
Computational Aspects of Preference Aggregation

Vincent Conitzer

CMU-CS-06-145
July 2006

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis committee:
Tuomas Sandholm, Chair

Avrim Blum
Tom Mitchell

Craig Boutilier (University of Toronto)
Christos Papadimitriou (University of California, Berkeley)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright c© 2006 Vincent Conitzer

This research was sponsored by the National Science Foundation under grant nos. IIS-0234694,

IIS-0427858, IIS-0234695, and IIS-0121678, as well as a Sloan Fellowship awarded to Tuomas

Sandholm, and an IBM Ph.D. Fellowship. The views and conclusions contained in this document

are those of the author and should not be interpreted as representing the official policies, either

expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

2

Keywords: Artificial Intelligence, Multiagent Systems, Electronic Commerce, Game Theory,
Mechanism Design, Auctions and Exchanges, Voting.

3

Abstract

In a preference aggregation setting, a group of agents must jointly make a decision, based on the
individual agents’ privately known preferences. To do so, the agents need some protocol that will
elicit this information from them, and make the decision. Examples include voting protocols, auc-
tions, and exchanges. Mechanism design is the study of designing preference aggregation protocols
in such a way that they work well in the face of strategic (self-interested) agents. In most real-world
settings, mechanism design is confronted with various computational issues. One is the complex-
ity of executing the mechanism. Particularly in expressive preference aggregation settings (such as
combinatorial auctions), many mechanisms become hard to execute. Another is the complexity of
designing the mechanism. When general mechanisms do not apply to, or are suboptimal for, the
setting at hand, a custom mechanism needs to be designed for it, which is a nontrivial problem
that is best solved by computer (automated mechanism design). Finally, there is the complexity of
participating in the mechanism. In complex settings, agents with limited computational capabilities
(bounded agents) will not necessarily be able to act optimally, which should be taken into account
in the mechanism design process.

My thesis statement is that we can employ the study of computational aspects of the mecha-
nism design process to significantly improve the generated mechanisms in a hierarchy of ways,
leading to better outcomes (and a more efficient process). The dissertation outlines this hierarchy,
and illustrates and addresses representative issues at various levels of the hierarchy with new re-
sults. It also serves as a significant step towards a longer-term research goal: realizing a mechanism
design approach that addresses all of these issues simultaneously, comprehensively, and optimally,
in settings with real-world complexity.

4

5

Acknowledgements

At times our own light goes out and is rekindled by a spark from another person.
Each of us has cause to think with deep gratitude of those who have lighted the
flame within us.

Albert Schweitzer

First and foremost, I want to thank my advisor, Tuomas Sandholm. Tuomas has been a great
advisor. Over the course of countless research meetings, he has taught me how to take a loose idea
or result and push it to its limits by discovering variations and generalizations, implications and
applications. He has also taught me to think of the big picture and present my work accordingly.
In addition, Tuomas’ advice has extended beyond research to teaching, career planning, and even
personal issues; and he has always been willing to take extra time out of his busy schedule when
important or unusual issues came up. Meanwhile, he worked behind the scenes to make sure that
I did not have to worry about funding or adminstrative problems, and could focus on research.
Finally, and perhaps most importantly, Tuomas has been endlessly motivating and encouraging.
Tuomas brings his infective energy and enthusiasm to everything he does, and it is amazing how he
manages to stay involved in so many different threads.

I also especially want to thank the other members of my committee, Avrim Blum, Craig Boutilier,
Tom Mitchell, and Christos Papadimitriou, for their valuable feedback on this dissertation. Few
people are fortunate enough to have such a fantastic committee.

Special thanks go to Barbara Grosz and Avi Pfeffer for sparking my initial interest in AI and
putting me on the way to graduate school, allowing me to spend the last five years to think about
more interesting problems than how to spend a large salary. Barbara, Avi, and David Parkes have
since made sure that I continue to feel a part of Harvard’s computer science department by including
me in various events at conferences.

Working at CombineNet has taught me much about how my work relates and applies to practice,
and I am grateful for all the interactions that I have had with the great people there, including
Bryan Bailey, Egon Balas, Craig Boutilier, Michael Concordia, Andrew Fuqua, Andrew Gilpin,
Sam Hoda, David Levine, Paul Martyn, Jim McKenzie, George Nemhauser, David Parkes, Rob
Shields, Yuri Smirnov, Brian Smith, and Subhash Suri. I also want to thank Andrew Davenport,
Jayant Kalagnanam, and everyone else that I interacted with at IBM Research for a wonderful and
productive summer there. I am also very grateful for the IBM Ph.D. Fellowship that supported me
this past year (as well as for all the NSF funding that funded the remainder of my studies).

Back at CMU, I want to thank Andrew Gilpin for organizing the Game Theory Discussion
Group for multiple years, which has been a great forum for us to discuss and explore our research. I
have also benefited greatly from many technical discussions with Kate Larson, Andrew Gilpin, An-
ton Likhodedov, David Abraham, Rob Shields, Benoı̂t Hudson, Alex Nareyek, Paolo Santi, Felix
Brandt, Marty Zinkevich, Rudolf Müller, Nina Balcan, Michael Benisch, Michael Bowling, Shuchi
Chawla, Liz Crawford, George Davis, Jon Derryberry, Nikesh Garera, Daniel Golovin, Jason Hart-
line, Sam Hoda, Sham Kakade, Zhijian Lim, Daniel Neill, XiaoFeng Wang, Andrew Moore, Roni
Rosenfeld, Manuela Veloso, and many others.

6

I am also indebted to many other researchers in distributed AI, multiagent systems, electronic
commerce, and economics with whom I have had valuable discussions. While the following list
is undoubtedly incomplete (not only due to my failing memory, but also due to the anonymity of
the review process), special thanks go out to Alon Altman, Moshe Babaioff, Liad Blumrosen, Giro
Cavallo, Raj Dash, Edith Elkind, Boi Faltings, Kobi Gal, Rica Gonen, Georg Gottlob, Amy Green-
wald, Barbara Grosz, Joe Halpern, Edith Hemaspaandra, Nathanaël Hyafil, Sam Ieong, Atsushi
Iwasaki, Adam Juda, Radu Jurca, Gal Kaminka, Michael Kearns, Sebastién Lahaie, Jérôme Lang,
Ron Lavi, Kevin Leyton-Brown, Victor Lesser, Michael Littman, Bob McGrew, Ahuva Mu’alem,
Eugene Nudelman, Naoki Ohta, David Parkes, David Pennock, Adrian Petcu, Avi Pfeffer, Ryan
Porter, Ariel Procaccia, Juan Antonio Rodrı́guez-Aguilar, Amir Ronen, Jeff Rosenschein, Michael
Rothkopf, Rahul Savani, Jeffrey Shneidman, Grant Schoenebeck, Peter Stone, Moshe Tennenholtz,
Rakesh Vohra, Bernhard von Stengel, Éva Tardos, Eugene Vorobeychik, Michael Wellman, Makoto
Yokoo, and Shlomo Zilberstein.

Fortunately, my years in Pittsburgh were not all work and no play. I especially want to thank
Atul, Kevin, Dave, Anand, Kristen, Lucian, Monica, Vahe, Jernej, Stefan, Bianca, Naz, Nikesh,
Leo, Mugizi, and Paul for being such good friends here for many years. I will also miss everyone
from Real Mellon Soccer, but am comforted to know that you are left in Aaron’s capable hands (and
feet).

I would not be who I am today without my mom, my dad, Jaap, Marischa, Ruben, and Jessica.
I want to thank my family for their unconditional love, and am sad to always be living so far away
from them. Perhaps technology will eventually make the distance less significant.

Finally, I want to thank Christina for her love and support, especially in this last hectic year.
While I was working on such things as proving the #P-hardness of manipulating randomly and
incrementally strategy-proofed preference aggregation mechanisms, she took care of less essential
details such as food, clothing, and finding a place to live next year. More importantly, she makes
my life more enjoyable. Christina, I love you and hope that you did not miss me too much while I
was working on this dissertation.

Contents

1 Introduction 13
1.1 A hierarchy of uses for computation in preference aggregation 14
1.2 The hierarchy’s nodes illustrated by example . 14

1.2.1 Node (1): Outcome optimization . 16
1.2.2 Node (2): Mechanism design . 16
1.2.3 Node (3a): Automated mechanism design 18
1.2.4 Node (3b): Mechanism design for bounded agents 18
1.2.5 Node (4): Automated mechanism design for bounded agents 20

1.3 How to use the hierarchy . 20
1.3.1 Interpretation . 20
1.3.2 Complexity of node vs. complexity of setting 20
1.3.3 Are the shallow nodes outdated? . 21

1.4 Orthogonal research directions . 23
1.5 Outline . 24

2 Expressive Preference Aggregation Settings 27
2.1 Voting over alternatives (rank aggregation) . 28
2.2 Allocation of tasks and resources . 32
2.3 Donations to (charitable) causes . 35

2.3.1 Definitions . 36
2.3.2 A simplified bidding language . 37
2.3.3 Avoiding indirect payments . 38

2.4 Public goods and externalities . 39
2.5 Summary . 41

3 Outcome Optimization 43
3.1 A preprocessing technique for computing Slater rankings 43

3.1.1 Definitions . 44
3.1.2 Sets of similar candidates . 45
3.1.3 Hierarchical pairwise election graphs can be solved in linear time 47
3.1.4 An algorithm for detecting sets of similar candidates 49
3.1.5 Experimental results . 51
3.1.6 NP-hardness of the Slater problem . 53

7

8 CONTENTS

3.1.7 Extension to the Kemeny rule . 56
3.2 Combinatorial auctions with structured item graphs 57

3.2.1 Item graphs . 60
3.2.2 Clearing with bounded treewidth item graphs 60
3.2.3 An algorithm for constructing a valid item tree 62
3.2.4 Constructing the item graph with the fewest edges is hard 64
3.2.5 Applications . 66
3.2.6 Bids on multiple connected sets . 69

3.3 Expressive preference aggregation for donations to charities 73
3.3.1 Hardness of clearing the market . 73
3.3.2 Mixed integer programming formulation 76
3.3.3 Why one cannot do much better than linear programming 77
3.3.4 Quasilinear bids . 79

3.4 Expressive preference aggregation in settings with externalities 82
3.4.1 Hardness with positive and negative externalities 83
3.4.2 Hardness with only negative externalities 84
3.4.3 An algorithm for the case of only negative externalities and one variable per

agent . 85
3.4.4 Maximizing social welfare remains hard 90
3.4.5 Hardness with only two agents . 91
3.4.6 A special case that can be solved to optimality using linear programming . 92

3.5 Summary . 92

4 Mechanism Design 95
4.1 Basic concepts . 95
4.2 Vickrey-Clarke-Groves mechanisms . 98
4.3 Other possibility results . 100
4.4 Impossibility results . 101
4.5 Summary . 102

5 Difficulties for Classical Mechanism Design 103
5.1 VCG failures in combinatorial auctions and exchanges 104

5.1.1 Combinatorial (forward) auctions . 105
5.1.2 Combinatorial reverse auctions . 107
5.1.3 Combinatorial forward (or reverse) auctions without free disposal 112
5.1.4 Combinatorial exchanges . 117

5.2 Mechanism design for donations to charities . 118
5.2.1 Strategic bids under the first-price mechanism 118
5.2.2 Mechanism design in the quasilinear setting 119
5.2.3 Impossibility of efficiency . 120

5.3 Summary . 122

CONTENTS 9

6 Automated Mechanism Design 123
6.1 The computational problem . 125
6.2 A tiny example: Divorce settlement . 126

6.2.1 A benevolent arbitrator . 126
6.2.2 A benevolent arbitrator that uses payments 127
6.2.3 An arbitrator that attempts to maximize the payments extracted 128

6.3 Complexity of designing deterministic mechanisms 129
6.4 Linear and mixed integer programming approaches 135
6.5 Initial applications . 137

6.5.1 Optimal auctions . 137
6.5.2 Public goods problems . 140

6.6 Scalability experiments . 143
6.7 An algorithm for single-agent settings . 145

6.7.1 Application: One-on-one bartering . 146
6.7.2 Search over subsets of outcomes . 147
6.7.3 A heuristic and its admissibility . 148
6.7.4 The algorithm . 149
6.7.5 Individual rationality . 151
6.7.6 Experimental results . 152

6.8 Structured outcomes and preferences . 156
6.8.1 Example: Multi-item auctions . 157
6.8.2 Complexity . 157
6.8.3 A pseudopolynomial-time algorithm for a single agent 163
6.8.4 A polynomial-time algorithm for randomized mechanisms 164

6.9 Summary . 165

7 Game-Theoretic Foundations of Mechanism Design 167
7.1 Normal-form games . 167

7.1.1 Minimax strategies . 168
7.1.2 Dominance and iterated dominance . 168
7.1.3 Nash equilibrium . 170

7.2 Bayesian games . 171
7.3 Revelation principle . 173
7.4 Summary . 175

8 Mechanism Design for Bounded Agents 177
8.1 A failure of the revelation principle with bounded agents 178
8.2 Tweaking voting protocols to make manipulation hard 181

8.2.1 Definitions . 182
8.2.2 NP-hardness when scheduling precedes voting 183
8.2.3 #P-hardness when voting precedes scheduling 187
8.2.4 PSPACE-hardness when scheduling and voting are interleaved 190

8.3 Hardness of manipulating elections with few candidates 193
8.3.1 Manipulating an election . 194

10 CONTENTS

8.3.2 Algorithm for individually manipulating the STV rule 196
8.3.3 Complexity of weighted coalitional manipulation with few candidates . . . 200
8.3.4 Effect of uncertainty about others’ votes 211

8.4 Nonexistence of usually-hard-to-manipulate voting rules 216
8.4.1 Definitions . 217
8.4.2 Impossibility result . 219
8.4.3 Arguing directly for Property 1 . 220
8.4.4 Arguing experimentally for Property 1 . 221
8.4.5 Can the impossibility be circumvented? 223

8.5 Summary . 227

9 Computing Game-Theoretic Solutions 231
9.1 Dominance and iterated dominance . 232

9.1.1 Dominance (not iterated) . 233
9.1.2 Iterated dominance . 234
9.1.3 (Iterated) dominance using mixed strategies with small supports 239
9.1.4 (Iterated) dominance in Bayesian games 243

9.2 Nash equilibrium . 247
9.2.1 Equilibria with certain properties in normal-form games 247
9.2.2 Inapproximability results . 253
9.2.3 Counting the number of equilibria in normal-form games 256
9.2.4 Pure-strategy Bayes-Nash equilibria . 256

9.3 A generalized eliminability criterion . 258
9.3.1 A motivating example . 259
9.3.2 Definition of the eliminability criterion 260
9.3.3 The spectrum of strength . 261
9.3.4 Applying the new eliminability criterion can be computationally hard . . . 263
9.3.5 An alternative, equivalent definition of the eliminability criterion 266
9.3.6 A mixed integer programming approach 267
9.3.7 Iterated elimination . 268

9.4 Summary . 271

10 Automated Mechanism Design for Bounded Agents 273
10.1 Incrementally making mechanisms more strategy-proof 274

10.1.1 Definitions . 275
10.1.2 Our approach and techniques . 275
10.1.3 Instantiating the methodology . 277
10.1.4 Computing the outcomes of the mechanism 285
10.1.5 Computational hardness of manipulation 286

10.2 Summary . 288

CONTENTS 11

11 Conclusions and Future Research 289
11.1 Contributions . 289
11.2 Future research . 291

11.2.1 Node (1): Outcome optimization . 292
11.2.2 Node (2): Mechanism design . 293
11.2.3 Node (3a): Automated mechanism design 294
11.2.4 Node (3b): Mechanism design for bounded agents 295
11.2.5 Node (4): Automated mechanism design for bounded agents 296

12 CONTENTS

Chapter 1

Introduction

There are many important settings in which multiple parties (or agents) must jointly make a decision—
to choose one outcome from a space of many possible outcomes—based on the individuals’ prefer-
ences (and potentially other privately held information). For example, individual persons may need
to decide how to allocate various tasks and resources among themselves; firms may need to decide
on how to structure the supply chain to efficiently bring a product to the consumer; the governments
of nations may need to decide on what form, if any, an international treaty will take; etc. Such
preference aggregation settings are pervasive in human (and perhaps even animal) life, and have
long been studied, especially in economics and political science. In recent years, computer science
has joined the set of fields with significant interest in preference aggregation. As computer systems
become increasingly interconnected, more and more problems come to the forefront that are fun-
damentally about selecting good outcomes in the face of conflicting preferences. Examples include
scheduling multiple users’ jobs; routing network traffic for multiple users; choosing which compa-
nies’ advertisements to display on a webpage; ranking the webpages of multiple authors in response
to a search query; etc. In addition, software agents have the potential to aid humans in, or poten-
tially even take over, some preference aggregation tasks, such as trading items over the Internet.
The interest of computer scientists in preference aggregation is driven in part by such applications;
however, another driver is the fact that computationally nontrivial problems must be solved in al-
most all complex preference aggregation settings, so that computer scientists can contribute even to
settings that are not otherwise related to computer science.

To aggregate their preferences effectively, the agents need to use some protocol that will elicit
the agents’ preferences (and other pertinent information) from them, and select the outcome. There
are two great challenges in designing a good protocol. First, a good protocol should, when provided
with accurate information, arrive at an outcome that is considered good for the agents. Finding
such a good outcome may require significant communication and computation, especially when
the outcome and preference spaces are combinatorial in nature. Second, when the agents are self-
interested, they will misreport their information to the protocol (also known as manipulating) when
it is beneficial for them to do so. Thus, a good protocol should take this strategic behavior into
account, and select outcomes in such a way that a good outcome is reached even though the agents
are strategic (for instance, by making sure the agents have no incentive to misreport). The theory of
mechanism design studies how to make protocols strategy-proof in this sense.

13

14 CHAPTER 1. INTRODUCTION

Computation plays a significant role in both the execution and the design of good protocols.
This role is clearly apparent in some cases—for instance, selecting a good outcome, even with all the
agents’ true information in hand, may require the solution of a computationally hard optimization
problem. However, computation can also have more subtle roles in the design of protocols—for
instance, when anticipating the extent of an agent’s strategic manipulation of the mechanism, it can
be helpful to have a good assessment of the agent’s computational limits in manipulating.

1.1 A hierarchy of uses for computation in preference aggregation

I propose the following hierarchy (Figure 1.1) for categorizing various needs for computational tools
in preference aggregation settings. Computational tools may improve the aggregation of the agents’
preferences over outcomes through:

(1) The straightforward optimization of the outcome (choosing the outcome that maximizes
the sum of the agents’ utilities, also known as the social welfare, or some other objective), given all
the agents’ preferences and other information, in potentially complex allocation or other outcome
selection tasks—without consideration of strategic behavior.

(2) Enabling the use of a mechanism for the selection of the outcome, where the mechanism is
designed so that a good outcome will be chosen in spite of strategic behavior by the agents.

(3a) Rather than enabling a known general mechanism, computing a custom mechanism on the
fly for the setting at hand (automated mechanism design).

(3b) Making use of the agents’ computational limits, or bounded rationality, in the mechanism
design process to reach better outcomes.

(4) Generalizing all of the previous tools to enable automated mechanism design for bounded
agents.

Section 1.2 introduces the nodes of the hierarchy using an example application setting. Sec-
tion 1.3 discusses the meaning and use of the hierarchy itself (that is, the relationships represented
by the directed edges). Section 1.4 discusses research directions in preference aggregation that are
orthogonal to this hierarchy. Finally, Section 1.5 gives an outline of the remainder of the disserta-
tion.

1.2 The hierarchy’s nodes illustrated by example

In this section, I will introduce the nodes of the hierarchy using the example of a combinatorial auc-
tion. Combinatorial auctions have recently become a popular research topic (e.g. [Rothkopf et al.,
1998; Sandholm, 2002a; Nisan, 2000; Sandholm et al., 2005c; Gonen and Lehmann, 2000; Nisan
and Ronen, 2000; Lehmann et al., 2002; Bartal et al., 2003; Lavi et al., 2003; Yokoo, 2003; Parkes,

1.2. THE HIERARCHY’S NODES ILLUSTRATED BY EXAMPLE 15

3b3a

2

1

 4

Outcome optimization

Mechanism design

Automated
mechanism design

Mechanism design for
 bounded agents

Automated mechanism design
for bounded agents

Figure 1.1: The hierarchy of uses for computational tools in preference aggregation.

1999a; Wurman and Wellman, 2000; Ausubel and Milgrom, 2002]). They are arguably the canon-
ical example of a preference aggregation domain that is expressive enough to introduce a variety
of nontrivial computational issues, and they have increasing practical importance. (In fact, some of
the results to be presented in this dissertation strictly concern combinatorial auctions.) Neverthe-
less, these issues occur in many other important preference aggregation domains, and combinatorial
auctions here only serve as an (important) illustrative example.

In a combinatorial auction, a seller has multiple items for sale, and bidders can bid on bundles
(subsets) of items. For example, suppose Sally has an apple and an orange for sale. Al would en-
joy eating the apple and places a bid of $2 on the apple (more precisely, the bundle consisting of
the apple alone). The orange by itself is worth nothing to Al. However, he would prefer having
both the apple and the orange, to make a fruit salad; and so, Al bids $3 on the bundle of the apple
and the orange together. Meanwhile, Bill is only interested in the orange, and bids $2 on the or-
ange. Thus the bids can be represented as follows: vA({apple}) = 2, vA({apple, orange}) = 3,
vB(({orange}) = 2. (For the purposes of this example, I will assume that all bids are submitted
simultaneously—a so-called sealed-bid auction. This contrasts with, for instance, the more com-
monly known English auction for a single item in which bidders can continue to improve their bids.)
We are now ready to start introducing the nodes of the hierarchy using this example.

16 CHAPTER 1. INTRODUCTION

1.2.1 Node (1): Outcome optimization

In our example, who should win which items? Giving Al both items will generate a value of $3,
but giving the Al the apple and Bill the orange will generate a value of $2 + $2 = $4. So, given the
information that we have, the latter is the most sensible outcome of the auction. This problem of de-
termining which of the bids win is known as the winner determination or clearing problem. In spite
of its apparent simplicity, once the numbers of items and bids become large, this problem becomes
computationally hard: it is NP-complete [Rothkopf et al., 1998], even to approximate [Sandholm,
2002a].

The clearing problem is a good example of a problem at the shallowest node (1) in the hierarchy:
the straightforward optimization of the outcome, without consideration of strategic behavior. At
this node, we assume that we have a full characterization of each agent’s preferences over the out-
comes (in our example, this characterization is given by the bids), and we take this characterization
at face value. That is, we do not worry about whether the estimates of the agents’ preferences that
we have are inaccurate (for instance, perhaps the agents reported their preferences to us directly,
and they may have misrepresented them to effect a better outcome for themselves). This approach
is appropriate when, for instance, we obtained our estimates of the agents’ preferences from a dis-
interested source (not the agents themselves). The optimization algorithm may also be used as a
subroutine in a mechanism that does take strategic behavior into consideration—we will discuss
this in more detail later.

1.2.2 Node (2): Mechanism design

The ability to solve the clearing problem well is necessary for reaching good outcomes in combi-
natorial auctions, but, as we will see in this subsection, it is not sufficient. So far, we have not yet
discussed what the bidders in the auction should pay. Let us suppose that the auction is a first-price
auction, in which bidders simply pay the values of their winning bids. In first-price auctions, bidders
typically do not bid their true valuations, because if they did, they would gain nothing from having
their bids accepted. Rather, bidders will bid lower than their true valuations, to have a chance of
making some profit in the auction. To decide how much lower they will bid, they will take into
account their perceived chances of winning for each amount that they may bid. In our example,
perhaps Al’s true marginal value for having the orange (in addition to the apple) was much higher
than $3 - $2 = $1; perhaps it was $10, but Al (in retrospect, incorrectly) thought it was extremely
unlikely that Bill would place a bid higher than $1. Meanwhile, perhaps Bill’s true value for the
orange was $9, but Bill (in retrospect, correctly) thought that Al would think that bidding $3 on the
bundle of the apple and orange would in all likelihood be enough to win that bundle, and therefore
Bill chose to bid only $2. Now, even though we solved the clearing problem optimally with respect
to the bids provided, a number of things still went wrong. First, from the perspective of economic
efficiency, the orange should have ended up with Al rather than Bill, because Al’s marginal value
$10 for it is greater than Bill’s marginal value $9 for it. Second, Sally received a total revenue of
only $4, whereas it would seem that there was enough competition on the orange alone for her to
receive at least $9.

These problems are the result of the auction format (a sealed-bid first-price auction). For ex-
ample, an ascending-price auction in which bidders can continue to raise their bids may have been

1.2. THE HIERARCHY’S NODES ILLUSTRATED BY EXAMPLE 17

more successful here. (Various research has been devoted to the implementation of ascending-price
or iterative auctions and exchanges in multi-item settings [Parkes, 1999a; Wurman and Wellman,
2000; Ausubel and Milgrom, 2002; Parkes et al., 2005]. Such protocols are themselves special cases
of a more general framework in which the auctioneer is enhanced by elicitor software that incremen-
tally and adaptively elicits the bidders’ preferences using specific queries until enough information
has been elicited to determine the final allocation and payments[Conen and Sandholm, 2001].) An
ascending-price auction, however, can run into a variety of other problems in other settings. Yet
another approach may be to apply a type of second-price auction. In a second-price (or Vickrey)
auction for one item, the winner pays the value of the second highest bid. (The generalization of
the second-price auction to multiple items is known as the VCG mechanism [Vickrey, 1961; Clarke,
1971; Groves, 1973].) (Generalizations of) second-price auctions have the nice property that bidders
are motivated to bid their true value for an item.

Different formats for auctions (or other preference aggregation domains) are known as mech-
anisms, and the process of constructing them is known as mechanism design. The mechanism
specifies—for each combination of preferences (or types) that may be reported—what the outcome
should be, as well as additional variables, such as payments to be made. Over the past several
decades, economists have put together a limited library of mechanisms that motivate agents to re-
port their preferences (i.e., bid) truthfully, pursue some objective under this constraint (for instance,
social welfare), and that can be applied in settings with varying levels of generality. For example,
mechanisms have been discovered that, under some assumptions, will motivate agents to report
truthfully in any preference aggregation setting, while still always choosing the socially optimal
outcome. These are the VCG mechanism mentioned previously, and the dAGVA [d’Aspremont and
Gérard-Varet, 1979; Arrow, 1979] mechanism.

Even when these general mechanisms are known, applying them to complex combinatorial set-
tings (such as combinatorial auctions) is typically highly nontrivial, sometimes requiring the solu-
tion to multiple winner determination problems. For example, to apply the VCG mechanism to a
setting, one typically requires the solution to (#bidders+1) outcome optimization problem instances:
the original one, as well as each one in which one of the bidders is omitted from the instance. More-
over, using approximation approaches that are effective for the outcome optimization problem per
se to execute the mechanism can destroy the strategic properties of the mechanism: agents will no
longer be motivated to tell the truth [Nisan and Ronen, 2001; Sandholm, 2002b]! Thus, the agents
will report their preferences strategically rather than truthfully. Moreover, there is no guarantee that
the resulting strategic equilibrium will produce an outcome that is anywhere close to the socially
optimal one. The resulting challenge is to design special approximation algorithms that do incent
the agents to report truthfully. Or, put differently, the challenge is to design special truthful mecha-
nisms whose outcomes are at least reasonably good, and can be computed in polynomial time. This
is known as algorithmic mechanism design [Nisan and Ronen, 2001].

Node (2) in the hierarchy is concerned with the issues described in this subsection: designing
mechanisms that encourage agents to tell the truth in (expressive) preference aggregation settings,
as well as designing efficient algorithms for computing the outcomes of these mechanisms, thereby
enabling their use.

18 CHAPTER 1. INTRODUCTION

1.2.3 Node (3a): Automated mechanism design

Depending on her goals, Sally will prefer some mechanisms to others. Which mechanism is the
optimal one? To make this more concrete, suppose Sally assesses the situation as follows:

I want to maximize my expected revenue, but I want to cap my revenue at 6. As
a secondary objective, I want to maximize Al and Bill’s social welfare (combined
utility), but I do not want Al’s utility for the outcome to exceed Bill’s by more than
3. I think Bill’s utility for the orange alone is probably (80%) 9, but maybe (20%)
it is 1. As for Al’s utilities, ...

Et cetera. When Sally looks into the library of general mechanisms, she will make some troubling
discoveries. First of all, nobody has ever studied what to do under exactly her idiosyncratic goals
(presumably because her goals lack simplicity and elegance). She will likely discover some relevant
facts, though:

1. Many people have actually studied the problem of how to maximize expected revenue when
selling two items, but there is still no general characterization of how to do this [Avery and
Hendershott, 2000; Armstrong, 2000; Vohra, 2001].

2. When two parties are negotiating over an item, it is in general not possible to design a mecha-
nism such that the item always ends up with the party who likes it best without money flowing
in or out of the system consisting of the two parties [Myerson and Satterthwaite, 1983]. This
is relevant to Sally in cases where she is clearly going to make her revenue cap, from which
point on money can only flow between Al and Bill. (Alternatively, money can flow outside of
the system consisting of Al, Bill, and Sally, which is not desirable.)

It may seem at this point that Sally is in over her head and should simply choose one of the
known mechanisms that she thinks comes at least somewhat close to what she is looking for. But,
while her situation may seem overwhelming, Sally does have a leg up on the economists studying
these problems. Rather than being concerned with a general characterization for all settings in the
domain of combinatorial auctions, Sally is only concerned with her own setting, which involves an
apple, an orange, two buyers Al and Bill, Sally’s objective, and specific prior probabilities for the
buyers’ preferences. If she finds the mechanism that is the best for her particular setting, she will not
care whether or not (or to what extent) it generalizes to all possible settings. Still, Sally, who wants
to get back to growing apples and oranges, may not be patient or qualified enough to solve even
this restricted problem by hand. To address this, we introduced the automated mechanism design
approach [Conitzer and Sandholm, 2002b], in which we solve the mechanism design problem for a
given setting by computer, as an optimization problem. This is the topic of node (3a): computing a
custom mechanism on the fly for the setting at hand.

1.2.4 Node (3b): Mechanism design for bounded agents

It is the nature of mechanism design to assume that agents are strategic in how they interact with the
mechanism. However, assuming fully strategic agents implies assuming perfectly rational agents.
As a result, traditional mechanism design may often be too conservative in the extent to which it

1.2. THE HIERARCHY’S NODES ILLUSTRATED BY EXAMPLE 19

expects the agents to manipulate. To make this concrete, consider a mechanism designer that is con-
sidering Sally’s mechanism design problem (and suppose that the setting is a little more complex,
involving a larger variety of fruits). The designer’s analysis may proceed as follows.

... In the case where Al bids $3 on the apple, $4 on the apple and the orange, $1
on the banana, ... And Bill bids... Then, it would be very good for the objective I
am pursuing if I can give Al the apple only, and charge him $2.50. Unfortunately,
if I did this, Al would have an incentive to misreport his preferences as follows: bid
$3.50 on the apple, $6 on the banana and the grapefruit, $3 on the tangerine... –
because for this bid we already decided on an outcome that would be better for Al.
So, I have to do something else...

(Of course, most of this analysis would not be done explicitly, but rather implicitly in the mathemat-
ical analysis—although the optimization-based approach of automated mechanism design would be
closer to this in terms of how explicit the analysis is.) This analysis would be overly conservative
if Al was too computationally limited to ever discover the beneficial misreport of his preferences
“$3.50 on the apple, $6 on the banana and the grapefruit, $3 on the tangerine...”, and thus it may
leave money (more precisely, objective value) on the table. Ideally, mechanism design should take
into account such computational limitations. This is the topic of node (3b): making use of the
agents’ bounded rationality in the mechanism design process to reach better outcomes.

The way this plays out technically is as follows. The classical theory of mechanism design tells
us that there is no benefit to using mechanisms in which the agents have incentives to make insincere
revelations (that is, non-truthful mechanisms, as opposed to truthful mechanisms): if the agents
behave strategically, then for every non-truthful mechanism, there is another truthful mechanism
that performs just as well. This result is known as the revelation principle [Gibbard, 1973; Green
and Laffont, 1977; Myerson, 1979, 1981], and the basic idea behind its proof is remarkably simple.
Suppose we envelop a non-truthful mechanism with an interface layer, to which agents input their
preferences. Then, the interface layer interacts with the original mechanism on behalf of each agent,
playing strategically in the agent’s best interest based on the reported preferences. (Compare, for
example, proxy agents on eBay [eBay UK, 2004].) The resulting mechanism is truthful: an agent
has no incentive to misreport to the interface layer, because the layer will play the agent’s part in
the original mechanism in the agent’s best interest. Moreover, the final outcome of the new, truthful
mechanism will be the same, because the layer will play strategically optimally—just as the agent
would have. However, in complex settings, the last step in this argument may be incorrect: it is
possible that the agent, due to computational limitations (bounded rationality), would not have been
able to play optimally in the original, non-truthful mechanism. If this is so, then the outcome for
the non-truthful mechanism would have been different—perhaps better. Thus, mechanism design
for computationally bounded agents should not focus strictly on truthful mechanisms, but rather try
to construct better, non-truthful mechanisms based on models of the computational boundedness of
the agents. The advantage of doing so is that strictly better outcomes may be obtained than by any
truthful mechanism, because (only) by using a non-truthful mechanism, we can exploit the agents’
computational inability to always act in a strategically optimal way.

20 CHAPTER 1. INTRODUCTION

1.2.5 Node (4): Automated mechanism design for bounded agents

Finally, ideally, Sally would like to maintain the benefits of automated mechanism design while
also making use of the agents’ bounded rationality. This is certainly nontrivial, because the settings
in which the agents’ bounded rationality comes into play tend to be the same as those that are too
complex for current automated mechanism design techniques to handle. Specifically, bounded ra-
tionality becomes relevant mostly in settings where agents can have exponentially many possible
preferences (types), and automated mechanism design usually does not scale to very large num-
bers of types. Nevertheless, towards the end of this dissertation, we will present one approach to
automated mechanism design for bounded agents.

1.3 How to use the hierarchy

Whereas the previous section introduced the individual nodes, in this section, I will focus on the
meaning and intended use of the hierarchy itself.

1.3.1 Interpretation

I will first discuss how the hierarchy (that is, the relationship between the nodes represented by the
directed edges in Figure 1.1) should be interpreted. Each node inherits the computational complex-
ities typically associated with its ancestor nodes. For instance, a nontrivial mechanism may need
to be created for a complex allocation task whose outcome optimization problem is already hard.
The computational issues that each node introduces thus become closely intertwined with those of
nodes at shallower levels. Throughout this dissertation, for clarity, I will try as much as possible
to separate out the computational issues specific to the node under consideration from those of the
shallower levels, but the reader should bear in mind that some of the most valuable future research
will be done in settings where computational issues from multiple levels are nontrivially present
simultaneously.

A related point is that in order for the hierarchy to make sense, the underlying setting (for
instance, a combinatorial auction) should be assumed fixed—rather than assuming that the setting
has a level of complexity that is of “appropriate” difficulty to the node in the hierarchy at hand. This
precludes misleading arguments such as the following: “Outcome optimization is only interesting
in complex combinatorial settings. Automated mechanism design, on the other hand, is nontrivial
even in small, flatly represented settings, and should thus be studied there first. Therefore, automated
mechanism design does not necessarily address issues associated with outcome optimization.” If the
setting is fixed beforehand, then either outcome optimization is trivial, and automated mechanism
design may be manageable; or outcome optimization is nontrivial, and automated mechanism design
is likely to be difficult for current techniques. Nevertheless, in either case, automated mechanism
design must deal with the optimization issues presented by the setting.

1.3.2 Complexity of node vs. complexity of setting

Many (but not all) of the computational issues to be discussed in this thesis are in part the result of
the complexity of the setting. For example, single-item auctions do not introduce many computa-

1.3. HOW TO USE THE HIERARCHY 21

tional questions because of the simplicity of the setting, whereas structured auctions are a source of
numerous difficult computational questions. The complexity of the setting is closely tied to its rep-
resentation. Simple settings can be flatly represented (that is, all possible outcomes and preferences
can be explicitly listed), whereas more complex settings require a structured representation. For
example, in a large combinatorial auction, it is not feasible to simply list all possible allocations and
read through them one by one to find the best one. Rather, we have a combinatorial description of
the space of possible allocations, and require sophisticated algorithms to search through this space.

The following table shows how the complexity of each node in the hierarchy depends on whether
the setting is flat (that is, all possible outcomes and preferences can be explicitly listed) or structured
(that is, all possible outcomes and preferences cannot be explicitly listed, but there is a way of
representing all of them in a more concise way, as in a combinatorial auction). The entries in the
table without special emphasis do not introduce any (additional) questions related to computation.
The entries in italics do introduce such questions, and the dissertation will address them in detail.
The entries in bold are mostly beyond the scope of this dissertation and represent important agendas
for future research.

Node Flat Settings Structured Settings

(1) Outcome optimization trivial sometimes computationally hard
(2) Mechanism design standard setting for need to balance computation,

classical mechanism design optimality, and incentives
(3a) Automated mechanism sometimes computationally some approaches for special classes
design hard no known (computationally

efficient) general approaches
(3b) Mechanism design for bounded rationality is design mechanisms to beneficially
bounded agents irrelevant place computational burden on agents

no known general theory
(4) Automated mechanism coincides with automated incrementally make mechanisms
design for bounded agents mechanism design more strategy-proof

no known general theory

The complexity of each node vs. the complexity of the setting.

The fact that these issues are harder in structured settings than in flat settings should, of course, not
be interpreted to imply that it is a bad idea to find good concise representations of settings of interest
by using their inherent structure. The issues described in the table are harder for structured settings
than for flat settings of the same description length. However, a good structured representation can
significantly reduce the problem’s description length (and in many cases writing the problem down
is not even feasible without some structured representation). Moreover, the special structure of a
setting can often be used to help solve the problem.

1.3.3 Are the shallow nodes outdated?

I should emphasize that it is not my opinion that research strictly focused on the shallower levels of
the hierarchy (such as solving complex outcome optimization problems without taking questions of

22 CHAPTER 1. INTRODUCTION

mechanism design into account) is outdated or pointless, for the following three reasons.
First, sometimes issues deeper down in the hierarchy do not apply to the setting at hand. For

instance, if all agents’ preferences are commonly known beforehand, there is no need for mechanism
design. Or, if we need to design the mechanism ahead of time for a general domain without any
knowledge of the instances that will actually arise, automated design cannot contribute much.1

Finally, we may not want to assume that the agents are in any way computationally restricted, for
instance because we know the stakes are high enough that the agents will spare no effort in finding
the most beneficial manipulation. Nevertheless, it is not typical that some of these issues can be
assumed away at no cost, and thus perhaps the following two reasons are more important.

The second reason is that at least in the short run, some of the research most valuable to the world
will consist of finding new domains in preference aggregation where computer science techniques
can be fruitfully applied. Some very recent examples of new domains include the following:

• Fortnow et al. [2003] introduce an expressive framework for trading securities that generate
payoffs in certain states of the world (where the states of the world are represented by Boolean
formulas).

• Porter [2004] studies mechanism design for the scheduling of different agents’ jobs on a
processor.

• We [Conitzer and Sandholm, 2004e] study the domain of donations to charitable causes, and
introduce an expressive bidding language for arriving at complex contracts over who pays
what to which charities—a generalization of so-called “matching offers”. (This topic will be
discussed in upcoming chapters, Sections 2.3, 3.3, and 5.2.)

New domains such as these are most naturally studied first at the shallower levels of the hierarchy,
and later deeper down in the hierarchy. Attempting to immediately study the new domain in the
deepest levels of the hierarchy may leave important issues at shallower levels underinvestigated.

Third, better solutions for problems shallower up in the hierarchy can have significant impli-
cations for problems deeper down in the hierarchy. For instance, new algorithms for solving out-
come optimization problems (such as clearing a combinatorial auction) to optimality may reduce
the need for designing mechanisms that implement easily computable approximations. (For exam-
ple, the VCG mechanism is always sufficient to implement the social welfare maximizing outcome,
if optimal outcomes can be computed.) Also, deriving (possibly partial) general characterizations
of mechanisms with desirable properties may help automated mechanism design, by reducing the
search space to the set of mechanisms consistent with the characterization.

Thus, there is significant motivation for studying problems strictly at the shallower levels of
the hierarchy (especially in new domains); but eventually, as this research matures, the benefits of
additional research in the shallower levels will decrease, and we should shift to deeper levels of the
hierarchy to create greater value for the world.

1Though perhaps it could still be used by running it on some random instances in the domain, and attempting to extract
general principles from the mechanisms generated in these experiments.

1.4. ORTHOGONAL RESEARCH DIRECTIONS 23

1.4 Orthogonal research directions

While the hierarchy is useful in classifying much of the research on computational aspects of prefer-
ence aggregation, there are also research directions that are orthogonal to the topics in the hierarchy.
Perhaps the most important such direction is that of preference elicitation. In preference elicitation,
the idea is to not have each agent reveal its entire preferences in one step, but rather to selectively
and incrementally query the agents for aspects of their utility functions, in the hope that the outcome
can be determined while having the agents reveal only a fraction of their preference information.
There are several benefits to reducing the amount of preferences that the agents need to reveal. First,
determining one’s utility for any specific outcome can be computationally demanding [Sandholm,
1993a, 2000; Parkes, 1999b; Larson and Sandholm, 2001b]. Second, in many settings, the utility
functions of agents are exponentially sized objects that are impractical to communicate. Finally,
agents may prefer not to reveal their utility information for reasons of privacy or long-term compet-
itiveness [Rothkopf et al., 1990].

As an example, various ascending combinatorial auction protocols have been proposed [Parkes,
1999a; Wurman and Wellman, 2000; Ausubel and Milgrom, 2002; de Vries et al., 2003]. Such
auctions maintain current prices for the items/bundles, which allows bidders to focus their bidding
efforts on bundles on which they are competitive. Conen and Sandholm [2001] have proposed a
more general framework where the auctioneer is enhanced by elicitor software that incrementally
and adaptively elicits the bidders’ preferences using specific queries until enough information has
been elicited to determine the final allocation and payments. This framework was experimentally
evaluated for general combinatorial auctions by Hudson and Sandholm [2004] (building on work by
Conen and Sandholm [2002]), showing that the amount of preference information that needs to be
elicited is only a small fraction of the total amount of preference information. Another direction of
interest with close ties to computational learning theory is the identification of classes of preferences
for which elicitation requires only a polynomial number of queries [Zinkevich et al., 2003; Blum et
al., 2004; Lahaie and Parkes, 2004; Santi et al., 2004; Conitzer et al., 2005]. Negative results have
also been obtained: for instance, [Nisan and Segal, 2005] shows that in general, obtaining a better
approximation than that generated by auctioning off all objects as a bundle requires the exchange of
an exponential amount of information.

Preference elicitation is a direction that is orthogonal to the hierarchy because preference elic-
itation can be separately studied at each node of the hierarchy. For example, one may simply wish
to elicit enough information to compute an optimal allocation with respect to revealed preferences
(node (1)); alternatively, one may wish to elicit enough information to choose outcomes in a manner
that discourages untruthful bidding [Conen and Sandholm, 2001; Hyafil and Boutilier, 2006] (node
(2)); one may even attempt to automatically design the preference elicitation protocol along with
(the rest of) the mechanism [Sandholm et al., 2005a] (node (3a)); etc.

Another orthogonal objective is the following: rather than having all (relevant) information
communicated to a center that then computes the outcome, have the agents compute the outcome
themselves in a distributed (and possibly privacy-preserving) manner [Parkes and Shneidman, 2004;
Brandt and Sandholm, 2004b,a, 2005b,c,a; Izmalkov et al., 2005; Petcu et al., 2006]. Moreover, in
real-world implementation of preference aggregation, many other orthogonal issues come up. For
example, when aggregating the preferences of humans, human-computer interaction issues must be

24 CHAPTER 1. INTRODUCTION

considered.
In this dissertation, I will not cover research on topics that are orthogonal to the hierarchy. This

is only for the purpose of coherence: it is certainly my opinion that such orthogonal topics concern
crucial components of practical preference aggregation systems.

1.5 Outline

The rest of this dissertation is layed out as follows. In Chapter 2, we discuss various settings
for expressive preference aggregation, including elections, allocations of tasks and resources using
combinatorial auctions and exchanges, donations to (charitable) causes, and settings with external-
ities. Subsequently, in Chapter 3, which corresponds to node (1) in the hierarchy, we analyze the
complexity of the outcome optimization problem in all of these settings. In Chapter 4, we briefly
review some of the basic concepts in (classical) mechanism design, as well as some famous mech-
anisms and impossibility results. In Chapter 5, which corresponds to node (2) in the hierarchy, we
present some difficulties and challenges for classical mechanism design in expressive preference
aggregation settings. In Chapter 6, which corresponds to node (3a) in the hierarchy, we introduce
automated mechanism design. In Chapter 7, we review basic concepts from game theory, as well as
the basic argument for restricting attention to truthful mechanisms when all agents act in a strate-
gically optimal way (which implies that they have no computational limitations). Chapters 8 and 9
correspond to node (3b) in the hierarchy—mechanism design for bounded agents. In Chapter 8,
we display a setting in which there is non-truthful mechanism that always does at least as well as
the best truthful mechanism, and, in the face of computational boundedness, does strictly better. In
this chapter, we also show that in some voting settings, it is computationally hard to find beneficial
manipulations (even given the other voters’ votes); however, in the final section of the chapter, we
show that under some reasonable restrictions on the voting setting, finding a successful manipula-
tion remains easy in most manipulable instances. In Chapter 9 we take a first step towards rebuilding
the theory of mechanism design in the face of computational limitations, by examining how hard
various game-theoretic solution concepts are to compute—and hence, which concepts can serve as a
reasonable basis for a theory of mechanism design for computationally bounded agents. (Being able
to compute game-theoretic solutions is of interest for other reasons as well, as will be discussed in
that chapter.) Finally, in Chapter 10, we introduce the first approach that combines aspects of both
automated mechanism design and mechanism design for bounded agents. Rather than optimizing
the entire mechanism in a single step, this approach incrementally identifies opportunities for the
agents to successfully manipulate, and changes the mechanism to remove these opportunities.

To keep the dissertation coherent and of a reasonable length, much of the research that I have
done as a Ph.D. student is excluded. The excluded material includes:

• A few topics that would have fit in the dissertation quite well but were excluded to keep the
length reasonable. Topics excluded from Chapter 3 include work on computing optimal Ke-
meny rankings in voting [Conitzer et al., 2006], and solving the winner determination problem
in combinatorial auctions with k-wise dependent valuations [Conitzer et al., 2005]. Topics
excluded from Chapter 9 include a preprocessing technique for computing a Nash equilib-
rium [Conitzer and Sandholm, 2006g], mixed integer programming techniques for comput-

1.5. OUTLINE 25

ing Nash equilibria [Sandholm et al., 2005b], and computing the optimal strategy to commit
to [Conitzer and Sandholm, 2006c].

• All work on learning in games (which could be considered relevant to node (3b) in the hier-
archy) [Conitzer and Sandholm, 2006a, 2003d, 2004b].

• All work on preference elicitation (reducing the communication necessary for choosing the
outcome) in combinatorial auctions [Santi et al., 2004; Conitzer et al., 2005], voting [Conitzer
and Sandholm, 2002c, 2005b], and mechanism design [Conitzer and Sandholm, 2004c; Sand-
holm et al., 2005a].

• All work on cooperative (also known as coalitional) game theory [Conitzer and Sandholm,
2004d; Yokoo et al., 2005; Ohta et al., 2006; Conitzer and Sandholm, 2006b].

• A few other individual topics, including the complexity of metareasoning [Conitzer and Sand-
holm, 2003f], interpreting voting rules as maximum likelihood estimates of the “correct” out-
come [Conitzer and Sandholm, 2005a], and learning algorithms for online principal-agent
settings [Conitzer and Garera, 2006].

• Some of the less-relevant results in papers that are otherwise covered.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Expressive Preference Aggregation
Settings

Freedom is, first of all, the chance to formulate the available choices, to argue over
them – and then, the opportunity to choose.

C. Wright Mills

When the preferences of multiple agents need to be aggregated to choose an outcome (such as
an allocation of resources), we require some process for doing so. One option is ad hoc negotiation,
where the agents controlling the relevant resources attempt to improve the outcome locally, by
proposing and accepting deals to each other as they see fit. The upsides of this approach are that
no centralized computation is needed, and that the lack of constraints associated with this type of
negotiation potentially allows the agents some amount of creativity in adapting to circumstances.
The downside is the lack of guidance and oversight that the agents are confronted with. When
deciding what deal to propose next (or whether to accept another agent’s proposal), an agent needs to
assess what is likely to happen in future negotiation. However, the unstructured approach of ad hoc
negotiation makes this exceedingly difficult. In addition, the contract language needs to be complex
to avoid getting stuck in local optima, making the process even less overseeable. As a result, in all
but the simplest of settings, agents will likely only make ineffective deals and not come anywhere
close to reaching the optimal outcome. (Early work by Sandholm and others [Sandholm, 1993b;
Sandholm and Lesser, 1995; Sandholm, 1997; Andersson and Sandholm, 1999, 2000; Sandholm
and Lesser, 2002] provides a more formalized version of such a distributed process.)

Another approach is to have a clear protocol that elicits information about the agents’ prefer-
ences in a predictable, transparent, and commonly known manner to arrive at an outcome. Well-
known examples include auction protocols (such as a first-price sealed-bid auction, where every
agent submits a bid for the good for sale in a sealed envelope, and the highest bidder wins the
item for the price she specifies), as well as voting protocols (such as the Plurality protocol, where
everyone submits her most preferred candidate, and the candidate with the most votes wins). The
clarity, transparency, and predictability of such protocols make it possible for agents to assess the
likelihoods of future events and act in accordance. Unfortunately, naı̈vely designed protocols run
the risk of being overly restrictive in the negotiation that they allow. For instance, suppose there are

27

28 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

two items for sale, and we auction them off individually and sequentially. One bidder may consider
the items complementary: neither item by itself would be useful to her, but together they are worth
something. This bidder may be hesitant to bid high in the first auction, for fear that another bidder
will win the second item—leaving her stuck with only the first item. This hesitancy may prevent her
from winning the first item, even if the economically efficient outcome is for her to win both items.
A likely event in this scenario is that the bidder seeks to strike a deal with the seller to buy both
items outside of the auction, thereby reverting to ad hoc negotiation and the problems it entails.

The solution, of course, is to make sure that the protocols are not deemed too restrictive by the
agents. In the example, the two items could be auctioned off simultaneously in a combinatorial
auction, allowing bids on the bundle of both items. Protocols such as combinatorial auctions that
allow the agents to express their full preferences, and that act on that information, are known as
expressive preference aggregation protocols. In recent years, billions of dollars have been saved by
applying such protocols to strategic sourcing [Sandholm et al., 2006; Sandholm, 2006].

This dissertation will not consider any ad-hoc approaches to preference aggregation. Rather,
it will focus on clear protocols that allow the agents to provide their preference information in
expressive languages. The remainder of this chapter will introduce some preference aggregation
settings, together with corresponding languages in which agents can express their preferences and
criteria according to which the outcome can be selected. We will discuss computational aspects of
these settings in later chapters. For example, Chapter 3 will discuss the computational complexity
of and algorithms for choosing the optimal outcome in these settings. Some of the results in later
chapters will not be specific to any particular setting, but the settings introduced in this chapter can
serve as example domains.

The rest of this chapter is layed out as follows. In Section 2.1, we discuss voting (or rank ag-
gregation) as an approach to preference aggregation. Here, each agent simply ranks all possible
outcomes, and the outcome is chosen based on these rankings according to some voting rule (some
example voting rules will be given). In Section 2.2, we discuss allocation of tasks and resources,
and the use of combinatorial auctions and exchanges for doing so. In Section 2.3, we introduce
a new application: letting multiple potential donors negotiate over who gives how much to which
of multiple (say, charitable) causes [Conitzer and Sandholm, 2004e]. Finally, in Section 2.4, we
study preference aggregation in settings with externalities and introduce a representation, a lan-
guage for expressing agent preferences, and criteria for choosing an optimal outcome [Conitzer and
Sandholm, 2005d].

2.1 Voting over alternatives (rank aggregation)

A very general approach to aggregating agents’ preferences over outcomes is the following: let
each agent rank all of the alternatives, and choose the winning alternative based on these rankings.
(In some settings, rather than merely producing a winning alternative, one may wish to produce
an aggregate ranking of all the alternatives.) This approach is often referred to as voting over the
alternatives, and hence, in this context, agents are referred to as voters, the rankings that they submit
as votes, and the alternatives as candidates.

For example, in a setting with three candidates a, b, c, voter 1 may vote a Â b Â c, voter 2
b Â a Â c, and voter 3 a Â c Â b. The winner (or aggregate ranking of the candidates) depends on

2.1. VOTING OVER ALTERNATIVES (RANK AGGREGATION) 29

which voting rule is used. Formally, letting C be the set of candidates, R(C) the set of all possible
rankings of the candidates, and n the number of voters, a voting rule is a mapping from R(C)n

to C (if one only wishes to produce a winner) or to R(C) (if one wishes to produce an aggregate
ranking). One example rule is the plurality rule, where candidates are ranked simply according to
how often they are ranked first by voters. In the example, a is ranked first twice, b once, and c never,
so that the aggregate ranking produced by the plurality rule is a Â b Â c. Under the plurality rule,
the voters effectively vote only for a single candidate (how the voter ranks the candidates below the
top candidate is irrelevant).

Rules such as plurality may leave candidates tied, and typically these ties will need to be broken
somehow (especially to choose a winning alternative). Throughout, we will make as few assump-
tions as possible on how ties are broken, but where we do make assumptions, we will make this
clear. One may also wonder if we can allow for candidates to be tied in the votes. It is typically
not difficult to extend voting rules and results to allow for this, but we will assume throughout that
rankings are total orders on the candidates, i.e. they have no ties. (Some recent work has addressed
extending voting theory to settings in which voters submit partial orders [Pini et al., 2005; Rossi et
al., 2006]; this is significantly more involved than merely allowing for ties.)

But why should one use the plurality rule? Perhaps it would be desirable to give a vote’s second-
ranked candidate some points, or even to use a rule that is not based on awarding points to the
candidates at all. We will see examples of such rules shortly. First, however, let us consider if
perhaps there exists an “ideal” rule. If there are only two candidates, it is clear what the voting rule
should do: the candidate that is ranked higher more often should win. This leads us to the following
idea: for any pair of candidates, we can see which one is ranked more often. For instance, in the
above example, a is ranked above b twice, whereas b is ranked above a only once—hence we say
that a wins the pairwise election between a and b. Similarly, a defeats c in their pairwise election,
and b defeats c. Hence, naturally, the aggregate ranking should be a Â b Â c (which agrees with the
plurality rule).

However, this line of reasoning is not always sufficient to produce a ranking (or even a winner).
Consider a modified example in which voter 1 votes a Â b Â c, voter 2 b Â c Â a, and voter 3
c Â a Â b. Now, a defeats b in their pairwise election, b defeats c, and c defeats a—that is, we have
a cycle, and our aggregate ranking cannot be consistent with the outcomes of all pairwise elections.
This is known as a Condorcet paradox, and it shows that, unfortunately, in deciding whether a
should be ranked higher than b in the aggregate ranking, we cannot simply ignore the position of c
in the rankings.

Indeed, a famous theorem by Arrow [1963] states that there is no deterministic voting rule (for
producing an aggregate ranking) that has all of the following properties:

• The rule is non-dictatorial, that is, at least two voters have the potential to affect the outcome.

• The rule is consistent with unanimity, that is, if all voters prefer a to b, then the aggregate
ranking must rank a above b as well.

• The rule satisfies independence of irrelevant alternatives, that is, which of two alternatives is
ranked higher in the aggregate ranking should be independent of how the other alternatives
are ranked in the votes.

30 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

Arrow’s theorem and the possibility of Condorcet paradoxes depend on the voters’ being unre-
stricted in how they order the candidates. One well-known restriction that makes these problems
disappear is single-peakedness of the voters’ preferences. We say that preferences are single-peaked
if there is a total order < on the candidates, and for any voter i and any three candidates a < b < c,
a Âi b ⇒ b Âi c and c Âi b ⇒ b Âi a. In words, the candidates are arranged on a spectrum
from left to right, and a voter never prefers a candidate that is further from the voter’s most pre-
ferred candidate (the voter’s “peak”) to a closer one. (Note that this definition does not compare
candidates on the left side of a voter’s peak with those on the right side in terms of closeness, that
is, the notion of “closer to the peak” only applies to pairs of candidates that are on the same side of
the peak. Also note that the order < must be the same for all voters.) If the voters’ preferences are
single-peaked, then there are no Condorcet cycles. If we order the voters by their peaks, then the
peak of the voter in the middle of this ordering (the median voter) will win all pairwise elections,
that is, it is a Condorcet winner. (This is assuming that a median voter exists, i.e. the number of
voters is odd.)

Nevertheless, in many settings the votes do not have any (apparent) structure, so that it is still
important to define voting rules for the general case. Next, we review the most common voting
rules. We will define them according to how they rank candidates; the winner is the top-ranked
candidate.

• Scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector of integers. For each vote, a candidate
receives α1 points if it is ranked first in the vote, α2 if it is ranked second, etc. Candidates are
ranked by their scores. The Borda rule is the scoring rule with ~α = 〈m − 1, m − 2, . . . , 0〉.
The plurality rule is the scoring rule with ~α = 〈1, 0, . . . , 0〉. The veto rule is the scoring rule
with ~α = 〈1, 1, . . . , 1, 0〉.

• Single transferable vote (STV). This rule proceeds through a series of m − 1 rounds. In
each round, the candidate with the lowest plurality score (that is, the fewest votes ranking it
first among the remaining candidates) is eliminated (and each of the votes for that candidate
“transfers” to the next remaining candidate in the order given in that vote). The candidates
are ranked in reverse order of elimination.

• Plurality with run-off. In this rule, a first round eliminates all candidates except the two with
the highest plurality scores. Votes are transferred to these as in the STV rule, and a second
round determines the winner from these two. Candidates are ranked according to Plurality
scores, with the exception of the top two candidates whose relative ranking is determined
according to the runoff.

• Maximin (aka. Simpson). For any two candidates a and b, let N(a, b) be the number of votes
that prefer a to b. The maximin score of a is s(a) = minb6=a N(a, b)—that is, a’s worst
performance in a pairwise election. Candidates are ranked by their scores.

• Copeland. For any two candidates a and b, let C(a, b) = 1 if N(a, b) > N(b, a), C(a, b) =
1/2 if N(a, b) = N(b, a), and C(a, b) = 0 if N(a, b) < N(b, a). The Copeland score of
candidate a is s(a) =

∑

b6=a C(a, b). Candidates are ranked by their scores.

2.1. VOTING OVER ALTERNATIVES (RANK AGGREGATION) 31

• Bucklin. For any candidate a and integer l, let B(a, l) be the number of votes that rank
candidate a among the top l candidates. For each candidate a, let l(a) be the lowest l such
that B(a, l) > n/2. Candidates are ranked inversely by l(a). As a tiebreaker, B(a, l(a)) is
used.

• Slater. The Slater rule produces a ranking that is inconsistent with the outcomes of as few
pairwise elections as possible. That is, for a given ranking of the candidates, each pair of
candidates a, b such that a is ranked higher than b, but b defeats a in their pairwise election,
counts as an inconsistency, and a ranking is a Slater ranking if it minimizes the number of
inconsistencies.

• Kemeny. This rule produces a ranking that minimizes the number of times that the ranking is
inconsistent with a vote on the ranking of two candidates. That is, for a given ranking r of
the candidates, each combination of a pair of candidates a, b and a vote ra such that r ranks
a higher than b, but ri ranks b higher than a, counts as an inconsistency, and a ranking is a
Kemeny ranking if it minimizes the number of inconsistencies.

We define one additional rule, the cup rule, which runs a single-elimination tournament to decide
the winning candidate. This rule does not produce a full aggregate ranking of the candidates, and
additionally requires a schedule for matching up the remaining candidates.

• Cup. This rule is defined by a balanced1 binary tree T with one leaf per candidate, and a
schedule, that is, an assignment of candidates to leaves (each leaf gets one candidate). Each
non-leaf node is assigned the winner of the pairwise election of the node’s children; the
candidate assigned to the root wins. The regular cup rule assumes that the assignment of
candidates to leaves is known by the voters before they vote. In the randomized cup rule, the
assignment of candidates to leaves is chosen uniformly at random after the voters have voted.

Sometimes votes are weighted; a vote of weight K counts as K votes of weight 1. Different
possible interpretations can be given to weights. They may represent the decision power of a given
agent in a voting setting where not all agents are considered equal. The weight may correspond to
the size of the community that the voter represents (such as the size of the state). Or, when agents
vote in partisan groups (e.g., in parliament), the weights may correspond to the size of the group
(each group acts as one voter).

We will sometimes use the term “voting protocol” rather than “voting rule”; the meaning is
roughly the same, except the word “protocol” is intended to encompass not only the mapping from
rankings to outcomes (i.e., aggregate rankings or winners), but also procedural aspects such as the
manner in which the voters report their ranking (e.g., whether all voters submit their rankings at the
same time or not).

The general applicability of voting makes it an appealing approach to preference aggregation in
unstructured domains. However, in more structured settings, this generality becomes a weakness,
as using a voting approach does not exploit the structure of the domain. For example, many settings
allow payments to be made by or to the agents. In principle, we can model these payments as part
of the outcome, so that voter 1’s vote may be something like:

1“Balanced” here means that the difference in depth between two leaves can be at most one.

32 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

“alternative a is chosen, voter 1 pays $10, voter 2 pays $5” Â “alternative b is chosen, voter 1 pays
$0, voter 2 pays $3” Â “alternative a is chosen, voter 1 pays $10, voter 2 pays $6” Â . . .

Needless to say, this approach is extremely cumbersome (in principle the votes have infinite
length!), and it does not exploit any of the knowledge that we have (or assumptions that we are
willing to make) about how agents feel about payments. For example, we know that agents prefer
smaller payments to larger ones; we may know that they do not care about other agents’ payments;
we may know that each dollar is as valuable as the next to an agent; etc.

Another drawback is that the voting approach does not allow us to make statements about how
strong or weak agents’ preferences over outcomes are, and hence how they feel about distributions
over outcomes. For example, suppose an agent prefers a to b to c. Which does the agent prefer: b,
or a coin flip between a and c? It is impossible to tell from the information given—we do not even
know whether the agent’s preference of a over b is stronger than that of b over c. Again, in principle,
voters can vote over distributions over outcomes, e.g.:

P (a) = .4, P (b) = .3, P (c) = .3 Â P (a) = .5, P (b) = .2, P (c) = .3 Â P (a) = .5, P (b) =
.3, P (c) = .2 Â . . .

but again this is impractical (if not impossible). Again, we can make very reasonable assumptions
about agents’ preferences over distributions: for example, Dutch book theorems [Mas-Colell et
al., 1995] suggest that agents will maximize their expected utility, because otherwise they will be
susceptible to accepting a sequence of bets that is guaranteed to leave them worse off.

In the remainder of this chapter, we focus on utility-based approaches; we will return to voting
(specifically, computing aggregate rankings using the Slater rule) in the next chapter, Section 3.1.

2.2 Allocation of tasks and resources

Some of the most common domains in which multiple agents’ preferences must be aggregated in-
volve the allocation of resources or tasks to the agents. I will restrict my attention to settings in
which payments can be made, that is, agents can pay for resources allocated to them and tasks
performed for them, or be compensated for resources they supply and tasks they perform. (Not all
research on resource/task allocation makes the assumption that payments are possible: for exam-
ple, Lipton et al. [2004] and Bouveret and Lang [2005] consider the problem of finding envy-free
allocatons, that is, allocations under which no agent would prefer the share of another agent to its
own.)

We will refer to distinct resources as items; the performance of a task can be thought of as an
item as well, so from now on we can, without loss of generality, focus strictly on the allocation and
provision of items.

Earlier, we discussed combinatorial auctions as a method for allocating a fixed set of n available
items, I . Here, agent (or bidder) i will have a valuation function vi : 2I → R, mapping each bundle
of items that could be allocated to that bidder to a real value. This is making the assumption of no
externalities: given that a bidder does not win an item, that bidder does not care which (if any) other
bidder receives the item instead. This is usually realistic, but not always: for example, a country
may prefer certain other countries not to obtain certain weapons. We will discuss externalities in the

2.2. ALLOCATION OF TASKS AND RESOURCES 33

next sections. Letting Ai ⊆ I denote the subset of the items that we allocate to bidder i, our goal

is to find an allocation of items to the n bidders that maximizes
n
∑

i=1
vi(Ai), under the constraint that

for any i 6= j, Ai ∩Aj = ∅ (we do not award an item twice). (Note that we do not require all items
to be awarded—this is known as the free disposal assumption.) This optimization problem is called
the winner determination problem.

Typically, we can assume vi(∅) = 0, but any other restriction on the agents’ valuation function
will come at a loss in what the agents can express. For example, if we were to assume that vi(S) =
∑

s∈S

vi({s}), then we can no longer model complementarity (multiple items being worth more than

the sum of their individual values) or substitutability (multiple items being worth less than the sum of
their individual values), which is what gives combinatorial auctions their advantage over sequential
or parallel auctions of individual items. On the other hand, an arbitrary valuation function requires
2n−1 real values to describe, which corresponds to an infeasibly large amount of communication by
a bidder if the number of items is reasonably large. This leads us to the study of bidding languages
that the bidders can use to express their valuations. The earliest-studied language is the OR bidding
language, in which bidders simply submit valuations for multiple bundles [Rothkopf et al., 1998;
DeMartini et al., 1999]. An example bid is ({a}, 3) OR ({b, c}, 4) OR ({c, d}, 2), which expresses
that the bidder is willing to pay 3 for the bundle consisting of a alone, 4 for the bundle consisting of
b and c, and 2 for the bundle consisting of c and d. In addition, any number of the bidder’s bundles
may be awarded simultaneously, at the sum of the values of the individual bundles. For example, the
example bid implies that vi({a, b, c}) = 7. Multiple bundles cannot be awarded simultaneously if
the items overlap. For example, the example bid does not imply that vi({b, c, d}) = 6. Hence, under
the OR bidding language, from the perspective of winner determination, we may as well imagine
that each bundle-value pair came from a separate bidder. (A bidder that is only interested in a single
bundle is called a single-minded bidder.)

The OR bidding language is not fully expressive. For example, imagine a combinatorial auction
in which two cars a and b are for sale. Now imagine a bidder that values car a at $4,000 and car
b at $6,000. However, the bidder only requires one car, so that winning both cars would still be
worth only $6,000 to the bidder, because the bidder would simply not use car a (and we will assume
that re-selling the car is impossible). This type of bidder is known as a unit-demand bidder, and it
is impossible to capture these preferences using the OR bidding language. For example, bidding
({a}, 4000) OR ({b}, 6000) would imply vi({a, b}) = 10000. The subtitutability of the items is
what causes the problem here. To address this, we can introduce XOR-constraints between differ-
ent bundles, indicating that only one of these bundles can be accepted [Sandholm, 2002a,b]. For
example, the above valuation function can be expressed by ({a}, 4000) XOR ({b}, 6000). Bidding
with XOR constraints is fully expressive, that is, we can model any valuation function with them
(even without using any ORs). To reduce the size of the bids, however, we may still wish to use
ORs in addition to XORs [Nisan, 2000; Sandholm, 2002b]. The presence of XORs prevents us
from pretending that each bundle-value pair was submitted by a separate bidder for the purpose of
winner determination. A commonly used trick to circumvent this problem is the following: for a
set of bundle-value pairs that is XORed together, create a dummy item that is added to all of these
bundles [Fujishima et al., 1999; Nisan, 2000]. Since the dummy item can only be awarded once,
the dummy item effectively encodes the XOR-constraint, so that we can still imagine that each bid

34 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

comes from a separate bidder (for the purposes of winner determination).
Combinatorial auctions do not capture all possible resource/task allocation settings (even those

in which payments are possible). For example, rather than having a set of items available for sale,
one may instead seek to procure a set of items which are distributed across multiple bidders (or
suppliers). This is especially natural in the context of task allocation, where the items to be procured
correspond to tasks that must be performed. In such a setting, one can hold a combinatorial reverse
auction [Sandholm et al., 2002], in which a set of items I needs to be procured, and each bidder
i has a cost function ci : 2I → R, where ci(S) indicates the cost of providing bundle S. Letting
Ai ⊆ I denote the subset of the items that we award to bidder i (in the sense that we require bidder

i to provide them), our goal is to minimize
m
∑

i=1
ci(Ai), under the constraint that I =

⋃

1≤i≤n Ai.

(Again, there is a free disposal assumption here in that we allow an item to be provided by multiple
bidders.)

The free disposal assumption is not always realistic: for example, one may not be able to dispose
of radioactive material freely. A combinatorial forward auction without free disposal [Sandholm et
al., 2002] is exactly the same as one with free disposal, with the exception that every item must be
allocated to some bidder. Here, bids with a negative value may be useful, as they allow us to remove
some of the items—which may allow us to accept better bids for the remaining items. Similarly, a
combinatorial reverse auction without free disposal is exactly the same as one with free disposal,
with the exception that no additional items can be procured. Here, bids with a negative value may
occur—the (nondisposable) item may be a liability to the bidder. In both cases, we seek to identify a
subset of the bids that constitutes an exact cover of the items (no item covered more than once), and
to maximize the bidders’ total utility under this constraint. Therefore, the settings are technically
identical, and we can without loss of generality restrict our attention to forward auctions without
free disposal.

In general, it is not the case that either all agents are seeking only to procure items, or all agents
are seeking only to provide items. Rather, some agents may be seeking to procure items; others, to
provide items; and yet others, to do both simultaneously. This leads to the model of a combinatorial
exchange [Sandholm et al., 2002], in which there is a set of m items I for sale, and bidder i has a
valuation functions vi : Z

m → R. Here, vi(λ1, . . . , λm) is bidder i’s value for receiving λj units of
item j. (If λj is negative, that means that the bidder is providing units of that item.)

It should be noted that the notion of bidding for multiple units of the same item can be applied
to combinatorial auctions and reverse auctions as well. However, there it is not strictly necessary,
in the sense that we can re-model a combinatorial (reverse) auction with multiple units as one with
single units, by describing each individual unit of an item that is for sale or to be procured as a
separate item. The “sameness” of some of these new items will then be implied by the fact that
the bidders’ valuation or cost functions treat these items symmetrically. (This may, however, be
grossly inefficient from a representational and computational standpoint.) In an exchange, however,
the number of units of each item that is for sale/to be procured is not known ex ante, which prevents
this trick.

We will return to combinatorial auctions (specifically, to the complexity of the winner determi-
nation problem) in the next chapter, Section 3.2. In the remainder of this chapter, we will focus on
settings where an agent’s utility depends on more than his own items, tasks, and payments—that is,

2.3. DONATIONS TO (CHARITABLE) CAUSES 35

we will drop the no externalities assumption.

2.3 Donations to (charitable) causes

When money is donated to a charitable (or other) cause (hereafter simply referred to as a charity),
often the donating party gives unconditionally: a fixed amount is transferred from the donator to the
charity, and none of this transfer is contingent on other events—in particular, it is not contingent on
the amount given by other parties. Indeed, this is currently often the only way to make a donation,
especially for small donating parties such as private individuals. However, when multiple parties
support the same charity, each of them would prefer to see the others give more rather than less to
this charity. In such scenarios, it is sensible for a party to use its contemplated donation to induce the
others to give more. This is done by making the donation conditional on the others’ donations. The
following example will illustrate this, and show that the donating parties as well as the charitable
cause may simultaneously benefit from the potential for such negotiation.

Suppose we have two parties, 1 and 2, who are both supporters of charity A. To either of
them, it would be worth $0.75 if A received $1. It follows neither of them will be willing to give
unconditionally, because $0.75 < $1. However, if the two parties draw up a contract that says that
they will each give $0.5, both the parties have an incentive to accept this contract (rather than have
no contract at all): with the contract, the charity will receive $1 (rather than $0 without a contract),
which is worth $0.75 to each party, which is greater than the $0.5 that that party will have to give.
Effectively, each party has made its donation conditional on the other party’s donation, leading to
larger donations and greater happiness to all parties involved.2

One method that is often used to effect this is to make a matching offer. Examples of matching
offers are: “I will give x dollars for every dollar donated.”, or “I will give x dollars if the total
collected from other parties exceeds y.” In our example above, one of the parties can make the offer
“I will donate $0.5 if the other party also donates at least that much”, and the other party will have
an incentive to indeed donate $0.5, so that the total amount given to the charity increases by $1.
Thus this matching offer implements the contract suggested above. As a real-world example, the
United States government has authorized a donation of up to $1 billion to the Global Fund to fight
AIDS, TB and Malaria, under the condition that the American contribution does not exceed one
third of the total—to encourage other countries to give more [Tagliabue, 2003].

However, there are several severe limitations to the simple approach of matching offers as just
described.

1. It is not clear how two parties can make matching offers where each party’s offer is stated
in terms of the amount that the other pays. (For example, it is not clear what the outcome
should be when both parties offer to match the other’s donation.) Thus, matching offers can

2The preferences given in this example do not consider the possibility that an agent’s utility depends not only on how
much the charity receives but also on the extent to which that agent feels responsible for it. For example, an agent may
feel better about the scenario in which the agent gives $1 to a charity than about the scenario in which the agent loses $1
gambling and another agent gives $1 to the charity. However, we will not consider such preferences and assume that an
agent only cares about the final amount received by each charity (as well as about the agent’s own final budget).

36 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

only be based on payments made by parties that are giving unconditionally (not in terms of a
matching offer)—or at least there can be no circular dependencies.3

2. Given the current infrastructure for making matching offers, it is impractical to make a match-
ing offer depend on the amounts given to multiple charities. For instance, a party may wish to
specify that it will pay $100 given that charity A receives a total of $1000, but that it will also
count donations made to charity B, at half the rate. (Thus, a total payment of $500 to charity
A combined with a total payment of $1000 to charity B would be just enough for the party’s
offer to take effect.)

In contrast, in this section we propose a new approach where each party can express its relative
preferences for different charities, and make its offer conditional on its own appreciation for the
vector of donations made to the different charities. Moreover, the amount the party offers to donate
at different levels of appreciation is allowed to vary arbitrarily (it does need to be a dollar-for-dollar
(or n-dollar-for-dollar) matching arrangement, or an arrangement where the party offers a fixed
amount provided a given (strike) total has been exceeded). Finally, there is a clear interpretation of
what it means when multiple parties are making conditional offers that are stated in terms of each
other. Given each combination of (conditional) offers, there is a (usually) unique solution which
determines how much each party pays, and how much each charity is paid.

In short, expressive preference aggregation for donations to charities is a new way in which
electronic commerce can help the world. A web-based implementation of the ideas described in
this section can facilitate voluntary reallocation of wealth on a global scale.

2.3.1 Definitions

Throughout, we will refer to the offers that the donating parties make as bids, and to the donating
parties as bidders. In our bidding framework, a bid will specify, for each vector of total payments
made to the charities, how much that bidder is willing to contribute. (The contribution of this
bidder is also counted in the vector of payments—so, the vector of total payments to the charities
represents the amount given by all donating parties, not just the ones other than this bidder.) The
bidding language is expressive enough that no bidder should have to make more than one bid. The
following definition makes the general form of a bid in our framework precise.

Definition 1 In a setting with m charities c1, c2, . . . , cm, a bid by bidder bj is a function vj : R
m →

R. The interpretation is that if charity ci receives a total amount of πci , then bidder j is willing to
donate (up to) vj(πc1 , πc2 , . . . , πcm).

We now define possible outcomes in our model, and which outcomes are valid given the bids
that were made.

Definition 2 An outcome is a vector of payments made by the bidders (πb1 , πb2 , . . . , πbn), and a
vector of payments received by the charities (πc1 , πc2 , . . . , πcm). A valid outcome is an outcome
where

3Typically, larger organizations match offers of private individuals. For example, the American Red Cross Liberty
Disaster Fund maintains a list of businesses that match their customers’ donations [Goldburg and McElligott, 2001].

2.3. DONATIONS TO (CHARITABLE) CAUSES 37

1.
n
∑

j=1
πbj ≥

m
∑

i=1
πci (at least as much money is collected as is given away);

2. For all 1 ≤ j ≤ n, πbj ≤ vj(πc1 , πc2 , . . . , πcm) (no bidder gives more than she is willing to).

Of course, in the end, only one of the valid outcomes can be chosen. We choose the valid
outcome that maximizes the objective that we have for the donation process.

Definition 3 An objective is a function from the set of all outcomes to R.4 After all bids have been
collected, a valid outcome will be chosen that maximizes this objective.

One example of an objective is surplus, given by
n
∑

j=1
πbj −

m
∑

i=1
πci . The surplus could be the

profits of a company managing the expressive donation marketplace; but, alternatively, the surplus
could be returned to the bidders, or given to the charities. Another objective is total amount donated,

given by
m
∑

i=1
πci . (Here, different weights could also be placed on the different charities.)

2.3.2 A simplified bidding language

Specifying a general bid in our framework (as defined above) requires being able to specify an
arbitrary real-valued function over R

m. Even if we restricted the possible total payment made to
each charity to the set {0, 1, 2, . . . , s}, this would still require a bidder to specify (s + 1)m values.
Thus, we need a bidding language that will allow the bidders to at least specify some bids more
concisely. We will specify a bidding language that only represents a subset of all possible bids,
which can be described concisely.5

To introduce our bidding language, we will first describe the bidding function as a composition
of two functions; then we will outline our assumptions on each of these functions. First, there
is a utility function uj : R

m → R, specifying how much bidder j appreciates a given vector of
total donations to the charities. (Note that the way we define a bidder’s utility function, it does not
take the payments the bidder makes into account.) Then, there is a donation willingness function
wj : R → R, which specifies how much bidder j is willing to pay given her utility for the vector
of donations to the charities. We emphasize that this function does not need to be linear, so that
utilities should not be thought of as expressible in dollar amounts. (Indeed, when an individual is
donating to a large charity, the reason that the individual donates only a bounded amount is typically
not decreasing marginal value of the money given to the charity, but rather that the marginal value
of a dollar to the bidder herself becomes larger as her budget becomes smaller.) So, we have
wj(uj(πc1 , πc2 , . . . , πcm)) = vj(πc1 , πc2 , . . . , πcm), and we let the bidder describe her functions uj

and wj separately. (She will submit these functions as her bid.)

4In general, the objective function may also depend on the bids, but the objective functions that we consider do not
depend on the bids. The techniques presented in this dissertation will typically generalize to objectives that take the bids
into account directly.

5Of course, our bidding language can be trivially extended to allow for fully expressive bids, by also allowing bids
from a fully expressive bidding language, in addition to the bids in our bidding language.

38 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

Our first restriction is that the utility that a bidder derives from money donated to one charity is

independent of the amount donated to another charity. Thus, uj(πc1 , πc2 , . . . , πcm) =
m
∑

i=1
ui

j(πci).

(We observe that this does not imply that the bid function vj decomposes similarly, because of the
nonlinearity of wj .) Furthermore, each ui

j must be piecewise linear. An interesting special case
which we will study is when each ui

j is a line: ui
j(πci) = ai

jπci . This special case is justified in
settings where the scale of the donations by the bidders is small relative to the amounts the charities
receive from other sources, so that the marginal use of a dollar to the charity is not affected by the
amount given by the bidders.

The only restriction that we place on the payment willingness functions wj is that they are
piecewise linear. One interesting special case is a threshold bid, where wj is a step function: the
bidder will provide t dollars if her utility exceeds s, and otherwise 0. Another interesting case is
when such a bid is partially acceptable: the bidder will provide t dollars if her utility exceeds s; but
if her utility is u < s, she is still willing to provide ut

s dollars.
One might wonder why, if we are given the bidders’ utility functions, we do not simply maxi-

mize the sum of the utilities rather than surplus or total donated. There are several reasons. First,
because affine transformations do not affect utility functions in a fundamental way, it would be pos-
sible for a bidder to inflate her utility by changing its units, thereby making her bid more important
for utility maximization purposes. Second, a bidder could simply give a payment willingness func-
tion that is 0 everywhere, and have her utility be taken into account in deciding on the outcome, in
spite of her not contributing anything.

2.3.3 Avoiding indirect payments

In an initial implementation, the approach of having donations made out to a center, and having a
center forward these payments to charities, may not be desirable. Rather, it may be preferable to
have a partially decentralized solution, where the donating parties write out checks to the charities
directly according to a solution prescribed by the center. In this scenario, the center merely has to
verify that parties are giving the prescribed amounts. Advantages of this include that the center can
keep its legal status minimal, as well as that we do not require the donating parties to trust the center
to transfer their donations to the charities (or require some complicated verification protocol). It is
also a step towards a fully decentralized solution, if this is desirable.

To bring this about, we can still use the approach described earlier. After we clear the mar-
ket in the manner described before, we know the amount that each donator is supposed to give,
and the amount that each charity is supposed to receive. Then, it is straightforward to give some
specification of who should give how much to which charity, that is consistent with that clearing.

Nevertheless, with this approach, a bidder may have to write out a check to a charity that she
does not care for at all. (For example, an environmental activist who was using the system to
increase donations to a wildlife preservation fund may be required to write a check to a group
supporting a right-wing political party.) This is likely to lead to complaints and noncompliance
with the clearing. We can address this issue by letting each bidder specify explicitly (before the
clearing) which charities she would be willing to make a check out to. These additional constraints,
of course, may change the optimal solution.

2.4. PUBLIC GOODS AND EXTERNALITIES 39

The setting of expressive preference aggregation for donations to charities is a special case of a
more general phenomenon, namely that agents’ actions may indirectly affect other agents’ utilities.
We study this more general setting in the next section. We will return to the more specific setting
of expressive preference aggregation for donations to charities (specifically, to the complexity of
computing optimal outcomes in this setting) in the next chapter, Section 3.3.

2.4 Public goods and externalities

A pervasive assumption in the research on combinatorial auctions and exchanges has been that
there are no allocative externalities: no agent cares what happens to an item unless that agent itself
receives the item. This is insufficient to model situations where there are certain items (such as nu-
clear weapons) that are such that bidders who do not win the item still care which other bidder wins
it [Jehiel and Moldovanu, 1996]. More generally, there are many important preference aggregation
settings where decisions taken by a few agents may affect many other agents. For example, many
agents may benefit from one agent taking on a task such as building a bridge (and the extent of their
benefit may depend on how the bridge is built, for example, on how heavy a load it can support).
Alternatively, if a company reduces its pollution level, many individuals may benefit, even if they
have nothing to do with the goods that the company produces. A decision’s effect on an otherwise
uninvolved agent is commonly known as an externality [Mas-Colell et al., 1995]. In designing a
good preference aggregation protocol, externalities must be taken into account, so that (potentially
complex) arrangements can be made that are truly to every agent’s benefit.

In this section, we define a representation for combinatorial preference aggregation settings
with externalities. We will mostly focus on restricted settings that cannot model e.g. fully general
combinatorial auctions and exchanges, so that we do not inherit all of the complexities from those
settings.

We formalize the problem setting as follows.

Definition 4 In a setting with externalities, there are n agents 1, 2, . . . , n; each agent i controls mi

variables x1
i , x

2
i , . . . , x

mi
i ∈ R

≥0; and each agent i has a utility function ui : R
M → R (where

M =
n
∑

j=1
mj). (Here, ui(x

1
1, . . . , x

m1

1 . . . , x1
n, . . . , xmn

n) represents agent i’s utility for any given

setting of the variables.)

In general, one can also impose constraints on which values for (x1
i , . . . , x

mi
i) agent i can

choose, but we will refrain from doing so in this section. (We can effectively exclude certain set-
tings by making the utilities for them very negative.) We say that the default outcome is the one
where all the xj

i are set to 0,6 and we require without loss of generality that all agents’ utilities are 0
at the default outcome. Thus, the participation constraint states that every agent’s utility should be
nonnegative.

6This is without loss of generality because the variables x
j
i can be used to represent the changes in the real-world

variables relative to the default outcome. If these changes can be both positive and negative for some real-world variable,
we can model this with two variables x

j1
i , x

j2
i , the difference between which represents the change in the real-world

variable.

40 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

Without any restrictions placed on it, this definition is very general. For instance, we can model
a (multi-item, multi-unit) combinatorial exchange with it. Recall that in a combinatorial exchange,
each agent has an initial endowment of a number of units of each item, as well as preferences
over endowments (possibly including items not currently in the agent’s possession). The goal is
to find some reallocation of the items (possibly together with a specification of payments to be
made and received) so that no agent is left worse off, and some objective is maximized under this
constraint. We can model this in our framework as follows: for each agent, for each item in that
agent’s possession, for each other agent, let there be a variable representing how many units of that
item the former agent transfers to the latter agent. (If payments are allowed, then we additionally
need variables representing the payment from each agent to each other agent.) We note that this
framework allows for allocative externalities, that is, for the expression of preferences over which
of the other agents receives a particular item.

Of course, if the agents can have nonlinear preferences over bundles of items (there are comple-
mentarities or substitutabilities among the items), then (barring some special concise representation)
specifying the utility functions requires an exponential number of values.7 We need to make some
assumption about the structure of the utility functions if we do not want to specify an exponential
number of values. For the most part, we make the following assumption, which states that the effect
of one variable on an agent’s utility is independent of the effect of another variable on that agent’s
utility. We note that this assumption disallows the model of a combinatorial exchange that we just
gave, unless there are no complementarities or substitutabilities among the items. This is not a
problem insofar as our primary interest here is not so much in combinatorial exchanges as it is in
more natural, simpler externality problems such as aggregating preferences over pollution levels.
We note that this restriction makes the hardness results on outcome optimization that we present in
the next chapter (Section 3.4) much more interesting (without the restriction, the results would have
been unsurprising given known hardness results in combinatorial exchanges). However, for some of
our positive results we will actually not need the assumption, for example for convergence results
for an algorithm that we will present.

Definition 5 ui decomposes (across variables) if ui(x
1
1, . . . , x

m1

1 , . . . , x1
n, . . . , xmn

n) =
n
∑

k=1

mk
∑

j=1
uk,j

i (xj
k).

When utility functions decompose, we will sometimes be interested in the special cases where
the uk,j

i are step functions (denoted δx≥a, which evaluates to 0 if x < a and to 1 otherwise), or
piecewise constant functions (linear combinations of step functions).8

In addition, we will focus strictly on settings where the higher an agent sets its variables, the
worse it is for itself. We will call such settings concessions settings. So, if there is no preference
aggregation, each agent will selfishly set all its variables to 0 (the default outcome).

7Thus, the fact that finding a feasible solution for a combinatorial exchange is NP-complete [Sandholm et al., 2002]
does not imply that finding a feasible solution in our framework is NP-complete, because there is an exponential blowup
in representation.

8For these special cases, it may be conceptually desirable to make the domains of the variables x
j
i discrete, but we

will refrain from doing so in this dissertation for the sake of consistency.

2.5. SUMMARY 41

Definition 6 A concessions setting is a setting with externalities for which for any
(x1

1, . . . , x
m1

1 , . . . , x1
n, . . . , xmn

n) ∈ R
M , for any i, 1 ≤ j ≤ mi, and for any x̂j

i > xj
i , we have

ui(x
1
1, . . . , x

m1

1 , . . . , x̂j
i , . . . , x

1
n, . . . , xmn

n) ≤ ui(x
1
1, . . . , x

m1

1 , . . . , xj
i , . . . , x

1
n, . . . , xmn

n).

In parts of this dissertation, we will be interested in the following additional assumption, which
states that the higher an agent sets its variables, the better it is for the others. (For instance, the more
a company reduces its pollution, the better it is for all others involved.)

Definition 7 A concessions setting has only negative externalities if for any
(x1

1, . . . , x
m1

1 , . . . , x1
n, . . . , xmn

n) ∈ R
M , for any i, 1 ≤ j ≤ mi, for any x̂j

i > xj
i , and for any k 6= i,

uk(x
1
1, . . . , x

m1

1 , . . . , x̂j
i , . . . , x

1
n, . . . , xmn

n) ≥ uk(x
1
1, . . . , x

m1

1 , . . . , xj
i , . . . , x

1
n, . . . , xmn

n).

We define trivial settings of variables as settings that are indistinguishable from setting them to
0.

Definition 8 The value r is trivial for variable xj
i if it does not matter to anyone’s utility function

whether xj
i is set to r or to 0. (That is, for any x1

1, . . . , x
m1

1 , . . . , xj−1
i , xj+1

i , . . . , x1
n, . . . , xmn

n , and
for any k, we have uk(x

1
1, . . . , x

m1

1 , . . . , xj−1
i , r, xj+1

i , . . . , x1
n, . . . , xmn

n) =

uk(x
1
1, . . . , x

m1

1 , . . . , xj−1
i , 0, xj+1

i , . . . , x1
n, . . . , xmn

n). A setting of all the variables is trivial if each
variable is set to a trivial value.

Say that an outcome is feasible if no agent prefers the default outcome to it (and would therefore
try to block the preference aggregation process). Our goal is to find a good feasible outcome. As
in the setting of expressive preference aggregation for donations to charities, there can be multi-
ple objectives. Interesting objectives include social welfare and total concessions (the sum of the
variables). A more modest, but nevertheless interesting goal is to simply discover a nontrivial fea-
sible solution. We will study how hard these problems are computationally in the next chapter,
Section 3.4.

2.5 Summary

In this chapter, we reviewed four different settings for preference aggregation. We also reviewed
corresponding languages in which agents can express their preferences, and criteria according to
which the outcome can be selected.

In Section 2.1, we reviewed voting settings, where agents (or voters) can rank the alternatives
(or candidates) in any order, and the winner or aggregate ranking of the alternatives is chosen based
on the rankings (or votes) submitted by the voters. We reviewed some basic concepts from social
choice theory (Condorcet cycles, Arrow’s impossibility result, and single-peaked preferences), as
well as a number of specific rules for choosing the outcome based on the submitted votes.

In Section 2.2, we reviewed allocation of tasks and resources, using combinatorial auctions,
reverse auctions, and exchanges. We defined the winner determination problem and reviewed basic
bidding languages, including OR- and XOR-based languages.

In Section 2.3, we introduced a new application: expressive preference aggregation for dona-
tions to charities. The idea here is that when donating money to a charity, it is possible to use

42 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

the contemplated donation in negotiation to induce other parties interested in the charity to donate
more. We introduced a bidding language for expressing very general types of matching offers over
multiple charities, and formulated the corresponding clearing problem (deciding how much each
bidder pays, and how much each charity receives).

Finally, in Section 2.4, we introduced a framework for negotiating in general settings with exter-
nalities. Again, we introduced a language in which agents can express their preferences, and criteria
according to which to select the final outcome.

So far, we have not yet assessed how difficult it is computationally to solve the outcome opti-
mization problem, i.e. to select the optimal outcome according to the given criteria based on the
preferences submitted by the agents, in any of these settings. This is the topic of the next chapter.

Chapter 3

Outcome Optimization

The more alternatives, the more difficult the choice.
Abbé D’Allanival

Perhaps surprisingly, expressive preference aggregation has only recently started to be adopted
in practice (mostly in the form of combinatorial auctions and combinatorial reverse auctions). One
of the reasons for this is that in expressive preference aggregation protocols, the problem of choosing
the best outcome once the preferences have been collected is typically computationally hard. For
instance, in combinatorial auctions, the winner determination problem is NP-complete [Rothkopf
et al., 1998] (even to approximate [Sandholm, 2002a]). The computational tools for solving such
outcome selection problems have only recently reached the maturity necessary to make some of
these protocols feasible in practice [Sandholm et al., 2006; Sandholm, 2006].

This chapter will discuss the outcome optimization problem for the domains discussed in Chap-
ter 2. While computing the aggregated ranking is easy under most voting rules, there are some voting
rules for which this is not the case [Bartholdi et al., 1989b; Hemaspaandra et al., 1997; Cohen et al.,
1999; Dwork et al., 2001; Rothe et al., 2003; Davenport and Kalagnanam, 2004; Ailon et al., 2005],
including the Kemeny and Slater rules. In Section 3.1, we introduce a powerful preprocessing tech-
nique for computing optimal rankings according to the Slater rule [Conitzer, 2006]. In Section 3.2,
we give new conditions under which the winner determination problem in combinatorial auctions
can be solved efficiently [Conitzer et al., 2004]. In Section 3.3, we study computing optimal out-
comes under the framework for negotiating over donations introduced in Section 2.3 [Conitzer and
Sandholm, 2004e]. Finally, in Section 3.4 we study computing optimal outcomes under the frame-
work for negotiating in settings with externalities introduced in Section 2.4 [Conitzer and Sandholm,
2005d].

3.1 A preprocessing technique for computing Slater rankings

This section describes work done at IBM Research, with guidance and advice from Andrew Daven-
port and Jayant Kalagnanam.

In voting, we would like our aggregate ranking to be consistent with the outcome of each pair-

43

44 CHAPTER 3. OUTCOME OPTIMIZATION

wise election: if more voters prefer a to b than vice versa, the aggregate ranking should rank a ahead
of b. Unfortunately, Condorcet cycles can prevent us from being able to achieve this consistency for
all pairs of candidates. The Slater voting rule is arguably the most straightforward resolution to this
problem: it simply chooses a ranking of the candidates that is inconsistent with the outcomes of as
few pairwise elections as possible. Unfortunately, as we will discuss later in this section, computing
a Slater ranking is NP-hard. This in stark contrast to the computational ease with which most voting
rules can be executed (most rules require only a simple computation of a score for each candidate,
or perhaps one score per candidate for every round of the rule). An exception is the related Kemeny
rule, which is also NP-hard to compute (in fact, as we will show later in this section, this hardness
is implied by the Slater rule’s hardness). The hardness of computing Slater ranking suggests using
a tree search-based algorithm to compute Slater rankings.1

In this section, we introduce a preprocessing technique that can reduce the size of an instance
of the Slater problem before the search is started. We say that a subset of the candidates consists
of similar candidates if for every candidate outside of the subset, all candidates inside the subset
achieve the same result in the pairwise election against that candidate. Given a set of similar candi-
dates, we can recursively solve the Slater problem for that subset, and for the original set with the
entire subset replaced by a single candidate, to obtain a solution to the original Slater problem. In
addition, we also make the following contributions:

• We show that if the results of the pairwise elections have a particular hierarchical structure,
the preprocessing technique is sufficient to solve the Slater problem in linear time.

• For the general case, we give a polynomial-time algorithm for finding a set of similar candi-
dates (if it exists). This algorithm is based on satisfiability techniques.

• We exhibit the power of the preprocessing technique experimentally.

• We use the concept of a set of similar candidates to give the first straightforward reduction
(that is, not a randomized reduction or a derandomization thereof) showing that the Slater
problem is NP-hard in the absence of pairwise ties.

3.1.1 Definitions

Recall that the Slater rule is defined as follows: find a ranking Â on the candidates that minimizes
the number of ordered pairs (a, b) such that a Â b but b defeats a in their pairwise election. (Equiv-
alently, we want to maximize the number of pairs of candidates for which Â is consistent with the
result of the pairwise election—we will refer to this number as the Slater score.) We will refer to the
problem of computing a Slater ranking as the Slater problem. An instance of the Slater problem
can be represented by a “pairwise election” graph whose vertices are the candidates, and which has
a directed edge from a to b if and only if a defeats b in their pairwise election. The goal, then, is to
minimize the number of edges that must be flipped in order to make the graph acyclic.

Most elections do not have any ties in pairwise elections. For example, if the number of votes is
odd, there is no possibility of a pairwise tie. (We note that in many real-world elections, the number

1Another approach is to look for rankings that are approximately optimal in the Slater sense [Ailon et al., 2005;
Coppersmith et al., 2006]. Of course, this is not entirely satisfactory as it is effectively changing the voting rule.

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 45

of voters is intentionally made odd to prevent ties.) Hence, we will restrict our attention to elections
without pairwise ties (in which case the pairwise election graph becomes a tournament graph). For
our positive results, this is merely for simplicity—they can easily be extended to deal with ties as
well. Our one negative result, the NP-hardness of computing Slater rankings, is made stronger by
this restriction (in fact, without the restriction the hardness has effectively been known for a long
time).

3.1.2 Sets of similar candidates

We are now ready to give the formal definition of a set of similar candidates.

Definition 9 We say that a subset S ⊆ C consists of similar candidates if for any s1, s2 ∈ S, for
any c ∈ C − S, s1 → c if and only if s2 → c (and hence c→ s1 if and only if c→ s2).

We emphasize that in this definition, it is not required that every vote prefers s1 to c if and only
if that vote prefers s2 to c. Rather, the condition only needs to hold on the aggregated pairwise
election graph, and hence it is robust to a few voters who do not perceive the candidates as similar.

There are a few trivial sets of similar candidates: 1. the set of all candidates, and 2. any set of at
most one candidate. We will be interested in nontrivial sets of similar candidates, because, as will
become clear shortly, the trivial sets have no algorithmic use.

The following is the key observation of this section:

Theorem 1 If S consists of similar candidates, then there exists a Slater ranking Â in which the
candidates in S form a (contiguous) block (that is, there do not exist s1, s2 ∈ S and c ∈ C−S such
that s1 Â c Â s2).

Proof: Consider any ranking Â1 of the candidates in which the candidates in S are split into k > 1
blocks; we will show how to transform this ranking into another rankingÂ2 with the properties that:

• the candidates in S are split into k − 1 blocks in Â2, and

• the Slater score of Â2 is at least as high as that of Â1.

By applying this transformation repeatedly, we can transform the original ranking into an ranking
in which the candidates in S form a single block, and that has at least as high a Slater score as the
original ranking.

Consider a subsequence of Â1 consisting of two blocks of candidates in S, {s1
i } and {s2

i }, and
a block of candidates in C − S that divides them, {ci}: s1

1 Â1 s1
2 Â1 . . . Â1 s1

l1
Â1 c1 Â1 c2 Â1

. . . Â1 cl Â1 s2
1 Â1 s2

2 Â1 . . . Â1 s2
l2

. Because S consists of similar candidates, a given candidate

ci has the same relationship in the pairwise election graph to every sj
i . Hence, one of the following

two cases must apply:

1. For at least half of the candidates ci, for every sj
i , ci → sj

i

2. For at least half of the candidates ci, for every sj
i , sj

i → ci.

46 CHAPTER 3. OUTCOME OPTIMIZATION

In case 1, we can replace the subsequence by the subsequence c1 Â2 c2 Â2 . . . Â2 cl Â2 s1
1 Â2

s1
2 Â2 . . . Â2 s1

l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
to join the blocks without any loss to the Slater

score of the ranking. Similarly, in case 2, we can replace the subsequence by the subsequence
s1
1 Â2 s1

2 Â2 . . . Â2 s1
l1
Â1 s2

1 Â2 s2
2 Â2 . . . Â2 s2

l2
Â2 c1 Â2 c2 Â2 . . . Â2 cl to join the blocks

without any loss to the Slater score of the ranking.

Hence, if we know that S consists of similar candidates, then when we try to compute a Slater
ranking, we can without loss of generality restrict our attention to rankings in which all the candi-
dates in S form a (contiguous) block. The optimal internal ranking of the candidates in S within
the block is independent of the rest of the ranking, and can be computed recursively.2 Because of
this, we can think of S as a single “super-candidate” with weight |S|. Ranking S above a candidate
c such that s → c for all s ∈ S, or below a candidate c such that c → s for all s ∈ S, will increase
the Slater score by |S|.

Consider the following pairwise election graph:

In this graph, {b, d} is a set of similar candidates. Thus, we recursively solve the instance in which
b and d are aggregated into a single candidate:

Some of the edges now represent multiple edges in the original graph; this is indicated by the
weights on these edges. It is easy to see that the optimal Slater ranking for this graph is a Â bd Â c.
In addition, we need to solve the Slater problem internally for the set of similar candidates:

2Note that if S is a trivial set of similar candidates, there is little use to this: if it is a set of at most one candidate, then
the statement that that candidate will form a block by itself is vacuous, and if it is the set of all candidates, we need to
recurse on the set of all candidates.

