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Abstract

With increasing connectivity between humans and the rise of autonomous agents, group
decision-making scenarios are becoming ever more commonplace. Simultaneously, the re-
quirements placed upon decision-making procedures grow increasingly nuanced as social
choices are made in more niche settings. To support these demands, a deeper understand-
ing of the behaviour of social choice procedures is needed.

The standard theoretical approach to analyze social choice procedures is limited in the
type of question it can answer. Theoretical analyses can be rigid: It may speak to the
incompatibility of different properties without also providing a deeper understanding of
the properties themselves, or might stop at proving the worst-case outcome of a voting
rule without communicating the rule’s typical behaviour.

In this dissertation, we address these limitations by demonstrating that experimental
analysis of social choice domains can provide an understanding of social choice which is
both complementary and additional to theoretical findings. In particular, experimental
approaches can form a middle ground between theory and practice: more practical than
theoretical approaches in a setting more controlled than real-world application. We apply
this approach to a new form of delegative voting and to a task of learning existing and
novel voting rules. In each area we find results of a type and scale which are infeasible to
traditional analysis.

We first examine an abstract model of delegative voting — agents use liquid democracy to
transitively delegate their vote — in a setting where the voters collectively agree on a correct
outcome. Through extensive simulations we show the dynamic effects on group accuracy
from varying a wide range of parameters that collectively encompass many types of human
behaviour. We identify two features of this paradigm which result in improvements to group
accuracy and highlight a possible explanation for their effectiveness. Subsequently, we
apply this liquid democracy framework to the process of training an ensemble of classifiers.
We show that the experimental findings from our simulations are largely maintained on
a task involving real-world data and result in further improvements when considering a
novel metric of the training cost of ensembles.

Additionally, we demonstrate the creation of a robust framework for axiomatic com-
parison of arbitrary voting rules. Rather than proving whether individual rules satisfy
particular axioms, we establish a framework for showing experimentally the degree to
which rules general satisfy sets of axioms. This enables a new type of question — degrees of
axiom satisfaction — and provides a clear example of how to compare a wide range of single
and multi-winner voting rules. Using this framework, we develop a procedure for training
a model to act as a novel voting rule. This results in a trained model which realizes a far
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lower axiomatic violation rate than most existing rules and demonstrates the possibility
for new rules which provide superior axiomatic properties.
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Chapter 1

Introduction

Group decision-making procedures are increasingly prevalent in many settings, both among
humans and among virtual agents. From political elections and jury decisions [(8] to tour-
nament design [207] or resource allocation problems [102], diverse individuals with com-
peting interests must frequently arrive at a single aggregate decision. Every setting has
a unique combination of factors which affect the quality of a decision. When humans are
making a collective decision, their preferences may form many structures: from a contro-
versial, highly polarizing topic, on which different groups may have opposing opinions, to
less charged environments, where voters may exhibit little structure and collectively hold
a wide range of perspectives. In agent-based settings, agents have specific goals they for
which they optimize, such as identifying some globally best outcome, which they do nois-
ily; a decision procedure must optimally aggregate noisy agent votes to best estimate the
correct outcome [191].

Theoretical analysis has been used extensively to study problems such as these. Often
analysis will prove that certain intuitively bad outcomes are possible — a voting setting may
be prone to manipulation, or voters unlikely to identify some ground truth. Or, analysis
may show that good outcomes are impossible — the inability of any voting rule to guarantee
desirable properties or computation of an election winner in a reasonable amount of time.
Theoretical analysis has been well-suited to answer questions of worst-case behaviours
like these but is best suited to answering highly precise questions. These answers often
lie with pathological edge cases which do not inform about the average case. As social
choice is applied to settings with increasingly specific requirements it becomes increasingly
important both to understand the expected empirical behaviour of voting procedures, and
to optimize procedures for unique domains.

For many important types of question, experimental analysis allows us to better un-



derstand the actual performance of a voting procedure. Experiments give both a general
understanding of a system and enable highly specific questions by allowing a focus on
specific experimental variables. We demonstrate these benefits and possibilities of exper-
imental analysis across multiple unique applications of a variety of social choice domains.
By combining social choice with machine learning and optimization techniques we show
the synergy between the two fields.

In particular, this dissertation highlights the ability of experimental analysis to enhance
the state-of-the-art in both social choice and machine learning. Within that context, our
specific contributions range from demonstrating the benefits of delegative voting for epis-
temic settings to showing that concepts of delegation from social choice can be applied
during training classifier ensembles to developing a framework for measuring axiom viola-
tions of voting rules and showing that novel learned rules are able to outperform a wide
range of existing rules.

1.1 Thesis Statement

This dissertation studies the following hypothesis:

Experimental analysis using tools from the fields of social choice and machine
learning reveals novel understanding of these fields which are distinct from and
complementary to the findings of theoretical approaches.

We examine this hypothesis within the bounds of the following research questions,
which are explored throughout the remainder of this thesis:

1. Which population-level factors affect the ability of voters to identify ground
truth in a delegative voting setting?

(a) For voters with the same ability to identify ground truth, to what degree can
changes in voter behaviour affect the aggregate accuracy of a population of
voters?

b) What structural aspects of a setting affect a group’s accuracy?
p g group Yy

2. How can delegative voting be used to improve performance on machine
learning classification tasks?



(a) Can ensembles of classifiers be viewed as voters in a way that improves accuracy
on classification tasks?

(b) Does a social choice perspective of machine learning benefit ensemble learning
in any dimension beyond accuracy?

3. Can we learn about voting rules through experimental comparison of their
elected alternatives?

(a) Do existing voting rules exhibit previously unrecognized similarities?

(b) Do common classifications of voting rules meaningfully capture patterns in rule
behaviour?

(c) How can we experimentally evaluate the axiomatic properties of voting rules?

(d) How can we learn novel voting rules with desirable axiomatic properties?

1.2 Contributions
In this thesis, our research contributions include:

1. We conduct a thorough experimental analysis of liquid democracy in an epistemic
setting. Our experiments are the first to consider the many factors — preference
distribution, network type, delegation strategy, amount of delegation — that can
affect the truth-finding ability of voters in a delegative framework. We have shown
that the most important factor in improving a group’s ability to collectively identify
truth is avoid dictatorships. We show two effective novel strategies for achieving this:
(1) When voters are less likely to delegate to a voter with significant vote power, voter
power remains more uniform and accuracy is increased. (2) Incorporating a decay
factor which reduces the weight of each delegation at every hop that it travels. this
reduces the chance of developing long delegation chains which contain a large fraction
of all existing delegations.

2. We show that the epistemic benefits of liquid democracy frequently remain when
the framework is applied to an ensemble learning task. By viewing classifiers as
voters we are able to translate many existing results from social choice, including
liquid democracy, into a machine learning context. We show that the aforemen-
tioned method of using power-sensitive delegation mechanisms to avoid dictatorships
continues to perform very well.



3. We define a metric of measuring the cost to train a classifier and identify a novel
benefit of applying liquid democracy to an ensemble pruning task: dramatic reduction
in training cost as compared to naive ensembles.

4. We establish a robust framework for experimental, data-driven comparison of voting
rules which allows us to compare the axiomatic violations of single or multi-winner
rules for a large class of axioms. We use this framework to identify unexpected simi-
larities between individual voting rules and to measure the cohesiveness of standard
classes of voting rules.

5. We identify best practices for training a model to act as a voting rule and use novel
learned voting rules to demonstrate that existing rules can be significantly outper-
formed by new rules on our measure of axiomatic violations.

1.3 Thesis Overview

This thesis is presented across three primary research chapters. In addition to this intro-
duction, this document contains five additional chapters. We briefly describe the contents
of each chapter, and note which publication(s) the chapter corresponds with.

e In Chapter 2, we introduce the background necessary for all subsequent chapters. We
focus primarily on topics which have some bearing on multiple subsequent chapters.
Each subsequent research chapter relies on several topics discussed here, which are
briefly reviewed when relevant.

e In Chapter 3, we describe our work experimentally exploring the use of liquid democ-
racy for epistemic voting. We evaluate a number of delegation mechanisms, and
identify which factors are most influential to the change in group accuracy under a
liquid democracy setting.

e In Chapter 4, we extend our work on liquid democracy to a novel application in
ensemble pruning. We demonstrate the benefit of delegation for ensemble pruning
and determine in which settings liquid democracy has the most positive impact on
ensemble accuracy and training cost.

e In Chapter 5, we train models to replicate existing voting rules and to be novel voting
rules which provide desirable axiomatic properties. We identify new connections
between classes of voting rule and show that many voting rules perform poorly when
evaluated across a range of desirable axioms.
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e In Chapter 6, we summarize the main findings of our dissertation and outline a
number of avenues to consider in future work.

Much of the work contained in this thesis has appeared through some parts of the
following papers:

e (Chapter 3) Shiri Alouf-Heffetz, Ben Armstrong, Kate Larson, and Nimrod Talmon.
“How Should We Vote? A Comparison of Voting Systems within Social Networks.”
International Joint Conference on Artificial Intelligence. 2022.[6]

e (Chapter 3) Ben Armstrong, Shiri Alouf-Heffetz, and Nimrod Talmon. “Optimiz-
ing Viscous Democracy.” International Joint Conference on Artificial Intelligence.
2024.[9]

e (Chapter 4) Ben Armstrong, and Kate Larson. “On the Limited Applicability of
Liquid Democracy.” Appears at the 3rd Games, Agents, and Incentives Workshop
(GATW 2021). Held as part of AAMAS 2021. 2021. [12]

e (Chapter 4) Armstrong, Ben, and Kate Larson. “Liquid Democracy for Low-Cost
Ensemble Pruning.” (Extended Abstract) In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems. 2024. [10]

e (Chapter 5) Ben Armstrong, and Kate Larson. “Machine Learning to Strengthen
Democracy.” NeurIPS Joint Workshop on Al for Social Good. Held as part of the
33rd Conference on Neural Information Processing Systems. 2019. [11]

1.4 Application of Thesis

At the outset we wish to clarify how the work we present in this thesis should be interpreted.
The field of social choice research uses many politically-loaded terms such as “elections”
or “democracy.” Many aspects of social choice research can relate to ideas of political
philosophy and might form the basis of our current and future democratic systems. In this
thesis, we do not explore such applications. We emphasize that our work is focused on
exploring connections between social choice and empirical methods. Our work teaches us
about several existing forms of voting but we do not suggest that our results be directly
applied to human democracies.



Chapter 2

Background and Related Work

Our work operates at the intersection of social choice and machine learning. In this chapter
we introduce the concepts from each of these fields that are most important for understand-
ing and contextualizing our research.

2.1 Social Choice

Social choice is a field that broadly studies situations in which multiple agents must make
joint decisions. Our focus is on electoral settings where agents vote to select some winner
from a field of alternatives. However, social choice also studies topics such as fair division
and matching [39].

Within the voting branch of social choice there are a number of distinct avenues of
research, including topics such as:

¢ Voting to identify truth, or “epistemic” voting. When there is an objectively
correct outcome, groups of voters are often more effective at guessing the outcome
than any individual within the group. Condorcet began the ongoing study of jury
theorems showing under what conditions on individual voter accuracy and indepen-
dence of voters do groups of voters improve accuracy [161]. Condorcet’s original work
also addresses the task of maximum likelihood estimation; estimating the most likely
true state for voters sampled from a known distribution.

e Impossibility theorems and axiomatic analysis of voting rules. Axioms de-
scribe basic properties a rule might satify; Arrow’s famed impossibility theorem [13]
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started a line of research into impossibility theorems: each showing that a specific sets
of axioms cannot all be guaranteed by any voting rule. In other cases, a voting rule
may be shown to be the unique rule satisfying all axioms in a given set [153]. More
recently, calls for data-driven axiomatic analysis suggest that experimental frame-
works may enable answering analytical questions which are different from traditional
theoretical approaches [67].

e Structure of voter preferences and information given to voting rules. Vot-
ing rules may use ordinal or cardinal preferences. When voter preferences fit certain
structural requirements (e.g. being “single-peaked”) theoretical results, such as ax-
iomatic satisfaction, can change [75]. Many rules can be categorized by the data that
is required to fully determine the winner of the rule.

e Computational requirements of voting rules. For some methods of voting such
as the Kemeny rule, simply determining a winner is NP-hard [21]. Other research
studies the complexity of a voter manipulating the outcome by misrepresenting their
preferences or abstaining from an election [217].

Social choice uses the preferences of individuals as input to some function which forms
a group decision. These preferences can be in an absolute score-based form, i.e. a voter
assigns some intensity of preference to each alternative independent of other alternatives.
They may also be relative, i.e. a voter ranks each alternative only on whether the voter
prefers them more or less than other alternatives. In this work we focus primarily on ordinal
preferences, equivalently called ranked ballots. We say that each voter has some preference
order over alternatives which describes their relative preference for each alternative to win
some election.

More formally, given voters V' = {vy,vs,...,v,} and m alternatives, denoted A, each
voter v; has a preference order P; which is a total ordering over A. We write this as,

P:a=b=cw ..

This can be read as “v; prefers a over b, which is preferred over ¢, which is preferred
over ...” To indicate the specific rank in which an alternative is placed, we index P;:
Pi[1] = a,P2] = b,... or, generally, P;[j] = ¢ indicates that v; ranks ¢ in position j.
A collection P of preference orders of all n voters is referred to as a preference profile.
Figure 2.1 shows an example with the preferences of 4 voters. Let # ; denote the number
of voters in P that prefer a; to a; and #, denote the number of voters that rank a; as
their r-th favourite alternative.



vi:a-b=c—d vg:b=a>=cd
vgicr—d=a>b vw:b=a=c—d

Figure 2.1: Preference profile from four voters over four alternatives.

We consider only the setting where voters have strict preferences; however, another
common setting also allows for weak preferences, writing a = b to indicate that “a is
weakly preferred to b”; either a is preferred to b or a and b are ranked equally. Using these
concepts, we can define a social choice function which is a function mapping a preference
profile to a non-empty subset of alternatives.

Definition 2.1.1. A Social Choice Function (SCF) F : P — 24\ 0 is a function
mapping a preference profile P from n voters to a non-empty subset of alternatives A.

In common parlance, elections often result in a single winner yet our definition of a social
choice function allows for multiple winners. This is due, in part, to tie-breaking methods.
A function may consider multiple alternatives as equally valid winners. As a single winner
is typically required, tie-breaking becomes necessary. Two common approaches to tie-
breaking are referred to as lexicographic and random: lexicographic tie-breaking assumes
there is some underlying ordering of alternatives and selects as winner the tied alternative
which comes first in that order. Random tie-breaking selects a tied alternative uniformly
at random.

A Social Choice Function is resolute if it always returns exactly one winning alternative.
Any non-resolute SCF can be made resolute by combining it with a tie-breaking function.
We define a Voting Rule as this combination.

Definition 2.1.2. A Voting Rule is a resolute Social Choice Function F : P — A
mapping a set of preference orders P to a single winning alternative drawn from
alternatives A.

Voting rules are often categorized, based on similarities in their structure and the

information needed to compute their winners. We now introduce popular categorizations
of voting rules and describe specific examples of rules falling into each class of interest.

2.1.1 Positional Scoring Rules

Many voting rules fall into existing categories such as positional scoring rules, first described
by Young [233], which include several common rules.



Definition 2.1.3. A positional scoring rule is defined by a vector s of length m.
Each voter awards their i'" favourite alternative a number of points equal to s;. That
is, each alternative a € A receives a score of

SC(a,'P) = Z #Z;i © 55
1<i<m

The alternative receiving the most points is the winner of the election. Some well-
known scoring rules and their corresponding vectors are,

Plurality: s=(1,0,0,...,0)
Anti-Plurality: s = (0,0,...,0,—1)
Borda: s=(m—-1,m-2,...,0)

In these rules, each voter gives one point to their favourite alternative (plurality),
a point against the least favourite alternative (anti-plurality), and points decreasing
linearly with each voters ranking (Borda).

While an infinite number of positional scoring rules can be easily imagined, only a small
number are ever specifically discussed. However, those that are named, and the class itself,
receive a significant amount of attention [39, &, |. Each positional scoring rule can be
computed using only the score vector and the m x m Rank Matrix indicating the number
of voters that rank each alternative at each position.

Mpked =47 V1 <i,j<m

2.1.2 Fishburn’s Classification

Not all rules are positional scoring rules. Fishburn defined three classes of voting rule
which are distinct from positional scoring rules [89]. Each class can be loosely thought of
as requiring a different amount of information to determine winners.



C1 Rules

C2 Rules

C1 rules are also referred to as tournaments; they compute winners solely
based on whether a majority of voters prefer one alternative over another,
for all pairs of alternatives. The necessary information to compute a C1
function is encoded in the Majority Matrix, created by transforming
preference profile P into an m X m matrix M™a°MY indicating which al-
ternatives win a majority of pairwise comparisons. That is,

Mllrr}ajority _ {1 #Z;j 2 (%]
)

0 otherwise

Copeland’s rule is a C1 function; the score of each alternative under
Copeland can be determined purely be considering the number of pairwise
comparisons the alternative wins.

Definition 2.1.4. Copeland The score of each alternative a; is equal
to the number of alternatives it is preferred to by a majority of voters,

subtract the number of alternatives preferred by a majority over a;.
That is,

n n
Copeland(a;) = [{a; | #7., > S} = l{a; | #5., > 5]

The highest scoring alternative(s) win.

These are also referred to as weighted tournaments. Winners depend not
only on the number of pairwise competitions each alternative wins but also
the margin of victory. The necessary information to compute a C2 function
is encoded in the Weighted Majority Matrix, an m x m matrix M Weighted
indicating the number of pairwise comparisons each alternative wins. That
is,
ighted P ..
M =H#i V1 <4, 5 <m.

Borda’s rule, while also a positional scoring rule, is a C2 rule. Analysis
reveals that the score of each alternative a depends purely on the number

of voters preferring a; over other alternatives [39]. Brandt et al. show that
P P
sa: — Hra;sa; TN
i> >a;
SCBorda<ai7P) = Z Lt 9 ik
a; €A

The score of each alternative under Borda’s rule can be computed using
their margin of victory over other alternatives, making Borda a C2 rule.
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C3 Rules  Fishburn describes C3 rules as simply the rules which do not fit into either
of C1 or C2. In some cases, C3 rules require more information than C1
or C2 rules, just as C2 rules require strictly more information than C1
rules. Plurality and Anti-Plurality are C3 rules and (in some sense) seems
to use strictly less information than Borda’s rule. Both the majority and
weighted majority matrices are constructed using all pairwise comparisons
whereas Plurality can be thought of as relying on pairwise comparisons
between each voter’s first preference only, information that is not preserved
in either matrix.

We now step through an example showing, for each rule we have discussed, how winner
determination occurs. Despite all sounding reasonable, each of these rules can return
different results.

Example 2.1.1. Consider four voters choosing between alternatives A = {a,b,c,d}
with preferences as shown in Figure 2.1. We show the calculation of winners for each
of the social choice functions we have defined above.

Plurality: FEach voter gives one point to their favourite alternative; v, gives a point
to a, vy gives a point to ¢, vs and vy both give a point to b. Written as a vector of
points given to (a, b, c,d), plurality results in scores of (1,2,1,0) with b as the unique
winner.

Anti-Plurality: Each voter gives a negative point to their least favourite alternative.
This results in a results score vector of (0, —1,0,—3) with {a,c} as tied winners.

Borda: Voters give m — 1 points to their favourite alternative, decreasing linearly to
give 0 points to their least favourite. vy gives 3 points to a, 2 points to b, 1 point to c,
and 0 points to d. Considering all voters gives a results score vector of (8,8, 6,2) with
{a,b} as tied winners.

Copeland: We count the number of pairwise contests each alternative wins and loses.
a is preferred to b by 2 voters (no majority winning or losing); a is preferred to ¢ by 3
voters (a majority prefer a over b); a is preferred to d by 4 voters (a majority prefer a
over d) resulting in Copeland(a) = 2 — 0 = 2. The Copeland score of each alternative
is (2,2,1,0) and {a, b} are tied winners.

The winners of Plurality, Borda, Anti-Plurality, and Copeland given the preferences
in Figure 2.1 are below.

11



FPluraIity(P) — {b}

fBordéi(’])) = {a, b}
fCopeland(P) = {a, b}
]:Anti-PluraIity('])) — {a’ c}

If lexicographic tie-breaking based on the alphabetical ordering of alternatives were
to be applied to turn each SCF into a Voting Rule, FY"alit would elect b while all
other rules would elect a.

2.1.3 Multi-winner Voting

Thus far we have discussed voting when only one alternative is the winner. Many discus-
sions around voting carry with them this implicit assumption of a single winner. This is
not always the case. In many settings — electing a parliament, finding multiple recommen-
dations for a group, or identifying several “best” search results [138] — voters are tasked
with electing multiple alternatives where alternatives may be political candidates, menu
choices for a group meal, or websites as possible search results. Multi-winner voter rules
largely fall into three informal categories based on their intended goal(s) [36]:

e Individual Excellence: clecting alternatives which are popular as individuals with-
out considering which other alternatives are elected.

e Diversity: Electing alternatives which are preferred by a wide range of voters. i.e.
ensuring that, for as many voters as possible, there is some winning alternative that
they consider desirable.

e Proportional: Electing alternatives which, as a set, represent blocs of similar voters
in proportion to the size of the blocs.

A multi-winner voting rule F(P,k) € {C|C C A, |C] = k} elects a set of exactly k
alternatives with 1 < k < m. Multi-winner voting therefore serves as a generalization of
the standard single winner setting where £k = 1. In the literature, multi-winner rules are
often synonymously called committee rules [135]. The term committee highlights the focus
a rule may have on electing a set of winners which are collectively desirable rather than a
focus on electing individuals that are each popular.

Here we discuss several different types of multi-winner voting rule. We include some
illustrative examples but defer definitions of most of the multi-winner rules that we use to
Chapter 5.
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The first type of multi-winner rule we discuss is based on voter preference rankings,
as are all single winner rules we discuss. Within this class, are extensions of positional
scoring rules. Any positional scoring rule can trivially be converted to a multi-winner rule
by simply selecting the k£ highest scoring alternatives.

k-Borda: An extension of Borda to multiple winners. Each voter assigns m — 1 points
to their top ranked alternative, m — 2 points to their second ranked alternative etc.
FBorda returns the k alternatives with highest scores.

We also consider several rules that use a restricted view of voter preferences, the class
of approval-based rules. Approval-based multi-winner voting rules make use of a voters’
approval ballot App(v;) which contains their k highest ranked alternatives'. The set of all
approval ballots is Py, = (App(v1), ..., App(v,)).

Definition 2.1.5. Approval-Based Committee (ABC) voting rules are those rules
using as input only the approval ballot of each voter. An ABC rule is a function
F(Papp, k) which returns a set of k alternatives.

Monroe: Considers all ways of assigning each voter to one alternative in committee W,
such that every a € W is assigned to between | 7] and [7] voters. The score of W
is the number of voters assigned to an alternative that they approve. FMenroe gelects

the committee with the highest score.

Approval-based rules can be further subdivided by whether or not they are Thiele
rules. First described in 1895 by Torvald Thiele [212, |, Thiele rules are characterized
by some satisfaction function w which they aim to maximize. Thiele rules can consider
ranked ballots but are more frequently used in the approval domain (to which we restrict
our attention).

Definition 2.1.6. A Thiele rule F is characterized by a satisfaction function w :
N — R which scores sets of alternatives based on the number of alternatives in the set
which each voter approves. w is weakly monotonically increasing and has w(0) = 0.
F elects a set of winners which maximizes the score function [138]:

scorey(Papp, C) = Z w(|App(v;) N C)

v, EV

'We restrict our attention to the setting where voters approve of exactly their k favourite alternatives
as a simplifying assumption when generating preference data; however, our model naturally accommodates
the more general setting where each voter can approve differing numbers of alternatives.
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Proportional Approval Voting (PAV): Given committee C, define the PAV score of
the committee as

|CNApp(vi)] 1
SCPA\/<C) = Z Z 3
v, EV 7j=1
FPAY yeturns C* = argmax scpay(C). This rule aims to select alternatives such
that each voter approves of a similar number of elected alternatives. PAV is the
original rule described by Thiele [135]; the increased satisfaction each voter receives

for an additional winning alternative of which they approve follows the sequence of
harmonic numbers: 1,1, 3, ..., 2,. PAV is the Thiele method with w(z) = >°7_, +.
3=1j
We use multi-winner voting rules exclusively in Chapter 5. Except where explicitly
discussing the multi-winner setting we assume that voting rules elect a single winner.

2.1.4 Axiomatic Social Choice

The axiomatic approach to social choice focuses on identifying which voting rules satisfy —
or are uniquely described by — certain sets of properties known as axioms. In contrast to
the epistemic approach, which focuses on which voting rule is most likely to identify the
correct alternative, the axiomatic approach might recommend one rule over another based
on the properties that it satisfies. We provide only a brief overview of this topic as our
work only lightly touches upon axiomatic issues.

As an example, a well-known axiom, the Condorcet criteria, relies on the concept of a
Condorcet winner — a concept around which many voting rules are designed.

Definition 2.1.7. A Condorcet winner is an alternative which is preferred by a
majority of voters to all other alternatives when compared in pairwise competitions.

A voting rule F is “Condorcet consistent” (i.e. it satisfies the Condorcet criteria) if,
whenever the input preference profile P contains a Condorcet winner ¢, then F(P) = ¢
Some rules, such as Copeland or the Top Cycle, are known to satisfy the Condorcet criteria
while other rules such as Plurality and Borda do not satisfy it[39]. Certain axioms, such as
the Condorcet criteria, are often touted as intuitively “good.” Proponents of the axiomatic
approach argue that a voting rule should satisfy their preferred axioms in order to be
suitable for use in an election.

Research in this area typically focuses on impossibilities or necessities. Consider the
following three axioms:
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1. Unanimity (also called Pareto Efficiency): If all voters prefer alternative a over
alternative b then the output must also rank a over b.

2. Non-dictatorship: There is no voter v such that, no matter the preferences of other
voters, the output ranking always matches exactly the ranking of v.

3. Independence of Irrelevant Alternatives (IIA): Across two elections over the
same voters (with possibly different preferences) and alternatives, if each voter main-
tains the same ranking of a and b across both elections then both output rankings
must rank a and b in the same relative order.

Arrow’s Impossibility Theorem — a major contributor to Kenneth Arrow’s receipt of
the 1972 Nobel Prize — connects these axioms and began a line of inquiry which continues
to this day. Note here that a social welfare function is a function mapping a preference
profile to a complete ranking over alternatives.

Theorem 2.1.1 (Arrow’s Impossibility Theorem). No social welfare function can exist
which satisfies Unanimity, Non-dictatorship, and Independence of Irrelevant Alternatives.

Arrow’s theorem applies to only a specific setting with ranked preferences. Gibbard’s
proof of what is now typically called the Gibbard-Satterthwaite theorem develops a similar
impossibility theorem which applies to cardinal preferences [101]. Stated informally, Gib-
bard’s theorem states that there is no deterministic function mapping voter preferences to
a winning alternative which meets all of the following criteria:

1. There are at least 3 alternatives.
2. The function is non-dictatorial (as defined above).
3. The function is strategy-proof; no voter will be happier with the outcome if they

misrepresent their preferences.

Beyond impossibility theorems the other common application of axiomatic analysis is
to characterize a rule. We say that a rule is characterized by a set of axioms if the axioms
are mutually satisfied by only that rule. Many, though not all, rules are characterized by
some known set of axioms [154, 93].
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2.1.5 Epistemic Voting

Epistemic voting refers to the act of voting in order to uncover some underlying, objectively-
correct truth. This truth can come in two forms: knowable and unknowable. Voters may
answer questions such as “Which policy decision will maximize GDP growth over the next
6 months?” or “Is the defendant in this trial guilty?” In these cases, there is a single
correct option but it cannot be truly known. On the other hand, voters may also face
questions that have a verifiably correct answer: “Is this a picture of a dog?” or “How
many jelly beans are in this jar?”

Available records suggest that epistemic voting was first described by Ramon Llull in
the late 13" century with the concept experiencing a “modern” revival via Marie Jean
Antoine Nicolas de Caritat, Marquis of Condorcet (typically referred to simply by his
surname, Condorcet) in 1785 [87, ]. Llull and Condorcet independently invented a
method of determining the winner of an election based on pairwise comparisons. The
motivation of the method is to identify some underlying truth. Llull describes this as
electing “God’s candidate” — based on the idea that human preferences weakly reflect the
preferences of God and that the best aggregation method should maximize the probability
of reconstructing God’s preferences [37].

Much work on epistemic voting stems from Condorcet’s “Jury Theorem” in which jurors
collectively decide whether a defendant is innocent or guilty. Condorcet imaged jurors as
voters voting on the defendants guilt and showed that larger juries are more accurate.

Theorem 2.1.2 (Condorcet Jury Theorem). If n voters make decisions independently
and all have identical competence q > % which s their probability of selecting the correct
outcome, then the probability that the group selects the correct outcome increases mono-

tonically with n. As n approaches oo, the probability that the group is correct approaches
1.

A vast body of literature has expanded upon this simple theorem in several directions,
considering aspects such as the group size, independence of voters, and the uniformity of
voter competences [113]. Two important pieces of research inspired by Condorcet relax
the uniformity requirement and describe changing the weight given to each voter’s vote:
Kazmann showed that the jury theorem continues to hold if voters each have a different
competence, so long as every voter’s competency is greater than half [128]. Several inde-
pendent research groups have shown that group accuracy is maximized if each voter has a
weight proportional to a function of their competence. That is, the input of voter v; should

have weight proportional to log(lziq_) [199, , , 72].
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Epistemic voting can be seen more broadly as a question of maximum likelihood es-
timation, a branch of machine learning which we discuss further in Section 2.4.2. When
voter preferences noisily reflect an epistemically correct ranking, and the noise model is
known, then maximum likelihood estimation identifies which voting rule is maximally likely
to return the ground truth outcome.

In our work we use ordinal notation to encompass the epistemic setting. When voters
must choose between two alternatives A = {a¥,a”} with a¥ representing the correct
outcome and a~ a bad outcome, we can say that the preference order of a™ = a~ is the
epistemically correct order while a= > a* is the incorrect order. If each v; has some
competence level ¢; then v; has probability ¢; of having preference order P; : at = a™.

2.2 Voter Preference Distributions

When using a voting rule to aggregate preferences, it is often convenient to consider par-
ticular structures of preferences that voters may have, which we refer to as preference
distributions. Preference distributions typically aim to capture some aspect of human be-
haviour or provide a convenient framework for demonstrating mathematical results [156].

As a motivating example, Elkind provides two settings in which a group decision must
be made [75]: In the first example, a family of three must decide between three activities
and have preferences as follows:

vy ablke - ashop - qSWim

Vs ashop — qSWim . CLblke

Vg : qSWim — ablke . ashop

No matter the activity chosen, two of the three family members prefer one of the other
options. This situation might be thought of as corresponding to a uniform distribution
of preferences over the alternatives. On the other hand, we can consider the same family
deciding at what temperature to set their air conditioner. If each family member prefers
a different temperature, we can reasonably assume that everybody prefers a temperature
strictly closer to their ideal temperature more than a temperature further from their ideal.
This might lead to picking the mean or median of all preferences.

This assumption describes a type of preference referred to as single-peaked [29]. In-
formally, preferences are single-peaked if there is some shared ordering of alternatives and
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Figure 2.2: A map of elections generated by artificial preference distributions (left) and
empirical election data (right). Each dot represents the preferences from a single election.
Relative positioning of each dot shows similarity between each the preferences in each
election. See Boehmer et al. for the source of the image and a full explanation [35].

voters always prefer alternatives that are closer in the ordering to their favourite more
than alternatives further from their favourite. Single-peaked preferences are a very strong
restriction on general preference orders and are not suitable for modelling many domains.
When alternatives can be thought of as existing in a single dimension, such as temperature,
preferences are naturally described as single-peaked.

Different distributions are useful to social choice research in two ways: First, theoretical
results and properties change when considering a restricted preference domain. For exam-
ple, a Condorcet winner does not exist generally; however, there is always a Condorcet
winner (or tied “weak” Condorcet winners) under single-peaked preferences.

Second, from an empirical perspective, different preference distributions can be used
to model different applied settings where real-world data is limited. Boehmer et al. have
developed a “map” of elections which provides a visual intuition as to the similarities
between several types of real-world election data and many preference distributions which
we reprint in Figure 2.2. The left side shows the similarity between artificial preference
distributions, developed in earlier work by Szufa et al. [205], while the right side shows the
location of real-world elections mapped in the same underlying space [35].

In our work we explore the following distributions:

Impartial Culture (IC) Each voter is equally likely to have any one of the m!
preference orders, regardless of which orders any other voters have selected. IC is
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a statistical distribution which does not reflect human preferences but upon which
mathematical analysis is tractable [114].

Impartial Anonymous Culture (IAC) Preferences profiles are generated collec-
tively, rather than as individual preference orders. Each multi-set of preference orders
(i.e. a preference profile) is equally likely to be generated, making voter identities
irrelevant. This is in contrast to IC where each individual preference order is equally
likely to occur. For example, the profile {vy : a1 > ag,ve : as = aj,v3 : a3 = ag, }
is considered identical to the profile {v; : a3 > as,vs : a1 > ag,v3 : ay = ay,} as
the same preference orders occur, simply assigned to different voters. TAC provides
mathematical convenience rather than aiming to model human preferences [95].

Identity There is some reference ranking r and all voters have exactly r as their
preference order.

Mallows Preference orders are noisy copies of a reference ranking r, with noise based
on a parameter ¢ € (0,1). The probability of sampling a preference order ' is equal
to

;dﬂ(m’)

Z(¢,m)

Where (7, 7’) is the number of pairwise swaps between r and 7/, a.k.a. the Kendall
tau distance, and Z(¢,m) = (1+¢)- (1+ ¢+ ¢?)...(1 + ¢ + ... + ¢™ 1) is a normal-
ization constant. ¢ = 1 results in Impartial Culture while ¢ = 0 gives the Identity
distribution — preferences identical to the reference ranking. Mallow’s models aim to
roughly capture human preferences [117].

In our experiments we sample ¢ uniformly at random and use the re-parameterized
version of the Mallow’s model as described by Boehmer et al. which normalizes ¢
such that the distance from the reference ranking increases more directly with ¢ [35].

Urn Parameterized by a. All m! preference orders exist in an “urn.” Voters select
orders consecutively. After a preference order is selected, it is returned to the urn
along with « copies of the ranking. Urn models provide a convenient framework for
modelling many tasks but were not originally designed around human preferences

[74, 159).

In our experiments we use sample « from a Gamma distribution with shape parameter
k = 0.8 and scale parameter § = 1 as described by Boehmer et al. [35].

19



Single-Peaked Some global ordering of alternatives exists, i.e. alternatives can
be placed on some one-dimensional axis. Each voter has a favourite alternative
and prefers alternatives closer to their favourite over alternatives further from their
favourite. This model naturally captures empirical preferences in very limited set-
tings. We explore two versions of single-peaked preferences, named for their designers:
Conitzer [01] and Walsh [220].

The Conitzer Single Peaked distribution generates preference orders by selecting a
random position and adding alternatives to the left and right of that position, select-
ing each direction with uniform probability.

The Walsh Singled Peaked distribution instead uses a recursive procedure, select-
ing an alternative from either end of the global ordering with equal probability and
appending it to the single peaked distribution generated from the remaining alterna-
tives.

Euclidean Voters and alternatives are placed randomly within a topological space
and preferences correspond to the distance from each voter to each alternative. Eu-
clidean models aim to produce preferences similar to empirically observed preferences
[79]. There are several parameters defining the distribution:

— Shape: The topology of the space in which voters and alternatives are placed.
We use only Ball or Cube spaces. Each space has a width of 1.

— Dimension: The dimension of the space being considered. e.g. A Ball topology
with dimension 2 is a circle, dimension 3 is a sphere, etc.

— Randomness: Uniform or Gaussian. A voter or alternative is placed at a position
in the chosen space according to the chosen random distribution. Gaussian
distributions are centered in the middle of the space and have standard deviation
of 0.33.

Stratification Alternatives are split into two classes with the size of the first class
proportional to a weight parameter w € (0, 1). All voters rank all alternatives in the
first class above those in the second class and rank alternatives uniformly at random
within a class. Stratified preferences have been designed to provide a convenient
“extreme” distribution to compare with other distributions [35].

In our experiments we use w = [ % | in all cases.

Single-Crossing A single-crossing preference profile is one in which voters can be
arranged one-dimensionally on a line and for every pair of alternatives a,b there is
some point on the line where all voters left of the point have a > b and all voters to the
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right have b > a. Single-crossing preferences were originally created by economists
to model human preferences about income taxation [156, 76].

Group-Separable A preference profile is group-separable if, for every set of alter-
natives A’ there is some partition of A" = A} U A} such that every voter either prefers
all alternatives in A} over all alternatives in A), or vice-versa. Group-separable pref-
erences were originally developed as a distribution under which a ranking produced
by the majority rule satisfied transitivity, not to reflect human preferences [1241].

2.3 Liquid Democracy

Liquid democracy (LD) is a framework for delegative voting which has received much
attention from social choice researchers over the past 15 years [173]. Liquid democracy
operates independently from and is used in conjunction with an existing voting rule. Under
a traditional delegative voting scheme, a voter might delegate their vote to another voter
who is then required to vote on behalf of themselves and the voter who delegated [53].
Liquid democracy extends this to a transitive setting: If a voter receives a delegation they
may also delegate their vote and all of their received delegations. As a result, a voter’s
delegation may ultimately be transferred several times before being cast as a vote.

In the basic LD setting, each v; € V' begins with a weight w; = 1 and takes exactly one
of two actions:

1. v; delegates to some v; € V and wj is increased by w;.

2. v; participates directly in the voting system with an impact equal to w; (intuitively,
a weight of w; can usually be thought of as equivalent to w; unweighted clones of v;).

A delegation function d : V' — V captures this choice for each voter by mapping
voters to their delegates. d(v;) = v; indicates that v; delegates to v;. If a voter participates
directly, we say that they delegate to themselves. We refer to these voters as representatives
(much literature equivalently uses the term “guru” for these voters). The key distinction
between liquid democracy and other forms of delegative voting is transitive delegation.
That is, d(v;) may not refer to the voter that represents v; but may, instead, delegate their
vote and v;’s delegation. We identify the representative of v; through repeated application
of the delegation function until a self-delegation is reached, denoted d*(v;) = d(d(d(...))) =
v;.
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Delegations can be thought of as “flowing” from one voter to another (hence the term
liquid). To do this, we say that voters exist as nodes on some underlying undirected graph
G = (V, E). If G is not otherwise defined, we say that it is the complete graph. We model
delegations as flows on a directed graph D = (V,{(v;,v;) € E | d(v;) = v;}) induced by
the delegation function; each voter is a node and an edge from v; to v; exists if, and only
if, d(v;) = v;. The length of the shortest path from v; to v; is distp(v;, v;). If there is no
path from v; to v; then distp(v;,v;) = oo and distp(v;,v;) = 0. Throughout this work
we disallow any delegation that would cause a cycle in D.

Our work highlights a particular extension of liquid democracy which we introduce
here. Viscous democracy (VD) is a generalization of LD that reduces the amount of
weight transferred through delegation based on the distance the delegation travels. This
was originally introduced by Boldi et al. as a method of accounting for the fact that
delegations in LD are typically to trusted friends and, as a delegation travels further from
its source, that trust diminishes [37]. VD uses a parameter 0 < a < 1 called viscosity.
Each time that a delegation travels across an edge in the D its weight is scaled by a. As
a result, the weight of v; is:

w; =

distp(vj,v;) .
Z{v]- eV|d* (v;)=v;} ¥ otherwise

There are two special cases of viscosity that merit special attention: When a = 1,
the model reduces to the standard LD model; viscosity does not degrade the weight of a
delegated vote as it travels. When o = 0, delegations no longer transfer any weight and
each representative votes with a weight of 1. Figure 2.3 shows how representative weight
changes under three levels of viscosity.

While originally conceived of as a model for the decrease in trust across distances,
viscous democracy is also useful for managing weight. When many voters delegate, it is
common for a few representatives to receive a disproportionate number of delegations. This
can result in one or a few representatives effectively controlling the outcome of the election.
With a low « these representatives receive a significantly lower increase to their weight when
receiving delegations from afar; however, representatives receiving only a few delegations
are less affected. As a result, viscosity can increase the number of representatives whose
vote is able to change the outcome of the election and reduce these near-dictatorships.

Many additional variations of liquid democracy exist which explore alternative methods
of structuring delegations, aggregating ballots, and control over which delegations are
possible. The remainder of this section introduces recent work across the topics within LD
relevant to our work in Chapter 3 and Chapter 4.
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Figure 2.3: A delegation graph and representative weights under three values of viscosity.
vs and vg vote directly while other voters select a neighbour to receive their delegation. (a)
When a = 0, delegations have no effect. (b) When a € (0, 1) representatives receive less
weight from their delegators, decreasing the further a delegation has to travel. vs receives
0.25 additional weight from v; and 0.5 additional weight from vy, whereas both delegators
of vg are on hop away and contribute 0.5 weight. (¢) When a = 1 delegation weight does
not decrease as it travels and the model is equivalent to standard liquid democracy.

2.3.1 Epistemic Voting within Liquid Democracy

A great deal of work within LD focuses on an epistemic setting where there is a single
correct outcome. We specifically discuss this work separately from our broader, general
introduction to epistemic voting in order to maintain the cohesiveness of each section.

Definition 2.3.1. The group accuracy of a set of voters with competencies ¢q; and
delegation function d is

Q(V,d) = JIa]]1- o)

I=[5]5€R; €S j¢S

Where Ry = {{v; € V| d*(i) =i} | Vi, C V and }_, ., w; = I} contains all sets of

representatives with weight summing to [.

Kahng et al. were among the first to consider whether using liquid democracy in
an epistemic voting context could improve group accuracy [126]. Their main question is
whether there are situations in which liquid democracy will always be more accurate than
direct voting. In identifying their answer they focus separately on local vs centralized
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delegation mechanisms. Local mechanisms, where each voter decides for themselves where
to vote based only on a limited view of the entire population, are shown to not yield any
guaranteed improvement over direct democracy (the setting where every voter represents
themselves) under some minor assumptions, such as having voters never choose to delegate
to a voter less accurate than themselves. On the other hand, the paper presents an algo-
rithm for a centralized delegation mechanism that will always lead to a strict improvement
in accuracy.

The paper was directly responded to by Caragiannis and Micha who suggest that the
assumptions of Kahng et al. are too strong [52]. Specifically, they show that there are
situations in which achieving the accuracy-maximizing set of delegations requires voters
to delegate to less accurate neighbours. In fact, the specific set of voters and network
upon which they exist may be such that reasonable local delegation mechanisms such as
delegating to your most accurate neighbour could significantly reduce accuracy (e.g. this
would occur in a star network with the most accurate voter in the center and a large
number of slightly less accurate voters). This is the first paper to consider what they call
the Optimal Delegation Problem — that of finding the set of delegations which maximize
group accuracy. They show that, unfortunately, even approximating the solution to this
problem with low error is NP-hard.

More recently, Becker et al. [25] have considered this Optimal Delegation Problem
and continued the line of research from Kahng et al. [120] and Caragiannis and Micha
[52]. They strengthen the hardness results shown previously by considering particular
social network structures. They show that when the network is sparsely connected and
voters may suffer “misinformation,” i.e. may have accuracy lower than 0.5, the ODP
approximation bound becomes much looser. However, they also show that having voters
delegate to their most competent neighbour is optimal when the social network is strongly
connected. In our recent paper on viscous democracy, we extend the Optimal Delegation
Problem to include viscosity — where some weight is lost through delegation [9].

Outside the above series of papers ground truth voting with liquid democracy has also
been studied by Bloembergen et al. from a game-theoretic perspective [31]. They consider
a setting where voters get an amount of utility equal to the accuracy of their representative
if delegating, or equal to their own accuracy minus some small constant representing the
“effort” of voting directly. Voters play a game wherein their actions are to delegate to
some neighbour or to vote directly. The paper shows that in most situations this game has
a Nash equilibrium which will be reached through a series of best responses from voters.
Further, simulations show that best response updates typically reach equilibrium with only
a very small number of updates per voter. This model is extended by Zhang and Grossi
(discussed below) with a focus on how to measure the power of each voter [230].
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2.3.2 Delegation Mechanisms

Delegation mechanisms are functions that determine to whom a voter delegates. These
mechanisms can be either local (i.e. voters decide where to delegate based only upon
knowledge of their neighbours) or centralized (i.e. a central authority decides the delega-
tion of each voter). Centralized mechanisms have been criticized for potentially removing
agency from individual voters; however, their benefits have been made clear through sev-
eral papers. These were first formally discussed in Kahng et al.’s paper showing that
local mechanisms cannot guarantee an improvement in accuracy over direct voting while
centralized mechanisms can provide such a guarantee [120].

In our work, we consider both local and centralized delegation mechanisms, focusing
more heavily on local mechanisms, and divide the definition of a delegation mechanism
into two components. A delegator selection function identifies which voters will delegate,
while voters use a delegation probability function to determine where they will delegate.
We often define delegation probability functions in terms of the neighbours of a voter
in G: Ng(v;)) = {vj | (vi,v;) € E}, and the more competent neighbours of a voter:
N (vi) = {v; | (vi,v;) € E and q; > ¢;}.

Definition 2.3.2 (Delegation Mechanism). A delegation mechanisms is a tuple DM =
(g, p) consisting of two functions:

final

1. A delegator selection function g : 2V — 2V selects nfi"®! representatives who

will delegate.

2. A delegation probability function p : V xV — [0, 1] which accepts as input
two representatives v; and v; and determines the probability that v; will delegate
to v;.

For example, the mechanism we call Random Better which selects the least competent
voters to delegate to random neighbours more competent than they are, is defined as,
Definition 2.3.3. The Random Better delegation mechanism is (g"°st, prandom);
gt = K C Vst |K|=n™"and K = arg min Z i
v;EK
1 .
prand,better<v' U') — ) INT(v)] J e N+(Ui)
Y 0 otherwise
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In Chapter 3 and Chapter 4 we define several further delegation mechanisms which
explore the possible dynamics of delegation and address concerns about delegation, such
as those raised by Kling et al. [130] and Blum and Zuber [32], about the possibility that
excessive delegation may lead to harmful concentration of voter weight — effectively creat-
ing dictators. Golz et al. confirm this concern experimentally, but show that centralized
delegation mechanism can largely respect voter delegation preferences while also avoiding
dictatorships [105]. In their model voters delegate with some fixed probability and dele-
gators approve k possible delegations of which a centralized delegation mechanism selects
one with the goal of minimizing the weight of the most powerful voter after all delegations
are made. While approximating the optimal delegation mechanism for this problem turns
out to be NP-hard, it is possible in practice to develop a mechanism that dramatically
reduces the expected maximum weight when voters are required to approve of even just
k = 2 possible delegates.

A different approach to delegation is taken by Kotsialou and Riley who study two
delegation mechanisms from an axiomatic perspective [131]. In their model voters are able
to specify a ranking over all possible delegates and delegations are better viewed as a means
of educating voters for whom they should vote, rather than allowing someone to vote on
their behalf. This leads to an unusual model where a voter and their delegate may end up
supporting different alternatives. They first focus on a delegation mechanism similar to
the typical model where delegations flow from one voter to another, following each voter’s
highest preference which will not lead to a cycle, until reaching a representative. They
argue that a problem exists if a delegation chain exists containing 3 voters, p delegating
to ¢ delegating to s, where s is the second choice delegate for ¢ and ¢ is first choice for
p. Specifically, they show that this might lead to a situation where voters are incentivised
to not receive more delegations and, instead, to abstain from voting. They propose a new
delegation mechanism where, in the above situation, p would instead choose to delegate
to their second choice rather than to ¢ when ¢ (and subsequent downstream voters) are
unable to delegate to their first choice. This is shown to incentivise voters to participate
in the election as they will always benefit from acquiring more delegations.

2.3.3 Delegation Structure

In “typical” liquid democracy a delegation represents the complete transfer of one vot-
ers weight to one other voter other possibilities exist. For example, the typical idea of
delegation is most naturally applied to elections using the plurality rule; a vote is concep-
tually easier to transfer when it does not include rankings or other preference information.
However, a small number of papers have considered alternatives to this type of delegation.
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These alternatives have generally come in the form of approvals or rankings over neighbours
as possible delegates which are then turned into a single delegation by some centralized
mechanisms.

One exception to the above is given by Brill et al. who explored what happens when
voters make multiple delegations, not to vote but to inform their own preferences [12].
Voters begin with a partial preference order over alternatives and, for each incomplete
pairwise ranking of alternatives, delegate that preference decision to another voter. The
paper then explore the complexities this introduces by possibly resulting in non-transitive
preferences (e.g. through several delegations one voter may be told to prefer alternative a
over b, b over ¢, and ¢ over a) and various methods to maintain preference transitivity.

Brill et al. also explored a non-standard delegation structure more recently in a model
that requires any delegator to submit a preference order over all neighbours as potential
delegates [13]. The rankings are then converted to single delegations according to a variety
of novel delegation functions which are analyzed axiomatically. This paper concludes with a
novel simulation analysis of several measures of quality (average/max length of delegations,
average/worst delegation preference in use, etc).

GoOlz et al. studied a similar setting but with approvals, rather than rankings, over
possible delegates [105]. They attempted to use this information to minimize the maximum
weight of any representative in order to avoid dictatorships and maximize the power any
individual voter has. They connect the problem to literature on congestion minimization
in graphs and design an algorithm to approximate the optimal set of delegations given
approval information. In both theoretical and simulation results they find the ability
to dramatically reduce maximum voter power even when voters must approve of only 2
possible delegates.

A number of other papers have also discussed the idea of approving of neighbours as
possible delegates. However, in practice this tends to reduce to a simple delegation struc-
ture as it is possible to decide locally among the approved options rather than submitting
them to a central mechanism. For example, Kahng et al. discuss a delegation mechanism
where delegators approve of all neighbours more competent than themselves and pick one
to delegate to uniformly at random [126]. A similar use of approvals is also discussed by
Becker et al. [25].
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Kahng et al. (2018) [126] v o x o x Y x  ground truth, optimization
Kling et al. (2015) [130] x X v X X power, real-world
Brill and Talmon (2018) v x X X v pairwise delegation, preferences
[42]
Christoff and Grossi (2017) v x X X X cycles, binary aggregation
[57]
Golz et al. (2018) [105] v v o oXx v v approval, minimizing dictatorships,
graph flow
Bloembergen et al. (2019) v v X v X game theory, ground truth
[31]
Caragiannis and Micha v x X X X ground truth, optimization
(2019) [57]
Escoffier et al. (2018) [31] v o x X X x  preferences over delegations, game the-
ory
Kotsialou and Riley (2018) v x X v X axioms, incentivizing participation
[131]
Colley et al. (2021) [60] v X X v v generalizing LD, axioms, preferences
over delegations
Zhang and Grossi (2020) v v X v v power, game theory, simulation, ground
[236] truth
Becker et al. (2021) [25] v Vv X v X optimal delegations, simulation of
many delegation functions
Brill et al. (2021) [43] v v v v v/ preferences over delegations, axioms,
simulations
Halpern et al. (2021) [116] v X X v X analysis of delegation rules, ground
truth
Markakis and Papa- v x X v X approval delegation, minimizing dissat-

sotiropoulos (2021) [150]

isfaction

Table 2.1: A brief overview of the main liquid democracy papers relevant to our work.
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2.3.4 Representative Power

An emerging branch of research deals with measuring the distribution of power among
representatives and determining how much power a voter receiving some number of dele-
gations really has; for example, a voter receiving delegations from 10 distinct sources could
be considered more powerful than a voter receiving the same weight from a single source
as the second voter’s weight is more easily removed.

Kling et al. wrote the earliest paper with an explicit focus on power in liquid democracy
[130]. They analyzed real-world votes from the German Pirate Party using the LiquidFeed-
back software and found the existence of “super-voters” who they claimed had an outsized
amount of power. In their work they fit a number of existing power indices to the data
that they saw, including the Shapley, Banzhaf, Beta indices, and propose a new measure
which leads to lower error on their test data.

As discussed above, Viscous Democracy is able to reduce the weight that powerful
representatives have by not fully transferring all weight from a delegation [37]. The idea
was originally applied as a method of identifying influence in citation networks. In follow-
up work Boldi et al. use this principle of viscosity for music recommendation Boldi et
al. Since then no prior work has done a theoretical analysis questioning whether viscosity
might have any provable benefits in epistemic voting. Our work in Chapter 3 demonstrates
the benefits of viscosity for epistemic voting [9)].

More recently, a new measure of power has been developed by Zhang and Grossi [230].
They adapt the existing Banzhaf index to measure the influence of both representatives
and delegators then use their index to extend the game-theoretic model from Bloembergen
et al. [31]. They consider that when voters try to maximize their power in this model
a Nash Equilibrium only exists if voters are on a complete social network. They provide
simulations showing that the social network structure and degree to which voters are
motivated by gaining power has a significant effect on how many voters delegate and the
structure of delegations.

Many theoretical results about the concentration of voting power in a ground truth
setting are provided by Halpern et al. [116]. They consider a delegation function in which
the chance that a voter delegates to any neighbour is related to the competencies of the
voter and their neighbour and extend the positive gain and do-no-harm metrics considered
by Kahng et al. [126] to this probabilistic setting. Their primary result is to prove that
three broad classes of delegation function are likely to avoid significant concentration of
power under a wide range of settings.

Finally, one other paper has considered power in empirical settings. Fritsch et al. study
power distribution in three different decentralized autonomous organizations (DAOs) which
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use liquid democracy for their governance [95]. Voters in these DAOs hold special voting
tokens which correspond to their voting power. The paper shows a high inequality in the
distribution of these tokens (making the comparison that “the inequality in the general
distribution of wealth in the world is a lot lower”) and that between 8 and 18 voters hold
over 50% of the voting tokens in these systems. Thus far it has been very rare for powerful
minorities to vote against the less powerful majority.

2.4 Machine Learning and Optimization

The focus of our work is on showing that social choice can benefit from machine learning
(ML) and optimization techniques, and that these techniques can provide value to social
choice. Each project that we discuss uses different ML paradigms, each with their own pur-
pose and application domain. Here we introduce the most important ML and optimization
concepts that we use.

2.4.1 Equivalence of Classification and Voting

A vital component of our work is the equivalence of epistemic voting and classification. As
discussed previously, a voter in an epistemic setting does their best to vote for the correct
outcome and some aggregation function combines input from multiple voters. On the
other hand, ML classification involves a model observing some input features and making
a prediction about the class that corresponds with those features. There is (usually)
exactly one correct class for any given set of features. While social choice research more
often focuses on how to aggregate votes, machine learning research is more likely to focus
on how predictions are made.

Our work highlights the equivalence of these two settings. Classifiers making predictions
can be seen as a specific instantiation of an epistemic social choice model. When considering
classification of an entire dataset, this turns into multi-issue epistemic social choice. This
observation allows us to apply results and techniques from one area of research to the
other, as we do when using liquid democracy to generate ensembles in Chapter 4.

