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Zusammenfassung

Die Arbeit beschäftigt sich mit einer multivariaten Komplexitätsanalyse kombinato-
rischer Probleme im Wahlkontext. Wahlen beschreiben hierbei den Prozess einer ge-
meinsamen Entscheidungsfindung mehrerer Parteien. Formal betrachtet besteht eine
Wahl aus einer Multimenge von Stimmabgaben über einer Menge von Kandidaten
(oder Alternativen). In dem üblichen Szenario liegen die Stimmabgaben hierbei als
Präferenzlisten vor, das heißt als lineare Ordnung der Kandidaten. Neben der offen-
sichtlichen Anwendung bei politischen Wahlen treten informatikrelevante

”
Wahlpro-

bleme“ beispielweise in der Bioinformatik, im Kontext von Datenbanken und Such-
maschinen im Internet auf.

Die auftretenden Probleme reichen hierbei von der Berechnung eines Gewinners
anhand eines bestimmten Wahlverfahrens über strategisches Wählen bis hin zur Be-
einflussung des Wahlausgangs durch externe Agenten. Hinzu kommen verschiedene
Szenarien basierend auf unterschiedlicher Verfügbarkeit von Information. Viele die-
ser Probleme sind NP-hart. Wir untersuchen den Ansatz einer multivariaten Kom-
plexitätsanalyse mit besonderem Schwerpunkt auf Parametrisierter Komplexität als
möglichen Ausweg. Eine parametrisierte Komplexitätsanalyse basiert auf einer zwei-
dimensionalen Sichtweise. Zusätzlich zu der Eingabegröße betrachtet man einen Para-
meter, beispielsweise die Lösungsgröße oder die Anzahl der Kandidaten. Ein Problem
ist

”
fixed-parameter tractable“, wenn es einen Algorithmus gibt, dessen nichtpolyno-

mieller Anteil der Laufzeit nur von einer Funktion des Parameters abhängt. Wenn der
betrachtete Parameter klein gemessen an der Eingabegröße ist, kann dies zu effizien-
ten Algorithmen führen. Im Wahlkontext gibt es beispielsweise Situationen mit vielen
Wählern aber nur wenigen Kandidaten, z.B. politische Wahlen. In solchen Fällen kann
die Beschränkung der inhärenten kombinatorischen Explosion von NP-harten Proble-
men auf eine Funktion, die nur von der Anzahl der Kandidaten abhängt, zu effizienten
Algorithmen führen. Eine multivariate Analyse erweitert das Konzept der parametri-
sierten Komplexität, so dass mehrere Parameter auf einmal untersucht werden.

Obwohl die betrachteten Probleme meist eine Vielzahl von Parametrisierungen zu-
lassen, die sinnvolle Szenarien abdecken, gibt es bisher nur sehr wenige Studien in diese
Richtung. Das Ziel dieser Arbeit ist daher, die Untersuchung der multivariaten und
insbesondere der parametrisierten Komplexität für wichtige Wahlprobleme voranzu-
treiben. Wir betrachten drei Arten von Problemen, die zu einer Einteilung der Arbeit
in drei Teile führen:
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• Die Berechnung eines Gewinners unter vollständiger Information.

• Die Berechnung eines möglichen Gewinners ausgehend von unvollständiger In-
formation.

• Die Beeinflussung eines Wahlausgangs durch einen externen Agenten mittels
Hinzufügens oder Löschens von Kandidaten.

Die einzelnen Ergebnisse werden im Folgenden zusammengefasst.

Kapitel 1 und 2 führen in die Thematik von algorithmischen Wahlproblemen ein.
Kapitel 1 enthält eine kurze Zusammenfassung der Ergebnisse und führt relevante No-
tation und Konzepte ein. Kapitel 2 gibt einen Überblick über für die Arbeit wesent-
lichen Konzepte aus dem Bereich der Wahlforschung. Im Anschluss werden bisherige
Arbeiten der theoretischen Informatik und künstlichen Intelligenz, die sich mit Wahl-
systemen beschäftigen, diskutiert. Hierbei wird besonderer Wert auf die Darstellung
der bisher bekannten Ergebnisse im Bereich der parametrisierten Komplexität gelegt.

Teil 1 (Kapitel 3,4,5 und 6) Für einige Wahlsysteme ist es bereits NP-hart einen
Gewinner zu berechnen. In diesem Teil der Arbeit untersuchen wir die Parametrisierte
Komplexität bezüglich drei solcher Wahlsysteme. Unser Hauptaugenmerk liegt hier-
bei auf dem Rank Aggregation oder Kemeny Score Problem. Eine prominente
Anwendung ergibt sich beispielweise im Kontext von Metasuchmaschinen, wobei Ein-
gabelisten von verschiedenen Suchmaschinen zusammenfasst werden müssen. Formal
kann man das zugehörige Problem wie folgt definieren. Gegeben ist eine Multimenge
von Präferenzlisten und diese sollen zu einer Konsensliste zusammengefasst werden,
so dass die Summe der Abstände der Konsensliste zu den einzelnen Eingabelisten mi-
nimiert wird. Der Abstand bezeichnet hierbei die Anzahl der Inversionen, dass heißt
die Anzahl der unterschiedlich angeordneten Kandidatenpaare.

In Kapitel 3 untersuchen wir die parametrisierte Komplexität von Rank Aggre-
gation bezüglich verschiedener Parametrisierungen. Insbesondere identifizieren wir
hierbei Parameter, die strukturelle Eigenschaften messen, zum Beispiel den

”
durch-

schnittlichen Abstand der Eingabelisten“ da oder den
”
Positionsbereich in dem ein

Kandidat auftritt“. Ein kleiner durchschnittlicher Abstand scheint in Anwendungen
plausibel in denen man davon ausgehen kann, dass es eine

”
beste“ Konsensliste gibt,

die einzelnen Wähler diese aber nur verrauscht wiedergeben, wie in dem obigen Bei-
spiel die Suchmaschinen. Unsere Ergebnisse beinhalten mehrere dynamische Program-
mieralgorithmen, die

”
fixed-parameter tractability“ bezüglich der Parameter

”
Anzahl

Kandidaten“, da und
”
maximaler Positionsbereich eines Kandidaten“ zeigen.

In Kapitel 4 erweitern wir die algorithmischen Ergebnisse aus dem vorherigen Ka-
pitel indem wir Datenreduktionsregeln angeben, die in Polynomzeit ausführbar sind.
Zur Analyse benutzen wir die neueingeführte Analysetechnik des

”
Partiellen Problem-

kerns“, die zu beweisbaren
”
fixed-parameter tractability“-Resultaten führt. Ein we-

sentlicher Punkt ist dabei die Einführung eines neuen Parameters, der die Anzahl der

”
Konfliktpaare“ der Kandidatenpaare bezüglich verschiedener Mehrheiten misst.

Kapitel 5 beschreibt eine experimentelle Evaluierung der Datenreduktionsregeln
sowie einiger Algorithmen aus Kapitel 3 anhand von Daten aus Sportwettkämpfen und
Suchmaschinen. Hierbei zeigen wir, dass die Datenreduktionsregeln das Berechnen von
Konsenslisten für Instanzen erlaubt, die vorher nicht lösbar waren.
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Kapitel 6 beschäftigt sich mit der Gewinnerbestimmung für zwei Wahlsysteme, die
von Dodgson und Young eingeführt wurden. In beiden dieser Wahlsysteme beschreibt
die Punktzahl eines Kandidaten die Anzahl der

”
Operationen“, die nötig sind, um

diesen zu einem Condorcet-Gewinner zu machen, das heißt zu einem Kandidaten, der
alle anderen im direkten paarweisen Vergleich schlägt. Die Operation für Dodgson
ist das Vertauschen benachbarter Kandidaten in einer Stimmabgabe und bei Young
das Löschen von Stimmabgaben. Unser Hauptergebnis ist, dass die Berechnung der
Punktzahl eines Kandidaten bezüglich der Anzahl der Operationen für Dodgson

”
fixed-

parameter tractable“ ist, hingegen das analoge Problem für Young W[2]-vollständig
ist.

Teil 2: Berechnung eines möglichen Gewinners (Kapitel 7,8,9 und 10) In dem
Standardmodell einer Wahl geben die Wähler ihre Stimmabgaben als lineare Ordnung
über alle Kandidaten ab. In vielen Situation scheint dies unrealistisch zu sein oder
man möchte schon etwas über den möglichen Ausgang einer Wahl erfahren, bevor die
gesamte Information vorliegt. Dies führt direkt zu dem Possible Winner Problem,
das fragt, ob eine vorliegenden Multimenge partieller Ordnungen zu einer Menge von
linearen Ordnungen erweitert werden kann, so dass ein ausgewiesener Kandidat ge-
winnt. In diesem Teil der Arbeit betrachten wir das Possible Winner Problem für
eine Menge von Wahlsystemen, in denen jeder Kandidat Punkte abhängig von seiner
Position in den Stimmabgaben bekommt. Beispiele für solche Systeme sind das einfa-
che Mehrheitswahlrecht (ein Kandidat bekommt einen Punkt für jede Stimmabgabe,
in der er vorne steht), sowie Borda, in dem für m Kandidaten, der erste Kandidat
einer Liste m Punkte, der zweite m − 1 Punkte, usw. bekommt.

In Kapitel 7 betrachten wir die Schwierigkeit des Possible Winner Problems
abhängig von dem betrachteten punktebasiertem Wahlsystem. Auch unter Ausnut-
zung einiger Ergebnisse aus der Literatur geben wir eine komplette Dichotomie an:
Das Possible Winner Problem kann für einfache Mehrheitswahlen und sogenann-
te Vetowahlen in Polynomzeit gelöst werden und ist NP-vollständig für alle anderen
Fälle.

Kapitel 8 beschäftigt sich mit einer parametrisierten Komplexitätsanalyse als mög-
lichen Ausweg aus der im vorherigen Kapitel gezeigten NP-Vollständigkeit. Neben der
Betrachtung von Parametern, die den Grad der Unvollständigkeit einer Eingabeinstanz
messen zeigen wir, dass das Possible Winner Problem fixed-parameter tractable
bezüglich der Anzahl der Kandidaten ist. Außerdem zeigen wir für Borda, sowie für
k-Approval (die besten k Kandidaten einer Stimmabgabe bekommen einen Punkt),
dass das Possible Winner Problem schon für eine konstante Anzahl von Wählern
NP-vollständig ist.

Kapitel 9 zeigt fixed-parameter tractability bezüglich zweier
”
kombinierter“ Para-

meter für Possible Winner unter dem k-Approval System. Die Resultate umfassen
die Entwicklung von Problemkernen sowie einen Beweis der Nichtexistenz eines Pro-
blemkerns polynomieller Größe (unter einigen komplexitätstheoretischen Annahmen).

Kapitel 10 schließt Teil 2 ab und beinhaltet einige Fragestellungen für zukünftige
Arbeiten.

Teil 3: Wahlkontrolle (Kapitel 11) Der letzte und kürzeste Teil dieser Arbeit
beschäftigt sich mit der Beeinflussung des Wahlausgangs durch externe Agenten. Wir
betrachten das Problem, ob ein ausgewiesener Kandidat durch das Löschen oder Hin-
zufügen von anderen Kandidaten zu einem Gewinner gemacht werden kann, oder ob
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verhindert werden kann, dass dieser gewinnt. Wir erweitern die bisherigen Untersu-
chungen für dieses Problem indem wir die parametrisierte Komplexität für die Fälle
untersuchen, dass nur eine begrenzte Anzahl von Kandidaten gelöscht bzw. hinzu-
gefügt werden dürfen.

Kapitel 12 umfasst eine kurze Zusammenfassung der Ergebnisse dieser Arbeit sowie
mögliche Fragestellungen für weitere Forschungsthemen im Bereich der multivariaten
Komplexitätsanalyse von Wahlproblemen.
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Part I: Winner Determination. Part I of the thesis is concerned with the de-
termination of a winner for the three voting systems due to Kemeny (Chapters 3, 4,
and 5), Dodgson, and Young (Chapter 6).

A first systematic analysis as described in Chapter 3 has been obtained in coop-
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eration with Jiong Guo, Michael R. Fellows, Rolf Niedermeier and Frances A. Rosa-
mond. Some of the results were obtained in discussions with all collaborators. My
contributions can be summarized as follows. I came up with a first fixed-parameter
algorithm with respect to the “maximum KT-distance dmax between two input votes”
as published in the conference paper [20], which appeared in the proceedings of the
4th International Conference on Algorithmic Aspects in Information and Management
(AAIM’08). The corresponding dynamic programming algorithm had a running time
of O∗(dmax!). This result was further improved by Jiong Guo and me as follows.
Jiong provided an important observation that made the dynamic programming ap-
plicable to the “stronger” parameter “average KT-distance” da and, based on this, I
provided a refined dynamic programming procedure improving the exponential part
of the running time from O∗(da!) to O∗(16da). In addition, I showed that the same
dynamic programming procedure can be used to work for the parameter “maximum
candidate range” and provided an NP-hardness proof for constant “average candi-
date range”. The refined dynamic programming algorithm appears in the proceedings
of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’09) [22]. The journal version [21], which appeared in Theoretical Computer
Science, combines the results from [20] and [22]. The conference paper [22] was also
presented at the 2nd International Workshop on Computational Social Choice (COM-
SOC’08).

Chapter 4 exploits the concept of partial kernelization for Kemeny Score. The
basic idea of partial kernelization goes back to Jiong Guo and has been introduced
for several median problems. Herein, the detailed proofs leading to partial kernels
of quadratic size with respect to the “average KT-distance” for Kemeny Score
(with Ties) were worked out by Jiong Guo and me. The general framework and
concept of partial kernelization was shaped in discussions with Jiong Guo, Christian
Komusiewicz, and Rolf Niedermeier. The results for several median problems were
published in the proceedings of the 9th Latin American Theoretical Informatics Sym-
posium (LATIN’10) [24] and the full version is to appear in Journal of Computer and
System Sciences [25]. Chapter 4 combines parts of the results from the paper [25] with
several new results described in the following. In close cooperation with Robert Bred-
ereck, I obtained an improvement of the partial kernel size from quadratic to linear and
showed some “tightness” results for corresponding data reduction rules. These results
are accepted for publication at the 5th International Symposium on Parameterized
and Exact Computation (IPEC’10) and were also presented at the 3rd International
Workshop on Computational Social Choice (COMSOC’10) [16]. Chapter 4 contains
the theoretical results from [16] while the experimental results from [16] are discussed
in Chapter 5.

Chapter 5 provides an experimental evaluation of some of our fixed-parameter
algorithms for Kemeny Score with particular focus on data reduction rules [16].
Besides evaluating our algorithms for real-world data, we designed a publicly available
software package. The implementation work was accomplished by Robert Bredereck
working as a research student mainly under my supervision.

Chapter 6 is concerned with the parameterized complexity of Dodgson and Young
elections. Inspired by some pointers to the literature provided by Jörg Vogel, the
project was initiated by Jiong Guo, Rolf Niedermeier, and me. I contributed a dy-
namic programming algorithm leading to fixed-parameter tractability for Dodgson
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Score and showed the W[2]-hardness of Young Score, in both cases with respect to
the corresponding score parameter. Jiong Guo further settled the parameterized com-
plexity of Young Score by providing W[2]-membership (for which the proof is not
contained in this thesis). The results of Chapter 6 were presented at the 11th Scandi-
navian Workshop on Algorithm Theory (SWAT’08) [26] and appeared in Information
and Computation [27].

Part II: Possible Winner Determination. Part II investigates the problem of
finding possible winners under scoring rules. I initiated the research on this topic and
came up with all major results.

Chapter 7 aims at a full classification of the computational complexity of Possible
Winner for scoring rules. I provided the overall framework as well as the ideas for
the many-one reductions. I am very grateful to Britta Dorn for her help with writing
and working out several details of this voluminous work. Large parts of this chapter
follow the journal paper [19], which appeared in Journal of Computer and System
Sciences, for which the conference version [18] was presented at the 34th International
Symposium on Mathematical Foundations of Computer Science (MFCS’09).

Chapter 8 is concerned with a parameterized complexity analysis of Possible
Winner for scoring rules with respect to several single parameters. In the course of
this project, Susanne Hemmann prepared her diploma thesis under Rolf Niedermeier’s
and my supervision. I had the main ideas for all results in this chapter and also
worked out the details as provided in this chapter. Most of the results appeared in
the proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI-09) [28].

Chapter 9 extends the range of fixed-parameter algorithms for Possible Winner
for k-approval voting by providing kernelization results and showing (presumably) non-
existence of a polynomial kernel for combined parameters. All results were obtained
by me. The results appeared in the proceedings of the 35th International Symposium
on Mathematical Foundations of Computer Science (MFCS’10) [15].

Part III: Candidate Control. The last part of the thesis consists of Chapter 11 de-
vising a systematic parameterized complexity analysis of candidate control in Copeland
elections and some closely related digraph problems. I initiated the research on this
topic and provided the main part of the results after fruitful discussions with Johannes
Uhlmann. The paper was presented at the 2nd Annual International Conference on
Combinatorial Optimization and Applications (COCOA) [29] and a journal version
appeared in Theoretical Computer Science [30]. Chapter 11 basically follows [30].
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Chapter 1
Introduction

Voting asks to reach a joint decision based on the preferences of multiple parties.
At a first sight, classical scenarios such as political elections may come into one’s
mind. However, at a second sight, voting seems to be omnipresent in our lives: Voting
scenarios rise from mundane situations like making a joint decision on the holiday
destination or a restaurant to the decision about job applicants or awarding honors
to multiagent settings. In particular, over the last decades computer science itself
increased the “need” for joint decision making; for example, deciding which job is the
first to run on a machine, or aggregating the results from several search engines.

The study of the computational complexity of “voting problems” is an active area
of research [53, 58, 96, 100, 103]. Important problems comprise winner determina-
tion according to certain voting protocols with desirable properties or manipulation.
Unfortunately, many voting problems have turned out to be NP-hard. Furthermore,
for many settings approximate solutions to such problems may be of limited interest.
Clearly, in political elections nobody would be satisfied with an approximate win-
ner determination, and similar observations hold for other applications. Hence, exact
solutions are of particular relevance in this context. Given the NP-hardness of the
problems, however, it seems inevitable to live with exponential-time algorithms. A
way out of this dilemma can be provided by multivariate algorithmics which investi-
gates whether specific relevant settings allow for efficient algorithms despite general
NP-hardness results.

Voting comes with a large variety of different settings. This includes political
elections with many voters and few candidates, contrasting a small committee selecting
a winner out of a large set of candidates. Although this invites for studies that explore
voting problems in the context of such specific settings, so far there are only few
publications in this direction. This work aims at a multivariate approach capturing
questions such as whether a problem becomes “easy” in case that there are only few
voters or candidates, respectively.

An important ingredient of a multivariate analysis is the investigation of the
parameterized complexity of NP-hard problems as pioneered by Downey and Fel-
lows [76, 113, 171]. This theory is based on the concept of fixed-parameter algorithms,
that is, exact algorithms that confine the combinatorial explosion of the running time
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to a function depending solely on a considered parameter such as the number of votes
or the number of candidates. Parameterized complexity allows for a more fine-grained
analysis than a “classical analysis” that only distinguishes between NP-hardness and
polynomial-time solvability for constant parameter values: For a problem instance of
size n and a parameter k, a fixed-parameter algorithm runs in f(k)·nO(1) time where f
denotes a computable function. In contrast, a running time of O(nk) does not imply
fixed-parameter tractability. In this sense, we advocate parameterized algorithmics as
a helpful tool for better understanding and exploiting the numerous natural parame-
ters occurring in voting scenarios with associated NP-hard combinatorial problems.

As mentioned above, the “nature” of voting problems invites for several parame-
terizations. All considered “voting problems” are defined on elections consisting of a
multiset of preference lists (or votes) over a set of candidates and on a voting rule that
selects a winner of this election. This directly leads to the two standard voting pa-
rameters “number of candidates” and “number of votes”. In addition, we will identify
problem-specific parameterizations capturing realistic scenarios.

In the following, we describe the organization of this work. In Chapter 2, we
provide an introduction to voting problems and discuss related work. In particular,
we give an overview of corresponding multivariate complexity results. Chapter 2 is
followed by our results on a multivariate analysis of the computational complexity for
three types of voting problems dividing the thesis into three parts. First, we focus on
the basic problem of winner determination. Second, we investigate the more general
setting of possible winner determination under incomplete information. Finally, we
consider how an external agent can influence the outcome of an election in favor or
disfavor of a candidate by adding or deleting further candidates. We now describe the
parts and their individual chapters.

Part I: Winner determination (Chapters 3, 4, 5, and 6). For some voting sys-
tems the determination of a winner is NP-hard. We provide a multivariate complexity
analysis for three such voting systems. The main focus lies on the Rank Aggre-
gation or Kemeny Score problem (Chapters 3–5). Here one is given a multiset
of preference lists and the goal is to find a consensus list that minimizes the sum of
distances from the input list according to a natural distance measure. Rank Ag-
gregation has numerous applications [77, 92, 138, 187], for example, the preference
lists might correspond to several search engines and the goal of a meta-search engine
is to combine them into one list. Moreover, “Kemeny elections” also fulfill desirable
properties from the social choice point of view [201]. Our results from the first chapter
of this part comprise a systematic analysis with respect to the parameterizations

• number of candidates,

• average distance between the input votes,

• average and maximum range of a candidate in the input votes, and

• the solution value Kemeny score.

Besides obtaining algorithmic and hardness results with respect to specific parameters
we also provide a comparison of the parameter values and identify realistic scenarios
motivating the individual parameterizations. Hence, this study may also be considered
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as an introduction into the “art of parameterization”. Chapter 4 further extends
the algorithmic results for Kemeny Score by providing data reduction rules with
provable performance guarantee leading to the concept of partial kernels. Chapter 5
is concerned with an experimental evaluation of the data reduction rules and some of
the fixed-parameter algorithms providing promising results for real-world data.

The last chapter of this part, Chapter 6, investigates Dodgson and Young elections.
In both voting systems the score of a candidate measures the distance from being a
Condorcet winner, that is, a candidate beating every other candidate in pairwise com-
parison. The distance is measured by the editing operations “swapping neighboring
candidates” (Dodgson) and “deleting votes” (Young). Our main result is that the
corresponding problem Dodgson Score is fixed-parameter tractable with respect to
the “number of editing operations” while Young Score is W[2]-complete and hence
presumably not fixed-parameter tractable.

Part II: Possible Winner Determination (Chapters 7, 8, 9, and 10). In
this part, we focus on possible winner determination for so-called “positional scoring
rules”. Basically, a positional scoring rule assigns a number of points to every candidate
depending on its position in a vote. Famous examples comprise plurality where, per
vote, the first candidate gets one point and all other candidates get zero points, and
Borda where, for m candidates, within one vote the first candidate gets m− 1 points,
the second candidate gets m − 2 points, and so on. The winner determination under
“complete information” can be easily accomplished in polynomial time by adding the
points of every candidate over all votes. However, in many realistic settings the voters
may only provide incomplete information, that is, partial orders instead of “full”
preference lists. This directly leads to the question whether a multiset of “partial
orders” can be extended to a corresponding multiset of linear orders such that a
specific candidate wins. As we will show in Chapter 7, except for the two simple
scoring rules plurality and veto, the corresponding Possible Winner problem is NP-
complete for all natural scoring rules. Herein, one remaining open case missing for a
full dichotomy has been settled by Baumeister and Rothe [14].

The NP-completeness results for Possible Winner under almost all naturally
appearing scoring rules motivate a multivariate analysis of the problem as provided
in Chapter 8. We show fixed-parameter tractability with respect to the “number of
candidates” for all scoring rules and provide NP-completeness results for a constant
number of votes for the two important scoring rules Borda and k-approval. In addition,
we investigate parameterizations measuring the “amount of incompleteness” of an
instance.

In Chapter 9 we focus on k-approval voting where the first k candidates get one
point each and the remaining candidates get zero points per vote. For Possible
Winner under k-approval voting, we show fixed-parameter tractability with respect to
combined parameters capturing realistic scenarios. Our results comprise polynomial-
size problem kernels as well as nonexistence proofs of polynomial-size problem kernels
and are among the first (non poly-) kernelization results for voting problems.

Chapter 10 concludes Part II and presents several tasks for future research.

Part III: Electoral control (Chapter 11). In electoral control, an external agent
seeks to influence an election to reach certain goals. We focus on the problem whether
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an agent can add or delete candidates such that a distinguished candidate becomes a
winner or is prevented from winning. On the one hand, in this context computational
hardness is considered as a desirable property [13] since in many settings control is
clearly bad. On the other hand, there are legal scenarios such as persuading addi-
tional players to participate in a sport competition (like chess competitions in which
usually every player plays against every other player) in which the external agent is
interested in having an efficient strategy to reach her or his goal. We investigate the
parameterized complexity of control of Copelandα and plurality voting, two important
and commonly used voting systems with respect to several parameterizations. An im-
portant part of this analysis is the identification of some closely related problems on
directed graphs and corresponding studies of their computational complexities.

Chapter 12 summarizes the results of the thesis and provides some directions
for future research distinguishing between problem-oriented, technique-oriented, and
parameter-oriented approaches.

The remaining part of this introductory chapter provides some basic definitions
and concepts of computational complexity and algorithm design.

1.1 Basic definitions

We introduce some basic concepts and definitions needed in several parts of the thesis.
Definitions only relevant for one part or chapter will be provided there.

1.1.1 Elections and voting systems

An election (V, C) consists of a multiset V of n votes and a set C of m candidates (or
alternatives). A vote (or preference list) is a linear order (i.e., a transitive, antisym-
metric, and total relation) on C. For example, for C = {a, b, c}, the vote a > b > c
means that a is the best-liked and c the least-liked candidate in this vote. At some
places, we specify a subset D ⊆ C of candidates and the corresponding “reverse” sub-
set D within a vote. This is to read as follows. Fix the candidates of C at an arbitrary
order, then . . . > D > . . . means that the candidates from D appear according to this
fixed order and . . . > D > . . . means that the candidates from D appear reverse to
the fixed order.

A voting rule1 r is a function that maps an election to a subset a candidates, the
set of winners. When one is interested in finding a uniquely determined winner (that
is, a one-element winner set), one refers to such a candidate as unique winner. When
allowing for a set of winners, the corresponding candidates are denoted as cowinners.

A widely used voting rule is plurality where every voter can vote for one candidate
and the candidates with the highest number of votes win. Plurality is a so-called
“positional scoring rule” since the score of a candidate depends only on its position
in every vote, that is, getting one point if it is ranked first and zero points at every
other position. We also consider voting systems based on pairwise comparisons of
candidates. To this end, we say a candidate beats another candidate in their pairwise
head-to-contest if it is better positioned than the other candidate in more than half
of the votes. A candidate beating every other candidate in the pairwise head-to-head

1Also called voting correspondence, voting/election system, or (social) choice procedure.
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contest is a Condorcet winner [69]. A Condorcet winner does not always exist and
an election has at most one Condorcet winner [69]. A voting system that elects a
Condorcet winner if one exists fulfills the Condorcet property, which is desirable for
many applications.

1.1.2 Graphs and digraphs

Several of our results make use of graphs or digraphs. We briefly introduce some
relevant notations (see also [9, 70, 139] for basic definitions). For an undirected graph
G = (U, E) and a vertex u ∈ U , the open neighborhood N(u) of u is the set of
vertices adjacent to u. Moreover, N [u] := N(u)∪{u} is called the closed neighborhood
of u. For a directed graph (digraph) D = (W, A) and for a vertex w ∈ W , the set
of in-neighbors of w is defined as Nin (w) := {u ∈ W | (u, w) ∈ A} and the set of
out-neighbors of w is given by Nout(w) := {u ∈ W | (w, u) ∈ A}. The indegree of w
is defined as din(w) := |Nin (w)| and the outdegree of w is defined as dout(w) :=
|Nout(w)|. The degree of w is defined as deg(w) := din(w) + dout(w). For a set of
vertices W ′ ⊆ W , the induced subgraph D[W ′] is the graph over the vertex set W ′

with arc set {(w, u) ∈ A | w, u ∈ W ′}. In digraphs, we do not allow bidirected arcs
and loops. An l-arc coloring C : A → {1, 2, . . . , l} is called proper if any two distinct
arcs of the same color do not share a common vertex. A tournament is a digraph
where, for every pair of vertices u and v, there is either (u, v) or (v, u) in the arc set.

For an undirected bipartite graph (G ∪ H, E) with vertex set G ∪ H and edge
set E ⊆ {{g, h} | g ∈ G and h ∈ H}, a matching denotes a subset M ⊆ E such that
for all e, e′ ∈ M , e ∩ e′ = ∅. A vertex contained in e for an e ∈ M is called matching
vertex and, for {g, h} ∈ M , g and h are matching neighbors. A maximum matching is
a matching with maximum cardinality.

1.2 Computational Complexity

The computational complexity of a problem can be measured by the resources needed
to solve it (see [118, 176] for more details). In general, computational complexity
theory aims at a classification of problems into respective “complexity classes”. In
the following, we briefly introduce the two complexity classes P and NP from classical
complexity theory and give a short introduction in “parameterized complexity classes”.
This is followed by introducing the term of “multivariate algorithmics”, a concept
generalizing parameterized algorithmics.

In most places of the work we deal with decision problems but all algorithmic
results can be modified easily to construct a corresponding “solution”. Formally, a
decision problem is encoded as language L ⊆ Σ∗ over an alphabet Σ.

1.2.1 P versus NP

The most prominent classes in classical complexity theory are P and NP. The class P
contains all problems that can be solved in polynomial time by a deterministic Turing
machine and the class NP all problems that can be solved in polynomial time by a
nondeterministic Turing machine. It is widely believed that P is not equal to NP
implying that there are problems in NP that are not in P. This leads to NP-hard
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problems. Within the considered framework, showing that a problem is at least as
hard as another problem is done by a “many-one reduction” defined as follows.

Definition 1.1. Let A and B denote two decision problems. The problem A many-one
reduces to B if there is a polynomial-time computable function f such that

x ∈ A ⇔ f(x) ∈ B

for each x ∈ Σ∗.

A decision problem A is NP-hard if all problems from NP many-one reduce to
A. An NP-hard problem belonging to NP is NP-complete. Hence, the class of NP-
complete problems comprises a large set of “equivalent” problems for which presum-
ably no polynomial-time algorithms exist.

Beyond P and NP, classical complexity theory provides classes containing problems
that presumably are even harder than NP-complete problems. For example, the “ora-
cle class” PNP

|| consists of the problems solvable via a polynomial-time algorithm with

parallel access to an NP-oracle. Interestingly, the first “natural” PNP
|| -complete prob-

lems regard the winner determination of three famous voting systems [130, 132, 183].

1.2.2 Parameterized complexity

The concept of parameterized complexity was pioneered by Downey and Fellows [76]
(see also [113, 171] for text books). The fundamental goal is to find out whether the
seemingly unavoidable combinatorial explosion occurring in algorithms to decide NP-
hard problems can be confined to certain problem-specific parameters. The idea is that
when such a parameter assumes only small values in applications, then an algorithm
with a running time that is exponential exclusively with respect to the parameter may
be efficient and practical. We now provide the formal definitions.

Definition 1.2. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is a
finite alphabet. The second component is called the parameter of the problem.

We consider parameters which are positive integers or “combined” parameters
which are tuples of positive integers.

Definition 1.3. A parameterized problem L is fixed-parameter tractable if there is an
algorithm that decides in f(p) · |x|O(1) time whether (x, p) ∈ L, where f is an arbitrary
computable function depending only on p. The complexity class of all fixed-parameter
tractable problems is called FPT.

We stress that the concept of fixed-parameter tractability is different from the
notion of “polynomial-time solvability for constant p” since an algorithm running in
O(|x|p) time does not show fixed-parameter tractability. All problem that can be
solved in the running time O(|x|f(p)) for a computable function f form the complexity
class XP.

Unfortunately, not all parameterized problems are fixed-parameter tractable. To
this end, Downey and Fellows [76] developed a theory of parameterized intractability
by means of a completeness program with complexity classes. More specifically, the
so-called W-hierarchy is defined by using Boolean circuits and consists of the following
classes and interrelations:
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FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[Sat] ⊆ W[P] ⊆ XP

In this work, we only provide results regarding the first two levels of (presumable)
parameterized intractability captured by the complexity classes W[1] and W[2]. The
containment W[1] ⊆ FPT would not imply P = NP but the failure of the Exponential
Time Hypothesis [137]. Hence, it is commonly believed that W[1]-hard problems are
not fixed-parameter tractable. To show W[t]-hardness for any positive integer t, the
following reduction concept was introduced.

Definition 1.4. Let L, L′ ⊆ Σ∗ ×Σ∗ be two parameterized problems. We say that L
reduces to L′ by a parameterized reduction if there are two computable functions h1

and h2 depending only on |p| and a function f depending on x and p such that

• (x, p) ∈ L ⇔ f(x, p) ∈ L′ and f is computable in time |x|O(1) · h2(|p|)
• p′ = h1(p) for (x′, p′) := f(x, p).

Analogously to the case of NP-hardness, for any positive integer t, it suffices to
give a parameterized reduction from one W[t]-hard parameterized problem X to a
parameterized problem Y to show the W[t]-hardness of Y . The containment of Y in
W[t] can be shown by giving a reduction from Y to a problem contained in W[t]. If
there are parameterized reductions for two problems such that each of them can be
reduced to the other problem, we say that they are FPT-equivalent. For more details
about parameterized complexity theory we refer to the textbooks [76, 113].

1.2.3 Multivariate algorithmics

Multivariate algorithmics can be considered as an extension of the “standard” pa-
rameterized complexity theory. While parameterized complexity provides a “two-
dimensional” approach considering the input and one parameter, multivariate algo-
rithmics allows for the investigation of more than two dimensions such as it is the
case when considering combined parameters [104, 172]. Such an analysis seems to be
clearly of interest for voting systems where the two “standard dimensions” votes and
candidates can be combined with further parameters measuring properties of the input
or the voting system. A study of for meaningful combined parameters is provided in
Chapter 9.

In addition to distinguish between FPT and W[1]-hardness, one might consider the
computational complexity for constant parameter values (as covered by the class XP).
That is, on the one hand, a problem that is W[1]-hard with respect to a parameter p
can still be solvable in polynomial time when p is a constant. One the other hand,
the problem can be NP-hard even if p is a constant clearly implying W[t]-hardness
for any t. Hence, within a multivariate complexity analysis, one might also consider
a problem and two parameters p and q and ask whether there is a fixed-parameter
algorithm with respect to p when q is constant. Such examples can be found in
Subsection 9.1.2.

1.3 Algorithm design tools

We employ several techniques designed for developing fixed-parameter algorithms
which will be briefly introduced in the following. We refer to the monograph by
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Niedermeier [171] for a general introduction to fixed-parameter algorithms.
The corresponding running times of the algorithms given in this work are worst-

case running times and usually are stated by using the “Big O”-notation:

Definition 1.5. For functions f(x) and g(x), f(x) is in O(g(x)) if there are a con-
stant c and an integer n0 such that f(x) ≤ c · g(x) for all x ≥ n0.

1.3.1 Kernelization

Kernelization is a core tool to develop parameterized algorithms [34, 76, 126, 171]. A
kernelization algorithm consists of a set of (data) reduction rules working as follows.
Given an instance (x, p) ∈ Σ∗ × Σ∗, they output in time polynomial in |x| + |p| an
instance (x′, p′) ∈ Σ∗ × Σ∗ such that the following two conditions hold.

1. (x, p) is a yes-instance if and only if (x′, p′) is a yes-instance.

2. |x′| + |p′| ≤ g(|p|) where g is a computable function.

If g is a polynomial function, then we say that the parameterized problem admits a
polynomial kernel. We call a data reduction rule sound if the new instance after an
application of this rule is a yes-instance iff the original instance is a yes-instance. An
instance is reduced with respect to a reduction rule if applying the reduction rule to
the instance does not change the instance.2

Nowadays, kernelization can be considered as a success story nicely combining
theoretical analysis with practical relevance, see [34, 126] for surveys. A recent frame-
work [35, 114] also allows to show nonexistence of polynomial kernels under some
reasonable complexity-theoretic assumptions. This will be discussed in more detail in
Subsection 9.2.2.

1.3.2 Size-bounded search trees

We also employ search trees for our fixed-parameter algorithms (see [171, Chapter 8]
for more details). Search tree algorithms work in a recursive manner. If the algorithm
solves a problem instance of size s and calls itself recursively for problem instances of
sizes s−d1, . . . , s−di, then (d1, . . . , di) is called the branching vector of this recursion.
It corresponds to the recurrence Ts = Ts−d1

+ · · · + Ts−di for the asymptotic size Ts

of the overall search tree. Such recurrences can be solved by standard mathematical
methods [171] and the asymptotic solution is determined by the roots of the so-called
characteristic polynomial and is called branching number.

1.3.3 Integer linear programming

At several places in this work, we employ an approach based on integer linear pro-
gramming and a famous result from Lenstra [154]. Formally, we use the following
problem:

k-Variable Integer Linear Programming Feasibility
Input: A q × k matrix A with integer elements, an integer vector b ∈ Zq.
Question: Is there a vector x ∈ Zk such that A · x ≤ b ?

2Readers familiar with voting systems but unaware of kernelization can find a simple example of
a kernelization for Kemeny Score in Section 3.4.
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Lenstra showed that this problem is fixed-parameter tractable with respect to
the number of variables k, and this algorithmic result was later improved by several
authors.

Theorem 1.1. [154, 115, 140] The p-Variable Integer Linear Programming
Feasibility problem can be solved using O(k2.5k+o(k) · L) arithmetic operations and
space polynomial in L, where L is the number of bits of the input.

Due to Theorem 1.1 one can show fixed-parameter tractability by “formulating”
a parameterized problem as an integer linear program (ILP) such that the number of
variables only depends on a computable function of the considered parameter. This
approach has been crucial to show fixed-parameter tractability in several areas ranging
from string problems [122] to coloring [111] and graph layout [107] problems to control
in elections [99].





Chapter 2
Problems and results in context

This work is concerned with a multivariate complexity analysis of several problems
arising in voting. The considered problems only cover a small fraction of the whole
set of “voting problems”. In turn, voting can be considered as one important sub-area
of social choice [6, 168] which also comprises other aspects like fair division making
or judgement aggregation. Moreover, there are many works concerned with compu-
tational aspects of voting problems within the field of “computational social choice”.
Hence, this chapter aims at putting the considered problems and obtained results into
a broader context. To this end, we highlight the following points.

• The first section gives a brief introduction into the development of voting the-
ory. We state important issues arising in voting and display how the problems
considered in this work correspond to these issues.

• The second section discusses computational aspects of voting relevant for this
work.

• The third section is concerned with an overview of multivariate algorithmics re-
sults for voting problems. This includes a discussion of parameterized complexity
results for voting problems.

Due to the huge amount of publications in the burgeoning field of computational
social choice and in voting theory (see [53, 58, 96, 100, 103] for surveys and [6, 117, 168,
190] for text books), this chapter can only provide a necessarily incomplete picture.

2.1 A brief introduction to voting

Voting in political elections goes back to the ancient Greek. One example for the
earliest form of democracy is ostracism introduced by Cleistheness about 500 years
BC. It allowed the Athenians to vote for a politician they wished most for exile for 10
years. From such first attempts to give more rights to the citizens in order to prevent
them from tyranny, voting developed into a fundamental tool of modern democracies.
Over the last few decades, voting also gained importance in many other areas. For
example, Ephrati and Rosenschein [83, 84] introduced voting to Artificial Intelligence
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to solve planning problems in multiagent systems. Moreover, voting scenarios play
roles in spam detection [77], in data base applications [92], in bioinformatics [138],
and graph drawing [32].

In the following subsection, we very briefly discuss the development of voting and
some important issues in voting as relevant to this work. Many of the “historic” voting
systems are still of relevance today and some of them play a role within this work.

2.1.1 Voting rules and winner determination

The need for finding “good” systems to elect representatives of the state or of or-
ganizations such as the church led to development of a large variety of voting rules.
For example, in the 13th century the writer and philosopher Ramon Llull proposed a
system to elect church officials’. This can be considered as the first reported system
making use of pairwise head-to-head contests [127, 167] (see Chapter 11 for a defini-
tion of Llull’s system). Over the next centuries many of Llull’s observations sank into
oblivion. In times of the French revolution voting theory attracted new interests. In
1770, Jean-Charles de Borda proposed a “positional scoring rule” to elect members of
the French Academy of Sciences [37]. In the Borda rule the positions of the candidates
of a vote are converted into points and candidates with most points are declared as
winners. This rule was opposed by the Marquis de Condorcet leading to a vigorous
argument. The Condorcet principle from 1785 requires that a winner of an election
is the candidate who is preferred to each other candidate in more than half of the
votes [69]. Unfortunately, a Condorcet winner does not always exist (Condorcet para-
dox ). However, Condorcet proposed a method that always elects a Condorcet winner
if one exists [69]. The systems suggested by Borda and Condorcet come with different
advantages and disadvantages and hence their argument remains undecided. Since we
investigate scoring rules comprising the Borda systems as well as several Condorcet
methods, we give two intuitive examples opposing Borda and Condorcet methods.

Many sports have world cup rankings in which a winner is “elected” based on the
outcomes of a series of competitions. Examples comprise Formula 1, biathlon, and
golfing. One might consider it as fair that an athlete who is better than every other
athlete in more than half of the competitions should be the world champion. This is
naturally reflected by the Condorcet property when considering the outcomes of the
single competitions as votes over the set of athletes.

Although the Condorcet property seems quite desirable in many cases, the following
example shows that this might not be true for every application. Consider a class of
ten students that have to decide about a common meal. Let them have the following
preferences:

• six students with: hamburger > pizza > pasta > burrito > meat balls

• four students with: pizza > pasta > burrito > meat balls > hamburger

These preferences might be interpreted as that there are six student who love ham-
burgers but four students detesting them. By choosing a Condorcet winner everybody
would have to eat hamburger although this is the least liked meal of nearly half of
the students. In contrast, the meal chosen according to the Borda rule would be pizza
which seems to be a broadly acceptable choice.
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The two examples illustrate that different situations demand for different voting
rules. Nowadays, there is a large amount of literature concerned with investigating
properties of different voting systems [38, 117, 175, 190]. This comprises famous
characterization results such as a theorem saying that Kemeny is the only voting
system which is neutral, Condorcet, and consistent [201]. Basically, neutrality means
that every candidate is treated equally and consistency says that, if one partitions the
multiset of votes into two parts and the same candidate is a winner in both parts, then
this candidate also wins in the total election. Moreover, the Young theorem provides
a full characterization of positional scoring rules [202]. An even stronger results is the
famous Arrow’s impossibility theorem showing that there is no voting system fulfilling
three reasonable properties [5, 119].

Despite the huge amount of work investigating properties of voting systems, there
seems to be still some gap between theory and practice in the sense that there is hardly
any literature concerned with systematically “matching” voting rules to different real-
life settings and in many real-world applications not the “best” voting system may be
chosen. We use an example from above to illustrate the difficulty of providing general
guidelines for the application of specific voting rules: In sports, such as Formula 1, one
might consider it as fair to choose a Condorcet winner as world champion whenever one
exists. However, the system in use is a positional scoring rule similar to Borda. Indeed,
as we will see in Chapter 5 in the year 2008 this led to Lewis Hamilton becoming
world champion although Felipe Massa was the Condorcet winner. However, the
scoring based system rewards drivers that win a race which also might be considered
desirable. In contrast, a driver could be a Condorcet winner without winning a single
race.

Recall that although a Condorcet winner seems often a good choice, a practical
problem is that it does not always exists. Hence, several methods have been proposed
to deal with the Condorcet paradox by choosing a candidate as winner that is “closest”
to a Condorcet winner. Two “edit distances” measuring the closeness have been
suggested by Dodgson [71] in 1876 and Young [203] (see Chapter 6 for definitions).
Another important voting rule extending the idea of Condorcet is the Kemeny rule (see
Chapter 3). Herein, one looks for a “consensus preference list” minimizing the sum
of distances to the input preference lists of the voters according to a natural distance
measure. A winner is a top candidate of a consensus preference list.

Note that there are also many other voting rules including rules not based on pref-
erence lists such as approval voting where every voter just can vote with “yes” or “no”
for every candidate [38] or rules defined over complex/overlayed preference domains
such as Fallback, SP-AV [39], and TEQ [43]. All rules investigated in this work come
with easy-to-understand definitions and are well-established in voting theory. In ad-
dition, they demonstrate relevance for real-world applications; for example, Kemeny’s
rule is used in many different fields [77, 138, 187]. Altogether, we study computational
problems for positional scoring rules comprising Borda (Part II) as well as Condorcet
rules, that is, voting rules electing a Condorcet winner if one exists: Dodgson, Kemeny,
and Young in Part I and Copeland methods including Llull’s system in Part III.
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2.1.2 Strategic voting and possible winners

The previous subsection discusses the choice of a voting system in order to “maximize
social welfare”. Another major issue in voting theory [6] regards strategic behavior of
the electorate, that is, can a single voter or a coalition of voters cast their votes in
an insincere way such that they are better off than providing their “true” preferences.
Such a behavior, denoted as manipulation, is considered undesirable. We refer to Fal-
iszewski and Procaccia [103] for a recent survey on manipulation including an example
showing how strategic voting results in the least favorable option to win. A voting rule
is strategy-proof if manipulation is never beneficial for an agent. However, the famous
result of Gibbard and Satterwaith shows that a reasonable strategy-proof voting rule
does not exist [121, 184]. Reasonable here comes with the natural restrictions of not
being a dictatorship and every candidate having a chance of winning, that is, it is a
winner for at least one outcome.

On the positive side, the question whether a specific election can be manipulated in
favor of a distinguished candidate can also be interpreted as follows. At a certain point
of the decision process, somebody without intention to change the outcome might be
interested in the question which of the candidates can still win. Going back to the
Formula 1 example this reflects that a supporter of a specific driver wants to know if
his favorite can still become a champion after a couple of races. This question can be
further generalized to asking for a “possible winner” in the following model. Instead of
having a collection of votes partitioned into a set of fully settled votes (linear orders)
and the coalition coming with votes that can be cast arbitrarily, one allows for a
multiset of partial preference orders. The corresponding Possible Winner problem
has been introduced by Konczak and Lang [148] and is investigated in the second part
of this work.

Having knowledge about the potential outcome of an election can also help to save
costs by ending an election process with already determined outcome. The related
task of Preference Elicitation (see e.g. [61, 63, 120]) can be considered as to “collect”
as little information as necessary from the voters for a uniquely determined outcome.
The goal is to avoid that each voter has to report his whole preference list, but to ask
only for some part of the information that suffices to determine a winner.

2.1.3 Influences by external agents

Unfortunately, voting also might inspire some persons to influence the outcome of an
election to their own benefits. There are numerous ways how an external agent can
influence the outcome of an election in favor or disfavor of a distinguished candidate.
We briefly described the settings investigated in computational social choice. We
remark that the standard setting is that the external agent has complete knowledge
of the preferences of all voters.

Bribery. In bribery the external agent can pay voters to change their preference
lists in his favor [94]. There are different settings of bribery: Besides varying prices
for different voters or one might allow for votes that cannot be represented as linear
preference orders [93, 99]. In addition, there are more fine-grained models such as
paying for specific operations, for example, single swaps of neighboring candidates in
a vote, according to different price models. This leads to microbribery settings [99]
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and swap bribery [80]. Restricting the allowed operations such that each swap must
affect the distinguished candidate leads to shift bribery [80]. Another problem also
fitting in the formal model of bribery is campaign management “mounting an election
campaign targeted at a particular group of voters with identical preferences” [79].

Control and cloning. Bartholdi et al. [13] introduced 10 types of control that an
external agent might apply to make his favorite candidate a winner (see also [99, 131]).
The types of control comprise adding or deleting candidates and votes as well as
partitioning the sets of voters or candidates. For example, a candidate can be made
a winner by adding a new candidate if the new candidates take away votes from the
rival. Recently, Faliszewski et al. [95] extended the scenario to the realistic setting of
multimode control attacks, that is, allowing the external agents to use several types
of control simultaneously. A closely related problem introduced by Elkind et al. [81]
regards cloning where one only allows for adding candidates that are “equivalent”
to one of the existing candidates. Moreover, Chevaleyre et al. [54] investigate the
question whether a candidate can become a winner by adding “arbitrary” candidates.

In the third part of this work, we investigate two of the basic types of control, that
is control by adding or deleting candidates. Note that while in the bribery setting
usually a cost function plays a prominent role, this is not the case for control by
adding or deleting candidates.

Lobbying. Lobbying [56, 86] arises in multi-issue referenda. Here, every voter can
vote with a “yes” or “no” for a list of different topics. The external agent favors a
specific outcome, that is, a list of “yes” or “no” answers. In order to achieve his goal,
the agent then can pay some of the voters to cast their votes.

2.2 Computational aspects of voting

Although voting theory is a research field with a longstanding tradition and even
ancient roots, systematic considerations of computational aspects started quite lately
in about 1990 by a series of papers from Bartholdi, Orlin, Tovey, and Trick [10, 11,
12, 13]. The next contribution to the field of computational complexity of voting
problems has been made in 1997 by Hemaspaandra et al. [130] studying the winner
determination for Dodgson’s rule. Starting from about 2002 there has been a rapid
increase on the number of publications in this field and in computational social choice
in general [53, 100].1 In the following subsections, we describe three basic lines of
research inspired by the seminal works of Bartholdi, Orlin, Tovey, and Trick also
leading to the computational problems in this work. Other interesting computational
aspects of voting not considered in this work comprise for example communication
complexity [63] or issues in combinatorial voting [152, 198]. We refer to Chevaleyre et
al. [53] for an overview of the area of computational social choice.

1See also the the biannual workshop series Computational Social Choice (COMSOC) which
took place for the third time in 2010. Useful information on can also found under
http://www.illc.uva.nl/COMSOC/what-is-comsoc.html.



16 2 Problems and results in context

2.2.1 Winner determination

One immediate computational issue in voting regards the computation of a winner.
A voting system coming with nice properties but for which one cannot compute a
winner in reasonable time is not useful in practice. While for some voting systems
such as positional scoring rules the computation of a winner can be easily achieved
in polynomial time, for other voting systems the computation of a winner becomes
NP-hard. The most famous voting rules with NP-hard winner determination as listed
in the survey [53] comprise Banks, Dodgson, Kemeny, Slater, and Young. We pro-
pose a parameterized complexity analysis as a possible way out of the dilemma and
provide such studies for Dodgson, Kemeny, and Young in the first part of this work.
Remarkably, the winner determination under these three rules led to the first natural
problems that are PNP

|| -complete [130, 132, 183].

2.2.2 Manipulation and possible winners

As discussed in Subsection 2.1.2, a key issue in voting theory regards the undesirable
property of manipulation. Since according to the Gibbard-Satterwaith theorem [121,
184] there is no reasonable strategy-proof voting rule, Bartholdi et al. [11] suggested
computational hardness as a way out. The simple but brilliant idea is that when a
voting rule can be manipulated in general but it is computationally difficult to find out
how to cast the votes to achieve the desired goal, a voting rule cannot be manipulated
in practice. This leads to the following basic computational problem for any voting
rule r.

Manipulation
Input: An election (V, C), a coalition size k, a distinguished candidate c ∈ C.
Question: Is there a size-k multiset V ′ of votes on C such that c is a winner
according to r in (V ∪ V ′, C)?

There are many variants of Manipulation such as having weighted voters or de-
structive manipulation where the goal is to prevent a candidate from winning (see
e.g. [65, 103]). Bartholdi, Orlin, Tovey, and Trick focused on the special case of hav-
ing a coalition of size one. After obtaining polynomial-time solvability results for
manipulating a set of common voting rules [11], Bartholdi and Orlin [10] identified a
known voting rule for which Manipulation becomes NP-hard even for a single manip-
ulator. Nowadays, there is a huge amount of literature on the manipulation problem
including discussions about worst-case versus average-case hardness or frequency of
success/hardness (e.g. [87, 116, 129, 179, 195, 196]). For many common voting rules
the classical computational complexity has been explored (e.g. [46, 65, 129, 200, 204]).
However, there are still interesting open questions. In particular, whether Manipu-
lation is NP-hard for Borda is a prominent open question [103, 199, 200]. We also
refer to Faliszewski and Procaccia [103] for a recent survey on Manipulation.

Konczak and Lang [148] introduced the Possible Winner problem directly gen-
eralizing Manipulation (see Subsection 2.1.2) and obtained first computational com-
plexity results for several common voting rules. Their results have been extended by a
series of publications (see Chapter 7 for more details). The second part of this work is
concerned with a multivariate complexity analysis of Possible Winner for positional
scoring rules.
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2.2.3 Control

Similar to the idea of preventing strategic voting, Bartholdi et al. [13] suggested com-
putational hardness as a “shield” against external control of an election (see Subsec-
tion 2.1.3). Today, many works provide hardness results based on worst-case com-
plexity for many different types of voting rules [88, 90, 99, 131, 157, 169] (see also
Chapter 11) including extended settings such as multi-mode attacks [95]. However, the
corresponding NP-hardness results do not hold for all realistic settings. For example,
considering so-called single-peaked preferences, one can decide for many voting rules in
polynomial time whether it is possible to control (or manipulate) an election [41, 101].
In the third part of this thesis, we consider control by adding or deleting candidates
from a parameterized complexity point of view, showing that (from a worst-case per-
spective) the computational hardness still holds for realistic settings such as adding
or deleting only a bounded number of candidates.

2.3 Multivariate algorithmic results

Voting problems naturally come with meaningful parameters such as the numbers of
candidates or votes, the size of the coalition in Manipulation, or the number of added
candidates when controlling an election. Although previous studies already provided
some results in this direction, until recently, there were no systematic investigations
with respect to the multivariate computational complexity of voting problems. In par-
ticular, the first work explicitly concerned with parameterized complexity was provided
in 2007 by Christian et al. [56] and a survey by Lindner and Rothe [156] from 2008
comprises the papers [20, 26, 29, 56, 99] concerned with parameterized algorithmics for
voting problems (three of them being part of this thesis). In the following, we discuss
some famous examples for multivariate algorithmic results as well as all parameterized
complexity results for voting problems of which we are aware. We explicitly include
the results from this thesis and the corresponding papers since they are “interlaced”
with many of the other works. Omitting them would yield an incomplete picture for
some of the problems. The results are ordered according to the type of problem.

Results for winner determination. Besides showing the NP-hardness of deter-
mining a Dodgson winner (see Chapter 6 for a definition), Bartholdi et al. [12] pro-
vided an integer linear program for which the number of variables is bounded by the
number of candidates. They also deduced polynomial-time solvability for a constant
number of candidates by using a result from Lenstra [154]. As discussed in Subsec-
tion 1.3.3, this also implies fixed-parameter tractability. In this sense, Bartholdi et al.
provided a fixed-parameter tractability result before this concept had been introduced
with Downey and Fellows groundbreaking monograph [76]. Some improvements of
the integer linear program also leading to fixed-parameter tractability have been de-
vised by McCabe-Dansted [163]. Similarly, fixed-parameter tractability with respect
to the number of candidates for determining a Young winner follows from an ILP
provided by Young [203] in combination with Lenstra’s result. We devised the param-
eterized complexity for Dodgson and Young elections with respect to problem-specific
parameterizations measuring corresponding “edit distances” from being a Condorcet
winner [26, 27] (see Chapter 6). Our results comprise a dynamic programming algo-
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rithm as well as parameterized reductions. Recent work [106] further extended our
results for Dodgson by showing W[1]-hardness with respect to the number of votes
and providing evidence for the nonexistence of a polynomial kernel with respect to the
edit distance.

Elkind et al. [82] devised the following “general” result. Using Lenstra’s theorem,
they showed fixed-parameter tractability with respect to the number of candidates for
the winner determination for a broad class of voting rules defined under a so-called
“distance rationalizability framework”. This can be considered as a generalization
of some of the previous results. For example, Dodgson’s rule is contained in the
considered class of voting rules.

For computing Kemeny rankings, we initiated a parameterized complexity anal-
ysis with respect to several meaningful parameterizations [20, 22, 21] (see Chap-
ter 3). Meanwhile, these results have been extended and partially improved in several
works [142, 110, 189] (see Section 3.8 for a detailed discussion). In further work [24] we
extended the range of techniques by providing polynomial-time data reduction rules,
also leading to fixed-parameter tractability. Finally, we experimentally showed their
practical usefulness [16].

Some voting systems are naturally reflected by problems on (directed) graphs. For
example, the Slater Ranking problem (see e.g. [57]) is the same problem as Feed-
back Arc Set for which a range of parameterized algorithmic results exist [3, 52, 72].
A further example regards tournament solutions that can be understand as selecting
a set of winners based on a complete and asymmetric relation on a set of candidates.
Some tournament solutions, such as Banks or the Tournament Equilibrium Set, are of
particular interest in computational social choice [42]. Very recently, Brandt et al. [42]
identified a natural parameterization for tournament solutions that are “composition-
consistent” and provided corresponding fixed-parameter tractability results.

Results for possible winner determination. Part II of this work comprises a
multivariate complexity analysis of Possible Winner for positional scoring rules
based on the publications [15, 18, 19, 28]. Previous to these publications, Xia and
Conitzer [194] provided an NP-hardness results holding even when a parameter mea-
suring the amount of incompleteness is of constant value (see Chapter 8 for more
details).

Results for manipulation. Conitzer et al. [65] investigated the computational com-
plexity of Manipulation depending on the number of candidates for nine common
voting rules. For most of the considered rules they provided a small positive integer s
such that weighted Manipulation is NP-hard if and only if the number of candidates
is at least s. Hemaspaandra and Hemaspaandra [129] obtained a full characterization
of the computational complexity for weighted Manipulation for all scoring rules for a
fixed number of candidates; they mainly obtained NP-hardness. On the positive side,
Conitzer et al. [65] show fixed-parameter tractability with respect to the number m of
candidates for manipulating the “Single Transferable Vote (STV)” rule by one voter.
The corresponding algorithm runs in 1.62m · poly time.

Manipulation for STV is NP-hard even for coalition size one [10]. Hence, there is
no hope for fixed-parameter tractability with respect to the parameter coalition size.
The same holds true for several other common voting systems for which Manipula-
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tion becomes NP-hard for every constant coalition size greater than one [102, 200].

Results for bribery. In the scenario of Swap Bribery, each voter assigns a certain
price for swapping the position of two consecutive candidates in his preference list.
Very recently, Dorn and Schlotter [74] investigated the parameterized complexity of
Swap Bribery with respect to several natural parameters. They provide classical
and parameterized hardness results as well as fixed-parameter tractability results. In
particular, they give problem kernelizations for two combined parameters.

Results for control. Faliszewski et al. [99] devised a systematic analysis of the
computational complexity of controlling Copeland voting systems. One of their main
contributions is to show NP-hardness for all previously studied types of control for
the constructive case. In addition, they obtained fixed-parameter tractability results
with respect to the number of votes or with respect to the number of candidates for
some types of control. In Chapter 11, we extend the study of control in Copeland and
plurality voting for control by adding and deleting candidates. More specifically, we
investigate the parameterized complexity with respect to the number of added/deleted
candidates. Some additional results in this direction (partially “reproving” already
known results) have been provided by Liu et al. [157]. Recently, Erdély and Fellows [89]
considered the parameterized complexity of control by adding/deleting candidates
or votes for fallback voting, a voting system introduced by Brams and Sanver [39].
An other recent work [158] investigates the parameterized complexity of control for
maximin.

Results for lobbying. The first work (explicitly) concerned with parameterized
complexity for voting problems was provided by Christian et al. [56], showing W[2]-
completeness for Lobbying. Erdély et al. [85] further extended the lobbying problem
to a probabilistic setting and besides other results provided several fixed-parameter
tractability as well as W[2]-completeness results.





Part I

Winner Determination

We accomplish a multivariate complexity analysis for NP-hard problems
corresponding to the winner determinination for three famous voting sys-
tems going back to Kemeny, Dodgson, and Young, respectively. Herein, the
Kemeny voting system plays the most important role and the correspond-
ing results comprise three chapters. Kemeny’s voting system is concerned
with optimally aggregating a multiset of preference lists into a consensus
list. In Chapter 3, we study the parameterized complexity of the underlying
decision problem Kemeny Score with respect to several different param-
eterizations. This includes a discussion about the relevance and motivation
of the parameterizations illustrating the usefulness of a multivariate com-
plexity analysis for voting problems. Chapter 4 further extends this study
by introducing the concept of “partial kernelization”. Based on this, we de-
vise an additional result for the parameter measuring the average distance
between pairs of input votes. Moreover, the partial kernelization concept
naturally leads to additional parameterizations. In Chapter 5, we provide
experimental results for computing optimal Kemeny rankings.
The last chapter of this part focuses on Dodgson and Young elections.
In both voting systems the score of a candidate measures the “distance”
from a Condorcet winner using different editing operations. We oppose
the parameterized complexities of these two voting systems by showing
fixed-parameter tractability with respect to the score for Dogson and W[2]-
completeness with respect to the score for Young.





Chapter 3
Parameterizations for Kemeny

The problem of aggregating several preference lists into a consensus list is naturally
modelled by an election system that goes back to Kemeny: Given a multiset of pref-
erence lists, one searches for a preference list such that the sum of the “distances”
from this preference list to all remaining preference lists is minimized. Herein, the
distance between two votes is measured by the number of inversions. This chapter is
based on the paper [21] which initiated a multivariate complexity analysis for comput-
ing optimal Kemeny rankings by systematically identifying and analyzing meaningful
parameterizations.

Besides the three obvious parameters “number of votes”, “number of candidates”,
and “solution size” (called Kemeny score), we consider further structural parameter-
izations. More specifically, we show that the Kemeny score (and a corresponding
Kemeny consensus) of an election can be computed efficiently whenever the average
pairwise distance between two input votes is not too large. In other words, Kemeny
Score is fixed-parameter tractable with respect to the parameter “average pairwise
Kendall-Tau distance” da. Moreover, we extend our studies to the parameters “max-
imum range” and “average range” of positions a candidate takes in the input votes.
Whereas Kemeny Score remains fixed-parameter tractable with respect to the pa-
rameter “maximum range”, it becomes NP-complete in case of an average range of
two. Finally, we extend some of our results to votes with ties and incomplete votes,
where in both cases one no longer has permutations as input. As discussed in the
corresponding sections of this chapter, several of our results from [21] meanwhile have
been improved [142, 189] and the range of parameterizations has been extended [161].

3.1 Introduction

Kemeny’s voting scheme goes back to the year 1959 [143] and was later specified
by Levenglick [155]. It can be described as follows. A “Kemeny consensus” is a
preference list that is “closest” to the preference lists provided by the votes: For
each pair of votes v, w, the so-called Kendall-Tau distance (KT-distance for short)
between v and w, also known as the number of inversions between two permutations,
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is defined as
dist(v, w) =

∑

{a,b}⊆C

dv,w(a, b),

where the sum is taken over all unordered pairs {a, b} of candidates, and dv,w(a, b) is
set to 0 if v and w rank a and b in the same order, and is set to 1, otherwise. Using
divide and conquer, the KT-distance can be computed in O(m · log m) time (see, e.g.,
[145]). The score of a preference list l with respect to an election (V, C) is defined as

∑

v∈V

dist(l, v).

A preference list l with the minimum score is called Kemeny consensus (or Kemeny
ranking) of (V, C) and its score

∑
v∈V dist(l, v) is the Kemeny score of (V, C). The

central problem considered in this and the following two chapters is as follows:

Kemeny Score
Input: An election (V, C) and a positive integer k.
Question: Is the Kemeny score of (V, C) at most k?

All our algorithms do not only decide Kemeny Score but can also compute a
corresponding Kemeny consensus. The computation of a Kemeny consensus has nu-
merous applications, ranging from building meta-search engines for the web or spam
detection [77] over databases [92, 187] to the construction of genetic maps in bioinfor-
matics [138]. Kemeny rankings are also desirable in classical voting scenarios such as
the determination of a president (see, for example, www.votefair.org) or the selec-
tion of the best qualified candidates for job openings. The wide range of applications
is due to the fulfillment of many desirable properties from the social choice point of
view. For example, Kemeny’s voting system is the only voting system which is neu-
tral, consistent, and Condorcet [201]. A Kemeny consensus can also be considered as
“maximum likelihood estimator” under the assumption that there is an unobserved
“correct” ranking and the votes are noisy estimates of this [60] (see also [69, 62] for
work in this direction).

We briefly mention that Kemeny Score is closely related to Weighted Feed-
back Arc Set, where, given a directed graph with edge weights, one seeks for a
minimum-weight set of arcs whose deletion leads to an acyclic graph. The unweighted
version Feedback Arc Set directly corresponds to a voting system proposed by
Slater for which the computational complexity has been investigated by Conitzer [57].

Related work. Bartholdi et al. [12] showed that Kemeny Score is NP-complete.
This remains true even when restricted to instances with only four votes [77, 78].
The corresponding proof contained a small error which was fixed by Biedl et al. [32].
Hemaspaandra et al. [132] provided further, exact classifications of the classical com-
putational complexity of Kemeny elections. More specifically, while Kemeny Score
is NP-complete, they provided PNP

‖ -completeness results for other, more general ver-
sions of the problem.

Given the computational hardness of Kemeny Score on the one hand and its
practical relevance on the other hand, polynomial-time approximation algorithms have
been studied. The Kemeny score can be approximated to a factor of 8/5 by a de-
terministic algorithm [192] and to a factor of 11/7 by a randomized algorithm [2].

www.votefair.org
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Table 3.1: Overview of the main results provided in this chapter. To make the running
times easier to read, we use the O∗-notation that allows to omit polynomial factors.

