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Chapter 1

Introduction

This thesis is a collection of essays on two different research areas in the field of

economic theory; namely, bargaining and judgment aggregation. The first part of

the thesis addresses bargaining problems and consists of Chapter 2. The second part

deals with the theory of judgment aggregation and consists of Chapter 3, Chapter

4 and Chapter 5.

Part I: Bargaining

A bargaining problem is a problem of understanding how people cooperate for their

mutual benefit when non-cooperation is bad for all of them. In the classical two-

person bargaining situation, two individuals try to reach an agreement regarding

how to share some good. If they do not reach an agreement, they end up receiv-

ing some ‘fixed’ allocation which is worse than any allocation they would get if

they agreed. Following Nash (1950), a classical bargaining problem is defined by a

utility possibility set and a disagreement outcome, which, as the name suggests, is

the resulting allocation if there is no agreement. We, however, consider bargaining

problems in which no exogenous disagreement is given. We assume that the dis-

agreement outcome is determined endogenously, namely by the bargaining solution.

A bargaining solution assigns a pair of outcomes – the compromise outcome and

the disagreement outcome – to every bargaining problem. This is different from the

classical approach where a solution assigns only the compromise outcome.

The disagreement outcome in the classical bargaining problem serves as a refer-

ence point and enables comparisons of different allocations. From a positive point

of view, bargaining solutions aim to predict the outcome of a bargaining process.

From a normative point of view, bargaining solutions should propose a reasonable or

fair outcome like an arbitrator or mediator would do. In our framework where the

disagreement outcome is endogenously determined, it would then be proposed by

1



Chapter 1. Introduction

the mediator (or arbitrator) and operate as a reference point or threat. According to

the positive interpretation of our problem, the compromise outcome is the predicted

outcome of bargaining process in case of agreement (without mediation or arbitra-

tion) and the disagreement outcome is the predicted outcome in case agreements fail.

Some of these interpretations come close to so-called Alternative Dispute Resolution

(ADR), an increasingly common form of negotiation which aims to avoid court cases

by helping parties reach an agreement beforehand, commonly used in Anglo-Saxon

common law systems. Different forms of ADR processes correspond to bargaining

problems with endogenous disagreement from the perspective of the normative in-

terpretation. In Chapter 2, we present a detailed discussion of how ADR processes

and bargaining problems with endogenous disagreement outcome are related.

Vartiainen (2007) studies bargaining problems with endogenous disagreement

outcome. He extends the classical Nash bargaining solution to this framework and

axiomatically characterizes the extended Nash bargaining solution. For this frame-

work we propose and study an extension of the classical Kalai-Smorodinsky bargain-

ing solution. We identify the (large) domain on which this solution is single-valued,

and present two axiomatic characterizations on subsets of this domain. Our first

characterization theorem is based on an axiom called Independence of Non-Utopia

information (INU), which states that the compromise and disagreement outcomes

in two different problems should be the same if the associated utopia and anti-utopia

points coincide. This is a relatively strong condition, and, in the second character-

ization this axiom is replaced by three axioms with direct counterparts in classical

bargaining theory. This chapter has led to the paper called Bargaining with endo-

genous disagreement: The extended Kalai-Smorodinsky solution which is published

in Games and Economic Behavior, 74 (2012), 407–417.

Part II: Judgment aggregation

We address judgment aggregation problems in the second part. A judgment aggreg-

ation problem arises whenever a group needs to make a collective yes/no judgment

on several (possibly interconnected) propositions based on group members’ judg-

ments on these propositions. A simple example is the problem of a jury in a court

trial having to reach a collective judgment on whether the defendant has broken the

contract and whether the contract is legally valid. Following a generally recognized

legal doctrine of common law systems, the defendant is judged to be guilty if and

only if both propositions are collectively accepted. There are three issues in this ex-

ample, and a yes judgment on each of the first two issues and a no judgment on the

last issue are inconsistent. A consistent judgment is free from all logical inconsist-

encies. The theory of judgment aggregation substantially deals with the question of

whether (and when) it is possible to reach consistent group judgments which are fair

2



to group members. Another question that immediately arises is whether and how we

can reach true group judgments. The procedural approach in judgment aggregation

deals with the former while the epistemic approach in judgment aggregation deals

with the latter.

We take the epistemic approach. The epistemic approach aims to track the

truth. When it comes to aggregating judgments rather than preferences, this ap-

proach seems very natural. In the court trial example, the jury’s main target seems

to be to find out two independent facts rather than to reach a conclusion that is

fair to jurors. This approach has been much less explored than the more common

procedural approach in judgment aggregation theory while it is well-established in

a literature which deals with voting between two alternatives, or equivalently, with

single-issue judgment aggregation problems (Austen-Smith and Banks, 1996 and

Feddersen and Pesendorfer, 1997). In Part II, we apply their methods and res-

ults to multi-issue judgment aggregation problems and extend their work beyond

single-issue agendas.

All three chapters in Part II assume that there is a group of voters having to

accept or reject each of two propositions. Each proposition is factually true or

false and voters hold private information about which propositions are true. Voters

share a common preference for true collective judgments. Chapter 3 considers two

independent propositions. Chapter 4 adds interconnections between the two propos-

itions. Chapter 5 still assumes independence but the private information structure

is different. While Chapter 3 and 4 consider discrete binary private information for

each proposition, private information is continuous rather than binary in Chapter 5.

Our aim is common among the three chapters: we want to analyse the resulting stra-

tegic incentives and determine which voting rules lead to collective judgments that

efficiently use all private information under each setting. In the setting of Chapter

3, we find that in many, but not all cases a quota rule should be used, which decides

on each issue according to whether the number of yes votes exceeds a particular

quota. When interconnections are introduced, this result does not persist. Chapter

4 characterizes the rare situations in which efficient information aggregation is pos-

sible with a voting rule, and gives the nature of such rules. We only focus on quota

rules in Chapter 5, and we find that efficient information aggregation by quota rules

is not always possible.

3
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Bargaining
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Chapter 2

Bargaining with endogenous

disagreement

2.1 Introduction

In the bargaining problem of Nash (1950) each player can unilaterally enforce the

disagreement outcome if negotiations fail. In some cases, however, it may not be

clear what the disagreement outcome is or whether the players can, or want to,

enforce it if agreement is not reached. In the classical example of employer-union

wage negotiations the union can call out a strike if it is not satisfied with the wage

offered by the employer. But how long should the strike last? What will be its

consequences? Will all workers join? Are there perhaps different and better ways

to put pressure on management? Also, which outcome can the employer enforce, if

any, in case no agreement is reached?

In this chapter, following Vartiainen (2007), we assume that the disagreement

outcome is determined endogenously, namely by the bargaining solution. Specific-

ally, the bargaining solution assigns a pair of outcomes, namely a compromise out-

come and a disagreement outcome. The possible interpretations of such a bargaining

solution are parallel to the usual interpretations of a classical bargaining solution in

the situation where the disagreement outcome is exogenous. From a positive point

of view, a classical bargaining solution predicts or describes the compromise out-

come, i.e., it tells us what this outcome is given that the players reach agreement.

From this point of view, a bargaining solution in the situation without exogenous

disagreement outcome predicts both the compromise outcome for the case that the

players reach an agreement, and the disagreement outcome in the opposite case.

From a normative point of view, a classical bargaining solution functions like an

outside arbitrator and proposes a compromise outcome, but this outcome should be

‘reasonable’ given the exogenous disagreement outcome. In the situation without

7



Chapter 2. Bargaining with endogenous disagreement

exogenous disagreement outcome, a bargaining solution proposes a compromise as

well as a disagreement outcome, such that the compromise is ‘reasonable’ when com-

pared to the disagreement outcome. We will refine and detail these interpretations

in Section 2.2 below.

Within this framework, Vartiainen (2007) proposes and axiomatically charac-

terizes a bargaining solution which extends the classical Nash bargaining solution

for bargaining problems with fixed, exogenous disagreement point. That solution

maximizes the Nash product, i.e., the product of the gains of the players from the

compromise outcome over the disagreement outcome.

By contrast, the solution proposed in our work depends explicitly on the uto-

pia point and extends the solution of Raiffa (1953) and Kalai-Smorodinsky (1975)

for classical bargaining problems. This extension works as follows. First, the as-

signed compromise point is indeed the classical Kalai-Smorodinsky (KS) outcome

for the assigned disagreement outcome. That is, it is the Pareto optimal point on

the straight line joining this disagreement outcome and its associated utopia point.

Second, the assigned disagreement outcome is the point on the straight line joining

the assigned compromise point and the associated ‘anti-utopia point’, obtained by

taking the minimum utilities of the players below the compromise point; it is, thus,

a ‘converse’ KS outcome. The main original condition justifying the classical Kalai-

Smorodinsky solution is individual monotonicity: it implies that if the utopia point

stays fixed, then the players should benefit from increased availability of favorable

outcomes. In defining the KS solution for the case where the disagreement outcome

is not exogenous, we thus apply the same logic also to the determination of the dis-

agreement outcome: given that the anti-utopia point does not change, the players

should suffer from the increased availability of unfavorable outcomes.

We present two axiomatic characterizations of this solution. In the first one,

the crucial axiom is called Independence of Non-Utopia information (INU). This

condition is relatively strong and, under an additional condition, says that the com-

promise and disagreement outcomes in two different problems should be the same

if the associated utopia and anti-utopia points coincide. In the second character-

ization, INU is replaced by three much weaker axioms, including a monotonicity

condition.

Another extension of the Kalai-Smorodinsky solution to bargaining problems

without fixed disagreement point is proposed in Vartiainen (2002), but this solution

is quite different from our extension.1

The framework in our work and in Vartiainen (2007) has resemblance to the one

in Thomson (1981), who also considers bargaining problems without disagreement

1It assigns the points of intersection of the straight line connecting the global utopia and anti-
utopia points with the boundary of the feasible set and, thus, extends the Kalai-Rosenthal (Kalai
and Rosenthal, 1978) solution rather than the Kalai-Smorodinsky solution.
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2.2 Bargaining with endogenous disagreement

point. Thus, a bargaining problem is defined merely as a utility-possibility set.

Thomson introduces the notion of reference point as a function of the bargaining

problem.2 The key difference to the classical disagreement point is that no player can

unilaterally enforce the reference point. It may thus serve, rather, as a hypothetical

outcome to which the players compare proposals made during negotiations. The

key difference with our (and Vartiainen’s) approach is that we assume that also the

reference point (disagreement outcome) is determined by the solution.

In situations where an arbitrator, or a mediator, makes choices for the players

(cf. Luce and Raiffa, 1957), the reference point may also result from a noncooper-

ative, strategic game between the players, and the arbitrator (bargaining solution)

assigns a compromise point based on the reference point. Effectively, this way a

noncooperative game is turned into a strictly competitive game which may have

a value, comparable to a zero-sum game. Such arbitration games have received

renewed attention recently, see Kalai and Kalai (2010).

In Section 2.2 we present a more detailed discussion of bargaining with endo-

genous disagreement. In Section 2.3 we formally introduce the extended Kalai-

Smorodinsky solution, show that it is non-empty valued and characterize the domain

of bargaining problems for which it is single-valued. In Section 2.4 we present two

axiomatic characterizations of the solution on domains where it is single-valued. We

also show that the axioms in these characterizations are independent.

All proofs are collected in the Appendix.

Notation For x, y ∈ R2, x > y means xi > yi and x > y means xi > yi for i = 1, 2.

Similarly for < and 6. By [x, y] we denote the line segment with endpoints x and y.

The cardinality of a set X ⊆ R2 is denoted by |X|. For a, x ∈ R2, ax := (a1x1, a2x2),

aX := {ax | x ∈ X}, and a + X := {a + x | x ∈ X}. The set (−1,−1)X is also

denoted by −X. By R2
+ we denote the (strictly) positive quadrant of R2. By

conv(X) we denote the convex hull of the set X.

2.2 Bargaining with endogenous disagreement

A bargaining problem U is a compact and convex subset of R2 such that x > y for

some x, y ∈ U . Elements of U are called outcomes and represent the utilities of two

players. By U we denote the set of all bargaining problems.

A classical bargaining problem is a pair (U, d), where U ∈ U and d ∈ U ; the

outcome d is called the disagreement outcome, and it results if the players do not

reach agreement. By B we denote the set of all classical bargaining problems. A

classical bargaining solution is a map F : B → R2 with F (U, d) ∈ U for all (U, d) ∈ B.

2Herrero (1998) considers endogenous reference points in so-called bargaining problems with
claims. Also these reference points are a function of the bargaining problem and, in this case, the
claims point.
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Chapter 2. Bargaining with endogenous disagreement

In contrast, a bargaining solution or, briefly, a solution is a correspondence f :

U → R2×R2 such that s, r ∈ U and s 6= r for all U ∈ U and (s, r) ∈ f(U). For a pair

(s, r) ∈ f(U), we call s the compromise outcome and r the disagreement outcome.

We now discuss how solutions with endogenous disagreement can be interpreted,

also offering some perspectives that go beyond Vartiainen (2007).3 Classical bar-

gaining theory commonly distinguishes between positive interpretations, according

to which bargaining solutions aim to predict the outcome of a bargaining process,

and normative interpretations, according to which solutions express a judgment of

what outcome would be normatively ‘best’ or ‘fairest’ and should therefore be pro-

posed by an arbitrator or mediator if such a person is appointed. Since our extended

bargaining solutions return two outcomes – a compromise outcome s and a disagree-

ment outcome r – we may classify potential interpretations according to which of

the two outcomes are interpreted positively (‘players’) and which normatively (‘me-

diator’). This yields four possible interpretations overall, see Table 2.2.1.

Table 2.2.1: Four potential interpretations of bargaining solutions

disagreement r
players mediator

players Case 1 Case 3
compromise s

mediator Case 2 Case 4

We discuss these cases in turn. In the ‘doubly positive’ Case 1, s is the predicted

compromise outcome of bargaining (without arbitration or mediation), and r the

predicted outcome failing agreement. Outcome r plays the role of players’ mental

reference point, representing their common beliefs of what would happen failing

agreement. Both s and r are predicted to emerge as the result of the bargaining

process, in the course of which various proposals and threats might have been on

the table.4

Cases 2, 3 and 4 represent three variants of how a mediator could intervene in the

bargaining process. These variants are not merely hypothetical but can be observed

in practice. For instance, they correspond to different forms of so-called Alternative

Dispute Resolution (ADR). Especially in Anglo-Saxon common law systems, ADR

has become a wide-spread practice aimed to avoid costly and lengthy court trials

3This discussion has benefitted from helpful comments of an anonymous referee.
4Case 1 is perhaps closest to the idea of a reference point as in Thomson (1981).
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2.2 Bargaining with endogenous disagreement

through reaching a compromise beforehand.5 While ADR always assigns a central

role to a so-called mediator, the exact nature of this role differs across different forms

of ADR. Bargaining theory with endogenous disagreement allows one to study some

existing forms of ADR in virtue of the interpretations of Cases 2, 3 and 4. To

understand why this is so, two pieces of background information are worth noting.

Firstly, the role of the mediator in ADR does typically not consist in elaborating a

binding compromise. Instead, any compromise needs both parties’ approval. Should

this compromise have been proposed by the mediator, this proposal was non-binding.

This marks a key difference between ADR and orthodox forms of dispute resolution

such as court trials and arbitration; there, the role of the judge resp. arbitrator is

precisely to dictate a binding compromise.6 Secondly, prior to entering ADR both

parties have contractually agreed to the mediator’s precise role, whatever this role

consists in. So, parties cannot later withdraw from the ADR procedure, and any

threats or incentives placed by the mediator are credible in the game-theoretic sense.

Now we turn to the specific Cases 2, 3 and 4.

In Case 2, the mediator proposes a non-binding compromise s (after listening

to both parties, i.e., ‘learning’ the bargaining problem U at hand). This makes s

salient and externally approved. If both players accept s, it is implemented. If the

parties do not both accept the proposal and do not reach an alternative compromise,

the non-cooperative outcome r is predicted. So, r once again operates as a reference

point or ‘threat’, creating an incentive to accept the proposal s (as long as s > r).

In Case 4, the mediator not just proposes a non-binding compromise, but also

underpins this proposal with the threat of forcing a ‘bad’ binding outcome r on the

parties (typically including sanctions or fines) which takes effect in the eventuality

that the players neither agree to s nor manage to reach an alternative compromise.

This of course presupposes that players have contractually authorized the mediator

to dictate a binding disagreement outcome (which players may plausibly do to fa-

cilitate a compromise). Once the mediator has announced r, players effectively face

an exogenous disagreement outcome. While classical bargaining theory can be used

to model bargaining given the mediator’s announced r, we also address how r is

determined.

Case 3 gives more responsibility to the parties: the mediator does not propose

a compromise to the parties but mediates between them to help them find a com-

promise by themselves. Just as in Case 4, to create an incentive to compromise, the

mediator imposes a binding outcome r (typically including sanctions or fines) that

5The United Kingdom legislation strongly encourages, if not de facto forces, parties to engage
in an ADR process prior to meeting before court (since the 2004 judgment in the Halsey landmark
case). For general introductions to ADR, see for instance Lynch (2001) and Blake et al. (2011).

6The difference between a court trial and arbitration is that the former is instituted by the
state, whereas the latter is based on a contractual agreement between both parties to submit to an
arbitration procedure.
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Chapter 2. Bargaining with endogenous disagreement

takes effect if no compromise is reached.

We ultimately leave it to the reader which interpretation to prefer and which

applications to focus on. As with bargaining theory in general, the theory with

endogenous disagreement captures its intended applications only in a stylized and

simplified way. For instance, the model abstracts away certain goals of ADR, such

as the goal of inducing a change and ideally a convergence of the parties’ pref-

erences. We hope that the connection to ADR will motivate future research and

generalizations.

2.3 Bargaining problems and the extended

Kalai-Smorodinsky solution

In this chapter we focus on a particular solution, which extends the classical Kalai-

Smorodinsky bargaining solution (Raiffa, 1953; Kalai and Smorodinsky, 1975). For

a bargaining problem U ∈ U , the Pareto optimal set is the set

P (U) := {x ∈ U | for all y ∈ U , y > x implies y = x}

and the anti-Pareto optimal set is the set

AP (U) := {x ∈ U | for all y ∈ U , y 6 x implies y = x}.

The classical Kalai-Smorodinsky bargaining solution assigns to each classical bar-

gaining problem (U, d) the unique point KS(U, d) ∈ P (U) on the straight line

through d and the utopia point

u(U, d) =

(
max

x∈U, x>d
x1, max

x∈U, x>d
x2

)
.

The extended Kalai-Smorodinsky solution is the correspondence k : U → R2 × R2

defined by

(s, r) ∈ k(U)⇔ s = KS(U, r), r = −KS(−U,−s) and s 6= r

for all U ∈ U and s, r ∈ U . Thus, (s, r) ∈ k(U) exactly if the following three

conditions are satisfied: (i) s 6= r; (ii) s is the classical Kalai-Smorodinsky outcome

when r is viewed as the disagreement outcome; and (iii) r results similarly from s

when we reverse the problem or, equivalently, r is the unique point in AP (U) on the

straight line through s and the anti-utopia point

a(U, s) :=

(
min

x∈U, x6s
x1, min

x∈U, x6s
x2

)
.
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2.3 Bargaining problems and the extended
Kalai-Smorodinsky solution

See Figure 2.3.1 for an illustration.

Figure 2.3.1: An illustration of the extended Kalai-Smorodinsky solution

Our first result is that the extended Kalai-Smorodinsky solution is non-empty

valued. The proof is based on an elementary fixed point argument, slightly com-

plicated by the fact that the Pareto and anti-Pareto optimal sets of a bargaining

problem U may have one or both endpoints in common. Clearly, in that case, by

definition of k – in particular the condition s 6= r – such an endpoint cannot be the

solution outcome.

Theorem 2.3.1 k(U) 6= ∅ for all U ∈ U .

We note that k does not have to assign a unique pair of outcomes to a bargaining

problem. For instance, let U be the convex hull of the points (6, 0), (8, 0), (0, 6),

and (0, 8). Then it is not difficult to check that

k(U) = {((s1, s2), (r1, r2)) | 2 6 s1 6 6, r1 = s1 − 1, s1 + s2 = 8, r1 + r2 = 6}.

In this example the Pareto optimal and anti-Pareto optimal sets are parallel line

segments. In fact, a sufficient but not necessary condition for k to assign a unique

pair of outcomes to a problem U is that P (U) and AP (U) do not contain parallel

line segments. Theorem 2.3.2 below provides an exact description of the class of

all bargaining problems on which k is unique. We first introduce some additional

terminology.

For x 6= y and x′ 6= y′ the line segments [x, y] and [x′, y′] are parallel if the

straight lines ` and `′ containing these line segments are parallel. In that case, the

vertical distance between [x, y] and [x′, y′] is the number v = |z2−z′2| for (any) z ∈ `
and z′ ∈ `′ with z1 = z′1; v is infinite if ` and `′ are vertical. Similarly, the horizontal

distance between [x, y] and [x′, y′] is the number h = |z1 − z′1| for (any) z ∈ ` and

z′ ∈ `′ with z2 = z′2; h is infinite if ` and `′ are horizontal.

Now let Dk denote the set of bargaining problems U with |k(U)| = 1.

13



Chapter 2. Bargaining with endogenous disagreement

Theorem 2.3.2 Let U ∈ U . Then U ∈ Dk if and only if there are no parallel line

segments [x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) with x̄1 < x1 and ȳ1 < y
1

and such that

the vertical distance v and horizontal distance h between these line segments satisfy

the following conditions:

(i) 1
2v = ȳ2 − x̄2 = y

2
− x2,

(ii) the lengths7 of [x̄, x] and [ȳ, y] both exceed
√
h2 + v2.

See Figure 2.5.2 in the Appendix for an illustration. The theorem implies that

we do not lose much generality if we restrict attention to domains of bargaining

problems within Dk. We conclude this section with a remark, listing some domains

on which k is single-valued.

Remark 2.3.1 Theorem 2.3.2 implies that the extended Kalai-Smorodinsky solu-

tion k is single-valued on each of the following domains:

(a) {U ∈ U | U is strictly convex}.

(b) {U ∈ U | AP (U) or P (U) contains no line segment}.

(c) {U ∈ U | no line segments S ⊆ AP (U) and S′ ⊆ P (U) are parallel}.

Clearly, the domain in (a) is a subset of the domain in (b), which in turn is a subset

of the domain in (c).

2.4 Two axiomatic characterizations of the extended

Kalai-Smorodinsky solution

We give two axiomatic characterizations of the extended Kalai-Smorodinsky solution

k on domains on which k is single-valued in this section. In each characterization all

axioms except one are basic and shared with the extended Nash solution. In the first

characterization the additional axiom is an informational constraint (Independence

of Non-Utopia Information), while in the second it is a monotonicity property ana-

logous to such properties used in characterizations of the classical Kalai-Smorodinsky

solution.

We formulate our conditions for a solution f defined on a domain D ⊆ U with

|f(U)| = 1 for all U ∈ D. Instead of f(U) = {(s, r)} we write f(U) = (s, r) and

regard f as a function rather than a correspondence.

7The length of a line segment is the Euclidean distance between its endpoints.
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2.4 Two axiomatic characterizations of the extended Kalai-Smorodinsky solution

A bargaining problem U ′ ∈ U is a positive affine transformation of a bargaining

problem U ∈ U if there are a ∈ R2
+ and b ∈ R2 such that U ′ = aU + b. A bargaining

problem U ∈ U is symmetric if (x1, x2) ∈ U ⇔ (x2, x1) ∈ U for all x ∈ R2.

The first condition is an extended version of the usual Pareto optimality condi-

tion.

Extended Pareto Optimality (EPO): For each U ∈ D, f(U) ∈ P (U)×AP (U).

In particular from a normative view point it is natural to require Pareto optimality

of the compromise outcome. Requiring anti-Pareto optimality of the disagreement

outcome reflects that we wish this outcome to be as severe as possible in order to

induce acceptance of the compromise outcome.8

The following two conditions are standard in classical axiomatic bargaining the-

ory. They have similar justifications in the present model.

Symmetry (SYM): For each symmetric U ∈ D, if f(U) = (s, r) then s1 = s2 and

r1 = r2.