2.4.2 Voting as Maximum Likelihood Estimation

The area in which prior work has overlapped the most between social choice and machine
learning connects epistemic social choice with maximum likelihood estimation. This occurs
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when there is some correct ranking (epistemic voting) and voter preferences are some noisy
reflection of this true ranking. When the noise model of voter preferences is known, we can
compute the voting rule which is most likely to identify the true ranking — the maximum
likelihood estimate of the noise model [62].

Condorcet initiated this topic of study (without direct reference to statistics or machine
learning) by considering a noise model in which each voter ranks two candidates correctly
with probability greater than 0.5 [1G1]. Young subsequently identified the rule most likely
to identify the correct ranking under Condorcet’s noise model [234]. More recently, Conitzer
and Sandholm have found noise models for which many common voting rules are maximum
likelihood estimators [62]. Our work does not directly utilize the connection between
maximum likelihood estimation and voting; we discuss the topic as one which highlights
common ground between machine learning and social choice.

2.4.3 Machine Learning Models

We use three different machine learning models through this work, which we describe
below. Each of these models performs classification tasks — predicting a class label given
a specific set of input features (as opposed to regression, in which the model predicts the
value of a continuous function). Here we briefly introduce each model and describe some
relative advantages and disadvantages of the model. Of particular interest to our work,
and our decisions around when to use each model are two factors: the speed of training a
model, and whether a single model can undergo many rounds of iterative training building
upon previous rounds.

Decision Trees A decision tree consists of internal nodes which correspond to binary
conditions about an input feature, edges connecting each internal node to child nodes based
on the condition value, and leaf nodes which represent a class value. An input instance is
classified by evaluating the condition of the root node and recursively following the path
corresponding to the value of the node’s condition until a leaf node is reached. We use
decision trees for ensembles of classifiers in Chapter 4.

The example shown in Figure 2.4 depicts a simple classifier which separates input
features on two features: x and y. Input examples with both x and y greater than 2 are
put in class 1, while other examples are put in class 2.

The typical approach for constructing (i.e. training) decision trees centers on the con-
cept making nodes which maximally reduce “entropy” [184]. The entropy of a dataset
loosely measures how evenly split the data is between classes — if only one class is present
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(a) Decision Tree (b) Support Vector Machine

Figure 2.4: Example of a simple classification task using (a) a decision tree, and (b) a
support vector machine. In the support vector machine, a decision boundary (black line)
separates red and blue points by dividing space into two classes, similar to the decision
boundaries shown in the decision tree.

there is zero entropy and entropy is maximized when data is evenly split between classes.
For example, if 90% of examples in a training set can be classified by creating a node
with the value x > 2 while any other decision value would lead to a smaller reduction in
unclassified data, an algorithm is likely to create a node with the decision point of = > 2.
Decision trees are extremely fast to train; however, all common approaches require they
not have multiple rounds of training; if more data arrives or the underlying distribution
shifts and more training is required then the tree must be retrained from scratch.

Support Vector Machines In Chapter 4 we use Support Vector Machine (SVM) clas-
sifiers. A Support Vector Machine aims to find some hyper-plane that perfectly separates
training examples into their respective classes. The hyper-plane is constructed to have
maximal distance from each of the points closest to it. In two dimensions, this corresponds
to constructing a line which has all points of one class on one side and all points of another
class on another side.

A linear SVM attempts to do this by drawing a straight line (or hyper-plane in higher
dimensions). In many cases, including the example in Figure 2.4, this is not possible.
Two ideas make SVMs more practically useful: (1) allowing some misclassifications and
aiming to minimize misclassification error, and (2) using a kernel function which serves
to transform the underlying space in such a way that a straight line is more likely able
to separate the data into classes (equivalently, this can be thought of as constructing a
separator that is not linear) [65].
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The example in Figure 2.4 shows a setting where some kernel function must have been
used to transform the decision boundary so that it can perfectly separate the data. SVMs
can be trained quickly using stochastic gradient descent. They do not train as quickly as
decision trees; however, an existing SVM can pause and continue training. This is useful
for settings where there may be many rounds of training as new data arrives or the target
distribution shifts.

Neural Networks Neural networks are at the heart of the rise in visibility of artificial
intelligence that begin around 2012 [132]. Perceptrons, precursors to neural networks
were first built by Rosenblatt in 1957 [190]. Simple neural networks compose a large
number of perceptrons as nodes in inter-connected layers. Each node has some activation
condition that triggers an output based on the collective value of the inputs it receives.
The theoretical capability of neural networks to act as a general function approximator has
been known for several decades; however, not until recently has enough compute power
been available to train networks large enough to perform useful tasks (beginning with
image recognition in 2012 [132]).

Neural networks are trained by “backpropagation” which works by measuring the error
that a network has on some training examples, measuring how much the value of each
parameter inside the network contributed to that error, and adjusting the weights in a way
that should reduce error. A form of gradient descent is used to adjust the weights [222].
This procedure requires a large amount of time and data, but is highly effective at making
use of hidden structure in the underlying data. The process also lends itself to incremental
training; it is possible to update a trained network with new training data. We use neural
networks in Chapter 5 to learn functions similar to existing voting rules and to act as novel
voting rules.

2.4.4 Ensemble Learning

Ensembles in machine learning are an extremely thoroughly studied topic with many re-
search areas and subtopics. Here we aim to describe the fundamental nature of ensembles
as well as the specific subtopics relevant to our research.

On the surface, an ensemble can be viewed as a machine learning model with the same
interface as decision trees, SVMs, and neural networks: A user interacts with an ensemble
by training it and by asking it to make predictions on data. Structurally, an ensemble is
an aggregation of many individual machine learning models, all of which are individually
trained and themselves make predictions.
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The aspects of an ensemble which are of most interest to us are: (1) How ensembles
aggregate the output of individual classifiers into a single decision, (2) How ensembles
interact with the training of their models, and (3) Ensemble diversity. Polikar refers to
these topics as “the three pillars of ensemble systems” [175].

Combining Ensemble Members The most straightforward method of combining the
predictions of many classifiers is by a simple plurality vote. If ensemble members are all
considered equally important the output is the class which was predicted by most classifiers.
If some classifiers are given a higher weight than others, the class which receives the most
weight of predictions becomes the output.

While the plurality vote (usually called “majority vote” in ensemble literature [178]) is
effective, much work aims to improve upon it. This work focuses on two directions: using
information from a classifier beyond their prediction, and using different voting methods.

Many machine learning models are able to output not just a prediction but also a
confidence score in that prediction 2. Schapire and Singer demonstrated that using the
confidence of each classifier can improve accuracy in boosting algorithms [194].

As discussed previously, classification can be naturally phrased as a social choice task.
As a result, it becomes natural to use voting rules to aggregate ensemble output. Leon et al.
compared four voting rules (Plurality, STV, Borda, and Copeland) across ensemble types;
their results suggest that Borda and Copeland outperform other methods at aggregating
classifier outputs [113]. Campagner et al. found a less marked distinction between voting
methods in a similar experimental analysis which compared Plurality, Approval, Borda,
Copeland, and several existing ensemble methods [50]. A third paper along similar lines
uses Plurality, Borda, Copeland, and Kemeny voting rules. Through both experimental
and theoretical analysis they argue that Plurality and Copeland lead to the highest overall
accuracy [04].

Training Ensembles Members of an ensemble are often trained with the same under-
lying algorithm that would be used to train the model if it were not in an ensemble (e.g.
stochastic gradient descent for an SVM). However, the ensemble process frequently modi-
fies this algorithm slightly. Two common ensemble approaches are bagging and boosting,
which exemplify this idea of slightly modifying the standard training of a classifier:

2For an intuition around what confidence means consider the right-hand side of Figure 2.4. A classifier
might have low confidence on points near the decision boundary, since they have feature values similar to
points in the other class. The classifier might also have high confidence on points far from the decision
boundary since they are dissimilar from anything in the other class.
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Boosting - The first classifier is trained using an unmodified training algorithm. Sub-
sequent classifiers are trained with additional weight placed on examples that previous
classifiers misclassify. This makes the new classifiers more likely to classify those examples
correctly and often works well with models that have low accuracy. We compare our results
in Chapter 4 against Adaboost, perhaps the most well-known boosting algorithm [94].

Bagging - Each classifier is trained on a different random subset of the entire training
set. This works effectively as a method of avoiding overfitting when using classifiers that
have high accuracy [10].

Pruning is an ensemble technique typically applied after training individual models.
The core idea of pruning is simply to remove ensemble members that are not useful.
Zhou et al. proved that pruning weak members can improve the accuracy of ensembles
[238]. Since then, many pruning strategies have been explored. One survey divides most
approaches into ranking or search-based methods [192].

Ranking methods score each ensemble member based on some metric, often some com-
bination of diversity and accuracy, then greedily remove the lowest scoring members. A
ranking method might use factors such as uncertainty of individual classifiers [170] or the
similarity between classifiers [118, 22]to score ensemble members.

Search-based methods for pruning work by searching for a set of classifiers that should
remain in the ensemble. This search can take many forms: a heuristic estimation of the
strength of each set of classifiers [235], an evolutionary optimization task [132], or phrased
as an integer programming problem [235].

We are aware of only one paper which claims to apply pruning during the training
of individual classifiers in an incremental learning setting. Zhao et al. develop a method
of creating a new ensemble for each increment of data which is subsequently pruned to
reach a single final ensemble [237]. Their method achieves high accuracy but appears quite
resource-intensive; we focus on reducing the resources needed for an ensemble.

Diversity within Ensembles The drive for diversity in ensembles stems from the ob-
servation that if an ensemble is composed solely of several identical copies of the exact
same classifier, it would perform no better than the original classifier. On the other hand,
in order for classifiers to be perfectly accurate they must always make the same decision.
Thus, intuition suggests that classifiers in an ensemble should make decisions which are
dissimilar from one another but should become more similar as the classifiers become more
accurate.

Diversity can be realized in several ways, such as: using different underlying models,
using different parameters of the same model type (e.g. neural networks of different topolo-
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gies), or training models on different data. Bagging and boosting approaches can be seen as
ways of increasing diversity in targeted ways: e.g. boosting methods create new ensembles
with the goal that they produce a different output on the specific examples that previous
ensemble members misclassify. While diversity is useful for an ensemble, the extent and
type of diversity between classifiers that is useful is not well understood.

A precise measure of “useful” diversity remains unclear. In a survey article, Kuncheva
and Whitaker explore 10 different measures of diversity, based primarily on classifier out-
put. They find only mild evidence that any of their definitions of diversity are associated
with ensemble accuracy [134]. A similar review considers additional measures of diversity
and endeavours to categorize diversity measures in terms of what data is used to calcu-
late the measure (either a focus on bias, variance, and covariance, or on the “ambiguity
decomposition”) [14].

While hard to pin down concretely, the benefit of diversity can be demonstrated em-
pirically by approaches which generate ensembles by adding classifiers that are designed
to be highly dissimilar from the existing classifiers [111, 51]. This approach shows clear
improvements to the generalization of ensembles on unseen data.

2.4.5 Incremental Learning

Incremental learning is a mode of learning in which a model’s training data is divided into
multiple pieces which are learned on consecutively, rather than in a single training phase.
Here we introduce three motivations for learning incrementally:

1. When the complete set of training data is too large to fit in memory the data can be
loaded in batches and each batch learned separately.

2. When the distribution from which data originates changes over time a model may
need to continually train in order to maintain high accuracy. This setting is also
called continual learning [210].

3. When the training algorithm benefits from a continual learning process.

Our work concentrates primarily on the third motivation but is equally applicable
to all three points. The major focus of incremental learning algorithms is typically on
how the training algorithm must change; either to allow the underlying model to train
incrementally, or to optimally adapt training to a changing distribution in a way that
learns new information without forgetting previously-learned knowledge.
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Some ML training algorithms adapt naturally to many rounds of learning — such as
stochastic gradient descent, an inherently iterative algorithm [189]. On the other hand,
many decision tree algorithms such ID3 [181] and C4.5 [183] directly construct a tree based
on the entire dataset and are not well suited to incremental learning. Incremental variants
of decision tree algorithms exist but are not yet the most common or practical algorithms
for general use [57].

For this reason, our work using ensembles for incremental learning in Chapter 4 makes
use of decision tree ensembles in the non-incremental setting only and uses support vector
machines trained with stochastic gradient descent for incremental training. We also briefly
discuss the application of our work to a continual learning setting, where the distribution
of data changes over time. For that work we use ensembles of neural networks, also trained
with stochastic gradient descent [30)].

2.4.6 Simulated Annealing

Simulated annealing is a general purpose optimization algorithm inspired by the metal-
lurgical annealing process [129]. Simulated annealing can operate in any domain in which
the solution to the optimization problem can be represented as some location in space.
The algorithm begins in a random location and makes pseudo-random movements. New
locations are discarded in favour of keeping the old location based on a function of their
quality and a temperature value that decreases over time. Early in the process, new loca-
tions which are kept might reduce the solution quality. As temperature decreases, newer
locations are more likely to be kept only if they are an improvement. Simulated annealing
was originally proposed by Kirkpatrick et al. to find solutions to the NP-hard travelling
salesman problem. Similarly, we use simulated annealing in Chapter 3 for the NP-hard
task of optimizing delegations in liquid democracy.

We use simulated annealing, rather than any other common optimization technique
such as stochastic gradient descent, as the delegation optimization function is not easily
analyzable: computing both the exact value and the gradient of the group accuracy function
Q(V,d) is expensive, and we do not know whether the function is convex. Using a more
easily applicable optimization technique proved sufficient for our purposes.
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Chapter 3

Liquid Democracy for Ground Truth
Voting

Liquid democracy is often discussed in epistemic domains where voters collectively prefer
to elect some “correct” alternative. Prior research has developed theoretical results on
the impossibility of guaranteeing an improvement to accuracy from delegation; however,
little work has explored the dynamics of group accuracy under a range of experimental
settings. More directly: conceptual models with theoretical results abound, yet little
work highlights the actual efficacy of liquid democracy for epistemic voting. This chapter
demonstrates experimentally the performance of several forms of liquid democracy across
a broad spectrum of voter competencies and social network structures.

3.1 Introduction

Liquid democracy is often touted as a method of increasing voter engagement by reducing
the effort needed to participate in an election. If some fraction of voters prefer to dele-
gate rather than vote directly, liquid democracy aims to maintain democratic ideals while
respecting this preference. Many theoretical models explore novel ideas around a voter
using delegation to determine their individual preferences [12], allowing voters to express
delegations conditionally [60], or measuring the effective power that a voter has [230].

While the task of identifying delegations which optimize group accuracy in an epistemic
setting has been thoroughly analyzed theoretically, and found NP-hard even to approximate
[126, 52], it has received minimal experimental analysis. In this chapter, we demonstrate
experimentally the performance of several distinct methods of delegating. Each delegation
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method can be thought of as approximating some behaviour that a human voter might
exhibit while delegating, such as “delegate to the smartest person I know.” Alternatively,
delegation mechanisms might be viewed as behaviours prescribed to agents in a liquid
democracy setting and can thus impose arbitrary conditions, such as reducing the chance
of delegating to voters with high weight.

We show that even very basic delegation methods lead to significantly improved group
accuracy when compared with direct democracy. However, Golz et al. demonstrated that
weight concentration from such methods is significant [105]. Excessive concentration of
weight is often considered anti-democratic, as it results in a single (or a few) voters single-
handedly deciding the outcome of the election. If that single voter is always correct this
can benefit epistemic settings; however, if that voter may vote for an incorrect alternative
this can have very harmful effects [130]. Put differently: delegation improves accuracy by
finding a balance between the number of competent voters participating directly, and the
number of less competent voters who are removed from direct participation via delegation.
When too many voters are removed, the benefit of many voters (as shown by Condorcet’s
Jury Theorem [161]) disappears.

In order to mitigate the concentration of weight during delegation, we introduce a new
delegation mechanism which reduces the chance of creating a delegation that increases
weight centralization. As well, we extend Boldi et al.’s concept of “viscosity” to epistemic
voting. This causes weight to decay as it is transferred through delegation. Through
experiments across a wide range of social networks and voter competence distributions we
show that, while finding optimal delegations is impractical, we can very effectively improve
epistemic performance through the introduction of delegation. The novel contributions of
this chapter are:

o We demonstrate the behaviour of liquid democracy for epistemic voting across a wide
range of experimental settings (Section 3.4).

o We show that simple delegation mechanisms are able to significantly improve group
accuracy over the non-delegative setting of direct democracy (Section 3.4).

e We extend the basic model of liquid democracy to include “viscosity” and show that
viscosity is able to further improve group accuracy over the liquid democracy setting
by avoiding weight centralization (Section 3.5).

e We identify a delegation mechanism which improves group accuracy by avoiding
weight centralization (Section 3.5).
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Set of voters.

Total number of voters.

Set of alternatives: a™ is the sole epistemically correct alternative.
Competence of voter v; — chance that v; will vote for a™ over a.
Group accuracy; the chance that an election will result in a® win-
ning.

Viscosity; the factor by which weight of a delegation decreases each
hop that it travels.

Weight of voter 1.

The set of voters with non-zero weight; the representatives.

The social network upon which voters exist.

The length of the shortest path in G between v; and v;.

The neighbours of v; on G.

The neighbours of v; on G with strictly higher competence than v;.
Delegation function. d : V' — V indicates to which voter i delegates
their vote.

The subgraph of G induced by d; D = (V, {(v;,v;) € E|d(v;) = v;}).
Delegator selection function. g : 2" — 2V selects which voters will
begin to delegate in the current increment.

Delegation probability function. p: V' x V — [0, 1] gives the proba-
bility that the given representative will delegate to the voter given
as the second argument.

Table 3.1: Overview of notation most important throughout this chapter.

In total, we show that liquid democracy is a highly effective system for finding ground
truth. Viscosity is a broadly applicable extension of the liquid framework that significantly

mitigates the negative impact of excessive weight centralization.

3.2 Model

In this section, we review the concepts introduced in Chapter 2 which are applicable to
this chapter. Table 3.1 provides a reference of the notation used through this chapter.
We operate here in a setting of epistemic, ordinal social choice. Specifically, we consider
a setting with two alternatives A = {a*,a”} with a™ being the alternative which is uni-
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versally correct for all voters. We keep our definition of alternatives abstract; however,
this setting of two alternatives can be thought of as either two alternatives or a more
general abstraction where a* represents one of several good outcomes, and a~ represents
one of several worse outcomes. Across n voters V', each v; has some competence level g;
representing their ability make an optimal choice. In line with our ordinal setting, v; has
the preference order a™ = a~ with probability ¢;, and has the preference order a= = a™
with probability 1 — ¢;. We commonly say that v; “votes for” a™ with probability ¢;. Vot-
ers exist on some underlying social network which is represented by an undirected graph
G = (V, E). Each node is represented by a voter and edges between voters represent some
relationship between voters. As the graph is undirected, note that an edge between v; and
v; is equivalently represented as either (v;, v;) or (v;,v;). The neighbours of v; in G are de-
noted Ng(v;) = {v; | (vi,v;) € E'}. We also consider the subset of neighbours strictly more
competent than v;: NZ(v;) = {v; | (vi,v;) € E, ¢; > ¢;}. As well, distg(v;, v;) refers to
the distance of the shortest path between v; and v; in G, with distg(v;,v;) = 0. We
assume that we work with fully connected graphs so a path between any two voters always
exists.

May’s Theorem shows that any reasonable aggregation of preferences over two alter-
natives reduces to weighted plurality voting, where only a voter’s first preference matters
[153]. As our model always has two alternatives, we use weighted plurality voting to decide
on a winner. Correspondingly, each voter has some weight w; which represents their voting
power. In subsequent sections, we will find it convenient to refer to all voters with non-zero
weight; we denote these voters as W+ (V) = {v; | w; > 0}. Weighted plurality is the voting
rule which selects as winner the alternative which receives the most votes, as measured by
the sum of weight on ballots in which they are ranked first. That is,

FYP(P) = arg max Z w;

¢ {P,eP|P;[1]=c}

3.2.1 Voting Systems
This chapter explores how different conceptual ideas of setting voter weight and choosing

which voters should participate in an election affect group accuracy. Here we describe each
of the specific methods that we compare.
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Direct Democracy

Direct democracy is the setting where all voters vote directly and equally. Each voter has a
weight of 1 and votes for a™ with probability equal to their competence. This is equivalent
to the special case of liquid democracy where no voter delegates.

Liquid and Viscous Democracy

Viscous Democracy is a generalization of Liquid Democracy. We first describe the elements
common to both settings and subsequently elaborate on their distinction. In both cases,
each voter has two options:

1. A voter can delegate their vote to some neighbour in G. In most respects, this
removes the voter from the election (the exception being that they still receive and
transitively delegate the delegations of other voters).

2. A voter can participate directly as a representative. We model direct participation
as a self-delegation. Each representative votes for a® with probability equal to their
competence.

A delegation function d : V. — V maps each voter to their delegate. d(v;) = v,
indicates that v; delegates their vote to v;, who may delegate both votes further or may
vote directly. We use d*(v;) = d(d(d(...))) = v; to describe the repeated application of
d until a self-delegation is reached; d*(v;) is the representative of v;. Making delegations
involves a voter selecting one of the edges they are connected to in G which can be seen
as inducing a subgraph of G. We refer to this induced subgraph as a delegation graph
D = (V,{(vi,v;) € Eld(v;) = v;}). D is a directed subgraph of G induced by the delegation
function d.

The distinction between Liquid and Viscous Democracy arises in weight calculation.
Viscous Democracy is defined by a viscosity parameter o € [0, 1] which determines how
weight flows through the network. The weight of a voter v; is defined as,

Z{U]EVW (v;)=v:} adisto(vvi) - otherwise

That is, voters who delegate have a weight of zero while voters who participate directly
gain weight from each delegation they receive, including indirect delegations and their own
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delegation. The weight a representative receives from a delegator some distance h hops
away on the delegation graph D is equal to a”. Liquid Democracy is the special case of
VD where « is always set to 1, so the weight of a representative is simply the number of
delegations it receives.

Note that group accuracy is a function of sets of voters that sum to at least half of
total weight. As these sets may not change as voter weight changes, group accuracy is a
discontinuous function as « varies. As a result, Q(V') may have the same value for many
consecutive values of a. We refer to any value of o which maximizes group accuracy as o*.

3.3 Experimental Setup

The experimental results of this chapter are presented in Section 3.4 and Section 3.5. In
this section we describe the implementation of our experimental framework in detail beyond
what is described in our model. We present algorithms for estimating group accuracy and
for optimizing delegations, and outline the specific preference distributions and delegation
mechanisms used by voters. Each of the components described in this section is used in to
generate some of the results in the succeeding sections.

3.3.1 Estimating Group Accuracy

Exactly computing the group accuracy @) as stated in Definition 2.3.1 requires iterating over
all sets of voters with more than half of total weight and calculating the probability of each
particular set of votes occurring. We found this feasible on small scales but the equation
required a prohibitively large amount of time for large scale experiments. Instead, we
employ Monte Carlo simulation to estimate group accuracy [158] as detailed in Algorithm 1.
We do this by running many elections — each election involves sampling a vote from each
voter based on their competence — and reporting the fraction of elections in which voters
elect a™. In all reported group accuracy results, we are reporting the proportion of 1000
elections which elected a™. Comparison with exact computation of group accuracy on
small elections showed us that this method typically finds a value within 0.02 of the true
group accuracy.

3.3.2 Competence Distributions

In our experiments we select some distribution D from which we sample voter competencies,
so that for each v; € V we independently sample a value ¢; ~ D. We use the following
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Algorithm 1 Monte Carlo Group Accuracy Estimation
Input: V, A, K iterations
Output: Group accuracy @)
Initialize count_correct < 0
for k=1 to K do
Sample a vote a; from each voter v; € V
Compute the weight voting for a*: W+ = > w;

v, €V | aj=at

if W* > % then
count_correct < count_correct +1
end if
end for

Return count_correct

three families of distributions as implemented in SciPy [218]:

e Uniform distributions; U(a,b) refers to a uniform distribution with a minimum
value of ¢ and maximum value of b.

e Truncated Gaussian distributions; N (u, o) is a truncated Gaussian distribution
with mean of u and standard deviation of o. In all cases this distribution is truncated
to be in [0, 1].

e Truncated Exponential distributions; Fxp()) is an exponential distribution with
rate parameter \. As the exponential distribution does not provide an upper bound
on sampled values, whenever we sample a value greater than 1 we map the value
to 1. This leads to a mean value slightly lower than in the standard exponential
distribution, i.e p/ = L — <>

X X

3.3.3 Social Networks

In our experiments we consider two families of artificial network, both of which are chosen
for their similarity to existing real-world social networks.

e Erdés—Rényi (ER) networks use two parameters: the number of nodes n, and the
connection probability p. They are generated by initializing an empty network of
n nodes and independently inserting each possible edge with the fixed connection
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Delegation Mechanism Selection Function Probability Function

Direct gdirect plirect
Max gworst max
Random Better gWorst prand-better
Proportional Better gorst pprop-better
Proportional Weighted gvorst pprop-weighted

Table 3.2: The delegation selection and probability functions that define each delegation
mechanism used through this chapter.

probability p [80]. ER networks are small-world; they have a low average distance
between any two nodes.

e Barabasi—Albert (BA) networks use two parameters: the number of nodes n, and
attachment parameter m. Nodes are generated via a preferential attachment process
beginning with m fully connected nodes. The remaining n — m nodes are added one
at a time and connected to m existing node. The probability of a new node being
connected to an existing node is proportional to the degree of the existing node
[5]. BA networks are scale-free — their node degree distribution follows a power law,
resulting in many nodes with very low degree and few nodes with very high degree —
but are not small-world.

3.3.4 Delegation Mechanisms

Through this chapter we use each of the delegation mechanisms listed in Table 3.2. We
refer to Chapter 2 for a formal definition of, and more discussion surrounding, delegation
mechanisms.

Delegation Selection Functions

Definition 3.3.1. Delegator Selection Function slightly abuses notation and does
not return nfna! voters. Rather, g4**!(V, d) selects no representatives and returns ().

Definition 3.3.2. Delegator Selection Function g"°™!(V,d) selects the nfi®a! repre-
sentatives with the lowest competence:

¢t = K CV st |K|=n" and K = argmin 3 ¢

v, EK
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Delegation Probability Functions

Definition 3.3.3. The Direct Delegation Probability Function selects no delegates
and has all voters represent themselves. This is equivalent to the situation where
each voter delegates to themselves. Note that, when used with g?"*°t this function is
redundant as g4 does not select any new delegators.

. 1 v, =w;
direct 7 J
Vi, V5) = .
P ( j) {O otherwise

Definition 3.3.4. The Random Delegation Probability Function selects delegates
uniformly at random for new delegators.

random(vi’ Uj) — ) IN(vs)l v; € N(Uz)
0 otherwise

Definition 3.3.5. The Random Better Delegation Probability Function selects a
delegate for each delegator uniformly at random from neighbouring voters with strictly
higher accuracy [120].

1 +
prand,better(UA U') — ) INT(w)] vj € N (Ul)
19 - .
! 0 otherwise

Definition 3.3.6. The Max Delegation Probability Function has each voter delegate
to their most competent neighbour. In the case of multiple maximally competent
neighbours (not represented in the equation below), ties are broken lexicographically.

1 ¢; = max{q | vk € N(v;)}
0 otherwise

P v, ) = {

Definition 3.3.7. The Proportional Better Delegation Probability Function has
delegators select a more competent neighbour; however, the chance of delegating to a
given voter is directly correlated with the difference between their accuracy and that
of the delegator. Shown here are delegation probabilities before normalization.

95 —4qi +
GG e Nt(y)
e J i
pprop,better<vi7 Uj) x kaeN‘*'(vi) qk—qi
0 otherwise
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Definition 3.3.8. The Proportional Weighted Declegation Probability Function
returns delegation probabilities based on both the accuracy difference between dele-
gator and delegatee, as well as the weight of the representative ultimately receiving
the delegation. A lower weight leads to a higher delegation probability. Shown here
are delegation probabilities before normalization.

1 95 —9qi +
v; € NT ()
pprop,wnghted(Uh Uj) o Wd* (v5) ka€N+(vi) qk—q
0 otherwise

3.3.5 Simulated Annealing to Optimize Delegations

To find near-optimal sets of delegations we use simulated annealing to construct a dele-
gation graph. We do this using the procedure outlined in Algorithm 2, using the Python
simanneal library'. For each iteration, simulated annealing selects a random voter to make
a random delegation (replacing their old delegation, if it exists, or turning a delegator into
a representative through self-delegation). This delegation is kept if (1) it improves group
accuracy, based on a 100 iteration Monte Carlo accuracy estimation, or (2) the delega-
tion passes the probabilistic threshold based on difference from previous group accuracy
and temperature. Over the course of the algorithm temperature decreases, leading to a
lower probability of accepting delegations which reduce group accuracy. We refer to the
simanneal library for the fine details of temperature reduction.

3.4 Experiments: Accuracy within Liquid Democracy

In this section we study the question: “What factors affect group accuracy when using
liquid democracy?” We specifically explore the impact of voter competence distributions,
the chance that voters delegate and topology of the underlying social network. We show
here both our initial results highlighting that LD is frequently very beneficial to group
accuracy, and our exploratory experiments aiming to identify the factors that lead to this
benefit. The work in this corresponds to work we have published in IJCAI 2022 [6].
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Algorithm 2 Simulated Annealing to Optimize Delegations

1: Input: Set of voters V', social network GG, number of iterations K
2: Output: Delegation graph d
3: for k=1 to K do
4:  {Attempt to make a delegation.}
for _.=1to 50 do {}

v; < random voter from V

vj < random neighbour of v; in G U {v;}

if delegation_possible(v;,v;) then

delegate(v;, v;)

10: break
11: end if
12:  end for
13:  {Decide whether to keep delegation.}
14:  E™Y < monte_carlo_group_accuracy(V, A, 100)
15 if B > EM and exp(Z22E"Y) < random(0, 1) then

16: undo delegation !
7. else

18: keep delegation

19:  end if

20:  update temperature T’

21: end for

22: return d

3.4.1 Fraction of Representatives

We first explore how the level of voter participation in elections affects accuracy. This
addresses whether there can be “too much” delegation. Figure 3.1 shows the average over
10 trials of simulations increasing the fraction of voters participating directly. The left side
begins with 90% of voters delegating, decreasing to 10% delegating on the right side of the
figure. In each trial a new random network with average degree of 20 is generated. For
BA networks, we set m = 10 and in ER networks p = 0.20202 (p = 0.02002) for networks
of 100 (1000) voters. Voter competencies are sampled as follows for each distribution:

Uniform - Vv; : ¢; ~ U (0.3,0.7)
Gaussian - Vv, : ¢; ~ N (0.5,0.1)

ISimanneal can be found at https://github.com/perrygeo/simanneal
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Group Accuracy as Voter Participation Increases
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Figure 3.1: Group accuracy under each delegation mechanism as an increasing number of
voters participate directly. Direct accuracy is unaffected by the x-axis. Note that annealing
results are shown only for networks with 100 voters.

Exponential - Vv; : ¢; ~ Exp (2)

Discussion

Figure 3.1 shows clearly that whenever the fraction of active voters is low (corresponding
to the left side of the plots), the alternative voting systems are able to effectively improve
group accuracy. This effect hold in all cases but is amplified in settings with more voters.

Interestingly, whenever more than half of the voters delegate (i.e., the left half of the
figure) the accuracy achieved by Random Better is very close to that of Max delegations.
This means that even though Random Better only requires nonactive voters find a del-
egate who is more competent than themselves, it still is able to elicit the “experts” of
the network. Observe also that both Random Better and Max delegations achieve group
accuracy very close to that of the simulated annealing solution. Moreover, all methods
are significantly better than direct democracy. Lastly, note that due to the asymmetry of
Exponential distribution the differences described above are magnified. With Uniform and
Gaussian competence distributions, roughly an equal number of voters have competence
above and below 0.5. Under Exponentially distributed competencies, many more voters
have accuracy below 0.5 than above. In accordance with Condorcet’s Jury Theorem, this
leads to a group accuracy under direct democracy that approaches 0 as the number of vot-
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Group Accuracy as Voter Competence Variance Increases
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Figure 3.2: Group accuracy as the variance within voter competence increases while main-
taining a mean of 0.5. As variance increases, so too does the benefit to group accuracy
from LD. Note that annealing results are shown only for networks with 100 voters.

ers increases. However, this also means that some voters have extremely high competence.
Liquid democracy is able to effectively transfer weight to these highly competent voters.

Main takeaway from this experiment: Delegation can have a large positive effect on
group accuracy across network types and competency distributions.

3.4.2 Increased Variance in Voter Competence

We consider voters with high confidence to be analogous to “experts.” We now ask whether
the presence of many experts affects the benefits of delegation. We answer this question by
changing the variance of voter competence distributions. When there is a higher variance
for the same mean value, there are both more experts and more “non-experts.” Figure 3.2
shows the accuracy of each voting method averaged over 10 trials. Asin Figure 3.1, nodes in
each network have an average of 20 neighbours and an average competence of 0.5. However,
here we hold constant the chance of being a representative at 90% and increase the variance
in each voter’s competence. We consider 20 Uniform distributions with (upper, lower)
bounds evenly-spaced between U(0.475,0.525) to U(0,1), and 20 Gaussian distributions
with o evenly spaced between 0.05 and 0.5. As the Exponential distribution accepts only
a single parameter — which affects both the mean and variance — in this experiment we
consider only the Uniform and the Gaussian distributions.
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Figure 3.3: Group Accuracy (blue) during the simulated annealing process. As simulated
annealing proceeds, the weight distribution among representative approaches the optimal
weight distribution as shown by Grofman et al. [113]. The L2 distance between these two
distributions is shown in orange.

Discussion

While somewhat noisy, the benefit of “experts” arising from high competence variance is
clear in Figure 3.2. We see that in each method, other than Direct voting, group accuracy
increases as variance increases. This effect is noticeable despite only a small fraction of
voters not participating directly. This ability to utilize “expertise” appears key to the
ability of delegative methods to increase group accuracy over Direct voting.

Main takeaway from this experiment: Delegation allows “expert” voters to more than
make up for (in terms of group accuracy) voters with very low competence.

3.4.3 Optimizing Liquid Democracy with Simulated Annealing

We now explore the relationship between voter weights during the optimization of delega-
tions and the optimal weight distribution for independent voters in an epistemic setting.
Grofman et al. discuss the finding that, in a weighted majority voting system where voters
have independent competence values and vote independently, each v; should have a weight
proportional to w; loglfiqi[ |. To determine whether simulated annealing approaches
weights similar to optimal weights, we use the following process:

1. Calculate the normalized optimal weight for each active voter, %log(lf—iq) Y, €

i

W*(V). Sort the results in descending order and label the resulting vector as w”".

2. Calculate the normalized actual weight for each active voter, %wi Yo, € WH(V).
Sort the results in descending order and label the resulting vector as w*.
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3. Finally, calculate the L2 distance between each of the two weight vectors calculated
above, L2 = \/Zview+(v) (WP — wp)2.

We calculate the L2 distance between actual and optimal weights using the above
procedure after every 10 steps of simulated annealing. The average group accuracy and
L2 distance over 10000 steps of simulated annealing is shown in Figure 3.3 which reports
the average of 10 trials of this procedure. The figure shows BA and ER networks with an
average degree of 20 as well as a complete network, all networks have 100 voters and are
regenerated in each trial. Voters have competencies sampled from N(0.5,0.2).

Discussion

Each network type shows broadly similar results. As time proceeds, simulated annealing
tends to approach the optimal delegations. Interestingly, annealing does not monotonically
reduce L2 distance. While we hypothesize that high accuracy delegations with low L2
distance from optimal weight distributions do always exist, this experiment shows that
there are also delegations which have high accuracy and do not have a low L2 distance
(e.g. the region in the center plot of Figure 3.3 where the orange line increases beginning
at roughly 1000 steps into annealing).

Main takeaway from this experiment: The optimal weights discussed by Grofman
et al. naturally arise during the optimization of delegation. Future delegation methods
could attempt to establish weights similar to these directly in order to improve accuracy.

3.5 Experiments: The Benefit of Viscosity

In Section 3.4, simulated annealing was able to identify delegation graphs with much higher
group accuracy than either delegation method. While simulated annealing is useful, it does
not provide a delegation mechanism under which we can explore the dynamics of group
accuracy. It does; however, suggest the potential for new delegation mechanisms which
improve upon Max and Random Better delegations. To that end, we have developed
two new delegation mechanisms — called Proportional Better and Proportional Weighted
— which we explore here in conjunction with the addition of viscosity. In this section we
show the benefit of these additional delegation methods and argue that viscosity should
be an integral component of liquid democracy. This section contains work published at

1JCAT 2024 [0].
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Figure 3.4: A Stars and Chains delegation graph with s = 2 star components, with ny, = 3,
and ¢ = 1 chain component with a size of n. = 5. Each node represents a single voters;
blue nodes delegate while red nodes vote directly.

Except where otherwise stated (i.e. Figure 3.6) experiments in this section use a more
limited variation of parameters, focused on settings where voters are likely to delegate. We
set each voter’s chance of delegating at 80%. We use 100 voters, ER networks have an
connection probability of p = 0.1 while BA networks use m = 10. Note that this leads to a
different average degree between network types, however results remain broadly the same
across network types. Each experiment samples competence values from each distribution
at 9 different mean values spaced evenly between 0.1 and 0.9:

e Uniform distribution: U(a, a + 0.2) for a € {0,0.1,...,0.9}.
e Gaussian distribution: M (p, 0.05) for p € {0.1,0.2, ...,0.9}.

e Exponential distribution with A € {0.1,0.2,...0.9}.

3.5.1 Stars and Chains Delegation Graphs

In order to demonstrate the properties of viscosity, we develop a family of delegation
graphs.

Definition 3.5.1. A Stars and Chains (SC) delegation graph is composed of s
small star components each with ny — 1 delegators and 1 representative, and c large
chains with n. — 1 delegators. Representative in an SC graph are located at the center
of the stars and at one end of the chains. Representative in star and chain components
have competence Ceomp and Scomp, respectively.

For our purposes, we typically consider only graphs where each chain component has
more voters than are in all star components combined, that is n. > sng (typically we have
considered settings where n, = sng + 1 but this is not required). Figure 3.4 visualizes a
simple SC delegation graph.
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Figure 3.5: A Stars and Chains delegation graph with s = 2 star components, with ny, = 2,
and ¢ = 1 chain component with a size of n. = 5. Each node represents a single voters;
blue nodes delegate while red nodes vote directly.

3.5.2 Calculating and Reporting o*

We denote the value of a which maximizes group accuracy under viscous democracy as
a*. Group accuracy is defined in terms of sets of voters able to form a majority of weight.
Thus, accuracy is a piece-wise function in relation to o and there may be many possible
values of o*.

As no previous work has considered the effect of viscosity in epistemic settings we must
first demonstrate whether it is possible for viscosity to change (and, ideally, improve!)
group accuracy. As a result, we are primarily interested in differentiating settings where
o = 1 and those where a* < 1. To this end, we do not report a range of a* values but
rather the maximum value of o* as determined experimentally. When searching for o* we
run 30 elections (each estimating accuracy from 1000 iterations of Monte Carlo sampling
as in Algorithm 1) for each value of @ € A = {0,0.1,0.2,...,1} and record the mean and
standard deviation of group accuracy, (fta,0a)-

If there exists some a such that p1, — 0o > g+ 0V g € A\ {a} then this becomes
o*. If such a value does not exist, we say that a* = 1. In this way we quite conservatively
report a* as being below 1 only when group accuracy is strictly improved by the lower
viscosity.

3.5.3 Potential Improvement from Viscosity

The initial question we must answer is simply: Can o < 1 improve group accuracy? In
fact, there exist settings in which o* is 0, 1, or in the range (0, 1). We now show an example
for each of these values of a*.
Liquid Democracy: o =1

We first show that there exist settings in which liquid democracy (i.e., where a* = 1)
leads to optimal group accuracy. Below we present an example where increasing a always
weakly increases accuracy.
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Example 3.5.1. Consider the delegation graph in Figure 3.5 with one chain and
two stars®>. Let g4 = 0.9 and qg = qo = 0.4. When o = 1, wy = 5 and the outcome
depends entirely on A’s vote and, thus, group accuracy is 0.9. When o < 0.848,
wa < wp + we and accuracy drops to approximately 0.772.

Direct Democracy: a* =0

We now show, for the topology of the delegation graph, a setting of competencies where
lower values of o are weakly superior to higher values.

Example 3.5.2. Consider again the SC delegation graph of Figure 3.5. Let g4 = 0.9
and qg = qc = 0.8. As before, when o = 1, group accuracy depends solely on A and
is 0.9. In this case; however, decreasing « to the pivotal o = 0.848 causes accuracy to
increase due to the relative strength of voters B and C'. When a < 0.848, accuracy
increases to approximately 0.928.

Viscous Democracy: 0 < o* < 1

In contrast to the previous examples we now present a simple example where accuracy
is maximized when 0 < o < 1.

Example 3.5.3. Consider a SC delegation graph with s = 6, Scomp = 0.8, ns = 5,
¢ =3, ceomp = 0.5, n. = 30. That is, 6 star components each with size 5 and 3 chain
components each with size 30.

When 0 < a < 0.25, the group accuracy is roughly 0.91. However, the weight of
star components increases more quickly than that of chain components as « increases.
For 0.25 < o < 0.5, accuracy becomes approximately 0.94. For higher values of
«, the larger chain components begin to dominate and accuracy decreases. Here,
a* €10.25,0.5].

Figure 3.6 showcases a family in which non-extreme alpha (i.e., 0 < a* < 1) is optimal.

3.5.4 Optimal Amount of Viscosity

While we can easily demonstrate that there exist situations in which a* < 1, a much more
interesting result arises when considering how often a non-extreme value of « is optimal in
more plausibly realistic settings. We now show that placing voters with randomly chosen
competencies on larger networks frequently results in an optimal value of o below 1.

2We do note that, in Figure 3.5, the stars are equivalent to chains. In future examples we use the SC
family more generally.
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Accuracy Across Stars and Chains Models
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Figure 3.6: Accuracy in Stars and Chains delegation graphs as « varies from 0 to 1. Each
series varies Seomp and sets s = 6 ng =5, ¢ = 3, Ceomp = 0.5, n. = 30 As a changes, the sets
of representatives able to form a majority of weight shifts in a piecewise manner. Optimal
a occurs in [0.25,0.5]

We show in Figure 3.7 an experiment in which we identify the mean value of o* for
some set of parameter values. For each combination of parameter values we perform 300
trials and report the fraction of trials in which each value of o maximizes group accuracy.

Discussion

Once again, we see that results are extremely similar across network types. In both ER and
BA networks, clear trends emerge. When mean voter competence is below 0.5 Uniform and
Gaussian competence distributions see no benefit from viscosity, and exponential distribu-
tions are very infrequently better off with @ < 1. However, when mean voter competence
is above 0.5 but below 1, we see that a* is almost always quite low.

A low value of o works to reduce massive weight centralization. Intuitively, from Con-
dorcet’s Jury Theorem, having more voters involved in decision-making is better (if those
voters have better-than-random competence). When delegation centralizes a majority of
weight among only a few voters, a low value of a works to undo that centralization by
disproportionately reducing the weight of voters receiving many delegations. Low values
of a* are most prevalent under the Max delegation mechanism, which has the most cen-
tralization. Similarly, a* under Proportional Weighted delegations is frequently below 1
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Figure 3.7: Distribution of a* across competence distributions and delegation mechanisms.
We performed 300 trials for each mean voter competence value. Each cell shows the fraction
of trials for that mean competence value in which the corresponding o value maximizes
group accuracy.
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Figure 3.8: Accuracy improvement from using optimal viscosity vs no viscosity (o = 1)
for voters on BA and ER networks. Each subplot shows the amount of improvement for
a single delegation mechanism. Note that values are absolute; an improvement of 0.1

indicates that if group accuracy is 0.6 with a = 1, then it becomes 0.7 with a = o*.
Results are averaged over 30 trials with 100 voters per network.

but not does not tend to be as low as other methods; Proportional Weighted delegations
are specifically chosen in order to decrease the chance of excessive weight centralization.

Finally, when voters reach a very high level of group competence we see that o returns
to 1. For an intuitive explanation of this, imagine a group of voters that all have competence
of ¢ = 1. The group accuracy remains identical regardless of weight centralization.

Main takeaway from this experiment: Viscosity improves group accuracy when voters
suffer from excessive weight centralization.

3.5.5 Magnitude of Benefit from Viscosity

We have demonstrated that viscosity very often leads to an improvement in group accuracy.
However, we have not yet shown how much of an improvement is common. In Figure 3.8
we show that viscosity is not only beneficial but significantly beneficial. This experiment
shows the difference in group accuracy between liquid democracy (o = 1) and optimized
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viscous democracy (o = a*). Each plot shows results for all network types and competence
distributions using a single delegation mechanism.

Discussion

Just as previously discussed, the delegation mechanism which leads to highest weight cen-
tralization (Max) benefits much more from optimal viscosity than Proportional Weighted,
which inherently reduces weight centralization. However, for some competence values,
viscosity provide a minimum increase in accuracy of nearly 0.1 across all delegation mech-
anisms. As in most settings, voters with exponential competencies do not significantly
benefit from delegation while other competence distributions and network types experi-
ence similar benefits.

Main takeaway from this experiment: Very significant improvements to group accu-
racy are possible with optimal viscosity.

3.6 Conclusions

This chapter shows that liquid and viscous democracy are able to very significantly improve
the ability of voters to correctly identify ground truth. Across a wide range of settings, we
have shown that basic liquid democracy outperforms direct democracy even when voters
have minimal information about the competence of their voters, as with Random Better
delegations.

Subsequently, we generalized our model of liquid democracy to the viscous setting.
Here we first demonstrated the potential benefit from viscosity, then showed it empirically.
Our experiments demonstrate both the prevalence and significance of viscosity’s potential
positive effect on group accuracy.

Throughout this chapter our results highlight several key observations:

e Liquid and viscous democracy improve accuracy over direct democracy across a wide
range of settings.

e When voters have highly variable competence — some voters are experts, while many
have low competence — as in the exponential distribution, delegation has an even
more pronounced improvement to group accuracy.
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e Simple delegation methods such as Random Better can be adapted to avoid weight
centralization that reduces accuracy.

e Low viscosity disproportionately reduces the weight of the heaviest voters thereby
reducing weight centralization and increasing accuracy.

Our key findings are purely experimental. Theoretical questions about the efficacy of
liquid democracy are quite difficult to approach exactly due to the wide range of behaviours
voters might exhibit — that is, in a general model of LD like ours, any delegation can reach
any voter; this makes reasoning about possibilities and impossibilities difficult. Future
theoretical work faces the challenge of identifying which limitations must be placed on the
model to support compelling results. In this chapter we demonstrated that an experimental
approach is able to provide clear conclusions useful both for guiding future research and
for practitioners using liquid democracy to improve performance on practical tasks.
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Chapter 4

Ensemble Learning with Liquid
Democracy

This chapter extends many of the ideas presented in Chapter 3 to a machine learning task,
where classifiers take on the role of voters. Previously we showed that liquid democracy
improves the ability of voters to identify a ground truth in a controlled setting meant to
resemble human voting structures. We now apply the same ideas to ensemble learning.
This setting provides a real-world task on which LD may realize a concrete improvement
over the performance of existing ensemble methods in terms of both accuracy and training
cost.

4.1 Introduction

Training machine learning systems consumes increasingly large amounts of data and com-
pute. In pursuit of ever-growing performance, model sizes are constantly increasing and
more data is collected while the financial and environmental cost of machine learning rises
[172, |. In this chapter, we demonstrate the use of liquid democracy as a means of
reducing training costs while improving or maintaining accuracy.

Specifically, we explore the use of the liquid democracy paradigm as a means to enhance
ensemble learning. Rather than fully training all classifiers in an ensemble, we aim to reduce
training costs by having weak classifiers delegate to stronger classifiers during the course of
training. This effectively “removes” the weak classifiers while redistributing their weight
to the stronger classifiers. The goals of this chapter are as follows,
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e Demonstrate that delegative principles can be applied to ensemble training by ex-
tending the framework of liquid democracy to an incremental learning.

e Use delegation to reduce the cost, in terms of data or compute, required to train an
ensemble by cutting short the training of classifiers that delegate.

e Identify delegation mechanisms and parameters under which the accuracy of ensem-
bles is improved.

This chapter develops a system for delegative ensemble pruning in an incremental learn-
ing framework which operates over many repeated rounds of refining estimates of classifier
accuracies and removing weak classifiers by having them delegate to more accurate classi-
fiers. In Section 4.2 we describe the connection between ensemble learning and epistemic
voting upon which this application is built by extending the model of Chapter 3 to a set-
ting in which voters consider multiple issues. We then show analytically in Section 4.3
that delegation in this machine learning setting is almost always able to improve the ac-
curacy of a given ensemble. Our experiments in Section 4.4 show that — while a single
round of delegation does not dramatically alter ensemble performance — repeated rounds
of delegation throughout training significantly reduce training cost and can improve accu-
racy. Ultimately we are able to identify parameters that reliably reduce training cost of
an ensemble by up to a factor of 30 without degrading accuracy when compared with a
naively trained ensemble.

4.2 Model

Here we refresh the background concepts and notation discussed in Chapter 2 that are
most relevant in this chapter. The primary additions to our previously described model
are an extension to our notation that encompasses a multi-issue epistemic setting, and the
inclusion of a time dimension — voters may delegate over many rounds (or increments).

As in Chapter 3, we apply liquid democracy to a ground truth setting with alternatives
A = {a*,a"}, where a™ is, objectively, the correct outcome There are n voters V =
{v1,...,v,} and each v; € V receives a noisy, independent signal as to which is the correct
alternative. We refer to this as their competency (or, interchangeably, the voter’s accuracy),
or their probability of viewing a™ as the best alternative, and denote a voter’s competency
as ¢; € [0, 1].

Voters may act as a representative and directly cast a vote by revealing to the voting
mechanism their favoured alternative. Here we introduce a cost, ¢; > 0, incurred when v;
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Symbol Meaning

1% Set of voters (instantiated as classifiers).
n Total number of voters (a.k.a. classifiers) in V.
nfinal - The number of voters that are not delegating after the ' increment of learning.
it Competence/training accuracy of voter 7 on the t™ increment of learning.
w; Weight of voter .
c Size of the dataset being trained upon.
d Delegation function. d : V' — V indicates to which voter ¢ delegates their vote.
g Delegator selection function. g : 2V — 2V selects which voters will begin to

delegate in the current increment.

p Delegation probability function. p : V x V — [0,1] gives the probability
that the given representative will delegate to the voter given as the second
argument.

N*t(v;) The set of voters with competence higher than v;.

Table 4.1: Overview of notation most important throughout this chapter.

participates directly which is meant to capture the effort required on behalf of the voter.
Note that this cost depends upon the setting and may be zero. Alternatively, a voter may
delegate their vote to another voter and incur no cost.

If voter v; is chosen to delegate, they use some delegation function (described in Sec-
tion 4.2.3) to select a v; € V to whom v; delegates. We denote by d : V' — V' the delegation
function; d(v;) = v; indicates v; delegates to v;. d*(v;) is the repeated application of d(v;)
until a fixed point is reached and self-delegation is used to indicate that a voter is a rep-
resentative. The weight of each representative is equal to the number of delegations they
receive, including their own:

" Hy, | d*(v;) = v; Y v; € VY| otherwise
After delegation each representative v; is assigned the preference order a™ = a~ with
probability ¢;, and has the preference order a~ = a™ with probability 1 —¢;. We commonly

say that v; “votes for” a™ with probability ¢;. We use weighted plurality voting to select
a winner:

FYP(P) = arg max Z w;
¢ {PeP|P[l]=c}
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4.2.1 Extension to Multi-Issue Voting and Machine Learning

We now introduce aspects of our model unique to this chapter. The model we described
thus far applies to voters choosing between a single pair of alternatives. In Section 2.4 we
draw a parallel between epistemic voting and classification tasks in machine learning: A
model making a classification prediction can be viewed as the instantiation of the more
abstract concept of a voter making a prediction; many voters are then equivalent to an
ensemble of classifiers. In machine learning, prediction tasks are rarely performed on a
single example but, rather, predictions are made for an entire dataset. In social choice
terms, this corresponds to voting on many issues where each issue is a single election. For
the rest of this chapter, we consider the setting where voters are classifiers and we use
the terms interchangeably. Here we extend our model to encompass the machine learning
setting, in the next section we describe the algorithm we use for training classifiers within
this setting.

Rather than a single pair of alternatives, we now consider c¢ pairs of alternatives
A. = {(af,ay),...(aF,a;)}, corresponding to the ¢ ezamples within a two-class dataset.
Unless stated annotated otherwise, we specifically assume that A. is a test set; voters (i.e.
classifiers) are making predictions on this set after having already gone through a training
phase. This training phase is used to inform the voter’s competence. Each v; continues
to be associated with a competence level ¢;; this is the voters training accuracy. That is,
¢; is the fraction of examples in some training set that v; classified correctly. This can be

thought of as a weak estimate of each voters true accuracy on the entire dataset.

We extend liquid democracy to this multi-issue machine learning setting in the most
straightforward way possible. Each voter continues to take one of two actions: (1) They
vote as a representative by making a classification predictions on all ¢ examples within the
test set, or (2) the voter delegates and makes no classification predictions.

4.2.2 Training with Incremental Delegation

In addition to the extension from single elections to elections across entire datasets we also
add a dimension of time. Rather than classifiers going through a single round of training
and delegation, we consider several such rounds, called increments. Each increment of
training provides a refinement of the weak estimate of each voter’s competence while each
the delegation in each increment is an opportunity to have additional classifiers with poor
performance delegate to more competent classifiers.

The number of voter that do not delegate in increment ¢ is referred to as nf"® or simply

nfinal when referring to the number remaining after all delegation is complete. We calculate
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nfinal hased on a parameter 7, the proportion of representatives that do not delegate at each
increment. That is, a 1 — r fraction of remaining representatives begin to delegate at each
increment, until a minimum of nfi"® representatives remain or all data has been trained
on. Typically, the representatives with the lowest competence are chosen to delegate at
each increment (the exception to this is when using the diverse delegation mechanism).

Algorithm 3 outlines our specific delegation and training procedure in detail. The
algorithm is given classifiers V, details of how much delegation to perform (r, nf* and
T), and training data split into an evenly sized slice for each increment. The algorithm
is based on incremental learning — training in discrete steps that each build upon the
previous training. We denote as q;; the mean competence of v; over all increments up to
and including ¢ and ¢ ; refers to the competence of v; on the training data in increment ¢.
w refers to the vector containing the weight of each individual voter.

During increment ¢ of training, each voter trains on a new slice of the training data and
their accuracy estimate q; is updated (lines 5-10). The function select_pruned_clfs uses
information about voter competence and weight to choose which voters should delegate
(line 11). Each new delegator then makes their delegation by transferring their weight to
another voter (lines 15-20). Once all delegation is complete, the remaining voters are fully
fit on the data (lines 23-27). The functions select _pruned_clfs and transfer_weight
correspond to the two components of delegation: selecting classifiers to delegate, and
determining which delegations occur; the functions are described in Section 4.2.3. Note
that delegation is permanent in this algorithm: Once a voter has delegated they are not
trained any further, they make no predictions, and they never change their delegation.

