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SVG simple voting game (simple coalitional game)
MBC minimal blocking coalition
MWC minimal winning coalition
MWVG multiple weighted voting game
WVG weighted voting game
QMV qualified majority voting
CoS cost of stability
N set of players/voters/agents
v valuation/characteristic function
(N, v) coalitional game
ηi(v) Banzhaf value of player i in game v

βi(v) Banzhaf index of player i in game v

β
′

i(v) Probabilistic Banzhaf index/Penrose index of player i in game v

W set of winning coalitions
Wm set of minimal winning coalitions
ω number of winning coalitions
ωi number of winning coalitions including player i

�D desirability relation between players
Hi(v) Holler index of player i in game v

Di(v) Deegan-Packel index of player i in game v

A(v) Coleman’s Power of Collectivity to Act



XX Abbreviations and Symbols

τ[q; w1, . . . ,wn] tolerance of a weighted voting game
µ[q; w1, . . . ,wn] amplitude of a weighted voting game
((N \ S ) ∪ {&S }, v&S ) (N, v) where players in in coalition S have merged
e(x, S ) excess of coalition S according to payoff x

−εi(x, v) ith distinct worst excess for payoff x and game v

−ε1(v) worst excess for a least core payoff of game v

δi(x, v) 1 − εi(x, v)
δ1(v) least core payoff of a coalition with the worst excess
Ai

x(v) set of coalitions that get excess −εi(x, v)
sv

i j(x) maximum surplus of player i over player j with respect to x

l(v) length of coalitional game (N, v)
I∗(v) set of preimputations of game v

I(v) set of imputations of game v

Ni number of winning coalitions of cardinality i

Gx weighted graph with edge e having weight x(e)
E(α) edge partition for imputation α
CG(E′) number of connected components in the graph G \ E′

crG(E′) cut-rate of edge set E′ in graph G

opt maxE′⊆E cr(E′)
P prime-partition of a graph
O parent-child relation in a graph
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Simple coalitional games are a fundamental class of cooperative games and
voting games which are used to model coalition formation, resource allocation
and decision making in computer science, artificial intelligence and multiagent
systems. Although simple coalitional games are well studied in the domain of
game theory and social choice, their algorithmic and computational complexity
aspects have received less attention till recently. The computational aspects of
simple coalitional games are of increased importance as these games are used
by computer scientists to model distributed settings. This thesis fits in the wider
setting of the interplay between economics and computer science which has led
to the development of algorithmic game theory and computational social choice.
A unified view of the computational aspects of simple coalitional games is pre-
sented here for the first time. Certain complexity results also apply to other coali-
tional games such as skill games and matching games. The following issues are
given special consideration: influence of players, limit and complexity of ma-
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nipulations in the coalitional games and complexity of resource allocation on
networks. The complexity of comparison of influence between players in simple
games is characterized. The simple games considered are represented by win-
ning coalitions, minimal winning coalitions, weighted voting games or multi-
ple weighted voting games. A comprehensive classification of weighted voting
games which can be solved in polynomial time is presented. An efficient algo-
rithm which uses generating functions and interpolation to compute an integer
weight vector for target power indices is proposed. Voting theory, especially the
Penrose Square Root Law, is used to investigate the fairness of a real life vot-
ing model. Computational complexity of manipulation in social choice proto-
cols can determine whether manipulation is computationally feasible or not. The
computational complexity and bounds of manipulation are considered from var-
ious angles including control, false-name manipulation and bribery. Moreover,
the computational complexity of computing various cooperative game solutions
of simple games in different representations is studied. Certain structural results
regarding least core payoffs extend to the general monotone cooperative game.
The thesis also studies a coalitional game called the spanning connectivity game.
It is proved that whereas computing the Banzhaf values and Shapley-Shubik in-
dices of such games is #P-complete, there is a polynomial time combinatorial
algorithm to compute the nucleolus. The results have interesting significance for
optimal strategies for the wiretapping game which is a noncooperative game de-
fined on a network.

Keywords: Cooperative games, game theory, algorithms and complexity, multia-
gent systems, network connectivity, network security, power indices, Shapley-
Shubik index, Banzhaf index, Chow parameters, computational social choice,
simple voting games, weighted voting games, nucleolus, least-core, cost of sta-
bility, resource allocation, preference aggregation, Nash equilibria, kernel, bar-
gaining set, stable set, linear programming.
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Introduction

There are no disciplines, nor branches of knowledge - or rather of re-

search; there are only problems and the need to solve them.

- Karl Popper, “Realism and the Aim of Science” from the ‘Postscript to

the Logic of Scientific Discovery (1983)’

Many applications in computer science involve issues and problems that

decision theorists have addressed for years, issues of preference, utility,

conflict and cooperation, allocation, incentives, consensus, social choice,

and measurement. A similar phenomenon is apparent more generally at

the interface between computer science and the social sciences.

- Fred S. Roberts [186]

Abstract In this chapter, the general background and an outline of the thesis is
presented.

1.1 Background

I do think there are some very worthwhile and interesting analogies be-

tween complexity issues in computer science and in economics. For exam-

ple, economics traditionally assumes that the agents within an economy

have universal computing power . . . Computer scientists deny that an al-

gorithm can have infinite computing power.

- Richard Karp [117]
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1.1.1 Game theory and computer science

Decision theory, game theory, and social choice theory are well-established fields
which involve modeling the interaction between agents. Social choice concerns
the aggregation of different self-interested agents’ preferences. It encapsulates
various important processes such as voting, markets and auctions where dis-
tributed agents want to make joint decisions. Game theory is the study of the con-
flict, cooperation and outcomes of interactions amongst multiple agents. Mech-
anism design is the design of games in such a way that individual players moti-
vated by self-interest satisfy the desired goals of the designer. The desired goal
could be individual rationality, budget balance, maximize total social welfare or
to elicit truthful behaviour. Mechanism design1 has been considered as the inverse
of game theory [167].

Game theory, social choice theory and mechanism design, which were tradi-
tionally in the domain of economics and decision theory, are increasingly be-
ing used by computer scientists as tools to analyse distributed settings. With
the growth of the internet, these fields provide an appropriate framework to
model agents in the network [81]. Moreover, economics models and paradigms
are being examined in the new light of the inherent computational complex-
ity of the relevant problems. Nisan [158] elaborates on the two-way flow of
ideas between economics and computer science. Not only are algorithmic chal-
lenges taking into account social choice and economic paradigms, but various
economic interactions such as voting, coalition formation and resource alloca-
tion are requiring deeper algorithmic study. Similarly, Tennenholtz discusses
the trend of the interaction between computer science/artificial intelligence and
game theory/economics [203]. The same trend has also been pointed out else-
where [47, 138]. In an earlier paper, Urken [208] shows that voting theory is
essential in distributed decision making and network reliability. Rosenschein and
Procaccia [187] observe how social choice theory is fundamental to analysing
and designing multiagent systems and why algorithmic and complexity exam-

1 Hurwicz, Maskin and Myerson received the 2007 Nobel Memorial Prize in Economic Sciences “for
having laid the foundations of mechanism design theory”.



1.1 Background 11

ination is critical in social choice protocols. Wellman [215] points out that an
economic approach is fundamental for resource allocation, rationality abstrac-
tion and decentralized control. The interface between game theory and computer
science is further highlighted by Al Roth [188]. A computational perspective on
game theoretic models is fundamental to new developments in computer science,
game theory and multiagent systems. A combined game theoretic and algorith-
mic approach is even more important because of the convergence of social and
technological networks [119].

1.1.2 Algorithmic game theory & computational social choice theory

As the ice separating Game Theory from Theoretical Computer Science

is melting, some of the fundamental results in Game Theory come under

increased complexity-theoretic scrutiny.

- Fabrikant, Papadimitriou and Talwar [72]

Mathematical economics has been around for decades. Although major de-
velopments have been made in presenting predictive theories and sound solution
concepts, the treatment has mostly been non-algorithmic. It is essential that the
solutions are not only axiomatically desirable and predictive but also computa-
tionally tractable. A computational perspective tries to answer various questions
which are not tackled in classical economics and game theory: how efficiently can
a model be represented? What is the complexity of computing a certain solution?
How much memory will be required? Is this the best we can do? If computation is
done on a network, how much communication is needed? Work on social choice
and mechanism design has ignored such computational concerns till recent times.
Therefore, there is a pressing need to revisit concepts in mathematical economics
and game theory from a computational point of view. Economic systems work
because all the participants try to selfishly optimize their own objectives. Often,
this optimization is intractable because of the computational complexity of the
optimization or lack of information. In that case, computational considerations
are paramount.
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The computational complexity of computing social choice functions, rank-
ings, various concepts of equilibria, cooperative game solution concepts, tour-
nament solutions, power indices, optimal or dominant strategies helps us under-
stand what can be computed efficiently and what requires alternative approaches
like approximation algorithms, randomized algorithms, parameterized complex-
ity and heuristics. As we will see in the thesis, notions of computational in-
tractability such as NP-hardness are useful barriers to manipulative behaviour in
social choice settings. These have parallels with cryptographic protocols where
the lack of efficient algorithms to factorize numbers helps avoid harmful attacks.
The approach is that whereas social choice protocols may not be strategy-proof,
it is desirable to design them in a way so that they are strategy-resistant. Another
aspect of decision theory and game theory, which requires computer science con-
siderations, is compact representation. As various models in game theory are im-
plemented in computer science applications, there is a need to find more compact
representations of games and ways of encoding information.

The interaction of social choice and game theory with computer science in-
cludes bounded rationality, computation of Nash equilibrium, algorithmic mech-
anism design, price of anarchy, learning in games and efficient representations
of games, Byzantine agreement and implementing mediators. Interestingly, this
intimate encounter between computer science and game theory dates back to von
Neumann who made ground-breaking contributions to both fields. Game theory,
decision theory and computer science have had more fruitful developments in re-
cent years [186]. In the general realm of decision theory, decision making models
have been classified (see Figure 1.1 [127]):

Among these models, simple coalitional games belong to the domains of both
decision theory and cooperative game theory. Compared to non-cooperative game
theory in which individual agents are analysed, cooperative game theory is con-
cerned with analyzing which coalitions will form and how the coalitions should
divide the payoff among their members. In recent years, there has been signif-
icant work in the theoretical computer science community on non-cooperative
game theory. Whereas the computational complexity aspects of non-cooperative
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Fig. 1.1. Decision making models

game theory, such as computing Nash equilibria, have started to be examined
by theoretical computer scientists with greater intensity [168], there is a need
to revisit cooperative game theory with a computational lens. Yoav Shoham and
Leyton-Brown in the introduction of [195] have observed this need. Interestingly,
in Chapter 13, we will find a case where cooperative game theory is used to solve
a problem in non-cooperative game theory. In modeling decision making by one
player, many problems turn out to be combinatorial optimization problems. How-
ever, when multiple players are involved in decision making, cooperative game
theory [58] has a role to play in maximizing objectives of players and resource
allocation. The computational complexity of computing solutions and deciding
whether a payoff is in a class of solutions is an important consideration. This
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consideration also ties in with bounded rationality which argues that a decision
maker can not spend an unbounded amount of resources.

Voting models are not necessarily restricted to analysing political scenarios.
Similar interaction happens in multiagent systems and virtual environments. Con-
sensus and voting problems arise in meta-search, collaborative filtering and dis-
tributed computing [128]. Shoham in a recent survey [194] observes that the in-
teraction between computer science and game theory has currently been focused
on six areas among which the first three are: 1) compact game representations,
2) complexity of, and algorithms for, computing solution concepts and 3) algo-
rithmic aspects of mechanism design. In many respects, these current issues are
addressed from the point of view of simple coalitional games.

1.2 Thesis introduction

...few structures arise in more contexts and lend themselves to more di-

verse interpretations than do simple games

- Taylor and Zwicker [202]

1.2.1 Overview

This thesis examines the computational and algorithmic aspects of simple voting
games or cooperative simple games which are not only an important class of co-
operative games but also a widely used voting model. The mathematical model
of simple games is generic enough to model various scenarios. The research fo-
cusses on algorithms and the complexity of analysing the influence of players in
game theoretic situations. This study of influence is significant in fields as diverse
as percolation theory, reliability theory, political science and game theory [116].
The thesis also examines susceptibility of simple games, especially weighted vot-
ing games, to various kinds of manipulations. Manipulation is an urgent issue in
multiagent systems and it has been observed that not only do coalitional voting
games model various multiagent scenarios well, but computational complexity is
seen as a useful barrier against manipulation.
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A comprehensive investigation of the influence of players in simple games
promises to be a useful contribution to the literature considering that the notion
has not been explored much in the works [213] and [202]. Taylor and Zwicker
note in the preface of [202] that the cardinal notions of power have not been men-
tioned in their book. Interestingly, such notions of power are now being explored
much more in communities as diverse as reliability theory, political science and
multi-agent systems. Voting power is also used in joint stock companies where
each shareholder gets votes in proportion to the ownership of a stock [94]. An al-
gorithms and complexity study of the influence of players is particularly relevant
with the increase of large scale multi-agent systems. Moreover, in the manuscript
on ‘Challenges for Theoretical Computer Science’ by Johnson [115], the fol-
lowing challenges are highlighted: preventing strategic voting, computing power
indices, continuing exploring the impact of bounded rationality and developing a
theory of algorithmic mechanism design.

1.2.2 Simple games

...we will arrive at an extensive class of games, to be called simple. It will

be seen that a study of this class yields a body of information which is of

value for a deep understanding of the general theory...

- von Neumann and O. Morgenstern [213]

Simple games (which are yes/no decision games) were introduced in the clas-
sical work of von Neumann and Morgenstern [213]. Von Neumann and Mor-
genstern point out that a study of simple games makes it possible to get an un-
derstanding of more general but harder to study zero-sum n-person games. Sim-
ple games have a rich mathematical history with contributions from game theo-
rists, computer scientists, electrical engineers and combinatorialists. The history
of simple games could even be stretched back to the famous Dedekind prob-

lem [120]. In 1897, Dedekind asked for the number d(n) of free distributive lat-
tices on n elements. This problem is equivalent to the number of simple games on
n players. The Dedekind problem has been well studied. The function d(n) grows
rapidly and d(n) is only known for very small n. Various algorithms have been
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proposed for efficient computation of d(n) [85]. Simple games also have connec-
tions with Sperner theory [71]. As in the case of Taylor and Zwicker [202], we
will discuss simple games in a voting-theoretic context. This is convenient both
from an intuition and notation point of view.

Simple games and weighted voting games (which are a sub-class of simple
games) are known in different literatures and communities by different names.
There is considerable work on these models in threshold logic [216, 109, 154]
and also in game theory (see [202] for a detailed literature references).

Weighted voting games (WVGs) are mathematical models which are used to
analyze voting bodies in which the voters have different number of votes. In
WVGs, each voter is assigned a non-negative weight and makes a vote in favour
of or against a decision. The decision is made if and only if the total weight
of those voting in favour of the decision is greater than or equal to some fixed
quota. Since the weights of the players do not always exactly reflect how critical
a player is in decision making, voting power attempts to measure the ability of a
player in a WVG to determine the outcome of the vote. WVGs are also encoun-
tered in threshold logic, reliability theory, neuroscience and logical computing
devices ([202], [208]). Parhami [171] points out that voting has a long history
in reliability systems dating back to von Neumann [212]. For reliability systems,
the weights of a WVG can represent the significance of the components whereas
the quota can represent the threshold for the overall system to fail. Systems of
this type are used in various areas such as target and pattern recognition, safety
monitoring and human organization systems. WVGs have been applied in various
political and economic organizations ([1]).

1.2.3 Approach of the thesis

...every definite mathematical problem must necessarily be susceptible of

an exact settlement, either in the form of an actual answer to the question

asked, or by the proof of the impossibility of its solution

- David Hilbert (1900 lecture)
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The approach of the thesis is algorithmic. For many problems in cooperative
game theory and social choice theory, there are mathematical results such as the
existence or non-existence of properties. However, there is a need for an algorith-
mic study of these topics so that efficient constructive methods can be devised
to test different properties of games. For various computational problems asso-
ciated with simple coalitional games, polynomial time exact algorithms, pseudo-
polynomial algorithms, approximation algorithms and parameterized algorithms
are presented. In other cases, a proof is provided that the problem is, for instance,
NP-hard or #P-complete.

1.3 Prerequisites

The thesis presupposes familiarity with combinatorial optimization and computa-
tional complexity. For readers unfamiliar with these areas, the following excellent
book is recommended: [169]. In Section 2.2, non-technical definitions of funda-
mental complexity classes are given. One may also refer to Section 1.2 of [173]
which outlines some basics of discrete optimization.

1.4 Thesis outline

The thesis is one of the first unified treatments of simple coalitional games from
a computational perspective.

Chapter 3: In this chapter, the complexity of comparison of influence be-
tween players in simple games is characterized. The chapter is based on [10].
The influence of players is gauged from the viewpoint of basic player types, de-
sirability relations and classical power indices such as the Shapley-Shubik index,
Banzhaf index, Holler index, Deegan-Packel index and Chow parameters. Among
other results, it is shown that for a simple game represented by its set of minimal
winning coalitions Wm, although it is easy to verify whether a player has voting
power zero or one, computing the Banzhaf value of the player is #P-complete.
Moreover, it is proved that for multiple weighted voting games, it is NP-hard to
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verify whether the game is linear or not. For a simple game on n players and
represented by Wm, a O(n.|Wm| + n2 log n) algorithm is presented which returns
‘no’ if the game is non-linear and returns the strict desirability ordering other-
wise. It is also shown that, for any reasonable representation of a simple game,
a polynomial time algorithm to compute the Shapley-Shubik indices implies a
polynomial time algorithm to compute the Banzhaf indices. As a corollary, we
settle the complexity of computing the Shapley value of a number of network
games. The complexity of transforming simple games into compact representa-
tions is also examined.

Chapter 4: It is well known that computing Banzhaf indices in a weighted
voting game is #P-complete. We give a comprehensive classification of those
weighted voting games which can be solved in polynomial time. Among other
results, we provide a polynomial (O(k(n

k )k)) algorithm to compute the Banzhaf in-
dices in weighted voting games in which the number of weight values is bounded
by k. The chapter is based on [16].

Chapter 5: We study the mathematical and computational aspects of multiple
weighted voting games which are an extension of weighted voting games. We
analyse the structure of multiple weighted voting games and some of their com-
binatorial properties especially with respect to dictatorship, veto power, dummy
players and Banzhaf indices. An illustrative Mathematica program to compute
voting power properties of multiple weighted voting games is also provided. The
chapter is based on the following publication: [15].

Chapter 6: The calculation of voting powers of players in a weighted voting
game has been extensively researched in the last few years. However, the inverse
problem of designing a weighted voting game with a desirable distribution of
power has received less attention. We present an efficient algorithm which uses
generating functions and interpolation to compute an integer weight vector for
target Banzhaf power indices. This algorithm has better performance than any
other known to us. It can also be used to design egalitarian two-tier weighted
voting games and a representative weighted voting game for a multiple weighted
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voting game. The results in this chapter are based on paper [19] written with my
supervisors.

Chapter 7: This chapter is based on a paper [137] jointly written with Dennis
Leech. We tested a heuristic on the real life case-study of the EU constitution.
The Double Majority rule in the Reform Treaty agreed in Rome in September
2004 is claimed to be simpler, more transparent and more democratic than the
existing rule. We use voting power analysis to examine these questions against
the democratic ideal that the votes of all citizens in whatever member country
should be of equal value. We also consider possible future enlargements involving
candidate countries and then a number of hypothetical future enlargements. We
find the Double Majority rule fails to measure up to the democratic ideal in all
cases. We find the Jagiellonian compromise to be very close to this ideal.

Chapter 8: An important aspect of mechanism design in social choice pro-
tocols and multiagent systems is to discourage insincere behaviour. Manipu-
lative behaviour has received increased attention since the famous Gibbard-
Satterthwaite theorem. We examine the computational complexity of manipula-
tion in weighted voting games, which are ubiquitous mathematical models used in
economics, political science, neuroscience, threshold logic, reliability theory and
distributed systems. It is a natural question to check how changes in a weighted
voting game may affect the overall game. The tolerance and amplitude of a
weighted voting game signify the possible variations in a weighted voting game
which still keep the game unchanged. We characterize the complexity of comput-
ing the tolerance and amplitude of weighted voting games. Tighter bounds and
results for the tolerance and amplitude of key weighted voting games are also
provided. Results from this chapter were published in [17].

Chapter 9: We examine the computational complexity of false-name manip-
ulation in weighted voting games. This includes checking how much the Banzhaf
index of a player increases or decreases if it splits up into sub-players. A pseudo-
polynomial algorithm to find the optimal split is also provided. In the chapter, we
also examine the cases where a player annexes other players or merges with them
to increase their Banzhaf index or Shapley-Shubik index payoff. We characterize
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the computational complexity of such manipulations as well as providing limits to
the manipulation. The Annexation Non-monotonicity paradox is also discovered
in the case of the Banzhaf index. The results give insight into coalition formation
and manipulation. The chapter is based on a paper [18] co-authored with Mike
Paterson.

Chapter 10: This chapter is based on the following paper: [11]. Length and
width are important characteristics of coalitional voting games which indicate
the efficiency of making a decision. Duality theory also plays an important role
in artificial intelligence. In this chapter, the complexity of problems concerning
the length, width and minimal winning coalitions of simple games is analysed.
The complexity of questions related to duality of simple games such as DUAL,
DUALIZE and SELF-DUAL is also examined. Since susceptibility to manipula-
tion is a major issue in multiagent systems, it is observed that the results obtained
have direct bearing on susceptibility to optimal bribery in simple games.

Chapter 11: In this chapter, cooperative games and cooperative game solu-
tions are introduced. The trend of using computational tractability as a criterion
for cooperative game solutions is both recent and prevalent in the mathematics
of operations research and theoretical computer science. In this chapter, the com-
putational aspects of various cooperative game solutions in simple games are
examined. Questions considered include the following: 1) for solution set X and
simple game v, is X of v empty or not, 2) compute an element in X of v and 3)
verify if a payoff is in X of v. Some representations taken into account are simple
games represented by W, Wm, weighted voting games and multiple weighted vot-
ing games. The cooperative solutions considered are the core, ε-core, least-core,
nucleolus, prekernel, kernel, bargaining set and stable sets. The complexity of
checking the stability of the core of simple games is also examined. A theorem
from the paper “The nucleolus and kernel for simple games or special valid in-
equalities for 0 − 1 linear integer programs” by Wolsey is corrected. Finally, the
relation between cost of stability and the least core is examined. A natural and
desirable solution called the super-nucleolus is also proposed.
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Chapters 12 and 13 concern spanning connectivity games (SCGs). They are
based on joint work with Oded Lachish, Mike Paterson and Rahul Savani.

Chapter 12:
We examine the computational complexity of computing the voting power

indices of edges in the SCG. It is shown that computing Banzhaf values is #P-
complete and computing Shapley-Shubik indices or values is NP-hard for SCGs.
Interestingly, Holler indices and Deegan-Packel indices can be computed in poly-
nomial time. Among other results, it is proved that Banzhaf indices can be com-
puted in polynomial time for graphs with bounded tree-width. Results from this
chapter were published in [13].

Chapter 13: We consider the least core imputations and the nucleolus of
SCGs. For any least core imputation, we refer to the value of SCGs as the payoff

of any coalition with the worst excess. We show that the value is equal to the
reciprocal of the strength of the underlying graph.

We efficiently compute a unique partition of the edges of the graph, called the
prime-partition, and find the set of coalitions which always get the worst excess
for every least core imputation. We define a partial order on the elements of the
prime-partition which allows us to compute the nucleolus.

We also consider the problem of maximizing the probability of hitting a strate-
gically chosen hidden network by placing a wiretap on a single link of a commu-
nication network. This can be seen as a two-player win-lose (zero-sum) game that
we call the wiretap game. The nucleolus turns out be the unique maxmin strat-
egy which satisfies certain desirable properties. Results from the chapter will be
published in the following paper: [14].

Chapter 14: Conclusions and future directions of research are discussed.
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Preliminaries

The advanced reader who skips parts that appear too elementary may miss

more than the reader who skips parts that appear too complex.

- G. Polya

The beginning of wisdom is the definition of terms.

- Socrates

A definition is the enclosing of a wilderness of idea within a wall of words.

- Samuel Butler, Notebooks (1912)

Abstract In this chapter, the preliminary definitions concerning simple coali-
tional games and computational complexity are presented.

2.1 Simple coalitional games

Definition 2.1. A cooperative game with transferable utility is a pair (N, v) where

N = {1, . . . , n} is a set of players and v : 2N 7→ R is a characteristic/valuation
function that associates, for each coalition S ⊆ N, a payoff v(S ) which the coali-

tion members may distribute among themselves.

Throughout the thesis, when we refer to a cooperative game, we assume such
a TU-cooperative game with transferable utility which can be freely transferred
among players.
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Definitions 2.2. A simple coalitional game/simple voting game is a pair (N, v)
with v : 2N → {0, 1} where v(∅) = 0, v(N) = 1 and v(S ) ≤ v(T ) whenever

S ⊆ T. A coalition S ⊆ N is winning if v(S ) = 1 and losing if v(S ) = 0. A

simple voting game can alternatively be defined as (N,W) where W is the set of

winning coalitions. This is called the extensive winning form. A minimal winning
coalition (MWC) of a simple game v is a winning coalition in which defection of

any player makes the coalition losing. The set of minimal winning coalitions of a

simple game v can be denoted by Wm(v). A simple voting game can be defined as

(N,Wm). This is called the extensive minimal winning form.

For the sake of brevity, we will abuse the notation to sometimes refer to game
(N, v) as v.

Definitions 2.3. For each player x ∈ N have weight xn. The simple voting game

(N, v) where

W = {X ⊆ N,
∑

x∈X wx ≥ q} is called a weighted voting game(WVG). A weighted

voting game is denoted by [q; w1,w2, ...,wn] where wi is the non-negative voting

weight of player i. Usually, wi ≥ w j if i < j.

For many of the algorithms, our assumption that the weights of the WVG
are non-negative is essential. Of course, any computational hardness results that
hold for WVG with non-negative weights also hold for WVGS which have both
negative and positive weights.

We now define multiple weighted voting games [2] which are an extension of
weighted voting games.

Definitions 2.4. An m-multiple weighted voting game (MWVG) is the simple

game (N, v1 ∧ · · · ∧ vm) where the games (N, vt) are the WVGs [qt; wt
1, . . . ,w

t
n]

for 1 ≤ t ≤ m. Then v = v1 ∧ · · · ∧ vm is defined as:

v(S ) =

1, if vt(S ) = 1, ∀t, 1 ≤ t ≤ m,

0, otherwise.

The dimension of (N, v) is the least k such that there exist WVGs (N, v1), . . . , (N, vk)
such that (N, v) = (N, v1) ∧ . . . ∧ (N, vk).
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We now define some of the important properties of simple games:

Definition 2.5. A simple game is

• proper if the complement of every winning coalition is losing.

• strong if the complement of every losing coalition is winning.

• dual-comparable if it is proper or strong.

• decisive if it is both proper and strong.

The Banzhaf index [31] and Shapley-Shubik index [192] are two classic and
popular indices to gauge the voting power of players in a simple game. They are
used in the context of weighted voting games, but their general definition makes
them applicable to any simple game.

Definition 2.6. A player i is critical in a coalition S when S ∈ W and S \ {i} < W.

For each i ∈ N, we denote the number of swings or the number of coalitions in

which i is critical in game v by the Banzhaf value ηi(v). The Banzhaf index of

player i in a simple game v is

βi(v) =
ηi(v)∑
i∈Nηi(v)

.

The probabilistic Banzhaf index (or Penrose index) of player i in game v is equal

to

β
′

i(v) = ηi(v)/2n−1.

Intuitively, the Banzhaf value is the number of coalitions in which a player
plays a critical role and the Shapley-Shubik index is the proportion of permuta-
tions for which a player is pivotal. For a permutation π of N, the π(i)th player
is pivotal if coalition {π(1), . . . , π(i − 1)} is losing but coalition {π(1), . . . , π(i)} is
winning.

Definitions 2.7. The Shapley-Shubik value is the function κ that assigns to any

simple game (N, v) and any voter i a value κi(v) where

κi(v) =
∑
X⊆N

(|X| − 1)!(n − |X|)!(v(X) − v(X − {i})).
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The Shapley-Shubik index of i is the function φ defined by

φi(v) =
κi(v)
n!

.

The Shapley value is a generalization of the Shapley-Shubik index. It has the
same definition as the Shapley-Shubik index but is also applied to non-simple
cooperative games. The Banzhaf index and the Shapley-Shubik index are the
normalized versions of the Banzhaf value and the Shapley-Shubik value respec-
tively. Since the denominator of the Shapley-Shubik index is fixed, computing the
Shapley-Shubik index and Shapley-Shubik value have the same complexity. This
is not necessarily true for the Banzhaf index and Banzhaf value. Only fact known
is that if Banzhaf values can be computed, then they can be used to compute the
Banzhaf indices.

Example 2.8. Consider WVG [v = 51; 50, 49, 1] where the players are {A, B,C}.
Then the winning coalitions are {A, B,C}, {A, B} and {A,C}. Players A and B

are critical in {A, B}, A and C are critical in {A,C} and A is critical in {A, B,C}.
Therefore ηA(v) = 3, ηB(v) = 1 and ηC(v) = 1 which means that βA(v) = 3/5,
βB(v) = 1/5, βC(v) = 1/5.

For the Shapley-Shubik index, we consider permutations. We identify the piv-
otal player in each of the following permutations. Player B is pivotal in ABC be-
cause {A} is not winning but {A, B} is winning. Similarly C is pivotal for ACB and
A is pivotal for BAC, BCA, CAB and CBA. Therefore φA(v) = 2/3, φB(v) = 1/6
and φC(v) = 1/6.

In voting games, another relevant consideration is the ease with which a deci-
sion can be made. This concept was introduced by Coleman in [49]:

Definition 2.9. Coleman’s power of the collectivity to act, A, is defined as the

ratio of the number of winning coalitions |W | to 2n: A = |W |/2n.

Both Coleman’s power of the collectivity to act and the probabilistic Banzhaf
index (or Penrose index) will be used in Chapter 7. Chow parameters are another
important parameters of a simple game.
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Definition 2.10. ([63, 48]) For a simple game v, the Chow parameters, CHOW(v)

are given by (|W1|, . . . |Wn|; |W |) where Wi = {S ∈ W : i ∈ S }. |W | and |Wi| are

also denoted by ω and ωi.

Apart from the Banzhaf and Shapley-Shubik indices, there are other indices
which are also used. Both the Deegan-Packel index [56] and the Holler in-
dex [106] are based on the notion of minimal winning coalitions. Minimal win-
ning coalitions are significant with respect to coalition formation [55]. The Holler
index, Hi of a player i in a simple game is similar to the Banzhaf index except that
only swings in minimal winning coalitions contribute toward the Holler index.

Definitions 2.11. Let Mi be {S ∈ Wm : i ∈ S }. We define the Holler value as |Mi|.

The Holler index (also called the public good index) is defined by

Hi(v) =
|Mi|∑

j∈N |M j|
.

The Deegan Packel index for player i in voting game v is defined by

Di(v) =
1
|Wm|

∑
S∈Mi

1
|S |
.

Compared to the Banzhaf index and the Shapley-Shubik index, both the Holler
index and the Deegan-Packel index do not always satisfy the monotonicity con-
dition.

2.2 Computational complexity

O time! thou must untangle this, not I; It is too hard a knot for me to untie!

- William Shakespeare

There is no greater harm than that of time wasted.

- Michelangelo

The computational complexity of problems related to simple games is central
to this thesis. Computational complexity may refer to time complexity or space
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complexity. We will normally refer to the time complexity of a problem as the
complexity of the problem. The time complexity of a problem is the number of
steps required to solve an instance of the problem as a function of the size of the
input (measured in bits), using the most efficient algorithm. The big O notation
is a standard way to describe computational complexity. Let f (x) and g(x) be
functions defined on some subset of the real numbers. Then

f (x) = O(g(x)) for all x→ ∞

if and only if there exists a positive real number M and a real number x0 such that

| f (x)| ≤ M|g(x)| for all x > x0.

We define some basic computational complexity classes in lay terms for read-
ers not familiar with computational complexity.

Definition 2.12. A problem is in complexity class P if it can be solved in time

which is polynomial in the size of the input. A problem is in the complexity class

EXP if it can be solved in time exponential in the size of the input. A problem is in

the complexity class NP if its solution can be verified in time which is polynomial

in the size of the input of the problem. A problem is in complexity class co-NP if

and only if its complement is in NP. A problem is in the complexity class NP-hard
if any problem in NP is polynomial time reducible to that problem. NP-complete
problems are in NP and are as hard as the hardest problems in NP. A counting

problem is in complexity class #P if the objects being counted can be verified in

polynomial time. A #P-hard problem is a counting problem which is as hard as

the counting version of any NP-hard problem. A counting problem which in #P
and is #P-hard is #P-complete

Polynomial time algorithms are desirable because they ‘scale’ well and finish
in a reasonable time compared to exponential time algorithms.

The Partition Problem is an example of a classic NP-complete problem which
we will use at times in the thesis:
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Name: PARTITION
Instance: A set of k integer weights A = {a1, . . . , ak}.
Question: Is it possible to partition A, into two subsets P1 ⊆ A, P2 ⊆ A so that
P1 ∩ P2 = ∅ and P1 ∪ P2 = A and

∑
ai∈A1

ai =
∑

ai∈A2
ai?

Readers unfamiliar with computational complexity may ask what is the use
of this concept. Computational complexity is an inherent mathematical property
of a problem irrespective of the model of computer. Some may still ask that why
would bad news of a problem being NP-hard be of any use in real life. Of course
one would prefer that a problem has an algorithm which can be run in time poly-
nomial of its input. However, NP-hardness of a problem implies that no polyno-
mial time algorithm is possible unless P=NP, i.e. the computational classes P and
NP coincide, which is generally considered unlikely.

The theory of parameterized complexity is motivated by the fact that several
NP-hard problems (for which no polynomial time algorithm is known) are solv-
able in a time that is polynomial in the input size and exponential in a (small)
parameter k. Any problem τ can be defined in its corresponding parameterized
form where the parameterized problem is the original problem τ along with some
parameter k.

Definition 2.13. A parameterized problem τ with an input instance n and param-

eter k is called fixed-parameter tractable if there is an algorithm which can solve

τ in O( f (k)nc) where c > 0 and f is a computable function depending solely on

k. The class of all fixed-parameter tractable problems is called FPT.





Part II

Computational voting





3

Complexity of comparison of influence of players in
simple games

The mathematical study (under different names) of pivotal agents and in-

fluences is quite basic in percolation theory and statistical physics, as well

as in probability theory and statistics, reliability theory, distributed com-

puting, complexity theory, game theory, mechanism design and auction

theory, other areas of theoretical economics, and political science.

- Kalai and Safra, [116]

Not everything that counts can be counted, and not everything that can be

counted counts.

- Einstein

Abstract In this chapter, the complexity of comparison of influence between
players in coalitional voting games is characterized. The possible representations
of simple games considered are by winning coalitions, minimal winning coali-
tions, weighted voting game or multiple weighted voting games.

It is also shown that for any reasonable representation of a simple game,
a polynomial time algorithm to compute the Shapley-Shubik indices implies a
polynomial time algorithm to compute the Banzhaf indices. As a corollary, we
settle the complexity of computing the Shapley value of a number of network
games.
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3.1 Introduction

3.1.1 Overview and outline

John von Neumann and Morgenstern [213] observe that minimal winning coali-
tions are a useful way to represent simple games. A similar approach has been
taken in [88]. We examine the complexity of computing the influence of players
in simple games represented by winning coalitions, minimal winning coalitions,
weighted voting games and multiple weighted voting games.

In Section 3.2, we outline different representations and properties of simple
games. In Section 3.3, compact representations of simple games are considered.
After that, the complexity of computing the influence of players in simple games
is considered from the point of view of player types (Section 3.4), desirability
ordering (Section 3.5), power indices and Chow parameters (Section 3.6). The
final Section 3.7 includes a summary of results and some open problems.

3.2 Background

We first provide some important definitions and facts needed for the chapter.

3.2.1 Definitions

Definition 3.1. A coalition S is blocking if its complement (N \S ) is losing. For a

simple game G = (N,W), there is a dual game Gd = (N,Wd) where Wd contains

all the blocking coalitions in G.

Definitions 3.2. A WVG [q; w1, . . . ,wn] is homogeneous if w(S ) = q for all

S ∈ Wm. A simple game (N, v) is homogeneous if it can be represented by a

homogeneous WVG. A simple game (N, v) is symmetric if v(S ) = 1, T ⊂ N and

|S | = |T | implies v(T ) = 1.

It is easy to see that symmetric games are homogeneous with a WVG represen-
tation of [k; 1, . . . , 1︸  ︷︷  ︸

n

] for some k. That is the reason they are also called k-out-of-n

simple games.
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We will often use the following lemma.

Lemma 3.3. For a simple game (N,W), Wm can be computed in polynomial time.

Proof. For every S ∈ W, check if S \ {i} is winning for all i ∈ S . If yes for any
such i, then S < Wm. Otherwise S ∈ Wm. This takes time |input|2. ut

3.2.2 Desirability relation and linear games

The individual desirability relations between players in a simple game date back
at least to Maschler and Peleg [150].

Definitions 3.4. In a simple game (N, v),

• A player i is more desirable/influential than player j (i �D j) if v(S ∪ { j}) =

1⇒ v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• Players i and j are equally desirable/influential or symmetric (i ∼D j) if v(S ∪
{ j}) = 1⇔ v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• A player i is strictly more desirable/influential than player j (i �D j) if i is

more desirable than j, but i and j are not equally desirable.

• A player i and j are incomparable if there exist S , T ⊆ N \ {i, j} such that

v(S ∪ {i}) = 1, v(S ∪ { j}) = 0, v(T ∪ {i}) = 0 and v(T ∪ { j}) = 1.

Linear simple games are a natural class of simple games:

Definitions 3.5. A simple game is linear whenever the desirability relation �D is

complete, that is, any two players i and j are comparable (i �D j, j �D i or

i ∼D j).

For linear games, the relation R∼ divides the set of voters N into equivalence
classes N/R∼D = {N1, . . . ,Nt} such that for any i ∈ Np and j ∈ Nq, i �D j if and
only if p < q.

Definitions 3.6. A simple game v is swap robust if an exchange of two players

from two winning coalitions cannot render both coalitions losing. A simple game

is trade robust if any arbitrary redistributions of players in a set of winning coali-

tions does not result in all coalitions becoming losing.
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It is easy to see that trade robustness implies swap robustness. Taylor and
Zwicker [202] proved that a simple game can be represented by a WVG if and
only if it is trade robust. Moreover they proved that a simple game being linear is
equivalent to it being swap robust.

Taylor and Zwicker [202] show in Proposition 3.2.6 that v is linear if and only
if �D is acyclic which is equivalent to �D being transitive. This is not guaranteed
in other desirability relations defined over coalitions [64].

Proposition 3.7. A simple game with three or fewer players is linear.

Proof. For a game to be non-linear, we want to players 1 and 2 to be incompa-
rable, i.e., there exist coalitions S 1, S 2 ⊆ N \ {1, 2} such that v({1} ∪ S 1) = 1,
v({2} ∪ S 1) = 0, v({1} ∪ S 2) = 0 and v({2} ∪ S 2) = 1. This is clearly not possi-
ble for n = 1 or 2. For n = 3, without loss of generality, v is non-linear only if
v({1} ∪ ∅) = 1, v({2} ∪ ∅) = 0, v({1} ∪ {3}) = 0 and v({2} ∪ {3}) = 1. However the
fact that v({1} ∪ ∅) = 1 and v({1} ∪ {3}) = 0 leads to a contradiction. ut

In Example 3.17, we present a 4-player simple game which is not linear.

3.3 Compact representations

Since WVGs and MWVGs are compact representations of coalitional voting
games, it is natural to ask which voting games can be represented by a WVG
or MWVG and what is the complexity of answering the question. Deineko and
Woeginger [57] show that it is NP-hard to verify the dimension of MWVGs.
We know that every WVG is linear but not every linear game has a correspond-
ing WVG. Carreras and Freixas [42] show that there exists a six-player simple
linear game which cannot be represented by a WVG. We now define problem X-

Realizable as the problem to decide whether game v can be represented by form
X.

Proposition 3.8. WVG-Realizable is NP-hard for a MWVG.
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Proof. This follows from the proof by Deineko and Woeginger [57] and Elkind
et al. (Theorem 5, [69]) that it is NP-hard to check if the dimension of a MWVG
is one or more. ut

Proposition 3.9. WVG-Realizable is in P for a simple game represented by its

minimal winning, or winning, coalitions.

This follows from Theorem 2 in [174] where the complexity of the problem
was examined in the context of set covering problems. The idea in [174] is that if
a simple game represented by minimal winning coalitions is not linear, then it is
not WVG-Realizable. Peled and Simone [174] showed that this can be checked
in polynomial time. They also showed that for linear simple games represented
by minimal winning coalitions, all maximal losing coalitions can be computed
in polynomial time. Also any simple game can be represented by linear inequali-
ties for minimal winning coalitions and maximal losing coalitions. The idea dates
back at least to [109]. However it is one thing to know whether a simple game
is WVG-Realizable and another thing to actually represent it by a WVG. It is
not easy to represent a WVG-Realizable simple game by a WVG where all the
weights are integers as the problem transforms from linear programming to inte-
ger programming.

Proposition 3.10. (Follows from Theorem 1.7.4 of Taylor and Zwicker[88]) Any

simple game is MWVG-Realizable.

Taylor and Zwicker [202] showed that for every n ≥ 1, there is a simple game
of dimension n. In fact it has been pointed out by Freixas and Puente [91] that,
for every d ≥ 1, there is linear simple game of dimension d. This shows that there
is no clear relation between linearity and dimension of simple games. However it
appears exceptionally hard to actually transform a simple game (N,W) or (N,Wm)
to a corresponding MWVG. The dimension of a simple game may be exponential
(2(n/2)−1) in the number of players [202]. A simpler question is to examine the
complexity of computing, or getting a bound for, the dimension of simple games.
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3.4 Complexity of player types

A player in a simple game may be of various types depending on its level of
influence.

Definitions 3.11. For a simple game v on a set of players N, player i is a

• dummy if and only if ∀S ⊆ N if v(S ) = 1, then v(S \ {i}) = 1;

• passer if and only if ∀S ⊆ N if i ∈ S , then v(S ) = 1;

• vetoer if and only if ∀S ⊆ N if i < S , then v(S ) = 0;

• dictator if and only if ∀S ⊆ N v(S ) = 1 if and only if i ∈ S .

It is easy to see that if a dictator exists, it is unique and all other players are
dummies. This means that a dictator has voting power one, whereas all other
players have zero voting power. We examine the complexity of identifying the
dummy players in voting games. We already know that for the case of WVGs,
Matsui and Matsui [151] proved that it is NP-hard to identify dummy players.
For any of the player type T (dummies/passers/vetoers/dictator), we shall refer to
the problem of computing players of type T by IDENTIFY-T.

Lemma 3.12. A player i in a simple game v is a dummy if and only if it is not

present in any minimal winning coalition.

Proof. Let us assume that player i is a dummy but is present in a minimal winning
coalition. That means that it is critical in the minimal winning coalition which
leads to a contradiction. Now let us assume that i is critical in at least one coalition
S such that v(S ∪ {i}) = 1 and v(S ) = 0. In that case, we can delete all players j

other than i the deletion of which does not change the coalition from winning to
losing. Then, there is an S ′ ⊂ S such that S ′ ∪ {i} is a MWC. ut

Proposition 3.13. For a simple game v,

1. Dummy players can be identified in linear time if v is of the form (N,Wm).
2. Dummy players can be identified in polynomial time if v is of the form (N,W).

Proof. We examine each case separately:
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1. By Lemma 3.12, a player is a dummy if and only if it is not in any member
of Wm. Therefore, check each S ∈ Wm and if a player i is in S , then it is not a
dummy. Then, any player which is not in any S ∈ Wm is a dummy.

2. By Lemma 3.3, Wm can be computed from W in polynomial time.
ut

From the definition, we know that a player has veto power if and only if the
player is present in every winning coalition.

Proposition 3.14. Vetoers can be identified in linear time for a simple game in

the following representations: (N,W), (N,Wm), WVG and MWVG.

Proof. We examine each of the cases separately:

1. (N,W): Initialize all players as vetoers. For each winning coalition, if a player
is not present in the coalition, remove him from the list of vetoers.

2. (N,Wm): If there exists a winning coalition which does not contain player i,
there will also exist a minimal winning coalition which does not contain
player i.

3. WVG: For each player i, i has veto power if and only if w(N \ {i}) < q.
4. MWVG: For each player i, i has veto power if and only if N \ {i} is losing.
ut

Proposition 3.15. For a simple game represented by (N,W), (N,Wm), WVG or

MWVG, it is easy to identify the passers and the dictator.

Proof. We check both cases separately:

1. Passers: This follows from the definition of a passer. A player i is a passer if
and only if v({i}) = 1.

2. Dictator: It is easy to see that if a dictator exists in a simple game, it is unique.
It follows from the definition of a dictator that a player i is a dictator in a
simple game if v({i}) = 1 and v(N \ {i}) = 0.
ut
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3.5 Complexity of desirability ordering

A desirability ordering on linear games is any ordering of players such that

1 �D 2 �D . . . �D n.

A strict desirability ordering is any ordering on players: 1 ◦ 2 ◦ . . . ◦ n where
◦ is either ∼D or �D.

Proposition 3.16. For a WVG:

1. A desirability ordering of players can be computed in polynomial time.

2. It is NP-hard to compute a strict desirability ordering of players.

Proof. WVGs are linear games with a desirability ordering. For (1), it is easy
to see that one desirability ordering of players in a WVG is the ordering of the
weights. When wi = w j, then we know that i ∼ j. Moreover, if wi > w j, then we
know that i is at least as desirable as j, that is i � j. For (2), the result immediately
follows from the result by Matsui and Matsui [151] where they prove that it is
NP-hard to check whether two players are symmetric. ut

Let v be a MWVG of m WVGs on n players. It is easy to see that if there is
an ordering of players such that such that wt

1 ≥ wt
2 ≥ . . . ≥ wt

n for all t, then v

is linear. However, if an ordering like this does not exist, this does not imply that
the game is not linear. For example, it is easy to give such a game with 3 players
and by Proposition 3.7, this must be a linear game. Whereas simple games with
3 players are linear, it is easy to construct a 4 player non-linear MWVG:

Example 3.17. In game v = [10; 10, 9, 1, 0] ∧ [10; 9, 10, 0, 1], players 1 and 2 are
incomparable.

Proposition 3.18. It is NP-hard to verify whether a MWVG is linear or not.

Proof. We prove this by a reduction from an instance of the classical NP-hard
PARTITION problem.
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Given an instance of PARTITION {a1, . . . , ak}, we may as well assume that∑k
i=1 ai is an even integer, 2t say. We can transform the instance into the multiple

weighted voting v = v1 ∧ v2 where v1 = [q; 100a1, . . . , 100ak, 10, 9, 1, 0] and
v2 = [q; 100a1, . . . , 100ak, 9, 10, 0, 1] for q = 10 + 100t and k + 4 is the number of
players.

If A is a ‘no’ instance of PARTITION, then we see that a subset of weights
{100a1, . . . , 100ak} cannot sum to 100t. Since, each weight in {100a1, . . . , 100ak}

is a multiple of 100 any subset of {100a1, . . . , 100ak} is a multiple of 100. Thus if
S ⊆ {100a1, . . . , 100ak} is losing in v, the inclusion of the last four players which
contribute a total of at most 20 to v1 and v2 cannot make S winning. This implies
that players k + 1, k + 2, k + 3, and k + 4 are not critical for any coalition. Since
players 1, . . . , k have the same desirability ordering in both v1 and v2, v is linear.

Now let us assume that A is a ‘yes’ instance of PARTITION with a partition
(P1, P2). In that case players k + 1, k + 2, k + 3, and k + 4 are critical for certain
coalitions. We see that v({k+1}∪ ({k+4}∪P1)) = 1, v({k+2}∪ ({k+4}∪P1)) = 0,
v({k + 1} ∪ ({k + 3} ∪ P1)) = 0 and v({k + 2} ∪ ({k + 3} ∪ P1)) = 1. Therefore,
players k + 1 and k + 2 are not comparable and v is not linear. ut

Proposition 3.19. For a simple game v = (N,Wm), it can be verified in O(n2 +

n|Wm|) time if v is linear or not.