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 47

The optimal Slater ranking for this graph is (of course) b Â d. So the solution to the original
problem is a Â b Â d Â c.

It is possible to have multiple disjoint sets Si, each consisting of similar candidates. In this case,
we can aggregate each one of them into a single super-candidate. The following lemma will clarify
how to compute the Slater scores for such pairs of super-candidates:

Lemma 1 If S1 and S2 are disjoint sets of similar candidates, then for any s1, s
′
1 ∈ S1 and any

s2, s
′
2 ∈ S2, s1 → s2 if and only if s′1 → s′2. (That is, the same relationship holds in the pairwise

election graph for any pair of candidates in S1 × S2.) Hence, ranking super-candidate S1 above
super-candidate S2 such that s1 → s2 for all s1 ∈ S1, s2 ∈ S2, or below a super-candidate S2 such
that s2 → s1 for all s1 ∈ S1, s2 ∈ S2, will increase the Slater score by |S1| · |S2|.

Proof: Because S1 consists of similar candidates, s1 → s2 if and only if s′1 → s2. And, because S2

consists of similar candidates, s′1 → s2 if and only if s′1 → s′2.

Similar sets that overlap cannot be simultaneously turned into super-candidates. However, the
following lemma shows that turning one of them into a super-candidate will (in a sense) preserve
the structure of the other set: after aggregating one of the sets into a super-candidate, the other set
will, in a sense, coincide with the union of the two sets, and we now show that this union must
consist of similar candidates.

Lemma 2 If S1 and S2 each consist of similar candidates, and S1 ∩ S2 is nonempty, then S1 ∪ S2

consists of similar candidates.

Proof: Let s ∈ S1 ∩ S2. For any s′, s′′ ∈ S1 ∪ S2 and any c ∈ C − (S1 ∪ S2), we have that s′ → c
if and only if s→ c, and s→ c if and only if s′′ → c.

3.1.3 Hierarchical pairwise election graphs can be solved in linear time

In this subsection, we show that if the pairwise election graph has a certain hierarchical structure,
then the Slater problem can be solved efficiently using the techniques from the previous subsection.

Definition 10 A valid candidate tree is a tree with the following properties:

• The leaves are each labeled with a candidate, with each candidate appearing exactly once.

• For every internal vertex v, there is a tournament graph →v over its children such that for
any two distinct children w1 6= w2 of v, for any descendants d1 of w1 and d2 of w2, d1 → d2

if and only if w1 →v w2.

48 CHAPTER 3. OUTCOME OPTIMIZATION

Put alternatively, to find out the direction of the edge between any two candidates in the pairwise
election graph, we can simply compare the vertices directly below their least common ancestor.
There is always a trivial valid candidate tree, which simply connects every candidate directly to the
root node R and uses the pairwise election graph → as the graph →R. This tree does not give us
any insight. Instead, we will be interested in trees whose vertices have small degree (that is, each
vertex has only a few children).

Figure 3.1 shows an example candidate tree, and Figure 3.2 shows the corresponding graph of
pairwise elections.

Figure 3.1: A valid candidate tree.

Figure 3.2: The pairwise election graph corresponding to the valid candidate tree.

The following observation will allow us to use the structure of the tree to solve the Slater
problem efficiently:

Lemma 3 For any vertex v in a valid candidate tree, the set Dv of candidates that are descendants

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 49

of v constitutes a set of similar candidates.

Proof: For any d1, d2 ∈ Dv and c ∈ C−Dv, the least common ancestor of d1 and c, or of d2 and c,
must be a (strict) ancestor of v. Hence, this least common ancestor must be the same in both cases,
and moreover, so must the child of that ancestor from which d1 and d2 (and v) descend. Hence
d1 → c if and only if d2 → c.

Hence, we can solve the Slater problem using the following very simple algorithm:

1. For every child of the root R, generate a super-candidate with weight equal to the number of
candidates that descend from it.

2. Solve the Slater problem for the graph →R over these super-candidates (using any algo-
rithm).

3. Solve the Slater problem recursively for each subtree rooted at a child of the root R.

4. Order the candidates, first according to the ranking of the super-candidates that they are in,
and then according to the recursive solutions.

Step 2 may be computationally expensive, depending on the number of super-candidates. How-
ever, if the degree of each vertex is small, then so is the number of super-candidates in this step. In
particular, if the degree is bounded by a constant, then step 2 can be performed in constant time, and
the running time of the entire algorithm is linear.

The algorithm produces the Slater ranking f Â e Â c Â a Â b Â d on the example given
above.

3.1.4 An algorithm for detecting sets of similar candidates

In general, we do not know in advance whether there is a nontrivial set of similar candidates in a
pairwise election graph. Rather, we need an algorithm that will take as input a pairwise election
graph, and discover a nontrivial set of similar candidates if it exists. In this subsection, we present
such an algorithm. The algorithm relies on transforming the problem of detecting a set of similar
candidates into a Horn satisfiability problem.

Specifically, for every candidate c we generate a variable In(c) which indicates whether the
candidate is in the set of similar candidates. Then, for every ordered triplet of candidates c1, c2, c3 ∈
C, if either c1 → c3 and c3 → c2, or c2 → c3 and c3 → c1, then we generate the clause In(c1) ∧
In(c2)⇒ In(c3) (or, equivalently, (¬In(c1) ∨ ¬In(c2) ∨ In(c3)).

The instance described two subsections earlier produces the following clauses: In(a)∧In(b)⇒
In(c), In(a) ∧ In(c) ⇒ In(b) ∧ In(d), In(a) ∧ In(d) ⇒ In(b) ∧ In(c), In(b) ∧ In(c) ⇒
In(a) ∧ In(d), In(c) ∧ In(d)⇒ In(a).

Theorem 2 A setting of the variables In(c) satisfies all the clauses if and only if S = {c ∈ C :
In(c) =true} consists of similar candidates.

50 CHAPTER 3. OUTCOME OPTIMIZATION

Proof: First, suppose that the setting satisfies all the clauses. For any s1, s2 ∈ S and c ∈ C − S, if
there were a clause In(s1) ∧ In(s2) ⇒ In(c), it would not be satisfied. It follows that this clause
was not generated, and hence either s1 → c and s2 → c, or c → s1 and c → s2. Hence S consists
of similar candidates.

Next, suppose that the setting does not satisfy all the clauses. Then, there must be some unsat-
isfied clause In(c1) ∧ In(c2) ⇒ In(c3), which means that c1, c2 ∈ S and c3 /∈ S. Because the
clause was generated, either c1 → c3 and c3 → c2, or c2 → c3 and c3 → c1, and hence S does not
consist of similar candidates.

There are some settings of the variables In(c) that always satisfy all the clauses: setting ev-
erything to true, and setting at most one variable to true. These settings correspond exactly to the
trivial sets of similar candidates discussed earlier. Hence, our goal is to find a satisfying setting of
the variables in which at least two, but not all, variables are set to true. In the example above, the
only such solution is to set In(b) and In(d) to true and In(a) and In(c) to false, corresponding
to the set of similar candidates that we used earlier in this section. Finding a nontrivial solution
can be done in polynomial time with the following simple algorithm: for a given pair of candidates
c1, c2 ∈ C, set In(c1) and In(c2) to true, and then follow the implications⇒ in the clauses. If this
process terminates without setting all the In(c) variables to true, we have found a nontrivial set of
similar candidates. Otherwise, restart with a different pair of candidates, until we have tried every
pair of candidates. The algorithm can be improved by keeping track of the initial pairs of candidates
for which we have failed to find a similar set, so that when another initial pair leads to one of these
pairs being set to true, we can fail immediately and continue to the next pair.

When we use this algorithm for finding similar sets to help us compute a Slater ranking, after
finding a similar set, we need to compute a Slater ranking both on the instance consisting of the
similar set only, and on the reduced version of the original instance where the similar set has been
replaced by a single super-candidate. Thus, we will be interested in finding similar sets on these
instances as well. It is natural to ask whether some of the computation that we did to find a similar
set in the original instance can be reused to find similar sets in the two new instances. It turns out
that, in the second new instance, this is indeed possible:

Lemma 4 Suppose that, in the process of detecting a similar set, we failed with the pair of initial
candidates c1, c2 ∈ C, before discovering that S ⊆ C is a similar set. Then, in the reduced instance
where S is replaced by a single super-candidate cS ,

1. we will also fail on initial pair c1, c2 if c1, c2 /∈ S;

2. we will also fail on initial pair c1, cS if c1 /∈ S, c2 ∈ S.

Proof: Suppose c1, c2 (or, in the second case, c1, cS) belong to a nontrivial set S ′ of similar can-
didates in the reduced instance. Then, consider the same set in the original instance (if cS ∈ S′,
replace it with all members of S); call this set S ′′. S′′ does not include all candidates because S ′

does not include all candidates in the reduced instance. Moreover, S ′′ is a set of similar candidates,
for the following reasons. Take any s1, s2 ∈ S′′ and c ∈ C − S ′′; we must show that s1 → c
if and only if s2 → c. If s1 /∈ S and s2 /∈ S, then this follows from the fact that S ′ consists of
similar candidates (even if c ∈ S, because in that case si → c if and only if si → cS in the reduced

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 51

instance). If exactly one of s1 and s2 is in S (without loss of generality, say s1 ∈ S), then it must
be that cS ∈ S′ ⇔ S ⊆ S′′, so that c /∈ S. Hence, s1 → c if and only if cs → c, and because S ′

consists of similar candidates this is true if and only if s2 → c. Finally, if both s1 and s2 are in S,
then c /∈ S because cS ∈ S′ ⇔ S ⊆ S′′, hence s1 → c if and only if s2 → c because S consists
of similar candidates. But if S ′′ consists of similar candidates, then we would not have failed on the
initial pair c1, c2 in the original instance. Hence we have the desired contradiction.

For the first new instance consisting of S only, such reuse of computation is not possible, be-
cause we cannot have failed on a pair of candidates within S (since they were in fact in a similar
set). We only know that we will fail on the pair starting with which we found S, because this pair
will lead to all candidates in S being included in the similar set.

3.1.5 Experimental results

In this subsection, we experimentally evaluate the use of the techniques described above as a prepro-
cessing technique that serves to reduce the sizes of the instances before a search algorithm is called.
We compare two algorithms: a straightforward search technique, and the preprocessing technique
combined with the same search technique. (Instead of the straightforward search technique, we
could also have used a more sophisticated algorithm, e.g. a commercial solver such as CPLEX. The
goal here, however, is not to show that our technique by itself outperforms any given algorithm, but
rather it is to show that using the preprocessing technique can reduce a given algorithm’s compu-
tation time. Moreover, if adding the preprocessing technique to a straightforward search algorithm
already produces a fast algorithm, that is more impressive than having to add the technique to a
solver such as CPLEX to obtain a fast algorithm.) The straightforward search technique decides, at
every search node, whether a given edge in the graph should be consistent or inconsistent with the
final ranking, and then propagates the effect of this decision to other edges (e.g. by transitivity, if it
has been decided that edges (a, b) and (b, c) will both be consistent with the final ranking, then by
transitivity so must the edge (b, c)). There is no sophisticated variable ordering heuristic: we simply
choose the first edge that has not yet been set. As an admissible pruning heuristic, we use the total
number of edges for which it has been decided that the final ranking will be inconsistent with them.

The preprocessing technique uses the algorithm described in the previous subsection to search
for a set of similar candidates. If it finds one, it recursively solves the subproblems; otherwise, the
search algorithm is called to solve the remaining irreducible problem instance. Each data point in
the experiments is an average of 30 instances (the same instances for both algorithms).

In the first set of experiments, instances are generated as follows. Every candidate and every
voter draws a random position in [0, 1] (this can be thought of as their stance on one issue) and
voters rank candidates by proximity to their own position. The results are in Figure 3.3:

On these instances, even straightforward search scales reasonably well, but when the prepro-
cessing technique is added, all the instances solve immediately. This is not surprising: the voters’
preferences in this domain are single-peaked, and it is well-known that for single-peaked prefer-
ences, there are no cycles in the pairwise election graph (e.g. [Mas-Colell et al., 1995]), so that the
final ranking can be read off directly from the graph. Given this, any k candidates in contiguous
positions in the final ranking always form a set of similar candidates, so that the preprocessing tech-
nique can solve the instances entirely. (No time is spent in search after the preprocessing technique.)

52 CHAPTER 3. OUTCOME OPTIMIZATION

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

tim
e

in
 s

ec
on

ds

candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.3: 1 issue, 191 voters, 30 instances per data point.

Of course, we do not want to examine only trivial instances. In the next experiment (Figure 3.4),
the candidates and voters draw random positions in [0, 1]× [0, 1]; in this two-dimensional setup the
voters’ preferences are no longer single-peaked.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

tim
e

in
 s

ec
on

ds

candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.4: 2 issues, 191 voters, 30 instances per data point.

These instances are much harder to solve, but adding the preprocessing technique significantly
speeds up the search. We note that essentially no time is spent in the preprocessing stage (the
“preprocessing + search total” and “search after preprocessing” curves are essentially identical),

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 53

hence the benefits of preprocessing effectively come for free.
We also considered changing the number of votes to a small number. Figure 3.5 shows the

results with only 3 votes.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

tim
e

in
 s

ec
on

ds

candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.5: 2 issues, 3 voters, 30 instances per data point.

We experimented with introducing additional structure on the set of candidates. In the next
experiment, there are 5 parties that draw random positions in [0, 1]×[0, 1]; each candidate randomly
chooses a party, and then takes a position that is the average of the party’s position and another
random point in [0, 1]× [0, 1]. The results did not change significantly, as shown in Figure 3.6.

We also experimented with having the voters and candidates draw positions on an even larger
number of issues (10 issues). Perhaps surprisingly, here the preprocessing technique once again
solved all instances immediately (Figure 3.7).

3.1.6 NP-hardness of the Slater problem

In this subsection, we use the technique of sets of similar candidates in an entirely different manner:
we show that it is useful in demonstrating the hardness of the Slater problem when there are no pair-
wise ties. In the case where pairwise ties between candidates are possible, the hardness of the Slater
problem follows from the hardness of the Minimum Feedback Edge Set problem. However, as
we have already pointed out, most elections do not have pairwise ties (for example, if the number
of votes is odd, then there cannot be any pairwise ties). So, how hard is the problem when there are
no ties? This problem is equivalent to the Minimum Feedback Edge Set problem on tournament
graphs, and was conjectured to be NP-hard as early as 1992 [Bang-Jensen and Thomassen, 1992].
The conjecture remained unproven until 2005, when a randomized reduction was given [Ailon et
al., 2005]. A later derandomization of this proof finally proved the conjecture completely [Alon,
2006]. Interestingly, the observations about sets of similar candidates made above allow us to give

54 CHAPTER 3. OUTCOME OPTIMIZATION

0

10

20

30

40

50

60

70

0 5 10 15 20 25

tim
e

in
 s

ec
on

ds

candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.6: 2 issues, 5 parties, 191 voters, 30 instances per data point.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

tim
e

in
 s

ec
on

ds

candidates

search only
preprocessing+search total
search after preprocessing

Figure 3.7: 10 issues, 191 voters, 30 instances per data point.

a more direct proof of this result (which does not rely on derandomizing a randomized reduction).3

Theorem 3 The Slater problem is NP-hard (even in the absence of pairwise ties).

3Interestingly, the previous reductions [Ailon et al., 2005; Alon, 2006] also use what is effectively an extremely special
case of the results about similar candidates presented in this section. That special case is, however, not sufficient for the
reduction given here.

3.1. A PREPROCESSING TECHNIQUE FOR COMPUTING SLATER RANKINGS 55

Proof: We reduce from the NP-complete Maximum Satisfiability (MAXSAT) problem. We show
how to reduce an arbitrary MAXSAT instance, given by a set of clauses K over a set of variables V ,
and a target number t1 of clauses to satisfy, to an instance of the Slater problem and a target score
t2, such that there is an ranking with Slater score at least t2 if and only if there is a solution to the
MAXSAT instance (that satisfies at least t1 clauses). Let M be a sufficiently large number (M >
6|K||V | + |K|2). For every variable v ∈ V , let there be the following 6 super-candidates, each
of size M (that is, representing M individual candidates): Cv = {av, +v,−v, bv, dv, ev}.4 Let the
individual candidates that any given single super-candidate represents constitute an acyclic pairwise
election graph, so that we can order them perfectly and obtain a Slater score of M(M − 1)/2. Let
the super-candidates have the following relationships to each other in the aggregated graph:

• Fix some order > over the variables (e.g. x1 > x2 > . . . > x|V |). Then, for any two
super-candidates cv ∈ Cv, cv′ ∈ Cv′ with v > v′, cv → cv′ .

• For any v ∈ V , for any cv ∈ {av, +v,−v} and c′v ∈ {bv, dv, ev}, cv → c′v.

• For any v ∈ V , av → +v, +v → −v,−v → av; bv → dv, bv → ev, dv → ev.

Figure 3.8: Illustration of part of the reduction.

Additionally, for every clause k ∈ K, let there be a single candidate (not a super-candidate) ck,
with the following relationships to the candidates corresponding to variables. Assume without loss
of generality that opposite literals (+v and −v) never occur in the same clause. Then,

• If +v ∈ k, then +v → ck, dv → ck, ev → ck and ck → av, ck → −v, ck → bv.

• If −v ∈ k, then −v → ck, dv → ck, ev → ck and ck → av, ck → +v, ck → bv.

• If {+v,−v} ∩ k = ∅, then bv → ck, dv → ck, ev → ck and ck → av, ck → +v, ck → −v.

The relationships among the ck are irrelevant. Finally, let the target Slater score be t2 = 6|V |M(M−
1)/2 + 36M2|V |(|V | − 1)/2 + 14M 2|V |+ t1M .

We now make some observations about the Slater problem instance that we have constructed.
First, by Theorem 1, we can restrict our attention to rankings in which the individual candidates
in any given super-candidate form a (contiguous) block. Recall that within such a block, we can
order the individual candidates to obtain a Slater score of M(M − 1)/2, which will give us a
total of 6|V |M(M − 1)/2 points. Now, if our ranking of two super-candidates is consistent with
the pairwise election graph, according to Lemma 1 this will increase the Slater score by M 2. By
contrast, the total number of Slater points that we can obtain from all the edges in the pairwise

4The letter c is skipped only to avoid confusion with the use of c as an arbitrary candidate.

56 CHAPTER 3. OUTCOME OPTIMIZATION

election graph that involve a candidate ck corresponding to a clause is at most |K| ·6|V |M + |K|2 <
6|K||V |M + |K|2M < M2. Hence, it is never worth it to sacrifice an agreement on an edge
involving two super-candidates to obtain a better result with regard to the remaining candidates,
and therefore we can initially restrict our attention to the super-candidates only as these are our
primary concern. It is clear that for v > v′ we should rank all the candidates in Cv above all
those in Cv′ . Doing this for all variables will increase the Slater score by 36M 2|V |(|V | − 1)/2.
Moreover, it is clear that for every v we should rank all the candidates in {av, +v,−v} above all
those in {bv, dv, ev}, and bv Â dv Â ev. Doing this for all variables will increase the Slater score
by (9M2 + 3M2)|V | = 12M2|V |. Finally, for every v, any one of the rankings +v Â −v Â av,
−v Â av Â +v, and av Â +v Â −v are equally good, leaving us a choice. Choosing one of these
for all variables increases the Slater score by another 2M 2|V |.

Now, as a secondary concern, we can analyze edges involving the ck. Agreement on an edge
between a ck and one of the super-candidates will increase the Slater score by M . By contrast, the
total number of Slater points that we can obtain from all the edges in the pairwise election graph
that involve only candidates ck is at most |K|(|K| − 1)/2 < |K|2 < M . Hence, it is never worth it
to sacrifice an agreement on an edge involving a super-candidate to obtain a better result with regard
to the edges involving only candidates ck, and hence we can restrict our attention to edges involving
a super-candidate. (In fact, the edges involving only candidates ck will turn out to have such a
minimal effect on the total score that we need not consider them at all.) Now, we note that whether
a candidate ck is ranked before all the candidates in Cv or after all of them makes no difference to
the total score, because three of these candidates will have an edge into ck, and three of them will
have have an edge out of ck. Nevertheless, a candidate ck could be ranked among the candidates Cv

for (at most) one v ∈ V . Because dv and ev always have edges into ck and are always ranked last
among the candidates in Cv, ranking ck after at least two of the candidates in Cv will never make a
positive contribution to the Slater score. Hence, there are only two possibilities to increase the Slater
score (by exactly M) for a given ck: either rank ck directly after some +v such that +v ∈ k and +v

is ranked first among the Cv, or rank ck directly after some −v such that −v ∈ k and −v is ranked
first among the Cv. Of course, for each variable v, we can rank at most one of +v and −v first.
(We can also rank av first, but this will never help us.) Now we can see that this corresponds to the
MAXSAT problem: say that we set v to true if +v is ranked first, and to false if −v is ranked first.
Then, we can obtain an additional M points for a candidate ck if and only if clause k is satisfied,
and hence we can increase the Slater score by an additional t1M points if and only if we can set the
variables in such a way as to satisfy at least t1 clauses.

3.1.7 Extension to the Kemeny rule

The Kemeny rule [Kemeny, 1959] has significant similarities to the Slater rule. One definition of the
Kemeny rule that makes this clear is the following. Instead of minimizing the number of pairwise
elections that the final ranking disagrees with, the Kemeny rule tries to minimize the total weight of
such pairwise elections—where the weight of a pairwise election is the number of votes by which
its winner defeated its loser. This also shows that the Kemeny ranking problem is more general than
the Slater ranking problem, because it is easy to create votes that make all weights equal to each
other. (For example, adding the votes c1 Â c2 Â . . . Â cm and cm Â cm−1 Â . . . Â c3 Â c1 Â c2

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 57

gives c1 two extra votes in its pairwise election against c2, but has a neutral effect on every other
pairwise election.)

The Kemeny rule has an important interpretation as a maximum likelihood estimator of the
“correct” ranking. Condorcet, an early social choice theorist, modeled elections as follows: there
is a correct ranking of the candidates, but every voter only has a noisy perception of this correct
ranking. Specifically, for every pair of candidates, any voter ranks the better candidate higher with
probability p > 1/2, independently.5 Given this noise model, the problem of finding the maximum
likelihood estimate of the correct outcome, given the votes, is well-defined. Condorcet solved this
problem for the cases of 2 and 3 candidates [de Caritat (Marquis de Condorcet), 1785]. Over two
centuries later, Young [1995] observed that the Kemeny rule is in fact the solution to Condorcet’s
problem for arbitrary numbers of candidates. Because of this, the Kemeny rule is sometimes also
referred to as the Kemeny-Young rule. We recently showed that some, but not all, of the other
well-known voting rules can also be interpreted as maximum likelihood estimators, under different
(more complex) noise models [Conitzer and Sandholm, 2005a].

The techniques presented in this section can be extended to apply to the Kemeny rule as well.
However, to apply to the Kemeny rule, the definition of a set of similar candidates must be modified
to state that for any fixed candidate outside the set, all candidates inside the set must receive exactly
the same number of votes in the pairwise election against that candidate (rather than merely obtain
the same overall result). This modified definition is much less likely to apply than the original
version.

This concludes the part of this dissertation studying the complexity of executing voting rules;
we will return to voting, specifically to the hardness of manipulating elections, in a few chapters, in
Section 8.2. In the next section, we study the complexity of the winner determination problem in
combinatorial auctions.

3.2 Combinatorial auctions with structured item graphs

This section describes work that we did jointly with Jonathan Derryberry (CMU).

As we mentioned at the beginning of this chapter, the winner determination problem in a general
combinatorial auction (CA) is NP-complete [Rothkopf et al., 1998]. Three main approaches have
been pursued to address this: 1) designing optimal search algorithms that are often fast (e.g., [Sand-
holm, 2002a; Sandholm et al., 2005c; Gonen and Lehmann, 2000; Fujishima et al., 1999; Boutilier,
2002]), but require exponential time in the worst case (unless P = NP), 2) designing approxima-
tion algorithms (e.g., [Hoos and Boutilier, 2000; Zurel and Nisan, 2001; van Hoesel and Müller,
2001])—but unfortunately no polytime algorithm can guarantee an approximation (unless ZPP =
NP) [Sandholm, 2002a], and 3) designing optimal polytime algorithms for restricted classes of CAs
(e.g., [Rothkopf et al., 1998; Tennenholtz, 2000; Penn and Tennenholtz, 2000; Sandholm and Suri,
2003]).

5Of course, the rankings of pairs of candidates cannot actually be completely independent, because if a is preferred to
b, and b to c, then a must be preferred to c. Nevertheless, all rankings receive some probability under this model, which
is all that is necessary for the maximum likelihood approach.

58 CHAPTER 3. OUTCOME OPTIMIZATION

This section falls roughly within the third approach: we present hardness and easiness results
for natural classes of CAs. However, we also develop a problem instance parameter (treewidth
of the item graph, described below), such that any CA instance falls within our framework, and
winner determination complexity is exponential in the parameter only. Like almost all of the work
on polynomial-time solvable combinatorial auctions, we restrict our attention to the case where any
two bids on disjoint subsets can be simultaneously accepted—that is, no XOR-constraints between
bids are allowed. (This can be circumvented by adding dummy items that encode these constraints,
as discussed in Section 2.2. However, the additional dummy items may significantly increase the
time required to solve the instance.)

Consider graphs with the auction’s items as vertices, which have the property that for any bid,
the items occurring in it constitute a connected set in the graph. (For instance, the fully connected
graph (with an edge between every pair of items) always has this property.) Such graphs can have
potentially useful structure (for example, the graph may be a tree). For any type of structure, one
can ask the following two questions: 1) how hard is the clearing problem when we are given a valid
item graph with the desired structure? 2) if the graph is not given beforehand, how hard is it to
construct a valid item graph with this structure (if it exists)? We will investigate both questions. 1)
was previously solved for the special case where the graph is a tree or a cycle [Sandholm and Suri,
2003]; 2) was previously solved for the special case where the graph is a line (as pointed out by
Sandholm and Suri [2003], using a result by Korte and Mohring [1989]) or a cycle (as pointed out
by Sandholm and Suri [2003], using a result by Eschen and Spinrad [1993]). In each of these cases,
a low-order polynomial algorithm was presented.

One practical use of such polynomially detectable and solvable special cases is to incorporate
them into optimal search algorithms [Sandholm and Suri, 2003]. At every node of the search tree,
we can detect whether the remaining problem is polynomially solvable, and if it is, we use the
polynomial special-purpose algorithm for solving it. Otherwise the search will continue into the
subtree.

Also, there are two pure uses for graph structures which make questions 1 and 2 easy. First, the
auctioneer can decide on the graph beforehand, and allow only bids on connected sets of items. (In
this case, 1 is most important, but 2 may also be useful if the auctioneer wants to make sure that bids
on certain bundles are allowed.) Second, the auctioneer can allow bids on any bundle; then, once the
bids have been submitted, attempt to construct an item graph that is valid for these bids; and finally,
clear the auction using this graph. Clearly, the second approach is only practical if real instances are
likely to have item graphs with some structure. To a lesser extent, this is also important for the first
approach: if bidders must bid on bundles too different from their desired bundles, economic value
will be lost.

Fortunately, real-world instances are likely to have graphs that are not fully connected. For
instance, an item may receive only isolated bids that do not involve any other items; or an item
may always co-occur with the same other item in bids. As a more detailed example, consider a
combinatorial auction for tourist activities in the Bay Area. One item for sale may be a ticket to
Alcatraz (in San Francisco). Another may be a ticket to the Children’s Discovery Museum (in San
Jose). A third item may be a Caltrain ticket to get back and forth between the two cities.6 Supposing

6The reason that this example focuses on the Bay Area is that we published the corresponding paper in the proceedings
of the AAAI-04 conference, which was held in San Jose.

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 59

(for now) that there is no alternative transportation between the two cities, the only bundle that is
unlikely to receive a bid is {Alcatraz, Children’s Discovery Museum}, because the bidder will need
transportation (no matter which city she is based out of for the duration of her visit). Thus, a valid
graph for this auction is the line graph in Figure 3.9 (because its only disconnected set is the one we
just ruled out).

Caltrain Children’s
Museum

Alcatraz

Figure 3.9: A valid item graph.

To extend the example, suppose that there are alternative modes of transportation which are also
included in the auction: a Rental Car, and a Bus ticket. Now the following bundles are unlikely
to receive a bid: {Alcatraz, Children’s Discovery Museum} (because the bidder requires a form of
transportation) and any bundle containing more than one mode of transportation. Thus, the graph
in Figure 3.10 is a valid item graph (because we just ruled out all its disconnected sets). This graph

Children’s
Museum

Alcatraz Rental Car

Bus

Caltrain

Figure 3.10: Another valid item graph.

does not fall under any of the previously studied structures (it is not a line, tree, or cycle). Still, it
has interesting structure: for instance, it has a treewidth of 2.

The rest of this section is organized as follows. We first show that given an item graph with
bounded treewidth, the clearing problem can be solved in polynomial time. Next, we show how to

60 CHAPTER 3. OUTCOME OPTIMIZATION

construct an item tree (treewidth = 1), if it exists, in polynomial time. This answers the proposed
open question of whether this can be done [Sandholm and Suri, 2003]. (We leave open the question
of whether an item graph with small treewidth (say, 2) can be constructed if it exists.) We show that
constructing the item graph with the fewest edges is NP-complete (even when a graph of treewidth
2 is easy to construct). Finally, we study a variant where a bid is allowed to consist of k connected
sets, rather than just one. We show that the clearing problem is NP-complete even for line graphs
with k = 2, and the graph construction problem is NP-complete for line graphs with k = 5.

3.2.1 Item graphs

We first formally define item graphs.

Definition 11 Given a combinatorial auction clearing problem instance, the graph G = (I, E),
whose vertices correspond to the items in the instance, is a (valid) item graph if for every bid, the
set of items in that bid constitutes a connected set in G.

We emphasize that an item graph, in our definition, does not need to have an edge connecting
every pair of items that occurs in a bid. Rather, each pair only needs to be connected via a path
consisting only of items in the bid. In other words, the subgraph consisting of each bid must form
only one connected component, but it needs not be a clique.

3.2.2 Clearing with bounded treewidth item graphs

In this subsection, we show that combinatorial auctions can be cleared in polynomial time when an
item graph with bounded treewidth is given. This generalizes a result by Sandholm and Suri [Sand-
holm and Suri, 2003] which shows polynomial time clearability when the item graph is a tree
(treewidth = 1).7 Linear-time approximation algorithms for clearing when the item graph has
bounded treewidth have also been given, where the approximation ratio is the treewidth, plus
one [Akcoglu et al., 2002]. In contrast, we will clear the auction optimally.

First we will give a very brief review of treewidth.

Definition 12 A tree decomposition T of a graph G = (I, E) is a tree with the following properties.

1. Each v ∈ T has an associated set Iv of vertices in G.

2.
⋃

v∈T Iv = I (each vertex of G occurs somewhere in T).

3. For each (i1, i2) ∈ E, there is some v ∈ T with i1, i2 ∈ Iv (each edge of G is contained
within some vertex of T).

4. For each i ∈ I , {v ∈ T : i ∈ Iv} is connected in T .

We say that the width of the tree is maxv∈T |Iv| − 1.

7The special case of a tree can also be solved in polynomial time using algorithms for perfect constraint matrices [de
Vries and Vohra, 2003], but those algorithms are slower in practice.

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 61

While the general problem of finding a tree decomposition of a graph with minimum width is
NP-complete, when the treewidth is bounded, the tree decomposition can be constructed in polyno-
mial time [Areborg et al., 1987]. Because we are only interested in the case where the treewidth of
the item graph is bounded, we may assume that the tree decomposition is given to us as well as the
graph itself.

The following (known) lemma will be useful in our proof.

Lemma 5 If X ⊆ I is a connected set in G, then {v ∈ T : Iv ∩X 6= {}} is connected in T .

We are now ready to present our first result.

Theorem 4 Suppose we are given a combinatorial auction problem instance, together with a tree
decomposition T with width tw of an item graph G. Then the optimal allocation can be determined
in O(|T |2(|B| + 1)tw+1) using dynamic programming, where B is the set of bids. (Both with and
without free disposal.)

Proof: Fix a root in T (the “top” of the tree). At every vertex v ∈ T with items Iv, consider all
functions f : Iv → B ∪ {0}, indicating possible assignments of the items to the bids. (f(i) = 0
indicates no commitment as to which bid item i is assigned to.) This set has size (|B| + 1)|Iv |.
Consider the subset FIv of these functions satisfying: 1. If f(i) = b, b must bid on i; 2. All bids in
the image f(Iv) include items that occur higher up in T than v; 3. If f(i) = b and b also bids on
item j ∈ Iv, then f(j) = b also.

The interpretation is that each function in FIv corresponds to a constraint from higher up in
the tree as to which bids should be accepted. We now compute, for every node v (starting from
the leaves and going up to the root), for every function f ∈ FIv , the maximum value that can be
obtained from items that occur in v and its descendant vertices (but not in any other vertices), and
that do not occur in bids in the image of f . (We observe that if v is the root node, there can be no
constraints from higher up in the tree (that is, there is only one f function), and the corresponding
value is the maximum value that can be obtained in the auction.) Denoting this value by r(v, f), we
can compute it using dynamic programming from the leaves up in the following manner:

• Consider all assignments g : {i ∈ Iv : f(i) = 0} → B ∪ {0},8 with the properties that: 1.
If g(i) = b, b must bid on i; 2. The image of g does not include any bids that include items
that occur higher in T than v. 3. If g(i) = b and b also bids on item j ∈ Iv, then f(j) = 0
and g(j) = b also. (Thus, g indicates which bids concerning the unallocated items in Iv we
are considering accepting, but only bids that we have not considered higher in the tree.)

• The value of such an assignment is
∑

b∈g(Iv) a(b)+
∑

w∈T :p(w)=v r(w, qw(f, g)), where g(Iv)
is the image of g, a(b) is the value of bid b, p(w) is the parent of w, and qw(f, g) : Iw → B
maps items occurring in a bid in the image of either f or g to that bid, and everything else to
0.

• The maximum such value over all g is r(v, f).

8In the case of no free disposal, g cannot map to 0.

62 CHAPTER 3. OUTCOME OPTIMIZATION

Because we need to do this computation once for each vertex v in T , the number of assignments
g is at most (|B|+ 1)|Iv | where |Iv| ≤ tw + 1, and for each assignment we need to do a lookup for
each of the children of v, this algorithm has running time O(|T |2(|B|+ 1)tw+1).

The allocation that the algorithm produces can be obtained going back down the tree, as follows:
at the root node, there is only one constraint function f mapping everything to 0 (because no bid has
items higher up the tree). Thus, consider the r-value maximizing assignment groot for the root; all
the bids in its image are accepted. Then, for each of its children, consider the r-value maximizing
assignment under the constraint imposed by groot; all the bids in the image of that assignment are
also accepted, etc.

To show that the algorithm works correctly, we need to show that no bids that are accepted high
up in the tree are “forgotten about” lower in the tree (and its items lower in the tree awarded to
other bids). Because the items in a bid constitute a connected set in the item graph G, by Lemma 5,
the vertices in T containing items from such a bid are also connected. Now, if a bid b is accepted
at the highest vertex v ∈ T containing an item in b (that is, the items in that vertex occurring in
b are awarded to b), each of v’s children must also award all its items occurring in b to b; and by
the connectedness pointed out above, for each child, either there is at least one such an item in that
child, or none of its descendants have any items occurring in b. In the former case, b is also in the
image of the child’s allocation function, and the same reasoning applies to its children, etc.; in the
latter case the fact that b has been accepted is irrelevant to this part of the tree. So, either an accepted
bid forces a constraint in a child, and the fact that the bid was accepted is propagated down the tree;
or the bid is irrelevant to all that child’s descendants as well, and can be safely forgotten about.

3.2.3 An algorithm for constructing a valid item tree

So far we discussed question 1: how to clear the auction given a valid item graph. In this subsection,
we move on to the second question of constructing the graph. We present a polynomial-time algo-
rithm that constructs an item tree (that is, an item graph without cycles), if one exists for the bids.
This closes a recognized open research problem [Sandholm and Suri, 2003], and is necessary if one
wants to use the polynomial item tree clearing algorithm as a subroutine of a search algorithm, as
discussed in the introduction.

First, we introduce some notation. In a combinatorial auction with bid set B and item set I ,
define items(b) ⊆ I to be the set of items in bid b. Also, let Tb refer to the subgraph of a tree
containing only vertices represented by items(b) and all edges among elements of items(b).

With these definitions in hand, we are now ready to present the main theorem of this subsection.
This theorem shows how to give a tree that “minimally violates” the key requirement of an item
graph (namely, that each bid bids on only one component). Thus, if it is actually possible to give a
valid item tree, such a tree will be produced by the algorithm.

Theorem 5 Given an arbitrary set of bids B for items I , a corresponding tree T that minimizes
∑

b∈B

the number of connected components in Tb

can be found in O(|B| · |I|2) time.

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 63

Proof: Consider the algorithm MAKETREE(B, I) shown below, which returns the maximum span-
ning tree of the complete undirected weighted graph over vertices I in which each edge (i, j) has a
weight equal to the number of bids b such that i, j ∈ items(b).
MAKETREE(B, I)
1 A← An |I| × |I| matrix of 0s
2 for each b in B
3 do for each i in items(b)
4 do for each j 6= i in items(b)
5 do A(i, j)← A(i, j) + 1
6 return the maximum spanning tree of the graph A

The running time of MAKETREE(B, I) is O(|B| · |I|2) from the triply nested for loops, plus
the time needed to find the maximum spanning tree. The maximum spanning tree can be found
in O(|I|2) time [Cormen et al., 1990], so the running time of the algorithm as a whole is O(|B| ·
|I|2) + O(|I|2) = O(|B| · |I|2).

To see that MAKETREE(B, I) returns the tree T with the minimum sum of connected compo-
nents across all Tb, note that the total weight of T can be written as

∑

b∈B

the number of edges in T among items(b).

Because T is a tree, each subgraph Tb is a forest, and the number of edges in any forest equals
the number of vertices in the forest, minus the number of components in the forest. It follows that
we can rewrite the above expression as

s =
∑

b∈B

|items(b)|− the number of components in Tb.

Because
∑

b∈B |items(b)| is a constant, maximizing s is the same as minimizing the sum of the
number of connected components across all Tb.

In particular, if an item tree exists for the given bids, then in that tree, each bid bids on only one
connected component, so the summation in Theorem 5 is equal to the number of bids. Because each
term in the summation must always be greater than or equal to 1, this tree minimizes the summation.
Thus, MAKETREE will return a tree for which the summation in Theorem 5 is equal to the number
of bids as well. But this can only happen if each bid bids on only one connected component. So,
MAKETREE will return an item tree.

Corollary 1 MAKETREE will return a valid item tree if and only if one exists, in O(|B| · |I|2) time.
(And whether a tree is a valid item tree can be checked in O(|B| · |I|) time.)

Implications for bid sets without an item tree

The above result presents an algorithm for constructing a tree T from a set of bids that minimizes
the sum of the number of connected components across all Tb. Even when the tree returned is not
a valid item tree, we can still use it to help us clear the auction, as follows. Suppose MAKETREE

64 CHAPTER 3. OUTCOME OPTIMIZATION

was “close” to being able to construct an item tree, in the sense that only a few bids were split
into multiple components. Then, we could use brute force to determine which of these split bids
to accept (we could search over all subsets of these split bids), and solve the rest of the problem
using dynamic programming as in [Sandholm and Suri, 2003]. If the number of split bids is k,
this algorithm takes O(2k · |B| · |I|) time (so it is efficient if k is small). We note, however, that
MAKETREE(B, I) does not minimize the number of split bids (k), as would be desirable for the
proposed search technique. Rather, it minimizes the total number of components (summed over
bids). Thus, it may prefer splitting many bids into few components each, over splitting few bids into
many components each. So there may exist trees that have fewer split bids than the tree returned
by MAKETREE (and it would be interesting to try to come up with other algorithms that try to
minimize the number of split bids).

Also, MAKETREE does not solve the general problem of constructing an item graph of small
treewidth if one exists. The straightforward adaptation of the MAKETREE algorithm to finding an
item graph of treewidth 2 (where we find the maximum spanning graph of treewidth 2 in the last
step) does not always provide a valid item graph, even when a valid item graph of treewidth 2 exists.
To see why, consider an auction instance for which the graph in Figure 3.11 is the unique item graph
of treewidth 2 (for example, because for each edge, there is a bid on only its two endpoints). If there

C

D

B

A

Figure 3.11: A counterexample.

are many bids on the bundle {A, B, D}, and few other bids, the adapted algorithm will draw the
edge (A, D). As a result, it will fail to draw one of the other edges (because otherwise the graph
would have treewidth 3), and thus the graph will not be a valid item graph.

For now, we leave open the question of how to construct a valid item graph with treewidth 2 (or
3, or 4, ...) if one exists. However, in the next subsection, we solve a related question.

3.2.4 Constructing the item graph with the fewest edges is hard

The more edges an item graph has, the less structure there is in the instance. A natural question
is therefore to construct the valid item graph with the fewest edges. It should be pointed out that
this is not necessarily the best graph to work on. For example, given our algorithm, a graph of
treewidth 2 may be more desirable to work on than a graph with fewer edges of high treewidth. On

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 65

the other hand, assuming that the items cannot be disjoint into two separate components (which is
easy to check), a tree is always a graph with the minimum number of edges (and if a tree exists, then
only trees have the minimum number of edges). So in this case, generating a graph of minimum
treewidth is the same as generating a graph with the minimum number of edges.

We next show that constructing the graph with the fewest edges is hard. Interestingly, the
question is hard already for instances with treewidth 2. (For instances of treewidth 1 (forests) it
is easy: divide the items into as many separate components (with no bids across more than one
component) as possible, and run our MAKETREE algorithm on each.) Thus, if a graph of treewidth
2 can be constructed in polynomial time (and P6=NP), the algorithm for doing so cannot be used to
get the fewest edges—unlike the case of treewidth 1.

Theorem 6 Determining whether an item tree with fewer than q edges exists is NP-complete, even
when an item graph of treewidth 2 is guaranteed to exist and each bid is on at most 5 items, and
whether or not the item tree we construct is required to be of treewidth 2.

Proof: The problem is in NP because we can nondeterministically generate a graph with the items
as vertices and at most k edges, and check whether it is valid item graph. To show that the problem
is NP-complete, we reduce an arbitrary 3SAT instance to the following set of items and bids. For
every variable v ∈ V , let there be two items i+v, i−v. Furthermore, let there be two more items,
i0 and i1. Let the set of bids be as follows. For every v ∈ V , let there be bids on the following
sets: {i0, i+v}, {i0, i−v}, {i+v, i−v}, {i+v, i−v, i1}. Finally, for every clause c ∈ C, let there be a
bid on {i+v : +v ∈ c} ∪ {i−v : −v ∈ c} ∪ {i0, i1} (the set of all items corresponding to literals
in the clause, plus the two extra items—we note that because we are reducing from 3SAT, these are
at most 5 items). Let the target number of edges be q = 4|V |. We proceed to show that the two
instances are equivalent.

First, suppose there exists a solution to the 3SAT instance. Then, let there be an edge between
any two items which constitute a bid by themselves; additionally, let there be an edge between i+v

and i1 whenever v is set to true in the SAT solution, and an edge between i−v and i1 whenever v is
set to false in the SAT solution (for a total of 4|V | edges). We observe that all the bids of the form
{i+v, i−v, i1} are now connected. Also, for any c ∈ C, because the 3SAT solution satisfied c, either
i1 is connected to some i+v with +v ∈ c, or i1 is connected to some i−v with −v ∈ c. (And all
the items besides i1 in the bid corresponding to c are clearly connected.) So all the bids constitute
connected subsets, and there exists a valid item graph with at most 4|V | edges. (Also, this is a series
parallel graph, and such graphs have treewidth 2.)

Now, suppose there exists a valid item graph with at most 4|V | edges. Of course, there must
be an edge between any two items which constitute a bid by themselves; and because of the bids
on three items, for every v ∈ V , there must be an edge either between i+v and i1, or between i−v

and i1. This already requires 4|V | edges, so there cannot be any more edges. Because each bid
corresponding to a clause c must be connected, there must be either an edge between some i+v with
+v ∈ c and i1, or between some i−v with −v ∈ c and i1. But then, it follows that if we set v to true
if there is an edge between i+v and i1, and to false if there is an edge between i−v and i1, we have
a solution to the SAT instance.

All that remains to show is that in these instances, a valid item graph of treewidth 2 always exists.
Consider the graph that has an edge between any two items which constitute a bid by themselves;

66 CHAPTER 3. OUTCOME OPTIMIZATION

an edge between i+v and i1 for any v ∈ V ; and an edge between i0 and i1 (for a total of 4|V | + 1
edges). This is a series parallel graph, and such graphs have treewidth 2.

3.2.5 Applications

The techniques in this section can be applied to any combinatorial auction winner determination
instance whose bids happen to be consistent with some (structured) item graph. Specifically, there
is no requirement that there is an item graph that makes sense for the items for sale a priori (before
the bids arrive), based on the inherent properties of the items. Nevertheless, it is important to identify
settings in which such a priori sensible item graphs do exist, for at least the following reasons. First,
as described in the introduction, the auctioneer may wish to guarantee that the techniques described
in this section can be applied by disallowing any bids that are not consistent with a prespecified item
graph. This prespecified item graph should be chosen to be at least approximately consistent with
bidders’ likely valuations to minimize the loss of economic value due to this restriction. Second,
especially in the case where the number of bidders is large, it is unlikely that the bids will be
consistent with any structured item graph, unless the items are fundamentally related to each other
in the manner prescribed by such an item graph.

Some settings for which a priori sensible item graphs exist have already been proposed. For
example, Sandholm and Suri propose a web shopping scenario in which webpages describing the
items for sale are structured as a tree, and bidders can, upon deciding that they wish to include the
item on a webpage in their bid, continue to browse to neighboring pages [Sandholm and Suri, 2003].

In this subsection, we lay out two new settings in which the inherent relation between the items
naturally suggests an item graph with the desired properties. In both of these settings, the “items”
for sale do not correspond exactly to the resources under consideration. In the first setting we
discuss, combinatorial renting, an item consists of the permission to use a given resource in a given
time period. In the second setting, an item consists of a given set of conditions under which a
given resource is allocated to the item’s winner. We will make this more precise in the following
subsubsections.

Combinatorial renting

In a combinatorial renting auction, we have a set of resources R and a number of time periods T over
which to rent out these resources. In this context, an “item” for sale is a resource-time period pair
(r, t) ∈ R× {1, 2, . . . , T}, and a bid consists of a subset of such pairs, representing at which times
the bidder wants to rent which resources, together with a value offered for this subset. For example,
a company renting out construction equipment may have a cement mixer, a truck, and a crane, each
of which can be rented out over the course of three periods. A construction company working
on a project may then bid (for example) ({(mixer, 1), (truck, 2), (crane, 2), (truck, 3)}, $15000),
indicating that it wants to rent the mixer in the first period, the truck and the crane in the second
period, and the truck again in the third period, for a total value of $15,000.

The constraint that we do not rent the same resource to multiple bidders at the same time cor-
responds to the constraint that we do not award the same item (r, t) to multiple bidders, and thus
the winner determination problem reduces to the standard combinatorial auction winner determi-

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 67

nation problem. Moreover, the combinatorial renting auction winner determination problem is in
general no easier than the standard combinatorial auction winner determination problem: for ex-
ample, if T = 1, we effectively have a standard combinatorial auction in which items correspond
directly to resources. The renting setting becomes more interesting when the multitude of the items
is mostly due to the time dimension rather than the resource dimension. Thus, let us assume that
the number of resources is small, i.e. bounded by a constant k. Additionally, suppose that the bids
satisfy the following restriction: the set of time periods in which a bid demands items is connected.
That is, for a bid on bundle B, for any t1, t2, t3 ∈ {1, 2, . . . , T}, t1 < t3 < t2, r1, r2 ∈ R with
(r1, t1), (r2, t2) ∈ B, there must exist some r3 ∈ R such that (r3, t3) ∈ B. This is a sensible
restriction when each bid corresponds to a project for which resources must be rented (e.g. the
construction example above) and the project is scheduled for a particular time interval.

Under this restriction, the following is a valid item graph:

• For every t ∈ {1, 2, . . . , T}, draw a subgraph Gt whose vertex set is {(r, t) : r ∈ R}, and
make it fully connected (edges between every pair of vertices).

• Connect the subgraphs by, for every t ∈ {1, 2, . . . , T−1}, drawing an edge from every vertex
in Gt to every vertex in Gt+1.

(r1, T)

(r3, T)

(r2, T)

(r1, 2)(r1, 1)

(r3, 1)

(r2, 1)

(r3, 2)

(r2, 2)

G1 G2 GT

...

Figure 3.12: Item graph for renting three resources r1, r2, r3.

Moreover, this graph has bounded treewidth as shown by the following tree decomposition (in which
Vt is the vertex set of Gt):

V , V V1, V2 V2, V3 V3, V4 T−1 T...

Figure 3.13: Tree decomposition in renting setting.

(In fact, because the tree decomposition is a path, this shows that the original graph has bounded
pathwidth.) The width of this decomposition is 2|R|−1. This is an a priori bound, and it is possible
that given the actual bids, an item graph with even smaller treewidth exists.

We now turn to a different setting in which our techniques can be applied.

Conditional awarding of the items

In a combinatorial conditional awarding auction, we again have a set of resources R; in addition,
we have a set of possible future states of the world S. (For now, we will only concern ourselves with

68 CHAPTER 3. OUTCOME OPTIMIZATION

a single point in the future, say, the beginning of the next fiscal year.) In this context, an “item” for
sale is a resource-state pair (r, s) ∈ R×S, and a bid consists of a subset of such pairs, representing
under which conditions the bidder wants to be awarded which resources. For example, there may be
three states of the world, one in which the price of oil is below $40 per barrel, one in which the price
is between $40 and $60, and one in which the price is above $60. A car dealer may have a sport
utility vehicle (SUV) and a small car for sale. Then, a bidder may bid ({(SUV, po < $40), (small
car, po < $40), (SUV, $40 ≤ po ≤ $60), (small car, po > $60)}, $30000) indicating that she wants
to receive both cars when the price of oil is low, only the SUV when the price of oil is in the middle
range, and only the small car when the price of oil is in the high range; and that this total package
is worth $30,000 to her. (In reality, the bidder may wish to make different payments depending on
which state of the world materializes; this can be incorporated into the model by using the bidder’s
expected payment.) We note that the “items” for sale are effectively securities that bidders can use
to hedge against uncertain future events.

The constraint that we do not award the same resource to multiple bidders in the same state
of the world corresponds to the constraint that we do not award the same item (r, s) to multiple
bidders, and thus the winner determination problem reduces to the standard combinatorial auction
winner determination problem. Also, in the case where |S| = 1, we effectively have a standard
combinatorial auction in which items correspond directly to resources. Thus, as in the combinatorial
renting setting, the most interesting case to look at is where R is small but S is potentially large.
One interesting setting to look at is the one in which there is a linear order on the state space S. For
example, the “price of oil” state space described above has such an order (higher vs. lower prices).
This case is technically similar to the renting problem studied in the previous subsubsection: if
the number of items is bounded by a constant k, and the states in which a bid demands items are
connected (or there are only small gaps), then we can solve the problem in polynomial time. The
connectedness property is likely to hold when the bidder is interested in a set of similar states (for
example, the bidder wishes to hedge against high and very high oil prices).

The state space may also be the cross product of multiple linear orders. For example, a state
could represent a combination of the price of oil and the exchange rate between the US dollar and
the Euro. In this case, we may expect that the set of states in which a bid demands items is connected
in a grid graph such as the following:

We can turn such a grid into a valid item graph by replacing each state with a fully connected
graph (a clique) whose vertices are all items that involve that state (one for every resource), and
drawing edges between any pair of items in adjacent cliques. The treewidth of this graph is at most
|R| times the treewidth of the grid (the graph over states), because given any tree decomposition
of the grid, we can replace each state by all the items involving that state (one for every resource)
to obtain a valid tree decomposition of the item graph. Unfortunately, grids do not have bounded
treewidth; rather, an m × n grid has treewidth Θ(min{m, n}). Of course, this is still much better
than the trivial bound of mn that would correspond to exhaustive search.

Combining both settings: conditional renting

As a third application, we may wish to combine the applications of the previous two subsubsections
and let the bidder rent the items conditionally on the state of the world at the time of the renting. For
example, the construction company described in the first subsubsection may wish to rent different

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 69

Euro>$1.5

Euro<$1.1

$1.1<=Euro<=$1.5

oil price>$60$40<=oil price<=$60oil price<$40

Figure 3.14: State space graph based on oil price and US$/Euro exchange rate.

resources depending on the price of oil (or the weather, or anything else) at the times the resources
are to be rented. Hence, the context in which a resource is awarded now consists of a (time,state)
pair. If there is a linear order on the state space, we may expect that the set of contexts in which a
bid demands items is connected in a grid graph such as the following:

time period 2time period 1 time period 3

oil price<$40

oil price>$60

$40<=oil price<=$60

Figure 3.15: Context space graph based on time and state space (oil price).

Technically, this leads to same problem as the two-dimensional state space described in the
previous subsubsection.

3.2.6 Bids on multiple connected sets

In this subsection, we investigate what happens if we reduce the requirements on item graphs some-
what. Specifically, let the requirement be that for each bid, the items form at most k connected
components in the graph. (The case where k = 1 is the one we have studied up to this point.) So, to
see if a bid is valid given the graph, consider how many connected components the items in the bid
constitute in the graph; if (and only if) there are at most k components, the bid is valid. Figure 3.16
shows an example item tree. One bid bids on all the items encapsulated by rectangles (2 connected

70 CHAPTER 3. OUTCOME OPTIMIZATION

components); the other, on all the items encapsulated by ellipses (3 connected components). Thus,
if k = 2, then the first bid is valid, but the second one is not. (Equivalently, the graph is not valid
for the second bid.)

Figure 3.16: An item tree.

As we will see, both clearing when a simple graph is known, and detecting whether a simple
graph exists, become hard for k > 1.

Clearing is hard even with 2 connected sets on a line graph

Even if the item graph is a line, it is hard to clear auctions in which bidders may bundle two intervals
together. To show this, we prove the following slightly stronger theorem.

Theorem 7 If an item graph is created that consists of two disconnected line graphs, and bidders
are permitted to bundle one connected component from each line, then determining if the auction
can generate revenue r is NP-complete.

Proof: The problem is in NP because the general clearing problem is in NP. To show that it is
NP-complete, an arbitrary instance of VERTEXCOVER will be reduced to a corresponding auction
problem. In VERTEXCOVER, the goal is to determine whether there exists a set of vertices C of
size at most k in a graph G = (V, E) such that for each edge (x, y) ∈ E, either x ∈ C or y ∈ C.

To perform the reduction, given G = (V, E), create an item ui for each edge ei. Place all of the
ui items into the upper line. In addition, for each vertex vi ∈ V , create the items l

ej
vi for each edge ej

that vi is part of. For each vi, align all of its corresponding l
ej
vi items into a contiguous interval on the

lower line. Now, create the following bids: 1. A bid of price 2 for each “edge item pair” (l
ej
vi , uj).

2. A bid of price 1 for each “vertex interval bundle,” {l
ej
vi |for all ej for which vi is part of ej}.

We now show that there exists a vertex cover of size at most k exactly when the optimal revenue
of the corresponding auction is at least 2 · |E|+ |V | − k.

Suppose there is a vertex cover of size k for a graph G = (V, E). Then it is possible to sell all
|E| of the edge items breaking up only k of the vertex interval bundles. The resulting revenue if

3.2. COMBINATORIAL AUCTIONS WITH STRUCTURED ITEM GRAPHS 71

only those k intervals are rendered unsellable by matching one or more of their members with edge
items is r = 2 · |E| + |V | − k as required; the profit is 2 for each of the edge pairs of the form
(l

ej
vi , uj) that are sold, plus 1 for each of the vertex interval bundles that have not had any of their

items matched to edges.
Conversely, suppose there is a way to achieve revenue r = 2 · |E| + |V | − k. Suppose all of

the edge item pairs were sold in this case. Then, because |V | − k vertex intervals were sold, only
k were spoiled by selling some of their items with edge pairs. These k vertices can be used as a
vertex cover. On the other hand, suppose not all edge pairs were sold. Then the revenue could be
increased by selling the rest of the edge pairs even if it means spoiling additional vertex bundles
because edge pairs carry a price of 2 while vertex interval bundles only have price 1. This implies
that it is possible, by selling all of the edge item pairs, to acheive revenue r ′ = 2 · |E|+ |V |−k′ > r
so that k′ < k, where k′ represents the size of a possible vertex cover.

Corollary 2 The problem of optimally clearing bids that bundle together at most two connected
components of a line item graph is NP-hard because joining the two lines of item graphs of the form
discussed in Theorem 7 constitutes a trivially correct reduction.

Constructing a line graph is hard even with 5 connected sets

We now move on to the task of constructing a simple item graph that is valid when bids are allowed
to consist of multiple components. The graph construction question is perhaps less interesting
here because, as we just showed, clearing remains hard even if we are given an item line graph.
Nevertheless, the graph may still be helpful in reducing the clearing time: maybe the clearing time
bound can be reduced to a smaller exponential function, or maybe it can reduce the clearing time in
practice. In this subsection, we show that unfortunately, detecting whether a valid line graph exists
with multiple (5) components is also NP-complete.

Lemma 6 Suppose a bid is allowed to contain up to k connected components of items. Then, if
there are m ≥ 2k + 5 items, there exists a set of O(mk) bids such that there is exactly one line
graph (one ordering of the items, up to symmetry) consistent with these bids.

Proof: Label the items 1 through m. For any subset of k + 1 items of which at least two items
are successors (i and i + 1), let there be a bid on that set of items. We observe that there are at
most (m − 1)

(

m
k−1

)

such bids (choosing the successive pair of items first, and then the remaining
k − 1—of course we are double-counting some combinations this way, but we only want an upper
bound), which is O(mk). Ordering the items 1, 2, . . . , m (or equivalently m, m− 1, . . . , 1), we get
a valid item graph (because any two successive items are adjacent in this graph, there are at most k
components in every bid). What remains to show is that if the items are ordered differently, there
is at least one bid with k + 1 components. If the items are ordered differently, there is at least one
pair of successive (according to the original labeling) items i, i + 1 which are not adjacent in the
graph. Consider the set of these two items, plus every item that has an odd index in the ordering of
this graph (besides the ones that coincide with, or are adjacent to, the first two). This set has at least
2+(k +3)−4 = k +1 items, two of which are adjacent in the original labeling, and each of which

72 CHAPTER 3. OUTCOME OPTIMIZATION

is a separate component. It follows that there exists a subset of this set which constituted one of the
bids, and now has k + 1 components.

Lemma 7 Suppose each bid is allowed to contain at most k connected components, and we have
a set of bids that forces a unique ordering of the items (up to symmetry). Then suppose we replace
one item r with two new items n1 and n2, and let every bid bidding on the original item bid on
both the new items. Then the only valid orderings of the new set of items are the valid orderings for
the original set, where r is replaced by n1, n2 (where these two can be placed in any order). This
extends to replacing multiple items by pairs.

Proof: First we show that these orderings are indeed valid. Clearly, no bid that did not include r
will now have more components. Also, no bid that did include r will now have more components,
because the component including r is still intact as a single component (since the bid bids on both n1

and n2). So the new orderings are valid. Now we will show that these are the only valid orderings.
We observe that if we remove one of n1, n2 from a given valid ordering as well as from the bids,
then we must still have a valid ordering. But because now r has been replaced by a single item,
we know that the valid ordering for this is unique (up to symmetry). It follows that n1 and n2 had
taken r’s place in the unique valid ordering. The argument extends straightforwardly to replacing
multiple items by item pairs.

Theorem 8 Given the bids, detecting whether an ordering of the items (a line graph) exists such
that each bidder bids on at most 5 connected components is NP-complete.

Proof: The problem is in NP because we can nondeterministically generate an ordering of the
items, and check whether any bid is bidding on more than 5 components. To show that the problem
is NP-hard, we reduce an arbitrary 3SAT instance to the following sets of items and bids. For every
variable v ∈ V , let there be four items, i∗v, iv, i+v, i−v. Let the set of bids be as follows. First,
using Lemma 6 and Lemma 7, let there be O(m5) bids such that the only remaining valid orderings
are i∗v1

, iv1
, {i+v1

, i−v1
}, i∗v2

, iv2
, {i+v2

, i−v2
}, . . . , i∗vn

, ivn , {i+vn , i−vn}. (Here, two items are in
set notation if their relative order is not yet determined.) Finally, for every clause c ∈ C, let there
be a bid bidding on any iv with v occurring in c (whether it is +v or −v), and on any i+v with +v
occurring in c, and on any i−v with −v occurring in c. (So, 6 items in total.) We show the instances
are equivalent.

First suppose there exists a solution to the 3SAT instance. Then, whenever a variable v is set to
true, let i+v be ordered to the left of i−v; otherwise, let i+v be ordered to the right of i−v. Then, for
every clause, for some literal +v (or −v) occurring in that clause, i+v (or i−v) is adjacent to iv, and
it follows that the bid corresponding to the clause has at most 5 connected components. So, there is
a valid ordering.

Now suppose there exists a valid ordering. Because of the i∗v items, the only items in a bid
corresponding to a clause that can possibly be adjacent are an i+v and the corresponding iv, or
an i−v and the corresponding iv. This must happen at least once for every bid corresponding to a
clause (or the bid would have 6 components. But then, if we set a variable v to true if i+v and iv

3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 73

are adjacent, and to false otherwise, every clause must have at least one +v in it where v is set to
true, or at least one −v in it where v is set to false. It follows that there is a solution to the 3SAT
instance.

This concludes the part of this dissertation studying the complexity of the winner determination
problem in combinatorial auctions; we will return to combinatorial auctions and exchanges (specif-
ically, to the use of the VCG mechanism in such settings) in the chapter after the next chapter,
Section 5.1. In the next section, we study the complexity of the outcome optimization problem in
the setting of expressive preference aggregation for donations to charities.

3.3 Expressive preference aggregation for donations to charities

In this section, we study the outcome optimization problem for expressive preference aggregation
for donations to charities, as defined in Section 2.3. We will refer to this problem as the clearing
problem. The formal definition follows.

Definition 13 (DONATION-CLEARING) We are given a set of n bids (each given by a utility
function for each charity, and a payment willingness function) over charities c1, c2, . . . , cm as de-
scribed in Section 2.3. Additionally, we are given an objective function (e.g. surplus, or total
amount donated). We are asked to find an objective-maximizing valid outcome.

One aspect of the problem is not captured by this definition: if we want a decentralized solu-
tion, in which bidders donate their money to the charity directly (rather than to a center who then
redistributes it), then we also need to specify which bidder donates how much to which charity. As-
suming that we are given the centralized solution, any greedy algorithm that increases the cash flow
from any bidder who has not yet paid enough, to any charity that has not yet received enough, until
either the bidder has paid enough or the charity has received enough, will provide such a specifica-
tion. Recall, however, that we may wish to allow for bidders to state that they do not wish to donate
to certain charities. In general, checking whether a given centralized solution can be accomplished
through decentralized payments when there are such constraints can be modeled as a MAX-FLOW
problem. In the MAX-FLOW instance, there is an edge from the source node s to each bidder bj ,
with a capacity of πbj (as specified in the centralized solution); an edge from each bidder bj to each
charity ci that the bidder is willing to donate money to, with a capacity of∞; and an edge from each
charity ci to the target node t with capacity πci (as specified in the centralized solution).

In the remainder of this section, we will no longer consider the problem of decentralizing solu-
tions; rather, we focus on the DONATION-CLEARING problem. How difficult the DONATION-
CLEARING problem is depends on the types of bids used and the language in which they are
expressed. This is the topic of the next subsection.

3.3.1 Hardness of clearing the market

In this subsection, we will show that the clearing problem is completely inapproximable, even
when every bidder’s utility function is linear (with slope 0 or 1 in each charity’s payments), each

74 CHAPTER 3. OUTCOME OPTIMIZATION

bidder cares either about at most two charities or about all charities equally, and each bidder’s
payment willingness function is a step function. We will reduce from MAX2SAT (given a formula
in conjunctive normal form (where each clause has two literals) and a target number of satisfied
clauses T , does there exist an assignment of truth values to the variables that makes at least T
clauses true?), which is NP-complete [Garey et al., 1976].

Theorem 9 There exists a reduction from MAX2SAT instances to DONATION-CLEARING instances
such that 1. If the MAX2SAT instance has no solution, then the only valid outcome is the zero out-
come (no bidder pays anything and no charity receives anything); 2. Otherwise, there exists a
solution with positive surplus. Additionally, the DONATION-CLEARING instances that we reduce
to have the following properties: 1. Every ui

j is a line; that is, the utility that each bidder derives
from any charity is linear; 2. All the ui

j have slope either 0 or 1; 3. Every bidder either has at
most 2 charities that affect her utility (with slope 1), or all charities affect her utility (with slope 1);
4. Every bid is a threshold bid; that is, every bidder’s payment willingness function wj is a step
function.

Proof: The problem is in NP because we can nondeterministically choose the payments to be made
and received, and check the validity and objective value of this outcome.

In the following, we will represent bids as follows: ({(ck, ak)}, s, t) indicates that uk
j (πck

) =
akπck

(this function is 0 for ck not mentioned in the bid), and wj(uj) = t for uj ≥ s, wj(uj) = 0
otherwise.

To show NP-hardness, we reduce an arbitrary MAX2SAT instance, given by a set of clauses
K = {k} = {(l1k, l

2
k)} over a variable set V together with a target number of satisfied clauses T , to

the following DONATION-CLEARING instance. Let the set of charities be as follows. For every
literal l ∈ L, there is a charity cl. Then, let the set of bids be as follows. For every variable v, there is
a bid bv = ({(c+v, 1), (c−v, 1)}, 2, 1−

1
4|V |). For every literal l, there is a bid bl = ({(cl, 1)}, 2, 1).

For every clause k = {l1k, l
2
k} ∈ K, there is a bid bk = ({(cl1k

, 1), (cl2k
, 1)}, 2, 1

8|V ||K|). Finally,
there is a single bid that values all charities equally: b0 = ({(c1, 1), (c2, 1), . . . , (cm, 1)}, 2|V | +

T
8|V ||K| ,

1
4 + 1

16|V ||K|). We show the two instances are equivalent.
First, suppose there exists a solution to the MAX2SAT instance. If in this solution, l is true,

then let πcl
= 2 + T

8|V |2|K| ; otherwise πcl
= 0. Also, the only bids that are not accepted (meaning

the threshold is not met) are the bl where l is false, and the bk such that both of l1k, l
2
k are false.

First we show that no bidder whose bid is accepted pays more than she is willing to. For each
bv, either c+v or c−v receives at least 2, so this bidder’s threshold has been met. For each bl,
either l is false and the bid is not accepted, or l is true, cl receives at least 2, and the threshold
has been met. For each bk, either both of l1k, l

2
k are false and the bid is not accepted, or at least

one of them (say lik) is true (that is, k is satisfied) and clik
receives at least 2, and the threshold

has been met. Finally, because the total amount received by the charities is 2|V | + T
8|V ||K| , b0’s

threshold has also been met. The total amount that can be extracted from the accepted bids is at
least |V |(1− 1

4|V |)+ |V |+T 1
8|V ||K| +

1
4 + 1

16|V ||K|) = 2|V |+ T
8|V ||K| +

1
16|V ||K| > 2|V |+ T

8|V ||K| ,
so there is positive surplus. So there exists a solution with positive surplus to the DONATION-
CLEARING instance.

3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 75

Now suppose there exists a nonzero outcome in the DONATION-CLEARING instance. First
we show that it is not possible (for any v ∈ V) that both b+v and b−v are accepted. For, this would
require that πc+v + πc−v ≥ 4. The bids bv, b+v, b−v cannot contribute more than 3, so we need
another 1 at least. It is easily seen that for any other v′, accepting any subset of {bv′ , b+v′ , b−v′}
would require that at least as much is given to c+v′ and c−v′ as can be extracted from these bids,
so this cannot help. Finally, all the other bids combined can contribute at most |K| 1

8|V ||K| + 1
4 +

1
16|V ||K| < 1. It follows that we can interpret the outcome in the DONATION-CLEARING instance
as a partial assignment of truth values to variables: v is set to true if b+v is accepted, and to false if
b−v is accepted. All that is left to show is that this partial assignment satisfies at least T clauses.

First we show that if a clause bid bk is accepted, then either bl1k
or bl2k

is accepted (and thus

either l1k or l2k is set to true, hence k is satisfied). If bk is accepted, at least one of cl1k
and cl2k

must

be receiving at least 1; without loss of generality, say it is cl1k
, and say l1k corresponds to variable

v1
k (that is, it is +v1

k or −v1
k). If cl1k

does not receive at least 2, bl1k
is not accepted, and it is easy

to check that the bids bv1
k
, b+v1

k
, b−v1

k
contribute (at least) 1 less than is paid to c+v1

k
and c+v1

k
. But

this is the same situation that we analyzed before, and we know it is impossible. All that remains to
show is that at least T clause bids are accepted.

We now show that b0 is accepted. Suppose it is not; then one of the bv must be accepted. (The
solution is nonzero by assumption; if only some bk are accepted, the total payment from these bids
is at most |K| 1

8|V ||K| < 1, which is not enough for any bid to be accepted; and if one of the bl is
accepted, then the threshold for the corresponding bv is also reached.) For this v, bv1

k
, b+v1

k
, b−v1

k

contribute (at least) 1
4|V | less than the total payments to c+v and c−v. Again, the other bv and bl

cannot (by themselves) help to close this gap; and the bk can contribute at most |K| 1
8|V ||K| < 1

4|V | .
It follows that b0 is accepted.

Now, in order for b0 to be accepted, a total of 2|V | + T
8|V ||K| must be donated. Because is not

possible (for any v ∈ V) that both b+v and b−v are accepted, it follows that the total payment by the
bv and the bl can be at most 2|V | − 1

4 . Adding b0’s payment of 1
4 + 1

16|V ||K| to this, we still need
T− 1

2

8|V ||K| from the bk. But each one of them contributes at most 1
8|V ||K| , so at least T of them must be

accepted.

Corollary 3 Unless P=NP, there is no polynomial-time algorithm for approximating DONATION-
CLEARING (with either the surplus or the total amount donated as the objective) within any ratio
f(n), where f is a nonzero function of the size of the instance. This holds even if the DONATION-
CLEARING structures satisfy all the properties given in Theorem 9.

Proof: Suppose we had such a polynomial time algorithm, and applied it to the DONATION-
CLEARING instances that were reduced from MAX2SAT instances in Theorem 9. It would return
a nonzero solution when the MAX2SAT instance has a solution, and a zero solution otherwise. So
we can decide whether arbitrary MAX2SAT instances are satisfiable this way, and it would follow
that P=NP.

This should not be interpreted to mean that our approach is infeasible. First, as we will show,
there are very expressive families of bids for which the problem is solvable in polynomial time.

76 CHAPTER 3. OUTCOME OPTIMIZATION

Second, NP-completeness is often overcome in practice (especially when the stakes are high). For
instance, even though the problem of clearing combinatorial auctions is NP-complete [Rothkopf
et al., 1998] (even to approximate [Sandholm, 2002a]), they are typically solved to optimality in
practice [Sandholm et al., 2006; Sandholm, 2006].

3.3.2 Mixed integer programming formulation

In this subsection, we give a mixed integer programming (MIP) formulation for the general prob-
lem. We also discuss in which special cases this formulation reduces to a linear programming (LP)
formulation. In such cases, the problem is solvable in polynomial time, because linear programs
can be solved in polynomial time [Khachiyan, 1979].

The variables of the MIP defining the final outcome are the payments made to the charities,
denoted by πci , and the payments extracted from the bidders, πbj . In the case where we try to avoid
direct payments and let the bidders pay the charities directly, we add variables πci,bj indicating
how much bj pays to ci, with the constraints that for each ci, πci ≤

∑

bj

πci,bj ; and for each bj ,

πbj ≥
∑

ci

πci,bj . Additionally, there is a constraint πci,bj = 0 whenever bidder bj is unwilling to pay

charity ci. The rest of the MIP can be phrased in terms of the πci and πbj .

The objectives we have discussed earlier are both linear: surplus is given by
n
∑

j=1
πbj −

m
∑

i=1
πci ,

and total amount donated is given by
m
∑

i=1
πci (coefficients can be added to represent different weights

on the different charities in the objective).

The constraint that the outcome should be valid (no deficit) is given simply by:
n
∑

j=1
πbj ≥

m
∑

i=1
πci .

For every bidder, for every charity, we define an additional utility variable ui
j indicating the

utility that this bidder derives from the payment to this charity. The bidder’s total utility is given by

another variable uj , with the constraint that uj =
m
∑

i=1
ui

j .

Each ui
j is given as a function of πci by the (piecewise linear) function provided by the bidder.

In order to represent this function in the MIP formulation, we will merely place upper bounding
constraints on ui

j , so that it cannot exceed the given functions. The MIP solver can then push the ui
j

variables all the way up to the constraint, in order to extract as much payment from this bidder as
possible. In the case where the ui

j are concave, this is easy: if (sl, tl) and (sl+1, tl+1) are endpoints

of a finite linear segment in the function, we add the constraint that ui
j ≤ tl +

πci−sl

sl+1−sl
(tl+1 − tl).

If the final (infinite) segment starts at (sk, tk) and has slope d, we add the constraint that ui
j ≤

tk +d(πci−sk). Using the fact that the function is concave, for each value of πci , the tightest upper
bound on ui

j is the one corresponding to the segment above that value of πci , and therefore these
constraints are sufficient to force the correct value of ui

j .
When the function is not concave, we require (for the first time) some binary variables. First,

we define another point on the function: (sk+1, tk+1) = (sk +M, tk +dM), where d is the slope of

3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 77

the infinite segment and M is any upper bound on the πcj . This has the effect that we will never be

on the infinite segment again. Now, let xi,j
l be an indicator variable that should be 1 if πci is below

the lth segment of the function, and 0 otherwise. To effect this, first add a constraint
k
∑

l=0

xi,j
l = 1.

Now, we aim to represent πci as a weighted average of its two neighboring si,j
l . For 0 ≤ l ≤ k + 1,

let λi,j
l be the weight on si,j

l . We add the constraint
k+1
∑

l=0

λi,j
l = 1. Also, for 0 ≤ l ≤ k + 1, we

add the constraint λi,j
l ≤ xl−1 + xl (where x−1 and xk+1 are defined to be zero), so that indeed

only the two neighboring si,j
l have nonzero weight. Now we add the constraint πci =

k+1
∑

l=0

si,j
l λi,j

l ,

and now the λi,j
l must be set correctly. Then, we can set ui

j =
k+1
∑

l=0

ti,jl λi,j
l . (This is a standard MIP

technique [Nemhauser and Wolsey, 1999].)
Finally, each πbj is bounded by a function of uj by the (piecewise linear) function provided

by the bidder (wj). Representing this function is entirely analogous to how we represented ui
j as a

function of πci . (Again we will need binary variables only if the function is not concave.)
Because we only use binary variables when either a utility function ui

j or a payment willingness
function wj is not concave, it follows that if all of these are concave, our MIP formulation is simply
a linear program—which can be solved in polynomial time. Thus:

Theorem 10 If all functions ui
j and wj are concave (and piecewise linear), the DONATION-

CLEARING problem can be solved in polynomial time using linear programming.

Even if some of these functions are not concave, we can simply replace each such function
by the smallest upper bounding concave function, and use the linear programming formulation to
obtain an upper bound on the objective—which may be useful in a search formulation of the general
problem.

3.3.3 Why one cannot do much better than linear programming

One may wonder if, for the special cases of the DONATION-CLEARING problem that can be
solved in polynomial time with linear programming, there exist special-purpose algorithms that are
much faster than linear programming algorithms. In this subsection, we show that this is not the
case. We give a reduction from (the decision variant of) the general linear programming problem
to (the decision variant of) a special case of the DONATION-CLEARING problem (which can be
solved in polynomial time using linear programming). (The decision variant of an optimization
problem asks the binary question: “Can the objective value exceed o?”) Thus, any special-purpose
algorithm for solving the decision variant of this special case of the DONATION-CLEARING prob-
lem could be used to solve a decision question about an arbitrary linear program just as fast. (And
thus, if we are willing to call the algorithm a logarithmic number of times, we can solve the opti-
mization version of the linear program.)

We first observe that for linear programming, a decision question about the objective can simply
be phrased as another constraint in the LP (forcing the objective to exceed the given value); then, the

78 CHAPTER 3. OUTCOME OPTIMIZATION

original decision question coincides with asking whether the resulting linear program has a feasible
solution.

Theorem 11 The question of whether an LP (given by a set of linear constraints9) has a feasible
solution can be modeled as a DONATION-CLEARING instance with payment maximization as the
objective, with 2v charities and v + c bids (where v is the number of variables in the LP, and c
is the number of constraints). In this model, each bid bj has only linear ui

j functions, and is a

partially acceptable threshold bid (wj(u) = tj for u ≥ sj , otherwise wj(u) =
utj
sj

). The v bids
corresponding to the variables mention only two charities each; the c bids corresponding to the
constraints mention only two times the number of variables in the corresponding constraint.

Proof: For every variable xi in the LP, let there be two charities, c+xi and c−xi . Let H be some
number such that if there is a feasible solution to the LP, there is one in which every variable has
absolute value at most H .

In the following, we will represent bids as follows: ({(ck, ak)}, s, t) indicates that uk
j (πck

) =

akπck
(this function is 0 for ck not mentioned in the bid), and wj(uj) = t for uj ≥ s, wj(uj) =

ujt
s

otherwise.
For every variable xi in the LP, let there be a bid bxi = ({(c+xi , 1), (c−xi , 1)}, 2H, 2H − c

v).

For every constraint
∑

i
rj
i xi ≤ sj in the linear program, let there be a bid bj = ({(c−xi , r

j
i)}i:rj

i >0
∪

{(c+xi ,−rj
i)}i:rj

i <0
, (
∑

i
|rj

i |)H − sj , 1). Let the target total amount donated be 2vH .

Suppose there is a feasible solution (x∗
1, x

∗
2, . . . , x

∗
v) to the LP. Without loss of generality, we

can suppose that |x∗
i | ≤ H for all i. Then, in the DONATION-CLEARING instance, for every i,

let πc+xi
= H + x∗

i , and let πc−xi
= H − x∗

i (for a total payment of 2H to these two charities).
This allows us to extract the maximum payment from the bids bxi—a total payment of 2vH − c.
Additionally, the utility of bidder bj is now

∑

i:rj
i >0

rj
i (H−x∗

i)+
∑

i:rj
i <0

−rj
i (H +x∗

i) = (
∑

i
|rj

i |)H−

∑

i
rj
i x

∗
i ≥ (

∑

i
|rj

i |)H − sj (where the last inequality stems from the fact that constraint j must be

satisfied in the LP solution), so it follows we can extract the maximum payment from all the bidders
bj , for a total payment of c. It follows that we can extract the required 2vH payment from the
bidders, and there exists a solution to the DONATION-CLEARING instance with a total amount
donated of at least 2vH .

Now suppose there is a solution to the DONATION-CLEARING instance with a total amount
donated of at least vH . Then the maximum payment must be extracted from each bidder. From
the fact that the maximum payment must be extracted from each bidder bxi , it follows that for each
i, πc+xi

+ πc−xi
≥ 2H . Because the maximum extractable total payment is 2vH , it follows that

for each i, πc+xi
+ πc−xi

= 2H . Let x∗
i = πc+xi

− H = H − πc−xi
. Then, from the fact that

the maximum payment must be extracted from each bidder bj , it follows that (
∑

i
|rj

i |)H − sj ≤

∑

i:rj
i >0

rj
i πc−xi

+
∑

i:rj
i <0

−rj
i πc+xi

=
∑

i:rj
i >0

rj
i (H−x∗

i)+
∑

i:rj
i <0

−rj
i (H +x∗

i) = (
∑

i
|rj

i |)H−
∑

i
rj
i x

∗
i .

9These constraints must include bounds on the variables (including nonnegativity bounds), if any.

3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 79

Equivalently,
∑

i
rj
i x

∗
i ≤ sj . It follows that the x∗

i constitute a feasible solution to the LP.

3.3.4 Quasilinear bids

Another class of bids of interest is the class of quasilinear bids. In a quasilinear bid, the bidder’s
payment willingness function is linear in utility: that is, wj = uj . (Because the units of utility are
arbitrary, we may as well let them correspond exactly to units of money—so we do not need a con-
stant multiplier.) In most cases, quasilinearity is an unreasonable assumption: for example, usually
bidders have a limited budget for donations, so that the payment willingness will stop increasing
in utility after some point (or at least increase slower in the case of a “softer” budget constraint).
Nevertheless, quasilinearity may be a reasonable assumption in the case where the bidders are large
organizations with large budgets, and the charities are a few small projects requiring relatively little
money. In this setting, once a certain small amount has been donated to a charity, a bidder will
derive no more utility from more money being donated from that charity. Thus, the bidders will
never reach a high enough utility for their budget constraint (even when it is soft) to take effect, and
thus a linear approximation of their payment willingness function is reasonable. Another reason for
studying the quasilinear setting is that it is the easiest setting for mechanism design, which we will
discuss shortly. In this subsection, we will see that the clearing problem is much easier in the case
of quasilinear bids.

First, we address the case where we are trying to maximize surplus (which is the most natural
setting for mechanism design). The key observation here is that when bids are quasilinear, the
clearing problem decomposes across charities.

Lemma 8 Suppose all bids are quasilinear, and surplus is the objective. Then we can clear the
market optimally by clearing the market for each charity individually. That is, for each bidder bj ,
let πbj =

∑

ci

πbi
j
. Then, for each charity ci, maximize (

∑

bj

πbi
j
) − πci , under the constraint that for

every bidder bj , πbi
j
≤ ui

j(πci).

Proof: The resulting solution is certainly valid: first of all, at least as much money is collected as is
given away, because

∑

bj

πbj −
∑

ci

πci =
∑

bj

∑

ci

πbi
j
−

∑

ci

πci =
∑

ci

((
∑

bj

πbi
j
)− πci)—and the terms of

this summation are the objectives of the individual optimization problems, each of which can be set
at least to 0 (by setting all the variables are set to 0), so it follows that the expression is nonnegative.
Second, no bidder bj pays more than she is willing to, because uj − πbj =

∑

ci

ui
j(πci) −

∑

ci

πbi
j

=
∑

ci

(ui
j(πci)−πbi

j
)—and the terms of this summation are nonnegative by the constraints we imposed

on the individual optimization problems.
All that remains to show is that the solution is optimal. Because in an optimal solution, we will

extract as much payment from the bidders as possible given the πci , all we need to show is that the
πci are set optimally by this approach. Let π∗

ci
be the amount paid to charity πci in some optimal

solution. If we change this amount to π′
ci

and leave everything else unchanged, this will only affect
the payment that we can extract from the bidders because of this particular charity, and the difference

80 CHAPTER 3. OUTCOME OPTIMIZATION

in surplus will be
∑

bj

ui
j(π

′
ci

)−ui
j(π

∗
ci

)−π′
ci

+π∗
ci

. This expression is, of course, 0 if π′
ci

= π∗
ci

. But

now notice that this expression is maximized as a function of π ′
ci

by the decomposed solution for
this charity (the terms without π′

ci
in them do not matter, and of course in the decomposed solution

we always set πbi
j

= ui
j(πci)). It follows that if we change πci to the decomposed solution, the

change in surplus will be at least 0 (and the solution will still be valid). Thus, we can change the πci

one by one to the decomposed solution without ever losing any surplus.

Theorem 12 When all bids are quasilinear and surplus is the objective, DONATION-CLEARING
can be done in linear time.

Proof: By Lemma 8, we can solve the problem separately for each charity. For charity ci, this
amounts to maximizing (

∑

bj

ui
j(πci))− πci as a function of πci . Because all its terms are piecewise

linear functions, this whole function is piecewise linear, and must be maximized at one of the points
where it is nondifferentiable. It follows that we need only check all the points at which one of the
terms is nondifferentiable.

Unfortunately, the decomposing lemma does not hold for payment maximization.

Proposition 1 When the objective is payment maximization, even when bids are quasilinear, the
solution obtained by decomposing the problem across charities is in general not optimal (even with
concave bids).

Proof: Consider a single bidder b1 placing the following quasilinear bid over two charities c1 and c2:
u1

1(πc1) = 2πci for 0 ≤ πci ≤ 1, u1
1(πc1) = 2 +

πci−1

4 otherwise; u2
1(πc2) =

πci
2 . The decomposed

solution is πc1 = 7
3 , πc2 = 0, for a total donation of 7

3 . But the solution πc1 = 1, πc2 = 2 is also
valid, for a total donation of 3 > 7

3 .

In fact, when payment maximization is the objective, DONATION-CLEARING remains (weakly)
NP-complete in general.

Theorem 13 DONATION-CLEARING is (weakly) NP-complete when payment maximization is the
objective, even when every bid is concerns only one charity (and has a step-function utility function
for this charity), and is quasilinear.

Proof: That the problem is in NP follows from the fact that the more general problem is in NP. To
show NP-hardness, we reduce an arbitrary KNAPSACK instance (given by m pairs (ki, vi)1≤i≤m,
a cost limit K, and a target value V), to the following DONATION-CLEARING instance. Let there
be m + 1 charities, c0, c1, . . . , cm. Let there be one quasilinear bidder b0 bidding u0

0(πc0) = 0 for
0 ≤ πc0 ≤ 1, u0

0(πc0) = K + 1 otherwise. Additionally, for each 1 ≤ j ≤ m, let there be a bidder
bj bidding uj

j(πcj) = 0 for 0 ≤ πcj < ki, uj
j(πcj) = εvi otherwise (where ε

∑

1≤j≤m
vi < 1). Let the

target total amount donated be K + 1 + εV . We now show the two instances are equivalent.

3.3. EXPRESSIVE PREFERENCE AGGREGATION FOR DONATIONS TO CHARITIES 81

First, suppose there exists a solution to the KNAPSACK instance, that is, a function f :

{1, . . . , m} → {0, 1} so that
m
∑

i=1
f(i)ki ≤ K and

m
∑

i=1
f(i)vi ≥ V . Then, let πc0 = 1 + εV +

K −
m
∑

i=1
f(i)ki, and for i > 0, πci = f(i)ki, for a total donated of K + 1 + εV . Because

1 + εV + K −
m
∑

i=1
f(i)ki ≥ 1, b0’s utility is K + 1. For j > 0, bj’s utility is f(j)εvj , for a

total utility of
m
∑

j=1
f(j)εvj ≥ εV for these m bidders. It follows that the total utility is at least

the total amount donated, and the outcome is valid. So there exists a solution to the DONATION-
CLEARING instance.

Now suppose there exists a solution to the DONATION-CLEARING instance. Let f : {1, . . . , m} →
{0, 1} be given by f(i) = 0 if πci < ki, and f(i) = 1 otherwise. Because the total donated is at

least K +1+εV , and the amount that is extractable from the bidders is at most K +1+
m
∑

j=1
f(j)εvj ,

it follows that
m
∑

j=1
f(j)vj ≥ V . Also, because the total amount donated to charities 1 through m

can be at most K + ε
∑

1≤j≤m
vi < K + 1, it follows that

m
∑

j=1
f(j)ki < K + 1. Because the ki are

integers, this means
m
∑

j=1
f(j)ki ≤ K. So there exists a solution to the KNAPSACK instance.

However, when the bids are also concave, a simple greedy clearing algorithm is optimal.

Theorem 14 Given a DONATION-CLEARING instance with payment maximization as the ob-
jective where all bids are quasilinear and concave, consider the following algorithm. Start with

πci = 0 for all charities. Then, letting γci =

d
P

bj

ui
j(πci)

dπci
(at nondifferentiable points, these deriva-

tives should be taken from the right), increase πc∗i
(where c∗i ∈ arg maxci γci), until either γc∗i

is no
longer the highest (in which case, recompute c∗i and start increasing the corresponding payment),
or

∑

bj

uj =
∑

ci

πci and γc∗i
< 1. Finally, let πbj = uj .

Proof: The outcome is valid because everyone pays exactly what she is willing to, and because there
is no budget deficit:

∑

bj

πbj =
∑

bj

uj =
∑

ci

πci . To show optimality, let π∗
ci

be the amount paid to

charity ci in some optimal solution, and let π′
ci

be the amount paid to charity i in the solution given
by the greedy algorithm. We first observe that it is not possible that for any i, π∗

ci
≥ π′

ci
with at least

one of these inequalities being strict. This is because at the solution found by the greedy algorithm,

γc∗i
is less than 1; hence, using concavity, if π∗

ci
> π′

ci
, then

π∗
ci
∫

π′
ci

γcidπci < π∗
ci
− π′

ci
. In other words,

the additional payment that needs to be made to the charity is less than the additional payment
that can be collected from the bidders because of this charity. Because the surplus at the greedy
algorithm’s solution is 0, it follows that if for any i, π∗

ci
≥ π′

ci
with at least one of these inequalities

being strict, the surplus at the optimal solution woud be negative, and hence the solution would not

82 CHAPTER 3. OUTCOME OPTIMIZATION

be valid. Thus, either for all i, π∗
ci
≤ π′

ci
(but in this case the greedy solution has at least as large

a total payment as the optimal solution, and we are done); or there exist i, j such that π∗
ci

> π′
ci

but π∗
cj

< π′
cj

. It cannot be the case that γci(π
′
ci

) > γcj (π
∗
cj

), for then the greedy algorithm would
have increased πci beyond π′

ci
before increasing πcj beyond π∗

cj
. So, γci(π

′
ci

) ≤ γcj (π
∗
cj

). Because
π∗

ci
> π′

ci
, and using concavity, if we decrease π∗

ci
and simultaneously increase π∗

cj
by the same

amount, we will not decrease the total payment we can extract—while keeping the payment to be
made to the charities the same. It follows this cannot make the solution worse or invalid. We can
keep doing this until there is no longer a pair i, j such that π∗

ci
> π′

ci
but π∗

cj
< πcj , and by the

previous we know that for all i, π∗
ci
≤ π′

ci
—and hence the greedy solution is optimal.

(A similar greedy algorithm works when the objective is surplus and the bids are quasilinear
and concave, with as only difference that we stop increasing the payments as soon as γc∗i

< 1.)

This concludes the part of this dissertation studying the complexity of the outcome optimization
problem for expressive preference aggregation for donations to charities; we will study mechanism
design aspects of this setting in the chapter after the next chapter, Section 5.2. In the next sec-
tion, we study the complexity of the outcome optimization problem in more general settings with
externalities.

3.4 Expressive preference aggregation in settings with externalities

In this section, we study the optimization problem for expressive preference aggregation in settings
with externalities, as defined in Section 2.4. We study the following two computational problems.
(Recall that a solution is feasible if no agent prefers the default outcome (all variables set to 0) to
it.)

Definition 14 (FEASIBLE-CONCESSIONS) We are given a concessions setting (as defined in
Section 2.4). We are asked whether there exists a nontrivial feasible solution.

Definition 15 (SW-MAXIMIZING-CONCESSIONS) We are given a concessions setting (as de-
fined in Section 2.4). We are asked to find a feasible solution that maximizes social welfare (the sum
of the agents’ utilities).

The following shows that if the first problem is hard, the second problem is hard to approximate
to any ratio.

Proposition 2 Suppose that FEASIBLE-CONCESSIONS is NP-hard even under some constraints
on the instance (but no constraint that prohibits adding another agent that derives positive utility
from any nontrivial setting of the variables of the other agents). Then it is NP-hard to approximate
SW-MAXIMIZING-CONCESSIONS to any positive ratio, even under the same constraints.

Proof: We reduce an arbitrary FEASIBLE-CONCESSIONS instance to a SW-MAXIMIZING-
CONCESSIONS instance that is identical, except that a single additional agent has been added
that derives positive utility from any nontrivial setting of the variable(s) of the other agents, and

3.4. EXPRESSIVE PREFERENCE AGGREGATION IN SETTINGS WITH EXTERNALITIES83

to whose variables the other agents are completely indifferent (they cannot derive any utility from
the new agent’s variable(s)). If the original instance has no nontrivial feasible solution, then neither
does the new instance, and the maximal social welfare that can be obtained is 0. On the other hand,
if the original instance has a nontrivial feasible solution, then the new instance has a feasible solu-
tion with positive social welfare: the exact same solution is still feasible, and the new agent will get
positive utility (and the others, nonnegative utility). It follows that any algorithm that approximates
SW-MAXIMIZING-CONCESSIONS to some positive ratio will return a social welfare of 0 if there
is no solution to the FEASIBLE-CONCESSIONS problem, and positive social welfare if there is a
solution—and thus the algorithm could be used to solve an NP-hard problem.

3.4.1 Hardness with positive and negative externalities

We first show that if we do not make the assumption of only negative externalities, then finding
a feasible solution is NP-complete even when each agent controls only one variable. (In all the
problems that we study, membership in NP is straightforward, so we just give the hardness proof.)

Theorem 15 FEASIBLE-CONCESSIONS is NP-complete, even when all utility functions decom-
pose (and all the components uk

i are step functions), and each agent controls only one variable.

Proof: We reduce an arbitrary SAT instance (given by variables V and clauses C) to the following
FEASIBLE-CONCESSIONS instance. Let the set of agents be as follows. For each variable v ∈ V ,
let there be an agent av, controlling a single variable xav . Also, for every clause c ∈ C, let there
be an agent ac, controlling a single variable xac . Finally, let there be a single agent a0 controlling
xa0

. Let all the utility functions decompose, as follows: For any v ∈ V , uav
av

(xav) = −δxav≥1. For
any v ∈ V , ua0

av
(xa0

) = δxa0
≥1. For any c ∈ C, uac

ac
(xac) = (n(c)− 2|V |)δxac≥1 where n(c) is the

number of variables that occur in c in negated form. For any c ∈ C, ua0
ac

(xa0
) = (2|V | − 1)δxa0

≥1.
For any c ∈ C and v ∈ V where +v occurs in c, uav

ac
(xav) = δxav≥1. For any c ∈ C and

v ∈ V where −v occurs in c, uav
ac

(xav) = −δxav≥1. ua0
a0

(xa0
) = −|C|δxa0

≥1. For any c ∈ C,
uac

a0
(xac) = δxac≥1. All the other functions are 0 everywhere. We proceed to show that the instances

are equivalent.
First suppose there exists a solution to the SAT instance. Then, let xav = 1 if v is set to true

in the solution, and xav = 0 if v is set to false in the solution. Let xac = 1 for all c ∈ C, and let
xa0

= 1. Then, the utility of every av is at least−1+1 = 0. Also, the utility of a0 is−|C|+|C| = 0.
And, the utility of every ac is n(c)− 2|V |+ 2|V | − 1 + pt(c)− nt(c) = n(c)− 1 + pt(c)− nt(c),
where pt(c) is the number of variables that occur positively in c and are set to true, and nt(c) is
the number of variables that occur negatively in c and are set to true. Of course, pt(c) ≥ 0 and
−nt(c) ≥ −n(c); and if at least one of the variables that occur positively in c is set to true, or at
least one of the variables that occur negatively in c is set to false, then pt(c)− nt(c) ≥ −n(c) + 1,
so that the utility of ac is at least n(c) − 1 − n(c) + 1 = 0. But this is always the case, because
the assignment satisfies the clause. So there exists a solution to the FEASIBLE-CONCESSIONS
instance.

Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. If it were
the case that xa0

< 1, then for all the av we would have xav < 1 (or av would have a negative

84 CHAPTER 3. OUTCOME OPTIMIZATION

utility), and for all the ac we would have xac < 1 (because otherwise the highest utility possible
for ac is n(c) − 2|V | < 0, because all the xa0

are below 1). So the solution would be trivial. It
follows that xa0

≥ 1. Thus, in order for a0 to have nonnegative utility, it follows that for all c ∈ C,
xac ≥ 1. Now, let v be set to true if xav = 1, and to false if xav = 0. So the utility of every ac

is n(c) − 2|V | + 2|V | − 1 + pt(c) − nt(c) = n(c) − 1 + pt(c) − nt(c). In order for this to be
nonnegative, we must have (for any c) that either nt(c) < n(c) (at least one variable that occurs
negatively in c is set to false) or pt(c) > 0 (at least one variable that occurs positively in c is set to
true). So we have a satisfying assignment.

3.4.2 Hardness with only negative externalities

Next, we show that even if we do make the assumption of only negative externalities, then finding a
feasible solution is still NP-complete, even when each agent controls at most two variables.

Theorem 16 FEASIBLE-CONCESSIONS is NP-complete, even when there are only negative exter-
nalities, all utility functions decompose (and all the components are step functions), and each agent
controls at most two variables.

Proof: We reduce an arbitrary SAT instance to the following FEASIBLE-CONCESSIONS instance.
Let the set of agents be as follows. For each variable v ∈ V , let there be an agent av, controlling
variables x+

av
and x−

av
. Also, for every clause c ∈ C, let there be an agent ac, controlling a single

variable xac . Let all the utility functions decompose, as follows: For any v ∈ V , uav ,+
av (x+

av
) =

−|C|δx+
av≥1, and uav ,−

av (x−
av

) = −|C|δx−
av≥1. For any v ∈ V and c ∈ C, uac

av
(xac) = δxac≥1. For

any c ∈ C, uac
ac

(xac) = −δxac≥1. For any c ∈ C and v ∈ V where +v occurs in c, uav ,+
ac (x+

av
) =

δx+
av≥1; and for any c ∈ C and v ∈ V where −v occurs in c, uav ,−

ac (x−
av

) = δx−
av≥1. All the other

functions are 0 everywhere. We proceed to show that the instances are equivalent.
First suppose there exists a solution to the SAT instance. Then, let x+

av
= 1 if v is set to true in

the solution, and x+
av

= 0 otherwise; and, let x−
av

= 1 if v is set to false in the solution, and x−
av

= 0
otherwise. Let xac = 1 for all c ∈ C. Then, the utility of every av is −|C| + |C| = 0. Also, the
utility of every ac is at least −1 + 1 (because all clauses are satisfied in the solution, there is at least
one +v ∈ c with x+

av
= 1, or at least one −v ∈ c with x−

av
= 1. So there exists a solution to the

FEASIBLE-CONCESSIONS instance.
Now suppose there exists a solution to the FEASIBLE-CONCESSIONS instance. At least one

of the x+
av

or at least one of the x−
av

must be set nontrivially (≥ 1), because otherwise no xac can
be set nontrivially. But this implies that for any clause c ∈ C, xac ≥ 1 (for otherwise the av

with a nontrivial setting of its variables would have negative utility). So that none of the ac have
nonnegative utility, it must be the case that for any c ∈ C, either there is at least one +v ∈ c with
x+

av
≥ 1, or at least one −v ∈ c with x−

av
≥ 1. Also, for no variable v ∈ V can it be the case that

both x+
av
≥ 1 and x−

av
≥ 1, as this would leave av with negative utility. But then, letting v be set to

true if x+
av
≥ 1, and to false otherwise must satisfy every clause. So there exists a solution to the

SAT instance.

3.4. EXPRESSIVE PREFERENCE AGGREGATION IN SETTINGS WITH EXTERNALITIES85

3.4.3 An algorithm for the case of only negative externalities and one variable per
agent

We have shown that with both positive and negative externalities, finding a feasible solution is hard
even when each agent controls only one variable; and with only negative externalities, finding a
feasible solution is hard even when each agent controls at most two variables. In this subsection
we show that these results are, in a sense, tight, by giving an algorithm for the case where there
are only negative externalities and each agent controls only one variable. Under some minimal
assumptions, this algorithm will return (or converge to) the maximal feasible solution, that is, the
solution in which the variables are set to values that are as large as possible. Although the setting
for this algorithm may appear very restricted, it still allows for the solution of interesting problems.
For example, consider governments negotiating over by how much to reduce their countries’ carbon
dioxide emissions, for the purpose of reducing global warming.

We will not require the assumption of decomposing utility functions in this subsection (except
where stated). The following claim shows the sense in which the maximal solution is well-defined
in the setting under discussion (there cannot be multiple maximal solutions, and under a continuity
assumption, a maximal solution exists).