Parameter Running time

Number of candidates m O∗(2m) (Section 3.3)

Kemeny score k O∗(1.53k) (Section 3.4)

Maximum range of candidate positions r O∗(32r) (Subsection 3.6.1)

Average range of candidate positions ra NP-c for ra ≥ 2 (Subsection 3.6.2)

Average KT-distance da O∗(16da) (Section 3.5)

A polynomial-time approximation scheme (PTAS) has been developed by Kenyon-
Mathieu and Schudy [144]. However, its running time is impractical. Schalekamp
and van Zuylen [185] experimentally evaluated the quality of different approximation
algorithms and heuristics.

Regarding the computation of an exact Kemeny consensus, Conitzer, Davenport,
and Kalagnanam [68, 59] performed computational studies using heuristic approaches
such as greedy and branch-and-bound. These experimental investigations focus on
computing strong admissible bounds for speeding up search-based heuristic algorithms.
In contrast, our focus is on exact algorithms with provable asymptotic running time
bounds for the developed algorithms.

Regarding parameterized complexity of Kemeny Score, we initiated a study in
the conference article [20] which was further extended in the conference article [22].
These two articles were combined to the journal article [21]. Recent work [142, 161,
189] improved some of our results and investigated additional parameterizations. Spe-
cific results will be discussed and opposed to our results in the corresponding sections.
Section 3.8 provides an overview of the state of the art. The following subsection
introduces the parameterization and results from [21] described in this chapter. In ad-
dition, the following two chapters extend this study by developing data reduction rules
(Chapter 4) and providing an experimental analysis of some of our fixed-parameter
algorithms (Chapter 5).

3.2 Parameterizations and our results.

This section overviews the considered parameterizations and our corresponding results.
We also discuss the “art” of finding different, practically relevant parameterizations of
Kemeny Score. Besides the considerations for the three obvious parameters “num-
ber of votes”, “number of candidates”, and “Kemeny score”, our paper focusses on
structural parameterizations, that is, structural properties of input instances that may
be exploited to develop efficient algorithms. Our results are summarized in Table 3.1
and will be explained in the following. In addition, we extend some of our findings to
the cases where ties within votes are allowed and to incomplete votes where not all
candidates are ranked (see Section 3.7). Note that studying the parameter “number of
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votes” is pointless because the problem is already NP-complete for only four votes [77].

Number of candidates. By trying all possible permutations of the m candidates,
one trivially attains an efficient algorithm if m is very small. The corresponding
combinatorial explosion m! in the parameter is fairly large, though. Using dynamic
programming, we can improve this to an algorithm running in O(2m · m2 · n) time
where n denotes the number of votes.

Kemeny Score. For the Kemeny score k, we derive an algorithm solving Kemeny
Score in O(1.53k+m2n) time. This algorithm is based on a problem kernelization and
a depth-bounded search tree. This may be considered as the “canonical parameteriza-
tion” because the parameter measures the “solution size”—however, it is conceivable
that in many applications the value of k may not be small.

Maximum and average KT-distance. The maximum KT-distance of an elec-
tion (V, C) is defined as

dmax := max
u,v∈V,u6=v

dist(u, v).

Analogously, the average KT-distance da is defined as

da :=
1

n(n − 1)
·

∑

u,v∈V,u6=v

dist(u, v).

Since dmax ≥ da, any fixed-parameter algorithm with respect to da is also a fixed-
parameter algorithm with respect to dmax. Fixed-parameter tractability with respect
to the maximum KT-distance allows for an efficient computation of a Kemeny consen-
sus whenever every pair of votes is similar. For the parameter average KT-distance,
an efficient computation is possible whenever the votes are similar enough on average.
Thus, it can also cope with “outlier votes”.

Let us briefly discuss the naturalness of average parameterization for the compu-
tation of Kemeny rankings. It is plausible that the aggregation of several preference
lists is only meaningful when the given input lists have a sufficiently high degree of
average similarity. Otherwise the median consensus found may be meaningless since it
tries to fit strongly opposing demands. Studying the parameterization with respect to
the average KT-distance also naturally reflects a view on voting proposed by Conitzer
and Sandholm [62]. More specifically, they pointed out that one potential view of
voting is that there exists a “correct” outcome (ranking), and each vote corresponds
to a noisy perception of this correct outcome. Some experimental studies [57, 59]
observed that for computing a Kemeny consensus the running time increases if the
input instances become noisier. Showing fixed-parameter tractability with respect
to the average KT-distance hence can also be considered as an explanation for this
experimentally observed behavior.

We show fixed-parameter tractability with respect to the “average KT-distance”
by providing a dynamic programming algorithm running with an exponential worst-
case running time factor of 16da. Note that in the meantime, this factor has been
improved to 5.83da by Simjour [189] and asymptotically further improved to 2O(

√
da)

by Karpinski and Schudy [142]. Moreover, in Chapter 4, we provide polynomial-time
data reduction rules also leading to fixed-parameter tractability with respect to da.
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Maximum and average candidate range. We introduce structural parameteri-
zations based on the range of positions a candidate can assume. Let the position of
a candidate c in a vote v be the number of candidates that are better than c in v.
That is, the leftmost (and best) candidate in v has position 0 and the rightmost has
position m−1. Let v(c) denote the position of c in v. For an election (V, C) and c ∈ C,
the range of c is defined as

r(c) := max
v,w∈V

{|v(c) − w(c)|} + 1.

The maximum range rmax of an election is defined as rmax := maxc∈C r(c) and the
average range ra is defined as

ra :=
1

m

∑

c∈C

r(c).

We show that Kemeny Score can be solved in O(32rmax ·(r2
max ·m+rmax ·m2 log m·

n)+n2 ·m log m) time by a dynamic programming approach. If we study the parameter
average range instead of maximum range, Kemeny Score turns NP-complete already
for constant parameter values.

The parameterization by position range might reflect the situation that whereas
voters can be more or less decided concerning groups of candidates (e.g., political par-
ties), they may be quite undecided and, thus, unpredictable, concerning the ranking
within these groups. If these groups are small this can also imply small range values,
thus making the quest for a fixed-parameter algorithm in terms of range parameteri-
zation attractive.

3.2.1 Range versus distance parameterizations

The following two concrete scenarios underpin the usefulness of “range” and “KT-
distance based” parameterizations. First, consider a survey about the prestige of
different car brands. A likely assumption is that every brand will only appear at
a certain “range” in all preference lists since all participants (voters) have a similar
opinion about every car brand (candidate). Hence, this may lead to an election with
a small maximum range. Second, let us change the question of the survey from the
“most prestigious car brand” into the “kind of car the participants would like to drive”.
For this question, it might happen that the same kind of car is in the top position
in one preference list (maybe because it is the fastest one) and in the last position
in another preference list (maybe because it also has the highest mileage). Then, we
cannot assume to have a small maximum range. However, it is still reasonable that
on average the participants have similar preferences, for example, most participants
would prefer to drive a “Mercedes” to a “Škoda” because they care more about prestige
than about pollution.

In what follows, we provide evidence that the value of the “average KT-distance”
can significantly differ from the “maximum/average range of position” for an elec-
tion. More specifically, there are input instances of Kemeny Score having a small
range value and a large average KT-distance, and vice versa. This justifies separate
investigations for both parameterizations.
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v1 : a > b > c > d > e > f > . . .
...

vi : a > b > c > d > e > f > . . .
vi+1 : b > a > d > c > f > e > . . .

...
v2i : b > a > d > c > f > e > . . .

Figure 3.1: Election with small maximum range but large average KT-distance.

v1 : a > b > c > d > e > f > . . .
v2 : b > c > d > e > f > . . . > a
v′1 : a > b > c > d > e > f > . . .

...

Figure 3.2: Election with small average KT-distance but large maximum range.

First, we provide an example where one can observe a small maximum candidate
range whereas one has a large average KT-distance, see Figure 3.1. The election
in Figure 3.1 consists of n = 2i votes such that there are two groups of i identical
votes. The votes of the second group are obtained from the first group by swapping
neighboring pairs of candidates. Clearly, the maximum range of candidates is two.
However, for m candidates the average KT-distance da is

da =
2 · (n/2)2 · (m/2)

n(n − 1)
> m/4

and, thus, da is unbounded for an unbounded number of candidates.

Observation 3.1. There are elections with maximum range two and an unbounded
average KT-distance.

Second, we present a simple example where the average KT-distance is small but
the maximum range of candidates is large, see Figure 3.2. In the election of Figure 3.2
all votes are equal except that candidate a is at the last position in the second vote,
but on the first position in all other votes. The maximum range equals the range of
candidate a and hence the number of candidates. In contrast, by adding a sufficient
number of copies of the first vote the average KT-distance can be made smaller than
one.

Observation 3.2. There are elections with average KT-distance smaller than one and
an unbounded maximum range.

With some effort we can extend this observation from maximum to average range.
To this end, construct an election consisting of m candidates and the following votes.
Let Vm be a set of m votes such that every candidate is in one of the votes at the
first and in one of the votes at the last position; the remaining positions can be filled
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arbitrarily. Then, for some N > m3, add N further votes VN in which all candidates
have the same arbitrary order. Let D(Vm) (D(VN )) be the average KT-distance within
the votes of Vm (VN ) and D(VN , Vm) be the average KT-distance between pairs of votes
with one vote from VN and the other vote from Vm. Since m2 is an upper bound for the
pairwise (and average) KT-distance between any two votes, it holds that D(Vm) ≤ m2,
D(VN ) = 1, and D(VN , Vm) ≤ m2. Moreover, we have m · (m − 1) ordered pairs of
votes within Vm, N · m pairs between VN and Vm, and N · (N − 1) pairs within VN .
Since N > m3 it follows that

da ≤ m(m − 1) · m2 + Nm · m2 + N(N − 1) · 1
N(N − 1)

≤ 3.

In contrast, the range of every candidate is m, thus the average range is m.

Observation 3.3. There are elections with average KT-distance at most three but an
unbounded average range.

3.3 Parameterization by the number of candidates

Simply trying all m! permutations of candidates already leads to the fixed-parameter
tractability of Kemeny Score with respect to the “number of candidates” m. By
means of dynamic programming, we improve this to an algorithm running in O(2m ·m2·
n) time. The same result can also be obtained by a reduction to Feedback Arc Set
on Tournaments [78] and a corresponding exact algorithm [181]. In the following,
we briefly sketch the algorithm that is implemented and experimentally evaluated in
Chapter 5.

Dynamic programming algorithm. For each subset C′ ⊆ C compute the Kemeny
score of the given election (V, C) restricted to C′. The recurrence for a given subset C′

is based on considering every subset C′′ ⊆ C′ where C′′ is obtained by deleting a
single candidate c from C′. Let l′′ be a Kemeny consensus for the election system
restricted to C′′. For every c from C′, compute the score of the permutation l′ of C′

obtained from l′′ by putting c in the first position and take the minimum score over
all corresponding possibilities as score for C′. Then, it is not hard to observe that this
score is the Kemeny score of the election restricted to C′. We refer to [22] for a formal
proof leading to the following.

Theorem 3.1. Kemeny Score can be solved in O(2m · m2 · n) time.

3.4 Parameterization by the Kemeny score

In this section, we show that Kemeny Score is fixed-parameter tractable with respect
to the Kemeny score k. Our result is based on a kernelization and a search tree
algorithm. This result has been further improved in recent work [189, 142] by using
different approaches (see Section 3.8 for more details). In the following, we sketch
our results anyway since they are useful to understand some basic properties of the
Kemeny score problem and the performance of the search tree algorithm will be
experimentally evaluated in Chapter 5.
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Our results rely on the following lemma, whose correctness directly follows from
the extended Condorcet criterion [191].

Lemma 3.1. Let a and b be two candidates. If a > b in all votes, then every Kemeny
consensus fulfils ”a > b”.

Candidate pairs for which the relative order in a Kemeny consensus is not deter-
mined by Lemma 3.1 are called conflict pairs.

Problem Kernel. When applied to an input instance (V, C, k) of Kemeny Score,
the following polynomial-time executable data reduction rules yield an “equivalent”
election with at most 2k candidates and at most 2k votes. We first describe a reduction
rule reducing the number of candidates and then present a reduction rule reducing the
number of votes.

Rule 3.1. Delete every candidates that is in no conflict pair.

The soundness of Rule 3.1 can be seen as follows. If a candidate c is not part
of a conflict pair, then there exists a partition of the remaining candidates into two
subsets C1 and C2 such that in all votes all candidates c1 ∈ C1 are positioned better
than c and all candidates c2 ∈ C2 are positioned worse than c. Thus, due to Lemma 3.1,
the position of c in every Kemeny consensus is already determined and the removal
of c does not affect the Kemeny score.

We apply a second simple data reduction rule to get rid of too many identical
votes.

Rule 3.2. If there are more than k votes in V identical to a preference list l, then
return “yes” if the score of l is at most k; otherwise, return “no”.

To see the soundness of Rule 3.2, assume that we have a Kemeny consensus that
is not identical to l. Then, the KT-distance between l and this Kemeny consensus
is at least 1. Since we have more than k copies of l, the Kemeny score exceeds k, a
contradiction.

Based on the two reduction rules, we achieve the following result.

Theorem 3.2. Kemeny Score admits a problem kernel with at most 2k votes over
at most 2k candidates. It can be computed in O(m2n) time for m candidates and n
votes.

Proof. After applying Rule 3.1, every remaining candidate is part of at least one
conflict pair. If there are more than 2k such candidates, then they must form more
than k conflict pairs. For each conflict pair, there are two possibilities to place the
candidates of this pair in any preference list. For both possibilities, the score of this
preference list is increased by at least one, implying that, with more than k dirty pairs,
there is no preference list with a score at most k. Hence, after having exhaustively
applied Rule 3.1, there are at most 2k candidates.

The bound on the number of votes is achieved as follows. Between two distinct
preference lists, the KT-distance is at least 1. After applying Rule 3.2, a preference list
has at most k “copies” in V . Therefore, if n > 2k, then the score of every preference
list is at least k+1. Hence, after having exhaustively applied Rule 3.2, in a yes-instance
there are at most 2k votes. The running time of both rules is easy to see [22].
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3 4 4 655

a > b > c a > c > b b > a > c b > c > a c > a > b c > b > a

vote 1: a > b > c

vote 2: a > c > b

vote 3: b > c > a

Figure 3.3: An illustration of the branching for the conflict triple {a, b, c} in the election
given by votes 1, 2, and 3. For the six orders of the three candidates a, b, and c one
can reduce the Kemeny score at the search tree node by the amount depicted next
to the corresponding arrow. For example, for the leftmost possibility, the score of
“a > b > c” is three since its distance to vote 1 is zero, the distance to vote 2 is one,
and the distance to vote 3 is two.

Search tree algorithm. Branching into conflict pairs directly leads to a search
tree of size at most 2k: At each search tree node we can branch into the two possible
relative orders of a conflict pair and in each case we can decrease the parameter at
least by one. For all remaining candidate pairs their relative order is already fixed due
to Lemma 3.1. We briefly discuss how a more refined branching leads to a search tree
of smaller size. Herein, the basic idea is to branch into “conflict tuples” consisting of
more than two candidates.

Definition 3.1. For a candidate subset Cs ⊆ C consisting of s candidates, consider the
auxiliary graph having one vertex for every ci ∈ Cs and an edge between the vertices
corresponding to ci, cj ∈ Cs if ci and cj form a conflict pair. If the constructed graph
is connected, then Cs forms a conflict s-tuple.

An example for branching into conflict triples is provided in Figure 3.3. The corre-
sponding branching vector is (6, 5, 5, 4, 4, 3) yielding the branching number 1.52. After
branching into all conflict s-tuples for a fixed s ≥ 2, it remains to determine the
relative order within all conflict tuples of size smaller than s. Since two candidates
corresponding to disjoint conflict tuples cannot form a conflict pair, the order of pos-
sibly remaining conflict tuples can be decided locally in O(s!) time [22, 44]. By a
systematic analysis of the case distinctions based on conflict triples and making use
of the data reduction rules, one can show the following.

Theorem 3.3 ([22]). Kemeny Score can be solved in O(1.53k + m2n) time.

Bredereck [44] showed that branching into four-tuples further improves the search
tree size to O(1.508k). The further improvements are based on different approaches [189,
142]. The above search tree algorithm also works for instances in which the votes are
weighted by positive integers. More specifically, one can use exactly the same search
tree, but may gain some further (heuristic) speed-up by decreasing the parameter
value according to the weights.

3.5 Parameterization by the average KT-distance

In this section, we further extend the range of parameterizations by providing a fixed-
parameter algorithm with respect to the parameter “average KT-distance” da. We
start with showing how the average KT-distance can be used to provide an upper
bound on the range of positions that a candidate can take in any optimal Kemeny
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consensus. Based on this crucial observation, we then state the algorithm running
in 16da · poly(n, m) time. The currently asymptotically fastest fixed-parameter al-
gorithm with respect to da is provided by Karpinski and Schudy [142] and runs in

2O(
√

da) · poly(n, m) time. We provide our result anyway since, first, the following
Observation (Subsection 3.5.1) seems to be of independent interest and, second, the
dynamic programming procedure (Subsection 3.5.2) is needed in exactly the same
form to show fixed-parameter tractability with respect to the “maximum range” of a
candidate.

Within this section, let d := ⌈da⌉. For an election (V, C) and a candidate c ∈ C,
the average position pa(c) of c is defined as

pa(c) :=
1

n
·
∑

v∈V

v(c).

3.5.1 A crucial observation

Our fixed-parameter tractability result with respect to the “average KT-distance” is
based on the following lemma establishing a connection between the average position
of a candidate and its position in a Kemeny consensus. Note that the recent fixed-
parameter algorithms with respect to da [189, 142] do not provide results in this
direction.

Lemma 3.2. Let da be the average KT-distance of an election (V, C) and d = ⌈da⌉.
Then, in every Kemeny consensus l, for every candidate c ∈ C with average posi-
tion pa(c), it holds that pa(c) − d < l(c) < pa(c) + d.

Proof. The proof is by contradiction and consists of two claims: First, we show that
we can find a vote with Kemeny score less than d · n, that is, the Kemeny score of
the instance is less than d ·n. Second, we show that in every Kemeny consensus every
candidate is in the claimed range. More specifically, we prove that every consensus in
which the position of a candidate is not in a “range d of its average position” has a
Kemeny score greater than d · n, a contradiction to the first claim.

Claim 1: K-score(V, C) < d · n.

Proof of Claim 1: To prove Claim 1, we show that there is a vote v ∈ V with∑
w∈V dist(v, w) < d ·n, implying this upper bound for an optimal Kemeny consensus

as well. By definition,

da =
1

n(n − 1)
·

∑

v,w∈V,v 6=w

dist(v, w) (3.1)

⇒ ∃v ∈ V with da ≥ 1

n(n − 1)
· n ·

∑

w∈V,v 6=w

dist(v, w) (3.2)

=
1

n − 1
·

∑

w∈V,v 6=w

dist(v, w) (3.3)

⇒ ∃v ∈ V with da · n >
∑

w∈V,v 6=w

dist(v, w). (3.4)

Since we have d = ⌈da⌉, Claim 1 follows directly from Inequality (3.4).
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The next claim shows the given bound on the range of possible candidates positions.

Claim 2: In every optimal Kemeny consensus l, every candidate c ∈ C fulfills
pa(c) − d < l(c) < pa(c) + d.

Proof of Claim 2: We start by showing that, for every candidate c ∈ C, we
have

K-score(V, C) ≥
∑

v∈V

|l(c) − v(c)|. (3.5)

Note that, for every candidate c ∈ C, for two votes v, w we must have dist(v, w) ≥
|v(c) − w(c)|. Without loss of generality, assume that v(c) > w(c). Then, there must
be at least v(c)−w(c) candidates that have a smaller position than c in v and that have
a greater position than c in w. Further, each of these candidates increases the value
of dist(v, w) by one. Based on this, Inequality (3.5) directly follows as, by definition,
K-score(V, C) =

∑
v∈V dist(v, l).

To simplify the proof of Claim 2, in the following, we shift the positions in l such
that l(c) = 0. Accordingly, we shift the positions in all votes in V , that is, for every
v ∈ V and every a ∈ C, we decrease v(a) by the original value of l(c). Clearly,
shifting all positions does not affect the relative differences of positions between two
candidates. Then, let the set of votes in which c has a nonnegative position be V +

and let V − denote the remaining set of votes, that is, V − := V \V +.
Now, we show that if candidate c is placed outside of the given range in an optimal

Kemeny consensus l, then K-score(V, C) > d · n. The proof is by contradiction. We
distinguish two cases:

Case 1: l(c) ≥ pa(c) + d.
As l(c) = 0, in this case pa(c) becomes negative. Then,

0 ≥ pa(c) + d ⇔ −pa(c) ≥ d.

It follows that |pa(c)| ≥ d. The following shows that Claim 2 holds for this case.

∑

v∈V

|l(c) − v(c)| =
∑

v∈V

|v(c)| (3.6)

=
∑

v∈V +

|v(c)| +
∑

v∈V −

|v(c)|. (3.7)

Next, replace the term
∑

v∈V − |v(c)| in (3.7) by an equivalent term that depends
on |pa(c)| and

∑
v∈V + |v(c)|. For this, use the following, derived from the definition of

pa(c):

n · pa(c) =
∑

v∈V +

|v(c)| −
∑

v∈V −

|v(c)|

⇔
∑

v∈V −

|v(c)| = n · (−pa(c)) +
∑

v∈V +

|v(c)|

= n · |pa(c)| +
∑

v∈V +

|v(c)|.
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The replacement results in

∑

v∈V

|l(c) − v(c)| = 2 ·
∑

v∈V +

|v(c)| + n · |pa(c)|

≥ n · |pa(c)| ≥ n · d.

This says that K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Case 2: l(c) ≤ pa(c) − d.
Since l(c) = 0, the condition is equivalent to 0 ≤ pa(c) − d ⇔ d ≤ pa(c), and we have
that pa(c) is nonnegative. Now, we show that Claim 2 also holds for this case.

∑

v∈V

|l(c) − v(c)| =
∑

v∈V

|v(c)| =
∑

v∈V +

|v(c)| +
∑

v∈V −

|v(c)|

≥
∑

v∈V +

v(c) +
∑

v∈V −

v(c) = pa(c) · n ≥ d · n.

Thus, also in this case, K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Based on Lemma 3.2, for every position we can define the set of candidates that
can take this position in an optimal Kemeny consensus. The subsequent definition
will be useful for the formulation of the algorithm.

Definition 3.2. Let (V, C) be an election. For every integer i ∈ {0, . . . , m − 1}, let
Pi denote the set of candidates that can assume the position i in an optimal Kemeny
consensus, that is, Pi := {c ∈ C | pa(c) − d < i < pa(c) + d}.

Using Lemma 3.2, we can easily show the following.

Lemma 3.3. For every position i, |Pi| ≤ 4d.

Proof. The proof is by contradiction. Assume that there is a position i with |Pi| > 4d.
Due to Lemma 3.2, for every candidate c ∈ Pi the positions which c may assume in an
optimal Kemeny consensus can differ by at most 2d−1. This is true because, otherwise,
candidate c could not be in the given range around its average position. Then, in a
Kemeny consensus, each of the at least 4d + 1 candidates must hold a position that
differs at most by 2d−1 from position i. As there are only 4d−1 such positions (2d−1
on the left and 2d − 1 on the right of i), one obtains a contradiction.

3.5.2 Dynamic programming algorithm

The dynamic programming algorithm for Kemeny Score exploits the fact that every
candidate can only appear in a fixed range of positions in an optimal Kemeny con-
sensus (see Lemma 3.2). The basic idea can be described as follows. The algorithm
“generates” a Kemeny consensus from the left to the right. It tries out all possibil-
ities for ordering the candidates locally and then combines these local solutions to
yield an optimal Kemeny consensus. More specifically, according to Lemma 3.3, the
number of candidates that can take a position i in an optimal Kemeny consensus for
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any i ∈ {0, . . . , m − 1} is at most 4d. Thus, for position i, we can test all possible
candidates. Having chosen a candidate for position i, the remaining candidates that
could also assume i must either be left or right of i in a Kemeny consensus. Thus, we
test all possible two-partitionings of this subset of candidates and compute a “partial”
Kemeny score for every possibility. For the computation of the partial Kemeny scores
at position i we make use of the partial solutions computed for the position i − 1.

Definitions for the algorithm. For i ∈ {0, . . . , m − 1}, let I(i) denote the set of
candidates that could be “inserted” at position i for the first time, that is,

I(i) := {c ∈ C | c ∈ Pi and c /∈ Pi−1}.
Let F (i) denote the set of candidates that must be “forgotten” at latest at position i,
that is,

F (i) := {c ∈ C | c /∈ Pi and c ∈ Pi−1}.
For our algorithm, it is essential to subdivide the overall Kemeny score into partial

Kemeny scores (pK). More precisely, for a candidate c and a subset R of candidates
with c /∈ R, we set

pK(c, R) :=
∑

c′∈R

∑

v∈V

dR
v (c, c′),

where for c′ ∈ R we have dR
v (c, c′) := 0 if in v we have c > c′, and dR

v (c, c′) := 1,
otherwise. Intuitively, the partial Kemeny score denotes the score that is “induced”
by candidate c and the candidate subset R if the candidates of R have higher positions
than c in an optimal Kemeny consensus. Then, for a Kemeny consensus l := c0 >
c1 > · · · > cm−1, the overall Kemeny score can be expressed by partial Kemeny scores
as follows.

K-score(V, C) =

m−2∑

i=0

m−1∑

j=i+1

∑

v∈V

dv,l(ci, cj) (3.8)

=

m−2∑

i=0

∑

c′∈R

∑

v∈V

dR
v (ci, c

′) with R := {cj | i < j < m} (3.9)

=

m−2∑

i=0

pK(ci, {cj | i < j < m}). (3.10)

Next, consider the corresponding three-dimensional dynamic programming table T
containing an entry for every position i, every candidate c that can assume i, and
every candidate subset C′ ⊆ Pi\{c}. The entry stores the “minimum partial Kemeny
score” over all possible orders of the candidates of C′ under the condition that c takes
position i and all candidates of C′ take positions smaller than i. To define the dynamic
programming table formally, we need some further notation.

Let Π(C′) denote the set of all possible orders of the candidates in C′, where
C′ ⊆ C. Further, consider a Kemeny consensus in which every candidate of C′ has a
position smaller than every candidate in C\C′. Then, the minimum partial Kemeny
score restricted to C′ is defined as

min
(d1>d2>···>dx)∈Π(C′)

{
x∑

s=1

pK (ds, {dj | s < j < m} ∪ (C\C′))

}
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Input: An election (V, C) and, for every 0 ≤ i < m, the set Pi of candidates that can
assume position i in an optimal Kemeny consensus.
Output: The Kemeny score of (V, C).

Initialization:
01 for i = 0, . . . , m − 1
02 for all c ∈ Pi

03 for all P ′
i ⊆ Pi\{c}

04 T (i, c, P ′
i) := +∞

05 for all c ∈ P0

06 T (0, c, ∅) := pK(c, C\{c})

Update:
07 for i = 1, . . . , m − 1
08 for all c ∈ Pi

09 for all P ′
i ⊆ Pi\{c}

10 if |P ′
i ∪

⋃
j≤i F (j)| = i − 1

and T (i − 1, c′, (P ′
i ∪ F (i))\{c′}) is defined then

11 T (i, c, P ′
i) = min

c′∈P ′

i∪F (i)
T (i − 1, c′, (P ′

i ∪ F (i))\{c′})

+ pK(c, (Pi ∪
⋃

i<j<m

I(j))\(P ′
i ∪ {c}))

Output :
12 K-score = minc∈Pm−1

T (m− 1, c, Pm−1\{c})

Figure 3.4: Dynamic programming algorithm for computing the Kemeny score of an
election exploiting the average KT-distance as a parameter.

with x := |C′|. That is, it denotes the minimum partial Kemeny score over all orders
of C′. We define an entry of the dynamic programming table T for a position i,
a candidate c ∈ Pi, and a candidate subset P ′

i ⊆ Pi with c /∈ P ′
i . For this, we

define L :=
⋃

j≤i F (j) ∪ P ′
i . Then an entry T (i, c, P ′

i) denotes the minimum partial
Kemeny score restricted to the candidates in L ∪ {c} under the assumptions that c is
at position i in a Kemeny consensus, all candidates of L have positions smaller than i,
and all other candidates have positions greater than i. That is, for |L| = i − 1, define

T (i, c, P ′
i ) := min

(d1>···>di−1)∈Π(L)

{
i−1∑

s=0

pK(ds, C\{dj | j ≤ s})
}

+ pK(c, C\(L ∪ {c})).

Algorithm. The dynamic programming algorithm is displayed in Figure 3.4. Its
correctness and running time are proven in the following.

Lemma 3.4. The algorithm in Figure 3.4 correctly computes Kemeny Score.
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Proof. We have to show two points:
First, all table entries are well-defined, that is, for an entry T (i, c, P ′

i ) concerning
position i there must be exactly i − 1 candidates that have positions smaller than i.
This condition is assured by line 10 of the algorithm.1

Second, we must ensure that our algorithm finds an optimal solution. Due to
Equality (3.10), we know that the Kemeny score can be decomposed into partial Ke-
meny scores. Thus, it remains to show that the algorithm considers a decomposition
that leads to an optimal solution. For every position, the algorithm tries all candi-
dates in Pi. According to Lemma 3.2, one of these candidates must be the “correct”
candidate c for this position. For c we can observe that the algorithm tries a sufficient
number of possibilities to partition all remaining candidates C\{c} such that they have
either smaller or greater positions than i. More precisely, every candidate from C\{c}
must be in exactly one of the following three subsets:

1. The set F of candidates that have already been forgotten, that is,
F :=

⋃
0≤j≤i F (j).

2. The set of candidates that can assume position i, that is, Pi\{c}.

3. The set I of candidates that are not inserted yet, that is, I :=
⋃

i<j<m I(j).

Due to Lemma 3.2 and the definition of F (j), we know that a candidate from F
cannot take a position greater than i − 1 in an optimal Kemeny consensus. Thus,
it is sufficient to explore only those partitions in which the candidates from F have
positions smaller than i. Analogously, one can argue that for all candidates in I, it is
sufficient to consider partitions in which they have positions greater than i. Thus, it
remains to try all possibilities for partitioning the candidates from Pi. This is done in
line 09 of the algorithm. Thus, the algorithm returns an optimal Kemeny score.

Theorem 3.4. Kemeny Score can be solved in O(16d · (d2 · m + d · m2 log m · n) +
n2 ·m log m) time with average KT-distance da and d = ⌈da⌉. The size of the dynamic
programming table is O(16d · d · m).

Proof. The dynamic programming procedure requires the set of candidates Pi for
0 ≤ i < m as input. To determine Pi for all 0 ≤ i < m, one needs the average positions
of all candidates and the average KT-distance da of (V, C). To determine da, compute
the pairwise distances of all pairs of votes. As there are O(n2) pairs and the pairwise
KT-distance can be computed in O(m log m) time [145], this takes O(n2 · m logm)
time. The average positions of all candidates can be computed in O(n · m) time by
iterating once over every vote and adding the position of every candidate to a counter
variable for this candidate. Thus, the input for the dynamic programming algorithm
can be computed in O(n2 · m log m) time.

Concerning the dynamic programming algorithm itself, due to Lemma 3.3, for 0 ≤
i < m, the size of Pi is upper-bounded by 4d. Then, for the initialization as well as for
the update, the algorithm iterates over m positions, 4d candidates, and 24d subsets of
candidates. Whereas the initialization in the innermost instruction (line 04) can be

1It can still happen that a candidate takes a position outside of the required range around its
average position. Since such an entry cannot lead to an optimal solution according to Lemma 3.2,
this does not affect the correctness of the algorithm. To improve the running time it would be
convenient to “cut away” such possibilities. We leave considerations in this direction to future work.
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done in constant time, in every innermost instruction of the update phase (line 11)
one has to look for a minimum entry and one has to compute a pK-score. To find the
minimum, one has to consider all candidates from P ′

i ∪ F (i). As P ′
i ∪ F (i) is a subset

of Pi−1, it can contain at most 4d candidates. Furthermore, the required pK-score can
be computed in O(n ·m log m) time. Thus, for the dynamic programming we arrive at
the running time of O(m ·4d ·24d ·(4d+n ·m log m)) = O(16d ·(d2 ·m+d ·m2 log m ·n)).

Concerning the size of the dynamic programming table, there are m positions and
any position can be assumed by at most 4d candidates. The number of considered
subsets is bounded from above by 24d. Hence, the size of the table T is O(16d·d·m).

Finally, it is easy to modify the algorithm such that it outputs a Kemeny con-
sensus: for every entry T (i, c, P ′

i), one additionally has to store a candidate c′ that
minimizes T (i − 1, c′, (P ′

i ∪ F (i))\{c′}) in line 11. Then, starting with a minimum
entry for position m − 1, one can reconstruct an optimal Kemeny consensus by it-
eratively adding the “predecessor” candidate. The asymptotic running time remains
unchanged.

3.6 Parameterizations by the candidate range

In this section, we consider two further parameterizations, namely “maximum range”
and “average range” of candidates. While for the parameter “maximum range” we can
obtain fixed-parameter tractability by using the dynamic programming algorithm de-
scribed in Figure 3.4, Subsection 3.5.2, Kemeny Score becomes NP-complete already
in case of an average range of two.

3.6.1 Maximum range

In the following, we show how to bound the number of candidates that can assume a
position in an optimal Kemeny consensus by a function of the maximum range. This
enables the application of the algorithm from Figure 3.4.

Lemma 3.5. Let rmax be the maximum range of an election (V, C). Then, for every
candidate its relative order in an optimal consensus with respect to all but at most
3rmax candidates can be computed in O(n · m2) time.

Proof. According to Lemma 3.1, the following holds: If for two candidates b, c ∈ C
we have v(b) > v(c) for all v ∈ V , then in every Kemeny consensus l it holds that
l(b) > l(c). Thus, it follows that for b, c ∈ C with maxv∈V v(b) < minv∈V v(c), in an
optimal Kemeny consensus l we have l(b) < l(c). That is, for two candidates with
“non-overlapping range” their relative order in an optimal Kemeny consensus can be
determined using this observation. Clearly, all these candidate pairs can be computed
in O(n · m2) time.

Next, we show that for every candidate c there are at most 3rmax candidates whose
range overlaps with the range of c. The proof is by contradiction. Let the range of c
contain the positions from i to j, with i < j. Assume that there is a subset of
candidates S ⊆ C with |S| ≥ 3rmax + 1 such that for every candidate s ∈ S there is
a vote v ∈ V with i ≤ v(s) ≤ j. Now, consider an arbitrary input vote v ∈ V . Since
there are at most 3rmax positions p with i−rmax ≤ p ≤ j+rmax for one candidate s ∈ S
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it must hold that v(s) < i − rmax or v(s) > j + rmax. Thus, the range of s is greater
than rmax, a contradiction. Hence, there can be at most 3rmax candidates that have a
position in the range of c in a vote v ∈ V . As described above, for all other candidates
we can compute the relative order in O(n · m2) time. Hence, the lemma follows.

As a direct consequence of Lemma 3.5, we conclude that every candidate can
assume one of at most 3rmax consecutive positions in an optimal Kemeny consensus.
Recall that for a position i the set of candidates that can assume i in an optimal
consensus is denoted by Pi (see Definition 3.2). Then, using the same argument as in
Lemma 3.3, one obtains the following.

Lemma 3.6. For every position i, |Pi| ≤ 6rmax.

In complete analogy to Theorem 3.4, one arrives at the following.

Theorem 3.5. Kemeny Score can be solved in O(32rmax ·(r2
max ·m+rmax ·m2 log m ·

n)+n2·m log m) time with maximum range rmax. The size of the dynamic programming
table is O(32rmax · rmax · m).

3.6.2 Average range

The following theorem shows that unless P=NP there is no fixed-parameter algorithm
with respect to the “average range”.

Theorem 3.6. Kemeny Score is NP-complete for elections with average range two.

Proof. The proof uses a many-one reduction from an arbitrary instance ((V, C), k) of
Kemeny Score to a Kemeny Score-instance ((V ′, C′), k) with average range less
than two. The construction of the election (V ′, C′) is given in the following.

• C′ := C ⊎ {ai | 1 ≤ i ≤ |C|2}, that is, add |C|2 new candidates.

• For every vote v = c1 > c2 > · · · > cm in V , put the vote v′ := c1 > c2 > · · · >
cm > a1 > a2 > · · · > am2 into V ′.

It follows from Lemma 3.1 that if a pair of candidates has the same order in all
votes, it must have this order in a Kemeny consensus as well. Thus, in a Kemeny
consensus it holds that ai > aj for i > j and, therefore, adding the candidates from
C′\C does not increase the Kemeny score. Hence, an optimal Kemeny consensus of
size k for (V ′, C′) can be transformed into an optimal Kemeny consensus of size k for
(V, C) by deleting the candidates from C′\C. The average range of (V ′, C′) is bounded
as follows:

ra =
1

m + m2
·

∑

c∈C′

r(c)

=
1

m + m2
·




∑

c∈C

r(c) +
∑

c∈C′\C

r(c)




≤ 1

m + m2
· (m2 + m2) < 2.

Clearly, the reduction can be easily modified to work for every constant value of
at least two by choosing a C′ of appropriate size.
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3.7 Ties and incomplete votes

In the following, we summarize results obtained for two generalizations of Kemeny
Score [22]. See also Table 3.2, Section 3.8, for an overview. First, we allow for ties,
that is, in a vote several candidates may be ranked equally. Second, we consider the
scenario that one has only incomplete information.2 Whereas most of our results can
be transferred to the problem variant with ties, the Kemeny score problem behaves
in a significantly different way in the case of incomplete information. Note that the
algorithm from Section 3.3 regarding the parameter “number of candidates” directly
applies to both generalizations.

3.7.1 Kemeny Score with Ties

A practically relevant extension of Kemeny Score is Kemeny Score with Ties [1,
132]. Here, one additionally allows the voters to classify sets of equally liked candi-
dates, that is, a vote is no longer defined as a permutation of the candidates, but
for two (or more) candidates a, b one can have a = b. The term dv,w(a, b) denoting
the contribution of the candidate pair {a, b} to the KT-distance between two votes v
and w is modified as follows [132]. One has

dv,w(a, b) = 2 if a > b in v and b > a in w,
dv,w(a, b) = 0 if a and b are ordered in the same way in v and w, and
dv,w(a, b) = 1 otherwise.

In the literature there are different demands for the consensus itself. Hemaspaandra
et al. [132] allow that the consensus list can contain ties as well. In contrast, Ailon [1]
requires the consensus list to be a “full ranking”, that is, a permutation of the can-
didates. We focus on the more general setting of Hemaspaandra et al. [132]. Note
that Kemeny Score with Ties does not only generalize Kemeny Score but also
includes other interesting special cases such as p-ratings and top-m lists [1].

Clearly, increasing the KT-distance by two if two votes strictly disagree on two
candidates increases the overall score. Using analogous approaches to Section 3.4, one
obtains a search tree of size at most 1.76k and a kernelization result for the parameter
“Kemeny score” [22, Theorem 7].

To deal with the structural parameterizations, we need to extend the notions of
position and range. For a vote v ∈ V and a candidate c ∈ C, let

Tv(c) := {c′ ∈ C | c and c′ tie in v}.

Now, for a vote v we can define the minimum and maximum position which c can
assume. That is, posmin

v (c) is the number of candidates that are better than c in v
and posmax

v (c) := posmin
v (c) + |Tv(c)|. Then, define the range of a candidate as

r(c) := max
v,w∈V

{| posmax
v (c) − posmin

w (c)|}.

The overall maximum range of an election is defined as the maximum of all candidate
ranges. For Kemeny Score without ties, the algorithm used for showing fixed-
parameter tractability for the average KT-distance strongly relies on the Lemma 3.2

2An alternative way to deal with incomplete information is provided by the Possible winner
problem as introduced in Part II of this this thesis.
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described in Subsection 3.5.1. However, it is not obvious how to transfer this result
to the case with ties. The same is true for the parameterization by the maximum
range: Here it is not obvious that Lemma 3.5 can be transferred to the case with
ties. However, for both “maximum” parameters, we still can obtain fixed-parameter
tractability by using a dynamic programming given for the parameterization by the
“maximum KT-distance” for the case without ties in our conference paper [20]. This
leads to the following. Kemeny Score with Ties can be solved in

O((3rmax + 1)! · 23rmax+1 · rmax log rmax · nm)

time with rmax being the maximum position range [22, Theorem 8] of a candidate and

O((6dmax + 2)! · 26dmax+2 · dmax · log dmax · n · m)

time with maximum KT-distance dmax [22, Theorem 9]. Regarding the “average KT-
distance” we will obtain fixed-parameter tractability using a data reduction based
framework described in Chapter 4 (see Theorem 4.1).

3.7.2 Kemeny Score with Incomplete Votes

The problem Kemeny Score with Incomplete Votes was introduced by Dwork
et al. [77]. Here, the given votes are not required to be permutations of the entire
candidate set, but only of candidate subsets, while the Kemeny consensus sought for
should be a permutation of all candidates. In the definition of the KT-distance, set
the pairwise distance between two votes to

dv,w(c, d) :=

{
0 if {c, d} 6⊆ Cv or {c, d} 6⊆ Cw or v and w agree on c and d,
1 otherwise,

where Cv contains the candidates occurring in vote v.
For incomplete votes we cannot apply the kernelization and the branching approach

of Section 3.4 to show fixed-parameter tractability with respect to the Kemeny score.
This is due to the fact that we can have non-trivial instances without dirty pairs.
Using another approach based on a fixed-parameter algorithm for Feedback Arc
Set [52], one can show that Kemeny Score with Incomplete Votes is solvable
in O(nm2 + 2k · nm2 + k!4k · m4k3) time [22, Theorem 10].

In incomplete votes the position of a candidate in a vote cannot be defined. There-
fore, we cannot parameterize by the maximum range of candidate positions. By apply-
ing a simple many-one reduction from the NP-complete Feedback Arc Set problem,
one can show that Kemeny Score with Incomplete Votes is NP-complete even
if the maximum KT-distance between two input votes is zero. Hence, unless P=NP
the problem cannot be fixed-parameter tractable with respect to the maximum as well
as to the average KT-distance.

3.8 Further fixed-parameter algorithms

As mentioned in the corresponding sections, several of our results have been improved
recently and some additional parameterizations have been investigated. The state of
the art of the parameterized complexity of Kemeny Score is exhibited in Table 3.2
and the corresponding new results are briefly described in the following.
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Table 3.2: Parameterized complexity of Kemeny Score and two of its generalizations.
In case of positive results, we state the exponential parts of the corresponding running
times if provided in the corresponding works. Results marked by (♣) follow from [77,
78], (♦) follow from [142], (♠) follow from [161], and (♥) follow from [25] and are
discussed in Chapter 4. The remaining results are provided in this chapter.

Kemeny Score with ties incomplete votes

# votes n NP-h for n = 4 (♣) NP-h for n = 4 (♣) NP-h for n = 4 (♣)

# candidates m 2m 2m 2m

Kemeny score k 2O(
√

k) (♦) 1.76k k! · 4k

max. range rm 32rm (3rm + 1)! · 23rm+1 —

avg. range ra NP-h for ra ≥ 2 NP-h for ra ≥ 2 —

max. KT-dist dm 2O(
√

dm) (♦) (6dm + 2)! · 26dm+2 NP-h for dm = 0

avg. KT-dist da 2O(
√

da) (♦) 2O(d2
a) (♥) NP-h for da = 0

d := k/n 2O(
√

d) (♦) 2O(d
2
) (♥) NP-h for d = 0

above guarantee FPT (♠) ? ?

Average distance from a Kemeny consensus. Simjour [189] introduced the
parameter average distance d from a Kemeny consensus to the input votes defined by

d := 1/n ·
∑

v∈V

dist(v, l) = k/n

for a Kemeny consensus l with Kemeny score k.3 As pointed out by Simjour and
also used by Karpinski and Schudy [142], the average KT-distance da is clearly at
least d. In the following, we show that da is at most twice as large as d and hence both
parameters are “equivalent” up to the factor two. Since the KT-distance is a metric,
by the triangle inequality the following is easy to see:

da =
∑

v∈V

∑

w∈V \{v}
dist(v, w)/(n(n − 1))

≤
∑

v∈V

∑

w∈V \{v}

(
dist(v, l) + dist(l, w)

)
/(n(n − 1))

= 2 ·
( ∑

v∈V

∑

w∈V \{v}
dist(v, l)

)
/(n(n − 1))

= 2 ·
( ∑

v∈V

dist(v, l)
)
/n = 2d.

Hence, we arrive at the following.

3An analogous parameter for the NP-hard Consensus Pattern problem has been considered by
Marx [162].
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Observation 3.4. For every election it holds that da ≥ d ≥ da/2.

Note that it directly follows that Observations 3.1, 3.2, and 3.3 stating the “inde-
pendence” from the range to the distance parameterizations carry over to d.

Simjour improved the running times provided in this chapter for the parameters
k, dm, da, and d by decreasing the constant of the basis. The underlying algorithmic
ideas rely on a transformation of Kemeny Score to Weighted Feedback Arc
Set and applying and extending known algorithms for Weighted Feedback Arc
Set. Recently, Karpinski and Schudy [142] provided a fixed-parameter algorithm
with respect to d having a subexponential running time in d. Clearly, this implies
subexponential running times with respect to k, dm, and da as well.

Above guaranteed value. Parameterization above guaranteed value has been in-
troduced by Mahajan and Raman [160]. For Kemeny Score, the point is that

L :=
∑

{a,b}⊆C

min{π(a, b), π(b, a)},

where π(a, b) denotes the number of votes that rank a higher than b, is an obvious lower
bound for the Kemeny Score k. Hence, it is interesting to parameterize above this
guaranteed lower bound, more precisely, by the parameter “k−L”. Applying a param-
eter preserving-reduction from Kemeny Score to a weighted variant of Directed
Feedback Vertex Set, Mahajan et al.[161] observed fixed-parameter tractability
with respect to k − L.

3.9 Conclusion

We initiated a multivariate complexity analysis of Kemeny Score including the
identification of meaningful parameterizations such as the “average KT-distance” and
“candidate range”. Our corresponding results are displayed in Table 3.1 (Section 3.2).
In the meantime our results have been extended and some of them improved by several
authors [142, 161, 189]. An overview of the state of the art of the parameterized com-
plexity of Kemeny Score and the two generalizations allowing for ties or incomplete
information is given Table 3.2. There are numerous challenges for future studies:

• In several applications, it is useful to compute not just one optimal Kemeny
consensus but to enumerate all of them. Simjour [189] provided a search-based
algorithm for enumerating all Kemeny consensuses and showed that the expo-

nential part of the running time is at most 36d. Can this result be improved and
extended to some other parameterizations?

• A long-standing open question regards the computational complexity of Ke-
meny Score with three votes [77, 2]. From the many-one reduction provided
by Dwork et al. [77], NP-hardness follows only for an even number of votes, that
is, for all odd fixed values such as 3,5,7,... the computational complexity is still
open.

• Regarding Kemeny Score with Ties the running times for many parameters
as provided in Table 3.2 still have a high combinatorial explosion and hence seek
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for improvement. Note that the results for the “average KT-distance” rely on an
approach based on data reduction (see Chapter 4). Some additional non-data
reduction based algorithm complementing this result would be desirable. While
the strategy provided in this chapter does not immediately transfer to the case
with ties (see Subsection 3.7.1), it might be possible to adapt the algorithms
provided by Simjour [189].

It might be also interesting to investigate whether special cases of Kemeny
Score with Ties such p-ratings and top-m lists [1] allow for more efficient
algorithms.

In addition to the above questions regarding Kemeny Score directly, there are
several closely related problems for which it might be interesting to investigate how
far the results obtained for Kemeny Score can be transfered.

• Kemeny Score is a median problem seeking to minimize the sum of distances
from a preference list. Analogously, one can seek for a preference list minimizing
the maximum distance (that is, searching for the center instead of the median).
Due to an application in graph drawing, this problem is known as Crossing
Permutation and its computational complexity has been investigated by Biedl
et al. [32]. Some first results regarding the parameterized complexity have been
obtained by Schwarz [186]. One possible interpretation of Crossing Permu-
tation in the context of voting concerns scenarios in which it is mandatory to
protect minorities. Then, one might look for an outcome of an election that
minimizes the damage for the “most aggrieved voter”.

• Fagin et al. [92] introduced various distance measures between “top k lists”, for
example, the Hausdorff Kendall distance. For every such distance between two
lists one can define a consensus problem analogous to Kemeny Score.

• The Metric s-Median problem can be stated as follows (see Shindler [188] for
a survey). Given a set N of points in some metric space and some integers s
and k, it asks whether there is a size-s subset K ⊂ N such that the sum of all
N ’s points’ distances to their nearest element of K is at most k. Since the KT-
distance is a metric, Kemeny Score can be considered as a special case of this
problem with s = 1, that is, searching for one consensus. It might be interesting
to identify scenarios where one is looking for a set of consensus ranking and
investigate the computational complexity of the corresponding problems. From
a voting point of view this directly leads to a “multiple winner” scenario.

In the following chapter, we further extend our results for the parameter average
KT-distance by developing a new data reduction methodology.



Chapter 4
Partial kernelization for Kemeny

In the previous chapter, we started a multivariate analysis of Kemeny Score which
will be further extended in this chapter. We provide some polynomial-time data re-
duction rules with performance guarantee for Kemeny Score. More specifically, we
show that the number of candidates in a reduced instance only depends on the “av-
erage KT-distance” and another, newly introduced parameter. Then, fixed-parameter
tractability with respect to these parameters follows from the fixed-parameter algo-
rithm with respect to the “number of candidates” from Section 3.3. Although for
the parameter “average KT-distance” da our results do not improve the bound on the
worst-case running time of 2O(

√
da) ·poly [142] (see also Table 7.1), efficient polynomial-

time data reduction clearly complements the previous results. Experiments showing
the practical value of data reduction for the computation of Kemeny rankings are
provided in Chapter 5.

Methodology. The results of this chapter rely on a new methodological framework
for intractable median problems such as Kemeny Score. In median problems one
is given a set of objects and the task is to find a “consensus object” that minimizes
the sum of distances to the given input objects. The framework was exhibited for
Kemeny Score with and without ties, and the problems Swap Median Permu-
tation and Consensus Clustering [25]. Here, we only focus on Kemeny Score.
Our algorithmic framework shows that if the input objects are sufficiently “similar on
average”, then there are provably effective data reduction rules.

Within our framework, two points deserve particular attention. First, the identi-
fication of polynomial-time solvable special cases of the underlying problems. Second,
a novel concept of kernelization based on polynomial-time data reduction that does
not yield problem kernels in the classical sense of parameterized algorithmics but still
allows for “partial problem kernels”. The basic idea can be explained as follows. In
multi-dimensional problems, a partial kernelization reduces at least one dimension
such that its size only depends on the parameter value. In our case, the reduced
dimension refers to the “number of candidates” and the parameter to the “average
KT-distance”. The concept of partial kernelization promises to be useful beyond the
problems and parameterizations for which the framework has been exhibited [25].
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On the way to proving our results with respect to the parameter “average distance”,
we introduce another measurement of dissimilarity—the “number of dirty elements”—
which can be considered as an alternative parameterization. We also show fixed-
parameter tractability with respect to this parameterization. As we will see, both
parameterizations are closely related. In comparison, the “average distance” seems
to be the more intuitive and easier to understand parameter whereas the “dirtiness”
parameterization seems to yield stronger results.

Results. Our results for Kemeny Score are summarized as follows. We intro-
duce a concept of “dirtiness” for candidates and pairs of candidates. This concept is
used to identify a polynomial-time solvable special case and allows for efficient data
reduction rules resulting in a linear-size partial kernel with respect to the “average
KT-distance” da. More specifically, our new data reduction rules can transform every
instance into an equivalent one that contains less than 11da candidates. We further
classify different “degrees of dirtiness” and, depending on this degree, either obtain a
linear or quadratic partial kernel with respect to the “number of dirty pairs”. Finally,
we briefly discuss analogous results for Kemeny Score with Ties settling the so far
open question of fixed-parameter tractability with respect to da.

4.1 Framework and basic definitions

The outline of our framework adapted to Kemeny Score reads as follows.

Step 1. Identify a polynomial-time solvable special case by defining a concept of
“dirtiness” for candidates and proving that an instance without dirty candidates
can be easily solved.

Step 2. Show that the number of dirty candidates is bounded from above by a
polynomial only depending on the average KT-distance.

Step 3. Develop polynomial-time data reduction rules such that in a reduced instance
the number of nondirty candidates is bounded from above by a polynomial only
depending on the number of dirty candidates and, thus, also only depending on
the average distance.

Step 4. Exploit the fact that Kemeny Score is fixed-parameter tractable with
respect to the number of candidates (see Section 8.1).

This framework yields fixed-parameter tractability with respect to both parameters
“average KT-distance” and “number of dirty candidates”. In general, fixed-parameter
tractability would also follow for nonpolynomial functions in Steps 2 and 3, but all
our results provide polynomial bounds. A special feature of our framework is that in
Step 3 we perform a “partial kernelization”, a concept of general interest. Herein, the
term “partial” refers to the fact that only the number of candidates is reduced, but
not the number of votes. This leads to the following general definition.

Definition 4.1. Let (I, k) be an instance of a parameterized problem P , where I ∈ Σ∗

denotes the input instance and k a parameter. Let d : Σ∗ → N be a computable
function such that P is fixed-parameter tractable with respect to d(I). The problem
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admits a partial kernel if there is a polynomial-time algorithm that computes an
instance (I ′, k′) of P such that:

• (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

• k′ ≤ f(k), and

• d(I ′) ≤ g(k)

for computable functions f and g.

For I, k, and d meeting the above conditions, the existence of a partial kernel
directly implies fixed-parameter tractability with respect to the parameter k. Our
partial kernelization can be seen as a generalization of “classical” problem kernelization
that reduces an instance of a problem to an instance whose size is bounded by a
function of the parameter: Choosing d(I) := |I| directly leads to the classical problem
kernel definition.

Basic definitions regarding Kemeny Score and several parameterizations are pro-
vided in the introduction of Chapter 3. To show the following results, it will be useful
to decompose the Kemeny score of a preference list into “partial scores”. More pre-
cisely, for a preference list l and a candidate pair {a, b}, the partial score of l with
respect to {a, b} is

sl({a, b}) :=
∑

v∈V

dv,l(a, b).

The partial score of l with respect to a subset P of candidate pairs is sl(P ) :=∑
p∈P sl(p). The following notation will be useful to state some of our reduction rules.

For a candidate subset C′ ⊆ C, we say that a ranking fulfills the condition C′ > C \C′

if every candidate from C′ is preferred to every candidate from C \ C′.

4.2 Dirtiness and a polynomial-time special case

We measure the dirtiness of a pair of candidates by the amount of agreement of the
votes for this pair. To this end, we introduce the following notation.

Definition 4.2. For an election (V, C), two candidates c, c′ ∈ C, and a rational
number s ∈ ]0.5, 1], we write

c ≥s c′

if at least ⌈s · |V |⌉ of the votes prefer c to c′. A candidate pair {c, c′} is dirty according
to the ≥s-majority if neither c ≥s c′ nor c′ ≥s c. All remaining pairs are nondirty
according to the ≥s-majority.

We say that c and c′ are ordered according to the ≥s-majority in a preference
list l if c ≥s c′ and c > c′ in l. In the following, we show that if all candidate pairs
are nondirty with respect to the ≥s-majority for an s > 2/3, then there exists a
≥s-majority order, that is, a preference list in which all candidate pairs are ordered
according to the ≥s-majority. To simplify matters, we write “>2/3” instead of “≥s

with s > 2/3”, and if the value of s is clear from the context, then we just speak of
“dirty pairs” and omit “according to the ≥s-majority”. Candidates appearing only in
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a > b > c
b > c > a
c > a > b

Figure 4.1: Example for the nonexistence of a ≥s-majority list with s ≤ 2/3. Since
a ≥s b, b ≥s a, and c ≥s a for any s ∈ ]0.5, 2/3], there is no linear order fulfilling all
three relative orders.

nondirty pairs are called nondirty candidates and all remaining candidates are dirty
candidates. Note that with this definition a nondirty pair can also be formed by two
dirty candidates. The number of dirty candidates is closely related to the number
of dirty pairs. More specifically, x dirty candidates can form at most

(
x
2

)
dirty pairs

and x dirty pairs consist of at most 2x dirty candidates. Hence, fixed-parameter
tractability for one parameter implies fixed-parameter tractability with respect to the
other parameter as well. In the following, we mainly focus on the parameterization by
the “number of dirty pairs”.

Polynomial-time special case. Now, we show how a limited amount of dirtiness
allows for a polynomial-time solvable special case as required for the first step of our
framework.

Proposition 4.1. For any s ∈ ]2/3, 1], a Kemeny Score instance without dirty
pairs according to the ≥s-majority can be decided in polynomial time. The unique
Kemeny consensus is provided by the ≥s-majority order.

Proof. For an input instance (V, C, k) of Kemeny Score without dirty pairs according
to the ≥s-majority with s > 2/3, we show that the preference list “induced” by the
>2/3-majority of the candidate pairs is optimal.

First, we show by contradiction that there is a preference list l2/3 where for all
candidate pairs {a, b} with a, b ∈ C and a >2/3 b, one has a > b. Assume that such
a preference list does not exist. Then, there must be three candidates a, b, c ∈ C
violating transitivity, that is, a >2/3 b, b >2/3 c, and c >2/3 a. Since a >2/3 b
and b >2/3 c, there must be at least n/3 votes with a > b > c. Since a and c do not
form a dirty pair, it follows that a >2/3 c, a contradiction.

Second, we show by contradiction that l2/3 is optimal. Assume that there is a
Kemeny consensus l with a nonempty set P of candidate pairs that are not ordered
according to the >2/3-majority; that is, P := {{c, c′} : c > c′ in l and c′ >2/3 c}. All
candidate pairs that are not in P are ordered equally in l and l2/3. Thus, the partial
score with respect to them is the same for l and l2/3. For every candidate pair {c, c′} ∈
P , the partial score sl({c, c′}) is more than 2n/3 and the partial score sl2/3

({c, c′}) is
less than n/3. Thus, the score of l2/3 is smaller than the score of l, a contradiction to
the optimality of l.

Complementing Proposition 4.1, the example provided in Figure 4.1 shows that for
any s ≤ 2/3, a ≥s-majority order does not necessarily exist.

Bound on the number of dirty pairs. Following Step 2 of our framework, the
next lemma shows how the number of dirty pairs is bounded from above by a function
linear in the average KT-distance da.
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Table 4.1: Overview of properties induced by ≥s-majorities for different values of s.

value of s induced properties

1/2 ≤ s < 2/3 a ≥s-majority order does not exist (Example 4.1)
2/3 < s < 3/4 a ≥s-majority order exists (Proposition 4.1)

but a nondirty candidate and a dirty candidate have not to be ordered
according the ≥s-majority in a Kemeny consensus (Theorem 4.2)

3/4 ≤ s ≤ 1 a ≥s-majority order exists (Proposition 4.1)
and in every Kemeny consensus every nondirty candidate is ordered
according to the ≥s-majority wrt. every other candidate (Lemma 4.2)

Lemma 4.1. For any fixed rational s in ]2/3, 1], for an instance of Kemeny Score
with average KT-distance da, there are less than γ · da dirty pairs according to the
≥s-majority for an appropriate constant γ.

Proof. For an election (V, C) with average KT-distance da, let i denote the number of
dirty pairs. Every dirty pair {a, b} ⊆ C contributes at least

sn · (1 − s)n

to the overall sum of KT-distances. Recall that

da =




∑

v,w∈V

dist(v, w)



 /(n(n − 1)) =




∑

{c,d}⊆C

∑

v,w∈V

dv,w(c, d)



 /(n(n − 1)).

Thus,

da ≥ 1

n(n − 1)
· i · s · (1 − s) · n2 > s(1 − s) · i ⇔ 1

s · (1 − s)
· d > i.

Hence, γ can be set to 1/(s(1 − s)) which is constant for fixed s.

The constant γ in Lemma 4.1 strongly depends on the value of s, that is, on the
kind of dirtiness. More specifically,

γ =
1

s(1 − s)
.

Hence, for increasing values of s also the upper bound on the number of dirty pairs
increases. Intuitively, this makes sense since for an arbitrary election having a fixed
average KT-distance, the stronger the requirements for a nondirty pair are, the more
dirty pairs must exist. For relevant values of s, the constant γ is of reasonable size. For
s > 2/3, one has γ ≥ 9/2, and, for example, for s = 3/4, one still obtains γ = 16/3.

4.3 Data reduction rules and partial kernelization

The previous section provided a concept of dirtiness and showed that the number of
dirty pairs is bounded from above by a function linear in the average KT-distance.
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In this section, following the third step of our framework, we develop data reduction
rules aiming at the deletion of nondirty candidates. As we will see in the following, for
different values of s, we obtain different “qualities” of data reduction. More specifically,
whereas we provide a linear partial kernel for s ≥ 3/4, we only provide a partial kernel
of quadratic size for 2/3 < s < 3/4; in both cases with respect to to the “average
KT-distance” as well as with respect to the “number of dirty pairs”. We also give
evidence that the approach provided for s ≥ 3/4 cannot be transferred to any s < 3/4.

The different results for different values of s rely on some structural properties
“induced” by the ≥s-majority as provided in Table 4.1. In particular, we will show in
the following that for s ≥ 3/4, in every Kemeny consensus every nondirty candidate
must be ordered according to the ≥s-majority with respect to every other candidate.
In contrast, for smaller values of s it may happen that there is a nondirty pair formed
by a dirty and a nondirty candidate such that there is no Kemeny consensus in which
this pair is ordered according to the ≥s-majority order.

4.3.1 Exploiting ≥3/4-majorities

In this subsection, we provide a data reduction rule depending on the ≥3/4-majority.
We show that this reduction rules leads to a linear partial kernel with respect to the
“average KT-distance” as well as with respect to the “number of dirty candidates”
and the “number of dirty pairs”, respectively. Clearly, all results also hold for any ≥s-
majority with s ≥ 3/4. The following lemma allows us to formulate a data reduction
rule that deletes all nondirty candidates and additionally may break the remaining set
of dirty candidates into several subsets to be handled independently from each other.

Lemma 4.2. Let a ∈ C be a nondirty candidate with respect to the ≥3/4-majority
and b ∈ C \ {a}. If a ≥3/4 b, then in every Kemeny consensus one must have “a >
· · · > b”; if b ≥3/4 a, then in every Kemeny consensus one must have “b > · · · > a”.

Proof. We consider the case a ≥3/4 b; the case b ≥3/4 a follows in complete analogy.
The proof is by contradiction. Assume that there is a Kemeny consensus l with
“. . . > b > D > a > . . . ” for some D ⊆ C \ {a, b}. Since a is nondirty, for every
candidate d ∈ D, either a ≥3/4 d or d ≥3/4 a. Let D1 := {d ∈ D | a ≥3/4 d} and
D2 := {d ∈ D | d ≥3/4 a}. Consider the preference list l′ obtained from l by replacing

b > D > a

by
D2 > a > b > D1,

where the positions of all other candidates remain unchanged and the candidates
within D1 and D2 have the same relative order as within D. We show that the score
of l is greater than the score of l′ contradicting that l is a Kemeny consensus. The only
candidate pairs that have different orders in l and l′ and thus the only candidate pairs
that can contribute with different partial scores to the scores of l and l′ are {a, d} and
{d2, d} for all d ∈ D1 ∪ {b} and all d2 ∈ D2. Consider any d ∈ D1 ∪ {b} and d2 ∈ D2.
Since |{v ∈ V | d2 ≥3/4 a}| ≥ 3/4 · |V | and |{v ∈ V | a ≥3/4 d}| ≥ 3/4 · |V |, the
intersection of these two sets must contain at least |V |/2 elements, that is, there must
be at least |V |/2 votes with “d2 > · · · > a > · · · > d”. Thus, the partial score of {d2, d}
in l is at least as high as its partial score in l′. The partial score of every pair {a, d}
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with d ∈ D1 ∪ {b} in l′ is strictly less than the partial score in l. Since |D1 ∪ {b}| ≥ 1,
the score of l′ is smaller than the score of l and thus l cannot be a Kemeny consensus,
a contradiction.

As a direct consequence of Lemma 4.2 we can partition the candidates of an elec-
tion (V, C) as follows. Let N := {n1, . . . , ns} denote the set of nondirty candidates
with respect to the ≥3/4-majority such that ni ≥3/4 ni+1 for 1 ≤ i ≤ s − 1. Then,
D0 := {d ∈ C \ N | d ≥3/4 n1},

Di := {d ∈ C \ N | ni ≥3/4 d and d ≥3/4 ni+1} for 1 ≤ i ≤ s − 1,

and Ds := {d ∈ C \ N | ns ≥3/4 d}. Furthermore, a subinstance of (V, C) induced
by a candidate subset C′ ⊆ C is given by (V ′, C′) where every vote in V ′ one-to-one
corresponds to a vote in V keeping the relative order of the candidates from C′.

Rule 4.1. (3/4-Majority Rule1) Let (V, C) be an election and N and D0, . . . , Ds

be the sets of nondirty and dirty candidates as specified above. Delete (V, C) and keep
the s + 1 subinstances induced by Di for i ∈ {0, . . . , s}.

The soundness of the 3/4-Majority Rule follows directly from Lemma 4.2 and it
is straightforward to verify that it runs in O(nm2) time. It is easy to adapt the 3/4-
Majority Rule to work for the decision problem: An instance is reduced by deleting
all candidates from N , reordering every vote such that D0 > D1 > · · · > Ds where
within Di, 0 ≤ i ≤ s, the order of the candidates remains unchanged, and decreasing
the Kemeny score appropriately. Making use of a simple relation between the number
of dirty candidates and the average KT-distance, one arrives at the following.

Theorem 4.1. Kemeny Score admits a partial kernel with less than 11 · da can-
didates where da denotes the average KT-distance and all candidates of the partial
kernel are dirty according to the ≥3/4-majority. The partial kernel can be computed in
O(nm2) time for an election with n votes and m candidates.

