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Abstract

Fair division is a fundamental problem in economic theory and one of the
oldest questions faced through the history of human society. The high level
scenario is that of several participants having to divide a collection of resources
such that everyone is satisfied with their allocation – e.g. two heirs dividing a
car, house, and piece of land inherited. The literature on fair division was de-
veloped in the 20th century in mathematics and economics, but computational
work on fair division is still sparse.

This thesis can be seen as an excursion in computational fair division
divided in two parts. The first part tackles the cake cutting problem, where
the cake is a metaphor for a heterogeneous divisible resource such as land,
time, mineral deposits, and computer memory. We study the equilibria of
classical protocols and design an algorithmic framework for reasoning about
their game theoretic properties. In our framework, the protocols are built
from simple instructions that can be executed on a computer. Moreover, we
prove an impossibility theorem for truthful mechanisms in the classical query
model, which is similar in spirit to the Gibbard-Sattherthwaite theorem of
social choice theory. We also study alternative and richer models, such as
externalities in cake cutting, simultaneous cake cutting, and envy-free cake
cutting.

The second part of the thesis tackles the fair allocation of multiple goods,
divisible and indivisible. In the realm of divisible goods, we investigate the well
known Adjusted Winner procedure, obtaining several novel characterizations
of the protocol and giving a complete picture of its pure Nash equilibria and
their efficiency. For indivisible goods, we study the competitive equilibrium
from equal incomes solution concept for valuations with perfect complements
and valuations with perfect substitutes. We obtain characterizations of when
competitive equilibria exist, as well as polynomial time algorithms and hard-
ness results for computing the equilibria.
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Resumé

Retfærdig deling af resurser er et fundamentalt problem i økonomisk teori
og i øvrigt et af de ældste samfundsmæssige problemer som er håndteret i
menneskehedens historie. Overordnet set betragtes en situation hvor adskillige
deltagere skal dele en samling resurser så de hver især er tilfredse med deres
allokering. Et eksempel er to arvinger der skal dele en bil, et hus, og et stykke
jord. Den videnskabelige literatur om retfærdig deling blev etableret i det
20. århundrede indenfor de matematiske og økonomiske videnskaber, men de
beregningsmæssige aspekter af emnet er endnu ikke grundigt studeret. Denne
afhandling omhandler sådanne beregningsmæssige aspekter af retfærdig deling
og består af to dele.

Den første del håndterer kagedelingsproblemet. Kagen i kagedelingsprob-
lemet er en metafor for en heterogen og delelig resurse såsom land, tid, min-
eralforekomster eller computerhukommelse. We studerer ligevægte af klas-
siske protokoller og for de protokoller der består af simple instruktioner der
kan eksekveres på en computer udvikler vi en algoritmisk ramme til at ar-
gumentere om deres spilteoretiske egenskaber. Desuden viser vi et negativt
resultat om eksistensen af manipulationsresistente mekanismer i en klassisk
model for diskrete kagedelingsprotokoller; dette resultat har lighedspunkter
med Gibbards og Satterthwaites sætning fra teorien om sociale valg. Vi stud-
erer også alternative og rigere modeller, såsom kagedeling med eksternaliteter,
simultan kagedeling, og misundelsesfri kagedeling.

Den anden del håndterer retfærdig deling af adskillige goder, delelige såvel
som udelelige. For delelige goder studerer vi den velkendte “Adjusted win-
ner” protokol, opnår adskillige nye karakterisationer af protokollen, og giver
et fuldstændigt billede af protokollens rene Nash ligevægte og deres effek-
tivitet. For udelelige goder studerer vi løsningsbegrebet “competitive equi-
librium from equal incomes” for præferencer med perfekte komplementer og
præferencer med perfekte substitutter. Vi karakteriserer de situationer hvor
en ligevægt eksisterer og giver polynomieltids algoritmer og hårdhedsresul-
tater for at beregne en ligevægt.
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Chapter 1

Preface

My main research area during the past three and a half years has been com-
putational fair division, with an emphasis on models such as cake cutting and
the allocation of multiple divisible and indivisible goods.

Cake cutting is the oldest formal model of fair division; it encapsulates
the essence of the fair division problem, having been studied in an extensive
body of literature starting with World War II. In more recent works, problems
such as the allocation of multiple goods have also been developed and studied
extensively; the latter can be seen as variants of the cake cutting problem with
stronger informational assumptions and sometimes non-additive valuations.

The primary focus of this work has been the study of protocols for fair
division, with an emphasis on the following questions:

(i) Given that the participants in a fair division scenario are strategic, can
one ensure that the protocols have “good” outcomes in the equilibrium?

(ii) Can such protocols be implemented efficiently on a computer?

(iii) How do richer and alternative representations change the landscape of
what can be computed?

This thesis initiated the direction of studying equilibrium outcomes of clas-
sical fair division protocols as an answer to the first question ([28, 32]). More
specifically, Chapter 3 studies the equilibria of the Dubins-Spanier procedure—
a well-known protocol for computing proportional allocations—for a basic
class of strategies. Chapter 4 generalizes these results, developing an algo-
rithmic framework for fair division—GCC, from generalized cut and choose
protocols—in which the procedures are built from basic instructions that can
be executed on a computer. We show the GCC framework captures all the
known discrete cake cutting protocols and that it is well suited for rational
agents. In particular, every GCC protocol has approximate subgame-perfect
equilibria (and in fact exact equilibria when the tie-breaking rule is set cor-
rectly). Moreover, we design a specific GCC protocol for any number of agents
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2 CHAPTER 1. PREFACE

which has Nash equilibria that are always envy-free. Chapter 4 also offers an
answer to question (ii), since the GCC framework is designed to be imple-
mented as a computer program, while standard cake cutting procedures are
specified only through a communication model, without any specifications on
their internal implementation.

Additionally, we show that a framework such as GCC is in fact necessary, as
the standard model of communication for cake cutting is ill-suited for rational
agents. This is formalized in Chapter 5, where we find a strong impossibility
result similar to the classical dictatorship results of social choice theory, in
particular the Gibbard-Satterthwaite theorem [66, 114], which is a cornerstone
of social choice theory and mechanism design. Our main theorem is that every
strategyproof protocol for two “hungry” agents1 in the standard query model
is a dictatorship. For more than two hungry agents, a similar impossibility
holds: there always exists an agent that does not get anything.

For the third question, I investigated the model of “simultaneous cake
cutting” (Chapter 6), where the communication between the center and the
participants occurs in parallel, as is often the case in resource allocation in-
stances on the internet, while Chapter 7 explores the model of cake cutting
with externalities, where the agents are affected by the allocations of others.

Part II of the thesis tackles the allocation of multiple goods and answers
questions (i) and (ii) in two well known scenarios. That is, Chapter 10 focuses
on analyzing the strategic outcomes of a well known protocol: the Adjusted
Winner procedure, which has been patented and used in real world scenarios
for the fair allocation of resources among two parties (e.g. divorce settlements,
inheritances). We show that Adjusted Winner has pure Nash equilibria, with
surprisingly good properties with respect to the ground truth (i.e. the true but
possibly hidden valuations of the parties), and that it admits several succinct
characterizations that shed further light on the properties of the protocol.

Finally, Chapter 11 studies the existence and computation of competitive
equilibria from equal incomes (CEEI) for the allocation of indivisible goods
for valuations with perfect complements and perfect substitutes. An approx-
imate variant of the CEEI solution has been studied intensively recently as a
desirable solution to allocate goods in real settings (such as allocating courses
to students at the Wharton Business School at the University of Pennsyl-
vania). In addition to answering the relevant computational questions, for
valuations with perfect complements we find a very succinct characterization
of the instances that admit a CEEI solution for indivisible goods.

The necessary background on fair division is given in Chapter 1 and Chap-
ter 9. For coherence I included only papers strictly about fair division and
the authors are in alphabetical order as standard in theoretical areas (except
for 12):

1An agent is said to be hungry if it values of all of the resource
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Chapter 2

Background

How should one fairly allocate resources among multiple economic players?
The question of fair division is as old as civil society itself (Moulin [100]),
with written instances of the problem dating back to thousands of years ago.
For example, records of a fair division protocol can be found in books such as
the Bible, which has references to the division of land and estate, and Hesiod’s
“Theogony” (cca. 750 B.C.), where a protocol known today as Cut-and-Choose
is described through a dispute over a pile of meat between Prometheus and
Zeus. Fair division has been studied in an extensive body of literature in eco-
nomics, mathematics, political science [21, 100, 112, 127], and more recently,
in computer science, as the fair allocation of resources is arguably relevant to
the design of multiagent systems [44, 109]. Examples include manufacturing
and scheduling, airport traffic, and industrial procurement [45, 109]. More
recently, the problem of fair division is also motivated by the allocation of
computational resources (such as CPU, memory, bandwidth) among users of
shared computing systems1 ([69, 79]), and has emerged as an important topic
in artificial intelligence [6, 15, 27, 31, 41, 43, 46, 84, 108].

Cake cutting is a fundamental model in fair division. The cake is a
metaphor for a heterogeneous divisible resource, such as land, time, mem-
ory in shared computing systems, clean water, greenhouse gass emissions,
fossil fuels and other natural deposits. The problem is to fairly divide the re-
source among multiple participants, such that everyone is satisfied with their
allocation.

The cake cutting literature typically represents the cake as the interval
[0, 1]. There is a set of players N = {1, . . . , n}, and each player i ∈ N is
endowed with a private valuation function Vi that assigns a value to every
subinterval of [0, 1]. These values are induced by a non-negative continuous
value density function vi, so that for an interval I, Vi(I) =

∫
x∈I vi(x) dx. By

1In shared computing environments, resources such as CPU and memory get multiplexed
such that each user can use their computing unit at their own pace and without concern for
the activity of others accessing the system (this problem was stated by Fernando Corbato
(1962) in the context of developing time-sharing operating systems).

7



8 CHAPTER 2. BACKGROUND

definition, Vi satisfies the first two properties below; the third is an assumption
that is made without loss of generality.

• Additivity: For every two disjoint intervals I1 and I2, Vi(I1 ∪ I2) =
Vi(I1) + Vi(I2).

• Divisibility: For every interval I ⊆ [0, 1] and 0 ≤ λ ≤ 1 there is a
subinterval I ′ ⊆ I such that Vi(I ′) = λVi(I).

• Normalization: Vi([0, 1]) = 1.

Figure 2.1: Cake cutting instance with two value density functions. The
valuation of player 1 for the interval [a, b] is given by the shaded area.

Note that the valuation functions are non-atomic, i.e., they assign zero
value to points. This allows us to disregard the boundaries of intervals, and
in particular we treat intervals that overlap at their boundary as disjoint.
We sometimes explicitly assume that the value density functions are strictly
positive (or hungry), i.e., vi(x) > 0 for all x ∈ [0, 1] and for all i ∈ N ; this
implies that Vi([x, y]) > 0 for all x, y ∈ [0, 1] such that x < y.

A piece of cake is a finite union of disjoint intervals. A piece is contiguous
if it consists of a single interval. An allocation A = (A1, . . . , An) is a partition
of the cake among the players, that is, each player i receives the piece Ai, the
pieces are disjoint, and

⋃
i∈N Ai = [0, 1].

There are many fairness notions in the literature, such as proportionality
and envy-freeness; we define a few of them next. Note that a protocol is said
to have a property such as envy-freeness if each player i is guaranteed not to
be envious by behaving truthfully in the protocol (i.e., not misrepresenting its
private valuation function), regardless of what the other players do.

2.1 Fairness and Efficiency Properties
Definition 1 (Proportionality). An allocation A = (A1, . . . , An) is said to be
proportional if Vi(Ai) ≥ 1/n for all i ∈ N .
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Proportional allocations are guaranteed to exist on every instance with
n − 1 cuts (i.e. the allocation is contiguous), but no protocol can compute
such allocations on general inputs with as few as n−1 cuts. The best possible
proportional protocol (due to Even and Paz [109]) uses O(n logn) cuts. The
best value that can be guaranteed with n−1 cuts is 1

2n−2 and there exist such
protocols (see Chapter 9.3, Robertson and Webb [112]).

Definition 2 (Envy-Freeness). An allocation A = (A1, . . . , An) is said to be
envy-free if Vi(Ai) ≥ Vi(Aj) for all i, j ∈ N .

Note that envy-freeness implies proportionality when the entire cake is
allocated. Without this requirement, one can obtain an envy-free allocation
by simply throwing away the whole resource, which is clearly not proportional.
On the other hand, proportionality is a weaker notion that does not necessarily
guarantee envy-freeness.

Contiguous envy-free allocations are guaranteed to exist for any cake cut-
ting instance (Stromquist [117]). This result is used several times in the thesis
and we show next a proof given by Simmons [116] that works for hungry play-
ers and is based on Sperner’s Lemma. The result is presented as described in
a paper by Su [119].

The first useful notion is that of an n-simplex. A 0-simplex is a point,
1-simplex a line, 2-simplex a triangle, 3-simplex a tetrahedron, 4-simplex a
pentatope. More generally, an n simplex is defined as the convex hull of n+ 1
affinely independent points in Rm, where m ≥ n. These points form the
vertices of the simplex. A k-face of the n-simplex is defined as the k-simplex
defined by a subset of k+1 vertices, and a facet is defined as any face spanned
by n vertices.

A triangulation of an n-simplex S is a set of distinct smaller n-simplices
whose union is S, such that any two of the smaller simplices either intersect
in a face common to both, or do not intersect at all. Let there be a numbering
of the facets of S by 1, . . . , n + 1. Given a triangulation of the simplex S,
consider a labelling as described next.

Definition 3 (Sperner labelling of an n-simplex). Given a triangulation of
an n-simplex S, label each vertex by one of the numbers in {1, . . . , n+ 1} such
that the interior vertices can be labelled by any number and on the boundary
of S, none of the vertices on facet i are labelled i.

Note that in a Sperner labelling the main vertices have distinct labels.
We say that an elementary simplex is fully labelled if all its vertices are

labelled by different numbers. The following theorem holds.

Theorem 1 (Sperner’s Lemma). Any Sperner-labelled triangulation of an n-
simplex must contain an odd number of fully labelled elementary n-simplices.
In particular, there is at least one.
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Figure 2.2: Sperner labelling for n = 2. There are five fully labelled triangles
(highlighted).

An example of a Sperner labelling is given in Figure 2.2.
The existence of contiguous envy-free allocations can be proved by apply-

ing Sperner’s Lemma as follows. Note that by definition of the cake cutting
model, the preference sets are closed (in particular, no individual points of
cake are valued strictly positively).

Theorem 2. A contiguous envy-free division of the cake is guaranteed to exist
for hungry players.

Proof. (sketch) LetN = {1, . . . , n} be the set of players. Consider any division
of the cake using n− 1 cuts and let x1, . . . , xn denote the sizes (i.e. length) of
the pieces generated this way, from left to right. Thus the first cut is at x1,
the second cut at x1 + x2, etc. Then xi ≥ 0 for all i ∈ N and x1 + . . . xn = 1.
Let S denote the space of all possible partitions of the cake in this way (using
n − 1 cuts) and observe that S constitutes an n − 1 simplex in Rn. Given
a partition of the cake x = (x1, . . . , xn), we say that player i prefers a piece
(demarcated by two adjacent cuts) if there is no other such piece that the
player likes better.

Triangulate the simplex S by barycentric subdivision and assign to each
vertex an owner chosen from one of the players, such that each elementary
simplex is fully labelled by the set of players 1, . . . , n. An example for n = 3 is
given in Figure 2.3 (In this example, the names of the players are {A,B,C},
and so each elementary triangle is labelled ABC).

Next, obtain a secondary labelling, in which each vertex is labelled by
the index of the piece preferred by its owner. For example, in Figure 2.3,
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Figure 2.3: Sperner coloring. Each vertex is assigned one of the players as
owner (A, B, or C). Afterwards, each vertex is labelled with the index of
the piece preferred by its owner. By applying Sperner’s Lemma, there exists a
triangle (highlighted) for which every vertex is colored with a different number

the leftmost point (with coordinates (1, 0, 0)) is owned by player C and the
favorite piece of player C is indexed 1, since it contains the entire cake. On
the other hand, the top vertex (with coordinates (0, 0, 1)) is owned by player
A and the favorite piece of this player is indexed by 3 (since again it consists
of the full cake). This second labelling is a Sperner labelling; by applying
Sperner’s Lemma, we obtain that there exists an elementary simplex that is
fully labelled, which is equivalent to each owner preferring a different piece.
By taking a sequence of arbitrarily small triangulations and using the fact
that the space of preferences is closed, we obtain that there exists a limit
point x∗ = (x∗1, . . . , x∗n) at which the players prefer different pieces. This gives
a contiguous envy-free allocation.

The next fairness notion requires that the players are equally satisfied with
their pieces.

Definition 4 (Equitability). An allocation A = (A1, . . . , An) is said to be
equitable if there exists a constant c such that Vi(Ai) = c, for all i ∈ N .
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One of the most demanding fairness notions, which combines the require-
ments of envy-freeness, proportionality, and equitability, is that of a perfect
allocation.

Definition 5 (Perfect Allocation). An allocation A = (A1, . . . , An) is said to
be perfect if Vi(Aj) = 1/n for all i, j ∈ N .

Perfect allocations are guaranteed to exist and were shown to require at
most n(n − 1)2 cuts by Alon [2]. However, there exists no protocol that can
compute perfect partitions on general inputs and approximations have been
devised instead [112].

Additional properties of allocations, often studied in addition to fairness,
are social welfare maximization and Pareto efficiency (also known as Pareto
optimality), which are introduced next.

Definition 6 (Social Welfare). The social welfare of an allocation A = (A1,
. . ., An) is defined as the sum of the utilities of the players:

SW (A) =
n∑
i=1

Vi(Ai)

Allocation A maximizes social welfare if there is no allocation B with a
social welfare higher than that of A.

Pareto efficiency is a weaker notion compared to social welfare maximiza-
tion and is often viewed as a minimal requirement for an allocation of resources
to be deemed acceptable.

Definition 7 (Pareto efficiency). An allocation A = (A1, . . . , An) is Pareto
efficient if there exists no other allocation A′ = (A′1, . . . , A′n), which is strictly
better for one player without degrading the other ones. That is, it is not the
case that Vi(A′i) > Vi(Ai) and Vj(A′j) ≥ Vj(Aj) for all j 6= i.

Cake cutting protocols are typically divided in two classes, of discrete and
continuous (or moving-knife) procedures. Recently direct revelation protocols
were also studied [43, 95, 109] in the context of mechanism design. Next we
give examples of several fair division protocols, some of which are referenced
in later chapters. All the classical protocols consist of a sequence of steps
(queries) between a center and the players, at the end of which an allocation
is output. Note that the valuations are private to the players and the fairness
properties are guaranteed for a player i (regardless of the other players’ strate-
gies) provided that i reveals his valuation truthfully during the interaction.

2.2 Discrete Protocols
Discrete protocols are classified in bounded, unbounded, and discrete infinite.
A discrete protocol is said to be bounded if on any cake cutting instance with
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n players, it terminates in at most F (n) steps (i.e. queries), for some function
F : N → N. A protocol is said to be unbounded if it always terminates after
a finite number of steps, but the runtime depends on the valuations, i.e. the
number of steps cannot be bounded by any function F (n). Finally, a protocol
is said to be discrete infinite if it requires an infinite (countable) number of
steps; such a protocol guarantees a property in the limit.

Next we present several discrete bounded protocols: Cut-and-Choose,
Selfridge-Conway, and Even-Paz.

One of the simplest cake cutting protocols is known as Cut-and-Choose [109];
it works for two players as follows:

Cut-and-Choose: Player 1 starts by dividing the cake in two
contiguous pieces that he values equally. Player 2 chooses the piece
that he prefers, then player 1 takes the remainder.

It can be observed that Cut-and-Choose produces allocations that are both
proportional and envy-free (in fact, the two notions coincide in the case of two
players when the entire cake is allocated). Player 2 is not envious because he
chooses his favorite piece, while player 1 is not envious because the two pieces
generated are worth exactly 1/2 according to his valuation.

For n = 3 players, the simplest envy-free protocol is due to Selfridge and
Conway [112]:

Selfridge-Conway:

1. Player 1 cuts the cake into three equal parts according to his
value.

2. Player 2 trims the most valuable of the three pieces such that
there is a tie with the two most valuable pieces.

3. Set aside the trimmings.

4. Player 3 chooses one of the three pieces to keep.

5. Player 2 chooses one of the remaining two pieces to keep —
with the stipulation that if the trimmed piece is not taken by
player 3, player 2 must take it.

6. Player 1 takes the remaining piece.

7. Denote by T ∈ {2, 3} the player that received the trimmed
piece, and NT = {2, 3} \ {T}.

8. Players NT now cuts the trimmings into three equal parts in
the player’s value.

9. Players T , 1, and NT choose one of the three pieces to keep
in that order.
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To see why the protocol is envy free, note that the division of three pieces
in steps 4, 5, and 6 is trivially envy free. For the division of the trimmings
in step 9, player T is not envious because it chooses first, and player NT is
not envious because it was the one that cut the pieces (presumably, equally
according to its value). In contrast, player 1 may prefer the piece of trimmings
that player T received in step 9, but overall player 1 cannot envy T , because
at best T was able to “reconstruct” one of the three original pieces that was
trimmed at step 2, which player 1 values as much as the untrimmed piece it
received in step 6.

The question of whether there exists a general envy-free protocol for n ≥ 4
players had been open for over 50 years. In 1992, Brams and Taylor announced
a positive answer to this question, by giving the first envy-free protocol for
any number of players [20]. However, from a computational point of view, the
Brams-Taylor protocol is problematic, because the runtime (i.e. the number
of queries that the center needs to ask before being able to output an envy-free
allocation) depends on the valuations. The question of whether there exists
a bounded envy-free protocol for cake cutting is still open. The description
of the Brams-Taylor protocol is not included here as it is very involved and
outside the scope of this work; the interested reader can find descriptions in
Robertson-Webb [112] and Brams-Taylor [21].

Next we present a well-known protocol for computing a proportional allo-
cation for any number of players due to Evan and Paz [61].

Even-Paz: For ease of exposition, assume that n is a power of
two.

1. Each player marks the midpoint of the cake (according to their
own valuations).

2. Divide the players in two subsets of equal size, such that all
the cuts made by the players in the first subset are to the left
of the cuts made by the players in the second subset.

3. Recurse (going back to step 1) with the players in the first
subset with the piece of cake to the left of their rightmost
cut, and the second subset with the piece to the right of their
leftmost cut. Whenever a piece is claimed by a single player,
allocate it to them.

It can be verified that the procedure is proportional; whenever the set of
players is halved, the cake remaining for any of the two subsets of players is
worth at least half of the total value before the halving.

Finally, an example of an unbounded discrete protocols is the Brams-
Taylor procedure for computing an envy-free allocation for n ≥ 4 players (see
Robertson-Webb [112], Chapter 10.3 and Brams-Taylor [21], Chapter 7.4).
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Figure 2.4: Austin’s procedure

2.3 Continuous (Moving-Knife) Protocols

Continuous procedures involve one or more moving-knives that slide across
the cake; the knives can be held either by the players or by the center.

We begin by illustrating continuous protocols with the Austin moving knife
procedure, which computes a perfect allocation for two players.

Austin’s procedure: A referee slowly moves a knife from left to
right across the cake. At any point, a player can call stop. When
a player called, a second knife is placed at the left edge of the cake.
The player that shouted stop – say 1 – then moves both knives
parallel to each other. While the two knives are moving, player 2
can call stop at any time. After 2 called stop, a randomly selected
player gets the portion between player 1’s knives, while the other
one gets the two outside pieces

To see that Austin’s procedure results in a perfect allocation, note that
player 1 can guarantee 1/2 if the first knife cuts the cake 50%− 50% and the
division remains 50% − 50% throughout. On the other hand, player 2 can
guarantee 1/2 if it calls stop when the middle piece is worth exactly 1/2.

Player 2 can find such a point since:

• The player didn’t call stop exactly when the knife started moving, i.e.
the left piece was worth less than 50% then.

• When the knife reaches 1, the piece between the knives is the complement
of the initial piece.

By applying the intermediate value theorem, there exists a location of the
knives where player 2’s value is exactly 1/2 for both pieces, and the conclusion
follows.

More generally, in the case of two players, exact allocations in any given
ratio k1 : k2 can be computed using a moving knife procedure as outlined
next (see Robertson and Webb, Chapter 5.4). Perfect partitions represent the
special case of k1 = k2.
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Moving Knife Exact Division for 2 players in ratio k1 : k2:

• Step 1: One player moves two parallel knives across the cake,
from left to right, always maintaining a value of k1

k1+k2
between

the knives. If at any point the other player agrees on the
values of the pieces, the necessary exact shares are produced.

• Step 2: If no agreement is found in Step 1, repeat, this time
keeping a value of k2

k1+k2
between the knives. At some point

the players will agree and the exact shares are produced.

It can be seen that the procedure works by considering a few cases and apply-
ing again the intermediate value theorem. In general, one can devise protocols
that compute approximations to some given ratios k1 : k2 : . . . : kn for n ≥ 3
players.

Next, we present the Dubins-Spanier moving knife protocol for computing
a proportional allocation.

Dubins-Spanier: A referee holds a knife and moves it slowly
across the cake, from the left to the right endpoint. When the
knife reaches a point such that one of the players has valuation
exactly 1/n for the piece to the left of the knife, that player shouts
Cut!. The first player to do so receives the left piece and exits.
The remaining n − 1 players repeat the procedure on the leftover
cake, except that now they call cut when the perceived value of the
piece to the left of the knife is 1/(n− 1) (of the remaining cake).

To argue that proportionality is guaranteed, note that the first player
to be allocated gets a piece worth exactly 1/n according to his valuation.
Moreover, the remaining cake is worth at least (n − 1)/n of the total value,
and by an inductive argument, each player receives at least 1/n of the total.
Unlike Austin’s procedure, which cannot be discretized (no discrete protocol
can compute a perfect partition even for two players), there exists a discrete
analogue of the Dubins-Spanier protocol.

Finally, we present the Brams-Taylor-Zwicker protocol for computing an
envy-free allocation when n = 4; it is bounded (in the sense that the number
of steps has the same upper bound regardless of the valuations), but requires
moving knives.

Brams-Taylor-Zwicker:

• Step 1: Players 1 and 2 generate four pieces (not necessarily
contiguous), each worth 1/4 to both of them. This is accom-
plished by running Austin’s procedure twice.
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• Step 2: Player 3 trims one of the four pieces so that the
two best pieces are equal in value (according to his measure).
The trimmings are set aside and denoted by Cake 2, while the
remainder represents Cake 1.
• Step 3: (Allocation of Cake 1). The players choose from the
four pieces in the order 4, 3, 2, 1, subject to the constraint
that player 3 must take the trimmed piece if available.
• Step 4: (Allocation of Cake 2). Let T ∈ {3, 4} denote the
player that took the trimmed piece and NT the other player
from {3, 4}. Players T and NT run Austin’s procedure twice
on Cake 2 to generate four pieces equal from their point of
view. The four pieces are allocated in the order T , 1, NT , 2.

Saberi and Wang [113] gave a bounded protocol for n = 5 players, which
also requires moving knives. Their algorithm can be discretized to obtain an
ε-envy-free allocation in O(polylog(1/ε)) steps.

2.4 The Robertson-Webb Model
All the discrete cake cutting protocols operate in a query model known as
the Robertson-Webb model (Figure 2.5). The model was formalized mathe-
matically by Woeginger and Sgall [126] and allows the following two types of
queries between the protocol and the players:

• Cut(i;α): Player i cuts the cake at a point y where Vi([0, y]) = α. The
point y becomes a cut point.

• Eval(i; y): Player i returns Vi([0, y]) where y is a previously made cut
point.

The queries made by a protocol in the Robertson-Webb model may depend
on the outputs of previous queries. At termination, the cut points define a
partition of the cake into a finite set of intervals that the protocol allocates to
the players in some specified way.

An alternative formalization was given by Procaccia [109]:

• Cuti(x, α):
Player i outputs y such that Vi([x, y]) = α.

• Evali(x, y):
Player i outputs α such that Vi([x, y]) = α.

The formalization by Procaccia is slightly more permissive (thus not equiv-
alent to the one by Woeginger and Sgall), because it allows protocols in which
the center can define cut points on the cake, such as:
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Figure 2.5: Cut query in the Robertson-Webb model. A designated player
must report the point x such that its valuation for the interval [0, x] is exactly
α

“Allocate [0, 0.5) to player 1 and [0.5, 1] to player 2”

The Robertson-Webb model was employed in a body of work studying the
complexity of cake cutting [58, 59, 84, 108, 126], where it was shown that the
complexity of proportionality is Θ(n logn) (the Even-Paz protocol gives the
upper bound). The complexity of envy-freeness is still open; a lower bound
of Ω(n2) was given by Procaccia, which strictly separated envy-freeness from
proportionality.

We illustrate the Robertson-Webb model with the well known Cut and
Choose protocol, which computes an envy-free and proportional allocation for
two players (Algorithm 1).

x← Cut
(
1; 1

2

)
α← Eval (2;x)
if
(
α ≥ 1

2

)
then

allocate [0, x] to Player 1 and [x, 1] to Player 2
else

allocate [0, x] to Player 2 and [x, 1] to Player 1
end if

Algorithm 1: Cut-and-Choose protocol implemented in the Robertson-Webb
model
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2.5 Truthful Mechanisms

The classical cake cutting literature assumes that the players are honest and
do not misrepresent their private value density function when answering the
queries from the center. It is not hard to observe that even the simplest
protocols can be manipulated; for instance, consider the example in Figure 2.6,
where player 1 values the cake uniformly, while player 2 only values the interval
[α, 1], where 1 > α� 0. Then instead of cutting at 1/2 as instructed, player 1
can shift his cut point to α and receive a much larger piece, namely the entire
interval [0, α].

A recent body of literature in computer science has investigated the design
of strategy-proof mechanisms, i.e. mechanisms in which a player never benefits
by misrepresenting their private valuation function, regardless of the strategies
of the other players.

Figure 2.6: Manipulation in Cut-and-Choose. Player 1 has incentives to shift
its cut point to the left of 1/2, which is the recommended strategy

The earliest such work is by Brams [26], who considers a weak version of
strategy proofness. There, the players are risk averse and report their true
valuations if there exists a choice of valuations of the other players such that
the outcome would be worse by misreporting. Chen et al. [43] design strategy-
proof mechanisms to compute envy-free and proportional allocations for re-
stricted classes of valuation functions. The main results include a polynomial-
time deterministic mechanism which computes an envy-free and proportional
allocation for piecewise uniform valuations, and a polynomial-time random-
ized mechanism which is truthful in expectation, universally proportional,
and universally envy-free for piecewise linear valuations. Maya and Nisan [95]
study incentive-compatibility and Pareto-efficiency for two players, and pro-
vide characterizations and lower bounds on the social welfare attainable by
any deterministic or randomized mechanism.

The work on strategy-proofness is focused on direct revelation mechanisms,
in which the protocol (i.e. mechanism) consists of two steps:
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1. Each player submits their entire value density function to the center.

2. The center outputs an allocation based on the reports.

Clearly, direct revelation protocols cannot always be implemented in the
Robertson-Webb query model, while every Robertson-Webb protocol can be
simulated by a direct revelation mechanism. We describe next one of the
positive results in mechanism design for cake cutting, namely the protocol
designed by Chen et al. [43] for the family of piecewise uniform valuations.

We say that a valuation function Vi is piecewise constant if the associated
value density function vi is piecewise constant; that is, the interval [0, 1] can
be partitioned into a finite number of intervals such that vi is constant on
each interval. We say that a valuation function Vi is piecewise uniform if the
associated value density function, vi, is piecewise constant and, moreover, on
each interval, vi is either zero or a fixed constant ci (player-dependent). An
example is given in Figure 2.7.

Figure 2.7: Piecewise uniform valuation

Piecewise constant valuations can be used to approximate to an arbitrary
degree of accuracy any other value density function. While piecewise uni-
form valuations are much more restricted, they can still be used to represent
problems where intervals (of time for example) are either acceptable or unac-
ceptable [43]. In a recent paper, Kurokawa et al. [84] showed that piecewise
uniform valuations are also useful for reasoning about the complexity of cake
cutting; in particular, if there exists a bounded envy-free protocol for piece-
wise uniform valuations, then there exists an envy-free protocol for general
valuations.

In [43], Chen et al. designed a truthful protocol for piecewise uniform
valuations that runs in polynomial time (in the number of players and intervals
in the representation) and computes a proportional, envy-free, and Pareto
efficient allocation. The protocol is stated as Algorithm 2.

Theorem 3 (Chen, Lai, Parkes, Procaccia). Assume that the players have
piecewise uniform valuation functions. Then there exists a truthful, pro-
portional, envy-free Pareto-efficient, and polynomial time mechanism (Algo-
rithm 2).
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Some notation required to understand the algorithm is as follows. Given
a set of players S ⊆ N with piecewise uniform valuations and a piece of cake
X, let D(S,X) denote the cake valued strictly positively by at least one of
the players in S. Denote by:

avg(S,X) = len(D(S,X))
|S|

the average length of intervals in X desired by at least one player in S. We
say that an allocation is exact with respect to S and X if it gives each player
in S a piece of cake of length avg(S,X) comprised only of desired intervals.
Algorithm 2 is a recursive algorithm which computes exact allocations with
respect to a selected subset of players, and then recurses on the remaining
players and leftover cake. The proof that the implementation can be done in
polynomial time is relatively involved and omitted from this introduction.

input: Set N = {1, . . . , n} of players with piecewise uniform valuations
V = (V1, . . . , Vn)
output: Proportional, envy-free, and Pareto efficient allocation
SUBROUTINE(N, [0, 1],V) // call to a recursive subroutine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure SUBROUTINE(S,X,V):
input: Set S of players, piece X of cake, valuations V
if S = ∅ then

return
end if
S ← argminS′⊆S avg(S′, X) // breaking ties arbitrarily
Let E1, . . . , En be an exact allocation with respect to Smin and X // break-
ing ties arbitrarily
for each i ∈ Smin do

Ai ← Ei
end for
SUBROUTINE(S \ Smin, X \Xmin,V)

Algorithm 2: Truthful and polynomial time mechanism for piecewise uni-
form valuations, which computes a proportional, envy-free, and Pareto effi-
cient allocation (due to Chen, Lai, Parkes, Procaccia [43])

It is important to note that Algorithm 2 can discard cake and it is not
clear that this behavior can be eliminated. That is, does there exist a truthful,
polynomial time mechanism that computes an envy-free and Pareto efficient
allocation of the entire cake for piecewise uniform valuations? The question
of whether similar guarantees can be obtained for hungry players (e.g. with
piecewise constant valuations) remains open.

Moving to randomized mechanisms, we say that a mechanismM is truthful
in expectation if on every instance, the expected utility of a player i (taken over



22 CHAPTER 2. BACKGROUND

all random coin tosses of M) is the best possible when behaving truthfully,
regardless of the strategies of the other players.

Mossel and Tamuz [99] showed a randomized direct revelation protocol
that is truthful in expectation and computes a perfect allocation, that is, an
allocation A = (A1, . . . , An) where Vi(Aj) = 1/n, ∀i, j ∈ N :

Mossel-Tamuz Mechanism: Given input valuations V1, . . . , Vn,
find a perfect partition A = (A1, . . . , An) and allocate it using a
random permutation π over {1, . . . , n} (i.e. player i receives the
piece Aπi).

Perfect partitions are guaranteed to exist with at most n(n − 1)2 cuts [2],
so the Mossel-Tamuz mechanism is well-defined, but not constructive. For
the restricted case of piecewise constant valuations, perfect partitions can be
trivially computed: for each interval in the representation, divide it in n pieces
of equal length and give a piece to each player.