Proof. Monotone simple games have a direct correspondence with positive boolean
functions where minimal true vectors correspond to minimal winning coali-
tions and linear simple games corresponds to 2-monotonic boolean functions.
Makino [147] proved that for a positive boolean function on n variables repre-
sented by the set of all minimal true vectors minT ( f ), it can be checked in time
O(n.|minT ( f )|) whether the function is 2-monotonic (linear) or not. The result
was an improvement on the algorithm by Peled and Simone [174]. Makino’s
algorithm (which we will refer to as IS-LINEAR) takes minT ( f ) as input and
outputs ‘yes’ if f is 2-monotonic and ‘no’ otherwise. Then it follows that it can
be verified in O(n2 +n(|Wm|)) whether a simple game v = (N,Wm) is linear or not.
ut
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Corollary 3.20. For a simple game v = (N,W), it can be verified in polynomial

time if v is linear or not.

Proof. We showed earlier that (N,W) can be transformed into (N,Wm) in poly-
nomial time. After that we can use Proposition 3.19 to verify whether the game
is linear or not. ut

Muroga [154] cites Winder [216] for a result concerning comparison between
boolean variables and their incidence in prime implicants of a boolean function.
Hilliard [105] points out that this result can be used to check the desirability rela-
tion between players in WVG-Realizable simple games. We generalize Winder’s
result by proving both sides of the implications and extend Hilliard’s observation
to that of linear simple games.

Proposition 3.21. Let v = (N,Wm) be a linear simple game and let dk,i = |{S : i ∈

S , S ∈ Wm, |S | = k}|. Then for two players i and j,

1. i ∼D j if and only if dk,i = dk, j for k = 1, . . . n.

2. i �D j if and only if for the smallest k where dk,i , dk, j, dk,i > dk, j.

Proof. 1. (⇒) Let us assume i ∼D j. Then by definition, v(S ∪ { j}) = 1 ⇔
v(S ∪{i}) = 1 for all S ⊆ N \{i, j}. So S ∪{i} ∈ Wm if and only if S ∪{ j} ∈ Wm.
Therefore, dk,i = dk, j for k = 1, . . . n.
(⇐) Let us assume that i /D j. Since v is linear, i and j are comparable.
Without loss of generality, we assume that i �D j. Then there exists a coalition
S \ {i, j} such that v(S ∪ {i}) = 1 and v(S ∪ { j}) = 0 and suppose |S | = k − 1.
If S ∪ {i} ∈ Wm, then dk,i > dk, j. If S ∪ {i} < Wm then there exists S ′ ⊂ S such
that S ′ ∪ {i} ∈ Wm. Thus there exists k′ < k such that dk′,i > dk′, j.

2. (⇒) Let us assume that i �D j and let k′ be the smallest integer where dk′,i ,

dk′, j. If dk′,i < dk′, j, then there exists a coalition S such that S ∪ { j} ∈ Wm,
S ∪ {i} < Wm and |S | = k′ − 1. S ∪ {i} < Wm in only two cases. The first
possibility is that v(S ∪ {i}) = 0, but this is not true since i �D j. The second
possibility is that v(S ∪{i}) = 1 but S ∪{i} in not a minimal winning coalition.
Then, there exists a coalition S ′ ⊂ S such that S ′ ∪ {i} ∈ Wm. But that would
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mean that v(S ′∪{i}) = 1 and v(S ′∪{ j}) = 0. This also leads to a contradiction
since k′ is the smallest integer where dk′,i , dk′, j.
(⇐) Let us assume that for the smallest k where dk,i , dk, j, dk,i > dk, j. This
means there exists a coalition S such that S ∪ {i} ∈ Wm, S ∪ { j} < Wm and
|S | = k−1. This means that either v(S ∪{ j}) = 0 or S ∪{ j} is winning coalition
but not a minimal winning coalition. If v(S ∪ { j}) = 0, that means i �D j. If
S ∪ {i} is winning coalition but not a minimal winning coalition, then there
exists a coalition S ′ ⊂ S such that S ′ ∪ { j} ∈ Wm. Then dk′, j > dk′,i for some
k′ < k. This leads to a contradiction. ut

We can use this theorem and Makino’s algorithm [147] to make an algorithm
which takes as input a simple game (N,Wm) and returns NO if the game is not
linear and returns the strict desirability ordering otherwise. Note that Makino’s
algorithm IS-LINEAR [147] is used in a black box manner. The algorithm im-
plicitly does compute the permutation of players for which the game is linear.
However, it does not divide the players into desirability classes.

Algorithm 1 takes as input the set of players and the set of MWCs. If the game
is not linear, a |Wm| × n matrix D is constructed with entries dk,i = |{S : i ∈ S ,
S ∈ Wm, |S | = k}|. The set of players N is set to class1 which needs to be di-
vided and ordered into desirability classes which look for example like class1.1,
class1.2, class2.1.1, class2.2.2. . . . The function classify(class1,D, 1) is called
where classify takes as input the set of players classindex, matrix D and k (which
is the size of the MWCs being considered). If k is |Wm|+1 or |classindex| = 1, then
the set of players classindex is returned. Otherwise, the set classindex is divided into
subclasses based on matrix D and k. These new subclasses are named with the use
of further sub-indexing. The process of further refining the subclasses of players
is repeated by incrementing k by 1 and recursively calling classify. The process
stops when the set of classindex has been partitioned into desirability equivalence
classes with more desirable classes ordered first.
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Algorithm 1 Strict-desirability-ordering-of-simple-game
Input: Simple game v = (N,Wm) where N = {1, . . . , n} and Wm(v) = {S 1, . . . , S |Wm |} .

Output: NO if v is not linear. Otherwise output desirability equivalence classes starting from most desirable,

if v is linear.

1: X = IS-LINEAR(Wm)

2: if X = NO then
3: return NO

4: else
5: Initialize an |Wm| × n matrix D with entries di, j = 0 for all i and j in N

6: for i = 1 to |Wm| do
7: for each player x in S i do
8: d|S i |,x ← d|S i |,x + 1

9: end for
10: end for
11: class1 ← N

12: return classify(class1,D, 1)

13: end if
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Algorithm 2 classify
Input: set of integers classindex, |Wm| × n matrix D, integer k.

Output: subclasses.

1: if k = |Wm| + 1 or |classindex| = 1 then
2: return classindex

3: end if
4: s← |classindex|

5: mergeSort(classindex) in descending order such that i > j if dk,i > dk, j.

6: for i = 2 to s do
7: subindex← 1; classindex.subindex ← classindex[1]

8: if dk,classindex[i] = dk,classindex[i−1] then
9: classindex.subindex ← classindex.subindex ∪ classindex[i]

10: else if dk,classindex[i] < dk,classindex[i−1] then
11: subindex← subindex + 1

12: classindex.subindex ← {classindex[i]}

13: end if
14: end for
15: Returnset← ∅

16: A← ∅

17: for j = 1 to subindex do
18: A← classify(classindex.j,D, k + 1)

19: Returnset← A ∪ Returnset

20: end for
21: return Returnset

Proposition 3.22. The time complexity of Algorithm 1 is O(n.|Wm| + n2log(n))

Proof. The time complexity of IS-LINEAR and computing matrix D is O(n2 +

n.|Wm|). For each iteration, sorting of sublists requires at most O(nlog(n)) time.
There are at most n loops. Therefore the total time complexity is O(n2 + n.|Wm|) +

O(n2log(n)) = O(n.|Wm| + n2log(n)). ut

Corollary 3.23. The strict desirability ordering of players in a linear simple

game v = (N,W) can be computed in polynomial time.

Proof. The proof follows from Algorithm 1. Moreover, we know that the set of
all winning coalitions can be transformed into a set of minimal winning coalitions
in polynomial time. ut
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3.6 Power indices and Chow parameters

In [151], Matsui and Matsui prove that it is NP-hard to compute the Banzhaf
index, Shapley-Shubik index and Deegan-Packel index of a player. We can use
a similar technique to also prove that it is NP-hard to compute the Holler in-
dex of players in a WVG. This follows from the fact that it is NP-hard to de-
cide whether a player is dummy or not. Prasad and Kelly [179] and Deng and
Papadimitriou [60] proved that for WVGs, computing the Banzhaf values and
Shapley-Shubik values is #P-parsimonious-complete and #P-metric-complete re-
spectively. (For details on #P-completeness and associated reductions, see [76]).
Unless specified, reductions considered with #P-completeness will be Cook re-
ductions (or polynomial-time Turing reductions).

What we see is that although it is NP-hard to compute the Holler index and
Deegan-Packel index of players in a WVG, the Holler index and Deegan-Packel
index of players in a simple game represented by its MWCs can be computed in
linear time:

Proposition 3.24. For a simple game (N,Wm), the Holler index and Deegan-

Packel index for all players can be computed in linear time.

Proof. We examine each of the cases separately:

• Initialize Mi to zero. Then for each S ∈ Wm, if i ∈ S , increment Mi by one.
• Initialize di to zero. Then for each S ∈ Wm, if i ∈ S , increment di by 1

|S | . Then
Di = di

|Wm |
.

ut

Proposition 3.25. For a simple game v = (N,W), the Banzhaf index, Shapley

Shubik index, Holler index and Deegan-Packel index can be computed in polyno-

mial time.

Proof. The proof follows from the definitions. We examine each of the cases
separately:

• Holler index: Transform W into Wm and then compute the Holler indices.
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• Deegan-Packel: Transform W into Wm and then compute the Deegan-Packel
indices.

• Banzhaf index: Initialize Banzhaf values of all players to zero. For each S ∈

W, check if the removal of a player results in S becoming losing (not a member
of W). In that case increment the Banzhaf value of that player by one.

• Shapley-Shubik index: Initialize Shapley values of all players to zero. For
each S ∈ W, check if the removal of a player results in S becoming losing
(not a member of W). In that case increment the Shapley value of the player
by (|S | − 1)!(n − |S |)!.

The time complexity for all cases is polynomial in the order of the input. ut

For a simple game (N,Wm), listing W the winning coalitions may take time
exponential in the number of players. For example, let there be only one minimal
winning coalition S which contains players 1, . . . , dn/2e. Then the number of
winning coalitions to list is exponential in the number of players. Moreover, if
|Wm| > 1, minimal winning coalitions can have common supersets. It is shown
below that for a simple game (N,Wm), even counting the total number of winning
coalitions is #P-complete. Moreover, whereas it is possible in polynomial time to
check if a player has zero voting power (a dummy) as seen in Proposition 3.13
or whether it has voting power 1 (dictator) as seen in Proposition 3.15, it is #P-
complete to find the actual Banzhaf or Shapley-Shubik index of the player.

Proposition 3.26. For a simple game v = (N,Wm), the problem of computing the

Banzhaf values of players is #P-complete.

Proof. The problem is clearly in #P. We prove the #P-hardness of the problem by
providing a reduction from the problem of computing |W |. Ball and Provan [30]
proved that computing |W | is #P-complete. Their proof is in the context of relia-
bility functions so we first give the proof in terms of simple games. It is known
[181] that counting the number of vertex covers is #P-complete (a vertex cover
in a graph G = (V, E) is a subset C of V such that every edge in E has at least
one endpoint in C). Now take a simple game v = (N,Wm) where for any S ∈ Wm,
|S | = 2. Game v has a one-to-one correspondence with a graph G = (V, E) such
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that N = V and {i, j} ∈ Wm if and only if {i, j} ∈ E(G). For a losing coalition,
the set of players that do not belong to the losing coalition must correspond to a
vertex cover of G

In that case the total number of losing coalitions in v is equal to the number of
vertex covers of G. Therefore the total number of winning coalitions is equal to
2n−(number of vertex covers of G) and computing |W | is #P-complete.

Now we take a game v = (N,Wm) and convert it into another game v′ = (N ∪
{x},Wm(v′)) where Wm(v′) = {S ∪ {x}|S ∈ Wm(v)}. In that case computing |W(v)|
is equivalent to computing the Banzhaf value of player x in game v′. Therefore,
computing Banzhaf values of players in games represented by MWCs is #P-hard.
ut

It follows from the proof that computing the power of collectivity to act( |W |2n )
and the Chow parameters for a simple game (N,Wm) is #P-complete. Goldberg
remarks in the conclusion of [100] that computing the Chow parameters of a
WVG is #P-complete. It is easy to prove this. We remember that the Chow pa-
rameter for player i is dented by |Wi| orωi. The problem of computing |W | and |Wi|

for any player i is in #P since a winning coalition can be verified in polynomial
time. It is easy to reduce in polynomial time the counting version of the SUBSET-
SUM problem to counting the number of winning coalitions. Moreover, for any
WVG v = [q; w1, . . . ,wn], |W(v)| is equal to |Wx(v′)| where v′ is [q; w1, . . . ,wn, 0].
Therefore computing |Wi| and |W | for a WVG is #P-complete.

We remember that ηi is the Banzhaf value of a game, ωi is the number of win-
ning coalitions which include player i and ω denotes the total number of winning
coalitions.

Lemma 3.27.
ηi = 2ωi − ω

Proof. Let ωi− be the number of those winning coalitions which do not include
i. Then, the total number of winning coalitions is ω = ωi + ωi− . The number of
winning coalitions which include i is equal to the number of losing coalitions
for which i is critical plus the number of coalitions which do not include i but are
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winning. From this, we know thatωi = ωi−+ηi. Then,ω = ωi−+ηi+ωi− = 2ωi−+ηi.
Then, it follows that ηi = ωi − ωi− = ωi − (ω − ωi) = 2ωi − ω. ut

Computing the Shapley-Shubik indices of players in (N,Wm) is also #P-
complete.

Proposition 3.28. For a simple game G = (N,Wm), the problem of computing the

Shapley-Shubik indices of players is #P-complete.

Proof. Computing Shapley-Shubik indices of any cooperative game is clearly
in #P. We show that computing the Shapley-Shubik indices is at least as hard
as computing the total number of winning coalitions. Let Ni be the number of
winning coalitions of a certain size i.

We get a new game G0 by doing the following.

G0 = (N ∪ {x}, {S ∪ {x} : S ∈ Wm(G)}).

Then, by the definition, Shapley-Shubik value of player x in G0 is

κx(G0) =

n∑
r=0

r!Nr(n − r)! =

n∑
r=0

r!N′r,

where we write N′r for Nr(n − r)!, for all r. Similarly we can construct Gi by
adding i extra vetoers to G0. If coalition S is winning in G, then S will require
the inclusion of all the new i players plus player x to be winning in Gi. Therefore,

n∑
r=0

(r + i)!N′r = κx(Gi). (3.1)

For i = 0 to i = n, we get an equation of the form of Equation (3.1) for each Gi.
The coefficients of the left-hand side of the set of equations can be represented by
the matrix A which is an (n + 1)× (n + 1) matrix where Ai j = (i + j − 2)!. The set
of equations is independent because A has a non-zero determinant of (1!2! · · · n!)2

(this follows from Theorem 1.1 [20]). If there is a polynomial time algorithm to
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compute the Shapley-Shubik index of each edge in a simple graph, then we can
compute the right-hand side of each equation corresponding to Gi.

The biggest possible number in the equation is less than (2n)! and can be rep-
resented efficiently. This follows from the fact that n! ≤ nn and hence to represent
(2n)!, one will use at most log2((2n)2n) = 2n(1 + log2 n) ≤ 3n log2 n bits.

We can use Gaussian elimination to solve the set of linear equation in O(n3)
time. Moreover, each number that occurs in the algorithm can also be stored in
a number of bits quadratic of the input size (Theorem 4.10 [123]). If there is
an algorithm polynomial in the number of edges to compute the Shapley-Shubik
index of all edges in the graph, then each Ni can be computed in polynomial time.
ut

A representation of a simple game is considered reasonable if, for a simple
game (N, v), the new game (N∪{x}, v′) where v(S ) = 1 if and only if v′(S ∪{x}) =

1, can also be represented with only a polynomial blowup. The following theorem
characterizes the relation between the computational complexity of the Banzhaf
value and the Shapley-Shubik indices.

Theorem 3.29. For a simple game with a reasonable representation, if computing

the Banzhaf values is #P-complete, then computing the Shapley-Shubik indices is

#P-complete.

Proof. Assume that computing the Banzhaf values is #P-complete. The proof
technique in Proposition 3.6 can be used to show that for any reasonable represen-
tation of the simple game, a polynomial time algorithm to compute the Shapley-
Shubik indices implies a polynomial time algorithm to compute the Banzhaf in-
dices.

It is first proved that if computing the Banzhaf values of players in a reasonable
representation is #P-complete, then computing ω, the total number of winning
coalitions is #P-complete. Assume that there is an oracle which can compute ω
of simple game (N, v) in polynomial time. Since ηi(N, v) = ω(N, v)−ω(N \ {i}, v),
ηi(N, v) can be computed in polynomial time. Therefore, computing ω(N, v) is
#P-complete. However, we saw that if there is an oracle to compute the Shapley-
Shubik indices of a simple game (in a reasonable representation) in polynomial
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time, then Nis can be computed in polynomial time. Since
∑n

j=1 Ni = ω, ω can be
computed in polynomial time. ut

As a corollary, we strengthen the complexity results for two other network
games which are representations of simple games and answer open questions
about the complexity of a host of skill based games:

Corollary 3.30. Computing Shapley value is #P-complete for

1. Threshold Network Flow Games [26]

2. Vertex Connectivity Games [27]

3. STSG (Single Task Skill Game), TCSG (Task Count Skill Game), WTSG

(Weighted Task Skill Game), TCSG-T (Task Count Skill Game with thresh-

olds) and WTSG-T (Weighted Task Skill Game with thresholds) [25]

Proof. For the given games, computing Banzhaf values is #P-complete. It is
easy to see that the games Threshold Network Flow Games, Vertex Connectivity
Games, STSG (Single Task Skill Game), TCSG-T (Task Count Skill Game with
thresholds) and WTSG-T (Weighted Task Skill Game with thresholds) are sim-
ple games with reasonable representations. Also, TCSG (Task Count Skill Game)
and WTSG (Weighted Task Skill Game) are generalizations of the STSG (Single
Task Skill Game). ut

As we will see later, the proof technique of Theorem 3.29 will be used in the
proof of Proposition 12.5.

3.7 Conclusion

A summary of results has been listed in Table 3.1. A question mark indicates that
the specified problem is still open. It is conjectured that it is NP-hard to compute
Banzhaf indices for a simple game represented by (N,Wm). It is found that al-
though WVG, MWVG and even (N,Wm) are relatively compact representations
of simple games, some of the important information encoded in these representa-
tions can apparently only be accessed by unraveling these representations. There
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is a need for a greater examination of transformations of simple games into com-
pact representations.

Table 3.1. Complexity of comparing players

(N,W) (N,Wm) WVG MWVG

IDENTIFY-DUMMIES P linear NP-hard NP-hard
IDENTIFY-VETOERS linear linear linear linear
IDENTIFY-PASSERS linear linear linear linear
IDENTIFY-DICTATOR linear linear linear linear
CHOW PARAMETERS linear #P-complete #P-complete #P-complete
IS-LINEAR P P (Always linear) NP-hard
DESIRABILITY-ORDERING P P P NP-hard
STRICT-DESIRABILITY P P NP-hard NP-hard
BANZHAF-VALUES P #P-complete #P-complete #P-complete
BANZHAF-INDICES P ? NP-hard NP-hard
SHAPLEY-SHUBIK-VALUES P #P-complete #P-complete #P-complete
SHAPLEY-SHUBIK-INDICES P #P-complete #P-complete #P-complete
HOLLER-INDICES P linear NP-hard NP-hard
DEEGAN-PACKEL-INDICES P linear NP-hard NP-hard
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Classification of computationally tractable weighted
voting games

In order to distinguish what is most simple from what is complex, and to

deal with things in an orderly way, what we must do, whenever we have

a series in which we have directly deduced a number of truths one from

another, is to observe which one is most simple, and how far all the others

are removed from this—whether more, or less, or equally.

- Descartes (Rule VI, Rules for the Direction of the Mind)

Abstract It is well known that computing Banzhaf indices in a weighted voting
game is #P-complete. We give a comprehensive classification of weighted voting
games which can be solved in polynomial time. Among other results, we provide
a polynomial (O(k( n

k )k)) algorithm to compute the Banzhaf indices in weighted
voting games in which the number of weight values is bounded by k. Compu-
tational results concerning weighted voting games with special distributions of
weights are also presented.

4.1 Introduction

4.1.1 Motivation and outline

The Banzhaf index is considered the most suitable power index by voting power
theorists ([132] and [82]). As mentioned before in Chapter 3, the computational
complexity of computing Banzhaf indices in WVGs is well studied. Prasad and
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Kelly [179] show that the problem of computing the Banzhaf values of players
is #P-complete. It is even NP-hard to identify a player with zero voting power or
two players with same Banzhaf indices [151].

Klinz and Woeginger [121] devised the fastest exact algorithm to compute
Banzhaf indices in a WVG. In the algorithm, they applied a partitioning approach
that dates back to Horowitz and Sahni [108]. However the complexity of the algo-
rithm is stillO(n22

n
2 ). In this chapter, we restrict our analysis to exact computation

of Banzhaf indices instead of examining approximate solutions. We show that al-
though computing Banzhaf indices of WVGs is a hard problem in general, it is
easy for various classes of WVGs, e.g., for WVGs with a bounded number of
weight values, an important sub-class of WVGs.

The outline of the chapter is as following. Section 4.2 identifies WVGs in
which Banzhaf indices can be computed in constant time. In Section 4.3, we ex-
amine WVGs with a bounded number of weight values, and provide algorithms
to compute the Banzhaf indices. Section 4.4 examines WVGs with special weight
distributions. Section 4.5 considers WVGs with integer weights. Section 4.6 pro-
vides a survey of approximate approaches to computing power indices in WVGs.
We conclude with some open problems in the final section.

Generally, 1
2

∑
1≤i≤n wi < q ≤

∑
1≤i≤n wi so that there can be no two disjoint

winning coalitions. Such weighted voting games are proper.
The problem of computing the Banzhaf indices of a WVG can be defined

formally as following:
Name: BI-WVG
Instance: WVG, v = [q; w1, ...,wn]
Question: What are the Banzhaf indices of the players?

Here, we will suppose that arithmetic operations on O(n)-digit numbers can
be done in constant time.
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4.2 Extreme cases

If the WVG v is [q; u, u, . . . , u︸      ︷︷      ︸
n

], then the Banzhaf indices β1, ... , βn are equal

to 1/n. The Banzhaf indices can be found in constant time, and the following
theorem gives the actual number of swings for each player.

Theorem 4.1. In a WVG with n equal weights, u, each player is critical in
(

n−1
dq/ue−1

)
coalitions. Moreover, the total number of winning coalitions w is

∑n
i=dq/ue

(
n
i

)
.

Proof. The minimum number of players needed to form a winning coalition is
dq/ue. A player is critical in a coalition if there are exactly dq/ue−1 other players
in the coalition. There are

(
n−1
dq/ue−1

)
such coalitions. There are

(
n
i

)
coalitions of size

i and such a coalition is winning if i ≥ dq/ue. ut

Also, in a WVG with n equal weights u, the probabilistic Banzhaf index of
each player is then

(
n−1
dq/ue−1

)
/2n−1. We can also compute Coleman’s power of the

collectivity to act, A, which is equal to w
2n .

A dictator is a player who is present in every winning coalition and absent
from every losing coalition. This means that the player 1 with the biggest weight
is a dictator if and only if w1 ≥ q and

∑
2≤i≤n wi < q. In that case, β1 = 1 and

βi = 0 for all i > 1.
If 0 < q ≤ wn then the only minimal winning coalitions are all the singleton

coalitions. So there are n minimal winning coalitions and every player is critical
in one coalition. Thus, for all i, βi = 1/n and the Banzhaf indices can be found in
constant time (i.e., O(1)). Moreover, the probabilistic Banzhaf index β

′

i = 1/2n−1

for all i, and Coleman’s power of collectivity to act A = 2n−1
2n

If q ≥
∑

1≤i≤n wi − wn, then the only minimal winning coalition is {1, 2, . . . , n}
and it becomes losing if any player gets out of the coalition. Thus the weighted
voting game acts like the unanimity game. Then for all i, βi = 1/n. The Banzhaf
indices can be found in constant time (i.e., O(1)). Moreover, for all i, β

′

i = 1/2n−1

and A = 1/2n.
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4.3 Bounded number of weight values

In this section we estimate the time complexity of several algorithms. We start
off with the case when all weights except one are equal and give exact formulas
for the Banzhaf indices. We then use this as a warm up exercise to consider more
general cases where there are 2 weight values and then k weight values.

4.3.1 All weights except one are equal

We start off with the case when all weights except one are equal.

Theorem 4.2. Let v be a WVG, [q; wa,wb, ...,wb], where there is wa and m weights

of value wb, where wb < q. Let x be d q−wa
wb
e and y = dq/wbe. Then the total

number of coalitions in which a player with weight wb is critical is
(

m−1
y−1

)
+

(
m−1

x

)
.

Moreover, the number of coalitions in which the player with weight wa is critical

is
∑Min(y−1,m)

i=x

(
m
i

)
.

Proof. A player with weight wb is critical in 2 cases:

1. It makes a winning coalition with other players with weight wb only. Let y

be the minimum number of players with weight wb which form a winning
coalition by themselves. Thus y = dq/wbe. The number of such coalitions in
which a player with weight wb can be critical is

(
m−1
y−1

)
.

2. It makes a winning coalition with the player with weight wa and none or some

players with weight wb. Let x be the minimum number of players with weight
wb which can form a winning coalition with the inclusion of the player with
weight wa. Thus x = d

q−wa
wb
e. Then, the number of such coalitions in which a

player with weight wb can be critical is
(

m−1
x

)
.

The total number of swings for a player with weight wb is thus
(

m−1
y−1

)
+

(
m−1

x

)
.

The player with weight wa is critical if it forms a winning a coalition with
some players with weight wb but the coalition becomes losing with its exclusion.
The player with weight wa can prove critical in coalition with varying number of
players with weight wb. The maximum number of players with weight wb with
which it forms a winning coalition and is also critical is y−1 in case y ≤ m and m
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in case y > m. Therefore the total number of coalitions in which the player with
weight wa is critical is

∑Min(y−1,m)
i=x

(
m
i

)
. ut

4.3.2 Only two different weight values

Unlike Theorem 4.2, we do not give a short formula for the Banzhaf values in the
next theorem. However Theorem 4.3 considers a more general case than Theo-
rem 4.2. As we shall we later Theorem 4.2 provides us with an idea to consider
the case of k weight values.

Theorem 4.3. For a WVG with n players and only two weight values, the Banzhaf

indices and numbers of swings can be computed in O(n2) time.

Proof. We look at a WVG, v = [q; wa, ...wa,wb, ...wb], where there are na players
with weight wa and nb players with weight wb. We analyse the situation when a
player with weight wa proves to be critical in a coalition which has i other players
with weight wa and the rest with weight wb. Then the minimum number of players
with weight wb required is d q−(i+1)wa

wb
e. Moreover the maximum number of players

with wb is d q−iwa
wb
e−1. Therefore j, the number of players with weight wb, satisfies

the following inequality: x1(i) = d
q−(i+1)wa

wb
e ≤ j ≤ Min(d q−iwa

wb
e − 1, nb) = x2(i). Let

Ai =
(

na−1
i

)
, and let Bi =

∑x2(i)
j=x1(i)

(
nb
j

)
. We define, the maximum possible number of

extra players with weight a, to be maxa = Min(dq/wae − 1, na − 1). Then the total
number of swings of the player with weight wa is

∑maxa
i=0 AiBi. The total number

of swings for a player with weight wb can be computed by a symmetric method.
ut

We can devise an algorithm (Algorithm 4) from the method outlined in the
proof.
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Algorithm 3 SwingsFor2ValueWVG
Input: v = [q; (na,wa), (nb,wb)].

Output: Total swings of a player with weight wa.

1: swingsa ← 0

2: maxa← Min(dq/wae − 1, na − 1)

3: for i = 0 to maxa do
4: x1(i)← d q−(i+1)wa

wb
e

5: x2(i)← Min(d q−i(wa)
wb
e − 1, nb)

6: Ai ←
(

na−1
i

)
7: if x1(i) > nb then
8: Bi ← 0

9: else if x2(i) < 0 then
10: Bi ← 0

11: else
12: Bi ← 0

13: for j = x1(i) to x2(i) do
14: Bi ← Bi +

(
nb
j

)
15: end for
16: end if
17: swingsa = swingsa + AiBi

18: end for
19: return swingsa

Algorithm 4 BIsFor2ValueWVG
Input: v = [q; (na,wa), (nb,wb)].

Output: Banzhaf indices, β = (βa, βb).

1: swingsa = SwingsFor2ValueWVG(v)

2: v′ = [q; (nb,wb), (na,wa)]

3: swingsb = SwingsFor2ValueWVG(v′)

4: totalswings = naswingsa + nbswingsb

5: βa =
swingsa

totalswings

6: βb =
swingsb

totalswings

7: return (βa, βb)

The algorithm for 2 weight values serves as warm-up for the general case of k

weight values in the next section.
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4.3.3 k weight values

Theorem 4.4. The problem of computing Banzhaf indices of a WVG with k pos-

sible values of the weights is solvable in O(nk).

Proof. We can represent a WVG v with k weight classes as follows:

[q; (n1,w1), (n2,w1), ..., (nk,wk)]

where ni is the number of players with weights wi for i = 1, . . . , k. Here, we
extend Algorithm 4 to Algorithm 6 for k weight classes.

We can write v′ as [q; (1,w0), (n1 − 1,w1), ..., (nk,wk)] where w0 = w1. This
makes it simpler to write a recursive function to compute the number of swings
of player with weight w0. Let Ai1,i2,...,im be the number of swings for w0 where
there are i j players with weight w j in the coalition for 1 ≤ j ≤ m.

Then

Ai1,i2,...,ik =


(

n1−1
i1

)
(Πk

j=2

(
n j
i j

)
) if q − w0 ≤

∑k
j=1 i jw j < q

0 otherwise.

Now for 1 ≤ m ≤ k,

Ai1,i2,...,im−1 =
∑

im

Ai1,i2,...,im .

Here the summation is taken over all values of im for which the contribution is
non-zero. Explicitly, this range is given by

Max(

q − w0 −
∑m−1

j=1 i jw j −
∑k

j=m+1 n jw j

wm

 , 0) ≤ im ≤ Min(

q −
∑m−1

j=1 i jw j

wm

−1, nm).

The total number of swings of the player with weight w0 is then Aε .
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Algorithm 5 SwingsForWVG
Input: v = [q; (n1,w1), (n1,w1), . . . , (nk,wk)].

Output: Total number of swings, swings0, of a player with weight w1.

1: w0 = w1

2: v′ = [q; (1,w0), (n − 1,w1), ..., (nk,wk)]

3: swings0 = Aε

4: return swings0

Algorithm 6 BIsFor-k-ValueWVG
Input: v = [q; (n1,w1), (n1,w1), . . . , (nk,wk)].

Output: Banzhaf indices, β = (β1, . . . βk).

1: swings1 = SwingsForWVG(v)

2: totalswings← 0

3: for i = 2 to k do
4: v = Swap(v, (n1,w1)(ni,wi))

5: swingsi = SwingsForWVG(v)

6: totalswings← totalswings + niswingsi

7: end for
8: for i = 1 to k do
9: βi =

swingsi
totalswings

10: end for
11: return (β1, . . . βk)

We note that the exact computational complexity of BI-WVG for a WVG
with k weight values is O(k(n

k )k) where (n
k )k
≥ n1 · · · nk. None of the algorithms

presented for WVGs with bounded weight values extends naturally for multiple
weighted voting games.

4.4 Distribution of weights

4.4.1 Geometric sequence of weights, and unbalanced weights

Definition 4.5. An r-geometric WVG [q; w1, ...,wn] is a WVG where wi ≥ rwi+1

for i = 1, ..., n − 1.
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We observe that in a 2-geometric WVG (such as [q; 2n, 2n−1, ..., ]), for any
target sum of a coalition, we can use a greedy approach, trying to put bigger
weights first, to come as close to the target as possible. This greedy approach
was first identified by Chakravarty, Goel and Sastry [43] for a broader category
of weighted voting games in which weights are unbalanced:

Definition 4.6. An unbalanced WVG is a WVG such that, for 1 ≤ j ≤ n, w j >

w j+1 + w j+2... + wn.

Example 4.7. The game [22; 18, 9, 4, 2, 1] is an example of an unbalanced WVG
where each weight is greater than the sum of the subsequent weights.

Chakravarty, Goel and Sastry [43] showed that the greedy approach for un-
balanced WVG with integer weights can help to compute all Banzhaf indices
in O(n). We notice that the same algorithm can be used for an unbalanced WVG
with real weights without any modification. In fact it is this property of ‘geometric
weights’ being unbalanced which is the reason that we can find suitable coalitions
for target sums so efficiently. We characterise those geometric sequences which
give unbalanced WVGs:

Theorem 4.8. If r ≥ 2 then every r-geometric WVG is unbalanced.

Proof. Let v be an r-geometric WVG. We prove by induction that w j > w j+1 +

. . . + wn. This is true for j = n. Suppose it is true for all i, j + 1 ≤ i ≤ n. Since v

is r-geometric, w j ≥ 2w j+1. But, 2w j+1 = w j+1 + w j+1 > w j+1 + w j+2 + . . . + wn.
Therefore v is unbalanced. ut

Corollary 4.9. For an r-geometric WVG v where r ≥ 2, the Banzhaf indices of

players in v can be computed in O(n) time.

Proof. Since the condition of r ≥ 2 makes v an unbalanced WVG, then we can
use the greedy algorithm from [43] which computes the Banzhaf indices in O(n).
ut

Definition 4.10. A WVG is a k-unbalanced WVG if, for 1 ≤ j ≤ n, w j > w j+k +

· · · + wn. So an unbalanced WVG is ‘1-unbalanced’.
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Note that an r-geometric WVG is 2-unbalanced when r ≥ 1+
√

5
2 ≈ 1.61803... =

ϕ, the golden ratio, since then

1
r2 +

1
r3 + · · · <

1
r(r − 1)

≤ 1 since r(r − 1) ≥ ϕ(ϕ − 1) = 1.

We check whether 2-unbalanced WVGs have properties similar to those of
unbalanced WVGs.

Example 4.11. Consider a WVG v with 2m players and weights

3m−1, 3m−1, . . . , 3 j, 3 j, . . . , 3, 3, 1, 1.

It is easy to see that
∑ j−1

i=0 2 · 3i < 3 j, so the game is 2-unbalanced.

In the unbalanced game, for each target coalition sum, there is either one cor-
responding coalition or none. This does not hold for 2-unbalanced WVGs. In
Example 4.12 with target total 1 + 3 + · · ·+ 3m−1 = 1

2 (3m − 1), there are exactly 2m

coalitions which give this target, namely those coalitions with exactly one player
out of each equal pair.

We prove that even for the class of 2-unbalanced (instead of simply unbal-
anced WVGs) the problem of computing Banzhaf indices becomes NP-hard.

Theorem 4.12. BI-WVG is NP-hard for the class of 2-unbalanced WVGs .

Proof. We will use a reduction from the following NP-hard problem:

Name: SUBSET SUM

Instance: z1, . . . , zm, T ∈ N.
Question: Are there x js in {0, 1} so that

∑m
j=1 x jz j = T?

For the reduction from SUBSET SUM, we scale and modify the weights from
the WVG v of Example 4.12. For any instance I = {z1, . . . , zm,T } of SUBSET
SUM, we will define a game vI with 2m + 1 players. Let Z = 1 +

∑m
j=1 z j, and we

may assume that T < Z. Whereas v had pairs of weights 3 j, 3 j for 0 ≤ j ≤ m − 1,
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in vI there is one “unit player” with weight 1 and 2m pairs of players with weights
3 jZ, 3 jZ + z j for 0 ≤ j ≤ m − 1. The quota for vI is 1

2 (3m − 1)Z + T + 1. The unit
player has nonzero Banzhaf index if and only if there exists a coalition among
the other 2m players with weight exactly 1

2 (3m − 1)Z + T . We will show that to
determine this is equivalent to answering the SUBSET SUM instance I, and so
even this special case of BI-WVG is NP-hard.

In Example 4.12, it was necessary (and sufficient) for achieving the target total
of 1

2 (3m−1) to take exactly one player from each pair. In game vI , since
∑m

j=1 z j <

Z, this is still a necessary condition for achieving the total of 1
2 (3m − 1)Z + T , and

whether or not there is such a selection achieving the total is exactly the condition
of whether there is a subset of the z js which sums to T . ut

4.4.2 Sequential weights

Definition 4.13. The set of weights {w1,w2, ...,wn} is sequential if

wn|wn−1|wn−2...|w1,

i.e. each weight is a multiple of the next weight.

Example 4.14. [32; 20, 10, 10, 5, 1, 1, 1] is an example of a WVG with sequential
weights.

Chakravarty, Goel and Sastry [43] show that Banzhaf indices can be computed
in O(n2) time if the weights are sequential and they satisfy an additional domi-
nance condition. The dominance conditions states that a weight in one weight
class should be more than the sum of weights of any subsequent weight class.

Definition 4.15. Let d1 > d2 > · · · > dr be the distinct values of weights

w1, . . . ,wn of a sequential set. Then dk = mkdk+1 where mk > 1, ∀k, 1 ≤ k < r.

Let Nk = {i | wi = dk} and nk = |Nk|. Then the dominance condition holds if

mk > nk+1 ∀k, 1 ≤ k < r.

We now define the alternative dominance condition for WVGs.
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Definition 4.16. Let d1 > d2 > · · · > dr be the distinct values of weights

w1, . . . ,wn of a sequential set. Let Nk = {i|wi = dk} and nk = |Nk|. Then the alterna-
tive dominance condition holds if ∀ j ∈ Nk, 1 ≤ k < r, w j >

∑
{wp | p ∈ Ni, i > k}.

We provide an alternative dominance condition for weights which are not nec-
essarily sequential. It is easy to see that a 2-unbalanced WVG does not necessarily
satisfy the alternative dominance condition.

Definition 4.17. Let d1 > d2 > · · · > dr be the distinct values of weights

w1, . . . ,wn of a sequential set. Let Nk = {i|wi = dk} and nk = |Nk|. Then the alterna-
tive dominance condition holds if ∀ j ∈ Nk, 1 ≤ k < r, w j >

∑
{wp | p ∈ Ni, i > k}.

Proposition 4.18. Suppose a WVG v satisfies the alternative dominance condi-

tion. Then for v, BI-WVG has time complexity O(n2).

Proof. This follows from Theorem 10 in [43] where the proof is for a sequential
WVG which obeys the dominance condition. However we notice that since the
argument in the proof can be made for any WVG which satisfies the alternative
dominance condition, the proposition holds for v. ut

4.5 Integer weights

When all weights are integers, other methods may become applicable.

4.5.1 Moderate sized integer weights

Matsui and Matsui [151] prove that a dynamic programming approach provides
a pseudo-polynomial algorithm to compute Banzhaf indices of all players with
time complexity O(n2q). Since q is less than

∑
i∈N wi, the Banzhaf indices can be

computed in polynomial time if the weight sizes are moderate.

4.5.2 Polynomial number of coefficients in the generating function of the
WVG

A generating function is a formal power series whose coefficients encode infor-
mation about a sequence. Bilbao et al. [36] observe, for a WVG v = [q; w1, . . . ,wn],
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that if the number of coalitions for which a player i is critical is bi = |{S ⊂ N :
v(S ) = 0, v(S ∪{i}) = 1}| =

∑q−1
k=q−wi

bi
k, where bi

k is the number of coalitions which
do not include i and with total weight k, then the generating functions of the num-
bers {bi

k} are given by Bi(x) =
∏n

j=1, j,i(1+ xw j) = 1+bi
1x+bi

2x2 + · · ·+bi
W−wi

xW−wi .
This was first pointed out by Brams and Affuso [39].

Example 4.19. Let v = [6; 5, 4, 1] be a WVG.

• B1(x) = (1 + x4)(1 + x1) = 1 + x + x4 + x5

The coalitions in which player 1 is critical are {1, 2}, {1, 3}, {1, 2, 3}. Therefore
η1 = 3.

• B2(x) = (1 + x5)(1 + x1) = 1 + x + x5 + x6 The coalition in which player 2 is
critical is {1, 2}. Therefore η2 = 1.

• B3(x) = (1 + x5)(1 + x4) = 1 + x4 + x5 + x9

The coalition in which player 3 is critical is {1, 3}. Therefore η3 = 1.

Consequently, β1 = 3/5, β2 = 1/5 and β3 = 1/5.

The generating function method provides an efficient way of computing
Banzhaf indices if the voting weights are moderate integers. Bilbao et al. [36]
prove that the computational complexity of computing Banzhaf indices by gen-
erating functions is O(n2C) where C is the number of non-zero coefficients in∏

1≤i≤n(1 + xw j). We note that C can be bounded by the sum of the weights but
the bound is not tight. C can be relatively small even if the weight values are
exponential in n. Therefore if a WVG has a generating function in which the
number of non-zero terms is polynomial in n, then the computational complexity
of computing the Banzhaf indices is in P.

4.6 Approximation approaches

The earliest approximate algorithm for power indices was the Monte Carlo ap-
proach by Mann and Shapley [148]. Owen [164, 165] devised an approach using
multilinear extension(MLE) which provides an exact computation of power in-
dices. The method has exponential time complexity. However the MLE approach
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can be utilized in large games for approximations using the central limit the-
orem [135]. Leech [131] succinctly outlines the basic idea of approximations
using Owen’s MLE approach. Holzman et al. [107] and then Freixas [87] pro-
vide bounds for Owen’s MLE. Matsui and Matsui [151] in their survey of voting
power algorithms also include the Monte Carlo approach. However, they do not
focus on the analysis of the errors induced. Fatima et al. [80] propose a variation
of Mann and Shapley’s [148] algorithm by treating the players’ weights instead
of the players’ numbers of swings as random variables. Bachrach et al. [22] sug-
gest and analyse the randomized approximate algorithm to compute the Banzhaf
index and the Shapley-Shubik index with a comprehensive theoretical analysis of
the confidence intervals and errors induced.

4.7 Open problems & conclusion

Table 4.1 contains a summary of the algorithms or complexity results for differ-
ent classes of WVGs. A&P refers to Aziz and Paterson. In this chapter we have
classified WVGs for which Banzhaf indices can be computed in polynomial time.
It would be interesting to identify further important classes of WVGs which have
less than exponential time complexity. The extensive literature on the SUBSET-
SUM problem should offer guidance here. It appears an interesting question to
analyse the expected number of terms in the generating function for sequential
WVGs. Another challenging open problem is to devise an algorithm to compute
exactly the Banzhaf indices of a general WVG in time complexity which is less
than O(n22

n
2 ).
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Table 4.1. Complexity of WVG classes

WVG Class R/Z Complexity Time Remarks
Class

General R/Z NP-Hard O(n21.415n) [121]
Unbalanced R/Z P O(n) [43]
k-Unbalanced(k ≥ 2) R/Z NP-Hard A&P [16]
Sequential with dominance R/Z P O(n2) [43]
Alternative dominance R/Z P O(n) A&P [16] + [43]
Bounded(k) #(weight values) R/Z P O(nk) A&P [16]
r-geometric R/Z P O(n) A&P [16] + [43]
Moderate integer weights Z P O(n2q) [151]
Moderate GF Z P O(n2C) [39], [36]
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Multiple weighted voting games

In a capitalist democracy, there are essentially two methods by which so-

cial choices can be made: voting, typically to make “political decisions”,

and the market mechanism, typically used to make “economic decisions”.

- Kenneth J. Arrow (Social Choice and Individual Values [8])

Abstract We provide mathematical and computational properties of multiple

weighted voting games which are an extension of weighted voting games. We
analyse the structure of multiple weighted voting games and some of their com-
binatorial properties especially with respect to dictatorship, veto power, dummy
players and Banzhaf indices. An illustrative Mathematica program to compute
voting power properties of multiple weighted voting games is also provided.

5.1 Introduction

MWVGs are utilized in various situations. The treaty of Nice made the overall
voting games of the EU countries a triple majority weighed voting game with cer-
tain additional constraints. MWVGs are useful in multi-criteria multi-agent sys-
tems. We analyse combinatorial properties of multiple weighted voting games es-
pecially with respect to dictatorship, veto power and dummy players. The chapter
also outlines algorithmic considerations when computing voting power of play-
ers in multiple weighted voting games. In [77], the authors generalize multiple
weighted voting games and consider boolean weighted voting games which are
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logical combinations of weighted voting games. However, we restrict out atten-
tion to MWVGs which are the most common extension of WVGs.

5.2 MWVGs

In this section, we examine some standard properties of MWVGs which were
defined in Definitions 2.4.

5.2.1 Structure

We define S i as the set of coalitions not including player i. Then S i can be parti-
tioned into three mutually exclusive sets:

S i = Wi(v) ∪Ci(v) ∪ Li(v)

where

• Wi(v) is the set of coalitions not including player i which are winning in the
multiple game v

• Li(v) is the set of coalitions not including player i which are losing in the
multiple game v even if player i joins the coalitions.

• Ci(v) is the set of coalitions not including player i which are losing in the
multiple game v but winning in v if player i joins the coalitions.

The number of coalitions in which player i is critical in the multiple game v is
ηi(v) = |Ci(v)|. In a MWVG v = ∧v j, i is critical in a coalition S if

(∀ j : (S ∈ Ci(v j) ∨ S ∈ Wi(v j)) ∧ (∃ j : S ∈ Ci(v j))

We define W(v) as the set of winning coalitions in v and W(vi) as the set of
winning coalitions in vi. In that case

W(v) = W(v1) ∩W(v2)... ∩W(vm)
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Similarly if we define L(v) as the set of losing coalitions in v and L(vi) as the
set of losing coalitions in vi. In that case

L(v) = L(v1) ∪ L(v2)... ∪ L(vm)

5.2.2 Trade robustness

Deineko and Woeginger [57] show that it is NP-hard to verify the dimension of
multiple-weighted voting games. In [90], it is pointed out that the dimension of a
game is at most the number of maximal losing coalitions. This kind of bound is
not very helpful though in estimating the actual dimension of a MWVG.

In Definition 3.6, swap-robust and trade-robust were defined. Taylor and
Zwicker [202] proved that a simple game is trade robust if and only if it is a
WVG. However, MWVGs are not even swap-robust:

Example 5.1. Let (N, v) = (N, v1 ∧ v2) where v1 = [20; 18, 5, 0, 5, 5, 2, 5] and v2 =

[20; 0, 5, 18, 5, 5, 2, 5]. We see that coalitions {1, 3, 6} and {2, 4, 5, 7} are winning
in v. However if we have a trade so that the resultant coalitions are {2, 3, 6} and
{1, 4, 5, 7}, then both coalitions are losing.

5.3 Properties of MWVGs

We define u as the unanimity WVG in which a coalition is only winning if it is
the grand coalition N = {1, 2, ..., n}. Every player has veto power in u. We know
that in u, all players are critical only in N and therefore have uniform Banzhaf
indices. Similarly we define s as the singleton weighted voting game in which
every coalition is winning except the empty coalition.

Proposition 5.2. In a MWVG, the constituent unanimity WVG acts as a zero and

the singleton WVG acts as a unit.

Proof. For a WVG (N, v) and a unanimity WVG (N, u), we notice that for any
coalition c to be winning in (N, v ∧ u), it must be winning in both (N, v) and
(N, u). Thus the grand coalition is the only winning coalition. So v ∧ u = u.
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For a WVG (N, v) and a singleton WVG (N, s), we notice that for any coalition
c to be winning in (N, v ∧ u) it just has to be non-empty. So v ∧ s = v. ut

So for v = v1 ∧ ... ∧ vm, if ∃ j : v j = u, then v = u. This implies that even if
player i is a dictator in one game of the MWVG, it does not mean it is a dictator
in the MWVG. Moreover, even if a player is a dummy in all the games apart from
the unanimity game v j, then that player will have Banzhaf power of 1/n.

Example 5.3. v = v1 ∧ v2 where v1 = [3; 4, 1, 1] and v2 = [3; 1, 1, 1]. Player 1 is a
dictator in v1 but it is not a dictator in v.

Proposition 5.4. For MWVG, v = v1 ∧ ... ∧ vm:

1. (∀i : player 1 is a dictator in vi) =⇒ player 1 is a dictator in v

2. (∀ j : player i is a dummy in v j) =⇒ player i is a dummy in v

3. (∃ j : player i has veto power in v j) =⇒ player i has veto power in v

4. (∃ j : v j is proper) =⇒ v is proper.