Proof. After applying the 3/4-Majority Rule, only dirty candidates remain. Let their
number be i. Since every dirty candidate must be involved in at least one candidate
pair that is not ordered according to the ≥3/4-majority, there must be at least i/2
candidate pairs that contribute more than n/4 · 3n/4 to the average KT-distance of
the original input instance. By definition of the average KT-distance, it follows that

da >
1

n(n − 1)
· i

2
· n

4
· 3n

4
>

3

32
· i ⇒ 11 · da > i.

4.3.2 Tightness of the 3/4-Majority Rule

The existence of a reduction rule analogously to the 3/4-Majority Rule for ≥s-majorities
for s < 3/4 would be desirable since such a rule might be more effective: There are
instances for which a candidate is dirty according to the ≥3/4-majority but nondirty
according to a ≥s-majority with s < 3/4. In the following, we discuss why such a

1This reduction rule will play an important rule in the following chapter.
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reduction rule cannot exist. The decisive point of the 3/4-Majority Rule is that, in a
Kemeny consensus, every nondirty candidate must be ordered according to the ≥3/4-
majority with respect to every other candidate. The following theorem shows that
this is not true for ≥s-majorities with s < 3/4:

Theorem 4.2. Consider the ≥s-majority for any rational s ∈ ]2/3, 3/4[. Then, for
a nondirty candidate x and a dirty candidate y, x ≥s y does not imply x > y in a
Kemeny consensus.

Proof. Let s1 and s2 be two positive integers such that s = s1/s2. We construct an
election such that there is a nondirty candidate x with x ≥s y but “y > · · · > x”
in every Kemeny consensus. The set of candidates is {x, y, a1, a2} and there are the
following n = s1 · s2 votes:

• s1 · s2 − s2
1 votes of type 1: x > y > a1 > a2

• 2s2
1 − s1 · s2 votes of type 2: a1 > a2 > x > y

• s1 · s2 − s2
1 votes of type 3: y > a1 > a2 > x

We first show that the votes are well-defined, that is, there is a positive number of
votes of every type and the total number of votes is s1 · s2:

The total number of votes is

s1 · s2 − s2
1 + 2s2

1 − s1 · s2 + s1 · s2 − s2
1 = s1 · s2.

Considering the number of votes of types 1 and 3, recall that 3/4 > s1/s2 and thus
s2 > 4/3 · s1. Hence, it is easy to see that their number is

s1 · s2 − s2
1 > s1 · (4/3 · s1 − s1) > 0.

Regarding votes of type 2, we use the trivial bound that s1/s2 > 1/2 and thus their
number is

2s2
1 − s1 · s2 > s1 · (2s1 − 2s1) = 0.

In the remainder of the proof, we show the following two points:

1. x is nondirty and x ≥s y.

2. The score of “y > a1 > a2 > x” is smaller than the score of every other preference
list.

(1.): The number of votes with a > x for a ∈ {a1, a2} is

2s2
1 − s1 · s2 + s1 · s2 − s2

1 = s2
1 = s · n

and the number of votes with x > y is

s1 · s2 − s2
1 + 2s2

1 − s1 · s2 = s2
1 = s · n

and thus x is nondirty according to the ≥s-majority and x ≥s y.

(2.): Due to the Extended Condorcet criterion [191], a1 > a2 in every Kemeny con-
sensus. Distinguishing three cases, we first show that in every Kemeny consensus
a1 > x if and only if a2 > x, and a1 > y if and only if a2 > y. After this, we can
treat a1 and a2 as one candidate of “weight” two and thus with this argument there
remain only six preference lists for which the score has to be investigated to show that
“y > a1 > a2 > x” is the only preference list with minimum score.
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• Case 1: Consider a preference list with “a1 > x > a2” where y is placed either
before or after the other three candidates. This preference list cannot have
minimum score since swapping x and a2 leads to a preference list with smaller
score (since a2 ≥ x in more than sn > 2/3 · n votes).

• Case 2: Consider a preference list with “a1 > y > a2” where x is placed either
before or after the three other candidates. This preference list cannot have
minimum score swapping a1 and y leads to a preference list with smaller score
which can be seen as follows. Since s1 < 3/4 ·s2, the number of votes with y > a1

is
2s1s2 − 2s2

1 > 2s1(s2 − 3/4 · s2) = 1/2 · s1s2 = n/2.

• Case 3: Consider the preference list “a1 > x > y > a2”. (Clearly, the same
preference list with x and y swapped would have a larger score.) We show that
a1 > a2 > x > y has a smaller score. The only pairs that change the score are
{a2, y} and {a2, x}. These pairs contribute with

#v(a2 > y) + #v(a2 > x) = 2s2
1 − s1s2 + 2s2

1 − s1s2 + s1s2 − s2
1 = 3s2

1 − s1s2

to the old score and with 2n − #v(a2 > y) − #v(a2 > x) to the “new” score.
Hence, it remains to show that the difference between the old and new score is
positive, that is,

3s2
1 − s1s2 − 2s1s2 + 3s2

1 − s1s2 = 6s2
1 − 4s1s2 > 6 · 2/3 · s1s2 − 4s1s2 = 0.

Finally, we consider the scores of all possible remaining six preference lists r1, . . . , r6

with a standing for “a1 > a2”:

r1 : a > x > yxxxxxxxx r4 : x > y > a
r2 : a > y > x r5 : y > a > x
r3 : x > a > y r6 : y > x > a

Let t(r) denote the score of a preference list r. It is easy to verify that t(r1) < t(r2)
and t(r1) < t(r3) and that t(r4) < t(r6). Hence, it is sufficient to compare the score
of r5 with the score of r1 and r4. Since a represents two candidates, we count the
corresponding pairs twice in the following computations.

t(r1) − t(r5)

= 2#v(x > a) + 2#v(y > a) + #v(y > x) − 2#v(a > y) − 2#v(x > a) − #v(x > y)

= 2s1s2 − 2s2
1 + 4s1s2 − 4s2

1 + s1s2 − s2
1 − 4s2

1 + 2s1s2 − 2s1s2 + 2s2
1 − s2

1

= 7s1s2 − 6s2
1 > 7s1 · 4/3 · s1 − 6s2

1 = 10/3 · s2
1 > 0

t(r4) − t(r5)

= #v(y > x) + 2#v(a > x) + 2#v(a > y) − 2#v(a > y) − 2#v(x > a) − #v(x > y)

= s1s2 − s2
1 + 2 · s2

1 − 2 · (s1s2) + 2 · s2
1 − s2

1

= 2s2
1 − s1s2 > 2s2

1 − 3/2 · s2
1 = 1/2 · s2

1 > 0
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Altogether, we showed that r5 is the only Kemeny consensus. Thus, there is an
election with x ≥s y for every s ∈ ]2/3, 3/4[ such that every Kemeny ranking has
y > x.

Note that in this construction of the counterexample, the number of votes can
become quite high, for example, for values of s which are very close to 3/4. However,
for such cases it is also possible to construct a counterexample with a smaller number
of votes by choosing an (appropriate) smaller number of n = s′ votes such that ⌈s′n⌉ =
⌈sn⌉. We omit the details.

4.3.3 Exploiting >2/3-majorities

As shown in the previous subsection, for s < 3/4 we cannot provide a linear problem
kernel with respect to the “number of dirty pairs” by adapting the 3/4-Majority Rule.
The following three lemmas establish the basis for an alternative polynomial-time data
reduction rule to obtain fixed-parameter tractability with respect to the “number of
dirty pairs”. Note that the following results will not improve the fixed-parameter
tractability results with respect to the “average KT-distance”. However, the “number
of dirty pairs” according to the ≥s-majority for values of s < 3/4 provides a “stronger”
parameterization than the “average KT-distance” in the sense that it might allow for
smaller parameter values for the same instance. To this end, recall that the number of
dirty pairs according to the ≥3/4-majority can be much higher than the the number
of dirty pairs according to the >2/3-majority.

We state the result for the >2/3-majority. Clearly, it holds for any ≥s-majority
with s > 2/3. The basic idea is to consider an order that is induced by the >2/3-
majorities of the nondirty pairs and then to show that a dirty candidate can only
“influence” the positions of nondirty candidates that are not “too far away” from it in
this order. Then, it is safe to remove nondirty candidates that cannot be influenced by
any dirty candidate. In the following, let D denote the set of dirty candidates and nd

denote the number of dirty pairs according to the >2/3-majority in an election.

Lemma 4.3. For an election containing nd dirty pairs, in every Kemeny consensus
at most nd nondirty pairs are not ordered according to their >2/3-majorities.

Proof. For an election (V, C) with nd dirty pairs, let l be a preference list with P :=
{{c, c′} | c > c′ in l and c′ >2/3 c} and |P | > nd. We show that l cannot be optimal.

Let l2/3 denote a preference list with c > c′ for all pairs with c >2/3 c′ and
the remaining dirty pairs are ordered arbitrarily. First, we show that such an order
exists. Due to Proposition 4.1, all nondirty candidates can be ordered according to
the >2/3-majority order. Analogously, one can show that every dirty candidate can be
ordered according to the 2/3-majority with respect to all nondirty candidates and that
two dirty candidates that form a nondirty pair do not violate transitivity if ordered
according to the 2/3-majority of this pair. Since the remaining dirty pairs can be
ordered arbitrarily, they can be ordered without violating transitivity as well.

We show that score(l) > score(l2/3). Let CP denote the set of all candidate pairs
of C, that is, CP := {{c, c′} : c, c′ ∈ C, c 6= c′}, and DP denote the set of all dirty
pairs in (V, C). Then, score(l) and score(l2/3) can be decomposed into partial scores
depending on candidate pairs of P , DP , and CP \(DP ∪ P ), that is,

score(l) = sl(P ) + sl(DP ) + sl(CP \(DP ∪ P )).
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Now, consider score(l) − score(l2/3). Since all pairs p ∈ CP \(DP ∪ P ) are ordered
according to the >2/3-majority in l and in l2/3, the partial scores for them are equal.
The partial score for every nondirty pair is more than 2n/3 if it is not ordered according
to the >2/3-majority, and less than n/3 otherwise. Together with the fact that for a
dirty pair the difference of the partial scores of the two possible orders is at most n/3,
one obtains

sl(DP ) − sl2/3
(DP ) ≥ −|DP | · n/3,

and
sl(P ) − sl2/3

(P ) > |P | · n/3.

Since |P | > |DP |, it follows that score(l) − score(l2/3) > n/3 > 0. Thus, l cannot be
optimal.

In the following, we show that the bound on the number of “incorrectly” ordered
nondirty pairs from Lemma 4.3 can be used to fix the relative order of two candidates
forming a nondirty pair. For this, it will be useful to have a concept of distance of can-
didates with respect to the order induced by the >2/3-majority. For an election (V, C)
and a nondirty pair {c, c′}, define

dist(c, c′) :=

{
|{b ∈ C : b is nondirty and c >2/3 b >2/3 c′}| if c >2/3 c′

|{b ∈ C : b is nondirty and c′ >2/3 b >2/3 c}| if c′ >2/3 c.

Lemma 4.4. Let (V, C) be an election and let {c, c′} be a nondirty pair. If dist(c, c′) ≥
nd, then in every Kemeny consensus c > c′ iff c >2/3 c′.

Proof. Let l be a preference list such that there is a nondirty pair {c, c′} with c > c′

in l, c′ >2/3 c, and dist(c, c′) ≥ nd. We show that l cannot be a Kemeny consensus.
Since dist(c, c′) ≥ nd, there is a set E of at least nd nondirty candidates with c′ >2/3

e >2/3 c for e ∈ E. Since c > c′ in l, the candidates from E cannot be ordered according
to the >2/3-majority with respect to c or c′ in l. Hence, there are at least nd pairs
formed by the candidates from E and c or c′ in l, which, together with the pair {c, c′},
give more than nd nondirty pairs that are not ordered according to the >2/3-majority.
This contradicts Lemma 4.3 and, thus, l cannot be optimal.

Finally, the next lemma enables us to fix the position in a Kemeny consensus for
a nondirty candidate that has a sufficiently large distance to all dirty candidates.

Lemma 4.5. If for a nondirty candidate c it holds that dist(c, cd) > 2nd for all dirty
candidates cd ∈ D, then c is ordered according to the >2/3-majority with respect to all
candidates from C in every Kemeny consensus.

Proof. Assume that there is a nondirty candidate c with dist(c, cd) > 2nd for all cd ∈ D
and that there is a preference list l with e > c for a candidate e with c >2/3 e. Then,
we show that l cannot be optimal.

Since dist(c, cd) > 2nd for all dirty candidates cd ∈ D, it follows from Lemma 4.4
that all dirty candidates must be ordered according to the >2/3-majority with re-
spect to c. Thus, e must be a nondirty candidate. Due to Lemma 4.4, dist(e, c) <
nd. Since for all cd ∈ D one has dist(c, cd) > 2nd, it follows from dist(e, c) < nd

that dist(e, cd) > nd for all cd ∈ D as well. Thus, in a Kemeny consensus, e must
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be ordered according to the >2/3-majority with respect to all dirty candidates due to
Lemma 4.4. For a candidate cd ∈ D one has c >2/3 cd iff e >2/3 cd since for all cd ∈ D
one has dist(c, cd) > 2nd and dist(e, c) < nd. Hence, there is no dirty candidate cd ∈ D
with e > cd > c in l, that is, all candidates fi, i = 1, . . . , s, with e > fi > · · · > fs > c
in l must be nondirty. Then, analogously to the proof of Proposition 4.1, one can
show that ordering c, e, f1, . . . , fs according to the >2/3-majority gives a consensus
with score less than the score of l. Thus, l cannot be optimal.

The correctness of the following data reduction rule follows directly from Lemma 4.5.
It is not hard to verify that it can be carried out in O(n · m2) time.

Rule 4.2. For an election with nd dirty pairs, let c be a nondirty candidate with
dist(c, cd) > 2nd for all cd ∈ D. Let Cl := {c′ ∈ C : c′ >2/3 c} and Cr := {c′ ∈ C :
c >2/3 c′}. Delete c and reorder every vote such that Cl > Cr and the order of the
candidates within Cl and Cr remains unchanged.

In the following, we show that after exhaustively applying Rule 4.2, the number
of nondirty candidates is bounded by a function quadratic in the “number of dirty
pairs”.

Theorem 4.3. For s > 2/3, Kemeny score admits a partial kernel with at most
2nd + 8n2

d candidates where nd denotes the number of dirty pairs.

Proof. An instance with nd dirty pairs has at most 2nd dirty candidates. For every
nondirty candidate c not deleted after exhaustively applying Rule 4.2, there must be a
dirty candidate cd with dist(c, cd) ≤ 2nd. Thus, for every dirty candidate there can be
at most 4nd nondirty candidates that are not deleted. It follows that, in total, there
can be at most 2nd · 4nd nondirty candidates left. The theorem follows.

4.4 Conclusion

We conclude this chapter with an overview of the provided results, a short a discussion
of the applicability of the introduced framework to Kemeny Score with Ties, and
finally state some open questions deriving directly from our results.

Overview of the results. Our results are summarized in Table 4.2. We identified a
concept of dirtiness leading to some observations of structural properties of a Kemeny
consensus (see Table 4.1, Section 4.2). These observations provided the basis for
the identification of a polynomial-time solvable special case and data reduction rules
resulting in partial kernelization results. The new concept of partial kernelization
may significantly ease the task to develop provably effective data reduction rules for
multidimensional problems where it seems difficult to provide “full” kernel results.
For Kemeny Score, this would include the development of data reduction rules that
provably decrease the number of votes.

Finally, note that due to the dependencies of da and d as discussed in Section 3.8
our results directly transfer to d.
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Table 4.2: Partial kernelization results for Kemeny Score. The term dirty refers to the
≥s-majority according to the respective values of s. The number of dirty pairs is ns

d and da

denotes the average KT-distance. An instance is nondirty if it does not contain any dirty
pair.

value of s results

1/2 ≤ s ≤ 2/3 -
2/3 < s < 3/4 polynomial-time solvability for nondirty instances (Proposition 4.1)

quadratic partial kernel wrt. ns
d (Theorem 4.3)

3/4 ≤ s ≤ 1 polynomial-time solvability for nondirty instances (Proposition 4.1)
linear partial kernel wrt. da and wrt. ns

d (Theorem 4.1)

Kemeny Score with Ties. First parameterized complexity results for Kemeny
Score with Ties with respect to several parameterizations have been discussed in
Section 3.7. The question of fixed-parameter tractability of Kemeny Score with
Ties with respect to the “average KT-distance” has been left open. This question can
be answered positively since the new method for partial kernelization introduced in
Section 4.1 also applies to Kemeny Score with Ties [25]. To this end, we extend
the definition of dirtiness as follows. A pair of candidates a, b is dirty if neither a >s b
nor a =s b nor a <s b according to a ≥s-majority where one has a =s b if a = b in at
least sn votes. Using analogous but more laborious proofs as in this chapter, one can
show the following results [25].

• A Kemeny Score with Ties instance without dirty pairs is solvable in poly-
nomial time.

• Kemeny Score with Ties admits a quadratic partial kernel with respect to
the “average KT-distance” as well with respect to the “number of dirty pairs”.

Open Problems. The results presented in this chapter lead to several concrete
questions.

• Despite the negative results from Theorem 4.2, there is still room for improving
the >2/3-majority based results. In particular, is there a linear partial kernel
with respect to the ≥s-majority for any s < 3/4 ? A natural step in answering
this question seems to investigate whether for two nondirty candidates a, b, there
must be a Kemeny consensus with a > b if a ≥s b.

• A challenging task of theoretical interest concerns the development of classical
problem kernels also bounding the number of votes for Kemeny Score with
and without ties.

• We introduced the new structural parameters “number of dirty candidates” and
“number of dirty pairs”. The investigation of further fixed-parameter algorithms
with respect to these parameterizations is clearly of interest. This is especially
motivated by the observation that there are instances in which the “dirtiness”
parameters assume small values whereas the parameters “number of candidates”,
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“average/maximum KT-distance” and “average distance from the Kemeny con-
sensus” can be arbitrarily large. For example, consider the election consisting of
the vote

a1 > a2 > · · · > am

and three identical votes defined as follows

am > am−1 > · · · > a1.

There is no dirty pair according to the ≥3/4-majority but the values of the other
three parameters grow at least linearly in m.

• For Kemeny Score with Ties there are only studies according to the >2/3-
majority resulting in a quadratic partial kernel with respect to the average KT-
distance [25]. It seems very promising that a linear partial kernel can be obtained
analogously to the case without ties by using the ≥3/4-majority.

Finally, we stress that partial kernelization might be of interest for many NP-hard
problems defined on elections. For example, Conitzer [57] uses a different notion of
similarity to efficiently compute the closely related Slater rankings. Using a concept
of similar candidates, he identifies efficiently solvable special cases, yielding a powerful
preprocessing technique for computing Slater rankings. It is interesting to investigate
if the concept of (partial) kernelization might be used to provide some performance
guarantee of the corresponding reduction rules.

The following chapter provides experimental results showing the usefulness of data
reduction for the computation of a Kemeny consensus.



Chapter 5
Experimental results for Kemeny

We investigated the practical value of fixed-parameter algorithms for computing opti-
mal Kemeny rankings. Our main focus was on data reduction rules leading to partial
kernelization as described in Chapter 4. To this end, we implemented and extended
the 3/4-Majority Rule introduced in Subsection 4.3.1. In addition, we implemented
the search tree algorithm from Section 3.4, the dynamic programming algorithm show-
ing fixed-parameter tractability with respect to the number of candidates (Section 3.3)
as well as an ILP-based algorithm used in previous experimental work [59, 185]. We
showed that the data reduction rules allow for the computation of Kemeny rankings
of instances that cannot be solved by the other implemented algorithms without data
reduction.

Combining our data reduction with the other implemented algorithms, we provide
encouraging results in experiments with real-world data arising in web search and sport
competitions. We often achieve provably optimal rankings with small running times—
for example, a few seconds or even milliseconds for instances with about 100 –150
candidates. An essential property of our data reduction algorithm is that it can break
instances into several subinstances to be handled independently, that is, the relative
order between the candidates in two different subinstances in a Kemeny ranking is
already determined. This also means that for many of the instances which could not
be completely solved, we were still able to compute “partial rankings” of the top and
bottom ranked candidates. For example, for a large instance based on rankings of
about 1300 mathematicians according to their impact in the world wide web, we could
not compute a complete Kemeny ranking but still provide a “partial” ranking of the
best 31 mathematicians.

In our experiments, we are not only interested in the decision problem Kemeny
Score but also want to compute a corresponding Kemeny ranking. Hence, we deal
with the following NP-hard optimization problem.

Rank aggregation
Input: An election (V, C).
Task: Find a Kemeny ranking of (V, C).

Our algorithms for Rank aggregation are implemented in C++ and the source
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Input: An election (V, C).
Output: A minimal subset C′ ⊆ C with c′ ≥1/2 c for every c′ ∈ C′ and every
c ∈ C \ C′.

For every candidate c ∈ C
xxx Start with Mc := {c}.
xxxxxxRepeat until Mc remains unchanged
xxxxxxxxx If there is a candidate c′ ∈ Mc and a candidate c′′ ∈ C\Mc with c′′ >1/2 c′,
xxxxxxxxx then add c′′ to Mc.

Return: an Mc such that |Mc| ≤ |Mc′ | for every c′ ∈ C \ {c}.

Figure 5.1: Strategy to find winning subsets.

code and test data are available under the GPL Version 3 license1. In the following
two sections, we first provide more details on the implemented algorithms and then
describe our experimental results.

5.1 Implemented algorithms

In this section, we describe the algorithms realized in our software package. We dis-
tinguish between data reduction rules and other “solution algorithms”.

5.1.1 Data reduction rules

We present a well-known data reduction rule of practical relevance and show that it
reduces an instance at least as much as the 3/4-Majority Rule (see Subsection 4.3.1).
The reduction rule is based on the following easy-to-verify observation.

Observation 5.1. Let C′ ⊆ C be a candidate subset with c′ ≥1/2 c for every c′ ∈ C′

and every c ∈ C \ C′. Then there must be a Kemeny ranking fulfilling C′ > C \ C′.

To turn Observation 1 into a reduction rule, we need a polynomial-time algorithm
to identify appropriate “winning subsets” of candidates. We use the following simple
strategy, called winning subset routine provided in Figure 5.1.

Condorcet-Set Rule. If the winning subset routine returns a subset C′ with C′ 6= C,
then replace the original instance by the two subinstances induced by C′ and C \ C′.

It is easy to see that the Condorcet-Set Rule can be carried out in O(nm3) time. The
following proposition shows that the Condorcet-Set Rule is at least as powerful as the
3/4-Majority Rule, implying that the Condorcet-Set Rule provides a partial kernel
with less than 11da candidates.

Proposition 5.1. An instance reduced by the Condorcet-Set Rule cannot be further
reduced by the 3/4-Majority Rule.

Proof. The proof is by contradiction. Assume that there is an instance reduced by
the Condorcet-Set Rule where the 3/4-Majority Rule successfully applies. Then, there
must be a non-dirty candidate ni and a subset C′ ⊆ C with c′ ≥3/4 ni for c ∈ C′ and

1Download from http://theinf1.informatik.uni-jena.de/kconsens/

http://theinf1.informatik.uni-jena.de/kconsens/
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ni ≥3/4 c for c ∈ C \ (C′ ∪ {ni}). Clearly, we can assume that C′ and C \ (C′ ∪ {ni})
are nonempty since otherwise the Condorcet Set Rule would obviously reduce this
instance. Hence, in the iteration loop of the routine given in Figure 5.1 for ni all
candidates from C′ must be added to Mni . Since |{v ∈ V : c′ ≥3/4 ni}| ≥ 3/4 · |V |
and |{v ∈ V : ni ≥3/4 c}| ≥ 3/4 · |V |, the intersection of these two sets must contain
at least |V |/2 elements, that is, there must be at least |V |/2 votes with “c′ > · · · >
ni > · · · > c” for c ∈ C′ and c ∈ C \ (C′ ∪ {ni}). Hence, Mni is a minimal subset
according to which the instance can be split according to the Condorcet-Set Rule, a
contradiction to the fact that it has been applied exhaustively.

Proposition 5.1 shows that the 3/4-Majority Rule cannot lead to a “stronger”
reduction of an instance than the Condorcet-Set Rule does. However, since the
Condorcet-Set Rule has a higher running time, that is O(nm3) compared to O(nm2),
applying the 3/4-Majority Rule before the Condorcet-Set Rule may lead to an im-
proved running time in practice. Analogously, this is also true for the following “special
case” of the Condorcet-Set Rule also running in O(nm2) time.

Condorcet Rule. If there is a candidate c ∈ C with c ≥1/2 c′ for every c′ ∈ C \ {c},
then delete c.

Indeed, our experiments will show that combining the Condorcet-Set Rule with the
other rules significantly speeds up the practical running times for many instances.

Further data reduction rules. In addition to the two Condorcet rules and the
3/4-Majority Rule, we implemented and evaluated three further reduction rules. The
>2/3-majority based Rule 4.2 from Subsection 4.3.3, a reduction rule which replaces
a set of candidates by a weighted candidate behaving in exactly the same way to all
other candidates, and, a reduction rule generalizing the 3/4-Majority Rule by using
“non-dirty sets” of candidates. Since none of these rules in our experiments led to a
stronger reduction of the instance size or to an improved running time for any instance,
we omit them from further considerations.

5.1.2 Exact solution algorithms

To optimally solve subinstances remaining after data reduction and to investigate how
far one can get without data reduction, we implemented an integer linear programming-
based algorithm and two fixed-parameter algorithms.

Fixed-parameter algorithms. We decided to implement two of the “simpler”
fixed-parameter algorithms from Chapter 3.

• We implemented the search tree algorithm branching into conflict tuples (Sec-
tion 3.4) for tuple sizes ranging from two to six. For this algorithm, the worst-
case running time bound depending on the Kemeny score is very rough for many
instances and hence there is reasonable hope that the algorithm might perform
better in practice. Moreover, the search tree algorithm only needs polynomial
space whereas all dynamic programming algorithms provided in Chapter 3 re-
quire exponential space.
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• We implemented the dynamic programming algorithm exploiting the parameter
“number of candidates” m running in O(2m · nm2) time (Section 3.3). Since for
all our instances m is smaller than da, this seems to be a good choice based on
comparing the worst-case running times.

The implementation of some of the other fixed-parameter algorithms such as the search
tree strategies provided by Simjour [189] is an important task of future research.

Integer linear programming. Regarding previous approaches to compute opti-
mal Kemeny rankings, the state of the art seems to be to formulate an integer linear
program (ILP) and solve it with a standard solver. Conitzer et al. [59] provided dif-
ferent ILP formulations and gave practical evidence (based on random data and using
CPLEX) that the best of them outperforms a previous branch and bound algorithm
from [68]. Hence, we use the corresponding formulation [59, Linear Program 3] to com-
pare it with our algorithms. Herein, we use the freely available ILP-solver GLPK2.
The same formulation was also used to compute optimal solutions to experimentally
investigate the performance of several heuristics and approximation algorithms [185].

5.2 Experimental results

Our algorithms are implemented in C++ using several libraries of the boost package.
Our implementation consists of about 4000 lines of code. All experiments were carried
out on a PC with 3 GHz and 4 GB RAM (CPU: Intel Core2Quad Q9550) running
under Ubuntu 9.10 (64 bit) Linux.

We start to describe our results for instances obtained from sport competitions
followed by two different types of web search data.3 In general, for the smaller instances
(most of the sport instances and some of the web instances) we focus on comparing
the ILP-based algorithm with the dynamic programming and the search tree variants
for different tuple sizes. For the larger instances (which cannot be solved without
reduction rules) we give a systematic analysis of the performance of the individual
reduction rules.

5.2.1 Sport competitions

Formula 1. The winner determination of a Formula 1 season can be considered as
an election where the candidates are the drivers and the votes are the single races.
Under the current system the winner determination is based on a “scoring rule”, that
is, in a single race every candidate gets some points depending on the outcome and
the candidate with highest total score wins. We computed Kemeny winners for the
seasons from 1970 till 2008. Since currently our implementation cannot handle ties, we
only considered candidates that have competed in all races. Candidates that dropped
out of a race are ordered according to the order determined by how long the drivers
participated in the race. The generated instances have about 16 votes and up to 28
candidates.

2http://www.gnu.org/software/glpk/
3Our dataset can be found under http://theinf1.informatik.uni-jena.de/kconsens/ .

http://theinf1.informatik.uni-jena.de/kconsens/
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Without data reduction, the ILP-approach was the most successful algorithm. It
could solve all instances in less than 31 seconds whereas the dynamic programming
algorithm could not solve the two instances with the highest number of candidates
within five minutes. All search tree variants performed even worse. Our reduction
rules partitioned nearly all instances in very small components such that a Kemeny
ranking could be computed for all years except 1983 in few milliseconds. For 1983 (24
candidates), a remaining component with 19 candidates could be solved in less than
one minute by the dynamic programming algorithm.

The Kemeny winner in most of the considered seasons is the same as the candidate
selected by the used scoring rule. However, in 2008, Lewis Hamilton was elected as
world champion (beating Felipe Massa by only one point) whereas Massa was the
“Condorcet driver” and thus the candidate ranked first in every Kemeny ranking.

Winter sport competitions. For ski jumping and cross skiing, we considered the
world cup rankings from the seasons 2005/2006 to 2008/2009,4 ignoring candidates
not appearing in all four rankings. Without data reduction, the ski jumping instance,
consisting of 33 candidates, was solved by GLPK in 103 seconds whereas the search
tree and dynamic programming algorithms did not find a solution within five minutes.
Only using the Condorcet Rules, the instance was solved in milliseconds. The cross
skiing instance, consisting of 69 candidates, could not be solved without data reduction
within five minutes by any of the solution algorithms but was reduced by our reduction
rules in 0.04 seconds such that one component with 12 and one component with 15
candidates were left and all other positions could be determined by the reduction rules.
The remaining components could be solved for example by the dynamic programming
algorithm within 0.12 and 0.011 seconds.

5.2.2 Search result rankings

A prominent application of Rank Aggregation is the aggregation of search result
rankings obtained from different web search engines. We queried the same 37 search
terms as Dwork et al. [77] and Schalekamp and van Zuylen [185] to generate rankings.
We used the search engines Google, Lycos, MSN Live Search, and Yahoo! to generate
rankings of 1000 candidates. Note that most of the search engines do not return
more than 1000 search terms. We consider two search results as identical if their
URL is identical up to some canonical form (cutting after the top-level domain).
Results not appearing in all rankings are ignored. We end up with 36 instances having
between 55 and 163 candidates and omit the instance corresponding to the search term
“zen budism” with only 18 candidates from further considerations. We start with a
systematic investigation of the performance of the individual reduction rules followed
by describing our results for the web instances.

A useful notation to display the effects of the reduction rules are profiles explained
at the following example. For the search term “architecture” the profile describing the
reduced instance is

136 > 12 > 130 > 17 > 127.

Every “1” stands for a position for which a candidate was determined in a Kemeny
ranking and higher numbers for groups of candidates whose “internal” order could

4Obtained from http://www.sportschau.de/sp/wintersport/

http://www.sportschau.de/sp/wintersport/
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Table 5.1: The first column encodes the combination of reduction rules used: the first digit is
“1” if the Condorcet-Set Rule is applied, the second if the Condorcet Rule is applied and the
last digit is “1” if the 3/4-Majority Rule is applied. For the three instances corresponding to
the search terms blues, gardening, and classical guitar we give the running times in seconds
and profiles describing the result of the data reduction process.

blues gardening

time profile time profile

001 0.03 12 > 5 > 1 > 101 > 1 > 2 0.01 1 > 2 > 1 > 102
010 0.10 174 > 9 > 129 0.05 154 > 43 > 19

011 0.10 174 > 9 > 129 0.05 154 > 43 > 19

100 0.84 174 > 9 > 129 0.95 154 > 20 > 13 > 9 > 110 > 4 > 16

101 0.10 174 > 9 > 129 1.03 154 > 20 > 13 > 9 > 110 > 4 > 16

110 0.10 174 > 9 > 129 0.10 154 > 20 > 13 > 9 > 110 > 4 > 16

111 0.10 174 > 9 > 129 0.11 154 > 20 > 13 > 9 > 110 > 4 > 16

classical guitar

time profile

001 0.03 1 > 114
010 0.06 16 > 92 > 117

011 0.07 16 > 92 > 117

100 1.89 16 > 7 > 150 > 35 > 117

101 2.03 16 > 7 > 150 > 35 > 117

110 0.19 16 > 7 > 150 > 35 > 117

111 0.18 16 > 7 > 150 > 35 > 117

not be determined by the data reduction rules. Sequences of i ones are abbreviated
by 1i. That is, we know the order of the best 36 candidates, then we know the set
of candidates that must assume positions 37– 48 without knowledge of their relative
orders, and so on.

We systematically applied all combinations of reduction rules, always sticking to
the following rule ordering: If applied, the Condorcet-Set Rule is applied last and the
3/4-Majority Rule is applied first. After a successful application of the Condorcet-
Set Rule, we “jump” back to the other rules (if “activated”). Examples are given in
Table 5.1. This led to the following observations.

• Surprisingly, the Condorcet Rule alone led to a stronger reduction than the 3/4-
Majority Rule in most of the instances whereas the 3/4-Majority Rule never led
to a stronger reduction than the Condorcet Rule.

• For several instances the Condorcet Set Rule led to a stronger reduction than the
other two rules, for example, for gardening and classical guitar (see Table 5.1).
More specifically, it led to a stronger reduction for 14 out of the 36 instances.
Furthermore, restricted to the 15 instances with more than 100 candidates (given
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Table 5.2: Web data instances with more than 100 candidates. The first column denotes
the search term, the second the number of candidates, the third the running time in seconds,
and the last column the profiles remaining after data reduction.

search term # cand. time structure of reduced instance

affirmative action 127 0.21 127 > 41 > 159

alcoholism 115 0.10 1115

architecture 122 0.16 136 > 12 > 130 > 17 > 127

blues 112 0.10 174 > 9 > 129

cheese 142 0.20 194 > 6 > 142

classical guitar 115 0.19 16 > 7 > 150 > 35 > 117

Death+Valley 110 0.11 115 > 7 > 130 > 8 > 150

field hockey 102 0.17 137 > 26 > 120 > 4 > 115

gardening 106 0.10 154 > 20 > 1 > 1 > 9 > 18 > 4 > 19

HIV 115 0.13 162 > 5 > 17 > 20 > 121

lyme disease 153 3.08 125 > 97 > 131

mutual funds 128 2.08 19 > 45 > 19 > 5 > 1 > 49 > 110

rock climbing 102 0.07 1102

Shakespeare 163 0.26 1100 > 10 > 125 > 6 > 122

telecommuting 131 1.60 19 > 109 > 113

in Table 5.2), it led to a stronger reduction for eight of them.

• The running times for the Condorcet-Set Rule in combination with the other
rules are given in left part of Figure 5.2. Applying the Condorcet Rule before
the Condorcet-Set Rule led to a significant speed-up. Additionally applying the
3/4-Majority Rule changes the running time only marginally. Note that jumping
back to the “faster” rules after applying the Condorcet-Set Rule is crucial to
obtain the given running times.

In the following, by “our reduction rules”, we refer to all three rules applied in the
order: Condorcet Rule, 3/4-Majority Rule, and Condorcet-Set Rule.

Now, we describe our overall results. For all instances with more than 100 candi-
dates, the results of our reduction rules are displayed in Table 5.2: the data reduction
rules are not only able to reduce candidates at the top and the last positions but also
partition some instances into several smaller subinstances. Out of the 36 instances,
22 were solved directly by the reduction rules and one of the other algorithms in less
than five minutes. Herein, the reduction rules always contributed with less than four
seconds to the running time. For all other instances we still could compute the “top”
and the “flop” candidates of an optimal ranking. For example, for telecommuting
there remains a subinstance with 109 candidates but we know the best nine candi-
dates (and their order). The effectiveness in terms of top candidates of our reduction
rules combined with the dynamic programming algorithm is illustrated in Figure 5.2.
For example, we were able to compute the top seven candidates for all instances and
the top 40 candidates for 70 percent of the instances.
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Figure 5.2: Left: Running times of different combinations of reduction rules. Right:
Percentage of the web data instances for which the x top candidates could be deter-
mined by data reduction and dynamic programming within five minutes. For a given
number x of top positions, we only considered instances with at least x candidates.

5.2.3 Impact rankings

Since most search engines only display the best 1000 search results, we could not gener-
ate instances with a higher number of candidates using the approach from the previous
subsection. To generate instances with more candidates, we generated rankings that
measure the “impact in the web” of different search terms. For a search engine, a list
of search terms is ranked according to the number of the hits of each single term. We
used Ask, Google, MSN Live Search, and Yahoo! to generate rankings for all capitals,
all nations, and the 103 richest people of the world.5 Our biggest instance is built
from a list of 1349 mathematicians.6

As to the capitals, in less than a second, our algorithms (reduction rules and any
of the other algorithms for solving subinstances up to 11 candidates) computed the
following “profile” of a Kemeny ranking: 145 > 34 > 190 > 43 > 126. The final Kemeny
ranking starts as follows: London > Paris > Madrid > Singapore > Berlin > · · · .
For aggregating the nation rankings, our algorithms were less successful. However,
we could still compute the top 6 and the flop 12 candidates. Surprisingly, the best
represented nation in the web seems to be Indonesia, followed by France, the United
States, Canada, and Australia. The instance consisting of the 103 richest persons
could be solved exactly in milliseconds by the Condorcet Rules. In contrast, for the
mathematicians we could only compute the top 31 and flop 31 candidates but could not
deal with a subinstance of 1287 candidates between. For the mathematicians instance,
the search strategy for minimal subsets for the Condorcet-Set Rule (Figure 5.1) led to
a running time of more than a day. Hence, we used a cutoff of 20 candidates for the
size of the minimal subsets. This decreased the running time to less than one hour.
Searching for sets with up to 100 candidates did not improve the results but increased

5http://en.wikipedia.org/wiki/List of{capitals by countries, richest people}
6http://aleph0.clarku.edu/∼djoyce/mathhist/chronology.html
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the running time to about one day. Note that with this cutoff Proposition 5.1 no longer
holds, that is, the 3/4-Majority Rule is provably no longer subsumed by the modified
Condorcet-Set Rule. However, for the mathematicians instance even an extended
version of the 3/4-Majority Rule did not lead to an improved result.

5.3 Conclusion

Our experiments showed that the corresponding data reduction rules allow for the
computation of optimal Kemeny rankings for real-world instances of non-trivial sizes
within seconds. In contrast, all of our larger instance (with more than 50 candidates)
could not be solved by ILP-formulation, the previously fastest exact algorithm [59],
or the two other implemented fixed-parameter algorithms directly. A crucial obser-
vation in the experiments with the different reduction rules regards some cascading
effects, that is, jumping back to the faster rules after a successful application of the
Condorcet-Set Rule does significantly improve the running time showing that the or-
der of reduction rules is relevant. We mention that we could not observe a specific
behavior for the different types of data. However, a further extension of the data set
and experiments in this direction are clearly of interest. We end with some remarks
leading to tasks for future research.

Comparison of the three solution algorithms. Although all three solution algo-
rithms were clearly outperformed by the data reduction rules in the sense that without
data reduction only relatively small instances could be tackled, they still turned out
useful to efficiently solve remaining parts of the instances. We briefly compare their
performances. The ILP seems to be the most effective in general but it might be worth
trying the search tree algorithm in parallel since they are significantly faster than the
ILP algorithm for some instances. Moreover, practical experiments [59] showed that
the running time for the ILP increases if the instances become more “disturbed”, also
implying a higher average KT-distance. In contrast, the performance of the dynamic
programming algorithm seems to be unaffected by the average KT-distance. How-
ever, since the data reduction rules usually cut away “easy parts”, it seems reasonable
that the remaining subinstances will come with a higher average KT-distance than
the original instance. Thus, the dynamic programming algorithm (maybe with some
additional heuristic speed-up) might perform better for them. Since for our test data
the number of remaining unsolved components of reasonable sizes (e.g. between 25
and 45 candidates) is too small (less than 10) to allow for a systematic study, such
investigations are deferred to future work.

Finding all Kemeny rankings. For some applications it is desirable to obtain all
Kemeny rankings. Due to Lemma 4.2, the 3/4-Majority Rule preserves all Kemeny
rankings and hence there is also a linear partial kernel with respect to the “average
KT-distance” da for the enumeration variant of Kemeny Score.7 In contrast to the
3/4-Majority Rule, the Condorcet rules do not preserve all optimal solutions. However,
both Condorcet rules can be adapted easily to this case by replacing “c ≥1/2 c′” by
“c >1/2 c′” in their statements. Some preliminary experiments showed that this made

7Simjour [189] provided a search-based enumeration algorithm running in 32da · poly(n, m) time.
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the rules significantly less effective for the web instances consisting of only four votes.
In contrast, for instances consisting of more than four votes such as the Formula 1
instances, the reduction rules did not perform as well as before but still led to a
significant reduction. Hence, the development of further reduction rules preserving all
Kemeny rankings seems to be an interesting task for future research.

Parameter-based evaluation of heuristics. Schalekamp and van Zuylen [192]
investigated the performance of a wide range of approximation algorithms for two
different data sets. It might be interesting to extend this study by investigating how
the performance of different heuristics or approximation algorithms relates to certain
instance properties. For example, which heuristic performs best for instances with
large average KT-distance and which performs best for small average KT-distance?

Constraint rankings. An important extension of Rank Aggregation is to con-
sider “constraint rankings”, that is, the problem input additionally contains a prespec-
ified order of some candidate pairs in the consensus list [192]. Here, our data reduction
rules cannot be applied anymore. Developing new reduction rules for this scenario is
of great interest since they also could be used in combination with the search tree
algorithm in an “interleaving mode” [171, 173]. Herein, the basic idea is to apply the
reduction rules after every branching step.

Improved partial kernel. The Condorcet-Set Rule is at least as effective as the
3/4-Majority Rule (Proposition 5.1). Can this be used to provably shrink the partial
kernel size? Also note that the development of further data reduction rules based
on a ≥s-majority for s < 3/4 might lead to reduction rules not subsumed by the
Condorcet-Set Rule.

Concluding, our experiments provided first encouraging results for computing opti-
mal Kemeny rankings by using fixed-parameter algorithms. The implementation of
some of the other fixed-parameter algorithms and extended algorithm engineering ef-
forts are important tasks for future research. For a given election, the values of most
of the different parameters investigated for Kemeny Score (Table 3.2, Section 3.8)
can either be computed optimally or approximated by a constant factor in polyno-
mial time. This invites for the development of a “meta-algorithm” computing the
different parameter values of an instance and then deciding about the appropriate
fixed-parameter algorithm to apply to this input instance. Since our theoretical re-
sults are based on worst-case analysis, the development of such an algorithm clearly
needs thorough experimental validations based on different data sets. However, this
is a promising approach in the spirit of multivariate algorithmics [104, 172].



Chapter 6
Dodgson and Young voting

The well-known Condorcet principle from 1785 [69] requires that a winner of an elec-
tion is the candidate who is preferred to each other candidate in more than half of
the votes. Unfortunately, such a Condorcet winner does not always exist. Hence,
several voting systems have been proposed which always choose the Condorcet winner
if one exists, and, otherwise, pick a candidate that is in some sense closest to being a
Condorcet winner. In other words, these election systems deal with certain “editing
problems”. We focus on two classic editing problems from social choice theory, one
due to C. L. Dodgson1 from 1876 [71] and one due to H. P. Young from 1977 [203].
In Dodgson elections, the editing operation is to switch neighboring candidates in the
voters’ preference lists and the Dodgson score of a candidate is the minimum number
of switches needed to make this candidate a Condorcet winner. In Young elections,
the editing operation is to remove a vote. For any candidate, its dual Young score
denotes the minimum number of removals needed to make it a Condorcet winner and
its Young score denotes the number of remaining votes.

In a seminal work, Bartholdi et al. [12] initiated the study of the computational
complexity of the winner determination for some election systems. They showed that
to decide whether a distinguished candidate can be made a Condorcet winner by
performing no more than a given number of editing operations is NP-complete for
both Dodgson and Young elections. In a further breakthrough, for Dodgson elections
Hemaspaandra et al. [130] and later for Young elections Rothe et al. [183] showed
that the corresponding winner and ranking problems are even complete for PNP

‖ , the
class of problems that can be solved via parallel access to NP. On the algorithmic
side, there is a simple greedy heuristic for finding Dodgson winners with a guaranteed
frequency of success [134] and some work on the polynomial-time approximability of
Dodgson and Young elections [50, 164]. In particular, Caragiannis et al. [50] gave
(randomized) approximation algorithms for Dodgson elections and showed that it is
hard to approximate Young elections by any factor. In further work, Caragiannis
et al. [51] investigated the development of “socially desirable approximations” for
Dodgson’s rule aiming to fix some of the shortcomings of Dodgson’s rule as a choice
procedure [40]. Summarizing, Dodgson’s rule is one of the most studied voting rules

1Also known as the writer Lewis Carroll.
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Table 6.1: Parameterized complexity of Dodgson Score and (Dual) Young Score with
respect to different parameters. In case of fixed-parameter tractability we also give informa-
tion about the (exponential terms of the) corresponding running times. Bold-faced results
are provided in this chapter, the FPT results for the parameter “number of candidates” can
be directly obtained from [12, 203], and the FPT results for Young elections with respect
to the number of votes are trivial. For Young elections, the same approaches can be used
for Dual Young Score and Young Score for n and m, respectively. W[1]-hardness with
respect to the number of votes for Dodgson Score was proven by Fellows et al. [106].

Parameter Dodgson Score Dual Young Score Young Score

# votes n W[1]-hard FPT (2n)
# candidates m FPT (ILP+Lenstra) FPT (ILP+Lenstra)
# steps k FPT (2k) W[2]-complete W[2]-complete

in computational social choice. In the following, we compare it with Young’s rule
concerning the parameterized complexity of the corresponding decision problems.

Table 7.1 provides an overview of the parameterized complexity for the problem of
deciding about the score of a distinguished candidate for Dodgson and Young elections.
For the standard parameter “number of candidates” the fixed-parameter tractabil-
ity results follow from ILP-formulations [12, 203] and Lenstra’s results (see Subsec-
tion 1.3.3). For Dodgson Score this fixed-parameter tractability result has been
further refined by McCabe-Dansted [163]. The W[1]-hardness for Dodgson Score
with respect to the number of votes has been recently obtained by Fellows et al. [106].
For a constant number of votes, Dodgson Score is solvable in polynomial time [12].

This chapter investigates the the parameterized complexity with respect to the
parameter “number of editing operations” for which, other than in the classical con-
text, the parameterized complexity of Dodgson and Young elections differs (see Ta-
ble 7.1). Dodgson Score is fixed-parameter tractable with respect to the “number of
switches”. In contrast, deciding whether a distinguished candidate can become a win-
ner by deleting a certain number of votes is W[2]-complete with respect to the “number
of deleted votes” (Dual Young Score) as well as with respect to the “number of re-
maining votes” (Young Score). Our results imply that Dodgson elections can be put
into actual use whenever the input instances are close to having a Condorcet winner.
This answers an open question of Christian et al. [56]2 and refutes a parameterized
hardness conjecture of McCabe-Dansted [163]. In addition to our results, there is an
exponential-size problem kernel for a generalized variant of Dodgson Score [108]
which is complemented by a recent result of Fellows et al. [106] showing that under
some reasonable assumption from classical complexity theory Dodgson Score does
not admit a problem kernel of polynomial-size3.

We now define the basic computational problems of this chapter. Examples are
provided in Figure 6.1. A switch denotes the swapping of two neighboring candidates

2Fellows and Rosamond independently showed that Dodgson Score is fixed-parameter tractable,
but with a higher running time.

3We refer to Subsection 9.2.2 for more details about the underlying framework.
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Input
v1 : c > a > b .
v2 : c > a > b
v3 : a > b > c
v4 : b > c > a
v5 : b > c > a

Dodgson
c > a > b .
c > a > b
a > c > b
b > c > a
b > c > a

Young
c > a > b
c > a > b
a > b > c
b > c > a
b > c > a

Figure 6.1: Example for Dodgson and Young score. For the election provided
by {v1, . . . , v5} (left-hand side), the candidate c can become a Condorcet winner by
applying one switch in v3 (middle) or by deleting two votes (right-hand side). Thus,
the Dodgson score of c is one, the Young score of c is three, and the dual Young score
is two.

in a vote.

Dodgson Score:
Given: An election (V, C), a distinguished candidate c ∈ C, and an inte-
ger k ≥ 0.
Question: Can c be made a Condorcet winner by at most k switches?

In other words, for Dodgson Score, we ask whether the Dodgson score of c is at
most k. The Young score is defined by the number of remaining votes:

Young Score:
Given: An election (V, C), a distinguished candidate c ∈ C, and an inte-
ger l ≥ 0.
Question: Is there a subset V ′ ⊆ V of size at least l such that (V ′, C) has
the Condorcet winner c?

The dual Young score is defined by the number of removed votes:

Dual Young Score:4

Given: An election (V, C), a distinguished candidate c ∈ C, and an inte-
ger k ≥ 0.
Question: Is there a subset V ′ ⊆ V of size at most k such that (V \V ′, C)
has the Condorcet winner c?

All three problems are NP-complete [12, 183]. We briefly discuss that, other than in
Figure 6.1, for many instances the Dodgson score of a candidate is expected to be
higher than the (dual) Young Score since the switch operation is less powerful than
deleting votes in the sense that a switch affects only two candidates whereas deleting
a vote affects all candidates. For example, consider the election formed by the two
votes

c > a1 > a2 > · · · > as and a1 > a2 > · · · > as > c.

Then, the Dodgson score of c is s since c must be switched to the first position in
the second vote. In contrast, the Young score and the dual Young score are one

4The Dual Young Score problem can also be considered as constructive control by deleting votes
in order to make a distinguished candidate the Condorcet winner. We refer to Chapter 11 for more
details about control in elections.
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vote 1 : c2 > c3 > c > c1

vote 2 : c1 > c2 > c > c3

vote 3 : c1 > c2 > c > c3

vote 4 : c2 > c > c3 > c1

vote 5 : c3 > c2 > c1 > c

Deficits: candidate c1: d1 = 1
candidate c2: d2 = 3
candidate c3: d3 = 0

Figure 6.2: An election and the corresponding deficits of the candidates c1, c2, and c3

against the distinguished candidate c. For example, c2 is preferred to c in each of the
five votes and hence c must “improve” upon c2 in at least three of the votes to become
a Condorcet winner.

since it is sufficient to delete the second vote. Hence, the “parameterized tractability
gap” between Dodgson and Young elections with respect to the “number of editing
operations” is not completely surprising.

In the following section, we discuss our results for Dodgson Score including
considerations of a generalized model. More specifically, in case of allowing sets of tied
candidates in a vote, depending on the choice between two switching mechanisms, we
either obtain fixed-parameter tractability or W[2]-completeness.

6.1 Dodgson Score

In this section, we describe a fixed-parameter algorithm based on dynamic program-
ming for the problem Dodgson Score parameterized by the score k with running
time O(2k · nk + nm). This answers an open question of Christian et al. [56]. The
dynamic programming algorithm will be stated for the decision problem but can easily
be extended such that for a yes instance it stores a sequence of at most k switches
leading to an election in which the distinguished candidate is a Condorcet winner. In
the following, we first describe a general version of the algorithm, which we also use to
solve a generalized version of Dodgson Score (see Subsection 6.1.2). Then we show
how to further improve the running time of this algorithm for Dodgson Score.

6.1.1 Dynamic programming algorithm

To design our algorithm, we make use of the following easy-to-verify observation [163,
Lemma 2.19].

Observation 1. There is always an optimal solution consisting of a sequence of
switches such that every switch moves the distinguished candidate c to a better
position.

Making use of Observation 1, our algorithm only considers switches of this kind. To
“measure” how much the distinguished candidate c must improve upon any candi-
date c′ ∈ C\{c}, we introduce the concept of the deficit of c′: Let Nc′ denote the
number of votes from V in which c′ defeats c, that is, in which c′ is better positioned
than c. Then, the deficit dc′ is ⌊(Nc′ − (n−Nc′))/2⌋+1, that is, the minimum number
of votes in which the relative order of c and c′ has to be reversed such that c defeats
c′ in strictly more than half of the votes. See Figure 6.2 for an example. We call a
candidate with a positive deficit dirty. Now, we can state a further observation which
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(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3)
{v1} ∞ ∞ ∞ ∞ ∞ 2 ∞ 0
{v1, v2} . . . . . .
{v1, v2, v3} . . .

Figure 6.3: Dynamic programming table T for the election given in Figure 6.2 with
dirty candidates c1 and c2 and corresponding deficit list (d1, d2) = (1, 3). The first row
can be initialized as follows. Without any switch the deficit list is clearly (1, 3) and
applying two switches in v1 decrements the deficit of c2 by one providing the entry
for (1, 2). All other deficit lists can not be achieved by only switching within v1.

will be crucial for the analysis of the algorithm when bounding the size of the dynamic
programming table.

Observation 2. A candidate with nonpositive deficit can never become dirty through
a sequence of switches since we consider only switches that never increase any
deficit (Observation 1). One switch decreases the deficit of one candidate by
one. Therefore, with at most k switches allowed, in a yes-instance, the sum of
the deficits of the dirty candidates is bounded from above by k.

Observation 2 allows us to restrict our attention to the set of dirty candidates. Let
Cd = (c1, c2, . . . , cp) denote the list of dirty candidates in an arbitrary but fixed or-
der and let D = (d1, d2, . . . , dp) be the corresponding deficit list. We define a two-
dimensional dynamic programming table T , each row corresponding to a subset of
votes {v1, v2, . . . , vi} for i = 1, . . . , n and each column corresponding to a (partial)
deficit list (d′1, d

′
2, . . . , d

′
p) with 0 ≤ d′j ≤ dj for 1 ≤ j ≤ p (see Figure 6.3 for an

example). The entry
T (i, (d′1, d

′
2, . . . , d

′
p))

stores the minimum number of switches within {vj | 1 ≤ j ≤ i} such that in a resulting
instance the deficits of the p dirty candidates are at most d′1, d

′
2, . . . , d

′
p, respectively.5

If a deficit list (d′1, d
′
2, . . . , d

′
p) cannot be achieved by switching within the set of votes

{vj | 0 ≤ j ≤ i}, then T (i, (d′1, d
′
2, . . . , d

′
p)) := +∞. Then, T (n, (0, 0, . . . , 0)) ≤ k

implies that within the set of all n votes a sequence of at most k switches can be
applied such that the distinguished candidate becomes a Condorcet winner and hence
the considered instance is a yes-instance.

Using that the sum of the deficits of the dirty candidates is bounded from above
by the parameter k (Observation 2), we will show later that for a yes-instance, one
has to consider at most 2k different deficit lists and hence that size of T is bounded
by a function depending only on the parameter. In the following, we describe how to
“fill” the table T . We give some further definitions which are necessary to describe
the initialization and the update step.

Let switch(vi, cj) denote the minimum number of switches needed such that in vote
vi candidate c defeats candidate cj . If c already defeats cj in vi, then switch(vi, cj) :=
0. For a deficit list D′ = (d′1, d

′
2, . . . , d

′
p) and a subset of indices S ⊆ {1, . . . , p}, we use

5Using “at most” in the definition of table entries, we do not have to consider deficit lists
(d′

1
, . . . , d′p) where d′i < 0 for some i. In this way, the case that an optimal solution may decrease the

deficit of a dirty candidate to a negative value is also covered.
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Algorithm DodScore

Input: Set of votes V = {v1, . . . , vn}, set of candidates C, set of dirty candidates
Cd = {c1, . . . , cp} ⊆ C, distinguished candidate c, deficit list D = (d1, . . . , dp) of dirty
candidates, positive integer k with

∑p
i=1 di ≤ k

Output: Yes, if c can become a Condorcet winner with at most k switches

Initialization:
01 for all D′ = (d′1, . . . , d

′
p) with 0 ≤ d′j ≤ dj for 0 ≤ j ≤ p

02 for i = 1, . . . , n
03 T (i, D′) := +∞
04 for all S ⊆ {1, . . . , p}
05 if for each j ∈ S candidate cj defeats c in v1 then

06 T (1, D − S) := switch(v1, best(S, v1))
Update:
07 for i = 2, . . . , n
08 for all D′ = (d′1, . . . , d

′
p) with 0 ≤ d′j ≤ dj for 0 ≤ j ≤ p

09 for all S ⊆ {1, . . . , p}
10 if for each j ∈ S candidate cj defeats c in vi then

11 T (i, D′) := min{T (i, D′), T (i − 1, D′ + S) + switch(vi, best(S, vi))}

Output:
12 if T (n, (0, 0, . . . , 0)) ≤ k then

13 return “Yes”

Figure 6.4: Fixed-parameter algorithm with respect to the “number of switches” for
Dodgson Score.

D′ +S to denote a deficit list (e1, . . . , ep) where ei := d′i +1 for i ∈ S and d′i < di, and
ei := d′i, otherwise. Analogously, for the original deficit list D = (d1, . . . , dp), D − S
denotes the list (f1, . . . , fp) where fi := di − 1 if i ∈ S and fi := di, otherwise. Let
best(S, vi) denote the candidate cj with j ∈ S such that cj is liked better than each
other candidate in {cr | r ∈ S, r 6= j} in vote vi.

The dynamic programming algorithm for Dodgson Score is stated in Figure 6.4.
We assume that the deficits of the candidates are provided as input and that the
sum of the deficits of the dirty candidates is at most k as argued in Observation 2.
In the initialization of the first row of the dynamic programming table (Figure 6.4,
lines 4–6), the algorithm considers all possible combinations of deficit decrements that
can be achieved by switches within the first vote, and stores the minimum number
of switches needed for each of them. An example is provided in Figure 6.3. In the
update (lines 7–11), the subset of votes {v1, . . . , vi−1} is extended by a new vote vi

and for the new subset {v1, . . . , vi} a solution for all partial deficit lists is computed
by combining a number of switches within the new vote vi with information already
stored in the table T . See Figure 6.5 for an example of the update step.

Lemma 6.1. The algorithm DodScore (Figure 6.4) is correct.

Proof. Concerning the correctness of the initialization, note that the first for-loop
(lines 1–3) merely sets all table entries to “+∞”. Hence it suffices to show that
DodScore assigns the correct number of switches to all entries of the first row with
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(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3)
{v1} ∞ ∞ ∞ ∞ ∞ 2 ∞ 0
{v1, v2} ∞ 4 ∞ 3 2 1 2 0
{v1, v2, v3} . . .

T (2, (1, 2)) = min

{
T (1, (1, 2)),
T (1, (1, 3)) + cost of improvement in v2

Figure 6.5: Example for the update step for the election provided in Figure 6.2.
Consider the highlighted table entry which is computed according to the formula
given below the table. Since the cost of the improvement from (1, 3) to (1, 2) in v2 is
one and T (1, (1, 3)) = 0, the updated value of the considered entry is one.

partial deficit lists that can be achieved by switching within the first vote v1 (lines 4–
6). Since in one vote the deficit of every candidate can be reduced by at most one,
it is sufficient to iterate over all possible subsets S of {1, . . . , p} and to reduce the
original deficits of the corresponding candidates by one. Thereby, an entry can only
become less than +∞ if c can be improved upon all candidates with indices in S
(line 5). Moreover, the minimum number of switches is obviously the number of
switches needed to improve c upon the candidate that is best in vote v1 among the
candidates cj with j ∈ S, which is given by switch(v1, best(S, v1)).

The computation of an entry T (i, D′) with i ≥ 2 is based on the fact that the
decrement from D to D′ can be split into two parts. One part needs to be achieved
by switches in vote vi and the other one by switches in votes v1, . . . , vi−1. The mini-
mum number of switches needed for the corresponding splitting possibilities is stored
in T (i, D′). Moreover, since the switches in vi can decrease the deficit of one dirty
candidate by at most one, every possible way of splitting the deficit decrement can be
represented by a subset S of {1, . . . , p}. Each subset S has the meaning that, by the
switches in vi, the deficits of the dirty candidates with indices in S should be decreased
by exactly one; the rest of the decrement from D to D′ has to be achieved by switches
in v1, . . . , vi−1. According to the definition of the table T , the minimum number of
switches to achieve the latter is stored in the already computed (i − 1)th row of T ,
namely, in T (i − 1, D′ + S). As argued for the initialization, switch(vi, best(S, vi)) re-
turns the minimum number of switches to decrease the deficit of the candidates with
indices in S. Therefore, lines 9-11 of DodScore compute T (i, D′) correctly.

Since DodScore computes the table T correctly, we can conclude that a given
instance is a yes-instance if and only if T (n, (0, . . . , 0)) ≤ k (lines 12 and 13).

Lemma 6.2. The algorithm DodScore (Figure 6.4) runs in O(4k · nk + nm) time.

Proof. It is easy to see that the deficit list D can be computed in O(nm) time by
iterating over all votes and counting the deficits for all candidates. Now, we consider
the size of the dynamic programming table.

A deficit d′i can have values ranging from 0 to di. Hence, the number of partial
deficit lists, that is, the number of columns in the table, is

∏p
i=1(di + 1). Clearly,

for a potential yes-instance, we have the constraints p ≤ k and
∑p

i=1 di ≤ k (see



76 6 Dodgson and Young voting

Observations 1 and 2). It is not hard to see that 2k is a tight upper bound on∏p
i=1(di + 1). Thus, the overall table size is n · 2k.
For computing the value of a table entry T (i, D′), the algorithm iterates over all

2p subsets of {1, . . . , p}. For each such subset S, it computes the “distance” in vi

between the best of the dirty candidates with indices in S and c, that is, the number
of switches needed to make c better than this best dirty candidate. This distance
can be computed in O(k) time and, hence, the computation of T (i, D′) can be done
in O(2k · k) time. The initialization of T clearly needs O(2k · n) time. Hence, table T
can be computed in O(2k · n · 2k · k + 2k · n) = O(4k · nk) time.

By making use of a “monotonicity property” of the table, we can improve the
running time of DodScore as shown in the following theorem.

Theorem 6.1. Dodgson Score can be solved in O(2k · nk + nm) time.

Proof. The improvement compared to Lemma 6.2 is achieved by replacing the inner-
most for-loop (lines 9–11 in Figure 6.4) of the update step which computes a table
entry and needs O(2k · k) time by an instruction running in time linear in k.

For d ∈ C\{c}, let Si(d) denote the set of the dirty candidates that are better
than the distinguished candidate c but not better than the candidate d in vote vi.
Clearly, Si(d) is empty if d is worse than c in vi and, otherwise, Si(d) contains d. We
replace lines 9–11 in Figure 6.4 by the recurrence

T (i, D′) := min
1≤r≤p

{T (i− 1, D′ + Si(cr)) + switch(vi, cr)}.

To prove the correctness of the recurrence, on the one hand, observe that, for
every r with 1 ≤ r ≤ p, there exists a subset S ⊆ {1, . . . , p} satisfying the if-condition
in line 10 of DodScore such that S = Si(cr) and best(S, vi) = cr. Thus,

min
S⊆{1,...,p}

{T (i − 1, D′ + S) + switch(vi, best(S, vi))}

≤ min
1≤r≤p

{T (i − 1, D′ + Si(cr)) + switch(vi, cr)}.

On the other hand, for every S ⊆ {1, . . . , p} satisfying the if-condition in line 10,
there exists an r with 1 ≤ r ≤ p such that S ⊆ Si(cr). For instance, let r be the
index of the candidate in S that is the best in vi; we then have best(S, vi) = cr and,
thus, switch(vi, best(S, vi)) = switch(vi, cr). Moreover, from the definition of table
entries, the following monotonicity of the table T is easy to verify:

T (i, (d1, . . . , di, . . . , dp)) ≥ T (i, (d1, . . . , di + 1, . . . , dp)).

Thus, from S ⊆ Si(cr) we conclude that T (i, D′+S) ≥ T (i, D′+Si(cr)). Clearly, Si(cr) ⊆
{1, . . . , p} and, by definition, Si(cr) satisfies the if-condition in line 10. It follows that

min
1≤r≤p

{T (i − 1, D′ + Si(cr)) + switch(vi, cr)}

≤ min
S⊆{1,...,p}

{T (i − 1, D′ + S) + switch(vi, best(S, vi))}.

The time for computing a table entry in the improved version is clearly O(k):
Before looking for the minimum, we can compute Si(cr) for all 1 ≤ r ≤ p by iterating
one time over vi. Then, based on Lemma 6.2, the overall running time becomes
O(2k · nk + nm).
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6.1.2 Allowing ties

Sometimes it might be desirable to allow a voter to rank two or more candidates
equally. This leads to an election based on votes with ties. As noted by Hemaspaandra
et al. [130], there are (at least) two different natural models on how to generalize
Dodgson Score to the case with ties. The models differ in the “power” of one
switch. In the first model, transforming a = b > c into c > a = b requires just one
switch and in the second model this requires two separate switches. The ranking and
the winner versions remain PNP

|| -complete in both cases [130].
Formally, a vote with ties can be considered as a total order of disjoint sets of

candidates. To ease the presentation, we often write just “> c >” instead of “> {c} >”
in case of a singleton.

Recall that in the case of ties a candidate c is a Condorcet winner if for every
other candidate d the number of votes in which c is strictly preferred to d is higher
than the number of votes in which d is strictly preferred to c. Hence, the deficit of a
candidate d 6= c is defined as Nd −Nd +1, where Nd is the number of votes in which d
defeats c and Nd is the number of votes in which c defeats d. In the following, we
describe two switch operations, one for each model. In both models a switch can now
either break or build ties between the distinguished candidate c and other candidates.

For computing the Dodgson score only the relative order between the distinguished
candidate c and the other candidates is relevant. Hence, to keep the models easy,
we restrict them to the interesting case where each switch involves the distinguished
candidate.