Other recent work on socially optimal cake cutting includes papers by
Caragiannis et al. [40], Cohler et al. [46], Brams et al. [27], Bei et al. [15].
Aziz and Ye [8] study Pareto efficiency and give several algorithms for piece-
wise uniform and piecewise constant representations, subject to additional
constraints such as strategy-proofness and fairness. Zivan [128] studies the
efficiency of cake cutting algorithms depending on the amount of trust among
the players. Richer representations, such as PUML valuations, where the play-
ers have a minimum length requirement on the contiguous pieces received [41]
blend the cake cutting problem and the allocation of indivisible resources.



Chapter 3

Equilibrium Analysis

A standard assumption in classical cake cutting protocols is that the players do
not know each other’s preferences. However, in many real-world settings, the
participants do know each other’s preferences. For example, when countries
divide land at the end of a war, it is usually common knowledge which areas
of land are preferred by which country. Thus, when a general protocol is
employed to produce an allocation of the cake, the players may be able to
improve their utility by being strategic if they know the others’ valuations
during the execution of the algorithm. In this chapter, we initiate the study
of equilibria of classical cake cutting protocols.

While the classical protocols are not necessarily strategy-proof, they are
often very simple, elegant, and designed so that the players can easily imple-
ment them by following a sequence of natural steps. One of the most intuitive
and best-known procedures for computing a proportional allocation of the
cake is the Dubins-Spanier procedure (introduced in Chapter I). Note that to
make the protocol completely precise, a tie breaking rule has to be specified
for the case of two players calling cut simultaneously. No matter how such
tie breaking is defined, it is easily verified that the allocation produced by the
Dubins-Spanier moving-knife procedure is proportional. However, it is not
necessarily envy-free.

In this chapter, we consider the strategic version of Dubins-Spanier, which
we refer to as themoving knife game. The players know each other’s valuations
and compete against each other to maximize their allocations. In the moving
knife game, a player would like to delay as much as possible the moment of
calling cut, since the longer they wait, the better the piece to the left of the
knife becomes. However, if they wait for too long, someone else may call cut
before they do and take the piece instead. The moving knife game is related
to games of timing [86], such as war of attrition models, in which the decision
of each player is when to quit and victory belongs to the player that held on
longer, and preemption games, in which the players prefer to stop first.

It seems very challenging to characterize all the equilibria of the moving

23
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knife game if it is modeled as a continuous time extensive form game in the
obvious way. Instead, we analyze the game when the players are restricted to
use threshold strategies, defined as follows. The moving knife game proceeds
in n rounds, corresponding to each of the time intervals between consecutive
cut points. Each player has n thresholds, one for every round. A player calls
cut in a given round when the value of the piece to the left of the knife is equal
to the player’s threshold for that round. Note that threshold strategies is a
simple generalization of the prescribed behavior in the orginal Dubins-Spanier
protocol – in particular, the classical Dubins-Spanier procedure outlined above
can be viewed as playing the moving knife game with all players using the
sequence of thresholds

(
1
n ,

1
n−1 ,

1
n−2 , . . . , 1

)
.

Our main result is a direct correspondence between the equilibria of the
moving knife game and envy-free allocations of the cake with contiguous pieces,
when players are restricted to threshold strategies.

That is, every pure Nash equilibrium of the moving knife game induces
an envy-free allocation with contiguous pieces which contains the entire cake.
Moreover, every envy-free allocation with contiguous pieces of the entire cake
can be mapped to a pure Nash equilibrium of the corresponding moving knife
game, when ties are broken in a particular way. This result can be viewed as
an affirmative answer to the natural question: “Can fair allocations arise as
equilibria of simple and natural protocols?” The question of designing a game
such that its equilibria correspond to desirable allocations of the cake was also
considered by Ianovski [77].

3.1 Moving Knife Game

We now introduce the moving knife game. Given a cake with the correspond-
ing value density functions, a knife moves continuously from the left to the
right endpoint of the cake. The game is divided in n rounds. Each player
i has a strategy consisting of n thresholds, Ti = [ti,1, . . . , ti,n] ∈ [0, 1]n, one
threshold for each round. Player i calls cut in round j when the piece to the
left of the knife is worth exactly ti,j according to i’s valuation. The player to
call cut first receives the piece to the left of the knife. When multiple players
call cut simultaneously, the piece is given to the player who comes first in a
tie-breaking rule π = (π1, . . . , πn), which is a fixed permutation of (1, . . . , n).
Once a player has received a piece, he exits and the game continues from that
point on with the remaining players and leftover cake.

Given a tuple (N, v, T, π), where N is a set of players, v are the value
density functions, T are the strategies, and π is a tie-breaking rule, the induced
allocation X = (X1, . . . , Xn) results from playing the moving knife game under
the tie-breaking rule π, such that each player σi ∈ N receives the piece Xi,
for some ordering σ of the players.
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Finally, we say that a player is active at a round if the player has not
exited the game in the previous rounds.

We illustrate the game with the following example.

Example 1. Let N = {1, 2}. Consider the following value density functions:

• v1(x) = 1, ∀x ∈ [0, 1]

• v2(x) = 1
4 ,∀x ∈

[
0, 1

3

]
and v2(x) = 11

8 , ∀x ∈
[

1
3 , 1
]

Let T = [T1, T2], where T1 =
[

1
2 ,

2
3

]
and T2 =

[
1
12 ,

2
3

]
. Then in:

• Round 1: Player 2 calls cut first at 1
3 , since V2

([
0, 1

3

])
= t2,1 = 1

12 .
Player 1 does not get to call cut in this round, since:

V1

([
0, 1

3

])
< t1,1 = 1

2 .

• Round 2: Player 1 is the only one left, and the leftover cake is
[

1
3 , 1
]
.

Player 1 calls cut at 1, since:

V1

([1
3 , 1

])
= t2,1 = 2

3 .

The induced allocation is X = (X1, X2), where player 2 receives X1 =
[
0, 1

3

]
and player 1 receives X2 =

[
1
3 , 1
]
.

A strategy profile T = [T1, . . . , Tn] ∈ [0, 1]n×n is a pure Nash equilibrium
under a tie-breaking rule π if no player i ∈ N can receive a better allocation
by deviating to T ′i 6= Ti. That is, ui(T ) ≥ ui(T

′
i , T−i),∀T

′
i ∈ [0, 1]n.

In the following example, we illustrate how the players can be strategic
during the execution of the moving knife game, i.e., we illustrate that it is
not necessarily a Nash equilibrium that all players play the Dubins-Spanier
strategy [1/n, . . . , 1/2, 1]. Consider the scenario where player 1 has a uniform
valuation over the cake and just wants as much of it as possible, while player
2 only likes a very thin slice at the right end. Then player 1 can delay the
moment of calling cut, since he knows that player 2 is following the Dubins-
Spanier recommendation and will only call cut close to the right endpoint. A
precise version of this example follows:

Example 2. Let N = {1, 2}. Consider the following value density functions:

• v1(x) = 1, ∀x ∈ [0, 1]

• v2(x) = 0, ∀x ∈
[
0, 3

4

]
and v2(x) = 4, ∀x ∈

[
3
4 , 1
]
.
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Under the Dubins-Spanier protocol, player 1 calls cut first at 1
2 . The resulting

allocation is X = (X1, X2), with X1 =
[
0, 1

2

]
and X2 =

[
1
2 , 1
]
, with utilities:

V1(X1) = 1
2 and V2(X2) = 1.

However, player 1 can improve his utility by waiting and calling cut at
3
4 instead. Then the allocation is X ′ = (X ′1, X

′
2), with X

′
1 =

[
0, 3

4

]
and

X
′
2 =

[
3
4 , 1
]
. The new utilities are V1(X ′1) = 3

4 and V2(X ′2) = 1.

3.2 Exact Equilibria
In this section, we analyze the pure Nash equilibria of the moving knife game,
for any fixed hungry valuations (i.e. vi(x) > 0, ∀x ∈ [0, 1], ∀i ∈ N).

First, the original result of Dubins and Spanier immediately yields the
following proposition.

Proposition 1. In any pure Nash equilibrium of the moving knife game, each
player’s utility is at least 1/n and the entire cake is allocated to the players.

Proof. Suppose a player gets a smaller utility in Nash equilibrium. Then
he can deviate by playing the strategy prescribed in the original Dubins-
Spanier protocol, i.e., [1/n, . . . , 1/2, 1], improving his utility to at least 1/n,
and contraditing that a Nash equilibrium is played. Also, if the entire cake
is not allocated, the last player’s last threshold is strictly smaller than 1. He
can therefore deviate to threshold 1 and receive a larger utility, contradicting
that a Nash equilibrium is played.

Now we show that the existence of Nash equilibrium crucially depends on
the tie breaking rule used. That is, there exist tie-breaking rules where the
moving knife game does not have a pure Nash equilibrium:

Proposition 2. There exist a tie breaking rules and value density functions
so that the corresponding moving knife game does not have a pure Nash equi-
librium.

Proof. Let N = {1, 2}, with tie-breaking order (1, 2), and value density func-
tions:

• v1(x) = 1
4 , ∀x ∈

[
0, 4

5

]
and v1(x) = 37.5x− 29.75, ∀x ∈

[
4
5 , 1
]

• v2(x) = 1, ∀x ∈ [0, 1].

Assume there exists a profile of threshold strategies in equilibrium, T , such
that the first cut is made at x ∈ (0, 1]. We analyze the case where the cut at
x is made in round 1; the case where the cut is made in round 2 is similar.

First, T must be such that both players call cut at x simultaneously. Oth-
erwise, if t1,1 = V1([0, x]), while t2,1 < V2([0, x]), then player 1 can increase
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his threshold to t′1,1 = t1,1 + ε, for small enough ε > 0, and receive a strictly
better piece, [0, x′ ], where x′ > x.

Similarly, if t2,1 = V2([0, x]), while t1,1 > V1([0, x]), then player 2 can in-
crease his threshold and get a strictly better piece [0, x′ ]. Thus t1,1 = V1([0, x])
and t2,1 = V2([0, x]). Since the tie-breaking rule is (1, 2), players 1 and 2 re-
ceive pieces [0, x] and [x, 1], respectively.

In addition, we have that:

V1([0, x]) ≥ V1([x, 1]), (3.1)

since otherwise player 1 can deviate by setting t1,1 = 1 – the deviation would
ensure that player 1 receives a better piece in round 2. Similarly, it can be
shown that:

V2([x, 1]) ≥ V2([0, x]). (3.2)

However, inequalities (3.1) and (3.2) cannot be met simultaneously for the
given valuations. Thus the pure Nash equilibrium T cannot exist.

We show that in a pure Nash equilibrium, then in each of the first n − 1
rounds, the player who is allocated a piece has a competitor that calls cut
simultaneously in that round.

Proposition 3. Let a moving knife game with hungry valuations be given.
Let T be a profile of threshold strategies in equilibrium under a deterministic
tie-breaking rule. Then, in every round except the last one, the player who is
allocated the piece has an (active) competitor that calls cut simultaneously.

Proof. Let X = (X1, . . . , Xn) be the allocation induced by T , such that player
σi receives the piece Xi = [xi−1, xi]. It follows by Proposition 1 that X
contains the entire cake and Xi 6= ∅, ∀i ∈ N . Assume by contradiction that
there exists a round i < n in which only player σi calls cut at xi. Then it
must be the case that

tσj ,i > Vσj ([xi−1, xi]),∀σj ∈ N \ {σi}.

By the continuity of the valuation functions, there exists ε > 0 such that by
deviating to threshold:

t
′
σi,i = tσi,i + ε

in round i, player σi is guaranteed a strictly better piece, [xi−1, x
′
i], where

x
′
i > xi. This is a contradiction with T being in equilibrium. Thus every

player who receives a piece in the first n − 1 rounds has a competitor that
calls cut simultaneously in that round.

Finally, every profile of threshold strategies in equilibrium induces an envy-
free allocation. We first show the following proposition.
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Proposition 4. Let a moving knife game with hungry valuations be given. Let
T be a profile of threshold strategies under a deterministic tie-breaking rule,
such that each player σi receives a piece in round i and in every round except
the last, there exist two active players who call cut simultaneously. Then if
some player σi deviates to T ′σi 6= Tσi and receives a new piece in some round
k under T ′ = (T ′σi , T−σi), then the set of cuts made in the first k − 1 rounds
are the same under T and T ′.

Proof. Let X = (X1, . . . , Xn) be the allocation induced by T , where the piece
Xi = [xi−1, xi] is given to player σi. Let T

′
σi be the new sequence of thresholds

used by player σi, where

t
′
σi,k = 1,∀k ∈ {1, . . . , j}

Since player σi did not receive a piece in the first i − 1 rounds under T , and
does not call cut before other players under T ′ = (T ′σi , T−i), it follows that
the allocation X ′ (induced by T ′) is identical to X for the first i − 1 pieces.
If j < i, then the statement of the proposition follows immediately.

Otherwise, j ≥ i. By condition 3 of the proposition, there exists a player
σr1 6= σi who also calls cut at xi in round i, and is second after σi in the
tie-breaking rule among the players that call cut at xi. That is,

tσr1 ,i
= Vσr1

([xi−1, xi]).

Then player σr1 receives the piece [xi−1, xi] under T
′ .

The allocations made in rounds i+ 1, . . . , r1−1 are identical under T ′ and
T , since the same players that received the pieces

Xi+1, . . . , Xr1−1

under T continue to call cut at the points:

xi+1, . . . , xr1−1,

respectively, and to win the ties (if any) under T ′ . The piece Xr1 is taken by
some player σr2 , which was second in the tie for receiving the piece Xr1 under
T .

Iteratively, it can be shown that in the first j rounds, the same cuts are
made under T and T ′ , and this set is {x1, . . . , xj}.

Theorem 4. Consider a moving knife game with hungry valuations and deter-
ministic tie-breaking. Then every pure Nash equilibrium of the game induces
an envy-free allocation.

Proof. Let T be a profile of threshold strategies in equilibrium under tie-
breaking rule π = (π1, . . . , πn). Let X = (X1, . . . , Xn) be the induced alloca-
tion, such that piece Xi = [xi−1, xi] is given to player σi, ∀i ∈ N .
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Assume by contradiction that X is not envy-free. Since the empty alloca-
tion is envy-free, it follows by Proposition 1 that X contains the entire cake.
Then there exists a player σi such that

Vσi([xj−1, xj ]) > Vσi([xi−1, xi]),

for some j ∈ N \ {i}. By continuity of the valuation functions, there exists
ε > 0 such that

Vσi([xj−1, xj − ε]) > Vσi([xi−1, xi]).

We consider two cases:

1. (j < i) : Then player σi can deviate to strategy profile T ′σi , where

t
′
σi,k =

{
Vσi([xj−1, xj − ε]) if k = j
tσi,k otherwise

Under T ′ = (T ′σi , T−σi), player σi is guaranteed to receive the piece
[xj−1, xj − ε], since no other player calls cut before xj in round j. This
deviation improves σi’s utility, contradiction with T being in equilib-
rium.

2. (j > i) : Then player σi can deviate to strategy profile T ′σi , where

t
′
σi,k =

{
Vσi([xj−1, xj − ε]) if k = j
1 otherwise

By Proposition 4, the same cuts are made under T and T ′ in the first
j − 1 rounds, and this set is {x1, . . . , xj−1}.
Then player σi receives the piece [xj−1, xj − ε] in round j, which strictly
improves σi’s utility, since:

Vσi([xj−1, xj − ε]) > Vσi([xi−1, xi]).

This is a contradiction with T being in equilibrium.

From Case 1 and 2, it follows that the assumption must have been false, and
so the induced allocation is envy-free.

We can now characterize the set of pure Nash equilibria as follows.

Theorem 5. Consider a moving knife game with hungry valuations. A strat-
egy profile T is in Nash equilibrium under a deterministic tie-breaking rule if
and only if the induced allocation contains the entire cake and is envy-free and
in every round except the last one, the player who is allocated the piece has an
active competitor that calls cut simultaneously.
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Proof. Let T be a profile of thresholds strategies.
(⇒): If T is a pure Nash equilibrium under some deterministic tie-breaking

rule, then by Proposition 1 and Theorem 4, it follows that the induced allo-
cation contains the entire cake and is envy-free. Also, by Proposition 3, in
every round except the last, the player who is allocated the piece has an active
competitor that calls cut simultaneously.

(⇐): If T verifies the conditions of the theorem, then we claim it is a pure
Nash equilibrium. Let X = (X1, . . . , Xn) be the induced allocation, where
piece Xi = [xi−1, xi] is given to player σi, ∀i ∈ N .

Assume by contradiction that there exists a player σi who can improve by
deviating to T ′σi 6= Tσi . Let k be the round in which σi receives a piece when
playing T ′σi . Since σi does not receive a piece in the first k − 1 rounds under
T
′
σi , we can assume without loss of generality that:

t
′
σi,l = 1,∀l ∈ {1, . . . , k − 1}.

By Proposition 4, the cut made in round k − 1 was at xk−1, and one of the
following conditions holds:

• xk = 1, or

• there exists a player σj 6= σi who calls cut at xk (in round k) when σi
plays T ′σi .

Thus the highest value that σi can receive in round k is Vσi(Xk). By envy-
freeness of X, we have that:

Vσi(Xi) ≥ Vσi(Xk),

thus the deviation does not improve σi’s utility. Thus, T is an equilibrium,
which concludes the proof of the theorem.

Next, we show that for every moving knife game with strictly positive
value density functions, a pure Nash equilibrium is guaranteed to exist for
some deterministic tie-breaking rule. In fact, we show that for any envy-free
allocation of the cake, there exists is a pure Nash equilibrium that induces this
allocation. This implies existence of a pure Nash equilbrium, as an envy-free
allocation of the cake with n − 1 cuts is guaranteed to exist (see Stromquist
[118]).

Theorem 6. Consider a moving knife game with hungry valuations. Given
any envy free allocation of the cake with n−1 cuts, there exists a deterministic
tie-breaking rule π such that the game has a pure Nash equilibrium inducing
this allocation.
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Proof. In an envy free allocation of the cake with n− 1 cuts, each player gets
a contiguous pice. That is, there exists a permutation π = (π1, . . . , πn) of N
and numbers xi such that player πi receives the piece Xi = [xi−1, xi]. Now use
π as the tie-breaking rule for the moving knife game and consider the strategy
sets:

Ti = [ti,1, . . . , ti,n],

where
ti,k = Vi([xk−1, xk]), ∀i, j ∈ N.

It can be verified that the strategies in T verify the conditions of Theorem
5. That is, the induced allocation is envy-free, contains the entire cake, and
in every round except the last, the player winning the piece has a competitor
who calls cut simultaneously. Thus the set of strategies T are in equilibrium
under the tie-breaking rule π.

This completes the proof of our main result: Any pure Nash equilibrium
of the moving nice game induces an envy-free allocation and any envy-free
allocation is induced by some pure Nash equilibrium.

3.3 Achieving tie breaking rule independence
The dependence of the existence of Nash equilibrium on the tie breaking rule is
an annoying (but unavoidable) flaw of our main result: The tie-breaking rule
requires information about the valuation functions of the players in order for a
non-trivial pure Nash equilibrium to exist. Clearly, in many natural settings,
the tie-breaking rule is given exogenously. For example, when countries divide
land at the end of a war, some countries may have higher priority than others
due to prior bilateral agreements that have been signed.

It is interesting to understand the special cases where a pure Nash equi-
librium is guaranteed to exist, no matter which tie breaking rule is used. We
have first the following simple observation.

Proposition 5. Consider a moving knife game with players that have iden-
tical hungry valuations. Then the game has a pure Nash equilibrium under
every deterministic tie-breaking rule.

Proof. Consider an envy-free division of the cake with n−1 cuts, [x0, . . . , xn].
The players have identical value density functions, and so

Vi([xj−1, xj ]) = 1
n
,∀i, j ∈ N.

For any tie-breaking rule π, construct an allocation X = (X1, . . . , Xn), such
that player πi receives the piece Xi = [xi−1, xi]. By applying Theorem 8 to the
envy-free allocation X, it follows that the game has a pure Nash equilibrium
under π.
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Next, we show that for arbitrary strictly positive value density functions
and every possible tie-breaking rule, including, for example, randomized or
round-dependent rules, there exists an approximate equilibrium in pure strate-
gies such that the induced allocation is approximately envy-free and contains
the entire cake.

We say that a set of strategies T = [T1, . . . , Tn] ∈ [0, 1]n×n is an ε-
equilibrium if for every i ∈ N , player i cannot improve his utility by more
than ε by deviating to T ′i 6= Ti. That is, ui(T

′
i , T−i) ≤ ui(T ) + ε.

Theorem 7. Consider a moving knife game with hungry valuations. Then
for every tie-breaking rule, the game has an ε-equilibrium in pure strategies
such that the induced allocation is ε-envy-free and contains the entire cake.

Proof. Let ε > 0 and X = (X1, . . . , Xn) an envy-free allocation of the entire
cake, where player πi receives the piece Xi = [xi−1, xi], ∀i ∈ N .

Starting from X, we construct an allocation Z = (Z1, . . .,Zn), where player
πi receives the piece Zi = [zi−1, zi], ∀i ∈ N , such that Z is induced by an ε-
equilibrium T , contains the entire cake, and is ε-envy-free. The idea of the
proof is similar to that of Theorem 8. To avoid tie-breaking, we construct
the thresholds such that for every round, the active players would call cut
immediately after the player who is supposed to receive an allocation in that
round. Thus, if a player πi deviates to a new sequence of thresholds T ′πi and
receives a new piece in round k 6= i, then the set of cuts made in rounds
{1, . . . , k−1} are approximately the same under T and T ′ = (T ′πi , T−πi). That
is, the following hold for the allocation induced by T ′ :

• If πi still receives a piece in round i, then the improvement cannot be
larger than ε, since another active player will call cut immediately after
πi’s expected cut point in T .

• If πi receives a piece in round k < i, then πi’s new piece is a subset of
Zk, and so the improvement cannot be greater than ε by ε-envy-freeness
of Z.

• If πi receives a piece in round k > i, then the set of cuts made in rounds
{1, . . . , k − 1} are approximately the same under T and T ′ , and so πi’s
new piece is approximately a subset of Zk. Again the improvement
cannot be better than ε by ε-envy-freeness of Z.

Formally, the profile of threshold strategies T is defined as follows. Let
zn = xn. The valuation functions are continuous and bounded, thus there
exists zn−1 ∈ (xn−2, xn−1) such that:

Vj([zn−1, xn−1]) < ε

2 , ∀j ∈ N.
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We construct a set of points:

y1,k, . . . , yn,k, zk

for all rounds k, such that the threshold of each player j is set to call cut at
yj,k ∈ [zk−1, xk−1) in round k. Define yj,n = zn, ∀j ∈ N .

Consider round n− 1, and let

yj,n−1 =
{
zn−1 if j = πn−1
zn−1+xn−1

2 otherwise

We now construct zn−2. For each j ∈ N , there exists

zj,n−2 ∈ (xn−3, xn−2)

such that
Vj ([zj,n−2, xn−2]) < Vj([yj,n−1, xn−1])

Define zn−2 = maxj∈N zj,n−2. For all j ∈ N , we have:

Vj([zn−2, xn−2]) < Vj([yj,n−1, xn−1])

< Vj([zn−1, xn−1]) < ε

2

Iteratively, for all rounds k from n− 2 to 1, we construct points

y1,k, . . . , yn,k, zk−1

in a manner similar to the construction for round n−1, such that the following
conditions are met:

• zk−1 < xk−1, if k ∈ {2, . . . , n− 1}, and zk−1 = xk−1, if k = 1

• xk−1 < zk ≤ y1,k, . . . , yn,k < xk

• Vj([zk−1, xk−1]) < Vj([yj,k, xk]), ∀j ∈ N .

Consider the profile of threshold strategies T , given by:

tj,k = Vj([zk−1, yj,k]),∀j, k ∈ N

Let Z be the allocation induced by T , where player πi receives the piece
Zi = [zi−1, zi], ∀i ∈ N . We claim that T is an ε-equilibrium and Z is ε-envy-
free.

First, we show that T is an ε-equilibrium. Assume by contradiction that
there exists player πi who can improve his utility more than ε by deviating
to T

′
πi . Let k be the round in which player πi is allocated a piece under

T
′ = (T ′πi , T−πi). We show by induction that in each previous round l < k,
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a cut is made in the interval [zl, xl). For l = 1 the statement trivially holds,
since:

0 < tj,1 = Vj([0, yj,1]) < Vj([0, x1]),∀j ∈ N
Assume the property holds for all rounds 1, . . . , l − 1. By the induction hy-
pothesis, a cut was made in round l − 1 in the interval [zl−1, xl−1). For each
player j, the threshold in round l is such that:

tj,l = Vj([zl−1, yj,l])
= Vj([zl−1, xl−1]) + Vj([xl−1, xl])− Vj([yj,l, xl])
< Vj([xl−1, xl])

Note that the inequality:

Vj([zl−1, xl−1]) < Vj([yj,l, xl])

holds by Condition 3. Thus, in round l, every remaining player j will call cut

• no earlier than yj,l if in the previous round the cut was made at zl−1

• strictly before xl if in the previous round the cut was made at xl−1

Thus the statement also holds for round l. It follows that the cut in round k−1
was made in the interval [zk−1, xk−1). Moreover, all the remaining players will
call cut before xk in round k. Then, using the envy-freeness of allocation X,
we can bound the utility of πi as follows:

ui(T
′) < Vπi([zk−1, xk])

= Vπi([zk−1, xk−1]) + Vπi([xk−1, xk])

≤ ε

2 + Vπi([xi−1, xi])

≤ ε

2 + Vπi([xi−1, xi]) +
(
Vπi([zi−1, xi−1])− Vπi([zi, xi]) + ε

2

)
= Vπi([zi−1, zi]) + ε

= ui(T ) + ε

Thus player i cannot improve by more than ε by deviating.
Finally, we show that the induced allocation is ε-envy-free. For every two

players πi and πj the following hold:

Vπi(Zi) = Vπi([zi−1, zi])
= Vπi([xi−1, xi]) + Vπi([zi−1, xi−1])− Vπi([zi, xi])

≥ Vπi([xj−1, xj ])−
ε

2
≥ Vπi([zj−1, zj ]) + Vπi([zj , xj ])− Vπi([zj−1, xj−1])− ε

2
≥ Vπi([zj−1, zj ])− ε
= Vπi(Zj)− ε
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where the inequality:

Vπi([xi−1, xi]) ≥ Vπi([xj−1, xj ])

holds by envy-freeness of X. Thus the induced allocation, Z, is ε-envy-free
and contains the entire cake.

3.4 The Generalized Game

In this section we introduce and briefly discuss a natural generalization of the
moving knife game, in which the players can receive multiple pieces of cake.
This generalization is motivated by several other moving knife procedures [112]
in which the players can receive more than one piece of cake (see, e.g., the
moving knife scheme of Brams et al. [25], which can use as many as eleven
cuts to produce an envy-free allocation for four players).

Informally, a generalized moving knife game is a moving knife game where
each player i ∈ N can receive up to mi ∈ N∗ pieces, and the game hasM ∈ N∗
rounds. In the generalized game, a strategy of player i consists of a sequence
of M thresholds:

Ti = [ti,1, . . . , ti,M ] ∈ [0, 1]M ,

such that player i calls cut in round k when the piece to the left of the knife
is worth ti,k according to i’s valuation. The moving knife game introduction
in Section 2 is an instance of the generalized game where the budget of each
player is one and the number of rounds is n. A particularly relevant instance of
the generalized moving knife game is the one-round moving knife game (with
M = 1 and mi = 1, ∀i ∈ N), which is related to war of attrition models (see,
e.g., the war of attrition in continuous time analyzed by Hendricks et al [? ]).

In the case of one-round moving knife games with hungry valuations, this
is the unique pure Nash equilibrium.

Proposition 6. In a one-round moving knife game with hungry valuations,
every pure Nash equilibrium of the game induces the empty allocation.

Proof. Assume by contradiction that there exists a one-round game with hun-
gry valuations, continuous valuations, and deterministic tie-breaking such that
the game has a non-trivial pure Nash equilibrium. Without loss of generality,
let us assume that the tie-breaking rule is (1, . . . , n).

Let T be a profile of threshold strategies in equilibrium. Then there exists
x ∈ [0, 1] such that Vi([0, x]) = ti for some player i ∈ N , and the following
hold:

• Vj([0, x]) < tj ,∀j ∈ {1, . . . , i− 1}

• Vj([0, x]) ≤ tj ,∀j ∈ {i+ 1, . . . , n}.
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The utilities under T are:
ui(T ) = ti

and
uj(T ) = 0,∀j ∈ N \ {i}.

Then any player j ∈ N \ {i}, can strictly improve their utility by deviating to
threshold:

t
′
j = Vj([0, x/2])

2 ,

since
uj(T

′
, T−j) = t

′
j > 0,

where T ′ = (T ′j , T−j).

More generally, the result holds for all moving knife games with strictly
positive value density functions where the number of rounds is small enough
(i.e. M <

∑n
i=1mi).

Finally, when the players have symmetric value density functions, i.e.
vi(x) = vj(x), ∀i, j ∈ N , and the number of rounds is large enough to al-
low all the players to receive the number of pieces they are entitled to, then
the generalized moving knife game has a non-trivial pure Nash equilibrium for
every deterministic tie-breaking rule.

Proposition 7. Consider a generalized moving knife game with symmetric
and hungry valuations, where the number of rounds is equal to the total number
of pieces that the players are entitled to. Then the game has a pure Nash
equilibrium for every deterministic tie-breaking rule.

Proof. LetM be the number of rounds andmi the maximum number of pieces
that player i is entitled to receive. Then we have that M =

∑n
i=1mi.

Let π = (π1, . . . , πn) be the tie-breaking rule. Since the players have
identical value density functions, there exists a partition of the cake in M
contiguous pieces, X = (X1 , . . . , XM ), such that

Vi(Xj) = 1
M
,∀i ∈ N.

Define the following thresholds:

ti,k = 1
M
, ∀i ∈ N, k ∈ {1, . . . ,M}.

It can be easily verified that the strategies are in equilibrium, and the utility
of each player under T is:

ui(T ) = mi

M
,∀i ∈ N.

Note that the equilibrium allocation of each player is directly influenced by
their budget, i.e. players with higher budget receive proportionally larger
pieces.
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3.5 Discussion and Future Work
We studied the strategic version of the Dubins-Spanier protocol when the play-
ers have simple threshold strategies. Our main technical result is the existence
of a direct correspondence between the non-trivial pure Nash equilibria of the
moving knife game and the envy-free allocations of the cake with contiguous
pieces. A characterization of the equilibria in the generalized moving knife
game is left open. If one requires that the induced allocations have desirable
properties, related to proportionality and envy-freeness, then the existence of
such equilibria depends on whether envy-free allocations with a given number
of cuts and ordering of the players exist. In particular, we are interested in
the existence of mixed-strategy equilibria with uncountably infinite support,
such that the entire cake is allocated with positive probability.

It would also be interesting to understand the outcomes of the game under
richer strategy spaces. We note that generalizations in which each player has
n! thresholds (to account not only for the round number, but also for the
players that have been allocated in the previous rounds) do not necessarily
have envy-free equilibria. However, this does not preclude the existence of
envy-free equilibria in the corresponding continuous time extensive form game.

In addition, this work initiates the direction of understanding the conse-
quences of strategic behaviour in classical cake cutting protocols. For example,
it would be interesting to understand whether protocols that compute fair allo-
cations in the classical model (such as Brams-Talor) have fair equilibria under
complete information.





Chapter 4

An Algorithmic Framework
for Strategic Fair Division

In the previous chapter we analyzed the outcomes obtained in the Dubins-
Spanier protocol when the players are strategic and have threshold strategies.
We would like to make general statements regarding the equilibria of cake
cutting protocols and without restrictions on the strategies of the players. We
wish to identify a general family of cake cutting protocols — which captures
the classic cake cutting protocols — so that each protocol in the family is
guaranteed to possess (approximate) equilibria. Moreover, we wish to argue
that these equilibrium outcomes are fair. Ultimately, our goal is to be able
to reason about the fairness of cake divisions that are obtained as outcomes
when players are presented with a standard cake cutting protocol and behave
strategically.

We begin with a motivating example using the simplest cake cutting pro-
tocol, Cut-and-Choose. Recall that in this protocol, the first player cuts the
cake into two pieces that it values equally; the second player then chooses the
piece that it prefers, leaving the first player with the remaining piece. So how
would strategic players behave when faced with the cut and choose protocol?
A standard way of answering this question employs the notion of Nash equi-
librium: each player would use a strategy that is a best response to the other
player’s strategy. To set up a Nash equilibrium, suppose that the first player
cuts two pieces that the second player values equally; the second player selects
its more preferred piece, and the one less preferred by the first player in case
of a tie. Clearly, the second player cannot gain from deviating, as it is select-
ing a piece that is at least as preferred as the other. As for the first player,
if it makes its preferred piece even bigger, the second player would choose
that piece, making the first player worse off. Interestingly enough, in this
equilibrium the tables are turned; now it is the second player who is getting
exactly half of its value for the whole cake, while the first player generally gets
more. Crucially, the equilibrium outcome is also proportional and envy-free.

39
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In other words, even though the players are strategizing rather than following
the protocol, the outcome in equilibrium has the same fairness properties as
the “honest” outcome!

4.1 Model, Results, and a New Algorithmic
Paradigm

To set the stage for a result that encompasses classic cake cutting protocols,
we introduce (in Section 7.2) the class of generalized cut and choose (GCC)
protocols. A GCC protocol is represented by a tree, where each node is
associated with the action of a player. There are two types of nodes: a cut
node, which instructs the player to make a cut between two existing cuts; and a
choose node, which offers the player a choice between a collection of pieces that
are induced by existing cuts. Moreover, we assume that the progression from
a node to one of its children depends only on the relative positions of the cuts
(in a sense to be explained formally below). We argue that classic protocols —
such as Dubins-Spanier [55], Selfridge-Conway (see [112]), Even-Paz [61], as
well as the original cut and choose protocol — are all GCC protocols. We view
the definition of the class of GCC protocols as one of our main contributions.

In Section 4.4, we observe that GCC protocols may not have exact Nash
equilibria (NE). We then explore two ways of circumventing this issue, which
give rise to our two main results.

1. We prove that every GCC protocol has at least one ε-NE for every
ε > 0, in which players cannot gain more than ε by deviating, and ε
can be chosen to be arbitrarily small. In fact, we establish this result
for a stronger equilibrium notion, (approximate) subgame perfect Nash
equilibrium (SPNE), which is, intuitively, a strategy profile where the
strategies are in NE even if the game starts from an arbitrary point.

2. We slightly augment the class of GCC protocols by giving them the
ability to make informed tie-breaking decisions that depend on the en-
tire history of play, in cases where multiple cuts are made at the exact
same point. While, for some valuation functions of the players, a GCC
protocol may not possess any exact SPNE, we prove that it is always
possible to modify the protocol’s tie-breaking scheme to obtain SPNE.

In Section 4.7, we observe that for any proportional protocol, the outcome
in any ε-equilibrium must be an ε-proportional division. We conclude that
under the classic cake cutting protocols listed above — which are all pro-
portional — strategic behavior preserves the proportionality of the outcome,
either approximately, or exactly under informed tie-breaking.

One may wonder, though, whether an analogous result is true with respect
to envy-freeness. We give a negative answer, by constructing an envy-inducing
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SPNE under the Selfridge-Conway protocol, a well-known envy-free protocol
for three players. However, we are able to design a curious GCC protocol in
which every NE outcome is a contiguous envy-free allocation and vice versa,
that is, the set of NE outcomes coincides with the set of contiguous envy-
free allocations. It remains open whether a similar result can be obtained for
SPNE instead of NE.