Scale Invariance (SI): For all U ∈ D and a ∈ R2
+, b ∈ R2 with aU + b ∈ D, if

f(U) = (s, r) then f(aU + b) = (as+ b, ar + b).

We now turn to axioms used in only one of our two characterizations. The first

characterization is based on an informational restriction which extends and modi-

fies similar conditions used in characterizations of the classical Kalai-Smorodinsky

solution.

Independence of Non-Utopia Information (INU): For all U, V ∈ D, if f(V ) = (s, r) ∈
P (U)×AP (U), u(U, r) = u(V, r) and a(U, s) = a(V, s), then f(U) = (s, r).

This condition says that if f(V ) = (s, r) and we consider a problem U such that s

and r are Pareto and anti-Pareto optimal in U and also the associated utopia and

anti-utopia points do not change, then the solution does not change: f(U) = (s, r)

as well.

Our second characterization replaces INU by three other axioms, each of which

seems normatively defensible and extends classical axioms. The first of these axioms

requires that the compromise outcome weakly Pareto dominates the disagreement

outcome, i.e., that the disagreement outcome is a threat to both players.

Pareto Dominance (PD): For every U ∈ D, if f(U) = (s, r) then s > r.

The next condition requires that the outcome for any bargaining problem U

be unchanged if one removes possible alternatives x from U that are extreme in the

sense of giving some individual even less utility than under the original disagreement

8Disagreement poses a threat to the players only if s > r (where f(U) = (s, r)), as a referee
rightly noticed. In our two characterization results, EPO could be weakened by restricting the
anti-Pareto optimality requirement on r to those cases in which s > r.
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Chapter 2. Bargaining with endogenous disagreement

outcome while giving the other individual even more utility than under the original

compromise outcome.

Independence of Extreme Alternatives (IEA): For all U,U ′ ∈ D, writing (s, r) =

f(U), if U ′ ⊆ U and for every x ∈ U\U ′ there is an agent i such that xi < ri and

xj > sj for j 6= i, then f(U ′) = f(U).

This condition is a weak version of the condition of IIA (Independence of Ir-

relevant Alternatives, extended to endogenous disagreement), which underlies the

extended Nash bargaining solution. IEA relaxes IIA by restricting it to the case

that two sets U and U ′ differ only in ‘extreme’ alternatives.

The final condition is a variant of classical monotonicity conditions. It is well-

known from classical bargaining theory that plausible bargaining solutions usually

satisfy some but not any kind of monotonicity property. Our monotonicity condition

requires that if additional alternatives become available, then, at least under certain

extra conditions, the compromise outcome improves weakly and the disagreement

outcome worsens weakly for each player. Roughly speaking, the justification is that

additional possibilities should give room for better compromise outcomes but also

worse disagreement outcomes. In order to formulate the axiom we define, for a

bargaining problem U ∈ D, the global utopia point and the global anti-utopia point

by

u(U) =

(
max
x∈U

x1,max
x∈U

x2

)
, a(U) =

(
min
x∈U

x1,min
x∈U

x2

)
.

Restricted Monotonicity (RM): For all U,U ′ ∈ D, writing (s, r) = f(U) and (s′, r′) =

f(U ′), if U ⊆ U ′, u(U ′) = u(U, r), and a(U ′) = a(U, s), then s′ ≥ s and r′ ≤ r.

Clearly, the conditions on the utopia and global utopia points and the anti-utopia

and global anti-utopia points considerably restrict this monotonicity condition.9

The domain D is closed under truncation if whenever it contains U then it

also contains every bargaining problem of the form {x ∈ U | α ≤ xi ≤ β} for

some i ∈ {1, 2} and α, β ∈ R with ai(U) 6 α < β 6 ui(U). The domain D is

minimally rich if it is closed under truncation and contains all polytopes in Dk.10

For instance, the whole domain Dk and the (small) domain of all polytopes in Dk
are both minimally rich by Theorem 2.3.2.

Theorem 2.4.1 Let D ⊆ Dk be minimally rich and let f : D → R2 × R2 be a

solution satisfying |f(U)| = 1 for all U ∈ D. Then the following statements are

equivalent:

(a) f is the extended Kalai-Smorodinsky solution on D.

9Note that the antecedent in RM implies that u(U) = u(U, r) and a(U) = a(U, s).
10A polytope is the convex hull of finitely many points in R2.
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2.4 Two axiomatic characterizations of the extended Kalai-Smorodinsky solution

(b) f satisfies EPO, SYM, SI, and INU.

(c) f satisfies EPO, SYM, SI, PD, IEA, and RM.

The characterizations in Theorem 2.4.1 are tight. We show this by means of

examples of solutions defined on a minimally rich domain D ⊆ Dk. Proofs are

left to the reader. We start with demonstrating tightness of the six axioms in

characterization (c).

(1) For each U ∈ D, write (s, r) := k(U) and let f1(U) := (t, r), where t is the

point in [r, s] which is closest to s subject to U containing at least one of

the points (t1, a2(U, s)) and (a1(U, s), t2) (note that possibly t = s). Then f1

satisfies SYM, SI, PD, IEA, and RM, but not EPO.

(2) Define the solution f2 in the same way as k but now based on a non-symmetric

version of the KS-solution (cf. Peters and Tijs, 1985). Such a solution satisfies

EPO, SI, PD, IEA, and RM, but not SYM.

(3) Let T be the convex hull of (0, 0), (4, 0), and (0, 2). Define the solution f3

as follows. For all U ∈ D with T ⊆ U , a(U) = (0, 0), and u(U) = (4, 2),

define f3(U) as (s, (0, 0)) where s is the point of intersection of P (U) with the

line segment [(3, 1
2), (4, 2)]. Otherwise, define f3(U) = k(U). Then f3 satisfies

EPO, SYM, PD, IEA, and RM, but not SI.

(4) For each U ∈ U , let (s(U), r(U)) := k(U), let ŝ(U) resp. r̂(U) be the element

of U with first coordinate r1(U) resp. s1(U) and with maximal resp. minimal

second coordinate, denote the set of non-extreme outcomes relative to k by

U = {x ∈ U | xi 6 si(U) or xj > ri(U) for all distinct i, j}, and call U ∈ U
essentially symmetric if some positive affine transformation of U is symmetric.

For all U ∈ D, define f4(U) as (ŝ(U), r̂(U)) if [ŝ(U) ∈ P (U), r̂(U) ∈ AP (U)

and U is not essentially symmetric], and as k(U) otherwise. Then f4 satisfies

EPO, SYM, SI, IEA, and RM, but not PD.

(5) For all U ∈ D, define f5(U) as (s, r) where s [r] is the intersection of P (U)

[AP (U)] with the line segment joining the global utopia point and the global

anti-utopia point of U . Then f5 satisfies EPO, SYM, SI, PD, and RM, but

not IEA.

(6) Let T be the convex hull of (0, 0), (4, 0), (2, 1), and (0, 1). For all U ∈ D,

define f6(U) as (s, b) if U = aT + b for some a ∈ R2
+, b ∈ R2, where s is the

Nash bargaining solution of (U, b), and as k(U) otherwise. Then f6 satisfies

EPO, SYM, SI, PD, and IEA, but not RM.

Next, we show that the axioms in characterization (b) are tight.
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Chapter 2. Bargaining with endogenous disagreement

(7) The solution f1 satisfies SYM, SI, and INU, but not EPO.

(8) The solution f2 satisfies EPO, SI, and INU, but not SYM.

(9) Let T be as in (3) and define the solution f7 by f7(T ) = ((3, 1
2), (0, 0)), and

by f7(U) = k(U) for all U ∈ Dk with U 6= T . Then f7 satisfies EPO, SYM,

INU, but not SI.

(10) The solutions f4, f5, and f6 all satisfy EPO, SYM, and SI, but not INU.

We conclude with a few remarks.

Remark 2.4.1 A partial characterization of the extended Kalai-Smorodinsky solu-

tion on the whole domain U is provided in Valkengoed (2006)11, at the expense of

rather technical conditions.

Remark 2.4.2 Variations on the characterization of k can be obtained by imposing

different conditions of ‘minimal richness’. For instance, Theorem 2.4.1 would still

hold – with some modifications of the proof – on some subdomains of Dk that contain

all strictly convex bargaining problems.

2.5 Appendix: proofs

Proof of Theorem 2.3.1. Let U ∈ U . Then AP (U) is the graph of a strictly de-

creasing convex function g on an interval [α, β] with (α, g(α)) and (β, g(β)) the

points of AP (U) with minimal and maximal first coordinates, respectively. If

α = β (so that AP (U) consists of a unique outcome) then {(KS(U, (α, g(α))),

(α, g(α)))} = k(U) and we are done. From now on we assume α < β. Define

the function ϕ : [α, β] → [α, β] by ϕ(γ) = −KS1(−U,−KS(U, (γ, g(γ)))). Observe

that if ϕ(γ∗) = γ∗ for some γ∗ ∈ [α, β] and KS(U, (γ∗, g(γ∗))) 6= (γ∗, g(γ∗)) then

(KS(U, (γ∗, g(γ∗))), (γ∗, g(γ∗))) ∈ k(U).

Of course, ϕ(α) > α and ϕ(β) 6 β. Suppose that (α, g(α)) ∈ P (U). Then

ϕ(α) = α, but (KS(U, (α, g(α))), (α, g(α))) /∈ k(U) sinceKS(U, (α, g(α))) = (α, g(α)).

Below, however, we will prove:

There is an ε1 > 0 with ϕ(γ) > γ for all γ ∈ (α, α+ ε1]. (2.5.1)

Similarly, if (β, g(β)) ∈ P (U) we have:

There is an ε2 > 0 with ϕ(γ) < γ for all γ ∈ [β − ε2, β). (2.5.2)

11Master thesis, supervised by Prof. dr. Hans Peters.
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Clearly, we can then take ε1 and ε2 in (2.5.1) and (2.5.2) such that α+ ε1 < β − ε2.

Now define the interval [α′, β′] by α′ = α if (α, g(α)) /∈ P (U) and α′ = α + ε1 if

(α, g(α)) ∈ P (U), and β′ = β if (β, g(β)) /∈ P (U) and β′ = β−ε2 if (β, g(β)) ∈ P (U).

Then, since ϕ is continuous, the intermediate value theorem implies that in all cases

there is a point γ∗ ∈ [α′, β′] with ϕ(γ∗) = γ∗ and KS(U, (γ∗, g(γ∗))) 6= (γ∗, g(γ∗))

and, thus, k(U) 6= ∅.

Figure 2.5.1: Illustrating the proof of (2.5.1)

We are left to prove (2.5.1) and (2.5.2). We only show (2.5.1), the proof of (2.5.2)

is analogous. So suppose z := (α, g(α)) ∈ P (U). See Figure 2.5.1 for an illustration

of the remainder of the proof.

Let m and ` be the supporting lines of U at z as drawn in Figure 2.5.1. (That

is, m is the limit of supporting lines at P (U) and ` is the limit of supporting lines

at AP (U).) Let µ be the absolute value of the slope of m and let λ be the absolute

value of the slope of `. Then λ > µ.

For x ∈ AP (U) \ P (U) let σ(x) denote the slope of the straight line through

x and u(U, x). Let c[x] denote the line segment with endpoints (x1, u2(U, x)) and

(u1(U, x), x2). Then σ(x) is equal to the absolute value of the slope of c[x]. Therefore,

σ(x) converges to µ if x ∈ AP (U) converges to z.

For y ∈ P (U) \ AP (U) let τ(y) denote the slope of the straight line through

y and a(U, y). Let c[y] denote the line segment with endpoints (y1, a2(U, y)) and

(a1(U, y), y2). Then τ(y) is equal to the absolute value of the slope of c[y]. Therefore,

τ(y) converges to λ if y ∈ P (U) converges to z.

We conclude that τ(y) > σ(x) for y ∈ P (U) and x ∈ AP (U) close to z. This

implies the existence of an ε1 as in (2.5.1). �

Proof of Theorem 2.3.2 For the only-if part, suppose that [x̄, x] ⊆ AP (U)] and
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Chapter 2. Bargaining with endogenous disagreement

[ȳ, y] ⊆ P (U) are as in the Theorem. Let r̄ ∈ [x̄, x] with r̄1 = ȳ1 and r ∈ [x̄, x]

with r2 = y
2
. For each r ∈ [r̄, r] let s(r) ∈ [ȳ, y] with s(r)2 − r2 = v/2. Then it is

straightforward to check that (s(r), r) ∈ k(U) for each r ∈ [r̄, r]. Thus, U /∈ Dk. See

Figure 2.5.2 for an illustration.

Figure 2.5.2: Illustrating the proof of Theorem 2.3.2

We now prove the if-part. Assume U /∈ Dk, i.e. |k(U)| > 1. We will construct

[x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) as in the theorem.

For any x ∈ AP (U) let σ(x) denote the slope of the straight line through x

and u(U, x) (as in the proof of Theorem 2.3.1). Since σ(x) is equal to the absolute

value of the slope of the line segment c[x] connecting the points (x1, u2(U, x)) and

(u1(U, x), x2), and the absolute values of these slopes weakly increase if x1 increases

– the line segments c[x] are chords of the weakly decreasing concave function the

graph of which contains the Pareto optimal set of U – we have that σ(x) weakly

increases if x1 increases. (∗)
Similarly, for any y ∈ P (U) let τ(y) denote the slope of the straight line through

y and a(U, y) (again as in the proof of Theorem 2.3.1). Then by an analogous

argument τ(y) weakly increases if y1 decreases. (∗∗)
Let (s̄, r̄) and (s, r) be the elements of k(U) with maximal and minimal second

coordinates, respectively. By definition of k we have τ(s) = σ(r) for all (s, r) ∈ k(U).

Therefore, by (∗) and (∗∗) we must have σ(x) = τ(y) for all x ∈ AP (U) with

r̄1 6 x1 6 r1 and all y ∈ P (U) with s̄1 6 y1 6 s1. In particular, σ(x) is constant

for r̄1 6 x1 6 r1, which implies that the line segments c[x] for x ∈ [r̄, r] are parallel;

but this means that they must be on the same straight line m through s̄ and s.

Let ȳ be the upper endpoint of c[r̄] and let y be the lower endpoint of c[r]. Then

[ȳ, y] ⊆ P (U), ȳ1 = r̄1 and y
2

= r2. See, again, Figure 2.5.2 for an illustration.
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2.5 Appendix: proofs

Similarly, let ` be the straight line through r̄ and r, then [x̄, x] ⊆ AP (U), where

x̄ is the point of ` with x̄2 = s̄2 and x is the point of m with x1 = s1. Now it is

straightforward to check that [x̄, x] and [ȳ, y] satisfy the conditions in the theorem.

�

Proof of Theorem 2.4.1. (1) We first prove that (a) implies (b) and (c). We

leave verification of EPO, SYM, SI, INU, PD, and IEA of k on D to the reader.

To show RM, consider U,U ′ ∈ D satisfying the antecedent of RM, i.e., U ⊆ U ′,

u(U ′) = u(U, r), and a(U ′) = a(U, s), where (s, r) := k(U). Since r < s and U ⊆ U ′,
there are unique points r̄ < s̄ in the intersection of the line through r and s with

the boundary of U ′. We show that (s̄, r̄) = k(U ′), which completes the proof of RM

since, clearly, r̄ ≤ r and s̄ ≥ s. Note that u(U ′, r̄) ≤ u(U ′) = u(U, r) ≤ u(U ′, r̄),

so that u(U ′, r̄) = u(U, r), whence KS(U ′, r̄) = s̄. Similarly, a(U ′, s̄) ≥ a(U ′) =

a(U, s) ≥ a(U ′, s̄), so that a(U ′, s̄) = a(U, s), whence KS(−U ′,−s̄) = −r̄. It follows

that k(U ′) = (s̄, r̄).

(2) We now prove that (b) implies (a). Suppose f satisfies the four conditions

in (b) and let U ∈ D. We have to prove that f(U) = k(U). Let k(U) = (s, r) ∈
P (U)× AP (U). Then s > r (this follows from the requirement that there must be

x, y ∈ U with x > y). Let V be the convex hull of the six points s, r, (s1, a2(U, s)),

(a1(U, s), s2), (u1(U, r), r2), and (r1, u2(U, r)). We will prove that V ∈ D and f(V ) =

(s, r). This will conclude the proof of (b)⇒ (a), since by INU, f(V ) = (s, r) implies

f(U) = (s, r) and, thus, f(U) = k(U).

Consider the positive affine transformation

(x1, x2) 7→ (ϕ1(x1), ϕ2(x2)) :=

(
x1 − r1

s1 − r1
,
x2 − r2

s2 − r2

)
which maps r to (0, 0), s to (1, 1), and V to some set V ′. Then V ′ is the convex hull
of the set

{(0, 0), (1, 1), (1,
a2(U, s)− r2
s2 − r2

), (
a1(U, s)− r1
s1 − r1

, 1), (
u1(U, r)− r1
s1 − r1

, 0), (0,
u2(U, r)− r2
s2 − r2

)} .

Note that

a2(U, s)− r2

s2 − r2
=
a1(U, s)− r1

s1 − r1
and

u2(U, r)− r2

s2 − r2
=
u1(U, r)− r1

s1 − r1
.

Thus, V ′ is a symmetric polytope, and it is sufficient to prove that V ′ ∈ Dk: for

this implies V ∈ D by minimal richness of D; and by SYM and EPO, we have

f(V ′) = ((1, 1), (0, 0)) and thus, by SI, f(V ) = (s, r).
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The letters a, b, c, d denote line segments, α = ϕ1(a1(U, s)) = ϕ2(a2(U, s)), and
β = ϕ1(u1(U, r)) = ϕ2(u2(U, r))

Figure 2.5.3: Illustrating the proof of part (2) of Theorem 2.4.1.

We are left to prove that V ′ ∈ Dk, i.e., that |k(V ′)| = 1. Consider Figure 2.5.3

with notations as there. For k(V ′) to be non-unique there are, in view of Theorem

2.3.2, two possible cases to examine: (1) a is parallel to d and (2) a is parallel to

c. (The cases involving b are analogous.) In case (1) we must have β = 1 − α > 1.

Denote the vertical and horizontal distances between a and d by v and h, then the

length of a is equal to
√

1 + α2 whereas
√
v2 + h2 >

√
β2 + β2 >

√
1 + α2, so that a

does not satisfy condition (ii) in Theorem 2.3.2. In case (2) we must have β = 2 and

α = −1. In particular, AP (V ′) is the line segment [(−1, 1), (1,−1)] and P (V ′) is the

line segment [(0, 2), (2, 0)], so that again condition (ii) in Theorem 2.3.2 is violated.

(3) We finally prove that (c) implies (a). Suppose f satisfies the six conditions

in (b) and let U ∈ D. Let (s, r) := f(U). We proceed in several steps.

Claim 1. s > r.

To prove this claim, assume the contrary. As s > r by PD and s 6= r by definition

of a bargaining solution, we may assume s1 = r1 and s2 > r2 (the other case is

analogous).

Consider first the truncated set Û = {x ∈ U | x2 6 s2}, which is in D by minimal

richness. Note that for each x ∈ U \ Û we have x2 > s2 and hence x1 < s1 = r1 as

s ∈ P (U); so by IEA, f(Û) = f(U). Next consider the set T = {x ∈ Û | x2 > r2},
which is again in D by minimal richness. Next, note that for each x ∈ Û \ T we

have x2 < r2 and hence x1 > r1 = s1 as r ∈ AP (Û); so again by IEA, f(T ) = f(Û).

Altogether we have f(T ) = f(U) where T = {x ∈ U | r2 6 x2 6 s2}. Moreover, by

construction of T , we have u(T, r) = u(T ) and a(T, s) = a(T ).
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As T ) [s, r], we have u(T ) 6= s or a(T ) 6= r. Suppose u(T ) 6= s (the proof is

analogous if a(T ) 6= r). Then, since s ∈ P (T ), u(T ) /∈ T . Choose α, β ∈ R with

a2(T ) < α < u2(T ) and a1(T ) < β < u1(T ) such that the set

T ′ = conv{a(T ), (a1(T ), u2(T )), (u1(T ), a2(T )), (u1(T ), α), (β, u2(T ))}

is a positive affine transformation of a symmetric polytope and such that T ⊆ T ′.

Then T ′ ∈ D as D is minimally rich and T ′ ∈ Dk by Theorem 2.3.2. Let (s′, r′) =

f(T ′). As T ′ is symmetric up to a positive affine transformation, SI and SYM imply

that r′, s′ ∈ T ′∩ [a(T ′), u(T ′)]. So, as u(T ′) 6∈ T ′, we have s′ < u(T ′) = u(T ), whence

in particular s′2 < u2(T ). On the other hand, since T ⊆ T ′, u(T ′) = u(T ) = u(T, r)

and a(T ′) = a(T ) = a(T, s), we have by RM that s′ > s, so that s′2 = u2(T ). This

contradiction completes the proof of Claim 1.

Claim 2. Let U ′ = {x ∈ U | a(U, s) 6 x 6 u(U, r)}. Then U ′ ∈ D and f(U ′) = (s, r).

To prove this, first observe that, since s > r by Claim 1, U ′ arises from U by a double

truncation. Hence, U ′ ∈ D. We next prove that all outcomes in U \ U ′ are extreme

alternatives in the sense of IEA. Suppose that x ∈ U with x1 < r1. Suppose x2 6 s2.

Since r < s, we have x < s, hence x > a(U, s). Also, x < u(U, r) since s 6 u(U, r).

Thus, x ∈ U ′. Hence, if x ∈ U \U ′ then x1 < r1 implies x2 > s2. Similarly, x ∈ U \U ′
and x2 < r2 imply x1 > s1. Suppose now x ∈ U and x > r. Then x 6 u(U, r) and

since r < s, whence r > a(U, s), we have x > a(U, s), so that x ∈ U ′. Altogether we

have proved that the antecedent of IEA holds for U ′ ⊆ U , so that f(U ′) = (s, r).

In view of Claim 2 and the definition of k it is sufficient to prove that f(U ′) = k(U ′).

In view of SI of f and k we may assume that a(U ′, s) = (0, 0) and u(U ′, r) = (1, 1).

Denote L = [(0, 0), (1, 1)] and U0 = {x ∈ R2 | (0, 0) 6 x 6 (1, 1)}. If r, s ∈ L then

clearly k(U ′) = (s, r) = f(U ′) and we are done. Otherwise, without loss of generality

s /∈ L. We proceed by choosing ŝ, r̂ ∈ L as follows. If r /∈ L then choose ŝ, r̂ such

that: (i) ŝ 6> s, r̂ 66 r; (ii) there is a line ` through ŝ intersecting the boundary of U0

at points (α, 1) and (1, β) such that r̂1 < α < 1, r̂2 < β < 1 and such that the set

U ′ is weakly below `; (iii) there is a line m, not parallel to `, through r̂ intersecting

the boundary of U0 at points (0, γ) and (δ, 0) such that 0 < γ < ŝ2, 0 < δ < ŝ1 and

such that the set U ′ is weakly above m.12 See Figure 2.5.4 for an illustration. If

r ∈ L then we still choose ŝ as above but set r̂ = (0, 0), and γ = δ = 0. Let V be the

polytope with vertices (0, 1), (1, 0), (α, 1), (1, β), (0, γ), and (δ, 0). Then V ∈ Dk by

Theorem 2.3.2 and therefore V ∈ D since D is minimally rich.

12The first candidates for ŝ and r̂ are the points s′ and r′, where s′ is the point of intersection of
L and P (U ′) and r′ is the point of intersection of L and AP (U ′); and for ` and m the lines through
s′ and r′ supporting U ′. If those lines happen to be parallel, or if one or more of the numbers α, β,
γ, and δ do not satisfy the desired constraints, one can take ŝ = s′ + (ε, ε) and/or r̂ = r′ − (ε′, ε′),
where 0 < ε, ε′ are sufficiently small, and shift up and if necessary slightly rotate ` and/or m.
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Chapter 2. Bargaining with endogenous disagreement

The black curve is the boundary of the set V and the gray curve is the boundary of
the set W .

Figure 2.5.4: Illustrating the proof of part (3) of Theorem 2.4.1.

