and updated as new information is revealed. The heuristics

output a necessary winner item (Konczak and Lang2005), i.e., a definite winner.

Previous studies have reported the theoretical upper and lower bounds of the required

communication with the voters (Conitzer and Sandholm2005). However, to the best of our

knowledge, only two studies propose practical algorithms for preference elicitation (Kalech et al.

2011; Lu and Boutilier 2011). The first assumes each voter holds a predefined decreasing order

of the preferences where the voters are requested to submit their highest preferences in an

iterative process. However, the requirement to predefine preferences may be inconvenient to the

users. Therefore, we require voters to respond and rate a specific item only when necessary.

5

Furthermore, the procedure suggested by Kalech et al. (Kalech et al. 2011) does not necessarily

reduce communication significantly since the authors request the rating of one item from all the

users, thus requiring the voting center to contact each of the users at each step. In the second

study (Lu and Boutilier 2011) a practical elicitation process is proposed for the Borda voting

protocol. This algorithm is confidential; the authors did not provide details about their algorithm

which prohibited its expansion to the Range voting protocol or to other aggregation strategies.

1.2.2 Approximations for Further Reducing Preference Elicitation

Preference elicitation costs can be further reduced by trading off the accuracy and

communication costs. We define one unit of communication as one elicitation request. First, a

tradeoff exists between the amount of items outputted to the group and the amount of queries

required. Less elicitation effort is required for outputting top-𝑘 items than for outputting one

necessary winner (i.e., 𝑘 = 1). Although outputting one definite winner is the most accurate

result, there are advantages to outputting 𝑘 items where one of them is the winner. Not only

issues such as communication costs and privacy are reduced, it may actually be preferred to

present a few alternatives to the user since, if one of the alternatives is unavailable, we can

quickly switch to another alternative without requiring more elicitation (Brandt et al. 2013).

Another tradeoff is the one that exists between the accuracy of the proposed winner item

and the amount of queries required. We suggest outputting an item that approximately suits the

group with some confidence level 1 − 𝛼 rather than outputting an item that definitely satisfies

the group (where 𝛼 = 0). As we later show, the confidence level is based on the items’ winning

probabilities. To reduce the elicitation costs even further, the two methods can be combined and

top-𝑘 approximate items can be offered to the group. For example, consider a group that wishes

to watch a movie together and needs to choose one from the current list available in theaters. The

members of the group define the amount of options they wish to receive (𝑘) and the level of

confidence in the options (0 ≤ 𝛼 ≤ 1). Thus, we wish to define new preference elicitation

termination conditions. The first is multi-winner termination; terminate elicitation once a few

items are found where one of them is the winner. The second is approximate multi-winner

termination; terminate elicitation when a few items are found and one of them is approximated to

be the winner item.

6

1.2.3 Aggregation Strategies

In order to compute a winning item, or, as discussed in the previous section, a few

winning items or a winning items within top-𝑘 items, the user preferences need to be aggregated

using a fair aggregation strategy. In his well-known work, Arrow shows that there is no perfect

aggregation system (Arrow 1951). One of the major differences between aggregation strategies

is the social environment in which they are used; in particular, the perspective in which fairness

is viewed. The emphasis can be either on the individual user or towards the majority of the group

(Jameson and Smyth2007). Two aggregation strategies that differ in their emphasis are the

Majority Based Strategy and the Least Misery Strategy. In the Majority Based Strategy the users’

ratings of the different items are aggregated and the item with the highest total value is the

winner. In the Least Misery Strategy the chosen item cannot be the least preferred by any of the

users. The idea is that a group is as happy as its least happy member (Masthoff2011). One of the

contributions of this research is in proposing an iterative preference elicitation algorithm which

fits these strategies. In the social choice literature, these strategies are known as the utilitarian

and the egalitarian settings.

1.2.4 Evaluation

We evaluate our methods on four real-world domains: Netflix data

(http://www.netflixprize.com), Sushi dataset (Kamishima et al. 2005), Pubs dataset and

Restaurants dataset
2
. We also perform evaluation on simulated data which allows us to

manipulate the data and thus further study the different parameters.

Experiments highlight that the suggested model reduces the communication cost in the

elicitation process while guaranteeing that a winning candidate is found. For example, in the

real-world Netflix contest dataset, we show that the communication cost can be reduced by more

than 50%. Furthermore, the analysis of the heuristics under different settings provides interesting

insights. For example, DIG heuristic excels when the data is noisy and the voters do not vote

according to a certain pattern, while ES runs faster and performs better when there is some

known pattern to the voter preferences (e.g., if it is known from previous analysis that the voters

generally prefer to watch the newest movie in the cinema). We show that selecting the suitable

2 The Pubs dataset and Restaurants dataset are taken from “Lets Do It” recommender systems, developed by Eli Ponyatovski

and Aviad Carmeli, 4th year students in the Information Systems Department, under the supervision of: Lihi Dery, Ofrit Lesser

and Meir Kalech, Ben Gurion University 2014.

http://www.netflixprize.com/

7

aggregation strategy and relaxing the termination condition can reduce communication up to

90%.

1.2.5 Assumptions

In this study we follow the underlying assumptions:

1. Unknown preferences estimation - uncertainty regarding the voter preferences is

facilitated by creating and updating voter-item probability distributions. For example,

in the case of a group of users wishing to watch a movie together, the distribution can

be inferred from rankings of these movies by similar users using collaborative

filtering methods (Koren and Sill2011). We present and demonstrate a method for

calculating probability distributions (see Chapter 4 section 2).

2. User response - we assume that users' preferences are unknown in advance, but can

be acquired during the process (i.e., a user who is asked about her preference on an

item, responds to the request). Note that the user is not required to decide on all of her

preferences beforehand.

3. Sincere communication with the user - we assume that a user submits her true

preferences. Therefore, in this research we do not consider manipulation

(Gibbard1973, Satterthwaite 1975).

4. Equal communication cost – we assume that the cost of asking a user for her

preferences is equal for all users and for all items.

5. Consistency – we assume consistency in voting preferences. If this assumption is not

held, intransitive preferences might occur, and then no solution can be found. To the

best of our knowledge, this is an assumption kept throughout the field of voting and

social choice. Although Tversky (1969) has shown that preferences might be

intransitive, there have been other that have shown that in most cases, voters are in

fact transitive (Regenwetter et al. 2011). Another form of inconsistency is when

manipulation is performed. However this is out of scope of this research.

1.3 Main Contribution and Dissertation Overview

The overall structure of the study takes the form of seven chapters, including this

introductory chapter. We lay out the related work in Chapter 2. We present the problem

description and a general preference elicitation model, with the goal of reducing the

8

communication cost in the preference elicitation process in Chapter 3. We implement the

framework on ranking (Range) and non-ranking (Borda) voting protocols. The main

contributions of this research are:

1. A preference elicitation model for the Range voting protocol (Chapter 4): We

present an elicitation model and novel heuristics for preference elicitation for the

Range protocol. The Range protocol is very common in Recommender systems

settings as it requires users to submit a score. Since computing the optimal minimal

set of queries that are required to determine a winner is computationally intractable

due to the combinatorial space of queries’ orders, we propose two novel heuristic

approaches for determining a winner. We show that each approach has an advantage

under different circumstances. Both approaches proceed iteratively, selecting a voter-

item pair and querying the selected voter for her score on the item. To determine a

voter-item query pair, the first algorithm heuristically computes the information gain

of each potential query based on the entropy of the item’s probability to win. The

query that maximizes the information gain is selected. The second algorithm uses the

probability distribution of the voters’ preferences to select the candidate most likely

to win and the voter that is expected to maximize the score of that item. In both

algorithms, voter-item probability distributions are computed and updated as new

information is revealed. This is achieved by computing a nonparametric probability

distribution for each voter’s preferences of items, i.e., for voter-item pairs. The

algorithms return a definite winner item.

2. A preference elicitation model for the Borda voting protocol (Chapter 5): We

present an elicitation model and novel heuristics for preference elicitation for the

Borda protocol. The Borda voting protocol requires users to rank their preferences so

that no two items can receive the same score. Pairwise comparison queries can be

related to the Borda voting protocol, since users are already required to have a fixed

ranked list of preferences for items. Studies have shown it is easier for users to state

opinions when the queries are pairwise (Balakrishnan and Chopra2012). The Borda

protocol is different from the Range protocol in the methods for computing the

necessary winner, the item winning probability, and the distribution model.

9

3. Tradeoffs and Aggregation Strategies in Preference Elicitation (Chapter 6): To

the best of our knowledge, the following ideas have not been studied for the Range

voting protocol.

a. Selection: we suggest terminating preference elicitation sooner by returning 𝑘

alternatives to the group members where one of them is a necessary winner

rather than returning just one item. This issue has recently been studied by

(Lu and Boutilier2013) for the Borda voting protocol. However, the algorithm

suggested by the authors remains confidential and we cannot attempt to adapt

it to the Range voting protocol.

b. Approximation: we suggest computing approximate winner or winners with

some confidence level. For example: item 𝑎 is the winner with a 95%

confidence level. This also shall reduce the communication cost.

c. Aggregation: we suggest considering the aggregation strategy when

combining the user preferences. Previous work has always implemented the

Majority based strategy, however, we show that the aggregation strategy

affects the effort required in the preference elicitation and we evaluate two

state-of-the-art aggregation strategies.

Finally, the conclusions chapter (Chapter 7) gives a brief summary, critique of the

findings’ and further research areas. A schematic overview of the structure of the key chapters

(Chapters 3-6) is provided in the following table.

10

Table 1: Schematic overview

General framework of

preference elicitation

Chapter 3

The Problem Description

Preference elicitation for

non-ranking and ranking

voting rules

Chapter 4

Iterative Voting

Under the

Range Protocol

Chapter 5

Iterative Voting

Under the

Borda Protocol

The necessary winner

Section 4.1

Possible maximum

and possible

minimum under the

Range protocol

Section 5.1

Possible maximum

and possible

minimum under the

Borda protocol

Probabilistic preference

distribution model

Section 4.2

Voter-item

distribution model

Section 5.2

Voter permutations

distribution model

Item winning probability

Section 4.3

Dynamic

programming

algorithm

Section 5.3

Monte Carlo

sampling approach

Query selection heuristics

for finding a definite

winner

Sections 4.4 - 4.5 Sections 5.4 - 5.5

Chapter 6

Tradeoffs and Aggregation Strategies in

Preference Elicitation

Aggregation strategies Section 6.1 Future work

Query selection heuristics

for winner approximation

Section 6.2.1

Selection among

Top-𝑘

Future work

Section 6.2.2

Approximation

using a confidence

interval

Future work

11

1.4 Publications

The following papers have been published or submitted for publication as a result of the

research described in this dissertation:

Chapter 4: Iterative voting under uncertainty using the Range protocol:

Naamani-Dery
3
, L., Kalech, M., Rokach, L., and Shapira, B. 2010. Iterative

Voting under Uncertainty for Group Recommender Systems. In Proceedings of

the Fourth ACM Conference on Recommender Systems. ACM, New York, NY,

265-268.

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Reaching a

Joint Decision with Minimal Elicitation of Voter Preferences. Information

Sciences. Vol.278, 466-487. http://dx.doi.org/10.1016/j.ins.2014.03.065

Chapter 5: Iterative voting under uncertainty using the Borda protocol

Naamani-Dery, L., Kalech, M. and Rokach, L. 2014. Preference Elicitation for

Group Decisions. In proceedings of the Group Decisions and Negotiation

conference (GDN), Toulouse, June 2014. 193-201.

Naamani-Dery, L., Kalech, M. and Rokach, L. 2015. Preference Elicitation for

Group Decisions. Accepted to Group Decisions and Negotiation Journal.

http://dx.doi.org/10.1007/s10726-015-9427-9

Chapter 6: Tradeoffs and Aggregation Strategies in Preference Elicitation

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Preference

Elicitation for Narrowing the Recommended List for Groups. In Proceedings of

the 8th ACM Conference on Recommender systems, 333-336. ACM.

Naamani-Dery, L., Kalech, M., Rokach, L., and Shapira, B. 2014. Reducing

Preference Elicitation in Group Decision Making. Under review in Transactions

on Intelligent Systems and Technology

3 Naamani is my maiden name (Lihi Dery)

http://dx.doi.org/10.1016/j.ins.2014.03.065

12

Chapter 2

Related works

This chapter surveys previous work on preference elicitation and preference aggregation

for group decision making. Preference elicitation is studied in two domains of interest to us:

recommender systems (section 2.1 and social choice theory (section 2.2). Preference aggregation

strategies are surveyed in section 2.3. A discussion on drawbacks of previous research is

presented in section 2.4

2.1 Preference Elicitation in Recommender Systems

Recommender systems are designed to predict which items users are expected to like. We

first survey personal recommendation systems and then group recommender systems.

2.1.1 Personal Recommender Systems

In personal recommendation systems the goal is to output specific recommendations for

one user (Resnick and Varian1997). The recommendations can either be computed using

available information or by constructing and matching user profiles or item profiles. When

available information is insufficient, preference elicitation can be performed.

Guidelines for preference elicitation for personal recommendation systems were

established by (Pu and Chen2009). In their study, the authors consider an incremental user

system interaction process. The authors include the following four recommendations: how many

items to display to the user, what items to display to the user, interfaces for tweaking the final

decision, and interfaces for explaining the recommendations. Similarly, the model we propose in

this study is incremental and interactive. At each round we elicit preferences from one user.

Pending on the voting protocol, the user is either required to submit her rating for one item

13

(Range voting protocol) or to submit her preferred item between two items (Borda voting

protocol). One of this study’s focuses is determining what preference to elicit, or in Chen and

Pu’s terms, what items to display to the users. According to Pu and Chen’s guidelines, the items

suggested to the users for preference elicitation must be diverse (2
nd

 guideline) and have a high

likelihood of optimality (3
rd

 guideline). Item diversity can be detected only if the item features

are known. In our study we assume no item features are available. We follow the 3
rd

 guideline to

some extent, since we search for items that are optimal to the user. The other guidelines are less

relevant for this study. For example, the results do not need an explanation interface since they

are not predictions but rather approximate or necessary winners, according to preset properties.

Some studies that perform preference elicitation for personal recommendation employ

active learning that assists to depict what preferences to elicit. The decision is based on the goal

of the recommender system: accuracy of the recommendation, system profit, user satisfaction,

and the user’s ability to rate the required items (Rubens et al. 2011). Our focus is on minimizing

preference elicitation with queries geared towards finding approximate or necessary winner

items for a group of users. Thus, employing active learning might increase the accuracy of our

user profiles, but opposes our goal of minimizing the preference elicitation process.

Content based recommender systems make use of the attributes of the items. For

example, in a recent study by Freyne et al. (Freyne et al. 2013), an active learning algorithm is

suggested, that learns the bias users have towards attributes of an item. These are reflected in the

users rating patterns; thus, the algorithm can estimate the rating users will give to certain items,

and use this information when deciding which preferences to elicit. One major drawback is that

the authors limit their analysis to food recommendation and focus exclusively on meal recipes.

We propose a domain-free model that does not require any knowledge about the items’ features.

To conclude, the studies surveyed in this section are relevant to systems in which a single

voter exists, although we remain interested in preference management for a group of users.

While we share a few common ideas, such as the guideline of eliciting items that are optimal to

the user, most earlier research assume that item attributes are readily available, an assumption

that we do not hold. More importantly, we did not find studies that share the same goal of

minimizing the preference elicitation process. In the next section we discuss preference

elicitation that is specific to groups.

14

2.1.2 Group Recommender Systems

In this section we first introduce the features of group recommender systems in general,

and illustrate the unique features of our model within each category. We then discuss preference

elicitation for group recommender systems and lastly present preference estimation.

2.1.2.1 Features of Group Recommender Systems

Group recommendation systems output recommendations to a group of users rather than

to one user. A classification of the state-of-the-art group recommendation systems can be found

in the paper of Garcia et al. (Garcia et al. 2011). The systems are classified according to the

following six independent features that influence their design:

1. Information source – our proposed model is based on collaborative filtering

techniques. We assume that no knowledge is available about the users (e.g.,

demographic knowledge is unavailable) or about the items (e.g., content-based

attributes are unavailable).

2. User-system interaction - our proposed model falls under what the author’s term a

passive user-system interaction. In a passive user-system, the final goal is to

provide items to the group without further interaction with the users or the system.

3. Domain – most existing systems are domain specific. Our model offers a domain-

free platform.

4. Outcome – the systems are classified according to the recommendation outcome:

a single recommendation or a ranked list of items. Our model does not fit either

category. We propose to go one step further and offer necessary or approximate

winner items, which defiantly fit the group.

5. Group size – the systems are classified according to group size -- any group size

or small groups of 2-4 users. Our system does not fall under either category. Our

model is designed for groups of up to 30 users, and up to 30 items.

6. Aggregation approach – the systems can either compute a group recommendation

based on: (a) an aggregation of the recommendations to personal user profiles, or

(b) build a group profile that is treated as a single user to which a

recommendation is given. In our model we aggregate user preferences, not user

recommendations.

15

Table 2 presents a summary of our system in comparison with the group recommender

categories mentioned above. The grey cells in the table indicate the places where our

model does not fit the available categories.

Table 2: Our model according to the group recommender systems categories

proposed by Garcia et.al. (2011)

 Available categories Our model

Information

source

Content based, collaborative filtering,

knowledge based, hybrid approaches

Collaborative

filtering

User-system

interaction

Passive members, active members Passive members

Domain Domain specific, generalist Generalist (domain-

free)

Outcome Single recommendation, ranked list of

recommendations

Definite or

approximate winner

items

Group size Any group size, small groups Medium size

Aggregation

approach

Aggregation of the recommendations to

personal user profiles, recommend to a

group profile

Aggregation of user

preferences

In a study by Garcia et al. (2011) the authors propose a domain-free group

recommendation system. The user and item profiles are built on the data available. However,

their approach assumes that all the user opinions are known and they focus on investigating the

best way to aggregate all preferences. Conversely, we assume that the user preferences are

unknown and need to be elicited. In our view, preference elicitation is another category that can

be used to classify group recommender systems. This category is not mentioned in (Garcia et al.

2011).

2.1.2.2 Preference Elicitation in Group Recommender Systems

A growing body of literature is investigating preference elicitation for group

recommenders. In the critique model approach (Chen and Pu2012), case-based reasoning is

applied in order to elicit voter preferences on items. Such systems require analysis and

maintenance of item features which is not always feasible. In this study the critique model is

irrelevant since we consider dataset where item features are unknown. Braziunas and Boutilier

16

provide (Braziunas and Boutilier2009) several utility elicitation techniques from research fields

such as artificial intelligence, operations research and conjoint analysis. The common base of the

techniques is that users are requested to provide unambiguous simple answers to queries. In this

study, we follow these researchers’ method and focus on explicit preference elicitation where the

users’ answers are unambiguous. Our model does not allow flexibility in stating the preferences;

the user is required to submit preferences from a predefined discrete scale of values, or to choose

between two items. Rodriguez et al. (Rodríguez et al. 2013) present an algorithm for eliciting

complex linguistic expressions, as part of a group decision-making process. The focus of their

study is in allowing flexibility in the expression of the preferences. Critique-based reasoning and

linguistic expressions may be a more natural way to interact with users. However, this approach

requires the users to spend an ample amount of time on rating their preferences and the system

does not enable the modeling of users’ preferences unambiguous on a numbered scale.

2.1.2.3 Preference Estimation

Instead of eliciting preferences, some studies estimate the unknown user preferences

using fuzzy preference relations based on the additive consistency measure (Chen et al. 2014;

Herrera-Viedma et al. 2007). Another approach estimates the voter preferences using Bayesian

Networks and computes an estimated recommended item (de Campos et al. 2009). Our model

does not attempt to estimate the unknown preferences but rather computes nonparametric

probability distributions for the unknown preferences.

A probabilistic algorithm that accounts for uncertainty in a single voter’s preferences was

developed by Yu et al. (Yu et al. 2004). While their model assumes a normal distribution of

voting preferences, we do not make such an assumption. Instead, we use a non-parametric voting

distribution. Popescu and Pu present, a probabilistic music playlist group recommendation

system (Popescu and Pu2013). The probability distributions are defined as the probability for

each item to be the winner item. However, estimations for missing items are not considered.

Koren and Sill (2011) developed a framework for finding probability distributions that is

calculated according to the predicted rating. We, on the other hand, show how to extract the

probability distribution without calculating the predicted rating. We then use this distribution to

select the next query during the preference elicitation process. The system is constantly updated

17

with new information, so the probability distributions’ accuracy increases as more preferences

are available.

To conclude, Table 3 illustrates two categories we propose to add to the existing

categories in Garcia et al (2011) for classifying group recommender systems:

1. Statement of preferences – the users can state their preferences as: (a) linguistic

expressions, (b) using a critique based model or (c) as unambiguous preferences. Our

model focuses on unambiguous preferences.

2. Estimation of missing preferences - the missing preferences can either be estimated

using a fuzzy or Bayesian model (point estimation), or a probability distribution can

be created for each missing preference. Our model creates a non-parametric

probability distribution for each missing preference.

Table 3: Proposal of additional classification categories

 Existing Our model

Preference elicitation None

Unambiguous

Critique based

Linguistic expressions

Unambiguous

Estimation of missing

preferences

Point estimation

Probability distributions

Probability

distributions

2.2 Preference Elicitation Using Voting Theory

Voting protocols determine how user preferences are treated (Rossi et al. 2011). In social

choice (Suzumura, Arrow, and Sen 2010), preference elicitation is termed as voting. The

theoretical basis for addressing voting with partial information (i.e., where users do not set the

preferences for all items), can be found in (Conitzer and Sandholm2005; Konczak and

Lang2005). Conitzer and Sandholm (2005) analyze the communication complexity of various

voting protocols and determine upper and lower bounds for communication. In general, they

show that for most voting protocols, in the worst case voters should send their entire set of

preferences. Konczak and Lang (2005) demonstrate how to compute the sets of possible winners

18

and a set of necessary winners. These sets determine which items no longer have a chance of

winning and which will certainly win. We adopt their approach to propose a systematic

preference aggregation protocol where the agents do not need to send their entire set of

preferences.

Theoretical bounds for the computation of necessary winners have been previously

addressed (Walsh2007; Betzler et al. 2009; Pini et al. 2009). Others considered settings where

preferences may be unspecified, focusing on soft constraint problems (Gelain et al. 2007) or on

sequential majority voting (Lang et al. 2007). They do not provide empirical evaluation nor do

they focus on minimizing the preference elicitation process.

In a recent paper, the subject of unavailable candidates is addressed (Boutilier et al.

2014). In our research we assume that all candidate items are available. We do offer a model for

returning top-𝑘 items where one of them is the winner item, which can be used when some of the

items might not be available. The hardness of winner determination under various multi-winner

voting rules was discussed in (Procaccia et al. 2008; Skowron et al. 2013; Betzler et al. 2014).

The authors study systems were a proportional representation of users’ wishes is required. Multi-

winner voting rules are discussed in a recent work (Elkind et al. 2014). The authors address some

multi-winner voting rules and discuss their properties under different settings. The setting

relevant to our study is defined by the authors as “Shortlisting”: situations where 𝑘 out of 𝑁

items are shortlisted as the most appropriate. However vote elicitation is not discussed by the

researchers.

Predefined probability distribution of the votes is assumed by Hazon et al. (Hazon et al.

2008). The winning probability of each candidate is evaluated in Plurality, Borda, and Copeland

protocols. They show theoretical bounds for the ability to calculate the probability of an

outcome. Bachrach et al. (Bachrach et al. 2010) provide an algorithm for computing the

probability of a candidate to win, assuming a polynomial time computable voting rule (such as

Range voting) and assuming a uniform random distribution of voters’ choice of candidates.

However, while both of these papers focus on calculating the winning probability for each

candidate, we focus on practical vote elicitation, specifically on finding the winner using a

minimal amount of queries.

As opposed to our goal of minimizing the number of queries in general, Nisgav and Patt-

Shamir (Nisgav and Patt-Shamir2011) propose theoretical bounds for minimizing the number of

19

queries sent to each voter. Their goal is not to find a winner but to retrieve enough information in

order to fill a voter’s preference vector (defined as the voter’s preferences for different items), so

that the information can be used for collaborative filtering.