Taking a broader perspective, our approach involves introducing a con-
crete computational model that captures well-known algorithms, and reason-
ing about the game-theoretic guarantees of all algorithms operating in this
model. This approach appears distinct from related ones, where concrete
query models are defined in order to evaluate the computational complexity
of economic methods [17, 73], or restrictions on the output of the algorithm
— such as the well-known maximal-in-range restriction [53] — give rise to de-
sirable game-theoretic properties. Perhaps the most closely related approach
was taken by Tennenholtz [121] in his work on program equilibrium (later
extended by Fortnow [64]), but there the strategies are the programs them-
selves, whereas in our work a common algorithm (the GCC protocol) induces
the players’ strategies. We therefore believe that our conceptual contribu-
tions may be of independent interest to researchers working in other areas of
algorithmic game theory, such as auction design.

The notion of GCC protocols is inspired by the Robertson-Webb [112]
model of cake cutting — a concrete complexity model that specifies how a
cake cutting protocol may interact with the players. Their model underpins a
significant body of work in theoretical computer science and AI, which focuses
on the complexity of achieving different fairness or efficiency notions in cake
cutting [6, 50, 58, 59, 84, 108, 126]. In Section 7.2, we describe the Roberston-
Webb model in detail, and explain why it is inappropriate for reasoning about
equilibria.

In the context of the strategic aspects of cake cutting, Nicolò and Yu [104]
were the first to suggest equilibrium analysis for cake cutting protocols. Focus-
ing exclusively on the case of two players, they design a specific cake cutting
protocol whose unique SPNE outcome is envy-free. And while the original cut
and choose protocol also provides this guarantee, it is not “procedural envy
free” because the cutter would like to exchange roles with the chooser; the
two-player protocol of Nicoló and Yu aims to solve this difficulty.

4.2 Generalized Cut and Choose Protocols

Recall that the standard communication model in cake cutting was proposed
by Robertson and Webb [112] (but formalized explicitely in a paper by Woeg-
inger and Sgall [126]. We focus on the slightly augmented version proposed by
Procaccia [109], where the interaction between the protocol and the players
to the following two types of queries:
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• Cut query: Cuti(x, α) asks player i to return a point y such that Vi([x, y]) =
α.

• Evaluate query: Evaluatei(x, y) asks player i to return a value α such
that Vi([x, y]) = α.

However, the communication model does not give much information about the
actual implementation of the protocol and what allocations it produces. For
example, the protocol could allocate pieces depending on whether a particular
cut was made at an irrational point (see Algorithm 4).

For this reason, we define a generic class of protocols that are imple-
mentable with natural operations, which capture all bounded1 and discrete
cake cutting algorithms, such as cut and choose, Dubins-Spanier, Even-Paz,
Successive-Pairs, and Selfridge-Conway (see, e.g., [109]). At a high level, the
standard protocols are implemented using a sequence of natural instructions,
each of which is either a Cut operation, in which some player is asked to
make a cut in a specified region of the cake; or a Choose operation, in which
some player is asked to take a piece from a set of already demarcated pieces
indicated by the protocol. In addition, every node in the decision tree of the
protocol is based exclusively on the execution history and absolute ordering
of the cut points, which can be verified with any of the following operators:
<,≤,=,≥, >.

More formally, a generalized cut and choose (GCC) protocol is imple-
mented exclusively with the following types of instructions:

• Cut: The syntax is “i Cuts in S”, where S = {[x1, y1], . . . , [xm, ym]} is
a set of contiguous pieces (intervals), such that the endpoints of every
piece [xj , yj ] are 0, 1, or cuts made in the previous steps of the protocol.
Player i can make a cut at any point z ∈ [xj , yj ], for some j ∈ {1, . . . ,m}.

• Choose: The syntax is “i Chooses from S”, where S = {[x1, y1], . . . , [xm, ym]}
is a set of contiguous pieces, such that the endpoints of every piece
[xj , yj ] ∈ S are 0, 1, or cuts made in the previous steps of the protocol.
Player i can choose any single piece [xj , yj ] from S to keep.

• If-Else Statements: The conditions depend on the result of choose queries
and the absolute order of all the cut points made in the previous steps.

A GCC protocol uniquely identifies every contiguous piece by the symbolic
names of all the cut points contained in it. For example, Algorithm 1 is a GCC
protocol. Algorithm 4 is not a GCC protocol, because it verifies that the point
where player 1 made a cut is exactly 1/3, whereas a GCC protocol can only
verify the ordering of the cut points relative to each other and the endpoints

1In the sense that the number of operations is upper-bounded by a function that takes
the number of players n as input.
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player 1 Cuts in {[0, 1]} // @x
player 1 Cuts in {[0, 1]} // @y
player 1 Cuts in {[0, 1]} // @z
if (x < y < z) then

player 1 Chooses from {[x, y], [y, z]}
end if

Algorithm 3: A GCC protocol. The notation “// @x” assigns the symbolic
name x to the cut point made by player 1.

player 1 Cuts in {[0, 1]} // @x
if
(
x = 1

3

)
then

player 1 Chooses from {[0, x], [x, 1]}
end if

Algorithm 4: A non-GCC protocol.

of the cake. Note that, unlike in the communication model of Robertson
and Web [112], GCC protocols cannot obtain and use information about the
valuations of the players — the allocation is only decided by the players’
Choose operations.

As an illustrative example, we now discuss why the discrete version of
Dubins-Spanier belongs to the class of GCC protocols. The protocol admits a
GCC implementation as follows. For the first round, each player i is required
to make a cut in {[0, 1]}, at some point denoted by x1

i . The player i∗ with the
leftmost cut x1

i∗ can be determined using If-Else statements whose conditions
only depend on the ordering of the cut points x1

1, . . . , x
1
n. Then, player i∗ is

asked to choose “any” piece in the singleton set {[0, x1
i∗ ]}. The subsequent

rounds are similar: at the end of every round the player that was allocated
a piece is removed, and the protocol iterates on the remaining players and
remaining cake. Note that players are not constrained to follow the protocol,
i.e., they can make their marks (in response to cut instructions) wherever
they want; nevertheless, a player can guarantee a piece of value at least 1/n
by following the Dubins-Spanier protocol, regardless of what other players do.

While GCC protocols are quite general, a few well-known cake cutting
protocols are beyond their reach. For example, the Brams-Taylor [20] protocol
is an envy-free protocol for n players, and although its individual operations
are captured by the GCC formalism, the number of operations is not bounded
as a function of n (i.e., it may depend on the valuation functions themselves).
Its representation as a GCC protocol would therefore be infinitely long. In
addition, some cake cutting protocols use moving knives (see, e.g., [25]); for
example, they can keep track of how a player’s value for a piece changes as the
piece smoothly grows larger. These protocols are not discrete, and, in fact,
cannot be implemented even in the Robertson-Webb model.
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4.3 The Game

We study GCC protocols when the players behave strategically. Specifically,
we consider a GCC protocol, coupled with the valuation functions of the
players, as an extensive-form game of perfect information (see, e.g., [115]). In
such a game, players execute the Cut and Choose instructions strategically.
Each player is fully aware of the valuation functions of the other players and
aims to optimize its overall utility for the chosen pieces, given the strategies
of other players.

While the perfect information model may seem restrictive, we note that
the same assumption is also made in previous work on equilibria in cake cut-
ting [28, 104]. More importantly, it underpins foundational papers in a variety
of areas of microeconomic theory, such as the seminal analysis of the Gener-
alized Second Price (GSP) auction by Edelman et al. [57]. A common justi-
fication for the complete information setting, which is becoming increasingly
compelling as access to big data becomes pervasive, is that players can obtain
a significant amount of information about each other from historical data.

In more detail, the game can be represented by a tree (called a game tree)
with Cut and Choose nodes:

• In a Cut node defined by “i cuts in S”, where S = {[x1, y1], . . . , [xm, ym]},
the strategy space of player i is the set S of points where player i can
make a cut at this step.

• In a Choose node defined by “i chooses from S”, where S = {[x1, y1],
. . ., [xm, ym]}, the strategy space is the set {1, . . . ,m}, i.e., the indices
of the pieces that can be chosen by the player from the set S.

The strategy of a player defines an action for each node of the game tree
where it executes a Cut or a Choose operation. If a player deviates, the game
can follow a completely different branch of the tree, but the outcome will still
be well-defined.

The strategies of the players are in Nash equilibrium (NE) if no player
can improve its utility by unilaterally deviating from its current strategy, i.e.,
by cutting at a different set of points and/or by choosing different pieces. A
subgame perfect Nash equilibrium (SPNE) is a stronger equilibrium notion,
which means that the strategies are in NE in every subtree of the game tree.
In other words, even if the game started from an arbitrary node of the game
tree, the strategies would still be in NE. An ε-NE (resp., ε-SPNE) is a relaxed
solution concept where a player cannot gain more than ε by deviating (resp.,
by deviating in any subtree).
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4.4 Existence of Equilibria

It is well-known that finite extensive-form games of perfect information can
be solved using backward induction: starting from the leaves and progressing
towards the root, at each node the relevant player chooses an action that
maximizes its utility, given the actions that were computed for the node’s
children. The induced strategies form an SPNE. Unfortunately, although we
consider finite GCC protocols, we also need to deal with Cut nodes where the
action space is infinite, hence naïve backward induction does not apply.

In fact, it turns out that not every GCC protocol admits an exact NE —
not to mention SPNE. For example, consider Algorithm 1, and assume that the
value density function of player 1 is strictly positive. Assume there exists a NE
where player 1 cuts at x∗, y∗, z∗, respectively, and chooses the piece [x∗, y∗]. If
x∗ > 0, then the player can improve its utility by making the first cut at x′ = 0
and choosing the piece [x′, y∗], since V1([x′, y∗]) > V1([x∗, y∗]). Thus, x∗ = 0.
Moreover, it cannot be the case that y∗ = 1, since the player only receives
an allocation if y∗ < z∗ ≤ 1. Thus, y∗ < 1. Then, by making the second
cut at any y′ ∈ (y∗, z∗), player 1 can obtain the value V1([0, y′]) > V1([0, y∗]).
It follows that there is no exact NE where the player chooses the first piece.
Similarly, it can be shown that there is no exact NE where the player chooses
the second piece, [y∗, z∗]. This illustrates why backward induction does not
apply: the maximum value at some Cut nodes may not be well defined.

4.5 Approximate SPNE

One possible way to circumvent the foregoing example is by saying that player
1 should be happy to make the cut y very close to z. For instance, if the player’s
value is uniformly distributed over the case, cutting at x = 0, y = 1− ε, z = 1
would allow the player to choose the piece [x, y] with value 1 − ε; and this is
true for any ε.

More generally, we have the following theorem.

Theorem 8. For any n-player GCC protocol P with a bounded number of
steps, any n valuation functions V1, . . . , Vn, and any ε > 0, the game induced
by P and V1, . . . , Vn has an ε-SPNE.

The high-level idea of our proof relies on discretizing the cake — such
that every cell in the resulting grid has a very small value for each player —
and computing the optimal outcome on the discretized cake using backward
induction. At every cut step of the protocol, the grid is refined by adding a
point between every two consecutive points of the grid from the previous cut
step. This ensures that any ordering of the cut points that can be enforced
by playing on the continuous cake can also be enforced on the discretized
instance. Therefore, for the purpose of computing an approximate SPNE, it
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is sufficient to work with the discretization. We then show that the backward
induction outcome from the discrete game gives an ε-SPNE on the continuous
cake.

of theorem 8. Let ε > 0, and let f(n) be an upper bound on the number of
operations (i.e., on the height of the game tree) of the protocol. Define a grid,
G1, such that every cell on the grid is worth at most ε

2f(n)2 to each player.
For every n, let K denote the maximum number of cut operations, where
0 ≤ K ≤ f(n). For each i ∈ {1, . . . ,K}, we define the grid Gi so that the
following properties are satisfied:

• The grids are nested, i.e., {0, 1} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ GK .

• There exists a unique point z ∈ Gi+1 between any two consecutive points
x, y ∈ Gi, such that x < z < y and z 6∈ Gi, for every i ∈ {1, . . . ,K − 1}.

• Each cell on Gi is worth at most ε
2f(n)2 to any player, for all i ∈

{1, . . . ,K}.

Having defined the grids, we compute the backward induction outcome on
the discretized cake, where the i-th Cut operation can only be made on the
grid Gi. We will show that this outcome is an ε-SPNE, even though players
could deviate by cutting anywhere on the cake. On the continuous cake, the
players play a perturbed version of the idealized game from the grid G, but
maintain a mapping between the perturbed game and the idealized version
throughout the execution of the protocol, such that each cut point from the
continuous cake is mapped to a grid point that approximates it within a very
small (additive) error. Thus when determining the next action, the players
use the idealized grid as a reference. The order of the cuts is the same in the
ideal and perturbed game, however the values of the pieces may differ by at
most ε/f(n).

We start with the following useful lemma. (For ease of exposition, in the
following we refer to [x, y] as the segment between points x and y, regardless
of whether x < y or y ≤ x.)

Lemma 1. Given a sequence of cut points x1, . . . , xk and nested grids G1 ⊂
. . . ⊂ Gk with cells worth at most ε

4f(n)2 to each player, there exists a map
M : {x1, . . . , xk} → Gk such that:

1. For each i ∈ {1, . . . , k},M(xi) ∈ Gi.

2. The map M is order-preserving. Formally, for all i, j ∈ {1, . . . , k},
xi < xj ⇐⇒ M(xi) <M(xj) and xi = xj ⇐⇒ M(xi) =M(xj).

3. The piece [xi,M(xi)] is “small”, that is: Vl([xi,M(xi)]) ≤ kε
2f(n)2 , for

each player l ∈ N .
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Proof. We prove the statement by induction on the number of cut points k.
Base case: We consider a few cases. If x1 ∈ G1, then defineM(x1) := x1.

Otherwise, let R(x1) ∈ G1 be the leftmost point on the grid G1 to the right of
x1. If R(x1) 6= 1, defineM(x1) := R(x1); else, let L(x1) denote the rightmost
point on G1 strictly to the left of 1 and defineM(x1) := L(x1). To verify the
properties of the lemma, note that:

1. M(x1) ∈ G1.

2. The mapM is order-preserving since there is only one point.

3. Vl([x1,M(x1)]) ≤ ε
2f(n)2 for each player l ∈ N since the grid G1 has (by

construction) the property that each cell is worth at most ε
2f(n)2 to each

player, and the interval [x1,M(x1)] is contained in a cell.

Induction hypothesis: Assume that a mapM with the required properties
exists for any sequence of k − 1 cut points.

Induction step: Consider any sequence of k cut points x1, . . . , xk. By the
induction hypothesis, we can map each cut point xi to a grid representative
M(xi) ∈ Gi, for all i ∈ {1, . . . , k − 1}, in a way that preserves properties 1–3.
We claim that the mapM on the points x1, . . . , xk−1 can be extended to the
k-th point, xk, such that the entire sequenceM(x1), . . . ,M(xk) satisfies the
requirements of the lemma. We consider four exhaustive cases.

1. There exists i ∈ {1, . . . , k−1} such that xk = xi. Then defineM(xk) :=
M(xi).

2. There exists i ∈ {1, . . . , k−1} such that xi < xk, butM(xi) ≥ xk. Let xj
be the rightmost cut such that xj < xk; becauseM is order-preserving,
it holds that M(xj) ≥ xk. Let R(M(xj)) be the leftmost point on Gk
strictly to the right of M(xj), and set M(xk) := R(M(xj)). Now let
us check the conditions. Condition (1) holds by definition. Condition
(2) holds because M(xk) >M(xj), and for every t such that xt > xk,
M(xt) >M(xj) andM(xt) ∈ Gk−1, whereasM(xk) uses a “new” point
of Gk \Gk−1 that is closer toM(xj). For condition (3), we have that for
every l ∈ N ,

Vl([xk,M(xk)]) ≤ Vl([xj ,M(xk)]) = Vl([xj ,M(xj)]) + Vl([M(xj),M(xk)])

≤ (k − 1)ε
2f(n)2 + ε

2f(n)2 ≤
kε

2f(n)2 ,

where the third transition follows from the induction assumption.

3. There exists i ∈ {1, . . . , k− 1} such that xi > xk, butM(xi) ≤ xk. This
case is symmetric to case (b).
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4. For every xi such that xi < xk,M(xi) ≤ xk, and for every xj such that
xj > xk, M(xj) ≥ xk. Let xi and xj be the rightmost and leftmost
such cuts, respectively; without loss of generality they exist, otherwise
our task is even easier. Let R(xk) be the leftmost point in Gk such
that R(xk) ≥ xk, and let L(xk) be the rightmost point in Gk such that
L(xk) ≤ xk. Assume first that M(xj) > R(xk); then set M(xk) :=
R(xk). This choice obviously satisfies the three conditions, similarly to
the base of the induction. Otherwise, R(xk) = M(xj) (notice that it
cannot be the case that R(xk) >M(xk)); then setM(xk) := L(xk). Let
us check that this choice is order-preserving (as the other two conditions
are trivially satisfied). Note that M(xj) ∈ Gk−1, so R(xk) ∈ Gk−1.
Therefore, it must hold that L(xk) ∈ Gk \ Gk−1 — it is the new point
that we have added between R(xk), and the rightmost point the left of
it on Gk−1. Since it is also the case that M(xi) ∈ Gk−1, we have that
M(xi) <M(xk) <M(xj).

By induction, we can compute a mapping with the required properties for
k points. This completes the proof of the lemma.

Now we can define the equilibrium strategies. Let x1, . . . , xk be the his-
tory of cuts made at some point during the execution of the protocol. By
Lemma 1, there exists an order-preserving map M such that each point xi
has a representative point M(xi) ∈ Gi and the piece [xi,M(xi)] is “small”,
i.e.

Vl([xi,M(xi)]) ≤
kε

2f(n)2 ≤
ε

2f(n)

for each player l ∈ N — using k ≤ f(n).
Consider any history of cuts (x1, . . . , xk). Let i be the player that moves

next. Player i computes the mapping (M(x1), . . . ,M(xk)). If the next oper-
ation is:

• Choose: player i chooses the available piece (identified by the symbolic
names of the cut points it contains and their order) which is optimal
in the idealized game, given the current state and the existing set of
ordered ideal cuts, M(x1), . . . ,M(xk). Ties are broken according to a
fixed deterministic scheme which is known to all the players.

• Cut: player i computes the optimal cut on Gk+1, say at x∗k+1. Then
i maps x∗k+1 back to a point xk+1 on the continuous game, such that
M(xk+1) = x∗k+1. That is, the cut xk+1 (made in step k + 1) is always
mapped by the other players to x∗k+1 ∈ Gk+1. Player i cuts at xk+1.

We claim that these strategies give an ε-SPNE. The proof follows from the
following lemma, which we show by induction on t (the maximum number of
remaining steps of the protocol):
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Lemma 2. Given a point in the execution of the protocol from which there
are at most t operations left until termination, it is tε

f(n) -optimal to play on
the grid.

Proof. Consider any history of play, where the cuts were made at x1, . . . , xk.
Without loss of generality, assume it is player i’s turn to move.

Base case: t = 1. The protocol has at most one remaining step. If it is
a cut operation, then no player receives any utility in the remainder of the
game regardless of where the cut is made. Thus cutting on the grid (Gk) is
optimal. If it is a choose operation, then let Z = {Z1, . . . , Zs} be the set of
pieces that i can choose from. Player i’s strategy is to map each piece Zj to
its equivalentM(Zj) on the grid Gk, and choose the piece that is optimal on
Gk. Recall that Vq([xj ,M(xj)]) ≤ ε

2f(n) for each player q ∈ N . Thus if a piece
is optimal on the grid, it is ε

f(n) -optimal in the continuous game (adding up
the difference on both sides). It follows that i cannot gain more than ε

f(n) in
the last step by deviating from the optimal piece on Gk.

Induction hypothesis: Assume that playing on the grid is (t−1)ε
f(n) -optimal

whenever there are at most t − 1 operations left on every possible execution
path of the protocol, and there exists one path that has exactly t− 1 steps.

Induction step: If the current operation is Choose, then by the induction
hypothesis, playing on the grid in the remainder of the protocol is (t−1)ε

f(n) -
optimal for all the players, regardless of i’s move in the current step. Moreover,
player i cannot gain by more than ε

f(n) by choosing a different piece in the
current step, compared to piece which is optimal on Gk, since Vi([xl,M(xl)]) ≤
ε

2f(n) for all l ∈ {1, . . . , k}.
If the current operation is Cut, then the following hold:

1. By construction of the grid Gk+1, player i can induce any given branch
of the protocol using a cut in the continuous game if and only if the
same branch can be induced using a cut on the grid Gk+1.

2. Given that the other players will play on the grid for the remainder of
the protocol, player i can change the size of at most one piece that it
receives down the road by at most ε

f(n) by deviating (compared to the
grid outcome), since Vj([xl,M(xl)]) ≤ ε

2f(n) for all l ∈ {1, . . . , k+1} and
for all j ∈ N .

Thus by deviating in the current step, player i cannot gain more than tε
f(n) .

Since t ≤ f(n), the overall loss of any player is bounded by ε by Lemma 2.
We conclude that playing on the grid is ε-optimal for all the players, which
completes the proof of the theorem.
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4.6 Informed Tie-Breaking
Another approach for circumventing the example given at the beginning of
the section is to change the tie-breaking rule of Algorithm 1, by letting player
1 choose even if y = z (in which case player 1 would cut in x = 0, y = 1, z = 1,
and get the entire cake). Tie-breaking matters: Even the Dubins-Spanier pro-
tocol fails to guarantee SPNE existence due to a curious tie-breaking issue [28].

To accommodate more powerful tie-breaking rules, we slightly augment
GCC protocols, by extending their ability to compare cuts in case of a tie.
Specifically, we can assume without loss of generality that the If-Else state-
ments of a GCC protocol are specified only with weak inequalities (as an
equality can be specified with two inequalities and a strong inequality via an
equality and weak inequality), which involve only pairs of cuts. We consider
informed GCC protocols, which are capable of using If-Else statements of the
form “if [x < y or (x = y and history of events ∈ H)] then”. That is, when
cuts are made in the same location and cause a tie in an If-Else, the protocol
can invoke the power to check the entire history of events that have occurred
so far. We can recover the x < y and x ≤ y comparisons of “uninformed”
GCC protocols by setting H to be empty or all possible histories, respectively.
Importantly, the history can include where cuts were made exactly, and not
simply where in relation to each other.

We say that an informed GCC protocol P ′ is equivalent up to tie-breaking
to a GCC protocol P if they are identical, except that some inequalities in
the If-Else statements of P are replaced with informed inequalities in the
corresponding If-Else statements of P ′. That is, the two protocols are possibly
different only in cases where two cuts are made at the exact same point.

For example, in Algorithm 1, the statement “if x < y < z then” can be
specified as “if x < y then if y < z then”. We can obtain an informed GCC
protocol that is equivalent up to tie-breaking by replacing this statement with
“if x < y then if y ≤ z then” (here we are not actually using augmented tie-
breaking). In this case, the modified protocol may feel significantly different
from the original — but this is an artifact of the extreme simplicity of Algo-
rithm 1. Common cake cutting protocols are more complex, and changing the
tie-breaking rule preserves the essence of the protocol.

We are now ready to present our second main result.

Theorem 9. For any n-player GCC protocol P with a bounded number of
steps and any n valuation functions V1, . . . , Vn, there exists an informed GCC
protocol P ′ that is equivalent to P up to tie-breaking, such that the game
induced by P ′ and V1, . . . , Vn has an SPNE.

Intuitively, we can view P ′ as being “undecided” whenever two cuts are
made at the same point, that is, x = y: it can adopt either the x < y branch
or the x > y branch — there exists an appropriate decision. The theorem
tells us that for any given valuation functions, we can set these tie-breaking
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points in a way that guarantees the existence of an SPNE. In this sense,
the tie-breaking of the protocol is informed by the given valuation functions.
Indeed, this interpretation is plausible as we are dealing with a game of perfect
information.

The proof of Theorem 9 is somewhat long, and has been relegated to Ap-
pendix 4.8. This proof is completely different from the proof of Theorem 8;
in particular, it relies on real analysis instead of backward induction on a dis-
cretized space. The crux of the proof is the development of an auxiliary notion
of mediated games (not to be confused with Monderer and Tennenholtz’s me-
diated equilibrium [98]) that may be of independent interest. We show that
mediated games always have an SPNE. The actions of the mediator in this
SPNE are then reinterpreted as a tie-breaking rule under an informed GCC
protocol. In the context of the proof it is worth noting that some papers prove
the existence of SPNE in games with infinite action spaces (see, e.g., [72, 74]),
but our game does not satisfy the assumptions required therein.

4.7 Fair Equilibria

The existence of equilibria (Theorems 8 and 9) gives us a tool for predicting the
strategic outcomes of cake cutting protocols. In particular, classic protocols
provide fairness guarantees when players act honestly; but do they provide
any fairness guarantees in equilibrium?

We first make a simple yet crucial observation. In a proportional pro-
tocol, every player is guaranteed a value of at least 1/n regardless of what
the others are doing. Therefore, in every NE (if any) of the protocol, the
player still receives a piece worth at least 1/n; otherwise it can deviate to
the strategy that guarantees it a utility of 1/n and do better. Similarly, an
ε-NE must be ε-proportional, i.e., each player must receive a piece worth at
least 1/n − ε. Hence, classic protocols such as Dubins-Spanier, Even-Paz,
and Selfridge-Conway guarantee (approximately) proportional outcomes in
any (approximate) NE (and of course this observation carries over to the
stronger notion of SPNE).

One may wonder, though, whether the analogous statement for envy-
freeness holds; the answer is negative. We demonstrate this via the Selfridge-
Conway protocol — the 3-player envy-free protocol, which was given in its
truthful, non-GCC form in Section 2.2. We construct an example by speci-
fying the valuation functions of the players and their strategies, and arguing
that the strategies are in SPNE. The example will have the property that the
first two players receive utilities of 1 (i.e. the maximum value). Therefore,
we can safely assume their play is in equilibrium; this will allow us to define
the strategies only on a small part of the game tree. In contrast, player 3 will
deviate from its truthful strategy to gain utility, but in doing so will become
envious of player 1.
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In more detail, suppose after player 2 trims the three pieces we have the
following.

• Player 1 values the first untrimmed piece at 1, and all other pieces and
the trimmings at 0.

• Player 2 values the second untrimmed piece at 1, and all other pieces
and the trimmings at 0.

• Player 3 values the untrimmed pieces at 1/7 and 0, respectively, the
trimmed piece at 1/14, and the trimmings at 11/14.

Now further suppose that if player 3 is to cut the trimmings (i.e. take on the
role of j in protocol), then the first two players always take the pieces most
valuable to player 3. Thus, if player 3 does not take the trimmed piece it
will achieve a utility of at most 1/7 + (11/14)(1/3) = 119/294 by taking the
first untrimmed piece, and then cutting the trimmings into three equal parts.
On the other hand, if player 3 takes the trimmed piece of worth 1/14, player
2 cuts the trimmings into three parts such that one of the pieces is worth 0
to player 3, and the other two are equivalent in value (i.e. they have values
(11/14)(1/2) = 11/28). Players 1 and 3 take these two pieces. Thus, in this
scenario, player 3 receives a utility of 1/14 + 11/28 = 13/28 which is strictly
better than the utility of 119/294. Player 3 will therefore choose to take the
trimmed piece. However, in this outcome player 1, from the point of view of
player 3, receives a piece worth 1/7 + 11/28 = 15/28 and therefore player 3
will indeed be envious.

The foregoing example shows that envy-freeness is not guaranteed when
players strategize, and so it is difficult to produce envy-free allocations when
players play to maximize their utility. A natural question to ask, therefore,
is whether there are any GCC protocols such that all SPNE are envy-free,
and existence of SPNE is guaranteed. This remains an open question, but we
do give an affirmative answer for the weaker solution concept of NE in the
following theorem.

Theorem 10. There exists a GCC protocol P such that on every cake cutting
instance with strictly positive valuation functions V1, . . . , Vn, an allocation X
is the outcome of a NE of the game induced by P and V1, . . . , Vn if and only
if X is an envy-free contiguous allocation that contains the entire cake.

Crucially, an envy-free contiguous allocation is guaranteed to exist [117],
hence the set of NE of protocol P is nonempty.

The proof of the theorem uses the Thieves Protocol given by Algorithm
4. In this protocol, player 1 first demarcates a contiguous allocation X =
{X1, ..., Xn} of the entire cake, whereXi is a contiguous piece that corresponds
to player i. This can be implemented as follows. First, player 1 makes n
cuts such that the i-th cut is interpreted as the left endpoint of Xi. The
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left endpoint of the leftmost piece is reset to 0 by the protocol. Then, the
rightmost endpoint of Xi is naturally the leftmost cut point to its right or 1 if
no such point exists. Ties among overlapping cut points are resolved in favor
of the player with the smallest index; the corresponding cut point is assumed
to be the leftmost one. Notice that every allocation that assigns nonempty
contiguous pieces to all players can be demarcated in this way.

After the execution of the demarcation step, X is only a tentative alloca-
tion. Then, the protocol enters a verification round, where each player i is
allowed to steal some non-empty strict subset of a piece (say, Xj) demarcated
for another player. If this happens (i.e., the if-condition is true) then player i
takes the stolen piece and the remaining players get nothing. This indicates
the failure of the verification and the protocol terminates. Otherwise, the
pieces of X are eventually allocated to the players, i.e., player i takes Xi.

We will require two important characteristics of the protocol. First, it
guarantees that no state in which some player steals can be a NE; this player
can always steal an even more valuable piece. Second, stealing is beneficial
for an envious player.

Proof of Theorem 10. Let P be the Thieves protocol given by Algorithm 3
and E be any NE of P. Denote by X the contiguous allocation of the entire
cake obtained during the demarcation step, where Xi = [xi, yi] for all i ∈ N ,
and let wi and zi be the cut points of player i during its verification round.
Assume for the sake of contradiction that X is not envy-free. Let k∗ be an
envious player, where Vk∗(Xj∗) > Vk∗(Xk∗), for some j∗ ∈ N . There are two
cases to consider:

Case 1 : Each player i receives the piece Xi in E . This means that, dur-
ing its verification round, each player i selects its cut points from the set⋃n
j=1{xj , yj}. By the non-envy-freeness condition for X above (and by the

fact that the valuation function Vk∗ is strictly positive), there exist w′k∗ , z′k∗
such that xj∗ < w′k∗ < z′k∗ < yj∗ and Vk∗([w′k∗ , z′k∗ ]) > Vk∗([xk∗ , yk∗ ]). Thus,
player k∗ could have been better off by cutting at points w′k∗ and z′k∗ in its
verification round, contradicting the assumption that E is a NE.

Case 2 : There exists a player i that did not receive the piece Xi. Then, it
must be the case that some player k stole a non-empty strict subset [w′′k , z′′k ] =
[wk, zk]∩Zj of another piece Xj . However, player k could have been better off
at the node in the game tree reached in its verification round by making the
following marks: w′k = xj+w′′k

2 and z′k = z′′k+yj
2 . Since either xj ≤ w′′k < z′′k < yj

or xj < w′′k < z′′k ≤ yj (recall that [w′′k , z′′k ] is a non-empty strict subset of
Xj and the valuation function Vk is strictly positive), it is also true that
Vk([w′k, z′k]) > Vk([w′′k , z′′k ]), again contradicting the assumption that E is a
NE.

So, the allocation computed by player 1 under every NE E is indeed envy-
free; this completes the proof of the first part of the theorem.
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Player 1 demarcates a contiguous allocation X of the cake
for i = 2, . . . , n, 1 do

// Verification of envy-freeness for player i
Player i Cuts in {[0, 1]} // @wi
Player i Cuts in {[wi, 1]} // @ zi
for j = 1 to n do

if ∅ 6= ([wi, zi] ∩Xj) ( Xj then
// Player i steals a non-empty strict subset of Xj

Player i Chooses from {[wi, zi] ∩Xj}
exit // Verification failed: protocol terminates

end if
end for
// Verification successful for player i

end for
for i = 1 to n do

Player i Chooses from {Xi}
end for

Algorithm 5: Thieves Protocol: Every NE induces a contiguous envy-free
allocation that contains the entire cake and vice versa.

We next show that every contiguous envy-free allocation of the entire cake
is the outcome of a NE. Let Z be such an allocation, with Zi = [xi, yi] for all
i ∈ N . We define the following set of strategies E for the players:

• At every node of the game tree (i.e., for every possible allocation that
could be demarcated by player 1), player i ≥ 2 cuts at points wi = xi
and zi = yi during its verification round.

• Player 1 specifically demarcates the allocation Z and cuts at points
w1 = x1 and z1 = y1 during its verification round.

Observe that [wi, zi] ∩ Zj is either empty or equal to Zj for every pair of
i, j ∈ N . Hence, the verification phase is successful for every player and
player i receives the piece Zi.

We claim that this is a NE. Indeed, consider a deviation of player 1 to a
strategy that consists of the demarcated allocation Z ′ (and the cut points w′1
and z′1). First, assume that the set of pieces in Z ′ is different from the set of
pieces in Z. Then, there is some player k 6= 1 and some piece Z ′j such that the
if-condition ∅ ⊂ [xk, yk]∩Z ′j ⊂ Z ′j is true. Hence, the verification round would
fail for some player i ∈ {2, ..., k} and player 1 would receive nothing. So, both
Z ′ and Z contain the same pieces, and may differ only in the way these pieces
are tentatively allocated to the players. But in this case the maximum utility
player 1 can get is maxj V1(Z ′j), either by keeping the piece Z ′1 or by stealing
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a strict subset of some other piece Z ′j . Due to the envy-freeness of Z, we have:

max
j
V1(Z ′j) = max

j
V1(Zj) = V1(Z1),

hence, the deviation is not profitable in this case either.
Now, consider a deviation of player i ≥ 2 to a strategy that consists of the

cut points w′i and z′i. If both w′i and z′i belong to
⋃n
j=1{xi, yi}, then [w′i, z′i]∩Zj

is either empty or equal to Zj for some j ∈ N . Hence, the deviation will leave
the allocation unaffected and the utility of player i will not increase. If instead
one of the cut points w′i and z′i does not belong to

⋃n
j=1{xi, yi}, this implies

that the condition
∅ ⊂ [w′i, z′i] ∩ Zj ( Zj

is true for some j ∈ N , i.e., player i will steal the piece [w′i, z′i]∩Zj . However,
the utility Vi([w′i, z′i] ∩ Zj) of player i cannot be greater than Vi(Zj), which is
at most Vi(Zi) due to the envy-freeness of Z. Hence, again, this deviation is
not profitable for player i.

We conclude that E is a NE; this completes the proof of the theorem.

The theorem is a positive result à la implementation theory (see, e.g.,
[93]), which aims to construct games where the NE outcomes coincide with
a given specification of acceptable outcomes for each constellation of players’
preferences (known as a social choice correspondence). Our construction guar-
antees that the NE outcomes coincide with (contiguous) envy-free allocations,
that is, in this case the envy-freeness criterion specifies which outcomes are
acceptable.

That said, the protocol P constructed in the proof of Theorem 10 is im-
practical: its Nash equilibria are unlikely to arise in practice. This further
motivates efforts to find an analogous result for SPNE. If such a result is in-
deed feasible, a broader, challenging open question would be to characterize
GCC protocols that give rise to envy-free SPNE, or at least provide a sufficient
condition (on the protocol) for the existence of such equilibria.

4.8 Proof of Theorem 7
Before we begin, we take this moment to formally introduce the auxiliary
concept of a mediated game in an abstract sense. We will largely distance
ourselves from the specificity of GCC games here and work in a more general
model. We do this for two purposes. First, it allows for a cleaner view of the
techniques; and second, we believe such general games may be of independent
interest. We begin with a few definitions.