Claim 3. f(V ) ∈ {x ∈ V : x ≥ s} × {x ∈ V : x ≤ r}.
The claim follows from RM and Claim 2, noting that U ′ ⊆ V and that u(V ) =

u(U ′, r) (= (1, 1)) and a(V ) = a(U ′, s) (= (0, 0)).

Let W be the convex hull of the points ŝ, r̂, (ŝ1, 0), (1, r̂2), (0, ŝ2), and (r̂1, 1).

Claim 4. W ∈ D and f(W ) = (ŝ, r̂).

ThatW ∈ D, in particular thatW ∈ Dk, follows by the same argument as used in the

last part of (2) above. Since W is symmetric, EPO and SYM imply f(W ) = (ŝ, r̂).

Claim 5. f(V ) = (ŝ, r̂).

To prove this, we note that by construction of V and W we have (1, 1) = u(V ) =

u(W, r̂) and (0, 0) = a(V ) = a(W, ŝ). Since W ⊆ V , the claim follows from RM and

Claim 4.

We can now complete the proof of part (3) and the theorem. Claim 5, Claim 3, and

the definition of ŝ and r̂ imply that we must have s, r ∈ L since otherwise we obtain

a contradiction. But in that case we have (s, r) = k(U ′) = f(U ′). �
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Helsinki

Vartiainen, H. (2007) Collective choice with endogenous reference outcome. Games

and Economic Behavior 58, 172–180

26



Part II

Judgment aggregation

27





Chapter 3

Judgment aggregation in search

for the truth

3.1 Introduction

In the by now well-established theory of judgment aggregation, a group needs to

form a ‘yes’ or ‘no’ judgment on different issues, based on the judgments of the

group members on these issues. For instance, the jury in a court trial might need

to form judgments on whether the defendant has broken the contract, and whether

the contract is legally valid; the United Nations security council might need to form

judgments on whether country X is threatened by a military coup, and whether the

economy of country X is collapsing; and so on. Group judgments matter in practice.

They may determine group action: in the court trial example, they may determine

whether the defendant is convicted, and in the United Nations example they may

determine whether a large-scale international intervention in country X will happen.

So far, nearly the entire judgment aggregation theory follows the classical social-

choice theoretic approach of aiming to find out how – and whether – group judgments

can reflect the individuals’ judgments in a procedurally fair manner, where ‘fair’ is

spelled out in terms of axiomatic conditions on the aggregation rule (such as the an-

onymity condition or the Pareto-type condition of respecting unanimous judgments).

The recent Symposium on Judgment Aggregation in Journal of Economic Theory (C.

List and B. Polak eds., 2010, vol. 145(2)) illustrates well this social-choice theor-

etic approach, as well as the state of the art of the theory, which we review below.

This approach is certainly important in many contexts. It is nonetheless surprising

that little attention is given to a different, ‘epistemic’ approach of aiming to track

the truth, i.e., reach true group judgments. The theory does not model the private

information underlying voters’ judgments, thereby preventing itself from studying

questions of efficient information aggregation. Yet such an epistemic perspective
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seems particularly natural in the context of aggregating judgments (rather than

preferences1). In our court trial example, the ultimate goal seems indeed to be to

find out independent facts (of whether the defendant has broken the contract and

whether the contract is legally valid). So, the jury’s voting rule should be optimised

with respect to the goal that the resulting group judgments are true, not that they

are fair to the jurors.

This alters the problem of designing a voting rule. Properties of voting rules

standardly assumed in judgment aggregation theory, such as respecting unanimous

judgments or anonymity, cannot be taken for granted anymore. If they turn out to

be justified, they derive their justification from the truth-tracking goal rather than

fairness considerations. To illustrate the contrast, suppose each juror expresses the

judgment (opinion) that the contract was broken. A collective ‘broken’ judgment

would then of course count as good from the classical social-choice theoretic per-

spective of procedural fairness. However, from a truth-tracking perspective, much

depends on questions such as whether the jurors’ judgments are sufficient evidence

for breach of contract, and whether voters have expressed their judgments truthfully.

This chapter analyses judgment aggregation from the truth-tracking and strategic-

voting perspective. We model voters’ private information, allowing us to ask ques-

tions about efficient information aggregation and strategic voting in a Bayesian vot-

ing game setting. Though new within judgment aggregation theory, this approach

is well-established in a different body of literature about voting between two altern-

atives, which started with seminal work by Austen-Smith and Banks (1996) and

Feddersen and Pesendorfer (1997) and can be placed in the broader context of work

on the Condorcet Jury Theorem (see the review below). In the base-line case, voters

share a common interest of finding out the ‘correct’ alternative, but hold possibly

conflicting private information about which of the alternatives might be ‘correct’.

The voting rule should be designed so as to help finding the ‘correct’ alternative by

making optimal use of all the private information scattered across the voters. So,

the goal is efficient information aggregation. Such an ‘epistemic’ binary collective

choice problem can in fact be viewed as a special judgment aggregation problem,

involving just one issue. Our court trial example involves two issues: firstly, whether

the contract was broken, and secondly, whether it is legally valid. If instead only

the first issue were on the jury’s agenda, the jury would face a single-issue judgment

aggregation problem, or equivalently, a binary collective choice problem. The entire

machinery and results of the mentioned binary collective choice literature could then

be applied in order to design the voting rule.

This chapter and the following two chapters therefore combines two bodies of

work, namely the judgment aggregation literature and the mentioned binary col-

1In preference aggregation theory, the core of social choice theory, an epistemic perspective would
be less natural since there is no ‘true preference’ to be found.
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lective choice literature.2 We believe that these two literatures can learn from each

other, and that a fruitful combination can help fill gaps in each of them. Indeed,

it seems important that the former benefits from methodologies developed by the

latter, and that the latter is extended beyond single-issue agendas towards more

complex agendas with multiple issues. Analysing this multi-issue case does not re-

duce to analysing each issue separately, since preferences establish links between

different issues.

It is worth starting simple. We therefore assume that the group faces an agenda

with just two issues, the simplest kind of multi-issue agenda; but many of our

results generalize easily. Though simple, agendas with just two issues are important

in practice. Our court trial example and United Nations example each involve two

issues. To mention further two-issue agendas, a medical commission might need to

issue joint judgments on whether a therapy is effective, and whether it is compatible

with given ethical standards; members of a political party in charge of elaborating

the party programme might seek joint judgments on whether a tax cut is affordable,

and whether it is popular; a university hiring committee might seek joint judgments

on whether a given candidate is good at research, and whether he or she is good

at teaching; and finally, economic advisors to a government during the banking

crisis in 2008 might need to issue collective judgments on whether a given bank has

short-term liquidity problems, and whether it has long-term liquidity problems.

The issues of an agenda could in principle be mutually interconnected, so that

the judgments taken on the issues logically constrain each other; for instance, a

‘no’ judgment on all issues might be inconsistent. Indeed, interconnections are what

render judgment aggregation non-trivial if the usual social-choice theoretic approach

of procedural fairness is taken.3 However, within our truth-tracking approach, mech-

anism design is non-trivial even if the issues are mutually independent. We therefore

assume independence between issues in this chapter, while we study the case of in-

terconnections in the next chapter.

Section 3.2 introduces our model, in which voters vote on the basis of private

information and are guided by ‘truth-tracking preferences’, i.e., aim for true collect-

ive judgments. Section 3.3 addresses the key question of how to design the voting

rule such that it leads to efficient decisions as well as simple-minded, truthful voting

behaviour in equilibrium. It will turn out that in many, but not all cases one should

use a ‘quota rule’, which decides on each issue according to whether the number

of ‘yes’ judgments on the issue exceeds a particular quota. The details depend on

2Recent works by Ahn and Oliveros (2011) and Eliaz and de Clippel (2011) follow a similar
approach by combining the two bodies of work, however by asking different questions. See the
literature review.

3In the absence of interconnections one can safely aggregate by taking a separate vote on each
issue. This never generates inconsistent collective judgments and meets all standard social-choice
theoretic requirements such as anonymity.
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the exact kind of truth-tracking preferences, i.e., whether preferences are ‘simple’

or ‘consequentialist’ in a sense defined below. Under simple preferences, the only

voting rule which induces an efficient and truthful Bayesian Nash equilibrium is the

quota rule defined precisely through the model parameters. Under consequentialist

preferences of type 1, an additional monotonicity requirement on the voting rules

lead to the quota rule defined equivalently. Under consequentialist preferences of

type 2, we characterize voting rules which lead to an efficient and truthful Bayesian

Nash equilibrium by ‘quota rules with exception’ of which quota rules are a spe-

cial case. Section 3.4 analyses the notion of truthful behaviour, by determining the

conditions under which a ‘sincere’ voter directly reveals his information in his vote.

Finally, the appendix contains all proofs.

3.1.1 Literature review

We now selectively review the two literatures to which Part II connects, beginning

with judgment aggregation theory. As mentioned, this theory’s primary object-

ive has so far been to find out which voting rules can aggregate the judgments of

group members over some issues in accordance with certain axiomatic requirements

with a classic social-choice theoretic flavour, such as unanimity preservation (the

counterpart of the Pareto principle) and independence (the counterpart of Arrow’s

independence of irrelevant alternatives). A series of possibility and impossibility

results successfully address this query, by giving answers which depend, firstly, on

the axiomatic requirements on the voting rule, and secondly, on the agenda of issues

under consideration (e.g., List and Pettit 2002, Dietrich 2006, 2007, 2010, Nehring

and Puppe 2008, 2010, Dietrich and List 2007a, 2008, Dokow and Holzman 2010a,

2010b, Dietrich and Mongin 2010; see also precursor results by Guilbaud 1952 and

Wilson 1975; for an introductory overview see List and Polak 2010). By contrast, a

small minority of papers about judgment aggregation take a truth-tracking perspect-

ive (e.g., Bovens and Rabinowicz 2006, List 2005 and Pivato 2011). Their innovation

is to apply the classical Condorcet Jury Theorem to judgment aggregation. Des-

pite taking a truth-tracking perspective, they have little in common with our work,

since private information and strategic incentives are not being considered.4 A re-

cent work by Eliaz and de Clippel (2011) consider a judgment aggregation problem

with common values and private information. They compare the asymptotic ef-

ficiency of premise-based and outcome-based methods. Ahn and Oliveros (2011)

study elections with two issues in the context of Condorcet Jury Theorem and make

4Ahn and Oliveros (2012) study multi-issue elections where voters have private values over the
issues. Dietrich and List (2007b) analyse strategic voting in judgment aggregation, but in a sense
not relevant to us since strategic voting is not modelled as coming from private information and
a voter is motivated by the somewhat different goal that the collective judgments match his own
judgments. Such assumptions are more natural under common knowledge of each other’s judgments
than under informational asymmetry. See also related work by Nehring and Puppe (2002, 2007).
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a similar comparison between joint trials and severe trials. Both works study a fixed

mechanism to compare different voting games while we take a mechanism design

approach. List and Pettit (2011) provide the most systematic philosophical analysis

of the truth-tracking approach, already discussing strategic incentives and private

information and drawing on the second body of literature to which we now turn.

As for this second body of literature, it is concerned with voting rules for binary

choice problems in which disagreements are driven (partly or totally) by conflict-

ing information rather than conflicting interests. Specifically, the utilities which

voters derive from decisions are affected by the same unknown ‘state of the world’,

about which voters have private information. Austen-Smith and Banks (1996) and

Feddersen and Pesendorfer (1997) show that it typically cannot be rational for all

voters to vote sincerely, and that the choice of voting rule matters considerably

for sincere voting and efficient information aggregation. While the former authors

consider the ‘purely epistemic’ case without conflict of interest, the latter authors

introduce some preference heterogeneity (and focus primarily on large electorates).

Austen-Smith and Feddersen (2005, 2006) add an extra dimension of pre-voting de-

liberation. Duggan and Martinelli (2001) and Meirowitz (2002) extend the approach

to continuous rather than binary private information. Feddersen and Pesendorfer

(1998), Coughlan (2000) and Gerardi (2000) examine the (in)effectiveness of unan-

imity rule in ‘protecting the innocent’ in jury trials. Goertz and Maniquet (2011)

analyse efficient information aggregation in large electorates, showing that approval

voting outperforms other voting rules in their setting.

3.2 The Model

3.2.1 A simple judgment aggregation problem

We consider a group of voters, labelled i = 1, ..., n, where n ≥ 2. This group needs

a collective judgment on whether some proposition p or its negation p̄ is true, and

whether some other proposition q or its negation q̄ is true. In our court trial example,

p states that the contract was broken, and q that it is legally valid; in our job

candidate example, p states that the candidate is good at research, and q that he or

she is good at teaching; and so on for our other examples. The four possible judgment

sets are {p, q}, {p, q̄}, {p̄, q} and {p̄, q̄}; we abbreviate them by pq, pq̄, p̄q and p̄q̄,

respectively. For instance, pq̄ means accepting p but not q. Each voter votes for a

judgment set in J = {pq, pq̄, p̄q, p̄q̄}. After all voters cast their votes, a collective

decision in J is taken using a voting rule. Formally, a voting rule is a function

f : J n → J , mapping each voting profile v = (v1, ..., vn) to a decision d ≡ f(v).

Among the various voting rules, quota rules stand out as particularly natural and

common. A quota rule is given by two thresholds mp,mq ∈ {0, 1, ..., n+ 1}, and for

each voting profile it accepts p [q] if and only if at least mp [mq] voters accept it in
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the profile. Quota rules have three salient properties:

• Anonymity: For all voting profiles (v1, ..., vn) ∈ J n and all permutations

(i1, ..., in) of the voters, f(vi1 , ..., vin) = f(v1, ..., vn). Informally, the voters

are treated equally.

• Monotonicity: For all voting profiles v,v′ ∈ J n, if for each r in f(v) the

voters who accept r in v also accept r in v′, then f(v′) = f(v). Informally,

additional support for the collectively accepted propositions never reverses the

collective acceptance of these propositions.

• Independence: The decision on each proposition r ∈ {p, q} only depends on

the votes on r.5 Informally, the group in effect takes two separate votes, one

between p and p̄ and one between q and q̄.

Remark 3.2.1 A voting rule f : J n → J is a quota rule if and only if it is

anonymous, monotonic and independent.

We briefly sketch the proof of the non-trivial direction of implication. As can

be shown, if a voting rule f : J n → J is anonymous and independent, then it is

given by two sets Mp,Mq ⊆ {0, 1, ..., n}, in the sense that for each voting profile

v ∈ J n the decision f(v) contains r (∈ {p, q}) if and only if the number of votes

in v containing r belongs to Mr. If f is moreover monotonic, each set Mr can be

shown to take the form {mr,mr + 1, ..., n} for some threshold mr ∈ {0, 1, ..., n+ 1}.
Clearly, f is the quota rule with thresholds mp and mq.

3.2.2 A common preference for true collective judgments

Exactly one judgment set in J is ‘correct’, i.e., contains propositions which are

factually true. It is called the state (of the world) and is generically denoted by

s. For instance, the state might be pq̄, so that p and q̄ are true (and p̄ and q are

false). Voters have identical preferences, captured by a common utility function

u : J ×J → R which maps any decision-state pair (d, s) to its utility u(d, s). Given

voters’ truth-tracking goal, one would expect u(d, s) to be high if d = s, i.e., if the

decision is correct. But how exactly should u be specified? We focus on two natural

kinds of preferences:

Simple preferences. Here, the utility function is given by

u(d, s) =

{
1 if d = s (correct decision)

0 if d 6= s (incorrect decision).
(3.2.1)

5Given a voting profile v, the subprofile with respect to r is denoted vr (∈ {r, r̄}n), and the
collective decision with respect to r is denoted fr(v) (∈ {r, r̄}). Independence means that for all
voting profiles v,v′ ∈ J n, if vr = v′

r, then fr(v) = fr(v′) .
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Such preferences are the simplest candidate for truth-tracking preferences. Correct

decisions are preferred to incorrect ones, without further sophistication.

Consequentialist preferences. Here, we assume that the decision leads to one

of two possible consequences, typically representing group actions. This is captured

by a consequence function Co which maps the set of possible decisions J to a

two-element set of possible consequences. The consequence function might look as

follows in examples given earlier. In our court trial example, the court decision pq

leads to conviction, since both premises of guilt are found to be satisfied (Co(pq) =

‘conviction’), while the other decisions all lead to acquittal (Co(p̄q̄) = Co(pq̄) =

Co(p̄q) = ‘acquittal’). In our job candidate example, the decision pq leads to a hire

since the candidate is seen as meeting both criteria (Co(pq) = ‘hire’), while the other

decisions all lead to no hire (Co(p̄q̄) = Co(pq̄) = Co(p̄q) = ‘no hire’). In our United

Nations example, the decisions pq̄ and p̄q each lead to a large-scale international

intervention in country X (Co(pq̄) = Co(p̄q) = ‘intervention’), whereas the decisions

pq and p̄q̄ both lead to no intervention since the United Nations then consider an

intervention as being too risky or unnecessary, respectively (Co(pq) = Co(p̄q̄) = ‘no

intervention’). In our bank rescuing example, the decisions pq̄ and p̄q each lead to

a governmental rescue plan for the bank (Co(pq̄) = Co(p̄q) = ‘rescue’), whereas the

decisions pq and p̄q̄ both lead to no rescue plan since a rescue is seen as infeasible

or unnecessary, respectively (Co(pq) = Co(p̄q̄) = ‘no rescue’). The consequentialist

utility function is given by

u(d, s) =

{
1 if Co(d) = Co(s) (correct consequence)

0 if Co(d) 6= Co(s) (incorrect consequence).
(3.2.2)

Incorrect decisions (d 6= s) can have correct consequences (Co(d) = Co(s)). The

hiring committee might view the candidate as good at research and bad at teaching

when in fact the opposite is true, so that the resulting consequence (‘no hire’) is

correct for wrong reasons. This gives high utility under consequentialist preferences,

but low utility under simple preferences.6

3.2.3 Private information and strategies

If voters had not just common preferences, but also common information about

what the state might be, then no disagreement could arise. We however allow for

informational asymmetry. Each voter has a type, representing private information

6In the judgment aggregation literature, the two possible consequences are usually represented
by two conclusion propositions, c and c̄. In our first two examples, the consequence function is
encoded in the biconditional c ↔ (p ∧ q), whereas in our last two examples it is encoded in the
biconditional c↔ ((p ∧ q) ∨ (p̄ ∧ q̄)).
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or evidence.7 A voter’s type takes the form of an element of J , generically denoted

by t. For instance, a voter of type t = pq̄ has evidence for p and for q̄. We write

t = (t1, ..., tn) ∈ J n for a profile of voters’ types. Nature draws a state-types

combination (s, t) ∈ J n+1 according to a probability measure denoted Pr. When

a proposition r ∈ {p, p̄, q, q̄} is meant to represent part of voter i’s type rather

than part of the true state, we often write ri for r. For instance, Pr(pi|p) is the

probability that voter i has evidence for p given that p is true. By assumption, the

prior probability that r (∈ {p, p̄, q, q̄}) is true is denoted

πr = Pr(r)

and belongs to (0, 1), and the probability of getting evidence for r given that r is

true is denoted

ar = Pr(ri|r),

belongs to (1/2, 1), and does not depend on the voter i. The parameters ap, ap̄, aq, aq̄
measure the reliability of private information, as they represent probabilities of re-

ceiving ‘truth-telling’ information. The lower bound of 1/2 reflects the (standard)

idea that information is more reliable than a fair coin.

By assumption, voters’ types are independent conditional on the state, and in

addition the state and the types w.r.t. p are independent of the state and the types

w.r.t. q.8 These independence assumptions allow one to express the joint distribu-

tion of the state and the types by just a few parameters, namely πp, πq, ap, ap̄, aq, aq̄.

For instance, the probability that the state is pq and all voters receive the truth-

telling evidence pq is

Pr(pq, p1q1, p2q2, ..., pnqn) = Pr(pq) Pr(p1q1, p2q2, ..., pnqn|pq) = πpπqa
n
pa

n
q .

Each voter submits a vote in J based on his type. A (voting) strategy is a function

σ : J → J , mapping each type t ∈ J to the type’s vote v = σ(t). We write

σ = (σ1, ...., σn) for a profile of voters’ strategies. Together with a voting rule f and

a common utility function u, we now have a well-defined Bayesian game.

For a given type profile t ∈ J n, we call a decision d efficient if it has maximal

expected utility conditional on the full information t.9 Some common notions of

voting behaviour can now be adapted to our framework:

7The type could represent information that is not shared with other voters because of a lack of
deliberation or limits of deliberation. More generally, a voter i’s type could represent uncertainty
of other voters about i’s beliefs.

8Recall that the state consists of a proposition in {p, p̄} and another in {q, q̄}. The first [second]
of these propositions is what we call the state w.r.t. p [q]. A voter’s type w.r.t. p [q] is defined
similarly.

9I.e., d maximizes E(u(d, S)|t) =
∑

s∈J u(d, s) Pr(s|t), where ‘S’ denotes the random variable
generating the state s in J .
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• A strategy σ of a voter is informative if σ(t) = t for all types t. An informative

voter directly reveals his information in his vote.

• A strategy σ of a voter is sincere if for every type t, the vote σ(t) maximises

the expected utility conditional on the information t. A sincere voter votes

for the decision which maximises the expected utility conditional on his type;

so, he acts as if his vote alone determined the decision, neglecting the other

voters and their strategies. Technically, this amounts to optimal behaviour in

a hypothetical single-player decision problem.

• A strategy profile σ = (σ1, ..., σn) is rational if each strategy is a best response

to the other strategies, i.e., if the profile is a Nash equilibrium of the corres-

ponding Bayesian game. Hence, each voter maximises the expected utility of

the collective decision given the strategies of the other voters. (In this max-

imisation exercise, it turns out that a voter must only consider cases in which

his vote is pivotal. Under a quota rule with majority thresholds, a voter is for

instance pivotal if half of the other voters votes pq and the other half votes

p̄q̄.)

• A strategy profile σ = (σ1, ..., σn) is efficient if for every type profile t =

(t1, ..., tn) the resulting decision d = f(σ1(t1), ..., σn(tn)) is efficient (i.e., has

maximal expected utility conditional on full information t). Hence, all the

information spread across the group is used efficiently: the collective decision is

no worse than a decision of a (virtual) social planner who has full information.

While informativeness and sincerity are properties of a single strategy (or voter),

rationality and efficiency refer to an entire profile.

Finally, to avoid distraction by special cases, we make two assumptions. First, we

exclude the degenerate case in which some decision in J is not efficient for any type

profile whatsoever. Second, we exclude efficiency ties, i.e., we exclude those special

parameter combinations such that some type profile t leads to different efficient

decisions (with different consequences when we assume consequentialist preferences).

3.3 Which voting rules lead to efficient information ag-

gregation?

3.3.1 Setting the stage

Our objective is to design the voting rule (‘mechanism’) in such a way as to yield

efficient decisions on the basis of informative votes. In short, the voting rule should
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Chapter 3. Judgment aggregation in search for the truth

render informative voting efficient.10 We begin by justifying this objective. Prima

facie, two goals are of interest. The rule should, firstly, lead to efficient outcomes,

and, secondly, encourage simple-minded, truthful behaviour. By such behaviour we

mean informative voting.11 To reach the second goal, informative voting should

be rational, i.e., occur in equilibrium. If informative voting is not just rational,

but also efficient, both goals are reached. So, the double-goal is that informative

voting be efficient and rational. Following a well-known result by McLennan (1998),

whenever informative voting is efficient, it is a fortiori also rational – which explains

our primary objective that informative voting be efficient.

Theorem 3.3.1 Consider an arbitrary common utility function u : J 2 → R.

(a) For any voting rule, if a strategy profile is efficient, then it is rational (McLen-

nan 1998).

(b) There is an anonymous voting rule for which informative voting is efficient

(hence, rational).

This theorem is general in that it applies to any kind of (common) preferences.

The converse of part (a) does not hold: for instance, a constant voting rule makes all

strategy profiles rational, but typically not efficient. The message of part (b) is pos-

itive but so far vague: it is always possible to make informative voting efficient (and

rational), but apart from anonymity we do not know anything about the kind of vot-

ing rule we can use. And indeed, for some kinds of common preferences, it may not

be possible to aggregate in an independent or monotonic way (as counterexamples

show). But, once we narrow down to simple or consequentialist preferences, can –

or even must – we aggregate in a monotonic resp. independent way? When can –

or even must – we use a quota rule? Such questions are answered below.