Proof. 1. Let player 1 be a dictator in vi for all i = 1, . . .m. Thus ∀i, 1 ≤ i ≤ m,
wi

1 ≥ q and
∑

2≤ j≤m w j < q. This means that {1} is winning in v and {2, ..., n} is
losing in v

2. We know that ∀ j, Ci(v j) = ∅. Then by definition, Ci(v) = ∅.
3. If for some t = 1, . . . ,m, we have N \ {i} < W(vt). Then N \ {i} < W(v).
4. Assume that v j is proper. This means that if v j(S ) = 1 then v j(N \ S ) = 0. If

v(S ) = 1, then by definition vt(S ) = 1, for 1 ≤ t ≤ m. Then v j(N \ S ) = 0
which implies that vt(N \ S ) = 0. ut

Example 5.5. The converses for the previous proposition do not hold:

1. Let v = v1 ∧ v2 where v1 = [4; 5, 1, 1] and v2 = [2; 5, 1, 1]. Although player 1
is a dictator in v, it is not a dictator in v2.
Moreover, even if there is a WVG vi in which player 1 does not have the
biggest weight, it can still be the dictator: v = v1 ∧ v2 where v1 = [2; 5, 1] and
v2 = [2; 2, 3]. Player 1 is a dictator in v.
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2. Let v = v1∧v2 where v1 = [5; 3, 2, 1] and v2 = [5; 3, 2, 2]. Player 3 is a dummy
in v but not a dummy in v2.
In fact a player can be a dummy in v even if he is not a dummy in any of
the games. For example, let v = v1 ∧ v2 where v1 = [7; 4, 3, 3, 1] and v2 =

[8; 7, 3, 3, 1]. Player 4 is a not a dummy in v1 and v2 but a dummy in v.
3. Let v = v1 ∧ v2 where v1 = [5; 3, 2, 1] and v2 = [6; 5, 2, 1]. Player 2 has veto

power in v but does not have veto power in v2

4. Let v = v1 ∧ v2, where v1 = [5; 5, 2, 2, 1] and v2 = [5; 1, 2, 2, 5]. We see that
although v1 and v2 are not proper, v is proper.

Proposition 5.6. For MWVG, v = v1 ∧ ... ∧ vm, if ∃i : player 1 is a dictator in vi,

then player 1 has veto power in v.

Proof. If player 1 is a dictator in vi, he is in every winning coalition of vi. There-
fore for any coalition c which is winning in v, if the dictator opts out of c, c loses
in vi and therefore loses in v. ut

5.4 Analysing MWVGs

Klinz and Woeginger [121] devised the fastest exact algorithm to compute
Banzhaf indices in a WVG. In the algorithm, they applied a partitioning approach
that dates back to Horowitz and Sahni [108]. The complexity of the algorithm is
O(n22

n
2 ). This partitioning approach does not directly generalize for MWVGs

though.

5.4.1 Generating functions for MWVGs

That was a proof by generating functions, another of the popular tools

used by the species Homo sapiens for the proof of identities before the

computer era..

- M. Petkovsek, H. S. Wilf and D. Zeilberger, p. 24, [143].

The generating function method provides an efficient way of computing
Banzhaf indices if the voting weights are integers [151]. Algaba et al. [2] out-
line a generating function method to find the Banzhaf indices of players in a
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multiple weighted majority game. Their algorithm m-BanzhafPower computes
the Banzhaf index of the players in O(max(m, n2c)) time where c is the number
of terms of

B(x1, ..., xm) =

n∏
j=1

(1 + x
w1

j

1 ...x
wm

j
m ) =

wt(N)∑
kt=0,1≤t≤m

bk1...km x1
k1 ...xm

km .

The coefficient, bk1...km of each term x1
k1 ...xm

km is the number of coalitions such
that wt(S ) = kt for t ranging from 1 to m.

One can make generating functions, Bi(x1, ..., xm) for each player i by exclud-
ing its influence from the considered coalitions just as in the single WVG case.
Therefore Bi(x1, ..., xm) = B(x1, ..., xm)/(1 + xw1

i
1 ...x

wm
i

m ). These generating func-
tions can be encoded in the form of a coefficient array which gives a clear picture
and make the computation of coefficients easier. We present the algorithm due
to Algaba et al. with some modifications to avoid extra computations and also to
compute the total number of winning coalitions and the set of vetoers.
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Algorithm 7 PowerAnalysisOfMWVGs
Input:MWVG: [qt; wt

1, ...w
t
n] for 1 ≤ t ≤ m.

Output: Number of winning coalitions w, vetoplayerset and Banzhaf indices: {w, (β1, . . . , βn)}.

1: vetoplayerset← ∅

2: for i = 1 to n do
3: isvetoplayer← false
4: for j = 1 to m do
5: if w j(N) − w j

i < q j then
6: isvetoplayer← true
7: end if
8: end for
9: if isvetoplayer then

10: vetoplayerset← vetoplayerset ∪ {i}

11: end if
12: end for
13: B(x1, ..., xm)←

∏n
j=1(1 + x

w1
j

1 ...x
wm

j
m )

14: coeff = Coeff(B(x1, ..., xm))

15: For kt from qt to wt(N), 1 ≤ t ≤ m,

w← Sum(coeff[k1, . . . , km]) where kt is the range of weight values in the t-th constituent WVG

16: for i = 1 to n do
17: if i , 1 and wt

i = wt
i−1 for t = 1, . . . ,m then

18: ηi ← ηi−1

19: else
20: Bi(x1, ..., xm)← B(x1 ,...,xm)

(1+x
w1

i
1 ...x

wm
i

m )

21: coeffi = Coeff(Bi(x1, ..., xm))

22: For kt from qt − wt
i + 1 to wt(N \ i) + 1, 1 ≤ t ≤ m,

si
1 ← Sum(coeffi[k1, . . . , km])

23: For kt from qt + 1 to wt(N \ i) + 1, 1 ≤ t ≤ m,

si
2 ← Sum(coeffi[k1, . . . , km])

24: ηi ← si
1 − si

2

25: end if
26: end for
27: η←

∑n
i=1 ηi

28: for i = 1 to n do
29: βi ←

ηi
η

30: end for
31: return {w, vetoplayerset, (β1, . . . , βn)}
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5.4.2 Analysis

The enumeration algorithm to compute Banzhaf indices of players in a MWVG
has an exponential time complexity because of the need to compute and analyse
each possible coalition. The generating function method can be more time effi-
cient but involves more storage of data. It requires the computation of B(x1, ..., xm)
and Bi(x1, ..., xm) for player i, for 1 ≤ i ≤ n. The storage requirements increase
even more if B(x1, ..., xm) is encoded in a coefficient array. This makes the storage
dependent on the sum of the weights in each component game.

The space complexity of the generating function method to compute Banzhaf
indices of players in a MWVG is c +

∑
1≤i≤n ci + k where c is the number of terms

of B(x1, ..., xm) and ci is the number of terms in Bi(x1, ..., xm). Then,

c +
∑

1≤i≤n

ci ≤ c + nc ≤ (n + 1)
∏

1≤t≤m

(1 + wt(N))

This follows from the fact that the generating function method requires the
computation of B(x1, ..., xm), the generating function of the overall game and
Bi(x1, ..., xm), the generating function of each player i. We can utilize Proposi-
tion 6.3 to limit the space requirements when the weights themselves may not
be perfectly accurate as is the case in Chapter 7 where population figures are
weights. This scaling of the WVGs into WVGs with smaller weights keeps the
properties of the WVG invariant. Moreover, we have identified players with same
voting weight to avoid re-computation of their generating functions and their
underlying coefficient arrays. Whereas the Mathematica programs to compute
Banzhaf indices of multiple weighted voting games with 2 or 3 games are avail-
able, the Mathematica code presented at the end of the chapter computes Banzhaf
indices of an arbitrary number of players. In case the space complexity of the gen-
erating function method is high, the generating function and the corresponding
coefficient array for each player can be computed, and then cleared after extract-
ing the number of swings of that player. Appendix A shows the Mathematica code
to compute Banzhaf indices of players in a MWVG. A variation of the program
was used for analysis in Chapter 7.
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Efficient algorithm to design weighted voting games

All animals are equal but some animals are more equal than others.

- George Orwell, Animal Farm

The passion of men for equality is ardent, insatiable, eternal, and invinci-

ble.

- De Tocqueville, 1860

Scientific and humanist approaches are not competitive but supportive,

and both are ultimately necessary

- Robert C. Wood

Abstract The calculation of voting powers of players in a weighted voting game
has been extensively researched in the last few years. However, the inverse prob-
lem of designing a weighted voting game with a desirable distribution of power
has received less attention. We present an efficient algorithm which uses gener-
ating functions and interpolation to compute an integer weight vector for target
Banzhaf power indices. This algorithm has better performance than any other
known to us. It can also be used to design egalitarian two-tier weighted voting
games and a representative weighted voting game for a multiple weighted voting
game.
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6.1 Introduction

6.1.1 Motivation

WVGs have been applied in various political and economic organizations for
structural or constitutional purposes. Prominent applications include the United
Nations Security Council, the Electoral College of the United States and the In-
ternational Monetary Fund ([134], [4]). The distribution of voting power in the
European Union Council of Ministers has received special attention in [1], [130],
[129] and [83]. Voting power is also used in joint stock companies where each
shareholder gets votes in proportion to the ownership of a stock ([5], [94]).

If one assumes that each coalition has the same probability of forming and all
players are independent of each other, then Banzhaf indices are the most natural
way to gauge the influence of each player. The calculation of voting powers of
the voters, which is NP hard in all well known cases [152], has been extensively
researched in the last few years. However, the inverse problem of designing a
WVG with a desirable distribution of voting power has received less attention. In
this chapter, we present an efficient algorithm to compute a corresponding integer
weights vector to approximate a given vector of Banzhaf indices. This is a natural
extension of the work on the method of generating functions to compute voting
power indices. The algorithm is designed as a ready-made tool to be used by
economists and political scientists in their analysis of WVGs.

This algorithm has better performance than any other known to us. We have
looked at designing multiple weighted voting games and also proposed further
directions for research. Experiments with variations of the algorithm also promise
to give better insight into the nature of the relationship between voting weights
and corresponding voting powers.

6.1.2 Outline

Section 6.2 provides a survey of approaches to designing voting games and
WVGs in particular. It also includes our main algorithm to design WVGs and
its analysis. Section 6.3 highlights an application of our algorithm which is to use
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the Penrose square-root law to design ‘egalitarian’ WVGs. Similarly, Section 6.4
shows how our algorithm can be used to find a ‘representative’ single WVG for a
multiple weighted voting game, i.e., a single game for which the Banzhaf indices
are approximately the same as those for the multiple games. Section 6.5 presents
conclusions and open problems.

6.2 Designing weighted voting games

6.2.1 Outline and survey

By P(w), we shall denote the vector of Banzhaf indices for weight vector w and
some specified quota. The problem of designing WVGs can be defined formally
as follows:

Definition 6.1. ComputeRealWeightsforGivenPowers: Given a real number vec-

tor P = (p1, . . . , pn), the target Banzhaf indices for the n players, some appropri-

ate Error function and a small positive real ε, compute real approximate weights

w = (w1, . . . ,wn) such that Error(P, P(w)) ≤ ε.

The problem of designing WVGs was first discussed in [130] and [136]. Holler
et al. [136] proposed an iterative procedure with a stopping criterion to approxi-
mate to a game which has a voting power vector almost equal to the target. The
method was to choose an initial weight vector w0 and use successive iterations to
get a better approximation: wr+1 = wr +λ(d−P(wr)) where λ is a scalar and P(wr)
is the power vector of wr. The approach has been used to analyse the Council of
European Union and the International Monetary Fund Board of Governors.

Not every power distribution (Banzhaf index vector) is feasible and might not
have corresponding weights for it. For example, for any number of players, there
are power distributions which cannot be satisfied even by simple games [33].
Tolle [204] shows that in any 4-player WVG with no vetoers, there are only
five possible Banzhaf power distributions. There are some unexplored questions
concerning the convergence of the vector, such as whether the iteration always
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converges to the right region. It is also critical to design systems with desirable
properties.

Carreras [41] points out factors considered in designing simple games. The fo-
cus is different from the computation of powers and weights. The role of blocking
coalitions is analysed in a simple game. Similarly, complexity results in designing
simple games are provided in [201].

6.2.2 Algorithm to design weighted voting games

We provide a more effective hill climbing approach than the previous proposed al-
gorithms. Our algorithm tackles a variation of the problem ComputeRealWeights-

forGivenPowers:

Definition 6.2. IntegerWeightsforGivenPowers: Given a real number vector P =

(p1, . . . , pn), the target Banzhaf indices for the n players, some appropriate Error

function and small positive real ε, compute integer approximate weights w =

(w1, . . . ,wn) such that Error(P, P(w)) ≤ ε.

The reason we are computing integer voting weights is that we want to utilize
the generating function method (outlined in Section4.5) in each iteration. The
constraint of having integer weights is reasonable. Firstly, many WVGs natu-
rally have integer weights. Secondly, some policy makers feel more comfortable
dealing with integers. Thirdly, our algorithm is giving results to a high degree
of accuracy even without using real or rational weights. Algorithm 8 provides a
higher level sketch of the steps required to design a WVG for a target vector of
Banzhaf indices. The Mathematica code is included at the end of the chapter. The
algorithm is discussed in subsection 6.2.3.

6.2.3 Algorithmic and technical issues

In Algorithm 8, the normal distribution approximation has been used to get an
initial estimate of the voting weights. Leech [135] also uses the multi-linear ex-
tension approach in approximation of voting powers.
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Algorithm 8 IntegerWeightsforGivenBIs
.
Input: Target vector of Banzhaf indices, T.
Output: Corresponding vector of integer voting weights.

1: Use Normal Distribution Approximation to get an initial estimate of the
weights.

2: Multiply the real voting weights by a suitable real number λwhich minimizes
the error while rounding to get new integer voting weights.

3: Use the Generating Function Method to compute new vector of voting pow-
ers.

4: Interpolate by using a best fit curve to get the new real voting weights.
5: Repeat Step 2 until the sum of squares of differences between the powers and

the target powers is less than the required error bound.

The key step of the algorithm is to use the generating function method to com-
pute voting powers of estimated voting weights in a limited number of iterations.
Bilbao et al. [36] prove that the computational complexity of computing Banzhaf
indices by generating functions isO(n2C) where C is the number of nonzero coef-
ficients in

∏
1≤i≤n(1 + xw j). Since for each player i, we check the coefficients of all

terms in Bi(x) ranging from xq−wi to xq−1, we have limited the time complexity of
Banzhaf index computation by using moderate sized integer weights. WVGs with
big integer weights can be approximated by WVGs with smaller integer weights
by simple scaling and rounding off. The scaling of the WVG’s into WVG’s with
smaller weights keeps the properties of the WVG invariant.

Observation 6.3 The power indices of players in WVG v = [q; w1, . . . ,wn] are

the same as the power indices in the WVG λv = [λq; λw1, . . . , λwn].

Since the generating function method can only be applied on integer votes,
in each iteration, Algorithm 1 rounds off interpolated values to integer values.
This rounding off can lead to varying errors if different potential multiples of the
same real voting weight vector are used. After every interpolation step, we find
a real λ which is multiplied with the voting weight vector and tries to minimize
the total error on rounding. To find an appropriate λ to multiply with the voting
weights vector we minimize the sum of squares of the difference between new
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real voting weights and the rounded new voting weights. That is, if w1,w2, . . . ,wn

are reals and mi = Round(λwi) ∀i ∈ N, we want to minimize
∑

i∈N (mi
M −

wi
W )2

where M =
∑

i∈N mi and W =
∑

i∈N wi. A reasonable alternative would be to
minimize the sum of the differences between the normalized voting weights and
their corresponding rounded normalized voting weights.

One extra degree of freedom which we have ignored is the variation in the
quota. The same voting weights profile results in different Banzhaf indices ac-
cording to the quota. The exact effect on the Banzhaf indices of changing the
quota presents various open problems. One concern is the extra error induced
when the interpolated weights are rounded off. Ideally, we will want the posi-
tive and negative differences in rounding to be balanced. The likelihood of this
balance increases as we use more players.

6.2.4 Performance and computational complexity

As mentioned previously, the computational complexity of computing Banzhaf
indices by generating functions is O(n2C) where C is the number of nonzero
coefficients in

∏
1≤i≤n(1 + xw j). We can approximate the number of iterations re-

quired based on the number of significant figures required in our final solution.
At the end of the chapter, the Mathematica code for Algorithm 8 is provided.
In the example in Figure 6.1, the algorithm converges and achieves an error of
1.481 × 10−6 in a single iteration. Also, our algorithm is giving an error of less
than 10−8 for 30 players after only 3 iterations.

6.3 Designing egalitarian voting games

Designing egalitarian voting games is a pertinent issue in resource allocation and
also political bodies. Felsenthal and Machover [82] have obtained the following
result for a two-tier voting system based on Penrose’s seminal paper [177].

Theorem 6.4. (Penrose’s Square-Root Law) Let v be a 2-tier voting system in

which representatives of m different countries with populations {n1, . . . , nm} vote

in a WVG and opt for their country’s majority decision. Then for sufficiently large
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ni’s, the indirect probabilities of citizens from different countries being critical in

a decision in v are equal (with negligible error) if and only if the Banzhaf indices

βi of the representatives are proportional to the respective
√

ni.

The theorem utilizes Stirling’s approximation as the ni’s tend to infinity. It
assumes that the ‘yes’ and ‘no’ decisions are equiprobable and the voters are
independent. Based on this result, we can devise an algorithm to compute voting
weights of countries so that every member of any country has approximately
equal voting power.

Algorithm 9 FairIntegerWeightsforGivenPopulations
Input: Vector of state populations, p = {n1, . . . , nm}.

Output: Corresponding vector of voting weights w = {w1, . . . ,wn}.

1: Let B =
∑

1≤i≤m
√

ni.

2: Target powers, T = {
√

n1/B, . . . ,
√

nm/B}.

3: Run Algorithm 1 with input T and return the output.

W. Slomczynski and K. Zyczkowski [197] have proposed that giving each
nation a vote wi proportional to

√
ni, the square root of its population, and estab-

lishing a normalized quota rule equal to (1 +

√∑m
i=1 wi2∑m

i=1 wi
)/2 makes the voting rule

almost egalitarian. The method has been called the Jagiellonian compromise and
will be discussed in detail in Chapter 7. Although this voting method appears
to be elegant and transparent, Algorithm 10 provides an alternative in which we
can change the quota to accommodate various levels of efficiency in making a
decision.

6.4 Multiple weighted voting games

In Chapter 5, we outlined a generating function method to find the Banzhaf in-
dices of players in a multiple weighted voting game. Algorithm 8 and Algorithm 7
can be used to produce an approximate WVG as a representative for a multiple
weighted voting game.
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Algorithm 10 SingleWVGForMultipleWVGs
Input: Multiple weighted voting game (N, v1 ∧ · · · ∧ vm).

Output: Corresponding approximate WVG.

1: Use Algorithm 7 to compute vector of Banzhaf indices, T = {β1, . . . , βn}.

2: Run Algorithm 8 with target vector T to compute the corresponding WVG v.

3: Return v.

6.5 Conclusion & open problems

This chapter provides an algorithm which will be useful for practitioners in the
voting power field. This has various applications because of the ubiquitous nature
of WVGs, e.g., in reliability theory. Moreover we analyse computational consid-
erations which will be of interest to computer scientists and engineers. We notice
that our algorithm can be used to design egalitarian two-tier WVGs and also to
find a representative WVG for multiple weighted voting games.

It is an interesting problem to analyse multiple voting games as a function of
their constituent single WVGs. Moreover Slomczynski et al. [197] have created
interest in the effect of the quota on WVGs. A deeper analysis of the effect is re-
quired. O’ Donnell and Servedio [182] have examined the related the problem of
designing WVGs for given Chow parameters. They provide a randomized PTAS
to compute an approximate WVG. We mentioned the need for a deeper analysis
on the convergence of our algorithm to to design a WVG. Alon and Edelman [3]
recently examine our question and investigate which non-negative vectors of sum
one can be closely approximated by Banzhaf vectors of simple voting games with
n players.
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H* Title:Compute Integer Weights for Given Powers HMathematica Version:5.2L *LH* Description:Illustrative Mathematica code for Algorithm 1 *L
Clear@RWD; Off@InterpolatingFunction::"dmval"D;
g@v_D := Apply@Times, Map@H1 + x^#L &, vDD;
s@r_D := Normal@Series@1ê H1 - xL, 8x, 0, r - 1<DD;
h@r_, v_D := Expand@g@vDê H1 + x^rLD;
p@r_, v_D := Coefficient@s@rD h@r, vD, x^Round@Total@vDê 2 - 1DD;H* strict majority rule *L
Ind@v_D := Map@p@#, vD &, vD; H* raw index *L
NBI@v_D := Htemp = Ind@vD; temp ê N@Total@tempDDL; H* normalized index *L
FirstEqual@u_, v_D := u@@1DD ã v@@1DD;
F@r_, RW_D := Total@HFractionalPart@RW r + 1 ê 2D - 1 ê2L^2D;H* estimates the error caused by rounding RW.r *L
T = 80.0958, 0.0810, 0.0803, 0.0799, 0.0661, 0.0655, 0.0499, 0.0418, 0.0347, 0.0338,
0.0337, 0.0335, 0.0333, 0.0313, 0.0302, 0.0299, 0.0245, 0.0243, 0.0239, 0.0204,
0.0203, 0.0164, 0.0148, 0.0127, 0.0091, 0.0069, 0.0060<; H* target powers *L

P@n_D := NBI@V@nDD; DT@n_D := P@nD - T; Err@n_D := Total@DT@nD^2D;H* error function is the sum of squares of differences from the target powers *L
RW@n_D :=
RW@nD = Map@Interpolation@Union@Transpose@8P@n - 1D, V@n - 1D<D, SameTest Ø FirstEqualD,

InterpolationOrder Ø 2D, TD;
Go@n_D := H Print@"Next real weights RW@", n, "D = ", NumberForm@RW@nD, 4DD;

r = Minimize@F@s, RW@nDD, 0.8 < s < 1.2, sD@@2, 1, 2DD; Print@"Good multiplier = ", rD;
V@nD = Round@RW@nD rD; Print@"Next integer weights V@", n, "D = ", V@nDD;
Print@"Error = ", NumberForm@Err@nD, 4DD;L;

V@0D = Round@1000 Map@InverseErf, TDê Total@Map@InverseErf, TDDD;H* Initial approximation *L
Print@"Initial integer weights V@0D = ", V@0DD;
Print@"Initial error = ", NumberForm@Err@0D, 4DD;
Initial integer weights V@0D = 896, 81, 80, 80, 66, 66, 50,
42, 35, 34, 34, 33, 33, 31, 30, 30, 24, 24, 24, 20, 20, 16, 15, 13, 9, 7, 6<

Initial error = 0.00003265

Go@1D
Next real weights RW@1D =892.42, 79.52, 78.89, 78.53, 65.8, 65.24, 50.25, 42.29, 35.22, 34.32, 34.22, 34.01, 33.81,
31.81, 30.7, 30.4, 24.95, 24.75, 24.35, 20.8, 20.7, 16.74, 15.11, 12.97, 9.298, 7.051, 6.131<

Good multiplier = 0.853146

Next integer weights V@1D = 879, 68, 67, 67, 56, 56, 43,
36, 30, 29, 29, 29, 29, 27, 26, 26, 21, 21, 21, 18, 18, 14, 13, 11, 8, 6, 5<

Error = 1.481µ 10-6

Go@2D
Next real weights RW@2D =878.75, 67.79, 67.25, 66.94, 56.11, 55.63, 42.86, 36.08, 30.05, 29.28, 29.19, 29.02, 28.85, 27.14,
26.19, 25.94, 21.29, 21.12, 20.77, 17.75, 17.66, 14.27, 12.91, 11.06, 7.929, 6.015, 5.229<

Good multiplier = 1.0006

Next integer weights V@2D = 879, 68, 67, 67, 56, 56, 43,
36, 30, 29, 29, 29, 29, 27, 26, 26, 21, 21, 21, 18, 18, 14, 13, 11, 8, 6, 5<

Error = 1.481µ 10-6H* The algorithm is seen to have converged after just one iteration. *L

Fig. 6.1. Mathematica program to design WVGs
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EU: a case study

The vote is the most powerful instrument ever devised by man.

- Lyndon B. Johnson

Democracy is a process by which the people are free to choose the man

who will get the blame.

- Laurence J. Peter

Abstract In this chapter, we analyse the real life case-study of the EU constitu-
tion. The Double Majority rule in the Reform Treaty agreed in Rome in Septem-
ber 2004 is claimed to be simpler, more transparent and more democratic than the
existing rule. We examine these questions against the democratic ideal that the
votes of all citizens in whatever member country should be of equal value, using
voting power analysis. We also consider possible future enlargements involving
candidate countries and then to a number of hypothetical future enlargements.
We find the Double Majority rule fails to measure up to the democratic ideal in
all cases. We find the Jagiellonian compromise to be very close to this ideal.

7.1 Introduction

The Reform Treaty agreed in Rome in September 2004 contains fundamental
reforms to the voting system used by the Council of Ministers. The current triple-
majority system would be replaced with a double-majority decision rule that is
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said to be simpler to understand, more democratic and more flexible. In this chap-
ter we investigate these claims using voting power analysis in a number of en-
largement scenarios.

The Council of Ministers, the senior legislature of the EU, is an intergovern-
mental body in which some matters are decided by unanimity but the most im-
portant voting rule is qualified majority voting (QMV), that is being used for an
increasing number of decisions. Under QMV each country has a different num-
ber of votes that it can cast that is related in some way to its size. Under the
Reform Treaty proposals they will be strictly proportional to population sizes
but under the system determined by the Nice Treaty and under the previous sys-
tem the voting weights were not directly based on populations in a transparently
mathematical way.

The problem of the determination of the voting weights is an important one
because under the rules of the council each country must cast its votes as a bloc;
a country is not permitted to divide its votes for any reason, as it might, for ex-
ample in order to reflect a division of public opinion at home in the country.
Alternatively if, instead of a single representative with many votes, the country’s
representation were by numbers of elected individuals who would vote individu-
ally as representatives or delegates rather than as a national group acting en bloc,
as for example members of the European Parliament are able to do, the problem
addressed in this chapter would not exist.

In that case the voting power of the citizen of each country would be approx-
imately the same. However in a body that uses weighted voting, there is not a
simple relation between weight and voting power and each case must be consid-
ered on its merits by considering the possible outcomes of the voting process,
making a voting power analysis. The proposed new Double Majority rule is that
a decision taken by QMV should require the support of 55 percent of the member
countries whose combined populations are at least 65 percent of the EU total.
This contrasts with the system currently in use (the Nice system) under which
each country has a given number of weighted votes, all of which were laid down
in the Nice Treaty. Specifically the Nice system is a triple-majority rule that works
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as follows. For a vote to lead to a decision, three requirements must be met: (i)
the countries voting in favour must constitute a majority of members; (ii) they
must contain at least 62 percent of the population of the Union; and (iii) their
combined weighted votes must exceed the specified threshold. The Nice Treaty
specified a threshold that depended on the size of the membership: for the union
of 15 countries it was about 71 percent of the total of the weighted votes, increas-
ing gradually with enlargement to its present level, with 27 members, to almost
74 percent.

Studies using voting power analysis have concluded that the Nice system is
broadly equitable in the sense that the resulting powers of individual countries
are fair in relative terms (in an appropriately defined sense), with one or two
exceptions, but that the threshold was set much too high for the Council to be
able to deal with a greater range of decisions by qualified majority voting in an
efficient manner [133] and [145].

Advocates of changing to the Double Majority rule argue, first, that it would
be much simpler to understand than the Nice system (which has been described as
‘fiendishly complex’) which is lacking in transparency because of its use of arti-
ficially constructed voting weights. The Nice weights are criticized because they
are not, even approximately, directly proportional to populations; the countries
with larger populations are assigned larger weights than the smaller ones but the
difference does not fully reflect relative populations. Superficially it appears that
larger states are underrepresented, although it can be argued that such weights
may well, in actual fact, be consistent with a reasonable degree of fairness in the
distribution of voting power. But this argument by itself would not be decisive in
favour of change given that the Nice system is already in place.

A second criticism of the Nice system is that the threshold is set too high, and
moreover, increasing it as the membership increases, makes decisions harder by
requiring a larger qualified majority, or making it easier for a blocking minority
to form. Studies of the formal a priori decisiveness of the system have shown that
the probability of a qualified majority emerging could be extremely small [144].
However, despite these fears, recent studies have found little evidence in prac-



90 7 EU: a case study

tice of the sclerosis that was feared, and qualified majority voting appears to be
working quite well [214].

The third argument for change is that the Nice system was designed for certain
specified anticipated enlargements of the Union, which have now all occurred. It
provided for a union of up to 27 members - the fifteen members at the time of
the treaty, plus the ten countries that acceded in May 2004 followed by Bulgaria
and Romania that joined in January 2007 - and further enlargement beyond that
is therefore outside its scope. The formal position is that the accession of a new
country would require a new treaty that included amendments to the system of
qualified majority voting. But there are further candidates, including Turkey and
the former republics of Yugoslavia; and there is also the remote possibility of fur-
ther FSU countries, and perhaps also other European countries joining. It would
clearly be impossibly inefficient to have to hold an Intergovernmental Conference
every time further enlargement took place. So there is need for a system that em-
bodies a principle that can be applied in a more or less routine manner each time a
new member accedes. An example of such a voting system is the double-majority
rule in the Reform Treaty.

It is this administrative simplicity that makes the double-majority voting rule
most attractive. It enables us to know immediately how many votes a new member
will have and in what ways the operation of qualified majority voting will be
affected. All that it is necessary to know is the country’s population.

7.2 Appraisal of voting rules by power analysis

It does not follow that we understand all the consequences of enlargement for the
fairness and efficiency of the voting system. It has been claimed that a weighted
voting rule, based directly on populations, will implement a desirable democratic
principle of equality: that each country will have a voting power proportional
to its population. That is undoubtedly a major factor in the thinking behind the
proposal. However it is a serious mistake because in a weighted voting body
like the council, where members cast all their votes as a single bloc, power in
the sense of the ability to influence decisions is not related straightforwardly to
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weight. It is possible, for example, for a country to have voting weight that is
not translated into actual voting power. It is therefore necessary to make a voting
power analysis to establish the properties of this system and, in particular, the
powers of the members.

In this chapter we do this by considering voting in the Council of Ministers as
a formal two-stage democratic decision process that allows us to compare voting
power of citizens of different countries. It is a fundamental principle of the EU
that all citizens should have equal rights in whatever country they happen to live.
This provides a natural criterion by which to judge the adequacy of the voting
system, a benchmark against which to compare the fairness of the distribution of
voting power. We use voting power analysis to do this, following the approach of
Penrose [177, 178], treating the Council of Ministers as a delegate body on which
individual citizens are represented by government ministers elected by them.

The voting power of a citizen is derived from two components: (i) power of
his or her country in the council (a property of the system of weighted QMV
in the council), and (ii) the power of the citizen in a popular election within the
country. A citizen’s voting power, as a structural property of the voting system,
is measured by his or her Penrose power index, which is the product of these two
voting power indices.

We make two analyses. First we compare the double-majority rule with the
Nice system for the current EU of 27 countries. Secondly we investigate various
scenarios for further enlargement. These begin with the expected accession of
the known candidate countries and then become more and more speculative as
further new members are presupposed. Our primary purpose is to test the claim
that the Reform Treaty proposals are simple and transparent in the face of fur-
ther enlargement. We also investigate the alternative voting rule that has recently
been proposed, known as the Jagiellonian Compromise, and find it remarkably
equitable. [197].

We report analyses of the following Scenarios for possible future enlargement
of the EU:



92 7 EU: a case study

• EU27: the current union. Member countries: Austria, Belgium, Bulgaria,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United King-
dom.

• I EU29: as above plus Croatia, Macedonia.
• II EU30: with Turkey.
• III EU34: with Albania, Bosnia, Montenegro, Serbia.
• IV EU37: with Norway, Iceland, Switzerland.
• V EU40: with Belarus, Moldova, Ukraine.
• VI EU41: with Russia.

In the next section we describe the mathematics of the voting power approach
that we employ to analyse these scenarios.

7.3 The Penrose index approach

The EU Council of Ministers at any time is assumed to consist of n member
countries, represented by a set N = {1, 2, ..., n}, where each country is labelled by
an integer i = 1 to n. Each country has a population (which we take, as a first
approximation, to be the same as its electorate), represented for country i by mi.
The total population of the EU is

∑n
i=1 mi.

Under the Reform Treaty, any normal decision requires a double majority in
favour of the proposal: at least 55% of member countries whose combined pop-
ulations are at least 65% of the total population. Suppose that in any vote con-
cerning such a decision there are s countries in favour, represented by a set S , a
subset of N. Then the decision is taken if s ≥ 0.55n and

∑
j∈S m j ≥ 0.65m. The

double majority game is basically a MWVG of dimension 2 where a coalition S

of countries is winning if and only if s = |S | ≥ 0.55n and
∑

j∈S m j ≥ 0.65m. The
voting power of a country is the probabilistic Banzhaf index or Penrose index in
the two dimensional MWVG. If the number of swings for country i is denoted by
ηi, then the Penrose index for the Council of Ministers is defined as PC

i
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PC
i =

ηi

2n−1

The study utilizes the Algorithm 7 outlined in Chapter 5. The Penrose index
or Probabilistic Banzhaf Index is a measure of absolute voting power in the sense
of a country’s likelihood of being decisive when all voting outcomes are consid-
ered on an equal basis. The power of an individual citizen is defined formally by
idealising the council as a representative body in which determination of how a
country will cast its weighted votes follows a simple majority among its citizens.
This requires finding a measure of power of a single citizen within a country.

For country i with mi voters, Probabilistic Banzhaf index or the Penrose power
index is the probability that the number of votes cast by the mi − 1 voters, other
than the single citizen under consideration, are precisely one vote short of a ma-
jority. Denote this power index for a single vote of any citizen in country i by PS

i .
Then,

PS
i = Pr(combined votes of mi − 1 voters= mi

2 ) =
(

mi−1
bmi/2c

)
(0.5)mi−1.

When mi is large, PS
i can be approximated accurately by Stirling’s formula:

PS
i ≈

√
2
πmi

.

We can evaluate the indirect power index Pi for a citizen of country i as fol-
lowing:

Pi = PC
i PS

i

The value of Pi is of course rather small because PS
i is small. However its

value can vary enormously between countries, over changes in the membership
of the Union and changes in the voting system. Pi provides a yardstick to use
in the evaluation of the weighted voting system on a consistent basis of demo-
cratic legitimacy. Comparisons can be made using relative voting power indices
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to compare countries and therefore to test the extent to which the voting system
is egalitarian.

Pi can be used on the basis of the Penrose Square Root rule for equalising
voting power in all countries. The rule is that weighted voting be adopted in the
council with a decision rule such that Pi is constant for all i. The power indices
PC

i should therefore be proportional to the square roots of the populations. This
can be a decision rule with a single majority. An approximation to this that will be
sufficient in many cases is to choose weights themselves in proportion to the pop-
ulation square roots. This has been applied recently in the so-called Jagiellonian
compromise in which the decision rule is adjusted to improve the approxima-
tion [197]. We have investigated the performance of this proposed voting rule in
equality of voting power and find it works very well indeed.

7.4 Analysis: voting power in EU27

We compare the three voting systems for the present day union EU27. The results
are given in Figure 7.1 in which countries are in size order. The Penrose indices
agree very closely with those of Falsenthal and Machover [84]. The generating
function method requires that the weights be integers that are not too large. This
means that it is more feasible in practice to replace population figures, which are
mostly in millions, by much smaller proportional integers. This is a reasonable
transformation considering that population figures themselves are estimates and
also dynamic.

Besides the Penrose index for each country PC
i , Figure 7.1 also shows the

indirect citizen power indices Pi. These are presented in two ways, as absolute
values and relative to the power of a citizen of Germany. The relative voting
power indices show the inequality in the double majority voting rule, with all but
those for the smallest group of countries being less than 1. Inequality is measured
by the Gini coefficient of citizen power for the whole figure.

Figure 7.1 shows how much more unequal the proposed voting system would
be compared with the existing Nice system, under which citizens of every country
(with the slight exception of Latvia) have slightly greater voting power than those
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Country Population Penrose Czn Rel Czn Penrose Czn Rel Czn Weight Penrose Czn Rel Czn
Index Power Power Weight Index Power Power Index Power Power

Germany 82,437,995 0.03269 2.87E-06 1.000 824 0.20011 1.76E-05 1.000 9080 0.20080 1.76E-05 1.00000
France 62,998,773 0.03269 3.29E-06 1.144 630 0.15517 1.56E-05 0.887 7937 0.17597 1.77E-05 1.00246
UK 60,393,100 0.03269 3.36E-06 1.168 604 0.14932 1.53E-05 0.872 7771 0.17233 1.77E-05 1.00267
Italy 58,751,711 0.03269 3.40E-06 1.185 588 0.14587 1.52E-05 0.863 7665 0.16999 1.77E-05 1.00276
Spain 43,758,250 0.03116 3.76E-06 1.308 438 0.11252 1.36E-05 0.772 6615 0.14675 1.77E-05 1.00310
Poland 38,157,055 0.03116 4.02E-06 1.401 382 0.09816 1.27E-05 0.721 6177 0.13702 1.77E-05 1.00300
Romania 21,610,213 0.01789 3.07E-06 1.069 216 0.07139 1.23E-05 0.697 4649 0.10307 1.77E-05 1.00256
Netherlands 16,334,210 0.01669 3.29E-06 1.147 163 0.06006 1.19E-05 0.674 4042 0.08959 1.77E-05 1.00230
Greece 11,125,179 0.01547 3.70E-06 1.288 111 0.04933 1.18E-05 0.671 3335 0.07390 1.77E-05 1.00182
Portugal 10,569,592 0.01547 3.80E-06 1.322 106 0.04830 1.19E-05 0.674 3251 0.07203 1.77E-05 1.00184
Belgium 10,511,382 0.01547 3.81E-06 1.325 105 0.04810 1.18E-05 0.673 3242 0.07184 1.77E-05 1.00184
Czech 10,251,079 0.01547 3.86E-06 1.342 103 0.04768 1.19E-05 0.676 3202 0.07095 1.77E-05 1.00191
Hungary 10,076,581 0.01547 3.89E-06 1.354 101 0.04727 1.19E-05 0.676 3174 0.07031 1.77E-05 1.00156
Sweden 9,047,752 0.01299 3.45E-06 1.199 90 0.04500 1.19E-05 0.679 3008 0.06664 1.77E-05 1.00180
Austria 8,265,925 0.01299 3.60E-06 1.255 83 0.04356 1.21E-05 0.687 2875 0.06369 1.77E-05 1.00168
Bulgaria 7,718,750 0.01299 3.73E-06 1.299 77 0.04233 1.22E-05 0.691 2778 0.06154 1.77E-05 1.00149
Denmark 5,427,459 0.00916 3.14E-06 1.092 54 0.03758 1.29E-05 0.732 2330 0.05161 1.77E-05 1.00164
Slovakia 5,389,180 0.00916 3.15E-06 1.096 54 0.03758 1.29E-05 0.735 2321 0.05141 1.77E-05 1.00131
Finland 5,255,580 0.00916 3.19E-06 1.110 53 0.03738 1.30E-05 0.740 2293 0.05078 1.77E-05 1.00161
Ireland 4,209,019 0.00916 3.56E-06 1.240 42 0.03510 1.37E-05 0.776 2052 0.04544 1.77E-05 1.00145
Lithuania 3,403,284 0.00916 3.96E-06 1.379 34 0.03344 1.45E-05 0.822 1845 0.04086 1.77E-05 1.00143
Latvia 2,294,590 0.00525 2.77E-06 0.963 23 0.03116 1.64E-05 0.933 1515 0.03355 1.77E-05 1.00142
Slovenia 2,003,358 0.00525 2.96E-06 1.030 20 0.03053 1.72E-05 0.979 1415 0.03133 1.77E-05 1.00070
Estonia 1,344,684 0.00525 3.61E-06 1.257 13 0.02908 2.00E-05 1.138 1160 0.02568 1.77E-05 1.00148
Cyprus 766,414 0.00525 4.78E-06 1.666 8 0.02803 2.56E-05 1.453 875 0.01938 1.77E-05 1.00069
Luxembourg 459,500 0.00525 6.18E-06 2.151 5 0.02741 3.23E-05 1.835 678 0.01501 1.77E-05 1.00149
Malta 404,346 0.00396 4.97E-06 1.730 4 0.02720 3.41E-05 1.941 636 0.01408 1.77E-05 1.00126
Total 492,964,961 0.41999 4930 1.71869 95921 2.12556
Quota 3205 59062
Power to Act 0.020 0.129 0.163
Gini Coeff 0.059 0.080 9.08E-05
Czn Power: Citizen Power Pi 

Nice

Table 1: Voting Power Analysis of the EU27

Reform Treaty Jagiellonian

Fig. 7.1. Voting Power Analysis of the EU27
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of Germany (a result due to the fact that Germany has no greater weight than
France, Italy and the UK despite its much larger population): the Gini coefficient
for Nice being 0.059, that for the Reform Treaty, 0.080. We have also reported
the power to act of the Council of Ministers, which shows that the Reform Treaty
voting rule is a very much more decisive voting rule than Nice, with a power to
act of 0.129 compared to a very low value of 0.02.

The results for the Jagiellonian Compromise are quite impressive in showing
that this method would lead to the equalisation of voting power throughout the
union of 27 countries. There is almost no variation in the relative citizen vot-
ing power indices across countries, which indicates how good an approximation
to the Penrose square root rule is obtained by using population square roots as
weights.

7.5 Analysis: enlargement scenarios

Figure 7.2 presents the results for the enlargement scenarios I to VI. They are
presented diagrammatically for existing members in Figures 7.4, 7.5 and 7.6. We
also present a parallel analysis for the Jagiellonian Compromise in Figure 7.3.
In all scenarios the same population figures have been used, the 2006 estimates
taken from Eurostat.

They show that the inequality in citizen voting power under the Double Ma-
jority rule persists although there are sharp changes in relative voting power fol-
lowing changes in the membership. On the other hand, the Jagiellonian system
turns out to be remarkably successful in creating a very equal distribution of cit-
izen power in all scenarios, and to be quite robust to membership changes. The
use of square root weights and adjustment of the quota gives an extremely good
approximation to the Penrose square root rule.

The results for the Reform Treaty voting rule in Figure 7.2 show that citi-
zen voting power is relatively unequal under all scenarios. The Gini coefficient
for Scenario VI (41 countries including Russia) is the same as in Scenario O
(EU27) although it falls below this in some scenarios. Citizen voting power is
most equal following the accession of Turkey, Gini = 0.059, Scenario II, that
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may be largely due to the similarity in population of the two largest members,
Germany and Turkey. Whereas having one country that is much larger than all
the others creates an unequal power distribution, where there are two members
with very large weight, a bipolar voting structure, there is a tendency for them
to counteract one another. Thus the presence of Turkey would reduce Germany’s
power and increase the power of other members, making the distribution more
equal. The accession of Turkey would substantially increase the voting power of
citizens of Poland and Spain, from 0.718 and 0.772 to 0.822 and 0.815. There
is a similar effect for medium sized countries, but their relative voting power re-
mains much lower: for example, the index for Belgium goes from 0.661 to 0.760.
The effects for small countries, whose citizen voting powers are already much
larger than Germany’s, are quite large: for example, Malta’s goes from 1.859 to
2.442. The power of the council to act, declines more or less steadily as the union
enlarges, from 12.9% for O (EU27) to 9.3% in VI, although it is always much
greater than under the current system.

Our overall conclusion is that the Reform Treaty’s Double Majority rule falls
a long way short of the democratic ideal of ensuring that the votes of all members
of the community are of equal value whatever country they are cast in. It is an
endemic feature that citizens of middle sized countries have considerably less
voting power than those in either large or small countries. This pattern persists
under all the enlargement scenarios we have looked at.

Figure 7.3 shows the results for the Jagiellonian compromise under the same
scenarios. For each scenario the weights, which are the population square roots,
√

mi , are shown in the first column, and the quota is equal to:

q =
1
2

(1 +

√∑n
i=1 mi∑n

i=1
√

mi
)

There is almost no variation in the relative citizen voting powers either be-
tween countries or over scenarios. We conclude that the method is therefore found
to be extremely successful in equalising voting power in a wide range of circum-
stances.
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Country O I II III IV V VI

Albania 0.933 1.030 0.818 1.231
Austria 0.687 0.673 0.788 0.743 0.800 0.679 0.917
Belarus 0.670 0.886
Belgium 0.673 0.661 0.760 0.721 0.770 0.667 0.871
Bosnia & H 0.872 0.960 0.771 1.139
Bulgaria 0.691 0.676 0.796 0.749 0.808 0.682 0.931
Croatia 0.000 0.742 0.906 0.841 0.921 0.748 1.087
Cyprus 1.453 1.394 1.815 1.648 1.854 1.404 2.276
Czech 0.676 0.663 0.764 0.725 0.774 0.669 0.877
Denmark 0.732 0.712 0.861 0.802 0.875 0.718 1.025
Estonia 1.138 1.094 1.409 1.284 1.439 1.102 1.756
Finland 0.740 0.719 0.871 0.811 0.885 0.726 1.038
France 0.887 0.889 0.904 0.900 0.905 0.909 0.921
Germany 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Greece 0.671 0.659 0.755 0.718 0.765 0.665 0.862
Hungary 0.676 0.663 0.765 0.725 0.775 0.669 0.879
Iceland 2.876 2.152 3.554
Ireland 0.776 0.753 0.925 0.857 0.941 0.759 1.114
Italy 0.863 0.865 0.884 0.880 0.886 0.888 0.906
Latvia 0.933 0.900 1.139 1.044 1.161 0.907 1.401
Lithuania 0.822 0.796 0.989 0.913 1.007 0.803 1.201
Luxembourg 1.835 1.758 2.304 2.087 2.355 1.770 2.902
Macedonia 0.935 1.189 1.089 1.213 0.942 1.468
Malta 1.941 1.859 2.442 2.210 2.496 1.872 3.080
Moldova 0.780 1.156
Montenegro 1.842 2.076 1.564 2.555
Netherlands 0.674 0.666 0.739 0.711 0.746 0.671 0.822
Norway 0.911 0.741 1.074
Poland 0.721 0.718 0.822 0.804 0.817 0.788 0.846
Portugal 0.674 0.662 0.761 0.722 0.771 0.668 0.872
Romania 0.697 0.692 0.746 0.724 0.752 0.692 0.812
Russia 1.225
Serbia 0.727 0.778 0.670 0.883
Slovakia 0.735 0.715 0.864 0.805 0.878 0.721 1.029
Slovenia 0.979 0.943 1.200 1.098 1.224 0.951 1.481
Spain 0.772 0.772 0.815 0.802 0.814 0.815 0.854
Sweden 0.679 0.665 0.774 0.732 0.785 0.671 0.897
Switzerland 0.814 0.686 0.939
Turkey 0.959 0.958 0.959 0.968 0.969
UK 0.872 0.874 0.892 0.888 0.893 0.896 0.911
Ukraine 0.825 0.861

Power to Act 0.129 0.126 0.110 0.106 0.092 0.096 0.093
Gini Coefficient 0.080 0.082 0.059 0.067 0.061 0.079 0.080
Weights used are given in Table 1. Gini coefficients computed at the citizen level for the whole union.