Definition 8. In an extensive-form game, an action tuple is a tuple of actions
that describe an outcome of the game. For example, the action tuple (a1, ..., ar)
states that a1 was the first action to be played, a2 the second, and ar the last.
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Definition 9. Given an action tuple, the kth action is said to be SPNE if
the subtree of the game tree rooted where the first k − 1 actions are played
in accordance to the action tuple is induced by some SPNE strategy profile.
Furthermore, call such an action tuple k-SPNE.

Note that if the kth action is SPNE, so too are all actions succeeding it in
the action tuple. To clarify Definition 9, note that strategies of an extensive-
form game are defined on every possible node of the game tree, so a k-SPNE
action tuple can be equivalently defined as being an SPNE of the subgame
rooted at the kth action.

With these definitions in hand, we can now describe the games of interest.

Definition 10. We call an extensive-form game a mediated game if the fol-
lowing conditions hold:

1. The set of players consists of a single special player, referred to as the
mediator, and some finite number n of other regular players. Intuitively,
the mediator is a player who is overseeing the proper execution of a
protocol.

2. The height h of the game tree is bounded.

3. Every player’s utility is bounded.

4. Starting from the first or second action, the mediator plays every second
action (and only these actions).

5. Every action played by the mediator shares the same action space:

{0, ..., n} ×
(
[0, 1]2 ∪ 2{1,...,h}

)
.

This represents the player who plays next (0 represents ending the game),
and the interval which represents their action space or the allowed pieces
they may choose from.

6. The mediator’s utility is binary (i.e. it is in {0, 1}) and is described en-
tirely by the notion of allowed edges. This is a set of edges in the game
tree such that the mediator’s utility is 1 iff it plays edges only in this set.
Importantly, this set has the property that for every allowed edge, each
grandchild subtree (i.e. subtree that represents the next mediator’s ac-
tion) must have at least one allowed edge from its root. Intuitively, these
edges are the ones that follow the protocol the mediator is implementing.

7. A regular player’s utility is continuous2 in the action tuple.
2The notions of convergence, compactness and continuity, which we will utilize often,

necessarily assumes our action spaces are defined as metric spaces. Applicable metrics for
the action spaces are not difficult to find, but are cumbersome to describe fully. We therefore
will not belabour this point much further.
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8. Allowed-edges-closedness: given a convergent sequence of action tuples
where the mediator plays only allowed edges, the mediator must play only
allowed edges in the limit action tuple as well.

Note that appending meaningless actions (that affect no player’s utility)
to a branch of the game tree will not affect the game in any impactful way.
Thus, for the sake of convenience, we will assume for any game we consider
all leaves of the game occur at the same depth (often denoted by r).

We now give a series of definitions and lemmas that culminate in the main
tool used in the proof of Theorem 9: all mediated games have an SPNE.

Definition 11. A sequence of action tuples
(
ai1, ..., a

i
r

)
|i is said to be consis-

tent if for every j the player who plays action aij is constant throughout the
sequence and, moreover, its action spaces are always subsets of [0, 1] or always
the same subset of {1, ..., h} throughout the sequence.

Lemma 3. Let
(
ai1, ..., a

i
r

)
|i be a sequence of action tuples in a mediated

game. Then there is a convergent subsequence.

Proof. Due to the finite number of players and bounded height of the game,
we can find an infinite consistent subsequence bi |i=

(
bi1, ..., b

i
r

)
|i. It suffices

to show this subsequence has a convergent subsequence of its own. It is fairly
clear that we can find a convergent subsequence via compactness arguments,
but there is a slight caveat: we must show that the limit action tuple is legal.
That is, if the limit action tuple is (a1, ..., ar) we must show that for every
i < r such that the mediator plays action i, action i+1 is played by the player
prescribed by ai, and within the bounds prescribed by it. We will prove this
by induction.

Base hypothesis: First 0 actions have a convergent subsequence — this is
vacuously true.

Induction hypothesis: Assume there exists a subsequence such that the
first k actions converge legally.

Induction step: We wish to show that there exists a subsequence such that
the first k + 1 actions converge. By the inductive assumption, there exists a
subsequence ci |i such that the first k actions converge. Now suppose p plays
the k + 1th action. If p is the mediator, then the action space is indifferent
to actions played previously and is compact. Thus, the ci |i must have a
convergent subsequence such that the k + 1th element of the action tuple
converges and so we are done.

Alternatively, if p is a regular player, the action space is not necessarily
indifferent to previous actions. If the action spaces are always the same subset
of {1, ..., h}, then we are clearly done. We therefore need only consider the case
where the action spaces will be contained in [0, 1]. Due to the compactness
of this interval, there will be a convergent subsequence of ci |i such that the
k + 1th action converges to some γ ∈ [0, 1]. Call this subsequence di |i.
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We argue that γ is in the limit action space of the k + 1th action. For
purposes of contradiction, assume this is false. Let δ be the length from γ to
the closest point in the limit action space (i.e. the action space in the limit
given by the kth action played by the mediator). Then there exists some M
such that after the M th element in di |i, the closest point in the k+ 1th action
space to γ is at least δ/2 away. Moreover, there exists some N such that
after the N th element in di |i the k + 1th action is no further than δ/3 to γ.
Elements of di |i after element max(M,N) then simultaneously must have the
k+ 1th action space be at least δ/2 away from γ and have a point at most δ/3
away from γ. This is a clear contradiction.

Lemma 4. For every k, if we have a convergent sequence of action tuples
where the kth action from the end is SPNE, then the kth action from the
end for the limit action tuple is also SPNE. That is, for every k, convergent
sequences of (r − k + 1)-SPNE action tuples are (r − k + 1)-SPNE.

Proof. We prove the result by induction on k.
Base Case (k = 0): This is vacuously true.
Induction hypothesis (k = m): Assume convergent sequences of (r−m+1)-

SPNE action tuples are (r −m+ 1)-SPNE.
Induction step (k = m + 1): Let ai |i= (ai1, ..., air) |i be a convergent

sequence of (r−m)-SPNE action tuples with the limit action tuple (a1, ..., ar).
We wish to show that if all actions before the last m + 1 actions play their
limit actions, then the remaining m + 1 actions are SPNE — note that by
Lemma 3 we know that the limit sequence is a valid action tuple.

Let p be the player that commits the m+ 1th action from the end. If p is
the mediator, then by the definition of mediated games the desired statement
is true (specifically via the allowed-edges-closedness condition). Now suppose
instead that p is not the mediator, and simply a regular player. We show if
the m + 1th action from the end took on some other valid value α 6= ar−m,
there exists SPNE strategies for the remaining m actions such that p achieves
a utility no higher than had it stuck with the limit action of ar−m.

So suppose the m + 1th action from the end in the ith element of the
sequence is αi such that limi→∞ α

i = α. Since ai |i is a sequence of (r −m)-
SPNE action tuples, we can construct the sequence:

bi |i= (ai1, ..., air−m−1, α
i, ãi1, ..., ã

i
m) |i

where the ãij are SPNE actions such that p achieves at most the utility achieved
by instead playing air−m. Via Lemma 3, bi |i must have a convergent subse-
quence — call ci |i and indexed by increasing function σ. That is, ci = bσ(i).
ci |i is then a convergent sequence of (r−m+1)-SPNE action tuples and thus,
by the inductive assumption, its limit action tuple is also an (r−m+1)-SPNE.

Now consider the limit action tuple (a1, ..., ar) (of ai |i) and the limit action
tuple of ci |i denoted by (c1, ..., cr). Note that:
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1. ∀i < r −m: ai = ci.

2. By the continuity requirement of mediated games (where Vp is the utility
function of p):

Vp(a1, ..., ar) = lim
i→∞

Vp(ai1, ..., air)

= lim
i→∞

Vp(aσ(i)
1 , ..., aσ(i)

r )

≥ lim
i→∞

Vp(aσ(i)
1 , ...a

σ(i)
r−m−1, α

σ(i), ã
σ(i)
r−m+1, . . . , ã

σ(i)
r )

= lim
i→∞

Vp(ci1, ..., cir)

= Vp(c1, ..., cr).

These two points imply that we can set SPNE strategies for the remaining
m actions such that the utility of p playing α is less than or equal to if it
plays ar−m for the m + 1th action from the end (when the actions preceding
the m + 1th action from the end are those given in the limit action tuple
(a1, ..., ar)). As the α was arbitrary, the m + 1th action from the end of
(a1, ..., ar) can be made an SPNE action, which completes the proof.

Lemma 5. All mediated games have an SPNE.

Proof. We prove the lemma via induction on the height of the game tree.
Note that this is possible as mediated games (like extensive-form games) are
recursive: the children of a node of a mediated game are mediated games.

Base case (at most 0 actions): This is vacuously true.
Induction hypothesis (at most k actions): Assume we have shown that any

mediated game with a game tree of height at most k has an SPNE.
Induction step (at most k + 1 actions): Let p be the player that commits

the first action. If p is the mediator, any action that is an allowed edge will be
SPNE; and if no such action exists, any action will be SPNE (as the mediator
is doomed to a utility of 0). Now suppose p is not the mediator.

Assume by the inductive assumption, once p makes its move, all remaining
(at most) k actions are SPNE actions. By the definition of a mediated game,
p’s utility is bounded. Then the least upper bound property of R implies that
p’s utility as a function of the first action must have a supremum S. Via the
axiom of choice, we construct a sequence of possible actions for the first action
that approaches S in p’s utility. That is, we have some sequence xi |i such
that if p plays xi for the first action, it achieves some utility f(xi) — where
limi→∞ f(xi) = S. Moreover, let g(xi) map the action xi to a tuple of the
remaining actions — which are SPNE. By Lemma 3 (xi, g(xi)) |i must have a
convergent subsequence (yi, g(yi)) |i that converges to (y, g(y)) — where y is
a legal first action and g(y) are legal subsequent actions.

Notice that (yi, g(yi)) |i is a convergent sequence of 2-SPNE action tuples
and thus by Lemma 4, (y, g(y)) is a 2-SPNE action tuple as well. Furthermore,
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note that by the continuity requirement of mediated games, y must give p a
utility of S. Therefore, this must be an SPNE action and so we are done.

With this machinery in hand, we are now ready to complete the proof of
Theorem 9. Our main task is to make a formal connection between mediated
games and (informed) GCC protocols.

of Theorem 9. Suppose we have a n-player GCC protocol P with a bounded
number of steps and and set valuations of the players V1, ..., Vn. Then we wish
to prove that there exists an informed GCC protocol P ′ that is equivalent to
P up to tie-breaking such that the game induced by P ′ and V1, ..., Vn has an
SPNE.

Outfit P as a game M , such that all but the final condition of mediated
games are satisfied — that is, the mediator enforces the rules of P and achieves
utility 1 if it follows the rules of P and 0 otherwise. More explicitly, the
mediator plays every second action and upon examination of the history of
events (i.e. the ordering of the cuts made thus far, and results of choose
queries), decides the next player to play and their action space based on the
prescription of P. To see how all but the last condition is satisfied, we go
through them in order.

1. This is by definition.

2. The height of the tree is twice the height of the GCC protocol.

3. The mediator’s utility is bounded by 1 by definition, and all other
player’s utilities are bounded by 1 as that is their value of the entire
cake.

4. This is by definition.

5. When the mediator wishes to ask a Cut query to player i in the interval
[a, b], it plays the action (i, (a, b)), whereas when it wishes to ask a
Choose query to player i giving them the choice between the xth1 , ..., xthk
pieces from the left, it plays the action (i, {x1, ..., xk}). This method
of giving choose queries deviates slightly from the definition given in
Section 4.2, but the two representations are clearly equivalent.

6. The allowed edges are ones that follow the rules of P.

7. This property is only relevant when considering Cut nodes. To establish
it, first consider the action in a single Cut node, and fix all the other
actions. We claim that for every ε > 0 there exists δ = δ(ε) > 0 that
is independent of the choice of actions in other nodes such that moving
the cut by at most δ changes the values by at most ε. Indeed, let us
examine how pieces change as the cut point moves. As long as the
cut point moves without passing any other cut point, one piece shrinks



4.8. PROOF OF THEOREM 7 61

as another grows. As the cut point approaches another cut point, the
induced piece — say k’th from the left — shrinks. When the cut point
passes another cut point x, the k’th piece from the left grows larger, or
it remains a singleton and another piece grows if there are multiple cut
points at x. In any case, it is easy to verify that the sizes of various
pieces received in Choose nodes change by at most δ if the cut point is
moved by δ. Furthermore, note that the number of steps is bounded by
r and — since the value density functions are continuous — there is an
upper bound M on the value density functions such that if y − x ≤ δ′

then Vi([x, y]) ≤ Mδ′ for all i ∈ N . Therefore, choosing δ ≤ ε/(Mr) is
sufficient. Finally, V1, . . . , Vn are continuous even in the actions taken in
multiple Cut nodes, because we could move the cut points sequentially.

We now alterM such that at every branch induced by a comparison of cuts
via an If-Else, we allow in the case of a tie to follow either branch. Formally,
suppose at a branch induced by the statement “if x ≤ y then A else B” we
now set in the case of x = y the edges for both A and B as allowed. Then we
claim the property of allowed-edges-closedness is satisfied.

To see this, let us consider action tuples. An action tuple where the media-
tor in M only plays on allowed edges can be viewed as a trace of an execution
of P which records the branch taken on every If-Else statement — though
when there is a tie the trace may follow the “incorrect” branch. A convergent
sequence of such action tuples at some point in the sequence must then keep
the branches it chooses in the execution of P constant — unless in the limit,
the cuts compared in a branch that is not constant coincide. Thus, we have
that in the limit, if a branch is constant, the mediator always takes an allowed
edge trivially, and otherwise due to our modification of M the mediator still
takes an allowed edge. Furthermore, for all actions of the mediator that are
not induced by If-Else statements, the mediator clearly still plays on allowed
edges and so we have proved the claim.

Now as M is a mediated game, it has an SPNE S by Lemma 5. Let P ′ be
the informed GCC protocol equivalent to P up to tie-breaking such that for
every point in the game tree of M that represents the mediator branching on
an “if x ≤ y then A else B” statement in the original protocol P, P ′ chooses
the A or B that S takes in the event of a tie. Then the informedness of the
tie-breaking is built into P ′ and we immediately see that the SPNE actions of
the regular players in M correspond to SPNE actions in P ′.





Chapter 5

A Dictatorship Theorem

As already observed in the previous chapters, the classical discrete protocols
are not strategy-proof [28, 43, 84], i.e., there are scenarios (possible behaviors
of the other players) in which it is possible for a player to get a piece of strictly
larger value by misrepresenting its valuation function than by behaving truth-
fully. This begs the question of whether alternative strategy-proof protocols
can be constructed. Addressing this question, Kurokawa et al. [84] showed a
negative result: For any number of players n ≥ 2, there is no Robertson-Webb
protocol of complexity bounded only by a function of n (i.e., independent of
the valuations) that is strategy-proof and computes an envy-free allocation.

The main results of this chapter are impossibility theorems closely releated
to the result of Kurokawa et al., but rather than stating that no fair allocation
can computed, we essentially state that no reasonable allocation can be com-
puted at all; thus, the "unfairness conclusions" of our theorems are stronger.
Also, we do not need to make any assumption about the complexity of the
protocols.

For two players, our result is particularly strong, with a conclusion sim-
ilar to the classical dictatorship results of social choice theory, in particular
the Gibbard-Satterthwaite theorem [66, 114], which is a cornerstone of so-
cial choice theory and mechanism design. The Gibbard-Satterthwaite theo-
rem states that the only strategy-proof choice functions (i.e., direct revelation
mechanisms without money) for settings where players have general tie-free
preferences on at least three alternatives are dictatorships. Our theorem is
similar in spirit, but applies to a particular setting of restricted preferences
over allocations/alternatives (those induced by value density functions as de-
scribed above) and a restricted class of indirect revelation mechanisms:

Theorem 11. Suppose a deterministic cake cutting protocol for two players
in the Robertson-Webb model is strategy-proof. Then, restricted to hungry
players, the protocol is a dictatorship.

63
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Theorem 12. Suppose a deterministic cake cutting protocol for n ≥ 3 hungry
players in the Robertson-Webb model is strategy-proof. Then, in every outcome
associated with truthful reports by hungry players, there is at least one player
that gets the empty piece (i.e., no cake).

Recall we say that a player i is hungry if its value density function vi is
hungry, i.e., satisfies vi(x) > 0 for all x. We say that a protocol is a dic-
tatorship if there is a fixed player (the dictator) to whom the entire cake is
allocated in all truthful executions of the protocol, no matter what the value
density functions are1.

5.1 Comments on the Impossibility Theorems

The theorems refer to the Robertson-Webb model as formalized originally by
Woeginger and Sgall [126]. Recall that the alternative formulation given by
Procaccia is more permissive, such as:

“Allocate [0, 0.5) to player 1 and [0.5, 1] to player 2”

This protocol is clearly strategy-proof but not a dictatorship. The only
difference between the two formalizations is that the Woeginger-Sgall version
requires all cut points to be defined by the players rather than by the center.
This property is essential for the theorems and their proofs.

Theorem 11 fails without the restriction to hungry players. The next
protocol can be formalized in the Robertson-Webb model and is strategy proof
but not a dictatorship (unless restricted to hungry players, in which case player
2 becomes the dictator):

“Ask player 1 to cut the cake in two pieces that are of equal value
to him. If player 2 assigns strictly positive value to both of these
pieces, give player 2 the entire cake, otherwise give player 1 the
piece to which player 2 assigns 0 value and player 2 the other
piece”

The conclusion of Theorem 12 cannot be improved to the protocol being a
dictatorship. Indeed, consider the following protocol: "Player 1 cuts the cake
in two pieces of equal value. Player 2 takes the piece it prefers. Player 3 takes
the remaining piece." Player 1 never receives anything, so it has no incentive
to misreport. Player 2 can always select its most preferrred piece, so it has
no incentive to lie either. Finally, player 3 takes the remaining piece without

1This is consistent with the standard meaning of "dictatorship" in social choice theory:
For all preference profiles, the social choice is the most preferred alternative of the dictator.
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making any report; thus the protocol is strategyproof. However, it is not a
dictatorship.

Our main theorem is of relevance to the general discussion about the merits
of indirect revelation mechanisms versus direct revelation mechanisms. The
revelation principle [102] informally states that any indirect revelation mech-
anism can be converted to an "equivalent" direct revelation mechanism. Con-
cretely, if we had a strategy-proof Robertson-Webb protocol computing, say,
an envy-free allocation, we would also have a strategy-proof direct revelation
mechanism doing so. The revelation principle can be and often is used as mo-
tivation to focus research on direct revelation mechanisms. However, in the
cake cutting scenario (and in many other scenarios), direct revelation would
require submitting an infinite amount of information (in the cake cutting case,
the value density function) which is not realistic, making models such a the
Robertson-Webb model where players interact through a protocol in which
information is revealed gradually the main object of study. But our main
theorem shows that this can easily reduce drastically or even trivialize what
can be done in a strategy-proof way (in particular, there are many strategy-
proof direct revelation mechanisms for cake cutting with non-trivial fairness
properties [95, 99? ]).

5.2 The Robertson-Webb model

Recall the Robertson-Webb model (as formalized by Woeginger and Sgall
[126]) – the protocol and the players interact through the following types of
queries:

• Cut(i;α): Player i cuts the cake at a point y where Vi([0, y]) = α. The
point y becomes a cut point.

• Eval(i; y): Player i returns Vi([0, y]) where y is a previously made cut
point.

The queries made by the protocol may depend on the history (i.e. answers
to previous queries). At termination, the cut points define a partition of the
cake into a finite set of intervals that the protocol allocates to the players in
some specified way.

To make the definition rigorous, we formally define a Robertson-Webb
protocol as an infinite decision tree (see Figure 5.1) where each internal node
X is labeled with the query made if X is reached. There is a directed outgoing
edge e from such a node X for every possible answer to the given query (i.e.,
infinitely many), and the node Y reached through edge e is either an internal
node, or a leaf containing the resulting allocation if the path to Y is taken. We
require that the protocol does not ask for information it already knows and
does not accept information from the players that is inconsistent with previous
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Figure 5.1: Representation of a Robertson-Webb protocol as an infinite deci-
sion tree

replies (e.g., reports that implies negatively valued subintervals). We require
that the protocol terminates (reaches a leaf) for every profile of value density
functions, if players report truthfully. If truthful reporting according to a
value density function profile v makes the protocol reach a leaf u, we say that
v is associated with u and vice versa.

Without loss of generality, protocols can be assumed to have alternating
Cut and Eval queries: For any protocolM, there is an equivalent protocolM′
that after every cut asks for the values for all players of the newly generated
subintervals and produces allocations identical to M on every instance. We
say that a protocol is strategy-proof if for every profile of value density function
it holds that truthful reporting is a dominant strategy for each player i, when
the protocol is viewed as a complete and perfect information extensive form
game where players choose strategically what to report.

Viewing the protocol as a complete and perfect information extensive form
game this way in particular entails assuming that all communication between
players and center is broadcast and accessible to all players. In addition, the
transformation of a protocol M to a protocol M′ with alternating Cut and
Eval queries as described above preserves strategy-proofness: any extra Eval
queries introduced in the transformation are payoff irrelevant "cheap talk" seen
from the point of view of the players.

The following lemma will be useful.

Lemma 6. LetM be a strategy-proof Robertson-Webb protocol for two players
that is not dictatorial when restricted to hungry valuations. Then, in no leaf
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of M reached under truthful reporting for some profile of hungry valuations,
is the entire cake given to a single player.

Proof. Assume to the contrary that at a reachable leaf u the entire cake is
allocated to a single player, say, player 1. Let v = (v1, v2) be the profile of
hungry value density functions associated with u. Since the protocol is not
dictatorial when restricted to hungry players, there is another reachable leaf
u′ where player 1 does not receive the entire cake. Let v′ = (v′1, v′n) be a
profile of hungry value density functions associated with u′. Consider now the
outcome when players report according to the profile w = (v′1, v2). It must be
the case that player 1 receives the entire cake in this outcome; otherwise the
protocol is not strategy-proof, as player 1 could misrepresent his value density
function as v1 and get the entire cake, assuming that the other player reports
according to v2. But this means that when the protocol is played with profile
w, player 2 would benefit from misrepresenting his value density function as
v′2 rather than v2, as he would then receive a non-empty piece rather than
nothing at all. This contradicts the strategy-proofness ofM.

5.3 Proof of the main theorems
For the proof of the theorems, it is convenient to define a restricted kind of
protocols where the physical locations of the cut points do not matter; instead,
the protocol is only concerned with the values that the players have for the
generated pieces. We call such protocols strictly mediated and observe that in
fact, all classical protocols in the Robertson-Webb model belong to this class.
Strict mediation can be interpreted as the center not having direct access to
the cake; instead, it can only see it through the eyes of the players.

Definition 12 (Strictly Mediated Protocol). A strictly mediated protocol for
n players is an infinite decision tree containing two kinds of (internal) nodes
– Cut nodes and Eval nodes – and leaves:

• An Eval node is labeled by a pair of natural numbers (i, j) and has a
successor for each real number α ∈ (0, 1).

• A Cut node is labeled by a pair of natural numbers (i, j) and a real
number α ∈ (0, 1) and has a single successor.

• Each leaf is labeled with a finite sequence of natural numbers in {1, . . . , n}.

The semantics is the following. At any point in the execution (at some node
u in the tree), a set of cut points x0 = 0 < x1 < x2 < · · · < xk < xk+1 = 1
has been defined (where k is the number of cut nodes above u):

• When an Eval node X with labels (i, j) is reached, player i is asked
for its value of interval [xj , xj+1]; given the player’s answer, α ∈ (0, 1),
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execution moves to the successor node reached along the edge labeled with
the value α.

• When a Cut node with labels (i, j, α) is reached, player i is asked to
define a new cut point x′ somewhere between xj and xj+1 so that his
value of the interval [xj , x′] is an α-fraction of his value of the interval
[xj , xj+1].

• When a leaf node with labels (i0, i1, . . . , ik) is reached, each interval
(xj , xj+1) is allocated to player ij, with the cut points themselves given
arbitrarily.

For convenience, we have defined strictly mediated protocols as a separate
model rather than as a special case of Robertson-Webb protocols. However,
given a strictly mediated protocol, it is easy to define a Robertson-Webb
protocol that simulates it, so we shall also consider strictly mediated protocols
as a special case of Robertson-Webb protocols.

To get some intuition, consider the following example.

Example 3. Let M be some strictly mediated protocol that on an execution
path reaches a leaf where the cut points discovered are {0.1, 0.7}, and the values
of the players for each subinterval are:

• Player 1 has: V1([0, 0.1]) = v1, V1([0.1, 0.7]) = v2.

• Player 2 has: V2([0, 0.1]) = w1, V2([0.1, 0.7]) = w2.

Say that M stopped after discovering these values and allocated the subinter-
vals in the order [1, 2, 1]; that is, player 1 received [0, 0.1]∪ [0.7, 1], while player
2 received [0.1, 0.7]. ThenM has the property that if the answers of the play-
ers resulted instead in a different set of cut points, {x1, x2}, but the evaluate
queries were answered in the same way (i.e. V1([0, x1]) = v1, V1([x1, x2]) = v2,
V2([0, x1]) = w1, V2([x1, x2]) = w2), thenM outputs the same allocation order
(i.e. player 1 gets [0, x1] ∪ [x2, 1] and 2 gets [x1, x2]).

The relevance of the strictly mediated model is apparent from the following
lemma.

Lemma 7. Assume there exists a strategy-proof protocol M for n ≥ 2 play-
ers with the property that there exists an outcome that is associated with a
hungry valuation profile and where every player receives a non-empty piece.
Then there exists a strategy-proof strictly mediated protocol R with the same
property.

Proof. Rather than formally describe the protocol R as a decision tree, we
give an informal description, from which a formal (but probably less readable)
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description as a decision tree could easily be derived. First, we describe the
idea of the construction.

The key constraint that a strictly mediated protocol has to satisfy is to
not let the sequence of queries it makes nor its final allocation depend on the
exact physical location of the cut points. It can only let these actions depend
on the reports of the players. With this in mind, the idea of the protocol R is
to directly simulate the protocolM step by step. But since the protocolM
might have behavior that depends on the physical location of the cut points,
we let R maintain a list of fictitious or pretend locations y∗t , t = 1, . . . , k in
(0, 1) that it feeds toM instead of the actual cut points yt, t = 1, . . . , k made,
preserving order, i.e, with the invariant maintained that y∗t < y∗t′ if and only
if yt < yt′ for all t, t′. An alternative point of view is that R, being strictly
mediated, has no precise measuring device that can determine exactly where
the players make the cut points, but that it makes its own primitive yardstick
as it goes along, using the cut points actually made by the players as marks
on its yard stick. However, we also have to make sure that we preserve the
outcome ofM where all players get a piece. Therefore, R has to be somewhat
careful when defining the fictitious cut points.

Let X be some outcome (leaf) ofM that is associated with a hungry value
density function profile and in which all players receives a non-empty piece.
Concretely, R simulatesM as described in the next cases.

• Case 1: Whenever the protocol M wants to ask player i a cut query
Cut(i;α), the protocol R computes numbers t, t′, α′ and by a Cut query
asks player i to specify a point yt in the subinterval [yt′ ; yt′′ ] between
existing cut points yt′ and yt′′ for which Vi([yt′ , yt]) = α′. The numbers
t′, t′′, α′ are computed so that a truthful player i will execute exactly
the Cut(i;α) query. This computation can be performed by R for the
following reason. As we explained when we defined the Roberson-Webb
model, we maintain the invariant that all new subintervals are evaluated
by all players after each Cut query in the original protocol M. As R
simulates M step by step, R also maintains this knowledge. When
player i returns the new cut point yt from the Cut query, the protocol R
needs to find a suitable fictitious cut point y∗t . There are two sub-cases:

– In the execution of M, it is still possible to reach X (i.e., X is
a descendant of the Cut(i;α) node that R is simulating at the
moment). In this case, there is a unique value for the cut point
that will keep this possibility open by keeping the exeuction ofM
on the path to X. We let y∗t be this unique value.

– In the execution ofM, it is no longer possible to reach X. In this
case, we let y∗t = (y∗t′ + y∗t′′)/2.

In both sub-cases, we feed y∗t back toM as the fictitious answer to the
Cut query Cut(i;α).
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• Case 2: Whenever M asks player i an Eval query Eval(i; y∗t′) where
yt′(y∗t′) is a new real (fictitious) cut point, R asks player i to evaluate
[yt′′ , yt′ ] where y′′ is the largest cut point smaller than yt′ (or 0, if no
such cut point exists). As yt′′ is an older cut point, R already knows a
report for Vi([0, yt′′ ]) and can return a report for Vi([0, yt′′ ]) as the sum
of these reports toM.

• Case 3: Finally, whenM makes an allocation in the end, R allocates
each subinterval [yt′ , yt′′ ] to the player to whichM allocates (yt′ , yt′′).

Now we check that R has the desired properties:

• (Strict mediation) By construction, R is strictly mediated.

• (Shared leaf ) By construction, there is an outcome of R associated with
a hungry valuation profile where all players get a piece of the cake,
namely the hungy value density function profile where players answer
Eval queries in the way that keeps the execution of M on the track to
X.

• (Truthfulness) Finally, suppose that R is not truthful. That is, there
is a scenario where a player, say player 1, has value density function v,
and there is a strategies σi for players i = 2, .., n in R, so that truthful
reporting is not an optimal strategy for player 1. Then some other
strategy π is strictly better, yielding an increase in payoff δ > 0. We
claim that then there is a value density function v′ for player 1 and
strategies σ′i for players i = 2, .., n in M so that truthful reporting is
not an optimal strategy for player 1. Hence M is also not truthful,
contradicting the assumption onM. We define:

– v′ simply to be any value density function that is consistent with
the reports thatM receives by R when R is given input v and

– σ′i to be the strategy of reporting to M the way R reports to M
for player i, when player i plays according to σi in R.

Then truthful reporting of v′ is not optimal for player 1 in M, if all
players i = 2, .., n play according to σi, since player 1 would get an
increase in payoff of δ by playing the strategy π′ of reporting toM the
way R reports toM for player 1, when player 1 plays using π in R.

Our next lemma shows that strategy-proof strictly mediated protocols are
very restricted in their behavior.

Lemma 8. Let M be a strictly mediated protocol for n ≥ 2 players that
has some outcome, with an associated hungry valuation profile, in which each
player receives a non-empty piece. ThenM is not strategy-proof.
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Proof. Let X be a leaf of the protocol, associated with a hungry value density
function profile v, in which an allocation is made where all the players receive
a non-empty piece. Denote by x1 < x2 < · · · < xM the labels of the cut
points defined on the path to X. (Note that they were not necessarily defined
in that order on the path - the indices here indicate the order of the cut points
according to usual ordering of real numbers. Also note that since the protocol
is strictly mediated, x1, . . . , xM are symbolic label names rather than actual
real numbers.) Without loss of generality, assume thatM asks the first Cut
query to player 1. Since the allocation at X is non-dictatorial, then we have
the following:

• player 1 does not receive the entire cake

• player 1 receives at least one subinterval, say (xk−1, xk).

Suppose any concrete sequence x∗1 < .. · · · .. < x∗M of real numbers strictly
between 0 and 1 is given. By continously deforming v, we can construct a
hungry value density function profile v∗ associated with the leaf X so that
when the protocol is executed on v∗, the actual cut point with label xi becomes
x∗i . That is, the allocation order (from left to right) computed by M is the
same for both valuations, v∗ and v′ – for example, if player 2 gets the piece
[0, x∗1] on input v∗, then player 2 also gets the piece [0, x′1] on input v′, and
viceversa.

We shall define two such valuation profiles (see Figure 5.2), namely v∗
(with actual cut points x∗1 < .. · · · .. < x∗M ) and v′ (with actual cut points
x′1 < · · · < x′M ). We choose v∗ to be an arbitrary hungry profile associated
with X. Let w∗ be the valuation of player 1 for his piece in the outcome
associated with v∗; since player 1 does not receive the entire cake at X, we
have that w < 1. The profile v′ is constructed and its cut points are chosen so
that x′k−1 < x∗1 < · · · < x∗M < x′k. Moreover, x′k−1 is chosen sufficiently close
to 0 and x′k sufficiently close to 1, to ensure that the valuation of player 1 for
(xk−1, xk) according to v∗ is strictly larger than w. Since v′ is associated with
X, player 1 gets the subinterval (x′k−1, x

′
k) when both players report according

to v′.
Consider now the following strategy σi for each other player i ∈ {2, . . . , n}:

1. If player 1 answers the first cut query according to a valuation consistent
with v′, then player i answers for the remainder of the protocol as if his
valuation is also consistent with v′.

2. Otherwise, player i answers truthfully throughout the protocol.

Observe that since the first Cut query is addressed to player 1, the answer
of the player will be different under valuations v∗ and v′ by choice of the two
profiles.
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Figure 5.2: Valuation profile v∗ at the top and v′ at the bottom. The cut
points x∗1, . . . , x∗M are completely contained in the interval (x∗k−1, x

′
k).

Suppose the true type profile of the players is v∗ and players 2, . . . , n adopt
strategies σ2, . . . , σn, respectively. Then, if player 1 answers truthfully, it gets
in the end a piece worth w to the player. However, if player 1 lies by answering
according to a valuation consistent with v′, then in the end it gets a piece for
which (xk−1, xk) is a subset. Since the value of player 1 for this interval alone
is strictly larger than w∗,M is not strategy-proof.

We are now ready to prove our two main theorems.

Proof. (of Theorem 11) Suppose we have a strategy-proof protocolM which is
not a dictatorship when restricted to two hungry players. We have by Lemma
6 that it non-trivially shares the cake between the players in all outcomes cor-
responding to truthful reports of hungry value density functions. By Lemma
7, there is a strategy-proof strictly mediated protocol with an outcome in
which the cake is shared. But this contradicts Lemma 8.

Proof. (of Theorem 12) Suppose we have a strategy-proof protocol M with
some outcome where n ≥ 3 players get a non-empty piece. By Lemma 7, there
exists a strategy-proof strictly mediated protocol R with the same property.
This contradicts Lemma 8.

5.4 Randomized Protocols

In this section we turn to randomized protocols in the Robertson-Webb model.
A randomized protocol can formally be defined similar to the definition of de-
terministic protocols in Section 5.2, except that the decision tree now contains
three types of internal nodes: cut nodes, evaluate nodes, and chance nodes.
The cut and evaluate nodes are the same as for deterministic protocols, while
each chance nodeX has some number of directed outgoing edges, each of which
is labeled with the probability of being taken when the execution reaches the
node X.
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K ←
⌈

2n(n−1)
ε

⌉
for each player i ∈ {1, . . . , n} do

xi,0 ← 0
xi,K+1 ← 1
for each j ∈ {1, . . . ,K} do

xi,j ← Cut
(
i; j
K

)
end for

end for
X ←

⋃n
i=1{xi,1, . . . , xi,K}

for each subset Y ⊆ X, with |Y | ≤ n(n− 1) do
for each allocation (A1, . . . , An) definable by cuts in Y do

for each i, j ∈ {1, . . . , n} do
ni,j ← #{k ∈ {0, . . . ,K} | (xi,k, xi,k+1) ⊆ Aj}
wi,j ←

(
1
K

)
· ni,j

end for
if
(

1
n −

2
K ≤ wi,j

)
and

(
wi,j ≤ 1

n + 2
K

)
, for all i, j then

π ← RandomPermutation ({1, . . . , n})
for each player i ∈ {1, . . . , n} do
Wπi ← Ai // Player π(i) gets piece Ai

end for
return W

end if
end for

end for
Algorithm 6: Randomized Robertson-Webb protocol that is truthful in ex-
pectation and almost perfect

Recall that Mossel and Tamuz [99] showed a randomized direct revelation
protocol that is truthful in expectation and computes a perfect allocation, that
is, an allocation A = (A1, . . . , An) where Vi(Aj) = 1/n, ∀i, j ∈ N :

Given as input valuations V1, . . . , Vn, find a perfect partition A =
(A1, . . . , An) and allocate it using a random permutation π over
{1, . . . , n} (i.e. player i receives the piece Aπi).