3.3.2 Simple preferences

This section addresses the case of simple preferences, given by the common utility

function (3.2.1). Which rules render informative voting efficient (hence, rational)?

The answer is ‘simple’, as we will see. To state our result, we first define two

10By saying “informative voting” without referring to a particular voter, we mean “informative
voting by all voters”.

11One might alternatively mean sincere voting – but in practice there is little difference, since
informative and sincere voting coincide under reasonable informational assumptions. As one can
show, if informative voting is not sincere, then there exists a decision d ∈ J such that no voter
ever finds himself in an informational position to consider d as best – a rather uninteresting, if not
unnatural scenario.
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coefficients:12

kp := min

{
k ∈ {0, 1, ..., n+ 1} :

πp
1− πp

>

(
1− ap̄
ap

)k ( ap̄
1− ap

)n−k}
, (3.3.1)

kq := min

{
k ∈ {0, 1, ..., n+ 1} :

πq
1− πq

>

(
1− aq̄
aq

)k ( aq̄
1− aq

)n−k}
. (3.3.2)

These coefficients have an interpretation: as can be proved, for p [q] to be more

probably true than false given all information, at least kp [kq] individuals need to

receive evidence for p [q], i.e., need to have a type containing p [q].

Theorem 3.3.2 Assume simple preferences. Informative voting is efficient if and

only if f is the quota rule with the thresholds kp and kq.

This result shows that the quota rule with thresholds kp and kq is the only rule

we may use in view of making informative voting efficient (hence, rational). This

result is much more specific than the purely existential claim in part (b) of Theorem

3.3.1. This progress was possible by focusing on simple preferences.

3.3.3 Consequentialist preferences: first type

We now turn to consequentialist preferences. Much depends on the nature of the

consequence function. In principle, there exist 24 = 16 potential consequence func-

tions from J to a binary set of consequences. But, as we shall see shortly, there are

only two non-degenerate consequence functions up to isomorphism. We therefore

define two types of consequentialist functions. Consequentialist preferences (or the

consequence function) are said to be:

• of type 1 if Co(pq) = Co(p̄q̄) 6= Co(pq̄) = Co(p̄q);

• of type 2 if Co(pq) 6= Co(p̄q̄) = Co(pq̄) = Co(p̄q).

Our first two examples of consequentialist preferences in Section 3.2.2 are of type

1, while our last two examples are of type 2. But why are all non-degenerate con-

sequences of one of these two types? Firstly, consequence functions for which each

decision in J has the same consequence are of course degenerate and therefore unin-

teresting. Also consequence functions which depend only on the decision between p

and p̄, or only on the decision between q and q̄, are degenerate, since in this case we

12The minimum defining kp or kq should be interpreted as n+1 if the set whose minimum is being
taken is empty. In fact, emptiness is impossible under simple preferences. This follows from our
non-degeneracy assumption on the model parameters (which also implies that kp, kq ∈ {1, ..., n}).
Note that in (3.3.1) and (3.3.2) the right hand side of the inequality is strictly decreasing in k.
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are essentially back to a decision problem with a single proposition-negation pair,

which has already been studied in the literature.13 The non-degenerate consequence

functions are those which genuinely depend on both propositions. Among all of

them, some assign each consequence to exactly two decisions in J , while the others

assign one consequence to three decisions and the other consequence to just one

decision. As one can show, the former consequence functions are of type 1, while

the latter are of type 2 up to isomorphism (i.e., up to exchanging p and p̄ and/or

exchanging q and q̄). Thus, by studying our two types of consequence functions, we

will have covered non-degenerate consequentialist preferences exhaustively.

We now address the first type, while the next subsection turns to the second

type. One might at first expect there to be little resemblance between the current

preferences and simple preferences in terms of the appropriate voting rule. For

instance, even when all individuals have type pq, so that there is overwhelming

evidence for state pq, the current preferences allow us to efficiently decide for p̄q̄, since

this decision has the same consequence as pq. Surprisingly, despite the differences,

consequentialist preferences of type 1 come much closer to simple preferences than to

consequentialist preferences of type 2 in terms of mechanism design. The coefficients

kp and kq, defined earlier for simple preferences, again play a key role.

Theorem 3.3.3 Assume consequentialist preferences of type 1. A voting rule f

makes informative voting efficient and is monotonic if and only if it is the quota

rule with thresholds kp and kq.

So, as for simple preferences, the social planner is led to impose a quota rule

with the particular thresholds kp and kq. What distinguishes Theorem 3.3.3 from

Theorem 3.3.2 is, for one, its somewhat different (and longer) proof, and secondly,

the additional monotonicity requirement. Without this extra condition, a number

of other voting rules become possible:

Corollary 3.3.1 Assume consequentialist preferences of type 1. A voting rule f

makes informative voting efficient if and only if for every voting profile v ∈ J n the

decision f(v) has the same consequence as the decision under the quota rule with

thresholds kp and kq (i.e., Co ◦ f = Co ◦ g, where g is this quota rule).

So, once we drop the monotonicity requirement, there is not just one possible

voting rule, as for simple preferences, but 24n possible rules (since there are 2 allowed

decisions for each of the 4n profiles in J n).

13For instance, our UN intervention example would be degenerate if the question of whether to
intervene only depended on whether the country is considered as being threatened by a military
coup (p or p̄). The other pair of propositions (q or q̄) could then be eliminated from the voting
process.
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3.3.4 Consequentialist preferences: second type

We now turn to consequentialist preferences of type 2. The space of aggregation

possibilities is somewhat different here. As we shall show, quota rules are not always

possible, and when they are, the two thresholds must be calculated differently.

For all k, l ∈ R, we define the coefficient

β(k, l) =
πpa

k
p(1− ap)n−k

πpakp(1− ap)n−k + πp̄a
n−k
p̄ (1− ap̄)k

×
πqa

l
q(1− aq)n−l

πqalq(1− aq)n−l + πq̄a
n−l
q̄ (1− aq̄)l

.

(3.3.3)

One can show that β(k, l) has a natural interpretation if k, l ∈ {0, 1, ..., n}: it is the

probability that the state is pq conditional on having k times evidence for (and n−k
times evidence against) p and l times evidence for (and n− l times evidence against)

q. So, β(k, l) = Pr(pq|t) for some (hence, any) type profile t ∈ J n containing p

exactly k times and q exactly l times; or equivalently,

β(k, l) = Pr(p|p1, ...pk, p̄k+1, ..., p̄n)× Pr(q|q1, ..., ql, q̄l+1, ..., q̄n).

As one can prove by drawing on the definition of the consequence function, given

a type profile t containing p exactly k times and q exactly l times, if β(k, l) > 1/2

then only the decision pq is efficient, while otherwise the three other decisions are all

efficient. This implies a first, simple characterization result. Henceforth, the number

of votes for a proposition r in a voting profile v is written nvr .

Proposition 3.3.1 Assume consequentialist preferences of type 2. A voting rule f

makes informative voting efficient if and only if for every voting profile v ∈ J n the

decision f(v) is pq if β(nvp , n
v
q ) > 1/2 and in {pq̄, p̄q, p̄q̄} otherwise.

Which possibilities – if any – are left if we require the rule to be a quota rule?

We begin by introducing two coefficients. Given that all voters hold evidence for

q, how many voters with evidence for p does it minimally take for the decision pq

to become efficient? Similarly, given that all voters hold evidence for p, how many

voters with evidence for q does it take for the decision pq to become efficient? The

answer to these questions is given by the following numbers, respectively:14

lp := min{k ∈ {0, ..., n} : β(k, n) > 1/2} (3.3.4)

lq := min{k ∈ {0, ..., n} : β(n, k) > 1/2}. (3.3.5)

Theorem 3.3.4 Assume consequentialist preferences of type 2. There exists a quota

rule making informative voting efficient if and only if β(lp, lq) > 1/2. In this case,

that quota rule is unique and has the thresholds lp and lq.

14These two minima are taken over non-empty sets of values of k (by the non-degeneracy assump-
tion at the end of Section 3.2.3).
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Figure 3.3.1: The function β

Figure 3.3.1b illustrates the region to which (lp, lq) must belong for a quota rule

to be available. Unlike when preferences are simple or consequentialist of type 1,

and unlike in the classic literature for a single pair of propositions p, p̄, we have a

partial impossibility:

Corollary 3.3.2 Assume consequentialist preferences of type 2. For some, but not

all combinations of values of the model parameters (πp, πq, ap, ap̄, aq, aq̄ and n), there

exists a quota rule making informative voting efficient.

For instance, if πp = πq = 0.5, ap = aq = ap̄ = aq̄ = 0.7 and n = 3, no quota rule

makes informative voting efficient, whereas if instead πp = πq = 0.6, the quota rule

with thresholds lp = lq = 2 makes informative voting efficient.

While by Corollary 3.3.2 it may be utopian to aim for a full-fledged quota rule,

we now show that one can always achieve two characteristic properties of quota rules,

namely anonymity and monotonicity, while often losing the third characteristic prop-

erty, namely independence. Specifically, we characterize the class of all monotonic

and anonymous (but not necessarily independent) aggregation possibilities. As we

shall see, this class consists of so-called quota rules ‘with exception’. Such rules be-

have like a quota rule as long as the profile does not fall into an ‘exception domain’,

while generating the ‘exception decision’ pq on the exception domain. Formally, a
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quota rule with exception f : J n → J is given by thresholds mp,mq ∈ {0, ..., n+ 1}
and an ‘exception domain’ E ⊆ J n, and is defined as follows for all voting profiles

v ∈ J : if v 6∈ E then f(v) contains any proposition r in {p, q} if and only if nvr ≥ mr,

while if v ∈ E then f(v) = pq ; or equivalently, f(v) contains any r in {p, q} if and

only if [nvr ≥ mr or v ∈ E ].15 Standard quota rules arise as special cases with an

empty exception domain. In our characterization theorem, the exception domain is

E = {v : β(nvp , n
v
q ) > 1/2}, so that

f(v) contains r ⇔ [nvr ≥ mr or β(nvp , n
v
q ) > 1/2], for all r ∈ {p, q} and v ∈ J .

(3.3.6)

Theorem 3.3.5 Assume consequentialist preferences of type 2. A voting rule f

makes informative voting efficient and is monotonic and anonymous if and only

if f is the quota rule with exception (3.3.6) for some thresholds mp,mq such that

β(mp, lq), β(lp,mq) > 1/2.

Figure 3.3.2: Illustration of Theorem 3.3.5: the decision as a function of the number
of votes for p and q

Figure 3.3.2 shows three voting rules of the kind given in Theorem 3.3.5, which

differ in the choice of the thresholds mp and mq. In Figure 3.3.2a, the thresholds

15The notion of a quota rules with exception could be generalized by allowing the exception
decision to differ from pq. The exception decision is pq for us due to the privileged status of pq
under consequentialist preferences of type 2.
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are chosen in a ‘non-extreme’ way. In Figure 3.3.2c, the thresholds are maximal,

i.e., mp = mq = n+ 1, so that the voting rule takes a particularly simple form:

f(v) =

{
pq if β(nvp , n

v
q ) > 1/2

p̄q̄ if β(nvp , n
v
q ) ≤ 1/2

(3.3.7)

for all voting profiles v ∈ J n. In Figure 3.3.2b, the thresholds are minimal, so that

the voting rule is given as follows:

f(v) =


pq if β(nvp , n

v
q ) > 1/2

pq̄ if β(nvp , n
v
q ) ≤ 1/2 and β(nvp , lq) > 1/2

p̄q if β(nvp , n
v
q ) ≤ 1/2 and β(lp, n

v
q ) > 1/2

p̄q̄ otherwise

(3.3.8)

The latter rule is special in that it reduces to the quota rule making informative

voting efficient (defined in Theorem 3.3.4) whenever such a quota rule exists.

3.4 When is informative voting sincere?

While the previous section focuses on mechanism design, the present section does

not depend on the voting rule (mechanism). We focus on a single voter and answer

the question of when informative voting is sincere, that is, when the naive strategy of

‘following the evidence’ is worthwhile for a sincere voter. For each type of preference,

we fully characterize the parameter combinations for which this is so. We begin with

simple preferences.

Theorem 3.4.1 Under simple preferences, the informative voting strategy is sincere

if and only if ar̄
1−ar ≥

πr
1−πr ≥

1−ar̄
ar

for each r ∈ {p, q}.

This result has an intuitive interpretation. We know that necessarily the upper

bound ar̄
1−ar for πr

1−πr exceeds 1 and the lower bound 1−ar̄
ar

is below 1, since ar, ar̄ >

1/2. For very high or very low values of the prior probabilities πr, the ratio πr
1−πr

is far from 1, so that one of the bounds is violated and informative voting is not

sincere. This makes sense since if voters have ‘strong’ prior beliefs, then the evidence

collected cannot overrule the prior beliefs: sincere votes cease to be sensitive to

evidence, i.e., depart from informative votes. By contrast, for less strong prior

beliefs, the inequalities are satisfied, so that informative voting is sincere, i.e., it is

worth following the evidence as a sincere voter.

Another useful perspective on the result is obtained by focusing not on the para-

meters πr representing prior beliefs, but on the parameters ar and ar̄ representing

‘strength of evidence’. The larger ar and ar̄ are (i.e., the ‘stronger’ private evidence

for r and r̄ is), the greater the upper bound for πr
1−πr is and the smaller the lower
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bound is, which makes it easier to meet both inequalities. In summary, sufficiently

strong evidence and/or sufficiently weak prior beliefs imply that it is worth voting

informatively (‘following the evidence’) as a sincere voter.

Surprisingly, the characterization remains the same as we move from simple pref-

erences to consequentialist preferences of type 1 (though the proof is quite different):

Theorem 3.4.2 Under consequentialist preferences of type 1, the informative voting

strategy is sincere if and only if ar̄
1−ar ≥

πr
1−πr ≥

1−ar̄
ar

for each r ∈ {p, q}.

One can interpret this result in a similar way as done for simple preferences.

Finally, we turn to consequentialist preferences of type 2. Here, the characteriz-

ation is based on the following three coefficients:

A :=
πp

1− πp
× aq̄

1− aq
+

πq
1− πq

× 1− ap̄
ap

+
1− ap̄
ap

× aq̄
1− aq

B :=
πp

1− πp
× 1− aq̄

aq
+

πq
1− πq

× ap̄
1− ap

+
ap̄

1− ap
× 1− aq̄

aq

C :=
πp

1− πp
× 1− aq̄

aq
+

πq
1− πq

× 1− ap̄
ap

+
1− ap̄
ap

× 1− aq̄
aq

.

Theorem 3.4.3 Under consequentialist preferences of type 2, the informative voting

strategy is sincere if and only if A,B ≥ πp
1−πp ×

πq
1−πq ≥ C.

Although the characterizing inequalities are more complicated than for the pre-

vious two kinds of preference, an interpretation in terms of strength of evidence is

again possible. If the voter’s evidence is sufficiently strong (i.e., if ap, ap̄, aq, aq̄ are

sufficiently close 1), then C is well below 1 and A and B are well above 1, so that

the inequalities are likely to hold; as a result, informative voting is sincere, i.e., it is

worth following the evidence as a sincere voter.

3.5 Appendix: proofs

We begin by some preliminary derivations, and then prove our results in a new order

obtained by clustering the results according to the kind of preference.

Conventions. Recall the notation ‘fr’ introduced in fn. 5 and the notation ‘S’

for the random variable generating the state s in J introduced in fn. 9. Double-

negations cancel each other out, i.e., p stands for p, and q for q. We refer to the two

technical assumptions made at the end of Section 3.2.3 as ‘non-degeneracy’ and ‘no

efficiency ties’, respectively.
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3.5.1 Preliminary derivations

The joint probability of a state-types vector (s, t) = (spsq, t1pt1q, ..., tnptnq) ∈ J n+1

is

Pr(s, t) = Pr(s) Pr(t|s) = Pr(s)
∏
i

Pr(ti|s) = Pr(sp) Pr(sq)
∏
i

Pr(tip|sp) Pr(tiq|sq),

where the last two equations follow from our independence assumptions. A voter’s

probability of a state s = psqs ∈ J given his type t = ptqt ∈ J is given by

Pr(s|t) = Pr(ps|pt) Pr(qs|qt), which reduces to

Pr(s|t) =
πpsaps

πpsaps + πps(1− aps)
× πqsaqs
πqsaqs + πqs(1− aqs)

if ps = pt, qs = qt (3.5.1)

Pr(s|t) =
πpsaps

πpsaps + πps(1− aps)
× πqs(1− aqs)
πqs(1− aqs) + πqsaqs

if ps = pt, qs 6= qt (3.5.2)

Pr(s|t) =
πps(1− aps)

πps(1− aps) + πpsaps
× πqsaqs
πqsaqs + πqs(1− aqs)

if ps 6= pt, qs = qt (3.5.3)

Pr(s|t) =
πps(1− aps)

πps(1− aps) + πpsaps
× πqs(1− aqs)
πqs(1− aqs) + πqsaqs

if ps 6= pt, qs 6= qt (3.5.4)

The probability of the four states in J conditional on the full information t ∈J n is

given as follows, where k := ntp and l := ntq:

Pr(pq|t) =
πpa

k
p(1− ap)n−kπqalq(1− aq)n−l

Pr(t)
(3.5.5)

Pr(pq̄|t) =
πpa

k
p(1− ap)n−kπq̄(1− aq̄)lan−lq̄

Pr(t)
(3.5.6)

Pr(p̄q|t) =
πp̄(1− ap̄)kan−kp̄ πqa

l
q(1− aq)n−l

Pr(t)
(3.5.7)

Pr(p̄q̄|t) =
πp̄(1− ap̄)kan−kp̄ πq̄(1− aq̄)lan−lq̄

Pr(t)
. (3.5.8)

3.5.2 General preferences

Proof of Theorem 3.3.1. (a) We write Ti (= TipTiq) for the random variable

generating voter i’s type in J , and T = (T1, ..., Tn) for the random type profile. Con-

sider any voting rule f : J n → J and any efficient strategy profile σ = (σ1, ..., σn).

To show that σ is rational, consider any voter i and type ti ∈ J . We have to show

that i’s vote σi(ti) maximizes the expected utility conditional on i’s type, i.e., that

E(u(f(σi(ti),σ−i(T−i)), S)|ti) ≥ E(u(f(vi,σ−i(T−i)), S)|ti) for all vi ∈ J ,
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where (σi(ti),σ−i(T−i)) and (vi,σ−i(T−i)) of course denote the voting profiles in
which i votes vi resp. σi(ti) and each j 6= i votes σj(Tj). To show this, note that
for all vi ∈ J ,

E(u(f(vi,σ−i(T−i)), S)|ti) =
∑

t−i∈Jn−1

Pr(t−i|ti)E(u(f(vi,σ−i(t−i)), S)|ti, t−i)

≤
∑

t−i∈Jn−1

Pr(t−i|ti)E(u(f(σi(ti),σ−i(t−i)), S)|ti, t−i)

= E(u(f(σi(ti),σ−i(T−i)), S)|ti),

where the inequality holds because the strategy profile (σi,σ−i) = σ is efficient for

the type profile (ti, t−i) = t.

(b) Since by (3.5.5)-(3.5.8) the conditional distribution of the state given full

information t ∈ J n depends on t only via the numbers ntp and ntq, so does the

conditional expected utility of each decision, and hence, the set of efficient decisions.

For each (k, l) ∈ {0, 1, ..., n}2, let F (k, l) ∈ J be a decision that is efficient for some

(hence, every) t ∈ J n for which ntp = k and ntq = l. The voting rule f defined by

v 7→ f(v) = F (nvp , n
v
q ) is clearly anonymous and renders informative voting efficient.

�

3.5.3 Simple preferences

We begin by two lemmas.

Lemma 3.5.1 Assume simple preferences. The expected utility of a decision d ∈ J
is

E(u(d, S)) = Pr(S = d),

and the conditional expected utility of d given a type or a type profile is given by the

analogous expression with a conditional probability instead of an unconditional one.

Proof. The claim follows immediately from the definition of the utility function.

�

The next lemma invokes the coefficients kp and kq defined in (3.3.1) and (3.3.2).

Lemma 3.5.2 Assume simple preferences. For all type profiles t ∈ J n, all r ∈
{p, q}, and all decisions d, d′ ∈ J such that d but not d′ contains r, and d and d′

share the other proposition,

E(u(d, S)|t) > E(u(d′, S)|t)⇔ ntr ≥ kr.
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Proof. Let t ∈ J n. We first prove the equivalence for r = p, d = pq and d′ = p̄q.

By the definition of kp, the inequality ntp ≥ kp is equivalent to

πp
1− πp

>

(
1− ap̄
ap

)nt
p
(

ap̄
1− ap

)n−nt
p

, (3.5.9)

which by (3.5.5) and (3.5.7) is equivalent to Pr(pq|t) > Pr(p̄q|t), and hence by

Lemma 3.5.1 to E(u(pq, S)|t) > E(u(p̄q, S)|t). Next, suppose r = p, d = pq̄ and d′ =

p̄q̄. Using (3.5.6) and (3.5.8), the inequality (3.5.9) is equivalent to Pr(pq̄|t) >

Pr(p̄q̄|t), and hence, to E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t). The proof for the remaining

cases is analogous. �

We are now in a position to prove the two theorems about simple preferences.

Proof of Theorem 3.3.2. Consider a rule f : J n → J .

A. First, assume f is the quota rule with thresholds kp and kq. Consider a given

type profile t ∈ J n. Supposing that voters vote informatively, the resulting voting

profile is v = t. We have to show that the decision d := f(v) is efficient for t, i.e.,

that (*) E(u(d, S)|t) > E(u(d′, S)|t) for all d′ ∈ J \{d}. (We use ‘>’ rather than ‘≥’

in (*) because of our ‘no efficiency ties’ assumption.) The property (*) follows from

Lemma 3.5.2. For instance, if d = pq, then by definition of f we have ntp ≥ kp and

ntq ≥ kq, so that Lemma 3.5.2 implies the inequality in (*) for d′ = p̄q and d′ = pq̄

For instance, if d = pq, then by definition of f we have ntp ≥ kp and ntq ≥ kq, so

that Lemma 3.5.2 implies that

E(u(pq, S)|t) > E(u(p̄q, S)|t), E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t),

which in turn implies (*); and if d = p̄q̄, then ntp < kp and ntq < kq, so that Lemma

3.5.2 implies that

E(u(p̄q̄, S)|t) > E(u(pq̄, S)|t), E(u(p̄q, S)|t) > E(u(pq, S)|t),

which again implies (*).

B. Conversely, suppose informative voting is efficient under f . We consider any

v ∈ J n and r ∈ {p, q}, and must show that (**) fr(v) = r ⇔ nvr ≥ kr. Consider

the type profile t = v. Since informative voting is efficient, the decision d = f(v) is

efficient for t (= v), i.e., satisfies condition (*) above. Lemma 3.5.2 and (*) together

imply (**). For instance, if f(v) = pq, then (**) holds because, firstly, fr(v) = r,

and secondly, nvr ≥ kr by (*) and Lemma 3.5.2. �

Proof of Theorem 3.4.1. A. First, assume informative voting is sincere. Equi-

valently, for any given type t ∈ J , E(u(d, S)|t) is maximal at d = t, i.e., by Lemma
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3.5.1 (*) Pr(d|t) is maximal at d = t. Applying (*) to type t = pq, we have

Pr(pq|t) ≥ Pr(p̄q|t), which implies
πp

1−πp ≥
1−ap̄
ap

by (3.5.1) and (3.5.3). Now apply-

ing (*) to type t = p̄q̄, we obtain Pr(p̄q̄|t) ≥ Pr(pq̄|t), which by (3.5.1) and (3.5.3)

implies
ap̄

1−ap ≥
πp

1−πp . We have shown both inequalities relating to p. The two

inequalities relating to q can be proved analogously.

B. Now suppose ar̄
1−ar ≥

πr
1−πr ≥

1−ar̄
ar

for each r ∈ {p, q}. We consider any type

t ∈ J and have to show that the decision d = t has maximal expected utility given

t, or equivalently, that (*) holds.