Theorem 17 In a concessions setting with only negative externalities and in which each agent
controls only one variable, let x1, x2, . . . , xn and x′

1, x
′
2, . . . , x

′
n be two feasible solutions. Then

max{x1, x
′
1}, max{x2, x

′
2}, . . . , max{xn, x′

n} is also a feasible solution. Moreover, if all the utility
functions are continuous, then, letting Xi be the set of values for xi that occur in some feasible
solution, sup(X1), sup(X2), . . . , sup(Xn) is also a feasible solution.

Proof: For the first claim, we need to show that every agent i receives nonnegative utility in the
proposed solution. Suppose without loss of generality that xi ≥ x′

i. Then, we have ui(max{x1, x
′
1},

max{x2, x
′
2}, . . . , max{xi, x

′
i}, . . . , max{xn, x′

n}) = ui(max{x1, x
′
1}, max{x2, x

′
2}, . . . , xi, . . . ,

max{xn, x′
n}) ≥ ui(x1, x2, . . . , xi, . . . , xn), where the inequality stems from the fact that there

are only negative externalities. But the last expression is nonnegative because the first solution is
feasible.

For the second claim, we will find a sequence of feasible solutions that converges to the proposed
solution. By continuity, any agent’s utility at the limit point must be the limit of that agent’s utility
in the sequence of feasible solutions; and because these solutions are all feasible, this limit must
be nonnegative. For each agent i, let {(xi,j

1 , xi,j
2 , . . . , xi,j

n)}j∈N be a sequence of feasible solutions
with limj→∞ xi,j

i = sup(Xi). By repeated application of the first claim, we have that (for any j)
maxi{x

i,j
1 }, maxi{x

i,j
2 }, . . . , maxi{x

i,j
n } is a feasible solution, giving us a new sequence of feasible

solutions. Moreover, because this new sequence dominates every one of the original sequences, and
for each agent i there is at least one original sequence where the ith element converges to sup(Xi),
the sequence converges to the solution sup(X1), sup(X2), . . . , sup(Xn).

We are now ready to present the algorithm. First, we give an informal description. The algorithm
proceeds in stages: in each stage, for each agent, it eliminates all the values for that agent’s variable
that would result in a negative utility for that agent regardless of how the other agents set their
variables (given that they use values that have not yet been eliminated).

86 CHAPTER 3. OUTCOME OPTIMIZATION

ALGORITHM 1
1. for i := 1 to n {
2. X0

i := R
≥0 (alternatively, X0

i := [0, M] where M is some upper bound) }
3. t := 0
4. repeat until ((∀i) X t

i = Xt−1
i) {

5. t := t + 1
6. for i := 1 to n {
7. Xt

i := {xi ∈ Xt−1
i : ∃x1 ∈ Xt−1

1 , x2 ∈ Xt−1
2 , . . . , xi−1 ∈ Xt−1

i−1 , xi+1 ∈

Xt−1
i+1 , . . . , xn ∈ Xt−1

n : ui(x1, x2, . . . , xi, . . . , xn) ≥ 0} } }

The set updates in step 7 of the algorithm are simple to perform, because all the X t
i always take the

form [0, r], [0, r), or R
≥0 (because we are in a concessions setting), and in step 7 it never hurts to

choose values for x1, x2, . . . , xi−1, xi+1, . . . , xn that are as large as possible (because we have only
negative externalities). Roughly, the goal of the algorithm is for sup(X t

1), sup(Xt
2), . . . , sup(Xt

n) to
converge to the maximal feasible solution (that is, the feasible solution such that all of the variables
are set to values at least as large as in any other feasible solution). We now show that the algorithm
is sound, in the sense that it does not eliminate values of the xi that occur in feasible solutions.

Theorem 18 Suppose we are running Algorithm 1 in a concessions setting with only negative ex-
ternalities where each agent controls only one variable. If for some t, r /∈ X t

i , then there is no
feasible solution with xi set to r.

Proof: We will prove this by induction on t. For t = 0 the theorem is vacuously true. Now suppose
we have proved it true for t = k; we will prove it true for t = k + 1. By the induction assumption,
all feasible solutions lie within Xk

1 × . . .×Xk
n . But if r 6= Xk+1

i , this means exactly that there is no
feasible solution in Xk

1 × . . .×Xk
n with xi = r. It follows there is no feasible solution with xi = r

at all.

However, the algorithm is not complete, in the sense that (for some “unnatural” functions) it
does not eliminate all the values of the xi that do not occur in feasible solutions.

Proposition 3 Suppose we are running Algorithm 1 in a concessions setting with only negative
externalities where each agent controls only one variable. For some (discontinuous) utility functions
(even ones that decompose), the algorithm will terminate with nontrivial X t

i even though the only
feasible solution is the zero solution.

Proof: Consider the following symmetric example:

• u1
1(x1) = −x1 for x1 < 1, u1

1(x1) = −2 otherwise;

• u2
1(x2) = (x2)

2 for x2 < 1, u2
1(x2) = 1 otherwise;

• u1
2(x1) = (x1)

2 for x1 < 1, u1
2(x1) = 1 otherwise;

• u2
2(x2) = −x2 for x2 < 1, u2

2(x2) = −2 otherwise.

3.4. EXPRESSIVE PREFERENCE AGGREGATION IN SETTINGS WITH EXTERNALITIES87

There is no solution with x1 ≥ 1 or x2 ≥ 1, because the corresponding agent’s utility would
definitely be negative. In order for agent 1 to have nonnegative utility we must have (x2)

2 ≥ x1.
Unless they are both zero, this implies x2 > x1. Similarly, in order for agent 2 to have nonnegative
utility we must have (x1)

2 ≥ x2, and unless they are both zero, this implies x1 > x2. It follows
that the only solution is the zero solution. Unfortunately, in the algorithm, we first get X1

1 = X1
2 =

[0, 1); then also, we get X2
1 = X2

2 = [0, 1) (for any x1 < 1, we can set x2 =
√

(x1) < 1 and agent
1 will get utility 0, and similarly for agent 2). So the algorithm terminates.

However, if we make some reasonable assumptions on the utility functions (specifically, that
they are either continuous or piecewise constant), then the algorithm is complete, in the sense that
it will (eventually) remove any values of the xi that are too large to occur in any feasible solu-
tion. Thus, the algorithm converges to the solution. We will present the case of continuous utility
functions first.

Theorem 19 Suppose we are running Algorithm 1 in a concessions setting with only negative
externalities where each agent controls only one variable. Suppose that all the utility functions
are continuous. Also, suppose that all the X0

i are initialized to [0, M]. Then, all the X t
i are

closed sets. Moreover, if the algorithm terminates after the tth iteration of the repeat loop, then
sup(Xt

1), sup(Xt
2), . . . , sup(Xt

n) is feasible, and it is the maximal solution. If the algorithm does
not terminate, then limt→∞ sup(Xt

1), limt→∞ sup(Xt
2), . . . , limt→∞ sup(Xt

n) is feasible, and it is
the maximal solution.

Proof: First we show that all the X t
i are closed sets, by induction on t. For t = 0, the claim is

true, because [0, M] is a closed set. Now suppose they are all closed for t = k; we will show them
to be closed for t = k + 1. In the step in the algorithm in which we set Xk+1

i , in the choice of
x1, . . . , xi−1, xi+1, . . . , xn, we may as well always set each of these xj to sup(Xk

j) (which is inside
Xk

j because Xk
j is closed by the induction assumption), because this will maximize agent i’s utility.

It follows that Xk+1
i = {xi : ui(sup(Xk

1), . . . , sup(Xk
i−1), xi, sup(Xk

i+1), . . . , sup(Xk
n)) ≥ 0}.

But because ui is continuous, this set must be closed by elementary results from analysis.
Now we proceed to show the second claim. Because each X t

i is closed, it follows that sup(X t
i) ∈

Xt
i . This implies that, for every agent i, there exist x1 ∈ Xt−1

1 , x2 ∈ Xt−1
2 , . . . , xi−1 ∈ Xt−1

i−1 , xi+1 ∈

Xt−1
i+1 , . . . , xn ∈ Xt−1

n such that ui(x1, x2, . . . , sup(Xt
i), . . . , xn) ≥ 0. Because for every agent i′,

Xt
i′ = Xt−1

i′ (the algorithm terminated), this is equivalent to saying that there exist x1 ∈ Xt
1, x2 ∈

Xt
2, . . . , xi−1 ∈ Xt

i−1, xi+1 ∈ Xt
i+1, . . . , xn ∈ Xt

n such that ui(x1, x2, . . . , sup(Xt
i), . . . , xn) ≥ 0.

Of course, for each of these xi′ , we have xi′ ≤ sup(Xt
i′). Because there are only negative externali-

ties, it follows that ui(sup(Xt
1), sup(Xt

2), . . . , sup(Xt
i), . . . , sup(Xt

n)) ≥ ui(x1, x2, . . . , sup(Xt
i),

. . . , xn) ≥ 0. Thus, sup(X t
1), sup(Xt

2), . . . , sup(Xt
n) is feasible. It is also maximal by Theorem 18.

Finally, we prove the third claim. For any agent i, for any t, we have ui(sup(Xt−1
1), sup(Xt−1

2),
. . . , limt′→∞ sup(Xt′

i), . . . , sup(Xt−1
n)) ≥ ui(sup(Xt−1

1), sup(Xt−1
2), . . . , sup(Xt

i), . . . ,
sup(Xt−1

n)) (because the X t
i are decreasing in t, and we are in a concessions setting). The last ex-

pression evaluates to a nonnegative quantity, using the same reasoning as in the proof of the second
claim with the fact that sup(X t

i) ∈ Xt
i . But then, by continuity, 0 ≤ limt→∞(ui(sup(Xt−1

1),
sup(Xt−1

2), . . . , limt′→∞ sup(Xt′
i), . . . , sup(Xt−1

n))) = ui(limt→∞ sup(Xt−1
1),

limt→∞ sup(Xt−1
2), . . . , limt′→∞ sup(Xt′

i), . . . , limt→∞ sup(Xt−1
n)) = ui(limt→∞ sup(Xt

1),

88 CHAPTER 3. OUTCOME OPTIMIZATION

limt→∞ sup(Xt
2), . . . , limt→∞ sup(Xt

i), . . . , limt→∞ sup(Xt
n). It follows that limt→∞ sup(Xt

1),
limt→∞ sup(Xt

2), . . . , limt→∞ sup(Xt
n)) is feasible. It is also maximal by Theorem 18.

We observe that piecewise constant functions are not continuous, and thus Theorem 19 does not
apply to the case where the utility functions are piecewise constant. Nevertheless, the algorithm
works on such utility functions, and we can even prove that the number of iterations is linear in
the number of pieces. There is one caveat: the way we have defined piecewise constant functions
(as linear combinations of step functions δx≥a), the maximal solution is not well defined (the set of
feasible points is never closed on the right, i.e. it does not include its least upper bound). To remedy
this, call a feasible solution quasi-maximal if there is no feasible solution that is larger (that is, all
the xi are set to values that are at least as large) and that gives some agent a different utility (so it is
maximal for all intents and purposes).

Theorem 20 Suppose we are running Algorithm 1 in a concessions setting with only negative exter-
nalities where each agent controls only one variable. If all the utility functions decompose and all
the components uk

i are piecewise constant with finitely many steps (the range of the uk
i is finite), then

the algorithm will terminate after at most T iterations of the repeat loop, where T is the total num-
ber of steps in all the self-components ui

i (i.e. the sum of the sizes of the ranges of these functions).
Moreover, if the algorithm terminates after the tth iteration of the repeat loop, then any solution
(x1, x2, . . . , xn) with for all i, xi ∈ arg maxxi∈Xt

i

∑

j 6=i

ui
j(xi), is feasible and quasi-maximal.

Proof: If for some i and t, X t
i 6= Xt−1

i , it must be the case that for some value r in the range of
ui

i, the preimage of this value is in X t−1
i − Xt

i (it has just been eliminated from consideration).
Informally, one of the steps of the function ui

i has been eliminated from consideration. Because
this must occur for at least one agent in every iteration of the repeat loop before termination,
it follows that there can be at most T iterations before termination. Now, if the algorithm ter-
minates after the tth iteration of the repeat loop, and a solution (x1, x2, . . . , xn) with for all i,
xi ∈ arg maxxi∈Xt

i

∑

j 6=i

ui
j(xi) is chosen, it follows that each agent derives as much utility from

the other agents’ variables as is possible with the sets X t
i (because of the assumption of only neg-

ative externalities, any setting of a variable that maximizes the total utility for the other agents also
maximizes the utility for each individual other agent). We know that for each agent i, there is at
least some setting of the other agents’ variables within the X t

j that will give agent i enough utility
to compensate for the setting of its own variable (by the definition of Xt

i and using the fact that
Xt

j = Xt−1
j , as the algorithm has terminated); and thus it follows that the utility maximizing setting

is also enough to make i’s utility nonnegative. So the solution is feasible. It is also quasi-maximal
by Theorem 18.

Algorithm 1 can be extended to cases where some agents control multiple variables, by inter-
preting xi in the algorithm as the vector of agent i’s variables (and initializing the X0

i as cross
products of sets). However, the next proposition shows how this extension of Algorithm 1 fails.

Proposition 4 Suppose we are running the extension of Algorithm 1 just described in a concessions
setting with only negative externalities. When some agents control more than one variable, the al-
gorithm may terminate with nontrivial X t

i even though the only feasible solution is the zero solution

3.4. EXPRESSIVE PREFERENCE AGGREGATION IN SETTINGS WITH EXTERNALITIES89

(all variables set to 0), even when all of the utility functions decompose and all of the components
uk,j

i are step functions (or continuous functions).

Proof: Let each of three agents control two variables, with utility functions as follows:

• u1,1
1 (x1

1) = −3δx1
1
≥1

• u1,2
1 (x2

1) = −3δx2
1
≥1

• u2,1
2 (x1

2) = −3δx1
2
≥1

• u2,2
2 (x2

2) = −3δx2
2
≥1

• u3,1
3 (x1

3) = −3δx1
3
≥1

• u3,2
3 (x2

3) = −3δx2
3
≥1

• u2,1
1 (x1

2) = 2δx1
2
≥1

• u3,1
1 (x1

3) = 2δx1
3
≥1

• u1,1
2 (x1

1) = 2δx1
1
≥1

• u3,2
2 (x2

3) = 2δx2
3
≥1

• u1,2
3 (x2

1) = 2δx2
1
≥1

• u2,2
3 (x2

2) = 2δx2
2
≥1

Increasing any one of the variables to a value of at least 1 will decrease the corresponding agent’s
utility by 3, and will raise only one other agent’s utility, by 2. It follows that there is no feasible
solution besides the zero solution, because any other solution will have negative social welfare (total
utility), and hence at least one agent must have negative utility.

In the algorithm, after the first iteration, it becomes clear that no agent can set both its variables
to values of at least 1 (because each agent can derive at most 4 < 6 utility from the other agents’
variables). Nevertheless, for any agent, it still appears possible at this stage to set either (but not
both) of its variables to a value of at least 1. Unfortunately, in the next iteration, this still appears
possible (because each of the other agents could set the variable that is beneficial to this agent to
a value of at least 1, leading to a utility of 4 > 3 for the agent). It follows that the algorithm gets
stuck.

These utility functions are easily made continuous, while changing neither the algorithm’s be-
havior on them nor the set of feasible solutions—for instance, by making each function linear on
the interval [0, 1].

In the next subsection, we discuss maximizing social welfare under the conditions under which
we showed Algorithm 1 to be successful in finding the maximal solution.

90 CHAPTER 3. OUTCOME OPTIMIZATION

3.4.4 Maximizing social welfare remains hard

In a concessions setting with only negative externalities where each agent controls only one variable,
the algorithm we provided in the previous subsection returns the maximal feasible solution, in a
linear number of rounds for utility functions that decompose into piecewise constant functions.
However, this may not be the most desirable solution. For instance, we may be interested in the
feasible solution with the highest social welfare (that is, the highest sum of the agents’ utilities).
In this subsection we show that finding this solution remains hard, even in the setting in which
Algorithm 1 finds the maximal solution fast.

Theorem 21 The decision variant of SW-MAXIMIZING-CONCESSIONS (does there exist a feasi-
ble solution with social welfare≥ K?) is NP-complete, even when there are only negative external-
ities, all utility functions decompose (and all the components uk

i are step functions), and each agent
controls only one variable.

Proof: We reduce an arbitrary EXACT-COVER-BY-3-SETS instance (given by a set S and subsets
S1, S2, . . . , Sq (|Si| = 3) to cover S with, without any overlap) to the following SW-MAXIMIZING-
CONCESSIONS instance. Let the set of agents be as follows. For every Si there is an agent aSi .
Also, for every element s ∈ S there is an agent as. Every agent a controls a single variable xa. Let
all the utility functions decompose, as follows: For any Si, u

aSi
aSi

(xaSi
) = −7δxaSi

≥1. For any Si

and for any s, uas
aSi

(xas) = 7δxas≥1. For any s, uas
as

(xas) = −δxas≥1. For any s and for any Si with

s ∈ Si, u
aSi
as (xaSi

) = 1
q(s)−1δxaSi

≥1, where q(s) is the number of sets Si with s ∈ Si. Let the target

social welfare be 7q(|S| − 1) + 7 |S|
3 . All the other functions are 0 everywhere. We proceed to show

that the two instances are equivalent. First, suppose there exists a solution to the EXACT-COVER-
BY-3-SETS instance. Then, let xaSi

= 0 if Si is in the cover, and xaSi
= 1 otherwise. For all s, let

xs = 1. Then aSi receives a utility of 7|S| if Si is in the cover, and 7(|S| − 1) otherwise. Further-
more, for all s ∈ S, as receives a utility of (q(s)−1) 1

q(s)−1 −1 = 0 (because for exactly q(s)−1 of
the q(s) subsets Si with s in it, the corresponding agent has its variable set to 1: the only exception
is the subset Si that contains s and is in the cover). It follows that all the agents receive nonnega-
tive utility, and the total utility (social welfare) is 7q(|S| − 1) + 7 |S|

3 . So there exists a solution to
the SW-MAXIMIZING-CONCESSIONS instance. Now, suppose that there exists a solution to the
SW-MAXIMIZING-CONCESSIONS instance. We first observe that if for some s ∈ S, xas < 1,
the total utility (social welfare) can be at most 7q(|S|−1)+2|S| < 7q(|S|−1)+7 |S|

3 (because each
aSi can receive at most 7(|S|−1), and each as can receive at most q(s) 1

q(s)−1 , and because q(s) ≥ 2
this can be at most 2). So it must be the case that xas ≥ 1 for all s ∈ S. It follows that, in order for
none of these as to have nonnegative utility, for every s ∈ S, there are at least q(s) − 1 subsets Si

with xaSi
≥ 1 and s ∈ Si. In other words, for every s ∈ S, there is at most one subset Si with s ∈ Si

with xaSi
< 1. In other words again, the subsets Si with s ∈ Si with xaSi

< 1 are disjoint (and so

there are at most |S|
3 of them. However, if there were only k ≤ |S|

3 − 1 subsets Si with xaSi
< 1,

then the total utility (social welfare) can be at most 7q(|S|−1)+7k+ |S|−3k (each aSi receives at
least 7(|S|−1), and they receive no more unless they are among the k, in which case they receive an
additional 7; and every as receives 0 unless it is in none of the k disjoint subsets Si, in which case it
will receive at most 1 (because q(s) ≥ 2, so 1

q(s)−1 ≤ 1)—but of course there can be at most |S|−3k

3.4. EXPRESSIVE PREFERENCE AGGREGATION IN SETTINGS WITH EXTERNALITIES91

such agents). But 7q(|S|−1)+7k+|S|−3k ≤ 7q(|S|−1)+|S|+4(|S|3 −1) = 7q(|S|−1)+7 |S|
3 −4,

which is less than the target. It follows there are exactly |S|
3 disjoint subsets Si with xaSi

< 1—an
exact cover. So there exists a solution to the EXACT-COVER-BY-3-SETS instance.

3.4.5 Hardness with only two agents

So far, we have not assumed any bound on the number of agents. A natural question to ask is whether
such a bound makes the problem easier to solve. In this subsection, we show that the problem of
finding a feasible solution in a concessions setting with only negative externalities remains NP-
complete even with only two agents (when there is no restriction on how many variables each agent
controls).

Theorem 22 FEASIBLE-CONCESSIONS is NP-complete, even when there are only two agents,
there are only negative externalities, and all utility functions decompose (and all the components
uk,j

i are step functions).

Proof: We reduce an arbitrary KNAPSACK instance (given by r pairs (ci, vi), a cost constraint C
and a value objective V) to the following FEASIBLE-CONCESSIONS instance with two agents.
Agent 1 controls only one variable, x1

1. Agent 2 controls r variables, x1
2, x

2
2, . . . , x

r
2. Agent 1’s

utility function is u1(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = −V δx1

1
≥1 +

r
∑

j=1
vjδxj

2
≥1

. Agent 2’s utility function

is u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = Cδx1

1
≥1 −

r
∑

j=1
cjδxj

2
≥1

. We proceed to show that the instances are

equivalent.
Suppose there is a solution to the KNAPSACK instance, that is, a subset S ⊆ N such that

∑

j∈S

ci ≤ C and
∑

j∈S

vi ≥ V . Then, let x1
1 = 1, and for any 1 ≤ j ≤ r, let xj

2 = δj∈S . Then

u1(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = −V +

∑

j∈S

vj ≥ 0. Also, u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) = C −

∑

j∈S

cj ≥ 0. So

there is a solution to the FEASIBLE-CONCESSIONS instance.
Now suppose there is a solution to the FEASIBLE-CONCESSIONS instance, that is, a nonzero

setting of the variables (x1
1, x

1
2, x

2
2, . . . , x

r
2) such that u1(x

1
1, x

1
2, x

2
2, . . . , x

r
2) ≥ 0 and

u2(x
1
1, x

1
2, x

2
2, . . . , x

r
2) ≥ 0. If it were the case that x1

1 < 1, then either all of agent 2’s variables are
set smaller than 1 (in which case x1

1 must be nonzero and agent 1 gets negative utility), or at least
one of agent 2’s variables is nonzero (in which case agent 2 gets negative utility because the setting
of x1

1 is worthless to it). It follows that x1
1 ≥ 1. Thus, in order for agent 1 to get nonnegative utility,

we must have
r
∑

j=1
vjδxj

2
≥1
≥ V . Let S = {j : xj

2 ≥ 1}. Then it follows that
∑

j∈S

vj ≥ V . Also,

in order for agent 2 to get nonnegative utility, we must have
∑

j∈S

cj

r
∑

j=1
cjδxj

2
≥1
≤ C. So there is a

solution to the KNAPSACK instance.

92 CHAPTER 3. OUTCOME OPTIMIZATION

3.4.6 A special case that can be solved to optimality using linear programming

Finally, in this subsection, we demonstrate a special case in which we can find the feasible outcome
that maximizes social welfare (or any other linear objective) in polynomial time, using linear pro-
gramming. (Linear programs can be solved in polynomial time [Khachiyan, 1979].) The special
case is the one in which all the utility functions decompose into piecewise linear, concave compo-
nents. For this result we will need no additional assumptions (no bounds on the number of agents
or variables per agent, etc.).

Theorem 23 If all of the utility functions decompose, and all of the components uk,j
i are piecewise

linear and concave, then SW-MAXIMIZING-CONCESSIONS can be solved in polynomial time us-
ing linear programming.

Proof: Let the variables of the linear program be the xj
i and the uk,j

i . We use the following linear

constraints: (1) For any i, we require
n
∑

k=1

mk
∑

j=1
uk,j

i ≥ 0; (2) For any i, k, j, for any linear function

l(xj
k) that coincides with one of the segments of the function uk,j

i (xj
k), we require uk,j

i ≤ l(xj
k).

The key observation is that for any value of xj
k, the constraints allow one to set the variable uk,j

i

to the value uk,j
i (xj

k), but no larger: because the function uk,j
i (xj

k) is concave, only the constraint
corresponding to the segment that xj

k is on is binding, and the constraints corresponding to other
segments are not violated.

For the linear program’s objective, we use
n
∑

i=1

n
∑

k=1

mk
∑

j=1
uk,j

i , which is the social welfare.

3.5 Summary

In this chapter, we studied the complexity of the outcome optimization problem for the four settings
introduced in Chapter 2. While most voting rules are easy to execute, a few are not, including the
Slater and Kemeny rules. In Section 3.1, we gave a powerful preprocessing technique for computing
Slater rankings, showing that if a subset of the candidates consists of similar candidates, this subset
can be solved recursively. We also gave an efficient algorithm for finding such a set of similar candi-
dates, and provided experimental results showing the effectiveness of this preprocessing technique.
Finally, we used the technique of similar sets to show that computing an optimal Slater ranking is
NP-hard, even in the absence of pairwise ties.

In Section 3.2, we turned to the winner determination problem in combinatorial auctions. We
studied the setting where there is a graph (with some desired property), with the items as vertices,
and every bid bids on a connected set of items. Two computational problems arise: 1) clearing
the auction when given the item graph, and 2) constructing an item graph (if one exists) with the
desired property. We showed that given an item graph with bounded treewidth, the clearing problem
can be solved in polynomial time (and every combinatorial auction instance has some treewidth;
the complexity is exponential in only that parameter). We then gave an algorithm for constructing
an item tree (treewidth 1) if such a tree exists. We showed why this algorithm does not work for
treewidth greater than 1, but left open whether item graphs of (say) treewidth 2 can be constructed

3.5. SUMMARY 93

in polynomial time (although we did show that finding the item graph with the fewest edges is NP-
complete (even when a graph of treewidth 2 exists). We showed that the problems become hard if a
bid is allowed to have more than one connected component.

In Section 3.3, we studied the outcome optimization problem for the setting of expressive ne-
gotation over donations to charities. We showed that this problem is NP-complete to approximate
to any ratio even in very restricted settings. Subsequently, we gave a mixed integer program for-
mulation of the clearing problem, and show that for concave bids, the program reduces to a linear
program. We then showed that the clearing problem for a subclass of concave bids is at least as hard
as a linear feasibility problem. Subsequently, we showed that the clearing problem is much easier
when bids are quasilinear—for surplus, the problem decomposes across charities, and for payment
maximization, a greedy approach is optimal if the bids are concave (although this latter problem is
weakly NP-complete when the bids are not concave).

Finally, in Section 3.4, we studied the outcome optimization problem for the setting of expres-
sive negotation in settings with externalities. The following table gives a summary of our results in
that domain.

Restriction Complexity
one variable per agent NP-complete to find nontrivial feasible solution
negative externalities; NP-complete to find nontrivial feasible solution
two variables per agent
negative externalities; Algorithm 1 finds maximal feasible solution (linear time for
one variable per agent utilities that decompose into piecewise constant functions);

NP-complete to find social-welfare maximizing solution
negative externalities; NP-complete to find nontrivial feasible solution
two agents
utilities decompose;
components piecewise linear programming finds social welfare maximizing solution
linear, concave

Complexity of finding solutions in concessions settings. All of the hardness results hold even if the
utility functions decompose into step functions.

One issue that we have not yet considered is that the agents will report their preferences strate-
gically, that is, they will report them truthfully if and only if it is in their best interest to do so. This
will be addressed in the deeper levels of the hierarchy, which will be the focus of the remainder of
this dissertation. To prepare us for this, the next chapter reviews some basic concepts and results
from mechanism design, which is the study of creating preference aggregation methods that are
robust to this strategic behavior.

94 CHAPTER 3. OUTCOME OPTIMIZATION

Chapter 4

Mechanism Design

Honesty is the best policy - when there is money in it.
Mark Twain

In order for a preference aggregator to choose a good outcome, she needs to be provided with the
agents’ (relevant) preferences. Usually, the only way of learning these preferences is by having the
agents report them. Unfortunately, in settings where the agents are self-interested, they will report
these preferences truthfully if and only if it is in their best interest to do so. Thus, the preference
aggregator has the difficult task of not only choosing good outcomes for the given preferences, but
also choosing outcomes in such a way that agents will not have any incentive to misreport their
preferences. This is the topic of mechanism design, and the resulting outcome selection functions
are called mechanisms.

This chapter gives an introduction to some basic concepts and results in mechanism design.
In Section 4.1, we review basic concepts in mechanism design (although discussions of the game-
theoretic justifications for this particular framework, in particular the revelation principle, will be
postponed to Chapter 7). In Section 4.2, we review the famous and widely-studied Vickrey-Clarke-
Groves mechanisms and their properties. In Section 4.3, we briefly review some other positive
results (mechanisms that achieve particular properties), while in Section 4.4, we briefly review
some key impossibility results (combinations of properties that no mechanism can achieve).

4.1 Basic concepts

If all of the agents’ preferences were public knowledge, there would be no need for mechanism
design—all that would need to be done is solve the outcome optimization problem. Techniques
from mechanism design are useful and necessary only in settings in which agents’ have private
information about their preferences. Formally, we say that each agent i has a privately known type
θi that corresponds to that agent’s private information, and we denote by Θi the space of all of agent
i’s possible types. In general, it is possible to have private information that has implications for how
other agents value outcomes—for example, one agent may privately know that the painting that is
being auctioned is a forgery, which would be relevant to other agents that may not know this [Ito
et al., 2002, 2003, 2004]. In this dissertation, as is most commonly done in the mechanism design

95

96 CHAPTER 4. MECHANISM DESIGN

literature, we will only consider private information about the agent’s own preferences (which is the
most common type of private information). We model these preferences by saying that each agent
i has a utility function ui : Θi × O → R, where ui(θi, o) gives the agent’s utility for outcome o
when the agent has type θi. The utility function ui is common knowledge, but it is still impossible
for other agents to precisely assess agent i’s utility for a given outcome o without knowing agent i’s
type. For example, in an auction for a single item, an agent’s type θi could be simply that agent’s
valuation for the item. Then, the agent’s utility for an outcome in which he receives the item will
be θi (not counting any payments to be made by the agent), and the utility is 0 otherwise. Hence,
the utility function is common knowledge, but one still needs to know the agent’s type to assess the
agent’s utility for (some) outcomes.

A direct-revelation mechanism asks each agent to report its private information, and chooses an
outcome based on this (and potentially some random bits). It will generally be convenient not to
consider payments imposed by the mechanism as part of the outcome, so that the mechanism also
needs to specify payments to be made by/to agents. Formally:

Definition 16

• A deterministic direct-revelation mechanism without payments consists of an outcome selec-
tion function o : Θ1 × . . .×Θn → O.

• A randomized direct-revelation mechanism without payments consists of a distribution selec-
tion function p : Θ1 × . . .×Θn → ∆(O), where ∆(O) is the set of probability distributions
over O.

• A deterministic direct-revelation mechanism with payments consists of an outcome selection
function o : Θ1 × . . . × Θn → O and for each agent i, a payment selection function πi :
Θ1 × . . . × Θn → R, where πi(θ1, . . . , θn) gives the payment made by agent i when the
reported types are θ1, . . . , θn.

• A randomized direct-revelation mechanism with payments consists of a distribution selection
function p : Θ1 × . . . × Θn → ∆(O), and for each agent i, a payment selection function
πi : Θ1 × . . .×Θn → R.

In some settings, it makes sense to think of an agent’s type θi as being drawn from a (commonly
known) prior distribution over Θi. In this case, while each agent still only knows its own type, each
agent can use the commonly known prior to make probabilistic assessments of what the others will
report.

So, what makes for a good mechanism? Typically, there is an objective function that the designer
wants to maximize. One common objective is social welfare (the sum of the agents’ utilities with
respect to their true, not reported, types), but there are many others—for example, the designer
may wish to maximize revenue (the sum of the agents’ payments). However, there are certain
constraints on what the designer can do. For example, it would not be reasonable for the designer
to specify that a losing bidder in an auction should pay the designer a large sum: if so, the bidder
would simply not participate in the auction. We next present constraints, called participation or
individual rationality (IR) constraints, that prevent this. Before we do so, we note that we will
assume quasilinear preferences when payments are involved.

4.1. BASIC CONCEPTS 97

Definition 17 An agent i has quasilinear preferences if the agent’s utility function can be written as
ui(θi, o)− πi.

We are now ready to present the IR constraints.

Definition 18 Individual rationality (IR) is defined as follows.

• A deterministic mechanism is ex post IR if for any agent i, and any type vector (θ1, . . . , θn) ∈
Θ1 × . . .×Θn, we have ui(θi, o(θ1, . . . , θn))− πi(θ1, . . . , θn) ≥ 0.

A randomized mechanism is ex post IR if for any agent i, and any type vector (θ1, . . . , θn) ∈
Θ1 × . . .×Θn, we have Eo|θ1,..,θn

[ui(θi, o)− πi(θ1, .., θn)] ≥ 0.

• A deterministic mechanism is ex interim IR if for any agent i, and any type θi ∈ Θi, we have
E(θ1,..,θi−1,θi+1,..,θn)|θi

[ui(θi, o(θ1, .., θn))− πi(θ1, .., θn)] ≥ 0.

A randomized mechanism is ex interim IR if for any agent i, and any type θi ∈ Θi, we have
E(θ1,..,θi−1,θi+1,..,θn)|θi

Eo|θ1,..,θn
[ui(θi, o)− πi(θ1, .., θn)] ≥ 0.

The terms involving payments are left out if payments are not possible.

Thus, participating in an ex post individually rational mechanism never makes an agent worse
off; participating in an ex interim individually rational mechanism may make an agent worse off in
the end, but not in expectation (assuming that the agent’s belief over the other agents’ reported types
matches the common prior).

Still, as long as these are the only constraints, all that the designer needs to do is solve the
outcome optimization problem (perhaps charging the agents’ their entire utility as payment, in case
revenue maximization is the objective). But we have not yet considered the agents’ incentives.
Agents will only report their preferences truthfully if they have an incentive to do so. We will impose
incentive compatibility (IC) constraints that ensure that this is indeed the case. Again, there is an ex
post and an ex interim variant; in this context, these variants are usually called dominant-strategies
incentive compatible and Bayes-Nash equilibrium (BNE) incentive compatible, respectively. Given
the (potential) difference between true and reported types, we will use the standard notation θ̂i to
refer to agent i’s reported type.

Definition 19 A mechanism is dominant-strategies incentive compatible (or strategy-proof) if telling
the truth is always optimal, even when the types reported by the other agents are already known.
Formally, for any agent i, any type vector (θ1, . . . , θi, . . . , θn) ∈ Θ1 × . . . × Θi × . . . × Θn,
and any alternative type report θ̂i ∈ Θi, in the case of deterministic mechanisms we require
ui(θi, o(θ1, . . . , θi, . . . , θn))− πi(θ1, . . . , θi, . . . , θn) ≥ ui(θi, o(θ1, . . . , θ̂i, . . . , θn))−
πi(θ1, . . . , θ̂i, . . . , θn). In the case of randomized mechanisms we have Eo|θ1,..,θi,..,θn

[ui(θi, o) −

πi(θ1, . . . , θi, . . . , θn)] ≥ Eo|θ1,..,θ̂i,..,θn
[ui(θi, o)− πi(θ1, . . . , θ̂i, . . . , θn)].

The terms involving payments are left out if payments are not possible.

Definition 20 A mechanism is Bayes-Nash equilibrium (BNE) incentive compatible if telling the
truth is always optimal to an agent when that agent does not yet know anything about the other

98 CHAPTER 4. MECHANISM DESIGN

agents’ types, and the other agents are telling the truth. Formally, for any agent i, any type
θi ∈ Θi, and any alternative type report θ̂i ∈ Θi, in the case of deterministic mechanisms we
have E(θ1,..,θi−1,θi+1,..,θn)|θi

[ui(θi, o(θ1, . . . , θi, . . . , θn))− πi(θ1, . . . , θi, . . . , θn)] ≥

E(θ1,..,θi−1,θi+1,..,θn)|θi
[ui(θi, o(θ1, . . . , θ̂i, . . . , θn))−πi(θ1, . . . , θ̂i, . . . , θn)]. In the case of random-

ized mechanisms we have E(θ1,..,θi−1,θi+1,..,θn)|θi
Eo|θ1,..,θi,..,θn

[ui(θi, o)− πi(θ1, . . . , θi, . . . , θn)] ≥

E(θ1,..,θi−1,θi+1,..,θn)|θi
Eo|θ1,..,θ̂i,..,θn

[ui(θi, o)− πi(θ1, . . . , θ̂i, . . . , θn)].

The terms involving payments are left out if payments are not possible.

One may wonder whether it is possible to obtain better outcomes by using a direct-revelation
mechanism that is not truthful—perhaps the cost of the resulting strategic misreporting is not as
great as the cost of having to honor the incentive compatibility constraints. Or, perhaps we could
do even better using a mechanism that is not a direct-revelation mechanism—that is, a mecha-
nism under which agents have other actions to take besides merely reporting their preferences. A
famous result called the revelation principle [Gibbard, 1973; Green and Laffont, 1977; Myerson,
1979, 1981] shows that, when agents are perfectly strategic (unboundedly rational), the answer to
both of these questions is “no”: there is no loss in restricting attention to truthful, direct-revelation
mechanisms.1 For now, we do not yet have a definition of strategic behavior in non-truthful or in-
direct mechanisms, so we will postpone detailed discussion of the revelation principle to Chapter 7
(and we will question the assumption of unbounded rationality in Chapters 8 and 9). However, the
intuition behind the revelation principle is simple: suppose we envelop a non-truthful mechanism
with an interface layer, to which agents input their preferences. Then, the interface layer interacts
with the original mechanism on behalf of each agent, playing strategically in the agent’s best in-
terest based on the reported preferences. (Compare, for example, proxy agents on eBay [eBay UK,
2004].) The resulting mechanism is truthful: an agent has no incentive to misreport to the interface
layer, because the layer will play the agent’s part in the original mechanism in the agent’s best in-
terest. Moreover, the final outcome of the new, truthful mechanism will be the same, because the
layer will play strategically optimally—just as the agent would have.

In the next section, we will define the famous Vickrey-Clarke-Groves mechanisms.

4.2 Vickrey-Clarke-Groves mechanisms

The most straightforward direct-revelation mechanism for selling a single item is the first-price
sealed-bid auction, in which each bidder submits a bid for the item in (say) a sealed envelope, and
the highest bidder wins and pays the value that he bid. This is certainly not an incentive-compatible
mechanism: in fact, bidding one’s true valuation guarantees a utility of 0 (even if the bid wins, the
bidder will pay his entire valuation). Rather, to obtain positive utility, a bidder needs to reduce (or
shave) his bid, ideally to the point where it is only slightly higher than the next highest bid. Another
direct-revelation mechanism is the Vickrey [Vickrey, 1961] or second-price sealed-bid auction, in
which the highest bidder still wins, but pays the value of the second highest bid. The Vickrey auction
is strategy-proof. To see why, imagine a bidder that knows the other bids. This bidder has only two

1The result requires that we can use randomized truthful mechanisms. Moreover, if there are multiple strategic equilib-
ria in the original non-truthful mechanism, then we can choose any one of them to be preserved in the truthful mechanism,
but not all the equilibria are necessarily preserved.

4.2. VICKREY-CLARKE-GROVES MECHANISMS 99

choices: bid higher than the highest other bid, to win and pay the value of that other bid; or bid
lower, and do not win the item. The bidder will prefer to do the former if his valuation is higher
than the highest other bid, and the latter otherwise. But in fact, bidding truthfully accomplishes
exactly this! Hence, bidding truthfully guarantees one the same utility that an omniscient bidder
would receive, and therefore the mechanism is strategy-proof.

It turns out that the Vickrey mechanism is a special case of a general mechanism called the
Clarke mechanism (or Clarke tax) [Clarke, 1971], which can be applied to combinatorial auctions
and exchanges, as well as other preference aggregation settings. The Clarke mechanism works
as follows. First, choose the optimal outcome based on the bidders’ reported preferences; call
this outcome o∗. Then, to determine agent i’s payment, remove agent i from the preference ag-
gregation problem, and solve this problem again to obtain o∗−i. Agent i will be required to pay
∑

j 6=i

uj(θ̂j , o
∗
−i) −

∑

j 6=i

uj(θ̂j , o
∗). Informally, agent i’s payment is exactly the amount by which

the other agents are worse off due to agent i’s presence—the externality that i imposes on the
other agents. The Clarke mechanism is strategy-proof, for the following reason. Agent i seeks
to maximize ui(θi, o

∗) +
∑

j 6=i

uj(θ̂j , o
∗) −

∑

j 6=i

uj(θ̂j , o
∗
−i). Since o∗−i does not depend on agent i’s

report, agent i cannot affect the term
∑

j 6=i

uj(θ̂j , o
∗
−i), so equivalently, agent i seeks to maximize

ui(θi, o
∗) +

∑

j 6=i

uj(θ̂j , o
∗). Agent i can only affect this expression by influencing the choice of o∗,

and the mechanism will select o∗ to maximize
n
∑

j=1
uj(θ̂j , o

∗). But then, if the agent reports truthfully,

that is, θ̂i = θi, then the mechanism will choose o∗ precisely to maximize ui(θi, o
∗)+

∑

j 6=i

uj(θ̂j , o
∗),

thereby maximizing agent i’s utility.
The Clarke mechanism is also ex post individually rational, if 1) the presence of an agent never

makes it impossible to choose some outcome that could have been chosen without that agent, and
2) no agent ever has a negative utility for an outcome that would be selected if that agent were not
present. Note that if either 1) or 2) does not hold, then the Clarke mechanism may require a payment
from an agent that receives a utility of 0 for the chosen outcome, and is therefore not individually
rational. Both 1) and 2) will hold in the remainder of this dissertation.

Additionally, the Clarke mechanism is weak budget balanced, that is, the sum of the payments
from the agents is always nonnegative, if the following condition holds: when an agent is removed
from the system, the new optimal (welfare-maximizing) outcome is at least as good for the remain-
ing agents as the optimal outcome before the first agent was removed. That is, if an agent leaves,
that does not make the other agents worse off in terms of the chosen outcome (not considering pay-
ments). This condition does not hold in, for example, task allocation settings: if an agent leaves, the
tasks allocated to that agent must be re-allocated to the other agents, who will therefore be worse
off. Indeed, in task allocation settings, the agents must be compensated for taking on tasks, so we
do not expect weak budget balance. Green and Laffont [1977] show that it is not possible to obtain
strong budget balance—the sum of the payoffs always being zero—in addition to choosing optimal
outcomes and having dominant-strategies incentive compatibility.

Finally, the Clarke mechanism is just one mechanism among the class of Groves mechanisms
[Groves, 1973]. To introduce this class of mechanisms, we note that in the Clarke mechanism, agent

100 CHAPTER 4. MECHANISM DESIGN

i’s type report θ̂i does not affect the terms
∑

j 6=i

uj(θ̂j , o
∗
−i) in agent i’s payment; short of colluding

with the other agents, there is nothing that agent i can do about paying these terms. Hence, if
we removed these terms from the payment function, the mechanism would still be strategy-proof.
Moreover, any term that we add to agent i’s payment that does not depend on θ̂i will not compromise
strategy-proofness. The class of Groves mechanisms consists precisely of all mechanisms that can
be obtained in this manner. Additionally, Groves mechanisms are in fact the only mechanisms that
are efficient (i.e. the mechanism chooses the optimal outcome) and dominant-strategies incentive-
compatible, given that there is no restriction on what the agents’ types can be [Green and Laffont,
1977] or even only given that agents’ type spaces are smoothly connected [Holmström, 1979]. It
should be noted that the Clarke mechanism is often referred to as “the” VCG mechanism, and we
will follow this convention.

In the next section, I survey some other positive results in mechanism design (without presenting
them in full detail).

4.3 Other possibility results

Interestingly, in some settings, there are Groves mechanisms that require a smaller total payment
from the agents than the Clarke mechanism, while maintaining individual rationality and never
incurring a deficit. The idea here is to redistribute some of the Clarke surplus back to the agents.
To maintain incentive compatibility, how much is redistributed to an agent cannot depend on that
agent’s type. Nevertheless, if the other agents’ reported types are such that a certain amount of
Clarke surplus will be obtained regardless of the given agent’s report, then we can redistribute a
share of that guaranteed surplus (most naturally, 1/n) to the agent. For example, in a single-item
auction, each agent receives 1/n of the second-highest bid among the other bids [Cavallo, 2006].

It turns out that if we are willing to use Bayes-Nash incentive compatibility rather than dominant-
strategies incentive compatibility, then we can obtain (strong) budget balance, using the dAGVA
[d’Aspremont and Gérard-Varet, 1979; Arrow, 1979] mechanism. This mechanism is similar to a
Groves mechanism, except that, instead of being paid the sum of other agents’ utilities according
to their reported types, an agent is paid the expected sum of other agent’s utilities given only the
agent’s own report. In addition, payment terms that do not depend on the agent’s own report can be
set in such a way as to obtain budget balance.

As noted before, maximizing social welfare is not always the objective. Another common ob-
jective is to maximize revenue. In the context of auctions, this is often referred to as the problem
of designing an “optimal” auction. The Myerson auction [Myerson, 1981] is a general mechanism
for maximizing the expected revenue of an auctioneer selling a single item. The Maskin-Riley auc-
tion [Maskin and Riley, 1989] generalizes this to the case of multiple units of the same item. Only
very limited characterizations of revenue-maximizing combinatorial auctions (with more than one
item) are known [Avery and Hendershott, 2000; Armstrong, 2000].

Another positive result exists in the context of voting: if preferences are single-peaked, then
choosing the median voter’s peak as the winner (as we did in Chapter 2) is a strategy-proof mecha-
nism.

4.4. IMPOSSIBILITY RESULTS 101

4.4 Impossibility results

In the previous sections, we saw mechanisms that achieve certain sets of desirable properties. In this
section, we discuss a few negative results, that state that certain sets of desirable properties cannot
be obtained by a single mechanism.

Possibly the best-known impossibility result in mechanism design is the Gibbard-Satterthwaite
theorem [Gibbard, 1973; Satterthwaite, 1975]. This result shows a very strong impossibility in very
general preference aggregation settings (voting settings). Specifically, it shows that when there are
three or more possible outcomes (candidates), two or more agents (voters), and there is no restric-
tion on the preferences that can be submitted (such as single-peakedness), then a (deterministic)
mechanism (voting rule) cannot have the following properties simultaneously:

• For every outcome, there exist preference reports by the agents that will make this outcome
win.

• The mechanism is non-dictatorial, that is, the rule does not simply always choose a single,
fixed voter’s most-preferred candidate.

• The mechanism is strategy-proof.

Gibbard [1977] later extended this impossibility result to encompass randomized voting rules
as well: a randomized voting rule is strategy-proof only if it is a probability mixture of unilateral
and duple rules. (A rule is unilateral if only one voter affects the outcome, and duple if only two
candidates can win.) It is not difficult to see that this result implies the Gibbard-Satterthwaite
impossibility result.

As we have seen in the previous section, this impossibility result does not apply in settings
where the agents’ preferences are more restricted—e.g. single-peaked, or quasilinear in settings
where payments are possible (in which case VCG can be used). Nevertheless, impossibility results
exist in these more restricted settings as well. For example, the Myerson-Satterthwaite impossibility
theorem [Myerson and Satterthwaite, 1983] states that even in simple bilateral trade settings with
quasilinear utility functions, where we have a single seller with a single item (and a privately held
valuation for this item), and a single buyer who may procure the item (and has a privately held
valuation for the item), it is impossible to have a mechanism that achieves the following properties
simultaneously:

• efficiency (trade takes place if and only if the buyer’s valuation for the item is greater than the
seller’s);

• budget-balance (money may flow between the buyer and the seller, but not from/to other
places);

• Bayes-Nash incentive compatibility;

• ex-interim individual rationality.

We will show another, similar impossibility result in Chapter 5.

102 CHAPTER 4. MECHANISM DESIGN

4.5 Summary

This chapter reviewed basic concepts and results from mechanism design. We first reviewed various
types of mechanisms, as well as individual-rationality and incentive-compatibility concepts. We
then reviewed Vickrey-Clarke-Groves mechanisms and their properties in detail, and we briefly
reviewed some other positive results (that is, mechanisms that achieve certain sets of properties),
including Cavallo’s redistribution mechanism, the dAGVA mechanism, Myerson and Maskin-Riley
auctions, and single-peaked preferences. Finally, we briefly reviewed the Gibbard-Satterthwaite and
Myerson-Satterthwaite impossibility results.

Armed with a basic understanding of mechanism design, we are now ready to move on to
deeper levels of the hierarchy. The next chapter studies difficulties for classical mechanism design
in expressive preference aggregation settings.

Chapter 5

Difficulties for Classical Mechanism
Design

The classical study of mechanism design has not directly concerned itself with the more computa-
tional questions of the process, such as the representations of the outcome and preference spaces,
or the complexity of choosing the optimal outcome. Some of the computational implications of
the classical mechanisms are clear and direct. For example, to execute the VCG mechanism, we
typically need to solve the optimization problem instance with all agents included, as well as, for
each agent, the instance where that agent is removed. (However, in some cases, the structure of the
domain can be used to solve all these instances simultaneously with an asymptotic time complex-
ity that is the same as that of a single optimization [Hershberger and Suri, 2001].) But the issues
run deeper than that. When the setting is complex and computation is limited, the optimizations
must be approximated. This effectively results in a different mechanism, which may no longer be
truthful—and its strategic equilibria (e.g., Nash equilibria) may be terrible even when the approx-
imation algorithm per se is very good. The resulting challenge is to design special approximation
algorithms that do motivate the agents to report their preferences truthfully. Viewed differently, the
challenge is to design special truthful mechanisms whose outcomes are at least reasonably good, and
can be computed efficiently. This line of research, which has been called algorithmic mechanism
design [Nisan and Ronen, 2001], has produced a number of interesting results [Nisan and Ronen,
2001, 2000; Feigenbaum et al., 2001; Lehmann et al., 2002; Mu’alem and Nisan, 2002; Archer et
al., 2003; Bartal et al., 2003].

There have been various other directions in the study of mechanism design from a computer
science perspective. One direction close to algorithmic mechanism design is the design of anytime
mechanisms, which produce better outcomes as they are given more time to compute, but never-
theless maintain good incentive properties [Parkes and Schoenebeck, 2004]. Another goal that has
been pursued is distributing the mechanism’s computation across the agents [Parkes and Shneid-
man, 2004; Brandt and Sandholm, 2004b,a, 2005b,c,a; Izmalkov et al., 2005; Petcu et al., 2006].
A different direction is the design of mechanisms in task-allocation settings where the agents may
fail to accomplish the task, and the failure probabilities need to be elicited from the agents, as well
as the costs [Porter et al., 2002; Dash et al., 2004]. Rather than specifying a complete mechanism,
another approach that has been considered is to provide the agents with limited data from a cen-

103

104 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

tralized optimization, and let the agents work out the remainder of the transactions. Specifically,
the optimal allocation is given, as well as some bounds on reasonable prices, in such a way that the
agents do not have an incentive to misreport [Bartal et al., 2004]. (This has the advantage of cir-
cumventing, or at least delaying until later, results such as the Myerson-Satterthwaite impossibility
theorem mentioned previously.)

This chapter provides some results on mechanism design in expressive preference aggregation
settings. Unlike some the results mentioned above, these results are not inherently computational:
rather, they are pure mechanism design results that are driven by the expressive nature of the pref-
erence aggregation problems under study. (Of course, computational advances are what has made
running mechanisms in such expressive domains possible.) In Section 5.1, we study two related
vulnerabilities of the VCG (Clarke) mechanism in combinatorial auctions and exchanges: low rev-
enue/high cost, and collusion. Specifically, it will show how much worse these vulnerabilities are
in these settings than in single-item settings [Conitzer and Sandholm, 2006d]. In Section 5.2,
we study mechanism design for expressive preference aggregation for donations to (charitable)
causes [Conitzer and Sandholm, 2004e].

5.1 VCG failures in combinatorial auctions and exchanges

The VCG mechanism is the canonical payment scheme for motivating the bidders to bid truthfully
in combinatorial auctions and exchanges; if the setting is general enough, under some requirements,
it is the only one [Green and Laffont, 1977; Lavi et al., 2003; Yokoo, 2003]. Unfortunately, there are
also many problems with the VCG mechanism [Rothkopf et al., 1990; Sandholm, 2000; Ausubel
and Milgrom, 2006]. In this section, we discuss two related problems: the VCG mechanism is vul-
nerable to collusion, and may lead to low revenue/high payment for the auctioneer. It is well-known
that these problems occur even in single-item auctions (where the VCG mechanism specializes to
the Vickrey or second-price sealed-bid auction). However, in the single-item setting, these problems
are not as severe. For example, in a Vickrey auction, it is not possible for colluders to obtain the
item at a price less than the bid of any other bidder. Additionally, in a Vickrey auction, various
types of revenue equivalence with (for example) first-price sealed-bid auctions hold. As we will
show, in the multi-item setting these properties do not hold and can be violated to an arbitrary ex-
tent. Some isolated examples of such problems with the VCG mechanism in multi-item settings
have already been noted in the literature [Ausubel and Milgrom, 2006; Yokoo et al., 2004; Archer
and Tardos, 2002] (these will be discussed later in the section). In contrast, our goal in this section
is to give a comprehensive characterization of how severe these problems can be and when these
severe problems can occur. For the various variants of combinatorial auctions and exchanges, we
study the following single problem that relates both issues under consideration: Given some of the
bids, how bad can the remaining bidders make the outcome? Informally, “bad” here means that
the remaining bidders are paid an inordinately large amount, or pay an inordinately small amount,
relative to the goods they receive and/or provide. This is closely related to the problem of making
revenue guarantees to the auctioneer. But it is also the collusion problem, if we conceive of the
remaining bidders as colluders. (The collusion problem can become more difficult if the collusion
is required to be self-enforcing. A collusion is self-enforcing when none of the colluders have an
incentive to unilaterally deviate from the collusion. We will also study how this extra requirement

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 105

affects our results.)
As it turns out, the fundamental problem of deciding how bad the remaining bidders can make

the outcome is often computationally hard. Computational hardness here is a double-edged sword.
On the one hand, if the problem is hard, collusion may not occur (or to a lesser extent) because the
colluders cannot find a beneficial collusion. On the other hand, if the problem is hard, it is difficult
to make strong revenue guarantees to the auctioneer. Of course, in either case, the computational
hardness may be overcome in practice if the stakes are high enough.

All the results in this section hold even when all bidders are single-minded, that is, they bid only
on a single bundle of items. Hence, we do not need to discuss bidding languages.

5.1.1 Combinatorial (forward) auctions

We recall that in a combinatorial auction, there is a set of items I = {s1, s2, . . . , sm} for sale. A
bid takes the form b = (B, v), where B ⊆ I and v ∈ R. The winner determination problem is to
label bids as accepted or rejected, to maximize the sum of the values of the accepted bids, under the
constraint that no item occurs in more than one accepted bid. (This is assuming free disposal: items
do not have to be allocated to anyone.)

Motivating example

(A similar example to the one described in this subsubsection has been given before [Ausubel
and Milgrom, 2006], and examples of vulnerability to false-name bidding in combinatorial auc-
tions [Yokoo et al., 2004] can in fact also be used to demonstrate the basic point. We include this
subsubsection for completeness.) Consider an auction with two items, s1 and s2. Suppose we have
collected two bids (from different bidders), both ({s1, s2}, N). If these are the only two bids, one
of the bidders will be awarded both the items and, under the VCG mechanism, will have to pay N .
However, suppose two more bids (by different bidders) come in: ({s1}, N + 1) and ({s2}, N + 1).
Then these bids will win. Moreover, neither winning bidder will have to pay anything! (This is be-
cause a winning bidder’s item would simply be thrown away if that winning bidder were removed.)

This example demonstrates a number of issues. First, the addition of more bidders can actually
decrease the auctioneer’s revenue from an arbitrary amount to 0. Second, the VCG mechanism is
not revenue-equivalent to the sealed-bid first-price mechanism in combinatorial auctions, even when
all bidders’ true valuations are common knowledge1—unlike in the single-item case. Third, even
when the other bidders by themselves would generate nonnegative revenue for the auctioneer under
the VCG mechanism, it is possible that two colluders can bid so as to receive all the items without
paying anything.

1Consider the above example with N ≥ 9 and suppose that the four bids reflect the bidders’ true valuations—since
bidding truthfully is a weakly dominant strategy in the VCG mechanism. Running a first-price sealed bid auction in
this setting, when all bidders’ valuations are common knowledge, will not generate expected revenue less than N

8
. For

suppose the expected revenue is less than this. Then the probability that the revenue is at least N
4

must be less than 1

2
by

Markov’s inequality. So, bidding ({A, B}, N
4

) will win any bidder both items with probability at least 1

2
, leading to an

expected utility of at least 1

2
(N − N

4
) = 3N

8
. Because at most one of the three bidders with valuations ({A}, N + 1)

or ({A, B}, N) can win its desired bundle, it follows that at least one of these bidders has a probability of at most 1

3
of

winning its desired bundle, and thus has an expected utility of at most N+1

3
. Because N ≥ 9, 3N

8
> N+1

3
, so this bidder

would be better off bidding ({A, B}, N
4

)—contradicting the assumption that we are in equilibrium.

106 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

The following sums up the properties of this example.

Proposition 5 In a forward auction (even with only 2 items), the following can hold simultaneously:
1. The winning bidders pay nothing under the VCG mechanism; 2. If the winning bids are removed,
the remaining bids generate revenue N under the VCG mechanism; 3. If these bids were truthful
(as we would expect under VCG), then if we had run a first-price sealed-bid auction instead (and
the bidders’ valuations were common knowledge), any equilibrium would have generated revenue
Θ(N).

Characterization

We now characterize the settings where, given the noncolluders’ bids, the colluders can receive all
the items for free.

Lemma 9 If the colluders receive all the items at cost 0, then for any positive bid on a bundle B of
items by a noncolluder, at least two of the colluders receive an item from B.

Proof: Suppose that for some positive bid b on a bundle B by a noncolluder i, one of the colluders
c receives all the items in B (and possibly others). Then, in the auction where we remove that col-
luder’s bids, one possible allocation gives every remaining bidder all the goods that bidder received
in the original auction; additionally, it gives i all the items in bundle B; and it disposes of all the
other items c received in the original auction. With this allocation, the total value of the accepted
bids by bidders other than c is at least v(b) more than in the original auction. Because the total
value obtained in the new auction is at least the value of this particular allocation, it follows that c
imposes a negative externality of at least v(b) on the other bidders, and will pay at least v(b). But
this contradicts the fact that no colluder pays anything; and hence it follows that for any positive bid
b on a bundle B by a noncolluder i, at least two of the colluders receive an item from B.

Lemma 10 Suppose all the items in the auction can be divided among the colluders in such a way
that, for any positive bid on a bundle of items B by a noncolluder, at least two of the colluders
receive an item from B. Then the colluders can receive all the items at cost 0.

Proof: For the given partition of items among the noncolluders, let each colluder place a bid with
an extremely large value on the bundle consisting of the items assigned to him in the partition.
(For instance, twice the sum of the values of all noncolluders’ bids.) Then, the auction will clear
awarding each colluder the items assigned to him by the partition. Moreover, if we remove the
bids of one of the colluders, all the remaining colluders’ bids will still win—and thus none of the
noncollu ders’ bids will win, because each such bid requires items assigned to at least two colluders
by the partition (and at least one of them is still in the auction and wins th ese items). Thus, each
colluder (individually) imposes no externality on the other bidders.

Combining these two lemmas, we get:

Theorem 24 The colluders can receive all the items at cost 0 if and only if it is possible to divide
the items among the colluders in such a way that, for any positive bid B by a noncolluder, at least
two colluders receive an item from B.

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 107

Self-enforcing collusion

It turns out that requiring that the collusion is self-enforcing (i.e., no colluder has an incentive to
unilaterally deviate) is no harder for the colluders:

Theorem 25 Whenever the colluders can receive all the items for free, they can also receive them
all for free in a self-enforcing way.

Proof: Let each colluder bid on the same bundle as before; but, increase the bid value of each
colluder by an amount that exceeds the utility that any colluder can get from any bundle of items.
The colluders will continue to receive all the items at a cost of 0. Now, the only reason that a
colluder may wish to deviate from this is that the colluder wishes to obtain items outside of the
colluder’s assigned bundle. However, doing so would prevent one of the other bundles from being
awarded to its designated colluder. This would cause a decrease in the total value of bids awarded
to bidders other than the deviating colluder that exceeds the utility of the deviating colluder for any
bundle, and the deviating colluder would have to pay for this decrease under the VCG mechanism.
Therefore, there is no incentive for the colluder to deviate.

Complexity

In order to collude in the manner described above, the n colluders must solve the following compu-
tational problem.

Definition 21 (DIVIDE-SUBSETS) Suppose we are given a set I , as well as a collection R =
{S1, . . . , Sq} of subsets of it. We are asked whether I can be partitioned into n parts T1, T2, . . . , Tn

so that no subset Si ∈ R is contained in one of these parts.

Theorem 26 DIVIDE-SUBSETS is NP-complete, even when n = 2.

Proof: The problem is technically identical to HYPERGRAPH-2-COLORABILITY, which is NP-
complete [Garey and Johnson, 1979].

This hardness result only states that it is hard to identify the most beneficial collusion, and one
may wonder whether it is perhaps easier to find some beneficial collusion. It turns out that the
hardness of the former problem implies the hardness of the latter problem: the utility functions of
the colluders can always be such that only the most beneficial collusion actually benefits them, in
which case the two problems are the same. This observation can also be applied to hardness results
presented later in this section.

5.1.2 Combinatorial reverse auctions

We recall that in a combinatorial reverse auction, there is a set of items I = {s1, s2, . . . , sm} to be
procured. A bid takes the form b = (B, v), where B ⊆ I and v ∈ R. (Here, v represents the value
that the bidder must be compensated by in order to provide the goods B.) The winner determination

108 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

problem is to label bids as accepted or rejected, to minimize the sum of the values of the accepted
bids, under the constraint that each item occurs in at least one accepted bid. (This is assuming free
disposal.)

Motivating example

Consider a reverse auction with m items, s1, s2, . . . , sm. Suppose we have collected two bids (from
different bidders), both ({s1, s2, . . . , sm}, N). If these are the only two bids, one of the bidders
will be chosen to provide all the goods, and, under the VCG mechanism, will be paid N . However,
suppose m more bids (by different bidders) come in: ({s1}, 0), ({s2}, 0), . . . , ({sm}, 0). Then,
these m bids will win. Moreover, each bidder will be paid N under the VCG mechanism. (This is
because without this bidder, we would have had to accept one of the original bids.) Thus, the total
payment that needs to be made is mN .2

Again, this example demonstrates a number of issues. First, the addition of more bidders may
actually increase the total amount that the auctioneer needs to pay. Second, the VCG mechanism
requires much larger payments than a first-price auction in the case where all bidders’ valuations
are common knowledge. (The first-price mechanism will not require a total payment of more than
N for these valuations in any pure-strategy equilibrium.3) Third, even when the other bidders by
themselves would allow the auctioneer to procure the items at a low cost under the VCG mechanism,
it is possible for m colluders to get paid m times as much for all the items.

The following sums up the properties of this example.

Proposition 6 In a reverse auction, the following can hold simultaneously: 1. The winning bidders
are paid mN under the VCG mechanism; 2. If the winning bids are removed, the remaining bids
allow the auctioneer to procure everything at a cost of only N under the VCG mechanism; 3. If
these bids were truthful (as we would expect under VCG), then if we had run a first-price sealed-bid
reverse auction instead (and the bidders’ valuations were common knowledge), any equilibrium in
pure strategies would have required total payment of at most N . (However, there are also mixed-
strategy equilibria with arbitrarily large expected tot al payment.)

2Similar examples have been discovered in the context of purchasing paths in a graph [Archer and Tardos, 2002].
However, in that setting, the buyer does not seek to procure all of the items, and hence the examples cannot be applied
directly to combinatorial reverse auctions.

3Consider the above example and suppose that the n + 2 bids reflect the bidders’ true valuations—since bidding
truthfully is a weakly dominant strategy in the VCG mechanism. Supposing that a pure-strategy equilibrium is being
played, let the total payment to be made in this equilibrium be π. (We observe that the final allocation can still be
uncertain, e.g. if there is a random tie-breaking rule.) Suppose π > N . Then, the expected utility for either one of the
bidders interested in providing the whole bundle can never exceed π − N (because the bidder will be paid 0 whenever
none of its bids are accepted, and providing any items at all will cost it N). Moreover, it is not possible for both of
these bidders to simultaneously have an expected utility of π−N (as this would mean that both are paid π with certainty,
contrary to the fact that the total payment is π). It follows at least one has an expected utility of π−N −ε for some ε > 0.
But then this bidder would be better off bidding π − ε

2
for the whole bundle, which would be accepted with certainty and

give an expected utility of π − N − ε
2

. It follows that the total payment in a pure-strategy equilibrium cannot exceed N .
Perhaps surprisingly, the first-price combinatorial reverse auction for this example (with commonly known true valuations
corresponding to the given bids) actually has mixed-strategy equilibria with arbitrarily high expected payments.

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 109

Characterization

Letting N be the sum of the values of the accepted bids when all the colluders’ bids are taken out,4

it is clear that no colluder can be paid more than N . (With the colluder’s bid, the sum of the values
of others’ accepted bids is still at least 0; without it, it can be at most N , because in the worst case
the auctioneer can accept the bids that would be accepted if none of the colluders are present.) In
this subsubsection, we will identify a necessary and sufficient condition for the colluders to be able
to each receive N .

Lemma 11 If a colluder receives N , then the items that it has to provide cannot be covered by a
subset of the noncolluders’ bids with cost less than N .

Proof: If they could be covered by such a set, we could simply accept this set of bids (including
those that were accepted already) rather than the colluder’s bid, and increase the total cost by less
than N . Thus, the colluder’s VCG payment is less than N .

Thus, in order for each of the n colluders to be able to receive N , it is necessary that there exist
n disjoint subsets of the items, each of which cannot be covered with a subset of the noncolluders’
bids with total value less than N . The next lemma shows that this condition is also sufficient.

Lemma 12 If there are n disjoint sets of items R1, . . . , Rn, each of which cannot be covered by a
subset of the noncolluders’ bids with cost less than N , then n colluders can be paid N each.

Proof: Let colluder i (for i < n) bid (Ri, 0), and let colluder n bid (Rn∪ (S−
⋃

i Ri), 0). Then the
total cost of all accepted bids with all the colluders is 0; but when one colluder is omitted, the items
it won cannot be covered at a cost less than N (because its bid contained one of the Ri). Thus, each
colluder’s VCG payment is N .

The next lemma shows that the necessary and sufficient condition above is equivalent to being
able to partition all the items into n sets, so that no element of the partition can be covered by a
subset of the noncolluders’ bids with total value less than N . That is, we can restrict our attention
to the case where the subsets exhaust all the items.

Lemma 13 The condition of Lemma 12 is satisfied if and only if it is possible to partition the items
into T1, . . . , Tn such that no Ti can be covered by a subset of the noncolluders’ bids with cost less
than N .

Proof: The “if” part is trivial: given Ti that satisfy the condition of this lemma, simply let Ri = Ti.
For the “only if” part, given Ri that satisfy the condition of Lemma 12, let Ti = Ri for i < n, and
Tn = Rn ∪ (S −

⋃

i Ri). We observe that this last set can also not be covered at a cost of less than
N because it contains Rn.

Combining all the lemmas, we get:

4We assume, as is commonly done in settings such as these, that a feasible solution still exists when all the colluders’
bids are removed.

110 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

Theorem 27 The n colluders can receive a payment of N each (simultaneously), where N is the
sum of the values of the accepted bids when all the colluders’ bids are removed, if and only if it
is possible to partition the items into T1, . . . , Tn such that no Ti can be covered by a subset of the
noncolluders’ bids with cost less than N .

Self-enforcing collusion

Unlike the case of combinatorial forward auctions, in reverse auctions, a stronger condition is re-
quired if the collusion is also required to be self-enforcing.

Theorem 28 The n colluders can receive a payment of N each (simultaneously), where N is the
sum of the values of the accepted bids when all the colluders’ bids are removed, if and only if it is
possible to partition the items into T1, . . . , Tn such that 1) no Ti can be covered by a subset of the
noncolluders’ bids with cost less than N , 2) for no colluder i, the following holds: there exists a
subset T ′

i ⊆ Ti such that T ′
i can be covered by a set of noncolluders’ bids with total cost less than

vi(Ti)− vi(Ti − T ′
i) (the marginal savings to colluder i of not having to provide T ′

i).

Proof: For the “if” part, each colluder i can bid on Ti with a value of 0. As in the above, this will
give each colluder a payment of N . Moreover, no colluder i has an incentive to deviate, for the
following reasons. Under the VCG mechanism, it is not possible to change a bidder i’s bid in such
a way that the allocation to i remains the same, but the payment to i changes. Therefore, we only
need to consider what happens if colluder i bids on a different bundle. Bidding on items outside Ti

cannot increase the payment to i because the other colluders are bidding on these items with a value
of 0. Therefore, the only deviation that can possibly be advantageous is to bid on a subset T ′′

i of Ti.
Let T ′

i = Ti−T ′′
i . If the colluder bids on T ′′

i (with, say, value 0), then the payment to colluder i will
decrease by the total cost of covering T ′

i with noncolluder bids. By the assumption in the theorem,
this total cost is at least vi(Ti)− vi(T

′′
i), the marginal savings to colluder i of not having to provide

T ′
i . It follows that the bid does not make the colluder better off.

For the “only if” part, we already know by Theorem 27 that in order for the n colluders to receive
a payment of N each (simultaneously), it must be possible to partition the items into T1, . . . , Tn such
that no Ti can be covered by a subset of the noncolluders’ bids with cost less than N (so that colluder
i can bid on Ti with a value of 0 to achieve the desired outcome). But if for some colluder i, there
exists a subset T ′

i ⊆ Ti such that T ′
i can be covered by a set of noncolluders’ bids with total cost

less than vi(Ti)− vi(Ti−T ′
i), then this colluder would be better off bidding a value of 0 for Ti−T ′

i

instead, because this would decrease the payment to colluder i by less than the marginal savings to
colluder i of not having to provide T ′

i . Hence the collusion would not be self-enforcing.

Complexity

In order to collude in the manner described above, the n colluders must solve the following compu-
tational problem.

Definition 22 (CRITICAL-PARTITION) We are given a set of items I , a collection of bids (Si, vi)
where Si ⊆ I and vi ∈ R, and a number n. Say that the cost of a subset of these bids is the sum of

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 111

their vi; and that the cost c(T) of a subset T ⊆ I is the lowest cost of any subset of the bids whose
Si cover T . We are asked whether there exists a partition of I into n disjoint subsets T1, T2, . . . , Tn,
such that for any 1 ≤ i ≤ n, c(Ti) = c(I).

Theorem 29 Even when the bids are so that a partition T1, . . . , Tn is a solution if and only if no
set I − Ti covers all items in a bid, CRITICAL-PARTITION is NP-complete (even with n = 2).

Proof: The problem is in NP in this case because given a partition T1, . . . , Tn, it is easy to check if
any set I − Ti covers all items in a bid.

To show NP-hardness, we reduce an arbitrary NAESAT5 instance (given by a set of clauses C
over a set of variables V , with each variable occurring at most once in any clause) to the following
CRITICAL-PARTITION instance with n = 2 (where we are trying to partition into T1 and T2). Let
I be as follows. For every variable v ∈ V , there are two items labeled s+v and s−v. Let the bids
be as follows. For every variable v ∈ V , there is a bid ({s+v, s−v}, 2). For every clause c ∈ C ,
there are two bids ({sl : l ∈ c}, 2mc − 1) and ({sl : −l ∈ c}, 2mc − 1) where mc is the number of
literals occurring in c.

First we show that this instance satisfies the condition that a partition T1, . . . , Tn is a solution if
and only if no set I − Ti covers all items in a bid. First, we observe that c(I) = |I| (we can use all
the bids of the form ({s+v, s−v}, 2), getting a per-item cost of 1; no other bid gives a lower per-item
cost).

Now, if some set I − Ti covers all the items in a bid of the form ({s+v, s−v}, 2), then c(Ti) ≤
2|I| − 2 (because we can simply omit this bid from the solution for all the items). If some set
I − Ti covers all the items in a bid of the form ({sl : l ∈ c}, 2mc − 1), then c(Ti) = |I| − 1.
(This is because we can now accept the “complement” bid ({sl : −l ∈ c}, 2mc − 1), and we
will have covered all the items s+v and s−v in Ti such that v occurs in c (precisely 2mc items,
because variables do not reoccur within a clause); for any other item s+v or s−v, we can accept the
bid ({s+v, s−v}, 2), and we need to accept at most |V | − mc such bids, leading to a total cost of
2mc − 1 + 2(|V | −mc) = |I| − 1.)

On the other hand, suppose there is no set I − Ti that covers all the items in a bid. Then, either
Ti must include at precisely one of sv and s−v. (Otherwise one Ti would include neither and I −Ti

would cover all items in the bid ({s+v, s−v}, 2).) Thus, when we are trying to cover Ti, covering
items in it with bids of the form ({s+v, s−v}, 2) would result in a per-item cost of 2. On the other
hand, covering items in it with bids of the form ({sl : l ∈ c}, 2mc − 1) or ({sl : −l ∈ c}, 2mc − 1)
would result in a per-item cost of at least 2mc−1

mc−1 > 2 (because at most mc − 1 of the mc items in
the bid can be in Ti, otherwise Ti would cover all the items in the bid; but Ti = I − T3−i which by
assumption does not cover all the items in any bid). It follows that C(Ti) = 2|V | = |I| = c(I).

Now we show that the two instances are equivalent. First suppose there exists a solution to the
NAESAT instance. Then partition the elements as T1 = {sl : l =true} and T2 = {sl : l =false},
according to this solution. Clearly neither of I−Ti = T3−i covers a bid of the form ({s+v, s−v}, 2).
Also, because no clause has all its literals set to the same value (we have a NAESAT solution), the
items in a corresponding bid ({sl : l ∈ c}, 2mc − 1) or ({sl : −l ∈ c}, 2mc − 1) are not all in

5The goal in NAESAT is to assign truth values to all variables in such a way that there is no clause with all its literals
set to true, and no clause with all its literals set to false.

112 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

the same set. By the previously proved property, it follows that this partition is a solution to the
CRITICAL-PARTITION instance.

On the other hand, suppose that there exists a solution to the CRITICAL-PARTITION instance.
Then label a literal true if sl ∈ T1, and false otherwise. By the previously proved property, because
({s+v, s−v}, 2) is a bid, only one of s+v and s−v can be in T1 = I−T2, so this provides a consistent
setting of the literals. Additionally, because ({sl : l ∈ c}, 2mc− 1) is a bid, not all the sl in that bid
can be in T1 = I −T2. It follows that some of the literals l ∈ c are set to false. Similarly, not all the
sl in that bid can be in T2 = I − T1, so some of the literals l ∈ c are set to true. It follows that this
assignment of truth values to variables is a solution to the NAESAT instance.

5.1.3 Combinatorial forward (or reverse) auctions without free disposal

We recall that a combinatorial forward auction without free disposal is exactly the same as one with
free disposal, with the exception that every item must be allocated to some bidder. Recall from
Section 2.2 that since we are looking for an exact cover of the items, and negative bids may be of
use, combinatorial forward auctions are technically identical to combinatorial reverse auctions.

Motivating example

Consider a forward auction with two nondisposable items, s1 and s2. Suppose we have collected two
bids (from different bidders), both ({s1, s2}, N). If these are the only two bids, one of the bidders
will be awarded both the items and, under the VCG mechanism, will have to pay N . However,
suppose two more bids (by different bidders) come in: ({s1}, N + M) and ({s2}, N + M), with
M > 0. Then these bids will win. Moreover, because without free disposal, we cannot accept either
of these bids without the other, each of these bidders will be paid M under the VCG mechanism!

Again, this example demonstrates a number of issues. First, additional bidders may change
the auctioneer’s revenue from an arbitrarily large positive amount to an arbitrarily large negative
amount (an arbitrarily large cost). Second, the VCG mechanism may require arbitrarily large pay-
ments from the auctioneer even in cases where a first-price auction would actually generate revenue
for the auctioneer, in the case where all bidders’ valuations are common knowledge. (The first-price
mechanism will generate a revenue of at least N for these valuations in any pure-strategy equilib-
rium.6) Third, even when the other bidders by themselves would generate positive revenue for the

6Consider the above example and suppose that the four bids reflect the bidders’ true valuations—since bidding truth-
fully is a weakly dominant strategy in the VCG mechanism. Supposing that a pure-strategy equilibrium is being played,
let the total revenue to the auctioneer be ρ, where ρ is possibly negative. (We observe that the final allocation can still be
uncertain, e.g. if there is a random tie-breaking rule.) Suppose ρ < N . Then the expected utility for either of the bidders
interested in providing the whole bundle is at most N − ρ. (If the bidder receives a singleton item, its utility is −∞; if it
receives nothing, its utility is 0; if it receives both items, its utility is N −ρ.) Moreover, it is not possible for both of these
bidders to both have an expected utility of N − ρ, as this would mean they both receive both items with probability 1. It
follows that at least one of them has an expected utility of N −ρ−ε where ε > 0. But then this bidder would be better off
bidding ρ + ε

2
, as this bid would be accepted with certainty and give an expected utility of N − ρ− ε

2
. It follows that the

expected revenue in a pure-strategy equilibrium cannot be less than N . Similarly to the case of the combinatorial reverse
auction with free disposal, there are mixed-strategy equilibria in the first-price auction where the auctioneer is forced to
make arbitrarily large payments.

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 113

auctioneer under the VCG mechanism, it is possible that two colluders can make the auctioneer pay
each of them an arbitrarily large amount.

The following sums up the properties of this example.

Proposition 7 In a forward auction without free disposal (even with only two items), the following
can hold simultaneously: 1. Each winning bidder is paid an arbitrary amount M under the VCG
mechanism (where M depends only on the winners’ bids); 2. If the winning bids are removed, the
remaining bids actually generate revenue N to the auctioneer under the VCG mechanism; 3. If
these bids were truthful (as we would expect under VCG), then if we had run a first-price sealed-bid
auction instead (and the bidders’ valuations were common knowledge), any equilibrium in pure
strategies would have generated revenue N . (However, there are mixed-strategy equilibria with
arbitrarily large cost to the auctioneer.)

Characterization

In this subsubsection, we will identify a necessary and sufficient condition for the colluders to be
able to each receive an arbitrary amount. Let v(b) denote the value of bid b.

Lemma 14 If each colluder receives a payment of more than 2
∑

d

|v(bd)| (where d ranges over the

noncolluders), then for each colluder c, the set of all items awarded to either that colluder or a
noncolluder (that is, sc ∪

⋃

d sd, where sb is the set of items awarded to bidder b and d ranges over
the noncolluders) cannot be covered exactly with bids from the noncolluders.

Proof: Say that the sum of the values of accepted noncolluder bids is D (which may be negative).
Suppose that for one colluder c, the set of all items awarded to either her or a noncolluder (that
is, sc ∪

⋃

d sd) can be covered by a set of noncolluder bids of combined value C (which may be
negative). Then removing colluder c can make the allocation at most D − C worse to the other
bidders (relative to their reported valuations), because we could simply accept the bids of combined
value C and no longer accept the bids of combined value D, and keep the rest of the allocation the
same. Thus, under VCG, that colluder should be rewarded at most D − C ≤ 2

∑

d

|v(bd)|.

Thus, in order for each colluder to be able to receive an arbitrarily large payment, it is neces-
sary that there are n disjoint subsets of the items such that no such subset taken together with the
remaining items can be covered exactly by the noncolluders’ bids. Also, the set of remaining items
must be exactly coverable by the noncolluders’ bids (otherwise we cannot accept all the colluders’
bids). The next lemma shows that this condition is also sufficient.

Lemma 15 If it is possible to partition the items into R1, . . . , Rn, Rn+1 such that for no 1 ≤ i ≤ n,
Ri ∪ Rn+1 can be covered exactly with bids from the noncolluders; and such that Rn+1 can be
covered exactly with bids from the noncolluders; then for any M > 0, n colluders can place
additional bids such that each of them receives at least M .

Proof: Let colluder i place a bid (Ri, M +3
∑

d

|v(bd)|) (where d ranges over the noncolluders). All

these bids will be accepted, because it is possible to do so by also accepting the noncolluder bids that

114 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

cover Rn+1 exactly; and these noncolluder bids will have a combined value of at least −
∑

d

|v(bd)|,

so that the sum of the values of all accepted bids is at least (3n− 1)
∑

d

|v(bd)|+ nM . (We observe

that if we do not accept all of the colluder bids, the sum of the values of all accepted bids is at most
(3(n−1)+1)

∑

d

|v(bd)|+(n−1)M = (3n−2)
∑

d

|v(bd)|+(n−1)M , which is less.) Now, if the

bid of colluder i is removed, it is no longer possible to accept all the remaining n− 1 colluder bids,
because Ri ∪Rn+1 cannot be covered exactly with noncolluder bids. It follows that the total value
of all accepted bids when i’s bid is removed can be at most (3(n− 2) + 1)

∑

d

|v(bd)|+ (n− 2)M .

When i’s bid is not omitted, the sum of the values of all accepted bids other than i’s is at least
(3(n − 1) − 1)

∑

d

|v(bd)| + (n − 1)M . Subtracting the former quantity from this, we get that the

VCG payment to i is at least
∑

d

|v(bd)|+ M .

The next lemma shows that the necessary and sufficient condition above is equivalent to being
able to partition all the items into n sets, so that no element of the partition can be covered exactly by
a subset of the noncolluders’ bids. That is, we can restrict our attention to the case where Rn+1 = ∅.

Lemma 16 The condition of Lemma 15 is satisfied if and only if the items can be partitioned into
T1, . . . , Tn such that no Ti can be covered exactly with bids from the noncolluders.

Proof: For the “if” part: given Ti that satisfy the condition of this lemma, let Ri = Ti for i ≤ n,
and Rn+1 = ∅. Then no Ri ∪ Rn+1 = Ti can be covered exactly with bids from the noncolluders,
and Rn+1 = ∅ can trivially be covered exactly with noncolluder bids. For the “only if” part: given
Ri that satisfy the condition of Lemma 15, let Ti = Ri for i < n, and let Tn = Rn ∪ Rn+1.
That Tn cannot be covered exactly by noncolluder bids now follows directly from the conditions of
Lemma 15. But also, no Ti with i < n can be covered exactly: because if it could, then we could
cover Ri ∪Rn+1 = Ti ∪Rn+1 using the bids that cover Ti exactly together with the bids that cover
Rn+1 exactly (which exist by the conditions of Lemma 15).

Combining all the lemmas, we get:

Theorem 30 The n colluders can receive a payment of at least M each (simultaneously), where M
is an arbitrarily large number, if and only if it is possible to partition the items into T1, . . . , Tn such
that no Ti can be covered exactly with bids from the noncolluders.

Self-enforcing collusion

Again, a stronger condition is required if the collusion is also required to be self-enforcing.

Theorem 31 The n colluders can receive a payment of at least M each (simultaneously), where M
is an arbitrarily large number, if and only if it is possible to partition the items into T1, . . . , Tn such
that 1) no Ti can be covered exactly with noncolluder bids, 2) for no colluder i, the following holds:
there exists a subset T ′

i ⊆ Ti such that T ′
i can be covered exactly by a set of noncolluders’ bids with

total value greater than vi(Ti)− vi(Ti − T ′
i) (the marginal value to colluder i of receiving T ′

i).

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 115

Proof: For the “if” part, each colluder i can bid on Ti with a sufficiently large value. As in the above,
this will give each colluder a payment of at least M . Moreover, no colluder i has an incentive to
deviate, for the following reasons. Under the VCG mechanism, it is not possible to change a bidder
i’s bid in such a way that the allocation to i remains the same, but the payment to i changes.
Therefore, we only need to consider what happens if colluder i bids on a different bundle. Bidding
on items outside Ti will prevent one of the other colluders’ bids from being accepted, leading to
a severe reduction in the total value of the allocation, and therefore to a severe reduction in the
payment to colluder i. Therefore, the only deviation that can possibly be advantageous is to bid on
a subset T ′′

i of Ti. Let T ′
i = Ti − T ′′

i . If the colluder bids on T ′′
i (with a sufficiently large value),

one of two things may happen. First, it can be the case that it is not possible to exactly cover T ′
i

with noncolluder bids. If so, then it must be the case that one of the other colluders’ bids cannot be
accepted, leading again to a severe reduction in the payment to colluder i. Second, it can be the case
that it is possible to exactly cover T ′

i with noncolluder bids. In this case, the payment to colluder
i will increase by the total value of this cover of T ′

i . By the assumption in the theorem, this total
value is at most vi(Ti)− vi(T

′′
i), the marginal value to colluder i of receiving T ′

i . It follows that the
bid does not make the colluder better off.

For the “only if” part, we already know by Theorem 30 that in order for the n colluders to
receive an arbitrarily large payment of at least M each (simultaneously), it must be possible to
partition the items into T1, . . . , Tn such that no Ti can be covered exactly with noncolluder bids (so
that colluder i can bid on Ti with a sufficiently large value to achieve the desired outcome). But
if for some colluder i, there exists a subset T ′

i ⊆ Ti such that T ′
i can be covered exactly by a set

of noncolluders’ bids with total value greater than vi(Ti) − vi(Ti − T ′
i), then this colluder would

be better off bidding a sufficiently large value for Ti − T ′
i instead, because this would increase the

payment to colluder i by more than the marginal value to colluder i of receiving T ′
i as well. Hence

the collusion would not be self-enforcing.

Complexity

In order to collude in the manner described above, the n colluders must solve the following compu-
tational problem.

Definition 23 (COVERLESS-PARTITION) We are given a set I and a collection of subsets S1, S2,
. . . , Sq ⊆ I . We are asked whether there is a partition of I into subsets T1, T2, . . . Tn ⊆ I such that
no Ti can be covered exactly by some of the Si.

Theorem 32 Even if there is a singleton Si for all but two elements a and b, and n = 2, COVERLESS-
PARTITION is NP-complete.

Proof: The problem is in NP in this case because given a partition T1, T2, either one of the Ti

contains both a and b, in which case the other can be covered exactly with singleton sets; or they
each contain one of a and b (say Ta contains a and Tb contains b). In the latter case, there is a cover
of Ts if and only if it contains a subset containing s (the other elements in Ts can be covered with
singleton sets), which can be checked in polynomial time.

116 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

To show that the problem is NP-hard, we reduce from SAT. Given an arbitrary SAT instance
(given by a set of clauses C over variables V), let S be as follows. It contains a and b; for each
variable v ∈ V , it contains an element sv; and for each clause c ∈ C, it contains an element sc. Let
the collection of subsets be as follows. For every sv, there is a subset Sv = {sv}. For every sc, there
is a subset Sc = {sc}. Finally, for every clause c ∈ C, there are two more subsets: one consisting
of b, sc, and all the variables that occur positively in c (Sc+ = {b, sc} ∪ {sv : +v ∈ c}), and one
consisting of a, sc, and all the variables that occur negatively in c (Sc− = {a, sc} ∪ {sv : −v ∈ c}).
We now show that the instances are equivalent.

First suppose there is a solution to the SAT instance, given by a labeling t : V → {true, false}.
Then let {a} ∪ {sv : t(v) =true} ⊆ T1 and {b} ∪ {sv : t(v) =false} ⊆ T2. Furthermore, if one of
the variables occurring positively in c is set to true, let sc ∈ T2; otherwise, let sc ∈ T1. First, we
claim that no subset Sc+ is contained in some Ti. It is not contained in T1 because it has b in it. If c
is satisfied because of one of the variables v occurring positively in c is set to true, then sv ∈ T1, and
because sv ∈ Sc+, Sc+ is not contained in T2. Otherwise, sc ∈ T1, and again Sc+ is not contained
in T2. Next, we claim that no subset Sc− is contained in some Ti. It is not contained in T2 because
it has a in it. If c is satisfied because of one of the variables v occurring positively in c is set to true,
sc ∈ T2, and Sc− is not contained in T1. Otherwise, one of the variables v occurring negatively in c
must be set to false, so v ∈ T2, and because sv ∈ Sc−, again Sc− is not contained in T1. Because
only bids of the form Sc+ or Sc− contain a or b, it follows that there is no exact cover of either T1

or T2, and we have a solution to the COVERLESS-PARTITION instance.
Now suppose there is a solution to the COVERLESS-PARTITION instance, given by a partition

T1, T2. Because a and b cannot occur in the same Ti, suppose without loss of generality that a ∈ T1

and b ∈ T2. Then, set v to true if sv ∈ T1, and to false otherwise. Suppose that a given clause c
is not satisfied with this assignment. This means that for all variables v that occur positively in c,
sv ∈ T2, and for all variables v that occur negatively in c, sv ∈ T1. If sc ∈ T1, then Sc− is contained
in T1; and thus we can cover T1 exactly with this set and singleton sets for the remaining elements.
On the other hand, if sc ∈ T2, then Sc+ is contained in T2; and thus we can cover T2 exactly with
this set and singleton sets for the remaining elements. It follows that all clauses are satisfied with
this assignment, and we have a solution to the SAT instance.

An easier collusion problem

So far in this subsection, we have formulated the collusion problem so that each colluder should
receive M , where M is an arbitrary amount. An easier problem for the colluders is to make sure
that together, they receive M , where M is an arbitrary amount. Such a collusion may be less stable
(because some of the colluders may be receiving very little). Nevertheless, as we will show, this
type of collusion is possible whenever a weak (and easily verified, given the noncolluders’ bids)
condition holds: at least one item has no singleton bid on it. (A singleton bid is a bid on only one
item.) We first show that this condition is necessary.

Lemma 17 If at least one colluder receives a payment of more than
∑

d

|v(bd)| (where d ranges over

the noncolluders), then there is at least one item s on which no noncolluder places a singleton bid.

5.1. VCG FAILURES IN COMBINATORIAL AUCTIONS AND EXCHANGES 117

Proof: If each item has a singleton noncolluder bid placed on it, then when we remove a colluder’s
bid, we can simply cover all the items in it with singleton bids (with a combined value of at least
−

∑

d

|v(bd)|), and leave the rest of the allocation unchanged. It follows that the VCG payment to

the colluder can be at most
∑

d

|v(bd)|).

We now show that the condition is sufficient.

Lemma 18 If there is at least one item s on which no noncolluder places a singleton bid, then if
one colluder bids ({s}, 0), and the other colluder bids (I − {s}, M + 2

∑

d

|v(bd)|) (for M > 0),

then the total payment to the colluders is at least M .

Proof: The colluders’ bids will be the only accepted ones (because colluder 2’s bid has a greater
value than all other bids combined). If we removed colluder 2’s bid, the total value of the ac-
cepted bids would be at most

∑

d

|v(bd)|), so colluder 2 will pay at most this much under the VCG

mechanism. If we removed colluder 1’s bid, colluder 2’s bid could no longer be accepted (because
{s} cannot be covered by itself), and thus the total value of the accepted bids could be at most
∑

d

|v(bd)|). It follows that colluder 1 is paid at least M +
∑

d

|v(bd)|). So the total payment to the

colluders is at least M

Combining the two lemmas, we get the desired result:

Theorem 33 Two (or more) colluders can receive a total payment of M , where M is an arbitrarily
large number, if and only if there is at least one item that has no singleton bid placed on it by a
noncolluder.

5.1.4 Combinatorial exchanges

We recall that in a combinatorial exchange, there is a set of items I = {s1, s2, . . . , sm} that can be
traded. A bid takes the form b = (λ1, . . . , λm, v), where λ1, . . . , λm, v ∈ R (possibly negative).
(Each λi is the number of units of the ith item that the bidder seeks to procure, and v is how much
the bidder is wi lling to pay.) The winner determination problem is to label bids as accepted or
rejected, under the constraint that the sum of the accepted vectors has its first m entries ≤ 0, to
maximize the last entry of the sum of the accepted vectors. (This is assuming free disposal.) We
will also use the notation ({(si1 , λi1), (si2 , λi2), . . . , (sik , λik)}, v) for representing a bid in which
λij units of item sij are demanded (and 0 units of each item that is not mentioned).

Characterization

In a combinatorial exchange with at least two items s1 and s2, let q1 (respectively, q2) be the total
number of units of s1 (respectively, s2) offered for sale in bids so far (by noncolluders). Now
consider the following two bids (by colluders): ({(s1, q1 + 1), (s2,−q2 − 1)}, M +

∑

d

|v(bd)|)

and ({(s1,−q1 − 1), (s2, q2 + 1)}, M +
∑

d

|v(bd)|), where M > 0 and d ranges over the original

118 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

(noncolluding) bids. Both these bids will be accepted (for otherwise, the total value of the accepted
bids could be at most M +2

∑

d

|v(bd)| < 2(M +
∑

d

|v(bd)|)). Moreover, if we remove one of these

two bids, the other cannot be accepted (because its demand cannot be met), so the total value of
the accepted bids can be at most

∑

d

|v(bd)|). It follows that the VCG payment to each of these two

bidders is at least M . This proves the following:

Theorem 34 In a combinatorial exchange with at least two items, for any set of bids by noncol-
luders, two colluders can place bids so that each of them will receive at least M , where M is an
arbitrary amount. Moreover, each one receives exactly the items that the other provides, so that
their net contribution in terms of items is nothing.

This concludes the part of this dissertation analyzing problematic outcomes of the VCG mech-
anism in combinatorial auctions and exchanges. We will return to combinatorial auctions briefly in
the next chapter, Section 6.5. In the next section, we consider mechanism design for negotiating
over donations to charities.

5.2 Mechanism design for donations to charities

In this section, we study mechanism design for the setting of expressive preference aggregation
for donations to charities described in Section 2.3. The rules that we described in that section for
deciding on outcomes turn out not to be strategy-proof, as we will see shortly. This is not too
surprising, because the mechanism described so far is, in a sense, a first-price mechanism, where
the mechanism will extract as much payment from a bidder as her bid allows; and such mechanisms
are typically not strategy-proof. In this section, we consider changing the rules to make bidding
truthfully strategically optimal.

5.2.1 Strategic bids under the first-price mechanism

We first point out some reasons for bidders to misreport their preferences under the first-price mech-
anism described up to this point. First of all, even when there is only one charity, it may make sense
to underbid one’s true valuation for the charity. For example, suppose a bidder would like a charity
to receive a certain amount x, but does not care if the charity receives more than that. Additionally,
suppose that the other bids guarantee that the charity will receive at least x no matter what bid the
bidder submits (and the bidder knows this). Then the bidder is best off not bidding at all (or submit-
ting a utility for the charity of 0), to avoid having to make any payment. (This is an instance of the
free rider problem [Mas-Colell et al., 1995].)

With multiple charities, another kind of manipulation may occur, where the bidder attempts
to steer others’ payments towards her preferred charity. Suppose that there are two charities, and
three bidders. The first bidder bids u1

1(πc1) = 1 if πc1 ≥ 1, u1
1(πc1) = 0 otherwise; u2

1(πc2) = 1
if πc2 ≥ 1, u2

1(πc2) = 0 otherwise; and w1(u1) = u1 if u1 ≤ 1, w1(u1) = 1 + 1
100(u1 − 1)

otherwise. The second bidder bids u1
2(πc1) = 1 if πc1 ≥ 1, u1

1(πc1) = 0 otherwise; u2
2(πc2) = 0

(always); w2(u2) = 1
4u2 if u2 ≤ 1, w2(u2) = 1

4 + 1
100(u2 − 1) otherwise. Now, the third bidder’s

5.2. MECHANISM DESIGN FOR DONATIONS TO CHARITIES 119

true preferences are accurately represented7 by the bid u1
3(πc1) = 1 if πc1 ≥ 1, u1

3(πc1) = 0
otherwise; u2

3(πc2) = 3 if πc2 ≥ 1, u2
3(πc1) = 0 otherwise; and w3(u3) = 1

3u3 if u3 ≤ 1,
w3(u3) = 1

3 + 1
100(u3 − 1) otherwise. Now, it is straightforward to check that, if the third bidder

bids truthfully, regardless of whether the objective is surplus maximization or total donated, charity
1 will receive at least 1, and charity 2 will receive less than 1. The same is true if bidder 3 does not
place a bid at all (as in the previous type of manipulation); hence bidder 2’s utility will be 1 in this
case. But now, if bidder 3 reports u1

3(πc1) = 0 everywhere; u2
3(πc2) = 3 if πc2 ≥ 1, u2

3(πc2) = 0
otherwise (this part of the bid is truthful); and w3(u3) = 1

3u3 if u3 ≤ 1, w3(u3) = 1
3 otherwise;

then charity 2 will receive at least 1, and bidder 3 will have to pay at most 1
3 . Because up to this

amount of payment, one unit of money corresponds to three units of utility to bidder 3, it follows
his utility is now at least 3 − 1 = 2 > 1. We observe that in this case, the strategic bidder is not
only affecting how much the bidders pay, but also how much the charities receive.

5.2.2 Mechanism design in the quasilinear setting

In the remainder of this section, we restrict our attention to bidders with quasilinear preferences.
There are at least four reasons why the mechanism design approach is likely to be most successful
in the setting of quasilinear preferences. First, historically, mechanism design has been been most
successful when the quasilinear assumption could be made. Second, because of this success, some
very general mechanisms have been discovered for the quasilinear setting (for instance, the VCG
and dAGVA mechanisms) which we could apply directly to the expressive charity donation prob-
lem (although they are not fully satisfactory, as VCG is not budget-balanced, and dAGVA is not
individually rational). Third, as we saw in Section 3.3.4, the clearing problem is much easier in
this setting, and thus we are less likely to run into computational trouble for the mechanism design
problem. Fourth, as we will show shortly, the quasilinearity assumption in some cases allows for
decomposing the mechanism design problem over the charities (as it did for the simple clearing
problem).

Moreover, in the quasilinear setting (unlike in the general setting), it makes sense to pursue
social welfare (the sum of the utilities) as the objective, because now 1) units of utility correspond
directly to units of money, so that we do not have the problem of the bidders arbitrarily scaling
their utilities; and 2) it is no longer possible to give a payment willingness function of 0 while still
affecting the donations through a utility function.

We are now ready to present the result that shows that we can sometimes decompose the problem
over the charities.

Theorem 35 Suppose all agents’ preferences are quasilinear (and, as we have been assuming
throughout, that the utility that an agent derives from one charity is independent of how much
other charities receive). Furthermore, suppose that there exists a single-charity mechanism M that,
for a certain subclass P of (quasilinear) preferences, under a given solution concept S (either im-
plementation in dominant strategies or Bayes-Nash equilibrium) and a given notion of individual

7Formally, this means that if the bidder is forced to pay the full amount that his bid allows for a particular vector of
payments to charities, the bidder is indifferent between this and not participating in the mechanism at all. (Compare this
to bidding truthfully in a first-price auction.)

120 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

rationality R (either ex post, ex interim, or none), satisfies a certain notion of budget balance (ei-
ther ex post, ex ante, or none), and is ex-post efficient. Then, there exists a mechanism with the
same properties for any number of charities—namely, the mechanism that runs the single-charity
mechanism separately for each individual charity.

Proof: As stated in the theorem, the mechanism is simply the following: for each charity, run the
single-charity mechanism on the agents’ preferences for that charity, and let the agents make the
corresponding payments to that charity. (So, each agent’s total payment will be the sum of her
payments to the individual charities.) Because the agents are assumed to be maximizing expected
utility, and the utilities that they derive from different charities are independent, it follows by lin-
earity of expectation that they can separate their truthfulness and participation decisions across the
charities. Thus, the desired properties follow from the fact that the single-charity mechanism has
these properties.

Two mechanisms that satisfy efficiency (and can in fact be applied directly to the multiple-
charity problem without use of the previous theorem) are the VCG (which is incentive compatible
in dominant strategies) and dAGVA (which is incentive compatible only in Bayes-Nash equilibrium)
mechanisms. Each of them, however, has a drawback that would probably make it impractical in
the setting of donations to charities. The VCG mechanism is not budget balanced. The dAGVA
mechanism does not satisfy ex-post individual rationality. In the next subsection, we will investigate
whether we can do better in the setting of donations to charities.

5.2.3 Impossibility of efficiency

In this subsection, we show that even in a very restricted setting, and with minimal requirements on
incentive-compatibility and individual-rationality constraints, it is impossible to create a mechanism
that is efficient.