4.2.3 Delegation Mechanisms

Through this chapter we explore each of the delegation mechanisms listed in Table 4.2.
We refer to Chapter 2 for a formal definition of, and more discussion surrounding, delega-
tion mechanisms. Delegator selection functions implement the select_pruned_clfs()
method in Algorithm 3 while delegation probability functions provides the function-
ality needed by the transfer_weight(). We do not consider an underlying social network
in this chapter; which we treat as equivalent to voters being placed on a complete network.
Thus, our standard neighbour functions return all other voters, and all more competent
voters, respectively: N(v;) = {v; | v; € V' \ {v;}}, and the more competent neighbours of
a voter: N*(v;) ={v; | v; € V and g > i}

We highlight the Random-R mechanism — developed before we formalized our current
framework for delegation mechanisms [12] — removes random voters from the ensemble,
but creates no delegations; the weight of those voters is simply removed from the election.
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Algorithm 3 Training and Pruning Algorithm. fit and partial fit methods refer
to methods in the sklearn library for each model type [175]. select_pruned_clfs and
transfer_weight are defined in Section 4.2.3.
Input: V, T, nﬁnal’ T, Xtrain’ Ytrain
1w+ 1]
2 Xtrain’Ytrain — {X%rain7yltrain7...’Xgainjy%rain}
3: for t € T do
{Train each representative on the current increment.}
for v; € V do
if w; # 0 then
partial fit(v;, X[rain ytrainy
qr,i < mean({gs,; Vs < t})
9: end if
10:  end for
11:  {Select new delegators.}
12: Vyemove « select_pruned_clfs(V,q,w,r)
13:  {End partial training if delegation is complete.}
14: if Vremove = () then
15: break
16:  end if
17: {Perform delegations.}
18:  for v; € V"¢ do

19: if [{w|w#0VYwe w}| <nfinal then
20: break

21: end if

22: transfer_weight(w;,V,w,q)

23: w; + 0

24: end for

25: end for

26: for v; € V do
27 if w; # 0 then

28: fit(?)i, Xtrain’ Ytrain)
29: end if
30: end for

Delegator Selection Functions

random direct

We explore three delegator selection functions; two baselines g and ¢ as well as
two more intelligent functions g"°™* and g4ive*¢. We define g4*** and ¢g“°**! in Section 3.3
while grndom and g4iverse are defined below. The Random delegation mechanism uses g

and the Direct mechanism uses g4*t; all other delegation mechanism use g"°'t.

random

Definition 4.2.1. Delegator Selection Function gr#"d°m(V') selects nfina! representa-
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Delegation Mechanism Selection Function Probability Function

Direct gdirect pdirect
Random-R grandom _
Random grandom prandom
Uniform gWOI"St puniform
Random Better gorst prandfbetter
Proportional Better gvVorst pProp-better
Proportional Weighted gvorst pprop-weighted
Diverse gdiverse pdiverse

Table 4.2: The delegation selection and probability functions that define each delegation
mechanism.

tives uniformly at random.

Definition 4.2.2. Delegator Selection Function g4v*'°(V, d) identifies the nf"®! pairs
of voters which are most similar according to one of the diversity metrics discussed in
Section 4.4.3 and where the least accurate member is a representative. g¥v°r°(V,d)
selects the least accurate member of each such pair.

Delegation Probability Functions

Several of the delegation probability functions listed in Table 4.2 are defined in Section 3.3;
the functions new in this chapter are defined below.

Definition 4.2.3. The Random Delegation Probability Function selects delegates
uniformly at random for new delegators.

1
Vi, v;) = n
Definition 4.2.4. The Uniform Delegation Probability Function distributes dele-
gated weight as evenly as possible among voters, breaking ties in favour of the most
competent voter. Let h(v;) = {q;+ | wjs < wis V vj, v, € NT(v;)} denote the compe-
tencies of voters in Nt (v;) with minimal weight. The least accurate voters delegate
their weight to the most accurate voter in h(v;), with ties broken randomly.

random (

p
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puniform(vi’ Uj) _ {1 gjr = max g € h(vz)
0 otherwise

Definition 4.2.5. The Diverse Delegation Probability Function returns delega-
tion probabilities aimed at maintaining high diversity within an ensemble. Let S =
{va,vp € G(V) X V|ga < qu} be the set of pairs of voters where the first voter in the
pair is a representative and has lower accuracy than the second voter in the pair. Note
that, as a representative, the first voter of each pair in S is always eligible to delegate
to the second voter in the pair. pde™® selects the pair of voters in S which is most
similar to each other on some chosen diversity function div and has the less accurate
voter delegate to the more accurate.

- 1 w;,v; = arg min,_,, csdiv(va, vp)
0 otherwise

Other Delegation Approaches

In points through our analysis and experiments we also consider two other approaches to
delegation. When we refer to the Best delegations, this means that a brute force search
of all possible delegation structures is performed in order to find the delegations which

maximize group accuracy. ni" is ignored when finding the best delegations.

4.3 Delegation Analysis

Before presenting our experimental results, we analyze two aspects of our model that affect
how we interpret our results. First, we ask how likely delegation is to improve accuracy by
finding an upper bound on the probability that the initial delegation in an ensemble will
reduce accuracy. Additionally, we define a measure of the cost of training an ensemble in
terms of the number of times each piece of data is used during training.

4.3.1 Group Accuracy Improvement from Delegation

To give some idea of the extent to which delegations are “safe” and unlikely to reduce
group accuracy we consider the frequency with which a single delegation in our setting
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might improve group accuracy. Specifically, we focus on one delegation in a setting where
there are not yet any existing delegations, i.e. the first delegation being made. We do this
by analyzing the number of possible initial ways that voters might classify a given dataset
and show an upper bound on the number of these states where every delegation reduces
group accuracy. We show that these “harmful” states exist but they are vanishingly small
in frequency and that delegation improves or does not change accuracy in the vast majority
of states.

First we must re-emphasize the parallel between sets of voters and ensembles: Voters
voting over multiple issues is equivalent to an ensemble with classifiers making predictions
on a dataset. Consider the votes of a set of voters with no delegations. These can be treated
as an n x ¢ binary matrix P where p;; is 1 if voter i voted correctly on the j* example and
0 otherwise, respectively shown with a green check mark and a red x in Figure 4.1. Any
column that sums to [§] or more indicates the corresponding issue is voted on correctly
in aggregate. Alternatively, we can see Figure 4.1 as an ensemble of n voters on a dataset

of size c.

An example j is called pivotal if 37" | p;; = [5]. That is, if it is correctly classified by
the minimum number of voters required to classify it correctly. Any voter that is correct
on a pivotal example is said to be a pivotal voter on that example, and may be pivotal on
several examples. Similarly, if a voter is incorrect on example j where Y7 | py; = [5] — 1
they are considered an incorrect pivotal voter. We can now begin to establish an upper
bound on the number of states in which any individual delegation would result in a decrease
in accuracy (and thus, well-informed and well-meaning voters would make no delegations).

Lemma 4.3.1. If every single delegation reduces group accuracy then each voter must be
pivotal on at least one example.

Proof. This can be proven very straightforwardly by contradiction: If there exists a single
voter who is not pivotal on any example, they can delegate to any other voter without
causing any examples to change from being classified correctly to being classified incor-
rectly. O]

Note that this lemma does not hold in reverse. If every voter is pivotal on at least one
example, it is not the case that delegation must reduce group accuracy. For an example
of this, observe that v; may delegate to v, in both parts of Figure 4.1 without changing
group accuracy.

When considering the harmful effects of a single delegation we need only focus on
pivotal examples as they are the only correctly classified examples that may become incor-
rectly classified. Thus the classification decisions on non-pivotal examples are irrelevant
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Figure 4.1: Two possible states when an ensemble composed of 5 classifiers predicts the
classes of 5 examples. A cell shows whether a particular voter (in rows) is correct or
incorrect in classifying each example (in columns). (a) All voters are pivotal and only 2
examples (¢4 and ¢5) are pivotal. If any non-pivotal examples ¢y, ¢o, or ¢3 were removed all
voters in (a) would remain pivotal. (b) All voters are pivotal and all examples are pivotal.

to this problem and our theorem considers only the states that may occurs within pivotal
examples.

Theorem 4.3.1. In an ensemble with n voters and a dataset of ¢ examples, the total
number of ways in which classification decisions can be made on pivotal examples such

. . . ivotal __ n \¢ . . .
that every wvoter is pivotal is sP'v"* = Zing ([%1) ", Without any restrictions the same
total _ c

ezamples could have s, Ecp=2 2" possible states.

Proof. During this proof we consider each possible classification outcome as a separate
state, see Figure 4.1 for a visualization of 2 states. This can be thought of as a matrix with
n rows and ¢ columns where each cell can take only binary values. The cell at position
(1,7) refers to whether or not voter v; classified example j correctly. We refer to voter
predictions, and the predictions made on an example as rows and columns respectively.

Say there are ¢, pivotal examples in some initial state. In order for each voter to be
pivotal at least once, 2 < ¢, < c. We can obtain an upper-bound estimate on the fraction
of states in which delegation is harmful by counting the number of possible states where
every voter is pivotal (Lemma 4.3.1 shows that every harmful state meets this condition)
and comparing it to the total number of possible outcomes. We count, for some c,, the
number of ways in which ¢, columns on n rows can be arranged such that all voters are

pivotal. Denote this sgfggtal and compare it with the total number of ways to arrange those

total

¢p columns, denoted s,
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In practice, we calculate only the ratio of sglggtal and sf{’ﬁil. The ¢ — ¢, columns that

are not pivotal have the same number of states in each case so we exclude them from our
calculation.

The number of ways to construct a single pivotal column of n rows is ((Z]). Extended to
2

¢p columns we get ([21)6”. Summing over all possible values of ¢, we arrive at a loose upper
2

bound on the total number of possible states where every voter is pivotal on ¢ examples
and n voters:

SPiVotal — i ( n )Cp
e [5]

cp=2

Whereas, the number of ways to fill in the same columns with no regard for whether
or not they are pivotal is simply the number of possible states of an n x ¢, binary matrix,
or 2", Which, summed over all values of ¢, becomes,

[

total __ necp
Spe = E 2

cp=2

Counting Harmful Delegations

Note that when calculating s and st we are counting only the (pivotal or total)
number of states on ¢, columns/examples. Here ¢, may be between 2 and ¢; the remaining
¢ — ¢, columns are unrestricted and can be completed in any way for both sff"éowl and sfl‘ff:al.

This enables us to compare the two values without evaluating the total number of possible
states in either case.

Table 4.3 shows this loose upper bound on the proportion of states in which a single
delegation is necessarily harmful as n and ¢ grow. With even moderately-sized datasets
and ensembles it becomes nearly impossible for delegation to inherently reduce accuracy.
Thus, with almost any reasonable delegation mechanism there is strong reason to expect
that delegations may improve or, at least, maintain accuracy.
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Cc

n 11 21 31 41 o1

11 7.71e-08 2.63e-14 8.98e-21 3.07e-27 1.05e-33
21 3.05e-09 5.52e-17 9.99e-25 1.81e-32 3.28e-40
31 4.03e-10 1.16e-18 3.35e-27 9.66e-36 2.78e-44
41 9.23e-11 6.96e-20 5.24e-29 3.95e-38 2.98e-47
51 2.89e-11 7.57e-21 1.98e-30 5.20e-40 1.36e-49

Table 4.3: A loose upper bound on the fraction of states with n voters and a dataset of
size ¢ where any single delegation reduces group accuracy.

4.3.2 Data Requirements for Incremental Training

We can calculate the amount of data that must be considered when training an ensemble.
This serves as an analogue for compute requirements but is also a means of guiding pa-
rameter values (i.e. the answer to “which parameters minimize compute requirements?”).
Measuring the exact compute used to train a given ensemble is infeasible!, rather we mea-
sure the amount of data that is seen during training of a model. If a particular example
is learned from many times, each time counts toward the cost. This serves as an approx-
imation of compute used during training which allows us to compare between training
algorithms and parameter values.

Specifically, we define the “data cost, 7 d, of an ensemble as the number of examples
that must be used for incremental training during delegation plus the size of the training
data multiplied by the number of iterations each classifier takes to be fully fit to the data.
We can examine each component of this cost separately.

§ = 6de1egation + 5training

Delegation Cost: We define delegation cost as the total number of training examples
seen by classifiers across all incremental training that occurs during delegation. When
calculating delegation cost we assume that the dataset is of sufficient size to fully delegate
(note that this is not always the case with our smallest datasets). The cost depends
upon increment size (denoted s; the number of examples trained upon in each increment),

!Compute could, for example, be measured in terms of CPU operations (which we simply cannot track
on the remote server used to do our training) or energy consumed (even more difficult to track). However,
these measures would depend on the processor being used, the dataset, what else the computer is doing,
etc. and do not appear meaningful as a basis for comparison.
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delegation rate (1—r; r denotes the fraction of voters that do not delegate in an increment),
number of increments ([), initial number of voters (n), and final number of representatives
(nfinal): it is the geometric series,

l
5delegat10n — E snrt
=0

1 — Tl+1
=sn——
1—r
In fact, the number of increments of delegation can be approximated as a function of n,
nfinal “and r by noting that delegation continues until the number of active voters is equal

to nﬁnal

n’rl — nfmal

Which gives,

_ log(nfmal/n)

log(r)
Combining the formulas above gives a function for calculating delegation cost based on
n, n™ and r. We leave out increment size, s, from our calculation as it is a constant

factor. Figure 4.2 shows this bound on delegation cost for a range of these parameters.
Somewhat surprisingly, there is only mild difference between differing numbers of final
representatives at the same delegation rate. This is due to the fact that while there are
more delegation increments with a lower value of nf*® these additional increments have
successively lower delegation cost so do not greatly affect the overall delegation cost.

Training Cost: The cost for training a fully delegated ensemble varies based upon training
data size ¢, number of remaining representatives n"® and ¢;, the number of iterations of
training must be performed on each representative v;. We have,

5trammg = ne § L

This is measured experimentally by recording the value during training. The value of
t; depends upon both the specific data in question and the training algorithm being used
and is difficult to estimate analytically.
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Delegation Cost for Ensemble with 350 Classifiers
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Figure 4.2: The lower bound on delegation cost as n""* and delegation rate are varied.

Our experiments hold constant the proportional size of the training data (at half of the
entire dataset), and while we use pre-existing tools to train our classifiers we have little
control over the number of iterations required to fully train classifiers. Thus, the number of
representatives in the ensemble is the primary factor in training cost and the difference in
training cost between a full ensemble and a delegating ensemble is the ratio of their sizes.
To minimize cost we would always use exactly 1 classifier in our ensemble. Of course, this
would reject many of the benefits that come with using ensemble methods so we instead
select a minimal number of representatives that provide maximal accuracy. We consider
the trade-off between accuracy and cost experimentally in Section 4.4.3.

4.4 Experimental Results

We now present experimental results which highlight two conclusions: First, that a sin-
gle round of delegation between classifiers typically leads to no clear improvement over a
full ensemble with no delegation. Second, that many repeated rounds of delegation dur-
ing training significantly lowers the data cost of training while often also improving the
accuracy of the resulting ensemble.
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Dataset Short Name Examples Categorical Numerical

breast-cancer-w bew 699 0 9
credit-approval cra 690 9 6
heart hrt 270 0 13
ionosphere ion 351 34 0
kr-vs-kp kvk 3196 0 36
spambase spb 4601 0 57
online-shoppers onl 12330 10 7
occupancy-detection occ 20560 0 )

Table 4.4: Datasets used through our experiments. The smaller 6 datasets are used in
experiments from the GAIW paper “On the Limited Applicability of Liquid Democracy”
[12] while all datasets are used in the subsequent work published at AAMAS [10]. All
datasets listed have two classes and appear in the UCI Machine Learning Repository [71].

4.4.1 Data

Through our experiments we have made use of 8 different datasets. Each dataset that we
use has exactly two classes and a variable number/type of features. They range in size
from only 270 examples to 20560 examples. Table 4.4 lists each dataset, all of which were
taken from the UCI Machine Learning Repository. Categorical features are those where
a feature value has a finite number of options (e.g. whether an email contains any links),
and numerical features are those that may take on any number of values (e.g. the number
of links in an email).

4.4.2 One-shot Delegation

We first provide results for experiments in which voters take part in only one round of
delegation, or when voters perform delegate myopically with no consideration of other
voter behaviour. These experiments show that delegation is typically beneficial but not
to a large degree. We first presented these results in the Games, Agents, and Incentives
Workshop held as part of AAMAS 2021 [12].

Ensemble Setup

Our ensemble is composed of decision trees with a maximum depth chosen uniformly at
random between 1 and 4. Each tree randomly uses Gini or Entropy criteria with equal
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Dataset 1 10 20 30 40 50

breast-cancer-w  0.936 0.947 0.944 0.944 0.944 0.947
credit-approval  0.856 0.863 0.863 0.863 0.863 0.863

heart 0.763 0.750 0.766 0.764 0.770 0.767
ionosphere 0.864 0.890 0.892 0.890 0.893 0.89

kr-vs-kp 0.824 0.923 0.926 0.929 0.923 0.923
spambase 0.849 0.868 0.872 0.875 0.875 0.877

Table 4.5: Performance of decision tree ensembles of increasing size for each dataset con-
sidered in this subsection.

likelihood. Our experiments were implemented in Python using the scikit-learn library for
all machine learning functions [175]. Initially we also experimented with ensembles that
included SVM’s and Neural Networks with equal probability as Decision Trees but found
greatly increased training time and no significant difference in performance. Thus, in this
section, we report results only for ensembles composed of Decision Trees. A new ensemble
is randomly generated for each experiment configuration. When comparing experiments
using a given delegation method against experiments using another delegation method on
the same data the ensembles are generated using the same parameters but have a different
specific instantiation of classifiers. As noted later, this can lead to noisy comparisons
between different experiments.

Ensemble Performance Without Delegation

First, we show in Table 4.5 the test accuracy of ensembles of varying sizes before any
delegation is applied. Classifiers are trained on a randomly selected 90% of each dataset
and tested on the remainder; we show the average test accuracy over 300 trials. We see
clearly that while there is typically a slim improvement from adding ensembles, only on
the kr-vs-kp dataset is the difference quite significant.

Accuracy of Delegating Ensembles

We first present results from small-scale ensembles including the best possible accuracy
found from an exhaustive search of all possible delegations. Table 4.6 shows our primary
delegation mechanisms compared against each other over a variety of ensemble sizes aver-
aged over 50 trials. As expected, the Best delegation mechanism generally outperforms
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Dataset Best Direct Diverse Uniform Random-R

breast-cancer-w  0.951  0.943 0.944  0.951 0.94
credit-approval  0.87  0.862 0.863  0.868 0.861
heart 0.80 0.762 0.758  0.802 0.771
ionosphere 0.902 0.884 0.889  0.903 0.878
kr-vs-kp 0.921  0.905 0.909  0.909 0.881
spambase 0.883 0.869 0.866 0.884 0.862

Table 4.6: Accuracy of several delegation mechanisms on each dataset averaged over 5, 7,
and 9 voters with 3 and 5 representatives. Best delegations are from an exhaustive search
over all possible valid delegations.

other mechanisms®. However, in this small setting the Uniform mechanism also performs
quite well. Notably, in all cases the Direct ensemble with no delegation is outperformed
by some form of delegation. This indicates there is generally room for improvement from
delegation.

We next scale up our experiments to larger numbers of voters and find a similar result
as before. Due to computational intractability we no longer consider the best possible
delegations. Table 4.7, Table 4.8, and Table 4.9 show results from experiments considering
ensembles with up to 49 voters, averaged over 50 trials. This shows how ensemble size
and number of representatives affect the accuracy of the final ensemble. While accuracy
does increase slightly as the ensemble grows, it is only a small improvement. We see
that the Uniform delegation method generally leads to the best-performing ensemble the
difference between Uniform delegations and the full ensemble is not significant on a t-test
with p < 0.05.

Finally, we consider what outcomes arise when voters delegate if, and only if, there
is a delegation available to them that will strictly improve group accuracy. Voters are
selected in random order and, when selected, the group accuracy is calculated for each
possible delegation the voter could make. Voters select the delegation option (including no
delegation) that most improves group accuracy. This process repeats until no voter is able
to improve accuracy by changing their delegation. Table 4.10 shows that, in this setting,
there are typically very few pivotal voters. This varies somewhat based upon the dataset
being considered. As the number of voters grows it becomes increasingly likely that the

2 As noted when discussing the ensemble setup, classifiers are instantiated with randomly chosen param-
eters. In some cases in Table 4.6, the classifiers created when testing the Uniform mechanism are slightly
more accurate than those created when using the Best mechanism, resulting in higher performance for
Uniform.
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Dataset Direct Diverse Uniform Random-R

breast-cancer-w  0.943  0.939 0.951 0.945
credit-approval  0.862  0.864 0.865 0.861
heart 0.772  0.768 0.785 0.766
ionosphere 0.883  0.874 0.91 0.883
kr-vs-kp 0.906  0.917 0.92 0.883
spambase 0.868  0.871 0.89 0.86

Table 4.7: Accuracy of delegation methods averaged over 9 voters and 5 representatives.
Accuracy is highest in Uniform column but not by a significant margin.

Dataset Direct Diverse Uniform Random-R
breast-cancer-w  0.942  0.947 0.955 0.946
credit-approval  0.862  0.863 0.87 0.862
heart 0.76 0.767 0.805 0.767
ionosphere 0.892 0.894 0.908 0.881
kr-vs-kp 0.921 0.924 0.924 0.915
spambase 0.874 0.874 0.89 0.871

Table 4.8: Accuracy of delegation methods averaged over 29 voters and 5, 15, and 25
representatives. Accuracy is highest in Uniform column but not by a significant margin.

initial ensemble will not strictly increase its accuracy from any single delegation (though
note that this does not mean the ensemble could not benefit from a series of delegations).
Ultimately this is unsurprising — as ensemble size grows the chance that a single delegation
can improve accuracy should, intuitively, decrease. The average boost in accuracy over all
experiments in Table 4.10 is approximately 0.007, showing that while delegation is usually
slightly useful, finding beneficial delegations is not likely when taking a greedy perspective
towards accuracy improvement.

4.4.3 Repeated Delegation using Incremental Training

The previous section shows that while we may be able to achieve very slim improvements
to accuracy through a single round of delegation, there is actually very little significant
difference between delegation and the full ensemble. We now consider whether several
rounds of delegation, during the training process are able to improve either accuracy or
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Dataset Direct Diverse Uniform Random

breast-cancer-w  0.946  0.949 0.96 0.943
credit-approval  0.863  0.863 0.872 0.861
heart 0.767 0.774 0.82 0.762
ionosphere 0.888  0.894 0.916 0.885
kr-vs-kp 0.923 0.921 0.934 0.91

spambase 0.874  0.877 0.899 0.868

Table 4.9: Accuracy of delegation methods averaged over 49 voters and 5, 15, and 25
representatives. Accuracy is highest in Uniform column but not by a significant margin.

dataset 9 19 29 39 49

breast-cancer-w  0.44 0.34 0.26 0.06 0.18
credit-approval  0.12 0 0.02 0 0.02

heart 0.52 024 024 0.2 0.1

ionosphere 0.34 0.3 028 0.1 0.14
kr-vs-kp 0.32 0.16 0.16 0.12 0.14
spambase 1.24 0.82 046 0.54 0.36

Table 4.10: Mean number of delegations required to reach a state where no single delegation
strictly improves accuracy as the initial ensemble size increases from 9 to 49.

the amount of data that must be trained upon.

Here we scale up our previous experiments to consider larger ensembles of 350 classifiers.
To support incremental training we now use Support Vector Machines rather than Decision
Trees as the classifier making up our ensembles.

Basic Comparison of Delegation Mechanisms

We first compare the general behaviour of each delegation mechanism as well as the full
ensemble of “direct” voters. Figure 4.3 shows accuracy during training for each delegation
method on the two datasets which benefit most from delegation. Other datasets are shown
in Appendix A. The x-axis shows the number of non-delegating classifiers at each training
step, corresponding with time. These figures highlight that even relatively simple delega-
tion mechanisms are able to outperform a larger ensemble. The relatively worse results
from Random delegations show that removing untrained classifiers from an ensemble may
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Figure 4.3: Accuracy of each basic delegation method during incremental training with
partial fit method on kr-vs-kp (a); and spambase (b) datasets beginning with 350
classifiers. At each increment 20% (rounded down) of active voters are chosen to become
delegators, continuing until 10 representatives remain or the entire dataset has been trained
upon. See Appendix A for other datasets.

not always cause harm (when compared with the Direct ensemble). However, as classi-
fiers get more training and the ensemble shrinks, random delegations eventually become
detrimental to ensemble accuracy.

These results are strengthened by considering the accuracy of fully trained ensembles on
each dataset. In Table 4.11 we compare each delegation mechanism with direct delegation
and individual classifier performance. This shows that while delegation is more beneficial
on some datasets than others, it is never significantly harmful. In some cases we see that
delegation does not provide any advantage over the performance of the median classifier
in the ensemble.

Parameter Tuning

Three parameters most directly affect the accuracy and training cost of ensembles: in-
crement size, delegation rate, and initial number of voters. We explore a range of values
for each of these parameters and present the results in Figure 4.4. Each hexagon in these
ternary graphs represents ensemble test accuracy averaged over 50 trials with one set of pa-
rameters. In each trial, classifiers are created with new random seeds, the dataset shuffled,
and new train/test data sampled.

Ensemble accuracy corresponds to the colour bar underneath the figure, with lighter
values indicating higher accuracy. The parameter values aligned with each cell can be found
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Dataset Uniform Random Better P. Better P. Weighted Random Direct Median Single

bew 0.898 0.889 0.878 0.907 0.864 0.91 0.966
cra 0.608 0.613 0.609 0.621 0.599 0.618 0.633
hrt 0.589 0.567 0.57 0.577 0.586 0.597 0.625
ion 0.837 0.839 0.841 0.844 0.836 0.845 0.832
kvk 0.925 0.887 0.908 0.934 0.736 0.901 0.784
spb 0.862 0.818 0.836 0.88 0.676 0.851 0.796
onl 0.801 0.748 0.75 0.784 0.716 0.82 0.877
occ 0.92 0.92 0.92 0.927 0.918 0.94 0.988

Table 4.11: A numerical comparison of test accuracy on fully trained and delegated en-
sembles, direct ensembles, and the median accuracy of a classifier from each ensemble.
Each ensemble began with 350 classifiers and, when applicable, 20% of classifiers began to
delegate after each round of incremental learning.

by the direction of tick marks outside the graph. The bottom axis, delegation rate, goes
“up and to the right”. Accordingly, the highest accuracy (lightest colour) with the uniform
delegation mechanism (top left in Figure 4.4) is found when increment size, delegation rate,
and initial number of voters are respectively (65, 0.05, 350) or (85, 0.05, 200).

Across delegation methods and datasets this parameter search generally finds that large
increment size, a relatively small ensemble, and a low delegation rate lead to the highest
accuracy. This strongly indicates a set of parameters to use in subsequent experiments
in order to mazimize accuracy. However, in order to minimize cost different parameters
are needed. Calculations in Section 4.3.2 show that a low delegation rate greatly increases
training cost, thus presenting a trade-off between ensemble performance and training cost.
In order to balance training cost and accuracy our experiments default to parameter val-
ues of: a delegation rate of 0.2 (20% of representatives delegate at each increment), an
increment size of 25 examples, and an initial ensemble size of 350 classifiers.

Is Diversity Useful?

As we discuss in Section 2.4.4, high diversity among members of an ensemble has often
been considered a beneficial trait or even used as a basis for creating ensembles. However,
there is still no clear consensus on how to harness diversity in a way that improves ensemble
performance. To explore whether diversity is useful in our setting we implemented a number
of existing diversity measurements and integrated them into a delegation mechanism.

We evaluate two pairwise diversity measures: Fuclidean distance and the g¢-statistic
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Figure 4.4: Test accuracy of fully trained ensemble across delegation methods as parameters
affecting accuracy are varied. Results displayed are from the spambase dataset. Random
delegations are omitted as they perform significantly worse than the displayed delegation
mechanisms; Direct delegations are omitted as increment size and delegate rate do not
affect Direct ensemble performance.

[134]. We calculate the diversity between two classifiers v; and v; on training increment ¢ by
considering the confusion matrix of each classifier’s predictions on data in that increment,
D; and D;. Kuncheva et al. discuss several metrics based on the confusion matrix we
include as Table 4.12. 'We compared several of these and found the g¢-statistic typically
best. For classifiers v; and v;, the statistic is defined as,
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Figure 4.5: Accuracy on test data over incremental training using diversity metrics to guide
delegation.

D; correct Dj incorrect

D, correct N N1O
D; incorrect N N0

Table 4.12: Confusion matrix defining N based on the number of instances in which each
classifier’s predictions agree/disagree and are correct/incorrect. e.g. N1 is the count of
examples in a dataset D on which v; made a correct prediction and v; made an incorrect
prediction.

NllNOO o N01N10
N11 00 + 0110
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We also consider the Euclidean distance between the list of predictions made by each
pair of classifiers in each increment of training. As discussed in Section 4.2.3, pdiverse(v; v;)
selects the pairs v; and v; which are most similar and chooses the less accurate of each pair
to delegate to the more accurate.

Figure 4.5 shows accuracy during training for both measures, compared with direct del-
egations, for spambase and kr-vs-kp. See Appendix A for similar graphs on the remaining
datasets. These experiments were performed before finalizing the parameter values used in
other sections and show the average over 30 trials using an initial size of 300 classifiers, a
delegation rate of 10%, and an increment size of 25. We find there is no clear evidence that
optimizing for diversity provides a benefit to delegation in our setting. This is not to say
that diversity cannot be beneficial — a principled method of introducing diversity during
classifier creation may improve performance — but using well-known diversity measures to
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guide delegation does not immediately prove improve performance. Due both to these
results and to the high computational requirements of computing diversity for every pair
of voters we have not considered diversity in other experiments.

Weight Distribution

Each delegation mechanism that we use leads to a distinct distribution of weights, both
in the fully trained ensemble and during training. This distribution is also affected by the
size of the dataset. Classifier weights are interesting primarily through their connection
with ensemble performance. Intuitively, ensembles with high weight centralization may
produce less stable results and their accuracy is much more variable. For example, if one
classifier has a majority of weight the ensemble output is always the same as that of the
single classifier and beneficial effects of ensembles are removed.

Thus, we consider the minimum number of classifiers required to form a majority of
ensemble weight and the maximum number of classifiers able to form a minority of weight.
These measures give insight into the tendency of each delegation mechanism towards cen-
tralization. The minimum number of classifiers required to form a majority of weight is low
if there is a high degree of weight centralization (e.g. if there is a single dictator this has a
value of 1). The maximum number of classifiers able to form a minority of weight is simi-
lar; if weight is distributed evenly this value is half of the total number of non-delegating
classifiers and gets higher as weight becomes more centralized.

Figure 4.6 shows the minimum number of classifiers required to form a majority of
weight for the spambase and kr-vs-kp datasets during training. The same figures for all
datasets can be found in Appendix A. All results are averaged over 500 trials on standard
parameters. Note that the y-axis shows the minimum majority size on a logarithmic scale.

Table 4.13 shows the minimal number of voters required to form a majority after train-
ing is complete while Table 4.14 shows the maximum number of voters able to form a
minority of weight after training is complete. (Note that this second measure, maximum
number of voters able to form a minority, was considered only after running experiments
and our recorded data cannot reproduce this measure over the course of training.)

In all cases results are similar and demonstrate clearly that the Proportional Weighted
delegation mechanism leads to much less centralization of weight both during and at the
end of training. This is unsurprising as the mechanism was designed after noting the prob-
lematic issue of weight centralization in other delegation mechanisms. The Proportional
Weighted mechanism specifically decreases the chance that a voter will receive a delegation
in proportion to how much weight the voter already has.
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Dataset Uniform Random Better P. Better P. Weighted Random Representatives

bew 1.78 1.48 1.68 4.39 1.35 17.2
cra 1.49 1.50 1.66 4.48 1.27 17.4
hrt 4.11 12.94 12.85 22.99 10.97 93
ion 4.53 8.84 9.05 17.87 7.56 75
kvk 2.12 1.13 1.39 3.00 1.07 10
spb 2.12 1.27 1.41 3.03 1.10 10
onl 1.26 1.14 1.14 2.92 1.08 10
occ 1.31 1.12 1.19 2.86 1.09 10

Table 4.13: Minimum number of voters required to form a majority of weight after com-
pleting a delegation process beginning with 350 voters. Proportional Weighted delegations
consistently exhibit less weight centralization. Values are averaged over 500 trials.

Comparison with other Ensemble Methods

We now compare the training cost and final accuracy of a variety of ensemble methods
including our delegative methods as well as Adaboost, a well-known ensemble boosting
algorithm [941]. As Proportional Weighted typically outperforms other delegation methods,
we first present comparison results showing only this delegation method and compare
with other delegation methods in Table A.1 and Table A.2. Specifically, we compare the
following ensembles:

e Direct: A full ensemble of 350 classifiers, all equally weighted.

e Prop W Acc: 350 classifiers using Proportional Weighted delegations with an in-
crement size of 65 and delegation rate of 0.05 (chosen to maximize accuracy).

e Prop W Cost: 350 classifiers using Proportional Weighted delegations with an
increment size of 25 and delegation rate of 0.85 (chosen to minimize cost).

e Ada DT Full: Adaboost with a decision tree as the underlying classifier with up to
350 classifiers (the size of the initial delegating ensemble).

e Ada SGD Full: Adaboost with an SVM as the underlying classifier with up to 350

classifiers.

e Ada DT Small: Adaboost with a decision tree as the underlying classifier with up
to 10 classifiers (the size of the fully delegated ensemble).
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Dataset Uniform Random Better P. Better P. Weighted Random Representatives

bew 15.21 16.29 15.32 12.57 15.71 17.2
cra 15.49 17.63 15.33 12.49 15.78 174
hrt 88.85 80.13 80.01 69.78 82.10 93
ion 70.43 66.11 65.86 96.99 67.55 75
kvk 7.87 8.86 8.60 6.96 8.93 10
spb 7.83 8.73 8.57 6.96 8.90 10
onl 8.7 8.86 8.86 7.08 8.92 10
occ 8.64 8.89 8.80 7.11 8.91 10

Table 4.14: Maximum number of voters able to form a minority of weight after completing
a delegation process beginning with 350 voters. Proportional Weighted delegations consis-
tently spread weight among a larger number of direct voters. Values are averaged over 500
trials.

e Ada SGD Small: Adaboost with an SVM as the underlying classifier with up to
10 classifiers.

We use the default sci-kit learn parameters for Adaboost and each underlying classifier
[175]. Results are averaged over 50 trials for each set of parameters.

Table 4.15 and Table 4.16 show results of comparing between ensemble types. Training
cost is shown as a proportion of the cost of training a full Direct ensemble. Comparing
the two parameterizations of delegation highlights the trade-off between accuracy and cost
allowed by delegation. In many cases, delegative ensembles have a comparable cost to
Adaboost methods and in some cases accuracy and F1 score from delegation are higher
than with Adaboost.

4.5 Discussion

In this chapter we have developed a method for pruning ensembles using liquid democracy,
a framework for delegative voting. Applying delegation to remove and re-weight classifiers
over the course of incremental training of an ensemble proves highly effective at reducing
the training cost of an ensemble while maintaining or improving accuracy over a naive
ensemble. Our method has several parameters which we demonstrate can be tuned to
effectively manage a trade-off between accuracy and training cost.
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Figure 4.6: Size of the smallest set of classifiers comprising a majority of ensemble weight
during training on kr-vs-kp (a); and spambase (b) datasets beginning with 350 classifiers.
At each increment 20% (rounded down) of active voters are chosen to become delegators,
continuing until 10 representatives remain or the entire dataset has been trained on. See
Appendix A for other datasets.

We examined several delegation methods and used two novel methods: Proportional
Better and Proportional Weighted. As in Chapter 3, our experiments reveal that our
Proportional Weighted delegations achieve higher accuracy than other delegation methods.
In our analysis of the weight distribution of voters over many rounds of delegation we
see that, as hypothesized in the previous chapter, this mechanism is significantly better
at avoiding weight centralization than other mechanisms. These results strengthen the
argument for a causal link between weight centralization from delegation and reduction in
accuracy.

We find that our method is often comparable in either training cost or accuracy to the
well-known Adaboost ensemble method. We note also that our method operates along a
different dimension than most ensemble methods. Delegation does not affect the learning
process itself, while many ensemble methods primarily focus on adjusting how specific parts
of training data are learned. Conceptually, there may be potential to use our method in
conjunction with other ensemble pruning methods.

4.6 Conclusions

This chapter provides an exploration of a novel application of liquid democracy: ensemble
pruning. We demonstrate the significant benefits of this method as compared to naive
ensembles. While state-of-the-art ensemble algorithms, such as Adaboost often outperform
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Ensemble breast-cancer-w credit-approval

Acc F1 Cost Acc F1 Cost

Direct 0.907 0.926 1 0.628 0.585 1
Prop W Acc 0.907 0.927 0.782 0.631 0.586 0.817
Prop W Cost 0.9 0.92 0.033 0.609 0.584 0.036

Ada DT Full 0.953 0.932 0.039 0.818 0.833 0.07
Ada DT Small  0.957 0.938 0.001 0.852 0.862 0.002
Ada SGD Full 0.965 095 0.014 0.653 0.681 0.007
Ada SGD Small 0.965 0.95 0.013 0.65 0.674 0.007

Ensemble heart ionosphere
Acc F1 Cost  Acc F1 Cost
Direct 0.584 0.59 1 0.854 0.765 1

Prop W Acc 0.573 0.574 09 0.853 0.762 0.894
Prop W Cost 0.565 0.547 0.035 0.802 0.716 0.034
Ada DT Full 0.758 0.783 0.027 0.916 0.937 0.031
Ada DT Small  0.803 0.824 0.001 0.896 0.921 0.001
Ada SGD Full 0.683 0.718 0.01 0.861 0.898 0.025
Ada SGD Small 0.678 0.718 0.009 0.861 0.898 0.015

Table 4.15: Accuracy, F1 score, and Training Cost (relative to Direct ensembles) when
comparing a variety of Adaboost methods against two parameterizations of a delegating
ensemble. Bold values indicate when a delegating ensemble outperforms at least one Ad-
aboost method.

our method we highlight that ensemble pruning with liquid democracy has strong potential
for application with very large datasets or where there are resources to train classifiers in
parallel.

We end this chapter by highlighting two possible extensions to this work. As we have
discussed, our delegative pruning method is highly generic and does not consider the under-
lying data itself. Highly successful methods, such as Adaboost, adjust their training based
on how well existing classifiers perform on individual examples. Adding an element of this
data-level adjustment to either a new aspect of our procedure or as a novel delegation
mechanism has potential to enhance performance. Additionally, we note the similarities
between incremental learning and continual learning. Continual learning is an incremental
setting where the underlying distribution of data being classified is expected to change
over time. In joint work with Carter Blair, we have applied ideas of delegation to develop
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Ensemble kr-vs-kp occupancy-det

Acc F1 Cost  Acc F1 Cost
Direct 0.91  0.903 1 0.946 0.964 1
Prop W Acc 0.947 0.943 0.269 0.94 0.96  0.055
Prop W Cost 0.908 0.902 0.026 0.916 0.936 0.029
Ada DT Full 0.966 0.968 0.02 0.99 0.978 0.009
Ada DT Small 0.946 0.948 0.001 0.989 0.977 0
Ada SGD Full 0.941 0944 0.06 0.984 0.966 0.005
Ada SGD Small 091  0.915 0.01 0.984 0.966 0.005
Ensemble online-shoppers spambase

Acc F1 Cost  Acc F1 Cost
Direct 0.869  0.927 1 0.86 0.88 1
Prop W Acc 0.843 0.906 0.058 0.909 0.927 0.198
Prop W Cost 0.768 0.817 0.029 0.869 0.89 0.029
Ada DT Full 0.888 0.605 0.019 0.934 0.916 0.026
Ada DT Small 0.89 0.62 0.001 0.916 0.891 0.001
Ada SGD Full 0.878 0.447 0.012 0.786 0.719 0.013
Ada SGD Small 0.879 0.444 0.011 0.791 0.742 0.012

Table 4.16: Accuracy, F1 score, and Training Cost

aboost method.

ensembles for the continual learning setting |
ensembles and more involved forms of delegation.
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Chapter 5

Learning Voting Rules

In Chapter 4 we developed a framework for applying social choice (specifically, liquid
democracy) and showed that it improves outcomes from machine learning — increasing
ensemble accuracy and reducing the cost of training as compared to a full ensemble. In
this chapter we take the reverse approach, using machine learning to benefit social choice.
Here we explore the idea of using neural networks as voting rules in order to both learn
about existing voting rules, and to develop entirely novel voting rules. We expand existing
concepts of data-driven axiomatic analysis to create a data-driven approach to training
new voting rules optimized for axiom satisfaction. Our framework enables us to experi-
mentally analyze questions of a type and scale that are not feasible using purely theoretical
approaches.

5.1 Introduction

Voting rules are frequently analyzed in terms of their axiomatic properties, and are even
designed with axiom satisfaction in mind [121]. Despite this, several difficulties prevent new
voting rules from satisfying every (or, even, many) desirable axioms. First, impossibility
theorems — describing sets of axioms which are impossible to mutually satisfy — abound in
social choice [13, , 99]. As well, the concept of a “desirable” axiom is not universally
agreed upon [198]; some axioms may be vital in one setting while harmful in another.
Finally, even with a set of axioms which are shown to be mutually satisfiable and are
considered desirable, there is no general formula for constructing a reasonable voting rule

Tt is conceptually possible to develop a voting rule which iterates over all possible outcomes and elects
winners not violating any desirable properties; however, we would consider such a rule unreasonable.
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which satisfies the properties.

We develop a methodology for automated creation of novel voting rules based on data-
driven axiom satisfaction that addresses each of these challenges. We do this by creating
training data of elections wherein the election winner is the alternative violating the fewest
of some arbitrary set of desirable axioms. Key to this approach is encoding social choice
knowledge in a way that generic machine learning techniques are able to utilize. Evaluation
of existing voting rules shows they violate desirable axioms at a very high rate while learned
rules are able to violate the same axioms far less often.

To approach learning new rules in a principled manner, we first consider the best
way to learn voting rules by learning existing voting rules then developing new voting

rules. Prior work has used neural networks to replicate existing voting rules [10, ] or
to generate new voting rules [7, 88], but only very little of this work has considered best
practices for how to learn voting rules [152] (e.g. how big a neural network should be, what

types of features are most useful, which types of rules are easiest to learn). We develop
insights into existing rules by exploring the most effective ways to learn them. We use these
insights in learning novel rules with strong axiomatic properties according to the framework
we develop for experimentally measuring axiom violations of arbitrary rules on arbitrary
preference distributions. Our results provide a first step towards practically circumventing
impossibility theorems by showing the possibility of rules which avoid impossibilities as
frequently as possible. In this chapter we pursue three goals:

1. We identify best practices for learning voting rules. We learn existing voting rules
which provide a ground truth comparison against which we measure the efficacy of
our learning process.

2. We learn about existing voting rules using experimental tools to compare both ex-
isting rules and novel rules.

3. We use data about axiom violations to learn new rules which minimize violations
across wide sets of axioms.

Ultimately, by showing the existence of voting rules whose winners violate axioms at
a far lower rate than those of existing rules we highlight the potential for development
of new rules. Such novel voting rules may provide superior axiomatic properties while
being more interpretable than a machine learning approach. In domains with specific ax-
iomatic requirements where interpretability is unimportant, our machine learning approach
to learning novel rules can provide direct benefit. We structure this chapter as follows:
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e In Section 5.2 we briefly review the background material relevant to this chapter and
introduce the specific axioms and voting rules we consider.

e In Section 5.3 we describe the data-driven approach we take to measuring the axiom
violations of rules; both existing and novel. We also develop a method of comparing
the winners of voting rules across a large number of elections in order to measure the
similarity between two existing rules or groups of rules.

e In Section 5.4 we describe the procedure we take for learning functions which act as
novel voting rules and learning to approximate existing rules.

e In Section 5.5 we describe the process and results of learning to approximate existing
rules. We highlight ways in which our learning process could be improved and identify
interesting patterns when comparing between the learned rule approximations and
actual voting rules.

e In Section 5.6 we learn novel voting rules using our axiom-based approach. We
show that axiom violation data suffices to learn new voting rules which significantly
outperform many existing voting rules on the axiom violation framework we develop
in Section 5.3.

5.2 Setting

We first review the elements of Chapter 2 that are most relevant to this chapter and briefly
introduce each of the voting rules and axioms that we use throughout this chapter. We
summarize notation used in this chapter in Table 5.1. The most significant difference
between this chapter and Chapter 3 and Chapter 4 is that we now move away from the
two-alternative epistemic domain and consider the more common setting of elections with
different numbers of alternatives and no ground truth agreed upon by voters. Rather than
studying the accuracy of a voting process, we are now primarily interested in the behaviour
of existing voting rules, and in developing new rules with desirable axiomatic properties.

We consider a set of voters V', each with a complete preference order P over alternatives
A. Each voter’s preference order P, is sampled from a distribution D. We now also consider
multi-winner elections; a voting rule F accepts a profile of n preference orders, as well as
a number of winners k, with 1 < k < m, and returns a set of k£ winning alternatives. We
omit k& when only electing a single alternative. That is, F(P) = F(P, 1).

Many of the multi-winner voting rules that we consider are approval-based. These
rules assume that each voter considers some set of alternatives “acceptable” and submits an
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Symbol Meaning

The set of n voters ranking alternatives.

The set of m alternatives being ranked by voters.

The number of election winners, also called the committee size.

The set of axioms under consideration.

The preference order of a single voter; a complete ranking of all

alternatives.

A single preference profile consisting of n preference orders.

The alternatives approved by each voter; equal to their top k pref-

erences.

A set of preference profiles being used as testing or training data.

The preference distribution from which each voter samples their

preference order.

F(P,k) A voting rule. k is omitted when single winner rules are clear from
context.

AVR(F,P,A) Axiom Violation Rate of F on preference profiles P over axioms A.

diff(F!,F? P) Normalized difference between rules F! and F? on preference profiles

P.

OF NV TP FTeS
3

Table 5.1: Overview of notation most important throughout this chapter.

approval set which consists of the most preferred alternatives in their preference order. This
approval set, denoted App(v;), contains the k alternatives which v; most prefers; without
information about the relative preference of v; over the alternatives. In our setting, App(v;)
always contains v;’s k most preferred alternatives, and Pa,, = (App(v1), ...App(v,,)). When
clear from context (e.g. when describing the input to an approval-based voting rule) we
omit the subscript and write P in place of Payp.

5.2.1 Voting Rules

Here we list and categorize each voting rule we use. We show single winner and multi-winner
rules separately; multi-winner rules are further divided into score-based and approval-based
rules.

Observe that multi-winner rules take as a parameter the number of winners, which can
be 1. Methodologically, single winner rules can be seen as a restriction of multi-winner
rules. Through this chapter we occasionally use the term “committee” to describe the
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output of a voting rule. We use this term generally for both single and multi-winner rules.

Single Winner Rules

We learn functions approximating each of the single winner rules below. Many of these
rules require differing amounts of information to compute their winner, based on Fishburn’s
classification and whether or not they are a positional scoring rule. Some rules may by
differentiated by only minute changes (which can, upon occasion, lead to large differences
in final output). We include a range of rules from very common (Plurality, Borda, Instant
Runoff) to the less well known (Raynaud) or recently developed (Stable Voting). All the
rules that we use are implemented in the Preferential Voting Tools library?. Note that we
do not include single winner approval voting. Despite being a common rule, we avoided
use of any rule which required further parameterization, such as how many alternatives
each voter should approve.

Below we list the name of each single winner rule that we consider. A full definition of
each rule is included in Appendix B. We list rules in groups according to their Fishburn
class with C1 rules coloured red, C2 rules coloured blue, and C3 rules coloured green.
Condorcet-consistent rules are marked with an asterisk, and positional scoring rules are
underlined.

C1 Rules:
e Banks* e Copeland* e Slater”
e Bipartisan Set* e GOCHA* e Top Cycle*
e Condorcet* e Llull* e Uncovered Set*
C2 Rules:
e Beat Path* e Copeland-Global- e Simple Stable Voting*
e Blacks* Borda’
o Borda e Loss-Trimmer Voting* e Split Cycle*
e Borda-Minimax * Minimax
Faceoft* e Raynaud* e Stable Voting*

2The Preferential Voting Tools library can be found at https://pref-voting.readthedocs.io
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C3 Rules:

e Anti-Plurality e Copeland-Local- e Strict Nanson*
Borda* . _
e Baldwin* e Superior Voting*
e Daunou* . .
e Benham* : e Tideman Alternative

s ‘ GOCHA*
e Bracket Voting e Instant Runoft

e Tideman Alternative

e Bucklin e Knockout Voting Top Cycle*
e Condorcet Plurality* e Plurality e Weak Nanson*
e Coombs e Simplified Bucklin e Weighted Bucklin

Multi-winner Rules

We consider several multi-winner rules as well. Most of these rules can be seen as fitting
into the categorization of multi-winner rule goals we described in Chapter 2; rules can
focus on individual excellence, diversity, or proportionality. We selected these rules for
several goals (1) the inclusion of well-known rules, (2) representing a variety of goals and
algorithmic approaches, (3) ability to compare with pre-existing theoretical results. Along
with the definition of each rule we list the axioms it is known to satisfy; axiom definitions
are found in the following section. Note that we do not include negative results — rules
may satisfy axioms that we do not list.

We consider the following rules which are based on the full rankings that each voter
provides. Note that the rules k-Borda and Single Non-Transferable Vote are direct ex-
tensions of positional scoring rules (Borda and Plurality, respectively) to the multi-winner
setting. Any positional scoring rule can trivially be converted to a multi-winner rule by
simply selecting the k£ highest scoring alternatives.

k-Borda: An extension of Borda to multiple winners. Each voter assigns m — 1 points
to their top ranked alternative, m — 2 points to their second ranked alternative etc.
FBorda returns the k alternatives with highest scores. k-Borda satisfies the Unanimity
axiom [77].

Single Non-Transferable Vote (SNTV): An extension of Plurality to multiple win-
ners. Each voter assigns one point to their most preferred alternative. FSNTV returns
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the k alternatives with the most points. SNTV satisfies the Majority Winner and
Solid Coalitions axioms [77].

Single Transferable Vote (STV): F5TV returns all alternatives that are top-ranked by
more than a quota of 77 voters. If that is less than £ alternatives, votes for alter-
natives that are beyond the quota are transferred to their next most highly-ranked
alternative. If no voter receives votes above the quota, the alternative with the fewest
votes is eliminated and their votes transferred. This continues until & winners are
found. We use fractional weight transfer; each voter top-ranking an alternative be-
yond the quota has an equal portion of their weight transferred to their next favourite
alternative such that all excess weight beyond the quota is transferred [213]. STV

satisfies the Majority Winner [213] and Solid Coalitions axioms [77].

We also consider several rules that use a restricted view of voter preferences, the class
of approval-based rules. Approval-based multi-winner voting rules make use of a voters’
approval ballot App(v;) which contains their k highest ranked alternatives®. The set of all
approval ballots is Pa,, = (App(v1), ..., App(v,)). Each of the approval-based rules we
consider is implemented in the ABCVoting library [137].

Definition 5.2.1. Approval-based multi-winner voting rules, also referred to as Approval-
Based Committee (ABC) rules, are those rules using as input only the approval ballot

of each voter. An ABC rule is a function F (Papp, k) which returns a set of k alterna-
tives.

Approval-based rules can be further subdivided by whether or not they are in the class
of Thiele rules. First described in 1895 by Torvald Thiele [212, 125], Thiele rules are defined
by some satisfaction function w which they aim to maximize. Thiele rules can consider
ranked ballots but are more frequently used in the approval domain (we only consider
Thiele rules in the context of approval-based rules).

Definition 5.2.2. A Thiele rule F is characterized by a satisfaction function w :
N — R which scores sets of alternatives based on the number of alternatives in the set
which each voter approves. w is weakly monotonically increasing and has w(0) = 0.
F elects a set of winners which maximizes the score function [138]:

scorey,(Papp, C) = Z w(|App(v;) N C)

v, EV

3We restrict our attention to the setting where voters approve of exactly their k favourite alternatives
as a simplifying assumption when generating preference data; however, our model naturally accommodates
the more general setting where each voter can approve differing numbers of alternatives.
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The approval-based rules which we consider are the following;:

Bloc: Define sc(a) as the number of voters approving of alternative a. sc(a) = >, oy 1{ac App(v)}-
FBloc returns the committee C* containing the k alternatives receiving the most ap-
provals:

C* = arg max Z sc(a).
|Cl=k acC

In our setting the Bloc rule can be seen as a special case of Approval Voting where
all voters approve k alternatives. Bloc satisfies the Strong Pareto Efficiency [138],
Unanimity, and Fixed Majority axioms [77].

Proportional Approval Voting (PAV): Given committee C, define the PAV score of
the committee as

|CNApp(v;)| 1
seeav(C) =), ) =
'U,L'EV ]:1 j

FPAY returns C* = argmax scpay(C). This rule aims to select alternatives such

that each voter approves of a similar number of elected alternatives. PAV is the
original rule described by Thiele [135]; the increased satisfaction each voter receives
for an additional winning alternative of which they approve follows the sequence of
harmonic numbers: 1,1, %,...,2.. PAV is the Thiele method with w(z) = 23;1 %

PAV satisfies the Pareto, JR, and EJR axioms [135].

Chamberlin-Courant (CC): We consider three variations of the Chamberlin-Courant
rule. For committee C' C M, |C| = k, define

sccc(C) = [{v € V | App(v) N C # 0}

scoo(C) is the number of voters who approve at least one alternative in C. This base
version of CC is also a Thiele method, with w(z) = min(1,x); i.e. each voter with
at least one approved alternative adds to the score of the committee. Chamberlin-
Courant has two variants, an approximation of CC and an alternative tie-breaking
method. Chamberlin-Courant satisfies the JR axiom [135].

Sequential CC: F*9CC is an approximation of CC that constructs a winning committee
from the empty set by iteratively adding a € A that increases the scoo the most at
each step. Sequential CC satisfies the JR axiom [138].
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Lexicographic CC: F'*CC maximizes scoc, breaking ties by selecting the committee
maximizing the number of voters approving 2 alternatives (then, if ties remain, 3
alternatives, etc.).

Monroe: Considers all ways of assigning each voter to one alternative in committee W,

such that every a € W is assigned to between | 7] and [7] voters. The score of W

is the number of voters assigned to an alternative that they approve. FM°mro¢ selects
the committee with the highest score. Monroe satisfies the Unanimity and JR axioms

[138].

Greedy Monroe: constructs a winning committee iteratively beginning with
an empty committee W. At each step, the alternative that is approved by the most

unassigned voters is assigned to either |7 ] or [#] voters and added to W. Greedy

Monroe satisfies the Unanimity and JR axioms [138].

JT_'Greedy M.