In the first model the distinguished candidate can improve upon a whole subset of
candidates by one switch. More precisely, for an appropriate subset B ⊆ C\{c}, we
have one of the following two situations:

• “. . . > B > c > . . . ”: Such a vote can be transformed to “. . . > B ∪ {c} > . . . ”
by applying one switch.

• “. . . > B ∪ {c} > . . . ”: Such a vote can be transformed to “. . . > c > B > . . . ”
by applying one switch.

The problem of computing the Dodgson score for this model is denoted as Dodg-
son Tie Score 1 (DTS1).

In the second model, the switch operation becomes less powerful, that is, the
distinguished candidate can only improve upon one candidate by one switch. Here,
one has to consider the following situations:

• “. . . > B > c > . . . ”: Such a vote can be transformed to “. . . > B\B′ >
B′ ∪ {c} > . . . ” by |B′| switches for any B′ ⊆ B.

• “. . . > B∪{c} > . . . ”: Such a vote can be transformed to “. . . > (B\B′)∪{c} >
B′ . . . ” by |B′| switches for any B′ ⊆ B.

The problem of computing the Dodgson score for this model is denoted as Dodg-
son Tie Score 2 (DTS2). The considered model is very general in the sense that it
allows to choose to improve the distinguished candidate only upon a subset of equally
ranked candidates and thus it is only “charged” to pay for this subset. A reasonable
special case of this model is to restrict B′ to be identical with B, that is, to allow only
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to switch the distinguished candidate with the whole subset. For this case, we can
directly use the improved version of the algorithm DodScore as described in the proof
of Theorem 6.1 by treating the whole set of tied candidates as one possibility. This
yields an algorithm with running time O(2k · nk + nm).

Note that for both models, a switch as defined for the case without ties can be
simulated by two switches.

Whereas DTS1 and DTS2 remain NP-complete (which easily follows from the NP-
completeness of the case without ties [12]), their parameterized complexity differs.
The problem DTS2 is fixed-parameter tractable while DTS1 is W[2]-complete. We
briefly discuss the corresponding results and refer to the journal paper [27] for the full
proofs.

The fixed-parameter tractability of DTS2 can be obtained by a slight modification
of algorithm DodScore from Figure 6.4. Since we do not have a total ordering of
candidates in the votes, we cannot make use of the monotonicity property employed
in the proof of Theorem 6.1. Thus, returning to the algorithm used for Lemma 6.4,
for DTS2 we obtain a slightly worse running time than for Dodgson Score without
ties as given in Theorem 6.1. More specifically, this leads to the following.

Theorem 6.2. Dodgson Tie Score 2 can be solved in O(6k · nk + nm) time.

In contrast to the fixed-parameter tractability of DTS2, DTS1 is W[2]-complete
with respect to k [27, Theorem 3]. Intuitively, this may be explained by the fact that
in case of DTS1 a single edit operation can improve the distinguished candidate c
upon, in principle, all other candidates.

6.2 Young Score

In this section, we show that Young Score and Dual Young Score are W[2]-
complete with respect to their corresponding solution size bounds l and k, respec-
tively. From a parameterized perspective Dual Young Score appears to be more
natural than Young Score because for Dual Young Score one may expect smaller
parameter values.

For both problems, similar to Dodgson Score, it is helpful to consider a deficit
concept for a candidate d ∈ C\{c} against the distinguished candidate c: Again, let
Nd denote the number of votes from V in which d defeats c. Then, the Young deficit
is defined as Nd − (n − Nd).

We start with a W[2]-hardness-proof for Dual Young Score, giving two parame-
terized reductions: The first reduction is from the W[2]-hard Red Blue Dominating
Set (RBDS) [76] to an intermediate problem, which is a variant of Red Blue Dom-
inating Set, and then the second one is from the intermediate problem to Dual
Young Score.

Red Blue Dominating Set (RBDS)
Given: A bipartite graph G = (R ∪ B, E), with R and B being the two
disjoint vertex sets, and an integer k ≥ 0.
Question: Is there a subset D ⊆ R of size at most k such that every vertex
in B has at least one neighbor in D?

The intermediate problem is defined as follows (see Figure 6.6 for an example).
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r1

b1

r2

b2

r3

b3

r4

b4

r5

b1 is dominated by r2 and r4

b2 is dominated by r2 and r5

b3 is dominated by r2 and r4

b4 is dominated by r4 and r5

Figure 6.6: Instance of k/2-Red Blue Dominating Set with red vertices r1, r2, . . . , r5

and blue vertices b1, b2, . . . , b4. For the case k = 3, that means one needs to find three
red vertices such that every blue vertex is dominated at least ⌊3/2⌋ + 1 = 2 times, a
solution is provided by {r2, r4, r5}.

k/2-Red Blue Dominating Set (k/2-RBDS)
Given: A bipartite graph G = (R ∪ B, E), with R and B being the two
disjoint vertex sets, and an integer k ≥ 0.
Question: Is there a subset D ⊆ R of size at most k such that every vertex
in B has at least ⌊k/2⌋+ 1 neighbors in D?

Lemma 6.3. k/2-Red Blue Dominating Set is W[2]-hard.

Proof. We give a parameterized reduction from RBDS. Let (G = (B∪R, E), k) denote
an RBDS instance. A corresponding instance (G′ = (B′ ∪ R′, E′), k′) of k/2-RBDS is
constructed as follows:

B′ := B ∪ {bx},
R′ := R ∪ {rnew

j | 1 ≤ j ≤ k} ∪ {rx},
E′ := E ∪ {{b, rnew

j } | b ∈ B and 1 ≤ j ≤ k}
∪{{bx, rx}} ∪ {{bx, rnew

j } | 1 ≤ j ≤ k}, and

k′ := 2k + 1.

The following claim finishes the proof.

Claim: The considered RBDS-instance is a yes-instance if and only if the k/2-RBDS-
instance is a yes-instance.

“⇒”: One can easily construct a solution for the k/2-RBDS-instance by choosing the
corresponding vertices of the size-≤ k RBDS-solution D and additionally the k + 1
new red vertices. The size of the new solution then is at most 2k + 1 and every blue
vertex in B is dominated k times by the new red vertices and at least once by a vertex
from D. The new blue vertex bx is dominated by the k+1 new red vertices. Therefore,
every vertex is dominated at least k + 1 = ⌊k′/2⌋ + 1 times.
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“⇐”: Consider a size-≤ k′ solution D of the k/2-RBDS-instance. Obviously, D must
contain rx and the other k new red vertices rnew

1 , . . . , rnew
k to dominate bx. Therefore,

all of the other blue vertices are dominated exactly k times by rnew
1 , . . . , rnew

k . Since
every blue vertex has to be dominated at least ⌊k′/2⌋ + 1 = k + 1 times, the vertices
in D \ {rx, rnew

1 , . . . , rnew
k } dominate all other blue vertices in B′ \ {bx} = B and, thus,

the subset of R corresponding to D \ {rx, rnew
1 , . . . , rnew

k } is a size-≤ k solution of the
RBDS-instance.

Next, we give a parameterized reduction from k/2-RBDS to Dual Young Score.

Lemma 6.4. Dual Young Score is W[2]-hard.

Proof. Given a k/2-RBDS-instance (G = (B∪R, E), k) with B = {b1, ..., bm} and R =
{r1, ..., rn},6 we first consider the case that k is odd. The corresponding Dual Young
Score instance is constructed as follows. We set C := {ci | bi ∈ B} ∪ {a, b, c}. Let

NC(ri) := {cj ∈ C | {ri, bj} ∈ E}

and
NC(ri) := C \ ({a, b, c} ∪ NC(ri)),

that is, the candidates in NC(ri) correspond to the neighbors of ri in G and NC(ri)
corresponds to the rest of the vertices in B. Construct three disjoint subsets of votes,
V1, V2, and V3:

• The votes in V1 correspond to the red vertices in R. For every red vertex ri, add
a vote vi to V1 in which the candidates in NC(ri) ∪ {a, b} are better than c and
the candidates in NC(ri) are worse than c. More precisely,

V1 := {b > a > NC(ri) > c > NC(ri) | 1 ≤ i ≤ n}.

Recall that, if there is a set of candidates in a vote, then the order of the elements
in the set is assumed to be fixed arbitrarily.

• The set V2 also contains n votes. These votes guarantee that in V1 ∪ V2 the
deficit of b is 2k − 2 whereas the deficit of each other candidate is zero.

V2 := {NC(ri) > c > NC(ri) > b > a | 1 ≤ i ≤ n − k + 1}
∪ {b > NC(ri) > c > NC(ri) > a | n − k + 2 ≤ i ≤ n}.

As we will see later, the (2k− 2)-deficit of b is needed to ensure that all votes in
a solution of a Dual Young Score instance have to belong to V1.

• The set V3 consists of k − 1 votes adjusting the deficits of a and b so that
in V1 ∪ V2 ∪ V3 both a and b have a deficit of k − 1 and all other candidates
have a deficit of 0. Let CR := C \ {a, b, c}. The set V3 consists of ⌊k/2⌋ votes
with a > CR > c > b and ⌊k/2⌋ votes with a > c > CR > b.

Finally, the overall set V of votes is V1 ∪ V2 ∪ V3 and the upper bound for the
solution size of the Dual Young Score instance is set to k. The key idea behind

6Within this proof, n does not denote the number of votes.
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vr1 : b > a > b1 > b2 > b4 > c > b3 xxxx
vr2 : b > a > b1 > b2 > b3 > c > b4
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vr5 : b > a > b2 > b4 > c > b1 > b3
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V1 with |V1| = n

〈 · · · > c > · · · > b > a 〉
〈 b > · · · > c > · · · > a 〉

ff

V2 with |V1| = n

〈 · · · > a > · · · > c > b 〉
¯

V3 with |V3| = k − 1

Figure 6.7: Parameterized reduction from k/2-RBDS to Dual Young Score. In this
example, n = 5 and k = 3, that is, every blue vertex bi must be dominated by at least
two red vertices from {r1, . . . , r5}. For the bipartite graph given on the left-had side
this can be achieved by the red vertices r2, r4, and r5. Deleting the corresponding votes
vr2, vr4, and vr5 in the election sketched on the right-hand side implies that for every
“blue candidate” bi, at least two votes in which bi is preferred to c are removed. Based
on an appropriate placement of the blue candidates within the votes from V2∪V3, this
ensures that c is a winner in the resulting election.

the above construction is that to reduce the (k − 1)-deficits of a and b by deleting at
most k votes, every solution of the Dual Young Score instance consists of exactly k
votes from V1. The reason for this is that the votes in V1 are the only votes whose
deletion simultaneously reduces the deficits of a and b against c (see Figure 6.7).

In the following, we show that c can become the Condorcet winner by deleting at
most k votes if and only if there is a dominating set of size at most k for the (G, k).

“⇒”: Every solution V ′ of Dual Young Score must contain exactly k votes
from V1 and, by the above construction, each vote in V1 corresponds to a vertex
in R. Denote the corresponding subset of R by D. Since V ′ is a solution, every
candidate ci ∈ (C \ {a, b, c}) must be better than c in at least ⌊k/2⌋ + 1 of the votes
in V ′. Therefore, choosing the corresponding red vertices to form a dominating set
implies that every blue vertex is dominated at least ⌊k/2⌋+ 1 times.

“⇐”: Since every dominating set D ⊆ R of size at most k dominates each blue
vertex at least ⌊k/2⌋ + 1 times, we can easily extend D to a dominating set D′ of
size exactly k by adding k − |D| arbitrary red vertices to D. Since every red vertex
corresponds to a vote from V1, we thus obtain a size-k subset V ′ of V corresponding
to D′. According to the above construction of V1, the removal of V ′ results in a new
vote set where the deficits of a and b are both −1 and the deficits of all other candidates
are ≤ −1. Therefore, c can become the Condorcet winner by deleting exactly k votes.

Recall that in the definition of V3 it is decisive that k is odd. Now, we consider
the case that k is even and give a reduction from Dual Young Score with an
odd k to Dual Young Score with an even k. Given a Dual Young Score
instance (V, C, c, k) with k being odd, we add a new vote v to V that has the form: “C\
{c} > c” to get the new vote set V ′. Then (V ′, C, c, k′ := k + 1) is a Dual Young
Score instance with k′ being even. The correspondence between the solutions is easy
to achieve.
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To prove that Dual Young Score is W[2]-complete, it remains to show its
containment in W[2]. This can be done by devising a reduction to the Optimal
Lobbying problem which has been shown to be W[2]-complete by Christian et al. [56].
We refer to [27, Lemma 7] for the corresponding proof showing containment in W[2]
for Dual Young Score. Altogether, one arrives at the following.

Theorem 6.3. Dual Young Score is W[2]-complete.

Using a similar reduction as the one in the proof of [27, Lemma 7] (containment in
W[2]) and a parameterized version of the nonparameterized reduction from the W[2]-
hard Set Packing problem to Young Score as presented by Rothe et al. [183,
Theorem 2.3] (W[2]-hardness), we can also derive the following theorem.

Theorem 6.4. Young Score is W[2]-complete.

6.3 Conclusion

The most important observation to derive from the results of this chapter is that
Dodgson and Young elections behave differently with respect to the parameter “num-
ber of editing operations”. Whereas for Dodgson elections we achieve fixed-parameter
tractability, we experience parameterized intractability in case of Young elections.
This stands in sharp contrast to traditional complexity analysis, where both election
systems appear as equally hard [12, 130, 183], and complements results on polynomial-
time approximability [50]. Furthermore, we found that the complexities of Dodgson
elections allowing ties between the candidates strongly vary (fixed-parameter tractabil-
ity vs W[2]-completeness) depending on the cost model for switching ties. Again, in
the standard complexity framework these two cases cannot be differentiated because
both lead to NP-completeness.

We conclude with some remarks and open questions for future research.

• In Subsection 6.1.2, we introduced two different models on how to deal with ties
for Dodgson Score. This setting can be further generalized to allow incomplete
votes (partial orders) as input. In contrast to Kemeny’s system which can be
easily adapted to this case (see Section 3.7), for Dodgson’s system it is not clear
how to proceed in this scenario. In particular, it is not clear how to define a
meaningful switch operation on partial orders. Hence, the development of an
appropriate model seems to be of interest.

Young elections can be directly extended to incomplete votes since the edit
operation “deleting a vote” does not depend on the structure of the deleted
vote. Here, it is interesting whether some of the positive results, such as fixed-
parameter tractability with respect to the “number of candidates”, transfer.

Above we discussed the modification of voting systems such that they select a
winner also for partial orders. Another way to deal with incomplete information
is to consider whether the given partial orders can be extended such that a
distinguished candidate wins. This leads to the Possible Winner problem
which is studied in the second part of this work for “easy-to-evaluate” voting
rules (also see Chapter 10 for open questions in this direction).
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• Regarding kernelization for Dodgson Score with respect to the “number of
switches”, the existence of a polynomial-size problem kernel is very unlikely [106].
However, the problem might still allow for an efficient partial kernelization as
introduced in Chapter 4. Furthermore, note that the exponential-size kernel for
a generalized version of Dodgson Score [108] does not imply a kernelization
for Dodgson Score itself. Hence, the development of (practically effective)
data reduction rules for Dodgson Score leading to any provable performance
guarantee is an interesting task.

For Young Score, kernelization results with respect to the two standard voting
parameters would clearly be of interest.

• Bartholdi et al. [12] gave an integer linear program which implies the fixed-
parameter tractability of Dodgson Score with respect to the parameter “num-
ber of candidates” (also see [163] for further results in this direction). Unfortu-
nately, the corresponding running times are extremely high and a more efficient
combinatorial algorithm would be desirable; the same holds true for Young
Score.

• Another view on Dodgson’s election system is provided by the so-called “distance
rationalizability” framework [8, 170] in which a voting rule is defined based on
a class of “consensus elections” and a distance function measuring the distance
to this class. For Dodgson’s rule, the class of consensus elections comprises
all election having a Condorcet winner and the distance function is given by
the number of switches. This framework invites for studies of classes of voting
systems. A first fixed-parameter tractability result with respect to the “number
of candidates” for a broad class of voting rules has been recently provided by
Elkind et al. [82].





Part II

Possible Winner
Determination

To make a joint decision, in the standard model of elections, voters are
often required to provide their preferences as linear orders. To determine a
winner, the given linear orders are aggregated according to a voting proto-
col. However, in realistic settings, the voters may often only provide partial
orders. This directly leads to the Possible Winner problem that asks,
given a set of partial votes, whether a distinguished candidate can still be-
come a winner. In this part of the thesis, we consider the computational
complexity of Possible Winner for scoring rules from various perspec-
tives. This part comprises three chapters. In Chapter 7, we investigate the
influence of the type of the scoring rule on the computational complexity.
In Chapter 8, we investigate the parameterized complexity of Possible
Winner under some scoring rules with respect to several single parame-
terizations. Chapter 9 is concerned with combined parameterizations for
the k-approval voting system. Finally, Chapter 10 concludes this part of
the thesis.





Chapter 7
A dichotomy for pure scoring rules

Scoring rules form a broad class of voting protocols including many well-known rules
like plurality, k-approval, or Borda. A natural question is how the “kind of scoring
rule” influences the computational complexity of the Possible Winner problem.
A multivariate complexity analysis provides possible ways to address this question.
Examples for natural parameterizations comprise “the number of candidates getting
more than zero points per vote” or “the maximum number of candidates getting
an equal/different number of points per vote”. We provide evidence that it is very
unlikely that such parameterizations lead to tractable cases. Generalizing previous
NP-hardness results for some special cases, we settle the computational complexity
of Possible Winner for all but one scoring rule. More precisely, for an unbounded
number of candidates and unweighted voters, we show that Possible Winner is
NP-complete for all pure scoring rules except plurality, veto, and the scoring rule
defined by the scoring vector (2, 1, . . . , 1, 0), while it is solvable in polynomial time for
plurality and veto. The remaining case (2, 1, . . . , 1, 0) has been shown NP-complete in
a follow-up work by Baumeister and Rothe [14], yielding a full dichotomy.

7.1 Motivation and known results

Voting scenarios arise whenever the preferences of different parties have to be aggre-
gated to form a joint decision. Often, the voting process is executed in the following
way: each voter provides his preference as a linear order of all the possible alter-
natives/candidates. However, in realistic settings, the voters may often only provide
partial orders (or partial votes) instead of linear ones. For example, it might be impos-
sible for the voters to provide a complete preference list because the set of candidates
is too large, as it is the case for web page ranking. Another reason might be that not
all voters might have given their preferences yet during the aggregation process, or
new candidates might be introduced after some voters already have given their rank-
ings. Moreover, one often has to deal with partial votes due to incomparabilities: for
some voters it might not be possible to compare two candidates or certain groups of
candidates, be it because of lack of information or due to personal reasons. Hence, the
study of partial voting profiles is natural and essential. One question that immediately
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comes to mind is whether any information on a possible outcome of the voting process
can be given in the case of incomplete votes. More specifically, in this part of the
thesis, we study the Possible Winner problem: Given a partial order for each of the
voters, can a distinguished candidate c win for at least one extension of the partial
orders into linear ones?

Of course, the answer to this question depends on the voting rule that is used. In
this chapter, we will stick to the broad class of voting protocols defined by scoring
rules [38]. A scoring rule provides a score value for every position that a candidate
can take within a linear order, given as a scoring vector of length m in the case
of m candidates. The scores of the candidates are then added over all votes and the
candidates with the highest score win. Famous examples are Borda, defined by the
scoring vectors (m − 1, m − 2, . . . , 0) and k-approval, defined by (1, . . . , 1, 0, . . . , 0)
starting with k ones. Two relevant special cases of k-approval are plurality, defined
by (1, 0, . . . , 0), and veto, defined by (1, . . . , 1, 0). Typically, k-approval can be used
in political elections whenever the voters can express their preference for k candidates
within the set of all candidates. Another example is the Formula 1 scoring, which until
the year 2009 used the scoring rule defined by the vector (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0)
and since 2010 uses (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0).

The Possible Winner problem was introduced by Konczak and Lang [148] and
has been further investigated since then for many types of voting systems [14, 28,
54, 153, 177, 193, 194]. Note that the related Necessary Winner problem (Given
a set of partial orders, does a distinguished candidate c win for every extension of
the partial orders into linear ones?) can be solved in polynomial time for all scor-
ing rules [194], and is hence not considered in this work. We summarize the known
results for Possible Winner and its prominent special case Manipulation for scor-
ing rules. For scoring rules that are defined for a constant number of candidates, the
Possible Winner problem can be decided in polynomial time, see [65, 193]. Oth-
erwise, correcting Konczak and Lang [148] who claimed polynomial-time solvability
for all scoring rules, Xia and Conitzer [194] provided NP-completeness results for a
class of scoring rules, more specifically, for all scoring rules that have four “equally
decreasing score values” followed by another “strictly decreasing score value”; we will
provide a more detailed discussion in Section 7.5. In addition, all NP-hardness results
directly carry over from Manipulation to Possible Winner. However, whereas the
case of weighted voters is settled by a full dichotomy for Manipulation for scoring
rules [129], so far, for unweighted voters we are only aware of one NP-hardness result
for a specially constructed scoring rule [199].

Altogether, until now, the computational complexity of Possible Winner was
still open for a large number of naturally appearing scoring rules. One such open
case has been k-approval for small values of k motivated as follows. A common way
of voting for a board consisting of a small number, for example, of five members, is
that every voter awards five candidates one points each time (5-approval). A second
example is given by voting systems in which each voter is allowed to specify a (small)
group of favorites and a (small) group of most disliked candidates. As final example,
we mention scoring rules that have decreasing differences between successive score
values as, for example, the scoring vector (2m, 2m−1, . . . , 0).

This chapter aims at showing a computational complexity dichotomy for pure scor-
ing rules. The class of pure scoring rules covers all of the common scoring rules. It
only constitutes some restrictions in the sense that for different numbers of candidates
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the corresponding scoring vectors can not be chosen completely independently (see
Section 7.2). Our results can also be extended to broad classes of “non-pure” scoring
rules, cf. Section 7.7. Altogether, we settle the computational complexity of Possible
Winner for all pure scoring rules except the scoring rule defined by (2, 1, . . . , 1, 0).
For plurality and veto, we provide polynomial-time algorithms whereas for the remain-
ing cases we show NP-completeness. Surprisingly, this includes the NP-hardness of
Possible Winner even for 2-approval. Our NP-hardness result for 2-approval has
also been used to settle the complexity of the Swap Bribery problem [80].

The technical contributions of this chapter are the following. We identify a strat-
egy allowing for a classification of all scoring rules into (at least one of) two types.
We distinguish between scoring rules with an “unbounded number of different score
values” and scoring rules with an “unbounded number of equal score values”. For
the first type of scoring rules, we give a gadget construction that extends and gener-
alizes the Exact Cover By 3-Sets-reduction due to Xia and Conitzer [194]. For
the second type of scoring rules, our NP-hardness results are based on new many-one
reductions: For k-approval and related/generalized scoring rules, we provide reduc-
tions from Multicolored Clique. Besides some reductions to settle more special
cases, we give another family of reductions from Exact Cover By 3-Sets for all
but one of the scoring rules allowing that one can specify one favorite and one most
disliked candidate. Note that this reduction is based on an approach different from
the reduction for the first type of scoring rules.

7.2 Definitions

(Positional) scoring rules are a special kind of voting rules. They are defined by
scoring vectors −→α = (α1, α2, . . . , αm) with integers α1 ≥ α2 ≥ · · · ≥ αm, the score
values. More specifically, we define that a scoring rule r consists of a sequence of
scoring vectors s1, s2, . . . such that for any i ∈ N>0 there is a scoring vector si for i
candidates which can be computed in time polynomial in i. Famous examples are

• Borda defined by (m − 1, m− 2, . . . , 1, 0) for m candidates and

• k-approval defined by (1, . . . , 1, 0, . . . , 0) starting with k ones.

For a k-approval scoring vector, we denote the first k positions as one-positions and the
remaining positions as zero-positions. On the one side, k-approval generalizes plurality
where every voter gives one point, and, on the other side, it extends veto where every
voter gives one point to all but one candidate. The veto scenario is useful whenever
one needs to “exclude” few alternatives, for example, decreasing the number of postal
offices by closing few of them.

In this chapter, we focus our attention on pure scoring rules, that is for every i ≥ 2,
the scoring vector for i candidates can be obtained from the scoring vector for i − 1
candidates by inserting an additional score value at an arbitrary position (respecting
that the score values must be monotonously decreasing). This definition includes all
of the common protocols. We further assume that αm = 0 and that there is no
integer greater than one that divides all score values. This does not constitute a
restriction since for every other voting system there must be an equivalent one that
fulfills these constraints [129, Observation 2.2]. Moreover, we only consider non-trivial
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aa

b b

c c

dd

Figure 7.1: Partial vote a ≻ {b, d}, c ≻ d (left-hand side) and one of its possible
extensions a > c > d > b (right-hand side). An arc from a to b means that a is
preferred to b.

a ≻ {b, c, d} ⇒ a > c > d > b
a ≻ {b, c, d} ⇒ a > c > d > b
a ≻ {b, c, d}, b ≻ d ⇒ a > c > b > d
a ≻ b, c ≻ d ⇒ c > d > a > b

Figure 7.2: Four partial votes on the candidate set {a, b, c, d} (left-hand side) and a
winning extension for 2-approval (right-hand side) with distinguished candidate c. In
contrast, the candidate c cannot be a possible winner for plurality since clearly a wins
in every extension of the four partial votes.

scoring rules, that is, scoring rules with α1 6= 0 for scoring vectors for every number
of candidates.

Consider a profile P on a set C of candidates. For a vote v ∈ P and a candidate c ∈
C, let the score s(v, c) be defined by s(v, c) := αj where j is the position of c in v.
For any profile P = {v1, . . . , vn}, let s(P, c) :=

∑n
i=1 s(vi, c). Whenever it is clear

from the context which P we refer to, we will just write s(c). A scoring rule selects
all candidates c as winners with maximum s(P, c) over all candidates.

A partial vote on C is a transitive and antisymmetric relation on C, see Figure 7.1
for an example. We use > to denote the relation given between candidates in a linear
order and ≻ to denote the relation given between candidates in a partial vote. We
omit the relative order of candidate pairs if the order follows directly by transitivity
from other pairs. Sometimes, we specify a whole subset of candidates in a partial
vote, e.g., e ≻ D for a candidate e ∈ C and a subset of candidates D ⊆ C. Unless
stated otherwise, this notation means that e ≻ d for all d ∈ D and there is no specified
order among the candidates in D. In contrast, writing e > D in a linear order means
that e > d1 > · · · > dl for an arbitrary but fixed order of D = {d1, . . . , dl}. A linear
order v′ extends a partial vote v if v ⊆ v′, that is, for all i, j ≤ m, from ci ≻ cj in v
it follows that ci > cj in v′. Given a profile of partial votes P = (v1, . . . , vn) on C, a
candidate c ∈ C is a possible winner if there exists an extension P ′ = (v′1, . . . , v

′
n) such

that each v′i extends vi and c wins according to a specified voting rule. See Figure 7.2
for an example. For any voting rule r, the corresponding decision problem is as follows.

Possible Winner
Given: A set of candidates C, a profile of partial votes P = (v1, . . . , vn)
on C, and a distinguished candidate c ∈ C.
Question: Is there an extension profile P ′ = (v′1, . . . , v

′
n) such that each v′i

extends vi and c ∈ r(P ′) ?
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Table 7.1: Overview of results and outline of the work. Basically, we partition the scoring
rules into five different types according to the types of algorithms or many-one reductions
that are used to achieve the results. By “different-type” we denote all scoring vectors with an
unbounded number of different score values. By “equal-type” we denote all scoring vectors
with an unbounded number of equal score values if not listed explicitly in another type.
Reductions are from Exact Cover By 3-Sets (X3C) or Multicolored Clique (MC).

Scoring rule Result

Plurality and Veto in P Proposition 7.1, Section 7.4
different-type NP-c (X3C) Theorem 7.1, Section 7.5
equal-type NP-c (MC/X3C) Theorem 7.2, Lemmata 7.3 – 7.6,

Section 7.6.1
α1 > α2 = αm−1 > 0 NP-c (X3C) Theorem 7.4, Section 7.6.2

and α1 6= 2 · α2

(2, 1, . . . , 1, 0) NP-c [14]

This definition allows that multiple candidates obtain the maximal score and we end up
with a whole set of winners. If the possible winner c has to be unique, one speaks of a
possible unique winner, and the corresponding decision problem is defined analogously.
All our results hold for both cases (see Section 7.3.1).

In this and the following chapter, several of our NP-hardness proofs rely on reduc-
tions from the NP-complete Exact Cover By 3-Sets (X3C) problem [118] defined
as follows.

Given: A set of elements E = {e1, . . . , eq}, a family of subsets S =
{S1, . . . , St} with |Si| = 3 and Si ⊆ E for 1 ≤ i ≤ t.
Question: Is there a subset S′ ⊆ S such that for every element ej ∈ E
there is exactly one Si ∈ S′ with ej ∈ Si?

In some of our theorems, we will need functions that map each instance of a certain
problem Q to some natural number and in some sense behave like a polynomial. For
this sake, we call

f : {I | I is an instance of Q} → N
a poly-type function for Q if the function value f(I) is bounded by a polynomial in |I|
for every input instance I of Q.

7.3 General strategy

This chapter aims at providing a dichotomy for Possible Winner for practically
relevant scoring rules. To this end, we will show the following.

Theorem. Possible Winner is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules for which there is a constant z such that the
produced scoring vector is (2, 1, . . . , 1, 0) for every number of candidates greater than z.
For plurality and veto, Possible Winner is solvable in polynomial time.
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The proof consists of several parts, see Table 7.1 for an overview. The polynomial
time results for plurality and veto are based on flow computations. Regarding the
NP-hardness results, we give many-one reductions that work for scoring rules that
produce specific “types of scoring vectors” for an appropriate number of candidates.
We combine the single results to obtain the main result in Section 7.7. To this end,
we have to take into account that, in general, a scoring rule might produce different
types of scoring vectors for different numbers of candidates.

The basic observation to classify the scoring vectors is that a scoring vector of
unbounded size must have an unbounded number of different score values or an un-
bounded number of equal score values. This leads to the following strategy. First,
we show NP-hardness for all scoring vectors having an unbounded number of differ-
ent score values. To this end, we generalize a many-one reduction due to Xia and
Conitzer [194]. Second, we deal with scoring vectors having an unbounded number
of equal score values. Here, we consider two subcases, i.e., scoring vectors of type
α1 > α2 = αm−1 > 0 but α1 6= 2 · α2, and all remaining scoring vectors with an
unbounded number of equal score values.

Before stating the specific results, we give a construction scheme that is used in all
many-one reductions in this work.

7.3.1 A general scheme to construct linear votes

In all many-one reductions presented in this work, one constructs a partial profile P
consisting of a set of linear orders V l and a set of partial votes V p. The position
of the distinguished candidate c is already determined in every vote from V p, that
is, s(P ′, c) is the same in every extension P ′ and thus is fixed. The “interesting” part
of the reductions is given by the partial votes of V p in combination with upper bounds
for the scores which the non-distinguished candidates can make in V p. For every
candidate c′ ∈ C\{c}, the maximum partial score smax

p (c′) is the maximum number
of points c′ may make in V p without beating c in P . More precisely, for the unique
winner case, smax

p (c′) = s(P ′, c) − s(V l, c′) − 1 and, for the winner case, smax
p (c′) =

s(P ′, c) − s(V l, c′) for any extension P ′ of P . Since the maximum partial scores can
be adjusted to the unique and to the winner case, all results hold for both cases.

In the following, we show that for all our reductions, there is an easy way to cast the
linear votes such that the maximum partial scores that are required in the reductions
are realized. For every many-one reduction of this work, it will be easy to verify that
the underlying partial profile fulfills the following two properties.1

Property 1 There is a “dummy” candidate d which cannot beat the dis-
tinguished candidate in any extension, that is, smax

p (d) ≥ α1 ·|V p|.

Property 2 For every c′ ∈ C\{c}, the maximum partial score smax
p (c′) can

be written as a sum of at most |V p| integers from {α1, . . . , αm}. Formally,
the definition of smax

p (c′) will be of the form smax
p (c′) =

∑m
j=1 nj αj where

nj ∈ N0 denotes how often the score value αj is added. We will always
have that

∑m
j=1 nj ≤ |V p|, that is, the total number of summands is at

most the number of partial votes.

1The only exception appears in the proof of Theorem 7.4 and will be discussed there.
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v1 : c1 > c2 > . . . > cm−1 > cm

v2 : c2 > c3 > . . . > cm > c1

...
...

...
...

...
...

vm−1 : cm−1 > cm > . . . > cm−3 > cm−2

vm : cm > c1 > . . . > cm−2 > cm−1

Figure 7.3: Circular block for c1, c2 . . . , cm.

The sets of linear votes which are necessary for the reductions given in this paper
can be obtained according to the following lemma.

Lemma 7.1. Given a scoring rule r, a set of candidates C with distinguished candi-
date c ∈ C, a set of partial votes V p in which c is fixed, and smax

p (c′) for all c′ ∈ C\{c},
a set of linear votes that realizes the maximum partial scores for all candidates can be
constructed in time polynomial in |V p| and m if Properties 1 and 2 hold.

Proof. We are interested in “setting” relative score difference between the distin-
guished candidate c and every other candidate. By inserting one linear order we change
the relative score difference between c and all other candidates. To be able to change
the relative score difference only for c and one specific candidate while keeping the rel-
ative score difference of c and all other candidates, we will build V l by sets of circular
shifts instead of single votes. More precisely, for a set of candidates {c1, c2, . . . , cm} , a
circular block consists of m linear orders as given in Figure 7.3. Clearly, all candidates
have the same score within a circular block.

We start with the construction for the winner case and then explain how to adapt
it for the unique winner case. For the winner case (smax

p (c′) = s(P ′, c) − s(V l, c′)
for any extension P ′), for each candidate c′ ∈ C\{c, d} where d denotes a dummy
as specified in Property 1, add the following votes to the set of linear votes V l. For
each nj 6= 0 as specified in Property 2, construct nj circular blocks over C such
that in one of the linear orders of every block, c′ sits on position j and d sits on
position m. Exchange the places of c′ and d in this linear order and add the modified
circular block to V l. Then, for one block, c′ has lost αj points and gained αm = 0
points relative to c. Thus, in total, one has the situation that c and c′ have exactly
the same score if c′ makes smax

p (c′) points in V p. This settles the winner case. For
the unique-winner case, we additionally decrease the score of c′ by the minimum of
{αi −αj | αi > αj and i, j ∈ {1, 2, . . . , m}}. This can be achieved by adding a circular
block such that in one of the linear orders of the block, c′ sits on position αi and d sits
on position αj , and by exchanging the places of c′ and d in this linear order. Then, c
beats c′ if c′ makes at most smax

p (c′) points in V p and c′ beats c, otherwise.
Altogether, due to Property 2, we add at most |V p| summands for each candidate.

Hence, so far, the number of linear votes is bounded by m2 · (|V p| + 1) and can be
constructed in polynomial time. It remains to adjust the maximum partial score of d.
Until now, we added at most m · (|V p|+ 1) circular blocks. Thus, d can make at most
α1 ·m · |V p| points more than c. By adding m(|V p| + 1) + |V p| further circular blocks
for candidates from C\{d} that are inserted in the first m−1 positions, while d is put
on the last position in these votes, smax

p (d) can be realized in polynomial time.
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v1 : a ≻ c ≻ d, b ≻ c
v2 : c ≻ a ≻ b ⇒ c > a > b > d
v3 : a ≻ d ≻ b ⇒ c > a > d > b
v4 : a ≻ b ≻ c
v5 : a ≻ c, b ≻ d

a

b

d

s

1
1

11

1

1

1

1

1

v1

v4

v5

t

s(c) − 1

s(c) − 1

s(c)−1

Figure 7.4: Possible Winner for plurality: The left-hand side shows an example
for an election and the right-hand side the corresponding flow network. The votes v2

and v3 can be extended such that c takes the first position. The position of the
remaining candidates in theses votes is not relevant; one possibility how to extend
these votes is shown in the picture.

7.4 Plurality and veto

Employing network flows turned out to be useful to design algorithms for several voting
problems (see e.g. [93, 99]). Here, by using some flow computations very similar to [28,
Theorem 6], we show the following.

Proposition 7.1. Possible Winner can be solved in polynomial time for plurality
and veto.

Proof. First, we give an algorithm for plurality. Let P on C denote a Possible
Winner-instance with distinguished candidate c. Clearly, it is safe to set c to the
first position in all votes in which this is possible. Then the score of c is fixed at the
maximum possible value. We denote the partial votes of P in which the first position
is not taken by c as P1. Now, we can model the problem as network flow as follows
(see Figure 7.4): The flow network consists of a source node s, a target node t, one
node for every vote of P1, and one node for every candidate from C\{c}. There are
three layers of arcs:

1. an arc from s to every node corresponding to a vote in P1 with capacity one,

2. an arc from a node corresponding to vj ∈ P1 to a node corresponding to a
candidate c′ ∈ C\{c} with capacity one if and only if c′ can take the first
position in an extension of vj , and

3. an arc from every node corresponding to c′ ∈ C\{c} to target t with capac-
ity s(c) − 1.

Now, c is a possible winner if and only if there is a flow of size |P1|: The first
layer simulates that the first position of every partial vote from P1 has to be taken,
the second layer that it can only be taken by appropriate candidates, and the last
one that the score of every candidate will be lower than the score of c. Clearly,
the flow network can be constructed in time polynomial in |P1| and an integral flow
computation can be done in polynomial time [66].

For veto, we first fix c at the best (leftmost) possible position in every vote. This
fixes the maximum score of c. Then for every candidate c′ ∈ C \ {c}, let z(c′) denote
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the minimum number of last positions that c′ must take such that it does not beat c.
Let P1 denote the set of partial votes in which c does not take the last position. Again,
we model the problem by a flow network with source node s, target node t, one node
for every candidate from C\{c}, and one node for every vote of P1. The arcs are as
follows:

1. an arc from s to every node corresponding to c′ ∈ C\{c} with capacity z(c′),

2. an arc from a node corresponding to c′ ∈ C\{c} to a node corresponding
to vj ∈ P1 with capacity one if and only if c′ can take the last position in
an extension of vj , and

3. an arc from every node corresponding to vj ∈ P1 to target t with capacity 1.

By similar arguments as for plurality, it follows that c is a possible winner if and only
if there is a flow of size

∑
c′∈C\{c} z(c′).

7.5 An unbounded number of positions with differ-
ent score values

Xia and Conitzer [194] developed a many-one reduction from Exact Cover By 3-
Sets showing that Possible Winner is NP-complete for any scoring rule with scoring
vectors which contain four consecutive, “equally decreasing” score values, followed by
another strictly decreasing score value. Using some additional gadgetry, we extend
their proof to work for scoring vectors with an unbounded number of different, not
necessarily equally decreasing score values.

We start by describing the basic idea employed in [194] (using a slightly modified
construction). Given an X3C-instance (E,S), construct a partial profile P := V l ∪V p

on a set of candidates C where V l denotes a set of linear orders and V p a set of partial
votes. To describe the basic idea, assume that there is a scoring vector with α1 > α2

and and the differences between the four following score values are equally decreasing,
that is, α2 −α3 = α3 −α4 = α4 −α5. Then, C := {c, x, w} ∪ E where E is the
universe from the X3C-instance. The distinguished candidate is c. The candidates
whose element counterparts belong to the set Si are denoted by ei1, ei2, ei3. The
partial votes V p consist of one partial vote vp

i for every Si ∈ S which is given by

x ≻ ei1 ≻ ei2 ≻ ei3 ≻ C′, w ≻ C′

with C′ := C\{x, ei1, ei2, ei3, w}. Note that in vp
i , the positions of all candidates

except w, x, ei1, ei2, ei3 are fixed. More precisely, w has to be inserted between posi-
tions 1 and 5 maintaining the partial order x ≻ ei1 ≻ ei2 ≻ ei3. By setting the linear
votes, the maximum partial scores are realized such that the following three conditions
hold.

• For every element candidate e ∈ E one has the following. Inserting w behind e in
two partial votes has the effect that e would beat c, whereas when w is inserted
behind e in at most one partial vote, c still beats e (Condition 1). Note that e
may occur in several votes at different positions, e.g. e might be identical with ei1

and ej3 for i 6= j. However, due to the condition of “equally decreasing” scores,
“shifting” e increases its score by the same value in all of the votes.
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• The maximum partial score of x is set such that if takes more than |V p| − |E|/3
times the first position, then it would beat c. That is, w must be inserted before x
at least |V p| − |E|/3 times (Condition 2).

• We set smax
p (w) = (|V p| − |E|/3) · α1 +|E|/3 · α5. This implies that if w is

inserted before x in |V p| − |E|/3 votes, then it must be inserted at the last
possible position, that is, position 5, in all remaining votes (Condition 3).

Having an exact 3-cover for (E,S), extend the partial votes as follows.
vp

i : x > ei1 > ei2 > ei3 > w > . . . if Si is in the exact 3-cover
vp

i : w > x > ei1 > ei2 > ei3 > . . . if Si is not in the exact 3-cover.

Then, every element candidate e is shifted exactly once (in vp
i for e ∈ Si, if Si is in

the exact 3-cover) and thus is beaten by c. It is easy to verify that c beats w and x as
well. In a yes-instance for (C, P, c), it follows directly from Condition 2 and 3 that w
must have the position 5 in exactly |E|/3 votes and the first position in all remaining
partial votes. Since there are |E|/3 partial votes such that three element candidates
are shifted in each of them, due to Condition 1, every element candidate must appear
in exactly one of these votes. Hence, c is a possible winner in P if and only if there
exists an exact 3-cover of E.

By inserting further candidates, one can pad the construction such that is also
works if the equally decreasing score differences appear at other positions [194]. Now,
we consider the situation in which no such equally decreasing score differences appear
at all. More precisely, we show how to extend the reduction to scoring vectors with
strictly, but not equally decreasing scoring values. The problem we encounter is the
following: By sending candidate w to the last possible position in the partial vote vp

i ,
each of the candidates ei1, ei2, ei3 improves by one position and therefore improves
its score by the difference given between the corresponding positions. In [194], these
differences all had the same value, but now we have to deal with varying differences.
Since the same candidate e ∈ E may appear in several votes at different positions,
e.g. e might be identical with ei1 and ej3 for i 6= j, it is not clear how to set the
maximum partial score of e. Basically, to cope with this situation, we construct three
partial votes v1

i , v2
i , and v3

i for every set Si ∈ S and permute the positions of the
candidates ei1, ei2, ei3 such that each of them takes a different position in v1

i , v2
i , v3

i .
For example:

v1
i : . . . ≻ x ≻ ei1 ≻ ei2 ≻ ei3 ≻ . . .

v2
i : . . . ≻ x ≻ ei2 ≻ ei3 ≻ ei1 ≻ . . .

v3
i : . . . ≻ x ≻ ei3 ≻ ei1 ≻ ei2 ≻ . . .

In this way, if the candidate w is sent to the last possible position in all three
partial votes of a set Si, each of the candidates ei1, ei2, ei3 improves its score by the
same value. We only have to guarantee that whenever w is sent back in the partial
vote v1

i , then it has to be sent back v2
i and v3

i as well. This is realized by a gadget
construction, which is the main technical contribution of the following theorem.

Theorem 7.1. An X3C-instance I can be reduced to a Possible Winner-instance
for a scoring rule which produces a scoring vector having f(I) positions with different
score values. A suitable poly-type function f can be computed in polynomial time.
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Table 7.2: Maximum partial scores. Recall that t = |S|, q = |E|, and ne = |{Si ∈ S |
e ∈ Si}|.

smax
p (w) = (3t − q) · α1 +q · α5+2t

smax
p (x) = q · α1 +(3t − q) · α2

∀e ∈ E smax
p (e) = (α2 + α3 + α4) + (ne − 1) · (α3 + α4 + α5) + fixed(e)

∀di smax
p (di) = q/3 · α4+i +(t − q/3) · α5+i + fixed(di)

∀hi smax
p (hi) = q/3 · α4+i +(t − q/3) · α5+i + fixed(hi)

∀d′i smax
p (d′i) = q/3 · α4+i+t +(t − q/3) · α5+i+t + fixed(d′i)

∀h′
i smax

p (h′
i) = q/3 · α4+i+t +(t − q/3) · α5+i+t + fixed(h′

i)
∀li smax

p (li) = 2t · α1 + fixed(li)

Proof. Given an X3C-instance (E,S) with S = {S1, . . . , St} and Si = {ei1, ei2, ei3}
for i ∈ {1, . . . , t}, construct a partial profile P on C as follows. The set of candidates
is defined as C := {x, w, c} ⊎E ⊎D12 ⊎D13 ⊎L (where ⊎ denotes the disjoint union),
where E is the set of candidates that represent the elements of the universe of the
X3C-instance, D12 := {d1, . . . , dt, h1, . . . , ht}, D13 := {d′1, . . . , d′t, h′

1, . . . , h
′
t}, and L :=

{l1, . . . , lt}. We define f ((E,S)) := |C|. To ease the presentation, we first assume
that we have a strictly decreasing scoring vector of size f ((E,S)) and describe how to
generalize this at the end of the proof. The partial profile consists of a set of partial
votes V p and a set of linear votes V l. The partial votes are V p := {v1

i , v2
i , v3

i | 1 ≤
i ≤ t} with,

for 1 ≤ i ≤ t − 1,
v1

i : x ei1 ei2 ei3 d1 . . . di hi+1 . . . ht d′1 . . . d′i h′
i+1 . . . h′

t ≻ C1
i , w ≻ C1

i

v2
i : x ei2 ei3 ei1 h1 . . . hi di+1 . . . dt l1 . . . . . . . . . lt ≻ C2

i , w ≻ C2
i

v3
i : x ei3 ei1 ei2 l1 . . . . . . . . . lt h′

1 . . . h′
i d′i+1 . . . d′t ≻ C3

i , w ≻ C3
i

and
v1

t : x et1 et2 et3 d1 . . . dt d′1 . . . d′t ≻ C1
t , w ≻ C1

t

v2
t : x et2 et3 et1 h1 . . . ht l1 . . . lt ≻ C2

t , w ≻ C2
t

v3
t : x et3 et1 et2 l1 . . . lt h′

1 . . . h′
t ≻ C3

t , w ≻ C3
t

where “≻” signs are partially omitted and C1
i , C2

i , and C3
i denote the remaining can-

didates that are fixed in an arbitrary order, respectively. Now, we give some notation
needed to define the maximum partial scores. For c′ ∈ C\{c}, let fixed(c′) denote
the number of points which c′ makes in the partial votes in which the position of c′

is already fixed. Let ne denote the number of subsets with e ∈ Si and q = |E|. Due
to Lemma 7.1, one can set the maximum partial scores as given in Table 7.2. The
particular partial scores will be explained within the proof of the following claim.

Claim: Candidate c is a possible winner of P if and only if there is an exact 3-cover
for (E,S).

“⇐”: Given an exact 3-cover S′ ⊆ S, complete the votes in V p in the following way:
For each Si ∈ S′, place w in the last possible position (i.e., position 5 + 2t) in the
partial votes v1

i , v2
i , and v3

i , and on the first position in the remaining partial votes.
Since |S′| = q/3, in the extension of the votes from V p ones has s(w) = (3t−q) ·α1 +q ·
α5+2t = smax

p (w) and s(x) = q ·α1 +(3t− q) ·α2 = smax
p (x). Furthermore, it is easy to

see that s(li) < smax
p (li) for every i. Every element candidate e is shifted to the left in



98 7 A dichotomy for pure scoring rules

exactly three partial votes. More precisely, in the three votes that correspond to Si ∈
S′ with e ∈ Si, it makes α2 + α3 + α4 points and (ne − 1) · (α3 + α4 + α5) + fixed(e)
points in the remaining votes and thus does not beat c. Every candidate from D12 is
not “fixed” in exactly one vote of every triple corresponding to an Si. More precisely,
it can be shifted either in v1

i or in v2
i and never in v3

i . Due to the insertion of w,
it is shifted to position 4 + i in q/3 of the votes and takes position 5 + i in the
remaining t − q/3 non-fixed votes. Thus, it does not beat c. Analogously, every
candidate from D13 makes α4+i+t points in q/3 of the non-fixed votes and α5+i+t in
the remaining t− q/3 votes and hence does not beat c. Altogether, c beats every other
candidate and wins.

“⇒”: Consider an extension of P in which c wins. Due to its maximum partial
score, candidate x can take the first position only q times. Thus, it must be shifted
3t − q times to position 2. Clearly, this is only possible if w is placed on the first
position in 3t − q votes. Then due to its maximum partial score, w can only be set
to position 5 + 2t in the remaining q votes. In the following, we will show that for
every i, w takes position 5 + 2t in v1

i if and only if it takes position 5 + 2t in v2
i if and

only if it takes position 5 + 2t in v3
i (Observation I). Then it follows that in the votes

in which w takes position 5 + 2t, the corresponding element candidates are shifted
to the left and obtain α2 + α3 + α4 points each, whereas they obtain α3 + α4 + α5

points in the remaining corresponding vote triples. Since each element candidate ej

can only obtain α2 + α3 + α4 points exactly once (and the scoring values are strictly
decreasing), the set S′ := {Si | w is placed on position 5 + 2t in v1

i } must be an exact
3-cover of E.

It remains to settle Observation I, which says that w behaves equally in the votes
corresponding to one subset. First, we argue that w must be inserted at position 5+2t
in exactly q/3 votes of V p

1 := {v1
i | 1 ≤ i ≤ t}, V p

2 := {v2
i | 1 ≤ i ≤ t}, and

V p
3 := {v3

i | 1 ≤ i ≤ t}, respectively. Assume that w is inserted at position 5 + 2t in
more than q/3 votes of V p

1 . Then, d1, which is not fixed in every vote of V p
1 , would

beat c. Analogously, if w was inserted at position 5 + 2t in more than q/3 votes of V p
2

or V p
3 , then c would be beaten by h1 or h′

1, respectively. Now, we have that w must
take position 5+2t in q votes and can take this position in at most q/3 votes from V p

i ,
for every i ∈ {1, 2, 3} and thus must take this position in exactly q/3 votes of V p

1 , V p
2 ,

and V p
3 .

Second, we show that the candidates from D12 ensure that w takes position 5 + 2t
in v1

i if and only if w takes position 5+2t in v2
i . The proof is by contradiction. Assume

that there is an extension in which w takes position 5 + 2t in v1
i and another position

in v2
i for any i. Since di and hi+1 have been shifted to the left in v1

i , each of them can
only be shifted to the left in at most q/3− 1 further votes. By construction, v2

i is the
only vote of V p

1 ∪ V p
2 in which neither di nor hi+1 is shifted to the left by setting w

to position 5 + 2t. However, since w can either take the first or position 2t + 5 in an
extension (as argued above), it must take the first position in v2

i . Now, w has to take
the position 5 + 2t in 2q/3 − 1 further votes from V p

1 ∪ V p
2 and thus in each of these

votes w will either shift di or hi+1. Hence, either di or hi+1 must be shifted to the left
in more than q/3− 1 further votes and will beat c, a contradiction. The other case (w
takes position 5 + 2t in v2

i and another position in v1
i ) follows in complete analogy by

considering hi and di+1. One can show analogously that the candidates of D13 ensure
that w takes position 5+2t in v1

i if and only if it takes the same position in v3
i . Thus,
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Observation I follows.

Now, one has that Possible Winner is NP-hard for all scoring rules with a scoring
vector of size f((E,S)) with strictly decreasing score values. By using some simple
padding, we extend the result for the remaining cases, that is for scoring vectors of
size m′ > f((E,S)) andf((E,S)) different score values. To this end, we introduce a
set of m′−f((E,S)) new dummy candidates and cast the linear votes such they cannot
beat the distinguished candidate in any extension. The original candidates from C are
placed on positions endued with strictly decreasing points, whereas the new candidates
are placed on the remaining positions. Then, if the positions of candidates get shifted
(when w is inserted), the “old” candidates are affected in the same manner as in the
above construction and the theorem follows.

7.6 An unbounded number of positions with equal

score values

In the previous section, we showed NP-hardness for scoring vectors with an unbounded
number of different score values. In this section, we discuss scoring vectors with an
unbounded number of positions with equal score value. In the first subsection, we show
NP-hardness for Possible Winner for scoring vectors that fulfill α2 6= αm−1, and, in
the second subsection, we consider the special case that α1 > α2 = · · · = αm−1 > 0.
Note that these two cases cover all scoring vectors with an unbounded number of
equal score values (except plurality and veto): There are three ways to “violate” α1 >
α2 = · · · = αm−1 > 0. First, if one requires α1 = α2, then one ends up with veto.
Second, requiring αm−1 = 0, one arrives at plurality. Third, requiring α2 6= αm−1,
then one ends up with the other case that includes the famous examples 2-approval
and (m − 2)-approval.

7.6.1 An unbounded number of positions with equal score val-
ues and α2 6= αm−1

The scoring vectors considered in this subsection divide into two classes. First, there
are at least two score values that are greater than the “equal score value”. Second,
there are at least two score values that are smaller than the “equal score value”. For-
mally, a size-m scoring vector for the second class looks as follows: there is an i,
with i < m−2 and an “unbounded” integer x such that αi−x = αi > αi+1. This prop-
erty can be used to construct a basic “logical” tool used in the many-one reductions
of this subsection: For two candidates c, c′, having c ≻ c′ in a partial vote implies that
setting c such that it makes less than αi points implies that also c′ makes less than αi

points whereas all candidates placed in the range between i−x and i make exactly αi

points. This can be used to model some implication of the type “c ⇒ c′” in a vote.
For (m − 2)-approval, which will play a prominent role for stating our results, this
condition means that c only has the possibility to make zero points in a vote if also c′

makes zero points in this vote whereas all other candidates make one point.

Most of the reductions of this subsection are from the NP-complete Multicol-
ored Clique (MC) problem [105]:
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Multicolored Clique (MC)
Given: An undirected graph G = (X1∪X2∪· · ·∪Xk, E) with Xi∩Xj = ∅
for 1 ≤ i < j ≤ k and the vertices of Xi induce an independent set for
1 ≤ i ≤ k.
Question: Is there a complete subgraph (clique) of size k?

Here, 1, . . . , k are considered as different colors. Then, the problem is equivalent to
ask for a multicolored clique, that is, a clique that contains one vertex for every color.
To ease the presentation, for any 1 ≤ i 6= j ≤ k, we interpret the vertices of Xi as red
vertices and write r ∈ Xi, and the vertices of Xj as green vertices and write g ∈ Xj .

Reductions from MC are often used to show parameterized hardness results [105].
Intuitively, the different colors give some useful structure to the instance. The general
idea is to construct different types of gadgets. Here, the partial votes realize four
kinds of gadgets. First, gadgets that choose a vertex of every color (vertex selection).
Second, gadgets that choose an edge of every ordered pair of colors, for example, one
edge from green to red and one edge from red to green (edge selection). Third, gadgets
that check the consistency of two selected ordered edges, e.g. does the chosen red-green
candidate refer to the same edge as the choice of the green-red candidate (edge-edge
match)? Finally, gadgets that check whether all edges starting from the same color
start from the same vertex (vertex-edge match). Though reductions from MC have
become a standard tool to obtain hardness results, the reduction given here is not
straightforward. For example, we are not aware of any reduction in the literature for
which it is necessary to employ vertex-edge match gadgets.

We start by giving a reduction from MC that settles the NP-hardness of Possible
Winner for (m − 2)-approval. Then we describe how the given construction can be
generalized to work for most of the cases considered in this subsection. The NP-
hardness of the remaining cases will be shown by reductions from Exact Cover By
3-Sets.

Lemma 7.2. Possible Winner is NP-hard for (m − 2)-approval.

Proof. Given an MC-instance G = (X, E) with X = X1 ∪ X2 ∪ · · · ∪ Xk. Let E(i, j)
denote all edges from E between Xi and Xj . Without loss of generality, we can assume
that there are integers s and t such that |Xi| = s for 1 ≤ i ≤ k, |E(i, j)| = t for all
i, j, and that k is odd since every other instance can be padded easily in this way.
We construct a partial profile P on a set C of candidates such that the distinguished
candidate c ∈ C is a possible winner if and only if there is a size-k clique in G. The set
of candidates C := {c}⊎CX ⊎CE ⊎D, where ⊎ denotes the disjoint union, is specified
as follows:

• For i ∈ {1, . . . , k}, let Ci
X := {r1, . . . , rk−1 | r ∈ Xi} and CX :=

⋃
i Ci

X .

• For i, j ∈ {1, . . . , k}, i 6= j, let

Ci,j := {rg | {r, g} ∈ E(i, j), r ∈ Xi, and g ∈ Xj}

and
C′

i,j := {rg′ | {r, g} ∈ E(i, j), r ∈ Xi, and g ∈ Xj}.
Then, CE := (

⋃
i6=j Ci,j) ⊎ (

⋃
i6=j C′

i,j), i.e., for every edge {r, g} ∈ E(i, j), the
set CE contains the four candidates rg, rg′, gr, gr′.
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• The set D := DX ⊎ D1 ⊎ D2 is defined as follows.
For i ∈ {1, . . . , k}, Di

X := {cr
1, . . . , c

r
k−2 | r ∈ Xi} and DX :=

⋃
i Di

X .
For i ∈ {1, . . . , k}, one has Di

1 := {di
1, . . . , d

i
k−2} and D1 :=

⋃
i Di

1.
The set D2 is defined as D2 := {di | i ∈ {1, . . . , k}}.

We refer to the candidates of CX as vertex-candidates, to the candidates of CE as
edge-candidates, and to the candidates of D as dummy-candidates.

The partial profile P consists of a set of linear votes V l and a set of partial votes V p.
In each extension of P , the distinguished candidate c gets one point in every vote
from V p (see definition below). Thus, according to Lemma 7.1, we can set the maxi-
mum partial scores as follows. For every candidate di ∈ D2, smax

p (di) = |V p| − s + 1,

that is, di must get zero points (take a zero-position) in at least s − 1 of the partial
votes. For every remaining candidate c′ ∈ C\({c} ∪ D2), smax

p (c′) = |V p| − 1, that
is, c′ must get zero points in at least one of the partial votes.

In the following, we define V p := V1 ∪ V2 ∪ V3 ∪ V4. For all our gadgets only the
last positions of the votes are relevant. Hence, in the partial votes it is sufficient to
explicitly specify the “relevant candidates”. More precisely, we define for all partial
votes that each candidate that does not appear explicitly in the description of a partial
vote is positioned before all candidates that appear in this vote.

The partial votes of V1 realize the edge selection gadgets. Basically, selecting
an ordered edge (r, g) with {r, g} ∈ E means to select the corresponding pair of edge-
candidates rg and rg′. The candidate rg is used for the vertex-edge match check
and rg′ for the edge-edge match check. Now, we give the definition of V1. For every
ordered color pair (i, j), i 6= j, V1 has t−1 copies of the partial vote {rg ≻ rg′ | {r, g} ∈
E(i, j)}, that is, one partial vote contains the constraint rg ≻ rg′ for every {r, g} ∈
E(i, j). The idea of this gadget is as follows. For every ordered color pair we have t
edges and t−1 corresponding votes. Within one vote, one pair of edge-candidates can
get the two available zero-positions. Thus, it is possible to set all but one, namely the
selected pair of edge-candidates, to zero-positions.

The partial votes of V2 realize the vertex selection gadgets. Here, we will use
the k − 1 candidates corresponding to a selected vertex to do the vertex-edge match
for all edges that are incident in a multicolored clique. Formally, we set V2 := V a

2 ∪V b
2

as further defined in the following. Intuitively, in V a
2 we select a vertex and in V b

2 ,
by a cascading effect, we achieve that all k − 1 candidates that correspond to this
vertex are selected. In V a

2 , for every color i, we have s − 1 copies of the partial vote
{r1 ≻ cr

1 | r ∈ Xi}. In V b
2 , for every color i and for every vertex r ∈ Xi, we have the

following k − 2 votes.
For all odd z ∈ {1, . . . , k − 4}, vr,i

z : {cr
z ≻ cr

z+1, rz+1 ≻ rz+2}.
For all even z ∈ {2, . . . , k − 3}, vr,i

z : {cr
z ≻ cr

z+1, d
i
z−1 ≻ di

z},
vr,i

k−2 : {cr
k−2 ≻ di

k−2, rk−1 ≻ di}.
The partial votes of V3 realize the vertex-edge match gadgets. For i, j ∈

{1, . . . , k}, for j < i, V3 contains the vote {rg ≻ rj | {r, g} ∈ E, r ∈ Xi, and g ∈ Xj}
and, for j > i, V3 contains the vote {rg ≻ rj−1 | {r, g} ∈ E, r ∈ Xi, and g ∈ Xj}.

The partial votes of V4 realize the edge-edge match gadgets. For every un-
ordered color pair {i, j}, i 6= j there is the partial vote {rg′ ≻ gr′ | {r, g} ∈ E(i, j), r ∈
Xi, and g ∈ Xj}.

This completes the description of the partial profile. Now, we verify a property of
the construction that is crucial to see the correctness: In total, the number of zero-
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positions available in the partial votes is exactly equal to the sum of the minimum
number of zero-position the candidates of C\{c} must take such that c is a winner. We
denote this property of the construction as tightness. To see the tightness property,
we first compute the number of partial votes:

|V1| + |V2| + |V3| + |V4| =

k(k − 1)(t − 1) + k(s − 1) + ks(k − 2) + k(k − 1) + k(k − 1)/2 =

t(k2 − k) + s(k2 − k) + k2/2 − 3k/2. (7.1)

Regarding the number of zero-positions that must be taken, we first compute the
number of candidates for each subset:

• |CX | = sk(k − 1),

• |CE | = 2tk(k − 1),

• |DX | = sk(k − 2), |D1| = k(k − 2), and |D2| = k.

The candidates of D2 must take at least s−1 zero-positions and all other candidates
at least one. Thus, in total the number of zero-positions must be at least

sk2 − sk + 2tk2 − 2tk + sk2 − 2ks + k2 − 2k + k(s − 1) =

2s(k2 − k) + 2t(k2 − k) + k2 − 3k. (7.2)

Furthermore, there are two zero-positions for every partial vote. It is easy to verify
that (7.1) times two equals (7.2). Hence, the tightness of the construction is shown.
It directly follows that if there is a candidate that takes more zero-positions than
desired, then c cannot win in this extension since then at least one zero-position must
be “missing” for another candidate.

We can now show the following claim to complete the proof.

Claim: The graph G has a clique of size k if and only if c is a possible winner in P .

“⇒” Given a multicolored clique Q of G of size k. We refer to the vertices and
edges belonging to Q as solution vertices and solution edges, respectively, and to the
corresponding candidates as solution candidates. Then, extend the partial profile P
as given in Figure 7.5. In the following we argue that in the given extension every
candidate takes the required number of zero-positions.

In V1, for every ordered color pair, all pairs of edge-candidates except the pair of
solution edge-candidates are set to the last two positions in one of the t − 1 votes.

In V a
2 for every color i, we set all candidates r1 that do not belong to the solution

vertices and the corresponding cr
1 to zero-positions in one of the votes. In V b

2 for every
non-solution vertex r ∈ Xi\Q we set the corresponding candidates rz+1 and rz+2 at
zero-positions in the votes vr,i

z with odd index z ∈ {1, . . . , k − 4}. In the votes with
even index z ∈ {2, . . . , k − 3}, we set the corresponding dummy candidates cr

z, c
r
z+1 at

zero-positions. We further set the candidate rk−1 at a zero-position in votes vr,i
z for all

the s−1 non-solution vertices of color i, which implies that the dummy candidate di is
placed at s−1 zero-positions. Thus, we have “enough” zero-positions for all the copies
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V1 : · · · > rg > rg′ for i, j ∈ {1, . . . , k}, i 6= j, r ∈ Xi\Q, and g ∈ Xj\Q
V a

2 : · · · > r1 > cr
1 for 1 ≤ i ≤ k and r ∈ Xi\Q

V b
2 : vr,i

z · · · > rz+1 > rz+2 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {1, 3, 5, . . . , k − 4}
vr,i

z · · · > cr
z > cr

z+1 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {2, 4, 6, . . . , k − 3}
vr,i

k−2 · · · > rk−1 > di for 1 ≤ i ≤ k, r ∈ Xi\Q
vr,i

z · · · > cr
z > cr

z+1 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {1, 3, 5, . . . , k − 4}
vr,i

z · · · > di
z−1 > di

z for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {2, 4, 6, . . . , k − 3}
vr,i

k−2 · · · > cr
k−2 > di

k−2 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q
V3 : · · · > rg > rj for i, j ∈ {1, . . . , k}, j < i, r ∈ Xi ∩ Q, and g ∈ Xj ∩ Q

· · · > rg > rj−1 for i, j ∈ {1, . . . , k}, j > i, r ∈ Xi ∩ Q, and g ∈ Xj ∩ Q
V4 : · · · > rg′ > gr′ for i, j ∈ {1, . . . , k}, i 6= j, r ∈ Xi ∩ Q, g ∈ Xj ∩ Q

Figure 7.5: Extension of the partial votes for the MC-instance. Extensions in which
candidates that do not correspond to the solution set Q take the zero-positions are
highlighted.

of the non-solution candidates, the corresponding dummy candidates {cr
1, . . . , c

r
k−2 |

r ∈ Xi \ Q}, and di. The remaining votes of V b
2 “correspond” to the gadgets for the

solution vertices. Here, we set the candidate pairs cr
z > cr

z+1 in the votes with odd
index z ∈ {1, . . . , k − 4} at position zero and the candidate pairs with candidates di

p

for p = 1, . . . , k − 2 to zero-positions in the votes with even index. Thus, in V2, we
have improved c upon all dummy candidates and upon all candidates corresponding
to non-solution vertices, whereas each candidate corresponding to a solution vertex
must still take a zero-position.