Theorem 36 There is no mechanism which is ex-post budget balanced, ex-post efficient, and ex-
interim individually rational with Bayes-Nash equilibrium as the solution concept (even with only
one charity, only two quasilinear bidders, with identical type distributions (uniform over two types,
with either both utility functions being step functions or both utility functions being concave piece-
wise linear functions)).

Proof: Suppose the two bidders both have the following distribution over types. With probability 1
2 ,

the bidder does not care for the charity at all (u is zero everywhere); otherwise, the bidder derives
utility 5

4 from the charity getting at least 1, and utility 0 otherwise. (Alternatively, for the second
type, the bidder can get min{ 5

4 , 5πc
4 }—a concave piecewise linear function.) Call the first type the

low type (L), the second one the high type (H).
Suppose a mechanism with the desired properties does exist. By the revelation principle, we

can assume that revealing preferences truthfully is a Bayes-Nash equilibrium in this mechanism.
Because the mechanism is ex-post efficient, the charity should receive exactly 1 when either bidder
has the high type, and 0 otherwise. Let π1(θ1, θ2) be bidder 1’s (expected) payment when she
reports θ1 and the other bidder reports θ2. By ex-interim IR, π1(L, H) + π1(L, L) ≤ 0. Because

5.2. MECHANISM DESIGN FOR DONATIONS TO CHARITIES 121

bidder one cannot have an incentive to report falsely when her true type is high, we have 5
4 −

π1(L, H) − π1(L, L) ≤ 5
4 − π1(H, H) + 5

4 − π1(H, L), or equivalently π1(H, H) + π1(H, L) ≤
5
4 + π1(L, L) + π1(L, H) ≤ 5

4 . Because the example is completely symmetric between bidders,
we can similarly conclude for bidder 2’s payments that π2(H, H) + π2(L, H) ≤ 5

4 . Of course, in
order to pay the charity the necessary amount of 1 whenever one of the bidders has her high type,
we need to have π1(H, H) + π1(H, L) + π2(H, H) + π2(L, H) + π1(L, H) + π2(H, L) = 3, and
thus we can conclude that π1(L, H)+π2(H, L) ≥ 3− 10

4 = 1
2 . Because the charity receives 0 when

both report low, π1(L, L) + π2(L, L) = 0 and thus we can conclude that π1(L, H) + π1(L, L) +
π2(H, L) + π2(L, L) ≥ 1

2 . But by the individual rationality constraints, π1(L, H) + π1(L, L) ≤ 0
and π2(H, L) + π2(L, L) ≤ 0. (Contradiction.)8

The case of step-functions in this theorem corresponds exactly to the case of a single, fixed-size,
nonexcludable public good (the “public good” being that the charity receives the desired amount)—
for which such an impossibility result is already known [Mas-Colell et al., 1995]. Many similar
results are known, probably the most famous of which is the Myerson-Satterthwaite impossibility
result, which proves the impossibility of efficient bilateral trade under the same requirements [My-
erson and Satterthwaite, 1983].

Theorem 35 indicates that there is no reason to decide on donations to multiple charities under
a single mechanism (rather than a separate one for each charity), when an efficient mechanism with
the desired properties exists for the single-charity case. However, because under the requirements
of Theorem 36, no such mechanism exists, there may be a benefit to bringing the charities under the
same umbrella. The next proposition shows that this is indeed the case.

Proposition 8 There exist settings with two charities where there exists no ex-post budget balanced,
ex-post efficient, and ex-interim individually rational mechanism with Bayes-Nash equilibrium as
the solution concept for either charity alone; but there exists an ex-post budget balanced, ex-post
efficient, and ex-post individually rational mechanism with dominant strategies as the solution con-
cept for both charities together. (Even when the conditions are the same as in Theorem 36, apart
from the fact that there are now two charities.)

Proof: Suppose that each bidder has two types, With probability 1
2 each: for the first type, her

preferences for the first charity correspond to the high type in the proof of Theorem 36, and her
preferences for the second charity correspond to the low type in the proof of Theorem 36. For the
second type, her preferences for the first charity correspond to the low type, and her preferences
for the second charity correspond to the high type. Now, if we wish to create a mechanism for
either charity individually, we are in exactly the same setting as in the proof of Theorem 36, where

8As an alternative proof technique (a proof by computer), we let our automated mechanism design software (described
in Chapter 6) create a mechanism for the (step-function) instance described in the proof, which was restricted to be
implementable in dominant strategies, ex-interim individually rational, and (weak) budget balanced, with social welfare
(counting the payments made) as the objective. The mechanism did not burn any money (did not pay unnecessarily much
to the charity), but did not always give money to the charity when it was beneficial to do so. (It randomized uniformly
between giving 1 and giving 0 when player one’s type was low, and player 2’s high.) Since an ex-post budget balanced,
ex-post efficient mechanism would have had a higher expected objective value, and automated mechanism design always
finds the mechanism that maximizes the expected objective value under the constraints it is given, we can conclude that
no ex-post budget balanced, ex-post efficient mechanism exists under the given constraints.

122 CHAPTER 5. DIFFICULTIES FOR CLASSICAL MECHANISM DESIGN

we know that it is impossible to get all of ex-post budget balance, ex-post efficiency, and ex-interim
individually rationality in Bayes-Nash equilibrium. On the other hand, consider the following mech-
anism for the joint problem. If both bidders report preferring the same charity, each bidder pays 1

2 ,
and the preferred charity receives 1 (the other 0). Otherwise, each bidder pays 1, and each charity
receives 1. It is straightforward to check that the mechanism is ex-post budget balanced, ex-post
efficient, and ex-post individually rational. To see that truthtelling is a dominant strategy, we need to
check two cases. First, if one bidder reports a high type for the charity that the other bidder does not
prefer, this latter bidder is better off reporting truthfully: reporting falsely will give her utility − 1

2
(nothing will be donated to her preferred utility), which is less than reporting truthfully by ex-post
IR. Second, if one bidder reports a high type for the charity that the other bidder prefers, this latter
bidder is better off reporting truthfully as well: her preferred charity will receive the same amount
regardless of her report, but her required payment is only 1

2 if she reports truthfully, as opposed to 1
if she reports falsely.

This concludes the part of this dissertation studying expressive preference aggregation for do-
nations to charities.

5.3 Summary

In this chapter, we studied problems that classical mechanism design faces in some expressive
preference aggregation settings. In Section 5.1, we studied two related problems concerning the
VCG mechanism: the problem of revenue guarantees, and that of collusion. We studied four set-
tings: combinatorial forward auctions with free disposal, combinatorial reverse auctions with free
disposal, combinatorial forward (or reverse) auctions without free disposal, and combinatorial ex-
changes. In each setting, we gave an example of how additional bidders (colluders) can make the
outcome much worse (less revenue or higher cost) under the VCG mechanism (but not under a first
price mechanism); derived necessary and sufficient conditions for such an effective collusion to be
possible under the VCG mechanism; and (when nontrivial) studied the computational complexity
of deciding whether these conditions hold.

In Section 5.2, we studied mechanism design for expressive preference aggregation for dona-
tions to (charitable) causes. We showed that even with only a single charity, a fundamental impossi-
bility result similar to the Myerson-Satterthwaite impossibility theorem holds; but we also showsed
some positive results, including how mechanisms that are successful in single-charity settings can
be extended to settings with multiple charities, and how combining the aggregation of preferences
over donations to multiple individual charities into a single mechanism can improve efficiency.

The work in this chapter provides some reasons why simply taking a standard mechanism “off
the shelf” is not always satisfactory, especially in domains with complex preferences. Rather, it
may be preferable to design a custom mechanism. The next chapter takes this idea to its extreme:
we will study how an optimal mechanism can be automatically designed (computed) for the specific
instance at hand only.

Chapter 6

Automated Mechanism Design

Mechanism design has traditionally been a manual endeavor. The designer uses experience and
intuition to hypothesize that a certain rule set is desirable in some ways, and then tries to prove that
this is the case. Alternatively, the designer formulates the mechanism design problem mathemat-
ically and characterizes desirable mechanisms analytically in that framework. These approaches
have yielded a small number of canonical mechanisms over the last 40 years, the most significant of
which we discussed in Chapter 4. Each of these mechanisms is designed for a class of settings and
a specific objective. The upside of these mechanisms is that they do not rely on (even probabilistic)
information about the agents’ preferences (e.g. Vickrey-Clarke-Groves mechanisms), or they can be
easily applied to any probability distribution over the preferences (e.g. the dAGVA mechanism, the
Myerson auction, and the Maskin-Riley multi-unit auction). However, these general mechanisms
also have significant downsides:

• The most famous and most broadly applicable general mechanisms, VCG and dAGVA, only
maximize social welfare. If the designer is self-interested, as is the case in many electronic
commerce settings, these mechanisms do not maximize the designer’s objective.

• The general mechanisms that do focus on a self-interested designer are only applicable in
very restricted settings. For example, Myerson’s expected revenue maximizing auction is for
selling a single item, and Maskin and Riley’s expected revenue maximizing auction is for
selling multiple identical units of an item.

• Even in the restricted settings in which these mechanisms apply, the mechanisms only allow
for payment maximization. In practice, the designer may also be interested in the outcome
per se. For example, an auctioneer may care which bidder receives the item.

• It is often assumed that side payments can be used to tailor the agents’ incentives, but this
is not always practical. For example, in barter-based electronic marketplaces—such as my-
barterclub.com, Recipco, and National Trade Banc—side payments are not allowed. Fur-
thermore, among software agents, it might be more desirable to construct mechanisms that
do not rely on the ability to make payments, because many software agents do not have the
infrastructure to make payments.

123

124 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• The most common mechanisms (e.g., VCG, dAGVA, the Myerson auction, and the Maskin-
Riley auction) assume that the agents have quasilinear preferences—that is, they assume that
the utility function of each agent i ∈ {1, . . . , n} can be written as ui(o, π1, . . . , πn) = vi(o)−
πi, where o is the outcome and πi is the amount that agent i has to pay. So, very restrictively,
it is assumed that 1) the agent’s valuation, vi, of outcomes is independent of money, 2) the
agent does not care about other agents’ payments, and 3) the agent is risk neutral.

In sharp contrast to manual mechanism design, in this chapter we introduce a systematic approach—
called automated mechanism design (AMD)—where the mechanism is automatically created for the
setting and objective at hand [Conitzer and Sandholm, 2002b].1 This has at least four important
advantages:

• It can be used in settings beyond the classes of problems that have been successfully studied
in (manual) mechanism design to date.

• It can allow one to circumvent the impossibility results: when the mechanism is designed for
the setting (instance) at hand, it does not matter that it would not work on preferences beyond
those in that setting (e.g., for a class of settings). Even when the optimal mechanism—created
automatically—does not circumvent the impossibility, it always minimizes the pain entailed
by impossibility.

• It can yield better mechanisms (in terms of better outcomes and/or stronger nonmanipulability
guarantees2) than the canonical mechanisms because the mechanism capitalizes on the partic-
ulars of the setting (the probabilistic (or other) information that the mechanism designer has
about the agents’ preferences). Given the vast amount of information that parties have about
each other today, it is astonishing that the canonical mechanisms (such as first-price reverse
auctions), which ignore that information, have prevailed thus far. It seems likely that future
mechanisms will be created automatically. For example, imagine a Fortune 1000 company
automatically creating its procurement mechanism based on its statistical knowledge about
its suppliers (and potentially also the public prices of the suppliers’ inputs, etc.). Initial work
like this is already being conducted at CombineNet, Inc.

• It shifts the burden of mechanism design from humans to a machine.

The rest of this chapter is layed out as follows. In Section 6.1, we define the basic computational
problem of automated mechanism design [Conitzer and Sandholm, 2002b]. In Section 6.2, we illus-
trate the types of mechanism that automated mechanism design can create, using divorce settlement
as an example [Conitzer and Sandholm, 2003a]. In Section 6.3, we show that several variants of the
problem of designing an optimal deterministic mechanism are hard [Conitzer and Sandholm, 2003b,

1Automated mechanism design is completely different from algorithmic mechanism design [Nisan and Ronen, 2001].
In the latter, the mechanism is designed manually with the goal that executing the mechanism is computationally tractable.
On the other hand, in automated mechanism design, the mechanism itself is designed automatically. Some work on
automatically choosing the mechanism to use that preceded our work was done by Cliff [2001], Byde [2003], and Phelps
et al. [2002]. These works focused on setting a parameter of the mechanism (rather than searching through the space of
all possible mechanisms, as we do here), and evaluated the resulting mechanism based on agents that they evolved with
the mechanism (rather than requiring truthfulness).

2For example, satisfaction of ex post IC and/or IR constraints rather than their ex interim variants.

6.1. THE COMPUTATIONAL PROBLEM 125

2004f]. In Section 6.4, we show that optimal randomized mechanisms can be designed in polyno-
mial time using a linear programming formulation, and that a mixed integer programming version
of this formulation can be used to design optimal deterministic mechanisms [Conitzer and Sand-
holm, 2002b, 2003b, 2004f]. In Section 6.5, we demonstrate some initial applications of automated
mechanism design [Conitzer and Sandholm, 2003a]. In Section 6.6, we give experimental scala-
bility results for the linear/mixed integer programming techniques Conitzer and Sandholm [2003a].
In Section 6.7, we give and study a special-purpose algorithm for the special case of designing a
deterministic mechanism for a single agent that does not use payments [Conitzer and Sandholm,
2004a]. In Section 6.8, we introduce a representation that can be more concise than the straightfor-
ward representation of automated mechanism design problem instances, and study how using this
representation affects the complexity of the problem [Conitzer and Sandholm, 2003c].

6.1 The computational problem

In this section, we define the computational problem of automated mechanism design. First, we
define an instance of the problem as follows.

Definition 24 In an automated mechanism design setting, we are given
A finite set of outcomes O;
A finite set of n agents;
For each agent i,

• a finite3 set of types set of types Θi,

• a probability distribution γi over Θi (in the case of correlated types, there is a single joint
distribution γ over Θ1 × . . .×Θn),

• a utility function ui : Θi ×O → R;

An objective function whose expectation the designer wishes to maximize.

There are many possible objective functions the designer might have, for example, social welfare

(where the designer seeks to maximize the sum of the agents’ utilities,
n
∑

i=1
ui(θ, o), or

n
∑

i=1
ui(θ, o)−

πi if payments are taken into account), or the minimum utility of any agent (where the designer seeks
to maximize the worst utility had by any agent, mini ui(θ, o), or mini ui(θ, o)− πi if payments are
taken into account). In both of these cases, the designer is benevolent, because the designer, in some
sense, is pursuing the agents’ collective happiness. On the other hand, a self-interested designer
cares only about the outcome chosen (that is, the designer does not care how the outcome relates
to the agents’ preferences, but rather has a fixed preference over the outcomes), and about the net
payments made by the agents, which flow to the designer. Specifically, a self-interested designer

3It should be noted that in mechanism design, the type space is often continuous. However, the techniques described
in this chapter require a finite number of types. One can approximate a continuous type space with a discretized type
space, but perhaps future research will discover more elegant and better methods for dealing with continuous type spaces.

126 CHAPTER 6. AUTOMATED MECHANISM DESIGN

has an objective function g(o) +
n
∑

i=1
πi, where g : O → R indicates the designer’s own preference

over the outcomes, and πi is the payment made by agent i. In the case where g = 0 everywhere,
the designer is said to be payment maximizing. In the case where payments are not possible, g
constitutes the objective function by itself.

We can now define the computational problem of automated mechanism design.

Definition 25 (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given an automated mech-
anism design setting, an IR notion (ex interim, ex post, or none), and a solution concept (domi-
nant strategies or Bayes-Nash equilibrium). Also, we are told whether payments are possible, and
whether randomization is possible. Finally, we are given a target value G. We are asked whether
there exists a mechanism of the specified type that satisfies both the IR notion and the solution
concept, and gives an expected value of at least G for the objective.4

6.2 A tiny example: Divorce settlement

To get some intuition about the types of mechanism that AMD generates, in this section, we apply
AMD to divorce settlement. We study several variants of the mechanism design problem, and the
optimal solutions (mechanisms) to those variants generated by our AMD implementation (described
later). We first study a benevolent arbitrator, then a benevolent arbitrator that uses payments to
structure the agents’ incentives, and finally a greedy arbitrator that wants to maximize the sum of
side payments from the agents—while still motivating the agents to come to the arbitration.

6.2.1 A benevolent arbitrator

A couple is getting a divorce. They jointly own a painting and the arbitrator has to decide what
happens to the painting. There are 4 options to decide among: (1) the husband gets the painting, (2)
the wife gets the painting, (3) the painting remains in joint ownership and is hung in a museum, and
(4) the painting is burned. The husband and wife each have two possible types: one that implies not
caring for the painting too much (low), and one that implies being strongly attached to the painting
(high). (low) is had with probability .8, (high) with .2, by each party. To maximize social welfare,
the arbitrator would like to give the painting to whoever cares for it more, but even someone who
does not care much for it would prefer having it over not having it, making the arbitrator’s job in
ascertaining the preferences nontrivial. Specifically, the utility function is (for either party)

u(low,get the painting)=2
u(low,other gets the painting)=0
u(low,joint ownership)=1
u(low,burn the painting)=-10 (both parties feel
that burning the painting would be a terrible
thing from an art history perspective)
u(high,get the painting)=100

4For studying computational complexity, we phrase AMD as a decision problem, but the corresponding optimization
problem is clear.

6.2. A TINY EXAMPLE: DIVORCE SETTLEMENT 127

u(high,other gets the painting)=0
u(high,joint ownership)=50
u(high,burn the painting)=-10

Let us assume (for now) that side payments are not possible, randomization is not possible, and that
implementation in dominant strategies is required. Now we have a well-specified AMD instance.
Our solver generated the following optimal mechanism for this setting:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

That is, we cannot do better than always giving the painting to the husband (or always giving it to
the wife). (The solver does not look for the “fairest” mechanism because fairness is not part of the
objective we specified.) Now let us change the problem slightly, by requiring only implementation
in BNE. For this instance, our solver generated the following optimal mechanism:

husband_low husband_high
wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility constraint to BNE, we can do better by sometimes
burning the painting! The burning of the painting (with which nobody is happy) is sufficiently
helpful in tailoring the incentives that it becomes a key part of the mechanism. (This is somewhat
similar to the item not being sold in an optimal (i.e., revenue-maximizing) auction—more on optimal
auctions later.) Now let us see whether we can do better by also allowing for randomization in the
mechanism. It turns out that we can, and the optimal mechanism generated by the solver is the
following:

husband_low husband_high
wife_low .57: husband, .43: wife 1: husband
wife_high 1: wife .45: burn; .55: husband

The randomization helps us because the threat of burning the painting with some probability when
both report high is enough to obtain the incentive effect that allows us to give the painting to the
right party in other settings. Interestingly, the mechanism now chooses to randomize over the party
that receives the painting rather than awarding joint ownership in the setting where both report low.

6.2.2 A benevolent arbitrator that uses payments

Now imagine that we can force the parties to pay money, depending on the types reported—that
is, side payments are possible. The arbitrator (for now) is still only concerned with the parties’
welfare—taking into account how much money they lose because of the payment rule, as well as the

128 CHAPTER 6. AUTOMATED MECHANISM DESIGN

allocation of the painting.5 Thus, it does not matter to the arbitrator whether the agents’ net payment
goes to the arbitrator, a charity, or is burned, but other things being equal the arbitrator would like
to minimize the payments that the agents make. Now the optimal deterministic mechanism in
dominant strategies generated by the solver has the following allocation rule:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high wife gets painting wife gets painting

The payment function is (wife’s payment listed first):

husband_a husband_high
wife_low 0,0 0,0
wife_high 2,0 2,0

In this mechanism, the allocation of the painting is always optimal. However, the price (in terms of
social welfare) that is paid for this is that the wife must sometimes pay money; the fact that she has
to pay 2 whenever she reports her high type removes her incentive to falsely report her high type.

6.2.3 An arbitrator that attempts to maximize the payments extracted

Now we imagine a non-benevolent arbitrator, who is running an arbitration business. The agents’
net payments now go to the arbitrator, who is seeking to maximize these payments. Of course, the
arbitrator cannot extract arbitrary amounts from the parties; rather, the parties should overall still be
happy with their decision to go to the arbitrator. Thus, we need an IR constraint. If we require ex
post IR and dominant strategies, the optimal deterministic mechanism generated by the solver has
the following allocation rule:

husband_low husband_high
wife_low painting is burned husband gets painting
wife_high wife gets painting wife gets painting

Now the painting is burned when both parties report their low types! (This is even more similar
to an item not being sold in an optimal combinatorial auction.) As for the mechanism’s payment
function: in this setting, the arbitrator is always able to extract all of each agent’s utility from the
allocation as her payment (but note that the allocation is not always optimal: the painting is burned
sometimes, in which case the arbitrator obtains no revenue, but rather has to compensate the parties
involved for the loss of the painting).

Many other specifications of the problem are possible, but we will not study them here.

5Classical mechanism design often does not count the payments in the social welfare calculation (e.g., the VCG
mechanism), allowing for easier analysis; one of the benefits of automated mechanism design is that the payments made
can easily be integrated into the social welfare calculation in designing the mechanisms.

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 129

6.3 Complexity of designing deterministic mechanisms

This section characterizes the computational complexity of automated mechanism design for the
case where the designed mechanism is required to be deterministic. An interesting special case
is the setting where there is only one agent (or, more generally, only one type-reporting agent).
In this case, the agent always knows everything there is to know about the other agents’ types—
because there is nothing to know about their types. Since ex post and ex interim IR only differ
on what an agent is assumed to know about other agents’ types, the two IR concepts coincide
here. Also, because implementation in dominant strategies and implementation in Bayes-Nash
equilibrium only differ on what an agent is assumed to know about other agents’ types, the two
solution concepts coincide here. This observation is a useful tool in proving hardness results: if
we prove computational hardness in the single-agent setting, this immediately implies hardness for
both IR concepts, for both solution concepts, and for any constant number of agents.

In this section, we will show that most variants of the automated mechanism design problem are
hard (NP-complete) even in the single-agent setting, if the mechanism is required to be deterministic.
(In contrast, we will show in Section 6.4 that allowing for randomized mechanisms makes the
problem solvable in polynomial time.) Most of the reductions are from the MINSAT problem:

Definition 26 (MINSAT) We are given a formula φ in conjunctive normal form, represented by a
set of Boolean variables V and a set of clauses C, and an integer K (K < |C|). We are asked
whether there exists an assignment to the variables in V such that at most K clauses in φ are
satisfied.

MINSAT was recently shown to be NP-complete [Kohli et al., 1994].
We first show that the problem of designing a welfare-maximizing deterministic mechanism

that does not use payments is NP-complete. Of course, this problem is easy if there is only a single
agent: in this case, the welfare-maximizing mechanism is to always give the agent one of its most
preferred outcomes. However, we show that if, in addition to the type-reporting agent, there is an
additional agent that does not report a type (for example, because its type is common knowledge),
then the problem becomes NP-complete.

Theorem 37 The AMD problem for designing deterministic mechanisms without payments is NP-
complete, even when the objective is social welfare, there is only a single type-reporting agent (in
addition to an agent that does not report a type), and the probability distribution over Θ is uniform.
(Membership in NP is guaranteed only if the number of agents is constant.)

Proof: The problem is in NP when the number of agents is constant because we can nondeterminis-
tically generate an outcome selection function, and subsequently verify in polynomial time whether
it is nonmanipulable, and whether the expectation of the objective function achieves the threshold.
(We note that if we do not restrict the number of agents, then the outcome selection function will
have exponential size.) To show that the problem is NP-hard, we reduce an arbitrary MINSAT
instance to an automated mechanism design instance as follows.

Let the outcomes O be as follows. For every clause c ∈ C, there is an outcome oc. For every
variable v ∈ V , there is an outcome ov and an outcome o−v. Finally, there is a single additional
outcome ob.

130 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let L be the set of literals, that is, L = {v : v ∈ V } ∪ {−v : v ∈ V }. Then, let the type space
Θ be as follows. For every clause c ∈ C, there is a type θc. For every variable v ∈ V , there is a type
θv. The probability distribution over Θ is uniform.

Let the utility function be as follows:

• u(θv, ov) = u(θv, o−v) = |C|+ 3 for all v ∈ V ;

• u(θc, ol) = 1 for all c ∈ C and l ∈ c (that is, l is a literal that occurs in c);

• u(θc, oc) = 1 for all c ∈ C;

• u is 0 everywhere else.

Let g(θ, o) = u(θ, o) + v(o), where v(ob) = 2 and v is 0 everywhere else. (Here, v represents the
utility of the agent that does not report a type.) Finally, let G = |V |(|C|+3)+2|C|−k

|V |+|C| (k is the threshold
of the MINSAT instance). We claim that the automated mechanism design instance has a solution
if and only if the MINSAT instance has a solution.

First suppose that the MINSAT instance has a solution, that is, an assignment to the variables
that satisfies at most k clauses. Then consider the following mechanism. If v ∈ V is set to true
in the assignment, then set o(θv) = ov; if it is set to false, then set o(θv) = o−v. If c ∈ C is
satisfied by the assignment, then set o(θc) = oc; if it is not satisfied, then set o(θc) = ob. First we
show that this mechanism is nonmanipulable. If the agent’s type is either any one of the θv or one
of the θc corresponding to a satisfied clause c, then the mechanism gives the agent the maximum
utility it can possibly get with that type, so there is no incentive for the agent to misreport. On the
other hand, if the agent’s type is one of the θc corresponding to a nonsatisfied clause c, then any
outcome ol corresponding to a literal l in c, or oc, would give utility 1, as opposed to ob (which the
mechanism actually chooses for θc) which gives the agent utility 0. It follows that the mechanism
is nonmanipulable if and only if there is no other θ such that o(θ) is any outcome ol corresponding
to a literal l in c, or oc. It is easy to see that there is indeed no θ such that o(θ) = oc. There is
also no θ such that o(θ) is any outcome ol corresponding to a literal l in c: this is because the only
type that could possibly give the outcome ol is θv, where v is the variable corresponding to l; but
because c is not satisfied in the assignment to the variables, we know that actually, o(θv) = o−l

(that is, the outcome corresponding to the opposite literal is chosen). It follows that the mechanism
is indeed nonmanipulable. All that is left to show is that the expected value of g(θ, o(θ)) reaches
G. For any θv we have g(θv, o(θv)) = |C| + 3. For any θc where c is a satisfied clause, we have
g(θc, o(θc)) = 1. Finally, for any θc where c is an unsatisfied clause, we have g(θc, o(θc)) = 2. If
s is the number of satisfied clauses, then, using the facts that the probability distribution over Θ is
uniform and that s ≤ k, we have E[g(θ, o(θ))] = |V |(|C|+3)+s+2(|C|−s)

|V |+|C| ≥ |V |(|C|+3)+2|C|−k
|V |+|C| = G.

So there is a solution to the automated mechanism design instance.
Now suppose there is a solution to the automated mechanism design instance, that is, a non-

manipulable mechanism given by an outcome function o : Θ → O, which leads to an expected
value of g(θ, o(θ)) of at least G. We observe that the maximum value that we can get for g(θ, o(θ))
is |C| + 3 when θ is one of the θv, and 2 otherwise. Thus, if for some v it were the case that
o(θv) /∈ {ov, o−v} and hence g(θ, o(θ)) ≤ 2, it would follow that E[g(θ, o(θ))] can be at most

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 131

(|V |−1)(|C|+3)+2(|C|+1)
|V |+|C| < (|V |)(|C|+3)+|C|

|V |+|C| < |V |(|C|+3)+2|C|−k
|V |+|C| = G (because k < |C|). (Contra-

diction.) It follows that for all v, o(θv) ∈ {ov, o−v}. From this we can derive an assignment to
the variables: set v to true if o(θv) = ov, and to false if o(θv) = o−v. We claim this assignment
is a solution to the MINSAT instance for the following reason. If a clause c is satisfied by this
assignment, there is some literal l such that l ∈ c and o(θv) = ol for the corresponding variable v.
But then o(θc) cannot be ob, because if it were, the agent would be motivated to report θv when its
true type is θc, to get a utility of 1 as opposed to the 0 it would get for reporting truthfully. Hence
g(θc, o(θc)) can be at most 1 for a satisfied clause c. It follows that E[g(θ, o(θ))] can be at most
|V |(|C|+3)+s+2(|C|−s)

|V |+|C| where s is the number of satisfied clauses. But because E[g(θ, o(θ))] ≥ G,

we can conclude |V |(|C|+3)+s+2(|C|−s)
|V |+|C| ≥ G = |V |(|C|+3)+2|C|−k

|V |+|C| , which is equivalent to s ≤ k. So
there is a solution to the MINSAT instance.

We note that the previous result is in contrast to the case where payments are allowed: in that
case, the VCG mechanism constitutes an optimal mechanism, and it can be computed in polyno-
mial time. We may wonder if the ability to use payments makes the automated mechanism design
problem easy in all cases. The following theorem shows that this is not the case: there are objective
functions (that do not depend on the payments made) such that designing the optimal deterministic
mechanism is hard even when the mechanism is allowed to use payments.

Theorem 38 The AMD problem for designing deterministic mechanisms with payments is NP-
complete, even when the objective does not depend on the payments made, there is only a single
agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed only if
the number of agents is constant.)

Proof: First we show that the problem is in NP. When the number of agents is constant, we can
nondeterministically generate an outcome function o. We then check whether the payment function
π can be set so as to make the mechanism nonmanipulable. Because we have already generated o,
we can phrase this problem as a linear program with the following constraints: for all θ, θ̂ ∈ Θ,
u(θ, o(θ))+π(θ) ≥ u(θ, o(θ̂))+π(θ̂). If the linear program has a solution, we subsequently check
if the corresponding mechanism achieves the threshold G for E[g(θ, o(θ))].

To show that the problem is NP-hard, we reduce an arbitrary INDEPENDENT-SET instance to
an automated mechanism design instance as follows. For every vertex v ∈ V , let there be outcomes
o1
v and o2

v, and a type θv. The probability distribution over Θ is uniform. Let the utility function be
as follows:

• u(θv, o
1
w) = 1 for all v, w ∈ V with (v, w) ∈ E;

• u(θv, o
1
w) = 0 for all v, w ∈ V with (v, w) /∈ E (this includes all cases where v = w as there

are no self-loops in the graph);

• u(θv, o
2
v) = 1 for all v ∈ V ;

• u(θv, o
2
w) = 0 for all w ∈ V with v 6= w.

132 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let the objective function be g(θv, o
1
v) = 1 for all v ∈ V , and g() = 0 everywhere else. Finally, let

G = k
|V | (where k is the threshold of the INDEPENDENT-SET instance). We claim that the auto-

mated mechanism design instance has a solution if and only if the INDEPENDENT-SET instance
has a solution.

First suppose that the INDEPENDENT-SET instance has a solution, that is, some I ⊆ V of size
at least k such that no two elements of I have an edge between them. Then consider the following
mechanism. For all v ∈ I , let o(θv) = o1

v. For all v /∈ V , let o(θv) = o2
v. Let π be zero everywhere

(no payments are made). First we show that this mechanism is indeed nonmanipulable. If v ∈ I
and w ∈ I , then (because I is an independent set) (v, w) /∈ I , and thus u(θv, o(θv)) + π(θv) =
u(θv, o

1
v) = 0 = u(θv, o

1
w) = u(θv, o(θw)) + π(θw). If v ∈ I and w /∈ I , then u(θv, o(θv)) +

π(θv) = u(θv, o
1
v) = 0 = u(θv, o

2
w) = u(θv, o(θw)) + π(θw). Finally, if v /∈ I , then u(θv, o(θv)) +

π(θv) = u(θv, o
2
v) = 1, which is the highest possible value the agent can attain. So there is no

incentive for the agent to misreport anywhere. All that is left to show is that the expected value of
g(θ, o(θ)) reaches G. For v ∈ I , g(θ, o(θ)) = g(θ, o1

v) = 1, and for v /∈ I , g(θ, o(θ)) = g(θ, o2
v) =

0. Because the distribution over Θ is uniform, it follows that E[g(θ, o(θ))] = |I|
|V | ≥

k
|V | = G. So

there is a solution to the automated mechanism design instance.
Now suppose there is a solution to the automated mechanism design instance, that is, a nonma-

nipulable mechanism given by an outcome function o : Θ→ O and a payment function π : Θ→ R,
which leads to an expected value of g(θ, o(θ)) of at least G. Let I = {v : o(θ) = o1

v}. We claim I is
a solution to the INDEPENDENT-SET instance. First, because g(θv, o(θv)) is 1 only for v ∈ I , we
know that k

|V | = G ≤ E[g(θ, o(θ))] = |I|
|V | , or equivalently, |I| ≥ k. All that is left to show is that

there are no edges between elements of I . Suppose there were an edge between v, w ∈ I . Without
loss of generality, say π(θv) ≤ π(θw). Then, u(θv, o(θv)) + π(θv) = u(θv, o

1
v) + π(θv) = π(θv) ≤

π(θw) < 1+π(θw) = u(θv, o
1
w)+π(θw) = u(θv, o(θw))+π(θw). So the agent has an incentive to

misreport when its type is θv, which contradicts the nonmanipulability of the mechanism. It follows
that there are no edges between elements of I . So there is a solution to the INDEPENDENT-SET
instance.

The objective functions studied up to this point depended on the agents’ types. However, this
is not the case for so-called self-interested designers, who are concerned only with how the chosen
outcome fits their own goals and the payments collected. Formally, we say that the designer is

self-interested if the objective function takes the form g(o) +
n
∑

i=1
πi, where g : O → R indicates

the designer’s own preference over the outcomes, and πi is the payment made by agent i. While
the previous complexity results did not depend on the presence of an IR constraint, the automated
mechanism design problem is trivial for a self-interested designer without an IR constraint: the
designer can simply choose the outcome that it likes best, and force the agents to pay an unbounded
amount. Hence, the following hardness results depend on the presence of an IR constraint. We first

study the case where the objective is
n
∑

i=1
πi, that is, the designer is only interested in maximizing

the total payment, and show that the problem of designing an optimal mechanism in this case is
NP-complete.

Theorem 39 The AMD problem for designing deterministic mechanisms is NP-complete, even

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 133

when the objective is to maximize total payments made (under an IR constraint), there is only a
single agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: The proof of membership in NP for a constant number of agents is similar to previous
proofs. To show NP-hardness, we reduce an arbitrary MINSAT instance to the following automated
mechanism design instance. Let the agent’s type set be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V }, where
C is the set of clauses in the MINSAT instance, and V is the set of variables. Let the probability
distribution over these types be uniform. Let the outcome set be O = {o0} ∪ {oc : c ∈ C} ∪ {ol :
l ∈ L}, where L is the set of literals, that is, L = {+v : v ∈ V } ∪ {−v : v ∈ V }. Let the
notation v(l) = v denote that v is the variable corresponding to the literal l, that is, l ∈ {+v,−v}.
Let l ∈ c denote that the literal l occurs in clause c. Then, let the agent’s utility function be
given by u(θc, ol) = |Θ| + 1 for all l ∈ L with l ∈ c; u(θc, ol) = 0 for all l ∈ L with l /∈ c;
u(θc, oc) = |Θ| + 1; u(θc, oc′) = 0 for all c′ ∈ C with c 6= c′; u(θv, ol) = |Θ| for all l ∈ L with
v(l) = v; u(θv, ol) = 0 for all l ∈ L with v(l) 6= v; u(θv, oc) = 0 for all c ∈ C. The goal of the
automated mechanism design instance is G = |Θ| + |C|−K

|Θ| , where K is the goal of the MINSAT
instance. We show the instances are equivalent. First, suppose there is a solution to the MINSAT
instance. Let the assignment of truth values to the variables in this solution be given by the function
f : V → L (where v(f(v)) = v for all v ∈ V). Then, for every v ∈ V , let o(θv) = of(v) and
π(θv) = |Θ|. For every c ∈ C, let o(θc) = oc; let π(θc) = |Θ|+1 if c is not satisfied in the MINSAT
solution, and π(θc) = |Θ| if c is satisfied. It is straightforward to check that the IR constraint is
satisfied. We now check that the agent has no incentive to misreport. If the agent’s type is some
θv, then any other report will give it an outcome that is no better, for a payment that is no less, so
it has no incentive to misreport. If the agent’s type is some θc where c is a satisfied clause, again,
any other report will give it an outcome that is no better, for a payment that is no less, so it has
no incentive to misreport. The final case to check is where the agent’s type is some θc where c is
an unsatisfied clause. In this case, we observe that for none of the types, reporting it leads to an
outcome ol for a literal l ∈ c, precisely because the clause is not satisfied in the MINSAT instance.
Because also, no type besides θc leads to the outcome oc, reporting any other type will give an
outcome with utility 0, while still forcing a payment of at least |Θ| from the agent. Clearly the agent
is better off reporting truthfully, for a total utility of 0. This establishes that the agent never has an
incentive to misreport. Finally, we show that the goal is reached. If s is the number of satisfied
clauses in the MINSAT solution (so that s ≤ K), the expected payment from this mechanism is
|V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)

|Θ| ≥ |V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| = |Θ|+ |C|−K

|Θ| = G. So there is a solution
to the automated mechanism design instance.

Now suppose there is a solution to the automated mechanism design instance, given by an
outcome function o and a payment function π. First, suppose there is some v ∈ V such that
o(θv) /∈ {o+v, o−v}. Then the utility that the agent derives from the given outcome for this type
is 0, and hence, by IR, no payment can be extracted from the agent for this type. Because, again
by IR, the maximum payment that can be extracted for any other type is |Θ| + 1, it follows that
the maximum expected payment that could be obtained is at most (|Θ|−1)(|Θ|+1)

|Θ| < |Θ| < G,
contradicting that this is a solution to the automated mechanism design instance. It follows that in
the solution to the automated mechanism design instance, for every v ∈ V , o(θv) ∈ {o+v, o−v}. We

134 CHAPTER 6. AUTOMATED MECHANISM DESIGN

can interpret this as an assignment of truth values to the variables: v is set to true if o(θv) = o+v,
and to false if o(θv) = o−v. We claim this assignment is a solution to the MINSAT instance. By the
IR constraint, the maximum payment we can extract from any type θv is |Θ|. Because there can be
no incentives for the agent to report falsely, for any clause c satisfied by the given assignment, the
maximum payment we can extract for the corresponding type θc is |Θ|. (For if we extracted more
from this type, the agent’s utility in this case would be less than 1; and if v is the variable satisfying
c in the assignment, so that o(θv) = ol where l occurs in c, then the agent would be better off
reporting θv instead of the truthful report θc, to get an outcome worth |Θ| + 1 to it while having to
pay at most |Θ|.) Finally, for any unsatisfied clause c, by the IR constraint, the maximum payment
we can extract for the corresponding type θc is |Θ|+1. It follows that the expected payment from our
mechanism is at most V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satisfied clauses. Because

our mechanism achieves the goal, it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)
Θ ≥ G, which by simple

algebraic manipulations is equivalent to s ≤ K. So there is a solution to the MINSAT instance.

Finally, we study the case where the designer is self-interested and is not interested in payments
made (that is, the objective is some function g : O → R). In this case, if the designer is allowed to
use payments, then the designer can always choose her most preferred outcome by giving the agents
an amount large enough to compensate them for the choice of this outcome, thereby not breaking
the IR constraint. However, the case where the designer is not allowed to use payments is more
complex, as the following theorem shows:

Theorem 40 The AMD problem for designing deterministic mechanisms without payments is NP-
complete, even when the designer is self-interested (but faces an IR constraint), there is only a single
agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed only if
the number of agents is constant.)

Proof: The proof of membership in NP for a constant number of agents is similar to previous
proofs. To show NP-hardness, we reduce an arbitrary MINSAT instance to the following automated
mechanism design instance. Let the agent’s type set be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V }, where
C is the set of clauses in the MINSAT instance, and V is the set of variables. Let the probability
distribution over these types be uniform. Let the outcome set be O = {o0} ∪ {oc : c ∈ C} ∪ {ol :
l ∈ L} ∪ {o∗}, where L is the set of literals, that is, L = {+v : v ∈ V } ∪ {−v : v ∈ V }. Let the
notation v(l) = v denote that v is the variable corresponding to the literal l, that is, l ∈ {+v,−v}.
Let l ∈ c denote that the literal l occurs in clause c. Then, let the agent’s utility function be given
by u(θc, ol) = 2 for all l ∈ L with l ∈ c; u(θc, ol) = −1 for all l ∈ L with l /∈ c; u(θc, oc) = 2;
u(θc, oc′) = −1 for all c′ ∈ C with c 6= c′; u(θc, o

∗) = 1; u(θv, ol) = 1 for all l ∈ L with v(l) = v;
u(θv, ol) = −1 for all l ∈ L with v(l) 6= v; u(θv, oc) = −1 for all c ∈ C; u(θv, o

∗) = −1. Let the
designer’s objective function be given by g(o∗) = |Θ| + 1; g(ol) = |Θ| for all l ∈ L; g(oc) = |Θ|

for all c ∈ C. The goal of the automated mechanism design instance is G = |Θ| + |C|−K
|Θ| , where

K is the goal of the MINSAT instance. We show the instances are equivalent. First, suppose there
is a solution to the MINSAT instance. Let the assignment of truth values to the variables in this
solution be given by the function f : V → L (where v(f(v)) = v for all v ∈ V). Then, for
every v ∈ V , let o(θv) = of(v). For every c ∈ C that is satisfied in the MINSAT solution, let

6.4. LINEAR AND MIXED INTEGER PROGRAMMING APPROACHES 135

o(θc) = oc; for every unsatisfied c ∈ C, let o(θc) = o∗. It is straightforward to check that the IR
constraint is satisfied. We now check that the agent has no incentive to misreport. If the agent’s
type is some θv, it is getting the maximum utility for that type, so it has no incentive to misreport.
If the agent’s type is some θc where c is a satisfied clause, again, it is getting the maximum utility
for that type, so it has no incentive to misreport. The final case to check is where the agent’s type
is some θc where c is an unsatisfied clause. In this case, we observe that for none of the types,
reporting it leads to an outcome ol for a literal l ∈ c, precisely because the clause is not satisfied
in the MINSAT instance. Because also, no type leads to the outcome oc, there is no outcome that
the mechanism ever selects that would give the agent utility greater than 1 for type θc, and hence
the agent has no incentive to report falsely. This establishes that the agent never has an incentive to
misreport. Finally, we show that the goal is reached. If s is the number of satisfied clauses in the
MINSAT solution (so that s ≤ K), then the expected value of the designer’s objective function is
|V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)

|Θ| ≥ |V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| = |Θ|+ |C|−K

|Θ| = G. So there is a solution
to the automated mechanism design instance.

Now suppose there is a solution to the automated mechanism design instance, given by an
outcome function o. First, suppose there is some v ∈ V such that o(θv) /∈ {o+v, o−v}. The only
other outcome that the mechanism is allowed to choose under the IR constraint is o0. This has an
objective value of 0, and because the highest value the objective function ever takes is |Θ| + 1,
it follows that the maximum expected value of the objective function that could be obtained is at
most (|Θ|−1)(|Θ|+1)

|Θ| < |Θ| < G, contradicting that this is a solution to the automated mechanism
design instance. It follows that in the solution to the automated mechanism design instance, for
every v ∈ V , o(θv) ∈ {o+v, o−v}. We can interpret this as an assignment of truth values to the
variables: v is set to true if o(θv) = o+v, and to false if o(θv) = o−v. We claim this assignment is a
solution to the MINSAT instance. By the above, for any type θv, the value of the objective function
in this mechanism will be |Θ|. For any clause c satisfied by the given assignment, the value of the
objective function in the case where the agent reports type θc will be at most |Θ|. (This is because
we cannot choose the outcome o∗ for such a type, as in this case the agent would have an incentive
to report θv instead, where v is the variable satisfying c in the assignment (so that o(θv) = ol where
l occurs in c).) Finally, for any unsatisfied clause c, the maximum value the objective function
can take in the case where the agent reports type θc is |Θ| + 1, simply because this is the largest
value the function ever takes. It follows that the expected value of the objective function for our
mechanism is at most V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satisfied clauses. Because

our mechanism achieves the goal, it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)
Θ ≥ G, which by simple

algebraic manipulations is equivalent to s ≤ K. So there is a solution to the MINSAT instance.

6.4 Linear and mixed integer programming approaches

In this section, we describe how the problem of designing an optimal randomized mechanism can
be cast as a linear programming problem. As we will show, the size of the linear program is ex-
ponential only in the number of agents, and because linear programs can be solved in polynomial

136 CHAPTER 6. AUTOMATED MECHANISM DESIGN

time [Khachiyan, 1979], this implies that the problem of designing an optimal6 randomized mech-
anism is in P if the number of agents is a constant.

Theorem 41 With a constant number of agents, the optimal randomized mechanism can be found
in polynomial time using linear programming, both with and without payments, both for ex post and
ex interim IR, and both for implementation in dominant strategies and for implementation in Bayes-
Nash equilibrium—even if the types are correlated (that is, an agent’s type tells him something
about the other agents’ types).

Proof: Because linear programs can be solved in polynomial time, all we need to show is that
the number of variables and equations in our program is polynomial for any constant number of
agents—that is, exponential only in n. Throughout, for purposes of determining the size of the
linear program, let T = maxi{|Θi|}. The variables of our linear program will be the probabilities
(p(θ1, θ2, . . . , θn))(o) (at most T n|O| variables) and the payments πi(θ1, θ2, . . . , θn) (at most nT n

variables). (We show the linear program for the case where payments are possible; the case without
payments is easily obtained from this by simply omitting all the payment variables in the program,
or by adding additional constraints forcing the payments to be 0.)

First, we show the IR constraints. For ex post IR, we add the following (at most nT n) constraints
to the LP:

• For every i ∈ {1, 2, . . . , n}, and for every (θ1, θ2, . . . , θn) ∈ Θ1 ×Θ2 × . . .×Θn, we add

(
∑

o∈O

(p(θ1, θ2, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θn) ≥ 0.

For ex interim IR, we add the following (at most nT) constraints to the LP:

• For every i ∈ {1, 2, . . . , n}, for every θi ∈ Θi, we add
∑

θ1,...,θn

γ(θ1, . . . , θn|θi)((
∑

o∈O

(p(θ1, θ2, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θn)) ≥ 0.

Now, we show the solution concept constraints. For implementation in dominant strategies, we
add the following (at most nT n+1) constraints to the LP:
• For every i ∈ {1, 2, . . . , n}, for every

(θ1, θ2, . . . , θi, . . . , θn) ∈ Θ1 × Θ2 × . . . × Θn, and for every alternative type report θ̂i ∈ Θi, we
add the constraint

(
∑

o∈O

(p(θ1, θ2, . . . , θi, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θi, . . . , θn) ≥

(
∑

o∈O

(p(θ1, θ2, . . . , θ̂i, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θ̂i, . . . , θn).

Finally, for implementation in Bayes-Nash equilibrium, we add the following (at most nT 2)
constraints to the LP:

6Since linear programs allow for an objective, we can search for the optimal mechanism rather than only solve the
decision variant (does a mechanism with objective value at least G exist?) of the problem.

6.5. INITIAL APPLICATIONS 137

• For every i ∈ {1, 2, ..., n}, for every θi ∈ Θi, and for every alternative type report θ̂i ∈ Θi,
we add the constraint
∑

θ1,...,θn

γ(θ1, ..., θn|θi)((
∑

o∈O

(p(θ1, θ2, ..., θi, ..., θn))(o)u(θi, o))− πi(θ1, θ2, ..., θi, ..., θn)) ≥

∑

θ1,...,θn

γ(θ1, ..., θn|θi)((
∑

o∈O

(p(θ1, θ2, ..., θ̂i, ..., θn))(o)u(θi, o))− πi(θ1, θ2, ..., θ̂i, ..., θn)).

All that is left to do is to give the expression the designer is seeking to maximize, which is:

•
∑

θ1,...,θn

γ(θ1, ..., θn)((
∑

o∈O

(p(θ1, θ2, ..., θi, ..., θn))(o)g(o)) +
n
∑

i=1
πi(θ1, θ2, ..., θn)).

As we indicated, the number of variables and constraints is exponential only in n, and hence the
linear program is of polynomial size for constant numbers of agents. Thus the problem is solvable
in polynomial time.

By forcing all the probability variables to be either 0 or 1, thereby changing the linear program
into a mixed integer program, we can solve for the optimal deterministic mechanism. (We note
that solving a mixed integer program is NP-complete.) Our general-purpose automated mechanism
design solver consists of running CPLEX (a commercial solver) on these linear or mixed integer
programs.

6.5 Initial applications

The only example application that we have seen so far is the divorce settlement setting from Sec-
tion 6.2. In this section, we apply AMD to some domains that are more commonly studied in
mechanism design: optimal auctions and mechanisms for public goods.

6.5.1 Optimal auctions

In this subsection we show how AMD can be used to design auctions that maximize the seller’s
expected revenue (so-called optimal auctions). In many auction settings, the seller would like to
design the rules of the auction to accomplish this. However, as we briefly mentioned in Chapter 4,
in general settings this is a known difficult mechanism design problem; for one, it is much more
difficult than designing a mechanism that allocates the goods efficiently (among bidders with quasi-
linear preferences, ex post efficiency and IR can be accomplished in dominant strategies using the
VCG mechanism).

We first study auctioning off a single good, and show that AMD reinvents a known landmark
optimal auction mechanism, the Myerson auction, for the specific instance that we study. (Of course,
it does not derive the general form of the Myerson auction, which can be applied to any single-
item instance: AMD necessarily only solves the instance at hand.) We then move to multi-item
(combinatorial) auctions, where the optimal auction has been unknown in the literature to date. We
show that AMD can design optimal auctions for this setting as well.

138 CHAPTER 6. AUTOMATED MECHANISM DESIGN

An optimal 2-bidder, 1-item auction

We first show how automated mechanism design can rederive known results in optimal single-item
auction design. Say there is one item for sale. The auctioneer can award it to any bidder, or not
award it (and say the auctioneer’s valuation for the good is 0). There are two bidders, 1 and 2. For
each of them, their distribution of valuations is uniform over {0, 0.25, 0.5, 0.75, 1}.

In designing the auction automatically, we required ex-interim IR and implementation in Bayes-
Nash equilibrium. Randomization was allowed (although in this setting, it turned out that the prob-
abilities were all 0 or 1). The allocation rule of the mechanism generated by the solver is as follows.
If both bid below 0.5, do not award the item; otherwise, give the item to the highest bidder (a spe-
cific one of them in the case of a tie). This is effectively7 the celebrated Myerson auction [Myerson,
1981] (although the Myerson auction was originally derived for a continuous valuation space). So,
AMD quickly reinvented a landmark mechanism from 1981. (Although it should be noted that it
invented it for a special case, and did not derive the general characterization. Also, it did not invent
the question of optimal auction design.)

Multi-item (combinatorial) auctions

We now move to combinatorial auctions where there are multiple goods for sale. The design of
a mechanism for this setting that maximizes the seller’s expected revenue is a recognized open
research problem [Avery and Hendershott, 2000; Armstrong, 2000; Vohra, 2001]. The problem is
open even if there are only two goods for sale. (The two-good case with a very special form of
complementarity and no substitutability has been solved recently [Armstrong, 2000].) We show
that AMD can be used to generate optimal combinatorial auctions.

In our first combinatorial auction example, two items, A and B, are for sale. The auctioneer can
award each item to any bidder, or not award it (and the auctioneer’s valuation is 0). There are two
bidders, 1 and 2, each of whom has four possible, equally likely types: LL, HL, LH , and HH .
The type indicates whether each item is strongly desired or not; for instance, the type HL indicates
that the bidder strongly desires the first item, but not the second. Getting an item that is strongly
desired gives utility 2; getting one that is not strongly desired gives utility 1. The utilities derived
from the items are simply additive (no substitution or complementarity effects), with the exception
of the case where the bidder has the type HH . In this case there is a complementarity bonus of 2
for getting both items (thus, the total utility of getting both items is 6). (One way to interpret this is
as follows: a bidder will sell off any item it wins and does not strongly desire, on a market where it
is a price taker, so that there are no substitution or complementarity effects with such an item.)

In designing the auction, we required ex-interim IR and implementation in Bayes-Nash equilib-
rium. Randomization was allowed (although in this setting, it turned out that the probabilities were
all 0 or 1). The objective to maximize was the expected payments from the bidders to the seller.
The mechanism generated by the solver has the following allocation rule: 1. If one bidder bid LL,
then the other bidder gets all the items he bid high on, and all the other items (that both bid low on)
are not awarded. 2. If exactly one bidder bid HH , that bidder gets both items. If both bid HH ,
bidder 1 gets both items. 3. If both bidders bid high on only one item, and they did not bid high on

7The payment rule generated is slightly different, because CPLEX chooses to distribute the payments slightly differ-
ently across different type vectors.

6.5. INITIAL APPLICATIONS 139

the same item, each bidder gets his preferred item. 4. If both bidders bid high on only one item, and
they bid high on the same item, bidder 2 gets the preferred item, and bidder 1 gets the other item.

LL LH HL HH
LL 0, 0 0, 2 2, 0 2, 2
LH 0, 1 1, 2 2, 1 2, 2
HL 1, 0 1, 2 2, 1 2, 2
HH 1, 1 1, 1 1, 1 1, 1

The allocation rule in the optimal combinatorial auction. The row indicates bidder 1’s type, the
column bidder 2’s type. i, j indicates that item A goes to bidder i, and item B to bidder j. (0

means the item is not awarded to anyone.)

It is interesting to observe that suboptimal allocations occur only when one bidder bids LL and
the other other does not bid HH. All the inefficiency stems from not awarding items, never from
allocating items to a suboptimal bidder.

The expected revenue from the mechanism is 3.9375. For comparison, the expected revenue
from the VCG mechanism is only 2.6875. It is interesting to view this in light of a recent result that
the VCG mechanism is asymptotically (as the number of bidders goes to infinity) optimal in multi-
item auctions, that is, it maximizes revenue in the limit [Monderer and Tennenholtz, 1999].8 Appar-
ently the auction will need to get much bigger (have more bidders) before no significant fraction of
the revenue is lost by using the VCG mechanism. (Of course, this is only a single instance—future
research may determine how much revenue is typically lost by the VCG mechanism for instances
of this size, as well as determine how this changes when the instances become somewhat larger.)

We now move on to designing a bigger auction, again with 2 items, but now with 3 bidders (for
a total of 16 possible allocations of items) and a bigger type space. Again, the bidders can have a
high or low type for each item, resulting in a utility for that item alone of 3 or 1, respectively; part
of their type now also includes whether the items have complementarity or substitutability to them,
resulting in a total of 8 types per bidder—that is, 83 = 512 type vectors (possible joint preference
revelations by the bidders). In the case where the items have substitutability, the utility of getting
both items is the sum of the items’ individual values, minus 0.2 times the value of the lesser valued
item.9 In the case of complementarity, 0.2 times the value of the lesser-valued item is added.

This is the only instance in this section where CPLEX took more than 0.00 seconds to solve
the instance. (It took 5.90 seconds.) The optimal auction generated has an expected revenue of
5.434. The allocation rule generated (an 8x8x8 table) is too large to present, but we point out some
interesting properties of the optimal auction generated nonetheless:

1. Sometimes, items are again not awarded, for example, when two bidders report a low valua-
tion for both items and the remaining bidder does not report a high valuation on both items;

8This result is particularly easy to prove in a discretized setting such as the one we are considering. The following
sketches the proof. As the number of bidders grows, it becomes increasingly likely that for each winning bid, there is
another submitted bid that is exactly identical, but not accepted. If this is the case, the VCG payment for the winning
bid is exactly the value of that bid, and thus the VCG mechanism extracts the maximum possible payment. (This is also
roughly the line of reasoning taken in the more general result [Monderer and Tennenholtz, 1999].)

9Subtracting a fraction from the lesser valued item guarantees free disposal, i.e. additional items cannot make a bidder
worse off.

140 CHAPTER 6. AUTOMATED MECHANISM DESIGN

2. Randomization now does occur, for instance sometimes (but not always) when one item is
valued lowly by everyone and two of the three value the other item highly (the randomization
is over which of the two gets the desired item);

3. The optimal auction takes the complementarity and substitutability into account, for instance
by doing the following. When one bidder bids high on both items and the other two each bid
high on one item (not the same one), then the mechanism awards the items to the first bidder
if that bidder revealed complementarity, but to the other bidders if the first bidder revealed
substitutability. (Each one gets his/her desired item.)

It turns out, however, that the optimal deterministic mechanism generated for this instance has
the same expected revenue (5.434). Thus, one may wonder if randomization is ever necessary to
create optimal combinatorial auctions. The following example shows that there are indeed instances
of the optimal combinatorial auction design problem where randomized mechanisms can perform
strictly better than any deterministic mechanism.

In this example, there are two items A and B for sale, and there is only a single bidder (so that
it does not matter which solution concept and which IR notion we use). There are three types: type
α (occurring with probability 0.3) indicates that the bidder has a utility of 1 for receiving either
{A} or {A, B}, and 0 otherwise; type β (occurring with probability 0.3) indicates that the bidder
has a utility of 1 for receiving either {B} or {A, B}, and 0 otherwise; and type αβ (occurring
with probability 0.4) indicates that the bidder has a utility of 0.75 for receiving either {A}, {B}, or
{A, B}, and 0 otherwise.

The optimal randomized mechanism generated by the solver allocates {A} to the bidder if the
bidder reports α; {B} if the bidder reports β; and {A} with probability 0.75, and {B} with proba-
bility 0.25, if the bidder reports αβ. The payment in each case is the agent’s entire valuation (1 for
types α and β, and 0.75 for type αβ). The resulting expected revenue is 0.9.

By contrast, the optimal deterministic mechanism generated by the solver allocates {A} to the
bidder if the bidder reports α; {A, B} if the bidder reports β; and {A} if the bidder reports αβ. The
payment is 0.75 for type α, 1 for type β, and 0.75 for type αβ. The resulting expected revenue is
0.825.

This example demonstrates how AMD can be used to disprove conjectures in mechanism de-
sign: the conjecture that one can restrict attention to deterministic mechanisms in the design of
optimal combinatorial auctions is disproved by an example where the optimal randomized mecha-
nism produced by the solver is strictly better than the optimal deterministic one.

6.5.2 Public goods problems

As another example application domain, we now turn to public good problems. A public good is a
good from which many agents can benefit simultaneously; the good is said to be nonexcludable if
we cannot prevent any agents from obtaining this benefit, given that we produce the good. Examples
of nonexcludable public goods include clean air, national defense, pure research, etc.

A typical mechanism design problem that arises is that a certain amount of money is required
to construct or acquire the (nonexcludable) public good, and this money must be collected from the
agents that may benefit from it. However, how much the good is worth to each agent is information

6.5. INITIAL APPLICATIONS 141

that is private to that agent, and we cannot obtain a larger payment from an agent than what the agent
claims the good is worth to him (an individual rationality constraint). This leads to the potential
problem of free riders who report very low values for the good in the hope that other agents will
value the good enough for it to still be produced. Formally, every agent i has a type vi (the value of
the good to him), and the mechanism decides whether the good is produced, as well as each agent’s
payment πi. If the good is produced, we must have

∑

i
πi ≥ c, where c is the cost of producing

the good. Results similar to the Myerson-Satterthwaite impossibility theorem can be proved here to
show that even in quite simple settings, there is no mechanism that is ex post efficient, ex post budget
balanced, ex-interim individually rational, and BNE incentive-compatible. In fact, Theorem 36 from
Chapter 5 shows exactly this.

The advantage of applying AMD in this setting is that we do not desire to design a mechanism
for general (quasilinear) preferences, but merely for the specific mechanism design problem instance
at hand. In some settings this may allow one to circumvent the impossibility entirely, and in all
settings it minimizes the pain entailed by the impossibility.

Building a bridge

Two agents are deciding whether to build a good that will benefit both (say, a bridge). The bridge, if
it is to be built, must be financed by the payments made by the agents. Building the bridge will cost
6. The agents have the following type distribution: with probability .4, agent 1 will have a low type
and value the bridge at 1. With probability .6, agent 1 will have a high type and value the bridge at
10. Agent 2 has a low type with probability .6 and value the bridge at 2; with probability .4, agent
2 will have a high type and value the bridge at 11. (Thus, agent 2 cares for the bridge more in both
cases, but agent 1 is more likely to have a high type.)

We used AMD to design a randomized, dominant-strategies incentive compatible, ex post IR
mechanism that is as efficient as possible—taking into account unnecessary payments (“money
burning”) as a loss in efficiency. The optimal mechanism generated by our AMD implementation
has the following outcome function (here the entries of the matrix indicate the probability of building
the bridge in each case):

Low High
Low 0 .67
High 1 1

The payment function is as follows (here a, b gives the payments of agents 1 and 2, respectively):

Low High
Low 0, 0 .67, 3.33
High 4, 2 4, 2

The payments in the case where agent 1 bids low but agent 2 bids high are the expected payments
(as we argued before, risk-neutral agents only care about this); the agents will need to pay more than
this when the good is actually built, but can pay less when it is not. (The constraints on the expected
payments in the linear program are set so that the good can always be afforded when it is built.)

142 CHAPTER 6. AUTOMATED MECHANISM DESIGN

It is easy to see that no money is burned: all the money the agents pay goes towards building the
bridge. However, we do not always build the bridge when this is socially optimal—namely, when
the second agent has a high type (which is enough to justify building the bridge) we do not always
build the bridge.

If we relax our solution concept to implementation in Bayes-Nash equilibrium, however, we get
a mechanism with the following outcome function:

Low High
Low 0 1
High 1 1

The payment function is now as follows:

Low High
Low 0, 0 0, 6
High 4, 2 .67, 5.33

Again, no money is burned, but now also, the optimal outcome is always chosen. Thus, with
Bayes-Nash equilibrium incentive compatibility, our mechanism achieves everything we hope for in
this instance—even though the impossibility result shows that this is not possible for all instances.

Building a bridge and/or a boat

Now let us move to the more complex public goods setting where two goods could be built: a bridge
and a boat. There are 4 different outcomes corresponding to which goods are built: None, Boat,
Bridge, Boat and Bridge. The boat costs 1 to build, the bridge 2, and building both thus costs 3.

The two agents each have one of four different types: None, Boat Only, Bridge Only, Boat or
Bridge. These types indicate which of the two possible goods would be helpful to the agent (for
instance, maybe one agent would only be helped by a bridge because this agent wants to take the
car to work, which will not fit on the boat). All types are equally likely; if something is built which
is useful to a agent (given that agent’s type), the agent gets a utility of 2, otherwise 0.

We used AMD to design the optimal randomized dominant-strategy mechanism that is ex post
IR, and as ex post efficient as possible—taking into account money burning as a loss in efficiency.
The mechanism has the following outcome function, where a vector (a, b, c, d) indicates the proba-
bilities for None, Boat, Bridge, Boat and Bridge, respectively.

None Boat Bridge Either
None (1,0,0,0) (0,1,0,0) (1,0,0,0) (0,1,0,0)
Boat (.5,.5,0.0) (0,1,0,0) (0,.5,0,.5) (0,1,0,0)
Bridge (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,1,0)
Either (.5,.5,0.0) (0,1,0,0) (0,0,1,0) (0,1,0,0)

The (expected) payment function is as follows:

6.6. SCALABILITY EXPERIMENTS 143

None Boat Bridge Either
None 0,0 0,1 0,0 0,1
Boat .5,0 0,1 1,1 0,1
Bridge 0,0 0,1 1,1 1,1
Either .5,0 0,1 1,1 0,1

Again, no money is burned, but we do not always build the public goods that are socially optimal—
for example, sometimes nothing is built although the boat would have been useful to someone.

6.6 Scalability experiments

To assess the scalability of the automated mechanism design approach in general, we generated
random instances of the automated mechanism design problem. Each agent, for each of its types, re-
ceived a utility for each outcome that was uniformly randomly chosen from the integers 0, 1, 2, . . . , 99.
(All random draws were independent.) Real-world automated mechanism design instances are
likely to be more structured than this (for example, in allocation problems, if one agent is happy
with an outcome, this is because it was allocated a certain item that it wanted, and thus other agents
who wanted the item will be less happy); such special structure can typically be taken advantage of
in computing the optimal mechanism, even by nonspecialized algorithms. For instance, a random
instance with 3 agents, 16 outcomes, 8 types per agent, with payment maximization as its goal,
ex-interim IR, implementation in Bayes-Nash equilibrium, where randomization is allowed, takes
14.28 seconds to solve on average in our implementation. The time required to compute the last
optimal combinatorial auction from Section 6.5, which had exactly the same parameters (but much
more structure in the utility functions), compares (somewhat) favorably to this at 5.90 seconds.

We are now ready to present the scalability results. For every one of our experiments, we con-
sider both implementation in dominant strategies and implementation in Bayes-Nash equilibrium.
We also consider both the problem of designing a deterministic mechanism and that of designing
a randomized mechanism. All the other variables that are not under discussion in a particular ex-
periment are fixed at a default value (4 agents, 4 outcomes, 4 types per agent, no IR constraint, no
payments, social welfare is the objective); these default values are chosen to make the problem hard
enough for its runtime to be interesting. Experiments taking longer than 6 hours were cancelled,
as well as experiments where the LP size was greater than 400MB. CPLEX does not provide run-
time information more detailed than centiseconds, which is why we do not give the results with a
constant number of significant digits, but rather all the digits we have.

The next table shows that the runtime increases fairly sharply with the number of agents. Also
(as will be confirmed by all the later experiments), implementation in dominant strategies is harder
than implementation in BNE, and designing deterministic mechanisms is harder than designing
randomized mechanisms. (The latter part is consistent with the transition from NP-completeness to
solvability in polynomial time by allowing for randomness in the mechanism (Sections 6.3 and 6.4).)

144 CHAPTER 6. AUTOMATED MECHANISM DESIGN

#agents D/DSE R/DSE D/BNE R/BNE
2 .02 .00 .00 .00
3 .04 .00 .05 .01
4 8.32 1.32 1.68 .06
5 709.85 48.19 10.47 .52

The time (in seconds) required to solve randomly generated AMD instances for different numbers
of agents, for deterministic (D) or randomized (R) mechanisms, with implementation in dominant
strategies (DSE) or Bayes-Nash equilibrium (BNE). All experiments had 4 outcomes and 4 types
per agent, required no IR constraint, did not allow for payments, and had social welfare as the

objective.

The next table shows that the runtime tends to increase with the number of outcomes, but not at all
sharply.

#outcomes D/DSE R/DSE D/BNE R/BNE
2 .07 .07 .04 .03
3 .36 .08 .46 .05
4 8.32 1.32 1.68 .06
5 10.91 .59 .69 .07

The next table shows that the runtime increases fairly sharply with the number of types per agent.

#types D/DSE R/DSE D/BNE R/BNE
2 .00 .00 .00 .00
3 .04 .01 .30 .01
4 8.32 1.32 1.68 .06
5 563.73 14.33 36.60 .21

Because the R/BNE case scales reasonably well in each setting, we increased the numbers of agents,
outcomes, and types further for this case to test the limits of our implementation. Our initial imple-
mentation requires the linear program to be written out explicitly, and thus space eventually became
the bottleneck for scaling in agents and types. (“*” indicates that the LP size exceeded 400MB.)
Mature techniques exist for linear programming when the LP is too large to write down, and future
implementations could make use of these techniques.

agents outcomes types
6 4.39 .07 .88
7 33.32 .07 1.91
8 * .09 4.52
10 * .11 22.05
12 * .13 67.74
14 * .13 *
100 * 1.56 *

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 145

The next table shows that the impact of IR constraints on runtime is entirely negligible.

IR constraint D/DSE R/DSE D/BNE R/BNE
None 8.32 1.32 1.68 .06
Ex post 8.20 1.38 1.67 .12
Ex interim 8.11 1.42 1.65 .11

The next table studies the effects of allowing for payments and changing the objective. Allowing
for payments (without taking the payments into account) in social welfare maximization reduces
the runtime. This appears consistent with the fact that for this setting, a general (and easy-to-
compute) mechanism exists that always obtains the maximum social welfare—the VCG mechanism.
However, this speedup disappears when we start taking the payments into account. Interestingly,
payment maximization appears to be much harder than social welfare maximization. In particular,
in one case (designing a deterministic mechanism without randomization), an optimal mechanism
had not been constructed after 6 hours!

Objective D/DSE R/DSE D/BNE R/BNE
SW (1) 8.20 1.38 1.67 .12
SW (2) .41 .14 .92 .10
SW (3) 7.98 .51 4.44 .10
π - 1.89 84.66 3.47

SW=social welfare (1) without payments, (2) with payments that are not taken into account in
social welfare calculations, (3) with payments that are taken into account in social welfare

calculations; π=payment maximization.

The sizes of the instances that we can solve may not appear very impressive when compared
with the sizes of (for instance) combinatorial auctions currently being studied in the literature. While
this is certainly true, we emphasize that 1. We are studying a much more difficult problem than the
auction clearing problem: we are designing the mechanism, rather than executing it; 2. AMD is still
in its infancy, and it is likely that future (possibly approximate) approaches will scale to much larger
instances; and 3. Although many real-world instances are very large, there are also many small
ones. Moreover, the “small” instances may concern equally large dollar values as the large ones.
For example, selling two masterpieces by Picasso in a combinatorial auction could create revenue
comparable to that of selling a million plane tickets in a combinatorial auction.

6.7 An algorithm for single-agent settings

The definitions from Section 6.1 simplify significantly when applied to the setting where a deter-
ministic mechanism without payments must be designed, with a single type-reporting agent. For
one, the different possible IC (truthfulness) constraints differ only in what a type-reporting agent is
assumed to know about other type-reporting agents’ preferences and reports. Because in this set-
ting, there are no other type-reporting agents, the different IC constraints coincide. The same is true
for the IR (participation) constraints. We also do not need distributions over outcomes, or payment
functions. The result is the following formal definition for our special case.

146 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Definition 27 (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given a set of outcomes
O, and a set of types Θ for the agent together with a probability distribution p over these types.
Additionally we are given a utility function for the agent, u : Θ×O → R, and an objective function
for the designer, g : Θ × O → R. We are asked to find an outcome function o : Θ → O (a
deterministic mechanism without payments) such that:

1. For every θ, θ̂ ∈ Θ, u(θ, o(θ)) ≥ u(θ, o(θ̂)) (the IC constraint).

2. If there is an IR constraint, for every θ ∈ Θ, u(θ, o(θ)) ≥ 0. (In this case there typically also
is a default outcome o0 with u(θ, o0) = 0 for all θ ∈ Θ.10)

3. Subject to the previous constraints, the mechanism maximizes
∑

θ∈Θ

p(θ)g(θ, o(θ)).

We note that by Theorem 37, even this specialized problem is NP-complete (even without the IR
constraint, and even when the objective function is a social welfare function including another agent
that does not report a type).

6.7.1 Application: One-on-one bartering

As an interlude, we first present an application. Consider the situation where two agents each have
an initial endowment of goods. Each agent has a valuation for every subset of the m goods that
the agents have together. It is possible that both agents can become better off as a result of trade.
Suppose, however, that the agents cannot make any form of payment; all they can do is swap goods.
This is known as bartering. Additionally, suppose that one agent (agent 1) is in the position of
dictating the rules of the bartering process. Agent 1 can credibly say to agent 2, “we will barter
by my rules, or not at all.” This places agent 1 in the position of the mechanism designer, and
corresponds to the following AMD problem. The set of outcomes is the set of all allocations of the
goods (there are 2m of them). Agent 2 is to report his preferences over the goods (the valuation
that agent has for each subset), and on the basis of this report an outcome is chosen. This outcome
function, which is selected by agent 1 beforehand, must be incentive compatible so that agent 2 has
no incentive to misreport. Also, it must be individually rational, or agent 2 simply will not trade.11

Under these constraints, agent 1 wishes to make the expected value of her own allocation under
the mechanism as large as possible. The revelation principle justifies that restricting agent 1 to this
approach comes at no loss to that agent.

Automatically generated mechanisms for this setting are likely to be useful in barter-based elec-
tronic marketplaces, such as mybarterclub.com, Recipco, and National Trade Banc.

We now return to computational aspects, but we will readdress the bartering problem in our
experiments. We will postpone dealing with IR constraints for a few subections, and then return to
this.

10We can set the utility of the default outcome to 0 without loss of generality, by normalizing the utility function.
(From a decision-theoretic point of view it does not matter how utilities compare across types, because the agent always
knows her own type and will not take utilities for other types into account in making any decision.)

11If agent 1 actually wants to make the rules so that there is no trade for a certain type report, she can simply make the
original allocation the outcome for this type report; so there is no loss to agent 1 in designing the outcome function in
such a way that agent 2 always wishes to participate in the mechanism.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 147

6.7.2 Search over subsets of outcomes

In this subsection, we associate with each subset of outcomes a truthful mechanism for that set of
outcomes; we then show that for some subset of outcomes, the truthful mechanism associated with
that subset of outcomes is an optimal mechanism for the setting. Because the mechanism associated
with a subset of outcomes is easy to compute, we can search over subsets of outcomes (of which
there are 2|O|) rather than over all possible outcome functions (of which there are |O||Θ|).12

We first define the outcome function (mechanism) oX associated with a particular subset of the
outcomes.

Definition 28 For a given subset X ⊆ O, let oX(θ) be (the lowest-indexed element of)
arg max{o∈X:(∀o′∈X)u(θ,o)≥u(θ,o′)} g(θ, o). Let v(X) be given by

∑

θ∈Θ

p(θ)g(θ, oX(θ)).

Intuitively, oX(θ) is the outcome we wish to pick for type θ, if we (somehow) know that the set of
other outcomes used in the mechanism is exactly X , and we wish to pick an outcome from X as
well. v(X) is the expected value of the objective function for the mechanism oX , presuming that
the agent reports truthfully. The next lemma shows that indeed, the agent has no incentive to report
falsely.

Lemma 19 For all X ⊆ O, oX is truthful. (Thus, v(X) is indeed the expected value of the objective
function for it.)

Proof: For any pair of types θ1, θ2, we have that oX(θ2) ∈ X because all outcomes ever chosen by
oX are in X; and thus that u(θ1, oX(θ1)) ≥ u(θ1, oX(θ2)), because for any θ, oX(θ) maximizes
u(θ, ·) among outcomes o ∈ X .

The next lemma shows that for any subset X , the mechanism oX dominates all mechanisms that
use exactly the outcomes in X .

Lemma 20 For any X ⊆ O, suppose that o : Θ → X is a truthful mechanism making use only of
outcomes in X , but using each outcome in X at least once—that is, o(Θ) = X . Let its expected
value of the objective function be vo =

∑

θ∈Θ

p(θ)g(θ, o(θ)). Then v(X) ≥ vo.

Proof: For any θ ∈ Θ, we must have that for any o ∈ X , u(θ, o(θ)) ≥ u(θ, o)—because there exists
some θ′ ∈ Θ such that o(θ′) = o, and thus the agent can guarantee herself at least utility u(θ, o) by
reporting θ′. But oX(θ) maximizes g(θ, ·) among such outcomes. Thus, g(θ, oX(θ)) ≥ g(θ, o(θ)).
It follows that v(X) =

∑

θ∈Θ

p(θ)g(θ, oX(θ)) ≥
∑

θ∈Θ

p(θ)g(θ, o(θ)) = vo.

It is not necessarily the case that v(X) = vo for some truthful o making use of all outcomes in X;
for instance, there could be some outcome in X that has both a very low utility value and a very low

12In the case where |O| is bigger than |Θ|, we can restrict ourselves to outcome subsets of size at most |Θ|, making
our approach still more efficient than the straightforward brute search approach. For simplicity of presentation, in this
section we will focus on settings where |Θ| > |O| (as is commonly the case).

148 CHAPTER 6. AUTOMATED MECHANISM DESIGN

objective value. Then oX will not use this outcome, and thereby have a higher expected value of the
objective function than any mechanism that does use it.

We are now ready to present the main theorem of this subsection, which states that the best oX

is indeed an optimal mechanism.

Theorem 42 maxX⊆O v(X) is the maximum expected value of the objective over all mechanisms
(that are deterministic and use no payments). oX is an optimal mechanism (among mechanisms
that are deterministic and use no payments) if X ∈ arg maxX⊆O v(X).

Proof: Consider an optimal truthful mechanism o,13 and let X be the set of all outcomes it uses
(X = o(Θ)). By Lemma 19, oX is truthful and v(X) is the expected value of the objective function
for it. By Lemma 20, we have v(X) ≥ vo where vo is the expected value of the objective function
for o.

6.7.3 A heuristic and its admissibility

We now proceed to define an outcome function that is associated with two disjoint subsets X and
Y of the outcomes; we will use this outcome function to compute an admissible heuristic for our
search problem. The interpretation is as follows. In the process of constructing a mechanism of
the kind described in the previous subsection, we successively label each outcome as “in” or “out”,
depending on whether we wish to include this outcome in the set that the eventual mechanism is
associated with. X consists of the outcomes that we have already decided are “in”; Y consists of
the outcomes that we have already decided are “out”. To get an optimistic view of the mechanisms
we may eventually arrive at from here, we assign to each type the outcome in O − Y that gives
us the highest objective value for that type (the mechanisms certainly will not use any outcome in
Y), under the constraint that this outcome will make that type at least as well off as any outcome in
X (because we have already decided that these are certainly “in”, so we know this constraint must
apply).

Definition 29 For given subsets X, Y ⊆ O, let oX,Y (θ) be (the lowest-indexed element of)
arg maxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o). Let v(X, Y) be given by

∑

θ∈Θ

p(θ)g(θ, oX,Y (θ))

Outcome functions of this type do not necessarily constitute truthful mechanisms. (For instance, if
X and Y are both the empty set, then oX,Y will simply choose the objective-maximizing outcome
for each type.) Nevertheless, because we are merely trying to obtain an optimistic estimate, we
compute v(X, Y) as before, presuming the agents will report truthfully. The following theorem
shows that v(X, Y) is indeed admissible.

Theorem 43 For any subsets X, Y ⊆ O, for any Z ⊆ O − X − Y , for any θ ∈ Θ, we have
g(θ, oX,Y (θ)) ≥ g(θ, oX∪Z(θ)); and v(X, Y) ≥ v(X ∪ Z).

13Which, by the revelation principle, is an optimal mechanism.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 149

Proof: Using the facts that X ⊆ X ∪ Z and X ∪ Z ⊆ O − Y , we can conclude that {o ∈ X ∪ Z :
(∀o′ ∈ X ∪ Z)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ X ∪ Z : (∀o′ ∈ X)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ O − Y :
(∀o′ ∈ X)u(θ, o) ≥ u(θ, o)}. It follows that g(θ, oX,Y (θ)) = maxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o)
≥ maxo∈X∪Z:(∀o′∈X∪Z)u(θ,o)≥u(θ,o′) g(θ, o) = g(θ, oX∪Z(θ)). Thus v(X, Y) =
∑

θ∈Θ

p(θ)g(θ, oX,Y (θ)) ≥
∑

θ∈Θ

p(θ)g(θ, oX∪Z(θ)) = v(X ∪ Z).

The following theorem shows that conveniently, at a leaf node, where we have decided for every
outcome whether it is in or out, the heuristic value coincides with the value of that outcome set.

Theorem 44 For any X ⊆ O, θ ∈ Θ, we have oX,O−X(θ) = oX(θ) and v(X, O −X) = v(X).

Proof: Immediate using O − (O −X) = X .

6.7.4 The algorithm

We are now ready to present the algorithm.

Basic structure

We first summarize the backbone of our algorithm. A node in our search space is defined by a set of
outcomes that are definitely “in” (X)14 and a set of outcomes that are definitely out (Y). For a node
at depth d, X ∪ Y always constitutes the first d outcomes for some fixed order of the outcomes;
thus, a node has two children, one where the next outcome is added to X , and one where it is added
to Y . The expansion order is fixed at putting the node in X first, and then in Y . The heuristic value
(bound) of a node is given by v(X, Y), as described above.

We can now simply apply A*; this, however, quickly fills up the available memory, so we resort
to more space-efficient methods. We first present branch-and-bound depth-first search (expanding
every node that still has a chance of leading to a better solution than the best one so far, in depth-
first order) for our setting, and then IDA* (in which we maintain a target objective value, and do
not expand nodes that do not have a chance of reaching this value; if we fail to find a solution, we
decrease the target value and try again). (An overview of search methods such as these can be found
in Russell and Norvig [2003].)

14We emphasize that this does not mean that the outcome will definitely be used by the mechanism corresponding to
any descendant leaf node; rather, this outcome may be used by any descendant leaf node; and for any descendant leaf
node, in the mechanism associated with this node, any type must receive an outcome at least as good to it as this one.

150 CHAPTER 6. AUTOMATED MECHANISM DESIGN

In the following, v is the heuristic for the current node. d is the depth of the current node. ω
(a global variable) is the number of outcomes. CB (another global) is the outcome set correspond-
ing to the best mechanism found so far. L (another global) is the expected value of the objective
function for the best mechanism we have found so far. oi is outcome i. The other variables are as
described above.

BRANCH-AND-BOUND-DFS()
CB := NULL
L := −∞
SEARCH1({}, {}, 0, 1)
return CB

SEARCH1(X , Y , v, d)
if d = ω + 1
CB = X
L = v

else
if v(X ∪ {od}, Y) > L
SEARCH1(X ∪ {od}, Y , v(X ∪ {od}, Y), d + 1)

if v(X, Y ∪ {od}) > L
SEARCH1(X , Y ∪ {od}, v(X, Y ∪ {od}), d + 1)

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 151

Our implementation of IDA* is similar, except we do not initialize L to−∞. Rather, we initial-
ize it to some high value, and decrease it every time we fail to find a solution—either to a fraction
of itself, or to the highest value that is still feasible (whichever is less). This also requires us to keep
track of the highest value still feasible (given by HF , another global variable), so that we have to
modify the search call slightly.

IDA*()
CB := NULL
L := initial-limit
while CB = NULL
HF := −∞
SEARCH2({}, {}, 0, 1)
L := min{HF, fraction·L}

return CB

SEARCH2(X , Y , v, d)
if d = ω + 1

CB = X

L = v

else
if v(X ∪ {od}, Y) > L

SEARCH2(X ∪ {od}, Y , v(X ∪ {od}, Y), d + 1)
else if v(X ∪ {od}, Y) > HF

HF := v(X ∪ {od}, Y)

if v(X, Y ∪ {od}) > L

SEARCH2(X , Y ∪ {od}, v(X, Y ∪ {od}), d + 1)
else if v(X, Y ∪ {od}) > HF

HF := v(X, Y ∪ {od})

Efficiently updating the heuristic

Rather than computing the heuristic anew each time, it can be computed much more quickly from
information used for computing the heuristic at the parent node. For instance, when adding an
outcome o to X , we will not have to change oX,Y (θ) unless u(θ, o) > u(θ, oX,Y (θ)). As another
example, when adding an outcome o to Y , we will not have to change oX,Y (θ) unless oX,Y (θ) = o.
In addition to this, maintaining appropriate data structures (such as a list of the outcomes sorted by
objective value for a given type) allows us to quickly find the new outcome when we do need to
make a change.

6.7.5 Individual rationality

We now show how to deal with an individual rationality constraint in this setting.

152 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Theorem 45 oX is individually rational if and only if for every θ ∈ Θ, there is some o ∈ X such
that u(θ, o) ≥ 0.

Proof: If for some θ ∈ Θ, there is no o ∈ X such that u(θ, o) ≥ 0, oX cannot give the agent
nonnegative utility for type θ because oX uses only outcomes from X; so it is not individually
rational. On the other hand, if for every θ ∈ Θ, there is some o ∈ X such that u(θ, o) ≥ 0, then
oX will give the agent nonnegative utility for that type θ, because oX is constrained to choose an
outcome that maximizes u(θ, ·) among outcomes from X , and at least one of the outcomes in X
gives nonnegative utility. So it is individually rational.

It follows that when we have an individual rationality constraint, in our search procedures, we
do not need to expand nodes where for some type θ, there are no outcomes left in O − Y that give
the agent a nonnegative utility for θ.

6.7.6 Experimental results

In this subsection, we compare the performances of branch-and-bound DFS and IDA* over our
search space with the performance of the mixed integer programming approach described earlier
(using CPLEX 8.0), on random instances drawn from three different distributions. In each case, we
investigate both scalability in the number of types and in the number of outcomes.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 153

Uniform distribution, no IR

For this distribution, each value u(θ, o) and each value g(θ, o) is independently and uniformly drawn
from [0, 100]. No IR constraint applies (all utilities are nonnegative).

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.1: Performance vs. types for the uniform, no IR case with 20 outcomes.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.2: Performance vs. outcomes for the uniform, no IR case with 30 types.

Both versions of our algorithm outperform CPLEX soundly; our approach is especially more scal-
able in the number of types.

154 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Uniform distribution, with IR

Now, each value u(θ, o) and each value g(θ, o) is independently and uniformly drawn from [−50, 50].
We apply an IR constraint (the agent can never get negative utility).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.3: Performance vs. types for the uniform, with IR case with 20 outcomes.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.4: Performance vs. outcomes for the uniform, with IR case with 30 types.

Both versions of our algorithm still solidly outperform CPLEX, but the gaps are a little tighter;
CPLEX manages to get a greater speedup factor out of the IR constraint.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 155

Bartering

The final distribution corresponds to the bartering problem described earlier. The designer and
the agent each have m/2 goods (for 2m outcomes—each good can end up with either agent); the
designer has a randomly drawn value (from [0, 10]) for each individual good (constituting g, which
does not depend on θ in this case), and the agent has a randomly drawn value (from [0, 10]) for each
individual good for each type (constituting u). The value of a bundle to an agent is the sum of the
values of the individual goods.15 If the total number of goods is odd, the agent gets one more good
than the designer.

-2

-1.5

-1

-0.5

0

0.5

10 15 20 25 30 35 40 45 50

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.5: Performance vs. types for the bartering case with 32 outcomes.

-2.5

-2

-1.5

-1

-0.5

0

0.5

5 10 15 20 25 30 35

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.6: Performance vs. outcomes for the bartering case with 50 types.

The gaps here are much tighter, and it appears that CPLEX may in fact get the upper hand on even
larger instances. (Space limitations prevented us from taking the experiments further.) CPLEX
apparently makes very good use of the additional structure in this domain, whereas our algorithm

15There is nothing preventing our approach from having more complicated values over bundles; we simply felt it was
nice to present the simplest example.

156 CHAPTER 6. AUTOMATED MECHANISM DESIGN

is not geared towards exploiting this structure. Also, IDA* seems to outperform branch-and-bound
DFS now.

6.8 Structured outcomes and preferences

So far, we have only studied a flat representation of automated mechanism design problem instances,
e.g. we assumed that all possible outcomes were explicitly listed in the input. However, in expres-
sive preference aggregation, the outcome space is often too large to enumerate all the outcomes.
Nevertheless, in such settings, the outcomes and the agents’ preferences over them usually have
some structure that allows the problem to still be concisely represented. In this section, we study
one particular type of such structure: the agents may have to simultaneously decide on multiple,
otherwise unrelated issues. In this case, the outcome space can be represented as the cross product
of the outcome spaces for the individual issues. The next definition makes this precise.

Definition 30 O = O1 × O2 × . . . × Or is a valid decomposition of O (where r is the number of
issues) if the following two conditions hold:

• For each agent i, for each 1 ≤ k ≤ r there exists a function uk
i : Θi × Ok → R such that

ui(θi, (o
1, . . . , or)) =

∑

1≤k≤r

uk
i (θi, o

k);

• For each 1 ≤ k ≤ r there exists a function gk : Θ1 × . . . × Θn × Ok → R such that
g(θ1, . . . , θn, (o1, . . . , or)) =

∑

1≤k≤r

gk(θ1, . . . , θn, ok).

We observe that when g is a social welfare function, the first condition implies the second, because
if the first condition holds, g(θ1, . . . , θn, (o1, . . . , or)) =

∑

1≤i≤n
ui(θi, (o

1, . . . , or)) =

∑

1≤i≤n

∑

1≤k≤r

uk
i (θi, o

k) =
∑

1≤k≤r

∑

1≤i≤n
uk

i (θi, o
k), so that we can define gk(θ1, . . . , θn, ok) =

∑

1≤i≤n
uk

i (θi, o
k).

We call automated mechanism design with a valid decomposition multi-issue automated mecha-
nism design. It may seem that we can solve a multi-issue AMD instance simply by solving the
AMD problem for each individual issue separately. However, doing so will in general not give the
optimal mechanism. The reason is that in general, the designer may use one issue to tailor the in-
centives to get better results on another issue. For example, in an auction setting, one could think
of the allocation as one issue, and the payments as another issue. Even when the designer is only
concerned with bringing about the optimal allocation, the payments are still a useful instrument to
give the bidders an incentive to bid truthfully. (We caution the reader that apart from this minor
deviation, we do not consider the payments to be part of the outcome space O here.) As another
example, we saw in Chapter 5 that using a single mechanism to decide on the donations to multiple
charities can be more efficient than using a separate mechanism for each charity (Proposition 8).
The hardness results later in this section will also imply that solving the AMD problem separately
for each issue does not give the optimal solution. (The multi-issue AMD problem is NP-complete

6.8. STRUCTURED OUTCOMES AND PREFERENCES 157

even in settings where the corresponding single-issue AMD problem is in P, so if the approach of
solving the problem separately for each issue were optimal, we would have shown that P=NP.)

6.8.1 Example: Multi-item auctions

Consider auctioning a set of distinguishable items. If each of the m items can be allocated to
any of n agents (or to no agent at all), the outcome space O has size (n + 1)m (one for each
possible allocation). If, for every bidder, the bidder’s valuation for any bundle of items is the
sum of the bidder’s valuations of the individual items in the bundle, then we can decompose the
outcome space as O = O1 ×O2 × . . .×Om, where Ok = {0, 1, 2, . . . , n} is the set of all possible
allocations for item k (0 indicating it goes to no agent). Agent i’s utility function can be written as
ui((o

1, o2, . . . , om)) =
∑

k∈{1,...,m} uk
i (o

k) where uk
i is given by uk

i (i) = vi(k) and uk
i (j) = 0 for

j 6= i, where vi(k) is agent i’s valuation for item k.
Two extensions of this that also allow for decomposable outcome spaces are the following:

• An agent, if it does not receive an item, still cares which agent (if any) receives that item—that
is, there are externalities (as discussed in Chapter 2, Section 2.4). Here we no longer always
have uk

i (j) = 0 for j 6= i. For example, John may prefer it if the museum wins the painting
rather than a private collector, because in the former case he can still see the painting.

• Some items exhibit substitutability or complementarity (so an agent’s valuation for a bundle
is not the sum of its valuations of the individual items in the bundle), but the items can be par-
titioned into subsets so that there are no substitution or complementarity effects across subsets
in the partition. In this case, we can still decompose the outcome space over these subsets.
For example, a plane trip, a hotel stay, a cell phone and a pager are all for sale. The plane trip
and the hotel stay are each worthless without the other: they are perfect complements. The
cell phone and the pager each reduce the value of having the other: they are (partial) substi-
tutes. But the value of the plane trip or the hotel stay has nothing to do with whether one also
gets the cell phone or the pager. Thus, we decompose the outcome space into two issues, one
indicating the winners of the plane trip and hotel stay, and one indicating the winners of the
cell phone and the pager.

In each of these settings, the approach of this section can be used directly to maximize any
objective that the designer has. (This requires that the vaulations lie in a finite interval and are
discretized.)

6.8.2 Complexity

In this subsection we show that for the multi-issue representation, the three most important variants
of the problem of designing a deterministic mechanism are NP-complete. Of course, the hard-
ness results from Section 6.3 already imply this, because flatly represented problem instances are
a special case of the multi-issue representation. However, it turns out that under the multi-issue
representation, hardness occurs even in much more restricted settings (with small type spaces and a
small outcome space for each issue).

158 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Theorem 46 The AMD problem for designing deterministic mechanisms without payments is NP-
complete under the multi-issue representation, even when the objective is social welfare, there is
only a single type-reporting agent (in addition to an agent that does not report a type), the prob-
ability distribution over Θ is uniform, there are only two possible types, and |Oi| = 2 for all i.
(Membership in NP is guaranteed only if the number of agents is constant.)

Proof: The problem is in NP because we can nondeterministically generate the full outcome se-
lection function o (as long as the number of agents is constant, because otherwise there are expo-
nentially many type vectors). To show NP-hardness, we reduce an arbitrary KNAPSACK instance
(given by a set of pairs {(cj , vj)}j∈{1,...,m}, a cost limit C, and a value goal V) to the following
single-agent deterministic multi-issue AMD instance, where payments are not allowed and the ob-
jective is social welfare. Let the number of issues be r = m + 1. For every j ∈ {1, . . . , m + 1}, we
have Oj = {t, f}. The agent’s type set, over which there is a uniform distribution, is Θ = {θ1, θ2},
and the agent’s utility function u =

∑

k∈{1,...,r} uk is given by:

• For all k ∈ {1, . . . , m}, uk(θ1, t) = AB where A = 2
∑

j∈{1,...,m}
cj and B = 2

∑

j∈{1,...,m}
vj ;

and uk(θ1, f) = 0.

• um+1(θ1, t) = um+1(θ1, f) = 0.

• For all k ∈ {1, . . . , m}, uk(θ2, t) = ck, and uk(θ2, f) = 0.

• um+1(θ2, t) = C, and um+1(θ2, f) = 0.

The part of the social welfare that does not correspond to any agent in the game is given by u0 =
∑

k∈{1,...,r}
uk

0 where

• For all k ∈ {1, . . . , m}, uk
0(t) = 0, and uk(f) = vkA.

• um+1
0 (t) = um+1

0 (f) = 0.

The goal social welfare is given by G = A(mB+V)
2 . We show the two instances are equivalent. First

suppose there is a solution to the KNAPSACK instance, that is, a subset S of {1, . . . , m} such that
∑

j∈S

cj ≤ C and
∑

j∈S

vj ≥ V . Then consider the following mechanism:

• For all k ∈ {1, . . . , m}, ok(θ1) = t.

• For k ∈ {1, . . . , m}, ok(θ2) = f if k ∈ S, ok(θ2) = t otherwise.

• om+1(θ1) = f , and om+1(θ2) = t.

First we show there is no incentive for the agent to misreport. If the agent has type θ1, then it
is getting the best possible outcome for each issue by reporting truthfully, so there is certainly
no incentive to misreport. If the agent has type θ2, reporting truthfully gives it a utility of C +

∑

j∈{1,...,m},/∈S

cj , whereas reporting θ1 instead gives it a utility of
∑

j∈{1,...,m}
cj ; so the marginal utility

6.8. STRUCTURED OUTCOMES AND PREFERENCES 159

of misreporting is −C +
∑

j∈S

cj ≤ −C + C = 0. Hence there is no incentive to misreport. Now

we show that the goal social welfare is reached. If the agent has type θ1, the social welfare will be
mAB. If it has type θ2, it will be

∑

j∈S

vjA +
∑

j∈{1,...,m},/∈S

cj + C ≥
∑

j∈S

vjA ≥ V A. Hence the

expected social welfare is at least mAB+V A
2 = G. So there is a solution to the AMD instance. Now

suppose there is a solution to the AMD instance. If it were the case that, for some j ∈ {1, . . . , m},
oj(θ1) = f , then the maximum social welfare that could possibly be obtained (even if we did not

worry about misreporting) would be (m−1)AB+vjA
2 +

P

j∈{1,...,m}

vjA+C

2 =
(m−1)AB+ AB

2
+vjA+C

2 <
mAB+V A

2 = G. Thus, for all j ∈ {1, . . . , m}, ok(θ1) = t. Now, let S = {j ∈ {1, . . . , m} :
oj(θ2) = f}. Then, if the agent has type θ2 and reports truthfully, it will get utility at most C +

∑

j∈{1,...,m},/∈S

cj , as opposed to the at least
∑

j∈{1,...,m}
cj that it could get for this type by reporting θ1

instead. Because there is no incentive to misreport in the mechanism, it follows that
∑

j∈S

cj ≤ C.

Also, the total social welfare obtained by the mechanism is at most
mAB+

P

j∈S
vjA+

P

j∈{1,...,m},/∈S

cj+C

2 .
Because

∑

j∈{1,...,m},/∈S

cj +C < A, and all the other terms in the numerator are some integer times A,

it follows that this fraction is greater than or equal to the goal mAB+V A
2 (where the numerator is also

an integer times A) if and only if
∑

j∈S

vj ≥ V —and this must be the case because by assumption,

the mechanism is a solution to the AMD instance. It follows that S is a solution to the KNAPSACK
instance.

Theorem 47 The AMD problem for designing deterministic mechanisms with payments is NP-
complete under the multi-issue representation, even when the objective does not depend on the
payments made, there is only a single type-reporting agent, the probability distribution over Θ is
uniform, there are only two possible types, and |Oi| = 2 for all i. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: It is easy to see that the problem is in NP. (We can nondeterministically generate the outcome
function as before, after which setting the payments is a linear programming problem and can hence
be done in polynomial time—presuming, again, that the number of agents is constant.) To show NP-
hardness, we reduce an arbitrary KNAPSACK instance (given by a set of pairs {(cj , vj)}j∈{1,...,m},
a cost limit C, and a value goal V) to the following single-agent deterministic multi-issue AMD
instance, where payments are allowed. Let the number of issues be r = m + 1. For every
j ∈ {1, . . . , m + 1}, we have Oj = {t, f}. The agent’s type set, over which there is a uniform
distribution, is Θ = {θ1, θ2}, and the agent’s utility function u =

∑

k∈{1,...,r} uk is given by:

• For all k ∈ {1, . . . , m}, uk(θ1, t) = ck, and uk(θ1, f) = 0.

• um+1(θ1, t) = C, and um+1(θ1, f) = 0.

• For all k ∈ {1, . . . , m}, uk(θ2, t) = 0, uk(θ2, f) = ck.

160 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• um+1(θ2, t) = 0, and um+1(θ2, f) = C.

The objective function g =
∑

k∈{1,...,r}
gk is given by

• For all k ∈ {1, . . . , m}, gk(θ1, t) = 0, and gk(θ1, f) = A where A = 2
∑

j∈{1,...,m}
vj .

• For all k ∈ {1, . . . , m}, gk(θ2, t) = vk, gk(θ2, f) = 0.

• gm+1(θ1, t) = gm+1(θ1, f) = gm+1(θ2, t) = gm+1(θ2, f) = 0.

The goal for the objective function is given by G = mA+V
2 . We show the two instances are equiv-

alent. We first observe a useful fact about the utility function: when there are no payments, for
any outcome function, the incentive for the agent to misreport when it has type θ1 is the same as
the incentive for the agent to misreport when it has type θ2. That is, for any outcome function o,
u(θ1, o(θ2)) − u(θ1, o(θ1)) = u(θ2, o(θ1)) − u(θ2, o(θ2)). To see why, first consider that if we
(say) set ok(θ1) = ok(θ2) = f everywhere, obviously this is true. Then, whenever, for some k,
we ”flip” ok(θ1) to t, the second term (including the minus sign) on the left hand side decreases by
the same amount as the first term on the right hand side. Similarly, whenever we ”flip” ok(θ2) to
t, the first term on the left hand side increases by the same amount as the second term (including
the minus sign) on the right hand side. A corollary of this observation is that for this example,
payments cannot help us make the mechanism truthful. For, if without payments, the mechanism
would not be truthful, the agent would have an incentive to lie for both types (without payments).
Then, if the agent needs to pay more for reporting one type than for the other, the agent will still
have an (even bigger) incentive to lie for at least that type. Thus, we may as well assume payments
are not possible. Now, suppose there is a solution to the KNAPSACK instance, that is, a subset S
of {1, . . . , m} such that

∑

j∈S

cj ≤ C and
∑

j∈S

vj ≥ V . Then consider the following mechanism:

• For all k ∈ {1, . . . , m}, ok(θ1) = f .

• For k ∈ {1, . . . , m}, ok(θ2) = t if k ∈ S, ok(θ2) = f otherwise.

• om+1(θ1) = t, and om+1(θ2) = f .