This protocol is well-defined, but not constructive. Here, we observe that
we can “discretize" the Mossel-Tamuz protocol to get an explicit Robertson-
Webb protocol that is truthful in expectation and computes an "almost per-
fect" allocation.

Theorem 13. Given ε > 0, there is a randomized Robertson-Webb protocol
Mε that asks at most O(n2/ε) queries, is truthful in expectation and allocates
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to each player a piece of value between 1/n− ε and 1/n+ ε, according to the
valuation functions of all players.

The protocol is stated as Algorithm 2. Given ε, the protocol asks the
players to divide the cake in many small cells (worth ≈ ε

2n(n−1) each), and
then uses the grids supplied by the players to search for an almost perfect
allocation.

Proof. Our main tool is a lemma due to Alon [2].

Lemma 9. Let µ1, µ2, . . . , µt be t continuous probability measures on the unit
interval. Then it is possible to cut the interval in (k−1) ·t places and partition
the (k − 1) · t + 1 resulting intervals into k families F1,F2, . . . ,Fk such that
µi (

⋃
Fj) = 1/k, for all 1 ≤ i ≤ t, 1 ≤ j ≤ k. The number (k − 1) · t is best

possible.

Given ε > 0, letMε be the protocol in Algorithm 5.4.
At a high level, protocolMε asks each player to divide the cake in many

small cells (K of them) of equal value 1/K; thenMε exhaustively enumerates
all subsets Y of size bounded by n(n− 1) from the cut points supplied by the
players.

Given that a perfect partition is guaranteed to exist on the continuous cake
within at most n(n−1) cuts by Alon’s lemma, one of the sets Y is guaranteed
to work. That is, Mε finds a set of points Y and an allocation A that uses
exclusively cut points in Y such that:

• every point in Y is close to a cut point of a perfect partition Ā on the
continuous cake (within distance at most 1/K from the point of view of
each player)

• the allocation order (from left to right) in A is the same as the one in
Ā.

Then for each contiguous piece X ∈ A, the value of a player i for X is the same
as player i’s value for the corresponding piece X̄ in the perfect partition Ā,
except possibly for a gain or loss of 2/K due to estimation errors (at most 1/K
at each endpoint of X) It follows that A approximates Ā within an error of at
most ε. Finally, onceMε finds an appropriate partition, it allocates it using
a random permutation π, and so the expected value of each player is exactly
1/n, regardless of the strategies of the other players, as in the Mossel-Tamuz
protocol. ThusMε is truthful in expectation and ε-perfect.



Chapter 6

Simultaneous Cake Cutting

In this chapter, we introduce a novel computational model that, we believe,
provides a fundamentally new perspective on cake cutting; we call it the si-
multaneous model. In our model, the players simultaneously report compact
versions of their preferences, specifically, their values for specific pieces of cake;
this information is used to compute a fair allocation, without further commu-
nication between the players. We define the complexity of a simultaneous
protocol as the maximum number of pieces whose values a player may need
to report.1

Cake cutting protocols in the simultaneous model have two advantages
compared to their counterparts in the Robertson-Webb model:

1. Elicitation of preferences can be done in parallel.

2. The existence of computationally efficient simultaneous protocols would
imply that players’ valuation functions can be sketched in a way that
preserves sufficient information for recovering a fair cake division (via
the protocol).

On the other hand, the simultaneous model severely restricts the power of
protocols. Is the restriction so severe that fair divisions, according to standard
fairness properties, cannot be computed? Our research question is

... which fairness properties are computationally feasible in the
simultaneous model, and what is the complexity of computing cake
divisions satisfying those properties?

Our simultaneous model of cake cutting is related to, and conceptually
draws on, work on communication complexity [85] and streaming algorithms [101].

1This definition is better, formally and intuitively, than taking the overall amount of
communication (summed over all players); it is also consistent with related work on com-
munication complexity [82].

75
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In particular, Kremer et al. [82] studied the relation between one-round com-
munication complexity and simultaneous communication complexity. Simi-
larly to our model, streaming algorithms deal with compact representations
— called sketches — of data. Some papers focus specifically on sketching
valuation functions or preferences in various contexts [11, 12, 39].

6.1 The Simultaneous Model

We define a discretization of the cake as a tuple (x̄, w̄), for which there exists
m ∈ N such that:

• x̄ = (x0, x1, . . . , xm−1, xm) is a sequence of cut points with 0 = x0 <
x1 < · · · < xm−1 < xm = 1.

• w̄ = (w1, . . . , wm) is a sequence of values, such that wi represents the
value of the piece [xi−1, xi] and w1 + . . .+ wm = 1.

Let D denote the space of all discretizations. Then a one-round protocol can
be defined as follows:

Definition 13 (Simultaneous protocol). A simultaneous protocol is a function
F : V → D, where V is the space of valuations, D is the space of discretizations
of the cake, and F(V ) is the discretization that a player is instructed to report
when his valuation function is V .

One could alternatively define a simultaneous protocol as reporting a set
of (possibly overlapping) subintervals and their values. However, the two
definitions are essentially equivalent for our purposes.

Note that in this section an allocation of the cake is denoted by A =
(A1, . . . , An). We focus on the Robertson-Webb model as formalized by Pro-
caccia [109].

What does it mean for a simultaneous protocol to satisfy a property, such
as envy-freeness, proportionality, or Pareto optimality? This question involves
surprising subtleties even in the Robertson-Webb model, and so the definition
must be carefully chosen. Very roughly speaking, the main difficulty (in both
models) is that players could potentially use an injection from the space of
valuation functions to [0, 1] to encode their entire valuation function as a
single number (e.g., the first cut point they make). For any given property,
that would give enough information to compute an allocation satisfying the
property (if one exists). The definition below circumvents this problem, by
capturing the idea that reporting a value for an interval commits the player to
a valuation function that actually assigns the reported value to that interval,
and nothing else.
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Definition 14 (Property of a simultaneous protocol). Let P be a property of
cake allocations. A protocol F satisfies property P if the following holds for
any tuple of valuation functions V̄ = (V1, . . . , Vn):

• Whenever each player i follows the protocol by reporting its recommended
discretization, (x̄i, w̄i) := F(Vi), there exists an allocation A that satis-
fies P with respect to any other valuations V̄ ′ = (V ′1 , . . . , V ′n) consistent
with the discretizations reported at V̄ (i.e., V ′i ([xj−1

i , xji ]) = wji , ∀i, j).

For example, let us describe an envy-free simultaneous protocol F for two
players. F(Vi) is the discretization (x̄i, w̄i) where x̄i = (x0

i = 0, x1
i , x

2
i = 1)

and w̄i = (1
2 ,

1
2), that is, each player essentially cuts the cake into two pieces

worth 1/2 using the cut point x1
i . Now assume without loss of generality that

x1
1 ≤ x1

2, and consider the allocation A1 = [0, x1
1], A2 = [x1

1, 1]. This allocation
is clearly envy-free for the reported valuation functions, and, moreover, it is
envy free for any valuation functions where V ′i ([0, x1

i ]) = V ′i ([x1
i , 1]) = 1/2 for

i = 1, 2.
In the Robertson-Webb model, the complexity of a protocol is the maxi-

mum number of cut and evaluation queries. We use an equivalent definition
in the simultaneous model.

Definition 15 (Complexity of a simultaneous protocol). The complexity of a
simultaneous protocol is the maximum number of intervals in the discretization
F(V ) taken over all V ∈ V (that is, the maximum number of cut points minus
one). If the maximum does not exist, we say that the protocol is unbounded.

For example, the complexity of the envy-free simultaneous protocol for two
players is 2.

6.2 Proportionality
We start by examining proportionality in the simultaneous model. In the
Robertson-Webb query model, the complexity of computing proportional al-
locations is Θ(n logn): an O(n logn) upper bound is given by the Even-
Paz [61] protocol, and a matching lower bound was established by Edmonds
and Pruhs [58].

Similarly, the simultaneous model turns out to admit the computation of
proportional allocations, but the complexity of proportionality in this model is
only Θ(n). For the upper bound, we describe a protocol that is a simultaneous
interpretation of a protocol designed in a different context by Manabe and
Okamoto [91]. Importantly, this protocol requires Θ(n2) cut queries in the
Robertson-Webb model; but the simultaneous model allows us to implicitly
parallelize the queries to the players, leading to a reduction in complexity. The
simultaneous model captures the insight that the information elicited from one
player does not need to rely on the information elicited from another.
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Theorem 14. There exists a proportional simultaneous protocol with com-
plexity n.

Proof. Consider the following simultaneous protocol:

• Map the valuation function of each player to n disjoint contiguous in-
tervals of value exactly 1/n each.

Formally, the discretization is defined by x̄i = (x0
i , . . . , x

n
i ) and wji = 1/n, for

all j = 1, . . . , n.
Given the intervals submitted by the players, we produce an allocation by

scanning the cake from left to right until the first mark, x1
i1 , of some player

i1 ∈ N is encountered. Allocate the piece [0, x1
i1 ] to player i1. Then, scan to

the right starting with the point x1
i1 while looking for the second mark x2

i2 of
some player i2 ∈ N \{i}. Allocate the piece [x1

i1 , x
2
i2 ] to player i2 and continue

in this fashion until the entire cake is allocated.
To see why the protocol is proportional, note that for player it that was

allocated in round t, xt−1
it
≥ xt−1

it−1
, because it was not selected in round t− 1.

Thus, [xt−1
it

, xtit ] ⊆ [xt−1
it−1

, xtit ]. Moreover, Ait = [xt−1
it−1

, xtit ] and Vit([x
t−1
it

, xtit ]) =
1/n, thus Vit(Ait) ≥ 1/n.

Next, we show the bound given in Theorem 14 is tight.

Theorem 15. Every proportional simultaneous protocol has complexity at
least n.

Proof. Assume by contradiction that there exists a proportional simultaneous
protocol F with complexity less than n. Without loss of generality, let Vn be
a valuation function such that F(Vn) reports the values of n−1 intervals with
cut points (x0

n, . . . , x
n−1
n ). (The case where the player reports fewer intervals

is similar.) Then the valuations of the other players can be set such that for
every player i ∈ N \ {n}, the entire value of the cake from the point of view
of player i is concentrated in the interval [xi−1

n , xin], that is, Vi([xi−1
n , xin]) = 1.

Let us now consider two (exhaustive) types of allocations. First, let A be an
allocation such that for all i ∈ {1, . . . , n−1}, player i gets a nonempty interval
Ii ⊆ [xi−1

n , xin]. We can define the valuation function V ′n where V ′n(Ii) =
Vn([xi−1

n , xin]) for all i ∈ {1, . . . , n− 1}. Then V ′n is consistent with player n’s
reported intervals, but V ′n(An) = 0, so the allocation is not proportional with
respect to V ′n.

Second, let A be an allocation such that there exists a player i ∈ {1, . . . , n−
1} that does not get a nonempty interval Ii ⊆ [xi−1

n , xin]. Then clearly Vi(Ai) =
0, and again the allocation is not proportional.
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6.3 (Approximate) Envy-Freeness, and Beyond

We have seen that simultaneous protocols can compute proportional alloca-
tions. For two players, proportionality and envy-freeness coincide, but for
more players, envy-freeness is strictly stronger. It has long been known that
envy-free allocations are guaranteed to exist, but it wasn’t until the nineties
that an envy-free protocol that can be simulated in the Robertson-Webb model
was discovered [20].

The Brams-Taylor protocol is finite (i.e. terminates on every instance), but
unbounded: its running time cannot be bounded by a function of the number
of players, and so the execution can take arbitrarily long depending on the
valuation functions themselves. It is an open problem whether a bounded
envy-free protocol exists in the Robertson-Webb model for any number of
players.

Our next result shows that no simultaneous protocol can be envy free.
Interestingly, this impossibility result does not assume that the protocol is
bounded: it says that there are valuation functions for which there is no dis-
cretization that is fine enough to guarantee envy-freeness in the simultaneous
model.

Theorem 16. For n ≥ 3 there does not exist an envy-free simultaneous pro-
tocol.

Proof. Let V1 be the uniform valuation function (i.e., its value density function
is v(x) ≡ 1), which yields a discretization F(V1) = (x̄1, w̄1) under protocol F .
Let there be m reported intervals, and denote Xi = [xi−1

1 , xi1] for i = 1, . . . ,m;
then wi1 = |Xi| = xi1−xi−1

1 . We will show that there exist valuation functions
for the other players such that no envy-free allocation can be computed from
these reported intervals.

Define a constant c ∈
(

1
w1

1+1 , 1
)
such that for all i ∈ N \ {1}, the value

density function vi of player i satisfies the following conditions:

(a) For all j ∈ {1, . . . ,m}, vi is constant on Xj .

(b) Vi(X1) = c · w1
1 + 1− c

(c) Vi(Xj) = c · wj1, for all j ∈ {2, . . . ,m}

(d) There do not exist distinct indices a1, . . . , ax ∈ {1, . . . ,m} such that the
following identity holds:

wa1
1 + · · ·+ wax1 = 1

c · n
.
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Note that any c ∈
(

1
w1

1+1 , 1
)
induces valid valuation functions that satisfy (b)

and (c), because

Vi([0, 1]) =
m∑
j=1

Vi(Xj) = c

 m∑
j=1

wj1

+ (1− c) = 1.

Moreover, constraint (d) can be satisfied because there is an (uncountably)
infinite number of possible values of c, and the constraint only rules out a
finite number of them.

Let A = (A1, . . . , An) be an allocation computed by the protocol. We
consider two cases, depending on whether the interval X1 is split or not among
the players.

Case I : Interval X1 is not split. We have several subcases:

(i) |A1| < 1
n : Then there exists another player i that receives a piece of

length at least 1
n and player 1 envies i.

(ii) |A1| ≥ 1
n and player 1 receives X1. Then the value of the other players

for the piece received by 1 is:

c · w1
1 + 1− c+ c(|A1| − w1

1) = c · |A1|+ 1− c

≥ c

n
+ 1− c.

The length of the piece for all the other players is at most n−1
n . Since the

remainder of the cake does not contain X1, the minimum value Vi(Ai)
— taken over all i ∈ {2, . . . , n} — is at most c

(
n−1
n

) (
1

n−1

)
= c

n . It
follows that there exists a player i that envies 1.

(iii) |A1| ≥ 1
n and a player i ∈ N \ {1} receives X1.

It must be the case that |Aj | = |Ak| for all j, k ∈ N \{i} to prevent envy.
For the same reason, we have Vj(Ai) = Vj(Aj) for all j ∈ {2, . . . , n}.
Therefore, all the players, except player 1, value A1, . . . , An equally. It
follows that Vj(A1) = 1

n for all j ∈ {2, . . . , n}. This implies that |A1| =
1
c·n , so by property (d), there exists a reported interval that is split
between player 1 and at least one other player. Now we can define V ′1
that is consistent with F(V1), where player 1’s value for its part(s) of
the split interval(s) is zero; then player 1 would be envious.

Case II : Interval X1 is split among at least two players. For each i ∈ N , let
A′i = Ai \X1. We have two subcases:

(i) There exists exactly one player i ∈ N \{1}, such that Ai∩X1 6= ∅. Then
A1 ∩X1 6= ∅. Consider another player j ∈ N \ {1, i}.
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• If |Aj | > |A′1|, let V ′1 be a valuation function consistent with F(V )
such that player 1 has a value of zero for his portion of X1. Then
V ′1(A1) = V ′1(A′1) < V ′1(Aj), violating envy-freeness.
• If |Aj | ≤ |A′1|, then Vj(A′1) ≥ Vj(Aj). Moreover, Vj(A1 \ A′1) > 0.

It follows that Vj(A1) > Vj(Aj), violating envy-freeness.

(ii) There exist distinct players i, j ∈ N \ {1} such that Ai ∩X1 6= ∅, Aj ∩
X1 6= ∅. Assume without loss of generality that player i’s piece satisfies
|Ai ∩X1| ≤ |X

1|
2 . Then

Vi(Ai ∩X1) ≤ 1
2(c · w1

1 + 1− c)

and Vi(A1) ≥ c|A′1|. It must also be the case that

|A′i| ≥ |A′1| −
1
2

(
w1

1 + 1
c
− 1

)
since otherwise

Vi(Ai) ≤ c|A′i|+
1
2
(
c · w1

1 + 1− c
)

< c

(
|A′1| −

1
2

(
w1

1 + 1
c
− 1

))
+ 1

2(c · w1
1 + 1− c)

= c|A′1|,

which would imply that Vi(A1) > Vi(Ai).
Consider V ′1 consistent with F(V1) such that V ′1(A1 ∩ X1) = 0, and
V ′1(Ai ∩X1) = w1

1. Then player 1’s value for i’s piece is:

V ′1(Ai) = w1
1 + |A′i| ≥ w1

1 + |A′1| −
1
2

(
w1

1 + 1
c
− 1

)
> w1

1 + |A′1| −
1
2(w1

1 + w1
1)

= |A′1| = V ′1(A1),

where the third transition holds by the choice of c ∈
(

1
w1

1+1 , 1
)
. Thus

player 1 envies player i.

Theorem 16 tells us that we cannot hope to obtain envy-free allocations
in the simultaneous model. However, it turns out that we can reach envy-free
allocations arbitrarily close. Indeed, we say that an allocation is ε-envy free if
for all i, j ∈ N , Vi(Ai) ≥ Vi(Aj)− ε. This notion of approximate envy-freeness
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has been studied in several previous papers [46, 50, 89]. We will show that
there exists an ε-envy-free protocol of polynomial complexity in n and ε.

The main idea is to sketch the players’ valuations using a very fine dis-
cretization, but then use a coarser discretization to partition the cake into
indivisible goods. Then, each player’s value for each indivisible good can be
accurately estimated using the fine discretization. An allocation of the indi-
visible goods that is approximately envy-free with respect to the estimated
values is therefore also approximately envy-free with respect to the real values
(with a slightly worse additive approximation term).

Theorem 17. For every ε > 0 there exists an ε-envy-free simultaneous pro-
tocol with complexity O(n/ε2).

The proof uses the following lemma, which is a special case of a result by
Lipton et al. [89], and deals with the allocation of indivisible goods. In this
context, the valuation functions are said to be additive if the value of a bundle
of goods is the sum of values of goods in the bundle.

Lemma 10 (Lipton et al. 2004). Let V ′1 , . . . , V ′n be additive valuation functions
over a set G of indivisible goods. Assume that for all i ∈ N and g ∈ G,
Vi(g) ≤ ε. Then there exists an ε-envy-free allocation.

Proof of Theorem 17. For every n and ε > 0 we design a simultaneous protocol
Fn,ε. Given a valuation V , Fn,ε discretizes the cake as follows. First, the
coarse discretization has 1/δ subintervals of value δ each, for 1/δ = d2/εe;
note that δ ≤ ε/2. Second, the fine discretization includes 1/δ′ intervals of
value δ′ each, for 1/δ′ = d16n/ε2e; note that δ′ ≤ ε2/16n. Formally speaking,
Fn,ε(V ) contains the cut points of both discretizations, but we prefer to think
of these two different discretizations for ease of exposition.

Given Fn,ε(V1), . . . ,Fn,ε(Vn), we wish to show that there is an allocation
A that is ε-envy free with respect to any valuation functions that are consis-
tent with these reported discretizations. Consider the partition of the cake
obtained by ordering the cut points of all players’ coarse discretizations, and
treating the subinterval between two adjacent cut points as an indivisible good.
Denote the set of indivisible goods by G.

This partition into indivisible goods has two properties:

1. For each indivisible good g ∈ G, Vi(g) ≤ ε/2 for all i ∈ N , because for
each i ∈ N there is a subinterval of the coarse discretization of Vi that
contains g.

2. The number of indivisible goods is given by the number of “internal”
(not 0 or 1) cut points plus one, i.e.,

|G| ≤ n
(⌈1

δ

⌉
− 1

)
+ 1 ≤ 4n

ε
.
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Let us create additive valuation functions V ′1 , . . . , V ′n over the indivisible
goods in G. For g ∈ G, let Hi(g) be the set of intervals in the fine partition
of Vi that are contained inside g. We define V ′i (g) = δ′ · |Hi(g)|.

We claim that
V ′i (g) ≤ Vi(g) ≤ V ′i (g) + 2δ′. (6.1)

Indeed, the left inequality is trivial. For the right inequality, let I be the
interval obtained by taking Hi(g) and adding one subinterval to the left and
one to the right. It holds that g ⊆ I, hence

Vi(g) ≤ Vi(Hi(g)) = δ′ · (|Hi(g)|+ 2) = V ′i (g) + 2δ′.

Note that for all i ∈ N and g ∈ G, V ′i (g) ≤ Vi(g) ≤ ε/2. We can therefore
use Lemma 10 to create an allocation A of the goods G such that for all
i, j ∈ N , V ′i (Ai) ≥ V ′i (Aj)−ε/2. We claim that A is ε-envy free with respect to
the original valuation functions (and any other valuations that are consistent
with the reported discretizations). Indeed,

Vi(Ai) ≥ V ′i (Ai) ≥ V ′i (Aj)−
ε

2

=

∑
g∈Aj

V ′i (g)

− ε

2 ≥

∑
g∈Aj

(Vi(g)− 2δ′)

− ε

2

= Vi(Aj)− 2δ′|Aj | −
ε

2 ≥ Vi(Aj)− 2δ′|G| − ε

2

≥ Vi(Aj)− 2 · ε
2

16n ·
4n
ε
− ε

2 = Vi(Aj)− ε.

where the first and fourth transitions follow from Equation (6.1).

Envy-freeness and proportionality are examples of what we call linear
properties, in the sense that they are specified by linear constraints involv-
ing the players’ valuations for pieces. Another example of a linear property
is equitability, which requires that Vi(Ai) = Vj(Aj) for all i, j ∈ N , that is,
players must have identical values for their own pieces. We formally define
linear properties using the matrix form, as is common in linear programs.

Definition 16 (Linear property). A property of allocations is linear if there
exist m ∈ N, matrix B ∈ Rm×n2 such that

∑n2
j=1 |Bij | ≤ 1 for i = 1, . . . ,m,

and vector c ∈ Rm, such that an allocation A satisfies the property if it satisfies
the constraints: B ·α ≥ c, where αk = Vi(Aj), with i = d kne, and j = k mod n
if n - k and j = n otherwise.

To illustrate the definition of αk, note that α1 = V1(A1), αn = V1(An),
and αn+1 = V2(A1). Importantly, this representation captures equality con-
straints, as they can be represented using two inequalities. Furthermore, the
assumption that

∑n2
j=1 |Bi,j | ≤ 1 is without loss of generality: we just divide
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each entry in the matrix B and vector c by the maximum sum of absolute
values of any row of B, which is a constant in the context of the properties
we are interested in.

As an example, we explicitly represent envy-freeness as a linear property
for the case of three players. Let m := n(n− 1) = 6 and define:

B = 1
2 ·



1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 −1 1


and

c = (0, 0, 0, 0, 0, 0) .

Then the constraint B ·α ≥ c is equivalent to requiring that Vi(Ai)−Vi(Aj) ≥
0, for each i 6= j.

Every linear property P (defined by a matrix B and a vector c) naturally
admits an approximate version Pε, which requires each linear constraint of P
to hold up to an error of ε; formally, B · α ≥ c− ε · 1. Using this new notion,
we can establish a more general version of Theorem 17.

Theorem 18. For every ε > 0 and every bounded protocol in the Robertson-
Webb model that allocates the entire cake and guarantees some linear property
P with complexity f(n), there exists a simultaneous protocol that guarantees
the property Pε with complexity O(f(n)/ε).

The theorem’s proof appears in the appendix, which was submitted as
supplementary material (it also contains a formal definition of properties in
the Robertson-Webb model). Theorem 18 implies Theorem 17 because ε-envy
free allocations can be computed in the Robertson-Webb model using O(n/ε)
queries. And while exact equitability is impossible to achieve in the Robertson-
Webb model [42], ε-equitability can also be achieved with with O(n/ε) queries,
leading to an ε-equitable simultaneous protocol with complexity O(n/ε2).

We note that a technique for approximating general density functions with
piecewise constant density functions [46, Lemma 8] can be leveraged to obtain
a strictly weaker version of Theorems 17 and 18, requiring the assumption
that the value density functions are piecewise K-Lipschitz continuous, and
giving a bound that also depends on K.

6.4 Discussion

In some ways, simultaneous protocols are weaker than their counterparts in
the Robertson-Webb model: players cannot interact, but rather are allowed
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to send one message only. However, in other ways simultaneous protocols are
stronger. Indeed, under the Robertson-Webb model, information is elicited
via cut and evaluation queries, without ever seeing the full valuations. This
means that properties such as Pareto optimality are impossible to achieve in
this model, even when the value density functions are restricted to be piece-
wise constant and the protocol is allowed to have unbounded complexity [84].
Intuitively, the reason is that a Pareto optimal allocation cannot allocate to
player i a subinterval I such that Vi(I) = 0 and Vj(I) > 0. But in the
Robertson-Webb model, it is impossible to exactly identify the boundaries of
subintervals that are worthless to a player.

In contrast, in the simultaneous model players can observe their full valua-
tion functions before deciding which subintervals to report, which allows them
to exactly mark worthless intervals. Now, suppose for simplicity that the play-
ers’ value density functions are piecewise constant, so each has a finite number
of intervals on which its density is zero. Each player reports a discretization
that pinpoints the zero-density intervals. Then we can allocate the intervals
using serial dictatorship: in stage i, allocate to player i all unclaimed intervals
on which its density is positive. This allocation is clearly Pareto-optimal.

Unfortunately, the protocol just described is not formally Pareto optimal
according to Definition 2, because the allocation is not guaranteed to be Pareto
optimal with respect to all valuation functions consistent with the reports
(some may have additional worthless subintervals). In fact, Pareto optimality
cannot be guaranteed in the simultaneous model — as can be shown using an
argument that is similar to the proof of the equivalent result in Robertson-
Webb [84, Theorem 5]. However, this negative result can be circumvented
via a slight augmentation of the simultaneous model, which allows players to
mark intervals on which their density is strictly positive.

It is therefore natural to consider a relaxed model that allows protocols
to enjoy the best of both worlds: multi-round interaction à la Robertson-
Webb, and allowing players to report discretizations by observing their own
valuation function (and information previously communicated by others) à la
the simultaneous model. This hybrid model gives rise to intriguing questions.
Most importantly: does it admit bounded envy-free protocols? We view this
question as a natural, compelling relaxation of what is perhaps the most enig-
matic open problem in computational fair division [109]: settling the existence
of bounded envy-free protocols in the Robertson-Webb model.

6.5 Proof of Linear Properties Theorem

In this section we prove Theorem 18. But we first need to formally intro-
duce the notion of property for cake cutting protocols in the Robertson-Webb
model. For ease of exposition, we restrict attention to protocols that allocate
the entire cake and only use cut points discovered through queries. However,
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the proof carries over to the case where the protocol can use arbitrary cuts
and discard portions of the cake.

Definition 17 (Property of a Robertson-Webb protocol). Let P be a prop-
erty of cake allocations. A protocol F in the Robertson-Webb model sat-
isfies property P if the following holds for any tuple of valuation functions
V̄ = (V1, . . . , Vn):

• Whenever each player i answers the cut and evaluate queries addressed
by F correctly (i.e. according to Vi), the protocol outputs an allocation
A that satisfies P with respect to any valuations V̄ ′ = (V ′1 , . . . , V ′n) con-
sistent with the answers given by the players during the execution of F
on V̄ .

We are now ready to restate and prove Theorem 18.

Theorem 18. For every ε > 0 and every bounded protocol in the Robertson-
Webb model that allocates the entire cake and guarantees some linear property
P with complexity f(n), there exists a simultaneous protocol that guarantees
the property Pε with complexity O(f(n)/ε).

Proof. LetM be a bounded protocol in the Robertson-Webb model that guar-
antees a linear property P, where P is given by B · α ≥ c, for some m ∈ N,
B ∈ Rm·n2 , and c ∈ Rm. Moreover, let f(n) be the maximum number of steps
thatM takes on an instance with n players. Each query makes two “marks”:
Evali(x, y) makes marks at x and y, and Cuti(x, α) = y makes marks at x and
the point y such that Vi([x, y]) = α. Overall,M makes at most 2f(n) marks.

For every ε > 0, let F εP be the simultaneous protocol stated as Algorithm 7.

Protocol F εP asks each player i to submit a discretization of the cake con-
taining very small cells of equal value according to i. Then F εP guesses (by
trying all possibilities) the number of contiguous intervals used by M, and
then approximates the pieces discovered byM using the discretizations pro-
vided by the players. Next we show that one of these guesses is guaranteed to
work.

Given an arbitrary tuple of valuation functions V̄ = (V1, . . . , Vn), let
Y = {y0, y1, . . . , yM−1, yM} be the marks made during the execution of M
when the valuations of the players are V̄ , where y0 = 0, yM = 1, and
M ≤ 2f(n)+1. Denote by I = (I1, . . . , IM ) the resulting disjoint, consecutive
contiguous intervals with Ij = (yj−1, yj). Let A = (A1, . . . , An) be the allo-
cation computed by protocol M. We can assume without loss of generality
that each piece Ai is a union of intervals from I [108], Ai ∩ Aj = ∅, ∀i, j and⋃n
i=1Ai = [0, 1].
For each mark yj ∈ Y , let zj be the rightmost point in X with the property

that zj ≤ yj (recall that X is the collection of points submitted by all players
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Map the valuation of each player i to a discretization (x̄i, w̄i) consisting of
T =

⌈
4f(n)+2

ε

⌉
cells, each worth 1/T to player i.

X ←
⋃n
i=1

⋃T
j=1{xi,j}

for M = 1 to f(n) + 1 do
for each subset Y ⊆ X, where |Y | = M + 1 do

for each allocation A demarcated only by points in Y do
for each player i ∈ N and piece Aj ∈ A do

ni,j ← # intact cells in Aj from x̄i
k ← (i− 1) · n+ j

α̃k ← ni,j ·
(

1
T

)
end for
if B · α̃ ≥ c− ε · 1 then

return A
end if

end for
end for

end for
Algorithm 7: Simultaneous protocol F εP

under F εP) Observe that for each player i, we have that Vi(zj , yj) ≤ 1/T .
Then we can construct an approximate version Ĩj , of each interval Ij such
that the endpoints of Ĩj belong to the set {0, z1, . . . , zM−1, 1}. More formally,
we find the intervals Ĩ = (Ĩ1, . . . , ĨM ) by scanning the cake from left to right
as follows:

1. Let z1 ∈ X be maximum such that z1 ≤ y1.

2. Ĩ1 ← [0, z1].

3. For each j ∈ {2, . . . ,M − 1}:

• Let zj ∈ X be maximum such that zj ≤ yj .
• If (zj = zj−1) then:

Ij ← ∅
• Else:

Ĩj ← [zj−1, zj ]

4. ĨM ← [zM−1, 1].

By construction, for each player i and interval Ĩj we have that |Vi(Ĩj) −
Vi(Ij)| ≤ 2

T ; intuitively, player i views Ĩj as identical to Ij , except possi-
bly for the two endpoints of the interval, where the player might have lost or
gained a cell of value 1/T on each side.
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Define an allocation Ã = (Ã1, . . . , Ãn), such that Ĩj ∈ Ãi if and only if
Ij ∈ Ai, for all i ∈ N and j ∈ [M ]. Then since each piece Ãk contains at
most M contiguous intervals from Ĩ, we have that Ãk is an approximation of
Ak within an additive error term of M ·

(
2
T

)
, from the point of view of each

player. More formally,

|Vi(Ak)− Vi(Ãk)| ≤
2M
T
≤ 2(2(f(n) + 1)⌈

4f(n)+2
ε

⌉ ≤ ε,

for all i ∈ N .
Next we show that allocation Ã approximately satisfies property P. Recall

that P is defined as B · α ≥ c, where α is the vector with the values of each
player for every piece in A.

For each row i ∈ [m], allocation A satisfies the constraint:
∑n2
j=1Bi,jαj ≥

ci, where αj = Vk(Al) and

• k = d jne

• l = j mod n if n - j and l = n otherwise.

Let α̃j = Vk(Ãl). We have shown that |α̃j − αj | ≤ ε. By definition,∑n2
j=1 |Bi,j | ≤ 1, and therefore we have:

n2∑
j=1

Bi,jα̃j ≥
n2∑
j=1

Bi,jαj − ε
n2∑
j=1
|Bi,j | ≥ ci − ε.

It follows that B · α̃ ≥ c − ε · 1, and so the allocation Ã approximately
satisfies property P. The simultaneous protocol F εP checks all the possible
allocations that can be formed with the cut points submitted by the players,
and one of these (i.e. Ã) is guaranteed to work; thus the allocation computed
by F εP ε-satisfies P whenever the valuations of the players are consistent with
the discretizations (x̄, w̄).



Chapter 7

Externalities

Recall that two of the most prominent notions of fairness are proportionality
and envy-freeness. Informally, proportionality requires that each of the n
players involved in the division of the resource receive at least 1/n of the
total value. Envy-freeness is a much stronger notion, which stipulates that
no player prefer another player’s allocation to their own. On a closer look,
it becomes clear that the two notions of fairness are fundamentally different.
While proportionality requires each player to only evaluate the quality of their
own allocation (compared to their best possible), the very idea of envy assumes
that players naturally compare their own allocations with those of others. This
latter notion is derived from psychology research and conveys the more general
concept that players are influenced not only by their own state, but also by
the states of other players. Such influences are called externalities.

Generally speaking, externalities are costs or benefits that are not trans-
mitted through prices, and may be incurred by a party that was not involved
in a transaction. For example, vaccination reduces the risk of illness not only
for the individual receiving the vaccine, but for all others around them. In
network formation games externalities are known as network effects, and play
an important role during the adoption of new technologies [56]. For exam-
ple, when the phone was introduced, the value of the phone for a potential
customer depended on how many other people were also using a phone.

Externalities play a role in resource allocation settings, where the alloca-
tion of one player can affect the others. These circumstances are particularly
relevant in the context of social networks, where players derive value from
the allocations of others due to the existence of synergies. For example, con-
sider the scenario in which each player is trying to carry out an online project
and is allocated slots of working time on a server. The players may be able
to use portions of their collaborators’ idle time to run additional experiments
and improve the quality of the project. Similarly, the exploitation of land (e.g.
crop harvesting or road construction) can be done more efficiently by the play-
ers with the most advanced equipment, and their efforts can benefit everyone

89
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else. Our goal here is to model externalities in cake cutting; in particular, ad-
dressing the conceptual challenge of defining fairness and understanding the
existence and computability of fair allocations in this model.

7.1 Related Work

Theories of externalities are widely studied in economics [7, 80], but recently
have also been receiving increasing attention in the computer science litera-
ture. Such studies include the analysis of externalities in coalitional games
[96], auctions [70, 83], voting [3], and matchings [35].

Velez [124] considers externalities in the fair division of indivisible goods
and money (e.g., tasks and salary). On the conceptual side, among other
contributions he (independently) introduces the notion of swap envy-freeness,
which we discuss below. On the technical side his intriguing results can be
mapped to the cake cutting setting, but the outcome is rather restricted.
Specifically, in the cake cutting context his results only capture contiguous
allocations (a piece is specified by its “position” and size), and only exter-
nalities that are “anonymous”, that is, each player cares about allocations to
others only insofar as they affect its own allocation, and is indifferent to the
identities of the other players that receive various pieces.