Now, it remains to set every candidate corresponding to a solution vertex or a
solution edge to a zero-position in at least one vote. Due to construction, for a solution
edge {r, g} ∈ E, the two corresponding candidates rg′ and gr′ can be set to zero in the
corresponding vote of V4. And, in V3 the k − 1 vertex-candidates belonging to every
solution vertex can be set to a zero-position in combination with the corresponding
edge-candidate. Thus, the distinguished candidate c is the winner of the described
extension.

“⇐” Given an extension of P in which c is a winner, we show that the “selected” can-
didates must correspond to a size-k clique. Recall that the number of zero-positions
that each candidate must take is “tight” in the sense that if one candidate gets an un-
necessary zero-position, then for another candidate there are not enough zero-positions
left.

First (edge selection), for i, j ∈ {1, . . . , k}, i 6= j, we consider the candidates of Ci,j .
The candidates of Ci,j can take zero-positions in one vote of V3 and in t−1 votes of V1.
Since |Ci,j | = t and in the considered votes at most one candidate of Ci,j can take a
zero-position, every candidate of Ci,j must take one zero-position in one of these votes.
We refer to a candidate that takes the zero-position in V3 as solution candidate rgsol.
For every non-solution candidate rg ∈ Ci,j\{rgsol}, its placement in V1 also implies
that rg′ gets a zero-position, whereas rg′sol still needs to take one zero-position (which
is only possible in V4).

Second, we consider the vertex selection gadgets. Here, analogously to the edge
selection, for every color i, we can argue that in V a

2 , out of the set {r1 | r ∈ Xi}, we
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have to set all but one candidate to a zero-position. The corresponding solution vertex
is denoted as rsol. For every vertex r ∈ Xi\{rsol}, this implies that the corresponding
dummy-candidate cr

1 also takes a zero-position in V a
2 . Now, we show that in V b

2 we
have to set all candidates that correspond to non-solution vertices to a zero-position
whereas all candidates corresponding to rsol must appear only at one-positions. Since
for every vertex r ∈ Xi\{rsol}, the vertex cr

1 has already a zero-position in V a
2 , it cannot

take a zero-position within V b
2 anymore without violating the tightness. In contrast,

for the selected solution candidate rsol, the corresponding candidates crsol

1 and rsol1 still
need to take one zero-position. The only possibility for crsol

1 to take a zero-position is

within vote vrsol,i
1 by setting crsol

1 and crsol

2 to the last two positions. Thus, one cannot
set rsol2 and rsol3 to a zero-position within V2. Hence, the only remaining possibility
for rsol2 and rsol3 to get zero points remains within the corresponding votes in V3.
This implies for every non-solution vertex r that r2 and r3 cannot get zero points in V3

and thus we have to choose to put them on zero-positions in the vote vr,i
1 from V b

2 .
The same principle leads to a cascading effect in the following votes of V b

2 : One cannot
choose to set the candidates crsol

p for p ∈ {1, . . . , k− 2} to zero positions in votes of V b
2

with even index z and thus has to improve upon them in the votes with odd index z.
This implies that all vertex-candidates belonging to rsol only appear in one-positions
within V b

2 and that all dummy candidates di
p for p ∈ {1, . . . , k−2} are set to one zero-

position. In contrast, for every non-solution vertex r, one has to set the candidates cr
p,

p ∈ {2, . . . , k−2}, to zero-positions in the votes with even index z, and thus in the votes
with odd index z, one has to set all vertex-candidates belonging to r to zero-positions.
This further implies that for every non-solution vertex in the last vote of V b

2 one has to
set di to a zero-position, and since there are exactly s−1 non-solution vertices, di takes
the required number of zero positions. Altogether, all vertex-candidates belonging to a
solution vertex still need to be placed at a zero-position in the remaining votes V3∪V4,
whereas all dummy candidates of D and the candidates corresponding to the other
vertices must have taken enough zero positions.

Third, consider the vertex-edge match realized in V3. For i, j ∈ {1, . . . , k}, i 6= j,
there is only one remaining vote in which rgsol with r ∈ Xi and g ∈ Xj can take
a zero position. Hence, rgsol must take this zero-position. This implies that the
corresponding incident vertex-candidate x is also set to a zero-position in this vote.
If x 6= rsoli , then x has already a zero-position in V2. Hence, this would contradict
the tightness and rgsol and the corresponding vertex must “match”. Furthermore, the
construction ensures that each of the k − 1 candidates corresponding to one vertex
appears exactly in one vote of V3 (for each of the k−1 candidates, the vote corresponds
to edges from different colors). Hence, c can only be a possible winner if a selected
vertex matches with all selected incident edges.

Finally, we discuss the edge-edge match gadgets. In V4, for i, j ∈ {1, . . . , k}, i 6= j,
one still needs to set the solution candidates from Ci,j to zero-positions. We show
that this can only be done if the two “opposite” selected edge-candidates match each
other. For two such edges rgsol and grsol, r ∈ Xi, g ∈ Xj , there is only one vote in V4

in which they can get a zero position. If rgsol and grsol refer to different edges, then
in this vote only one of them can get zero points, and thus the other one still beats c.
Altogether, if c is a possible winner, then the selected vertices and edges correspond
to a multicolored clique of size k.

By generalizing the reduction used for Lemma 7.2, one can show the following.
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Theorem 7.2. An MC-instance I can be reduced to a Possible Winner-instance
for a scoring rule which produces a size-m scoring vector that fulfills the following.
There is an i ≤ m − 1 such that αi−x = · · · = αi−1 > αi with x = f(I). A suitable
poly-type function f can be computed in polynomial time.

Proof. We describe how to modify the reduction given in the proof of Lemma 7.2
to work for the considered cases. For this, let P on C denote a partial profile as
constructed in the proof of Lemma 7.2. Since i ≤ m− 1, the position i+1 must exist.
We set x = f(I) := |C| − 2 and fill all positions smaller than i − x and all positions
greater than i+1 with dummy candidates that are different from candidates in C and
that are beaten by c in every extension. We distinguish the two subcases αi = αi+1 (1a)
and αi 6= αi+1 (1b).

For the case (1a), one can argue in complete analogy to Lemma 7.2 by “identifying”
the two zero-positions of Lemma 7.2 with position i and i+1 and setting the maximum
partial score as follows (which can be done without changing the partial votes due to
Lemma 7.1). For all di ∈ D2, smax

p (di) = (s − 1) · αi +(|V p| − s + 1) · αi−1 and for
all c′ ∈ C\({c} ∪ D2), smax

p (c′) = αi +(|V p| − 1) · αi−1.
For (1b), we need to argue that the tightness argument still holds. For this, we set

the maximum partial scores as follows (which can be done without changing the partial
votes due to Lemma 7.1). For all di ∈ D2, smax

p (di) = (s−1)·αi+1 +(|V p|−s+1)·αi−1

and, for all c′ ∈ C\({c}∪D2), smax
p (c′) = αi +(|V p| − 1) ·αi−1. Now, in any extension

in which c wins, each candidate in D2 must be placed at least s− 1 times on position
i + 1, and each of the other candidates must be placed on position i or i + 1 at
least once. Then again, the number of positions i and i + 1 that still have to be
assigned to candidates is exactly equal to the number of candidates that need to take
these positions, hence, the tightness argument still holds. Thus, the correctness of the
modified reduction can be shown in complete analogy to Lemma 7.2.

In the following, we consider scoring rules with an unbounded number x of equal
positions for which it holds that there is an i ≥ 2 such that αi > αi+1 = · · · = αi+x.
Parts of the results are based on further extensions of the MC-reduction used to prove
Lemma 7.2. After that there still remain some cases for which it seems even more
complicated to adapt the MC-reduction. However, for these cases we can make use of
other properties of the scoring rules and settle them by less involved reductions from
Exact Cover by 3-Sets. As we will see in Section 7.7, the following Lemmata 7.3–
7.6 cover all scoring vectors with i ≥ 2 such that αi > αi+1 = · · · = αi+x.

Lemma 7.3. An MC-instance I can be reduced to a Possible Winner-instance for a
scoring rule which produces a size-m scoring vector that fulfills the following. There is
an i ≥ 2 such that αi > αi+1 = · · · = αi+x with x = f(I) and there is a position j < i
with αj < 2 αj+1. A suitable poly-type function f can be computed in polynomial time.

Proof. We describe how to modify the MC-reduction given in the proof of Lemma 7.2
to work for the considered case. For this, let P on C denote a partial profile as
constructed in the proof of Lemma 7.2. First, we describe the construction for j = i−1,
that is, one has αi−1 < 2 αi. We construct a partial profile P̃ as follows. We set
x = f(I) = |C| − 2 and all positions < i − 1 and > i + x are filled with dummy
candidates that are beaten by c in every extension. The positions not filled with
dummies “contain” the partial votes of P in “reverse” order: In P all relative orders
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are given for pairs of candidates. In P̃ we just “flip” every pair, for example, instead
of having rg ≻ rg′ we have rg′ ≻ rg in V1. We define that all candidates that are not
given explicitly are worse than the given candidates in a vote (instead of being better).
By flipping the order of a pair, we adapt the “logical implication”, for example, instead
of having “if rg makes zero points, then also rg′ makes zero points” in P , we have “if
rg makes αi points, then also rg′ makes at least αi points” in P̃ . Furthermore, we
set the maximum partial scores to smax

p (di) = (s − 1) · αi−1 +(|V p| − s + 1) · αi+1 for

all di ∈ D2 and smax
p (c′) = αi−1 +(|V p| − 1) · αi+1 for all c′ ∈ C\({c} ∪ D2). Note

that since αi−1 < 2 αi, every candidate c′ can take either position i or position i − 1
in one of the partial votes. Then, we can use a “reverse” tightness argument: Since
the positions i and i − 1 must be taken by two candidates in every vote and every
candidate can take at most one such position (or at most s − 1 such positions for
candidates in D2, respectively), by counting candidates and positions it holds that if
every candidate of D2 must make αi−1 points exactly (s − 1) times, then every other
candidate must make αi−1 or αi points exactly once. Thus, it remains to show that
every di ∈ D must take position i − 1 in s − 1 of the votes. Assume this is not the

case, then there must be two votes vr,i
k−2 and vr′,i

k−2 with r 6= r′ in which di does not
take position i − 1. Due to construction, the only remaining candidate that can take
this position in these votes is di

k−2, but this is not possible due to smax
p (di

k−2). Hence,
we can use a tightness argument analogously to Lemma 7.2. Since we also adapted
the logical implication, the correctness follows in complete analogy to Lemma 7.2.

The remaining cases (j < i − 1) follow by padding positions within the gadgets.
More precisely, replace each specified pair, e.g. rg′ ≻ rg by rg′ ≻ rg ≻ H with a
dummy set H of size i − (j + 1) and replace αi−1 by αj in the new definitions of the
maximum partial scores.

So far, we settled the NP-hardness for scoring vectors with i ≥ 2 such that αi >
αi+1 = · · · = αi+x if there is a position j < i with αj < 2 αj+1. Without the
constraint αj < 2 αj+1, it seems pretty complicated to adapt the tightness property
which is crucial for the MC-reduction. Fortunately, the remaining cases have some
different properties that allow to settle them by less complicated reductions from
Exact Cover By 3-Sets. More precisely, in the following, we give three reductions
with increasing difficulty. (Although all three reductions are self-contained, they might
be easier to understand when reading them in the given order.)

Lemma 7.4. An X3C-instance I can be reduced to a Possible Winner-instance
for a scoring rule which produces a size-m scoring vector that fulfills the following.
There is an i ≥ 2 such that αi > αi+1 = · · · = αi+x with x = f(I) and there is a
position j < i with αj ≥ 3 αi. A suitable poly-type function f for X3C can be computed
in polynomial time.

Proof. Let (E,S) denote an X3C-instance. Construct a partial profile P on a set
of candidates C. The set C of candidates is defined by C := {c} ⊎ S ⊎ E ⊎ H ⊎ D
where c denotes the distinguished candidate c, S := {sz | Sz ∈ S}, E the set of
candidates that represent the elements of the universe, and H and D contain disjoint

candidates such that the following hold. We define H :=
⊎|S|

z=1 Hz with |Hz | = i − j
for all z ∈ {1, . . . , |S|} needed to “pad” some positions relevant to the construction
and |D| = m − |S| − |E| − |H | − 1 needed to pad irrelevant positions. We refer to
the candidates from S as subset candidates and to the candidates from E as element
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candidates. Set f((E,S)) := |C \D|− (i− j). For 1 ≤ z ≤ |S|, let Sz = {ez1, ez2, ez3}.
The partial profile P consists of a set of linear votes and a set of partial votes V p. In all
votes of V p, we pad all irrelevant positions, i.e. all positions smaller than j and greater
than j − 1 + |C \D| by fixing candidates from D (omitted in the further description).
The set V p consists of |S| − |E|/3 copies of the vote

s1 ≻ H1 ≻ C\(S ∪ H), s2 ≻ H2 ≻ C\(S ∪ H), . . . , s|S| ≻ H|S| ≻ C\(S ∪ H)

denoted as V p
1 and the following three votes, denoted as V p

2 (z), for every sz ∈ S

v1
z : H1 ≻ {sz, ez1} ≻ C\({sz, ez1} ∪ H1),

v2
z : H1 ≻ {sz, ez2} ≻ C\({sz, ez2} ∪ H1),and

v3
z : H1 ≻ {sz, ez3} ≻ C\({sz, ez3} ∪ H1).

The basic idea of this construction is that in V p
1 one has to set all but |E|/3 “subset”

candidates to position j whereas the remaining candidates will be able to take a
position greater than i in all votes from V p

1 . Therefore, the remaining |E|/3 subset
candidates can make αj −αi+1 points more than the other candidates within the
remaining votes. This will enable them to shift their corresponding element candidates
to position i+1 by taking position i. Since αj > 3·αi, they will be able to shift all three
element candidates, respectively. To realize the basic idea, we adapt the maximum
partial scores appropriately. For e ∈ E, let ne denote the number of subsets in S
which contain e. Then according to Lemma 7.1, we can cast the linear votes such that
the following holds:

• smax
p (sz) = αj +(|V p| − 1) · αi+1, for all sz ∈ S,

• smax
p (e) = (ne − 1) · αi +(|V p| − ne + 1) · αi+1, for all e ∈ E, and

• all other candidates are beaten by c in every extension.

We show that c is a possible winner in P if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-cover Q. Then one extends P by setting each sz

with Sz /∈ Q at position j in one vote from V p
1 and the corresponding candidates

from Hz to the positions j+1, . . . , i in the same vote. Furthermore, set sz to position i+
1 in v1

z , v2
z , and v3

z . Now, we have that every sz with Sz /∈ Q takes position j in one
vote and a position greater than i in all remaining votes and thus is beaten by c.
This also means that in V p

1 all positions ≤ i are filled and thus every candidate sz

with Sz ∈ Q takes a position greater than i in all votes from V p
1 . Thus, the remaining

votes can be extended by setting every sz with Sz ∈ Q to position i in v1
z , v2

z , and v3
z .

Since αj ≥ 3 αi, the maximum partial score of sz is not exceeded. Because Q is an
exact 3-cover, all element candidates are shifted to position i + 1 in one vote and thus
are beaten by c. Hence, c is a winner in the described extension.

For the other direction, consider an extension of P in which c wins. Due to con-
struction, in V p

1 only subset candidates from S can take position j. Because of the
maximum partial scores, position j must be taken by different candidates from S in
the |S| − |E|/3 votes of V 1

p . We denote these candidates as non-solution candidates
and the remaining |E|/3 candidates from S as solution candidates. Due to smax

p (sz),
every non-solution candidate must take position i + 1 in all remaining votes and thus
the corresponding element candidates must make αi points in the corresponding votes.
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Hence, there remain only |E|/3 solution candidates that have to “shift” the |E| ele-
ment candidates to position i + 1. Since every solution candidate can shift at most 3
candidates, the solution candidates must correspond to an exact 3-cover.

In the following lemma, we consider a more specific type of scoring vector in the
sense that there are only two score values greater than zero. This restriction allows us
to find an easy way to “lift” the condition “αj ≥ 3 ·αi” for two special types of scoring
rules that will be sufficient for the proof of the main result in Section 7.7. Compared
to the reduction from the previous lemma, for the following cases we also choose a
set of “solution subset candidates” within the first part of the partial votes, but we
will need some additional gadgetry to be able to “shift” the corresponding element
candidates.

Lemma 7.5. An X3C-instance I can be reduced to a Possible Winner-instance for
a scoring rule which produces a size-m scoring vector (α1, α2, 0, . . . , 0) with 3 α2 >
α1 > 2 α2 and m = f(I) + 2. A suitable poly-type function f can be computed in
polynomial time.

Proof. Let (E,S) denote an X3C-instance. Construct a partial profile P on a set of
candidates C as follows. The set of candidates consists of a distinguished candidate c, a
set S := {si | Si ∈ S} (the subset candidates), a set D := {di | Si ∈ S}, the set E (the
element candidates), a candidate x, and H := {h1, . . . , h|S|}. Set f((E,S)) := |C|−2.
For 1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. The partial profile P consists of a set of linear
votes and a set of partial votes V p. The set V p consists of |S| − |E|/3 copies of the
vote

s1 ≻ h1 ≻ C\(S ∪ H), s2 ≻ h2 ≻ C\(S ∪ H), . . . , s|S| ≻ h|S| ≻ C\(S ∪ H)

denoted as V p
1 and the following three votes for every Si ∈ S

v1
i : di ≻ ei1 ≻ C\{di, ei1, si}, si ≻ C\{di, ei1, si}

v2
i : x ≻ {di, ei2} ≻ C\{di, ei2, x}

v3
i : x ≻ {di, ei3} ≻ C\{di, ei3, x}

Let ne denote the number of subsets in which e occurs. Then, due to Lemma 7.1,
we can set the maximum partial scores as follows:

• smax
p (si) = α1 for all si ∈ S,

• smax
p (di) = 3 · α2 for all di ∈ D,

• smax
p (e) = (ne − 1) · α2 for all e ∈ E,

• all other candidates are beaten by c in every extension.

We show that c is a possible winner in P if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-cover Q for (E,S). Then we extend P as follows.
For every Si /∈ Q, si takes position 1 and hi takes position 2 in one vote from V p

1

and si takes position 3 in v1
i . The corresponding di takes position 3 in v2

i and v3
i .

Clearly, for Si /∈ Q, smax
p (si) is not exceeded, sp(di) = α1 < 3 α2 = smax

p (di), and
within V p

1 all first positions are fixed. For every solution set Si ∈ Q, we set si to a
position greater than 2 in all votes from V p

1 and to the first position in v1
i . Since this
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implies that di takes the second position in v1
i , this enables us to set di to the second

position in v2
i and v3

i without violating smax
p (di). Since Q is an exact 3-cover, all

corresponding element candidates are shifted to the third position once and for every
element candidate the maximum partial score is not exceeded. Hence, c is a winner.

To see the other direction, assume there is an extension in which c wins. In V p
1 , the

first positions can only be taken by candidates from S. Since each si ∈ S can get α1

points exactly once, |S|−|E|/3 different subset candidates from S have to be placed on
the first position. Let the set consisting of these candidates be denoted by S′. Every
candidate si from S′ has exploited its maximum partial score and therefore has to be
placed on the third position in v1

i . This implies that the corresponding candidate di

takes the first position in v1
i . Since α1 > 2 α2 and smax

p (di) = 3 α2, di has to take
the third position in both v2

i and v3
i . Hence, for si ∈ S′, the corresponding element

candidates ei1, ei2, ei3 receive α2 points each. However, each of the element candidates
from E has to be placed on position 3 at least once due to its maximum partial score.
This can only be in the remaining partial votes, that is, all v1

i , v2
i , v3

i with si ∈ S \ S′.
Since |S \ S′| = |E|/3, one must shift one element candidate in each of these votes.
For this, the only possibility is to set every si ∈ S \ S′ to position 1 in v1

i , and the
corresponding candidate di takes the second position in v2

i and v3
i . Since c wins, all |E|

element candidates must get shifted to position 3. Hence, S \ S′ corresponds to an
exact 3-cover of (E,S).

Finally, we settle the NP-hardness for a specific scoring vector.

Lemma 7.6. An X3C-instance I can be reduced to a Possible Winner-instance for
a scoring rule which produces a size-m scoring vector (2, 1, 0, . . . , 0) for m = f(I)+2.
A suitable poly-type function f can be computed in polynomial time.

Proof. Let (E,S) denote an X3C-instance. Construct a partial profile P on a set of
candidates C as follows. The set of candidates consists of a distinguished candidate c,
a set S := {si | Si ∈ S} (the subset candidates), D := {di | Si ∈ S}, T := {ti | Si ∈
S}, E (the element candidates), a candidate y, and X := {x1, . . . , x|S|−|E|/3}. Set
f((E,S)) := |C| − 2. For 1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. The partial profile P
consists of a set of linear votes and a set of partial votes V p. The set V p := V p

1 ∪V p
2 ∪V p

3

is further defined as follows. The set V p
1 consists of |S| − |E|/3 copies of the partial

vote

s1 ≻ t1 ≻ C\(S ∪ T ), s2 ≻ t2 ≻ C\(S ∪ T ), . . . , s|S| ≻ t|S| ≻ C\(S ∪ T ).

The set V p
2 consists of |S| − |E|/3 copies of the partial vote

y ≻ T ≻ C\(T ∪ {y})

and V p
3 contains the following three votes for every Si ∈ S

v1
i : di ≻ ei1 ≻ C\{di, ei1, si}, si ≻ C\{di, ei1, si}

v2
i : y ≻ {di, ei2} ≻ C\{di, ei2, y}

v3
i : {ti, ei3} ≻ C\({ti, ei3} ∪ X)

Let ne denote the number of subsets in which e occurs and ne,3 the number of subsets
in which e is denoted as ei3 for i ∈ {1, . . . , |S|}. Then, using Lemma 7.1, we set the
maximum partial scores as follows:
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V p
1 : si > ti > . . . for Si /∈ Q

V p
2 : y > ti > . . . for Si /∈ Q

V p
3 : v1

i di > ei1 > si > . . . for Si /∈ Q
v2

i y > ei2 > di > . . . for Si /∈ Q
v3

i ei3 > xq > ti . . . for Si /∈ Q and different q
v1

i si > di > ei1 > . . . for Si ∈ Q
v2

i y > di > ei2 > . . . for Si ∈ Q
v3

i ti > ei3 > . . . for Si ∈ Q

Figure 7.6: Extension for the X3C-reduction for the case (2, 1, 0, . . . ). The remark
“different q” means that for i 6= i′ with Si /∈ Q and Si′ /∈ Q one chooses two dif-
ferent candidates from X . Extensions corresponding to non-solution candidates are
highlighted.

• smax
p (si) = smax

p (ti) = smax
p (di) = 2 for i ∈ {1, . . . , |S|}

• smax
p (xi) = 1 for i ∈ {1, . . . , |S| − |E|/3}

• smax
p (e) = 2ne,3 + (ne − ne,3) − 1 for e ∈ E

• the candidate y is beaten by c in every extension

We show that c is a possible winner in P if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-cover Q for (E,S). Then we extend P as given in
Figure 7.6. For every Si /∈ Q, si takes the first position in one vote from V p

1 and
makes zero points in all remaining votes. The corresponding ti takes the second
position in one vote from V p

1 and one vote from V p
2 and makes zero points in all

remaining votes. Hence, c beats these si and ti and the votes from V p
1 and V p

2 are
fixed. For every Si /∈ Q, we extend v3

i by setting a different candidate from X at the
second position such that none of them is put on this position twice, and hence c also
beats every candidate from X . For every Si ∈ Q, di, ti and si make exactly 2 points
in V p

3 and thus are beaten by c as well. It remains to consider the element candidates.
To this end, note that a candidate e ∈ E is beaten by c if there is an i such that e
takes position 3 in v1

i or v2
i or takes position 2 in v3

i . Since Q is an exact 3-cover and
all candidates corresponding to subsets from Q are shifted to the right in one vote, c
wins in the given extension.

To see the other direction, assume there is an extension in which c wins. Let G1 :=
{v1

i | 1 ≤ i ≤ |S|}, G2 := {v2
i | 1 ≤ i ≤ |S|}, and G3 := {v3

i | 1 ≤ i ≤ |S|}. We
start by arguing that at most 2/3 · |E| candidates from E can make zero points in a
vote from G1 ∪ G2. For any i, at most two element candidates, namely ei1 and ei2

can make zero points in G1 ∪ G2. More precisely, due to smax
p (di), if si takes the

first position in v1
i , then ei1 and ei2 can take the third position and if si takes the

second position, then only ei1 can be shifted to the third position, since di takes the
first position in v1

i and has exploited its maximum partial score. Thus, the number of
points that all candidates from S can make within V p

3 is an upper bound for the number
of element candidates that can be shifted. Since only candidates from S can take the
first positions in V p

1 , |V p
1 | = |S| − |E|/3, and smax

p (si) = 2, the candidates from S can
make at most 2/3|E| points in V p

3 . Thus, there are at most 2/3|E| element candidates
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that can take a position with zero points in G1 ∪G2. Thus, due to smax
p (e), in G3 one

must shift (at least) |E|/3 candidates to the second position (Observation 1). In the
following, we show that the only way to do so leads to an extension in which exactly
|E|/3 candidates si from S make zero points in V p

1 and the corresponding ti make zero
points in V p

1 ∪ V p
2 whereas all other candidates from S ∪ T have already accomplished

their maximum partial score in V p
1 ∪ V p

2 (Claim 1). This means that the element
candidates that are shifted to the right correspond to exactly |E|/3 subsets Si ∈ S.
Since every element candidate must be shifted at least once, these subsets must form
an exact 3-cover in (E,S).

We use a tightness criterion (analogously to the MC-reduction from Lemma 7.2)
to prove Claim 1. To this end, we show that the score of all positions that must
be filled equals the sum of the maximum partial scores of all candidates. Again, it
directly follows that a candidate c′ ∈ C\{c} cannot make less than smax

p (c′) points
since otherwise there must be another candidate that beats c. Now, we show the
tightness. The total number of votes is

|V p
1 | + |V p

2 | + |V p
3 | = |S| − |E|/3 + |S| − |E|/3 + 3|S| = 5|S| − 2/3|E|.

In V p
2 and V p

3 , candidate y is already fixed at the first position in 2|S| − 1/3|E| votes
and since in every vote 3 points have to be given, there are 3 · (5|S| − 2/3|E|) − 2 ·
(2|S| − 1/3|E|) = 11|S| − 4/3|E| points for the remaining candidates left. The sum of
the maximum partial scores from all candidates from S ∪ T ∪ D ∪ X ∪ E is

3 · 2 · |S| + |S| − |E|/3 + 2|S| + 2|S| − |E| = 11|S| − 4/3|E|.

To see this, note that clearly
∑

e∈E ne,3 = |S| and
∑

e∈E ne = 3|S|. Thus, the tightness
follows.

Now, we finally show the correctness of Claim 1. Due to the tightness, the |S| −
|E|/3 candidates from X must take position 2 in |S|−|E|/3 votes from G3. Thus, there
remain |E|/3 second positions in G3 that are not fixed. Note that due to tightness,
a candidate ei3 cannot take the third position in v3

i . Hence, if the remaining second
positions are not taken by candidates from E, we shift less than |E|/3 candidates
in G3, a contradiction to Observation 1. Hence, these positions must be taken by
candidates from E and thus all second positions within G3 are fixed. This implies
that every candidate ti from T must take either the first or the third position in v3

i .
More precisely, since |E|/3 candidates from E take a second position there must be
|E|/3 candidates from T that take the first positions within the corresponding votes.
However, a candidate from T can only take the first position if it makes zero points in
V p

1 ∪V p
2 . Hence, there must be |E|/3 candidates from T , denoted as T ′, that make zero

points in V p
1 ∪ V p

2 and, due to tightness, all remaining candidates from T must make
2 points in V p

1 ∪ V p
2 . A candidate ti ∈ T can make at most one point in V p

1 since due
to the condition “si ≻ ti” it shifts si to the first position (and smax

p (si) = 2). Hence,
making two points within V p

1 ∪V p
2 implies that ti must make one point in V p

1 and one
point in V p

2 and that the corresponding si must make 2 points in V p
1 . This fixes all

positions in V p
1 ∪ V p

2 and since a candidate si with ti ∈ T ′ clearly makes zero points
in V p

1 ∪V p
2 , the correctness of Claim 1 follows. Altogether, we have that {Si | ti ∈ T ′}

forms an exact 3-cover for (E,S).



112 7 A dichotomy for pure scoring rules

7.6.2 Scoring vectors with α1 > α2 = · · · = αm−1 > 0

In this subsection, we consider scoring rules defined by scoring vectors that fulfill α1 >
α2 = · · · = αm−1 > 0. Although quite special, these rules might be of interest of their
own. They can be considered as a direct combination of the very common plurality
and veto rules where one allows to weight the contribution of the plurality or veto part.
For example, by using (10, 1, . . . , 1, 0) the “plurality” part would have more influence
to the outcome, whereas for (10, 9, . . . , 9, 0) the “veto” part would be more important.
To show NP-hardness, we give two types of many-one reductions from X3C; one for
the case α1 < 2 · α2 and one for the case α1 > 2 · α2. As mentioned before, the
case α1 = 2 · α2 remains open. Intuitively, for all other cases we make use of the
“asymmetry” of the differences of the score values, that is, by shifting a candidate
from the first to the second position one decreases its score by a different amount than
by shifting it from the last but one to the last position. In the two following proofs,
the position in a linear order in which a candidate gets α1 points is denoted as top
position, a position in which a candidate gets α2 points as middle position, and the
position in which a candidate gets zero points as last position.

Theorem 7.3. An X3C-instance I can be reduced to a Possible Winner-instance
for a scoring rule which produces a size-m scoring vector satisfying the conditions
α1 > α2 = αm−1 > αm = 0 and α1 < 2 · α2 for m = f(I) + 2. A suitable poly-type
function f can be computed in polynomial time.

Proof. Let (E,S) denote an X3C-instance. We construct a partial profile P for which
the distinguished candidate c ∈ C is a possible winner if and only if (E,S) is a
yes-instance. The set of candidates is C := {c, h} ⊎ {si, di, ti | Si ∈ S} ⊎ E. The
partial profile P consists of a set of partial votes V p and a set of linear orders V l.
For 1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. Then the set of partial votes V p := V p

1 ∪ V p
2 is

given by the following subsets. The set V p
1 consists of |E|/3 copies of the partial vote

h ≻ C \ {h, s1, . . . , s|S|} ≻ {s1, . . . , s|S|}.

For every i ∈ {1, . . . , |S|}, the set V p
2 contains the three votes

v1
i : h ≻ C\{h, si, di} ≻ {si, di},

v2
i : ei1 ≻ C\{ei1, ti, di} ≻ ti, and

v3
i : ei2 ≻ C\{ei2, ei3, ti} ≻ ei3.

Now, we pass on to the definitions of the maximum partial scores. To this end, for
a candidate e corresponding to an element e ∈ E (referred to as element candidate),
let ne,1+2 denote the number of subsets from S in which e is identical with ei1 or ei2.
Due to Lemma 7.1, we can cast the linear votes such that the following hold:

• smax
p (si) = (|V p| − 1) · α2,

• smax
p (di) = smax

p (ti) = α1 +(|V p| − 2) · α2,

• smax
p (e) = (|V p| − ne,1+2 + 1) · α2 +(ne,1+2 − 1) · α1,

• h is beaten by c in every extension.

The maximum partial scores of the element candidates are set such that every
element candidate has to be “shifted” to the right at least once. More precisely, if a
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V p
1 : h > . . . > si Si ∈ Q

V p
2 : v1

i h > . . . > si > di Si ∈ Q
v2

i di > ei1 > . . . > ti Si ∈ Q
v3

i ti > ei2 > . . . > ei3 Si ∈ Q
v1

i h > . . . > di > si Si /∈ Q
v2

i ei1 > . . . > ti > di Si /∈ Q
v3

i ei2 > . . . > ei3 > ti Si /∈ Q

Figure 7.7: Extension for the case α1 > α2 = αm−1 > 0 and α1 < 2 · α2. Extensions
for candidates that do not correspond to subsets belonging to the solution set Q are
highlighted.

candidate e took the first position in all votes in which it is identical with ei1 or ei2 and
the second position in all remaining votes (including the votes in which it is identical
with ei3), then s(e) = (|V p| − ne,1+2) · α2 +ne,1+2 · α1 > smax

p (e) since α1 > α2.
However, if, for any i, ti or di are inserted at the first position in one of the votes in
which e appears, then e makes at least α1 −α2 points less and thus is beaten by c.
We denote this as Observation 2. Now, we show the correctness of the construction.

Claim: Candidate c is a possible winner in P if and only if (E,S) is a yes-instance.

“⇐”: Let Q denote an exact 3-cover for (E,S). Then extend P as displayed in
Figure 7.7. More precisely, within V p

1 every candidate si with Si ∈ Q takes the last
position in exactly one of the |E|/3 votes. Then, the candidates make the following
points within the extension of the partial votes. Every si takes the last position in one
vote and middle positions in all other votes and thus makes exactly smax

p (si) points.
For Si ∈ Q, every candidate ti and every candidate di takes one first and one last
position, and thus, s(di) = s(ti) = α1 +(|V p| − 2) · α2 = smax

p (di) = smax
p (ti). In

the corresponding votes every element candidate is shifted once since Q is an exact
3-cover and thus is beaten by c due to Observation 2. Clearly, for Si /∈ Q, si is
beaten by c as well. It remains to consider di and ti with Si /∈ Q. Here, one has
s(di) = (|V p|−1) ·α2 < smax

p (di) and s(ti) = (|V p|−1) ·α2 < smax
p (ti). Hence, c beats

all other candidates and wins.

“⇒”: Consider an extension in which c wins. Due to smax
p (si), every candidate si

must take the last position in at least one of the votes. Since |V p
1 | = |E|/3, at most

|E|/3 candidates can take a last position in V p
1 ; denote the set of them by S′. Hence

at least |S|− |E|/3 candidates si must take the last position in v1
i . Now, we show that

for these candidates the corresponding element candidates cannot be shifted to the
right in v2

i or v3
i . Since si takes the last position in v1

i , di already makes (|V p|−1) ·α2

in the extended partial votes without v2
i . Hence, di must take the last position in

v2
i since otherwise s(di) = |V p| · α2 > smax

p (di) because α1 < 2 α2. This implies
that ei1 is not shifted and that ti takes a middle position in v2

i . Now, for ti it follows
analogously that ti must take the last position in v3

i and thus neither ei2 nor ei3

is shifted. Altogether, this means that all element candidates must be shifted by
candidates from S′. Every si ∈ S′ can shift three candidates by setting si in the last
position in v1

i and di and ti to the first positions in v2
i and v3

i , respectively. Since
there are |E| element candidates, it follows that |S′| = |E|/3 and that all si ∈ S′ must
shift disjoint sets of element candidates. Hence, S′ corresponds to an exact 3-cover
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for (E,S).

In the remainder of this subsection, we consider the case that α1 > 2 · α2. We
also give a reduction from X3C. Note that the previous proof cannot be transferred
directly and thus we give a modified construction for which it will be more laborious
to show the correctness.

Theorem 7.4. An X3C-instance I can be reduced to a Possible Winner-instance
for a scoring rule which produces a size-m-scoring vector satisfying the conditions
α1 > α2 = αm−1 > αm = 0 and α1 > 2 · α2 for m = f(I) + 2. A suitable poly-type
function f can be computed in polynomial time.

Proof. Let (E,S) denote an X3C-instance. Let k denote the size of a solution for (E,S),
that is, k := |E|/3, and t := |S|. We construct a partial profile P for which the dis-
tinguished candidate c ∈ C is a possible winner if and only if (E,S) is a yes-instance.
The set of candidates is C := S ⊎D⊎E ⊎ {c, h} with S := {si | 1 ≤ i ≤ t} (the subset
candidates) and D := {di | 1 ≤ i ≤ t}, and E (the element candidates).

Very roughly, the basic idea of the reduction is as follows. There are three subsets
of partial votes, in the first subset V p

1 one “selects” t − k subset candidates from S
that do not correspond to an exact 3-cover and in the second subset V p

2 one selects k
subset candidates that correspond to an exact 3-cover. Selecting hereby means that
a solution subset candidate gets zero points in one vote of V p

2 whereas every non-
solution candidate gets α1 points in a vote of V p

1 . Hence, a solution candidate can
make more points than a non-solution candidate in the third subset V p

3 . Thus, a
solution candidate can take a top position in V p

3 which yields a cascading effect that
makes it possible to shift the corresponding element candidates such that they do not
beat the distinguished candidate c.

Formally, the partial profile P consists of a set of partial votes V p and a set
of linear orders V l. For 1 ≤ i ≤ t, let Si = {ei1, ei2, ei3}, then the set of partial
votes V p := V p

1 ∪ V p
2 ∪ V p

3 is given by the following subsets.

V p
1 : t − k copies of the partial vote S ≻ C\(S ∪ {h}) ≻ h

V p
2 : k copies of the partial vote h ≻ C\(S ∪ {h}) ≻ S

V p
3 : for 1 ≤ i ≤ t the three partial votes wi

1: di ≻ C\{di, ei1, si} ≻ ei1

wi
2: h ≻ C\{di, ei2, h} ≻ {ei2, di}

wi
3 : h ≻ C\{di, ei3, h} ≻ {ei3, di}

Note that in wi
1, candidate si can be inserted at any position. The distinguished

candidate c makes α2 points in every partial vote from V p. Hence, according to
Lemma 7.1, we can set the linear orders of V l such that the following holds. For i =
1, . . . , t,

smax
p (si) = (|V p| − 2) · α2 + α1,

smax
p (di) = (|V p| − 2) · α2 + α1 −z

with z = α1 mod α2 if α1 < 3 α2, and z = α2, otherwise2. Note that it holds

2Note that this maximum partial score does not exactly fulfill the conditions of Lemma 7.1 if
z 6= α2. However, the construction can be easily extended to work for this case as well. More
precisely, in this case z = α1 −⌊α1 / α2⌋ · α2 and ⌊α1 / α2⌋ ≤ 3. Thus, in the construction given in
the proof of Lemma 7.1 one can add α1 and “subtract” α2 as often as required. The subtraction can
be accomplished by changing the role of the dummy “d” and di within a block.
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V p
1 : si > C\{si, h} > h ∀si with Si /∈ S′

V p
2 : h > C\{si, h} > si ∀si with Si ∈ S′

V p
3 : wi

1 di > C\{si, di} > si ∀si with Si /∈ S′

wi
2 h > C\{di, h} > di ∀si with Si /∈ S′

wi
3 h > C\{di, h} > di ∀si with Si /∈ S′

wi
1 si > C\{si, ei1} > ei1 ∀si with Si ∈ S′

wi
2 h > C\{ei2, h} > ei2 ∀si with Si ∈ S′

wi
3 h > C\{ei3, h} > ei3 ∀si with Si ∈ S′

Figure 7.8: Extension of V p for an exact 3-cover S′ ⊆ S. The middle positions are
not given explicitly since the order of the candidates is irrelevant. Extensions for
candidates which do not belong to the solution set S′ are highlighted.

that α2 ≥ z and

α1 −z ≥ 2 α2 . (7.3)

For all e ∈ E, smax
p (e) = (|V p| − 1) · α2, that is, e must have the last position in one

of the partial votes. And, smax
p (h) ≥ |V p| · α1, that is, h can beat c in no extension.

We now prove the following claim.

Claim: Candidate c is a possible winner of (V, C) if and only if (E,S) is a yes-instance
for X3C.

“⇐”: Let S′ ⊆ S denote an exact 3-cover for (E,S). Then, we extend the partial
profile as follows (Figure 7.8). If Si ∈ S′, then si is placed at the last position in one
vote of V p

2 and at a middle position in all other votes from V p
1 ∪V p

2 . If Si /∈ S′, then si is
placed at the first position in one of the votes in V p

1 and at a middle position in all other
votes from V p

1 ∪V p
2 . This is possible since there are t−k top position and k last positions

that can be taken by candidates from S in V p
1 ∪V p

2 . In V p
3 , every candidate si with Si ∈

S′ is placed at the top position and the corresponding element candidates ei2, ei3 at
the last position in the respective votes. Every candidate si with Si /∈ S′ is placed
at the last position and the corresponding element candidates ei2, ei3 are placed at a
middle position.

In the described extension, the candidates make the following points in V p. Every
candidate si ∈ S takes exactly one top position and exactly one last position in V p.
Hence s(si) = smax

p (si). For the candidates of D one has to distinguish two cases. First,
if Si /∈ S, then, s(di) = (|V p|− 3) ·α2 + α1 ≤ smax

p (di) since α2 ≥ z. Second, if Si ∈ S,
then s(di) = |V p| · α2 = (|V p| − 2) · α2 +2 α2 ≤ (|V p| − 2) · α2 + α1 −z = smax

p (di)
because of Inequality (7.3). Finally, we have to consider the candidates from E. Since
for every Si in the 3-cover, the corresponding element candidates ei1, ei2, and ei3 get
at the last position, every candidate of E takes one last and |V p| − 1 middle positions
and thus makes (|V p|−1)·α2 points. It follows that c wins in the considered extension.

“⇒”: In an extension of V in which c is the winner, every element candidate from E
must take the last position in one vote of V p. This is only possible in V p

3 since every
element candidate is already fixed at a middle position in V p

1 ∪ V p
2 . More precisely,

for every i, ei1 gets a last position if si is inserted at a middle or the top position in
the corresponding vote wi

1 and ei2/ei3 can get a last position only if di takes a middle
position in the corresponding vote wi

2/wi
3.
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To find out what this means for the other candidates, we have to go into details
here. For i = 1, . . . , t, let bi denote the “benefit”, i.e., the maximum number of element
candidates that can be put at a last position in V p

3 depending on where si is placed
in wi

1. Then, we can show the following.

Observation 3:

1. bi = 3 if si is placed in a top position in wi
1.

2. bi = 1 if si is placed in a middle position in wi
1.

3. bi = 0 if si is placed in a last position in wi
1.

To see Observation 3, note that if si is on the top position in wi
1, then di can take the

middle position in wi
2 or wi

3 since the corresponding score s(di) = |V p| ·α2 ≤ smax
p (di).

Thus, all three element candidates can be shifted to the last position. If si is not
placed on the top, but in the middle position, then ei1 is still shifted to the last
position, but di must take the last position in wi

2 or wi
3 and thus neither ei2 nor ei3

can have a last position in wi
2 or wi

3. To see this, assume that di has the top position
in wi

1 and a middle position in wi
2 or wi

3, then

s(di) ≥ |V p
1 ∪ V p

2 | · α2 +(|V p
3 | − 2) · α2 + α1 = (|V p| − 2) · α2 + α1 > smax

p (di),

a contradiction. If si is placed on the last position in wi
1, then ei1 cannot take the last

position in V p
3 , and neither can ei2 and ei3, because di takes the first position in wi

1

and gets α1 points and has to take the last position in both wi
2 and wi

3 by the same
argument as before.

In the following, we show that in an extension in which c wins, in V p
1 there must be

t− k different subset candidates si that take the top position and each of the remain-
ing k (solution) candidates of S must take one last position in V p

2 . It directly follows
by Observation 3 that for all non-solution candidates we must have that bi = 0 and
thus every solution candidate must shift the three corresponding element candidates
that must be different from the element candidates corresponding to the other solution
candidates.

For every i, let ti denote the number of top positions that si takes within V p
1

and li the number of last positions that si takes within V p
2 . Observe that the following

conditions must hold.

t∑

i=1

li = k,

t∑

i=1

ti = t − k, since every position must be taken, (7.4)

t∑

i=1

bi ≥ 3k, since there are 3k element candidates and each
one must take at least one last position.

In the following, our strategy consists of three steps:

• We first investigate the dependencies of li, ti, and bi upon each other. For that
sake, we distinguish the cases li = 0, li = 1, and li ≥ 2.
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• Second, based on these case distinctions, we can show that the case li ≥ 2 is not
possible, that is, every si can have at most one last position in V i

2 . This will
need the most technical effort and will directly imply ti ≤ 1 for all i.

• Third, we show that there is no candidate si with li = ti = 1, which will imply
that only candidates with li = 1 contribute with a positive benefit and can
place their element candidates at a last position. Since there are only k such
candidates, they must correspond to an exact 3-cover.

First step. We show some dependencies of li, ti, and bi by systematically enumerating
all possible cases. (In the argumentation that follows the case distinction we are only
interested in upper bounds of bi. Hence, we omit to show lower bounds.)

Case I: li = 0 a) if ti = 0, then bi ≤ 1,
b) if ti = 1, then bi = 0,
c) ti ≥ 2 is not possible.

Proof of Case I:
Ia) (li = ti = 0): Assume bi = 3, i.e., si is on the top position in wi

1 due to Observa-
tion 3. Then s(si) = (|V p| − 1)α2 + α1 > smax

p (si), a contradiction, hence bi ≤ 1.

Ib) (li = 0, ti = 1): Assume bi = 1, i.e., si is on a middle position in wi
1 due to Obser-

vation 3. Then s(si) = (|V p| − 1)α2 + α1 > smax
p (si), a contradiction, hence bi = 0.

Ic) (li = 0, ti ≥ 2): Assume si takes the last position in wi
1, that is, si makes as few

points as possible within this case. Then,

s(si) = (|V p| − ti − 1)α2 +ti α1

> (|V p| − ti − 1 + 2(ti − 1))α2 + α1

> smax
p (si),

a contradiction, hence this case is not possible.

Case II: li = 1 a) if ti = 0, then bi ≤ 3,
b) if ti = 1, then bi ≤ 1,
c) ti ≥ 2 is not possible.

Proof of Case II:
IIa) (li = 1, ti = 0), trivial upper bound.
IIb) (li = ti = 1) Assume bi = 3, i.e., si is on the top position in wi

1 due to Observa-
tion 3. Then s(si) = (|V p| − 3)α2 +2 α1 > smax

p (si), a contradiction, hence bi ≤ 1.

IIc) (li = 1, ti ≥ 2): Even if si takes the last position in wi
1 one has

s(si) = (|V p| − ti − 2)α2 +ti α1

> (|V p| − ti − 2 + 2(ti − 1))α2 + α1

= (|V p| + ti − 4)α2 + α1

≥ smax
p (si),

a contradiction, hence this case is not possible.

Case III: li ≥ 2 a) if ti = li, then bi = 0,
b) if ti = li − 1, then bi ≤ 1,
c) if ti ≤ li − 2, then bi ≤ 3,
d) ti > li is not possible.
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Proof of Case III:
IIIa) (li ≥ 2, ti = li): Assume bi = 1, i.e., si is on a middle position in wi

1 due to
Observation 3. Then

s(si) = (|V p| − ti − li)α2 +ti α1

= (|V p| − 2ti)α2 +ti α1

> (|V p| − 2ti + 2(ti − 1))α2 + α1

= (|V p| − 2)α2 + α1

= smax
p (si),

a contradiction, hence bi = 0.
IIIb) (li ≥ 2, ti = li − 1): Assume bi = 3, i.e., si is on the top position in wi

1 due to
Observation 3, then

s(si) = (|V p| − ti − li − 1)α2 +(ti + 1)α1

= (|V p| − 2ti − 2)α2 +(ti + 1)α1

> (|V p| − 2ti − 2 + 2ti)α2 + α1

= (|V p| − 2)α2 + α1

= smax
p (si),

a contradiction, hence bi ≤ 1.
IIIc) (li ≥ 2, ti ≤ li − 2): trivial upper bound.
IIId) (li ≥ 2, ti > li): Then

s(si) = (|V p| − ti − li − 1)α2 +ti α1

> (|V p| − ti − li − 1 + 2(ti − 1))α2 + α1

= (|V p| + ti − li − 3)α2 + α1

≥ smax
p (si),

a contradiction, hence this case is not possible.

Second step. Using the previous case distinctions, we show that no subset candi-
date si can take more than one last position in V p

2 . For this, without loss of generality,
we assume that the candidates si are sorted in decreasing order according to their cor-
responding li, i.e.,

s1, . . . , sj︸ ︷︷ ︸
li≥2

, sj+1, . . . , sr︸ ︷︷ ︸
li=1

, sr+1, . . . , st︸ ︷︷ ︸
li=0

.

Claim 1 : In an extension in which c wins, it holds that li ≤ 1 for all i.

To prove Claim 1, we show that j = 0. More specifically, we prove that j > 0 implies
that the total benefit B :=

∑t
i=1 bi is less than 3k. This means that not all 3k element

candidates can take a last position and thus c cannot win.
Assume that j > 0. We start to show how to distribute the last and the first

positions of V p
1 and V p

2 in order to maximize B. For that sake, let Tj :=
∑j

i=1 ti
denote the number of top positions that were taken by the first j candidates s1, . . . , sj.
Now, we consider the remaining indices i ∈ {j + 1, . . . , t}. Since for all of them li ≤ 1,
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it must also hold ti ≤ 1 (see Case I and Case II). Thus and because of Equation (7.4),
there must be at least t − k − Tj candidates from sj+1, . . . , st with ti = 1. For both
remaining cases (li = 1 and li = 0), the benefit bi is greater for the case ti = 0 than it
is for the case ti = 1 (cf. Case I and Case II). Hence, to maximize the total benefit B,
it is desirable to minimize the number of candidates having ti = 1. Since there are t−j
indices greater than j and ti must be equal to one for at least t− k−Tj indices, there
are at most t − j − (t − k − Tj) = k + Tj − j indices with ti = 0 (Observation 4).
Furthermore, for every index from {j + 1, . . . , sr}, by setting ti to zero or one, one
can “choose” between bi = 1 and bi = 3 (Case II). For the remaining indices, one can
choose between bi = 0 and bi = 1 by setting ti to zero or one (Case I). We show by
contradiction that choosing Case IIa (which results in bi = 3) as often as possible is
the way to maximize B:

Assume that Case IIa holds, that is li = 1 and ti = 0, is not chosen as often
as possible. Then, first, there must be an index i ∈ {j + 1, . . . , r} with ti = 1 and
hence with bi = 1 (Case IIb). Second, there must be an index x > r with tx = 0 and
hence bx = 1 (Case Ia). Then setting ti = 1 and tx = 0 does not violate Equation (7.4)
and has the following effect.

• bi is increased by 2 (from 1 to 3),

• bx is decreased by 1 (from 1 to 0).

Thus, B =
∑t

i=1 bi was not maximal.

Now, we have argued that to maximize B, one has to choose Case IIa as often as
possible (Observation 5). Using this, we can compute the maximal value maxB of B
(showing that is must be less than 3k). For that sake, we first consider the benefit

coming from the first j candidates s1, . . . , sj , which we denote by Bj :=
∑j

i=1 bi.
Let B0

j denote the set of indices i ∈ {1, . . . , j} with bi = 0, let B1
j denote the set of

indices i ∈ {1, . . . , j} with bi = 1, and let B3
j denote the set of indices i ∈ {1, . . . , j}

with bi = 3. Then, Case III directly gives the following bound for the number of top
positions assumed by the first j candidates.

Tj ≤
∑

i∈B0
j

li +
∑

i∈B1
j

(li − 1) +
∑

i∈B3
j

(li − 2) =

j∑

i=1

li − |B1
j | − 2|B3

j |, (7.5)

which will be needed in the following.

Due to the previous discussion we know that in the remaining positions, we have to
choose ti = 0 for k+Tj − j indices (cf. Observation 4) and one should choose Case IIa,
that is, li = 1 and ti = 0, as often as possible (cf. Observation 5). Clearly, li = 1

must be chosen k − ∑j
i=1 li times whereas there are k + Tj − j indices with ti = 0.

Hence, to compute a total upper bound on B, we have to distinguish two cases: First,
k − ∑j

i=1 li ≤ k + Tj − j, and, second, k − ∑j
i=1 li > k + Tj − j.
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For the first case, we obtain

maxB = |B1
j | + 3|B3

j |︸ ︷︷ ︸
Bj

+3 (k −
j∑

i=1

li)

︸ ︷︷ ︸
li=1, ti=0

+ k + Tj − j − (k −
j∑

i=1

li)

︸ ︷︷ ︸
li=0, ti=0

= |B1
j | + 3|B3

j | + 3k − 2 ·
j∑

i=1

li + Tj − j

(7.5)

≤ |B1
j | + 3|B3

j | + 3k − 2 ·
j∑

i=1

li +

j∑

i=1

li − |B1
j | − 2|B3

j | − j

= 3k −
j∑

i=1

li − j + |B3
j |

Since |B3
j | ≤ j it holds that the maximal value of B is strictly less than 3k for j ≥ 1.

Thus, at least one element candidate does not take a last position and hence beats c,
a contradiction.

For the second case, we obtain

max B = |B1
j | + 3|B3

j |︸ ︷︷ ︸
Bj

+3 (k + Tj − j)︸ ︷︷ ︸
li=1, ti=0

+ k −
j∑

i=1

li − (k + Tj − j)

︸ ︷︷ ︸
li=1, ti=1

= |B1
j | + 3|B3

j | + 3k + 2Tj − 2j −
j∑

i=1

li

(7.5)

≤ |B1
j | + 3|B3

j | + 3k +

j∑

i=1

li − |B1
j | − 2|B3

j | + Tj − 2j −
j∑

i=1

li

= 3k + |B3
j | + Tj − 2j

Furthermore, in this case it follows directly from k−∑j
i=1 li > k+Tj−j that

∑j
i=1 li+

Tj < j. For j > 0 this means that Tj < j. By definition, we have |B3
j | ≤ j, and thus

maxB is less than 3k. This completes the proof of Claim 1. We therefore have j = 0
which means li ≤ 1 for all i ∈ {1, . . . , t} and thus also ti ≤ 1 for all i (Case I and II).

Third step. We now show that there cannot be any candidate si which takes
one last position and one first position in V1 ∪ V2, i.e. we cannot have ti = li = 1 for
any si. Assume that the set of candidates Q := {si | ti = li = 1} is not empty. Then,
due to Observation 3, the maximum value of B is

maxB = 1 · |Q|︸ ︷︷ ︸
li=ti=1

+ 3 · (k − |Q|)︸ ︷︷ ︸
li=1,ti=0

+ 0︸︷︷︸
li=0,ti=1

+ 1 · |Q|︸ ︷︷ ︸
li=ti=0

= 3k − |Q|,

a contradiction. Thus, t−k many of the subset candidates si take a top position in V p
1 ,

and the remaining k subset candidates take a last position in V p
2 . Now, each of these k

candidates must place its corresponding element candidates at the last positions in V p
3 .

Since c can only be a winner if each of the 3k element candidates takes a last position
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in a vote from V p
3 and in total at most 3k element candidates can take a last position

in V p
3 , every element candidate must take exactly one last position. Thus, for i 6= j

such that si and sj take a last position in V p
2 , {ei1, ei2, ei3} and {ej1, ej2, ej3} must be

disjoint. It follows that {Si | si takes a last position in V p
2 } forms an exact 3-cover.

7.7 Putting all together

We are now ready to combine the many-one reductions from the previous sections
to one general reduction. Basically, the problem we encounter by using one specific
reduction from the previous sections is that such a reduction produces a Possible
Winner-instance with a certain number m of candidates. Thus, one needs to en-
sure that the size-m scoring vector provides a sufficient number of positions with
equal/different scores. This seems not to be possible in general. However, for every
specific instance of Exact Cover By 3-Sets or Multicolored Clique, we can
compute a number of positions with equal or different scores that is sufficient for the
corresponding reduction, and we can use the maximum of all these numbers for the
combined reduction. This is the underlying idea for the following proof.

Theorem 7.5. Possible Winner is NP-complete for a scoring rule r if there is a
constant z such that all scoring vectors produced by r for more than z candidates are
different from (0, . . . , 0), (1, 0, . . . , 0), (1, . . . , 1, 0), and (2, 1, . . . , 1, 0).

Proof. We give a reduction from X3C restricted to instances of size greater than z
to Possible Winner for r. Let I with |I| > z denote an X3C-instance. Since X3C
and MC are NP-complete, there is a polynomial-time reduction from X3C to MC.
Hence, let I ′ denote an MC-instance whose size is polynomial in |I| and which is a
yes-instance if and only if I is a yes-instance.

Let f1 denote a poly-type function to compute the number of different score values
as stated for Theorem 7.1, f ′

1 as for Theorem 7.2, f ′
2 as for Lemma 7.3, f2 as for

Lemma 7.4, f3 as for Lemma 7.5, f4 as for Lemma 7.6, and f5 as for Theorem 7.4.
Define x := max{f1(I), f ′

1(I
′), f ′

2(I
′), f2(I), f3(I), f4(I), f5(I)} and consider the

scoring vector −→α of size x · (x + 1) produced by r. Then we show the following.

Claim: For −→α it holds that |{i | αi > αi+1}| ≥ x or that αi = · · · = αi+x for some
position i.

The correctness of the claim can be seen as follows. First, assume that −→α does not
fulfill αi > αj for x different positions i. Then consider x · (x + 1) indices of −→α . Since
they can have at most x different score values, there must be a single score value that
is assigned to at least x + 1 indices, that is, there is an index i with αi = · · · = αi+x.
Second, if there is no index i such that αi = · · · = αi+x for a position i, then again
consider x · (x + 1) indices of −→α . Since each score value can be assumed at most x
times, there must be at least x different score values.

Now, due to the Claim, we can distinguish two main cases. If −→α has at least x
different score values, then we apply the X3C-reduction given in Theorem 7.1. Other-
wise, we have an unbounded number of equal score values. In this case we distinguish
the subcases given in Table 7.3. For all these subcases, there are many-one reductions
used in the corresponding lemmata/theorems. Hence, it remains to show that each
scoring vector can be handled by at least one of these cases. Clearly, −→α must have
the form αi−x = · · · = αi−1 > αi for an i ≤ m− 1 (Case I), or αi > αi+1 = · · · = αi+x
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Table 7.3: Subcases for scoring rules having an unbounded number of equal score values.

Case I ∃i ≤ m − 1 s.t. αi−x = · · · = αi−1 > αi Theorem 7.2
Case IIa ∃i ≥ 2, ∃j < i s.t. αi > αi+1 = · · · = αi+x and αj < 2 αj+1 Lemma 7.3
Case IIb ∃i ≥ 2, ∃j < i s.t. αi > αi+1 = · · · = αi+x and αj ≥ 3 αi Lemma 7.4
Case IIc (α1, α2, 0, . . . , 0) and 3 α2 > α1 > 2 α2 Lemma 7.5
Case IId (2, 1, 0, . . . , 0) Lemma 7.6
Case III α1 > α2 = αm−1 > αm = 0 and α1 6= 2 · α2 Theorem 7.4

for i ≥ 2 (Case II), or α1 > α2 = αm−1 > αm = 0 and α1 6= 2 · α2 (Case III). For
Case I and Case III, the existence of many-one reductions follows immediately from
the corresponding Theorems 7.2 and 7.4. Thus, it remains to discuss Case II, the case
that −→α has the form αi > αi+1 = · · · = αi+x for i ≥ 2.

To this end, we start with the case i > 2. Clearly, there must be at least three scor-
ing values which are not equal to zero, namely, αi−2, αi−1, and αi. If one has αi−1 <
2 αi or αi−2 < 2 αi−1, then NP-hardness follows directly from Lemma 7.3. Otherwise,
one must have αi−1 ≥ 2 αi and αi−2 ≥ 2 αi−1. Hence, it follows that αi−2 ≥ 4 αi and
NP-hardness follows directly from Lemma 7.4. It remains to consider all scoring rules
of type (α1, α2, 0, . . . , 0). Here, we can distinguish the following four cases:

• α1 < 2 α2: NP-hardness follows from Lemma 7.3,

• α1 = 2 α2: NP-hardness follows from Lemma 7.6,

• 2 α2 < α1 < 3 α2: NP-hardness follows from Lemma 7.5, and

• α1 ≥ 3 α2: NP-hardness follows from Lemma 7.4.

Since the membership in NP is obvious, the main theorem follows.

Pure scoring rules. Based on all previous considerations and [14, Theorem 2], we
arrive at a full dichotomy for pure scoring rules. More precisely, we can state the
following.

Theorem 7.6. Possible Winner is solvable in polynomial time for plurality and
veto and NP-complete for all other non-trivial pure scoring rules.

Proof. Plurality and veto are polynomial-time solvable due to Proposition 7.1. Having
any non-trivial scoring vector different from (1, 0, . . . , 0), (1, . . . , 1, 0), and (2, 1, . . . , 1, 0)
for m candidates, it is not possible to obtain a scoring vector of one of these three
types (or (0, . . . , 0)) for m′ > m by inserting scoring values. Hence, since we only
consider pure scoring rules, the scoring rule does not produce a scoring vector of type
plurality, veto, (0, . . . , 0), or (2, 1, . . . , 1, 0) for all m ≥ z. Then the statement follows
by Theorem 7.5 and [14, Theorem 2].

“Non-pure” scoring rules. We end this section with a brief informal discussion
about the problem of classifying non-pure scoring rules in general. As stated in The-
orem 7.5, we can show NP-hardness for non-pure scoring rules if (starting from a
constant) all produced scoring vectors are “difficult”. Clearly, it is possible to extend
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the range of NP-hardness results to scoring rules that produce only few “easy” vectors;
for example, having a difficult vector for all odd numbers of candidates and an easy
vector for all even ones. However, this is not possible in general. Roughly speaking,
if the underlying difficult part of the language becomes too sparse, then there can-
not be a many-one reduction from an NP-complete problem since the densities of the
problems are not polynomially related (see e.g. [176]). Note that this situation does
not appear for the dichotomy result from Hemaspaandra and Hemaspaandra [129] for
Manipulation for weighted voters. The intuitive reason for this is that their reduc-
tions for the NP-hardness in the case of weighted voters already hold for a constant
number of candidates (and all scoring rules except plurality are NP-hard in this case).

7.8 Conclusion

We settled the computational complexity for Possible Winner for almost all pure
scoring rules. More precisely, the only case that was left open regards the scoring rule
defined by the scoring vector (2, 1, . . . , 1, 0), whereas for all other rules except plurality
and veto, we obtained NP-completeness results. In follow-up work, Baumeister and
Rothe [14] completed the dichotomy by showing the NP-completeness of Possible
Winner for the case of (2, 1, . . . , 1, 0).

Dichotomy results are particularly desirable since the provide a full classification.
Our result also provides an easy-to-check condition to distinguish between hard and
easy cases for a whole class of problems. In our case, somewhat surprisingly, the Pos-
sible Winner problems turned out to be NP-complete even for very simple scoring
rules like 2-approval. This motivates a study of further parameterizations as provided
in the following two chapters. More specifically, Chapter 8 is concerned with sev-
eral single parameterizations for several scoring rules whereas in Chapter 9 we obtain
fixed-parameter tractability with respect to combined parameterizations for Possible
Winner under the k-approval protocol.





Chapter 8
A parameterized complexity study
for scoring rules

The Possible Winner problem asks whether some distinguished candidate may be-
come the winner of an election when the given incomplete votes are extended into
complete ones in a favorable way. As discussed in the previous chapter, Possible
Winner is NP-complete for all pure scoring rules except plurality and veto. This
motivates a broader algorithmic study of Possible Winner by pursuing a multivari-
ate complexity analysis to identify tractable scenarios. We investigate how different
parameterizations influence the computational complexity of Possible Winner for
scoring rules. For some parameterizations we obtain results holding for all scoring
rules whereas for other parameterizations, we focus on specific scoring rules like Borda
and k-approval. Besides investigating the computational complexity for the standard
voting parameterizations “number of candidates” and “number of votes”, we introduce
problem-specific parameterizations measuring the amount of incompleteness. For def-
initions regarding Possible Winner, we refer to Section 7.1. In the following, we
briefly discuss related work and give an overview of our results for the considered
parameterizations.

Number of candidates. Since the number of candidates is often small compared
to the number of votes, for example, in political elections studying how a bounded
number of candidates influences the computational complexity is an important task.
Walsh [193] showed that Possible Winner can be solved in polynomial time when the
number of candidates is constant. However, the given algorithm does not imply fixed-
parameter tractability with respect to the “number of candidates”. We show that for
all scoring rules, Possible Winner is fixed-parameter tractable with respect to the
“number of candidates”. The result is achieved by using integer linear programming
in combination with a result of Lenstra (see Subsection 1.3.3). This technique has
also proven useful to obtain fixed-parameter tractability results with respect to the
number of candidates for control in elections [99]. Hence, our result can be considered
as a further example for the applicability of this method to voting.

For Manipulation, which is the special case of Possible Winner where the
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input consists of a set of linear votes and a set of completely unordered votes, there is
a broad study of the computational complexity in case of a bounded number of can-
didates and weighted votes [65]. Regarding scoring rules, this study shows that, for
Borda and veto, Manipulation is solvable in polynomial time for up to two candidates
and NP-complete for at least three candidates. In independent work Hemaspaandra
and Hemaspaandra [129] obtained a full dichotomy which basically proves NP-hardness
for all scoring rules except plurality. For plurality Manipulation is solvable in poly-
nomial time for any number of candidates [65, 129]. Since the corresponding results
do not imply NP-hardness for the unweighted voter case, the NP-hardness does not
carry over to the Possible Winner problem considered in this work. Another recent
work also makes use of scenarios in which the number of candidates is bounded: Xia
et al. [199] state a polynomial-time algorithm with a “certain performance guarantee”
for the optimization variant of Manipulation (as defined by Zuckerman et al. [204]).
More specifically, for scoring rules, Xia et al. provide an algorithm such that the num-
ber of “additionally” needed manipulators is bounded by the number of candidates of
the input instance.

Number of votes. Situations with few voters and a large number of candidates
comprise for example meta-search or the selection of employees by agents in a human
resource department. Since some of the voters might already provide linear votes, we
usually partition the set of votes into proper partial and into linear votes. This directly
leads to the three parameterizations “number of partial votes”, “number of linear
votes”, and “total number of votes”. Clearly, parameterized hardness results with
respect to the “total number of votes” also hold for the two other parameterizations,
whereas algorithmic results with respect to the “number of partial votes” carry over
to the “number of total votes”. We consider the parameterization by the “number of
partial votes” as particularly interesting since intuitively it captures the “hard” part
of an instance. This is also motivated by studies in the literature for Manipulation.
In the Manipulation problem an instance consists of a set of linear votes and a set of
completely unordered votes, called coalition. The size of the coalition is the number of
partial votes. Constructive manipulation with bounded coalition size has been studied
in several works, for example, [102, 200, 204]. Regarding scoring rules and unweighted
voters, Xia et al. [199] showed NP-hardness for a scoring rule of very specific type for
coalition size two.