2.2.1.1 Practical Preference Elicitation

Practical vote elicitation has been addressed recently. Pfeiffer et al. (Pfeiffer et al. 2012)

the goal is to predict the ranking of 𝑛 items, by querying voters using pairwise comparison of

items. However, the authors do not explicitly aim to reduce the number of queries. Furthermore,

they assume each voter can be approached only once and that there is no prior knowledge on the

voters. As a result, voter-item distributions cannot be computed. Their method is therefore

suitable when a large amount of voters is available and the task is to determine some hidden truth

(also known as the wisdom of the crowds). We, on the other hand, wish to reach a joint decision

for a specific group of voters. In Ding and Lin (Ding and Lin2013), a candidate winning set is

defined as the set of queries needed in order to determine whether the candidate is a necessary

winner. The authors show that for rules other than the plurality voting, computing this set is NP-

Hard. This theorem further supports our claim that heuristics are needed for preference

elicitation.

An attempt to reduce the number of queries is made by Kalech et al. (Kalech et al. 2011).

The authors assume that each user holds a predefined decreasing order of the preferences. In an

iterative process, the voters are requested to submit their highest preferences; the request is for

the rating of a single item from all the users. One major disadvantage of this approach is that

requiring the users to predefine their preferences can be inconvenient to the users. While these

authors do not consider the probability distribution of the voters, our work illustrates how the

probability distribution of the voters can be used to decrease the number of queries. Lu and

Boutilier (2011) offer yet another practical elicitation process is proposed for the Borda voting

protocol using the minmax regret concept. The output is a definite winner or an approximate

winner, but the authors do not state the approximation confidence level. The authors recently

extended their method to return multiple winners, again using the Borda protocol and minmax

regret (Lu and Boutilier2013).

20

2.3 Aggregation Strategies

In the previous sections we surveyed preference elicitation. In this section we survey

research on aggregating the user preferences.

In his well-known work, Arrow (Arrow 1951) shows that there is no perfect aggregation

system. A summary of 11 different aggregation strategies can be found in a paper by Masthoff

(Masthoff 2011) and their classification into three main categories can be found in a research be

Senot et al. (Senot et al. 2011). A new strategy based on the Nash equilibrium is proposed by

Carvalho et al. (Carvalho et al. 2013). Both Masthoff and Senot et al. study how different

strategies affect group members. However, the aggregation strategies have not been studied in

the context of preference elicitation.

Masthoff (Masthoff2004) studies how humans prefer to integrate personal

recommendations. She concludes that users use the Majority based strategy, the Least Misery

based strategy and Majority without Misery strategy. The Majority based Strategy and the Least

Misery based strategy were also chosen by Baltrunal et al. (Baltrunas et al. 2010), in a study

focusing on evaluation of the effectiveness of GRS obtained by aggregating user preferences. In

(Garcia et al. 2011) the authors note that the Least Misery and the Majority strategies are the

most common strategies used which motivated us to focus our research on these two strategies.

In the Majority Based Strategy the users’ ratings of the different items are aggregated; the

item with the highest total value is the winner. Note that the result is similar to taking the item

with the highest average, thus this strategy is sometimes referred to as the Average Strategy or

the Additive Strategy. The Majority Based strategy is used in numerous applications including

the MusicFX system when the square of the individual preferences are summed (McCarthy and

Anagnost1998) and the Travel Decision Forum that assists in planning a holiday (Jameson2004).

Berkovsky and Freyne compare weighted and un-weighted additive strategies when

recommending a recipe to a group (Berkovsky and Freyne2010). Another example is of TV

programs recommendation for a group (Yu et al. 2006; Masthoff2004). A disadvantage of this

strategy is that it can be unfair towards users with the minority view. In fact, Yu et al. (Yu et al.

2006) state that their system works well for a homogenous group but when the group is

heterogeneous, dissatisfaction of the minority group occurs. Endriss and Grandi (Endriss and

Grandi2013) use the Majority based strategy is used for a different purpose: to find the most

representative user. The authors assume the votes are binary. The most representative user’s

21

opinion is presented to the group. Contrary, in our study the Majority based strategy is performed

on the items and not on the users.

The Least Misery Strategy defines that the chosen item cannot be the least preferred by

any of the users. In the Polylens system the Least Misery strategy is used to recommend movies

to small groups (O’connor et al. 2002). Their survey shows that 77% of the users found the group

recommendation more helpful than the personal one. The disadvantage is that the minority

opinion can dictate the group – if all users but one really want some item to win, this item will

not be chosen (Masthoff2011). Another system with a Least Misery approach is the CATS

system, a collaborative based travel recommendation system (McCarthy et al. 2006). A model

for group recommendations for households sharing a movie rental account is proposed in Gorla

et al. (Gorla et al. 2013). They offer a novel probabilistic framework for combining the relevance

of items to users with combining the relevance of the items to the group as a whole. The

aggregation strategy they choose to use is the Least Misery strategy.

To conclude, the Majority and the Least Misery strategies are commonly used in the

literature. One of the contributions of this study is considering the Least Misery strategy, which,

to our best knowledge, has not been studied in the context of preference elicitation.

2.4 Drawbacks of previous research

In the previous sections we surveyed preference elicitation and preference aggregation in

recommender systems and in social choice; we have shown where our research relates and where

it differs from these domains. Table 4 offers a summary comparison of the differences between

the two fields. The greyed cells indicate the way our proposed model operates:

1. Set of items - in group recommender systems the recommendation is usually based on

the available user preferences. If preference elicitation is performed, it is usually done

on a set of other items (i.e. on the voters rating history and not on the set of items in

question). In our model the preference elicitation is performed on the available items.

2. Output - the items presented to the group are recommendations, while in social choice

the items are necessary winners. In our model the outputs are necessary winners.

3. Termination condition - the focus of studies in group recommender systems is usually

on the recommendations accuracy, recommendations fairness or on the user

satisfaction. Therefore preference elicitation terminates once the system reaches an

22

adequate level of one of these conditions. In social choice, preference elicitation

terminates once a necessary winner is found. In this study we expand the termination

condition and terminate the process when an approximate winner item is found within

a list of top-𝑘 items. We have not encountered any study that approximates a winner

or 𝑘 alternative winner with a confidence level.

4. Aggregation strategy - we introduce algorithms which can use the Majority based or

the Least Misery strategy in order to output one or top-𝑘 definite winner items or

approximate winner items within some confidence level. Current research in social

choice is limited to the Majority based strategy for preference aggregation. To the

best of our knowledge the issue of preference elicitation and returning one or more

items under the Least Misery strategy has not yet been investigated.

 We have not seen any attempt of research in the field of social choice to connect to the

current research in group recommender systems. Our model can be used as a second step in

existing group recommender systems. First, the group recommender system computes the list of

top-𝑁 recommended items.Then our model can be used in order to output approximate or

definite winner items to the group.

While preference elicitation and preference aggregation is addressed in the

recommendation literature, the issue of minimizing the preference elicitation is ignored. To the

best of our knowledge, in the social choice field, only the two attempts (Lu and Boutilier 2011 ;

Kalech et al. 2011) have been made at vote elicitation in order to try to minimize the amount of

queries. The advantage of our approaches is that users are not required to predefine their

preference as in (Kalech et al. 2011) and are not necessarily required to hold a strict set of

ordered untied preferences as in (Lu and Boutilier 2011).

We propose a general, domain-free framework for preference management. The model

estimates probability distributions for the unknown preferences. We introduce novel heuristics

and show how they can operate under ranking and non-ranking voting protocols. The heuristics

determine which preferences to elicit, in an incremental process. One heuristic computes the

information gain of each potential query based on the entropy of the item’s probability to win.

The rationale behind this proposal is that reducing the entropy as fast as possible will direct us

towards the winner as fast as possible. The other heuristic uses the probability distribution of the

23

voters’ preferences to select the candidate most likely to win and the voter that is expected to

maximize the score of that item. The rationale behind this is that maximizing the item with the

current maximum score will lead us towards an item whose minimum score is higher than the

maximum of all others (Konczak and Lang2005) and in turn, towards the winner item. We

present our model in detail in the following chapter.

Table 4: Preference elicitation in recommender systems and social choice

 Recommender systems Social choice

Set of items on

which preference

elicitation is

conducted

other items available items

Output (item or list

of items) to the

group of users

predicted/recommended definite item/s

according to some

voting rule

Termination

condition

Once the output is

viewed as adequate:

accurate, fair, or when

the users are satisfied

Necessary winners

with some confidence

Aggregation

strategy

Any aggregation

strategy, typically

Majority or Least

Misery

Majority

24

Chapter 3

Problem Formulation

We introduce a general model for reaching joint decisions with minimal elicitation of

voter preferences. Our approach has two components: a rating distribution estimation component

and a voting center component. The rating distribution estimation component (referred to

hereafter as the distribution component) computes and holds a probabilistic voter preference

distribution model, which is specific for every voting protocol. It is presented for Range Voting

in section 4.2 and for Borda Voting in section 5.2. The voting center component is responsible

for collecting voter preferences and returning a recommendation, given predefined termination

conditions. A simple termination condition is, for example, the discovery of one definite winner

item, which is recommended to the group as their best option. More termination conditions are

discussed in section 6.2.

The model is illustrated in Figure 1 and proceeds as follows: The distribution component

holds a database of historical item ratings given by voters and uses them to estimate

nonparametric probability distributions for all unknown ratings. The voting center component

receives the probability distributions and utilizes them for selecting whom to query about which

items. The heuristic generates a query that is sent to the appropriate voter, and if the response

causes the termination condition to be reached, the voter center ends the process. If not, the

voter's response is sent to the distribution center, which updates the probability distributions, and

the process is repeated. The goal is to meet the termination condition using a minimal number of

queries, thus incurring minimal cost.

25

Figure 1: Model description

3.1 The Minimal Cost Problem

Let us define a set of users (voters) as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} and a set of candidate items

as 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}. We define a request for specific information from the voter as a query 𝑞.

The type of query depends on the voting protocol employed. Under the Range voting protocol, a

query is a request for the rating of one voter 𝑣𝑖 for one item 𝑐𝑗. This is a voter-item query,

denoted 𝑞𝑗
𝑖 . The rating is determined by the user from a set of ordered values, such as 1,…,5.

Under the Borda voting protocol, a query is a request for the voter's preference between two

items 𝑐𝑗 and 𝑐𝑘. This is a voter-item-item query, denoted 𝑞𝑗,𝑘
𝑖 .

A query has a cost, e.g., the cost of communicating with the voter, or the cost of

interfering the voter's regular activities. We assume that the cost is equal for all queries.

Definition 1.(Cost): Given a query q, the cost function 𝑐𝑜𝑠𝑡: 𝑞 → ℝ returns the

communication cost of the query.

26

Throughout this research we assume that the cost is equal for all queries and that the cost

is constant throughout the elicitation process. It is possible to determine the winner from the

partial voters' ratings (Konczak and Lang2005; Walsh2007). We adopt an iterative method

(Kalech et al. 2011; Lu and Boutilier 2011) which proceeds in rounds. On each round one voter

is queried for her rating for one item. Consequently, we aim to determine the next query, such

that the total expected cost is minimized.

 We assume that a user always responds to a query and that the response is sincere. Let

𝑂𝑖 represent the set of voter 𝑣𝑖’s responses to the queries. Note that this set does not necessarily

contain all the items. 𝒪𝐴 = {𝑂1, … , 𝑂𝑚} is a set of 𝑂𝑖 sets. At the end of each round, one

response to a query is added to 𝒪𝐴. Figure 2 illustrates one query execution round according to

the: (a) Range protocol and (b) the Borda protocol. For the Range protocol, a request to rate an

item is presented to the user. The user rates the requested item out of a predefined discrete

domain of values. For the Borda protocol, the user is requested to decide between two items. In

both protocols, the user’s response is added to 𝑂𝑖 and to the set of known preferences 𝒪𝐴.

Figure 2: One query execution round

The process continues iteratively, in rounds, until the termination condition is met.

Consider for example the termination condition: one necessary winner item, i.e., the process

should terminate when one item is discovered, to be presented to the group as their best option.

To determine the necessary winner we compute the possible maximum and possible minimum of

27

each candidate item. The possible maximum of an item represents the possible highest score for

that item based on the known preferences in 𝒪𝐴, namely, by completing the unknown

preferences with the highest score. Respectively, the possible minimum of an item represents the

lowest score possible for that item based on the known preferences in 𝒪𝐴, namely, by

completing the unknown preferences with the lowest score. If item 𝑐𝑗′𝑠 possible minimum is

bigger than the possible maximum of all other items then 𝑐𝑗 is a necessary winner (Konczak and

Lang 2005).

The goal is to guarantee the requested termination condition with minimal cost. For

example, for the termination condition of one necessary winner item, the goal is to execute a

minimal number of queries in order to find an item which is a necessary winner.

3.1.1 MDP Formulation

The challenge stated at the end of the former paragraph challenge can be represented as a

Markovian Decision Process (MDP). An MDP is a tuple of states, actions, a transition function

from state to state by an action and a reward function. In our case, the states are the possible

combinations of the users' ratings for the items. Every user can assign |D| possible values to item

𝑐𝑗. If a user has not yet assigned any value, the current value of the item is unknown. Thus, the

combination space is (|𝐷| + 1)𝑛∙𝑚
 , where 𝑚 is the number of users and 𝑛 is the number of

items. The actions are the possible queries. A query is a request to a specific user to either rate an

item (in the Range voting protocol) or to state a preference between two items (in the Borda

voting protocol). Thus, the queries space is 𝑛 ∙ 𝑚 or 𝑛 ∙ 𝑚
2⁄ respectively. The transition function

between two states is affected by the probability distribution of the ratings of the item about

which the user was queried. Finally, the reward is the negative cost of the queries. The goal is to

determine which query to choose on each round so that the communication with the user is at a

minimum.

We can compute the optimal query’s vector by finding the optimal policy by applying

dynamic programming methods such as Value Iteration or Policy Iteration (Bellman1962). These

methods grow polynomially in the number of states and actions. However, in our case the state

space itself is exponential in the number of voters and items and dynamic programming is not

suitable for such large settings. Thus, we present heuristic approaches that use greedy moves to

compute the next query.

28

The heuristics and the computation of the possible minimum and possible maximum

score are specific for each voting protocol. The heuristics for the Range voting protocol are

presented chapter 4 and for the Borda voting protocol in Chapter 5. In the next section we

introduce the two protocols.

3.2 Voting Protocols

In this study we focus on two representative voting protocols; the Range protocol

represents the class of non-ranking rules, and the Borda protocol represents the class of ranked

based rules (Rossi et al. 2011). The Range voting protocol requires users to assign scores from a

predefined range. The Borda voting protocol requires users to rank their preferences so that no

two items can receive the same score. Pairwise comparison queries can be related to the Borda

voting protocol, since according to the Borda protocol users are required to have a fixed ranked

list of preferences for items. As each protocol has its advantages and disadvantages, the final

decision is in the hands of the system administrator.

The Range voting protocol has a few advantages. First, perhaps the main advantage of the

Range voting protocol is that it is relevant to many already existing applications, where voters

are asked to rate items on a specified scale and users are familiar with the requests for ratings.

For example, on the Netflix website (www.netflix.com) users are asked to rate a movie on a

scale of 1-5. Amazon is another example (www.amazon.com). Secondly, in the worst case,

Range voting requires only n queries to rate the items, while pairwise comparisons (using the

Borda protocol) usually require more queries: in the worst case it has been shown that O(nlogn)

pairwise comparisons are required in order to restore arbitrary preferences of one user over 𝑛

items (Conitzer2009). Lastly, the Range voting protocol satisfies the Independence of Irrelevant

Alternatives (IAA) criterion, meaning that if candidate item 𝑐𝑖 is preferred over 𝑐𝑗, then by

changing the preference of a third candidate 𝑐𝑘, 𝑐𝑗 must not be preferred over 𝑐𝑖 (Arrow 1951;

Smith2001). This is important in iterative voting since the users are not required to pre-define

their preferences. The IAA criterion is not satisfied under the Borda protocol.

The Borda voting protocol does offer some advantages. First, studies have shown that it

is easier for users to state opinions when the queries are pairwise (Balakrishnan and

Chopra2012). Consider, for example an application trying to find a sushi type most preferred by

a group (Kamishima et al. 2005). A user might find it easier to answer a question such as:

http://www.netflix.com/

29

“Which of these two sushi types do you prefer?” as opposed to “On a scale of 1 to 5, how would

you rate this sushi?” Secondly, users are more accurate when making relative indirect judgments

than when they directly rank items using a linear scale (Stillwell et al. 1982). Lastly, the Borda

protocol is computationally hard to manipulate (Betzler et al. 2011; Davies et al. 2011).

Our research can be extended to other voting protocols such as the non-ranking protocols:

Approval, Cumulative, and the ranking protocols: Copeland and Maximin. The differences

between the protocols are in the way the possible minimum and possible maximum are

calculated, as that is protocol specific (Kalech et al. 2011). The rest of the framework is affected

by whether the protocol is a ranking or a non-ranking protocol. To summarize, the iterative

voting framework is affected by the voting protocol in several ways:

a) The definitions of the possible maximum and possible minimum (sections 4.1 and

5.1).

b) The model of the distribution of preferences – for the Range voting protocol a

model of voter-item distribution is built. For the Borda voting protocol a model of

ranked item preferences distribution is built (sections 4.2 for Range and 5.2 for

Borda).

c) The computation of item winning probability. For the Range protocol we propose

a dynamic programming algorithm (section 4.3). For the Borda protocol we

propose a Monte Carlo sampling approach (section 5.3).

d) The query selection heuristics (sections 4.4 and 4.5 and 5.4 and 5.5)

3.3 The Evaluation Procedure

The evaluation procedure is identical throughout the study for the different protocols. In

this section we describe the evaluation metrics and the datasets used in the experimental sections

in chapters 4, 5, and 6.

3.3.1 Metrics

We evaluate the heuristics in terms of:

(1) Communication cost – lower communication costs are desirable. We used

two methods to compute the communication cost:

i. Number of queries – the number of queries required for finding the

necessary winner

30

ii. Percentage of the dataset queried – the upper bound to the queries

amount is the amount of queries a naïve voting center would have

aske𝑑 (𝑛 × 𝑚). The percentage of the dataset queried 𝑖s: 1 −

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠)

𝑛×𝑚

(2) Runtime

(3) Probability the winner is in the top-𝑘 – this metric is used to measure the

accuracy of the output, when the termination condition is that the winner is

within the top-𝑘 with some confidence level. A higher probability is more

desirable.

The voting distributions were examined under different settings:

(1) Sensitivity – the communication cost under different voting distributions. We

show that the voting distribution within a dataset affects the communication

cost.

(2) Updates – the effect of iterative updates to the voting distributions. We argue

that updating the voting distributions as more data is revealed leads to a

decrease in the communication cost.

(3) Size – the effect of generating the voting distributions from larger or smaller

datasets.

3.3.2 Statistical Test

In order to conclude which algorithm performs best over multiple datasets, we follow a

robust non-parametric procedure proposed by García et al. (García et al. 2010): we first used the

Friedman Aligned Ranks test in order to reject the null hypothesis that all heuristics perform the

same; this test was followed by the Bonferroni-Dunn test to find whether one of the heuristics

perform significantly better than other heuristics.

3.3.3 Datasets

This evaluation was performed in four domains. The first is a simulated meeting scenario

where voters are required to vote for their preferred time slot for a meeting. Simulating the data

31

allows us to investigate different distribution settings. The second domain is the Netflix prize

dataset
4
, a real world dataset containing the ratings that voters assigned to the movies. The third

domain is the Sushi dataset (Kamishima et al. 2005). The fourth domain is taken from a user-

study on a new recommendation system: “Lets Do It”. The last three domains allow us to

examine performance in real world scenarios. The second and third domains were recently added

to the new PrefLib library (Mattei and Walsh 2013). Specific adjustments of the datasets to the

protocols, when required, are detailed in the evaluation sections of chapters 4-6.

In all domains we explore scenarios that include a group of up to 30 users that are

required to choose from up to 30 items. We assume these 30 items are the top ranked items

returned by a group recommender system. These group sizes are rational for real world

scenarios. It is uncommon that groups of hundreds of people wish to receive a recommendation

for a joint activity. In the case where there are many available items (for example, 16,000

possible movies), a group recommendation system can be used to narrow down the options to a

magnitude of 10-30 top items. Our proposed model then operates on these items, and requests

users for their votes for these top items. It is unrealistic to request users to vote for their

preferences between thousands of items.

3.3.3.1 Simulated Datasets

We simulated the scenario of a group of 5-30 users who wish to schedule a joint meeting

on one out of four available timeslots (items). We assume that when a user is queried regarding

her preference for a specific timeslot, she replies with a score on a 1-4 scale.

To examine the algorithm's sensitivity to different rating distributions, we manipulated

the voter-item distribution settings so that the voter-item rating distribution is skewed in different

ways. Skewness is a measure of the asymmetry of a distribution. A higher absolute skewness

level indicates a higher asymmetry. A negative skew indicates that the distribution is

concentrated on high vote values, while a positive skew indicates the distribution is concentrated

on low vote values. We manually controlled the skewness level by creating rating distributions

with different skewness levels (see Table 5). In our experiments, we manually controlled the

skewness level of one of the items and set the skewness of the other items in one of the following

ways:

4 Netflix prize: http://www.netflixprize.com

32

(1) UNIFORM – all items except one receive a uniform skew (skew “0” in Table

5).

(2) LOTTERY – all items except one receive skewness out of the available

options in Table 5. The skewness option is determined in a lottery.

Having set a rating distribution for every voter-item pair, we cast lots to set the voter-item rating

based on the distribution of the voter-item. To account for the randomness, each experiment was

repeated 20 times.

Table 5: Skewness levels

Skewness level 𝑑1 = 1 𝑑2 = 2 𝑑3 = 3 𝑑4 = 4

-6 0.011 0.011 0.147 0.832

-5 0.014 0.014 0.193 0.778

-4 0.018 0.018 0.263 0.7

-3 0.039 0.084 0.243 0.634

-2 0.053 0.165 0.225 0.557

-1 0.183 0.183 0.183 0.45

0 0.25 0.25 0.25 0.25

1 0.45 0.183 0.183 0.183

2 0.557 0.225 0.165 0.053

3 0.634 0.243 0.084 0.039

4 0.7 0.263 0.018 0.018

5 0.778 0.193 0.014 0.014

6 0.832 0.147 0.011 0.011

33

3.3.3.2 The Netflix Dataset

We examined a scenario of a group of friends wishing to watch a movie together. We

assume that there exists an incomplete history of previous movie ratings, i.e., some of the friends

and/or some other users have rated some of the movies in question and/or other movies.

To explore this scenario we used the real world Netflix prize dataset. The original dataset

contains over 17,000 movie items and over 400,000 voters. Understandably, the dataset is sparse.

In order to evaluate our heuristics, we require a dataset where all ratings are known, so that we

can simulate the worst case scenario, where every user is queried about every movie before a

decision is reached. To evaluate our algorithms, we used a subset of the Netflix dataset

containing 1000 voters and 1000 movies 𝑈 × 𝐼. This subset is relatively dense, with 75%

sparsity. This subset was used for estimating the rating distribution. We further found a subset of

111 voters with over 116 items, which is completely full, i.e., all ratings are known for all items

and voters. We created smaller non-overlapping test sets 𝑉 × 𝐶 in varied sizes of 10× 10 up

to 30 × 30. All of these matrices are sub-matrices of the 1000 × 1000 subset: 𝑉 × 𝐶 ⊂ 𝑈 × 𝐼.

In these matrices, all of the voter-item ratings are known. However, the algorithms start with no

knowledge of these ratings. The amount of 𝑉 × 𝐶 matrices on which the experiments are run is

described in Table 6.

Table 6: File amount for each experiment size

𝑉 × 𝐶 Amount

10 × 10 10

15 × 15 7

20 × 20 5

25 × 25 4

30 × 30 6

3.3.3.3 The Sushi Dataset

We examined a scenario of users who are required to decide between ten types of sushi.