Minimax Approval (MAV): FMAV selects the committee that minimizes the maximum
Hamming distance between any voter’s approved alternatives and the winning com-
mittee.

Method of Equal Shares: FMFS uses two phases. In the first phase, each voter has a
budget of % Proceed for up to k rounds: Adding a voter to the committee has a cost
of 1, which can be split between many voters. In each round, consider alternatives A,
which are not in the committee and are approved of by voters that have a remaining
budget summing to at least 1. If A, is empty, go to phase 2. Otherwise, select
a € A, such that each voter approving of a must spend at most p to add them to
the committee. Add a to the committee, adjust the remaining budget of each voter,
and proceed to the next round. In the second phase, many possible rules can be used
to fill any remaining spots on the committee. We use the sequential Phragmen rule.
MES satisfies the JR and PJR axioms (but not the Core). See Lackner and Skowron
for further details [135].

E Pluribus Hugo: Also called “Single Divisible Vote with Least-Popular Elimination”;
FEPH operates in rounds. In each round, each voter divides a single point evenly
between all remaining alternatives of which they approve. Alternatives are ranked
in order of total summed points from all voters. The two alternatives with the
lowest number of points are compared: the one receiving the fewest approvals overall
is eliminated. Rounds of elimination continue until k alternatives remain. EPH

satisfies the Strong Pareto Efficiency axiom [185]
Random Serial Dictator: FR5P selects a single voter to serve as dictator. The winning

committee is exactly the set of winners which that voter approves of. The method
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is named on the expectation that it will be used over many rounds (e.g. different
dictators are chosen serially).

Random: FRandom gelects a set of k alternatives uniformly at random and declares them
winner with no regard for voter preferences.

Min: FMin g a baseline which always selects the committee which violates the fewest
possible axioms, breaking ties lexicographically.

Max: FMax is a baseline which always selects the committee which violates the largest
possible number of axioms, breaking ties lexicographically.

Based on the definitions of these rules, we can loosely categorize them by which of the
goals outlined by Faliszewski et al. they aim to satisfy [30, 83]. This categorization is
not concrete but only roughly indicates similarities in purpose of the rules we study. We
include variations of a rule in the same grouping as the original rule.

Individual Excellence: FBerde FSNTV & pBloc pEPH

Diversity: FSNTV FoC,

Proportionality: F5TV FPAV FMonroe pCC TMES TEPH

These categories are not mutually exclusive; for example, the Chamberlin-Courant score
of a committee is larger when the committee represents a wide range of voters (diversity)
and is also high when the committee represents voters proportionally (as many voters then
have some non-zero representation). We note that the Minimax Approval rule and the two
randomized rules do not neatly fit into any category: MAV considers alternatives as sets,
rather than individuals, but focuses only how satisfactory the winning committee is to a
single voter rather than measures more obviously related to diversity or proportionality.
Random Serial Dictatorship and Random committees are included, not on their own merit,
but as a baseline against which we compare other rules.

5.2.2 Axioms

We will use each of the following axioms in our experiments. Note that we use definitions of
the standard single-winner Condorcet Winner and Loser axioms which have been extended
to a multi-winner setting.
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Due to the nature of our experimental framework (described in Section 5.3), we consider
only intraprofile axioms — axioms for which a violating rule can be identified using only
a preference profile and the output of the rule on that profile. As with voting rules, we
can loosely categorize axioms by whether they focus on individual excellence, or whether
they aim to describe diversity or proportionality constraints. In categorizing axioms, we
find the boundary between diversity and proportionality is often blurred and merge the
two categories.

Condorcet Winner A Condorcet committee C is one in which all x € C' and for all
y € A\ C, the majority of voters prefer x to y. A voting rule satisfies the Condorcet
Winner axiom if, whenever one exists, it returns a Condorcet committee [97].

Condorcet Loser A Condorcet Losing committee L is one in which all x € L and for all
y € A\ L, the majority of voters prefer y to x. A voting rule satisfies the Condorcet
Loser axiom if it never returns L [97].

Dummett’s Condition If there is a group of %" voters that all rank the same ¢ alterna-
tives on top, these ¢ alternatives are in the winning committee [73].

Fixed Majority If there exists a set of alternatives C, |C| = k and a set of voters X C V
with |X| > § that all rank each alternative in C' above each alternative not in C
then the winning committee is C' [66, 77].

Local Stability For ¢ =[], a committee C violates local stability if there exists a subset
of voters V* with |V*| > ¢ and an alternative ¢ C such that every voter in V*
prefers x to all members of C' [19].

Majority Winner If [2] or more voters rank alternative x first in their ballot, then x is
in the winning committee [39].

Majority Loser If [Z] or more voters rank alternative z last in their ballot, then z is
not in the winning committee.

Solid Coalitions If at least 7 voters rank some alternative z first, then x should be in
the winning committee [77].

Strong Pareto Efficiency A committee C' dominates C" if every voter approves at least
as many alternatives in C' as they approve in C’, and at least one voter approves
strictly more alternatives in C' than in C’. A voting rule satisfies Strong Pareto
Efficiency if it never returns a dominated committee [135].
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Strong Unanimity If every voter ranks the same k alternatives on top, then those alter-
natives form the winning committee [77].

Core A committee C' is “in the core” if for each non-empty subset of ¥V C V of voters,
and each non-empty subset of alternatives 7' C A with

71 _ vl

k n

there is a v; € V such that |App(v;) NT'| < |App(v;) "W |. That is, v; approves of at
least as many alternatives in W as they approve of in T'. A voting rule satisfies the
Core if it always returns a committee that is in the core [138].

For our final two axioms we use the concept of ¢-cohesiveness [135]:

Definition 5.2.3. For ¢ > 1, a group of voters is {-cohesive if,
L|\V|>t-3
2. | Miev App(vi)| > ¢

That is, a group V is f-cohesive if it (1) contains at least an % portion of voters, and
(2) every voter in the group approves of some set of at least ¢ alternatives. Lackner and
Skowron argue that such a group should, intuitively, be represented by at least ¢ seats in
the final committee. They show this condition may be impossible to satisfy and instead
describe easier extensions of the idea.

Justified Representation (JR) For a winning committee C, it is the case that every

1-cohesive group of voters V contains a v; who approves of at least one member of
Csie. [WnNApp(v;)| > 1 [138].

Extended Justified Representation (EJR) For a winning committee C, it is the case
that every f-cohesive group of voters V contains a v; that approves of at least /¢
winners, for 1 < /¢ <k [138].

There are many known relationships between these axioms. For example, in the single
winner setting, a Majority winner is also a Condorcet winner. In the multi-winner setting,
this means that a Majority winner must always be in a Condorcet winning set (though it is
possible that either or both of a Majority winner and Condorcet winning set do not exist).
Another relationship is between the Fixed Majority set and the Condorcet winning set: If
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the Fixed Majority set exists, it is also the Condorcet winning set. As well, if a committee
satisfies the Core axiom, it also satisfies EJR. And if it satisfies EJR, it also satisfies the
more basic JR axiom|[138].

Many relationships between axioms can be subtle and only relevant under certain con-
ditions. Learning strong axioms as well as axioms which are strictly easier to satisfy can
be beneficial to the learning process and we therefore make no effort to avoid redundancy
in axioms. Just as multiple redundant features can improve learning outcomes (as we show
in Section 5.5), learning simpler axioms such as Justified Representation may be a useful
“stepping stone” for a function on its way to learning the stronger Core axiom.

Each of the axioms we consider can also be informally categorized based on the priority
it describes.

Individual Excellence: Majority Winner/Loser, Condorcet
Winner/Loser, Pareto, Fixed Majority, Strong Unanimity

Diversity /Proportionality: Solid Coalitions, Dummett’s
Condition, Local Stability, (Extended) Justified Repre-
sentation, Core

5.3 Evaluating Voting Rules

We take a data-driven approach to evaluating voting rules in a method similar to that
advocated by d’Eon and Larson [67]. In two ways we use the empirical behaviour of voting
rules, i.e. the winners each rules chooses, to compare rules against each other. We first
define a measure of how frequently axioms are violated. This provides both some idea of
“quality” which we can use to compare rules across a range of individual preference profiles
and to explore violation rates of an individual or set of axioms.

Subsequently we define a difference metric which explicitly measures the overlap in
winners/committees elected by two different rules or groups of rules. This difference metric
enables us to identify whether two rules with the same axiom violation rate are actually
electing similar winners. Put differently, if two rules have a very low axiom violation rate we
want to know whether they are identifying the same committee using different approaches,
or whether they are identifying highly distinct committees which both happen to result in
good axiomatic properties.
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5.3.1 Axiom Violation Rate

While axioms are binary properties that either are, or, are not violated we can also consider
the frequency with which they are violated to establish a measure of degrees of violation.
Here we develop a metric of measuring how often a specific rule violates a set of axioms
on some set of preference profiles. This metric allows us to understand both how often a
specific voting rule violates certain axioms, as well as determining whether violations are
more common on specific preference distributions.

As we focus exclusively on intraprofile azioms we can determine whether an axiom
is violated by a preference profile using only voting rule F and the profile itself. The
procedure for doing this depends upon the axiom itself; for example, determining whether
the Majority axiom is violated requires (1) identifying if a Majority winner exists, and (2)
if so, checking if the Majority winner is the winner selected by the F.

If F violates some axiom A we say I(A, F) = 1. Otherwise I(A, F) = 0. If A is violated
by a specific preference profile P and committee ¢, we say A(P,c) = 1. If A is not violated,
A(P,c) = 0. One of the ways in which we study voting rules through our experiments
is the frequency with which a particular social choice function is violated given some set
of preference profiles. For a set of axioms A and set of preference profiles P, the axiom

violation rate (AVR) of F is:

AVR(F,P,A) = H ’ZZAP}"

A€A PeP

It is important to remember that an axiom violation rate of 0 does not prove that F

satisfies every axiom; it only indicates that the axioms are not violated on the profiles in
P.

5.3.2 Difference Between Rules

We also measure the similarity between winners selected by each rule. This tells us whether
two rules with low AVR tend to elect the same winners, or whether the rules find distinct
approaches to satisfying the axioms. Further, we can use this to gauge the difference
between rules with low AVR and rules with high AVR — are their chosen winners highly
disjoint or do they tend to elect only slightly different sets of alternatives?

We define the similarity between rules on a single profile as the fraction of alternatives
that both rules elect plus the fraction of alternatives that neither rule elects and take the
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complement to find a difference between rules. Let
Np(FF?) = FL(P)nF*(P),

and
Np(FHF?) = (M\ F(P)) N (M\ F*(P)).

The lowest number of winners which F' and F? must have in common is equal to the
maximum number of winners which are distinct; min(| N5 (F*, F?)|) = max(2k — m,0).
See this by observing that when k < m—k it is possible to have two completely disjoint sets
of winners. When the number of winners is greater than half the number of alternatives,
we can image F' selecting k winners and F? selecting the remaining m — k alternatives
as winners before needing to overlap with F' for the remaining k — (m — k) winners, for
a total overlap of at least 2k — m winners. Similarly, for unelected alternatives, min(| Np
(FLF))|) = maz((m — k) — k,0).

However, as the minimum number of shared winners grows, the minimum number of
shared losers shrinks (i.e. It is always possible that either the sets of winners or the sets
of losers do not have any overlap). The minimum simultaneous size of these sets sums
to |m — 2k|. Equivalently, the maximum number of differences between N5(F!, F?) and
Np(FY, F?) is m — |m — 2k|. We use this as a scaling factor to ensure that the maximum
value of the difference between two rules is always 1.

+ (Tl T2 - (Tl T2
m (1_(|ﬂp(F,f)l+|ﬂp(7,J-")|

— |m — 2k| m m

diff(F', F?, P) =
PFF(F P P) = — )

We extend this notation to sets of profiles:
diff(FLF2P) =1 — —0 > | 0p (FL P + [ np (FL F2)]

pPeP

IIP’\

Finally, we extend this to sets of voting rules. We compare sets of voting rules to allow
us to measure both the internal cohesiveness of groups such as positional scoring rules, as
well as to measure the similarity between different groups of rules.

diff(F', F*,P |IF1| g YooY diff(FL PP
FLeF! F2eF2\{F1}

Thus, diff(F!, F2,P) is the difference between two sets of voting rule outputs on some
set of preference profiles. A value of 0 indicates that two sets of rules always elect the exact
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same sets of alternatives while a value of 1 indicates that the sets of rules are maximally
different. We can use this to establish the similarity of rules in general settings but can
also ask whether rules are more similar to each other on specific preference distributions.

5.4 Procedure for Learning Voting Rules

Here we describe how training data is generated and how our models use the data to learn
and elect winners. Our approach to learning voting rules exclusively relies on generating
training data which informs the model being trained about what a “good” voting rule looks
like — whether that means learning to replicate an existing rule or to elect winners which
avoid violating axioms. We provide specific details on training/testing parameter values
used for each experiment in Section 5.5 and Section 5.6 and describe the high-level process
of learning here.

5.4.1 Generating Data

When a model is trained or tested, it requires some dataset D = (P, C') of preference profiles
and target winners. The profiles P are sampled from a preference distribution D which
is set as an experimental parameter; each experiment considers several of the preference
distributions described in Chapter 2. Target winners are determined based on whether the
goal is to approximate an existing voting rule, or to create a model which is itself a novel
rule. In both cases, the approach is the same regardless of whether the winning committee
includes 1 alternative or as many as m — 1.

Consider the following preference profile with 4 voters and 4 alternatives which we use
as a running example through this section:

V1 a1 > Qg > A3 > Q4 Vg 1 Qg > A1 > A3 > Q4
U3 : Qg > Qg > Q1 > A9 Vg Q1 > Qo > Qg > A3

P =

When the learning target is an existing voting rule F, the target output for each
preference profile in the dataset is simply the output of F on that profile. That is,

D = {(P,F(P)) ¥V P P}

If our learning target is the Borda rule with k£ = 2 winners, the alternatives in our
example profile P’ receive — in lexicographic order — (9, 7, 5, 3) points. We would then

add the pair (P’,{a1,as2}) to D.
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When the learning target is not an existing voting rule we instead aim to minimize the
axiom violation rate on some set of axioms A. Given a set of preference profiles P, we find
the committee ¢ which violates the fewest axioms.

D = {(P,arg minZA(P,c)) VP elP}

¢ A€A

Say we aim to learn the axioms A = {Condorcet,Majority Winner}, again with k£ = 2.
We perform a brute force search over all committees of size 2. There is no Majority winner
in P’ so we can never satisfy the Majority axiom. However, there is a Condorcet winning
set, {ay, as}, which is the unique committee which satisfies the fewest of our target axioms.
Thus, in this case we would also add the pair (P’, {a;,as}) to D.

When there are multiple committees with minimal axiom violations, we break ties
lexicographically. For committees of size larger than 1, we do this by comparing the lowest
numbered alternative in each committee and selecting the committee with the lowest low-
numbered alternative. If this is tied, we compare the second lowest alternatives, etc. Note
that we treat these two possible learning types as mutually exclusive: We are either learning
to approximate an existing rule, or we are learning to minimize axiom violations, but never
both simultanesouly.

5.4.2 Encoding Data

Input Data

A network could be trained directly from the raw dataset, taking as input a complete
preference profile. For n voters and m alternatives, this would require n - m inputs to
the network and would only allow the network to work with elections of a fixed number
of voters. We are also interested in what information is required to learn specific rules
— e.g. information about how alternatives are ranked, or pairwise comparisons between
alternatives. We cannot study this while using a complete preference profile as input.
Thus, we transform each profile P into three distinct types of features whose size is a
function only of the number of alternatives.

MmaioTity . An g x m matrix where the entry at (i, 5) is 1 if a; is preferred by a majority
of voters in P to a;.

Mweighted, Ay matrix where the entry at (4, j) contains the number of voters in P
ranking a; over a,.
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Mranked, Ay % m matrix where the entry at (4, j) is the number of voters in P ranking
a; in position j.

The preference profile of our running example is transformed into the three matrices
below. We are interested in which data is necessary to learn each existing single winner rule
so we do not always use every input matrix. Rather, we explore the efficacy and necessity
of all sets of input matrices. Each of these matrices is discussed further in Chapter 2.

-1171]1 -1313]3 2111110
0|-11/1 11-131]3 11201
0]0]-11 1(1]-13 1710121
0]0]0]- 1111 Oj1]12

Mmaietity: The value at (4,7) M©Weehted: The value at (i,7) Mked: The value at (4, §) is
is 1 if, and only if, a majority is the number of voters pre- the number of voters ranking
prefer a; over a;. ferring a; over a;. a; in rank 7.

Before being given to the network each of the feature matrices is flattened into a one
dimensional list and normalized such that the minimum and maximum values in each
matrix are 0 and 1 respectively. M™aiority and Mweiehted haye their main diagonals removed,
as they contain no information. As well, alternatives are randomly renamed to minimize
bias towards particular alternatives®.

Target Data

The k target winners are encoded as k-hot vectors g. A set of alternatives is encoded as a
list of m elements. All values are 0, except for those corresponding to the indices of the k
winning alternatives which are set to 1.

In our running example, under each learning paradigm (learning to approximate the
Borda rule, or learning to minimize axiom violations) we added {a;, as} to the data. We
represent this target committee by the 2-hot vector y = [1, 1, 0, 0].

4For example, our identity distribution (where all voters have identical preferences) always generates
preferences in lexicographic order. Learning on such data would result in networks that elect alternatives
ay through a; rather than actually learning on the underlying distribution.
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5.4.3 Decoding Network Output

Each network that we train has m output nodes, one corresponding to each alternative.
When electing k alternatives, we create a k-hot vector y by setting the value of the &
highest output nodes to 1, and the remaining nodes to 0. Each alternative with an index
corresponding to a value of 1 is deemed a winner.

As example, a network may output y = [0.87, 0.18, 0.02, 0.53] (note that these
values are chosen arbitrarily). These raw values are used during training to compute
losses. During evaluation, if k& = 2 this becomes the 2-hot vector [1, @, @, 1] which is
interpreted as a winning committee of {ay, as}.

5.4.4 Training Networks

Networks receive a dataset composed of pairs of flattened matrices and k-hot target vectors.
These are used as input and target data. After informal comparisons of several standard
loss functions®, we train networks using L loss in the setting of Section 5.5 and L; loss in
the setting of Section 5.6. Each loss function is defined below.

Dl m

Li(y,y) = m|]D)| sz‘j — Gij
=1
Dl m

LQ( m‘D’ ZZ y’L] y’L]
=1 j=1

The Ly loss of our running example withy = [1, 1, 0, 0Jandy = [0.87, 0.18, 0.02, 0.53]
as above is then,

1 . . . .
Li({y}, {[0.87,0.18,0.02,0.53]}) = Z(|y0 —do| + [y1 — | + |y2 — Da| + |yz — U3|)

1
= (11— 0.87] 41 = 0.18] 40— 0.02| + [0 — 0.53))

= 0.375

5We compared the following loss functions in each of our training settings: Li, Ly, Poisson, Hinge,
Cosine Similarity, Cross-entropy.
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The gradient of the loss at each output node is used to update the weights of each
edge in the network, moving backwards layer by layer. Adjustments in each layer reduce
the loss on subsequent predictions. We refer to Goodfellow et al. for further discussion of
gradient calculation and a thorough explanation of the back-propagation algorithm [107].
Networks are trained in this manner on larger datasets in order to act as approximators of
existing rules and to be entirely new rules.

5.5 Learning Existing Rules

We initially focus our attention on training networks to replicate (or, more precisely, approz-
imate) existing voting rules. This serves two purposes: First, we gain some understanding
of how to learn existing rules, e.g. what features are useful and what loss function is
best. Second, this grants insight into similarities between existing voting rules; some rules
may be learnable with fewer features than expected and certain sets of rules may be more
cohesive than previously known.

In this section we begin by describing the training pipeline used to learn the existing
rules we study. We then demonstrate how accurate our learning procedure is, based on
which features are used in training. We show a comparison between rules which highlights
that certain groups of rules (e.g. Fishburn’s C1 rules, or positional scoring rules) are much
more cohesive than other groups and end the section with some remarks on how best to
use neural networks to learn voting rules.

5.5.1 Training

We train networks following the process described in Section 5.4. In this section we focus
exclusively on single winner rules and train 50 networks each on all combinations of the
following parameters:

e Training on each of the seven non-empty subsets of feature combinations from { Mmaierity

Mweighted Mranked}.
e Targeting the output of each single winner voting rule listed in Section 5.2.
e Each preference distribution D from:

— Urn
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— Impartial Culture

— Impartial Anonymous Culture
— Mallows

— Single Peaked (Conitzer)

— Single Peaked (Walsh)

— Euclidean (3 dimensions, cube topology, uniform random placement); abbrevi-
ated as E(3, C, U).

— Euclidean (3 dimensions, cube topology, gaussian placement); abbreviated as
E(3, C, G).

— Euclidean (3 dimensions, ball topology, uniform random placement); abbrevi-

ated as E(3, B, U).

— Euclidean (3 dimensions, ball topology, gaussian placement); abbreviated as
E(3, B, G).

In all cases, we use n = 50 voters and m = 5 alternatives and generate a training set of
10000 examples from each preference distribution. Networks have 4 fully connected hidden
layers, each with 20 nodes using a rectified linear unit activation function. Each network is
trained for 200 epochs or until 10 epochs pass without loss decreasing by more than 0.001.
We use the Adam optimizer with Lo loss.

We generate three test sets on which we evaluate trained rules. During evaluation, the
alternative output most commonly across each of the 50 trained networks is treated as the
predicted value of the networks. Each test set has several profiles sampled from a range
of preference distributions. Two of the test sets are generated using an identical process
while the third is sampled from the same distributions but excludes any profiles having a
Condorcet winner®. We refer to these as the primary, secondary, and No Condorcet test
sets respectively. Each test set samples profiles from the following distributions for a total
size of 440 profiles:

e 20 profiles from Impartial Culture
e 20 profiles from Single Peaked Conitzer

e 20 profiles from Single Peaked Walsh

5For single-peaked profiles, each profile has at least two alternatives which are preferred by a majority
to all other alternatives and are themselves each preferred to the other by an equal number of voters.
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e 20 profiles from Single-Crossing
e 20 profiles from Group-Separable

e 20 profiles from Euclidean , cube topology, uniform random placement

)
e 20 profiles from Euclidean , cube topology, uniform random placement)
)

e 20 profiles from Euclidean (3D, cube topology, uniform random placement

e 20 profiles from Euclidean (5D, cube topology, uniform random placement)

e 20 profiles from Euclidean (20D, cube topology, uniform random placement)
e 20 profiles from Euclidean (2D, sphere topology, uniform random placement)

(1D
(2D
(
(
e 20 profiles from Euclidean (10D, cube topology, uniform random placement)
(
(
e 20 profiles from Euclidean (3D, sphere topology, uniform random placement)
(

e 20 profiles from Euclidean (5D, sphere topology, uniform random placement)
e 80 profiles from Urn

e 80 profiles from Mallows

5.5.2 Learned Rule Accuracy

In Table 5.2, and Table 5.3 we show the test accuracy of training networks averaged over
all training distributions (In order to fit into the margins with a legible font size we have
listed Fishburn’s C1 and C2 rules in the first table and Fishburn’s C3 rules in the second
table). While using all features is typically most accurate, or nearly most accurate, we
readily observe that rules are generally learned according to the class they are in. That
is, Fishburn’s C1 rules have highest accuracy with access to M™a°MtY features, C2 rules
have highest accuracy when using M™e¢ighted foatures, and positional scoring rules have high
accuracy when using Mr2ked features.

FPBerda i a noteworthy example, being the only scoring rule that is not in C3. While it

has highest accuracy using only M™eishted features, it also tends to have higher accuracy
when using Mraked features.

Interestingly, while M™eishted contains strictly more information than M™MaoHy eyery
C1 rule that we consider is learned much more accurately when using M™a°1% features.
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Target Rule M W R MW MR WR MWR

Banks* 0.87 0.74 0.71 0.87 087 0.72 0.87
Bipartisan Set* 0.86 0.74 0.7 08 08 0.7 0.86
Condorcet* 089 0.73 0.7 089 0.89 0.71 0.89
Copeland* 0.88 0.75 0.72 0.88 0.88 0.72 0.88
GOCHA* 0.88 0.74 0.7 0.88 0.8 0.71 0.88
Llull* 0.88 0.75 0.71 0.88 0.8 0.72 0.89
Slater* 0.87 0.74 0.71 0.88 083 0.72 0.88
Top Cycle* 0.88 0.73 0.7 0.8 088 0.71 0.88
Uncovered Set* 088 0.74 0.71 088 088 0.71 0.88
Beat Path* 0.85 0.75 0.71 0.86 086 0.71 0.86
Blacks* 0.84 0.76 0.74 0.84 084 0.74 0.84
Borda 0.75 0.82 0.79 0.78 0.76 0.8 0.78
B-M Faceoff* 0.86 0.75 0.71 0.86 086 0.72 0.86
C-Global-Borda* 0.86 0.76 0.73 0.8 0.86 0.73 0.86
L-T Voting* 0.86 0.75 0.71 0.86 086 0.71 0.86
Minimax* 0.85 0.75 0.71 0.86 086 0.71 0.86
Raynaud* 0.85 0.74 0.7 085 0.85 0.71 0.85
S. Stable Voting® 0.85 0.75 0.71 0.85 0.85 0.72 0.85
Split Cycle* 0.86 0.75 0.71 0.86 086 0.71 0.86

Stable Voting* 085 0.75 0.72 0.85 085 0.72 0.85

Table 5.2: Accuracy on the primary test set from learning each voting rule in Fishburn’s C1
(red) and C2 (blue) classes, averaged over all training distributions for each combination
of features. Positional scoring rules are underlined and Condorcet methods are marked by
an asterisk. Highest accuracy values before rounding are bold. Features are labelled by as
M, W, R respectively for Mmaiority - Aqweighted " and Aqranked foatyres.

This highlights two practical notes: (1) Networks may not be fully utilizing the training
data they are being given, suggesting that larger networks and/or more data may improve
performance. (2) Using simple but informative features is useful and can make learning
easier than using only more complex features.

Table 5.2, and Table 5.3 show results on our primary test set. In Appendix C we show
tables with the same structure containing results for our other two test sets. As expected,
both identically sampled test sets have similar results. The test set containing no Condorcet
winners exhibits the same quantitative patterns but has generally lower accuracy.

We can also break results down by training distribution. In Table 5.4 and Table 5.5 we
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Target Rule M W R MW MR WR MWR

Anti-Plurality 0.42 0.51 0.72 047 067 0.73 0.68
Baldwin* 0.86 0.74 071 086 0.86 0.71 0.86
Benham* 083 0.73 0.71 084 0.84 0.72 0.84
Bracket Voting 0.82 0.72 0.71 0.82 0.82 0.72 0.83
Bucklin 0.7 0.67 0.69 07 068 0.7 0.69
Cond. Plurality* 0.82 0.72 0.73 082 084 0.73 0.84
Coombs 0.82 0.73 0.69 0.82 0.79 0.69 0.8
C-Local-Borda* 0.87 0.75 0.72 0.87 0.87 0.72 0.87
Daunou* 0.82 0.73 0.72 082 0.82 0.73 0.83
Instant Runoff 0.75 0.68 0.72 0.75 0.76 0.73 0.77
Knockout Voting 0.85 0.75 0.72 08 08 0.73 0.85
Plurality 0.64 0.61 0883 064 0.81 0.89 0.83
S. Bucklin 0.65 0.66 0.72 069 0.73 073 0.73
Strict Nanson* 0.86 0.75 0.71 0.8 0.86 0.71 0.86

Superior Voting* 0.84 073 071 08 08 0.72 0.85
T. Alt. GOCHA* 0.85 0.74 0.71 085 0.85 0.72 0.86
T. Alt. Top Cycle® 0.84 0.73 0.71 0.84 084 0.72 0.84
Weak Nanson* 0.86 0.76 0.72 08 086 0.72 0.86
Weighted Bucklin 0.75 0.72 0.74 0.75 0.74 0.74  0.75

Table 5.3: Accuracy on the primary test set from learning each voting rule in Fishburn’s C3
class, averaged over all training distributions for each combination of features. Positional
scoring rules are underlined and Condorcet methods are marked by an asterisk. Highest
accuracy values before rounding are bold. Features are labelled by as M, W, R respectively
for '/\/lmajority7 '/\/lweighted7 and Mranked features.

show the accuracy of each rule averaged over all feature sets for each training distribution.
Results shown are for the primary test set and other test sets are shown in Appendix C.
The most striking observation is that with most target rules most training distributions
generalize to the test profiles with a similar accuracy, except Single Peaked profiles — e.g.
the Banks rule is approximated with 87% to 93% accuracy by networks trained individually
on each single distribution excluding Single Peaked Conitzer and Walsh. Networks trained
on these distributions resulted in 43% and 33% accuracy respectively on the primary test
set.

This reflects the highly structured nature of Single Peaked preferences. While other
distributions appear to generate preferences similar to each other Single Peaked preferences
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S

z s £ 8 2 g g

= == o ° 2 8 8 8
Target Rule = = = 5 G 75 = = SR
Banks* 091 093 087 092 043 033 093 0.93 092 0.92
Bipartisan Set* 0.89 091 08 09 045 036 091 0.91 091 0.9
Condorcet* 09 093 087 091 043 034 0.94 094 094 0.92
Copeland* 092 093 087 092 045 035 0.94 094 093 0.93
GOCHA* 091 093 087 092 043 034 0.93 093 092 0.92
Llull* 092 093 087 093 044 034 094 094 093 0.93
Slater* 091 092 087 092 044 035 0.93 093 092 0.92
Top Cycle* 09 093 087 091 0.42 033 0.94 094 0.93 0.92
Uncovered Set* 091 093 087 092 043 034 0.93 093 093 0.92
Beat Path* 089 09 08 09 044 035 0.92 092 091 0.9
Blacks* 089 091 08 09 045 035 091 091 09 0091
Borda 091 089 0.85 0.92 041 022 091 092 09 09
B-M Faceoff* 0.89 091 08 09 044 035 092 0.92 092 0.9
C-Global-Borda*  0.91 092 086 091 046 0.35 092 0.92 091 0.91
L-T Voting* 09 091 08 09 045 035 0.92 092 091 0.9
Minimax* 089 091 08 09 045 035 0.92 092 091 0.9
Raynaud* 089 09 08 089 044 035 091 0.91 091 0.89
S. Stable Voting® 0.89 091 086 0.89 0.44 0.35 0.91 091 091 0.9
Split Cycle* 089 091 08 09 045 035 0.92 092 091 0.9

Stable Voting* 089 091 086 0.89 045 035 091 091 091 0.9

Table 5.4: Accuracy on the primary test set from learning each voting rule in Fishburn’s
C1 (red) and C2 (blue) classes, averaged over all feature sets for each training distribution.
Positional scoring rules are underlined and Condorcet methods are marked by an asterisk.
Highest accuracy values before rounding are bold.

provide very little information about how a voting rule should behave on non-Single Peaked
preferences.
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z s £ E 2 ¢ g

= =« o ¢ 8 8 8 7
Target Rule S = 5 = CQB ?/") = = = =
Anti-Plurality 0.65 0.76 0.55 0.65 0.33 0.33 0.72 0.73 0.66 0.61
Baldwin* 0.8 091 085 09 044 035 091 091 091 09
Benham* 0.88 0.89 0.85 0.88 0.45 035 09 0.9 0.89 0.88
Bracket Voting 0.86 0.87 0.84 0.87 0.45 036 0.8 0.89 0.88 0.87
Bucklin 0.69 0.81 0.76 0.74 0.36 0.22 083 0.83 0.82 0.83
Cond. Plurality* 0.87 0.88 0.85 0.88 0.47 0.36 0.89 0.89 0.89 0.88
Coombs 0.8 0.88 0.83 0.82 0.44 0.35 0.88 0.88 0.88 0.86
C-Local-Borda* 0.91 092 086 092 046 036 0.93 0.93 0.92 0.92
Daunou* 0.87 0.88 0.85 0.88 0.43 0.34 0.89 0.89 0.89 0.88
Instant Runoff 0.82 0.82 0.8 0.82 0.45 037 0.83 0.83 0.83 0.81
Knockout Voting 09 091 08 09 046 036 091 091 09 091
Plurality 0.84 0.83 0.75 0.85 0.54 039 085 0.85 0.84 0.84
S. Bucklin 0.65 0.84 0.73 0.73 0.42 031 084 0.84 0.84 0.82
Strict Nanson* 09 091 08 09 044 035 092 0.92 091 0.9

Superior Voting* 0.89 09 08 08 046 035 09 09 09 0.89
T. Alt. GOCHA* 089 09 0.8 09 045 0.35 0.92 091 091 0.89
T. Alt. Top Cycle®  0.88 0.89 0.85 0.89 045 035 09 09 09 0.88
Weak Nanson* 09 091 08 091 045 035 092 0.92 091 0091
Weighted Bucklin 083 0.8 08 083 036 032 0.86 0.86 0.86 0.84

Table 5.5: Accuracy on the primary test set from learning each voting rule in Fishburn’s
C3 class, averaged over all feature sets for each training distribution. Positional scoring
rules are underlined and Condorcet methods are marked by an asterisk. Highest accuracy
values before rounding are bold.

5.5.3 Comparison between Rules

Using the difference metric defined in Section 5.3, we can compare the difference between
each individual rule and each major class of rule — C1, C2, C3, Condorcet methods, and
positional scoring rules. This metric allows us several insights. First, to the differences
between existing groups of rules, e.g. whether the Fishburn classes have some internal
consistency in terms of which winners they elect. Second, we can compare the distances
between existing rule classes with our learned approximations of rules to identify patterns
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C1 C2 C3  Condorcet Scoring

C1 0.05 - - - -
C2 0.06 0.05 - - -
C3 0.12 0.11 0.16 - -
Condorcet  0.05 0.05 0.11 0.05 -
Scoring 0.30 0.30 0.31 0.29 0.46

Table 5.6: Distance between each group of learned networks approximating rules in the
corresponding group on the primary test set.

C1 C2 C3  Condorcet Scoring

C1 0.04 - - - -
C2 0.07 0.06 - - -
C3 0.13 0.13 0.18 - -
Condorcet 0.06 0.06 0.13 0.06 -
Scoring 0.34 0.33 0.35 0.33 0.48

Table 5.7: Distance between each group of existing rules targeting rules in the corre-
sponding group on the primary test set.

in which type of rule is most learnable. Note that C1, C2, and C3 methods are mutually
exclusive but Condorcet methods overlap with each of Fishburn’s classes (nearly all C1
and C2 rules are Condorcet-consistent, only some C3 rules) and we use positional scoring
rules which fall into the C2 and C3 classes.

In Table 5.6 and Table 5.7 we show the difference between each major rule class on
learned and real rules respectively. For both learned and existing rules the trends are the
same. C1 rules are able to be computed using only M™% which relies on pairwise
comparison, much like the definition of the Condorcet criteria. Unsurprisingly, C1, C2,
and Condorcet rules all tend have a very low distance from other C1/C2/Condorcet rules
(as there is a large overlap in membership of the two groups).

When considering the data in Table 5.7 before rounding, each set of C1, C2, and
Condorcet rules are closer to their own class of rules than any other class; this demonstrates
a strong level of consistency within the classes. Put differently, this can be seen as evidence
that each class captures something meaningful about the winners chosen by a rule that is
common to other rules in the same class. As nearly all rules in these classes are Condorcet-
consistent, the commonality captured by the classes may simply be that they elect the
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Condorcet winners. However, a similar trend holds in Table C.18 where we consider rule
outputs on the test set with no Condorcet winners.

What we find most surprising is the large difference between positional scoring rules
and all sets of rules (including the difference between each positional scoring rule and
other positional scoring rules). The set is quite small, containing only Plurality, Borda,
and Anti-Plurality, so the potential for it to be an outlier is high.

That said, across all test sets the two existing rules most different from each other are
Plurality and Anti-Plurality. Given that Plurality and Anti-Plurality are very antonymous
names for voting rules (not to mention the differences in their definitions: one provides
information only about favourite alternatives and the other only about least favourites), it
is not altogether surprising that they produce very different outcomes. However, each of
the two rules is also quite different from Borda. This highlights that the class of positional
scoring rules can exhibit a very wide range of behaviours despite having quite a simple and
concise definition.

We also observe that, in general, learned rules are slightly less different from one another
than existing rules. This difference is especially pronounced on the test data with no
Condorcet winners, shown in Appendix C. This suggests to us that neural networks have a
tendency towards similarity with one another; networks are not learning an actual voting
rule but only approximating one and tend to do so in a way that produces output similar to
networks approximating other rules. This echoes the findings of Burka et al. who show that
neural networks trained to learn existing rules typically elect similar alternatives regardless
of which rule they target[10].

Finally, we briefly consider differences between individual rules. In Appendix C we
include tables showing the pairwise differences between all 39 individual rules. We include
6 tables, one for each of learned and actual rules on each test set. As we have observed,
Anti-Plurality and Plurality are each typically quite different from every rule. However, we
can also observe other trends. In particular, the family of Bucklin rules: Bucklin, Weighted
Bucklin and Simplified Bucklin all tend to be different from other rules as well.

These trends hold for the primary and secondary test sets with learned approximations
as well as actual rules. On the test set with no Condorcet winners behaviour changes. The
above-stated rules all maintain high differences from other rules; however, the difference
between nearly any pair of real rules grows quite high. This does not hold with the learned
rule approximations. While differences between each pair of models grows, many models
remain relatively similar to each other. The required lack of structure on elections with
no Condorcet winner greatly magnifies the algorithmic differences between each different
rule. The models approximating the rules do not fully learn the specific edge cases of each
rule and thus have fewer differences to magnify in this setting.
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5.5.4 Takeaways

Our results provide an interesting picture of similarities between rules and the difficulty of
learning some rules over others but they also suggest useful adjustments that can improve
the learning process. Here we identify some insights from our results and list the motivation
for changes we make to our network training procedure in the following section.

e Positional scoring rules exhibit high dissimilarity from each other; as a whole, the
group has potential to produce a diverse range of behaviour.

e Learned rule accuracy is reasonably high but not perfect. Since models learning C1
rules are not as accurate when training with only M™eigbted features as they are when
training with only M™% the models may not be fully utilizing the training data
they are being given. Using larger networks and more data may improve performance.

e Using simple but informative features (i.e. M™°M%) is useful and can make learning
easier than using only more complex features (M™eighted)  Thus we keep all of the
features that we use, despite some information they provide being redundant.

5.6 Learning Novel Rules

Using what we have learned about learning to adjust our training setup we now move away
from the task of learning existing rules and begin to learn novel rules. In this section we
use our learning framework to develop novel rules that learn to select winners minimizing
axiom violations. While we evaluate our multi-winner rules in the single winner setting, our
focus is on the aggregate performance of the rules over varying numbers of winners. Many
interesting axioms are defined with the multi-winner setting in mind, leading to committee
selection appearing as a more interesting and challenging task. We find that common
multi-winner rules frequently violate axioms considered desirable, despite a much lower
violation rate being possible. In this section we include only a small subset of aggregate
results from our larger set of experiments. Additional results, considering each preference
distribution and number of alternatives, are found in Appendix D.

5.6.1 Training Pipeline

We train networks following the process described in Section 5.4 with the goal of learning
novel rules that minimize Axiom Violation Rate. In this section we turn our focus to multi-
winner rules and train 20 networks each on all combinations of the following parameters:
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Training exclusively on all features; the concatenation of Mmajerity - Aqweighted a4

M ranked

Number of alternatives m € {5,6, 7}

Number of winners 1 < k < m.

Targeting the output of each multi-winner voting rule listed in Section 5.2.

Each preference distribution D from:

— Impartial Culture

— Impartial Anonymous Culture

— Stratification with w = 0.5; half of alternatives (rounded down) placed on top.
— Identity

— Mallows (with ¢ sampled uniformly at random as described by Boehmer et al.,
[3]).

— Urn (with a sampled from a Gamma distribution with shape parameter £ = 0.8
and scale parameter § = 1 as described by Boehmer et al. [35].).

— Single Peaked (Conitzer)
— Single Peaked (Walsh)

— 8 Euclidean distributions with each combination of: 3 or 10 dimensions, an
underlying Ball (B) or Cube (C) topology, and Uniform (U) or Gaussian (G)
placement of voters. Abbreviated as E(Dimension, Topology, Placement).

— Mixed - a uniformly random mixture of all 16 other distributions.

In all cases, we use n = 50 voters generate a training set and a test set of 25000 examples
from each preference distribution. Networks have 5 fully connected hidden layers, each with
256 nodes using a rectified linear unit activation function. Each network is trained for 50
epochs or until 20 epochs pass without loss decreasing by more than 0.0001. We use the
Adam optimizer with L; loss. We reduced the number of training epochs after observing
few networks requiring more than 40-50 epochs to finish training and change the loss
function after noticing a mild improvement to axiom violation rate. The most significant
differences to our networks from the previous section are:

e Larger networks (5 hidden layers of 256 nodes, rather than 4 layers of 20 nodes)
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Mixed Preference Axiom Violation Rates on All Axioms
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Figure 5.1: Axiom violation rate for each voting rule averaged over all axioms for each
number of alternatives on the mixed preference profile sampled uniformly from all individ-
ual preference distributions.

e More training data (25000 examples rather than 10000)
e Always using all features.

e Target winners are committees that minimize axiom violations, rather than the out-
put of an existing voting rule.

5.6.2 Minimizing Axiom Violation Rate

Our focus in this section is on training models that act as novel voting rules which minimize
axiom violations. We have targeted all axioms listed previously and trained/evaluated over
many preference profiles. The first result we show in Figure 5.1 is a very broad view: we
show one plot of axiom violation rate for each number of alternatives, showing within each
plot the rate for each number of winners. The violation rate is averaged over all axioms we
consider and shows results for the preference distribution composed of an even sample of
all preference distributions. This is a very high-level perspective; however, the figure does
provide some useful initial insights.

First, we see that no rule, even random committees, is anywhere near the maximum
possible violation rate (dotted red line). However, some rules (CC, seq-CC) often have
nearly as high a violation rate as random committees do, particularly when the number of
winners is high. Second, we can see that our trained models (black line) appear to perform
extremely welll They consistently have nearly the optimal violation rate (dotted blue line)
and appear at least as good as any other rule.
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NN .017 .000 .000 .004 .017 .015 .000 .000 .000 .061 .001 .001 .001 .046 .092
Borda 021 .001 .004 .004 .021 .125 O 011 O .044 .000 .000 .000 .031 .056
EPH 040 .000 .001 .000 .040 270 .002 .001 O  .082 .000 .000 .000 .063 .096
SNTV 099 0  .098 .227 .099 .619 .007 .106 .049 .062 .001 .054 .058 O  .012
STV 048 0  .037 .118 .048 .442 .002 .029 O 0 .000 .000 .001 O .001
Bloc 039 .000 .001 O .039 .254 .002 O 0 .080 .000 .000 .000 .061 .106
CcC 195 .036 .146 .344 195 756 .031 .141 062 .308 O  .084 .091 .232 .301
lex-CC 061 .005 .007 O .061 .440 .002 .024 O .117 O  .000 .000 .091 .112
seq-CC 183 032 .139 .297 .183 .740 .025 .140 .061 .292 O  .078 .081 .216 .278
Monroe 130 .007 .078 .234 .130 .649 .026 .060 O 214 O  .002 .006 .180 .231
Greedy M. .063 .002 .019 .012 .063 .448 .003 .023 0 .112 O 0 0 .089 .118
PAV 043 001 .001 O  .043 .308 .002 .004 O .088 O 0 0 .068 .091
MES 049 .001 .002 .001 .049 .351 .002 .008 O .096 O 0 0 .075 .095
MAV 157 .022 110 279 157 750 .044 .084 O  .219 .015 .022 .022 .179 .300
RSD 105 .008 .056 O .105 .594 .016 .036 O .148 .030 .032 .033 .120 .299
Random 237  .063 .171 .406 .237 .845 .057 .160 .071 .326 .049 .125 .134 .252 .419

Table 5.8: Axiom violation rates over all test sets of profiles for each voting rule averaged
across all axioms for 7 alternatives, all 1 < k < 6, and all preference distributions. Bold
values indicate the best result of a column, italic values indicate a value rounded down
that has a true value strictly below 0.0005 (i.e. at most 12 violations in a test set of 25,000
profiles). Shaded green appears where previous work has shown that the rule satisfies this
axiom.

In Table 5.8 we show the raw axiom violation rate for each multi-winner rule that we
consider. The table shows the violation rate for 7 alternatives averaged across all preference
distributions and number of winners. Green cells indicate that a rule has been shown
theoretically to satisfy an axiom (i.e. it should have a violation rate of 0; minor exceptions
may occur due to differences in tie-breaking). Values in italics have been rounded to 0.
In all cases, we report the mean violation rate across all 20 trained networks. Networks
trained on the same parameters are all highly similar to each other: the mean standard
deviation over all networks trained on each parameter combination is 0.0002.

In Table 5.8, we see that the strong performance of a trained model does not disappear
upon closer investigation. In nearly all axioms, the NN rule has a very similar or a lower
violation rate than every other rule. On the axioms that are more focused on electing
individually excellent alternatives (Majority Winner through Unanimity in the table), this
rings the most true. On some proportional axioms — Solid Coliations and Stability — the NN
rule performs much better than the worst rules but is outperformed by a number of rules.
While FRandom tvpically performs much worse than many rules as we would intuitively
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expect, the other randomized rule FR5P performs surprisingly well by simply following the

approvals of a random voter. In fact, compared with several rules (CC, seq-CC, MAV),
FBSD has a lower violation on all individual excellence axioms and many proportionality
axioms.

We now move to an even more detailed views of our results. We visualize first the axiom
violation rate for each axiom on each individual preference distribution. Subsequently, we
show the violation rates for each rule on the mixed preference distribution.

Differences Between Preference Distributions

In Figure 5.2, we include a subplot for each individual preference distribution with each
rule as a series showing the axiom violation rate averaged over all axioms. Echoing our
observation from Figure 5.1, it is the case for most preference distributions that all rules
have an average AVR much lower than the worst case (dotted red line). We do find a
number of additional observations from this view of the data:

e In general, the two distributions which consistently have a low violation rate are 1C
and TAC, and also have a low worst-case violation rate. These are the two distri-
butions with minimal underlying structure, as opposed to Identity or Single-Peaked
preferences which have a very specific structure. That they have low violation rates is
unsurprising upon reflection: The chance that some blocs of voters will prefer some
shared subset of alternatives (as loosely required by many axioms) is much lower
under IC/TAC preferences than under more highly structured preferences.

e While both Single-Peaked distributions show approximately similar trends in axiom
violation for rules, Walsh’s distribution shows a much higher worst-case violation
rate. In light of our previous observation, this can be seen as mildly surprising.
Unlike Conitzer’s, the Walsh Single-Peaked preferences are sampled uniformly from
the entire Single-Peaked domain and referred to as the “Impartial Culture” of Single-
Peakedness [220]. However, this more general structure does not translate to a lower
violation rate.

e We have used Stratified preferences parameterized such that every voter ranks the
same |7 | alternatives above all others. For m = 7, this means that with 3 winners
all voters approve of the exact same 3 alternatives. This results in the edge case seen
in the plot with a high worst-case AVR and strange behaviour from the seq-CC rule.

e Excluding IC and TAC, it appears to be universally the case that the worst-case vio-
lation rate occurs with £ = 3 winners. However, on Single-Peaked and all Euclidean
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Figure 5.2: Axiom violation rates for each rule under each individual preference distribution
for m = 7. In all cases our trained model, F™¥, has AVR lower than, or similar to, other
rules.

distributions there seems to be a trend of rules having increasing violation rates with
a higher number of winners.

Axiom Violation Rate for each Rule

In Figure 5.3, we violation rates for preferences drawn uniformly from all distributions
using 7 alternatives. Each axiom is shown as a series with a subplot for each rule. This
figure shows a view with more insight into the “behaviour” of each axiom under each rule as
the number of winners changes. There are a number of observations that become apparent
from the figure:
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Axiom Violation Rates for 7 Alternatives on Mixed Preferences
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Figure 5.3: Axiom violation rate with 7 alternatives for each rule on preferences drawn
uniformly from all individual preference distributions as the number of winners varies.
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e Universally, all existing rules typically have the highest violation rate for the Con-
dorcet Winner axiom. Even on rules such as Borda and EPH, this tends to hold true.
However our trained NN rule has a very low Condorcet violation rate, demonstrating
the possibiblity of a low violation rate.

e Borda has an AVR similar to our trained NN. Borda is a widely studied rule and
that it performs so well is not entirely surprising. Similarly, the Method of Equal
Shares was designed specifically with proportionality axioms in mind [176]. Quite
interestingly, EPH also exhibits very low axiom violations. Contrary to the other
rules, EPH was designed to solve a real-world problem (avoiding strategic manipu-
lation in voting for the Hugo Awards) rather than very specific axiomatic criteria.
The performance of EPH and Borda suggests that well thought-out, intuitive rules
can exhibit very strong performance.

e Strong Pareto Efficiency and Local Stability are also typically among the most highly
violated axioms. These axioms are respectively focused on individual excellence and
proportionality. There is no obvious link between violation rates of these axioms
and whether a rule is more focused on individual excellence or proportionality. i.e.
SNTV and STV frequently violate Pareto efficiency despite being oriented towards
individual excellence, while proportional rules such as MES and variants of CC violate
Local Stability more than most axioms.

5.6.3 Measuring Rule Differences

We have now seen ample evidence that several rules, particularly our trained NN rule,
violate axioms at much lower rates than some other rules. The important follow-up question
then becomes — Is our machine learning approach replicating some existing rule or is it
finding non-violating committees that are distinct from any existing rule we explore? Given
the strong performance of our ML approach, it is useful for designers of new voting rules to
know if novel deterministic rules can identify new solutions or if any rule that avoids axiom
violations will be similar to an existing rule. We can also ask this question of existing rules:
two known rules may follow different procedures and end up with nearly identical results.
Knowing this can be useful, e.g. if one of the two rules has much higher computational
complexity.

In Table 5.9 we show the difference between all multi-winner rules, as defined in Sec-
tion 5.3. The table shows results averaged over all number of winners and all preference
distributions for m = 7 alternatives. Note that the difference values have been normalized
so that a value of 0 indicates two rules always elect the same committee and a value of

125



g © =
3 @ > Q © o by

= : : B & : z g § ¢ & § 2 8 FE 38

z w A @ ® M [y O kY @ = 9 = = &l e
Random - - - - - - - - - - - - - -
Borda - - - - - - - - - - - - -
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STV .301 — - — - - - - — - - - -
Bloc 418  .362 - - - - - - - - - - -
PAV .430 367 .065 - - - - - — - - - -
cC - - - - - - - - -
lex-CC .440 — - - — - - - -
seq-CC - - — - — - —
Monroe .376 117 .366 - - - - - -
Greedy M. 219 432 - - - - -
MAV .352 - - - -
MES .285 273 412 .376 .131 .087 - - -
EPH .242 .250 422 .363 .021 .051 119 - -
RSD -
Min
Max

Table 5.9: Difference between rules for 7 alternatives with 1 < k£ < 7 averaged over all
preference distributions.

1 means the two rules always elect committees with minimal overlap. This table reveals
interesting answers to both of the questions we posed above.

First, is our trained network replicating any existing rule? In the first column of the
table we see that the NN rule is closest to the Min Violations committee, and second closest
Borda’s rule. This result is not altogether surprising, as previous work by Burka et al. has
also suggested neural networks are prone to approximating Borda’s rule [16]. Actually, the
difference between the NN rule and each existing rule takes a similar relative order to each
rule’s axiom violation rate in Table 5.8. Borda, Bloc, EPH, and PAV are, in that order, the
existing rules most similar to the NN and also have the lowest average violation rate over
all axioms. Contrary to seeing that different rules find committees which are very distinct
yet similarly desirable from an axiomatic perspective this suggests that many rules are all
electing similar committees using distinct algorithms. Ultimately, these results provide no
evidence to support a hypothesis that there exist multiple distinct committees which all
provide similarly good axiomatic properties. If such a space exists, it is not what is learned
by our model.

The second point of interest in Table 5.9 is in the similarity (or lack thereof) between
existing rules. We consider first our baseline “rules.” Between all of our baselines we find
no surprises: rules are all closer to the minimally violating committee than the maximally
violating committee, rules are all quite far from random committees, and Random Serial

126



Dictatorship is relatively far from most rules but closer than a complete random committee.

In looking at pairs of existing rules, there are two interesting trends. Some rules are
extremely similar while others are surprisingly distinct. Each pair from Bloc, PAV, and
EPH has a very low distance from each other. Upon examination, this is unsurprising.
Each of these rules has voters spread some number of “points” between all alternatives of
which they approve. When all voters approve exactly k alternatives (as in our experiments),
EPH and Bloc become extremely similar rules algorithmically.

Much more interesting are the rules which have a very high difference from each other.
Recall that Minimax Approval Voting (MAV) did not neatly fit into any category of voting
rule: individual excellence, diversity, or proportionality. This categorical distinction is
reflected in the difference between MAV and other rules. In nearly all cases, MAV selects a
committee which is quite distinct from other rules. Most notably, MAV and seq-CC have a
difference which is greater than the difference between MAV and random committees — the
two rules follow a procedure which happens to select for minimally overlapping committees.
It is also quite interesting that variations of rules can, despite sounding similar, result in
very different outcomes. This can be seen with both {seq-CC, lex-CC, CC} and {Monroe
and Greedy Monroe}.

5.7 Discussion

In this chapter, we have applied machine learning to teach us about voting rules. Most
existing methods of analysis in social choice rely on strict theoretical proofs and exact
categorizations. Here we have undertaken an experimental approach to both of these
methods and identified insights unavailable to a theoretical approach.

In our first experiments in Section 5.5 we have developed an understanding of how
to use machine learning to approximate existing voting rules. By training with the type
of preference information known to be necessary to compute the output of some existing
voting rule we can more accurately train a model to replicate that rule —i.e. using Mmaierity
features is useful for computing Fishburn’s C1 rules, such as Copeland. However, we have
observed that, in many cases, models can train with features insufficient to fully compute
the output of a rule and still learn to approximate a rule with reasonably high accuracy —
i.e. training with M™% features allows learning many C2 rules with high accuracy.

This observation, while somewhat dependent on the specific learning process, shows
that the hard boundaries between different categorizations of rule do not fully reflect the
reality that many rules can nearly be computed using information required for different
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categories. Our approach gives both a deeper understanding of how different rules use
certain types of information (such as pairwise comparisons, or ordinal rankings), and can
suggest answers to open questions (such as whether a rule like Instant Runoff Voting can
be computed using only Mmaiority o Afveishted foatyres).

Subsequently, we have taken a data-driven approach to study existing and novel voting
rules using an axiom violation metric we have developed. By measuring the degree to
which an axiom is violated by a rule on a particular preference distribution we are able to
compare rules efficiently and at a scale infeasible to a theoretical approach. This approach
holds great promise for simultaneously teaching us about (1) the rules being evaluated, (2)
the axioms being evaluated, and (3) the preference distribution(s) in use.