We settle the computational complexity of Possible Winner for two specific
voting systems in case of a constant number of votes. More specifically, we show that
Possible Winner for k-approval is NP-hard for an instance consisting of at least
two partial votes (and no linear votes) and Possible Winner for Borda is NP-hard
for three partial votes and three linear votes. The corresponding many-one reductions
are the technical main contributions of this chapter. Note that in the Chapter 9 we
further refine the study of the parameter “number of partial votes” for k-approval:
We investigate the combined parameter “number of partial votes” and k as well as
the combined parameter “number of partial votes” and m − k with m denoting the
number of candidates.

Parameters measuring incompleteness. Measures for the amount of incomplete-
ness of an instance are meaningful problem-specific parameterizations for Possible
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Winner. Two natural parameterizations in this regard are the “number of undeter-
mined pairs per vote” and the “total number of undetermined pairs”. Regarding the
first parameter, Xia and Conitzer [194] showed NP-hardness for constant parameter
values for a broad class of scoring rules including Borda (see Section 7.5 for more
details). The given many-one reductions only work for scoring rules with at least four
different scoring values and thus do not apply to k-approval. We extend these results
by providing an additional NP-hardness result for k-approval for a constant number
of undetermined pairs per vote. These results imply that solely restricting the amount
of incompleteness per vote does not decrease the computational complexity in terms
of parameterized algorithmics for the considered scoring rules.

On the positive side, we develop fixed-parameter algorithms with respect to the
parameter u denoting the “total number of undetermined candidate pairs”. More
specifically, we give a simple search tree algorithm of size at most 2u working for all
scoring rules and show how to improve the search tree size for a class of scoring rules
including Borda and k-approval. Herein, the crucial part is the identification of a
polynomial-time solvable special case. The positive results for the parameter “total
number of undetermined candidate pairs” give evidence that a restricted amount of
incompleteness can allow for efficient algorithms. Since in case of complete information
the determination of a (possible) winner for scoring rules is trivial, this parameter can
be understood as measuring the distance from triviality [124, 171, 172].1 However, a
drawback of the parameterization is that the parameter values are likely to be huge for
many instances. Hence, at the end of this chapter, we introduce and discuss further
parameterizations leading to challenges for future work.

8.1 Number of candidates

To assess the parameterized complexity with respect to the parameter “number of
candidates”, we employ Lenstra’s famous algorithm for bounded-variable-cardinality
integer linear programming (see Subsection 1.3.3). Lenstra’s result says that it is
fixed-parameter tractable with respect to the number of variables to check whether all
inequalities of an integer linear program can be fulfilled at the same time. By providing
an integer linear program formulation where the number of variables is bounded by a
function only depending on the number of candidates, we obtain the following.

Theorem 8.1. For all scoring rules, Possible Winner is fixed-parameter tractable
with respect to the parameter “number of candidates”.

Proof. Let (C, P, c) be an input instance of Possible Winner with m := |C|. Con-
sider a partial vote vi ∈ P . Since there are m! different linear orders on C, there are
at most m! possible linear orders that extend vi. In case that vi is already a linear
order, there is exactly one extension, that is, vi itself. In general, the same partial vote
can occur more than once in P and each occurrence may be extended in a different
way. Let v′1, . . . , v

′
q be the different partial votes in P and let ni denote the number of

occurrences of v′i in P . For each v′i, i = 1, . . . , q, let v1
i , . . . , vri

i be all possible linear
orders that extend v′i with ri denoting the number of linear orders extending vi. Fi-

nally, let s(d, vj
i ) denote the score that is assigned by the scoring rule to candidate d

in the linear vote vj
i .

1In this framework triviality refers to polynomial-time solvability.
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Now, we can describe the integer linear program. Our set of variables is {xij |
i ∈ {1, . . . , q} and j ∈ {1, . . . , ri}}. Intuitively, xij stands for the number of partial

votes of type v′i that are completed into the linear order vj
i . We formulate Possible

Winner as the feasibility problem for the following integer linear (in)equations:

∀i ∈ {1, . . . , q} :

ri∑

j=1

xij = ni (8.1)

∀d ∈ C \ {c} :

q∑

i=1

ri∑

j=1

xij · (s(c, vj
i ) − s(d, vj

i )) > 0 (8.2)

The correctness can be seen as follows. The constraints (8.1) make sure that for every
different partial vote v′i the number of occurrences of v′i in P equals the number of
extensions. The constraints (8.2) model that the distinguished candidate c has to
defeat all other candidates. Altogether, this implies that c is a possible winner if and
only if the above constraints are feasible.

To make use of Lenstra’s theorem, it remains to show that the number of variables
is bounded by a function only depending on the number of candidates. First, we give
a simple bound on the number of different partial votes and thus on q. Every partial
vote v can be described by a set of ordered pairs of candidates, that is, (c′, c′′) is
part of the set describing v if and only if c′ ≻ c′′ in v. Since there are m(m − 1)
ordered pairs and every partial vote is described by a proper subset of them, there
are less than 2m(m−1) types of partial votes. Second, ri is clearly at most m! (in case
that one considers all extensions of an “empty” partial vote). Hence, there are less
than 2m(m−1)m! variables used in our formulation, making Lenstra’s result applicable.

Replacing “>” by “≥” in (8.2) only requires that c must make as least as much
points as every other candidates and hence directly gives the analogous result for the
co-winner case.

8.2 Number of votes

We investigate how the number of votes influences the computational complexity of
Possible Winner for k-approval and Borda. Our main results are NP-hardness
proofs for a constant total number of votes for both scoring rules. Before giving the
corresponding many-one reduction, we make the following observation which will be
used to establish a small dichotomy result in the case of k-approval.

Observation 8.1. For every scoring rule, Possible Winner is solvable in polyno-
mial time if the input instance contains at most one partial vote and an arbitrary
number of linear votes.

To see Observation 8.1, an algorithm deciding about the existence of a winning
extension for the case of one partial vote can be sketched as follows. Basically, the
algorithm tries out all possibilities to place c in the partial vote and then for each
possibility checks whether filling the remaining positions from left to right by the
remaining candidates can be done without beating c. In contrast, for two partial
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votes the situation seems to become much more complicated because then different
placements of a candidate in the partial votes might lead to the same score.

8.2.1 k-approval

We show that Possible Winner for k-approval becomes NP-complete for input in-
stances consisting of at least two partial votes. Herein, we assume that k can be chosen
appropriately within the given many-one reductions. The case that k as well as the
number of votes are bounded will be considered in Chapter 9. The following NP-
hardness results rely on many-one reductions from the NP-complete Independent
Set (IS) problem. Given an undirected graph G = (U, E) and a positive integer t, it
asks whether there is a size-t vertex subset U ′ ⊆ U such that there is no edge between
any two vertices of U ′.

Theorem 8.2. For k-approval, Possible Winner is NP-complete for a partial profile
that consists of at least two partial votes when k is part of the input.

Proof. The NP-membership of Possible Winner for k-approval is obvious. To show
the NP-hardness we give a many-one reduction from Independent Set. Consider
an IS-instance (G = (U, E), t) with n-vertex set U = {u1, . . . , un}2. We assume
that t < (n − 1)/2. This case clearly still leads to NP-completeness. We construct a
partial profile P over a set C of candidates in which the distinguished candidate c ∈ C
is a possible unique winner according to k-approval with

k := n +

(
n

2

)
+ |E| − tn +

(
t

2

)
+ 1

if and only if G has an independent set of size at most t. Observe that the assump-
tion t < (n − 1)/2 implies that k > 0, and thus k-approval is well-defined. We first
give a construction to show the hardness for a 2-voter profile and then explain how to
extend this construction to work for an arbitrary fixed number of votes. The set of
candidates is

C := {c} ⊎ CV ⊎ CE ⊎ D

with

• one candidate for every vertex, that is, CV := {ci | vi ∈ V }, and

• candidates related to unordered pairs of vertices, that is, for i, j ∈ {1, . . . , n},
i 6= j,
if {vi, vj} ∈ E, then there are two candidates e{i,j} and e′{i,j} in CE ;

otherwise, there is one candidate e{i,j} in CE .3

• The set D consists of dummy candidates with |D| := n− t+
(
n
2

)
+ |E|− tn+

(
t
2

)
.

Since t < (n − 1)/2, this gives a positive integer.

The basic idea to construct the two partial votes (given in Figure 8.1) can be
described as follows. The distinguished candidate is fixed such that it makes two

2Since the number of votes is constant, we use the variable n for the number of vertices.
3Note that e{i,j} = e{j,i} and e′

{i,j}
= e′

{j,i}
.
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v1 : c ≻ D ≻ CV ≻ CE .
v2 : c ≻ CV ∪ CE ≻ D, and, for 1 ≤ i < j ≤ n,

if {vi, vj} ∈ E, then ci ≻ e{i,j} and cj ≻ e′{i,j};

otherwise, ci ≻ e{i,j} and cj ≻ e{i,j}.

Figure 8.1: Partial votes of a Possible Winner instance resulting from a many-one
reduction from Independent Set.

points in total. Thus, in a winning extension every other candidate must be assigned
to a zero-position in at least one of the two votes. The first vote is used to select a
set C′

V of t “vertex candidates”. More specifically, we discuss below that k is adjusted
such that exactly t vertex candidates from CV (forming C′

V ) must be assigned to
one-positions whereas the remaining candidates from CV and all candidates from CE

must be assigned to zero-positions and thus are beaten by c. It follows that the t
candidates from C′

V must take a zero-position in the second vote. The second vote is
constructed such that assigning a candidate from CV to a zero-position implies that
n− 1 candidates from CE are shifted to a zero-position (this is redundant in the sense
that these candidates are already beaten by c since they assume zero-positions in the
first vote). Now, the crucial part is that in a winning extension the t candidates
from C′

V cannot shift pairwisely disjoint subsets of candidates from CE since then
the number of zero-positions would not be sufficiently large and a candidate from C′

V

would be assigned to a one-position and thus would not be beaten by c. Clearly,
if two candidates from C′

V shift a “common” candidate from CE , then this “saves”
one zero-position. The construction of the second vote ensures that two candidates
from CV can shift a common candidate from CE to a zero-position only if there is no
edge between them. Due to an appropriate bound on the number of zero-positions,
this enforces that in a winning extension every pair of candidates from C′

V must
shift a common candidate from CE and thus there cannot be an edge between the
corresponding vertices in the Independent Set-instance.

Claim: There is a winning extension of P if and only if G has a independent set of
size t.

“⇐”: Let CI
V ⊂ CV denote the subset of candidates corresponding to an independent

set of G. Then, the “edge candidates” that must be shifted to the right by the
candidates from CI

V are

CI
E :={e{i,j} ∈ CE | ci ∈ CI

V and {vi, vj} /∈ E} (8.3)

∪{e{i,j} ∈ CE | ci ∈ CI
V , i < j and {vi, vj} ∈ E} (8.4)

∪{e′{i,j} ∈ CE | ci ∈ CI
V , i > j and {vi, vj} ∈ E}. (8.5)

Before giving a winning extension of the partial votes, we verify that

|CI
E | = t · (n − 1) −

(
t

2

)
. (8.6)

For every candidate ci ∈ CI
V , CI

E contains either the candidate e{i,j} or the candi-
date e′{i,j}, for all j ∈ {1, . . . , n} \ {i}, leading to the term t · (n − 1). From this

term we need to subtract the number of candidates that are counted twice. Since CI
V
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v1 : c > D > CI
V > CV \ CI

V > CE

v2 : c > CV \ CI
V > CE \ CI

E > CI
V > CI

E > D

Figure 8.2: Winning extension of the partial votes with CI
V denoting the candidates

corresponding to an independent set and CI
E ⊆ CE the candidates shifted to the right

by candidates from CI
V . The zero-positions are highlighted.

corresponds to an independent set, there are no edges between any pair of vertices
corresponding to {ci, cj} ⊂ C′

V and thus there is no candidate e′ij . Hence, for ev-
ery unordered pair of candidates {ci, cj} ⊂ C′

V , the candidate e{i,j} is counted twice,

giving the term
(

t
2

)
.

Extend the partial votes as described in Figure 8.2. To see that c wins in this
extension, we verify that the highlighted positions are the zero-positions. To this
end, we first compute the number of zero-positions per vote which is the number of
candidates minus k and thus

1 + |CV | + |CE | + |D| − k =
1 + n +

(
n
2

)
+ |E| + n − t +

(
n
2

)
+ |E| − tn +

(
t
2

)
− (n +

(
n
2

)
+ |E| − tn +

(
t
2

)
+ 1) =

(
n

2

)
+ |E| + n − t. (8.7)

In v1, the number of candidates taking the highlighted positions is |CE |+|CV |−|CI
V | =(

n
2

)
+ |E| + n − t. In v2, using Equation (8.6) one can verify that

|CI
V | + |CI

E | + |D| = t + t(n − 1) −
(

t

2

)
+ n − t +

(
n

2

)
+ |E| − tn +

(
t

2

)

=

(
n

2

)
+ |E| + n − t.

Since every candidate except c takes a highlighted position and thus a zero-position
in at least one vote, it directly follows that c wins.

“⇒”: Consider an extension in which c wins. By construction, in every extension of v1,
the last |CE | =

(
n
2

)
+ |E| zero-positions must be assumed by the candidates from CE .

Due to Equation (8.7) there remain n− t zero-positions which can only be assigned to
candidates from CV . Let C⋆

V be the set of the remaining t candidates from CV with
a one-position in v1. Let C⋆

E ⊆ CE be defined analogously to CI
E by replacing CI

V

through C⋆
V in (8.5). In a winning extension, all candidates from C⋆

V must assume a
zero-position in v2. This shifts all candidates from C⋆

E to zero-positions in v2 as well.
Since all candidates from D must assume zero-positions in every extension of v2, it is
easy to verify that there are exactly tn−

(
t
2

)
zero-positions left over for the candidates

from C⋆
V and C⋆

E (and c beats all candidates of D). In addition, a candidate from C⋆
E

can be shifted to a zero-position by at most two candidates from C⋆
V . Hence, there

must be
(

t
2

)
“shared” candidates in C′

E , that is, candidates e{i,j} with ci ≻ e{i,j}
and cj ≻ e{i,j} in the partial vote v2. Since |C⋆

V | = t, there are
(

t
2

)
unordered pairs

of candidates and each pair {ci, cj} can share the candidate eij only if there is no
edge between vi and vj in G (otherwise, the one of them with smaller index would
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additionally shift e′{i,j}). Hence the vertices corresponding to C⋆
V form an independent

set in G. This finishes the proof of the Claim.

Finally, let us consider the problem for s > 2 votes. To show NP-hardness, one
pads the construction for two votes as follows. Add (s− 2) · k new dummy candidates
and fix them at the first k positions in s−2 of the votes such that every new candidate
takes a one-position exactly once. The remaining two votes are constructed as in the
2-voter profile (given in Figure 8.1) and the new candidates are appended at the end.
Clearly, every new candidate makes exactly one point and thus is always beaten by c.
All old candidates make zero points in the newly added votes and thus the situation in
the two “old” votes is still the same. Hence, c is a possible winner in the new s-voter
profile if and only if it is a possible winner in the 2-voter profile.

The construction given in the above NP-hardness proof can be adapted in a
straightforward way to work for the co-winner case. Finally, combining Observa-
tion 8.1 with Theorem 8.2 one directly obtains the following dichotomy result.

Corollary 8.1. For k-approval, Possible Winner with k being part of the input is
NP-complete if the input profile consists of at least two partial votes and it is solvable
in polynomial time otherwise.

8.2.2 Borda

After considering Possible Winner for k-approval and a constant number of votes,
we now investigate the same setting for the Borda rule. We first show that Possible
Winner for Borda is NP-complete for a profile in which the number of partial votes
is at least three making use of an unbounded number of linear votes. After this, we
discuss how to obtain NP-hardness on profiles for a constant number of linear votes
for specific constant numbers of partial votes. The results of this section are based on
a many-one reduction from a special case of the 3-Partition problem.

3-Partition
Given: A multi-set A = {a1, . . . , an} of positive integers and B := (3/n) ·∑

ai∈A ai.
Question: Is there a partition of A into size-3 subsets A1, . . . , An/3 such
that

∑
ai∈Aj

ai = B for each j ∈ {1, . . . , n/3}?

Note that in this subsection n does not denote the number of votes (which is
constant) but, following the literature, the number of integers from the 3-Partition
instance. The 3-Partition problem is strongly NP-complete [118]. This implies that
the NP-hardness still holds when the integers of A are polynomially bounded in n.
We denote the special case that each integer ai ∈ A must be a multiple of n as 3-n-
Partition. The 3-n-Partition problem is strongly NP-hard since every 3-Partition
instance can be easily reduced to a 3-n-Partition instance by multiplying all input
integers with n. Now, we provide the main result of this section.

Theorem 8.3. For Borda, Possible Winner is NP-complete for an instance with
partial profile V l ∪ V p if |V p| ≥ 3 with V l being the set of linear and V p being the set
of partial votes.
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Proof. Let A = {a1, . . . , an} denote a 3-n-Partition instance with B := (3/n) ·∑
ai∈A ai. To ease the presentation, we first give a construction for the case that

ai < ai+1 for i = 1, . . . , n − 1 and a1 = n and after this discuss the general case. We
construct a partial profile P = V p ∪ V l with |V p| = 3 over a set C of candidates in
which the distinguished candidate c ∈ C is a possible unique winner if and only if A
is a yes-instance for 3-n-Partition. The set of candidates is

C := {c} ⊎ E ⊎ T ⊎ D,

with one candidate for every member of A, that is, E := {ei | ai ∈ A}, candi-
dates representing the subsets resulting from the partition into 3-sets, that is, T :=
{t1, . . . , tn/3}, and a set of dummy candidates D :=

⊎n
i=1 Di only needed to “fill”

positions and further specified in the following.
The set of partial votes V p consists of three identical partial votes v1, v2, and v3.

Each of them is defined as follows:

c ≻ T and c ≻ D1 ≻ e1 ≻ D2 ≻ · · · ≻ Di ≻ ei ≻ · · · ≻ Dn ≻ en

with |D1| = a1 − 1 and |Di| = ai − ai−1 − 1 for i ∈ {2, . . . , n}. This definition fixes
the number of dummy candidates; more precisely,

|D| = |D1| + |D2| + · · · + |Dn| = a1 − 1 +

n∑

i=2

(ai − ai−1 − 1) = an − n.

Thus, the total number of candidates is

m = 1 + |E| + |T | + |D| = 1 + n + n/3 + an − n = an + n/3 + 1.

Since 3-n-Partition is strongly NP-complete, we can assume that an and, thus, m
is polynomial in n. Having a closer look at the partial votes, for every candidate ei

corresponding to an integer ai from A, the following holds within every partial vote:

|{s ∈ C \ T : s ≻ ei}| = a1 − 1 +

i∑

j=2

(aj − aj−1 − 1) + i − 1 + 1 = ai. (8.8)

Furthermore, the position and thus the total score of the distinguished candidate c
is already fixed. In contrast, every subset candidate tj ∈ T can be “inserted” at any
position behind c in the three partial votes. The basic idea of this construction is that
the “choice” of the positions for tj in the three partial orders corresponds to the choice
of three numbers from A into the corresponding subset Aj . For example, inserting tj
directly before the candidate ei in one of the partial votes means that ai ∈ Aj . To
this end, our goal is to ensure the following two properties for every winning extension
of P :

• Every number of A is selected exactly once, that is, for every candidate ei ∈
E\{e1} there is exactly one candidate tj ∈ T with “ei−1 > · · · > tj > · · · > ei”
within one of the three extended votes from V p, and one candidate tj ∈ T with
“tj > · · · > e1”.

• For every tj ∈ T , the sum corresponding to the three “number candidates”
from E selected by tj is B.
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As argued in the remainder of the proof, these two points can be realized by set-
ting the linear orders V l such that the following maximum partial scores hold (us-
ing Lemma 7.1).

• smax
p (ei) = 3(m − 1) − 3ai − i for all ei ∈ E,

• smax
p (tj) = 3(m − 1) − B for all tj ∈ T , and

• smax
p (d) ≥ 3(m − 1) for all d ∈ D.

This implies that a candidate d ∈ D cannot beat c in any extension. For the other
candidates, we interpret the maximum partial scores as follows. Since the maximum
amount of points a candidate can make within an extension of the partial votes is 3(m−
1), the maximum partial scores also provide the number of points a candidate must
loose to be beaten by c. More specifically, every ei ∈ E must loose at least 3ai + i
points and every tj ∈ T must loose at least B points. Herein, a candidate looses one
point for every other candidate that is placed before it in an extension of one of the
partial votes. Now, we show the following.

Claim: There is a solution for 3-n-Partition if and only if there is an extension of P
such that c wins.

“⇒”: Let {A1, . . . , An/3} with Aj = {aj1 , aj2 , aj3} denote a solution of 3-n-Partition
for A. Then, extend v1 such that “Dj1 > tj > ej1” for every j ∈ {1, . . . , n/3}, v2

such that “Dj2 > tj > ej2” for every j ∈ {1, . . . , n/3}, and v3 such that “Dj3 >
tj > ej3” for every j ∈ {1, . . . , n/3}; that is, every candidate tj is inserted directly
before the three candidates corresponding to the integers from Aj . Since all integers
from A are pairwisely distinct, this extension is unambiguous. In every partial vote, for
every ei ∈ E, there are exactly ai candidates s ∈ C\T with s ≻ ei (see Equation (8.8)).
Thus, without inserting any tj ∈ T before ei, ei looses 3ai points. For q ∈ {1, 2, 3},
let τi,q denote the number of candidates from T that are inserted before ei in the
considered extension of vq. Then, for every ei, we have τi,1 + τi,2 + τi,3 = i since for
each z ∈ {1, . . . , i} a candidate from T is inserted directly before ez in one of the
three partial votes. Thus, ei looses 3ai + i points in this extension and c beats ei. It
remains to show that c beats tj for each tj ∈ T . Since aj1 +aj2 +aj3 = B, analogously
to Equation (8.8), one can compute that the number of candidates that are “better”
than tj in the three partial votes is at least

|{s ∈ C \ T | s ≻ ej1 in v1}| +
|{s ∈ C \ T | s ≻ ej2 in v2}| +
|{s ∈ C \ T | s ≻ ej3 in v3}| = B.

It follows that within the considered extension tj makes at most 3(m−1)−B = smax
p (tj)

points and thus is beaten by c.

“⇐”: Consider a winning extension of the partial votes. As explained before without
“counting” any ti ∈ T before ei, ei “looses” 3ai points (see Equation (8.8)). Hence, in
every winning extension at least i times a candidate from T must be inserted before ei,
that is,

τi1 + τi2 + τi3 ≥ i.

We denote this as selection property (which will be crucial in the following argumenta-
tion). For every winning extension, we show the following two properties (also stated
above):
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1. For every candidate tj ∈ T selecting ej1 , ej2 , ej3 , one must have
∑3

q=1 ajq = B.

2. Every candidate from E, that is, every number of A, is selected exactly once.

To show the first property, we devise a proof by contradiction showing that one can
neither have

∑3
q=1 ajq < B nor

∑3
q=1 ajq > B. Assume that in a winning extension

there is a tj selecting three candidates ej1 , ej2 , ej3 such that
∑3

q=1 ajq < B. Then,
the minimum number of points that tj makes in this extension is 3m − 3 minus the
number of candidates which are placed before tj in this extension (summing over all
three votes). In Vq, q ∈ {1, 2, 3}, due to Equation (8.8) at most ajq candidates of C \T
can be placed before tj since otherwise tj would not have selected ejq (but a candidate
from E which is right from ejq for at least one q). Since |T \ {tj}| = n/3−1 and every
candidate from T \ {tj} can be inserted at most once before tj in every partial vote,
tj must make at least

3m− 3 −
3∑

q=1

ajq − n + 3 = 3m− n −
3∑

q=1

ajq

points. By assumption,
∑3

q=1 ajq < B and since all ajq ∈ A are multiples of n, this

means that
∑3

q=1 ajq ≤ B − n. Then, in total tj will make at least

3m − n − B + n = 3(m − 1) − B + 3 > smax
p (tj)

points in the partial votes, and tj thus beats c, a contradiction.

Now, assume that there is a tj with
∑3

q=1 ajq > B in a winning extension. Consider
the amount of points all remaining candidates from T \{tj} together can loose by
candidates from C \ T . Due to the selection property, at least i candidates from T
must be inserted before every ei ∈ E. Clearly, inserting every candidate from T \ {tj}
as far right as possible (that is, directly before the selected candidate) maximizes the
amount of points the candidates from T \{tj} can loose. Using Equation (8.8) and

further using the assumption that
∑3

q=1 ajq > B , this amount is

n∑

i=1

ai −
3∑

q=1

ajq = (n/3) · B −
3∑

q=1

ajq < (n/3 − 1) · B.

This amount can be “contributed” to the candidates only in multiples of n since ai

differs from aj at least by n. Hence, at least one candidate t of the n/3− 1 candidates
from T \{tj} must loose less than B points and, thus, can loose at most B−n points by
candidates from C \T . Again, t can loose at most n− 3 additional points by inserting
other candidates from T before it. Thus, the minimum score that t will make is

3(m − 1) − B + n − n + 3 > smax
p (t)

and t will beat c, a contradiction.

To see the second property, it remains to show that every number in A is selected
exactly once. We give a proof by induction: The “last” number candidate en cannot
be selected twice (or more times) since this would imply that at most n − 2 times a
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candidate from T could be inserted before en−1 and this would violate the selection
property. Now, for any i ∈ {1, . . . , n − 1} consider ei and assume that every ej, j > i,
has been selected exactly once. Then, selecting ei twice (or more times) implies that
at most n− 2 − (n− i) = i− 2 times a candidate from T can be inserted before ei−1,
again violating the selection property.

Summarizing, we have shown that in every winning extension, every candidate
from E is selected exactly once and every candidate from T selects three candidates
whose corresponding numbers sum up to B. Hence, the subsets Aj := {aj1 , aj2 , aj3 |
tj selects ej1 , ej2 , ej3} for j ∈ {1, . . . , n/3} form a solution of the 3-n-Partition in-
stance. This finishes the proof of the Claim.

Now, we briefly discuss how to modify the construction if the numbers from A are
not pairwisely different. Then, the candidate subset E consists of one candidate for
every different number in A and we want to have that a candidate ei ∈ E representing s
equal numbers is selected s times. This is achieved by adapting the maximum partial
score of ei as follows:

smax
p (ei) = 3(m − 1) − 3ai − |{aj ∈ A | aj ≥ ai}|.

Then, the proof for this case works in complete analogy to the given proof for the
special case.

Finally, for every fixed number s > 3 of partial votes, one can apply an analogous
reduction from s-n-Partition (or allow to fix all but three partial votes and adapt
the maximum partial scores appropriately).

The reduction used for the proof of Theorem 8.3 can be adapted to the co-winner
case by decreasing the maximum partial score of every non-distinguished candidate
by one.

Number of linear votes. Theorem 8.3 makes use of Lemma 7.1 to construct a
multiset of linear votes leading to the required maximum partial scores. We briefly
discuss how to find an equivalent constant-size set of linear votes for some cases. To
this end, it is not hard to construct three linear votes that “realize” the maximum
partial scores for the candidates from A and E as defined within the proof (for exactly
three partial votes). For example, one can set c such that it makes exactly one point
in total and, then, set ei to position ai in two of the votes and to position ai + i in the
third vote. It remains to place the candidates from D such that they are beaten by c in
every extension. This can be done without adding further candidates by rearranging
them in a sophisticated way (see [133]). Another possibility is to append a set D′

of further “dummy” candidates with |D′| = |D| which is used to fill the remaining
positions “between” the candidates from {c}∪A∪E in the three linear votes whereas
the candidates from D are appended at the end of the linear votes. Clearly, appendig
the candidates from D, changes the total scores of the other candidates in the partial
votes but does not affect their relative differences. Then, modifying the partial votes by
appending the candidates from D′ at the end (in arbitrary order) yields a construction
for three linear and three partial orders as needed for the NP-hardness proof.

Corollary 8.2. For Borda, Possible Winner is NP-complete for a partial profile
consisting of three partial and three linear votes.
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Although it seems plausible that similar constructions can be given for other fixed
numbers of linear and partial votes such as having an instance with four partial and
three linear votes, this seems laborious and not of much interest in general.

Finally, we remark that in contrast to k-approval, we do not provide a full di-
chotomy for Borda. In particular, for input instances containing exactly two partial
votes (and some additional linear votes), the computational complexity is unsettled.

8.3 Measures of incompleteness

After having studied the two standard voting parameters “number of candidates” and
“number of votes”, this section is concerned with problem-specific parameterizations
for Possible Winner. We introduce parameters measuring the “amount of incom-
pleteness” of an instance. A natural way to do so is to consider the “number of
undetermined pairs”.

Definition 8.1. For a partial vote, two candidates c1 and c2 form an undetermined
pair if neither c1 ≻ c2 nor c2 ≻ c1 is part of the vote.

This definition directly leads to two parameterization studied in the following:

1. The maximum number of undetermined pairs per vote.

2. The total number of undetermined pairs of an instance.

For the first parameter, there are NP-hardness results for constant parameter values
for a class of scoring rules [194] (not comprising k-approval). We apply a new many-
one reduction to show NP-hardness for k-approval for k ∈ {4, . . . , m−4}. In contrast,
for the second parameter, it is trivial to obtain fixed-parameter tractability for scoring
rules in general. We further improve this trivial result for a class of scoring rules
comprising Borda and k-approval. Herein, a crucial part is the identification of a
polynomial-time solvable special case. A drawback of the second parameterization is
that the parameter values seem to be quite large for many instances. Hence, at the
end of this section we discuss further parameterizations based on undetermined pairs
(lying “between” the two considered parameterizations), leading to future research
challenges.

8.3.1 Maximum number of undetermined pairs per vote

Xia and Conitzer [194] showed for several common voting rules that the Possible
Winner problem is NP-complete even if each partial vote only contains a constant
number of undetermined pairs. This comprises an NP-hardness result for a subclass
of scoring rules including Borda in case that there are at least four undetermined pairs
per vote. The corresponding many-one reductions and class of scoring rules have been
discussed in Section 7.5. The given reductions only work for scoring rules with at least
four different scoring values and thus do not apply to k-approval. We apply a reduction
from Exact Cover by 3-Sets to obtain the following result for k-approval.4 Recall
that, given a family S of subsets over an element set E, the X3C-problem asks whether

4Independently, Xia and Conitzer [197] showed NP-hardness for k-approval for fixed k > 2 even
for four undetermined pairs per vote.
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there is subset S′ of S such that every element from E is contained in exactly one of
the sets from S′.

Theorem 8.4. For k-approval with 4 ≤ k ≤ m−4, Possible Winner is NP-complete
for 16 undetermined pairs per vote.

Proof. We first give a reduction from Exact Cover by 3-Sets to Possible Win-
ner for 4-approval. Let (E,S) be an X3C-instance. We construct an instance of
Possible Winner that is a yes-instance if and only if (E,S) is a yes-instance. The
set of candidates consists of one candidate for every element from E, the distinguished
candidate c, one candidate x and four further candidates s1, s2, s3, and s4. For every
subset Si ∈ S, the set of partial votes V p contains one partial vote defined as follows:

x ≻ ei1 ≻ ei2 ≻ ei3 ≻ Ci and s1 ≻ s2 ≻ s3 ≻ s4 ≻ Ci

where ei1, ei2, ei3 denote the candidates corresponding to the three elements from Si

and the candidates from Ci := C\{x, ei1, ei2, ei3, s1, s2, s3, s4} are fixed at an arbitrary
order. Since only candidate pairs formed by one candidate sj , j ∈ {1, 2, 3, 4}, and one
candidate from {x, ei1, ei2, ei3} are not fixed, there are 16 undetermined pairs per vote.
Let k := |E|/3. Using Lemma 7.1, we construct of set of linear votes such that

• smax
p (x) = k,

• smax
p (si) = |V p| − k, and

• smax
p (e) = 1.

The correctness of the construction can be seen as follows. Consider a solution
for the X3C-instance. Then, extend every vote corresponding to a subset Si of the
solution to

x > ei1 > ei2 > ei3 > s1 > s2 > s3 > s4 > . . .

and every remaining partial vote to

s1 > s2 > s3 > s4 > x > ei1 > ei2 > ei3 > . . . .

In this extension, the score of every candidate is exactly its maximum partial score
and hence c is a winner.

Consider a winning extension. Due to its maximum partial score, the candi-
date x must assume a zero-position in at least |V p| − k of the votes. The only
way to extend a vote such that x ends up at a zero-position is to insert all candi-
dates sj , j ∈ {1, 2, 3, 4}, before x. This implies that every candidate sj , j ∈ {1, 2, 3, 4},
must make already |V p| − k points in the corresponding votes and thus must assume
the zero-positions within the remaining k votes. Considering the remaining k = |E|/3
votes, every element candidate can be at a one-position at most once without beating c.
Hence, the corresponding subsets must correspond to an exact 3-cover for (E,S).

For 4 < k ≤ m−4 the reduction can be adapted either by padding the first positions
by dummy candidates or, for values of k close to m, by “flipping” the construction by
putting the undetermined pairs at the end of the partial votes.
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8.3.2 Total number of undetermined pairs

As a consequence of the NP-hardness results from the previous subsection, there is no
hope for showing fixed-parameter tractability with respect to parameter “number of
undetermined pairs per vote” for many scoring rules including Borda and k-approval.
To chart the border of tractability, we consider the parameter u denoting the “total
number of undetermined pairs”, that is, the sum of the number of undetermined pairs
over all votes. We first give a simple and general depth-bounded search tree showing
fixed-parameter tractability with respect to u for all scoring rules. Then we give a
faster algorithm for a subclass of scoring rules including Borda and k-approval. The
improved algorithm relies on the identification of a special case which, although still
being NP-hard for some scoring rules, can be solved in polynomial time for Borda and
k-approval.

A general search tree approach

For every partial vote v and for every undetermined pair {ci, cj} in v, we branch into
the two possible cases by adding either ci ≻ cj or cj ≻ ci to v. If one of these options
violates the transitivity of v, then discard this option. This directly yields a search
tree of size at most 2u. Clearly, all undetermined pairs can be found in O(nm2) time.
For an arbitrary voting rule r, let fr(n, m) denote the running time needed to compute
a winner when given linear orders. Then, for every leaf one can check whether c is a
winner for the corresponding extension in fr(n, m) time, implying the following.

Proposition 8.1. For a partial n-voter profile over m candidates and a voting rule r,
Possible Winner can be decided in O(2u · (m + fr(n, m)) + nm2) time, where u
denotes the total number of undetermined pairs.

Corollary 8.3. For every scoring rule, Possible Winner is fixed-parameter tractable
with respect to the parameter “total number of undetermined pairs”.

An improved search tree and a polynomial-time solvable special case

Similar to the improved search tree for Kemeny Score (see Section 3.4), for some
scoring rules the general search tree can be improved by a more refined branching,
that is, branching into “undetermined triples” instead of undetermined pairs. Three
candidates {c1, c2, c3} ⊆ C form an undetermined triple with respect to some par-
tial vote v if there are at least two undetermined pairs in v, each formed by two
candidates from {c1, c2, c3}. Branching on undetermined triples instead of undeter-
mined pairs leads to a search tree of size 1.82u. More precisely, for an undetermined
triple consisting of three undetermined pairs one branches into all six possible orders
and can decrease the parameter by three in every case (giving the branching vector
(3, 3, 3, 3, 3, 3) with branching number 1.82). Any other undetermined triple consists
of two undetermined pairs and thus allow for three possible extensions resulting in the
branching vector (2, 2, 2) with branching number 1.72. The interesting part is now
to investigate the situation after exhaustively branching into all undetermined triples.
To formalize this, we introduce the following.

Definition 8.2. For a partial vote v, an undetermined pair of candidates is isolated
if in v both candidates do not form an undetermined pair with any other candidate.
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Since for an isolated undetermined pair {c1, c2} ⊆ C of candidates, the relative
order of c1 and c2 with respect to all other candidates is already determined, c1 and c2

must have the same relative order with respect to each of the remaining candidates.
Thus, they must end up as direct neighbors in every extension. Now, we can use the
following characterization to investigate the situation after branching into triples.

Observation 8.2. Every undetermined pair must either be part of an undetermined
triple or must be isolated.

The correctness of Observation 8.2 can be seen as follows. Assume that there is
an isolated undetermined pair {c1, c2} ⊆ C which is part of an undetermined triple
formed by c1, c2, and c3. By definition, an undetermined triple must contain at least
two undetermined pairs, that is, either {c1, c3} or {c2, c3} must form an undetermined
pair. Then, {c1, c2} cannot be isolated, a contradiction.

The refined branching strategy based on undetermined triples combined with Ob-
servation 8.2 directly leads to the following result.

Proposition 8.2. Consider a scoring rule for which Possible Winner can be de-
cided in polynomial time if all undetermined pairs are isolated. Then, for this scoring
rule, Possible Winner can be solved in 1.82u · poly(n, m) time.

Proposition 8.2 motivates the study of Possible Winner for scoring rules in
instances in which all undetermined pairs are isolated. For this problem, we show NP-
hardness for a natural class of scoring rules but provide polynomial-time algorithms
for another class including Borda and k-approval. Since the proof of the following
theorem is conceptually very similar to the proof of Lemma 7.4, we only sketch the
proof.

Theorem 8.5. Consider a scoring rule such that, for every number of candidates, the
scoring vector α contains a position g such that αg ≥ αg+1 +3x and a position h such
that αh = αh+1 +x for a positive integer x. Then, Possible Winner is NP-complete
even if all undetermined pairs are isolated.

Proof. (Sketch) We give a reduction from Exact Cover By 3-Sets to Possible
Winner. Let (E,S) denote an X3C-instance. We construct an instance (P, C, c) of
Possible Winner that is a yes-instance if and only if (E,S) is a yes-instance. The
set of candidates consists of one candidate si for every Si ∈ S, one candidate for every
element from E, a further candidate d, and the distinguished candidate c.

The set of partial votes V p consists of two subsets. First, for every Si ∈ S, there
is one vote in which the candidates d and si form an isolated pair which must end
up at positions g and g + 1 with αg ≥ αg+1 +3x. Second, for every Si ∈ S and
for every element e ∈ Si, there is one partial vote in which si and the candidate
corresponding to e form an isolated pair which is located at the positions h and h + 1
with αh = αh+1 +x. The remaining candidates in all partial votes are fixed in an
arbitrary order which “ensures” the proper placement of the specified isolated pairs.

Using Lemma 7.1, we can construct a set of linear votes such that in a winning
extension one has the following.

• Every subset candidate si can make at most αg +3 αh+1 points in the four partial
votes in which it is not fixed. In other words, if si takes the better position, that



8.3 Measures of incompleteness 141

is, position g, in the isolated pair formed with d, then it must take position h+1
in the three other corresponding isolated pairs. If it takes position g + 1 in the
pair formed with d, then it can still take position h for all three remaining pairs
since αg ≥ αg+1 +3x and αh = αh+1 +x.

• Every candidate corresponding to E must assume position h + 1 for at least one
isolated pair.

• Candidate d must assume position g + 1 at least S − |E|/3 times.

Then, it is not hard to see that there is a winning extension if and only if there is an
exact 3-cover: In the first set of partial votes, the candidate d can (and must) take
position g in |E|/3 votes. Thus, d can be considered as to “select” the corresponding
|E|/3 subset candidates. The corresponding subset candidates in these votes then
assume position g + 1 in this votes and thus have at least 3x points left which they
can use to take the better position in the three votes in which they form isolated pairs
with their element candidates. Then, the only possibility that every element assumes
position h for at least one isolated pair is that it is part of a subset “selected” by d in
the first set of partial votes. Hence, the selected subsets must correspond to an exact
3-cover.

In the following, we complement Theorem 8.5 by providing a polynomial-time
algorithm for a class of scoring rules including k-approval and Borda using network
flows techniques.

Theorem 8.6. Consider a scoring rule such that, for every number of candidates, the
scoring vector α fulfills αi ≤ αi+1 +1 for i ∈ {1, . . . , m− 1} and let u denote the total
number undetermined pairs. Then, Possible Winner can be decided in O(nm2 +u2)
time if all undetermined pairs are isolated.

Proof. As a first step, compute the set of all (isolated) undetermined pairs. Clearly,
this can be done in O(nm2) time. Recall that two candidates forming an undetermined
pair must end up as direct neighbors in every extension. As a preprocessing step, fix
the order of some “trivial” undetermined pairs. If the distinguished candidate c is
contained in an undetermined pair, then fix the order of this pair such that c is placed
in front of the second candidate of the pair. After that, one can assume that none of
the undetermined pairs contains c. Furthermore, consider an isolated undetermined
pair {ci, cj} which must end up at positions z and z + 1 with αz = αz+1. Then, the
relative order of ci and cj does not change their total scores and hence we can fix such
pairs in an arbitrary order.

For every remaining undetermined pair {ci, cj}, the difference of the score between
choosing ci > cj and choosing cj > ci is exactly one point for every candidate. For
every candidate ci ∈ C \ {c} one can compute the minimum number l(ci) of points
that ci will make in every possible extension. That is, l(ci) is the sum over the
scores for ci obtained by choosing cj ≻ ci in all undetermined pairs {ci, cj} that
contain ci. Recall that the score s(c) for the distinguished candidate c is already fixed.
If l(ci) ≥ s(c) for some ci, then c cannot become possible winner. Otherwise, let
b(ci) := s(c) − l(ci) − 1 ≥ 0 denote the balance of ci with respect to c. The balance
counts the number of undetermined pairs where ci can be placed better than the other
respective candidate in a winning extension.
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Figure 8.3: Flow network which allows for a flow of size u if and only if all undetermined
pairs can be ordered such that the distinguished candidate wins in the resulting extension.

Using the balance b(ci) for all candidates ci ∈ C\{c}, one can decide Possible
Winner with the help of a maximum flow computation as follows. Consider a four-
level directed, arc-weighted s-t-network with distinguished vertices s and t (see Fig-
ure 8.3). The first level only consists of vertex s. The second level consists of ver-
tices one-to-one representing all undetermined pairs. Note that an undetermined pair
formed by the same two candidates may occur several times for different partial votes.
The vertex s is connected by arcs of weight one to all level-two vertices. The third level
of vertices one-to-one represents all candidates occurring in at least one undetermined
pair. Every level-two vertex representing an undetermined pair is connected by two
weight-one arcs to the two vertices corresponding to the two candidates contained in
the undetermined pair. The fourth level only consists of vertex t. Every level-three
vertex representing a candidate ci is connected by one arc to t which is assigned the
weight b(ci).

Claim: The constructed flow network allows for an integer flow of value u if and only
if the distinguished candidate c is a possible winner of the corresponding Possible
Winner-instance with u undetermined pairs.

“⇐”: If u undetermined pairs of the Possible Winner instance can be resolved
without defeating c, then one obtains the following network flow. Send one unit of
flow through every arc between level one and level two. For every level-two vertex
send this unit of flow to the vertex corresponding to the candidate ordered better in
the isolated pair. For every level-three vertex, pass the resulting units straightforward
to t. It is not hard to see that this flow is feasible: The only arcs through which the
flow might send several units are going from the third to the fourth level. For such an
arc corresponding to a candidate ci there is exactly one unit of flow for each placement
of ci at the “better” position in an undetermined pair. Thus, a the corresponding flow
consists of at most b(ci) units and thus is feasible.

“⇒”: If the maximum integer flow of the network is u, then all u second-level vertices
corresponding to the undetermined pairs get one unit of flow. Each of them has to
pass this unit on to one of the two level-three vertices corresponding to the candi-
dates forming the considered pair. Each “candidate vertex” ci in level three sends at
most b(ci) units of flow to t. Hence, putting ci to the better position in the undeter-
mined pairs that “contributed” to the flow through the “ci-vertex” gives a winning
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extension.

Finally, we show the overall running time O(nm2 + u2). The flow network can be
constructed in O(nm2) time. The number of arcs of the flow network is linear in u.
The Ford-Fulkersson algorithm can compute a maximum integer flow in O(|A| · f)
time, where |A| denotes the number of arcs and f denotes the value of a maximum
flow [66]. Since the value of the maximum flow is bounded by u, the claimed running
time follows.

Corollary 8.4. For Borda and for k-approval, Possible Winner can be decided in
O(1.82u · (nm2 + u2)) time, where u denotes the total number of undetermined pairs.

Note that Theorem 8.5 and Theorem 8.6 do not give a complete classification.
In particular, the computational complexity for the case that there are scoring vec-
tors with “maximum” distance two between two consecutive scoring values remains
unsettled.

8.3.3 Further parameters measuring incompleteness

In Subsection 8.3.1, we have seen that for a broad class of scoring rules there is no
hope for fixed-parameter tractability with respect to the “number of undetermined
pairs per vote”. In contrast, the fixed-parameter tractability results with respect to
the parameter “total number of undetermined pairs” show that being not too far from
complete information makes the Possible Winner problem provably easier (8.3.2).
However, this result suffers from the fact that the considered parameter may assume
quite large values for many instances. This motivates the study of further parameter-
izations measuring the amount of incompleteness. In the following, we suggest some
parameterizations and ideas that might serve as a basis for future research.

• Instead of measuring the amount of incompleteness per vote, it also seems plau-
sible to measure the amount of incompleteness per candidate. This directly leads
to the parameterizations “maximum/average number of undetermined pairs in
which a candidate is involved”.

• The parameterizations suggested in the previous subsection measure the amount
of incompleteness. An “opposite” perspective is to measure the amount of com-
pleteness within the partial votes, for example, by parameterizations based on
the “number of determined pairs”. This directly leads to the “dual parameter-
izations” with respect to the parameterizations from the previous subsections.
For example, the number of determined pairs per vote is the total number of
pairs minus the number of undetermined pairs per vote. Such parameterizations
can be considered as extending the special case of Manipulation where the
number of determined pairs in every non-linear vote is zero.

• The development of a refined search tree in Section 8.3.2 led to the identification
of the special case that all undetermined pairs of candidates are isolated. In
this case, Possible Winner becomes solvable in polynomial time for a class
of scoring rules including Borda and k-approval. The concept of isolated pairs
can be considered as a measure of “local disturbance”. Along these lines, it
might be interesting to investigate instances allowing for isolated triples and,
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more generally, isolated tuples of bounded size. However, since the size of an
isolated tuple is smaller than two times the “number of undetermined pairs per
vote”, the hardness results from Subsection 8.3.1 can be transferred.

• An interesting parameterization concerns the “number of possible extensions
per vote”.5 In general, the computation of this parameter, that is, counting the
number of linear extensions for one partial vote is computationally hard [47].
Fortunately, the set E(v) of extensions of a partial order v, can be generated in
time constant in |E(v)| [180]. Note that it is easy to see that this parameteriza-
tion is fpt-equivalent to the parameter “number of undetermined pairs per vote”.
However, it might allow for a different view that is helpful to design algorithms.

Concluding, we think that the development and investigation of further parameteriza-
tions measuring the amount of (in)completeness is an important challenge for future
research. Clearly, this is a general conceptual task also of interest for voting rules
other than scoring rules.

The discussion above dealt with the identification of new single parameterizations
that might lead to tractability for meaningful cases. In the following chapter, we
present an alternative way to obtain fixed-parameter tractable cases by investigating
combined parameters (where known single parameters lead to W[1]-hardness). More
specifically, the usefulness of combined parameters still capturing meaningful scenarios
will be exhibited using Possible Winner for k-approval voting as example.

5There are some recent considerations of the counting variant of Possible Winner [7].



Chapter 9
Combined parameters for k-approval

Under the k-approval rule every voter can assign one point to exactly k alternatives
and an alternative with most points in total wins. In the case that every voter pro-
vides complete information, the winner can be easily determined. However, there are
settings in which the voters may only provide partial information on their preferences.
This directly leads to the central combinatorial problem considered in this part: the
Possible Winner problem, which asks whether a specific alternative can still become
a winner. In Chapter 7, we provided NP-completeness for every k ∈ {2, . . . , m − 2}
with m denoting the number of alternatives if the number of votes is unbounded. In
Chapter 8, we showed that Possible Winner for k-approval is also NP-complete if
there are only two partial votes (and k is part of the input).

These hardness results motivate a multivariate complexity analysis with respect to
the combined parameter “number of votes” and “number of candidates to which a voter
gives one/zero points” for k-approval. Can we efficiently solve Possible Winner
when these parameters are both small? This setting might look restrictive on a first
glance but it naturally reflects scenarios in which one is interested in finding a small
group of winners (or losers). For example, a small committee awards a small number
of grants or picks out a limited number of students for graduate school. Another
example might appear in a human resource department where few people select few
employees out of a large pool of job applicants. As concrete example one might look
at the decision about the Nobel prize for peace in 2009, where a committee consisting
of five people had to select up to three winners out of about 200 candidates. At a
certain point, a committee member might have already known that he (or she) prefers
Obama and Bono to Berlusconi, but might have not decided on the order of Obama
and Bono yet. This immediately leads the way to the question whether, given a set
of “partial preferences”, a certain candidate may still win and hence motivates the
study of the Possible Winner problem for k-approval (see Section 7.2 for a formal
definition).

In the above described scenarios, the only “unbounded” part of the input is the
number of candidates. Hence, directly related questions are whether we can ignore or
delete candidates which are not relevant for the decision process and how to identify
such candidates. In this context, parameterized algorithmics provides the concept of
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kernelization by means of polynomial-time data reduction rules that “preprocess” an
instance such that the size of the “reduced” instance only depends on the parameter.
Basic definitions are provided in Section 1.3.1. Although kernelization has been ap-
plied successfully in many areas (see [34, 126] for surveys), it seems hardly explored for
problems in the voting context. In fact, we are only aware of recent results for Dodg-
son Score [106, 108] (see Chapter 6 for more details) and Swap Bribery [74] as well
as some “partial kernelization” results for Kemeny Score, provided in Chapter 4.

In this chapter, we use kernelization to show the fixed-parameter tractability of
Possible Winner for k-approval in two “symmetric” scenarios.

1. We consider the combined parameter “number of incomplete votes” t and “num-
ber of candidates to which every voter gives zero points” k′ := m− k for m can-
didates. Making use of a simple observation we show that Possible Winner
admits a polynomial-size problem kernel with respect to (t, k′) and provide two
algorithms: a simple search tree where the exponential part of the running time
is bounded by 2O(k′) for constant t and a dynamic programming algorithm where
the exponential part of the running time is bounded by 2O(t) for constant k′.
The bound on the dynamic programming table is based the same idea as for the
dynamic programming algorithm for Dodgson Score (see Section 6.1). This
indicates that this approach may become of general interest.

2. We consider the combined parameter t and k, where k denotes the “number of
candidates to which a voter assigns one point”. We observe that here one cannot
argue symmetrically to the first scenario. Using other arguments, we provide a
superexponential-size problem kernel showing the fixed-parameter tractability of
Possible Winner with respect to (t, k). For the special case of 2-approval, we
give a polynomial-size kernel with O(t2) candidates by applying an additional
reduction rule based on maximum matching techniques. Using a methodology
due to Bodlaender et al. [35], our main technical result of this chapter shows that
Possible Winner is very unlikely to admit a polynomial-size problem kernel
with respect to (t, k).

As in Chapters 7 and 8, all results are given for the unique winner case, that is, looking
for a single candidate with maximum score, but they directly transfer to the cowinner
case. Note that although the unique-winner and cowinner are used in the definition of
Possible Winner and Manipulation in general [65, 131, 194], for k-approval and
some of our introductory examples, this seems not to model all situations directly. In
particular, using k-approval voting, one often is interested if a distinguished candidate
can be part of a winning set of size k. Hence, we discuss other problem variants asking
for a set of winners in Chapter 10. However, we stress that in many cases it might also
be of interest who is a unique possible winner (the scenario considered in this work).
For example, when voting for a board with k members, a unique winner might become
the head of the board or get some special award.

Some of the reduction rules given in this chapter will not directly decrease the
instance size by removing candidates or votes but instead only decrease the number of
possible extensions of a vote, for example, by “fixing” candidates. To fix a candidate
at a certain position means to specify its relation to all other candidates. Clearly,
a candidate may not be fixed at every position in a specific partial vote. For every
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candidate c′ ∈ C and a partial vote v ∈ V , let

L(v, c′) := {c′′ ∈ C | c′′ ≻ c′ in v} and R(v, c′) := {c′′ ∈ C | c′ ≻ c′′ in v}.

Then, fixing a candidate c′ ∈ C as good as possible means to add

L(v, c′) ≻ c′ ≻ C \ (L(v, c′) ∪ {c′})

to v. Analogously, fixing a candidate as bad as possible is realized by adding C \
(R(v, c′) ∪ {c′}) ≻ c′ ≻ R(v, c′) to v. Fixing a subset of candidates as good/bad as
possible means that the single candidates are fixed as good/bad as possible processing
them in an arbitrary order. If a candidate c′ ∈ C is fixed in all partial votes, this
implies that also its score s(c′) is fixed and hence s(c′) is well-defined. Furthermore,
we say that a candidate c′ may shift a candidate c′′ to the left (right) in a partial
vote v if c′′ ≻ c′ (c′ ≻ c′′) in v, that is, setting c′ to a one-position (zero-position)
implies to set c′′ to a one-position (zero-position) as well.

As discussed in the previous chapters, the votes of an input instance of Possible
Winner can be partitioned into a (possibly empty) set of linear votes, called V l, and
a set of proper (nonlinear) partial votes, called V p. We state all our results for the
parameter t := |V p|. All positive results also hold for the parameter number of total
votes n := |V l| + |V p|. However, this means that we have to “reduce” the number of
linear votes such that it is bounded by the considered parameter. To this end, in some
of our reduction rules, we replace the set of linear votes by an equivalent set, that is, the
maximum partial scores remain unchanged, by using Lemma 7.1 (see Section 7.3.1).
To apply Lemma 7.1, for some instances, it might be necessary to add an additional
dummy candidate to achieve the Property 1. In all considered cases, this can be done
in a straightforward way without changing the parameter values of an instance and
thus will not be further discussed. Note that we only state polynomial-size and not
provide explicit bounds on the number of linear votes in a reduced instance. This is
clearly sufficient to state a polynomial kernel. A further refinement seems not to be
of interest from practical point of view since in our case it always make sense to store
the maximum partial scores itself instead of “encoding” them into a new set of linear
votes of bounded size.

9.1 Fixed number of zero-positions

In this section, we investigate Possible Winner under (m − k′)-approval with k′ <
m, that is, k′ denotes the number of zero-positions. We give a polynomial kernel
with respect to (t, k′) for Possible Winner where t is the number of partial votes.
In addition, we provide two algorithms; a simple branching algorithm with running
time 2O(k′) · poly(n, m) for constant t and a dynamic programming algorithm with
running time 2O(t) · poly(n, m) for constant k′.

9.1.1 Problem kernel

Consider a Possible Winner instance with candidate set C, vote set V = V l ∪ V p,
and distinguished candidate c ∈ C for (m − k′)-approval. We start with a simple
reduction rule that is a crucial first step for all kernelization results in this work.
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Rule 9.1. For every vote vi ∈ V p with |L(vi, c)| < m − k′, fix c as good as possible
and fix the candidates from L(vi, c) in a transitivity preserving order.

The condition |L(vi, c)| < m − k′ is crucial since otherwise c might shift a candi-
date c′ to a one-position whereas c is assigned to a zero position and this could cause
c′ to beat c. The soundness is shown in the following.

Lemma 9.1. Rule 9.1 is sound and can be carried out in O(tm2) time.

Proof. Consider an extension E of an unreduced instance in which c wins. Assume that
there is a vote vi with |L(vi, c)| < m−k′ in which c does not take position |L(vi, c)|+1
in the extension E(vi). By definition, for every candidate c′ ∈ L(vi, c) and for every
candidate c′′ ∈ C\L(vi, c), one cannot have that c′′ ≻ c′. Hence, one can replace E(vi)
by L(vi, c) > c > C\(L(vi, c)∪{c}) where within L(vi, c) and within C\(L(vi, c)∪{c})
the candidates have the same order as in E(vi). Now, distinguish two cases: First,
there is a candidate l ∈ L(vi, c) that is assigned to a zero-position in E(vi). Then c
must also be assigned to a zero-position in E(vi). Thus, in the modified extension c
must still beat all other candidates since its score is increased by one. Second, all
candidates from L(vi, c) have already taken one-positions in E(vi). Then, c makes at
least as many points as in E(vi) whereas all other candidates make at most as many
points as in E(vi). Thus, c also wins in the modified extension.

Regarding the running time, for every of the t partial votes, the set L(vi, c) can be
easily computed by checking reachability from c in the following digraph: There is a
vertex for every candidate and an arc from c′ to c′′ if c′′ ≻ c′ in the considered partial
vote. This directly leads to the running time O(tm2).

After applying Rule 9.1, the score of c is fixed at the maximum possible value since
it makes one point in all votes in which this is possible. Now, for every candidate c′ ∈
C \ {c}, by counting the points that c′ makes within the linear votes V l, compute the
number of zero positions that c′ must assume within the partial votes V p such that it
is beaten by c. Let this number be z(c′) and

Z+ := {c′ ∈ C \ {c} | z(c′) > 0}.

Since there are only tk′ zero positions in V p, one can observe the following.

Observation 9.1. In a yes-instance, it must hold that
∑

c′∈C\{c} z(c′) ≤ tk′ and

|Z+| ≤ tk′.

Observation 9.1 provides a simple upper bound for the number of candidates in Z+.
In the following, we formulate a data reduction rule that bounds the number of re-
maining candidates, namely,

Z0 := {c′ ∈ C \ {c} | z(c′) = 0}

and replace the linear votes by a bounded number of equivalent votes. The basic idea
is that since every remaining candidate from Z0 can be set arbitrarily in every vote
without beating c, it is possible to replace the set of all remaining candidates by tk′2

“representative candidates”.
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If |Z0| > tk′2, we define the following. Let b1, . . . , btk′2 be tk′2 arbitrary candidates
from Z0. Our goal is to generate an equivalent instance with candidate set Z+ ∪
{b1, . . . , btk′2} ∪ {c}. For a vote v ∈ V p, let

Z+(v) := {z ∈ Z+ : |R(v, z)| < k′},

that is, Z+(v) contains the candidates that can take a zero-position within v. For v,
define the set of all “relevant” candidates from Z0 as

Z0(v) := {z ∈ Z0 | z ∈ R(v, z′) for a z′ ∈ Z+(v)}.

Since |Z+(v)| ≤ |Z+| ≤ tk′ and every candidate from Z+(v) can shift less than k′

other candidates to the right, |Z0(v)| < tk′2. Hence, the replacement of candidates in
the following data reduction rule is well-defined.

Rule 9.2. For every partial vote v ∈ V , let z1, . . . , zs denote the candidates from Z0(v).
If |Z0| > tk′2, then replace every candidate zi ∈ Z0(v) by the candidate bi and re-
move all candidates except Z+∪{b1, . . . , btk′2}∪{c}, otherwise Z0 remains unchanged.
Replace the set of linear votes by an equivalent one according to Lemma 7.1.

Making use of Rule 9.2, we arrive at the following.

Theorem 9.1. For (m − k′)-approval, Possible Winner with t partial votes has a
polynomial kernel with at most tk′2 + tk′ + 1 candidates and less than 2t2k′2 + t2k′

votes.

Proof. To obtain the polynomial kernel, we first apply Rule 9.1 and then Rule 9.2.
The soundness of Rule 9.1 has been shown in Lemma 9.1 and the soundness of Rule 9.2
is easy to see: Every extension of an unreduced instanced can be transferred to an
extension for the reduced instance by replacing the candidates from Z+ as described
in Rule 9.2. The computation of Z0(v) can be accomplished in O(tm2) time using the
reachability graph described in the proof of Lemma 9.1 and the replacement of the
linear votes can be done in polynomial time according to Lemma 7.1.

9.1.2 Parameterized algorithms

Applying any brute-force algorithm after the kernelization directly leads to an fixed-
parameter algorithm. For example, one might guess which candidates assume the last
k′ position for every of the t votes and check if this results in a winning extension.
Systematically checking all such “guesses” for a reduced instance with tk′2 + tk′ +

1 candidates leads to an overall running time of
(
tk′2+tk′+1

k′

)
· poly(n, m). We now

investigate more efficient strategies. Herein, we are especially interested in algorithms
with an exponential running time factor of the form 2O(p) where p denotes either k′ or
t while the other parameter is of constant value. The brute-force algorithm does not
imply such a running time for k′ or t. In the following, we describe such algorithms for
the special cases t = 2 and k′ = 2 and explain how to extend them to greater constant
values.
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Initialization:
For every D′ ∈ D \ {(d1, . . . , dp)}, set T (0, D′) = 0.
Set T (0, (d1, . . . , dp)) = 1.

Update:
For 0 ≤ i ≤ t − 1,
for every D′ = (d′1, . . . , d

′
p) ∈ D,

T (i + 1, D′) = 1 if there are two candidates zg, zh that can take the zero-positions
in vi+1

and T (i, D′′) = 1 with D′′ := {d′′1 , . . . , d′′p} and
d′′j = d′j for j ∈ {1, . . . , q} \ {g, h}, d′′g ≤ d′g + 1, and d′′h ≤ d′h + 1.

Output:
“yes” if T (t, (0, . . . , 0)) = 1, “no” otherwise

Figure 9.1: Dynamic programming algorithm for (m − 2)-approval.

Constant number of partial votes. Consider a Possible Winner instance after
applying Rule 9.1, that is, the distinguished candidate is fixed in all votes. For two
partial votes, according to Observation 9.1 there can be at most 2k′ candidates that
must take a zero-position in a yes-instance. Every such candidate must take a zero-
position in the first or in the second vote. Hence, one can branch into these two
possibilities for every candidate, and then check if there is a corresponding extension.
This results in a search tree of size at most 22k′

= 4k′

. For every vote, checking
whether there exists a corresponding extension can be accomplished in O(m) time.
More specifically, if there is a linear extension, it can be found in O(m) time by
topological sorting [66].

Now, consider the case of having a constant number t of votes. For every candidate
that has to be assigned to s zero-positions with 0 < s < t in a winning extension, there
are (

t

s

)
≤

(
t

t/2

)
< 2t

possibilities of choosing the zero-positions within the t partial votes. Since there are
at most tk′ such candidates (Observation 9.1), this yields a search tree of size less
than (2t)tk′

. Hence, we arrive at the following.

Proposition 9.1. For t partial votes, Possible Winner for (m − k′)-approval can

be solved in O(2t2k′ · nm + nm2) time.

For constant t, Proposition 9.1 directly leads to the exponential running-time fac-
tor 2O(k′).

Constant number of zero-positions. For constant k′ the existence of an algo-
rithm with running time 2O(t) · poly(n, m) seems to be less obvious than for the case
of constant t. We start by giving a dynamic programming algorithm for (m − 2)-
approval running in 4t ·O(nm2) time and space. For the analysis, we employ the same
idea as for the dynamic programming algorithm for Dodgson Score (Figure 6.4).

As in the previous subsection, fix c according to Rule 9.1 such that it makes the
maximum possible score and let Z+ := {z1, . . . , zp} denote the set of candidates that
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take at least one zero-position in a winning extension. Let d1, . . . , dp denote the
corresponding number of zero-positions that must be assumed and let

D := {(d′1, . . . , d′p) | 0 ≤ d′j ≤ dj for 0 ≤ j ≤ p}.

The dynamic programming table T is defined by T (i, D′) for 1 ≤ i ≤ t and D′ =
(d′1, . . . , d

′
p) ∈ D. Herein, T (i, D′) = 1 if the partial votes from {v1, . . . , vi} can

be extended such that candidate zj takes at least dj − d′j zero-positions for ev-
ery j ∈ {1, . . . , p}; otherwise T (i, D′) = 0. Intuitively, d′j stands for the number
of zero-positions that zj must still take in the remaining votes {vi+1, . . . , vt}. If
T (t, (0, . . . , 0)) = 1 for an instance, then it is a yes-instance. The dynamic program-
ming algorithm is stated in Figure 9.1 and leads to the following.

Theorem 9.2. For (m − 2)-approval with t partial votes, Possible Winner can be
solved in O(4t · nm2) time and O(4t · t) space.

Proof. We first show the correctness of the dynamic programming algorithm given
in Figure 9.1. Regarding the initialization, within the empty set of votes, that is,
for i = 0, no candidate can be assigned to any zero-position and hence T (0, D′) can
only be true (“1”) if D′ = (d1, . . . , dp). Regarding the update step, T (i + 1, D′) = 1
means that within {v1, . . . , vi+1}, it must be possible that every candidate zj ∈ Z+

is assigned to dj − d′j zero-positions. Since there are only two zero-positions in vi+1,
all but two candidates, zg and zh, must be assigned to the required number of zero-
positions in {v1, . . . , vi}. Hence, there must be an entry T (i, D′′) with T (i, D′′) = 1
and d′′j = d′j for all j ∈ {1, . . . , p} \ {g, h}, d′′g ≤ d′g + 1, and d′′h ≤ d′h + 1 which equals
the conditions given by the dynamic programming algorithm. Note that relaxing the
condition “d′′z = d′z + 1” to “d′′z ≤ d′z + 1” has the effect that a candidate can take
more zero-positions than required without “bookkeeping” this by negative values of
the entries from D′. Finally, a considered instance is a yes-instance if and only if
within all partial votes every candidate zj ∈ Z+ takes at least dj zero-position, that
is, the corresponding table entry T (t, (0, . . . , 0)) must be true.