(The payment function is 0 everywhere.) First we show there is no incentive for the agent to misre-
port. Because we observed that the incentive to misreport is the same for both types, we only need
to show this for one type. We will show it when the agent’s true type is θ1. In this case, reporting
truthfully gives utility C, and reporting θ2 gives utility

∑

j∈S

cj ≤ C. Hence there is no incentive to

misreport. Now we show that the goal value of the objective is reached. If the agent has type θ1,
the value of the objective function will be mA. If it has type θ2, it will be

∑

j∈S

vj ≥ V . Hence the

expected value of the objective function is at least mA+V
2 = G. So there is a solution to the AMD

instance. Finally, suppose there is a solution to the AMD instance. As a reminder, payments cannot
help us, so we may assume they are always 0. If it were the case that, for some j ∈ {1, . . . , m},
ok(θ1) = t, then the maximum social welfare that could possibly be obtained (even if we did not

6.8. STRUCTURED OUTCOMES AND PREFERENCES 161

worry about misreporting) would be
(m−1)A+

P

j∈{1,...,m}

vj

2 < mA
2 < G. Thus, for all j ∈ {1, . . . , m},

ok(θ1) = f . Now, let S = {j ∈ {1, . . . , m} : oj(θ2) = t}. The incentive for the agent to misreport
when it has type θ1 is then at least−C+

∑

j∈{1,...,m}
cj , which should be less than or equal to 0, so that

∑

j∈{1,...,m}
cj ≤ C. Additionally, the expected value of the objective function is

mA+
P

j∈S
vj

2 , which

should be at least G = mA+V
2 . It follows that

∑

j∈S

vj ≥ V . Thus S is a solution to the KNAPSACK

instance.

Theorem 48 The AMD problem for designing deterministic mechanisms is NP-complete under the
multi-issue representation, even when the objective is to maximize total payments made (under an
IR constraint), there is only a single type-reporting agent, the probability distribution over Θ is
uniform, there are only two possible types, and |Oi| = 2 for all i. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: It is easy to see that the problem is in NP. (We can nondeterministically guess an outcome
function, after which setting the payments is a linear programming problem and can hence be done
in polynomial time.) To show NP-hardness, we reduce an arbitrary KNAPSACK instance (given by
a set of pairs {(cj , vj)}j∈{1,...,m+1}, a cost limit C, and a value goal V) to the following single-agent
deterministic multi-issue AMD instance, where we seek to maximize the expected payments from
the agent. Let the number of issues be r = m+1. For every j ∈ {1, . . . , m}, we have Oj = {t, f}.
The agent’s type set, over which there is a uniform distribution, is Θ = {θ1, θ2}, and the agent’s
utility function u =

∑

k∈{1,...,r} uk is given by:

• For all k ∈ {1, . . . , m}, uk(θ1, t) = ckA where A = 4
∑

j∈{1,...,m}
vj ; and uk(θ1, f) = 0.

• um+1(θ1, t) = 0, and um+1(θ1, f) = −CA.

• For all k ∈ {1, . . . , m}, uk(θ2, t) = vk, and uk(θ2, f) = 0.

• um+1(θ2, t) = 0, and um+1(θ2, f) = 0.

The goal expected revenue is given by G = AB+V
2 , where B =

∑

j∈{1,...,m}
cj . We show the two

instances are equivalent. First suppose there is a solution to the KNAPSACK instance, that is,
a subset S of {1, . . . , m} such that

∑

j∈S

cj ≤ C and
∑

j∈S

vj ≥ V . Then consider the following

mechanism. Let the outcome function be

• For all k ∈ {1, . . . , m}, ok(θ1) = t.

• For k ∈ {1, . . . , m}, ok(θ2) = t if k ∈ S, ok(θ2) = f otherwise.

• om+1(θ1) = t, om+1(θ2) = f .

162 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let the payment function be π(θ1) = AB, π(θ2) =
∑

j∈S

vj . First, to see that the IR constraint is

satisfied, observe that for each type, the mechanism extracts exactly the agent’s utility obtained from
the outcome function. Second, we show there is no incentive for the agent to misreport. If the agent
has type θ1, reporting θ2 instead gives a utility (including payments) of−CA+

∑

j∈S

cjA−
∑

j∈S

vj ≤

−CA + CA −
∑

j∈S

vj < 0, which is what the agent would have got for reporting truthfully. If

the agent has type θ2, reporting θ1 instead gives a utility (including payments) of A
4 − AB < 0,

which is what the agent would have got for reporting truthfully. Hence there is no incentive to

misreport. Third, the goal expected payment is reached because
AB+

P

j∈S
vj

2 ≥ AB+V
2 = G. So

there is a solution to the AMD instance. Now suppose there is a solution to the AMD instance. The
maximum utility that the agent can get from the outcome function if it has type θ2 is A

4 , and by the IR
constraint this is the maximum payment we may extract from the agent when the reported type is θ2.
Because the goal is greater than AB

2 , it follows that the payment the mechanism should extract from
the agent when the reported type is θ1 is at least AB − A

4 . Because the maximum utility the agent
can derive from the outcome function in this case is AB, it follows that the agent’s utility (including
payments) for type θ1 can be at most A

4 . Now consider the set S = {j ∈ {1, . . . , m} : oj(θ2) = t}.
Then, if the agent falsely reports type θ2 when the true type is θ1, the utility of doing so (including
payments) is at least

∑

j∈S

cjA − CA − A
4 . This is to be at most the agent’s utility for reporting

truthfully in this case, which is at most A
4 . It follows that

∑

j∈S

cjA − CA − A
4 ≤

A
4 , which is

equivalent to
∑

j∈S

cj ≤ C + 1
2 . Because the cj and C are integers, this implies

∑

j∈S

cj ≤ C. Finally,

because we need to extract at least a payment of V from the agent when type θ2 is reported, but
the utility that the agent gets from the outcome function in this case is at most

∑

j∈S

vj and we can

extract at most this by the IR constraint, it follows that
∑

j∈S

vj ≥ V . Thus, S is a solution to the

KNAPSACK instance.

The NP-hardness of automatically designing optimal deterministic mechanisms under the multi-
issue representation was already implied by similar results for the unstructured (single-issue) repre-
sentation. However, the fact that (unlike under the unstructured representation) NP-hardness occurs
even with very small type sets is perhaps discouraging. On the other hand, one can be positive about
the fact that the problem remains in NP (if the number of agents is constant), even though the rep-
resentation is exponentially more concise. In the next subsection, we show that pseudopolynomial-
time algorithms do exist for this problem (given a constant number of types). More significantly,
in the subsection after that, we show that optimal randomized mechanisms can still be designed in
polynomial time even under the multi-issue representation. Hence, it seems that this representation
is especially useful when we allow for randomized mechanisms.

6.8. STRUCTURED OUTCOMES AND PREFERENCES 163

6.8.3 A pseudopolynomial-time algorithm for a single agent

In this subsection we develop a pseudopolynomial-time algorithm that shows that the first two
multi-issue AMD problems discussed in the previous subsection are only weakly NP-complete.
(A problem is only weakly NP-complete if it is NP-complete, but there exists an algorithm that
would run in polynomial time if the numbers in the instance were given in unary, rather than
binary—a pseudopolynomial-time algorithm.) This algorithm only works when there is only one
type-reporting agent. While this is still a significant problem because of the conflict of interest be-
tween the designer and the agent, it is an interesting open problem to see if the algorithm can be
generalized to settings with multiple agents.

Theorem 49 If there is only a single agent, the number of types is a constant, and the objective
does not depend on payments made, then the optimal deterministic mechanism can be found in
pseudopolynomial time under the multi-issue representation using dynamic programming, both with
and without payments, both for ex post and ex interim IR, and both for implementation in dominant
strategies and for implementation in Bayes-Nash equilibrium.

Proof: The dynamic program adds in the issues one at a time. For each k ∈ {0, 1, . . . , r}, it builds
a matrix which concerns a reduced version of the problem instance where only the first k issues
are included. Let r(θi, θj) = u(θi, o(θj)) − u(θi, o(θi)), that is, the regret that the agent has for
reporting its true type θi rather than submitting the false report θj . (These regrets may be negative.)
Any outcome function mapping the reported types to outcomes defines a vector of |Θ|(|Θ|−1) such
regrets, one for each pair (θi, θj). Then, our matrix for the first k issues contains, for each possible
regret vector v, a number indicating the highest expected value of the objective function that can
be obtained with an outcome function over the first k issues whose regret vector is dominated by
v. (One vector is said to be dominated by another if all entries of the former are less than or
equal to the corresponding ones of the latter.) This entry is denoted M k[v]. We observe that if v1

dominates v2, then Mk[v1] ≥ Mk[v2]. If the absolute value of the regret between any two types is
bounded by R, it suffices to consider (2R + 1)|Θ|(|Θ|−1) regret vectors (each entry taking on values
in {−R,−R + 1, . . . , 0, . . . , R − 1, R}). The matrix for k = 0 (i.e., when no issues have yet been
added) is 0 everywhere. We then successively build up the next matrix as follows. When we add
in issue k, there are |Ok||Θ| possibilities for setting the outcome function ok from types to elements
of Ok. Denoting a possible setting of ok by a vector w = (ok(θ1), ok(θ2), . . . , ok(θ|Θ|)), letting
gk(w) =

∑

θ∈Θ

gk(θ, ok(θ)) be the total value gained in the objective function as a result of this vector,

and letting r(w) = (uk(θi, ok(θj))−uk(θi, ok(θi)){θi 6=θj} be the regret vector over this issue alone,
we have the following recursive identity for k > 0: M k[v] = maxw{g

k(w) + Mk−1[v − r(w)]}.
It is possible that, when we use this identity to fill in the matrices, the identity refers to an entry
”outside” the previous matrix, that is, one of the entries of v − r(w) has absolute value greater than
R. If this occurs, one of the following two cases applies:

• One of the entries is greater than R. This means that the regret allowed for one of the pairs
(θi, θj) is greater than the maximum it could be. We may reduce the value of this entry to R,
without causing a reduction in the highest value of the objective function that can be obtained.

164 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• One of the entries is smaller than −R. This means that the regret allowed for one of the
pairs (θi, θj) is smaller than the minimum it could be. Hence, it is impossible to construct an
outcome function that satisfies this, and hence we simply say Mk−1[v − r(w)] = −∞.

Once we have constructed M r, we can use this matrix to solve any of our deterministic auto-
mated mechanism design problems. If payments are not allowed, we simply look at the entry
M r[(0, 0, . . . , 0)], because this is the highest possible expected value of the objective function that
we can obtain without the agent having positive regret anywhere. If payments are allowed, then
we look at all the entries M r[v] where the regret vector v is such that we can set the payments so
as to make every regret disappear—that is, where we can set πθ such that for any θi, θj , we have
r(θi, θj) + π(θj)− π(θi) ≤ 0. (This is a simple linear program and can hence be solved in polyno-
mial time.) Of all these entries, we choose the one with the highest value of the objective function.
If we want to know not only the highest possible expected value of the objective function, but also
a mechanism that achieves it, we need to store at each step not only the highest possible expected
value for each matrix entry, but also a partial outcome function that achieves it.

6.8.4 A polynomial-time algorithm for randomized mechanisms

When we allow randomization in the mechanism, it turns out that an optimal mechanism can be
designed in time that is polynomial in the length of the concise representation, as in the case of
flatly represented instances (Section 6.4).

Theorem 50 With a constant number of agents, the optimal randomized mechanism can be found
in polynomial time under the multi-issue representation using linear programming, both with and
without payments, both for ex post and ex interim IR, and both for implementation in dominant
strategies and for implementation in Bayes-Nash equilibrium.

Proof: We cannot simply use the linear program from Section 6.4, because it would have an ex-
ponential number of variables under the multi-issue representation. However, we can reduce the
number of variables to a polynomial number. To this end, we observe:

• For all i, E(ui|(θ̂1, . . . , θ̂n), θi) =
∑

(o1,...,or)∈O

P ((o1, . . . , or)|(θ̂1, . . . , θ̂n))
∑

1≤k≤r

uk
i (θi, o

k)

=
∑

1≤k≤r

∑

(o1,...,or)∈O

P ((o1, . . . , or)|(θ̂1, . . . , θ̂n))uk
i (θi, o

k) =

∑

1≤k≤r

∑

ok
∗∈Ok

uk
i (θi, o

k
∗)

∑

(o1,...,or):ok=ok
∗

P ((o1, . . . , or)|(θ̂1, . . . , θ̂n)) =

∑

1≤k≤r

∑

ok
∗∈Ok

P (ok = ok
∗|(θ̂1, . . . , θ̂n))uk

i (θi, o
k
∗).

• Similarly, E(g|(θ̂1, . . . , θ̂n)) =
∑

1≤k≤r

∑

ok
∗∈Ok

P (ok = ok
∗|(θ̂1, . . . , θ̂n))gk((θ̂1, . . . , θ̂n), ok

∗).

It follows that for the purposes at hand, we care only about the quantities P (ok = ok
∗|(θ̂1, . . . , θ̂n)),

rather than about the entire distribution. There are precisely
∑

1≤k≤r

|Ok|
∏

1≤i≤n
|Θi| such probabili-

ties, which is a polynomial number when the number of agents, n, is a constant. Additionally, only

6.9. SUMMARY 165

n
∏

1≤i≤n
|Θi| variables are needed to represent the payments made by the agents in each case (or

none if payments are not possible).
The linear program, which contains constraints for the IC notion and IR notion in question,

and attempts to optimize some linear function of the expected value of the objective function and
payments made, is now straightforward to construct. Because linear programs can be solved in
polynomial time, and the number of variables and equations in our program is polynomial for any
constant number of agents, the problem is in P.

6.9 Summary

In this chapter, we introduced automated mechanism design, which consists of solving for the opti-
mal mechanism for the instance at hand using constrained optimization techniques. We showed that
automatically designing optimal deterministic mechanisms is NP-hard in most cases, but design-
ing the optimal randomized mechanism can be done in polynomial time using linear programming.
Moreover, by requiring the probability variables in these linear programs to take on integer vari-
ables, we obtain a mixed integer programming approach for designing optimal deterministic mech-
anisms. We showed some initial applications, including divorce settlement, optimally auctioning
one or more items, and deciding on whether to build public goods. We presented scalability results
for the mixed integer/linear programming approaches; we also gave a special-purpose algorithm
for a special case that outperforms the mixed integer programming approach. Finally, we studied a
representation for instances of the automated mechanism design problem that is concise when there
are multiple unrelated issues, and studied how this changes the complexity of the problem.

In the next few chapters, we will take a break from automated mechanism design and instead
focus on the effects of agents’ computational limitations on their behavior in (manually designed)
mechanisms. We will return to the topic of designing mechanisms automatically in Chapter 10,
where we automatically design mechanisms for agents with computational limitations.

166 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Chapter 7

Game-Theoretic Foundations of
Mechanism Design

As mentioned in Chapter 4, a result known as the revelation principle is often used to justify restrict-
ing attention to truthful mechanisms. Informally, it states that, given a mechanism (not necessarily
a truthful or even a direct-revelation mechanism) that produces certain outcomes when agents be-
have strategically, there exists a truthful mechanism that produces the same outcomes. Of course,
this informal statement is too unspecific to truly understand its meaning. Which type of truthful-
ness is obtained—implementation in dominant strategies, Bayes-Nash equilibrium, or something
else? More importantly, what exactly does it mean for the agents to “behave strategically”? It turns
out that there are really multiple versions of the revelation principle: different types of strategic
behavior lead to different types of truthfulness. In this chapter, we will review some basic con-
cepts from game theory, which will provide us with basic definitions of strategic behavior. We will
also present two versions of the revelation principle. This will give us a deeper understanding of
the motivation for restricting attention to truthful mechanisms, which will be helpful in the next
two chapters, where we argue that non-truthful mechanisms need to be considered when agents are
computationally bounded.

7.1 Normal-form games

Perhaps the most basic representation of a strategic settings is a game in normal or strategic form.
In such a game, there are n agents (or players), and each player i has a set of strategies Si to select
from. The players select their strategies simultaneously, and based on this each player i receives a
utility ui(s1, . . . , sn). In the case where n = 2 and the number of strategies for each agent is finite,
we can represent the game in (bi)matrix form. To do so, we label one player the row player, and
the other the column player; then, we add a row to the matrix for each row player strategy, and a
column for each column player strategy; finally, in each entry of the matrix, we place the players’
utilities (starting with the row player’s) for the outcome of the game that corresponds to this entry’s
row and column.

For example, the well-known game of rock-paper-scissors has the following normal-form rep-
resentation:

167

168 CHAPTER 7. GAME-THEORETIC FOUNDATIONS OF MECHANISM DESIGN

R P S

R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

(Note that here, each row and each column is given a label (R, P , S); such labels do not have any
strategic importance, so we will sometimes omit them.) Rock-paper-scissors is what is known as a
zero-sum game, because within each entry of the matrix, the payoffs sum to zero—what one player
gains, the other loses. If the payoffs in each entry of the matrix sum to a constant other than zero,
the game is effectively still a zero-sum game, because affine transformations of utility do not affect
a player’s behavior.

7.1.1 Minimax strategies

How should we play rock-paper-scissors (and other zero-sum games)? Let us suppose, pessimisti-
cally, that the other player has good insight into how we play. Then, having a deterministic strategy
(say, playing “rock” with probability one) is not a good idea, because the other player can play “pa-
per” and win. Instead, it is better to randomize—for example, play each action with probability 1/3.
The set of randomizations ∆Si over player i’s (original) set of strategies in the game is known as
the set of player i’s mixed strategies. (For contrast, we will refer to Si as the set of pure strategies.)

The most conservative way to play a two-player zero-sum game is to assume that the other player
is able to predict one’s mixed strategy perfectly. Then, one should choose one’s mixed strategy to
minimize the maximum utility that the other player can obtain (given that that player knows the
mixed strategy). Formally, using the common notation−i to denote “the player other than i,” player
i should choose a strategy from arg minσi∈∆(Si) maxs−i∈S−i u−i(σi, s−i). (When we give a utility
function a mixed strategy as an argument, it simply produces the expected utility given that mixed
strategy.) This cautious manner of play may appear very favorable to player −i (given that that −i
really does know player i’s strategy). However, in rock-paper-scissors, the minimax strategy is to
play each pure strategy with probability 1/3, and in this case, any action that the opponent takes will
result in an expected utility of 0 for both players. So at least in this game, there is no benefit to being
able to choose one’s strategy based on the opponent’s mixed strategy. This is no accident: in fact,
the famous Minimax Theorem [von Neumann, 1927] shows that the players’ expected utilities will
be the same regardless of which player gets to choose last. Formally, we have (if the utilities in each
entry sum to 0): arg minσ1∈∆(S1) maxs2∈S2

u2(σ1, s2) = − arg minσ2∈∆(S2) maxs1∈S1
u1(σ2, s1).

Hence, it is natural to play minimax strategies in two-player zero-sum games.
What if the game is not zero-sum? As will become clear shortly, no perfect generalization of

the Minimax Theorem exists; nevertheless, there are still ways of solving these games. One simple,
but not always applicable notion is that of dominance, which will be discussed in the next section.

7.1.2 Dominance and iterated dominance

Consider the following game, commonly known as the Prisoner’s Dilemma:

7.1. NORMAL-FORM GAMES 169

S C

S -1,-1 -3,0
C 0,-3 -2,-2

The story behind the Prisoner’s Dilemma game is as follows. Two criminals are arrested in connec-
tion with a major crime, but there is only enough evidence to convict them of a minor crime. The
criminals are put in separate rooms, and are each given the option of confessing to the major crime
(C) or keeping silent (S). If both keep silent, they are convicted of the minor crime and sentenced
to one year in prison. If one confesses and the other does not, no charges at all will be filed against
the criminal that confesses, and the one that does not is convicted of the major crime and sentenced
to 3 years in prison. Finally, if both confess, they are both convicted of the major crime and given a
slightly reduced sentence of 2 years in prison.

How should each criminal play? (Note that it is assumed that there is no opportunity for re-
taliation afterwards, nor do the criminals care about each other’s fate—each prisoner’s objective is
simply to minimize the amount of time that he spends in prison.) If the other criminal confesses, it
is better to confess and get −2 rather than −3. But similarly, if the other criminal keeps silent, it is
better to confess and get 0 rather than −1. So, confessing is always better, and both criminals will
confess—even though this will give each of them a worse outcome than if they had kept silent.1 We
say that confessing is a dominant strategy. Formally:

Definition 31 Player i’s strategy σ′
i ∈ ∆(Si) is said to be strictly dominated by player i’s strategy

σi ∈ ∆(Si) if for any vector of strategies s−i ∈ S−i for the other players, ui(σi, s−i) > ui(σ
′
i, s−i).

Player i’s strategy σ′
i ∈ ∆(Si) is said to be weakly dominated by player i’s strategy σi ∈ ∆(Si) if

1While prisoners’ confessing to a crime may not appear to be such a bad outcome, there are many other real-world
strategic situations with roughly the same structure where we clearly would prefer the agents to cooperate with each other
and obtain the higher utilities. For example, there are settings where both players would be better off if each invested in a
given public good, but if players act selfishly, neither will invest. Perhaps due to the frustrating nature of such outcomes,
many suggestions have been made as to why an agent may still choose to act cooperatively. For example, the agents may
care about each other’s welfare, or bad behavior may cause failed cooperation, or even retaliation, in the future. Such
arguments amount to nothing more than saying that the game structure and its utilities are inaccurate (or at least incom-
plete). Indeed, one should always be careful to model one’s setting accurately, but this does not resolve the problem in the
many settings that really are modeled accurately by a Prisoner’s Dilemma game. A possible exception is the following
argument. Suppose a player believes that the other player reasons exactly like him, and will therefore always make the
same decision. Then, if the former player cooperates, so will the other player; if he does not, neither will the other player.
Therefore, the first player should cooperate. This type of reasoning has been called “superrationality” [Hofstadter, 1985],
but it quickly leads to difficult questions of causality (does choosing to cooperate “cause” the other player to cooperate?)
and free will (is one’s decision already pre-ordained given that the other player must do the same?). This is closely related
to Newcomb’s paradox [Nozick, 1969], in which a superintelligent or even omniscient being presents an agent with two
boxes, each of which contains some nonnegative amount of money. The agent can choose to take either the contents of
the first box only, or the contents of both boxes. The catch is that when filling the boxes, the being predicted whether the
agent would take one or both boxes, and if it predicted that the agent would choose only one box, it placed significantly
more money in that one box than it otherwise would have placed in both boxes together. Moreover, the being has been
absolutely flawless in predicting other, previous agents’ choices. It can be argued that the agent should choose only the
one box, because then the being presumably would have put much more money in that box; or that the agent should
choose both boxes, since the amounts in the boxes are already fixed at this point. In this dissertation, I will not address
these issues and simply follow the standard model in which one can make a decision without affecting one’s beliefs about
what the other players will decide or have decided (which, for most real-world settings, is an accurate model).

170 CHAPTER 7. GAME-THEORETIC FOUNDATIONS OF MECHANISM DESIGN

for any vector of strategies s−i for the other players, ui(σi, s−i) ≥ ui(σ
′
i, s−i), and for at least one

vector of strategies s−i for the other players, ui(σi, s−i) > ui(σ
′
i, s−i).

This definition allows the dominating strategy σi and the dominated strategy σ′
i to be mixed

strategies, although the restriction where these strategies must be pure can also be of interest (espe-
cially to avoid assumptions on agents’ attitudes towards risk). There are other notions of dominance,
such as very weak dominance (in which no strict inequality is required, so two strategies can domi-
nate each other), but this dissertation will not study those notions.

In iterated dominance, dominated strategies are removed from the game, and no longer have
any effect on future dominance relations. For example, consider the following modification of the
Prisoner’s Dilemma in which the District Attorney severely dislikes the row criminal and would
press charges against him even if he were the only one to confess:

S C

S -1,-1 -3,0
C -2,-3 -2,-2

Now, the dominance argument only works for the column player. However, because (using the
dominance argument) it is clear that the column player will not keep silent, that column becomes
irrelevant to the row player. Thus the row player effectively faces the following game:

C

S -3,0
C -2,-2

In this remaining game, confessing does once again dominate keeping silent for the row player.
Thus, iterated dominance can solve this game completely.

Either strict or weak dominance can be used in the definition of iterated dominance. We note
that the process of iterated dominance is never helped by removing a dominated mixed strategy, for
the following reason. If σ′

i gives player i a higher utility than σi against mixed strategy σj for player
j 6= i (and strategies σ−{i,j} for the other players), then for at least one pure strategy sj that σj

places positive probability on, σ′
i must perform better than σi against sj (and strategies σ−{i,j} for

the other players). Thus, removing the mixed strategy σj does not introduce any new dominances.

7.1.3 Nash equilibrium

Many games cannot be solved using (iterated) dominance. Consider the following game (commonly
called “chicken”):

S D

S -2,-2 1,-1
D -1,1 0,0

7.2. BAYESIAN GAMES 171

The story behind this game is the following: to test who has the strongest nerves, two drivers drive
straight at each other, and at the last moment each driver must decide whether to continue straight
(S) or dodge the other car by turning (say) right (D). The preferred outcome is to “win” by going
straight when the other dodges, but if both drivers continue straight, they collide and both suffer
severely.

This game has no dominated strategies. In fact, the matrix has multiple strategically stable
entries: if one player goes straight, and the other dodges, then neither player has an incentive to
change strategies (the player going straight is winning, and the player dodging does not want to go
straight and collide). This leads to the definition of a Nash equilibrium:

Definition 32 Given a normal-form game, a Nash equilibrium is vector of mixed strategies σ1, . . . ,
σn such that no agent has an incentive to deviate from its mixed strategy given that the others do not
deviate. That is, for any i and any alternative mixed strategy σ ′

i, we have ui(σ1, . . . , σi, . . . , σn) ≥
ui(σ1, . . . , σ

′
i, . . . , σn).

Indeed, (S, D) and (D, S) are pure-strategy Nash equilibria of “chicken.” There is another Nash
equilibrium where both players play each pure strategy with probability 0.5. Every finite game has
at least one Nash equilibrium if we allow for mixed strategies [Nash, 1950].

7.2 Bayesian games

The normal-form representation of games assumes that players’ utilities for outcomes of the game
are common knowledge. Hence, they cannot directly capture settings in which the players’ have
private information about their utilities, as they would, for example, in an auction. Such settings
can be modeled using Bayesian games.

In a Bayesian game, each player first receives privately held preference information (the player’s
type) from a distribution, which determines the utility that that player receives for every outcome of
(that is, vector of actions played in) the game. After receiving this type, the player plays an action
based on it.2

Definition 33 A Bayesian game is given by a set of players {1, 2, . . . , n}; and, for each player i,
a set of actions Ai, a type space Θi with a probability distribution pi over it, and a utility function
ui : Θi × A1 × . . . × An → R (where ui(θi, a1, . . . , an) denotes player i’s utility when i’s type is
θi and each player j plays action aj). A pure strategy in a Bayesian game is a mapping from types
to actions, si : Θi → Ai, where si(θi) denotes the action that player i plays for type θi.

As an example, consider an unusual first-price sealed-bid auction with two bidders, in which the
bidders can only bid 1 or 2. If the bids are tied, then the winner is chosen randomly. Each bidder
draws a valuation from Θ1 = Θ2 = {2, 2.5} uniformly at random. We can represent the utility
function of player 1 (the row player) as follows:

2In general, a player can also receive a signal about the other players’ preferences, but we will not concern ourselves
with that in this dissertation.

172 CHAPTER 7. GAME-THEORETIC FOUNDATIONS OF MECHANISM DESIGN

bid 1 bid 2

bid 1 .5 0
bid 2 0 0

Row player utilities when θ1 = 2.

bid 1 bid 2

bid 1 .75 0
bid 2 .5 .25

Row player utilities when θ1 = 2.5.

The utility function for the column player is similar.
Any vector of pure strategies in a Bayesian game defines an (expected) utility for each player,

and therefore we can simply translate a Bayesian game into a normal-form game. For example, the
auction game above gives (letting x, y denote the strategy of bidding x when one’s type is 2, and y
when one’s type is 3):

1,1 1,2 2,1 2,2

1,1 .625, .625 .3125, .5 .3125, .375 0, .25
1,2 .5, .3125 .3125, .3125 .3125, .1875 .125, .1875
2,1 .375, .3125 .1875, .3125 .1875, .1875 0, .1875
2,2 .25, 0 .1875, .125 .1875, 0 .125, .125

Using this transformation, we can take any solution concept that we have defined for normal-
form games (such as dominance or Nash equilibrium), and apply it to Bayesian games. For example,
in the game above, the strategy 2,1 is strictly dominated by 1,2. The strategy 2,2 is weakly dom-
inated by 1,2. After removing 2,2 for both players, 1,1 weakly dominates every other strategy, so
iterated weak dominance can solve this game entirely, leaving only 1,1 for each player. Both play-
ers playing 2,2 is nevertheless a Nash equilibrium so is both players playing 1,2; and both players
playing 1,1. There are no mixed-strategy equilibria.

One remark that should be made is that the normal-form representation of the Bayesian game
is exponentially larger than the original representation, because each player i has |Ai|

|Θi| distinct
pure strategies. For the purpose of defining solution concepts and other conceptual purposes, this
causes no problem. But, later, when we will be interested in computing Bayesian games’ solutions,
it will not be sufficient to simply apply this transformation and solve the normal form, since this
will require exponential time (and space).

So, one can define solution concepts for Bayesian games by applying normal-form solution
concepts to the normal-form representation of a Bayesian game. In spite of the simplicity of this
approach, the typical approach in mechanism design is nevertheless to define the solution concepts
directly, as is done below. For simplicity of notation, in the remainder of this chapter, I discuss pure
strategies only; the generalizations to mixed strategies (where agents choose a distribution over
actions based on their types) are straightforward.

First, let us consider a direct definition of dominance that is typically used in mechanism design:

Definition 34 Given a Bayesian game, the vector of strategies (s1, . . . , sn) is a dominant-strategy
equilibrium if for every agent i, for every type θi ∈ Θi, every alternative action ai ∈ Ai, and every
action vector a−i ∈ A−i of the other agents, we have ui(θi, si(θi), a−i) ≥ ui(θi, ai, a−i).

7.3. REVELATION PRINCIPLE 173

There are a few differences between this definition and using the normal-form representation
definition of dominance given above. First, this definition only applies to games where each agent
has a strategy that dominates all others, i.e. dominance can solve the game entirely (without iter-
ation). Second, none of the inequalities are required to be strict—this is very weak dominance. A
third, subtle, minor difference is that in this definition the strategy is supposed to give an optimal
action for every type of the agent, against any opponent actions. The definition that appeals to the
normal-form representation only requires that the strategy maximizes the total expected utility over
the agent’s types, against any opponent actions. The normal-form definition still requires that the
strategy chooses the optimal action for any type with positive probability; the only difference is
that the normal-form definition does not require optimal actions to be chosen on types that have
probability zero. For games with finitely many types, this is an insignificant difference, since it does
not make sense to even bother defining a type that occurs with zero probability. Under continuous
type spaces, the difference is a little more significant since the normal-form definition may choose
to play in a bizarre manner on a set of types with measure zero. Since we will be mainly concerned
with finite type spaces, the difference between the definitions is immaterial.

Now we will consider Bayes-Nash equilibrium, under which agents strategies are optimal only
given the other agents’ strategies, and given that one does not know the other agents’ types.

Definition 35 The vector of strategies (s1, . . . , sn) is a Bayes-Nash equilibrium if for every agent i,
for every type θi ∈ Θi, and every alternative action ai ∈ Ai, we have Eθ−i [ui(θi, si(θi), s−i(θ−i))] ≥
Eθ−i [ui(θi, ai, s−i(θ−i))].

This definition is identical to the one where we simply apply Nash equilibrium to the normal
form of the Bayesian game—with the exception that agents can no longer behave arbitrarily for
types that have zero probability.

Now that we have some methods for predicting strategic behavior in arbitrary games, we can
return to mechanism design and begin to assess the quality of mechanisms that are not truthful,
direct-revelation mechanisms. In the next section, we will use this ability to prove two variants of
the revelation principle, showing that if agents play according to the solution concepts defined here,
then there is no reason not to use a truthful, direct-revelation mechanism.

7.3 Revelation principle

To prove the revelation principle, we first need to assess what outcomes will be produced by a
mechanism that is not a truthful, direct-revelation mechanism, based on the solution concepts for
Bayesian games given above. Such a mechanism can be represented by a set of actions Ai for each
agent i, and an outcome selection function o : A1 × . . . × An → O. (To minimize notational
overhead, payments should be considered part of the outcome here. Also, the outcome function
may in general produce distributions over outcomes; everything below can be extended to allow for
this as well simply by replacing O with ∆(O).)

We first define when a mechanism implements a given social choice rule:

Definition 36 A social choice rule is a function f : Θ1×. . .×Θn → O. A mechanism o implements
rule f in dominant strategies if there is a dominant strategy equilibrium (s1, . . . , sn) such that for

174 CHAPTER 7. GAME-THEORETIC FOUNDATIONS OF MECHANISM DESIGN

all (θ1, . . . , θn) ∈ Θ1 × . . .×Θn, o(s1(θ1), . . . , sn(θn)) = f(θ1, . . . , θn). Similarly, a mechanism
o implements rule f in Bayes-Nash equilibrium if there is a Bayes-Nash equilibrium (s1, . . . , sn)
such that for all (θ1, . . . , θn) ∈ Θ1 × . . .×Θn, o(s1(θ1), . . . , sn(θn)) = f(θ1, . . . , θn).

One should note that a game may have multiple equilibria, and may therefore implement mul-
tiple social choice rules. For example, consider the two-type first-price auction example in the
previous section: two of its equilibria always allocate the item at random, but the third allocates the
item to the bidder with the higher valuation if the valuations are not equal. If there are multiple equi-
libria, then we will assume that we can choose our favorite equilibrium. This strengthens the power
of indirect/non-truthful mechanisms, and therefore strengthens the revelation principle result below.
(It should be remarked that truthful direct-revelation mechanisms may have multiple equilibria as
well; however, one may argue that the truth-telling equilibrium is “focal”, i.e. the most natural one.)

We are now ready to review two known variants of the revelation principle, corresponding to
dominant-strategies equilibrium and Bayes-Nash equilibrium. Before doing so, recall the simple
intuition behind the revelation principle: the new, truthful direct-revelation mechanism that we con-
struct requests the agents’ types, and then plays “on their behalf” in the old mechanism (according
to the equilibrium of that mechanism) to produce the outcome. There is no reason for an agent to
misreport his type, since this will only result in the new mechanism playing the part of that agent
suboptimally in the old mechanism.

Revelation Principle, version 1 Suppose there is an (indirect/non-truthful) mechanism that imple-
ments social choice rule f in dominant strategies. Then there exists a dominant-strategies incentive-
compatible direct-revelation mechanism with outcome selection function o that also implements f
in dominant strategies (using the truth-telling equilibrium).

Proof: We show how to transform the given mechanism that implements f into a truthful direct-
revelation mechanism that implements f . For each i, let sold

i : Θi → Aold
i be the strategy played

by agent i in the equilibrium that implements f in the given mechanism, and let oold be the given
game’s outcome selection function, so that oold(sold

1 (θ1), . . . , s
old
n (θn)) = f(θ1, . . . , θn), and the

sold
i constitute a dominant strategies equilibrium. Then let our new mechanism have the outcome

function o given by o(θ1, . . . , θn) = oold(sold
1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn). All we need

to show is that truthtelling is a dominant strategies equilibrium. To show this, we observe that for
any i and θi ∈ Θi, for any alternative type θ̂i ∈ Θi, and for any θ−i ∈ Θ−i, ui(θi, o(θi, θ−i)) =
ui(θi, o

old(sold
i (θi), s

old
−i (θ−i))) ≥ ui(θi, o

old(sold
i (θ̂i), s

old
−i (θ−i))) = ui(θi, o(θ̂i, θ−i)), where the

inequality derives from the fact that the sold
i constitute a dominant strategies equilibrium in the

original mechanism.

Revelation Principle, version 2 Suppose there is an (indirect/non-truthful) mechanism that imple-
ments social choice rule f in Bayes-Nash equilibrium. Then there exists a Bayes-Nash equilibrium
incentive-compatible direct-revelation mechanism with outcome selection function o that also im-
plements f in Bayes-Nash equilibrium (using the truth-telling equilibrium).

Proof: We show how to transform the given mechanism that implements f into a truthful direct-
revelation mechanism that implements f . For each i, let sold

i : Θi → Aold
i be the strategy played

7.4. SUMMARY 175

by agent i in the equilibrium that implements f in the given mechanism, and let oold be the given
game’s outcome selection function, so that oold(sold

1 (θ1), . . . , s
old
n (θn)) = f(θ1, . . . , θn), and the

sold
i constitute a Bayes-Nash equilibrium. Then let our new mechanism have the outcome function

o given by o(θ1, . . . , θn) = oold(sold
1 (θ1), . . . , s

old
n (θn)) = f(θ1, . . . , θn). All we need to show is

that truthtelling is a Bayes-Nash equilibrium. To show this, we observe that for any i and θi ∈ Θi,
for any alternative type θ̂i ∈ Θi, Eθ−i [ui(θi, o(θi, θ−i))] = Eθ−i [ui(θi, o

old(sold
i (θi), s

old
−i (θ−i)))] ≥

Eθ−i [ui(θi, o
old(sold

i (θ̂i), s
old
−i (θ−i)))] = Eθ−i [ui(θi, o(θ̂i, θ−i))], where the inequality derives from

the fact that the sold
i constitute a Bayes-Nash equilibrium in the original game.

We have assumed that the strategies in the equilibrium of the original mechanism are pure; the
result can be extended to the setting where they are mixed. In this case, though, the resulting truthful
mechanism may become randomized, even if the original mechanism was not.

7.4 Summary

In this chapter we reviewed basic concepts from game theory. We reviewed basic solution concepts
for normal-form games, including minimax strategies, dominance and iterated dominance, and Nash
equilibrium. We then showed how to extend these solution concepts to Bayesian games. Armed with
these concepts, we finally presented the (known) proofs of two variants of the revelation principle,
which (informally stated) show that if agents act strategically (according to these solution concepts),
then there is no reason not to use a truthful, direct-revelation mechanism.

Unfortunately, as we will see in the next chapters, the assumption that agents will behave in a
strategically optimal way is often untenable in mechanisms for expressive preference aggregation.
This is in part due to the fact that the agents’ strategy spaces become too large to search exhaustively.
Of course, exhaustive search is not necessarily required to behave in a strategically optimal way—
perhaps there are efficient algorithms that home in on the optimal strategies quickly. In Chapter 8
we show that for some settings, this is unlikely to be the case, because even the problem of finding
a best response to given strategies by the other players is computationally hard (NP-complete or
harder). Additionally, intuitively, the problem of computing a best response is much easier than that
of acting optimally when the other agents’ actions are not yet known, and must be reasoned about
first. In Chapter 9 we show that indeed, standard solution concepts such as (iterated) dominance and
Nash equilibrium can be hard to compute (even when the strategy spaces are much more manageable
in size).

176 CHAPTER 7. GAME-THEORETIC FOUNDATIONS OF MECHANISM DESIGN

Chapter 8

Mechanism Design for Bounded Agents

Any fool can tell the truth, but it requires a man of some sense to know how to lie
well.

Samuel Butler

Mechanism design has traditionally taken the conservative view that agents will always choose
the actions that are in their own best interest—the assumption of perfect rationality. Specifically, the
revelation principle discussed in the previous chapter relies heavily on this assumption. However,
this may be an overly conservative assumption in that agents may not always have the computational
resources to find the action that is in their own best interest—their rationality is bounded. For
instance, bidding optimally in a reverse auction for trucking tasks may require the bidder to solve
multiple NP-complete vehicle routing problems [Sandholm and Lesser, 1997]. With this in mind,
we can ask questions such as:

• Can impossibility results in mechanism design that rely on the assumption of perfect rational-
ity be circumvented if agents have limited computational resources?

• Given that the revelation principle ceases to apply when agents’ rationality is bounded, are
there benefits to using non-truthful mechanisms (even when reasonable truthful mechanisms
exist)?1

It is impossible to answer these questions without some characterization of how the agents’ ratio-
nality is bounded. Previous work by Larson and Sandholm relies on explicitly modeling the agents’
computational choices to derive direct tradeoffs between the cost of additional computation and the
benefits of additional computation to the solution [Larson and Sandholm, 2001a, 2005]. In contrast,

1Various research has proposed the use of mechanisms that are only approximately truthful. These can be easier to
execute [Kothari et al., 2003; Archer et al., 2003], or their use can be motivated by impossiblity results that apply to
truthful mechanisms [Parkes et al., 2001; Goldberg and Hartline, 2003]. For approximately truthful mechanisms, the
idea is not that it will necessarily be computationally difficult for agents to act optimally, but rather that the incentives
for the agents to act optimally (rather than simply tell the truth) are somehow too small for the agents to respond to
them. However, if the agents do respond to these slight incentives, the desirable properties of the mechanism may unravel
completely.

177

178 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

this chapter will not require specific models of how the agents do their computation. Rather, it
relies on classic complexity-theoretic notions to determine whether it is hard for the agents to find
strategically optimal actions.

The rest of this chapter is layed out as follows. In Section 8.1, we show that there are settings
where using the optimal truthful mechanism requires the center to solve a hard computational prob-
lem; but there is another, non-truthful mechanism, under which the center does not have to solve
any hard optimization problem, but the problem of finding a beneficial manipulation is hard for one
of the agents. Moreover, if the agent manages to find the manipulation, the produced outcome is
the same as that of the best truthful mechanism; and if the agent does not manage to find it, the
produced outcome is strictly better [Conitzer and Sandholm, 2004c]. In Section 8.2, we show that
adding a preround to voting rules can make manipulation of these voting rules computationally
much harder [Conitzer and Sandholm, 2003g]. However, those hardness results (as well as others)
rely on the number of candidates being unbounded. In Section 8.3, we show that if we consider
coalitional manipulation by weighted voters, then we can get hardness even with constant num-
bers of candidates [Conitzer and Sandholm, 2002a; Conitzer et al., 2003]. Unfortunately, all of the
above hardness results only prove hardness in the worst case (as is common in complexity theory).
In Section 8.4, we give an impossibility result that makes it appear unlikely that voting rules can be
constructed that are usually hard to manipulate [Conitzer and Sandholm, 2006f].

8.1 A failure of the revelation principle with bounded agents

As we have seen in earlier chapters, in many real-world mechanism design settings, the center faces
an intractable optimization problem in trying to execute the mechanism. In this section, we question
the focus on truthful mechanisms when the setting requires the solution of computationally hard
problems. In particular, we show that there are settings where by abandoning truthful mechanisms,
we can shift a computationally hard problem from the center to one of the agents. Additionally,
whereas not being able to cope with the issue of computational hardness would have hurt the center
in achieving its objective, if the agent is unable to cope with it, this actually helps the designer in
achieving its objective.

We first observe that dominant strategy implementation and Bayes-Nash implementation differ
only on what agents can be expected to know about each other’s types and actions. An interesting
special case is that of games where only one agent needs to choose an action. In this case, the
acting agent always knows everything there is to know about the other agents’ actions (namely,
nothing). So, both solution concepts coincide here. We prove the remaining two theorems for
this types of game, so the results hold both for dominant strategy implementation and Bayes-Nash
implementation.

Theorem 51 Suppose that the center is trying to maximize social welfare, and neither payments nor
randomization are allowed.2 Then, even with only two agents (one of whom does not even report a
type, so dominant strategy implementation and Bayes-Nash implementation coincide), there exists
a family of preference aggregation settings such that:

2It is not immediately clear if this result can be extended to cases with payments or randomization; we leave this as a
question for future research.

8.1. A FAILURE OF THE REVELATION PRINCIPLE WITH BOUNDED AGENTS 179

• the execution of any optimal truthful mechanism is NP-complete for the center, and

• there exists a non-truthful mechanism which 1) requires the center to carry out only polyno-
mial computation, and 2) makes finding any beneficial insincere revelation NP-complete for
the type-reporting agent. Additionally, if the type-reporting agent manages to find a bene-
ficial insincere revelation, or no beneficial insincere revelation exists, the social welfare of
the outcome is identical to the social welfare that would be produced by any optimal truthful
mechanism. Finally, if the type-reporting agent does not manage to find a beneficial insincere
revelation where one exists, the social welfare of the outcome is strictly greater than the social
welfare that would be produced by any optimal truthful mechanism.

Put in perspective, the mechanism designer would reap two benefits from using the second,
non-truthful mechanism rather than a truthful mechanism:

• Doing so shifts the computational hardness from the center to the agent. This can also be
seen as a statement about how the social welfare that can be obtained by truthful mechanisms
compares to the social welfare that can be obtained by non-truthful mechanisms, as follows.
If it is computationally infeasible to execute the optimal truthful mechanism, the designer
might resort to another truthful mechanism which merely approximates the social welfare
obtained by the optimal truthful mechanism (this approach is often advocated in algorithmic
mechanism design).

• If the agent cannot consistently solve instances of an NP-complete problem, then, even if the
agent is trying to act strategically, using the second mechanism improves social welfare in
some cases (and never decreases it).

Hence, (by the argument under the second bullet) the non-truthful mechanism—which is com-
putationally feasible to execute—outperforms the optimal truthful mechanism, which (by the argu-
ment under the first bullet) in turn outperforms any computationally feasible truthful mechanism.

We emphasize that we do not require that agents will never be able to solve an NP-complete
problem. Our result is more cautious than that: if agents do solve the NP-complete problem, nothing
is lost; whereas if they do not solve it, something is gained.

Another point is that individual rationality is still maintained under this approach, by making
sure that telling the truth still guarantees an agent nonnegative utility (even if telling the truth is not
strategically optimal).

We are now ready to give the proof.

Proof: We are given a graph G = (V, E) (with at least some edges); the outcome space is the set
of all subsets of size k of the vertices, {X ⊆ V : |X| = k}. The type-reporting agent (agent 1)
has the following type set Θ. For each X ⊆ V with |X| = k, there is a type θX which occurs with
probability 1/(

(

n
k

)

+1). The utility function for these types is as follows: u1(θX , X) = 4 if X is an
independent set (that is, there are no edges within X); u1(θX , X) = 3 if X is not an independent
set; u1(θX , Y) = 1 if X 6= Y and Y is an independent set; and u1(θX , Y) = 0 if X 6= Y and
Y is not an independent set. Additionally, there is a single additional type θ0 which occurs with
probability 1/(

(

n
k

)

+ 1), and the utility function for it is given as follows: u1(θ0, X) = 1 if X is an
independent set; and u1(θ0, X) = 0 if X is not an independent set. Agent 2, who does not report a

180 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

type, has the following utility function: u2(X) = 2 if X is not an independent set; and u2(X) = 0
if X is an independent set. Now let us consider creating a mechanism for such a setting that uses
neither payments nor randomization.

First, we claim that all optimal truthful mechanisms are of the following form.

• If agent 1 reports a type θX , then choose outcome X;

• If agent 1 reports type θ0, then 1) if there exists an independent set X ⊆ V with |X| = k,
choose such an independent set; or 2) if no independent set exists, choose any X ⊆ V with
|X| = k.

It is straightforward to verify that mechanisms of this form act in agent 1’s best interest, that is, they
always choose one of the outcomes that are optimal for agent 1 given its type. Hence, agent 1 never
has any incentive to misreport its type, so these mechanisms are truthful. All that remains to show
is that all other truthful mechanisms have strictly less expected social welfare than these. We first
observe that the only case in which we get less than the optimal social welfare with the mechanisms
of the given form is when agent 1 has type θ0, and an independent set of size k exists. In this case,
the mechanisms of the given form choose an independent set as the outcome, leading to a social
welfare of 1; whereas a social welfare of 2 could have been obtained by choosing a set that is not
independent. It follows that the expected social welfare that we get from one of the mechanisms
of the given form is at most 1

(n
k)+1

below the maximal expected social welfare that we could have

obtained if the agents did not play strategically. Now consider an alternative truthful mechanism
that, for some X ⊆ V with |X| = k, does not choose X when agent 1 reports θX . In this case, this
mechanism can obtain a social welfare of at most 2, whereas the optimal social welfare in this case
is at least 4. It follows that the expected social welfare that we get from this mechanism is at least

2

(n
k)+1

below the maximal expected social welfare that we could have obtained if the agents did not

play strategically. Hence, all optimal truthful mechanisms always choose X when agent 1 reports
θX . But then, if an independent set exists in G, an optimal truthful mechanism must choose such
an independent set in the case where agent 1 reports θ0: because if it does not, then when agent 1
has this type, it would benefit from misreporting its type as a type corresponding to the independent
set—and the mechanism would no longer be truthful. Thus, we have established that all optimal
truthful mechanisms are of the given form. We observe that executing such a mechanism requires
solving an NP-complete problem, because we have to construct an independent set if it exists, which
is NP-complete.

Now consider the following mechanism:

• If agent 1 reports a type θX , then choose outcome X;

• If agent 1 reports type θ0, then choose some X ⊆ V with |X| = k that is not an independent
set.

We observe that this mechanism is computationally easy to execute. Also, this mechanism is not
truthful if there is an independent set, because in this case, if agent 1 has type θ0, it would be better
off reporting the type corresponding to the independent set. However, there are no other beneficial
insincere revelations. Thus, it is straightforward to verify that if agent 1 always reports the type

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 181

that is strategically optimal for it, the outcome of this mechanism is always identical to that of one
of the optimal truthful mechanisms. Of course, in order for agent 1 to always report the type that
is strategically optimal for it, agent 1 needs to construct an independent set (if possible) when it
has type θ0. Because this problem is NP-complete, it is reasonable to suspect that agent 1 will
not always be able to construct such a set even when it exists. If agent 1 indeed fails to construct
an independent set in this case, the outcome will be some X ⊆ V with |X| = k that is not an
independent set. This outcome actually has a social welfare of 2, as opposed to the social welfare of
1 that would have been obtained if agent 1 had managed to construct an independent set. Hence the
social welfare is strictly greater than in the case where agent 1 has unlimited computational power;
and hence it is also a greater than it would have been with an optimal truthful mechanism.

Given this example setting in which the revelation principle “fails” in the sense that non-truthful
mechanisms can outperform truthful ones,3 one may wonder whether similar phenomena occur in
other, more standard settings. In the remainder of this chapter, we will study whether this is so for
voting settings.

8.2 Tweaking voting protocols to make manipulation hard

Early, seminal work on the complexity of manipulating elections demonstrated that several voting
rules are hard to manipulate, including the second-order Copeland rule [Bartholdi et al., 1989a] and
the STV rule [Bartholdi and Orlin, 1991]. In this section we take the next step of designing new
protocols that are especially hard to manipulate. Rather than designing these protocols from scratch,
we show how to tweak existing voting protocols to make manipulation computationally much more
difficult, while leaving much of the original nature of the protocol intact, for the following reasons:

• Results on the computational complexity induced by a tweak typically apply to a large family
of protocols.

• Some of the original protocol’s nice theoretical properties are preserved by the tweak. For
example, if a protocol satisfies the Condorcet criterion (a candidate that wins all its pairwise
elections always wins the election), the tweak will preserve this property.

• In practice, it will be much easier to replace a currently used protocol with a tweaked version
of it, than with an altogether new protocol.

The type of tweak we introduce is the following. All the candidates are paired in a preround; of
each pair of candidates, only the winner of their pairwise election survives. (Recall that the winner
of the pairwise election between two candidates is the candidate that is ranked above the other more
often in the votes.) After the preround, the original protocol is executed on the remaining candidates.
The schedule of the preround (i.e., who faces who) can be determined before the votes are collected;
after the votes are collected; or while the votes are collected (the processes are interleaved). We
study these three cases in Subsections 8.2.2, 8.2.3, and 8.2.4, respectively.

3Of course, the principle does not fail in the sense that the formal statements of it are wrong; it is merely that the
preconditions of the theorem fail to hold when agents are computationally bounded.

182 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

8.2.1 Definitions

Voting protocols

For the purposes of this section, a deterministic protocol is a protocol of the type that we have
considered earlier in this dissertation, that is, a function from the set of all combinations of votes to
C. (We will only be interested in the winner of the election in this section, not in an entire ranking
of candidates.) A randomized protocol is a function from the set of all combinations of votes to
probability distributions over C. An interleaved protocol is a procedure for alternating between
collecting (eliciting) parts of the voters’ votes (e.g. whether they prefer candidate a to candidate
b) and drawing and publishing random variables (such as parts of the schedule for an election),
together with a function from the set of all combinations of votes and random variables to C.

Preround

The tweaks we study in this section all involve the addition of a preround. We will now define how
this works.

Definition 37 Given a protocol P , the new protocol obtained by adding a preround to it proceeds
as follows:

1. The candidates are paired. If there is an odd number of candidates, one candidate gets a bye.

2. In each pairing of two candidates, the candidate losing the pairwise election between the two
is eliminated. A candidate with a bye is never eliminated.

3. On the remaining candidates, P is executed to produce a winner. For this, the implicit votes
over the remaining candidates are used. (For example, if a voter voted a Â b Â c Â d Â e,
and b and c were eliminated, the voter’s implicit vote is a Â d Â e.)

The pairing of the candidates is also known as the schedule for the preround. If the schedule is
decided and published before the votes are collected, we have a deterministic preround (DPRE),
and the resulting protocol is called DPRE + P . If the schedule is drawn completely randomly
after the votes are collected, we have a randomized preround (RPRE), and the resulting protocol
is called RPRE + P . Finally, if the votes are elicited incrementally, and this elicitation process
is interleaved with the scheduling-and-publishing process (which is again done randomly), as de-
scribed in detail in Subsection 8.2.4, we have an interleaved preround (IPRE), and the resulting
protocol is called IPRE + P .

Manipulation

We now define the computational problem of manipulation that we study in this section. Other
definitions of manipulation are possible: in the next section, we will give a more thorough analysis
of the different variants of the manipulation problem, and study some of the other variants.

Definition 38 (CONSTRUCTIVE-MANIPULATION) We are given a protocol P , a candidate
set C, a preferred candidate p, and a set of votes S corresponding to all the other voters’ votes.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 183

The manipulator has yet to decide on its vote, and wants to make p win. Then the constructive
manipulation question is:

• (For deterministic protocols) Can the manipulator cast its vote to make p win under P?

• (For randomized protocols) Can the manipulator cast its vote to make the probability of p
winning under P at least some given k ∈ [0, 1]?

• (For interleaved protocols) Given the initial random choices (if any) by the protocol, is there
a contingency plan (based on the random decisions the protocol takes between eliciting parts
of the votes) for the manipulator to answer the queries to make the probability of p winning
under P at least some given k ∈ [0, 1]?

8.2.2 NP-hardness when scheduling precedes voting

In this subsection, we examine the complexity induced by the preround when the voters know the
schedule before they vote.

A sufficient condition for NP-hardness

We present a sufficient condition under which adding a preround with a preannounced schedule
makes manipulation NP-hard. The condition can be thought of as an NP-hardness reduction tem-
plate. If it is possible to reduce an arbitrary SAT instance to a set of votes satisfying certain proper-
ties under the given voting protocol, that protocol—with a preround—is NP-hard to manipulate.

Theorem 52 Given a voting protocol P , suppose that it is possible, for any Boolean formula φ in
conjunctive normal form (i.e., a SAT instance), to construct in polynomial time a set of votes over
a candidate set containing at least {p} ∪ CL where CL = {cl : l ∈ L} (L is the set of literals
{+v : v ∈ V } ∪ {−v : v ∈ V }, where V is the set of variables used in φ), with the following
properties:

• (Property 1a) If we remove, for each v ∈ V , one of c+v and c−v, p would win an election
under protocol P against the remaining candidates if and only if for every clause k ∈ K
(where K is the set of clauses in φ), there is some l ∈ L such that cl has not been removed,
and l occurs in k. This should hold even if a single arbitrary vote is added.

• (Property 1b) For any v ∈ V , c+v and c−v are tied in their pairwise election after these votes.

Then CONSTRUCTIVE-MANIPULATION in DPRE + P is NP-hard (and NP-complete if P is
deterministic and can be executed in polynomial time).

Proof: Consider the following election under DPRE + P . Let the candidate set be the set of all
candidates occurring in the votes constructed from φ (the ”original candidates”), plus one dummy
candidate for each of the original candidates besides those in CL. To each of the constructed votes,
add all the dummy candidates at the bottom; let the resulting set of votes be the set of the nonma-
nipulators’ votes. A single manipulator’s vote is yet to be added. Let the schedule for the preround

184 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

be as follows: for each v, c+v and c−v face each other in the preround; and every other original
candidate faces (and, because of the dummy candidates’ position in the votes, defeats) a dummy
candidate. Thus, the set of candidates that make it through the preround consists of, for each v ∈ V ,
one of c+v and c−v; and all the other original candidates. The manipulator’s vote will decide the
winner of every c+v vs. c−v match-up, because by property 1b, all these pairwise elections are
currently tied. Moreover, it is easy to see that the manipulator can decide the winner of each of
these match-ups independently of how it decides the winners of the other match-ups. Thus, we can
think of this as the manipulator giving the variables truth-values: v is set to true if c+v survives,
and to false if c−v survives. By property 1a it then follows that p wins if and only if the manip-
ulator’s assignment satisfies all the clauses, i.e. is a solution to the SAT instance. Hence there is
a successful constructive manipulation if and only if there is a solution to the SAT instance, and it
follows that CONSTRUCTIVE-MANIPULATION in DPRE + P is NP-hard. (It is also in NP if
P is deterministic and can be executed in polynomial time, because in this case, given a vote for the
manipulator, it can be verified in polynomial time whether this vote makes p win).

Examples

We now show how to apply Theorem 52 to the well-known protocols we discussed, thus showing
that each of these protocols—with a preround—is NP-hard to manipulate.

Theorem 53 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
plurality rule.

When it does not matter for our proofs whether a given vote is a Â b Â c or b Â a Â c, we
write {a, b} Â c.

Proof: Given the formula φ, let the candidate set be the minimally required candidates {p} ∪ CL,
plus a set of candidates corresponding to the set of clauses K of φ, CK = {ck : k ∈ K}. Then,
let the set of votes be as follows: 4|K| + 2 votes ranking the candidates p Â CL Â CK ; for each
k ∈ K, 4|K| votes ranking the candidates ck Â {ccl ∈ CK : cl 6= k} Â CL Â p; and for each
k ∈ K, 4 votes ranking the candidates {cl ∈ CL : l ∈ k} Â ck Â {cl ∈ CL : l /∈ k} Â {ccl ∈
CK : cl 6= k} Â p. Additionally, we require that these votes are such that after counting them, for
each v ∈ V , c+v and c−v are tied in their pairwise election, so that property 1b is satisfied. (This
is possible because the total number of votes is even, and the majority of the votes do not yet have
any restrictions on the order of the CL.) We now show property 1a is satisfied. We first observe
that regardless of which of the candidates corresponding to literals are removed, p will get 4|K|+2
votes. Now, if for some k ∈ K, all the candidates cl with l ∈ L, l ∈ k are removed, then ck will
get at least 4|K| + 4 votes and p will not win. On the other hand, if for each k ∈ K, at least one
candidate cl with l ∈ k remains, then each of the ck will get precisely 4|K| votes. Because each
remaining cl can get at most 4|K| votes as well, p will win. In both cases there is a ”margin” of at
least 2, so a single additional vote will not change this. Thus, property 1a is satisfied.

Theorem 54 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
Borda rule.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 185

Proof: Given the formula φ, let the candidate set be the minimally required candidates {p} ∪ CL;
plus a set of candidates corresponding to the set of clauses K of φ, CK = {ck : k ∈ K}, which
we order in some arbitrary way to get {c1, . . . , c|K|}. Let M be the total number of candidates
this defines. Then, let the set of votes be as follows: for every ci ∈ CK , 4M votes ranking the
candidates ci+1 Â ci+2 Â . . . Â c|K| Â p Â c1 Â c2 Â . . . Â ci−1 Â {cl ∈ CL : l ∈ ci} Â
ci Â {cl ∈ L : l /∈ ci}; (here, the slight abuse of notation l ∈ ci means that l occurs in the clause
corresponding to ci;) 4M votes ranking the candidates c1 Â c2 Â . . . Â c|K| Â p Â CL; one vote
c1 Â c2 Â . . . Â c|K| Â CL Â p; one vote c|K| Â c|K|−1 Â . . . Â c1 Â CL Â p; and finally,
4|K|M votes ranking the candidates p Â c1 Â c2 Â . . . Â cn Â CL, and 4|K|M votes ranking the
candidates cn Â cn−1 Â . . . c1 Â p Â CL. Additionally, we require that these votes are such that
after counting them, for each v ∈ V , c+v and c−v are tied in their pairwise election, so that property
1b is satisfied. (This is possible because the total number of votes is even, and the majority of the
votes do not yet have any restrictions on the order of the cl.) We now show property 1a is satisfied.
It is easy to see that none of the cl can win, regardless of which of them are removed. Thus, we only
need to consider the ci and p. The last 8|K|M votes will have no net effect on the relative scores
of these candidates, so we need not consider these here. After the first 4(|K| + 1)M votes, any ck

for which all the cl with l ∈ k have been removed will be tied with p, and any other ck will be at
least 4M points behind p. Finally, from the last remaining two votes, any ck (k ∈ K) will gain
2M − 2|V |− |K|− 1 points on p. It follows that p wins if and only if for every clause k ∈ K, there
is some l ∈ L with l ∈ k such that cl has not been removed. In both cases there is a ”margin” of at
least M − |V | points, so a single additional vote will not change this. Thus, property 1a is satisfied.

Theorem 55 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
maximin rule.

Proof: Given the formula φ, let the candidate set be the minimally required candidates {p} ∪ CL,
plus a set of candidates corresponding to the set of clauses K of φ, CK = {ck : k ∈ K}. Then,
let the set of votes be as follows: 8|K| votes ranking the candidates p Â CL Â CK , 8|K| votes
ranking the candidates CL Â CK Â p, and 8|K| votes ranking the candidates CK Â p Â CL; 4|K|
votes ranking the candidates CL Â p Â CK , 4|K| votes ranking the candidates CK Â CL Â p,
and, for each k ∈ K, 4 votes ranking the candidates p Â {ccl ∈ CK : cl 6= k} Â {cl ∈ CL : l ∈
k} Â ck Â {cl ∈ CL : l /∈ k}; and finally, 2 votes ranking the candidates p Â CK Â CL, and
2 votes ranking the candidates CK Â p Â CL. Additionally, we require that these votes are such
that after counting them, for each v ∈ V , c+v and c−v are tied in their pairwise election, so that
property 1b is satisfied. (This is possible because the total number of votes is even, and the majority
of the votes do not yet have any restrictions on the order of the cl.) We now show property 1a is
satisfied. Regardless of which of the candidates corresponding to literals are removed, p’s worst
score in a pairwise election is against any of the ck, namely 16|K| + 2. Any ck for which all the
cl with l ∈ k have been removed will get its worst pairwise election score against any of the CL,
namely 16|K|+ 4. Finally, any other ck will get its worst pairwise election score against one of the
cl with l ∈ k, namely, 16|K|. It follows that p wins if and only if for every clause k ∈ K, there is
some l ∈ k such that cl has not been removed. In both cases there is a ”margin” of at least 2, so a

186 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

single additional vote will not change this. Thus, property 1a is satisfied.

Theorem 56 There exists a reduction that satisfies properties 1a and 1b of Theorem 52 under the
STV rule.

Proof: Given the formula φ, let the candidate set be the minimally required candidates {p} ∪ CL,
plus a set of candidates corresponding to the set of clauses K of φ, {ccl : cl ∈ K}, which we
order in some arbitrary way to get {c1, . . . , c|K|}; plus 4|K| additional candidates ca1

, . . . , ca8|K|
.

Then, let the set of votes be as follows: for each k ∈ K, 4 votes ranking the candidates {cl ∈ CL :
l ∈ k} Â ck Â {cl ∈ CL : l /∈ k} Â p Â {caj}; for each cai , 2 votes ranking the candidates
cai Â c1 Â c1 Â . . . Â c|K| Â p Â CL Â {caj : j 6= i}; and finally, 4 votes ranking the candidates
p Â CK Â CL Â {caj}. Additionally, we require that these votes are such that after counting
them, for each v ∈ V , c+v and c−v are tied in their pairwise election, so that property 1b is satisfied.
(This is possible because the total number of votes is even, and the majority of the votes do not yet
have any restrictions on the order of the CL.) We now show property 1a is satisfied. Regardless
of which of the candidates corresponding to literals are removed, p will have 4 votes initially, and
every caj will have 2 votes initially. Any ck (k ∈ K) for which all the cl (l ∈ L) with l ∈ k have
been removed will have 4 votes initially. Any other ck will have 0 votes initially, and hence drop
out in the first round. Then, before p or any more ck drop out, all the caj will drop out, because
they have only 2 votes initially and no votes will transfer to them. All the 8|K| votes that the caj

have initially will transfer either to the ci that has the lowest index i among the remaining ccl, or, if
there are no remaining ccl, to p. Because these 8|K| votes are the majority of votes in the election,
it follows that the candidate to which all of these votes transfer will win the election. It follows that
p wins if and only if for every clause k ∈ K, there is some l ∈ L with l ∈ k such that cl has not
been removed. In both cases there is a ”margin” of at least 2 in every round, so a single additional
vote will not change this. Thus, property 1a is satisfied.

Theorem 57 In any of DPRE+plurality, DPRE+Borda, DPRE+maximin, and DPRE+
STV 4 , CONSTRUCTIVE-MANIPULATION is NP-complete.

Proof: NP-hardness is immediate from the previous theorems. The problem is in NP because these
protocols can be executed in polynomial time.

In the next subsections, we will raise the bar and bring the problem of manipulating elections to
higher complexity classes by abandoning the assumption that the schedule for the preround should
be known in advance.

4The NP-completeness of manipulating DPRE + STV is, in itself, not that interesting, because STV is already
NP-hard to manipulate without the preround as we discussed. Nevertheless, our method highlights a different aspect
of the NP-hardness of manipulating DPRE + STV . We build on this reduction later to prove PSPACE-hardness of
manipulating STV with a preround when the scheduling of the preround is interleaved with the vote elicitation.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 187

8.2.3 #P-hardness when voting precedes scheduling

In this subsection, we will examine the complexity induced by the preround when the schedule is
drawn completely (uniformly) randomly after all the votes have been collected.

A sufficient condition for #P-hardness

We present a sufficient condition for a voting protocol to become #P-hard5 to manipulate in this
setting. Again, this condition can be thought of as a reduction template. If it is possible to reduce
an arbitrary PERMANENT instance to a set of votes satisfying certain properties under the given
voting protocol, that protocol is #P-hard to manipulate when a randomized preround is added to it.
(In the PERMANENT problem, we are given a bipartite graph B with the same number of vertices
k in both parts, and are asked how many matchings there are. This problem is #P-complete [Valiant,
1979].)

Theorem 58 Given a voting protocol P , suppose that it is possible, for any bipartite graph B with
the same number of vertices k in both parts (labeled 1 to k in one part, k + 1 to 2k in the other),
to construct in polynomial time a set of votes over the candidate set {c1, . . . , c2k, p} (where ci

corresponds to vertex i in B) with the following properties:

• (Property 2a) If we remove k of the ci, p would win an election under protocol P against the
remaining ci if and only if the removed ci are exactly all the ci with k + 1 ≤ i ≤ 2k;

• (Property 2b) p loses its pairwise election against all ci with k + 1 ≤ i ≤ 2k;

• (Property 2c) For any 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k, ci defeats cj in their pairwise election
if and only if in B, there is an edge between vertices i and j.

• (Property 2d) All the previous properties still hold with any additional single vote.

Then CONSTRUCTIVE-MANIPULATION in RPRE + P is #P-hard.

Proof: Given the set of votes constructed on the basis of an arbitrary B, let us compute the prob-
ability that p wins under the protocol RPRE + P with only these votes. In the preround, there
are k matches and one bye. By property 2a, p will win the election if and only if the k candidates
eliminated in this preround are precisely all the ci with k + 1 ≤ i ≤ 2k. By property 2b, p could
not win a preround match against any of these, so p will win the election if and only if it gets the
bye, and each of the cj with k + 1 ≤ j ≤ 2k faces one of the ci with 1 ≤ i ≤ k that defeats
it in the preround. Then, by property 2c, it follows that p wins if and only if the preround pair-
ing corresponds to a matching in B. Thus the probability of p winning is mB

e(2k,2k+1) , where mB

is the number of matchings in B and e(2k, 2k + 1) is the number of different ways to pair 2k of
the 2k + 1 candidates in the preround (which is straightforward to compute). Thus, evaluating p’s
chances of winning in this election is at least as hard as counting the number of matchings in an
arbitrary B, which is #P-hard. Moreover, because we can compute p’s chances of winning solely

5#P is the class of problems where the task is to count the number of solutions to a problem in NP.

188 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

on the basis of properties 2a, 2b, and 2c, and by property 2d, these properties are maintained for
any single additional vote, it follows that a manipulator cannot affect p’s chances of winning. Thus,
CONSTRUCTIVE-MANIPULATION in this case simply comes down to computing p’s chances of
winning, which is #P-hard as demonstrated.

A broadly applicable reduction

In this subsubsection we present a single broadly applicable reduction which will satisfy the pre-
condistions of Theorem 58 for many voting protocols, thus proving them #P-hard to manipulate
when the voting precedes the preround scheduling.

Definition 39 We label the following reduction R1. Given a bipartite graph B with the same num-
ber of vertices k in both parts (labeled 1 to k in one part, k + 1 to 2k in the other), we construct the
following set of 12k3 + 2k2 votes:

• 6k3 votes that rank the candidates ck+1 Â ck+2 Â . . . Â c2k Â p Â c1 Â c2 Â . . . Â ck;

• 3k2 votes that rank the candidates p Â ck Â ck−1 Â . . . Â c1 Â c2k Â c2k−1 Â . . . Â ck+1;

• 6k3 − 3k2 votes that rank the candidates ck Â ck−1 Â . . . Â c1 Â c2k Â c2k−1 Â . . . Â
ck+1 Â p;

• For each edge (i, j) in B (1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k), one vote that ranks the candidates
ci Â cj Â p Â c1 Â c2 Â . . . Â ci−1 Â ci+1 Â . . . Â ck Â ck+1 Â ck+2 Â . . . Â cj−1 Â
cj+1 Â . . . Â c2k, and another one that ranks them c2k Â c2k−1 Â . . . Â cj+1 Â cj−1 Â
. . . Â ck+1 Â ck Â ck−1 Â . . . Â ci+1 Â ci−1 Â . . . Â c1 Â p Â ci Â cj (i.e., the inverse of
the former vote, apart from ci and cj which have maintained their order);

• For each pair i, j without an edge between them in B (1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k), one
vote that ranks the candidates cj Â ci Â p Â c1 Â c2 Â . . . Â ci−1 Â ci+1 Â . . . Â
ck Â ck+1 Â ck+2 Â . . . Â cj−1 Â cj+1 Â . . . Â c2k, and another one that ranks them
c2k Â c2k−1 Â . . . Â cj+1 Â cj−1 Â . . . Â ck+1 Â ck Â ck−1 Â . . . Â ci+1 Â ci−1 Â
. . . Â c1 Â p Â cj Â ci (i.e., the inverse of the former vote, apart from cj and ci which have
maintained their order).

We now have to show that this reduction satisfies the preconditions of Theorem 58. We start
with the properties that are protocol-independent.

Theorem 59 R1 satisfies properties 2b and 2c of Theorem 58 (under any protocol P , because these
properties are independent of P), even with a single additional arbitrary vote.

Proof: In the pairwise election between p and any one of the ci with k + 1 ≤ i ≤ 2k, p is ranked
higher in only 4k2 votes, and thus loses the pairwise election. So property 2b is satisfied. For a
pairwise election between some ci and cj (1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k), the first 12k3 votes’
net contribution to the outcome in this pairwise election is 0. Additionally, the two votes associated

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 189

with any pair q, r (1 ≤ q ≤ k and k + 1 ≤ r ≤ 2k) also have a net contribution of 0, if either
q 6= i or r 6= j. The only remaining votes are the two associated with the pair i, j, so ci wins the
pairwise election by 2 votes if there is an edge (i, j) in B, and cj wins the pairwise election by 2
votes otherwise. So property 2c is satisfied. Because both are satisfied with a ”margin” of at least
2, a single additional vote will not change this.

Finally, because property 2a is protocol-dependent, we need to prove it for our reduction on a
per-protocol basis. This is what the following four theorems achieve.

Theorem 60 R1 satisfies property 2a of Theorem 58 under the plurality rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ci with k + 1 ≤ i ≤ 2k is not removed, p can get at most 5k2 votes,
whereas the lowest-indexed remaining candidate among the ci with k + 1 ≤ i ≤ 2k will get at least
6k3 votes, so p does not win. On the other hand, if all the ci with k + 1 ≤ i ≤ 2k are removed, p
will get at least 6k3 + 3k2 votes, which is more than half the votes, so p wins. In both cases there is
a ”margin” of at least 2, so a single additional vote will not change this.

Theorem 61 R1 satisfies property 2a of Theorem 58 under the Borda rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ci with k + 1 ≤ i ≤ 2k is not removed, consider the highest-indexed
remaining candidate among the ci with k + 1 ≤ i ≤ 2k; call it h. The first 12k3 votes will put h
at least 9k3 − 3k2 points ahead of p. (12k3 − 3k2 of them rank h above p, and the 3k2 others can
give p an advantage of at most k each.) The 2k2 remaining votes can contribute an advantage to
p of at most k each, and it follows that h will still have at least 7k3 − 3k2 more points than p. So
p does not win. On the other hand, if all the ci with k + 1 ≤ i ≤ 2k are removed, then there are
two groups of 6k3− 3k2 among the first 12k3 votes which (over the remaining candidates) are each
other’s exact inverses and hence have no net effect on the scores. Also, the last 2k2 votes, which
are organized in pairs, have no net effect on the score because (over the remaining candidates) the
votes in each pair are each other’s exact inverse. The remaining votes all rank p highest among the
remaining candidates, so p wins. In both cases the “margin” is big enough that a single additional
vote will not change this.

Theorem 62 R1 satisfies property 2a of Theorem 58 under the maximin rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ci with k+1 ≤ i ≤ 2k is not removed, then in any pairwise election be-
tween such a candidate and p, p will get at most 5k2 votes. However, the lowest-indexed remaining
candidate among the ci with k + 1 ≤ i ≤ 2k will get at least 6k3 votes in every one of its pairwise
elections. So p does not win. On the other hand, if all the ci with k + 1 ≤ i ≤ 2k are removed, p
will get at least 6k3 + 3k2 votes in every one of its pairwise elections, which is more than half the
votes; so p wins. In both cases there is a ”margin” of at least 2, so a single additional vote will not
change this.

190 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Theorem 63 R1 satisfies property 2a of Theorem 58 under the STV rule. This holds even when
there is a single additional arbitrary vote.

Proof: If at least one of the ci with k + 1 ≤ i ≤ 2k is not removed, consider the lowest-indexed
remaining candidate among the ci with k + 1 ≤ i ≤ 2k; call it l. l will hold at least 6k3 votes
as long as it is not eliminated, and p can hold at most 5k2 votes as long as l is not eliminated. It
follows that p will be eliminated before l, so p does not win. On the other hand, if all the the ci with
k + 1 ≤ i ≤ 2k are removed, p will hold at least 6k3 + 3k2 votes throughout, which is more than
half the votes; so p cannot be eliminated and wins. In both cases there is a ”margin” of at least 2, so
a single additional vote will not change this.

Theorem 64 In any of RPRE+plurality, RPRE+Borda, RPRE+maximin, and RPRE+
STV , CONSTRUCTIVE-MANIPULATION is #P-hard.

Proof: Immediate from the previous theorems.

8.2.4 PSPACE-hardness when scheduling and voting are interleaved

In this subsection, we increase the complexity of manipulation one more notch, to PSPACE-hardness,6

by interleaving the scheduling and vote elicitation processes.
We first discuss the precise method of interleaving required for our result. The method is detailed

and quite complicated. Nevertheless, this does not mean that the interleaving should always take
place in this particular way in order to have the desired hardness. If the interleaving method used for
a particular election is (say, randomly) chosen from a wider (and possibly more naturally expressed)
class of interleaving methods containing this one, our hardness result still goes through, as hardness
carries over from the specific to the general. Thus, our goal is to find the most specific method of
interleaving for which the hardness still occurs, because this gives us the most information about
more general methods. We only define the method for the case where the number of candidates is a
multiple of 4 because this is the case that we will reduce to (so it does not matter how we generalize
the protocol to cases where the number of candidates is not a multiple of 4).

Definition 40 IPRE proceeds as follows:

1. Label the matchups (a matchup is a space in the preround in which two candidates can face
each other; at this point they do not yet have candidates assigned to them) 1 through |C|

2 ;

2. For each matchup i, assign one of the candidates to play in it, and denote this candidate by
c(i, 1). Thus, one of the candidates in each matchup is known.

3. For some k which is a multiple of 4, for each i with 1 ≤ i ≤ k, assign the second candidate
to play in matchup i, and denote this candidate c(i, 2). Thus, we have k fully scheduled
matchups.

6PSPACE is the class of problems solvable in polynomial space.

8.2. TWEAKING VOTING PROTOCOLS TO MAKE MANIPULATION HARD 191

4. For each pair of matchups (2i − 1, 2i) with i > k
2 , assign two more candidates to face the

candidates already in these two matchups, and denote them c((2i − 1, 2i), 1) and c((2i −
1, 2i), 2). (Thus, at this point, all that still needs to be scheduled is, for each i, which of these
two faces c(2i− 1, 1) and which c(2i, 1).)

5. For i = k
2 + 1 to |C|

4 :

• Randomly decide which of c((2i − 1, 2i), 1) and c((2i − 1, 2i), 2) faces c(2i − 1, 1), and
which faces c(2i, 1). Denote the former c(2i− 1, 2), the latter c(2i, 2),

• Ask all the voters whether they prefer c(i − k
2 , 1) or c(i − k

2 , 2). (We observe that, even if
the number of already scheduled matchups is k = 0, the elicitation process trails behind the
scheduling process by a factor 2.)

6. Elicit the remainder of all the votes.

One important property of this elicitation process is that the voters are treated symmetrically:
when a query is made, it is made to all of the voters in parallel. Thus, no voter gets an unfair
advantage with regard to knowledge about the schedule. Another important property is that the
elicitation and scheduling process at no point depends on how the voters have answered earlier
queries. Thus, voters cannot make inferences about what other voters replied to previous queries on
the basis of the current query or the current knowledge about the schedule. These two properties
guarantee that many issues of strategic voting that may occur with vote elicitation [Conitzer and
Sandholm, 2002c] in fact do not occur here.

We are now ready to present our result.

Theorem 65 Given a voting protocol P , suppose that it is possible, for any Boolean formula φ
in conjunctive normal form (i.e., a SAT instance) over variables V = X ∪ Y with |X| = |Y |
(and corresponding literals L), to construct in polynomial time a set of votes over a candidate set
containing at least {p} ∪ CL ∪ {c

1
y : y ∈ Y } with the following properties:

• (Property 3a) If we remove, for each v ∈ V , one of c+v and c−v, p would win an election
under protocol P against the remaining candidates if and only if for every clause k ∈ K
(where K is the set of clauses in φ), there is some l ∈ L such that cl has not been removed,
and l occurs in k. This should hold even if a single arbitrary vote is added.

• (Property 3b) For any x ∈ X , cx and c−x are tied in their pairwise election after these votes.

• (Property 3c) For any y ∈ Y , cy and c−y are both losing their pairwise elections against c1
y

by at least 2 votes (so that they will lose them regardless of a single additional vote).

Then CONSTRUCTIVE-MANIPULATION in IPRE + P is PSPACE-hard (and PSPACE-complete
if P can be executed in polynomial space).

Proof: Consider the following election under IPRE + P . Let the candidate set be the set of all
candidates occurring in the votes constructed from φ (the ”original candidates”), plus one dummy
candidate for each of the original candidates besides the c+v and c−v. To each of the constructed

192 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

votes, add all the dummy candidates at the bottom; let the resulting set of votes be the set of the non-
manipulators’ votes, according to which they will answer the queries posed to them. The manipula-
tor has yet to decide on its strategy for answering queries. After step 4 (according to Definition 40)
of IPRE + P (up to which point the manipulator will not have had to make any decisions), let the
situation be as follows:

• The number of already fully scheduled matchups is k = |C|
2 − 2|Y |. In matchup i (1 ≤ i ≤

|X|), c+xi faces c−xi . In the remaining fully scheduled matchups, candidates not correspond-
ing to a literal face a dummy candidate.

• Matchups k +2i−1 and k +2i (1 ≤ i ≤ |Y |) already have candidates c+yi and c−yi in them,
respectively. The other two candidates to be assigned to these rounds are c1

yi
and a dummy

candidate.

Thus, what will happen from this point on is the following. For i ranging from 1 to |X|, first
the protocol will schedule which of c+yi and c−yi face which of c1

yi
and the dummy candidate. The

cl facing the dummy will move on, and the other will be defeated by c1
yi

, by property 3c. Second,
everyone will be asked which of c+xi and c−xi is preferred, and because the nonmanipulators will
leave this pairwise election tied by property 3b, the manipulator’s vote will be decisive. Thus,
we can think of this as nature and the manipulator alternatingly giving the variables in Y and X
respectively truth-values: v is set to true if c+v survives, and to false if c−v survives. By property
3a it then follows that p wins if and only if the resulting assignment satisfies all the clauses, i.e. is
a solution to the SAT instance. Thus, the manipulator’s strategy for setting variables should aim to
maximize the chance of the SAT instance being satisfied eventually. But this is exactly the problem
STOCHASTIC-SAT, which is PSPACE-complete [Papadimitriou, 1985].

If P can be executed in polynomial space, the manipulator can enumerate all possible outcomes
for all possible strategies in polynomial space, so the problem is also in PSPACE.

Because the preconditions of Theorem 65 are similar to those of Theorem 52, we can build on
our previous reductions to apply this theorem to the well-known protocols.

Theorem 66 For each of plurality, Borda, maximin, and STV , there exists a reduction that
satisfies properties 3a, 3b and 3c of Theorem 65. Thus, In any of IPRE + plurality, IPRE +
Borda, IPRE+maximin, and IPRE+STV , CONSTRUCTIVE-MANIPULATION is PSPACE-
complete.

Proof: We can modify the reductions from Subsection 8.2.2 to satisfy the preconditions of Theo-
rem 65. This is done by adding in the c1

y in such a way as to achieve property 3c (ranking them
just above their corresponding cy and c−y in slightly more than half the votes), while preserving
property 3a (by ranking them as low as possible elsewhere).

This concludes the part of this dissertation studying how to tweak voting protocols to make them
harder to manipulate. In the next section, we focus on existing, untweaked voting rules: although
these rules are easy to manipulate in the sense described in this section (with the exception of STV),
it turns out that there are other manipulation problems that are difficult even for these rules, even
with few candidates.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 193

8.3 Hardness of manipulating elections with few candidates

We did some of the work in this subsection jointly with Jérôme Lang (IRIT, France).

The hardness results that we proved in the previous section (as well as similar hardness results
proven by others [Bartholdi et al., 1989a; Bartholdi and Orlin, 1991; Elkind and Lipmaa, 2005a])
assume that not only the number of voters but also the number of candidates is unbounded. Such
hardness results lose relevance when the number of candidates is small, because manipulation al-
gorithms that are exponential only in the number of candidates (and only slightly so) might be
available. In this section, we first give such an algorithm for an individual agent to manipulate the
Single Transferable Vote (STV) rule, which has been shown hard to manipulate in the above sense.
The algorithm applies whether or not the voters are weighted.

This motivates the core of this section, which studies the complexity of manipulating elections
where the number of candidates is a small constant. Restricting the number of candidates to a con-
stant reduces the number of possible votes for a single voter to a constant. If the voters all have equal
weight in the election, the number of de facto possible combinations of votes that even a coalition
can submit is polynomial in the number of voters in the coalition (since the voters have equal weight,
it does not matter which agent in the coalition submitted which vote; only the multiplicities of the
votes from the coalition matter). We thus get the following straightforward result.

Proposition 9 Let there be a constant number of candidates, and suppose that evaluating the result
of a particular combination of votes by a coalition is in P. If there is only one voter in the coalition,
or if the voters are unweighted, the manipulation problem is in P. (This holds for all the different
variants of the manipulation problem, discussed later.)

Proof: The manipulators (an individual agent or a coalition) can simply enumerate and evaluate all
possibilities for their votes (there is a polynomial number of them). Specifically, when there are n
voters in the coalition and m candidates, then there are at most (n + 1)m! possibilities, because for
every one of the m! possible orderings of the candidates there must be between 0 and n voters in
the coalition voting according to this ordering (and, because the voters are unweighted, it does not
matter which voters they are). This expression is polynomial in n.

In particular, in the complete-information manipulation problem in which the votes of the non-
colluders are known, evaluating the result of a (coalitional) vote is roughly as easy as determining
the winner of an election.7 This leaves open two avenues for deriving high complexity results
with few candidates. First, we may investigate the complete-information coalitional manipulation
problem when voters have different weights. While many human elections are unweighted, the in-
troduction of weights generalizes the usability of voting schemes, and can be particularly important
in multiagent systems settings with very heterogenous agents. As a second avenue, we may ask
whether there are reasonable settings where evaluating a manipulation is NP-hard. For instance, if

7Recall from Chapter 3 that there exist voting rules where determining the winner is computationally hard [Bartholdi
et al., 1989b; Hemaspaandra et al., 1997; Cohen et al., 1999; Dwork et al., 2001; Rothe et al., 2003; Davenport and
Kalagnanam, 2004; Ailon et al., 2005], including the Slater and Kemeny rules—but this is only so for large numbers of
candidates.

194 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

we merely have probability distributions on the non-colluders’ votes, how does the complexity of
determining the probability that a given candidate wins change?

We devote most of this section to studying the first avenue. We study both constructive ma-
nipulation (making a given candidate win) and destructive manipulation (making a given candidate
not win). We characterize the exact number of candidates for which manipulation becomes hard for
plurality, Borda, STV, Copeland, maximin, veto, plurality with runoff, regular cup, and randomized
cup rules. It turns out that the voting rules under study become hard to manipulate at 3 candidates,
4 candidates, 7 candidates, or never. The remainder of this section is devoted to the second avenue,
by showing that hardness results from the complete-information coalitional weighted manipulation
problem imply similar hardness results in the incomplete-information setting, even without the as-
sumptions of multiple manipulators and weighted votes.

8.3.1 Manipulating an election

Due to Proposition 9, we cannot hope to obtain hardness of manipulation in the sense of Section 8.2.
Hence, we will introduce more general manipulation problems. To do so, we first discuss the differ-
ent dimensions of the election manipulation problem:

1. What information do the manipulators have about the nonmanipulators’ votes? In the incom-
plete information setting, the manipulators are uncertain about the nonmanipulators’ votes.
This uncertainty could be represented in a number of ways, for example, as a joint proba-
bility distribution over the nonmanipulators’ votes. In the complete information setting, the
manipulators know the nonmanipulators’ votes exactly. We (initially) focus on the complete
information case for the following reasons: 1a. It is a special case of any uncertainty model.
Therefore, our hardness results directly imply hardness for the incomplete information set-
ting. 1b. As we will demonstrate later in this section, hardness results for manipulation by
coalitions in the complete information setting also imply hardness of manipulation by indi-
viduals in the incomplete information setting. 2. Results in the complete information setting
measure only the inherent complexity of manipulation rather than any potential complexity
introduced by the model of uncertainty.

2. Who is manipulating: an individual voter or a coalition of voters? Both of these are important
variants, but we focus on coalitional manipulation for the following reasons: 1. In elections
with many voters it is perhaps unlikely that an individual voter can affect the outcome—even
with unlimited computational power. 2. For any constant number of candidates (even with
an unbounded number of voters), manipulation by individuals in the complete information
setting is computationally easy because the manipulator can enumerate and evaluate all its
possible votes (rankings of candidates) in polynomial time, as we pointed out in the Introduc-
tion.8 3. Again, as we will demonstrate later in this section, hardness results for manipulation
by coalitions in the complete information setting also imply hardness of manipulation by in-
dividuals in the incomplete information setting.

8This assumes that the voting rule is easy to execute—as most rules are (including all the ones under study in this
section).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 195

3. Are the voters weighted or unweighted? Both of these are important variants, but we focus on
weighted voters for the following reasons: 1. In the unweighted case, for any constant num-
ber of candidates (even with an unbounded number of voters), manipulation by a coalition in
the complete information setting is computationally easy because the coalition can enumerate
and evaluate all its effectively different vote vectors, as we pointed out earlier. (We recall that
the number of effectively different vote vectors is polynomial due to the interchangeability of
the different equiweighted voters, see Proposition 9.) 2. As we will demonstrate later in this
section, hardness results for manipulation by weighted coalitions in the complete information
setting also imply hardness of evaluating the probabilities of different outcomes in the in-
complete information setting with unweighted (but correlated) voters. 3. In many real-world
elections, voters are in fact weighted, for example, by their ownership share in the company,
by seniority, or by how many other individuals they represent.

4. What is the goal of manipulation? We study two alternative goals: trying to make a given
candidate win (we call this constructive manipulation), and trying to make a given candidate
not win (we call this destructive manipulation). Besides these goals being elegantly crisp,
there are fundamental theoretical reasons to focus on these goals.

First, hardness results for these goals imply hardness of manipulation under any game-theoretic
notion of manipulation, because our manipulation goals are always special cases. (This holds
both for deterministic and randomized voting rules.) At one extreme, consider the setting
where there is one candidate that would give utility 1 to each of the manipulators, and all
other candidates would give utility 0 to each of the manipulators. In this case the only sen-
sible game-theoretic goal for the manipulators is to make the preferred candidate win. This
is exactly our notion of constructive manipulation. At the other extreme, consider the setting
where there is one candidate that would give utility 0 to each of the manipulators, and all
other candidates would give utility 1 to each of the manipulators. In this case the only sensi-
ble game-theoretic goal for the manipulators is to make the disliked candidate not win. This
is exactly our notion of destructive manipulation.

Second, at least for deterministic voting rules in the complete information setting, the easi-
ness results transfer from constructive manipulation to any game-theoretic definitions of ma-
nipulation that would come down to determining whether the manipulators can make some
candidate from a subset of candidates win. For example, one can consider a manipulation
successful if it causes some candidate to win that is preferred by each one of the manipulators
to the candidate who would win if the manipulators voted truthfully. As another example,
one can consider a manipulation successful if it causes some candidate to win that gives a
higher sum of utilities to the manipulators than the candidate who would win if the manipu-
lators voted truthfully. (This definition is especially pertinent if the manipulators can use side
payments or some other form of restitution to divide the gains among themselves.) Now, we
can solve the problem of determining whether some candidate in a given subset can be made
to win simply by determining, for each candidate in the subset in turn, whether that candidate
can be made to win. So the complexity exceeds that of constructive manipulation by at most
a factor equal to the number of candidates (i.e., a constant).

Third, the complexity of destructive manipulation is directly related to the complexity of de-

196 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

termining whether enough votes have been elicited to determine the outcome of the election.
Specifically, enough votes have been elicited if there is no way to make the conjectured winner
not win by casting the yet unknown votes [Conitzer and Sandholm, 2002c].

In summary, we focus on coalitional weighted manipulation (CW-MANIPULATION), in the com-
plete information setting. We study both constructive and destructive manipulation. Formally:

Definition 41 (CONSTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION) We are given
a set of weighted votes S (the nonmanipulators’ votes), the weights for a set of votes T which are
still open (the manipulators’ votes), and a preferred candidate p. For deterministic rules, we are
asked whether there is a way to cast the votes in T so that p wins the election. For randomized
rules, we are additionally given a distribution over instantiations of the voting rule, and a number
r, where 0 ≤ r ≤ 1. We are asked whether there is a way to cast the votes in T so that p wins with
probability greater than r.

Definition 42 (DESTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION) We are given a
set of weighted votes S (the nonmanipulators’ votes), the weights for a set of votes T which are still
open (the manipulators’ votes), and a disliked candidate h. For deterministic rules, we are asked
whether there is a way to cast the votes in T so that h does not win the election. For randomized
rules, we are additionally given a distribution over instantiations of the voting rule, and a number
r, where 0 ≤ r ≤ 1. We are asked whether there is a way to cast the votes in T so that h wins with
probability less than r.

For deterministic rules, we do not consider a manipulation successful if it leaves candidate p
or h tied for the win.9 One way of viewing this is as follows. If ties are broken randomly, then
technically, we are dealing with a randomized rule. Then, we can set r so that a tie for the win does
not give p enough probability of winning (for example, r = 2/3), or so that a tie gives h too much
probability of winning (for example, r = 1/(m + 1)).

Before we start studying these problems, we first complete our justification for requiring hard-
ness even with few candidates. We do so by giving an algorithm for an individual voter to manipulate
the STV rule that is exponential only in the number of candidates, and scales to reasonably large
numbers of candidates. This is the subject of the next subsection (which can be skipped without
affecting the reader’s ability to comprehend the rest of this section).

8.3.2 Algorithm for individually manipulating the STV rule

When the number of candidates is unbounded, the STV rule is known to be NP-complete to con-
structively manipulate, even by a single manipulator when the votes are not weighted [Bartholdi and
Orlin, 1991]. In this subsection we present an algorithm for manipulating STV as a single voter,
when the votes of the others are known. Votes may be weighted.

To study the complexity fundamental to manipulating STV, rather than complexities introduced
by tie-breaking rules, for this algorithm we make the following assumption. We assume that the STV
rule uses some deterministic method for breaking ties (when choosing the loser to be eliminated at

9Our proofs do not depend on this specification, with the exception of Theorem 74.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 197

the end of a round), where the tie-breaking does not depend on aspects of the votes that the STV
rule has not considered so far (such as who has been ranked lowest by the largest number of voters).
However, the tie-breaking can depend on the number of the round, candidates still in the running,
etc. In the algorithm, the tie-breaking rule is used in the arg min function.

The algorithm simulates the various ways in which the elimination of candidates may proceed
given various votes by the manipulator. It follows the principle of least commitment in deciding
which manipulative votes to consider. It returns the set of candidates that win for some vote by
the manipulator. (It is easy to extend the algorithm so that it also provides a vote to effect such
a victory.) Again, let there be n voters, where we index the manipulator n. Let C be the set of
remaining candidates. Let vi be the vote of voter i (1 ≤ i < n) and let wi be the weight of voter
i (1 ≤ i ≤ n). Let sj be the weight of the voters that rank candidate j first among the remaining
candidates.

Some stages of the simulation can be reached only if the manipulator has a certain candidate
f ranked first among the remaining candidates. At such stages, we will know precisely how the
elimination will proceed, until f is eliminated and the manipulator’s vote is freed up again. We say
that f = 0 when there is no constraint on how the manipulator ranks the remaining candidates in
the current stage of the simulation.

The function TRANSFERVOTES takes as input a candidate c, the remaining set of candidates
C, the vector (s1, . . . , sm), and the votes and weights. It returns what would be the new vector
(s1, . . . , sm) if c were eliminated in this round.

Now, we are ready to present the manipulation algorithm, which, when called with the original
set of candidates C and f = 0, returns the set of all candidates that will win for some vote by the
manipulator.

198 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

MANIPULATE(C, (s1, . . . , sm), (v1, . . . , vn−1), (w1, . . . , wn), f)

if C = {c}

// we have eliminated all but a single candidate

return {c}

else if (f 6= 0)

// the manipulator’s vote is already committed to a candidate at this stage

c← arg minj∈C(sj)

(t1, . . . , tm)← TRANSFERVOTES(c, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))

if c = f

// the manipulator’s vote is freed up

return MANIPULATE(C − {c}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

else

// the manipulator’s vote remains committed

return MANIPULATE(C − {c}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), f)

else

// the manipulator’s vote is not committed at this stage

c1 ← arg minj∈C(sj)

// which candidate is losing before the manipulator assigns his vote?

sc1 ← sc1 + wn

c2 ← arg minj∈C(sj)

// which candidate loses if the manipulator supports c1?

(t1, . . . , tm)← TRANSFERVOTES(c1, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))

if c1 = c2

// the manipulator cannot rescue c1 at this stage

return MANIPULATE(C − {c1}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

else

// the manipulator can choose to rescue c1 at this stage

S1 ← MANIPULATE(C − {c1}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 199

// case I: do not rescue c1

(t1, . . . , tm)← TRANSFERVOTES(c2, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))

S2 ← MANIPULATE(C − {c2}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), c1)

// case II: do rescue c1

return S1 ∪ S2

We now analyze how many recursive calls we will make to this algorithm. Let T (k) be the
maximal number of calls we need for a set of remaining candidates of size k. Let T0(k) be the
maximal number of calls we need when the first call has f 6= 0. Then we have the following
recurrences:

T (k) ≤ 1 + T (k − 1) + T0(k − 1) (8.1)

T0(k) ≤ 1 + T (k − 1) (8.2)

Combining the two we get

T (k) ≤ 2 + T (k − 1) + T (k − 2) (8.3)

The asymptotic bound that we derive from this recurrence is indeed tight for the running time
of MANIPULATE, as the following example shows. In the example, candidates are eliminated
sequentially, but the manipulator can postpone the elimination of any candidate for exactly one
round. Let the candidates be (c1, . . . , cm). For candidate i, let there be exactly i voters that rank it

first, for a total of
m
∑

i=1
i = (m+1)m

2 voters other than the manipulator, of weight 1 each. All the voters

other than the manipulator that do not rank candidate m first, rank it second. The manipulator has
weight 1 + ε.10 We claim that the arguments passed to MANIPULATE always satisfy one of the
following two properties:

• (1) C = {ci, ci+1, . . . , cm} and f = 0.

• (2) C = {ci, ci+2, ci+3, . . . , cm} and f = ci.

The initial call is of type (1). If the current call is of type (1), this will lead to two recursive calls:
one of type (1) (the manipulator does not rescue candidate ci), and one of type (2) (the manipulator
does rescue ci). (The exception is when i ≥ m− 1 but this is irrelevant to the asymptotic analysis.)
This makes the recurrence in Equation 8.1 tight. If the current call is of type (2), this will lead to
one recursive call of type (1) because ci gets eliminated in spite of the fact that the manipulator
is ranking it first. This makes the recurrence in Equation 8.2 tight. Because the recurrences in
Equations 8.1 and 8.2 are tight, the recurrence in Equation 8.3 is tight.

10Alternatively, we can assume unweighted votes and a tie-breaking mechanism that always breaks ties towards lower-
indexed candidates, that is, it breaks a tie between ci and ci+1 in favor of ci.

200 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

The solution to the recurrence is O((1+
√

5
2)k). Observing that one call to MANIPULATE (not

counting the recursive calls to MANIPULATE, but counting the calls to TRANSFERVOTES) can
be done in O(n) time (assuming that (s1, . . . , sm) can be stored in an array), we have the following
result.

Theorem 67 The algorithm MANIPULATE runs in time O(n(1+
√

5
2)m), where m is the number of

candidates and n is the number of voters.

So, MANIPULATE runs in O(n · 1.62m) time. While this function is exponential in m (which
is to be expected given that the problem is NP-complete), it is nevertheless not exceedingly large for
realistic numbers of candidates. For instance, with 10 candidates, (1+

√
5

2)10 < 123. Furthermore,
on most instances, the algorithm is likely to terminate much faster than this, since we make two
recursive calls only when the manipulator can rescue a candidate from elimination in a given round.
In large elections where the manipulator’s weight is relatively insignificant, it is unlikely that this
would happen even more than once.

8.3.3 Complexity of weighted coalitional manipulation with few candidates

We are now ready to present our results on the hardness of coalitional manipulation when there are
few candidates and the votes are weighted. We will study not only whether any given rule is hard to
manipulate with a constant number of candidates, but also how many candidates are needed for the
hardness to occur. This number is important for evaluating the relative manipulability of different
voting rules (the lower this number, the less manipulable the rule). For each rule that we show is
hard to manipulate with some constant number of candidates, we show this for the smallest number
of candidates for which the hardness occurs, and we show that manipulation becomes easy if we
reduce the number of candidates by one. (Once we have identified this transition point, it is easy to
see that the manipulation problem remains hard for any greater number of candidates, and remains
easy for any smaller number of candidates, for example by adding “dummy” candidates.)