Enlargement Scenarios

Table 2: Citizen Indirect Power Indices Under All Scenarios: Reform Treaty

 

Fig. 7.2. Citizen Indirect Power Indices Under All Scenarios: Reform Treaty
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O I II III IV V VI
Country Weight EU27 EU29 EU30 EU34 EU37 EU40 EU41
Albania 1786 1.0004 1.0005 1.0005 0.9987
Austria 2875 1.0017 1.0017 1.0006 1.0007 1.0008 1.0007 0.9989
Belarus 3113 1.0009 0.9991
Belgium 3242 1.0018 1.0019 1.0007 1.0008 1.0009 1.0008 0.9990
Bosnia & H 1984 1.0007 1.0007 1.0007 0.9990
Bulgaria 2778 1.0015 1.0016 1.0004 1.0006 1.0007 1.0006 0.9988
Croatia 2134 1.0014 1.0003 1.0004 1.0005 1.0005 0.9987
Cyprus 875 1.0007 1.0007 0.9996 0.9998 0.9999 0.9999 0.9981
Czech 3202 1.0019 1.0020 1.0008 1.0009 1.0010 1.0009 0.9991
Denmark 2330 1.0016 1.0017 1.0006 1.0007 1.0008 1.0008 0.9990
Estonia 1160 1.0015 1.0017 1.0004 1.0007 1.0008 1.0008 0.9990
Finland 2293 1.0016 1.0018 1.0007 1.0008 1.0009 1.0008 0.9991
France 7937 1.0025 1.0025 1.0015 1.0014 1.0014 1.0011 1.0001
Germany 9080 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Greece 3335 1.0018 1.0018 1.0006 1.0007 1.0008 1.0007 0.9989
Hungary 3174 1.0016 1.0018 1.0006 1.0007 1.0008 1.0007 0.9989
Iceland 549 1.0011 1.0011 0.9993
Ireland 2052 1.0015 1.0017 1.0006 1.0007 1.0008 1.0008 0.9990
Italy 7665 1.0028 1.0028 1.0016 1.0016 1.0015 1.0013 1.0002
Latvia 1515 1.0014 1.0015 1.0004 1.0006 1.0006 1.0006 0.9989
Lithaunia 1845 1.0014 1.0016 1.0004 1.0006 1.0006 1.0006 0.9989
Luxembourg 678 1.0015 1.0013 1.0011 1.0005 1.0006 1.0006 0.9988
Macedonia 1428 1.0014 1.0006 1.0007 1.0008 1.0008 0.9990
Malta 636 1.0013 1.0013 1.0011 1.0005 1.0005 1.0006 0.9989
Moldova 1948 1.0006 0.9989
Montenegro 773 0.9999 1.0000 1.0000 0.9982
Netherlands 4042 1.0023 1.0024 1.0012 1.0012 1.0012 1.0011 0.9994
Norway 2167 1.0004 1.0004 0.9986
Poland 6177 1.0030 1.0030 1.0017 1.0017 1.0017 1.0014 0.9999
Portugal 3251 1.0018 1.0019 1.0007 1.0008 1.0009 1.0008 0.9990
Romania 4649 1.0026 1.0027 1.0013 1.0014 1.0014 1.0012 0.9995
Russia 11937 0.9943
Serbia 3140 1.0009 1.0010 1.0009 0.9991
Slovakia 2321 1.0013 1.0014 1.0003 1.0004 1.0005 1.0004 0.9986
Slovenia 1415 1.0007 1.0011 1.0000 1.0001 1.0002 1.0002 0.9984
Spain 6615 1.0031 1.0031 1.0018 1.0018 1.0018 1.0015 1.0000
Sweden 3008 1.0018 1.0018 1.0007 1.0008 1.0009 1.0008 0.9990
Switzerland 2736 1.0009 1.0008 0.9990
Turkey 8653 1.0007 1.0007 1.0007 1.0005 1.0001
UK 7771 1.0027 1.0026 1.0015 1.0015 1.0014 1.0012 1.0001
Ukraine 6797 1.0014 1.0000

Total 95921 99483 108136 115,819 121271 133129 145066
Quota: 59062 60917 66052 70076 72929 79451 86735

Power indices computed using program ipgenf from website, Leech and Leech (2004).

Table 3: Citizen Indirect Power Indices Under All Scenarios: Jagiellonian Compromise

Enlargement Scenarios

Fig. 7.3. Citizen Indirect Power Indices Under All Scenarios: Jagiellonian Compromise
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7.6 Conclusions

We have tested the suitability of the proposed Double Majority rule in the EU
Reform Treaty by looking at its implications for voting power under various en-
largement scenarios, some of which are realistic prospects, while some are no
more than speculations. Our scenarios include the possibility of virtually all Eu-
ropean countries, up to and even including Russia, acceding to membership. We
have also tested the performance of the Jagiellonian compromise based on the
Penrose Square Root rule whereby voting weights are determined by a simple
formula as proportional to population square roots. In judging the voting rule we
looked at two criteria: (i) equality of voting power as measured by the Penrose
power index at the level of the citizen, assuming one-person-one-vote in national
elections, and (ii) decisiveness of the Council of Ministers, as measured by the
Coleman power to act. We found that for the present union of 27, the Reform
Treaty voting rule gives a much more unequal distribution of citizen voting power
than the existing voting rule, although it leads to the Council of Ministers being
more decisive. The Jagiellonian compromise leads to the equalisation of citizen
voting power in all countries.

In considering enlargement scenarios, the inequality of citizen voting power
persists with each enlargement. The common pattern is for citizens of the small-
est countries to have the greatest voting power, sometimes by a factor of as much
as 2 or 3 times those of other countries, such as in the cases of Malta and Luxem-
bourg. The medium sized countries have the smallest citizen voting power. That
for Netherlands, for example, varies from about two-thirds that of Germany in
EU27 to about four fifths of it following the accession of Russia. Our conclusion
is that the Reform Treaty voting system is a flawed proposal that fails to reach
the democratic ideal of equality of voting power of all citizens in the European
Union. This ideal is reached by the Jagiellonian Compromise.

On a more general note, some experiments were also conducted to see if there
is critical quota for which the Shapley-Shubik indices are proportional to the
weights. The weights are integers randomly generated from a uniform distribution
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on [1, 100] with 30, 40 and 50 players. However, no sharp threshold was observed
where the weights are proportional to the Shapley-Shubik indices.

 
 
 
 
 
 
 
 
 

Figure 1 Relative Citizen Power: Large Countries
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Fig. 7.4. Relative Citizen Power: Large Countries
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Figure 2: Relative Citizen Voting Power: Middle-sized Countries
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Figure 3 Relative Citizen Voting Power: Small Countries
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Complexity of control in weighted voting games

Complexity is not always a disease to be diagnosed; sometimes it is a

resource to be exploited. But complexity turns out to be most elusive where

it would be most welcome.

- Christos Papadimitriou

Would it then be possible to construct a hierarchy reflecting the difficulty

of benefiting from strategic behavior?

- Hannu Nurmi [160]

Abstract An important aspect of mechanism design in social choice protocols
and multiagent systems is to discourage insincere behaviour. Manipulative be-
haviour has received increased attention since the famous Gibbard-Satterthwaite
theorem. We examine the computational complexity of manipulation in weighted
voting games which are ubiquitous mathematical models used in economics, po-
litical science, neuroscience, threshold logic, reliability theory and distributed
systems. It is a natural question to check how changes in weighted voting game
may affect the overall game. Tolerance and amplitude of a weighted voting game
signify the possible variations in a weighted voting game which still keep the
game unchanged. We characterize the complexity of computing the tolerance and
amplitude of weighted voting games. Tighter bounds and results for the tolerance
and amplitude of key weighted voting games are also provided.
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8.1 Introduction

In this section a general motivation to consider manipulation in WVGs is pre-
sented. WVGs have received increased interest in the artificial intelligence and
agents community due to their ability to model various coalition formation sce-
narios [69]. Such games have also been examined from the point of view of sus-
ceptibility to manipulations [21, 220]. WVGs have been applied in various politi-
cal and economic organizations [134, 130, 1]. Voting power is used in joint stock
companies where each shareholder gets votes in proportion to the ownership of a
stock [94].

WVGs and coalitional voting games are also encountered in threshold logic,
reliability theory, neuroscience and logical computing devices [202, 208, 184].
There are many parallels between reliability theory and voting theory [184].
Parhami [171] points out that voting has a long history in reliability systems
dating back to von Neumann [212]. Nordmann et al. [159] deal with reliabil-
ity and cost evaluation of weighted dynamic-threshold voting-systems. Systems
of this type are used in various areas such as target and pattern recognition, safety
monitoring and human organization systems.

Elkind et al. [69] note that since WVGs have only two possible outcomes,
they do not fall prey to manipulation of the type characterized by Gibbard-
Satterthwaite [97]. The Gibbard-Satterthwaite theorem basically says that any
reasonable voting system with three or more candidates is vulnerable to tactical
voting. However, there are various ways WVGs can be manipulated and con-
trolled. We examine some of the aspects. Tolerance and amplitude of WVGs sig-
nify the possible variances in a WVG which still keep the game unchanged. They
are significant in mathematical models of reliability systems and shareholdings.
For reliability systems, the weights of a WVG can represent the significance of
the components, whereas the quota can represent the threshold for the overall
system to fail. It is then a natural requirement to provide a framework which can
help identify similar reliability systems. In shareholding scenarios [5], there is a
need to check the maximum changes in shares which still maintain the status quo.
In political settings, the amplitude of a WVG signifies the maximum percentage
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change in various votes which is possible without changing the voting powers of
the voters. In this chapter, the computational aspects of amplitude and tolerance
of WVGs are examined.

Section 8.2 provides a background of tolerance and amplitude. In Section 8.3,
computational aspects of tolerance and amplitude are examined. It is seen that
computing the amplitude and tolerance of a WVG is NP-hard. We give tighter
bounds and results for the tolerance and amplitude of key WVGs such as uniform
(symmetric) WVGs and unanimity WVGs.

The final section presents conclusions and ideas for future work.

8.2 Tolerance & amplitude: background

If the valuation function of a WVG v is same as another WVG v′, then v′ is called
a representation of v. If the quota q′ of v′ is such that for all S ⊆ N,

∑
i∈S wi

′ , q′,
then v′ is called a strict representation of v [89].

8.2.1 Background

The question we are interested in is to find the maximum possible variations
in the weights and quotas of a WVG which still do not change the game. The
two key references which address this question are [109] and [89]. Hu [109]
worked within the theory of switching functions. He set forth the idea of linearly

separable switching functions which are equivalent to each other. Freixas and
Puente [89] extended the theory by framing it in the context of strict representa-
tions of WVGs, which are equivalent to linearly separable switching functions.

8.2.2 Tolerance

The setting of the problem is that we look at a transformation, f(λ1,...,λn),Λ which
maps a WVG, v = [q; w1, . . . ,wn] to v′ = [q′; w1

′, . . . ,wn
′] such that wi

′ = (1 +

λi)wi and q′ = (1 + Λ)q. Let A be the maximum of w(S ) for all {S |v(S ) = 0}.
and let B be the minimum of w(S ) for all {S |v(S ) = 1}. Then A < q ≤ B (and
q < B if the representation is strict). Moreover, let m = Min(q − A, B − q) and
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M = q + w(N). Hu [109] and then Freixas and Puente [89] showed that if for all
1 ≤ i ≤ n, |λi| < m/M and |Λ| < m/M, then v′ is just another representation of
v. They defined τ[q; w1, . . . ,wn] = m/M as the tolerance of the system. Freixas
and Puente [89] also showed that the tolerance is less than or equal to 1/3 for
strict representations of a WVG and less than or equal to 1/5 for a not necessarily
monotonic1 WVG.

8.2.3 Amplitude

Freixas and Puente defined the amplitude as the maximum µ such that f(λ1,...,λn),Λ

is a representation of v whenever Max(|λ1|, . . . , |λn|, |Λ|) < µ(v). For a strict repre-
sentation of a WVG [q; w1, . . . ,wn], for each coalition S ⊆ N, let a(S ) = |w(S )−q|

and b(S ) = q + w(S ).
Freixas and Puente [89] showed that the amplitude of a WVG is µ(v) =

Inf
S⊆N

a(S )
b(S ) . Although both tolerance and amplitude have been used in the WVG lit-

erature to signify the maximum possible variation in the weights and the quota
without changing the game, the amplitude is a more precise and accurate indica-
tor of the maximum possible variation than tolerance.

8.3 Tolerance & amplitude: some results

8.3.1 Complexity

In all the complexity proofs in this section, we assume that the weights in a WVG
are positive integers. We let WVG-STRICT be the problem of checking whether
a WVG v = [q; w1, . . . ,wn] is strict or not, i.e., WVG-STRICT = {v: v is strict}.
Then we have the following proposition:

Proposition 8.1. WVG-STRICT is co-NP-complete.

Proof. Let WVG-NOT-STRICT = {v: v is not strict}. WVG-NOT-STRICT is in
NP since a certificate of weights can be added in linear time to confirm that they

1 Freixas and Puente also consider WVGs where players’ weights can be negative.
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sum up to q. Moreover v is not strict if and only if there is a subset of weights
which sum up to q. Therefore the NP-complete problem SUBSET-SUM (see
Garey and Johnson [95]) reduces to WVG-NOT-STRICT. Hence WVG-NOT-
STRICT is NP-complete and WVG-STRICT is co-NP-complete. ut

Corollary 8.2. The problem of checking whether the amplitude of a strict WVG

is zero is NP-hard.

Proposition 8.3. The problem of computing the amplitude of a WVG v is NP-

hard.

Proof. Let us assume that weights in v are even integers whereas the quota q is
an odd integer 2k − 1. Then the minimum possible difference between q and A,
the weight of the maximal losing coalition, or q and B, the weight of minimal
winning coalition is 1. So A ≤ 2k − 2 and B ≥ 2k. We see that µ(v) ≤ 1/(4k − 1)
if and only if there exists a coalition C such that w(C) = 2k. Thus the problem of
computing µ(v) for a WVG is NP-hard by a reduction from the SUBSET-SUM
problem. ut

A similar proof can be used to prove the following proposition:

Proposition 8.4. The problem of computing the tolerance of a strict WVG is NP-

hard.

8.3.2 Uniform and unanimity WVGs

We show that the bound for the maximum possible tolerance can be improved
when we restrict to strict representations of special cases of WVGs. We first look
at uniform WVGs which are an important subclass of WVGs which model many
multi-agent scenarios where each agent has the same voting power.

Proposition 8.5. For a strict representation of a proper uniform WVG v =

[q; w, . . . ,w︸   ︷︷   ︸
n

], τ(v) ≤ 1
3n .
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Proof. Since q−A
q+w(N) = 1 − w(N)+A

q+w(N) is an increasing function of q and B−q
q+w(N) is

a decreasing function of q, the tolerance reaches its maximum when q − A =

B − q, i.e. when q is the arithmetic mean A+B
2 . We let the size of the maximal

losing coalition be r and the size of the minimal winning coalition be r + 1. Then
the weight of a maximal losing coalition is rw and the weight of the minimal
winning coalition is (r + 1)w and m = w/2. Since v is proper, q ≥ 1

2 (nw), and
M = q + w(N) ≥ 3nw

2 . Then,

τ(v) = m/M ≤
1

3n
.

ut

Proposition 8.6. For a uniform WVG v = [q; w, . . . ,w︸   ︷︷   ︸
n

], we have B = wd q
we and

A = B − w. Then,

µ(v) =

 q−A
A+q , if q ≤

√
AB

B−q
B+q , otherwise.

Proof. It is clear that B, the weight of the minimal winning coalition is wd q
we and

A, the weight of the maximal losing coalition is B−w. Note that, q−A
q+A ≤

B−q
q+B if and

only if q ≤
√

AB. For losing coalitions with weight w, q−w
q+w is a decreasing function

for w. For winning coalitions with weight w, w−q
q+w = 1 − 2q

q+w is an increasing
function for w. Thus if q ≤

√
AB, µ(v) =

q−A
A+q . Otherwise, µ(v) =

B−q
B+q . ut

Corollary 8.7. The amplitude µ(v) of a uniform WVG v can be found in O(1), i.e.,

constant, time.

Proof. The corollary immediately follows from the previous theorem. ut

We now look at unanimity WVGs, which are another important subclass of
WVGs in which a coalition is winning if and only if it is the grand coalition
N.

Proposition 8.8. For a unanimity WVG v = [q; w1, . . . ,wn],

τ(v) ≤
wn

4w(N) − wn
≤

1
4n − 1

.
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Proof. We know that B = w(N) and A = w(N)−wn, which means that w(N)−wn <

q ≤ w(N). For maximum tolerance, q = A+B
2 = w(N) − wn

2 . Therefore m = wn/2
and M = w(N) − wn

2 + w(N). Then the tolerance of v satisfies:

τ(v) ≤
m
M

=
wn

4w(N) − wn
≤

1
4n − 1

,

since wn ≤ w(N)/n. ut

Note that we do not insist that wt
i ≥ wt

j for all i < j and 1 ≤ t ≤ m. Let
(N, v) = (N, v1 ∧ ... ∧ vm) be a multiple weighted voting game. Then we can
see that µ(v) ≥ Inf(µ(v1), . . . , µ(vm)). The reason is that for v to change, at least
one constituent game has to change. However it is not necessary that a change
in any one game vi changes v. As a simple example, suppose v1 = [2; 2, 1] and
v2 = [2; 1, 2]. Then µ(v1∧v2) = 1/5, as witnessed by the coalition {1, 2}. However,
µ(vi) = 0, as witnessed by {i}, for i = 1, 2.

8.4 Conclusion and future work

We have examined the computational complexity of computing the tolerance
and amplitude of WVGs. The tolerance and amplitude of uniform and unanim-
ity games is also analysed. There is a need to devise approximation algorithms
for computing the amplitude of a WVG. The analysis of amplitude and toler-
ance motivates the formulation of an overall framework to check the ‘sensitivity’
of voting games under fluctuations and susceptibility to control. It will be inter-
esting to explore the limit of changes in WVGs in alternative representations of
simple games.
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False-name manipulations

...some voting procedures can be inherently resistant to abuse, while oth-

ers are vulnerable. We base this distinction on a measure that is new to

voting theory - computational complexity.

- Bartholdi, Tovey and Trick [114]

Life is not long, and too much of it should not be spent in idle deliberation.

- Samuel Johnson

Abstract We examine the computational complexity of false-name manipulation
in weighted voting games. Weighted voting games have received increased inter-
est in the multiagent community due to their compact representation and ability
to model coalitional formation scenarios. Bachrach and Elkind in their AAMAS
2008 paper examined divide and conquer false-name manipulation in weighted
voting games from the point of view of Shapley-Shubik index. We analyse the
corresponding case of Banzhaf index and check how much the Banzhaf index of a
player increases or decreases if it splits up into sub-players. A pseudo-polynomial
algorithm to find the optimal split is also provided. Bachrach and Elkind also
mentioned manipulation via merging as an open problem. In the chapter, we ex-
amine the cases where a player annexes other players or merges with them to in-
crease their Banzhaf index or Shapley-Shubik index payoff. We characterize the
computational complexity of such manipulations as well as providing limits to
the manipulation. The Annexation Non-monotonicity paradox is also discovered



116 9 False-name manipulations

in the case of the Banzhaf index. The results give insight into coalition formation
and manipulation.

9.1 Introduction

There are various ways WVGs can be manipulated and controlled. Splitting of
a player into sub-players can be seen as a false-name manipulation by an agent
where it splits itself into multiple agents so that the sum of the utilities of the
split-up players is more than the utility of the original player [21]. We examine
situations when splitting up into smaller players may be advantageous or disad-
vantageous to a player in the context of WVGs and Banzhaf indices. This gives a
better idea of how to devise WVGs in which manipulation can be deterred. This
may be done by keeping larger or non-integer weights. Moreover, we also exam-
ine the case of players merging to maximize their payoff in a WVG. This was
mentioned as an unexplored question in [21].

The outline of the chapter is as following. Section 9.2 provides a brief liter-
ature survey. In Section 9.3, the case of players splitting up into sub-players in
a WVG to increase their Banzhaf index is analysed. We examine the extent to
which the Banzhaf index of a player can increase or decrease if it splits up into
sub-players. From a computational perspective, it is #P-hard [179] to compute
the payoff in the WVG. A prospective manipulator could still be interested in en-
abling a beneficial split even if he cannot compute the actual payoff. Moreover,
this model is reasonable because the central authority which organizes the game
is assumed to have much more computational resource than the players. In Sec-
tion 9.4, we prove that it is NP-hard even to decide whether a split is beneficial
or not. In the end a pseudo-polynomial algorithm is proposed which returns ‘no’
if no beneficial split is available and returns the optimal split otherwise. Section
9.5 is about the case of players annexing others or voluntarily merging into blocs
to maximize their payoffs. It is shown that for both the Banzhaf index and the
Shapley-Shubik index, it is NP-hard to find a beneficial merge and for the case
of the Banzhaf index, it is NP-hard to decide a beneficial annexation. Limits to
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manipulation are also provided. The final section presents conclusions and ideas
for future work.

9.2 Related work

WVGs have also been examined from the point of view of control and manip-
ulation. Zuckerman et al. [220] analyse how the centre might control WVGs
by changing the quota even if the weights are fixed. The most relevant work
is by Bachrach and Elkind [21] where they examine false-name manipulation in
WVGs from the point of view of the Shapley-Shubik index. In fact, this chapter
answers problems posed by Bachrach and Elkind. Players forming blocs have
been considered by political scientists and economists previously [82]. How-
ever, in this chapter, a complexity theoretic analysis of bloc forming manipulation
has also been undertaken for WVGs. False name manipulations in open anony-
mous environments have been examined in different domains such as coalitional
games [219, 162, 161] and auctions [218, 113]. The characteristic function by
itself does not give enough information to analyze false-name manipulations es-
pecially if a player splits into sub-players. Therefore Yokoo et al. [219] introduced
the model where each player has a subset of skills and the characteristic function
assigns values to the subset of skills. We notice that false-name manipulations
in WVGs can still be analyzed directly without considering more fine-grained
representations.

9.3 Splitting

In the real world, WVGs may be dynamic. Players might have an incentive to
split up into smaller players or merge into voting blocs. Payoffs of players in a
coalitional games setting can be based on fairness, i.e., power indices, or they
can be based on the notion of stability, which includes many cooperative game
theoretic concepts such as core, nucleolus etc. We examine the situation when the
Banzhaf indices of agents can be used as payoffs in a cooperative game theoretic
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situation. Falsenthal and Machover [146] refer to this notion of voting power as
P-power since the motivation of agents is prize-seeking as opposed to influence-
seeking. However Banzhaf indices have been considered as possible payments in
cooperative settings [211, 21] and they satisfy desirable axioms [63]. Splitting of
a player can be seen as a false-name manipulation by an agent, in which it splits
itself into multiple agents so that the sum of the utilities of the split-up players is
more than the utility of the original player [21].

Splitting is not always beneficial. We give examples where, if we use Banzhaf
indices as payoffs of players in a WVG, splitting can be advantageous, neutral or
disadvantageous.

Example 9.1. Splitting can be advantageous, neutral or disadvantageous:

• Disadvantageous splitting. In the WVG [5; 2, 2, 2] each player has a Banzhaf
index of 1/3. If the last player splits up into two players, the new game is
[5; 2, 2, 1, 1]. In that case, the split-up players have a Banzhaf index of 1/8
each.

• Neutral splitting. In the WVG [4; 2, 2, 2] each player has a Banzhaf index of
1/3. If the last player splits up into two players, the new game is [4; 2, 2, 1, 1].
In that case, the split-up players have a Banzhaf index of 1/6 each.

• Advantageous splitting. In the WVG [6; 2, 2, 2] each player has a Banzhaf
index of 1/3. If the last player splits up into two players, the new game is
[6; 2, 2, 1, 1]. In that case, the split-up players have a Banzhaf index of 1/4
each.

We analyse the splitting of players in the unanimity WVG.

Proposition 9.2. In a unanimity WVG with q = w(N), if Banzhaf indices are used

as payoffs of agents in a WVG, then it is beneficial for an agent to split up into

several agents.

Proof. In a WVG with q = w(N), the Banzhaf index of each player is 1/n. Let
player i split up into m + 1 players. In that case there is a total of n + m players
and the Banzhaf index of each player is 1/(n + m). In that case the total Banzhaf
index of the split up players is m+1

n+m , and for n > 1, m+1
n+m > 1

n . ut
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An exactly similar analysis holds for Shapley-Shubik index. Players would
only return to parity if they all split up into the same number of players.

We recall that a player is critical in a winning coalition if the player’s exclusion
makes the coalition losing. We will also say that a player is critical for a losing
coalition C if the player’s inclusion results in the coalition winning.

C

}{ 'iC∪

}{ ''iC∪

Fig. 9.1. Splitting of player i into i′ and i′′ .

Proposition 9.3. Let WVG v be [q; w1, . . . ,wn]. If v transforms to v′ by the split-

ting of player i into i′ and i′′, then

βi′(v′) + βi′′(v′) ≤ 2βi(v).

Moreover, this upper bound is asymptotically tight.

Proof. We assume that a player i splits up into i′ and i′′ and that wi′ ≤ wi′′ .
We consider a losing coalition C for which i is critical in v (see Figure 9.1).
The left hand vertical arrow shows the total weight of player i . We see that
w(C) < q ≤ w(C) + wi = w(C) + wi′ + wi′′ .

• If q − w(C) ≤ wi′ , then i′ and i′′ are critical for C in v′.
• If wi′ < q −w(C) ≤ wi′′ , then i′ is critical for C ∪ {i′′} and i′′ is critical for C in

v′. (This case is shown in Figure 9.1.)
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• If q −w(C) > wi′′ , then i′ is critical for C ∪ {i′′} and i′′ is critical for C ∪ {i′} in
v′.

We see that for any swing for player i, there are is an addition of exactly two
swings for the players i′ and i′′. Also if i is not critical for coalition, then neither
can i′ and i be critical for that coalition. Therefore we have ηi′(v′)+ηi′′(v′) = 2ηi(v)
in each case.

Now we consider a player x in v which is other than player i. If x is critical
for a coalition C in v then x is also critical for the corresponding coalition C′ in
v′ where we replace {i} by {i′, i′′}. Hence ηx(v) ≤ ηx(v′). Of course x may also be
critical for some coalitions in v′ which contain just one of i′ and i′′, so the above
inequality will not in general be an equality. Moreover,

βi′(v′) + βi′′(v′) =
2ηi(v)

2ηi(v) +
∑

x∈N(v′)\{i′,i′′} ηx(v′)

≤
2ηi(v)

2ηi(v) +
∑

x∈N(v)\{i} ηx(v)

≤
2ηi(v)

ηi(v) +
∑

x∈N(v)\{i} ηx(v)
= 2βi(v)

We can prove that this coefficient of 2 is best possible asymptotically. We take
a WVG [n; 2, 1, . . . , 1] with n + 1 players. We find that η1 = n +

(
n
2

)
and for all

other x, ηx = 1 +
(

n−1
2

)
. Therefore

β1 =
n +

(
n
2

)
n +

(
n
2

)
+ n(1 +

(
n−1

2

)
)

=
n + 1

(n − 2)2 ∼ 1/n.

In case player 1 splits up into 1′ and 1′′ with weights 1 each, then for all players
j, β j = 1

n+2 . Thus for large n, β1′ + β1′′ = 2
n+2 ∼ 2β1. ut

It can be shown [67] that in the case of Banzhaf index, the disadvantage in
splitting into two players cannot be more than by a factor of 1/(n + 1):

Proposition 9.4. Let WVG v be [q; w1, . . . ,wn]. If v transforms to v′ by the split-

ting of player i into i′ and i′′, then βi′(v′) + βi′′(v′) ≥
βi(v)
n+1 .
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Proof. Consider S ⊆ N \ {i, x}. If player x distinct from i is critical for S , then in
the extreme case it may possibly be critical for S , S ∪{i′}, S ∪{i′′} and S ∪{i′, i′′}.
Assume that x is not critical for S but x is critical for S ∪ {i′}. This implies that
v′(S ) = 0, v′(S ∪{x}) = 0 and v′(S ∪{x, i′}) = 1 which means that i′ is also critical
for S ∪ {x}. Then, new coalitions of the form S ∪ {i′} or S ∪ {i′′} produced for
which x is critical cannot be more than η′i(v

′) + η′′i (v′) = 2ηi(v). Then we have,

βi′(v′) + βi′′(v′) =
2ηi(v)

2ηi(v) +
∑

x∈N(v′)\{i′,i′′} ηx(v′)

≥
2ηi(v)

2ηi(v) + 4
∑

x∈N(v)\{i} ηx(v) + 2(n)ηi(v)

≥
2ηi(v)

2ηi(v) + 2(n + 1)
∑

x∈N(v)\{i} ηx(v) + 2(n)ηi(v)

=
βi(v)
n + 1

ut

It is believed that the lower bound proved in Proposition 9.4 is not tight. We
now show that splitting into two players can decrease the Banzhaf index payoff

by as much as a factor of almost
√

π
2n :

Example 9.5. Disadvantageous splitting. We take a WVG v on n players where
v = [3n/2; 2n, 1, . . . , 1]. For the sake of simplicity, we assume that n is even. It is
easy to see that player 1 is a dictator. Now we consider the case where v changes
into v′ with player 1 splitting up into 1′ and 1′′ with weight n each. For player
1′ to be critical for a losing coalition in v′, the coalition much exclude 1′′ and
have from n/2 to n− 1 players with weight 1 or it must include 1′′ and have from
0 to (n/2 − 1) players with weight 1. So η1′(v′) = η1′′(v′) =

∑n
i=0

(
n−1

i

)
= 2n−1.

Moreover, for a smaller player x with weight 1 to be critical for a coalition in
v′, the coalition must include only one of 1′ or 1′′ and (n − 2)/2 of the n − 2
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other smaller players. So, ηx(v′) = 2
(

n−2
(n−2)/2

)
. By using Stirling’s formula, we can

approximate ηx(v′) by
√

2
π(n−2)2

n−1. We see that:

βi′(v′) = βi′′(v′)

≈
2n−1

2n−1 + 2n−1 + (n − 1)
√

2
π(n−2)2

n−1

=
1

2 +
(n−1)
√

n−2

√
2
π

∼

√
π

2n
.

We notice that the bounds on the effect of splitting on the Banzhaf index are
quite similar to those in the Shapley-Shubik case (see Table 9.2).

9.4 Complexity of finding a beneficial split

From a computational perspective, it is #P-hard for a manipulator to find the ideal
splitting to maximize his payoff. This is because even computing Banzhaf values
once for a WVG is #P-complete.

An easier question is to check whether a beneficial split exists or not. We de-
fine a Banzhaf version of the BENEFICIAL SPLIT problem defined in [21].

Name: BENEFICIAL-BZ-SPLIT
Instance: (v, i) where v is the WVG v = [q; w1, . . . ,wn] and player i ∈ {1, . . . , n}.
Question: Is there a way for player i to split his weight wi between sub-players
i1, . . . , im so that, in the new game v′,

∑m
j=1 βi j(v

′) > βi(v)?

Proposition 9.6. BENEFICIAL-BZ-SPLIT is NP-hard, and remains NP-hard even

if the player can only split into two players with equal weights.
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Proof. We prove this by a reduction from an instance of the classical NP-hard
PARTITION problem to BENEFICIAL-BZ-SPLIT.

Given an instance of PARTITION {a1, . . . , ak}, we can transform it to a WVG
v = [q; w1, . . . ,wn] with n = k + 1 where wi = 8ai for i = 1 to n − 1, wn = 2
and q = 4

∑k
i=1 ai + 2. After that, we want to see whether it can be beneficial for

player n with weight 2 to split into two sub-players n and n + 1 each with weight
1 to form a new WVG v′ = [q; w1, . . . ,wn−1, 1, 1]. Note that, since the weights are
integral, it is certainly not possible to split up a weight of 2 other than into 1 and
1.

If A is a ‘no’ instance of PARTITION, then we see that no subset of the weights
{w1, . . . ,wn−1} can sum to 4

∑
i ai. This implies that player n is a dummy. We see

that even if player n splits into sub-players, the sub-players are also dummies.
Therefore (v, n) is a ‘no’ instance of BENEFICIAL-BZ-SPLIT.

Now let us assume that A is a ‘yes’ instance of PARTITION. In that case, let
the number of subsets of weights {w1, . . .wn−1} summing to 4

∑
i ai be x. Then

ηn(v) = x. For i ≤ n − 1, player i can be critical in winning coalition with weight
exactly q or more than q. We note that exactly half of the x subsets of {w1, . . .wn−1}

summing to 4
∑

i ai contain wi. If player i is critical in a coalition C which is a
subset of {w1, . . .wn−1} then i is also critical in C ∪ {wn}. Therefore for i ≤ n − 1,
ηi(v) = x

2 + 2yi where yi is the number of subsets of {w1, . . .wn−1} in which i is
critical. We see that

βn(v) =
x

x + kx
2 + 2y

where
∑

i≤n−1

yi = y.

However, in the new game v′, ηn(v′) = ηn+1(v′) = x and for i ≤ n − 1, ηi(v′) =
x
2 + 4yi, since there are now 4 coalitions, C,C ∪ {wn},C ∪ {wn+1},C ∪ {wn,wn+1},
corresponding to each C. So

βn(v′) + βn+1(v′) =
2x

2x + kx/2 + 4y
> βn(v),
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since x > 0. Thus, a ‘yes’ instance of PARTITION implies a ‘yes’ instance of
BENEFICIAL-BZ-SPLIT. ut

In terms of minimizing chances of manipulation, we see that computational
complexity acts as a barrier. This idea of using computational complexity to
model bounded rationality is well explained by Papadimitriou and Yannakakis
[170]. In the context of complexity of voting, it was a series of groundbreaking
papers by Bartholdi, Orlin, Tovey, and Trick [32, 111, 112, 114] that showed
how important computationally complexity consideration is in terms of ease of
computing winners and difficulty of manipulation.

9.4.1 Pseudo-polynomial algorithm

It is well known that, although computing Banzhaf indices of players in a
WVG is NP-hard, there are polynomial time algorithms using dynamic pro-
gramming [151] or generating functions [36] to compute Banzhaf indices if the
weights of players are polynomial in n. Let this pseudo-polynomial algorithm
be BanzhafIndex(v, i) which takes a WVG v and an index i as input and returns
βi(v), the Banzhaf index of player i in v. We use a similar argument as in [21] to
show that a polynomial algorithm exists to find a beneficial split if the weights of
players are polynomial in n and the player i in question can split into up to a con-
stant k number of sub-players with integer weights. Algorithm 11 takes as input a
WVG v and player i which can split into a maximum of k number of players. The
algorithm returns ‘no’ if no beneficial split exists and returns the optimal split
otherwise. Whenever player i in WVG v splits according to a split s, we denote
the new game by vi,s.

Proposition 9.7. Algorithm 11 is polynomial in n if the weights are polynomial

in n.

Proof. Since the weight values are polynomial in n and we consider splits into
a constant number of players, a brute force method is sufficient. We see that the
total number of splits for player i is equal to q(wi, k) where q(n, k) is the partition
function which gives the number of partitions of n with k or fewer addends. It is
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Algorithm 11 BeneficialSplitInWVG
Input: (v, i) where v = [q; w1, . . . ,wn] and i is the player which wants to split into
a maximum of k sub-players.
Output: Returns NO if there is no beneficial split. Otherwise returns the optimal
split (wi1 , . . . ,wik′ ) where k′ ≤ k, and

∑k′
j=1 wi j = wi.

1: BeneficialSplitExists = false
2: BestSplit = ∅

3: BestSplitValue = −∞

4: βi = BanzhafIndex(v, i)
5: for j = 2 to k do
6: for Each possible split s where wi = wi1 + . . . + wi j do
7: SplitValue =

∑ j
a=1 BanzhafIndex(vi,s, ia)

8: if SplitValue > βi then
9: BeneficialSplitExists = true

10: if SplitValue > BestSplitValue then
11: BestSplit = s
12: BestSplitValue = SplitValue
13: end if
14: end if
15: end for
16: end for
17: if BeneficialSplitExists = false then
18: return false
19: else
20: return BestSplit
21: end if

clear that for a constant k, the number of splits of player i is less than (wi)k which
is a polynomial in n. Since the computational complexity for each split is also
a polynomial in n, therefore Algorithm 11 is polynomial in n if the weights are
polynomial in n. ut

9.5 Merging and annexation

For the case of players merging to gain advantage, we examine two cases. One is
annexation where one voter takes the voting weight of other players. The annexa-
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tion is advantageous if the payoff of the new merged coalition in the new game is
greater than the payoff of the annexer in the original game. The other case is vol-
untary merging where players merge to become a bloc for which their new payoff

is more than the sum of their individual payoffs. For every game (N, v), the result
of the merging of players in coalition S is another game ((N \ S ) ∪ {&S }, v&S ).

We define the problem of checking a beneficial voluntary merge or annexation:

Name: BENEFICIAL-BZ-MERGE
Instance: (v, S ) where v is the WVG v = [q; w1, . . . ,wn] and S ⊂ N.
Question: Suppose coalition S merges to form a new game ((N \S )∪{&S }, v&S ).
Is β&S (v&S ) >

∑
i∈S βi(v)?

Name: BENEFICIAL-BZ-ANNEXATION
Instance: (v, S , i) where v is the WVG v = [q; w1, . . . ,wn], i is the ith player in v

and S ⊂ (N \ {i}).
Question: If i annexes coalition S to form a new game ((N \ (S ∪ {i})) ∪ {&(S ∪
{i})}, v&(S∪{i})), is βi(v&(S∪{i})) > βi(v)?

If Shapley-Shubik indices are used as payoffs in place of Banzhaf indices,
then the corresponding problems are defined with BZ replaced by SS so that
BENEFICIAL-SS-MERGE corresponds to BENEFICIAL-BZ-MERGE. Felsen-
thal and Machover [82] prove that if a player annexes other players, then it cannot
be the case that the annexation is disadvantageous if the Shapley-Shubik indices
are used as payoffs. We provide a clear and simple proof of this theorem. Let
player i be critical for a coalition S in WVG v. Then the contribution to φi(v)
from this is (|S |−1)!(n−|S |)!

n! . We consider a game v&{i, j} where i annexes j. For every S

for which i is critical in v, the contribution to φ&{i, j}(v&{i, j}) is either (|S |−2)!(n−|S |)!
(n−1)! or

(|S |−1)!(n−|S |−1)!
(n−1)! . For either case we see that φ&{i, j}(v&{i, j}) > φi(v). However Felsen-

thal and Machover [82] show that, for the case of the Banzhaf index, annexation
could be disadvantageous. They provide a 13-player WVG for which annexation
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is disadvantageous, which is the simplest example they could find. We provide an
8-player WVG where annexation is disadvantageous:

Example 9.8. In WVG [13; 7, 6, 1, 1, 1, 1, 1, 1], player 1 has Banzhaf index 0.48507.
If player 1 annexes one of the small players, the new game is [13; 8, 6, 1, 1, 1, 1, 1]
and the Banzhaf index becomes 0.47826.

For the case where the merging is voluntary instead of an annexation, for both
the Banzhaf index and Shapley-Shubik index, merging can be advantageous or
disadvantageous. As in the case of splitting, we expect it to be hard to find a
beneficial merge:

Proposition 9.9. BENEFICIAL-BZ-MERGE is NP-hard.

Proof. Given an instance of PARTITION {a1, . . . , ak}, we can transform it to a
WVG v = [q; w1, . . . ,wn] where n = k + 3, wi = 8ai for i = 1 to n − 3, wn−2 =

wn−1 = wn = 1, and q = 4
∑k

i=1 ai + 2.
If A is a ‘no’ instance of PARTITION, then we see that a subset of weights

{w1, . . .wn−3} cannot sum to 4
∑

i ai. This implies that players (n − 2), (n − 1) and
n are dummies. Even if players n and (n − 1) merge together, the new player
&{n − 1, n} remains a dummy in the new game v&{n−1,n}.

Now let us assume that A is a ‘yes’ instance of PARTITION. In that case,
let the number of subsets of weights {w1, . . .wn−3} summing to 4

∑
i ai be x. For

i ≤ n − 3, player i can be critical in winning coalitions with weight q or q + 1
or more than q + 1. The number of coalitions for the first two cases are 3x/2 and
x/2, respectively, corresponding to the participation of either 2 or 3 of the unit
players. The third case corresponds to coalitions in which the three unit players
are dummies. Therefore for i ≤ n − 3, ηi = 4x

2 + 8yi where yi is the number of
subsets of {w1, . . . ,wn−3} in which i is critical. Moreover, ηn−2(v) = ηn−1(v) =

ηn(v) = 2x, since each unit player is critical only when exactly one other of these
is in the coalition. Then

βn(v) =
2x

6x + 4kx
2 + 8y

, where
∑

i≤n−3

yi = y.
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In the new game v&{n−1,n}, η&{n−1,n}(v&{n−1,n}) is 2x but ηn−2(v&{n−1,n}) is 0. For
i ≤ n − 3, ηi(v&{n−1,n}) is 2x

2 + 4yi. We see that

β&{n−1,n}(v&{n−1,n}) =
2x

2x + 2kx/2 + 4y
.

Therefore,
β&{n−1,n}(v&{n−1,n}) > βn(v) + βn−1(v),

which means that n and (n − 1) had a beneficial merge. It has been shown that
a ‘yes’ instance of PARTITION implies a ‘yes’ instance of BENEFICIAL-BZ-
MERGE. ut

Proposition 9.10. BENEFICIAL-BZ-ANNEXATION is NP-hard.

Proof. Given an instance of PARTITION, {a1, . . . , ak}, we can transform it to a
WVG v = [q; w1, . . . ,wn] where n = k + 2, wi = 8ai for i = 1 to n − 2, wn−1 = 1,
wn = 1 and q = 4

∑k
i=1 ai + 2. Just as in Proposition 9.9, we see that a ‘no’

instance of partition implies that wn−1 and wn are dummies even if n annexes
(n − 1). However, a ‘yes’ instance of partition implies that player n benefits by
annexing player (n − 1). ut

Proposition 9.11. BENEFICIAL-SS-MERGE is NP-hard

Proof. Given an instance of PARTITION {a1, . . . , ak}, we can transform it to a
WVG v = [q; w1, . . . ,wn] where n = k + 3, wi = 8ai for i = 1 to n − 2, wn−2 =

wn−1 = wn = 1, and q = 4
∑k

i=1 ai + 2.
If A is a ‘no’ instance of PARTITION, then we see that a subset of weights

{w1, . . .wn−3} cannot sum to 4
∑

i ai. This implies that players (n − 2), (n − 1)
and n are dummies. Even if player n and (n − 1) merge together, the new player
&{n − 1, n} remains a dummy in the new game v&{n−1,n}.

Now let us assume that A is a ‘yes’ instance of PARTITION. For each partition
(P1, P2) where |P1| = p1 and |P2| = p1, we check the number of permutations
corresponding to (P1, P2). In the original game v, the contribution to the Shapley-
Shubik payoff for either player n or (n − 1) by the permutations corresponding to
(P1, P2) is
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2(p1 + 1)!(p2 + 1)!
n!

=
p1!p2!

n!
2(p1 + 1)(p2 + 1).

If players n and n − 1 merge into bloc &{n − 1, n}, then the contribution to the
Shapley-Shubik payoff to bloc &{n − 1, n} by the permutations corresponding to
(P1, P2) is

p1!(p2 + 1)! + (p1 + 1)!p2!
(n − 1)!

=
p1!p2!

n!
(n(p1 + 1 + p2 + 1)).

For the merge to be beneficial, it is required that the sum of the Shapley-Shubik
indices of (n−1) and n in the original game v is less than the Shapley-Shubik index
of &{n − 1, n} in the game v&{n−1,n}, i.e., 4(p1 + 1)(p2 + 1) < n(p1 + 1 + p2 + 1).
Since (p1 + 1) + (p2 + 1) = n − 1, we have

4(p1 + 1)(p2 + 1) ≤ 4
(
n − 1

2

)2

< n(n − 1) = n(p1 + 1 + p2 + 1),

and so φn−1(v) + φn(v) < φ&{n−1,n}(v&{n−1,n}). ut

We examine the limits of advantage or disadvantage for the case of the annex-
ation of another player to increase the Banzhaf index.

Proposition 9.12.
βi(v) + β j(v)

2
≤ βi(v&({i, j})) ≤ 1.

Proof. Let v be WVG [q; w1, . . . ,wn]. Suppose i annexes or merges with player j

and v′ is v&({i, j}). Then the new game is ((N \ { j}) ∪ {&({i, j})}, v′). From the proof
of Proposition 9.3, we see that η&({i, j})(v′) equals 1

2 (βi(v) + β j(v)).
Now consider a player x which is other than player i or player j. Let S be

coalition such that S ⊆ N \ {i, j, x}. If x is critical for S in v then x is critical for
S in v′. If x is critical for S ∪ {i, j} in v then x is critical for S ∪ &({i, j}) in v′.
However, x may also be critical for S ∪ {i} or S ∪ { j} in v. So ηx(v) ≥ ηx(v′). We
see that:
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β&({i, j})(v′) =
η&({i, j})(v′)

η&({i, j})(v′) +
∑

x∈(N\{i, j}) ηx(v′)

=

1
2 (ηi(v) + η j(v))

1
2 (ηi(v) + η j(v)) +

∑
x∈(N\{i, j}) ηx(v′)

≥

1
2 (ηi(v) + η j(v))

ηi(v) + η j(v) +
∑

x∈(N\{i, j}) ηx(v)

=
1
2

(βi(v) + β j(v)).

The upper bound is tight and easy to observe. If player i is a dummy and j is a
dictator then βi(v) = 0 whereas βi(v′) = 1. The upper bound can also be achieved
by two big enough players joining forces. ut

We have seen that annexation can be disadvantageous in the case of the
Banzhaf index. One would at least expect the Banzhaf index payoff after annexing
another player to be monotone in the power of the annexed player. Surprisingly,
this is not the case. Suppose wi ≥ w j ≥ wk in a WVG v. We provide an example
where βi,k > βi, j. We call this the annexation non-monotonicity paradox:

Example 9.13. In the WVG [9; 3, 3, 2, 1, 1, 1] we see that player 2 has more
weight than player 3. However if player 1 annexes player 2 to form game
[9; 6, 2, 1, 1, 1], its Banzhaf index is 0.4, whereas if player 1 annexes player 3
to form game [9; 5, 3, 1, 1, 1], its Banzhaf index is 7/17 ≈ 0.411765.

Proposition 9.14. For any coalition, S ⊂ N \ {i},

φi(v) ≤ φi(v&({i}∪S )) ≤ 1.

Proof. The lower bound follows from the result by Felsenthal and Machover [82]
that annexation cannot decrease the Shapley-Shubik index of a player. Moreover,
the upper bound is tight and easily attainable if {i} ∪ S is big enough. ut

Proposition 9.15. For the unanimity game, for both the Shapley-Shubik index and

Banzhaf index:
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Table 9.1. Complexity of false name manipulations in WVGs

Banzhaf index Shapley-Shubik index

SPLITTING NP-hard NP-hard [21]
MERGING NP-hard NP-hard
ANNEXATION NP-hard advantageous [82]
SPLITTING in unanimity game advantageous advantageous [21]
MERGING in unanimity game disadvantageous disadvantageous
ANNEXATION in unanimity game advantageous advantageous

1. it is disadvantageous for a coalition to merge;

2. it is advantageous for a player to annex.

Proof. We check each case separately:

1. This is expected considering Proposition 9.2. If k players merge, then the
payoff of the new coalition is 1/(n−k +1). It is easy to see that 1/(n−k +1) <
k/n.

2. For a unanimity WVG with n players, the payoff of each player is 1/n. If a
player annexes k − 1 other players, its payoff is 1/(n − k + 1) which is more
than 1/n.
ut

In a WVG, if player i annexes a dummy, then there is no difference to the
Banzhaf index payoff of each player. This is because the Banzhaf value of each
player reduces to half of the original Banzhaf value. Moreover, it follows from
Proposition 9.12 that if a player annexes a player bigger than itself, its Banzhaf
index can only increase. Thus annexation could only be disadvantageous, if a
player annexes a smaller player. Although deciding a beneficial merge or annex-
ation is computationally difficult, it may often be easier in practice. We propose
a simple heuristic to get beneficial annexations or at least to avoid disadvanta-
geous annexations. It appears to be a better strategy to annex fewer players with
some total weight than more players with the same total weight. This is because,
while annexing, the annexer does not want to increase the payoff of other players
significantly.
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Bounds Reference
1

n+1βi(v) ≤ βi′(v′) + βi′′(v′) ≤ 2βi(v) Prop 9.4 and 9.3

βi(v)+β j(v)
2 ≤ βi(v&({i, j})) ≤ 1. Prop 9.12

φi(v) ≤ φi(v&({i}∪S )) ≤ 1. Prop 9.14

2
n+1φi(v) ≤ φi′(v′) + φi′′(v′) ≤ 2n

n+1φi(v) [21]

Table 9.2. Bounds of false-name manipulations in WVGs

9.6 Conclusions

We have investigated the impact on the Banzhaf power distribution due to a player
splitting into smaller players in a weighted voting game. We have also considered
the case of manipulation via annexation and voluntary merging when the payoff is
according to the Banzhaf index or the Shapley-Shubik index. Both the complex-
ity of manipulation and the limits of manipulation are examined. The complexity
results are summarised in Table 9.1. In the table, whenever, the complexity of
manipulation is NP-hard, there is possibility of the manipulation proving advan-
tageous or disadvantageous. Table 9.2 summarizes the bounds of false-name ma-
nipulations in WVGs. The Shapley-Shubik index appears to be a more desirable
solution for resource allocation because annexation does not decrease the payoff

of a player. It is seen that manipulation may be discouraged by keeping weights
which are large or non-integers. The finer, more detailed, analysis for players
splitting into more than two players or merging into bigger blocs is still unex-
plored. Although it is NP-hard to evaluate different false-name manipulations, it
may be the case that certain instances of WVGs are more susceptible to manipula-
tion [16]. A careful investigation of heuristics for false-name manipulation is also
a promising area of research. There is scope to analyse such false-name manipu-
lations with respect to other cooperative game-theoretic solutions. A particularly
suitable solution to consider could be the nucleolus which not only always exists
but is also unique. Further examination into various aspects of manipulation in
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weighted voting games promises to give better insight into designing fairer and
manipulation-resistant systems. Another interesting question is to what extent can
the results be applied to more general cooperative games.
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Complexity of length, duality and bribery

The people who cast the votes don’t decide an election, the people who

count the votes do.

- Joseph Stalin

Theory is to practice as rigor is to vigor.