Now, to analyze the size of the dynamic programming table, we make use of two

conditions: first, |Z+| ≤ 2t, and, second,
∑|Z+|

i=1 di ≤ 2t (see Observation 9.1). With

these conditions, it is easy to verify that |D| =
∏|Z+|

i=1 (di + 1) ≤ 22t = 4t, resulting in
a total table size of O(t · 4t). Clearly, the initialization and the update step can be
carried out in polynomial time per table entry and the running time bound follows.

It is not hard to see that the given algorithm can be extended to work for other
constant values of k′ using the same definition of the dynamic programming table.

Since |Z+| ≤ tk′ and
∑|Z+|

i=1 di ≤ tk′ (Observation 9.1), the table size is bounded by

t · 2tk′

. We only need to slightly modify the update step. Here, one needs to consider
candidate subsets of size k′ instead of pairs of candidates that can take the zero-

position in the “current” vote. Since there are at most
(
tk′

k′

)
< (tk′)k′

such subsets,

this gives an additional factor of less than (tk′)k′

to the running time which is still
polynomial in t for constant k′. Hence, altogether, one arrives at the following.

Theorem 9.3. For (m− k′)-approval, Possible Winner with t partial votes can be
solved in 2O(t) · O(nm2) time for constant k′.
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Proposition 9.1 and Theorem 9.3 also provide the following running time bound
with respect to the combined parameter (t, k′).

Corollary 9.1. For (m− k′)-approval, Possible Winner with t partial votes can be

solved in O(min{2t2k′

, 2tk′ · (tk′)k′} · nm2) time.

9.2 Fixed number of one-positions

In this section, we study Possible Winner for k-approval with respect to the com-
bined parameter k and “number of partial votes” t. The problem can be considered as
“filling” tk one-positions such that every candidate is still beaten by c. In the previous
section, we exploited that the number of candidates that must take a zero-position
is already bounded by the combined parameter t and “number of zero-positions” in
a yes-instance (Observation 1). Here, we cannot argue analogously: Our combined
parameter (t, k) only bounds the total number of one-positions but there can be an
unbounded number of candidates that may take a one-position in different winning
extensions of the partial votes. Hence, we argue that if there are too many candidates
that can take a one-position, then there must be several choices that lead to a valid
extension. We show that it is sufficient to keep a set of “representative candidates”
that can take the required one-positions if and only if this is possible for the whole
set of candidates. This results in a problem kernel of super-exponential size showing
fixed-parameter tractability with respect to (t, k). We complement this result by show-
ing that it is very unlikely that there is a kernel of polynomial size. For 2-approval,
from the reduction rules used to show the super-exponential kernel for general k, one
directly obtains a polynomial kernel with O(t3) candidates. Using an additional reduc-
tion rule based on a structural property of maximum matchings in bipartite graphs,
we improve this to a polynomial kernel with O(t2) candidates.

9.2.1 Problem kernels

We first describe a kernelization approach for Possible Winner for k-approval in
general and then show how to obtain a better bound on the kernel size for 2-approval.

Problem kernel for k-approval.

In order to describe more complicated reduction rules, we assume that a considered
instance is exhaustively reduced with respect to some simple rules. To this end, we
fix the distinguished candidate c as good as possible by applying Rule 9.1 (using that
m − k′ = k). Afterward, we apply a simple reduction rule to get rid of “irrelevant”
candidates and to check whether an instance is a trivial no-instance:

Rule 9.3. 1. For every candidate c′ ∈ C \ {c}, if making one point in the partial
votes causes c′ not to be beaten by c, then fix c′ as bad as possible in every vote.

2. Compute a set D of candidates that can be deleted: For every candidate c′ ∈
C \ {c} with |L(v, c′)| > k for all v ∈ V p, if the score s(c′) is at least s(c), then
output “no solution”, otherwise add c′ to D. Delete D from V p and replace V l

by an equivalent set for the candidates from C \ D using Lemma 7.1.
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test..................terst.. a b d

e
h

g

f

0 1 2

v : a ≻ b ≻ d ≻ x,
e ≻ f,
g ≻ f ≻ y ≻ c,
a ≻ h

Figure 9.2: Example for 3-approval: Partial vote v (left-hand side) and corresponding
digraph with levels 0, 1, and 2. Arcs following by transitivity are omitted. Note that x,
y, and c do not appear in the digraph since they are irrelevant for v.

The soundness of Rule 9.3 is not hard to see: Every candidate fixed by the first part
cannot be assigned to a one-position in any winning extension. For the second part,
every winning extension of an unreduced instance can easily be transformed into a
winning extension for the reduced one by deleting the candidates specified by Rule 9.3
and vice versa.

In the following, we assume that Rule 9.3 has been applied, that is, all remaining
candidates can make at least one point in a winning extension. To state further
reduction rules, a partial vote v is represented as a digraph with vertex set

{c′ | c′ ∈ C \ {c} and |L(v, c′)| < k}.

All other candidates are considered as irrelevant for this vote since they cannot take a
one-position. The vertices are organized into k levels from 0 to k − 1. More precisely,
for j ∈ {0, . . . , k − 1}, let

Lj(v) := {c′ | c′ ∈ C \ {c} and |L(v, c′)| = j},

that is, Lj(v) contains all candidates that shift exactly j candidates to a one-position
if they are assigned to the best possible position. There is a directed arc from c′ to c′′

if and only if c′′ ∈ L(v, c′). Figure 9.2 displays an example for the representation of a
partial vote for 3-approval.

Without data reduction, the number of candidates per level may be arbitrary large.
For some cases it is easy to see that one can “delete” all but some representative
candidates. The following reduction rule provides such an example for the case that
there are at least tk candidates that can take the first position.

Rule 9.4. For v ∈ V p with |L0(v)| ≥ tk, consider an arbitrary subset L′ ⊆ L0(v)
with |L′| = tk. Add L′ ≻ C \ L′ to v.

The soundness of Rule 9.4 can be seen as follows. Consider a winning extension E
for a nonreduced instance and a vote v ∈ V p with |L0(v)| ≥ tk. Since there are tk
one-positions in the partial votes, there must be at least k candidates from L′ not
having assumed a one-position within the other t−1 votes. Setting these k candidates
to the one-positions in v leads to a winning extension of the reduced instance. The
other direction is obvious. Note that Rule 9.4 explores the fact that a candidate from
L0(v) can be set to an arbitrary one-position without shifting any other candidate.
This does not hold for any other level.
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If Rule 9.4 applies to all partial votes, then in a reduced instance at most t2k can-
didates are not fixed at zero positions in all partial votes and the remaining candidates
can be deleted by Rule 9.3. Hence, we consider the situation that there is a partial
vote v with |L0(v)| < tk. In this case, we cannot ignore the candidates from the other
levels but replace them by a bounded number of representatives. We first discuss how
to find a set of representatives for 2-approval and then extend the underlying idea to
work for general k.

For 2-approval, for a vote v with |L0(v)| < 2t, it remains to bound the size of L1(v).
This is achieved by the following reduction rule:

Rule 9.5. Fix all but 2t in-neighbors of every candidate from L0(v) at zero-positions.

Given a winning extension E for the nonreduced instance, a winning extension E′

for v in the reduced instance can be obtained as follows. In E(v) the first position
must be assigned to a candidate c′ from L0(v) and c′ can also be assigned to the first
position in E′(v). If there is another candidate from L0(v) taking the second position
in E(v), then one can do the same in E′(v). Otherwise, distinguish two cases.

1. c′ has less than 2t in-neighbors, then the reduction rule has not fixed any candi-
date that shifts c′ to the first position and thus v can be extended in the same
way as in E.

2. c′ has at least 2t in-neighbors. Since there are only 2t one-positions correspond-
ing to the partial votes and 2t nonfixed in-neighbors, the second position of v
can be assigned to a candidate that does not take a one-position in any other
vote of E.

Altogether, for 2-approval, one ends up with less than 4t2 nonfixed candidates per
vote and hence with O(t3) nonreduced candidates in total. For general k, we extend
this approach iteratively by bounding the number of candidates for every level of a
partial vote. To this end, we give the following reduction rule which clearly subsumes
Rule 9.5.

Rule 9.6. Consider a partial vote v ∈ V p with |L0(v)| < tk. Start with i = 1 and
repeat until i = k.
- For every candidate c′ ∈ Li(v), if there are more than tk candidates in Li(v) which
have the same neighborhood as c′ in L0(v) ∪ L1(v) ∪ · · · ∪ Li−1(v), fix all but tk of
them as bad as possible.
- Set i := i + 1.

Note that if the distinguished candidate c is in Li(v) for any i, due to Rule 9.1 one
has |Lj(v)| = 1 for all j ≤ i. Hence c cannot be contained in Lj(v) with |Lj(v)| ≥ tk
and will never be fixed at a zero-position by Rule 9.6.

Lemma 9.2. Rule 9.6 is sound and can be carried out in O(m2 · k) time.

Proof. Every winning extension of an instance reduced by Rule 9.6 is clearly also a
winning extension of the unreduced instance. We describe how to obtain a winning
extension for the reduced instance from a winning extension E of the unreduced in-
stance. For E(v), let r denote the leftmost candidate which is fixed as bad as possible
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in v by Rule 9.6. Let pos(r) denote the position from r in E(v). If a candidate r
does not exist or assumes a zero-position in E(v), one can assign the one-positions
of v in the reduced instance to the same candidates as in E(v). Otherwise, since r
has been fixed by Rule 9.6, there must be tk nonfixed candidates shifting exactly the
same candidates to the left as r, namely

R := {c′ ∈ C \ {c, r} | L(v, r) = L(v, c′)}.

Since in V p \ {v} there are only (t − 1)k one-positions, one can assign the positions
ranging from pos(r) to k to candidates from R which do not assume a one-position in
any other vote from E and assign the zero-positions to the remaining candidates in a
transitivity preserving order. Now, the only candidates that can make more points in
the constructed extension than in E are the candidates occurring in R. More precisely,
a candidate from R can make one point in the extension of v if it makes zero points
in V p \ {v}. Hence, one obtains a winning extension for the reduced instance.

Regarding the running time, for each of the k levels one must check the neighbor-
hood of every candidate in this level. Using some appropriate data structure, one can
classify the at most m candidates per level by iterating once over the neighborhood
(≤ m) of every candidate.

Theorem 9.4. For k-approval, Possible Winner admits a problem kernel with size
bounded by a computable function in k and the “number of partial votes” t.

Proof. The proof combines several reduction rules whose soundness and polynomial
running time has been discussed above. First, apply Rule 9.1 and Rule 9.3 to fix c and
to delete irrelevant candidates. Second, apply Rule 9.4 exhaustively. As a consequence,
it holds that |L0(v)| ≤ tk for every vote v ∈ V p. Third, for every vote v ∈ V p

with |L0(v)| < tk, build up the level digraph and apply Rule 9.6. Now, we argue that
after applying Rule 9.6 to a partial vote v, the number of nonfixed candidates in v is
bounded. More specifically, we show that for every “iteration step” of Rule 9.6 the
number of candidates that remain in the considered level is bounded by a function
depending only on the number of candidates in the previous levels, k, and t. Since
|L0| < tk and one runs through at most k iteration loops, this gives an upper bound
on the number of nonfixed candidates per vote. For 1 ≤ i ≤ k − 1, let fi−1 denote
the number of candidates in

⋃
0≤j≤i−1 Lj . Then, in Li(v), there can be at most

(
fi−1

i

)

candidates with different out-neighborhoods. For every such out-neighborhood, one
keeps at most tk candidates. It follows that the number of “nonfixed” candidates is
bounded in every vote. Since all candidates that are fixed in all votes can be removed
by Rule 9.3 and the linear votes can be replaced according to Lemma 7.1 by a bounded
number of linear votes, the theorem follows.

It directly follows from Theorem 9.4 that Possible Winner for k-approval is
fixed-parameter tractable with respect to the combined parameter (t, k). Although
the given analysis of the kernelization is only of theoretical interest, the described
reduction rules might still be useful in practice. Clearly, it is desirable to improve the
size of the problem kernel, for example, by using termination conditions within the
iteration loops and/or “global” reduction rules that consider more than one vote at a
time. In the following, we employ such a global reduction rule to obtain an improved
bound of the problem kernel size for the important special case of 2-approval voting.
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N(U) N(U1) N(U2)

UG1 : G2U1 U2 U3

Figure 9.3: Illustration of Lemma 9.3. Matching edges are solid and the remaining
edges dashed. The subset G1 consists of U ∪U1∪U2∪U3 where Ui denotes the content
assigned to U in the ith iteration.

Improved problem kernel for 2-approval.

As discussed above, the kernelization as stated for k-approval in general leads to a
polynomial kernel with O(t3) candidates for 2-approval. We make use of the following
lemma to arrive at a polynomial kernel with O(t2) candidates. Note that similar
arguments are used in several works, see [55, 171]. Hence, our contribution is mainly
to come up with an appropriate modeling allowing for the application of the following
lemma to a voting problem.

Lemma 9.3. For a bipartite graph (G∪H, F ) with maximum matching M , there is a
partition of G into G1 ⊎ G2, such that the following holds. First, all neighbors of G1

are part of M . Second, every vertex from G2 has a matching neighbor outside N(G1).

Since we are not aware of an explicit statement of the form as given by Lemma 9.3,
we provide a proof.

Proof. Construct a partition of G as follows (see Figure 9.3 for an example). Start
with empty vertex set G1. Let U denote the set of unmatched vertices in G. Repeat
until N(U) \ (N(G1) ∩ N(U)) is empty (that is, until G1 is remains unchanged):

• Add U to G1.

• Let U ′ be the set containing the matching neighbors from N(U).

• Set U := U ′.

Finally, add U to G1. The set G2 consists of all remaining vertices from G, that
is, G2 := G\G1. We show by contradiction that all neighbors of G1 must be matching
vertices. Let Ui denote the set of vertices assigned to U in the ith iteration of the
repeat loop and assume that there is a vertex ui ∈ Ui which has a nonmatching
neighbor h. By construction, there must be a path from a vertex u ∈ U to ui such
that every second edge is in M . Clearly, this path has length 2i and contains i
matching edges. Changing M by replacing all matching edges in the considered path
by the nonmatching edges from this path and by adding the edge between ui and its
unmatched neighbor h results in a matching of size |M | + 1, a contradiction.
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By construction there cannot be a matching edge from a vertex from N(G1) to
a vertex in G2 and every vertex in G2 must have a matching neighbor. Hence, the
second part of the lemma follows.

In the following, we assume that Rule 9.1 and Rule 9.3 have been applied. To state
our new reduction rule, we define a bipartite graph (G∪H, F ) as follows. For a partial
profile with partial votes V p, let V ′ := {v′ ∈ V p : |L0(v

′)| < 2t}. For every v′i ∈ V ′,
for 1 ≤ j ≤ |L0(v

′
i)|, add a vertex gj

i to G. Intuitively, for every candidate that can
take a first position in v′i there is a corresponding vertex in G. If a candidate can take
the first position in several votes, then there are several vertices corresponding to this
candidate. The vertex set H contains one vertex for every candidate from

(
⋃

v′∈V ′

L1(v
′)) \ (

⋃

v′∈V ′

L0(v
′)).

There is an edge between gj
i ∈ G and h ∈ H if setting the candidate corresponding

to h to the second position in v′i shifts the candidate corresponding to gj
i to the first

position. Now, we can state the following.

Rule 9.7. Compute a maximum matching M in (G ∪ H, F ). Fix the candidates
corresponding to the nonmatched vertices in H as bad as possible in every vote from V ′.

Lemma 9.4. Rule 9.7 is sound and can be carried out in O(nm2 + mt3) time.

Proof. A winning extension for an instance reduced with respect to Rule 9.7 is also a
winning extension for an unreduced instance. Now, we show the other direction. Given
a winning extension E for an unreduced instance, we construct a winning extension Er

for a reduced instance. Since Rule 9.7 does not fix any candidate which can take the
first position in at least one vote, the first positions in Er can be assumed by the same
candidates as in E. It remains to fix the second positions without beating c. For every
vote vi, let ge

i denote the candidate that takes the first position in vi in E. For the
corresponding vertex ge

i , distinguish two cases:

1. ge
i ∈ G1. In this case, none of the neighbors of ge

i have been fixed and, thus, the
candidate which takes the second position in vi in E can also take the second
position Er.

2. ge
i ∈ G2. In this case, assign the candidate corresponding to the matching

neighbor from ge
i to the second position.

Now, it is not to hard to see that c wins in Er: The only candidates that possibly
make more points in Er than in E are the candidates corresponding to the matching
neighbors of vertices from G2. Due to the matching property, every such candidate
makes one point in at most one vote from V ′. By definition, G only contains ver-
tices such that the corresponding candidates can make at least one point. For all
votes from V p \ V ′ one can easily find a winning extension which does not assign the
“matching-candidates” to one-positions (see Rule 9.3). It follows that c also wins in
the extension Er.

To show the running time, we first consider the size of the constructed bidirected
graph (G ∪ H, F ). The set G contains for every partial vote v a vertex for every
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candidate from L0(v) if |L0(v)| < 2t. Hence, |G| < 2t2. An upper bound for H is
provided by the total number of candidates m. Since every candidate from H can shift
at most one candidate per partial vote, one obtains |F | < mt. Clearly, (G ∪ H, F )
can be build in O(nm2) time and since a maximum bipartite matching can be found
in O(|F | · |G ∪ H |) time [66] the claimed running time follows.

Bounding the size of candidates in level 0 by Rule 9.4 and the (remaining) candi-
dates in level 1 by Rule 9.7 one arrives at the following.

Theorem 9.5. For 2-approval with t partial votes, Possible Winner admits a poly-
nomial kernel with at most 4t2 candidates.

Proof. The kernelization algorithm combines different reduction rules whose soundness
and polynomial running time is either obvious or has been shown before (Lemma 9.4).
As a first step of data reduction apply Rule 9.1 and Rule 9.3. Then, c is fixed and all
remaining nonfixed candidates can make at least one point in the remaining votes.
Now, by applying Rule 9.4 one achieves that |L0| ≤ 2t for every vote and thus
|⋃v∈V L0(v)| ≤ 2t2. Next, apply Rule 9.7. Then, the total number of nonfixed
candidates from

⋃
v∈V L1(v) equals the size of a maximum matching in the bipartite

auxiliary graph which can be at most |G|. Since for every vote one adds less than 2t
candidates to G, one obtains an upper bound of 2t2 for |⋃v∈V L1(v)| as well. Hence,
by deleting all candidates that are fixed at zero-positions in all votes by Rule 9.3
(except the distinguished candidate c), one ends up with an instance of at most 4t2

candidates. Finally, the linear votes can be replaced according to Lemma 7.1.

9.2.2 Kernel lower bound

In the previous subsection, we provided a kernel of super-exponential size with respect
to (t, k) for Possible Winner under k-approval. Here, we complement this result by
showing that for k-approval, Possible Winner cannot have a polynomial kernel with
respect to (t, k) under some reasonable assumptions from classical complexity theory.
To this end, we apply a method introduced by Bodlaender et al. [35] and Fortnow and
Santhanam [114] which is briefly described in the following.

Definition 9.1. [35] A composition algorithm for a parameterized problem L ⊆ Σ∗×N
is an algorithm that receives as input a sequence ((x1, p), . . . , (xq, p)) with (xi, p) ∈
Σ∗ × N for each 1 ≤ i ≤ q, uses time polynomial in

∑q
i=1 |xi| + p, and outputs

(y, p′) ∈ Σ∗ ×N with

• (y, p′) ∈ L ⇔ (xi, p) ∈ L for some 1 ≤ i ≤ q and

• p′ is polynomial in p.

A parameterized problem is compositional if there is a composition algorithm for it.
Note that this definition directly extends to parameters that are constant-size tuples
of integers. For a parameterized problem L, the unparameterized version Lu is the
language {x#1k | (x, k) ∈ L} where 1 is an arbitrary fixed letter in Σ and # /∈ Σ.

Theorem 9.6. [35, 114] Let L be a compositional parameterized problem whose un-
parameterized version is NP-complete. Then, unless coNP ⊆ NP / poly, there is no
polynomial kernel for L.



9.2 Fixed number of one-positions 159

The assumption that coNP * NP / poly is supported by a series of papers showing
the collapse of the polynomial hierarchy to different levels: Karp and Lipton [141]
showed that coNP ⊆ NP / poly implies that the polynomial hierarchy collapses to the

third level. This has been strengthed to an collapse to ZPPNPNP

[151]. A further
substantial improvement has been provided by Cai et al. [49] showing that coNP ⊆
NP / poly already implies a collapse to SNP

2 .

For Possible Winner parameterized with respect to (t, k), it is easy to see that
the unparameterized version is NP-complete as well. Hence, the main work to apply
Theorem 9.6 is to achieve a composition algorithm. Composition algorithms have been
provided for several fundamental combinatorial problems, see for example [36, 73].
In particular, Dom et al. [73] introduced a general framework to build composition
algorithms employing so-called “identifiers”. One of the necessary conditions to apply
this framework, is the existence of an algorithm running in 2pγ · poly time for the
considered parameter p and a fixed constant γ. Considering the combined parameter
“number of ones” k and “number of partial votes” t for Possible Winner under
k-approval, there is no known algorithm running in 2(tk)γ ·poly time. Hence, we apply
the following overall strategy (which might be also useful for other problems).

Overall strategy. We employ a proof by contradiction. Assume that there is a
polynomial kernel with respect to (t, k). Then, since for Possible Winner there is
an obvious brute-force algorithm running in mtk ·poly(n, m) time for m candidates and
n votes, there must be an Algorithm S with running time poly(t, k)tk · poly(n, m) <
2(tk)γ ·poly(n, m) for an appropriate constant γ. In the next paragraph, we use the ex-
istence of Algorithm S to design a composition algorithm for the combined parameter
(t, k). Since it is easy to verify that the unparameterized version of Possible Winner
is NP-complete, it follows from Theorem 9.6 that unless coNP ⊆ NP / poly there is
no polynomial kernel with respect to (t, k), a contradiction under the assumption that
coNP * NP / poly. Altogether, it remains to give a composition algorithm.

Composition algorithm. Consider a sequence ((x1, (t, k)), . . . , (xq, (t, k))) of q Pos-
sible Winner instances for k-approval. To simplify the construction, we make two
assumptions. First, we assume that there is no “obvious no-instance”, that is, an
instance in which a candidate c′ is not beaten by c even if c′ makes zero points in
all of the partial votes. This does not constitute any restriction since such instances
can be found and removed in time polynomial in

∑q
i=1 |xi|. Second, we assume that

for xj , 1 ≤ j ≤ q, within the partial votes the distinguished candidate makes zero
points in every extension. Since it follows from the construction used in Lemma 7.3
that the unparameterized version of the problem remains NP-complete for this case,
this assumption leads to a nonexistence result for this special case and thus also for
the general case.

The overall structure of the composition algorithm is described as follows. If q >
2(tk)γ

for γ as specified for Algorithm S, the composition algorithm applies S to every
instance. This can be done within the running time bound required by Definition 9.1.
Hence, in the following, we assume that the number of instances is at most 2(tk)γ

. As
suggested by Dom et al. [73], this can be used to assign an “identifier” of sufficiently
small size to every instance. Basically, the identifiers, which will be realized by specific
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sets of candidates, rely on the binary representation of the numbers from {1, . . . , q}.
The size of an identifier will be linear in s := ⌈log q⌉ which is polynomial in the
combined parameter (t, k) since q ≤ 2(tk)γ

.

Now, we provide a composition algorithm for the case that q ≤ 2(tk)γ

. Compose
the sequence of instances to one big instance

(X, (3s + 4, 2t)) with X = (C, V l ∪ V p, c)

as follows. For 1 ≤ i ≤ q, let xi be (Ci, V
l
i ∪ V p

i , ci). Then,

C :=
⊎

1≤i≤q

(Ci \ {ci}) ⊎ {c} ⊎ D ⊎ Z ⊎ A ⊎ B

with

• D := {d0
0, . . . , d

0
s} ∪ {d1

0, . . . , d
1
s},

• Z :=
⋃

1≤j≤t Zj with Zj := {z0
h,j | 0 ≤ h ≤ s} ∪ {z1

h,j | 0 ≤ h ≤ s},
• A := {a1, . . . , aq},
• and a set B with |B| := 2s + 3 − k.

The candidates from D and Z will be used as identifiers for the different instances.
More specifically, every instance xi is uniquely identified by the binary code of the
integer i = b0 · 20 + b1 · 21 + · · · + bs · 2s with bh ∈ {0, 1} leading to the following
definition.

Definition 9.2. A subset Di ⊂ D identifies xi when d1
h ∈ Di if and only if bh = 1

and d0
h ∈ Di if and only if bh = 0.

Let Di := D\Di. Similarly, for every 1 ≤ j ≤ t, the set Zi,j denotes the candidates
from Zj that identify i, that is,

Zi,j := {z0
h,j | h ∈ {0, . . . , s} and bh = 0} ∪ {z1

h,j | h ∈ {0, . . . , s} and bh = 1}.

Let Zi,j := Zj \ Zi,j denote the remaining candidates from Zj .

The set of partial votes V p consists of two subsets V p
1 and V p

2 , both containing t
partial votes. The basic idea is that a winning extension of V p

1 “selects” an instance xi

and there is a winning extension for xi if and only if V p
2 can be extended such that c

wins. The set V p
1 contains the vote

{Zi,1 ∪ Di ∪ Zi,t ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪ A ≻ C \ (D ∪ Z ∪ A),

meaning that the vote contains the constraints Zi,1 ∪ Di ∪ Zi,t ≻ ai for every i.
Furthermore, for every j ∈ {2, . . . , t}, the set V p

1 contains the vote

{Zi,j ∪ Di ∪ Zi,j−1 ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪ A ≻ C \ (D ∪ Z ∪ A).

The set V p
2 consists of the partial votes v1, . . . , vt. Every vote vj ∈ V p

2 “composes”

the votes vj
i for i ∈ {1, . . . , q} where vj

i denotes the jth vote from instance xi after
deleting ci. Then, for j ∈ {1, . . . , t}, the vote vj is

B ≻ (C\B), {vj
i | 1 ≤ i ≤ q}, {Di ≻ Ci\{ci} | 1 ≤ i ≤ q}, C\(A∪Z∪{c}) ≻ A∪Z∪{c}.

Using Lemma 7.1, we construct a set Vl of linear votes polynomial in |C| and |V p|
such that the following hold.
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V p
1 : Zw,1 > Dw > Zw,t > aw > C \ (Zw,1 ∪ Dw ∪ Zw,t)

Zw,j > Dw > Zw,j−1 > aw > C \ (Zw,j ∪ Dw ∪ Zw,j−1) for 2 ≤ j ≤ t
V p

2 : B > Dw > wj > C \ (B ∪ Dw ∪ (Cw \ {cw})) for 1 ≤ j ≤ t

Figure 9.4: Extension for X in which c wins. For a winning extension E(xw) =
w′

1, . . . , w
′
t of xw, let wj denotes the linear order given by w′

j restricted to the candidates
from Cw \ {c}. The remaining subsets of candidates are fixed in any transitivity
preserving order.

• For i ∈ {1, . . . , q}, the maximum partial score of every candidate c′ ∈ Ci \ {ci}
equals the maximum partial score of c′ in xi.

• For every candidate from A ∪ D ∪ B, the maximum partial score is t.

• For every candidate from Z, the maximum partial score is one.

Lemma 9.5. The constructed instanced X is a yes-instance for (3s + 4)-approval if
and only if there is an i ∈ {1, . . . , q} such that xi is a yes-instance for k-approval.

Proof. “⇐”: Assume there is an instance xw for which c is a possible winner. Let
E(xw) = w1, . . . , wt denote a winning extension for xw and recall that Cw denotes
the set of candidates from xw. Then, extend the partial votes from X as indicated
in Figure 9.4. Since there are 3s + 4 one-positions per vote, |Di| = s + 1, and |B| =
2s+3−k, in every extended vote from V p

2 , there are k one-positions that are assumed
by candidates from Cw \{cw}. Because of this and due to the equivalence of the partial
orders in the corresponding votes, the candidates from Cw \ {cw} make exactly the
same number of points in the extension for X as in E(xw) and are beaten by c. The
remaining “instance candidates”, namely,

⋃
i6=w Ci\{ci} do not make any points in the

given extension and thus are beaten by c. The candidates from D can be partitioned
into the two disjoint subsets Dw and Dw. The candidates from Dw make t points in V p

2

and zero points in V p
1 whereas the candidates from Dw make zero points in V p

2 and t
points in V p

1 . Thus, all candidates from D are beaten by c. Regarding the candidates
from Zj, every candidate appears either in Zw,j or in Zw,j and thus makes exactly
one point and is beaten by c. Clearly, all candidates from A∪B are also beaten by c.
Hence, c is a possible winner for X .

Finally, we briefly discuss that fixing the order within the given subsets of can-
didates in Figure 9.4 can be done without violating the restriction provided by the
partial orders. For vj in V p

2 such an extension is

B > Dw > wj > Dw >
⋃

i6=j

Ci \ {ci} > A > Z > {c}

where, the candidates from B, Dw, Dw, A, and Z can be fixed in an arbitrary order
since there are not any internal constraints in vj . The remaining candidates from⋃

i6=w Ci \ {ci} can be ordered such that Ci \ {ci} > Cs \ {cs} for i > s, i 6= w, and
s 6= w and within Ci \ {ci}, for every i 6= w, the candidates can be ordered according
to any extension of vj

i . A “complete” extension for the votes from V p
1 can be obtained

similarly.
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“⇒”: Consider an extension of X in which c wins. First, by proving the following
claim, we show that within V p

1 one instance xw must be “selected”.

Claim: There must be a w ∈ {1, . . . , q} such that every candidate from Dw is assigned
to a one-position in every extended vote from V p

1 whereas every candidate from Dw

makes zero points in V p
1 .

Proof of Claim: Since there are 3s+4 one-positions per vote, in V p
1 there are altogether

3st+4t one-positions that must be filled. The candidates from Z can take at most 2st+
2t of them since |Z| = 2t(s + 1) and each candidate from Z can make at most one
point without beating c. By using some argumentation including the votes from V p

2 ,
we can show that the candidates from D can take at most st + t of the one-positions
in V p

1 in a winning extension: In every vote from V p
2 , by construction, the first 2s +

3 − k positions are assumed by candidates from B and the remaining s + k + 1 one-
positions can only be assigned to candidates from

⋃
1≤i≤q Ci \ {ci} ∪ D. Since every

candidate from
⋃

1≤i≤q Ci \{ci} shifts s+1 candidates from D to the left by assuming
a one-position, it directly follows that the total number of one-positions assumed by
candidates from D within V p

2 is at least t(s + 1). Since |D| = 2s + 2 and every
candidate from D can make at most t points, the candidates from D can take at
most t(2s + 2) − t(s + 1) = st + t of the one-positions in V p

1 in a winning extension.

Summarizing, in a winning extension, in V p
1 at most 3st + 3t one-positions can be

assigned to candidates from D ∪ Z. Hence, at least t one-positions must be assigned
to candidates from A. Furthermore, a candidate ai from A shifts 3s + 3 candidates
from D ∪ Z to one-positions if ai takes a one-position. Thus, at most one candidate
from A can take a one-position in an extended vote. It follows that in every vote vj ∈
V p

2 exactly one candidate ai from A must take a one position thereby shifting the
candidates from Zi,j ∪ Di ∪ Zi,j−1 (or Zi,1 ∪ Di ∪ Zi,t for j = 1) to one-positions.

Now, we show for 1 ≤ j ≤ t − 1 that if the candidate aw ∈ A takes a one-position
in vj , then aw also takes a one-position in vj+1. Assume that in vj , aw and thus also
the candidates from Zw,j take a one-position. As discussed above, in vj+1 a candidate
from A must shift s+1 further candidates from Zj . Since every candidate from Z can
make at most one point, the set of these candidates must be disjoint from Zw,j. The
only set of candidates fulfilling this is Zw,j and is shifted only by aw. Analogously, if
aw takes a one-position in vt, then it also must take a one-position in v1 because of
the candidates from Zt. This finishes the proof of the Claim.

Now, as direct consequence of the Claim, within V p
2 each candidate from Dw can

still make t points whereas the candidates from Dw cannot make any points without
beating c. Hence, in every vote from V p

2 , we can only set candidates from Cw to the
one-positions since setting any other candidates would shift a candidate from Dw. This
means that one can extend V p

2 such that, in every vote, k one-positions are assigned
to candidates from Cw \ {cw} without beating c. Since the partial relations between
the candidates in Cw \ {cw} are the same in the ith vote of xw and X and c makes
zero points in both cases, a winning extension for X directly gives a winning extension
for xw.

By using Lemma 9.5 it is easy to verify that the given composition algorithm
fulfills all requirements of Definition 9.1. Hence, Theorem 9.7 follows from our overall
strategy.
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Table 9.1: Overview of results for Possible Winner under k-approval with t partial votes.
The left column summarizes the results for the combined parameter t and “number of zero-
positions” k′. The right column shows the results with respect to the combined parameter t
and k.

(t,k′) (t,k)

polynomial kernel (Theorem 9.1)xx superexponential kernel (Theorem 9.4)
no polynomial kernel (Theorem 9.7)
2-approval: polynomial kernel with O(t2)

candidates (Theorem 9.5)

dyn. prog. O(2tk′ · (tk′)k′ · nm2) ?
(Theorem 9.3)

search tree O(2t2k′ · nm2) ?
(Proposition 9.1)

Theorem 9.7. For k-approval, Possible Winner parameterized by the combined
parameter k and “number of partial votes” does not admit a polynomial problem kernel
unless NP ⊆ coNP / poly.

9.3 Conclusion

Our main results are summarized in Table 9.1. Several concrete question arise directly
from the results in this chapter.

• Is there a polynomial problem kernel with a linear number of candidates with
respect to the “number of partial votes” for Possible Winner for 2-approval?

• For Possible Winner under k-approval, we provided a kernel of superexpo-
nential size and showed that presumably no polynomial kernel exists. Clearly,
this leaves room for improving the kernel size to some “reasonable” exponential
or even subexponential function.

• Are there efficient fixed-parameter algorithms with respect to t when k is con-
stant for Possible Winner under k-approval. In particular, can there be
obtained “improved” problem kernels in a similar style as the kernel with a
quadratic number of candidates for 2-approval for any constant k > 2?

• Can our results be extended to other scoring rules? For example, consider the
scoring rule in which there are k candidates receiving two points and k′ candi-
dates getting zero points while every remaining candidate gets one point. Intu-
itively, such rules allow not only to specify some favorites but also to “reject”
a set of most disliked candidates. Recall that Possible Winner for this rule
is NP-hard for k = k′ = 1 [14] as well as for all other values of k and k′ of at
least one [19] (see Chapter 7). This leads to the question whether this problem
is fixed-parameter tractable with respect to (t, k + k′).





Chapter 10
Conclusion Part II

The second part of the thesis provided a multivariate complexity study of Possible
Winner under scoring rules from various perspectives. Summarizing, Chapter 7 con-
tains a dichotomy result (also based on [14, 194]) which explains the influence of the
scoring rule to the computational complexity of Possible Winner. Herein, the most
technical part was the development of many-one reductions for scoring rules “charting
the border to polynomial-time solvability”. For example, we showed NP-hardness for
2-approval whereas plurality (1-approval) can be solved in polynomial time. Chapter 8
gives a parameterized complexity analysis with respect to several single parameteriza-
tions. The main technical contribution is the proof of the NP-hardness for Possible
Winner for Borda in case of three partial votes. We also promoted a new line of
research by discussing several parameterizations measuring the amount of incomplete-
ness that might be relevant for future research (see Section 8.3 for concrete questions).
Finally, in Chapter 9, for Possible Winner under k-approval voting, we used ker-
nelization to show fixed-parameter tractability for combined parameterizations. This
provides one of the few examples for kernelization for voting problems.

We conclude with several remarks, which put our contributions into the context of
known results or discuss directions of future research.

Sets of winners. Our results have been stated for the unique-winner case and di-
rectly transfer to the cowinner case where, for scoring rules, one allows that several
candidates get the maximum score and all of them win. A natural model for multiwin-
ner elections under scoring rules can be described as follows. One has given a positive
integer s specifying the number of winners, for example, the size of a board, and the s
candidates with most points win. If such a set cannot be determined because there are
several candidates with the same score, then one can apply an appropriate tie-breaking
rule depending on the situation. Formally, this leads to the following problem.

Possible s-Multiwinner
Given: A voting correspondence returning s winners, a set C of candidates,
a set of partial votes V on C, and a distinguished candidate c.
Question: Is there an extension of V such that c is part of the set of
winners?
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Herein, a voting correspondence denotes a function from a multiset of votes to
a subset of s candidates. We briefly discuss how our results apply to the extended
setting.

First, all the negative results from this part of the thesis can be adapted in a
straightforward way. To this end, in the corresponding hardness reductions one can
add s − 1 candidates that are fixed at “irrelevant” positions in the partial votes and
that always must be part of the winner set. In principle, the composition algorithm
(Subsection 9.2.2) can also be applied to this special case since it is NP-complete.
However, herein one first needs to investigate whether the corresponding problem is
fixed-parameter tractable since for the kernelization results from this chapter it is not
immediately clear that they carry over to the multiwinner setting.

Second, regarding the algorithmic results, the general search tree algorithm pro-
vided in Section 8.3 to show fixed-parameter tractability with respect to “the total
number of undetermined pairs” directly works for the extended scenario. This is easy
to verify since basically the algorithm enumerates all possible extensions. For the pa-
rameter “number of candidates” the fixed-parameter tractability result based on an
ILP-formulation (see Section 8.1) also can be transferred to the considered multiwinner
setting. As a first step one can branch into all size-s candidate subsets containing the
distinguished candidate and then formulate an ILP to check if the considered subset
is a winner set.

For k-approval, it seems natural to search for a winning set of size k, that is, to
consider the Possible k-Multiwinner problem, leading to the following question.

Does the Possible k-Multiwinner problem under k-approval admit (poly-
nomial) problem kernels with respect to the combined parameters (t, k′)
and (t, k)?

Moreover, the investigation of Possible Winner for other multiwinner settings
and voting systems is clearly of interest.

Special cases and generalizations. Possible Winner is a fundamental com-
binatorial problem. Hence, there are many relevant variations, generalizations, and
special cases, some of them already studied in the literature.

Let us start with a discussion about special cases “making the problem easier”.
Besides a huge amount of work on the famous Manipulation problem (see also Sub-
section 2.2.2), in a very recent work Chevaleyre et al. [54] investigated the setting of
adding s candidates. Formally, this is the variant of Possible Winner where one has
complete information about the relative orders of all but s candidates and no infor-
mation about these s candidates at all. In contrast to Possible Winner in general,
this variant becomes polynomial-time solvable for Borda. However, for 4-approval
and adding three candidates the problem is NP-complete [54]. The computational
complexity of some of the remaining cases, like 2-approval and adding more than one
candidate, is still open.

One way to get potentially tractable special cases of Possible Winner is to
restrict the structure of the input votes. We briefly discuss three such possibilities.

• Xia and Conitzer [194] suggested to investigate the Possible Winner problem
for partial votes that must be submitted in a restricted form, more specifically,
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corresponding to CP-nets. In this case the negative results do not transfer im-
mediately [194]. Hence it seems a challenging task to identify scenarios for which
CP-nets help to design efficient algorithms.

• Another reasonable restriction is to investigate “single-peaked preferences” [33]
as suggested by Walsh [193] and further investigated by Faliszewski et al. [100]
and very recently by Brandt et al. [41]. Roughly speaking, in case of single-
peaked preferences, there is a linear order of the candidates and every voter has
a designated “peak” in this order such that the voter’s preference for a candidate
decreases with the distance from its peak. For weighted votes, Walsh [193] pro-
vided evidence that for Possible Winner for some voting systems (e.g., STV)
single-peaked preferences still lead to computational hardness. In contrast, Fal-
iszewski et al. [100] showed that for some voting systems (e.g., k-approval) for
Manipulation the NP-hardness evaporates. For the case of Possible Winner
and unweighted votes (as studied in this work), we are not aware of any results
in these directions.

• It seems reasonable to consider restrictions that make sense for specific voting
systems. For example, to determine a winner for k-approval under complete
information it is sufficient for a voter to partition the candidates into a “winner
set” and a “looser set”. Under incomplete information, this could be extended
by additionally allowing for “a set of undecided” candidates. This model seems
likely to drastically decrease the computational complexity (which still needs to
be investigated) and still might reflect some natural situations.1 Note that this
problem is also very similar to a setting from Faliszewski [93] in “nonuniform
bribery”: This bribery variant allows to move points at a given price between
voters. Then, given some “moves of points” the prize zero, leads to the scenario
described above. Further identifications of such restricted input structures seem
to be of general interest.

We end with generalizations of Possible Winner. Regarding concrete prob-
lems, Swap Bribery [80] can be considered to “subsume” Possible Winner. Swap
Bribery is a variant of Bribery (see also [93, 99]) in which an external agent can pay
a voter to change his vote by swapping candidates. Herein, each swap is associated
with a specific price. According to [80, Theorem 2], Possible Winner many-one
reduces to Swap Bribery for every voting rule. Recently, Dorn and Schlotter [74]
provided some fixed-parameter tractability results that show that some of the algo-
rithmic results from this part can be extended to Swap Bribery. In particular, they
present an ILP-formulation showing fixed-parameter tractability with respect to the
“number of candidates” and kernelization results for combined parameters.

Considering generalizations of votes itself, a well-studied scenario is to consider
weighted votes. Here, for all scoring rules except plurality already the Manipulation
problem is NP-hard [129]. Hence, this case clearly deserves a multivariate complexity
analysis aiming at efficient fixed-parameter algorithms.

1In general, this leads to a much less powerful model as the general possible-winner model studied
here. For example, for the case of adding s candidates [54] (see also above), a voter might not be
able to put any candidate into the “winning set” if he has no information about the candidates to
be added although he already has decided about a linear order on all known candidates. In contrast,
the general definition of Possible Winner allows such a voter to state this information.
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Voting systems with NP-hard winner determination. For voting systems in
which the determination of a winner is NP-hard under complete information, Possible
Winner is obviously NP-hard as well. Parameterized algorithmics might offer a way
to tackle Possible Winner for such voting systems. For example, the first part
of this work comprises fixed-parameter algorithms for the winner determination in
Kemeny, Dodgson, and Young elections. It is open whether these results carry over to
the Possible Winner problem.

Using social choice properties. An interesting line of research is to settle the
computational complexity of “classes” of voting rules classified according to social
choice properties. For example, Pini et al. [178] showed that for all voting systems
fulfilling “monotonicity” and “Independence of Irrelevant Alternatives (IIA)”, Possi-
ble Winner can be solved in polynomial time (even for weighted votes and either
constant or unbounded number of candidates). Similar results for other social choice
properties would be clearly desirable.

Counting winning extensions. Recent work [7] proposes a quantitative approach
which instead of just investigating the existence of a winning extension counts the
number of extensions leading to a designated candidate’s victory. To this end, it
introduces the counting version of Possible Winner denoted as #-Possible Win-
ner. This approach allows to compare two candidates that are “possible winners”.
We briefly summarize the results and state some open questions. On the negative
side, one encounters #P-hardness results for #-Possible Winner even for plurality
and veto. On the positive side, there is a simple sampling algorithm with provable
performance guarantee. More specifically, there is a randomized polynomial-time ap-
proximation algorithm for the problem of computing the proportion of extensions of a
profile where the distinguished candidate wins. For #-Manipulation for k-approval,
the work provides a dynamic programming algorithm running in polynomial time if k
is a constant. Herein, the fixed-parameter tractability with respect to k is still open.
It is also open whether there is a (natural) voting rule for which Manipulation is
solvable in polynomial time whereas #-Manipulation becomes #P-hard. Another
interesting question regards fixed-parameter tractability with respect to the “num-
ber of candidates”. This directly leads to the following question of general interest.
Does Lenstra’s results (see Subsection 1.3.3) hold or can it be modified to work for
counting optimal solutions. Note that although “counting problems” are important
in general, there are only few works on parameterized algorithmics in this direction.
More precisely, two works [165, 112] focus on extending the framework of parameter-
ized complexity to counting problems and several works are concerned with finding
enumeration algorithms running in “fpt-time”, for example [67, 109, 174].

Final remarks. Whereas our main focus is on worst-case analysis and exact al-
gorithms, there are several interesting and challenging lines of research regarding
average-case analysis as well as randomized and approximation algorithms. Clearly,
a combination of such approaches with a multivariate complexity analysis is of great
interest. Some “easy-to-state” tasks in these directions regard the development of ap-
proximation algorithms for restricted scenarios. For example, can one obtain a better
approximation guarantee when having a small amount of incompleteness measured by
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one of the parameterizations from Section 8.3.
Finally, multivariate algorithmics does not restrict “what” can be chosen as a

parameter and it seems impossible to provide a complete “list of parameterizations” for
a problem. Hence, the identification of (new) meaningful parameterizations is always
of interest. However, in general it is not clear how to measure the “significance” of a
specific parameter. This leads the way to data-driven algorithmics. Here, one analyzes
typical properties of real-world data in hope to identify data-specific parameterizations
with small parameter values.





Part III

Candidate Control

There are different ways for an external agent to influence the outcome of
an election. We concentrate on “control” by adding or deleting candidates.
We investigate the parameterized complexity of various control problems
for different voting systems. To this end, we introduce natural digraph
problems that may be of independent interest. They help in determining
the parameterized complexity of control for different voting systems includ-
ing Llull, Copeland, and plurality voting. Devising several parameterized
reductions, we settle the parameterized complexity of the digraph and con-
trol problems with respect to natural parameters such as adding/deleting
a bounded number of candidates or having few voters.





Chapter 11
Candidate control for Copeland and
plurality

To control an election, an external agent, misleadingly called the chair in the litera-
ture, can change the voting procedure to reach certain goals. For example, a typical
question is whether the chair can make his/her favorite candidate a winner by deleting
a certain number of candidates. Traditionally, considered types of control are adding,
deleting, or partitioning candidates or voters [13]. Furthermore, one distinguishes
between constructive control (CC), where the chair aims at making a distinguished
candidate a winner, and destructive control (DC), that is, the chair wants to prevent
a distinguished candidate from winning [131].

The investigation of the computational complexity of control problems goes back to
Bartholdi, Tovey and Trick [13]. They defined a voting system to be immune against
a type of control if it is never possible for the chair to change a non-winner candidate
to become a winner candidate, otherwise it is susceptible for the considered kind of
control. Unfortunately, commonly used voting systems are susceptible to some types
of control. For example, plurality voting is even susceptible to all standard types
of control. Thus, Bartholdi et al. [13] suggested computational hardness as a favor-
able property of voting systems if immunity is not guaranteed. Here, one classically
distinguishes between resistant, that means, controlling the election is NP-hard, and
vulnerable, that is, controlling the election can be accomplished in polynomial time.
Note that the term “resistant” may be misleading in the sense that it does only imply
hardness for a worst-case scenario. Nevertheless, it seems interesting to investigate
whether there are efficient strategies for control in general.

A series of publications [13, 99, 131] provides a complete picture of the classical
computational complexity for eleven basic types of control for the standard voting
systems approval, plurality, Condorcet, and Copelandα for all rational values of α
in the range of [0, 1]. Additionally, Hemaspaandra et al. [128] showed that hybrid
elections can lead to stronger resistance results for electoral control. Further work [88,
89, 91, 90] considers control for two specific hybrid systems combining approval voting
and systems based on linear preferences. Liu et al. [158] considered the parameterized
complexity of some types of control for maximin. Recently, Faliszewski et al. [95]
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introduced the extended scenario of “multimode control attacks”, that is, the chair
is allowed to use various kinds of attacks like deleting candidates and adding votes
simultaneously.

We focus on candidate control, that is, either deleting or adding candidates for
plurality and Copelandα voting described in the following.1

Copelandα voting for rational values of α in the range of [0, 1] is based on pairwise
comparisons between candidates: A candidate wins the pairwise head-to-head contest
against an other candidate if it is better positioned in more than half of the votes.
The winner of a head-to-head contest is awarded one point and the loser receives no
point. If two candidates are tied, both candidates get α points. A Copelandα winner
is a candidate with the highest score. Faliszewski et al. [97] devoted their paper to
the two important special cases α = 0, denoted as Copeland, and α = 1, denoted
as Llull. Copelandα elections are used in various settings. For instance, in sport
tournaments, like chess or in football leagues, the teams or players can be considered
as candidates. The value of α depends on the type of sport, for example, α = 1/3
for the German soccer league. Throughout this chapter, α always denotes a rational
number within [0, 1].

We briefly summarize known results about the computational complexity of can-
didate control for plurality and Copelandα. Copelandα voting is resistant to construc-
tive candidate control and vulnerable for destructive candidate control [99]. Plurality
voting is resistant to constructive and destructive control by adding and by delet-
ing candidates [13, 131]. Regarding parameterized complexity, Faliszewski et al. [99]
considered control of Copelandα voting with respect to the parameters “number of
candidates” and “number of votes” for constructive and destructive control in the
eleven standard control scenarios. For control by adding and deleting candidates they
obtained fixed-parameter tractability with respect to the parameter “number of can-
didates” for all considered scenarios. The parameterized complexity with respect to
the parameter “number of votes” was left open.

In this chapter, we investigate the parameterized complexity with respect to the
natural problem-specific parameterizations “number of added/deleted candidates”.
Since it seems plausible that the chair can add or delete only few candidates without
raising suspicion, the existence of efficient fixed-parameter algorithms for such param-
eters would yield a general control strategy for natural voting scenarios. Note that
the goal of many publications is to show that, if control is not impossible, it is at least
computationally hard (often showing NP-hardness). However, as noted by Conitzer
et al. [65], such hardness results lose relevance if there are efficient fixed-parameter
algorithms for realistic settings. We devise W[1]-hardness or W[2]-hardness results
for most considered settings. A crucial step to obtain these results is to investigate
closely related digraph problems (which might be of interest on their own). In the fol-
lowing section, we introduce these digraph problems and discuss their relations with
the control problems. Then we will provide an overview of our results for all considered
problems and the further organization of this chapter (Subsection 11.1.3).

1We do not include control by partitioning the set of candidates in the definition of the term
“candidate control”.
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11.1 Candidate control and related digraph problems

Before introducing some new digraph problems, we give a formal definition of the
control problems.

11.1.1 Control problems

As in Part II, we only consider the unique-winner case, but all our results can be
easily modified to work for the winner case as well. We focus on control by adding
candidates (AC) or deleting candidates (DC). For all rational α ∈ [0, 1], we can define
the decision problems of constructively controlling a Copelandα election by deleting
and adding candidates as follows:

CC-DC-Copelandα

Given: A set C of candidates, a multiset V of votes over C, a distinguished
candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset C′ ⊆ C of size at most k such that c is the
unique Copelandα winner in the election (V, C\C′)?

CC-AC-Copelandα

Given: Two disjoint sets C, D of candidates, a multiset V of votes over
C ∪ D, a distinguished candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset D′ ⊆ D of size at most k such that c is the
unique Copelandα winner in the election (V, C ∪ D′)?

In general, the first two letters of the name of a problem stand for constructive or de-
structive control (CC/DC). The following two letters stand for the kind of modification
(AC/DC) and are followed by the name of the considered voting system. The control
problems for plurality voting and for destructive control are defined analogously (see
for example [99, 131]).2 Note that, in contrast to the version of Possible Winner
by adding s candidates [54] (see also Section 10), here we have complete information
about the candidates that can be added.

Next, we introduce some digraph problems which are closely related to candidate
control in Copeland and Llull elections.

11.1.2 Digraph problems

A Copeland or Llull election can be depicted by a digraph where the candidates are
represented as vertices and there is an arc from vertex c to vertex d if and only if
the corresponding candidate c defeats the corresponding candidate d in the head-
to-head contest. Obviously, the Copeland score of a candidate equals the outdegree
of the corresponding vertex and, thus, a Copeland winner corresponds to a vertex
with maximum outdegree. The Llull score of a candidate c in an election with m
candidates is m − 1 minus “the number of candidates that beat c in the pairwise
head-to-head contest”. Thus, a Llull winner corresponds to a vertex with minimum
indegree. Naturally, the deletion/addition of a vertex one-to-one corresponds to the

2There is an other version of control by adding candidates [13, 97] in which one asks whether it
is possible to control an election by the addition of an unlimited number of candidates. We do not
consider this version here.
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deletion/addition of a candidate in the election. These observations motivate the
introduction of the following digraph problems.

Max-Outdegree Deletion (MOD)
Given: A digraph D = (W, A), a distinguished vertex wc ∈ W , and an
integer k ≥ 1.
Question: Is there a subset W ′ ⊆ W \ {wc} of size at most k such that wc

is the only vertex that has maximum outdegree in D[W \ W ′]?

Analogously, given a directed graph, a distinguished vertex, and a positive integer k,
Min-Indegree Deletion (MID) asks for a set of at most k vertices whose removal
makes the distinguished vertex to be the only vertex with minimum indegree. We say
that MID correspond to constructive control by deleting candidates for Llull voting
and MOD correspond to constructive control by deleting candidates for Copeland
voting. The problems for adding vertices are defined as follows:

Min-Indegree Addition (MIA)
Given: A digraph D = (W, A) with vertex set W = C ⊎N , a distinguished
vertex c ∈ C, and an integer k ≥ 1.
Question: Is there a subset N ′ ⊆ N of at most k vertices such that c is
the only vertex of minimum indegree in D[C ∪ N ′]?

Max-Outdegree Addition (MOA)
Given: A digraph D = (W, A) with vertex set W = C ⊎N , a distinguished
vertex c ∈ C, and an integer k ≥ 1.
Question: Is there a subset N ′ ⊆ N of at most k vertices such that c is
the only vertex of maximum outdegree in D[C ∪ N ′]?

For the addition problems we have that MIA corresponds to constructive control
by adding candidates for Llull voting and MOA corresponds to constructive control
by adding candidates for Copeland voting.

Since the deletion/addition of a candidate one-to-one corresponds to the dele-
tion/addition of a vertex, every instance of a control problem can be transformed
to an equivalent instance of the corresponding digraph problem. More specifically, a
distinguished candidate can become the only winner of a Copeland election by delet-
ing/adding k candidates if and only if the corresponding vertex can become the only
vertex with maximum outdegree by deleting/adding k vertices in the corresponding
digraph. In the same way, a distinguished candidate can become the only winner of a
Llull election by deleting/adding k candidates if and only if the corresponding vertex
can become the only vertex with minimum indegree by deleting/adding k vertices.
This directly provides parameterized reductions from the control problems to the cor-
responding digraph problems with respect to the parameters number of deleted/added
candidates and vertices, respectively. In the following, we show how the opposite re-
ductions can be obtained.

A digraph D = (W, A) is encoded in an election (V, C) if the outcomes of the
pairwise head-to-head contests reflect the arcs of the digraphs. That is, the candidate
set is given by C := {ci | wi ∈ W} and candidate ci defeats candidate cj if and
only if (wi, wj) ∈ D. An election encoding a given digraph can be constructed in
polynomial time [166]: For every arc (wi, wj) ∈ D, add the two votes ci > cj > C′
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Table 11.1: Parameterized complexity of Max-Outdegree Deletion (MOD) and Min-
Indegree Deletion (MID). W[2]-membership is given in Theorem 11.6, the other results
are from 1Theorem 11.1, 2Proposition 11.2, 3Theorem 11.2, 4Proposition 11.3. Clearly, it
does not make sense to consider tournaments with degree constraints.

parameters # deleted vertices k maximum degree d (k, d)
problems MOD MID MOD MID MOD MID

general digraphs W[2]-c1,3 W[2]-c3 NP-c, d ≥ 31 FPT2 FPT4 FPT2

acyclic digraphs W[2]-c1 P2 NP-c, d ≥ 31 P2 FPT4 P2

tournaments W[2]-c3 W[2]-c3 - - - -

Table 11.2: Results in boldface are new. The results for Copelandα hold for all 0 ≤ α ≤ 1.
The W[2]-hardness results for CC-AC-Plurality and DC-AC-Plurality follow from the NP-
completeness proofs [13, 131]. The polynomial-time (P) results are from [99].

Copelandα plurality
CC DC CC DC

Adding Candidates (AC) W[2]-c P W[2]-h W[2]-h
Deleting Candidates (DC) W[2]-c P W[2]-h W[1]-h

and C′ > ci > cj with C′ := C \ {ci, cj} to V . In these two votes, ci beats cj and all
other pairs of candidates are tied. By this, we have a voting system with 2 · |A| votes
encoding D. The following proposition follows directly.

Proposition 11.1. Max-Outdegree Deletion (Min-Indegree Deletion) and
CC-DC-Copeland (CC-DC-Llull) are FPT-equivalent with respect to the param-
eters “number of deleted vertices” and “number of deleted candidates”, respectively.
Max-Outdegree Addition (Min-Indegree Addition) and CC-AC-Copeland
(CC-AC-Llull) are FPT-equivalent with respect to the parameters “number of added
vertices” and “number of added candidates”, respectively.

Finally, note that in tournaments MOD and MID coincide. Considering this from
the viewpoint of the corresponding voting problems, this is fairly obvious: Copelandα

elections differ only in the way in which ties are evaluated, and, in an election corre-
sponding to a tournament, there is no tie between any pair of candidates.

11.1.3 Contributions and organization

We provide a first study of the newly introduced digraph problems that are closely
related to the considered control problems. In Section 11.2, we investigate the compu-
tational complexity of MOD and MID (as well as MIA and MOA) for several special
graph classes and parameters, providing a differentiated picture of their parameterized
complexity including algorithms and intractability results (see Table 11.1). The main
technical achievement of this section is to show that MOD and MID are W[2]-complete
in tournaments. One interesting observation is that, although MOD and MID seem to
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be very similar, their (parameterized) complexity varies for different graph classes for
several parameterizations (Table 11.1). Some of the considered special cases and pa-
rameterizations of the digraph problems map to realistic voting scenarios with presum-
ably small parameters. Based on these connections and by giving new parameterized
reductions, in Section 11.3, we provide an overview of parameterized hardness results
for control problems with respect to the “number of deleted/added candidates” (Ta-
ble 11.2). Surprisingly, for plurality voting, which can be considered as the “easiest”
voting system in terms of winner evaluation and for which the Manipulation prob-
lem can be solved optimally by a simple greedy strategy [65], all kinds of candidate
control are intractable from this parameterized point of view. The reductions used
for the digraph problems often rely on similar ideas. In contrast, the parameterized
reductions used for plurality voting require new approaches. Regarding the structural
parameter “number of votes”, we answer an open question of Faliszewski et al. [98]
for Llull and Copeland voting by showing that even for a constant number of votes
candidate control remains NP-hard (see Subsection 11.3.2). For this, we use a simple
but elegant method based on the considered digraph problems.

11.2 Parameterized complexity of the digraph prob-
lems

This section is concerned with the parameterized complexity of the four introduced
digraph problems with respect to the parameterizations “number of deleted vertices” k
and “maximum degree” d, for different classes of graphs. Our results for deleting
vertices are summarized in Table 11.1 and the results for adding candidates are given
in Section 11.2.2 (see Table 11.3). The next two subsections give W[2]-hardness and
algorithmic results for the vertex deletion and the vertex addition problems. The
W[2]-membership for all considered problems is discussed at the end of this section.
Note that some of the constructions given in this section are reused in Section 11.3.2.

The following two problems are used for reductions in this section.

Hitting Set (HS)
Given: A subset family F = {F1, F2, . . . , Fm} ⊆ 2S of a base set S =
{s1, s2, . . . , sn} and an integer k ≥ 1.
Question: Is there a subset S′ ⊆ S of size at most k such that for every 1 ≤
i ≤ m we have S′ ∩ Fi 6= ∅?

The set S′ is called a hitting set. The Hitting Set problem is known to be
W[2]-complete [76]. Note that Hitting Set is NP-complete even if every subset has
size two and every element occurs in exactly three subsets [118]. This restriction of
Hitting Set is denoted as 3X-2-Hitting Set.

Independent Set (IS)
Given: An undirected graph G = (U, E) and an integer k ≥ 1.
Question: Is there a subset U ′ ⊆ U of size at least k such that no two
vertices in U ′ are adjacent?

The set U ′ is called an independent set. The Independent Set problem is W[1]-
complete on general graphs [76] and NP-complete even when restricted to graphs with
maximum degree 3 [118]. We call this special case 3d-Independent Set(3d-IS).
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Subsets
F = {F1, F2, . . . , Fm}
over elements =⇒
S = {s1, s2, . . . , sn},
e.g., F1 = {s1, s3},
F2 = {s2, s3}, ...

...

...

......

... ...

s1 s2 s3 sj sn

wc

d1 d2 dx

if sj ∈ Fi

e1 e2 ez

F1 F2 F3 Fi Fm

dout(Fi) = dout(wc)

dummy vertices such that

Figure 11.1: Parameterized reduction from a Hitting Set-instance (left) to an MOD-
instance (right).

11.2.1 Vertex deletion

For Max-Outdegree Deletion we show the following.

Theorem 11.1. Max-Outdegree Deletion is W[2]-hard with respect to the pa-
rameter “number of deleted vertices” in acyclic digraphs and NP-complete in acyclic
digraphs with maximum degree three.

Proof. Given a Hitting Set instance H = (F , S, k) with base set S and subset
family F , we construct the following digraph D = (W, A) (see Fig. 11.1). The vertex
set is given by W := {wc} ∪ WS ∪ WF ∪ Dw ∪ ⋃m

i=1 Di. Herein, wc is the vertex we
would like to become maximum degree vertex. Furthermore, we have a subset-vertex
for every subset and an element-vertex for every element, that is, WF := {F ′

i | Fi ∈ F}
and WS := {s′i | si ∈ S}. The remaining dummy-vertices are specified as follows: Let z
denote the maximum size over all subsets, that is, z := maxi∈{1,2,...,m}|Fi|, then Dw

consists of z vertices (needed as out-neighbors for wc) and for every F ′
i we have a

(possibly empty) set Di which contains z−|Fi| further dummy-vertices. The arc set is
given by A := {wc}×Dw∪⋃m

i=1({F ′
i}×Di)∪AF ,S , where AF ,S contains arcs from the

subset-vertices to the element-vertices as follows: AF ,S :=
⋃m

i=1{F ′
i} × {s′j | sj ∈ Fi}.

Claim: H has a hitting set of size k if and only if vertex wc can become
the only maximum outdegree vertex by deleting k vertices.

“⇒”: Observe that wc and all subset-vertices of WF have outdegree b and all other
vertices have outdegree zero. Hence, given a hitting set S′ ⊆ S, after the deletion
of the corresponding element-vertices, in the resulting graph all subset-vertices with
exception of wc have outdegree at most b − 1.

“⇐”: Given a solution W ′ ⊆ W\{wc} for the MOD-instance. If W ′ contains only
element-vertices of WS , then the corresponding elements constitute a hitting set: In
order to make wc the vertex with maximum outdegree we have to ensure that the
outdegree of every subset-vertex of WF is decreased by one, that is, for every subset-
vertex at least one neighboring element-vertex must be included in the solution. Hence,
it remains to show that we can transform any solution into a solution which consists
solely of element-vertices. To this end, assume that the solution contains a dummy-
vertex d ∈ Di. Deleting d from the graph decreases only the outdegree of F ′

i . Hence,
we can instead delete from the graph an element-vertex s′j with s′j ∈ Fi, which also
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decreases the outdegree of vertex F ′
i and has no effect on the outdegree of wc. With

a similar argument we can assume that a minimum solution does not contain any
subset-vertex of WF .

The resulting digraph is acyclic (see Fig. 11.1), which gives the first part of the
theorem. The second part follows by applying the described reduction from 3X-2-
Hitting Set instead of Hitting Set. Then, since every subset contains exactly three
elements we do not need any dummy-vertices and the outdegrees of the corresponding
subset-vertices and the distinguished vertex are bounded by 3. Furthermore, the
indegree of every element-vertex is two since every element only occurs in two subsets.
Altogether, the NP-hardness for bounded degree follows.

In contrast to the results for MOD, for MID we can state the following.

Proposition 11.2. Min-Indegree Deletion can be solved in linear time in acyclic
digraphs. In general digraphs, it is fixed-parameter tractable with respect to the param-
eter “indegree of the distinguished vertex wc”.

Proof. First, in a non-empty acyclic digraph there exists at least one vertex of indegree
zero. Thus, the distinguished vertex wc must have indegree zero to be the minimum
indegree vertex. Hence, one can iteratively delete all other vertices with indegree zero.
Using a topological ordering of an acyclic digraph, this can be done in linear time.

Second, the parameterized algorithm for MID with respect to the “indegree of the
distinguished vertex” works as follows. If for an MID-instance one knows which in-
neighbors of the distinguished vertex wc are part of a minimum-cardinality solution,
then the problem becomes trivial: One can delete these vertices and extend the re-
sulting partial solution to a minimum-cardinality solution as follows. One iteratively
adds all vertices of indegree smaller than the (new) indegree of wc to the solution since
all vertices of indegree smaller than the distinguished vertex must be deleted. Hence,
exhaustively trying all subsets of in-neighbors of wc yields an algorithm with running
time O(2din(wc) · |W |2).

Intuitively, for the “hard” MOD problem the approach given for MID fails due to
the following reason. Even in the case that we knew which neighboring vertices of
the distinguished vertex wc are part of the solution, in order to eliminate a vertex w′

with higher outdegree we have to decide whether it is better to remove vertex w′ or
out-neighbors of it. Indeed, according to Theorem 11.1, MOD is NP-hard in digraphs
with degree bounded by three. However, the following proposition shows that with
the combined parameter maximum vertex degree d and number of deleted vertices k
the problem becomes fixed-parameter tractable.

Proposition 11.3. Max-Outdegree Deletion is fixed-parameter tractable with
respect to the combined parameter “outdegree dout(wc) of the distinguished vertex” and
“number of deleted vertices k”.