In our experiments we have shown that for a set of desirable axioms describing a
wide range of properties (a variety of priorities around individual excellence, diversity, and
proportionality) most common multi-winner rules violate the axioms at a rate much greater
than theoretically necessary. We also see that we can, in a straightforward manner, train
models which act as novel voting rules that violate the axioms at a far lower rate than
most existing rules.

We have evaluated rules on specific preference distributions, which reveals the very
dramatic differences in axiom violation rates between distributions. When voters have
very little structure to their preferences, most axioms have very little room for violations.
However, as structure is added and groups of voters with similar preferences appear there
is much more room for axiomatic violation.

By defining a distance metric to compare the winners elected by rules we are able to
identify the many rules which ultimately elect very similar winners despite following differ-
ent algorithms. This also shows us that our trained models are not behaving fundamentally
different than the existing rules that have lower axiom violation rates — they are similar,
just somewhat better.

Our methodological approach of data-driven axiomatic analysis opens several unex-
plored avenues of future research. We have seen here that most axioms can be easily
categorized based on the axiom’s prescriptive goals, typically electing individually good
alternatives or proportional committees which represent all voters/groups of voters equally
well. Many existing rules also tend to have lower axiom violation rate on one or the other
of these ideals. There is room to develop both new axioms and new voting rules which
provide a more intentional balance between these two goals or which select for alternative
measures of quality (such as MAV, which aims to maximize the satisfaction of the least
worst-off voter).

While we take a highly experimental approach,Table 5.8 highlights a number of po-
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tentially incomplete theoretical results. Geen cells in the table show that a rule has been
proven to satisfy the corresponding axiom. However, there are many cells where a rule
does not violate an axiom on any of our test instances. Proving (or disproving) that the
lack of violations we have seen corresponds to a theoretical guarantee would usefully add
to the body of knowledge about each rule. In some cases (i.e. the Unanimity axiom) this
may be trivial; however, proving other results we have seen may be quite involved.

Finally, we suggest that future work may develop novel voting rules using our data-
driven approach which provide a middle ground between human interpretability and desir-
able axiomatic properties in the domain of positional scoring rules. This chapter has shown
that (1) the class of positional scoring rules contains highly diverse rules, and (2) some
positional scoring rules — k-Borda, in particular — already often avoid violating axioms.
On novel sets of axioms, or to out-perform k-Borda, we believe it is possible to optimize a
positional scoring vector which minimizes axiom violations.

5.8 Conclusions

This chapter develops a novel framework for experimentally measuring the axiomatic prop-
erties of existing voting rules, and uses it to guide the development of new learned rules.
This framework has revealed both that many existing voting rules violate axioms at a
rate far greater than the experimentally demonstrated minimal violation rate, and that a
new learned rule is able avoid mutual violations of axioms with very high frequency. We
then defined a metric of the difference between voting rules to understand whether our
learned rules are determining winners using a fundamentally unique behaviour or if they
are selecting winners that are similar to those of other rules with low axiom violation rates.
The fact that our learned rules are similar to the existing positional scoring rule k-Borda
suggests that future work may benefit from optimizing a positional scoring vector to result
in an interpretable rule with excellent axiomatic properties.
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Chapter 6

Conclusions

This dissertation has shown the effectiveness of experimental analysis. We demonstrate,
across several domains and methods of analysis, that using experimental techniques pro-
vides novel understanding of social choice procedures and improves performance of machine
learning systems. In this chapter we will briefly review how our contributions relate to the
thesis statement made in Chapter 1 and will outline several directions for future work.

6.1 Thesis Contributions

Our original thesis statement was,

Experimental analysis using tools from the fields of social choice and machine
learning reveals novel understanding of these fields which are distinct from and
complementary to the findings of theoretical approaches.

Through this thesis we have demonstrated many times the ability of experimental
analysis to teach us about both social choice and machine learning across varying decision-
making domains (epistemic and preference-based), levels of application (abstract models,
and classifiers trained on real-world data), and methods of analysis.

We have studied two common paradigms of social choice. In the epistemic setting,
where voters have a shared goal of identifying a universally correct outcome (Chapter 3,
Chapter 4), experimental comparison of elections held using liquid democracy across a
wide range of voter abilities, social networks, and delegation strategies we identified two
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novel features which improve group accuracy: In a general model the inclusion of viscosity,
a weight decay factor applied during delegation, is consistently effective at improving ac-
curacy. In our general model, as well as with classifiers trained on real data, a delegation
mechanism which delegates based on the weight of potential representatives is also highly
effective at improving performance.

Our experiments further allowed us to identify evidence supporting the hypothesis that
the reason for these improvements to group accuracy is that both features significantly
reduce the potential for a single voter to capture large swaths of the total voting power,
thus increasing the number of relevant decision-makers at any given time.

In the preference-based paradigm where voters have individual preferences and we eval-
uate based on the properties provided by a voting rule in Chapter 5 we have developed
a robust framework for using election data to analyze questions of axiomatic satisfaction
which have traditionally been stuck in the realm of theoretical research. Rather than an-
swering questions of binary axiom satisfaction, our framework teaches us about existing
rules by allowing us to easily measure the degree of axiom satisfaction provided by rules.
We can trivially apply our framework to any voting rule or preference domain — both
restrictions on the general setting which are quite imposing to theoretical analysis.

The synergy between machine learning and social choice has been long established for
theoretical settings such as maximum likelihood estimation [62]. We have demonstrated
that this extends to experimental settings as well. As demand for social choice frameworks
with requirements tailored to increasingly specific settings grows [32] we have shown that
classical machine learning techniques are able both to act as voting rules themselves —
optimized for unique axiomatic requirements — but also to demonstrate bounds on the
possible performance of other voting rules (Chapter 5).

We have also highlighted that direct application of social choice frameworks (liquid
democracy) to the machine learning task of ensemble training reveals the possibility of
identifying new approaches for common machine learning tasks. The delegative pruning
technique we introduce in Chapter 4 operates in a way that may work in concert with
existing ensemble techniques.

6.2 Directions for Future Work

Our work opens many directions for future work through extending our current results or
applying similar techniques to novel domains. We suggest some interesting directions for
each of the topics that we have discussed throughout this document.
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6.2.1 Liquid Democracy

We have evaluated the effect of many delegation mechanisms on group accuracy. Our
results show that the simple Proportional Weighted mechanism outperforms the others we
have tested, but we have not proven the mechanism is optimal. Can we learn an optimized
mechanism for delegation and the optimal amount of viscosity? Due to the relatively
few assumptions in our standard model of liquid democracy, theoretical analysis is quite
complex. However, identifying useful restrictions to our setting may allow for establishing
bounds on the best /worst-case performance of any delegation mechanism, which would aid
in evaluating any new mechanisms.

Our assumption of a singular correct objective allows us to make assumptions about
voters loosely following a particular delegation mechanism if it performs well. Often voters
may disagree on what the best outcome is; for example, if a voter has accuracy below half
they are more likely to vote for the incorrect outcome. One way of interpreting that is to
view the voter as preferring that outcome. If voters are of multiple types (i.e. with one
optimal outcome per type), do different delegation mechanisms become more beneficial?

6.2.2 Ensemble Learning

Our method of ensemble pruning using liquid democracy operates at the level of classifiers;
it does not take into account the values of the specific underlying data. Many ensem-
ble methods are quite the opposite: they consider each classifier’s performance on each
underlying data sample. In principle, these methods are not mutually exclusive. A very
valuable direction for future work is to develop an algorithm which incorporates the ben-
efits of both type of algorithm: a process that benefits from the re-weighting of classifiers
via liquid democracy and from the knowledge of classifier accuracy brought about from
considering individual data.

A possible domain for this would be the continuous learning task explored in our related
work by Blair et al. [30]. In that study we demonstrated the potential for ensembles using
liquid democracy to dynamically re-weight classifiers to address the catastrophic forgetting
problem inherent to continual learning. The algorithms we compared against primarily
considered data-level information that could be incorporated into the delegation procedure
we use for continual learning.
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6.2.3 Data-driven Analysis of Voting Rules

We have established a robust framework which allows straightforward analysis of arbitrary
voting rules under many conditions. A particularly useful aspect of our framework is that
it works with data from any preference distribution and a wide class of axioms. This
allows asking highly specific questions about the relative compatibility of a particular set
of axioms on one preference distribution.

These types of questions lead to two potential benefits. First, theoretical questions can
easily guide their analyses with an experimental analysis to identify potential impossibility
results. More practically, understanding the behaviour of voting rules in relation to specific
sets of axioms will guide the selection of voting rules for settings which prioritize certain
properties, and expect certain types of voters. For example, when having “voters” rank
output from language models an axiom describing clone-proofness may be important as
language models might easily provide multiple responses which are functionally equivalent

[63].

In these cases, we are also able to use our framework for generating data used to train
novel rules with desirable axiomatic properties. While these learned rules are useful as proof
of concept, they are less predictable and have no guarantee of avoiding bad outcomes. As
such, learned rules should not be used in safety-critical settings such as political elections
but may be useful when restricted to multi-agent domains (e.g. ensemble learning, multi-
agent reinforcement learning). Agents do not complain about uninterpretable rules and
may not suffer from an occasional bad outcome. On the other hand, in more safety-critical
settings, learned rules may guide the discovery of similar, non-learned rules. For example,
a learned rule which exhibits high similarity to both the Borda and Plurality rules may
be an indication that a positional scoring rule between Borda and Plurality will provide
similar results.
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Appendix A

Full Results of Delegative Ensembles

For readability, we highlight a limited number of experiment results in the main text. Here
we provide all experiment results from Chapter 4 for each dataset.
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A.1 Dbreast-cancer-wisconsin
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Figure A.1: Test accuracy of fully trained ensembles as parameters are varied. Results

from breast-cancer-wisconsin dataset.
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Ensemble Test Accuracy During Training (breast-cancer-wisconsin)
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Figure A.2: Test accuracy during training on breast-cancer-wisconsin dataset, averaged
over 500 trials.
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Figure A.3: Minimum majority size during training on the breast-cancer-wisconsin dataset.
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Ensemble Test Accuracy During Training (breast-cancer-wisconsin)
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Figure A.4: Test accuracy during training on breast-cancer-wisconsin dataset, averaged
over 30 trials, using diversity metrics to guide delegation.
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A.2 credit-approval
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Figure A.5: Test accuracy of fully trained ensembles as parameters are varied. Results
from credit-approval dataset.
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Ensemble Test Accuracy During Training (credit-approval)
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Figure A.6: Test accuracy during training on credit-approval dataset, averaged over 500
trials.
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Figure A.7: Minimum majority size during training on the credit-approval dataset.
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Ensemble Test Accuracy During Training (credit-approval)
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Figure A.8: Test accuracy during training on credit-approval dataset, averaged over 30
trials, using diversity metrics to guide delegation.
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A.3 heart
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Figure A.9: Test accuracy of fully trained ensembles as parameters are varied. Results
from heart dataset.
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Figure A.10: Test accuracy during training on heart dataset, averaged over 500 trials.
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Figure A.11: Minimum majority size during training on the heart dataset.
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Ensemble Test Accuracy During Training (heart)
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Figure A.12: Test accuracy during training on heart dataset, averaged over 30 trials, using
diversity metrics to guide delegation.
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A.4 ionosphere
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Figure A.13: Test accuracy of fully trained ensembles as parameters are varied. Results

from ionosphere dataset.
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Ensemble Test Accuracy During Training (ionosphere)
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Figure A.14: Test accuracy during training on ionosphere dataset, averaged over 500 trials.
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Figure A.15: Minimum majority size during training on the ionosphere dataset.
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Ensemble Test Accuracy During Training (ionosphere)
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Figure A.16: Test accuracy during training ionosphere dataset, averaged over 30 trials,
using diversity metrics to guide delegation.
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A.5 kr-vs-kp
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Figure A.17: Test accuracy of fully trained ensembles as parameters are varied. Results

from kr-vs-kp dataset.
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Ensemble Test Accuracy During Training (kr-vs-kp)
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Figure A.18: Test accuracy during training on kr-vs-kp dataset, averaged over 500 trials.
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Figure A.19: Minimum majority size during training on the kr-vs-kp dataset.

166



Ensemble Test Accuracy During Training (kr-vs-kp)
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Figure A.20: Test accuracy during training on kr-vs-kp dataset, averaged over 30 trials,
using diversity metrics to guide delegation.

167



A.6 occupancy-detection
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Figure A.21: Test accuracy of fully trained ensembles as parameters are varied. Results

from occupancy-detection dataset.

168



Ensemble Test Accuracy During Training (cccupancy-detection)
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Figure A.22: Test accuracy during training on occupancy-detection dataset, averaged over
500 trials.
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Figure A.23: Minimum majority size during training on the occupancy-detection dataset.
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Ensemble Test Accuracy During Training (occupancy-detection)
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Figure A.24: Test accuracy during training on occupancy-detection dataset, averaged over
30 trials, using diversity metrics to guide delegation.
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A.7 online-shoppers
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Figure A.25: Test accuracy of fully trained ensembles as parameters are varied. Results
from online-shoppers dataset.
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Ensemble Test Accuracy During Training (online-shoppers)
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Figure A.26: Test accuracy during training on online-shoppers dataset, averaged over 500
trials.
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Figure A.27: Minimum majority size during training on the online-shoppers dataset.
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Ensemble Test Accuracy During Training (online-shoppers)
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Figure A.28: Test accuracy during training on online-shoppers dataset, averaged over 30
trials, using diversity metrics to guide delegation.
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A.8 spambase
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Figure A.29: Test accuracy of fully trained ensembles as parameters are varied. Results
from spambase dataset.

A.9 Full Cost and Accuracy Results
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Ensemble Test Accuracy During Training (spambase)
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Figure A.30: Test accuracy during training on spambase dataset, averaged over 500 trials.
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Figure A.31: Minimum majority size during training on the spambase dataset.
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Ensemble breast-cancer-w credit-approval

Acc F1 Cost Acc F1 Cost

Direct 0.907 0.926 1 0.628 0.585 1

Max Acc 0.908 0.928 0.782 0.632 0.588 0.818
Rand B Acc 0.907 0.927 0.782 0.628 0.584 0.83
Prop B Acc 0.908 0.928 0.782 0.63 0.586 0.817

Prop W Acc 0.907 0.927 0.782 0.631 0.586 0.817
Random Acc 0.907 0.926 0.783 0.627 0.584 0.816
Max Cost 0.881 0.897 0.033 0.612 0.575 0.036
Rand B Cost 0.87 0.886 0.033 0.595 0.563 0.036
Prop B Cost 0.867 0.886 0.033 0.593 0.541 0.036
Prop W Cost 0.9 0.92 0.033 0.609 0.584 0.036
Random Cost 0.863 0.881 0.032 0.595 0.521 0.037
Ada DT Full 0.953 0.932 0.039 0.818 0.833 0.07

Ada DT Small  0.957 0.938 0.001 0.852 0.862 0.002
Ada SGD Full 0.965 095 0.014 0.653 0.681 0.007
Ada SGD Small 0965 095 0.013 0.65 0.674 0.007

Ensemble heart ionosphere

Acc F1 Cost Acc F1 Cost
Direct 0.584 0.59 1 0.854 0.765 1
Max Acc 0.578 0.574 0901 0.852 0.761 0.895
Rand B Acc 0.569 0.571 0.904 0.852 0.76 0.895
Prop B Acc 0.573 0.571 0.9 0.853 0.763 0.894

Prop W Acc 0.573 0.574 09 0.853 0.762 0.894
Random Acc 0.586 0.597 09 0.854 0.767 0.895
Max Cost 0.586 0.62 0.035 0799 0.71 0.034
Rand B Cost 0.539 0.503 0.035 0.766 0.68 0.034
Prop B Cost 0.555 0.517 0.035 0.754 0.673 0.034
Prop W Cost 0.565 0.547 0.035 0.802 0.716 0.034
Random Cost 0.531 0.484 0.035 0.723 0.631 0.033
Ada DT Full 0.758 0.783 0.027 0916 0.937 0.031
Ada DT Small  0.803 0.824 0.001 0.896 0.921 0.001
Ada SGD Full 0.683 0.718 0.01  0.861 0.898 0.025
Ada SGD Small 0.678 0.718 0.009 0.861 0.898 0.015

Table A.1: Accuracy, F1 Score, and Training Cost for all delegation mechanisms using cost
minimizing parameters and accuracy maximizing parameters, compared with each variety of
Adaboost used. Bold values indicate that delegation outperforms at least one Adaboost method.
Results shown for four datasets with other datasets shown in Table A.2.
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Ensemble Test Accuracy During Training (spambase)

1.0

—— diverse-euclidean_distance
094 — direct

—— diverse-g-statistic
0.8 -

Accuracy
o o
[=)] |

o
(%]
1

o
~

270 198 146 108 81 60 45 34 26 20 16 13 10
Number of Representatives

Figure A.32: Test accuracy during training on spambase dataset, averaged over 30 trials,
using diversity metrics to guide delegation.
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Ensemble kr-vs-kp occupancy-det

Acc F1 Cost Acc F1 Cost

Direct 0.91 0.903 1 0.946  0.964 1

Max Acc 0.946 0.942 0.272 0925 095 0.056
Rand B Acc 0.943 0.94 0.272 0929 0.954 0.056
Prop B Acc 0.946 0.942 0.269 0914 0.94 0.055

Prop W Acc 0.947 0.943 0.269 094 0.96  0.055
Random Acc 0.897 0.89 0.309 0.906 0.923 0.056

Max Cost 0.885 0.877 0.026 0.924 0.951 0.029
Rand B Cost 0.845 0.842 0.026 0.918 0.945 0.029
Prop B Cost 0.856 0.832 0.026 0.896 0.913 0.029

Prop W Cost 0.908 0902 0.026 0916 0.936 0.029
Ada DT Full 0.966 0.968  0.02 0.99 0.978 0.009
Ada DT Small 0.946 0948 0.001 0.989 0977 0

Ada SGD Full 0.941 0944 0.06 0.984 0.966 0.005
Ada SGD Small 091 0915 0.01 0.984 0.966 0.005

Ensemble online-shoppers spambase

Acc F1 Cost Acc F1 Cost
Direct 0.869 0.927 1 0.86 0.88 1
Max Acc 0.78 0.828 0.059 0.909 0.927 0.197
Rand B Acc 0.719 0.764 0.059 0.897 0.918 0.197
Prop B Acc 0.784 0.84 0.058 0.905 0.924 0.198
Prop W Acc 0.843 0.906 0.058 0.909 0.927 0.198
Random Acc 0.737 0.777 0.058 0.795 0.807 0.198
Max Cost 0.757 0.81 0.029 0.859 0.883 0.03
Rand B Cost 0.735 0.781 0.029 0.843 0.871 0.03
Prop B Cost 0.711 0.751 0.029 0.835 0.864 0.029

Prop W Cost 0.768 0.817 0.029 0.869 0.89 0.029
Random Cost 0.78 0.835 0.028 0.675 0.641 0.03
Ada DT Full 0.888 0.605 0.019 0.934 0.916 0.026
Ada DT Small 0.89 0.62 0.001 0916 0.891 0.001
Ada SGD Full 0.878 0.447 0.012 0.786 0.7Y19 0.013
Ada SGD Small 0.879 0.444 0.011 0.791 0.742 0.012

Table A.2: Accuracy, F1 Score, and Training Cost for all delegation mechanisms using cost
minimizing parameters and accuracy maximizing parameters, compared with each variety
of Adaboost used. Bold values indicate that delegation outperforms at least one Adaboost
method. Results shown for four datasets with other datasets shown in Table A.1.
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Appendix B

Voting Rule Definitions

We now provide a brief description of each single winner voting rule that we refer to
throughout the thesis. The large majority of rules listed in this appendix are used exclu-
sively in Chapter 5. Recall that our model has n voters selecting £ = 1 winners from a
total of m alternatives. Note that in all cases we use lexicographic tie-breaking.

In many cases we define a rule in a way that allows for multiple winners. In all of these
cases we use lexicographic tie-breaking to identify a single winner. For additional details
or the exact implementations we used for our rules, we refer to the Preferential Voting
Tools library, which provided an implementation for all single winner rules . Many of
our definitions are also adapted from the documentation for the Preferential Voting Tools
library.

We will rely on two concepts in some rule definitions which we define preemptively
to avoid redundancy: The margin loss of an alternative a; is the maximum over all
other alternatives a; of the number of voters ranking a; > a; subtract the number ranking
a; = a;. The majority graph of a preference profile contains one node per alternative
and has an edge from alternative a; to a; if a majority of voters prefer a; to a;.

Additionally, we highlight that we place rules in Fishburn’s C3 class by default. That
is, rules in C1 and C2 can be shown to be computable using tournament and weighted
tournament information respectively. C3 rules are those for which no more restricted class
1s known. We do not include a proof that each rule is in the Fishburn class we have
assigned, but we have relied upon the following facts to categorize many rules:

e Plurality scores are in C3.

Thttps://pref-voting.readthedocs.io/en/latest/index.html
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e More generally, positional information about preferences (alternatives ranked first,
last, second, etc.) is typically in C3.

e Global Borda scores (scores for each alternative in the complete preference profile)
are in C2. This is an exception to the above generality.

e Borda scores for a subset of alternatives are no longer in C2 and are in C3.

e Comparing two alternatives across all voters is in C1 if identifying which alternative
is preferred by a majority, or C2 if identifying how many prefer one over the other.

Anti-Plurality: This is a C8 rule in Fishburn’s classification. A positional scoring rule
with the score vector s = (0,0, ..., —1). Each voter awards one negative point to their least
favourite alternative and the alternative(s) with the highest number of points wins.

Baldwin: This is a 3 rule in Fishburn’s classification. The alternative with the low-
est Borda score (among remaining alternatives) is iteratively removed until all remaining
alternatives have equal Borda score. The remaining alternatives are the winners.

Banks: This is a C1 rule in Fishburn’s classification. Say that a chain of alternatives is a
sequence of alternatives where each alternative in the sequence is preferred by a majority
of voters to the next alternative. The winners are the alternatives at the beginning of any
chain with maximal length.

Beat Path: This is a C2 rule in Fishburn’s classification. If a; is preferred by a majority
to a;, the margin of a; over a; is the number of voters with a; > a; subtract the number
of voters with a; > a;. A path from a; to a; is a list of alternatives where the preceding
alternative is preferred by a majority to the succeeding alternative for each pair of adjacent
alternatives. The strength of a path is the smallest margin in the path. a; “defeats” a;
if the strongest path from a; to a; is stronger than the strongest path from a; to a;. The
undefeated alternatives are the winners.

Benham: Thisis a C3 rule in Fishburn’s classification. If there is a Condorcet winner, that
alternative wins. Otherwise, iteratively remove all alternatives with the lowest Plurality
score until there is a Condorcet winner.

Bipartisan Set: Also referred to as C1 Maximal Lotteries. Find a probability distri-
bution over alternatives such that sampling alternatives according to their probabilities
will, in expectation, elect an alternative that is preferred in a maximal number of pairwise
majority contests. Note: This method is randomized and thus does not precisely fit into
the C1 definition (exactly computable using only the majority graph). However, as the
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method does not use any information additional to what is used by C1 methods we consider
C1 the most appropriate label.

Blacks: This is a €2 rule in Fishburn’s classification. If there is a Condorcet winner, that
alternative wins. Otherwise, return the Borda winner(s).

Borda-Minimax Faceoff: This is a (2 rule in Fishburn’s classification. If the Borda
winners are the same as the Minimax winners, those alternative(s) win. Otherwise, do a
pairwise comparison between each Borda winner with each Minimax winner. Add to the set
of winning alternatives each alternative preferred by a majority in a pairwise comparison
(or both in case of a tie).

Borda: This is a C2 rule in Fishburn’s classification. A positional scoring rule with the
score vector s = (m — 1,m — 2,...,0). The Borda score of an alternative is the sum of
scores given by each voter. Each voter awards a score to alternatives equal to the voter’s
rank of that alternative in the preference order. e.g. A voter awards m — 1 points to their
favourite, m — 2 to their second favourite, etc. The highest scoring alternative(s) are the
winner(s).

Bracket Voting: This is a ('3 rule in Fishburn’s classification. Place the four alternatives
with the highest Plurality scores into a bracket. The alternatives placed 1% and 4" face
each other in a pairwise contest. The alternatives placed 2"¢ and 3" face each other in
a pairwise contest. The alternative from each contest preferred by more voters face each
other. The winner of that pairwise contest is the overall winner.

Bucklin: This is a '8 rule in Fishburn’s classification. Proceed for up to m rounds. In
round r, say that the number of votes an alternative receives is the number of voters for
whom that alternative appears in the voter’s top r preferences (e.g. in the first round,
consider each voter’s first preference). A round is the final round if any alternative(s)
receive a number of votes more than half the number of voters. The winner(s) are all
voters who receive a maximal number of votes.

Condorcet Plurality: This is a ('3 rule in Fishburn’s classification. If there is a Con-
dorcet winner, that alternative wins. Otherwise, return the Plurality winner(s).

Condorcet: This is a C1 rule in Fishburn’s classification. If a Condorcet winner exists,
it is the winner. Otherwise, all alternatives are tied winners.

Coombs: This is a C3 rule in Fishburn’s classification. If there is a majority winner, that
alternative wins. Otherwise, iteratively remove all alternatives that are ranked last by the
largest number of voters until there is an alternative ranked first by a majority.
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Copeland-Global-Borda: This is a (2 rule in Fishburn’s classification. Identify the
Copeland winners. From those, return the alternative(s) with the highest Borda score over
the complete preferences of each voter.

Copeland-Local-Borda: This is a ('3 rule in Fishburn’s classification. Identify the
Copeland winners. From those, return the alternative(s) with the highest Borda score,
considering the subset of each voter’s preferences that includes only the Copeland winners.
NOTE: While Copeland is C1 and Borda is C2, this rule does not appear to trivially be in
C2. Borda’s rule does not satisfy the Independence of Irrelevant Alternative’s axiom and
the winners of the Borda rule may change when restricted to a subset of preferences in a
way that may not be predictable using only C2 information.

Copeland: This is a €71 rule in Fishburn’s classification. The Copeland score of an
alternative a; is the number of alternatives that a; is ranked above by a majority of voters
subtract the number of alternatives ranked above a; by a majority of voters. The winners
are all alternatives with maximal Copeland score.

Daunou: This is a C8 rule in Fishburn’s classification. If there is a Condorcet winner,
then that candidate is the winner. Otherwise, iteratively remove Condorcet losers until
one does not exist then elect the Plurality winner(s).

GOCHA: This is a C1 rule in Fishburn’s classification. The set of winning alternatives is
the smallest set such that every alternative inside the set is preferred by a strict majority
to every alternative outside the set. Also referred to as the Schwartz set.

Instant Runoff: This is a C3 rule in Fishburn’s classification. If there is a majority
winner, that alternative wins. Otherwise, iteratively remove all alternatives that are ranked
first by the fewest voters until there is an alternative ranked first by a majority.

Knockout Voting: This is a C2 rule in Fishburn’s classification. Continue until one
alternative remains. Find the two alternatives with the lowest global Borda scores. Remove
the alternative from these two which is preferred by fewer voters in a pairwise comparison.

Llull: This is a CI rule in Fishburn’s classification. Each alternative with a maximum
Llull score is a winner. Each alternative a; receives one point for every pairwise comparison
in which a; is preferred by a strict majority of voters, and % points for each pairwise
comparison in which a; is preferred by exactly half of the voters.

Loss-Trimmer Voting: This is a 2 rule in Fishburn’s classification. Proceed until a
Condorcet winner exists, which becomes the winner. In each round calculate the sum of all
margin losses for each alternative. Remove the alternative with the largest sum of losses.
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Minimax: This is a C2 rule in Fishburn’s classification. Elect the alternative(s) with the
smallest margin loss.

Plurality: This is a C3 rule in Fishburn’s classification. A positional scoring rule with the
score vector s = (1,0,0,...,0). Each voter awards one point to their favourite alternative .
The highest scoring alternative(s) are the winner(s).

Raynaud: This is a C2 rule in Fishburn’s classification. Iteratively remove all alternatives
with the largest margin loss, until a single alternative remains/all remaining alternatives
have the same loss.

Simple Stable Voting: This is a C'2 rule in Fishburn’s classification. Defined recursively.
If there is only one alternative, they are the winner. Otherwise, order all pairs of alterna-
tives (a;, a;) in descending order of the margin of a; over a;. Select as winner a; from the
first pair (a;, a;) such that a; is the Simple Stable Voting winner on the election without
CLj.
Simplified Bucklin: This is a C3 rule in Fishburn’s classification. Proceed for up to m
rounds. In round r, say that the number of votes an alternative receives is the number of
voters for whom that alternative appears in the voter’s top r preferences (e.g. in the first
round, consider each voter’s first preference). In a given round, if any alternatives receive
a number of votes more than half the number of voters they are the winners and no further
rounds occur. This differs from Bucklin by returning all alternatives with a majority of
votes, rather than only the subset of alternatives with a maximal number of votes.

Slater: This is a C1 rule in Fishburn’s classification. Consider the majority graph of
preferences. Convert the graph to a ranking by ordering alternatives in descending order
of their out-degree. The Slater ranking is the ranking derived from G’ where G’ is the
graph which reverses a minimal number of edges from G to result in a strict ranking.

Split Cycle: This is a C2 rule in Fishburn’s classification. Define a majority cycle as a
sequence of alternatives beginning and ending with the same alternative, such that each
alternative in the sequence is preferred by a majority of voters to the next alternative in
the sequence. Say that a; defeats a; in a majority cycle if (1) more voters prefer a; over
a; than prefer a; over a;, and (2) the margin of victory of a; over a; is not the smallest
margin in the cycle. All undefeated alternatives are the winners.

Stable Voting: This is a C2 rule in Fishburn’s classification. Defined recursively. If
there is only one alternative, they are the winner. Otherwise, order pairs of alternatives
(a;,a;) in descending order of the margin of a; over a;, including only the pairs where a; is
undefeated in the Split Cycle rule. Select as winner a; from the first pair (a;, a;) such that
a; is the Simple Stable Voting winner on the election without a;.
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Strict Nanson: This is a ('3 rule in Fishburn’s classification. Iteratively remove all
alternatives with a Borda score (calculated from only the remaining alternatives) below
the mean Borda score until all remaining alternatives have equal Borda scores.

Superior Voting: This is a C3 rule in Fishburn’s classification. Say that a; is superior
to a; if a majority prefer a; to a;. Each voter awards a point to their first preference if
no voter is superior to their first preference. Otherwise, the voter awards a point to the
alternative superior to their first preference. The alternative with the most points is the
winner.

Tideman Alternative GOCHA: This is a C3 rule in Fishburn’s classification. Identify
the GOCHA winner(s). If there is only one, that is the winner. Otherwise, beginning from
the GOCHA winners, iteratively remove all alternatives ranked first by the fewest voters
until all remaining alternatives are ranked first by the same number of voters.

Tideman Alternative Top Cycle: Thisis a C' rule in Fishburn’s classification. Identify
the Top Cycle winner(s). If there is only one, that is the winner. Otherwise, beginning
from the Top Cycle winners, iteratively remove all alternatives ranked first by the fewest
voters until all remaining alternatives are ranked first by the same number of voters.

Top Cycle: This is a C1 rule in Fishburn’s classification. The set of winning alternatives
is the smallest set such that every alternative inside the set is preferred by a weak majority
to every alternative outside the set. Also referred to as the Smith set.

Uncovered Set: This is a CI rule in Fishburn’s classification. Say that a; defeats a; if
(1) a; is preferred by a majority to a;, and (2) for all alternatives ay, if ay, is preferred by a
majority to a; then ay is also preferred by a majority to a;. The winners are all alternatives
that are undefeated.

Weak Nanson: This is a C3 rule in Fishburn’s classification. Iteratively remove all
alternatives with a Borda score (calculated from only the remaining alternatives) below or
equal to the mean Borda score until all remaining alternatives have equal Borda scores.

Weighted Bucklin: This is a C3 rule in Fishburn’s classification. Proceed for up to m
rounds. In round r, say that the score an alternative a; receives is the sum for 1 < ¢ < r of
the product of the normalized Borda score that would be given to an alternative in rank c
and the number of alternatives ranking a; in position c¢. A round is the final round if any
alternative(s) receive a number of votes equal to more than half the number of voters. The
winner(s) are all voters who receive a maximal score.
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Appendix C

Additional Results of Learning Single
Winner Voting Rules

In this appendix we include the results of learning to approximate single winner voting rules
for each feature set and preference distribution we trained upon. We show the test accuracy
for each rule on each of the three datasets we used in Chapter 5: two identically generated
sets and one generated from the same preference distributions, where we excluded any
preference profiles with a Condorcet winner.

C.1 Results by Training Features Used
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Target Rule M W R MW MR WR MWR

Banks* 0.87 0.74 0.71 0.87 087 0.72 0.87
Bipartisan Set* 0.86 0.74 0.7 086 0.8 0.7 0.86
Condorcet* 0.89 073 0.7 089 0.89 0.71 0.89
Copeland* 0.88 0.75 0.72 0.88 0.88 0.72 0.88
GOCHA* 0.88 0.74 0.7 0.88 0.8 0.71 0.88
Llull* 0.88 0.75 0.71 0.88 0.8 0.72 0.89
Slater* 0.87 0.74 0.71 0.88 083 0.72 0.88
Top Cycle* 0.88 0.73 0.7 0.88 083 0.71 0.88
Uncovered Set* 0.88 0.74 0.71 0.88 0.8 0.71 0.88
Beat Path* 0.85 0.75 0.71 0.86 086 0.71 0.86
Blacks* 0.84 0.76 0.74 0.84 084 0.74 0.84
Borda 0.75 0.82 0.79 0.78 0.76 0.8 0.78
B-M Faceoff* 0.86 0.75 0.71 0.86 086 0.72 0.86
C-Global-Borda* 0.86 0.76 0.73 0.86 0.86 0.73 0.86
L-T Voting* 0.86 0.75 0.71 0.86 086 0.71 0.86
Minimax* 0.85 0.75 0.71 0.86 086 0.71 0.86
Raynaud* 0.85 0.74 0.7 085 0.85 0.71 0.85
S. Stable Voting® 0.85 0.75 0.71 0.85 0.85 0.72 0.85
Split Cycle* 0.86 0.75 0.71 0.86 086 0.71 0.86

Stable Voting* 085 0.75 0.72 085 0.85 0.72 0.85

Table C.1: Accuracy on the primary test set from learning each voting rule in Fishburn’s
C1 (red) and C2 (blue) classes, averaged over all training distributions for each combination
of features. Positional scoring rules are underlined and Condorcet methods are marked by
an asterisk. Highest accuracy values before rounding are bold. Features are labelled by as
M, W, R respectively for Mmaiority - Aweighted " and Aqranked foatyres,
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Target Rule M W% R MW MR WR MWR
Anti-Plurality 0.42 051 0.72 047 0.67 0.73 0.68
Baldwin* 0.86 0.74 071 086 0.86 0.71 0.86
Benham* 083 0.73 0.71 084 0.84 0.72 0.84
Bracket Voting 0.82 0.72 0.71 082 082 0.72 0.83
Bucklin 0.7 0.67 0.69 07 068 0.7 0.69
Cond. Plurality* 0.82 0.72 0.73 082 0.84 073 0.84
Coombs 0.82 0.73 0.69 0.82 0.79 0.69 0.8
C-Local-Borda* 0.87 0.75 0.72 0.87 0.87 0.72 0.87
Daunou* 0.82 0.73 0.72 0.82 082 0.73 0.83
Instant Runoff 0.75 0.68 0.72 0.75 0.76 0.73 0.77
Knockout Voting 0.85 0.75 0.72 0.8 0.85 0.73 0.85
Plurality 0.64 0.61 083 064 0.81 0.89 0.83
S. Bucklin 0.65 0.66 0.72 069 0.73 073 0.73
Strict Nanson* 086 0.75 0.71 0.8 0.8 0.71 0.86
Superior Voting* 0.84 073 071 08 08 0.72 0.85
T. Alt. GOCHA* 0.85 0.74 071 085 0.8 0.72 0.86
T. Alt. Top Cycle®  0.84 0.73 0.71 0.84 084 0.72 0.84
Weak Nanson* 0.8 0.76 0.72 0.86 0.86 0.72 0.86
Weighted Bucklin 0.75 0.72 0.74 0.75 074 0.74 0.75

Table C.2: Accuracy on the primary test set from learning each voting rule in Fishburn’s C3
class, averaged over all training distributions for each combination of features. Positional
scoring rules are underlined and Condorcet methods are marked by an asterisk. Highest
accuracy values before rounding are bold. Features are labelled by as M, W, R respectively

for Mmajority’ Mweighted) and Mranked features.
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Target Rule M W R MW MR WR MWR

Banks* 0.89 0.79 0.76 089 0.9 0.76 0.9
Bipartisan Set* 0.87 0.78 0.74 088 088 0.75 0.88
Condorcet* 09 077 073 0.9 09 074 0.91
Copeland* 09 08 07 09 091 0.77 0.91
GOCHA* 09 079 07 09 091 07 0.91
Llull* 09 08 076 091 091 077 0.91
Slater* 09 08 07 09 0.9 077 0.91
Top Cycle* 0.89 0.77 0.74 08 09 074 0.9
Uncovered Set* 09 078 075 0.9 09 075 0.9
Beat Path* 09 08 07 09 0.9 077 0.9
Blacks* 0.88 0.81 0.77 0.88 0.88 0.78 0.88
Borda 0.81 0.84 0.82 0.82 081 083 0.82
B-M Faceoff* 09 08 07 09 0.9 077 0.9
C-Global-Borda* 0.89 0.81 0.76 0.9 09 077 0.9
L-T Voting* 09 08 07 09 0.9 077 0.9
Minimax* 09 08 07 09 09 077 0.9
Raynaud* 0.89 0.79 0.75 089 089 0.76 0.89
S. Stable Voting® 0.89 0.8 0.76 089 0.89 0.76 0.9
Split Cycle* 09 08 07 09 09 077 0.9

Stable Voting* 089 08 0.76 089 0.89 0.77 0.89

Table C.3: Accuracy on the secondary test set from learning each voting rule in Fishburn’s
C1 (red) and C2 (blue) classes, averaged over all training distributions for each combination
of features. Positional scoring rules are underlined and Condorcet methods are marked by
an asterisk. Highest accuracy values before rounding are bold. Features are labelled by as
M, W, R respectively for Mmaiority - Aweighted " and Aqranked foatyres,
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Target Rule M W R MW MR WR MWR

Anti-Plurality 0.39 0.47 0.7 044 0.66 0.7 0.67
Baldwin* 0.89 0.79 0.76 0.9 0.9 0.76 0.9
Benham* 0.86 0.77 0.75 0.87 086 0.75 0.86
Bracket Voting 0.85 0.76 0.76 0.85 086 0.77 0.86
Bucklin 0.7 0.68 0.67 0.7 0.64 0.67 0.66
Cond. Plurality* 0.84 0.76 0.75 0.84 0.86 0.76 0.86
Coombs 086 0.78 0.72 0.86 0.81 0.73 0.82
C-Local-Borda* 09 08 07 0.9 09 0.77 0.9
Daunou* 0.85 0.76 0.75 0.85 0.84 0.75 0.85
Instant Runoff 0.72 066 0.74 0.72 075 075 0.76
Knockout Voting 0.89 0.81 0.76 0.89 0.89 0.77 0.89
Plurality 0.61 0.58 0.89 0.61 0.82 0.91 0.84
S. Bucklin 0.59 0.63 0.69 0.64 0.67 0.69 0.68
Strict Nanson* 089 08 0.7 0.9 09 0.77 0.9

Superior Voting* 0.87 0.78 0.76 0.87 088 0.77 0.88
T. Alt. GOCHA* 09 079 076 09 09 07 0.9
T. Alt. Top Cycle® 0.87 0.77 0.75 0.87 087 0.75 0.87
Weak Nanson* 0.89 0.8 0.76 0.89 0.89 0.76 0.9
Weighted Bucklin 0.8 0.76 0.76 0.79 0.78 0.76 0.78

Table C.4: Accuracy on the secondary test set from learning each voting rule in Fish-
burn’s C3 class, averaged over all training distributions for each combination of features.
Positional scoring rules are underlined and Condorcet methods are marked by an asterisk.
Highest accuracy values before rounding are bold. Features are labelled by as M, W, R
respectively for Mmaority - Aqweighted “aq Agqranked foatyires.
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Target Rule M W R MW MR WR MWR

Banks* 0.81 055 0.51 081 0.82 051 0.82
Bipartisan Set* 0.57 044 042 0.57 057 042 0.57
Condorcet* 0.84 0.47 041 0.84 0.84 0.42 0.84
Copeland* 0.84 056 052 085 0.8 0.53 0.85
GOCHA* 0.84 054 05 0.8 0.8 0.51 0.85
Llull* 0.85 056 051 086 0.86 0.52 0.87
Slater* 0.83 055 051 0.83 0.83 0.51 0.83
Top Cycle* 0.8 053 049 08 0.8 049 0.81
Uncovered Set* 0.83 052 047 0.84 084 048 0.84
Beat Path* 0.8 056 051 08 08 052 0.81
Blacks* 0.54 0.69 065 056 058 0.65 0.61
Borda 0.53 0.76 0.72 062 061 0.73 0.65
B-M Faceoft* 0.79 057 052 079 0.79 0.53 0.79
C-Global-Borda*  0.64 0.63 0.58 0.66 0.67 0.59 0.68
L-T Voting* 0.8 053 049 081 08 0.49 0.81
Minimax* 0.8 056 051 08 08 052 0.8
Raynaud* 0.75 051 047 0.75 0.75 047 0.75
S. Stable Voting®  0.63 0.59 0.52 0.64 0.65 0.53 0.66
Split Cycle* 0.799 056 051 079 079 0.52 0.8

Stable Voting* 0.63 0.59 0.52 064 0.66 0.53 0.66

Table C.5: Accuracy on the test set with no Condorcet winner from learning each voting
rule in Fishburn’s C1 (red) and C2 (blue) classes, averaged over all training distributions
for each combination of features. Positional scoring rules are underlined and Condorcet
methods are marked by an asterisk. Highest accuracy values before rounding are bold.
Features are labelled by as M, W, R respectively for AMmajority = pqweighted = apyq Aranked
features.
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Target Rule M W% R MW MR WR MWR
Anti-Plurality 037 043 0.7 0.38 064 0.7 0.65
Baldwin* 0.76 0.52 047 077 0.76 048 0.77
Benham* 0.57 0.43 0.51 0.57 0.61 0.52 0.61
Bracket Voting 0.53 042 054 0.53 065 0.54 0.65
Bucklin 0.45 048 0.6 0.46 0.54 0.6 0.56
Cond. Plurality* 042 0.36 0.58 0.42 0.58 0.58 0.6
Coombs 0.63 049 043 0.63 0.62 044 0.61
C-Local-Borda* 0.81 0.56 0.52 0.82 0.81 0.52 0.81
Daunou* 0.56 0.45 054 0.57 0.58 0.54 0.59
Instant Runoff 0.55 043 056 055 0.61 056 0.62
Knockout Voting 0.6 0.63 0.58 0.61 0.62 0.59 0.63
Plurality 0.41 037 085 039 074 0.86 0.75
S. Bucklin 0.55 0.59 0.72 0.58 0.66 0.73 0.68
Strict Nanson* 0.799 0.54 049 0.79 0.79 0.5 0.79
Superior Voting* 0.57 045 0.52 0.57 0.68 0.52 0.68
T. Alt. GOCHA* 0.79 0.53 0.5 0.79 0.79 0.5 0.79
T. Alt. Top Cycle® 0.66 0.48 049 0.66 0.67 049 0.67
Weak Nanson* 0.77 055 05 077 077 051 0.78
Weighted Bucklin 0.54 0.59 0.61 0.55 0.56 0.61 0.58

Table C.6: Accuracy on the test set with no Condorcet winner from learning each voting
rule in Fishburn’s C3 class, averaged over all training distributions for each combination
of features. Positional scoring rules are underlined and Condorcet methods are marked by
an asterisk. Highest accuracy values before rounding are bold. Features are labelled by as

M, W, R respectively for Mmaiority - Aqweighted " apnq Aqranked foatyres.
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C.2 Results by Training Distribution

g
S s

. - N

= = u ¢ 2 8 8 8
Target Rule © = 3 = & 5 B @ =® @&
Banks* 091 093 087 092 043 033 093 0.93 0.92 0.92
Bipartisan Set* 0.89 091 08 0.9 045 036 091 0.91 091 0.9
Condorcet* 0.9 093 087 091 043 034 094 094 094 0.92
Copeland* 0.92 093 087 092 045 0.35 0.94 094 0.93 0.93
GOCHA* 091 093 087 092 043 0.34 0.93 093 0.92 0.92
Llull* 092 093 087 093 044 0.34 0.94 094 0.93 0.93
Slater* 091 092 087 092 044 035 0.93 093 0.92 0.92
Top Cycle* 09 093 087 091 042 033 0.94 094 093 0.92
Uncovered Set* 0.91 093 087 092 043 034 0.93 0.93 0.93 0.92
Beat Path* 0.89 09 08 09 044 035 0.92 092 091 0.9
Blacks* 0.89 091 08 09 045 035 091 0.91 09 091
Borda 091 0.89 085 0.92 041 022 091 092 09 09
B-M Faceoff* 0.89 091 08 09 044 035 092 0.92 092 09
C-Global-Borda®* 0.91 092 086 091 046 0.35 092 0.92 091 0091
L-T Voting* 09 091 08 09 045 035 0.92 092 091 0.9
Minimax* 0.89 091 08 09 045 035 0.92 092 091 0.9
Raynaud* 0.89 09 08 0.89 044 035 091 0.91 091 0.89
S. Stable Voting® 0.89 0.91 0.86 0.89 0.44 0.35 0.91 091 091 0.9
Split Cycle* 0.89 091 08 09 045 035 0.92 092 091 0.9

Stable Voting* 0.89 091 086 0.89 045 035 0.91 091 091 0.9

Table C.7: Accuracy on the primary test set from learning each voting rule in Fishburn’s
C1 (red) and C2 (blue) classes, averaged over all feature sets for each training distribution.
Positional scoring rules are underlined and Condorcet methods are marked by an asterisk.
Highest accuracy values before rounding are bold.
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3 -

z s ¢ 5 g ¢ g

= = O N = = 2 2
Target Rule S = 5 = & & = 2 =@ =
Anti-Plurality 0.65 0.76 0.55 0.65 0.33 0.33 0.72 0.73 0.66 0.61
Baldwin* 0.89 091 0.8 09 044 035 0.91 091 091 09
Benham* 0.88 0.89 0.8 088 045 035 0.9 0.9 0.89 0.88
Bracket Voting 0.86 0.87 0.84 0.87 0.45 036 0.8 0.89 0.88 0.87
Bucklin 0.69 0.81 0.76 0.74 0.36 0.22 0.83 0.83 0.82 0.83
Cond. Plurality* 0.87 0.88 0.85 0.88 0.47 0.36 0.89 0.89 0.89 0.88
Coombs 0.8 0.88 0.83 0.82 0.44 035 0.88 0.88 0.88 0.86
C-Local-Borda* 091 092 0.8 092 046 036 0.93 093 0.92 0.92
Daunou* 0.87 0.88 0.85 0.88 0.43 0.34 0.89 0.89 0.89 0.88
Instant Runoff 082 082 0.8 082 045 037 0.83 0.83 0.83 0.81
Knockout Voting 09 091 08 09 046 036 091 0.91 09 091
Plurality 0.84 0.83 0.75 0.85 0.54 039 085 0.85 0.84 0.84
S. Bucklin 0.65 0.84 0.73 0.73 0.42 031 084 0.84 0.84 0.82
Strict Nanson* 09 091 08 09 044 035 092 0.92 091 0.9

Superior Voting* 089 09 08 0.8 046 035 09 09 09 0.89
T. Alt. GOCHA* 089 09 08 09 045 035 0.92 091 091 0.89
T. Alt. Top Cycle®  0.88 0.89 0.85 0.89 045 035 09 09 09 0.88
Weak Nanson* 09 091 08 091 045 035 092 0.92 091 091
Weighted Bucklin 083 08 0.8 083 036 032 0.86 0.86 0.86 0.84

Table C.8: Accuracy on the primary test set from learning each voting rule in Fishburn’s
C3 class, averaged over all feature sets for each training distribution. Positional scoring
rules are underlined and Condorcet methods are marked by an asterisk. Highest accuracy
values before rounding are bold.
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=

. - =

= = o ¢ 8 8 8 B8
Target Rule © = 3 = & 5 B @ =® @&
Banks* 0.92 094 0.87 0.93 0.53 044 0.95 0.95 094 094
Bipartisan Set* 0.89 092 0.86 0.9 055 046 0.92 0.92 0.92 091
Condorcet* 091 094 086 0.92 0.52 043 0.95 095 095 0.93
Copeland* 0.93 095 0.88 094 0.54 045 0.96 0.95 0.95 0.95
GOCHA* 0.92 095 0.88 0.93 0.53 045 0.96 0.95 0.95 0.95
Llull* 0.93 095 0.88 094 0.54 045 0.96 0.95 0.95 094
Slater* 0.93 095 0.88 094 0.54 045 0.95 0.95 0.95 094
Top Cycle* 09 094 086 092 0.52 043 0.95 095 094 0.94
Uncovered Set* 092 094 087 093 0.54 045 0.95 095 094 0.93
Beat Path* 0.93 094 0.88 094 0.54 045 0.95 0.95 0.95 094
Blacks* 0.92 094 0.87 0.93 0.55 045 0.94 094 0.93 094
Borda 0.93 092 0.8 094 05 034 093 094 0.92 093
B-M Faceoff* 0.93 095 0.88 0.94 0.54 045 0.95 0.95 0.95 094
C-Global-Borda* 0.92 0.94 0.87 093 055 046 0.95 095 094 0.94
L-T Voting* 0.92 094 0.88 094 0.54 046 0.95 0.95 0.95 094
Minimax* 0.93 094 0.88 094 0.54 045 095 0.95 0.95 094
Raynaud* 0.91 093 0.87 092 0.53 045 0.94 094 094 0.93
S. Stable Voting® 0.92 0.94 087 0.93 054 046 0.94 094 094 0.94
Split Cycle* 0.93 094 0.88 094 0.54 045 0.95 0.95 0.95 094

Stable Voting* 092 094 087 093 054 046 0.95 094 094 0.94

Table C.9: Accuracy on the secondary test set from learning each voting rule in Fishburn’s
C1 (red) and C2 (blue) classes, averaged over all feature sets for each training distribution.
Positional scoring rules are underlined and Condorcet methods are marked by an asterisk.
Highest accuracy values before rounding are bold.
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S

z s 2 B 2 8 g

= = O N 2 2 3 2
Target Rule S = S = & & = 2 =@ &
Anti-Plurality 0.54 0.72 0.6 054 032 032 0.72 0.72 0.7 0.57
Baldwin* 0.92 094 087 093 054 045 0.95 094 094 094
Benham* 0.88 091 0.8 0.8 054 045 0.92 092 091 09
Bracket Voting 088 0.9 08 089 052 045 0.92 092 091 09
Bucklin 0.6 0.8 0.74 069 037 031 08 079 08 0.78
Cond. Plurality* 0.87 0.89 085 088 055 045 0.91 091 09 09
Coombs 079 091 084 082 054 045 0.91 091 091 09
C-Local-Borda* 0.93 095 088 094 054 046 0.95 095 095 0.95
Daunou* 0.86 0.9 08 088 053 045 0.91 091 091 0.9
Instant Runoff 079 079 077 08 048 04 0.81 081 0.81 0.8
Knockout Voting 092 094 087 093 055 045 0.94 094 094 094
Plurality 0.83 0.82 0.73 083 056 042 084 0.84 0.84 0.82
S. Bucklin 0.62 0.82 0.7 068 038 034 0.7 0.7 078 0.72
Strict Nanson* 093 094 088 093 053 045 0.95 095 095 094

Superior Voting* 091 092 086 091 054 045 0.93 093 093 0091
T. Alt. GOCHA* 092 094 0.87 093 054 045 0.95 095 095 094
T. Alt. Top Cycle® 0.89 091 0.86 091 053 044 0.93 0.92 092 091
Weak Nanson* 092 094 087 093 054 046 0.94 094 094 094
Weighted Bucklin 0.86 0.88 0.82 086 039 041 0.89 0.89 0.88 0.87

Table C.10: Accuracy on the secondary test set from learning each voting rule in Fishburn’s
C3 class, averaged over all feature sets for each training distribution. Positional scoring
rules are underlined and Condorcet methods are marked by an asterisk. Highest accuracy
values before rounding are bold.
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= =« o ¢ 8 8 8 8
Target Rule < = = = & S @ & &3 &
Banks* 0.82 0.79 0.67 0.83 038 0.3 0.77 078 0.75 0.8
Bipartisan Set* 0.57 0.56 0.52 0.57 0.32 0.28 0.56 0.56 0.55 0.57
Condorcet* 0.79 0.78 0.74 0.8 026 0.17 0.79 0.78 0.76 0.76
Copeland* 0.85 0.81 066 0.84 0.39 0.32 0.82 0.82 0.8 0.84
GOCHA* 0.83 0.8 0.68 0.82 0.39 031 0.81 0.81 0.79 0.82
Llull* 0.84 081 0.7 0.8 041 033 0.82 0.82 0.8 0.83
Slater* 0.81 0.78 0.68 0.81 0.41 033 0.8 079 0.78 0.8
Top Cycle* 0.83 0.8 0.68 0.84 027 0.21 079 0.79 0.75 0.8
Uncovered Set* 0.8 078 0.69 0.81 038 03 079 0.78 0.76 0.79
Beat Path* 0.79 0.77 0.66 0.79 0.41 033 0.78 0.78 0.77 0.78
Blacks* 0.74 0.68 0.52 0.76 0.37 0.31 0.68 0.68 0.66 0.73
Borda 0.81 0.7 062 0.83 036 0.26 0.76 0.77 0.72 0.77
B-M Faceoff* 0.79 0.76 0.66 0.79 0.41 033 0.77 0.77 0.77 0.78
C-Global-Borda*  0.74 0.72 0.58 0.75 0.38 0.31 0.72 0.72 0.7 0.74
L-T Voting* 0.78 0.75 0.65 0.77 0.42 0.33 0.77 0.77 0.76 0.76
Minimax* 0.79 0.76 0.65 0.79 041 0.33 0.78 0.78 0.77 0.78
Raynaud* 0.72 0.7 062 0.72 04 032 072 0.72 0.71 0.71
S. Stable Voting®  0.69 0.66 0.55 0.68 0.38 0.33 0.69 0.68 0.67 0.69
Split Cycle* 0.78 0.76 0.65 0.78 0.41 0.33 0.77 0.77 0.76 0.77

Stable Voting* 0.69 0.66 055 0.69 0.38 0.33 0.69 0.68 0.67 0.69

Table C.11: Accuracy on the test set with no Condorcet winner from learning each voting
rule in Fishburn’s C1 (red) and C2 (blue) classes, averaged over all feature sets for each
training distribution. Positional scoring rules are underlined and Condorcet methods are
marked by an asterisk. Highest accuracy values before rounding are bold.