- Donald Knuth

Abstract Coalitional voting games, especially simple games have received in-
creased interest within the agents community recently. Length and width are im-
portant characteristics of coalitonal voting games which indicate efficiency of
making a decision. Duality theory also plays an important role in artificial in-
telligence. In this chapter, the complexity of problems concerning the length,
width and minimal winning coalitions of simple games is analysed. The com-
plexity of questions related to duality of simple games such as DUAL, DUALIZE
and SELF-DUAL is also examined. The possible representations considered are
simple games represented by winning coalitions, minimal winning coalitions, a
weighted voting game or a multiple weighted voting game. Since susceptibility to
manipulation is a major issue in multiagent systems, it is observed that the results
obtained have direct bearing on susceptibility to optimal bribery in simple games.
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10.1 Introduction

10.1.1 Background

In this chapter we utilize the concepts of length and width of simple games to
study the bribery manipulation in simple games. Length and width of threshold
function were first considered in the electrical engineering and threshold logic
literature. Duality theory also plays an important role in artificial intelligence.
We analyse the computational complexity of certain questions related to length,
width and duality of simple games. It is seen that answers to the questions have
direct bearing on complexity results on bribery in simple games. Here, bribery is
considered as buying loyalties of players to either enable a decision or prevent a
decision. For reference to various notions and classes of computational complex-
ity, please see [166].

We now present key definitions needed in this chapter.

Definition 10.1. A coalition S is blocking if N \S is losing. We denote by B(v) the

set of blocking coalitions of v. For a simple game v = (N,W), there is a dual game

vd = (N,W(vd)) where W(vd) is equal to B(v). A game v is self-dual if v = vd.

We can say that a coalition is winning in a simple game if and only if it is
blocking in the dual of the game.

Definition 10.2. A minimal blocking coalition (MBC) is a blocking coalition such

that removal of any player makes it a non-blocking coalition. The set of MBCs of

a simple game v is denoted by Bm.

It is easy to see that the set of MWCs for v is equal to the MBCs for vd. For
self-dual simple games, there is an easy characterization: A simple game is self-
dual if and only if for any coalition S ⊆ N, either S is a winning coalition or
(N \ S ) is a winning coalition but not both. The reasoning for this is as follows.
If v is self-dual, then coalition S is winning if and only if S is blocking which
is equivalent to (N \ S ) not being winning. If S is a winning coalition, then it
is known that (N \ S ) is losing. This means that S is blocking. Similarly if S is
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blocking, then this implies that S is winning. This clarifies that self-dual games
and decisive games are equivalent.

We give a brief outline of the chapter. In Section 10.2, computational aspects
of computing the length of simple games are considered. Section 10.3 examines
the complexity of questions related to duality of games. In Section 10.4, com-
plexity of bribery in simple games is explored in the light of previous sections.
In Section 10.5, a summary of results and future directions of study are given.
Throughout, we assume that the voting games have integer weights.

10.2 Computing length of games

Now, game theoretic version of definitions from Ramamurthy’s book [184] are
provided:

Definitions 10.3. The set Wk(v) is the set of winning coalitions of size k of the

simple game v. Moreover, Bk(v) is the set of blocking coalitions of v of size k.

These definitions can be used to define the length and width of simple games:

Definitions 10.4. The length of a simple game is the smallest integer k such that

Wk(v) , ∅. The width of a simple game is the smallest integer k such that Bk(v) ,
∅

The length is an important indicator of a game which signifies in a sense the
ease with which the status quo can be changed. We examine the complexity of
computing the length of a simple game.

Name: LENGTH
Instance: Simple game v

Output: Length of v

Name: WIDTH
Instance: Simple game v

Output: Width of v
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10.2.1 Complexity of computing length

It is evident that LENGTH(v) is equivalent to WIDTH(vd). Moreover, for some
special types of simple games, it is easy to observe their length and the width:

Observation 10.5 For a simple game v,

1. If v is a unanimity game, LENGT H(v) = n and WIDT H(v) = 1.

2. If v is a singleton game, LENGT H(v) = 1 and WIDT H(v) = n.

3. If v is a majority game, LENGT H(v) = dn/2e and WIDT H(v) = d(n + 1)/2e

Proof. (Follows from the definitions). ut

Now the complexity of computing LENGTH for a simple game represented
by (N,W), (N,Wm), WVG or MWVG is analysed:

Observation 10.6 The problem LENGTH for a simple game represented by

(N,W), (N,Wm) or WVG is in P.

Proof. For a simple game v represented by (N,W) or (N,Wm), LENGTH(v) can
be computed in linear time by scanning the winning coalitions and identifying
the smallest k such that coalition S is in W or Wm and |S | = k.

For the case of WVG, the weights of the players are already sorted. So start off

with w1 and keep adding more players with decreasing weights until
∑k

i=1 wi ≥ q.
It is then claimed that LENGTH(v) is k. It is easy to see this since any other
approach, apart from the greedy approach to pick up weights, will require at least
k weights for the sum of the weights to be more than q. The greedy method
outlined for LENGTH(v) for WVGs also computes the coalition which has the
smallest feasible length. ut

Proposition 10.7. The problem LENGTH for a simple game represented by a

MWVG is NP-hard.

Proof. We provide a reduction from a special case of the minimization version of
multidimensional 0-1 knapsack problem (MKP) [92].
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Name: MKP
Instance: A collection of n items and m knapsacks where the capacity of the ith
knapsack is bi, the jth item requires ai j units of resource consumption in the ith
knapsack and has corresponding profit c j

Output: Maximize
∑n

j=1 c jx j such that
∑n

j=1 ai jx j ≤ bi, i ∈ M = {1, 2, . . .m}, and
x j ∈ {0, 1}, j ∈ N = {1, 2, . . . n}.

The goal in MKP is to find a subset of items that yields maximum profit with-
out exceeding the resource capacities. MKP is equivalent to the minimization
version of the problem (MIN-MKP) since maximizing the profit of a set of items
is equivalent to minimizing the profit of items not in the set. The transformations
needed are y j = 1 − x j for j ∈ N and di = (

∑n
j=1 ai j) − bi for j ∈ N and i ∈ M.

Therefore the following problem is as hard as MKP:

Name: MIN-MKP
Instance: A collection of n items and m knapsacks where each knapsack i should
have at least di capacity filled and the jth item has corresponding profit c j and
requires ai j units of resource consumption.
Output: Minimize

∑n
j=1 c jy j such that

∑n
j=1 ai jy j ≥ di, i ∈ M = {1, 2, . . .m} and

y j ∈ {0, 1}, j ∈ N.

Gens and Levner [96] point out that Dinic and Karzanov [61] proved that even
the special case of MIN-MKP where m = 2 and c j = 1 for all j = 1 to n is
NP-hard. It is easy to see that by renaming some variables (ai j to wi

j and di to qi),
the NP-hard special case of MIN-MKP is equivalent to computing the length of
a MWVG of dimension 2. ut

10.2.2 Approximating the length of a MWVG

Although this may seem a paradox, all exact science is dominated by the

idea of approximation.

- Bertrand Russell
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Although all NP-complete problems share the same worstcase complexity,

they have little else in common. When seen from almost any other per-

spective, they resume their healthy, confusing diversity. Approximability is

a case in point.

- Christos Papadimitriou (1993)

Although the length of a MWVG cannot be computed efficiently, it is observed
that it can be approximated efficiently:

Proposition 10.8. For a MWVG, v with dimension m, there exists a polynomial

time approximation algorithm which computes LENGTH(v) with an absolute er-

ror of m − 1.

Proof. This result uses the same approach as in [34] where the authors use LP-
relaxation to provide an m − 1 absolute approximation algorithm for the Safe

Deposit Boxes (SDB) problem:

Name: Safe Deposit Boxes (SDB) problem
Instance: a ji ≥ 0 for i = 1, . . . n and j = 1, . . .m.
Output: Minimize

∑n
i=1 xi such that

∑
a jixi ≥ A j, j = 1, . . .m; x ∈ {0, 1},

i = 1, . . . , n.

A complete proof is given as follows. Let v be a MWVG with n players and
m constituent WVGs [qt; wt

1, . . . ,w
t
n] for 1 ≤ t ≤ m. We assume that m < n.

The problem of computing LENGTH(v) is an integer program. An LP-relaxation
changes it into a problem where we want to minimize

∑n
i=1 xi where

∑n
i=1 xiwt

i ≥ qt

for all 1 ≤ t ≤ m and 0 ≤ xi ≤ 1 for all i ∈ N. The inequalities of the linear
program can be changed into equalities by introducing n+m slack variable where
one slack variable is used for each inequality.
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min
∑n

i=1 xi

s.t.
∑n

i=1 xiwt
i + si = qt for i=1,. . . , m,

xi + sn+i = 1 for i=1,. . . , n,
xi ≥ 0 for i=1,. . . , n
si ≥ 0 for i=1,. . . , m+n

(10.1)

The resultant LP has a total of n + m constraints and 2n + m variables (all
of which are non-negative) where n + m is the number of slack variables. Any
extreme point in the feasible region of formulation requires n binding constraints.
It follows that any basic feasible solution contains at least n zero values. Out of
these n zero values, a maximum of m values can be attributed to slack variables
related to the quota constraints. Out of the remaining n−m zero values, either one
of the original variables is zero, or a slack variable related to the inequality xi ≤ 1
is zero. In either of the cases, the original variable is non-fractional. Therefore,
there are at most m original variables(xis) which may have fractional values in
the LP solution. The LP solution is of course solvable in polynomial time [44].

If none of the xis are fractional, then the LP solution is also the length of the
MWVG. If not, then let l be the number of xis equal to one in the LP solution.
Then, the length of the MWVG is at least l + 1. If we round up every fractional
values of the LP solution, then all the constraints are still satisfied. Moreover, the
maximum value of the sum of the ceilings of values of the LP solution is l + m.
Therefore the maximum error between the length of the MWVG and the sum of
the ceilings of values of the LP solution is m − 1. ut

Although computing the length of an MWVG has a PTAS, there is no FP-
TAS (fully polynomial time approximation scheme) [96]. The argument is that
if there is an ε-approximation algorithm polynomial in n and 1/ε to approximate
the length of a MWVG, then this implies that there is a polynomial algorithm to
compute the length of a MWVG.
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10.3 Complexity of duality questions

Now some key problems on duality of simple games are defined.

Name: X-DUALIZATION
Instance: Simple game v in representation X.
Output: Dual game vd in representation X

Name: DUAL
Instance: Simple games v and v′

Question: Are v and v′ dual of each other?

Name: SELF-DUAL
Instance: Simple games v

Question: Is v equivalent to vd?

It is noticed that in the dualization of a simple game v = (N,W), the output
(N,W(vd)) may be exponential in terms of the input. For example take the una-
nimity simple game v in which only the grand coalition is winning. Since every
coalition apart from the empty set is a blocking coalition, the dual of v has 2n − 1
winning coalition. However, it is easy to decide DUAL for two simple games
represented by their winning coalitions:

Proposition 10.9. DUAL for two simple games v = (N,W) and v′ = (N,W ′) is in

P.

Proof. If vd = v′, then |W | = 2n − |W ′|. This is because for each losing coalition
in v, its complement is winning in v′. In case |W | = 2n − |W ′|, then we consider
the bigger of the two sets |W | and |W ′|. Without loss of generality, let us assume
that |W | ≥ |W ′|. Then for each coalition S < W, we check if N \ S is a member of
W ′ or not. If N \ S is not a member of W ′, then return ‘no’. The total number of
such operations involved is (2n − |W |)(|W ′|) = (|W ′|

2). ut
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It follows from the proposition that deciding the problem SELF-DUAL for a
simple game (N,W) is in P.

Proposition 10.10. WVG-DUALIZATION is in P.

Proof. We denote by 〈q; w1, . . . ,wn〉 a WVG where a coalition S ⊂ N is winning
if and only if w(S ) > q. For a WVG v = [q; w1, . . . ,wn] it is easy to see that
vd = 〈w(N) − q; w1, . . . ,wn〉. This observation has been made as early as in [63].
The argument is that vd(S ) = 1 if and only if v(N \ S ) = 0. Take any coalition
S such that vd(S ) = 1. This means that w(S ) > w(N) − q which is equivalent to
w(N \ S ) = w(N) − w(S ) < q. If WVG v is represented by integers only, then
vd = [w(N) − q + 1; w1, . . . ,wn]. ut

Corollary 10.11. For a WVG v, WIDTH(v) is in P.

Proof. For any simple game v, WIDTH(v) is equivalent to LENGTH(vd). It
is already known that WVG-DUALIZATION is in P and that for a WVG v,
LENGTH(v) is in P. Therefore, computing the width of a WVG is in P. ut

Now, we examine the problem MWVG-DUALIZATION. Let v be a MWVG
where its constituent WVGs are vt = [qt; wt

1, . . . ,w
t
n] for 1 ≤ t ≤ m. Also,

vd =
∨m

t=1 vt
d. We know that vt

d = [(
∑n

i wt
i) − qt + 1; wt

1, . . . ,w
t
n]. Therefore while

dualizing a MWVG, it easy to get a disjunction of WVGs but not easy to get
a MWVG. A dual of MWVG is also a simple game and therefore can be rep-
resented by a MWVG. However, it will be interesting to check if the dual of a
MWVG with dimension m can be represented by a MWVG with a dimension
polynomial in m.

It is interesting to see that although computing the length of a MWVG is dif-
ficult, the computing the width of a MWVG is computationally easy.

Proposition 10.12. For a MWVG v, WIDTH(v) is in P.

Proof. Let v be a MWVG where its constituent WVGs are vt = [qt; wt
1, . . . ,w

t
n] for

1 ≤ t ≤ m. Then, vd =
∨m

t=1 vt
d. We know that vt

d = [(
∑n

i wt
i)− qt + 1; wt

1, . . . ,w
t
n].

Now we know that WIDTH(v) is equal to LENGTH(vd).
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It is proved that LENGTH(vd) = Infn
t=1{LENGTH(vt

d)}. Choose i ∈ {1, . . .m},
such that length of vi

d is the smallest among vt
ds for all t. Then assume for con-

tradiction that there exists some coalition C ⊆ N such that C is winning in vd and
|C| is less than the length of vi

d. Then then there exists a j ∈ {1, . . .m} other than i

such that v j
d(C) = 1. This implies that the length of v j

d is less than the length of
vi

d which is a contradiction. ut

There is no known polynomial time algorithm for Wm-DUALIZATION. Nei-
ther are there any hardness results for the problem. However it is known that
Wm-DUALIZATION is polynomially time equivalent to the problems DUAL and
SELF-DUAL for simple games represented by their MWCs [37, 86]. It is also
known that linear simple games represented by MWCs can be dualized in poly-
nomial time [66]. Now we prove that the complexity of DUAL for WVGs is
NP-hard:

Proposition 10.13. DUAL for WVGs is co-NP-complete.

Proof. We first define another problem EQUIVALENT-WVGs:

Name: EQUIVALENT-WVGs
Instance: WVGs v = [q; w1, . . . ,wn] and v′ = [q′; w1

′, . . . ,wn
′]

Question: Is v = v′?

We first prove that this problem is NP-hard. We provide a reduction from
the problem of checking whether a player is a dummy or not. Let v by a WVG
[10q+1; 10w1, . . . , 10wn−1, 1] where q and wis are all integers. It is known that it is
NP-hard to verify whether player n with weight 1 is a dummy or not [151]. This is
equivalent to asking whether v is equivalent to WVG [10q; 10w1, . . . , 10wn−1, 0].
Moreover, it is easy to see that EQUIVALENT-WVGs is in co-NP because any
coalition S such that v(S ) , v′(S ) is a ‘no’ certificate.

Now that we know that EQUIVALENT-WVGs is NP-hard we show that
any instance of EQUIVALENT-WVGs is equivalent to the problem DUAL for
WVGs. We take an instance of EQUIVALENT-WVGs where we want to check
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whether WVGs v = [q; w1, . . . ,wn] and v′ = [q′; w1
′, . . . ,wn

′] are equivalent. This
is the same as asking whether the dual of v′ is [w(N) − q + 1; w1, . . . ,wn]. ut

From the proof it follows that SELF-DUAL for WVGs is also co-NP-complete.
Moreover, DUAL and SELF-DUAL for MWVGs are co-NP-complete. For a pair
of simple games represented by their winning coalitions, both games have to be
exactly similar for them to be equivalent. The same rule holds for simple games
represented by their minimal winning coalitions.

10.4 Bribery in WVGs

Manipulation, control and bribery in elections and social choice protocols have
been examined both in political science and multiagent systems. In [75], a com-
prehensive analysis of manipulation in elections was undertaken. Different kinds
of manipulations considered are insincere behaviour by voters, bribery of voters
and control by mechanism designers. Manipulations in voting systems have re-
ceived interest in many recent papers, for instance [104, 180, 50]. In this section,
a similar approach is used to analyse bribery in simple games.

Winning coalitions with the smallest length are the following set: We = {S :
S ⊂ W, |S | ≤ |S ′| ∀S ′ ∈ W}. For the specific case of WVGs, another variation
is winning coalitions with the minimum weight: W s = {S : S ⊂ W,w(S ) ≤
w(S ′) ∀S ′ ∈ W}. It is evident that We and W s are subsets of Wm. These kinds
of minimal winning coalitions have also been considered in [51]. Both W s and
We appear to be useful concepts especially from the point of view of bribery
and manipulation in social choice protocols. If a manipulator wants to control or
manipulate a coalition, he would prefer a coalition which is winning but barely,
with minimal weight or number of players. Minimizing the number of players
bribed has the motivation of maximizing confidentiality and minimizing costs.
Minimizing the weight of the bribed coalition has motivation in the assumption
that players may price themselves according to their perceived importance, which
is their contributed weight. For example, if each player has unit cost of being in-
fluenced, the cost of bribery is the length of the game. The general problem is
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defined as follows:

Name: SVG-WIN-BRIBERY
Instance: Simple game v with cost ci for each player i ∈ N.
Output: Minimize the bribery cost while ensuring a win.

10.4.1 Under no information

We now examine the complexity of optimal bribery to ensure the decision when
there is no information on the players’ preferences (whether they want to vote
‘yes’ or ‘no’).

Influencing a decision

Proposition 10.14. SVG-WIN-BRIBERY is in P for a simple game represented by

a WVG, (N,W) or (N,Wm) where each player has unit cost and the manipulator

has no knowledge of player preferences.

Proof. This follows directly from Observation 10.6) that computing a winning
coalition with the minimum number of players can be computed in polynomial
time for all the three representations. ut

Proposition 10.15. SVG-WIN-BRIBERY is NP-hard for a MWVG where each

player has unit cost and the manipulator has no knowledge of player preferences.

Proof. This follows from the result that computing LENGTH(v) of MWVGs is
NP-hard. ut

Since we noticed that LENGTH(v) for MWVG has an absolute error approx-
imation algorithm, this means that SVG-WIN-BRIBERY also be approximated
efficiently. As the approximation algorithm always overestimates the length of the
MWVG, it is guaranteed that a big enough coalition of players has been bribed.
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Proposition 10.16. SVG-WIN-BRIBERY is NP-hard for WVGs where each player

has cost proportional to its weight and the manipulator has no knowledge of

player preferences.

Proof. We use a reduction from the optimization version of the SUBSET-SUM
Problem where the instance is A = {a1, . . . , ak} and we want to minimize

∑k
i=1 xiai

such that
∑k

i=1 xiai ≥ Q where xi ∈ {0, 1}. This problem is equivalent to SVG-
WIN-BRIBERY which involves minimizing

∑k
i=1 xi(Cwi) such that

∑k
i=1 xiwi ≥ Q

where xi ∈ {0, 1}, wi = ai for all i = 1 to k and C is a constant. ut

Maintaining the status quo

If a manipulator wants to maintain the status quo and prevent the formation of
a winning coalition, he might want to control a blocking coalition with the least
cost. This could again be a coalition which is winning in the dual of the game but
either has the smallest number of players or the least amount of weight.

Name: SVG-VETO-BRIBERY
Instance: Simple game v with cost ci for each player i ∈ N.
Output: Ensure a no-win (so that a decision cannot be taken) while minimizing
cost.

It is easy to see that SVG-VETO-BRIBERY for WVG v is equivalent to
SVG-WIN-BRIBERY for vd. Therefore, we automatically arrive at the follow-
ing propositions:

Proposition 10.17. If the manipulator has no knowledge of player preferences,

1. SVG-VETO-BRIBERY is in P for a WVG where each player has unit cost.

2. SVG-VETO-BRIBERY is in P for a MWVG where each player has unit cost.

3. SVG-VETO-BRIBERY is NP-hard for a WVG where each player has cost pro-

portional to its weight.
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For a simple game v = (N,Wm), it was shown that SVG-WIN-BRIBERY, is in
P. However, it is not clear whether, SVG-VETO-BRIBERY is in P or not since
the complexity of dualization of v is an open question.

10.4.2 Manipulation under full or partial information

Under full or partial information, we get the same results on complexity of bribery
as in the last subsection. Let us say that we have a simple game in which we know
that a coalition S ⊂ N of players wants to win. If the coalition S can win on its
own, then there is no motivation for bribery. If the coalition S is not enough to
effect a win, then the problem of bribing to implement an overall win transforms
into a smaller optimization problem of bribing enough players among N \ S to
effect a win. A similar argument holds for the situation where we want to effect
a veto and we have partial or full information of a coalition of players who also
want to veto the decision.

10.5 Conclusion

Table 10.1. Complexity of dualization, length and bribery

Input (N,W) (N,Wm) WVG MWVG

DUALIZATION Exp ? P ?
DUAL P ? co-NPC co-NPC
SELF-DUAL P ? co-NPC co-NPC
LENGTH P P P NP-hard
WIDTH ? ? P P
EQUIVALENT P P co-NPC co-NPC
SVG-WIN-BRIBERY with uniform costs P P P NP-hard
SVG-WIN-BRIBERY with weight proportional costs N/A N/A NP-hard N/A
SVG-VETO-BRIBERY with uniform costs ? ? P P
SVG-VETO-BRIBERY with weight proportional costs N/A N/A NP-hard N/A

In the chapter, the complexity of key questions concerning length, width, and
duality of simple games is examined. Moreover, the complexity of identifying



10.5 Conclusion 149

the ideal coalition to bribe has been considered for different cost patterns. A sum-
mary of results is presented in Table 10.1. The question marks indicate problems
which are open. It is seen that since simple games involve binary decisions, the
bribery process is not as complex as general elections with a range of alternatives.
However, optimal bribery has different complexity for different representations of
games and approaches to bribery. The idea of optimal bribery may be a realistic
consideration if there are multiple decisions to be made via simple games, and
the briber does not want to overuse his resources. In analyzing bribery, it will
be more realistic to consider probabilistic models where there are probabilities
for players to vote ‘yes’ or ‘no’. In this context, results from information the-
ory might shed more light. Another direction is to examine simple games where
instead of deciding a binary outcome, the players vote for a list of candidates.
Moreover, characterizing the complexity of dualization of simple games repre-
sented by MWCs is a long-standing open question.
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Cooperative game theory & simple games

The value or worth of a man is, as of all other things, his price; that is to

say, so much as would be given for the use of his power, and therefore is

not absolute, but a thing dependent on the need and judgement of another.

- Thomas Hobbes (Leviathan)

In seeking private interests, we fail to secure greater collective interests.

The narrow rationality of self-interest that can benefit us all in market

exchange can also prevent us from succeeding in collective endeavors.

- Russell Hardin (Collective Actions)

The classes of problems which are respectively known and not known to

have good algorithms are of great theoretical interest ... I conjecture that

there is no good algorithm for the traveling salesman problem. My reasons

are the same as for any mathematical conjecture: (1) it is a legitimate

mathematical possibility; and (2) I do not know.

- Edmonds (1966)

Abstract Simple coalitional games are not only a type of voting games but also
a fundamental class of cooperative games. In this chapter, cooperative games and
cooperative game solutions are introduced. Cooperative game theory is concerned
with analyzing which coalitions will form and how should the coalitions divide
the payoff between their members. The trend of using computational tractability
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as a criterion for cooperative game solutions is recent and is prevalent in the math-
ematics of operations research and theoretical computer science. In this chapter,
the computational aspects of various cooperative game solutions in simple games
are examined. Questions considered include the following: 1) for solution set X

and simple game v, is X of v empty or not, 2) compute an element in X of v

and 3) verify if a payoff is in X of v. Some representations taken into account
are simple games represented by W, Wm, WVGs and MWVGs. The cooperative
solutions considered are the core, ε-core, least-core, nucleolus, prekernel, kernel,
bargaining set and stable sets. A complexity of checking the stability of the core
of simple games is also examined. Structural results of the least core and nu-
cleolus payoffs of simple games are presented. A theorem from the paper “The
nucleolus and kernel for simple games or special valid inequalities for 0 − 1 lin-
ear integer programs” by L.A Wolsey is corrected. It is proved that an oracle to
compute a least core payoff for a simple game in any passer-reasonable repre-
sentation can be used to compute the worst excess of a least core payoff. Finally,
the relation between cost of stability and the least core is examined. A natural and
desirable solution called the super-nucleolus is also proposed.

11.1 Introduction and background

Cooperative game theory models problems where a group of players cooperate to
make a profit or investment and the profit or cost has to be allocated among the
players in a fair and stable way. If a subset of players in N cooperate and work
together, they form a coalition. Cooperative game theory is used to analyse which
coalitions will form and how the coalitions should divide the payoff among their
members. Solution concepts in cooperative theory measure profit allocations of
players while considering the profit of each coalition of players. The foundations
of cooperative game theory were laid by von Neumann and Morgenstern. The
biggest focus in the development of cooperative game theory has been devising
various solution concepts to explain equilibrium in different systems. This also
involved axiomatic characterization of the properties of the solution concepts and
their relations with each other.
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11.2 Related work

Cooperative game theory has seen tremendous growth in the last few decades
with several textbooks written on it [196, 163, 62, 176]. Concepts from the area
have then been used in various combinatorial optimization games in operations
research which involve resource allocation among multiple players [54, 38]. Al-
though algorithms to compute different solutions have been considered in the
mathematics of operations research literature, Deng and Papadimitriou [60] un-
dertook one of the earliest computational complexity investigation of different
solution concepts. There have been new developments in the computational com-
plexity of solution concepts of weighted voting games [68, 70]. Deng and Fang
have surveyed the developments in algorithmic cooperative game theory in a re-
cent detailed article [58]. Cooperative game theory has also been widely used
by the artificial intelligence and multiagent community, especially for multiagent
resource allocation [46].

11.3 Preliminaries

We define different kinds of cooperative games. The definitions are to provide
context and to show how simple games are related to other classes of games.
The relations between the classes of cooperative games are further highlighted in
Figure 11.1 and Figure 11.2.

Definitions 11.1. A cooperative game is:

• zero-normalized if v({i}) = 0 for all i ∈ N,

• monotonic if S ⊆ T ⊆ N implies that v(S ) ≤ v(T ),
• superadditive if for all S ,T ⊂ N, if S ∩ T = ∅, then v(S ∪ T ) ≥ v(S ) + v(T ),
• cohesive if v(N) ≥

∑K
k=1 v(S k) for every partition {S 1, . . . , S k} of N,

• additive if for all S ,T ⊂ N, if S ∩ T = ∅, then v(S ∪ T ) = v(S ) + v(T ),
• constant-sum if for all S ⊂ N, v(S ) + v(N \ S ) = v(N),
• convex if v(S ∪ T ) ≥ v(S ) + v(T ) − v(S ∩ T ) for all S ,T ⊂ N.
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Among cooperative games, simple coalitional games are a fundamental sub-
class of games because any cooperative game can be mapped into a corresponding
simple game by introducing a threshold which is a value between zero and the
value of the grand coalition. In the simple game variation, a coalition which has
a value greater than or equal to the threshold may be considered winning. Well-
studied games such as threshold network flow games [26] fit into this framework.

Definition 11.2. For each cooperative game (N, v) and each threshold t ∈ R+, the

corresponding threshold game or version is defined as the cooperative game (N, vt),
where

vt(S ) =

1 if v(S ) ≥ k,

0 otherwise.

It is easily verified that, for any threshold t, if a game (N, v) is monotone, so is its
threshold version (N, vt), in which case (N, vt) is a simple game.

A weighted voting game is homogeneous if it can have a homogeneous repre-

sentation. A WVG is a homogeneous representation if all minimal winning coali-
tions have the same weight. This implies that in a homogeneous representation,
players with equal power get the same weight.

Observation 11.3 We recall that a decisive simple game is one which is both

proper and strong (Definition 2.5). Therefore, it easy to see that a constant-sum

game which is simple is equivalent to a decisive simple game.

A solution concept assigns for each game a set of payoffs or allocations. The
Banzhaf index can also be considered as a solution concept specifically in the
context of simple games. We will generally denote a payoff by a vector x =

(x1, . . . , xn) where xi is the payoff of player i for i ∈ N. The choice of a specific
solution concept depends on the notion of fairness, stability and certain desirable
properties. We write x(S ) for

∑
i∈S xi

Definitions 11.4. Some desirable properties of payoffs for solution concepts are:

• Efficiency: For any game (N, v),
∑

i∈N xi = v(N).
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• Individual rationality: xi ≥ v(i) for all i ∈ N. This means the payoff of a player

is at least the amount which it can get by acting alone in the game.

• Coalitional rationality: x(S ) ≥ v(S ) for all S ⊆ N.

• Nonemptiness: The set of payoffs according to the solution concept is non-

empty for any game (N, v).
• Computationally feasible: The solution concept can be computed efficiently.

• Symmetry: The solution concept is not influenced by renumbering of the

player set. The condition is also referred to as anonymity in the literature.
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• Additive: For any two v1 and v2, xi(v1 + v2) = xi(v1) + xi(v2) where game

(N, v1 + v2) is such that (v1 + v2)(S ) = v1(S ) + v2(S ) for any coalition S .

• Zero allocation to Dummies: If i is a dummy player, then xi(v) = v({i}) = 0.

• Pareto optimal: If x, y are two payoffs such that xi > yi for all i ∈ N, then y is

not in the solution.

We define different types of payoffs depending on which desirable properties they
satisfy:

Definitions 11.5. Different kind of payoffs in cooperative games are:

• Feasible payoff: For a cooperative game (N, v), a feasible payoff is x ∈ Rn

such that x(N) ≤ v(N). The set of feasible payoffs is denoted by X∗(N, v).
• Preimputation: For a cooperative game (N, v), a preimputation is x ∈ Rn such

that x(N) = v(N). Preimputations are efficient feasible payoffs. The set of

preimputations for a game v is denoted by I∗(v).
• Imputation: For a cooperative game (N, v), an imputation x is a preimputation

which satisfies individual rationality, i.e. such that for all i ∈ N, x(i) ≥ v(i).
The set of imputations for a game v is denoted by I(v).

11.4 Cooperative game theory solutions

11.4.1 Introduction

In cooperative game theory, the goal is to distribute the payoffs fairly among
the players and encourage cooperation. Solution concepts formalize the notions
of fair and stable payoffs. For a payoff x = (x1, ..., xn), the excess e(x, S ) of a
coalition S under x is x(S ) − v(S ). The excess vector of a payoff x, is the vec-
tor (e(x, S 1), ..., e(x, S 2n)) where e(x, S 1) ≤ e(x, S 2) ≤ e(x, S 2n). We denote the
distinct values in the excess vector by −ε1(x, v),−ε2(x, v), . . . ,−εm(x, v) where
−εi(x, v) < −ε j(x, v) for i < j. For a payoff x and game v, the set of coalitions that
get the i-th distinct worst excess −εi(x, v) will be denoted by Ai

x(v) and a member
of Ai

x(v) will be called an εi-coalition. Many of the following definitions are from
[68] and [163]. A payoff x is called an S -feasible payoff vector if x(S ) = v(S ).
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An N-feasible payoff vector which is a preimputation is called a feasible payoff

profile.
We consider the following cooperative game solutions for simple game: Shap-

ley value, core, ε-core, nucleolus [149], stable set [141], bargaining set [149],
kernel [149], prekernel and τ-value. The core of a game is one of the most fun-
damental solutions in cooperative game theory. The idea of the core goes back
to von Neumann and Morgenstern [213]. The modern definition and name were
first used in [98].

Definition 11.6. Core: A payoff x is in the core if and only ∀S ⊂ N, e(x, S ) ≥ 0
or in other words x(S ) ≥ v(S ). The core of a game (N, v) is denoted by C(v) and

C(v) ⊂ I(v).

A core imputation guarantees that each coalition gets at least what it could
gain on its own. The core is not unique and is a set which satisfies a system of
weak linear inequalities, so it is closed and convex. Moreover, the core is well-
defined, but can be empty. Those games which have non-empty cores are called
balanced. Although the core is a desirable solution concept, it may be empty for
many games. This led to the development of ε-core [193] and least core [142].

Definitions 11.7. A preimputation x is in the ε-core if ∀S ⊂ N, e(x, S ) ≥ −ε. The

ε-core is denoted by Cε(v). The preimputation x is in the least core if it is in the

ε-core for the smallest possible ε. We will denote by −ε1(v), the worst excess of

any least core payoff of (N, v).

Therefore, the least core is the intersection of all the ε-cores. The least core is
not unique and may contain many payoffs. One may want to find fairest payoffs
among the payoffs within the least core. This led to the idea of the prenucleolus

and nucleolus [189].

Definition 11.8. Prenucleolus: A preimputation x that has lexicographically the

largest excess vector is called the prenucleolus.

Definition 11.9. Nucleolus: An imputation x that has lexicographically the largest

excess vector is called the nucleolus.
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The prenucleolus always exists and is unique as long as v(S ) = 0 for all one
person coalitions [189]. It is easy to see that the least core is always non-empty
and always contains the prenucleolus. For any cooperative game v for which I(v)
is non-empty, the nucleolus also exists and coincides with the prenucleolus. In
terms of the computational complexity of problems concerning nucleolus and
prenucleolus, there is no difference.

Definition 11.10. Stable Set: An imputation x dominates imputation y if there is

a non-empty coalition S such that xi > yi for all i ∈ S and x(S ) ≤ v(S ). Two

imputations can dominate each other. A stable set of a game (also known as the

von Neumann-Morgenstern solution [213]) is a set of imputations which satisfies

the following two properties:

1. Internal stability: No imputation in the stable set is dominated by another

imputation in the set.

2. External stability: All imputation outside the set are dominated by at least one

alternative in the set.

A stable set may or may not exist [140]. Moreover, just like the core, even if it
exists it is not necessarily a singleton. [139]. For zero-normalized simple games,
stable sets always exist. It is also known that the core is a subset of any stable set
and if the core is stable it is the unique stable set [62].

The bargaining set models stability of payoffs where if player i has an objec-
tion against player j to imputation x, then j has a counter-objection.

Definition 11.11. Bargaining set: The pair (y, S ), where S is a coalition, is an

objection of i against j to x if S includes i but not j, y(S ) = v(S ) and yk > xk

for all k ∈ S . A pair (z,T ) where T is a coalition is a counter-objection to the
objection (y, S ) of i against j if T includes j, but not i, z(T ) = v(T ), zk ≥ xk for all

k ∈ T \S and zk ≥ yk for all k ∈ T
⋂

S . An imputation x belongs to the bargaining
set M(v) of game v, if for any objection (y, S ) of any player i against player j to

x, there is a counter-objection to (y, S ) by j to x.

The kernel is a subset of the bargaining set with similar concept of objections
and counter-objections.
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Definition 11.12. Kernel: A coalition, S is an kernel-objection of i against j to
x if S includes i but not j and x j > v({ j}). A coalition, T is the kernel-counter-
objection to the objection S of i against j if T includes j but not i and e(x,T ) ≤
e(x, S ). The kernel of a coalitional game with transferable payoffs is the set of all

imputations x with the property that for every objection S of any player i against

any other player j to x there is a counter-objection of j to S . The kernel of a

simple game (N, v) is denoted by K(v). There is also an alternative way to define

the kernel. We let sv
i j(x) be the maximum surplus of player i over player j with

respect to x, i.e.,

sv
i j(x) = max {v(S ) − x(S )|S ⊆ N \ { j}, i ∈ S } .

Then the kernel is the set of imputations x such that

(sv
i j(x) − sv

ji(x))(x j − v({ j})) ≤ 0

and

(sv
ji(x) − sv

i j(x))(xi − v({i})) ≤ 0.

We say that i outweighs j according to payoff x if sv
i j(x) > sv

ji(x) and x j >

v({ j}). This is equivalent to saying that i has an objection against x to j for which

j has no counter-objection.

Definition 11.13. Prekernel: The prekernel of a game (N, v) is the set of preim-

putations x ∈ I∗(v) such that:

sv
i j(x) = sv

ji(x)

for all i, j. The prekernel of the game (N, v) is denoted by PK(v).

We see that simple games with no passers are both zero-normalized and also
zero-monotonic.
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In the last five decades, properties of cooperative game solutions have been
widely studied. We state some of the well known and relevant facts of many
of these solutions. Since the nucleolus always exists and nucleolus ⊂ kernel ⊂
bargaining set, therefore, the kernel and bargaining set are always non-empty.
Figure 11.3 provides the relations with some of the cooperative game solutions.
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Fig. 11.3. Relations of cooperative game solutions

Every constant-sum game which is not additive has an empty core. For a con-
vex game, the core is non-empty and the Shapley value is in the core.

The prenucleolus, prekernel and the least core exist for any cooperative game
and the nucleolus, bargaining set and kernel exist for zero-normalized games. On
the other hand, the core, stable set and ε-core may be empty for a game. Shapley
values, prenucleolus and the nucleolus (if it exists) are unique. Moreover, if the
core is non-empty, the nucleolus is in the core. For simple games, bargaining sets
are equivalent to the core if the core is non-empty, but it may be the case that the
core is empty but the bargaining set is non-empty [65].
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11.4.2 Desirability relation and cooperative game solutions

For simple games, we consider respecting the desirability relation in a simple
game as another useful criterion for a solution concept. A payoff x obeys desir-
ability relations if when i is more desirable than j, then xi ≥ x j. Table 11.1 lists
cooperative game solutions and whether they respect the desirability relation.

Table 11.1. Cooperative game solutions and desirability relation in simple games

Cooperative game solution Desirability relation
Banzhaf index X
Shapley-Shubik index X
Holler index X
Deegan-Packel Index 5

Nucleolus X
Prekernel X
Kernel X
Bargaining Set 5

Core 5

Least core 5

11.4.3 Generalized problems

We define some natural problems in cooperative game theory. For the sake of
consistency and continuity, we have used the same names for the problems as in
[68] where single WVG are analysed.

Name: EMPTY-X
Instance: Simple game v

Question: Is X empty?

Name: IN-X
Instance: Simple game v and payoff p

Question: Is p in solution X of v?
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Name: CONSTRUCT-X
Instance: Simple game v

Output: A payoff p which is in solution X of v?

Name: ISZERO-X
Instance: Simple game v and player i

Question: Is payoff of player i in game v zero according to solution X?

For a solution X which is unique, the problem IN-X is equivalent to checking
if a payoff is X and the problem CONSTRUCT-X is equivalent to computing X.
If a solution X is not unique, then the problem ISZERO-X is not precise and we
will ignore it. Moreover if X is unique, then we will consider CONSTRUCT-X
simply as computing X.

11.5 Core

Proposition 11.14. For a simple game (N, v), I(v) is non-empty if and only if there

is at most one passer.

Proof. I(v) is non-empty if and only if there exists a payoff x such that x(N) = 1
and xi ≥ v({i}) for all i ∈ N. This is true if and only if either v({i}) = 0 for all
i ∈ N, or there exists a unique j ∈ N such that v({ j}) = 1. If j is the unique passer,
then x is an imputation if and only if x j = 1. ut

If there is a passer, then no other player can be a vetoer. Elkind et al. [68]
showed that EMPTY-CORE is in P for WVGs. We notice that this observation
holds true for simple games in any representation:

Proposition 11.15. EMPTY-CORE is in P for simple games in any representation

where the value of a coalition is obtained in polynomial time.

Proof. We first observe that EMPTY-CORE for a simple game v is equivalent to
verifying that IDENTIFY-VETOERS is an empty set. The argument for this is
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as follows. We want to prove that the core of a simple game is non-empty if and
only if a vetoer exists.

(⇒) Let us assume that the core is non-empty and there is a feasible imputation
p which is in the core. Let us also assume that no vetoer exists. Take any player
j with non-zero imputation according to x. Since j is not a vetoer, v(N \ { j}) = 1.
However p(N \ { j}) < 1 is a contradiction since x is in the core.

(⇐) We now prove that if a vetoer exists, the core is non-empty. We know
that v(N) = 1 and p(N) = 1. If a vetoer i exists, our imputation p is such that
we can give all the payoff to i, and none to the other players. In that case for all
S ⊆ N \ {i}, p(S ) = 0 and v(S ) = 0. Therefore p is in the core and the core is
non-empty.

Identifying vetoers is easy for any representation of a simple game for which
value of each coalition can computer in polynomial time. A player i is a vetoer
if and only if v(N \ {i}) = 0. A simple game even with an implicit characteristic
function can return v(N \ {i}). Therefore IDENTIFY-VETOERS can be used in a
black-box manner to solve EMPTY-CORE. ut

Elkind et al. [68] prove that if the core of simple game v is non-empty, the
nucleolus of v is given by xi = 1/k if i is vetoer and xi = 0 if i is not a vetoer,
where k is the total number of vetoers. The result also holds even if we consider
any element of the kernel and any simple game [9]. Therefore, for a simple game
v represented by (N,W), (N,Wm), WVG, MWVG or any other representation, if
the core is non-empty, the nucleolus can be computed in polynomial time.

11.6 Core stability

It is already known that the core is a subset of every stable set, no stable set is a
subset of another stable set and if the core is a stable set then it is the only stable
set (Prop 279.2a [163]). The following is a characterization of the stable set of a
simple game:

Proposition 11.16. For a simple game v, a set of imputations is a stable set if and

only if for some minimal winning coalition T , all players not in T get zero payoff.
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Proof. (⇐)
If T be a minimal winning coalition. Then the claim is that XT = {x|x(T ) = 1}

is a stable set. The set is internally stable because there is no imputation y ∈

XT such that there exists a non-empty coalition S such that xi < yi for i ∈ S .
Moreover, let z be an imputation not in XT . Then z(T ) < x(T ), which implies
there exists an x ∈ XT which dominates z. Therefore, constructing a stable set of
a simple game simply requires identifying a minimal winning coalition.

(⇒) Let us assume that Y is a stable set of imputations of game v such that
there exists at least one imputation y ∈ Y which does not distribute all its payoff

exactly to players in a minimal winning coalition. This means that that y dis-
tributes its payoff to a coalition T ′′ such that T ′′ ⊃ T where T is a minimal
winning coalition. However, it is easy to see that y is dominated by an imputation
in XT . ut

Corollary 11.17. CONSTRUCT-STABLE-SET and IN-STABLE-SET are in P for

any representation of a simple game where the value of a coalition is obtained in

polynomial time.

The stability of the core is an important question in algorithmic cooperative
game theory. Core stability has been examined for several classes of games in-
cluding assignment games [183], minimum coloring games [35], network flow
games [200] and vertex cover games [79]. However for simple games, a stable
set always exists. The following is a characterization of the core stability of sim-
ple games.

Proposition 11.18. The core of a simple game is stable if and only if there is only

one minimal winning coalition of the game.

Proof. If coalition S is the only MWC of the simple game v, then all players in
S are vetoers. Any imputation which distributes the payoff among players in S

in the core. Moreover, from Proposition 11.16, we see that that the core is also a
stable set.

There is an alternative way to see this. A cooperative game is convex if v(S ∪
T ) ≥ v(S ) + v(T ) − v(S ∩ T ) for all S ,T ∈ 2N where S , T . Moreover, there is a
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well known result due to Shapley [191] that for convex games, the core is stable.
We see that a simple game is not convex if and only if there exist coalitions S

and T , S , T such that v(S ) = 1, v(T ) = 1 and v(S ∩ T ) = 0. Then it follows
that v(S ∪ T ) = 1. If S and T are mutually exclusive then this means that there
are two MWCs. If S and T are not mutually exclusive then this means that S ∩ T

does not contain a MWC but S and T both contain MWCs. ut

Corollary 11.19. CORE-STABILITY is in P for any representation of a simple

game where the value of a coalition is obtained in polynomial time.

Proof. The problem is to check whether the simple game has only one MWC or
not. This is trivial for (N,Wm). For other representations, one needs to identify
the vetoers and then verify if the coalition of vetoers forms a winning coalition.
This can be checked in polynomial time. ut

11.7 Least core

Elkind et al.(Theorem 5, [68]) proved that the problems EMPTY-ε-CORE, IN-
LEASTCORE and CONSTRUCT-LEASTCORE are NP-hard for WVGs. Since
EMPTY-ε-CORE is NP-hard, then it follows that CONSTRUCT-ε-CORE is NP-
hard. Also, from the proof in Theorem 5, [68], it is easy to see that IN-ε-CORE
is NP-hard.

It is easy to see from the definition of the least core, that it is the solution of
the following LP:

min ε
s.t. x(S ) ≥ v(S ) − ε , for all S ⊂ N ,

xi ≥ 0 , for all i ∈ N,∑
i=1,...,n xi = v(N) .

(11.1)

We now show that the for any simple games and least core payoff, every player
is in one coalition which gets the worst excess. Proposition 11.20 is specially
for simple games but as we shall see later, it can be generalized to monotone
cooperative games.
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Proposition 11.20. For any simple coalitional game (N, v), suppose that x =

(x1, . . . , xn) is an element in the least core, where the minimum excess is −ε. Then

for any player i ∈ N there exists a coalition T such that i ∈ T and e(x,T ) = −ε.

Proof. Let A be the set of players such that for every j ∈ A, we have that j is
contained in some coalition M with e(x,M) = −ε. Consider a player i ∈ N \ A.
We must have xi > 0, since if xi = 0, then for any coalition S such that i < S

and e(x, S ) = −ε, the excess e(x, S ∪ {i}) = −ε. Let δ be half of the minimum
of the non-zero differences between successive components of the excess vector
of x. Then we can obtain a new imputation y such that yi = xi − Min(xi, δ), and
y j = x j +

Min(xi,δ)
|A| for j ∈ A, and yk = xk for k < A ∪ {i}. Since the smallest

excess for y is more than −ε, this means that x is not in the least core which is a
contradiction. ut

Corollary 11.21. Suppose x = (x1, . . . , xn) is the nucleolus of a simple game. Let

e(x, S ) be the first element of the excess vector of x. Then for any player i , there

exists a coalition T such that i ∈ T and e(x,T ) = e(x, S ).

Proof. This follows from the fact that the nucleolus is a member of the least core.
ut

We see that Proposition 11.20 can be generalized to monotone cooperative
games:

Proposition 11.22. For any monotone cooperative game (N, v), suppose that x =

(x1, . . . , xn) is an element in the least core, where the minimum excess is −ε. Then

for any player i ∈ N there exists a coalition T such that i ∈ T and e(x,T ) = −ε.

Proof. Let A be the set of players such that for every j ∈ A, we have that j is
contained in some coalition M with e(x,M) = −ε. Let P1 be the set of those
coalitions which get an excess of −ε. Consider a player i ∈ N \ A.

Consider the case xi = 0. Choose a coalition S ∈ P1. Then we consider the
coalition S ∪ {i}. If v(S ∪ {i}) = v(S ), then i ∈ A. If v(S ∪ {i}) > v(S ), then
e(x, S ∪ {i}) < −ε which is a contradiction.
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Now consider the case when xi > 0. Let δ be half of the minimum of the
non-zero differences between successive components of the excess vector of x. If
there exists a coalition S ∈ P1 such that x(S ∪ {i})− v(S ∪ {i}) < −ε, then this is a
contradiction. If there exists a coalition S ∈ P1 such that x(S∪{i})−v(S∪{i}) = −ε,
then i ∈ A. If there exists no coalition S ∈ P1 such that x(S ∪{i})−v(S ∪{i}) ≤ −ε,
then we can obtain a new payoff y such that yi = xi − Min(xi, δ), and y j = x j +
Min(xi,δ)
|A| for j ∈ A, and yk = xk for k < A ∪ {i}. Since the smallest excess for y is

more than −ε, this means that x is not in the least core which is a contradiction.
ut

Proposition 11.23. Let (N, v) be a simple game with no vetoers and let x =

(x1, . . . , xn) be a member of the least core of (N, v). Then, there is no player which

is present in every coalition which gives the minimum excess for imputation x.

Proof. Let P1 be the set of coalitions which get the minimum excess −ε. We
already know that every player is a member in at least one element of P1. Let δ be
half of the minimum of the non-zero differences between successive components
of the excess vector of x. Assume there is a player j which is a member of each
coalition in P1. Then there are three possibilities:

1. There exist a player i such that xi > 0 and i is not in every member of P1. If j

features in all coalitions in P1, then players i other than j such that xi > 0 can
donate δ

n weight to j which increases the payoffs of all coalitions in P1. This
is a contradiction as x is a least core payoff.