The Sushi dataset (Kamishima et al. 2005) contains 5000 preference rankings over 10 kinds of

34

sushi. We derived 10 different random matrices of size 10𝑥6. In order to create an initial

permutation probability distribution, we aggregated the number of appearances of each

permutation in the training set and divided it by the total number of voters. Thus the initial

permutation distribution is equal for all voters. As more queries are answered, the distributions

are updated for each voter. Over time a unique permutation distribution pattern emerges for each

user.

3.3.3.4 User Study

We created our own set of real data and examined two scenarios of a group that wishes

to: (a) select a restaurant or (b) select a pub or club. The data was collected using a group

recommendation system, named “Lets Do It”
5
.

The system obtained a full set of ratings from 90 students in Ben Gurion University, for

two different domains: (a) restaurants (16 items) and (b) pubs and clubs (23 items). Figure 3

presents the opening screen. The students were instructed to rate each item on a 1 to 5 scale,

according to their satisfaction from past visits, or in case they were unfamiliar with a place ,

according to how appealing it was for them to visit it. Each item had a picture and a short

description, as shown in Figure 4. The students could view the items they rated, the items left for

them to rate. They could also change the ratings. This is demonstrated in Figure 5. Rating

distributions were derived in the same manner as for the Netflix dataset (section 3.3.3).

5 The credit for building the system goes to Eli Ponyatovski and Aviad Carmeli, 4th year students in the Information Systems

Department 2014 at Ben Gurion University, under the supervision of: Lihi Dery, Ofrit Lesser and Meir Kalech. The

recommendation system is designated to study group recommendation with social networks (the study is in an initial phase).

35

Figure 3: The student rate pubs&clubs and restaurants

Figure 4: Rating for two clubs

Figure 5: The student can see what places need to be rated

36

Chapter 4

Preference Elicitation Using the

Range Voting Protocol

In this chapter, we propose heuristics for query selection for determining a necessary

winner using the Range voting protocol (Smith2001). As explained in section 3.2 the Range

voting protocol is widely used in existing applications. We address Range voting with

incomplete information. At the beginning of the process the voter-item preferences are unknown.

When voter-item pairs are queried, their ratings are revealed. The algorithms we propose for vote

elicitation are iterative. In each round, the algorithm selects one voter-item pair so that the rating

of one voter for one item is revealed. The algorithm continues until a necessary winner is found.

When queried, the voters assign ratings to the items from a discrete domain of values 𝐷 where

𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the lowest and highest values, respectively. The score 𝑠 ∈ {𝑚 ∙ 𝑑𝑚𝑖𝑛, … ,𝑚 ∙

𝑑𝑚𝑎𝑥} is the aggregated rating an item received. The winner is the item with the highest

aggregated score: 𝑚𝑎𝑥𝑗 ∑ 𝑞𝑗
𝑖

𝑖 .

We first define the necessary winner under the Range voting protocol (section 4.1(, and

present a method for computing voter-item distributions (section 4.2(We then present a novel

dynamic programming algorithm for computing item winning probabilities (section 4.3(. Next,

we suggest two heuristics for query selection (section 4.4 and section 4.5): the Dynamic

Information Gain (DIG) heuristic computes the information gain of each potential query based

on the entropy of the item’s probability to win. The query that maximizes the information gain is

selected. The second heuristic, Expected Score (ES), uses the probability distribution of the

voters’ preferences to select the candidate most likely to win and the voter that is expected to

37

maximize the score of that item. In both algorithms, voter-item probability distributions are

computed and updated as new information is revealed. The algorithms output a necessary winner

item (Konczak and Lang2005). The heuristics are evaluated under different settings (section 4.6.

Finally, we discuss the findings (section 4.7

4.1 The Necessary Winner

We now define the necessary winner under the Range voting protocol. In Range voting,

the pessimistic value (possible minimum) and the optimistic value (possible maximum) of an

item are the lowest bound and the highest bound of the range respectively. Formally, let 𝑂𝑖 =

{𝑞𝑝
𝑖 , … , 𝑞𝑡

𝑖} represent the set of voter 𝑣𝑖 responses to queries. Note that this set does not

necessarily contain all the items. 𝒪𝐴 = {𝑂1, … , 𝑂𝑛} is a set of 𝑂𝑖 sets. The function

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗,𝒪
𝐴) computes the possible maximum rating for item 𝑐𝑗, given the preference values

of the voters.

Definition 2.(Range voting Possible Maximum):

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴) =

∑ 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂
𝑖)𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂

𝑖) = {
𝑑𝑔 𝑖𝑓 ∃𝑞𝑝

𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑎𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Similarly, the function of the possible minimum rating of item 𝑐𝑗: 𝑝𝑚𝑖𝑛𝐴(𝑐𝑗,𝑂
𝐴) is:

Definition 3.(Range voting Possible Minimum):

𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪
𝐴) =

∑ 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂
𝑖)

𝑖
, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂

𝑖) = {
𝑑𝑔 𝑖𝑓 ∃𝑞𝑝

𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑖𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A necessary winner 𝑁𝑊 is an item whose minimum aggregated rating is greater than the

maximum aggregated rating of all the others. Formally:

Definition 4.(Necessary Winner):

𝑁𝑊(𝑐𝑖) = {𝑐𝑖|𝑝𝑚𝑖𝑛𝐴(𝑐𝑖, 𝒪
𝐴) > 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖}

38

4.2 Probabilistic Voter Ratings Distribution Model

In this section we present a method for computing voter-item distributions. When given a

set of voters 𝑉 and a set of items 𝐶, the goal is to determine a querying policy which minimizes

the cost and determines a necessary winner. While each voter has a unique rating for each item

𝑞𝑗
𝑖 , it is not necessarily known to the voting center. We assume that there exists an approximate

rating distribution of the voter-item preferences (i.e., an approximate distribution of each voter’s

preferences for each item). In an iterative process, voter-item pairs are queried and the ratings are

revealed. The Rating distribution is then updated.

Definition 5.(Rating Distribution): the voting center considers 𝑞𝑗
𝑖 as a discrete random

variable distributed according to some rating distribution 𝑣𝑑𝑗
𝑖, such that 𝑣𝑑𝑗

𝑖[𝑑𝑔] ≡ 𝑃𝑟(𝑞𝑗
𝑖 = 𝑑𝑔).

The example presented in Table 7 shows the rating distribution of three voters for two

items in the domain 𝐷 = {1,2,3}. For example, the probability that 𝑣1 will assign a rating of 1 to

item 𝑐1 is 0.2. The probabilities for each item sum to 1. For example for item 𝑐1: 0.2 + 0.2 +

0.6 = 1.

Table 7: Rating distribution of the voters in the set 𝑉 = {𝑣1, 𝑣2, 𝑣3}

𝑣1 𝑣2 𝑣3

𝑐1 𝑐2 𝑐1 𝑐2 𝑐1 𝑐2

𝑑1 = 1 0.2 0.2 0.4 0.5 0.3 0.7

𝑑2 = 2 0.2 0.2 0.3 0.2 0.3 0.1

𝑑3 = 3 0.6 0.6 0.3 0.3 0.4 0.2

In order to show that the assumption of the existence of a-priori rating probabilities is a

realistic assumption, we present a method for approximating voter-item rating distributions.

Furthermore, in order to demonstrate the methods feasibility, a detailed example of how these

ratings are calculated is demonstrated.

We assume independence between the probability distributions. While the independence

assumption is naive, it can be used for approximating the actual probability. An attempt to

39

address dependency will yield probabilities that are too complex for a system to realistically

hold. When facing the tradeoff between the model's accuracy and practicality, we chose to model

a practical system. However, note that the precise probability value is not required if the queries

are still sorted correctly according to the value of the information they hold (their

informativeness). In the closely related domain of machine learning, a similar naive assumption

is known to provide accurate classification, though the independence assumption is not always

true (Domingos and Pazzani1997). We therefore argue the system's loss of accuracy, if it exists

at all, is insignificant.

The method uses historical ratings data to examine the correlation between voters and

thus predicts the rating distribution of the voters. For example, consider a voting center whose

task is to decide which movie to recommend to a group of members, out of a few available

movies. The center has some historical voter ratings (i.e., some of the voters have rated movies

which are not current candidates). The center also has historical item ratings(i.e., some of the

candidate movies have been previously rated by voters who are not part of the group of current

members). This is illustrated in Figure 6 that follows. The numbers represent known ratings,

𝑣1. . 𝑣4 represent the group members who wish to see a movie together, and 𝑐1. . 𝑐3 represent the

available movies. We use a collaborative filtering (CF) method (Goldberg et al. 1992) to

examine the correlation between voters, based on their ratings. CF examines voter rating patterns

and is usually used to predict ratings. We extended this method and used the rating predicted by

the CF method to approximate a rating distribution. Specifically, our goal is to approximate

voter-item voting distributions 𝑣𝑑𝑗
𝑖 for voter-item pairs whose ratings are unknown. The benefit

of this algorithm, beyond the computation of the a-priori distribution, is that it can be used to

compute posterior probabilities after receiving the response of each query.

Note that the voting center examines a set of voters 𝑉 and a set of items 𝐶; the center's

goal is to output an item from 𝐶 that fits the preferences of the voters in 𝑉. To represent the

voters and items beyond 𝑉 and 𝐶 we define a new set of voters 𝑈 = {𝑢1. . 𝑢𝑞} and a new set of

items 𝐼 = {𝑖1. . 𝑖𝑝} so that 𝑉 ⊂ 𝑈 and 𝐶 ⊂ 𝐼. We assume that we have a history of ratings, that is,

the ratings are known for at least some of the voter-item pairs of the sets 𝑈 and 𝐼, respectively.

The reader is reminded that we denoted the set of known voter ratings 𝒪𝐴, where 𝑂𝑖 ∈ 𝒪𝐴 is the

40

set of known ratings of voter 𝑣𝑖. In the same manner, let 𝑂𝑗 = {𝑞𝑗
𝑝, … , 𝑞𝑗

𝑡} represent the known

ratings of item 𝑐𝑗 and 𝒪𝐵 signify the set of sets so that 𝑂𝑗 ∈ 𝒪𝐵.

Figure 6: A movie scenario example

We assume that other than their ratings, no information about the voters is known. The

correlation between the voters is therefore based only on their ratings. However, observed ratings

might have a bias due to voter and item effects. A voter bias occurs when a voter tends to rate

higher or lower than average. For example, a voter who usually rates “1” or “2” on a scale of 1 to

5 has a negative bias. Similarly, an item bias occurs when an item tends to receive higher or

lower rates than the average. Typical data can contain a large amount of voter and item bias

(Koren and Bell2011). Therefore, examining the correlation between voters on the given ratings

will give a skewed result which does not reflect the real probability distribution.

As proposed by Koren and Bell (2011), to cope with possible existing bias in item and

voter data, we choose to correct the given rating of a voter-item pair 𝑞𝑗
𝑖 . To compute the bias for

voters and items we look at the deviation from the average. Suppose a is the average rating of all

items by all voters and 𝑏𝑖, 𝑏𝑗 are the bias of voter 𝑣𝑖 and item 𝑐𝑗 , respectively. For example, a

41

voter has a positive bias if she tends to give candidates a higher rating than average. An item has

a positive bias if it is rated higher than average. Equally, a negative bias exists for voters rating

lower than average and items rated lower than average. The bias of an item is:

(4.1) 𝑏𝑗 = ∑
𝑞𝑗

𝑖 − 𝑎

|𝑂𝑗|𝑖∈𝑂𝑗

To avoid a double calculation of the bias, the voter deviation considers the item bias:

(4.2) 𝑏𝑖 = ∑
𝑞𝑗

𝑖 − 𝑏𝑗 − 𝑎

|𝑂𝑖|𝑗∈𝑂𝑖

The baseline prediction of a voter-item pair is denoted as 𝑏𝑗
𝑖 and can be computed from

the average rating and the voter and item bias:

(4.3) 𝑏𝑗
𝑖 = 𝑎 + 𝑏𝑖 + 𝑏𝑗

For example, suppose we want a baseline 𝑏1
1. Suppose 𝑣1 tends to rate higher than the

average voter and the 𝑐1 is a popular item which receives ratings higher than average. This will

result in a high baseline prediction. In order to find the probability distribution the proposed

algorithm relies on the Cosine similarity equation, which is used in many collaborative filtering

recommender systems for computing similarity between items or voters (Breese et al. 1998;

Koren and Bell2011). However, we do not apply the equation directly on the ratings since they

might be biased. We are interested in a bias-free correlation between the voters.

Subsequently, we propose to compute the baseline prediction (eq.4.3) and subtract it from

the voters given rating. The obtained delta expresses the actual bias-free voter behavior:

(4.4) Δ𝑗
𝑖 = 𝑞𝑗

𝑖 − 𝑏𝑗
𝑖

We propose computing the similarity between a voter 𝑣𝑖 and a voter 𝑣𝑘 on the bias-free

rating (eq.4.4). Note that the similarity is calculated based on ratings provided by 𝑣𝑖 and 𝑣𝑘 on

mutually-rated items.

(4.5) 𝑠𝑖𝑚𝑖,𝑘 =
∑ Δ𝑗

𝑖 ⋅ Δ𝑗
𝑘

𝑗∈𝑂𝑖

 √∑ (Δ𝑗
𝑖)

2
∙ ∑ (Δ𝑗

𝑘)
2

𝑗∈𝑂𝑖𝑗∈𝑂𝑖

42

We can now predict a rating for 𝑣𝑖 and item 𝑐𝑗 based on the degree of similarity between

voters (𝑣𝑖 , 𝑣𝑘) and the voter bias:

(4.6) �̂�𝑗
𝑖,𝑘 = 𝑏𝑗

𝑖 + 𝑠𝑖𝑚𝑖,𝑘 ∙ Δ𝑗
𝑘

Figure 7: Pseudo code for computing the initial probability distribution

We now extend this method and use the rating predicted by the CF method to

approximate an initial rating distribution. The pseudo code for computing the initial rating

distribution is presented in Figure 7. The algorithm receives the sets of historical ratings as

inputs, voter ratings sets, and rated items sets. First, an empty rating distribution is initialized

(line 1) and the bias-free voter behavior is calculated (lines 2-3). Next, the similarity of voter

pairs is calculated (lines 4-5). Then, for every voter-item pair, the predicted rating according to

neighbor voter 𝑣𝑘 is determined according to eq.5.6 (line 8). The result is rounded to the closest

rating (line 9). Next, the similarity results are aggregated into buckets according to ratings (lines

 Input:

 𝑂𝐴 – user rating sets

 𝑂𝐵 – rated item sets

 𝑉 - users

 𝐶 – items

Output:

 VD - a rating distribution

1. Initialize: ∀𝑖,𝑗 𝑣𝑑𝑗
𝑖 𝑑𝑔 ≡ 𝑃𝑟(𝑞𝑗

𝑖 = 𝑑𝑔) ← 0

2. For each 𝑣𝑖 and 𝑐𝑗 do:

3. Compute ∆𝑗
𝑖 (eq.4.4)

4. For each 𝑣𝑖 ∈ 𝑉 do:

5. For each 𝑣𝑘 ∈ 𝑂𝐵 calculate the similarity 𝑠𝑖𝑚
𝑖,𝑘 (eq.4.2)

6. For each user-item pair do:

7. For each user 𝑣𝑘 do:

8. Compute the predicted rating �̂�𝑗
𝑖,𝑘
 (eq.4.6)

9. Round �̂�𝑗
𝑖,𝑘
 to the nearest rating 𝑑𝑔

10.For each user-item pair do:

11. For each rating 𝑑𝑔 do:

12. If (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 �̂�𝑗
𝑖,𝑘) = 𝑑𝑔 then 𝑝𝑟(𝑞𝑗

𝑖 = 𝑑𝑔) ← 𝑝𝑟(𝑞𝑗
𝑖 = 𝑑𝑔) + 𝑠𝑖𝑚𝑖 ,𝑘

13. Normalize 𝑉𝐷
 Return VD

43

11-12). The buckets are normalized (line 13). The normalization is done for each voter-item pair

by dividing the value of each bucket in the total aggregated values for this pair. Finally, a rating

distribution is returned.

We calculate the initial rating distribution before the heuristics are applied. Both

heuristics iteratively reveal one new rating at a time. This allows the update of the distribution

every time a new rating is added. The accuracy is expected to grow with the number of ratings

acquired. Note that the proposed algorithm can be used when no history of ratings is given (this

is known as cold start). In such a case, the returned distribution will be uniform, updated as

ratings are acquired. A full example can be found in the appendix.

4.3 Item Winning Probability Using Dynamic Programming

We present a dynamic programming algorithm for computing the item winning

probability under the Range voting protocol. First, let us define the probability that an item has a

certain score and the probability of an item to win:

Definition 6. (Item Score Probability): the probability that the score of item 𝑐𝑖

equals s is 𝑃𝑟 (𝑐𝑗 = 𝑠), when 𝑠 ∈ {𝑛 ∙ 𝑑𝑚𝑖𝑛, … , 𝑛 ∙ 𝑑𝑚𝑎𝑥} is the score of the

aggregated ratings an item received.

Definition 7. (Item Winning Probability): Under the independence of probabilities

assumption, the probability that item cj is a winner is the aggregation of 𝑐𝑖’s

probabilities to win over the possible ratings s:

𝑃𝑟(𝑁𝑊 = 𝑐𝑗) = ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠 ⋀ ∀ 𝑖 ≠ 𝑗 𝑐𝑖 < 𝑠)
𝑛∙𝑑𝑚𝑎𝑥
𝑠=𝑛∙𝑑𝑚𝑖𝑛

= ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠) ∙
𝑛∙𝑑𝑚𝑎𝑥
𝑠=𝑛∙𝑑𝑚𝑖𝑛

∏ 𝑃𝑟 (𝑐𝑖 < 𝑠)∀𝑖≠𝑗

To compute the probability that an item will receive the score s and to compute the

probability that an item will receive a score of at most s, we use:

 (4.7) 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1. . 𝑣𝑚) = ∑ (𝑃𝑟(𝑐𝑗 = 𝑠 − 𝑥|𝑣1. . 𝑣𝑚−1) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥
𝑥=𝑑𝑚𝑖𝑛

 where 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣𝑖) = 𝑃𝑟(𝑞𝑖
𝑗
= 𝑠)

(4.8) 𝑃𝑟(𝑐𝑗 < 𝑠) = ∑ 𝑃𝑟(𝑐𝑗 = 𝑘)𝑠−1
𝑘=𝑛∙𝑑𝑚𝑖𝑛

44

4.4 Information Gain Heuristic for Range Voting

The Dynamic Information Gain Heuristic (DIG) heuristic focuses on selecting queries

that will at each stage maximize the available information in terms of entropy (Shannon2001).

The heuristic computes the item winning probability using the dynamic programming algorithm

presented in section 4.3. DIG is an iterative algorithm. It uses a greedy calculation in order to

select a query out of the possible 𝑚 × 𝑛 queries. The chosen query is the one that maximizes the

information gain. The information gain of a specific query is the difference between the prior and

the posterior probability of the candidates to win given the possible responses to the query.

The algorithm steps are presented in Figure 8. The algorithm continues until a necessary

winner is found. In order to select a query, the heuristic calculates the information gained from

each one of the optional queries and then selects the one that maximizes it. To compute the

information gain, the winning probability of each item is dynamically calculated (lines 1-6), as

shown in section 4.3. Next, the heuristic calculates the information gain of the 𝑚 × 𝑛 possible

queries (lines 7-10). The information gain of a query is the difference between the prior entropy

(line 7) and the posterior entropy given the possible responses to the query:

(4.9) 𝐻(𝑁𝑊) = −∑ 𝑃𝑟(𝑁𝑊 = 𝑐𝑗) ∙ log (𝑃𝑟(𝑁𝑊 = 𝑐𝑗))
𝑚
𝑗=1

Definition 8. (Information Gain): The Information Gain (IG) of a query is:

𝐼𝐺(𝑁𝑊|𝑞𝑗
𝑖) = 𝐻(𝑁𝑊) − ∑ 𝐻(𝑁𝑊|𝑞𝑗

𝑖 = 𝑑𝑔
𝑚𝑎𝑥
𝑔=𝑚𝑖𝑛) ∙ 𝑃𝑟 (𝑞𝑗

𝑖 = 𝑑𝑔) where

𝐻(𝑁𝑊|𝑞𝑗
𝑖 = 𝑑𝑔) represents the entropy of NW given the possible values by

querying voter vi about item cj.

The query that maximizes information gain is selected: 𝑎𝑟𝑔𝑚𝑎𝑥𝐼𝐺𝑖,𝑗(𝑁𝑊|𝑞𝑗
𝑖). The

query selection process continues until a necessary winner is found.

45

Figure 8: Algorithm 1 - Dynamic Information Gain heuristic

We return to the example in section 4.3. In order to calculate the information gain (IG) of

a certain query, we calculate the entropy reduction of 𝑁𝑊 that is achieved by that query. Table 8

shows the entropy 𝐻(𝑁𝑊) for our example.

The entropy of 𝑁𝑊 for each possible query response (𝑞𝑗
𝑖 = 𝑑𝑔) is denoted as

𝐻(𝑁𝑊|𝑞𝑗
𝑖 = 𝑑𝑔). This entropy is now calculated. In our example, in Table 9, 𝑁𝑊 = 𝑐1|𝑞1

1 = 1

is 0.997, 𝑁𝑊 = 𝑐1|𝑞1
1 = 2 is 0.92 and 𝑁𝑊 = 𝑐1|𝑞1

1 = 3 is 0.646. To calculate the weighted

average of the entropy we multiply the entropy by the probability of the random variable

𝑃𝑅(𝑞𝑗
𝑖 = 𝑑𝑔) (the reduced side in the Information Gain equation in definition 8). For instance,

the weighted average of query 𝑞1
1 is 0.771. Consequently, the information gain for query 𝑞1

1 is:

𝐼𝐺(𝑁𝑊|𝑞1
1) = 𝐻(𝑁𝑊) − (𝐻(𝑁𝑊|𝑞1

1 = 1) ∙ 0.2 + 𝐻(𝑁𝑊|𝑞1
1 = 2) ∙ 0.2 +

𝐻(𝑁𝑊|𝑞1
1 = 3) ∙ 0.6) = 0.844 − 0.771 = 0.073.

Finally, we select the query that maximizes the information gain. In our example,

querying voter 𝑣2 about 𝑐2 generates the maximum information gain (0.084, Table 9, row 5, last

 Input:

 𝑉 - users

 𝐶 – items

 𝑆 - scores

Output:

 A query

1. For each item 𝑐𝑗:

2. For each score 𝑠𝑡:
3. Calculate the probability that 𝑐𝑗 will receive 𝑠𝑡

(eq. 4.7)

4. Calculate the probability that 𝑐𝑗 will receive at

most 𝑠𝑡 (eq.4.8)
5. For each item 𝑐𝑗:

6. Calculate the probability that 𝑐𝑗 will win: Pr(𝑁𝑊 = 𝑐𝑗)
7. Calculate the entropy of NW (eq. 4.9)

8. For each possible query 𝑞𝑖
𝑗
:

9. Calculate the entropy of NW given 𝑞𝑖
𝑗
 (H(WC|𝑞𝑖

𝑗
))

10. Calculate the information gain achieved by 𝑞𝑖
𝑗

Return the query that maximizes the information gain:

𝑎𝑟𝑔𝑚𝑎𝑥𝐼𝐺𝑖,𝑗(𝑊𝐶|𝑞𝑗
𝑖)

46

column). The algorithm iterates until a necessary winner is found. Note that the information gain

is calculated only for the unknown ratings.

The complexity of this algorithm is affected by the dynamic programming algorithm that

computes the probability that 𝑐𝑗 = 𝑠 (∀𝑠 ∈ {𝑛 ∙ 𝑑𝑚𝑖𝑛, … , 𝑛 ∙ 𝑑𝑚𝑎𝑥}). We calculate this

probability for all items (m) and ratings (n*|D|) for every voter (n). This is done by scanning the

possible ratings:

∑ 𝑃𝑟(𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑐𝑖 𝑓𝑟𝑜𝑚 𝑢𝑠𝑒𝑟𝑠 𝑣1 …𝑣𝑛−1 = 𝑠) ∙ 𝑃𝑟(𝑞𝑛
𝑖 = 𝑘)

𝑑𝑚𝑎𝑥
𝑘=𝑑𝑚𝑖𝑛

(|𝐷|).