Constructive Manipulation

We first present our results for constructive manipulation.
We begin by laying out some cases where constructive manipulation can be done in polynomial

time. We start with some rules that are easy to manipulate constructively regardless of the number
of candidates. For the plurality rule, showing this is straightforward:

Theorem 68 For the plurality rule, CONSTRUCTIVE CW-MANIPULATION can be solved in polyno-
mial time (for any number of candidates).

Proof: The manipulators can simply check if p will win if all the manipulators vote for p. If not,
they cannot make p win.

For the cup rule, the proof is a little more involved:

Theorem 69 For the cup rule (given the assignment of candidates to leaves), CONSTRUCTIVE CW-
MANIPULATION can be solved in polynomial time (for any number of candidates).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 201

Proof: We demonstrate a method for finding all the potential winners of the election. In the binary
tree representing the schedule, we can consider each node to be a subelection, and compute the set of
potential winners for each subelection. (In such a subelection, we may say that the voters only order
the candidates in that subelection since the place of the other candidates in the order is irrelevant.)
Say a candidate can obtain a particular result in the election if it does so for some coalitional vote.
The key claim to the proof, then, is the following: a candidate can win a subelection if and only if
it can win one of its children, and it can defeat one of the potential winners of the sibling child in
a pairwise election. It is easy to see that the condition is necessary. To show that it is sufficient, let
p be a candidate satisfying the condition by being able to defeat h, a potential winner of the other
child (or half). Consider a coalitional vote that makes p win its half, and another one that makes
h win its half. We now let each coalitional voter vote as follows: it ranks all the candidates in p’s
half above all those in h’s half; the rest of the order is the same as in the votes that make p and h
win their halves. Clearly, this will make p and h the finalists. Also, p will win the pairwise election
against h since it is always ranked above h by the colluders; and as we know that there is some
coalitional vote that makes p defeat h pairwise, this one must have the same result. The obvious
recursive algorithm has running time O(m3n) according to the Master Theorem [Cormen et al.,
1990].

The remaining easiness results that we show in this subsubsection only show easiness up to
a certain number of candidates. For each of these results, we later show that adding one more
candidate causes the problem to become NP-complete.

As a first observation, when there are only two candidates, all the rules are equivalent to the
plurality rule, and hence both types of manipulation (constructive and destructive) are in P for all
of the rules. However, some rules are still easy to manipulate constructively with more than 2
candidates. In each of the following cases, we prove easiness of manipulation by demonstrating
that if there exists a successful manipulation, there also exists one where all the manipulators vote
the same way. All such ways of voting can be easily enumerated: because the number of candidates
is constant, the number of different orderings of the candidates is constant. Also, each way of voting
is easy to evaluate in these rules.

Theorem 70 If the Copeland rule with 3 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.
Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.

Proof: Let the 3 candidates be p, a, and b. We are given the nonmanipulators’ votes S, and the
weights for the manipulators’ votes T . Let the total vote weight in T be K.

For a set of weighted votes V and two candidates x, y, we denote by NV (x, y) the cumulated
weights of the votes in V ranking x prior to y, and we let DV (x, y) = NV (x, y) − NV (y, x). Let
us consider the following four cases which cover all possible situations:
Case 1: K > DS(a, p) and K > DS(b, p).

In this case, any configuration of votes for T such that p is ranked first for all votes makes p win
the election.
Case 2: K > DS(a, p) and K = DS(b, p).

202 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

It can easily be shown that it is harmless to assume that all votes in T rank p first. Therefore,
what remains to be done in order to have p win is to find who in T should vote (p, a, b) and who
should vote (p, b, a). What we know so far (before knowing how the votes in T will split between
these two profiles) is: (1) DS∪T (p, a) = K−DS(p, a) > 0 and (2) DS∪T (p, b) = K−DS(p, b) =
0. (1) makes p get +1 and a get −1 while (2) makes both p and b get 0. Therefore, the partial
Copeland scores (not taking account of the a vs. b pairwise election), are +1 for p (which will not
change after taking account of the a−b pairwise election),−1 for a and 0 for b; hence, the only way
for p to win (with certainty) is to avoid b getting a point in the pairwise election against a, i.e., to
ensure that DS∪T (a, b) ≥ 0. It can easily be shown that this is possible if and only if K ≥ DS(b, a).
Therefore, we have found that there exists a successful manipulation for p iff K ≥ DS(b, a), and in
this case a successful manipulation is the one where all voters in the coalition vote (p, a, b).
Case 3: K = DS(a, p) and K > DS(b, p).

This is similar to Case 2, switching the roles of a and b; the condition then is K ≥ DS(a, b) and
the successful manipulation is the one where all vote (p, b, a).
Case 4: K < DS(a, p) or K < DS(b, p) or (K ≤ DS(a, p) and K ≤ DS(b, p)).

Here, whatever the votes in T , the Copeland score of p is smaller than or equal to 0 and therefore
p cannot be guaranteed to win, so there is no successful manipulation. Thus, in every case, either
there is no successful manipulation, or there is a successful manipulation where all manipulators
vote identically.

Theorem 71 If the maximin rule with 3 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.
Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.

Proof: Let the 3 candidates be p, a, and b. We are given the nonmanipulators’ votes S, and the
weights for the manipulators’ votes T . Let the total vote weight in T be K. Again, it is easy to
show that all the manipulators can rank p first without harm.

Let us denote by PK1,K2 a vote configuration for T such that a subset T1 of T , whose cumulated
weight is K1, votes (p, a, b) and T2 = T \T1, whose cumulated weight is K2 (with K1 +K2 = K),
votes (p, b, a). Now all that remains to show is the following: if p wins with the votes in T being
PK1,K2 then either p wins with the votes in T being PK,0 or p wins with the votes in T being P0,K .
Let us consider these two cases for the outcome of the whole election (including the votes in T):
Case 1: the uniquely worst pairwise election for a is against b, and the uniquely worst pairwise
election for b is against a. One of a and b must have got at least half the vote weight in the pairwise
election against the other (say, without loss of generality, a) and therefore have a maximin score of
at least half the vote weight. Since a did even better against p, p received less than half the vote
weight in their pairwise election and therefore p does not win.
Case 2: One of a and b (say, without loss of generality, a) does at least as badly against p as
against the other (so, a’s worst opponent is p). Then all the voters in the coalition might as well
vote (p, a, b), because this will change neither a’s score nor p’s score, and might decrease (but not
increase) b’s score.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 203

Theorem 72 If the randomized cup rule with 6 candidates has a CONSTRUCTIVE CW-MANIPULATION,
then it has a CONSTRUCTIVE CW-MANIPULATION where all of the manipulators vote identically.
(This holds regardless of which balanced tree is chosen.) Therefore, CONSTRUCTIVE CW-MANIPULATION

is in P.

Proof: We show how to transform a successful manipulation into a successful manipulation where
all the manipulators cast the same vote, in a number of steps. Observe that swapping two candidates
that are ranked directly after one another in a vote can only affect the outcome of their pairwise
election, and not those of the others. (Throughout the proof, when we talk about swapping two
candidates in a vote, this only means swapping two candidates ranked directly behind each other.)

If p is ranked directly behind another candidate c, the only effect that swapping them can have
is to make p the winner of their pairwise election where it was not before; clearly this can never hurt
p’s chances of winning. Repeated application of this gives us a successful manipulation where all
the manipulators rank p at the top.

We now divide the other candidates into two sets: B is the set of candidates that defeat p in
their pairwise election, G is that of candidates that are defeated by p. We now claim that when
a candidate g ∈ G is ranked directly behind a candidate b ∈ B, swapping them cannot hurt p’s
chances of winning. This is because of the following reason. Again, the only effect that the swap
can have is to make g the winner of its pairwise election with b, where it was not before. We show
that for any schedule (assignment of candidates to leaves), if p wins when b defeats g, then p also
wins in the case where this pairwise election is changed to make g defeat b (but nothing else is
changed). For any schedule where g and b do not meet this is obvious. If b and g face each other
in the final, p of course does not win. If b and g face each other in a semifinal, and b defeats g,
then again p cannot win because it cannot defeat b in the final. So the only case left to check is a
schedule where b and g meet in a quarterfinal (because the tree is balanced). If p wins with this
schedule when b defeats g, that means that b is defeated by some other g ′ ∈ G in the semifinal (if
b wins the semifinal, p could never defeat it in the final; if b loses to some b′ ∈ B, p could never
defeat b′ in the final; and p itself cannot defeat b in the semifinal either), and that p defeats this g′ in
the final. Then if we change the winner of the quarterfinal to g, regardless of whether g or g′ wins
the semifinal, p will win the final. Thus the claim is proven. Repeated application of this gives a
successful manipulation where all the manipulators rank p at the top, and all candidates in G above
all candidates in B.

All that remains is to get the manipulators to agree on the order of the candidates within G and
the order of the candidates within B. We will show how to do this for G; the case of B is entirely
analogous. If there are 0 or 1 candidates in G, there is only one order for these candidates. If there
are 2 candidates in G, then swapping them whenever the winner of their pairwise election is ranked
below the loser does not affect the outcome of their pairwise election and hence nothing at all.

If there are 3 candidates in G, that means there are only 2 in B. Say B = {b1, b2}. Divide the
candidates in G into GB, G{b1}, G{b2}, G{}, where a candidate in GS defeats all candidates in S
but none in B − S. We first claim that it never hurts to swap when a candidate gB ∈ GB is ranked
directly below another candidate g ∈ G. Again we do so by showing that with any schedule where
p wins when g defeats gB , p also wins when gB defeats g (but everything else is unchanged). If g
and gB never meet this is obvious; if g and gB meet in a semifinal or the final, it does not matter to
p which one wins. If g defeats gB in a quarterfinal and p wins the election, then one of the three

204 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

following cases applies: 1. p defeats g in the semifinal, 2. g defeats some b ∈ B in the semifinal
and is defeated by p in the final, 3. g faces the third candidate g3 ∈ G in the semifinal, and p
wins the final agaist the winner of this. Now, if gB instead had defeated g, then in case 1 p defeats
gB in the semifinal and goes on to win the final as before; in case 2, gB defeats b as well in the
semifinal and then loses to p in the final; and in case 3, p faces either gB or g3 in the final and wins.
Repeated application of this gets all the elements in GB ranked above all the other elements in G
in all the manipulators’ votes, and this rule also allows us to get the elements in GB ordered among
themselves in the same way in all the manipulators’ votes. Similarly, we can show that we can
always swap the elements in G{} downwards, so that all the elements of this set are ranked below
all other elements in G, and ordered among themselves in a unique manner across all the votes.

Now, if indeed there is some element in GB or G{}, then there are at most two candidates left
in GB whose order might differ across manipulators’ votes. As in the case of 2 candidates, we can
simply always swap the winner of their pairwise election up without changing anything, and we
are done. On the other hand suppose there is no element in GB or G{}, so that all the remaining
elements are in G{b1} or G{b2}. We claim that either it does not hurt to swap all the candidates
from G{b1} below all those of G{b2}, or vice versa. In the case where either G{b1} or G{b2} is
empty, this claim is vacuous: so suppose without loss of generality that G{b1} has two elements
g1 and g2, and G{b2} one element, g3. Now suppose the contrary, that is, that always swapping g3

above g1 and g2 decreases p’s chances of winning the election, but that always swapping g3 below
g1 and g2 also decreases p’s chances of winning the election. It follows that always swapping g3

above g1 and g2 causes g3 to win both pairwise elections, and that always swapping g3 below g1

and g2 causes g3 to lose both pairwise elections. (For otherwise, the manipulators cannot change
the winner of one of these pairwise elections, and because the other pairwise election must have
a winner in the current state, either always swapping g3 up or always swapping g3 down will not
affect any pairwise election at all, and hence the probability of p winning would remain unchanged.)
Hence in the current state g3 must be winning exactly one of these pairwise elections (without loss
of generality, the one against g1). Now, because always swapping g3 below g1 and g2 only has the
effect of making it lose against g1 as well, and because this reduces the probability of p winning,
it follows that the number of schedules where p wins now is strictly greater than the number of
schedules where p wins if g3 lost to g1 in its pairwise election but everything else remained the same.
Thus, the number of schedules where p wins now but would not win if g3 lost to g1 in their pairwise
election (call this set of schedules L(g1)), is strictly greater than the number of schedules where p
does not win now but would win if g3 lost to g1 in their pairwise election (call this set of schedules
W (g1)). Similarly we can show that the number of schedules where p wins now but would not
win if g3 defeated g2 in their pairwise election (call this set of schedules W (g2)), is strictly greater
than the number of schedules where p does not win now but would win if g3 defeated g2 in their
pairwise election (call this set of schedules L(g2)). So, |W (g1)| < |L(g1)|, and |W (g2)| > |L(g2)|.
We now derive the desired contradiction by showing W (g1)| ≥ |W (g2)| and |L(g1)| ≤ |L(g2)|.
Consider the mapping f from schedules to schedules that simply swaps the position of g1 and g2 in
the schedule. This mapping is one-to-one. We now claim that if σ ∈ W (g2), then f(σ) ∈ W (g1),
thereby demonstrating |W (g1)| ≥ |W (g2)|; the case for |L(g1)| ≤ |L(g2)| is similar. σ ∈ W (g2)
means that p wins in σ now but would not win if g3 defeated g2 in their pairwise election. It is
straightforward to check that this only happens if g2 and g3 meet in a quarterfinal, and the winner

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 205

goes on to meet b1 in the semifinal (whom g2 would defeat but g3 would not), while p goes on to the
final in the other half of the cup. Now we must show f(σ) ∈ W (g1). In f(σ), g1 and g3 face each
other in a quarterfinal. The semifinal after this quarterfinal will certainly have b1 in it (if b1 plays
a quarterfinal before this, b1 must have the same opponent in this quarterfinal as in σ, because b1

cannot face g1 in the quarterfinal in σ and still move on to the semifinal in σ; hence b1 will defeat its
quarterfinal opponent in f(σ) as well). Also, the final will certainly have p in it (even if g1 was in
p’s half, since the sets of candidates within p’s half that g1 and g2 defeat are identical, this half will
proceed exactly as in σ). Now, in the current state of the votes, g3 will defeat g1 in the quarterfinal,
upon which b1 will defeat g3 in the semifinal and p in the final. On the other hand, if g1 defeated
g3, it would defeat b1 in the semifinal and p would win the final against g1, and hence win the entire
election. It follows that f(σ) ∈ W (g1), as was to be shown. So either it does not hurt to swap all
the candidates from G{b1} below all those of G{b2}, or vice versa. It remains to be shown that the
manipulators’ rankings of the candidates within G{b1} and within G{b2} can be made to coincide.
Given (without loss of generality) g1, g2 ∈ G{b1} it is straightforward to check that it does not matter
to p which of them would win if they faced each other in the final or semifinal. In case they face
each other in a quarterfinal, then if p is in the same half of the cup it does not matter which of g1

and g2 wins the quarterfinal, because p (if it reaches the semifinal) would defeat either one. If p is in
the other half, the only thing that matters is whether this half’s finalist is in B or in G. Thus, if the
winner of the quarterfinal between g1 and g2 faces the last remaining candidate from G the finalist
will certainly be in G, so who won the quarterfinal does not matter; on the other hand, if the winner
of the quarterfinal between g1 and g2 faces a candidate in B, then again it does not matter who wins
the quarterfinal, because g1 and g2 defeat the same set of candidates from B. It follows that it is
irrelevant to p’s chances of winning what the outcome of a pairwise election between candidates in
G{b1} or between candidates in G{b2} is, so we can order them among themselves in whichever way
we like. Hence we can make the manipulators’ votes coincide on the order of the 3 candidates in G.

If there are 4 candidates in G, that means there is only one in B. Hence we can partition G
into GB and G{}. With techniques similar to the case of 3 candidates in G, we can show that we
can always swap candidates in GB above those in G{}; and we can show that a vote’s order of the
candidates within GB (or G{}) is irrelevant. Hence we can make the manipulators’ votes coincide
on the order of the 4 candidates in G.

Finally, if there are 5 candidates in G, then p defeats all other candidates in pairwise elections,
so p is guaranteed to win regardless of how the candidates in G are ranked.

We are now ready to prove hardness results that match the bounds given by the easiness results
above. (That is, for every rule which we showed is easy to manipulate with up to l candidates, we
now show that it is hard to manipulate with l+1 candidates.) In many of the proofs of NP-hardness,
we use a reduction from the PARTITION problem, which is NP-complete [Karp, 1972]:

Definition 43 PARTITION. We are given a set of integers {ki}1≤i≤t (possibly with multiplicities)
summing to 2K, and are asked whether a subset of these integers sums to K.

Theorem 73 For any scoring rule other than the plurality rule, CONSTRUCTIVE CW-MANIPULATION

is NP-complete for 3 candidates.

Proof: First, note that when there are only 3 candidates, a positional scoring rule is defined by

206 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

a vector of integers ~α = 〈α1, α2, α3〉 such that α1 ≥ α2 ≥ α3. Without loss of generality, we
can assume that α3 = 0 (since translating the αi’s by a constant has no effect on the outcome of
the election). We can also assume that α2 ≥ 2. (If α2 = 0 then the rule is either meaningless
(if α1 = 0) or equivalent to the plurality rule, so we can assume α2 > 0. Then, we can scale
the αi appropriately, which will not affect the rule.) Showing the problem is in NP is easy. To
show NP-hardness, we reduce an arbitrary PARTITION instance to the following CONSTRUCTIVE

MANIPULATION instance. The 3 candidates are a, b, and p. In S there are (2α1 − α2)K − 1 voters
voting (a, b, p) and (2α1−α2)K−1 voters voting (b, a, p). In T , for each ki there is a vote of weight
(α1 +α2)ki. Suppose there is a partition of the ki. Then, let the votes in T corresponding to the one
half of the partition be (p, a, b) and the votes corresponding to the other half be (p, b, a). Then the
score of p is 2(α1 + α2)α1K while the scores of both a and b are (α1 + α2)(2α1K − 1), therefore
p is the winner and there is a manipulation. Conversely, suppose there exists a manipulation. Then,
since scoring procedures satisfy monotonicity, we can assume without loss of generality that the
voters in the coalition T rank p first. Let x (resp. y) be the total weight of voters in T of the
voters who vote (p, a, b) (resp. (p, b, a)). Note that we have x + y = 2K. Then the score of p
is 2(α1 + α2)α1K, the score of a is (α1 + α2)((2α1 − α2)K − 1 + xα2), and the score of b is
(α1 +α2)((2α1−α2)K−1+yα2). Since p is the winner, its score must be at least that of a, which
is equivalent to xα2 ≤ Kα2 +1. Because α2 > 0, the latter condition is equivalent to x ≤ K + 1

α2
,

which is equivalent to x ≤ K (because α2 ≥ 2). Similarly, we get y ≤ K, which together with
x + y = 2K enables us to conclude that x = y = K, so there exists a partition.

Corollary 4 For the veto and Borda rules, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 3 candidates.

(On a historical note, we actually proved Corollary 4 before we discovered its generalization to
Theorem 73; the generalization was independently discovered by us, Hemaspaandra and Hemas-
paandra [2005], and Procaccia and Rosenschein [2006].)

Theorem 74 For the Copeland rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 4
candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 4
candidates, a, b, c and p. In S there are 2K + 2 voters voting (p, a, b, c), 2K + 2 voting (c, p, b, a),
K +1 voting (a, b, c, p), and K +1 voting (b, a, c, p). In T , for every ki there is a vote of weight ki.
We show the instances are equivalent. First, every pairwise election is already determined without
T , except for the one between a and b. p defeats a and b; a and b each defeat c; c defeats p. If
there is a winner in the pairwise election between a and b, that winner will tie with p. So p wins
the Copeland election if and only if a and b tie in their pairwise election. But, after the votes in S
alone, a and b are tied. Thus, the votes in T maintain this tie if and only if the combined weight of
the votes in T preferring a to b is the same as the combined weight of the votes in T preferring b to
a. This can happen if and only if there is a partition.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 207

Theorem 75 For the maximin rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 4
candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 4
candidates, a, b, c and p. In S there are 7K − 1 voters voting (a, b, c, p), 7K − 1 voting (b, c, a, p),
4K − 1 voting (c, a, b, p), and 5K voting (p, c, a, b). In T , for every ki there is a vote of weight
2ki. We show the instances are equivalent. Suppose there is a partition. Then, let the votes in
T corresponding to the ki in one half of the partition vote (p, a, b, c), and let the other ones vote
(p, b, c, a). Then, p does equally well in each pairwise election: it always gets 9K pairwise points.
a’s worst pairwise election is against c, getting 9K − 1. b’s worst is against a, getting 9K − 1.
Finally c’s worst is against b, getting 9K−1. Hence, p wins the election. So there is a manipulation.
Conversely, suppose there is a manipulation. Then, since moving p to the top of each vote in T will
never hurt p in this rule, there must exist a manipulation in which all the votes in T put p at the top,
and p thus gets 9K as its worst pairwise score. Also, the votes in T cannot change which each other
candidate’s worst pairwise election is: a’s worst is against c, b’s worst is against a, and c’s worst is
against b. Since c already has 9K − 1 points in its pairwise election against b, no vote in T can put
c ahead of b. Additionally, if any vote in T puts a right above c, swapping their positions has no
effect other than to decrease a’s final score, so we may also assume this does not occur. Similarly
we can show it safe to also assume no vote in T puts b right above a. Combining all of this, we may
assume that all the votes in T vote either (p, a, b, c) or (p, b, c, a). Since a already has 7K−1 points
in the pairwise election against c, the votes in T of the first kind can have a total weight of at most
2K; hence the corresponding ki can sum to at most K. The same holds for the ki corresponding to
the second kind of vote on the basis of b’s score. Hence, in both cases, they must sum to exactly K.
But then, this is a partition.

Theorem 76 For the STV rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 3 candi-
dates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION instance. There are 3
candidates, a, b and p. In S there are 6K − 1 voters voting (b, p, a), 4K voting (a, b, p), and
4K voting (p, a, b). In T , for every ki there is a vote of weight 2ki. We show the instances are
equivalent. Suppose there is a partition. Then, let the votes in T corresponding to the ki in one
half of the partition vote (a, p, b), and let the other ones vote (p, a, b). Then in the first round, b has
6K − 1 points, a has 6K, and p has 6K. So b drops out; all its votes transfer to p, so that p wins
the final round. So there is a manipulation. Conversely, suppose there is a manipulation. Clearly, p
cannot drop out in the first round; but also, a cannot drop out in the first round, since all its votes
in S would transfer to b, and b would have at least 10K − 1 points in the final round, enough to
guarantee it victory. So, b must drop out in the first round. Hence, from the votes in T , both a and
c must get at least 2K weight that puts them in the top spot. The corresponding ki in either case
must thus sum to at least K. Hence, in both cases, they must sum to exactly K. But then, this is a

208 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

partition.

This also allows us to show that constructively manipulating the plurality with runoff rule is
hard:

Theorem 77 For the plurality with runoff rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 3 candidates.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we observe that with 3
candidates, the plurality with runoff rule coincides with the STV rule, and CONSTRUCTIVE MANIP-
ULATION for STV with 3 candidates is NP-hard.

Theorem 78 For the randomized cup rule, CONSTRUCTIVE CW-MANIPULATION is NP-complete
for 7 candidates.

Proof: The problem is in NP because for any vector of votes, we can check for every one of the pos-
sible schedules for the cup whether p wins (because the number of candidates is constant, so is the
number of possible schedules). To show it is NP-hard, we reduce an arbitrary PARTITION instance to
the following CONSTRUCTIVE CW-MANIPULATION instance. There are 7 candidates, a, b, c, d, e, f ,
and p. In T , for every ki there is a vote of weight 2ki. Let W = 4K. Let the votes in S be as follows:
there are 5

2W votes (d, e, c, p, f, a, b), 1
2W votes (d, e, c, p, f, b, a), 5

2W votes (f, d, b, p, e, c, a),
1
2W votes (f, d, b, p, e, a, c), 5

2W votes (e, f, a, p, d, b, c), 1
2W votes (e, f, a, p, d, c, b), 2W votes

(p, a, c, b, d, e, f), W votes (p, c, b, a, f, d, e), W votes (c, b, a, f, d, e, p), 2W votes (b, a, c, e, f, d, p),
and 4K−1 votes that we will specify shortly. Since it takes only 8 1

2W votes to win a pairwise elec-
tion, it follows that the outcomes of the following pairwise elections are already determined: p
defeats each of a, b, c (it has 9W votes in each of these pairwise elections from the given votes);
each of d, e, f defeats p (9W in each case); d defeats e, e defeats f , f defeats d (10W in each
case); a defeats d, b defeats e, c defeats f (9W in each case); d defeats b and c, e defeats a and c,
f defeats a and b (9W in each case). So, the only pairwise elections left to be determined are the
ones between a, b and c. We now specify the remaining 8K − 1 votes in S: there are 2K − 1 votes
(c, b, a, p, d, e, f) and 2K − 1 votes (b, a, c, p, d, e, f), and 1 vote (b, c, a, p, d, e, f). As a result,
given all the votes in S, b is 4K − 1 votes ahead of a in their pairwise election, b is 1 vote ahead of
c, and c is 1 vote ahead of a. We claim that the votes in T can be cast so as to make a defeat b, b
defeat c, and c defeat a, if and only if a partition of the ki exists. If a partition exists, let the votes
corresponding to one half of the partition be (a, b, c, p, d, e, f), and those corresponding to the other
half be (c, a, b, p, d, e, f); this is easily verified to yield the desired result. Conversely, suppose there
is a way to cast the votes in T so as to yield the desired result. Then, since each vote in T has even
weight, all the votes in T rank a above b; at least half the vote weight ranks b above c; and at least
half the vote weight ranks c above a. Since, if a is ranked above b, it is impossible to have c be
ranked simultaneously both below b and above a, it follows that precisely half the vote weight ranks
b above c (and the other half, c above a); and hence, we have a partition. To complete the proof
of the theorem, we claim that making a defeat b, b defeat c, and c defeat a strictly maximizes the
probability that p wins. From this claim it follows that if we set r to a number slightly smaller than

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 209

the probability that p wins if a defeats b, b defeats c, and c defeats a, then it is possible for the votes
in T to make p win with probability at least r, if and only if there is a partition of the ki. To prove
the claim, we do a careful case-by-case analysis on the structure of the cup.

Final round

"bye" position

Quarterfinal 2 (q2)Quarterfinal 1 (q1) Quarterfinal 3 (q3)

Semifinal 1 (s1) Semifinal 2 (s2)

Figure 8.1: The cup used in the proof.

For each situation in which two of a, b and c face each other in a round, we analyze whose
winning would be most favorable to p. If p does not get the ”bye” position, it can only win by
facing each of a, b and c in some round, which is impossible if any two of those ever face each
other; so in this case the results of the pairwise elections between them are irrelevant as far as p’s
chances of winning are concerned. So let us assume p gets the bye position. If two of a, b and c
face each other in s1, then the outcome of this round is irrelevant as p would defeat either one in
the final. If two of a, b and c face each other in q3, then the outcome of this round is irrelevant as p
would defeat either one in s2. Now suppose a and b face each other in q1. Then the only way for p
to make it to the final is if c faces f in q3, so let us assume this happens. Then, d and e face each
other in q2, which confrontation d will win. If a defeats b in q1, it will win s1 against d, and p will
defeat it in the final. On the other hand, if b defeats a in q1, it will lose s1 against d, and d will defeat
p in the final.. It follows that in this case, if we want p to win, we would (strictly) prefer a to defeat
b in their pairwise election. Symmetrically, we also prefer a to defeat b if they face each other in
q2. Since we have analyzed all possibilities where a may face b, and in these is always favorable
to p for a to defeat b, sometimes strictly so; it follows that it is strictly favorable to p’s chances of
winning if a defeats b in their pairwise election. Analogously (or by symmetry), it can be shown
that it is strictly favorable to p’s chances of winning if b defeats c, and c defeats b in their pairwise
elections. Hence achieving these pairwise results simultaneously strictly maximizes p’s chance of
winning the election.

210 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Recall that the cup rule (without randomization) is easy to manipulate constructively for any
number of candidates. Thus, the previous result shows that randomizing over instantiations of the
rules (such as schedules of a cup) can be used to make manipulation hard.

Destructive Manipulation

We now present our results for destructive manipulation.
We begin by laying out some cases where destructive manipulation can be done in polynomial

time. It is easy to see that destructive manipulation can never be harder than constructive manipu-
lation (except by a factor m) because in order to solve the former, we may simply solve the latter
once for each candidate besides h. Thus, we immediately know that the plurality and cup rules can
be destructively manipulated in polynomial time, for any number of candidates. Interestingly, for
most of the other rules under study, destructive manipulation turns out to be drastically easier than
constructive manipulation! The following theorem shows a sufficient condition for rules to be easy
to manipulate destructively.

Theorem 79 Consider any voting rule where each candidate receives a numerical score based
on the votes, and the candidate with the highest score wins. Suppose that the score function is
monotone, that is, if voter i changes its vote so that {b : a Âold

i b} ⊆ {b : a Ânew
i b} (here, a Âi b

means that voter i prefers a to b), a’s score will not decrease. Finally, assume that the winner
can be determined in polynomial time. Then for this rule, destructive manipulation can be done in
polynomial time.

Proof: Consider the following algorithm: for each candidate a besides h, we determine what the
outcome of the election would be for the following coalitional vote. All the colluders place a at the
top of their votes, h at the bottom, and order the other candidates in whichever way. We claim there
is a vote for the colluders with which h does not win if and only if h does not win in one of these
m − 1 elections. The if part is trivial. For the only if part, suppose there is a coalitional vote that
makes a 6= h win the election. Then, in the coalitional vote we examine where a is always placed
on top and h always at the bottom, by monotonicity, a’s score cannot be lower (because for each
manipulator i, {b : a >i b} is maximal) and h’s cannot be higher (because for each manipulator i,
{b : h >i b} is minimal) than in the successful coalitional vote. It follows that here, too, a’s score
is higher than h’s, and hence h does not win the election. The algorithm is in P since we do m− 1
winner determinations, and winner determination is in P.

Corollary 5 Destructive manipulation can be done in polynomial time for the veto, Borda, Copeland,
and maximin rules.

Theorem 79 does not apply to the STV and plurality with runoff rules. We now show that
destructive manipulation is in fact hard for these rules, even with only 3 candidates.

Theorem 80 For the STV rule with 3 candidates, DESTRUCTIVE CW-MANIPULATION is NP-complete.

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 211

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we reduce an arbitrary PAR-
TITION instance to the following DESTRUCTIVE CW-MANIPULATION instance. The 3 candidates
are a, b and h. In S there are 6K voters voting (a, h, b), 6K voters voting (b, h, a), and 8K − 1
voters voting (h, a, b). In T , for every ki there is a vote of weight 2ki. We show the instances are
equivalent.

We first observe that h will not win if and only if it gets eliminated in the first round: for if it
survives the first round, either a or b gets eliminated in the first round. Hence either all the votes in
S that ranked a at the top or all those that ranked b at the top will transfer to h, leaving h with at
least 14K − 1 votes in the final round out of a total of 24K − 1, so that h is guaranteed to win the
final round.

Now, if a partition of the ki exists, let the votes in T corresponding to one half of the partition
vote (a, b, h), and let the other ones vote (b, a, h). Then in the first round, a and b each have 8K
votes, and h only has 8K − 1 votes, so that h gets eliminated. So there exists a manipulation.

On the other hand, if a manipulation exists, we know by the above that with this manipulation, h
is eliminated in the first round. Hence at least 2K−1 of the vote weight in T ranks a at the top, and
at least 2K−1 of the vote weight in T ranks b at the top. Let A be the set of all the ki corresponding
to votes in T ranking a at the top; then

∑

ki∈A

ki ≥ K − 1
2 , and since the ki are integers this implies

∑

ki∈A

ki ≥ K. If we let B be the set of all the ki corresponding to votes in T ranking b at the top,

then similarly,
∑

ki∈B

ki ≥ K. Since A and B are disjoint, it follows that
∑

ki∈A

ki =
∑

ki∈B

ki = K. So

there exists a partition.

This result also allows us to establish the hardness of destructive manipulation in the plurality
with runoff rule:

Theorem 81 For the plurality with runoff rule with 3 candidates, DESTRUCTIVE CW-MANIPULATION

is NP-complete.

Proof: Showing the problem is in NP is easy. To show it is NP-hard, we observe that with 3
candidates, plurality with runoff coincides with STV, and DESTRUCTIVE MANIPULATION for STV
with 3 candidates is NP-hard, as we proved in Theorem 80.

8.3.4 Effect of uncertainty about others’ votes

So far we have discussed the complexity of coalitional manipulation when the others’ votes are
known. We now show how those results can be related to the complexity of manipulation by an
individual voter when only a distribution over the others’ votes is known. If we allow for arbitrary
distributions, we need to specify a probability for each possible combination of votes by the others,
that is, exponentially many probabilities (even with just two candidates). It is impractical to specify
so many probabilities.11 Therefore, we should acknowledge that it is likely that the language used

11Furthermore, if the input is exponential in the number of voters, an algorithm that is exponential in the number of
voters is not necessarily complex in the usual sense of input complexity.

212 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

for specifying these probabilities would not be fully expressive (or would at least not be very con-
venient for specifying complex distributions). We derive the complexity results of this subsection
for extremely restricted probability distributions, which any reasonable language should allow for.
Thus our results apply to any reasonable language. We only present results on constructive manipu-
lations, but all results apply to the destructive cases as well and the proofs are analogous. We restrict
our attention to deterministic rules.

Weighted voters

First we show that with weighted voters, in rules where coalitional manipulation is hard in the
complete-information case, even evaluating a candidate’s winning probability is hard when there is
uncertainty about the votes (even when there is no manipulator).

Definition 44 (WEIGHTED EVALUATION) We are given a weight for each voter, a distribution over
all possible vectors of votes, a candidate p, and a number r, where 0 ≤ r ≤ 1. We are asked
whether the probability of p winning is greater than r.

Theorem 82 If CONSTRUCTIVE CW-MANIPULATION is NP-hard for a deterministic rule (even
with k candidates), then WEIGHTED EVALUATION is also NP-hard for it (even with k candidates),
even if r = 0, the votes are drawn independently, and only the following types of (marginal) dis-
tributions are allowed: 1) the vote’s distribution is uniform over all possible votes, or 2) the vote’s
distribution puts all of the probability mass on a single vote.

Proof: For the reduction from CONSTRUCTIVE CW-MANIPULATION to WEIGHTED EVALUATION,
we use exactly the same voters, and p remains the same as well. If a voter was not a colluder in the
CONSTRUCTIVE CW-MANIPULATION instance and we were thus given its vote, in the WEIGHTED

EVALUATION instance its distribution places all of the probability mass on that vote. If the voter
was in the collusion, its distribution is now uniform. We set r = 0. Now, clearly, in the WEIGHTED

EVALUATION instance there is a chance of p winning if and only if there exists some way for the
latter votes to be cast so as to make p win - that is, if and only if there is an effective collusion in the
CONSTRUCTIVE CW-MANIPULATION problem.

Next we show that if evaluating the winning probability is hard, individual manipulation is also
hard.

Definition 45 (CONSTRUCTIVE INDIVIDUAL WEIGHTED (IW)-MANIPULATION UNDER UNCER-
TAINTY) We are given a single manipulative voter with a weight, weights for all the other voters,
a distribution over all the others’ votes, a candidate p, and a number r, where 0 ≤ r ≤ 1. We are
asked whether the manipulator can cast its vote so that p wins with probability greater than r.

Theorem 83 If WEIGHTED EVALUATION is NP-hard for a rule (even with k candidates and re-
strictions on the distribution), then CONSTRUCTIVE IW-MANIPULATION UNDER UNCERTAINTY is
also NP-hard for it (even with k candidates and the same restrictions).

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 213

Proof: For the reduction from WEIGHTED EVALUATION to CONSTRUCTIVE IW-MANIPULATION

UNDER UNCERTAINTY, simply add a manipulator with weight 0.

Combining Theorems 82 and 83, we find that with weighted voters, if in some rule coalitional
manipulation is hard in the complete-information setting, then even individual manipulation is hard
if others’ votes are uncertain. Applying this to the hardness results from Subsection 8.3.3, this
means that all of the rules of this section other than plurality and cup are hard to manipulate by
individuals in the weighted case when the manipulator is uncertain about the others’ votes.

Finally, we show that WEIGHTED EVALUATION can be hard even if CONSTRUCTIVE CW-
MANIPULATION is not. If we relax the requirement that a vote is represented by a total order
over the candidates, we can also allow for the following common voting rule:

• approval. Each voter labels each candidate as either approved or disapproved. The candidate
that is approved by the largest number of voters wins.

For the approval rule, CONSTRUCTIVE CW-MANIPULATION is trivial: the universally most po-
tent manipulation is for all of the manipulators to approve the preferred candidate p, and to disap-
prove all other candidates. However, WEIGHTED EVALUATION is hard:

Theorem 84 In the approval rule, WEIGHTED EVALUATION is NP-hard, even if r = 0, the votes
are drawn independently, and the distribution over each vote has positive probability for at most 2
of the votes.

Proof: We reduce an arbitrary PARTITION instance to the following WEIGHTED EVALUATION in-
stance. There are 3 candidates, p, a, and b. There are 2K +1 votes approving {p}. Additionally, for
each ki in the PARTITION instance, there is a vote of weight 2ki that approves {a} with probability
1
2 , and {b} with probability 1

2 . We set r = 0. Clearly, p wins if and only if a and b are each approved
by precisely 2K of the vote weight. But this is possible (and happens with positive probability) if
and only if there is a partition.

Unweighted voters

Finally, we study what implications can be derived for the hardness of manipulation in settings with
unweighted voters.

Definition 46 UNWEIGHTED EVALUATION is the special case of WEIGHTED EVALUATION where
all the weights are 1. CONSTRUCTIVE INDIVIDUAL UNWEIGHTED (IU)-MANIPULATION UNDER

UNCERTAINTY is the special case of CONSTRUCTIVE INDIVIDUAL WEIGHTED (IW)-MANIPULATION

UNDER UNCERTAINTY where all the weights are 1.

First, we show that for rules for which WEIGHTED EVALUATION is hard, UNWEIGHTED EVAL-
UATION is also hard. This assumes that the language for specifying the probability distribution is
rich enough to allow for perfect correlations between votes (that is, some votes are identical with
probability one12).

12Representation of such distributions can still be concise.

214 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Theorem 85 If WEIGHTED EVALUATION is NP-hard for a rule (even with k candidates and re-
strictions on the distribution), then UNWEIGHTED EVALUATION is also NP-hard for it if we allow
for perfect correlations (even with k candidates and the same restrictions—except those conflicting
with perfect correlations). (This is assuming that a group of κ perfectly correlated votes can be
represented using only O(log(κ)) space.)

Proof: For the reduction from WEIGHTED EVALUATION to its unweighted version, we replace
each vote of weight κ with κ unweighted votes; we then make these κ votes perfectly correlated.
Subsequently we pick a representative vote from each perfectly correlated group, and we impose
a joint distribution on this vote identical to the one on the corresponding vote in the WEIGHTED

EVALUATION problem. This determines a joint distribution over all votes. It is easy to see that
the distribution over outcomes is the same as in the instance from which we reduced; hence, the
decision questions are equivalent.

We would like to have an analog of Theorem 83 here, to show that UNWEIGHTED EVALUATION

being hard also implies that CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is hard.
Unfortunately, the strategy used in the proof of Theorem 83—setting the manipulator’s weight to
0—does not work, because the weight of the manipulator must now be 1. Instead, we rely on the
following two theorems, which each require an additional precondition. The first one shows that if
the WEIGHTED EVALUATION problem is hard even in settings where there is no possibility that the
candidate p is tied for winning the election, then the CONSTRUCTIVE IU-MANIPULATION UNDER

UNCERTAINTY problem is also hard.

Theorem 86 If WEIGHTED EVALUATION is NP-hard for a rule even in settings where ties will not
occur (even with k candidates and restrictions on the distribution of the votes), then CONSTRUC-
TIVE IU-MANIPULATION UNDER UNCERTAINTY is also NP-hard (with the same r) if we allow
for perfect correlations (even with k candidates and the same restrictions on the distribution of the
nonmanipulators’ votes—except those conflicting with perfect correlations). (This is assuming that
a group of κ perfectly correlated votes can be represented using only O(log(κ)) space.)

Proof: We reduce the EVALUATION instance to a MANIPULATION instance by first adding a single
manipulator. Because ties will not occur, there must exist a (rational) weight w > 0 such that if
the manipulator’s vote has this weight, then the manipulator’s vote will never affect the outcome.
Without loss of generality, we can assume that this weight can be written as w = 1

M for some
sufficiently large integer M . Now, multiply all the weights by M so that the manipulator’s vote has
weight 1 and all the weights are integers again. Then, replace each voter of weight κ by κ perfectly
correlated, unweighted voters. Clearly, the manipulator will still not affect the outcome, and thus
the distribution over outcomes is the same as in the instance we reduced from; hence, the decision
questions are equivalent.

Theorem 86 applies to most of the rules under study:

Corollary 6 For each one of the following rules, CONSTRUCTIVE IU-MANIPULATION UNDER UN-
CERTAINTY is NP-hard: Borda (even with 3 candidates), veto (even with 3 candidates), STV (even

8.3. HARDNESS OF MANIPULATING ELECTIONS WITH FEW CANDIDATES 215

with 3 candidates), plurality with runoff (even with 3 candidates), and maximin (even with 4 candi-
dates). This holds even if r = 0, the votes are either drawn independently or perfectly correlated,
and only the following types of (marginal) distributions are allowed: 1) the vote’s distribution is
uniform over all possible votes, or 2) the vote’s distribution puts all of the probability mass on a
single vote. (This is assuming that a group of κ perfectly correlated votes can be represented using
only O(log(κ)) space.)

Proof: To show that we can apply Theorem 86 to each of these rules, we first make the following
observation. For each of these rules, the reduction that we gave to show that CONSTRUCTIVE CW-
MANIPULATION is hard has the property that if there exists no successful manipulation, candidate
p cannot even be tied for winning the election (and, of course, if there is a successful manipulation,
no other candidate will tie with p for winning the election). Because of this, when we apply the
reduction from Theorem 82 to these instances, there is no chance that a tie for winning the election
between p and another candidate will occur, and we can apply Theorem 86.

Unfortunately, for the Copeland rule, in the reduction given in Theorem 74, an unsuccessful
manipulation may still leave p tied for winning the election. To show that CONSTRUCTIVE IU-
MANIPULATION UNDER UNCERTAINTY is hard for this rule as well, we need the following theorem:

Theorem 87 If WEIGHTED EVALUATION is NP-hard for a rule even in settings where r = 0 and
one of the voters with a uniform distribution over votes has weight 1 (even with k candidates and
restrictions on the distribution of the votes), then CONSTRUCTIVE IU-MANIPULATION UNDER UN-
CERTAINTY is also NP-hard even in settings where r = 0 if we allow for perfect correlations (even
with k candidates and the same restrictions on the distribution of the nonmanipulators’ votes—
except those conflicting with perfect correlations). (This is assuming that a group of κ perfectly
correlated votes can be represented using only O(log(κ)) space.)

Proof: We reduce the EVALUATION instance to a MANIPULATION instance by replacing the voter
with a uniform distribution over votes and weight 1 by the manipulator, and using the same dis-
tribution over the other voters’ votes as before. If there is nonzero probability of p winning in the
EVALUATION instance, then there must exists some vector of votes with nonzero probability for
which p wins with nonzero probability. Then, in the MANIPULATION instance, consider the vote in
this vote vector cast by the voter that was replaced by the manipulator. If the manipulator places
this vote, then with nonzero probability, the same vector will occur and p will win with nonzero
probability. Conversely, suppose that in the MANIPULATION instance there exists a vote for the
manipulator such that p wins with nonzero probability. Then, in the EVALUATION instance, there
is some nonzero probability that the voter replaced by the manipulator casts this vote (because that
voter’s distribution over votes is uniform). It follows that there is nonzero probability that p will
win in the EVALUATION instance. Hence, the decision questions are equivalent.

Corollary 7 For the Copeland rule (even with 4 candidates), CONSTRUCTIVE IU-MANIPULATION

UNDER UNCERTAINTY is NP-hard . This holds even if r = 0, the votes are either drawn indepen-
dently or perfectly correlated, and only the following types of (marginal) distributions are allowed:

216 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

1) the vote’s distribution is uniform over all possible votes, or 2) the vote’s distribution puts all of
the probability mass on a single vote. (This is assuming that a group of κ perfectly correlated votes
can be represented using only O(log(κ)) space.)

Proof: Because PARTITION is hard even when one of the integers to be partitioned is 1, we can
assume that one of the manipulators in the proof of Theorem 74 has weight 1, which allows us to
apply Theorem 87.

As a final remark, we observe that the manipulation questions discussed in this subsection are
not necessarily even in NP. However, when r = 0, the manipulation question can also be phrased
as saying “does there exist a manipulation that has some chance of succeeding?” We note that this
question is in fact in NP.

The following figure summarizes the flow of the theorems presented in this subsection.

CW−MANIPULATION
CONSTRUCTIVE

IU−MANIPULATION
CONSTRUCTIVE

IW−MANIPULATION
CONSTRUCTIVE

WEIGHTED
EVALUATION

UNWEIGHTED
EVALUATION

Thm. 16 Thm. 17

Thm. 19

Thms. 20, 21

UNDER CERTAINTY UNDER UNCERTAINTY UNDER UNCERTAINTY

Figure 8.2: The flow of the theorems in this subsection.

This concludes the part of the dissertation studying worst-case hardness of manipulation. In the
next section, we move on to a more ambitious goal: voting rules that are usually hard to manipulate.

8.4 Nonexistence of usually-hard-to-manipulate voting rules

One weakness that all of the above results have in common is that they only show worst-case
hardness. That is, the results show that it is unlikely that an efficient algorithm can be designed that
finds a beneficial manipulation in all instances for which a beneficial manipulation exists. However,
this does not mean that there do not exist efficient manipulation algorithms that find a beneficial
manipulation in many instances. If such algorithms do in fact exist, then computational hardness
constitutes a leaky barrier to manipulation at best (though it is presumably still better than nothing).

A truly satisfactory solution to the problem would be to have a rule that is hard to manipulate
in all instances. However, this is too much to ask for: for example, a manipulation algorithm
could have a small database of instances with precomputed solutions, and it would merely need to
check against this database to successfully manipulate some instances. Still, we may ask whether
it is possible to make (say) 99% of instances hard to manipulate. It is generally agreed that this
would have a much greater impact on the design of voting rules in practice than merely worst-case
hardness [Conitzer et al., 2003; Elkind and Lipmaa, 2005b], but none of the multiple efforts to
achieve this objective have succeeded.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 217

In this section, we present an impossibility result that makes it seem unlikely that such an ob-
jective can be achieved by any reasonable voting rule. This is not the first such impossibility result:
a previous result [Procaccia and Rosenschein, 2006] shows that a specific subclass of voting rules
is usually easy to manipulate when the number of candidates is constant and a specific distribution
over instances is used (where the distribution is chosen to have certain properties that would appear
to make manipulation more difficult). By contrast, our result does not require any restriction on
the voting rule, number of candidates, or distribution over instances. Our result states that a voting
rule/instance distribution pair cannot simultaneously be usually hard to manipulate, and have certain
natural properties (which depend on the rule and distribution).

8.4.1 Definitions

Manipulation

As we saw in the previous section, the computational problem of manipulation has been defined
in various ways, but typical definitions are special cases of the following general problem: given
the nonmanipulators’ votes, can the manipulator(s) cast their votes in such a way that one candidate
from a given set of preferred candidates wins? In this section, we study a more difficult manipulation
problem: we require that the manipulator(s) find the set of all the candidates that they can make win
(as well as votes that will bring this about). This stronger requirement makes our impossibility result
stronger: we will show that even this more powerful type of manipulation cannot be prevented.

Definition 47 A manipulation instance is given by a voting rule R, a vector of nonmanipulator votes
v = (rNM

1 , . . . , rNM
n), a vector of weights vs = (dNM

1 , . . . , dNM
n) for the nonmanipulators, and a

vector of weights ws = (dM
1 , . . . , dM

k) for the manipulators. A manipulation algorithm succeeds on
this instance if it produces a set of pairs {(wi1 , ci1), . . . , (wiq , ciq)} such that 1) if the manipulators
cast the vector of votes wij , then cij wins, and 2) if a candidate c does not occur in this set as one
of the cij , then there is no vector of manipulator votes w that makes c win.

An instance is manipulable if the manipulators can make more than one candidate win. Non-
manipulable instances are easy to solve: any algorithm that is sound (in that it does not produce
incorrect (wij , cij) pairs) and that returns at least one (wij , cij) pair (which is easy to do, by simply
checking what the rule will produce for a given vector of votes) will succeed. Hence, we focus on
manipulable instances only.

To investigate whether voting rules are usually easy to manipulate, we also need a probability
distribution over (manipulable) instances. Our impossibility result does not require a specific distri-
bution, but in the experimental subsection of the section, we study a specific family of distributions.

Weak monotonicity

Informally, a rule is monotone if ranking a candidate higher never hurts that candidate. All the
rules mentioned before, with the exceptions of STV and plurality with runoff, are monotone. In this
subsubsection, we formally define a weak notion of monotonicity that is implied by (but does not
imply) standard notions of monotonicity. We note that we want our definition of monotonicity to be
as weak as possible so that our impossibility result will be as strong as possible. We define when an

218 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

instance is weakly monotone, so that even rules that are not (everywhere) weakly monotone can be
(and typically are) weakly monotone on most instances.

We will first define a stronger, more standard notion of monotonicity. For rules that produce
a score for every candidate, a natural definition of monotonicity is the following: if a manipulator
changes his vote so that a given candidate is ranked ahead of a larger set of candidates, then that
candidate’s score should not decrease. However, not every rule produces a score. Thus, we use
the following definition of monotonicity, which does not rely on scores. (Monotonicity as defined
above for rules that produce a score implies monotonicity in the sense of the following definition.)

Definition 48 We say that a voting rule R is monotone for manipulators with weights ws and
nonmanipulator votes v with weights vs if for every pair of candidates c1, c2 and every pair of
manipulator vote vectors w1 = (r1

1, . . . , r
1
k), w2 = (r2

1, . . . , r
2
k), the following condition holds: if

• c2 wins when the manipulators vote w1, and

• for any manipulator i, for any candidate c such that c2 Âr1
i

c, we have c2 Âr2
i

c, and

• for any manipulator i, for any candidate c such that c Âr1
i

c1, we have c Âr2
i

c1;

then c1 does not win when the manipulators vote w2.

Thus, given a monotone instance, if each manipulator decreases the set of candidates that he
prefers to the current winner, and increases the set of candidates that he prefers to a given other
candidate, then the latter candidate cannot become the winner due to this. (It is, however, possible
that a third candidate will win after the change, since we did not restrict how that candidate’s position
in the ranking changed.)

Now we can define our weaker notion of monotonicity:

Definition 49 We say that a voting rule R is weakly monotone for manipulators with weights ws

and nonmanipulator votes v with weights vs if for every pair of candidates c1, c2, one of the follow-
ing conditions holds: 1) c2 does not win for any manipulator votes; or 2) if all the manipulators
rank c2 first and c1 last, then c1 does not win.

We now show that our notion is indeed weaker:

Theorem 88 Monotonicity implies weak monotonicity.

Proof: Given a monotone rule R, consider any pair of candidates c1, c2, and votes w2 = (r2
1, . . . , r

2
k)

for the manipulators in which c2 is always ranked first and c1 is always ranked last. Suppose that
there are votes w1 = (r1

1, . . . , r
1
k) that make c2 win. Then if the manipulators changed from w1 to

w2, every manipulator would decrease the set of candidates that he prefers to c2 and increase the set
of candidates that he prefers to c1. Hence, by monotonicity, c1 cannot win.

On the other hand, weak monotonicity does not imply monotonicity. For instance, consider the
scoring rule defined (for four candidates) by 〈3, 1, 2, 0〉. Ranking a candidate second instead of third
can end up hurting that candidate, so this rule is clearly not monotone. However, under this rule, if
all the manipulators rank candidate c2 first and c1 last, and c1 still wins, then c1 must be at least 3k
points ahead of c2 (not counting the manipulators’ votes), so c2 does not win for any manipulator
votes. Hence, the rule does satisfy weak monotonicity.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 219

8.4.2 Impossibility result

We now present an algorithm that seeks to identify two candidates that can be made to win. The
algorithm is universal in that it does not depend on the voting rule used, except for the places in
which it calls the rule as a (black-box) subroutine.

Find-Two-Winners(R, C, v, vs, ws)
choose an arbitrary manipulator vote vector w1

c1 ← R(C, v, vs, w1, w
s)

for every c2 ∈ C, c2 6= c1 {
choose w2 in which every vote ranks c2 first and c1

last
c← R(C, v, vs, w2, w

s)
if c1 6= c return {(w1, c1), (w2, c)} }

return {(w1, c1)}

If voting rule R can be executed in polynomial time, then so can Find-Two-Winners.

Theorem 89 Find-Two-Winners will succeed on every instance that both a) is weakly monotone
and b) allows the manipulators to make either of exactly two candidates win.

Proof: Find-Two-Winners is sound in the sense that it will never output a manipulation that is
incorrect. It will certainly find one candidate that the manipulators can make win (c1). Thus, we
merely need to show that it will find the second candidate that can be made to win; let us refer to this
candidate as c′. If the algorithm reaches the iteration of the for loop in which c2 = c′, then in this
round, either c 6= c1, in which case we must have c = c′ because there are no other candidates that
can be made to win, or c = c1. But in the latter case, we must conclude that c2 = c′ cannot be made
to win, due to weak monotonicity—which is contrary to assumption. Hence it must be that c = c′.
If the algorithm does not reach the iteration of the for loop in which c2 = c′, it must have found a
manipulation that produced a winner other than c1 in an earlier iteration, and (by assumption) this
other winner can only be c′.

It is not possible to extend the algorithm so that it also succeeds on all weakly monotone in-
stances in which three candidates can be made to win. When three candidates can be made to win,
even under monotone rules, it is possible that one of these candidates can only win if some manip-
ulators vote differently from the other manipulators. In fact, as we saw in the previous section, the
problem of deciding whether multiple weighted manipulators can make a given candidate win is
NP-complete, even when there are only three candidates and the Borda or veto rule is used (both
of which are monotone rules). Any algorithm that does succeed on all weakly monotone instances
in which at most three candidates can be made to win would be able to solve this NP-complete
problem, and thus cannot run in polynomial time (or it would show that P = NP).

The impossibility result now follows as a corollary.

Corollary 8 For any p ∈ [0, 1], there does not exist any combination of an efficiently executable
voting rule R and a distribution d over instances such that

220 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

1. the probability of drawing an instance that is both a) weakly monotone, and b) such that
either of exactly two candidates can be made to win, is at least p; and

2. for any computationally efficient manipulation algorithm, the probability that an instance is
drawn on which the algorithm succeeds is smaller than p.

This impossibility result is relevant only insofar as one expects a voting rule to satisfy Property 1
in the corollary (high probability of drawing a weakly monotone instance in which either of exactly
two candidates can be made to win). Before we argue why one should in fact expect this, it is helpful
to consider how a skeptic might argue that an impossibility result such as this one is irrelevant. At a
minimum, the skeptic should argue that one of the properties required by the result is not sufficiently
desirable or necessary to insist on it. The skeptic could make her case much stronger by actually
exhibiting a voting rule that satisfies all properties except for the disputed one, and that still seems
intuitively desirable. (For example, Arrow’s impossibility result [Arrow, 1963] is often criticized
on the basis that the independence of irrelevant alternatives property is unnecessarily strong, and
this is the only property that common voting rules fail to satisfy.)

Conversely, we will first argue directly for the desirability of Property 1 in Corollary 8. We will
then provide indirect evidence that it will be difficult to construct a sensible rule that does not satisfy
this property, by showing experimentally that all common rules satisfy it very strongly (that is, a
large fraction of manipulable instances are weakly monotone and such that only two candidates can
be made to win).

8.4.3 Arguing directly for Property 1

In this subsection, we argue why one should expect many manipulable instances to be both a) weakly
monotone and b) such that the manipulator(s) can make either of exactly two candidates win. We
first make a simple observation: if manipulable instances are usually weakly monotone, and they
usually allow the manipulator(s) to make either of exactly two candidates win, then a significant
fraction of manipulable instances have both of properties a) and b). More precisely:

Proposition 10 If the probability of drawing a weakly monotone instance is p, and the probability
of drawing an instance in which either of exactly two candidates can be made to win is q, then the
probability of drawing an instance with both properties is at least p + q − 1.

Proof: The probability of drawing an instance that is not weakly monotone is 1 − p, and the prob-
ability of drawing an instance in which more than two candidates can be made to win is 1 − q.
From this, it follows that the probability of drawing an instance with both properties is at least
1− (1− p)− (1− q) = p + q − 1.

With this in mind, we will now argue separately for each of the two properties a) and b).
The argument for Property a)—most manipulable instances should be weakly monotone—is

easy to make. The reason is that if the manipulators rank certain candidates higher, this should, in
general, benefit those candidates. If this were not the case, then the manipulators’ votes would lose
their natural interpretation that they support certain candidates over others, and we are effectively

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 221

asking the manipulators to submit a string of bits without any inherent meaning.13 It should also be
noted that most common voting rules are in fact monotone (on all instances), and the few rules for
which nonmonotone instances can be constructed are often severely criticized because of this (even
if the rule is in fact monotone on most instances).

Arguing for Property b)—most manipulable instances should be such that the manipulators can
make either of exactly two candidates win—is somewhat more difficult. For simplicity, consider
rules that produce a score for every candidate. As the number of voters grows, typically, candi-
dates’ scores tend to separate. This is especially the case if some candidates systematically tend to
be ranked higher than others by voters, e.g. because these candidates are intrinsically better. (One
interpretation of voting that dates back at least to Condorcet is the following: everyone has a noisy
signal about the relative intrinsic quality of the candidates, and the purpose of an election is to
maximize the probability of choosing the intrinsically best candidate [de Caritat (Marquis de Con-
dorcet), 1785].) Thus, given a large number of nonmanipulators, it is unlikely that the scores of the
two leading candidates will be close enough to each other that a few manipulators can make either
one of them win; but it is significantly more unlikely that the scores of the three leading candidates
will be close enough that the manipulators can make any one of them win. So, even given that
some manipulation is possible, it is unlikely that more than two candidates can be made to win.
This argument suggests that it is likely that most common voting rules in fact satisfy Property b).
But it is also an argument for why we should require a voting rule to have this property, because,
especially when we think of voting as being a process for filtering out the noise in voters’ individual
preferences to find the intrinsically best candidate, we want the candidates’ scores to separate.

In the next subsection, we show experimentally that common voting rules in fact strongly satisfy
properties a) and b).

8.4.4 Arguing experimentally for Property 1

In this subsection, we show experimentally that for all the common voting rules, most manipulable
instances are in fact weakly monotone and such that either of exactly two candidates can be made to
win. Because most of the rules that we study are in fact monotone on all instances, this mostly comes
down to showing that at most two candidates can be made to win in most manipulable instances.
Unfortunately, for quite a few of these rules, it is NP-hard to determine whether more than two
candidates can be made to win (this follows from results in the previous section). Rather than trying
to solve these NP-hard problems, we will be content to provide a lower bound on the fraction of
manipulable instances in which either of exactly two candidates can be made to win. We obtain
these lower bounds by characterizing, for each rule that we study, an easily computable sufficient
(but not necessary) condition for an instance to be such that either of exactly two candidates can
be made to win. For at least some rules, the lower bound is probably significantly below the actual
fraction—which only strengthens the relevance of the impossibility result.

One useful property of these lower bounds is that they are independent of how the manipulators’
total weight is distributed. Because of this, only the manipulators’ total weight matters for the

13Incidentally, if this does not bother us, it is easy to design rules that are always hard to manipulate: for example,
we can count an agent’s vote only if part of its vote (represented as a string of bits) encodes the solution to (say) a hard
factoring problem. Of course, this is not a very satisfactory voting rule.

222 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

purpose of our experiments, and we can assume, without loss of generality, that each manipulator
has weight 1.

It should be noted that we can only show results for specific distributions of instances, because
we need a specific distribution to conduct an experiment. Therefore, it cannot be said with certainty
that other distributions would lead to similar results, although for reasonable distributions it appears
likely that they would. One should keep in mind that the vote aggregator typically has no control
over the distribution over voters’ preferences, so that constructing an artificial distribution for which
these results do not hold is unlikely to be helpful. We now present the specific distributions that we
study.

For a given number of candidates, number of nonmanipulators, and number of manipulators,
we generate instances as follows. (This is Condorcet’s distribution, which we discussed in Chap-
ter 3 because the maximum likelihood estimator of the correct ranking under this distribution is the
Kemeny rule [Kemeny, 1959; Young, 1995].) We assume that there is a “correct” ranking t of the
candidates (reflecting the candidates’ unknown intrinsic quality), and the probability of drawing a
given vote r is proportional to pa(r,t)(1 − p)m(m−1)/2−a(r,t), where a(r, t) is the number of pairs
of candidates on whose relative ranking r and t agree (they agree if either c1 Âr c2 and c1 Ât c2,
or c2 Âr c1 and c2 Ât c1). p is a given noise parameter; if p = 1 then all voters will produce
the correct ranking, and if p = 0.5 then we are drawing every vote (independently and uniformly)
completely at random. This distribution is due to Condorcet [de Caritat (Marquis de Condorcet),
1785], and one way to interpret it is as follows. To draw a vote, for each pair of candidates c1, c2,
randomly decide whether the vote is going to agree with the correct ranking on the relative ranking
of c1 and c2 (with probability p), or disagee (with probability 1− p). This may lead to cycles (such
as c1 Â c2 Â c3 Â c1); if so, restart.

These distributions often produce nonmanipulable instances. Ideally, we would discard all non-
manipulable instances, but this requires us to have an algorithm for detecting whether an instance
is manipulable. If we know that the instance is weakly monotone, we can simply use algorithm
Find-Two-Winners for this purpose. However, a few of the rules that we study (STV and plurality
with runoff) are not monotone on all instances. In fact, for these rules, it is NP-hard to tell whether
the instance is manipulable (this follows from results in the previous section). For these rules, we
use simple sufficient (but not necessary) conditions to classify an instance as nonmanipulable. We
will classify each nonmanipulable instance that does not satisfy this condition as having more than
two potential winners, so that our results are still lower bounds on the actual ratio.

In the experiments below, we draw 1000 manipulable instances at random (by drawing and
discarding instances as described above), and for each voting rule, we show our lower bound on
the number of instances in which the manipulators can make either of exactly two candidates win.
For rules that are not monotone everywhere, we also show a lower bound on the number of such
instances that are also weakly monotone (indicated by “<rule> - monotone”). We also consider the
Condorcet criterion—recall that a rule satisfies the Condorcet criterion if any candidate that wins
all of its pairwise elections must win the overall election—and show a lower bound on the number
of instances for which these properties are satisfied for any rule satisfying the Condorcet criterion.

In our first experiment (Figure 8.3), we have three candidates, one manipulator, and significant
noise in the votes (p = 0.6). For all the rules under study, the fraction of instances satisfying the
property approaches 1 as the number of nonmanipulator votes grows.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 223

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

lo
w

er
 b

ou
nd

 o
n

nu
m

be
r

of
 in

st
an

ce
s

w
ith

 p
ro

pe
rt

y

number of nonmanipulators

plurality
Borda

veto
Copeland

maximin
Bucklin

STV
STV - monotone

plurality with runoff
plurality with runoff - monotone

any rule that is Condorcet

Figure 8.3: p = 0.6, one manipulator, three candidates.

Next, we show what happens when we maximize noise (p = 0.5), so that votes are drawn com-
pletely at random (Figure 8.4). Even under such extreme noise, the fraction of instances satisfying
the property approaches 1 or at least becomes very large (> 0.7) for every one of the rules. How-
ever, it is no longer possible to say this for any rule satisfying the Condorcet criterion (although the
specific common rules that do satisfy this criterion satisfy the property for a very large fraction of
instances).

Next, we show results when there are multiple (specifically, 5) manipulators (Figure 8.5). The
results are qualitatively similar to those in Figure 8.3, although for smaller numbers of nonmanipu-
lators the fractions are lower. This makes sense: when the number of nonmanipulators is relatively
small, a large coalition is likely to be able to make any candidate win.

Finally, we experiment with an increased number of candidates (Figure 8.6).
Now, the lower bound on the fraction of instances satisfying the property approaches 1 for all

rules but STV. The lower fraction for STV is probably at least in part due to the fact that the lower
bound that we use for STV is relatively weak. For example, any instance in which the manipulators
can change the eliminated candidate in at least two rounds is counted as having more than two
candidates that the manipulators can make win. This is extremely conservative because changes in
which candidate is eliminated in a given round often do not change the winner.

8.4.5 Can the impossibility be circumvented?

One may wonder whether there are ways to circumvent the impossibility result presented in this
section. Specifically, one may still be able to construct voting rules that are usually hard to ma-

224 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700

lo
w

er
 b

ou
nd

 o
n

nu
m

be
r

of
 in

st
an

ce
s

w
ith

 p
ro

pe
rt

y

number of nonmanipulators

plurality
Borda

veto
Copeland

maximin
Bucklin

STV
STV - monotone

plurality with runoff
plurality with runoff - monotone

any rule that is Condorcet

Figure 8.4: p = 0.5, one manipulator, three candidates.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400

lo
w

er
 b

ou
nd

 o
n

nu
m

be
r

of
 in

st
an

ce
s

w
ith

 p
ro

pe
rt

y

number of nonmanipulators

plurality
Borda

veto
Copeland

maximin
Bucklin

STV
STV - monotone

plurality with runoff
plurality with runoff - monotone

any rule that is Condorcet

Figure 8.5: p = 0.6, five manipulators, three candidates.

8.4. NONEXISTENCE OF USUALLY-HARD-TO-MANIPULATE VOTING RULES 225

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400

lo
w

er
 b

ou
nd

 o
n

nu
m

be
r

of
 in

st
an

ce
s

w
ith

 p
ro

pe
rt

y

number of nonmanipulators

plurality
Borda

veto
Copeland

maximin
Bucklin

STV
STV - monotone

plurality with runoff
plurality with runoff - monotone

any rule that is Condorcet

Figure 8.6: p = 0.6, one manipulator, five candidates.

nipulate by considering a larger class of voting rules, a class that contains rules that do not satisfy
the preconditions of the impossibility result. In this subsection, we discuss various approaches for
circumventing the impossibility result, and their prospects. (One approach that we will not discuss
is that of constructing distributions over voters’ preferences for which the impossibility result fails
to hold, because, as we mentioned earlier, the distribution over voters’ preferences is typically not
something that the vote aggregator has any control over.)

Allowing low-ranked candidates to sometimes win

The impossibility result is only significant if in a sizable fraction of manipulable instances, only two
candidates can be made to win. One may try to prevent this by using a voting rule that sometimes
chooses as the winner a candidate that in fact did not do well in the votes (according to whatever
criterion), thereby increasing the number of candidates that can be made to win in manipulable
instances. Of course, having such a candidate win is inherently undesirable, but if it occurs rarely,
it may be a price worth paying in order to achieve hardness of manipulation.

If we take this approach, and in addition allow for the rule to be randomized, then we can
construct reasonable voting rules that are in fact strategy-proof (that is, no beneficial manipulation
is ever possible). Consider, for example, the following voting rule:

Definition 50 The Copeland-proportional rule chooses candidate c as the winner with probability
proportional to c’s Copeland score.

226 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

An alternative interpretation of this rule is the following: choose a pair of candidates at random;
the winner of their pairwise election wins the entire election. (If the pairwise election is tied, choose
one of the two candidates at random.)

Theorem 90 Copeland-proportional is strategy-proof.

Proof: Suppose the manipulator knows which pair of candidates is chosen. Then, any vote in which
he ranks his preferred candidate higher than the other candidate is strategically optimal. But the
manipulator can guarantee that this is the case, even without knowing the pair of candidates, simply
by voting truthfully.

Recall Gibbard [1977]’s result that a randomized voting rule is strategy-proof only if it is a
probability mixture of unilateral and duple rules, where a rule is unilateral if only one voter af-
fects the outcome, and duple if only two candidates can win. The Copeland-proportional rule only
randomizes over duple rules (namely, pairwise elections).

Of course, the Copeland-proportional rule is still not ideal. For instance, even a Condorcet
winner has a probability of only (m − 1)/(m(m − 1)/2) = 2/m of winning under this rule.
(However, this rule will at least never choose a candidate that loses every pairwise election.) Thus,
it may be worthwhile to try to construct voting rules that are usually hard to manipulate, and that
are more likely to choose a “good” winner than Copeland-proportional.

Expanding the definition of a voting rule

The impossibility result may cease to hold when the rule can choose from a richer outcome space.
As in the previous subsubsection, this may prevent problems of manipulability completely, by al-
lowing the construction of strategy-proof rules. For example, if payments are possible and the agents
have quasilinear utility functions, then a payment scheme such as the VCG mechanism can induce
strategy-proofness. As another example that does not require these assumptions, suppose that it is
possible to exclude certain voters from the effects of the election—as an illustrative example, in
an election for a country’s president, suppose that it is possible to banish certain voters to another
country, in which it will no longer matter to those voters who won the election. (It does not matter
whether living in the other country is otherwise more or less desirable than in the original country.)
Then, we can augment any voting rule as follows:

Definition 51 For any voting rule (in the standard sense) R, the banishing rule B(R) always
chooses the same winner as R, and banishes every pivotal voter. (A voter is pivotal if, given the
other votes, he can make multiple candidates win.)

Theorem 91 For any rule R, the banishing rule B(R) is strategy-proof.

Proof: A voter who is not pivotal has no incentive to misreport, because by definition, his vote does
not affect which candidate wins, and he cannot affect whether he is pivotal. A voter who is pivotal
also has no incentive to misreport, because he cannot affect whether he is pivotal, and the winner of
the election will not matter to him because he will be banished.

8.5. SUMMARY 227

However, this scheme also has a few drawbacks. For one, it may not always be possible to
completely exclude a voter from the effects of the election. Another strange property of this scheme
is that no voter is ever capable of affecting his own utility, so that any vote is strategically optimal.
Finally, it may be necessary to banish large numbers of voters. In fact, the following lemma shows
that for any rule, the votes may turn out to be such that more than half of the voters must be banished.

Theorem 92 For any responsive voting rule R, it is possible that more than half the voters are
simultaneously pivotal. (We say that a voting rule is responsive if there are two votes r1, r2 such
that everyone voting r1 will produce a different winner than everyone voting r2.)

Proof: Let there be n voters total. Denote by vi the vote vector where i voters vote r1, and the
remaining n− i vote r2. Because v0 and vn produce different winners under R, there must be some
i such that vi and vi+1 produce different winners. Thus, in vi, all n− i voters voting r2 are pivotal,
and in vi+1, all i + 1 voters voting r1 are pivotal. Since (n− i) + (i + 1) > n, at least one of n− i
and i + 1 must be greater than n/2.

Rules that are hard to execute

The impossibility result only applies when an efficient algorithm is available for executing the rule,
because algorithm Find-Two-Winners makes calls to such an algorithm as a subroutine. Thus,
one possible way around the impossibility is to use a rule that is hard to execute. Indeed, as we
pointed out before, a number of voting rules have been shown to be NP-hard to execute [Bartholdi
et al., 1989b; Hemaspaandra et al., 1997; Cohen et al., 1999; Dwork et al., 2001; Ailon et al.,
2005]. Of course, we do actually need an algorithm for executing the rule to determine the winner
of the election; and, although we cannot expect this to be a worst-case polynomial-time algorithm,
it should at least run reasonably fast in practice for the rule to be practical. But if the algorithm does
run fast in practice, then it can also be used by the manipulators as the subroutine in Find-Two-
Winners. Therefore, this approach does not look very promising.

8.5 Summary

In this chapter, we studied mechanism design for bounded agents. Specifically, we looked at how
hard it is computationally for agents to find a best response to given opponent strategies in various
expressive preference aggregation settings.

In Section 8.1, we showed that there are settings where using the optimal (social-welfare max-
imizing) truthful mechanism requires the center to solve an NP-hard computational problem; but
there is another, non-truthful mechanism that can be executed in polynomial time, and under which
the problem of finding a beneficial manipulation is hard for one of the agents. Moreover, if the
agent manages to find the manipulation, the produced outcome is the same as that of the best truth-
ful mechanism; and if the agent does not manage to find it, the produced outcome is strictly better.

In Section 8.2, we showed how to tweak existing voting rules to make manipulation hard, while
leaving much of the original nature of the rule intact. The tweak studied in this section consists of

228 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

adding one preround to the election, where candidates face each other one against one. The surviv-
ing candidates continue to the original protocol. Surprisingly, this simple and universal tweak makes
typical rules hard to manipulate! The resulting protocols are NP-hard, #P-hard, or PSPACE-hard
to manipulate, depending on whether the schedule of the preround is determined before the votes
are collected, after the votes are collected, or the scheduling and the vote collecting are interleaved,
respectively. We proved general sufficient conditions on the rules for this tweak to introduce the
hardness, and showed that the most common voting rules satisfy those conditions. These are the
first results in voting settings where manipulation is in a higher complexity class than NP (presum-
ing PSPACE 6= NP).

In Section 8.3, we noted that all of the previous results on hardness of manipulation in elections
required the number of candidates to be unbounded. Such hardness results lose relevance when the
number of candidates is small, because manipulation algorithms that are exponential only in the
number of candidates (and only slightly so) might be available. We gave such an algorithm for an
individual agent to manipulate the Single Transferable Vote (STV) rule, which had been shown hard
to manipulate in the above sense. To obtain hardness-of-manipulation results in settings where the
number of candidates is a small constant, we studied coalitional manipulation by weighted voters.
(We show that for simpler manipulation problems, manipulation cannot be hard with few candi-
dates.) We studied both constructive manipulation (making a given candidate win) and destructive
manipulation (making a given candidate not win). The following tables summarize our results.

Number of candidates 2 3 4,5,6 ≥ 7

Borda P NP-complete NP-complete NP-complete
veto P NP-complete NP-complete NP-complete
STV P NP-complete NP-complete NP-complete
plurality with runoff P NP-complete NP-complete NP-complete
Copeland P P NP-complete NP-complete
maximin P P NP-complete NP-complete
randomized cup P P P NP-complete
regular cup P P P P
plurality P P P P

Complexity of CONSTRUCTIVE CW-MANIPULATION

Number of candidates 2 ≥ 3

STV P NP-complete
plurality with runoff P NP-complete
Borda P P
veto P P
Copeland P P
maximin P P
regular cup P P
plurality P P

Complexity of DESTRUCTIVE CW-MANIPULATION

We also showed that hardness of manipulation in this setting implies hardness of manipulation

8.5. SUMMARY 229

by an individual in unweighted settings when there is uncertainty about the others’ votes.
All of the hardness results mentioned above only show hardness in the worst case; they do not

preclude the existence of an efficient algorithm that often finds a successful manipulation (when it
exists). There have been attempts to design a rule under which finding a beneficial manipulation
is usually hard, but they have failed. To explain this failure, in Section 8.4, we showed that it is
in fact impossible to design such a rule, if the rule is also required to satisfy another property: a
large fraction of the manipulable instances are both weakly monotone, and allow the manipulators
to make either of exactly two candidates win. We argued why one should expect voting rules
to have this property, and showed experimentally that common voting rules satisfy it. We also
discussed approaches for potentially circumventing this impossibility result, some of which appear
worthwhile to investigate in future research.

The manipulation problems defined in this chapter did not involve sophisticated strategic rea-
soning: we simply assumed that the manipulator(s) knew the others’ votes (or at least a distribution
over them). Acting in a strategically optimal way becomes more difficult when this information is
not available, and the manipulator(s) must reason over how the others are likely to act. This is the
topic of the next chapter.

230 CHAPTER 8. MECHANISM DESIGN FOR BOUNDED AGENTS

Chapter 9

Computing Game-Theoretic Solutions

In the previous chapter, we saw that in certain settings, it is computationally hard for an agent to
act in a strategically optimal way even when the agent already knows the actions of all the other
agents—that is, even the best-response problem is hard. There are also many settings in which
this is not the case, i.e. in which it is computationally easy to find a best response to specific ac-
tions of the other agents. However, there is much more to optimal strategic behavior than merely
best-responding to given actions of the other agents. In most settings, the agents (1) do not know
each other’s types, but rather only a distribution over them; and (2) must somehow deduce the other
agents’ strategies, which map types to actions, using game-theoretic analysis (such as equilibrium
reasoning). To some extent, we already discussed (1) in the previous chapter: we saw that uncer-
tainty about other agents’ votes makes the manipulation problem more difficult. But those results
assumed that the manipulator(s) somehow knew a probability distribution over the other agents’
votes. This is sweeping (2) under the rug, because to obtain such a distribution, some strategic as-
sessment needs to be made about the strategies that the other agents are likely to use. The traditional
assumption in mechanism design has been that strategic agents will play according to some solution
concept (such as Bayes-Nash equilibrium), and if this assumption is accurate, then by the revelation
principle, we can restrict our attention to truthful mechanisms. But what if such solutions are too
hard for the agents to compute? If that is the case, then the agents cannot play according to these
solutions, and the revelation principle loses its relevance.1 Thus, the complexity of computing solu-
tions according to these concepts becomes a key issue when considering how to design mechanisms
for bounded agents. This chapter investigates that issue. (An even more difficult question is how
a mechanism designer should proceed when solutions do turn out to be hard to compute, but that

1It should be emphasized here that it only loses its relevance in the sense that we may be able to achieve better re-
sults with non-truthful mechanisms (due to the agents’ computational boundedness). However, the revelation principle
still holds in the sense that using truthful mechanisms, we can achieve any result that we would have achieved under a
non-truthful mechanism if agents had acted according to game-theoretic solution concepts (even if this would have been
computationally infeasible for them). Thus, if we want to take the perspective that we want to help the agents act strate-
gically optimally, and that we do not want them to feel any regret about having failed to misreport their preferences in the
optimal way, then the revelation principle still applies and we may as well restrict our attention to truthful mechanisms—
thereby relieving the agents of the burden of acting strategically. The view taken in this dissertation, however, is that there
is nothing bad about an agent failing to manipulate the mechanism if the overall outcome is better as a result. This view
is what motivates the interest in non-truthful mechanisms in this chapter.

231

232 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

remains outside the scope of this chapter.)
Certainly, intuitively, it seems that computing an equilibrium is typically much harder than

computing a best response, and we have already seen in the previous chapter that the latter is hard
in some complex settings. This chapter will therefore focus on more basic settings: in fact, it will
focus only on normal-form games and Bayesian games that are flatly represented (all types and
actions are listed explicitly). We note that even in (say) a straightforward voting setting, the type
and action spaces are exponential in size, so that flat representation is not reasonable. (In fact, this is
why finding a best response can be computationally hard in those settings. By contrast, computing
best responses in flatly represented games is easy.) If computing game-theoretic solutions is hard
even under flat representation, this makes it seem even more unlikely that agents will be able to
compute such solutions in the richer settings that we are interested in.

If we are in fact able to compute certain game-theoretic solutions, that is of interest for other
reasons as well. It can be helpful in predicting the outcomes of non-truthful mechanisms. It also
allows us to build computer players for game-theoretically nontrivial games such as poker [Koller
and Pfeffer, 1997; Shi and Littman, 2001; Billings et al., 2003; Gilpin and Sandholm, 2006b,a]
or potentially even RoboSoccer. Finally, it can also potentially be helpful in other settings where
computer systems are interacting with other agents (human or computer) whose interests are not
aligned with the computer system, such as surveillance and fraud detection.

The rest of this chapter is layed out as follows. In Section 9.1, we characterize the complexity of
some basic computational questions about dominance and iterated dominance in both normal-form
and Bayesian games [Conitzer and Sandholm, 2005c], and in Section 9.2 we do the same for Nash
equilibrium [Conitzer and Sandholm, 2003e]. In Section 9.3 we provide a parameterized definition
of strategy eliminability that is more general than dominance, and give an algorithm for computing
whether a strategy is eliminable whose running time is exponential in only one parameter of the
definition [Conitzer and Sandholm, 2005e].

9.1 Dominance and iterated dominance

While an ever-increasing amount of research focuses on computing Nash equilibria, the arguably
simpler concept of (iterated) dominance has received much less attention. After an early short
paper on a special case [Knuth et al., 1988], the main computational study of these concepts has
taken place in a paper in the game theory community [Gilboa et al., 1993].2 Computing solutions
according to (iterated) dominance is important for at least the following reasons: 1) it can be com-
putationally easier than computing (for instance) a Nash equilibrium (and therefore it can be useful
as a preprocessing step in computing a Nash equilibrium), and 2) (iterated) dominance requires a
weaker rationality assumption on the players than (for instance) Nash equilibrium, and therefore
solutions derived according to it are more likely to occur.

In this section, we study some fundamental computational questions concerning dominance and
iterated dominance, including how hard it is to check whether a given strategy can be eliminated by
each of the variants of these notions. We study both strict and weak dominance, by both pure and
mixed strategies, in both normal-form and Bayesian games.

2This is not to say that computer scientists have ignored dominance altogether. For example, simple dominance checks
are sometimes used as a subroutine in searching for Nash equilibria [Porter et al., 2004].

9.1. DOMINANCE AND ITERATED DOMINANCE 233

9.1.1 Dominance (not iterated)

In this subsection, we study the notion of one-shot (not iterated) dominance. When we are looking
at the dominance relations for player i, the other players (−i) can be thought of as a single player.3

Therefore, in the rest of this section, when we study one-shot (not iterated) dominance, we will
focus without loss of generality on two-player games.4 In two-player games, we will generally refer
to the players as r (row) and c (column) rather than 1 and 2.

As a first observation, checking whether a given strategy is strictly (weakly) dominated by some
pure strategy is straightforward, by checking, for every pure strategy for that player, whether the lat-
ter strategy performs strictly better against all the opponent’s pure strategies (at least as well against
all the opponent’s pure strategies, and strictly better against at least one).5 Next, we show that
checking whether a given strategy is dominated by some mixed strategy can be done in polynomial
time by solving a single linear program. (Similar linear programs have been given before [Myerson,
1991]; we present the result here for completeness, and because we will build on the linear programs
given below in Theorem 98.)

Proposition 11 Given the row player’s utilities, a subset Dr of the row player’s pure strategies Σr,
and a distinguished strategy σ∗

r for the row player, we can check in time polynomial in the size of
the game (by solving a single linear program of polynomial size) whether there exists some mixed
strategy σr, that places positive probability only on strategies in Dr and dominates σ∗

r , both for
strict and for weak dominance.

Proof: Let pdr be the probability that σr places on dr ∈ Dr. We will solve a single linear program
in each of our algorithms; linear programs can be solved in polynomial time [Khachiyan, 1979]. For
strict dominance, the question is whether the pdr can be set so that for every pure strategy for the
column player σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) > ur(σ
∗
r , σc). Because the inequality must be strict,

we cannot solve this directly by linear programming. We proceed as follows. Because the game is
finite, we may assume without loss of generality that all utilities are positive (if not, simply add a
constant to all utilities.) Solve the following linear program:

minimize
∑

dr∈Dr

pdr

such that
for all σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) ≥ ur(σ
∗
r , σc).

If σ∗
r is strictly dominated by some mixed strategy, this linear program has a solution with ob-

jective value < 1. (The dominating strategy is a feasible solution with objective value exactly 1.
Because no constraint is binding for this solution, we can reduce one of the probabilities slightly

3This player may have a very large strategy space (one pure strategy for every vector of pure strategies for the players
that are being replaced). Nevertheless, this will not result in an increase in our representation size, because the original
representation already had to specify utilities for each of these vectors.

4We note that a restriction to two-player games would not be without loss of generality for iterated dominance. This
is because for iterated dominance, we need to look at the dominated strategies of each individual player, so we cannot
merge any players.

5Recall that the assumption of a single opponent (that is, the assumption of two players) is without loss of generality
for one-shot dominance.

234 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

without affecting feasibility, thereby obtaining a solution with objective value < 1.) Moreover, if
this linear program has a solution with objective value < 1, there is a mixed strategy strictly domi-
nating σ∗

r , which can be obtained by taking the LP solution and adding the remaining probability to
any strategy (because all the utilities are positive, this will add to the left side of any inequality, so
all inequalities will become strict). Thus, we have strict dominance if and only if the linear program
has a solution with objective value < 1.

For weak dominance, we can solve the following linear program:

maximize
∑

σc∈Σc

((
∑

dr∈Dr

pdrur(dr, σc))− ur(σ
∗
r , σc))

such that
for all σc ∈ Σc,

∑

dr∈Dr

pdrur(dr, σc) ≥ ur(σ
∗
r , σc);

∑

dr∈Dr

pdr = 1.

If σ∗
r is weakly dominated by some mixed strategy, then that mixed strategy is a feasible solution

to this program with objective value > 0, because for at least one strategy σc ∈ Σc we have
(

∑

dr∈Dr

pdrur(dr, σc)) − ur(σ
∗
r , σc) > 0. On the other hand, if this program has a solution with

objective value > 0, then for at least one strategy σc ∈ Σc we must have (
∑

dr∈Dr

pdrur(dr, σc)) −

ur(σ
∗
r , σc) > 0, and thus the linear program’s solution is a weakly dominating mixed strategy.

9.1.2 Iterated dominance

We now move on to iterated dominance. It is well-known that iterated strict dominance is path-
independent [Gilboa et al., 1990; Osborne and Rubinstein, 1994]—that is, if we remove dominated
strategies until no more dominated strategies remain, in the end the remaining strategies for each
player will be the same, regardless of the order in which strategies are removed. Because of this, to
see whether a given strategy can be eliminated by iterated strict dominance, all that needs to be done
is to repeatedly remove strategies that are strictly dominated, until no more dominated strategies
remain. Because we can check in polynomial time whether any given strategy is dominated (whether
or not dominance by mixed strategies is allowed, as described in Subsection 9.1.1), this whole
procedure takes only polynomial time. In the case of iterated dominance by pure strategies with two
players, Knuth et al. [1988] slightly improve on (speed up) the straightforward implementation of
this procedure by keeping track of, for each ordered pair of strategies for a player, the number of
opponent strategies that prevent the first strategy from dominating the second. Hereby the runtime
for an m× n game is reduced from O((m + n)4) to O((m + n)3). (Actually, they only study very
weak dominance (for which no strict inequalities are required), but the approach is easily extended.)

In contrast, iterated weak dominance is known to be path-dependent.6 For example, in the
following game, using iterated weak dominance we can eliminate M first, and then D, or R first,
and then U .

6There is, however, a restriction of weak dominance called nice weak dominance which is path-independent [Marx
and Swinkels, 1997, 2000]. For an overview of path-independence results, see Apt [2004].

9.1. DOMINANCE AND ITERATED DOMINANCE 235

L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

Therefore, while the procedure of removing weakly dominated strategies until no more weakly
dominated strategies remain can certainly be executed in polynomial time, which strategies survive
in the end depends on the order in which we remove the dominated strategies. We will investigate
two questions for iterated weak dominance: whether a given strategy is eliminated in some path,
and whether there is a path to a unique solution (one pure strategy left per player). We will show
that both of these problems are computationally hard.

Definition 52 Given a game in normal form and a distinguished strategy σ∗, IWD-STRATEGY-
ELIMINATION asks whether there is some path of iterated weak dominance that eliminates σ∗.
Given a game in normal form, IWD-UNIQUE-SOLUTION asks whether there is some path of iter-
ated weak dominance that leads to a unique solution (one strategy left per player).

The following lemma shows a special case of normal-form games in which allowing for weak
dominance by mixed strategies (in addition to weak dominance by pure strategies) does not help.
We will prove the hardness results in this setting, so that they will hold whether or not dominance
by mixed strategies is allowed.

Lemma 21 Suppose that all the utilities in a game are in {0, 1}. Then every pure strategy that is
weakly dominated by a mixed strategy is also weakly dominated by a pure strategy.

Proof: Suppose pure strategy σ is weakly dominated by mixed strategy σ∗. If σ gets a utility of 1
against some opponent strategy (or vector of opponent strategies if there are more than 2 players),
then all the pure strategies that σ∗ places positive probability on must also get a utility of 1 against
that opponent strategy (or else the expected utility would be smaller than 1). Moreover, at least
one of the pure strategies that σ∗ places positive probability on must get a utility of 1 against an
opponent strategy that σ gets 0 against (or else the inequality would never be strict). It follows that
this pure strategy weakly dominates σ.

We are now ready to prove the main results of this subsection.

Theorem 93 IWD-STRATEGY-ELIMINATION is NP-complete, even with 2 players, and with 0 and
1 being the only utilities occurring in the matrix—whether or not dominance by mixed strategies is
allowed.

Proof: The problem is in NP because given a sequence of strategies to be eliminated, we can easily
check whether this is a valid sequence of eliminations (even when dominance by mixed strategies
is allowed, using Proposition 11). To show that the problem is NP-hard, we reduce an arbitrary
satisfiability instance (given by a nonempty set of clauses C over a nonempty set of variables V ,
with corresponding literals L = {+v : v ∈ V }∪{−v : v ∈ V }) to the following IWD-STRATEGY-
ELIMINATION instance. (In this instance, we will specify that certain strategies are uneliminable.

236 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

A strategy σr can be made uneliminable, even when 0 and 1 are the only allowed utilities, by adding
another strategy σ′

r and another opponent strategy σc, so that: 1. σr and σ′
r are the only strategies

that give the row player a utility of 1 against σc. 2. σr and σ′
r always give the row player the same

utility. 3. σc is the only strategy that gives the column player a utility of 1 against σ ′
r, but otherwise

σc always gives the column player utility 0. This makes it impossible to eliminate any of these three
strategies. We will not explicitly specify the additional strategies to make the proof more legible.)

In this proof, we will denote row player strategies by s, and column player strategies by t, to
improve legibility. Let the row player’s pure strategy set be given as follows. For every variable v ∈
V , the row player has corresponding strategies s1

+v, s
2
+v, s

1
−v, s

2
−v. Additionally, the row player has

the following 2 strategies: s1
0 and s2

0, where s2
0 = σ∗

r (that is, it is the strategy we seek to eliminate).
Finally, for every clause c ∈ C, the row player has corresponding strategies s1

c (uneliminable) and
s2
c . Let the column player’s pure strategy set be given as follows. For every variable v ∈ V , the

column player has a corresponding strategy tv. For every clause c ∈ C, the column player has a
corresponding strategy tc, and additionally, for every literal l ∈ L that occurs in c, a strategy tc,l. For
every variable v ∈ V , the column player has corresponding strategies t+v, t−v (both uneliminable).
Finally, the column player has three additional strategies: t10 (uneliminable), t20, and t1.

The utility function for the row player is given as follows:

• ur(s
1
+v, tv) = 0 for all v ∈ V ;

• ur(s
2
+v, tv) = 1 for all v ∈ V ;

• ur(s
1
−v, tv) = 1 for all v ∈ V ;

• ur(s
2
−v, tv) = 0 for all v ∈ V ;

• ur(s
1
+v, t1) = 1 for all v ∈ V ;

• ur(s
2
+v, t1) = 0 for all v ∈ V ;

• ur(s
1
−v, t1) = 0 for all v ∈ V ;

• ur(s
2
−v, t1) = 1 for all v ∈ V ;

• ur(s
b
+v, t+v) = 1 for all v ∈ V and b ∈ {1, 2};

• ur(s
b
−v, t−v) = 1 for all v ∈ V and b ∈ {1, 2};

• ur(sl, t) = 0 otherwise for all l ∈ L and t ∈ S2;

• ur(s
1
0, tc) = 0 for all c ∈ C;

• ur(s
2
0, tc) = 1 for all c ∈ C;

• ur(s
b
0, t

1
0) = 1 for all b ∈ {1, 2};

• ur(s
1
0, t

2
0) = 1;

• ur(s
2
0, t

2
0) = 0;

• ur(s
b
0, t) = 0 otherwise for all b ∈ {1, 2} and t ∈ S2;

• ur(s
b
c, t) = 0 otherwise for all c ∈ C and b ∈ {1, 2};

and the row player’s utility is 0 in every other case. The utility function for the column player is
given as follows:

9.1. DOMINANCE AND ITERATED DOMINANCE 237

• uc(s, tv) = 0 for all v ∈ V and s ∈ S1;

• uc(s, t1) = 0 for all s ∈ S1;

• uc(s
2
l , tc) = 1 for all c ∈ C and l ∈ L where l ∈ c (literal l occurs in clause c);

• uc(s
2
l2
, tc,l1) = 1 for all c ∈ C and l1, l2 ∈ L, l1 6= l2 where l2 ∈ c;

• uc(s
1
c , tc) = 1 for all c ∈ C;

• uc(s
2
c , tc) = 0 for all c ∈ C;

• uc(s
b
c, tc,l) = 1 for all c ∈ C, l ∈ L, and b ∈ {1, 2};

• uc(s2, tc) = uc(s2, tc,l) = 0 otherwise for all c ∈ C and l ∈ L;

and the column player’s utility is 0 in every other case. We now show that the two instances are
equivalent.

First, suppose there is a solution to the satisfiability instance: that is, a truth-value assignment
to the variables in V such that all clauses are satisfied. Then, consider the following sequence of
eliminations in our game: 1. For every variable v that is set to true in the assignment, eliminate tv

(which gives the column player utility 0 everywhere). 2. Then, for every variable v that is set to
true in the assignment, eliminate s2

+v using s1
+v (which is possible because tv has been eliminated,

and because t1 has not been eliminated (yet)). 3. Now eliminate t1 (which gives the column player
utility 0 everywhere). 4. Next, for every variable v that is set to false in the assignment, eliminate
s2
−v using s1

−v (which is possible because t1 has been eliminated, and because tv has not been
eliminated (yet)). 5. For every clause c which has the variable corresponding to one of its positive
literals l = +v set to true in the assignment, eliminate tc using tc,l (which is possible because s2

l

has been eliminated, and s2
c has not been eliminated (yet)). 6. For every clause c which has the

variable corresponding to one of its negative literals l = −v set to false in the assignment, eliminate
tc using tc,l (which is possible because s2

l has been eliminated, and s2
c has not been eliminated

(yet)). 7. Because the assignment satisfied the formula, all the tc have now been eliminated. Thus,
we can eliminate s2

0 = σ∗
r using s1

0. It follows that there is a solution to the IWD-STRATEGY-
ELIMINATION instance.

Now suppose there is a solution to the IWD-STRATEGY-ELIMINATION instance. By Lemma 21,
we can assume that all the dominances are by pure strategies. We first observe that only s1

0 can elim-
inate s2

0 = σ∗
r , because it is the only other strategy that gets the row player a utility of 1 against t10,

and t10 is uneliminable. However, because s2
0 performs better than s1

0 against the tc strategies, it
follows that all of the tc strategies must be eliminated. For each c ∈ C, the strategy tc can only be
eliminated by one of the strategies tc,l (with the same c), because these are the only other strategies
that get the column player a utility of 1 against s1

c , and s1
c is uneliminable. But, in order for some

tc,l to eliminate tc, s2
l must be eliminated first. Only s1

l can eliminate s2
l , because it is the only

other strategy that gets the row player a utility of 1 against tl, and tl is uneliminable. We next show
that for every v ∈ V only one of s2

+v, s
2
−v can be eliminated. This is because in order for s1

+v to
eliminate s2

+v, tv needs to have been eliminated and t1, not (so tv must be eliminated before t1); but
in order for s1

−v to eliminate s2
−v, t1 needs to have been eliminated and tv, not (so t1 must be elimi-

nated before tv). So, set v to true if s2
+v is eliminated, and to false otherwise Because by the above,

for every clause c, one of the s2
l with l ∈ c must be eliminated, it follows that this is a satisfying

238 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

assignment to the satisfiability instance.

Using Theorem 93, it is now (relatively) easy to show that IWD-UNIQUE-SOLUTION is also
NP-complete under the same restrictions.

Theorem 94 IWD-UNIQUE-SOLUTION is NP-complete, even with 2 players, and with 0 and 1
being the only utilities occurring in the matrix—whether or not dominance by mixed strategies is
allowed.

Proof: Again, the problem is in NP because we can nondeterministically choose the sequence of
eliminations and verify whether it is correct. To show NP-hardness, we reduce an arbitrary IWD-
STRATEGY-ELIMINATION instance to the following IWD-UNIQUE-SOLUTION instance. Let
all the strategies for each player from the original instance remain part of the new instance, and let
the utilities resulting from the players playing a pair of these strategies be the same. We add three
additional strategies σ1

r , σ
2
r , σ

3
r for the row player, and three additional strategies σ1

c , σ
2
c , σ

3
c for the

column player. Let the additional utilities be as follows:

• ur(σr, σ
j
c) = 1 for all σr /∈ {σ1

r , σ
2
r , σ

3
r} and j ∈ {2, 3};

• ur(σ
i
r, σc) = 1 for all i ∈ {1, 2, 3} and σc /∈ {σ2

c , σ
3
c};

• ur(σ
i
r, σ

2
c) = 1 for all i ∈ {2, 3};

• ur(σ
1
r , σ

3
c) = 1;

• and the row player’s utility is 0 in all other cases involving a new strategy.

• uc(σ
3
r , σc) = 1 for all σc /∈ {σ1

c , σ
2
c , σ

3
c};

• uc(σ
∗
r , σ

j
c) = 1 for all j ∈ {2, 3} (σ∗

r is the strategy to be eliminated in the original instance);

• uc(σ
i
r, σ

1
c) = 1 for all i ∈ {1, 2};

• ur(σ
1
r , σ

2
c) = 1;

• ur(σ
2
r , σ

3
c) = 1;

• and the column player’s utility is 0 in all other cases involving a new strategy.

We proceed to show that the two instances are equivalent.
First suppose there exists a solution to the original IWD-STRATEGY-ELIMINATION instance.

Then, perform the same sequence of eliminations to eliminate σ∗
r in the new IWD-UNIQUE-

SOLUTION instance. (This is possible because at any stage, any weak dominance for the row
player in the original instance is still a weak dominance in the new instance, because the two strate-
gies’ utilities for the row player are the same when the column player plays one of the new strategies;
and the same is true for the column player.) Once σ∗

r is eliminated, let σ1
c eliminate σ2

c . (It performs
better against σ2

r .) Then, let σ1
r eliminate all the other remaining strategies for the row player. (It

always performs better against either σ1
c or σ3

c .) Finally, σ1
c is the unique best response against σ1

r

among the column player’s remaining strategies, so let it eliminate all the other remaining strategies
for the column player. Thus, there exists a solution to the IWD-UNIQUE-SOLUTION instance.

Now suppose there exists a solution to the IWD-UNIQUE-SOLUTION instance. By Lemma 21,
we can assume that all the dominances are by pure strategies. We will show that none of the new

9.1. DOMINANCE AND ITERATED DOMINANCE 239

strategies (σ1
r , σ

2
r , σ

3
r , σ

1
c , σ

2
c , σ

3
c) can either eliminate another strategy, or be eliminated before σ∗

r

is eliminated. Thus, there must be a sequence of eliminations ending in the elimination of σ∗
r ,

which does not involve any of the new strategies, and is therefore a valid sequence of eliminations
in the original game (because all original strategies perform the same against each new strategy).
We now show that this is true by exhausting all possibilities for the first elimination before σ∗

r is
eliminated that involves a new strategy. None of the σi

r can be eliminated by a σr /∈ {σ1
r , σ

2
r , σ

3
r},

because the σi
r perform better against σ1

c . σ1
r cannot eliminate any other strategy, because it always

performs poorer against σ2
c . σ2

r and σ3
r are equivalent from the row player’s perspective (and thus

cannot eliminate each other), and cannot eliminate any other strategy because they always perform
poorer against σ3

c . None of the σj
c can be eliminated by a σc /∈ {σ1

c , σ
2
c , σ

3
c}, because the σj

c always
perform better against either σ1

r or σ2
r . σ1

c cannot eliminate any other strategy, because it always
performs poorer against either σ∗

r or σ3
r . σ2

c cannot eliminate any other strategy, because it always
performs poorer against σ2

r or σ3
r . σ3

c cannot eliminate any other strategy, because it always performs
poorer against σ1

r or σ3
r . From this, it follows that there exists a solution to the IWD-STRATEGY-

ELIMINATION instance.