7.2 Model

We introduce a general model for cake cutting with externalities, in which
each player i has multiple valuation functions, to reflect the influence of every
other player j on player i. We naturally extend the notion of proportionality
to the setting with externalities and formalize two notions of envy-freeness,
namely swap envy-freeness and swap stability. Under the former notion, a
player cannot benefit by swapping its allocation with another player; under
the latter notion, no player is better off when any two players swap their
allocations.

Formally, the cake is represented by the interval [0, 1]; there is also a set
N = {1, . . . , n} of players. A piece of cake X is a set of disjoint intervals of
[0, 1]. In the context of externalities, we will sometimes discuss the existence of
infinite allocations, in which a piece of cake is a countable union of intervals.1
Each player i has n integrable, non-negative value density functions, such
that vi,j(x) defines the value that i receives when x is allocated to player j.
The value that player i derives from a piece X that is allocated to player
j is Vi,j(X) =

∫
X vi,j(x)dx. This definition assigns zero value to singleton

intervals, therefore we allow “disjoint” pieces to intersect at boundaries of

1Such allocations can also appear in the classical cake cutting model, for example when
dividing a cake among two players to achieve an irrational ratio [? ].
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intervals. In the classical model of cake cutting, Vi,j(X) = 0 for all pieces X
and players i 6= j.

An allocation A = (A1, . . . , An) is an assignment of a piece of cake Ai to
each player i, such that the pieces are disjoint and

⋃
i∈N Ai = [0, 1]. Moreover,

each piece Ai is a possibly infinite set of disjoint intervals of [0, 1]. The value
of player i under allocation A is: Vi(A) =

∑n
j=1 Vi,j(Aj).

Similarly to the classical model, utilities are normalized so that all the
players have equal weight. That is, for each player i, Vi(Ãi) = 1, where Ãi is
the best possible allocation for player i (note that in general this may not be
giving the whole cake to i). For our results this assumption is merely for ease
of exposition and without loss of generality.

Even before generalizing the classical fairness criteria it is immediately
apparent that our model is fundamentally different from the standard model.
Indeed, we note that computing the optimal allocation for a single player can
require infinitely many cuts, as the following example shows. In contrast, in
the standard model, the optimal allocation for any given player requires no
cuts and can be obtained by giving the entire cake to that player.

Example 4. For every player i ∈ N , let: vi,1(x) = x
4 and vi,2(x) = x sin

(
1
x

)
,

∀x ∈
[
0, 1

n

]
, vi,2(x) = n(1−w)

n−1 , ∀x ∈
(

1
n , 1

]
, where w =

∫ 1
n

0 max
(
x
4 , x sin

(
1
x

))
dx.

For every player i, the optimal allocation requires giving alternating pieces of
cake in the interval

[
0, 1

n

]
to players 1 and 2, respectively. However v1,1(x)

and v1,2(x) intersect infinitely many times on this interval, and so the optimal
allocation for player i requires infinitely many cuts.

7.3 Fairness Criteria

As noted above, the two most commonly used fairness criteria are proportion-
ality and envy-freeness. Proportionality has a very natural interpretation in
our model.

Definition 18 (Proportionality). An allocation A is proportional if for
every player i ∈ N , Vi(A) ≥ 1

n .

In words, each player must receive at least 1/n of the value it receives
under the optimal allocation from its point of view. Note that this definition
directly generalized the classical definition: when there are no externalities,
each player simply receives a piece of cake that it values at 1/n of the whole
cake.

In contrast, the notion of envy-freeness lends itself to several possible in-
terpretations.
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Definition 19 (Swap Envy-Freeness, see also [124]). An allocation A =
(A1, . . . , An) is swap envy-free if for any two players i, j ∈ N , Vi,i(Ai) +
Vi,j(Aj) ≥ Vi,i(Aj) + Vi,j(Ai).

That is, a player cannot improve by swapping its allocation with that of
another player. This definition generalizes and implies the classical defini-
tion of envy-freeness when there are no externalities. We also define an even
stronger version of swap envy-freeness, in which a player cannot benefit from
a swap between any pair of players.

Definition 20 (Swap Stability). An allocation A = (A1, . . . , An) is swap
stable if for every three players i, j, k ∈ N , Vi,j(Aj) + Vi,k(Ak) ≥ Vi,j(Ak) +
Vi,k(Aj).

Note that swap stable allocations are always swap envy-free, but the con-
verse may not be true.

7.4 Relationship Between Fairness Properties
In the classical cake cutting model, proportionality coincides with envy-freeness
when n = 2, and envy-freeness is strictly stronger than proportionality when
n > 2. Of course, implications that do not hold in the classical model are also
false in our more general model (as our notions of fairness reduce to the clas-
sical notions). However, it may be the case that some classical implications
are no longer true.

Focusing first on the case of two players, we immediately see that pro-
portionality and swap envy-freeness are no longer equivalent. Indeed, the
following example constructs an allocation that is proportional but not swap
envy-free (and, therefore, not swap stable).

Example 5. Consider the value density functions: v1,1(x) = v2,2(x) = v2,1(x) =
1, ∀x ∈ [0, 1]; v1,2(x) = 1

3 , ∀x ∈
[
0, 1

2

]
, and v1,2(x) = 1

4 , ∀x ∈
[

1
2 , 1
]
. The

allocation A = (A1, A2), where A1 =
[
0, 1

2

]
and A2 =

[
1
2 , 1
]
is proportional,

but not swap envy-free, since player 1 would improve by swapping its piece
with that of player 2.

In addition, swap envy-freeness does not imply proportionality when n > 2,
as the next example shows.

Example 6. Let N = {1, 2, 3} and define the intervals I1 =
[
0, 1

3

]
, I2 =[

1
3 ,

2
3

]
, and I3 =

[
2
3 , 1
]
. Let v1,2(x) = 3

2 , ∀x ∈ I3; v1,3(x) = 3
2 , ∀x ∈ I2;

v2,2(x) = 3, ∀x ∈ I2; and v3,3(x) = 3, ∀x ∈ I3. All the other densities are
set to zero. Then the allocation A = (I1, I2, I3), where player i receives the
interval Ii, has utilities: V1(A) = V1,1(I1) = 0, while V2(A) = V2,2(I2) = 1 and
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V3(A) = V3,3(I3) = 1. The allocation is swap envy-free, but not proportional,
as player 1 only receives a value of zero.

So far we have not determined whether swap envy-freeness implies propor-
tionality in the case of two players. Our main positive result in this section
establishes a much stronger statement: swap stability implies proportionality
for any number of players whenever the entire cake is allocated (this assump-
tion is also required for the classical implication). In particular, for only two
players (where our two notions of envy-freeness coincide), swap envy-freeness
does imply proportionality.

Theorem 19. Every swap stable allocation that contains the entire cake is
proportional.

Proof. Let A = (A1, . . . , An) be any swap stable allocation that contains the
entire cake. By definition of swap stability, we have that for all i, j, k ∈ N :

Vi,j(Aj) + Vi,k(Ak) ≥ Vi,j(Ak) + Vi,k(Aj)

By summing over all j ∈ N , we obtain:
n∑
j=1

Vi,j(Aj) +
n∑
j=1

Vi,k(Ak) ≥
n∑
j=1

Vi,j(Ak) +
n∑
j=1

Vi,k(Aj)

Since Vi(A) =
∑n
j=1 Vi,j(Aj), we have:

Vi(A) + nVi,k(Ak) ≥
n∑
j=1

Vi,j(Ak) + Vi,k([0, 1]) (7.1)

By summing Inequality (7.1) over all k ∈ N , we get:
n∑
k=1

Vi(A) + n
n∑
k=1

Vi,k(Ak)

≥
n∑
k=1

n∑
j=1

Vi,j(Ak) +
n∑
k=1

Vi,k([0, 1])

=
n∑
j=1

n∑
k=1

Vi,j(Ak) +
n∑
k=1

Vi,k([0, 1])

=
n∑
j=1

Vi,j([0, 1]) +
n∑
k=1

Vi,k([0, 1])

Equivalently,

2nVi(A) = nVi(A) + nVi(A)

≥
n∑
j=1

Vi,j([0, 1]) +
n∑
k=1

Vi,k([0, 1]) ≥ 1 + 1

Thus Vi(A) ≥ 1
n , and so A is proportional.
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As noted above, swap stability also implies swap envy-freeness by defi-
nition. In contrast, the next example shows that proportionality and swap
envy-freeness, even combined, do not imply swap stability, that is, there exist
proportional and swap envy-free allocations that are not swap stable.

Example 7. Consider the value density functions: v2,2(x) = v3,3(x) = 1,
∀x ∈ [0, 1]; v1,1(x) = 1, ∀x ∈

[
0, 1

3

]
; v1,3(x) = 1, ∀x ∈

(
1
3 ,

2
3

)
; and v1,2(x) = 1,

∀x ∈
[

2
3 , 1
]
; all remaining densities are zero. Let A = (A1, A2, A3), where

A1 =
[
0, 1

3

]
, A2 =

[
1
3 ,

2
3

]
, and A3 =

[
2
3 , 1
]
. Each player receives a value of

at least 1
3 under A, and the allocation is also swap envy-free. However, A is

not swap stable, since player 1 would prefer that players 2 and 3 swap pieces,
which would bring player 1’s utility to 1 (compared to 1

3 under A).

7.5 Existence of Fair Allocations
In the classical model, the case of two players trivially admits an envy-free
(and therefore proportional) allocation: simply divide the cake into two pieces
that player 1 values equally, and let player 2 choose its favorite piece. It turns
out that the analogous result also holds in the presence of externalities.2

Theorem 20. Let n = 2. Then there exists a proportional and swap envy-free
allocation that requires a single cut.

Proof. Define D : [0, 1]→ R such that for all x ∈ [0, 1]:

D(x) = V1,1([0, x]) + V1,2([x, 1])− V1,1([x, 1])− V1,2([0, x]).

Note that:
D(0) = V1,2([0, 1])− V1,1([0, 1])

and
D(1) = V1,1([0, 1])− V1,2([0, 1]).

It holds that D(0) + D(1) = 0, and since D is continuous it follows from the
intermediate value theorem that there exists x̃ ∈ [0, 1] such that D(x̃) = 0.
We claim that the allocation in which player 2 takes its favorite piece among
{[0, x̃], [x̃, 1]} — giving the other piece to player 1 – is proportional and swap
envy-free.

Without loss of generality, assume player 2 chooses the piece [x̃, 1]. Then
the resulting allocation is A = (A1, A2), where A1 = [0, x̃] and A2 = [x̃, 1]. By
optimality of player 2’s choice, we have:

V2,2([x̃, 1]) + V2,1([0, x̃]) ≥ V2,2([0, x̃]) + V2,1([x̃, 1])
2The proof is excluded due to space constraints and can be found in the full version of

the paper, available on: http://www.cs.cmu.edu/ arielpro/papers.html.
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Thus player 2 is not swap-envious. Assume for contradiction that player 2
obtains less than 1

2 . Then we have
1
2 > V2(A) = V2,2([x̃, 1]) + V2,1([0, x̃])

≥ V2,2([0, x̃]) + V2,1([x̃, 1])

and so

1 > V2,2([x̃, 1]) + V2,1([0, x̃]) + V2,2([0, x̃]) + V2,1([x̃, 1])
= V2,1([0, 1]) + V2,2([0, 1]) ≥ 1

This is a contradiction, thus V2(A) ≥ 1
2 .

We next show that A also satisfies fairness for player 1. By the choice of
x̃, V1,1([0, x̃]) + V1,2([x̃, 1]) = V1,1([x̃, 1]) + V1,2([0, x̃]), and so player 1 is not
swap-envious. Moreover,

2V1(A)
= V1,1([0, x̃]) + V1,2([x̃, 1]) + V1,1([x̃, 1]) + V1,2([0, x̃])
= V1,1([0, 1]) + V1,2([0, 1]) ≥ 1,

and so V1(A) ≥ 1
2 . Thus A is proportional, swap envy-free, and requires one

cut.

In the classical cake cutting model envy-free (and hence proportional)
allocations that require only n−1 cuts are guaranteed to exist [? ]. Of course,
at least that many cuts are required because each player must receive a piece.
In stark contrast, in our model there are instances where zero cuts are needed
to achieve a swap stable allocation of the whole cake! To see this, simply
consider an instance where all players derive value only from allocating the
cake to player 1.

On the other hand, a proportional and swap envy-free allocation can re-
quire strictly more than n − 1 cuts. Note that swap stability implies both
proportionality and swap envy-freeness, hence this lower bound also holds for
swap stability.

Theorem 21. A proportional and swap envy-free allocation may require strictly
more than n− 1 cuts.

Proof. Informally, we consider an instance where each player has exactly one
“representative” player. The idea is that each player can obtain a value of
approximately 1 only by giving the entire cake to their representative. In
addition, different players require different regions of the cake. Formally, for
each i ∈ N , let ri be the representative of i, where ri = 1 if i is odd and ri = 2
if i is even. Define the value density functions as follows:

vi,ri(x) =

n(1− ε) x ∈
[
i−1
n , in

]
nε
n−1 x ∈

[
0, i−1

n

)
∪
(
i
n , 1

]



96 CHAPTER 7. EXTERNALITIES

and for all x ∈ [0, 1],

vi,j(x) =
{
ε j ∈ N \ {r1, r2}
0 j ∈ {r1, r2} \ {ri}

Note that vi,r2 = 0 for all odd i, and vi,r1 = 0 for all even i. That is, a
player does not receive utility from both representatives. Any proportional
allocation of the cake requires at least n− 1 cuts, since it would have to give
player r1 a piece in each of the intervals

[
i−1
n , in

]
, where i is odd, and player

r2 a piece in each of the intervals
[
i−1
n , in

]
, where i is even. However, an

allocation with n − 1 cuts cannot be swap envy-free in this example, since
every player i ∈ N \ {r1, r2} will want to swap with the other representative.
Thus each player i ∈ N \ {r1, r2}, where i is odd, requires a piece of length
equal to that of r2, and each player i ∈ N \{r1, r2}, where i is even, requires a
piece of length equal to that of r1. We conclude that any swap envy-free and
proportional allocation requires at least n cuts.

In contrast, our main result for this section shows that a swap stable
allocation (which is in particular swap envy-free and proportional) necessarily
exists under mild assumptions, and also gives an upper bound on the number
of required cuts.

Theorem 22. Assume that the value density functions are continuous. Then
a swap stable allocation is guaranteed to exist and requires at most (n− 1)n2

cuts.

Our main tool is the following lemma that is due to Alon [? ].

Lemma 11 (Alon 1987). Let µ1, µ2, . . . , µt be t continuous probability mea-
sures on the unit interval. Then it is possible to cut the interval in (k − 1) · t
places and partition the (k − 1) · t + 1 resulting intervals into k families
F1,F2, . . . ,Fk such that µi (

⋃
Fj) = 1/k, for all 1 ≤ i ≤ t, 1 ≤ j ≤ k.

The number (k − 1) · t is best possible.

Proof of Theorem 22. Let

Ψ = {(i, j) ∈ N ×N | vi,j 6= 0}.

Define a normalized instance of each value density function: v′i,j(x) = vi,j(x)
Vi,j([0,1]) ,

∀(i, j) ∈ Ψ. Note that the denominator is strictly positive for all (i, j) ∈ Ψ.
Then the functions v′i,j(x) are continuous probability measures on the unit
interval. By Lemma 11, there exists a partition of the cake into n pieces, A =
(A1, . . . , An), where the number of cuts is bounded by (|Ψ|−1)n2 ≤ (n−1)n2,
such that V ′i,j(Ak) = 1/n for all (i, j) ∈ Ψ and k ∈ N .
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Consider the allocation given by A, where player i receives the piece Ai,
∀i ∈ N . By construction of A, we have that: Vi,j(Ak) = Vi,j([0,1])

n , for all
i, j, k ∈ N (the identity trivially holds for all (i, j) 6∈ Ψ), and so:

Vi,j(Aj) + Vi,k(Ak) = Vi,j([0, 1])
n

+ Vi,k([0, 1])
n

= Vi,j(Ak) + Vi,k(Aj)

Thus A is swap stable, with at most (n− 1)n2 cuts.

Even more generally, it can be shown that fair allocations are guaranteed
to exist when the value density functions are piecewise continuous.

7.6 Complexity Considerations

An important question in cake cutting is how protocols operate and what can
be achieved depending on the type of operations allowed. In the presence
of externalities, the Robertson-Webb query model (as formalized by Procac-
cia [109] naturally generalizes to the following types of queries:

1. Evaluatei,j(x, y):
Player i outputs α such that Vi,j([x, y]) = α.

2. Cuti,j(x, α):
Player i outputs y such that Vi,j([x, y]) = α.

We can show that under this extended form of the Robertson-Webb com-
munication model, it is possible to guarantee a value of 1

n2 to all the players.
This relies on the observation that for each player i, there exists a “represen-
tative” that holds at least 1

n of the value for player i. Then by running any
of the classical proportional protocols while querying only the representatives,
we obtain an allocation that gives at least 1

n2 to each player.

Theorem 23. An allocation in which every player receives utility at least 1
n2

can be computed with O(n2) queries in the extended Robertson-Webb model.

Proof. For every player i ∈ N , let ti be the player which brings i the highest
value in the optimal allocation for i, Ãi. Then i receives a value of at least
1
n from ti in Ãi, and thus giving the entire cake to player ti guarantees i a
value of at least 1

n . We refer to ti as the representative of player i. Run the
Dubins-Spanier procedure, where a player i calls cut whenever the piece to
the left of the knife is worth 1

n according to the valuation function Vi,ti . Let
A = (A1, . . . , An) be the resulting allocation, where piece Ai is given to player
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ti. Then the utility of player i is:

ui(A) ≥ Vi,ti(Ai) ≥
( 1
n

)
Vi,ti([0, 1])

≥
( 1
n

)( 1
n

)
= 1
n2

Thus there exists an allocation with n− 1 cuts which gives utility at least 1
n2

to each player.

However, one cannot significantly improve this result. Specifically, we show
that no proportional protocol can be obtained even for two players under the
extended Robertson-Webb communication model. The proof idea is reminis-
cent of the technique used to show that no finite protocol can compute an
exact allocation in the standard cake cutting model [112].

Theorem 24. There exists no finite protocol that can compute a proportional
allocation of the entire cake even for two players in the extended Robertson-
Webb model.

Proof. Consider an instance where the two players have symmetric valuations.
That is, v1,1(x) = v2,2(x) and v1,2(x) = v2,1(x), ∀x ∈ [0, 1]. Moreover, let
V1,1([0, 1]) = 2

3 and V1,2([0, 1]) = 1
3 . Note that it is possible to set the value

density functions such that each player still obtains a value of 1 in the optimal
allocation over [0, 1]. However, by giving the entire cake only to player 1 or
player 2, player 1 obtains 2

3 or 1
3 , respectively.

We first claim that it is sufficient to restrict attention to cut and evaluate
queries to player 1. Indeed, let A = (A1, A2) be any proportional allocation
that contains the entire cake. Then it must be the case that:

V1,1(A1) + V1,2(A2) ≥ 1
2

and
V2,2(A2) + V2,1(A1) ≥ 1

2 .

By choice of the valuations, we have:

V1,1(A1) + V1,1(A2) + V1,2(A1) + V1,2(A2) = 1

and
V2,2(A1) + V2,2(A2) + V2,1(A1) + V2,1(A2) = 1

The inequalities can be rewritten as:

V1,1(A1) + V1,2(A2) ≥ 1
2(V1,1(A1) + V1,1(A2)

+ V1,2(A1) + V1,2(A2))
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and

V2,2(A2) + V2,1(A1) ≥ 1
2(V2,2(A1) + V2,2(A2)

+ V2,1(A1) + V2,1(A2))
(7.2)

Equivalently,

V1,1(A1) + V1,2(A2) ≥ V1,1(A2) + V1,2(A1) (7.3)

and
V1,1(A2) + V1,2(A1) ≥ V1,1(A1) + V1,2(A2) (7.4)

where Inequality (7.4) is obtained from (7.2) by symmetry of the valuations.
From Inequality (7.3) and (7.4) we get:

V1,1(A1) + V1,2(A2) = V1,1(A2) + V1,2(A1) (7.5)

By definition of the valuations, we have: V1,1(A1) + V1,1(A2) = V1([0, 1]) = 2
3

and V1,2(A1)+V1,2(A2) = V1,2([0, 1]) = 1
3 , thus Equation (7.5) can be rewritten

as:

V1,1(A1)− V1,2(A1) =
(2

3 − V1,1(A1)
)
−
(1

3 − V1,2(A1)
)

= 1
3 − V1,1(A1) + V1,2(A1)

Thus to achieve proportionality it must hold that V1,1(A1)−V1,2(A1) = 1
6 . By

symmetry, the allocation of player 2 must also verify: V2,2(A2)−V2,1(A2) = 1
6 .

We prove the theorem by tracing an infinite path through the algorithm
tree and proceed by induction on the number of Cut queries. Note that the
given instance requires at least two pieces, since giving the entire cake to either
player results in a utility of 1

3 for the other one. Assume that after k− 1 steps
we arrived at a non-terminating vertex, where the piecesW1, . . . ,Wk have been
cut and the values Vi,j(Wl) have been provided, ∀i, j{1, 2}, ∀l ∈ {1, . . . , k}.
This is all that is known about the value density functions at this stage. Based
on this information, the protocol decides which piece is cut next, according to
which valuation, and the sizes of the pieces that should be produced. Recall
that since the valuations are symmetric, it is sufficient to query player 1.

By the induction hypothesis, a proportional and swap envy-free allocation
cannot be obtained with the piecesW1, . . . ,Wk. That is, for any allocation Ai1
of player 1, which can be obtained from the set of already demarcated pieces,
we have:

V1,1(Ai1)− V1,2(Ai1) = 1
6 + δi, where δi 6= 0, ∀i.

Assume the protocol can query inside some interval Wj such that a propor-
tional allocation is obtained in the next step. We illustrate the case where the
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query is made with respect to V1,1. The other case, when the query is made
with respect to V1,2, is similar.

Let α denote the value of the query with respect to the left interval of Wj .
That is, Wj is divided into two pieces, W 1

j and W 2
j , such that V1,1(W 1

j ) = α
and V1,1(W 2

j ) = V1(Wj) − α. In order for a proportional allocation to be
obtained in the next step, it should be the case that one of the allocations of
player 1 from the previous step Ai1, which does not contain piece Wj , becomes
proportional when player 1 obtains the piece W 1

j and player 2 obtains the
piece W 2

j , or vice versa. That is,

V1,1(Ai1 ∪W 1
j )− V1,2(Ai1 ∪W 1

j ) = 1
6

or
V1,1(Ai1 ∪W 2

j )− V1,2(Ai1 ∪W 2
j ) = 1

6
The identities are equivalent to:(

(V1,1(Ai1) − V1,2(Ai1)
)

+ V1,1(W 1
j )− V1,2(W 1

j )

=
(1

6 + δi

)
+ V1,1(W 1

j )− V1,2(W 1
j ) = 1

6

or (
V1,1(Ai1) − V1,2(Ai1)

)
+ V1,1(W 2

j )− V1,2(W 2
j )

=
(1

6 + δi

)
+ V1,1(W 2

j )− V1,2(W 2
j ) = 1

6

Recall that V1,1(W 1
j ) = α, V1,1(W 2

j ) = V1,1(Wj) − α, V1,2(W 2
j ) = V1,2(Wj) −

V1,2(W 1
j ). Rewriting, we get:

V1,2(W 1
j ) = δi + α (7.6)

or
V1,2(W 1

j ) = V1,2(Wj)− V1,1(Wj) + α− δi (7.7)

However, there exist at most 2k different values of δi (which correspond to
different allocations), and so an adversary can report a value of V1,2(W 1

j ) such
that all the equalities (7.6) and (7.7) fail simultaneously, for every value of
i. That is, there exists w, where 0 ≤ w ≤ V1,2(Wj), such that by setting
V1,2(W 1

j ) = w, we have that for each i,

V1,2(W 1
j ) 6= δi + α

and
V1,2(W 1

j ) 6= V1,2(Wj)− V1,1(Wj) + α− δi.
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Thus the protocol requires at least one more step before terminating, which
shows the existence of an infinite path in the algorithm tree.

Note that at the k-th step, the values of the demarcated pieces sum up to
2/3 with respect to V1,1 and 1/3 with respect to V1,2. Thus at the k-th cut, the
adversary must respect the condition that the valuations for the two subsets of
Wj sum up to V1,1(Wj) and V1,2(Wj), respectively. This can be done by having
interleaved value density functions, such that v1,1(x) > 0 ⇒ v1,2(x) = 0, and
vice versa. We can partition any interval whose values are known into two such
disjoint subintervals and set the densities to recover the known values.

Intuitively, the protocol is severely restricted if valuations can only be
accessed one at a time. However, by allowing simultaneous access, it becomes
possible to obtain proportional allocations in finite time. The communication
model we consider instead is the following:

1. Evaluate Optimali(x, y): Player i outputs a pair (α, Ãα) such that Ãα
is an optimal allocation for i on the interval [x, y] and gives the player
exactly α: Vi(Ãα) = α.

2. Cut Optimali(x, α): Player i outputs y such that i’s optimal allocation
on [x, y], Ãα, gives the player exactly α: Vi(Ãα) = α.

The queries reduce to Cut and Evaluate from Robertson-Webb in the ab-
sence of externalities. Note that the optimal allocation may contain an un-
bounded number of cuts, and so it is not known apriori how much information
the player may send. However, this is also true of the classical Robertson-
Webb model; there, the players can communicate infinitely long strings in
O(1) (for example, if the value returned by an evaluate query is an irrational
number).

Theorem 25. Every proportional protocol from the standard cake cutting
model translates to a proportional protocol with externalities when the Cut
and Evaluate queries are replaced by Cut Optimal and Evaluate Optimal, re-
spectively.

7.7 Piecewise Constant Valuations

When the representation of the value density functions is succinct (such as
piecewise constant), then swap envy-free, proportional, and welfare-maximizing
allocations can be computed efficiently. For the standard cake cutting model,
a linear program for computing such allocations was given by Cohler et al. [46].

Let the cake be given as a set of intervals I = (I1, . . . , Im), such that
∀i, j ∈ N , the influence of player j on player i in interval Ik is given by a value
density function constant on Ik: vi,j(x) = ci,j,k, ∀x ∈ Ik.
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Proposition 8. Consider a cake cutting instance with externalities, where
the value density functions are piecewise constant. Then optimal allocation
for any given player requires at most mn−1 cuts and can be computed in time
Θ(mn), where m is the number of intervals in the representation.

Proof. It can be immediately observed that a player does not receive additional
utility by fractional allocations of any piece Ik. That is, the best allocation
of any piece Ik for player i is to give the entire piece to the player j which
maximizes the value Vi,j(Ik).

Definition 21 (Uniform Allocation). Given a cake cutting problem with piece-
wise constant valuations over intervals I = (I1, . . . , Im), an allocation is uni-
form if it gives each player a contiguous piece of length |Ij |/n of each interval
Ij.

Proposition 9. Consider a cake cutting instance with externalities, where the
value density functions are piecewise constant. Then the uniform allocation
is proportional and swap envy-free.

Proof. The uniform allocation is trivially swap envy-free, since all the players
have identical pieces. Consider now a player i and some interval Ik. In the
allocation which is optimal for player i, interval Ik is given to the player ki
which maximizes Vi,ki(Ik). In the uniform allocation, player ki receives 1/n
of interval Ik, and so i gets a value of at least

(
1
n

)
Vi,ki(Ik) from Ik. Let uUi

denote the utility of i in the uniform allocation. Then:

uUi =
m∑
k=1

n∑
j=1

( 1
n

)
Vi,j(Ik) ≥

m∑
k=1

( 1
n

)
Vi,ki(Ik) = 1

n

Thus the uniform allocation is proportional.

Theorem 26. Consider a cake cutting instance with externalities, where the
value density functions are piecewise constant, m is the number of intervals in
the representation, and n is the number of players. Then Algorithm 8 returns
an optimal swap envy-free and proportional allocation in time polynomial in
m and n.

7.8 Discussion and Future Work
This work lays the foundations of externalities in cake cutting. One of the main
open questions is the design of a query model and computationally efficient
protocols for the computation of swap envy-free and swap stable allocations
for any number of players. The existence result of Theorem 22 relies on a non-
constructive result (Lemma 11), and so it does not give a bounded algorithm.
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Solve the following linear program, where xi,k ∈ [0, 1] is the percentage of
piece Ik that gets allocated to player i:

max
n∑

i,j=1

m∑
k=1

xj,kVi,j(Ik) (7.8)

s.t.
n∑
i=1

xi,k = 1, ∀k ∈ {1, . . . ,m} (7.9)

m∑
k=1

n∑
j=1

xj,kVi,j(Ik) ≥
1
n
, ∀i ∈ N (7.10)

m∑
k=1

xi,kVi(Ik) + xj,kVi,j(Ik) ≥
m∑
k=1

xj,kVi(Ik) + xi,kVi,j(Ik), ∀i, j ∈ N (7.11)

xi,k ≥ 0,∀i ∈ N, ∀k ∈ {1, . . . ,m} (7.12)

Algorithm 8: Optimal Swap Envy-Free and Proportional Allocation

In addition, we conjecture that both proportionality and swap envy-freeness
can be computed with at most n− 1 cuts when required separately.

A separate direction for future work is the study of negative externalities.
One can certainly imagine relevant settings where externalities are negative;
for example, when allocating time slots for advertising, it hurts Coca Cola if
Pepsi is allocated the best slots. Negative externalities invalidate some of our
positive results, and present a nice challenge for future work.





Chapter 8

Notes on Envy-Free Cake
Cutting

8.1 Approximate Envy-Freeness
In this section we design an ε-envy-free protocol that runs in O(n2/ε) and
is simpler conceptually than the previously known ones. These include the
ε-envy-free protocol designed by Lipton et al. [89] design in the context of
allocating indivisible resources and the ε-envy-free algorithms derived from
the computation of approximately fair partitions (Robertson and Webb [112])
in the context of approximating exact allocations (in ratios such as 1:1).

Theorem 27. For each ε > 0, an ε-envy-free allocation that contains the
entire cake can be computed in O

(
n2

ε

)
.

Proof. The allocation produced by Algorithm 9 is ε-envy-free and contains
the entire cake. At a high level, the players cut the cake into O(n2/ε) pieces
(intervals between adjacent cuts), and the pieces are allocated in a round robin
fashion. Taking the point of view of player i, this player can make the initial
cuts so that it values each interval between its own adjacent cuts at most at ε;
it follows that it values any of the O(n2/ε) pieces induced by everyone’s cuts
at most at ε. Partition the choices into phases, where in each phase, i chooses
first, followed by players i + 1, . . . , n, 1, . . . , i − 1. In each phase, i prefers its
own piece to the piece selected by any other player. Player i may envy the
choices made by players 1, . . . , i − 1 before the beginning of the first phase,
but its value for each of these pieces is at most ε.

8.2 Polynomial Valuations
Returning to the question of exact envy-free cake cutting, we show that there
exists a protocol in the Robertson-Webb model that is guaranteed to output an

105
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for each i ∈ N do
Player i makes dn/εe cuts in [0, 1]

end for
i = 1
while there exist available pieces between two adjacent cuts do

Player i takes his (remaining) favorite piece
i = (i mod n) + 1

end while
Algorithm 9: An ε-envy-free protocol for n players

envy-free allocation for the family of polynomial valuations and is much sim-
pler conceptually than the general protocol; moreover, the number of queries
required by the protocol is bounded by the sum of the degrees of the polyno-
mials. Another recent result in this area was given by Kurokawa et al. [84],
who designed an exact envy-free protocol for piecewise linear value density
functions. Their protocol is guaranteed to produce an envy-free allocation
within O(n6k log k) queries on any given instance, where n is thenumber of
players and kis the number of break points in the valuations (break points are
discontinuities in the derivatives of the valuation functions). Kurokawa et al.
also showed that if a protocol can compute envy-free allocations for the class of
piecewise uniform valuations, then it can also solve the envy-free cake cutting
problem for general valuations. The result of Kurokawa et al. suggests that
the main difficulty is detecting the break points in the value density function
(and possibly its derivative). Polynomial valuations are interesting from the
point of view of envy-free cake cutting because no such discontinuities exist,
yet no bounded protocol is known for this class.

Theorem 28. There exists a protocol in the Robertson-Webb communication
model such that on every n-player cake cutting instance with value density
functions given by polynomials, the protocol is guaranteed to terminate with
an envy-free allocation using O(d ·n2) queries, where d is the maximum degree
of any polynomial in the representation.

Proof. Consider Algorithm 5.4 and assume the value density functions of the
players can be expressed as polynomials. That is, vi(x) =

∑di
j=0 ai,jx

j , for
some di ∈ N and ai,j ∈ R, for all j ∈ {0, . . . , di} and i ∈ N . Recall that value
density functions are always non-negative and normalized to give equal weight
to all the players. That is, vi(x) ≥ 0, for all x ∈ [0, 1] and

∫ 1
0 vi(x)dx = 1, for

each player i ∈ N .
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Define polynomials Pi for each player i as follows:

Pi(x) = Vi([0, x]) =
∫ x

0
vi(y)dy =

∫ x

0

 di∑
j=0

ai,jy
j

 dy =
di∑
j=0

ai,j

∫ x

0
yjdy

=
di∑
j=0

(
ai,j
j + 1

)
xj+1

Then the polynomial Pi has the property that Pi(0) = 0, Pi(1) = 1, and
(Pi(x))′ = vi(x), for each player i ∈ N .

Algorithm 1 starts by assuming that the players have valuations given by
polynomials of degree zero (i.e. constant) and increases the degrees with every
iteration. Consider the iteration in which the correct upper bound has been
reached: d = max(d1, . . . , dn). Then the answers of player i to the evaluate
queries on the intervals:

{[0, 0], [0, 1
d+ 1], [0, 1

d
], . . . , [0, 1]}

can be used to obtain d + 2 values for the unique interpolating polynomial,
of maximum degree d + 2. That is, the protocol has obtained the following
values:

Pi(0), Pi(
1

d+ 1), Pi(
1
d

), . . . , Pi(1).

By taking the derivative of the interpolating polynomial (Line 7), the pro-
tocol can find the exact value density function of player i. Since d is an upper
bound on the degrees of all the players, it follows that all the value density
functions have been guessed correctly, and so the allocation X computed in
this iteration (Line 9) is guaranteed to be envy-free.

It is immediate that the protocol terminates after at most d iterations,
and the number of Evaluate queries asked in each iteration is n2 + 1. Thus
the total number of queries required to output an envy-free allocation when
the maximum degree is d is bounded by d(n2 + 1).

An interesting open question is whether there exists a bounded algorithm
for envy-free cake cutting with polynomial valuations, where the runtime of
the protocol is only a function of the number of players. A negative result for
this class would also answer the existence question for general valuations.
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d← 0 // running upper bound on the degrees of the polynomials
while (true) do

for (each i ∈ N) do
xi,d ← 1

d+1
yi,d ← Evaluatei([0, xi,d])
Pi(x)← Polynomial-Interpolate

(
{(0, 0)}

⋃d
j=0{(xi,j , yi,j)}

)
wi(x) ← (Pi(x))′ // Player i’s value density function assuming it’s

a polynomial of max degree d
end for
// Compute a contiguous envy-free allocation w.r.t. {w1, . . . , wn}
X ← Contiguous-EF-Allocation ({w1, . . . , wn})
// Ask the players if X is envy-free
for (all (i, j) ∈ N2) do

Wi,j ← Evaluatei(Xj)
end for
if (Envy-Free(W )) then

return X // Output and exit
else

d← d+ 1 // Increase the maximum degree and try again
end if

end while
Algorithm 10: Algorithm for envy-free cake cutting with polynomial valua-
tions
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Chapter 9

Background

In this part we move to the fair allocation of multiple goods, both divisible
and indivisible. Again there is a set of players N = {1, . . . , n} and a set
of goods M = {1, . . . ,m}, which have to be allocated in a way that is fair;
the players typically do not have monetary endowments. An allocation x =
(x1, . . . ,xn) ∈ [0, 1]n×m is a matrix, such that xi = (xi,1, . . . , xi,m) ∈ [0, 1]m
denotes the bundle received by player i and xi,j is the fraction received by
player i from good j.