This dynamic algorithm is implemented for every possible query of the voters over the

items (𝑚 ∙ 𝑛|𝐷|). Thus, the worst case complexity is 𝑂(𝑚2𝑛3|𝐷|3).

Table 8: The Entropy Function H(NW)

Entropy

𝑐1 0.332

𝑐2 0.511

sum 0.844

Table 9: Information Gain

Item Voter 𝑑 = 1 𝑑 = 2 𝑑 = 3
Weighted

average

IG (Information

Gain)

𝑐1

𝑣1 0.997 0.92 0.646 0.771 0.073

𝑣2 0.982 0.8 0.489 0.779 0.065

𝑣3 0.996 0.853 0.545 0.773 0.071

𝑐2

𝑣1 0.415 0.717 0.943 0.793 0.051

𝑣2 0.572 0.872 1 0.76 0.084

𝑣3 0.68 0.939 0.99 0.768 0.076

4.5 Highest Expected Score Heuristic for Range Voting

The highest expected heuristic (ES) score is based on the exploration vs. exploitation

tradeoff. As mentioned earlier, a necessary winner is an item whose possible minimum is greater

47

than the possible maximum of the other items. The possible maximum of an item decreases

while its possible minimum increases as more information about voter preferences is revealed.

Thus, an item for which no voter has yet submitted a rating has the highest possible maximum

and must be considered as a possible winner. On the other hand, the same item has the lowest

possible minimum and cannot yet be a necessary winner. Therefore, for more information, we

may want to explore the voters' preferences for the items in order to determine their potential of

being a necessary winner. Once we have enough information about the items' rating, we can

exploit this information to further inquire about the items that are more likely to win given that

the item in question is not the winner

We propose a heuristic which chooses its next query by considering the item that has the

possible maximum and the voter expected to maximize the rating of that item. The expected

rating of 𝑞𝑗
𝑖 based on the rating distribution 𝑣𝑑𝑖

𝑗
 is:

(4.10) 𝐸𝑆(𝑣𝑑𝑗
𝑖) = ∑ Pr (𝑞𝑗

𝑖 = 𝑑𝑔) ∙ 𝑑𝑔
𝑚𝑎𝑥
𝑔=𝑚𝑖𝑛

Figure 9: Algorithm 2 – Highest Expected Score heuristic

For item 𝑐𝑗, we choose the voter that maximizes the expected rating: 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝐸𝑆(𝑣𝑑𝑗
𝑖).

Using this approach, we encourage a broad exploration of the items since the less information we

have about an item's rating, the higher possible maximum it has. In addition, we exploit the

 Input:

 𝑉 - users

 𝐶 – items

 Output:

 A query

1. Initialize: 𝑝𝑠 ← 0 (possible maximum) 𝑚𝑎𝑥 ← 0

(maximum) 𝑖𝑛𝑑𝑒𝑥 ← 0
2. For each item 𝑐𝑗:

3. 𝑝𝑠 ← calculate the possible maximum of 𝑐𝑗 according
to definition 2

4. If 𝑝𝑠 > 𝑚𝑎𝑥 then 𝑚𝑎𝑥 ← ps and 𝑖𝑛𝑑𝑒𝑥 ← 𝑗

5. For each user 𝑣𝑖 ∈ 𝑂𝑖𝑛𝑑𝑒𝑥:
6. Calculate the expected rating according to eq.4.10

Return the query that maximizes the expected rating:

𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝐸𝑆(𝑣𝑑𝑖𝑛𝑑𝑒𝑥
𝑖)

48

preferences revealed in order: (1) to refrain from querying about items that have been proven as

impossible winners (since their possible maximum is less than a minimum of another item) and

(2) to further examine an item that has the highest possible maximum and might be a necessary

winner. The pseudo code for the ES algorithm is presented in Figure 9.

 In the first step of the above algorithm, the target item of the query is chosen (lines 2-4).

This is done by calculating the possible maximum of each item according to definition 3 in

section 4.1 (line 3). Next, we choose the voter who is to be queried about that item (lines 5-6).

We choose the voter who is expected to maximize the item's rating by computing the expected

rating using the rating distribution of that item. This process is repeated until a necessary winner

is found. Ties are broken according to the item positions according to an increasing order of all

items.

 The following is an illustration of the algorithm using the example used in the previous

section. To begin with, we have only probabilistic knowledge of voter preferences. Since no

voter has submitted any preference yet, in the first round the possible maximum of each item is 9

(since there are 3 voters and the maximum rating that can be assigned is 3). The first item c1 is

selected for a query according to the tie breaking policy. According to the distribution in Table 7,

the expected ratings of the voters over c1 are:

𝐸𝑆(𝑣𝑑1
1) = 0.2 ∙ 1 + 0.2 ∙ 2 + 0.6 ∙ 3 = 2.4

𝐸𝑆(𝑣𝑑) = 0.4 ∙ 1 + 0.3 ∙ 2 + 0.3 ∙ 3 = 1.9

𝐸𝑆(𝑣𝑑3
1) = 0.3 ∙ 1 + 0.3 ∙ 2 + 0.4 ∙ 3 = 2.3

Thus, the voter-item query pair is 𝑞1
1. Assuming the response is 𝑞1

1 = 2, in the next

iteration the possible maximum of 𝑐1 is 8 and of 𝑐2 is 9. Therefore in the next round, 𝑐2 is

selected as the item in the voter-item query pair. The algorithm iterates until a necessary winner

is found.

The complexity of this algorithm is polynomial in the number of voters, items, and

domain size. In order to select the item that is to be queried, we compute the possible maximum

of each item, which is 𝑂(𝑚𝑛). To select which voter to query we compute the expected rating of

the voters about the specific item, which is 𝑂(𝑛|𝐷|). Thus, the total complexity is 𝑂(𝑛(𝑚 +

|𝐷|)).

49

4.6 Evaluation

In sections 4.4 and 4.5 we proposed two novel heuristics, DIG and ES, which determine a

necessary winner. In this section, we investigate the performance of DIG and ES, both with and

without updating the rating distribution (section 4.2. The most similar scenario (although not

identical) to ours is found in (Kalech et al. 2011). Hence we have also compared our methods to

their sequential-Top method. We refer to this method as SEQTOP. To the best of our knowledge,

there are no other algorithms that attempt to find a necessary winner by eliciting voter

preferences and minimizing cost on the Range voting protocol, therefore the baseline for

measuring the effectiveness of our methods is a random procedure (RANDOM), which randomly

selects the next query. To account for the randomness of the RANDOM algorithm, we repeated

each experiment 20 times. An overview of the evaluation procedure was presented in chapter 3.

4.6.1 Simulated Data

A comparison of the four algorithms, DIG, ES, SEQTOP and RANDOM, using the

UNIFORM technique for DIG and ES probability distribution, is presented in Figure 10. Axis x

represents the different skewness levels assigned to one specific item. According to the

UNIFORM technique, the other items have a uniform skewness (level “0” is Table 5). Axis y

represents percentage of the dataset queried.

The graph presents an experimental run on 15 voters and 20 items. Results illustrate that

the DIG and ES perform almost equally and better than RANDOM. All three methods improve

as the skewness negativity increases (i.e., when an item has a high probability of receiving a high

rating and being the winning item). That is to say, when the winner item is more distinct, all

three methods can easily identify the winner. Therefore, all three methods seem to discover this

item quicker than in a uniform or positive skewness setting, where any of the items have an equal

chance of being the winner. The Friedman Aligned Ranks test with a confidence level of 95%

rejected the null-hypothesis that all heuristics perform equally. The Bonferroni-Dunn test

concluded that ES and DIG significantly outperform RANDOM and SEQTOP at a 95%

confidence level. However, DIG and ES are not significantly different. We obtained similar

results for other sizes of 𝑉 × 𝐶 matrices. Note that in our experiments SEQTOP is not

significantly different from the RANDOM baseline. This result repeats throughout the

experiments and is discussed in section 4.7.

50

Figure 10: 15x20 dataset with one skewed item and UNIFORM skew

for the rest of the items

Figure 11: 15x20 dataset with one skewed item and LOTTERY skew

for the rest of the items

Using the LOTTERY technique to set skewness for all items but one, we obtained

different results (see Figure 11). Axis x represents the dataset size and axis y is the percentage of

the dataset queried. The methods perform similarly on different dataset sizes; the graph

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

Skewness

DIG

ES

RANDOM

SEQTOP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

%
 o

f
d

at
se

t
q

u
e

ri
e

d

Skewness

DIG

ES

RANDOM

SEQTOP

51

illustrates performance on the 15x20 dataset. The Friedman Aligned Ranks test with a

confidence level of 95% rejected the null-hypothesis that all heuristics perform the same. The

Bonferroni-Dunn test concluded that DIG significantly outperforms RANDOM and SEQTOP at

a 95% confidence level. However, ES outperforms only SEQTOP.

It is interesting to see that DIG outperforms ES when the LOTTERY technique is

applied. We argue that the reason for this is due to the skewness of all voter-item pairs. To

illustrate, Figure 12 displays the skewness of 15 voters and 20 items, when one item is set with

uniform skewness and the other items have a skewness determined by (a) using the LOTTERY

technique or (b) using the UNIFORM technique. Axis x represents the voters (from voter #1 to

voter #15) and axis y represents the skewness level. The dots on the graph are the items. For

example, the bottom-most dot in Figure 12(a) is an item whose pair is voter #1, which has a

skewness level of -6. As illustrated, using the LOTTERY technique, the voter-item pairs have a

scattered skewness with no distinct pattern. In this setting, DIG has an advantage as it considers

all rating probabilities using an entropy function. Therefore, DIG is superior for noisy data and

when no assumption can be made on the voter-item probable rating. ES focuses on the item that

is most likely to win; when there is no such item, ES loses its advantage.

(a)

(b)
Figure 12: The skewness of 15x20 using (a) LOTTERY and (b) UNIFORM

-6

-4

-2

0

2

4

6

0 5 10 15

Sk
e

w
n

e
ss

 le
ve

l

User #

item

-6

-4

-2

0

2

4

6

0 5 10 15

Sk
e

w
n

e
ss

 le
ve

l

User #

item

52

In the next set of experiments we varied the number of voters from 3 to 21 and the

number of items from 4 to 28 in order to examine our algorithms under small and large settings.

In Figure 13 we illustrate a comparison between the three algorithms when the dataset size

increases and the skewness is determined by LOTTERY. Axis x is the dataset size and axis y is

(a) the amount of queries or (b) the percentage of the dataset queried. As can be observed on

graph (a) the number of queries required to identify the winning item grows with the size of the

dataset. Graph (b) shows us that the percentage of the dataset queried is stable. Yet again, the

Friedman Aligned Ranks test with a confidence level of 95% rejected the null-hypothesis that all

heuristics perform the same. The Bonferroni-Dunn test concluded that DIG significantly

outperforms RANDOM and SEQTOP at a 95% confidence level. However, ES outperforms only

SEQTOP.

(a)

(b)

Figure 13: One item with uniform skewness. For the rest of the items skewness is set by

LOTTERY

Runtime results are presented in Figure 14. Axis x presents the datasets size and axis y

shows the runtime per query in milliseconds. As observed, while DIG runs in polynomial time

ES, SEQTOP and RANDOM run in linear time. This coincides with the runtime complexities we

presented in sections 4.4 and 4.5.

0

100

200

300

400

500

600

3
x4

6
x8

9
x1

2

1
2

x1
6

1
5

x2
0

1
8

x2
4

2
1

x2
8

A
m

o
u

n
t

o
f

q
u

e
ri

e
s

DIG

ES

RANDOM

SEQTOP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3
x4

6
x8

9
x1

2

1
2

x1
6

1
5

x2
0

1
8

x2
4

2
1

x2
8

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

DIG

ES

RANDOM

SEQTOP

53

Figure 14: Heuristics runtimes

We further examined our methods, using the LOTTERY distribution settings under the

following conditions: when the number of voters increase but the number of items remains the

same, and when the number of items increases but the number of voters remains the same. This

is illustrated in Figure 15 and Figure 16, respectively. In both cases, DIG performs in the best

manner, followed by ES and SEQTOP. RANDOM is the worst performer. When the number of

voters increases, all methods query a larger percentage of the dataset. When the number of items

increases, the performance of all methods improves. Since finding a winner requires querying

each one of the voters, this conclusion adheres to the necessary winner protocol. This task

becomes more difficult as the number of voters increases. For the data in Figure 15, the

Friedman Aligned Ranks test with a confidence level of 95% rejected the null-hypothesis that all

heuristics perform the same. The Bonferroni-Dunn test concluded that DIG significantly

outperforms RANDOM and SEQTOP at a 95% confidence level. However, ES outperforms only

SEQTOP. In Figure 16, the Friedman Aligned Ranks test with a confidence level of 95%

rejected the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test

concluded that DIG and ES significantly outperforms RANDOM and SEQTOP at a 95%

confidence level.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

3x4 6x8 9x12 12x16 15x20 18x24 21x28

ru
n

ti
m

e
 p

e
r

q
u

e
ry

dataset

DIG

ES

RANDOM

SEQTOP

54

Figure 15: Increasing voter amount with UNIFORM skewness for one specific item,

LOTTERY skewness for the rest of the items

Figure 16: Increasing item amount with UNIFORM skewness for one specific item,

LOTTERY skewness for the rest of the items

4.6.2 The Netflix prize dataset

In this section we examine the performance of DIG and ES on the real world Netflix

dataset and analyze their sensitivity to different settings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3x4 6x4 9x4 12x4 15x4 18x4 21x4

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

Dataset

DIG

ES

RANDOM

SEQTOP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3x4 3x8 3x12 3x16 3x20 3x24 3x28

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

Dataset

DIG

ES

RANDOM

SEQTOP

55

Note that in every iteration the rating of one voter-item pair is revealed and the rating

distributions are updated with this new information. Our hypothesis states that updating the

rating distribution would lead each algorithm to a faster solution. In order to examine this

assumption, we generated two more settings:

(a) “UPDATE” – when the algorithm’s rating distribution is updated as new voter-item

ratings are revealed.

(b) “NO UPDATE” – when the algorithm’s rating distribution is not updated.

In Netflix there is a huge amount of (sparse) historical rating data. Prior to the

algorithm’s execution, we generated the rating distributions of the voter-item pairs using the

algorithm described in section 5. Both DIG and ES rely on the rating distributions. To compare

rating distribution generated from a larger dataset to a rating distribution generated from a

smaller dataset, we generated two settings:

(c) “BIG” – the rating distribution is generated from a matrix of size 1000 (i.e., 𝑈 × 𝐼 =
1000 × 1000). This matrix is more than 30 times bigger than the biggest evaluated

dataset (30 × 30).

(d) “SMALL” – the rating distribution is generated from a matrix of size 100 (i.e.,

𝑈 × 𝐼 = 100 × 100). This matrix is about three times bigger than the biggest

evaluated dataset.

Figure 17 presents DIG’s performance on the different datasets using the SMALL matrix

size for approximating and updating the distribution. Axis x is the dataset size and axis y is the

percentage of queries from the amount of queries a naïve voting center would have asked (𝑛 ×

𝑚). As hypothesized, DIG algorithm performs significantly better, with a 95% confidence level,

when the distribution is updated following each iteration. Interestingly, while there is no

significant difference between the normalized amount of queries for different dataset sizes under

NO UPDATE, once the distribution is updated, performance improves with an increase in the

dataset size. The best results are obtained for the 30 × 30 dataset; the communication cost is cut

to 48%.

This result is closely linked with the results presented in Figure 18 where DIG is

presented with UPDATE on the BIG and SMALL matrices. Axis x illustrates the different

datasets and axis y is the percentage of the dataset queried. DIG performs significantly better

under SMALL. This can be explained by the fact that DIG is very sensitive to distribution

updates (see Figure 17) and the distribution updates are more meaningful on the smaller dataset

56

(SMALL) since the ratio between each newly acquired rating and the dataset size is bigger for

small datasets and thus has more impact on the distribution.

Although achieving the best results, ES behaves quite differently from DIG. ES generally

seems to be less sensitive to changes in the settings than DIG. Figure 19 and Figure 20

demonstrate ES’s performance under UPDATE and NO UPDATE and under BIG and SMALL

respectively. Axis x shows the dataset size and axis y shows the percentage of the dataset queried

until a necessary winner is found.

As observed in Figure 19 ES performs better under UPDATE. The result was found

significant at a 95% confidence level. Yet, another trend is noticed: ES generally performs better

as the dataset size increases, regardless of the performance of an update. This is unlike DIG that

presents the same trend for UPDATE. This might explain the somewhat baffling results

presented in Figure 20 where no significant difference in ES’s performance under settings BIG

or SMALL is observed. While DIG inherently relies on the distribution by finding the query with

the highest information gain, ES focuses on the expected score of a certain item. This makes ES

less sensitive to the accuracy of the distribution and therefore, less sensitive to the matrix size

(BIG or SMALL) from which the distribution is derived.

To understand the reason for the superiority of ES over DIG for the Netflix dataset, we

examined a sample dataset of size 10x10 and checked the skewness of the rating distributions.

Figure 21 demonstrates the skewness when the rating distributions are created using the (a)

SMALL and (b) BIG techniques, respectively. Axis x illustrates the voter number (voters 1-10)

and axis y illustrates the skewness level. Each dot on the graph accounts for one item. In graph

(b) most of the voter-item pairs have a skewness clustered around the “0” level skewness. In

graph (a) the skewness of the voter-item pairs is a bit more scattered, but still clustered around

the “0” skewness level and again around the “10” skewness level. Note that some of the items

overlap in their skewness so that only one dot is visible.

57

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

UPDATE

NO
UPDATE 0

0.2

0.4

0.6

0.8

1

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

BIG

SMALL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

UPDATE

NO
UPDATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

BIG

SMALL

Figure 17: DIG algorithm on the “SMALL”

rating distribution, with and without updates

Figure 18: DIG algorithm with UPDATE on

BIG and SMALL

Figure 19: ES algorithm on the “SMALL”

rating distribution, with and without updates

Figure 20: ES algorithm with UPDATE on

BIG and SMALL

Recall that in our experiments on simulated data we showed that DIG has an advantage

when there is no typical skewness pattern and ES is advantageous when there is some pattern to

the skewness. In Figure 21 the distributions are clustered enough for ES to depict a probable

winner, therefore making ES more attractive.

58

-12

-9

-6

-3

0

3

6

9

12

0 5 10

Sk
e

w
n

e
ss

 le
ve

l

User #

item

-12

-9

-6

-3

0

3

6

9

12

0 5 10

Sk
e

w
n

e
ss

 le
ve

l

User #

item

(a) (b)
Figure 21: Skewness when the distributions are created in the

(a) SMALL technique or (b) BIG technique

A comparison of the three algorithms DIG, ES, and RANDOM on all aspects measured is

presented in Table 10. In this table we measured the percentage of queries out of the amount of

queries a naïve voting center would have asked (𝑛 × 𝑚). We averaged the percentages. Both

algorithms show that updating the distribution based on the revealed ratings significantly reduces

the amount of communication. The best result is achieved by ES; that is able to cut the

communication load up to 51%. Note that RANDOM and SEQTOP are presented separately in

the last column since they perform equally for all settings. The Friedman Aligned Ranks test

with a confidence level of 95% rejected the null-hypothesis that all heuristics perform the same.

The Bonferroni-Dunn test concluded that ES significantly outperforms DIG, RANDOM and

SEQTOP at a 95% confidence level.

Table 10: Average percentage of dataset exhaustion under different settings

 (a) BIG (b) SMALL SMALL/BIG SMALL/BIG

DIG ES DIG ES RANDOM SEQTOP

(c) UPDATE 0.77 0.51 0.63 0.51 0.95 0.91

(d) NO UPDATE 0.82 0.6 0.9 0.61 0.95 0.91

59

4.6.3 The Sushi dataset

The results of experiments on different dataset sizes are illustrated in Figure 22. Axis x is

the dataset size and Axis y is the percentage of the dataset that was queried. In this dataset there

are no more items beyond the ten items in question. Therefore, the DIG and ES heuristics begin

with a uniform voter-item probability distribution for all voters and items. The results are similar

to the results obtained in section 4.6.1 on simulated data with uniform distribution, namely there

is no significant difference between DIG and ES. As explained in the previous sections, this

result can be expected when the voter-item distributions are uniform.

The Friedman Aligned Ranks test with a confidence level of 95% rejected the null-

hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that ES and

DIG significantly outperform SEQTOP and ES also outperforms RANDOM at a 95% confidence

level. As mentioned, there is no significant difference between DIG and ES.

Figure 22: Comparison of algorithms on the Sushi dataset

4.6.4 The User Study Datasets

The results of the experiment on two datasets that we collected as part of a user study are

displayed in Figure 23 for the pubs dataset and in Figure 24 for the Restaurants dataset. Axis x is

the dataset size: from 5 to 30 users over 10 items. Axis y is the percentage of the dataset queried.

In both dataset, we observe that ES requires fewer queries in order to find a winner.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5x10 10x10 15x10 20x10 25x10 30x10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

Dataset

DIG

ES

RANDOM

SEQTOP

60

For the Pubs dataset, the Friedman Aligned Ranks test with a confidence level of 95%

rejected the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test

concluded that ES outperforms DIG and RANDOM and that DIG outperforms RANDOM at a

95% confidence level. For the Restaurants dataset, the Friedman Aligned Ranks test with a

confidence level of 95% rejected the null-hypothesis that all heuristics perform the same. The

Bonferroni-Dunn test concluded that ES significantly outperforms the rest of the heuristics at a

95% confidence level.

In order to explain these results, we examined the datasets skewness distributions (see

Figure 25). In both cases, the skewness is clustered so that ES depicts a pattern and outperforms

DIG as explained in section 4.6.1.

Figure 23: Comparison of algorithms on the Pubs dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5x10 10x10 15x10 20x10 25x10 30x10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

DIG

ES

RANDOM

SEQTOP

61

Figure 24: Comparison of algorithms on the Restaurants dataset

(a)

(b)

Figure 25: Skewness of the distributions for datasets: (a) Pubs and (b) Restaurants

4.7 Discussion

In this chapter we presented algorithms that employ voting mechanisms and aim to find a

winning item with minimal communication between the voting center and the voters. We assume

that the voters’ preferences are unknown in advance, but some historical ratings for voter-item

pairs do exist. We proposed an algorithm for approximating the voter-item rating distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5x10 10x10 15x10 20x10 25x10 30x10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

Dataset

DIG

ES

RANDOM

KALECH

-12

-7

-2

3

8

0 5 10

sk
e

w
n

e
ss

 le
ve

l

user #

item

-12

-7

-2

3

8

0 5 10

sk
e

w
n

e
ss

 le
ve

l

user #

item

62

Moreover, we offered two novel heuristics, DIG and ES, which iteratively choose a voter to

query about a certain item’s value until a winning item is found. DIG uses an entropy function to

calculate the information gained from each possible voter-item pair and chooses to query the

voter-item that maximizes the information gain. ES focuses on the most probable item to win.

We have compared DIG and ES to a random baseline and to the sequentialTop method suggested

in (Kalech et al. 2011), termed SEQTOP. Our experiments show that our proposed algorithms

can reduce the communication load between the voting center and the voters by more than 50%.

We have analyzed our algorithms in different settings both on simulated data and on real-world

datasets and have identified the preferred settings for each of the algorithms.

The SEQTOP method performs poorly in our experiments, due to the fact that it was not

designed for the purpose of single voter-item queries. Furthermore, SEQTOP does not consider

voter-item probabilities. Therefore SEQTOP cannot operate optimally in the scenario we wish to

evaluate in this study. In our scenarios, there is an intelligent voting center that computes what is

the best next query, whereas SEQTOP was originally designed for scenarios where an intelligent

voting center did not exist and therefore asks the voters for their top-rated item in a batch of

queries. In (Kalech et al. 2011) SEQTOP is compared to a method where voters submit random

items, not their top-rated items, and reveals that SEQTOP is significantly better.