A slightly weaker version of the part of Theorem 94 concerning dominance by pure strategies
only is the main result of Gilboa et al. [1993]. (Besides not proving the result for dominance by
mixed strategies, the original result was weaker because it required utilities {0, 1, 2, 3, 4, 5, 6, 7, 8}
rather than just {0, 1} (and because of this, our Lemma 21 cannot be applied to the original result
to get the result for mixed strategies, giving us an additional motivation to prove the result for the
case where utilities are in {0, 1}).)

9.1.3 (Iterated) dominance using mixed strategies with small supports

When showing that a strategy is dominated by a mixed strategy, there are several reasons to prefer
exhibiting a dominating strategy that places positive probability on as few pure strategies as possible.
First, this will reduce the number of bits required to specify the dominating strategy (and thus the
proof of dominance can be communicated quicker): if the dominating mixed strategy places positive
probability on only k strategies, then it can be specified using k real numbers for the probabilities,
plus k log m (where m is the number of strategies for the player under consideration) bits to indicate
which strategies are used. Second, the proof of dominance will be “cleaner”: for a dominating
mixed strategy, it is typically (always in the case of strict dominance) possible to spread some of
the probability onto any unused pure strategy and still have a dominating strategy, but this obscures
which pure strategies are the ones that are key in making the mixed strategy dominating. Third,
because (by the previous) the argument for eliminating the dominated strategy is simpler and easier
to understand, it is more likely to be accepted. Fourth, the level of risk neutrality required for the
argument to work is reduced, at least in the extreme case where dominance by a single pure strategy
can be exhibited (no risk neutrality is required here).

This motivates the following problem.

Definition 53 (MINIMUM-DOMINATING-SET) We are given the row player’s utilities of a
game in normal form, a distinguished strategy σ∗ for the row player, a specification of whether
the dominance should be strict or weak, and a number k (not necessarily a constant). We are asked

240 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

whether there exists a mixed strategy σ for the row player that places positive probability on at most
k pure strategies, and dominates σ∗ in the required sense.

Unfortunately, this problem is NP-complete.

Theorem 95 MINIMUM-DOMINATING-SET is NP-complete, both for strict and for weak domi-
nance.

Proof: The problem is in NP because we can nondeterministically choose a set of at most k strate-
gies to give positive probability, and decide whether we can dominate σ∗ with these k strategies as
described in Proposition 11. To show NP-hardness, we reduce an arbitrary SET-COVER instance
(given a set S, subsets S1, S2, . . . , Sr, and a number t, can all of S be covered by at most t of the
subsets?) to the following MINIMUM-DOMINATING-SET instance. For every element s ∈ S,
there is a pure strategy σs for the column player. For every subset Si, there is a pure strategy σSi

for the row player. Finally, there is the distinguished pure strategy σ∗ for the row player. The
row player’s utilities are as follows: ur(σSi , σs) = t + 1 if s ∈ Si; ur(σSi , σs) = 0 if s /∈ Si;
ur(σ

∗, σs) = 1 for all s ∈ S. Finally, we let k = t. We now proceed to show that the two instances
are equivalent.

First suppose there exists a solution to the SET-COVER instance. Without loss of generality, we
can assume that there are exactly k subsets in the cover. Then, for every Si that is in the cover, let the
dominating strategy σ place exactly 1

k probability on the corresponding pure strategy σSi . Now, if
we let n(s) be the number of subsets in the cover containing s (we observe that that n(s) ≥ 1), then
for every strategy σs for the column player, the row player’s expected utility for playing σ when the
column player is playing σs is u(σ, σs) = n(s)

k (k + 1) ≥ k+1
k > 1 = u(σ∗, σs). So σ strictly (and

thus also weakly) dominates σ∗, and there exists a solution to the MINIMUM-DOMINATING-SET
instance.

Now suppose there exists a solution to the MINIMUM-DOMINATING-SET instance. Consider
the (at most k) pure strategies of the form σSi on which the dominating mixed strategy σ places
positive probability, and let T be the collection of the corresponding subsets Si. We claim that T is
a cover. For suppose there is some s ∈ S that is not in any of the subsets in T . Then, if the column
player plays σs, the row player (when playing σ) will always receive utility 0—as opposed to the
utility of 1 the row player would receive for playing σ∗, contradicting the fact that σ dominates σ∗

(whether this dominance is weak or strict). It follows that there exists a solution to the SET-COVER
instance.

On the other hand, if we require that the dominating strategy only places positive probability on
a very small number of pure strategies, then it once again becomes easy to check whether a strategy
is dominated. Specifically, to find out whether player i’s strategy σ∗ is dominated by a strategy that
places positive probability on only k pure strategies, we can simply check, for every subset of k of
player i’s pure strategies, whether there is a strategy that places positive probability only on these k
strategies and dominates σ∗, using Proposition 11. This requires only O(|Σi|

k) such checks. Thus,
if k is a constant, this constitutes a polynomial-time algorithm.

A natural question to ask next is whether iterated strict dominance remains computationally
easy when dominating strategies are required to place positive probability on at most k pure strate-
gies, where k is a small constant. (We have already shown in Subsection 9.1.2 that iterated weak

9.1. DOMINANCE AND ITERATED DOMINANCE 241

dominance is hard even when k = 1, that is, only dominance by pure strategies is allowed.) Of
course, if iterated strict dominance were path-independent under this restriction, computational eas-
iness would follow as it did in Subsection 9.1.2. However, it turns out that this is not the case.

Observation 1 If we restrict the dominating strategies to place positive probability on at most two
pure strategies, iterated strict dominance becomes path-dependent.

Proof: Consider the following game:

7, 1 0, 0 0, 0
0, 0 7, 1 0, 0
3, 0 3, 0 0, 0
0, 0 0, 0 3, 1
1, 0 1, 0 1, 0

Let (i, j) denote the outcome in which the row player plays the ith row and the column player
plays the jth column. Because (1, 1), (2, 2), and (4, 3) are all Nash equilibria, none of the column
player’s pure strategies will ever be eliminated, and neither will rows 1, 2, and 4. We now observe
that randomizing uniformly over rows 1 and 2 dominates row 3, and randomizing uniformly over
rows 3 and 4 dominates row 5. However, if we eliminate row 3 first, it becomes impossible to
dominate row 5 without randomizing over at least 3 pure strategies.

Indeed, iterated strict dominance turns out to be hard even when k = 3.

Theorem 96 If we restrict the dominating strategies to place positive probability on at most three
pure strategies, it becomes NP-complete to decide whether a given strategy can be eliminated using
iterated strict dominance.

Proof: The problem is in NP because given a sequence of strategies to be eliminated, we can check
in polynomial time whether this is a valid sequence of eliminations (for any strategy to be elimi-
nated, we can check, for every subset of three other strategies, whether there is a strategy placing
positive probability on only these three strategies that dominates the strategy to be eliminated, using
Proposition 11). To show that the problem is NP-hard, we reduce an arbitrary satisfiability instance
(given by a nonempty set of clauses C over a nonempty set of variables V , with corresponding
literals L = {+v : v ∈ V } ∪ {−v : v ∈ V }) to the following two-player game.

For every variable v ∈ V , the row player has strategies s+v, s−v, s
1
v, s

2
v, s

3
v, s

4
v, and the column

player has strategies t1v, t
2
v, t

3
v, t

4
v. For every clause c ∈ C, the row player has a strategy sc, and the

column player has a strategy tc, as well as, for every literal l occurring in c, an additional strategy
tlc. The row player has two additional strategies s1 and s2. (s2 is the strategy that we are seeking to
eliminate.) Finally, the column player has one additional strategy t1.

The utility function for the row player is given as follows (where ε is some sufficiently small
number):

• ur(s+v, t
j
v) = 4 if j ∈ {1, 2}, for all v ∈ V ;

242 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

• ur(s+v, t
j
v) = 1 if j ∈ {3, 4}, for all v ∈ V ;

• ur(s−v, t
j
v) = 1 if j ∈ {1, 2}, for all v ∈ V ;

• ur(s−v, t
j
v) = 4 if j ∈ {3, 4}, for all v ∈ V ;

• ur(s+v, t) = ur(s−v, t) = 0 for all v ∈ V and t /∈ {t1v, t
2
v, t

3
v, t

4
v};

• ur(s
i
v, t

i
v) = 13 for all v ∈ V and i ∈ {1, 2, 3, 4};

• ur(s
i
v, t) = ε for all v ∈ V , i ∈ {1, 2, 3, 4}, and t 6= tiv;

• ur(sc, tc) = 2 for all c ∈ C;

• ur(sc, t) = 0 for all c ∈ C and t 6= tc;

• ur(s1, t1) = 1 + ε;

• ur(s1, t) = ε for all t 6= t1;

• ur(s2, t1) = 1;

• ur(s2, tc) = 1 for all c ∈ C;

• ur(s2, t) = 0 for all t /∈ {t1} ∪ {tc : c ∈ C}.

The utility function for the column player is given as follows:

• uc(s
i
v, t

i
v) = 1 for all v ∈ V and i ∈ {1, 2, 3, 4};

• uc(s, t
i
v) = 0 for all v ∈ V , i ∈ {1, 2, 3, 4}, and s 6= si

v;

• uc(sc, tc) = 1 for all c ∈ C;

• uc(sl, tc) = 1 for all c ∈ C and l ∈ L occurring in c;

• uc(s, tc) = 0 for all c ∈ C and s /∈ {sc} ∪ {sl : l ∈ c};

• uc(sc, t
l
c) = 1 + ε for all c ∈ C;

• uc(sl′ , t
l
c) = 1 + ε for all c ∈ C and l′ 6= l occurring in c;

• uc(s, t
l
c) = ε for all c ∈ C and s /∈ {sc} ∪ {sl′ : l′ ∈ c, l 6= l′};

• uc(s2, t1) = 1;

• uc(s, t1) = 0 for all s 6= s2.

We now show that the two instances are equivalent. First, suppose that there is a solution to
the satisfiability instance. Then, consider the following sequence of eliminations in our game: 1.
For every variable v that is set to true in the satisfying assignment, eliminate s+v with the mixed
strategy σr that places probability 1/3 on s−v, probability 1/3 on s1

v, and probability 1/3 on s2
v.

(The expected utility of playing σr against t1v or t2v is 14/3 > 4; against t3v or t4v, it is 4/3 > 1;
and against anything else it is 2ε/3 > 0. Hence the dominance is valid.) 2. Similarly, for every
variable v that is set to false in the satisfying assignment, eliminate s−v with the mixed strategy σr

that places probability 1/3 on s+v, probability 1/3 on s3
v, and probability 1/3 on s4

v. (The expected
utility of playing σr against t1v or t2v is 4/3 > 1; against t3v or t4v, it is 14/3 > 4; and against anything
else it is 2ε/3 > 0. Hence the dominance is valid.) 3. For every c ∈ C, eliminate tc with any tlc for
which l was set to true in the satisfying assignment. (This is a valid dominance because tl

c performs

9.1. DOMINANCE AND ITERATED DOMINANCE 243

better than tc against any strategy other than sl, and we eliminated sl in step 1 or in step 2.) 4.
Finally, eliminate s2 with s1. (This is a valid dominance because s1 performs better than s2 against
any strategy other than those in {tc : c ∈ C}, which we eliminated in step 3.) Hence, there is an
elimination path that eliminates s2.

Now, suppose that there is an elimination path that eliminates s2. The strategy that eventually
dominates s2 must place most of its probability on s1, because s1 is the only other strategy that
performs well against t1, which cannot be eliminated before s2. But, s1 performs significantly
worse than s2 against any strategy tc with c ∈ C, so it follows that all these strategies must be
eliminated first. Each strategy tc can only be eliminated by a strategy that places most of its weight
on the corresponding strategies tlc with l ∈ c, because they are the only other strategies that perform
well against sc, which cannot be eliminated before tc. But, each strategy tlc performs significantly
worse than tc against sl, so it follows that for every clause c, for one of the literals l occurring in it,
sl must be eliminated first. Now, strategies of the form tjv will never be eliminated because they are
the unique best responses to the corresponding strategies sj

v (which are, in turn, the best responses to
the corresponding tjv). As a result, if strategy s+v (respectively, s−v) is eliminated, then its opposite
strategy s−v (respectively, s+v) can no longer be eliminated, for the following reason. There is no
other pure strategy remaining that gets a significant utility against more than one of the strategies
t1v, t

2
v, t

3
v, t

4
v, but s−v (respectively, s+v) gets significant utility against all 4, and therefore cannot be

dominated by a mixed strategy placing positive probability on at most 3 strategies. It follows that
for each v ∈ V , at most one of the strategies s+v, s−v is eliminated, in such a way that for every
clause c, for one of the literals l occurring in it, sl must be eliminated. But then setting all the literals
l such that sl is eliminated to true constitutes a solution to the satisfiability instance.

In the next subsection, we return to the setting where there is no restriction on the number of
pure strategies on which a dominating mixed strategy can place positive probability.

9.1.4 (Iterated) dominance in Bayesian games

In this subsection, we study Bayesian games. Because Bayesian games have a representation that
is exponentially more concise than their normal-form representation, questions that are easy for
normal-form games can be hard for Bayesian games. In fact, it turns out that checking whether a
strategy is dominated by a pure strategy is hard in Bayesian games.

Theorem 97 In a Bayesian game, it is NP-complete to decide whether a given pure strategy σr :
Θr → Ar is dominated by some other pure strategy (both for strict and weak dominance), even
when the row player’s distribution over types is uniform.

Proof: The problem is in NP because it is easy to verify whether a candidate dominating strategy
is indeed a dominating strategy. To show that the problem is NP-hard, we reduce an arbitrary
satisfiability instance (given by a set of clauses C using variables from V) to the following Bayesian
game. Let the row player’s action set be Ar = {t, f, 0} and let the column player’s action set be
Ac = {ac : c ∈ C}. Let the row player’s type set be Θr = {θv : v ∈ V }, with a distribution πr that
is uniform. Let the row player’s utility function be as follows:

• ur(θv, 0, ac) = 0 for all v ∈ V and c ∈ C;

244 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

• ur(θv, b, ac) = |V | for all v ∈ V , c ∈ C, and b ∈ {t, f} such that setting v to b satisfies c;

• ur(θv, b, ac) = −1 for all v ∈ V , c ∈ C, and b ∈ {t, f} such that setting v to b does not
satisfy c.

Let the pure strategy to be dominated be the one that plays 0 for every type. We show that the
strategy is dominated by a pure strategy if and only if there is a solution to the satisfiability instance.

First, suppose there is a solution to the satisfiability instance. Then, let σd
r be given by: σd

r (θv) =
t if v is set to true in the solution to the satisfiability instance, and σd

r (θv) = f otherwise. Then,
against any action ac by the column player, there is at least one type θv such that either +v ∈ c and
σd

r (θv) = t, or −v ∈ c and σd
r (θv) = f . Thus, the row player’s expected utility against action ac is

at least |V |
|V | −

|V |−1
|V | = 1

|V | > 0. So, σd
r is a dominating strategy.

Now, suppose there is a dominating pure strategy σd
r . This dominating strategy must play t or

f for at least one type. Thus, against any ac by the column player, there must at least be some type
θv for which ur(θv, σ

d
r (θv), ac) > 0. That is, there must be at least one variable v such that setting

v to σd
r (θv) satifies c. But then, setting each v to σd

r (θv) must satisfy all the clauses. So a satisfying
assignment exists.

However, it turns out that we can modify the linear programs from Proposition 11 to obtain
a polynomial time algorithm for checking whether a strategy is dominated by a mixed strategy in
Bayesian games.

Theorem 98 In a Bayesian game, it can be decided in polynomial time whether a given (possibly
mixed) strategy σr is dominated by some other mixed strategy, using linear programming (both for
strict and weak dominance).

Proof: We can modify the linear programs presented in Proposition 11 as follows. For strict dom-
inance, again assuming without loss of generality that all the utilities in the game are positive, use
the following linear program (in which pσr

r (θr, ar) is the probability that σr, the strategy to be
dominated, places on ar for type θr):

minimize
∑

θr∈Θr

∑

ar∈Ar

pr(ar)

such that
for all ac ∈ Ac,

∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar) ≥
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar);

for all θr ∈ Θr,
∑

ar∈Ar

pr(θr, ar) ≤ 1.

Assuming that π(θr) > 0 for all θr ∈ Θr, this program will return an objective value smaller
than |Θr| if and only if σr is strictly dominated, by reasoning similar to that done in Proposition 11.

For weak dominance, use the following linear program:
maximize

∑

ac∈Ac

(
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar)−
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar))

such that
for all ac ∈ Ac,

∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)pr(θr, ar) ≥
∑

θr∈Θr

∑

ar∈Ar

π(θr)ur(θr, ar, ac)p
σr
r (θr, ar);

for all θr ∈ Θr,
∑

ar∈Ar

pr(θr, ar) = 1.

9.1. DOMINANCE AND ITERATED DOMINANCE 245

This program will return an objective value greater than 0 if and only if σr is weakly dominated,
by reasoning similar to that done in Proposition 11.

We now turn to iterated dominance in Bayesian games. Naı̈vely, one might argue that iterated
dominance in Bayesian games always requires an exponential number of steps when a significant
fraction of the game’s pure strategies can be eliminated, because there are exponentially many
pure strategies. However, this is not a very strong argument because oftentimes we can eliminate
exponentially many pure strategies in one step. For example, if for some type θr ∈ Θr we have,
for all ac ∈ Ac, that u(θr, a

1
r, ac) > u(θr, a

2
r, ac), then any pure strategy for the row player which

plays action a2
r for type θr is dominated (by the strategy that plays action a1

r for type θr instead)—
and there are exponentially many (|Ar|

|Θr|−1) such strategies. It is therefore conceivable that we
need only polynomially many eliminations of collections of a player’s strategies. However, the
following theorem shows that this is not the case, by giving an example where an exponential
number of iterations (that is, alternations between the players in eliminating strategies) is required.
(We emphasize that this is not a result about computational complexity.)

Theorem 99 Even in symmetric 3-player Bayesian games, iterated dominance by pure strategies
can require an exponential number of iterations (both for strict and weak dominance), even with
only three actions per player.

Proof: Let each player i ∈ {1, 2, 3} have n + 1 types θ1
i , θ

2
i , . . . , θ

n+1
i . Let each player i have 3

actions ai, bi, ci, and let the utility function of each player be defined as follows. (In the below, i+1
and i + 2 are shorthand for i + 1(mod 3) and i + 2(mod 3) when used as player indices. Also,
−∞ can be replaced by a sufficiently negative number. Finally, δ and ε should be chosen to be very
small (even compared to 2−(n+1)), and ε should be more than twice as large as δ.)

• ui(θ
1
i ; ai, ci+1, ci+2) = −1;

• ui(θ
1
i ; ai, si+1, si+2) = 0 for si+1 6= ci+1 or si+2 6= ci+2;

• ui(θ
1
i ; bi, si+1, si+2) = −ε for si+1 6= ai+1 and si+2 6= ai+2;

• ui(θ
1
i ; bi, si+1, si+2) = −∞ for si+1 = ai+1 or si+2 = ai+2;

• ui(θ
1
i ; ci, si+1, si+2) = −∞ for all si+1, si+2;

• ui(θ
j
i ; ai, si+1, si+2) = −∞ for all si+1, si+2 when j > 1;

• ui(θ
j
i ; bi, si+1, si+2) = −ε for all si+1, si+2 when j > 1;

• ui(θ
j
i ; ci, si+1, ci+2) = δ − ε− 1/2 for all si+1 when j > 1;

• ui(θ
j
i ; ci, si+1, si+2) = δ − ε for all si+1 and si+2 6= ci+2 when j > 1.

Let the distribution over each player’s types be given by p(θj
i) = 2−j (with the exception that

p(θ2
i) = 2−2 +2−(n+1)). We will be interested in eliminating strategies of the following form: play

bi for type θ1
i , and play one of bi or ci otherwise. Because the utility function is the same for any

type θj
i with j > 1, these strategies are effectively defined by the total probability that they place

246 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

on ci,7 which is t2i (2
−2 + 2−(n+1)) +

∑n+1
j=3 tji2

−j where tji = 1 if player i plays ci for type θj
i , and

0 otherwise. This probability is different for any two different strategies of the given form, and we
have exponentially many different strategies of the given form. For any probability q which can be
expressed as t2(2

−2 + 2−(n+1)) +
∑n+1

j=3 tj2
−j (with all tj ∈ {0, 1}), let σi(q) denote the (unique)

strategy of the given form for player i which places a total probability of q on ci. Any strategy that
plays ci for type θ1

i or ai for some type θj
i with j > 1 can immediately be eliminated. We will

show that, after that, we must eliminate the strategies σi(q) with high q first, slowly working down
to those with lower q.

Claim 1: If σi+1(q
′) and σi+2(q

′) have not yet been eliminated, and q < q′, then σi(q) cannot
yet be eliminated. Proof: First, we show that no strategy σi(q

′′) can eliminate σi(q). Against
σi+1(q

′′′), σi+2(q
′′′), the utility of playing σi(p) is −ε + p · δ − p · q′′′/2. Thus, when q′′′ = 0, it is

best to set p as high as possible (and we note that σi+1(0) and σi+2(0) have not been eliminated),
but when q′′′ > 0, it is best to set p as low as possible because δ < q′′′/2. Thus, whether q > q′′ or
q < q′′, σi(q) will always do strictly better than σi(q

′′) against some remaining opponent strategies.
Hence, no strategy σi(q

′′) can eliminate σi(q). The only other pure strategies that could dominate
σi(q) are strategies that play ai for type θ1

i , and bi or ci for all other types. Let us take such a strategy
and suppose that it plays c with probability p. Against σi+1(q

′), σi+2(q
′) (which have not yet been

eliminated), the utility of playing this strategy is −(q′)2/2 − ε/2 + p · δ − p · q′/2. On the other
hand, playing σi(q) gives −ε + q · δ − q · q′/2. Because q′ > q, we have −(q′)2/2 < −q · q′/2,
and because δ and ε are small, it follows that σi(q) receives a higher utility. Therefore, no strategy
dominates σi(q), proving the claim.

Claim 2: If for all q′ > q, σi+1(q
′) and σi+2(q

′) have been eliminated, then σi(q) can be
eliminated. Proof: Consider the strategy for player i that plays ai for type θ1

i , and bi for all other
types (call this strategy σ′

i); we claim σ′
i dominates σi(q). First, if either of the other players k

plays ak for θ1
k, then σ′

i performs better than σi(q) (which receives −∞ in some cases). Because
the strategies for player k that play ck for type θ1

k, or ak for some type θj
k with j > 1, have already

been eliminated, all that remains to check is that σ′
i performs better than σi(q) whenever both of

the other two players play strategies of the following form: play bk for type θ1
k, and play one of

bk or ck otherwise. We note that among these strategies, there are none left that place probability
greater than q on ck. Letting qk denote the probability with which player k plays ck, the expected
utility of playing σ′

i is −qi+1 · qi+2/2 − ε/2. On the other hand, the utility of playing σi(q) is
−ε + q · δ − q · qi+2/2. Because qi+1 ≤ q, the difference between these two expressions is at least
ε/2− δ, which is positive. It follows that σ′

i dominates σi(q).
From Claim 2, it follows that all strategies of the form σi(q) will eventually be eliminated.

However, Claim 1 shows that we cannot go ahead and eliminate multiple such strategies for one
player, unless at least one other player simultaneously “keeps up” in the eliminated strategies: every
time a σi(q) is eliminated such that σi+1(q) and σi+2(q) have not yet been eliminated, we need to
eliminate one of the latter two strategies before any σi(q

′) with q′ > q can be eliminated—that is,
we need to alternate between players. Because there are exponentially many strategies of the form
σi(q), iterated elimination will require exponentially many iterations to complete.

7Note that the strategies are still pure strategies; the probability placed on an action by a strategy here is simply the
sum of the probabilities of the types for which the strategy chooses that action.

9.2. NASH EQUILIBRIUM 247

It follows that an efficient algorithm for iterated dominance (strict or weak) by pure strategies in
Bayesian games, if it exists, must somehow be able to perform (at least part of) many iterations in a
single step of the algorithm (because if each step only performed a single iteration, we would need
exponentially many steps). Interestingly, Knuth et al. [1988] argue that iterated dominance appears
to be an inherently sequential problem (in light of their result that iterated very weak dominance
is P-complete, that is, apparently not efficiently parallelizable), suggesting that aggregating many
iterations may be difficult.

This concludes the part of this dissertation studying the complexity of dominance and iterated
dominance. In the next section, we study the complexity of computing Nash equilibria.

9.2 Nash equilibrium

In recent years, there has been a large amount of research on computing Nash equilibria. The
question of how hard it is to compute just a single Nash equilibrium especially drew attention,
and was dubbed “a most fundamental computational problem whose complexity is wide open”
and “together with factoring, [...] the most important concrete open question on the boundary of
P today” [Papadimitriou, 2001]. A recent breakthrough series of papers [Daskalakis et al., 2005;
Chen and Deng, 2005a; Daskalakis and Papadimitriou, 2005; Chen and Deng, 2005b] shows that the
problem is PPAD-complete, even in the two-player case. (An earlier result shows that the problem
is no easier if all utilities are required to be in {0, 1} [Abbott et al., 2005].) This suggests that the
problem is indeed hard, although not as much is known about the class PPAD as about (say) NP. The
best-known algorithm for finding a Nash equilibrium, the Lemke-Howson algorithm [Lemke and
Howson, 1964], has recently been shown to have a worst-case exponential running time [Savani and
von Stengel, 2004]. More recent algorithms for computing Nash equilibria have focused on guessing
which of the players’ pure strategies receive positive probability in the equilibrium: after this guess,
only a simple linear feasibility problem needs to be solved [Dickhaut and Kaplan, 1991; Porter
et al., 2004; Sandholm et al., 2005b]. (These algorithms clearly require exponential time in the
worst case, but are often quite fast in practice.) Also, there has been growing interest in computing
equilibria of games with special structure that allows them to be represented concisely [Kearns et
al., 2001; Leyton-Brown and Tennenholtz, 2003; Blum et al., 2003; Gottlob et al., 2003; Bhat and
Leyton-Brown, 2004; Schoenebeck and Vadhan, 2006].

In this section, we focus mostly on computing equilibria with certain properties: for example,
computing an equilibrium with maximal social welfare, or one that places probability on a given
pure strategy. We also consider the complexity of counting the number of equilibria and computing
a pure-strategy Bayes-Nash equilibirium of a Bayesian game.

9.2.1 Equilibria with certain properties in normal-form games

When one analyzes the strategic structure of a game, especially from the viewpoint of a mechanism
designer who tries to construct good rules for a game, finding a single equilibrium is far from
satisfactory. More desirable equilibria may exist: in this case the game becomes more attractive,
especially if one can coax the players into playing a desirable equilibrium. Also, less desirable
equilibria may exist: in this case the game becomes less attractive (if there is some chance that these

248 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

equilibria will end up being played). Before we can make a definite judgment about the quality of the
game, we would like to know the answers to questions such as: What is the game’s most desirable
equilibrium? Is there a unique equilibrium? If not, how many equilibria are there? Algorithms that
tackle these questions would be useful both to players and to the mechanism designer.

Furthermore, algorithms that answer certain existence questions may pave the way to designing
algorithms that construct a Nash equilibrium. For example, if we had an algorithm that told us
whether there exists any equilibrium where a certain player plays a certain strategy, this could be
useful in eliminating possibilities in the search for a Nash equilibrium.

However, all the existence questions that we have investigated turn out to be NP-hard. These are
not the first results of this nature; most notably, Gilboa and Zemel [1989] provide some NP-hardness
results in the same spirit. We provide a single reduction which in demonstrates (sometimes stronger
versions of) most of their hardness results, and interesting new results. More significantly, as we
show in Subsection 9.2.2, our reduction shows that the problems of maximizing certain properties
of Nash equilibria are inapproximable (unless P=NP). Additionally, as we show in Subsection 9.2.3,
the reduction shows #P-hardness of counting the number of equilibria.

We now present our reduction.8

Definition 54 Let φ be a Boolean formula in conjunctive normal form. Let V be its set of variables
(with |V | = n), L the set of corresponding literals (a positive and a negative one for each variable)9,
and C its set of clauses. The function v : L→ V gives the variable corresponding to a literal, e.g.
v(x1) = v(−x1) = x1. We define Gε(φ) to be the following symmetric 2-player game in normal
form. Let Σ ≡ Σ1 = Σ2 = L ∪ V ∪ C ∪ {f}. Let the utility functions be

• u1(l
1, l2) = u2(l

2, l1) = n− 1 for all l1, l2 ∈ L with l1 6= −l2;

• u1(l,−l) = u2(−l, l) = n− 4 for all l ∈ L;

• u1(l, x) = u2(x, l) = n− 4 for all l ∈ L, x ∈ Σ− L− {f};

• u1(v, l) = u2(l, v) = n for all v ∈ V , l ∈ L with v(l) 6= v;

• u1(v, l) = u2(l, v) = 0 for all v ∈ V , l ∈ L with v(l) = v;

• u1(v, x) = u2(x, v) = n− 4 for all v ∈ V , x ∈ Σ− L− {f};

• u1(c, l) = u2(l, c) = n for all c ∈ C, l ∈ L with l /∈ c;

• u1(c, l) = u2(l, c) = 0 for all c ∈ C, l ∈ L with l ∈ c;

• u1(c, x) = u2(x, c) = n− 4 for all c ∈ C, x ∈ Σ− L− {f};

• u1(x, f) = u2(f, x) = 0 for all x ∈ Σ− {f};

• u1(f, f) = u2(f, f) = ε;

8The reduction presented here is somewhat different from the reduction given in the IJCAI version of this work. The
reason is that the new reduction presented here implies inapproximability results that the original reduction did not.

9Thus, if x1 is a variable, x1 and −x1 are literals. We make a distinction between the variable x1 and the literal x1.

9.2. NASH EQUILIBRIUM 249

• u1(f, x) = u2(x, f) = n− 1 for all x ∈ Σ− {f}.

Theorem 100 If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ, then there is a Nash equilibrium of
Gε(φ) where both players play li with probability 1

n , with expected utility n − 1 for each player.
The only other Nash equilibrium is the one where both players play f , and receive expected utility
ε each.

Proof: We first demonstrate that these combinations of mixed strategies indeed do constitute Nash
equilibria. If (l1, l2, . . . , ln) (where v(li) = xi) satisfies φ and the other player plays li with proba-
bility 1

n , playing one of these li as well gives utility n− 1. On the other hand, playing the negation
of one of these li gives utility 1

n(n−4)+ n−1
n (n−1) < n−1. Playing some variable v gives utility

1
n(0) + n−1

n (n) = n − 1 (since one of the li that the other player sometimes plays has v(li) = v).
Playing some clause c gives utility at most 1

n(0) + n−1
n (n) = n− 1 (since at least one of the li that

the other player sometimes plays occurs in clause c, since the li satisfy φ). Finally, playing f gives
utility n − 1. It follows that playing any one of the li that the other player sometimes plays is an
optimal response, and hence that both players playing each of these li with probability 1

n is a Nash
equilibrium. Clearly, both players playing f is also a Nash equilibrium since playing anything else
when the other plays f gives utility 0.

Now we demonstrate that there are no other Nash equilibria. If the other player always plays f ,
the unique best response is to also play f since playing anything else will give utility 0. Otherwise,
given a mixed strategy for the other player, consider a player’s expected utility given that the other
player does not play f . (That is, the probability distribution over the other player’s strategies is
proportional to the probability distribution constituted by that player’s mixed strategy, except f
occurs with probability 0). If this expected utility is less than n − 1, the player is strictly better off
playing f (which gives utility n− 1 when the other player does not play f , and also performs better
than the original strategy when the other player does play f). So this cannot occur in equilibrium.

As we pointed out, here are no Nash equilibria where one player always plays f but the other
does not, so suppose both players play f with probability less than one. Consider the expected
social welfare (E[u1 + u2]), given that neither player plays f . It is easily verified that there is no
outcome with social welfare greater than 2n − 2. Also, any outcome in which one player plays an
element of V or C has social welfare at most n−4+n < 2n−2. It follows that if either player ever
plays an element of V or C, the expected social welfare given that neither player plays f is strictly
below 2n− 2. By linearity of expectation it follows that the expected utility of at least one player is
strictly below n− 1 given that neither player plays f , and by the above reasoning, this player would
be strictly better off playing f instead of its randomization over strategies other than f . It follows
that no element of V or C is ever played in a Nash equilibrium.

So, we can assume both players only put positive probability on strategies in L ∪ {f}. Then,
if the other player puts positive probability on f , playing f is a strictly better response than any
element of L (since f does as at least as well against any strategy in L, and strictly better against
f). It follows that the only equilibrium where f is ever played is the one where both players always
play f .

Now we can assume that both players only put positive probability on elements of L. Suppose
that for some l ∈ L, the probability that a given player plays either l or −l is less than 1

n . Then the
expected utility for the other player of playing v(l) is strictly greater than 1

n(0) + n−1
n (n) = n− 1,

250 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

and hence this cannot be a Nash equilibrium. So we can assume that for any l ∈ L, the probability
that a given player plays either l or −l is precisely 1

n .
If there is an element of L such that player 1 puts positive probability on it and player 2 on its

negation, both players have expected utility less than n − 1 and would be better off switching to
f . So, in a Nash equilibrium, if player 1 plays l with some probability, player 2 must play l with
probability 1

n , and thus player 1 must play l with probability 1
n . Thus we can assume that for each

variable, exactly one of its corresponding literals is played with probability 1
n by both players. It

follows that in any Nash equilibrium (besides the one where both players play f), literals that are
sometimes played indeed correspond to an assignment to the variables.

All that is left to show is that if this assignment does not satisfy φ, it does not correspond to a
Nash equilibrium. Let c ∈ C be a clause that is not satisfied by the assignment, that is, none of its
literals are ever played. Then playing c would give utility n, and both players would be better off
playing this.

Example 1 The following table shows the game Gε(φ) where φ = (x1 ∨ −x2) ∧ (−x1 ∨ x2).

x1 x2 +x1 −x1 +x2 −x2 (x1 ∨ −x2) (−x1 ∨ x2) f

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1
+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
−x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
−x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1
(x1 ∨ −x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(−x1 ∨ x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1
f 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε,ε

The only two solutions to the SAT instance defined by φ is to either set both variables to true,
or both to false. Indeed, the only equilibria of the game Gε(φ) are those where: 1. Both players
randomize uniformly over {+x1, +x2}; 2. Both players randomize uniformly over {−x1,−x2}; 3.
Both players play f . So the example is consistent with Theorem 100.

Thus, in general, there exists a Nash equilibrium in Gε(φ) where each player gets utility n−1 if
and only if φ is satisfiable; otherwise, the only equilibrium is the one where both players play f and
each of them gets ε. Suppose n−1 > ε. Then, any sensible definition of welfare optimization would
prefer the first kind of equilibrium. So, it follows that determining whether a “good” equilibrium
exists is hard for any such definition. Additionally, the first kind of equilibrium is, in various senses,
an optimal outcome for the game, even if the players were to cooperate, so even finding out whether
such an optimal equilibrium exists is hard. The corollaries below illustrate these points.

All the corollaries show NP-completeness of a problem, meaning that the problem is both NP-
hard and in NP. Technically, only the NP-hardness part is a corollary of Theorem 100 in each case.
Membership in NP follows in each case because we can nondeterministically generate strategies
for the players, and verify whether these constitute a Nash equilibrium with the desired property.

9.2. NASH EQUILIBRIUM 251

Alternatively, for the case of two players, we can nondeterministically generate only the supports
of the players’ strategies. At this point, determining whether a Nash equilibrium with the given
supports exists is a simple linear feasibility program (see, for example, Dickhaut and Kaplan [1991];
Porter et al. [2004]), to which we can add an objective to maximize (such as, for example, social
welfare). The resulting linear program can be solved in polynomial time [Khachiyan, 1979].

Corollary 9 Even in symmetric 2-player games, it is NP-complete to determine whether there exists
a NE with expected (standard) social welfare (E[

∑

1≤i≤|A|
ui]) at least k, even when k is the maximum

social welfare that could be obtained in the game.

Proof: For any φ, in Gε(φ), the social welfare of a Nash equilibrium corresponding to any satisfying
assignment is 2(n − 1). On the other hand, the social welfare of the Nash equilibrium that always
exists is only 2ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium with a social welfare of
at least 2(n− 1) if and only if φ is satisfiable.

Corollary 10 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a NE where all players have expected utility at least k (that is, the egalitarian social welfare
is at least k), even when k is the largest number such that there exists a distribution over outcomes
of the game such that all players have expected utility at least k.

Proof: For any φ, in Gε(φ), the egalitarian social welfare of a Nash equilibrium corresponding to
any satisfying assignment is n − 1. On the other hand, the egalitarian social welfare of the Nash
equilibrium that always exists is only ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium
with an egalitarian social welfare of at least n− 1 if and only if φ is satisfiable.

Corollary 11 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a Pareto-optimal NE. (A distribution over outcomes is Pareto-optimal if there is no other
distribution over outcomes such that every player has at least equal expected utility, and at least
one player has strictly greater expected utility.)

Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying as-
signment is Pareto-optimal, whereas the Nash equilibrium that always exists is not Pareto-optimal.
Thus, a Pareto optimal Nash equilibrium exists if and only if φ is satisfiable.

Corollary 12 Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a NE where player 1 has expected utility at least k.

Proof: For any φ, in Gε(φ), player 1’s utility in a Nash equilibrium corresponding to any satisfying
assignment is (n − 1). On the other hand, player 1’s utility in the Nash equilibrium that always
exists is only ε. Thus, for ε < 1 and n ≥ 2, Gε(φ) has a Nash equilibrium with a utility for player 1
of at least n− 1 if and only if φ is satisfiable.

Some additional corollaries are:

252 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

Corollary 13 Even in symmetric 2-player games, it is NP-complete to determine whether there is
more than one Nash equilibrium.

Proof: For any φ, Gε(φ) has additional Nash equilibria (besides the one that always exists) if and
only if φ is satisfiable.

Corollary 14 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1 sometimes plays a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 sometimes plays +x1 if and
only if there is a satisfying assignment to φ with x1 set to true. But determining whether this is the
case is NP-complete.

Corollary 15 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1 never plays a given x ∈ Σ1.

Proof: For any φ, in Gε(φ), there is a Nash equilibrium where player 1 never plays f if and only if
φ is satisfiable.

Corollary 16 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where player 1’s strategy has at least k pure strategies in its support (even when
k = 2).

Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses a
support of n strategies for player 1. On the other hand, the Nash equilibrium that always exists uses
a support of only 1 strategy for player 1. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium using a
support of at least 2 strategies for player 1 if and only if φ is satisfiable.

Corollary 17 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where the players’ strategies together have at least k pure strategies in their supports
(even when k = 3).

Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses
a support of n strategies for each player, for a total of 2n strategies. On the other hand, the Nash
equilibrium that always exists uses a support of only 1 strategy for each player, for a total of only 2
strategies. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium using at least 3 strategies in the supports
of the players if and only if φ is satisfiable.

Corollary 18 Even in symmetric 2-player games, it is NP-complete to determine whether there is
an equilibrium where each player’s strategy has at least k pure strategies in its support (even when
k = 2).

9.2. NASH EQUILIBRIUM 253

Proof: For any φ, in Gε(φ), any Nash equilibrium corresponding to a satisfying assignment uses a
support of n strategies for each player. On the other hand, the Nash equilibrium that always exists
uses a support of only 1 strategy for each player. Thus, for n ≥ 2, Gε(φ) has a Nash equilibrium
using at least 2 strategies in the supports of each player if and only if φ is satisfiable.

Definition 55 A strong Nash equilibrium is a vector of mixed strategies for the players so that no
nonempty subset of the players can change their strategies to make all players in the subset better
off.

Corollary 19 Even in symmetric 2-player games, it is NP-complete to determine whether a strong
Nash equilibrium exists.

Proof: For ε < 1 and n ≥ 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying assign-
ment is a strong Nash equilibrium, whereas the Nash equilibrium that always exists is not strong.
Thus, a strong Nash equilibrium exists if and only if φ is satisfiable.

All of these results indicate that it is hard to obtain summary information about a game’s Nash
equilibria. (Corollaries 13, 18, and weaker10 versions of Corollaries 10, 14, and 15 were first proven
by Gilboa and Zemel [1989].)

9.2.2 Inapproximability results

Some of the corollaries of the previous subsection state that it is NP-complete to find the Nash
equilibrium that maximizes a certain property (such as social welfare). For such properties, an
important question is to ask whether they can be approximated. For instance, is it possible to
find, in polynomial time, a Nash equilibrium that has at least half as great a social welfare as the
social-welfare maximizing Nash equilibrium? Or—the same question, asked nonconstructively—
can we, in polynomial time, find a number k such that there exists a Nash equilibrium with social
welfare at least k, and there is no Nash equilibrium with social welfare greater than 2k? (The
nonconstructive question does not require constructing a Nash equilibrium, so it is perhaps possible
that there is a polynomial-time algorithm for this question even if it is hard to construct any Nash
equilibrium.) We will not give approximation algorithms in this subsection, but we will derive
certain inapproximability results from Theorem 100. In each case, we will show that even the
nonconstructive question is hard (and therefore also the constructive question).

Before presenting our results, we first make one subtle technical point, namely that it is un-
reasonable to expect an approximation algorithm to work even when the game has some negative
utilities in it. For suppose we had an approximation algorithm that approximated (say) social wel-
fare to some positive ratio, even when there are some negative utilities in the game. Then we can
“boost” its results, as follows. Suppose it returned a social welfare of 2r on a game, and suppose it
were less than the social welfare of the best Nash equilibrium. If we subtract r from all utilities in
the game, the game remains the same for all strategic purposes (it has the same set of Nash equilib-
ria). But now the result provided by the approximation algorithm on the original game corresponds

10Our results prove hardness in a slightly more restricted setting. Corollaries 14 and 15 in their full strength can in fact
also be obtained using Gilboa and Zemel’s proof technique, even though they stated the result in a weaker form.

254 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

to a social welfare of 0, which does not satisfy the approximation ratio. It follows that running the
approximation algorithm on the transformed game must give a better result (which we can easily
transform back to the original game).

For this reason, we require our hardness results to only use reductions to games where 0 is the
lowest possible utility in the game. To do so, we will simply use the fact that Gε(φ) satisfies this
property whenever n ≥ 4. (We recall that n is the number of variables in φ.)

We are now ready to present our results. The first one is a stronger version of Corollary 9.

Corollary 20 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum social welfare obtained by a Nash equilibrium, even in symmet-
ric 2-player games. (Even if the ratio is allowed to be a function of the size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that 2ε < r(2n − 2) (here, r is the approximation ratio
that the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100,
there exists an equilibrium with social welfare 2n−2, and thus the approximation algorithm should
return a social welfare of at least r(2n−2) > 2ε. Otherwise, by Theorem 100, the only equilibrium
has social welfare 2ε, and thus the approximation algorithm should return a social welfare of at most
2ε. Thus we can use the algorithm to solve arbitrary SAT instances.

The next result is a stronger version of Corollary 10.

Corollary 21 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum egalitarian social welfare (minimum utility) obtained by a Nash
equilibrium, even in symmetric 2-player games. (Even if the ratio is allowed to be a function of the
size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that ε < r(n− 1) (here, r is the approximation ratio that
the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100, there
exists an equilibrium with egalitarian social welfare n − 1, and thus the approximation algorithm
should return an egalitarian social welfare of at least r(n − 1) > ε. Otherwise, by Theorem 100,
the only equilibrium has egalitarian social welfare ε, and thus the approximation algorithm should
return an egalitarian social welfare of at most ε. Thus we can use the algorithm to solve arbitrary
SAT instances.

The next result is a stronger version of Corollary 12.

Corollary 22 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any positive ratio) the maximum utility for player 1 obtained by a Nash equilibrium, even in
symmetric 2-player games. (Even if the ratio is allowed to be a function of the size of the game.)

Proof: Suppose such an algorithm did exist. For any formula φ (with number of variables n ≥ 4),
consider the game Gε(φ) where ε is set so that ε < r(n − 1) (here, r is the approximation ratio

9.2. NASH EQUILIBRIUM 255

that the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, by Theorem 100,
there exists an equilibrium with a utility of n−1 for player 1, and thus the approximation algorithm
should return a utility of at least r(n − 1) > ε. Otherwise, by Theorem 100, the only equilibrium
has a utility of ε for player 1, and thus the approximation algorithm should return a utility of at most
ε. Thus we can use the algorithm to solve arbitrary SAT instances.

The next result is a stronger version of Corollary 16.

Corollary 23 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number of pure strategies in player 1’s support in a Nash equi-
librium, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in player 1’s support, and thus the algorithm can return a maximum support size of at most
1. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where player 1’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 1. Thus we can use the algorithm to solve arbitrary SAT instances (given
that the instances are large enough to produce large enough |Σ|).

The next result is a stronger version of Corollary 17.

Corollary 24 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number of pure strategies in the players’ strategies’ supports in
a Nash equilibrium, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in each player’s support, and thus the algorithm can return a number of strategies of at most
2. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where each player’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 2. Thus we can use the algorithm to solve arbitrary SAT instances(given
that the instances are large enough to produce large enough |Σ|).

The next result is a stronger version of Corollary 18.

Corollary 25 Unless P = NP, there does not exist a polynomial-time algorithm that approximates
(to any ratio o(|Σ|)) the maximum number, in a Nash equilibrium, of pure strategies in the support
of the player that uses fewer pure strategies than the other, even in symmetric 2-player games.

Proof: Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, by Theorem 100, the only equilibrium has only one pure
strategy in each player’s support, and thus the algorithm can return a number of strategies of at most

256 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

1. On the other hand, if φ is satisfiable, by Theorem 100, there is an equilibrium where each player’s
support has size Ω(|Σ|). Because by assumption our approximation algorithm has an approximation
ratio of o(|Σ|), this means that for large enough |Σ|, the approximation ratio must return a support
size strictly greater than 1. Thus we can use the algorithm to solve arbitrary SAT instances(given
that the instances are large enough to produce large enough |Σ|).

9.2.3 Counting the number of equilibria in normal-form games

Existence questions do not tell the whole story. In general, we are interested in characterizing all
the equilibria of a game. One rather weak such characterization is the number of equilibria11. We
can use Theorem 100 to show that even determining this number in a given normal-form game is
hard.

Corollary 26 Even in symmetric 2-player games, counting the number of Nash equilibria is #P-
hard.

Proof: The number of Nash equilibria in our game Gε(φ) is the number of satisfying assignments
to the variables of φ, plus one. Counting the number of satisfying assignments to a CNF formula is
#P-hard [Valiant, 1979].

It is easy to construct games where there is a continuum of Nash equilibria. In such games, it is
more meaningful to ask how many distinct continuums of equilibria there are. More formally, one
can ask how many maximal connected sets of equilibria a game has (a maximal connected set is a
connected set which is not a proper subset of a connected set).

Corollary 27 Even in symmetric 2-player games, counting the number of maximal connected sets
of Nash equilibria is #P-hard.

Proof: Every Nash equilibrium in Gε(φ) constitutes a maximal connected set by itself, so the
number of maximal connected sets is the number of satisfying assignments to the variables of φ,
plus one.

The most interesting #P-hardness results are the ones where the corresponding existence and
search questions are easy, such as counting the number of perfect bipartite matchings. In the case of
Nash equilibria, the existence question is trivial: it has been analytically shown (by Kakutani’s fixed
point theorem) that a Nash equilibrium always exists [Nash, 1950]. The complexity of the search
question remains open.

9.2.4 Pure-strategy Bayes-Nash equilibria

Equilibria in pure strategies are particularly desirable because they avoid the uncomfortable re-
quirement that players randomize over strategies among which they are indifferent [Fudenberg and

11The number of equilibria in normal-form games has been studied both in the worst case [McLennan and Park, 1999]
and in the average case [McLennan, 1999].

9.2. NASH EQUILIBRIUM 257

Tirole, 1991]. In normal-form games with small numbers of players, it is easy to determine the ex-
istence of pure-strategy equilibria: one can simply check, for each combination of pure strategies,
whether it constitutes a Nash equilibrium.12 However, this is not feasible in Bayesian games, where
the players have private information about their own preferences (represented by types). Here, play-
ers may condition their actions on their types, so the strategy space of each player is exponential in
the number of types.

In this subsection, we show that the question of whether a pure-strategy Bayes-Nash equilibrium
exists is in fact NP-hard even in symmetric two-player games.

We study the following computational problem.

Definition 56 (PURE-STRATEGY-BNE) We are given a Bayesian game. We are asked whether
there exists a Bayes-Nash equilibrium (BNE) where all the strategies σi,θi are pure.

To show our NP-hardness result, we will reduce from the SET-COVER problem.

Definition 57 (SET-COVER) We are given a set S = {s1, . . . , sn}, subsets S1, S2, . . . , Sm of S
with

⋃

1≤i≤m Si = S, and an integer k. We are asked whether there exist Sc1 , Sc2 , . . . , Sck
such

that
⋃

1≤i≤k Sci = S.

Theorem 101 PURE-STRATEGY-BNE is NP-complete, even in symmetric 2-player games where
the priors over types are uniform.

Proof: To show membership in NP, we observe that we can nondeterministically choose a pure
strategy for each type for each player, and verify whether these constitute a BNE.

To show NP-hardness, we reduce an arbitrary SET-COVER instance to the following PURE-
STRATEGY-BNE instance. Let there be two players, with Θ ≡ Θ1 = Θ2 = {θ1, . . . , θk}. The
priors over types are uniform. Furthermore, Σ ≡ Σ1 = Σ2 = {S1, S2, . . . , Sm, s1, s2, . . . , sn}.
The utility functions we choose in fact do not depend on the types, so we omit the type argument in
their definitions. They are as follows:

• u1(Si, Sj) = u2(Sj , Si) = 1 for all Si and Sj ;

• u1(Si, sj) = u2(sj , Si) = 1 for all Si and sj /∈ Si;

• u1(Si, sj) = u2(sj , Si) = 2 for all Si and sj ∈ Si;

• u1(si, sj) = u2(sj , si) = −3k for all si and sj ;

• u1(sj , Si) = u2(Si, sj) = 3 for all Si and sj /∈ Si;

• u1(sj , Si) = u2(Si, sj) = −3k for all Si and sj ∈ Si.

12Computing pure-strategy Nash equilibria for more concise representations of normal-form games has been system-
atically studied [Gottlob et al., 2003; Schoenebeck and Vadhan, 2006].

258 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

We now show the two instances are equivalent. First suppose there exist
Sc1 , Sc2 , . . . , Sck

such that
⋃

1≤i≤k Sci = S. Suppose both players play as follows: when their type
is θi, they play Sci . We claim that this is a BNE. For suppose the other player employs this strategy.
Then, because for any sj , there is at least one Sci such that sj ∈ Sci , we have that the expected
utility of playing sj is at most 1

k (−3k) + k−1
k 3 < 0. It follows that playing any of the Sj (which

gives utility 1) is optimal. So there is a pure-strategy BNE.
On the other hand, suppose that there is a pure-strategy BNE. We first observe that in no pure-

strategy BNE, both players play some element of S for some type: for if the other player sometimes
plays some sj , the utility of playing some si is at most 1

k (−3k) + k−1
k 3 < 0, whereas playing

some Si instead guarantees a utility of at least 1. So there is at least one player who never plays
any element of S. Now suppose the other player sometimes plays some sj . We know there is
some Si such that sj ∈ Si. If the former player plays this Si, this will give it a utility of at least
1
k2+ k−1

k 1 = 1+ 1
k . Since it must do at least this well in the equilibrium, and it never plays elements

of S, it must sometimes receive utility 2. It follows that there exist Sa and sb ∈ Sa such that the
former player sometimes plays Sa and the latter sometimes plays sb. But then, playing sb gives the
latter player a utility of at most 1

k (−3k) + k−1
k 3 < 0, and it would be better off playing some Si

instead. (Contradiction.) It follows that in no pure-strategy BNE, any element of S is ever played.
Now, in our given pure-strategy equilibrium, consider the set of all the Si that are played by

player 1 for some type. Clearly there can be at most k such sets. We claim they cover S. For if they
do not cover some element sj , the expected utility of playing sj for player 2 is 3 (because player
1 never plays any element of S). But this means that player 2 (who never plays any element of S
either) is not playing optimally. (Contradiction.) Hence, there exists a set cover.

If one allows for general mixed strategies, a Bayes-Nash equilibrium always exists [Fudenberg
and Tirole, 1991]. Computing a single mixed-strategy Bayes-Nash equilibrium is of course at least
as hard as computing a single mixed-strategy Nash equilibrium in a normal-form game (since that
is the special case where each agent has a single type).

This concludes the part of this dissertation studying the complexity of computing Nash equi-
libria. The next section introduces a parameterized strategy eliminability criterion that generalizes
both dominance and Nash equilibrium, and studies how hard it is to apply computationally.

9.3 A generalized eliminability criterion

The concept of (iterated) dominance is often too strong for the purpose of solving games: it cannot
eliminate enough strategies. But, if possible, we would like a stronger argument for eliminating
a strategy than (mixed-strategy) Nash equilibrium. Similarly, in mechanism design (where one
gets to create the game), implementation in dominant strategies is often excessively restrictive,
but implementation in (Bayes-)Nash equilibrium may not be sufficiently strong for the designer’s
purposes. Hence, it is desirable to have eliminability criteria that are between these concepts in
strength. In this section, we will introduce such a criterion. This criterion considers whether a given
strategy is eliminable relative to given dominator & eliminee subsets of the players’ strategies. The
criterion spans an entire spectrum of strength between Nash equilibrium and strict dominance (in
terms of which strategies it can eliminate), and in the extremes can be made to coincide with either

9.3. A GENERALIZED ELIMINABILITY CRITERION 259

of these two concepts, depending on how the dominator & eliminee sets are set. It can also be used
for iterated elimination of strategies. We will also study the computational complexity of applying
the new eliminability criterion, and provide a mixed integer programming approach for it.

One of the benefits of the new criterion is that when a strategy cannot be eliminated by domi-
nance (but it can be eliminated by the Nash equilibrium concept), the new criterion may provide a
stronger argument than Nash equilibrium for eliminating the strategy, by using dominator & elimi-
nee sets smaller than the entire strategy set. To get the strongest possible argument for eliminating
a strategy, the dominator & eliminee sets should be chosen to be as small as possible while still
having the strategy be eliminable relative to these sets.13 Iterated elimination of strategies using the
new criterion is also possible, and again, to get the strongest possible argument for eliminating a
strategy, the sequence of eliminations leading up to it should use dominator & eliminee sets that are
as small as possible.14

As another benefit, the algorithm that we provide for checking whether a strategy is eliminable
according to the new criterion can also be used as a subroutine in the computation of Nash equi-
libria. Specifically, any strategy that is eliminable (even using iterated elimination) according to
the criterion is guaranteed not to occur in any Nash equilibrium. Current state-of-the-art algorithms
for computing Nash equilibria already use a subroutine that eliminates (conditionally) dominated
strategies [Porter et al., 2004]. Because the new criterion can eliminate more strategies than dom-
inance, the algorithm we provide may speed up the computation of Nash equilibria. (For purposes
of speed, it is probably desirable to only apply special cases of the criterion that can be computed
fast—in particular, as we will show, eliminability according to the criterion can be computed fast
when the eliminee sets are small. Even these special cases are more powerful than dominance.)

Throughout, we focus on two-player games only. The eliminability criterion itself can be gener-
alized to more players, but the computational tools we introduce do not straightforwardly generalize
to more players. Moreover, we restrict attenton to normal-form games only.

9.3.1 A motivating example

Because the definition of the new eliminability criterion is complex, we will first illustrate it with
an example. Consider the following (partially specified) game.

σ1
c σ2

c σ3
c σ4

c

σ1
r ?, ? ?, 2 ?, 0 ?, 0

σ2
r 2, ? 2, 2 2, 0 2, 0

σ3
r 0, ? 0, 2 3, 0 0, 3

σ4
r 0, ? 0, 2 0, 3 3, 0

13There may be multiple minimal vectors of dominator & eliminee sets relative to which the strategy is eliminable;
in this dissertation, we will not attempt to settle which of these minimal vectors, if any, constitutes the most powerful
argument for eliminating the strategy.

14Here, there may also be a tradeoff with the length of the elimination path. For example, there may be a path of several
eliminations using dominator & eliminee sets that are small, as well as a single elimination using dominator & eliminee
sets that are large, both of which eliminate a given strategy. (In fact, we will always be confronted with this situation,
as Corollary 30 will show.) Again, in this dissertation, we will not attempt to settle which argument for eliminating the
strategy is stronger.

260 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

A quick look at this game reveals that strategies σ3
r and σ4

r are both almost dominated by σ2
r—

but they perform better than σ2
r against σ3

c and σ4
c , respectively. Similarly, strategies σ3

c and σ4
c are

both almost dominated by σ2
c —but they perform better than σ2

c against σ4
r and σ3

c , respectively. So
we are unable to eliminate any strategies using (even weak) dominance.

Now consider the following reasoning. In order for it to be worthwhile for the row player to
ever play σ3

r rather than σ2
r , the column player should play σ3

c at least 2
3 of the time. (If it is exactly

2
3 , then switching from σ2

r to σ3
r will cost the row player 2 exactly 1

3 of the time, but the row player
will gain 1 exactly 2

3 of the time, so the expected benefit is 0.) But, similarly, in order for it to be
worthwhile for the column player to ever play σ3

c , the row player should play σ4
r at least 2

3 of the
time. But again, in order for it to be worthwhile for the row player to ever play σ4

r , the column
player should play σ4

c at least 2
3 of the time. Thus, if both the row and the column player accurately

assess the probabilities that the other places on these strategies, and their strategies are rational with
respect to these assessments (as would be the case in a Nash equilibrium), then, if the row player
puts positive probability on σ3

r , by the previous reasoning, the column player should be playing σ3
c

at least 2
3 of the time, and σ4

c at least 2
3 of the time. Of course, this is impossible; so, in a sense, the

row player should not play σ3
r .

It may appear that all we have shown is that σ3
r is not played in any Nash equilibrium. But, to

some extent, our argument for not playing σ3
r did not make use of the full elimination power of the

Nash equilibrium concept. Most notably, we only reasoned about a small part of the game: we never
mentioned strategies σ1

r and σ1
c , and we did not even specify most of the utilities for these strategies.

(It is easy to extend this example so that the argument only uses an arbitrarily small fraction of the
strategies and of the utilities in the matrix, for instance by adding many copies of σ1

r and σ1
c .) The

locality of the reasoning that we did is more akin to the notion of dominance, which is perhaps the
extreme case of local reasoning about eliminability—only two strategies are mentioned in it. So, in
this sense, the argument for eliminating σ3

r is somewhere between dominance and Nash equilibrium
in strength.

9.3.2 Definition of the eliminability criterion

We are now ready to give the formal definition of the generalized eliminability criterion. To make
the definition a bit simpler, we define its negation—when a strategy is not eliminable relative to
certain sets of strategies. Also, we only define when one of the row player’s strategies is eliminable,
but of course the definition is analogous for the column player.

The definition, which considers when a strategy e∗r is eliminable relative to subsets Dr, Er of
the row player’s pure strategies (with e∗r ∈ Er) and subsets Dc, Ec of the column player’s pure
strategies, can be stated informally as follows. To protect e∗r from elimination, we should be able to
specify the probabilities that the players’ mixed strategies place on the Ei sets in such a way that 1)
e∗r receives nonzero probability, and 2) for every pure strategy ei that receives nonzero probability,
for every mixed strategy di using only strategies in Di, it is conceivable that player −i’s mixed
strategy15 is completed so that ei is no worse than di.16 The formal definition follows.

15As is common in the game theory literature, −i denotes “the player other than i.”
16This description may sound similar to the concept of rationalizability. However, in two-player games (the subject of

this section), rationalizability is known to coincide with iterated strict dominance [Pearce, 1984].

9.3. A GENERALIZED ELIMINABILITY CRITERION 261

Definition 58 Given a two-player game in normal form, subsets Dr, Er of the row player’s pure
strategies Σr, subsets Dc, Ec of the column player’s pure strategies Σc, and a distinguished strategy
e∗r ∈ Er, we say that e∗r is not eliminable relative to Dr, Er, Dc, Ec, if there exist functions (partial
mixed strategies) pr : Er → [0, 1] and pc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑

er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both i ∈ {r, c}, for any ei ∈ Ei with

pi(ei) > 0, for any mixed strategy di placing positive probability only on strategies in Di, there is
some pure strategy σ−i ∈ Σ−i − E−i such that (letting p−i ¦ σ−i denote the mixed strategy that
results from placing the remaining probability 1 −

∑

e−i∈E−i

p−i(e−i) that is not used by the partial

mixed strategy p−i on σ−i), we have: ui(ei, p−i ¦ σ−i) ≥ ui(di, p−i ¦ σ−i). (If p−i already uses up
all the probability, we simply have ui(ei, p−i) ≥ ui(di, p−i)—no σ−i needs to be chosen.)17

In the example from the previous subsubsection, we can set Dr = {σ2
r}, Dc = {σ2

c}, Er =
{σ3

r , σ
4
r}, Ec = {σ3

c , σ
4
c}, and e∗r = σ3

r . Then, by the reasoning that we did, it is impossible to set
pr and pc so that the conditions are satisfied, and hence σ3

r is eliminable relative to these sets.

9.3.3 The spectrum of strength

In this subsection we show that the generalized eliminability criterion we defined in in the pre-
vious subsection spans a spectrum of strength all the way from Nash equilibrium (when the sets
Dr, Er, Dc, Ec are chosen as large as possible), to strict dominance (when the sets are chosen as
small as possible). First, we show that the criterion is monotonically increasing, in the sense that
the larger we make the sets Dr, Er, Dc, Ec, the more strategies are eliminable.

Proposition 12 If e∗r is eliminable relative to D1
r , E

1
r , D1

c , E
1
c , and D1

r ⊆ D2
r , E

1
r ⊆ E2

r , D1
c ⊆

D2
c , E

1
c ⊆ E2

c , then e∗r is eliminable relative to D2
r , E

2
r , D2

c , E
2
c .

Proof: We will prove this by showing that if e∗r is not eliminable relative to D2
r , E

2
r , D2

c , E
2
c , then

e∗r is not eliminable relative to D1
r , E

1
r , D1

c , E
1
c . It is straightforward that making the Di sets smaller

only weakens the condition on strategies ei with pi(ei) > 0 in Definition 58. Hence, if e∗r is not
eliminable relative to D2

r , E
2
r , D2

c , E
2
c , then e∗r is not eliminable relative to D1

r , E
2
r , D1

c , E
2
c . All

that remains to show is that making the Ei sets smaller will not make e∗r eliminable. To show
this, we first observe that, if in its last step Definition 58 allowed for distributing the remaining
probability arbitrarily over the strategies in Σ−i − E−i (rather than requiring a single one of these
strategies to receive all the remaining probability), this would not change the definition, because we
might as well place all the remaining probability on the strategy σ−i ∈ Σ−i − E−i that maximizes
ui(ei, σ−i)− ui(di, σ−i). Now, let pr and pc be partial mixed strategies over E2

r and E2
c that prove

that e∗r is not eliminable relative to D1
r , E

2
r , D1

c , E
2
c . Then, to show that e∗r is not eliminable relative

to D1
r , E

1
r , D1

c , E
1
c , use the partial mixed strategies p′r and p′c, which are simply the restrictions

of pr and pc to E1
r and E1

c , respectively. For any ei ∈ E1
i with p′i(ei) > 0 and for any mixed

strategy di over D1
i , we know that there exists some σ−i ∈ Σ−i−E2

−i such that ui(ei, p−i ¦σ−i) ≥
ui(di, p−i ¦ σ−i) (because the pi prove that e∗r is not eliminable relative to D1

r , E
2
r , D1

c , E
2
c). But,

17We need to make this case explicit for the case E−i = Σ−i.

262 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

the distribution p−i ¦ σ−i is a legitimate completion of the partial mixed strategy p′−i as well (albeit
one that distributes the remaining probability over multiple strategies), and hence the p′

i prove that
e∗r is not eliminable relative to D1

r , E
1
r , D1

c , E
1
c .

Next, we show that the Nash equilibrium concept is weaker18 than our generalized eliminabil-
ity criterion—in the sense that the generalized criterion can never eliminate a strategy that is in
some Nash equilibrium. So, if a strategy can be eliminated by the generalized criterion, it can be
eliminated by the Nash equilibrium concept.

Proposition 13 If there is some Nash equilibrium that places positive probability on pure strategy
σ∗

r , then σ∗
r is not eliminable relative to any Dr, Er, Dc, Ec.

Proof: Let σ′
r be the row player’s (mixed) strategy in the Nash equilibrium (which places positive

probability on σ∗
r), and let σ′

c be the column player’s (mixed) strategy in the Nash equilibrium. For
any Dr, Er, Dc, Ec with σ∗

r ∈ Er, to prove that σ∗
r is not eliminable relative to these sets, simply

let pr coincide with σ′
r on Er—that is, let pr be the probabilities that the row player places on

the strategies in Er in the equilibrium. (Thus, pr(σ
∗
r) > 0). Similarly, let pc coincide with σ′

c on
Ec. We will prove that the condition on strategies with positive probability is satisfied for the row
player; the case of the column player follows by symmetry. For any er ∈ Er with pr(er) > 0, for
any mixed strategy dr, we have ur(er, σ

′
c) − ur(dr, σ

′
c) ≥ 0, by the Nash equilibrium condition.

Now, let pure strategy σc ∈ arg maxσ∈Σc−Ec(ur(er, pc ¦ σ)− ur(dr, pc ¦ σ)). Then we must have
ur(er, pc ¦ σc)− ur(dr, pc ¦ σc) ≥ ur(er, σ

′
c)− ur(dr, σ

′
c) ≥ 0 (because pc ¦ σc and σ′

c coincide on
Ec, and for the former, the remainder of the distribution is chosen to maximize this expression). It
follows that σ∗

r is not eliminable relative to any Dr, Er, Dc, Ec.

We next show that by choosing the sets Dr, Er, Dc, Ec as large as possible, we can make the
generalized eliminability criterion coincide with the Nash equilibrium concept.19

Proposition 14 Let Dr = Er = Σr and Dc = Ec = Σc. Then e∗r is eliminable relative to these
sets if and only if there is no Nash equilibrium that places positive probability on e∗r .

Proof: The “only if” direction follows from Proposition 13. For the “if” direction, suppose e∗r is not
eliminable relative to Dr = Er = Σr and Dc = Ec = Σc. The partial distributions pr and pc with
pr(e

∗
r) > 0 that show that e∗r is not eliminable must use up all the probability (the probabilities must

sum to one), because there are no strategies outside Ec = Σc and Er = Σr to place any remaining
probability on. Hence, we must have, for any strategy er ∈ Er = Σr with pr(er) > 0, that for
any mixed strategy dr, ur(er, pc) ≥ ur(dr, pc) (and the same for the column player). But these are
precisely the conditions for pr and pc to constitute a Nash equilibrium. It follows that there is a

18When discussing elimination of strategies, it is tempting to say that the stronger criterion is the one that can eliminate
more strategies. However, when discussing solution concepts, the convention is that the stronger concept is the one that
implies the other. Therefore, the criterion that can eliminate fewer strategies is actually the stronger one. For example,
strict dominance is stronger than weak dominance, even though weak dominance can eliminate more strategies.

19Unlike Nash equilibrium, the generalized eliminability criterion does not discuss what probabilities should be placed
on strategies that are not eliminated, so it only “coincides” with Nash equilibrium in terms of what it can eliminate.

9.3. A GENERALIZED ELIMINABILITY CRITERION 263

Nash equilibrium with positive probability on e∗r .

Moving to the other side of the spectrum, we now show that the concept of strict dominance is
stronger than the generalized eliminability criterion—in the sense that the generalized eliminability
criterion can always eliminate a strictly dominated strategy (as long as the dominating strategy is in
Dr).

Proposition 15 If pure strategy σ∗
r is strictly dominated by some mixed strategy dr, then σ∗

r is
eliminable relative to any Dr, Er, Dc, Ec such that 1) σ∗

r ∈ Er, and 2) all the pure strategies on
which dr places positive probability are in Dr.

Proof: To show that σ∗
r is not eliminable relative to these sets, we must set pr(σ

∗
r) > 0, and thus we

must demonstrate that for some pure strategy σc ∈ Σc−Ec, ur(σ
∗
r , pc ¦σc) ≥ ur(dr, pc ¦σc) (or, if

all the probability is used up, ur(σ
∗
r , pc) ≥ ur(dr, pc)), because dr only places positive probability

on strategies in Dr. But this is impossible, because by strict dominance, ur(σ
∗
r , σc) < ur(dr, σc)

for any mixed strategy σc.

Finally, we show that by choosing the sets Er, Ec as small as possible, we can make the gener-
alized eliminability criterion coincide with the strict dominance concept.

Proposition 16 Let Ec = {} and Er = {er}. Then er is eliminable relative to Dr, Er, Dc, Ec if
and only if it is strictly dominated by some mixed strategy that places positive probability only on
elements of Dr.

Proof: The “if” direction follows from Proposition 15. For the “only if” direction, suppose that
er is eliminable relative to these sets. That means that there exists a mixed strategy dr that places
positive probability only on strategies in Dr such that for any pure strategy σc ∈ Σc − Ec = Σc,
u(er, σc) < u(dr, σc) (because Ec = {} and Er = {er}, this is the only way in which an attempt
to prove that er is not eliminable could fail). But this is precisely the condition for dr to strictly
dominate er.

We are now ready to turn to computational aspects of the new eliminability criterion.

9.3.4 Applying the new eliminability criterion can be computationally hard

In this subsection, we demonstrate that applying the eliminability criterion can be computationally
hard, in the sense of worst-case complexity.20 We show that applying the eliminability criterion is
coNP-complete in two key special cases (subclasses of the problem). The first case is the one in
which the Dr, Er, Dc, Ec sets are set to be as large as possible. Here, the hardness follows directly
from Proposition 14 and a result from Section 9.2.

Theorem 102 Deciding whether a given strategy is eliminable relative to Dr = Er = Σr and
Dc = Ec = Σc is coNP-complete, even when the game is symmetric.

20Because we only show hardness in the worst case, it is possible that many (or even most) instances are in fact easy
to solve.

264 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

Proof: By Proposition 14, this is the converse of asking whether there exists a Nash equilibrium
with positive probability on the given strategy. As we saw in Section 9.2, this is NP-complete.

While this shows that the eliminability criterion is, in general, computationally hard to apply, we
may wonder if there are special cases in which it is computationally easy to apply. Natural special
cases to look at include those in which some of the sets Dr, Er, Dc, Ec are small. The next theorem
shows that applying the eliminability criterion remains coNP-complete even when |Dr| = |Dc| = 1.

Theorem 103 Deciding whether a given strategy is eliminable relative to given Dr, Er, Dc, Ec is
coNP-complete, even when |Dr| = |Dc| = 1.

Proof: We will show later (Corollary 28) that the problem is in coNP. To show that the problem
is coNP-hard, we reduce an arbitrary KNAPSACK instance (given by m cost-value pairs (ci, vi), a
cost constraint C and a value target V ; we assume without loss of generality that C = 1 − ε, for
some ε small enough that it is impossible for a subset of the ci to sum to a value strictly between C

and 1,21 that ci > 0 for all i, and that
m
∑

i=1
vi ≤ 1) to the following eliminability question. Let the

game be as follows. The row player has m+2 distinct pure strategies: e1
r , e

2
r , . . . , e

m
r , e∗r , dr (where

Er = {e1
r , e

2
r , . . . , e

m
r , e∗r} and Dr = {dr}). The column player has m + 1 distinct pure strategies:

e1
c , e

2
c , . . . , e

m
c , dc (where Ec = {e1

c , e
2
c , . . . , e

m
c } and Dc = {dc}). Let the utilities be as follows:

• ur(e
i
r, e

j
c) = 1 for all i 6= j;

• ur(e
i
r, e

i
c) = 1− 1

vi
for all i;

• ur(e
i
r, dc) = 1 for all i;

• ur(e
∗
r , e

i
c) = 1

V − 1 for all i;

• ur(e
∗
r , dc) = −1;

• ur(dr, e
i
c) = 0 for all i;

• ur(dr, dc) = 0;

• uc(e
i
r, e

j
c) = 0 for all i 6= j;

• uc(e
i
r, e

i
c) = 1

ci
for all i;

• uc(e
i
r, dc) = 1 for all i;

• uc(e
∗
r , e

i
c) = 0 for all i;

• uc(e
∗
r , dc) = 1;

• uc(dr, e
i
c) = 0 for all i;

21Because we may assume that the ci and C are all integers divided by some number K, it is sufficient if ε < 1

K
.

9.3. A GENERALIZED ELIMINABILITY CRITERION 265

• uc(dr, dc) = 1.

Thus, the matrix is as follows:

e1
c e2

c · · · em
c dc

e1
r 1− 1

v1
, 1

c1
1, 0 · · · 1, 0 1, 1

e2
r 1, 0 1− 1

v2
, 1

c2
· · · 1, 0 1, 1

...
em
r 1, 0 1, 0 · · · 1− 1

vm
, 1

cm
1, 1

e∗r
1
V − 1, 0 1

V − 1, 0 · · · 1
V − 1, 0 −1, 1

dr 0, 0 0, 0 · · · 0, 0 0, 1

We now show that e∗r is eliminable relative to Dr, Er, Dc, Ec if and only if there is no solution
to the KNAPSACK instance.

First suppose there is a solution to the KNAPSACK instance. Then, for every i such that (ci, vi)
is included in the KNAPSACK solution, let pr(e

i
r) = ci; for every i such that (ci, vi) is not included

in the KNAPSACK solution, let pr(e
i
r) = 0. Also, let pr(e

∗
r) = 1 −

m
∑

i=1
pr(e

i
r). (We note that

m
∑

i=1
pr(e

i
r) ≤ C = 1 − ε, so that pr(e

∗
r) ≥ ε > 0.) Also, for every i such that (ci, vi) is included

in the KNAPSACK solution, let pc(e
i
c) = vi. We now show that pr and pc satisfy the conditions

of Definition 58. If the column player places the remaining probability on dc, then the utility for
the row player of playing any ei

r with pr(e
i
r) > 0 is 1 − vi

vi
= 0; the utility of playing e∗r is

−1 + 1
V

m
∑

i=1
pc(e

i
c) ≥ −1 + V

V = 0; and the utility of playing dr is also 0. Thus, the condition

is satisfied for all elements of Er that have positive probability. As for Ec, we note that all of the
row player’s probability has already been used up. The utility of playing any ei

c with pc(e
i
c) > 0 is

ci
ci

= 1, whereas the utility for playing dc is also 1. Thus, the condition is satisfied for all elements
of Ec that have positive probability. It follows that pr and pc satisfy the conditions of Definition 58
and e∗r is not eliminable relative to Dr, Er, Dc, Ec.

Now suppose that e∗r is not eliminable relative to Dr, Er, Dc, Ec. Let pr and pc be partial mixed
strategies on Er and Ec satisfying the conditions of Definition 58. We must have that pr(e

∗
r) > 0.

The utility for the row player of playing e∗r is−1+ 1
V

m
∑

i=1
pc(e

i
c), which must be at least 0 (the utility

of playing dr); hence
m
∑

i=1
pc(e

i
c) ≥ V . The utility for the column player of playing ei

c is pr(ei
r)

ci
,

which must be at least 1 (the utility of playing dc) if pc(e
i
c) > 0; hence pr(e

i
r) ≥ ci if pc(e

i
c) > 0.

Finally, the utility for the row player of playing ei
r is 1− pc(ei

c)
vi

, which must be at least 0 (the utility of
playing dr) if pr(e

i
r) > 0; hence pc(e

i
c) ≤ vi if pr(e

i
r) > 0. Because we must have pr(e

i
r) ≥ ci > 0

if pc(e
i
c) > 0, it follows that we must always have pc(e

i
c) ≤ vi. Let S = {i : pc(e

i
c) > 0}. We must

have
∑

i∈S

vi ≥
∑

i∈S

pc(e
i
c) ≥ V . Also, we must have

∑

i∈S

ci ≤
∑

i∈S

pr(e
i
r) < 1 (because we must have

pr(e
∗
r) > 0). Because it is impossible that C <

∑

i∈S

ci < 1, it follows that
∑

i∈S

ci ≤ C. But then, S

is a solution to the KNAPSACK instance.

266 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

However, we will show later that the eliminability criterion can be applied in polynomial time
if the Ei sets are small (regardless of the size of the Di sets). To do so, we first need to introduce an
alternative version of the definition.

9.3.5 An alternative, equivalent definition of the eliminability criterion

In this subsection, we will give an alternative definition of eliminability, and we will show it is
equivalent to the one presented in Definition 58. While the alternative definition is slightly less
intuitve than the original one, it is easier to work with computationally, as we will show in the next
subsection. Informally, the alternative definition differs from the original one as follows: in the
alternative definition, the completion of player −i’s mixed strategy has to be chosen before player
i’s strategy di is chosen (but after player i’s strategy ei with pi(ei) > 0 is chosen). The formal
definition follows.

Definition 59 Given a two-player game in normal form, subsets Dr, Er of the row player’s pure
strategies Σr, subsets Dc, Ec of the column player’s pure strategies Σc, and a distinguished strategy
e∗r ∈ Er, we say that e∗r is not eliminable relative to Dr, Er, Dc, Ec, if there exist functions (partial
mixed strategies) pr : Er → [0, 1] and pc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑

er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both i ∈ {r, c}, for any ei ∈ Ei with

pi(ei) > 0, there exists some completion of the probability distribution over −i’s strategies, given
by pei

−i : Σ−i → [0, 1] (with pei
−i(e−i) = p−i(e−i) for all e−i ∈ E−i, and

∑

σ−i∈Σ−i

pei
−i(σ−i) = 1),

such that for any pure strategy di ∈ Di, we have ui(ei, p
ei
−i) ≥ ui(di, p

ei
−i).

We now show that the two definitions are equivalent.

Theorem 104 The notions of eliminability put forward in Definitions 58 and 59 are equivalent.
That is, e∗r is eliminable relative to Dr, Er, Dc, Ec according to Definition 58 if and only if e∗r is
eliminable relative to (the same) Dr, Er, Dc, Ec according to Definition 59.

Proof: The definitions are identical up to the condition that each strategy with positive probability
(each er ∈ Er with pr(er) > 0 and each ec ∈ Ec with pc(ec) > 0) must satisfy. We will show that
these conditions are equivalent across the two definitions, thereby showing that the definitions are
equivalent.

To show that the conditions are equivalent, we introduce another, zero-sum game that is a func-
tion of the original game, the sets Dr, Er, Dc, Ec, the chosen partial probability distributions pr and
pc, and the strategy ei for which we are checking whether the conditions are satisfied. (Without loss
of generality, assume that we are checking it for some strategy er ∈ Er with pr(er) > 0.)

The zero-sum game has two players, 1 and 2 (not to be confused with the row and column
players of the original game). Player 1 chooses some dr ∈ Dr, and player 2 chooses some σc ∈
Σc − Ec. The utility to player 1 is ur(dr, pc ¦ σc) − ur(er, pc ¦ σc) (and the utility to player 2 is
the negative of this). (We assume without loss of generality that pc does not already use up all the
probability, because in this case the conditions are trivially equivalent across the two definitions.)

9.3. A GENERALIZED ELIMINABILITY CRITERION 267

First, suppose that player 1 must declare her probability distribution (mixed strategy) over Dr

first, after which player 2 best-responds. Then, letting ∆(X) denote the set of probability distribu-
tions over set X , player 1 will receive maxδr∈∆(Dr) minσc∈Σc−Ec

∑

dr∈Dr

δr(dr)(ur(dr, pc ¦ σc) −

ur(er, pc ¦ σc)) = maxδr∈∆(Dr) minσc∈Σc−Ec ur(δr, pc ¦ σc)− ur(er, pc ¦ σc). This expression is
at most 0 if and only if the condition in Definition 58 is satisfied.

Second, suppose that player 2 must declare his probability distribution (mixed strategy) over
Σc − Ec first, after which player 1 best-responds. Then, player 1 will receive minδc∈∆(Σc−Ec)

maxdr∈Dr

∑

σc∈Σc−Ec

δc(σc)(ur(dr, pc ¦ σc)− ur(er, pc ¦ σc)) = minδc∈∆(Σc−Ec) maxdr∈Dr

∑

ec∈Ec

pc(ec)(ur(dr, ec)−ur(er, ec))+
∑

σc∈Σc−Ec

(1−
∑

ec∈Ec

pc(ec))δc(σc)(ur(dr, σc)−ur(er, σc)) =

minδc∈∆(Σc−Ec) maxdr∈Dr ur(dr, pc ¦ δc)−ur(er, pc ¦ δc). This expression is at most 0 if and only
if the condition in Definition 59 is satisfied.

However, by the Minimax Theorem [von Neumann, 1927], the two expressions must have the
same value, and hence the two conditions are equivalent.

Informally, the reason that Definition 59 is easier to work with computationally is that all of the
continuous variables (the values of the functions pr, pc, p

er
c , pec

r) are set by the party that is trying to
prove that the strategy is not eliminable; whereas in Definition 58, some of the continuous variables
(the probabilities defining the mixed strategies dr, dc) are set by the party trying to refute the proof
that the strategy is not eliminable. This will become more precise in the next subsection.

9.3.6 A mixed integer programming approach

In this subsection, we show how to translate Definition 59 into a mixed integer program that deter-
mines whether a given strategy e∗r is eliminable relative to given sets Dr, Er, Dc, Ec. The variables
in the program, which are all restricted to be nonnegative, are the pi(ei) for all ei ∈ Ei; the p

e−i

i (σi)
for all e−i ∈ E−i and all σi ∈ Σi − Ei; and binary indicator variables bi(ei) for all ei ∈ Ei which
can be set to zero if and only if pi(ei) = 0. The program is the following:

maximize pr(e
∗
r) subject to

(probability constraints): for both i ∈ {r, c}, for all ei ∈ Ei,
∑

e−i∈E−i

p−i(e−i)+

∑

σ−i∈Σ−i−E−i

pei
−i(σ−i) = 1

(binary constraints): for both i ∈ {r, c}, for all ei ∈ Ei, pi(ei) ≤ bi(ei)

(main constraints): for both i ∈ {r, c}, for all ei ∈ Ei and all di ∈ Di,
∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i)−

ui(di, e−i)) +
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i)− ui(di, σ−i)) ≥ (bi(ei)− 1)Ui

In this program, the constant Ui is the maximum difference between two different utilities that
player i may receive in the game, that is, Ui = maxσr,σ′

r∈Σr,σc,σ′
c∈Σc ui(σr, σc)− ui(σ

′
r, σ

′
c).

268 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

Theorem 105 The mixed integer program has a solution with objective value greater than zero if
and only if e∗r is not eliminable relative to Dr, Er, Dc, Ec.

Proof: For any ei ∈ Ei with pi(ei) > 0, bi(ei) must be 1, and thus the corresponding main con-
straints become: for any di ∈ Di,

∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i)− ui(di, e−i))+

∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i)−ui(di, σ−i)) ≥ 0. These are equivalent to the constraints given

on strategies ei ∈ Ei with pi(ei) > 0 in Definition 59. On the other hand, for any ei ∈ Ei

with pi(ei) = 0, bi(ei) can be set to 0, in which case the constraints become: for any di ∈ Di,
∑

e−i∈E−i

p−i(e−i)(ui(ei, e−i) − ui(di, e−i)) +
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i) − ui(di, σ−i)) ≥

−Ui. Because the probabilities in each of these constraints must sum to one by the probability con-
straints, and Ui is the maximum difference between two different utilities that player i may receive
in the game, these constraints are vacuous. Therefore the main constraints correspond exactly to
those in Definition 59.

We obtain the following corollaries:

Corollary 28 Checking whether a given strategy can be eliminated relative to given Dr, Er, Dc, Ec

is in coNP.

Proof: To see whether the strategy can be protected from elimination, we can nondeterministically
choose the values for the binary variables br(er) and bc(ec). After this, only a linear program
remains to be solved, which can be done in polynomial time [Khachiyan, 1979].

Corollary 29 Using the mixed integer program above, the time required to check whether a given
strategy can be eliminated relative to given Dr, Er, Dc, Ec is exponential only in |Er| + |Ec| (and
not in |Dr|, |Dc|, |Σr|, or |Σc|).

Proof: Any mixed integer program whose only integer variables are binary variables can be solved
in time exponential only in its number of binary variables (for example, by searching over all settings
of its binary variables and solving the remaining linear program in each case). The number of binary
variables in this program is |Er|+ |Ec|.

9.3.7 Iterated elimination

In this subsection, we study what happens when we eliminate strategies iteratively using the new
criterion. The criterion can be iteratively applied by removing an eliminated strategy from the game,
and subsequently checking for new eliminabilities in the game with the strategy removed, etc. (as in
the more elementary, conventional notion of iterated dominance). First, we show that this procedure
is, in a sense, sound.

Theorem 106 Iterated elimination according to the generalized criterion will never remove a strat-
egy that is played with positive probability in some Nash equilibrium of the original game.

9.3. A GENERALIZED ELIMINABILITY CRITERION 269

Proof: We will prove this by induction on the elimination round (that is, the number of strategies
eliminated so far). The claim is true for the first round by Proposition 13. Now suppose it is true up
to and including round k; we must show it is true for round k + 1. Suppose that the claim is false
for round k + 1, that is, there exists some game G and some pure strategy σ such that 1) σ is played
with positive probability in some Nash equilibrium of G, and 2) using k elimination rounds, G can
be reduced to Gk+1, in which σ is eliminable. Now consider the game Gk which preceded Gk+1 in
the elimination sequence, that is, the game obtained by undoing the last elimination before Gk+1.
Also, let σ′ be the strategy removed from Gk to obtain Gk+1. Now, in Gk, σ cannot be eliminated
by the induction assumption. However, by Proposition 14, any strategy that is not played with
positive probability in any Nash equilibrium can be eliminated, so it follows that there is some Nash
equilibrium of Gk in which σ is played with positive probability. Moreover, this Nash equilibrium
cannot place positive probability on σ′ (because otherwise, by Proposition 13, we would not be able
to eliminate it). But then, this Nash equilibrium must also be a Nash equilibrium of Gk+1: it does
not place any probability on strategies that are not in Gk+1, and the set of strategies that the players
can switch to in Gk+1 is a subset of those in Gk. Hence, by Proposition 13, we cannot eliminate σ
from Gk+1, and we have achieved the desired contradiction.

Because (the single-round version of) the eliminability criterion extends all the way to Nash
equilibrium by Proposition 14, we get the following corollary.

Corollary 30 Any strategy that can be eliminated using iterated elimination can also be eliminated
in a single round (that is, without iterated application of the criterion).

Proof: By Proposition 14, all strategies that are not played with positive probability in any Nash
equilibrium can be eliminated in a single round; but by Theorem 106, this is the only type of strategy
that iterated elimination can eliminate.

Interestingly, iterated elimination is in a sense incomplete:

Proposition 17 Removing an eliminated strategy from a game sometimes decreases the set of strate-
gies that can be eliminated.

Proof: Consider the following game:

L M R

U 2, 2 0, 1 0, 5
D 1, 0 1, 1 1, 0

The unique Nash equilibrium of this game is (D, M), for the following reasons. In order for it
to be worthwhile for the row player to play U with positive probability, the column player should
play L with probability at least 1/2. But, in order for it to be worthwhile for the column player to
play L with positive probability (rather than M), the row player should play U with probability at
least 1/2. However, if the row player plays U with probability at least 1/2, then the column player’s
unique best response is to play R. Hence, the row player must play D in any Nash equilibrium, and
the unique best response to D is M .

270 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

Thus, by Proposition 14, all strategies besides D and M can be eliminated. In particular, R can
be eliminated. However, if we remove R from the game, the remaining game is:

L M

U 2, 2 0, 1
D 1, 0 1, 1

In this game, (U, L) is also a Nash equilibrium, and hence U and L can no longer be eliminated,
by Proposition 13.

This example highlights an interesting issue with respect to using this eliminability criterion as
a preprocessing step in the computation of Nash equilibria: it does not suffice to simply throw out
eliminated strategies and compute a Nash equilibrium for the remaining game. Rather, we need to
use the criterion more carefully: if we know that a strategy is eliminable according to the criterion
we can restrict our attention to supports for the player that do not include this strategy.

The example also directly implies that iterated elimination according to the generalized crite-
rion is path-dependent (the choice of which strategy to remove first affects which strategies can/will
be removed later). As we discussed in Section 9.1, the same phenomenon occurs with iterated
weak dominance. There is a sizeable literature on path (in)dependence for various notions of dom-
inance [Gilboa et al., 1990; Borgers, 1993; Osborne and Rubinstein, 1994; Marx and Swinkels,
1997, 2000; Apt, 2004].

In light of these results, it may appear that there is not much reason to do iterated elimination
using the new criterion, because it never increases and sometimes even decreases the set of strate-
gies that we can eliminate. However, we need to keep in mind that Theorem 106, Corollary 30,
and Proposition 17 do not pose any restrictions on the sets Dr, Er, Dc, Ec, and therefore (by Propo-
sitions 13 and 14) are effectively results about iteratively removing strategies based on whether
they are played in a Nash equilibrium. However, the new criterion is more informative and use-
ful when there are restrictions on the sets Dr, Er, Dc, Ec. Of particular interest is the restriction
|Er| + |Ec| ≤ k, because by Corollary 29 this quantity determines the (worst-case) runtime of the
mixed integer programming approach that we presented in the previous subsection. Under this re-
striction, it turns out that iterated elimination can eliminate strategies that single-round elimination
cannot.

Proposition 18 Under a restriction of the form |Er|+ |Ec| ≤ k, iterated elimination can eliminate
strategies that single-round elimination cannot (even when k = 1).

Proof: By Proposition 16, when k = 1 the eliminability criterion coincides with strict dominance
(and hence iterated application of the criterion coincides with iterated strict dominance). So, con-
sider the following game:

L R

U 1, 0 1, 1
D 0, 1 0, 0

9.4. SUMMARY 271

Strict dominance cannot eliminate L, but iterated strict dominance (which can remove D first)
can eliminate L.

Of course, even under this (or any other) restriction iterated elimination remains sound in the
sense of Theorem 106. Therefore, one sensible approach to eliminating strategies is the following.
Iteratively apply the eliminability criterion (with whatever restrictions are desired to increase the
strength of the argument, or are necessary to make it computationally manageable, such as |Er| +
|Ec| ≤ k), removing each eliminated strategy, until the process gets stuck. Then, start again with
the original game, and take a different path of iterated elimination (which may eliminate strategies
that could no longer be eliminated after the first path of elimination, as described in Proposition 17),
until the process gets stuck—etc. In the end, any strategy that was eliminated in any one of the
elimination paths can be considered “eliminated”, and this is safe by Theorem 106.22

Interestingly, here the analogy with iterated weak dominance breaks down. Because there is no
soundness theorem such as Theorem 106 for iterated weak dominance, considering all the strate-
gies that are eliminated in some iterated weak dominance elimination path to be simultaneously
“eliminated” can lead to senseless results. Consider for example the following game:

L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

U can be eliminated by removing R first, and D can be eliminated by removing M first—but
these are the row player’s only strategies, so considering both of them to be eliminated makes little
sense.

9.4 Summary

A theory of mechanism design for bounded agents cannot rest on game-theoretic solution concepts
that are too hard for agents to compute. To assess to what extent this eliminates existing solution
concepts from consideration, the first two sections of this chapter were devoted to studying how
hard it is to compute solutions according to some of these concepts.

In Section 9.1, we studied computational aspects of dominance and iterated dominance. We
showed that checking whether a given strategy is dominated (weakly or strictly) by some mixed
strategy can be done in polynomial time using a single linear program solve. We then showed that
determining whether there is some path that eliminates a given strategy is NP-complete with iterated
weak dominance. This allowed us to also show that determining whether there is a path that leads
to a unique solution is NP-complete. Both of these results hold both with and without dominance
by mixed strategies. Iterated strict dominance, on the other hand, is path-independent (both with
and without dominance by mixed strategies) and can therefore be done in polynomial time. We then
studied what happens when the dominating strategy is allowed to place positive probability on only
a few pure strategies. First, we showed that finding the dominating strategy with minimum support
size is NP-complete (both for strict and weak dominance). Then, we showed that iterated strict

22This procedure is reminiscent of iterative sampling.

272 CHAPTER 9. COMPUTING GAME-THEORETIC SOLUTIONS

dominance becomes path-dependent when there is a limit on the support size of the dominating
strategies, and that deciding whether a given strategy can be eliminated by iterated strict dominance
under this restriction is NP-complete (even when the limit on the support size is 3). We also studied
dominance and iterated dominance in Bayesian games. We showed that, unlike in normal-form
games, deciding whether a given pure strategy is dominated by another pure strategy in a Bayesian
game is NP-complete (both with strict and weak dominance); however, deciding whether a strategy
is dominated by some mixed strategy can still be done in polynomial time with a single linear
program solve (both with strict and weak dominance). Finally, we showed that iterated dominance
using pure strategies can require an exponential number of iterations in a Bayesian game (both with
strict and weak dominance).

In Section 9.2 we provided a single reduction that demonstrates that 1) it is NP-complete to de-
termine whether Nash equilibria with certain natural properties exist, 2) more significantly, the prob-
lems of maximizing certain properties of a Nash equilibrium are inapproximable (unless P=NP),
and 3) it is #P-hard to count the Nash equilibria (or connected sets of Nash equilibria). We also
showed that determining whether a pure-strategy Bayes-Nash equilibrium exists is NP-complete.

Since these (and other) results suggest that dominance is a more tractable solution concept than
(Bayes)-Nash equilibrium, but is often too strict for mechanism design (and other) purposes, one
may wonder whether it is possible to strike a compromise between dominance and Nash equilib-
rium, obtaining intermediate solution concepts that combine good aspects of both. The last section
in this chapter, Section 9.3, did precisely that. We defined a generalized eliminability criterion for
bimatrix games that considers whether a given strategy is eliminable relative to given dominator
& eliminee subsets of the players’ strategies. We showed that this definition spans a spectrum of
eliminability criteria from strict dominance (when the subsets are as small as possible) to Nash
equilibrium (when the subsets are as large as possible). We showed that checking whether a strat-
egy is eliminable according to this criterion is coNP-complete (both when all the sets are as large
as possible and when the dominator sets each have size 1). We then gave an alternative definition
of the eliminability criterion and showed that it is equivalent using the Minimax Theorem. We
showed how this alternative definition can be translated into a mixed integer program of polynomial
size with a number of (binary) integer variables equal to the sum of the sizes of the eliminee sets,
implying that checking whether a strategy is eliminable according to the criterion can be done in
polynomial time if the eliminee sets are small. Finally, we studied using the criterion for iterated
elimination of strategies.

The results in this chapter provide an initial step towards building a theory of mechanism design
for bounded agents. For such a theory to be complete, it would also require methods for predicting
how agents will act in strategic situations where standard game-theoretic solutions are too hard for
them to compute. Ideally, these methods would not assume any detailed knowlege of the algorithms
available to the agents, but this will undoubtedly be a difficult feat to accomplish. Fortunately, we
do not have to wait for the entire theory of mechanism design for bounded agents to be developed
before we create some initial techniques for designing such mechanisms nonetheless. (The only
downside of not having the general theory is that we will not be able to evaluate how close to
optimal these techniques are.) The next chapter provides one such technique, which can in fact also
be used to generate mechanisms automatically (albeit in a very different way from that proposed in
Chapter 6).

Chapter 10

Automated Mechanism Design for
Bounded Agents

A long-term goal of this research is to combine automated mechanism design and mechanism design
for bounded agents, so that mechanisms that take advantage of the agents’ limited computational
capacities are automatically designed. However, the approaches that we have seen in previous
chapters cannot be straightforwardly combined to achieve this, for several reasons.

As we saw in Chapter 6, the work on automated mechanism design (ours as well as others’) so
far has restricted itself to producing truthful mechanisms, and appealed to the revelation principle
to justify this. The advantage of this restriction is that it is easy to evaluate the quality of a truthful
mechanism, because the agents’ behavior is perfectly predictable (they will tell the truth). This is
what allows us to come up with a clear formulation of the optimization problem.

However, settings in which the bounded rationality of agents can be exploited are necessarily
ones in which the revelation principle does not meaningfully apply. Specifically, a mechanism that
is truthful (in the sense that no manipulation can be beneficial) can never exploit the agents’ bounded
rationality, because in such a mechanism agents would reveal the truth regardless of their compu-
tational sophistication. It follows that we must extend the search space for automated mechanism
design to include non-truthful mechanisms.1 Finding an optimal mechanism in this extended search
space would require us to have some method for evaluating the quality of non-truthful mechanisms,
which needs to be based on a model of how the agents behave in non-truthful mechanisms. More-
over, this model must take into account the agents’ bounded rationality: if we assume that the agents
will play optimally (in a game-theoretic sense), then by the revelation principle there is still never a
reason to prefer non-truthful mechanisms over truthful mechanisms.2

1Another aspect of mechanism design for bounded agents is that we may not wish to immediately ask each agent to
provide all of its preferences, as these may be difficult for the agent to compute. Rather, we could consider multistage
mechanisms that selectively query the agent only for the needed preferences. These mechanisms can still be truthful in
the sense that it is always strategically optimal to answer queries truthfully. However, as explained before, the efficient
elicitation of agents’ preferences is a topic that is orthogonal to this dissertation.

2Some non-truthful mechanisms may be just as good as truthful mechanisms when agents behave in a game-
theoretically optimal way, so it is possible that our search would fortuitously return a non-truthful mechanism. However,
if this happens, there is still no guarantee that this non-truthful mechanism will perform better than the best truthful mech-
anism when agents are actually bounded, for one of two reasons. First, it may be easy to act optimally in this particular

273

274 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

Creating a good model of the behavior of boundedly rational agents for this purpose is by no
means easy. For one, it is difficult to guarantee that agents will not adapt their reasoning algorithms
to the specific mechanism that they face. The results on hardness of manipulation in Chapter 8
avoided this difficulty, by using the standard complexity-theoretic approach of showing that there
are infinite families of instances that are hard. This was necessary because in standard formulations
of complexity theory, any individual instance of a problem is easy to solve, for example by the
algorithm that has the solution to that particular instance precomputed. Unfortunately, the purpose
of automated mechanism design is precisely to design a mechanism for the instance at hand only!
Thus we cannot refer to hardness over infinite classes of instances for this purpose.

These difficulties prevent us from formulating automated mechanism design for bounded agents
as a clean optimization problem. Nevertheless, in Section 10.1, we do propose a more heuristic
approach by which mechanisms for bounded agents can be designed automatically [Conitzer and
Sandholm, 2006e]. In light of the issues discussed above, it should not come as a surprise that
this approach is very different from the approaches described earlier in this dissertation. Rather
than optimizing the entire mechanism in a single step (as in Chapter 6), the idea is to incrementally
make the mechanism more strategy-proof over time, by finding potential beneficial manipulations,
and changing outcomes locally so that these manipulations are no longer beneficial. Computation-
ally, this is a much more scalable approach. The mechanism may eventually become (completely)
strategy-proof, in which case it will not take advantage of agents’ bounded rationality; however, it
may be that some manipulations remain in the end. Intuitively, one should expect such remaining
manipulations to be more difficult to discover for the agents, as the algorithm for designing the
mechanism has not discovered them yet. Thus, instead of using a complexity-theoretic argument as
in Chapter 8, here the argument for hardness of manipulation depends on the agents not being able
to “outcompute” the designer. (Nevertheless, we will also give a complexity-theoretic argument.)

10.1 Incrementally making mechanisms more strategy-proof

In the approach that we propose in this section, we start with a naı̈vely designed mechanism that is
not strategy-proof (for example, the mechanism that would be optimal in the absence of strategic
behavior), and we attempt to make it more strategy-proof. Specifically, the approach systematically
identifies situations in which an agent has an incentive to manipulate, and corrects the mechanism
locally to take away this incentive. This is done iteratively, and the mechanism may or may not
become (completely) strategy-proof eventually.