2. Any player i other than j such that xi > 0 is in every member of P1. Let the
set of such players be J′. Then we prove that j is a vetoer which is equivalent
to saying that v(N \ { j}) = 0. For the sake of contradiction, assume that v(N \
{ j}) = 1. Then x(N \ { j}) = x(J′). Since we have that J′ ⊆ S for all S ∈ P1

and since v(N \ { j}) = 1, we know that N \ { j} ∈ P1. This is a contradiction as
there exists a coalition N \ { j} which also gets the worst excess

3. There exists no player i other than j such that xi > 0. But if this happens,
x j = 1. This implies x(N\{ j}) = 0. Also v(N\{ j}) = 0 because if v(N\{ j}) = 1,
then N\{ j} has the minimum possible excess but does not include j. Therefore,
there exists a coalition N \{ j} which also gets the worst excess (0 in this case).
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ut

Proposition 11.24. The following problems can be solved in polynomial time for

simple games represented by (N,Wm):

1. EMPTY-ε-CORE

2. IN-ε-CORE

3. CONSTRUCT-ε-CORE

4. IN-LEAST-CORE

5. CONSTRUCT-LEAST-CORE

Proof. Although the solution lies in solving the single LP (11.1), the constraints
include 2n constraints concerning the coalitions. However, for simple games, it
is sufficient to only consider the minimal winning coalitions in the LP. This is
because for a losing coalition S , v(S ) = 0, so x(S ) ≥ v(S ). Moreover, if S is a
minimal winning coalition and x(S ) ≥ v(S ) − ε, then for any S ′ ⊃ S , x(S ′) ≥
v(S ′) − ε. ut

Corollary 11.25. The following problems can be solved in polynomial time for

simple games represented by (N,W):

1. EMPTY-ε-CORE

2. IN-ε-CORE

3. CONSTRUCT-ε-CORE

4. IN-LEAST-CORE

5. CONSTRUCT-LEAST-CORE

Denote the length of a game v by l(v). We present a proposition which relates
the length of a simple game to the least core elements of the game.

Proposition 11.26. Let x = (x1, . . . xn) be an element of the least core of v where

x1 ≥ x2 . . . ≥ xn. Let −ε1(v) be the worst excess of x. Then,

l(v) ≥
1 − ε1(v)

x1
.
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Proof. Let S be a winning coalition of length l(v). Since x(C) − v(C) ≥ −ε1(v)
for all C ⊆ N, then x(S ) − 1 ≥ −ε1(v). This implies that there exists at least one
player i ∈ S such that xi ≥

1−ε1(v)
l . Therefore, x1 ≥ xi ≥

1−ε1(v)
l(v) . Thus,

l(v) ≥
1 − ε1(v)

x1
.

ut

For certain classes of simple games, the inequality in Proposition 11.26 turn out
to be equalities. If v is singleton game, then l(v) =

1−ε1(v)
x1

= 1. Similarly, if v is a
unanimity game, l(v) =

1−ε1(v)
x1

= n.

Proposition 11.27. If computing the length of a simple game (N, v) is NP-hard,

then IN-ε-CORE for (N, v) is NP-hard.

Proof. Consider the payoff x = (1
n , . . . ,

1
n ) for (N, v). Denote the length of (N, v)

by l(v). The payoff of the smallest winning coalition is l(v)
n . The worst excess of

(N, v) for payoff x is l(v)
n − 1.

The payoff x is in the ε-core if and only if l(v)
n ≥ 1 − ε. If there is an oracle

to compute IN-ε-CORE in polynomial time, then by using different values of ε,
binary search can be used to compute the l(v). Therefore computing l(v) reduces
to solving IN-ε-CORE. Since l(v) is NP-hard to compute, IN-ε-CORE is NP-hard.
ut

For many important simple coalitional games such as simple coalitional skill
games, threshold graph games and threshold network flow games, computing the
length is NP-hard [12]. Proposition 11.27 implies that if the length of a simple
game is NP-hard and unless P=NP, then there is no polynomial time separation
oracle to solve the least core LP. This means that, if a polynomial time algorithm
does exist, one needs to make extra use of the combinatorial structure of the
underlying game.

Let (N, v) be a simple game and x be any payoff of (N, v) we will denote
1 − ε1(x, v) by δ1(x, v) and 1 − ε1(v) by δ1(v). The value δ1(x, v) is the payoff of
any coalition with the worst excess.
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Let (N, v) be a simple game and x be any payoff of (N, v). We will denote
1 − ε1(x, v) by δ1(x, v) and 1 − ε1(v) by δ1(v). The value δ1(x, v) is the payoff of
any coalition with the worst excess.

Lemma 11.28. Let (N, v) be a simple game and x be any efficient payoff of (N, v).
Consider the game (N ∪ {n + 1}, v′) which is obtained by adding a passer player

n + 1 to the game (N, v). For any efficient payoff x′ for (N ∪ {n + 1}, v′), if x′n+1 = a

and x′i = (1 − a)xi for i ∈ N, then

1. δ1(x′, v′) = Min(a, (1 − a)δ1(x, v)).
2. If x′ is a least core payoff of (N ∪ {n + 1}, v′), then a = (1 − a)δ1(x, v) and

x′n+1(v′) = δ1(v′).

Proof. Since {n + 1} is a winning coalition, the worst excess of {n + 1} for payoff

x′ is a − 1 which implies that δ1(x′, v′) ≤ a.
For S ⊆ N, any coalition S ∪ {n + 1} is not a minimal winning coalition.

Therefore, to examine other coalitions with the worst excess in (N ∪ {n + 1}, v′)
for payoff x′, we look at subsets of N. The worst payoff for winning coalitions
among N is then (1−a)δ1(x, v). This implies that δ1(x′, v′) ≤ (1−a)δ1(x, v). Since
all subsets of N∪{n+1} have been considered, δ1(x′, v′) = Min(a, (1−a)δ1(x, v)).

We now prove that payoff x′ is a least core payoff of (N ∪ {n + 1}, v′), only if
a = (1 − a)δ1(x, v) and x′n+1(v′) = δ1(v′).

The value δ1(x′, v′) is maximized only when a = (1−a)δ1(x, v). Also, δ1(x′, v′)
is maximum only when the optimum payoff δ1(v′) is given to player n + 1, i.e.,
when x′n+1 = a = δ1(v′). ut

We define a representation of a simple game as passer-reasonable if, for any
simple game, the game with a newly added passer can also be represented and
there is at most polynomial blowup. WVGs, MWVGs, and coalitional skill games
are examples of passer-reasonable representations.

Deng and Fang [58] note that “the most natural problem is how to efficiently

compute the value ε1 for a given cooperative game. The catch is that the com-

putation of ε1 requires one to solve a linear program with exponential number
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of constraints.” It is not clear that the least core worst excess can be computed
efficiently even if a least core payoff is given. However, we have the following
result.

Proposition 11.29. An oracle to compute a least core payoff for a simple game

in any passer-reasonable representation can be used to compute the worst excess

of a least core payoff.

Proof. Consider a game (N, v) in a passer-reasonable representation. Use the or-
acle to compute x = (x1, . . . , xn), a least core payoff of (N, v).

Denote the worst excess (as yet unknown) of x by −ε1(v) and 1 − ε1(v) by
δ1(v). Then, we know that δ1(x, v) = δ1(v). Form a new game (N ∪ {n + 1}, v′) by
adding a passer player n + 1 to the game such that v′({n + 1}) = 1 and v′(S ) = 1
if and and only if v(S ) = 1 for all S ⊆ N. Since (N, v) is in a passer-reasonable
representation, (N ∪ {n + 1}, v′) can also be represented by a passer-reasonable
representation.

Use the oracle to compute x′ = (x′1, . . . x
′
n+1), a least core payoff of (N ∪ {n +

1}, v′). From Lemma 11.28, we know that x′n+1(v′) = δ1(v′) and x′n+1 = (1 −
x′n+1)δ1(x, v)). This means that,

x′n+1(v′)
1 − x′n+1(v′)

= δ1(v) = 1 − ε1(v) (11.2)

From (11.2), we know that ε1(v) = 1 − δ1(v) can be computed by adding a
passer to (N, v) to form game (N ∪ {n + 1}, v′) and then computing x′n+1(v′). ut

11.8 Nucleolus

Elkind et al. [68] showed that CONSTRUCT-NUCELULOS is NP-hard for
WVGs. We check the complexity of CONSTRUCT-NUCLEOLUS for a simple
game represented by (N,W) and (N,Wm). It is well-known that the nucleolus is
unique [189]. The nucleolus can be computed by solving a series of linear pro-
grams [78]:
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Initially, 0 = {∅,N} and ε0 = 0. The value εr is the optimal value of LPr and
r = {S ∈ 2N : x(S ) = v(S ) − εr for every x ∈ Xr} where Xr{x ∈ I(v) : (x, εr) is an
optimal solution of LPr}. Kopelowitz [122] showed that a maximum of n − 1 LP
program iterations need to be run before one arrives at the solution x∗ which is
the nucleolus. The solution to LP1 is the least core of the game. Since, nucleolus
is a least-core payoff, if computing the least core of a game is NP-hard, then it
implies that computing the nucleolus is NP-hard. The following is the description
of LPk in the series of LPs.

min ε
s.t. x(S ) = v(s) − εr , for all S ∈ r, r = 0, . . . , k − 1 ,

x(S ) ≥ v(S ) − ε , for all S ∈ 2N \
⋃r=k−1

r=0 r,

x ∈ I(v) .

(11.3)

The nucleolus is a complex solution and no polynomial algorithm is known
for computing the nucleolus in general. The computation of the nucleolus for
different cooperative games has attracted much attention [126]. Only for some
special classes of cooperative game can the nucleolus be computed efficiently,
for example, standard tree games [102], convex games [125], weighted voting
games with small weights [70] and assignment games [198]. Computing the nu-
cleolus is NP-hard for min-cost spanning tree games [73], general flow games
and linear production games [59]. We consider using the following meta-theorem
to compute the nucleolus.

Theorem 11.30. (Elkind and Pasechnik: Theorem 5 in [70]) Given a coalitional

game G, suppose that we can, for any payoff vector p, identify the top n distinct

deficits under p, as well as the number of coalitions that have these deficits in

polynomial time. Then we can compute the nucleolus in polynomial time.

However, Theorem 11.30 cannot be used to compute the nucleolus for simple
games represented by minimal winning coalitions or winning coalitions. For ex-
ample, if |W | is small enough, then computing the condition in Theorem 11.30
reduces to a knapsack problem.
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If CONSTRUCT-NUCLEOLUS can be solved efficiently, this also means
that IN-NUCLEOLUS can be solved efficiently by first computing the nucleo-
lus and then comparing it with the payoff in consideration. This also implies that
CONSTRUCT-BARGAINING-SET and CONSTRUCT-KERNEL are easy. It is
well known that in a simple game, if a player is a dummy, it gets zero payoff not
only in the nucleolus but in every member of the kernel. We now give an example
of a simple game where there are no vetoers and no dummies but still there is a
player who gets zero nucleolus payoff:

Example 11.31. Let N = {1, 2, 3, 4}. Let

Wm(v) = {{1, 2}, {1, 3}, {2, 3, 4}}.

The game has no vetoer and no dummy. Let x = (x1, x2, x3, x4) be the nucleolus
payoff of the simple game v. From the relative powers of the players, we can see
that x1 ≥ x2 = x3 ≥ x4. Since the sum of the nucleolus payoffs of all players
is equal to one, x1 + 2x2 + x4 = 1. The two candidates for the value of the first
element of the excess vector of x are (x1 + x2) − 1 and (2x2 + x4) − 1. For x to be
the nucleolus, the excess vector of x must lexicographically be the greatest. This
is the case when (x1 + x2)− 1 = (2x2 + x4)− 1. This means that x2 = x3 = 1

3 −
2
3 x4

and x1 = 1
3 + 1

3 x4. It is easy to work out that the excess vector of x is maximum
when x4 = 0.

Peleg [175] proved that for certain WVGs, the nucleolus is simply equal to the
normalized weights of the players:

Proposition 11.32. (Peleg [175]) Consider a constant sum homogeneous weighted

voting game v = [q; w1, . . . ,wn] in which each dummy gets zero weight. Then the

nucleolus is equal to (w1/w(N), . . . ,wn/w(N)).

We use some examples and comments to clarify certain concepts which have
not always been used clearly in the game theory literature. For example, on page
5 in [68], it is mentioned that Peleg’s proposition holds for any constant sum
weighted voting games. This may not be true if the dummy players are not given
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zero weight. Moreover, in some places in the literature, Peleg’s proposition is
assumed to hold for any homogeneous game. A homogeneous game does not
have to be constant sum: for example [2; 2, 2, 2]. Also, a homogeneous represen-
tation can have a dummy with non-zero weight: for example [4, 2, 2, 1]. Proposi-
tion 11.32 does not necessarily hold if all the conditions mentioned are not sat-
isfied. The proposition says that there is at least one representation of a constant
sum, homogeneous weighted voting game which coincides with the nucleolus.
On the face of it, it seems that the proposition may provide an easy method to
compute a normalized WVG representation for a target nucleolus value. How-
ever, for any nucleolus vector, it is not certain whether the nucleolus payoff is
achievable. Moreover, even if the nucleolus payoff is feasible for some WVG, we
need to find a suitable quota which is the weight of all minimal winning coali-
tions and the resultant WVG is constant-sum. The following example shows that
finding a suitable quota may not be possible.

Example 11.33. Consider the target nucleolus (4/10, 3/10, 2/10, 1/10). Then the
WVG in consideration is v = [q; 4, 3, 2, 1] where 6 ≤ q ≤ 10. However, for
q = 6, 7, 8, 9, 10, it is easy to check that the following two conditions are not met:
v is homogeneous and dummies get zero weight.

Definition 11.34. The nucleolus-like payoffs are those least core payoffs for

which the number of coalitions with the worst excess is minimum possible.

Proposition 11.35. For any monotone cooperative game (N, v) and nucleolus-

like payoff x, assume that there exists a player i such that for all S ∈ A1
x(v), we

have that i ∈ S . Then, for player j other than i, either for all S ∈ A1
x(v), j ∈ S or

we have that x j = 0.

Proof. Assume that there exists a coalition S ∈ A1
x(v) such that player j < S . Let

δ = ε1−ε2
2 . Then if j donates δ amount of its payoff to i, this reduces the number of

−ε1-coalitions. This cannot be since x is nucleolus-like. ut

Proposition 11.36. For simple games represented by (N,Wm), CONSTRUCT-

PRENUCLEOLUS and CONSTRUCT-NUCLEOLUS can be solved in polynomial

time.
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Proof. It follows from Theorem 7 of [185] that, instead of examining 2n coali-
tions, it is sufficient to examine a small collection of coalitions B to compute the
nucleolus. The set B consists of MWCs plus certain other winning coalitions.
From the definition of B in [185], it is easy to see that B ⊂ C where

C = Wm ∪ {S ∪ {i}|i ∈ N, S ∈ Wm}.

Therefore, the standard series of linear programs can be used to compute the
nucleolus where in place of 2n coalitions, only |C| coalitions are considered. ut

This implies that for a simple game represented by (N,Wm), IN-PRENUCLEOLUS
and IN-NUCLEOLUS can be solved in polynomial time and CONSTRUCT-
PRENUCLEOLUS, CONSTRUCT-NUCLEOLUS, IN-PRENUCLEOLUS and
IN-NUCLEOLUS can be solved in polynomial time for simple game represented
by (N,W).

11.9 Kernel and bargaining set

In this section we examine the computational complexity of questions related to
the kernel and bargaining set of simple games. We also consider the prenucleolus.
The relation between the kernel and prekernel is intricate. Maschler et al. [142]
note that the kernel is not a subset of the prekernel. Prekernel does not have to be
individually rational so is not a subset of the kernel. However the intersection of
the prekernel with the set of imputations is a subset of the kernel. Moreover, the
parts of the kernel and the prekernel inside any ε-core always coincide [142]. Both
solution concepts are closely related and an imputation that is in the prekernel
is also an imputation of the kernel. However, the prekernel also contains payoffs
which are not imputations. For a non-zero-normalized simple game, a kernel may
not exist. In fact, the prekernel satisfies individual rationality on the class of zero-
monotonic games.

If there are vetoers in a simple game, then the kernel of a simple game is
simply a uniform distribution among the vetoers and no payoff for the vetoers [9].
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A naive algorithm to solve IN-KERNEL will take 2n
(

n
2

)
time, as for each pair of

players, their maximum surpluses over each other are compared.

Proposition 11.37. For simple games represented by (N,Wm), IN-KERNEL and

IN-PREKERNEL can be solved in polynomial time.

Proof. Let x = (x1, . . . , xn) be a potential payoff. Then in order to check whether
x is in the kernel or the prekernel, it is sufficient to compute all the n(n − 1)
surpluses: sv

i j(x) = max {v(S ) − x(S )|S ⊆ N \ { j}, i ∈ S }. One can compute sv
i j(x)

simply by examining MWCs which exclude j because for any MWC S and a
coalition S ⊂ S ′, v(S ) − x(S ) = 1 − x(S ) ≤ 1 − x(S ′) = v(S ′) − x(S ′). A problem
may arise if it is the case that ∀S ∈ Wm, j ∈ S . Then we consider the singleton
coalition of i to compute sv

i j(x) because it gives the maximum surplus of −xi.
Another problem may happen if ∀S ′ ∈ Wm such that j < S ′, we find that i < S ′.
In that case, we consider the coalition S ′ which has the minimum x(S ). Therefore
S ′ ∪ { j} gives us sv

i j(x). ut

Corollary 11.38. For simple games represented by (N,W), IN-KERNEL and IN-

PREKERNEL can be solved in polynomial time.

Proposition 11.39. For simple games represented by (N,Wm), CONSTRUCT-

PREKERNEL and CONSTRUCT-KERNEL can be solved in polynomial time.

Proof. From [74], we know that an element in the so-called lexicographic prek-

ernel can be computed in polynomial time if the surpluses si j(x) corresponding
to a given allocation x can be computed in polynomial time. From Prop 11.37,
it then follows that an element in the lexicographic kernel can be computed in
polynomial time. Since the lexicographic prekernel is a subset of the intersection
of the prekernel and the least core, we can compute an element x in the prekernel
of the (N,Wm). Moreover, as long as I(v) is non-empty, K(v) is non-empty and
x is also in the kernel of (N,Wm), because the intersection of the kernel and the
least core coincides with the intersection of the prekernel and the least core for
games with non-empty I(v). ut

Corollary 11.40. The following statements follow from Proposition 11.39:
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1. For simple games represented by (N,W), CONSTRUCT-KERNEL and CONSTRUCT-

PREKERNEL can be solved in polynomial time.

2. For simple games represented by (N,Wm) and (N,W), CONSTRUCT-BARGAINING-

SET can be solved in polynomial time.

For simple games, if the core is non-empty, the bargaining set is equivalent
to the core [65]. This means that for a game in which the core is non-empty,
problems associated with the core are equivalent to problems associated with the
bargaining set. For a unanimity game, any feasible imputation is in the bargaining
set. This is because there is no scope for a valid objection. Let (N, v) be a simple
game with no passers. Then symmetric players get equal kernel payoff. Kernel
payoffs obey desirability relations, i.e., if i is more desirable than j, then xi ≥ x j.

If two players are symmetric, then they get equal payoff in the kernel and
prekernel. However, if two players get equal payoff in the prekernel or kernel, it
does not imply that the players are symmetric, even if the game is linear and has
no vetoers:

Example 11.41. Take WVG [5; 3, 2, 2, 1]. The imputation, (1/3, 1/3, 1/3, 0) is a
prekernel imputation.

11.9.1 Wolsey’s theorem

Consider WVGs with non-increasing weights. A payoff vector x = (x1, . . . , xn)
is homogeneous if each player receives either 0 or a fixed amount 1/r for some
r ≤ n. Moreover, for set R = {1, . . . , r} ⊆ N,, we call the set T (R) = {1, . . . , k} ∪
{r + 1, . . . , n}, the cover of R where k is the maximum with the property that∑

j∈T (R) w j < q. Then Wolsey claimed the following:

Claim. (Wolsey [217]) Let x = (x1, . . . , xn) be a homogeneous payoff in WVG
[q; w1, . . . ,wn] where q ≥ w1 ≥ . . .wn. Then the payoff with xi = 1/r for i ∈ R

and xi = 0 for i ∈ N \ R is in the kernel if and only if

1. w(T (R)) + wr − wr+1 ≥ q and
2. w(T (R)) − w1 + wk+1 + wr ≥ q.
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The paper has been cited in [124, 70, 68, 153]. The following counter example
shows that at least the left to right implication does not hold in general.

Example 11.42. We consider the WVG v = [12; 8, 4, 2, 1]. The WVG v meets the
condition of the claim that q ≥ w1. This means that v({i}) = 0 for all i ∈ N. We see
that players 1 and 2 are vetoers. Player 1 is a vetoer because {2, 3, 4} is a losing
coalition as w({2, 3, 4}) = 7 < 12, and player 2 is a vetoer because {1, 3, 4} is a
losing coalition as w({1, 3, 4}) = 11 < 12. Since players 1 and 2 are vetoers, the
nucleolus payment of the game is (1/2, 1/2, 0, 0). Since the nucleolus is a member
of the kernel, the claim implies that both the conditions in the claim should be
satisfied for r = 2.

We now consider the claim for the conditions that r = 2. If r = 2, then T (R) =

{1, 3, 4} with k = 1. Therefore w(T (R)) = 11. We consider the first condition.
Since w(T (R)) + wr −wr+1 = 11 + 4− 2 = 13 > 12, the first condition is satisfied.
However, the second condition is not satisfied: w(T (R)) − w1 + wk+1 + wr = 11 −
8 + 4 + 4 = 11 6≥ 12.

From the proof in [217], it is evident that the case, when players i and j are ve-
toers, is ignored in proving both left-to-right and right-to-left implications. There-
fore, the required added condition for Wolsey’s theorem would be that there are
no vetoers:

Theorem 11.43. Let x = (x1, . . . , xn) be a homogeneous payoff in WVG [q; w1, . . . ,wn]
where there are no vetoers and q ≥ w1 ≥ . . .wn. Then the payoff with xi = 1/r for

i ∈ R and xi = 0 for i ∈ N \ R is in the kernel if and only if

1. w(T (R)) + wr − wr+1 ≥ q and

2. w(T (R)) − w1 + wk+1 + wr ≥ q.

11.10 Cost of stability

Unlike normal form games, where a mixed-strategy Nash equilibrium always
exists, coalitional games can be unstable if the core is empty. If the core of a
coalitional game is empty, it is hard to ensure that players do not break off from
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the grand coalition to maximize their payoff. One recent proposal [23] to take
care of this problem is the idea of an external authority paying a supplemental

payment to incentivize the players to cooperate in a stable manner. This payment
is denoted by 4 and distributed in some way among the players. We use the same
definitions as introduced in [23].

Definitions 11.44. For a given coalitional game G = (N, v), the adjusted coali-
tional game G(4) = (N, v′) is obtained by setting v′(S ) = v(S ) for S ⊂ N and

v′(N) = v(N) + 4. Any payoff which is in the core of G(4) = (N, v′) is a super-
imputation. The cost of stability (CoS) of a game is the minimum supplemental

payment CoS (G) such that G(CoS (G)) has a nonempty core.

If the core of a game is nonempty, then CoS is 0. It is easy to see that CoS (G)
is the solution of the following LP:

min 4
s.t. x(S ) ≥ v(S ) , for all S ⊂ N ,

xi ≥ 0 , for all i ∈ N,

x(N) = v(N) + 4 .

(11.4)

We now the consider the following natural computational problems related to
the cost of stability:
Name: CoS
Instance: Coalitional game (N, v)
Question: Compute CoS

Name: SUPERIMP
Instance: Coalitional game G = (N, v), supplement payment 4 and super-
imputation (x1, . . . , xn) in G(4)
Question: Is x ∈ CORE(G(4))?

It is known that solving CoS and SUPERIMP for WVGs is co-NP-hard [23].
However, for other representations, the problems are tractable:
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Proposition 11.45. For a simple game represented by (N,Wm), solving SUPER-

IMP and CoS is in P.

Proof. The solution for both general problems seems to require considering 2n

constraints concerning the coalitions. However, for simple games, it is sufficient
to consider only the minimal winning coalitions. This is because for a losing
coalition S , v(S ) = 0, so x(S ) ≥ v(S ). Moreover, if S is a minimal winning
coalition and x′(S ) ≥ v(S ), then for any S ′ ⊃ S , x′(S ′) ≥ v(S ′). ut

Propositions 11.46 draws the connection between the cost of stability and the
least core. The similarity in LP (11.1) for the least core and LP (11.4) leads us to
the following proposition:

Proposition 11.46. For a monotone cooperative game (N, v), if the separation

oracle O for a least core LP can be constructed and be solved in polynomial

time, then for (N, v), SUPERIMP and CoS are in P.

Proof. Consider payoff (x1, . . . , xn). Then oracle O, can check in polynomial time
whether x(S ) − v(S ) ≥ −ε for all S ⊂ N, or find a violated constraint otherwise.
Then O can be used to solve SUPERIMP for (N, v). Also, O can be used as a
separation oracle to solve LP (11.4). ut

Corollary 11.47. Solving SUPERIMP and CoS are in P for the following games:

1. WVG with weight values polynomial in n,

2. Weighted matching games.

Proof. The separation oracle O for a least core LP can be constructed and solved
in polynomial time for WVG with weight values polynomial in n [68] and
weighted matching games [118]. ut

Is it easy to notice the following relation between the cost of stability and the
worst excess of an element in the least core: ε1(G) ≤ CoS (G) ≤ n(ε1(G)). In
order to change G to a balanced G(4), we need to at least add ε1 amount to S 1

so that x′(S 1) ≥ 1. Therefore ε1 ≤ 4. Take an element x = (x1, . . . , xn) such that
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x ∈ LC(G). Then x(S )− v(S ) ≥ −ε1. Consider x′ = (x′1, . . . x
′
n) where x′i = xi + ε1.

Take any coalition S ⊂ N. Then, x′(S ) − v(S ) = x(S ) + |S |ε1 − v(S ) ≥ 0.
There may be multiple of ways of distributing the payoffs after the cost of

stability has been paid. We propose a natural and desirable solution for any coop-
erative game called the super-nucleolus. The super-nucleolus is the nucleolus of
a cooperative game G if the core is nonempty and is the nucleolus of G(CoS (G))
if the core of G is empty. Since the core of G(CoS (G)) is nonempty, it may be
easier to compute the super-nucleolus than the nucleolus of G in certain games.

11.11 Conclusion and open problems

One conclusion is that (N,Wm) is a comprehensive representation of simple
games which allows the efficient computation of almost all solutions. Similarly,
Deng [58] states that, in all problems known, the concepts of the core, the bar-
gaining set, and the stable set should be in increasing order of complexity. It will
again be useful to characterize this for any cooperative game. In this context, it is
shown that computing the Shapley-Shubik index is at least as hard as computing
the Banzhaf index. It will be interesting to prove that for any representation of a
monotone coalitional game, computing a least-core payoff has the same compu-
tational complexity as computing the cost of stability. Another conjecture is that
if computing the length of a simple game is NP-hard, then computing a least core
payoff is NP-hard.
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Table 11.2. Complexity of cooperative game solutions in simple games

(N,W) (N,Wm) WVG MWVG

EMPTY-SHAPLEYVALUE always nonempty for any cooperative game
IN-SHAPLEYVALUE P ? NP-hard NP-hard
CONSTRUCT-SHAPLEYVALUE P #P-complete #P-complete [60] #P-complete
ISZERO-SHAPLEYVALUE P P NP-hard NP-hard

EMPTY-CORE P P P [68] P
IN-CORE P P P [68] P
CONSTRUCT-CORE P P P [68] P
ISZERO-CORE P P P [68] P

EMPTY-ε-CORE P P NP-hard [68] NP-hard
IN-ε-CORE P P NP-hard NP-hard
CONSTRUCT-ε-CORE P P NP-hard NP-hard
ISZERO-ε-CORE N/A

EMPTY-LEAST-CORE always nonempty for any cooperative game
IN-LEAST-CORE P P NP-hard [68] NP-hard
CONSTRUCT-LEAST-CORE P P NP-hard [68] NP-hard
ISZERO-LEAST-CORE N/A

EMPTY-NUCLEOLUS always nonempty if no passer
IN-NUCLEOLUS P P ? ?
CONSTRUCT-NUCLEOLUS P P NP-hard [68] NP-hard
ISZERO-NUCLEOLUS P P NP-hard [68] NP-hard

EMPTY-STABLE-SET always nonempty in simple games
IN-STABLE-SET P P P P
CONSTRUCT-STABLE-SET P P P P
ISZERO-STABLE-SET N/A

EMPTY-BARGAINING-SET always nonempty if no passer
IN-BARGAINING-SET ? ? ? ?
CONSTRUCT-BARGAINING-SET P P ? ?
ISZERO-STABLE-SET N/A

EMPTY-KERNEL always nonempty if no passer
IN-KERNEL P P ? ?
CONSTRUCT-KERNEL P P ? ?
ISZERO-KERNEL N/A

EMPTY-PREKERNEL always nonempty in any cooperative game
IN-PREKERNEL P P ? ?
CONSTRUCT-PREKERNEL P P ? ?
ISZERO-PREKERNEL N/A

EMPTY-PRENUCLEOLUS always nonempty in any cooperative game
IN-PRENUCLEOLUS P P ? ?
CONSTRUCT-PRENUCLEOLUS P P NP-hard NP-hard
ISZERO-PRENUCLEOLUS P P NP-hard NP-hard

CORE-STABILITY P P P P

CoS P P coNP-hard [23] coNP-hard
SUPERIMP P P coNP-complete [23] coNP-complete
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Power indices of spanning connectivity games

The study of networks pervades all of science, from neurobiology to sta-

tistical physics.

- Steven Strogatz [199]

If the Internet is the next great subject for Theoretical Computer Science

to model and illuminate mathematically, then Game Theory, and Mathe-

matical Economics more generally, are likely to prove useful tools.

- Christos Papadimitriou [167]

Abstract We consider a simple coalitional game, called the spanning connectiv-
ity game (SCG), based on an undirected, unweighted multigraph, where edges
are players. We examine the computational complexity of computing the voting
power indices of edges in the SCG. It is shown that computing Banzhaf values
is #P-complete and computing Shapley-Shubik indices or values is NP-hard for
SCGs. Interestingly, Holler indices and Deegan-Packel indices can be computed
in polynomial time. Among other results, it is proved that Banzhaf indices can be
computed in polynomial time for graphs with bounded treewidth.

12.1 Introduction

In this chapter, we study the natural problem of computing the influence of edges
in keeping an unweighted and undirected multigraph connected. Game theorists
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have studied notions of efficiency, fairness and stability extensively. Therefore, it
is only natural that when applications in computer science and multiagent sys-
tems require fair and stable allocations, social choice theory and cooperative
game theory provide appropriate foundations. For example, a network admin-
istrator with limited resources to maintain the links in the network may decide to
commit resources to links according to their connecting ability. A spy network
comprises communication channels. In order to intercept messages on the chan-
nels, resources may be utilized according to the ability of a channel to connect
all groups. In a social network, we may be interested in checking which connec-
tions are more important in maintaining connectivity and hence contribute more
to social welfare.

Our model is based on undirected, unweighted and connected multigraphs.
All the nodes are treated equally, and the importance of an edge is based solely
on its ability to connect all the nodes. Using undirected edges is a reasonable
assumption in many cases. For example, in a social network, relations are usually
mutually formed.

We use a multigraph as a succinct representation of a simple coalitional game
called the spanning connectivity game (SCG). The players of the game are the
edges of the multigraph. The importance of an edge is measured by computing
its voting power index in the game.

The whole chapter is concerned with computing solutions for SCGs. In Sec-
tion 12.2, a summary of related work is given. In Section 12.3, preliminary
definitions related to graph theory and coalitional games are given, and we de-
fine SCGs. Section 12.4 presents hardness results for computing Banzhaf val-
ues and Shapley-Shubik indices. In Section 12.5, positive computational results
for Banzhaf values and Shapley-Shubik indices are provided for certain graph
classes. Section 12.6 presents a polynomial-time algorithm to compute Holler in-
dices and Deegan-Packel indices. In Section 12.7, a summary of results is given
and future work is discussed.
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12.2 Related work

Power indices such as the Banzhaf and Shapley-Shubik indices have been used
to gauge the power of a player corporate networks [52]. These indices have re-
cently been used in network flow games [24], where the edges in the graph have
capacities and the power index of an edge signifies the influence that an edge
has in enabling a flow from the source to the sink. Voting power indices have
also been examined in vertex connectivity games [27] on undirected, unweighted
graphs; there the players are nodes, which are partitioned into primary, standard,
and backbone classes.

The study of cooperative games in combinatorial domains is widespread in
operations research [38, 54]. Spanning network games have been examined previ-
ously [101, 210] but they are treated differently, with weighted graphs and nodes

as players (not edges, as here). The SCG is related to the all-terminal reliabil-
ity model, a non-game-theoretic model that is relevant in broadcasting [209, 29].
Whereas the reliability of a network concerns the overall probability of a network
being connected, this chapter concentrates on resource allocation to the edges.
A game-theoretic approach can provide fair and stable outcomes in a strategic
setting. The hardness results in this chapter are a strengthening of the hardness
results for the more general, min-base games, introduced in [155].

12.3 Preliminaries

12.3.1 Graph theory

Definition 12.1. A multigraph G = (V, E, s) consists of a simple underlying graph

(V, E) with a multiplicity function s : E 7→ N where N is the set of natural

numbers excluding 0. Let |V | = n and |E| = m. For every underlying edge i ∈ E,

we have si edges in the multigraph. The multigraph has a total of M =
∑

i∈E si

edges and the set of all of these edges isM.

We note that G = (V, E, s) is a compact representation of multigraphs which
can contain exponential number of parallel edges.
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Definition 12.2. A subgraph G′ = (V ′,M′) of a graph G = (V,M) is a graph

where V ′ is a subset of V andM′ is a subset ofM in which case the vertex set of

M′ is a subset of V ′. A subgraph H is a connected spanning subgraph of a graph

G if it is connected and has the same vertex set as G.

12.3.2 Spanning connectivity game

For each connected multigraph (V, E, s) where si is the multiplicity of underly-
ing edge i ∈ E, we define the SCG, spanning connectivity game, (M, v) with M

players (one player corresponding to each parallel edge) and valuation function
v, defined as follows for S ⊆ E:

v(S ) =

1, if there exists a spanning tree T = (V, E′) such that E′ ⊆ S

0, otherwise

It is easy to see that for a connected graph with more than one vertices, the
SCG (M, v) is a simple game because the outcome is binary, v is monotone, v(∅) =

0 and v(E) = 1. We consider power indices and cooperative game solutions for
the edges in the SCG.

12.4 Complexity of computing power indices

We define the problems of computing the power indices of the edges in the SCG.
For any power index X (e.g. Banzhaf value, Banzhaf index, Shapley-Shubik in-
dex etc.) we define the problem SCG-X as follows:

Problem: SCG-X
Instance: Multigraph G

Output: For the SCG corresponding to G, compute X for all the edges.

Computation of power indices of SCGs has relations with computation of reli-
ability in networks. We will use these connections in some of our computational



12.4 Complexity of computing power indices 189

results. We will now present the prerequisite background of reliability compu-
tation. We represent a communication network as a multigraph, where an edge
represents a connection that may or may not work. An edge is said to be op-

erational if it works. For a given graph G, the reliability Rel(G, {pi}) of G is the
probability that the operational edges form a connected spanning subgraph, given
that each edge is operational with probability pi for i = 1, . . .m.

Problem: Rational Reliability Problem
Instance: Multigraph G and pi ∈ Q for all i, 1 ≤ i ≤ m

Output: Compute Rel(G, {pi}).

A special case of the reliability problem is when every edge has the same prob-
ability p of being operational. This is called the Functional Reliability Problem.

Definition 12.3. Let Ni be the number of connected spanning subgraphs with i

edges. Then the required output of the Functional Reliability Problem is the reli-
ability polynomial

Rel(G, p) =

m∑
i=0

Ni pi(1 − p)m−i.

Problem: Functional Reliability Problem
Instance: Multigraph G

Output: Compute the coefficients Ni of the reliability polynomial for all i,
1 ≤ i ≤ m.

Ball [29] points out that an algorithm to solve the Rational Reliability Problem
can be used as a sub-routine to compute all the coefficients for the Functional
Reliability Problem. Moreover he proved that computing the general coefficient
Ni is NP-hard and therefore computing the rational reliability of a graph is NP-
hard. As we will see in Section 12.5, reliability problems have connections with
computing power indices of SCG. We first prove that SCG-BANZHAF-VALUE
is #P-complete.
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Proposition 12.4. SCG-BANZHAF-VALUE is #P-complete even for simple, bi-

partite and planar graphs.

Proof. We present a reduction from the problem of counting connected span-
ning subgraphs. SCG-BANZHAF-VALUE is clearly in #P because a connected
spanning subgraph can be verified in polynomial time. It is known that counting
the total number of connected spanning subgraphs is #P-complete even for sim-
ple, bipartite and planar graphs ( [28], p. 305). We now reduce the problem of
computing the total number of connected spanning subgraphs to solving SCG-
BANZHAF-VALUE. Take G = (V, E) with n nodes and m edges. Transform
graph G into G′ = (V ∪ {n + 1}, E ∪ {m + 1}) by taking any node and connect-
ing it to a new node via a new edge. Then the number of spanning subgraphs
in G is equal to the Banzhaf value of edge m + 1 in graph G′. This shows that
SCG-BANZHAF-VALUE is #P-complete. ut

Similarly, SCG-SS is NP-hard.

Proposition 12.5. SCG-SS is #P-complete even for simple graphs.

Proof. The proof follows from Theorem 3.29. We demonstrate the application of
Theorem 3.29 by giving a complete proof. We show that computing the Shapley-
Shubik indices is at least as hard as computing the total number of winning coali-
tions. Let Ni be the number of connected spanning subgraphs of G with i edges.
We know that computing Ni is NP-hard [29]. We show that if there is an algo-
rithm polynomial in the number of edges to compute the Shapley-Shubik index
of all edges in the graph, then each Ni can be computed in polynomial time.

We obtain graph G0 by the following transformation: for some node v ∈ V(G),
we link it by a new edge x to a new node vx. Then, by definition, the Shapley-
Shubik value κx(G0) of player x is

∑m
r=0 r!Nr(|E(G)| − r)! =

∑m
r=0 r!N′r, where we

write N′r for Nr(m − r)!, for all r.
Similarly we can construct Gi by adding a path Pi of length i to vx where Pi

has no edge or vertex intersection with G. Therefore

m∑
r=0

(r + i)!N′r = κx(Gi). (12.1)
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For i = 0, . . . ,m, we get an equation of the form of (12.1) for each Gi. The
left-hand side of the set of equations can be represented by an (m + 1) × (m + 1)
matrix A where Ai j = (i + j − 2)!. The set of equations is independent because A

has a non-zero determinant of (1!2! · · ·m!)2 (see e.g. Theorem 1.1 [20]). If there
is a polynomial time algorithm to compute the Shapley-Shubik index of each
edge in a simple graph, then we can compute the right-hand side of each equation
corresponding to Gi.

The biggest possible number in the equation is less than (2m)! and can be
represented efficiently. The biggest possible number in the equation is less than
(2m)! and can be represented efficiently. This follows from the fact that m! ≤
mm and hence to represent (2m)!, one will use at most log2((2m)2m) = 2m(1 +

log2 m) ≤ 3m log2 m bits.
We can use Gaussian elimination to solve the set of linear equations in O(m3)

time. Moreover, each number that occurs in the algorithm can also be stored in a
number of bits quadratic of the input size (Theorem 4.10 [123]). Therefore SCG-
SS is NP-hard. ut

12.5 Polynomial time cases

In this section, we present polynomial time algorithms to compute voting power
indices for restricted graph classes including graphs with bounded treewidth. We
first consider the trivial case of a tree. If the graph G = (N, E) is a tree then there is
a total of n− 1 edges and only the grand coalition of edges is a winning coalition.
Therefore a tree is equivalent to a unanimity game. This means that each edge
has a Banzhaf index and Shapley-Shubik index of 1

n−1 . In the case of the same
tree structure but with multiple parallel edges, we refer to this multigraph as a
pseudo-tree.

Proposition 12.6. Let G = (N, E, s) be a pseudo-tree such that the underlying

edges are 1, . . . ,m with multiplicities s1, . . . , sm. Then,
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ηi1 =

m∏
j=1
j,i

(2s j − 1). (12.2)

Proof. Note that m = n − 1 in this case. Suppose edge i1 is a parallel edge cor-
responding to edge i in the underlying graph. Edge i1 is critical for a coalition C

if the coalition C contains no edges parallel to i1 but contains at least one sub-
edge corresponding to each edge other than i. The number of such coalitions is∏m

j=1
j,i

(2s j − 1), which gives (12.2).

ut

Proposition 12.7. Let G = (N, E, s) be a pseudo-tree such that the underlying

edges are 1, . . . ,m with multiplicities s1, . . . , sm where s =
∑m

i=1 si. Then the

Shapley-Shubik indices can be computed in time polynomial in the total number

of edges and number of players.

Proof. Denote by er the coefficient of xr in

∏
1≤ j≤n−1

j,i

((1 + x)s j − 1).

Then er is the number of coalitions with r edges which include at least one
parallel edge for each underlying edge j except i. Denote by ik the kth parallel
edge of underlying edge i ∈ E. Then, by definition of the Shapley-Shubik value,
for 1 ≤ k ≤ si,

κik(G) =

s−si∑
r=n−2

err!(s − r − si)!.

Assume that the total number of edges s is polynomial in input size. Then each
of the values si are also polynomial in the input size. In that case, the generating
function can be expanded in polynomial time and the Shapley-Shubik indices can
be computed. ut

We now consider graphs with bounded treewidth. Note that trees and pseudo-
trees have treewidth 1.
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Definition 12.8. For a graph G = (V, E), a tree decomposition is a pair (X,T ),
where X = {X1, ..., Xn} with X j ⊂ 2V for 1 ≤ j ≤ n, and T is a tree whose nodes

are the subsets Xi with the following properties:

1.
⋃

1≤i≤n Xi = V

2. For every edge (v,w) ∈ E, there is a subset Xi that contains both v and w.

3. If Xi and X j both contain a vertex v, then all nodes Xz of the tree in the path

between Xi and X j also contain v.

The width of a tree decomposition is the size of its largest set Xi minus one.

The treewidth tw(G) of a graph G is the minimum width among all possible tree

decompositions of G.

Proposition 12.9. If the reliability polynomial defined in Definition 12.3 can be

computed in polynomial time, then the following problems can be computed in

time polynomial in the number of edges:

1. the number of connected spanning subgraphs;

2. the Banzhaf indices of edges.

Proof. We deal with each case separately.

1. By definition, Ni is the number of connected spanning subgraphs with i edges.
The value Ni is also present as a coefficient in the reliability polynomial. If all
coefficients Ni are computable in polynomial time, then the total number of
connected spanning subgraphs

∑m
i=0 Ni is computable in polynomial time.

2. We know that ηi(G) = 2ωi(G) − ω(G) (see Lemma 3.27) where ω(G) is equal
to the total number of winning coalitions and ωi(G) is the number of winning
coalitions including player i. Consider the graph G where the probability of
edge i being operational is set to 1 whereas the probability of other edges be-
ing operational is set to 0.5. Then the reliability of the graph being connected
is equal to the ratio of the number of connected spanning subgraphs that in-
clude edge i to 2M−1, the total number of subgraphs that include i. Therefore,
ωi(v) the number of connected spanning subgraphs including edge i can be
computed in polynomial time too. ut
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Corollary 12.10. Banzhaf indices of edges can be computed in polynomial time

for graphs with bounded treewidth.

Proof. This follows from the polynomial time algorithm to compute the reliabil-
ity of a graph with treewidth k for some fixed k [7]. ut

Definition 12.11. Let G = (V, E) be a graph with source s and sink t. Then G is

a series-parallel graph if it may be reduced to K2 by a sequence of the following

operations:

1. replacement of a pair of parallel edges by a single edge that connects their

common endpoints;

2. replacement of a pair of edges incident to a vertex of degree 2 other than s or

t by a single edge so that 2 degree vertices get removed.

Graphs with bounded treewidth can be recognized in polynomial time [6].
Series-parallel graphs are well-known classes of graphs with constant treewidth.
Other graph classes with bounded treewidth are cactus graphs and outer-planar
graphs. We see that whereas computing Banzhaf values of edges in general SCGs
is NP-hard, important graph classes can be recognized and their Banzhaf values
computed in polynomial time.

When edges have special properties, their power indices may be easier to com-
pute. We define a bridge in a connected graph to be an edge whose removal results
in the graph being disconnected. A graph class is hereditary if for every graph in
the class, every subgraph is also in the class.

Proposition 12.12. If graph G belongs to a hereditary graph class, for which the

reliability polynomial of a graph can be computed in polynomial time, then the

Shapley-Shubik index of a bridge can be computed in time polynomial in the total

number of edges.

Proof. Let G = (V, E) be a graph where edge k is a bridge which connects two
components A = (VA, EA) and B = (VB, EB). Then |E| = |EA| + |EB| + 1. If
the reliability polynomial of G can be computed in polynomial time, then the
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reliability polynomial for each of the components A and B can be computed.
Denote by Ni(A) and Ni(B) the number of connected spanning subgraphs in A and
B respectively. These values are also the coefficients in the reliability polynomial
of A and B respectively. Then the Shapley-Shubik index of player k is:

φk(G) =

∑|EA |

i=|VA |−1

∑|EB|

j=|VB|−1 Ni(A)N j(B)(i + j)!(|EA| + |EB| − i − j)!

|E|!
.

ut

Our next result is that if the reliability of a simple graph can be computed
then the Banzhaf indices of the corresponding multigraph can be computed. A
naive approach would be to compute the Banzhaf values of each edge in a simple
graph and then, for the corresponding parallel edges in the multigraph, divide the
Banzhaf value of the overall edge by the number of parallel edges. However, as
the following example shows, this approach is incorrect:

Example 12.13. Let G = (V, E, s) be the multigraph in Figure 12.1. Then, η41(vG) =

10, η11(vG) = 14, and η2(vG) = η3(vG) = 28. Therefore β41(vG) = 10
3×10+2×14+28+28 =

5
57 . Moreover, β11(vG) = 7

57 and β2(vG) = β3(vG) = 14
57 . If we examine the underly-

ing graph of G′ in Figure 12.1, then η4(v′G) = 4 and η1(v′G) = η2(v′G) = η3(v′G) = 2
giving β4(G′) = 2/5 and βi(G′) = 1/5 for i = 1, 2, 3. Therefore, the Banzhaf
values of edges in the underlying graph do not seem to give any direct way of
computing the Banzhaf values in the multigraph.

Fig. 12.1. Multigraph and its underlying graph
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Lemma 12.14. If there is an algorithm to compute the reliability of the underly-

ing simple graph, then the algorithm can be used to compute the reliability of the

corresponding multigraph.

Proof. Let G = (V, E, s) be a multigraph in which there are si parallel edges
i1, . . . , isi corresponding to edge i. Let pi j be the probability that the jth parallel
edge of edge i is operational. In that case Rel(G, p) is equal to Rel(G′, p′), where
G′ is the corresponding simple graph of G and the probability pi that edge i is
operational is 1 −

∏si
j=1(1 − pi j). ut

We now prove in Proposition 12.15 that if there is an algorithm to compute
the reliability of the underlying simple graph G, then it can be used to com-
pute the Banzhaf indices of the edges in the corresponding multigraph of G. It
would appear that the proposition follows directly from Lemma 12.14 and Propo-
sition 12.9. However, one needs to be careful that the reliability computed is the
reliability of the overall graph. Example 12.13 shows that computing the Banzhaf
values of the edges in the underlying simple graph does not directly provide the
Banzhaf values of the parallel edges in the corresponding graph.

Proposition 12.15. For a multigraph G and edge i, let G′ be the multigraph where

all the other edges parallel to edge i are deleted. Then if the reliability of G′ can

be computed in polynomial time, then the Banzhaf value of edge i in G can be

computed directly by analysing G′.

Proof. Recall that G is a multigraph with a total of M edges. Given an algorithm
to compute the reliability of G′, we provide an algorithm to compute the Banzhaf
values of the parallel edges of edge i in G. For graph G′, set the operational proba-
bilities of all edges to 0.5 except i which has an operation probability of 1− 0.5si .
and compute the overall reliability r(G′) of the graph. Then, by Lemma 12.14,
ω(G) is 2Mr(G′).