Using simulated data, we showed that DIG is holds the upper hand when the data is noisy

and there is no clear winning item. ES outperforms DIG when there is some skewness pattern in

the data. From examining different dataset sizes on the percentage of queries, out of the amount

of possible queries a naïve voting center would have asked (𝑛 × 𝑚), we conclude that as

expected, an increase in the number of the voters in the dataset leads to an increase in the

percentage of queries. However, interestingly, an increase in the number of items leads to a

decrease in the percentage of the required queries. This can be explained by the fact that each

voter needs to be queried at least once in order for the voting center to determine a necessary

winner, but not all items must be queried. With regards to runtime, for a fast convergence, ES is

preferable since it runs in linear time while the DIG runs in polynomial time.

We wished to examine DIG and ES’s performance in a real world setting. Therefore we

used the Sushi dataset and the Netflix, Pubs and Restaurants datasets where our method for

approximating voter-item rating distributions was applied. On the Sushi dataset, we did not find

a significant difference between DIG and ES although both heuristics significantly outperformed

63

RANDOM and SEQTOP (as they did in all experiments). In this dataset the voter-item

probability does not play a major role. This difference was found on the Pubs dataset and the

Restaurants dataset.

On the Netflix dataset, we examined the algorithms with and without updating the voter-

item distributions when new ratings were revealed. We found that both DIG and ES perform

better when updates are enabled. DIG was found to be more sensitive than ES to the distribution

updates. We also examined a scenario where the distribution is approximated from a small

100x100 dataset of historical ratings as opposed to a scenario where the distribution is

approximated from a larger dataset of 1000x1000 historical ratings (we could not perform this

evaluation for the Pubs and Restaurants datasets since they contain 90 users only). ES is

indifferent to the size of the dataset, but DIG performs significantly better on the smaller

100x100 dataset. The differences between DIG and ES can be explained by the differences in the

way they are constructed. ES identifies the item that is most probable to win and focuses on

extracting ratings tied to this item. DIG looks at all of the voter-item pairs and chooses to query

the pair with the highest information gain. Therefore, the more accurate the rating distributions

are, the better DIG performs. Since the rating distributions are more accurate when updated and

on a smaller dataset, these are settings in which DIG will excel. ES, being less sensitive to

accuracy in the distributions, is also less affected by distribution updates and distribution

accuracy. To conclude, we recommend using DIG when the data is noisy with no clear trend and

when runtime is not of significance. ES should be used when runtime is an issue or when there is

a high probability that a certain item or items are more favored.

64

Chapter 5

Preference Elicitation using the

Borda Voting Protocol

In this chapter, we propose heuristics for query selection using the Borda voting protocol.

The Borda protocol assumes every voter has a total order of ranked preferences on 𝑛 items. The

voting center translates the preferences into an ordered sequence of values with a decreasing

value of 1: {𝑛 − 1, 𝑛 − 2. . .0}. Each value is uniquely assigned to one item only. The winning

item is the item with the highest aggregated score: 𝑚𝑎𝑥𝑗 ∑ 𝑞𝑗
𝑖

𝑖 . We address Borda voting with

incomplete information. At the beginning of the process the voter-item-item preferences are

unknown.

In an incremental elicitation model, the voting center queries for voter 𝑣𝑖’s pairwise

preferences. A pairwise query 𝑞𝑗,𝑘
𝑖 for user 𝑣𝑖’s preference between candidates 𝑐𝑗 and 𝑐𝑘 has two

possible responses: 𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 or 𝑞𝑘
𝑖 ≺ 𝑞𝑗

𝑖 meaning candidate item 𝑐𝑘 is either preferred over

candidate item 𝑐𝑗 or vice versa. The goal of the elicitation process is to minimize the overall

number of queries. Determining the next optimal query recursively depends on the order of the

rest of the queries. There are an exponential number of such orders (𝑂(𝑚 ∙ 𝑛 ∙ (𝑛 − 1)2)!) so

finding the optimal minimal set of queries is intractable. Therefore, we propose a myopic

approach for selecting the next user-item-item query trio.

We first define the necessary winner under the Borda voting protocol (section 5.1), and

present a preferences distribution model for the Borda voting protocol (section 5.2). We then

65

present a method for computing item winning probabilities (section 5.3) under the Borda

protocol. Next, we suggest two heuristics for query selection (section 5.4 and section 5.5). The

heuristics are examined under different settings (section 5.6). Lastly, a discussion of the analysis

is provided (section 5.7).

5.1 The Necessary Winner

We now define the necessary winner under the Borda voting protocol. The Borda

possible maximum of an item represents the possible highest score for an item based on the

known preferences. When no preferences are known, the Borda possible maximum of item 𝑐𝑗 is

the maximum score 𝑠𝑛 = 𝑛−1 that any item can receive multiplied by the total number of items:

(𝑛−1) ∙ 𝑚. This score will be achieved if all voters will rank 𝑐𝑗 as their most preferred item. The

Borda possible maximum of 𝑐𝑗 decreases by 1 for every voter that states some other item is

preferred over 𝑐𝑗: 𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 . Formally:

 Definition 9. (Borda Possible Maximum):

 𝑝𝑚𝑎𝑥(𝑐𝑗, 𝑂) = 𝑚 ∙ (𝑛 − 1) − ∑ 𝑝𝑚𝑎𝑥(𝑞𝑗,𝑘
𝑖)∀ 𝑞𝑗,𝑘

𝑖 ∈𝑂 ,

𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥(𝑞𝑗,𝑘
𝑖) = {

1 𝑖𝑓 𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Similarly, when no preferences are known, the Borda possible minimum of an item 𝑐𝑗 is

the minimum score 𝑠1 = 0 multiplied by the total number of items: 0 ∙ 𝑚. The Borda possible

minimum of 𝑐𝑗 increases by 1 for every voter that states 𝑐𝑗 is preferred over some other item 𝑐𝑘:

𝑞𝑘
𝑖 ≺ 𝑞𝑗

𝑖 . Formally:

 Definition 10. (Borda Possible Minimum):

 𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) = ∑ 𝑝𝑚𝑖𝑛(𝑞𝑗,𝑘
𝑖)∀ 𝑞𝑗,𝑘

𝑖 ∈𝑂 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛(𝑞𝑗,𝑘
𝑖) = {

1 𝑖𝑓 𝑞𝑘
𝑖 ≺ 𝑞𝑗

𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The necessary winner is defined as:

 Definition 11. (Necessary Winner):

 𝑁𝑊 = {𝑐𝑗|𝑝𝑚𝑖𝑛(𝑐𝑗, 𝑂) > 𝑝𝑚𝑎𝑥(𝑐𝑖, 𝑂), ∀𝑐𝑖 ∈ 𝐶}

66

5.2 Probabilistic Voter Permutations Distribution Model

In this section we present a preferences distribution model for the Borda voting protocol.

At the beginning of the elicitation process the voters preferences for items are unknown (i.e., the

voting center does not know the response to any pairwise query 𝑞𝑗,𝑘
𝑖). The methods we suggest

for elicitation require the voting center to hold probabilistic information as to each voter’s

preference between each pair of items. The pairwise preference probability is noted as: 𝑝(𝑞𝑗
𝑖 ≺

𝑞𝑘
𝑖).

According to the preference probability, the voting center determines which query to

execute (as will be shown in the next section). One option is to hold the preference probability of

each voter for each 𝑛(𝑛 − 1) 2⁄ pairs of items. The advantage of this model is that the state

space of the number of possible pairs per voter is polynomial and the model can easily cope with

a large amount of candidates. However, this option ignores the dependency between pairwise

preferences: according to the Borda protocol: 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 |𝑞𝑘
𝑖 ≺ 𝑞𝑙

𝑖) ≠ 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 |𝑞𝑙
𝑖 ≺ 𝑞𝑘

𝑖).

Hazon et al. (2012) consider these dependencies and to hold a full list of probabilities for

all order permutations. An example of a permutation distribution for 3 voters and 3 items is

given in Table 11. The pairwise preference probability of 𝑐𝑗 ≺ 𝑐𝑘 can be extracted by

aggregating all the permutation probabilities where 𝑐𝑗
𝑖 ≺ 𝑐𝑘

𝑖 . However, since 𝑛! is the amount of

permutations, this model cannot cope with a large amount of candidates. Therefore, one must

choose whether to trade off model complexity with model accuracy. We follow Hazon et al.

(2012) and hold a complete set of permutation probabilities.

Table 11: Voter permutation distribution for 3 voters and 3 items

voters 𝑐3 ≺ 𝑐2 ≺ 𝑐1 𝑐3 ≺ 𝑐1 ≺ 𝑐2 𝑐2 ≺ 𝑐3 ≺ 𝑐1 𝑐2 ≺ 𝑐1 ≺ 𝑐3 𝑐1 ≺ 𝑐3 ≺ 𝑐2 𝑐1 ≺ 𝑐2 ≺ 𝑐3

𝑣1 0.1 0.1 0.2 0.3 0.2 0.1

𝑣2 0.2 0.2 0.2 0.2 0.1 0.1

𝑣3 0.3 0.3 0.1 0.1 0.1 0.1

67

Formally, the permutation set is defined as 𝑉𝐶 = {𝑣𝑐1, … , 𝑣𝑐𝑛!}. Voter 𝑣𝑖 ‘s permutation

distribution, denoted by 𝑣𝑐𝑖, is a discrete random variable, taking the values in 𝑉𝐶. In the above

example, 𝑃𝑟(𝑣𝑐3 = (𝑐3 ≺ 𝑐2 ≺ 𝑐1)) = 0.1. We assume transitive closure exists.

The model can be derived from the voters’ history of preferences or from other voters’

preferences on the items in question. Deriving the permutation distribution is data specific; in

section 5.6 we describe how the permutation distribution for the experiments data is derived.

5.3 Item Winning Probability Using Monte Carlo Sampling

The computation of the item winning probabilities under the Borda voting protocol

differs from the computation under the Range voting protocol. For the Range voting protocol we

demonstrated a dynamic programming algorithm for computing the item winning probability.

The algorithm assumes independence of voter preferences. This assumption does not hold under

the Borda protocol since: 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 |𝑞𝑘
𝑖 ≺ 𝑞𝑙

𝑖) ≠ 𝑝(𝑞𝑗
𝑖 ≺ 𝑞𝑘

𝑖 |𝑞𝑙
𝑖 ≺ 𝑞𝑘

𝑖). We therefore turn to an

alternative method and approximate the item winning probabilities using a Monte Carlo

algorithm (Fishman 1996) that uses sampling to estimate the winner. The Item Winning

Probability algorithm proceeds as follows: for each user 𝑣𝑖, one permutation is sampled out of all

possible user permutations 𝑉𝐶. Once the permutations of all users are collected the winner is

determined using the Borda protocol. These two steps are repeated 𝛾 times. Finally, the winning

probability of each item is calculated as the number of times the winner was found is divided by

the sample size 𝛾.

68

Figure 26: Pseudo code for Item Winning Probability Algorithm in the Borda protocol

5.4 Information Gain Heuristic for Borda Voting

Similarly to the Information Gain Heuristic (DIG) for Range Voting discussed in

section 4.4, the heuristic described here focuses on selecting queries that will maximize the

available information in terms of entropy (Shannon2001) at each stage. However, some

adjustments are needed due to the differences in protocol. This heuristic is named Information

Gain for Borda (IGB).

First, the information gain of each possible query is calculated. The information gain of a

specific query is the difference between the prior and the posterior entropy of the probability to

win of the item candidates given the possible responses to the query. The chosen query is the

user-item-item query trio that maximizes the weighted information gain. The heuristic continues

until a necessary winner is found. Ties in weighted information gain are broken according to the

item positions in an increasing order of all items.

The entropy function is used in order to compute the query information gain. Given the

item winning probabilities array 𝑃𝑟𝑊𝑖𝑛 , the entropy function is:

Input:

𝑉 - the set of voters

𝐶 - the set of candidate items

𝑉𝐶 - the set of possible permutations

Output: winning probabilities array 𝑃𝑟𝑊𝑖𝑛[𝑛] for all 𝑗’s

Initialize winnerArray[n] ← 0

Initialize voterArray[𝑚] ← 0

Repeat 𝛾 times:

 For each voter 𝑣𝑖 ∈ 𝑉

 𝑣𝑜𝑡𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑖] ← 𝑠ample a permutation from 𝑣𝑐𝑖

 𝑐𝑙𝑜𝑐𝑎𝑙𝑤𝑖𝑛𝑛𝑒𝑟 ← winner in 𝑣𝑜𝑡𝑒𝑟𝐴𝑟𝑟𝑎𝑦

 𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑙𝑜𝑐𝑎𝑙𝑊𝑖𝑛𝑛𝑒𝑟] ← 𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑙𝑜𝑐𝑎𝑙𝑊𝑖𝑛𝑛𝑒𝑟] + 1

 For each item 𝑐𝑗 ∈ 𝐶

 Compute 𝑃𝑟𝑊𝑖𝑛[𝑗] ← 𝑤𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦[𝑗]/𝛾

69

(5.1) 𝐸(PrWin) = −∑ 𝑃𝑟𝑊𝑖𝑛[𝑗]𝑙𝑜𝑔(𝑃𝑟𝑊𝑖𝑛[𝑗])𝑚
𝑗=1

The posterior entropy is calculated for the probability winner vector that has been

computed for the two possible outcomes of a query qj,k
i We use E(PrWin|qcj≻ck

i) to denote the

entropy given user i prefers cj ≻ ck . The information gain (IG) is the difference between the

prior entropy of the local winner and the posterior entropy given that the response of an executed

query qj,k
i is cj ≻ ck:

(5.2) 𝐼𝐺 (𝑞𝑐𝑗≻𝑐𝑘
𝑖) = (𝐸(PrWin) − 𝐸 (PrWin|𝑞𝑐𝑗≻𝑐𝑘

𝑖))

The probability that user 𝑣𝑖 prefers 𝑐𝑗 over 𝑐𝑘 p (𝑞𝑐𝑗≻𝑐𝑘

𝑖) can be calculated based on the

prior permutation distribution. Thus we can compute the weighted information gain (WIG):

(5.3) 𝑊𝐼𝐺 (𝑞𝑗,𝑘
𝑖) = 𝐼𝐺 (𝑞𝑐𝑗≻𝑐𝑘

𝑖) ∙ p (𝑞𝑐𝑗≻𝑐𝑘
𝑖) + 𝐼𝐺 (𝑞𝑐𝑗≺𝑐𝑘

𝑖) ∙ p (𝑞𝑐𝑗≺𝑐𝑘
𝑖)

The chosen query is the query that maximizes the weighted information gain.

5.5 Highest Expected Score Heuristic for Borda Voting

The highest expected score heuristic for Borda (ESB) is based on the idea that it is better

to select voter-item-item trios where one of the items is expected to win. This argument is

supported by the idea that queries on the winner item will increase its possible minimum and

finally identify it as a necessary winner. The next theorem considers the correlation between the

winner and the number of queries.

Theorem 1: The minimum amount of queries O necessary to determine the

winner 𝑐𝑗 is 𝑂 =
(𝑛−1)2∙𝑚

𝑛
 , on condition that all queries in O contain 𝑐𝑗 and that

𝑐𝑗 always wins when queried.

70

Proof: Initially before the query process begins the Borda possible minimum and possible

maximum are: (𝑐𝑗,𝑂) = 0 𝑎𝑛𝑑 ∀𝑘≠𝑗 𝑝𝑚𝑎𝑥(𝑐𝑘,𝑂) = 𝑚 ∙ (𝑛−1). 𝑐𝑗 will be declared as a

necessary winner once 𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) > 𝑝𝑚𝑎𝑥(𝑐𝑘, 𝑂) ∀𝑘≠𝑗 (Definition 3). Let |𝑂| be the total

amount of queries needed for verifying that 𝑐𝑗 is the winner. With each query 𝑞𝑗,𝑘
𝑙 the possible

minimum of 𝑐𝑗 increases in 1 if 𝑐𝑗 ≻ 𝑐𝑘 , else if 𝑐𝑗 ≺ 𝑐𝑘 the possible maximum of 𝑐𝑘 is

decreased in 1. Thus, in the case that 𝑐𝑗 always wins and all queries contain 𝑐𝑗 we reach the

necessary winner with the minimum amount of queries. The minimum score of 𝑐𝑗 will be in this

case: 𝑝𝑚𝑖𝑛(𝑐𝑗 , 𝑂) = |𝑂|. Each new query subtracts 1 from the possible maximum of some item

𝑐𝑘≠𝑗. To bring the items to the same possible maximum the queries should be distributed equally

between the items. So every item (except 𝑐𝑗) is queried |𝑂| (𝑛 − 1)⁄ times, so that

𝑝𝑚𝑎𝑥(𝑐𝑘, 𝑂) = 𝑚 ∙ (𝑛 − 1) − |𝑂| (𝑛 − 1)⁄ . According to Definition 3 a winner is found when

after |𝑂| queries the minimum is bigger than the maximum. Thus, 𝑐𝑗 will be a necessary winner

once: |𝑂| > 𝑚 ∙ (𝑛 − 1) − |𝑂| (𝑛 − 1)⁄ . Extracting |𝑂| reveals: |𝑂| = (𝑛 − 1)2 ∙ 𝑚 𝑛⁄ . □

Note that in the above extreme case, where in all queries the winner always wins, we see

that solely querying the winner reduces the amount of queries to the minimum. The queries are

distributed equally among the non-winning candidates. In less extreme cases where the winner

does not win in all queries, it is still guaranteed that the winner will win in more queries than the

other candidates. Therefore, we support a strategy that queries the item with the highest winning

probability and thus increases the possible minimum of the expected winner rapidly.

The Expected Score for Borda (ESB) heuristic focuses on selecting queries that maximize

the probability of an item to win. Given the item winning probabilities array 𝑃𝑟𝑊𝑖𝑛, the highest

probability is: 𝑚𝑎𝑥(𝑃𝑟𝑊𝑖𝑛). The expected maximum (𝐸𝑀) represents the highest probability of

the winning probabilities array given voter 𝑣𝑖 prefers 𝑐𝑗 over 𝑐𝑘 (𝑞𝑐𝑗≻𝑐𝑘

𝑖):

(5.4) 𝐸𝑀 (𝑞𝑐𝑗≻𝑐𝑘
𝑖) = 𝑚𝑎𝑥 (𝑃𝑟𝑊𝑖𝑛|𝑞𝑐𝑗≻𝑐𝑘

𝑖)

Since a query has two possible outcomes, the weighted expected maximum is:

71

(5.5) 𝑊𝐸𝑀(𝑞𝑗,𝑘
𝑖) = 𝐸𝑀 (𝑞𝑐𝑗≻𝑐𝑘

𝑖) ∙ p (𝑞𝑐𝑗≻𝑐𝑘
𝑖) +𝐸𝑀 (𝑞𝑐𝑗≺𝑐𝑘

𝑖) ∙ p (𝑞𝑐𝑗≺𝑐𝑘
𝑖)

The chosen query is the query that maximizes the weighted expected maximum.

5.6 Evaluation

In sections 5.4 and 5.5 we proposed two novel heuristics, IGB and ESB, which determine

a necessary winner under the Borda voting protocol. In this section, we evaluate the heuristics

performance. The heuristics were compared to a baseline RANDOM method that selects queries

at random. Since IGB and ESB use sampling, to accommodate for randomness each experiment

was run 25 times. The 𝛾 parameter in the Item Sampling algorithm (the algorithm that sets the

item winning probabilities, described in section 5.3) was set to 300, as above this number we did

not detect a noticeable difference in results.

In order to adjust Netflix to the probabilistic permutation distribution, as required in

Borda protocol (section 5.2), we first derived a probability distribution of scores for each voter

and item (as explained in section 4.2). Next, the probability distribution of scores was translated

into a permutation distribution by aggregating the probabilities of each score for each possible

permutation. Netflix contains ratings and not rankings and a voter is not limited to ordering

items, and may give a few or all of the movies the same score. In cases where two items received

an equal score from the user, we chose the items with the highest lexicographical order.

Figure 27 and Figure 28 display a comparison between the heuristics on the Netflix and

Sushi datasets respectively. Axis x presents a varying size of voters and items. Axis y presents

the percentage of the dataset queried (as explained in section 4.6.2). ESB is ~15% better than

IGB and RANDOM with a 95% confidence interval according to a t-test. IGB does not

significantly differ from RANDOM. ESB reduces communication up to 60% in total.

Runtime on the Sushi and Netflix datasets is presented in Figure 29 and Figure 30

respectively. Axis x presents a varying size of voters and axis y presents the runtime in seconds.

RANDOM has a constant runtime while ESB and IGB have an exponential runtime. There is no

significant difference between the runtime of ESB and IGB. Note that the runtime on the Sushi

dataset is longer since it runs on 6 items and only on 5 items in the Netflix dataset.

72

Figure 27: Comparison of algorithms on the Netflix dataset

Figure 28: Comparison of algorithms on the Sushi dataset

0.25

0.3

0.35

0.4

0.45

0.5

0.55

5x5 10x5 15x5 20x5 25x5

%
 o

f
d

ar
as

e
t

q
u

e
ri

e
d

dataset

ESB

IGB

RANDOM

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

5x6 10x6 15x6 20x6 25x6

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

dataset

ESB

IGB

RANDOM

73

Figure 29: Runtime on the Netflix dataset

Figure 30: Runtime on the Sushi dataset

5.7 Discussion

In this chapter we presented heuristics that attempt to minimize the overall amount of

queries needed for reaching a joint decision under the Borda protocol. In an iterative elicitation

process, voters are queried for their preferences between two items. The process continues until a

necessary winner item is found. The heuristics use probabilistic information of the voters’

0

20

40

60

80

100

120

140

160

5x5 7x5 10x5 12x5 15x5

ru
n

ti
m

e
 p

e
r

q
u

e
ry

dataset

ESB

IGB

RANDOM

0

200

400

600

800

1000

1200

1400

1600

1800

5x6 7x6 10x6 12x6 15x6

ru
n

ti
m

e
 p

e
r

q
u

e
ry

dataset

ESB

IGB

RANDOM

74

preferences. Usually the permutation distribution for datasets does not readily exist. However,

we demonstrated a realistic method for easily learning this distribution on the Sushi dataset.

Experiments on two real world datasets illustrate the superiority of the ESB heuristic over other

possible heuristics. ESB manages to cut the communication (i.e., the queries) up to 60%. IGB,

which seemed like a reasonable heuristic for this problem setting, failed in its performance.

Our findings imply that a reduction in the entropy does not necessarily bring us closer to

finding a winning item. This seemingly surprising result can be explained by the fact that IGB

heuristic focuses on reducing the overall uncertainty, while the focus should be on finding a

winner. In detail, using the notion of entropy to select the next query seems like a reasonable

idea for the discussed problem set. Based on this idea, IGB algorithm attempts to reduce the

entropy to its minimum value (of 0). The minimum entropy is reached when the candidate

winning probability vector (𝑃𝑟𝑊𝑖𝑛) becomes an indicator vector (in which the probability of

exactly one item is a 1 and the others are 0). In this situation the necessary winner is revealed.

Thus the entropy looks like a good proxy for our goal of finding the necessary winner. However,

while the minimum entropy is equivalent to finding a winner, a reduction in the entropy value

does not necessarily indicate that we are closer to finding the winner. Consider the following

example: for 6 items the winning probability vector is: (0.9,0.02,0.02,0.02,0.02,0.02). After

executing a certain query we receive the following probability vector:

(0.88,0.11,0.025,0.025,0.025,0.025). In this case, the query has improved the entropy (the

entropy dropped from -0.70119 to -0.59902). However, the query does not seem to bring us

closer to finding the winner since there is also a drop in the probability that item number 1 is the

winner. This brings us to the idea on which ESB is based: instead of calculating the information

gain, simply select the query which potentially provides the highest increase in the maximum

entry in the probability vector. In the last example we should prefer a query that brings us to the

probability vector: (0.91,0.018,0.018,0.018,0.018,0.018). Although this vector provides a smaller

drop in the entropy (-0.64544), it provides a positive improvement in the maximum probability

of some item to win and thus brings us closer to finding a necessary winner.

Perhaps the main disadvantage of the presented framework is its lack of scalability, due

to the need to hold a probabilistic model of all order permutations of items. Therefore while the

number of voters can be increased, the number of items cannot.