196



z s 2 5 g ¢ g

= = o ¢ 8 8 8 &
Target Rule S = S = & & /5 = @ @
Anti-Plurality 0.64 0.71 047 064 027 0.27 0.65 0.66 0.59 0.63
Baldwin* 0.74 071 063 0.74 04 032 0.73 0.73 072 0.74
Benham* 063 06 054 0.63 037 029 061 06 0.6 0.6
Bracket Voting 0.62 057 055 0.63 037 0.3 0.62 0.62 061 0.62
Bucklin 0.57 057 043 059 034 0.22 0.63 0.63 059 0.7
Cond. Plurality* 0.63 052 052 0.64 036 0.26 0.52 0.51 0.51 0.57
Coombs 0.61 061 05 061 039 032 0.62 0.62 062 0.61
C-Local-Borda* 0.82 0.78 0.64 081 039 032 0.79 0.79 0.78 0.82
Daunou* 0.62 0.61 054 062 037 029 06 061 06 0.61
Instant Runoff 0.63 059 054 0.63 037 033 062 062 061 0.6
Knockout Voting 0.71 0.68 055 0.71 0.38 0.31 0.68 0.69 0.67 0.71
Plurality 0.71 0.67 054 0.72 044 035 0.71 071 07 0.7
S. Bucklin 0.7 075 056 0.75 033 026 0.78 0.79 0.73 0.8
Strict Nanson* 0.77 0.74 0.65 0.77 0.41 033 0.76 0.76 0.75 0.76

Superior Voting* 0.64 0.61 057 064 039 03 0.64 063 0.63 0.65
T. Alt. GOCHA* 0.77 0.75 0.64 0.77 042 0.33 0.76 0.76 0.75 0.76
T. Alt. Top Cycle®  0.66 0.64 0.57 0.66 04 0.32 0.66 0.65 0.65 0.65
Weak Nanson* 0.76 0.74 063 0.77 04 033 0.76 0.75 0.75 0.76
Weighted Bucklin 0.7 064 053 0.71 029 0.28 0.66 0.66 0.63 0.68

Table C.12: Accuracy on the test set with no Condorcet winner from learning each voting
rule in Fishburn’s C3 class, averaged over all feature sets for each training distribution.
Positional scoring rules are underlined and Condorcet methods are marked by an asterisk.
Highest accuracy values before rounding are bold.
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C.3 Distance Between Groups of Rules

C.3.1 Primary Test Set

C1 C2 C3  Condorcet Scoring

C1 0.05 - - - -
C2 0.06 0.05 - - -
C3 0.12 0.11 0.16 - -
Condorcet  0.05 0.05 0.11 0.05 -
Scoring 0.30 0.30 0.31 0.29 0.46

Table C.13: Distance between each group of learned networks approximating rules in
the corresponding group on the primary test set.

C1 C2 C3  Condorcet Scoring

C1 0.04 - - - -
C2 0.07 0.06 - - -
C3 0.13 0.13 0.18 - -
Condorcet  0.06 0.06 0.13 0.06 -
Scoring 0.34 0.33 0.35 0.33 0.48

Table C.14: Distance between each group of existing rules targeting rules in the corre-
sponding group on the primary test set.
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C.3.2 Secondary Test Set

C1 C2 C3  Condorcet Scoring

C1 0.05 - - - -
C2 0.06 0.04 - - -
C3 0.12 0.12 0.18 - -

Condorcet 0.05 0.04 0.12 0.04 -

Scoring 0.33 033 0.35 032 | 052

Table C.15: Distance between each group of learned networks approximating rules in
the corresponding group on the secondary test set.

C1 C2 C3  Condorcet Scoring

C1 0.04 - - - -
C2 0.05 0.04 - - -
C3 0.13 0.13 0.20 - -

Condorcet 0.04 0.04 0.13 0.04 -

Scoring 0.37 0.37 0.39 036 | 058

Table C.16: Distance between each group of existing rules targeting rules in the corre-
sponding group on the secondary test set.
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C.3.3 Test Set with No Condorcet Winners

C1 C2 C3  Condorcet Scoring

C1 0.21 - - - -
C2 0.22 0.16 - - -
C3 028 024 0.29 - -

Condorcet  0.21 0.18 0.25 0.18 -

Scoring __ [HOMGN0BI 044510000 43 INOIGON]

Table C.17: Distance between each group of learned networks approximating rules in
the corresponding group on the test set with no Condorcet winners.

C1 C2 C3  Condorcet Scoring

C1 0.32 - - - -
C2 0.36 0.25 - - -

ci 043 038 043 :

Condorcet | 0.34 0.31 0.39 0.32 -

Scoring | BOISTN0SE0. 5400001580 I

Table C.18: Distance between each group of existing rules targeting rules in the corre-
sponding group on the test set with no Condorcet winners.

C.4 Distance Between Individual Rules

Below we include tables showing the distance between every pair of individual rules. A
pair of tables showing distances for learned models and actual rules is included for each
dataset. Recall that Fishburn’s C1 rules are red, C2 rules are blue, C3 rules are green.
Condorcet-consistent rules are marked with an asterisk and positional scoring rules are
underlined. Due to the large number of rules we have examined, each table has been made
quite dense to fit on the page. To that end, we exclude leading zeros and decimal points.
That is, a distance of 0.23 is reported in the following tables as simply 23.

C.4.1 Primary Test Set
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C.4.2 Secondary Test Set
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C.4.3 Test Set with no Condorcet Winners
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Appendix D

Additional Results of Learning
Multi-Winner Voting Rules

This appendix includes performance of trained networks and existing multi-winner voting
rules on all individual preference distributions and numbers of alternatives. These results
provide a more detailed view of the data discussed in Chapter 5.

e 5 Alternatives — All preferences

5 Alternatives, Stratified

5 Alternatives, Urn

5 Alternatives, I1C

5 Alternatives, IAC

5 Alternatives, Identity

5 Alternatives, Mallows

5 Alternatives, SP Conitzer

5 Alternatives, SP Walsh

5 Alternatives, Gaussian Ball 3

5 Alternatives, Gaussian Ball 10
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5 Alternatives, Uniform Ball 3

5 Alternatives, Uniform Ball 10
5 Alternatives, Gaussian Cube 3
5 Alternatives, Gaussian Cube 10
5 Alternatives, Uniform Cube 3
5 Alternatives, Uniform Cube 10
5 Alternatives, Mixed

6 Alternatives — All preferences
6 Alternatives, Stratified

6 Alternatives, Urn

6 Alternatives, IC

6 Alternatives, IAC

6 Alternatives, Identity

6 Alternatives, Mallows

6 Alternatives, SP Conitzer

6 Alternatives, SP Walsh

6 Alternatives, Gaussian Ball 3
6 Alternatives, Gaussian Ball 10
6 Alternatives, Uniform Ball 3

6 Alternatives, Uniform Ball 10
6 Alternatives, Gaussian Cube 3
6 Alternatives, Gaussian Cube 10

6 Alternatives, Uniform Cube 3
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6 Alternatives, Uniform Cube 10
6 Alternatives, Mixed

7 Alternatives — All preferences
7 Alternatives, Stratified

7 Alternatives, Urn

7 Alternatives, I1C

7 Alternatives, IAC

7 Alternatives, Identity

7 Alternatives, Mallows

7 Alternatives, SP Conitzer

7 Alternatives, SP Walsh

7 Alternatives, Gaussian Ball 3
7 Alternatives, Gaussian Ball 10
7 Alternatives, Uniform Ball 3

7 Alternatives, Uniform Ball 10
7 Alternatives, Gaussian Cube 3
7 Alternatives, Gaussian Cube 10
7 Alternatives, Uniform Cube 3
7 Alternatives, Uniform Cube 10

7 Alternatives, Mixed

211



2

- B = g E - g E : ER-

s § =z : & 3 5 2 § B g £ 5 © 2
Method = = = o = o) @) 9 =) A = &) O % )
NN .006 .000 .000 .002 .006 .001 .000 .000 O 027 .000 .000 .000 .017 .025
Borda 012 .002 .007 .002 .012 .096 O 016 0 015 .000 .000 .000 .008 .011
EPH 025 .000 .003 O .025 .205 .005 .001 O 044 .000 .000 .000 .030 .038
SNTV 078 0 109 132 .078 .484 .016 .111 .038 .044 .000 .041 .041 O  .003
STV 034 0  .042 .053 .034 .297 .005 .039 O 0 .000 .000 .000 O  .000
Bloc .024 .000 .003 O .024 .197 .005 O 0 .043 .000 .000 .000 .030 .040
cc 164 .054 .163 .217 .164 .660 .069 .179 .057 .230 O 071 .071 .166 .196
lex-CC .047 010 .013 0 .047 .362 .005 .033 O .07l O 0 0 .055 .057
seq-CC 148 .046 .156 .182 .148 .628 .044 .175 .057 .208 O 059 .060 .145 .167
Monroe .098 .016 .090 .125 .098 .525 .049 .086 O .136 O 001 .001 .111 .130
Greedy M. .045 .002 .026 .006 .045 .348 .006 .033 O .063 O 0 0 .046 .051
PAV 029 .001 .003 O .029 .242 .005 .006 O .046 O 0 0 .033 .036
MES .031 .001 .004 .001 .031 .256 .005 .009 O .049 O 0 0 .035 .037
MAV 134 054 .135 .128 .134 .700 .096 .150 O  .147 013 .015 .015 .118 .176
RSD 089 .023 .085 O .089 .536 .040 .070 O  .095 .023 .024 .024 .073 .161
Random 218  .109 .214 .285 218 .804 .127 .225 .07l .250 .050 .111 .112 .191 .287

Table D.1: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
all preferences.

D.1 5 Alternatives — All preferences

Axiom Violation Rates for 5 Alternatives over All Axioms
Stratified Urn IC IAC

. —

—H@H |
1@l

Identity Mallows

1 —_—

o
N
rl}
dorm
“&r-m

.
0.0 18- + -+ o] L ' -

Gaussian Ball 3 Gaussian Ball 10 Uniform Ball 3 Uniform Ball 10
1.0 1 1 1

0.8
0.6
0.4
021
0.0 1

Axiom Violation Rate

— e e————% == | | == = e ————— ———

Gaussian Cube 10 Uniform Cube 3 Uniform Cube 10

1.0 |
0.8 1
0.6
0.4
0.2 -
0.0 A

1 2 3
Number of Winners

—eo- NN e MaXx 4— Borda STV PAV lex-CC +— Monroe - MAV EPH

Min —e— Random SNTV »— Bloc CcC seq-CC <~— Greedy M. ¥ MES ~— RSD

Figure D.1: Axiom violation rates for each rule under each preference distribution for 5
alternatives
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Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD

NN

Random
Borda
SNTV
STV
Bloc
PAV

CcC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.2: Difference between rules for 5 alternatives with 1 < k < 5 averaged over all
preference distributions.
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2
n
) : 1 : .

g = = 2 : o i < E £ Tg Lf

c 7z @ : £ : 3 = § § ., £ § © 3
Method = = = o = O @] = =) A = &) O % )
NN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Borda 002 0O 0 0 .002 .025 O 0 0 0 0 0 0 0 0
EPH 006 O .000 O 006 .082 O 0 0 0 0 0 0 0 0
SNTV 02 0 004 O 023 .295 0O .005 O 0 0 0 0 0 0
STV 006 0O .000 O .006 .083 0O .000 O 0 0 0 0 0 0
Bloc 006 O .000 O .006 .082 O 0 0 0 0 0 0 0 0
ccC 284 234 .007 .502 .284 .622 .071 .231 225 502 O .251 .251 .401 .401
lex-CC 006 O .000 O .006 .082 O 0 0 0 0 0 0 0 0
seq-CC 276 .220 .006 .498 .276 .620 .044 .231 .224 .498 0O  .224 .224 .396 .396
Monroe 099 .091 .003 .205 .099 .327 .046 .003 O .205 O .00l .001 .204 .204
Greedy M. .016 O .001 O .016 .202 0 .00l O 0 0 0 0 0 0
PAV 006 O .000 O .006 .082 O 0 0 0 0 0 0 0 0
MES 006 0O .000 O .006 .082 O 0 0 0 0 0 0 0 0
MAV 132 222 .005 .249 .132 527 .082 .183 O .10l O 0 0 .10l .249
RSD .043 .097 .003 O .043 362 0 .10l O 0 0 0 0 0 0
Random 368 .445 .008 .652 .368 .817 .127 .409 .225 .501 .076 .250 .250 .435 .585

Table D.3: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Stratified preferences.

D.1.1 5 Alternatives, Stratified

Axiom Violation Rates for 5 Alternatives on Stratified Preferences

Dummett's Condition Fixed Majority Majority
1.0 A ] e -
0.6 1 1 1 '\\\
0.4 - - 4~ 1=
024 e v ]
00L& 2 - !l Lo - | o= - a —
Majority Loser Condorcet Winner Condorcet Loser
1.0 4 q T A
0.8 1 e = =
0.6 4 1 » ¢
0.4 4 » < +
0.2 - — /
004 - = -4 b ——— o
3
& Solid Coalitions Strong Unanimity Local Stability
c 1.0 - F F
S o081 1 ,
T 0.6 = ot
€ 0.2 - . -~ - Y + - " - .
G 00+ ' ' k. ' ' k. ' '
x _— - .
< Strong Pareto Efficiency Justified Representation Extended JR
1.0 A 1 ]
0.8 2 . - ..
0.6 ./ ] i -
0.4 ¥ - 4 4 -
05 ] 1 / 1o -
0.0 L4 . -+ | Le ——y -] Le * -+ =
Core
—eo- NN —e— Random STV cc *— Monroe ¥ MES
--------- Min 4— Borda »— Bloc lex-CC <~ Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD
2 3 4

Number of Winners

Figure D.2: Axiom violation rate for each axiom on Stratified preferences with 5 alternatives.
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NN
Random
Borda
SNTV
STV
Bloc
PAV

cC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.4: Difference between rules for 5 alternatives with 1 < k£ < 5 on Stratified prefer-
ences.

Axiom Violation Rates for 5 Alternatives on Stratified Preferences

NN Random Borda
1.0 A b N
0.8 1
0.6 1
0.4 4
0.2 4
0.0 ; : ; . : : : - -
SNTV STV Bloc
1.0 b b
0.8 1
0.6 * *
0.4 1
0.2 4 — . d
0.0 1 T t t t ? u T u
PAV CcC lex-CC
1.0 r = y
o 081 t _— +
% 0.61 i
o 041 3
c 0.2 3 o | — 1 ° °
S 00+ . b T b T u
©
° seq-CC Monroe Greedy M.
Z 1.0 f .
0.8 1 °
S 0.6 *—
% 0.4 = 'S Ps .
0.2 _— ————=%
0.0 1 T T t t T T T T
MAV MES EPH
1.0 4 B 1
0.8 1 °
0.6 1 X .
0.4 1 S - 3
021 ¢ - P 3 ° L 4 'l
0.0 1% +
RSD
%g : —4— Dummett's Condition ¥— Condorcet Loser Strong Pareto Efficiency
0:6 4 + % —#— Fixed Majority A— Solid Coalitions »— Justified Representation
0.4 4 -~ —e— Majority < Strong Unanimity —— Extended JR
Pl \ - »%— Majority Loser Local Stability Core
0.0 1% T T o Condorcet Winner
1 2 3 4

Number of Winners

Figure D.3: Axiom violation rate for each rule on Stratified preferences with 5 alternatives.
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2

- Y I

§ ¥ % & § & : = § £ , & & © 3
Method = = = o = o) O 9 =) A = &) O % )
NN .012 .001 .002 .014 .012 .002 .000 .000 O 044 .002 .002 .002 .035 .049
Borda 022 .016 .016 .018 .022 .120 O 054 0 022 .000 .000 .000 .016 .020
EPH 025 .004 .004 O 025 .115 .003 .005 O 070 .000 .000 .000 .058 .065
SNTV 102 0 201 .155 .102 .483 .003 .285 .026 .093 .000 .038 .040 O  .000
STV 030 0 .058 .046 .030 .212 .00l .077 O 0 .000 .000 .000 O  .000
Bloc 023 .002 .002 O 023 .105 .003 O 0 .068 .000 .000 .000 .055 .063
cc 189 .140 233  .186 .189 .575 .061 .325 .032 .311 O 059 .063 .229 .245
lex-CC 075 .063 .061 0 075 .316 .003 .138 O .148 0O 0 0 .124 .129
seq-CC 172 126 218 .146 .172 .548 .049 .312 .031 .286 O 043 .047 207 .219
Monroe 084 .047 .091 .057 .084 .341 .033 .112 O 151 O  .000 .000 .124 .138
Greedy M. .045 .021 .028 .004 .045 .212 .007 .047 O .095 O 0 0 .080 .088
PAV 029 .008 .008 O 029 .139 .003 .014 O .075 O 0 0 .063 .069
MES .031 .010 .010 .000 .031 .149 .003 .018 O .077 O 0 0 .064 .070
MAV 201 226 223 174 201 .695 .092 .395 O  .273 .014 .018 .018 211 .269
RSD .093 .087 .086 O 093 373 .042 127 0 .150 .018 .024 .024 .125 .159
Random 267 281 280 .297 .267 .750 .122 438 .041 .348 .062 .117 .125 .269 .339

Table D.5: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Urn preferences.

D.1.2 5 Alternatives, Urn

Axiom Violation Rates for 5 Alternatives on Urn Preferences

Dummett's Condition Fixed Majority Majority
1.0 ————1 f
= —_ S = ] r\
X | M —
- i x —__32 — 13 —= = = 1
Condorcet Winner Condorcet Loser
: - * > x T
. - e —— ———% 2| 4 =
0.0 . MR = * -9 Jj-=———"— =
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©
g & +
S . —
. = = 2
S " " T
2 Extended JR
o 1 & -8 a

—e- NN —e— Random STV cc +— Monroe ¥ MES
-------- Min 4— Borda % Bloc lex-CC <~ Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.4: Axiom violation rate for each axiom on Urn preferences with 5 alternatives.
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Table D.6: Difference between rules for 5 alternatives with 1 < k < 5 on Urn preferences.

Axiom Violation Rates for 5 Alternatives on Urn Preferences
NN Random Borda

cocooor
oNphro®o

Bloc

ococooor
oNphro®o

PAV CcC lex-CC

ocoooor
oNpo®o

Axiom Violation Rate

ocoooor
oNbhro®o

ocoooor
oNpo®O

RSD
%g —4— Dummett's Condition ~¥— Condorcet Loser Strong Pareto Efficiency
06 —»— Fixed Majority 4— Solid Coalitions —— Justified Representation
041 e ° * —e— Majority < Strong Unanimity =~ —— Extended JR
0.2 1 ?@; —x— Majority Loser Local Stability Core
0.0 = — e Condorcet Winner
1 2 3 4

Number of Winners

Figure D.5: Axiom violation rate for each rule on Urn preferences with 5 alternatives.
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2

. B o= g 7 % 2 g E & R

st § ¢ : & 5 5 =% B . &8 § O 3
Method = = = ¥ = ) O = B A - ) 0 %) )
NN 003 0 O 0 .003 .000 .000 O O .016 O 0 0 .006 .015
Borda 009 0 O 0O 009 .106 0O O O .007 O 0 0 .002 .003
EPH 032 0 0 0O 032 304 .004 O O .046 O 0 0o .025 .033
SNTV 030 0 O O 030 .386 .004 0 O O 0 0 0 0 .000
STV 02 0 o0 0O 022 .28 .002 0 O O 0 0 0 0 0
Bloc 032 0 0 0O 032 302 .004 0O O .046 O 0 0 .025 .033
cc 061 O .000 O 061 .523 039 O O .087 O 0 0 .052 .090
lex-CC 036 0 O 0O .036 .360 .004 O O .047 O 0 0 .026 .033
seq-CC 053 0 0 0O 053 .489 .020 0 O .074 O 0 0 .044 .063
Monroe 061 O .000 O 061 .523 039 O O .087 O 0 0 .052 .090
Greedy M. 044 0 O 0O 044 426 010 O O .060 O 0 0 .034 .048
PAV 033 0 0O 0O 033 317 .004 O O .046 O 0 0 .025 .032
MES 034 0 o0 O .034 .33 .004 O O .046 O 0 0 .025 .032
MAV 076 0 .000 O 076 .673 .073 O O .087 O 0 0 .052 .099
RSD 068 0O .000 O 068 .622 .052 O O .077 O 0 0 .046 .085
Random 076 0 .000 .000 .076 .672 077 O O .088 .000 .000 .000 .054 .100

Table D.7: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across

IC preferences.

D.1.3 5 Alternatives, IC

Axiom Violation Rates for 5 Alternatives on IC Preferences

Dummett's Condition

Fixed Majority

Majority

Majority Loser
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> &
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Condorcet Loser

L S RPN H

| —— .

Solid Coalitions
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- -
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& -

-

Figure D.6: Axiom violation rate for each axiom on IC preferences with 5 alternatives.
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Table D.8: Difference between rules for 5 alternatives with 1 < k < 5 on IC preferences.

Axiom Violation Rates for 5 Alternatives on IC Preferences

NN Random Borda
1.0 -
gg * * o ]
0.4 i
8;5 i A e % 12 ® ® .
SNTV STV Bloc
1.0
0.8 1
0.6
gg e ————— . —e s . 50 & s vs 5
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0.0 1z i S 5 A P 5 - P —— 2
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o ol L ./“ . e v 1 = ey l/‘
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0.0+ i ; 3 "1 e Condorcet Winner

Figure D.7: Axiom violation rate for each rule on IC preferences with 5 alternatives.

Number of Winners

219



2

. 5 o= oz 7 23 g &k

§ ¥ 3§ 5 & 5§ & = § E 4 £ & ©°o 3
Method = = = ¥ = ) o) = D A = &) o) %) )
NN .004 O 0 0O .004 .000 .000 O 0 .021 O 0 0 .010 .023
Borda 010 O 0 0 010 .112 0O 0O 0 .009 O 0 0 .003 .004
EPH 032 0 0 0O 032 .28 .004 O O .054 O 0 0  .032 .043
SNTV 03 0 .000 O .030 .380 .005 .000 O O 0 0 0 0 .000
STV 022 0  .000 .000 .022 284 .002 .000 O O 0 0 0 0 .000
Bloc 032 0 0 0O 032 287 .004 O O .054 O 0 0 .032 .043
cc 066 .000 .000 .000 .066 .515 .042 .000 O .107 O 0 0 074 .118
lex-CC 038 0 0 O 038 355 .004 O O .057 O 0 0 .034 .045
seq-CC 057 .000 .000 O  .057 483 .021 .000 O .090 O 0 0 .060 .085
Monroe 066 .000 .000 .000 .066 .514 .042 .000 O .107 O 0 0 073 .118
Greedy M. .046 0O 0 0 046 410 .00 O O .069 O 0 0 .043 .061
PAV 034 0 0 0O 034 305 .004 0 O .054 O ) 0  .032 .042
MES 035 0 0 O 035 324 .004 O O .055 O 0 0 .033 .044
MAV 082 .000 .000 .000 .082 .660 .083 .000 O .107 .000 .000 .000 .07TA .139
RSD 071 .000 .000 O 071 .605 .053 .000 O .093 .000 .000 .000 .062 .114
Random 082 .000 .000 .000 .082 .662 .082 .000 O .108 .000 .000 .000 .073 .136

Table D.9: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
IAC preferences.

D.1.4 5 Alternatives, IAC

Axiom Violation Rates for 5 Alternatives on IAC Preferences
Dummett's Condition Fixed Majority Majority

Majority Loser Condorcet Winner Condorcet Loser
1.0 4 1 1
0.6 L * — 9 .
oal ) " < < | ] O SO
0.2 1. g
- - " - | —
0019 ' ' o Le + + o) 13 ; S
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[eoloNoNoN o]
ONBO OO
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1.0 —e- NN —e— Random STV cc *— Monroe ¥ MES

081 e Min 4— Borda % Bloc lex-CC <~— Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD
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2 3 4
Number of Winners
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Figure D.8: Axiom violation rate for each axiom on IAC preferences with 5 alternatives.
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Table D.10: Difference between rules for 5 alternatives with 1 < k < 5 on IAC preferences.

Axiom Violation Rates for 5 Alternatives on IAC Preferences

NN Random Borda
1.0 - -
0.8 1 1
06 | e 3 . o |
0.4 1 1
o = | | I—— %: le 2 2 ]
SNTV STV Bloc
1.0 b -
0.8
0.6
gg & -——& . - s ° . S PY ‘_/’/__!
0.0 : = L% : 2 - Le— 4 _—
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& 044, + + . B 1. D U
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Figure D.9: Axiom violation rate for each rule on IAC preferences with 5 alternatives.
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Table D.11: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across

2

s 2 o2 o8 705 2 @ 4 F R

f F oz i § 5 2 = £ § . £ F ©
Method = = = o = O @] % =) A &) O %) )
NN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Borda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EPH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SNTV 342 0 375 .582 .342 582 O .582 .582 .582 O .582 .582 O 0
STV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bloc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cc 447 259 425 648 447 648 .074 .648 .648 .648 O  .648 .648 .259 .259
lex-CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
seq-CC 449 266 427 649 449 649 .076 .649 .649 .649 O  .649 .649 .266 .266
Monroe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Greedy M. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Random 645 500 .502 .851 .645 .851 .150 .851 .851 .851 .275 .851 .851 .500 .500

Identity preferences.

D.1.5 5 Alternatives, Identity

Axiom Violation Rate

Figure D.10: Axiom violation rate for each axiom on Identity preferences with 5 alternatives.

Axiom Violation Rates for 5 Alternatives on Identity Preferences
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g @ > O O 8 i
2 °

z E £ > Z 3 Z o) M o 5 g z 3 x a

z ~ M 0 0 m ~ O 2 # = 6 = = 5] ~
Random — - — — - - — - - — - - - —
Borda .000 - - - - - - - - - - - - - -
SNTV .406 .406 - - - - - - - - - - - - -
STV .000 .000 | .406 - - - - - - - - - - - -
Bloc .000 .000 | .406  .000 - - - - - - - - - - -
PAV .000 .000 | .406  .000  .000 - - - - - - - - - -
cC 461 461 674 461 461 461 - - - - - - - - -
lex-CC .000 .000 | .406  .000  .000  .000 [461 - - - - - - - -
seq-CC .463 463 158 463 463 463 [7241| 463 - - - - - - -
Monroe .000 .000 | .406  .000  .000  .000 | .461  .000 [463 - - - - - -
Greedy M. .000 .000 | .406  .000  .000  .000 | .461  .000 | .463  .000 - - - - -
MAV .000 .000 | .406  .000  .000  .000 | .461 @ .000 | .463  .000  .000 - - - -
MES .000 .000 | .406  .000  .000  .000 | .461  .000 | .463  .000  .000  .000
EPH .000 .000 | .406  .000  .000  .000 | .461 @ .000 | .463  .000  .000  .000  .000 - -
RSD .000 .000 | .406  .000  .000  .000 | .461 @ .000 | .463  .000  .000  .000  .000  .000 -
Min .000 .000 | .406  .000  .000  .000 | .461 | .000 | .463 =~ .000  .000  .000  .000  .000  .000
Max

Table D.12: Difference between rules for 5 alternatives with 1 < k < 5 on Identity prefer-
ences.

Axiom Violation Rates for 5 Alternatives on Identity Preferences
NN Random Borda

ocoocooH
oNho®o
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Figure D.11: Axiom violation rate for each rule on Identity preferences with 5 alternatives.
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Table D.13: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across

Z

. 2 2 oz 7 2 3 3 £ & R

§ ® § 5 § & £ = § E§E . £ & © 3
Method = p= = ~ = o} ] 3 = A - & O % a
NN .001 0 0 0 .001 .001 .000 0 0 .002 0 0 0 .001 .003
Borda .003 .000 .000 0 .003 .032 0 .000 0 .001 0 0 0 .000 .000
EPH .007 0 0 0 .007 .074 .000 0 0 .006 0 0 0 .004 .005
SNTV .032 0 .063 .020 .032 212 .001 .083 .006 .016 0 .007 .007 0 .000
STV .005 0 .000 0 .005 .068 .000 .000 0 0 0 0 0 0 .000
Bloc .007 0 0 0 007 .074 .000 0 0 .006 0 0 0 .004 .005
CcC 144 .089 184 112 144 527 .070 .240  .009 .225 0 .038 .042 .159 77
lex-CC .013 .001  .000 0 .013 133 .000 .015 0 .008 0 0 0 .004 .006
seq-CC .105 .033 169 .082 .105 489  .027 .230 .009 .140 0 .022 .025 .068 .075
Monroe .067 .027 .060 .014 .067 .337 .043 072 0 115 0 .000 .000 .091 .107
Greedy M. 015 0 .005 0 .015 .156  .002 .006 0 .012 0 0 0 .008 .010
PAV .007 0 0 0 .007 .078 .000 0 0 .006 0 0 0 .004 .004
MES .008 0 0 0 .008 .084 .000 0 0 .006 0 0 0 .004 .005
MAV 174 178 175 106 174 .739 119 .309 0 .198  .015 .021 .021 .151 225
RSD .070 .049 .050 0 070 .466 .027 .115 0 .066 .002 .002 .002 .051 .080
Random .239 .255 255 192 239 .824  .138 382 .012 .296 .045 .082 .089 229 .306

Mallows preferences.

D.1.6 5 Alternatives, Mallows

Axiom Violation Rate

Figure D.12: Axiom violation rate for each axiom on Mallows preferences with 5 alternatives.

Axiom Violation Rates for 5 Alternatives on Mallows Preferences

Number of Winners
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Table D.14: Difference between rules for 5 alternatives with 1 < k < 5 on Mallows prefer-
ences.

Axiom Violation Rates for 5 Alternatives on Mallows Preferences

NN Random Borda
1.0 A 1 1
0.8 A 1 e L 2 * ° 4
0.6 1 1 1
0.4 1 4 o— —————t |
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Figure D.13: Axiom violation rate for each rule on Mallows preferences with 5 alternatives.
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2
2
) z g :
- R -
¢ ¥ § 5 § £ £ = §F 5§ . B t © 3
Method = = = o = o) @] = 2 A = &) @) %) )
NN .008 0 O 000 .008 .000 O 0 0 .04 0 0 0 021 .035
Borda 015 0 .019 O 015 .063 0 .043 0 .035 O 0 0 .015 .015
EPH 039 0 .016 O 039 .365 .016 .004 O .045 O 0 .022 .034
SNTV 140 0 .312 449 140 .762 .078 .169 O .000 .002 .003 .003 O .04l
STV 105 0 .206 .360 .105 .625 .034 .140 O O 0 0 0 o .o01
Bloc 038 0 .017 O 038 359 016 O O .044 0O 0 0  .021 .043
cc 159 0 327 .324 .159 .845 .085 .204 O .08 O .008 .008 .055 .117
lex-CC 048 0 .016 O 048 457 016 .030 O .052 O 0 0 .026 .026
seq-CC 149 0 .305 .278 .149 .824 .062 .203 O .08 O .000 .000 .053 .121
Monroe 145 0 279 .325 .145 814 .063 .202 O .085 O .000 .000 .053 .065
Greedy M. .073 0 .106 .029 .073 .547 .017 .099 O .070 O 0 0 .040 .040
PAV 047 0 016 O 047 451 016 .026 O .050 O 0 0o .025 .025
MES 047 0 017 O 047 448 017 .028 0O .051 O 0 0 .025 .025
MAV 151 0 .304 .336 .151 .834 .090 .207 O .088 O 0 0 .055 .055
RSD 138 0 2713 0 138 .653 .046 .109 O .079 .078 .078 .078 .047 .353
Random 192 0 444 451 192 836 .135 .204 O .088 .030 .038 .038 .054 .178

Table D.15: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
SP Conitzer preferences.

D.1.7 5 Alternatives, SP Conitzer

Axiom Violation Rates for 5 Alternatives on SP Conitzer Preferences
Dummett's Condition Fixed Majority Majority
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- Y >y —

Majority Loser Condorcet Winner Condorcet Loser
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Figure D.14: Axiom violation rate for each axiom on SP Conitzer preferences with 5 alter-
natives.

226



Greedy M.

NN
Random
Borda
SNTV
STV
Bloc
PAV
CcC
lex-CC
seq-CC
Monroe
MAV
MES
EPH

RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.16: Difference between rules for 5 alternatives with 1 < k < 5 on SP Conitzer
preferences.

Axiom Violation Rates for 5 Alternatives on SP Conitzer Preferences

NN Random Borda
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Figure D.15: Axiom violation rate for each rule on SP Conitzer preferences with 5 alterna-
tives.
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2
n
. 5 5 : .

2 = — 2 E ) i s E £ E z

§ 3 3 5 § 5 : = £ §E L. 2 & © =2
Method = = = ¥ = ) o) m D5 A = & ) %) )
NN 0 0 0 0 0 0 0 o o0 o 0 0 0 0 0
Borda 008 O .028 O .008 .043 O .028 O O 0 0 0 0 0
EPH 004 O 0 0O .004 .051 O o o o 0 0 0 0 0
SNTV 028 0 .084 .003 .028 .194 O .08 O O 0 0 0 0 0
STV 017 0 .045 .000 .017 .126 O 045 O O 0 0 0 0 0
Bloc 004 O 0 0 .004 .050 O o o0 o 0 0 0 0 0
cc 192 012 .310 .326 .192 .721 .072 293 O .237 O  .044 .044 .205 .229
lex-CC 028 .008 O 0O .028 299 0 .04 O .013 O 0 0o .013 .013
seq-CC 160 .001 .326 .398 .160 .612 .049 279 O .151 O  .000 .000 .121 .145
Monroe 118 .007 .184 .193 .118 .505 .049 .188 O .146 O  .000 .000 .126 .129
Greedy M. .024 0 .072 .000 .024 .173 0 .073 0O .000 O 0 0 0 .000
PAV 005 O 0 0O .005 .068 O .000 O O 0 0 0 0 0
MES 005 O 0 0O .0056 .060 O .000 O O 0 0 0 0 0
MAV 176 .015 .305 .342 .176 .831 .094 281 O .157 O 0 0 131 .135
RSD 085 .005 .181 O .085 .512 .013 .154 O .021 .032 .032 .032 .013 .107
Random 246 .014 .443 453 246 .840 .140 .295 O .229 .054 .099 .099 .196 .335

Table D.17: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
SP Walsh preferences.

D.1.8 5 Alternatives, SP Walsh

Axiom Violation Rates for 5 Alternatives on SP Walsh Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.16: Axiom violation rate for each axiom on SP Walsh preferences with 5 alterna-
tives.
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Table D.18: Difference between rules for 5 alternatives with 1 < k < 5 on SP Walsh
preferences.

Axiom Violation Rates for 5 Alternatives on SP Walsh Preferences

NN Random Borda
1.0 A b b
0.8 1
0.6 1
0.4 4
0.2 4 —
0.0+ - - : : - = - -
SNTV STV Bloc
1.0 b b
0.8 1 1
0.6 1 1
0.4 1 1
02 e—o 11 - e e
0.0 A + . F T T - + T
PAV CcC lex-CC
1.0 4 b b L 3
0.8 1
£ 06
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Figure D.17: Axiom violation rate for each rule on SP Walsh preferences with 5 alternatives.
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Method = = = o = ) o) m DA = & ) %) )
NN .006 .000 .000 .001 .006 .001 .000 O O .030 .000 .000 .000 .019 .026
Borda .014 .003 .007 .00l .014 .117 O .017 O .018 .000 .000 .000 .010 .012
EPH 027 .000 .002 O .027 .218 .004 .002 O .046 O 0 0 .033 .040
SNTV 064 O .097 .104 .064 .530 .016 .081 O .001 .000 .003 .003 O .00l
STV 039 0 .048 .047 .039 .355 .004 .048 0O O 0 .000 .000 O .000
Bloc 026 .000 .002 O .026 .207 .004 O O .046 O 0 0  .032 .042
cc 140 .018 .165 .175 .140 .692 .072 .138 O .186 O 013  .013 .156 .189
lex-CC 060 .011 .020 O .060 .453 .004 .051 O .092 O 0 0 .073 .074
seq-CC 121 .014 .151 .111 .121 .657 .043 .133 O .167 O .001 .001 .138 .160
Monroe 115 011 .115 .150 .115 .608 .056 .114 O .157 O .001 .001 .130 .150
Greedy M. .051 .002 .028 .007 .051 .395 .005 .041 O .072 O 0 0 .054 .058
PAV 031 .00l .003 O .031 .267 .004 .007 O .050 O 0 0 .036 .039
MES 034 .000 .004 .002 .034 .287 .004 .011 O .055 O 0 0 .039 .041
MAV 151 032 .172 .110 .151 .781 .115 .152 O .168 .026 .028 .028 .140 .209
RSD 104 .018 .110 O  .104 .609 .047 .075 O .116 .028 .030 .030 .094 .194
Random 179 .035 220 .210 .179 .829 .135 .150 O .191 .034 .047 .047 .160 .271

Table D.19: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Gaussian Ball 3 preferences.

D.1.9 5 Alternatives, Gaussian Ball 3

Axiom Violation Rates for 5 Alternatives on Gaussian Ball 3 Preferences
Dummett's Condition Fixed Majority Majority

Condorcet Loser

Majority Loser
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-------- Min 4— Borda % Bloc lex-CC <~ Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.18: Axiom violation rate for each axiom on Gaussian Ball 3 preferences with 5

alternatives.

230



Greedy M.

NN
Random
Borda
SNTV
STV
Bloc
PAV
CcC
lex-CC
seq-CC
Monroe
MAV
MES
EPH
RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.20: Difference between rules for 5 alternatives with 1 < k < 5 on Gaussian Ball 3
preferences.

Axiom Violation Rates for 5 Alternatives on Gaussian Ball 3 Preferences

NN Random Borda
1.0 1 q q
0.8 1 1 o ° L — -
0.6 1 1
0.4 1 1 o
X3 4 W T 1e * e o
SNTV STV Bloc
1.0 q q
0.8
0.6 & —— °
041 o —s * ——e .
0z —— I — pe——
PAV CcC lex-CC
1.0
0.8 — —e
£ 061 —* —* 3
£ 041 e - [ 2 — 5 ~
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Figure D.19: Axiom violation rate for each rule on Gaussian Ball 3 preferences with 5
alternatives.
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Method = = = o = ) o) m DA = & ) %) )
NN .006 .000 .000 .001 .006 .001 .000 O O .030 .000 .000 .000 .019 .026
Borda .014 .003 .008 .00l .014 .118 O .017 O .018 .000 .000 .000 .010 .013
EPH 027 .000 .002 O .027 .221 .004 .00l O .047 O 0 0 .033 .041
SNTV 064 O .096 .102 .064 .529 .016 .081 O .001 .000 .002 .002 O .00l
STV 038 0 .048 .045 .038 .350 .004 .049 O O 0 .000 .000 O .000
Bloc 026 .000 .002 O .026 .210 .004 O O .046 O 0 0 .032 .043
cc 141 .019 .166 .178 .141 .695 .073 .139 0 .189 O 013  .013 .158 .192
lex-CC 060 .012 .019 O .060 .458 .005 .051 O .093 O 0 0 .074 .075
seq-CC 122 .014 .153 .112 .122 658 .043 .134 O .167 O .001 .001 .138 .161
Monroe 116 .012 .117 .153 .116 .610 .057 .114 O .159 O .001 .001 .131 .152
Greedy M. .051 .002 .029 .007 .051 .398 .006 .040 O .072 O 0 0 .054 .058
PAV 031 .00l .003 O .031 .269 .004 .007 O .050 O 0 0 .036 .039
MES 034 .001 .004 .002 .034 .288 .005 .010 O .055 O 0 0 .040 .041
MAV 151 .033  .172 111 151 .784 115 .154 O .169 .025 .027 .027 .141 .209
RSD 104 .018 .109 O  .104 .610 .047 .076 O .118 .028 .030 .030 .096 .195
Random 179 .036  .220 .211 .179 .829 .135 .151 O .191 .033 .048 .048 .160 .271

Table D.21: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Gaussian Ball 10 preferences.

D.1.10 5 Alternatives, (Gaussian Ball 10

Axiom Violation Rates for 5 Alternatives on Gaussian Ball 10 Preferences

Dummett's Condition Fixed Majority Majority
Majority Loser Condorcet Winner Condorcet Loser
1.0 A 1 1
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2 Strong Pareto Efficiency Justified Representation Extended JR
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4
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Figure D.20: Axiom violation rate for each axiom on Gaussian Ball 10 preferences with 5

alternatives.
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Table D.22: Difference between rules for 5 alternatives with 1 < k < 5 on Gaussian Ball 10
preferences.

Axiom Violation Rates for 5 Alternatives on Gaussian Ball 10 Preferences

NN Random Borda
1.0 1 q q
0.8 1 1 o * ° — e
0.6 1 1
0.4 1 S
001 4 W MEE: * e o
SNTV STV Bloc
1.0 q q
0.8
0.6 & *
0.4 o — * —— .
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0.0 ; . 7 A —
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©
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S t 1 . .
©
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Figure D.21: Axiom violation rate for each rule on Gaussian Ball 10 preferences with 5
alternatives.
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Method = = = o = ) o) m DA = & ) %) )
NN .009 .000 .000 .002 .009 .001 .000 O O .045 .000 .000 .000 .030 .041
Borda .017 .003 .006 .00l .017 .136 O .014 O .025 .000 .000 .000 .015 .018
EPH 036 .000 .003 O .036 .270 .007 .002 O .071 O 0 0 .052 .062
SNTV 066 O .080 .115 .066 .570 .023 .063 O .001 .000 .002 .002 O  .002
STV 043 0 .043 .058 .043 .405 .005 .042 O O 0 .000 .000 O .000
Bloc 035 .000 .003 O .035 255 .007 O O .070 O 0 0 .051 .066
cc 130 .014 .112 .160 .130 .699 .072 .093 O .182 O .009 .009 .151 .184
lex-CC 066 .009 .015 O .066 .491 .007 .036 O .115 O 0 0 .092 .093
seq-CC 114  .010 .105 .099 .114 .667 .045 .091 O .167 O  .000 .000 .137 .161
Monroe 113 .010 .086 .148 .113 .640 .057 .082 O .161 O .001 .001 .132 .155
Greedy M. .061 .002 .024 .007 .061 .454 .009 .033 O .100 O 0 0o .078 .083
PAV 042 .00l .003 O .042 .329 .007 .008 O .076 O 0 0 .056 .060
MES 045 .001 .005 .002 .045 .354 .007 .012 O .083 O 0 0 .062 .064
MAV 140 025 .116 .098 .140 .780 .110 .105 O .170 .022 .024 .024 .141 .206
RSD 108 .015 .083 O .108 .634 .055 .052 O .137 .032 .033 .033 .110 .221
Random 164 .026 .149 .195 .164 .822 .131 .103 O .185 .030 .038 .038 .154 .260

Table D.23: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Uniform Ball 3 preferences.

D.1.11 5 Alternatives, Uniform Ball 3

Axiom Violation Rates for 5 Alternatives on Uniform Ball 3 Preferences
Dummett's Condition Fixed Majority Majority

Condorcet Loser

Strong Unanimity Local Stability

1 &= & - —

Axiom Violation Rate

Justified Representation Extended JR

Core
1.0 A —eo- NN —— Random STV cc *— Monroe v MES
0.8 1 N e 1 Min 4— Borda %~ Bloc lex-CC «~— Greedy M. EPH
e e Max SNTV PAV seq-CC  —=— MAV ~— RSD
024 . —
0.0 m. .
1 2 3 4

Number of Winners

Figure D.22: Axiom violation rate for each axiom on Uniform Ball 3 preferences with 5
alternatives.
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Table D.24: Difference between rules for 5 alternatives with 1 < k < 5 on Uniform Ball 3
preferences.

Axiom Violation Rates for 5 Alternatives on Uniform Ball 3 Preferences

NN Random Borda
1.0 1 q 1
0.8 1 *o— 4 * .
0.6 1
0.4 4 —————4
051 ——— % b h: 2
SNTV STV Bloc
1.0 q 1
0.8 1 Py Iy 1
0.6 1 — — ]
04de i —— 4 o | |1 o—
00 — 5 [ 11 —— | | " —
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Figure D.23: Axiom violation rate for each rule on Uniform Ball 3 preferences with 5 alter-
natives.
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§ ¥ 3 5 § & § = § B 4 £ & ©°o 3

Method = = = o = ) o) m DA = & ) %) )
NN .009 .000 .000 .002 .009 .001 .000 O O .044 .000 .000 .000 .028 .039
Borda .017 .003 .006 .00l .017 .137 O .014 O .024 .000 .000 .000 .013 .017
EPH 036 .000 .003 O .036 .274 .007 .002 O .069 O 0 0 .050 .062
SNTV 066 O 078 .114 .066 .573 .022 .060 O .001 .000 .003 .003 O  .002
STV 043 0 .043 .057 .043 .408 .005 .00 O O 0 .000 .000 O .000
Bloc 035 .000 .003 O .035 .259 .007 O O .069 O 0 0 .050 .065
cc 130 .015 .108 .162 .130 .700 .074 .090 O .181 O .009 .009 .151 .186
lex-CC 065 .009 .015 O .065 .495 .007 .035 O .110 O 0 0 .087 .088
seq-CC 113 .011  .100 .097 .113 .668 .043 .08 O .165 O  .000 .000 .136 .159
Monroe 113 .011 .082 .148 .113 .642 .060 .078 O .161 O .001 .001 .133 .157
Greedy M. .060 .002 .023 .009 .060 .457 .008 .032 O .096 O 0 0o .073 .078
PAV 041 .001 .003 O .041 .333 .007 .007 O .073 O 0 0 .054 .058
MES 045 .001 .005 .003 .045 .360 .007 .011 O .079 O 0 0 .058 .060
MAV 139 026 .112 .097 .139 .779 .113 .102 O .168 .022 .023 .023 .140 .205
RSD 107 .015 .079 O  .107 .634 .055 .051 O .135 .030 .032 .032 .110 .220
Random 163 .027 .145 .194 .163 .825 .131 .100 O .182 .030 .038 .038 .151 .257

Table D.25: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Uniform Ball 10 preferences.

D.1.12 5 Alternatives, Uniform Ball 10

Axiom Violation Rates for 5 Alternatives on Uniform Ball 10 Preferences
Dummett's Condition Fixed Majority Majority

Condorcet Winner Condorcet Loser
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Figure D.24: Axiom violation rate for each axiom on Uniform Ball 10 preferences with 5

alternatives.
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Table D.26: Difference between rules for 5 alternatives with 1 < k£ < 5 on Uniform Ball 10
preferences.

Axiom Violation Rates for 5 Alternatives on Uniform Ball 10 Preferences

NN Random Borda
1.0 1 q q
0.8 1 — i + —e
0.6 1
0.4 1 —— —
g(z) ]  — 7Y ’v\ — ° * : 4 : {
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Figure D.25: Axiom violation rate for each rule on Uniform Ball 10 preferences with 5
alternatives.
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Method = = = o = ) o) m DA = & ) %) )
NN .008 0 .000 .002 .008 .001 .000 O O .038 .000 .000 .000 .025 .036
Borda 016 .003 .006 .001 .016 .128 O .06 O .021 O 0 0 .013 .016
EPH 032 .000 .003 O .032 .249 .006 .002 O .059 O 0 0 .043 .053
SNTV 066 O  .089 .116 .066 .557 .020 .072 O .00l .000 .002 .002 O  .002
STV 041 O  .045 .057 .041 .382 .005 .045 O O .000 .000 .000 O  .000
Bloc 031 .000 .003 O .031 .236 .006 O O .058 O 0 0 .042 .056
cc 136 .017 .145 172 .136 .699 .073 .119 O .18 0  .011 .011 .153 .187
lex-CC 062 .010 .016 O .062 .471 .006 .042 O .100 O 0 0o .079 .081
seq-CC 120 .012 .135 .110 .120 .668 .045 .116 O .170 O .00l .00l .140 .163
Monroe 116 .011 .104 .152 .116 .630 .058 .103 O .160 O  .001 .001 .131 .153
Greedy M. .057 .003 .028 .008 .057 .432 .007 .040 O .087 O 0 0 .067 .072
PAV 037 .001 .003 O .037 .304 .006 .008 O .063 O 0 0 .046 .051
MES 040 .001 .004 .003 .040 .327 .006 .011 O .068 O 0 0 .050 .053
MAV 145 029 .150 .108 .145 .777 .113 .132 O .167 .022 .023 .023 .138 .202
RSD 106 .016 .101 O  .106 .621 .050 .066 O .128 .029 .030 .030 .103 .209
Random 173 .031  .194 214 173 .826 .133 .130 O .187 .031 .041 .041 .156 .265

Table D.27: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Gaussian Cube 3 preferences.

D.1.13 5 Alternatives, (Gaussian Cube 3

Axiom Violation Rates for 5 Alternatives on Gaussian Cube 3 Preferences
Dummett's Condition Fixed Majority Majority

Condorcet Loser

Strong Unanimity Local Stability

- - —

Axiom Violation Rate
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—e— Random STV cc »— Monroe ¥ MES
4— Borda % Bloc lex-CC <~ Greedy M. EPH
SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.26: Axiom violation rate for each axiom on Gaussian Cube 3 preferences with 5
alternatives.
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Table D.28: Difference between rules for 5 alternatives with 1 < k < 5 on Gaussian Cube 3
preferences.

Axiom Violation Rates for 5 Alternatives on Gaussian Cube 3 Preferences

NN Random Borda
1.0 1 q q
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Figure D.27: Axiom violation rate for each rule on Gaussian Cube 3 preferences with 5
alternatives.
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5 S

B=i b h=t >

. E e g E - 7 £ R

§ ¥ 3 5 § & § = § B 4 £ & ©°o 3

Method = = = o = ) o) m DA = & ) %) )
NN .008 .000 .000 .001 .008 .001 .000 O O .039 .000 .000 .000 .025 .035
Borda .016 .003 .006 .00l .016 .130 O .016 O .022 .000 .000 .000 .013 .016
EPH 032 .000 .003 O .032 .249 .006 .002 O .060 O 0 0 .043 .053
SNTV 066 O 089 .115 .066 .557 .021 .071 O .001 .000 .003 .003 O  .002
STV .041 0 .046 .057 .041 .38 .004 .044 O O 0 .000 .000 O .000
Bloc 031 .000 .003 O .031 .236 .006 O O .059 O 0 0 .042 .056
cc 137 .017 .145 171 137 701 .072 .117 O .187 O 011 .011 .156 .190
lex-CC 063 .010 .017 O .063 .472 .006 .042 O .103 O 0 0 .081 .082
seq-CC 120 .012  .135 .109 .120 .668 .044 .115 O .169 O  .000 .000 .140 .163
Monroe 116 .011 .103 .150 .116 .631 .056 .100 O .162 O .001 .001 .133 .155
Greedy M. .057 .002 .027 .008 .057 .430 .007 .038 O .088 O 0 0 .067 .072
PAV 037 .00l .003 O .037 .304 .006 .008 O .064 O 0 0 .047 .051
MES 041 .001 .005 .003 .041 .328 .006 .012 O .070 O 0 0 .051 .053
MAV 145 .029 .147 .105 .145 .780 .111 .130 O .169 .023 .024 .024 .141 .205
RSD 107 .016 .099 O  .107 .621 .050 .066 O .129 .030 .032 .032 .104 .210
Random 173 031 .194 212 173 .827 .132 .128 O .188 .031 .041 .041 .157 .265

Table D.29: Average Axiom Violation Rate for 5 alternatives and 1 < k£ < 5 winners across
Gaussian Cube 10 preferences.

D.1.14 5 Alternatives, (Gaussian Cube 10

Axiom Violation Rates for 5 Alternatives on Gaussian Cube 10 Preferences
Dummett's Condition Fixed Majority Majority

1s A S—

Condorcet Loser

Majority Loser

0.2 1 L—/’!’/ r— ] —

Solid Coalitions Strong Unanimity Local Stability

- - —
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—e— Random STV cc »— Monroe ¥ MES
4— Borda % Bloc lex-CC <~ Greedy M. EPH
SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.28: Axiom violation rate for each axiom on Gaussian Cube 10 preferences with 5

alternatives.
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Table D.30: Difference between rules for 5 alternatives with 1 < k < 5 on Gaussian Cube
10 preferences.

Axiom Violation Rates for 5 Alternatives on Gaussian Cube 10 Preferences

NN Random Borda
1.0 1 q q
0.8 1 *~— * * .
0.6 1
0.4 1
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Figure D.29: Axiom violation rate for each rule on Gaussian Cube 10 preferences with 5
alternatives.
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n
2 L g

B=i b h=t >

. E e g E - 7 £ R

§ ¥ 3 5 § & § = § B 4 £ & ©°o 3

Method = = = o = ) o) m DA = & ) %) )
NN .008 .000 .000 .002 .008 .001 .000 O O .039 .000 .000 .000 .025 .036
Borda .016 .003 .006 .00l .016 .133 O .017 O .023 .000 .000 .000 .013 .017
EPH 033 .000 .003 O .033 .256 .006 .002 O .063 O 0 0  .046 .057
SNTV 068 O 089 .123 .068 .569 .022 .073 O .001 .000 .003 .003 O 002
STV 042 0 046 .059 .042 .394 .006 .046 O O 0 .000 .000 O .000
Bloc 032 .000 .003 O .032 .242 006 O O .062 O 0 0 .045 .060
cc 136 .016 .141 .172 .136 .701 .073 .116 O .185 O .010 .010 .153 .188
lex-CC 063 .010 .015 O .063 .474 .006 .040 O .104 O 0 0 .082 .084
seq-CC 120 .012 .132 .109 .120 .669 .045 .113 O .170 O 001 .001 .140 .164
Monroe 116 .012 .103 .152 .116 .636 .058 .101 O .163 O .001 .001 .133 .156
Greedy M. .059 .003 .027 .008 .059 .439 .008 .039 O .092 O 0 0 .070 .075
PAV 039 .001 .003 O .039 .313 .006 .008 O .067 O 0 0 .049 .053
MES 042 .001 .004 .003 .042 .337 .006 .012 O .072 O 0 0 .053 .055
MAV 144 028 .144 105 .144 779 112 .128 O .169 .021 .022 .022 .140 .200
RSD .108 .016 .097 O  .108 .627 .050 .065 O .131 .033 .034 .034 .106 .216
Random 172 030 .189 211 .172 .826 .132 .127 O .186 .031 .041 .041 .155 .262

Table D.31: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Uniform Cube 3 preferences.

D.1.15 5 Alternatives, Uniform Cube 3

Axiom Violation Rates for 5 Alternatives on Uniform Cube 3 Preferences

Dummett's Condition Fixed Majority Majority
1.0 4 - -
osd et
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4— Borda % Bloc lex-CC <~ Greedy M. EPH
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Figure D.30: Axiom violation rate for each axiom on Uniform Cube 3 preferences with 5

alternatives.
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Table D.32: Difference between rules for 5 alternatives with 1 < k£ < 5 on Uniform Cube 3
preferences.