We show (*) first in the case t = pq. Here, the inequality
πp

1−πp ≥
1−ap̄
ap

implies

Pr(pq|t) ≥ Pr(p̄q|t) by (3.5.1) and (3.5.3), and it implies Pr(pq̄|t) ≥ Pr(p̄q̄|t) by

(3.5.2) and (3.5.4). Further, the inequality
πq

1−πq ≥
1−aq̄
aq

implies Pr(pq|t) ≥ Pr(pq̄|t)
by (3.5.1) and (3.5.2). This shows (*) for t = pq.

Now we show (*) for the case t = pq̄. As
πp

1−πp ≥
1−ap̄
ap

, we here have Pr(pq̄|t) ≥
Pr(p̄q̄|t) by (3.5.1) and (3.5.3), and we have Pr(pq|t) ≥ Pr(p̄q|t) by (3.5.2) and

(3.5.4). As
aq̄

1−aq ≥
πq

1−πq , we also have Pr(pq̄|t) ≥ Pr(pq|t) by (3.5.1) and (3.5.2).

This proves (*) for t = pq̄.

By similar arguments, one shows (*) for t = p̄q and for t = p̄q̄. �

3.5.4 Consequentialist preferences: type 1

We begin by two lemmas, which are the counterparts of Lemmas 3.5.1 and 3.5.2 for

the current preferences.

Lemma 3.5.3 Assume consequentialist preferences of type 1. The expected utility

of a decision d ∈ J is

E(u(d, S)) =

{
Pr(pq) + Pr(p̄q̄) if d ∈ {pq, p̄q̄}
Pr(pq̄) + Pr(p̄q) if d ∈ {pq̄, p̄q},

and the conditional expected utility of d given a type or a type profile is given by the

analogous expression with conditional probabilities instead of unconditional ones.

Proof. The claim follows easily from the definition of the utility function. �

Lemma 3.5.4 Assume consequentialist preferences of type 1. For each type profile

t ∈ J n and decisions d ∈ {pq, p̄q̄} and d′ ∈ {pq̄, p̄q}

E(u(d, S)|t) > E(u(d′, S)|t)⇔ [ntr ≥ kr for both or no r ∈ {p, q}].

Proof. Consider any t ∈ J n, d ∈ {pq, p̄q̄} and d′ ∈ {pq̄, p̄q}. Define gr(k) :=

πra
k
r (1 − ar)n−k and gr̄(k) := (1 − πr)(1 − ar̄)kan−kr̄ for all r ∈ {p, q} and k ∈ R.

For each r ∈ {p, q}, the definition of kr can now be rewritten as kr = min{k ∈
{0, 1, ..., n + 1} : gr(k) > gr̄(k)}. So, (*) for each k ∈ {0, 1, ..., n + 1}, k ≥ kr ⇔
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gr(k) > gr̄(k). (Here, the implication ‘⇒’ uses that gr(k) [gr̄(k)] is strictly increasing

[decreasing] in k ∈ R.) Now,

E(u(d, S)|t) > E(u(d′, S)|t)
⇔ Pr(pq|t) + Pr(p̄q̄|t) > Pr(pq̄|t) + Pr(p̄q|t) by Lemma 3.5.3

⇔ gp(n
t
p)gq(n

t
q) + gp̄(n

t
p)gq̄(n

t
q) > gp(n

t
p)gq̄(n

t
q) + gp̄(n

t
p)gq(n

t
q) by (3.5.5)-(3.5.8)

⇔
[
gp(n

t
p)− gp̄(ntp)

] [
gq(n

t
q)− gq̄(ntq)

]
> 0

⇔ [ntr ≥ kr for both or no r ∈ {p, q}] by (*). �

We can now prove our two theorems about the present preferences.

Proof of Theorem 3.3.3. Consider a rule f : J n → J .

A. Assume f is the quota rule with thresholds kp and kq. Firstly, f is monotonic.

Secondly, to show that informative voting is efficient, consider a given type profile

t ∈ J n. Supposing informative voting, the resulting voting profile is then v := t.

We have to show that d := f(v) is efficient for t, i.e., that for each d′ ∈ J with

Co(d′) 6= Co(d) we have (*) E(u(d, S)|t) ≥ E(u(d′, S)|t). Consider any d′ ∈ J with

Co(d′) 6= Co(d). If d = pq, then ntr ≥ kr for both r ∈ {p, q}, implying (*) by Lemma

3.5.4. If d = p̄q̄, then ntr ≥ kr for no r ∈ {p, q}, again implying (*) by Lemma 3.5.4.

Finally, if d is p̄q or pq̄, then ntr ≥ kr for exactly one r ∈ {p, q}, so that (*) holds

once again by Lemma 3.5.4.

B. Conversely, assume f is monotonic and makes informative voting efficient.

We consider any v ∈ J n and must show that (**) fr(v) = r ⇔ nvr ≥ kr for each

r ∈ {p, q}. As one can show using our non-degeneracy assumption,

kr 6∈ {0, n+ 1} for some r ∈ {p, q}; (3.5.10)

for instance, if kr were zero for each r ∈ {p, q}, then by Lemma 3.5.4 the decisions

p̄q and pq̄ would be inefficient for each type profile, violating non-degeneracy. We

now prove (**) by distinguishing four cases.

Case 1 : nvr ≥ kr for each r ∈ {p, q}. We must show that f(v) = pq. Since the

decision f(v) is efficient for the type profile t = v, by Lemma 3.5.4, f(v) ∈ {pq, p̄q̄}.
Suppose for a contradiction f(v) = p̄q̄. By (3.5.10), kr ≥ 1 for some r ∈ {p, q}.
Suppose kp > 0 (the case that kq > 0 being analogous). Let v′ be the voting profile

obtained from v by replacing each occurring p by p̄. By monotonicity, the decision is

f(v′) = p̄q̄. By Lemma 3.5.4, for the type profile t′ = v′ only p̄q and pq̄ are efficient

since nt
′
p = 0 < kp and nt

′
q = nvq ≥ kq. So, the decision f(v′) (= p̄q̄) is inefficient, a

contradiction since f makes informative voting efficient.

Case 2 : nvp ≥ kp and nvq < kq. We must show that f(v) = pq̄. By Lemma 3.5.4,

pq̄ and p̄q are both efficient for the type profile t = v. So, as informative voting

is efficient, f(v) ∈ {pq̄, p̄q}. Suppose for a contradiction f(v) = p̄q. By (3.5.10),
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kp > 0 or kq ≤ n. First, if kp > 0, define v′ as in Case 1. By monotonicity, the

decision is f(v′) = p̄q, which is inefficient for the type profile t′ = v′ by Lemma

3.5.4 as nt
′
p = 0 < kp and nt

′
q = nvq < kq, a contradiction. Second, if kq ≤ n,

define v′ as the voting profile obtained from v by replacing each occurring q̄ by q.

By monotonicity, the decision is f(v′) = p̄q, which is again inefficient for the type

profile t′ = v′ by Lemma 3.5.4 as nt
′
p = nvp ≥ kp and nt

′
q = n ≥ kq, a contradiction.

Case 3 : nvp < kp and nvq ≥ kq. One can show that f(v) = p̄q like in Case 2.

Case 4 : nvr < kr for each r ∈ {p, q}. We must show that f(v) = p̄q̄. By

informative voting being efficient and by Lemma 3.5.4 applied to t = v, f(v) ∈
{pq, p̄q̄}. Suppose for a contradiction that f(v) = pq. By (3.5.10), kr ≤ n for some

r ∈ {p, q}. We assume that kp ≤ n (the proof being analogous if kq ≤ n). Let

the voting profile v′ ∈ J n arise from v by replacing each occurring p̄ by p. By

monotonicity, f(v′) = pq. This outcome is inefficient for the type profile t′ = v′ by

Lemma 3.5.4 and nt
′
p = n ≥ kp and nt

′
q = nvq < kq. �

Proof of Theorem 3.4.2. A. First, let informative voting be sincere. Equival-

ently, for any type t ∈ J , (*) E(u(d, S)|t) is maximal at d = t. Using (*) with

t = pq, we have E(u(pq, S)|t) ≥ E(u(p̄q, S)|t), which by Lemma 3.5.3 is equival-

ent to Pr(pq|t) + Pr(p̄q̄|t) ≥ Pr(pq̄|t) + Pr(p̄q|t). Using (3.5.1)-(3.5.4), the latter is

equivalent to

πp
1− πp

× πq
1− πq

+
1− ap̄
ap

× 1− aq̄
aq

≥ πp
1− πp

× 1− aq̄
aq

+
πq

1− πq
× 1− ap̄

ap
,

which can be rearranged as(
πp

1− πp
− 1− ap̄

ap

)(
πq

1− πq
− 1− aq̄

aq

)
≥ 0. (3.5.11)

Analogously, using (*) three more times, with t = pq̄, then t = p̄q and finally t = p̄q̄,

we obtain (
πp

1− πp
− 1− ap̄

ap

)(
1− πq
πq

− 1− aq
aq̄

)
≥ 0 (3.5.12)(

πp
1− πp

− ap̄
1− ap

)(
1− πq
πq

− aq
1− aq̄

)
≥ 0 (3.5.13)(

πp
1− πp

− ap̄
1− ap

)(
πq

1− πq
− aq̄

1− aq

)
≥ 0. (3.5.14)

Firstly, (i)
πq

1−πq ≥
1−aq̄
aq

, since otherwise by (3.5.11) we would get
πp

1−πp ≤
1−ap̄
ap

(< 1), whereas by (3.5.13) we get
πp

1−πp ≥
ap̄

1−ap (> 1), a contradiction. Secondly,

(ii)
πp

1−πp ≥
1−ap̄
ap

, because if (i) holds with a strict inequality, then (ii) follows
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from (3.5.11), whereas if (i) holds with equality, then
πq

1−πq < 1 <
aq̄

1−aq , which

together with (3.5.12) implies (ii). We finally show that (iii)
πp

1−πp ≤
ap̄

1−ap and (iv)
πq

1−πq ≤
aq̄

1−aq . First, suppose (ii) holds with equality. Then
πp

1−πp < 1 <
ap̄

1−ap , which

implies (iii), and with (3.5.14) also implies (iv). Second, suppose (ii) holds with a

strict inequality. Then with (3.5.12) we get (iv). If (iv) holds with a strict inequality,

then we get (iii) by (3.5.14), while if (iv) holds with equality, then
1−πq
πq

=
1−aq
aq̄

<

1 <
aq

1−aq̄ , which by (3.5.13) implies (iii).

B. Conversely, assume ar̄
1−ar ≥

πr
1−πr ≥

1−ar̄
ar

for each r ∈ {p, q}. We have to show

that informative voting is sincere, i.e., that (*) holds for each type t ∈ J . As one

can check, the inequalities (3.5.11)-(3.5.14) all hold. These inequalities imply that

(*) holds for each type t ∈ J . For instance, as shown in part A, (3.5.11) reduces to

E(u(pq, S)|t) ≥ E(u(p̄q, S)|t) for t = pq. �

3.5.5 Consequentialist preferences: type 2

We begin by a simple lemma, the counterpart of Lemmas 3.5.1 and 3.5.3.

Lemma 3.5.5 Assume consequentialist preferences of type 2. The expected utility

of a decision d ∈ J is

E(u(d, S)) =

{
Pr(pq) if d = pq

1− Pr(pq) if d 6= pq,

and the conditional expected utility of d given a type or a type profile is given by the

analogous expression with conditional probabilities instead of unconditional ones.

Proof. The claim follows from the specification of the utility function. �

We now prove our results about the current preferences. Some proofs implicitly

extend β(k, l) to values of k.l not in {0, ..., n}, using the expression (3.3.3).

Proof of proposition 3.3.1. The claim can easily be shown by elaborating the

informal argument given in the text. �

Proof of theorem 3.3.4. A. First, suppose f : J n → J is a quota rule with

thresholds mp and mq making informative voting efficient. The following claims

must be shown.

Claim 1 : mp = lp and mq = lq.

Consider a type profile t ∈J n for which ntp = n and ntq = lq. Assuming inform-

ative voting, the resulting voting profile is v = t. By definition of lq, β(n, lq) > 1/2.

So f(v) = pq by Proposition 3.3.1. Thus, lq ≥ mq by definition of f . One ana-

logously shows that lp ≥ mp. To show the converse inequalities, consider a voting
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profile v ∈ J n for which nvp = mp and nvq = n (≥ mq). The resulting decision is

f(v) = pq by definition of f . So, by Proposition 3.3.1, β(nvp , n
v
q ) = β(mp, n) > 1/2.

Hence, mp ≥ lp by definition of lp. Analogously, one shows that mq ≥ lq.
Claim 2 : β(lp, lq) > 1/2.

For any voting profile v ∈ J n for which nvp = lp (= mp) and nvq = lq (= mq),

we have f(v) = pq by definition of f , so that by Proposition 3.3.1 β(nvp , n
v
q ) > 1/2,

i.e., β(lp, lq) > 1/2.

B. Conversely, assume β(lp, lq) > 1/2. We show that the quota rule f with

thresholds lp and lq makes informative voting efficient. We first prove that for all

k, l ∈ {0, ..., n},
β(k, l) > 1/2⇔ [k ≥ lp and l ≥ lq]. (3.5.15)

Let k, l ∈ {0, ..., n}. If k ≥ lp and l ≥ lq, then β(k, l) ≥ β(lp, lq) > 1/2, where

the first inequality holds because β is increasing in each argument. If k < lp, then

β(k, l) ≤ β(k, n) ≤ 1/2, where the last inequality holds by definition of lp (> k).

Analogously, if l ≤ lq, then β(k, l) ≤ 1/2.

Now consider any type profile t ∈ J n. Assuming informative voting, the result-

ing voting profile is v = t. We have to show that the decision f(v) is efficient for t

(= v). First, if ntp ≥ lp and ntq ≥ lq, the decision is f(v) = pq, which is efficient by

Proposition 3.3.1 since β(ntp, n
t
q) > 1/2 by (3.5.15). Second, if ntp < lp or ntq < lq,

the resulting decision f(v) is in {p̄q, pq̄, p̄q̄}, which is efficient by Proposition 3.3.1

since β(ntp, n
t
q) ≤ 1/2 by (3.5.15). �

Proof of theorem 3.3.5. Consider a rule f : J n → J . We repeatedly draw on

the fact that (*) β(k, l) is strictly increasing in each argument.

A. First, assume f is defined by (3.3.6) for thresholds mp and mq satisfying

β(mp, lq), β(lp,mq) > 1/2. Clearly, f is anonymous. To show that informative

voting is efficient, it suffices by Proposition 3.3.1 to prove that for all v ∈ J n,

f(v) = pq ⇔ β(nvp , n
v
q ) > 1/2. (3.5.16)

If β(nvp , n
v
q ) > 1/2, then clearly f(v) = pq by (3.3.6). Conversely, assume f(v) = pq.

Then, by definition of f , either nvr ≥ mr for each r ∈ {p, q}, or β(nvp , n
v
q ) > 1/2.

In the second case, we are done. Now assume the first case. Since β(mp, lq) > 1/2,

we have β(mp, n) > 1/2 by (*), whence mp ≥ lp by definition of lp. Using (*)

and that nvp ≥ mp ≥ lp and nvq ≥ mq, we have β(nvp , n
v
q ) ≥ β(lp,mq). Moreover,

β(lp,mq) > 1/2 by definition of mq. So, β(nvp , n
v
q ) > 1/2, which completes the proof

of (3.5.16).

It remains to show monotonicity of f . Take two voting profiles v,v′ ∈ J n such

that for all r ∈ f(v), the voters who vote for r in v also vote for r in v′.

Case 1 : f(v) = pq. Then, β(nvp , n
v
q ) > 1/2 by (3.5.16). Also, nv

′
p ≥ nvp and

nv
′
q ≥ nvq , so that β(nv

′
p , n

v′
q ) ≥ β(nvp , n

v
q ) by (*). It follows that β(nv

′
p , n

v′
q ) > 1/2,
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so that f(v′) = pq by (3.5.16).

Case 2 : f(v) = pq̄. We have to show that f(v′) = pq̄, i.e., that

nv
′
p ≥ mp, n

v′
q < mq, and β(nv

′
p , n

v′
q ) ≤ 1/2. (3.5.17)

Since f(v) = pq̄, the definition of f implies nvp ≥ mp and nvq < mq, and the definition

of v′ implies nv
′
p ≥ nvp and nv

′
q ≤ nvq ; hence, the first two inequalities in (3.5.17)

hold. As β(mp, lq) > 1/2 and nvp ≥ mp, we have β(nvp , lq) > 1/2 by (*). Also,

since f(v) = pq̄, we have β(nvp , n
v
q ) ≤ 1/2 by (3.5.16). Hence, β(nvp , n

v
q ) < β(nvp , lq).

So, nvq < lq by (*), whence nv
′
q < lq as nv

′
q ≤ nvq . Thus, by definition of lq,

β(n, nv
′
q ) ≤ 1/2, so that β(nv

′
p , n

v′
q ) ≤ 1/2 by (*), proving (3.5.17).

Case 3 : f(v) = p̄q. One can show that f(v′) = p̄q analogously to Case 2.

Case 4 : f(v) = p̄q̄. Then, nvp < mp, n
v
q < mq, and β(nvp , n

v
q ) ≤ 1/2. We have to

show that f(v′) = p̄q̄, i.e., that these three inequalities still hold if v is replaced by

v′. This follows from the fact that nv
′
p ≤ nvp and nv

′
q ≤ nvq (by definition of v′) and

from (*).

B. Conversely, let f be monotonic and anonymous, and make informative voting

efficient. For each r ∈ {p, q}, define

mr := min{nvr : v ∈ J n such that fr(v) = r and β(nvp , n
v
q ) ≤ 1/2},

where this minimum is interpreted as n + 1 if it is taken over an empty set. We

prove that f has the required form with respect to the so-defined thresholds mp and

mq. The proof proceeds in several steps and is completed by Claims 5 and 6 below.

Claim 1 : For all v ∈ J n, if nvp ≥ lp, n
v
q ≥ lq and β(nvp , n

v
q ) ≤ 1/2, then

f(v) = p̄q̄.

Let v ∈ J n satisfy the antecedent condition. First assume f(v) = pq̄ for a

contradiction. Let v′ be the voting profile obtained from v by replacing each p̄ by p.

By monotonicity, f(v′) = pq̄. However, Proposition 3.3.1 implies that f(v′) = pq,

since β(nv
′
p , n

v′
q ) = β(n, nvq ) ≥ β(n, lq) > 1/2 (where the first inequality holds by

nvq ≥ lq, and the second by definition of lq). This contradiction proves that f(v) 6=
pq̄. One similarly proves that f(v) 6= p̄q. So, as f(v) ∈ {pq̄, p̄q, p̄q̄} by Proposition

3.3.1, we have f(v) = p̄q̄, proving the claim.

Claim 2 : For all v ∈ J n, if nvp ≤ lp, nvq ≤ lq and β(lp, lq) ≤ 1/2, then f(v) = p̄q̄.

Consider any v ∈ J n satisfying the antecedent condition. Let w ∈ J n arise

from v by replacing lp − nvp occurrences of p̄ by p, lq − nvq occurrences of q̄ by q.

Note that nwp = lp and nwq = lq, whence by Claim 1 f(w) = p̄q̄. By monotonicity, it

follows that f(v) = p̄q̄.

Claim 3 : mp ≥ lp and mq ≥ lq.
Suppose for a contradiction mp < lp. By definition of mp, there is a v ∈ J n

such that mp = nvp , fp(v) = p and β(nvp , n
v
q ) ≤ 1/2. As by Proposition 3.3.1,
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f(v) ∈ {p̄q, pq̄, p̄q̄}, it follows that f(v) = pq̄. We consider two cases.

Case 1 : nvq ≥ lq. Let v′ ∈ J n be the voting profile arising from v by replacing

each p̄ by p. By monotonicity, the resulting decision is f(v′) = pq̄. But f(v′) = pq

by Proposition 3.3.1 as β(nv
′
p , n

v′
q ) = β(n, nvq ) ≥ β(n, lq) > 1/2 (where the first

inequality holds by nvq > lq and the second by definition of lq).

Case 2 : nvq < lq. Then by Claim 2 f(v) = p̄q̄, a contradiction since f(v) = pq̄.

We have shown one inequality of Claim 3; the other one has an analogous proof.

Claim 4 : For all v ∈ J n with β(nvp , n
v
q ) ≤ 1/2, if nvp ≥ mp then f(v) = pq̄, and

if nvq ≥ mq then f(v) = p̄q.

Consider any v ∈ J n with β(nvp , n
v
q ) ≤ 1/2. Suppose for a contradiction that

nvp ≥ mp but f(v) 6= pq̄. Then, as by Proposition 3.3.1 f(v) ∈ {p̄q, pq̄, p̄q̄}, either

f(v) = p̄q or f(v) = p̄q̄.

Case 1 : f(v) = p̄q. Let v′ ∈ J n be the voting profile arising from v by replacing

each q̄ by q. By monotonicity, the resulting decision is f(v′) = p̄q, whereas by

Proposition 3.3.1 f(v′) = pq because β(nv
′
p , n

v′
q ) = β(nvp , n) ≥ β(lp, n) > 1/2, where

the first inequality holds because nvp ≥ lp (by Claim 3) and the second inequality

holds by definition of lp.

Case 2 : f(v) = p̄q̄. By definition of mp there is a w ∈ J n such that nwp = mp,

fp(w) = p and β(nwp , n
w
q ) ≤ 1/2. As by Proposition 3.3.1 f(w) ∈ {pq̄, p̄q, p̄q̄}, it

follows that f(w) = pq̄. Let v′ [w′] be the voting profile arising from v [w] by

replacing each q by q̄. By monotonicity, f(v′) = p̄q̄ and f(w′) = pq̄. Now let w′′ be

a voting profile arising from w′ by replacing nv
′
p −nw

′
p (= nvp −mp ≥ 0) occurrences

of p̄ by p. By monotonicity, f(w′′) = pq̄. So, f(w′′) 6= f(v′), a contradiction by

anonymity since w′′ is a permutation of v′.

This shows the first implication in Claim 4. The second one can be shown

similarly.

Claim 5 : β(mp, lq), β(lp,mq) > 1/2.

We only show that β(mp, lq) > 1/2; the other inequality is analogous. Suppose

for a contradiction that β(mp, lq) ≤ 1/2. So, since β(n+ 1, lq) > β(n, lq) > 1/2 (by

definition of lq), we have mp 6= n+ 1. Hence, there is a v ∈ J n such that nvp = mp

and nvq = lq. By Claim 4, f(v) = pq̄. Let v′ be the voting profile arising from v

by replacing each p̄ by p. By monotonicity, f(v′) = pq̄, a contradiction since by

Proposition 3.3.1 f(v′) = pq since β(nv
′
p , n

v′
q ) = β(n, lq) > 1/2.

Claim 6 : f is given by (3.3.6).

Consider any v ∈ J n and r ∈ {p, q}. We show the equivalence (3.3.6) by

distinguishing different cases. If β(nvp , n
v
q ) > 1/2, then f(v) = pq by Proposition

3.3.1, implying (3.3.6). If β(nvp , n
v
q ) ≤ 1/2 and nvr ≥ mr, then (3.3.6) holds by Claim

4. Finally, if β(nvp , n
v
q ) ≤ 1/2 and nvr < mr, then fr(v) 6= r by definition of mr,

whence (3.3.6) again holds. �
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Proof of Theorem 3.4.3. A. First, suppose informative voting is sincere. Equi-

valently, for any given type t ∈ J , the decision d = t has maximal conditional

expected utility, i.e., (*) E(u(d, S)|t) is maximal at d = t. Applying (*) with

t = pq, we have E(u(pq, S)|t) ≥ E(u(p̄q̄, S)|t), which by Lemma 3.5.5 reduces

to Pr(pq|t) ≥ 1 − Pr(pq|t), i.e., to Pr(pq|t) ≥ 1/2. Using (3.5.1), one derives

that
πp

1−πp ×
πq

1−πq ≥ C. Now applying (*) with t = pq̄, we have E(u(pq̄, S)|t) ≥
E(u(pq, S)|t), which by Lemma 3.5.5 reduces to 1 − Pr(pq|t) ≥ Pr(pq|t), so that

Pr(pq|t) ≤ 1/2. Using (3.5.2), one obtains
πp

1−πp ×
πq

1−πq ≤ A. Finally, applying

(*) with t = p̄q, we have E(u(p̄q, S)|t) ≥ E(u(pq, S)|t), which by Lemma 3.5.5 re-

duces to 1− Pr(pq|t) ≥ Pr(pq|t), whence Pr(pq|t) ≤ 1/2. Using (3.5.3), one derives
πp

1−πp ×
πq

1−πq ≤ B. This proves all inequalities.