When the valuations are additive, the problem of fairly allocating multiple
divisible goods can be viewed as a subset of cake cutting. However, non-
additive families of valuations (such as Leontief utilities) are incomparable
with the standard cake cutting model.

Next we briefly overview some of the important recent developments in
the allocation of multiple divisible and indivisible goods. The fairness no-
tions often studied for multiple divisible goods include proportionality and
envy-freeness (defined as in the cake cutting problem), as well as others such
as proportional fairness [47] and the competitive equilibrium from equal in-
comes [123].

The proportional fairness solution aims to give a good tradeoff between
fairness and efficiency and was studied recently by Gkatzelis et al. [47], who
designed a truthful mechanism that approximates the proportional fairness
guarantees within a factor of 1/e.

Guo and Conitzer [68] study the truthful allocation of multiple divisible
goods among two players with additive valuations such that social welfare
is optimized, and consider a family of mechanisms called “linear increasing
price”, in which the players are given equal amounts of artificial currency
that they can use to purchase the goods. Han et al. [71] study the setting
of multiple players and provide several negative results for the social welfare
attainable by truthful allocation mechanisms.

Leontief utilities are another important class for multiple divisible goods
and have been studied in a body of literature, such as in work by Dolev et
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al. [54], who examined the notion of “bottleneck-based fairness”, Ghodsi et
al. [65], who designed the “dominant resource fairness mechanism”, with very
good theoretical properties. Parkes et al. [107] extend the results of Ghodsi
et al. to capture weighted players and indivisibilities. Gutman and Nisan [69]
generalize the fairness notions of Ghodsi et al [65] and Dolev et al. [54] and
design polynomial time algorithms to compute fair allocations for a larger
family of utilities.

In the realm of allocating multiple indivisible (or discrete) goods, fairness
notions of interest include proportionality, envy-freeness, maximin fairness,
and the competitive equilibrium from equal incomes. Recently, Bouveret and
Lemaître [18] investigated a scale of criteria for the allocation of indivisible
goods, which included all the fairness notions above, as well as a new notion
called min-max fair share. Procaccia and Wang [110] studied the maximin
fairness solution and showed that while such allocations do not always exist,
there exists an algorithm that guarantees each player 2/3 of their maximin
value and runs in polynomial time when the number of players is constant.
Lipton et al. [89] design an algorithm that computes approximately envy-free
allocations.

An interesting version of proportionality for indivisible goods was shown to
always exist by Hill [75] for additive valuations. Given any such fair division
problem with n players, there exists an allocation that guarantees to each
player i a value Fn(α), where α is the maximum value of a player i for any
good j. Surprisingly, Markakis and Psomas [92] showed that there exists a
polynomial time algorithm that computes allocations guaranteeing this type of
value to every player (but in fact, the guarantee is even stronger: Fn(αi), such
that the minimum value of player i only depends on its maximum valuation
for any good, namely αi). In follow-up work, Gourvès et al. [67] extend the
algorithm of Markakis and Psomas for the generalized problem on matroids.

Approximation algorithms for the maximin fairness solution (also known
as the Santa Claus problem) were studied by Bezáková and Dani [16], Bansal
and Sviridenko [14], Asadpour and Saberi [5]. Feige [62] studies the restricted
assignment version of the maximin fair allocation problem, showing that the
approximation algorithm of Bansal and Sviridenko approximates the optimal
solution within a constant factor.

Recent work investigated the competitive equilibrium from equal incomes
for the allocation of discrete goods (Othman et al. [106], Budish [38]); this
background is discussed in more detail in Chapter 11.



Chapter 10

The Adjusted Winner
Procedure

The Adjusted Winner procedure was introduced by Brams and Taylor ([22])
as a highly desirable mechanism for allocating multiple divisible resources
among two parties. The procedure requires the participants to declare their
preferences over the items and the outcome satisfies strong fairness and ef-
ficiency properties. Adjusted Winner has been advocated as a fair division
rule for divorce settlements [22], international border conflicts [120], political
issues [52, 94], real estate disputes [88], water disputes [90], deciding debate
formats [87] and various negotiation settings [23, 111]. For example, it has
been shown that the agreement reached during Jimmy Carter’s presidency
between Israel and Egypt is very close to what Adjusted Winner would have
predicted [24]. Adjusted Winner has been patented by New York University
and licensed to the law firm Fair Outcomes, Inc [78].

Although the merits of Adjusted Winner have been discussed in a large
body of literature, the procedure is still not fully understood theoretically. We
provide two novel characterizations, together with an alternative interpreta-
tion that turns out to be very useful for analyzing the procedure.

In addition, as observed already in [21], the procedure is susceptible to
manipulation. However, fairness and efficiency are only guaranteed when the
participants declare their preferences honestly. In a review of a well-known
book on Adjusted Winner by Brams and Taylor [23], Nalebuff [103] highlights
the need for research in this direction:

..thus we have to hypothesize how they (the players) would have
played the game and where they would have ended up.

In this chapter, we answer these questions by studying the existence, struc-
ture, and properties of pure Nash equilibria of the procedure. Until now, our
understanding of the strategic aspects has been limited to the case of two
items [21] and experimental predictions [49]; our work identifies conditions
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Continuous
Procedure

Lexicographic
tie-breaking

Informed
tie-breaking

pure Nash 7 3

ε-Nash 3 3

Discrete
Procedure

Lexicographic
tie-breaking

Informed
tie-breaking

pure Nash 7 3

ε-Nash 3(∗) 3

Table 10.1: Existence of pure Nash equilibria in Adjusted Winner. The (*)
result holds when the number of points is chosen appropriately.

under which Nash equilibria exist and provides theoretical guarantees for the
performance of the procedure in equilibrium.

10.1 Contributions

We start by presenting the first characterizations of Adjusted Winner. We
show that among all protocols that split at most one item, it is the only one
that satisfies Pareto-efficiency and equitability. Under the same condition,
we further show that it is equivalent to the protocol that always outputs a
maxmin allocation.

Next, we obtain a complete picture for the existence of pure Nash equilib-
ria in Adjusted Winner. We find the following: neither the discrete nor the
continuous variants of the procedure are guaranteed to have pure Nash equi-
libria, but they do have ε-Nash equilibria, for every ε > 0. Additionally, under
informed tie-breaking, pure Nash equilibria always exist for both variants of
the procedure.

Finally, we prove that the pure Nash equilibria of Adjusted Winner are
envy-free and Pareto optimal with respect to the true valuations and that their
social welfare is at least 3/4 of the optimal. Our results concerning the exis-
tence or non-existence of pure Nash equilibria are summarized in Table 10.1.

10.2 Background

We begin by introducing the classical fair division model for which the Ad-
justed Winner procedure was developed [21]. Let there be two players, Alice
and Bob, that are trying to split a set M = {1, . . . ,m} of divisible items.
The players have preferences over the items given by numerical values that
express their level of satisfaction. Formally, let a = (a1, a2, . . . , am) and
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b = (b1, . . . , bm) denote their valuation vectors, where aj and bj are the values
assigned by Alice and Bob to item j, respectively.

An allocation W = (WA,WB) is an assignment of fractions of items (or
bundles) to the players, where WA = (w1

A, . . . , w
m
A ) ∈ [0, 1]m and WB =

(w1
B, . . . , w

m
B ) ∈ [0, 1]m are the allocations of Alice and Bob, respectively.

The players have additive utility over the items. Alice’s utility for a bundle
WA, given that her valuation is a, is: ua(WA) =

∑
j∈M aj · wjA. Bob’s utility

is defined similarly. The players are weighted equally, such that their utility
for receiving all the resources is the same:

∑
i∈M ai =

∑
i∈M bi.

There are two main settings studied in this context: discrete and continu-
ous valuations. In the discrete setting, valuations are positive natural numbers
that add up to some integer P and can be interpreted as points (or coins of
equal size) that the players use to acquire the items. For ease of notation,
we will consider the equivalent interpretation of valuations as rationals with
common denominator P , where the valuations sum to 1. In the continuous
setting, the valuations are positive real numbers, which are without loss of
generality normalized to sum to 1. These normalizations make procedures
invariant to any rescaling of the bids [27, 78].

10.3 The Adjusted Winner Procedure
The Adjusted Winner procedure works as follows. Alice and Bob are asked by
a mediator to state their valuations a and b, after which the next two phases
are executed.

Phase 1: For every item i, if ai > bi then give the item to Alice;
otherwise give it to Bob. The resulting allocation is (WA,WB) and
without loss of generality, ua(WA) ≥ ub(WB).
Phase 2: Order the items won by Alice increasingly by the ratio
ai/bi:

ak1
bk1
≤ . . . ≤ akr

bkr
. From left to right, continuously transfer

fractions of items from Alice to Bob, until an allocation (W ′A,W ′B)
where both players have the same utility is produced: ua(W ′A) =
ub(W ′B).

Let AW (a,b) denote the allocation produced by Adjusted Winner on in-
puts (a,b), where AWA(a,b) and AWB(a,b) are the bundles received by
Alice and Bob. Note that the procedure is defined for strictly positive valua-
tions, so the ratios are finite and strictly positive numbers. Examples can be
found on the Adjusted Winner website1 as well as in [21].

Adjusted Winner produces allocations that are envy-free, equitable, Pareto
optimal, and minimally fractional. An allocation W is said to be Pareto
optimal if there is no other allocation that strictly improves one player’s utility

1http://www.nyu.edu/projects/adjustedwinner/.
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without degrading the other player. Allocation W is equitable if the utilities
of the players are equal: ua(WA) = ub(WB), envy-free if no player would
prefer the other player’s bundle, and minimally fractional if at most one item
is split.

Envy-freeness of the procedure implies proportionality, where an allocation
is proportional if each player receives a bundle worth at least half of its utility
for all the items. A procedure is called envy-free if it always outputs an envy-
free allocation (similarly for the other properties).

10.4 Characterizations

In this section, we provide two characterizations of Adjusted Winner2 for both
the discrete and continuous variants. We begin with a different interpretation
of the procedure that is useful for analyzing its properties.

An allocation is ordered if it can be produced by sorting the items in
decreasing order of the valuation ratios ai/bi and placing a boundary line
somewhere (possibly splitting an item), such that Alice gets the entire bundle
to the left of the line and Bob gets the remainder:

ak1

bk2

≥ ak2

bk2

≥ · · · ≥ aki
bki
≥︸ ︷︷ ︸

Alice’s allocation

∣∣∣∣ ≥ aki+1

bki+1

≥ · · · ≥ akm
bkm︸ ︷︷ ︸

Bob’s allocation

The placement of the boundary line could lead either to an integral or a
minimally fractional allocation. Note that the allocation that gives all the
items to Alice is also ordered (but admittedly unfair).

It is clear to see that Adjusted Winner produces an ordered allocation
(using some tie-breaking rule for items with equal ratios) with the property
that the boundary line is appropriately placed to guarantee equitability. This
is the way we will be interpreting the procedure for the remainder of the paper.
We start by characterizing Pareto optimal allocations.

Lemma 12. For any valuations (a,b) and any tie-breaking rule, an allocation
W is not Pareto optimal if and only if there exist items i and j such that Alice
gets a non-zero fraction (possibly whole) of j, Bob gets a non-zero fraction
(possibly whole) of i, and aibj > ajbi.

Proof. ( ⇐= ) If such items i, j exist, then consider the exchange in which
Bob gives λi > 0 of item i to Alice and Alice gives λj > 0 of item j to Bob,
where:

bi
bj
λi < λj <

ai
aj
λi

2 The results here refer to the case when the players report their true valuations to the
mediator. We discuss the strategic aspects of the procedure in Section 10.5.
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Since ai/aj > bi/bj , such λi and λj do exist. Then Alice’s net change in utility
is:

aiλi − ajλj > aiλi − aj
ai
aj
λi = 0,

while Bob’s net change is:

bjλj − biλi > bjλj − bi(λj
bj
bi

) > bjλj − bjλj = 0.

Thus the allocation is not Pareto optimal.
( =⇒ ) If the allocation W is not Pareto optimal, then Alice and Bob can

exchange positive fractions of items to get a Pareto improvement.
Consider such an exchange and let SA be the set of items for which positive

fractions are given by Alice to Bob. Let SB be defined similarly for Bob.
Without loss of generality, SA and SB are disjoint; otherwise we could just
consider the net transfer of any items that are in both SA and SB. Let j ∈ SA
be the item with the lowest ratio aj/bj , and i ∈ SB with the highest ratio
ai/bi.

If aibj > ajbi then we are done. Otherwise, assume by contradiction that
for each item k ∈ SA and l ∈ SB it holds akbl ≥ albk. Then ak/bk ≥ al/bl;
but then any Pareto improving exchange involving the transfer of items from
SA and SB is only possible if at least one player gets a larger fraction of items
without the other player getting a smaller fraction, which is impossible.

By Lemma 12, a Pareto optimal allocation can be obtained by sorting the
items by the ratios of the valuations and drawing a boundary line somewhere.
No matter where the boundary line is, the allocation is Pareto optimal (even
if not equitable); thus an allocation is Pareto optimal and splits at most one
item if and only if it is ordered. From this we obtain our first characterization.

Theorem 29. Adjusted Winner is the only Pareto optimal, equitable, and
minimally fractional procedure. Any ordered equitable allocation can be pro-
duced by Adjusted Winner under some tie-breaking rule.

Note that both Pareto optimality and equitability are necessary for the
characterization. By restricting to Pareto optimal allocations only, then even
the allocation that gives all the items to one player is Pareto optimal, while by
restricting to equitable allocations only, even an allocation that throws away
all the items is equitable. Similarly when the players have identical utilities for
some items, then there exist Pareto optimal and equitable allocations that split
more than one item. For example, if the two players have identical utilities
over all items, then the allocation that gives half of each item to each player
is equitable and Pareto optimal. However, in the case that the valuation are
such that ai/bi 6= aj/bj for all items i 6= j, then Adjusted Winner is exactly
characterized by Pareto optimality and equitability.
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Theorem 30. If the valuations satisfy ai/bi 6= aj/bj for all items i 6= j,
then the only Pareto optimal and equitable allocation is the result of Adjusted
Winner.

An allocation is maxmin if it maximizes the minimum utility over both
players. From Lemma 3.3 [48], an allocation is maxmin if and only if it
is Pareto optimal and equitable. Together with Theorem 29, this leads to
another characterization.

Theorem 31. Adjusted Winner is equivalent to the procedure that always
outputs a maxmin and minimally fractional allocation.

10.5 Equilibrium Existence

In this section, we study Adjusted Winner when the players are strategic,
that is, their reported valuations are not necessarily the same as their actual
valuations. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , xm) be the strategies
(i.e. declared valuations) of Alice and Bob respectively. Call (x,y) a strategy
profile. We will refer to a and b as the true values of Alice and Bob. Note
that since strategies are reported valuations they are positive numbers that
sum to 1.

Since the input to Adjusted Winner is now a strategy profile (x,y) instead
of (a,b), this means that the properties of the procedure are only guaranteed
to hold with respect to the declared valuations, and not necessarily the true
ones3.

A strategy profile (x,y) is an ε-Nash equilibrium if no player can increase
its utility by more than ε by deviating to a different (pure) strategy. For ε = 0,
we obtain a pure Nash equilibrium.

The main result of this section is that ε-Nash equilibria always exist. Fur-
thermore, using an appropriate rule for settling ties between items with equal
ratios xi/yi, the procedure also has exact pure Nash equilibria. We start our
investigations from simple tie-breaking rules.

The main result of this section is that Adjusted Winner is only guaranteed
to have ε-Nash equilibria when ε > 0 using standard tie-breaking. For the
discrete case, this is achieved by the center setting the number of points or
equivalently the denominator large enough. Furthermore, we prove that when
using an appropriate rule for settling ties between items with equal ratios xi/yi,
the procedure does admit pure Nash equilibria. We start our investigations
from the standard tie-breaking rules.

3We will show that in the equilibrium, the procedure guarantees some of the properties
with respect to the true values as well.
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10.6 Lexicographic Tie-Breaking
The classical formulation of Adjusted Winner resolves ties in an arbitrary
deterministic way, for example by ordering the items lexicographically, such
that items with lower indices come first.

10.7 Continuous Strategies
First, we consider the case of continuous strategies. We start with the following
theorem.

Theorem 32. Adjusted Winner with continuous strategies is not guaranteed
to have pure Nash equilibria.

Proof. Take an instance with two items and valuations (a,b), where b1 >
a1 > a2 > b2 > 0. Assume by contradiction there is a pure Nash equilibrium
at strategies (x,y), where x = (x, 1− x) and y = (y, 1− y). We study a few
cases and show the players can always improve.

Case 1 : (x 6= y). Without loss of generality x > y (the case x < y is
similar). Then there exists δ ∈ R with x − δ > y ⇒ 1 − x + δ < 1 − y, and
Alice can improve by playing x′ = (x − δ, 1 − x + δ), as the boundary line
moves to the left of its former position.

Case 2 : (x = y < 1/2). Here both players report higher values on the
item they like less; Alice’s allocation is (1, λ) while Bob’s is (0, 1−λ), for some
λ ∈ (0, 1). Then ∃ δ ∈ R with x+ δ < 1/2. By playing y′ = (x+ δ, 1− x− δ),
Bob gets (1, 1 − λ′), for some λ′ ∈ (0, 1). This is a strict improvement since
a1 > a2.

Case 3 : (x = y > 1/2). Both players report higher values on the item
they like more. Bob gets (1− 1

2x , 1) and Alice gets ( 1
2x , 0), with utilities:

ua(AW (x,y)) = a1
2x

and
ub(AW (x,y)) =

(
1− 1

2x

)
b1 + b2.

Let δ ∈ (0,min(1− x, 2x− 1)) such that:

δ < max
{4x(x− a1)

2x− a1
,
4x(b1 − x)

2x− b1

}
.

Observe that since b1 > a1 and 2x− a1 and 2x− b1 are positive, at least one
of x−a1 and b1−x is strictly positive and by continuity of the strategy space,
such a δ exists. Now consider alternative profiles (x′,y) = ((x − δ, 1 − x +
δ), (x, 1 − x)) and (x,y′) = ((x, 1 − x), (x + δ, 1 − x − δ)). Since δ < 2x − 1,
the first item is still the item that gets split in the new profile. Using the
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identities a1 + a2 = b1 + b2 = 1 and the assumption that (x,y) is a pure Nash
equilibrium, we have that a1

(
1− 1

2x −
1

2x−δ

)
+ a2 ≤ 0 =⇒ δ ≥ 4x(x−a1)

2x−a1

b1
(
1− 1

2x −
1

2x+δ

)
+ b2 ≥ 0 =⇒ δ ≥ 4x(b1−x)

2x−b1

and we obtain a contradiction.
Case 4 : (x = y = 1/2). Alice and Bob get allocations (1, 0) and (0, 1),

respectively. Let 0 < δ < (b1−b2)
b2

and consider the strategy y′ = (x+δ, 1−x−δ)
of Bob. Using y′, Bob gets the allocation ( 1

δ+1 , 0), which is better than (0, 1).
Since b1 > b2, such δ exists.

As none of the cases 1 − 4 are stable, the procedure has no pure Nash
equilibrium.

However, we show that Adjusted Winner admits approximate Nash equi-
libria.

Theorem 33. Each instance of Adjusted Winner has an ε-Nash equilibrium,
for every ε > 0.

Proof. Let (a,b) be any instance. We show there exists an ε-Nash equilibrium
in which Alice plays her true valuations and Bob plays a small perturbation
of Alice’s valuations. More formally, we show there exist ε1, . . . , εm, such that
an ε-equilibrium is obtained when Alice plays a = (a1, . . . , am) and Bob plays
ã = (ã1, . . . , ãm), where ãi = ai + εi for each item i ∈ [m] and

∑m
i=1 εi = 0.

The theorem will follow from the next two lemmas.

Lemma 13. For any pair of strategies (a, ã), where |ai − ãi| < ε/m for all
i ∈ [m], Alice’s strategy is an ε-best response.

Proof. Since the procedure is envy-free, Alice gets at least half of the total
value by being truthful regardless of Bob’s strategy, and so ua(AWA(a, ã)) ≥
1/2. The allocation must also be envy-free according to Bob’s declared valu-
ation profile ã, and so uã(AWB(a, ã)) ≥ 1/2.

Since strategies a and ã are ε-close, that is
∑
i |ai − ãi| < ε, then their

evaluations of the same allocation, namely AWB(a, ã), are also close:

ua(AWB(a, ã)) ≥ uã(AWB(a, ã))− ε ≥ 1/2− ε

It follows that 1/2 ≤ ua(AWA(a, ã)) ≤ 1/2 + ε. Moreover, Alice cannot use
some other strategy a′ to force an allocation that gives her more than 1/2 + ε;
otherwise, Bob’s utility as measured by ã under strategy profiles (a′, ã) would
be strictly less than 1/2− ε, contradicting the envy-freeness of the procedure.

Thus when Bob’s strategy is ε-close to Alice’s truthful strategy a, Alice
has an ε-best response at her truthful strategy a, which completes the proof
of the lemma.
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Lemma 14. When Alice plays a, Bob has an ε-best response that is ε-close
to Alice’s strategy.

Proof. Let π = (π1, . . . , πm) be a fixed permutation of the items. Then there
exist uniquely defined index l ∈ {1, . . . ,m} and λ ∈ [0, 1) such that

aπ1 + . . . aπl−1 + λaπl = 1
2 = (1− λ)aπl + aπl+1 + . . .+ aπm (10.1)

Note that Adjusted Winner uses lexicographic tie breaking to sort the items
when there exist equal ratios xi/yi = xj/yj , for some i 6= j. Thus the order
π may never appear in an outcome of the procedure when the players use the
same strategies.

However, we show that Bob can approximate the outcome of Equation
(10.1) arbitrarily well. We have two cases:

Case 1 : λ ∈ (0, 1). Then there exist ε1, . . . , εm such that the following
conditions hold:

(i) |εj | < min
(
ε
m ,

2λaπl
m

)
, for all j ∈ [m],

(ii) the items are strictly ordered by π: aπ1
aπ1 +επ1

> . . . > aπm
aπm+επm

,

(iii)
∑m
j=1 εj = 0, and

(iv) it’s still item πl that gets split, in a fraction δ ∈ (0, 1) close to λ; that is,
|λ− δ| < ε

bπl
.

Informally, Bob plays a perturbation of Alice’s truthful strategy inducing
ordering π on the items (with no ties) and splits item πl in a fraction close to
λ.

Case 2 : λ = 0. Again, there exist ε1, . . . , εm such that the following
conditions are met:

(i) εj < min
(
ε
m ,

aπl
m

)
for all j ∈ [m],

(ii) the item order is π: aπ1
aπ1 +επ1

> . . . > aπm
aπm+επm

,

(iii)
∑m
j=1 εj = 0, and

(iv) item πl is split in a ratio δ close to zero: |δ| < ε
bπl

.

Thus Bob can approximate the outcome of Equation (10.1).
Now consider any ε-best response y of Bob; this induces some permutation

of the items according to the ratios. If y is ε-close to the strategy of Alice
we are done. Otherwise, Bob could change his strategy to be ε-close to the
strategy of Alice while inducing the same permutation. This will only improve
his utility as the boundary line moves to the left.

It can be observed that there is at least one other ε-Nash equilibrium, at
strategies (b, b̃), where b̃ is a perturbation of Bob’s truthful profile.
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10.8 Discrete Strategies
Even though the continuous procedure is not guaranteed to have pure Nash
equilibria, this does not imply that the discrete variant should also fail to have
pure Nash equilibria. However we do find that this is indeed the case.

Theorem 34. Adjusted Winner with discrete strategies is not guaranteed to
have pure Nash equilibria.

Proof. Consider a game with 4 items and 7 points, where Alice and Bob have
valuations (1, 1, 2, 3) and (2, 3, 1, 1), respectively. This game does not admit
a pure Nash equilibrium; this fact can be verified with a program that checks
all possible configurations.

Our next theorem shows that an ε-Nash equilibrium always exists in the
discrete case if the number of points is set adequately, such that the players
can approximately represent their true valuations.

Theorem 35. For any profile (a,b) and any ε > 0, there exists P ′ such that
the procedure has an ε-Nash equilibrium when the players are given P ′ points.

Proof. Let ε > 0, and consider any profile (a,b) with denominator P . Then
if we interpret (a,b) as a profile for the continuous setting, we get a ε/2-Nash
equilibrium (a, ã) from Theorem 33, where ãj = aj + εj , for all j ∈ [m].

Recall that aj , bj ∈ Q; where aj = sj
P and bj = tj

P , for some sj , tj ,∈ N.
We can find a rational number ε′j = qj

rj
(with qj , rj ∈ N) that approximates εj

within ε
2m for each j ∈ [m], and such that the ordering of the items induced

by the ratios aj
aj+εj is the same as the one given by aj

aj+ε′j
. Define ã′ such that

ã′j = aj + ε′j .
It follows that (a, ã′) is an ε-Nash equilibrium with aj , ã

′
j ∈ Q, for all

j ∈ [m]. Thus whenever the players have a denominator of P ′ = P ·
∏m
j=1 rj ,

the strategy profiles (a, ã′) can be represented in the discrete procedure, so
by giving P ′ points to the players, there exists an ε-Nash equilibrium.

10.9 Informed Tie-Breaking
If the tie-breaking rule is not independent of the valuations, then both the
discrete and continuous variants of Adjusted Winner have exact pure Nash
equilibria. The deterministic tie-breaking rule under which this is possible is
the one in which one of the players, for example Bob, is allowed to resolve
ties by sorting them in the best possible order for him. Bob can compute the
optimal order as outlined in the next definition.

Definition 22 (Informed Tie-Breaking). Let there be a fixed player, for ex-
ample Bob. Given any strategies (x,y), for each permutation π, let lπ ∈ [m]
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and λπ ∈ [0, 1) be the uniquely defined item and fraction for which:

xπ1 + . . . xπl−1 + λxπl = (1− λ)yπl + yπl+1 + . . .+ yπm

Let π∗ be an optimal permutation with respect to (x,y), namely π∗ ∈ arg maxπ(1−
λ)yπl + yπl+1 + . . . + yπm. Then under informed tie-breaking, the procedure
resolves ties in the order given by π∗.

Note that there might be more than one choice of π∗ and Bob picks any
fixed one. Now we can state the equilibrium existence theorems.

Theorem 36. Adjusted Winner with continuous strategies and informed tie-
breaking is guaranteed to have a pure Nash equilibrium.

Proof. We show that the profile (a,a) is an exact equilibrium. By envy-
freeness of the procedure, Alice gets at least half of the points at this strategy
profile. Moreover, she cannot get strictly above half, since that would violate
envy-freeness from the point of view of Bob’s declared valuation, which is also
a. Thus Alice’s strategy is a best response. As argued in Theorem 33 and
35, there exists an optimal permutation π∗ such that by playing a and sorting
the items in the order π∗, Bob can obtain the best possible utility (and as
mentioned in Lemma 14, this value is achievable at these strategies).

Similarly, it can be shown that the strategy profile (a,a) is a pure Nash
equilibrium in the discrete procedure.

Theorem 37. Adjusted Winner with discrete strategies and informed tie-
breaking is guaranteed to have a pure Nash equilibrium.

10.10 Efficiency and Fairness of Equilibria
Having examined the existence of pure Nash equilibria in Adjusted Winner, we
now study their fairness and efficiency. For fairness, we observe that following.

Theorem 38. All the pure Nash equilibria of Adjusted Winner are envy-free
with respect to true valuations of the players.

For efficiency, we use the well known measure of the Price of Anarchy [81,
105].

First, the social welfare of an allocation W is defined as the sum of the
players’ utilities: SW (W ) = uA(WA) + uB(WB). Then the Price of Anarchy
is defined as the ratio between the maximum social welfare and the welfare of
the worst-case pure Nash equilibrium. Our main findings are that when the
procedure is equipped with an informed tie-breaking rule (i) all the pure Nash
equilibria are Pareto optimal with respect to the true valuations and (ii) the
price of anarchy is constant; that is, each pure Nash equilibrium achieves at
least 75% of the optimal social welfare. We start with a lemma.
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Lemma 15. Let (x,x) be a pure Nash equilibrium of Adjusted Winner with
informed tie-breaking and let π∗ be the permutation that Bob chooses. Then,
among all possible permutations, π∗ maximizes Alice’s utility.

Proof. Assume by contradiction that there exists a permutation π that gives
Alice a strictly larger utility; let α be her marginal increase from π∗ to π. As
discussed in Section 10.5, Alice can find appropriate constants ε1, . . . , εm such
that AW (x′,x) with x′ = (x1 + ε1, . . . , xm + εm) orders the items by π and
the allocations AW (x,x) and AW (x′,x) differ only in the allocation of the
split item by by δ. Moreover, by continuity of the strategies, for each α, there
exist εi’s such that δ is small enough for AW (x′,x) to be better for Alice than
AW (x,x).

Next we show that all equilibria are Pareto optimal.

Theorem 39. All the pure Nash equilibria of Adjusted Winner with informed
tie-breaking are Pareto optimal with respect to the true valuations a and b.

Proof. Let (x,x) be a pure Nash equilibrium of Adjusted Winner under in-
formed tie-breaking and let l be the item that gets split (if any, otherwise the
item to the left of the boundary line). Order Alice’s items decreasing order of
ratios ai/xi and Bob’s items in increasing order of ratios bi/xi. Since (x,x) is
a pure Nash equilibrium, by Lemma 15, both players are getting their maxi-
mum utility over all possible tie-breaking orderings of items. This means that
for every item i ≤ l and every item j ≥ l with i 6= j, it holds that

aj
xj
≥ ai
xi

and bi
xi
≥ bj
xj
⇒ ai

xi
· bj
xj
≤ aj
xj
· bi
xi
,

which by Lemma 12, implies that AW (x,x) is Pareto optimal.

The Pareto optimality of a strategy profile has a direct implication on the
social welfare achieved at that profile.

Theorem 40. The Price of Anarchy of Adjusted Winner is 4/3.

Proof. Let (x,y) be any pure Nash equilibrium and let OPTA and OPTB be
the utilities of Alice and Bob respectively in the optimal allocation. Since
AW (x,y) is Pareto optimal by Theorem 39, the allocation for at least one of
the players, (e.g. Alice), is at least as good as that of the optimal allocation.
In other words, uA(AW (x,y)) ≥ OPTA. On the other hand, since AW (x,y)
is envy-free, Bob’s utility from AW (x,y) is at least 1/2 which is at least
1
2OPTB. Overall, the social welfare of AW (x,y) is at least OPTA + 1

2OPTB
and the ratio is minimized when OPTA and OPTB are minimum. Since
OPTA ≥ OPTB ≥ 1/2, the ratio is at least 4/3.

The bound is (almost) tight, given by the following simple instance with
two items. Let a = (1 − ε, ε) and b = (ε, 1 − ε) and consider the strategy
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profile x = (ε, 1− ε) and y = (ε, 1− ε). It is not hard to see that x,y is a pure
Nash equilibrium for Alice breaking ties. The social welfare of the optimal
allocation is 2− 2ε. In the allocation of Adjusted Winner, Alice wins the first
item and the second item is split (almost) in half. The social welfare of the
mechanism is 1 + 1

2 + o(ε) and the approximation ratio is (almost) 4/3. As ε
grows smaller, the ratio becomes closer to 4/3.

10.11 Future Work
According to Foley [63], the quintessential characteristics of fairness are envy-
freeness and Pareto optimality. We show that Adjusted Winner is guaranteed
to have pure Nash equilibria, which satisfy both of these fairness notions. This
attests to the usefulness and theoretical robustness of the procedure. A very
interesting direction for future work is to study the imperfect information
setting, as the Nash equilibria studied here require the players to have full
information of each other’s preferences.





Chapter 11

Characterization and
Computation of Equilibria for
Indivisible Goods

The systematic study of economic mechanisms began in the 19th century
with the pioneering work of Irving Fisher [19] and Léon Walras [125], who
proposed the Fisher market and the exchange economy as answers to the
question: “How does one allocate scarce resources among the participants of
an economic system?”. These models of a competitive economy are central
in mathematical economics and have been studied ever since in an extensive
body of literature [105].

The high level scenario is that of several economic players arriving at the
market with an initial endowment of resources and a utility function for con-
suming goods. The problem is to compute prices and an allocation for which
an optimal exchange takes place: each player is maximally satisfied with the
bundle acquired, given the prices and his initial endowment. Such allocation
and prices form a market equilibrium and, remarkably, are guaranteed to exist
under mild assumptions when goods are divisible [4].

In real scenarios, however, goods often come in discrete quantities; for
example, clothes, furniture, houses, or cars may exist in multiple copies, but
cannot be infinitely divided. Scarce resources, such as antique items or art
collection pieces are even rarer – often unique (and thus indivisible). The
problem of allocating discrete or indivisible resources is much more challenging
because the theoretical guarantees from the divisible case do not always carry
over; however, it can be tackled as well using market mechanisms [18, 38,
51, 106]. In this chapter, we are concerned with the question of allocating
indivisible resources using the leading fairness concept from economics: the
competitive equilibrium from equal incomes (CEEI).

The competitive equilibrium from equal incomes solution embodies the
ideal notion of fairness [63, 76, 106, 123] and is a special case of the Fisher
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market model [122]. Informally, there are m goods to be allocated among
n buyers, each of which is endowed with one unit of an artificial currency
that they can use to acquire goods. The buyers declare their preferences over
the goods, after which the equilibrium prices and allocation are computed.
When the goods are divisible, a competitive equilibrium from equal incomes is
guaranteed to exist for very general conditions and each equilibrium allocation
satisfies the desirable properties of envy-freeness and efficiency.

In recent years, the competitive equilibrium from equal incomes has been
studied for the allocation of discrete and indivisible resources in a series of
papers. Bouveret and Lemaître [18] considered it for allocating indivisible
goods, together with several other notions of fairness such as proportional-
ity, envy-freeness, and maximin fairness. Budish [38] analyzed the allocation
of multiple discrete goods for the course assignment problem1 and designed
an approximate variant of CEEI that is guaranteed to exist for any instance.
In this variant, buyers have permissible bundles of goods and the approxi-
mation notion requires randomization to perturb the budgets of the buyers
while relaxing the market clearing condition. In follow-up work, Othman,
Papadimitriou, and Rubinstein [106] analyzed the computational complexity
of this variant, showing that computing the approximate solution proposed
by Budish is PPAD-complete, and that it is NP-hard to distinguish between
an instance where an exact CEEI exists and the one in which there is no
approximate-CEEI tighter than guaranteed in Budish [38].

In this chapter, we study the competitive equilibrium from equal incomes
for two major classes of valuations, namely perfect substitutes and perfect
complements. Perfect substitutes represent goods that can replace each other
in consumption, such as Pepsi and Coca-Cola, and are modeled mathemati-
cally through additive utilities. This is the setting examined by Bouveret and
Lemaître [18] as well. Perfect complements represent goods that have to be
consumed together, such as a left shoe and a right shoe, and are modeled
mathematically through Leontief utilities. For indivisible goods, Leontief util-
ities are in fact equivalent to the class of single-minded buyers, which have
been studied extensively in the context of auctions [105].