Axiom Violation Rates for 5 Alternatives on Uniform Cube 3 Preferences

NN Random Borda
1.0 1 q q
0.8 1 *~— * * .
0.6 1
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Figure D.31: Axiom violation rate for each rule on Uniform Cube 3 preferences with 5
alternatives.
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n
2 L g

B=i b h=t >

. E e g E - 7 £ R

§ ¥ 3 5 § & § = § B 4 £ & ©°o 3

Method = = = o = ) o) m DA = & ) %) )
NN .009 .000 .000 .002 .009 .001 .000 O O .042 .000 .000 .000 .028 .037
Borda .016 .003 .007 .00l .016 .131 0 017 © .024 .000 .000 .000 .013 .017
EPH 033 .000 .003 O .033 .258 .006 .002 O .063 O 0 0 .045 .055
SNTV 067 O 091 .119 .067 .566 .020 .073 O .001 .000 .003 .003 O 001
STV 043 0 .048 .059 .043 .397 .005 .047 O O 0 .000 .000 O .000
Bloc 032 .000 .003 O .032 .244 006 O O .063 O 0 0 .045 .059
cc 136 .016 .142 .175 .136 .703 .072 .115 O .185 O 011  .011 .154 .187
lex-CC 063 .009 .015 O .063 .474 .006 .041 O .104 O 0 0 .082 .083
seq-CC 120 .012  .130 .108 .120 .669 .044 .112 O .172 O  .000 .000 .142 .165
Monroe 116 .011 .105 .155 .116 .636 .058 .100 O .161 O .001 .001 .132 .153
Greedy M. .058 .002 .027 .008 .058 .437 .008 .038 O .093 O 0 0 .07l .075
PAV 038 .00l .003 O .038 .313 .006 .008 O .067 O 0 0 .049 .053
MES 042 .001 .005 .002 .042 .335 .006 .012 O .072 O 0 0 .053 .055
MAV 144 027 143 107 .144 777 111 128 O .168 .022 .023 .023 .139 .203
RSD 108 .015 .096 O .108 .626 .052 .065 O .134 .030 .031 .031 .109 .216
Random 72 029 189 211 172 .826 .133 .126 O .188 .031 .041 .041 .156 .263

Table D.33: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Uniform Cube 10 preferences.

D.1.16 5 Alternatives, Uniform Cube 10

Axiom Violation Rates for 5 Alternatives on Uniform Cube 10 Preferences

Dummett's Condition Fixed Majority Majority
1.0 A - -
o8f{ 1
0.6
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0.2 1
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SNTV PAV seq-CC = MAV »— RSD
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Figure D.32: Axiom violation rate for each axiom on Uniform Cube 10 preferences with 5

alternatives.

244



Greedy M.

NN
Random
Borda
SNTV
STV
Bloc
PAV
CcC
lex-CC
seq-CC
Monroe
MAV
MES
EPH
RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.34: Difference between rules for 5 alternatives with 1 < k& < 5 on Uniform Cube 10
preferences.

Axiom Violation Rates for 5 Alternatives on Uniform Cube 10 Preferences

NN Random Borda
1.0 1 q q
0.8 1 *~— * L —
0.6 1
0.4 1
0.2 1 °
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Figure D.33: Axiom violation rate for each rule on Uniform Cube 10 preferences with 5
alternatives.
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2

- s 2

s ¥ = : & 5 5 2 § B . g & © %
Method = = = o = o) @) 9 =) A = &) O % )
NN .006 .000 .001 .002 .006 .001 .000 O 0 .027 .000 .000 .000 .018 .026
Borda 012 .002 .007 .002 .012 .096 O .06 O .015 .000 .000 .000 .008 .010
EPH 025 .000 .003 O  .025 .206 .005 .001 O .043 O 0 0 .030 .037
SNTV 079 0  .109 .133 .079 .483 .015 .112 .039 .044 .000 .041 .041 O  .003
STV 034 0  .043 .053 .034 .297 .004 .039 O 0 0  .000 .000 O .000
Bloc 024 .000 .002 O .024 .198 .005 O 0 042 O 0 0  .030 .039
cc 165 .054 .164 .217 .165 .661 .069 .180 .058 .232 O  .072 .073 .167 .197
lex-CC 046 .009 .013 O .046 .362 .005 .033 O .070 O 0 0 .054 .056
seq-CC 149 .047 156 .184 .149 629 .044 .177 .059 .206 O  .061 .061 .144 .165
Monroe 097 016 .089 .125 .097 .524 .049 .08 O .136 O .00l .001 .111 .130
Greedy M. .044 .002 .026 .006 .044 .347 .006 .033 0O .061 O 0 0 .045 .050
PAV 028 .001 .003 O .028 .243 .005 .006 O .045 O 0 0 .032 .035
MES 030 .001 .004 .001 .030 .257 .005 .009 O .048 O 0 0 .034 .037
MAV 135  .054 .136 .128 .135 .700 .097 .150 O  .147 .013 .015 .015 .118 .178
RSD 088 .022 .085 O .08 .537 .040 .070 O  .093 .022 .024 .024 .073 .161
Random 217 108 213 284 217 .804 .126 .225 .071 .248 .049 .111 .111 .188 .285

Table D.35: Average Axiom Violation Rate for 5 alternatives and 1 < k < 5 winners across
Mixed preferences.

D.1.17 5 Alternatives, Mixed

Axiom Violation Rates for 5 Alternatives on Mixed Preferences
Dummett's Condition Fixed Majority Majority

1 s %‘E\‘ .

Majority Loser Condorcet Winner Condorcet Loser
1.0 4 T f
0.8 [ ————
0.6 1 15 » — L] L
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P 00+1e ' ' ' ' ' ¢ ' ' ' '
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s ] ]
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©
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> ] e
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| g g 2 O @
s L gy = ' ' - ’
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—eo- NN —e— Random STV CcC +— Monroe ¥ MES
-------- Min 4— Borda »— Bloc lex-CC <~ Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.34: Axiom violation rate for each axiom on Mixed preferences with 5 alternatives.
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Table D.36: Difference between rules for 5 alternatives with 1 < k < 5 on Mixed preferences.

Axiom Violation Rates for 5 Alternatives on Mixed Preferences

NN Random Borda
1.0 b N
0.8 | * * e |
0.6 1
o —————4| ]
5o — | [ — == 1K : 2 1
SNTV STV Bloc
1.0 b b
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0.6 1 s * °
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0.2 1 o B — - ° 23
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Figure D.35: Axiom violation rate for each rule on Mixed preferences with 5 alternatives.
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w
2 2 8

h=1 Py h=4 >

. B o2 o8 3 5 5 g £ ° ;2

§ ® =¥ 5 § & & = § §E L, g &t 9o 3

Method = = = o = o) @) 9 =) A = = o) % A
NN .011 .000 .000 .003 .011 .006 .000 .000 0 .042 .000 .000 .000 .032 .055
Borda .016 .002 .006 .003 .016 113 0 .013 0 .027 .000 .000 .000 .019 .029
EPH .032 .000 .002 .000 .032 234 .003 .001 0 .060 .000 .000 .000 .049 .067
SNTV .090 0 .103 .183 .090 .559 011 .108 .045 .054 .000 .048 .049 0 .007
STV .041 0 .039 .085 .041 .373 .002 .032 0 0] .000 .000 .000 0 .000
Bloc .031 .000 .001 0 .031 .223 .003 0 0 .059 .000 .000 .000 .048 .073
CcC 179 .037 .154 291 179 719 .041 156  .060 .264 0 077 .080 .199 .246
lex-CC .054 .006 .009 0 .054 .402 .003 .027 0 .093 0 0 0 .076 .085
seq-CC .167 .032 .147 241 167 .698 .032 155  .060 .248 0 .072 072 184 .224
Monroe 115 .007 .084 .188 115 .599 .035 .072 0 174 0 003 004 .149 .181
Greedy M. .054 .002 .021 .010 .054 .400 .004 .026 0 .086 0 0 0 .070 .086
PAV .035 .001 .002 0 .035 .268 .003 .005 0 .064 0 0 0 .052  .064
MES .039 .001 .003 .002 .039 .301 .003 .008 0 071 0 0 0 .057 .066
MAV .148 .028 .128 .223 .148 732 .063 .104 0 178 .020 .026 .026 .149 .250
RSD .096 .010 .068 0 .096 571 .024 .046 0 119 .023 .024 .025 .100 .234
Random .226 .068 .189 .354 .226 .833 .084 180  .071  .285 .048 119 123 .222  .359

Table D.37: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
all preferences.

D.2 6 Alternatives — All preferences

Axiom Violation Rates for 6 Alternatives over All Axioms

Stratified Urn IC IAC
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Figure D.36: Axiom violation rates for each rule under each preference distribution for 6
alternatives
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Table D.38: Difference between rules for 6 alternatives with 1 < k < 6 averaged over all
preference distributions.
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2
n

= = = 2 E g i ) E £ E 3

§ ® ¥ & § & & = £ E L, £ &t O 3
Method = = = o = O @] 9 =) [a) = &) O % )
NN .000 0O 0 0 .000 .000 O 0 0 0 0 0 0 0 0
Borda 003 O .000 O .003 .041 O .000 O 0 0 0 0 0 0
EPH 010 .000 O 0 .00 .131 © 0 0 .000 O 0 0 .000 .000
SNTV 025 O 003 0 025 .314 O .004 O 0 0 0 0 0 0
STV 010 ©0 .000 O 010 .128 0 .00l O 0 0 0 0 0 0
Bloc 010 .000 © 0 010 .131 © 0 0 .000 O 0 0 .000 .000
cc .250 .004 .006 .450 .250 .674 .036 .197 .190 .453 O  .230 .230 .380 .396
lex-CC 010 .000 © 0o .00 .131 © 0 0 000 0 0 0 .000 .000
seq-CC 247 .003 .006 .450 .247 .647 .035 .197 .190 .450 O  .231 .231 .377 .393
Monroe 122 .003 .003 .254 .122 477 034 .005 O .256 O  .033 .033 .243 .243
Greedy M. .021 .000 .00l O .021 .269 O .00l O .000 O 0 0 .000 .000
PAV 010 .000 O 0 .00 .131 © 0 0 .000 O 0 0  .000 .000
MES 010 .000 .000 O .010 .132 O 0 0 .000 O 0 0  .000 .000
MAV 094 .004 .004 .200 .094 .548 .050 .009 O .103 O 0 0 .102 .201
RSD 034 .002 .002 O .034 426 O .006 O .002 O 0 0 .002 .002
Random 316 .007 .007 .709 .316 .855 .080 .200 .190 .455 .052 .273 .273 .383  .622

Table D.39: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Stratified preferences.

D.2.

Axiom Violation Rate

Figure D.37: Axiom violation rate for each axiom on Stratified preferences

tives.
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NN
Random
Borda
SNTV
cC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.40: Difference between rules for 6 alternatives with 1 < k < 6 on Stratified prefer-
ences.

Axiom Violation Rates for 6 Alternatives on Stratified Preferences

NN Borda
1.0
0.8
0.6
0.4
0.2
0.0 1% s . s o 13 EER il Le 2 ; 2 2
SNTV STV Bloc
1.0 1 1
0.8 1
0.6 —
0.4 4
021 e — o * [ & *  d ®
0.0 4 fr 7 2 bd o v o pd bd e
PAV lex-CC
1.0
0.8 1
£ 06
o 041 -
c 0217 e (2 (4 ° ° °
2 0.01% b : b4 b4 1
&
] Monroe Greedy M.
Z 1.0 Py 1
0.8 1 A —e
S 0.6 . T———
Z 0.4 - T . Y *
021 o s e — o ~ -~
0.0 4% ; : . = . S5 + - .
MAV MES EPH
1.0 1 q 1
081 e ° | 1
0.6 1 e ’ 5 . 9
0.4 1 T
3(2) I —— /v 1e ° 3 ° . ° ° °
RSD
%g : —4— Dummett's Condition ~w¥— Condorcet Loser Strong Pareto Efficiency
0:6 1e . - - —#— Fixed Majority —— Solid Coalitions —w— Justified Representation
0.4 ~ - —e— Majority < Strong Unanimity =~ —— Extended JR
0.2 1 - - —»— Majority Loser Local Stability Core
0.0+ o Condorcet Winner
1 2 3 4 5

Number of Winners

Figure D.38: Axiom violation rate for each rule on Stratified preferences with 6 alternatives.
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2

- Y : £

s ¥ ¢ : & 3 5 2% § B g £ 5 ©
Method = = = o = o) O 9 =) A = &) O % )
NN .022 001 .004 .028 .022 .010 .000 .000 O 078 .004 .004 .004 .065 .092
Borda 030 .017 .016 .035 .030 .144 O 064 0O 040 .000 .000 .000 .032 .041
EPH 034 .004 .004 .000 .034 127 .002 .008 O 105 .000 .000 .000 .091 .107
SNTV 120 0 204 .215 .120 .541 .002 .310 .027 .139 .000 .059 .063 O  .000
STV 038 0 .063 .075 .038 .260 .000 .094 O 0 .000 .000 .000 O  .000
Bloc 032 .00l .001 © 032 113 .002 O 0 .103 .00l .001 .001 .088 .106
ccC 214 146 229 254 214 .608 .036 .336 .030 .382 O 083 .091 .278 .302
lex-CC 097 071 .069 O 097 .385 .002 .180 O 210 O 0 0 .166 .178
seq-CC 199 1135 220 .207 .199 .593 .033 .330 .029 .361 O 069 .074 259 .279
Monroe 105 .052 .099 .101 .105 .388 .023 .136 O  .209 O 001 .001 .168 .188
Greedy M. .058 .024 .031 .008 .058 .247 .004 .061 O .137 O 0 0 116 .131
PAV 039 .009 .008 O 039 .155 .002 .018 O .111 O 0 0 .096 .110
MES .043 .012 .013 .000 .043 .181 .002 .027 O .116 O 0 0o .100 .111
MAV 218 211 .208 .232 218 .701 .059 .386 O  .344 .022 .039 .039 .259 .330
RSD 104 079 079 O 104 374 .027 121 O  .198 .023 .033 .033 .164 .215
Random 287 268 .264 .369 .287 .749 .081 .427 .038 .425 .071 .150 .161 .323 .409

Table D.41: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Urn preferences.

D.2.2 6 Alternatives, Urn

Axiom Violation Rates for 6 Alternatives on Urn Preferences

Dummett's Condition Fixed Majority Majority
1.0 4 — ] f
0.8 1 - g
0.6  — e |
04 ] [ N S A P
0.2 ] |1 : e =
004 | ."{%— 14 —t _?? : ?
Condorcet Winner Condorcet Loser
1.0 4 1 1
8'22 ] O — I N R o S OO
0.4 1 i S——— 1! _ ° 1
0.2 —— & T e ¥ ¥ il
001 —_ 3 3| % ’ -~ i !ﬁi = ]
o O ' ' ’ ' ' . ’ T = y
8
& Solid Coalitions Strong Unanimity
c 1.0 ——]
% 0.6 s
g o —.
e ———————— g
[T =——— = : : P Ly ' ' '
x _— - .
< Strong Pareto Efficiency Justified Representation
1.0 A —e- NN —e— Random STV cc *— Monroe ¥ MES
0.8 T — Min 4— Borda % Bloc lex-CC <~— Greedy M. EPH
> e Max SNTV [\ seq-CC = MAV ~— RSD
0.0 L gy e 4

1 2 3 4 5
Number of Winners

Figure D.39: Axiom violation rate for each axiom on Urn preferences with 6 alternatives.
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Greedy M.

NN
Random
Borda
SNTV
STV
Bloc
PAV
cC
lex-CC
seq-CC
Monroe
MAV
MES
EPH

RSD

Random
Borda
SNTV
STV

Bloc

PAV

CC

lex-CC
seq-CC
Monroe
Greedy M.
MAV

MES

EPH

RSD

Min . . . . . . .379 .307
Max

.315
.299

.159

Table D.42: Difference between rules for 6 alternatives with 1 < k£ < 6 on Urn preferences.

Axiom Violation Rates for 6 Alternatives on Urn Preferences

NN Random Borda
1.0 b B
0.8 Te * * * |
o ] ———
0.4 1 —— o
i > =] ; :
SNTV STV Bloc
1.0 A B q
08 ] o ° °
0.6 *r—
0.4 A -~ . 2 ° P
021 o 3 — e ——r . — 3
0.0+ 4 = L2 = . : ] i
PAV CcC lex-CC
1.0 A
0.8 1 . ° .
£ 06 oi o * o
o 0.4 -
c 0.2 ~ A
S 0.0+ X
=]
T
2 Greedy M.
> 1.0
£ 0.8
2 0.6 1
% 0.4 1
0.2 4 1 —— pSE——= )
0.0 le ———n 2 |
EPH
1.0
gg: 3 . . .
X o P g— 4 4 4 4
0.4 * ——— Y
ool Tty et 3lly . ¢ 4
RSD
ég ] —4— Dummett's Condition =~ —¥— Condorcet Loser Strong Pareto Efficiency
0.6 —#»— Fixed Majority —a— Solid Coalitions —— Justified Representation
041 e ° - —e— Majority < Strong Unanimity —— Extended JR
0.2 1 -— ~x— Majority Loser Local Stability Core
0.0 e Condorcet Winner
1 2 3 4 5

Number of Winners

Figure D.40: Axiom violation rate for each rule on Urn preferences with 6 alternatives.
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2

- Y -

CRR = © g 2 g S o E x & © =

3 ) S) = = ¥ = 0O A s

Method = = = a¥ = O O = P A MmO w )
NN .009 0 O 0 009 .014 001 0O O .031 0 O O .022 .055
Borda 012 0 O 0 012 119 0 0 0 .012 0 0 O .009 .014
EPH 040 0 O 0 040 .324 .002 0O O .064 0O O O .053 .073
SNTV 033 0 O 0 033 420 .003 0 O O O O O O .000
STV 025 0 O 0 025 326 .00l 0 O O O O O O .000
Bloc 040 0 O 0 040 .323 .002 0O O .064 0 O O .053 .074
cc 068 0 O 0 068 .519 .022 0 O .111 0 O O .088 .141
lex-CC 046 0 O 0 046 .393 .002 0 O .068 0O O O .056 .080
seq-CC 062 0 O 0 062 499 .013 0 O .096 0O O O .078 .120
Monroe 068 0 O 0 068 519 .022 0 O .111 0 O O .088 .141
Greedy M. .053 0 O 0 053 .445 .006 0 O .079 0O O O .064 .099
PAV 041 0 O 0 041 339 .002 0 O .064 0 O O .053 .073
MES 042 0 O 0 042 354 .002 O O .065 0 O O .053 .075
MAV 078 0 O 0 078 623 .042 0 0 .111 0O O O .088 .154
RSD 075 0 O 0 075 .598 .028 0 O .102 0O O O .083 .166
Random 082 0 O .000 .082 635 .043 0 O .113 0 O O .089 .187

Table D.43: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
IC preferences.

D.2.3 6 Alternatives, IC

Axiom Violation Rates for 6 Alternatives on IC Preferences
Dummett's Condition Fixed Majority Majority

1 g - — - — | 1 e - e Y —

Majority Loser Condorcet Winner Condorcet Loser

0.0 L#= Y — - —

Solid Coalitions Strong Unanimity Local Stability

e —

Axiom Violation Rate

' oo 71 Le * * * . :
Strong Pareto Efficiency Justified Representation Extended JR
1.0 A 1 1
0.8 4
0.6 4
0.4 4
0.2 4
0014 - — - — ' - - - - ' - - - -
Core

1.0 A —e- NN —e— Random STV cc *— Monroe ¥ MES
081 e Min 4+— Borda % Bloc lex-CC <~— Greedy M. EPH
e Max SNTV PAV seq-CC  —m— MAV ~— RSD
0.2 4
0.0 19= * == * =¢

1 2 3 4 5

Number of Winners

Figure D.41: Axiom violation rate for each axiom on IC preferences with 6 alternatives.
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Table D.44: Difference between rules for 6 alternatives with 1 < k£ < 6 on IC preferences.

Axiom Violation Rates for 6 Alternatives on IC Preferences

NN Random Borda
1.0 q q
0.8 1
0.6 I e ey s————— N
0.4 4 1 o A
g:g: % —————} [ =— A_éZ! [————= ° —3
SNTV STV Bloc
1.0 4 B q
0.8 1
0.6 1
041 o a4 .- - ®. ———————— e e ————
0] H — —
0.0 1 A a i3 1 -4 i3 S P = P : :
PAV CcC lex-CC
1.0 q
0.8 ]
£ 06 - o—| ] s
L a1 F e e ——
_S 0.0 s 1 5 2 1T T % 1w T _4——4
5 0O T + 4 T g
©
° seq-CC Monroe Greedy M.
> 1.0 -
£ 0.8 ]
S 0.6 s oo | < — ° I 1
é 0.4 { o0 - -—" | - @ :
0.2 4 + | A %’, /,
0.0 _;=;=,é;_ L S 2 r m— S S —
MAV MES EPH
1.0 b
0.8 1
06 —— o, e *|
82 e B D G G s B DG e S
00 L= ;  S— ; ; x : e
RSD
ég ] —4— Dummett's Condition ~ —¥— Condorcet Loser Strong Pareto Efficiency
06 06— o o —e —»— Fixed Majority —a— Solid Coalitions —— Justified Representation
0.4 1 £ —e— Majority < Strong Unanimity =~ —— Extended JR
0.2 1 x I i ; ~x— Majority Loser Local Stability Core
0.0 =3 ~e— Condorcet Winner
1 2 3 4 5

Number of Winners

Figure D.42: Axiom violation rate for each rule on IC preferences with 6 alternatives.
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2

. 2203 7 % 3 g% -

§ = = £ § & £ = £ & = & © %

< o o =] =] o] =) Q B it

Method = = = a¥ = O O = P A - 5] @) 1% )
NN .009 0 O 0 009 .009 .001 O O .031 O 0 0 .023 .055
Borda 012 0 O 0 012 .116 0 0 0 .013 O 0 0 .010 .015
EPH 040 0 O 0 040 .316 .002 0 O .066 O 0 0 .054 .077
SNTV 032 0 0 .000 .032 415 .003 0O O O 0 0 0 0 .000
STV 025 0 O 0 025 324 001 O O O 0 0 0 0 .000
Bloc 039 0 O 0 039 314 .002 0O O .065 O 0 0 .053 .077
cc 069 0 O .000 .069 514 .023 0 O .114 O 0 0 .093 .147
lex-CC 046 0 O 0 046 385 .002 O O .069 O 0 0  .055 .082
seq-CC 063 0 O 0 063 494 014 0 O .102 O 0 0 .082 .124
Monroe 069 0 0 .000 .069 514 .023 O 0O .114 O 0 0 .093 .147
Greedy M. .053 0 O 0 .053 436 .006 0O O .083 O 0 0  .067 .100
PAV 040 0 O 0 040 329 002 O O .065 O 0 0 .053 .075
MES 042 0 O 0 042 346 002 O O .066 O 0 0 .054 .075
MAV 079 0 0 .000 .079 621 .044 O O .114 .000 .000 .000 .093 .160
RSD 076 0 O 0 076 594 .030 0 0O .106 O 0 0 .08 .172
Random .08 0 O .000 .083 629 .044 O O .117 .000 .000 .000 .094 .194

Table D.45: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
IAC preferences.

D.2.4 6 Alternatives, IAC

Axiom Violation Rates for 6 Alternatives on IAC Preferences
Dummett's Condition Fixed Majority Majority

1 - — - — | 1 - e Y —

Majority Loser Condorcet Winner Condorcet Loser

Solid Coalitions Strong Unanimity Local Stability

0.0 L#= - — - —

Axiom Violation Rate

Strong Pareto Efficiency Justified Representation Extended JR
1.0 A 1 1
0.8 4
0.6 4
0.4 4
0.2 4
00 Le . . i i i i i i i i i i a z
Core

1.0 A —e- NN —e— Random STV cc *— Monroe ¥ MES
081 e Min 4— Borda % Bloc lex-CC <~— Greedy M. EPH
> Max SNTV PAV seq-CC  —m— MAV ~— RSD
0.2 4
0.0 14= * =4 * =

1 2 3 4 5

Number of Winners

Figure D.43: Axiom violation rate for each axiom on TAC preferences with 6 alternatives.
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Greedy M.
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Table D.46: Difference between rules for 6 alternatives with 1 < k < 6 on IAC preferences.

Axiom Violation Rates for 6 Alternatives on IAC Preferences

NN Random Borda
1.0 q q
0.8 1 1
0.6 1 1O ¢——0o——° q
0.4 1 AT
g:(Z) Ls — | %;' le ® 3 L ]
SNTV STV Bloc
1.0 b b
0.8
0.6 ’y
o S S— o —
8‘2‘ ——¢ I —— —"0——9  ——— g
0.0 1 2 a s o b s S s i P s .‘{—.
PAV CcC lex-CC
1.0 A
o 081
£ 0.6 % 1
© o *
o 04— — o o9 — A *—————eo— 9
s 3(2, 1w a 4"—' 3 - -—%; 1 L __{'
2 o + T g
©
° seq-CC Monroe Greedy M.
> 1.0
g 0.8 1 Y ’y
2 0.6 > -«
é 041 o0 . 0" Y —o— ¢ * ?
4 o 2 3
3(2) 1w " /}l P e ._%/7_' L 1 %
MAV MES EPH
1.0
0.8 1
06— o o o | |
8 g /:‘ g : 2 e o —
) — — Py s P i
0.0 T t t b T T
RSD
ég —4— Dummett's Condition ~w¥— Condorcet Loser Strong Pareto Efficiency
06— — o o —»— Fixed Majority —a— Solid Coalitions —— Justified Representation
0.4 4 L —e— Majority < Strong Unanimity —— Extended JR
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—e— Condorcet Winner

Number of Winners

Figure D.44: Axiom violation rate for each rule on IAC preferences with 6 alternatives.
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2

R - R

f F oz i § 5 2 = £ § . £ F ©
Method = = = o = O @] % =) A &) O %) )
NN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Borda 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EPH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SNTV 397 0 400 .681 .397 681 O .681 .681 .681 O .681 .681 O 0
STV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bloc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cc 499 293 445 730 .499 .730 .047 .730 .730 .730 O .730 .730 .293 .293
lex-CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
seq-CC 497 289 443 730 .497 .730 .046 .730 .730 .730 O  .730 .730 .289 .289
Monroe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Greedy M. 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Random 665 .499 .499 .897 .665 .897 .104 .897 .897 .897 .256 .897 .897 .499 .499

Table D.47: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Identity preferences.

D.2.5 6 Alternatives, Identity

Axiom Violation Rates for 6 Alternatives on Identity Preferences
Dummett's Condition Fixed Majority Majority

0.0 L#= Y e Y P I Y e - | 1 e Y e Py —

Majority Loser Condorcet Winner Condorcet Loser
— '

0.4 1 _— ] ]
02— ] I

0.0 L#= Y e Y SEPO R Y — Y — * —% —

Solid Coalitions Strong Unanimity Local Stability
raRe 1= 1.0

e Y - Y ! 1 e& + - + ! 1 e + - & Y

Axiom Violation Rate
[eoloNoNoN o]
ONBO OO

Strong Pareto Efficiency Justified Representation Extended JR

1.0 A —eo- NN —— Random STV cc *— Monroe v MES
08{1r—— —+1 T+ —— .. Min 4+— Borda %~ Bloc lex-CC «— Greedy M. EPH
061 i Max SNTV PAV seq-CC = MAV ~— RSD

w4

1 2 3 4
Number of Winners

Figure D.45: Axiom violation rate for each axiom on Identity preferences with 6 alternatives.
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g @ > O 9] 8 i
o e}

. : % E & ¢ 3z o % ¢ & £ % 8 E 8

z ~ M 0 0 m ~ ®) K} ? = ) = = 5] ~
Random — - — — - - — - - - — - — —
Borda .000 - - - - - - - - - - - - - -
SNTV .440 .440 - - - - - - - - - - - - -
STV .000 .000 | 440 - - - - - - - - - - - -
Bloc .000 .000 | .440  .000 - - - - - - - - - - -
PAV .000 .000 | .440  .000  .000 - - - - - - - - - -
cC .491 491 U708 491 491 491 - - - - - - - - -
lex-CC .000 .000 | .440  .000  .000  .000 | 491 - - - - - - - -
seq-CC .490 490 145 490 490  .490 [NF80N 490 - - - - - - -
Monroe .000 .000 | 440 .000  .000  .000 | .491 .000 ["V490 - - - - - -
Greedy M. .000 .000 | .440  .000  .000  .000 | .491  .000 | .490  .000 - - - - -
MAV .000 .000 | .440  .000  .000  .000 | .491  .000 | .490 .000  .000 - - - -
MES .000 .000 | .440  .000  .000  .000 | .491  .000 | .490 .000  .000  .000
EPH .000 .000 | .440  .000  .000  .000 | .491  .000 | .490 .000  .000  .000  .000 - -
RSD .000 .000 | .440  .000  .000  .000 | .491  .000 | .490 .000  .000  .000  .000  .000 -
Min .000 .000 | .440  .000  .000  .000 | .491  .000 | .490 .000  .000  .000  .000  .000  .000
Max

Table D.48: Difference between rules for 6 alternatives with 1 < k < 6 on Identity prefer-
ences.

Axiom Violation Rates for 6 Alternatives on Identity Preferences

NN Random Borda

IR = =
x

2

ocoocooH
oNho®oO

ER B Samvi

-— M

SNTV STV Bloc

ocoooor
ONPAOOO
X\R
X
x

PAV CcC lex-CC

ocoooor
oNho®o
N

seq-CC Monroe Greedy M.

Axiom Violation Rate

ocoooor
oNho®o
i
\
Iy

MAV MES EPH

ocoooor
oNho®O
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—e— Majority < Strong Unanimity —— Extended JR
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Number of Winners

Figure D.46: Axiom violation rate for each rule on Identity preferences with 6 alternatives.
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2

- B = g E - g E : ER-

s § =z : & 3 5 2 § B g £ 5 © 2
Method = = = o = o) @) 9 =) A = &) O % )
NN .002 0 .000 O 002 .008 .000 O 0 .004 .000 .000 .000 .003 .008
Borda .003 .000 .000 O .003 .039 O .000 O .00l O 0 0 .00l .002
EPH 009 O 0 0 .009 .090 .000 O 0 .009 O 0 0 .007 .010
SNTV 044 0 074 .034 .044 292 .000 .111 .007 .028 O 010 .012 0 000
STV 007 O .000 O .007 .095 .000 .000 O 0 0 0 0 0 0
Bloc 009 O 0 0 .009 .090 .000 O 0o .009 O 0 0 .007 .010
ccC 162 .089 .173 .157 .162 .605 .042 .242 .008 .267 O 056 .063 .190 .213
lex-CC .016 .000 .000 O .016 .166 .000 .015 O .010 O 0 0 .008 .012
seq-CC 130 .040 .170 .125 .130 .575 .023 .233 .008 .190 O 043 .048 .107 .122
Monroe 081 .027 .057 .032 .081 .418 .031 .082 O .146 O  .000 .000 .122 .142
Greedy M. .020 .000 .005 O .020 .196 .00l .006 O .016 O 0 0o .012 .018
PAV 009 O 0 0 .009 .096 .000 O 0 .008 O 0 0 .007 .009
MES 010 O 0 0o .010 .103 .000 O 0 .009 O 0 0 .007 .010
MAV 71 141 137 131 171 761 .075 267 O 216 .020 .026 .026 .169 .254
RSD 074 .037 039 O .074 509 .014 .101 O .078 .002 .003 .003 .065 .112
Random 253 226 .228 .246 .253 .859 .092 .346 .010 .349 .051 .113 .124 .273 .375

Table D.49: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Mallows preferences.

D.2.6 6 Alternatives, Mallows

Axiom Violation Rates for 6 Alternatives on Mallows Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.47: Axiom violation rate for each axiom on Mallows preferences with 6 alternatives.
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Table D.50: Difference between rules for 6 alternatives with 1 < k < 6 on Mallows prefer-
ences.

Axiom Violation Rates for 6 Alternatives on Mallows Preferences

NN Random Borda
1.0 b N
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Figure D.48: Axiom violation rate for each rule on Mallows preferences with 6 alternatives.
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. B oo oz 3 5 02 g £ ER-

s gz : £ 5 : = i & . &8 §& © =
Method = = = o = o) @] = 2 A = &) @] %) )
NN .020 0 .000 .000 .020 .000 O 0 0 .068 .000 .000 .000 .052 .135
Borda 028 0 .017 .000 .028 .086 O .047 O .068 O 0 0 .047 .094
EPH 047 0 011 O  .047 320 .011 .006 O .070 O 0 0 .053 .136
SNTV 152 0 .328 .546 .152 .821 .044 .159 O .000 .001 .001 .014 O  .055
STV 122 0 .221 476 .122 .746 .002 .132 O O 0 .000 .003 0 .002
Bloc 047 0 011 O  .047 308 011 O O .068 .000 .000 .000 .052 .155
cc 180 O .360 .470 .180 .876 .052 .183 0O .113 O  .002 .014 .090 .180
lex-CC 055 0 .011 O .055 .401 .011 .038 O .085 O 0 0 .063 .109
seq-CC 175 0 .349 450 .175 .864 .043 .183 0 .112 0  .001 .00l .089 .185
Monroe 169 0 299 446 .169 .850 .051 .183 0O .111 0O 000 012 .089 .150
Greedy M. .082 0 .096 .056 .082 .509 .011 .096 O .099 O 0 0o .077 126
PAV 051 0 011 O .051 .365 .011 .027 O .079 O 0 0o .059 .111
MES 054 0 .011 O .054 .390 .011 .037 O .08 O 0 0 .062 .108
MAV 192 0 .384 553 .192 .858 .069 .18 O .113 .012 .013 .013 .090 .201
RSD 155 0 256 O  .155 .691 .032 .094 O .10l .084 .084 .084 .081 .503
Random 208 0 444 544 208 .883 .092 .183 0O .112 .023 .024 .038 .089 .269

Table D.51: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
SP Conitzer preferences.

D.2.7 6 Alternatives, SP Conitzer

Axiom Violation Rates for 6 Alternatives on SP Conitzer Preferences
Dummett's Condition Fixed Majority Majority

1 @ e 1 & Y e - Y

Majority Loser Condorcet Winner Condorcet Loser

o

>

1
& mey

\

v

— | & 4 T | = e
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1 &= - — - —

Axiom Violation Rate

Strong Pareto Efficiency Justified Representation
0.8 1 E e

0.6 1 — = "

1.0 A —e- NN —e— Random STV cc *— Monroe ¥ MES
0.8 L — e Min 4— Borda % Bloc lex-CC <~— Greedy M. EPH
- Max SNTV PAV seq-CC = MAV ~— RSD

1 2 3 4 5
Number of Winners

Figure D.49: Axiom violation rate for each axiom on SP Conitzer preferences with 6 alter-
natives.
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Table D.52: Difference between rules for 6 alternatives with 1 < k < 6 on SP Conitzer
preferences.

Axiom Violation Rates for 6 Alternatives on SP Conitzer Preferences

NN Random Borda
1.0 4 E E
0.8 1
0.6
0.4 1
0] ; 2 2 — ?
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Figure D.50: Axiom violation rate for each rule on SP Conitzer preferences with 6 alterna-
tives.

263



2

- B oA 2 E 5 - g E g ER-

§ ¥ = 5 § § £ = £ & L, = %t ©°O 3
Method = = = o = o) O m D A = &) O %) )
NN .000 O 0 o .000 O 0 0O ©0 .000 O 0 0 0 .000
Borda 008 O 025 O 008 .057 O 025 0O .000 O 0 0 0 0
EPH 003 O 0 0 003 .035 O O ©0 .000 O 0 0 0 .000
SNTV 020 ©0 .078 .012 .029 204 O .081 O O 0 0 0 0 .000
STV 014 O .040 .005 .014 .103 O .041 O O 0 0 0 0 .000
Bloc 003 O 0 0 .003 .036 O 0O ©0 .000 O 0 0 0o .000
cc 224 .001 .349 471 .224 772 .043 .246 O .289 O 091 .094 .257 .304
lex-CC 022 .000 O 0 022 280 O .009 O .00l O 0 0o .00l .001
seq-CC 206 .001 .337 .457 .206 .756 .030 .246 O .254 O  .053 .053 .227  .262
Monroe 153 .001 .199 .354 .153 571 .034 .211 O .216 O .006 .009 .194 .198
Greedy M. .025 0  .060 .000 .025 .207 O .062 O .000 O 0 0 .000 .000
PAV 003 O 0 0 003 .042 O .000 O .000 O 0 0 0 .000
MES 004 O 0 0 004 .050 O .000 O .000 O 0 0 .000 .000
MAV 234 .002 .381 .560 .234 .853 .072 .230 O .183 .062 .115 .115 .157 .315
RSD 082 .001 .149 O .082 .531 .004 .124 0 .031 .024 .024 .024 .021 .136
Random 279 .002 .442 563 .279 .886 .095 .245 O .294 .080 .159 .161 .263 .440

Table D.53: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
SP Walsh preferences.

D.2.8 6 Alternatives, SP Walsh

Axiom Violation Rates for 6 Alternatives on SP Walsh Preferences

Dummett's Condition Fixed Majority Majority
1.0 { — F f
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Figure D.51: Axiom violation rate for each axiom on SP Walsh preferences with 6 alterna-

tives.
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EPH .340 .159
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Min . . . . . . . 426 .218
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Table D.54: Difference between rules for 6 alternatives with 1 < k < 6 on SP Walsh
preferences.

Axiom Violation Rates for 6 Alternatives on SP Walsh Preferences

NN Random Borda
1.0 A b N
0.8 1 L i
0.6 1
0.4 4
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Figure D.52: Axiom violation rate for each rule on SP Walsh preferences with 6 alternatives.
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2

A TR - B FE

§ = 3 5 & § 5 = £ E . &£ & O 3
Method = = = o = ) o) = DA = & ) %) )
NN .011 .000 .000 .00l .011 .006 .000 O O .047 .000 .000 .000 .035 .053
Borda 018 .001 .005 .00l .018 .138 O .00 O .032 .000 .000 .000 .022 .031
EPH 035 .000 .001 .000 .035 .265 .003 .001 O .064 O 0 0 .051 .067
SNTV 073 0 .078 .165 .073 .632 .012 .056 O .001 .000 .002 .003 O  .005
STV 049 O  .040 .08 .049 467 .002 .035 O O 0 .000 .000 O .000
Bloc 034 .000 .001 O 034 .249 .003 O O .062 .000 .000 .000 .049 .073
cc 154 007 .135 .272 154 772 .044 .086 O 225 O  .008 .009 .194 .249
lex-CC 067 .004 .010 O .067 .517 .003 .029 O .117 O 0 0 .095 .099
seq-CC 139 .006 .127 .188 .139 .746 .034 .085 O .209 O  .004 .004 .179 .225
Monroe 136 .005 .102 .230 .136 .717 .043 .081 O .203 O 002 .003 .175 .212
Greedy M. .063 .001 .021 .010 .063 .478 .003 .028 O .10l O 0 0 .083 .094
PAV 040 .000 .001 O  .040 .316 .003 .004 O .070 O 0 0 .056 .064
MES 046 .000 .002 .003 .046 .364 .003 .009 O .080 O 0 0 .063 .069
MAV 168  .012 .143 .237 .168 .844 .076 .091 O .209 .027 .033 .033 .179 .301
RSD 114 006 .082 O  .114 .665 .020 .044 O .149 .029 .030 .031 .126 .285
Random 186 .014 172 295 .186 .872 .090 .090 O .227 .032 .042 .043 .196 .347

Table D.55: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Gaussian Ball 3 preferences.

D.2.9 6 Alternatives, Gaussian Ball 3

Axiom Violation Rates for 6 Alternatives on Gaussian Ball 3 Preferences

Dummett's Condition Fixed Majority Majority
1.0 A o] ] F
0.8 1 -
0.6 4
0.4 4
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1 2 3 4 5
Number of Winners

Figure D.53: Axiom violation rate for each axiom on Gaussian Ball 3 preferences with 6

alternatives.
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Table D.56: Difference between rules for 6 alternatives with 1 < k < 6 on Gaussian Ball 3
preferences.

Axiom Violation Rates for 6 Alternatives on Gaussian Ball 3 Preferences

NN Random Borda
ég le a2 L4 A2 ol ]
0.6 1
0.4 e
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Figure D.54: Axiom violation rate for each rule on Gaussian Ball 3 preferences with 6
alternatives.
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2

A TR - B FE

§ = 3 5 & § 5 = £ E . &£ & O 3
Method = = = o = ) o) = DA = & ) %) )
NN .011  .000 .000 .00l .011 .006 .000 O O .047 .000 .000 .000 .035 .052
Borda 018 .001 .004 .00l .018 .137 O .009 O .033 .000 .000 .000 .022 .032
EPH 035 .000 .001 .000 .035 .267 .003 .001 O .065 O 0 0 .051 .067
SNTV 074 O 079 .165 .074 .635 .012 .057 O .001 .000 .002 .002 O  .005
STV 049 O  .040 .087 .049 470 .002 .035 O O 0 .000 .000 O .000
Bloc 034 .000 .001 O 034 .251 .0038 O O .063 .000 .000 .000 .050 .073
cc 154 .007 .138 .270 .154 775 .044 .086 O .223 O  .007 .008 .192 .247
lex-CC 068 .004 .010 O .068 .521 .003 .029 O .119 O 0 0o .097 .101
seq-CC 139 .005 .126 .189 .139 .749 .034 .085 O .209 O  .004 .004 .179 .226
Monroe 136 .005 .102 .225 .136 .721 .042 .080 O .201 O 002 .003 .173 .209
Greedy M. .063 .001 .021 .010 .063 .481 .003 .027 O .102 O 0 0 .083 .095
PAV 040 .000 .001 O  .040 .317 .003 .003 O .071 O 0 0 .056 .065
MES 046 .000 .002 .003 .046 .368 .003 .008 O .081 O 0 0 .064 .069
MAV 168  .013 .145 .235 .168 .845 .076 .091 O .209 .028 .032 .032 .179 .302
RSD 113 .006 .085 O  .113 .667 .020 .044 O .148 .029 .030 .030 .124 .283
Random 186 .013 .174 296 .186 .872 .090 .090 O .228 .032 .041 .043 .196 .350

Table D.57: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Gaussian Ball 10 preferences.

D.2.10 6 Alternatives, (Gaussian Ball 10

Axiom Violation Rates for 6 Alternatives on Gaussian Ball 10 Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.55: Axiom violation rate for each axiom on Gaussian Ball 10 preferences with 6

alternatives.
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Table D.58: Difference between rules for 6 alternatives with 1 < k < 6 on Gaussian Ball 10
preferences.

Axiom Violation Rates for 6 Alternatives on Gaussian Ball 10 Preferences

NN Random Borda
1.0 1 1
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Figure D.56: Axiom violation rate for each rule on Gaussian Ball 10 preferences with 6
alternatives.
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2

A TR - B FE

§ = 3 5 & § 5 = £ E . &£ & O 3
Method = = = o = ) o) = DA = & ) %) )
NN .015 .000 .000 .003 .015 .008 .000 O O .063 .000 .000 .000 .049 .075
Borda 022 .001 .003 .002 .022 .160 O .007 O .042 .000 .000 .000 .029 .041
EPH 046 .000 .002 .000 .046 .326 .004 .001 O .094 O 0 0o .077 .098
SNTV 075 O .058 .18 .075 .671 .016 .037 O .001 .000 .001 .002 O  .006
STV 053 0 .033 .106 .053 .519 .003 .026 O O 0 .000 .000 O .000
Bloc 045 000 .002 O 045 .306 .006 O O .092 .000 .000 .000 .076 .108
cc 143 .005 .079 .256 .143 776 .045 .051 O 216 O  .004 .004 .185 .239
lex-CC 074 .003 .006 O .074 .552 .004 .019 O .142 O 0 o 117 121
seq-CC 131 .004 .076 .169 .131 .753 .034 .051 O .210 O  .002 .002 .180 .226
Monroe 131 .004 .064 .223 .131 .738 .044 049 O .200 O 001 .002 .172 .209
Greedy M. .074 .001 .015 .014 .074 .538 .005 .020 O .133 O 0 0 110 .125
PAV 052 .000 .001 O .052 .383 .004 .004 O .10l O 0 0 .08 .093
MES 059 .000 .002 .005 .059 .439 .004 .008 O .115 O 0 0 .093 .099
MAV 157 009 .082 .228 157 .841 .074 .055 O .207 .022 .025 .025 .176 .294
RSD 117 005 .053 O  .117 .687 .032 .028 O .168 .030 .031 .031 .143 .317
Random 72 .009 .101 277 172 .863 .087 .054 O .220 .028 .033 .034 .189 .337

Table D.59: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Uniform Ball 3 preferences.

D.2.11 6 Alternatives, Uniform Ball 3

Axiom Violation Rates for 6 Alternatives on Uniform Ball 3 Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.57: Axiom violation rate for each axiom on Uniform Ball 3 preferences with 6

alternatives.
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Table D.60: Difference between rules for 6 alternatives with 1 < k < 6 on Uniform Ball 3
preferences.

Axiom Violation Rates for 6 Alternatives on Uniform Ball 3 Preferences

NN Random Borda
1.0 4 b b
0.8 1 —
0.6 b
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Figure D.58: Axiom violation rate for each rule on Uniform Ball 3 preferences with 6 alter-
natives.
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wn
5 s

= T % =z

q = — 3 ; k] i s ‘g £ 8 =

§ ¥ 3 5 & 5§ & = § E 4 £ & ©°o %

Method = = = o = o) o) = D A = &) o) %) )
NN .015 0  .000 .002 .015 .007 .000 .000 O .063 .000 .000 .000 .049 .074
Borda 022 .001 .004 .001 .022 .159 O  .007 O .041 .000 .000 .000 .028 .041
EPH 045 .000 .001 .000 .045 .322 .004 .001 O .092 O 0 0 .075 .096
SNTV 075 O  .059 .18 .075 .671 .017 .038 0O .00l .000 .002 .002 O 006
STV 053 0 .033 .106 .053 .518 .003 .025 O O o .000 .001 0 .001
Bloc 045 000 .001 O .045 .303 .004 O O .091 .000 .000 .000 .07T4 .106
cc 145 .006 .082 .255 .145 776 .045 .051 O .222 O  .004 .005 .189 .245
lex-CC 074 .003 .007 O  .074 .554 .004 .017 O .140 O 0 0o 115 .119
seq-CC 130 .004 .073 .166 .130 .753 .034 .050 O .206 O  .002 .002 .176 .224
Monroe 132 .004 .066 .221 .132 .736 .044 .048 O .204 O .00l .002 .175 .214
Greedy M. .073 .001 .015 .013 .073 .538 .005 .019 O .131 O 0 0 .108 .123
PAV 051 .000 .002 O .051 .380 .004 .003 O .099 O 0 0 .080 .089
MES 058 .000 .003 .005 .058 .440 .004 .007 0O .112 O 0 0 .091 .096
MAV 159  .010 .086 .229 .159 .844 .074 .054 O .211 .023 .026 .026 .180 .298
RSD 118 005 .054 O  .118 .689 .033 .027 O .169 .032 .032 .032 .143 .318
Random 172 .010 .102 278 .172 .864 .088 .054 O .221 .027 .032 .034 .189 .334

Table D.61: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Uniform Ball 10 preferences.

D.2.12 6 Alternatives, Uniform Ball 10

Axiom Violation Rates for 6 Alternatives on Uniform Ball 10 Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.59: Axiom violation rate for each axiom on Uniform Ball 10 preferences with 6

alternatives.
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Table D.62: Difference between rules for 6 alternatives with 1 < k& < 6 on Uniform Ball 10
preferences.

Axiom Violation Rates for 6 Alternatives on Uniform Ball 10 Preferences

NN Random Borda
1.0 4 b b
0.8 { o a2 .2 L —e | 1
0.6 1 ] - 1
0.4 1 1 A
0] g} qgﬁ' | S— _— =1
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Figure D.60: Axiom violation rate for each rule on Uniform Ball 10 preferences with 6
alternatives.
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§ ¥ 3§ 5 & 5§ 5§ = § B 4 £ & ©° %
Method = = = o = ) o) m D A = & ) %) )
NN .014 .000 .000 .002 .014 .009 .000 .000 O .058 .000 .000 .000 .044 .067
Borda 021 .001 .004 .001 .021 .152 O  .009 O .039 .000 .000 .000 .027 .038
EPH 042  .000 .001 .000 .042 .303 .004 .001 O .082 O 0 0 066 .086
SNTV 076 O  .072 .18 .076 .662 .014 .049 0O .00l .000 .002 .003 O 006
STV 052 0  .038 .104 .052 .503 .003 .031 O O 0 .000 .000 O .000
Bloc 041 000 .001 O 041 285 .004 O O .080 .000 .000 .000 .063 .094
cc 151 .006 119 269 .151 .778 .045 .072 O 221 O  .006 .007 .191 .246
lex-CC 071 .003 .008 O .071 .535 .004 .023 0 .131 O 0 0 .108 .112
seq-CC 137 .005 .111 .184 .137 752 .033 .072 O .209 O  .003 .003 .179 .226
Monroe 135 .004 .089 .228 .135 .735 .043 .068 O .202 O .00l .002 .174 .211
Greedy M. .069 .001 .019 .013 .069 .511 .004 .024 O .120 O 0 0 .098 .112
PAV 047 .000 .002 O  .047 .356 .004 .005 O .088 O 0 0 .070 .081
MES 053 .000 .003 .004 .053 .408 .004 .008 O .099 O 0 0o .079 .085
MAV 165 .010 .123 .238 .165 .844 .076 .075 O .208 .026 .029 .029 .178 .302
RSD 117 005 .074 0 117 .677 .032 .037 O .163 .029 .030 .030 .139 .307
Random 182 .011 150 .298 .182 .867 .088 .075 O .225 .031 .037 .039 .194 .345

Table D.63: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Gaussian Cube 3 preferences.

D.2.13 6 Alternatives, (Gaussian Cube 3

Axiom Violation Rates for 6 Alternatives on Gaussian Cube 3 Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.61: Axiom violation rate for each axiom on Gaussian Cube 3 preferences with 6

alternatives.
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Table D.64: Difference between rules for 6 alternatives with 1 < k < 6 on Gaussian Cube 3
preferences.

Axiom Violation Rates for 6 Alternatives on Gaussian Cube 3 Preferences

NN Random Borda
1.0 q q
081 — . L ° I
0.6 1 1
0.4 p L
051 ——— | | = 1e——2 i S— ——
SNTV STV Bloc
1.0 1 q q
0.8 1
R . L .
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0.4 — R S—
0.2 1 1 | A P s
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Figure D.62: Axiom violation rate for each rule on Gaussian Cube 3 preferences with 6
alternatives.
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s ¢ z : £ 5 : = £ E o & § ©° %

Method = = = o = o) O = D A = &) O %) )
NN .014 .000 .000 .002 .014 .007 .000 O O .058 .000 .000 .000 .044 .067
Borda 021 .001 .004 .002 .021 .150 O .009 O .039 .000 .000 .000 .028 .039
EPH 042 .000 .00l .000 .042 .302 .004 .001 O .082 O 0 0 .066 .085
SNTV 076 O 071 .185 .076 .660 .015 .048 O .001 .000 .002 .003 O  .007
STV 052 0O 036 .106 .052 .500 .003 .031 O O o .000 .000 O .001
Bloc 041  .000 .001 O 041 284 004 O O .079 .000 .000 .000 .064 .094
cc 150 .006 .118 .268 .150 .775 .044 .072 O .220 O .006 .007 .188 .244
lex-CC 071 .003 .008 O 071 .534 .004 .023 O .130 O 0 o .07 .111
seq-CC 137 .005 .110 .183 .137 .753 .035 .072 O .212 O .003 .003 .182 .228
Monroe 135  .005 .089 .228 .135 .731 .043 .068 O .200 O .001  .002 .172 .210
Greedy M. .070 .001 .019 .013 .070 .512 .004 .025 O .120 O 0 0 .099 .112
PAV .046  .000 .001 0 046 355 .004 .004 O .088 O 0 0o .071 .081
MES 054 .000 .003 .004 .054 .410 .004 .009 O .100 O 0 0 .080 .086
MAV 164 011 .123 .239 .164 .843 .075 .076 O .207 .025 .028 .028 .177 .297
RSD 117 .006 .073 0O 117 677 031 .038 O .162 .030 .031 .032 .138 .306
Random 181 .011 .150 .296 .181 .868 .087 .075 O .225 .031 .037 .038 .193 .344

Table D.65: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Gaussian Cube 10 preferences.

D.2.14 6 Alternatives, (Gaussian Cube 10

Axiom Violation Rates for 6 Alternatives on Gaussian Cube 10 Preferences
Dummett's Condition Fixed Majority Majority

Condorcet Winner Condorcet Loser
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Figure D.63: Axiom violation rate for each axiom on Gaussian Cube 10 preferences with 6

alternatives.
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Table D.66: Difference between rules for 6 alternatives with 1 < k < 6 on Gaussian Cube
10 preferences.

Axiom Violation Rates for 6 Alternatives on Gaussian Cube 10 Preferences

NN Random Borda
1.0 q q
o8 — . . . ol ]
0.6 1 1 1
0.4 p L
i e ] pE=—s—e———
SNTV STV Bloc
1.0 1 q q
0.8 1 1
06— T | . Lam— -
0.4 1 1. * — —
0.2 1 x| 1 & piE— Y
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Figure D.64: Axiom violation rate for each rule on Gaussian Cube 10 preferences with 6
alternatives.
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Method = = = o = o) O = D A = &) O %) )
NN .015 0  .000 .002 .015 .007 .000 O O .061 .000 .000 .000 .047 .071
Borda 022 .001 .004 .001 .022 .155 O .009 O .041 .000 .000 .000 .029 .04l
EPH 043  .000 .00l .000 .043 .308 .004 .002 O .086 .000 .000 .000 .069 .090
SNTV 077 0 .070 .188 .077 .665 .016 .048 O .001 .000 .002 .003 O  .007
STV 053 0 .037 .108 .053 .507 .003 .031 O O .000 .000 .001 O .001
Bloc 042  .000 .001 O 042 289 004 O O .084 .000 .000 .000 .068 .100
cc 150 .006 .113 .270 .150 .776 .045 .070 O .221 O .006 .007 .190 .246
lex-CC 072 .003 .008 O 072 537 .004 .022 O .135 O 0 o .111 .115
seq-CC 137 .005 .107 .184 .137 .752 .034 .070 0O .211 O .003 .003 .181 .228
Monroe 135 .004 .087 .230 .135 .734 .043 067 O .202 O 001 .002 .174 .212
Greedy M. .071 .001 .019 .013 .071 .515 .004 .025 O .125 O 0 0 .103 .117
PAV .048 .000 .001 0 048 .363 .004 .004 O .093 O 0 0o .075 .085
MES 055 .000 .002 .004 .055 .415 .004 .009 O .104 O 0 0 .084 .090
MAV 164 .010 .119 .242 .164 .842 .075 .074 O .211 .025 .028 .028 .180 .301
RSD 118 .005 .071 O 118 .677 .032 .036 O .165 .030 .031 .032 .140 .311
Random 180 .011 .146 .295 .180 .865 .088 .073 O .224 .030 .036 .037 .192 .341

Table D.67: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Uniform Cube 3 preferences.

D.2.15 6 Alternatives, Uniform Cube 3

Axiom Violation Rates for 6 Alternatives on Uniform Cube 3 Preferences
Dummett's Condition Fixed Majority Majority

Majority Loser Condorcet Loser
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Figure D.65: Axiom violation rate for each axiom on Uniform Cube 3 preferences with 6

alternatives.
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Table D.68: Difference between rules for 6 alternatives with 1 < k£ < 6 on Uniform Cube 3
preferences.