75

Chapter 6

Tradeoffs and Aggregation

Strategies in Preference Elicitation

The previous chapters dealt with returning one definite, necessary winner to a group of

users. In this chapter we explore aggregation strategies and tradeoffs that reduce the required

preference elicitation and thus reduce the communication costs. First, we offer to consider

different preference aggregation strategies. These strategies differ in their emphasis: towards the

individual users or towards the majority of the group (section 6.1). Second, rather than offering a

single winner, we propose to offer the group top-k best alternatives. This can be beneficial if a

certain item suddenly becomes unavailable, or if the group wishes to choose manually from a

few selected items (section 6.2.1). Finally, rather than offering a definite winning item, we

suggest to approximate the item or the top-𝑘 items that best suit the group, according to a

predefined confidence level. We study the tradeoff between the accuracy of the proposed winner

item and the amount of preference elicitation required (section 6.2.2). We evaluate these three

challenges and show how they contribute to the minimization of the preference elicitation

(section 6.3).

6.1 Aggregation Strategies

The item's score depends on the strategy used. We denote the employed aggregation

strategy 𝑠𝑡𝑟. We now define the aggregation strategies: Majority and Least Misery. As

mentioned, in the Majority strategy the emphasis is towards the majority of the group.

76

Definition 12.(Majority Based Strategy): given the users’ preferences, the

Majority Based Strategy computes the score of item 𝑐𝑗 as follows: 𝑠𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑐𝑗) =

∑ 𝑞
𝑗
𝑖

𝑖∈={1,…,𝑚}

In the Least Misery strategy, the chosen item cannot be the least preferred by any of the

users.

Definition 13.(Least Misery Strategy): given the users’ preferences, the Least

Misery Strategy computes the score of item 𝑐𝑗 as follows: 𝑠𝑙𝑒𝑎𝑠𝑡(𝑐𝑖) = min𝑖∈={1,…,𝑚} 𝑞
𝑗
𝑖

Each of the two strategies has its pros and cons. The choice of the strategy might impact

the outputted result. Consider the example in Table 12, showing the preferences of 3 users for 3

items. According to the Majority Based strategy, the winning item is 𝑐1, with a total score of 11,

followed by items 𝑐2 and 𝑐3. According to the Least Misery strategy, the winning item is 𝑐2, with

a score of 3, followed by items 𝑐1 and 𝑐3. Therefore: 𝑆𝑉𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 = (𝑐1, 𝑐2𝑐3) and 𝑆𝑉𝑙𝑒𝑎𝑠𝑡 =

(𝑐2, 𝑐1𝑐3).

Table 12: Three users and their preferences for three items

Group Members (Users)
Candidate Items

𝑐1 𝑐2 𝑐3

𝑣1 5 3 1

𝑣2 4 3 5

𝑣3 2 3 4

Majority Based Score 11 9 10

Least Misery Score 2 3 1

6.2 Termination Conditions

During the preference elicitation process, the preferences are submitted to the voting

center that aggregates the preferences. This process continues until a termination condition is

reached. The termination condition is pre-set by the system administrator according to the

77

group's request. The termination condition is one of the following: a definite winning item, an

approximate winning item with some confidence level, top-𝑘 items where one of them is the

winner, or approximate top-𝑘 items where one of the items is the winner with some confidence

level.

Given a set of responses to queries and a termination condition, the goal is to determine

whether the iterative process can be terminated. Let 𝑂𝑖 = {𝑞𝑝
𝑖 , … , 𝑞𝑡

𝑖} represents the set of

voter 𝑣𝑖’s responses to queries. Note that this set does not necessarily contain all the items.

𝒪𝐴 = {𝑂1, … , 𝑂𝑛} is a set of 𝑂𝑖 sets. The function 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗,𝒪
𝐴) computes the possible maximum

rating for item 𝑐𝑗, given the known preference values of the voters.

Definition 14.(Possible Maximum): given the set of responses 𝒪𝐴 and an

aggregation strategy str, the possible maximum score of candidate 𝑐𝑗, denoted

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴), is computed as follows:

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴, 𝑠𝑡𝑟) = {

∑ 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗, 𝑂
𝑖)𝑖∈1..𝑚 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑚𝑖𝑛𝑖 (𝑝𝑚𝑎𝑥𝑖(𝑐𝑗 , 𝑂
𝑖)) 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦

 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑎𝑥𝑖(𝑐𝑗, 𝑂
𝑖) = {

𝑑𝑔 𝑖𝑓 ∃𝑞𝑝
𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑎𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Similarly, the function of the possible minimum rating of item 𝑐𝑗: 𝑝𝑚𝑖𝑛𝐴(𝑐𝑗,𝑂
𝐴) is:

Definition 15.(Possible Minimum): given the set of responses 𝒪𝐴 and an

aggregation strategy str, the possible minimum score of candidate 𝑐𝑗, denoted

𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪
𝐴) is computed as follows:

𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪
𝐴, 𝑠𝑡𝑟) = {

∑ 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗, 𝑂
𝑖)𝑖∈1..𝑚 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑚𝑖𝑛𝑖 (𝑝𝑚𝑖𝑛𝑖(𝑐𝑗, 𝑂
𝑖)) 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦

 𝑤ℎ𝑒𝑟𝑒 𝑝𝑚𝑖𝑛𝑖(𝑐𝑗 , 𝑂
𝑖) = {

𝑑𝑔 𝑖𝑓 ∃𝑞𝑝
𝑖 = 𝑑𝑔 ∈ 𝑂𝑖

𝑑𝑚𝑖𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

78

Consider the example given in Table 12 but assume that the rating of 𝑐1 for 𝑣3 is

unknown: thus, 𝑞1
1 = 5, 𝑞1

2 = 4, 𝑞1
3 =? . Using definitions 3 and 4 we can compute the possible

maximum and minimum under each aggregation strategy. For example, the possible maximum

of 𝑐1 in the Majority strategy is 𝑝𝑚𝑎𝑥1(𝑐1, 𝑂
1, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦) = 5 + 4 + 5, since 𝑞1

3 = 𝑑𝑚𝑎𝑥 = 5.

For the Least Misery strategy the possible maximum is: 𝑝𝑚𝑎𝑥1(𝑐1, 𝑂
1, 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦) =

𝑚𝑖𝑛(5,4,5) since 𝑞1
3 = 𝑑𝑚𝑎𝑥 = 5. The possible minimum for the two strategies is

𝑝𝑚𝑖𝑛1(𝑐1, 𝑂
1, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦) = 5 + 4 + 1 and 𝑝𝑚𝑖𝑛1(𝑐1, 𝑂

1, 𝑙𝑒𝑎𝑠𝑡 𝑚𝑖𝑠𝑒𝑟𝑦) = 𝑚𝑖𝑛(5,4,1)

since 𝑞1
3 = 𝑑𝑚𝑖𝑛 = 1.

6.2.1 Selection Among top-k Alternatives

As mentioned in previous chapters, one possible termination condition is to stop the

preference elicitation process once one necessary winner is found. We follow Kalech et al.

(2011) and define a necessary winner 𝑁𝑊 as a set of items whose possible minimum aggregated

rating is equal or greater than the possible maximum aggregated rating of all the others. This

definition is equivalent to the definition provided by Konzak and Lang (2005), as proven in

proposition 2 in Konzak and Lang (2005). Formally the necessary winner item set is:

Definition 16.(Necessary Winners set):

𝑁𝑊 = {𝑐𝑖|𝑝𝑚𝑖𝑛𝐴(𝑐𝑖, 𝒪
𝐴) ≥ 𝑝𝑚𝑎𝑥𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖}

It is possible to receive more than one necessary winner. Although the necessary winner

set may contain more than one item, we assume that there is only one necessary item. In the case

of more than winning items, the first item is selected lexicographically.

In some cases, the group members can be satisfied with a shorter preference elicitation process.

They may agree to trade the result accuracy with less elicitation cycles. In other words, instead of

terminating the preference elicitation once a necessary winner is found, the group may agree to

terminate the preference elicitation once a set of top-𝑘 items is presented to them. One of these

items is the necessary winner, but without further elicitation it is not possible to determine the

winner. To accurately define the top-𝑘 items, let us define the possible winner group. The

possible winners are all the items whose possible maximum aggregated rating is greater than or

equal to the possible minimum rating of all the other items.

79

Definition 17.(Possible Winners Set):

𝑃𝑊 = {𝑐𝑖|𝑝𝑚𝑎𝑥𝐴(𝑐𝑖, 𝒪
𝐴) ≥ 𝑝𝑚𝑖𝑛𝐴(𝑐𝑗, 𝒪

𝐴) ∀𝑐𝑗 ∈ 𝐶\𝑐𝑖}

Note that the possible winning group subsumes the necessary winners: 𝑁𝑊 ⊂ 𝑃𝑊. After

each query, the necessary winner set and the possible winner set need to be recalculated. To

begin with, when none of the preferences are known, the possible winner set contains all items:

|𝑃𝑊| = |𝐶| and the necessary winner’s set is empty: |𝑁𝑊| = ∅. The process is terminated once

the size of the set of possible winners is reduced to 𝑘. We denote the possible winner set of size k

𝑃𝑊𝑘. Thus, the set contains the top-𝑘 possible winners, where, by definition, these top-k are

guaranteed to include the necessary winners. The group of users is left with the task of selecting

one among the top-𝑘 items.

6.2.2 Winner Approximation

Another possible trade-off is the accuracy-elicitation tradeoff. The preference elicitation

process can be reduced, but the accuracy of the output is affected, the returned items are

estimated to contain the winning item at some confidence level with an error rate 𝛼. To compute

a necessary winner with some confidence level we will first define the score space of the

aggregation. The score 𝑠 that the candidate can achieve after aggregating the preferences of the

voters depends on the strategy:

𝑆 = {
{𝑛 ∙ 𝑑𝑚𝑖𝑛, 𝑛 ∙ 𝑑𝑚𝑖𝑛 + 1… , 𝑛 ∙ 𝑑𝑚𝑎𝑥} 𝑖𝑓 𝑠𝑡𝑟 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

{𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛 + 1… , 𝑑𝑚𝑎𝑥} 𝑖𝑓 𝑠𝑡𝑟 = 𝑙𝑒𝑎𝑠𝑡

Let us begin with examining the probability that one item has a certain score: 𝑃𝑟(𝑐𝑗 = 𝑠).

The probability of any item to be the necessary winners is:

Definition 18.(Item Winning Probability): Under the independence of

probabilities assumption, the probability that item cj is the necessary winner is the

aggregation of 𝑐𝑗’s probabilities to win over the possible ratings s:

𝑃𝑟(𝑐𝑗 = 𝑁𝑊) = ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) ⋀ Pr (𝑐𝑖 < 𝑠)
𝑠∈𝑆,∀ 𝑖≠𝑗

= ∑ 𝑃𝑟 (𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) ∙ ∏ 𝑃𝑟 (𝑐𝑖 < 𝑠)
∀𝑖≠𝑗𝑠∈𝑆∀ 𝑖≠𝑗

80

The probability that given 𝑚 voters an item will receive the score s 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚)

can be computed recursively. This probability depends on the aggregation strategy. For the

Majority strategy we use:

 (6.1) 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, … , 𝑣𝑚) =

∑ (𝑃𝑟(𝑐𝑗 = 𝑠 − 𝑥|𝑣1, . . . , 𝑣𝑚−1) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥

𝑥=𝑑𝑚𝑖𝑛

where 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣𝑖) = 𝑃𝑟(𝑞𝑖
𝑗
= 𝑠)

 For the Least Misery strategy we use:

(6.2) 𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, . . . , 𝑣𝑚) =

∑ (𝑃𝑟(𝑐𝑗 = 𝑠|𝑣1, . . . , 𝑣𝑚) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑥))
𝑑𝑚𝑎𝑥

𝑥=s
+

∑ (𝑃𝑟(𝑐𝑗 = 𝑥|𝑣1, . . . , 𝑣𝑚) ∙ 𝑃𝑟(𝑞𝑚
𝑗

= 𝑠))
𝑑𝑚𝑎𝑥

𝑥=s+1

In both strategies we compute the probability that an item will receive a score of at most s

as follows:

 (6.3) 𝑃𝑟(𝑐𝑗 < 𝑠) = ∑ 𝑃𝑟(𝑐𝑗 = 𝑥|𝑣1. . 𝑣𝑚)
𝑠−1

𝑥=min (𝑆)

The following is a step by step running example, for the Majority strategy for 𝑑 =

{1,2,3}. The example is based on the voting distributions (VD’s) presented in Table 11; note that

𝑃𝑟(𝑞3
1 = 3) = 0.4, 𝑃𝑟(𝑞3

1 = 2) = 0.3, 𝑃𝑟(𝑞3
1 = 1) = 0.3. We start by calculating 𝑃𝑟 (𝑐𝑗 = 𝑠).

The calculation is done using a dynamic programming algorithm where each result is calculated

using the previously calculated results. For instance, using Eq. (1), 𝑃𝑟(𝑐1 = 6) based on the

ratings of voters 𝑣1, 𝑣2, 𝑣3:

𝑃𝑟(𝑐1 = 6|𝑣1. . 𝑣3) = 𝑃𝑟(𝑐1 = 5|𝑣1, 𝑣2) ∙ 𝑃𝑟(𝑞3
𝑗
= 1) + 𝑃𝑟(𝑐1 = 4|𝑣1, 𝑣2) ∙

𝑃𝑟(𝑞3
𝑗
= 2) + 𝑃𝑟(𝑐1 = 3|𝑣1, 𝑣2) ∙ 𝑃𝑟(𝑞3

𝑗
= 3). In the same manner: 𝑃𝑟(𝑐1 = 5|𝑣1, 𝑣2) = 0.14,

𝑃𝑟(𝑐1 = 4|𝑣1, 𝑣2) = 0.36, 𝑃𝑟(𝑐1 = 3|𝑣1, 𝑣2) = 0.24 so that finally 𝑃𝑟(𝑐1 = 6|𝑣1. . 𝑣3) =

0.236. Next, we calculate 𝑃𝑟 (𝑐1 ≤ 𝑠) using Eq (3): 𝑃𝑟(𝑐1 < 6) = 𝑃𝑟(𝑐1 = 3) +𝑃𝑟(𝑐1 =

4) +𝑃𝑟(𝑐1 = 5).

81

To define top-𝑘 with a confidence level we first define 𝑃𝑉 as a vector of items, ordered

according to their winning probability (Definition 19):

Definition 19.(Ordered Vector of winning probabilities): PV[] is an array of

decreasingly ordered items according to their winning probabilities.

The probability that the necessary winner is within the top-k is actually the aggregated

winning probabilities of the first k items in 𝑃𝑉. The more preferences elicited from the users, the

higher probability the necessary winner is within the top-k. The confidence level is a value which

determines an upper bound for the probability of the necessary winner to be among the top-k.

The preference elicitation process is terminated once the confidence level equals 1 − 𝛼.

Formally, the termination condition is:

Definition 20.(Termination with top-k approximate items): the preference

elicitation process terminates for a given k and 𝛼, when ∑ 𝑃𝑉[𝑖]𝑘
𝑖=1 ≥

1 − 𝛼 where 0 ≤ 𝛼 ≤ 1.

6.3 Evaluation

We present an empirical evaluation of the following statements: (a) Selection –outputting

top-k items reduces the required number of queries (b) Approximation – there is a tradeoff

between outputting an approximate winner, or approximate top-k items and outputting a definite

winner or definite top-k items. The approximation accuracy improves as more data is collected.

(c) Aggregation – the aggregation strategy affects the preference elicitation process. We examine

two aggregation strategies: with emphasis towards the group and with emphasis towards the user

(i.e., the Majority and Least Misery strategies).

We examine the performance of the DIG and ES algorithms presented in section 4. As

mentioned in the related works section, to the best of our knowledge, there are no other

algorithms that operate (or can be expanded to operate) under the same settings. Therefore, the

baseline for measuring the effectiveness of our method is a random procedure (RANDOM),

which randomly selects the next query. To account for the randomness of the RANDOM

82

algorithm each experiment is repeated 20 times. In addition we evaluate the communication cost

reduction (i.e., the reduction in amount of queries needed in order to reach the termination

condition under the given strategy). We follow the evaluation procedure presented in chapter 3.

We evaluate the methods in terms of: (1) communication cost – we measure the number

of queries required for finding the necessary winner (2) approximation accuracy. Our focus is on

the analysis of the contribution of returning a winner within top-k items, thus narrowing down

the top-𝑁 suggestions received by a recommendation system (𝑘 ≤ 𝑁). An additional focus is on

approximating a winner and on the aggregation strategies. The analysis of the scaling of the

matrix sizes and the runtime has been evaluated in(Naamani Dery et al. 2014) Chapter 4.

We first present varying top-𝑘 termination conditions (section 6.3.1).We then present an

examination of the different confidence levels (section 6.2.1) and finally we compare the two

strategies (section 6.3.3).

6.3.1 Selection of top-𝒌 Items

We examined different top-𝑘 termination conditions, from 𝑘 = 1 (i.e., requiring one

definite winner), to 𝑘 = 9 (i.e., requiring the winner to be one of the top-9 items). The results are

for the Majority aggregation strategy with a 100% confidence level (∝= 0). Different confidence

levels and a comparison between the performance of the Majority strategy and the Least Misery

strategy are presented in the next sections. We first report the results of three levels of skewness

of simulated data, followed by the Datasets: Netflix, Sushi, Pubs, and Restaurants.

We examine three different skewness levels of simulated data. Figure 31, Figure 32 and

Figure 33 present results for a skewness level of (6), (0) and (-6) respectively. Axis x presents

the termination conditions 𝑘 = 1, . . ,10. Axis y presents the percentage of the dataset queried in

order to terminate and find a winner within the top-k. A larger 𝑘 means that the termination

condition is relaxed and less queries are needed. Indeed, in all cases, as 𝑘 increases, the amount

of queries decreases. The performance of RANDOM is not significantly affected by skewness

levels. For a skewness level of -6 (Figure 31), DIG outperforms ES and RANDOM and requires

the least amount of queries. For a skewness level of (0) and of (6), ES outperforms DIG and

RANDOM for the top-1 to top-3 items. Then, DIG resumes charge and provides better results

(Figure 32 and Figure 33).

83

We now turn to examine the real world datasets. On the Netflix dataset (Figure 34), the

trend is similar to that obtained on the skewness level of 0 and 6. That is, for top-1 to top-3 ES is

superior, and then DIG maintains the lead. Again, DIG displays a sharp curve while ES requires

almost the same number of queries regardless of the termination point (the top-𝑘). The same

phenomenon is found on the Pubs dataset (Figure 36) and on the Restaurants dataset (Figure 37).

However, on the Sushi dataset (Figure 35) DIG outperforms ES and RANDOM for all 𝑘.

The results can be explained by considering the properties of the heuristics and of the

datasets. In a setting of a simulated skewness of (-6) the votes are skewed towards the winner

and it is more obvious who the winner is. It is less obvious who the winner is when the skewness

level is 0 or 6 in simulated data. Also, when 𝑘 is smaller, ES performs better, since ES is

designed to seek for potential winning items. Therefore, the amount of queries ES requires is

more or less constant regardless of the 𝑘 items required for output. DIG is designed to focus on

reducing entropy. When 𝑘 is larger the entropy reduces faster. In the Sushi dataset the initial

user-item distribution is uniform so all items have the same chance to be the winning item. Thus,

the initial state in the Sushi dataset is similar to a simulated skewness data with (0). However in

the Netflix, Pubs, and Restaurants datasets the distributions are estimated and there is a skewness

pattern (see section 4.6) which enables DIG to outperform. Furthermore, when it is less obvious

who the winner is (as in Netflix), the differences in the heuristics performance are smaller.

 For all datasets, the Friedman Aligned Ranks test with a confidence level of 95% rejects

the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that

DIG and ES significantly outperform RANDOM at a 95% confidence level.

84

Figure 31: Heuristics comparison for top-k with skewness level (-6)

Figure 32: Heuristics comparison for top-k with skewness level (0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

85

Figure 33: Heuristics comparison for top-k with skewness level (6)

Figure 34: Heuristics comparison for top-k on the Netflix dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

86

Figure 35: Heuristics comparison for top-k on the Sushi dataset

Figure 36: Heuristics comparison for top-k on the Pubs dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

87

Figure 37: Heuristics comparison for top-k on the Restaurants dataset

6.3.2 Approximation

We examined the amount of queries required under different confidence levels (Figure 38

and Figure 39), when a definite winner (𝑘 = 1) is required. For the simulated data, we set the

skewness level to neutral (0). The results presented here are for the Majority strategy, while a

comparison between the two aggregation strategies is presented in the next section. We also

examine the accuracy of the approximations.

Axis x presents the required confidence level; from 50% to 100% (100% is a definite

winner). Axis y presents the percentage of the dataset queried in order to terminate and find the

top-𝑘 items. For the simulated data, there is a steady increase in the required amount of queries

(Figure 38) for all heuristics. DIG outperforms ES and RANDOM, while RANDOM is the least

performer. The steady increase in the amount of queries for the simulated dataset and for the

Sushi dataset (Figure 40), Pubs dataset (Figure 41) and Restaurants dataset (Figure 42) can be

easily explained since more queries are needed in order to gain more information for a higher

accuracy level. However, the results for the Netflix dataset behave differently and require a

deeper explanation.

For the Netflix data (Figure 39), the increase in the required amount of queries is small

for confidence levels 50%-95%. However, there is a big jump in the required number of queries

when the desired confidence is 100% (a definite winner is required): from ~10 required queries

to achieve a confidence level of 95%, to ~90 queries for a 100% confidence. The probability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG

ES

RANDOM

88

distributions for the Netflix dataset are estimated, whereas for the simulated data we have

accurate (simulated) distributions. We show the probabilities accuracy for the datasets: simulated

data with skewness level (0), Netflix and Sushi in Figure 43, Figure 44 and Figure 45

respectively. Axis x is the iteration number and axis y is the probability that the winner is indeed

within the top-𝑘 items. In this case, 𝑘 = 1. For the simulated data (Figure 43) the probability

accuracy increases steadily as more information, acquired in the iterations, becomes available.

On the other hand, since the Netflix, Pubs and Restaurants probabilities are estimations, there is

more noise until a 95% probability is reached (Figure 44). The Sushi dataset also contains

probability estimations, but the estimation is more accurate (Figure 45). To conclude, when the

probability estimation is accurate, there is linear relationship between the number of required

queries and the approximation level. However, an inaccurate probability distribution results in a

“jump” when the required confidence is a 100%.

For all datasets, the Friedman Aligned Ranks test with a confidence level of 95% rejected

the null-hypothesis that all heuristics perform the same. The Bonferroni-Dunn test concluded that

DIG and ES significantly outperform RANDOM at a 95% confidence level.