We study the computation of competitive equilibria for indivisible goods
and establish polynomial time algorithms and hardness results (where applica-
ble). Our algorithm for Leontief utilities gives a very succinct characterization
of markets that admit a competitive equilibrium from equal incomes for indi-
visible resources. The computational results of Othman, Papadimitriou, and
Rubinstein [106] are orthogonal to our setting since they refer to combinatorial
valuations.

1Given a set of students and courses to be offered at a university, how should the courses
be scheduled given that the students have preferences over their schedules and the courses
have capacity constraints on enrollment?
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11.1 Competitive Equilibrium from Equal Incomes

We begin by formally introducing the competitive equilibrium from equal
incomes. Formally, there is a set N = {1, . . . , n} of buyers and a set M =
{1, . . . ,m} of goods which are brought by a seller. In general, the goods can
be either infinitely divisible or discrete and, without loss of generality, there
is exactly one unit from every good j ∈M . Each buyer i is endowed with:

• A utility function ui : [0, 1]m → R≥0 for consuming the goods, which
maps each vector x = 〈x1, . . . , xm〉 of resources to a real value, where
ui(x) represents the buyer’s utility for bundle x; note that xj is the
amount received by the buyer from good j.

• An initial budget Bi = 1, which can be viewed as (artificial) currency
to acquire goods, but has no intrinsic value to the buyer. However, the
currency does have intrinsic value to the seller.

Each buyer in the market wants to spend its entire budget to acquire a
bundle of items that maximizes its utility, while the seller aims to sell all the
goods (which it has no intrinsic value for) and extract the money from the
buyers.

A market outcome is defined as a tuple (x,p), where p is a vector of prices
for the m items, and x = 〈x1, . . . ,xn〉 is an allocation of the m items, with
pj denoting the price of item j and xij representing the amount of item j
received by buyer i. A market outcome that maximizes the utility of each
buyer subject to its budget constraint and clears the market is called a market
equilibrium [105]. Formally, (x,p) is a market equilibrium if and only if:

• For each buyer i ∈ N , the bundle xi maximizes buyer i’s utility given
the prices p and budget Bi = 1.

• Each item j ∈M is completely sold or has price zero. That is:(
n∑
i=1

xij − 1
)
pj = 0.

• All the buyers exhaust their budgets; that is,
∑m
j=1 pj · xij = 1, for all

i ∈ N .

Every competitive :equilibrium from equal incomes (x,p) is envy-free; if
buyer i would strictly prefer another buyer j’s bundle xj , then i could simply
purchase xj instead of xi since they have the same buying power, which is in
contradiction with the equilibrium property.

A market with divisible goods is guaranteed to have a competitive equilib-
rium under mild conditions [4]. Moreover, for the family of Constant Elasticity
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of Substitution valuations, the equilibrium can be computed using a remark-
able convex program due to Eisenberg and Gale [60], which is one of the few
algorithmic results in general equilibrium theory and stated in Figure 11.1.
The Eisenberg-Gale program computes an equilibrium for the more general
Fisher model, where the budgets Bi of the buyers are not necessarily equal.

Figure 11.1: The Eisenberg-Gale convex program for Fisher markets

max
n∑
i=1

Bi · log(ui)

s.t. ui =

 m∑
j=1

aij · xρij

 1
ρ

, ∀ i ∈ {1, . . . , n}

n∑
i=1

xij ≤ 1, ∀ j ∈ {1, . . . ,m}

xij ≥ 0, ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

The classes of valuations studied in this paper – perfect complements and
perfect substitutes – belong to the constant elasticity of substitution family.
In the following sections we study these classes in detail in the context of
allocating indivisible resources.

11.2 Perfect Complements

Let M = (N,M,v) denote a market with perfect complements, represented
through Leontief utilities; recall N is the set of buyers,M the set of items, and
v a matrix of constants, such that vi,j is the value of buyer i for consuming
one unit of good j. The utility of buyer i for bundle x = 〈x1, . . . , xm〉 ∈ [0, 1]m
is given by:

ui(x) =
m

min
j=1

(
xj
vi,j

)
(11.1)

In our model the goods are indivisible, and so xi,j ∈ {0, 1}, for all i, j.
By examining Equation 11.1, it can be observed that buyer i’s utility for a
bundle depends solely on whether the buyer gets all the items that it values
positively (or not). To capture this we define the notion of demand set.

Definition 23 (Demand Set). Given a CEEI market with indivisible goods
and Leontief utilities, let the demand set of buyer i be the set of items that i
has a strictly positive value for; that is, Di = {j ∈M | vi,j > 0}.
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Now we can introduce the precise utility equation for indivisible goods
with Leontief valuations.

Definition 24 (Leontief Utility for Indivisible Goods). Given a market with
Leontief utilities and indivisible goods, the utility of a buyer i for a bundle
x = 〈x1, . . . , xm〉 ∈ [0, 1]m is:

ui(x) =
{

minj∈Di
(

1
vi,j

)
, if Di ⊆ x,

0, otherwise

where Di represents buyer i’s demand set.

We illustrate this utility class with an example. Note that valuations are
not necessarily normalized.

Example 8. Let M be a market with buyers N = {1, 2, 3}, items M =
{1, 2, 3, 4}, and values: v1,1 = 1, v2,2 = 2, v2,4 = 3, v3,1 = 0.5, v3,2 = 2.5,
v3,3 = 5, and vi,j = 0, for all other i, j. Recall the demand set of each
buyer consists of the items it values strictly positively, and so: D1 = {1},
D2 = {2, 4}, D3 = {1, 2, 3}. Then the utility of buyer 1 for a bundle S ⊆ M

is: u1(S) = 0 if D1 6⊆ S, and u1(S) = minj∈D1

(
1
v1,j

)
= 1

v1,1
= 1 otherwise.

Similarly, u2(S) = 0 if D2 6⊆M and u2(S) = min
(

1
v2,2

, 1
v2,4

)
= 1

3 otherwise.

Next, we examine the computation of allocations that are fair according
to the CEEI solution concept. The main computational problems that we
consider are : Given a market, determine whether a competitive equilibrium
exists and compute it when possible. Depending on the scenario at hand, an
allocation of the resources to the buyers may have already been made (or the
seller may have already set prices for the items). The questions then are to
determine whether an equilibrium exists at those prices or allocations. Our
algorithm for computing a competitive equilibrium for Leontief utilities with
indivisible goods yields a characterization of when a market equilibrium is
guaranteed to exist.

Theorem 41. Given a marketM = (N,M,v) with Leontief utilities, indivis-
ible goods, and a tuple (x,p), where x is an allocation and p a price vector,
it can be decided in polynomial time if (x,p) is a market equilibrium forM.

Proof. It is sufficient to verify that these conditions hold:
◦ Each buyer i exhausts their budget:

∑
j∈xi pj = 1.

◦ Each item is either allocated or has a price of zero.
◦ No buyer i can afford a better bundle; that is, if ui(x,p) = 0, then∑

j∈Di pj > 1.
Clearly all three conditions can be verified in polynomial time, namely

O(mn), which concludes the proof.
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Theorem 42. Given a marketM = (N,M,v) with Leontief utilities, indivis-
ible goods, and a price vector p, it is co-NP-complete to decide if there exists
an allocation x such that (x,p) is a market equilibrium forM.

Proof. From Theorem 41, given an allocation x for (M,p), it can be verified
in polynomial time if there exists a market equilibrium for M at (x,p). To
show hardness, we use the NP-complete problem PARTITION:

Given a set of positive integers S = {s1, . . . , sm}, are there subsets
A,B ⊂ S such that A∪B = S, A∩B = ∅, and

∑
a∈A a =

∑
b∈B b?

Given partition input S, construct a marketM = (N,M,v) and price vector
p as follows:

• Set N = {1, 2, 3} of buyers.

• Set M = {0, 1, . . . ,m} of items.

• Price vector p = (p0, . . . , pm), such that p0 = 1 and pj = 2·sj∑m

l=1 sl
, for all

j ∈ {1, . . . ,m}.

• Demand sets: D1 = {0} and D2 = D3 = {1, . . . ,m}. Clearly these
demand sets can be expressed through Leontief valuations – for example,
let v1,0 = 1 and v1,j = 0, for all j ∈ {1, . . . ,m}, and v2,k = v3,k = 1

m+1 ,
for all k ∈ {0, . . . ,m}.

Note that the total price of the items in {1, . . . ,m} is:

p({1, . . . ,m}) =
m∑
j=1

pj =
m∑
j=1

2 · sj∑m
l=1 sl

= 2

.
( =⇒ ) If there is a partition (A,B) of S, then we show that the allocation

x given by x1 = {0}, x2 = A, x3 = B is a market equilibrium:

• All the items are sold, since x1∪x2∪x3 = {0, 1, . . . ,m}, and the bundles
are disjoint, since xi ∩ xj = ∅, for all i, j ∈ N , i 6= j.

• Each buyer gets an optimal bundle at prices p, since buyer 1 gets the
best possible bundle: u1(x1,p) = u1(D1,p) = 1, while buyers 2 and 3
cannot afford anything better, as the price of their demanded bundle is
higher than their budget: p(D2) = p(D3) =

∑m
j=0 pj = 3 > 1.

• The amount of money spent by each buyer is equal to their budget:
p(x1) = 1, p(x2) = p(A) = 1, and p(x3) = p(B) = 1.
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(⇐= ) On the other hand, if there is an allocation x such that (x,p) is a
market equilibrium for the marketM, we claim that A = x2 and B = x3 is a
correct partition of S. First, note that if x is such that buyer 1 does not get
item 0, then the optimality condition fails for buyer 1 because p0 = 1 and so
the buyer could always afford it. Thus buyer 1 must get item 0 and moreover,
it cannot get anything else. Thus x1 = {0} and x2,x3 ⊆ {1, . . . ,m}.

• Since all the items are sold at (x,p), we have that A ∪B = S.

• Buyers 2 and 3 spend their entire budgets at (x,p), and so p(x2) = 1
and p(x3) = 1. Then p(A) = p(B) = 1 and:

∑
sj∈A

( 2 · sj∑m
k=1 sk

)
=

∑
sj∈B

( 2 · sj∑m
k=1 sk

)
⇐⇒

∑
sj∈A

sj =
∑
sj∈B

sj

Thus S has a partition if and only if the corresponding market and price vector
admit a market clearing allocation, which completes the proof.

Theorem 43. Given a market M = (N,M,v) with Leontief utilities and an
allocation x, it can be decided in polynomial time if there exists price vector
p such that (x,p) is a market equilibrium forM.

Proof. This problem can be solved using linear programming (see Algorithm 5.4).
At a high level, one needs to check that the allocation x is feasible, that each
item is either sold or has a price of zero, and that (i) each buyer spends all
their money and (ii) whenever a buyer does not get their demand set, the
bundle is too expensive. Since the number of constraints is polynomial in the
number of buyers and items, the algorithm runs in polynomial time.

Finally, we investigate the problem of computing both market equilibrium
allocation and prices given an instance. We will later also discuss improving
the efficiency of the computed equilibria.

Theorem 44. Given a market M = (N,M,v) with Leontief utilities and
indivisible items, a competitive equilibrium from equal incomes exists if and
only if the following hold:

• There are at least as many items as buyers (m ≥ n)

• No two buyers have identical demand sets of size one.

Moreover, an equilibrium (x,p) of the marketM can be computed in polyno-
mial time if it exists.
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input: MarketM with Leontief valuations; allocation x
output: price vector p such that (x,p) is a market equilibrium forM, or
Null if none exists
A ← ∅ // Set of items allocated under x
// Check that x is feasible
for i = 1 to n do
A ← A∪ xi
for j = i+ 1 to n do

if (xi ∩ xj 6= ∅) then
return Null

end if
end for

end for
C ← ∅ // Initialize the set of constraints
for j ∈ A \M do
C ← C ∪ {pj ≤ 0} // Price the unsold items at zero

end for
for i ∈ {1, . . . , n} do
C ← C ∪

{∑
j∈xi pj ≤ 1,−

∑
j∈xi pj ≤ −1

}
if (Di 6⊆ xi) then
C ← C∪

{
−
∑
j∈xi pj ≤ −1− ε

}
// If buyer i does not get its demand

set, then it’s because the bundle is too expensive
end if

end for
return Solve(max ε, C,p ≥ 0) // Linear program solver

Algorithm 11: Compute-Equilibrium-Prices(M,x)

Proof. Clearly the two conditions are necessary; if there are fewer items than
buyers, then the budgets can never be exhausted, while if there exist two
buyers whose demand sets are identical and consist of exactly the same item,
at least one of them will be envious under any pair of feasible allocation and
prices.

To see that the conditions are also sufficient, consider the allocation pro-
duced by Algorithm 5.4. At a high level, the algorithm first sorts the buyers
in increasing order by the sizes of their demand sets, breaking ties lexico-
graphically. Then each buyer i in this order is given one item ki, where ki is
selected from the unallocated items in the buyer’s demand set (if possible),
and otherwise it represents an arbitrary un-allocated item. Finally, the last
buyer (i.e. with the largest demand set) additionally gets all the items that
remained unallocated at the end of this iteration (if any). For each buyer i,
the items in its bundle, xi, are priced equally, at 1/|xi|.

Now we verify that whenever the marketM has an equilibrium, the allo-
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input: MarketM with Leontief valuations
output: Equilibrium allocation and prices (x,p), or Null if none exist
if (m < n) then

return Null // No equilibrium : too few items
end if
for ( i, j ∈ N) do

if (i 6= j and Di = Dj and |Di| = 1) then
return Null // No equilibrium : buyers i and j have identical sin-

gleton demand sets
end if

end for
A ← ∅ // Items allocated so far
for (buyer i ∈ N in increasing order by |Di|) do

if (|Di \ A| ≥ 1) then
ki ← argmin`∈Di\A ` // If not all the items in buyer i’s demand set

have been allocated, give the buyer one of them
else

ki ← argmin`∈M\A ` // Otherwise, i gets an arbitrary unallocated
item

end if
xi ← {ki}
A ← A ∪ {ki}

end for
L← argmaxi∈N |Di| // The buyer with the largest demand also gets all the
unallocated items (if any)
xL ← xL ∪ (M \ A)
for (i ∈ N) do

for (j ∈ xi) do
pj ← 1/|xi|

end for
end for
return (x,p)

Algorithm 12: Compute-Equilibrium(M)

cation and prices (x,p) computed by Algorithm 5.4 represent indeed a market
equilibrium:
• Budgets exhausted: Each buyer i gets a non-empty bundle xi priced at:

p(xi) =
( 1
|xi|

)
· |xi| = 1.

Thus the buyer spends all its money.
• Items sold: Each item is allocated by the algorithm.
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• Optimality for each buyer : We show that each buyer i either gets its
demand set or cannot afford it using a few cases:

◦ Case 1 : (|Di| = 1). Since there are no two identical demand sets
with the size of one, buyer i gets the unique item in its demand set, and this
allocation maximizes i’s utility.

◦ Case 2 : (|Di| ≥ 2) and i is not the last buyer. Then if i gets an
item from its demand set, since |Di| ≥ 2 and all items are positively priced,
the bundle Di is too expensive: p(Di) > 1. Otherwise, i gets an item outside
of its demand set. Then all the items in Di must have been allocated to the
previous buyers. Since |Di| ≥ 2 and each previously allocated item has price
1, Di is too expensive: p(Di) > 1.

◦ Case 3 : (|Di| ≥ 2) and i is the last buyer. If i does not get all its
demand, then some item in Di was given to an earlier buyer at price 1. From
|Di| ≥ 2, there is at least one other desired item in Di positively priced, thus
p(Di) > 1.

Thus, Algorithm 5.4 computes an equilibrium.

To gain more intuition about the model, we illustrate the execution of
Algorithm 5.4 on an example.

Example 9. Consider a market with buyers N = {1, . . . , 6}, items M =
{1, . . . , 8}, and demands: D1 = {1}, D2 = {2}, D3 = {2, 3}, D4 = {2, 3},
D5 = {4, 5, 6}, D6 = {6, 7, 8}.

Algorithm 5.4 sorts the buyers in increasing order of the number of items in
their demand sets, breaking ties lexicographically. The order is: (1, 2, 3, 4, 5, 6).

• Step 1 : Buyer 1 gets item 1 at price 1: x1 = {1}, p1 = 1.

• Step 2 : Buyer 2 gets item 2 at price 1 : x2 = {2}, p2 = 1.

• Step 3 : There is one unallocated item left from buyer 3’s demand set,
and so 3 gets it: x3 = {3} and p3 = 1.

• Step 4 : Buyer 4’s demand set has been completely allocated, thus 4 gets
the free item (outside of its demand) with smallest index: x4 = {4} and
p4 = 1.

• Step 5 : There are two items (5 and 6) left unallocated in buyer 5’s
demand set. Thus : x5 = {5} and p5 = 1.

• Step 6 : Buyer 6 gets all the leftover items : x6 = {6, 7, 8} at equal
prices: p6 = p7 = p8 = 1/3.

The characterization obtained through Algorithm 5.4 raises several im-
portant questions. For example, not only do fair division procedures typically
guarantee fairness (according to a given solution concept), but also they im-
prove some measure of efficiency when possible.
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The social welfare of an allocation x is defined as the sum of the buyers’
utilities: SW(x) =

∑n
i=1 ui(xi). For measuring social welfare, valuations

must be normalized such that players are weighted equally (since their rights
over the goods are equal), and so: ui(M) = 1, for each buyer i. This can
also be interpreted as the number of buyers that receive their demand sets
(possibly in addition to other items). As the next example illustrates, the
allocation computed by Algorithm 5.4 can be the worst possible among all
market equilibria.

Example 10. Given n ∈ N, let N = {1, . . . , n} be the set of buyers, M =
{1, . . . , 2n} the set of items, and the demand sets given by: Di = {2i− 1, 2i},
for each i ∈ N . Then Algorithm 5.4 computes the allocation: x1 = {1},
x2 = {2}, . . . , xn−1 = {n − 1}, xn = {n, . . . , 2n}, with a social welfare of
SW(x) = 1. The optimal allocation that can be supported in a competitive
equilibrium is: x∗i = {2i − 1, 2i}, for each i ∈ N , with a social welfare of
SW(x∗) = n.

These observations give rise to the question: Is there an efficient algorithm
for computing a competitive equilibrium from equal incomes with optimal social
welfare (among all equilibria) for perfect complements with indivisible goods?

It is important to note that the allocation that maximizes social welfare
among all possible allocations cannot always be supported in a competitive
equilibrium. We illustrate this phenomenon in Example 11.

Example 11. Consider a market with buyers: N = {1, 2} and items: M =
{1, 2, 3}, where the demand sets are: D1 = D2 = {1, 2}. Concretely, let
these demands be induced by the valuations: v1,1 = v1,2 = 1, v1,3 = 0 and
v2,1 = v2,2 = 1, v2,3 = 0. The optimal social welfare is 1 and can be achieved
by giving one of the buyers its entire demand set and the other buyer the
remaining item; for example, let x∗1 = {1, 2} and x∗2 = {3}, with p1 = p2 = 1/2
and p3 = 1. Clearly no such allocation can be supported in an equilibrium,
because whenever a buyer gets their full demand, the other buyer does not get
its own demand but can afford it (their initial budgets are equal). Thus every
competitive equilibrium for this instance has a social welfare of zero, such as
x1 = {1}, x2 = {2, 3}, with p1 = 1, p2 = 1, p3 = 0.

The next result implies that equilibria with optimal social welfare cannot
be computed efficiently in the worst case.

Theorem 45. Given a market M = (N,M,v) with Leontief valuations, in-
divisible goods, and an integer K ∈ N, it is NP-complete to decide ifM has a
competitive equilibrium from equal incomes with social welfare at least K.

Proof. (sketch) We use a reduction from the NP-complete problem SET PACKING:

Given a collection C = 〈C1, . . . , Cn〉 of finite sets and a positive
integer K ≤ n, does C contain at least K mutually disjoint sets?
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Given collection C and integer K, let M be a market with buyers N =
{1, . . . , n}, items M = {1, . . . ,m + n}, and demands Di = Ci ∪ {m + i},
for all i ∈ N . It can be checked that M has a competitive equilibrium with
social welfare at least K if and only if C has a disjoint collection of at least K
sets.

In the full version of the paper (see [37]) we show that there exists a 1/n
approximation for the social welfare maximization problem (even for weighted
valuations) and this is close to optimal.

Another important notion of efficiency is known as Pareto efficiency. In-
formally, we say that a market equilibrium (x,p) is Pareto efficient (with
respect to the set of all the possible market equilibria) if there is no other
equilibrium (x′,p′) that strictly improves the utility of at least one buyer
without degrading the other buyers. Clearly, the equilibrium that maximizes
social welfare is Pareto efficient. However, this particular equilibrium cannot
be computed efficiently in the worst case (by Theorem 45), which leads to
the next question that we leave open: Is there a polynomial time algorithm
that computes a Pareto efficient market equilibrium for indivisible goods with
Leontief valuations?

11.3 Perfect Substitutes
We begin by introducing the utility function in a market with perfect substi-
tutes, represented through additive valuations.

Definition 25 (Additive Utility for Indivisible Goods). Given a marketM =
(N,M,v) with additive utilities and indivisible goods, the utility of a buyer i
for a bundle x = 〈x1, . . . , xm〉 ∈ {0, 1}m is:

ui(x) =
m∑
j=1

vi,j · xi,j (11.2)

where vi,j are constants and represent the value of buyer i for consuming one
unit of good j, while xi,j = 1 if buyer i gets good j, and xi,j = 0, otherwise.

Next we investigate the computation of competitive equilibria from equal
incomes with indivisible goods and additive utilities. Note that if a marketM
has a competitive equilibrium at some allocation and prices (x,p), then M
is guaranteed to have an equilibrium at the same allocation x where all the
prices are rational numbers, (x,p∗); this aspect appears implicitly in some of
the following proofs.

Theorem 46. Given a marketM = (N,M,v) with additive valuations, indi-
visible goods, and tuple (x,p), where x is an allocation and p is a price vector,
it is coNP-complete to determine whether (x,p) is a competitive equilibrium
forM.
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Proof. The problem admits efficiently verifiable “no” instances: it can be
checked in polynomial time if the allocation is not feasible, or the budgets
are not exhausted, or not all the items are sold. Otherwise, if (x,p) is not a
market equilibrium forM, then there exists a buyer k with a suboptimal bun-
dle. In other words, the certificate that (x,p) is not a market equilibrium is
given by a tuple (k,D), where k is a buyer that strictly prefers bundle D ⊆M
to xk and can also afford it; that is, uk(xk) < uk(D) and p(D) ≤ 1.

We show hardness using the SUBSET-SUM problem:

Given a set of positive integers W = {w1, . . . , wn} and a target
number K, is there a subset S ⊆ W that adds up to exactly K?

Given 〈W,K〉, construct market M = (N,M,v) and tuple (x,p), with
buyers N = {0, 1, . . . , n}, items M = {0, 1, . . . , 2n}, and values:

• Buyer 0: v0,0 = K − 1; v0,j = wj , for all j ∈ {1, . . . , n}; v0,j = 0, for all
j ∈ {n+ 1, . . . , 2n}.

• Buyer i ∈ {1, . . . , n}: vi,n+i = 1; vi,j = 0, for all j ∈M \ {n+ i}.

Let x0 = {0} and xi = {i, n + i}, for all i ∈ {1, . . . , n}. Define prices:
p0 = 1, pj = wj

K and pn+j = 1 − pj , for all j ∈ {1, . . . , n} (Note that if there
exist items with wj > K, those items can be thrown away from the beginning).

( =⇒ ) If there is a solution S ⊆ U to W, then we claim that M does
not have an equilibrium at (x,p) since buyer 0 can acquire a better bundle,
namely S:
• Buyer 0 can afford S:∑

j∈S
pj =

∑
j∈S

wj
K

= K

K
= 1.

• Bundle S is strictly better than x0:∑
j∈S

v0,j =
∑
j∈S

wj = K > K − 1 = v0,0.

( ⇐= ) If (x, p) is not a market equilibrium, then it must be that buyer
0 can get a better bundle (since all budgets are spent, all items are sold, and
the other buyers already have their unique valuable item).

Thus there is bundle S such that: (i)
∑
j∈S v0,j > v0,0 and (ii)

∑
j∈S pj ≤ 1.

From v0,j = 0, for all j ∈ {n + 1, . . . , 2n}, it follows that S ⊂ {1, . . . , n}
(otherwise, just take S′ = S ∩ {1, . . . , n}). Condition (i) is equivalent to:∑
j∈S wj ≥ K and condition (ii) can be rewritten as:∑

j∈S

wj
K
≤ 1 ⇐⇒

∑
j∈S

wj ≤ K

Then S is a subset-sum solution; this completes the proof.
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Theorem 47. Given a market with indivisible goods and additive valuations,
M = (N,M,v), it is NP-hard to decide ifM has a competitive equilibrium.

Proof. We reduce from the NP-complete problem EXACT COVER BY 3-
SETS (X3C):

Given universe U = {1, . . . , 3n} of elements and family of subsets
F = {S1, . . . , Sk}, with |Si| = 3, ∀i, decide if there is collection
S ⊆ F such that each element of U occurs exactly once in S.

Given X3C instance 〈U ,F〉, define N = {1, . . . , k}, M = {1, . . . , 3n, 3n +
1, . . . , 2n + k} (note this assumes that k ≤ n, since otherwise the answer to
the X3C instance is trivially “no”), and valuations for each buyer i ∈ N :

• vi,j = 1
3 , for all j ∈ Si.

• vi,j = 1, for all j ∈ {3n+ 1, . . . , 2n+ k}.

• vi,j = 0, otherwise.

If the market has some competitive equilibrium (x,p), then the following
conditions hold:

• Each buyer gets a bundle worth at least 1, since the items in {3n +
1, . . . , 2n + k} are each worth 1 to every buyer and each of their prices
is at most 1 (since all items get sold).

• No buyer can get a bundle worth more than 1.

Then each buyer gets a bundle worth exactly 1, and so the items in {3n +
1, . . . , 2n+k} are priced at 1 each. The remaining n buyers get a bundle worth
1 each from the items {1, . . . , 3n}, which can only happen if their allocations
form a solution to the X3C instance.

If X3C has a solution S, then a market equilibrium is obtained immediately
by giving the sets in S to the buyers that want them, and the leftover items,
in {3n+ 1, . . . , 2n+ k}, to the remaining buyers.

The next question, of computing an equilibrium allocation given a market
M and a price vector p was raised by Bouveret and Lemaître ([18]). In a
recent note, Aziz ([9]) also studied the hardness of this problem. We include
our proof as well, which uses the PARTITION problem.

Theorem 48. Given a market M = (N,M,v) with indivisible goods, addi-
tive valuations, and price vector p, it is coNP-hard to decide if there is an
allocation x such that (x,p) is a market equilibrium.
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Proof. We use a reduction from the NP-complete problem PARTITION.
Given a set S = {s1, . . . , sm}, where

∑m
j=1 sj = 2V and sj ∈ N, ∀j ∈

{1, . . . ,m}, construct the following market with indivisible goods and additive
valuations:

• Let N = {1, 2} and M = {1, . . . ,m+ 2}.

• Buyer 1’s valuations: v1,j = sj , ∀j ∈ {1, . . . ,m}, v1,m+1 = 3V and
v1,m+2 = V − 1.

• Buyer 2’s valuations: v2,j = 1, ∀j ∈ {1, . . . ,m} and v2,m+1 = v2,m+2 = 0.

Consider the price vector given by pj = sj
2V , ∀j ∈ {1, . . . ,m}, pm+1 = 1

2 =
pm+2.

We claim that S has a partition if and only if M does not have an equi-
librium at p. First, note that buyer 2 can afford to buy all the items it has a
strictly positive value for – i.e. the set M ′ = {1, . . . ,m} – since:

p(M ′) =
m∑
j=1

pj =
m∑
j=1

sj
2V = 2V

2V = 1

Thus any equilibrium allocation x has the property thatM ′ ⊆ x2. In addition,
buyer 2 cannot afford any other item, and so it must be the case that x1 =
M \M ′ = {m+ 1,m+ 2} and x2 = M ′ in any equilibrium.

( =⇒ ) If there is a partition 〈A,B〉 of S, then buyer 1 can afford a better
bundle at these prices, namely Y = {m+ 1} ∪A, since:

v1(Y ) = v1,m+1 +
∑
j∈A

v1,j = 3V +
∑
j∈A

sj

= 4V > 4V − 1 = v1(x1)

and
p(Y ) = pm+1 +

∑
j∈A

pj = 1
2 +

∑
j∈A

sj
2V = 1

2 + V

2V = 1

Thus the market cannot have a competitive equilibrium at p.
( ⇐= ) If the market does not have an equilibrium at p, then it must be

the case that in any feasible allocation there exists an improving deviation.
Consider the allocation x1 = {m + 1,m + 2} and x2 = {1, . . . ,m}. Since
buyer 1 is already getting its optimal bundle, it follows that buyer 1 has an
improving deviation. We consider a few cases:

• If buyer 1 replaces both items m + 1 and m + 2, then the only bundle
it can afford by doing this is x2 and v1(x2) < v1(x1); thus buyer 1 does
not have an improving deviation of this type.
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• If buyer 1 replaces item m+ 1 with some subset C of M ′ then again its
utility decreases since:

v1 ({m+ 2} ∪ C) = V − 1 + v1(C)
= V − 1 +

∑
j∈C

sj

< V − 1 + 2V < 4V − 1
= v1(x1)

• The only type of deviation left is the one where buyer 1 replaces item
m+ 2 with some subset C of M ′. Then the only improvements in value
can come from bundles worth at least V . That is, there must exist a
subset C ⊂M ′ with the property that:

v1(C) =
∑
j∈C

sj > v1 ({m+ 2}) = V − 1

⇐⇒
∑
j∈C

sj ≥ V

and
p(C) =

∑
j∈C

sj
2V ≤

1
2 ⇐⇒

∑
j∈C

sj ≤ V

It follows that
∑
j∈C sj = V and so 〈C,M ′ \ C〉 are a partition of S.

This completes the proof of the theorem.

Our final proof is the most subtle and included next.

Theorem 49. Given a marketM = (N,M,v) with indivisible goods, additive
valuations, and allocation x, it is coNP-hard to decide if there is a price vector
p such that (x,p) is a market equilibrium.

Proof. We use the NP-complete problem SUBSET-SUM. Given set of posi-
tive integers W = {w1, . . . , wm} and integer K, we construct a marketM =
(N,M,v) and an allocation x, such that an equilibrium price vector exists at
x if and only if the subset-sum problem does not have a solution.

Let N = {1, 2}, M = {1, . . . ,m + 2}, allocation x given by x1 = {m +
1,m+ 2}, x2 = {1, . . . ,m}, and values:

• Buyer 1: v1,m+1 = K − 1; v1,m+2 = 4
(∑m

j=1wj
)2
; v1,j = wj , for all

j ∈ {1, . . . ,m}.

• Buyer 2: v2,m+1 = K + 1; v2,m+2 = 0; v2,j = wj , for all j ∈ {1, . . . ,m}.
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Note we can assume the sum of the numbers in W is at least K and none
is greater than K.

( =⇒ ) If there is a solution S to 〈W,K〉, then we claim there can be no
market equilibrium. Let p be any feasible price vector. Then the utility of
buyer 1 for bundle S is: u1(S) =

∑
j∈S v1,j =

∑
j∈S wj = K > K−1 = v1,m+1.

By the equilibrium property, it must be the case that buyer 1 cannot afford
to swap pay for itemm+1 instead of the set S, and so: p(S) > pm+1. However,
this implies buyer 2 can afford to swap the set S with itemm+1, and moreover,
this is an improving deviation since: v2,m+1 = K + 1 > K =

∑
j∈S wj . Thus

there can be no equilibrium prices.
(⇐= ) If there is no market equilibrium, then we claim there is a subset-

sum solution. To this end, we show that whenever there is no set S ⊆ U such
that

∑
j∈S wj = K, then a market equilibrium exists. For example, define the

next price vector (at which all the budgets are spent):

• pj = wj∑m

k=1 wk
, for all j ∈ {1, . . . ,m}

• pm+1 = K−1+ε∑m

k=1 wk
, where ε = 1

4(m+1)2

• pm+2 = 1− pm+1

First we claim that buyer 1 does not have a deviation. Note that item m +
2 is very valuable, i.e. buyer 2 would never exchange it for any subset of
{1, . . . ,m}. Thus the only remaining type of deviation is one in which buyer
1 exchanges item m + 1 for a subset S ⊆ {1, . . . ,m}. Then it hold that
u1(S) > v1,m+1 = K − 1, that is, u1(S) ≥ K. We have:

p(S)− pm+1 =

∑
j∈S

pj

− pm+1

=
∑
j∈S

(
wj∑m
k=1wk

)
− K − 1 + ε∑m

k=1wk
> 0

⇐⇒
∑
j∈S

wj > K − 1 + ε

The last inequality holds since u1(S) ≥ K ⇐⇒
∑
j∈S wj ≥ K > K−1+ε.

Thus bundle S is too expensive for buyer 1 to afford it with the price of item
m+ 1.

Second, the only type of improving deviation of buyer 2 is one in which a
set S ⊆ {1, . . . ,m} is exchanged for itemm+1. For this to be an improvement,
it must hold that:

v2,m+1 > u2(S) ⇐⇒ u2(S) ≤ K ⇐⇒
∑
j∈S

wj ≤ K
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Input \ Valuations Perfect
Complements

Perfect
Substitutes

MarketM P NP-hard
MarketM, allocation x P co-NP-hard
MarketM, prices p co-NP-complete co-NP-hard
MarketM, allocation x, prices p P co-NP-complete

Table 11.1: Summary of the computational results. The market instance is
denoted by a tuple M = 〈N,M,v〉, where N is a set of buyers, M a set
of indivisible items, and v the values of the buyers for the items; x is an
allocation of the items to the buyers and p a price vector.

Since there is no subset-sum solution, we have:
∑
j∈S wj < K, and so:∑

j∈S wj ≤ K − 1. Equivalently:

p(S) =
∑
j∈S

(
wj∑m
k=1wk

)
≤ K − 1∑m

k=1wk
<
K − 1 + ε∑m

k=1wk
= pm+1

It follows that pm+1 > p(S), and so buyer 2 cannot afford to exchange the
set S for item m+ 1. Thus neither buyer 1 nor buyer 2 have a deviation, and
so (x,p) is an equilibrium. Then there is a subset-sum solution if and only if
the market does not have an equilibrium, which completes the proof.

Our findings on the complexity of computing a competitive equilibrium
from equal incomes for indivisible goods are summarized in Table 11.1.

11.4 Discussion and Future Work

This work leaves several interesting directions for the future. In the case of
indivisible resources, it would be interesting to understand the computation of
Pareto efficient equilibria and if (or when) the equilibrium outcomes computed
by Algorithm 2 can be improved. Moreover, what can be said about the more
general Fisher market model with indivisible goods?

Moving to the setting of multiple discrete goods (that come in several
copies), it remains to be determined whether and when efficient algorithms
can be designed. For the class of Leontief utilities, our characterization from
the indivisible setting essentially carries over for two players: “Given a CEEI
market with two buyers and multiple discrete goods, a competitive equilibrium
from equal incomes is guaranteed to exist if and only if: there are at least two
items and the two buyers do not have identical demand sets of size one from
an item that comes in an odd number of copies”. However, does there exist a
succinct characterization for more than two buyers?
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Finally, an interesting open problem is investigating the existence of truth-
ful equilibria in markets with perfect complements and, possibly, other special
classes of preferences.
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