B. Conversely, suppose A,B ≥ πp
1−πp ×

πq
1−πq ≥ C. For each given type t ∈ J ,

one has to show (*). As the reader can verify using Lemma 3.5.5 and (3.5.1)-(3.5.4),

if t = pq then (*) follows from
πp

1−πp ×
πq

1−πq ≥ C; if t = pq̄ then (*) follows from

A ≥ πp
1−πp ×

πq
1−πq ; if t = p̄q then (*) follows from B ≥ πp

1−πp ×
πq

1−πq ; and if t = p̄q̄

then (*) can be derived from A ≥ πp
1−πp ×

πq
1−πq or from B ≥ πp

1−πp ×
πq

1−πq . �
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Chapter 4

Judgment aggregation in search

for the truth: the case of

interconnections

4.1 Introduction

The theory of judgment aggregation deals with situations where a group needs to

make a collective ‘yes’ or ‘no’ judgment on several issues on the basis of group

members’ judgments on these issues. Many decision making problems in real life

involve multiple issues. The jury in a court trial might need to form judgments on

whether the defendant has broken the contract, and whether the contract is legally

valid. The city council might need to reach judgments on whether the CO2 level in

the city is above the critical threshold and whether the chemical plant in the city

should be closed down. In such problems, the issues on group’s agenda might be

mutually interconnected, in that the judgment made on one issue might constrain

the judgment on another issue. In the city commission example, the CO2 level being

judged to be above the critical threshold might restrict the judgment on the second

issue to ‘yes’; i.e., lead to the closing of the chemical factory. Judgment aggregation

models allow for the study of a wide range of realistic collective decision making

problems.

When it comes to aggregate judgments in decision making bodies like juries or

city councils, it seems natural to have epistemic concerns. Such problems are dif-

ferent than problems where individuals have conflicting aims. In the court trial

example, the jury’s problem is to find out two independent facts, whether the de-

fendant has broken the contract and whether the contract is legally valid. It seems

that the primary goal is reaching the truth in such problems. The epistemic ap-

proach in judgment aggregation aims to reach true group judgments. According to
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the classical social-choice theoretic approach in judgment aggregation – where voters

are taken to have conflicting aims – a good voting rule should be fair to jurors while

according to the epistemic approach, a good voting rule should track the truth.

Whether a voting rule is good in tracking the truth or not depends on questions

such as whether the individuals judgments are sufficient evidence for the truth value

of each issue, and whether individuals have expressed their judgments truthfully.

This chapter assumes that the group faces two issues, and a ‘no’ answer to

both issues is inconsistent. Consistency is a property that requires the collective

decision to be free from any logical contradictions. In the city council example, the

inconsistency arises in case of a ‘yes’ judgment on the first issue (CO2 level is above

the threshold) and a ‘no’ judgment on the second issue (the chemical plant should not

be closed down). Note that by exchanging the roles of issues with their opposites, we

can obtain every kind of interconnection between issues. We assume that voters share

the common goal of tracking the truth but each has private information regarding the

truth value of each issue. In this setting we want to answer the following question:

Which voting rules lead to efficient and truthful Bayesian Nash equilibrium of the

corresponding game? So, we want to design voting rules which first lead to truthful

revelation of private information, and second lead to the efficiency in equilibrium.

Note that individual reporting of private information need not always be truthful,

even when voters have no conflicting aims. As Austen-Smith and Banks (1996)

show, if a voter conditions her beliefs on being pivotal – on being able to change

the outcome – she may not always find it best to report truthfully. The question

of consistency here arises when one wants to use quota rules (where separate votes

are taken on each proposition using acceptance thresholds) which are practical and

common. This chapter also examines the possibility of truth-tracking in particular

with quota rules.

The epistemic perspective with strategic concerns is well-established in a different

body of the literature, which studies single issue problems (Austen-Smith and Banks

1996, Feddersen and Pesendorfer 1997, 1998). There have been few works taking

the epistemic approach in judgment aggregation. The work by Bozbay, Dietrich and

Peters (2011) studies judgment aggregation from the epistemic and strategic voting

perspective and to our knowledge is the only work that deals with the mechanism

design problem in the multi-issue case. Their model is similar in that they model

voters’ common interests and private information, however with an agenda with

independent issues. For an extended survey of the two bodies of literature to which

this chapter connects to, please see Section 3.1.1.

The chapter proceeds as follows. Two questions are answered in Section 4.2 and

Section 4.3; respectively, when informative voting is efficient, and when informative

voting is efficient by quota rules in particular. By informative voting, we generally

mean ‘following the evidence’ whenever the evidence is consistent with the true
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state.1 Section 4.2.1 presents the model, in which a group of voters is to decide

whether to accept or reject each of two propositions while they can not reject both

at the same time. The model presented in Section 4.3.1 differs from the model

in Section 4.2.1 in that the collective decision might be inconsistent; hence, both

propositions can be collectively rejected. In both models, voters hold truth-tracking

preferences and they vote on the basis of private information which may possibly be

inconsistent. Section 4.2.2, 4.2.3 and 4.2.4 address the key question of how to design

the voting rule such that it leads to efficient decisions as well as simple-minded,

truthful voting behaviour in equilibrium. The answer depends on both the kind

of utility function in use and the definition of simple-minded behaviour. It turns

out that in many situations such a voting rule does not exist. The necessary and

sufficient conditions for the existence of such rules are also given and these rules are

characterized by some properties. Section 4.3.2 addresses the possibility of efficient

information aggregation with quota rules and provides an impossibility result. All

proofs are in appendix.

4.2 Efficient information aggregation

4.2.1 The Model

A simple judgment aggregation problem

We consider a group of voters, labeled i = 1, ..., n, where n ≥ 2. There are two

propositions p and q, and their negations p̄ and q̄. The group of voters wants

to obtain a collective judgment on whether p or p̄ is true, and whether q or q̄

is true. While doing so, voters know that the combination {p̄, q̄} is not possible.

The three possible judgment sets are {p, q}, {p, q̄}, {p̄, q}, abbreviated by pq, pq̄ and

p̄q, respectively2. Each voter votes for a judgment set in J = {pq, pq̄, p̄q}. A

collective decision is taken using a voting rule. A voting rule is defined as a function

f : J n → J , which maps each voting profile v = (v1, ..., vn) to a decision d ≡ f(v).

Some salient properties of voting rules are defined below:

• Anonymity: For all voting profiles (v1, ..., vn) ∈ J n and all permutations

(i1, ..., in) of the voters, f(vi1 , ..., vin) = f(v1, ..., vn). Informally, the voters

are treated equally.

• Monotonicity: For all voting profiles v,v′ ∈ J n, if for each r in f(v) the

voters who accept r in v also accept r in v′, then f(v′) = f(v). Informally,

1An informative voter reveals her private information in her vote whenever the private inform-
ation is non-conflicting with the true state. Two kinds of informative behaviour is analysed in this
work.

2Similarly, {p̄, q̄} is abbreviated by p̄q̄.
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additional support for the collectively accepted propositions never reverses the

collective acceptance of these propositions.

• Independence: The decision on each proposition r ∈ {p, q} only depends on

the votes on r. Informally, the group in effect takes two separate votes, one

between p and p̄ and one between q and q̄.

To define the next property, we introduce some notation. Given a voting profile

v = (v1, ..., vn), for each r ∈ {p, q} let vr := (v1r, ..., vnr) be the vector with entities

defined as follows: for i = 1, ..., n, vir = 1 if vi contains r and vir = 0 if vi contains

r̄.

• Neutrality: For every voting profile v and every voting profile v′ for which

there is no permutation (i1, ..., in) of the voters with (vi1 , ..., vin) = (v′1, ..., v
′
n),

if vr = v′r′ for each r, r′ ∈ {p, q} with r 6= r′, then f accepts r in v if and

only if f accepts r′ in v′. Informally, if two voting profiles have the exact same

acceptance regime between different propositions, so do the decisions.

A common preference for true collective judgments

There is one ‘correct’ judgment set in J , which we call the state (of the world),

denoted by s. The state is unobservable by voters. Voters have identical preferences,

captured by a common utility function u : J ×J → R which maps any decision-state

pair (d, s) to its utility u(d, s). The notion of truth-tracking requires the utility to

be high if the decision is correct, but details matter. We focus on two natural kinds

of preferences:

Simple preferences. The utility function is given by

u(d, s) =

{
1 if d = s (correct decision)

0 if d 6= s (incorrect decision).
(4.2.1)

Simple preferences are the simplest candidate for truth-tracking preferences.3

Consequentialist preferences. Here, we assume that the decision leads to

one of two possible consequences which represents group actions.4 This is captured

by a consequence function Co which maps the set of possible decisions J to a two-

element set of possible consequences. Consider a market with only one firm, Firm A.

Firms B and C are interested in entering the market and Firm B has higher capacity

than Firm C. The executive board of firm C is to make judgments on whether or

3A voter tracks the truth on a proposition p if the following is true: if p were true, the voter
would accept p and if p were false, the agent would accept p̄ (Nozick, 1981).

4This two-consequence situation corresponds to problems where the group action is represented
by a third proposition – conclusion proposition – which might be true or false. Judging it to be
true leads to one of the actions/consequences while judging it to be false leads to the other.
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not firm A will expand its capacity (p) and firm B will enter the market (q). While

doing so, the board members know that if Firm A does not increase capacity, then

Firm B will enter the market; hence, p̄ → q. If both issues are judged to be true,

then the consequence is ‘no market entry’ (Co(pq) =‘no market entry’), while if only

one of the issues is judged to be true, the consequence is ‘market entry’ (Co(pq̄) =

Co(p̄q) =‘market entry’).5 It turns out that this consequence function with the

property Co(pq) 6= Co(pq̄) = Co(p̄q) is the only interesting consequence function

up to isomorphism. (See Section 2.4 for further discussion.) The consequentialist

utility function is given by

u(d, s) =

{
1 if Co(d) = Co(s) (correct consequence)

0 if Co(d) 6= Co(s) (incorrect consequence).
(4.2.2)

Private information and strategies

Each voter has a type, which represents private information or evidence about

whether p is true and information about whether q is true. A voter’s type takes

the form of an element of T := {pq, pq̄, p̄q, p̄q̄}, generically denoted by t. For in-

stance, the type t = pq̄ represents evidence for p and for q̄, and the type t = p̄q̄

represents evidence for p̄ and for q̄, which is conflicting information since p̄q̄ 6∈ J .

We write t = (t1, ..., tn) ∈ T n for a profile of voters’ types.

Nature draws a state-types combination (s, t) in J × T n according to a prob-

ability measure denoted Pr. When a proposition r in {p, p̄, q, q̄} represents (part

of) voter i’s type rather than (part of) the true state, we often write ri for r. For

instance, Pr(pi|p) is the probability that voter i has evidence for p given that p is

true. By convention, the prior probability of state s ∈ J is denoted

πs = Pr(s)

and is assumed to be in the interval (0, 1). The probability of getting evidence for r

given that r is true is denoted

ar = Pr(ri|r)

and by assumption belongs to (1/2, 1) and does not depend on the voter i.

By assumption, voters’ types are independent given the state. Moreover, given

the truth about p (i.e., either p or p̄), a voter’s evidence about p (i.e., either pi or p̄i)

is independent of the truth and the evidence about q; and similarly, given the truth

about q, a voter’s evidence about q is independent of the truth and the evidence

about p. These independence assumptions allow one to express the joint distribution

5There is still demand left for Firm C if only one of the companies is in the market.
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of the state and the types:

Pr(s, t) = Pr(s)×
n∏
i=1

Pr(ti|s).

Here, Pr(s) = πs, and the term Pr(ti|s) is also expressible in terms of our parameters;

for instance,

Pr(piqi|pq) = Pr(pi|pq) Pr(qi|pq, pi) = Pr(pi|p) Pr(qi|q) = apaq.

Pr(piq̄i|pq) = Pr(pi|pq) Pr(q̄i|pq, pi) = Pr(pi|p) Pr(q̄i|q) = ap(1− aq).

Each voter submits a vote in J based on his type. A (voting) strategy is a

function σ : T → J , mapping each type t ∈ T to the type’s vote v = σ(t). We write

σ = (σ1, ...., σn) for a profile of voters’ strategies. Together with a voting rule f and

a common utility function u, we now have a well-defined Bayesian game.

For a given type profile t ∈ T n, we call a decision d ∈ J efficient if it has

maximal expected utility conditional on the full information t. We adapt some

common notions of voting behaviour to this framework.

• A strategy σ of a voter is mostly informative if σ(t) = t for all t ∈ T \ {p̄q̄}.

• A strategy σ of a voter is informative if σ(t) = t for all t ∈ T \ {p̄q̄} and

σ(p̄q̄) ∈ {pq̄, p̄q}.

• A strategy profile σ = (σ1, ..., σn) is rational if each strategy is a best response

to the other strategies, i.e., if the profile is a Nash equilibrium of the corres-

ponding Bayesian game. Hence, each voter maximises the expected utility of

the collective decision given the strategies of the other voters.

• A strategy profile σ = (σ1, ..., σn) is efficient if for every type profile t =

(t1, ..., tn) the resulting decision d = f(σ1(t1), ..., σn(tn)) is efficient (i.e., has

maximal expected utility conditional on full information t). Hence, all the

information spread across the group is used efficiently: the collective decision is

no worse than a decision of a (virtual) social planner who has full information.

A voter with mostly informative strategy votes for her type if her type is non-

conflicting, i.e., not p̄q̄; while she completely ignores the conflicting evidence (t =

p̄q̄). In the case of informative strategy, conflicting evidence is followed partly. Unless

we particularly mean one of these strategies, we say informative behaviour to refer

to them. Note that rationality and efficiency refer to a whole profile of strategies.

We make two assumptions to avoid trivialities. First, we exclude the degenerate

case where some decision in J is not efficient for any type profile. Hence, each

decision is efficient for at least one type profile. Second, we exclude efficiency ties,
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i.e., those special parameter combinations such that some type profile leads to differ-

ent efficient decisions (with different consequences when we assume consequentialist

preferences). Hence, we exclude those instances where a voter is indifferent between

two decisions except in the case that these decisions lead to the same consequence.

4.2.2 A general (im)possibility

How should the voting rule be designed so that it leads to efficient decisions as

well as simple-minded, truthful voting behaviour in equilibrium? The objective of

the chapter is to answer this question. By simple-minded, truthful behaviour, we

mean informative behaviour. A voting rule encourages simple-minded behaviour if

it makes informative voting rational.6 If informative voting is both rational and

efficient, the objective is reached. Note that neither an informative strategy nor a

mostly informative strategy is unique. Informative voting being efficient means that

for any given type profile t, every profile of corresponding informative strategies is

efficient. By the following theorem, our objective is reduced to finding out when

informative voting is efficient.

Theorem 4.2.1 For any common utility function u : J 2 → R, and for any voting

rule f : J n → J , if a strategy profile is efficient, then it is rational.

This result applies to any kind of common preferences. Is it always possible to

find a voting rule which makes informative voting efficient, hence, rational? The

next theorem answers this question.

Theorem 4.2.2 Consider an arbitrary common utility function u : J 2 → R. There

exists no voting rule for which mostly informative voting is efficient.

This theorem states that there is no voting rule which achieves efficient inform-

ation aggregation for every possible mostly informative strategy profile. This result

comes as a surprise when one considers the single-issue setting and multi-issue setting

with no interconnections, where there is always a voting rule for which informative

voting is efficient. This contrast comes from the fact that the notion of informative

voting is not very clear in the current setting, since there is no straightforward way

of adapting informativeness. It is clear what a simple-minded voter should do when

she receives non-conflicting evidence about the state of the world, but what about

the conflicting evidence, p̄q̄? Here, voters with the mostly informative strategy have

no restriction upon receiving type p̄q̄. This leads to the question of whether the

impossibility persists when one considers informativeness differently. Let us now

6Here, by informative voting, we mean informative behaviour – with mostly informative strategy
or informative strategy – in general. This chapter analyses the case with informative strategy and
the case with mostly informative strategy separately.
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consider informative voting. Voters holding informative strategy follow the con-

flicting evidence partly. Does this additional requirement lead to any possibility

for efficient information aggregation? The result is yes, and it is formalized by the

coming theorem. To state the theorem, we first introduce some notation and a

condition.

Given a type profile t = (t1, ..., tn), let tpq = (tpq1, ..., tpqn) be the vector with

entities defined for i = 1, ..., n as tpqi = 1 if ti = pq and tpqi = 0 otherwise.7 Given

a voting profile v, vpq is defined similarly. At this point, it is useful to remark that

for any type profile, there is an efficient decision.

Condition 1: For any t, t′ ∈ T n with tpq = t′pq, there is a decision d ∈ J which is

efficient for both t, t′.

Theorem 4.2.3 Consider an arbitrary common utility function u : J 2 → R. There

exists a voting rule for which informative voting is efficient if and only if Condition

1 holds.

When we require an informative voter to follow the conflicting evidence partly

instead of completely ignoring it, efficient information aggregation is possible when

some condition on the model parameters is satisfied. How does the voting rule

making efficient information aggregation possible look like? The answer depends on

how exactly the utility function is specified. We can say more about this rule only

when we focus on specific kind of preferences.

Having a general impossibility for informative voting with mostly informative

strategy, we focus on informative voting for the rest of the chapter. To see how

strong condition 1 is, one has to narrow focus on specific preferences. We study the

two natural kinds of preferences – simple and consequentialist preferences – in the

following subsections.

4.2.3 Simple preferences

We start by addressing simple preferences. Under simple preferences, correct de-

cisions are preferred to incorrect ones without further sophistication. By narrowing

down the focus on simple preferences, can we say more about the voting rule which

makes informative voting efficient under Condition 1 and obtain a more specific res-

ult than the existential claim in Theorem 4.2.3? For simple preferences, we obtain

the following impossibility.

Theorem 4.2.4 Under simple preferences, there exists no voting rule for which

informative voting is efficient.

7For instance, for the type profiles t = (pq̄, pq, p̄q̄) and t′ = (p̄q, pq, p̄q), tpq = t′pq = (0, 1, 0).
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It turns out that Condition 1 is never satisfied under simple preferences. In

addition to the impossibility of efficient information aggregation with informative

strategy stated in Theorem 4.2.2, efficient information aggregation with informative

strategy is impossible under simple preferences. Does the impossibility persist under

consequentialist preferences? The next subsection addresses this question.

4.2.4 Consequentialist preferences

We now turn to consequentialist preferences. We consider situations where the

decision leads to one of two possible consequences. Such problems are very com-

mon in practice and widely studied in the judgment aggregation literature, where

the two possible consequences are represented by conclusion propositions, c and c̄.

The decision leads to either acceptance of the conclusion proposition or rejection

of it8. Consequence functions which lead all decisions to the same consequence

are degenerate and uninteresting. If the consequence function depends only on the

decision between p and p̄, or only on the decision between q and q̄, then the de-

cision problem reduces to a problem with a single proposition-negation pair which

has already been studied in the literature. Therefore, there is only one interest-

ing consequence function up to isomorphism, and this function has the property

Co(pq) 6= Co(pq̄) = Co(p̄q).

To state our result, we first define two coefficients:

A := πpq̄

(
1− aq̄
aq

)n
+ πp̄q

(
1− ap̄
ap

)n−1 ap̄
1− ap

B := πpq̄

(
1− aq̄
aq

)n−1 aq̄
1− aq

+ πp̄q

(
1− ap̄
ap

)n
Theorem 4.2.5 Under consequentialist preferences, the following statements are

equivalent:

(a) There exists a voting rule for which informative voting is efficient.

(b) A,B > πpq.

(c) pq is the efficient decision only for the type profile t = (pq, ..., pq).

Unlike under simple preferences, efficient information aggregation is possible

under consequentialist preferences, if pq is the efficient decision only when there is

overwhelming evidence for pq. This is satisfied when the prior probability of pq

8Consider the lead example of judgment aggregation: a jury is to decide whether the defendant
has broken the contract (p) or not (p̄) and whether the contract is legally valid (q) or not (q̄). The
defendant is convicted if and only if both propositions are collectively accepted. The consequence
function here is encoded by c↔ (p ∧ q).
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is sufficiently low compared to prior probabilities of pq̄ and p̄q. For instance, if

πpq = πpq̄ = πp̄q = 0.7, ap = aq = ap̄ = aq̄ = 0.6 and n = 3, no voting rule makes

informative voting efficient, whereas if instead πpq = 0.6, such a voting rule exists.

Now comes the main question: how do such rules look like? Let us call the condition

stated at Theorem 4.2.5(b) Condition 2. We start by a simple characterization of

voting rules which make informative voting efficient.

Proposition 4.2.1 Assume consequentialist preferences and Condition 2. A voting

rule f makes informative voting efficient if and only if for every voting profile v ∈
J n, the decision f(v) is pq if v = (pq, ..., pq) and in {pq̄, p̄q} otherwise.

While some of these voting rules making informative voting efficient are anonym-

ous, monotonic and neutral, some of them fail to satisfy any of these properties. The

number of votes for a proposition r in a voting profile v is written nvr . For n = 5,

two examples of anonymous and monotonic rules are given in the figure below:

Figure 4.2.1: Two examples of voting rules given by Proposition 4.2.1 for n = 5

Figure 4.2.1(b) shows a neutral voting rule in addition to being anonymous and

monotonic. This voting rule belongs to a class of voting rules defined by the following

conditions. For each v ∈ J n,

f(v) = pq ⇐⇒ nvp = nvq = n (4.2.3)

f(v) = pq̄ if nvp > nvq (4.2.4)

f(v) = p̄q if nvp < nvq (4.2.5)

f(v) ∈ {pq̄, p̄q} if nvp = nvq < n (4.2.6)

By this class of voting rules defined by (4.2.3-4.2.6), we characterize the class of
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anonymous, monotonic and neutral voting rules making informative voting efficient

under Condition 2.

Theorem 4.2.6 Assume consequentialist preferences and Condition 2. A voting

rule f makes informative voting efficient and is anonymous, monotonic and neutral

if and only if f is defined by (4.2.3)-(4.2.6).

Besides satisfying nice properties, these rules are reasonably practical and nat-

ural. We have now shown the necessary and sufficient conditions for the existence of

a mechanism for efficient information aggregation, and characterized the mechanism

with natural properties. Among the aggregation possibilities, anonymity, monoton-

icity and neutrality can be attained if required. What about independence? The

next section answers this question.

4.3 Consistency and quota rules under consequentialist

preferences

Quota rules are very natural and common among various voting rules. Under quota

rules, separate votes are taken on each proposition using acceptance thresholds.

In the previous section, we have seen that under consequentialist preferences, effi-

cient information aggregation is possible in an anonymous, monotonic and neutral

way when some condition on the model parameters is satisfied. Quota rules are

monotonic, anonymous and independent, but not necessarily neutral.9 This section

examines the possibility of efficient information aggregation with quota rules under

consequentialist preferences. To do so, one has to re-define a voting rule and utility

function. The model described in the previous section applies to this section with

exceptions described below.

Let J ∗ := {pq, pq̄, p̄q, p̄q̄}. For this section, a voting rule is a function f : J n →
J ∗, mapping each voting profile v = (v1, ..., vn) to a decision d ≡ f(v). A voting

rule f is called ‘consistent’ if it never returns p̄q̄.

The consequentialist utility function is now given as u : J ∗ × J → R, map-

ping any decision-state pair (d, s) ∈ J ∗ × J to its utility u(d, s). By assumption,

the decision p̄q̄ never has the correct consequence, hence, Co(p̄q̄) 6= Co(s). The

consequentialist utility function is given by (4.2.2).

A quota rule is given by two thresholds mp,mq ∈ {0, 1, ..., n}, and for each voting

profile it accepts p [q] if and only if at least mp [mq] voters accept it in the profile.