Figure 38: Approximations with simulated data with skewness (0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG

ES

RANDOM

89

Figure 39: Approximations on the Netflix dataset

Figure 40: Approximations on the Sushi dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG

ES

RANDOM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG

ES

RANDOM

90

Figure 41: Approximations on the Pubs dataset

Figure 42: Approximations on the Restaurants dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG

ES

RANDOM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

DIG

ES

RANDOM

91

Figure 43: Simulated data: the probability the winner is within top-k

Figure 44: Netflix data: the probability the winner is within top-k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

P
ro

b
ab

ili
ty

 a
 w

in
n

e
r

is
 w

it
h

in
 t

o
p

-k

Iteration number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P
ro

b
ab

ili
ty

 w
in

n
e

r
is

 w
it

h
in

 t
o

p
-k

Iteration number

92

Figure 45: Sushi data - probability winner is within top-k

Another interesting question is whether the confidence level results are accurate. A

confidence level refers to the percentage of all possible samples that can be expected to include

the true population parameter. The confidence level (1−∝) is accurate, if the winner is indeed

within the top-𝑘 items in (1−∝)% of the experiments. We analyzed the accuracy for the DIG

algorithm (since it proved to be the best algorithm for approximation settings) for different

confidence levels for 𝑘 = 1. Table 13 presents the percentage of the experiments that held the

winner, out of 10 experiments. As previously shown, since the estimation of the probability

distribution of Netflix, Pubs and Restaurants datasets is less accurate, the results for Netflix are

less accurate. The accuracy is effected by the bias in the user rating and is beyond the scope of

this research. See (Koren and Sill2011) for further details on treating bias.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

P
ro

b
ab

ili
ty

 w
in

n
e

r
is

 w
it

h
in

 t
o

p
-k

Iteration number

93

Table 13: Confidence Level Test

Confidence

Level

Simulated

Data

Netflix

Data

Sushi

Data

Pubs

Data

Restaurants

Data

0.5 60% 50% 80% 30% 70%

0.55 60% 50% 80% 30% 90%

0.6 60% 50% 70% 30% 80%

0.65 60% 50% 80% 20% 80%

0.7 80% 50% 70% 40% 80%

0.75 90% 50% 90% 30% 80%

0.8 100% 60% 90% 40% 80%

0.85 100% 60% 90% 40% 80%

0.9 100% 60% 90% 40% 80%

0.95 100% 70% 90% 60% 80%

6.3.3 Aggregation

We evaluated the two strategies: Majority (MAJ) and Least Misery (LM) on the DIG

(Figure 46 and Figure 47) and ES heuristics (Figure 48 and Figure 49) for simulated data with

different skewness levels: -6, 0, 6. Axis x presents the required top-𝑘 items and axis y presents

the percentage of the dataset queried. DIG and ES with MAJ perform the same for skewness

levels 0 and 6, but it is better when the skewness is -6. However, for the DIG and ES with LM,

skewness levels have no significant effect on the performance since skewness does not indicate

the quantity of low scores in the dataset, and the low scores are exactly the issue that needs to be

considered in LM.

94

Figure 46: DIG with Majority (MAJ) strategy different skewness levels

Figure 47: DIG with Least Misery (LM) strategy different skewness levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG -6

DIG 0

DIG 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG LM -6

DIG LM 0

DIG LM 6

95

Figure 48: ES with Majority (MAJ) strategy different skewness levels

Figure 49: ES with Least Misery (LM) strategy different skewness levels

A comparison between DIG with MAJ and DIG with LM on simulated data on skewness

level -6 (Figure 50) and on skewness level 0 (Figure 51) reveals that the LM strategy

outperforms MAJ in situations such as these: in a uniform skewness (skewness level 0) and in

𝑘 > 4 in skewness level -6. This can be explained by the fact that in a setting that is not skewed

towards a certain candidate (i.e., any setting apart from -6), there might be more users that voted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

ES -6

ES 0

ES 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
ts

 q
u

e
ri

e
d

top-k

ES LM -6

ES LM 0

ES LM 6

96

“1” therefore, LM uses a tie-break to terminate. Thus, LM requires fewer queries in this

situation. In the Netflix dataset (Figure 52) MAJ outperforms LM, further indicating the fact that

LM has no additional value when there is no skewness towards a certain winner. Similarly, on

the Sushi dataset (Figure 53), MAJ outperforms LM when 𝑘 < 5 and then the trend changes and

LM outperforms MAJ. On the pubs and restaurant datasets (Figure 54 and Figure 55) LM

outperforms MAJ for both heuristics. These results might be explained by the data skewness.

Figure 50: DIG with MAJ and DIG with LM on

simulated data on skewness level -6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

97

Figure 51: Skewness 0

Figure 52: Netflix dataset: strategies comparison, top-k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

98

Figure 53: Sushi dataset: strategies comparison, top-k

Figure 54: Pubs dataset: strategies comparison, top-k

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w Maj

ES w MAJ

DIG w LM

ES w LM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

99

Figure 55: Restaurants dataset: strategies comparison, top-k

We evaluated MAJ and LM with respect to the approximation termination condition,

with a constant value of 𝑘 = 1 on the datasets: Netflix, Sushi, Pubs, and Restaurants (Figure 56

Figure 57, Figure 57 and Figure 58). Axis x presents the required confidence level and axis y

presents the percentage of the dataset queried. There is no significant difference between MAJ

and LM for DIG on the Netflix, Pubs, and Restaurants dataset. For ES, on the other hand, MAJ

outperforms LM. This is since ES heuristic does not accommodate any consideration of Least

Misery, as it always seeks for the item expected to win, and does not consider the least preferred

items. The same results for ES are found on the Sushi dataset (Figure 57). However, for DIG on

the Sushi dataset, LM outperforms MAJ for confidence levels 50%-95%. For confidence level

100%, MAJ outperforms LM. Namely, for one definite winner the system’s entropy can be

reduced faster for the Majority aggregation strategy than for the Least Misery strategy probably

since Least Misery requires more queries in order to validate that none of the users are miserable.

For all datasets, the Friedman Aligned Ranks test with a confidence level of 90% rejected

the null-hypothesis that all heuristics perform the same for different approximation levels. We

did not execute the Bonferroni-Dunn test since there is not one algorithm that is preferred over

the others.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

top-k

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

100

Figure 56: Netflix dataset: strategies comparison, approximation

Figure 57: Sushi dataset: strategies comparison, approximation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG w MAJ

ES w LM

DIG w LM

ES w LM

101

Figure 58: Pubs dataset: Strategies comparison, approximation

Figure 59: Restaurants dataset: strategies comparison, approximation

6.4 Discussion

In this chapter we suggested the consideration of the aggregation strategy and the

termination conditions when attempting to reduce preference elicitation communication cost. We

examined two termination conditions: selection and approximation. The first condition,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

%
 o

f
d

at
as

e
t

q
u

e
ri

e
d

confidence level

DIG w MAJ

ES w MAJ

DIG w LM

ES w LM

102

selection, returns top-𝑘 items where one of them is the winning item rather than just one (𝑘 = 1)

definite winning item. The second termination condition, approximation, returns top-𝑘 items

with some confidence level 𝛼 (0 ≤ 𝛼 ≤1), rather than top-𝑘 items where one of them is the

definite winner (𝛼 = 1). Furthermore, we examined the Least Misery aggregation strategy and

the Majority aggregation strategy.

The final goal of this chapter was to employ selection, approximation and aggregation in

order to reduce the amount of queries needed during a preference elicitation process for a group

of users that want to reach a joint decision. We focused on the Range voting protocol as it is very

commonly applied for recommender systems. We implemented two heuristics whose primary

aim is to minimize preference elicitation: DIG and ES. These are the only two publicly available

heuristics that aim at reducing preference elicitation for the Range voting protocol. We

performed an experimental analysis on two real-world datasets: the Sushi dataset (Kamishima et

al. 2005) and the Netflix prize dataset (http://www.netflixprize.com). In order to analyze

possible skewness levels in data, we simulated data with different skewness levels. We also

estimated user-item probability distribution for all datasets. Lastly, we evaluated 2 datasets

generated through a user-study.

In general, we showed that selecting the suitable aggregation strategy and relaxing the

termination condition can reduce communication cost up to 90%. We also showed the benefits of

the DIG heuristic for reducing the communication cost. In 0 we concluded that in most cases the

ES heuristic outperforms the DIG heuristic. The ES heuristic focuses on identifying the current

local maximum and queries the user that maximizes this item. The DIG heuristic focuses on

reducing the system entropy. In this chapter we revealed that when the termination conditions are

relaxed, DIG takes the lead.

We examined how the number of required queries is effected by the request to (1) return

one definite winner, and (2) return top-k items. In the latter case, the group members are left with

k items to select from (selection termination condition). With respect to the selection condition,

there is an inverse linear connection: as 𝑘 is larger the amount of required queries is reduced.

Only when the dataset is skewed towards a certain winner item, and also 𝑘 is set to 0 ≤ 𝑘 ≤ 3,

does ES outperform DIG. This observation assists to determine the conditions in which each of

these heuristics should be employed. Also, we can now state that, as expected intuitively, in

cases where the group members are willing to accept a set of items rather than one winning item,

103

the communication cost is reduced. For example, if a group’s wish to select a movie can be

satisfied with the system offering them a choice of top-3 movies rather than the system

determining one movie for them, less queries to group members will be executed.

 We studied (1) the tradeoff between finding the optimal winner and thus having an

accurate result, and (2) the number of queries required for the process. For the approximation

termination condition, we showed that the amount of required queries increases proportionally to

the confidence level. We showed that DIG and ES can output accurate approximate

recommendations. However, the accuracy is derived from the dataset’s probability distribution

accuracy. When the probability distribution is known or is estimated accurately, the

recommendations are more accurate.

With respect to the aggregation strategy, we showed that the Majority strategy does not

always outperform the Least Misery strategy. It is reasonable to assume that the strategy will be

set according to the users’ preferences and not according to the data. We demonstrated the

feasibility of choosing either strategy on the datasets.

104

Chapter 7

Conclusions and Future Work

In this chapter we summarize and discuss our work, and finally offer directions for future

research.

7.1 Summary

This study addresses the issue of preference elicitation for group decision making using

voting rules. We presented a general, domain-free framework for preference management for

groups, where the goal is to minimize the communication cost. We studied preference elicitation

under the non-ranking (Range) and ranking (Borda) voting protocols. The goal of the preference

elicitation process is to return a winning item while minimizing the communication costs.

We suggested an interactive incremental framework whose process consists of querying

one member of the group at each step for either her rating for one item (user-item query) or for

her preference between two items (user-item-item query). At each step the users’ preference

distributions are updated and a new query is found. We have suggested two approaches for

heuristics that determine what query to select next (i.e., which group member to query regarding

what item or items). One approach focuses on reducing the entropy of the winner in the system.

The rationale behind this proposal is that reducing the entropy quickly will lead to the winner

using a minimal amount of queries. The other approach focuses on maximizing the score of the

item with the highest current score; under the same rational that expects to discover the winner

item in minimal time. Both heuristics rely on probabilistic rating distributions. We have shown

how these distributions can be estimated. The rating distributions are updated iteratively,

allowing their accuracy to increase over time.

 Although outputting a definite winner is the most accurate result, we also examined the

effort-accuracy tradeoff and aggregation strategies for group preference elicitation. First, we

105

suggested shortening the preference elicitation process by returning 𝑘 alternatives to the group

members rather than returning just one item. Users might prefer to receive a few options rather

than just one; so that if a chosen option is unavailable they can switch to another option without

triggering more rounds of preference elicitation. Secondly, we suggested computing approximate

winner or winners with some confidence level. On one hand, receiving an approximate winner

item is less accurate than a definite winner, but on the other hand it further reduces the

communication cost. Lastly, we suggested considering the aggregation strategy when combining

the user preferences. We have shown that the aggregation strategy affects the communication

cost required of the preference elicitation and compared two state-of-the-art aggregation

strategies: the Majority based strategy and the Least Misery strategy.

We demonstrated the effectiveness of our framework by evaluating the heuristics on four

real-world datasets. In addition, we examined possible effects of various data characteristics

utilizing simulated datasets and manipulating their data parameters.

7.2 Discussion

We briefly present our main findings, and move on to describe their relations with the

overlapping fields of social choice and of recommender systems. Lastly, we discuss the

limitations of our work.

7.2.1 Main Findings

The main empirical findings were summarized within the respective chapters that

describe: Preference elicitation using the Range voting protocol (Chapter 4), Preference

elicitation using the Borda voting iterative voting (Chapter 5) and tradeoffs and aggregation

strategies in preference elicitation (Chapter 6). The main empirical and theoretical findings are

the following:

(a) Preference elicitation using the Range voting protocol: We have shown that

heuristics can reduce the communication cost required for voting under the Range

protocol by more than 50%. Different heuristics perform better under different

settings: the DIG heuristic performs better when the voter-item distributions are not

skewed towards a specific winner. The ES heuristic outperforms DIG when some

pattern is found in the data. Furthermore, we have shown that updating the voter-item

distributions increases the heuristics performance. The creation of the voter-item

106

distribution is more accurate when created from a smaller (100x100) set of historical

ratings than from a bigger set (1000x1000) of historical ratings.

(b) Preference elicitation using the Borda voting protocol: We have shown that the

expected score for Borda heuristic (ESB) reduces the communication cost by more

than 60%, since it focuses directly on finding a winner. The entropy based method for

Borda (IGB) fails to reduce communication. The voter permutations probabilistic

model cannot scale up, thus being a major disadvantage.

(c) Tradeoffs and aggregation strategies in preference elicitation: We have

demonstrated that selecting the suitable aggregation strategy and relaxing the

termination condition can reduce communication cost by up to 90%. When the

termination conditions are relaxed, the entropy-based approximation method (DIG)

takes the lead over the expected maximum heuristic (ES). We illustrated that DIG and

ES can output accurate approximate recommendations. However, the accuracy is

derived from the dataset’s probability distribution accuracy. When the probability

distribution is known or is estimated accurately, the winner approximation is more

accurate.

To conclude, we have examined voting elicitation under the Range and Borda voting

protocols, representing rating and ranking of items. Rating items is a task users are familiar with;

it is used abundantly, websites being one example. However ranking items might be easier for

users, specifically by the method we present where two items are presented to the user and the

user states her preference between the two. Our framework allows the system administrator or

the group members themselves to choose which task they prefer, rating or ranking, and the

voting protocol is determined accordingly.

Our framework is domain free and can be used in any domain where users need to reach

a joint decision. We have evaluated our framework on real-world datasets and on simulated

datasets. The simulated datasets are important since they allow us to manipulate the dataset

parameters and to examine data with different skewness of item preferences and thus simulate

different circumstances. When running the framework on a new domain, if historical data exists

(such as users’ ratings to other items), we can find the skewness pattern and use the heuristic that

best fits the data. For example, when given a new domain and a request to use ratings (and not

rankings), if we see that the data is uniformly skewed, we will suggest to use the DIG heuristic.

107

7.2.2 Impact on Social choice and on Recommender Systems

 Our findings append to a growing body of literature on preference elicitation using

voting rules (Lu and Boutilier 2011; Kalech et al. 2011). Our research adds a unique contribution

to preference elicitation in social choice in a number of perspectives that have previously been

overlooked. First, we have studied preference elicitation using two different protocols: a ranking

protocol (represented by the Borda protocol) and a non-ranking protocol (represented by the

Range protocol). Previous research has focused only on the Borda protocol. However, ranking is

worth considering since it is abundant and often used by different applications such as

netflix.com and booking.com. Secondly, we have suggested various methods for reducing the

amount of queries. In addition to heuristics which offer a necessary winner item, we have

suggested (a) to return a list of top-𝑘 items where one of them is the necessary winner; and (b) to

approximate the necessary winners or top-𝑘 items. These methods offer a decrease in the

required amount of queries and have not been previously suggested. Finally, we examined the

effect of aggregating the preferences in other strategies but the Majority based strategy. The

Least Misery strategy is often needed in real-life scenarios yet has previously been overlooked

(e.g., a group looking for a dining location may wish to avoid a fish restaurant if one of the group

members dislikes fish).

From the recommender systems domain perspective, this study suggests a framework for

preference elicitation that can be used as a second step procedure in group recommenders: to

narrow down the predicted items list and present the group of users with definite or approximate

necessary winners. Group recommender systems often focus on improving the systems accuracy

and usually return a prediction to the group and not definite winning items. A group

recommender system can process thousands of candidate items and return a list of top-𝑁 items

predicted as the most suitable to the group. We can enhance this by eliciting user preferences on

these 𝑁 items and return a definite winner or top-𝑘 items (𝑘 ≤ 𝑁) where one of the items is the

winner or an approximate winner with some confidence level. This contribution may add to the

usability of a group recommender system offering a platform that enables reaching a joint

decision with minimal effort.

108

7.2.3 Limitations

As a direct consequence of this study, we encountered a number of limitations, which

need to be considered:

a. Initial assumptions – this study assumes that the user always provides an

answer to the query, independence of rating and equal communication cost.

These limitations can be overcome by tweaking the model. For example, it is

possible to model the probability that the user will answer the query. For a

small number of voters and items it is possible to consider dependent

probabilities. The communication cost be modeled as a weighted vector and

added to the model.

b. Distribution accuracy - under both protocols, probabilistic data regarding the

users’ preferences were computed. For the Range protocol, voter-item

distributions were computed. The accuracy of the distributions was found to

influence the performance of the heuristics. The approximated distribution for

the Netflix dataset was not accurate, as discussed in the evaluation section in

Chapter 4. This limitation can be overcome by investing more time in

researching ways to consider rating bias. However this subject was out of the

scope of our research.

c. Model scaling - for the Borda voting, perhaps the main disadvantage of the

presented framework is its lack of scalability, due to the need to hold a

probabilistic model of all order permutations of items. Therefore while the

number of voters can be increased, the number of items cannot be increased

beyond 10 using standard computational power. This limitation can be partly

overcome by relaxing the need to hold all permutations, thus trading off

accuracy for less complexity. As discussed in section 5.2, we followed

previous research and chose to hold all permutations in order to receive an

accurate model.

d. Other aggregation strategies - the current study examined the two aggregation

strategies most common in the literature. Extension to other available

aggregation strategies does not require a fundamental change since the

heuristics and the model do not change. The heuristics performance under

109

different strategies can be analyzed, but this also is out of the scope of our

research.

e. Other voting protocols - the current study examined two voting protocols.

Extending the study to other voting protocols is pretty straight forward since

the only difference is the way the maximum and minimum score is computed,

as discussed in Chapter 3.

7.3 Future Work

Further research might be conducted in order to address the limitations listed above, as

well as other directions:

a. Distribution accuracy – the more accurate the initial distribution is, the fewer

queries are needed in order to find a winner. We expect that further improving the

accuracy of the Range protocol voter-item distribution, will lead to a decrease in

the communication costs and therefore worthy of investigation. With regard to the

Borda protocol, relaxing the accuracy of the distribution (i.e., a relaxation in the

need to hold all permutations), will allow us to scale up the number of items, the

tradeoff being an increase in the communication costs.

b. Bias in user feedback – in this work we followed (Koren and Sill2011) and

corrected bias in user ratings when computing the rating distributions (section

4.2). However, this does not cover all possible bias. It has been shown that users

have different rating patterns (Kuflik et al. 2012), and further research can

hopefully plan and integrate a domain-free algorithm that considers user rating

patterns.

c. Other aggregation strategies – different aggregation strategies are used for

different purposes in the recommender systems domain. Investigating them could

be of value.

d. Social networks – instead of deriving the probability distributions from historical

data, the distributions can be computed from the social network to which the user

belongs. Social networks typically demonstrate homophily, which is the tendency

of individuals to bond with similar others. Hence it is probable that connected

110

individuals would share similar preferences. This phenomenon is often expressed

in the phrase "birds of a feather flock together". Thus we assume that an

individual's preferences may be derived from the social network topology.

e. User-study – the framework we suggested can be implemented as a real system.

Then, a user study can be conducted, and the user satisfaction can be evaluated.

f. Approximations and the Borda voting protocol – this study presented winner

approximations for the Range voting protocol. Approximations for the Borda

protocol should be defined and evaluated in future research.

111

Bibliography

Arrow, K. J. 1951. Social Choice and Individual Values. 2nd Edition 1963 ed. New Haven:

Cowles Foundation.

Bachrach, Y., Betzler,N., and Faliszewski,P. .2010. Probabilistic Possible Winner

Determination.In Proceedings of The Twenty-fourth AAAI conference on Artificial

Intelligence (AAAI), Atlanta, GA, USA,.

Balakrishnan, S. and S. Chopra. .2012. Two of a Kind Or the Ratings Game? Adaptive

Pairwise Preferences and Latent Factor Models. Frontiers of Computer Science, 6 (2): 197-

208.

Baltrunas, L., Makcinskas,T., and Ricci,F. .2010. Group Recommendations with Rank

Aggregation and Collaborative Filtering.In Proceedings of the fourth ACM conference on

Recommender systems,119-126.ACM, .

Bellman, R. .1962. Dynamic Programming Treatment of the Travelling Salesman Problem.

Journal of the ACM (JACM), 9 (1): 61-63.

Berkovsky, S. and Freyne,J. .2010. Group-Based Recipe Recommendations: Analysis of

Data Aggregation Strategies.In Proceedings of the fourth ACM conference on Recommender

systems,111-118. Barcelona:ACM, .

Betzler, N., S. Hemmann, and R. Niedermeier. .2009. A Multivariate Complexity Analysis

of Determining Possible Winners Given Incomplete Votes. Proc.of 21st IJCAI, 2 (3): 7.

Betzler, N., Niedermeier,R., and Woeginger,G. J. .2011. Unweighted Coalitional

Manipulation Under the Borda Rule is NP-Hard.In Proceedings of the Twenty-Second

international joint conference on Artificial Intelligence-Volume Volume One,55-60.AAAI

Press, .

112

Betzler, N., A. Slinko, and J. Uhlmann. .2014. On the Computation of Fully Proportional

Representation. arXiv Preprint arXiv:1402.0580,.

Boutilier, C., Lang,J., Oren,J., and Palacios,H. .2014. Robust Winners and Winner

Determination Policies Under Candidate Uncertainty.In Artificial Intelligence (AAAI),

Quebec, Canada:.

Brandt, F., Conitzer,V., and Endriss,U. 2013. "Computational Social Choice." Chap. 6, In

Multiagent Systems, edited by Gehard Weiss. 2nd edition ed., 213-283: MIT Press.

http://mitpress.mit.edu/books/multiagent-systems-1.

Braziunas, D. and C. Boutilier. .2009. Elicitation of Factored Utilities. AI Magazine, 29 (4):

79.

Breese, J. S., Heckerman,D., and Kadie,C. .1998. Empirical Analysis of Predictive

Algorithms for Collaborative Filtering.In Proceedings of the Fourteenth conference on

Uncertainty in artificial intelligence,43-52.Morgan Kaufmann Publishers Inc., .

Carvalho, Lucas Augusto Montalvão Costa and Macedo,H. T. .2013. Users' Satisfaction in

Recommendation Systems for Groups: An Approach Based on Noncooperative Games.In

Proceedings of the 22nd international conference on World Wide Web companion,951-

958.International World Wide Web Conferences Steering Committee, .

Chen, L. and P. Pu. .2012. Critiquing-Based Recommenders: Survey and Emerging Trends.

User Modeling and User-Adapted Interaction, 22 (1-2): 125-150.

Chen, S., T. Lin, and L. Lee. .2014. Group Decision Making using Incomplete Fuzzy

Preference Relations Based on the Additive Consistency and the Order Consistency.

Information Sciences, 259: 1-15.

Conitzer, V. and Sandholm,T. .2005. Communication Complexity of Common Voting

Rules.In Proceedings of the 6th ACM conference on Electronic commerce,78-87.ACM, .

http://mitpress.mit.edu/books/multiagent-systems-1

113

Conitzer, V. .2009. Eliciting Single-Peaked Preferences using Comparison Queries. Journal

of Artificial Intelligence Research, 35: 161-191.

Davies, J., Katsirelos,G., Narodytska,N., and Walsh,T. .2011. Complexity of and

Algorithms for Borda Manipulation.In AAAI,657-662.

de Campos, L. M., J. M. Fernández-Luna, J. F. Huete, and M. A. Rueda-Morales. .2009.

Managing Uncertainty in Group Recommending Processes. User Modeling and User-

Adapted Interaction, 19 (3): 207-242.

Ding, N. and Lin,F. .2013. Voting with Partial Information: What Questions to Ask?In

Proceedings of the 2013 international conference on Autonomous agents and multi-agent

systems,1237-1238.International Foundation for Autonomous Agents and Multiagent

Systems, .

Domingos, P. and M. Pazzani. .1997. On the Optimality of the Simple Bayesian Classifier

Under Zero-One Loss. Machine Learning, 29 (2): 103-130.

Elkind, E., Faliszewski,P., Skowron,P., and Slinko,A. .2014. Properties of Multiwinner

Voting Rules.In Proceedings of the 2014 international conference on Autonomous agents

and multi-agent systems,53-60.International Foundation for Autonomous Agents and

Multiagent Systems, .

Endriss, U. and Grandi,U. .2013. Binary Aggregation by Selection of the most

Representative Voter.In Proceedings of the 7th Multidisciplinary Workshop on Advances in

Preference Handling,.

Fishman, G. 1996. Monte Carlo: Concepts, Algorithms, and Applications Springer.

Freyne, J., S. Berkovsky, and G. Smith. .2013. Rating Bias and Preference Acquisition.

ACM Transactions on Interactive Intelligent Systems (TiiS), 3 (3): 19.