One can conceive of this as being a new approach to automated mechanism design, insofar as
the updates to the mechanism to make it more strategy-proof can be executed automatically (by a
computer). Indeed, we will provide algorithms for doing so. (These algorithms are computation-
ally much more efficient than the optimization algorithms proposed in Chapter 6, because to ensure
strategy-proofness, those algorithms had to simultaneously decide on the outcome that the mecha-
nism chooses for every possible input of revealed preferences, and the strategy-proofness constraints
interrelated these decisions.) It is also possible to think about the results of this approach theoret-
ically, and use them as a guide in more “traditional” mechanism design. We pursue this as well,

non-truthful mechanism. Second (worse), it may the case that it is not easy, and that this difficulty actually leads the
agents to act in such a way that worse outcomes are obtained.

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 275

giving various examples. Finally, we will argue that if the mechanism that the approach produces
remains manipulable, then any remaining manipulations will be computationally hard to find.

This approach bears some similarity to how mechanisms are designed in the real world. Real-
world mechanisms are often initially naı̈ve, leading to undesirable strategic behavior; once this
is recognized, the mechanism is somehow amended to disincent the undesirable behavior. For
example, some naı̈vely designed mechanisms give bidders incentives to postpone submitting their
bids until just before the event closes (i.e., sniping); often this is (partially) fixed by adding an
activity rule, which prevents bidders that do not bid actively early from winning later. As another
example, in the 2003 Trading Agent Competition Supply Chain Management (TAC/SCM) game,
the rules of the game led the agents to procure most of their components on day 0. This was deemed
undesirable, and the designers tried to modify the rules for the 2004 competition to disincent this
behavior [Kiekintveld et al., 2005].3

As we will see, there are many variants of the approach, each with its own merits. We will not
decide which variant is the best in this dissertation; rather, we will show for a few different variants
that they can result in desirable mechanisms.

10.1.1 Definitions

In this chapter, we will consider payments (if they are possible) to be part of the outcome. Be-
cause of this, we can identify a mechanism with its outcome selection function. Given a mecha-
nism M : Θ → O mapping type vectors to outcomes, a beneficial manipulation4 consists of an
agent i, a type vector 〈θ1, . . . , θn〉 ∈ Θ, and an alternative type report θ̂i for agent i such that
ui(θi, M(〈θ1, . . . , θn〉)) < ui(θi, M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)). In this case we say that i
manipulates from 〈θ1, . . . , θn〉 into 〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉. We note that a mechanism is
strategy-proof or (dominant-strategies) incentive compatible if and only if there are no beneficial
manipulations. (We will not consider Bayes-Nash equilibrium incentive compatibility in this chap-
ter.)

In settings with payments, we will enforce an ex-post individual rationality constraint: we
should not make an agent worse off than he would have been if he had not participated in the
mechanism. That is, we cannot charge an agent more than he reported the outcome (disregarding
payments) was worth to him.

10.1.2 Our approach and techniques

In this subsection, we explain the approach and techniques that we consider in this chapter. We
recall that our goal is not to (immediately) design a strategy-proof mechanism; rather, we start with
some manipulable mechanism, and attempt to incrementally make it “more” strategy-proof. Thus,
the basic template of our approach is as follows:

1. Start with some (manipulable) mechanism M ;

3Interestingly, these ad-hoc modifications failed to prevent the behavior, and even an extreme modification during
the 2004 competition failed. Later research suggests that in fact all reasonable settings for a key parameter would have
failed [Vorobeychik et al., 2006].

4“Beneficial” here means beneficial to the manipulating agent.

276 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

2. Find some set F of manipulations (where a manipulation is given by an agent i, a type vector
〈θ1, . . . , θn〉, and an alternative type report θ̂i for agent i);

3. If possible, change the mechanism M to prevent (many of) these manipulations from being
beneficial;

4. Repeat from step 2 until termination.

This is merely a template; at each one of the steps, something remains to be filled in. Which
initial mechanism do we choose in step 1? Which set of manipulations do we consider in step 2?
How do we “fix” the mechanism in step 3 to prevent these manipulations? And how do we decide
to terminate in step 4? In this dissertation, we will not resolve what is the best way to fill in these
blanks (it seems unlikely that there is a single, universal best way), but rather we will provide a few
instantiations of the technique, illustrate them with examples, and show some interesting properties.

One natural way of instantiating step 1 is to choose a naı̈vely optimal mechanism, that is, a
mechanism that would give the highest objective value for each type vector if every agent would
always reveal his type truthfully. For instance, if we wish to maximize social welfare, we simply
always choose an outcome that maximizes social welfare for the reported types; if we wish to
maximize revenue, we choose an outcome that maximizes social welfare for the reported types, and
make each agent pay his entire valuation.

In step 2, there are many possible options: we can choose the set of all manipulations; the set of
all manipulations for a single agent; the set of all manipulations from or to a particular type or type
vector; or just a single manipulation. Which option we choose will affect the difficulty of step 3.

Step 3 is the most complex step. Let us first consider the case where we are only trying to
prevent a single manipulation, from θ = 〈θ1, . . . , θn〉 to θ′ = 〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉. We
can make this manipulation undesirable in one of three ways: (a) make the outcome that M selects
for θ more desirable for agent i (when he has type θi), (b) make the outcome that M selects for
θ′ less desirable for agent i (when he has type θi), or (c) a combination of the two. For the most
part, we will focus on (a) in this chapter. There may be multiple ways to make the outcome that M
selects for θ sufficiently desirable to prevent the manipulation; a natural way to select from among
these outcomes is to choose the one that maximizes the designer’s original objective. (Note that any
one of these modifications may introduce other beneficial manipulations.)

When we are trying to prevent a set of manipulations, we are confronted with an additional
problem: after we have prevented one manipulation in the set, we may reintroduce the incentive for
this manipulation when we try to prevent another manipulation. As a simple example, suppose that
we are selling a single item to a single bidder, who may value the item at 1, 2, or 3. Suppose that
we start with the (naı̈ve) mechanism in which we always sell the item to the bidder at the bid that he
places (if he bids x ∈ {1, 2, 3}, we sell the item to him at price π(x) = x). Of course, the bidder has
an incentive to shade his valuation. Now suppose that (for some reason) in step 2 we choose the set
of the following two beneficial manipulations: report 2 when the true value is 3, and report 1 when
the true value is 2. Also suppose that we take approach (a) above (for a type vector from which
there is a beneficial manipulation, make its outcome more desirable to the manipulating agent). We
can fix the first manipulation by setting π(3) = 2, but then if we fix the second manipulation by
setting π(2) = 1, the incentive to report 2 when the true value is 3 returns. This can be prevented

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 277

by updating all of the type vectors simultaneously in such a way that none of the manipulations
remain beneficial: in the example, this would lead us to find that we should set π(3) = π(2) = 1.
However, in general settings, this may require solving a potentially large constrained optimization
problem, which would constitute an approach similar to standard automated mechanism design—
reintroducing some of the scalability problems that we wish to avoid.5 Instead, we will be less
ambitious: when addressing the manipulations from one type vector, we will act as if we will not
change the outcomes for any other type vector. Thus, in the example above, we will indeed choose
π(3) = 2, π(2) = 1. (Of course, if we had included the manipulation of reporting 1 when the true
value is 3, we would set π(3) = π(2) = 1, and there would be no problem. This is effectively what
will happen in some of the examples that we will give later.)

Formally, for this particular instantiation of our approach, if M is the mechanism at the begin-
ning of the iteration and M ′ is the mechanism at the end of the iteration (after the update), and F
is the set of manipulations under consideration, we have M ′(θ) ∈ arg maxo∈O(M,θ,F) g(θ, o) (here,
θ = 〈θ1, . . . , θn〉), where O(M, θ, F) ⊆ O is the set of all outcomes o such that for any beneficial
manipulation (i, θ̂i) (with (i, θ, θ̂i) ∈ F), ui(θi, o) ≥ ui(θi, M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)).
It may happen that O(M, θ, F) = ∅ (no outcome will prevent all manipulations). In this case,
there are various ways in which we can proceed. One is not to update the outcome at all, i.e. set
M ′(θ) = M(θ). Another is to minimize the number of agents that will have an incentive to ma-
nipulate from θ after the change, that is, to choose M ′(θ) ∈ arg mino∈O |{i : (∃(i, θ, θ̂i) ∈ F :
ui(θi, o) < ui(θi, M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉)))}| (and ties can be broken to maximize the
objective g).

Many other variants are possible. For example, instead of choosing from the set of all possible
outcomes O when we update the outcome of the mechanism for some type vector θ, we can limit
ourselves to the set of all outcomes that would result from some beneficial manipulation in F from
θ—that is, the set {o ∈ O : ((∃(i, θ̂i) : (i, θ, θ̂i) ∈ F) : o = M(〈θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn〉))}—
in addition to the current outcome M(θ). The motivation for this is that rather than have to consider
all possible outcomes every time, we may wish to simplify our job by considering only the ones
that cause the failure of strategy-proofness in the first place. (We may, however, get better results
by considering all outcomes.)

In the last few paragraphs, we have been focusing on approach (a) above (for a type vector
from which there is a beneficial manipulation, make its outcome more desirable to the manipulat-
ing agent); approach (b) (for a type vector into which there is a beneficial manipulation, make its
outcome less desirable to the manipulating agent) can be instantiated with similar techniques. For
example, we can redefine O(M, θ, F) ⊆ O as the set of all outcomes o such that for any manipula-
tion in F into θ, choosing M ′(θ) = o prevents this manipulation from being beneficial.

Next, we present examples of all of the above-mentioned variants.

10.1.3 Instantiating the methodology

In this subsection, we illustrate the potential benefits of the approach by exhibiting mechanisms
that it can produce in various standard mechanism design settings. We will demonstrate settings in

5Although, if the set of manipulations that we are considering is small, this approach may still scale better than
standard automated mechanism design (in which all manipulations are considered simultaneously).

278 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

which the approach ends up producing strategy-proof mechanisms, as well as a setting in which the
produced mechanism is still vulnerable to manipulation (but in some sense “more” strategy-proof
than naı̈ve mechanisms). We emphasize that our goal in this subsection is not necessarily to come
up with spectacularly novel mechanisms, but rather to show that the approach advocated in this
chapter produces sensible results. Therefore, for now, we will consider the approach successful if
it produces a well-known mechanism. In future research, we hope to use the technique to help us
design novel mechanisms as well.

Deriving the VCG mechanism

In this subsubsection, we show the following result: in general preference aggregation settings in
which the agents can make payments (e.g. combinatorial auctions), (one variant of) our technique
yields the VCG mechanism after a single iteration. We recall from Chapter 4 that the VCG mecha-
nism chooses an outcome that maximizes social welfare (not counting payments), and imposes the
following tax on an agent: consider the total utility (not counting payments) of the other agents
given the chosen outcome, and subtract this from the total utility (not counting payments) that the
other agents would have obtained if the given agent’s preferences had been ignored in choosing the
outcome. Specifically, we will consider the following variant of our technique (perhaps the most
basic one):

• Our objective g is to try maximize some (say, linear) combination of allocative social welfare
(i.e. social welfare not taking payments into account) and revenue. (It does not matter what
the combination is.)

• The set F of manipulations that we consider is that of all possible misreports (by any single
agent).

• We try to prevent manipulations according to (a) above (for a type vector from which there
is a beneficial manipulation, make its outcome desirable enough to the manipulating agents
to prevent the manipulation). Among outcomes that achieve this, we choose one maximizing
the objective function g.

Because we consider payments part of the outcome in this section, we will use the term “allo-
cation” to refer to the part of the outcome that does not concern payments, even though the result
is not restricted to allocation settings such as auctions. Also, we will refer to the utility that agent i
with type θi gets from allocation s (not including payments) as ui(θi, s). The following simple ob-
servation shows that the naı̈vely optimal mechanism is the first-price mechanism, which chooses an
allocation that maximizes social welfare, and makes every agent pay his valuation for the allocation.

Observation 2 The first-price mechanism naı̈vely maximizes both revenue and allocative social
welfare.

Proof: That the mechanism (naı̈vely) maximizes allocative social welfare is clear. Moreover, due
to the individual rationality constraint, we can never extract more than the allocative social welfare;
and the first-price mechanism (naı̈vely) extracts all the allocative social welfare, for an outcome that

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 279

(naı̈vely) maximizes allocative social welfare.

Before we show the main result of this subsubsection, we first characterize optimal manipula-
tions for the agents under the first-price mechanism.

Lemma 22 The following is an optimal manipulation θ̂i from θ ∈ Θ for agent i under the first-price
mechanism:

• for the allocation s∗ that would be chosen under the first-price mechanism for θ, report a
value equal to i’s VCG payment under the true valuations (u(θ̂i(s

∗)) = V CGi(θi, θ−i));

• for any other allocation s 6= s∗, report a valuation of 0.6

The utility of this manipulation is u(θi, s
∗) − V CGi(θi, θ−i). (This assumes ties will be broken in

favor of allocation s∗.)

Without the tie-breaking assumption, the lemma does not hold: for example, in a single-item
first-price auction, bidding exactly the second price for the item is not an optimal manipulation for
the bidder with the highest valuation if the tie is broken in favor of the other bidder. However,
increasing the bid by any amount will guarantee that the item is won (and in general, increasing the
value for s∗ by any amount will guarantee that outcome).

Proof: First, we show that this manipulation will still result in s∗ being chosen. Suppose that allo-
cation s 6= s∗ is chosen instead. Given the tie-breaking assumption, it follows that

∑

j 6=i

uj(θj , s) >

ui(θ̂i, s
∗) +

∑

j 6=i

uj(θj , s
∗), or equivalently, V CGi(θi, θ−i) <

∑

j 6=i

uj(θj , s) − uj(θj , s
∗). However,

by definition, V CGi(θi, θ−i) = maxs∗∗
∑

j 6=i

uj(θj , s
∗∗) − uj(θj , s

∗) ≥
∑

j 6=i

uj(θj , s) − uj(θj , s
∗),

so we have the desired contradiction. It follows that agent i’s utility under the manipulation is
ui(θi, s

∗)− V CGi(θi, θ−i).
Next, we show that agent i cannot obtain a higher utility with any other manipulation. Sup-

pose that manipulation θ̂i results in allocation s being chosen. Because utilities cannot be negative
under truthful reporting, it follows that ui(θ̂i, s) +

∑

j 6=i

uj(θj , s) ≥ maxs∗∗
∑

j 6=i

uj(θj , s
∗∗). Us-

ing the fact that V CGi(θi, θ−i) = maxs∗∗
∑

j 6=i

uj(θj , s
∗∗) − uj(θj , s

∗), we can rewrite the pre-

vious inequality as ui(θ̂i, s) +
∑

j 6=i

uj(θj , s) ≥ V CGi(θi, θ−i) +
∑

j 6=i

uj(θj , s
∗), or equivalently

ui(θ̂i, s) ≥ V CGi(θi, θ−i) +
∑

j 6=i

uj(θj , s
∗) − uj(θj , s). Because

∑

j
uj(θj , s

∗) ≥
∑

j
uj(θj , s),

we can rewrite the previous inequality as ui(θ̂i, s) ≥ V CGi(θi, θ−i) − ui(θi, s
∗) + ui(θi, s) +

∑

j
uj(θj , s

∗) − uj(θj , s) ≥ V CGi(θi, θ−i) − ui(θi, s
∗) + ui(θi, s), or equivalently, ui(θi, s) −

ui(θ̂i, s) ≤ ui(θi, s
∗)− V CGi(θi, θ−i), as was to be shown.

6There may be constraints on the reported utility function that prevent this—for example, in a (combinatorial) auction,
perhaps only monotone valuations are allowed (winning more items never hurts an agent). If so, the agent should report
valuations for these outcomes that are as small as possible, which will still lead to s∗ being chosen.

280 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

Theorem 107 Under the variant of our approach described above, the mechanism resulting after
a single iteration is the VCG mechanism.

Proof: By Observation 2, the naı̈vely optimal mechanism is the first-price mechanism. When up-
dating the outcome for θ, by Lemma 22, each agent i must receive a utility of at least ui(θi, s

∗) −
V CGi(θi, θ−i), where s∗ is the allocation that maximizes allocative social welfare for type vector θ.
One way of achieving this is to choose allocation s∗, and to charge agent i exactly V CGi(θi, θ−i)—
that is, simply run the VCG mechanism. Clearly this maximizes allocative social welfare. But,
under the constraints on the agents’ utilities, it also maximizes revenue, for the following reason.
For any allocation s, the most revenue that we can hope to extract is the allocative social welfare
of s, that is,

∑

i
ui(θi, s), minus the sum of the utilities that we must guarantee the agents, that is,

∑

i
ui(θi, s

∗) − V CGi(θi, θ−i). Because s = s∗ maximizes
∑

i
ui(θi, s), this means that the most

revenue we can hope to extract is
∑

i
V CGi(θi, θ−i), and the VCG mechanism achieves this.

Deriving an equal cost sharing mechanism for a nonexcludable public good

We now return to the problem of designing a mechanism for deciding on whether or not a single
nonexcludable public good is built. (We studied the automated design of such mechanisms in Chap-
ter 6, Subsection 6.5.2.) Specifically, every agent i has a type vi (the value of the good to him), and
the mechanism decides whether the good is produced, as well as each agent’s payment πi. If the
good is produced, we must have

∑

i
πi ≥ c, where c is the cost of producing the good. An individual

rationality constraint applies: for each i, πi ≤ v̂i (nobody pays more than his reported value for the
good).

In this subsection, rather than use a single variant of our approach, we actually use two distinct
phases. Throughout, our objective is to maximize the efficiency of the decision (the good should be
produced if and only if the total utility that it generates exceeds the cost of the good); as a secondary
objective, we try to maximize revenue.7 Thus, the naı̈vely optimal mechanism is to produce the
good if and only if the sum of the reported valuations exceeds c, and if so, to charge every agent his
entire reported valuation.

An iteration in the first phase proceeds almost exactly as in the previous subsubsection. We try
to prevent manipulations according to (a) above: for a type vector from which there are beneficial
manipulations, make its outcome desirable enough to the manipulating agents to prevent the ma-
nipulations, and among outcomes that achieve this, choose the one that maximizes our objective. If
there is no such outcome, then we do not change the outcome selected for this type vector. However,
in each iteration, we consider only a limited set of manipulations: in the first iteration, we consider
only manipulations to the highest possible type (i.e. the highest possible value that an agent may
have for the public good); in the second, we also consider manipulations to the second highest pos-
sible type; etc., up until the last iteration, in which we consider manipulations all the way down to a
value of 0.

7It is not necessary to have this secondary objective for the result to go through, but it simplifies the analysis.

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 281

Technically speaking, this approach only works on a finite type space. If the type space is R
≥0

(all nonnnegative valuations), we encounter two problems: first, there is no highest valuation to
start with; and second, there are uncountably infinitely many valuations, leading to infinitely many
iterations. Thus, it would not be possible to run the approach automatically in this case. However,
for the purpose of theoretical analysis, we can (and will) still consider the case where the type space
is R

≥0: the first problem is overcome by the fact that manipulating to a higher type is not beneficial
in this domain (free-riders pretend to have a lower valuation); the second problem is overcome by
conceiving of this process as the limit of a sequence of similar processes corresponding to finer and
finer discretizations of the nonnegative numbers. (If we were to actually run on a discretization, the
final resulting mechanism would be close to the mechanism that results in the limit case—and the
finer the discretization, the closer the result will be.)

Before we describe the second phase, we will first analyze what happens in the first phase.

Lemma 23 After considering manipulations to value r, the mechanism will take the following form
(v̂i is agent i’s reported value):

1. The good will be produced if and only if
∑

i
v̂i ≥ c;

2. If the good is produced, and
∑

i
min{r, v̂i} > c, then every agent i will pay min{r, v̂i};

3. If the good is produced, and
∑

i
min{r, v̂i} ≤ c, then, letting t ≥ r be the number such that

∑

i
min{t, v̂i} = c, every agent i will pay min{t, v̂i}.

Proof: Suppose we have proved the result for manipulations to r; let us prove the result for manip-
ulations to an infinitesimally smaller r′. Consider an arbitrary type vector v = 〈v1, . . . , vn〉 with
∑

i
vi ≥ c. In the mechanism M that results after considering manipulations to r only, any agent i

with vi ≤ r′ has no incentive to manipulate to r′ (after the manipulation, the agent will be made to
pay at least r′ ≥ vi), so we will not change such an agent’s payments. An agent with vi > r′, how-
ever, will have an incentive to manipulate to r′, if this manipulation does not prevent the production
of the good (the agent will pay r′ rather than the at least min{r, vi} > r′ that he would have paid
without manipulation). If the total payment under M given v exceeds c (that is, 2. above applies),
then manipulating to r′ in fact does not prevent the production of the good, so all such agents have
an incentive to manipulate; but, on the other hand, we can reduce the payment of such agents from r
to r′ in the new mechanism for type vector v, which will prevent the manipulation. However, if the
total payment under M given v is exactly c (that is, 3. above applies), then it is impossible to reduce
the payments of such agents to r′, because we cannot collect any more money from the remaining
agents and hence we would not be able to afford the good.

Corollary 31 After considering all manipulations (including to r = 0), the mechanism will take
the following form:

1. The good will be produced if and only if
∑

i
v̂i ≥ c;

282 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

2. If the good is produced, then, letting t be the number such that
∑

i
min{t, v̂i} = c, every agent

i will pay min{t, v̂i}.

Figure 10.1: Example of a public good setting in which there are 3 agents; the public good costs 9 to
produce. The horizontal lines represent the agents’ true valuations (8, 1, and 6), which are sufficient
to produce the good. The circles represent the payments that the agents make for this type vector
after considering manipulations to 7; the crosses represent the payments that the agents make for
this type vector after considering manipulations to 4. At this stage the payments sum exactly to 9,
so the payments remain at this level even after considering manipulations to even lower values.

The mechanism from Corollary 31 (call it M1) is still not strategy-proof. For example, in the
example in Figure 10.1, suppose that agent 2’s valuation for the good is 3 instead. Then, M1 will
charge agent 2 a payment of 3 instead of 1. Thus, agent 2 will be better off reporting 1 instead.
However, the next phase will make the mechanism strategy-proof.

In phase two, we take approach (b) above: for a type vector into which there are beneficial
manipulations, make its outcome undesirable enough to the manipulating agents to prevent the
manipulations. We will do so by not producing the good at all for such type vectors. We will
perform a single iteration of this, considering all possible manipulations.

Lemma 24 A type vector 〈v1, . . . , vn〉 for which the mechanism M1 produces the good has a ma-
nipulation into it if and only if for some i, vi < c/n.

Proof: If vi < c/n, consider the modified type vector 〈v1, . . . , vi−1, v
′
i, vi+1, . . . , vn〉 with v′i =

c/n. For this modified type vector, i must pay at least c/n (because it must always be the case that

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 283

t ≥ c/n), and thus i would be better off manipulating into the original type vector. This proves the
“if” part of the lemma.

On the other hand, if for all i, vi ≥ c/n, then t = c/n, and all agents pay c/n. Suppose there
exists a beneficial manipulation by some agent i into this type vector, from some modified type
vector 〈v1, . . . , vi−1, v

′
i, vi+1, . . . , vn〉 for which the good is also produced. (It is never beneficial to

manipulate from a type vector for which the good is not produced, as the manipulating agent would
have to pay more than his value for the good.) We must have v ′

i > c/n, for otherwise i would be
at least as well off reporting truthfully. But then, everyone pays c/n in the modified type vector as
well, contradicting the incentive to manipulate. This proves the “only if” part of the lemma.

Thus, we have the following theorem for the mechanism M2 that results after one iteration of
the second phase:

Theorem 108 M2 produces the good if and only if for all i, v̂i ≥ c/n; and if so, M2 charges every
agent c/n.

Thus, our approach has produced a very simple mechanism that most of us have encountered at
some point in life: the agents are to share the costs of producing the good equally, and if one of them
refuses to do so, the good will not be produced (and nobody will have to pay). This mechanism may
seem somewhat disappointing, especially if it is unlikely that all the agents will value the good at
at least c/n. However, it turns out that this is in fact the best possible anonymous strategy-proof
mechanism (that satisfies the individual rationality constraint). (Moulin [1994] has already shown a
similar result in a more general setting in which multiple levels of the public good can be produced;
however, he required coalitional strategy-proofness, and he explicitly posed as an open question
whether the result would continue to hold for the weaker notion of (individual) strategy-proofness.)

Deriving the plurality-with-runoff rule for voting

In this subsection, we address voting (social choice) settings. Recall that in such a setting, every
agent (voter) i’s type is a complete ranking Âi over the outcomes (candidates). The mechanism
(voting rule) takes as input the agents’ type reports (votes), consisting of complete rankings of the
candidates, and chooses an outcome.

Recall that under the commonly used plurality rule, we only consider every voter’s highest-
ranked candidate, and the winner is simply the candidate with the highest number of votes ranking
it first (its plurality score). The plurality rule is very manipulable: a voter voting for a candidate
that is not close to winning may prefer to attempt to get the candidate that currently has the second-
highest plurality score to win, by voting for that candidate instead. In the real world, one common
way of “fixing” this is to add a runoff round, resulting in the plurality-with-runoff rule. Recall
that under this rule, we take the two candidates with the highest plurality scores, and declare as
the winner the one that is ranked higher by more voters. By the Gibbard-Satterthwaite theorem
(Chapter 4), this is still not a strategy-proof mechanism (it is neither dictatorial nor does it preclude
any candidate from winning)—indeed, a voter may change his vote to change which candidates are
in the runoff. Still, the plurality with runoff rule is, in an intuitive sense, “less” manipulable than
the plurality rule (and certainly more desirable than a strategy-proof rule, since it would either be
dictatorial or preclude some candidate from winning).

284 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

In this subsubsection, we will show that the following variant of our approach will produce the
plurality-with-runoff rule when starting with the plurality rule as the initial mechanism.

• The set F of manipulations that we consider is that of all manipulations in which a voter
changes which candidate he ranks first.

• We try to prevent manipulations as follows: for a type (vote) vector from which there is a
beneficial manipulation, consider all the outcomes that may result from such a manipulation
(in addition to the current outcome), and choose as the new outcome the one that minimizes
the number of agents that still have an incentive to manipulate from this vote vector.

• We will change the outcome for each vote vector at most once (but we will have multiple
iterations, for vote vectors whose outcome did not change in earlier iterations).

Theorem 109 For a given type vector θ, suppose that candidate b is ranked first the most often,
and a is ranked first the second most often (s(b) > s(a) > . . ., where s(o) is the number of times
o is ranked first). Moreover, suppose that the number of votes that prefers a to b is greater than or
equal to the number of votes that prefers b to a. Then, starting with the plurality rule, after exactly
s(b)− s(a) iterations of the approach described above, the outcome for θ changes for the first time,
to a (the outcome of the plurality with runoff rule).8

Proof: We will prove the result by induction on s(b) − s(a). First note that there must be some
voter that prefers a to b but did not rank a first. Now, if s(b)− s(a) = 1, a beneficial manipulation
for this voter is to rank a first, which will make a win. No other candidate can be made to win
with a beneficial manipulation (no voter ranking b first has an incentive to change his vote, hence
no beneficial manipulation will reduce b’s score; any other candidate’s score can be increased by at
most 1 by a manipulation; and every candidate besides a is at least two votes behind b). Thus, in
the first iteration, we must decide whether to keep b as the winner, or change it to a. If we keep b as
the winner, all the voters that prefer a to b but do not rank a first have an incentive to change their
vote (and rank a first). On the other hand, if we change the winner to a, all the voters that prefer b
to a but do not rank b first have an incentive to change their vote (and rank b first), so that b leads
by two votes and wins. So, in which case do we have more voters with an incentive to change their
vote? In the first case, because there are at least as many voters preferring a to b as b to a, and there
are fewer voters among those preferring a to b that rank a first than there are voters preferring b to
a that rank b first. Hence, we will change the outcome to a.

Now suppose that we have proven the result for s(b) − s(a) = k − 1; let us prove it for
s(b) − s(a) = k. First, we note that in prior iterations, there were no beneficial manipulations
from the type vector that we are considering (no voter ranking b first has an incentive to change his
vote, thus any beneficial manipulation can only reduce the difference between s(b) and the score
of another candidate by 1, and by the induction assumption no vote vector that results from such
a manipulation has had its outcome changed in earlier iterations—i.e. it is still b), and thus the
outcome has not yet changed in prior iterations. But, by the induction assumption, any vote vector

8This is assuming that ties in the plurality rule are broken in favor of a; otherwise, one more iteration is needed. (Some
assumption on tie-breaking must always be made for voting rules.)

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 285

that can be obtained from the vote vector that we are considering by changing one of the votes
ranking a higher than b but not first, to one that ranks a first, must have had its outcome changed to
a in the previous round. Thus, now there is a beneficial manipulation that will make a the winner.
On the other hand, no other candidate can be made to win by such a beneficial manipulation, since
they are too far behind b given the current number of iterations. The remainder of the analysis is
similar to the base case (s(b)− s(a) = 1).

10.1.4 Computing the outcomes of the mechanism

In this subsection, we discuss how to automatically compute the outcomes of the mechanisms that
are generated by this approach in general. It will be convenient to think about settings in which
the set of possible type vectors is finite (so that the mechanism can be represented as a finite table),
although these techniques can be extended to (some) infinite settings as well. One potential upside
relative to standard automated mechanism design techniques (as presented in Chapter 6) is that we
do not need to compute the entire mechanism (the outcomes for all type vectors) here; rather, we
only need to compute the outcome for the type vector that is actually reported.

Let M0 denote the (naı̈ve) mechanism from which we start, and let Mt denote the mechanism
after t iterations. Let Ft denote the set of beneficial manipulations that we are considering (and
are trying to prevent) in the tth iteration. Thus, Mt is a function of Ft and Mt−1. What this
function is depends on the specific variant of the approach that we are using. When we try to prevent
manipulations by making the outcome for the type vector from which the agent is manipulating more
desirable for that agent, we can be more specific, and say that, for type vector θ, Mt(θ) is a function
of the subset F θ

t ⊆ Ft that consists of manipulations that start from θ, and of the outcomes that
Mt−1 selects on the subset of type vectors that would result from a manipulation in F θ

t . Thus, to
compute the outcome that Mt produces on θ, we only need to consider the outcomes that Mt−1

chooses for type vectors that differ from θ in at most one type (and possibly even fewer, if F θ
t does

not consider all possible manipulations). As such, we need to consider Mt−1’s outcomes on at most
n
∑

i=1
|Θi| type vectors to compute Mt(θ) (for any given θ), which is much smaller than the set of

all type vectors (
n
∏

i=1
|Θi|). Of course, to compute Mt−1(θ

′) for some type vector θ′, we need to

consider Mt−2’s outcomes on up to
n
∑

i=1
|Θi| type vectors, etc.

Because of this, a simple recursive approach for computing Mt(θ) for some θ will require

O((
n
∑

i=1
|Θi|)

t) time. This approach may, however, spend a significant amount of time recomputing

values Mj(θ
′) many times. Another approach is to use dynamic programming, computing and

storing mechanism Mj−1’s outcomes on all type vectors before proceeding to compute outcomes

for Mj . This approach will require O(t·(
n
∏

i=1
|Θi|)·(

n
∑

i=1
|Θi|)) time (for every iteration, for every type

vector, we must investigate all possible manipulations). We note that when we use this approach, we
may as well compute the entire mechanism Mt (we already have to compute the entire mechanism
Mt−1). If n is large and t is small, the recursive approach is more efficient; if n is small and t is

286 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

large, the dynamic programming approach is more efficient.
All of this is for fully general (finite) domains; it is likely that these techniques can be sped up

considerably for specific domains. Moreover, as we have already seen, some domains can simply
be solved analytically.

10.1.5 Computational hardness of manipulation

We have already demonstrated that our approach can change naı̈ve mechanisms into mechanisms
that are less (sometimes not at all) manipulable. In this subsection, we will argue that in addition, if
the mechanism remains manipulable, the remaining manipulations are computationally difficult to
find. This is especially valuable because, as we argued earlier, if it is computationally too difficult
to discover beneficial manipulations, the revelation principle ceases to meaningfully apply, and a
manipulable mechanism can sometimes actually outperform all truthful mechanisms.

In this subsection, we first present an informal, but general, argument for the claim that any
manipulations that remain after a large number of iterations of our approach are hard to find. This
argument depends on the assumption that the agents only use the most straightforward possible
algorithm for finding manipulations. Second, we show that if we add a random component to our
approach for updating the mechanism, then we can prove formally that detecting whether there is a
beneficial manipulation becomes #P-hard.

An informal argument for hardness of manipulation

Suppose that the only thing that an agent knows about the mechanism is the variant of our approach
by which the designer obtains it (the initial naı̈ve mechanism, the manipulations that the designer
considers, how she tries to eliminate these opportunities for manipulations, how many iterations she
performs, etc.). Given this, one natural algorithm for an agent to find a beneficial manipulation is to
simulate our approach for the relevant type vectors, perhaps using the algorithms presented earlier.
However, this approach is computationally infeasible if the agent does not have the computational
capabilities to simulate as many iterations as the designer will actually perform.

Of course, this argument fails if the agent actually has greater computational abilities or better
algorithms than the designer. In the next subsubsection, we will give a different, formal argument
for hardness of manipulation for one particular instantiation of our approach.

Random sequential updating leads to #P-hardness

So far, we have only discussed updating the mechanism in a deterministic fashion. When the mech-
anism is updated deterministically, any agent that is computationally powerful enough to simulate
this updating process can determine the outcome that the mechanism will choose, for any vector of
revealed types. Hence, that agent can evaluate whether he would benefit from misrepresenting his
preferences. However, this is not the case if we add random choices to our approach (and the agents
are not told about the random choices until after they have reported their types).

The hardness result that we show in this subsubsection holds even for a single agent; therefore
we will only specify the variant of our approach used in this subsubsection for a single agent. Any
generalization of the variant to more than one agent will have the same property.

10.1. INCREMENTALLY MAKING MECHANISMS MORE STRATEGY-PROOF 287

First, we take the set Θ of all of the agent’s types, and organize the types as a sequence of |Θ|/2
pairs of types:9 ((θ11, θ12), (θ21, θ22), . . . , (θ|Θ|1, θ|Θ|2)). In the ith iteration, we randomly choose
between θi1 and θi2, and consider all the beneficial manipulations out of the chosen type (and no
other manipulations). (We will only need |Θ|/2 iterations.) Then, as before, we try to prevent these
manipulations by making the outcome for the chosen type more appealing to an agent with that
type (and if there are multiple ways of doing so, we choose the one that maximizes the designer’s
objective).

We are now ready to present our #P-hardness result. We emphasize that, similarly to the hard-
ness results in Chapter 8, this is only a worst-case notion of hardness, which may not prevent
manipulation in all cases.

Theorem 110 Evaluating whether there exists a manipulation that increases an agent’s expected
utility is #P-hard10 under the variant of our technique described above.

Proof: We reduce an arbitrary #SAT instance, together with a number K, to the following setting.
Let there be a single agent with the following types. For every variable v ∈ V , we have types θ+v

and θ−v; for every clause c ∈ C, we have types θ1
c and θ2

c ; finally, we have four additional types
θ1, θ2, θ3, θ4. The sequence of pairs of types is as follows: ((θ+v1

, θ−v1
), . . . , (θ+v|V |

, θ−v|V |
),

(θ1
c1 , θ

2
c1), . . . , (θ

1
c|C|

, θ2
c|C|

), (θ1, θ2), (θ3, θ4)). Let the outcome set be as follows: for every variable
v ∈ V , we have outcomes o+v and o−v; for every clause c ∈ C, we have an outcome oc; finally, we
have outcomes o1, o2, o3, o4. The utility function is zero everywhere, with the following exceptions:
for every literal l, u(θl, ol) = 2, u(θl, o2) = 1; for every clause c, u(θc, oc) = 4, u(θc, ol) = 3 if l

occurs in c, u(θc, o3) = 2, u(θc, o2) = 1; for θ ∈ {θ1, θ2}, u(θ, o4) = 2|V |+1

2|V |−K
, u(θ, o1) = 1; for

θ ∈ {θ3, θ4}, u(θ, o4) = 2, u(θ, o3) = 1. The designer’s objective function is zero everywhere,
with the following exceptions: for all θ ∈ Θ, g(θ, o1) = 3; g(θ3, o2) = g(θ4, o2) = 4; for every
literal l, g(θl, ol) = 2; for every clause c, g(θc, o3) = 2, g(θc, oc) = 1; g(θ3, o4) = g(θ4, o4) = 2.
The initial mechanism, which naı̈vely maximizes the designer’s objective, chooses o1 for all types,
with the exception of θ3 and θ4, for which it chooses o2.

The mechanism will first update exactly one of θ+v and θ−v, for every v ∈ V . Specifically, if
θl (where l is a literal) is updated, the new outcome chosen for that type will be ol (which is more
desirable to the agent that o2, and better for the designer than o2). Subsequently, exactly one of θ1

c

and θ2
c is updated. Specifically, if θi

c is updated, the new outcome chosen for that type will be o3

if no type θl with l ∈ c has been updated (and therefore no ol with l ∈ c is ever chosen by the
mechanism), and oc otherwise. (o3 is more desirable to the agent than o2, but less desirable than
some ol with l ∈ c; however, oc is even more desirable than such an ol. The designer would prefer
to prevent the manipulation with o3, but oc is the next best way of preventing the manipulation if o3

will not suffice.) Then, one of θ1 and θ2 is updated, but the outcome will not be changed for either of
them (the only outcome that the agent would prefer to o1 for these types is o4, which the mechanism
does not yet choose for any type); finally, one of θ3 and θ4 is updated, and the outcome for this

9The hardness result will hold even if the number of types is restricted to be even, so it does not matter how this is
generalized to situations in which the number of types is odd.

10Technically, we reduce from a decision variant of #SAT (“Are there fewer than K solutions?”). An algorithm for this
decision variant can be used to solve the original problem using binary search.

288 CHAPTER 10. AUTOMATED MECHANISM DESIGN FOR BOUNDED AGENTS

type will change to o4 if and only if outcome o3 is now chosen by the mechanism for some type θi
c

(that outcome would be preferred to o2 by the agent for these types; o4 is the next best outcome for
the designer). We note that this update to o4 will not happen if and only if, for every clause c, for
at least one literal l ∈ c, θl was updated (rather than θ−l)—because in this case (and only in this
case), whenever we updated one of θ1

c , θ
2
c , oc was chosen (rather than o3). In other words, it will

not happen if and only if the literals l that were chosen constitute a satisfying assignment for the
formula. The probability that this happens is n/(2|V |), where n is the number of solutions to the
SAT formula.

Now, let us consider whether the agent has an incentive to manipulate if his type is θ1. Reporting
truthfully will lead to outcome o1 being chosen, giving the agent a utility of 1. It only makes sense
to manipulate to a type for which o4 may be chosen, because o1 is preferred to all other outcomes—
hence, any beneficial manipulation would be to θ3 or θ4. Without loss of generality, let us consider
a manipulation to θ3. What is the chance (given that we have done exactly |Θ|/2 updates) that
we choose o4 for θ3? It is 1/2 (the chance that θ3 was in fact updated) times 1 − n/(2|V |) (the
chance that o4 was chosen), which is (2|V | − n)/(2|V |+1). Otherwise, o2 is still chosen for θ3, and
manipulating to θ3 from θ1 would give utility 0. Thus, the expected utility of the manipulation is
2|V |−n
2|V |+1

2|V |+1

2|V |−K
. This is greater than 1 if and only if n < K.

10.2 Summary

In this chapter, we suggested an approach for (automatically) designing mechanisms for bounded
agents. Under this approach, we start with a naı̈ve (manipulable) mechanism, and incrementally
make it more strategy-proof over a sequence of iterations.

We gave various examples of mechanisms that (variants of) our approach generate, including:
the VCG mechanism in general settings with payments; an equal cost sharing mechanism for public
goods settings; and the plurality-with-runoff voting rule. We also provided several basic algorithms
for automatically executing our approach in general settings, including a recursive algorithm and
a dynamic programming algorithm, and analyzed their running times. Finally, we discussed how
computationally hard it is for agents to find any remaining beneficial manipulation. We argued that
agents using a straightforward manipulation algorithm will not be able to compute manipulations
if the designer has greater computational power (and can thus execute more iterations). We also
showed that if we add randomness to how the outcomes are computed, then detecting whether a
manipulation that is beneficial in expectation exists becomes #P-hard for an agent.

Chapter 11

Conclusions and Future Research

This dissertation set out to investigate the role that computation plays in various aspects of prefer-
ence aggregation, and to use computation to improve the resulting outcomes. In this final chapter,
we will review the research contributions of this dissertation, as well as discuss directions for future
research.

11.1 Contributions

The following are the main research contributions of this dissertation. (Some minor contributions
are omitted.)

• A hierarchical framework that categorizes various ways in which computational tools can
improve preference aggregation (Chapter 1). This framework provides an organized view of
much of the work on computational aspects of preference aggregation (and, in particular, of
the research in this dissertation); it also provides a natural guide towards future research (as
we will discuss in Section 11.2).

• New settings for expressive preference aggregation (Chapter 2). Specifically, we intro-
duced expressive preference aggregation for donations to (charitable) causes, which allows
agents to make their donations conditional on how much, and to which charities, other agents
donate. We also introduced expressive preference aggregation in settings with externalities,
where each agent controls variables that affect the welfare of the other agents.

• New techniques for solving outcome optimization problems in expressive preference ag-
gregation settings (Chapter 3). In the context of voting, we introduced a powerful prepro-
cessing technique for computing Slater rankings: a set of similar candidates can be solved
recursively and replaced with a single super-candidate in the original problem. For combi-
natorial auctions, we showed that if the items are vertices in a graph, and each bid is on a
connected component of the graph, then the winner determination problem can be solved ef-
ficiently if the graph is known and has bounded treewidth, or if the graph is a tree (in which
case we can discover the graph). For the setting of expressive preference aggregation for
donations to charities, we showed that the outcome optimization problem is inapproximable,

289

290 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

but we also provided mixed integer programming techniques for solving this problem in gen-
eral, and exhibited special cases that are easy to solve. Finally, for the setting of expressive
preference aggregation in settings with externalities, we showed that it is typically NP-hard to
find a nontrivial feasible solution, but we also exhibited two special cases in which this is not
the case (in one, the feasible solution with the maximal concessions can be found efficiently,
and in the other, the social-welfare maximizing solution).

• An analysis of classical mechanism design techniques in expressive preference aggrega-
tion settings (Chapter 5). We showed that the VCG mechanism is extremely vulnerable to
collusion, and provides poor revenue guarantees, in combinatorial auctions and exchanges.
We also gave conditions that characterize when these vulnerabilities occur, and studied how
computationally hard it is to decide if these conditions hold. For aggregating preferences
over donations to charities, we showed a fundamental impossibility result that precludes the
existence of an ideal mechanism (even with only a single charity), but we also gave some pos-
itive results that show that negotiating over multiple charities simultaneously can be helpful
in designing good mechanisms.

• Automated mechanism design (Chapter 6). We defined the basic problem of automated
mechanism design and determined its computational complexity for a number of special
cases. We introduced a linear programming (mixed integer programming) approach for de-
signing randomized (deterministic) mechanisms in general, and a special-purpose algorithm
for a special case. We gave various applications and presented scalability results. Finally, we
studied a more concise representation of problem instances, and showed how this changes the
complexity of the problem.

• Mechanisms that make manipulation computationally hard (Chapter 8). We demon-
strated that the revelation principle fails when agents are computationally bounded. Specif-
ically, we exhibited a family of settings where a non-truthful mechanism is easier to execute
and harder to manipulate than the best truthful mechanism; moreover, the non-truthful mecha-
nism will perform just as well as the optimal truthful mechanism if it is manipulated nonethe-
less, and otherwise it will perform strictly better. We then showed that in voting, adding a
preround can make manipulation (by an individual voter) significantly harder—NP-hard, #P
hard, or PSPACE-hard, depending on whether the scheduling of the preround precedes, fol-
lows, or is interleaved with the voting, respectively. We also showed that coalitional weighted
manipulation can be hard even for voting settings with few candidates, and that these results
also imply hardness of manipulation by an individual if there is uncertainty about the others’
votes. Finally, we gave an impossibility result showing that voting rules that are usually hard
to manipulate do not exist, if we require the rule and the distribution over instances to satisfy
some other sensible properties.

• An analysis of the complexity of computing game-theoretic solutions (Chapter 9). We
showed that the basic computational problems related to dominance can be solved efficiently,
with a few exceptions: for iterated weak dominance in normal-form games, and dominance by
pure strategies in Bayesian games, these questions are NP-complete; and iterated dominance
in Bayesian games can even require an exponential number of iterations. We also gave a

11.2. FUTURE RESEARCH 291

single reduction that shows that finding (even approximately) optimal Nash equilibria (for
various notions of optimal), or Nash equilibria with certain other properties, is NP-complete;
and that counting the number of (connected sets of) Nash equilibria is #P-hard. In addition,
we showed that determining whether a pure-strategy Bayes-Nash equilibrium exists is NP-
complete. Finally, we introduced a new parameterized definition of strategy eliminability
and showed that it generalizes both strict dominance and Nash equilibrium eliminability (in
that these are obtained for some settings of the parameters). We also showed that strategy
eliminability is efficiently computable if and only if the parameter settings are close to those
corresponding to dominance.

• A methodology for incrementally making mechanisms more strategy-proof (Chapter 10).
This work can be interpreted as one methodology for automatically designing mechanisms
for bounded agents, and as such is a first step towards our long-term goal of bringing auto-
mated mechanism design and mechanism design for bounded agents together. The idea of
this methodology is to start with a naı̈ve mechanism, such as the one that maximizes social
welfare without any incentive compatibility constraints, and subsequently to identify oppor-
tunities for manipulation and locally change the mechanism to prevent these. We showed
that this approach can generate certain known mechanisms (including non-truthful ones). We
introduced algorithms for automatically computing outcomes according to this approach, and
argued that the resulting mechanisms are hard to manipulate.

11.2 Future research

The hierarchy introduced in this dissertation provides a natural guide to future research. Typically,
a new domain for expressive preference aggregation will initially be studied at the shallow levels
of the hierarchy, after which research on the domain will gradually move to deeper levels. For
example, the allocation of tasks and resources (using combinatorial auctions and exchanges) was
initially studied at the shallowest node (outcome optimization); in recent years, most research on
this domain has focused on (algorithmic) mechanism design, the second node in the hierarchy; and
most recently, automated mechanism design has started to be applied to these settings. In contrast,
domains that have only recently started receiving serious attention, such as expressive negotation in
settings with externalities, are still being studied exclusively at the level of outcome optimization.
Hence, natural directions for future research include pushing existing domains deeper down the
hierarchy, as well as introducing new domains—or formalizing domains that already exist in the real
world—and (presumably) studying them at the shallowest levels first. Additionally, in the context
of mechanism design for bounded agents (and especially automated mechanism design for bounded
agents), it is not yet completely clear how mechanisms should be evaluated. Thus, future research
at these nodes will also involve developing a general theory for such evaluation. Domain-specific
studies, such as the ones we did on voting, may help in doing so.

Much research also remains to be done on topics orthogonal to the hierarchy, such as preference
elicitation and distributed computation of outcomes (see Section 1.4). These topics can be studied
at each node in the hierarchy, for any domain. However, typically, doing so requires that research on
that domain at that node has already reached a basic level of maturity—specifically, it requires that

292 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

we have a good grasp on how outcomes should be chosen, and how these outcomes can be efficiently
computed given the preferences of the agents. Because of this, these orthogonal topics will usually
not be the first to receive attention, but this is certainly not because they are unimportant.

While the hierarchy proposed in this dissertation provides a high-level guideline to future re-
search, the research contributions at the individual nodes of the hierarchy suggest many more spe-
cific open questions and directions. The remainder of this section will lay out some of these more
immediately accessible avenues for future research.

11.2.1 Node (1): Outcome optimization

In Section 3.1, we saw how the preprocessing technique of finding and aggregating sets of similar
candidates into super-candidates can drastically speed up the search for optimal Slater rankings
(which are NP-hard to find). One may ask whether similar techniques can be applied to other
hard-to-execute voting rules. We already discussed how the technique can be extended to apply
to computing Kemeny rankings, but we do not yet have experimental results on the efficacy of
doing so. It would also be interesting to characterize restrictions on the votes that have the effect of
making the preprocessing technique sufficient to solve the Slater problem in polynomial time. (One
such restriction that we discussed is that of having a hierarchical pairwise election graph, but there
may be other restrictions with this property.) Another possibility is to look for entirely different
preprocessing techniques, or to try to generalize the similar-candidates technique. Finally, given a
good understanding of what makes a voting rule amenable to the use of such techniques, one may
use this understanding in the design of new voting rules—by ensuring that these new rules allow for
the application of such techniques and can therefore be executed fast.

In Section 3.2, we showed how the winner determination problem in combinatorial auctions can
be solved in polynomial time, if we know an item graph for the instance that has bounded treewidth;
additionally, we saw how to find an item tree in polynomial time (if it exists). This left us with a
very specific open question: can we find item graphs with small treewidth (but treewidth greater
than 1) in polynomial time if they exist? For example, can we find an item graph of treewidth 2 in
polynomial time (if it exists)? Alternatively, given that an item graph of treewidth k exists, can we
find an item graph of treewidth at most (say) 2k? If we can, then the mere fact that an item graph
of bounded treewidth exists for the winner determination problem at hand will guarantee that it can
be solved in polynomial time (whereas now, we additionally require that we know the graph). As
another specific open question (perhaps of less significance), we showed that in the case where bids
are allowed to contain multiple components, constructing a line item graph is NP-complete when 5
components per bid are allowed; but we left open whether this is so for fewer (say, 4) components.
Additional future research directions include comparing the item-graph based algorithms to other
winner determination algorithms (e.g. using a solver such as CPLEX), as well as integrating the
item-graph based algorithms into search algorithms (where they can be applied at individual nodes
in the search tree).

As for the framework and algorithms for expressive preference aggregation for donations to
charities (Sections 2.3 and 3.3), one possible future direction is to build a web-based implementation
of these techniques that will allow them to be used in practice. Another direction is to experimentally
test the scalability of the mixed integer and linear programming formulations of the clearing problem
that we proposed. One can also try to characterize other restrictions on the bids that make the

11.2. FUTURE RESEARCH 293

clearing problem easy to solve. Another possibility is to consider the elicitation problem in this
setting, and to design good iterative mechanisms for addressing this problem. Finally, one can
consider other bidding languages—for example, languages that allow donations to be conditional
on which other donors are donating (and on how much they are donating).

For the outcome optimization problem in settings with externalities (Sections 2.4 and 3.4), we
showed mostly negative (NP-hardness) results. Future research can potentially address this in sev-
eral ways. First, algorithms could be given that require exponential time in the worst case, but run
fast in practice; one possibility for this could be the use of mixed integer programming techniques.
Another possibility is to try to design approximation algorithms, although this does not look very
promising given that even the problem of finding a nontrivial feasible solution is NP-hard in most
settings that we studied. Finally, we may try to simplify the problem, possibly by changing or
restricting the language in which agents express their preferences.

11.2.2 Node (2): Mechanism design

Our research on vulnerability of the VCG mechanism to collusion and low revenue in combinatorial
auctions and exchanges (Section 5.1) suggests a number of future research directions. First, it would
be desirable to create new mechanisms that do not share these weaknesses. These mechanisms
may be truthful mechanisms—perhaps even other Groves mechanisms—but they may also be non-
truthful mechanisms. For example, we saw that (even under strategic behavior by the agents) the
first-price mechanism does not run into trouble in some of the instances that caused problems for
the VCG mechanism, and it would certainly be interesting to characterize more generally how
first-price mechanisms perform in terms of collusion and revenue. As another direction, we only
characterized when certain worst-case scenarios can occur under the VCG mechanism—but there
are certainly other instances in which bad (albeit not worst-case) outcomes can occur. Providing
a more complete characterization that also classifies these instances would give us an even better
understanding of the VCG mechanism’s vulnerabilities.

Mechanisms for expressive preference aggregation in the setting of donations to charities (Sec-
tion 5.2) (or, more generally, for expressive preference aggregation in settings with externalities/public
goods) still leave much to be desired. In part, this is due to fundamental impossibility results such as
the one that we presented. Nevertheless, our results also suggest that such impossibilities can some-
times be mitigated by using a single mechanism to decide on the donations to multiple charities—
although it is not yet clear how to do this in the general case. While difficulties for mechanism design
in these settings occur even when restricting our attention to the case of quasilinear preferences, it
is important that eventually mechanisms will address the case of more general preferences as well.
This is especially so because typically, when donating money to a large charity, the marginal ben-
efit to the charity of another dollar remains roughly constant even when donations are large. Thus,
the main reason why donors give only limited amounts is that larger donations will prevent them
from buying more basic goods for themselves (e.g. food, clothing)—that is, as they donate more,
the marginal utility of keeping a dollar for themselves becomes larger, and thus their utility is not
linear in money. Automated mechanism design may be helpful in creating mechanisms in the face
of non-quasilinear utilities.

294 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

11.2.3 Node (3a): Automated mechanism design

Automated mechanism design is a relatively new research area, and because of this much remains to
be done. Perhaps the most important direction for future research is getting automated mechanism
design to scale to larger instances. There are numerous ways in which this can be achieved. First
of all, better algorithms for the general problem can be developed. This can be done either by
improving the mixed integer/linear programming formulations, or by developing new algorithms
altogether. As examples of the former, we have observed (1) that some of the constraints in our
formulation imply some of the others (similar observations have been made by others [Gui et al.,
2004; Lovejoy, 2006]), and omitting these implied constraints (perhaps surprisingly) significantly
decreases the time that CPLEX requires to solve instances; and (2) in settings that are symmetric
with respect to the agents, formulations that are much more concise (and easier to solve) can be
given. As an example of the latter, in Section 6.7 we introduced a special-purpose algorithm for the
case of designing deterministic algorithms without payments for a single agent, and perhaps this
algorithm can be extended to apply to the general problem.

On the other hand, rather than address the general problem, one can also choose to focus on
specific domains. For example, one can restrict attention to the automated design of combinatorial
auction mechanisms, as has been done by Likhodedov and Sandholm [2003, 2004, 2005]. By focus-
ing on such a specific domain, it is possible to make use of theoretical results that characterize (op-
timal) truthful mechanisms in that domain, which can significantly reduce the space of mechanisms
that must be searched. It is also possible to restrict the space of mechanisms under consideration
without such a characterization result. For example, Sandholm and Gilpin [2006] restrict attention
to sequences of take-it-or-leave-it offers for selling items. Such a restriction will potentially exclude
all optimal mechanisms from the search space, but typically there are many reasonable restrictions
of the search space that one would not expect to come at too much of a cost. For example, one can
require that the lowest k bids never win anything. (Such restrictions, besides improving scalability,
also allow us to rule out mechanisms that are intuitively unappealing.) If there is a formal guarantee
that optimal mechanisms in the restricted search space always have objective values that are close
to those of optimal mechanisms in the unrestricted search space, then an algorithm that identifies
an optimal mechanism in the restricted search space constitutes an approximation algorithm for the
unrestricted setting.

There are many other important future directions on automated mechanism design besides im-
proving its scalability. New domains in which AMD can be applied continue to be found (for
example, recommender systems [Jurca and Faltings, 2006]). One can also use AMD as a tool in tra-
ditional mechanism design. For example, by letting the software compute the optimal mechanism
for a number of sample instances in the domain of interest, one can gain intuition about what the
characterization of the optimal mechanism for the general case should look like. It is also possi-
ble to use automated mechanism design software to help disprove general conjectures, by solving
randomly sampled instances until a counterexample is found. For example, a conjecture that opti-
mal mechanisms in a certain domain need never use randomization can be disproved by finding an
instance in the domain where the optimal randomized mechanism performs strictly better than the
optimal deterministic mechanism.

Finally, one can seek to expand the automated mechanism design toolbox, for instance by study-
ing how to model additional solution concepts. For example, one can add constraints to the problem

11.2. FUTURE RESEARCH 295

to prevent collusion from being beneficial. One can also try to modify the Bayes-Nash equilibrium
constraints so that truthful reporting remains optimal even if the designer’s prior over agents’ types
is slightly inaccurate. Additionally, it may be possible to create tools for cases where the designer
has only partial information about the prior over agents’ types. Finally, it would be useful to have
techniques for the case where the type space (and perhaps also the outcome space) is continuous
rather than discrete. Even if techniques for solving such continuous instances directly remain elu-
sive, it would help to at least know how to discretize them well.

11.2.4 Node (3b): Mechanism design for bounded agents

In Section 8.1 we showed that there exist settings in which there are non-truthful mechanisms that
perform at least as well as any truthful mechanism (and strictly better if agents are computation-
ally bounded), and that are also computationally easier to execute. Future research should inves-
tigate whether this result can be generalized to other settings of interest, such as combinatorial
auctions. One may also consider non-truthful mechanisms that do not have all three of these prop-
erties, i.e. non-truthful mechanisms that are not easier to execute, or are not guaranteed to perform
strictly better in the face of computational boundedness, or are not guaranteed to perform at least
as well when agents are strategic. In the last case, it would be risky to run this non-truthful mecha-
nism instead of the optimal truthful one because the outcome may be worse, and hence it would be
good to have some way of assessing this risk, i.e. being able to estimate what the odds are that the
resulting outcome will be worse (or better), and how much worse (or better) it will be.

There are also various avenues for future research on voting rules that are computationally
hard to manipulate (Sections 8.2, 8.3, and 8.4). Most significantly, it is important to see whether
the impossibility result that we presented can be circumvented to create a voting rule that is in
some sense usually hard to manipulate. We offered a few approaches at the end of Section 8.4
that could potentially create such a rule (without contradicting the impossibility result). Another
direction for future research is to create new ways to tweak existing voting rules to make them harder
to manipulate. (Elkind and Lipmaa [2005a] have already generalized the technique of adding a
preround, showing that voting rules can be hybridized with each other to make manipulation harder.)
It would be especially interesting to create tweaks that make the manipulation problem hard even
with few candidates. Finally, it is important to study in more detail how hard the manipulation
problem is when the nonmanipulators’ votes are not exactly known, as this is typically the situation
that manipulators are confronted with.

Much work also remains to be done on computing game-theoretic solutions (Chapter 9). In
Section 9.2 we showed that computing Nash equilibria with certain properties is NP-hard. Are there
any interesting properties for which this is not the case? To illustrate this, consider the following
computational problem: find a Nash equilibrium with the property that there does not exist another
Nash equilibrium in which each player’s support is reduced by one strategy (relative to the former
equilibrium). An equilibrium with this property can be found by finding any one Nash equilibrium,
and then trying each possible way of reducing each player’s support by one strategy (there are
only polynomially many ways of doing so, and given the supports, finding a Nash equilibrium only
requires solving a linear feasibility program). If we are successful in finding such a reduced Nash
equilibrium, then we repeat the process with that equilibrium, until we fail. (It should be kept in
mind that computing any one Nash equilibrium is still PPAD-complete.) Discovering properties of

296 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

this kind can also help address the equilibrium selection problem (if there are multiple equilibria,
which one should be played?), since one can argue that it is more natural to play an easy-to-compute
equilibrium than to play a hard-to-compute equilibrium.

Various questions also remain on the generalized eliminability criterion introduced in Sec-
tion 9.3. Are there other special cases (besides the case of small E sets) where it can be computed
in polynomial time whether a strategy is eliminable? Are there alternative characterizations of this
eliminability criterion (or restricted versions thereof)? Such alternative characterizations may make
the criterion easier to understand, and may also lead to new approaches to computing whether a
strategy can be eliminated. Perhaps it is also possible to create altogether different eliminability
criteria. Such a criterion may be strictly weaker or stronger than the one presented here, so that
eliminability in the one sense implies eliminability in the other sense; or the criteria may not be
comparable. Another future research direction is to apply the eliminability technique in practice,
testing it on random distributions of games such as those generated by GAMUT [Nudelman et al.,
2004], and using it to speed up computation of Nash equilibria (possibly on similar distributions of
games).

Finally, other directions for future research that can be taken for any one of these solution
concepts include computing solutions for restricted classes of games, as well as computing solu-
tions under different game representations (including games of imperfect information, graphical
games [Kearns et al., 2001], action-graph games [Bhat and Leyton-Brown, 2004], etc.).

11.2.5 Node (4): Automated mechanism design for bounded agents

Automated mechanism design for bounded agents is in its infancy, and future research will likely
create new and more comprehensive approaches. However, even the initial approach that we proposed—
starting with a naı̈ve mechanism and incrementally making it more strategy-proof—raises many
questions. Most significantly, while we have given a general template for the technique, many
choices must be made to fully instantiate it. For instance, we must choose the set of manipulations
that we try to prevent, the way in which we try to prevent them, and when we terminate the updating
process. We gave examples of various instantiations of the technique and the mechanisms that they
generate, but ideally we would have a single instantiation of the technique that dominates all others.
Even if this is not possible, it would be very helpful if we could provide some guidance as to which
instantiation is likely to work best for a given application.

Another avenue for future research is to use this approach to help us create new general mech-
anisms. Whereas automated mechanism design in the sense of Chapter 6 can only help us con-
jecture truthful mechanisms, this approach potentially can also help us create new non-truthful
mechanisms—for example, new voting rules. (Recall that all truthful voting rules are unsatisfactory
by the Gibbard-Satterthwaite impossibility theorem.)

On the matter of designing algorithms for automatically executing the approach, it is important
to find algorithms that scale to larger numbers of iterations. Not only will this allow us to design
mechanisms with fewer possibilities for beneficial manipulation, but it will also make the remaining
beneficial manipulations more difficult to find, because agents must reason through more iterations
to find them. (Of course, if the agents have access to the more efficient algorithms as well, this
benefit disappears. Nevertheless, if we as designers do not find more efficient algorithms, we run
the risk that agents will find these algorithms themselves, and will be able to out-compute us and

11.2. FUTURE RESEARCH 297

find beneficial manipulations.)

298 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

Bibliography

Tim Abbott, Daniel Kane, and Paul Valiant. On the complexity of two-player win-lose games. In
Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2005.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. In Proceedings of the Annual Symposium on Theory of Computing (STOC), 2005.

K. Akcoglu, J. Aspnes, B. DasGupta, and M. Y. Kao. Opportunity cost algorithms for combinatorial
auctions. Applied Optimization: Computational Methods in Decision-Making, Economics and
Finance, pages 455–479, 2002.

Noga Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics, 20:137–142, 2006.

Martin Andersson and Tuomas Sandholm. Time-quality tradeoffs in reallocative negotiation with
combinatorial contract types. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 3–10, Orlando, FL, 1999.

Martin Andersson and Tuomas Sandholm. Contract type sequencing for reallocative negotiation.
In Proceedings of the Twentieth International Conference on Distributed Computing Systems,
Taipei, Taiwan, April 2000.

Krzysztof R. Apt. Uniform proofs of order independence for various strategy elimination proce-
dures. Contributions to Theoretical Economics, 4(1), 2004.

Aaron Archer and Eva Tardos. Frugal path mechanisms. In Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 991–999, 2002.

Aaron Archer, Christos Papadimitriou, K Tawar, and Eva Tardos. An approximate truthful mecha-
nism for combinatorial auctions with single parameter agents. In Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2003.

S. Areborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a K-tree.
SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

Mark Armstrong. Optimal multi-object auctions. Review of Economic Studies, 67:455–481, 2000.

Kenneth Arrow. Social choice and individual values. New Haven: Cowles Foundation, 2nd edition,
1963. 1st edition 1951.

299

300 BIBLIOGRAPHY

Kenneth Arrow. The property rights doctrine and demand revelation under incomplete information.
In M Boskin, editor, Economics and human welfare. New York Academic Press, 1979.

Lawrence Ausubel and Paul Milgrom. Ascending auctions with package bidding. Frontiers of
Theoretical Economics, 1, 2002. No. 1, Article 1.

Lawrence M. Ausubel and Paul Milgrom. The lovely but lonely Vickrey auction. In Peter Cramton,
Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions, chapter 1. MIT Press,
2006.

Christopher Avery and Terrence Hendershott. Bundling and optimal auctions of multiple products.
Review of Economic Studies, 67:483–497, 2000.

Jorgen Bang-Jensen and Carsten Thomassen. A polynomial algorithm for the 2-path problem for
semicomplete digraphs. SIAM Journal of Discrete Mathematics, 5(3):366–376, 1992.

Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi-unit combinatorial auctions.
In Theoretical Aspects of Rationality and Knowledge (TARK), Bloomington, Indiana, USA, 2003.

Yair Bartal, Rica Gonen, and Pierfrancesco La Mura. Negotiation-range mechanisms: Exploring
the limits of truthful efficient markets. In Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 1–8, New York, NY, 2004.

John Bartholdi, III and James Orlin. Single transferable vote resists strategic voting. Social Choice
and Welfare, 8(4):341–354, 1991.

John Bartholdi, III, Craig Tovey, and Michael Trick. The computational difficulty of manipulating
an election. Social Choice and Welfare, 6(3):227–241, 1989.

John Bartholdi, III, Craig Tovey, and Michael Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

Nivan A. R. Bhat and Kevin Leyton-Brown. Computing Nash equilibria of action-graph games. In
Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Banff,
Canada, 2004.

Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence Schauen-
berg, and Duane Szafron. Approximating game-theoretic optimal strategies for full-scale poker.
In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI), Acapulco, Mexico, 2003.

Ben Blum, Christian R. Shelton, and Daphne Koller. A continuation method for Nash equilibria in
structured games. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico, 2003.

Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich. Preference elicitation
and query learning. Journal of Machine Learning Research, 5:649–667, 2004. Early version in
COLT-03.

BIBLIOGRAPHY 301

Tilman Borgers. Pure strategy dominance. Econometrica, 61(2):423–430, 1993.

Craig Boutilier. Solving concisely expressed combinatorial auction problems. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 359–366, Edmonton, Canada, 2002.

Sylvain Bouveret and Jérôme Lang. Efficiency and envy-freeness in fair division of indivisible
goods: logical representation and complexity. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI), pages 935–940, Edinburgh, UK, 2005.

Felix Brandt and Tuomas Sandholm. (Im)Possibility of unconditionally privacy-preserving auc-
tions. In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 810–817, New York, NY, USA, 2004.

Felix Brandt and Tuomas Sandholm. On correctness and privacy in distributed mechanisms. In
Agent-Mediated Electronic Commerce (AMEC) workshop, pages 1–14, New York, NY, 2004.

Felix Brandt and Tuomas Sandholm. Decentralized voting with unconditional privacy. In Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Utrecht, The
Netherlands, 2005.

Felix Brandt and Tuomas Sandholm. Efficient privacy-preserving protocols for multi-unit auc-
tions. In Proceedings of the Financial Cryptography and Data Security conference(FC), Springer
LNCS, 2005.

Felix Brandt and Tuomas Sandholm. Unconditional privacy in social choice. In Theoretical Aspects
of Rationality and Knowledge (TARK), Singapore, 2005.

Andrew Byde. Applying evolutionary game theory to auction mechanism design. In Proceedings
of the ACM Conference on Electronic Commerce (ACM-EC), pages 192–193, San Diego, CA,
2003. Poster paper.

Ruggiero Cavallo. Optimal decision-making with minimal waste: Strategyproof redistribution of
VCG payments. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Hakodate, Japan, 2006.

Xi Chen and Xiaotie Deng. 3-Nash is PPAD-complete. Electronic Colloquium on Computational
Complexity, Report No. 134, 2005.

Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash equilibrium. Electronic
Colloquium on Computational Complexity, Report No. 150, 2005.

Ed H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

Dave Cliff. Evolution of market mechanism through a continuous space of auction-types. Technical
Report HPL-2001-326, HP Labs, 2001.

William Cohen, Robert Schapire, and Yoram Singer. Learning to order things. Journal of Artificial
Intelligence Research, 10:213–270, 1999.

302 BIBLIOGRAPHY

Wolfram Conen and Tuomas Sandholm. Preference elicitation in combinatorial auctions: Extended
abstract. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 256–
259, Tampa, FL, October 2001. A more detailed description of the algorithmic aspects appeared
in the IJCAI-2001 Workshop on Economic Agents, Models, and Mechanisms, pp. 71–80.

Wolfram Conen and Tuomas Sandholm. Partial-revelation VCG mechanism for combinatorial auc-
tions. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 367–
372, Edmonton, Canada, 2002.

Vincent Conitzer and Nikesh Garera. Learning algorithms for online principal-agent problems (and
selling goods online). In International Conference on Machine Learning (ICML), Pittsburgh, PA,
USA, 2006.

Vincent Conitzer and Tuomas Sandholm. Complexity of manipulating elections with few candi-
dates. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 314–
319, Edmonton, Canada, 2002.

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Proceedings of the
18th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 103–110, Edmon-
ton, Canada, 2002.

Vincent Conitzer and Tuomas Sandholm. Vote elicitation: Complexity and strategy-proofness. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 392–397, Ed-
monton, Canada, 2002.

Vincent Conitzer and Tuomas Sandholm. Applications of automated mechanism design. In UAI-03
workshop on Bayesian Modeling Applications, Acapulco, Mexico, 2003.

Vincent Conitzer and Tuomas Sandholm. Automated mechanism design: Complexity results stem-
ming from the single-agent setting. In Proceedings of the 5th International Conference on Elec-
tronic Commerce (ICEC-03), pages 17–24, Pittsburgh, PA, USA, 2003.

Vincent Conitzer and Tuomas Sandholm. Automated mechanism design with a structured outcome
space, 2003.

Vincent Conitzer and Tuomas Sandholm. BL-WoLF: A framework for loss-bounded learnability
in zero-sum games. In International Conference on Machine Learning (ICML), pages 91–98,
Washington, DC, USA, 2003.

Vincent Conitzer and Tuomas Sandholm. Complexity results about Nash equilibria. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 765–
771, Acapulco, Mexico, 2003.

Vincent Conitzer and Tuomas Sandholm. Definition and complexity of some basic metareasoning
problems. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1099–1106, Acapulco, Mexico, 2003.

BIBLIOGRAPHY 303

Vincent Conitzer and Tuomas Sandholm. Universal voting protocol tweaks to make manipulation
hard. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI), pages 781–788, Acapulco, Mexico, 2003.

Vincent Conitzer and Tuomas Sandholm. An algorithm for automatically designing deterministic
mechanisms without payments. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 128–135, New York, NY, USA, 2004.

Vincent Conitzer and Tuomas Sandholm. Communication complexity as a lower bound for learning
in games. In International Conference on Machine Learning (ICML), pages 185–192, Banff,
Alberta, Canada, 2004.

Vincent Conitzer and Tuomas Sandholm. Computational criticisms of the revelation principle. In
The Conference on Logic and the Foundations of Game and Decision Theory (LOFT-04), Leipzig,
Germany, 2004. Earlier versions appeared as a short paper at ACM-EC-04, and in the workshop
on Agent-Mediated Electronic Commerce (AMEC-03).

Vincent Conitzer and Tuomas Sandholm. Computing Shapley values, manipulating value division
schemes, and checking core membership in multi-issue domains. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 219–225, San Jose, CA, 2004. Earlier version:
IJCAI-03 workshop on Distributed Constraint Reasoning (DCR-03), Acapulco, Mexico.

Vincent Conitzer and Tuomas Sandholm. Expressive negotiation over donations to charities. In
Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 51–60, New
York, NY, 2004.

Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and impli-
cations for optimal combinatorial auctions. In Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 132–141, New York, NY, 2004. Early version appeared as a poster
in the ACM Conference on Electronic Commerce, 2003, pp. 232–233.

Vincent Conitzer and Tuomas Sandholm. Common voting rules as maximum likelihood estimators.
In Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI),
pages 145–152, Edinburgh, UK, 2005.

Vincent Conitzer and Tuomas Sandholm. Communication complexity of common voting rules. In
Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 78–87, Vancou-
ver, Canada, 2005.

Vincent Conitzer and Tuomas Sandholm. Complexity of (iterated) dominance. In Proceedings
of the ACM Conference on Electronic Commerce (ACM-EC), pages 88–97, Vancouver, Canada,
2005.

Vincent Conitzer and Tuomas Sandholm. Expressive negotiation in settings with externalities. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 255–260, Pitts-
burgh, PA, 2005.

304 BIBLIOGRAPHY

Vincent Conitzer and Tuomas Sandholm. A generalized strategy eliminability criterion and compu-
tational methods for applying it. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), pages 483–488, Pittsburgh, PA, 2005.

Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents. Machine
Learning, 2006. Short version in ICML-03.

Vincent Conitzer and Tuomas Sandholm. Complexity of constructing solutions in the core based
on synergies among coalitions. Artificial Intelligence, 170(6-7):607–619, 2006. Earlier version
appeared in IJCAI-03, pages 613–618.

Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In Pro-
ceedings of the ACM Conference on Electronic Commerce (ACM-EC), Ann Arbor, MI, 2006.

Vincent Conitzer and Tuomas Sandholm. Failures of the VCG mechanism in combinatorial auctions
and exchanges. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 521–528, Hakodate, Japan, 2006. Early versions appeared at the AAMAS-04
Agent-Mediated Electronic Commerce (AMEC) workshop, and (as a short paper) at ACM-EC-
04.

Vincent Conitzer and Tuomas Sandholm. Incrementally making mechanisms more strategy-proof.
In Multidisciplinary Workshop on Advances in Preference Handling, Riva del Garda, Italy, 2006.

Vincent Conitzer and Tuomas Sandholm. Nonexistence of voting rules that are usually hard to
manipulate. In Proceedings of the National Conference on Artificial Intelligence (AAAI), Boston,
MA, 2006.

Vincent Conitzer and Tuomas Sandholm. A technique for reducing normal-form games to compute
a Nash equilibrium. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 537–544, Hakodate, Japan, 2006. Early version appeared in IJCAI Workshop
on Game Theoretic and Decision Theoretic Agents (GTDT), 2005.

Vincent Conitzer, Jérôme Lang, and Tuomas Sandholm. How many candidates are needed to make
elections hard to manipulate? In Theoretical Aspects of Rationality and Knowledge (TARK),
pages 201–214, Bloomington, Indiana, USA, 2003.

Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm. Combinatorial auctions with struc-
tured item graphs. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 212–218, San Jose, CA, 2004.

Vincent Conitzer, Tuomas Sandholm, and Paolo Santi. Combinatorial auctions with k-wise depen-
dent valuations. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 248–254, Pittsburgh, PA, 2005. Draft in Oct., 2003.

Vincent Conitzer, Andrew Davenport, and Jayant Kalagnanam. Improved bounds for computing
Kemeny rankings. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
Boston, MA, 2006. Early version presented at INFORMS-05.

BIBLIOGRAPHY 305

Vincent Conitzer. Computing Slater rankings using similarities among candidates. In Proceedings
of the National Conference on Artificial Intelligence (AAAI), Boston, MA, 2006. Early version
appeared as IBM RC 23748, 2005.

Don Coppersmith, Lisa Fleischer, and Atri Rudra. Ordering by weighted number of wins gives a
good ranking for weighted tournaments. In Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2006.

Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. MIT Press,
1990.

George Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

R. K. Dash, S. D. Ramchurn, and N. R. Jennings. Trust-based mechanism design. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 748–755, New
York, NY, USA, 2004.

Constantinos Daskalakis and Christos Papadimitriou. Three-player games are hard. Electronic
Colloquium on Computational Complexity, Report No. 139, 2005.

Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of computing
a Nash equilibrium. Electronic Colloquium on Computational Complexity, Report No. 115, 2005.

Claude d’Aspremont and Louis-Andre Gérard-Varet. Incentives and incomplete information. Jour-
nal of Public Economics, 11:25–45, 1979.

Andrew Davenport and Jayant Kalagnanam. A computational study of the Kemeny rule for prefer-
ence aggregation. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 697–702, San Jose, CA, 2004.

Marie Jean Antoine Nicolas de Caritat (Marquis de Condorcet). Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des voix. 1785. Paris: L’Imprimerie Royale.

Sven de Vries and Rakesh Vohra. Combinatorial auctions: A survey. INFORMS Journal on Com-
puting, 15(3):284–309, 2003.

Sven de Vries, James Schummer, and Rakesh V. Vohra. On ascending auctions for heterogeneous
objects, 2003. Draft, Nov.

Christine DeMartini, Anthony Kwasnica, John Ledyard, and David Porter. A new and improved
design for multi-object iterative auctions. Technical Report 1054, California Institute of Technol-
ogy, Social Science, September 1999.

John Dickhaut and Todd Kaplan. A program for finding Nash equilibria. The Mathematica Journal,
pages 87–93, 1991.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for the
web. In Proceedings of the 10th World Wide Web Conference, pages 613–622, 2001.

306 BIBLIOGRAPHY

eBay UK. Proxy bidding. 2004. http://pages.ebay.co.uk/help/buyerguide/bidding-prxy.html.

Edith Elkind and Helger Lipmaa. Hybrid voting protocols and hardness of manipulation. In Annual
International Symposium on Algorithms and Computation (ISAAC), 2005.

Edith Elkind and Helger Lipmaa. Small coalitions cannot manipulate voting. In Proceedings of the
Financial Cryptography and Data Security conference(FC), 2005.

Elaine Eschen and Jeremy Spinrad. An O(n2) algorithm for circular-arc graph recognition. In
Annual SIAM-ACM Symposium on Discrete Algorithms (SODA), pages 128–137, 1993.

Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the cost of muliticast trans-
missions. Journal of Computer and System Sciences, 63:21–41, 2001. Early version in STOC-00.

Lance Fortnow, Joe Kilian, David M. Pennock, and Michael P. Wellman. Betting boolean-style:
a framework for trading in securities based on logical formulas. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC), pages 144–155, San Diego, CA, 2003.

Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the computational complexity
of combinatorial auctions: Optimal and approximate approaches. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), pages 548–553, Stockholm,
Sweden, August 1999.

David Gale, Harold W. Kuhn, and Albert W. Tucker. Linear programming and the theory of games.
In Tjalling Koopmans, editor, Activity Analysis of Allocation and Production. 1951.

Michael Garey and David Johnson. Computers and Intractability. W. H. Freeman and Company,
1979.

Michael Garey, David Johnson, and Larry Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1:237–267, 1976.

Allan Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.

Allan Gibbard. Manipulation of schemes that mix voting with chance. Econometrica, 45:665–681,
1977.

Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considerations.
Games and Economic Behavior, 1:80–93, 1989.

Itzhak Gilboa, Ehud Kalai, and Eitan Zemel. On the order of eliminating dominated strategies.
Operations Research Letters, 9:85–89, 1990.

Itzhak Gilboa, Ehud Kalai, and Eitan Zemel. The complexity of eliminating dominated strategies.
Mathematics of Operation Research, 18:553–565, 1993.

BIBLIOGRAPHY 307

Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via automated
abstraction and real-time equilibrium computation. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), Boston, MA, 2006.

Andrew Gilpin and Tuomas Sandholm. Finding equilibria in large sequential games of imperfect
information. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), Ann
Arbor, MI, 2006.

Andrew Goldberg and Jason Hartline. Envy-free auctions for digital goods. In Proceedings of the
ACM Conference on Electronic Commerce (ACM-EC), pages 29–35, San Diego, CA, 2003.

Devorah Goldburg and Shannon McElligott. Red cross statement on official donation locations.
2001. Press release, http://www.redcross.org/press/disaster/ds pr/011017legitdonors.html.

Rica Gonen and Daniel Lehmann. Optimal solutions for multi-unit combinatorial auctions: Branch
and bound heuristics. In Proceedings of the ACM Conference on Electronic Commerce (ACM-
EC), pages 13–20, Minneapolis, MN, October 2000.

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure Nash equilibria: hard and easy
games. In Theoretical Aspects of Rationality and Knowledge (TARK), pages 215–230, Bloom-
ington, Indiana, USA, 2003.

J Green and J-J Laffont. Characterization of satisfactory mechanisms for the revelation of prefer-
ences for public goods. Econometrica, 45:427–438, 1977.

Theodore Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

Hongwei Gui, Rudolf Müller, and Rakesh Vohra. Characterizing dominant strategy mechanisms
with multi-dimensional types, 2004. Working Paper.

E. Hemaspaandra and L. Hemaspaandra. Dichotomy for voting systems. Technical Report 861,
University of Rochester, Department of Computer Science, 2005.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elections: Lewis Car-
roll’s 1876 voting system is complete for parallel access to NP. Journal of the ACM, 44(6):806–
825, 1997.

John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is an edge worth? In
Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2001.

Douglas Hofstadter. Metamagical Themas. Basic Books, 1985.

Bengt Holmström. Groves’ scheme on restricted domains. Econometrica, 47(5):1137–1144, 1979.

Holger Hoos and Craig Boutilier. Solving combinatorial auctions using stochastic local search. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 22–29, Austin,
TX, August 2000.

308 BIBLIOGRAPHY

Benoit Hudson and Tuomas Sandholm. Effectiveness of query types and policies for preference
elicitation in combinatorial auctions. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 386–393, New York, NY, USA, 2004. Early versions:
CMU tech report CMU-CS-02-124, AMEC-02, SITE-02.

Nathanaël Hyafil and Craig Boutilier. Regret-based incremental partial revelation mechanisms. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), Boston, MA, 2006.

Takayuki Ito, Makoto Yokoo, and Shigeo Matsubara. Designing an auciton protocol under asym-
metric information on nature’s selection. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 61–68, Bologna, Italy, 2002.

Takayuki Ito, Makoto Yokoo, and Shigeo Matsubara. Toward a combinatorial auction protocol
among experts and amateurs: The case of single-skilled experts. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 481–488, Melbourne, Australia,
2003.

Takayuki Ito, Makoto Yokoo, and Shigeo Matsubara. A combinatorial auction among versatile ex-
perts and amateurs. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 378–385, New York, NY, USA, 2004.

Sergei Izmalkov, Matt Lepinski, and Silvio Micali. Universal mechanism design. In Proceedings of
the Annual Symposium on Foundations of Computer Science (FOCS), 2005.

Philippe Jehiel and Benny Moldovanu. How (not) to sell nuclear weapons. American Economic
Review, 86(4):814–829, 1996.

Radu Jurca and Boi Faltings. Minimum payments that reward honest reputation feedback. In
Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), Ann Arbor, MI, 2006.

Richard Karp. Reducibility among combinatorial problems. In Raymond E Miller and James W
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, NY,
1972.

Michael Kearns, Michael Littman, and Satinder Singh. Graphical models for game theory. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2001.

John Kemeny. Mathematics without numbers. In Daedalus, volume 88, pages 571–591. 1959.

Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Doklady, 20:191–
194, 1979.

Christopher Kiekintveld, Yevgeniy Vorobeychik, and Michael Wellman. An analysis of the 2004
supply chain management trading agent competition. In IJCAI-05 Workshop on Trading Agent
Design and Analysis, Edinburgh, UK, 2005.

Donald E. Knuth, Christos H. Papadimitriou, and John N Tsitsiklis. A note on strategy elimination
in bimatrix games. Operations Research Letters, 7(3):103–107, 1988.

BIBLIOGRAPHY 309

R Kohli, R Krishnamurthi, and P Mirchandani. The minimum satisfiability problem. SIAM Journal
of Discrete Mathematics, 7(2):275–283, 1994.

Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic problems. Artifi-
cial Intelligence, 94(1):167–215, July 1997.

Norbert Korte and Rolf Mohring. An incremental linear-time algorithm for recognizing interval
graphs. SIAM Journal on Computing, 18(1):68–81, February 1989.

Anshul Kothari, David Parkes, and Subhash Suri. Approximately-strategyproof and tractable multi-
unit auctions. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages
166–175, San Diego, CA, 2003.

Sebastién Lahaie and David Parkes. Applying learning algorithms to preference elicitation. In
Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), New York, NY, 2004.

Kate Larson and Tuomas Sandholm. Bargaining with limited computation: Deliberation equilib-
rium. Artificial Intelligence, 132(2):183–217, 2001. Short early version appeared in the Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pp. 48–55, Austin, TX,
2000.

Kate Larson and Tuomas Sandholm. Costly valuation computation in auctions. In Theoretical
Aspects of Rationality and Knowledge (TARK VIII), pages 169–182, Siena, Italy, July 2001.

Kate Larson and Tuomas Sandholm. Mechanism design for deliberative agents. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Utrecht, The Nether-
lands, 2005. Early versions appeared as Designing Auctions for Deliberative Agents at AMEC-
04, and Strategic Deliberation and Truthful Revelation: An Impossibility Result at ACM-EC-04
(short paper).

Ron Lavi, Ahuva Mu’Alem, and Noam Nisan. Towards a characterization of truthful combinatorial
auctions. In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS),
pages 574–583, 2003.

Daniel Lehmann, Lidian Ita O’Callaghan, and Yoav Shoham. Truth revelation in rapid, approxi-
mately efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002. Early version
appeared in ACMEC-99.

Carlton Lemke and J. Howson. Equilibrium points of bimatrix games. Journal of the Society of
Industrial and Applied Mathematics, 12:413–423, 1964.

Kevin Leyton-Brown and Moshe Tennenholtz. Local-effect games. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

Anton Likhodedov and Tuomas Sandholm. Auction mechanism for optimally trading off efficiency
and revenue. In Agent-Mediated Electronic Commerce (AMEC) workshop, Melbourne, Australia,
2003. A short version also appeared in the ACM Conference on Electronic Commerce, 2003. The
extension to multi-unit auctions has been accepted as a short paper in the ACM Conference on
Electronic Commerce, 2004.

310 BIBLIOGRAPHY

Anton Likhodedov and Tuomas Sandholm. Methods for boosting revenue in combinatorial auctions.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 232–237, San
Jose, CA, 2004.

Anton Likhodedov and Tuomas Sandholm. Approximating revenue-maximizing combinatorial auc-
tions. In Proceedings of the National Conference on Artificial Intelligence (AAAI), Pittsburgh, PA,
2005.

Richard Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the ACM Conference on Electronic Commerce
(ACM-EC), pages 125–131, New York, NY, 2004.

William S. Lovejoy. Optimal mechanisms with finite agent types. Management Science, 53(5):788–
803, 2006.

Leslie M. Marx and Jeroen M. Swinkels. Order independence for iterated weak dominance. Games
and Economic Behavior, 18:219–245, 1997.

Leslie M. Marx and Jeroen M. Swinkels. Corrigendum, order independence for iterated weak dom-
inance. Games and Economic Behavior, 31:324–329, 2000.

Andreu Mas-Colell, Michael Whinston, and Jerry R. Green. Microeconomic Theory. Oxford Uni-
versity Press, 1995.

Eric Maskin and John Riley. Optimal multi-unit auctions. In Frank Hahn, editor, The Economics of
Missing Markets, Information, and Games, chapter 14, pages 312–335. Clarendon Press, Oxford,
1989.

Andrew McLennan and In-Uck Park. Generic 4x4 two person games have at most 15 Nash equilib-
ria. Games and Economic Behavior, pages 26–1,111–130, 1999.

Andrew McLennan. The expected number of Nash equilibria of a normal form game. Econometrica,
1999.

Dov Monderer and Moshe Tennenholtz. Asymptotically optimal multi-object auctions for risk-
averse agents. Technical report, Faculty of Industrial Engineering and Management, Technion,
Haifa, Israel, February 1999.

Hervé Moulin. Serial cost-sharing of excludable public goods. Review of Economic Studies, 61:305–
325, 1994.

Ahuva Mu’alem and Noam Nisan. Truthful approximate mechanisms for restricted combinatorial
auctions. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
379–384, Edmonton, Canada, July 2002.

Roger Myerson and Mark Satterthwaite. Efficient mechanisms for bilateral trading. Journal of
Economic Theory, 28:265–281, 1983.

Roger Myerson. Incentive compatibility and the bargaining problem. Econometrica, 41(1), 1979.

BIBLIOGRAPHY 311

Roger Myerson. Optimal auction design. Mathematics of Operation Research, 6:58–73, 1981.

Roger Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, 1991.

John Nash. Equilibrium points in n-person games. Proc. of the National Academy of Sciences,
36:48–49, 1950.

George Nemhauser and Laurence Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1999. Section 4, page 11.

Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms. In Proceedings of the
ACM Conference on Electronic Commerce (ACM-EC), pages 242–252, Minneapolis, MN, 2000.

Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35:166–196, 2001. Early version in STOC-99.

Noam Nisan and Ilya Segal. The communication requirements of efficient allocations and support-
ing prices. Journal of Economic Theory, 2005. Forthcoming.

Noam Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of the ACM Con-
ference on Electronic Commerce (ACM-EC), pages 1–12, Minneapolis, MN, 2000.

Robert Nozick. Newcomb’s problem and two principles of choice. In Nicholas Rescher et al.,
editor, Essays in Honor of Carl G. Hempel, pages 114–146. Synthese Library (Dordrecht, the
Netherlands: D. Reidel), 1969.

Eugene Nudelman, Jennifer Wortman, Kevin Leyton-Brown, and Yoav Shoham. Run the GAMUT:
A comprehensive approach to evaluating game-theoretic algorithms. In International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), New York, NY, USA, 2004.

Naoki Ohta, Atsushi Iwasaki, Makoto Yokoo, Kohki Maruono, Vincent Conitzer, and Tuomas Sand-
holm. A compact representation scheme for coalitional games in open anonymous environments.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), Boston, MA, 2006.

Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

Christos Papadimitriou and Tim Roughgarden. Equilibria in symmetric games. 2003. Available at
http://www.cs.berkeley.edu/˜ christos/papers/sym.ps.

Christos Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288–
301, 1985.

Christos Papadimitriou. NP-completeness: A retrospective. In Proceedings of the International
Conference on Automata, Languages, and Programming (ICALP), 1997.

Christos Papadimitriou. Algorithms, games and the Internet. In Proceedings of the Annual Sympo-
sium on Theory of Computing (STOC), pages 749–753, 2001.

312 BIBLIOGRAPHY

David Parkes and Grant Schoenebeck. GROWRANGE: Anytime VCG-based mechanisms. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 34–41, San Jose,
CA, 2004.

David Parkes and Jeffrey Shneidman. Distributed implementations of generalized Vickrey-Clarke-
Groves auctions. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 261–268, New York, NY, USA, 2004.

David Parkes, Jayant Kalagnanam, and Marta Eso. Achieving budget-balance with Vickrey-based
payment schemes in exchanges. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI), pages 1161–1168, Seattle, WA, 2001.

David Parkes, Ruggiero Cavallo, Nick Elprin, Adam Juda, Sebastien Lahaie, Benjamin Lubin,
Loizos Michael, Jeffrey Shneidman, and Hassan Sultan. ICE: An iterative combinatorial ex-
change. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), Vancouver,
Canada, 2005.

David Parkes. iBundle: An efficient ascending price bundle auction. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC), pages 148–157, Denver, CO, November 1999.

David Parkes. Optimal auction design for agents with hard valuation problems. In Agent-Mediated
Electronic Commerce Workshop at the International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 1999.

David G. Pearce. Rationalizable strategic behavior and the problem of perfection. Econometrica,
52:1029–1050, 1984.

Michal Penn and Moshe Tennenholtz. Constrained multi-object auctions and b-matching. Informa-
tion Processing Letters, 75(1–2):29–34, July 2000.

Adrian Petcu, Boi Faltings, and David Parkes. Mdpop: Faithful distributed implementation of
efficient social choice problems. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, 2006.

Steve Phelps, Peter McBurnley, Simon Parsons, and Elizabeth Sklar. Co-evolutionary auction mech-
anism design. Lecture Notes in AI, 2531, 2002.

M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Aggregating partially ordered preferences: pos-
sibility and impossibility results. In Theoretical Aspects of Rationality and Knowledge (TARK),
Singapore, 2005.

Ryan Porter, Amir Ronen, Yoav Shoham, and Moshe Tennenholtz. Mechanism design with exe-
cution uncertainty. In Proceedings of the 18th Annual Conference on Uncertainty in Artificial
Intelligence (UAI), Edmonton, Canada, 2002.

Ryan Porter, Eugene Nudelman, and Yoav Shoham. Simple search methods for finding a Nash
equilibrium. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
664–669, San Jose, CA, 2004.

BIBLIOGRAPHY 313

Ryan Porter. Mechanism design for online real-time scheduling. In Proceedings of the ACM Con-
ference on Electronic Commerce (ACM-EC), pages 61–70, New York, NY, 2004.

Ariel D. Procaccia and Jeffrey S. Rosenschein. Junta distributions and the average-case complexity
of manipulating elections. In International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 497–504, Hakodate, Japan, 2006.

F. Rossi, M. S. Pini, K. B. Venable, and T. Walsh. Strategic voting when aggregating partially or-
dered preferences. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 685–687, Hakodate, Japan, 2006.

J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for Young elections.
In Theory of Computing Systems, volume 36(4), pages 375–386. Springer-Verlag, 2003.

Michael Rothkopf, Thomas Teisberg, and Edward Kahn. Why are Vickrey auctions rare? Journal
of Political Economy, 98(1):94–109, 1990.

Michael Rothkopf, Aleksandar Pekeč, and Ronald Harstad. Computationally manageable combina-
torial auctions. Management Science, 44(8):1131–1147, 1998.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition, 2003.

Tuomas Sandholm and Andrew Gilpin. Sequences of take-it-or-leave-it offers: Near-optimal auc-
tions without full valuation revelation. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 1127–1134, Hakodate, Japan, 2006.

Tuomas Sandholm and Victor R Lesser. Issues in automated negotiation and electronic commerce:
Extending the contract net framework. In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS), pages 328–335, San Francisco, CA, June 1995. Reprinted in
Readings in Agents, Huhns and Singh, eds., pp. 66–73, 1997.

Tuomas Sandholm and Victor R Lesser. Coalitions among computationally bounded agents. Ar-
tificial Intelligence, 94(1):99–137, 1997. Special issue on Economic Principles of Multiagent
Systems. Early version appeared at the International Joint Conference on Artificial Intelligence
(IJCAI), pages 662–669, 1995.

Tuomas Sandholm and Victor Lesser. Leveled commitment contracting: A backtracking instrument
for multiagent systems. AI Magazine, 23(3):89–100, 2002.

Tuomas Sandholm and Subhash Suri. BOB: Improved winner determination in combinatorial auc-
tions and generalizations. Artificial Intelligence, 145:33–58, 2003. Early version: Improved
Algorithms for Optimal Winner Determination in Combinatorial Auctions and Generalizations.
National Conference on Artificial Intelligence (AAAI-00), pp. 90–97, Austin, TX, July 31 – Au-
gust 2.

314 BIBLIOGRAPHY

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner determination in
combinatorial auction generalizations. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 69–76, Bologna, Italy, July 2002. Early version appeared at
the AGENTS-01 Workshop on Agent-Based Approaches to B2B, pp. 35–41, Montreal, Canada,
May 2001.

Tuomas Sandholm, Vincent Conitzer, and Craig Boutilier. Automated design of multistage mecha-
nisms. In First International Workshop on Incentive Based Computing, at the IEEE / WIC / ACM
International Conference on Web Intelligence (WI), Compiegne, France, 2005.

Tuomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-integer programming methods
for finding Nash equilibria. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 495–501, Pittsburgh, PA, 2005.

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. CABOB: A fast optimal
algorithm for winner determination in combinatorial auctions. Management Science, 51(3):374–
390, 2005. Special issue on Electronic Markets. Early version in IJCAI-01.

Tuomas Sandholm, David Levine, Michael Concordia, Paul Martyn, Rick Hughes, Jim Jacobs,
and Dennis Begg. Changing the game in strategic sourcing at Procter & Gamble: Expressive
competition enabled by optimization. Interfaces, 36(1):55–68, 2006. Edelman award competition
finalist writeup.

Tuomas Sandholm. An implementation of the contract net protocol based on marginal cost cal-
culations. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
256–262, Washington, D.C., July 1993.

Tuomas Sandholm. An implementation of the contract net protocol based on marginal cost cal-
culations. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
256–262, Washington, D.C., 1993.

Tuomas Sandholm. Necessary and sufficient contract types for optimal task allocation. In Proceed-
ings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI), page 87,
Nagoya, Japan, 1997. Poster session abstracts.

Tuomas Sandholm. Issues in computational Vickrey auctions. International Journal of Electronic
Commerce, 4(3):107–129, 2000. Special Issue on Applying Intelligent Agents for Electronic
Commerce. A short, early version appeared at the Second International Conference on Multi–
Agent Systems (ICMAS), pages 299–306, 1996.

Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Arti-
ficial Intelligence, 135:1–54, January 2002. First appeared as an invited talk at the First Inter-
national Conference on Information and Computation Economies, Charleston, SC, Oct. 25–28,
1998. Extended version appeared as Washington Univ., Dept. of Computer Science, tech report
WUCS-99-01, January 28th, 1999. Conference version appeared at the International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 542–547, Stockholm, Sweden, 1999.

BIBLIOGRAPHY 315

Tuomas Sandholm. eMediator: A next generation electronic commerce server. Computational
Intelligence, 18(4):656–676, 2002. Special issue on Agent Technology for Electronic Commerce.
Early versions appeared in the Conference on Autonomous Agents (AGENTS-00), pp. 73–96,
2000; AAAI-99 Workshop on AI in Electronic Commerce, Orlando, FL, pp. 46–55, July 1999;
and as a Washington University, St. Louis, Dept. of Computer Science technical report WU-CS-
99-02, Jan. 1999.

Tuomas Sandholm. Expressive commerce and its application to sourcing. In Conference on Inno-
vative Applications of Artificial Intelligence, Boston, MA, July 2006.

Paolo Santi, Vincent Conitzer, and Tuomas Sandholm. Towards a characterization of polynomial
preference elicitation with value queries in combinatorial auctions. In Conference on Learning
Theory (COLT), pages 1–16, Banff, Alberta, Canada, 2004.

Mark Satterthwaite. Strategy-proofness and Arrow’s conditions: existence and correspondence the-
orems for voting procedures and social welfare functions. Journal of Economic Theory, 10:187–
217, 1975.

Rahul Savani and Bernhard von Stengel. Exponentially many steps for finding a Nash equilibrium in
a bimatrix game. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 258–267, 2004.

Grant Schoenebeck and Salil Vadhan. The computational complexity of Nash equilibria in concisely
represented games. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC),
pages 270–279, Ann Arbor, MI, 2006.

Jiefu Shi and Michael Littman. Abstraction methods for game theoretic poker. In Computers and
Games, pages 333–345. Springer-Verlag, 2001.

John Tagliabue. Global AIDS Funds Is Given Attention, but Not Money. The New York Times, 2003.
Reprinted on http://www.healthgap.org/press releases/a03/060103 NYT HGAP G8 fund.html.

Moshe Tennenholtz. Some tractable combinatorial auctions. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), Austin, TX, August 2000.

Leslie Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–
201, 1979.

Stan van Hoesel and Rudolf Müller. Optimization in electronic marketplaces: Examples from
combinatorial auctions. Netnomics, 3(1):23–33, June 2001.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance,
16:8–37, 1961.

Rakesh Vohra. Research problems in combinatorial auctions. Mimeo, version Oct. 29, 2001.

John von Neumann and Oskar Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1947.

316 BIBLIOGRAPHY

John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–320,
1927.

Yevgeniy Vorobeychik, Christopher Kiekintveld, and Michael Wellman. Empirical mechanism de-
sign: Methods, with application to a supply chain scenario. In Proceedings of the ACM Confer-
ence on Electronic Commerce (ACM-EC), Ann Arbor, MI, 2006.

Peter Wurman and Michael Wellman. AkBA: A progressive, anonymous-price combinatorial auc-
tion. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 21–29,
Minneapolis, MN, October 2000.

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Robust combinatorial auction protocol
against false-name bids. Artificial Intelligence, 130(2), 2004.

Makoto Yokoo, Vincent Conitzer, Tuomas Sandholm, Naoki Ohta, and Atsushi Iwasaki. Coalitional
games in open anonymous environments. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 509–514, Pittsburgh, PA, 2005.

Makoto Yokoo. The characterization of strategy/false-name proof combinatorial auction protocols:
Price-oriented, rationing-free protocol. In Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 733–742, Acapulco, Mexico, August 2003.

Peyton Young. Optimal voting rules. Journal of Economic Perspectives, 9(1):51–64, 1995.

Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-time preference elicitation
with value queries. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC),
pages 176–185, San Diego, CA, 2003.

Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for combinatorial auc-
tions. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 125–
136, Tampa, FL, 2001.