Now for G′, set the operational probabilities of all edges to 0.5 except i which
has an operation probability of 1. Let the reliability of G′ with the new prob-
abilities be r′(G′). We see that r′(G′) is equal to ωi(G′)/2M−si . Then ωi(G) =
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2si−1ωi(G′) = 2M−1r′(G′). The Banzhaf value of i is then 2ωi(G) − ω(G). A simi-
lar approach gives Banzhaf values of the other edges, from which all the Banzhaf
indices can be computed. ut

12.6 Other power indices

We also consider the complexity of computing the Holler indices and Deegan-
Packel indices and find that they can be computed in polynomial time.

Proposition 12.16. For SCGs corresponding to multigraphs, Holler indices and

Deegan-Packel indices can be computed in polynomial time.

Proof. We use the fact that the number of trees in a multigraph can be computed
in polynomial time, which follows from Kirchhoff’s matrix tree theorem [99].
Given a connected graph G with n vertices, let λ1, λ2, ..., λn−1 be the non-zero
eigenvalues of the Laplacian matrix of G (the Laplacian matrix is the difference
of the degree matrix and the adjacency matrix of the graph). Kirchhoff proved
that the number of spanning trees of G is equal to any cofactor of the Laplacian
matrix of G [99]: t(G) = 1

nλ1λ2 · · · λn−1. So now that we have a polynomial-time
method to compute the number of spanning trees t(G) of graph G, we claim this
is sufficient to compute the Holler values of the edges. If an edge i is a bridge,
then it is present in every spanning tree and its Holler value is simply the total
number of spanning trees. If i is not a bridge then |Mi| = t(G)− t(G\e). Moreover,
since the size of every minimal winning coalition is the same, namely (n− 1), the
Holler indices and Deegan-Packel indices coincide for an SCG. ut

12.7 Conclusion

This chapter examined fairness-based cooperative game solutions of SCGs, for
allocating resources to edges. We looked at the exact computation of power in-
dices. In [22], an optimal randomized algorithm to compute Banzhaf indices and
Shapley-Shubik indices with the required confidence interval and accuracy is pre-
sented. Since the analysis in [22] is not limited to a specific representation of a
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coalitional game, it can be used to approximate Banzhaf indices and Shapley-
Shubik indices in SCGs.

The results of the chapter are summarized in Table 12.1. This framework can
be extended to give an ordering on the importance of nodes in the graph [40]. To
convert a resource allocation to edges to one on nodes, the payoff for an edge is
divided equally between its two adjacent nodes. The total payoff of a node is the
sum of the payoffs it gets from all its adjacent edges. This gives a way to quantify
and compare the centrality or connecting role of each node. It will be interesting
to understand the properties of such orderings, especially for unique cooperative
solution concepts such as the nucleolus, Shapley-Shubik and Banzhaf indices.

The complexity of computing the Shapley-Shubik index for an SCG with a
graph of bounded treewidth is open. If this problem is NP-hard, it will answer the
question posed in the conclusion of [22] on whether there are any domains where
computing one of the Banzhaf index and Shapley-Shubik index is easy, whereas
computing the other is hard.

Table 12.1. Complexity of SCGs

Problem Input Complexity

SCG-BANZHAF-VALUE Simple, bipartite, planar graph #P-complete
SCG-BANZHAF-INDEX Simple graph ?
SCG-BANZHAF-(VALUE/INDEX) Multigraph with bounded treewidth P
SCG-SS Multigraph #P-complete
SCG-SS Multigraph with bounded treewidth ?
SCG-H-(VALUE/INDEX) Multigraph P
SCG-DP-(VALUE/INDEX) Multigraph P



13

Nucleolus of spanning connectivity games

The earth to be spann’d, connected by network,

The races, neighbors, to marry and be given in marriage,

The oceans to be cross’d, the distant brought near,

The lands to be welded together.

- Walt Whitman (Passage to India)

Two hold a garment; both claim it all. Then the one is awarded half, the

other half. Two hold a garment; one claims it all, the other claims half.

Then the one is awarded 3/4, the other 1/4.

- Talmud

Abstract We consider the least core imputations and the nucleolus of the span-
ning connectivity game. For any least core imputation, we refer to the value of the
spanning connectivity game as the payoff of any coalition with the worst(minimum)
excess. We show that the value is equal to the reciprocal of the strength of the un-
derlying graph.

We efficiently compute a unique partition of the edges of the graph, called the
prime-partition, and find the set of coalitions which always get the worst excess
for every least core imputation. We define a partial order on the elements of the
prime-partition which allows us to compute the nucleolus in polynomial time.

We also consider the problem of maximizing the probability of hitting a strate-
gically chosen hidden network by placing a wiretap on a single link of a commu-
nication network. This can be seen as a two-player win-lose (zero-sum) game that
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we call the wiretap game. The nucleolus turns out be the unique maxmin strategy
which satisfies certain desirable properties.

13.1 Introduction

In the previous chapter, it was seen that computing Banzhaf values and Shapley-
Shubik indices of an SCG are #P-complete. In this chapter, we will outline a
polynomial time algorithm to compute the nucleolus of the SCG. The analysis is
restricted to unweighted simple graphs. However, all the results extend to multi-
graphs. It is easy to see that any preimputation of a SCG is also an imputation
since there can be no edge e such that v(e) = 1 unless it is the only edge in the
graph.

For any least core imputation, we refer to the value of the SCG as the payoff

of any coalition with the worst excess. Therefore the value of the SCG G is equal
to 1 − ε1(G) where −ε1 is the worst excess of a least core imputation of the SCG.
We show that the value of the SCG is equal to the reciprocal of the strength of
the underlying graph, a concept introduced by Gusfield [103].

We efficiently compute a unique partition of the edges of the graph, called
the prime-partition. We find the set of coalitions which get the worst excess for
any least core imputation. Using these special coalitions, which we call omni-

connected-spanning-subgraphs, we define a partial order on the elements of the
prime-partition. Our definition in terms of omni-connected-spanning-subgraphs
is central to proving our results.

From the partial order, we obtain a linear number of simple two-variable in-
equalities that define the least-core-polytope. In contrast, the natural description
of the least-core-polytope is as the solutions to a linear program with exponen-
tially many constraints. Our definition of the partial order allows us to find all
least core imputations that minimize the number of coalitions with the worst ex-
cess.

Among these imputations, we efficiently compute the unique least core im-
putation that maximizes the second worst excess. Hence, this imputation is the
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nucleolus of the game. The nucleolus turns out be a highly desirable maxmin
strategy of the wiretap game (which is defined in Section 13.8).

13.2 Related work

The strength of an unweighted graph, which has a central role in our work,
is also called the edge-toughness, and relates to the classical work of Nash-
Williams [157] and Tutte [207]. Cunningham [53] generalized the concept of
strength to edge-weighted graphs and proposed a strongly polynomial-time algo-
rithm to compute it. Computing the strength of a graph is a special type of ratio
optimization in the field of submodular function minimization [93]. Cunning-
ham used the strength of a graph to address two different one-player optimiza-
tion problems: the optimal attack and reinforcement of a network. The prime-
partition we use is a truncated version of the principal-partition, first introduced
by Narayanan [156] and Tomizawa [205]. The principal-partition was used in an
extension of Cunningham’s work to an online setting [172].

In many cases the nucleolus is hard to compute. The computational complex-
ity of computing the nucleolus has attracted much attention [126], with both neg-
ative results [68, 73, 59], and positive results [102, 70, 125, 198].

13.3 Least core of SCGs

Denote the set of spanning subgraphs of G by S. For a graph G, the value of the
SCG val(G) is defined by the least-core payoff of any coalition with the worst
excess. Thus val(G) = 1 − ε1(G). It is easy to see that least core payoffs are the
solutions {x ∈ I(E) |

∑
e∈S xe ≥ val(G) for all S ∈ S} to the following linear

program, which has the optimal value val(G).

max z

s.t.
∑

e∈S xe ≥ z for all S ∈ S ,

x ∈ I(G) .

(13.1)
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The following simple observation shows the importance of minimum con-
nected spanning graphs in the analysis of the SCG. We denote by Gx the edge-
weighted graph comprising the graph G with edge weights x(e) for all e ∈ E. Let
w∗(x) be the weight of a minimum connected spanning graph of Gx.

Fact 1 The set of coalitions with the worst excess for imputation x is

{S ∈ S |
∑
e∈S

xe = w∗(x)} .

Proposition 13.1. An element of the least core of an SCG can be found in poly-

nomial time.

Proof. The size of the linear program (13.1) is exponential in the size of the
graph G, with an inequality for every subset of edges. However, this linear pro-
gram can be solved using the ellipsoid method and a separation oracle, which
verifies in polynomial time whether a solution is feasible or returns a violated
constraint [190]. For a candidate solution x = (x1, . . . , x|E|), we find in polynomial
time the minimum spanning tree T of the graph Gx. Use Kruskal’s algorithm to
compute the minimum spanning tree T of graph Gx. If we have x(E(T ))−1 ≥ −ε,
then x is feasible. Otherwise, the constraint e(x,T ) ≥ −ε is violated. ut

The same separation oracle idea can be used to prove the following proposi-
tion:

Proposition 13.2. For a SCG, solving SUPERIMP and CoS is in P.

Proof. Assume that the graph G has no bridges, because if there are bridges, then
the bridge acts as a vetoer and the core is non-empty. We consider a superimputa-
tion (x1, . . . , x|E|) such that x(E) = 1+4. For a candidate solution x = (x1, . . . , x|E|),
we find in polynomial time the minimum spanning tree T of the graph Gx. If
x(T ) ≥ 1, then x(S ) ≥ 1 for all S ⊂ E and x is a superimputation. If x(T ) < 1,
then x is not a superimputation.

The size of the linear program (11.4) is exponential in the size of the graph G,
with an inequality for every subset of edges. Again, this linear program can be
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solved using the ellipsoid method and a separation oracle, which verifies in poly-
nomial time whether a solution is feasible or returns a violated constraint [190].
We see that our solution to SUPERIMP for an SCG provides a separation oracle
to solve CoS for the same SCG. ut

We will see in this chapter that not only is there a combinatorial method to
compute a least core imputation of a SCG in polynomial time but we also present
a way to compute the nucleolus in polynomial time.

13.4 Cut-rate

In this section, we show that for any least core imputation of the SCG, the pay-
off of any coalition with the worst excess is equal to the cut-rate of the graph
(Theorem 13.13). The cut-rate which is a property of a graph will be defined later
in Definition 13.5. The section does not present algorithmic results but the in-
sights and tools from this section will be used in the latter sections to devise a
combinatorial algorithm to compute the nucleolus of the SCG.

We start with the basic notations and definitions. From here on we fix a con-
nected graph G = (V, E). Unless mentioned explicitly otherwise, any implicit
reference to a graph is to G and α is an edge-imputation, which is a probabil-
ity distribution on the edges E. For ease, we often refer to the weighted graph Gα

simply by α, where this usage is unambiguous. For a subgraph H of G, we denote
by α(H) the sum

∑
e∈E(H) α(e), where E(H) is the edge set of H.

Definition 13.3. For every edge-imputation α, we denote its distinct weights by

xα1 > . . . > xαm ≥ 0 and define E(α) = {Eα
1 , . . . , E

α
m} such that Eα

i = {e ∈ E | α(e) =

xαi } for i = 1, . . . ,m.

Our initial goal is to characterize those partitions E(α) that can arise from
least-core-imputations α. We start with the following simple setting. Assume that
the prospective imputation is restricted to α such that |E(α)| = 2, and xα2 = 0.
Thus, the imputation’s only freedom is the choice of the set Eα

1 . This is done
as a warm up exercise to highlight the importance of the cut-rate and minimum
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spanning subgraphs in our analysis later on. In general an imputation may contain
distinct payoff for all players.

By Fact 1, a coalition with the worst excess for α is a minimum connected
spanning subgraph H of α. So in order to maximize the worst excess, Eα

1 should
be chosen so as to maximize α(H). How can such an Eα

1 be found? To answer, we
relate the weight of a minimum connected spanning subgraph H of α to Eα

1 .
To determine α(H), we may assume about H that for every connected com-

ponent C of (V, E \ Eα
1 ) we have E(H) contains E(C), since α(e) = 0 for every

e ∈ E(C). We can also assume that |Eα
1 ∩ E(H)| is the number of connected com-

ponents in (V, E \ Eα
1 ) minus 1, since this is the minimum number of edges in

E(H) that a connected spanning subgraph may have. To formalize this we use the
following notation.

Definition 13.4. Let E′ ⊆ E. We set CG(E′), to be the number of connected com-

ponents in the graph G \ E′, where G \ E′ is a shorthand for (V, E \ E′). If E′ = ∅

we just write CG.

Using the above notation, a connected spanning subgraph H is a minimum
connected spanning subgraph of α if |H∩Eα

1 | = CG(Eα
1 )−CG = CG(Eα

1 )−1. Now
we can compute α(H). By definition, xα1 = 1

|Eα
1 |

and xα2 = 0 and therefore

α(H) =
CG(Eα

1 ) −CG

|Eα
1 |

.

We call this ratio that determines α(H) the cut-rate of Eα
1 . Note that it uniquely

determines the weight of a minimum connected spanning subgraph of α.

Definition 13.5. Let E′ ⊆ E. The cut-rate of E′ in G is denoted by crG(E′) and

defined as follows.

crG(E′) B


CG(E′)−CG
|E′ | if |V | > 1 and |E′| > 0 ,

0 otherwise .
(13.2)

We write cr(E′), except to make a point of referring to a different graph.
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Thus, when |E(α)| = 2 and xα2 = 0, a best choice of Eα
1 is one for which cr(Eα

1 )
is maximum. Since E is finite, an Eα

1 that maximizes cr(Eα
1 ) exists. If we can find

such a set Eα
1 , we distribute the payoff 1 uniformly over Eα

1 to get the best possible
worst excess among homogeneous imputations.

Definition 13.6. The cut-rate of G is defined as opt B maxE′⊆E cr(E′) .

By opt, we always refer to the cut-rate of the graph G. In case we refer to
the cut-rate of some other graph, we add the name of the graph as a subscript.
The value opt is a well known and studied attribute of a graph. It is equal to the
reciprocal of the strength of a graph, as defined by Gusfield [103] and named
by Cunningham [53]. There exists a combinatorial algorithm for computing the
strength, and hence opt, that runs in time polynomial in the size of the graph, by
which we always mean |V | + |E|.

We generalize the above technique to the case that α is not restricted. Assume
again that H is a minimum connected spanning subgraph of α. Intuitively, even
if α has more than 2 distinct weights we would expect |Eα

1 ∩ E(H)| to be as small
as possible, i.e., CG(Eα

1 ) −CG. We would also expect |(Eα
1 ∪ Eα

2 ) ∩ E(H)| to be as
small as possible, i.e., CG(Eα

1 ∪ Eα
2 ) − CG. If these both hold then |Eα

2 ∩ E(H)| =
CG(Eα

1 ∪ Eα
2 ) − CG(Eα

1 ), which is the increase in the number of components we
get by removing the edges of Eα

2 from G \ Eα
1 . Thus, the total weight contributed

to H by edges in E(H) ∩ E(Eα
2 ) is xα2 (CG(Eα

1 ∪ Eα
2 ) − CG(Eα

1 )). Now, unlike the
previous case, we do not know xα2 . However, this is not a problem since, as we
shall see, we are interested in the ratio

α(E(H) ∩ Eα
2 )

α(Eα
2 )

=
CG(Eα

1 ∪ Eα
2 ) −CG(Eα

1 )
|Eα

2 |
.

We use the following notation to express this and its extension to more weights.

Definition 13.7. For ` = 1, . . . , |E(α)| we set

crα` =
CG(∪`i=1Eα

i ) −CG(∪`−1
i=1 Eα

i )
|Eα

` |
.
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The intuition above indeed holds, as stated in the following proposition.

Proposition 13.8. Let H be a minimum connected spanning subgraph of α. Then

|E(H) ∩ Eα
` | = |E

α
` |crα` for every ` such that xα` > 0.

Proof. Let H be a minimum connected spanning subgraph of α. And let t be
the maximum such that xαt > 0. We next show that |E(H) ∩ Eα

i | = |Eα
i |crαi for

i = 1, . . . , t.
Assume for the sake of contradiction that this is not so. Let k be minimal such

that |E(H) ∩ Eα
k | , |E

α
k |crαk . By the minimality of k we have

|E(H) ∩ (∪k−1
i=1 Eα

i )| =
k−1∑
i=1

|Eα
i |crαi . (13.3)

Set E′ = ∪k
i=1Ek

i . By the definition of cut-rate the number of connected compo-
nents in G \ E′ is

CG(E′) = 1 +

k∑
i=1

|Eα
i |crαi . (13.4)

Thus |E(H) ∩ E′| is at least
∑k

i=1 |E
α
i |crαi and therefore by (13.3) we have |E(H) ∩

Eα
k | ≥ |E

α
k |crαk .

Assume |E(H) ∩ Eα
k | > |E

α
k |crαk . Then, by (13.3), we have

|E(H) ∩ E′| >
k∑

i=1

|Eα
i |crαi . (13.5)

We show next that this implies that there exists a connected spanning subgraph
whose weight by α is strictly less than α(H) in contradiction to H being a min-
imum connected spanning subgraph. Set s = CG(E′) and let C1, . . . ,Cs be the
connected components of G \ E′. Now as H is a minimum connected spanning
subgraph the set of edges in E(H)∩E′ does not have a cycle, otherwise we could
have removed one of them to get a connected spanning subgraph with strictly less
weight. Thus the number of connected components of E(H)\E′ is 1+ |E∩E(H)|.
Set r = |E′ ∩ E(H)| and let H1, . . . ,Hr be the connected components of H \ E′.
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Note that for each i ∈ {1, . . . , r} there exists a unique j ∈ {1, . . . , s} such that
E(Hi) ⊆ E(C j). For each j ∈ {1, . . . , s} set I j to be the set of all i ∈ {1, . . . , r}
such that E(Hi) ⊆ E(C j). By (13.4) and (13.5) we have s < r and therefore by the
pigeon-hole principle there exists j ∈ {1, . . . , r} such that |I j| > 1. Since C j is a
connected component and H a connected spanning subgraph there exist x, y ∈ I j

and e = {u, v} ∈ E(C j) \ ∪
|I j |

i=1E(Hi) such that u ∈ V(Hx) and v ∈ V(Hy). Again
because H is a connected spanning subgraph there is a path in H between u and
v this path contains edges not in E(C j) because u, v are in different connected
components of H \ E′. Thus this path contains an edge e′ ∈ E′ because only
edges from E′ connect the vertices of C j to the rest of the graph. Consequently
(H\{e′})∪{e} is a connected spanning subgraph. Since e < E′ we have α(e) < α(e′)
and consequently α(H) > α((H \ {e′}) ∪ {e}). ut

Using Proposition 13.8 we can relate the weight of a minimum connected
spanning subgraph of α to the sets of E(α). This relationship also characterizes
the least-core-imputations, which are the edge-imputations whose minimum con-
nected spanning subgraph weight is the maximum possible. The characterization
is stated in Theorem 13.13. However, before we prove Theorem 13.13, we need
the help of useful facts and propositions.

Fact 2 Let H be a minimum connected spanning subgraph of α and m = E(α)
then α(H) =

∑m
i=1 xαi |E

α
i |crαi and for each i = 1, . . . ,m if crαi < 1 then there exists

e ∈ Eα
i \ E(H).

Proof. By definition |E(H)| =
∑m

i=1 |E(H)∩Eα
i |. Therefore α(H) =

∑m
i=1 xαi |E(H)∩

Eα
i |. By applying Proposition 13.8 we get that α(H) =

∑m
i=1 xαi |E

α
i |crαi .

Fix i ∈ {1, . . . ,m}. By Proposition 13.8 we have |E(H) ∩ Eα
i | = |Eα

i |crαi and
hence if crαi < 1 then |E(H) ∩ Eα

i | < |E
α
i | and therefore Eα

i \ E(H) is not empty.
ut

Fact 3 Let E1, . . . , Es ⊆ E be such that Ei ∩ E j = ∅ for every distinct i, j ∈

{1, . . . , s}. For ` = 1, . . . , s let r` be the cut-rate of E` in G \ ∪`−1
i=1 E`. Assume that

r` ≥ y (r` ≤ y) for each ` = 1, . . . , s. Then if there exists i ∈ {1, . . . , s} such that

ri > y (ri < y) we have cr(∪s
i=1Ei) > y (r < y) and otherwise cr(∪s

i=1Ei) = y.
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Proof. By the definition of cut-rate CG(∪s
i=1Ei) = CG +

∑s
i=1 ri|Ei| and hence

cr(∪s
i=1Ei) =

(CG +
∑s

i=1 xi|Ei|) −CG∑s
j=1 |E j|

≥

∑s
i=1 y|Ei|∑s
j=1 |E j|

= y.

Note that the above inequality is strict unless ri = y for i = 1, . . . , s. The proof for
the case that ri ≤ y for i = 1, . . . , s, is the same. ut

Lemma 13.9. If we have E1, E2 ⊆ E and E1 ∩ E2 = ∅ then

CG(E1 ∪ E2) ≥ CG(E1) + CG(E2) −CG (13.6)

Proof. We prove the statement by induction. Where there is no ambiguity, we
will sometimes refer to CG(E1) also as the components of the graph G when E1

is deleted from G.. If CG(E1) + CG(E2) = 2CG then (13.6) holds. Assume as an
inductive hypothesis, that (13.6) holds when CG(E1) + CG(E2) = k > 2CG. We
show that (13.6) holds for CG(E1) + CG(E2) = k + 1. Suppose E1, E2 are such
that CG(E1) + CG(E2) = k + 1. Without loss of generality, assume CG(E1) > CG.
Therefore there is an edge e ∈ E1 between two different elements of CG(E1). This
means that CG(E1 \ e) = CG(E1) − 1. This implies that CG(E1 \ e) + CG(E2) = k,
so by the inductive hypothesis, we have CG((E1 \ e) ∪ E2) ≥ k − CG. Now notice
that e is in a single element of CG((E1 \ e)∪ E2) and because we chose e so that it
goes between two different elements of CG(E1), removing it from the graph will
add a component, giving (13.6).

Definition 13.10. A minimal set E′ ⊆ E such that cr(E′) = opt is a prime-set
of G.

Proposition 13.11. For E′, E′′ ⊂ E such that cr(E′) = cr(E′′) = opt the follow-

ing holds:

1. optG\E′ ≤ opt.

2. If E′′ , E′ then crG\E′(E′′ \ E′) = opt.

3. If E′′ ∩ E′ , ∅ then cr(E′′ ∩ E′) = opt.

4. If E′′ \ E′ , ∅ then optG\E′ = opt.
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5. If E′ is a prime-set then either E′ ⊆ E′′ or E′ ∩ E′′ = ∅.

Proof. Note that opt = 0 only if E = ∅ and therefore in this case the proposition
trivially holds. Assume that opt > 0. Hence by the definition of cut-rate we have
E′, E′′ , ∅. We shall also assume that E′ , E′′ since otherwise the last four items
hold trivially. We next prove the first item.

Let E∗ ⊆ E \ E′ be such that crG\E′(E∗) = optG\E′ . By definition such a set
exists. Observe that crG\E′(E∗) ≤ opt because otherwise since cr(E′) = opt by
Fact 3, we have cr(E′ ∪ E∗) > opt, which is a contradiction to the maximality of
opt. Note that if cr(E′) < opt, then it is not necessary at that optG\E′ ≤ opt.

We now prove the second and third items. According to the first item crG\E′(E′′\
E′) ≤ opt and by definition cr(E′′ ∩ E′) ≤ opt. In the following, (13.7) holds be-
cause both sides of the equation count the number of connected components in
the graph G \ (E′ ∪ E′′).

CG(E′ ∪ E′′) =CG\(E′∩E′′)( (E′ \ (E′ ∩ E′′)) ∪ (E′′ \ (E′ ∩ E′′)) ) (13.7)

≥CG\E′∩E′′(E′ \ (E′ ∩ E′′)) + CG\E′∩E′′(E′′ \ (E′ ∩ E′′)) −CG(E′ ∩ E′′))
(13.8)

=CG(E′) + CG(E′′) −CG(E′ ∩ E′′) (13.9)

The inequality (13.8) follows by applying Lemma 13.9 to the right-hand side
of (13.7). The equality (13.9) is true by the same logic as (13.7), and so we have

CG(E′ ∪ E′′) ≥ CG(E′) + CG(E′′) −CG(E′ ∩ E′′) (13.10)

By definition of optG we have (13.11). Applying (13.10) to the right-hand side
of (13.11) gives (13.12). Equation (13.13) is obtained by a simple re-writing of
the right-hand side of (13.12).
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optG ≥
CG(E′ ∪ E′′) −CG

|E′ ∪ E′′|
(13.11)

≥
CG(E′) + CG(E′′) −CG(E′ ∩ E′′) −CG

|E′| + |E′′| − |E′ ∩ E′′|
(13.12)

=
(CG(E′) −CG) + (CG(E′′) −CG) − (CG(E′ ∩ E′′) −CG)
|E′| + |E′′| − |E′ ∩ E′′|

(13.13)

≥optG (13.14)

The inequality (13.14) follows from (13.13), since, by definition we have the
following

CG(E′) −CG

|E′|
=

CG(E′′) −CG

|E′′|
= optG ,

CG(E′ ∩ E′′) −CG

|E′ ∩ E′′|
≤ optG .

Hence, the inequalities (13.11), (13.12), (13.14), and (13.10) hold as equalities,
which proves item 2 and 3.

Finally we prove the last two items. Assume E′′ \ E′ , ∅. By the first item
optG\E′ ≤ opt. By the second item crG\E′(E′′ \ E′) = opt and hence also optG\E′ ≥

opt and consequently optG\E′ = opt.
Assume that E′ is a prime-set. If E′ ∩ E′′ , ∅ then by the second item cr(E′ ∩

E′′) = opt and hence by the definition of prime-set E′ ∩ E′′ = E′ which implies
E′ ⊆ E′′. ut

If set E′ ⊆ E has cut-rate optG in G, we will refer to E′ has an optimal set.

Observation 13.12 Item 1 of Proposition 13.11 means that if an optimal set is

deleted from the graph, then the cut-rate of the graph cannot increase. However,

this is not necessarily true in case a non-optimal set is deleted from the graph.

Our observation will be useful later on in Algorithm 12 where optimal sets are

deleted from the graph.

We are now in a position to prove the main theorem of the section.

Theorem 13.13. Let H be a minimum connected spanning subgraph of α and

m = |E(α)|. Then α(H) ≤ opt and we have α(H) = opt if and only if

1. crα` = opt for ` = 1, . . . ,m − 1, and
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2. if crαm , opt then xαm = 0.

Proof. Let β be a edge-imputation and s = |E(β)|. We say β is strong if crβ` = opt

for ` = 1, . . . , s − 1 and if crβs , opt then xβs = 0. From here on in this section H

is a minimum connected spanning subgraph of α. Assume α is strong. By Fact 2

α(H) =

|E(α)|∑
`=1

xα` |E
α
` |crα` .

Therefore as we have crαi = opt for every i such that xαi > 0 we conclude

α(H) = opt
|E(α)|∑
`=1

xα` |E
α
` |.

Finally, since α is an edge-imputation
∑|E(α)|
`=1 xα` |E

α
` | = 1, we get that α(H) = opt.

Now the theorem directly follows from the subsequent lemma. ut

Lemma 13.14. Let H be a minimum connected spanning subgraph of α, then

α(H) ≤ opt and if α(H) = opt then α is strong.

Intuition for the proof Lemma 13.14.

The proof of the Lemma 13.14 is by induction on s, the maximum index such that
xαs > 0. The basis of the induction is straightforward. The induction assumption
states that for an edge-imputation β with s − 1 distinct strictly positive weights,
and minimum connected spanning subgraph H′ of β we have β(H′) ≤ opt and if
β(H′) = opt then β is strong.

The main idea in the induction step is to show that one can shift around some
of the weight of α in order to get a new edge-imputation β, such that β has exactly
s − 1 strictly positive distinct weights and β(H′) ≥ α(H) (or β(H′) > α(H)),
where H′ is a minimum connected spanning subgraph of β. Now since β has
s − 1 strictly positive distinct weights the induction assumption applies to it and
hence β(H) ≤ opt. This in turn implies that α(H) ≤ opt. Now by the above if
α(H) = opt then also β(H) = opt and hence by the induction assumption β is
strong. With a bit of extra work this leads to α being strong.
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The induction step consists of two separate cases. In the first case it is assumed
that crαs ≤ cr(∪s−1

i=1 Eα
i ), in the second crαs > cr(∪s−1

i=1 Eα
i ).

In the first case, by taking all the weight assigned by α to the edges of Eα
s and

distributing it equally among the edges in∪s−1
i=1 Eα

i , one gets a new edge-imputation
γ that has s − 1 distinct strictly positive weights and α(H) ≤ γ(H′), where H′ is
a minimum connected spanning subgraph of γ. In the second case, one obtains
the new edge-imputation from α in the following way. A constant amount of
weight χ is reduced from each edge in∪s−1

i=1 Eα
i and divide the total removed weight

χ| ∪s−1
i=1 Eα

i | equally among the edges of Eα
s thus getting a new edge-imputation δ

where α(H) < δ(H′′), where H′′ is a minimum connected spanning subgraph of
δ. The value of χ is chosen so that δ gives the same weight to all the edges in
Eα

s ∪ Eα
s−1. Therefore the number of strictly positive weights of δ is s − 1.

Proof of Lemma 13.14.

If s = 1 then by Proposition 13.8 we have α(H) = xα1 |E
α
1 |crα1 = crα1 = cr(Eα

1 ) ≤
opt. Note that if equality holds then crα1 = opt and hence α is strong.

Let s > 1. The induction assumption is that for every edge-imputation β that
has s − 1 strictly positive weights, we have β(H′) ≤ opt for H′ that is a minimum
connected spanning subgraph of β and if β(H′) = opt then β is strong.

For the inductive step we deal with two cases separately. In case (a) we assume
that

crαs ≤
∑s−1

i=1 crαi |E
α
i |∑s−1

i=1 |E
α
i |

. (13.15)

In case (b) we assume that

crαs >
∑s−1

i=1 crαi |E
α
i |∑s−1

i=1 |E
α
i |

. (13.16)

Note that we chose to write the more cumbersome
∑s−1

i=1 crαi |E
α
i |∑s−1

i=1 |E
α
i |

instead of cr(∪s−1
i=1 |E

α
i |)

as this form serves our purpose better.

(a)

Set
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ρ =
xαs |E

α
s |∑s−1

i=1 |E
α
i |
,

which is the total weight of Eα
s divided equally among all edges in ∪s−1

i=1 Eα
i . Define

γ : E(G)→ R so that γ(e) = α(e) + ρ for every e ∈ ∪s−1
j=1Eα

j and γ(e) = 0 for every
e ∈ E(G) \ ∪s−1

j=1Eα
j . According to this definition∑

e∈E

γ(e) =
∑
e∈E

α(e) −
∑
e∈Eα

s

xαs +
∑

e∈∪s−1
i=1 Eα

i

ρ .

Since α is an edge-imputation we can replace
∑

e∈E(G) α(e) with 1. Doing so in the
above equation in addition to replacing ρ by its value gives us

∑
e∈E(G)

γ(e) = 1 −

xαs |E
α
s | −

xαs |E
α
s |∑s−1

i=1 |E
α
i |

s−1∑
i=1

|Eα
i |

 = 1.

By definition γ has exactly s−1 strictly positive weights and hence, γ is an edge-
imputation and the induction assumption applies to γ. Let H′ be a minimum con-
nected spanning subgraph of γ. By the induction assumption γ(H′) ≤ opt. We
next show that α(H) ≤ γ(H′) and hence α(H) ≤ opt. According to the construc-
tion of γ we have xγi > xγj if and only if xαi > xαj for any i, j ∈ {1, . . . , s − 1} and
therefore Eα

i = Eγ
i for i = 1, . . . , s − 1. This in turn implies that crαi = crγi for

i = 1, . . . , s − 1. According to Fact 2 we have

γ(H′) =

s−1∑
i=1

xγi crγi |E
γ
i | .

By replacing Eα
i with Eγ

i and crαi with crγi and xγi with xαi + ρ for i = 1, . . . , s − 1
we get

γ(H′) =

s−1∑
i=1

(xαi + ρ)crαi |E
α
i |.

This implies
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γ(H′) =

s∑
i=1

xαi crαi |E
α
i | − xαs crαs |E

α
s | + ρ

s−1∑
i=1

crαi |E
α
i |.

By Fact 2, we can replace
∑s

i=1 xαi crαi |E
α
i | by α(H). By also replacing ρ with its

value we have

γ(H′) = α(H) − xαs |E
α
s |

crαs −
∑s−1

i=1 crαi |E
α
i |∑s−1

i=1 |E
α
i |

 . (13.17)

Now by (13.15) and (13.17) we have α(H) ≤ γ(H′).
Assume that α(H) = opt. Since α(H) ≤ γ(H′) ≤ opt we get γ(H′) = opt. Thus

by the induction assumption γ is strong and hence crγi = opt for i = 1, . . . , s − 1.
Since crαi = crγi = opt for i = 1, . . . , s − 1, to conclude that α is strong. Thus,
we only need to show that crαs = opt. By replacing α(H), γ(H′), crα1 , . . . crαs−1 with
opt in (13.17) we get

crαs =

∑s−1
i=1 opt|Eα

i |∑s−1
i=1 |E

α
i |

= opt.

(b)

Let
χ = (xαs−1 − xαs )(1 +

|Eα
s |∑s−1

i=1 |E
α
i |

)−1 .

Let δ be such that

δ(e) =


α(e) + χ if e ∈ Eα

s ,

α(e) − χ |Eα
s |∑s−1

i=1 |E
α
i |

if e ∈ ∪s−1
i=1 Eα

i ,

0 otherwise.

(13.18)

Note that χ is such that xαs + χ = xαs−1 − χ
|Eα

s |∑s−1
i=1 |E

α
i |

. Consequently, δ assigns the
same weight to each edge in Eα

s−1 ∪ Eα
s and hence δ has exactly s − 1 strictly

positive weights.
We next show that δ is an edge-imputation. By definition
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e∈E(G)

δ(e) =
∑

e∈E(G)

α(e) +
∑
e∈Eα

s

χ −
∑

e∈∪s−1
j=1

χ
|Eα

s |∑s−1
i=1 |E

α
i |
.

Since α is an edge-imputation we can replace
∑

e∈E(G) α(e) by 1 in the above to
conclude ∑

e∈E(G)

δ(e) = 1 + χ

|Eα
s | −

|Eα
s |∑s−1

i=1 |E
α
i |

s−1∑
i=1

|Eα
i |

 = 1.

Note that by the choice of χ we have δ(e) > xαs for every e ∈ ∪s
i=1Eα

i and since
δ(e) = 0 for any other edge all the weights δ assigns are non-negative. Thus δ
is an edge-imputation. Let H′ be a minimum connected spanning subgraph of
δ. Now as δ is an edge-imputation with s − 1 strictly positive weights, by the
induction assumption we have δ(H′) ≤ opt. We conclude the claim by showing
that α(H) < δ(H′).

By Fact 2 we have

δ(H′) =

s−1∑
i=1

xδi crδi |E
δ
i |. (13.19)

According to the construction of δ we have xδi > xδj if and only if xαi > xαj for
any i, j ∈ {1, . . . , s − 2} and therefore Eα

i = Eδ
i for i = 1, . . . , s − 2 which in turn

implies that crαi = crδi for i = 1, . . . , s − 2. Thus Eα
i = Eδ

i and crαi = crδi for
i = 1, . . . , s − 2. Consequently by replacing |Eδ

s−1| with |Eα
s−1| + |E

α
s | and crγi with

crαi for i = 1, . . . , s − 2 in (13.19) we get

δ(H′) =

s−2∑
i=1

xδi crαi |E
α
i | + xδs−1crδs−1(|Eα

s−1| + |E
α
s |). (13.20)

By definition of cut-rate we have

crδs−1 =
|Eα

s−1|crαs−1 + |Eα
s−1|crαs

|Eα
s−1| + |E

α
s |

,

Plugging this in (13.20) gives us
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δ(H′) =

s−2∑
i=1

xδi crαi |E
α
i | + xδs−1crαs−1|E

α
s−1| + xδs−1crαs |E

α
s |.

Since xδs = xαs + χ and xδi = xαi − χ
|Eα

s |∑s−1
i=1 |E

α
i |

for i = 1, . . . s − 2 we get

δ(H′) =

s∑
i=1

xαi crαi |E
α
i | + χ|Eα

s |

crαs −
∑s−1

i=1 crαi |E
α
i |∑s−1

i=1 |E
α
i |

 . (13.21)

By Fact 2 we can also replace
∑s

i=1 xαi crαi |E
α
i | with α(H) in (13.21). This together

with (13.16) implies that δ(H′) > α(H). Note that as opt > δ(H′) it can not be the
case that α(H) = opt. ut

An immediate implication of Theorem 13.13 is that opt is an upper bound on
the payoff of any coalition with the worst excess for any payoff. Since this payoff

opt can be achieved by distributing all payoff over an edge set that has cut-rate
opt, we get the following.

Corollary 13.15. The value of the SCG is opt.

Also, we mentioned earlier that there are polynomial time combinatorial algo-
rithms to compute the value opt and an optimal set of a graph. Therefore, we can
use such an algorithm as a subroutine to provide a polynomial time combinatorial
algorithm to compute an imputation in the least core.

13.5 Prime Partition

From Theorem 13.13, we know what the value of the game is and we know a
characterization of the E(α)’s for least-core-imputations α. Yet this characteriza-
tion does not give us a simple way to find least-core-imputations. Resolving this
is our next goal. Since the set of least-core-imputations is convex, it is easy to
show that there exists a least-core-imputation β such that for every e1, e2 ∈ E we
have β(e1) = β(e2) if and only if γ(e1) = γ(e2) for every least-core-imputation γ.
This implies that E(β) refines E(γ) for every least-core-imputation γ, where by
“refines” we mean the following.
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Definition 13.16. Let E1,E2 be partitions of E. Then E1 refines E2 if for every set

E′ ∈ E1 there exists a set E′′ ∈ E2 such that E′ ⊆ E′′.

Thus, there exists a partition of E that is equal to E(β) for some least-core-
imputation β and refines E(γ) for every least-core-imputation γ. We call such a
partition the prime-partition. It is unique since there can not be different partitions
that refine each other.

Definition 13.17. The prime-partition P is the unique partition that is equal

to E(β) for some least-core-imputation β and refines E(γ) for every least-core-

imputation γ.

We now show that the prime-partition exists and can be computed in time
polynomial in the size of G. This is the main result of this section.

We introduce a polynomial time algorithm that on input graph G = (V, E)
returns a partition of E, which afterwards we show is the prime-partition of G.
The algorithm uses oracle access to a routine PrimeSet that given a graph returns
its cut-rate and one of its prime sets. This routine runs in time polynomial in the
size of G and is introduced after Algorithm 12. We first describe Algorithm 12
and the routine PrimeSet. Later, in Subsection 13.5.2, we will show that the
output of Algorithm 12 is indeed the prime-partition.
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13.5.1 Construction of the prime-partition

Algorithm 12 Prime-partition construction
Input: Graph G .

Output: Prime partition P.

1: P ← ∅

2: if E(G) = ∅ then
3: return P
4: end if
5: i← 1

6: (opt, Pi)← PrimeSet(G)

7: Gi ← G

8: repeat
9: P ← P ∪ {Pi}

10: Gi+1 ← Gi \ Pi

11: i← i + 1

12: (c, Pi)← PrimeSet(Gi)

13: until c < opt

14: if E(Gi) , ∅ then
15: P ← P ∪ {Pi}

16: end if
17: return P

Each computation done by Algorithm 12 requires running time polynomial in
|V | including the calls to PrimeSet. Therefore, the only reason the running time
of Algorithm 12 may be too long is the repeat loop. Note that, if PrimeSet returns
an empty set, then it also sets c = 0. Thus, after any iteration of the repeat loop
that is not the last the number of edges of G′ is decreased by at least 1. Observe
that PrimeSet returns (0, ∅) and does not reach the repeat loop if opt = 0. Thus
only if opt > 0 then the repeat loop is reached and then the above ensures that
it goes through at most |E| iterations. Hence the running time of Algorithm 12 is
polynomial in the size of G as long as there is a polynomial time algorithm for
PrimeSet.

We now show how to use existing algorithms to design the routine PrimeSet
for finding a minimal optimal set. We assume that the graph is connected, in case
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it is not connected we run the routine separately on each connected component
and return the PrimeSet (and value opt that achieves the largest opt among these
connected components. If there is more than one, pick one arbitrarily. By Fact 3,
the cut-rate of ∪m−1

i=1 Ei in G is opt and therefore by Proposition 13.20, we have that
P refines S1. For our goal, we extend the notion of cut-rate of a graph to edge
weighted graphs.

Definition 13.18. Let E′ ⊆ E and ω : E → R+. The cut-rate of E′ in G, ω is

denoted by crω(E′) and defined as follows.

crω(E′) B


CG(E′)−CG

ω(E′) if |V | > 1 and |E′| > 0 ,

0 otherwise .
(13.22)

The cut-rate of G, ω where ω : E →<+ is defined as

optω B max
E′⊆E

crω(E′) (13.23)

There exists strongly polynomial algorithms in [53, 206, 45] that on G, ω re-
turns optω. We shall assume from here on that optω is given and omit the fact that
this is done by the mentioned algorithm.

A prime-set of G is found as follows. If E = ∅ then stop and return (0, ∅).
Otherwise, setω : E →<+ so thatω(e) = 1 for every e ∈ E. Note that in this case
opt = optω and hence we assume opt is known. Set ω′ = ω. Next iterate e over
the elements of E according to some arbitrary order and in each iteration do the
following. Set ω′(e) to be 2 and if optω′ = opt then set ω to be ω′ and otherwise
set ω′ to be ω. That is, ω(e) is changed only if optω′ = opt and otherwise remains
the same. After the iterative process is over set E′ = {e ∈ E | ω(e) = 1} and return
(opt, E′). Note that the total number of operations done is polynomial in the size
of G and so is the running time. To show that indeed this achieves our goal, we
only need to prove that E′ is a prime set of G.

Let us look at any fixed iteration over e. By definition ω is changed only if
optω′ = opt and then it is set to ω′. This implies that there exists E∗ ⊆ E such
that crω′(E∗) = opt. Now it can not be the case that ω′(e) = 2 for some e ∈ E∗,
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since this would imply that cr(E∗) > opt. Consequently, crω(E∗) = opt. This
is true for any fixed iteration and hence also for the last. Therefore, there exists
E′′ ⊆ E′ such that cr(E′′) = opt. Finally assume for the sake of contradiction that
E′′ ⊂ E′. Let e′ ∈ E′ \E′′. This implies that in the iteration dedicated to e′ we had
optω′ , opt. Since at this stage ω′(e) = 1 for every E′′ it must be that optω′ > opt.
Yet this can not be since the weights assigned to each edge by ω′ is at least as that
assigned by ω and hence at every iteration optω′ ≤ opt.

From here on in this section t = |P|, where P is the output of Algorithm 12
on input graph G, and the elements of P are named as they were named by Algo-
rithm 12, thus P = {P1, . . . , Pt}. In addition let E0 = ∅ and for each k = 1, . . . , t
let Ek = ∪k

i=1Pi and rk be the cut-rate of Pk in G \ Ek−1.

13.5.2 The output of Algorithm 12 is the prime partition

Proposition 13.19. There exists a least-core-imputation β such that E(β) = P.

Proof. Assume rt < opt, i.e., the last set returned in Algorithm 12 does not have
cut-rate of opt. Set ρ = 1∑t

i=1(t−i)|Ei |
and let β : E → R, where for each i = 1, . . . , t

and e ∈ Pi we have β(e) = (t − i)ρ. Observe that

∑
e∈E

β(e) =

t∑
i=1

xβi |E
β
i | =

t∑
i=1

ρ(t − i)|Eβ
i | = ρ

t∑
i=1

(t − i)|Eβ
i | = ρρ−1 = 1

and hence β is an edge-imputation. By definition Eβ
i = Pi for i = 1, . . . , t. We next

show that ri = opt for i = 1, . . . , t − 1. By Theorem 13.13 this implies that β is a
least-core-imputation.

Algorithm 12 selects P1 so that r1 = opt. Let k < t and assume that r j = opt

for every j < k. Hence by Fact 3 we have cr(Ek−1) = opt. Consequently rk ≤ opt

since otherwise by Fact 3 we get that cr(Ek−1) > opt. As Pk is not the last set
added to P by Algorithm 12, we have rk ≥ opt and hence it is the case that
rk = opt.

Now assume that rt = opt. The same argument as above works when rt = opt.
In this case, set ρ = 1∑t

i=1(t−i+1)|Ei |
and let β : E → R, where for each i = 1, . . . , t

and e ∈ Pi we have β(e) = (t − i + 1)ρ. ut
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We next show that P refines E(α) for every least-core-imputation α. We start
with a simple case that we use later on to prove the general result.

Proposition 13.20. If cr(E′) = opt for E′ ⊆ E then P refines {E′, E \ E′}.

Proof. If E′ = E then the proposition holds trivially. Hence we only need to prove
the proposition holds when E′ ⊂ E. We show that Pi ∩ E′ = ∅ or Pi ⊆ E′ for
every i = 1, . . . , t. Let k ∈ {1, . . . , t}. If E′ \ Ek−1 = ∅ then Pk ∩ E′ = ∅. Therefore
we only need to deal with the case that E′ \ Ek−1 , ∅. Assume this is indeed
so. By Proposition 13.19, we have ri = opt for i = 1, . . . , t − 1 hence by Fact 3
we get cr(Ek−1) = opt. Since also cr(E′) = opt, by Proposition 13.11, we have
optG\Ek−1 = opt and crG\Ek−1(E′ \Ek−1) = opt. We separate the proof into two cases
the first k = 1, . . . , t − 1 and in the second k = t.

Recall that Algorithm 12 selects Pk so that it is a prime-set in G \ Ek−1. So
now optG\Ek−1 = opt and crG\Ek−1(Pk) = crG\Ek−1(E′ \ Ek−1) = opt. Thus by Propo-
sition 13.11 either Pk∩ (E′ \Ek−1) = ∅ or Pk ⊆ (E′ \Ek−1). If Pk ⊆ (E′ \Ek−1) then
Pk ⊆ E′, and if Pk ∩ (E′ \ Ek−1) = ∅ then Pk ∩ Ek−1 = ∅ because Pk ∩ Ek−1 = ∅.

Assume k = t and for the sake of contradiction that E′ \ Et−1 , ∅. Since we
have shown that optG\Et−1 = opt and crG\Et−1(E′ \ Et−1) = opt it is the case that
G \ Et−1 has a prime-set that has cut-rate opt in G \ Et−1. This subset is strictly
contained in E \ Et−1 Proposition 13.11 implies that every prime set in E \ Et−1 is
strictly contained in E \Et−1. Hence, Algorithm 12 would have found a prime-set
E∗ ⊂ E \ Et−1 and added it to P. That is E∗ ∈ P. Yet this can not be since by
construction P is a partition of E. ut

Proposition 13.21. If γ is a least-core-imputation then P refines E(γ).

Proof. Let t = |E(γ)|. Recall that since γ is a least-core-imputation by definition
for i = 1, . . . , t − 1 we have crγi = opt. If t = 1 then the only set in E(γ) is E and
hence the lemma trivially holds. By Proposition 13.20 the lemma also holds when
|E(γ)| = 2. Assume by way of induction that proposition holds for any partition
S = {E1, . . . , Et−1} of E such that crG\∪`i=1Ei

(E`) = opt. Let S1 = {∪t−1
i=1Eα

i , E
α
t }

and S2 = {E1, . . . , Eα
t−2, E

α
t−1 ∪ Eα

t }. Note that if P refines both S1 and S2 then



222 13 Nucleolus of spanning connectivity games

it refines S. By the induction assumption, P refines S2. By Fact 3 we have that
cr(∪m−1

i=1 Ei) = opt and therefore P refines S1 by Proposition 13.20. ut

Theorem 13.22. The prime-partition exists and can be computed in time poly-

nomial in the size of G.

Proof. The theorem follows from Algorithm 12 and Proposition 13.21.

The prime-partition P reveals a lot about the structure of the least-core-
imputations. Yet by itself P does not give us a simple means for generating least-
core-imputations. Using the algorithm for findingP one can show that, depending
on G, there may be a unique element in P whose edges are assigned 0 by every
least-core-imputation.

Lemma 13.23. crG(E) , opt if and only if there exists a unique set D ∈ P such

that for every least-core-imputation α and e ∈ D we have α(e) = 0. If D exists

then it can be found in running time polynomial in the size of G.

Proof. From here on we shall always refer to the set D in Lemma 13.23 as the
degenerate set. In case it does not exist, D or {D} should be treated as if it was the
empty set.

If cr(E) = opt, then an edge-imputation that assigns equal weight to all edges
is a least-core-imputation and so there is no degenerate set.