Quota rules are characterized by anonymity, monotonicity and independence. The

remark below follows from Theorem 2(c) in Dietrich and List (2007) and gives the

necessary and sufficient conditions for a quota rule to be consistent under the given

agenda.

9Whenever the acceptance thresholds for propositions are equal, they turn out to be neutral.

67



Chapter 4. Judgment aggregation in search for the truth: the case of
interconnections

Remark 4.3.1 A quota rule is consistent if and only if mp +mq ≤ n+ 1.

The proof of this remark follows from the fact that there can be at most n votes

in total for p̄ and q̄ (since p̄q̄ /∈ J ). It is easy to see that consistency is attained

whenever mp +mq ≤ n. Moreover, if mp +mq = n+ 1, the number of p votes or the

number of q votes exceeds the acceptance threshold, so, the resulting decision is never

p̄q̄. Note that if a voting rule leads to efficient decisions, then it is consistent. So,

as long as efficiency is guaranteed, consistency follows. Among all the rules making

informative voting efficient, is there a quota rule? The theorem below answers this

question.

Theorem 4.3.1 Under consequentialist preferences, there exists no quota rule mak-

ing informative voting efficient.

A consistent quota rule is always available by Remark 4.3.1 regardless of the

model parameters or the utility function chosen. However, there is no possibility for

efficient information aggregation using quota rules.

4.4 Conclusion

We consider a model where a group of voters with common interests wants to form

collective judgments over two propositions which are mutually interconnected. Each

of these propositions is factually true or false, but the truth value is unknown to

voters. Each voter has a type representing evidence about what the true state might

be and this is private information. We study the problem of efficient information

aggregation when propositions are mutually interconnected. The results depend par-

ticularly on how the utility function is specified. It turns out that a voting rule which

makes informative voting efficient does not exist under simple preferences while such

a rule exists under consequentialist preferences if some condition relating the model

parameters and the utility function is satisfied. We want to design a voting rule

which make every possible informative strategy profile efficient. Under simple pref-

erences, it is of course possible to find a voting rule which makes some informative

strategy profile efficient. However, we believe a voting rule which sometimes makes

informative voting efficient is not really interesting.

We leave unanswered whether these results persist when conflicting private in-

formation – p̄q̄ in this case – is not allowed. In that case, we can no longer assume

that a voter’s evidence about one proposition is independent of the evidence about

the other proposition conditional on the truth. For instance, if a voter has p̄ in her

type, she must have q. Informative strategy is then defined as direct revelation of

types, and there is a unique informative strategy profile given a type profile.
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4.5 Appendix: proofs

We begin by some preliminary derivations and then prove the results

4.5.1 Preliminary derivations

The joint probability of a state-types vector (s, t) = (spsq, t1pt1q, ..., tnptnq) ∈ J n+1

is

Pr(s, t) = Pr(s) Pr(t|s) = Pr(s)
∏
i

Pr(ti|s) = Pr(sp) Pr(sq)
∏
i

Pr(tip|sp) Pr(tiq|sq),

where the last two equations follow from independence assumptions.

The probability of the three states in J conditional on the full information t ∈J n
is given as follows, where k := ntp and l := ntq:

Pr(pq|t) =
πpqa

k
p(1− ap)n−kalq(1− aq)n−l

Pr(t)
(4.5.1)

Pr(pq̄|t) =
πpq̄a

k
p(1− ap)n−k(1− aq̄)lan−lq̄

Pr(t)
(4.5.2)

Pr(p̄q|t) =
πp̄q(1− ap̄)kan−kp̄ alq(1− aq)n−l

Pr(t)
. (4.5.3)

4.5.2 Proofs.

Proof of Theorem 4.2.1. Consider any voting rule f : J n → J and any efficient

strategy profile σ. Consider any voter i and type ti ∈ T . To show that σ is rational,

one has to show that i’s vote σi(ti) maximizes her expected utility conditional on

ti. This follows from the fact that voters share common preferences. Since the

resulting decision is efficient, it maximizes the expected utility of each voter. Thus,

σ is rational. �

Proof of Theorem 4.2.2. Consider a voting rule f : J n → J . Suppose for a

contradiction f makes informative voting efficient. Consider the type profile t =

(p̄q̄, ..., p̄q̄), where all voters have the type p̄q̄. Then, the set of all voting profiles

which may result from informative voting is J n. Since informative voting is efficient,

for each v ∈ J n, f(v) is efficient given t. Then, it follows that for all type profiles

in T n, f(v) is efficient. This either means that some decision in J is not efficient for

any type profile which contradicts to non-degeneracy assumption, or all decisions

in J are always efficient for any type profile which contradicts to no efficiency ties
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assumption.10 �

Proof of Theorem 4.2.3. To start with, we introduce some notation. Given a

voting profile v, let Θ(v) denote the set of all type profiles which possibly lead to

v under informative voting. Given a type profile t, let Ω(t) denote the set of all

voting profiles which possibly result from t under informative voting. Consider a

voting rule f : J n → J .

First, let Condition 1 hold. Suppose there is an exogenously given ordering of

judgment sets, and let f be the following voting rule: for all v ∈ J n, f(v) = d ⇐⇒
d is the highest ordered decision among all decisions which are efficient for some

t ∈ Θ(v). Consider any type profile t̂ ∈ T n and suppose informative voting. We

want to show that (*) for each v ∈ Ω(̂t), f(v) is efficient for t̂. Let v ∈ Ω(̂t). One

can show that all type profiles in Θ(v) share the same subvector restricted to pq.

Since Condition 1 holds, there is some decision d which is efficient for all t ∈ Θ(v),

including t̂. It follows from Condition 1 that if any other decision d′ 6= d is efficient

for some t ∈ Θ(v), it is efficient for all t ∈ Θ(v). Then, (*) holds.

Conversely, let f make informative voting efficient. Let t, t′ be two type profiles

in T n with tpq = t′pq. One has to show that (*) there is d ∈ J which is efficient

for both t, t′. By construction, for each v ∈ Ω(t), t′ ∈ Θ(v); and similarly, for each

v′ ∈ Ω(t′), t ∈ Θ(v′). Then, f(v) must be efficient for t′ (as well as t) and f(v′)

must be efficient for t (as well as t′) since informative voting is efficient. So, (*)

holds. �

Proof of Theorem 4.2.4. By Theorem 4.2.2, it is sufficient to show that Condi-

tion 1 never holds under simple preferences. Suppose for a contradiction, it holds.

Consider the two type profiles t = (pq̄, ..., pq̄) and t′ = (p̄q, ..., p̄q). Since tpq = t′pq
and Condition 1 holds, there is a decision which is efficient for both profiles. By

non-degeneracy assumption, pq̄ must be efficient for t since otherwise pq̄ wouldn’t

be efficient for any type profile which contradicts to non-degeneracy assumption.

Similarly, p̄q must be efficient for t′. Hence, pq̄ and p̄q are both efficient given t or

t′, which contradicts to no-efficiency ties assumption. �

Proof of Theorem 4.2.5. Let the statement in (b) be called Condition 2.

(1) We first prove that (c) implies (a) and (b). Assume Condition 2 holds. This

implies that Condition 1 holds. By Theorem 4.2.3, there is a voting rule which

makes informative voting efficient. Let t, t′ be type profiles with one pq̄ and one

p̄q respectively while each of the rest of the types is pq. Without loss of generality,

10For the case where the consequence function is defined in such a way that all three judgment
sets in J lead to the same consequence, the second assumption is not violated. In such situations,
there is no decision making problem since all decisions are equally good for each voter. Such utility
functions are excluded.
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let t = (pq, ..., p̄q) and t′ = (pq, ..., pq̄). By Condition 2, pq̄, p̄q are both efficient for

each of the type profiles. Using (4.5.1) and (4.5.3), we can write the following:

E(u(pq̄, S)|t) > E(u(pq, S)|t) (4.5.4)

⇔πpq̄an−1
p (1− ap)(1− aq̄)n + πp̄q(1− ap̄)n−1ap̄a

n
q > πpqa

n−1
p (1− ap)anq (4.5.5)

⇔πpq̄
(

1− aq̄
aq

)n
+ πp̄q

(
1− ap̄
ap

)n−1( ap̄
1− ap

)
> πpq. (4.5.6)

Similarly,

E(u(pq̄, S)|t′) > E(u(pq, S)|t′) (4.5.7)

⇔πpq̄anp (1− aq̄)n−1aq̄ + πp̄q(1− ap̄)nan−1
q (1− aq) > πpqa

n
pa

n−1
q (1− aq) (4.5.8)

⇔πpq̄
(

1− aq̄
aq

)n−1( aq̄
1− aq

)
+ πp̄q

(
1− ap̄
ap

)n
> πpq. (4.5.9)

So, A,B > πpq.

(2) We now prove that (a) implies (c). Consider a voting rule f : J n → J
and suppose f makes informative voting efficient. By Theorem 4.2.3, Condition 1

holds. Given a type profile t ∈ T n, let Γ(t) denote the set of type profiles which

have the same subvector on pq as in t. Recall that the number of occurrences for a

proposition r in a type profile t is written ntr. Now, take a type profile t̂ ∈ T n with

k times pq where 1 ≤ k < n. The proof proceeds in several steps.

Claim 1: There is a type profile t ∈ Γ(t̂) with ntp = k and ntq = k.

Any type profile with k times pq and n− k times p̄q̄ satisfies this condition and

one of these type profiles is obviously in Γ(t̂). Now, take t̃ ∈ T n with k − 1 times

pq.

Claim 2: There is a type profile t ∈ Γ(t̃) with ntp = k and ntq = k.

One can easily see there is always a type profile with the exact same pq structure

as t̃ and with only one occurrence of pq̄ and only one occurrence of p̄q.

Claim 3: Under consequentialist preferences, for all t, t′ ∈ T n with ntp = nt
′
p and

ntq = nt
′
q , E(u(d, S)|t) = E(u(d, S)|t′) for each d ∈ J .

The claim follows from the expressions (4.5.1)-(4.5.3). By Condition 1, there is

a decision d ∈ J which is efficient for all t ∈ Γ(t̂). Similarly, there is a decision

d ∈ J which is efficient for all t ∈ Γ(t̃). Combining Claim 1, 2 and 3, one obtains

that the same decision d ∈ J is efficient for all t ∈ Γ(t̂) and all t ∈ Γ(t̃). Since this

is true for all k with 1 ≤ k < n, there is a decision d which is efficient for all t ∈
T n \ {(pq, ..., pq)}. By non-degeneracy assumption, pq is efficient for t = (pq, ..., pq).

Hence, this decision must be in {pq̄, p̄q} since otherwise pq would be efficient for all

type profiles which contradicts to non-degeneracy assumption. Since E(u(pq̄, S)|t) =

E(u(p̄q, S)|t) for all t, both pq̄ and p̄q are efficient for all t ∈ T n \ {(pq, ..., pq)}.
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Hence, Condition 2 holds.

(3) We finally prove that (b) implies (c). Let A,B > πpq. To show that Condition

2 holds, we first show the following claim.

Claim 4: The expected utility of pq given a type profile t is an increasing function

of ntp and ntq.

The claim follows from the definition of the utility function and from Pr(S =

pq|t) being an increasing function of ntp and ntq. Let t, t′ ∈ T n be type profiles with

one pq̄ and one p̄q respectively while each of the rest of the types is pq. Without

loss of generality, let t = (pq, ..., p̄q) and t′ = (pq, ..., pq̄). By (4.5.1) and (4.5.3),

one has E(u(pq̄, S)|t) > E(u(pq, S)|t) and E(u(pq̄, S)|t′) > E(u(pq, S)|t′). By the

claim, it follows that E(u(pq̄, S)|t) = E(u(p̄q, S)|t) > E(u(pq, S)|t) for all t ∈
T n \ {(pq, ..., pq)} which means pq̄, p̄q are efficient for each t ∈ T n \ {(pq, ..., pq)}.
Thus, Condition 2 holds. �

Proof of Proposition 4.2.1. Consider a voting rule f : J n → J . Proof if the ‘if’

part is obvious and left to the reader. To show converse, let f make informative vot-

ing efficient. Since Condition 2 holds, for all voting profiles obtained by informative

voting from any t ∈ T n \{(pq, ..., pq)}, f(v) ∈ {pq̄, p̄q}. By non-degeneracy assump-

tion, pq is efficient for t = (pq, ..., pq). By f making informative voting efficient,

f(v) = pq if v = (pq, ..., pq). �

Proof of Theorem 4.2.6. Consider a voting rule f : J n → J . First, assume f

is defined by (4.2.3)-(4.2.6). Clearly, f is anonymous. It follows from Proposition

4.2.1 that informative voting is efficient with f since for all v ∈ J n, f(v) = pq if

and only if nvp = nvq = n; so, if and only if v = (pq, ..., pq). To show monotonicity

of f , take two voting profiles v,v′ ∈ J n such that for all r ∈ f(v), the voters who

vote for r in v also vote for r in v′.

Case 1: f(v) = pq. Then v = (pq, ..., pq). By definition, v′ = v and f(v′) = pq.

Case 2: f(v) = pq̄. The definition of f implies either nvp > nvq or nvp = nvq < n;

and the definition of v′ implies nv
′
p ≥ nvp and nv

′
q ≤ nvq . Suppose the former is true.

Then, nv
′
p > nv

′
q and f(v′) = pq̄. Next, suppose nvp = nvq < n. If v′ 6= v, one has

nv
′
p > nvp or nv

′
q < nvq which means nv

′
p > nv

′
q and f(v′) = pq̄. It is obvious that if

v′ = v, we are done.

Case 3: f(v) = p̄q. One can show that f(v′) = p̄q analogously to Case 2.

It remains to show neutrality of f . Take two voting profiles v,v′ ∈ J n such

that vr = v′r′ for every distinct r, r′ ∈ {p, q} and there is no permutation of voters

(i1, ..., in) with (vi1 , ..., vin) = (v′1, ..., v
′
n). We have to show that (*) f accepts r in v

if and only if f accepts r′ in v′. We distinguish 3 cases:

Case 1: f(v) = pq. It is clear that v′ = v, and f(v′) = pq.

Case 2: f(v) = pq̄. By definition of f , either nvp > nvq or nvp = nvq < n. One can

see that the latter is not possible since then one could find a permutation of voters
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(i1, ..., in) with (vi1 , ..., vin) = (v′1, ..., v
′
n). Suppose the former is true. By definition

of v′, whenever p (q) is accepted in v, q (p) is accepted in v′. This means nv
′
p < nv

′
q

and f(v′) = p̄q. So, f accepts p in v and q in v′, and it accepts q̄ in v and p̄ in v′.

Hence, (*) holds.

Case 3: f(v) = p̄q. One can show that f(v′) = p̄q analogously to Case 2.

Conversely, let f be anonymous, monotonic and neutral, and make informat-

ive voting efficient. We have to show that (*) f is defined by (4.2.3)-(4.2.6). By

Proposition 4.2.1 and informative voting being efficient, f(v) = pq if and only

if v = (pq, ..., pq), equivalently nvp = nvq = n. Now, take a voting profile v ∈
J n \ {(pq, ..., pq)}.

Case 1: nvp > nvq . Suppose for a contradiction, f(v) = p̄q. Let v′ be a voting

profile with nv
′
p = nvq and nv

′
q = nvp . We start by proving the following claim.

Claim: For each combination of k, l ∈ {0, ..., n}, there is only one voting profile

v ∈ J n with nvp = k and nvp = l up to the permutations of votes.

The claim follows from the fact that all votes containing p̄ are p̄q, and similarly,

all votes containing q̄ are pq̄. Hence, subtracting number of p (q) occurrences in

a profile from n gives the exact number of p̄q (pq̄) votes. Then, there is only one

voting profile with nvp times q and nvq times p up to permutations of votes by the

claim. Hence, by neutrality and anonymity, f(v′) = pq̄. However, by monotonicity

of f , f(v′) = p̄q since nv
′
p ≤ nvp and nv

′
q ≥ nvq , a contradiction. Then, f(v) = pq̄ if

nvp > nvq .

Case 2: nvp < nvq . One can show that f(v) = p̄q analogously to Case 1.

Case 3: nvp = nvq < n. By Proposition 4.2.1 and informative voting being

efficient, f(v) ∈ {pq̄, p̄q}.
So, (*) is true. �

Proof of Theorem 4.3.1. Consider a quota rule f : J n → J ∗ with thresholds

mp and mq. Suppose for a contradiction, f makes informative voting efficient.

By Theorem 4.2.5, this means Condition 2 holds. Moreover, f(v) = pq if and

only if v = (pq, ..., pq) by Condition 2 and informative voting being efficient. So,

mp = mq = n. Now, consider any voting profile v which has the following property:

if n is even, there are n
2 times pq̄ and n

2 times p̄q in v, and if n is odd, there are n−1
2

times pq̄ and n+1
2 times p̄q in v. It follows that f(v) = p̄q̄ since n ≥ 2, which is not

efficient for any given type profile. Hence, a contradiction. �
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Chapter 5

Judgment aggregation in search

for the truth: the case of

continuous information

5.1 Introduction

Judgment aggregation problems arise in situations where a group needs to form a

‘yes’ or ‘no’ judgment on different issues, based on individuals’ judgments on these

issues. The ‘epistemic’ approach in judgment aggregation has recently received some

attention. This approach generally aims to track the truth. In the very well-known

court trial problem, the aim of the jury seems to be to find out two independent

facts (whether the defendant has broken the contract and whether the contract is

legally valid). So, the jury’s voting rule should be optimised with respect to the goal

that the resulting group judgments are true.

This chapter takes the epistemic approach in a setting where voters with com-

mon interests and private information face a judgment aggregation problem with

two issues, and asks questions about efficient information aggregation and strategic

voting in a Bayesian voting game setting. If voters had not just common prefer-

ences, but also common information or beliefs, then no disagreement would arise.

We allow for informational asymmetry: each voter has a continuum of types which

represents private information about what the truth might be. Bozbay, Dietrich

and Peters (2011) consider a similar problem where the private information is in

the form of ‘true’ or ‘false’ for each issue. The model considered here departs from

their model by assuming that private information of a voter can’t be summarized

as indicating only truth or falsity. We assume that a voter’s private information

is drawn from a continuous distribution. Duggan and Martinelli (2001) take an

epistemic binary collective choice problem, i.e., a single-issue judgment aggregation
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problem, and they allow voters to receive a continuum of types. They characterize

the equilibrium of the game while leaving open the question of efficient information

aggregation. In this work, we deal with efficient information aggregation and want

to find when voting rules lead to simple-minded and truthful behaviour as well as

efficient outcomes.

By simple-minded and truthful behaviour, one might mean ‘informative beha-

viour’ or ‘sincere behaviour’. Informative behaviour means that voters who receive

types indicating a higher likelihood of truth about an issue judge that the issue is

‘true’ while voters who receive types indicating a lower likelihood of truth about an

issue judge that the issue is ‘not true’. Simple-minded behaviour might alternat-

ively be represented by ‘sincere voting’, which means voting without taking other

voters into consideration. In the classical Condorcet jury theorem framework, it is

generally assumed that informative behaviour and sincere behaviour coincide and

voters vote informatively and sincerely. Austen-Smith and Banks (1996) show that

this assumption is inconsistent with a game-theoretic view of collective behaviour.

Following their track, we give a characterization of all problems where informative

voting and sincere voting coincide. For an extended survey of the two literatures to

which this chapter connects to, please see Section 3.1.1.

This chapter proceeds as follows. Section 5.2 introduces the model. In Sec-

tion 5.3, we characterize the conditions where informative behaviour and sincere

behaviour are equivalent. Section 5.4 focuses on the key question of efficient inform-

ation aggregation, characterizing the problems where informative voting is efficient

with a quota rule – a rule which takes separate votes on each issue using acceptance

thresholds. We conclude by discussing the possible extensions of this work in Section

5.5.

5.2 The Model

We consider a group of voters, labelled i = 1, ..., n, where n ≥ 2. This group

needs a collective judgment on whether some proposition p or its negation p̄ is true,

and whether some other proposition q or its negation q̄ is true. The four possible

judgment sets are {p, q}, {p, q̄}, {p̄, q} and {p̄, q̄}; we abbreviate them by pq, pq̄, p̄q

and p̄q̄, respectively. For instance, pq̄ means accepting p but not q. Each voter

votes for a judgment set in J = {pq, pq̄, p̄q, p̄q̄}. After all voters cast their votes,

a collective decision in J is taken using a voting rule. Formally, a voting rule is

a function f : J n → J , mapping each voting profile v = (v1, ..., vn) to a decision

d ≡ f(v). Among the various voting rules, quota rules stand out as particularly

natural and common. A quota rule is given by two thresholds mp,mq ∈ {1, ..., n},
and for each voting profile it accepts p [q] if and only if at least mp [mq] voters accept

it in the profile.
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Exactly one judgment set in J is ‘correct’, i.e., contains propositions which are

factually true. It is called the state (of the world) and is generically denoted by

s. For instance, the state might be pq̄, so that p and q̄ are true (and p̄ and q are

false). Voters have identical preferences, captured by a common utility function

u : J × J → R which maps any decision-state pair (d, s) to its utility u(d, s). The

utility function is given by

u(d, s) =

{
1 if d = s (correct decision)

0 if d 6= s (incorrect decision).
(5.2.1)

Such preferences are the simplest candidate for truth-tracking preferences. Correct

decisions are preferred to incorrect ones, without further sophistication.1

Each voter has a type, representing private information or evidence.2 A voter’s

type is denoted by t = (tp, tq) ∈ [0, 1]2. When we refer to the type of particular voter

i, we write ti = (tip, tiq). For each r ∈ {p, q}, tir is distributed randomly according to

the state conditional density fr or fr̄ depending on whether r is true or the negation

r̄ is true. For instance, the probability that tp ≤ τ̄ conditional on p being true is

given by the expression
∫ τ̄

0 fp(tp)dtp. By assumption, the prior probability that r

(∈ {p, p̄, q, q̄}) is true is denoted

πr = Pr(r),

and belongs to (0, 1). Note that πr̄ = 1−πr. We write t = (t1, ..., tn) ∈ ([0, 1]2)n for

a vector of voters’ types. We denote by T = (Tp, Tq) the random variable generating

voters’ types and by S = (Sp, Sq) the random variable generating the state s. We

make the following assumptions for each r ∈ {p, q}.

• The state and types relative to p are independent of the state and types relative

to q. 3

• Each type for each proposition is independently drawn given the true state of

the proposition.4

• The state conditional densities fr and fr̄ are piecewise continuous, and

fr(tr), fr̄(tr) > 0 for all tr ∈ [0, 1].

1This kind of preferences is called ‘simple preferences’ in the remaining chapters of this part
where we consider two different kinds of preferences; simple and consequentialist preferences. In
this chapter, we only focus on simple preferences.

2The type could represent information that is not shared with other voters because of a lack of
deliberation or limits of deliberation. More generally, a voter i’s type could represent uncertainty
of other voters about i’s beliefs.

3Formally, Sp, T1p, ..., Tnp are independent of Sq, T1q, ..., Tnq.
4Formally, T1p, ..., Tnp are conditionally independent given Sp and T1q, ..., Tnq are conditionally

independent given Sq.
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• fr̄
fr

is weakly decreasing on [0, 1].5

The two independence assumptions allow us to characterize the joint distribution

of the state and types. The last assumption ensures that types convey information

about the state: the higher values of types are stronger indications of propositions’

being true. This assumption also implies that for each proposition, the distribution

of types conditional on ‘true’ first-order stochastically dominates the distribution of

types conditional on ‘false’.6

Voter i’s belief about proposition p conditional on part of his type tp is repres-

ented by the expression Pr(Sp = p|Tp = tp). We abuse notation for simplicity and

we write Pr(p|tp). This expression is estimated as follows:

Pr(p|tp) = lim
∆x→0

Pr(p|tp < Tp 6 tp + ∆x)

= lim
∆x→0

Pr(p, tp < Tp 6 tp + ∆x)

Pr(tp < Tp 6 tp + ∆x)

= lim
∆x→0

πpfp(tp)∆x

(πpfp(tp) + (1− πp)fp̄(tp))∆x

=
πpfp(tp)

πpfp(tp) + (1− πp)fp̄(tp)
.

Similarly, one can derive the expressions for Pr(q|tq), Pr(p̄|tp) and Pr(q̄|tq). The

expressions for the probability of each state conditional on a given type are in the

Appendix.