Axiom Violation Rates for 6 Alternatives on Uniform Cube 3 Preferences

NN Random Borda
o8] e > > * — | ]
0.6 1 ] | 1
0.4 1 1 o
g(z) {?‘ 1= I —— ’éi';Q
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Figure D.66: Axiom violation rate for each rule on Uniform Cube 3 preferences with 6
alternatives.
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: @ ¢ : £ : : 2 fE 2 . 2 £ © 3

Method = = = o = o) O = D A = &) O %) )
NN .014 0 .000 .002 .014 .007 .000 O O .059 .000 .000 .000 .046 .069
Borda 021 .001 .004 .001 .021 .154 O .009 O .040 .000 .000 .000 .028 .040
EPH 043  .000 .00l .000 .043 .310 .004 .002 O .08 O 0 0 .069 .089
SNTV 077 0 069 .186 .077 .664 .016 .048 O .00l .000 .002 .003 O  .007
STV 053 0 037 .106 .053 .507 .003 .031 O O o .000 .000 O .001
Bloc 042  .000 .001 O 042 2901 004 O O .083 .000 .000 .000 .067 .098
cc 150 .006 .114 .269 .150 .777 .045 .071 O .221 O .006 .007 .190 .245
lex-CC 072 .003 .008 O 072 538 .004 .023 O .134 O 0 0o .10 .114
seq-CC 136 .005 .105 .183 .136 .751 .034 .070 0O .211 O 002 .002 .180 .227
Monroe 135 .004 .087 .230 .135 .736 .043 .067 O .203 O 001 .002 .174 .212
Greedy M. .071 .001 .019 .013 .071 .517 .005 .024 O .125 O 0 0 .102 .116
PAV 048 .000 .002 O 048 .364 .004 .004 O .093 O 0 0o .075 .085
MES 055 .000 .003 .004 .055 .419 .004 .009 O .104 O 0 0 .084 .090
MAV 164 .010 .118 .241 .164 .842 .074 .075 O .209 .025 .028 .028 .179 .297
RSD 118 .006 .070 O 118 677 .031 .037 O .166 .031 .032 .032 .142 .313
Random 181  .011 .144 .297 .181 .866 .089 .073 O .226 .030 .036 .038 .195 .345

Table D.69: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Uniform Cube 10 preferences.

D.2.16 6 Alternatives, Uniform Cube 10

Axiom Violation Rates for 6 Alternatives on Uniform Cube 10 Preferences
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Figure D.67: Axiom violation rate for each axiom on Uniform Cube 10 preferences with 6

alternatives.
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Table D.70: Difference between rules for 6 alternatives with 1 < k& < 6 on Uniform Cube 10
preferences.

Axiom Violation Rates for 6 Alternatives on Uniform Cube 10 Preferences

NN Random Borda
1.0 q q
081 i . L ° I
0.6 1
0.4 1 1 21 1
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Figure D.68: Axiom violation rate for each rule on Uniform Cube 10 preferences with 6
alternatives.
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Method = = = o = o) @) 9 =) A = &) O % )
NN .012 .000 .001 .005 .012 .009 .000 O 0 .043 .00l .00l .001 .034 .057
Borda 016 .002 .006 .003 .016 .114 O .013 O  .027 .000 .000 .000 .019 .029
EPH 032 .000 .002 .000 .032 235 .003 .001 O .061 .000 .000 .000 .050 .068
SNTV 08 0 .102 .18 .089 .561 .010 .107 .044 .053 .000 .047 .048 O  .007
STV 041 O  .039 .085 .041 .376 .002 .032 O 0 0  .000 .000 O .000
Bloc 032 .000 .001 O  .032 .224 .003 O 0 .059 .000 .000 .000 .048 .073
cc 178  .037 .152 .288 .178 .720 .040 .154 .059 .265 O  .077 .079 .200 .246
lex-CC .054 .006 .009 O  .054 .405 .003 .027 O .094 O 0 0 .076 .085
seq-CC 166 .031 .147 .240 .166 .698 .032 .153 .059 .247 O  .071 .071 .183 .223
Monroe 115 .008 .084 .18 .115 .602 .035 .071 O .174 0  .003 .004 .150 .182
Greedy M. .055 .002 .021 .010 .055 .404 .004 .026 O .087 O 0 0 .071 .087
PAV 035 .001 .002 O .035 .270 .003 .005 O .065 O 0 0 .052 .064
MES .040 .001 .003 .002 .040 .303 .003 .008 O .071 O 0 0 .058 .067
MAV 149 028 .127 .220 .149 .734 .063 .104 O .179 .020 .027 .027 .150 .252
RSD 096 .010 .068 O  .096 .571 .024 .046 O .120 .023 .024 .024 .100 .235
Random 226 .068 .188 .352 226 .833 .084 .179 .070 .285 .049 .119 .122 223 .360

Table D.71: Average Axiom Violation Rate for 6 alternatives and 1 < k < 6 winners across
Mixed preferences.

D.2.17 6 Alternatives, Mixed

Axiom Violation Rates for 6 Alternatives on Mixed Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.69: Axiom violation rate for each axiom on Mixed preferences with 6 alternatives.
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Table D.72: Difference between rules for 6 alternatives with 1 < k < 6 on Mixed preferences.

Axiom Violation Rates for 6 Alternatives on Mixed Preferences
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Figure D.70: Axiom violation rate for each rule on Mixed preferences with 6 alternatives.
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Method = = = o = o) @] % =) A = &) O %) )
NN .017 .000 .000 .004 .017 .015 .000 .000 .000 .061 .001 .001 .001 .046 .092
Borda 021 .001 .004 .004 .021 .125 O .011 0 .044 .000 .000 .000 .031 .056
EPH .040 .000 .00l .000 .040 .270 .002 .001 0 .082 .000 .000 .000 .063 .096
SNTV 099 0 098 .227 .099 .619 .007 .106 .049 .062 .00l .054 .058 O  .012
STV 048 O  .037 .118 .048 442 .002 .029 O 0 .000 .000 .001 0O .001
Bloc 039 .000 .001 O 039 254 .002 O 0 .080 .000 .000 .000 .061 .106
cc 195 .036 .146 .344 .195 .756 .031 .141 .062 .308 O .084 .091 .232 .30l
lex-CC 061 .005 .007 O 061 .440 .002 .024 O .117 O  .000 .000 .091 .112
seq-CC 183 .032  .139 .297 .183 .740 .025 .140 .061 .292 O 078 .081 .216 .278
Monroe 130 .007 .078 .234 .130 .649 .026 .060 O .214 O .002 .006 .180 .231
Greedy M. .063 .002 .019 .012 .063 .448 .003 .023 O .112 O 0 0 .089 .118
PAV .043 .001 .001 O 043 308 .002 .004 O .088 O 0 0 .068 .091
MES .049 .001 .002 .001 .049 .351 .002 .008 O .096 O 0 0 .075 .095
MAV 57 022 .110 279 .157 750 .044 .084 O .219 .015 .022 .022 .179 .300
RSD 105 .008 .056 O 105 .594 016 .036 O  .148 .030 .032 .033 .120 .299
Random 237  .063 .171 .406 .237 .845 .057 .160 .07l .326 .049 .125 .134 .252 .419

Table D.73: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
all preferences.

D.3 7 Alternatives — All preferences

Axiom Violation Rates for 7 Alternatives over All Axioms
Stratified Urn IC IAC
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Figure D.71: Axiom violation rates for each rule under each preference distribution for 7
alternatives
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Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD

NN

Random
Borda
SNTV
STV
Bloc
PAV

CcC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.74: Difference between rules for 7 alternatives with 1 < k < 7 averaged over all
preference distributions.
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n
) g £ :
. B a4 g T 2 2 3 £ & ER-
bt 5 e a g g o s 3 g 2 @ e 3
] o o =) S ot ) Q R s
Method = = = a¥ = &} &) <3 ) ) = &5 O w n
NN .001  .000 0 .001 .001 .011 .000 0 0 .001 0 0 0 .001  .001
Borda .005 0 0 0 .005  .061 0 0 0 0 0 0 0 0 0
EPH 014 .000 0 0 .014 .183 0 0 0 .000 O 0 0 .000 .000
SNTV .030 0 .000 .000 .030 .396 0 000 0 0 0 0 0 0 0
STV .015 0 .000 0 .015  .189 0 000 0O 0 0 0 0 0 0
Bloc .014  .000 0 0 .014 .183 0 0 0 .000 O 0 0 .000 .000
cc 264 .004 .000 .502 .264 .697 .028 .164 .162 .504 O 224 224  .449 466
lex-CC .016  .000 0 0 .016  .210 0 0 0o .000 O 0 0 .000 .000
seq-CC 260  .004 .000 500 .260 .675 .023 .163 .162 .501 0 222 222 446  .463
Monroe 137 .003 .000 .305 .137 .512 .024 .000 O 307 0 018  .018 .295 .295
Greedy M. .026 .000 0 .000 .026 .340 0 000 0  .000 O 0 0 .000 .000
PAV .014  .000 0 0 .014 .184 0 0 0 .000 O 0 0 .000 .000
MES 015 .000 0 0 015  .195 0 0 0 .000 O 0 0 .000 .000
MAV 124 .004 .000 .286 .124 .604 .040 .004 O 192 0 .000 .000 .191 .286
RSD 038 .002 .000 0 038 .481 0 .002 0 .001 0 0 0 .001  .001
Random 324 .007 .000 .736 .324 .854 .050 .166 .162 .503 .067 .272 .272 .452 .675

Table D.75: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Stratified preferences.

D.3.1 7 Alternatives, Stratified

Axiom Violation Rates for 7 Alternatives on Stratified Preferences
Dummett's Condition Fixed Majority Majority

Majority Loser Condorcet Winner Condorcet Loser
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Number of Winners

Figure D.72: Axiom violation rate for each axiom on Stratified preferences with 7 alterna-
tives.
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Table D.76: Difference between rules for 7 alternatives with 1 < k < 7 on Stratified prefer-
ences.

Axiom Violation Rates for 7 Alternatives on Stratified Preferences

NN Random Borda
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Figure D.73: Axiom violation rate for each rule on Stratified preferences with 7 alternatives.
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2

- - i £

s § ¢ : & 3 5 2% @ B o &g & ©° 3
Method = = = o = o) @) 9 =) A = &) O % )
NN .032 .001 .004 .041 .032 .019 .00l .000 .000 .110 .006 .007 .007 .089 .130
Borda 038 .017 .016 .049 .038 .158 O .074 O .062 .001 .00l .00l .049 .065
EPH 042 .005 .004 .000 .042 .128 .001 .009 O .141 .000 .000 .000 .119 .141
SNTV 136 0 208 .275 .136 .568 .00l .330 .029 .188 .000 .080 .088 O  .001
STV 045 O  .070 .110 .045 .295 .000 .115 O 0 .000 .000 .00l 0O .001
Bloc 039 .001 .001 O .039 .110 .001 O 0 .138 .001 .00l .001 .115 .142
cc 237 154 231 .318 237 616 .028 .348 .031 452 0  .111 .124 .321 .354
lex-CC 112 074 073 O  .112 423 .00l .213 O .266 O  .000 .000 .195 .214
seq-CC 221 .139 .220 .268 .221 .605 .024 .343 .031 .426 O  .092 .100 .296 .325
Monroe 124 056 .107 .149 .124 411 .018 .159 O .268 O 001 .001 .205 .234
Greedy M. .071 .028 .034 .013 .071 .269 .003 .079 O .180 O 0 0 .145 .166
PAV 047 010 .008 O  .047 .160 .00l .022 O .148 O 0 0 .124 .143
MES 054 .015 .016 .000 .054 .200 .00l .040 O .155 O 0 0 .128 .145
MAV 233 202 .200 .294 233 .686 .041 .385 O  .406 .026 .059 .059 .2094 .375
RSD 111 076 .075 O  .111 .358 .017 .116 O  .244 027 .040 .042 .194 .261
Random 304 258 255 435 .304 .731 .053 .423 .037 .488 .077 .179 .196 .359 .457

Table D.77: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Urn preferences.

D.3.2 7 Alternatives, Urn

Axiom Violation Rates for 7 Alternatives on Urn Preferences
Fixed Majority Majority

 [— I I - E 1 .\i\i
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Condorcet Winner Condorcet Loser
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SNTV PAV seq-CC = MAV »— RSD
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Figure D.74: Axiom violation rate for each axiom on Urn preferences with 7 alternatives.
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Greedy M.

NN
Random
Borda
SNTV
STV
Bloc
PAV
cC
lex-CC
seq-CC
Monroe
MAV
MES
EPH

RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.78: Difference between rules for 7 alternatives with 1 < k£ < 7 on Urn preferences.

Axiom Violation Rates for 7 Alternatives on Urn Preferences

NN Random Borda
1.0 E E
i e
0.4 E E
8(2, e — = ] | 1 - o - 2
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ooooor
oNvhro®O

ooooor
oNvhro®O
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0.4 4 —e— Majority < Strong Unanimity —— Extended JR
3(2) 1 —x— Majority Loser Local Stability Core

—e— Condorcet Winner

Number of Winners

Figure D.75: Axiom violation rate for each rule on Urn preferences with 7 alternatives.
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2

- Y -

CRR = © g 2 g S o E x & © =

3 ) S) = = ¥ = 0O A s

Method = = = a¥ = O O = P A MmO w )
NN 018 0 O .000 .018 .039 .00l O O .055 0 O O .036 .107
Borda 014 0 O 0 .014 113 0 0 0 .025 0 O O .013 .030
EPH 046 0 O 0 046 326 .00l O O .091 0O O O .065 .111
SNTV 033 0 O .000 .033 422 002 0O O O O O O O .002
STV 026 0 O .000 .026 .336 .00l 0 O ©O O O O O .000
Bloc 046 0 O 0 046 .324 .001 O O .091 0 O O .065 .112
cc 075 0 O .000 .075 493 .014 0O O .147 0O O O .111 .209
lex-CC 052 0 O 0 052 .391 .00l O O .097 0O O O .068 .119
seq-CC 069 0 O 0 069 481 009 O O .132 0 O O .099 .177
Monroe 075 0 0 .000 .075 .493 .014 0 O .147 0 O O .111 .209
Greedy M.  .060 0 O 0 060 .436 .004 0O O .112 0 O O .082 .146
PAV 046 0 O 0 046 337 .00l O O .091 0O O O .065 .109
MES 048 0 O 0 048 354 001 O O .094 0O O O .067 .111
MAV .08 0 O .000 .08 575 .027 O O .146 0 O O .110 .254
RSD 081 0 O 0 081 553 .017 0O O .136 0 O O .101 .242
Random .08 0 O .000 .08 .578 .026 0O O .147 0 O O .109 .263

Table D.79: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
IC preferences.

D.3.3 7 Alternatives, IC

Axiom Violation Rates for 7 Alternatives on IC Preferences
Dummett's Condition Fixed Majority Majority

1 g Py —— - - — | 1 e Py e & Y —

Majority Loser Condorcet Winner Condorcet Loser

0.0 18= *- e & -+ —
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[eolooNoN o]
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081 e Min 4+— Borda % Bloc lex-CC <~— Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD

2 3 4 5 6
Number of Winners

-

Figure D.76: Axiom violation rate for each axiom on IC preferences with 7 alternatives.
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Table D.80: Difference between rules for 7 alternatives with 1 < k£ < 7 on IC preferences.

Axiom Violation Rates for 7 Alternatives on IC Preferences
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Figure D.77: Axiom violation rate

Dummett's Condition —¥— Condorcet Loser Strong Pareto Efficiency
Fixed Majority —a— Solid Coalitions —— Justified Representation
Majority < Strong Unanimity —— Extended JR

Majority Loser Local Stability Core

Condorcet Winner

for each rule on IC preferences with 7 alternatives.
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2

. 2203 7 % 3 g% -

§ = = £ § & £ = £ & = & © %

< o o =] =] o] =) Q B it

Method = = = a¥ = O O = P A - 5] @) 1% )
NN 019 0 0 .000 .019 .040 .001 O O .056 O 0 0 .037 .110
Borda .014 0 O 0 014 115 O 0 0 .025 O 0 0  .014 .031
EPH 046 0 O 0 046 .324 .001 O O .091 O 0 0  .064 .111
SNTV 033 0 O .000 .033 422 .002 0O O O 0 0 0 0  .002
STV 026 0 O .000 .026 .337 .00l O O O 0 0 0 0 .000
Bloc 045 0 O 0 045 322 .001 O O .091 O 0 0 .064 .113
cc 075 0 O .000 .075 .494 013 0 O .149 O 0 o .111 211
lex-CC 052 0 O 0 052 391 001 O O .097 O 0 0 .069 .120
seq-CC 069 0 O 0 069 481 009 O O .133 0 0 0 .100 .179
Monroe 075 0 0 .000 .075 .494 .013 0 0 .149 O 0 0 .111 .211
Greedy M. .060 0O O 0 .060 .436 .004 O O .110 O 0 0 .081 .145
PAV 046 0 O 0 046 336 .00l O O .091 O 0 0  .064 .109
MES 048 0 O 0 048 353 001 O O .093 O 0 0 .066 .111
MAV .08 0 0 .000 .086 .578 .026 0O O .148 .000 .000 .000 .110 .256
RSD 081 0 O 0 081 .552 .017 O O .138 O 0 0 .104 .243
Random 087 0 O .000 .087 579 .026 O O .147 O 0 0o .111 .265

Table D.81: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
IAC preferences.

D.3.4 7 Alternatives, IAC

Axiom Violation Rates for 7 Alternatives on IAC Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.78: Axiom violation rate for each axiom on TAC preferences with 7 alternatives.
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Table D.82: Difference between rules for 7 alternatives with 1 < k < 7 on IAC preferences.

Axiom Violation Rates for 7 Alternatives on IAC Preferences
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Figure D.79: Axiom violation rate for each rule on IAC preferences with 7 alternatives.
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2

R - R

f F oz i § 5 2 = £ § . £ F ©
Method = = = o = O @] % =) A &) O %) )
NN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Borda 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EPH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SNTV 434 0 416 747 434 .TAT O .TAT 74T 747 O 747 747 0O 0
STV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bloc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cc 531 .310 .455 .784 531 .784 .037 .784 .784 .784 O  .784 .784 .310 .310
lex-CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
seq-CC 532 312 454 784 .532 .784 .036 .784 .784 .784 0O .784 .784 .312 .312
Monroe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Greedy M. 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Random 677 499 501 .927 677 .927 .073 927 .927 .927 .241 .927 .927 .499 .499

Table D.83: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Identity preferences.

D.3.5 7 Alternatives, Identity

Axiom Violation Rates for 7 Alternatives on Identity Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.80: Axiom violation rate for each axiom on Identity preferences with 7 alternatives.
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Table D.84: Difference between rules for 7 alternatives with 1 < k < 7 on Identity prefer-
ences.

Axiom Violation Rates for 7 Alternatives on Identity Preferences

NN Random Borda
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Figure D.81: Axiom violation rate for each rule on Identity preferences with 7 alternatives.
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2

A D - - R

§ ® =§ £ § £ & = £ § . &2 & © =%
Method = = = o = o) @) 9 =) A = &) O % )
NN .003 .000 .000 .000 .003 .013 .000 O 0 .008 .000 .000 .000 .005 .016
Borda 004 .000 .000 O  .004 .046 O 000 O .003 O 0 0 .00l .003
EPH 011 0 0 0 011 .104 .000 O 0 012 o0 0 0 .008 .014
SNTV 054 0  .082 .052 .054 .359 .000 .129 .007 .039 O 015 .019 0 000
STV 009 O  .000 .000 .009 .120 .000 .000 O 0 0 0 0 0 000
Bloc 011 o0 0 0 011 .103 .000 O 0 012 o0 0 0 .008 .014
cc 181 .090 .167 .199 .181 .655 .033 .226 .008 .319 O  .074 .085 .232 .269
lex-CC 021 .000 .000 O  .021 .204 .000 .015 O .018 O 0 0 .012 .022
seq-CC 151 .048 .163 .169 .151 .636 .019 .223 .008 .240 O  .064 .072 .146 .174
Monroe 099 .030 .052 .055 .099 .485 .025 .087 O .197 O  .001 .00l .161 .194
Greedy M. .024 0 .005 O  .024 .231 .00l .007 O .023 O 0 0 .017 .027
PAV 011 0 0 0o 011 .109 .000 O 0 012 o0 0 0 .008 .014
MES 012 o0 0 o .012 .118 .000 O 0 013 0 0 0 .009 .014
MAV 168 .115  .109 .152 .168 .768 .054 .229 O  .229 .021 .027 .027 .177 .281
RSD 078 030 .030 O  .078 .543 .009 .088 O  .094 .002 .003 .003 .077 .140
Random 266 .206 .207 .295 266 .878 .066 .309 .009 .395 .057 .140 .155 .310 .435

Table D.85: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Mallows preferences.

D.3.6 7 Alternatives, Mallows

Axiom Violation Rates for 7 Alternatives on Mallows Preferences
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Figure D.82: Axiom violation rate for each axiom on Mallows preferences with 7 alternatives.
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Table D.86: Difference between rules for 7 alternatives with 1 < k < 7 on Mallows prefer-
ences.

Axiom Violation Rates for 7 Alternatives on Mallows Preferences

NN Random Borda
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Figure D.83: Axiom violation rate for each rule on Mallows preferences with 7 alternatives.
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. B oo oz 3 502 g E % ER-

§ § ¥ § § £ £ = § § . £ & © =
Method = = = o = o) @) m D A - &) @] %) 0
NN .034 0 .000 .000 .034 .001 .000 .000 O .099 .002 .002 .002 .069 .271
Borda 043 0 .014 .000 .043 .100 O  .047 O .10l .001 .00l .001 .072 .226
EPH 064 O .008 O  .064 .406 .008 .005 O .102 .000 .000 .000 .07l .224
SNTV 164 O .344 616 .164 .872 .029 .154 O .000 .005 .007 .030 O 079
STV 138 0 .242 558 .138 .835 .011 .136 O O 0 0 011 0 004
Bloc 064 O .008 O .064 .383 .008 O O .099 .00l .00l .001 .069 .256
cc 199 0 379 557  .199 912 039 .170 O .149 O  .006 .033 .111 .230
lex-CC 074 O .008 O .074 .519 .008 .044 O .120 O 0 0o .089 .179
seq-CC 192 0 .348 511 .192 .896 .035 .169 O .151 O .00l .024 .112 .245
Monroe 188 0 .317 .542 .188 .893 .038 .170 O .147 O  .000 .025 .110 .199
Greedy M. .102 0 .093 .076 .102 .624 .008 .095 O .132 O 0 0 .100 .197
PAV 068 O .008 O .068 .464 .008 .027 O .111 O 0 0 .081 .186
MES 073 0 .008 O .073 .509 .008 .043 0 .119 O 0 0o .08 .179
MAV 201 O .370 .615 .201 .894 .048 .172 O .149 .003 .003 .003 .111 .241
RSD 171 0 247 0 171 721 027 .084 0O .137 .100 .102 .102 .102 .602
Random 223 0 443 614 223 918 .064 .170 O .150 .021 .027 .053 .111 .331

Table D.87: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
SP Conitzer preferences.

D.3.7 7 Alternatives, SP Conitzer

Axiom Violation Rates for 7 Alternatives on SP Conitzer Preferences
Dummett's Condition Fixed Majority Majority

0.8 N

- Py —— - Y —

Majority Loser Condorcet Loser
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0.8 1 --------- Min 4+~ Borda % Bloc lex-CC «— Greedy M. EPH
Max SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.84: Axiom violation rate for each axiom on SP Conitzer preferences with 7 alter-
natives.
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Table D.88: Difference between rules for 7 alternatives with 1 < k < 7 on SP Conitzer
preferences.

Axiom Violation Rates for 7 Alternatives on SP Conitzer Preferences
NN Random Borda

P—— —a— =
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oNvhromoO
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ooooor
oNvhroO®O

Number of Winners

Figure D.85: Axiom violation rate for each rule on SP Conitzer preferences with 7 alterna-
tives.
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2

. 2 2 3 3 5 5 g £ F R

E @ ¢ : § : : 2 : B . 2 & © 3
Method = = = o = o) @) m D5 A = & ) %) )
NN .000 © 0 0 000 O 0 0 0 .000 O 0 0 000 .000
Borda 007 O 022 0 007 .051 O .022 O .000 O 0 0 0 0
EPH 005 O 0 0 005 .062 O 0O ©0 .000 O 0 0 000 .000
SNTV 034 0 074 .029 .034 264 O 078 0 O 0 0 0 0 .000
STV 021 O .037 .004 .021 .193 O .03 0 O 0 0 0 0 .000
Bloc 005 O 0 0 005 .059 O 0O 0 .000 O 0 0 000 .000
cc 252 .001 .368 .558 .252 .839 .036 .211 O .349 O 101 .124 310 .384
lex-CC 021 .000 O 0O .021 259 O .005 O .00l O 0 0o .00l .001
seq-CC 227 .000 .356 .553 .227 .817 .030 .209 O .282 O .069 .081 .246 .314
Monroe 180 .000 .203 .409 .180 .730 .028 .199 O .262 O .008 .021 .234 .240
Greedy M. .027 O  .055 .003 .027 .231 0 .057 O .000 O 0 0 .000 .000
PAV 008 .000 O 0O .008 .10l ©O .000 O .000 O 0 0 .000 .000
MES 006 O 0 O .006 .084 O .000 O .000 O 0 0 .000 .000
MAV 253 .001 .367 .648 .253 .886 .052 .196 O .237 .061 .129 .129 .198 .382
RSD .087 .000 .127 O  .087 .555 .002 .103 O .040 .035 .037 .040 .028 .169
Random 306 .001 .443 648 .306 .921 .068 .210 O .357 .087 .181 .215 .317 .526

Table D.89: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
SP Walsh preferences.

D.3.8 7 Alternatives, SP Walsh

Axiom Violation Rates for 7 Alternatives on SP Walsh Preferences

Dummett's Condition Fixed Majority Majority
1.0 4 T F r
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0.6 1 5 # L =
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Figure D.86: Axiom violation rate for each axiom on SP Walsh preferences with 7 alterna-

tives.

300



NN
Random
Borda
SNTV
STV
Bloc
PAV

cC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD

Random
Borda
SNTV
STV
Bloc
PAV

CC
lex-CC
seq-CC
Monroe
Greedy M.
MAV
MES
EPH
RSD
Min
Max

Table D.90: Difference between rules for 7 alternatives with 1 < k < 7 on SP Walsh
preferences.

Axiom Violation Rates for 7 Alternatives on SP Walsh Preferences

NN Random Borda
1.0 1 1
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Figure D.87: Axiom violation rate for each rule on SP Walsh preferences with 7 alternatives.
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wn
5 s

= R = 2

= B = 3 ; = i < = g g =

: @ ¢ : £ : : 2 fE 2 . 2 £ © 3

Method = = = o = o) O = D A = &) O %) )
NN .017 .000 .000 .002 .017 .011 .000 O O .069 .000 .000 .000 .051 .087
Borda 024 .000 .003 .001 .024 .156 O .006 O .051 .000 .000 .000 .036 .058
EPH .044  .000 .00l .000 .044 .309 .002 .00l O .090 .000 .000 .000 .069 .097
SNTV 082 0 065 .222  .082 .711 .009 .040 O .002 .000 .001 .005 O  .012
STV 059 O 036 .133 .059 .568 .001 .027 O O o .000 .001 0 .001
Bloc 042 0 001 O 042 287 002 O O .08 .000 .000 .000 .066 .108
cc 166 .003 .114 .329 .166 .824 .033 .056 O .263 O 006 012 .222 .301
lex-CC 075 .001 .006 O 075 .564 .002 .017 O .144 0 0 0o .116 .129
seq-CC 154 .002 .105 .252 .154 .806 .026 .056 O .252 O .003  .003 .212 .282
Monroe 151 .002 .088 .287 .151 .787 .030 .054 O .243 O .001 .005 .205 .263
Greedy M. .074 .000 .017 .011 .074 .545 .002 .019 O .133 O 0 0 .105 .129
PAV 049 .000 .001 0 049 364 .002 .002 O .098 O 0 0o .075 .093
MES 057 .000 .002 .002 .057 .433 .002 .007 O .112 O 0 0o .08 .101
MAV 175 .005 .111 .307 .175 .879 .052 .058 O .249 .018 .020 .020 .208 .342
RSD 125 .002 .063 O 125 708 .018 .027 O .181 .035 .037 .038 .150 .363
Random 195  .005 .138 .359 .195 .898 .063 .057 O .266 .031 .038 .046 .225 .414

Table D.91: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Gaussian Ball 3 preferences.

D.3.9 7 Alternatives, Gaussian Ball 3

Axiom Violation Rates for 7 Alternatives on Gaussian Ball 3 Preferences

Dummett's Condition Fixed Majority Majority

1.0 4 e Fr——Y q 9

081 i 1 1

0.6 4 1 1
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Figure D.88: Axiom violation rate for each axiom on Gaussian Ball 3 preferences with 7

alternatives.
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Table D.92: Difference between rules for 7 alternatives with 1 < k < 7 on Gaussian Ball 3
preferences.

Axiom Violation Rates for 7 Alternatives on Gaussian Ball 3 Preferences

NN Random Borda
1.0 q — — q
o8 1 1e . * ° ° o | ]
0.6 1 1 1
0.4 1 - 1
0.2 4 1 e o -
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1.0 1 q q
0.8 1 o ]
06] 46— | ] o 1,
0‘4 1 b o - 77’\.\77”
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Figure D.89: Axiom violation rate for each rule on Gaussian Ball 3 preferences with 7
alternatives.
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= R = 2

= B = 3 ; = i < = g g =

§ = 3 5 & § 5 = £ E . &£ & O 3

Method = = = o = o) O = D A = &) O %) )
NN .017 o0 000 .002 .017 .010 .000 O O .069 .000 .000 .000 .051 .088
Borda 024 .001 .003 .00l .024 .154 O .006 O .051 .000 .000 .000 .036 .059
EPH 044 .000 .001 .000 .044 311 .002 .001 O .090 .000 .000 .000 .069 .099
SNTV 082 0 065 .222 .082 .714 .009 .040 O .002 .000 .001 .005 O  .012
STV 059 O 035 .133 .059 .571 .002 .027 O O o .000 .001 0 .001
Bloc 043 0 001 O 043 200 .002 O O .087 .000 .000 .000 .066 .108
cc 166 .003 .113 329 .166 .828 .034 .056 O .262 O 006 .012 .221 .299
lex-CC 075 .001 .005 O 075 .567 .002 .017 O .143 0 0 0o 115 .127
seq-CC 154 .002 .105 .255 .154 .810 .026 .055 O .250 O .002 .003 .210 .280
Monroe 152 .002 .088 .287 .152 .791 .031 .0564 O .244 O 001  .004 .205 .262
Greedy M. .074 .000 .016 .011 .074 .549 .002 .019 O .133 O 0 0 .106 .130
PAV 049 .000 .001 0 049 367 .002 .002 O .098 O 0 0 .075 .094
MES 057 .000 .001 .002 .057 .434 .002 .006 O .111 O 0 0 .087 .100
MAV 174 005 .109 .307 .174 .879 .053 .057 O .248 .019 .020 .020 .207 .341
RSD 126 .002 .064 O 126 709  .020 .027 O .182 .036 .038 .040 .150 .366
Random 195 .005 .137 .358 .195 .898 .063 .057 O .267 .032 .038 .046 .224 .413

Table D.93: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Gaussian Ball 10 preferences.

D.3.10 7 Alternatives, (Gaussian Ball 10

Axiom Violation Rates for 7 Alternatives on Gaussian Ball 10 Preferences

Dummett's Conditio Fixed Majority Majority
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Figure D.90: Axiom violation rate for each axiom on Gaussian Ball 10 preferences with 7
alternatives.
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Table D.94: Difference between rules for 7 alternatives with 1 < k < 7 on Gaussian Ball 10
preferences.

Axiom Violation Rates for 7 Alternatives on Gaussian Ball 10 Preferences

NN Random Borda
301 Jo—o— ¢ —+— |11
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Figure D.91: Axiom violation rate for each rule on Gaussian Ball 10 preferences with 7
alternatives.
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2

. B o= oz 7z 203 g &k FE

§ ¥ 3 5 & 5§ & = § E 4 £ & ©°o %
Method = = = o = o) o) = D A = &) o) %) )
NN .023 0  .000 .003 .023 .016 .000 .000 O .092 .001 .00l .001 .070 .117
Borda 029 .000 .002 .002 .029 .179 O  .004 O .066 .000 .000 .000 .048 .075
EPH 056 0  .001 .000 .056 .372 .003 .001 O .125 .000 .000 .000 .099 .133
SNTV 084 O .044 .241 .084 .741 .012 .024 O .002 .000 .00l .005 O  .014
STV 063 0 026 .156 .063 .615 .003 .017 O O o .000 .001 0 .001
Bloc 055 O .00l O .055 .345 .003 O O .120 .001 .00l .001 .095 .149
cc 157 .002 .061 .311 .157 .825 .032 .029 O .256 O  .004 .007 .215 .296
lex-CC 083 .001 .004 O .083 .598 .003 .009 O .173 O 0 0 141 .154
seq-CC 147 .002 .056 .229 .147 .810 .027 .030 O .253 O  .001 .002 .212 .284
Monroe 146 .002 .050 .278 .146 .798 .030 .029 O .242 O  .000 .003 .203 .265
Greedy M. .086 .000 .011 .013 .08 .600 .003 .012 O .169 O 0 0 .138 .167
PAV 062 .000 .001 O  .062 .433 .003 .002 O .135 O ) o .107 127
MES 071 .000 .001 .003 .071 .505 .003 .005 O .152 O 0 0o .121 .135
MAV 166 .003 .059 .298 .166 .875 .049 .030 O .249 .015 .016 .016 .208 .339
RSD 132 002 .039 O  .132 729 .021 .016 O .205 .040 .042 .043 .172 .408
Random 182  .003 .072 .335 .182 .887 .060 .030 O .260 .028 .031 .036 .218 .402

Table D.95: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Uniform Ball 3 preferences.

D.3.11 7 Alternatives, Uniform Ball 3

Axiom Violation Rates for 7 Alternatives on Uniform Ball 3 Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.92: Axiom violation rate for each axiom on Uniform Ball 3 preferences with 7
alternatives.
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Table D.96: Difference between rules for 7 alternatives with 1 < k < 7 on Uniform Ball 3
preferences.

Axiom Violation Rates for 7 Alternatives on Uniform Ball 3 Preferences
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Figure D.93: Axiom violation rate for each rule on Uniform Ball 3 preferences with 7 alter-
natives.
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= T % =z

q = — 3 ; k] i s ‘g £ 8 =

§ ¥ 3 5 & 5§ & = § E 4 £ & ©°o %

Method = = = o = o) o) = D A = &) o) %) )
NN .022  .000 .000 .004 .022 .015 .000 .000 O .089 .001 .00l .001 .068 .114
Borda 029 .000 .002 .002 .029 .180 O  .004 O .064 .000 .000 .000 .046 .073
EPH 056 .000 .001 .000 .056 .376 .003 .001 O .123 O 0 0 .097 .131
SNTV 083 0 .042 .240 .083 .740 .013 .023 O .002 .000 .001 .005 O  .015
STV 063 0  .025 .156 .063 .613 .002 .017 O O o .000 .001 0 .001
Bloc 055 .000 .00l O .055 .349 .003 O O .119 .001 .00l .001 .094 .148
cc 156 .002 .058 .309 .156 .824 .033 .029 O .257 O  .003 .007 .216 .294
lex-CC 083 .001 .003 O .083 .600 .003 .010 O .171 O 0 0o 139 .151
seq-CC 146 .002 .055 .230 .146 .807 .026 .030 O .252 O  .001 .002 .212 .283
Monroe 146 002 .049 277 .146 .799 .032 .029 O .243 O  .000 .003 .205 .263
Greedy M. .085 .000 .010 .013 .085 .601 .003 .012 O .168 O 0 0 .136 .165
PAV 062 .000 .00l O  .062 .436 .003 .002 O .133 O 0 0 .105 .125
MES 071 .000 .002 .003 .071 .510 .003 .005 O .150 O 0 0 120 .134
MAV 166 .004 .056 .295 .166 .876 .051 .031 O .250 .015 .015 .015 .208 .337
RSD 132 002 .037 O  .132 725 .021 .015 O .205 .042 .044 .044 .171 .405
Random 181  .004 .070 .335 .181 .886 .060 .031 O .257 .027 .031 .036 .217 .400

Table D.97: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Uniform Ball 10 preferences.

D.3.12 7 Alternatives, Uniform Ball 10

Axiom Violation Rates for 7 Alternatives on Uniform Ball 10 Preferences

Dummett's Condition Fixed Majority Majority
1.0 A —— f
0.8
0.6
0.4 4 p i
0.2 1 E g
0.0-Le . . : Ly gy | | g ' ' S
Majority Loser Condorcet Winner Condorcet Loser
1.0 T — A
0.8 1 e $  —
0.6 1 —— .  — :
04l 5 2]
0.2 4 14 4 + — 1
001 % oo 3 i ——!' le . — - ‘ Y ] b'. $ g‘.,/"
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Y —— - - —
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Justified Representation Extended JR
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4— Borda % Bloc lex-CC <~ Greedy M. EPH
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Number of Winners

Figure D.94: Axiom violation rate for each axiom on Uniform Ball 10 preferences with 7

alternatives.
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Table D.98: Difference between rules for 7 alternatives with 1 < k£ < 7 on Uniform Ball 10
preferences.

Axiom Violation Rates for 7 Alternatives on Uniform Ball 10 Preferences

NN Random Borda
ég 1o e e e e o | ]
0.6 1 1
0.4 1 1 Sa
0.2 1 W 1 1 — o
0.0 . ) . ARP= x| 1 0 — =
SNTV STV Bloc
1.0 q q
4 . o 4
R ] e |
0.4 1 .,/ '\.\.\
0.2 1 1 — =
0.0 7= = —— R : > : e | |n ’ : :
PAV CcC lex-CC
1) e ]
61 ] 1, — e
% 0.6 0 o Jor 1o —
< 0.4 e 1 ST y S—
| ] s
S 001z — : — ; ; | l———— ; ; ;
©
° seq-CC Monroe Greedy M.
> 1.0 q r
£ 0.8 ——— ¢ R —— *
.g 0.6 A .'/. Jor" e s S S -
041 — | | =4 | ] —
< 021 /-/ ] f ] 4/ —3
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0214 1 p— 1 $ -
0.0 5% e y 1 * = =y t f ?
RSD
ég : - —4— Dummett's Condition ~¥— Condorcet Loser Strong Pareto Efficiency
0:6 1 '\’\1 —»— Fixed Majority ~—a— Solid Coalitions —w— Justified Representation
0.4 4 —e— Majority < Strong Unanimity —— Extended JR
0.2 1 i,‘é ; 1 —»— Majority Loser Local Stability Core
0.0+ 1 p ] a - . —e— Condorcet Winner

Number of Winners

Figure D.95: Axiom violation rate for each rule on Uniform Ball 10 preferences with 7
alternatives.

309



wn
5 s

= T % =z

q = — 3 ; k] i s ‘g £ 8 =

§ ¥ 3 5 & 5§ & = § E 4 £ & ©°o %

Method = = = o = o) o) = D A = &) o) %) )
NN .021  .000 .000 .004 .021 .015 .000 .000 O .082 .001 .001 .00l .062 .106
Borda 027  .001 .002 .002 .027 .170 O  .005 O .061 .000 .000 .000 .044 .070
EPH 051  .000 .001 .000 .051 .347 .002 .001 O .110 .000 .000 .000 .086 .118
SNTV 08 0 .058 .242 .085 .734 .010 .033 O .002 .00l .002 .005 O .015
STV 062 0  .032 .156 .062 .595 .002 .023 O O o .000 .001 0 .001
Bloc 050 .000 .001 O .050 .321 .002 O O .105 .001 .00l .001 .083 .132
cc 165 .003 .098 .332 .165 .826 .033 .046 O .264 O  .005 .010 .224 .302
lex-CC 079 .001 .004 O .079 .578 .002 .012 0O .157 O 0 0o 128 .141
seq-CC 152 .002 .092 .249 .152 .807 .026 .047 O .252 O  .002 .003 .212 .283
Monroe 152 .002 .078 .289 .152 .795 .031 .046 O .248 O .00l .004 .211 .269
Greedy M. .081 .000 .014 .012 .081 .572 .003 .016 O .156 O 0 0 126 .152
PAV 056 .000 .00l O  .056 .404 .002 .002 O .118 O ) 0 .093 .112
MES 065 .000 .00l .003 .065 .475 .002 .006 O .133 O 0 0 .106 .120
MAV 173 .004 .097 .318 .173 .874 .052 .048 O .252 .016 .018 .018 .212 .341
RSD 130 002 .056 O  .130 .716 .021 .024 O .197 .039 .041 .042 .165 .393
Random 192 .004 121  .364 .192 .890 .062 .048 O .265 .030 .035 .042 .224 .410

Table D.99: Average Axiom Violation Rate for 7 alternatives and 1 < k < 7 winners across
Gaussian Cube 3 preferences.

D.3.13 7 Alternatives, (Gaussian Cube 3

Axiom Violation Rates for 7 Alternatives on Gaussian Cube 3 Preferences

Dummett's Condition Fixed Majority Majority
1.0 A 1 r

ET * * ' p_é--& "

Majority Loser Condorcet Winner Condorcet Loser
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il

PR = —— |

Solid Coalitions Strong Unanimity Local Stability
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Axiom Violation Rate

Justified Representation Extended JR

—e— Random STV cc »— Monroe ¥ MES
4— Borda % Bloc lex-CC <~ Greedy M. EPH
SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.96: Axiom violation rate for each axiom on Gaussian Cube 3 preferences with 7

alternatives.
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Table D.100: Difference between rules for 7 alternatives with 1 < k < 7 on Gaussian Cube
3 preferences.

Axiom Violation Rates for 7 Alternatives on Gaussian Cube 3 Preferences

NN Random Borda
1.0 4 b b
081 ju >~ —o¢ o o | ]
0.6 1 =R
0.4 1 <1
051 e | | | ——— s
SNTV STV Bloc
1.0
0.8 oo
06e— e ¢ e . .
04 — \o\"
0.2 w
0.0 Lz 3 3 p———N | 1 : : ! :
PAV CcC lex-CC
1.0 4 1 s . 1
0.8 1 o ® | A e
% 0610 o 1o 1 e - .
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©
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> 101 1 .
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2 061 — — 11 1 — e TTT— S
0.4 £ —t | - < A : =
Z 04 i f ] /Z’;;—' 3
00 - * T T T T R
MAV MES EPH
1.0
0ogde—° * b — ° 'y
gg M S— = b e
gtz) = Y _;=¢£% — 1z i -
RSD
ég ] - - —4— Dummett's Condition —¥— Condorcet Loser Strong Pareto Efficiency
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0.4 4 —e— Majority < Strong Unanimity —— Extended JR
0.2 1 é ';‘ —x— Majority Loser Local Stability Core
0.0 5 ~e— Condorcet Winner
1 2 3 4 5 6

Number of Winners

Figure D.97: Axiom violation rate for each rule on Gaussian Cube 3 preferences with 7
alternatives.
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Method = = = o = o) o) = D A = &) o) %) )
NN .021 0 .000 .003 .021 .016 .000 .000 O .081 .001 .00l .001 .061 .104
Borda 027 .000 .002 .002 .027 .168 O  .005 O .061 .000 .000 .000 .043 .069
EPH 051  .000 .001 .000 .051 .349 .003 .001 O .110 .000 .000 .000 .085 .117
SNTV 08 0 .058 .245 .085 .731 .010 .033 O .002 .000 .001 .005 O  .014
STV 062 0  .032 .156 .062 .596 .002 .023 0O O o .000 .001 0 .001
Bloc 050 .000 .001 O .050 .324 .003 O O .105 .000 .000 .000 .082 .131
cc 164 .003 .100 .328 .164 .828 .035 .047 O .262 O  .005 .010 .220 .298
lex-CC 079 .001 .004 O .079 .578 .003 .012 O .159 O 0 0 .128 .140
seq-CC 152 .002 .093 .250 .152 .807 .026 .047 O .253 O  .002 .002 .211 .282
Monroe 151 .002 .077 .286 .151 .797 .032 .046 O .246 O .00l .003 .206 .263
Greedy M. .080 .000 .014 .013 .080 .571 .003 .016 O .155 O 0 0 .124 150
PAV 056 .000 .00l O  .056 .406 .003 .002 O .119 O ) 0 .092 .112
MES 065 .000 .00l .003 .065 .473 .002 .006 O .134 O 0 0o .105 .119
MAV 173 .004 .097 .313 .173 .876 .053 .048 O .251 .016 .017 .017 .209 .341
RSD 130 .002 .057 O  .130 .717 .020 .023 O .200 .039 .041 .042 .165 .392
Random 191 .004 122 363 .191 .890 .062 .047 O .262 .029 .034 .041 .221 .406

Table D.101: Average Axiom Violation Rate for 7 alternatives and 1 < k£ < 7 winners across
Gaussian Cube 10 preferences.

D.3.14 7 Alternatives, (Gaussian Cube 10

Axiom Violation Rates for 7 Alternatives on Gaussian Cube 10 Preferences
Dummett's Condition Fixed Majority Majority

g *—Q_ﬁ':'i* ' ' ' ' +

Condorcet Winner Condorcet Loser

Strong Unanimity

Y —— - - —

Axiom Violation Rate

Justified Representation Extended JR

STV CcC +— Monroe ¥ MES
4— Borda % Bloc lex-CC <~ Greedy M. EPH
SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.98: Axiom violation rate for each axiom on Gaussian Cube 10 preferences with 7

alternatives.
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Table D.102: Difference between rules for 7 alternatives with 1 < k < 7 on Gaussian Cube
10 preferences.

Axiom Violation Rates for 7 Alternatives on Gaussian Cube 10 Preferences

NN Random Borda
1.0 q ——— q
081 - -0 *——e —&
0.6 1 T
0.4 1 < A
831 e [ 1 e————
SNTV STV Bloc
1.0 1 q q
] O
R — |1,
0.4 1 o —*-
0.2 1 \%
06 L= — 2] la : >———— B! : : : . .
PAV CcC lex-CC
08 ] ] — 1
. e .
044 \’\o\ 1 =1 1 .
IS =SS ST e || SRR
5 V= T T T T T T T T T T T T T T T T
©
° seq-CC Monroe Greedy M.
> 1.0 q r
£ 0.8 —r ® et * 1A
.g 061 e —_— 1 0'/.’ T 0'/.\‘\707—77 -
0.4 e = | 1 "
] B e =
0.0 13 - : - 1 - 1 ' y
MAV MES EPH
1.0 q q
0g{e— * e |
gg = : S S— — .\\ : = 7.\0\'
024y % | - 7:-\.5 ] fé—ocg
0.0 L% I : - : R : - : -
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1.0 1 . o .
] - —4— Dummett's Condition —¥— Condorcet Loser Strong Pareto Efficiency
gg 1¢ .\0\ $ —»— Fixed Majority ~—a— Solid Coalitions —— Justified Representation
0.4 4 —e— Majority < Strong Unanimity —— Extended JR
0.2 1 i;é ;‘ —x— Majority Loser Local Stability Core
0.0 5 ~e— Condorcet Winner
1 2 3 4 5 6

Number of Winners

Figure D.99: Axiom violation rate for each rule on Gaussian Cube 10 preferences with 7
alternatives.
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Method = = = o = o) o) = D A = &) o) %) )
NN .021  .000 .000 .003 .021 .013 .000 .000 O .084 .001 .001 .00l .064 .109
Borda 028 .000 .002 .002 .028 .173 O  .005 O .062 .000 .000 .000 .045 .071
EPH 053  .000 .001 .000 .053 .357 .002 .001 O .114 .000 .000 .000 .090 .123
SNTV 08 O .056 .248 .085 .736 .011 .032 O .002 .000 .001 .005 O  .015
STV 063 0 .031 .160 .063 .600 .002 .022 0O O .000 .000 .001 O .001
Bloc 051 .000 .001 O 051 .331 .002 O O .109 .001 .00l .001 .086 .138
cc 163 .003 .092 .329 .163 .826 .033 .044 O .259 O  .004 .009 .219 .297
lex-CC 080 .001 .004 O .080 .583 .002 .012 O .162 O 0 0o 132 .145
seq-CC 152 .002 .087 .247 .152 .808 .026 .044 O 255 O  .002 .002 .215 .285
Monroe 150 .002 .072 .287 .150 .797 .031 .043 O .245 O  .000 .003 .206 .264
Greedy M. .082 .000 .014 .014 .082 .577 .003 .016 O .159 O 0 0 129 .156
PAV 058 .000 .001 O  .058 .414 .002 .002 O .122 O ) 0 .096 .117
MES 067 .000 .00l .003 .067 .484 .003 .006 O .138 O 0 0o .110 .124
MAV 171 .003 .090 .316 .171 .874 .053 .045 O .249 .016 .017 .017 .208 .337
RSD 131 .002 .053 0  .131 .719 .021 .022 O .203 .038 .04l .042 .169 .397
Random 190 .004 .114 .362 .190 .888 .061 .045 O .262 .029 .034 .040 .221 .406

Table D.103: Average Axiom Violation Rate for 7 alternatives and 1 < k£ < 7 winners across
Uniform Cube 3 preferences.

D.3.15 7 Alternatives, Uniform Cube 3

Axiom Violation Rates for 7 Alternatives on Uniform Cube 3 Preferences
Dummett's Condition Fixed Majority Majority

ET * * Eg-"' "

Majority Loser Condorcet Winner Condorcet Loser
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—e— Random STV cc »— Monroe ¥ MES
4— Borda % Bloc lex-CC <~ Greedy M. EPH
SNTV PAV seq-CC = MAV »— RSD

Number of Winners

Figure D.100: Axiom violation rate for each axiom on Uniform Cube 3 preferences with 7

alternatives.
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Table D.104: Difference between rules for 7 alternatives with 1 < k < 7 on Uniform Cube 3
preferences.

Axiom Violation Rates for 7 Alternatives on Uniform Cube 3 Preferences

NN Random Borda
ég 1T e R ~——o o | ]
0.6 1 1
0.4 1 =
05 e [ |  ——— s
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Figure D.101: Axiom violation rate for each rule on Uniform Cube 3 preferences with 7
alternatives.
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Method = = = o = o) O = D A = &) O %) )
NN .021 0 .000 .003 .021 .013 .000 O O .085 .000 .000 .000 .064 .109
Borda 028 .000 .002 .002 .028 .174 O .005 O .064 .000 .000 .000 .046 .072
EPH 053 .000 .00l .000 .053 .356 .003 .001 O .116 .000 .000 .000 .090 .123
SNTV 08 O .057 .249 .086 .740 .012 .033 O .003 .000 .002 .006 O  .016
STV 063 0O 031 .160 .063 .605 .002 .023 O O o .000 .001 0 .001
Bloc 052 .000 .001 O 052 330 .003 O O .111 .001 .001 .00l .087 .138
cc 163 .002 .093 .326 .163 .826 .033 .045 O .261 O .005 .010 .219 .298
lex-CC 080 .001 .004 O 080 .581 .003 .013 O .163 O 0 0o 132 .145
seq-CC 152 .002 .088 .249 .152 .811 .026 .045 O .254 O 001 .002 .213 .284
Monroe 150 .002 .072 .285 .150 .797 .031 .044 O .245 O .001 .004 .205 .264
Greedy M. .083 .000 .014 .013 .083 .580 .003 .016 O .161 O 0 0 129 .157
PAV .058 .000 .001 0 058 .413 .003 .002 O .124 O 0 0o .097 .117
MES 067 .000 .00l .003 .067 .482 .003 .006 O .139 O 0 o .10 .125
MAV 71 .004 .090 .314 171 .874 .051 .046 O .251 .016 .018 .018 .209 .339
RSD 131 002 .054 O 131 718 021 .023 O .203 .039 .041 .042 .169 .396
Random 190 .004 .114 .362 .190 .889 .061 .046 O .265 .029 .034 .041 .223 .406

Table D.105: Average Axiom Violation Rate for 7 alternatives and 1 < k£ < 7 winners across
Uniform Cube 10 preferences.

D.3.16 7 Alternatives, Uniform Cube 10

Axiom Violation Rates for 7 Alternatives on Uniform Cube 10 Preferences

Dummett's Condition Fixed Majority Majority
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Figure D.102: Axiom violation rate for each axiom on Uniform Cube 10 preferences with 7

alternatives.
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Table D.106: Difference between rules for 7 alternatives with 1 < k£ < 7 on Uniform Cube
10 preferences.

Axiom Violation Rates for 7 Alternatives on Uniform Cube 10 Preferences
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191 p=—
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Figure D.103: Axiom violation rate for each rule on Uniform Cube 10 preferences with 7
alternatives.
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Method = = = o = o) O 9 =) A = = o) % a
NN .018 .000 .001 .007 .018 .018 .000 .000 .000 .063 .001 .001 .001 .047  .094
Borda .022 .001 .004 .004 .022 127 0 .011 0 .044 .000 .000 .000 .031 .056
EPH .040 .000 .001 .000 .040 272 .002 .001 0 .082 .000 .000 .000 .063 .097
SNTV .099 0 .097 227 .099 .620 .007 .106 .049 .062 .000 .054 .057 0 .012
STV .048 0 .036 117 .048 .443 .002 .029 0 0 0 .000 .001 0 .001
Bloc .039 .000 .001 0 .039 .256 .002 0 0 .080 .000 .000 .000 .061 .106
CcC .195 .036 .145 .346 .195 758 .032 .140 .061 .308 0 .084 .091 232 .301
lex-CC .062 .005 .007 0 .062 .443 .002 .024 0 117 0 0 0 .091 111
seq-CC .182 .032 .138 .296 .182 742 .024 .140 .061 .290 0 .078 .081 214 276
Monroe .130 .006 .078 .234 .130 .650 .026 .060 0 214 0 .002 .006 .179 231
Greedy M. .063 .002 .018 .012 .063 .450 .003 .023 0 111 0 0 0 .088 117
PAV .044 .001 .001 (0] .044 311 .002 .004 0 .088 0 0 0 .068 .091
MES .049 .001 .002 .001 .049 .353 .002 .008 0 .096 0 0 0 .075 .094
MAV 157 .022 .108 279 157 751 .044 .084 0 .219 .015 .023 .023 179 .299
RSD .105 .008 .055 0 .105 .595 .016 .035 0 .147  .029 .031 .032 119 .299
Random 237 .062 170 .405 237 .846 .058 .160 .071 .326 .049 125 134 .252 419

Table D.107: Average Axiom Violation Rate for 7 alternatives and 1 < k£ < 7 winners across
Mixed preferences.

D.3.17 7 Alternatives, Mixed

Axiom Violation Rates for 7 Alternatives on Mixed Preferences
Dummett's Condition Fixed Majority Majority
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Figure D.104: Axiom violation rate for each axiom on Mixed preferences with 7 alternatives.
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Figure D.105: Axiom violation rate for each rule on Mixed preferences with 7 alternatives.
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