We now prove that if cr(E) , opt, then the degenerate set exists, it is unique,
and can be found in running time polynomial in the size of G.

Assume that cr(E) , opt. By the definition of opt, this can only happen if
cr(E) < opt. Let β be a least-core-imputation such that E(β) = P and set t = |P|.
By definition, Eβ

t assigns strictly positive weights to the edges in each Eβ
i for

every i = 1, . . . , t − 1. Hence, the only candidate for being the degenerate set is
Eβ

t . We next show that this is indeed the case.
Assume for the sake of contradiction that there exists a least-core-imputation γ

that assigns strictly positive weights to the edges in Eβ
t . Let d = mini∈{1,...,t−1}{x

β
i −

xβi−1}/10 and set δ = (1−d)β+dγ (the choice of 10 is arbitrary). Observe that δ has
the same number of distinct weights as γ, and E(δ) = E(β) and we have Eδ

i = Eβ
i
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for i = 1, . . . , t. Let H be a minimum connected spanning subgraph of δ. Since
δ is a convex combination of least-core-imputations it is a least-core-imputation
and therefore, by Corollary 13.15, we have δ(H) = opt. We next get the required
contradiction by showing that δ(H) < opt.

Since E(δ) is a partition of E we have

δ(H) =

t∑
i=1

xδi |E(H) ∩ Eδ
i |. (13.24)

As δ is a least-core-imputation, by Theorem 13.13, we have crβi = opt for i =

1, . . . , t− 1 and hence crβt < opt, since otherwise, by Fact 3, we have cr(E) ≥ opt.
By Proposition 13.8, we have |E(H)∩ Eδ

i | = opt|Eδ
i | for i = 1, . . . , t − 1. Applying

this to (13.24) we get

δ(H) = xδt |E(H) ∩ Eδ
t | + opt

t−1∑
i=1

xδi |E
δ
i | . (13.25)

Now, since H is a minimum connected spanning subgraph, |E(H) ∩ Eδ
t | is the

minimum possible, which in this case is crδt |E
δ
t |. Since crδt < opt, we get that

crδt |E
δ
t | < opt|Eδ

t |. Thus, by replacing |E(H) ∩ Eδ
t | by opt|Eδ

t | in (13.25), we get

δ(H) < opt
t∑

i=1

xδi |E
δ
i | = opt ,

where the equality is because δ is an edge-imputation.
We now explain how to compute D. Once opt is known, one only needs to

check if |V |−1
|E| = opt. If the answer is yes, then there is no degenerate set; if the

answer is no, then D is the last set inserted to P by Algorithm 12. ut

See Figure 13.1 for an example of the prime-partition and the degenerate set.
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13.6 Parent-child relation

We use the prime-partition to define a special subset of the minimum connected
spanning subgraphs that we call the omni-connected-spanning-subgraphs, which
are useful for proving the characterization of least-core-imputations and their re-
finements.

Definition 13.24. A connected spanning subgraph H is an omni-connected-
spanning-subgraph if for every P ∈ P \ {D} we have

|E(H) ∩ P| = |P| · opt .

Proposition 13.25. There exists an omni-connected-spanning-subgraph.

Proof. Let β be a least-core-imputation such that E(β) = P. Let H be a mini-
mum connected spanning subgraph of β. Then by Proposition 13.8, we have that
|E(H) ∩ Eβ

` | = |Eβ
` |crβ` for every ` such that xβ` > 0. Since E(β) = P, by Al-

gorithm 12 we know that crβ` = opt for every ` such that xβ` > 0. Therefore,
for every P ∈ P \ {D} we have |E(H) ∩ P| = |P| · opt. By definition, H is an
omni-connected-spanning-subgraph. ut

The omni-connected-spanning-subgraphs are the set of the coalitions which
get the worst excess for any least-core-imputation.

Proposition 13.26. For every edge-imputation α such that P refines E(α) and

α(e) = 0 for every e ∈ D and omni-connected-spanning-subgraph H, we have

α(H) = opt.

Proof. Let H be an omni-connected-spanning-subgraph and α such that P refines
E(α) and α(e) = 0 for every e ∈ D. Thus for each P ∈ P there exists yP such
that α(e) = yP for every e ∈ P. Since P is a partition of E, we have α(H) =∑

P∈P yP|H ∩P| and as H is an omni-connected-spanning-subgraph also |H ∩P| =

|P|opt for every P ∈ P. Consequently,

α(H) =
∑
P∈P

yP|P|opt = opt
∑
P∈P

yP|P|.
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Now, as α is an edge-imputation and
∑

P∈P yP|P| = 1, with the above, we get
α(H) = opt. Now, if α is least-core-imputation, by Corollary 13.15, the value of
the game is opt and H is a minimum connected spanning subgraph of α. ut

The importance of omni-connected-spanning-subgraphs stems from the fol-
lowing scenario. Assume that P refines E(α) and α(e) = 0 for every e ∈ D, and
let H be an omni-connected-spanning-subgraph. By Proposition 13.26, we know
that α(H) = opt. Suppose we can remove from H an edge from E(H)∩P, where P

is a nondegenerate element of P, and add a new edge from another set P′ \ E(H)
in order to get a new connected spanning subgraph. Assume α assigns to the
edge removed strictly more weight than it assigns to the edge added. Then the
new connected spanning subgraph has weight strictly less than α(H) and hence
strictly less than opt, since α(H) = opt by Proposition 13.26. Consequently, α
is not a least-core-imputation and we can conclude that any edge-imputation β

that assigns to each edge in P strictly more weight than to the edges in P′ is
not a least-core-imputation. This intuition is captured by the following definition,
which leads to the characterization of least-core-imputations in Theorem 13.29.

Definition 13.27. Let P, P′ ∈ P \ D be distinct. Then P leads to P′ if and only

if there exists an omni-connected-spanning-subgraph H with e ∈ P \ E(H) and

e′ ∈ P′ ∩ E(H) such that (H \ {e′}) ∪ {e} is a connected spanning subgraph. We

denote the “leads to” relation by R.

Definition 13.28. An edge-imputation α agrees with R if P refines E(α) and for

every P ∈ P \ D that is a parent of P′ ∈ P \ D and e ∈ P, e′ ∈ P′ we have

α(e) ≥ α(e′), and for every e ∈ D we have α(e) = 0.

Theorem 13.29. An edge-imputation α is a least-core-imputation if and only if

it agrees with R.

Proof. Note that if |P| = 1 then the theorem trivially holds hence we assume
|P| > 1.

Let α be a least-core-imputation. By Lemma 13.23 we have α(e) = 0 for every
e ∈ D. Assume for the sake of contradiction that α does not agree with R. By
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Definition 13.17, we have that P refines α and hence since α does not agree with
R there exist P ∈ P\ {D} that leads to P′ ∈ P\ {D}, an omni-connected-spanning-
subgraph H, e ∈ E(H) \ P and e′ ∈ P′ ∩ E(H) such that α(e) < α(e′) and H′ =

(H \ {e′})∪ {e} is a connected spanning subgraph. Since H is an omni-connected-
spanning-subgraph and α a least-core-imputation by Proposition 13.26 we have
α(H) = opt. Thus α(H′) = α(H) + (α(e) − α(e′)) < opt. This is in contradiction
to Fact 13.15, which implies that α(H′) ≥ opt since α is a least-core-imputation.

Assume α is an edge-imputation that agrees with R. We next show that this
implies that α is a least-core-imputation.

Let m be the number of the strictly positive weights of α. Assume by way
of contradiction that α is not a least-core-imputation. By Theorem 13.13 this can
only happen if there exists i ∈ {1, . . . ,m} such that crαi , opt. Let ` be the smallest
element in {1, . . . ,m} such that crα` , opt. Let E′ = ∪`i=1Eα

i . We show next that
cr(E′) < opt. If ` = 1 then crα` ≤ opt since crα` is the cut-rate of E` in G. Thus in
this case E′ = E`, and the goal is achieved. Assume that ` > 1. By the minimality
of `, we have that crαi = opt for i = 1, . . . , ` − 1. If crα` > opt then by Fact 3 we
have cr(∪`i=1Eα

i ) > opt which is a contradiction to the definition of opt. Thus, as
crα` , opt we have crα` < opt and hence again by Fact 3 the cr(E′) < opt.

Let C1, . . . ,Cs be the connected components of G \ E′. Let H be an omni-
connected-spanning-subgraph and let H1, . . . ,Hr be the connected components of
E(H)\E′. Note that for each i ∈ {1, . . . , r} there exists a unique j ∈ {1, . . . , s} such
that E(Hi) ⊆ E(C j). For each j ∈ {1, . . . , s} set I j to be the set of all i ∈ {1, . . . , r}
such that E(Hi) ⊆ E(C j). Assume that s < r, we shall show afterwards that
this is indeed true. By the pigeon-hole principle there exists j ∈ {1, . . . , r} such
that |I j| > 1. Since C j is a connected component and H a connected spanning
subgraph of G there exist x, y ∈ I j and e = {u, v} ∈ E(C j) \ ∪

|I j |

i=1E(Hi) such that
u ∈ V(Hx) and v ∈ V(Hy). Since H is a connected spanning subgraph there is a
path in H between u and v this path contains edges not in E(C j) since u, v are
in different connected components of H \ E′. Thus this path contains an edge
e′ ∈ E′ since only edges from E′ connect the vertices of C j to the rest of the
graph. Consequently (H \ {e′}) ∪ {e} is a connected spanning subgraph of G. Let



13.6 Parent-child relation 227

P, P′ ∈ P be such that e ∈ P and e′ ∈ P′. By the above P leads to P′. Yet, this can
not be since α(e) < α(e′) and α agrees with R.

It remains to be shown that indeed s < r. By the definition of cut-rate the
number of connected components s in G \ E′ is cr(E′)|E′|, which is strictly less
than opt|E′|. Now as α agrees with R we know that P refines E′. Hence E′ is the
union of sets in P \ {D}. Consequently, by the definition of a omni-connected-
spanning-subgraph, we have E(H) ∩ E′ = opt|E′|. Hence r = opt|E′| because the
number of connected components in H \ E′ is the number of edges in E(H)∩ E′.
ut

By definition, there exists a least-core-imputation β with E(β) = P. By Theo-
rem 13.29, we have that β agrees with R and hence the following holds.

Proposition 13.30. The relation R is acyclic.

This allows us to define the acyclic parent-child relation, which is a simplifi-
cation of R and easy to find.

Definition 13.31. Let P, P′ ∈ P \ D be distinct. We say that P is a parent of P′

(conversely P′ a child of P) if P leads to P′ and there is no P′′ ∈ P such that

P leads to P′′ and P′′ leads to P′. We refer to the relation as the parent-child

relation and denote it by O.

The following is an immediate corollary of Theorem 13.29 and Definition 13.31.

Corollary 13.32. An edge-imputation α is a least-core-imputation if and only if

it agrees with O.

See Figure 13.1 for an example of an omni-connected-spanning-subgraph and
the exchangeability of edges between a parent and child. Corollary 13.32 de-
fines a linear inequality for each parent and child in the relation O. Along with
the inequalities that define a probability distribution on edges, this gives a small
number of two-variable inequalities describing the least-core-polytope.

Definition 13.33. We say that P ∈ P is an ancestor of P′ ∈ P if there is a chain

in O from P to P′.



228 13 Nucleolus of spanning connectivity games

Proposition 13.34. Let P∗ ⊆ P \ {D}, and P∗ ∈ P∗ and set E∗ = ∪P∈P∗P then

• cr(E∗) = opt if P∗ contains only P∗ and all its ancestors.

• If cr(E∗) = opt and P∗ contains an element that is not P∗ or one of its ances-

tors then it also contains such a P for which cr(E∗ \ P) = opt.

Proof. Set α : E(G) → R so that α(e) = 1
|E∗ | if e ∈ E∗ and α(e) = 0 otherwise.

Now α is an edge-imputation, P refines E(α) and Eα
1 = E∗, Eα

2 = E \ E∗ and
α(e) = 0 for every e ∈ D.

We now prove the first item. For any parent and its child if the child is in P∗ it
is either P∗ or one of its ancestors. Thus the parent is also an ancestor of P∗ and
hence is also in P∗. Consequently α agrees with O and hence by Theorem 13.29,
we have that α is a least-core-imputation. This in turn by Theorem 13.13 implies
cr(E∗) = opt.

We now prove the second item. Assume cr(E∗) = opt and P∗ contains an
element that is not P∗ or one of its ancestors. Then there exists P ∈ P∗ that is not
an ancestor of any other element in P∗. Since cr(E∗) = opt by Theorem 13.13 α
is a least-core-imputation. Hence by Theorem 13.13 α agrees with O.

Set β : E(G) → R so that β(e) = 1
|E∗ | if e ∈ E∗ and β(e) = 0 otherwise. Now

β is an edge-imputation, P refines E(β) and Eβ
1 = E∗, Eβ

2 = E \ E∗ and β(e) = 0
for every e ∈ D. The only way that β does not agree with O is if a child of P is in
P∗ \{P}, yet this can not be, since P is not an ancestor of any element in P∗. Thus,
β agrees with O and hence, by Theorem 13.13, β is a least-core-imputation. By
Theorem 13.13, this implies that cr(E∗ \ P) = opt.

Theorem 13.35. The parent-child relation O can be computed in time polyno-

mial in the size of G.

Proof. We show that for each P ∈ P \ {D} we can find all of the ancestors of P.
Once we know the ancestors of each element P \ {D} finding the parent of each
such element is easy. An ancestor P of P′ is also a parent of P′ if there does not
exist an P∗, that is neither P nor P′, such that P is an ancestor of P∗ and P∗ is an
ancestor of P′. Checking this for each pair element and each one of its ancestors



13.6 Parent-child relation 229

requires running time that is polynomial in the size of G. To achieve our goal we
use Proposition 13.34.

We next show how to find the ancestors of P′. Set P′ = P \ {D} and E′ =

∪P∈P′P. If there exists P∗ ∈ P′ such that P∗ , P′ and cr(E′ \ P) = opt remove it
from P′ and recompute E′. Repeat until no such element is found.

Note that this requires |V | repetitions each taking a polynomial time in the size
of G. Consequently, the running time is polynomial in the size of G.

When P = P \ {D} we have cr(E′) = opt because of the following. By def-
inition there exists a least-core-imputation β such that E(β) = P. Note that P′

is all the non-degenerate sets in E(β) and hence cr(E′) = cr(∪m
i=1Eβ

i ). By Theo-
rem 13.13 crβi = opt for i = 1, . . . ,m, where m is the maximal index such that
xβm > 0. Hence according to Fact 3 we have cr(∪m

i=1Eβ
i ) = opt.

Finally we show that at the end what remains in P′ is only P′ and all its
ancestors. The set P′ is never removed from P′. By Proposition 13.34 for any
ancestor P∗ of P′ it is the case that cr(E′ \ P∗) < opt and hence none of the
ancestors of P′ are ever removed. Also by Proposition 13.34 as long as P′ does
not contain only P′ and each one of its ancestors there exists a P∗ such that cr(E′\
P∗) = opt and hence such an element will be removed. Thus only P′ and each one
of its ancestors are never removed and consequently they are the only elements
remaining in P′ at the end of the process. ut

From Definition 11.34, we recall that a least-core-imputation α is a nucleolus-

like-imputation if the number of the coalitions with the worst excess is minimum
possible. First we show how to compute nucleolus-like imputations. To do this,
we use the relation O to characterize nucleolus-like-imputations. The nucleolus-
like-imputations are characterized by the following lemma.

The general idea of the proof runs as follows. First we show that for any α that
satisfies the condition of the lemma, every minimum connected spanning sub-
graph is an omni-connected-spanning-subgraph. Hence, using Proposition 13.26,
we get that for any α that satisfies the condition of the lemma, a connected span-
ning subgraph is a minimum connected spanning subgraph of α if and only if
it is an omni-connected-spanning-subgraph. These are the only such least-core-
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imputations, since any least-core-imputation that does not satisfy the condition
of the lemma has a parent and its child whose edges get the same weight. Conse-
quently, by the definition of parent and child, it has a minimum connected span-
ning subgraph that is not an omni-connected-spanning-subgraph.

Lemma 13.36. An edge-imputation γ is a nucleolus-like-imputation if and only

if γ(e) > 0 for every e ∈ E \ D, and for every P, P′ ∈ P \ {D} such that P is a

parent of P′ and every e ∈ P, e′ ∈ P′, we have γ(e′) > γ(e′′).

Proof. Let β be a least-core-imputation such that one of the following holds

1. There exists P ∈ P \ {D} that is a parent of P′ ∈ P \ {D} such that β(e) = β(e′)
for every e ∈ P and e′ ∈ P′.

2. There exist P ∈ P \ {D} such that β(e) = 0 for every e ∈ P.

We shall show that β has a minimum connected spanning subgraph that is not
an omni-connected-spanning-subgraph. Afterwards we shall show that for every
γ for which both conditions do not hold, every minimum connected spanning
subgraph of γ is an omni-connected-spanning-subgraph. According to Proposi-
tion 13.26, every omni-connected-spanning-subgraph is a minimum connected
spanning subgraph of γ, this means that such γ are the only least-core-imputations
that have the minimum possible number of minimum connected spanning sub-
graphs.

Assume the first condition holds for β. By the Definition 13.31 there exists an
omni-connected-spanning-subgraph H and edges e1 ∈ P\E(H), e2 ∈ P′∩H such
that H′ = (T ∪ {e1}) \ {e2} is a connected spanning subgraph. Observe that H′

is not an omni-connected-spanning-subgraph of β but is a minimum connected
spanning subgraph of β since β(H′) = β(H) = opt. Assume the second con-
dition holds for β. Let H be an omni-connected-spanning-subgraph. Recall we
assumed opt < 1 and hence as H is an omni-connected-spanning-subgraph we
have |E(H)∩ P| = opt|P| < |P| and therefore there exists e ∈ P \ E(H). Since H is
a minimum connected spanning subgraph of β by Proposition 13.26 and β(e) = 0
we also have H ∪ {e} is a minimum connected spanning subgraph of β. Note that
H ∪ {e} is not an omni-connected-spanning-subgraph.
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Let γ be some least-core-imputation for which the above two conditions do
not hold. That is, γ(e) > 0 for every e ∈ E \ D and P ∈ P \ {D} that is a parent of
P′ ∈ P \ {D} and every e ∈ P, e′ ∈ P′ we have γ(e) > γ(e′).

From here on let H be a minimum connected spanning subgraph of γ. We
next show that H is an omni-connected-spanning-subgraph. Let m be the number
of distinct strictly positive values of γ and set Pi = {P ∈ P | P ∈ Eγ

i } for
i = 1, . . . ,m. Note that by the definition of γ for every P ∈ P \ {D} there exists
i ∈ {1, . . . ,m} such that P ∈ Pi. Assume by way of contradiction that H is not
an omni-connected-spanning-subgraph. Let k be the minimum integer such that
there exists P ∈ Pk for which |H ∩ P| , |P|opt. Since H is a minimum connected
spanning subgraph and γ a least-core-imputation by Proposition 13.8 we have
|H ∩ Eγ

k | = opt|Eγ
k |. Since P refines E(γ) we also have |H ∩ Eγ

k | =
∑

E′∈Pk
|H ∩ E′|

and |Eγ
k | =

∑
E′∈Pk

|E′| and hence∑
E′∈Pk

|H ∩ E′| = opt
∑

E′∈Pk

|E′|

Therefore the fact that |H ∩ P| , |P|opt implies that there exists P′ ∈ Pk such that
|H ∩ P′| < |P′|opt. Let P′ be such a set.

Let E∗ be the union of P′ and all its ancestors (see Definition 13.33). We next
show that cr(E∗) = opt. Set α : E(G) → R so that α(e) = 1

|E∗ | if e ∈ E∗ and
α(e) = 0 otherwise. Observe that α is an edge-imputation, P refines E(α) and
Eα

1 = E∗, Eα
2 = E \ E∗ and α(e) = 0 for every e ∈ D. Now for any parent and its

child if the child is contained E∗ it is either P′ or one of its ancestors. Thus the
parent is also an ancestor of P′ and hence is also in E∗. Consequently, α agrees
with O and hence by Corollary 13.32 we have that α is a least-core-imputation.
This in turn by Theorem 13.13 implies cr(E∗) = opt.

Note that because of the strict weight inequalities, all the ancestors of P′ are
elements in one of the sets P1, . . . ,Pk−1. Thus for any ancestor P∗ of P′ we have
|H ∩ P∗| = opt|P∗|. Consequently, |H ∩ E∗| < opt|E∗| yet this can not be since
opt|E∗| is the minimum number of edges a connected spanning subgraph can
have in E∗. ut
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Using this characterization one can easily check whether α is a nucleolus-like-
imputation and one can also easily construct a nucleolus-like-imputation.

e1 e2

e3

e4

E1

E2

E3 E4

L3

L2

L1

Fig. 13.1. Prime Partition

Example 13.37. Figure 13.1 illustrates the prime-partition P = {E1, . . . , E5}. For
this graph, opt = 1/2. The set E1 = {e1, e2}, the set E2 = {e3, e4}, the set E3 is
equal to the edges of the left K4, the set E4 is equal to the edges of the right K4,
and the set E5 is equal to the edges of the K5. Suppose that least-core-imputation
β is such that E(β) = P, and Eβ

i = Ei for i = 1, . . . , 5. (There will be other least-
core-imputations with the same partition in which E3 and E4 exchange roles.) Re-
moving E1 from the graph creates one extra component by removing two edges,
so we have crβ1 = cr(E1) = opt = 1/2. Similarly we have crβk = 1/2 for all
k = 1, . . . 4. However, crβ5 = 4/10 < 1/2 and so the set E5 is a degenerate set,
as per Lemma 13.23. The Figure 13.1 shows the subgraph H indicated with solid
edges. It is an omni-connected-spanning-subgraph, using two edges from each
of the K4’s, one edge from the two edges that connect the two K4’s, and one
edge from the two edges that connect the two K4’s to the K5. Within the K5, an
omni-connected-spanning-subgraph can use more than four edges, as this K5 cor-
responds to the final element of the prime-partition with any strong linear order
and achieves cut-rate 4/10, which is worse than opt = 1/2. The edge e3 can be
replaced with the edge e1. Thus, the edges in the element of the prime-partition
containing e1 must have weight at least that of the edges in the element of the
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prime-partition containing e3. The right part of Figure 13.1 illustrates the partial
order O and its layers {L1, L2, L3}.

13.7 Nucleolus

We now show how to uniquely maximize the second worst excess of among
nucleolus-like-imputations. We are only interested in the case that opt < 1, since
the graph has opt = 1 if and only if it contains a bridge. It is easy to see that
bridges are the vetoers of the SCG and the nucleolus divides payoff uniformly
among the bridges. From here on we assume the following.

Assumption 1 opt < 1.

Before we prove how to compute the nucleolus, we need the following defini-
tions.

Definition 13.38. We define L1,L2, . . . inductively as follows. The set L1 is all

the sinks of O excluding D. For j = 2, . . . , we have that L j is the set of all the

sinks when all elements of {D} ∪ (∪i=1,..., j−1Li) have been removed from O.

Note that O is defined only over nondegenerate elements of P and hence the
degenerate set is not contained in any of L1,L2, . . . .

Definition 13.39. The layers L = {L1, . . . , Lt} of G are Li = ∪E′∈Li E
′ for i =

1, . . . , t.

The layers provide a way to partition the edges (except those in the degenerate
set). See Figure 13.1 for an example of layers.

The following theorem shows that there is a unique least-core-imputation that
maximizes the difference between the payoff of a worst-excess coalition and the
payoff of the second worst-excess coalition This unique least-core-imputation is
the nucleolus of the spanning connectivity game.

Theorem 13.40. Set

κ =
1∑t

i=1 i · |Li|
.
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The nucleolus ν has ν(e) = i · κ for every i ∈ {1, . . . , t} and e ∈ Li and ν(e) = 0
otherwise.

Proof. The main idea of the proof is that the weight of a connected spanning
subgraph with the second smallest weight is opt + κ, and this must be optimal
since all the weights are multiples of κ. For all other nucleolus-like-imputations
there is second lightest connected spanning subgraph with weight less than opt+κ.

Let H be an omni-connected-spanning-subgraph and t the number of layers.
Observe that

∑
e∈E

ν(e) =

t∑
i=1

i · |Li| · κ = κ

t∑
i=1

i · |Li| = κ · κ−1 = 1

and hence ν is an edge-imputation. Note that by definition P refines E(ν) and for
any e ∈ P ∈ P that is a parent of e′ ∈ P′ ∈ P we have ν(e) > ν(e′) and hence ν is
a least-core-imputation and specifically a nucleolus-like-imputation.

We now show that the weight of any coalition with the second worst excess is
opt + k. Afterwards we show that only ν is the only nucleolus-like-imputation for
which the weight of any coalition with the second worst excess is at least opt + k.

Let P ∈ P be such that P ⊆ L1. Since opt < 1 Proposition 13.8 implies
that there exists e ∈ P \ E(H). By the definition of ν we have ν(e) = κ. By
Proposition 13.26 ν(H) = opt and hence ν(H ∪ {e}) = opt + κ. Note that since
ν(e′) is a multiple of κ for every e′ ∈ E there does not exist a connected spanning
subgraph H′ such that opt < ν(H′) < opt + κ.

Let α be a nucleolus-like-imputation such that the second smallest weight of
a connected spanning subgraph is at least opt + κ. We shall prove by induction on
` that α(e) ≥ `κ for every e ∈ L` and every ` = 1, . . . , t. Since the only nucleolus-
like-imputation that satisfies this conditions is ν this implies that α = ν.

Assume for the sake of contradiction that there exists e ∈ P ∈ L1 such that
α(e) < κ. Since opt < 1 Proposition 13.8 implies that there exists e′ ∈ P \ E(H).
By Proposition 13.26 we have ν(H) = opt and hence because α(e′) = α(e) < κ

we get ν(H ∪ {e}) = opt + α(e′) < opt + κ. In addition as α is a nucleolus-like-
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imputation α(e′) > 0 and thus ν(H ∪ {e}) > opt. Yet the assumption was that for
α, any coalition with the second worst excess has payoff at least opt + κ.

Assume by way of induction that for `−1 we have α(e) ≥ (`−1)κ for every e ∈

L`−1. Assume for the sake of contradiction that there exists e ∈ P ∈ L` such that
α(e) < ` · κ. By the definition of L`, there exists P′ ⊆ L`−1 such that P is a parent
of P′. Consequently, there exists an omni-connected-spanning-subgraph H′, e′ ∈

P \ E(H′) and e′′ ∈ P′ ∩ E(H′) such that H∗ = (H′ \ {e′′}) ∪ {e′} is and spanning
tree of G. Observe that α(H∗) = α(H′) + α(e′) − α(e′′). By Proposition 13.26,
we have α(H′) = opt and hence α(H∗) = opt + α(e′) − α(e′′). By the induction
assumption, we have α(e′′) ≥ (` − 1)κ and therefore as α(e′′) = α(e) < ` · κ

we get α(H∗) < opt + κ. In addition as α is a nucleolus-like-imputation we have
α(e′) > α(e′′) and therefore ν(H∗ ∪ {e}) > opt. Yet the assumption was that for α,
any coalition with the second worst excess has payoff at least opt + κ. ut

13.8 Wiretap game

Never interrupt your enemy when he is making a mistake.

- Napoleon Bonaparte

However beautiful the strategy, you should occasionally look at the re-

sults.

- Winston Churchill

In this section, we formally define the wiretap game and discusss its connec-
tion to the SCG. The strategic form of the wiretap game is defined implicitly by
the graph G = (V, E). The wiretapper chooses an edge and the hider chooses a
spanning subgraph of G. The wiretapper receives payoff 1 (wins), if the edge he
chooses is part of the spanning subgraph chosen by the hider, and receives payoff

0 (loses) otherwise. Thus, the value of the game is the probability that the wire-
tapper can secure for wiretapping the spanning subgraph chosen by the hider. For
this reason we choose to write the game as a constant-sum, rather than zero-sum
game.
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The pure strategies of the wiretapper are the edges E and the pure strategies of
the hider are the set of spanning subgraphs S, with a typical element of S, which
is a set of edges, denoted by S .

We could define the wiretap game by only allowing the hider to pick spanning
trees. However, our defnition with connected spanning subgraphs allows a clean
connection to the spanning connectivity game. Also, this does not change the
nucleolus strategy of the wiretapper.

Let ∆(A) be the set of mixed strategies (probability distributions) on a finite
set A, and let Ia∈A be the indicator function that takes value 1 if a ∈ A and 0
otherwise. By the well-known maxmin theorem for finite zero-sum games, the
wiretap game Γ(G) has a unique value, defined by

val(Γ) = max
x∈∆(E)

min
S∈S

∑
e∈E

Ie∈S · xe = min
y∈∆(S)

max
e∈E

∑
S∈S

Ie∈S · yS . (13.26)

The equilibrium or maxmin strategies of the wiretapper are

{x ∈ ∆(E)|
∑
e∈E

Ie∈S · xe ≥ val(Γ) for all S ∈ P} . (13.27)

Playing any maxmin strategy guarantees the wiretapper to achieve a probability
of successful wiretapping of at least val(Γ). The equilibrium or minmax strategies
of the hider are

{y ∈ ∆(P)|
∑
S∈P

Ie∈S · yS ≤ val(Γ) for all e ∈ E} . (13.28)

Playing any minmax strategy guarantees the hider to suffer a probability of suc-
cessful wiretapping of no more than val(Γ). We have the following simple obser-
vation.

Observation 13.41 The set of imputations in the least core of the SCG(G) are

the maxmin strategies of the wiretap game Γ(G).

The problem of finding a maxmin strategy of Γ(G), defined by (13.26)
and (13.27), can be written as finding an x to solve
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Spanning connectivity game Wiretap game

player (edge) pure strategy of wiretapper
winning coalitions pure strategies of hider
imputation wiretapper’s strategy
least-core imputation maxmin strategy
nucleolus-like imputation maxmin strategy minimizing no. of best responses
nucleolus unique desirable maxmin strategy
1-ε1(x) min probability of successful wiretap using strategy x
ε1 coalition for imputation x best response to the maxmin strategy x
ε1 coalitions of nucleolus-like imputations best responses to every maxmin strategy

Table 13.1. Spanning connectivity game and the wiretap game

max z

s.t.
∑

e∈E Ie∈S · xe ≥ z for all S ∈ S

x ∈ ∆(E)

(13.29)

It is easy to see that LP 13.1 and LP 13.29 have the same solution and objective
function. Therefore a least core imputation of the SCG corresponds to a maxmin
strategy for the wiretapper in the wiretap game and the value of the wiretap game
is equal to the cr. Interpreted as a maxmin strategy in the wiretap game, the
nucleolus of the SCG game has the following desirable properties. A nucleolus-
like strategy is a maxmin strategy for the wiretapper which minimizes the number
of pure best responses of the hider. The nucleolus is the unique nucleolus-like
strategy which maximizes the gain in the probability of a successful wiretap if
the hider fails to play a best response. We summarize the relation between the
SCG and the wiretap game in Table 13.1.

13.9 Conclusion

We saw that although computing the Banzhaf values and Shapley values of the
SCG are #P-complete, computing the nucleolus is in P. The idea of a principal
partition which refines the player partition for other least core payoffs may be
generalized for other cooperative games. This kind of partition can give valu-
able information about the relations between the players. An interesting research
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question will be to characterize, compute or utilize the principal partition for
well-known cooperative games.

Just as there is a corresponding wiretap game for a SCG, a corresponding zero-
sum game can be formalized for any simple coalitional game. The maximizer
player in the zero-sum game chooses to ‘control’ a player whereas the minimizer
player chooses a secret winning coalition. The maximizer gets value one if his
controlled player is in the winning coalition chosen by the minimizer and gets
value zero otherwise. Just like in the wiretap game, the least core is a maxmin
strategy and the nucleolus is a highly desirable maxmin strategy.

There are a number of natural extensions to the wiretap game. The problem
changes if the wiretapper is allowed to pick multiple edges. If the number of
edges to be tapped is an input of the modified wiretap game, then it is interesting
to investigate the complexity of the problem.
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Concluding remarks

When a scientist says: “This is the very end, nobody can do anything more

here,” then he is no scientist.

- L. Gould

Not every end is the goal. The end of a melody is not its goal, and yet if a

melody has not reached its end, it has not reached its goal. A parable.

- Friedrich Nietzsche

Abstract In the thesis, open problems and conclusions for each chapter were dis-
cussed individually. In the final chapter, relevant broad research issues are briefly
mentioned.

In this thesis, the aim was to integrate approaches from theoretical computer
science, multiagent systems, social choice theory and cooperative game theory
with respect to simple games. Voting and resource allocation are activities not
only restricted to human societies. Virtual rational agents may also be present
in multiagent systems. Therefore, concepts from social choice theory and coop-
erative game theory were shown to be highly relevant in computer science and
multiagent systems. A key conclusion of the thesis is that the algorithmic lens
is fundamental in examining models and solutions in game theory. Also, com-
putational complexity is an important consideration in proposing solutions and
designing mechanisms. An algorithmic perspective in game theory promises to
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play a greater role as various game theoretic concepts are used in large multiagent
systems.

The contributions of the thesis range from theoretical algorithmic and compu-
tational results to practical implementations of algorithms and applied analysis
of real world social choice models. The thesis also partially or fully answers a
number of open questions regarding computation of cooperative game solutions
for simple games. In Part II, simple games were examined in detail from the per-
spective of algorithmic voting theory. This included the study of computing the
influence of players, classifying which WVGs are tractable and designing WVGs.
In Part III, we contributed to a growing line of work where computational com-
plexity is considered as a barrier to manipulations in voting systems. For many
cases, bounds of how much manipulation can help or harm were also presented
In Part IV, a broad survey of computational complexity of computing cooperative
game solutions for simple games was presented. Chapter 11 includes structural
results on cooperative game solutions for monotonic cooperative game. The re-
sults may shed light on computation of solutions for specific representations of
monotonic cooperative games. In Chapters 12 and 13, we also introduced and
studied a natural cooperative game on graphs called the spanning connectivity
game.

Throughout the thesis, conclusions and open problems have been mentioned
at the end of each chapter. We saw that in general, the computation of solutions
becomes easier as we scan the following list from left to right: Shapley-Shubik
index, Banzhaf index, nucleolus, Holler index, Deegan-Packel index, least-core
and core. It is an open question to construct a representation of a simple game,
where the complexity of computing the Banzhaf value is more than the complex-
ity of computing the Banzhaf index. Similarly, it is an open question to construct a
representation of a simple game, where the complexity of computing the Shapley-
Shubik index is more than the complexity of computing the Banzhaf value.

In the thesis, we restricted ourselves to coalitional games with transferable
utility. Coalition games with non-transferable utility have not been considered.
With respect to computational complexity of manipulation, we have considered
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worst case complexity. This may not be a sufficient safeguard against manipula-
tion in the average case. Further research in average time complexity for manip-
ulation in social choice is a recent and important direction of research.

An important assumption in the evaluation of power indices is that each coali-
tion has the same probability of forming. In reality, players have ideological pref-
erences or communication constraints. This may impact the actual voting power
of a player. Also, when we considered cooperative game solutions, we assumed
that the grand coalition forms and it is the value of the grand coalition which is
distributed among the players. Although, this is a natural assumption, it may not
be true in case players partition themselves.

In the thesis, we saw that computational complexity for coalitional games de-
pends on the representation of the game. There is much work to be done in de-
vising coalitional games which are not only expressive but also compact. One
possible direction is to use graphs as compact ways to represent dependencies
among players, forbidden coalitions or consistency orderings of political posi-
tions. There is scope to utilize the combination of graphs and WVGs to model
complex decision-making scenarios. Moreover, it will be useful to develop mod-
els which incorporate uncertainty of information such as values of coalitions in
the coalitional game. Some progress has already been made in that direction
(see for instance [110]). On the economics front, voting power theorists are still
grappling with the independence-of-players assumptions during the voting power
computation. In real life, players have varying preferences in forming coalitions
with different players. It is an interesting challenge for mathematical economists
to formalize this tension in a satisfactory way.

Another area of future research is the formulation of approximate notions of
cooperative game solutions. Computer scientists have come up with approxima-
tions of the Nash equilibria which may allow for easier computation. Future al-
gorithmic work in coalitional games promises to follow a similar methodology
where the trade-off between the quality of solution and computational ease is con-
sidered. Within the area of coalition formation, one direction for future work is
to study the computational complexity of forming stable coalitions. Although the
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different stability-based cooperative game solutions predict the coalition forma-
tion process, only recently have algorithmic aspects of coalition formation been
examined. Also, most of the work in equilibria convergence considers individual
players and not coalitions.

In most settings in cooperative game theory, it is assumed that the coalitional
game is already known and represented. However, it may be the case that the val-
ues of all coalitions are not known a priori. A relevant research problem is that of
learning a coalitional game while minimizing the number of queries. In general,
a coalitional game requires a query per coalition. However, when the coalitional
game contains some structure (like monotonicity) or belongs to a particular class
of coalitional games, there is a need to devise efficient algorithms to efficiently
construct the game exactly or approximately. The research will involve using the
latest tools from learning theory and applying them to cooperative game theory.

Part IV of the thesis examined problems of resource allocation on networks.
We considered settings where the value of each coalition is already known and
public. In many cases such as auctions, players and coalitions have private val-
ues. In resource allocation, there is a growing line of research on how to design
resource allocation where players have incentive to provide truthful valuations.
There is huge scope for further research on combinatorial optimization games
and cost sharing on networks. This will better inform us how to incentivize co-
operation in peer-to-peer settings and also how to share and price resources on
networks. This economics-driven approach is likely to make an impact in future
engineering and design issues in networks.
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MWVG Program

(Based on Chapter 5)



H∗:Mathematica Version:5.2, Package Version:1.10 ∗L

H∗:Name:Compute_Banzhaf _Indices _of _MWVG ∗L

H∗:Authors:Haris Aziz Hharis.aziz@warwick.ac.ukL ∗L

H∗:Summary: The program takes as input a multiple

weighted voting game with integer weights and quotas. It uses the

generating functions to compute the Banzhaf index of every player∗L

H∗:References: Computing power indices in weighted multiple majority games

by E.Algaba, Mathematical Social Sciences 46 H2003L pages 63−80.∗L

w = 885, 2, 1, 1<, 83, 2, 1, 1<<; q = 887<, 85<<;

Print@"weights: ", MatrixForm@wDD; Print@"quotas: ", MatrixForm@qDD;

m = Part@Dimensions@wD, 1D; Print@"There are ", m, " weighted voting games"D

n = Part@Dimensions@wD, 2D; Print@"There are ", n, " players"D;

Array@symmwithprevious, nD; symmwithprevious@1D = False;

For@i = 2, i < n + 1, i++, symmwithprevious@iD = True;D;

For@i = 2, i < n + 1, i++ , For@j = 1, j < m + 1, j++,

If@w@@j, iDD != w@@j, i − 1DD, symmwithprevious@iD = False;,DDD;

For@i = 1, i < n + 1, i++, If@ symmwithprevious@iD,

Print@"Player ", i, " has same weights as player ", i − 1D,

Print@"Player ", i, " does not have same weights as player ", i − 1D DD;

Bfunction = Product@1 + Product@x@iD^w@@i, jDD, 8i, 1, m<D, 8j, 1, n<D;

longBfunction = Expand@BfunctionD; Print@"Bfunction = ", BfunctionD;

Print@Array@x, mDD; maincoefmatrix = CoefficientList@longBfunction, Array@x, mDD;

Print@"CoefficientMatrix for the main GF is ", MatrixForm@maincoefmatrixDD;

For@j = 1, j < n + 1, j++ , b@jD = BfunctionêH1 + Product@x@iD^w@@i, jDD, 8i, 1, m<DL;

longb@jD = Expand@b@jDD; Print@"Generating Function of player ", j, "=", b@jDD D

kk = 8<; For@j = 1, j < m + 1, j++, kk = Append@kk, 8q@@j, 1DD + 1, Total@w@@jDDD + 1<DD;

winningmatrix = Take@maincoefmatrix, Part@kk, 1D, Part@kk, 2DD;

numofwinningcoalitons = Total@winningmatrix, mD;

Array@x, mD; Array@coefmatrix, mD;

coefmatrix@1D = CoefficientList@longb@1D, Array@x, mDD;

Print@"Coefficient Matrix of player", 1, " =", MatrixForm@coefmatrix@1DDD;

For@j = 2, j < n + 1, j++ , If@symmwithprevious@jD, coefmatrix@jD = coefmatrix@j − 1D,

coefmatrix@jD = CoefficientList@longb@jD, Array@x, mDD;D;

Print@"Coefficient Matrix of player", j, " =", MatrixForm@coefmatrix@jDDDD;

d = Table@0, 8m<, 8 n<D;

For@t = 1, t < m + 1, t++, For@i = 1, i < n + 1, i++, d@@t, iDD = q@@t, 1DD − w@@t, iDDDD;

e = Table@0, 8m<, 8n<D;

For@t = 1, t < m + 1, t++,

For@i = 1, i < n + 1, i++, e@@t, iDD = Total@w@@tDDD − w@@t, iDDDD;

For@i = 1, i < n + 1, i++, ll@iD = 8<;D;

For@i = 1, i < n + 1, i++, For@t = 1, t < m + 1, t++,

ll@iD = Append@ll@iD, 8d@@t, iDD + 1, Part@Dimensions@coefmatrix@iDD, tD<D;DD

Print H"Computing Small1 matrices"L;

small1@1D = Take@coefmatrix@1D, Part@ll@1D, 1D, Part@ll@1D, 2D D;

Print@"small1@", 1, "D = ", MatrixForm@small1@1DDD

example.nb 1



For@i = 2, i < n + 1, i++, If@symmwithprevious@iD, small1@iD = small1@i − 1D,

small1@iD = Take@coefmatrix@iD, Part@ll@iD, 1D, Part@ll@iD, 2D DD;

Print@"small1@", i, "D = ", MatrixForm@small1@iDDDD;

For@i = 1, i < n + 1, i++, sum1@iD = Total@small1@iD, InfinityD;

Print@"sum1@", i, "D = ", sum1@iDDD;

g = Table@0, 8m<, 8n<D;

For@t = 1, t < m + 1, t++,

For@i = 1, i < n + 1, i++, g@@t, iDD = Total@w@@tDDD − w@@t, iDD + 1;DD;

mm@1D = 8<; For@i = 1, i < n + 1, i++, mm@iD = 8<;D ;

Array@errorcheck, nD;

For@z = 1, z < n + 1, z++, errorcheck@zD = 0;D;

For@i = 1, i < n + 1, i++,

For@t = 1, t < m + 1, t++, mm@iD = Append@mm@iD, 8q@@t, 1DD + 1, g@@t, iDD<D;

If@q@@t, 1DD + 1 > g@@t, iDD, errorcheck@iD = 1;,D;D D;

For@i = 1, i < n + 1, i++, If@errorcheck@iD == 1, small2@iD = 8<,

small2@iD = Take@coefmatrix@iD, Part@mm@iD, 1D, Part@mm@iD, 2D DD;

Print@"small2@", i, "D = ", MatrixForm@small2@iDDDD;

For@i = 1, i < n + 1, i++, If@small2@iD == 8<, sum2@iD = 0,

sum2@iD = Total@small2@iD, InfinityDD; Print@"sum2@", i, "D = ", sum2@iDDD;

totalswings = 0;

For@i = 1, i < n + 1, i++, swings@iD = sum1@iD − sum2@iD;

totalswings = totalswings + swings@iD; Print@"swings@", i, "D = ", swings@iDDD;

For@i = 1, i < n + 1, i++, banzhafindex@iD = swings@iDêtotalswings;

Print@"Banzhaf Index of player", i, " is ", banzhafindex@iDDD;

vetoplayerlist = 8<;

For@i = 1, i < n + 1, i++, isvetoplayer = False; For@j = 1, j < m + 1, j++,

If@HTotal@w@@jDDD − w@@j, iDDL < q@@j, 1DD, isvetoplayer = True;, D D;

If@isvetoplayer, vetoplayerlist = Append@vetoplayerlist, iD;

Print@i, " has veto powers"D, Print@i, " does not have veto powers"DDD

Print@"Number of winning coalitions = ", numofwinningcoalitonsD;

weights: J 5 2 1 1

3 2 1 1
N

quotas: J 7
5
N

There are 2 weighted voting games

There are 4 players

Player 1 does not have same weights as player 0

Player 2 does not have same weights as player 1

Player 3 does not have same weights as player 2

Player 4 has same weights as player 3

Bfunction = H1 + x@1D x@2DL2 H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

8x@1D, x@2D<

example.nb 2



CoefficientMatrix for the main GF is

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Generating Function of player 1=H1 + x@1D x@2DL2 H1 + x@1D2 x@2D2L

Generating Function of player 2=H1 + x@1D x@2DL2 H1 + x@1D5 x@2D3L

Generating Function of player 3=H1 + x@1D x@2DL H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

Generating Function of player 4=H1 + x@1D x@2DL H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

Coefficient Matrix of player1 =

i

k

jjjjjjjjjjjjjjjj

1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1

y

{

zzzzzzzzzzzzzzzz

Coefficient Matrix of player2 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Coefficient Matrix of player3 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Coefficient Matrix of player4 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

small1@1D =

i

k

jjjjjj
2 0 0

0 2 0

0 0 1

y

{

zzzzzz

small1@2D =

i

k

jjjjjj
1 0 0

0 2 0

0 0 1

y

{

zzzzzz

small1@3D =

i

k

jjjjjj
1 0 0

0 1 0

0 0 1

y

{

zzzzzz

small1@4D =

i

k

jjjjjj
1 0 0

0 1 0

0 0 1

y

{

zzzzzz

example.nb 3



sum1@1D = 5

sum1@2D = 4

sum1@3D = 3

sum1@4D = 3

small2@1D = 8<

small2@2D = H 1 L

small2@3D = J 1 0

0 1
N

small2@4D = J 1 0

0 1
N

sum2@1D = 0

sum2@2D = 1

sum2@3D = 2

sum2@4D = 2

swings@1D = 5

swings@2D = 3

swings@3D = 1

swings@4D = 1

Banzhaf Index of player1 is
1
����
2

Banzhaf Index of player2 is
3
�������
10

Banzhaf Index of player3 is
1
�������
10

Banzhaf Index of player4 is
1
�������
10

1 has veto powers

2 does not have veto powers

3 does not have veto powers

4 does not have veto powers

Number of winning coalitions = 5

example.nb 4
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ε-core, 159

εi-coalition, 158

k-unbalanced WVG, 61

additive, 155

adjusted coalitional game, 181

alternative dominance condition, 63

amplitude of a WVG, 110

annexation non-monotonicity paradox, 130

Banzhaf index, 25

Banzhaf value, 25

bargaining set, 160

BENEFICIAL-BZ-ANNEXATION, 126

BENEFICIAL-BZ-MERGE, 126

BENEFICIAL-BZ-SPLIT, 122

blocking, 34

bridge, 194

characteristic/valuation function, 23

Chow parameters, 26

co-NP, 28

coalitional rationality, 156

Coleman’s power of the collectivity to act, 26

computational complexity, 27

connected spanning subgraph, 187

constant-sum, 155

CONSTRUCT-X, 163

convex, 155

cooperative game with transferable utility, 23

core, 159

cost of stability, 181

critical, 25

cut-rate, 204

decisive game, 25

Dedekinds problem, 15

Deegan-Packel index, 27

degenerate set, 222

desirability ordering, 40

desirability relation, 35

dictator, 38

dominance condition, 63

dual game, 34

dual-comparable game, 25

dummy, 38

efficiency, 156

EMPTY-X, 163

excess, 158

excess vector, 158

EXP, 28

extensive minimal winning form, 23

extensive winning form, 23

false-name manipulation, 117

feasible payoff, 158

FPT, 29

Functional Reliability Problem, 189
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Holler index, 27
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homogeneous game, 34

homogeneous payoff, 179
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individual rationality, 156
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Jagiellonian compromise, 91

kernel, 160

Kirchhoff’s matrix tree theorem, 197
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linear simple games, 35

matching game, 182

minimal winning coalition, 23
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multiple weighted voting game, 24
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NP-complete, 28
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parent-child relation, 227

Pareto optimal, 156
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passer, 38

passer-reasonable, 172
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prekernel, 161
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probabilistic Banzhaf index, 25

proper, 54

proper game, 25

pseudo-tree, 191

public good index, 27

Rational Reliability Problem, 189

reasonable representation, 50

reliability polynomial, 189

Safe Deposit Boxes problem, 140

self-dual, 136

series-parallel graph, 194

Shapley value, 26

Shapley-Shubik index, 25

Shapley-Shubik value, 25

simple coalitional game, 23

skill games, 51

solution concept, 156
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stable set, 160

strength of a graph, 201
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Subset-Sum Problem, 147
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superadditive, 155

superimputation, 181

swap robust, 35

threshold network flow game, 51

tolerance of a WVG, 109
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weighted voting game, 24
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