After a voter receives his type, he submits a vote in J . A voting strategy is a

function σ : [0, 1]2 → J , mapping each possible type t ∈ [0, 1]2 to that type’s vote

σ(t) = v. A strategy profile is a vector σ = (σ1, ...., σn) of strategies across voters.

We denote the vector of votes by v = (v1, ..., vn).

With a voting rule f and a common utility function u, we now have a well-

defined Bayesian game. For a type profile t, we call a decision d efficient if it has

maximal expected utility conditional on the full information t, i.e., if it maximizes

E(u(d, S)|t). Some common notions of voting behaviour can now be adapted to our

framework:

• A strategy σ of a voter is informative if there exists a cut-point t̂ = (t̂p, t̂q) ∈
(0, 1)2 such that r ∈ σ(t) if tr > t̂r and r̄ ∈ σ(t) if tr < t̂r for all t ∈ [0, 1]2

and r ∈ {p, q}. Hence, an informative voter votes according to the relation

5This assumption is commonly used especially in mechanism design problems and is called
monotone likelihood ratio property (MLRP).

6Formally, for each r ∈ {p, q}, the conditional cumulative distribution function Fr has first-order
stochastic dominance over the conditional cumulative distribution function Fr̄; hence, Fr̄(tr) ≥
Fr(tr) for all tr ∈ [0, 1].
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between her type and the cut-point. 7

• A strategy σ of a voter is sincere if for every type t, the vote σ(t) maximizes

the expected utility conditional on the information t. A sincere voter acts as if

her vote alone determined the decision, which amounts to optimal behaviour

in a hypothetical single-player decision problem.

• A strategy profile σ = (σ1, ..., σn) is rational if each strategy is a best re-

sponse to the other strategies, i.e., if the profile is a Nash equilibrium of the

corresponding Bayesian game.

• A strategy profile σ = (σ1, ..., σn) is efficient if for every type profile t =

(t1, ..., tn) the resulting decision d = f(σ1(t1), ..., σn(tn)) is efficient (i.e., has

maximal expected utility conditional on full information t). Hence, all the

information spread across the group is used efficiently.

Informativeness and sincerity are properties of a single strategy while efficiency

and rationality refer to a whole profile of strategies. An informative strategy profile

is a profile of informative strategies with some cut-point t̂ ∈ (0, 1)2 which is equal

for all voters. To avoid distraction by special cases, we make two assumptions

over the parameters of the model πr, fr and fr̄ where r ∈ {p, q, p̄, q̄}. First, we

exclude the degenerate case in which some decision in J is not efficient for any type

profile whatsoever. Second, we exclude efficiency ties, i.e., we exclude those special

parameter combinations such that some type profile t leads to different efficient

decisions.

5.3 When is informative voting sincere?

In the classical Condorcet Jury Theorem framework, voters are taken to vote sin-

cerely. Moreover, it is generally assumed that informative voting is sincere. In our

framework, the latter is not necessarily true as the following theorem shows:

Theorem 5.3.1 The informative voting strategy with cut-point t̂ = (t̂p, t̂q) ∈ (0, 1)2

is sincere if and only if for each r ∈ {p, q}, πr
1−πr ≥

fr̄(tr)
fr(tr) for all tr ≥ t̂r and

πr
1−πr ≤

fr̄(tr)
fr(tr) for all tr < t̂r.

An immediate corollary of the theorem is as follows:

Corollary 5.3.1 There exists an informative and sincere strategy if and only if

there is t = (tp, tq) ∈ (0, 1)2 satisfying πr
1−πr ≥

fr̄(tr)
fr(tr) for all tr ≥ t̂r and πr

1−πr ≤
fr̄(tr)
fr(tr)

for all tr < t̂r, r ∈ {p, q}.
7We exclude the uninteresting cases of tr ∈ {0, 1} since then an informative voter would always

accept or always reject the related proposition regardless of the type she received.
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The following remark follows from the above corollary and fr̄
fr

being a decreasing

function.

Remark 5.3.1 There exists an informative and sincere strategy if and only if for

each r ∈ {p, q}, πr
1−πr ∈ (fr̄(0)

fr(0) ,
fr̄(1)
fr(1)).

Note that if fr̄fr was assumed to be strictly decreasing for each r ∈ {p, q}, then the

informative and sincere strategy would be unique. Under our weaker assumption,

there may be an interval of cut-points making the associated informative strategy

sincere.

5.4 When is informative voting efficient?

We now turn to efficiency of informative voting. Our objective is to find out whether

a voting rule which encourages informative voting behaviour and leads to efficient

decisions exists. The former is reached if informative voting occurs in equilibrium;

hence, if it is rational. By the following remark, our objective reduces to finding

whether there are voting rules which make informative voting efficient.8

Remark 5.4.1 For any voting rule, if a strategy profile is efficient, then it is ra-

tional.

If voters had private information in the form of ‘true’ or ‘false’ for each proposition

(so, in the form of an element of J ), then an informative strategy would be defined

as direct revelation of the type. Under this information structure, there is always a

quota rule which makes informative voting efficient (Bozbay, Dietrich, Peters 2011).

Is efficient information aggregation possible with quota rules when voters’ private

information reflects a rich spectrum of possibilities instead of only indicating truth

or not? The following theorem answers this question.

Theorem 5.4.1 A quota rule with thresholds mp,mq makes informative voting with

cut-point t̂ efficient if and only if the following condition is satisfied for all t ∈
([0, 1]2)n:

|{i : tir ≥ t̂r}| ≥ mr ⇔
πr

1− πr
>

∏
i∈{1,...,n}

fr̄(tir)

fr(tir)
for each r ∈ {p, q}. (5.4.1)

Efficient information aggregation is possible under some condition on the model

parameters. We now present two examples, starting with the one where (5.4.1) is

satisfied and turning to another where (5.4.1) does not hold.

8By saying ‘informative voting’ without referring to a particular voter, we mean informative
voting by all voters with a common cut-point.
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Example 1:9 Let n = 3, πp = πq = 0.6. Given 0.5 < α < 1, fr and fr̄ are defined

as follows for each r ∈ {p, q} and tr ∈ [0, 1].

fr(tr) =

{
1− α if 0 ≤ tr ≤ 0.5

α if 0.5 < tr ≤ 1

and

fr̄(tr) =

{
α if 0 ≤ tr ≤ 0.5

1− α if 0.5 < tr ≤ 1

Then, (5.4.1) is satisfied (only) for mp = mq = 2 and t̂ = (0.5, 0.5) under this

parametrization. Voters who receive tr ∈ [0, 0.5] accept r while voters who receive

tr ∈ (0.5, 1] reject r. This is of course a special case. In the model where voters

receive private information in the form of ‘true’ or ‘false’ for each proposition, this

means that whenever probability of r being true conditional on receiving evidence

that ‘r is true’ is above 0.5, one accepts r. Here, a continuum of types replaces each

of the binary types, i.e., each of ‘true’ or ‘false’.

Example 2: We only show for r = p that (5.4.1) does not hold. Let n = 3,

πp = 0.6, fp(tp) = 2tp and fp̄(tp) = 1 for each tp ∈ [0, 1]. We consider the following

three type profiles:

• t1 = ((0.5, t11q), (0.4, t
1
2q), (0.4, t

1
3q)),

• t2 = ((0.5, t21q), (0.6, t
2
2q), (0.4, t

2
3q)),

• t3 = ((0.6, t31q), (0.6, t
3
2q), (0.2, t

3
3q)).

For t1, we have
πp

1−πp <
∏
i∈{1,...,n}

fp̄(t1ip)

fp(t1ip)
. Suppose there exist mp, t̂p such that

|{i : t1ip ≥ t̂p}| < mp. Now, consider t2. Since
πp

1−πp >
∏
i∈{1,...,n}

fp̄(t2ip)

fp(t2ip)
, for (5.4.1)

to hold, we must have |{i : t2ip ≥ t̂p}| ≥ mp for t2. This implies that 0.6 ≥ t̂p. Then,

for t3, we must have |{i : t3ip ≥ t̂p}| ≥ mp. However,
πp

1−πp <
∏
i∈{1,...,n}

fp̄(t3ip)

fp(t3ip)
.

5.5 Conclusion

We consider a model where a group of voters with common interests wants to make

collective decision over two propositions each of which is factually true or false.

Different from the model of Bozbay, Dietrich, Peters (2011) where each voter’s type

either takes the form of ‘true’ or ‘false’ for each proposition, we assume that voters’

types are distributed from a state-dependent continuous distribution allowing for a

9This example is introduced for the single issue case by Duggan and Martinelli (2011). We
hereby adapt it to our multi-issue problem.
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more realistic model. In contrast to their results (where informative voting is always

and only efficient with quota rules), efficient information aggregation with a quota

rule is possible only under a strong condition in this work.

An interesting extension would be to consider a larger class of voting rules and

analyse the possibilities of efficient information aggregation within this class. Fix-

ing the mechanism and characterizing the equilibrium of the game would be another

interesting extension. The multi-issue problem provides possibility for different pref-

erence specifications. Assuming that collective decisions have consequences, one can

define ‘consequentialist preferences’ (see Bozbay, Dietrich and Peters [2011]) as giv-

ing some (positive) utility if and only if the consequence of the decision matches

the consequence of the state. In the court trial example, suppose the defendant is

convicted if and only if both issues are collectively accepted by the jury. Defining the

utility function as a mapping u : J ×J → R such that u(d, s) = 1 if the consequence

of the decision is the same as the consequence of the state and u(d, s) = 0 other-

wise, one question that immediately arises is whether these results persist under

consequentialist preferences.

5.6 Appendix: proofs

5.6.1 Preliminary derivations

A voter’s probability of a state s ∈ J conditional on her type t ∈ [0, 1]2 is given by

the following expressions.

Pr(S = pq|T = t) =
πpπqfp(tp)fq(tq)

(πpfp(tp) + πp̄fp̄(tp))(πqfq(tq) + πq̄fq̄(tq))
(5.6.1)

Pr(S = pq̄|T = t) =
πpπq̄fp(tp)fq̄(tq)

(πpfp(tp) + πp̄fp̄(tp))(πqfq(tq) + πq̄fq̄(tq))
(5.6.2)

Pr(S = p̄q|T = t) =
πp̄πqfp̄(tp)fq(tq)

(πpfp(tp) + πp̄fp̄(tp))(πqfq(tq) + πq̄fq̄(tq))
(5.6.3)

Pr(S = p̄q̄|T = t) =
πp̄πq̄fp̄(tp)fq̄(tq)

(πpfp(tp) + πp̄fp̄(tp))(πqfq(tq) + πq̄fq̄(tq))
(5.6.4)

The probability of the four states in J conditional on the full information t ∈
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([0, 1]2)n is given as follows:

Pr(pq|t) =
πpπq

∏
i∈{1,...,n} fp(tip)fq(tiq)

Pr(t)
(5.6.5)

Pr(pq̄|t) =
πpπq̄

∏
i∈{1,...,n} fp(tip)fq̄(tiq)

Pr(t)
(5.6.6)

Pr(p̄q|t) =
πp̄πq

∏
i∈{1,...,n} fp̄(tip)fq(tiq)

Pr(t)
(5.6.7)

Pr(p̄q̄|t) =
πp̄πq̄

∏
i∈{1,...,n} fp̄(tip)fq̄(tiq)

Pr(t)
. (5.6.8)

5.6.2 Proofs

Proof of Theorem 5.3.1. Consider a type t = (tp, tq) ∈ [0, 1]2 and the informative

strategy σ with cut-point t̂ ∈ (0, 1)2. We refer to the following fact throughout the

proof.

Fact 1: E(u(d, S)|t) = Pr(d|t) for each d ∈ J .

Suppose σ is sincere. We want to show that (∗) for each r ∈ {p, q}, πr
1−πr ≥

fr̄(tr)
fr(tr)

for all tr ≥ t̂r and πr
1−πr ≤

fr̄(tr)
fr(tr) for all tr < t̂r. Let tr ≥ t̂r for each r ∈ {p, q}.10

Then, σ(t) = pq. Since σ is sincere, E(u(d, S)|t) is maximized if d = pq. Using

(5.6.1)11, (5.6.2) and Fact 1, we write:

E(u(pq, S)|t) ≥ E(u(pq̄, S)|t)
⇔πpπqfp(tp)fq(tq) ≥ πp(1− πq)fp(tp)fq̄(tq)

⇔ πq
1− πq

≥ fq̄(tq)

fq(tq)
.

Similarly, using (5.6.1), (5.6.3) and Fact 1,

E(u(pq, S)|t) ≥ E(u(p̄q, S)|t)
⇔πpπqfp(tp)fq(tq) ≥ (1− πp)πqfp(tp)fq̄(tq)

⇔ πp
1− πp

≥ fp̄(tp)

fp(tp)
.

Next, let tr < t̂r for each r ∈ {p, q}. So, σ(t) = p̄q̄. Since σ is sincere, E(u(p̄q̄, S)|t)
is maximal. Then, E(u(p̄q̄, S)|t) ≥ E(u(pq̄, S)|t), which leads to

πp
1−πp ≤

fp̄(tp)
fp(tp) by

(5.6.2) and (5.6.4). Similarly, from E(u(p̄q̄, S)|t) ≥ E(u(p̄q, S)|t), we have
πq

1−πq ≤
fq̄(tq)
fq(tq) by (5.6.4) and (5.6.3). Thus, (∗) is true.

10Note that Pr(Tr = t̂r) is a 0-probability event.
11See the Appendix for this expression and other expressions referred throughout the proof.
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Conversely, suppose for each r ∈ {p, q}, πr
1−πr ≥

fr̄(tr)
fr(tr) for all tr ≥ t̂r and πr

1−πr ≤
fr̄(tr)
fr(tr) for all tr < t̂r. Let σ(t) = v. We want to show that σ is sincere, hence,

E(u(d, S)|t) is maximized at d = v. Let v = pq. This means tr ≥ t̂r for each

r ∈ {p, q}. Then, πr
1−πr ≥

fr̄(tr)
fr(tr) for each r ∈ {p, q}. By (5.6.1), (5.6.2), (5.6.3) and

(5.6.4), E(u(pq, S)|t) is maximal. One can similarly show for the remaining cases

(v ∈ {pq̄, p̄q, p̄q̄}) that E(u(d, S)|t) is maximized at d = v. Thus, σ is sincere. �
Proof of Theorem 5.4.1. We start the proof by introducing the following lemma.

Lemma 5.6.1 For all type profiles t = (t1, ..., tn) ∈ ([0, 1]2)n, all r ∈ {p, q} and all

decisions d, d′ ∈ J such that d but not d′ contains r and d and d′ share the other

proposition or its negation,

E(u(d, S)|t) > E(u(d′, S)|t)⇔ πr
1− πr

>
∏

i∈{1,...,n}

fr̄(tir)

fr(tir)
. (5.6.9)

Proof of Lemma. We first prove the equivalence for r = p, d = pq and d′ = p̄q. Since

E(u(d, S)|t) = Pr(d|t) for each d ∈ J , E(u(pq, S)|t) > E(u(p̄q, S)|t) ⇔ Pr(pq|t) >
Pr(p̄q|t). By (5.6.5) and (5.6.7), we can write

πpπq
∏

i∈{1,...,n}

fp(tip)fq(tiq) > (1− πp)πq
∏

i∈{1,...,n}

fp̄(tip)fq(tiq).

Simplifying and rearranging, we obtain

πp
1− πp

>
∏

i∈{1,...,n}

fp̄(tip)

fp(tip)
.

Hence, (5.6.9) holds for r = p, d = pq and d′ = p̄q. Next, suppose r = p, d = pq̄ and

d′ = p̄q̄. By (5.6.6) and (5.6.8), this gives

E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t)

⇔πpπq
∏

i∈{1,...,n}

fp(tip)fq̄(tiq) > (1− πp)(1− πq)
∏

i∈{1,...,n}

fp̄(tip)fq̄(tiq)

⇔ πp
1− πp

>
∏

i∈{1,...,n}

fp̄(tip)

fp(tip)
.

The proof for the remaining two cases is analogous. �
To prove the theorem, suppose informative voting with some cut-point t̂ ∈ (0, 1)2

is efficient. Consider a quota rule f with thresholds mp,mq. We take any v ∈ J
and consider the following four cases.

Case 1: f(v) = pq. This means for the type profile t which leads to v under
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informative voting, (∗) |i : tir ≥ t̂r| ≥ mr for each r ∈ {p, q}. Since informative

voting is efficient, pq is efficient given any type profile satisfying (∗). By Lemma

5.6.1, we have πr
1−πr >

∏
i∈{1,...,n}

fr̄(tir)
fr(tir) for each r ∈ {p, q}, which holds for all t

satisfying (∗). (We use > rather than = because of the no efficiency ties assumption.)

Case 2: f(v) = pq̄. This means for the type profile t which leads to v under

informative voting, (∗∗) |i : tip ≥ t̂p| ≥ mp and |i : tiq ≥ t̂q| < mq. Since informative

voting is efficient, pq̄ is efficient given any type profile satisfying (∗∗). By Lemma

5.6.1, we have
πp

1−πp >
∏
i∈{1,...,n}

fp̄(tip)
fp(tip) and

πq
1−πq <

∏
i∈{1,...,n}

fq̄(tiq)
fq(tiq) which is true

for all t with (∗∗).
Case 3: f(v) = p̄q. This case is analogous to Case 2.

Case 4: f(v) = p̄q̄. Then, for all t which leads to v under informative voting,

(∗ ∗ ∗) |i : tir ≥ t̂r| < mr for each r ∈ {p, q}. By efficiency of informative voting,

p̄q̄ is efficient given any type profile satisfying (∗ ∗ ∗). By Lemma 5.6.1, πr
1−πr <∏

i∈{1,...,n}
fr̄(tir)
fr(tir) for each r ∈ {p, q}.

Conversely, let (5.4.1) hold for some mp,mq ∈ {1, ..., n} and some t̂ ∈ (0, 1)2.

Consider the quota rule f with thresholds mp,mq and a given type profile t ∈
([0, 1]2)n. Supposing informative voting with cut-point t̂ ∈ (0, 1)2, let the resulting

voting profile be v. We want to show that f(v) is efficient for t. We consider four

cases:

Case 1: |i : tir ≥ t̂r| ≥ mr for each r ∈ {p, q}. Then, f(v) = pq. Since

(5.4.1) holds, πr
1−πr >

∏
i∈{1,...,n}

fr̄(tir)
fr(tir) for each r which by Lemma 5.6.1 implies

E(u(pq, S)|t) > E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t) and E(u(pq, S)|t) > E(u(p̄q, S)|t) >
E(u(p̄q̄, S)|t). So, pq is efficient given t.

Case 2: |{i : tip ≥ t̂p}| ≥ mp and |i : tiq ≥ t̂q| < mq. Then, f(v) = pq̄. Since

(5.4.1) holds,
πp

1−πp >
∏
i∈{1,...,n}

fp̄(tip)
fp(tip) and

πq
1−πq <

∏
i∈{1,...,n}

fq̄(tiq)
fq(tiq) . By Lemma

5.6.1, E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t), E(u(pq̄, S)|t) > E(u(pq, S)|t) > E(u(p̄q, S)|t).
So, pq̄ is efficient given t.

Case 3: |{i : tip ≥ t̂p}| < mp and |{i : tiq ≥ t̂q}| ≥ mq. This case is analogous to

case 2.

Case 4: |{i : tir ≥ t̂r}| < mr for each r ∈ {p, q}. Then, f(v) = p̄q̄. Since

(5.4.1) holds, πr
1−πr <

∏
i∈{1,...,n}

fr̄(tir)
fr(tir) for each r which by Lemma 5.6.1 implies that

E(u(p̄q̄, S)|t) is maximal. Then, p̄q̄ is efficient for t. �
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Samenvatting

Dit proefschrift is een verzameling van artikelen op twee verschillende onderzoeksge-

bieden in het veld van de economische theorie, namelijk onderhandelen en oordeel-

aggregatie.

Het eerste gedeelte van het proefschrift behandelt onderhandelingsproblemen.

In het klassieke twee-persoons onderhandelingsprobleem van Nash (1950) proberen

twee spelers tot een overeenkomst te komen over hoe een bepaald goed te verdelen,

waarbij elke speler eenzijdig de onenigheidsuitkomst kan afdwingen als onderhan-

delingen mislukken. Navolgend op Vartiainen (2007) kijken we naar onderhande-

lingsproblemen waarbij geen exogene onenigheidsuitkomst bekend is. Een onder-

handelingsuitkomst kent een tweetal uitkomsten toe aan zo’n probleem, namelijk

een compromisuitkomst en een onenigheidsuitkomst. De onenigheidsuitkomst kan

functioneren als een spelers’ mentale referentiepunt voor de compromisuitkomst,

maar andere interpretaties zijn ook mogelijk. Onderhandelingstheorie met endogene

onenigheid maakt het mogelijk om bestaande vormen van de Alternatieve Onenig-

heids Oplossing te bestuderen; een methode die vaak in de Angelsaksische algemene

rechtssystemen wordt gebruikt om dure en langdurige rechtszaken te vermijden door

vooraf een compromis te sluiten. In dit raamwerk bestuderen we de klassieke Kalai-

Smorodinsky onderhandelingsoplossing en stellen we een uitbreiding voor. We iden-

tificeren het (uitgebreide) domein waarop de oplossing single-waarde is. We pre-

senteren twee axiomatische karakteristieken op subverzamelingen van dit domein.

De eerste karakteristiek is gebaseerd op een axioma genaamd Onafhankelijkheid van

Non-Utopie Informatie (INU). INU is een sterke voorwaarde en het dwingt de onder-

handelingsoplossing in sommige gevallen tot het negeren van non-utopie informatie.

Onze tweede karakteristiek vervangt INU door drie andere axiomas, waarvan elk

axioma een tegenhanger heeft in de klassieke onderhandelingstheorie.

Het tweede gedeelte van dit proefschrift behandelt oordeelaggregatieproblemen.

We analyseren oordeelaggregatie vanuit het waarheid-opsporings en strategisch-

kiezen perspectief. We modelleren de privé informatie van kiezers en bestuderen

efficiënte informatie aggregatie en strategisch kiezen in een Bayesiaanse keuzespel

omgeving. Dit perspectief is nieuw op het gebied van oordeelaggregatie theorie,

maar bekend in de literatuur op het gebied van kiezen tussen twee alternatieven,
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waarbij de onenigheid tussen kiezers veelal voortkomt uit informatieconflicten en

niet door verschillende belangen. We analyseren de resulteerde strategische drijfve-

ren en bepalen welke kiesregels leiden tot collectieve oordelen die effectief alle privé

informatie gebruiken, aangenomen dat de kiezers een gezamenlijke preferentie heb-

ben voor werkelijke collectieve oordelen. Hoewel we een gezamenlijk doel hebben in

alle hoofdstukken van deel II, analyseren we een verschillend kader in elk hoofdstuk.

In hoofdstuk 3 beginnen we met het aannemen van twee onafhankelijke kwesties.

Het blijkt dat men in de meeste, maar niet alle, situaties een ‘quota regel’ dient te

gebruiken, welke voor elke kwestie beslist door middel van of het aantal ‘ja’-keuzes

bij de specifieke kwestie een bepaald quota overschrijdt. De details hangen af van

de specifieke soort waarheid-opsporings preferenties.

In hoofdstuk 4 analyseren we het geval waarin de twee kwesties op de agenda

logisch zijn verbonden. Een kiezers privé informatie kan inconsistent zijn, en daarom

niet doorslaggevend in dit raamwerk. We karakteriseren de (zeldzame) situaties

waarin kiesregels bestaan welke leiden tot collectieve oordelen die efficiënt gebruik

maken van alle privé informatie, en de omgeving van deze regels.

In hoofdstuk 5 gaan we terug naar het geval waar de twee kwesties op de agenda

onafhankelijk zijn. Als innovatie nemen we aan dat een kiezers’ privé informatie

betreffende een voorstel continu is in plaats van binair. Dit keer analyseren we de

mogelijkheid van efficiënte informatie aggregatie met quota regels, en we concluderen

dat dit niet altijd mogelijk is. We karakteriseren de situaties waarin dit mogelijk is

volledig.
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