Garcia, I., S. Pajares, L. Sebastia, and E. Onaindia. .2011. Preference Elicitation Techniques

for Group Recommender Systems. Information Sciences, 189: 155-175.

114

García, S., A. Fernández, J. Luengo, and F. Herrera. .2010. Advanced Nonparametric Tests

for Multiple Comparisons in the Design of Experiments in Computational Intelligence and

Data Mining: Experimental Analysis of Power. Information Sciences, 180 (10): 2044-2064.

Gelain, M., Pini,M. S., Rossi,F., and Venable,K. B. .2007. Dealing with Incomplete

Preferences in Soft Constraint Problems.In Proceedings of the 13th international conference

on Principles and practice of constraint programming,286-300.Springer-Verlag, .

Gibbard, A. 1973. Manipulation of Voting Schemes: A General Result. Econometrica:

Journal of the Econometric Society,: 587-601.

Goldberg, D., D. Nichols, B. M. Oki, and D. Terry. .1992. Using Collaborative Filtering to

Weave an Information Tapestry. Communications of the ACM, 35 (12): 61-70.

Gorla, J., Lathia,N., Robertson,S., and Wang,J. .2013. Probabilistic Group Recommendation

Via Information Matching.In Proceedings of the 22nd international conference on World

Wide Web,495-504.International World Wide Web Conferences Steering Committee, .

Hazon, N., Aumann,Y., Kraus,S., and Wooldridge,M. .2008. Evaluation of Election

Outcomes Under Uncertainty.In Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems-Volume 2,959-966.International Foundation for

Autonomous Agents and Multiagent Systems, .

Herrera-Viedma, E., F. Chiclana, F. Herrera, and S. Alonso. .2007. Group Decision-Making

Model with Incomplete Fuzzy Preference Relations Based on Additive Consistency.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions On, 37 (1): 176-

189.

Iyengar, S. S. and M. R. Lepper. .2000. When Choice is Demotivating: Can One Desire Too

Much of a Good Thing? Journal of Personality and Social Psychology, 79 (6): 995.

Jameson, A. .2004. More than the Sum of its Members: Challenges for Group

Recommender Systems.In Proceedings of the working conference on Advanced visual

interfaces,48-54.ACM, .

115

Jameson, A. and B. Smyth. .2007. Recommendation to Groups. The Adaptive Web,: 596-

627.

Kalech, M., S. Kraus, G. A. Kaminka, and C. V. Goldman. .2011. Practical Voting Rules

with Partial Information. Journal of Autonomous Agents and Multi-Agent Systems, 22 (1):

151-182.

Kamishima, T., Kazawa,H., and Akaho,S. .2005. Supervised Ordering-an Empirical

Survey.In Data Mining, Fifth IEEE International Conference on,4 pp.IEEE, .

Konczak, K. and Lang,J. .2005. Voting Procedures with Incomplete Preferences.In

Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland:.

Koren, Y. and R. Bell. .2011. Advances in Collaborative Filtering. Recommender Systems

Handbook,: 145-186.

Koren, Y. and Sill,J. .2011. OrdRec: An Ordinal Model for Predicting Personalized Item

Rating Distributions.In Proceedings of the fifth ACM conference on Recommender

systems,117-124.ACM, .

Kuflik, T., Wecker,A. J., Cena,F., and Gena,C. 2012. "Evaluating Rating Scales

Personality." In User Modeling, Adaptation, and Personalization, 310-315: Springer.

Lang, J., Pini,M. S., Rossi,F., Venable,K. B., and Walsh,T. .2007. Winner Determination in

Sequential Majority Voting.In Proceedings of the 20th International Joint Conference on

Artificial Intelligence (IJCAI),1372-1377.

Lu, T. and Boutilier,C. .2013. Multi-Winner Social Choice with Incomplete Preferences.In

Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence

(IJCAI-13),263-270. Beijing:.

Masthoff, J. .2011. Group Recommender Systems: Combining Individual Models.

Recommender Systems Handbook,: 677-702.

116

Masthoff, J. .2004. Group Modeling: Selecting a Sequence of Television Items to Suit a

Group of Viewers. User Modeling and User-Adapted Interaction, 14 (1): 37-85.

Mattei, Nicholas and Walsh, Toby. 2013. PrefLib: A Library of Preference Data.

Proceedings of Third International Conference on Algorithmic Decision Theory (ADT

2013). Springer, Lecture Notes in Artificial Intelligence, November 13-15, 2013.

McCarthy, J. F. and Anagnost,T. D. .1998. MusicFX: An Arbiter of Group Preferences for

Computer Supported Collaborative Workouts.In Proceedings of the 1998 ACM conference

on Computer supported cooperative work,363-372.ACM, .

McCarthy, K., McGinty,L., Smyth,B., and Salamó,M. 2006. "The Needs of the Many: A

Case-Based Group Recommender System." In Advances in Case-Based Reasoning, 196-

210: Springer.

Naamani Dery, L., M. Kalceh, L. Rokach, and B. Shapira. .2014.
Reaching a Joint

Decision with Minimal Elicitation of Voter Preferences. Information Sciences, 278: 466-

487.

Nisgav, A. and B. Patt-Shamir. .2011. Improved Collaborative Filtering. Algorithms and

Computation,: 425-434.

O’connor, M., Cosley,D., Konstan,J. A., and Riedl,J. .2002. PolyLens: A Recommender

System for Groups of Users.In ECSCW 2001,199-218.Springer, .

Pfeiffer, T., Gao,X. A., Mao,A., Chen,Y., and Rand,D. G. .2012. Adaptive Polling for

Information Aggregation.In Twenty-Sixth AAAI Conference on Artificial Intelligence,.

Pini, M. S., F. Rossi, K. B. Venable, and T. Walsh. .2009. Aggregating Partially Ordered

Preferences. Journal of Logic and Computation, 19 (3): 475-502.

Popescu, G. and Pu,P. 2013. "Group Recommender Systems as a Voting Problem." In

Online Communities and Social Computing, 412-421: Springer.

117

Procaccia, A. D., J. S. Rosenschein, and A. Zohar. .2008. On the Complexity of Achieving

Proportional Representation. Social Choice and Welfare, 30 (3): 353-362.

Pu, P. and L. Chen. .2009. User-Involved Preference Elicitation for Product Search and

Recommender Systems. AI Magazine, 29 (4): 93.

Regenwetter, Michel, Jason Dana, and Clintin P. Davis-Stober. 2011. "Transitivity of

preferences." Psychological Review 118.1: 42.

Resnick, P. and H. R. Varian. .1997. Recommender Systems. Communications of the ACM,

40 (3): 56-58.

Rodríguez, R. M., L. Martı́nez, and F. Herrera. .2013. A Group Decision Making Model

Dealing with Comparative Linguistic Expressions Based on Hesitant Fuzzy Linguistic Term

Sets. Information Sciences,.

Rossi, F., K. B. Venable, and T. Walsh. .2011. A Short Introduction to Preferences:

Between Artificial Intelligence and Social Choice. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 5 (4): 1-102.

Rubens, N., Kaplan,D., and Sugiyama,M. 2011. "Active Learning in Recommender

Systems." In Recommender Systems Handbook, 735-767: Springer.

Satterthwaite, Mark Allen. 1975. "Strategy-proofness and Arrow's conditions: Existence and

correspondence theorems for voting procedures and social welfare functions." Journal of

economic theory 10, no. 2: 187-217.

Senot, C., Kostadinov,D., Bouzid,M., Picault,J., and Aghasaryan,A. .2011. Evaluation of

Group Profiling Strategies.In Proceedings of the Twenty-Second international joint

conference on Artificial Intelligence-Volume Volume Three,2728-2733.AAAI Press, .

Shannon, C. E. .2001. A Mathematical Theory of Communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5 (1): 3-55.

118

Skowron, P., Faliszewski,P., and Slinko,A. .2013. Fully Proportional Representation as

Resource Allocation: Approximability Results.In Proceedings of the Twenty-Third

international joint conference on Artificial Intelligence,353-359.AAAI Press, .

Smith, W. D. .2001. Range Voting.

Stillwell, W. G., D. A. Seaver, and J. P. Schwartz. .1982. Expert Estimation of Human Error

Probabilities in Nuclear Power Plant Operations: A Review of Probability Assessment and

Scaling,.

Suzumura, K., Arrow,K. J., and Sen,A. 2010. Handbook of Social Choice & Welfare. Vol. 2

Elsevier.

Tversky, Amos. 1969. "Intransitivity of preferences." Psychological review 76.1: 31.

Walsh, T. .2007. Uncertainty in Preference Elicitation and Aggregation.In Proceeding of the

National Conference on Artificial Intelligence,3.Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999, .

Walsh, T. .2008. Complexity of Terminating Preference Elicitation.In Proceedings of the

7th international joint conference on Autonomous agents and multiagent systems-Volume

2,967-974.International Foundation for Autonomous Agents and Multiagent Systems, .

Xia, L. and Conitzer,V. .2011. A Maximum Likelihood Approach Towards Aggregating

Partial Orders.In Proceedings of the Twenty-Second International Joint Conference on

Artificial Intelligence (IJCAI),446-451.

Yu, K., A. Schwaighofer, V. Tresp, X. Xu, and H. P. Kriegel. .2004. Probabilistic Memory-

Based Collaborative Filtering. Knowledge and Data Engineering, IEEE Transactions On,

16 (1): 56-69.

Yu, Z., X. Zhou, Y. Hao, and J. Gu. .2006. TV Program Recommendation for Multiple

Viewers Based on User Profile Merging. User Modeling and User-Adapted Interaction, 16

(1): 63-82.

119

Appendix

An Example for the Computation of the Probabilistic Voter Rating

Distribution Model

The following is a step by step illustration of the probabilistic voter distribution model

presented in section 4.2, using a running example. Consider the ratings given in Table 7 in

section 4.2. The delta ratings (obtained using eq.4.4) are shown in Table 14. First, we compute

voter to voter similarity using Cosine similarity (eq.4.5). The results are shown in Table 15.

Next, we compute predicted ratings according to eq.4.6 (Table 10). Next, the similarities are

aggregated into buckets according to their ratings (Table 17). For example, let us examine the

aggregation for 𝑣1 and 𝑐1. In the first line of Table 10 we can see that the pair 𝑣1. 𝑐1 has no

predicted rating of 𝑑𝑔 = 1. There are three rounded predictions of 𝑑𝑔 = 2; when the neighbor

voters are: 𝑣1, 𝑣2, 𝑢2, 𝑢6. The corresponding similarities (i.e., v1 with each of these neighbors) in

Table 15 are aggregated: 1 + 0.266 + 0.552 + 0.369. The result is updated in line one in

column “2” (Table 17). Finally, we convert the results into a probability distribution such that

each row sums up to 1 thus completing the computation of the initial voter-item rating

distributions (Table 18). Computation of bias-free behavior can be achieved by applying

alternative methods; however, we leave this to future research.

The voter-item distributions are dynamic: they change as new information is revealed.

When a voter submits a rating on an item, the voter-item probability distribution is updated by

calculating only the changes of the relevant places. Furthermore, a new rating contains valuable

information which affects not only the user submitting the rating, but also the probability

distribution of other voters for the same item.

120

Table 14: Bias free behavior according to eq.4.4

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔

𝒗𝟏 0 0 0 -0.15 2.45 2.45 2.45 1.35 -0.95 1.15

𝒗𝟐 0 0 0 0.85 2.45 2.45 2.45 -0.65 2.05 -0.85

𝒗𝟑 0 0 0 3.15 -1.25 0.75 1.75 1.65 0.35 1.45

𝒗𝟒 0 0 0 3.05 1.65 -0.35 0.65 0.55 1.25 1.35

𝒖𝟏 0.95 -0.38333 0.283333 1.05 -0.35 -1.35 -1.35 0.55 0.25 0.35

𝒖𝟐 -1.05 0.616667 -1.71667 -1.95 0.65 1.65 1.65 -0.45 0.25 0.35

𝒖𝟑 -2.15 -0.48333 1.183333 0.95 -0.45 -0.45 -0.45 0.45 1.15 0.25

𝒖𝟒 0.15 -0.18333 -0.51667 -1.75 -0.15 -0.15 -0.15 0.75 1.45 0.55

𝒖𝟓 1.15 -0.18333 -0.51667 0.25 -0.15 -0.15 -1.15 -0.25 0.45 0.55

𝒖𝟔 0.45 0.116667 0.783333 -0.45 0.15 0.15 -0.85 1.05 -1.25 -0.15

Table 15: Voter-to-voter similarity according to eq.4.5

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔

𝒗𝟏 1 0.266 -0.315 -0.53 -0.679 0.552 -0.519 -0.146 -0.509 0.369

𝒗𝟐 0.266 1 -0.453 -0.174 -0.625 0.437 -0.209 -0.134 -0.325 -0.436

𝒗𝟑 -0.315 -0.453 1 0.304 0.311 -0.403 0.236 -0.439 -0.032 -0.084

𝒗𝟒 -0.53 -0.174 0.304 1 0.619 -0.614 0.309 -0.493 0.281 -0.28

121

Table 16: Predicted rating according to eq.4.6

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔

𝒗𝟏. 𝒄𝟏 2.25 2.25 0 0 0 1.64 0 0 0 2.39

𝒗𝟏. 𝒄𝟐 3.58 3.58 0 0 0 3.89 0 0 0 3.61

𝒗𝟏. 𝒄𝟑 2.92 2.92 0 0 0 1.94 0 0 0 3.18

𝒗𝟐. 𝒄𝟏 2.25 2.25 0 0 0 1.77 0 0 0 0

𝒗𝟐. 𝒄𝟐 3.58 3.58 0 0 0 3.83 0 0 0 0

𝒗𝟐. 𝒄𝟑 2.92 2.92 0 0 0 2.14 0 0 0 0

𝒗𝟑. 𝒄𝟏 0 0 1.95 1.95 2.23 0 1.43 0 0 0

𝒗𝟑. 𝒄𝟐 0 0 3.28 3.28 3.15 0 3.16 0 0 0

𝒗𝟑. 𝒄𝟑 0 0 2.62 2.62 2.69 0 2.88 0 0 0

𝒗𝟒. 𝒄𝟏 0 0 2.05 2.05 2.6 0 1.37 0 2.36 0

𝒗𝟒. 𝒄𝟐 0 0 3.38 3.38 3.11 0 3.22 0 3.32 0

𝒗𝟒. 𝒄𝟑 0 0 2.72 2.72 2.86 0 3.06 0 2.56 0

Table 17: Aggregated voter similarities

 1 2 3 4 5

𝒗𝟏. 𝒄𝟏 0 2.186 0 0 0

𝒗𝟏. 𝒄𝟐 0 0 0 2.186 0

𝒗𝟏. 𝒄𝟑 0 0.552 1.634 0 0

𝒗𝟐. 𝒄𝟏 0 1.702 0 0 0

𝒗𝟐. 𝒄𝟐 0 0 0 1.702 0

𝒗𝟐. 𝒄𝟑 0 0.437 1.266 0 0

𝒗𝟑. 𝒄𝟏 0.236 1.615 0 0 0

𝒗𝟑. 𝒄𝟐 0 0 1.851 0 0

𝒗𝟑. 𝒄𝟑 0 0 1.851 0 0

𝒗𝟒. 𝒄𝟏 0.309 1.585 0.619 0 0

𝒗𝟒. 𝒄𝟐 0 0 2.514 0 0

𝒗𝟒. 𝒄𝟑 0 0 2.514 0 0

122

Table 18: The normalized distribution

 1 2 3 4 5

𝒗𝟏. 𝒄𝟏 0.139 0.443 0.139 0.139 0.139

𝒗𝟏. 𝒄𝟐 0.139 0.139 0.139 0.443 0.139

𝒗𝟏. 𝒄𝟑 0.139 0.216 0.367 0.139 0.139

𝒗𝟐. 𝒄𝟏 0.149 0.403 0.149 0.149 0.149

𝒗𝟐. 𝒄𝟐 0.149 0.149 0.149 0.403 0.149

𝒗𝟐. 𝒄𝟑 0.149 0.214 0.338 0.149 0.149

𝒗𝟑. 𝒄𝟏 0.18 0.382 0.146 0.146 0.146

𝒗𝟑. 𝒄𝟐 0.146 0.146 0.416 0.146 0.146

𝒗𝟑. 𝒄𝟑 0.146 0.146 0.416 0.146 0.146

𝒗𝟒. 𝒄𝟏 0.174 0.344 0.216 0.133 0.133

𝒗𝟒. 𝒄𝟐 0.133 0.133 0.468 0.133 0.133

𝒗𝟒. 𝒄𝟑 0.133 0.133 0.468 0.133 0.133

An Example of the Computation of the Item Winning Probability

The following is a step by step illustration of item winning probability presented in

section 4.3, using a running example. The example is based on the voting distributions (VD’s)

presented in Table 7; note that: 𝑃𝑟(𝑞3
1 = 3) = 0.4, 𝑃𝑟(𝑞3

1 = 2) = 0.3, 𝑃𝑟(𝑞3
1 = 1) = 0.3.

We begin by calculating 𝑃𝑟 (𝑐𝑗 = 𝑠). The results are presented in Table 19. The

calculation involves a dynamic programming algorithm where each row is calculated using the

results of the row above it. For instance, to calculate 𝑃𝑟(𝑐1 = 6) based on the ratings of voters

𝑣1, 𝑣2, 𝑣3, we use the probabilities that were computed in columns 3-5, line 2: 𝑃𝑟(𝑐1 = 6) =

0.14 ∙ 𝑃𝑟(𝑞3
1 = 3) + 0.36 ∙ 𝑃𝑟(𝑞3

1 = 2) + 0.24 ∙ 𝑃𝑟(𝑞3
1 = 1) = 0.236. This result is bolded in

Table 19. Next, we calculate 𝑃𝑟 (𝑐1 ≤ 𝑠) by aggregating the results of the cells in row 3 in Table

19. For item 𝑐2, we aggregate the results of row 6. This is presented in Table 20.

The probability that item 𝑐1 is a winner with a certain aggregated rating s is presented in

Table 21. In our example of only two items, the probability of c1 to win is: 𝑃𝑟(𝑁𝑊 = 𝑐1) =

𝑃𝑟(𝑐1 = 𝑠)⋀𝑃𝑟 (𝑐2 ≤ 𝑠). For instance, the probability that 𝑐1 is the winner with an aggregated

123

rating of 5 is equal to the probability that its aggregated rating is 5 and the aggregated rating of

𝑐2 is at most 5: 0.182*0.492=0.089. Next, we aggregate the item’s probability to win over all

possible ratings s. This is demonstrated in the last column of Table 21 (i.e., 𝑃𝑟(𝑁𝑊 = 𝑐1) =

0.729). Ties are broken according to the item positions in an increasing order of all items.

Table 19: The probability that an item has a score of s

Item Voters 𝑠 = 3 𝑠 = 4 𝑠 = 5 𝑠 = 6 𝑠 = 7 𝑠 = 8 𝑠 = 9

𝑃𝑟(𝑐1 = 𝑠)

𝑣1 0.6 0 0 0 0 0 0

𝑣1, 𝑣2 0.14 0.36 0.24 0.18 0 0 0

𝑣1, 𝑣2, 𝑣3 0.024 0.066 0.182 0.236 0.27 0.15 0.072

𝑃𝑟(𝑐2 = 𝑠)

𝑣1 0.6 0 0 0 0 0 0

𝑣1, 𝑣2 0.14 0.4 0.18 0.18 0 0 0

𝑣1, 𝑣2, 𝑣3 0.07 0.108 0.314 0.194 0.224 0.054 0.036

Table 20: The probability that an item has a score of at most s

Item Voters 𝑠 = 3 𝑠 = 4 𝑠 = 5 𝑠 = 6 𝑠 = 7 𝑠 = 8 𝑠 = 9

Pr (𝑐1 ≤ 𝑠) 𝑣1, 𝑣2, 𝑣3 0.024 0.09 0.272 0.508 0.778 0.928 1

Pr (𝑐2 ≤ 𝑠) 𝑣1, 𝑣2, 𝑣3 0.07 0.178 0.492 0.686 0.91 0.964 1

Table 21: The winning probability of an item

Item Voters S=3 S=4 S=5 S=6 S=7 S=8 S=9 Total

 Pr (𝑁𝑊 = 𝑐1) v1, v2, v3 0.001 0.011 0.089 0.162 0.245 0.144 0.072 0.729

Pr (𝑁𝑊 = 𝑐2) v1, v2, v3 0 0.003 0.028 0.053 0.114 0.042 0.033 0.273

 תקציר

המחקר הזה מתמקד בנושא של חילוץ העדפות עבור קבלת החלטות לקבוצה בעזרת חוקי הצבעות.

אנו מציעים מסגרת כללית, רב תחומית לחילוץ העדפות, כאשר המטרה היא למזער את התקשורת עם

 המשתמשים. אנו מציגים יוריסטיקות מקוריות ומראים כיצד הן פועלות תחת פרוטוקלי הצבה של דירוגים

ושל מדרגים, בפרט תחת הפרוטקולים "ריינג'" ו"בורדה". אנו מציעים מסגרת אינטרקטיבית ואינקרמנטלית;

בכל שלב משתמש אחד מתושאל לבי הדירוג שלו לפריט אחד או לגבי המרדג שלו לשני פריטים. אנו מציעים

לתשאל לגבי איזה פריט או שתי גישות ליוריסטיקות שקובעות איזו שאילתה היא הבאה בתור)כלומר את מי

היוריסטיקה השנייה אילו פריטים(. יוריסטיקה אחת מחשבת את רווח המידע של כל שאילתה המועמדת.

משתמשת בהתפלגות ההסתברותית של העדפות המשתמשים על מנת לבחור את הפריט שהכי סביר שיזכה.

ד ניתן להעריך התפלגות זו. ההתפלגות שתי היוריסטיקות מסתמכות על התפלגות הדירוגים. אנו מראים כיצ

 מתעדכנת בצורה איטרטיבית, כך שהדיוק של ההתפלגות עולה עם הזמן.

למרות שתוצאה של פריט אחד שהוא המנצח הבטוח היא התוצאה המדויקת ביותר, אנו מסתכלים

מציעים לסיים גם על שקלול תמורות שבין מאמץ לדיוק ועל אסטרטגיות קיבוץ בחילוץ העדפות. ראשית, אנו

פריטים כאשר אחד מהם הוא הפריט מנצח, במקום 𝑘את חילוץ ההעדפות מוקדם יותר על ידי החזרה של

להחזיר פריט מנצח אחד בלבד. שנית, אנו מציעים להעריך את המנצח או המנצחים המשוערים ברמת בטחון

וער מוריד את עלות התקשורת עם מסויימת. מצד אחד, מנצח משוער הוא פחות מדיוק, מצד שני, מנצח מש

המשתמשים. לבסוף, אנו מציעים להתחשב באסטרטגיית הקיבוץ כאשר מחברים את העדפות המשתמשים.

אנו מראים שאסטרטיגיית הקיבוץ משפיעה על עלות התקשורת עם המשתמשים ואנו משווים שתי

ילות של המסגרת שלנו על ידי בחינה אסטרטגיות נפוצות: "מג'וריטי" ו"ליסט מיסרי". אנו מדגימים את היע

של היוריסטיקות על ארבעה בסיסי נתונים אמתיים שונים. כדי לבחון את ההשפעות השונות של המידע אנו

 משתמשים גם בבסיסי נתונים מסומלצים בהם ניתן לשנות את הפרמטרים של המידע.

 מילות מפתח: מערכות המלצה, חילוץ העדפות, חוקי הצבעות

 העבודה נעשתה בהדרכת

 ד"ר מאיר קלך

 פרופ' ליאור רוקח

 פרופ' ברכה שפירא

 במחלקה להנדסת מערכות מידע

 בפקולטה למדעי ההנדסה

 חילוץ העדפות עבור החלטות קבוצתיות בעזרת תאוריית ההצבעות

 הדרישות לקבלת תואר "דוקטור לפילוסופיה"מחקר לשם מילוי חלקי של

 מאת

 דראי ליהי

 הוגש לסנאט אוניברסיטת בן גוריון בנגב

 2014 יולי תמוז תשע"ה

 באר שבע