Proof. We give a simple branching strategy. If wc is not the only vertex with maximum
outdegree, then we can determine in polynomial time a vertex u ∈ W \ {wc} with
outdegree at least dout(wc). Then, to make wc the maximum outdegree vertex, one
must either delete u or an out-neighbor of u. More specifically, consider an arbitrary
set N ⊆ Nout(u) with |N | = dout(wc). Clearly, if one does not delete u itself, then
one has to delete at least one vertex from N . Since we do not know in advance which
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choice leads to a solution, we branch into all possibilities (at most dout(wc) + 1) to
delete a vertex in (N ∪{u})\{wc}. In each branch we decrease the parameter k by one
(since we have deleted a vertex) and recursively solve the created subinstance. The
recursion stops if wc has become the only vertex with maximum outdegree or k ≤ 0.
For the running time note that at each level of the recursion for every subinstance we
branch into at most dout(wc) + 1 cases and that the recursion stops at the kth level.
Moreover, at every level of the recursion for every subinstance all changes are clearly
doable in polynomial time. Thus, the total running time is bounded by (dout(wc) +
1)k · |W |O(1)

As we will discuss in Section 11.3, tournaments naturally occur in the context of
voting systems. Hence, in the following, we investigate the parameterized complexity
of MOD restricted to tournaments. Recall that in this case MOD and MID coincide.
The following theorem is based on a parameterized reduction from the W[2]-complete
Dominating Set problem [76].

Dominating Set (DS)
Given: An undirected graph G = (U, E) and an integer k ≥ 1.
Question: Is there a size-k subset S ⊆ U such that every vertex u ∈ U\S
has a neighbor in S?

The reduction shows that MOD and MID are W[2]-hard (and NP-hard) in tour-
naments. Note that other prominent NP-complete problems such as Hamilton Path
are polynomial-time solvable when restricted to tournaments [9].

Theorem 11.2. Max-Outdegree Deletion and Min-Indegree Deletion are
W[2]-hard with respect to the parameter “number of deleted vertices” if the input graph
is a tournament.

Proof. We develop a parameterized reduction from Dominating Set to MOD in tour-
naments. The hardness for MID follows by the hardness of MOD since in tournaments
both problems coincide.

The basic idea of the reduction is as follows. We construct an MOD-instance in
which, aside from sets of further dummy vertices denoted by F and D, there are two
copies of the vertices in the DS-instance, denoted by N and U ′, and a vertex c which
we would like to become the maximum outdegree vertex. The neighborhood structure
of the DS-instance is encoded in the arcs between N and U ′. That is, we have an
arc from a vertex in U ′ to a vertex in N if the respective vertices are neighbors (or
the same vertex) in the DS-instance. An illustration of the resulting MOD-instance
is shown in Fig. 11.2. Moreover, we set the arcs between all other vertices such that
the following conditions are fulfilled. First, the distinguished vertex c has the same
outdegree as the vertices in U ′. Second, in order to decrease the outdegree of the
vertices in U ′ below the outdegree of c by deleting k vertices, we are enforced to
choose vertices from N such that every vertex in U ′ looses at least one out-neighbor.
Hence, the chosen vertices correspond to a dominating set in the input instance. In
the following we give the formal construction.

To simplify the proof, we assume that the graph of the DS-instance has an odd
number of vertices and that k < n. These assumptions clearly do not limit the general-
ity of the reduction. Given a DS-instance (G = (U, E), k) where U = {u1, u2, . . . , un}
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with n odd, we construct a tournament graph T = (W, A) as follows. The set of
vertices is W := {c} ⊎ U ′ ⊎ N ⊎ D ⊎ F where c is the vertex that we would like to
become maximum outdegree vertex. Furthermore,

• U ′ := {u′
i | i = 1, . . . , n} simulates that every vertex has to be dominated and

• N := {ni | i = 1, . . . , n} simulates that every vertex can dominate its neighbor-
hood.

• The set D := {di | i = 1, . . . , n} ensures that only vertices of N can be deleted.

• Finally, we need a set of dummy vertices F := {fi | i = 1, . . . , 20n + 1} that are
used to “set” the outdegrees of the other vertices in an appropriate way.

Next, we describe the construction of the arc set A. The goal of the construction
is to ensure that c has the same outdegree as all vertices in U ′ and to decrease the
outdegree of a vertex u′

i ∈ U ′ only vertices from N that correspond to the closed
neighborhood of ui can be deleted. See Fig. 11.2 for an illustration. Within N we
can set the arcs such that every vertex has exactly ⌊n/2⌋ out-neighbors inside N [98,
Lemma 3.4]. Analogously, we set the arcs within U ′, F , and D. Moreover, we add the
following arcs between c, D,N , and U ′ to the arc set A:

• {c} × U ′ and {c} × D and N × {c},

• D × (U ′ ∪ N ), and

• {u′
i} × {nj | uj ∈ N [ui]} and {nj | uj ∈ U \ N [ui]} × {u′

i} for i = 1, . . . , n.

Finally, we describe the construction of the arcs between the dummy vertices in F
and the vertices outside of F . To this end, we partition F into three sets, namely, Fu :=
{f1, f2, . . . , f2n−1}, Fc := {f2n, f2n+1, . . . , f2n+⌊n/2⌋−k}, and Fr := F \ (Fu∪Fc). Note
that |Fu| = 2n−1 and |Fc| = ⌊n/2⌋−k+1. As a consequence, we have that |Fr| > 17n.
Moreover, for 1 ≤ i ≤ n let F i

u := {f1, f2, . . . , f2n−k−|N [ui]|+1}. We add the following
arcs to A.

• {u′
i} × F i

u and (Fu \ F i
u) × {u′

i} for i = 1, . . . , n,

• Fu × ({c} ∪ D ∪ N ),

• {c} × Fc and Fc × (N ∪ D ∪ U ′), and

• ({c} ∪ N ∪ D ∪ U ′) × Fr.

This completes the construction of the tournament. By counting the out-neighbors
of every vertex one can verify that the following conditions hold (herein, “a >> b”
means that a is greater than b + k):

dout(c) = 2n + ⌊n/2⌋ + |FR| − k + 1,
dout(u

′
i) = 2n + ⌊n/2⌋ + |FR| − k + 1 for all u′

i ∈ U ′,
dout(di) = 2n + ⌊n/2⌋ + |FR| for all di ∈ D,
dout(ni) ≤ n + ⌊n/2⌋+ |FR| for all ni ∈ N , and
dout(f) ≤ (|F | − 1)/2 + 3n = 10n + 3n << |Fr| for all f ∈ F .
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if uj ∈ N [ui]

d1 d2 d3 d4 d5 dn

U ′

N

D

c

u′
i

Fc FuFr

F

D,N , U ′, c

N , D, U ′

nj

N , D, c

such that outdeg(u′
j
) = outdeg(c)

Figure 11.2: Construction of the tournament in the proof of Theorem 11.2. The arcs
between the vertices in a shaded box are allocated such that every vertex has outdegree ⌊n/2⌋
or ⌊|F |/2⌋, respectively. The bold arrows indicate bundles of arcs.

In particular, this means that the outdegree of c equals the outdegree of every vertex
in U ′. Moreover, the outdegree of a vertex in D is by k− 1 greater than the outdegree
of c and the outdegree of every other vertex is by more than k smaller than the
outdegree of c. In summary, this means that in order to make c the only vertex of
maximum outdegree by the deletion of at most k vertices it remains to ensure that
the outdegree of every vertex in U ′ and D becomes smaller than the outdegree of c.
Now, we prove the correctness of the reduction.

Claim: There is a dominating set of size k iff c can become the only vertex
with maximum outdegree by deleting k vertices.

“⇒”: Let S be a dominating set of size at most k. We show that by deleting all
vertices of W ′ := {ni ∈ N | ui ∈ S}, vertex c becomes the only vertex of maximum
outdegree. Clearly, the deletion of W ′ does not affect the outdegree of c. However, the
outdegree of every u′

i ∈ U ′ is decreased by at least one (by the deletion of a vertex nj

with uj ∈ N [ui]) and the outdegree of every di ∈ D is decreased by k. Then we have
dout(c) − 1 = dout(di) ≥ dout(ui) > dout(ni) > dout(fi) and, therefore, c is the only
vertex of maximum outdegree.

“⇐”: First, we show that every solution W ′ of size k for the MOD-instance contains
only vertices from N , that is, W ′ ⊆ N . This relies on the fact that the difference
between the outdegree of c and the outdegree of any di ∈ D is exactly k − 1. In order
to make c the only vertex with maximum outdegree we have to decrease the difference
for every di ∈ D by every of the k deletion operations. As we cannot increase the
outdegree of c, the deletion of every vertex has to decrease the outdegree of every
vertex in D while it must not decrease the outdegree of c. We show that only vertices
in N fulfill these requirements. The deletion of a vertex x ∈ D∪U ′∪Fr ∪Fc, decreases
the outdegree of c. Furthermore, the deletion of a vertex in Fu does not decrease the
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Table 11.3: Parameterized complexity of Max-Outdegree Addition (MOA) and
Min-Indegree Addition (MIA). All W[2]-membership results are given in The-
orem 11.6. The remaining results are given in 1 Theorem 11.3, 2Theorem 11.4,
3Proposition 11.4, 4Proposition 11.5, 5Theorem 11.5.

parameters # edited vertices k maximum degree d (k, d)
problems MIA MOA MIA MOA MIA MOA

general digraphs W[2]-c1,5 W[2]-c2,5 NP-c, d ≥ 41 FPT3 FPT4 FPT3

acyclic digraphs W[2]-c1 W[1]-h2 NP-c, d ≥ 41 FPT3 FPT4 FPT3

tournaments W[2]-c5 W[2]-c5 - - - -

outdegree of a vertex in D. Hence, the only vertices whose deletion decreases the
outdegree of a vertex in D and does not decrease the outdegree of c are the vertices
in N . Now, given a solution W ′ ⊆ N , the deletion of W ′ does not affect the outdegree
of c. Furthermore, for every vertex u′

j ∈ U ′ at least one out-neighbor ni must be
deleted in order to ensure that the outdegree of u′

j is less than the outdegree of c.
Since an out-neighbor ni of a vertex u′

j corresponds to a vertex ui that dominates uj

in G, the set {ui |ni ∈ W ′} is a dominating set in G.

11.2.2 Vertex addition

In the following, we describe how to obtain similar results for the digraph problems
by adding vertices. Table 11.3 provides an overview of our results. Here, the problems
seem to be even computationally harder than the deletion problems. For example,
the acyclicity of the digraph does not help for solving both of the problems. Also the
constructions given within the reductions are less involved (especially for the tour-
nament case). Intuitively, this is due to the fact that one can easily “encode” much
information in the subset of vertices that can be added.

Theorem 11.3. Min-Indegree Addition is W[2]-complete with respect to the pa-
rameter “number of added vertices” in acyclic digraphs and NP-complete in acyclic
digraphs with maximum degree four.

Proof. The theorem is based on a reduction from Hitting Set. The construction
is illustrated in Fig. 11.3. Herein, the vertices that can be added are marked by
a shaded box. These vertices correspond to the elements in S. The distinguished
vertex wc and all the “subset-vertices” Fi have indegree zero before the addition of
any “element-vertex.” All other vertices have indegree at least one. In particular,
the binary tree consists of dummy vertices that ensure that each si has indegree at
least 1. As discussed below, the binary tree structure is useful for the bounded-degree
case. Adding an element-vertex sj in the digraph has the effect that for all subset-
vertices corresponding to the subsets containing sj the indegree is increased above the
indegree of the distinguished vertex wc, that is, the corresponding subsets are “hit” in
the Hitting Set-instance. Hence, a hitting set one-to-one corresponds to a solution of
the constructed Min-Indegree Addition-instance. Clearly, the constructed graph is
acyclic and the first part of the theorem follows. To see the NP-hardness for d ≥ 4, we
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Subsets
F = {F1, F2, . . . , Fm}
over element set =⇒
S = {s1, s2, . . . , sn},
e.g., F1 = {s1, s3},
F2 = {s2, s3}, ...

......

... ...

tree

F1 F2 F3 Fi Fm

s1 s2 s3 sj sn

wc

if sj ∈ Fi

binary

Figure 11.3: Parameterized reduction from a Hitting Set-instance (left) to an Min-
Indegree Addition-instance (right).

Graph G = (U, E) with ⇒
U = {u1, u2, . . . , un} and
E = {e1, e2, . . . , em}

... ... ... ... ...

.........

...... ...ui uj

e2 e3 ek em

xu1 u2 un

y1 y2 yk−1
e1

if ek = {ui, uj}

wc

k − 2 k − 2 k − 2 k − 2 k − 2

Figure 11.4: Parameterized reduction from Independent Set (left) to Max-
Outdegree Addition (right).

reduce from 3X-2-Hitting Set. Then, the constructed graph has maximum degree
four. More precisely, every element-vertex has at most three out-going and one in-
going arcs, that is, degree four, and all other vertices have degree at most two. This
settles the second statement of the theorem.

Theorem 11.4. Max-Outdegree Addition is W[1]-hard with respect to the pa-
rameter “number of added vertices” in acyclic digraphs.3

Proof. This theorem follows by a reduction from Independent Set. The construction
is given in Fig. 11.4. Herein, the vertices that can be added are marked by a shaded
box. These vertices correspond to the vertices of the graph of the IS-instance. Each
such vertex ui has in-going arcs from the distinguished vertex wc and from an “edge-
vertex” ek if ui is incident to ek. Moreover, every edge-vertex has k − 2 further

3The corresponding theorem in the journal paper [30] contains an error, stating W[2]-hardness
instead of W[1]-hardness.
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out-neighbors and there exists a vertex x with outdegree k − 1. Note that before the
addition of any vertex the outdegree of the distinguished vertex wc is zero. Hence, in
order to increase the outdegree of wc above the outdegree of x one has to add at least k
vertices. However, for every edge-vertex (that has degree k − 2 before the addition of
any vertex) one is allowed to add at most one of its two out-neighbors to ensure that
its outdegree does not exceed k − 1. Hence, an independent set of size k one-to-one
corresponds to a set of vertices whose addition makes wc the only vertex of maximum
outdegree.

In the given reduction the distinguished vertex has unbounded outdegree. Param-
eterized by the outdegree of the distinguished vertex MOA becomes fixed-parameter
tractable.

Proposition 11.4. Max-Outdegree Addition is fixed-parameter tractable with
respect to the parameter “outdegree of the distinguished vertex wc.”

Proof. We show that a minimum-size solution W ′ contains only out-neighbors of the
distinguished vertex wc. Assume that W ′ contains a vertex x that is not an out-
neighbor of wc. Then, deleting x from W ′ does not decrease the outdegree of wc and,
obviously, does not increase the outdegree of any other vertex. That is, wc remains the
vertex with maximum outdegree and W ′ cannot have minimum size. Hence, one can
enumerate all possible subsets of Nout(wc) checking whether the current set forms a
valid solution. Since the number of subsets of Nout(wc) is 2|Nout(wc)|, fixed-parameter
tractability follows directly.

Concerning MIA, which is NP-hard on graphs with degree at least four, we show
fixed-parameter tractability for the combined parameter “maximum indegree” and
“number of added candidates.”

Proposition 11.5. Min-Indegree Addition is fixed-parameter tractable with re-
spect to the combined parameter “maximum indegree” and “number of added candi-
dates”.

Proof. Consider an MIA-instance. If there exists a vertex v with indegree smaller
than the indegree of the distinguished vertex, one has to add at least one in-neighbor
of v. Since the number of in-neighbors is bounded we can branch into all possible
choices of adding an in-neighbor. In each case we can decrease parameter k by one.
With the same argument as in the proof of Proposition 11.3 this leads to the running
time dk

in · |W |O(1), where din denotes the maximum indegree.

The W[2]-hardness proof for MOA/MIA restricted to tournaments is less involved
than the proof for MOD/MID. It can be achieved by using the basic idea of Theo-
rem 11.3 combined with a similar but less complicated construction of dummy candi-
dates as the one that is used in the reduction for Theorem 11.2.

Theorem 11.5. Max-Outdegree Addition and Min-Indegree Addition are
W[2]-hard with respect to the parameter “number of deleted vertices” even in the case
that the input graph is a tournament.
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11.2.3 W[2]-membership

We conclude the considerations on the four digraph problems by showing their contain-
ment in W[2]. We use an alternative characterization of W[2], called W∗[2], introduced
by Downey and Fellows [75] who showed that W∗[2]=W[2]. To explain this concept,
we need some definitions in the context of Boolean circuits. We distinguish two types
of gates: Large gates are ∨ gates and ∧ gates with unrestricted fan-in. Small gates
are ¬ gates, ∨ gates, and ∧ gates with bounded fan-in. In the “traditional” character-
ization of W[2] the fan-in of a small gate has to be bounded by a constant, whereas in
the characterization used here it is sufficient if the fan-in of a small gate is bounded
by a function of the considered parameter. The depth of a circuit C is the maximum
number of gates on an input-output path in C. The weft of a circuit C is the maxi-
mum number of large gates on an input-output path in C. The k-Weighted Circuit
Satisfiability (k-WCS) problem has as input a circuit C and a positive integer k,
and asks whether C has a weight-k satisfying assignment (an assignment setting the
values of exactly k input gates to 1). In the proof of the following theorem, we use
that a parameterized problem is in W[2] if it is reducible to k-WCS for a family of
circuits C satisfying the following two conditions [75]:

1. The weft of any circuit C ∈ C is at most two where any gate with fan-in bounded
by an arbitrary function of k is considered small.

2. The depth of any circuit is at most h(k) for an arbitrary function h.

With this machinery, we can show the following theorem.

Theorem 11.6. Max-Outdegree Deletion, Max-Outdegree Addition, Min-
Indegree Deletion, and Min-Indegree Addition are in W[2].

Proof. First, we show the W[2]-membership for MOD by reducing it to the special
case of k-WCS fulfilling Conditions (1) and (2). Let (D = (W, A), wc, k) denote an
MOD-instance. If there is a vertex w ∈ W with dout(w) ≥ dout(wc) + k, the only
possibility to solve MOD is to delete w. Thus, we can assume that no such vertex
exists.

The basic idea of the reduction is analogous to the proof of [75, Theorem 1]: The
input variables correspond to k copies of the vertex set W\{wc}, more specifically,
there are k variables for every vertex of W\{wc}. Furthermore, the construction
ensures that exactly one variable of every copy of the vertex set must be set to true,
that is, one “chooses” exactly k vertices (one of each copy) for the solution. Roughly
speaking, this construction is useful since it enables us to “select” a subset of the chosen
vertices by selecting a subset of the copies of the vertex set which are 2k possibilities
(a function only depending on k) instead of selecting a subset of at most k vertices
out of W (whose size may not be bounded by a function of k).

Formally, the set of variables is X := {c[i, w] | 1 ≤ i ≤ k, w ∈ W\{wc}}. Herein,
c[i, w] = 1 means that w is the selected vertex of the ith copy of the vertex set.
Furthermore, for an integer r ≤ k, let S(k, r) denote the set of all r-element subsets
of {1, . . . , k}.

The deletion of vertices from D can affect the outdegree of wc. In the following
formulation, we try all possible amounts by which the outdegree of wc can be decreased.
Let the number by which the outdegree of wc is decreased be s. Then, for every
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other vertex w ∈ W\{wc} one has that the outdegree of w must be decreased at least
by uw,s = dout(w)−dout(wc)−s+1. Note that since we assume dout(w) < dout(wc)+k
it holds that uw,s is at most k. With these definitions, we can formulate a family of
circuits as follows:∨

s∈{0,...,k} ((
∨

J∈S(k,k−s)

∧
j∈J

∨
w/∈Nout(wc)

c[j, w])∧ (1a)

(
∧

w∈W\{wc}((
∨

j∈{1,...,k} c[j, w])∨ (1b)

(
∨

J∈S[k,uw,s]

∧
j∈J

∨
w′∈Nout(w) c[j, w′])))) (1c)

∧ (
∧

i∈{1,...,k}
∧

w 6=w′(¬c[i, w] ∨ ¬c[i, w′])) (2)

∧ (
∧

w∈W\{wc}
∧

i6=j(¬c[i, w] ∨ ¬c[j, w])) (3)

First, we argue that the circuits work correctly. The gates of (2) ensure that at
most one vertex of every copy of the vertex set is selected and the gates of (3) ensure
that every vertex is selected in at most one copy of the vertex set. The first part of the
gates checks whether there is a solution for any possible outdegree which wc can have
after deleting the vertices. For this, recall that s is the amount by which the outdegree
of wc is decreased: In (1a) “the expression” becomes true if there is a size-(k−s)-subset
of indices such that all vertices that are selected for the corresponding indices are not
in Nout(ws). Hence, k − s of the deleted vertices are not out-neighbors of wc and,
thus, the outdegree of wc after deleting the k vertices (for which c[i, v] is true) is at
least dout(wc)−s. The gates of (1b) and (1c) ensure that for every vertex w ∈ W\{wc}
either w is deleted or its outdegree in the resulting instance is smaller than the final
outdegree of w. More precisely, there must be either an index j for which c[j, w] is true
(1b) or there must be a subset of indices of size uw,s such that the corresponding deleted
vertices are out-neighbors of w (1c). Hence, if there is a weight-k satisfying assignment,
then after deleting the set of vertices {w ∈ W | ∃j ∈ {1, . . . , k} with c[j, w] = 1}
vertex wc has the maximum outdegree in D.

Second, we consider the size of the circuits. Regarding the weft, the only gates
with unbounded fan-in are the

∧
-gates over all vertices w ∈ W\{wc} and the

∨
-gates

over the out-neighbors of a vertex. It is easy to check that there are at most two gates
of this type at one input-output path. The depth of the circuit is obviously bounded
by a constant. Thus, MOD is contained in W[2].

For the other three problems one can use the same methods to show the member-
ship in W[2]. For the vertex addition problems the variable set contains only copies
of all vertices that can be added. Then, for MOA, MID, and MIA one can adapt the
first part of the constraints in a straightforward manner.

11.3 Parameterized complexity of candidate control

In this section, we come back to voting systems. The digraph problems considered
in the previous section turn out to be very useful to determine the parameterized
complexity of candidate control for different voting systems. In Subsection 11.3.1, we
briefly discuss some consequences of the results obtained for the digraph problems for
control in Llull and Copeland voting. In Subsection 11.3.2, we show NP-hardness for
candidate control in Llull and Copeland voting for a constant number of votes. Finally,
in Subsection 11.3.3, we provide parameterized intractability results with respect to
the “number of deleted/added candidates” for plurality and Copelandα voting.

As in Part II, the position of a candidate b in a vote v is the number of candidates
that are better than b in v plus one. That is, the leftmost (and best) candidate in v
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has position 1 and the rightmost has position m.

11.3.1 Llull and Copeland voting

The only difference between Llull and Copland voting is the way in which ties are
evaluated. If two candidates are tied in their head-to-head contest, both of them
get zero points in a Copeland election and one point in a Llull election. As stated
by Faliszewski et al. [97], the different evaluation of ties can make the dynamics of
Llull’s system quite different from those of Copeland’s system. For example, they
observed that the proof techniques used to show NP-hardness are quite different for
different ways of evaluating ties. However, for the problems considered in this work,
until now, there was no measurable difference in the computational complexity of can-
didate control between Llull and Copeland voting. Using a multivariate view on the
problems, we identify cases in which their complexities differ. As CC-DC-Llull/CC-
AC-Llull and CC-DC-Copeland/CC-AC-Copeland are FPT-equivalent to MID/MIA
and MOD/MOA, respectively, all results of Tables 11.1 and 11.3 also hold for them. In
particular, the bounded-degree scenario for MID (Proposition 11.2) seems to be fairly
realistic: To control an election is particularly attractive if the distinguished candidate
is already “close” to be a winner. A natural indicator for “closeness” is the number of
candidates that beat the distinguished candidate. That is, the corresponding distin-
guished vertex has bounded indegree. In this case, in contrast to Copeland elections,
Llull elections are “easy” to control. Thus, as a direct consequence of Theorem 11.1
and Proposition 11.2, we obtain the following.

Corollary 11.1. CC-DC-Llull is fixed-parameter tractable with respect to the param-
eter “number of candidates defeating the distinguished candidate”. CC-DC-Copeland
is NP-hard to control even if for every candidate the number of candidates that are
not tied with it is at most three.

11.3.2 Number of votes as parameter

In many election scenarios there is only a small number of votes. For example, consider
a human resources department where few people are deciding which job applicant gets
the employment. Another prominent example is rank aggregation. An open question
of Faliszewski et al. [98] regards the parameterized complexity of candidate control in
Copelandα voting with respect to the parameter “number of votes”. We answer this
question for the two important special cases Llull and Copeland by making use of the
corresponding digraph problems. More precisely, we devise four reductions showing
that the problems of controlling Llull and Copeland voting by deleting or adding
candidates are NP-complete even in the case of a constant number of votes. Each
reduction is from a special case of the corresponding digraph problem. For all but
one reduction the NP-hardness of the considered special case follows from reductions
given in Section 11.2. The new part of the reductions is to show how a given instance
of the digraph problem can be encoded into an election using a constant number of
votes. Recall that, as discussed in Section 11.1, we say that a digraph encodes an
election if the outcomes of the pairwise head-to-head contests reflect the arcs in the
digraphs. That is, if there is an arc from vertex v to vertex w, then the corresponding
candidate v must be better than w in more than half of the votes. Here, the encoding
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of all digraphs into a constant number of votes is based on the idea to partition the
set of arcs into a constant number of subsets in a way such that each subset can be
encoded independently of the others by each time two votes.4 A useful tool to obtain
such partitionings are arc colorings for digraphs.

Lemma 11.1. If there is a proper ℓ-arc coloring for a digraph D, then D can be
encoded into 2ℓ votes.

Proof. Given a digraph D = (V, A) and a corresponding proper ℓ-arc coloring C : A →
{R1,R1, . . . ,Rℓ} for D. In the underlying undirected graph of D the edges of the same
color class form a matching, that is, two arcs of the same color do not share a common
vertex. Hence, the coloring C partitions the arc set into ℓ classes of independent arcs.
We next describe how the arcs of graph D can be encoded in an election with 2ℓ votes.
Let AR1

= {(r1, r1′), . . . , (rq, rq′ )} denote the arcs colored by R1. Furthermore, WR1

denotes the set of vertices that are not incident to any arc of AR1
. To encode AR1

,
we add the two votes

vR1,1 : r1 > r′1 > r2 > r′2 > · · · > rq > r′q > WR1

vR1,2 : WR1
> rq > r′q > · · · > r2 > r′2 > r1 > r′1

to the election. In the same way, for each 1 < i ≤ ℓ we add two votes vRi,1 and vRi,2

for the arcs colored by Ri. The correctness of the construction follows from two
observations. First, since the arcs of the same color do not share common endpoints,
in every vote all vertices occur exactly once and we have a valid election. Second,
consider an arc (w′, w′′) ∈ A with C((w′, w′′)) = Ri for some 1 ≤ i ≤ ℓ. Then, w′

defeats w′′ in the votes vRi,1 and vRi,2 and ties with w′′ in the remaining votes.
Moreover, since every arc occurs in exactly one color class, all arcs are encoded, and,
since all other candidates are tied in all pairs of the votes, we have ties between all
other pairs of candidates.

Every undirected graph admits a proper arc/edge-coloring using ∆ + 1 colors,
where ∆ denotes the maximum degree. Moreover, ∆ is a lower bound on the number
of colors that are necessary for any proper arc/edge coloring. For arbitrary graphs, it
is NP-complete to decide whether the graph has an proper ∆-arc/edge coloring. In
contrast, by König’s Theorem, for all bipartite graphs one can find a proper ∆-arc/edge
coloring in polynomial time [139].

Lemma 11.2. (König [1916]) A bipartite graph is ∆-edge-colorable, where ∆ denotes
the maximum degree of the graph. A corresponding proper ∆-edge coloring can be
computed in polynomial time.

These two lemmas are used to show the following.

Theorem 11.7. Controlling Llull and Copeland by deleting/adding candidates is NP-
complete for a constant number of votes. More precisely, CC-DC-Copeland is NP-
complete for six votes, CC-AC-Copeland is NP-complete for eight votes, CC-DC-
Llull is NP-complete for ten votes, and CC-AC-Llull is NP-complete for eight
votes.

4In contrast, in previous works, as for example [97], only one arc was encoded into two votes.
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Proof. For all problems NP-membership is obvious. We start with the NP-hardness
proof for CC-DC-Copeland to demonstrate the basic idea. Consider the reduction
from the NP-complete 3X-2-Hitting Set to MOD as depicted in Fig. 11.1. The
digraph D of a resulting MOD-instance (D, wc, k) has maximum degree three and the
underlying undirected graph of D is bipartite. More precisely, one partition consists
of the subset-vertices and wc, and the other partition consists of the element-vertices
and the neighbors of wc. Note that as we reduce from 3X-2-Hitting Set, we do not
have any further dummy vertices. It follows directly from Lemma 11.2 that D has a
proper 3-arc coloring. Thus, by Lemma 11.1, D can be encoded into an election of six
votes resulting in an equivalent instance of CC-DC-Copeland.

Next, we argue that CC-AC-Llull is NP-complete for eight votes. According to
Theorem 11.3 MIA is NP-complete even when restricted to graphs with maximum
degree four. Moreover, observe that the underlying undirected graph of the digraph
constructed in the respective reduction from 3X-2-Hitting Set (see Fig. 11.3) is bipar-
tite. Hence, for CC-AC-Llull the NP-hardness follows in complete analogy to CC-DC-
Copeland by using Lemmas 11.1 and 11.2.

For CC-AC-Copeland, we show how to encode an NP-hard MOA-instance that
results from the reduction of 3d−Independent Set (Fig. 11.4) into an election of
eight votes. Note that since MOA is fixed-parameter tractable with respect to the
maximum degree, it is polynomial-time solvable for an instance with constant degree.
Hence, we can not assume that the maximum degree in the constructed MOA-instance
is constant. However, by using the reduction from 3d-Independent Set (3d-IS)
we can still make use of a degree restriction of the subgraph induced by {ei | i =
1, . . . , m}∪ {uj | j = 1, . . . , n}. Since the degree within this subgraph is at most three
and its underlying undirected graph is bipartite, due to Lemmas 11.1 and 11.2 it can
be encoded into six votes. The remaining arcs can be encoded into two further votes
as follows. Let S(ei) denote the k − 2 dummy out-neighbors of ei, then we can add
the following two votes
e1 > S(e1) > · · · > em > S(em) > wc > u1 > · · · > un > x > y1 > · · · > yk−1

x > y1 > · · · > yk−1 > wc > un > · · · > u1 > em > S(em) > · · · > e1 > S(e1).
This completes the proof for CC-AC-Copeland.

Finally, we show that CC-DC-Llull is NP-hard for ten votes. We present a reduction
from 3d-IS to MID and show that the resulting MID-instance can be encoded into an
election with ten votes. Note that since CC-DC-Llull is solvable in polynomial time
on acyclic digraphs and FPT with respect to the degree, in contrast to the other
problems, there is no previous reduction we can reuse.

Given a 3d-IS-instance consisting of an undirected graph G = (U, E) with n := |U |
and a non-negative integer k, we construct an MID-instance consisting of a graph D =
(W, A), a distinguished vertex wc, and a non-negative integer k. See Fig. 11.5 for an
illustration. The vertex set W is the disjoint union of the following sets:

• {wc}, the distinguished vertex,

• U ′ := {u′
i |ui ∈ U}, one new vertex for every IS-vertex,

• E′ := {e′i | ei ∈ E}, one new vertex for every IS-edge,

• three sets of dummy vertices X := {x1, x2, . . . , xn}, Y := {y1, y2, . . . , yn},
and Z := {z1, z2, . . . , zn} that are needed to “set” the indegrees of the other
vertices in an appropriate way, and
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Graph G = (U, E) with ⇒
U = {u1, u2, . . . , un} and
E = {e1, e2, . . . , em}

...

u′
1 u′

2 u′
i u′

j u′
n

wc

X
Y

Z

n − k

n − k + 1

e′1 e′2 e′3 e′4 e′k e′m

q1 q2 q3 qk+1

if e′k = {u′
i, u

′
j}

Figure 11.5: Reduction from an 3d-Independent Set-instance (left) to an Min-
Indegree Deletion-instance (right).

• Q := {q1, q2, . . . , qk+1}, vertices that enforce that the indegree of the distin-
guished vertex must decrease by k.

The basic idea is to set the arcs such that the indegree of the distinguished vertex wc

has to be decreased by k. Furthermore, to decrease the indegree of wc one can only
delete vertices that correspond to vertices of the 3d-IS-instance, that is, vertices of U ′.
The deletion of such a vertex does not only decrease the indegree of wc but also the
indegree of the (at most three) vertices that correspond to its incident edges. By using
the dummy vertices one can set the indegrees of the edge-vertices such that one can
delete at most one neighbor of any edge-vertex. Then, to make wc a winner one has to
delete k vertices that correspond to vertices of the 3d-IS-instance such that for every
edge at most one of its incident vertices is deleted. Thus, the deleted vertices must
correspond to an independent set. In the following, we describe the arc set A that is
given by the union of the following disjoint arc sets.

• AU ′,wc := U ′ × {wc},

• AU ′,E′ :=
⋃

uj∈U ({u′
j} × {e′i | ei ∈ E ∧ uj ∩ ei 6= ∅}),

• AX,Y,Z := (X × Y ) ∪ (Y × Z) ∪ (Z × X),

• AX,U ′ := X × U ′,

• AY,Q := {y1, y2, . . . , yn−k+1} × Q, and

• AZ,E′ := {z1, z2, . . . , zn−k} × E′.

For an illustration of the construction see Fig. 11.5. Note that every vertex e′i has
exactly two in-going arcs from U ′ and n − k from Z. Hence, it can easily be verified
that in D the indegree for all e′i ∈ E′ is n − k + 2, the indegree of qi is n − k + 1
for i = 1, . . . , k, and the indegree of all remaining vertices is n.

We next prove the correctness of the reduction. Let I ⊆ U be an independent set
of G. After deleting S := {u′

i |ui ∈ I} from D we have din(wc) = n − k and since I
is an independent set the indegree of every vertex e′i ∈ E′ is decreased by at most
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one, that is, din(e′i) ≥ n − k + 1. The indegree of all other vertices is not affected.
Therefore, wc is the vertex with minimum indegree.

Let S ⊆ W be an optimal solution for MID. We can assume that S ⊆ U ′, since in
order to improve wc against the vertices from Q we must delete k vertices of Nin (wc).
This is due to the fact that we cannot delete all k + 1 vertices from Q. Since S
contains only vertices from U ′, the indegree of wc is exactly n − k. Moreover, for
every ei = {uj, uk} ∈ E in order to ensure that din(e

′
i) > n − k we can have either u′

j

or u′
k in the solution. Hence, {ui ∈ U | u′

i ∈ S} is an independent set.
In the remainder of this proof we show that the graph D can be encoded into

an election using ten votes in total. Because G has maximum degree 3, it is easy to
see that the underlying undirected graph of D[U ′ ∪E′] is bipartite and has maximum
degree three. Consequently, following Lemma 11.2, there exists a proper 3-arc coloring
for D[U ′ ∪ E′] and the information for this subgraph can be encoded into six votes
(Lemma 11.1). Let R := A\{X, Y, Z}. The arcs between X , Y , and Z can be encoded
into the following three pairs of votes.

1. X > Y > Z > R and R > X > Y > Z.

2. Y > Z > X > R and R > Y > Z > X.

3. Z > X > Y > R and R > Z > X > Y .

Since the arcs between X , Y , and Z are independent from the arcs in D[U ′ ∪ E′],
the encoding of both sets of arcs can be done within the same three pairs of votes. It
remains to encode the arcs from Y to Q, the arcs from X to U ′, the arcs from Z to
E′, and the arcs from U ′ to wc. It is not hard to see that this can be done by using
two further pairs of votes.

11.3.3 Number of deleted/added candidates as parameter

To control an election without raising suspicion one may add or delete only a limited
number of candidates. Here, we investigate whether it is possible to obtain efficient
algorithms under this assumption. More specifically, we consider the parameterized
complexity of destructive and constructive control by adding or deleting a fixed number
of candidates. Our results are summarized in Table 11.2. It turns out that all NP-
complete problems are intractable from this parameterized point of view as well. This
even holds true for plurality voting, which can be considered as the “easiest” voting
system in terms of winner evaluation and for which the Manipulation problem can be
solved optimally by a simple greedy strategy [65]. Whereas the results for Copelandα

voting can be obtained easily from the results of the corresponding digraph problems,
we give two reductions with new ideas for constructive and destructive control in
plurality voting.

Copelandα

Having no ties in the pairwise head-to-head contests between all pairs of candidates
is a realistic scenario. It is always the case for an odd number of votes and likely for
a large number of votes. Thus, it is interesting to investigate this setting. Note that
the NP-hardness proofs of candidate control in Copelandα voting rely on ties [100].
For elections without ties in all pairwise head-to-head contests, CC-DC-Copelandα, as
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well as CC-AC-Copelandα, coincide for all 0 ≤ α ≤ 1, since these problems only differ
in the way ties are evaluated.

As discussed in the introduction, MOD/MOA and CC-DC-Copeland/CC-AC-Cope-
land are FPT-equivalent. Using the same reductions one can show that MOD/MOA
in tournaments are FPT-equivalent to CC-DC-Copelandα/CC-AC-Copelandα without
ties. Thus, we obtain the following corollary from Theorem 11.2 and Theorem 11.5.

Corollary 11.2. For a tie-free voting and 0 ≤ α ≤ 1, CC-DC-Copelandα is W[2]-
complete with respect to the “number of deleted candidates” and CC-AC-Copelandα is
W[2]-complete with respect to the “number of added candidates”.

Plurality

In this section, we consider plurality voting and show that candidate control is not
only NP-hard but also intractable from parameterized point of view. Note that the
class containment in W[1] or W[2] for all kinds of candidate control in plurality voting
is open.

For plurality voting, the W[2]-hardness results for control by adding candidates
follow from existing NP-hardness proofs [13, 131]. Hence, we can state the following
theorem.

Theorem 11.8. Destructive and constructive control of plurality voting by adding
candidates are W[2]-hard with respect to the “number of added candidates”.

In contrast, the reductions used to show NP-hardness for destructive and con-
structive control by deleting candidates [13, 131] do not imply their W[1]-hardness.
Thus, we develop new parameterized reductions. For the constructive case we can
show W[2]-hardness by a reduction from MOD. Note that the encoding of an MOD
instance into a plurality election is more demanding than for Copeland voting and the
other direction (encoding a plurality election into an MOD instance) is not obvious.
Therefore, in contrast to the considerations for Copelandα elections, where the main
focus was on showing the W[2]-hardness of MOD on tournaments, here the technical
part is the reduction from MOD to CC-DC-Plurality itself.

Theorem 11.9. Constructive control of plurality voting by deleting candidates is
W[2]-hard with respect to the parameter “number of deleted candidates”.

Proof. We present a parameterized reduction from MOD. The basic idea is to construct
a plurality election such that, for every vertex w of the MOD-instance with higher
outdegree than the distinguished vertex wc, the corresponding candidate w′ has a
higher plurality score than the distinguished candidate c. More precisely, the difference
between the score of w′ and the score of c equals the difference of their outdegrees, that
is, score(w′)−score(c) = dout(w

′)−dout(c). Furthermore, due to our construction there
are only two possibilities to make c to beat w′ in the plurality election. First, one can
delete w′ itself. Second, the deletion of a candidate corresponding to an out-neighbor
of w decreases the score of w′ by one point but the score of c remains unchanged.
Thus, in this case, one has to delete at least dout(w

′) − dout(c) + 1 candidates that
correspond to out-neighbors of w′. In both cases the deletion of the corresponding
vertices in the MOD-instance has the effect that the distinguished vertex has higher
outdegree than w. In the following, we describe the formal construction.
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Given an MOD instance (D = (W, A), wc, k) with W = {w1, w2, . . . , wn} and wc =
w1, we construct an election (V, C) as follows: We have one candidate corresponding
to every vertex, that is, C′ := {ci | wi ∈ W}. The set of candidates C then consists
of C′ and an additional set F of “dummy” candidates (only used to “fill” positions
that cannot be taken by other candidates in our construction). The multiset of votes V
consists of two subsets V1 and V2. In V1, for every ci ∈ C′ we have dout(wi) votes in
which ci is at the first position and with dummy candidates in the positions from 2
to k+1. Then, for every such vote, the remaining candidates follow in arbitrary order.
In V2, for every ci ∈ C′ we have |W | votes in which ci is at the first position. For all
candidates cj 6= ci with wj /∈ Nin (wi), we ensure that in exactly one of these |W | votes
cj is at the second position. In all other of these votes, the second position is filled
with a dummy candidate. Moreover, we add dummies to all positions from 3 to k + 1.
Concerning the dummies, in V1 and V2 we ensure that every dummy candidate f ∈ F
has a position better than k + 2 only in one of the votes. This can be done by using
a different dummy candidate for every position. Obviously the size of F is less than
(k + 1) · |V |. The dummies exclude the possibility of “accidently” getting candidates
in the first position. Note that by deleting k candidates only a candidate that is at
one of the first k + 1 positions in a vote has the possibility to increase its plurality
score. Furthermore, by construction, the dummy candidates fulfill the following two
conditions. First, the score of a dummy candidate can become at most one. Second,
it does never make sense to delete a dummy as by this only other dummies can get
into the first position of a vote. Next, we prove the correctness of the reduction.

Claim: Candidate c1 can become the plurality winner of (V, C) by deleting k candi-
dates iff w1 can become the only maximum-degree vertex in D by deleting k vertices.

“⇒”: Denote the set of deleted candidates by R. We show that after deleting the set
of vertices WR := {wi | ci ∈ R} the vertex w1 is the only vertex with maximum degree.
Before deleting any candidates, for every candidate ci we have score(ci) = score(c1)+si

with si := dout(wi)− dout(w1). After deleting the candidates in R, candidate c1 is the
winner. Hence, for i = 2, . . . , |W | we must have either that score(ci) < score(c1) or that
ci is deleted. For a non-deleted candidate ci with i > 1 the difference between score(ci)
and score(c1) must be decreased by at least si + 1. By construction, the only way to
decrease the difference by one is to delete a candidate such that c1 becomes first in one
more vote and ci does not increase the number of its first positions. All candidates
that can be deleted to achieve this correspond to vertices in Nin (wi) \ Nin (w1). To
improve upon ci we must delete at least si +1 candidates that fulfill this requirement.
Hence, in D the outdegree of wi is reduced to be less than the outdegree of w1.

“⇐”: Let T ⊆ D denote the solution for MOD. We can show in a straightforward way
(“reverse” to the other direction) that by deleting the set of candidates CT := {ci |
wi ∈ T } candidate c1 becomes a plurality winner.

In contrast to Copelandα voting, for plurality voting destructive control by deleting
candidates is NP-hard [131]. We show that it is even W[1]-hard by presenting a
parameterized reduction from the W[1]-complete Clique problem [76]. Given an
undirected graph G = (W, E) and a positive integer k, the Clique problem asks to
decide whether G contains a complete subgraph of size at least k.

Theorem 11.10. Destructive control of plurality voting by deleting candidates is
W[1]-hard with respect to the parameter “number of deleted candidates”.
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Proof. Given a Clique instance (G = (W, E), k), we construct an election as follows.
The set of candidates is

C := CW ⊎ CE ⊎ {c, w} ⊎ D

with CW := {cu | u ∈ W}, CE := {cuv | {u, v} ∈ E}, and a set of dummy candi-
dates D. In the following, the candidates in CW and CE are called vertex candidates
and edge candidates, respectively. Furthermore, we construct the votes in a way such
that w is the candidate that we would like to prevent from winning, c is the only
candidate that can beat w, and D contains dummy candidates that can gain a score
of at most one. In the multiset of votes V we have for every vertex u ∈ W and for
each incident edge {u, v} ∈ E one vote of the type cu > cuv > c > . . . , that is, there
are 2·|E| votes of this type, two for every edge. Additionally, V contains |W |+k·(k−1)
votes in which w is at the first position and |W | + 1 votes in which c is at the first
position. That is, the score of w exceeds the score of c by k · (k − 1). In all votes, the
remaining free positions between 2 and k +

(
k
2

)
+ 1 are filled with dummies such that

every dummy occurs in at most one vote at a position better than k +
(
k
2

)
+ 2. This

can be done using less than |V | · (k +
(
k
2

)
+ 1) dummy candidates. In every vote the

candidates that do not occur in this vote at a position less than (k +
(
k
2

)
+ 1) follow

in arbitrary order.

Claim: Graph G contains a clique K of size k if and only if candidate c can become
plurality winner by deleting k′ := k +

(
k
2

)
candidates.

“⇒”: Delete the k +
(
k
2

)
candidates that correspond to the vertices and edges of K.

Then, for every of the
(
k
2

)
deleted edge candidates we also deleted the two vertex

candidates that correspond to the endpoints of the edge. Therefore, for every of the(
k
2

)
edges candidate c gets in the first position in two more votes. Hence, the score

of candidate c is increased by 2 ·
(
k
2

)
= k · (k − 1) and the score of candidate w is

not affected. Thus, the total score of w is |W | + k · (k − 1) and the total score of c
is |W | + k · (k − 1) + 1 and w is defeated by c.
“⇐”: By construction, we cannot decrease the score of w and we cannot increase the
score of a vertex candidate (which is at most |W | − 1). Furthermore, by the deletion
of at most k′ candidates the score of a dummy candidate can become at most one, and
the score of an edge candidate can become at most two. Hence, c is the only candidate
that can prevent w from winning. Furthermore, as the deletion of at most k′ dummies
never moves c into a first position, we can assume that the solution deletes only edge
and vertex candidates. Thus, it remains to that the only way to increase the score of c
by at least k · (k − 1) is to choose edge and vertex candidates that correspond to the
vertices and edges of a clique of size k.

Let CW ′ ∪CE′ be a solution of size k′, that is, deleting the candidates in CW ′ ∪CE′

prevents candidate c from winning. Let W ′ and E′ be the corresponding vertices and
edges and let i := |W ′|. It is easy to see that i ≤ k since the deletion of an edge
candidate moves c in exactly two votes from the third to the second position. Hence,
in order to move c in at least k · (k− 1) votes to the first position, we have to delete at
least (k · (k − 1))/2 =

(
k
2

)
edge candidates. Consequently, since k′ =

(
k
2

)
+ k, we can

delete at most k further vertex candidates.
In the following, we show that we have to remove exactly k vertex candidates, that

is, we must have i = k. Consider the election after deleting the candidates in CW ′ .
Let E′

1 ⊆ E′ be the set of edges with both endpoints in W ′ and let E′
2 := E′ \ E′

1.
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Clearly, by deleting CW ′ ∪ CE′ the score of c increases by at most 2 · |E′
1| + |E′

2|.
Since CW ′ ∪ CE′ is a solution, we obtain

2 · |E′
1| + |E′

2| ≥ score(c) − |W | − 1 ≥ k · (k − 1). (11.1)

Furthermore, we know that

|E′
1| + |E′

2| + i ≤ k +

(
k

2

)
. (11.2)

Inequality (11.1) implies that the score of c becomes maximum if E1 is maximum, that
is, if the graph (V ′, E′

1) is complete. In this case, E′
1 has cardinality

(
i
2

)
and, hence,

according to Inequality (11.2) the candidate set E2 has cardinality at most k′−
(

i
2

)
− i

and the score of c is at most 2 ·
(

i
2

)
+k′−

(
i
2

)
− i+ |W |+1. Assume that we have i < k,

then score(c) − |W | − 1 ≤ 2 ·
(

i
2

)
+ k′ −

(
i
2

)
− i < k · (k − 1) = score(c) − |W | − 1,

a contradiction. Hence, we must have that i = k and |E′| = |E′
1| + |E′

2| =
(
k
2

)
=

(k · (k − 1))/2. Therefore, E′
2 = ∅ and (W ′, E′) is a clique.

11.4 Conclusion

In this chapter, we investigated the parameterized complexity of four new digraph
modification problems and of electoral candidate control. Somewhat surprisingly, the
problems turned out to be intractable in almost all settings. For instance, Max-
Outdegree Deletion is W[2]-complete for two very restricted digraph classes, tour-
naments and acyclic graphs. We conclude with several remarks and concrete questions
regarding future research.

• The investigation of the parameterized complexity of voting systems other than
plurality and Copelandα seems to be of interest. For example, Erdélyi et al.
considered electoral control for “sincere-strategy preference-based approval vot-
ing (SP-AV)”[88] and fallback voting [90, 91] regarding its classical complexity.
Whereas for fallback voting there is a first study of their parameterized com-
plexity of control [89], for SP-AV the parameterized complexity has not been
considered yet.

• Regarding candidate control in plurality voting, we gave W[1]-/W[2]-hardness
results with respect to the number of added/deleted candidates. The class con-
tainment was left open. Note that polynomial-time solvability for constant pa-
rameter values, that is, containment in XP, is obvious.

• We only considered the parameterized complexity for candidate control. There
are many other settings to study, for example, control by adding or deleting
votes. This direction of research can be further extended by investigating multi-
mode attacks as suggested by Faliszewski et al. [95]. Note that their resistance
results exploit that for every kind of attack one can specify how often it may be
applied. For example, can a distinguished candidate become a winner by delet-
ing k candidates and adding k′ votes? It is an interesting open question whether
resistance transfers to the setting that only the total number of operations is
bounded.
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• We have shown that constructive candidate control for Llull and Copeland voting
is NP-hard for a constant number of votes, answering an open question from
Faliszewski et al. [99] for these two special cases of Copelandα. For Copelandα

voting with 0 < α < 1, for both kinds of candidate control the parameterized
complexity with respect to the number of votes is still open. Besides developing
a method that works for general α, an interesting first step would be to try to
extend our results to other interesting special cases like α = 0.5.

• In contrast to manipulation [64, 116, 179, 204], to the best of our knowledge all
investigations for control focused on worst-case scenarios. There seem to be no
studies that are concerned with strategies that allow for efficient control in the
average case or for “most” instances. Considerations in this direction seem to
be of interest.

• Liu et al. [157] studied the parameterized complexity of some settings of control
for plurality, Condorcet, and approval. One of their main results is to show
W[2]-hardness for constructive and destructive control by adding candidates for
plurality. However, in the conference version of our paper [29] (which is cited
by Liu et al. [157]) we explicitly stated that these results directly follow from
the corresponding NP-hardness reductions in literature (see Table 11.2). They
also provided W[1]-hardness for control by deleting votes for Condorcet voting.
This problem is clearly the same as Young Score for which we provided W[2]-
completeness in a former work (see Section 6.2).

Whereas the above points are all concerned with the voting problems, also the in-
troduced digraph problems led to further research topics. In recent work [17] (see
also [45]), we obtained some results for several parameterization measuring the “dis-
tance from acycility” for Min-Indegree Deletion and further related problems.
The starting point for these studies has been the observation that MID on acyclic
graphs is solvable in polynomial time (Proposition 11.2).



Chapter 12
Summary and future research
directions

This thesis investigated the use of a multivariate complexity analysis to better un-
derstand the computational complexity of voting problems and to develop efficient
algorithms capturing relevant scenarios. In the following two sections, we first sum-
marize our results and then discuss some directions for future research.

12.1 Summary of results

The overall goal of this thesis is to contribute to a systematic analysis of the mul-
tivariate complexity of voting problems. In particular, the thesis promotes a more
fine-grained study of the computational complexity by pursuing parameterized algo-
rithmics. In the following, we summarize our concrete results.

In Part I of the thesis, we proposed fixed-parameter algorithms as a possible way
to compute winners for in general NP-hard-to-evaluate voting rules. For the impor-
tant Kemeny voting rule, we devised a systematic parameterized complexity analysis
with respect to several parameterizations. Herein, our contributions can be described
according to the following steps:

1. We identified meaningful parameterizations such as the “average KT-distance”
or the “maximum range of a candidate”.

2. We identified intractable cases and designed several fixed-parameter algorithms
by applying a variety of algorithmic techniques comprising depth-bounded search
trees, data reduction rules, and dynamic programming.

3. The implementation of some of the algorithms led to a freely available software
tool and experimental evaluations with real-world data showed the practical use
of some of our algorithms.

In addition to a comprehensive study of Kemeny’s rule, we investigated the param-
eterized complexity of winner determination in Dodgson and Young elections. In
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particular, we presented a fixed-parameter algorithm for Dodgson Score answering
an open question of Christian et al. [56].

While Part I contains results for individual voting rules, in Part II our first result
comprises the classification of the computational complexity of the Possible Winner
problem for the natural class of pure scoring rules. By devising an appropriate frame-
work and providing intricate many-one reductions we almost arrived at a dichotomy.
The computational complexity of the only remaining case was settled by Baumeister
and Rothe [14]. Motivated by the NP-hardness of Possible Winner for nearly all
pure scoring rules, we provided a parameterized complexity analysis. For some pa-
rameters, we established fixed-parameter tractability for all scoring rules. In contrast,
we showed NP-hardness for a constant number of votes for Borda and k-approval.
This led the way to a parameterized complexity analysis for Possible Winner under
k-approval with respect to the combined parameter k and number of votes. The cor-
responding kernelization and non-existence of a polynomial kernel results are among
the first such results for voting problems.

In Part III, we extended previous studies of candidate control in elections to the
realistic scenario of deleting or adding only a bounded number of candidates. In the
course of this study, we partially answered an open question of Faliszewski et al. [98]
by providing NP-hardness results for a constant number of votes for two special cases
of Copelandα elections.

12.2 Future challenges

For open questions and remarks concerning the specific problems considered in this
thesis, we refer to the corresponding chapters. More specifically, questions regarding
Kemeny Score can be found in Sections 3.9, 4.4, and 5.3, regarding Dodgson
Score and Young Score in Section 6.3, regarding Possible Winner mainly in
Chapter 10 and also in Section 9.3, regarding candidate control in Section 11.4. In
the following, we discuss more general issues distinguishing between problem-oriented,
technique-oriented, and parameter-oriented approaches.

12.2.1 Problem-oriented approaches

The approach used in this work, and maybe the most obvious approach to start a
systematic multivariate complexity analysis of a field, is to consider the complexity
of specific problems. As discussed in Section 2.3, up to now only few works have
provided such studies. Hence, there are many problems in computational social choice
to be explored in future studies. In many cases, there are some meaningful obvious
parameterizations, for example, the number of deleted candidates when controlling
an election. Some systematic ways to identify further meaningful parameterizations
are described by Niedermeier [172]. We briefly sketch two of them and then discuss
property-oriented approaches generalizing problem-oriented ones.

Identifying parameters. A useful method to identify further parameters might be
to deconstruct intractability [147, 172]. Herein, the basic idea is to investigate the
NP-hardness proof of the studied problem and find out why the constructed instances
might not reflect practically relevant settings. We illustrate this for the NP-hardness
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proof of Kemeny Score for four votes [77]. In the corresponding construction only for
few candidate pairs the pairwise head-to-head contest are not tied. As a consequence,
the constructed instances come with a large average KT-distance and do not capture
many realistic settings (see Chapter 3).

An approach that should be pursued whenever one is interested in solving prob-
lems on real-world data regards the identification of parameterizations based on data
analysis. The basic idea is to experimentally measure properties of the input to find
out which of them come with small parameter values. This leads the way to a “data-
driven” algorithm design followed by algorithm engineering exploiting small parameter
values.

Property-oriented approaches. A problem-oriented approach naturally general-
ize to a property-oriented approach obtaining results for whole classes of voting rules.
An example is provided by Elkind et al. [82]. They showed a fixed-parameter tractabil-
ity result for classes of voting rules defined according to “distance rationalizability”
(see also Section 6.3). One particularly interesting line of research in this direction
might be to investigate how some of the “standard” properties of voting rules can help
in algorithm design. For example, Pini et al. [178] used “Independence of Irrelevant
Alternatives” to obtain polynomial-time algorithms for the Possible Winner prob-
lem (see also Chapter 10). Another question that might come into mind immediately
is whether “consistency” can help to design divide-and-conquer algorithms for winner
determination. Such investigations also might lead to interesting parameterizations,
for example, one might measure the “distance from a desired property” according to
an appropriate distance measure (as done in [82]).

12.2.2 Technique-oriented approaches

We highlight some issues concerned with algorithmic techniques useful to design fixed-
parameter algorithms.

Kernelization. A seemingly difficult task in the development of data reduction rules
for voting problems concerns the design of data reduction rules “reducing” the number
of votes. This includes the design of general reduction rules, for example, replacing a
multiset of votes by a “bounded-size” multiset such that the outcomes of the pairwise
head-to-head contests between the candidates remain unchanged. Although such a
data reduction rule would be a main ingredient for obtaining kernelization results for
voting problems in general, we are not aware of any such data reduction rule even only
working for a specific voting rule.

In this work, we “circumvented” this problem by two ways. First, in Chapter 4, we
introduced the concept of partial kernels not necessarily bounding the number of votes
but still coming with a provable performance guarantee. Second, the kernelization
results obtained for Possible Winner for k-approval in Chapter 9 are based on
combined parameters where the number of votes is part of the parameter. Similarly,
the simple kernelization for Kemeny Score with respect to the parameter Kemeny
score (see Section 3.4) relies on the fact that the parameter assumes “large” values for
non-trivial instances. In this sense, instead of applying data reduction rules that cut
away parts of the votes, the argumentation works in the following way. The number
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of votes in a “non-trivial” yes-instance must be already bounded by the parameter,
otherwise one can conclude that it is a no-instance.

Dynamic programming based on deficit vectors. The basic idea of the dy-
namic programming algorithm devised to show fixed-parameter tractability for Dodg-
son Score in Section 6.1 is to investigate “deficit vectors” that are bounded by the
parameter. The same idea has also turned out useful to design a fixed-parameter al-
gorithm for Possible Winner for k-approval with respect to k for constant number
of zero-positions (see Subsection 9.1.2). In addition, we could use the idea to design
a dynamic programming algorithm in a recent work [17] (see also [45]). This indi-
cates that this kind of dynamic programming might be of general interest (see also
the following subsection). However, a serious drawback is that not only the running
time but also the space requirement depends exponentially on the parameter value.
It seems interesting to find out whether some known methods to “cut down” space
requirements in dynamic programming [123, 149, 150, 159] can be used to circumvent
this.

Other techniques. Finally, we remark that parameterized algorithmics offers sev-
eral sophisticated algorithmic tools not explored in voting up to now. Such tools
comprise iterative compression [182, 125] or methods based on randomized algorithms
such as color-coding [4], divide & color [146], or chromatic coding [3]. For example,
it seems reasonable that a divide & color method should also lead to fixed-parameter
tractability of Kemeny Score with respect to the number of candidates. Although
in this case it seems unlikely that this directly leads to an improved worst-case running
time bound, randomized algorithms combined with heuristic speed-up tricks often lead
to improvements in practice, as shown in experimental work [48, 136].

12.2.3 Parameter-oriented approaches

We end with an overview of most parameterizations used in this work coming with
general “recommendations” and challenging open questions.

Number of votes. Beside some trivial examples for fixed-parameter tractability
with respect to the (single) parameter number of votes (such as for Young Score),
for voting problems we are only aware of W[1]-hardness or NP-hardness for a constant
number of votes. Many of the NP-hardness proofs rely on “encoding” a directed graph
into an election (see Section 11.1 for the formal definition). To this end, a range of
“tricks” is applied, such as the edge-coloring approach suggested in Section 11.3.2 or
dividing edges such that every vertex has either degree two or has only degree-two
neighbors [77]. However, a general scheme to encode an arbitrary digraph into an
election is not known yet. In particular, it seems interesting whether an arbitrary
tournament can be encoded within three votes. Answering this question positively
could also be used to show the NP-hardness of Kemeny Score with three votes.

Number of candidates. As shown by various examples in this and other work [82,
99], integer linear programming in combination with Lenstra’s result often allows for
showing fixed-parameter tractability with respect to the number of candidates. On
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the positive side, this offers a nice classification tool. On the negative side, there is
no known direct combinatorial algorithm showing fixed-parameter tractability with
respect to the number of candidates for non-trivial cases. Herein, by non-trivial we
refer to problems for which a solution cannot be obtained by permuting all candidates
such as Kemeny Score or manipulation by a single manipulator. The development
of combinatorial fixed-parameter algorithms with respect to the number of candidates
seems to be of great interest for many voting problems. Moreover, one might hope
that having an algorithm for one problem this might be adapted to other problems as
well.

Large-value parameters. With this term we refer to parameters for which the
values seem to be quite large for many instances. Examples of our work comprise the
“Kemeny score” (Chapter 3) or the “total number of undetermined pairs” (Chapter 8)
of a partial profile. For such parameters, depth-bounded search tree algorithms seem
to provide simple tools to show fixed-parameter tractability. Note that although this
does not lead to good bounds of the worst-case running time, there might be reasonable
hope for a better performance in practice. To this end, nice features of search trees are
that they can be combined with data reduction rules and come with polynomial-time
space requirements.

Parameters bounding deficit vectors. The parameterizations that led to the dy-
namic programming algorithms in Section 6.1 and Section 9.1.2 both provide an upper
bound for the sum of the entries of a deficit vector where a deficit vector provides a
kind of demand for every candidate. In our examples, the demands correspond to the
“number of zero-positions” that a candidate has to assume (for Possible Winner)
and the “number of votes in which a candidate has to become worse than the distin-
guished candidate” (for Dodgson Score). Dealing with a problem that allows for
meaningful size-bounded deficit vectors, it might be worth investigating whether the
dynamic programming algorithm does apply.

Range parameterizations. For Kemeny Score, we investigated the parameters
average and maximum range of a candidate. While the parameterization by the aver-
age range led to NP-hardness even for small constant values, we obtained a dynamic
programming algorithm showing fixed-parameter tractability with respect to the max-
imum range. The basic algorithm as stated in the conference version [20] exploits a
simple decomposition property similar to the concept of dynamic programming on
graphs of bounded “pathwidth”:1 It explores the instance from left to the right and
only updates the information at the “interface”. This might be an approach of gen-
eral interest for the parameter “maximum range”. Furthermore, it seems desirable to
extend this approach by means of kernelization. To this end, a next step would be to
investigate whether polynomial kernels are likely to exist.

Average parameterizations. We proposed the average KT-distance as meaning-
ful parameterization for Kemeny Score. Since this parameter captures a natural

1For the algorithm coming with an improved running time as stated in Section 3.6 it is not sufficient
to have bounded ranges in the input votes but one needs to show that this is also true in the final
Kemeny ranking.
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property of elections in many situations, it might also be of interest for other voting
problems. This seems to be a fruitful field of research, particularly because one can
resort to a range of existing techniques: dynamic programming (Section 3.5), partial
kernelization (Chapter 4), branching strategies [189], and a further algorithm coming
with subexponential running time [142].

Dirtiness parameterizations. In Chapter 4 we introduced the “number of dirty
pairs” according to different majorities as a parameterization measuring the amount
of agreement based on pairs of candidates. This concept has turned out useful to
design partial kernels for several median problems [24]. The identification of further
problems allowing for meaningful “dirtiness” measures based on element pairs seems
interesting.

Combined parameters. In Chapter 9, we provided an example for combined pa-
rameters capturing realistic settings. In the spirit of a multivariate complexity analysis
all discussed single parameters can be combined to pairs or tuples of parameters. Al-
though the meaningfulness of a combined parameter depends on the setting and needs
to be evaluated carefully, this offers a wide range of studies for future research.
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[88] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy preference-based approval
voting broadly resists control. In Proceedings of the 33nd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), volume 5162
of LNCS, pages 311–322. Springer, 2008. Cited on pp. 17, 173, and 197.
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pliquées, Université Laval, Québec, Candada, 1998. Cited on pp. 30 and 52.

[192] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research,
34:594–620, 2009. Cited on pp. 24 and 68.

[193] T. Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings of
the 22nd AAAI Conference on Artificial Intelligence (AAAI), pages 3–8. AAAI
Press, 2007. Cited on pp. 88, 125, and 167.

[194] L. Xia and V. Conitzer. Determining possible and necessary winners under
common voting rules given partial orders. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI), pages 196–201. AAAI Press, 2008.
Cited on pp. 18, 88, 89, 92, 95, 96, 127, 137, 146, 165, 166, and 167.

[195] L. Xia and V. Conitzer. Generalized scoring rules and the frequency of coali-
tional manipulability. In Proceedings of the 9th ACM Conference on Electronic
Commerce (EC), pages 109–118, 2008. Cited on p. 16.

[196] L. Xia and V. Conitzer. A sufficient condition for voting rules to be frequently
manipulable. In Proceedings of the 9th ACM Conference on Electronic Commerce
(EC), pages 99–108, 2008. Cited on p. 16.

[197] L. Xia and V. Conitzer. Determining possible and necessary winners under
common voting rules given partial orders. Unpublished manuscript, 2010. Cited
on p. 137.

[198] L. Xia, V. Conitzer, and J. Lang. Voting on multiattribute domains with cyclic
preferential dependencies. In Proceedings of the 23rd AAAI Conference on Ar-
tificial Intelligence (AAAI), pages 202–207, 2008. Cited on p. 15.

[199] L. Xia, V. Conitzer, and A. D. Procaccia. A scheduling approach to coalitional
manipulation. In Proceedings of the 11th ACM Conference on Electronic Com-
merce (EC), pages 275–284. ACM, 2010. Cited on pp. 16, 88, and 126.



Bibliography 221

[200] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and J. S. Rosenschein.
Complexity of unweighted coalitional manipulation under some common voting
rules. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pages 348–353, 2009. Cited on pp. 16, 19, and 126.

[201] H. Young and A. Levenglick. A consistent extension of Condorcet’s election
principle. SIAM Journal on Applied Mathematics, 35(2):285–300, 1978. Cited
on pp. 2, 13, and 24.

[202] H. P. Young. Social choice scoring functions. SIAM Journal on Applied Mathe-
matics, 28(4):824–838, 1975. Cited on p. 13.

[203] H. P. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16:335–
353, 1977. Cited on pp. 13, 17, 69, and 70.

[204] M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein. Algorithms for the
coalitional manipulation problem. Artificial Intelligence, 173(2):392–412, 2009.
Cited on pp. 16, 126, and 198.
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